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Concurrent Systems — The Big Picture

Concurrent System:
“doing things at the same time trying not to get into each others way”

Doing things at the same time can mean many things, crucial for us is:
sharing computational resources, mainly memory

http://www.youtube.com/watch?v=JgMB6nEv7K0

http://www.buzzfeed.com/svoip/good-parallel-parking-4y59

shared resource = crossing/lane, mopeds/cars = processes . . .
and a (data) race in progress, waiting for a disaster

To control this, one employs:

I Blocking, locks (e.g. railway crossing)
I Semaphores (traffic lights)
I Busy waiting (a plane circling over an airport waiting to land)

These need to be carefully designed and verified, otherwise . . .
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Concurrent Systems — The Big Picture

Students trying to find a seat in the lecture hall

http://www.youtube.com/watch?v=JgMB6nEv7K0
http://www.buzzfeed.com/svoip/good-parallel-parking-4y59
http://www.youtube.com/watch?v=JgMB6nEv7K0
http://www.buzzfeed.com/svoip/good-parallel-parking-4y59


Concurrent Systems — A Deadlock
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Focus of this Lecture

Goal of Spin-style model checking methodology:

To exhibit design flaws in concurrent and distributed software systems

Focus of today’s lecture:

I Modeling and analyzing concurrent systems

Focus of next week’s lecture:

I Modeling and analyzing distributed systems
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Concurrent/Distributed Systems: Hard to Get Right

Some Problems of Concurrent/Distributed Systems

I Hard to predict, hard to form correct intuition about them

I Enormous combinatorial explosion of possible behavior

I Interleaving prone to unsafe operations (“data races”)

I Counter measures prone to deadlocks
I Limited control—from within applications—over “external” factors:

I scheduling strategies
I relative speed of components
I performance of communication mediums
I reliability of communication mediums
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Testing Concurrent or Distributed System is Hard

We cannot exhaustively test concurrent/distributed systems

I Lack of controllability (scheduling, delays, . . . )
⇒ we miss failures in test phase

I Lack of reproducability
⇒ even if failures appear in test phase,

often impossible to analyze/debug defect

I Lack of resources
⇒ exhaustive testing exhausts the testers long before

it exhausts behavior of the system . . .
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Mission of Spin-style Model Checking

To offer a model-based methodology for

I improving the design and

I to exhibit defects

of concurrent and distributed systems
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Activities in Spin-style Model Checking

1. Model (critical aspects of) concurrent/distributed system in
Promela

2. Use assertions, temporal logic, . . . to model crucial properties

3. Use Spin to check all possible runs of the model

4. Analyze result, possibly re-work 1. and 2.

Observations

I The hardest aspect of Model Checking tends to be 1.

I 1. and 2. need to go hand in hand

I Only 3. is—sometimes—“push-button”

Separation of concerns (system vs. property) is essential:
verify the property you want a system to have, not the one it already has
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Main Challenge of Modeling

Conflicting Goals

Richness
Model must be rich enough
to encompass defects the real
system could have

Simplicity

Model must be simple enough
to be checkable, both
theoretically and in practice
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Modeling Concurrent Systems in Promela

Cornerstone of
modeling concurrent and distributed systems in the Spin approach are

Promela processes
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Initial Process

There is always exactly one initial process prior to all others

I Often declared implicitly using “active”

Initial process can be declared explicitly with keyword “init”

i n i t {

print f ("Hello world\n")
}

I If keyword init is supplied then this process can
start other processes with run statement
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Starting Processes

Processes may be started explicitly from init using run

proctype P() { // not declared active
byte local;

...

}

i n i t {

run P();

run P()

}

I Each run operator starts copy of process (with own local variables)

I run P() does not wait for P to finish (asynchronous behavior)

(Promela’s run corresponds to Java’s start, not to Java’s run)
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Atomic Start of Multiple Processes

Recommended to enclose run operators in atomic block
(otherwise, interleaving with other processes possible)

proctype P() {

byte local;

...

}

i n i t {

atomic {

run P();

run P()

}

}

Effect: processes only start executing once all are created

(more on atomic later)
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Joining (Synchronizing) Processes

A trick allows “join” of processes: waiting for all processes to finish

proctype P() { ... }

i n i t {

atomic {

run P();

run P()

}

(_nr_pr == 1) ->

print f ("ready")
}

I _nr_pr built-in variable holding number of running processes

I _nr_pr == 1 only one process (init) still running

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 14 / 45

Joining (Synchronizing) Processes

A trick allows “join” of processes: waiting for all processes to finish

proctype P() { ... }

i n i t {

atomic {

run P();

run P()

}

(_nr_pr == 1) ->

print f ("ready")
}

I _nr_pr built-in variable holding number of running processes

I _nr_pr == 1 only one process (init) still running

2
0
1
8
-1
1
-0
5

FMiSE
Concurrent Processes in Promela

Joining (Synchronizing) Processes



Process Parameters

Processes may have arguments, instantiated by run

proctype P(byte i; bool b) {

...

}

i n i t {

run P(7, true);
run P(8, f a l s e )

}
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Active (Set of) Processes

init can be made implicit by using the active modifier

active proctype P() {

...

}

I implicit init process will run exactly one copy of P

active [n] proctype P() {

...

}

I implicit init process will run n copies of P

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 16 / 45

Active (Set of) Processes

init can be made implicit by using the active modifier

active proctype P() {

...

}

I implicit init process will run exactly one copy of P

active [n] proctype P() {

...

}

I implicit init process will run n copies of P

2
0
1
8
-1
1
-0
5

FMiSE
Concurrent Processes in Promela

Active (Set of) Processes



Local and Global Data

Variables declared outside of any process are global to all processes

Variables declared inside a process are local to that process

byte n ;

proctype P() {

byte t ;

...

}

n is global
t is local
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Modeling with Global Data

Pragmatics of modeling with global data

Shared memory of concurrent systems often modeled
by global variables of numeric (or array) type

Shared resources state of (printer, traffic light, . . . ) often modeled by
global variables of Boolean or enumeration type
(bool/mtype)

Communication media of distributed systems often modeled
by global variables of channel type (chan)
(next lecture)

Never use global variables to model process-local data!
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Interference on Global Data

1 byte n = 0;

2

3 active proctype P() {

4 n = 1;

5 print f ("Process P, n = %d\n", n)

6 }

7

8 active proctype Q() {

9 n = 2;

10 print f ("Process Q, n = %d\n", n)

11 }

How many outputs possible? interleave0.pml

Processes can interfere on global data
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Six Different Observable Behaviours
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Examples

1. interleave0.pml

Spin simulation, automata

2. interleave1.pml, interleave1A.pml
Adding assertion about n, model checking

3. interleave5.pml, interleave5F.pml, interleave5A.pml
Spin simulation, assertion, Spin model checking, trail inspection
show generated graph interleave5.pdf, modify assertion, verify
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Atomicity

Limit possibilities of being interrupted (“pre-empted”) by other processes

I Decrease the possible number of interleavings

Weakly atomic sequence
can only be interrupted if a statement is not executable
⇒ defined in Promela by atomic{ . . . }

Strongly atomic sequence
cannot be interrupted at all
⇒ defined in Promela by d step{ . . . }
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Deterministic Sequences

d step:

I strongly atomic

I deterministic (like a single step)

I non-determinism resolved in fixed way (always take the first option)
⇒ good style to avoid non-determinism in d step

I it is an error if any statement within d step,
other than the first one (called “guard”), blocks

d step {

stmt1; ← guard
stmt2;

stmt3

}

I If stmt1 blocks, d step is not entered, and blocks as a whole

I It is an error if stmt2 or stmt3 block
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(Weakly) Atomic Sequences

atomic:

I weakly atomic

I can be non-deterministic

atomic {

stmt1; ← guard
stmt2;

stmt3

}

If guard blocks, atomic is not entered, and blocks as a whole

Once atomic is entered, control is kept until a statement blocks, and
only then control is passed to another process
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Example for Limiting Interference by Atomicity

I interleave5D.pml

Show assertion, verify
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Synchronization on Global Data

Promela has no synchronization primitives:

I semaphores

I locks

I monitors

I . . .

Instead, Promela controls statement executability (absence of blocking)

I Non-executable statements in atomic sequences permit pre-emption

Most known synchronization primitives (test & set, compare & swap,
semaphores, . . . ) can be modelled using executability and atomicity
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Executability

Each Promela statement has the property “executability”

Executability of basic statements:

statement type executable

assignments always

assertions always

print statements always

expression statements iff value not 0/false

send/receive statements (next lecture)
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Executability (Cont’d)

Executability of compound statements

statement type executable iff

atomic, d step guard (first statement of scope) executable

if , do any of its alternatives is executable

alternative of if , do guard (first statement of scope) executable
(recall: “->” syntactic sugar for “;”)

for always (body can block, of course)
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Executability and Blocking

Definition (Blocking)

A statement is blocking iff it is not executable.
A process is blocking iff its location counter points to a blocking
statement.

For the next step of execution, the scheduler chooses
non-deterministically one of the non-blocking statements in a process

Executability/blocking are the basic concepts in
Promela-style modeling of solutions to synchronization problems
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The Critical Section Problem

Archetypical problem of concurrent systems

Definition (Critical Section)

The critical section (CS) of a process is the block of code where shared
state (e.g., global variables) are accessed and possibly manipulated

Example

The Promela models interleave?.pml with global variable n

CS Problem (Data Race, Race Condition, “kritischer Wettlauf”)

Given a set of processes each containing at least one critical section:

The result of the computation performed by the processes might depend
on their execution order
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The Critical Section Problem: Solutions

Given a number of looping processes, each containing a critical section

Mutual Exclusion

At most one process is executing its critical section at any given time

Challenges

Absence of Deadlock If some processes are trying to enter their
critical sections, then one of them must
eventually succeed

Absence of Starvation If any process tries to enter its critical section,
then that process must eventually succeed
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Critical Section Pattern

For demo purposes, model (non-)critical sections by printf statements:

active proctype P() {

do :: print f ("P non -critical action\n");
/* begin critical section */

print f ("P uses shared resource\n")
/* end critical section */

od
}

active proctype Q() {

do :: print f ("Q non -critical action\n");
/* begin critical section */

print f ("Q uses shared resource\n")
/* end critical section */

od
}
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Mutual Exclusion: First Attempt

Simple idea: use Boolean flags to control access to critical section

bool enterCriticalP = f a l s e ;
bool enterCriticalQ = f a l s e ;

active proctype P() {

do :: print f ("P non -critical action\n");
enterCriticalP = true;
/* begin critical section */

print f ("P uses shared resource\n");
/* end critical section */

enterCriticalP = f a l s e
od

}

active proctype Q() {

analogous
}
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Verification of Mutual Exclusion Not Yet Possible

bool enterCriticalP = f a l s e ;
bool enterCriticalQ = f a l s e ;

active proctype P() {

do :: print f ("P non -critical action\n");
enterCriticalP = true;
/* begin critical section */

print f ("P uses shared resource\n");
assert(!enterCriticalQ);

/* end critical section */

enterCriticalP = f a l s e
od

}

active proctype Q() {

analogous
}

(csAssert.pml)
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Mutual Exclusion: Second Attempt

“Busy Waiting” csBusy.pml

bool enterCriticalP = f a l s e ;
bool enterCriticalQ = f a l s e ;

active proctype P() {

do :: print f ("P non -critical action\n");
enterCriticalP = true;
do :: !enterCriticalQ -> break

:: e l se -> skip
od;
/* begin critical section */

print f ("P uses shared resource\n");
assert (! enterCriticalQ);
/* end critical section */

enterCriticalP = f a l s e
od

}

active proctype Q() { analogous }
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Discussion

Failed verification — Busy waiting is problematic

I Does not block execution, even if exclusion property fails

I Wasteful on resources

Instead of busy waiting, use blocking to:

I release control when exclusion property not fulfilled

I continue only when exclusion properties are fulfilled

Don’t use assignment, but expression statement !enterCriticalQ

to let process P block where it should not proceed!
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Mutual Exclusion: Third Attempt

Use !enterCriticalQ as a guard that blocks execution

// csBlocking.pml

bool enterCriticalP;

bool enterCriticalQ;

active proctype P() {

do :: print f ("P non -critical action\n");
enterCriticalP = true;
!enterCriticalQ;

/* begin critical section */

print f ("P uses shared resource\n");
assert (! enterCriticalQ);
/* end critical section */

enterCriticalP = f a l s e
od

}

active proctype Q() { analogous }
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Verifying Mutual Exclusion

Mutual Exclusion (ME) cannot be shown by Spin

I enterCriticalP/Q sufficient for achieving ME

I enterCriticalP/Q insufficient for proving ME

Global vs. Local Properties

To verify ME one needs to ensure that at any time at most one process is
in a critical section

I assert statements are code-local and insufficient for this

I Need mechanism that can express system-global properties

Some typical mechanisms to express global system properties

Ghost Variables global variables used only for specification/verification

Invariants properties that hold at certain times ⇒Temporal Logic
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Verify Mutual Exclusion with Ghost Variables

int critical = 0; // nr of processes in CS

active proctype P() {

do :: print f ("P non -critical action\n");
enterCriticalP = true;
!enterCriticalQ;

/* begin critical section */

critical++;

print f ("P uses shared resource\n");
assert (critical <= 1);

critical--;

/* end critical section */

enterCriticalP = f a l s e
od

}

active proctype Q() { analogous }
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Verify Mutual Exclusion with Spin

I Attempt to verify csGhost.pml

spin -a csGhost.pml; gcc -o pan pan.c; ./pan

I Simulate guided by trail

spin -g -p -t csGhost.pml

I Both processes have set enterCritical
I Both processes are at guard !entercritical
I Neither can proceed

I Make pan ignore deadlocks (invalid end states)

./pan -E;
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Deadlock Hunting

Invalid End State

I A process does not finish in an end state

I OK, if it is not crucial to continue (see previous lecture)

I Two or more inter-dependent processes do not finish at the end:
Real deadlock

Finding Deadlocks with Spin

I Attempt verification to produce a failing run trail

I Guided simulation to see how the processes get to the deadlock

I Fix the code, but don’t use endXXX:-labels or -E switch
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Atomicity against Deadlocks

Deadlock-free solution to ME problem with only flags/blocking is hard

Atomicity

I More powerful and general mechanism

I Often leads to conceptually simpler solutions

I But is not always a realistic system assumption

Idea for Solution of ME Problem by Atomicity

Check and set the critical section flag in one atomic step

atomic {

!enterCriticalQ; // use as guard , must come first

enterCriticalP = true
} // csGhostAtomic.pml
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Variations of Critical Section Problem

At most n processes allowed in critical section

Modeling possibilities include:

I counters instead of booleans

I semaphores

I test & set instructions (primitive for atomic block on previous slide)

Refined mutual exclusion conditions

I several critical sections (Leidseplein in Amsterdam)

I writers exclude each other and readers
readers exclude writers, but not other readers

I FIFO queues for entering sections (full semaphores)

. . . and many more!
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Use Atomicity with Good Judgment

There is a trivial solution of the CS problem using atomicity
(csAtomic.pml)

Using atomicity in such an extreme way has serious drawbacks

I Not generalizable to variations of the CS problem

I atomic only weakly atomic, blocking still possible

I d step excludes any non-determinism
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Literature for this Lecture

Ben-Ari Chapter 3
Sections 4.1–4.4
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