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Concurrent Systems — The Big Picture
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Concurrent System:
“doing things at the same time trying not to get into each others way'

Students trying to find a seat in the lecture hall
Doing things at the same time can mean many things, crucial for us is:
sharing computational resources, mainly memory

http://www.youtube.com/watch?v=JgMB6nEv7KO
http://www.buzzfeed.com/svoip/good-parallel-parking-4y59

shared resource = crossing/lane, mopeds/cars = processes . ..
and a (data) race in progress, waiting for a disaster

To control this, one employs:
» Blocking, locks (e.g. railway crossing)
» Semaphores (traffic lights)
» Busy waiting (a plane circling over an airport waiting to land)

These need to be carefully designed and verified, otherwise . ..
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Focus of this Lecture
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L Focus of this Lecture
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Goal of SPIN-style model checking methodology:

To exhibit design flaws in concurrent and distributed software systems J

Focus of today’s lecture:

» Modeling and analyzing concurrent systems

Focus of next week's lecture:

» Modeling and analyzing distributed systems
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Concurrent/Distributed Systems: Hard to Get Right
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Some Problems of Concurrent/Distributed Systems
» Hard to predict, hard to form correct intuition about them
» Enormous combinatorial explosion of possible behavior
» Interleaving prone to unsafe operations (“data races”)
» Counter measures prone to deadlocks
>

Limited control—from within applications—over “external” factors:

» scheduling strategies

» relative speed of components

» performance of communication mediums
» reliability of communication mediums
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Testing Concurrent or Distributed System is Hard
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Hard

We cannot exhaustively test concurrent/distributed systems

» Lack of controllability (scheduling, delays, ...)
= we miss failures in test phase

» Lack of reproducability
= even if failures appear in test phase,
often impossible to analyze/debug defect

» Lack of resources
= exhaustive testing exhausts the testers long before
it exhausts behavior of the system ...
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Mission of Spin-style Model Checking
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To offer a model-based methodology for
» improving the design and
> to exhibit defects

of concurrent and distributed systems
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Activities in SPiN-style Model Checking

1. Model (critical aspects of) concurrent/distributed system in

PROMELA

2. Use assertions, temporal logic, ... to model crucial properties

3. Use SPIN to check all possible runs of the model
4. Analyze result, possibly re-work 1. and 2.

Observations
» The hardest aspect of Model Checking tends to be 1.

» 1. and 2. need to go hand in hand
» Only 3. is—sometimes— “push-button”

Separation of concerns (system vs. property) is essential:
verify the property you want a system to have, not the one it already has
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Main Challenge of Modeling
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Conflicting Goals J
Richness Simplicity
Model must be rich enough Model must be simple enough
to encompass defects the real to be checkable, both
system could have theoretically and in practice
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Modeling Concurrent Systems in PROMELA
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Cornerstone of
modeling concurrent and distributed systems in the SPIN approach are

PROMELA processes
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Initial Process
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There is always exactly one initial process prior to all others

» Often declared implicitly using “"active”

Initial process can be declared explicitly with keyword “init”

init {
printf("Hello world\n")
}

> If keyword init is supplied then this process can
start other processes with run statement
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Starting Processes

Processes may be started explicitly from init using run

proctype P() { // not declared active
byte local;

3

init {
run PQ);
run P ()

3

» Each run operator starts copy of process (with own local variables)

» run P() does not wait for P to finish (asynchronous behavior)

(PROMELA's run corresponds to JAVA's start, not to JAVA's run)
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Recommended to enclose run operators in atomic block

. : : ) L Atomic Start of Multiple Processes
(otherwise, interleaving with other processes possible)
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proctype P() {
byte local;

3

init {
atomic {
run P();
run P ()
}

Effect: processes only start executing once all are created

(more on atomic later)
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Joining (Synchronizing) Processes
A trick allows “join” of processes: waiting for all processes to finish

proctype P() { ... }

init {
atomic {
run PQ);
run P ()
}
(_nr_pr == 1) ->
printf("ready")

» _nr_pr built-in variable holding number of running processes

> _nr_pr == only one process (init) still running
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Process Parameters
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Processes may have arguments, instantiated by run

proctype P(byte i; bool b) {

}
init {
run P(7, true);
run P(8, false)
}
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Active (Set of) Processes

FMISE
L—Concurrent Processes in PROMELA

Active (Set of) Processes

L—Active (Set of) Processes

2018-11-05

init can be made implicit by using the active modifier

active proctype P() {
}

» implicit init process will run exactly one copy of P

active [n] proctype P() {
}

» implicit init process will run n copies of P
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Local and Global Data
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Variables declared outside of any process are global to all processes

Variables declared inside a process are local to that process

byte n ;

proctype P() {
byte t ;

3

n is global
t is local
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Modeling with Global Data
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Pragmatics of modeling with global data

Shared memory of concurrent systems often modeled
by global variables of numeric (or array) type

Shared resources state of (printer, traffic light, ...) often modeled by
global variables of Boolean or enumeration type
(bool/mtype)

Communication media of distributed systems often modeled
by global variables of channel type (chan)
(next lecture)

Never use global variables to model process-local data! J
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Interference on Global Data

byte n = 0;

active proctype P() {
n = 1;
printf("Process P, n, =,%d\n", n)

}
active proctype QO {
n = 2;

printf("Processy Q,uny=u%d\n", n)

}

How many outputs possible? interleave0.pml

Processes can interfere on global data

J
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Six Different Observable Behaviours
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Six Different Observable Behaviours

P:1, Q:2
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Six Different Observable Behaviours

P:1, Q:2

P:2, Q:2
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Six Different Observable Behaviours
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Six Different Observable Behaviours

P:1, Q:2

P:2, Q:2

Q:2, P:2

Q:2, P:1
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Six Different Observable Behaviours

P:1, Q:2

P:2, Q:2

Q:2, P:2

Q:2, P:1

Q:1, P:1
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Six Different Observable Behaviours

P:1, Q:2

P:2, Q:2

Q:2, P:2

Q:2, P:1

Q:1, P:1

P:1, Q:1
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Examples

1. interleaveO.pml
SPIN simulation, automata

2. interleavel.pml, interleavelA.pml
Adding assertion about n, model checking

3. interleaveb5.pml, interleave5F.pml, interleavebA. pml
SPIN simulation, assertion, SPIN model checking, trail inspection
show generated graph interleaveb5.pdf, modify assertion, verify
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Atomicity
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Limit possibilities of being interrupted (“pre-empted”) by other processesJ

» Decrease the possible number of interleavings

Weakly atomic sequence
can only be interrupted if a statement is not executable
= defined in PROMELA by atomic{ ... }

Strongly atomic sequence
cannot be interrupted at all
= defined in PROMELA by d_step{ ... }
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Deterministic Sequences

d_step:
» strongly atomic
» deterministic (like a single step)

» non-determinism resolved in fixed way (always take the first option)

= good style to avoid non-determinism in d_step

P it is an error if any statement within d_step,
other than the first one (called “guard”), blocks

d_step {
stmtl; < guard
stmt2;
stmt3

}

» |If stmt1 blocks, d_step is not entered, and blocks as a whole
» It is an error if stmt2 or stmt3 block

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105
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(Weakly) Atomic Sequences
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I—(Wea kly) Atomic Sequences

atomic:
> weakly atomic

» can be non-deterministic

atomic {
stmtl; < guard
stmt2;
stmt3

}

If guard blocks, atomic is not entered, and blocks as a whole

Once atomic is entered, control is kept until a statement blocks, and
only then control is passed to another process
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Example for Limiting Interference by Atomicity

> interleave5D.pml
Show assertion, verify
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PROMELA has no synchronization primitives:
» semaphores
» locks
» monitors
> ...

Instead, PROMELA controls statement executability (absence of blocking)

» Non-executable statements in atomic sequences permit pre-emption

Most known synchronization primitives (test & set, compare & swap,
semaphores, ...) can be modelled using executability and atomicity

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105 26 /45



Executability
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Each PROMELA statement has the property “executability”

Executability of basic statements:

statement type executable
assignments always
assertions always
print statements always
expression statements | iff value not 0/false
send /receive statements (next lecture)
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Executability (Cont'd)
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Executability of compound statements

statement type ‘ executable iff
atomic, d_step guard (first statement of scope) executable
if, do any of its alternatives is executable
alternative of if, do | guard (first statement of scope) executable
(recall: “->" syntactic sugar for “;")
for always (body can block, of course)
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Executability and Blocking
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Definition (Blocking)

A statement is blocking iff it is not executable.
A process is blocking iff its location counter points to a blocking
statement.

For the next step of execution, the scheduler chooses
non-deterministically one of the non-blocking statements in a process

Executability /blocking are the basic concepts in
PROMELA-style modeling of solutions to synchronization problems
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The Critical Section Problem
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Archetypical problem of concurrent systems J 3 The Critical Section Problem

Definition (Critical Section)

The critical section (CS) of a process is the block of code where shared
state (e.g., global variables) are accessed and possibly manipulated

Example
The PROMELA models interleave?.pml with global variable n

CS Problem (Data Race, Race Condition, “kritischer Wettlauf”)
Given a set of processes each containing at least one critical section:

The result of the computation performed by the processes might depend
on their execution order
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The Critical Section Problem: Solutions

Given a number of looping processes, each containing a critical section

Mutual Exclusion
At most one process is executing its critical section at any given time

Challenges
Absence of Deadlock If some processes are trying to enter their
critical sections, then one of them must
eventually succeed

Absence of Starvation If any process tries to enter its critical section,
then that process must eventually succeed

FMISE: Concurrency TU Darmstadt, Software Engineering Group 181105 31/45

05

2018-11

FMISE
L The Critical Section Problem

L The Critical Section Problem: Solutions

The Critical Section Problem: Solutions




FMISE

Critical Section Pattern L_The Critical Section Problem

05

L Critical Section Pattern

2018-11

For demo purposes, model (non-)critical sections by printf statements:

active proctype P() {
do :: printf("P non-criticalgaction\n");
/* begin critical section */
printf("P_ uses_ shared resource\n")
/* end critical section */
od
}

active proctype QO {
do :: printf("Qunon-criticalaction\n");
/* begin critical section */
printf("Q_ uses_ shared_ resource\n")
/* end critical section */

od
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Mutual Exclusion: First Attempt

Simple idea: use Boolean flags to control access to critical section

bool enterCriticalP = false;
bool enterCriticalQ false;

active proctype PO {
do :: printf("P non-criticalgaction\n");
enterCriticalP = true;
/* begin critical section */
printf("P_ uses_ shared resource\n");
/* end critical section */
enterCriticalP = false
od
}

active proctype Q() {
analogous

3
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Verification of Mutual Exclusion Not Yet Possible

bool enterCriticalP
bool enterCriticalQ

false;
false;

active proctype P() {

}

do

od

printf("P_ non-critical action\n");
enterCriticalP = true;

/* begin critical section */
printf("P_ uses_ shared resource\n");
assert(!enterCriticalQ);

/* end critical section */
enterCriticalP = false

active proctype Q) {
analogous

}

(csAssert.pml)
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Mutual Exclusion: Second Attempt

“Busy Waiting" csBusy.pml

bool enterCriticalP false;

bool enterCriticalQ = false;

active proctype PO A{

do :: printf("P non-criticalaction\n");
enterCriticalP = true;
do :: 'enterCriticalQ -> break
else -> skip

od;

/* begin critical section */
printf("P_ uses_ shared resource\n");
assert (!enterCriticalQ) ;
/* end critical section */
enterCriticalP = false
od
}
active proctype Q() { analogous %
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Discussion

Failed verification — Busy waiting is problematic

» Does not block execution, even if exclusion property fails

» Wasteful on resources

Instead of busy waiting, use blocking to:

> release control when exclusion property not fulfilled

» continue only when exclusion properties are fulfilled

Don't use assignment, but expression statement !enterCriticalQ
to let process P block where it should not proceed!
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: Third Attempt
tha blocks exeution
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Use !'enterCriticalQ as a guard that blocks execution L Mutual Exclusion: Third Attempt
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// csBlocking.pml
bool enterCriticalP;
bool enterCriticalQ;

active proctype PO {
do :: printf("P non-criticalaction\n");
enterCriticalP = true;
lenterCriticalQ;
/* begin critical section */
printf("P_uses_ shared_ resource\n");
assert (!enterCriticalQ);
/* end critical section */
enterCriticalP = false
od
}
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Mutual Exclusion (ME) cannot be shown by SprIN

> enterCriticalP/Q sufficient for achieving ME
» enterCriticalP/Q insufficient for proving ME

Global vs. Local Properties

To verify ME one needs to ensure that at any time at most one process is
in a critical section

> assert statements are code-local and insufficient for this

» Need mechanism that can express system-global properties

Some typical mechanisms to express global system properties
Ghost Variables global variables used only for specification /verification

Invariants properties that hold at certain times = Temporal Logic
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Verify Mutual Exclusion with Ghost Variables

int critical = 0;

// nr of processes in CS

active proctype PO A

}

do

od

printf("P_ non-critical action\n");
enterCriticalP = true;
lenterCriticalQ;

/* begin critical section */
critical++;
printf("P_ uses_ shared resource\n");
assert (critical <= 1) ;

critical—--;

/* end critical section */
enterCriticalP = false

active proctype Q) { analogous }
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Verify Mutual Exclusion with Spix
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I—Verify Mutual Exclusion with SPIN

> Attempt to verify csGhost.pml

spin -a csGhost.pml; gcc -o pan pan.c; ./pan

» Simulate guided by trail
spin -g -p -t csGhost.pml
» Both processes have set enterCritical

» Both processes are at guard !'entercritical
» Neither can proceed

» Make pan ignore deadlocks (invalid end states)

./pan -E;
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Deadlock Hunting

Invalid End State
» A process does not finish in an end state

» OK, if it is not crucial to continue (see previous lecture)

» Two or more inter-dependent processes do not finish at the end:

Real deadlock

FMISE

3, L Absence of Deadlock
g L Deadlock Hunting

Finding Deadlocks with SPIN
> Attempt verification to produce a failing run trail
» Guided simulation to see how the processes get to the deadlock

» Fix the code, but don't use endXXX:-labels or -E switch
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Deadlock-free solution to ME problem with only flags/blocking is hard J

Atomicity
» More powerful and general mechanism
» Often leads to conceptually simpler solutions

> But is not always a realistic system assumption

Idea for Solution of ME Problem by Atomicity
Check and set the critical section flag in one atomic step

atomic {
lenterCriticalQ; // use as guard, must come first
enterCriticalP = true

} // csGhostAtomic.pml
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Variations of Critical Section Problem
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At most n processes allowed in critical section

Modeling possibilities include:
» counters instead of booleans

» semaphores

> test & set instructions (primitive for atomic block on previous slide)

Refined mutual exclusion conditions
> several critical sections (Leidseplein in Amsterdam)

» writers exclude each other and readers
readers exclude writers, but not other readers

» FIFO queues for entering sections (full semaphores)

...and many more!
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Use Atomicity with Good Judgment
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There is a trivial solution of the CS problem using atomicity
(csAtomic.pml)

Using atomicity in such an extreme way has serious drawbacks
> Not generalizable to variations of the CS problem
» atomic only weakly atomic, blocking still possible

» d_step excludes any non-determinism
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Ben-Ari Chapter 3
Sections 4.1-4.4
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