Formale Methoden im Softwareentwurf

Modellierung von Nebenlaufigkeit / Modeling Concurrency

Richard Bubel
(in Vertretung von R. Hahnle)

5 November 2018

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105 1/45

2018-11-05

FMISE

Formale Methoden im Softwareentwurf




Concurrent Systems — The Big Picture

FMISE

Concurrent Systems — The Big Picture L This Lecture

L—Concurrent Systems — The Big Picture

2018-11-05

Concurrent System:
“doing things at the same time trying not to get into each others way'

Students trying to find a seat in the lecture hall
Doing things at the same time can mean many things, crucial for us is:
sharing computational resources, mainly memory

http://www.youtube.com/watch?v=JgMB6nEv7KO
http://www.buzzfeed.com/svoip/good-parallel-parking-4y59

shared resource = crossing/lane, mopeds/cars = processes . ..
and a (data) race in progress, waiting for a disaster

To control this, one employs:
» Blocking, locks (e.g. railway crossing)
» Semaphores (traffic lights)
» Busy waiting (a plane circling over an airport waiting to land)

These need to be carefully designed and verified, otherwise . ..
FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105 2 /45



http://www.youtube.com/watch?v=JgMB6nEv7K0
http://www.buzzfeed.com/svoip/good-parallel-parking-4y59
http://www.youtube.com/watch?v=JgMB6nEv7K0
http://www.buzzfeed.com/svoip/good-parallel-parking-4y59

FMISE

Concurrent Systems — A Deadlock L This Lecture

L—Concurrent Systems — A Deadlock

2018-11-05

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105 3 /45



Focus of this Lecture

FMISE

Focus of this Lecture L This Lecture

05

L Focus of this Lecture

2018-11

Goal of SPIN-style model checking methodology:

To exhibit design flaws in concurrent and distributed software systems J

Focus of today’s lecture:

» Modeling and analyzing concurrent systems

Focus of next week's lecture:

» Modeling and analyzing distributed systems

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105 4 /45



Concurrent/Distributed Systems: Hard to Get Right

0 ng c FMISE
Concurrent/Distributed Systems: Hard to Get Right L This Lecture
I—Concurrent/Distributed Systems: Hard to Get

Right

2018-11-05

Some Problems of Concurrent/Distributed Systems
» Hard to predict, hard to form correct intuition about them
» Enormous combinatorial explosion of possible behavior
» Interleaving prone to unsafe operations (“data races”)
» Counter measures prone to deadlocks
>

Limited control—from within applications—over “external” factors:

» scheduling strategies

» relative speed of components

» performance of communication mediums
» reliability of communication mediums

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105 5 /45



Testing Concurrent or Distributed System is Hard

FMISE

Testing Concurrent or Distributed System is Hard 8 L_This Lecture
g I—Testing Concurrent or Distributed System is
N

Hard

We cannot exhaustively test concurrent/distributed systems

» Lack of controllability (scheduling, delays, ...)
= we miss failures in test phase

» Lack of reproducability
= even if failures appear in test phase,
often impossible to analyze/debug defect

» Lack of resources
= exhaustive testing exhausts the testers long before
it exhausts behavior of the system ...

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105 6 /45



Mission of Spin-style Model Checking

FMISE

Mission of SpiN-style Model Checking L This Lecture

05

L Mission of SPIN-style Model Checking

2018-11

To offer a model-based methodology for
» improving the design and
> to exhibit defects

of concurrent and distributed systems

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105 7 /45



Activities in SPiN-style Model Checking

1. Model (critical aspects of) concurrent/distributed system in

PROMELA

2. Use assertions, temporal logic, ... to model crucial properties

3. Use SPIN to check all possible runs of the model
4. Analyze result, possibly re-work 1. and 2.

Observations
» The hardest aspect of Model Checking tends to be 1.

» 1. and 2. need to go hand in hand
» Only 3. is—sometimes— “push-button”

Separation of concerns (system vs. property) is essential:
verify the property you want a system to have, not the one it already has

FMISE: Concurrency TU Darmstadt, Software Engineering Group

181105 8/ 45

2018-11-05

FMISE
LThis Lecture

L Activities in SPIN-style Model Checking

yle Model Checking




Main Challenge of Modeling

FMISE

Main Challenge of Modeling L This Lecture

05

LMain Challenge of Modeling

2018-11

Conflicting Goals J
Richness Simplicity
Model must be rich enough Model must be simple enough
to encompass defects the real to be checkable, both
system could have theoretically and in practice

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105 9 /45



Modeling Concurrent Systems in PROMELA

FMISE

Modeling Concurrent Systems in PROMELA L Concurrent Processes in PROMELA

I—Modeling Concurrent Systems in PROMELA

2018-11-05

Cornerstone of
modeling concurrent and distributed systems in the SPIN approach are

PROMELA processes

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105 10 / 45



Initial Process

FMISE

Initial Process L—Concurrent Processes in PROMELA

L Initial Process

2018-11-05

There is always exactly one initial process prior to all others

» Often declared implicitly using “"active”

Initial process can be declared explicitly with keyword “init”

init {
printf("Hello world\n")
}

> If keyword init is supplied then this process can
start other processes with run statement

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105 11 /45



Starting Processes

Processes may be started explicitly from init using run

proctype P() { // not declared active
byte local;

3

init {
run PQ);
run P ()

3

» Each run operator starts copy of process (with own local variables)

» run P() does not wait for P to finish (asynchronous behavior)

(PROMELA's run corresponds to JAVA's start, not to JAVA's run)

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105 12 /45

2018-11-05

FMISE
L—Concurrent Processes in PROMELA

I—Starting Processes




FMISE

Atomic Start of MUItiple Processes L Concurrent Processes in PROMELA

Recommended to enclose run operators in atomic block

. : : ) L Atomic Start of Multiple Processes
(otherwise, interleaving with other processes possible)

2018-11-05

proctype P() {
byte local;

3

init {
atomic {
run P();
run P ()
}

Effect: processes only start executing once all are created

(more on atomic later)

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105 13 /45




Joining (Synchronizing) Processes
A trick allows “join” of processes: waiting for all processes to finish

proctype P() { ... }

init {
atomic {
run PQ);
run P ()
}
(_nr_pr == 1) ->
printf("ready")

» _nr_pr built-in variable holding number of running processes

> _nr_pr == only one process (init) still running

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105

14 /45

2018-11-05

FMISE
L Concurrent Processes in PROMELA

L Joining (Synchronizing) Processes

Joining (Synchronizing) Processes

A trickallows join” of processes: waiting for al processes to

fiis

h



Process Parameters

FMISE

Process Parameters L—Concurrent Processes in PROMELA

L Process Parameters

2018-11-05

Processes may have arguments, instantiated by run

proctype P(byte i; bool b) {

}
init {
run P(7, true);
run P(8, false)
}

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105 15 /45



Active (Set of) Processes

FMISE
L—Concurrent Processes in PROMELA

Active (Set of) Processes

L—Active (Set of) Processes

2018-11-05

init can be made implicit by using the active modifier

active proctype P() {
}

» implicit init process will run exactly one copy of P

active [n] proctype P() {
}

» implicit init process will run n copies of P

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105 16 / 45



Local and Global Data

FMISE
L—Concurrent Processes in PROMELA

Local and Global Data

L—Local and Global Data

2018-11-05

Variables declared outside of any process are global to all processes

Variables declared inside a process are local to that process

byte n ;

proctype P() {
byte t ;

3

n is global
t is local

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105 17 / 45



Modeling with Global Data

FMISE
L—Concurrent Processes in PROMELA

Modeling with Global Data

L-Modeling with Global Data

2018-11-05

Pragmatics of modeling with global data

Shared memory of concurrent systems often modeled
by global variables of numeric (or array) type

Shared resources state of (printer, traffic light, ...) often modeled by
global variables of Boolean or enumeration type
(bool/mtype)

Communication media of distributed systems often modeled
by global variables of channel type (chan)
(next lecture)

Never use global variables to model process-local data! J

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105 18 / 45



© 00 N O O W N -

=
= o

Interference on Global Data

byte n = 0;

active proctype P() {
n = 1;
printf("Process P, n, =,%d\n", n)

}
active proctype QO {
n = 2;

printf("Processy Q,uny=u%d\n", n)

}

How many outputs possible? interleave0.pml

Processes can interfere on global data

J

FMISE: Concurrency TU Darmstadt, Software Engineering Group

181105

19 /45

2018-11-05

FMISE
L—Interference on Global Data

L—Interference on Global Data

Interference on Global Data




Six Different Observable Behaviours

FMISE: Concurrency TU Darmstadt, Software Engineering Group

181105

20 / 45

2018-11-05

FMISE
L Interference on Global Data

LSix Different Observable Behaviours

Six Different Observabl

®
3



Six Different Observable Behaviours

P:1, Q:2

FMISE: Concurrency

TU Darmstadt, Software Engineering Group

181105 20 / 45

2018-11-05

FMISE

L—Interference on Global Data

L_Six Different Observable Behaviours

Six Different Observable Behaviours

PPN

N

P
8]

2
’



Six Different Observable Behaviours

P:1, Q:2

P:2, Q:2

FMISE: Concurrency TU Darmstadt, Software Engineering Group

181105 20 / 45

2018-11-05

FMISE
L—Interference on Global Data

L_Six Different Observable Behaviours

ix Different Observabl

9%9

REPNCE

R
e?}gp

R D P b



Six Different Observable Behaviours

FMISE: Concurrency TU Darmstadt, Software Engineering Group

181105

20/ 45

2018-11-05

FMISE
L—Interference on Global Data

L_Six Different Observable Behaviours

ix Different Observabl

®
3

R
eé}g%

RP P D
@

q%e



Six Different Observable Behaviours

P:1, Q:2

P:2, Q:2

Q:2, P:2

Q:2, P:1

FMISE: Concurrency

TU Darmstadt, Software Engineering Group

181105 20 / 45

2018-11-05

FMISE
L—Interference on Global Data

L_Six Different Observable Behaviours

ix Different Observabl

®
3



Six Different Observable Behaviours

P:1, Q:2

P:2, Q:2

Q:2, P:2

Q:2, P:1

Q:1, P:1

FMISE: Concurrency

TU Darmstadt, Software Engineering Group

181105 20 / 45

2018-11-05

FMISE
L—Interference on Global Data

L_Six Different Observable Behaviours

ix Different Observabl

®
3

B

%



Six Different Observable Behaviours

P:1, Q:2

P:2, Q:2

Q:2, P:2

Q:2, P:1

Q:1, P:1

P:1, Q:1

FMISE: Concurrency

TU Darmstadt, Software Engineering Group

181105 20 / 45

2018-11-05

FMISE
L—Interference on Global Data

L_Six Different Observable Behaviours

ix Different Observabl

®
3



Examples

1. interleaveO.pml
SPIN simulation, automata

2. interleavel.pml, interleavelA.pml
Adding assertion about n, model checking

3. interleaveb5.pml, interleave5F.pml, interleavebA. pml
SPIN simulation, assertion, SPIN model checking, trail inspection
show generated graph interleaveb5.pdf, modify assertion, verify

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105 21 /45

2018-11-05

FMISE
L Interference on Global Data

I—Examples

Examples




Atomicity

FMISE

Atomicity L Atomicity

L Atomicity

2018-11-05

Limit possibilities of being interrupted (“pre-empted”) by other processesJ

» Decrease the possible number of interleavings

Weakly atomic sequence
can only be interrupted if a statement is not executable
= defined in PROMELA by atomic{ ... }

Strongly atomic sequence
cannot be interrupted at all
= defined in PROMELA by d_step{ ... }

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105 22 /45



Deterministic Sequences

d_step:
» strongly atomic
» deterministic (like a single step)

» non-determinism resolved in fixed way (always take the first option)

= good style to avoid non-determinism in d_step

P it is an error if any statement within d_step,
other than the first one (called “guard”), blocks

d_step {
stmtl; < guard
stmt2;
stmt3

}

» |If stmt1 blocks, d_step is not entered, and blocks as a whole
» It is an error if stmt2 or stmt3 block

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105

23745

2018-11-05

FMISE
LAtomicity

L Deterministic Sequences




(Weakly) Atomic Sequences

FMISE

(Weakly) Atomic Sequences L Atomicity

2018-11-05

I—(Wea kly) Atomic Sequences

atomic:
> weakly atomic

» can be non-deterministic

atomic {
stmtl; < guard
stmt2;
stmt3

}

If guard blocks, atomic is not entered, and blocks as a whole

Once atomic is entered, control is kept until a statement blocks, and
only then control is passed to another process

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105 24 /45



Example for Limiting Interference by Atomicity

> interleave5D.pml
Show assertion, verify

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105

25 /45

2018-11-05

FMISE
LAtomicity

I—Example for Limiting Interference by Atomicity

Example for Limiting Interference by Aty

omici



FMISE

Synchronization on Global Data L Synchronization on Global Data

I—Synchronization on Global Data

2018-11-05

PROMELA has no synchronization primitives:
» semaphores
» locks
» monitors
> ...

Instead, PROMELA controls statement executability (absence of blocking)

» Non-executable statements in atomic sequences permit pre-emption

Most known synchronization primitives (test & set, compare & swap,
semaphores, ...) can be modelled using executability and atomicity

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105 26 /45



Executability

FMISE

Executability LSynchronization on Global Data

I—Executability

2018-11-05

Each PROMELA statement has the property “executability”

Executability of basic statements:

statement type executable
assignments always
assertions always
print statements always
expression statements | iff value not 0/false
send /receive statements (next lecture)

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105 27 /45



Executability (Cont'd)

FMISE
LSynchronization on Global Data

Executability (Cont’d)

L Executability (Cont'd)

2018-11-05

Executability of compound statements

statement type ‘ executable iff
atomic, d_step guard (first statement of scope) executable
if, do any of its alternatives is executable
alternative of if, do | guard (first statement of scope) executable
(recall: “->" syntactic sugar for “;")
for always (body can block, of course)

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105 28 /45



Executability and Blocking

FMISE
I—Synchronization on Global Data

(Blocking)

Executability and Blocking

I—Executability and Blocking

2018-11-05

Definition (Blocking)

A statement is blocking iff it is not executable.
A process is blocking iff its location counter points to a blocking
statement.

For the next step of execution, the scheduler chooses
non-deterministically one of the non-blocking statements in a process

Executability /blocking are the basic concepts in
PROMELA-style modeling of solutions to synchronization problems

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105 29 /45



The Critical Section Problem

FMISE

The Critical Section Problem 8 L-The Critical Section Problem
) | " .
Archetypical problem of concurrent systems J 3 The Critical Section Problem

Definition (Critical Section)

The critical section (CS) of a process is the block of code where shared
state (e.g., global variables) are accessed and possibly manipulated

Example
The PROMELA models interleave?.pml with global variable n

CS Problem (Data Race, Race Condition, “kritischer Wettlauf”)
Given a set of processes each containing at least one critical section:

The result of the computation performed by the processes might depend
on their execution order

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105 30 /45



The Critical Section Problem: Solutions

Given a number of looping processes, each containing a critical section

Mutual Exclusion
At most one process is executing its critical section at any given time

Challenges
Absence of Deadlock If some processes are trying to enter their
critical sections, then one of them must
eventually succeed

Absence of Starvation If any process tries to enter its critical section,
then that process must eventually succeed

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105 31/45

05

2018-11

FMISE
L The Critical Section Problem

L The Critical Section Problem: Solutions

The Critical Section Problem: Solutions




FMISE

Critical Section Pattern L_The Critical Section Problem

05

L Critical Section Pattern

2018-11

For demo purposes, model (non-)critical sections by printf statements:

active proctype P() {
do :: printf("P non-criticalgaction\n");
/* begin critical section */
printf("P_ uses_ shared resource\n")
/* end critical section */
od
}

active proctype QO {
do :: printf("Qunon-criticalaction\n");
/* begin critical section */
printf("Q_ uses_ shared_ resource\n")
/* end critical section */

od

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105 32 /45



Mutual Exclusion: First Attempt

Simple idea: use Boolean flags to control access to critical section

bool enterCriticalP = false;
bool enterCriticalQ false;

active proctype PO {
do :: printf("P non-criticalgaction\n");
enterCriticalP = true;
/* begin critical section */
printf("P_ uses_ shared resource\n");
/* end critical section */
enterCriticalP = false
od
}

active proctype Q() {
analogous

3

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105 33 /45

2018-11-05

FMISE
LMutual Exclusion

LMutual Exclusion: First Attempt




Verification of Mutual Exclusion Not Yet Possible

bool enterCriticalP
bool enterCriticalQ

false;
false;

active proctype P() {

}

do

od

printf("P_ non-critical action\n");
enterCriticalP = true;

/* begin critical section */
printf("P_ uses_ shared resource\n");
assert(!enterCriticalQ);

/* end critical section */
enterCriticalP = false

active proctype Q) {
analogous

}

(csAssert.pml)

FMISE: Concurrency

TU Darmstadt, Software Engineering Group 181105

34 /45

2018-11-05

FMISE
LMutual Exclusion

L Verification of Mutual Exclusion Not Yet
Possible

Mutual Exclusion Not Yet Possible




Mutual Exclusion: Second Attempt

“Busy Waiting" csBusy.pml

bool enterCriticalP false;

bool enterCriticalQ = false;

active proctype PO A{

do :: printf("P non-criticalaction\n");
enterCriticalP = true;
do :: 'enterCriticalQ -> break
else -> skip

od;

/* begin critical section */
printf("P_ uses_ shared resource\n");
assert (!enterCriticalQ) ;
/* end critical section */
enterCriticalP = false
od
}
active proctype Q() { analogous %

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105

35 /45

2018-11-05

FMISE
LMutual Exclusion

LMutual Exclusion: Second Attempt




Discussion

Failed verification — Busy waiting is problematic

» Does not block execution, even if exclusion property fails

» Wasteful on resources

Instead of busy waiting, use blocking to:

> release control when exclusion property not fulfilled

» continue only when exclusion properties are fulfilled

Don't use assignment, but expression statement !enterCriticalQ
to let process P block where it should not proceed!

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105

36 /45

2018-11-05

FMISE
I—Mutual Exclusion

L Discussion

Discussion




: Third Attempt
tha blocks exeution

FMISE
LMutual Exclusion

Mutual Exclusion: Third Attempt

Use !'enterCriticalQ as a guard that blocks execution L Mutual Exclusion: Third Attempt

2018-11-05

// csBlocking.pml
bool enterCriticalP;
bool enterCriticalQ;

active proctype PO {
do :: printf("P non-criticalaction\n");
enterCriticalP = true;
lenterCriticalQ;
/* begin critical section */
printf("P_uses_ shared_ resource\n");
assert (!enterCriticalQ);
/* end critical section */
enterCriticalP = false
od
}

FMISE: Concurrelncy YE U Darmstadt, So%tware Engineering Group 181105 37 /45



FMISE

Verifying Mutual Exclusion L Mutual Exclusion

I—Verifying Mutual Exclusion

2018-11-05

Mutual Exclusion (ME) cannot be shown by SprIN

> enterCriticalP/Q sufficient for achieving ME
» enterCriticalP/Q insufficient for proving ME

Global vs. Local Properties

To verify ME one needs to ensure that at any time at most one process is
in a critical section

> assert statements are code-local and insufficient for this

» Need mechanism that can express system-global properties

Some typical mechanisms to express global system properties
Ghost Variables global variables used only for specification /verification

Invariants properties that hold at certain times = Temporal Logic

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105 38 /45



Verify Mutual Exclusion with Ghost Variables

int critical = 0;

// nr of processes in CS

active proctype PO A

}

do

od

printf("P_ non-critical action\n");
enterCriticalP = true;
lenterCriticalQ;

/* begin critical section */
critical++;
printf("P_ uses_ shared resource\n");
assert (critical <= 1) ;

critical—--;

/* end critical section */
enterCriticalP = false

active proctype Q) { analogous }

FMISE: Concurrency

TU Darmstadt, Software Engineering Group

181105

39 /45

2018-11-05

FMISE
LMutual Exclusion

I—Verify Mutual Exclusion with Ghost Variables

Verify Mutual Exclusion

with Ghost Variables




Verify Mutual Exclusion with Spix

FMISE

Verify Mutual Exclusion with SPIN L Mutual Exclusion

2018-11-05

I—Verify Mutual Exclusion with SPIN

> Attempt to verify csGhost.pml

spin -a csGhost.pml; gcc -o pan pan.c; ./pan

» Simulate guided by trail
spin -g -p -t csGhost.pml
» Both processes have set enterCritical

» Both processes are at guard !'entercritical
» Neither can proceed

» Make pan ignore deadlocks (invalid end states)

./pan -E;

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105 40 / 45



Deadlock Hunting

Invalid End State
» A process does not finish in an end state

» OK, if it is not crucial to continue (see previous lecture)

» Two or more inter-dependent processes do not finish at the end:

Real deadlock

FMISE

3, L Absence of Deadlock
g L Deadlock Hunting

Finding Deadlocks with SPIN
> Attempt verification to produce a failing run trail
» Guided simulation to see how the processes get to the deadlock

» Fix the code, but don't use endXXX:-labels or -E switch

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105

41745

Deadlock Hunting

Invalid End Stat




FMISE
L_Absence of Deadlock

Atomicity against Deadlocks

05

I—Atomicity against Deadlocks

2018-11

Deadlock-free solution to ME problem with only flags/blocking is hard J

Atomicity
» More powerful and general mechanism
» Often leads to conceptually simpler solutions

> But is not always a realistic system assumption

Idea for Solution of ME Problem by Atomicity
Check and set the critical section flag in one atomic step

atomic {
lenterCriticalQ; // use as guard, must come first
enterCriticalP = true

} // csGhostAtomic.pml

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105 42 /45



Variations of Critical Section Problem

FMISE

Variations of Critical Section Problem L \ariations

L Variations of Critical Section Problem

2018-11-05

At most n processes allowed in critical section

Modeling possibilities include:
» counters instead of booleans

» semaphores

> test & set instructions (primitive for atomic block on previous slide)

Refined mutual exclusion conditions
> several critical sections (Leidseplein in Amsterdam)

» writers exclude each other and readers
readers exclude writers, but not other readers

» FIFO queues for entering sections (full semaphores)

...and many more!

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105 43/ 45



Use Atomicity with Good Judgment

FMISE
LAtomicity, Reconsidered o

Use Atomicity with Good Judgment

LUse Atomicity with Good Judgment

2018-11-05

There is a trivial solution of the CS problem using atomicity
(csAtomic.pml)

Using atomicity in such an extreme way has serious drawbacks
> Not generalizable to variations of the CS problem
» atomic only weakly atomic, blocking still possible

» d_step excludes any non-determinism

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105 44 ] 45



Literature for this Lecture

FMISE

Literature for this Lecture L Literature

Ben-Ari Chapter 3
Sections

L Literature for this Lecture

2018-11-05

Ben-Ari Chapter 3
Sections 4.1-4.4

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105 45 /45



	This Lecture
	Concurrent Processes in Promela
	Interference on Global Data
	Atomicity
	Synchronization on Global Data
	The Critical Section Problem
	Mutual Exclusion
	Absence of Deadlock
	Variations
	Atomicity, Reconsidered
	Literature

