
Formale Methoden im Softwareentwurf
Modellierung von Nebenläufigkeit / Modeling Concurrency

Richard Bubel
(in Vertretung von R. Hähnle)

5 November 2018

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 1 / 45

Formale Methoden im Softwareentwurf
Modellierung von Nebenläufigkeit / Modeling Concurrency

Richard Bubel
(in Vertretung von R. Hähnle)

5 November 2018

2
0
1
8
-1
1
-0
5

FMiSE



Concurrent Systems — The Big Picture

Concurrent System:
“doing things at the same time trying not to get into each others way”

Doing things at the same time can mean many things, crucial for us is:
sharing computational resources, mainly memory

http://www.youtube.com/watch?v=JgMB6nEv7K0

http://www.buzzfeed.com/svoip/good-parallel-parking-4y59

shared resource = crossing/lane, mopeds/cars = processes . . .
and a (data) race in progress, waiting for a disaster

To control this, one employs:

I Blocking, locks (e.g. railway crossing)
I Semaphores (traffic lights)
I Busy waiting (a plane circling over an airport waiting to land)

These need to be carefully designed and verified, otherwise . . .
FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 2 / 45

Concurrent Systems — The Big Picture

Concurrent System:
“doing things at the same time trying not to get into each others way”

Doing things at the same time can mean many things, crucial for us is:
sharing computational resources, mainly memory

http://www.youtube.com/watch?v=JgMB6nEv7K0

http://www.buzzfeed.com/svoip/good-parallel-parking-4y59

shared resource = crossing/lane, mopeds/cars = processes . . .
and a (data) race in progress, waiting for a disaster

To control this, one employs:

I Blocking, locks (e.g. railway crossing)
I Semaphores (traffic lights)
I Busy waiting (a plane circling over an airport waiting to land)

These need to be carefully designed and verified, otherwise . . .

2
0
1
8
-1
1
-0
5

FMiSE
This Lecture

Concurrent Systems — The Big Picture

Students trying to find a seat in the lecture hall

http://www.youtube.com/watch?v=JgMB6nEv7K0
http://www.buzzfeed.com/svoip/good-parallel-parking-4y59
http://www.youtube.com/watch?v=JgMB6nEv7K0
http://www.buzzfeed.com/svoip/good-parallel-parking-4y59


Concurrent Systems — A Deadlock

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 3 / 45

Concurrent Systems — A Deadlock

2
0
1
8
-1
1
-0
5

FMiSE
This Lecture

Concurrent Systems — A Deadlock



Focus of this Lecture

Goal of Spin-style model checking methodology:

To exhibit design flaws in concurrent and distributed software systems

Focus of today’s lecture:

I Modeling and analyzing concurrent systems

Focus of next week’s lecture:

I Modeling and analyzing distributed systems

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 4 / 45

Focus of this Lecture

Goal of Spin-style model checking methodology:

To exhibit design flaws in concurrent and distributed software systems

Focus of today’s lecture:

I Modeling and analyzing concurrent systems

Focus of next week’s lecture:

I Modeling and analyzing distributed systems

2
0
1
8
-1
1
-0
5

FMiSE
This Lecture

Focus of this Lecture



Concurrent/Distributed Systems: Hard to Get Right

Some Problems of Concurrent/Distributed Systems

I Hard to predict, hard to form correct intuition about them

I Enormous combinatorial explosion of possible behavior

I Interleaving prone to unsafe operations (“data races”)

I Counter measures prone to deadlocks
I Limited control—from within applications—over “external” factors:

I scheduling strategies
I relative speed of components
I performance of communication mediums
I reliability of communication mediums

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 5 / 45

Concurrent/Distributed Systems: Hard to Get Right

Some Problems of Concurrent/Distributed Systems

I Hard to predict, hard to form correct intuition about them

I Enormous combinatorial explosion of possible behavior

I Interleaving prone to unsafe operations (“data races”)

I Counter measures prone to deadlocks
I Limited control—from within applications—over “external” factors:

I scheduling strategies
I relative speed of components
I performance of communication mediums
I reliability of communication mediums

2
0
1
8
-1
1
-0
5

FMiSE
This Lecture

Concurrent/Distributed Systems: Hard to Get
Right



Testing Concurrent or Distributed System is Hard

We cannot exhaustively test concurrent/distributed systems

I Lack of controllability (scheduling, delays, . . . )
⇒ we miss failures in test phase

I Lack of reproducability
⇒ even if failures appear in test phase,

often impossible to analyze/debug defect

I Lack of resources
⇒ exhaustive testing exhausts the testers long before

it exhausts behavior of the system . . .

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 6 / 45

Testing Concurrent or Distributed System is Hard

We cannot exhaustively test concurrent/distributed systems

I Lack of controllability (scheduling, delays, . . . )
⇒ we miss failures in test phase

I Lack of reproducability
⇒ even if failures appear in test phase,

often impossible to analyze/debug defect

I Lack of resources
⇒ exhaustive testing exhausts the testers long before

it exhausts behavior of the system . . .

2
0
1
8
-1
1
-0
5

FMiSE
This Lecture

Testing Concurrent or Distributed System is
Hard



Mission of Spin-style Model Checking

To offer a model-based methodology for

I improving the design and

I to exhibit defects

of concurrent and distributed systems

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 7 / 45

Mission of Spin-style Model Checking

To offer a model-based methodology for

I improving the design and

I to exhibit defects

of concurrent and distributed systems

2
0
1
8
-1
1
-0
5

FMiSE
This Lecture

Mission of Spin-style Model Checking



Activities in Spin-style Model Checking

1. Model (critical aspects of) concurrent/distributed system in
Promela

2. Use assertions, temporal logic, . . . to model crucial properties

3. Use Spin to check all possible runs of the model

4. Analyze result, possibly re-work 1. and 2.

Observations

I The hardest aspect of Model Checking tends to be 1.

I 1. and 2. need to go hand in hand

I Only 3. is—sometimes—“push-button”

Separation of concerns (system vs. property) is essential:
verify the property you want a system to have, not the one it already has

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 8 / 45

Activities in Spin-style Model Checking

1. Model (critical aspects of) concurrent/distributed system in
Promela

2. Use assertions, temporal logic, . . . to model crucial properties

3. Use Spin to check all possible runs of the model

4. Analyze result, possibly re-work 1. and 2.

Observations

I The hardest aspect of Model Checking tends to be 1.

I 1. and 2. need to go hand in hand

I Only 3. is—sometimes—“push-button”

Separation of concerns (system vs. property) is essential:
verify the property you want a system to have, not the one it already has

2
0
1
8
-1
1
-0
5

FMiSE
This Lecture

Activities in Spin-style Model Checking



Main Challenge of Modeling

Conflicting Goals

Richness
Model must be rich enough
to encompass defects the real
system could have

Simplicity

Model must be simple enough
to be checkable, both
theoretically and in practice

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 9 / 45

Main Challenge of Modeling

Conflicting Goals

Richness
Model must be rich enough
to encompass defects the real
system could have

Simplicity

Model must be simple enough
to be checkable, both
theoretically and in practice

2
0
1
8
-1
1
-0
5

FMiSE
This Lecture

Main Challenge of Modeling



Modeling Concurrent Systems in Promela

Cornerstone of
modeling concurrent and distributed systems in the Spin approach are

Promela processes

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 10 / 45

Modeling Concurrent Systems in Promela

Cornerstone of
modeling concurrent and distributed systems in the Spin approach are

Promela processes

2
0
1
8
-1
1
-0
5

FMiSE
Concurrent Processes in Promela

Modeling Concurrent Systems in Promela



Initial Process

There is always exactly one initial process prior to all others

I Often declared implicitly using “active”

Initial process can be declared explicitly with keyword “init”

i n i t {

print f ("Hello world\n")
}

I If keyword init is supplied then this process can
start other processes with run statement

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 11 / 45

Initial Process

There is always exactly one initial process prior to all others

I Often declared implicitly using “active”

Initial process can be declared explicitly with keyword “init”

i n i t {

print f ("Hello world\n")
}

I If keyword init is supplied then this process can
start other processes with run statement2

0
1
8
-1
1
-0
5

FMiSE
Concurrent Processes in Promela

Initial Process



Starting Processes

Processes may be started explicitly from init using run

proctype P() { // not declared active
byte local;

...

}

i n i t {

run P();

run P()

}

I Each run operator starts copy of process (with own local variables)

I run P() does not wait for P to finish (asynchronous behavior)

(Promela’s run corresponds to Java’s start, not to Java’s run)

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 12 / 45

Starting Processes

Processes may be started explicitly from init using run

proctype P() { // not declared active
byte local;

...

}

i n i t {

run P();

run P()

}

I Each run operator starts copy of process (with own local variables)

I run P() does not wait for P to finish (asynchronous behavior)

(Promela’s run corresponds to Java’s start, not to Java’s run)

2
0
1
8
-1
1
-0
5

FMiSE
Concurrent Processes in Promela

Starting Processes



Atomic Start of Multiple Processes

Recommended to enclose run operators in atomic block
(otherwise, interleaving with other processes possible)

proctype P() {

byte local;

...

}

i n i t {

atomic {

run P();

run P()

}

}

Effect: processes only start executing once all are created

(more on atomic later)
FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 13 / 45

Atomic Start of Multiple Processes

Recommended to enclose run operators in atomic block
(otherwise, interleaving with other processes possible)

proctype P() {

byte local;

...

}

i n i t {

atomic {

run P();

run P()

}

}

Effect: processes only start executing once all are created

(more on atomic later)

2
0
1
8
-1
1
-0
5

FMiSE
Concurrent Processes in Promela

Atomic Start of Multiple Processes



Joining (Synchronizing) Processes

A trick allows “join” of processes: waiting for all processes to finish

proctype P() { ... }

i n i t {

atomic {

run P();

run P()

}

(_nr_pr == 1) ->

print f ("ready")
}

I _nr_pr built-in variable holding number of running processes

I _nr_pr == 1 only one process (init) still running

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 14 / 45

Joining (Synchronizing) Processes

A trick allows “join” of processes: waiting for all processes to finish

proctype P() { ... }

i n i t {

atomic {

run P();

run P()

}

(_nr_pr == 1) ->

print f ("ready")
}

I _nr_pr built-in variable holding number of running processes

I _nr_pr == 1 only one process (init) still running

2
0
1
8
-1
1
-0
5

FMiSE
Concurrent Processes in Promela

Joining (Synchronizing) Processes



Process Parameters

Processes may have arguments, instantiated by run

proctype P(byte i; bool b) {

...

}

i n i t {

run P(7, true);
run P(8, f a l s e )

}

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 15 / 45

Process Parameters

Processes may have arguments, instantiated by run

proctype P(byte i; bool b) {

...

}

i n i t {

run P(7, true);
run P(8, f a l s e )

}

2
0
1
8
-1
1
-0
5

FMiSE
Concurrent Processes in Promela

Process Parameters



Active (Set of) Processes

init can be made implicit by using the active modifier

active proctype P() {

...

}

I implicit init process will run exactly one copy of P

active [n] proctype P() {

...

}

I implicit init process will run n copies of P

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 16 / 45

Active (Set of) Processes

init can be made implicit by using the active modifier

active proctype P() {

...

}

I implicit init process will run exactly one copy of P

active [n] proctype P() {

...

}

I implicit init process will run n copies of P

2
0
1
8
-1
1
-0
5

FMiSE
Concurrent Processes in Promela

Active (Set of) Processes



Local and Global Data

Variables declared outside of any process are global to all processes

Variables declared inside a process are local to that process

byte n ;

proctype P() {

byte t ;

...

}

n is global
t is local

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 17 / 45

Local and Global Data

Variables declared outside of any process are global to all processes

Variables declared inside a process are local to that process

byte n ;

proctype P() {

byte t ;

...

}

n is global
t is local2

0
1
8
-1
1
-0
5

FMiSE
Concurrent Processes in Promela

Local and Global Data



Modeling with Global Data

Pragmatics of modeling with global data

Shared memory of concurrent systems often modeled
by global variables of numeric (or array) type

Shared resources state of (printer, traffic light, . . . ) often modeled by
global variables of Boolean or enumeration type
(bool/mtype)

Communication media of distributed systems often modeled
by global variables of channel type (chan)
(next lecture)

Never use global variables to model process-local data!

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 18 / 45

Modeling with Global Data

Pragmatics of modeling with global data

Shared memory of concurrent systems often modeled
by global variables of numeric (or array) type

Shared resources state of (printer, traffic light, . . . ) often modeled by
global variables of Boolean or enumeration type
(bool/mtype)

Communication media of distributed systems often modeled
by global variables of channel type (chan)
(next lecture)

Never use global variables to model process-local data!2
0
1
8
-1
1
-0
5

FMiSE
Concurrent Processes in Promela

Modeling with Global Data



Interference on Global Data

1 byte n = 0;

2

3 active proctype P() {

4 n = 1;

5 print f ("Process P, n = %d\n", n)

6 }

7

8 active proctype Q() {

9 n = 2;

10 print f ("Process Q, n = %d\n", n)

11 }

How many outputs possible? interleave0.pml

Processes can interfere on global data

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 19 / 45

Interference on Global Data

1 byte n = 0;

2

3 active proctype P() {

4 n = 1;

5 print f ("Process P, n = %d\n", n)

6 }

7

8 active proctype Q() {

9 n = 2;

10 print f ("Process Q, n = %d\n", n)

11 }

How many outputs possible? interleave0.pml

Processes can interfere on global data

2
0
1
8
-1
1
-0
5

FMiSE
Interference on Global Data

Interference on Global Data



Six Different Observable Behaviours

3, 8

0

4, 8

1P

3, 9

2

Q

4, 9

2

Q

4, 9

1

P

5, 8

1

P

3,10

2Q

5, 9

2

Q

P
4,10

1

Q

4,10

2

Q

5, 9

1P

5,10

2

P

Q

5,10

1P

Q

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 20 / 45

Six Different Observable Behaviours

3, 8

0

4, 8

1P

3, 9

2

Q

4, 9

2

Q

4, 9

1

P

5, 8

1

P

3,10

2Q

5, 9

2

Q

P

4,10

1

Q

4,10

2

Q

5, 9

1P

5,10

2

P

Q

5,10

1P

Q2
0
1
8
-1
1
-0
5

FMiSE
Interference on Global Data

Six Different Observable Behaviours



Six Different Observable Behaviours

3, 8

0

4, 8

1P

3, 9

2

Q

4, 9

2

Q

4, 9

1

P

5, 8

1

P

3,10

2Q

5, 9

2

Q

P
4,10

1

Q

4,10

2

Q

5, 9

1P

5,10

2

P

Q

5,10

1P

Q

P:1, Q:2

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 20 / 45

Six Different Observable Behaviours

3, 8

0

4, 8

1P

3, 9

2

Q

4, 9

2

Q

4, 9

1

P

5, 8

1

P

3,10

2Q

5, 9

2

Q

P

4,10

1

Q

4,10

2

Q

5, 9

1P

5,10

2

P

Q

5,10

1P

Q

P:1, Q:2

2
0
1
8
-1
1
-0
5

FMiSE
Interference on Global Data

Six Different Observable Behaviours



Six Different Observable Behaviours

3, 8

0

4, 8

1P

3, 9

2

Q

4, 9

2

Q

4, 9

1

P

5, 8

1

P

3,10

2Q

5, 9

2

Q

P
4,10

1

Q

4,10

2

Q

5, 9

1P

5,10

2

P

Q

5,10

1P

Q

P:1, Q:2

P:2, Q:2

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 20 / 45

Six Different Observable Behaviours

3, 8

0

4, 8

1P

3, 9

2

Q

4, 9

2

Q

4, 9

1

P

5, 8

1

P

3,10

2Q

5, 9

2

Q

P

4,10

1

Q

4,10

2

Q

5, 9

1P

5,10

2

P

Q

5,10

1P

Q

P:1, Q:2

P:2, Q:2

2
0
1
8
-1
1
-0
5

FMiSE
Interference on Global Data

Six Different Observable Behaviours



Six Different Observable Behaviours

3, 8

0

4, 8

1P

3, 9

2

Q

4, 9

2

Q

4, 9

1

P

5, 8

1

P

3,10

2Q

5, 9

2

Q

P
4,10

1

Q

4,10

2

Q

5, 9

1P

5,10

2

P

Q

5,10

1P

Q

P:1, Q:2

P:2, Q:2

Q:2, P:2

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 20 / 45

Six Different Observable Behaviours

3, 8

0

4, 8

1P

3, 9

2

Q

4, 9

2

Q

4, 9

1

P

5, 8

1

P

3,10

2Q

5, 9

2

Q

P

4,10

1

Q

4,10

2

Q

5, 9

1P

5,10

2

P

Q

5,10

1P

Q

P:1, Q:2

P:2, Q:2

Q:2, P:2

2
0
1
8
-1
1
-0
5

FMiSE
Interference on Global Data

Six Different Observable Behaviours



Six Different Observable Behaviours

3, 8

0

4, 8

1P

3, 9

2

Q

4, 9

2

Q

4, 9

1

P

5, 8

1

P

3,10

2Q

5, 9

2

Q

P
4,10

1

Q

4,10

2

Q

5, 9

1P

5,10

2

P

Q

5,10

1P

Q

P:1, Q:2

P:2, Q:2

Q:2, P:2

Q:2, P:1

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 20 / 45

Six Different Observable Behaviours

3, 8

0

4, 8

1P

3, 9

2

Q

4, 9

2

Q

4, 9

1

P

5, 8

1

P

3,10

2Q

5, 9

2

Q

P

4,10

1

Q

4,10

2

Q

5, 9

1P

5,10

2

P

Q

5,10

1P

Q

P:1, Q:2

P:2, Q:2

Q:2, P:2

Q:2, P:1

2
0
1
8
-1
1
-0
5

FMiSE
Interference on Global Data

Six Different Observable Behaviours



Six Different Observable Behaviours

3, 8

0

4, 8

1P

3, 9

2

Q

4, 9

2

Q

4, 9

1

P

5, 8

1

P

3,10

2Q

5, 9

2

Q

P
4,10

1

Q

4,10

2

Q

5, 9

1P

5,10

2

P

Q

5,10

1P

Q

P:1, Q:2

P:2, Q:2

Q:2, P:2

Q:2, P:1

Q:1, P:1

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 20 / 45

Six Different Observable Behaviours

3, 8

0

4, 8

1P

3, 9

2

Q

4, 9

2

Q

4, 9

1

P

5, 8

1

P

3,10

2Q

5, 9

2

Q

P

4,10

1

Q

4,10

2

Q

5, 9

1P

5,10

2

P

Q

5,10

1P

Q

P:1, Q:2

P:2, Q:2

Q:2, P:2

Q:2, P:1

Q:1, P:1

2
0
1
8
-1
1
-0
5

FMiSE
Interference on Global Data

Six Different Observable Behaviours



Six Different Observable Behaviours

3, 8

0

4, 8

1P

3, 9

2

Q

4, 9

2

Q

4, 9

1

P

5, 8

1

P

3,10

2Q

5, 9

2

Q

P
4,10

1

Q

4,10

2

Q

5, 9

1P

5,10

2

P

Q

5,10

1P

Q

P:1, Q:2

P:2, Q:2

Q:2, P:2

Q:2, P:1

Q:1, P:1

P:1, Q:1

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 20 / 45

Six Different Observable Behaviours

3, 8

0

4, 8

1P

3, 9

2

Q

4, 9

2

Q

4, 9

1

P

5, 8

1

P

3,10

2Q

5, 9

2

Q

P

4,10

1

Q

4,10

2

Q

5, 9

1P

5,10

2

P

Q

5,10

1P

Q

P:1, Q:2

P:2, Q:2

Q:2, P:2

Q:2, P:1

Q:1, P:1

P:1, Q:12
0
1
8
-1
1
-0
5

FMiSE
Interference on Global Data

Six Different Observable Behaviours



Examples

1. interleave0.pml

Spin simulation, automata

2. interleave1.pml, interleave1A.pml
Adding assertion about n, model checking

3. interleave5.pml, interleave5F.pml, interleave5A.pml
Spin simulation, assertion, Spin model checking, trail inspection
show generated graph interleave5.pdf, modify assertion, verify

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 21 / 45

Examples

1. interleave0.pml

Spin simulation, automata

2. interleave1.pml, interleave1A.pml
Adding assertion about n, model checking

3. interleave5.pml, interleave5F.pml, interleave5A.pml
Spin simulation, assertion, Spin model checking, trail inspection
show generated graph interleave5.pdf, modify assertion, verify

2
0
1
8
-1
1
-0
5

FMiSE
Interference on Global Data

Examples



Atomicity

Limit possibilities of being interrupted (“pre-empted”) by other processes

I Decrease the possible number of interleavings

Weakly atomic sequence
can only be interrupted if a statement is not executable
⇒ defined in Promela by atomic{ . . . }

Strongly atomic sequence
cannot be interrupted at all
⇒ defined in Promela by d step{ . . . }

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 22 / 45

Atomicity

Limit possibilities of being interrupted (“pre-empted”) by other processes

I Decrease the possible number of interleavings

Weakly atomic sequence
can only be interrupted if a statement is not executable
⇒ defined in Promela by atomic{ . . . }

Strongly atomic sequence
cannot be interrupted at all
⇒ defined in Promela by d step{ . . . }2

0
1
8
-1
1
-0
5

FMiSE
Atomicity

Atomicity



Deterministic Sequences

d step:

I strongly atomic

I deterministic (like a single step)

I non-determinism resolved in fixed way (always take the first option)
⇒ good style to avoid non-determinism in d step

I it is an error if any statement within d step,
other than the first one (called “guard”), blocks

d step {

stmt1; ← guard
stmt2;

stmt3

}

I If stmt1 blocks, d step is not entered, and blocks as a whole

I It is an error if stmt2 or stmt3 block

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 23 / 45

Deterministic Sequences

d step:

I strongly atomic

I deterministic (like a single step)

I non-determinism resolved in fixed way (always take the first option)
⇒ good style to avoid non-determinism in d step

I it is an error if any statement within d step,
other than the first one (called “guard”), blocks

d step {

stmt1; ← guard
stmt2;

stmt3

}

I If stmt1 blocks, d step is not entered, and blocks as a whole

I It is an error if stmt2 or stmt3 block

2
0
1
8
-1
1
-0
5

FMiSE
Atomicity

Deterministic Sequences



(Weakly) Atomic Sequences

atomic:

I weakly atomic

I can be non-deterministic

atomic {

stmt1; ← guard
stmt2;

stmt3

}

If guard blocks, atomic is not entered, and blocks as a whole

Once atomic is entered, control is kept until a statement blocks, and
only then control is passed to another process

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 24 / 45

(Weakly) Atomic Sequences

atomic:

I weakly atomic

I can be non-deterministic

atomic {

stmt1; ← guard
stmt2;

stmt3

}

If guard blocks, atomic is not entered, and blocks as a whole

Once atomic is entered, control is kept until a statement blocks, and
only then control is passed to another process2

0
1
8
-1
1
-0
5

FMiSE
Atomicity

(Weakly) Atomic Sequences



Example for Limiting Interference by Atomicity

I interleave5D.pml

Show assertion, verify

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 25 / 45

Example for Limiting Interference by Atomicity

I interleave5D.pml

Show assertion, verify

2
0
1
8
-1
1
-0
5

FMiSE
Atomicity

Example for Limiting Interference by Atomicity



Synchronization on Global Data

Promela has no synchronization primitives:

I semaphores

I locks

I monitors

I . . .

Instead, Promela controls statement executability (absence of blocking)

I Non-executable statements in atomic sequences permit pre-emption

Most known synchronization primitives (test & set, compare & swap,
semaphores, . . . ) can be modelled using executability and atomicity

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 26 / 45

Synchronization on Global Data

Promela has no synchronization primitives:

I semaphores

I locks

I monitors

I . . .

Instead, Promela controls statement executability (absence of blocking)

I Non-executable statements in atomic sequences permit pre-emption

Most known synchronization primitives (test & set, compare & swap,
semaphores, . . . ) can be modelled using executability and atomicity2

0
1
8
-1
1
-0
5

FMiSE
Synchronization on Global Data

Synchronization on Global Data



Executability

Each Promela statement has the property “executability”

Executability of basic statements:

statement type executable

assignments always

assertions always

print statements always

expression statements iff value not 0/false

send/receive statements (next lecture)

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 27 / 45

Executability

Each Promela statement has the property “executability”

Executability of basic statements:

statement type executable

assignments always

assertions always

print statements always

expression statements iff value not 0/false

send/receive statements (next lecture)

2
0
1
8
-1
1
-0
5

FMiSE
Synchronization on Global Data

Executability



Executability (Cont’d)

Executability of compound statements

statement type executable iff

atomic, d step guard (first statement of scope) executable

if , do any of its alternatives is executable

alternative of if , do guard (first statement of scope) executable
(recall: “->” syntactic sugar for “;”)

for always (body can block, of course)

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 28 / 45

Executability (Cont’d)

Executability of compound statements

statement type executable iff

atomic, d step guard (first statement of scope) executable

if , do any of its alternatives is executable

alternative of if , do guard (first statement of scope) executable
(recall: “->” syntactic sugar for “;”)

for always (body can block, of course)

2
0
1
8
-1
1
-0
5

FMiSE
Synchronization on Global Data

Executability (Cont’d)



Executability and Blocking

Definition (Blocking)

A statement is blocking iff it is not executable.
A process is blocking iff its location counter points to a blocking
statement.

For the next step of execution, the scheduler chooses
non-deterministically one of the non-blocking statements in a process

Executability/blocking are the basic concepts in
Promela-style modeling of solutions to synchronization problems

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 29 / 45

Executability and Blocking

Definition (Blocking)

A statement is blocking iff it is not executable.
A process is blocking iff its location counter points to a blocking
statement.

For the next step of execution, the scheduler chooses
non-deterministically one of the non-blocking statements in a process

Executability/blocking are the basic concepts in
Promela-style modeling of solutions to synchronization problems2

0
1
8
-1
1
-0
5

FMiSE
Synchronization on Global Data

Executability and Blocking



The Critical Section Problem

Archetypical problem of concurrent systems

Definition (Critical Section)

The critical section (CS) of a process is the block of code where shared
state (e.g., global variables) are accessed and possibly manipulated

Example

The Promela models interleave?.pml with global variable n

CS Problem (Data Race, Race Condition, “kritischer Wettlauf”)

Given a set of processes each containing at least one critical section:

The result of the computation performed by the processes might depend
on their execution order

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 30 / 45

The Critical Section Problem

Archetypical problem of concurrent systems

Definition (Critical Section)

The critical section (CS) of a process is the block of code where shared
state (e.g., global variables) are accessed and possibly manipulated

Example

The Promela models interleave?.pml with global variable n

CS Problem (Data Race, Race Condition, “kritischer Wettlauf”)

Given a set of processes each containing at least one critical section:

The result of the computation performed by the processes might depend
on their execution order

2
0
1
8
-1
1
-0
5

FMiSE
The Critical Section Problem

The Critical Section Problem



The Critical Section Problem: Solutions

Given a number of looping processes, each containing a critical section

Mutual Exclusion

At most one process is executing its critical section at any given time

Challenges

Absence of Deadlock If some processes are trying to enter their
critical sections, then one of them must
eventually succeed

Absence of Starvation If any process tries to enter its critical section,
then that process must eventually succeed

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 31 / 45

The Critical Section Problem: Solutions

Given a number of looping processes, each containing a critical section

Mutual Exclusion

At most one process is executing its critical section at any given time

Challenges

Absence of Deadlock If some processes are trying to enter their
critical sections, then one of them must
eventually succeed

Absence of Starvation If any process tries to enter its critical section,
then that process must eventually succeed2

0
1
8
-1
1
-0
5

FMiSE
The Critical Section Problem

The Critical Section Problem: Solutions



Critical Section Pattern

For demo purposes, model (non-)critical sections by printf statements:

active proctype P() {

do :: print f ("P non -critical action\n");
/* begin critical section */

print f ("P uses shared resource\n")
/* end critical section */

od
}

active proctype Q() {

do :: print f ("Q non -critical action\n");
/* begin critical section */

print f ("Q uses shared resource\n")
/* end critical section */

od
}

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 32 / 45

Critical Section Pattern

For demo purposes, model (non-)critical sections by printf statements:

active proctype P() {

do :: print f ("P non -critical action\n");
/* begin critical section */

print f ("P uses shared resource\n")
/* end critical section */

od
}

active proctype Q() {

do :: print f ("Q non -critical action\n");
/* begin critical section */

print f ("Q uses shared resource\n")
/* end critical section */

od
}

2
0
1
8
-1
1
-0
5

FMiSE
The Critical Section Problem

Critical Section Pattern



Mutual Exclusion: First Attempt

Simple idea: use Boolean flags to control access to critical section

bool enterCriticalP = f a l s e ;
bool enterCriticalQ = f a l s e ;

active proctype P() {

do :: print f ("P non -critical action\n");
enterCriticalP = true;
/* begin critical section */

print f ("P uses shared resource\n");
/* end critical section */

enterCriticalP = f a l s e
od

}

active proctype Q() {

analogous
}

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 33 / 45

Mutual Exclusion: First Attempt

Simple idea: use Boolean flags to control access to critical section

bool enterCriticalP = f a l s e ;
bool enterCriticalQ = f a l s e ;

active proctype P() {

do :: print f ("P non -critical action\n");
enterCriticalP = true;
/* begin critical section */

print f ("P uses shared resource\n");
/* end critical section */

enterCriticalP = f a l s e
od

}

active proctype Q() {

analogous
}

2
0
1
8
-1
1
-0
5

FMiSE
Mutual Exclusion

Mutual Exclusion: First Attempt



Verification of Mutual Exclusion Not Yet Possible

bool enterCriticalP = f a l s e ;
bool enterCriticalQ = f a l s e ;

active proctype P() {

do :: print f ("P non -critical action\n");
enterCriticalP = true;
/* begin critical section */

print f ("P uses shared resource\n");
assert(!enterCriticalQ);

/* end critical section */

enterCriticalP = f a l s e
od

}

active proctype Q() {

analogous
}

(csAssert.pml)
FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 34 / 45

Verification of Mutual Exclusion Not Yet Possible

bool enterCriticalP = f a l s e ;
bool enterCriticalQ = f a l s e ;

active proctype P() {

do :: print f ("P non -critical action\n");
enterCriticalP = true;
/* begin critical section */

print f ("P uses shared resource\n");
assert(!enterCriticalQ);

/* end critical section */

enterCriticalP = f a l s e
od

}

active proctype Q() {

analogous
}

(csAssert.pml)

2
0
1
8
-1
1
-0
5

FMiSE
Mutual Exclusion

Verification of Mutual Exclusion Not Yet
Possible



Mutual Exclusion: Second Attempt

“Busy Waiting” csBusy.pml

bool enterCriticalP = f a l s e ;
bool enterCriticalQ = f a l s e ;

active proctype P() {

do :: print f ("P non -critical action\n");
enterCriticalP = true;
do :: !enterCriticalQ -> break

:: e l se -> skip
od;
/* begin critical section */

print f ("P uses shared resource\n");
assert (! enterCriticalQ);
/* end critical section */

enterCriticalP = f a l s e
od

}

active proctype Q() { analogous }

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 35 / 45

Mutual Exclusion: Second Attempt

“Busy Waiting” csBusy.pml

bool enterCriticalP = f a l s e ;
bool enterCriticalQ = f a l s e ;

active proctype P() {

do :: print f ("P non -critical action\n");
enterCriticalP = true;
do :: !enterCriticalQ -> break

:: e l se -> skip
od;
/* begin critical section */

print f ("P uses shared resource\n");
assert (! enterCriticalQ);
/* end critical section */

enterCriticalP = f a l s e
od

}

active proctype Q() { analogous }

2
0
1
8
-1
1
-0
5

FMiSE
Mutual Exclusion

Mutual Exclusion: Second Attempt



Discussion

Failed verification — Busy waiting is problematic

I Does not block execution, even if exclusion property fails

I Wasteful on resources

Instead of busy waiting, use blocking to:

I release control when exclusion property not fulfilled

I continue only when exclusion properties are fulfilled

Don’t use assignment, but expression statement !enterCriticalQ

to let process P block where it should not proceed!

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 36 / 45

Discussion

Failed verification — Busy waiting is problematic

I Does not block execution, even if exclusion property fails

I Wasteful on resources

Instead of busy waiting, use blocking to:

I release control when exclusion property not fulfilled

I continue only when exclusion properties are fulfilled

Don’t use assignment, but expression statement !enterCriticalQ

to let process P block where it should not proceed!2
0
1
8
-1
1
-0
5

FMiSE
Mutual Exclusion

Discussion



Mutual Exclusion: Third Attempt

Use !enterCriticalQ as a guard that blocks execution

// csBlocking.pml

bool enterCriticalP;

bool enterCriticalQ;

active proctype P() {

do :: print f ("P non -critical action\n");
enterCriticalP = true;
!enterCriticalQ;

/* begin critical section */

print f ("P uses shared resource\n");
assert (! enterCriticalQ);
/* end critical section */

enterCriticalP = f a l s e
od

}

active proctype Q() { analogous }
FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 37 / 45

Mutual Exclusion: Third Attempt

Use !enterCriticalQ as a guard that blocks execution

// csBlocking.pml

bool enterCriticalP;

bool enterCriticalQ;

active proctype P() {

do :: print f ("P non -critical action\n");
enterCriticalP = true;
!enterCriticalQ;

/* begin critical section */

print f ("P uses shared resource\n");
assert (! enterCriticalQ);
/* end critical section */

enterCriticalP = f a l s e
od

}

active proctype Q() { analogous }

2
0
1
8
-1
1
-0
5

FMiSE
Mutual Exclusion

Mutual Exclusion: Third Attempt



Verifying Mutual Exclusion

Mutual Exclusion (ME) cannot be shown by Spin

I enterCriticalP/Q sufficient for achieving ME

I enterCriticalP/Q insufficient for proving ME

Global vs. Local Properties

To verify ME one needs to ensure that at any time at most one process is
in a critical section

I assert statements are code-local and insufficient for this

I Need mechanism that can express system-global properties

Some typical mechanisms to express global system properties

Ghost Variables global variables used only for specification/verification

Invariants properties that hold at certain times ⇒Temporal Logic

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 38 / 45

Verifying Mutual Exclusion

Mutual Exclusion (ME) cannot be shown by Spin

I enterCriticalP/Q sufficient for achieving ME

I enterCriticalP/Q insufficient for proving ME

Global vs. Local Properties

To verify ME one needs to ensure that at any time at most one process is
in a critical section

I assert statements are code-local and insufficient for this

I Need mechanism that can express system-global properties

Some typical mechanisms to express global system properties

Ghost Variables global variables used only for specification/verification

Invariants properties that hold at certain times ⇒Temporal Logic

2
0
1
8
-1
1
-0
5

FMiSE
Mutual Exclusion

Verifying Mutual Exclusion



Verify Mutual Exclusion with Ghost Variables

int critical = 0; // nr of processes in CS

active proctype P() {

do :: print f ("P non -critical action\n");
enterCriticalP = true;
!enterCriticalQ;

/* begin critical section */

critical++;

print f ("P uses shared resource\n");
assert (critical <= 1);

critical--;

/* end critical section */

enterCriticalP = f a l s e
od

}

active proctype Q() { analogous }

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 39 / 45

Verify Mutual Exclusion with Ghost Variables

int critical = 0; // nr of processes in CS

active proctype P() {

do :: print f ("P non -critical action\n");
enterCriticalP = true;
!enterCriticalQ;

/* begin critical section */

critical++;

print f ("P uses shared resource\n");
assert (critical <= 1);

critical--;

/* end critical section */

enterCriticalP = f a l s e
od

}

active proctype Q() { analogous }

2
0
1
8
-1
1
-0
5

FMiSE
Mutual Exclusion

Verify Mutual Exclusion with Ghost Variables



Verify Mutual Exclusion with Spin

I Attempt to verify csGhost.pml

spin -a csGhost.pml; gcc -o pan pan.c; ./pan

I Simulate guided by trail

spin -g -p -t csGhost.pml

I Both processes have set enterCritical
I Both processes are at guard !entercritical
I Neither can proceed

I Make pan ignore deadlocks (invalid end states)

./pan -E;

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 40 / 45

Verify Mutual Exclusion with Spin

I Attempt to verify csGhost.pml

spin -a csGhost.pml; gcc -o pan pan.c; ./pan

I Simulate guided by trail

spin -g -p -t csGhost.pml

I Both processes have set enterCritical
I Both processes are at guard !entercritical
I Neither can proceed

I Make pan ignore deadlocks (invalid end states)

./pan -E;2
0
1
8
-1
1
-0
5

FMiSE
Mutual Exclusion

Verify Mutual Exclusion with Spin



Deadlock Hunting

Invalid End State

I A process does not finish in an end state

I OK, if it is not crucial to continue (see previous lecture)

I Two or more inter-dependent processes do not finish at the end:
Real deadlock

Finding Deadlocks with Spin

I Attempt verification to produce a failing run trail

I Guided simulation to see how the processes get to the deadlock

I Fix the code, but don’t use endXXX:-labels or -E switch

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 41 / 45

Deadlock Hunting

Invalid End State

I A process does not finish in an end state

I OK, if it is not crucial to continue (see previous lecture)

I Two or more inter-dependent processes do not finish at the end:
Real deadlock

Finding Deadlocks with Spin

I Attempt verification to produce a failing run trail

I Guided simulation to see how the processes get to the deadlock

I Fix the code, but don’t use endXXX:-labels or -E switch2
0
1
8
-1
1
-0
5

FMiSE
Absence of Deadlock

Deadlock Hunting



Atomicity against Deadlocks

Deadlock-free solution to ME problem with only flags/blocking is hard

Atomicity

I More powerful and general mechanism

I Often leads to conceptually simpler solutions

I But is not always a realistic system assumption

Idea for Solution of ME Problem by Atomicity

Check and set the critical section flag in one atomic step

atomic {

!enterCriticalQ; // use as guard , must come first

enterCriticalP = true
} // csGhostAtomic.pml

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 42 / 45

Atomicity against Deadlocks

Deadlock-free solution to ME problem with only flags/blocking is hard

Atomicity

I More powerful and general mechanism

I Often leads to conceptually simpler solutions

I But is not always a realistic system assumption

Idea for Solution of ME Problem by Atomicity

Check and set the critical section flag in one atomic step

atomic {

!enterCriticalQ; // use as guard , must come first

enterCriticalP = true
} // csGhostAtomic.pml

2
0
1
8
-1
1
-0
5

FMiSE
Absence of Deadlock

Atomicity against Deadlocks



Variations of Critical Section Problem

At most n processes allowed in critical section

Modeling possibilities include:

I counters instead of booleans

I semaphores

I test & set instructions (primitive for atomic block on previous slide)

Refined mutual exclusion conditions

I several critical sections (Leidseplein in Amsterdam)

I writers exclude each other and readers
readers exclude writers, but not other readers

I FIFO queues for entering sections (full semaphores)

. . . and many more!

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 43 / 45

Variations of Critical Section Problem

At most n processes allowed in critical section

Modeling possibilities include:

I counters instead of booleans

I semaphores

I test & set instructions (primitive for atomic block on previous slide)

Refined mutual exclusion conditions

I several critical sections (Leidseplein in Amsterdam)

I writers exclude each other and readers
readers exclude writers, but not other readers

I FIFO queues for entering sections (full semaphores)

. . . and many more!

2
0
1
8
-1
1
-0
5

FMiSE
Variations

Variations of Critical Section Problem



Use Atomicity with Good Judgment

There is a trivial solution of the CS problem using atomicity
(csAtomic.pml)

Using atomicity in such an extreme way has serious drawbacks

I Not generalizable to variations of the CS problem

I atomic only weakly atomic, blocking still possible

I d step excludes any non-determinism

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 44 / 45

Use Atomicity with Good Judgment

There is a trivial solution of the CS problem using atomicity
(csAtomic.pml)

Using atomicity in such an extreme way has serious drawbacks

I Not generalizable to variations of the CS problem

I atomic only weakly atomic, blocking still possible

I d step excludes any non-determinism

2
0
1
8
-1
1
-0
5

FMiSE
Atomicity, Reconsidered

Use Atomicity with Good Judgment



Literature for this Lecture

Ben-Ari Chapter 3
Sections 4.1–4.4

FMiSE: Concurrency TU Darmstadt, Software Engineering Group 181105 45 / 45

Literature for this Lecture

Ben-Ari Chapter 3
Sections 4.1–4.4

2
0
1
8
-1
1
-0
5

FMiSE
Literature

Literature for this Lecture


	This Lecture
	Concurrent Processes in Promela
	Interference on Global Data
	Atomicity
	Synchronization on Global Data
	The Critical Section Problem
	Mutual Exclusion
	Absence of Deadlock
	Variations
	Atomicity, Reconsidered
	Literature

