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Foreword

We live in the midst of a data deluge. According to recent estimates, 2.5 quintillion 
(1018) bytes of data are generated on a daily basis. This is so much data that over 90 
percent of the information that we store nowadays was generated in the past decade 
alone. Unfortunately, most of this information cannot be used by humans. Either the 
data is beyond the means of standard analytical methods, or it is simply too vast for 
our limited minds to even comprehend.

Through Machine Learning, we enable computers to process, learn from, and draw 
actionable insights out of the otherwise impenetrable walls of big data. From the 
massive supercomputers that support Google's search engines to the smartphones 
that we carry in our pockets, we rely on Machine Learning to power most of the 
world around us—often, without even knowing it.

As modern pioneers in the brave new world of big data, it then behooves us to learn 
more about Machine Learning. What is Machine Learning and how does it work? 
How can I use Machine Learning to take a glimpse into the unknown, power my 
business, or just find out what the Internet at large thinks about my favorite movie? 
All of this and more will be covered in the following chapters authored by my good 
friend and colleague, Sebastian Raschka.

When away from taming my otherwise irascible pet dog, Sebastian has tirelessly 
devoted his free time to the open source Machine Learning community. Over the 
past several years, Sebastian has developed dozens of popular tutorials that cover 
topics in Machine Learning and data visualization in Python. He has also developed 
and contributed to several open source Python packages, several of which are now 
part of the core Python Machine Learning workflow.

Owing to his vast expertise in this field, I am confident that Sebastian's insights into 
the world of Machine Learning in Python will be invaluable to users of all experience 
levels. I wholeheartedly recommend this book to anyone looking to gain a broader 
and more practical understanding of Machine Learning.

Dr. Randal S. Olson
Artificial Intelligence and Machine Learning Researcher, University of Pennsylvania
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Preface
I probably don't need to tell you that machine learning has become one of the most 
exciting technologies of our time and age. Big companies, such as Google, Facebook, 
Apple, Amazon, IBM, and many more, heavily invest in machine learning research 
and applications for good reasons. Although it may seem that machine learning has 
become the buzzword of our time and age, it is certainly not a hype. This exciting 
field opens the way to new possibilities and has become indispensable to our daily 
lives. Talking to the voice assistant on our smart phones, recommending the right 
product for our customers, stopping credit card fraud, filtering out spam from our 
e-mail inboxes, detecting and diagnosing medical diseases, the list goes on and on.

If you want to become a machine learning practitioner, a better problem solver, or 
maybe even consider a career in machine learning research, then this book is for you! 
However, for a novice, the theoretical concepts behind machine learning can be quite 
overwhelming. Yet, many practical books that have been published in recent years 
will help you get started in machine learning by implementing powerful learning 
algorithms. In my opinion, the use of practical code examples serve an important 
purpose. They illustrate the concepts by putting the learned material directly into 
action. However, remember that with great power comes great responsibility! The 
concepts behind machine learning are too beautiful and important to be hidden in 
a black box. Thus, my personal mission is to provide you with a different book; a 
book that discusses the necessary details regarding machine learning concepts, offers 
intuitive yet informative explanations on how machine learning algorithms work, 
how to use them, and most importantly, how to avoid the most common pitfalls.

If you type "machine learning" as a search term in Google Scholar, it returns an 
overwhelmingly large number-1,800,000 publications. Of course, we cannot discuss 
all the nitty-gritty details about all the different algorithms and applications that have 
emerged in the last 60 years. However, in this book, we will embark on an exciting 
journey that covers all the essential topics and concepts to give you a head start in this 
field. If you find that your thirst for knowledge is not satisfied, there are many useful 
resources that can be used to follow up on the essential breakthroughs in this field.
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If you have already studied machine learning theory in detail, this book will show 
you how to put your knowledge into practice. If you have used machine learning 
techniques before and want to gain more insight into how machine learning really 
works, this book is for you! Don't worry if you are completely new to the machine 
learning field; you have even more reason to be excited. I promise you that machine 
learning will change the way you think about the problems you want to solve and 
will show you how to tackle them by unlocking the power of data.

Before we dive deeper into the machine learning field, let me answer your most 
important question, "why Python?" The answer is simple: it is powerful yet very 
accessible. Python has become the most popular programming language for data 
science because it allows us to forget about the tedious parts of programming and 
offers us an environment where we can quickly jot down our ideas and put concepts 
directly into action.

Reflecting on my personal journey, I can truly say that the study of machine learning 
made me a better scientist, thinker, and problem solver. In this book, I want to 
share this knowledge with you. Knowledge is gained by learning, the key is our 
enthusiasm, and the true mastery of skills can only be achieved by practice. The road 
ahead may be bumpy on occasions, and some topics may be more challenging than 
others, but I hope that you will embrace this opportunity and focus on the reward. 
Remember that we are on this journey together, and throughout this book, we will 
add many powerful techniques to your arsenal that will help us solve even the 
toughest problems the data-driven way.

What this book covers
Chapter 1, Giving Computers the Ability to Learn from Data, introduces you to the 
main subareas of machine learning to tackle various problem tasks. In addition, it 
discusses the essential steps for creating a typical machine learning model building 
pipeline that will guide us through the following chapters.

Chapter 2, Training Machine Learning Algorithms for Classification, goes back to  
the origin of machine learning and introduces binary perceptron classifiers and 
adaptive linear neurons. This chapter is a gentle introduction to the fundamentals 
of pattern classification and focuses on the interplay of optimization algorithms and 
machine learning.

Chapter 3, A Tour of Machine Learning Classifirs Using Scikit-learn, describes the 
essential machine learning algorithms for classification and provides practical 
examples using one of the most popular and comprehensive open source machine 
learning libraries, scikit-learn.



Preface

[ ix ]

Chapter 4, Building Good Training Sets – Data Preprocessing, discusses how to deal with 
the most common problems in unprocessed datasets, such as missing data. It also 
discusses several approaches to identify the most informative features in datasets 
and teaches you how to prepare variables of different types as proper inputs for 
machine learning algorithms.

Chapter 5, Compressing Data via Dimensionality Reduction, describes the essential 
techniques to reduce the number of features in a dataset to smaller sets while 
retaining most of their useful and discriminatory information. It discusses the 
standard approach to dimensionality reduction via principal component analysis 
and compares it to supervised and nonlinear transformation techniques.

Chapter 6, Learning Best Practices for Model Evaluation and Hyperparameter Tuning, 
discusses the do's and don'ts for estimating the performances of predictive models. 
Moreover, it discusses different metrics for measuring the performance of our 
models and techniques to fine-tune machine learning algorithms.

Chapter 7, Combining Different Models for Ensemble Learning, introduces you to the 
different concepts of combining multiple learning algorithms effectively. It teaches 
you how to build ensembles of experts to overcome the weaknesses of individual 
learners, resulting in more accurate and reliable predictions.

Chapter 8, Applying Machine Learning to Sentiment Analysis, discusses the essential 
steps to transform textual data into meaningful representations for machine learning 
algorithms to predict the opinions of people based on their writing.

Chapter 9, Embedding a Machine Learning Model into a Web Application, continues with 
the predictive model from the previous chapter and walks you through the essential 
steps of developing web applications with embedded machine learning models.

Chapter 10, Predicting Continuous Target Variables with Regression Analysis, discusses 
the essential techniques for modeling linear relationships between target and 
response variables to make predictions on a continuous scale. After introducing 
different linear models, it also talks about polynomial regression and  
tree-based approaches.

Chapter 11, Working with Unlabeled Data – Clustering Analysis, shifts the focus to a 
different subarea of machine learning, unsupervised learning. We apply algorithms 
from three fundamental families of clustering algorithms to find groups of objects 
that share a certain degree of similarity.
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Chapter 12, Training Artificial Neural Networks for Image Recognition, extends the 
concept of gradient-based optimization, which we first introduced in Chapter 2, 
Training Machine Learning Algorithms for Classification, to build powerful, multilayer 
neural networks based on the popular backpropagation algorithm.

Chapter 13, Parallelizing Neural Network Training with Theano, builds upon the 
knowledge from the previous chapter to provide you with a practical guide for 
training neural networks more efficiently. The focus of this chapter is on Theano, an 
open source Python library that allows us to utilize multiple cores of modern GPUs.

What you need for this book
The execution of the code examples provided in this book requires an installation 
of Python 3.4.3 or newer on Mac OS X, Linux, or Microsoft Windows. We will make 
frequent use of Python's essential libraries for scientific computing throughout this 
book, including SciPy, NumPy, scikit-learn, matplotlib, and pandas.

The first chapter will provide you with instructions and useful tips to set up your 
Python environment and these core libraries. We will add additional libraries to 
our repertoire and installation instructions are provided in the respective chapters: 
the NLTK library for natural language processing (Chapter 8, Applying Machine 
Learning to Sentiment Analysis), the Flask web framework (Chapter 9, Embedding a 
Machine Learning Algorithm into a Web Application), the seaborn library for statistical 
data visualization (Chapter 10, Predicting Continuous Target Variables with Regression 
Analysis), and Theano for efficient neural network training on graphical processing 
units (Chapter 13, Parallelizing Neural Network Training with Theano).

Who this book is for
If you want to find out how to use Python to start answering critical questions  
of your data, pick up Python Machine Learning—whether you want start from  
scratch or want to extend your data science knowledge, this is an essential and 
unmissable resource.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.
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Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:  
"And already installed packages can be updated via the --upgrade flag."

A block of code is set as follows:

>>> import matplotlib.pyplot as plt
>>> import numpy as np

>>> y = df.iloc[0:100, 4].values
>>> y = np.where(y == 'Iris-setosa', -1, 1)
>>> X = df.iloc[0:100, [0, 2]].values
>>> plt.scatter(X[:50, 0], X[:50, 1],
...             color='red', marker='x', label='setosa')
>>> plt.scatter(X[50:100, 0], X[50:100, 1],
...             color='blue', marker='o', label='versicolor')
>>> plt.xlabel('petal length')
>>> plt.ylabel('sepal length')
>>> plt.legend(loc='upper left')
>>> plt.show()

Any command-line input or output is written as follows:

> dot -Tpng tree.dot -o tree.png

New terms and important words are shown in bold. Words that you see on the 
screen, for example, in menus or dialog boxes, appear in the text like this: "After we 
click on the Dashboard button in the top-right corner, we have access to the control 
panel shown at the top of the page."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.
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Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you 
purchased this book elsewhere, you can visit http://www.packtpub.com/support 
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or  
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
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Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
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Giving Computers the Ability 
to Learn from Data

In my opinion, machine learning, the application and science of algorithms that makes 
sense of data, is the most exciting field of all the computer sciences! We are living in 
an age where data comes in abundance; using the self-learning algorithms from the 
field of machine learning, we can turn this data into knowledge. Thanks to the many 
powerful open source libraries that have been developed in recent years, there has 
probably never been a better time to break into the machine learning field and learn 
how to utilize powerful algorithms to spot patterns in data and make predictions 
about future events.

In this chapter, we will learn about the main concepts and different types of machine 
learning. Together with a basic introduction to the relevant terminology, we will lay 
the groundwork for successfully using machine learning techniques for practical 
problem solving.

In this chapter, we will cover the following topics:

•	 The general concepts of machine learning
•	 The three types of learning and basic terminology
•	 The building blocks for successfully designing machine learning systems
•	 Installing and setting up Python for data analysis and machine learning
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Building intelligent machines to 
transform data into knowledge
In this age of modern technology, there is one resource that we have in abundance: a 
large amount of structured and unstructured data. In the second half of the twentieth 
century, machine learning evolved as a subfield of artificial intelligence that involved 
the development of self-learning algorithms to gain knowledge from that data in 
order to make predictions. Instead of requiring humans to manually derive rules 
and build models from analyzing large amounts of data, machine learning offers a 
more efficient alternative for capturing the knowledge in data to gradually improve 
the performance of predictive models, and make data-driven decisions. Not only is 
machine learning becoming increasingly important in computer science research but 
it also plays an ever greater role in our everyday life. Thanks to machine learning, 
we enjoy robust e-mail spam filters, convenient text and voice recognition software, 
reliable Web search engines, challenging chess players, and, hopefully soon, safe and 
efficient self-driving cars.

The three different types of  
machine learning
In this section, we will take a look at the three types of machine learning: supervised 
learning, unsupervised learning, and reinforcement learning. We will learn about the 
fundamental differences between the three different learning types and, using 
conceptual examples, we will develop an intuition for the practical problem  
domains where these can be applied:



Chapter 1

[ 3 ]

Making predictions about the future with 
supervised learning
The main goal in supervised learning is to learn a model from labeled training data 
that allows us to make predictions about unseen or future data. Here, the term 
supervised refers to a set of samples where the desired output signals (labels) are 
already known.

Considering the example of e-mail spam filtering, we can train a model using a 
supervised machine learning algorithm on a corpus of labeled e-mail, e-mail that are 
correctly marked as spam or not-spam, to predict whether a new e-mail belongs to 
either of the two categories. A supervised learning task with discrete class labels, such 
as in the previous e-mail spam-filtering example, is also called a classification task. 
Another subcategory of supervised learning is regression, where the outcome signal is 
a continuous value:

Classification for predicting class labels
Classification is a subcategory of supervised learning where the goal is to  
predict the categorical class labels of new instances based on past observations.  
Those class labels are discrete, unordered values that can be understood as the  
group memberships of the instances. The previously mentioned example of  
e-mail-spam detection represents a typical example of a binary classification  
task, where the machine learning algorithm learns a set of rules in order to 
distinguish between two possible classes: spam and non-spam e-mail.
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However, the set of class labels does not have to be of a binary nature. The predictive 
model learned by a supervised learning algorithm can assign any class label that was 
presented in the training dataset to a new, unlabeled instance. A typical example of 
a multi-class classification task is handwritten character recognition. Here, we could 
collect a training dataset that consists of multiple handwritten examples of each letter 
in the alphabet. Now, if a user provides a new handwritten character via an input 
device, our predictive model will be able to predict the correct letter in the alphabet 
with certain accuracy. However, our machine learning system would be unable to 
correctly recognize any of the digits zero to nine, for example, if they were not part  
of our training dataset.

The following figure illustrates the concept of a binary classification task given 30 
training samples: 15 training samples are labeled as negative class (circles) and 15 
training samples are labeled as positive class (plus signs). In this scenario, our dataset 
is two-dimensional, which means that each sample has two values associated with  
it: 1x  and 2x . Now, we can use a supervised machine learning algorithm to learn a 
rule—the decision boundary represented as a black dashed line—that can separate 
those two classes and classify new data into each of those two categories given its 1x   
and 2x  values:

Regression for predicting continuous outcomes
We learned in the previous section that the task of classification is to assign 
categorical, unordered labels to instances. A second type of supervised learning is 
the prediction of continuous outcomes, which is also called regression analysis. In 
regression analysis, we are given a number of predictor (explanatory) variables and a 
continuous response variable (outcome), and we try to find a relationship between 
those variables that allows us to predict an outcome.



Chapter 1

[ 5 ]

For example, let's assume that we are interested in predicting the Math SAT  
scores of our students. If there is a relationship between the time spent studying  
for the test and the final scores, we could use it as training data to learn a model  
that uses the study time to predict the test scores of future students who are  
planning to take this test.

The term regression was devised by Francis Galton in his article 
Regression Towards Mediocrity in Hereditary Stature in 1886. Galton 
described the biological phenomenon that the variance of height 
in a population does not increase over time. He observed that 
the height of parents is not passed on to their children but the 
children's height is regressing towards the population mean.

The following figure illustrates the concept of linear regression. Given a predictor 
variable x and a response variable y, we fit a straight line to this data that minimizes 
the distance—most commonly the average squared distance—between the sample 
points and the fitted line. We can now use the intercept and slope learned from this 
data to predict the outcome variable of new data:
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Solving interactive problems with 
reinforcement learning
Another type of machine learning is reinforcement learning. In reinforcement 
learning, the goal is to develop a system (agent) that improves its performance 
based on interactions with the environment. Since the information about the current 
state of the environment typically also includes a so-called reward signal, we can 
think of reinforcement learning as a field related to supervised learning. However, in 
reinforcement learning this feedback is not the correct ground truth label or value, 
but a measure of how well the action was measured by a reward function. Through 
the interaction with the environment, an agent can then use reinforcement learning 
to learn a series of actions that maximizes this reward via an exploratory  
trial-and-error approach or deliberative planning.

A popular example of reinforcement learning is a chess engine. Here, the agent decides 
upon a series of moves depending on the state of the board (the environment), and the 
reward can be defined as win or lose at the end of the game:

Discovering hidden structures with 
unsupervised learning
In supervised learning, we know the right answer beforehand when we train 
our model, and in reinforcement learning, we define a measure of reward for 
particular actions by the agent. In unsupervised learning, however, we are dealing 
with unlabeled data or data of unknown structure. Using unsupervised learning 
techniques, we are able to explore the structure of our data to extract meaningful 
information without the guidance of a known outcome variable or reward function.
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Finding subgroups with clustering
Clustering is an exploratory data analysis technique that allows us to organize a 
pile of information into meaningful subgroups (clusters) without having any prior 
knowledge of their group memberships. Each cluster that may arise during the 
analysis defines a group of objects that share a certain degree of similarity but are 
more dissimilar to objects in other clusters, which is why clustering is also sometimes 
called "unsupervised classification." Clustering is a great technique for structuring 
information and deriving meaningful relationships among data, For example, it 
allows marketers to discover customer groups based on their interests in order to 
develop distinct marketing programs.

The figure below illustrates how clustering can be applied to organizing unlabeled 
data into three distinct groups based on the similarity of their features 1x  and 2x :

Dimensionality reduction for data compression
Another subfield of unsupervised learning is dimensionality reduction. Often we are 
working with data of high dimensionality—each observation comes with a high 
number of measurements—that can present a challenge for limited storage space 
and the computational performance of machine learning algorithms. Unsupervised 
dimensionality reduction is a commonly used approach in feature preprocessing 
to remove noise from data, which can also degrade the predictive performance of 
certain algorithms, and compress the data onto a smaller dimensional subspace 
while retaining most of the relevant information.
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Sometimes, dimensionality reduction can also be useful for visualizing data—for 
example, a high-dimensional feature set can be projected onto one-, two-, or  
three-dimensional feature spaces in order to visualize it via 3D- or 2D-scatterplots 
or histograms. The figure below shows an example where non-linear dimensionality 
reduction was applied to compress a 3D Swiss Roll onto a  
new 2D feature subspace:

An introduction to the basic terminology 
and notations
Now that we have discussed the three broad categories of machine  
learning—supervised, unsupervised, and reinforcement learning—let us have  
a look at the basic terminology that we will be using in the next chapters. The 
following table depicts an excerpt of the Iris dataset, which is a classic example in 
the field of machine learning. The Iris dataset contains the measurements of 150 
iris flowers from three different species: Setosa, Versicolor, and Viriginica. Here, each 
flower sample represents one row in our data set, and the flower measurements in 
centimeters are stored as columns, which we also call the features of the dataset:
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To keep the notation and implementation simple yet efficient, we will make use of 
some of the basics of linear algebra. In the following chapters, we will use a matrix 
and vector notation to refer to our data. We will follow the common convention to 
represent each sample as separate row in a feature matrix X , where each feature is 
stored as a separate column.

The Iris dataset, consisting of 150 samples and 4 features, can then be written as a 
150 4×  matrix ×∈ 150 4�X :
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For the rest of this book, we will use the superscript (i) to refer to the ith 
training sample, and the subscript j to refer to the jth dimension of the 
training dataset.

We use lower-case, bold-face letters to refer to vectors ( )1×∈Rnx  and  
upper-case, bold-face letters to refer to matrices, respectively ( )×∈�n mX ).  
To refer to single elements in a vector or matrix, we write the letters in 
italics ( )nx  or ( )

( )n
mx , respectively).

For example, 150
1x  refers to the first dimension of flower sample 150, the 

sepal width. Thus, each row in this feature matrix represents one flower 
instance and can be written as four-dimensional column vector ( )i ×∈ 1 4�x , 

( ) ( ) ( ) ( ) ( )
1 2 3 4

i i i i ix x x x =  x .

Each feature dimension is a 150-dimensional row vector ( ) 50i ×∈ 1 1�x ,  
for example:

( )

( )

( )

1

2

150

 

 

j

j
j

j

x

x

x

 
 
 

=  
 
 
 

�
x

.

Similarly, we store the target variables (here: class labels) as a 

150-dimensional column vector 
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A roadmap for building machine learning 
systems
In the previous sections, we discussed the basic concepts of machine learning and the 
three different types of learning. In this section, we will discuss other important parts 
of a machine learning system accompanying the learning algorithm. The diagram 
below shows a typical workflow diagram for using machine learning in predictive 
modeling, which we will discuss in the following subsections:
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Preprocessing – getting data into shape
Raw data rarely comes in the form and shape that is necessary for the optimal 
performance of a learning algorithm. Thus, the preprocessing of the data is one of the 
most crucial steps in any machine learning application. If we take the Iris flower 
dataset from the previous section as an example, we could think of the raw data 
as a series of flower images from which we want to extract meaningful features. 
Useful features could be the color, the hue, the intensity of the flowers, the height, 
and the flower lengths and widths. Many machine learning algorithms also require 
that the selected features are on the same scale for optimal performance, which is 
often achieved by transforming the features in the range [0, 1] or a standard normal 
distribution with zero mean and unit variance, as we will see in the later chapters.

Some of the selected features may be highly correlated and therefore redundant 
to a certain degree. In those cases, dimensionality reduction techniques are useful 
for compressing the features onto a lower dimensional subspace. Reducing the 
dimensionality of our feature space has the advantage that less storage space is 
required, and the learning algorithm can run much faster.
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To determine whether our machine learning algorithm not only performs well on the 
training set but also generalizes well to new data, we also want to randomly divide 
the dataset into a separate training and test set. We use the training set to train and 
optimize our machine learning model, while we keep the test set until the very end 
to evaluate the final model.

Training and selecting a predictive model
As we will see in later chapters, many different machine learning algorithms have 
been developed to solve different problem tasks. An important point that can be 
summarized from David Wolpert's famous No Free Lunch Theorems is that we can't 
get learning "for free" (The Lack of A Priori Distinctions Between Learning Algorithms, 
D.H. Wolpert 1996; No Free Lunch Theorems for Optimization, D.H. Wolpert and W.G. 
Macready, 1997). Intuitively, we can relate this concept to the popular saying, "I 
suppose it is tempting, if the only tool you have is a hammer, to treat everything as if it  
were a nail" (Abraham Maslow, 1966). For example, each classification algorithm  
has its inherent biases, and no single classification model enjoys superiority if we 
don't make any assumptions about the task. In practice, it is therefore essential to 
compare at least a handful of different algorithms in order to train and select the  
best performing model. But before we can compare different models, we first  
have to decide upon a metric to measure performance. One commonly used  
metric is classification accuracy, which is defined as the proportion of correctly 
classified instances.

One legitimate question to ask is: how do we know which model performs well on the  
final test dataset and real-world data if we don't use this test set for the model selection 
but keep it for the final model evaluation? In order to address the issue embedded in 
this question, different cross-validation techniques can be used where the training 
dataset is further divided into training and validation subsets in order to estimate the 
generalization performance of the model. Finally, we also cannot expect that the default 
parameters of the different learning algorithms provided by software libraries are 
optimal for our specific problem task. Therefore, we will make frequent use of 
hyperparameter optimization techniques that help us to fine-tune the performance of 
our model in later chapters. Intuitively, we can think of those hyperparameters as 
parameters that are not learned from the data but represent the knobs of a model  
that we can turn to improve its performance, which will become much clearer in  
later chapters when we see actual examples.



Chapter 1

[ 13 ]

Evaluating models and predicting unseen 
data instances
After we have selected a model that has been fitted on the training dataset, we can 
use the test dataset to estimate how well it performs on this unseen data to estimate 
the generalization error. If we are satisfied with its performance, we can now use 
this model to predict new, future data. It is important to note that the parameters for 
the previously mentioned procedures—such as feature scaling and dimensionality 
reduction—are solely obtained from the training dataset, and the same parameters are 
later re-applied to transform the test dataset, as well as any new data samples—the 
performance measured on the test data may be overoptimistic otherwise.

Using Python for machine learning
Python is one of the most popular programming languages for data science  
and therefore enjoys a large number of useful add-on libraries developed by  
its great community.

Although the performance of interpreted languages, such as Python, for 
computation-intensive tasks is inferior to lower-level programming languages, 
extension libraries such as NumPy and SciPy have been developed that build upon 
lower layer Fortran and C implementations for fast and vectorized operations on 
multidimensional arrays.

For machine learning programming tasks, we will mostly refer to the scikit-learn 
library, which is one of the most popular and accessible open source machine 
learning libraries as of today.

Installing Python packages
Python is available for all three major operating systems—Microsoft Windows, 
Mac OS X, and Linux—and the installer, as well as the documentation, can be 
downloaded from the official Python website: https://www.python.org.

This book is written for Python version >= 3.4.3, and it is recommended  
you use the most recent version of Python 3 that is currently available,  
although most of the code examples may also be compatible with Python >= 2.7.10. 
If you decide to use Python 2.7 to execute the code examples, please make sure 
that you know about the major differences between the two Python versions. A 
good summary about the differences between Python 3.4 and 2.7 can be found at 
https://wiki.python.org/moin/Python2orPython3.

https://www.python.org
https://wiki.python.org/moin/Python2orPython3
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The additional packages that we will be using throughout this book can be  
installed via the pip installer program, which has been part of the Python  
standard library since Python 3.3. More information about pip can be found  
at https://docs.python.org/3/installing/index.html.

After we have successfully installed Python, we can execute pip from the command 
line terminal to install additional Python packages:

pip install SomePackage

Already installed packages can be updated via the --upgrade flag:

pip install SomePackage --upgrade

A highly recommended alternative Python distribution for scientific computing 
is Anaconda by Continuum Analytics. Anaconda is a free—including commercial 
use—enterprise-ready Python distribution that bundles all the essential Python 
packages for data science, math, and engineering in one user-friendly  
cross-platform distribution. The Anaconda installer can be downloaded at  
http://continuum.io/downloads#py34, and an Anaconda quick start-guide is 
available at https://store.continuum.io/static/img/Anaconda-Quickstart.
pdf.

After successfully installing Anaconda, we can install new Python packages using 
the following command:

conda install SomePackage

Existing packages can be updated using the following command:

conda update SomePackage

Throughout this book, we will mainly use NumPy's multi-dimensional arrays to store 
and manipulate data. Occasionally, we will make use of pandas, which is a library 
built on top of NumPy that provides additional higher level data manipulation 
tools that make working with tabular data even more convenient. To augment our 
learning experience and visualize quantitative data, which is often extremely useful 
to intuitively make sense of it, we will use the very customizable matplotlib library.

https://docs.python.org/3/installing/index.html
http://continuum.io/downloads#py34
https://store.continuum.io/static/img/Anaconda-Quickstart.pdf
https://store.continuum.io/static/img/Anaconda-Quickstart.pdf
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The version numbers of the major Python packages that were used for writing this 
book are listed below. Please make sure that the version numbers of your installed 
packages are equal to, or greater than, those version numbers to ensure the code 
examples run correctly:

•	 NumPy 1.9.1
•	 SciPy 0.14.0
•	 scikit-learn 0.15.2
•	 matplotlib 1.4.0
•	 pandas 0.15.2

Summary
In this chapter, we explored machine learning on a very high level and familiarized 
ourselves with the big picture and major concepts that we are going to explore in the 
next chapters in more detail.

We learned that supervised learning is composed of two important subfields: 
classification and regression. While classification models allow us to categorize 
objects into known classes, we can use regression analysis to predict the continuous 
outcomes of target variables. Unsupervised learning not only offers useful 
techniques for discovering structures in unlabeled data, but it can also be  
useful for data compression in feature preprocessing steps.

We briefly went over the typical roadmap for applying machine learning to  
problem tasks, which we will use as a foundation for deeper discussions and 
hands-on examples in the following chapters. Eventually, we set up our Python 
environment and installed and updated the required packages to get ready to see 
machine-learning in action.
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In the following chapter, we will implement one of the earliest machine learning 
algorithms for classification that will prepare us for Chapter 3, A Tour of Machine 
Learning Classifiers Using Scikit-learn, where we cover more advanced machine 
learning algorithms using the scikit-learn open source machine learning library. Since 
machine learning algorithms learn from data, it is critical that we feed them useful 
information, and in Chapter 4, Building Good Training Sets—Data Preprocessing we will 
take a look at important data preprocessing techniques. In Chapter 5, Compressing Data 
via Dimensionality Reduction, we will learn about dimensionality reduction techniques 
that can help us to compress our dataset onto a lower-dimensional feature subspace, 
which can be beneficial for computational efficiency. An important aspect of building 
machine learning models is to evaluate their performance and to estimate how well 
they can make predictions on new, unseen data. In Chapter 6, Learning Best Practices for 
Model Evaluation and Hyperparameter Tuning we will learn all about the best practices 
for model tuning and evaluation. In certain scenarios, we still may not be satisfied with 
the performance of our predictive model although we may have spent hours or days 
extensively tuning and testing. In Chapter 7, Combining Different Models for Ensemble 
Learning we will learn how to combine different machine learning models to build 
even more powerful predictive systems.

After we covered all of the important concepts of a typical machine learning pipeline, 
we will implement a model for predicting emotions in text in Chapter 8, Applying 
Machine Learning to Sentiment Analysis, and in Chapter 9, Embedding a Machine Learning 
Model into a Web Application, we will embed it into a Web application to share it with 
the world. In Chapter 10, Predicting Continuous Target Variables with Regression Analysis 
we will then use machine learning algorithms for regression analysis that allow us to 
predict continuous output variables, and in Chapter 11, Working with Unlabelled Data 
– Clustering Analysis we will apply clustering algorithms that will allow us to find 
hidden structures in data. The last chapter in this book will cover artificial neural 
networks that will allow us to tackle complex problems, such as image and speech 
recognition, which is currently one of the hottest topics in machine-learning research.
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Training Machine Learning 
Algorithms for Classification

In this chapter, we will make use of one of the first algorithmically described 
machine learning algorithms for classification, the perceptron and adaptive linear 
neurons. We will start by implementing a perceptron step by step in Python and 
training it to classify different flower species in the Iris dataset. This will help us to 
understand the concept of machine learning algorithms for classification and how 
they can be efficiently implemented in Python. Discussing the basics of optimization 
using adaptive linear neurons will then lay the groundwork for using more powerful 
classifiers via the scikit-learn machine-learning library in Chapter 3, A Tour of Machine 
Learning Classifiers Using Scikit-learn.

The topics that we will cover in this chapter are as follows:

•	 Building an intuition for machine learning algorithms
•	 Using pandas, NumPy, and matplotlib to read in, process, and visualize data
•	 Implementing linear classification algorithms in Python
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Artificial neurons – a brief glimpse into 
the early history of machine learning
Before we discuss the perceptron and related algorithms in more detail, let us take 
a brief tour through the early beginnings of machine learning. Trying to understand 
how the biological brain works to design artificial intelligence, Warren McCullock 
and Walter Pitts published the first concept of a simplified brain cell, the so-called 
McCullock-Pitts (MCP) neuron, in 1943 (W. S. McCulloch and W. Pitts. A Logical 
Calculus of the Ideas Immanent in Nervous Activity. The bulletin of mathematical 
biophysics, 5(4):115–133, 1943). Neurons are interconnected nerve cells in the brain 
that are involved in the processing and transmitting of chemical and electrical 
signals, which is illustrated in the following figure:

McCullock and Pitts described such a nerve cell as a simple logic gate with binary 
outputs; multiple signals arrive at the dendrites, are then integrated into the cell 
body, and, if the accumulated signal exceeds a certain threshold, an output signal  
is generated that will be passed on by the axon.
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Only a few years later, Frank Rosenblatt published the first concept of the perceptron 
learning rule based on the MCP neuron model (F. Rosenblatt, The Perceptron, a 
Perceiving and Recognizing Automaton. Cornell Aeronautical Laboratory, 1957). With 
his perceptron rule, Rosenblatt proposed an algorithm that would automatically 
learn the optimal weight coefficients that are then multiplied with the input features 
in order to make the decision of whether a neuron fires or not. In the context of 
supervised learning and classification, such an algorithm could then be used to 
predict if a sample belonged to one class or the other.

More formally, we can pose this problem as a binary classification task where we 
refer to our two classes as 1 (positive class) and -1 (negative class) for simplicity. We 
can then define an activation function ( )zφ  that takes a linear combination of certain 
input values x  and a corresponding weight vector w , where z  is the so-called net 
input ( 1 1 m mz w x w x= + +… ):

1 1

,

m m

w x

w x

   
   
   
      

� �w = x =

Now, if the activation of a particular sample ( )ix , that is, the output of ( )zφ , is 
greater than a defined threshold θ , we predict class 1 and class -1, otherwise, in the 
perceptron algorithm, the activation function ( )φ ⋅  is a simple unit step function, which 
is sometimes also called the Heaviside step function:

( )
1
1
if z

z
otherwise

θ
φ

≥
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For simplicity, we can bring the threshold θ  to the left side of the equation and 
define a weight-zero as 0w θ= −  and 0 1x = , so that we write z  in a more compact 

form 0 0 1 1
T

m mz w x w x w x= + + + =… w x  and ( )
1
1
if z

z
otherwise

θ
φ

≥
= − .

In the following sections, we will often make use of basic notations from 
linear algebra. For example, we will abbreviate the sum of the products 
of the values in x  and w  using a vector dot product, whereas superscript 
T stands for transpose, which is an operation that transforms a column 
vector into a row vector and vice versa:

0 0 1 1 0

m T
m m j jj

z w x w x w x
=

= + + + = =∑� x w w x

For example: [ ]
 4 

1 2 3     5  1 4 2 5  3 6 32
 6 

 
 × = × + × + × = 
  

.

Furthermore, the transpose operation can also be applied to a matrix to 
reflect it over its diagonal, for example:

1 2
1 3 5

3 4  
2 4 6

5 6

T
 

   =       
In this book, we will only use the very basic concepts from linear algebra. 
However, if you need a quick refresher, please take a look at Zico Kolter's 
excellent Linear Algebra Review and Reference, which is freely available 
at http://www.cs.cmu.edu/~zkolter/course/linalg/linalg_
notes.pdf.

The following figure illustrates how the net input Tz = w x  is squashed into a binary 
output (-1 or 1) by the activation function of the perceptron (left subfigure) and how it 
can be used to discriminate between two linearly separable classes (right subfigure):

http://www.cs.cmu.edu/~zkolter/course/linalg/linalg_notes.pdf
http://www.cs.cmu.edu/~zkolter/course/linalg/linalg_notes.pdf
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The whole idea behind the MCP neuron and Rosenblatt's thresholded perceptron 
model is to use a reductionist approach to mimic how a single neuron in the brain 
works: it either fires or it doesn't. Thus, Rosenblatt's initial perceptron rule is fairly 
simple and can be summarized by the following steps:

1.	 Initialize the weights to 0 or small random numbers.

2.	 For each training sample ( )ix  perform the following steps:

1.	 Compute the output value ŷ .
2.	 Update the weights.

Here, the output value is the class label predicted by the unit step function that we 
defined earlier, and the simultaneous update of each weight jw  in the weight vector 
w  can be more formally written as:

:j j jw w w= + ∆
.

The value of jw∆ , which is used to update the weight jw , is calculated by the 
perceptron learning rule:

( ) ( )( ) ( )ˆi i i
j jw y y xη∆ = −
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Where η  is the learning rate (a constant between 0.0 and 1.0), ( )iy  is the true class 
label of the i th training sample, and ( )ˆ iy  is the predicted class label. It is important to 
note that all weights in the weight vector are being updated simultaneously, which 
means that we don't recompute the ( )ˆ iy  before all of the weights jw∆  were updated. 
Concretely, for a 2D dataset, we would write the update as follows:

( ) ( )( )0
i iw y outputη∆ = −

( ) ( )( ) ( )

1 1

ii iw y output xη∆ = −

( ) ( )( ) ( )

2 2

ii iw y output xη∆ = −

Before we implement the perceptron rule in Python, let us make a simple thought 
experiment to illustrate how beautifully simple this learning rule really is. In the  
two scenarios where the perceptron predicts the class label correctly, the weights 
remain unchanged:

( ) ( )( ) ( )
1 1 0

ii i
j jw xη∆ = − − − =

( ) ( )( ) ( )
1 1 0

ii i
j jw xη∆ = − =

However, in the case of a wrong prediction, the weights are being pushed towards 
the direction of the positive or negative target class, respectively:

( ) ( )( ) ( ) ( ) ( )
1 1 2

i ii i
j j jw x xη η∆ = − − =

( ) ( )( ) ( ) ( ) ( )
1 1 2

i ii i
j j jw x xη η∆ = − − = −

To get a better intuition for the multiplicative factor 
( )i

jx , let us go through another 
simple example, where:

( ) ( )ˆ 1, 1, 1
i i
jy y η= + = − =
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Let's assume that 
( )

0.5
i

jx = , and we misclassify this sample as -1. In this case, we 

would increase the corresponding weight by 1 so that the activation 
( ) ( )i i

j jx w=  will be 
more positive the next time we encounter this sample and thus will be more likely to 
be above the threshold of the unit step function to classify the sample as +1:

( ) ( ) ( )( ) ( ) ( ) ( )1 1 0.5 2 0.5 1
i i i i i
jw∆ = − − = =

The weight update is proportional to the value of 
( )i

jx . For example, if we have 

another sample 
( )

2
i

jx =  that is incorrectly classified as -1, we'd push the decision 
boundary by an even larger extend to classify this sample correctly the next time:

( ) ( )( ) ( ) ( ) ( )1 1 2 2 2 4i i i i
jw∆ = − − = =

It is important to note that the convergence of the perceptron is only guaranteed if 
the two classes are linearly separable and the learning rate is sufficiently small. If the 
two classes can't be separated by a linear decision boundary, we can set a maximum 
number of passes over the training dataset (epochs) and/or a threshold for the 
number of tolerated misclassifications—the perceptron would never stop updating 
the weights otherwise:

Downloading the example code
You can download the example code files from your account at 
http://www.packtpub.com for all the Packt Publishing books 
you have purchased. If you purchased this book elsewhere, you 
can visit http://www.packtpub.com/support and register to 
have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
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Now, before we jump into the implementation in the next section, let us summarize 
what we just learned in a simple figure that illustrates the general concept of  
the perceptron:

The preceding figure illustrates how the perceptron receives the inputs of a sample
x  and combines them with the weights w  to compute the net input. The net input 
is then passed on to the activation function (here: the unit step function), which 
generates a binary output -1 or +1—the predicted class label of the sample. During 
the learning phase, this output is used to calculate the error of the prediction and 
update the weights.

Implementing a perceptron learning 
algorithm in Python
In the previous section, we learned how Rosenblatt's perceptron rule works; let us 
now go ahead and implement it in Python and apply it to the Iris dataset that we 
introduced in Chapter 1, Giving Computers the Ability to Learn from Data. We will take 
an objected-oriented approach to define the perceptron interface as a Python Class, 
which allows us to initialize new perceptron objects that can learn from data via a 
fit method, and make predictions via a separate predict method. As a convention, 
we add an underscore to attributes that are not being created upon the initialization 
of the object but by calling the object's other methods—for example, self.w_.
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If you are not yet familiar with Python's scientific libraries or need a 
refresher, please see the following resources:
NumPy: http://wiki.scipy.org/Tentative_NumPy_Tutorial
Pandas: http://pandas.pydata.org/pandas-docs/stable/
tutorials.html

Matplotlib: http://matplotlib.org/ussers/beginner.html
Also, to better follow the code examples, I recommend you download 
the IPython notebooks from the Packt website. For a general 
introduction to IPython notebooks, please visit https://ipython.
org/ipython-doc/3/notebook/index.html.

import numpy as np    
class Perceptron(object):
    """Perceptron classifier.

    Parameters
    ------------
    eta : float
        Learning rate (between 0.0 and 1.0)
    n_iter : int
        Passes over the training dataset.

    Attributes
    -----------
    w_ : 1d-array
        Weights after fitting.
    errors_ : list
        Number of misclassifications in every epoch.

    """
    def __init__(self, eta=0.01, n_iter=10):
        self.eta = eta
        self.n_iter = n_iter

    def fit(self, X, y):
        """Fit training data.

        Parameters
        ----------
        X : {array-like}, shape = [n_samples, n_features]
            Training vectors, where n_samples 
            is the number of samples and

http://wiki.scipy.org/Tentative_NumPy_Tutorial
http://pandas.pydata.org/pandas-docs/stable/tutorials.html
http://pandas.pydata.org/pandas-docs/stable/tutorials.html
http://matplotlib.org/ussers/beginner.html
https://ipython.org/ipython-doc/3/notebook/index.html
https://ipython.org/ipython-doc/3/notebook/index.html
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            n_features is the number of features.
        y : array-like, shape = [n_samples]
            Target values.

        Returns
        -------
        self : object

        """
        self.w_ = np.zeros(1 + X.shape[1])
        self.errors_ = []

        for _ in range(self.n_iter):
            errors = 0
            for xi, target in zip(X, y):
                update = self.eta * (target - self.predict(xi))
                self.w_[1:] += update * xi
                self.w_[0] += update
                errors += int(update != 0.0)
            self.errors_.append(errors)
        return self

    def net_input(self, X):
        """Calculate net input"""
        return np.dot(X, self.w_[1:]) + self.w_[0]

    def predict(self, X):
        """Return class label after unit step"""
        return np.where(self.net_input(X) >= 0.0, 1, -1)

Using this perceptron implementation, we can now initialize new Perceptron 
objects with a given learning rate eta and n_iter, which is the number of epochs 
(passes over the training set). Via the fit method we initialize the weights in 
self.w_ to a zero-vector 1m+�  where m  stands for the number of dimensions 
(features) in the dataset where we add 1 for the zero-weight (that is, the threshold).

NumPy indexing for one-dimensional arrays works similarly to Python 
lists using the square-bracket ([]) notation. For two-dimensional arrays, 
the first indexer refers to the row number, and the second indexer to the 
column number. For example, we would use X[2, 3] to select the third 
row and fourth column of a 2D array X.
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After the weights have been initialized, the fit method loops over all individual 
samples in the training set and updates the weights according to the perceptron 
learning rule that we discussed in the previous section. The class labels are predicted 
by the predict method, which is also called in the fit method to predict the class 
label for the weight update, but predict can also be used to predict the class labels 
of new data after we have fitted our model. Furthermore, we also collect the number 
of misclassifications during each epoch in the list self.errors_ so that we can 
later analyze how well our perceptron performed during the training. The np.dot 
function that is used in the net_input method simply calculates the vector dot 
product Tw x .

Instead of using NumPy to calculate the vector dot product  
between two arrays a and b via a.dot(b) or np.dot(a, b),  
we could also perform the calculation in pure Python via  
sum([j*j for i,j in zip(a, b)]. However, the advantage of 
using NumPy over classic Python for-loop structures is that its arithmetic 
operations are vectorized. Vectorization means that an elemental 
arithmetic operation is automatically applied to all elements in an array. 
By formulating our arithmetic operations as a sequence of instructions 
on an array rather than performing a set of operations for each element 
one at a time, we can make better use of our modern CPU architectures 
with Single Instruction, Multiple Data (SIMD) support. Furthermore, 
NumPy uses highly optimized linear algebra libraries, such as Basic 
Linear Algebra Subprograms (BLAS) and Linear Algebra Package 
(LAPACK) that have been written in C or Fortran. Lastly, NumPy also 
allows us to write our code in a more compact and intuitive way using 
the basics of linear algebra, such as vector and matrix dot products.

Training a perceptron model on the Iris 
dataset
To test our perceptron implementation, we will load the two flower classes Setosa 
and Versicolor from the Iris dataset. Although, the perceptron rule is not restricted to 
two dimensions, we will only consider the two features sepal length and petal length 
for visualization purposes. Also, we only chose the two flower classes Setosa and 
Versicolor for practical reasons. However, the perceptron algorithm can be extended 
to multi-class classification—for example, through the One-vs.-All technique.
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One-vs.-All (OvA), or sometimes also called One-vs.-Rest (OvR), is a 
technique, us to extend a binary classifier to multi-class problems. Using 
OvA, we can train one classifier per class, where the particular class 
is treated as the positive class and the samples from all other classes 
are considered as the negative class. If we were to classify a new data 
sample, we would use our ( )zφ  classifiers, where n  is the number of 
class labels, and assign the class label with the highest confidence to 
the particular sample. In the case of the perceptron, we would use OvA 
to choose the class label that is associated with the largest absolute net 
input value.

First, we will use the pandas library to load the Iris dataset directly from the UCI 
Machine Learning Repository into a DataFrame object and print the last five lines via 
the tail method to check that the data was loaded correctly:

>>> import pandas as pd

>>> df = pd.read_csv('https://archive.ics.uci.edu/ml/'

...   'machine-learning-databases/iris/iris.data', header=None)

>>> df.tail()

Next, we extract the first 100 class labels that correspond to the 50 Iris-Setosa and 50 
Iris-Versicolor flowers, respectively, and convert the class labels into the two integer 
class labels 1 (Versicolor) and -1 (Setosa) that we assign to a vector y where the values 
method of a pandas DataFrame yields the corresponding NumPy representation. 
Similarly, we extract the first feature column (sepal length) and the third feature 
column (petal length) of those 100 training samples and assign them to a feature 
matrix X, which we can visualize via a two-dimensional scatter plot:

>>> import matplotlib.pyplot as plt

>>> import numpy as np

>>> y = df.iloc[0:100, 4].values
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>>> y = np.where(y == 'Iris-setosa', -1, 1)

>>> X = df.iloc[0:100, [0, 2]].values

>>> plt.scatter(X[:50, 0], X[:50, 1],

...             color='red', marker='o', label='setosa')

>>> plt.scatter(X[50:100, 0], X[50:100, 1],

...             color='blue', marker='x', label='versicolor')

>>> plt.xlabel('petal length')

>>> plt.ylabel('sepal length')

>>> plt.legend(loc='upper left')

>>> plt.show()

After executing the preceding code example we should now see the  
following scatterplot:

Now it's time to train our perceptron algorithm on the Iris data subset that we just 
extracted. Also, we will plot the misclassification error for each epoch to check 
if the algorithm converged and found a decision boundary that separates the two Iris 
flower classes:

>>> ppn = Perceptron(eta=0.1, n_iter=10)

>>> ppn.fit(X, y)

>>> plt.plot(range(1, len(ppn.errors_) + 1), ppn.errors_, 
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...         marker='o')

>>> plt.xlabel('Epochs')

>>> plt.ylabel('Number of misclassifications')

>>> plt.show()

After executing the preceding code, we should see the plot of the misclassification 
errors versus the number of epochs, as shown next:

As we can see in the preceding plot, our perceptron already converged after the  
sixth epoch and should now be able to classify the training samples perfectly. Let  
us implement a small convenience function to visualize the decision boundaries  
for 2D datasets:

from matplotlib.colors import ListedColormap

def plot_decision_regions(X, y, classifier, resolution=0.02):

    # setup marker generator and color map

    markers = ('s', 'x', 'o', '^', 'v')

    colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
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    cmap = ListedColormap(colors[:len(np.unique(y))])

    # plot the decision surface

    x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1

    x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1

    xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),

                         np.arange(x2_min, x2_max, resolution))

    Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)

    Z = Z.reshape(xx1.shape)

    plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)

    plt.xlim(xx1.min(), xx1.max())

    plt.ylim(xx2.min(), xx2.max())

    # plot class samples

    for idx, cl in enumerate(np.unique(y)):

        plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1],

                    alpha=0.8, c=cmap(idx),

                    marker=markers[idx], label=cl)

First, we define a number of colors and markers and create a color map from 
the list of colors via ListedColormap. Then, we determine the minimum and 
maximum values for the two features and use those feature vectors to create a pair 
of grid arrays xx1 and xx2 via the NumPy meshgrid function. Since we trained 
our perceptron classifier on two feature dimensions, we need to flatten the grid 
arrays and create a matrix that has the same number of columns as the Iris training 
subset so that we can use the predict method to predict the class labels Z of the 
corresponding grid points. After reshaping the predicted class labels Z into a grid 
with the same dimensions as xx1 and xx2, we can now draw a contour plot via 
matplotlib's contourf function that maps the different decision regions to different 
colors for each predicted class in the grid array:

>>> plot_decision_regions(X, y, classifier=ppn)

>>> plt.xlabel('sepal length [cm]')

>>> plt.ylabel('petal length [cm]')

>>> plt.legend(loc='upper left')

>>> plt.show()
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After executing the preceding code example, we should now see a plot of the 
decision regions, as shown in the following figure:

As we can see in the preceding plot, the perceptron learned a decision boundary that 
was able to classify all flower samples in the Iris training subset perfectly.

Although the perceptron classified the two Iris flower classes 
perfectly, convergence is one of the biggest problems of the 
perceptron. Frank Rosenblatt proved mathematically that the 
perceptron learning rule converges if the two classes can be 
separated by a linear hyperplane. However, if classes cannot 
be separated perfectly by such a linear decision boundary, the 
weights will never stop updating unless we set a maximum 
number of epochs.
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Adaptive linear neurons and the 
convergence of learning
In this section, we will take a look at another type of single-layer neural network: 
ADAptive LInear NEuron (Adaline). Adaline was published, only a few years 
after Frank Rosenblatt's perceptron algorithm, by Bernard Widrow and his doctoral 
student Tedd Hoff, and can be considered as an improvement on the latter  
(B. Widrow et al. Adaptive "Adaline" neuron using chemical "memistors". Number 
Technical Report 1553-2. Stanford Electron. Labs. Stanford, CA, October 1960). The 
Adaline algorithm is particularly interesting because it illustrates the key concept 
of defining and minimizing cost functions, which will lay the groundwork for 
understanding more advanced machine learning algorithms for classification, such 
as logistic regression and support vector machines, as well as regression models that 
we will discuss in future chapters.

The key difference between the Adaline rule (also known as the Widrow-Hoff rule) 
and Rosenblatt's perceptron is that the weights are updated based on a linear 
activation function rather than a unit step function like in the perceptron. In Adaline, 
this linear activation function ( )zφ  is simply the identity function of the net input so 

that ( )T Tφ =w x w x .

While the linear activation function is used for learning the weights, a quantizer, 
which is similar to the unit step function that we have seen before, can then be used 
to predict the class labels, as illustrated in the following figure:
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If we compare the preceding figure to the illustration of the perceptron algorithm 
that we saw earlier, the difference is that we know to use the continuous valued 
output from the linear activation function to compute the model error and update 
the weights, rather than the binary class labels.

Minimizing cost functions with gradient 
descent
One of the key ingredients of supervised machine learning algorithms is to define 
an objective function that is to be optimized during the learning process. This 
objective function is often a cost function that we want to minimize. In the case 
of Adaline, we can define the cost function J  to learn the weights as the Sum of 
Squared Errors (SSE) between the calculated outcome and the true class label 

( ) ( ) ( )( )( )21
2

i i
i

J y zφ= −∑w .

The term 1
2  is just added for our convenience; it will make it easier to derive the 

gradient, as we will see in the following paragraphs. The main advantage of this 
continuous linear activation function is—in contrast to the unit step function—that 
the cost function becomes differentiable. Another nice property of this cost function 
is that it is convex; thus, we can use a simple, yet powerful, optimization algorithm 
called gradient descent to find the weights that minimize our cost function to classify 
the samples in the Iris dataset.

As illustrated in the following figure, we can describe the principle behind gradient 
descent as climbing down a hill until a local or global cost minimum is reached. In each 
iteration, we take a step away from the gradient where the step size is determined by 
the value of the learning rate as well as the slope of the gradient:
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Using gradient descent, we can now update the weights by taking a step away from 
the gradient ( )J∇ w  of our cost function ( )J w :

:= + ∆w w w

Here, the weight change ∆w  is defined as the negative gradient multiplied by the 
learning rate η :

( )Jη∆ = − ∆w w
.

To compute the gradient of the cost function, we need to compute the partial 

derivative of the cost function with respect to each weight jw  
( ) ( )( )( ) ( )i i i

j
ij

J y z x
w

φ∂
= − −

∂ ∑   

so that we can write the update of weight jw  as: 
( ) ( )( )( ) ( )i i i

j j
ij

Jw y z x
w

η µ φ∂
∆ = − = −

∂ ∑ :

Since we update all weights simultaneously, our Adaline learning rule becomes 
:= + ∆w w w .
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For those who are familiar with calculus, the partial derivative of the SSE 
cost function with respect to the jth weight in can be obtained as follows:

( ) ( )( )( )21   
2

i i

ij j

J y z
w w

φ∂ ∂
= −

∂ ∂ ∑

( ) ( )( )( )21   
2

i i

ij

y z
w

φ∂
= −

∂ ∑

( ) ( )( )( ) ( ) ( )( )( )1   2  
2

i i i i

i j

y z y z
w

φ φ∂
= − −

∂∑

( ) ( )( )( ) ( ) ( ) ( )( ) i i i i i
j j

i ij

y z y w x
w

φ  ∂
= − − ∂  
∑ ∑

( ) ( )( )( ) ( )( )i i i
j

i

y z xφ= − −∑

( ) ( )( )( ) ( )i i i
j

i

y z xφ= − −∑

Although the Adaline learning rule looks identical to the perceptron rule, the ( )( )izφ  

with ( )iz = ( )iTw x  is a real number and not an integer class label. Furthermore, 
the weight update is calculated based on all samples in the training set (instead of 
updating the weights incrementally after each sample), which is why this approach 
is also referred to as "batch" gradient descent.

Implementing an Adaptive Linear Neuron in 
Python
Since the perceptron rule and Adaline are very similar, we will take the perceptron 
implementation that we defined earlier and change the fit method so that the 
weights are updated by minimizing the cost function via gradient descent:

class AdalineGD(object):
    """ADAptive LInear NEuron classifier.

    Parameters
    ------------
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    eta : float
        Learning rate (between 0.0 and 1.0)
    n_iter : int
        Passes over the training dataset.
    
    Attributes
    -----------
    w_ : 1d-array
        Weights after fitting.
    errors_ : list
        Number of misclassifications in every epoch.

    """
    def __init__(self, eta=0.01, n_iter=50):
        self.eta = eta
        self.n_iter = n_iter

    def fit(self, X, y):
        """ Fit training data.

        Parameters
        ----------
        X : {array-like}, shape = [n_samples, n_features]
            Training vectors, 
            where n_samples is the number of samples and
            n_features is the number of features.
        y : array-like, shape = [n_samples]
            Target values.

        Returns
        -------
        self : object

        """
        self.w_ = np.zeros(1 + X.shape[1])
        self.cost_ = []

        for i in range(self.n_iter):
            output = self.net_input(X)
            errors = (y - output)
            self.w_[1:] += self.eta * X.T.dot(errors)
            self.w_[0] += self.eta * errors.sum()
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            cost = (errors**2).sum() / 2.0
            self.cost_.append(cost)
        return self

    def net_input(self, X):
        """Calculate net input"""
        return np.dot(X, self.w_[1:]) + self.w_[0]

    def activation(self, X):
        """Compute linear activation"""
        return self.net_input(X)

    def predict(self, X):
        """Return class label after unit step"""
        return np.where(self.activation(X) >= 0.0, 1, -1)

Instead of updating the weights after evaluating each individual training  
sample, as in the perceptron, we calculate the gradient based on the whole  
training dataset via self.eta * errors.sum() for the zero-weight and via  
self.eta * X.T.dot(errors) for the weights 1 to m  where X.T.dot(errors)  
is a matrix-vector multiplication between our feature matrix and the error vector. 
Similar to the previous perceptron implementation, we collect the cost values in  
a list self.cost_ to check if the algorithm converged after training.

Performing a matrix-vector multiplication is similar to calculating a 
vector dot product where each row in the matrix is treated as a single 
row vector. This vectorized approach represents a more compact 
notation and results in a more efficient computation using NumPy. 
For example:

7
1 2 3 1 7  2 8  3 9 50

8  
4 5 6 4 7  5 8  6 9 122

9

 
× + × + ×      × = =       × + × + ×        .
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In practice, it often requires some experimentation to find a good learning rate η  for 
optimal convergence. So, let's choose two different learning rates 0.1η =  and 0.0001η =  
to start with and plot the cost functions versus the number of epochs to see how well 
the Adaline implementation learns from the training data.

The learning rate η , as well as the number of epochs n_iter, are 
the so-called hyperparameters of the perceptron and Adaline learning 
algorithms. In Chapter 4, Building Good Training Sets—Data Preprocessing,  
we will take a look at different techniques to automatically find the 
values of different hyperparameters that yield optimal performance of 
the classification model.

Let us now plot the cost against the number of epochs for the two different  
learning rates:

>>> fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(8, 4))

>>> ada1 = AdalineGD(n_iter=10, eta=0.01).fit(X, y)

>>> ax[0].plot(range(1, len(ada1.cost_) + 1),

...            np.log10(ada1.cost_), marker='o')

>>> ax[0].set_xlabel('Epochs')

>>> ax[0].set_ylabel('log(Sum-squared-error)')

>>> ax[0].set_title('Adaline - Learning rate 0.01')

>>> ada2 = AdalineGD(n_iter=10, eta=0.0001).fit(X, y)

>>> ax[1].plot(range(1, len(ada2.cost_) + 1),

...            ada2.cost_, marker='o')

>>> ax[1].set_xlabel('Epochs')

>>> ax[1].set_ylabel('Sum-squared-error')

>>> ax[1].set_title('Adaline - Learning rate 0.0001')

>>> plt.show()
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As we can see in the resulting cost function plots next, we encountered two different 
types of problems. The left chart shows what could happen if we choose a learning 
rate that is too large—instead of minimizing the cost function, the error becomes 
larger in every epoch because we overshoot the global minimum:

 

Although we can see that the cost decreases when we look at the right plot, the 
chosen learning rate 0.0001η =  is so small that the algorithm would require a 
very large number of epochs to converge. The following figure illustrates how we 
change the value of a particular weight parameter to minimize the cost function J  
(left subfigure). The subfigure on the right illustrates what happens if we choose a 
learning rate that is too large, we overshoot the global minimum:
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Many machine learning algorithms that we will encounter throughout this book 
require some sort of feature scaling for optimal performance, which we will discuss 
in more detail in Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn. 
Gradient descent is one of the many algorithms that benefit from feature scaling. 
Here, we will use a feature scaling method called standardization, which gives our 
data the property of a standard normal distribution. The mean of each feature 
is centered at value 0 and the feature column has a standard deviation of 1. For 
example, to standardize the j th feature, we simply need to subtract the sample 
mean jµ  from every training sample and divide it by its standard deviation jσ :

j j
j

j

µ
σ
−

′ =
x

x

Here jx  is a vector consisting of the j th feature values of all training samples n .

Standardization can easily be achieved using the NumPy methods mean and std:

>>> X_std = np.copy(X)

>>> X_std[:,0] = (X[:,0] - X[:,0].mean()) / X[:,0].std()

>>> X_std[:,1] = (X[:,1] - X[:,1].mean()) / X[:,1].std()

After standardization, we will train the Adaline again and see that it now converges 
using a learning rate 0.01η = :

>>> ada = AdalineGD(n_iter=15, eta=0.01)

>>> ada.fit(X_std, y)

>>> plot_decision_regions(X_std, y, classifier=ada)

>>> plt.title('Adaline - Gradient Descent')

>>> plt.xlabel('sepal length [standardized]')

>>> plt.ylabel('petal length [standardized]')

>>> plt.legend(loc='upper left')

>>> plt.show()

>>> plt.plot(range(1, len(ada.cost_) + 1), ada.cost_, marker='o')

>>> plt.xlabel('Epochs')

>>> plt.ylabel('Sum-squared-error')

>>> plt.show()
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After executing the preceding code, we should see a figure of the decision regions as 
well as a plot of the declining cost, as shown in the following figure:

As we can see in the preceding plots, the Adaline now converges after training on 
the standardized features using a learning rate 0.01η = . However, note that the SSE 
remains non-zero even though all samples were classified correctly.

Large scale machine learning and stochastic 
gradient descent
In the previous section, we learned how to minimize a cost function by taking a step 
into the opposite direction of a gradient that is calculated from the whole training 
set; this is why this approach is sometimes also referred to as batch gradient descent. 
Now imagine we have a very large dataset with millions of data points, which is not 
uncommon in many machine learning applications. Running batch gradient descent 
can be computationally quite costly in such scenarios since we need to reevaluate the 
whole training dataset each time we take one step towards the global minimum.

A popular alternative to the batch gradient descent algorithm is stochastic gradient 
descent, sometimes also called iterative or on-line gradient descent. Instead of updating 
the weights based on the sum of the accumulated errors over all samples ( )ix :

( ) ( )( )( ) ( ) ,i i i

i

y zη φ∆ = −∑w x

We update the weights incrementally for each training sample:

( ) ( )( )( ) ( )i i iy zη φ− x
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Although stochastic gradient descent can be considered as an approximation of 
gradient descent, it typically reaches convergence much faster because of the more 
frequent weight updates. Since each gradient is calculated based on a single training 
example, the error surface is noisier than in gradient descent, which can also have 
the advantage that stochastic gradient descent can escape shallow local minima more 
readily. To obtain accurate results via stochastic gradient descent, it is important to 
present it with data in a random order, which is why we want to shuffle the training 
set for every epoch to prevent cycles.

In stochastic gradient descent implementations, the fixed learning rate η  
is often replaced by an adaptive learning rate that decreases over time, 

for example, [ ]
1

2  
c

number of iterations c+  where 1c  and 2c  are constants. 
Note that stochastic gradient descent does not reach the global minimum 
but an area very close to it. By using an adaptive learning rate, we can 
achieve further annealing to a better global minimum

Another advantage of stochastic gradient descent is that we can use it for online 
learning. In online learning, our model is trained on-the-fly as new training data 
arrives. This is especially useful if we are accumulating large amounts of data—for 
example, customer data in typical web applications. Using online learning, the 
system can immediately adapt to changes and the training data can be discarded 
after updating the model if storage space in an issue.

A compromise between batch gradient descent and stochastic gradient 
descent is the so-called mini-batch learning. Mini-batch learning can be 
understood as applying batch gradient descent to smaller subsets of 
the training data—for example, 50 samples at a time. The advantage 
over batch gradient descent is that convergence is reached faster 
via mini-batches because of the more frequent weight updates. 
Furthermore, mini-batch learning allows us to replace the for-loop 
over the training samples in Stochastic Gradient Descent (SGD) by 
vectorized operations, which can further improve the computational 
efficiency of our learning algorithm.
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Since we already implemented the Adaline learning rule using gradient descent,  
we only need to make a few adjustments to modify the learning algorithm to update 
the weights via stochastic gradient descent. Inside the fit method, we will now 
update the weights after each training sample. Furthermore, we will implement 
an additional partial_fit method, which does not reinitialize the weights, for 
on-line learning. In order to check if our algorithm converged after training, we 
will calculate the cost as the average cost of the training samples in each epoch. 
Furthermore, we will add an option to shuffle the training data before each epoch 
to avoid cycles when we are optimizing the cost function; via the random_state 
parameter, we allow the specification of a random seed for consistency:

from numpy.random import seed

class AdalineSGD(object):
    """ADAptive LInear NEuron classifier.

    Parameters
    ------------
    eta : float
        Learning rate (between 0.0 and 1.0)
    n_iter : int
        Passes over the training dataset.

    Attributes
    -----------
    w_ : 1d-array
        Weights after fitting.
    errors_ : list
        Number of misclassifications in every epoch.
    shuffle : bool (default: True)
        Shuffles training data every epoch 
        if True to prevent cycles.
    random_state : int (default: None)
        Set random state for shuffling 
        and initializing the weights.
        
    """
    def __init__(self, eta=0.01, n_iter=10, 
               shuffle=True, random_state=None):
        self.eta = eta
        self.n_iter = n_iter
        self.w_initialized = False
        self.shuffle = shuffle
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        if random_state:
            seed(random_state)
        
    def fit(self, X, y):
        """ Fit training data.

        Parameters
        ----------
        X : {array-like}, shape = [n_samples, n_features]
            Training vectors, where n_samples 
            is the number of samples and
            n_features is the number of features.
        y : array-like, shape = [n_samples]
            Target values.

        Returns
        -------
        self : object

         """
        self._initialize_weights(X.shape[1])
        self.cost_ = []
        for i in range(self.n_iter):
            if self.shuffle:
                X, y = self._shuffle(X, y)
            cost = []
            for xi, target in zip(X, y):
                cost.append(self._update_weights(xi, target))
            avg_cost = sum(cost)/len(y)
            self.cost_.append(avg_cost)
        return self

    def partial_fit(self, X, y):
        """Fit training data without reinitializing the weights"""
        if not self.w_initialized:
            self._initialize_weights(X.shape[1])
        if y.ravel().shape[0] > 1:
            for xi, target in zip(X, y):
                self._update_weights(xi, target)
        else:
            self._update_weights(X, y)
        return self

    def _shuffle(self, X, y):
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        """Shuffle training data"""
        r = np.random.permutation(len(y))
        return X[r], y[r]
    
    def _initialize_weights(self, m):
        """Initialize weights to zeros"""
        self.w_ = np.zeros(1 + m)
        self.w_initialized = True
        
    def _update_weights(self, xi, target):
        """Apply Adaline learning rule to update the weights"""
        output = self.net_input(xi)
        error = (target - output)
        self.w_[1:] += self.eta * xi.dot(error)
        self.w_[0] += self.eta * error
        cost = 0.5 * error**2
        return cost
    
    def net_input(self, X):
        """Calculate net input"""
        return np.dot(X, self.w_[1:]) + self.w_[0]

    def activation(self, X):
        """Compute linear activation"""
        return self.net_input(X)

    def predict(self, X):
        """Return class label after unit step"""
        return np.where(self.activation(X) >= 0.0, 1, -1)

The _shuffle method that we are now using in the AdalineSGD classifier works 
as follows: via the permutation function in numpy.random, we generate a random 
sequence of unique numbers in the range 0 to 100. Those numbers can then be used 
as indices to shuffle our feature matrix and class label vector.

We can then use the fit method to train the AdalineSGD classifier and use our  
plot_decision_regions to plot our training results:

>>> ada = AdalineSGD(n_iter=15, eta=0.01, random_state=1)
>>> ada.fit(X_std, y)
>>> plot_decision_regions(X_std, y, classifier=ada)
>>> plt.title('Adaline - Stochastic Gradient Descent')
>>> plt.xlabel('sepal length [standardized]')
>>> plt.ylabel('petal length [standardized]')
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>>> plt.legend(loc='upper left')
>>> plt.show()
>>> plt.plot(range(1, len(ada.cost_) + 1), ada.cost_, marker='o')
>>> plt.xlabel('Epochs')
>>> plt.ylabel('Average Cost')
>>> plt.show()

The two plots that we obtain from executing the preceding code example are shown 
in the following figure:

As we can see, the average cost goes down pretty quickly, and the final decision 
boundary after 15 epochs looks similar to the batch gradient descent with Adaline. 
If we want to update our model—for example, in an on-line learning scenario with 
streaming data—we could simply call the partial_fit method on individual 
samples—for instance, ada.partial_fit(X_std[0, :], y[0]).

Summary
In this chapter, we gained a good understanding of the basic concepts of linear 
classifiers for supervised learning. After we implemented a perceptron, we saw how 
we can train adaptive linear neurons efficiently via a vectorized implementation 
of gradient descent and on-line learning via stochastic gradient descent. Now that 
we have seen how to implement simple classifiers in Python, we are ready to move 
on to the next chapter where we will use the Python scikit-learn machine learning 
library to get access to more advanced and powerful off-the-shelf machine learning 
classifiers that are commonly used in academia as well as in industry.





[ 49 ]

A Tour of Machine Learning 
Classifiers Using Scikit-learn

In this chapter, we will take a tour through a selection of popular and powerful 
machine learning algorithms that are commonly used in academia as well as in the 
industry. While learning about the differences between several supervised learning 
algorithms for classification, we will also develop an intuitive appreciation of their 
individual strengths and weaknesses. Also, we will take our first steps with the 
scikit-learn library, which offers a user-friendly interface for using those algorithms 
efficiently and productively.

The topics that we will learn about throughout this chapter are as follows:

•	 Introduction to the concepts of popular classification algorithms
•	 Using the scikit-learn machine learning library
•	 Questions to ask when selecting a machine learning algorithm

Choosing a classification algorithm
Choosing an appropriate classification algorithm for a particular problem task 
requires practice: each algorithm has its own quirks and is based on certain 
assumptions. To restate the "No Free Lunch" theorem: no single classifier works best 
across all possible scenarios. In practice, it is always recommended that you compare 
the performance of at least a handful of different learning algorithms to select the 
best model for the particular problem; these may differ in the number of features 
or samples, the amount of noise in a dataset, and whether the classes are linearly 
separable or not.
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Eventually, the performance of a classifier, computational power as well as 
predictive power, depends heavily on the underlying data that are available for 
learning. The five main steps that are involved in training a machine learning 
algorithm can be summarized as follows:

1.	 Selection of features.
2.	 Choosing a performance metric.
3.	 Choosing a classifier and optimization algorithm.
4.	 Evaluating the performance of the model.
5.	 Tuning the algorithm.

Since the approach of this book is to build machine learning knowledge step by step, 
we will mainly focus on the principal concepts of the different algorithms in this 
chapter and revisit topics such as feature selection and preprocessing, performance 
metrics, and hyperparameter tuning for more detailed discussions later in this book.

First steps with scikit-learn
In Chapter 2, Training Machine Learning Algorithms for Classification, you learned about 
two related learning algorithms for classification: the perceptron rule and Adaline, 
which we implemented in Python by ourselves. Now we will take a look at the 
scikit-learn API, which combines a user-friendly interface with a highly optimized 
implementation of several classification algorithms. However, the scikit-learn library 
offers not only a large variety of learning algorithms, but also many convenient 
functions to preprocess data and to fine-tune and evaluate our models. We will 
discuss this in more detail together with the underlying concepts in Chapter 4, 
Building Good Training Sets – Data Preprocessing, and Chapter 5, Compressing  
Data via Dimensionality Reduction.

Training a perceptron via scikit-learn
To get started with the scikit-learn library, we will train a perceptron model  
similar to the one that we implemented in Chapter 2, Training Machine Learning 
Algorithms for Classification. For simplicity, we will use the already familiar Iris 
dataset throughout the following sections. Conveniently, the Iris dataset is already 
available via scikit-learn, since it is a simple yet popular dataset that is frequently 
used for testing and experimenting with algorithms. Also, we will only use two 
features from the Iris flower dataset for visualization purposes. 
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We will assign the petal length and petal width of the 150 flower samples to the feature 
matrix X and the corresponding class labels of the flower species to the vector y:

>>> from sklearn import datasets
>>> import numpy as np
>>> iris = datasets.load_iris()
>>> X = iris.data[:, [2, 3]]
>>> y = iris.target

If we executed np.unique(y) to return the different class labels stored in iris.
target, we would see that the Iris flower class names, Iris-Setosa, Iris-Versicolor,  
and Iris-Virginica, are already stored as integers (0, 1, 2), which is recommended  
for the optimal performance of many machine learning libraries.

To evaluate how well a trained model performs on unseen data, we will further split 
the dataset into separate training and test datasets. Later in Chapter 5, Compressing 
Data via Dimensionality Reduction, we will discuss the best practices around model 
evaluation in more detail:

>>> from sklearn.cross_validation import train_test_split
>>> X_train, X_test, y_train, y_test = train_test_split(
...           X, y, test_size=0.3, random_state=0)

Using the train_test_split function from scikit-learn's cross_validation 
module, we randomly split the X and y arrays into 30 percent test data (45 samples) 
and 70 percent training data (105 samples).

Many machine learning and optimization algorithms also require feature scaling  
for optimal performance, as we remember from the gradient descent example 
in Chapter 2, Training Machine Learning Algorithms for Classification. Here, we will 
standardize the features using the StandardScaler class from scikit-learn's 
preprocessing module:

>>> from sklearn.preprocessing import StandardScaler
>>> sc = StandardScaler()
>>> sc.fit(X_train)
>>> X_train_std = sc.transform(X_train)
>>> X_test_std = sc.transform(X_test)
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Using the preceding code, we loaded the StandardScaler class from the 
preprocessing module and initialized a new StandardScaler object that we assigned 
to the variable sc. Using the fit method, StandardScaler estimated the parameters 
µ  (sample mean) and σ  (standard deviation) for each feature dimension from the 
training data. By calling the transform method, we then standardized the training 
data using those estimated parameters µ  and σ . Note that we used the same 
scaling parameters to standardize the test set so that both the values in the training 
and test dataset are comparable to each other.

Having standardized the training data, we can now train a perceptron model. Most 
algorithms in scikit-learn already support multiclass classification by default via the 
One-vs.-Rest (OvR) method, which allows us to feed the three flower classes to the 
perceptron all at once. The code is as follows:

>>> from sklearn.linear_model import Perceptron
>>> ppn = Perceptron(n_iter=40, eta0=0.1, random_state=0)
>>> ppn.fit(X_train_std, y_train)

The scikit-learn interface reminds us of our perceptron implementation in Chapter 2, 
Training Machine Learning Algorithms for Classification: after loading the Perceptron 
class from the linear_model module, we initialized a new Perceptron object and 
trained the model via the fit method. Here, the model parameter eta0 is equivalent 
to the learning rate eta that we used in our own perceptron implementation, and the 
parameter n_iter defines the number of epochs (passes over the training set). As 
we remember from Chapter 2, Training Machine Learning Algorithms for Classification, 
finding an appropriate learning rate requires some experimentation. If the learning 
rate is too large, the algorithm will overshoot the global cost minimum. If the 
learning rate is too small, the algorithm requires more epochs until convergence, 
which can make the learning slow—especially for large datasets. Also, we used the 
random_state parameter for reproducibility of the initial shuffling of the training 
dataset after each epoch.

Having trained a model in scikit-learn, we can make predictions via the predict 
method, just like in our own perceptron implementation in Chapter 2, Training 
Machine Learning Algorithms for Classification. The code is as follows:

>>> y_pred = ppn.predict(X_test_std)
>>> print('Misclassified samples: %d' % (y_test != y_pred).sum())
Misclassified samples: 4



Chapter 3

[ 53 ]

On executing the preceding code, we see that the perceptron misclassifies 4 out of the 
45 flower samples. Thus, the misclassification error on the test dataset is 0.089 or 8.9 
percent ( )4 / 45 0.089≈ .

Instead of the misclassification error, many machine learning 
practitioners report the classification accuracy of a model, which is 
simply calculated as follows:
1 - misclassification error = 0.911 or 91.1 percent.

Scikit-learn also implements a large variety of different performance metrics that are 
available via the metrics module. For example, we can calculate the classification 
accuracy of the perceptron on the test set as follows:

>>> from sklearn.metrics import accuracy_score
>>> print('Accuracy: %.2f' % accuracy_score(y_test, y_pred))
0.91

Here, y_test are the true class labels and y_pred are the class labels that we 
predicted previously.

Note that we evaluate the performance of our models based 
on the test set in this chapter. In Chapter 5, Compressing Data via 
Dimensionality Reduction, you will learn about useful techniques, 
including graphical analysis such as learning curves, to detect 
and prevent overfitting. Overfitting means that the model 
captures the patterns in the training data well, but fails to 
generalize well to unseen data.

Finally, we can use our plot_decision_regions function from Chapter 2, Training 
Machine Learning Algorithms for Classification, to plot the decision regions of our 
newly trained perceptron model and visualize how well it separates the different 
flower samples. However, let's add a small modification to highlight the samples 
from the test dataset via small circles:

from matplotlib.colors import ListedColormap
import matplotlib.pyplot as plt

def plot_decision_regions(X, y, classifier, 
                    test_idx=None, resolution=0.02):

    # setup marker generator and color map
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    markers = ('s', 'x', 'o', '^', 'v')
    colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
    cmap = ListedColormap(colors[:len(np.unique(y))])

    # plot the decision surface
    x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
                         np.arange(x2_min, x2_max, resolution))
    Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
    Z = Z.reshape(xx1.shape)
    plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)
    plt.xlim(xx1.min(), xx1.max())
    plt.ylim(xx2.min(), xx2.max())

    # plot all samples
    X_test, y_test = X[test_idx, :], y[test_idx]                               
    for idx, cl in enumerate(np.unique(y)):
        plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1],
                    alpha=0.8, c=cmap(idx),
                    marker=markers[idx], label=cl)
        
    # highlight test samples
    if test_idx:
        X_test, y_test = X[test_idx, :], y[test_idx]   
        plt.scatter(X_test[:, 0], X_test[:, 1], c='', 
                alpha=1.0, linewidth=1, marker='o', 
                s=55, label='test set')

With the slight modification that we made to the plot_decision_regions function 
(highlighted in the preceding code), we can now specify the indices of the samples 
that we want to mark on the resulting plots. The code is as follows:

>>> X_combined_std = np.vstack((X_train_std, X_test_std))
>>> y_combined = np.hstack((y_train, y_test))
>>> plot_decision_regions(X=X_combined_std, 
...                       y=y_combined, 
...                       classifier=ppn,
...                       test_idx=range(105,150))
>>> plt.xlabel('petal length [standardized]') 
>>> plt.ylabel('petal width [standardized]') 
>>> plt.legend(loc='upper left')
>>> plt.show()
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As we can see in the resulting plot, the three flower classes cannot be perfectly 
separated by a linear decision boundaries:

We remember from our discussion in Chapter 2, Training Machine Learning Algorithms 
for Classification, that the perceptron algorithm never converges on datasets that 
aren't perfectly linearly separable, which is why the use of the perceptron algorithm 
is typically not recommended in practice. In the following sections, we will look at 
more powerful linear classifiers that converge to a cost minimum even if the classes 
are not perfectly linearly separable.

The Perceptron as well as other scikit-learn functions and 
classes have additional parameters that we omit for clarity. 
You can read more about those parameters using the help 
function in Python (for example, help(Perceptron)) or by 
going through the excellent scikit-learn online documentation 
at http://scikit-learn.org/stable/.

http://scikit-learn.org/stable/
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Modeling class probabilities via logistic 
regression
Although the perceptron rule offers a nice and easygoing introduction to machine 
learning algorithms for classification, its biggest disadvantage is that it never 
converges if the classes are not perfectly linearly separable. The classification task 
in the previous section would be an example of such a scenario. Intuitively, we can 
think of the reason as the weights are continuously being updated since there is 
always at least one misclassified sample present in each epoch. Of course, you can 
change the learning rate and increase the number of epochs, but be warned that the 
perceptron will never converge on this dataset. To make better use of our time, we 
will now take a look at another simple yet more powerful algorithm for linear and 
binary classification problems: logistic regression. Note that, in spite of its name, 
logistic regression is a model for classification, not regression.

Logistic regression intuition and conditional 
probabilities
Logistic regression is a classification model that is very easy to implement but 
performs very well on linearly separable classes. It is one of the most widely used 
algorithms for classification in industry. Similar to the perceptron and Adaline, the 
logistic regression model in this chapter is also a linear model for binary classification 
that can be extended to multiclass classification via the OvR technique.

To explain the idea behind logistic regression as a probabilistic model, let's first 
introduce the odds ratio, which is the odds in favor of a particular event. The odds 

ratio can be written as ( )1
p
p− , where p  stands for the probability of the positive 

event. The term positive event does not necessarily mean good, but refers to the event 
that we want to predict, for example, the probability that a patient has a certain 
disease; we can think of the positive event as class label 1y = . We can then further 
define the logit function, which is simply the logarithm of the odds ratio (log-odds):

( ) ( )1
plogit p log
p

=
−
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The logit function takes input values in the range 0 to 1 and transforms them to 
values over the entire real number range, which we can use to express a linear 
relationship between feature values and the log-odds:

( )( )
0

1|
n

T
m m m m

i
logit p y w x w x w x w x x

=

= = + + = =∑0 0 1 1x w

Here, ( )1|p y = x  is the conditional probability that a particular sample belongs to 
class 1 given its features x.

Now what we are actually interested in is predicting the probability that a certain 
sample belongs to a particular class, which is the inverse form of the logit function. It 
is also called the logistic function, sometimes simply abbreviated as sigmoid function 
due to its characteristic S-shape.

( ) 1
1 zz
e

φ −=
+

Here, z is the net input, that is, the linear combination of weights and sample features 
and can be calculated as 0

Tz w w x w x= = + + +1 1 � m mw x .

Now let's simply plot the sigmoid function for some values in the range -7 to 7 to see 
what it looks like:

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> def sigmoid(z):
...     return 1.0 / (1.0 + np.exp(-z))
>>> z = np.arange(-7, 7, 0.1)
>>> phi_z = sigmoid(z)
>>> plt.plot(z, phi_z)
>>> plt.axvline(0.0, color='k')
>>> plt.axhspan(0.0, 1.0, facecolor='1.0', alpha=1.0, ls='dotted')
>>> plt.axhline(y=0.5, ls='dotted', color='k')
>>> plt.yticks([0.0, 0.5, 1.0])
>>> plt.ylim(-0.1, 1.1)
>>> plt.xlabel('z')
>>> plt.ylabel('$\phi (z)$')
>>> plt.show() 



A Tour of Machine Learning Classifiers Using Scikit-learn

[ 58 ]

As a result of executing the previous code example, we should now see the S-shaped 
(sigmoidal) curve:

We can see that ( )zφ  approaches 1 if z goes towards infinity ( z→∞ ), since 
ze−  

becomes very small for large values of z. Similarly, ( )zφ  goes towards 0 for z→−∞  
as the result of an increasingly large denominator. Thus, we conclude that this 
sigmoid function takes real number values as input and transforms them to values in 
the range [0, 1] with an intercept at ( ) 0.5zφ = .

To build some intuition for the logistic regression model, we can relate it to our 
previous Adaline implementation in Chapter 2, Training Machine Learning Algorithms 
for Classification. In Adaline, we used the identity function ( )z zφ =  as the activation 
function. In logistic regression, this activation function simply becomes the sigmoid 
function that we defined earlier, which is illustrated in the following figure:
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The output of the sigmoid function is then interpreted as the probability of particular 
sample belonging to class 1 ( ) ( )1| ;z P yφ = = x w , given its features x parameterized by 
the weights w. For example, if we compute ( ) 0.8zφ =  for a particular flower sample, 
it means that the chance that this sample is an Iris-Versicolor flower is 80 percent. 
Similarly, the probability that this flower is an Iris-Setosa flower can be calculated as 
( ) ( )0 | ; 1 0 | ; 0.2P y P y= = − = =x w x w  or 20 percent. The predicted probability can then 

simply be converted into a binary outcome via a quantizer (unit step function):

( )1 0.5
ˆ

0
if z

y
otherwise
φ ≥= 



If we look at the preceding sigmoid plot, this is equivalent to the following:

1 0.0
ˆ

0
if z

y
otherwise

≥
= 


In fact, there are many applications where we are not only interested in the predicted 
class labels, but where estimating the class-membership probability is particularly 
useful. Logistic regression is used in weather forecasting, for example, to not 
only predict if it will rain on a particular day but also to report the chance of rain. 
Similarly, logistic regression can be used to predict the chance that a patient has a 
particular disease given certain symptoms, which is why logistic regression enjoys 
wide popularity in the field of medicine.

Learning the weights of the logistic cost 
function
You learned how we could use the logistic regression model to predict probabilities 
and class labels. Now let's briefly talk about the parameters of the model, for 
example, weights w. In the previous chapter, we defined the sum-squared-error  
cost function:

( ) ( )( ) ( )( )21
2

i i

i
J z yφ= −∑w
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We minimized this in order to learn the weights w for our Adaline classification 
model. To explain how we can derive the cost function for logistic regression, 
let's first define the likelihood L that we want to maximize when we build a 
logistic regression model, assuming that the individual samples in our dataset are 
independent of one another. The formula is as follows:

( ) ( ) ( ) ( )( ) ( )( )( )
( )

( )( )( )
( )1

1

| ; | ; 1
i in y y

i i i i

i
L P P y x z zφ φ

−

=

= = = −∏w y x w w

In practice, it is easier to maximize the (natural) log of this equation, which is called 
the log-likelihood function:

( ) ( ) ( )( )( ) ( )( ) ( )( )( )
1

log log 1 log 1
n

i i i

i
l L z y zφ φ

=

= = + − −∑w w

Firstly, applying the log function reduces the potential for numerical underflow, 
which can occur if the likelihoods are very small. Secondly, we can convert the 
product of factors into a summation of factors, which makes it easier to obtain  
the derivative of this function via the addition trick, as you may remember  
from calculus.

Now we could use an optimization algorithm such as gradient ascent to maximize 
this log-likelihood function. Alternatively, let's rewrite the log-likelihood as a cost 
function J  that can be minimized using gradient descent as in Chapter 2, Training 
Machine Learning Algorithms for Classification:

( ) ( )( )( ) ( )( ) ( )( )( )
1

log 1 log 1
n

i i i

i
J z y zφ φ

=

= − − − −∑w

To get a better grasp on this cost function, let's take a look at the cost that we 
calculate for one single-sample instance:

( )( ) ( )( ) ( ) ( )( )log 1 log 1J z , y; y z y zφ φ φ= − − − −w
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Looking at the preceding equation, we can see that the first term becomes zero if 
0y = , and the second term becomes zero if 1y = , respectively:

( )( )
( )( )

( )( )
log 1

, ;
log 1 0

z if y
J z y

z if y

φ
φ

φ

− == 
− − =

w

The following plot illustrates the cost for the classification of a single-sample instance 
for different values of ( )zφ :

We can see that the cost approaches 0 (plain blue line) if we correctly predict that 
a sample belongs to class 1. Similarly, we can see on the y axis that the cost also 
approaches 0 if we correctly predict 0y =  (dashed line). However, if the prediction 
is wrong, the cost goes towards infinity. The moral is that we penalize wrong 
predictions with an increasingly larger cost.
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Training a logistic regression model with 
scikit-learn
If we were to implement logistic regression ourselves, we could simply substitute 
the cost function J  in our Adaline implementation from Chapter 2, Training Machine 
Learning Algorithms for Classification, by the new cost function:

( ) ( ) ( )( )( ) ( )( ) ( )( )( )log 1 log 1i i i i

i
J y z y zφ φ= − + − −∑w

This would compute the cost of classifying all training samples per epoch and we 
would end up with a working logistic regression model. However, since scikit-learn 
implements a highly optimized version of logistic regression that also supports 
multiclass settings off-the-shelf, we will skip the implementation and use the 
sklearn.linear_model.LogisticRegression class as well as the familiar fit 
method to train the model on the standardized flower training dataset:

>>> from sklearn.linear_model import LogisticRegression
>>> lr = LogisticRegression(C=1000.0, random_state=0)
>>> lr.fit(X_train_std, y_train)
   >>> plot_decision_regions(X_combined_std, 
...                       y_combined, classifier=lr,
...                       test_idx=range(105,150))
>>> plt.xlabel('petal length [standardized]')
>>> plt.ylabel('petal width [standardized]')
>>> plt.legend(loc='upper left')
>>> plt.show()

After fitting the model on the training data, we plotted the decision regions, training 
samples and test samples, as shown here:
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Looking at the preceding code that we used to train the LogisticRegression 
model, you might now be wondering, "What is this mysterious parameter C?"  
We will get to this in a second, but let's briefly go over the concept of overfitting  
and regularization in the next subsection first.

Furthermore, we can predict the class-membership probability of the samples via  
the predict_proba method. For example, we can predict the probabilities of the  
first Iris-Setosa sample:

>>> lr.predict_proba(X_test_std[0,:])

This returns the following array:

array([[  0.000,   0.063,   0.937]])
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The preceding array tells us that the model predicts a chance of 93.7 percent that the 
sample belongs to the Iris-Virginica class, and a 6.3 percent chance that the sample is 
a Iris-Versicolor flower.

We can show that the weight update in logistic regression via gradient descent is 
indeed equal to the equation that we used in Adaline in Chapter 2, Training Machine 
Learning Algorithms for Classification. Let's start by calculating the partial derivative of 
the log-likelihood function with respect to the jth weight:

( ) ( ) ( ) ( ) ( )1 11
1j j

l y y z
w z z w

φ
φ φ

 ∂ ∂
= − −  ∂ − ∂ 

w

Before we continue, let's calculate the partial derivative of the sigmoid function first:

( )
( )

( ) ( )( )

2
1 1 1 11

1 1 11

1

z
z z zz

j

z e
w z e e ee

z z

φ

φ φ

−
− − −−

∂ ∂  = = = − ∂ ∂ + + + +

= −

Now we can resubstitute ( )
j

z
w
φ∂

∂  = ( ) ( )( )1z zφ φ−  in our first equation to obtain  
the following:

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )
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φ

  ∂
− −  − ∂ 

  ∂
= − − −  − ∂ 
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Remember that the goal is to find the weights that maximize the log-likelihood so 
that we would perform the update for each weight as follows:

( ) ( )( )( ) ( )

1
:

n
i i i

j j
i

w w y z xη φ
=

= + −∑

Since we update all weights simultaneously, we can write the general update rule  
as follows:

:= + ∆w w w

We define ∆w  as follows:

( )lη∆ ∇w = w

Since maximizing the log-likelihood is equal to minimizing the cost function J  that 
we defined earlier, we can write the gradient descent update rule as follows:

( ) ( )( ) ( )( )
1

n
i i i

j
ij

Jw y z x
w

η η φ
=

∂
∆ = − = −

∂ ∑

( ): , Jη= + ∆ ∆ = − ∇w w w w w

This is equal to the gradient descent rule in Adaline in Chapter 2, Training Machine 
Learning Algorithms for Classification.

Tackling overfitting via regularization
Overfitting is a common problem in machine learning, where a model performs well 
on training data but does not generalize well to unseen data (test data). If a model 
suffers from overfitting, we also say that the model has a high variance, which can 
be caused by having too many parameters that lead to a model that is too complex 
given the underlying data. Similarly, our model can also suffer from underfitting 
(high bias), which means that our model is not complex enough to capture the 
pattern in the training data well and therefore also suffers from low performance  
on unseen data. 
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Although we have only encountered linear models for classification so far, the 
problem of overfitting and underfitting can be best illustrated by using a more 
complex, nonlinear decision boundary as shown in the following figure:

Variance measures the consistency (or variability) of the model 
prediction for a particular sample instance if we would retrain 
the model multiple times, for example, on different subsets of 
the training dataset. We can say that the model is sensitive to the 
randomness in the training data. In contrast, bias measures how far 
off the predictions are from the correct values in general if we rebuild 
the model multiple times on different training datasets; bias is the 
measure of the systematic error that is not due to randomness.

One way of finding a good bias-variance tradeoff is to tune the complexity of 
the model via regularization. Regularization is a very useful method to handle 
collinearity (high correlation among features), filter out noise from data, and 
eventually prevent overfitting. The concept behind regularization is to introduce 
additional information (bias) to penalize extreme parameter weights. The most 
common form of regularization is the so-called L2 regularization (sometimes also 
called L2 shrinkage or weight decay), which can be written as follows:

2 2

12 2

m

j
j
wλ λ

=

= ∑w
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Here, λ  is the so-called regularization parameter.

Regularization is another reason why feature scaling such as 
standardization is important. For regularization to work properly, 
we need to ensure that all our features are on comparable scales.

In order to apply regularization, we just need to add the regularization term to the 
cost function that we defined for logistic regression to shrink the weights:

( ) ( )( )( ) ( )( )( ) ( )( )( )( ) 2

1
log 1 log 1

2

n
i i i

i
J z y z λφ φ

=

 = − + − − − +  
∑w w

Via the regularization parameter λ , we can then control how well we fit the training 
data while keeping the weights small. By increasing the value of λ , we increase the 
regularization strength.

The parameter C that is implemented for the LogisticRegression class in  
scikit-learn comes from a convention in support vector machines, which will be  
the topic of the next section. C is directly related to the regularization parameter λ , 
which is its inverse:

1C
λ

=

So we can rewrite the regularized cost function of logistic regression as follows:

( ) ( )( )( ) ( )( )( ) ( )( )( )( ) 2

1

1log 1 log 1
2

n
i i i

i
J C z y zφ φ

=

 = − + − − − +  
∑w w
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Consequently, decreasing the value of the inverse regularization parameter C means 
that we are increasing the regularization strength, which we can visualize by plotting 
the L2 regularization path for the two weight coefficients:

>>> weights, params = [], []
>>> for c in np.arange(-5, 5):
...     lr = LogisticRegression(C=10**c, random_state=0)
...     lr.fit(X_train_std, y_train)
...     weights.append(lr.coef_[1])
...     params.append(10**c)
>>> weights = np.array(weights)
>>> plt.plot(params, weights[:, 0], 
...          label='petal length')
>>> plt.plot(params, weights[:, 1], linestyle='--', 
...          label='petal width')
>>> plt.ylabel('weight coefficient')
>>> plt.xlabel('C')
>>> plt.legend(loc='upper left')
>>> plt.xscale('log')
>>> plt.show()

By executing the preceding code, we fitted ten logistic regression models with 
different values for the inverse-regularization parameter C. For the purposes of 
illustration, we only collected the weight coefficients of the class 2 vs. all classifier. 
Remember that we are using the OvR technique for multiclass classification.

As we can see in the resulting plot, the weight coefficients shrink if we decrease the 
parameter C, that is, if we increase the regularization strength:
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Since an in-depth coverage of the individual classification algorithms 
exceeds the scope of this book, I warmly recommend Dr. Scott 
Menard's Logistic Regression: From Introductory to Advanced Concepts 
and Applications, Sage Publications, to readers who want to learn more 
about logistic regression.

Maximum margin classification with 
support vector machines
Another powerful and widely used learning algorithm is the support vector 
machine (SVM), which can be considered as an extension of the perceptron. Using 
the perceptron algorithm, we minimized misclassification errors. However, in SVMs, 
our optimization objective is to maximize the margin. The margin is defined as the 
distance between the separating hyperplane (decision boundary) and the training 
samples that are closest to this hyperplane, which are the so-called support vectors. 
This is illustrated in the following figure:
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Maximum margin intuition
The rationale behind having decision boundaries with large margins is that they tend 
to have a lower generalization error whereas models with small margins are more 
prone to overfitting. To get an intuition for the margin maximization, let's take a 
closer look at those positive and negative hyperplanes that are parallel to the decision 
boundary, which can be expressed as follows:

( )0 1 1Tw + =posw x

( )0 1 2Tw + = −negw x

If we subtract those two linear equations (1) and (2) from each other, we get:

( ) 2T⇒ − =pos negw x x

We can normalize this by the length of the vector w, which is defined as follows:

2
1

m
jj
w

=
= ∑w

So we arrive at the following equation:

( ) 2−
=

T
pos negw x x
w w

The left side of the preceding equation can then be interpreted as the distance 
between the positive and negative hyperplane, which is the so-called margin that we 
want to maximize.



Chapter 3

[ 71 ]

Now the objective function of the SVM becomes the maximization of this margin  

by maximizing 
2
w  under the constraint that the samples are classified correctly,  

which can be written as follows:

( ) ( )
0 1 1i iTw if y+ ≥ =w x

( ) ( )
0 1 1i iTw if y+ < − = −w x

These two equations basically say that all negative samples should fall on one side 
of the negative hyperplane, whereas all the positive samples should fall behind the 
positive hyperplane. This can also be written more compactly as follows:

( ) ( )( )0 1i iT
iy w + ≥ ∀w x

In practice, though, it is easier to minimize the reciprocal term 
21

2
w , which can be 

solved by quadratic programming. However, a detailed discussion about quadratic 
programming is beyond the scope of this book, but if you are interested, you can 
learn more about Support Vector Machines (SVM) in Vladimir Vapnik's The Nature 
of Statistical Learning Theory, Springer Science & Business Media, or Chris J.C. Burges' 
excellent explanation in A Tutorial on Support Vector Machines for Pattern Recognition 
(Data mining and knowledge discovery, 2(2):121–167, 1998).

Dealing with the nonlinearly separable case 
using slack variables
Although we don't want to dive much deeper into the more involved  
mathematical concepts behind the margin classification, let's briefly mention the 
slack variable ξ . It was introduced by Vladimir Vapnik in 1995 and led to the  
so-called soft-margin classification. The motivation for introducing the slack variable 
ξ  was that the linear constraints need to be relaxed for nonlinearly separable data to 
allow convergence of the optimization in the presence of misclassifications under the 
appropriate cost penalization. 
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The positive-values slack variable is simply added to the linear constraints:

( ) ( ) ( )1 1i i iT if y ξ≥ = −w x

( ) ( ) ( )1 1i i iT if y ξ< − = +w x

So the new objective to be minimized (subject to the preceding constraints) becomes:

( )21
2

i

i
C ξ +  
 
∑w

Using the variable C, we can then control the penalty for misclassification. Large 
values of C correspond to large error penalties whereas we are less strict about 
misclassification errors if we choose smaller values for C. We can then we use the 
parameter C to control the width of the margin and therefore tune the bias-variance 
trade-off as illustrated in the following figure:

This concept is related to regularization, which we discussed previously in the 
context of regularized regression where increasing the value of C increases the bias 
and lowers the variance of the model.
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Now that we learned the basic concepts behind the linear SVM, let's train a SVM 
model to classify the different flowers in our Iris dataset:

>>> from sklearn.svm import SVC
   >>> svm = SVC(kernel='linear', C=1.0, random_state=0)
>>> svm.fit(X_train_std, y_train)
>>> plot_decision_regions(X_combined_std, 
...                       y_combined, classifier=svm,
...                       test_idx=range(105,150))
>>> plt.xlabel('petal length [standardized]')
>>> plt.ylabel('petal width [standardized]')
>>> plt.legend(loc='upper left')
>>> plt.show()

The decision regions of the SVM visualized after executing the preceding code 
example are shown in the following plot:
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Logistic regression versus SVM
In practical classification tasks, linear logistic regression and 
linear SVMs often yield very similar results. Logistic regression 
tries to maximize the conditional likelihoods of the training 
data, which makes it more prone to outliers than SVMs. The 
SVMs mostly care about the points that are closest to the 
decision boundary (support vectors). On the other hand, logistic 
regression has the advantage that it is a simpler model that can 
be implemented more easily. Furthermore, logistic regression 
models can be easily updated, which is attractive when working 
with streaming data.

Alternative implementations in scikit-learn
The Perceptron and LogisticRegression classes that we used in the previous 
sections via scikit-learn make use of the LIBLINEAR library, which is a highly 
optimized C/C++ library developed at the National Taiwan University (http://
www.csie.ntu.edu.tw/~cjlin/liblinear/). Similarly, the SVC class that we 
used to train an SVM makes use of LIBSVM, which is an equivalent C/C++ library 
specialized for SVMs (http://www.csie.ntu.edu.tw/~cjlin/libsvm/).

The advantage of using LIBLINEAR and LIBSVM over native Python 
implementations is that they allow an extremely quick training of large amounts 
of linear classifiers. However, sometimes our datasets are too large to fit into 
computer memory. Thus, scikit-learn also offers alternative implementations via 
the SGDClassifier class, which also supports online learning via the partial_fit 
method. The concept behind the SGDClassifier class is similar to the stochastic 
gradient algorithm that we implemented in Chapter 2, Training Machine Learning 
Algorithms for Classification, for Adaline. We could initialize the stochastic gradient 
descent version of the perceptron, logistic regression, and support vector machine 
with default parameters as follows:

>>> from sklearn.linear_model import SGDClassifier
>>> ppn = SGDClassifier(loss='perceptron')
>>> lr = SGDClassifier(loss='log')
>>> svm = SGDClassifier(loss='hinge')

http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Solving nonlinear problems using a 
kernel SVM
Another reason why SVMs enjoy high popularity among machine learning 
practitioners is that they can be easily kernelized to solve nonlinear classification 
problems. Before we discuss the main concept behind kernel SVM, let's first define and 
create a sample dataset to see how such a nonlinear classification problem may look.

Using the following code, we will create a simple dataset that has the form of  
an XOR gate using the logical_xor function from NumPy, where 100 samples  
will be assigned the class label 1 and 100 samples will be assigned the class  
label -1, respectively:

>>> np.random.seed(0)
>>> X_xor = np.random.randn(200, 2)
>>> y_xor = np.logical_xor(X_xor[:, 0] > 0, X_xor[:, 1] > 0)
>>> y_xor = np.where(y_xor, 1, -1)

>>> plt.scatter(X_xor[y_xor==1, 0], X_xor[y_xor==1, 1],
...             c='b', marker='x', label='1')
>>> plt.scatter(X_xor[y_xor==-1, 0], X_xor[y_xor==-1, 1],
...             c='r', marker='s', label='-1')
>>> plt.ylim(-3.0)
>>> plt.legend()
>>> plt.show()

After executing the code, we will have an XOR dataset with random noise,  
as shown in the following figure:
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Obviously, we would not be able to separate samples from the positive and negative 
class very well using a linear hyperplane as the decision boundary via the linear 
logistic regression or linear SVM model that we discussed in earlier sections.

The basic idea behind kernel methods to deal with such linearly inseparable data 
is to create nonlinear combinations of the original features to project them onto a 
higher dimensional space via a mapping function ( )φ ⋅  where it becomes linearly 
separable. As shown in the next figure, we can transform a two-dimensional dataset 
onto a new three-dimensional feature space where the classes become separable via 
the following projection:

( ) ( ) ( )2 2
1 2 1 2 3 1 2 1 2, , , , ,x x z z z x x x xφ = = +

This allows us to separate the two classes shown in the plot via a linear hyperplane 
that becomes a nonlinear decision boundary if we project it back onto the original 
feature space:
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Using the kernel trick to find separating 
hyperplanes in higher dimensional space
To solve a nonlinear problem using an SVM, we transform the training data onto 
a higher dimensional feature space via a mapping function ( )φ ⋅  and train a linear 
SVM model to classify the data in this new feature space. Then we can use the same 
mapping function ( )φ ⋅  to transform new, unseen data to classify it using the linear 
SVM model.

However, one problem with this mapping approach is that the construction of 
the new features is computationally very expensive, especially if we are dealing 
with high-dimensional data. This is where the so-called kernel trick comes into 
play. Although we didn't go into much detail about how to solve the quadratic 
programming task to train an SVM, in practice all we need is to replace the dot 
product ( ) ( )i T jx x  by ( )( ) ( )( )Ti jφ φx x . In order to save the expensive step of calculating 
this dot product between two points explicitly, we define a so-called kernel function: 

( ) ( )( ),i jk x x  = ( )( ) ( )( )Ti jφ φx x .

One of the most widely used kernels is the Radial Basis Function kernel  
(RBF kernel) or Gaussian kernel:

( ) ( )( )
( ) ( ) 2

2, exp
2

i j
i j

-
k

σ

 
 = −  
 

x x
x x

This is often simplified to:

( ) ( )( ) ( ) ( )( )2
, expi j i jk -γ= −x x x x

Here, 2

1
2

γ
σ

=  is a free parameter that is to be optimized.

Roughly speaking, the term kernel can be interpreted as a similarity function between 
a pair of samples. The minus sign inverts the distance measure into a similarity score 
and, due to the exponential term, the resulting similarity score will fall into a range 
between 1 (for exactly similar samples) and 0 (for very dissimilar samples).
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Now that we defined the big picture behind the kernel trick, let's see if we can train 
a kernel SVM that is able to draw a nonlinear decision boundary that separates the 
XOR data well. Here, we simply use the SVC class from scikit-learn that we imported 
earlier and replace the parameter kernel='linear' with kernel='rbf':

>>> svm = SVC(kernel='rbf', random_state=0, gamma=0.10, C=10.0)
>>> svm.fit(X_xor, y_xor)
>>> plot_decision_regions(X_xor, y_xor, classifier=svm)
>>> plt.legend(loc='upper left')
>>> plt.show()

As we can see in the resulting plot, the kernel SVM separates the XOR data  
relatively well:

The γ  parameter, which we set to gamma=0.1, can be understood as a cut-off 
parameter for the Gaussian sphere. If we increase the value for γ , we increase the 
influence or reach of the training samples, which leads to a softer decision boundary. 
To get a better intuition for γ , let's apply RBF kernel SVM to our Iris flower dataset:

>>> svm = SVC(kernel='rbf', random_state=0, gamma=0.2, C=1.0)
>>> svm.fit(X_train_std, y_train)
>>> plot_decision_regions(X_combined_std, 
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...                       y_combined, classifier=svm,

...                       test_idx=range(105,150))
>>> plt.xlabel('petal length [standardized]')
>>> plt.ylabel('petal width [standardized]')
>>> plt.legend(loc='upper left')
>>> plt.show()

Since we chose a relatively small value for γ , the resulting decision boundary of the 
RBF kernel SVM model will be relatively soft, as shown in the following figure:

Now let's increase the value of γ  and observe the effect on the decision boundary:

>>> svm = SVC(kernel='rbf', random_state=0, gamma=100.0, C=1.0)
>>> svm.fit(X_train_std, y_train)
>>> plot_decision_regions(X_combined_std,
...                       y_combined, classifier=svm,
...                       test_idx=range(105,150))
>>> plt.xlabel('petal length [standardized]')
>>> plt.ylabel('petal width [standardized]')
>>> plt.legend(loc='upper left')
>>> plt.show()
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In the resulting plot, we can now see that the decision boundary around the classes 0 
and 1 is much tighter using a relatively large value of γ :

Although the model fits the training dataset very well, such a classifier will 
likely have a high generalization error on unseen data, which illustrates that the 
optimization of γ  also plays an important role in controlling overfitting.

Decision tree learning
Decision tree classifiers are attractive models if we care about interpretability.  
Like the name decision tree suggests, we can think of this model as breaking down 
our data by making decisions based on asking a series of questions. 
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Let's consider the following example where we use a decision tree to decide upon an 
activity on a particular day:

Yes No

Stay in

Sunny Rainy
Over-
cast

Go to beach Go running

Yes No

Stay in Go to movies

Work to do?

Outlook?

Friends busy?

Based on the features in our training set, the decision tree model learns a series of 
questions to infer the class labels of the samples. Although the preceding figure 
illustrated the concept of a decision tree based on categorical variables, the same 
concept applies if our features. This also works if our features are real numbers like 
in the Iris dataset. For example, we could simply define a cut-off value along the 
sepal width feature axis and ask a binary question "sepal width 2.8≥  cm?"

Using the decision algorithm, we start at the tree root and split the data on the 
feature that results in the largest information gain (IG), which will be explained in 
more detail in the following section. In an iterative process, we can then repeat this 
splitting procedure at each child node until the leaves are pure. This means that the 
samples at each node all belong to the same class. In practice, this can result in a very 
deep tree with many nodes, which can easily lead to overfitting. Thus, we typically 
want to prune the tree by setting a limit for the maximal depth of the tree.
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Maximizing information gain – getting the 
most bang for the buck
In order to split the nodes at the most informative features, we need to define an 
objective function that we want to optimize via the tree learning algorithm. Here,  
our objective function is to maximize the information gain at each split, which we 
define as follows:

( ) ( ) ( )
1

,
m

j
p p j

j p

N
IG D f I D I D

N=

= −∑

Here, f is the feature to perform the split, pD  and jD  are the dataset of the parent 
and jth child node, I is our impurity measure, pN  is the total number of samples at 
the parent node, and jN  is the number of samples in the jth child node. As we can 
see, the information gain is simply the difference between the impurity of the parent 
node and the sum of the child node impurities—the lower the impurity of the child 
nodes, the larger the information gain. However, for simplicity and to reduce the 
combinatorial search space, most libraries (including scikit-learn) implement binary 
decision trees. This means that each parent node is split into two child nodes, leftD  
and rightD :

( ) ( ) ( ) ( ), left right
p p left right

p p

N N
IG D a I D I D I D

N N
= − −

Now, the three impurity measures or splitting criteria that are commonly used in 
binary decision trees are Gini index ( GI ), entropy ( HI ), and the classification error  
( EI ). Let's start with the definition of entropy for all non-empty classes ( ( )| 0p i t ≠ ):

( ) ( ) ( )2
1

| log |
c

H
i

I t p i t p i t
=

= −∑
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Here, ( )|p i t  is the proportion of the samples that belongs to class c for a particular 
node t. The entropy is therefore 0 if all samples at a node belong to the same class, 
and the entropy is maximal if we have a uniform class distribution. For example, in 
a binary class setting, the entropy is 0 if ( )1| 1p i t= =  or ( )0 | 0p i t= = . If the classes are 
distributed uniformly with ( )1| 0.5p i t= =  and ( )0 | 0.5p i t= = , the entropy is 1. Therefore, 
we can say that the entropy criterion attempts to maximize the mutual information 
in the tree.

Intuitively, the Gini index can be understood as a criterion to minimize the 
probability of misclassification:

( ) ( ) ( )( ) ( )2

1 1
| | 1 |

c c

G
i i

I t p i t p i t p i t
= =

= − = −∑ ∑

Similar to entropy, the Gini index is maximal if the classes are perfectly mixed,  
for example, in a binary class setting ( 2c = ):

2

1
1 0.5 0.5

c

i=
− =∑

However, in practice both the Gini index and entropy typically yield very similar 
results and it is often not worth spending much time on evaluating trees using 
different impurity criteria rather than experimenting with different pruning cut-offs.

Another impurity measure is the classification error:

( ){ }1 max |EI p i t= −
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This is a useful criterion for pruning but not recommended for growing a decision 
tree, since it is less sensitive to changes in the class probabilities of the nodes. We 
can illustrate this by looking at the two possible splitting scenarios shown in the 
following figure:

A B
(40, 40) (40, 40)

(30, 10) (10, 30) (20, 40) (20, 0)

We start with a dataset pD  at the parent node pD  that consists of 40 samples from 
class 1 and 40 samples from class 2 that we split into two datasets leftD  and rightD ,  
respectively. The information gain using the classification error as a splitting 
criterion would be the same ( 0.25EIG = ) in both scenario A and B:

( ) 1 0.5 0.5E pI D = − =

( ) 3: 1 0.25
4E leftA I D = − =

( ) 3: 1 0.25
4E rightA I D = − =

4 4: 0.5 0.25 0.25 0.25
8 8EA IG = − − =

( ) 4 1: 1
6 3E leftB I D = − =

( ): 1 1 0E rightB I D = − =

6 1: 0.5 0 0.25
8 3EB IG = − × − =
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However, the Gini index would favor the split in scenario ( )0.16GB IG =  over scenario  
( )0.125GA IG = , which is indeed more pure:

( ) ( )2 21 0.5 0.5 0.5G pI D = − + =

( )
2 23 1 3: 1 0.375

4 4 8G leftA I D
    = − + = =         

( )
2 21 3 3: 1 0.375

4 4 8G rightA I D
    = − + = =         

4 4: 0.5 0.375 0.375 0.125
8 8GA I = − − =

( )
2 22 4 4: 1 0.4

6 6 9G leftB I D
    = − + = =         

( ) ( )2 2: 1 1 0 0G rightB I D = − + =

6: 0.5 0.4 0 0.16
8GB IG = − − =

Similarly, the entropy criterion would favor scenario ( )0.19HB IG =  over  
scenario ( )0.31HA IG = :

( ) ( ) ( )( )2 20.5 log 0.5 0.5 log 0.5 1H pI D = − + =

( ) 2 2
3 3 1 1: log log 0.81
4 4 4 4H leftA I D     = − + =        
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( ) 2 2
1 1 3 3: log log 0.81
4 4 4 4H rightA I D     = − + =        

4 4: 1 0.81 0.81 0.19
8 8HA IG = − − =

( ) 2 2
2 2 4 4: log log 0.92
6 6 6 6H leftB I D     = − + + + =        

( ): 0H rightB I D =

6: 1 0.92 0 0.31
8HB IG = − − =

For a more visual comparison of the three different impurity criteria that we 
discussed previously, let's plot the impurity indices for the probability range [0, 1] 
for class 1. Note that we will also add in a scaled version of the entropy (entropy/2) 
to observe that the Gini index is an intermediate measure between entropy and the 
classification error. The code is as follows:

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> def gini(p):
...     return (p)*(1 - (p)) + (1 - p)*(1 - (1-p))
>>> def entropy(p):
...     return - p*np.log2(p) - (1 - p)*np.log2((1 - p))
>>> def error(p):
...     return 1 - np.max([p, 1 - p])
>>> x = np.arange(0.0, 1.0, 0.01)
>>> ent = [entropy(p) if p != 0 else None for p in x]
>>> sc_ent = [e*0.5 if e else None for e in ent]
>>> err = [error(i) for i in x]
>>> fig = plt.figure()
>>> ax = plt.subplot(111)
>>> for i, lab, ls, c, in zip([ent, sc_ent, gini(x), err], 
...                   ['Entropy', 'Entropy (scaled)', 
...                   'Gini Impurity', 
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...                   'Misclassification Error'],

...                   ['-', '-', '--', '-.'],

...                   ['black', 'lightgray',

...                      'red', 'green', 'cyan']):

...     line = ax.plot(x, i, label=lab, 

...                    linestyle=ls, lw=2, color=c)
>>> ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.15),
...           ncol=3, fancybox=True, shadow=False)
>>> ax.axhline(y=0.5, linewidth=1, color='k', linestyle='--')
>>> ax.axhline(y=1.0, linewidth=1, color='k', linestyle='--')
>>> plt.ylim([0, 1.1])
>>> plt.xlabel('p(i=1)')
>>> plt.ylabel('Impurity Index')
>>> plt.show()

The plot produced by the preceding code example is as follows:
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Building a decision tree
Decision trees can build complex decision boundaries by dividing the feature 
space into rectangles. However, we have to be careful since the deeper the decision 
tree, the more complex the decision boundary becomes, which can easily result in 
overfitting. Using scikit-learn, we will now train a decision tree with a maximum 
depth of 3 using entropy as a criterion for impurity. Although feature scaling may be 
desired for visualization purposes, note that feature scaling is not a requirement for 
decision tree algorithms. The code is as follows:

>>> from sklearn.tree import DecisionTreeClassifier
>>> tree = DecisionTreeClassifier(criterion='entropy', 
...                               max_depth=3, random_state=0)
>>> tree.fit(X_train, y_train)
>>> X_combined = np.vstack((X_train, X_test))
>>> y_combined = np.hstack((y_train, y_test))
>>> plot_decision_regions(X_combined, y_combined, 
...                    classifier=tree, test_idx=range(105,150))
>>>plt.xlabel('petal length [cm]')
>>>plt.ylabel('petal width [cm]') 
>>> plt.legend(loc='upper left')
>>> plt.show()

After executing the preceding code example, we get the typical axis-parallel decision 
boundaries of the decision tree:
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A nice feature in scikit-learn is that it allows us to export the decision tree as a 
.dot file after training, which we can visualize using the GraphViz program. This 
program is freely available at http://www.graphviz.org and supported by Linux, 
Windows, and Mac OS X.

First, we create the .dot file via scikit-learn using the export_graphviz function 
from the tree submodule, as follows:

>>> from sklearn.tree import export_graphviz
>>> export_graphviz(tree, 
...                 out_file='tree.dot',
...                 feature_names=['petal length', 'petal width'])

After we have installed GraphViz on our computer, we can convert the tree.dot file 
into a PNG file by executing the following command from the command line in the 
location where we saved the tree.dot file:

> dot -Tpng tree.dot -o tree.png

Looking at the decision tree figure that we created via GraphViz, we can now nicely 
trace back the splits that the decision tree determined from our training dataset.  
We started with 105 samples at the root and split it into two child nodes with 34  
and 71 samples each using the petal with cut-off ≤ 0.75 cm. After the first split, 
we can see that the left child node is already pure and only contains samples from 
the Iris-Setosa class (entropy = 0). The further splits on the right are then used to 
separate the samples from the Iris-Versicolor and Iris-Virginica classes.

http://www.graphviz.org
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Combining weak to strong learners via 
random forests
Random forests have gained huge popularity in applications of machine learning 
during the last decade due to their good classification performance, scalability, and 
ease of use. Intuitively, a random forest can be considered as an ensemble of decision 
trees. The idea behind ensemble learning is to combine weak learners to build a 
more robust model, a strong learner, that has a better generalization error and is less 
susceptible to overfitting. The random forest algorithm can be summarized in four 
simple steps:

1.	 Draw a random bootstrap sample of size n (randomly choose n samples from 
the training set with replacement).

2.	 Grow a decision tree from the bootstrap sample. At each node:
1.	 Randomly select d features without replacement.
2.	 Split the node using the feature that provides the best split  

according to the objective function, for instance, by maximizing  
the information gain.

3.	 Repeat the steps 1 to 2 k times.
4.	 Aggregate the prediction by each tree to assign the class label by majority 

vote. Majority voting will be discussed in more detail in Chapter 7, Combining 
Different Models for Ensemble Learning.

There is a slight modification in step 2 when we are training the individual decision 
trees: instead of evaluating all features to determine the best split at each node, we 
only consider a random subset of those.

Although random forests don't offer the same level of interpretability as decision 
trees, a big advantage of random forests is that we don't have to worry so much 
about choosing good hyperparameter values. We typically don't need to prune the 
random forest since the ensemble model is quite robust to noise from the individual 
decision trees. The only parameter that we really need to care about in practice is the 
number of trees k (step 3) that we choose for the random forest. Typically, the larger 
the number of trees, the better the performance of the random forest classifier at the 
expense of an increased computational cost.
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Although it is less common in practice, other hyperparameters of the random  
forest classifier that can be optimized—using techniques we will discuss in  
Chapter 5, Compressing Data via Dimensionality Reduction—are the size n  
of the bootstrap sample (step 1) and the number of features d that is randomly  
chosen for each split (step 2.1), respectively. Via the sample size n of the bootstrap 
sample, we control the bias-variance tradeoff of the random forest. By choosing 
a larger value for n, we decrease the randomness and thus the forest is more 
likely to overfit. On the other hand, we can reduce the degree of overfitting by 
choosing smaller values for n at the expense of the model performance. In most 
implementations, including the RandomForestClassifier implementation in  
scikit-learn, the sample size of the bootstrap sample is chosen to be equal to the 
number of samples in the original training set, which usually provides a good  
bias-variance tradeoff. For the number of features d at each split, we want to choose 
a value that is smaller than the total number of features in the training set. A 
reasonable default that is used in scikit-learn and other implementations is d m= , 
where m is the number of features in the training set.

Conveniently, we don't have to construct the random forest classifier from individual 
decision trees by ourselves; there is already an implementation in scikit-learn that  
we can use:

>>> from sklearn.ensemble import RandomForestClassifier
>>> forest = RandomForestClassifier(criterion='entropy',
...                                 n_estimators=10, 
...                                 random_state=1,
...                                 n_jobs=2)
>>> forest.fit(X_train, y_train)
>>> plot_decision_regions(X_combined, y_combined, 
...                classifier=forest, test_idx=range(105,150))
>>> plt.xlabel('petal length')
>>> plt.ylabel('petal width')
>>> plt.legend(loc='upper left')
>>> plt.show()
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After executing the preceding code, we should see the decision regions formed by 
the ensemble of trees in the random forest, as shown in the following figure:

Using the preceding code, we trained a random forest from 10 decision trees via the 
n_estimators parameter and used the entropy criterion as an impurity measure to 
split the nodes. Although we are growing a very small random forest from a very 
small training dataset, we used the n_jobs parameter for demonstration purposes, 
which allows us to parallelize the model training using multiple cores of our 
computer (here, two).

K-nearest neighbors – a lazy learning 
algorithm
The last supervised learning algorithm that we want to discuss in this chapter is the 
k-nearest neighbor classifier (KNN), which is particularly interesting because it is 
fundamentally different from the learning algorithms that we have discussed so far.

KNN is a typical example of a lazy learner. It is called lazy not because of its 
apparent simplicity, but because it doesn't learn a discriminative function from  
the training data but memorizes the training dataset instead.
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Parametric versus nonparametric models
Machine learning algorithms can be grouped into parametric and 
nonparametric models. Using parametric models, we estimate 
parameters from the training dataset to learn a function that can 
classify new data points without requiring the original training dataset 
anymore. Typical examples of parametric models are the perceptron, 
logistic regression, and the linear SVM. In contrast, nonparametric 
models can't be characterized by a fixed set of parameters, and the 
number of parameters grows with the training data. Two examples of 
nonparametric models that we have seen so far are the decision tree 
classifier/random forest and the kernel SVM.
KNN belongs to a subcategory of nonparametric models that is 
described as instance-based learning. Models based on instance-based 
learning are characterized by memorizing the training dataset, and lazy 
learning is a special case of instance-based learning that is associated 
with no (zero) cost during the learning process.

The KNN algorithm itself is fairly straightforward and can be summarized by the 
following steps:

1.	 Choose the number of k and a distance metric.
2.	 Find the k nearest neighbors of the sample that we want to classify.
3.	 Assign the class label by majority vote.

The following figure illustrates how a new data point (?) is assigned the triangle class 
label based on majority voting among its five nearest neighbors.
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Based on the chosen distance metric, the KNN algorithm finds the k samples in the 
training dataset that are closest (most similar) to the point that we want to classify. 
The class label of the new data point is then determined by a majority vote among  
its k nearest neighbors.

The main advantage of such a memory-based approach is that the classifier 
immediately adapts as we collect new training data. However, the downside is that 
the computational complexity for classifying new samples grows linearly with the 
number of samples in the training dataset in the worst-case scenario—unless the 
dataset has very few dimensions (features) and the algorithm has been implemented 
using efficient data structures such as KD-trees. J. H. Friedman, J. L. Bentley, and R. 
A. Finkel. An algorithm for finding best matches in logarithmic expected time. ACM 
Transactions on Mathematical Software (TOMS), 3(3):209–226, 1977. Furthermore, we 
can't discard training samples since no training step is involved. Thus, storage space 
can become a challenge if we are working with large datasets.

By executing the following code, we will now implement a KNN model in  
scikit-learn using an Euclidean distance metric:

>>> from sklearn.neighbors import KNeighborsClassifier
>>> knn = KNeighborsClassifier(n_neighbors=5, p=2,
...                            metric='minkowski')
>>> knn.fit(X_train_std, y_train)
>>> plot_decision_regions(X_combined_std, y_combined, 
...                       classifier=knn, test_idx=range(105,150))
>>> plt.xlabel('petal length [standardized]')
>>> plt.ylabel('petal width [standardized]')
>>> plt.show()

By specifying five neighbors in the KNN model for this dataset, we obtain a 
relatively smooth decision boundary, as shown in the following figure:
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In the case of a tie, the scikit-learn implementation of the KNN 
algorithm will prefer the neighbors with a closer distance to the 
sample. If the neighbors have a similar distance, the algorithm will 
choose the class label that comes first in the training dataset.

The right choice of k is crucial to find a good balance between over- and underfitting. 
We also have to make sure that we choose a distance metric that is appropriate for 
the features in the dataset. Often, a simple Euclidean distance measure is used for 
real-valued samples, for example, the flowers in our Iris dataset, which have features 
measured in centimeters. However, if we are using a Euclidean distance measure, it 
is also important to standardize the data so that each feature contributes equally to 
the distance. The 'minkowski' distance that we used in the previous code is just a 
generalization of the Euclidean and Manhattan distance that can be written as follows:

( ) ( )( ) ( ) ( ),
pi i i jp

k k
k

d x x= ∑x x
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It becomes the Euclidean distance if we set the parameter p=2 or the Manhatten 
distance at p=1, respectively. Many other distance metrics are available in scikit-learn 
and can be provided to the metric parameter. They are listed at http://scikit-
learn.org/stable/modules/generated/sklearn.neighbors.DistanceMetric.
html.

The curse of dimensionality
It is important to mention that KNN is very susceptible to 
overfitting due to the curse of dimensionality. The curse of 
dimensionality describes the phenomenon where the feature  
space becomes increasingly sparse for an increasing number  
of dimensions of a fixed-size training dataset. Intuitively, we  
can think of even the closest neighbors being too far away in a  
high-dimensional space to give a good estimate.
We have discussed the concept of regularization in the section 
about logistic regression as one way to avoid overfitting. However, 
in models where regularization is not applicable such as decision 
trees and KNN, we can use feature selection and dimensionality 
reduction techniques to help us avoid the curse of dimensionality. 
This will be discussed in more detail in the next chapter.

Summary
In this chapter, you learned about many different machine algorithms that are 
used to tackle linear and nonlinear problems. We have seen that decision trees are 
particularly attractive if we care about interpretability. Logistic regression is not only 
a useful model for online learning via stochastic gradient descent, but also allows us 
to predict the probability of a particular event. Although support vector machines 
are powerful linear models that can be extended to nonlinear problems via the 
kernel trick, they have many parameters that have to be tuned in order to make good 
predictions. In contrast, ensemble methods such as random forests don't require 
much parameter tuning and don't overfit so easily as decision trees, which makes 
it an attractive model for many practical problem domains. The K-nearest neighbor 
classifier offers an alternative approach to classification via lazy learning that allows 
us to make predictions without any model training but with a more computationally 
expensive prediction step.

http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.DistanceMetric.html
http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.DistanceMetric.html
http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.DistanceMetric.html
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However, even more important than the choice of an appropriate learning algorithm 
is the available data in our training dataset. No algorithm will be able to make good 
predictions without informative and discriminatory features.

In the next chapter, we will discuss important topics regarding the preprocessing 
of data, feature selection, and dimensionality reduction, which we will need to 
build powerful machine learning models. Later in Chapter 6, Learning Best Practices 
for Model Evaluation and Hyperparameter Tuning, we will see how we can evaluate 
and compare the performance of our models and learn useful tricks to fine-tune the 
different algorithms.
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Building Good Training  
Sets – Data Preprocessing

The quality of the data and the amount of useful information that it contains are key 
factors that determine how well a machine learning algorithm can learn. Therefore, 
it is absolutely critical that we make sure to examine and preprocess a dataset before 
we feed it to a learning algorithm. In this chapter, we will discuss the essential data 
preprocessing techniques that will help us to build good machine learning models.

The topics that we will cover in this chapter are as follows:

•	 Removing and imputing missing values from the dataset
•	 Getting categorical data into shape for machine learning algorithms
•	 Selecting relevant features for the model construction

Dealing with missing data
It is not uncommon in real-world applications that our samples are missing one 
or more values for various reasons. There could have been an error in the data 
collection process, certain measurements are not applicable, particular fields could 
have been simply left blank in a survey, for example. We typically see missing  
values as the blank spaces in our data table or as placeholder strings such as NaN  
(Not A Number).
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Unfortunately, most computational tools are unable to handle such missing values 
or would produce unpredictable results if we simply ignored them. Therefore, it 
is crucial that we take care of those missing values before we proceed with further 
analyses. But before we discuss several techniques for dealing with missing values, 
let's create a simple example data frame from a CSV (comma-separated values) file 
to get a better grasp of the problem:

>>> import pandas as pd
>>> from io import StringIO
>>> csv_data = '''A,B,C,D
... 1.0,2.0,3.0,4.0
... 5.0,6.0,,8.0
... 0.0,11.0,12.0,'''
>>> # If you are using Python 2.7, you need
>>> # to convert the string to unicode:
>>> # csv_data = unicode(csv_data)
>>> df = pd.read_csv(StringIO(csv_data))
>>> df
   A   B   C   D
0  1   2   3   4
1  5   6 NaN   8
2  0  11  12 NaN

Using the preceding code, we read CSV-formatted data into a pandas DataFrame 
via the read_csv function and noticed that the two missing cells were replaced by 
NaN. The StringIO function in the preceding code example was simply used for the 
purposes of illustration. It allows us to read the string assigned to csv_data into a 
pandas DataFrame as if it was a regular CSV file on our hard drive.

For a larger DataFrame, it can be tedious to look for missing values manually; in this 
case, we can use the isnull method to return a DataFrame with Boolean values that 
indicate whether a cell contains a numeric value (False) or if data is missing (True). 
Using the sum method, we can then return the number of missing values per column 
as follows:

>>> df.isnull().sum()
A    0
B    0
C    1
D    1
dtype: int64
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This way, we can count the number of missing values per column; in the  
following subsections, we will take a look at different strategies for how to  
deal with this missing data.

Although scikit-learn was developed for working with NumPy 
arrays, it can sometimes be more convenient to preprocess data 
using pandas' DataFrame. We can always access the underlying 
NumPy array of the DataFrame via the values attribute before 
we feed it into a scikit-learn estimator:

>>> df.values

array([[  1.,   2.,   3.,   4.],

       [  5.,   6.,  nan,   8.],

       [ 10.,  11.,  12.,  nan]])

Eliminating samples or features with missing 
values
One of the easiest ways to deal with missing data is to simply remove the 
corresponding features (columns) or samples (rows) from the dataset entirely;  
rows with missing values can be easily dropped via the dropna method:

>>> df.dropna()
   A  B  C  D
0  1  2  3  4

Similarly, we can drop columns that have at least one NaN in any row by setting the 
axis argument to 1:

>>> df.dropna(axis=1)
   A   B
0  1   2
1  5   6
2  0  11

The dropna method supports several additional parameters that can come in handy:

# only drop rows where all columns are NaN
>>> df.dropna(how='all')  

# drop rows that have not at least 4 non-NaN values
>>> df.dropna(thresh=4)  

# only drop rows where NaN appear in specific columns (here: 'C')
>>> df.dropna(subset=['C'])
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Although the removal of missing data seems to be a convenient approach, it also 
comes with certain disadvantages; for example, we may end up removing too 
many samples, which will make a reliable analysis impossible. Or, if we remove too 
many feature columns, we will run the risk of losing valuable information that our 
classifier needs to discriminate between classes. In the next section, we will thus  
look at one of the most commonly used alternatives for dealing with missing  
values: interpolation techniques.

Imputing missing values
Often, the removal of samples or dropping of entire feature columns is simply not 
feasible, because we might lose too much valuable data. In this case, we can use 
different interpolation techniques to estimate the missing values from the other 
training samples in our dataset. One of the most common interpolation techniques is 
mean imputation, where we simply replace the missing value by the mean value of 
the entire feature column. A convenient way to achieve this is by using the Imputer 
class from scikit-learn, as shown in the following code:

>>> from sklearn.preprocessing import Imputer
>>> imr = Imputer(missing_values='NaN', strategy='mean', axis=0)
>>> imr = imr.fit(df)
>>> imputed_data = imr.transform(df.values)
>>> imputed_data
array([[  1.,   2.,   3.,   4.], 
       [  5.,   6.,   3.,   8.], 
       [ 10.,  11.,  12.,   4.]])

Here, we replaced each NaN value by the corresponding mean, which is separately 
calculated for each feature column. If we changed the setting axis=0 to axis=1, we'd 
calculate the row means. Other options for the strategy parameter are median or 
most_frequent, where the latter replaces the missing values by the most frequent 
values. This is useful for imputing categorical feature values.

Understanding the scikit-learn estimator API
In the previous section, we used the Imputer class from scikit-learn to impute 
missing values in our dataset. The Imputer class belongs to the so-called transformer 
classes in scikit-learn that are used for data transformation. The two essential 
methods of those estimators are fit and transform. The fit method is used to 
learn the parameters from the training data, and the transform method uses those 
parameters to transform the data. Any data array that is to be transformed needs to 
have the same number of features as the data array that was used to fit the model. 
The following figure illustrates how a transformer fitted on the training data is used 
to transform a training dataset as well as a new test dataset:
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The classifiers that we used in Chapter 3, A Tour of Machine Learning Classifiers Using 
Scikit-Learn, belong to the so-called estimators in scikit-learn with an API that is 
conceptually very similar to the transformer class. Estimators have a predict 
method but can also have a transform method, as we will see later. As you may 
recall, we also used the fit method to learn the parameters of a model when we 
trained those estimators for classification. However, in supervised learning tasks, we 
additionally provide the class labels for fitting the model, which can then be used to 
make predictions about new data samples via the predict method, as illustrated in 
the following figure:
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Handling categorical data
So far, we have only been working with numerical values. However, it is not 
uncommon that real-world datasets contain one or more categorical feature columns. 
When we are talking about categorical data, we have to further distinguish between 
nominal and ordinal features. Ordinal features can be understood as categorical 
values that can be sorted or ordered. For example, T-shirt size would be an ordinal 
feature, because we can define an order XL > L > M. In contrast, nominal features 
don't imply any order and, to continue with the previous example, we could think of 
T-shirt color as a nominal feature since it typically doesn't make sense to say that, for 
example, red is larger than blue.

Before we explore different techniques to handle such categorical data, let's create a 
new data frame to illustrate the problem:

>>> import pandas as pd
>>> df = pd.DataFrame([
...            ['green', 'M', 10.1, 'class1'], 
...            ['red', 'L', 13.5, 'class2'], 
...            ['blue', 'XL', 15.3, 'class1']])
>>> df.columns = ['color', 'size', 'price', 'classlabel']
>>> df
   color size  price classlabel
0  green    M   10.1     class1
1    red    L   13.5     class2
2   blue   XL   15.3     class1

As we can see in the preceding output, the newly created DataFrame contains a 
nominal feature (color), an ordinal feature (size), and a numerical feature (price) 
column. The class labels (assuming that we created a dataset for a supervised 
learning task) are stored in the last column. The learning algorithms for classification 
that we discuss in this book do not use ordinal information in class labels.

Mapping ordinal features
To make sure that the learning algorithm interprets the ordinal features correctly, we 
need to convert the categorical string values into integers. Unfortunately, there is no 
convenient function that can automatically derive the correct order of the labels of 
our size feature. Thus, we have to define the mapping manually. In the following 
simple example, let's assume that we know the difference between features, for 
example, 1 2XL L M= + = + .

>>> size_mapping = {
...                 'XL': 3,
...                 'L': 2,
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...                 'M': 1}
>>> df['size'] = df['size'].map(size_mapping)
>>> df
   color  size  price classlabel
0  green     1   10.1     class1
1    red     2   13.5     class2
2   blue     3   15.3     class1

If we want to transform the integer values back to the original string  
representation at a later stage, we can simply define a reverse-mapping  
dictionary inv_size_mapping = {v: k for k, v in size_mapping.items()} 
that can then be used via the pandas' map method on the transformed feature column 
similar to the size_mapping dictionary that we used previously.

Encoding class labels
Many machine learning libraries require that class labels are encoded as integer 
values. Although most estimators for classification in scikit-learn convert class 
labels to integers internally, it is considered good practice to provide class labels as 
integer arrays to avoid technical glitches. To encode the class labels, we can use an 
approach similar to the mapping of ordinal features discussed previously. We need 
to remember that class labels are not ordinal, and it doesn't matter which integer 
number we assign to a particular string-label. Thus, we can simply enumerate the 
class labels starting at 0:

>>> import numpy as np
>>> class_mapping = {label:idx for idx,label in
...                  enumerate(np.unique(df['classlabel']))}
>>> class_mapping
{'class1': 0, 'class2': 1}

Next we can use the mapping dictionary to transform the class labels into integers:

>>> df['classlabel'] = df['classlabel'].map(class_mapping)
>>> df
   color  size  price  classlabel
0  green     1   10.1           0
1    red     2   13.5           1
2   blue     3   15.3           0
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We can reverse the key-value pairs in the mapping dictionary as follows to map the 
converted class labels back to the original string representation:

>>> inv_class_mapping = {v: k for k, v in class_mapping.items()}
>>> df['classlabel'] = df['classlabel'].map(inv_class_mapping)
>>> df
   color  size  price classlabel
0  green     1   10.1     class1
1    red     2   13.5     class2
2   blue     3   15.3     class1

Alternatively, there is a convenient LabelEncoder class directly implemented in 
scikit-learn to achieve the same:

>>> from sklearn.preprocessing import LabelEncoder
>>> class_le = LabelEncoder()
>>> y = class_le.fit_transform(df['classlabel'].values)
>>> y
array([0, 1, 0])

Note that the fit_transform method is just a shortcut for calling fit and 
transform separately, and we can use the inverse_transform method to  
transform the integer class labels back into their original string representation:

>>> class_le.inverse_transform(y)
array(['class1', 'class2', 'class1'], dtype=object)

Performing one-hot encoding on nominal 
features
In the previous section, we used a simple dictionary-mapping approach to convert 
the ordinal size feature into integers. Since scikit-learn's estimators treat class labels 
without any order, we used the convenient LabelEncoder class to encode the string 
labels into integers. It may appear that we could use a similar approach to transform 
the nominal color column of our dataset, as follows:

>>> X = df[['color', 'size', 'price']].values
>>> color_le = LabelEncoder()
>>> X[:, 0] = color_le.fit_transform(X[:, 0])
>>> X
array([[1, 1, 10.1],
       [2, 2, 13.5],
       [0, 3, 15.3]], dtype=object)
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After executing the preceding code, the first column of the NumPy array X now 
holds the new color values, which are encoded as follows:

•	 blue à 0
•	 green à 1
•	 red à 2

If we stop at this point and feed the array to our classifier, we will make one of the 
most common mistakes in dealing with categorical data. Can you spot the problem? 
Although the color values don't come in any particular order, a learning algorithm 
will now assume that green is larger than blue, and red is larger than green. Although 
this assumption is incorrect, the algorithm could still produce useful results. 
However, those results would not be optimal.

A common workaround for this problem is to use a technique called one-hot 
encoding. The idea behind this approach is to create a new dummy feature for each 
unique value in the nominal feature column. Here, we would convert the color 
feature into three new features: blue, green, and red. Binary values can then be 
used to indicate the particular color of a sample; for example, a blue sample can be 
encoded as blue=1, green=0, red=0. To perform this transformation, we can use the 
OneHotEncoder that is implemented in the scikit-learn.preprocessing module:

>>> from sklearn.preprocessing import OneHotEncoder
>>> ohe = OneHotEncoder(categorical_features=[0])
>>> ohe.fit_transform(X).toarray()
array([[  0. ,   1. ,   0. ,   1. ,  10.1],
       [  0. ,   0. ,   1. ,   2. ,  13.5],
       [  1. ,   0. ,   0. ,   3. ,  15.3]])

When we initialized the OneHotEncoder, we defined the column position of the 
variable that we want to transform via the categorical_features parameter (note 
that color is the first column in the feature matrix X). By default, the OneHotEncoder 
returns a sparse matrix when we use the transform method, and we converted the 
sparse matrix representation into a regular (dense) NumPy array for the purposes of 
visualization via the toarray method. Sparse matrices are simply a more efficient 
way of storing large datasets, and one that is supported by many scikit-learn 
functions, which is especially useful if it contains a lot of zeros. To omit the toarray 
step, we could initialize the encoder as OneHotEncoder(…,sparse=False) to return 
a regular NumPy array.
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An even more convenient way to create those dummy features via one-hot encoding 
is to use the get_dummies method implemented in pandas. Applied on a DataFrame, 
the get_dummies method will only convert string columns and leave all other 
columns unchanged:

>>> pd.get_dummies(df[['price', 'color', 'size']])
   price  size  color_blue  color_green  color_red
0   10.1     1           0            1          0
1   13.5     2           0            0          1
2   15.3     3           1            0          0

Partitioning a dataset in training and test 
sets
We briefly introduced the concept of partitioning a dataset into separate datasets for 
training and testing in Chapter 1, Giving Computers the Ability to Learn from Data, and 
Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn. Remember that the 
test set can be understood as the ultimate test of our model before we let it loose on 
the real world. In this section, we will prepare a new dataset, the Wine dataset. After 
we have preprocessed the dataset, we will explore different techniques for feature 
selection to reduce the dimensionality of a dataset.

The Wine dataset is another open-source dataset that is available from the UCI 
machine learning repository (https://archive.ics.uci.edu/ml/datasets/Wine); 
it consists of 178 wine samples with 13 features describing their different chemical 
properties.

Using the pandas library, we will directly read in the open source Wine dataset from 
the UCI machine learning repository:

>>> df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/machine-
learning-databases/wine/wine.data', header=None)
>>> df_wine.columns = ['Class label', 'Alcohol', 
...                    'Malic acid', 'Ash', 
...                    'Alcalinity of ash', 'Magnesium', 
...                    'Total phenols', 'Flavanoids',
...                    'Nonflavanoid phenols', 
...                    'Proanthocyanins', 
...                    'Color intensity', 'Hue', 
...                    'OD280/OD315 of diluted wines', 
...                    'Proline']
>>>  print('Class labels', np.unique(df_wine['Class label']))
Class labels [1 2 3]
>>> df_wine.head()

https://archive.ics.uci.edu/ml/datasets/Wine
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The 13 different features in the Wine dataset, describing the chemical properties of 
the 178 wine samples, are listed in the following table:

The samples belong to one of three different classes, 1, 2, and 3, which refer to the 
three different types of grapes that have been grown in different regions in Italy.

A convenient way to randomly partition this dataset into a separate test and  
training dataset is to use the train_test_split function from scikit-learn's  
cross_validation submodule:

>>> from sklearn.cross_validation import train_test_split
>>> X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values
>>> X_train, X_test, y_train, y_test = \
...        train_test_split(X, y, test_size=0.3, random_state=0)

First, we assigned the NumPy array representation of feature columns 1-13 to the 
variable X, and we assigned the class labels from the first column to the variable 
y. Then, we used the train_test_split function to randomly split X and y into 
separate training and test datasets. By setting test_size=0.3 we assigned 30 
percent of the wine samples to X_test and y_test, and the remaining 70 percent  
of the samples were assigned to X_train and y_train, respectively.

If we are dividing a dataset into training and test datasets, we have to 
keep in mind that we are withholding valuable information that the 
learning algorithm could benefit from. Thus, we don't want to allocate 
too much information to the test set. However, the smaller the test set, 
the more inaccurate the estimation of the generalization error. Dividing 
a dataset into training and test sets is all about balancing this trade-off. 
In practice, the most commonly used splits are 60:40, 70:30, or 80:20, 
depending on the size of the initial dataset. However, for large datasets, 
90:10 or 99:1 splits into training and test subsets are also common and 
appropriate. Instead of discarding the allocated test data after model 
training and evaluation, it is a good idea to retrain a classifier on the 
entire dataset for optimal performance.
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Bringing features onto the same scale
Feature scaling is a crucial step in our preprocessing pipeline that can easily be 
forgotten. Decision trees and random forests are one of the very few machine 
learning algorithms where we don't need to worry about feature scaling. However, 
the majority of machine learning and optimization algorithms behave much  
better if features are on the same scale, as we saw in Chapter 2, Training Machine 
Learning Algorithms for Classification, when we implemented the gradient descent 
optimization algorithm.

The importance of feature scaling can be illustrated by a simple example. Let's 
assume that we have two features where one feature is measured on a scale from 
1 to 10 and the second feature is measured on a scale from 1 to 100,000. When we 
think of the squared error function in Adaline in Chapter 2, Training Machine Learning 
Algorithms for Classification, it is intuitive to say that the algorithm will mostly be busy 
optimizing the weights according to the larger errors in the second feature. Another 
example is the k-nearest neighbors (KNN) algorithm with a Euclidean distance 
measure; the computed distances between samples will be dominated by the second 
feature axis.

Now, there are two common approaches to bringing different features onto the same 
scale: normalization and standardization. Those terms are often used quite loosely 
in different fields, and the meaning has to be derived from the context. Most often, 
normalization refers to the rescaling of the features to a range of [0, 1], which is a 
special case of min-max scaling. To normalize our data, we can simply apply the 
min-max scaling to each feature column, where the new value ( )i

normx  of a sample ( )ix  
can be calculated as follows:
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( )

min

max min

i
i
norm

x xx
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Here, ( )ix  is a particular sample, minx  is the smallest value in a feature column,  
and maxx  the largest value, respectively.

The min-max scaling procedure is implemented in scikit-learn and can be used  
as follows:

>>> from sklearn.preprocessing import MinMaxScaler
>>> mms = MinMaxScaler()
>>> X_train_norm = mms.fit_transform(X_train)
>>> X_test_norm = mms.transform(X_test)
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Although normalization via min-max scaling is a commonly used technique that 
is useful when we need values in a bounded interval, standardization can be more 
practical for many machine learning algorithms. The reason is that many linear 
models, such as the logistic regression and SVM that we remember from Chapter 3, 
A Tour of Machine Learning Classifiers Using Scikit-learn, initialize the weights to 0 or 
small random values close to 0. Using standardization, we center the feature columns 
at mean 0 with standard deviation 1 so that the feature columns take the form of 
a normal distribution, which makes it easier to learn the weights. Furthermore, 
standardization maintains useful information about outliers and makes the 
algorithm less sensitive to them in contrast to min-max scaling, which scales  
the data to a limited range of values.

The procedure of standardization can be expressed by the following equation:

( )
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x

xx µ
σ
−

=

Here, xµ  is the sample mean of a particular feature column and xσ  the corresponding 
standard deviation, respectively.

The following table illustrates the difference between the two commonly used 
feature scaling techniques, standardization and normalization on a simple sample 
dataset consisting of numbers 0 to 5:

input standardized normalized
0.0 -1.336306 0.0
1.0 -0.801784 0.2
2.0 -0.267261 0.4
3.0 0.267261 0.6
4.0 0.801784 0.8
5.0 1.336306 1.0

Similar to MinMaxScaler, scikit-learn also implements a class for standardization:

>>> from sklearn.preprocessing import StandardScaler
>>> stdsc = StandardScaler()
>>> X_train_std = stdsc.fit_transform(X_train)
>>> X_test_std = stdsc.transform(X_test)
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Again, it is also important to highlight that we fit the StandardScaler only once  
on the training data and use those parameters to transform the test set or any new 
data point.

Selecting meaningful features
If we notice that a model performs much better on a training dataset than on the test 
dataset, this observation is a strong indicator for overfitting. Overfitting means that 
model fits the parameters too closely to the particular observations in the training 
dataset but does not generalize well to real data—we say that the model has a high 
variance. A reason for overfitting is that our model is too complex for the given 
training data and common solutions to reduce the generalization error are listed  
as follows:

•	 Collect more training data
•	 Introduce a penalty for complexity via regularization
•	 Choose a simpler model with fewer parameters
•	 Reduce the dimensionality of the data

Collecting more training data is often not applicable. In the next chapter, we will 
learn about a useful technique to check whether more training data is helpful at all. 
In the following sections and subsections, we will look at common ways to reduce 
overfitting by regularization and dimensionality reduction via feature selection.

Sparse solutions with L1 regularization
We recall from Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn,  
that L2 regularization is one approach to reduce the complexity of a model by 
penalizing large individual weights, where we defined the L2 norm of our weight 
vector w as follows:
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Another approach to reduce the model complexity is the related L1 regularization:
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Here, we simply replaced the square of the weights by the sum of the absolute 
values of the weights. In contrast to L2 regularization, L1 regularization yields sparse 
feature vectors; most feature weights will be zero. Sparsity can be useful in practice 
if we have a high-dimensional dataset with many features that are irrelevant, 
especially cases where we have more irrelevant dimensions than samples. In this 
sense, L1 regularization can be understood as a technique for feature selection.

To better understand how L1 regularization encourages sparsity, let's take a step 
back and take a look at a geometrical interpretation of regularization. Let's plot the 
contours of a convex cost function for two weight coefficients 1w  and 2w . Here, we 
will consider the sum of the squared errors (SSE) cost function that we used for 
Adaline in Chapter 2, Training Machine Learning Algorithms for Classification, since 
it is symmetrical and easier to draw than the cost function of logistic regression; 
however, the same concepts apply to the latter. Remember that our goal is to find the 
combination of weight coefficients that minimize the cost function for the training 
data, as shown in the following figure (the point in the middle of the ellipses):

Now, we can think of regularization as adding a penalty term to the cost function to 
encourage smaller weights; or, in other words, we penalize large weights.
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Thus, by increasing the regularization strength via the regularization  
parameter λ , we shrink the weights towards zero and decrease the dependence  
of our model on the training data. Let's illustrate this concept in the following  
figure for the L2 penalty term.

The quadratic L2 regularization term is represented by the shaded ball. Here, our 
weight coefficients cannot exceed our regularization budget—the combination of the 
weight coefficients cannot fall outside the shaded area. On the other hand, we still 
want to minimize the cost function. Under the penalty constraint, our best effort is 
to choose the point where the L2 ball intersects with the contours of the unpenalized 
cost function. The larger the value of the regularization parameter λ  gets, the faster 
the penalized cost function grows, which leads to a narrower L2 ball. For example, 
if we increase the regularization parameter towards infinity, the weight coefficients 
will become effectively zero, denoted by the center of the L2 ball. To summarize the 
main message of the example: our goal is to minimize the sum of the unpenalized 
cost function plus the penalty term, which can be understood as adding bias and 
preferring a simpler model to reduce the variance in the absence of sufficient  
training data to fit the model.
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Now let's discuss L1 regularization and sparsity. The main concept behind L1 
regularization is similar to what we have discussed here. However, since the L1 
penalty is the sum of the absolute weight coefficients (remember that the L2 term  
is quadratic), we can represent it as a diamond shape budget, as shown in the 
following figure:

In the preceding figure, we can see that the contour of the cost function touches the 
L1 diamond at 1 0w = . Since the contours of an L1 regularized system are sharp, it is 
more likely that the optimum—that is, the intersection between the ellipses of the 
cost function and the boundary of the L1 diamond—is located on the axes, which 
encourages sparsity. The mathematical details of why L1 regularization can lead to 
sparse solutions are beyond the scope of this book. If you are interested, an excellent 
section on L2 versus L1 regularization can be found in section 3.4 of The Elements of 
Statistical Learning, Trevor Hastie, Robert Tibshirani, and Jerome Friedman, Springer.

For regularized models in scikit-learn that support L1 regularization, we can simply 
set the penalty parameter to 'l1' to yield the sparse solution:

>>> from sklearn.linear_model import LogisticRegression
>>> LogisticRegression(penalty='l1')
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Applied to the standardized Wine data, the L1 regularized logistic regression would 
yield the following sparse solution:

>>> lr = LogisticRegression(penalty='l1', C=0.1)
>>> lr.fit(X_train_std, y_train)
>>> print('Training accuracy:', lr.score(X_train_std, y_train))
Training accuracy: 0.983870967742
>>> print('Test accuracy:', lr.score(X_test_std, y_test))
Test accuracy: 0.981481481481

Both training and test accuracies (both 98 percent) do not indicate any overfitting  
of our model. When we access the intercept terms via the lr.intercept_ attribute, 
we can see that the array returns three values:

>>> lr.intercept_
array([-0.38379237, -0.1580855 , -0.70047966])

Since we the fit the LogisticRegression object on a multiclass dataset, it uses the 
One-vs-Rest (OvR) approach by default where the first intercept belongs to the 
model that fits class 1 versus class 2 and 3; the second value is the intercept of the 
model that fits class 2 versus class 1 and 3; and the third value is the intercept of the 
model that fits class 3 versus class 1 and 2, respectively:

>>> lr.coef_
array([[ 0.280, 0.000, 0.000, -0.0282, 0.000,
         0.000, 0.710, 0.000, 0.000, 0.000,
         0.000, 0.000, 1.236],
       [-0.644, -0.0688 , -0.0572, 0.000, 0.000,
         0.000, 0.000, 0.000, 0.000, -0.927,
         0.060, 0.000, -0.371],
       [ 0.000, 0.061, 0.000, 0.000, 0.000,
         0.000, -0.637, 0.000, 0.000, 0.499,
        -0.358, -0.570, 0.000
       ]])

The weight array that we accessed via the lr.coef_ attribute contains three rows of 
weight coefficients, one weight vector for each class. Each row consists of 13 weights 
where each weight is multiplied by the respective feature in the 13-dimensional 
Wine dataset to calculate the net input:

1 1 0

m T
m m j jj

z w x w x x w
=

= + + = =∑� w x



Chapter 4

[ 117 ]

We notice that the weight vectors are sparse, which means that they only have a few 
non-zero entries. As a result of the L1 regularization, which serves as a method for 
feature selection, we just trained a model that is robust to the potentially irrelevant 
features in this dataset.

Lastly, let's plot the regularization path, which is the weight coefficients of the 
different features for different regularization strengths:

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax = plt.subplot(111)   
>>> colors = ['blue', 'green', 'red', 'cyan', 
...          'magenta', 'yellow', 'black', 
...          'pink', 'lightgreen', 'lightblue', 
...          'gray', 'indigo', 'orange']
>>> weights, params = [], []
>>> for c in np.arange(-4, 6):
...     lr = LogisticRegression(penalty='l1', 
...                             C=10**c, 
...                             random_state=0)
...     lr.fit(X_train_std, y_train)
...     weights.append(lr.coef_[1])
...     params.append(10**c)
>>> weights = np.array(weights)
>>> for column, color in zip(range(weights.shape[1]), colors):
...     plt.plot(params, weights[:, column],
...              label=df_wine.columns[column+1],
...              color=color)
>>> plt.axhline(0, color='black', linestyle='--', linewidth=3)
>>> plt.xlim([10**(-5), 10**5])
>>> plt.ylabel('weight coefficient')
>>> plt.xlabel('C')
>>> plt.xscale('log')
>>> plt.legend(loc='upper left')
>>> ax.legend(loc='upper center', 
...           bbox_to_anchor=(1.38, 1.03),
...           ncol=1, fancybox=True)
>>> plt.show()
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The resulting plot provides us with further insights about the behavior of L1 
regularization. As we can see, all features weights will be zero if we penalize the 
model with a strong regularization parameter ( 0.1C < ); C  is the inverse of the 
regularization parameter λ .

Sequential feature selection algorithms
An alternative way to reduce the complexity of the model and avoid overfitting 
is dimensionality reduction via feature selection, which is especially useful for 
unregularized models. There are two main categories of dimensionality reduction 
techniques: feature selection and feature extraction. Using feature selection, we 
select a subset of the original features. In feature extraction, we derive information 
from the feature set to construct a new feature subspace. In this section, we will  
take a look at a classic family of feature selection algorithms. In the next chapter, 
Chapter 5, Compressing Data via Dimensionality Reduction, we will learn about  
different feature extraction techniques to compress a dataset onto a lower 
dimensional feature subspace.

Sequential feature selection algorithms are a family of greedy search algorithms that 
are used to reduce an initial d-dimensional feature space to a k-dimensional feature 
subspace where k < d. The motivation behind feature selection algorithms is to 
automatically select a subset of features that are most relevant to the problem to 
improve computational efficiency or reduce the generalization error of the model by 
removing irrelevant features or noise, which can be useful for algorithms that don't 
support regularization. A classic sequential feature selection algorithm is Sequential 
Backward Selection (SBS), which aims to reduce the dimensionality of the initial 
feature subspace with a minimum decay in performance of the classifier to improve 
upon computational efficiency. In certain cases, SBS can even improve the predictive 
power of the model if a model suffers from overfitting.
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Greedy algorithms make locally optimal choices at each stage of 
a combinatorial search problem and generally yield a suboptimal 
solution to the problem in contrast to exhaustive search algorithms, 
which evaluate all possible combinations and are guaranteed to find 
the optimal solution. However, in practice, an exhaustive search is 
often computationally not feasible, whereas greedy algorithms allow 
for a less complex, computationally more efficient solution.

The idea behind the SBS algorithm is quite simple: SBS sequentially removes features 
from the full feature subset until the new feature subspace contains the desired 
number of features. In order to determine which feature is to be removed at each 
stage, we need to define criterion function J  that we want to minimize. The criterion 
calculated by the criterion function can simply be the difference in performance of 
the classifier after and before the removal of a particular feature. Then the feature 
to be removed at each stage can simply be defined as the feature that maximizes 
this criterion; or, in more intuitive terms, at each stage we eliminate the feature that 
causes the least performance loss after removal. Based on the preceding definition of 
SBS, we can outline the algorithm in 4 simple steps:

1.	 Initialize the algorithm with k d= , where d is the dimensionality of the full 
feature space dX .

2.	 Determine the feature x−  that maximizes the criterion ( )kargmaxJ− = −x X x ) 
where k∈x X .

3.	 Remove the feature x−  from the feature set: kX  – 1 = 1 , 1k k k k−− = −X - = X x .
4.	 Terminate if k equals the number of desired features, if not, go to step 2.

You can find a detailed evaluation of several sequential 
feature algorithms in Comparative Study of Techniques for Large 
Scale Feature Selection, F. Ferri, P. Pudil, M. Hatef, and J. Kittler. 
Comparative study of techniques for large-scale feature selection. 
Pattern Recognition in Practice IV, pages 403–413, 1994.

Unfortunately, the SBS algorithm is not implemented in scikit-learn, yet. But since it 
is so simple, let's go ahead and implement it in Python from scratch:

from sklearn.base import clone
from itertools import combinations
import numpy as np
from sklearn.cross_validation import train_test_split
from sklearn.metrics import accuracy_score
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class SBS():
    def __init__(self, estimator, k_features, 
        scoring=accuracy_score,
        test_size=0.25, random_state=1):
        self.scoring = scoring
        self.estimator = clone(estimator)
        self.k_features = k_features
        self.test_size = test_size
        self.random_state = random_state

    def fit(self, X, y):
        X_train, X_test, y_train, y_test = \
                train_test_split(X, y, test_size=self.test_size, 
                                 random_state=self.random_state)

        dim = X_train.shape[1]
        self.indices_ = tuple(range(dim))
        self.subsets_ = [self.indices_]
        score = self._calc_score(X_train, y_train, 
                                 X_test, y_test, self.indices_)
        self.scores_ = [score]

        while dim > self.k_features:
            scores = []
            subsets = []

            for p in combinations(self.indices_, r=dim-1):
                score = self._calc_score(X_train, y_train, 
                                         X_test, y_test, p)
                scores.append(score)
                subsets.append(p)

            best = np.argmax(scores)
            self.indices_ = subsets[best]
            self.subsets_.append(self.indices_)
            dim -= 1

            self.scores_.append(scores[best])
        self.k_score_ = self.scores_[-1]

        return self

    def transform(self, X):
        return X[:, self.indices_]
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    def _calc_score(self, X_train, y_train, 
                          X_test, y_test, indices):
        self.estimator.fit(X_train[:, indices], y_train)
        y_pred = self.estimator.predict(X_test[:, indices])
        score = self.scoring(y_test, y_pred)
        return score

In the preceding implementation, we defined the k_features parameter to  
specify the desired number of features we want to return. By default, we use the 
accuracy_score from scikit-learn to evaluate the performance of a model and 
estimator for classification on the feature subsets. Inside the while loop of the fit 
method, the feature subsets created by the itertools.combination function are 
evaluated and reduced until the feature subset has the desired dimensionality. 
In each iteration, the accuracy score of the best subset is collected in a list self.
scores_ based on the internally created test dataset X_test. We will use those 
scores later to evaluate the results. The column indices of the final feature subset are 
assigned to self.indices_, which we can use via the transform method to return 
a new data array with the selected feature columns. Note that, instead of calculating 
the criterion explicitly inside the fit method, we simply removed the feature that is 
not contained in the best performing feature subset.

Now, let's see our SBS implementation in action using the KNN classifier  
from scikit-learn:

>>> from sklearn.neighbors import KNeighborsClassifier
>>> import matplotlib.pyplot as plt
>>> knn = KNeighborsClassifier(n_neighbors=2)
>>> sbs = SBS(knn, k_features=1)
>>> sbs.fit(X_train_std, y_train)

Although our SBS implementation already splits the dataset into a test and  
training dataset inside the fit function, we still fed the training dataset X_train  
to the algorithm. The SBS fit method will then create new training-subsets for 
testing (validation) and training, which is why this test set is also called validation 
dataset. This approach is necessary to prevent our original test set becoming part of the 
training data.

Remember that our SBS algorithm collects the scores of the best feature subset at 
each stage, so let's move on to the more exciting part of our implementation and plot 
the classification accuracy of the KNN classifier that was calculated on the validation 
dataset. The code is as follows:

>>> k_feat = [len(k) for k in sbs.subsets_]
>>> plt.plot(k_feat, sbs.scores_, marker='o')
>>> plt.ylim([0.7, 1.1])
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>>> plt.ylabel('Accuracy')
>>> plt.xlabel('Number of features')
>>> plt.grid()
>>> plt.show()

As we can see in the following plot, the accuracy of the KNN classifier improved on 
the validation dataset as we reduced the number of features, which is likely due to a 
decrease of the curse of dimensionality that we discussed in the context of the KNN 
algorithm in Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn. Also, 
we can see in the following plot that the classifier achieved 100 percent accuracy for 
k={5, 6, 7, 8, 9, 10}:

To satisfy our own curiosity, let's see what those five features are that yielded such a 
good performance on the validation dataset:

>>> k5 = list(sbs.subsets_[8])
>>> print(df_wine.columns[1:][k5])
Index(['Alcohol', 'Malic acid', 'Alcalinity of ash', 'Hue', 
'Proline'], dtype='object')

Using the preceding code, we obtained the column indices of the 5-feature subset 
from the 9th position in the sbs.subsets_ attribute and returned the corresponding 
feature names from the column-index of the pandas Wine DataFrame.



Chapter 4

[ 123 ]

Next let's evaluate the performance of the KNN classifier on the original test set:

>>> knn.fit(X_train_std, y_train)
>>> print('Training accuracy:', knn.score(X_train_std, y_train))
Training accuracy: 0.983870967742
>>> print('Test accuracy:', knn.score(X_test_std, y_test))
Test accuracy: 0.944444444444

In the preceding code, we used the complete feature set and obtained ~98.4 percent 
accuracy on the training dataset. However, the accuracy on the test dataset was 
slightly lower (~94.4 percent), which is an indicator of a slight degree of overfitting. 
Now let's use the selected 5-feature subset and see how well KNN performs:

>>> knn.fit(X_train_std[:, k5], y_train)
>>> print('Training accuracy:', 
...        knn.score(X_train_std[:, k5], y_train))
Training accuracy: 0.959677419355
>>> print('Test accuracy:',
...        knn.score(X_test_std[:, k5], y_test))
Test accuracy: 0.962962962963

Using fewer than half of the original features in the Wine dataset, the prediction 
accuracy on the test set improved by almost 2 percent. Also, we reduced overfitting, 
which we can tell from the small gap between test (~96.3 percent) and training  
(~96.0 percent) accuracy.

Feature selection algorithms in scikit-learn
There are many more feature selection algorithms available via scikit-
learn. Those include recursive backward elimination based on feature 
weights, tree-based methods to select features by importance, and 
univariate statistical tests. A comprehensive discussion of the different 
feature selection methods is beyond the scope of this book, but a good 
summary with illustrative examples can be found at http://scikit-
learn.org/stable/modules/feature_selection.html.

http://scikit-learn.org/stable/modules/feature_selection.html
http://scikit-learn.org/stable/modules/feature_selection.html
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Assessing feature importance with 
random forests
In the previous sections, you learned how to use L1 regularization to zero out 
irrelevant features via logistic regression and use the SBS algorithm for feature 
selection. Another useful approach to select relevant features from a dataset is to  
use a random forest, an ensemble technique that we introduced in Chapter 3,  
A Tour of Machine Learning Classifiers Using Scikit-learn. Using a random forest, we  
can measure feature importance as the averaged impurity decrease computed from 
all decision trees in the forest without making any assumptions whether our data is  
linearly separable or not. Conveniently, the random forest implementation in scikit-
learn already collects feature importances for us so that we can access them via 
the feature_importances_ attribute after fitting a RandomForestClassifier. By 
executing the following code, we will now train a forest of 10,000 trees on the Wine 
dataset and rank the 13 features by their respective importance measures. Remember 
(from our discussion in Chapter 3, A Tour of Machine Learning Classifiers Using  
Scikit-learn) that we don't need to use standardized or normalized tree-based  
models. The code is as follows:

>>> from sklearn.ensemble import RandomForestClassifier
>>> feat_labels = df_wine.columns[1:]
>>> forest = RandomForestClassifier(n_estimators=10000,
...                                random_state=0,
...                                n_jobs=-1)
>>> forest.fit(X_train, y_train)
>>> importances = forest.feature_importances_
>>> indices = np.argsort(importances)[::-1]
>>> for f in range(X_train.shape[1]):
...     print("%2d) %-*s %f" % (f + 1, 30, 
...                             feat_labels[f], 
...                             importances[indices[f]]))
1) Alcohol                        0.182508
2) Malic acid                     0.158574
3) Ash                            0.150954
4) Alcalinity of ash              0.131983
5) Magnesium                      0.106564
6) Total phenols                  0.078249
7) Flavanoids                     0.060717
8) Nonflavanoid phenols           0.032039
9) Proanthocyanins                0.025385
10) Color intensity               0.022369
11) Hue                           0.022070
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12) OD280/OD315 of diluted wines  0.014655
13) Proline                       0.013933
>>> plt.title('Feature Importances')
>>> plt.bar(range(X_train.shape[1]), 
...         importances[indices],
...         color='lightblue', 
...         align='center')
>>> plt.xticks(range(X_train.shape[1]), 
...            feat_labels, rotation=90)
>>> plt.xlim([-1, X_train.shape[1]])
>>> plt.tight_layout()
>>> plt.show()

After executing the preceding code, we created a plot that ranks the different features 
in the Wine dataset by their relative importance; note that the feature importances 
are normalized so that they sum up to 1.0.
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We can conclude that the alcohol content of wine is the most discriminative feature 
in the dataset based on the average impurity decrease in the 10,000 decision trees. 
Interestingly, the three top-ranked features in the preceding plot are also among the 
top five features in the selection by the SBS algorithm that we implemented in the 
previous section. However, as far as interpretability is concerned, the random forest 
technique comes with an important gotcha that is worth mentioning. For instance, if 
two or more features are highly correlated, one feature may be ranked very highly 
while the information of the other feature(s) may not be fully captured. On the other 
hand, we don't need to be concerned about this problem if we are merely interested 
in the predictive performance of a model rather than the interpretation of feature 
importances. To conclude this section about feature importances and random forests, 
it is worth mentioning that scikit-learn also implements a transform method that 
selects features based on a user-specified threshold after model fitting, which is 
useful if we want to use the RandomForestClassifier as a feature selector and 
intermediate step in a scikit-learn pipeline, which allows us to connect different 
preprocessing steps with an estimator, as we will see in Chapter 6, Learning Best 
Practices for Model Evaluation and Hyperparameter Tuning. For example, we could set 
the threshold to 0.15 to reduce the dataset to the 3 most important features, Alcohol, 
Malic acid, and Ash using the following code:

>>> X_selected = forest.transform(X_train, threshold=0.15)
>>> X_selected.shape
(124, 3)

Summary
We started this chapter by looking at useful techniques to make sure that we handle 
missing data correctly. Before we feed data to a machine learning algorithm, we also 
have to make sure that we encode categorical variables correctly, and we have seen 
how we can map ordinal and nominal features values to integer representations.

Moreover, we briefly discussed L1 regularization, which can help us to avoid 
overfitting by reducing the complexity of a model. As an alternative approach for 
removing irrelevant features, we used a sequential feature selection algorithm to 
select meaningful features from a dataset.

In the next chapter, you will learn about yet another useful approach to 
dimensionality reduction: feature extraction. It allows us to compress features  
onto a lower dimensional subspace rather than removing features entirely as in 
feature selection.
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Compressing Data via 
Dimensionality Reduction

In Chapter 4, Building Good Training Sets – Data Preprocessing, you learned about the 
different approaches for reducing the dimensionality of a dataset using different 
feature selection techniques. An alternative approach to feature selection for 
dimensionality reduction is feature extraction. In this chapter, you will learn about three 
fundamental techniques that will help us to summarize the information content of a 
dataset by transforming it onto a new feature subspace of lower dimensionality than 
the original one. Data compression is an important topic in machine learning, and it 
helps us to store and analyze the increasing amounts of data that are produced  
and collected in the modern age of technology. In this chapter, we will cover the 
following topics:

•	 Principal component analysis (PCA) for unsupervised data compression
•	 Linear Discriminant Analysis (LDA) as a supervised dimensionality 

reduction technique for maximizing class separability
•	 Nonlinear dimensionality reduction via kernel principal  

component analysis
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Unsupervised dimensionality reduction 
via principal component analysis
Similar to feature selection, we can use feature extraction to reduce the number of 
features in a dataset. However, while we maintained the original features when we 
used feature selection algorithms, such as sequential backward selection, we use feature 
extraction to transform or project the data onto a new feature space. In the context  
of dimensionality reduction, feature extraction can be understood as an approach  
to data compression with the goal of maintaining most of the relevant information. 
Feature extraction is typically used to improve computational efficiency but can 
also help to reduce the curse of dimensionality—especially if we are working with 
nonregularized models.

Principal component analysis (PCA) is an unsupervised linear transformation 
technique that is widely used across different fields, most prominently for 
dimensionality reduction. Other popular applications of PCA include exploratory 
data analyses and de-noising of signals in stock market trading, and the analysis 
genome data and gene expression levels in the field of bioinformatics. PCA helps us 
to identify patterns in data based on the correlation between features. In a nutshell, 
PCA aims to find the directions of maximum variance in high-dimensional data and 
projects it onto a new subspace with equal or fewer dimensions that the original one. 
The orthogonal axes (principal components) of the new subspace can be interpreted 
as the directions of maximum variance given the constraint that the new feature axes 
are orthogonal to each other as illustrated in the following figure. Here, 1x  and 2x  are 
the original feature axes, and PC1 and PC2 are the principal components:
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If we use PCA for dimensionality reduction, we construct a d k× -dimensional 
transformation matrix W  that allows us to map a sample vector x  onto a new  
k -dimensional feature subspace that has fewer dimensions than the original  
d -dimensional feature space:

[ ]1 2, , , , dx x x= … ∈Rdx x  

,  ×↓ ∈Rd kxW W

[ ]1 2, , , , kz z z= … ∈z z Rk  

As a result of transforming the original d -dimensional data onto this new  
k -dimensional subspace (typically k d<< ), the first principal component will have 
the largest possible variance, and all consequent principal components will have the 
largest possible variance given that they are uncorrelated (orthogonal) to the other 
principal components. Note that the PCA directions are highly sensitive to data 
scaling, and we need to standardize the features prior to PCA if the features were 
measured on different scales and we want to assign equal importance to all features.

Before looking at the PCA algorithm for dimensionality reduction in more detail, 
let's summarize the approach in a few simple steps:

1.	 Standardize the d -dimensional dataset.
2.	 Construct the covariance matrix.
3.	 Decompose the covariance matrix into its eigenvectors and eigenvalues.
4.	 Select k  eigenvectors that correspond to the k  largest eigenvalues,  

where k  is the dimensionality of the new feature subspace ( k d≤ ).
5.	 Construct a projection matrix W  from the "top" k  eigenvectors.
6.	 Transform the d -dimensional input dataset X  using the projection  

matrix W  to obtain the new k -dimensional feature subspace.
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Total and explained variance
In this subsection, we will tackle the first four steps of a principal component 
analysis: standardizing the data, constructing the covariance matrix, obtaining the 
eigenvalues and eigenvectors of the covariance matrix, and sorting the eigenvalues 
by decreasing order to rank the eigenvectors.

First, we will start by loading the Wine dataset that we have been working with  
in Chapter 4, Building Good Training Sets – Data Preprocessing:

>>> import pandas as pd
>>> df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/machine-
learning-databases/wine/wine.data', header=None)

Next, we will process the Wine data into separate training and test sets—using 70 
percent and 30 percent of the data, respectively—and standardize it to unit variance.

>>> from sklearn.cross_validation import train_test_split
>>> from sklearn.preprocessing import StandardScaler
>>> X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values
>>> X_train, X_test, y_train, y_test = \
...              train_test_split(X, y,
...              test_size=0.3, random_state=0)
>>> sc = StandardScaler()
>>> X_train_std = sc.fit_transform(X_train)
>>> X_test_std = sc.fit_transform(X_test)

After completing the mandatory preprocessing steps by executing the preceding 
code, let's advance to the second step: constructing the covariance matrix. The 
symmetric d d× -dimensional covariance matrix, where d  is the number of 
dimensions in the dataset, stores the pairwise covariances between the different 
features. For example, the covariance between two features jx  and xk  on the 
population level can be calculated via the following equation:

( )( ) ( )( )
1

1 n
i i

jk j j k k
i

x x
n

σ µ µ
=

= − −∑

Here, jµ  and kµ  are the sample means of feature  and k , respectively. Note that 
the sample means are zero if we standardize the dataset. A positive covariance 
between two features indicates that the features increase or decrease together, 
whereas a negative covariance indicates that the features vary in opposite directions. 
For example, a covariance matrix of three features can then be written as (note that ∑  
stands for the Greek letter sigma, which is not to be confused with the sum symbol):
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2
1 12 13
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∑

The eigenvectors of the covariance matrix represent the principal components  
(the directions of maximum variance), whereas the corresponding eigenvalues 
will define their magnitude. In the case of the Wine dataset, we would obtain 13 
eigenvectors and eigenvalues from the 13 13× -dimensional covariance matrix.

Now, let's obtain the eigenpairs of the covariance matrix. As we surely remember 
from our introductory linear algebra or calculus classes, an eigenvalue v  satisfies  
the following condition:

λΣ =v v

Here, λ  is a scalar: the eigenvalue. Since the manual computation of eigenvectors 
and eigenvalues is a somewhat tedious and elaborate task, we will use the  
linalg.eig function from NumPy to obtain the eigenpairs of the Wine  
covariance matrix:

>>> import numpy as np
>>> cov_mat = np.cov(X_train_std.T)
>>> eigen_vals, eigen_vecs = np.linalg.eig(cov_mat)
>>> print('\nEigenvalues \n%s' % eigen_vals)
Eigenvalues 
[ 4.8923083   2.46635032  1.42809973  1.01233462  0.84906459  
0.60181514
0.52251546  0.08414846  0.33051429  0.29595018  0.16831254  0.21432212
0.2399553 ]

Using the numpy.cov function, we computed the covariance matrix of the 
standardized training dataset. Using the linalg.eig function, we performed the 
eigendecomposition that yielded a vector (eigen_vals) consisting of 13 eigenvalues 
and the corresponding eigenvectors stored as columns in a 13 13× -dimensional  
matrix (eigen_vecs).

Since we want to reduce the dimensionality of our dataset by compressing it onto 
a new feature subspace, we only select the subset of the eigenvectors (principal 
components) that contains most of the information (variance). Since the eigenvalues 
define the magnitude of the eigenvectors, we have to sort the eigenvalues by 
decreasing magnitude; we are interested in the top k  eigenvectors based on the 
values of their corresponding eigenvalues. But before we collect those k  most 
informative eigenvectors, let's plot the variance explained ratios of the eigenvalues.
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The variance explained ratio of an eigenvalue jλ  is simply the fraction of an 
eigenvalue jλ  and the total sum of the eigenvalues:

1

j
d

jj

λ

λ
=∑

Using the NumPy cumsum function, we can then calculate the cumulative sum of 
explained variances, which we will plot via matplotlib's step function:

>>> tot = sum(eigen_vals)
>>> var_exp = [(i / tot) for i in
...            sorted(eigen_vals, reverse=True)]
>>> cum_var_exp = np.cumsum(var_exp)

>>> import matplotlib.pyplot as plt
>>> plt.bar(range(1,14), var_exp, alpha=0.5, align='center',
...         label='individual explained variance')
>>> plt.step(range(1,14), cum_var_exp, where='mid',
...         label='cumulative explained variance')
>>> plt.ylabel('Explained variance ratio')
>>> plt.xlabel('Principal components')
>>> plt.legend(loc='best')
>>> plt.show()

The resulting plot indicates that the first principal component alone accounts for 
40 percent of the variance. Also, we can see that the first two principal components 
combined explain almost 60 percent of the variance in the data:
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Although the explained variance plot reminds us of the feature importance that we 
computed in Chapter 4, Building Good Training Sets – Data Preprocessing, via random 
forests, we shall remind ourselves that PCA is an unsupervised method, which 
means that information about the class labels is ignored. Whereas a random forest 
uses the class membership information to compute the node impurities, variance 
measures the spread of values along a feature axis.

Feature transformation
After we have successfully decomposed the covariance matrix into eigenpairs,  
let's now proceed with the last three steps to transform the Wine dataset onto  
the new principal component axes. In this section, we will sort the eigenpairs  
by descending order of the eigenvalues, construct a projection matrix from the 
selected eigenvectors, and use the projection matrix to transform the data onto  
the lower-dimensional subspace.

We start by sorting the eigenpairs by decreasing order of the eigenvalues:

>>> eigen_pairs =[(np.abs(eigen_vals[i]),eigen_vecs[:,i])
...              for i inrange(len(eigen_vals))]
>>> eigen_pairs.sort(reverse=True)

Next, we collect the two eigenvectors that correspond to the two largest values to 
capture about 60 percent of the variance in this dataset. Note that we only chose two 
eigenvectors for the purpose of illustration, since we are going to plot the data via 
a two-dimensional scatter plot later in this subsection. In practice, the number of 
principal components has to be determined from a trade-off between computational 
efficiency and the performance of the classifier:

>>> w= np.hstack((eigen_pairs[0][1][:, np.newaxis],
...               eigen_pairs[1][1][:, np.newaxis]))
>>> print('Matrix W:\n',w)
Matrix W:
[[ 0.14669811  0.50417079]
[-0.24224554  0.24216889]
[-0.02993442  0.28698484]
[-0.25519002 -0.06468718]
[ 0.12079772  0.22995385]
[ 0.38934455  0.09363991]
[ 0.42326486  0.01088622]
[-0.30634956  0.01870216]
[ 0.30572219  0.03040352]
[-0.09869191  0.54527081]
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[ 0.30032535 -0.27924322]
[ 0.36821154 -0.174365  ]
[ 0.29259713  0.36315461]]

By executing the preceding code, we have created a 13 2× -dimensional projection 
matrix W  from the top two eigenvectors. Using the projection matrix, we can now 
transform a sample x  (represented as 1 13× -dimensional row vector) onto the PCA 
subspace obtaining ′x , a now two-dimensional sample vector consisting of two  
new features:

′x = xW

>>> X_train_std[0].dot(w)
array([ 2.59891628,  0.00484089])

Similarly, we can transform the entire 124 13× -dimensional training dataset onto the 
two principal components by calculating the matrix dot product:

′X = XW

>>> X_train_pca = X_train_std.dot(w)

Lastly, let's visualize the transformed Wine training set, now stored as an  
124 2× -dimensional matrix, in a two-dimensional scatterplot:

>>> colors = ['r', 'b', 'g']
>>> markers = ['s', 'x', 'o']
>>> for l, c, m in zip(np.unique(y_train), colors, markers):
...     plt.scatter(X_train_pca[y_train==l, 0], 
...                 X_train_pca[y_train==l, 1], 
...                 c=c, label=l, marker=m) 
>>> plt.xlabel('PC 1')
>>> plt.ylabel('PC 2')
>>> plt.legend(loc='lower left')
>>> plt.show()

As we can see in the resulting plot (shown in the next figure), the data is more 
spread along the x-axis—the first principal component—than the second principal 
component (y-axis), which is consistent with the explained variance ratio plot that 
we created in the previous subsection. However, we can intuitively see that a linear 
classifier will likely be able to separate the classes well:
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Although we encoded the class labels information for the purpose of illustration in 
the preceding scatter plot, we have to keep in mind that PCA is an unsupervised 
technique that doesn't use class label information.

Principal component analysis in scikit-learn
Although the verbose approach in the previous subsection helped us to follow the 
inner workings of PCA, we will now discuss how to use the PCA class implemented 
in scikit-learn. PCA is another one of scikit-learn's transformer classes, where we first 
fit the model using the training data before we transform both the training data and 
the test data using the same model parameters. Now, let's use the PCA from scikit-
learn on the Wine training dataset, classify the transformed samples via logistic 
regression, and visualize the decision regions via the plot_decision_region 
function that we defined in Chapter 2, Training Machine Learning Algorithms  
for Classification:

from matplotlib.colors import ListedColormap

def plot_decision_regions(X, y, classifier, resolution=0.02):

    # setup marker generator and color map
    markers = ('s', 'x', 'o', '^', 'v')
    colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
    cmap = ListedColormap(colors[:len(np.unique(y))])

    # plot the decision surface
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    x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
                         np.arange(x2_min, x2_max, resolution))
    Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
    Z = Z.reshape(xx1.shape)
    plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)
    plt.xlim(xx1.min(), xx1.max())
    plt.ylim(xx2.min(), xx2.max())

    # plot class samples
    for idx, cl in enumerate(np.unique(y)):
        plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1],
                    alpha=0.8, c=cmap(idx),
                    marker=markers[idx], label=cl)

>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.decomposition import PCA
>>> pca = PCA(n_components=2)
>>> lr = LogisticRegression()
>>> X_train_pca = pca.fit_transform(X_train_std)
>>> X_test_pca = pca.transform(X_test_std)
>>> lr.fit(X_train_pca, y_train)
>>> plot_decision_regions(X_train_pca, y_train, classifier=lr)
>>> plt.xlabel('PC1')
>>> plt.ylabel('PC2')
>>> plt.legend(loc='lower left')
>>> plt.show()

By executing the preceding code, we should now see the decision regions for the 
training model reduced to the two principal component axes.
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If we compare the PCA projection via scikit-learn with our own PCA 
implementation, we notice that the plot above is a mirror image of the previous 
PCA via our step-by-step approach. Note that this is not due to an error in any of 
those two implementations, but the reason for this difference is that, depending on 
the eigensolver, eigenvectors can have either negative or positive signs. Not that it 
matters, but we could simply revert the mirror image by multiplying the data with 
-1 if we wanted to; note that eigenvectors are typically scaled to unit length 1. For 
the sake of completeness, let's plot the decision regions of the logistic regression on 
the transformed test dataset to see if it can separate the classes well:

>>> plot_decision_regions(X_test_pca, y_test, classifier=lr)
>>> plt.xlabel('PC1')
>>> plt.ylabel('PC2')
>>> plt.legend(loc='lower left')
>>> plt.show()

After we plot the decision regions for the test set by executing the preceding code, 
we can see that logistic regression performs quite well on this small two-dimensional 
feature subspace and only misclassifies one sample in the test dataset.

If we are interested in the explained variance ratios of the different principal 
components, we can simply initialize the PCA class with the n_components parameter 
set to None, so all principal components are kept and the explained variance ratio can 
then be accessed via the explained_variance_ratio_ attribute:

>>> pca = PCA(n_components=None)
>>> X_train_pca = pca.fit_transform(X_train_std)
>>> pca.explained_variance_ratio_
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array([ 0.37329648,  0.18818926,  0.10896791,  0.07724389,  
0.06478595,
0.04592014,  0.03986936,  0.02521914,  0.02258181,  0.01830924,
0.01635336,  0.01284271,  0.00642076])

Note that we set n_components=None when we initialized the PCA class so that 
it would return all principal components in sorted order instead of performing a 
dimensionality reduction.

Supervised data compression via linear 
discriminant analysis
Linear Discriminant Analysis (LDA) can be used as a technique for feature 
extraction to increase the computational efficiency and reduce the degree of  
over-fitting due to the curse of dimensionality in nonregularized models.

The general concept behind LDA is very similar to PCA, whereas PCA attempts to 
find the orthogonal component axes of maximum variance in a dataset; the goal in 
LDA is to find the feature subspace that optimizes class separability. Both LDA and 
PCA are linear transformation techniques that can be used to reduce the number of 
dimensions in a dataset; the former is an unsupervised algorithm, whereas the latter is 
supervised. Thus, we might intuitively think that LDA is a superior feature extraction 
technique for classification tasks compared to PCA. However, A.M. Martinez reported 
that preprocessing via PCA tends to result in better classification results in an image 
recognition task in certain cases, for instance, if each class consists of only a small 
number of samples (A. M. Martinez and A. C. Kak. PCA Versus LDA. Pattern  
Analysis and Machine Intelligence, IEEE Transactions on, 23(2):228–233, 2001).

Although LDA is sometimes also called Fisher's LDA, Ronald A. 
Fisher initially formulated Fisher's Linear Discriminant for two-class 
classification problems in 1936 (R. A. Fisher. The Use of Multiple 
Measurements in Taxonomic Problems. Annals of Eugenics, 7(2):179–188, 
1936). Fisher's Linear Discriminant was later generalized for  
multi-class problems by C. Radhakrishna Rao under the assumption  
of equal class covariances and normally distributed classes in 
1948, which we now call LDA (C. R. Rao. The Utilization of Multiple 
Measurements in Problems of Biological Classification. Journal of the Royal 
Statistical Society. Series B (Methodological), 10(2):159–203, 1948).
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The following figure summarizes the concept of LDA for a two-class problem. 
Samples from class 1 are shown as crosses and samples from class 2 are shown  
as circles, respectively:

A linear discriminant, as shown on the x-axis (LD 1), would separate the two 
normally distributed classes well. Although the exemplary linear discriminant 
shown on the y-axis (LD 2) captures a lot of the variance in the dataset, it  
would fail as a good linear discriminant since it does not capture any of the  
class-discriminatory information.

One assumption in LDA is that the data is normally distributed. Also, we assume 
that the classes have identical covariance matrices and that the features are 
statistically independent of each other. However, even if one or more of those 
assumptions are slightly violated, LDA for dimensionality reduction can still work 
reasonably well (R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. 2nd. 
Edition. New York, 2001).

Before we take a look into the inner workings of LDA in the following subsections, 
let's summarize the key steps of the LDA approach:

1.	 Standardize the d -dimensional dataset ( d  is the number of features).
2.	 For each class, compute the d -dimensional mean vector.
3.	 Construct the between-class scatter matrix BS  and the within-class scatter 

matrix wS .
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4.	 Compute the eigenvectors and corresponding eigenvalues of the  
matrix 1

w B
−S S .

5.	 Choose the k  eigenvectors that correspond to the k  largest eigenvalues to 
construct a d k× -dimensional transformation matrix W ; the eigenvectors are 
the columns of this matrix.

6.	 Project the samples onto the new feature subspace using the transformation 
matrix W .

The assumptions that we make when we are using LDA are that the 
features are normally distributed and independent of each other. 
Also, the LDA algorithm assumes that the covariance matrices for the 
individual classes are identical. However, even if we violate those 
assumptions to a certain extent, LDA may still work reasonably well in 
dimensionality reduction and classification tasks (R. O. Duda, P. E. Hart, 
and D. G. Stork. Pattern Classification. 2nd. Edition. New York, 2001).

Computing the scatter matrices
Since we have already standardized the features of the Wine dataset in the PCA 
section at the beginning of this chapter, we can skip the first step and proceed with 
the calculation of the mean vectors, which we will use to construct the within-class 
scatter matrix and between-class scatter matrix, respectively. Each mean vector im  
stores the mean feature value mµ  with respect to the samples of class i :

1

i

c

i m
Din ∈

= ∑
x

m x

This results in three mean vectors:

{ }
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,  

, 
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i alcohol
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i
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µ

 
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>>> np.set_printoptions(precision=4)
>>> mean_vecs = []
>>> for label in range(1,4):
...     mean_vecs.append(np.mean(
...                X_train_std[y_train==label], axis=0))
...     print('MV %s: %s\n' %(label, mean_vecs[label-1]))
MV 1: [ 0.9259 -0.3091  0.2592 -0.7989  0.3039  0.9608  1.0515 -0.6306  
0.5354
  0.2209  0.4855  0.798   1.2017]

MV 2: [-0.8727 -0.3854 -0.4437  0.2481 -0.2409 -0.1059  0.0187 -0.0164  
0.1095
 -0.8796  0.4392  0.2776 -0.7016]

MV 3: [ 0.1637  0.8929  0.3249  0.5658 -0.01   -0.9499 -1.228   0.7436 
-0.7652
  0.979  -1.1698 -1.3007 -0.3912]

Using the mean vectors, we can now compute the within-class scatter matrix WS :

1

c

W i
i=

=∑S S

This is calculated by summing up the individual scatter matrices iS  of each 
individual class i :

( )( )
i

c
T

i i i
D∈

= − −∑
x

S x m x m

>>> d = 13 # number of features
>>> S_W = np.zeros((d, d))
>>> for label,mv in zip(range(1,4), mean_vecs):
...     class_scatter = np.zeros((d, d)) 
...     for row in X[y == label]:
...         row, mv = row.reshape(d, 1), mv.reshape(d, 1) 
...         class_scatter += (row-mv).dot((row-mv).T)
...     S_W += class_scatter                             
>>> print('Within-class scatter matrix: %sx%s'
...        % (S_W.shape[0], S_W.shape[1]))
Within-class scatter matrix: 13x13



Compressing Data via Dimensionality Reduction

[ 142 ]

The assumption that we are making when we are computing the scatter matrices  
is that the class labels in the training set are uniformly distributed. However, if  
we print the number of class labels, we see that this assumption is violated:

>>> print('Class label distribution: %s' 
...       % np.bincount(y_train)[1:])
Class label distribution: [40 49 35]

Thus, we want to scale the individual scatter matrices iS  before we sum them up 
as scatter matrix wS . When we divide the scatter matrices by the number of class 
samples iN , we can see that computing the scatter matrix is in fact the same as 
computing the covariance matrix i∑ . The covariance matrix is a normalized  
version of the scatter matrix:

( )( )1 1

i

c
T

i W i i
Di iN N ∈

∑ = = − −∑
x

S x m x m

>>> d = 13 # number of features
>>> S_W = np.zeros((d, d))
>>> for label,mv in zip(range(1, 4), mean_vecs):
...     class_scatter = np.cov(X_train_std[y_train==label].T)
...     S_W += class_scatter
>>> print('Scaled within-class scatter matrix: %sx%s' 
...       % (S_W.shape[0], S_W.shape[1]))
Scaled within-class scatter matrix: 13x13

After we have computed the scaled within-class scatter matrix (or covariance 
matrix), we can move on to the next step and compute the between-class scatter 
matrix BS :

( )( )
1

T
i i i

i

N
=

= − −∑
c

BS m m m m

Here, m  is the overall mean that is computed, including samples from all classes.

>>> mean_overall = np.mean(X_train_std, axis=0)
>>> d = 13 # number of features
>>> S_B = np.zeros((d, d))
>>> for i,mean_vec in enumerate(mean_vecs):
...     n = X[y==i+1, :].shape[0]
...     mean_vec = mean_vec.reshape(d, 1)
...     mean_overall = mean_overall.reshape(d, 1) 
    S_B += n * (mean_vec - mean_overall).dot(
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...                (mean_vec - mean_overall).T)
print('Between-class scatter matrix: %sx%s' 
...    % (S_B.shape[0], S_B.shape[1]))
Between-class scatter matrix: 13x13

Selecting linear discriminants for the new 
feature subspace
The remaining steps of the LDA are similar to the steps of the PCA. However, 
instead of performing the eigendecomposition on the covariance matrix, we solve  
the generalized eigenvalue problem of the matrix 1

w B
−S S :

>>>eigen_vals, eigen_vecs =\
...np.linalg.eig(np.linalg.inv(S_W).dot(S_B))

After we computed the eigenpairs, we can now sort the eigenvalues in  
descending order:

>>> eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:,i]) 
...              for i in range(len(eigen_vals))]
>>> eigen_pairs = sorted(eigen_pairs, 
...               key=lambda k: k[0], reverse=True)
>>> print('Eigenvalues in decreasing order:\n')
>>> for eigen_val in eigen_pairs:
...     print(eigen_val[0])

Eigenvalues in decreasing order:

643.015384346
225.086981854
1.37146633984e-13
5.68434188608e-14
4.16877714935e-14
4.16877714935e-14
3.76733516161e-14
3.7544790902e-14
3.7544790902e-14
2.30295239559e-14
2.30295239559e-14
1.9101018959e-14
3.86601693797e-16
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Those who are a little more familiar with linear algebra may know that the rank of 
the d d× -dimensional covariance matrix can be at most 1d − , and we can indeed see 
that we only have two nonzero eigenvalues (the eigenvalues 3-13 are not exactly 
zero, but this is due to the floating point arithmetic in NumPy). Note that in the  
rare case of perfect collinearity (all aligned sample points fall on a straight line),  
the covariance matrix would have rank one, which would result in only one 
eigenvector with a nonzero eigenvalue.

To measure how much of the class-discriminatory information is captured by the 
linear discriminants (eigenvectors), let's plot the linear discriminants by decreasing 
eigenvalues similar to the explained variance plot that we created in the PCA section. 
For simplicity, we will call the content of the class-discriminatory information 
discriminability.

>>> tot = sum(eigen_vals.real)
>>> discr = [(i / tot) for i in sorted(eigen_vals.real, reverse=True)]
>>> cum_discr = np.cumsum(discr)
>>> plt.bar(range(1, 14), discr, alpha=0.5, align='center',
...         label='individual "discriminability"')
>>> plt.step(range(1, 14), cum_discr, where='mid',
...          label='cumulative "discriminability"')
>>> plt.ylabel('"discriminability" ratio')
>>> plt.xlabel('Linear Discriminants')
>>> plt.ylim([-0.1, 1.1])
>>> plt.legend(loc='best')
>>> plt.show()

As we can see in the resulting figure, the first two linear discriminants capture  
about 100 percent of the useful information in the Wine training dataset:
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Let's now stack the two most discriminative eigenvector columns to create the 
transformation matrix W :

>>> w = np.hstack((eigen_pairs[0][1][:, np.newaxis].real,
...                eigen_pairs[1][1][:, np.newaxis].real))
>>> print('Matrix W:\n', w)
Matrix W:
 [[-0.0707 -0.3778]
 [ 0.0359 -0.2223]
 [-0.0263 -0.3813]
 [ 0.1875  0.2955]
 [-0.0033  0.0143]
 [ 0.2328  0.0151]
 [-0.7719  0.2149]
 [-0.0803  0.0726]
 [ 0.0896  0.1767]
 [ 0.1815 -0.2909]
 [-0.0631  0.2376]
 [-0.3794  0.0867]
 [-0.3355 -0.586 ]]

Projecting samples onto the new feature 
space
Using the transformation matrix W  that we created in the previous subsection,  
we can now transform the training data set by multiplying the matrices:

′ =X XW

>>> X_train_lda = X_train_std.dot(w)
>>> colors = ['r', 'b', 'g']
>>> markers = ['s', 'x', 'o']
>>> for l, c, m in zip(np.unique(y_train), colors, markers):
...     plt.scatter(X_train_lda[y_train==l, 0], 
...                 X_train_lda[y_train==l, 1], 
...                 c=c, label=l, marker=m)
>>> plt.xlabel('LD 1')
>>> plt.ylabel('LD 2')
>>> plt.legend(loc='upper right')
>>> plt.show()
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As we can see in the resulting plot, the three wine classes are now linearly separable 
in the new feature subspace:

LDA via scikit-learn
The step-by-step implementation was a good exercise for understanding the inner 
workings of LDA and understanding the differences between LDA and PCA.  
Now, let's take a look at the LDA class implemented in scikit-learn:

>>> from sklearn.lda import LDA
>>> lda = LDA(n_components=2)
>>> X_train_lda = lda.fit_transform(X_train_std, y_train)

Next, let's see how the logistic regression classifier handles the lower-dimensional 
training dataset after the LDA transformation:

>>> lr = LogisticRegression()
>>> lr = lr.fit(X_train_lda, y_train)
>>> plot_decision_regions(X_train_lda, y_train, classifier=lr)
>>> plt.xlabel('LD 1')
>>> plt.ylabel('LD 2')
>>> plt.legend(loc='lower left')
>>> plt.show()
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Looking at the resulting plot, we see that the logistic regression model misclassifies 
one of the samples from class 2:

By lowering the regularization strength, we could probably shift the decision 
boundaries so that the logistic regression models classify all samples in the training 
dataset correctly. However, let's take a look at the results on the test set:

>>> X_test_lda = lda.transform(X_test_std)
>>> plot_decision_regions(X_test_lda, y_test, classifier=lr)
>>> plt.xlabel('LD 1')
>>> plt.ylabel('LD 2')
>>> plt.legend(loc='lower left')
>>> plt.show()

As we can see in the resulting plot, the logistic regression classifier is able to get a 
perfect accuracy score for classifying the samples in the test dataset by only using a 
two-dimensional feature subspace instead of the original 13 Wine features:
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Using kernel principal component 
analysis for nonlinear mappings
Many machine learning algorithms make assumptions about the linear separability 
of the input data. You learned that the perceptron even requires perfectly linearly 
separable training data to converge. Other algorithms that we have covered so far 
assume that the lack of perfect linear separability is due to noise: Adaline, logistic 
regression, and the (standard) support vector machine (SVM) to just name a few. 
However, if we are dealing with nonlinear problems, which we may encounter 
rather frequently in real-world applications, linear transformation techniques for 
dimensionality reduction, such as PCA and LDA, may not be the best choice. In this 
section, we will take a look at a kernelized version of PCA, or kernel PCA, which 
relates to the concepts of kernel SVM that we remember from Chapter 3, A Tour of 
Machine Learning Classifiers Using Scikit-learn. Using kernel PCA, we will learn how to 
transform data that is not linearly separable onto a new, lower-dimensional subspace 
that is suitable for linear classifiers.

Kernel functions and the kernel trick
As we remember from our discussion about kernel SVMs in Chapter 3, A Tour of 
Machine Learning Classifiers Using Scikit-learn, we can tackle nonlinear problems  
by projecting them onto a new feature space of higher dimensionality where the 
classes become linearly separable. To transform the samples  d∈Rx  onto this higher  
k -dimensional subspace, we defined a nonlinear mapping function φ :

( ): d k k dφ → >>� �
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We can think of φ  as a function that creates nonlinear combinations of the original 
features to map the original d -dimensional dataset onto a larger, k -dimensional 
feature space. For example, if we had feature vector  d∈Rx ( x  is a column vector 
consisting of d  features) with two dimensions ( )2d = , a potential mapping onto  
a 3D space could be as follows:

[ ]1 2 ,  Tx x=x

φ↓

2 2
1 1 2 2 , 2 , 

T
x x x x =  z

In other words, via kernel PCA we perform a nonlinear mapping that  
transforms the data onto a higher-dimensional space and use standard PCA in this 
higher-dimensional space to project the data back onto a lower-dimensional space 
where the samples can be separated by a linear classifier (under the condition that the 
samples can be separated by density in the input space). However, one downside of 
this approach is that it is computationally very expensive, and this is where we use  
the kernel trick. Using the kernel trick, we can compute the similarity between two 
high-dimension feature vectors in the original feature space.

Before we proceed with more details about using the kernel trick to tackle this 
computationally expensive problem, let's look back at the standard PCA approach 
that we implemented at the beginning of this chapter. We computed the covariance 
between two features k  and j  as follows:

( )( ) ( )( )
1

1 n
i i

jk j j k k
i

x x
n

σ µ µ
=

= − −∑

Since the standardizing of features centers them at mean zero, for instance, ( )1  0i

i

x
n

=∑ j ,  
we can simplify this equation as follows:

( ) ( )

1

1 n
i i

jk j k
i

x x
n

σ
=

= ∑
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Note that the preceding equation refers to the covariance between two features;  
now, let's write the general equation to calculate the covariance matrix ∑ :

( ) ( )

1

1  
n

T

in =

=∑ ∑ i ix x

Bernhard Scholkopf generalized this approach (B. Scholkopf, A. Smola, and  
K.-R. Muller. Kernel Principal Component Analysis. pages 583–588, 1997) so that we 
can replace the dot products between samples in the original feature space by the 
nonlinear feature combinations via φ :

( )( ) ( )

1
( )1 T

n

in
φ φ

=

=∑ ∑ i ix x

To obtain the eigenvectors—the principal components—from this covariance matrix, 
we have to solve the following equation:

( )( ) ( )( )
1

1  
T

i

i
n

i

n
φ φ λ

=

⇒ =∑ x x v v

( )( ) ( )( ) ( ) ( )( )
1 1

1 1 i i
n nT i i

i i

v
n n

φ φ φ
λ = =

⇒ = =∑ ∑x x v a x

Here, λ  and v  are the eigenvalues and eigenvectors of the covariance matrix , and 
a  can be obtained by extracting the eigenvectors of the kernel (similarity) matrix K  
as we will see in the following paragraphs.

The derivation of the kernel matrix is as follows:

First, let's write the covariance matrix as in matrix notation, where ( )Xφ  is an  
n k× -dimensional matrix:

( )( ) ( )( ) ( ) ( )
1

1 1  
n T T

in n
φ φ φ φ

=

= =∑ ∑ i ix x X X
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Now, we can write the eigenvector equation as follows:

( ) ( )( ) ( )
1

1 n
T

i

v a
n

φ λφ
=

= =∑ i ix X a

Since λΣ =v v , we get:

( ) ( ) ( ) ( )1 T T T

n
φ φ φ λφ=X X X a X a

Multiplying it by ( )φ X  on both sides yields the following result:

( ) ( ) ( ) ( ) ( ) ( )1 T T T

n
φ φ φ φ λφ φ=X X X X a X X a

( ) ( )1 T

n
φ φ λ⇒ =X X a a

1
n

λ⇒ =Ka a

Here, K  is the similarity (kernel) matrix:

( ) ( )Tφ φ=K X X

As we recall from the SVM section in Chapter 3, A Tour of Machine Learning Classifiers 
Using Scikit-learn, we use the kernel trick to avoid calculating the pairwise dot 
products of the samples x  under φ  explicitly by using a kernel function K  so that 
we don't need to calculate the eigenvectors explicitly:

( ) ( )( ) ( )( ) ( )( ),  
Ti j i jk φ φ=x x x x

In other words, what we obtain after kernel PCA are the samples already projected 
onto the respective components rather than constructing a transformation matrix as 
in the standard PCA approach. Basically, the kernel function (or simply kernel) can 
be understood as a function that calculates a dot product between two vectors—a 
measure of similarity.
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The most commonly used kernels are as follows:

•	 The polynomial kernel:

( ) ( )( ) ( ) ( )( ),  
pi j i T jk θ= +x x x x

Here, θ  is the threshold and p  is the power that has to be specified  
by the user.

•	 The hyperbolic tangent (sigmoid) kernel:

( ) ( )( ) ( ) ( )( ), tanh  i j i T jk η θ= +x x x x

•	 The Radial Basis Function (RBF) or Gaussian kernel that we will use in the 
following examples in the next subsection:

( ) ( )( )
( ) ( ) 2

2, exp
2

i j
i jk

σ

 − = −  
 

x x
x x

It is also written as follows:

( ) ( )( ) ( ) ( )( )2
, expi j i jk γ= − −x x x x

To summarize what we have discussed so far, we can define the following three 
steps to implement an RBF kernel PCA:

1.	 We compute the kernel (similarity) matrix k , where we need to calculate  
the following:

( ) ( )( ) ( ) ( )( )2
, expi j i jk γ= − −x x x x
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We do this for each pair of samples:

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )

1 1 1 2 1

2 1 2 2 2

1 2

, , , 

, , , 
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n

n

n d n n
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κ κ

κ κ κ

 
 
 
 =
 
 
 
 

�

�

� � � �

�

x x x x x x

x x x x x x
K

x x x x x x

For example, if our dataset contains 100 training samples, the symmetric 
kernel matrix of the pair-wise similarities would be 100 100×  dimensional.

2.	 We center the kernel matrix k  using the following equation:

1 1 1 1= − − +′ n n n nK K K K K

Here, 1n  is an n n× - dimensional matrix (the same dimensions as the kernel 
matrix) where all values are equal to 1

n
.

3.	 We collect the top k  eigenvectors of the centered kernel matrix based on 
their corresponding eigenvalues, which are ranked by decreasing magnitude. 
In contrast to standard PCA, the eigenvectors are not the principal 
component axes but the samples projected onto those axes.

At this point, you may be wondering why we need to center the kernel matrix in the 
second step. We previously assumed that we are working with standardized data, 
where all features have mean zero when we formulated the covariance matrix and 
replaced the dot products by the nonlinear feature combinations via φ .Thus, the 
centering of the kernel matrix in the second step becomes necessary, since we do 
not compute the new feature space explicitly and we cannot guarantee that the new 
feature space is also centered at zero.

In the next section, we will put those three steps into action by implementing a 
kernel PCA in Python.
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Implementing a kernel principal component 
analysis in Python
In the previous subsection, we discussed the core concepts behind kernel PCA.  
Now, we are going to implement an RBF kernel PCA in Python following the three 
steps that summarized the kernel PCA approach. Using the SciPy and NumPy helper 
functions, we will see that implementing a kernel PCA is actually really simple:

from scipy.spatial.distance import pdist, squareform
from scipy import exp
from scipy.linalg import eigh
import numpy as np

def rbf_kernel_pca(X, gamma, n_components):
    """
    RBF kernel PCA implementation.

    Parameters
    ------------
    X: {NumPy ndarray}, shape = [n_samples, n_features]

    gamma: float
      Tuning parameter of the RBF kernel

    n_components: int
      Number of principal components to return

    Returns
    ------------
     X_pc: {NumPy ndarray}, shape = [n_samples, k_features]
       Projected dataset   

    """
    # Calculate pairwise squared Euclidean distances
    # in the MxN dimensional dataset.
    sq_dists = pdist(X, 'sqeuclidean')

    # Convert pairwise distances into a square matrix.
    mat_sq_dists = squareform(sq_dists)

    # Compute the symmetric kernel matrix.
    K = exp(-gamma * mat_sq_dists)
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    # Center the kernel matrix.
    N = K.shape[0]
    one_n = np.ones((N,N)) / N
    K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n)

    # Obtaining eigenpairs from the centered kernel matrix
    # numpy.eigh returns them in sorted order
    eigvals, eigvecs = eigh(K)

    # Collect the top k eigenvectors (projected samples)
    X_pc = np.column_stack((eigvecs[:, -i] 
                            for i in range(1, n_components + 1)))

    return X_pc

One downside of using an RBF kernel PCA for dimensionality reduction is that 
we have to specify the parameter γ  a priori. Finding an appropriate value for γ  
requires experimentation and is best done using algorithms for parameter tuning, for 
example, grid search, which we will discuss in more detail in Chapter 6, Learning Best 
Practices for Model Evaluation and Hyperparameter Tuning.

Example 1 – separating half-moon shapes
Now, let's apply our rbf_kernel_pca on some nonlinear example datasets.  
We will start by creating a two-dimensional dataset of 100 sample points 
representing two half-moon shapes:

>>> from sklearn.datasets import make_moons
>>> X, y = make_moons(n_samples=100, random_state=123)
>>> plt.scatter(X[y==0, 0], X[y==0, 1], 
...             color='red', marker='^', alpha=0.5)
>>> plt.scatter(X[y==1, 0], X[y==1, 1],
...             color='blue', marker='o', alpha=0.5)
>>> plt.show()
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For the purposes of illustration, the half-moon of triangular symbols shall represent 
one class and the half-moon depicted by the circular symbols represent the samples 
from another class:

Clearly, these two half-moon shapes are not linearly separable and our goal is to 
unfold the half-moons via kernel PCA so that the dataset can serve as a suitable input 
for a linear classifier. But first, let's see what the dataset looks like if we project it onto 
the principal components via standard PCA:

>>> from sklearn.decomposition import PCA
>>> scikit_pca = PCA(n_components=2)
>>> X_spca = scikit_pca.fit_transform(X)
>>> fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3))
>>> ax[0].scatter(X_spca[y==0, 0], X_spca[y==0, 1], 
...               color='red', marker='^', alpha=0.5)
>>> ax[0].scatter(X_spca[y==1, 0], X_spca[y==1, 1],
...               color='blue', marker='o', alpha=0.5)
>>> ax[1].scatter(X_spca[y==0, 0], np.zeros((50,1))+0.02, 
...               color='red', marker='^', alpha=0.5)
>>> ax[1].scatter(X_spca[y==1, 0], np.zeros((50,1))-0.02,
...               color='blue', marker='o', alpha=0.5)
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>>> ax[0].set_xlabel('PC1')
>>> ax[0].set_ylabel('PC2')
>>> ax[1].set_ylim([-1, 1])
>>> ax[1].set_yticks([])
>>> ax[1].set_xlabel('PC1')
>>> plt.show()

Clearly, we can see in the resulting figure that a linear classifier would be unable to 
perform well on the dataset transformed via standard PCA:

Note that when we plotted the first principal component only (right subplot),  
we shifted the triangular samples slightly upwards and the circular samples  
slightly downwards to better visualize the class overlap.

Please remember that PCA is an unsupervised method and does not 
use class label information in order to maximize the variance in contrast 
to LDA. Here, the triangular and circular symbols were just added for 
visualization purposes to indicate the degree of separation.

Now, let's try out our kernel PCA function rbf_kernel_pca, which we implemented 
in the previous subsection:

>>> from matplotlib.ticker import FormatStrFormatter
>>> X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2)
>>> fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3))
>>> ax[0].scatter(X_kpca[y==0, 0], X_kpca[y==0, 1], 
...               color='red', marker='^', alpha=0.5)
>>> ax[0].scatter(X_kpca[y==1, 0], X_kpca[y==1, 1],

http://sebastianraschka.com/Articles/2014_python_lda.html
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...               color='blue', marker='o', alpha=0.5)
>>> ax[1].scatter(X_kpca[y==0, 0], np.zeros((50,1))+0.02, 
...               color='red', marker='^', alpha=0.5)
>>> ax[1].scatter(X_kpca[y==1, 0], np.zeros((50,1))-0.02,
...               color='blue', marker='o', alpha=0.5)
>>> ax[0].set_xlabel('PC1')
>>> ax[0].set_ylabel('PC2')
>>> ax[1].set_ylim([-1, 1])
>>> ax[1].set_yticks([])
>>> ax[1].set_xlabel('PC1')
>>> ax[0].xaxis.set_major_formatter(FormatStrFormatter('%0.1f'))
>>> ax[1].xaxis.set_major_formatter(FormatStrFormatter('%0.1f'))
>>> plt.show()

We can now see that the two classes (circles and triangles) are linearly well separated 
so that it becomes a suitable training dataset for linear classifiers:

Unfortunately, there is no universal value for the tuning parameter γ  that works 
well for different datasets. To find a γ  value that is appropriate for a given problem 
requires experimentation. In Chapter 6, Learning Best Practices for Model Evaluation and 
Hyperparameter Tuning, we will discuss techniques that can help us to automate the 
task of optimizing such tuning parameters. Here, I will use values for γ  that I found 
produce good results.
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Example 2 – separating concentric circles
In the previous subsection, we showed you how to separate half-moon shapes via  
kernel PCA. Since we put so much effort into understanding the concepts of kernel 
PCA, let's take a look at another interesting example of a nonlinear problem: 
concentric circles.

The code is as follows:

>>> from sklearn.datasets import make_circles
>>> X, y = make_circles(n_samples=1000, 
...            random_state=123, noise=0.1, factor=0.2)
>>> plt.scatter(X[y==0, 0], X[y==0, 1],
...            color='red', marker='^', alpha=0.5)
>>> plt.scatter(X[y==1, 0], X[y==1, 1],
...            color='blue', marker='o', alpha=0.5)
>>> plt.show()

Again, we assume a two-class problem where the triangle shapes represent one class 
and the circle shapes represent another class, respectively:
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Let's start with the standard PCA approach to compare it with the results of the RBF 
kernel PCA:

>>> scikit_pca = PCA(n_components=2)
>>> X_spca = scikit_pca.fit_transform(X)
>>> fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3))
>>> ax[0].scatter(X_spca[y==0, 0], X_spca[y==0, 1], 
...               color='red', marker='^', alpha=0.5)
>>> ax[0].scatter(X_spca[y==1, 0], X_spca[y==1, 1],
...               color='blue', marker='o', alpha=0.5)
>>> ax[1].scatter(X_spca[y==0, 0], np.zeros((500,1))+0.02, 
...              color='red', marker='^', alpha=0.5)
>>> ax[1].scatter(X_spca[y==1, 0], np.zeros((500,1))-0.02,
...               color='blue', marker='o', alpha=0.5)
>>> ax[0].set_xlabel('PC1')
>>> ax[0].set_ylabel('PC2')
>>> ax[1].set_ylim([-1, 1])
>>> ax[1].set_yticks([])
>>> ax[1].set_xlabel('PC1')
>>> plt.show()

Again, we can see that standard PCA is not able to produce results suitable for 
training a linear classifier:
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Given an appropriate value for γ , let's see if we are luckier using the RBF kernel 
PCA implementation:

>>> X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2)
>>> fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3))
>>> ax[0].scatter(X_kpca[y==0, 0], X_kpca[y==0, 1], 
...               color='red', marker='^', alpha=0.5)
>>> ax[0].scatter(X_kpca[y==1, 0], X_kpca[y==1, 1],
...               color='blue', marker='o', alpha=0.5)
>>> ax[1].scatter(X_kpca[y==0, 0], np.zeros((500,1))+0.02, 
...               color='red', marker='^', alpha=0.5)
>>> ax[1].scatter(X_kpca[y==1, 0], np.zeros((500,1))-0.02,
...               color='blue', marker='o', alpha=0.5)
>>> ax[0].set_xlabel('PC1')
>>> ax[0].set_ylabel('PC2')
>>> ax[1].set_ylim([-1, 1])
>>> ax[1].set_yticks([])
>>> ax[1].set_xlabel('PC1')
>>> plt.show()

Again, the RBF kernel PCA projected the data onto a new subspace where the two 
classes become linearly separable:
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Projecting new data points
In the two previous example applications of kernel PCA, the half-moon shapes 
and the concentric circles, we projected a single dataset onto a new feature. In 
real applications, however, we may have more than one dataset that we want to 
transform, for example, training and test data, and typically also new samples we  
will collect after the model building and evaluation. In this section, you will learn 
how to project data points that were not part of the training dataset.

As we remember from the standard PCA approach at the beginning of this chapter, 
we project data by calculating the dot product between a transformation matrix and 
the input samples; the columns of the projection matrix are the top k  eigenvectors  
( v ) that we obtained from the covariance matrix. Now, the question is how can we 
transfer this concept to kernel PCA? If we think back to the idea behind kernel PCA, 
we remember that we obtained an eigenvector ( a ) of the centered kernel matrix 
(not the covariance matrix), which means that those are the samples that are already 
projected onto the principal component axis v . Thus, if we want to project a new 
sample ′x  onto this principal component axis, we'd need to compute the following:

( )Tφ x' v

Fortunately, we can use the kernel trick so that we don't have to calculate the 
projection ( )Tφ x' v  explicitly. However, it is worth noting that kernel PCA, in contrast 
to standard PCA, is a memory-based method, which means that we have to reuse 
the original training set each time to project new samples. We have to calculate the 
pairwise RBF kernel (similarity) between each i th sample in the training dataset and 
the new sample ′x :

( ) ( ) ( ) ( )( )T Ti i

i
aφ φ φ∑x' v = x' x

( ) ( )( )Ti i

i
a k∑= x', x

Here, eigenvectors a  and eigenvalues λ  of the Kernel matrix K  satisfy the 
following condition in the equation:

λ=Ka a
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After calculating the similarity between the new samples and the samples in the 
training set, we have to normalize the eigenvector a  by its eigenvalue. Thus, let's 
modify the rbf_kernel_pca function that we implemented earlier so that it also 
returns the eigenvalues of the kernel matrix:

from scipy.spatial.distance import pdist, squareform
from scipy import exp
from scipy.linalg import eigh
import numpy as np

def rbf_kernel_pca(X, gamma, n_components):
    """
    RBF kernel PCA implementation.

    Parameters
    ------------
    X: {NumPy ndarray}, shape = [n_samples, n_features]

    gamma: float
      Tuning parameter of the RBF kernel

    n_components: int
      Number of principal components to return

    Returns
    ------------
     X_pc: {NumPy ndarray}, shape = [n_samples, k_features]
       Projected dataset   

     lambdas: list
       Eigenvalues

    """
    # Calculate pairwise squared Euclidean distances
    # in the MxN dimensional dataset.
    sq_dists = pdist(X, 'sqeuclidean')

    # Convert pairwise distances into a square matrix.
    mat_sq_dists = squareform(sq_dists)

    # Compute the symmetric kernel matrix.
    K = exp(-gamma * mat_sq_dists)
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    # Center the kernel matrix.
    N = K.shape[0]
    one_n = np.ones((N,N)) / N
    K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n)

    # Obtaining eigenpairs from the centered kernel matrix
    # numpy.eigh returns them in sorted order
    eigvals, eigvecs = eigh(K)

    # Collect the top k eigenvectors (projected samples)
    alphas = np.column_stack((eigvecs[:,-i] 
                    for i in range(1,n_components+1)))

    # Collect the corresponding eigenvalues
    lambdas = [eigvals[-i] for i in range(1,n_components+1)]

    return alphas, lambdas

Now, let's create a new half-moon dataset and project it onto a one-dimensional 
subspace using the updated RBF kernel PCA implementation:

>>> X, y = make_moons(n_samples=100, random_state=123)
>>> alphas, lambdas =rbf_kernel_pca(X, gamma=15, n_components=1)

To make sure that we implement the code for projecting new samples, let's assume 
that the 26th point from the half-moon dataset is a new data point ′x , and our task is 
to project it onto this new subspace:

>>> x_new = X[25]
>>> x_new
array([ 1.8713187 ,  0.00928245])
>>> x_proj = alphas[25] # original projection
>>> x_proj
array([ 0.07877284])
>>> def project_x(x_new, X, gamma, alphas, lambdas):
...     pair_dist = np.array([np.sum(
...                  (x_new-row)**2) for row in X])
...     k = np.exp(-gamma * pair_dist)
... return k.dot(alphas / lambdas)
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By executing the following code, we are able to reproduce the original projection. 
Using the project_x function, we will be able to project any new data samples as 
well. The code is as follows:

>>> x_reproj = project_x(x_new, X, 
...       gamma=15, alphas=alphas, lambdas=lambdas)
>>> x_reproj
array([ 0.07877284])

Lastly, let's visualize the projection on the first principal component:

>>> plt.scatter(alphas[y==0, 0], np.zeros((50)), 
...             color='red', marker='^',alpha=0.5)
>>> plt.scatter(alphas[y==1, 0], np.zeros((50)), 
...             color='blue', marker='o', alpha=0.5)
>>> plt.scatter(x_proj, 0, color='black', 
...             label='original projection of point X[25]',
...             marker='^', s=100)
>>> plt.scatter(x_reproj, 0, color='green', 
...             label='remapped point X[25]',
...             marker='x', s=500)
>>> plt.legend(scatterpoints=1)
>>> plt.show()

As we can see in the following scatterplot, we mapped the sample ′x  onto the first 
principal component correctly:
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Kernel principal component analysis in  
scikit-learn
For our convenience, scikit-learn implements a kernel PCA class in the  
sklearn.decomposition submodule. The usage is similar to the standard  
PCA class, and we can specify the kernel via the kernel parameter:

>>> from sklearn.decomposition import KernelPCA
>>> X, y = make_moons(n_samples=100, random_state=123)
>>> scikit_kpca = KernelPCA(n_components=2, 
...               kernel='rbf', gamma=15)
>>> X_skernpca = scikit_kpca.fit_transform(X)

To see if we get results that are consistent with our own kernel PCA  
implementation, let's plot the transformed half-moon shape data onto the  
first two principal components:

>>> plt.scatter(X_skernpca[y==0, 0], X_skernpca[y==0, 1], 
...             color='red', marker='^', alpha=0.5)
>>> plt.scatter(X_skernpca[y==1, 0], X_skernpca[y==1, 1], 
...             color='blue', marker='o', alpha=0.5)
>>> plt.xlabel('PC1')
>>> plt.ylabel('PC2')
>>> plt.show()

As we can see, the results of the scikit-learn KernelPCA are consistent with our  
own implementation:
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Scikit-learn also implements advanced techniques for 
nonlinear dimensionality reduction that are beyond the scope 
of this book. You can find a nice overview of the current 
implementations in scikit-learn complemented with illustrative 
examples at http://scikit-learn.org/stable/
modules/manifold.html.

Summary
In this chapter, you learned about three different, fundamental dimensionality 
reduction techniques for feature extraction: standard PCA, LDA, and kernel PCA. 
Using PCA, we projected data onto a lower-dimensional subspace to maximize 
the variance along the orthogonal feature axes while ignoring the class labels. 
LDA, in contrast to PCA, is a technique for supervised dimensionality reduction, 
which means that it considers class information in the training dataset to attempt to 
maximize the class-separability in a linear feature space. Lastly, you learned about a 
kernelized version of PCA, which allows you to map nonlinear datasets onto a  
lower-dimensional feature space where the classes become linearly separable.

Equipped with these essential preprocessing techniques, you are now well prepared 
to learn about the best practices for efficiently incorporating different preprocessing 
techniques and evaluating the performance of different models in the next chapter.

http://scikit-learn.org/stable/modules/manifold.html
http://scikit-learn.org/stable/modules/manifold.html
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Learning Best Practices 
for Model Evaluation and 

Hyperparameter Tuning
In the previous chapters, you learned about the essential machine learning 
algorithms for classification and how to get our data into shape before we feed it into 
those algorithms. Now, it's time to learn about the best practices of building good 
machine learning models by fine-tuning the algorithms and evaluating the model's 
performance! In this chapter, we will learn how to:

•	 Obtain unbiased estimates of a model's performance
•	 Diagnose the common problems of machine learning algorithms
•	 Fine-tune machine learning models
•	 Evaluate predictive models using different performance metrics

Streamlining workflows with pipelines
When we applied different preprocessing techniques in the previous chapters, such 
as standardization for feature scaling in Chapter 4, Building Good Training Sets – Data 
Preprocessing, or principal component analysis for data compression in Chapter 5, 
Compressing Data via Dimensionality Reduction, you learned that we have to reuse the 
parameters that were obtained during the fitting of the training data to scale and 
compress any new data, for example, the samples in the separate test dataset.  
In this section, you will learn about an extremely handy tool, the Pipeline  
class in scikit-learn. It allows us to fit a model including an arbitrary number  
of transformation steps and apply it to make predictions about new data.
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Loading the Breast Cancer Wisconsin dataset
In this chapter, we will be working with the Breast Cancer Wisconsin dataset, which 
contains 569 samples of malignant and benign tumor cells. The first two columns 
in the dataset store the unique ID numbers of the samples and the corresponding 
diagnosis (M=malignant, B=benign), respectively. The columns 3-32 contain 30 
real-value features that have been computed from digitized images of the cell 
nuclei, which can be used to build a model to predict whether a tumor is benign 
or malignant. The Breast Cancer Wisconsin dataset has been deposited on the UCI 
machine learning repository and more detailed information about this dataset can be 
found at https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsi
n+(Diagnostic).

In this section we will read in the dataset, and split it into training and test datasets 
in three simple steps:

1.	 We will start by reading in the dataset directly from the UCI website  
using pandas:
>>> import pandas as pd
>>> df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-
learning-databases/breast-cancer-wisconsin/wdbc.data', 
header=None)

2.	 Next, we assign the 30 features to a NumPy array X. Using LabelEncoder, 
we transform the class labels from their original string representation  
(M and B) into integers:
>>> from sklearn.preprocessing import LabelEncoder
>>> X = df.loc[:, 2:].values
>>> y = df.loc[:, 1].values
>>> le = LabelEncoder()
>>> y = le.fit_transform(y)

After encoding the class labels (diagnosis) in an array y, the malignant 
tumors are now represented as class 1, and the benign tumors are 
represented as class 0, respectively, which we can illustrate by calling  
the transform method of LabelEncoder on two dummy class labels:

>>> le.transform(['M', 'B'])
array([1, 0])

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)


Chapter 6

[ 171 ]

3.	 Before we construct our first model pipeline in the following subsection, let's 
divide the dataset into a separate training dataset (80 percent of the data) and 
a separate test dataset (20 percent of the data):

>>> from sklearn.cross_validation import train_test_split
>>> X_train, X_test, y_train, y_test = \
...      train_test_split(X, y, test_size=0.20, random_state=1)

Combining transformers and estimators in a 
pipeline
In the previous chapter, you learned that many learning algorithms require input 
features on the same scale for optimal performance. Thus, we need to standardize 
the columns in the Breast Cancer Wisconsin dataset before we can feed them to a 
linear classifier, such as logistic regression. Furthermore, let's assume that we want 
to compress our data from the initial 30 dimensions onto a lower two-dimensional 
subspace via principal component analysis (PCA), a feature extraction technique 
for dimensionality reduction that we introduced in Chapter 5, Compressing Data via 
Dimensionality Reduction. Instead of going through the fitting and transformation 
steps for the training and test dataset separately, we can chain the StandardScaler, 
PCA, and LogisticRegression objects in a pipeline:

>>> from sklearn.preprocessing import StandardScaler
>>> from sklearn.decomposition import PCA
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.pipeline import Pipeline
>>> pipe_lr = Pipeline([('scl', StandardScaler()),
...            ('pca', PCA(n_components=2)),
...            ('clf', LogisticRegression(random_state=1))])
>>> pipe_lr.fit(X_train, y_train)
>>> print('Test Accuracy: %.3f' % pipe_lr.score(X_test, y_test))
Test Accuracy: 0.947

The Pipeline object takes a list of tuples as input, where the first value in each tuple 
is an arbitrary identifier string that we can use to access the individual elements in 
the pipeline, as we will see later in this chapter, and the second element in every 
tuple is a scikit-learn transformer or estimator.
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The intermediate steps in a pipeline constitute scikit-learn transformers, and the 
last step is an estimator. In the preceding code example, we built a pipeline that 
consisted of two intermediate steps, a StandardScaler and a PCA transformer, and a 
logistic regression classifier as a final estimator. When we executed the fit method 
on the pipeline pipe_lr, the StandardScaler performed fit and transform on the 
training data, and the transformed training data was then passed onto the next object 
in the pipeline, the PCA. Similar to the previous step, PCA also executed fit and 
transform on the scaled input data and passed it to the final element of the pipeline, 
the estimator. We should note that there is no limit to the number of intermediate  
steps in this pipeline. The concept of how pipelines work is summarized in the 
following figure:
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Using k-fold cross-validation to assess 
model performance
One of the key steps in building a machine learning model is to estimate its 
performance on data that the model hasn't seen before. Let's assume that we fit our 
model on a training dataset and use the same data to estimate how well it performs 
in practice. We remember from the Tackling overfitting via regularization section in 
Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn, that a model can 
either suffer from underfitting (high bias) if the model is too simple, or it can overfit 
the training data (high variance) if the model is too complex for the underlying 
training data. To find an acceptable bias-variance trade-off, we need to evaluate 
our model carefully. In this section, you will learn about the useful cross-validation 
techniques holdout cross-validation and k-fold cross-validation, which can help us 
to obtain reliable estimates of the model's generalization error, that is, how well the 
model performs on unseen data. 

The holdout method
A classic and popular approach for estimating the generalization performance of 
machine learning models is holdout cross-validation. Using the holdout method, 
we split our initial dataset into a separate training and test dataset—the former is 
used for model training, and the latter is used to estimate its performance. However, 
in typical machine learning applications, we are also interested in tuning and 
comparing different parameter settings to further improve the performance for 
making predictions on unseen data. This process is called model selection, where 
the term model selection refers to a given classification problem for which we want 
to select the optimal values of tuning parameters (also called hyperparameters). 
However, if we reuse the same test dataset over and over again during model 
selection, it will become part of our training data and thus the model will be more 
likely to overfit. Despite this issue, many people still use the test set for model 
selection, which is not a good machine learning practice.
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A better way of using the holdout method for model selection is to separate the data 
into three parts: a training set, a validation set, and a test set. The training set is used 
to fit the different models, and the performance on the validation set is then used 
for the model selection. The advantage of having a test set that the model hasn't 
seen before during the training and model selection steps is that we can obtain a 
less biased estimate of its ability to generalize to new data. The following figure 
illustrates the concept of holdout cross-validation where we use a validation set 
to repeatedly evaluate the performance of the model after training using different 
parameter values. Once we are satisfied with the tuning of parameter values, we 
estimate the models' generalization error on the test dataset:

A disadvantage of the holdout method is that the performance estimate is  
sensitive to how we partition the training set into the training and validation  
subsets; the estimate will vary for different samples of the data. In the next 
subsection, we will take a look at a more robust technique for performance 
estimation, k-fold cross-validation, where we repeat the holdout method k  
times on k subsets of the training data.
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K-fold cross-validation
In k-fold cross-validation, we randomly split the training dataset into k folds without 
replacement, where 1k −  folds are used for the model training and one fold is used 
for testing. This procedure is repeated k times so that we obtain k models and 
performance estimates.

In case you are not familiar with the terms sampling with and without 
replacement, let's walk through a simple thought experiment. Let's 
assume we are playing a lottery game where we randomly draw numbers 
from an urn. We start with an urn that holds five unique numbers 0, 1, 2, 
3, and 4, and we draw exactly one number each turn. In the first round, 
the chance of drawing a particular number from the urn would be 1/5. 
Now, in sampling without replacement, we do not put the number back 
into the urn after each turn. Consequently, the probability of drawing a 
particular number from the set of remaining numbers in the next round 
depends on the previous round. For example, if we have a remaining set 
of numbers 0, 1, 2, and 4, the chance of drawing number 0 would become 
1/4 in the next turn.
However, in random sampling with replacement, we always return 
the drawn number to the urn so that the probabilities of drawing a 
particular number at each turn does not change; we can draw the same 
number more than once. In other words, in sampling with replacement, 
the samples (numbers) are independent and have a covariance zero. For 
example, the results from five rounds of drawing random numbers could 
look like this:

•	 Random sampling without replacement: 2, 1, 3, 4, 0
•	 Random sampling with replacement: 1, 3, 3, 4, 1

We then calculate the average performance of the models based on the different, 
independent folds to obtain a performance estimate that is less sensitive to the 
subpartitioning of the training data compared to the holdout method. Typically, 
we use k-fold cross-validation for model tuning, that is, finding the optimal 
hyperparameter values that yield a satisfying generalization performance. Once we 
have found satisfactory hyperparameter values, we can retrain the model on the 
complete training set and obtain a final performance estimate using the independent 
test set.
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Since k-fold cross-validation is a resampling technique without replacement, the 
advantage of this approach is that each sample point will be part of a training 
and test dataset exactly once, which yields a lower-variance estimate of the model 
performance than the holdout method. The following figure summarizes the concept 
behind k-fold cross-validation with 10k = . The training data set is divided into 10 
folds, and during the 10 iterations, 9 folds are used for training, and 1 fold will be 
used as the test set for the model evaluation. Also, the estimated performances iE  
(for example, classification accuracy or error) for each fold are then used to calculate 
the estimated average performance E  of the model:

The standard value for k in k-fold cross-validation is 10, which is typically a 
reasonable choice for most applications. However, if we are working with relatively 
small training sets, it can be useful to increase the number of folds. If we increase 
the value of k, more training data will be used in each iteration, which results in 
a lower bias towards estimating the generalization performance by averaging 
the individual model estimates. However, large values of k will also increase the 
runtime of the cross-validation algorithm and yield estimates with higher variance 
since the training folds will be more similar to each other. On the other hand, if we 
are working with large datasets, we can choose a smaller value for k, for example, 

5k = , and still obtain an accurate estimate of the average performance of the model 
while reducing the computational cost of refitting and evaluating the model on the 
different folds.



Chapter 6

[ 177 ]

A special case of k-fold cross validation is the leave-one-out (LOO) 
cross-validation method. In LOO, we set the number of folds equal to the 
number of training samples (k = n) so that only one training sample is 
used for testing during each iteration. This is a recommended approach 
for working with very small datasets.

A slight improvement over the standard k-fold cross-validation approach is  
stratified k-fold cross-validation, which can yield better bias and variance estimates, 
especially in cases of unequal class proportions, as it has been shown in a study by 
R. Kohavi et al. (R. Kohavi et al. A Study of Cross-validation and Bootstrap for Accuracy 
Estimation and Model Selection. In Ijcai, volume 14, pages 1137–1145, 1995). In stratified 
cross-validation, the class proportions are preserved in each fold to ensure that each 
fold is representative of the class proportions in the training dataset, which we will 
illustrate by using the StratifiedKFold iterator in scikit-learn:

>>> import numpy as np
>>> from sklearn.cross_validation import StratifiedKFold
>>> kfold = StratifiedKFold(y=y_train, 
...                         n_folds=10,
...                         random_state=1)
>>> scores = []
>>> for k, (train, test) in enumerate(kfold):
...    pipe_lr.fit(X_train[train], y_train[train])
...    score = pipe_lr.score(X_train[test], y_train[test])
...    scores.append(score)
...    print('Fold: %s, Class dist.: %s, Acc: %.3f' % (k+1, 
...                 np.bincount(y_train[train]), score))    
Fold: 1, Class dist.: [256 153], Acc: 0.891
Fold: 2, Class dist.: [256 153], Acc: 0.978
Fold: 3, Class dist.: [256 153], Acc: 0.978
Fold: 4, Class dist.: [256 153], Acc: 0.913
Fold: 5, Class dist.: [256 153], Acc: 0.935
Fold: 6, Class dist.: [257 153], Acc: 0.978
Fold: 7, Class dist.: [257 153], Acc: 0.933
Fold: 8, Class dist.: [257 153], Acc: 0.956
Fold: 9, Class dist.: [257 153], Acc: 0.978
Fold: 10, Class dist.: [257 153], Acc: 0.956
>>> print('CV accuracy: %.3f +/- %.3f' % (
...                 np.mean(scores), np.std(scores)))
CV accuracy: 0.950 +/- 0.029
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First, we initialized the StratifiedKfold iterator from the  
sklearn.cross_validation module with the class labels y_train in the  
training set, and specified the number of folds via the n_folds parameter.  
When we used the kfold iterator to loop through the k folds, we used the  
returned indices in train to fit the logistic regression pipeline that we set up  
at the beginning of this chapter. Using the pile_lr pipeline, we ensured that the 
samples were scaled properly (for instance, standardized) in each iteration. We 
then used the test indices to calculate the accuracy score of the model, which 
we collected in the scores list to calculate the average accuracy and the standard 
deviation of the estimate.

Although the previous code example was useful to illustrate how k-fold  
cross-validation works, scikit-learn also implements a k-fold cross-validation  
scorer, which allows us to evaluate our model using stratified k-fold  
cross-validation more efficiently:

>>> from sklearn.cross_validation import cross_val_score
>>> scores = cross_val_score(estimator=pipe_lr, 
...                          X=X_train, 
...                          y=y_train, 
...                          cv=10, 
...                          n_jobs=1)
>>> print('CV accuracy scores: %s' % scores)
CV accuracy scores: [ 0.89130435  0.97826087  0.97826087  
                      0.91304348  0.93478261  0.97777778
                      0.93333333  0.95555556  0.97777778  
                         0.95555556]
>>> print('CV accuracy: %.3f +/- %.3f' % (np.mean(scores), 
np.std(scores))) 
CV accuracy: 0.950 +/- 0.029

An extremely useful feature of the cross_val_score approach is that we can 
distribute the evaluation of the different folds across multiple CPUs on our machine. 
If we set the n_jobs parameter to 1, only one CPU will be used to evaluate the 
performances just like in our StratifiedKFold example previously. However, by 
setting n_jobs=2 we could distribute the 10 rounds of cross-validation to two CPUs 
(if available on our machine), and by setting n_jobs=-1, we can use all available 
CPUs on our machine to do the computation in parallel.
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Please note that a detailed discussion of how the variance of the 
generalization performance is estimated in cross-validation is 
beyond the scope of this book, but you can find a detailed discussion 
in this excellent article by M. Markatou et al (M. Markatou, H. Tian, 
S. Biswas, and G. M. Hripcsak. Analysis of Variance of Cross-validation 
Estimators of the Generalization Error. Journal of Machine Learning 
Research, 6:1127–1168, 2005).
You can also read about alternative cross-validation techniques, 
such as the .632 Bootstrap cross-validation method (B. Efron and 
R. Tibshirani. Improvements on Cross-validation: The 632+ Bootstrap 
Method. Journal of the American Statistical Association, 92(438):548–560, 
1997).

Debugging algorithms with learning and 
validation curves
In this section, we will take a look at two very simple yet powerful diagnostic tools 
that can help us to improve the performance of a learning algorithm: learning  
curves and validation curves. In the next subsections, we will discuss how we 
can use learning curves to diagnose if a learning algorithm has a problem with 
overfitting (high variance) or underfitting (high bias). Furthermore, we will  
take a look at validation curves that can help us address the common issues  
of a learning algorithm.
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Diagnosing bias and variance problems with 
learning curves
If a model is too complex for a given training dataset—there are too many degrees 
of freedom or parameters in this model—the model tends to overfit the training 
data and does not generalize well to unseen data. Often, it can help to collect more 
training samples to reduce the degree of overfitting. However, in practice, it can 
often be very expensive or simply not feasible to collect more data. By plotting the 
model training and validation accuracies as functions of the training set size, we can 
easily detect whether the model suffers from high variance or high bias, and whether 
the collection of more data could help to address this problem. But before we discuss 
how to plot learning curves in sckit-learn, let's discuss those two common model 
issues by walking through the following illustration:
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The graph in the upper-left shows a model with high bias. This model has both  
low training and cross-validation accuracy, which indicates that it underfits the 
training data. Common ways to address this issue are to increase the number of 
parameters of the model, for example, by collecting or constructing additional 
features, or by decreasing the degree of regularization, for example, in SVM or 
logistic regression classifiers. The graph in the upper-right shows a model that 
suffers from high variance, which is indicated by the large gap between the training 
and cross-validation accuracy. To address this problem of overfitting, we can collect 
more training data or reduce the complexity of the model, for example, by increasing 
the regularization parameter; for unregularized models, it can also help to decrease 
the number of features via feature selection (Chapter 4, Building Good Training 
Sets – Data Preprocessing) or feature extraction (Chapter 5, Compressing Data via 
Dimensionality Reduction). We shall note that collecting more training data decreases 
the chance of overfitting. However, it may not always help, for example, when the 
training data is extremely noisy or the model is already very close to optimal.

In the next subsection, we will see how to address those model issues using 
validation curves, but let's first see how we can use the learning curve function  
from scikit-learn to evaluate the model:

>>> import matplotlib.pyplot as plt
>>> from sklearn.learning_curve import learning_curve
>>> pipe_lr = Pipeline([
...           ('scl', StandardScaler()),
...           ('clf', LogisticRegression(
...                        penalty='l2', random_state=0))])
>>> train_sizes, train_scores, test_scores =\
...        learning_curve(estimator=pipe_lr, 
...                       X=X_train, 
...                       y=y_train, 
...                       train_sizes=np.linspace(0.1, 1.0, 10), 
...                       cv=10,
...                       n_jobs=1)
>>> train_mean = np.mean(train_scores, axis=1)
>>> train_std = np.std(train_scores, axis=1)
>>> test_mean = np.mean(test_scores, axis=1)
>>> test_std = np.std(test_scores, axis=1)
>>> plt.plot(train_sizes, train_mean, 
...          color='blue', marker='o', 
...          markersize=5, 
...          label='training accuracy')
>>> plt.fill_between(train_sizes, 
...                  train_mean + train_std,
...                  train_mean - train_std, 
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...                  alpha=0.15, color='blue')
>>> plt.plot(train_sizes, test_mean, 
...          color='green', linestyle='--', 
...          marker='s', markersize=5, 
...          label='validation accuracy')
>>> plt.fill_between(train_sizes, 
...                  test_mean + test_std,
...                  test_mean - test_std, 
...                  alpha=0.15, color='green')
>>> plt.grid()
>>> plt.xlabel('Number of training samples')
>>> plt.ylabel('Accuracy')
>>> plt.legend(loc='lower right')
>>> plt.ylim([0.8, 1.0])
>>> plt.show()

After we have successfully executed the preceding code, we will obtain the following 
learning curve plot:
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Via the train_sizes parameter in the learning_curve function, we can control the 
absolute or relative number of training samples that are used to generate the learning 
curves. Here, we set train_sizes=np.linspace(0.1, 1.0, 10) to use 10 evenly 
spaced relative intervals for the training set sizes. By default, the learning_curve 
function uses stratified k-fold cross-validation to calculate the cross-validation 
accuracy, and we set 10k =  via the cv parameter. Then, we simply calculate the 
average accuracies from the returned cross-validated training and test scores for the 
different sizes of the training set, which we plotted using matplotlib's plot function. 
Furthermore, we add the standard deviation of the average accuracies to the plot 
using the fill_between function to indicate the variance of the estimate.

As we can see in the preceding learning curve plot, our model performs quite  
well on the test dataset. However, it may be slightly overfitting the training  
data indicated by a relatively small, but visible, gap between the training and  
cross-validation accuracy curves.

Addressing overfitting and underfitting with 
validation curves
Validation curves are a useful tool for improving the performance of a model by 
addressing issues such as overfitting or underfitting. Validation curves are related to 
learning curves, but instead of plotting the training and test accuracies as functions 
of the sample size, we vary the values of the model parameters, for example, the 
inverse regularization parameter C in logistic regression. Let's go ahead and see  
how we create validation curves via sckit-learn:

>>> from sklearn.learning_curve import validation_curve
>>> param_range = [0.001, 0.01, 0.1, 1.0, 10.0, 100.0]
>>> train_scores, test_scores = validation_curve(
...                estimator=pipe_lr, 
...                 X=X_train, 
...                 y=y_train, 
...                 param_name='clf__C', 
...                 param_range=param_range,
...                 cv=10)
>>> train_mean = np.mean(train_scores, axis=1)
>>> train_std = np.std(train_scores, axis=1)
>>> test_mean = np.mean(test_scores, axis=1)
>>> test_std = np.std(test_scores, axis=1)
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>>> plt.plot(param_range, train_mean, 
...          color='blue', marker='o', 
...          markersize=5, 
...          label='training accuracy')
>>> plt.fill_between(param_range, train_mean + train_std,
...                  train_mean - train_std, alpha=0.15,
...                  color='blue')
>>> plt.plot(param_range, test_mean, 
...          color='green', linestyle='--', 
...          marker='s', markersize=5, 
...          label='validation accuracy')
>>> plt.fill_between(param_range, 
...                  test_mean + test_std,
...                  test_mean - test_std, 
...                  alpha=0.15, color='green')
>>> plt.grid()
>>> plt.xscale('log')
>>> plt.legend(loc='lower right')
>>> plt.xlabel('Parameter C')
>>> plt.ylabel('Accuracy')
>>> plt.ylim([0.8, 1.0])
>>> plt.show() 

Using the preceding code, we obtained the validation curve plot for the parameter C:
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Similar to the learning_curve function, the validation_curve function uses 
stratified k-fold cross-validation by default to estimate the performance of the model 
if we are using algorithms for classification. Inside the validation_curve function, 
we specified the parameter that we wanted to evaluate. In this case, it is C, the inverse 
regularization parameter of the LogisticRegression classifier, which we wrote as 
'clf__C' to access the LogisticRegression object inside the scikit-learn pipeline 
for a specified value range that we set via the param_range parameter. Similar to the 
learning curve example in the previous section, we plotted the average training and 
cross-validation accuracies and the corresponding standard deviations.

Although the differences in the accuracy for varying values of C are subtle, we can 
see that the model slightly underfits the data when we increase the regularization 
strength (small values of C). However, for large values of C, it means lowering the 
strength of regularization, so the model tends to slightly overfit the data. In this case, 
the sweet spot appears to be around C=0.1.

Fine-tuning machine learning models via 
grid search
In machine learning, we have two types of parameters: those that are learned from 
the training data, for example, the weights in logistic regression, and the parameters 
of a learning algorithm that are optimized separately. The latter are the tuning 
parameters, also called hyperparameters, of a model, for example, the regularization 
parameter in logistic regression or the depth parameter of a decision tree.

In the previous section, we used validation curves to improve the performance of a 
model by tuning one of its hyperparameters. In this section, we will take a look at a 
powerful hyperparameter optimization technique called grid search that can further 
help to improve the performance of a model by finding the optimal combination of 
hyperparameter values.
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Tuning hyperparameters via grid search
The approach of grid search is quite simple, it's a brute-force exhaustive search 
paradigm where we specify a list of values for different hyperparameters, and the 
computer evaluates the model performance for each combination of those to obtain 
the optimal set:

>>> from sklearn.grid_search import GridSearchCV
>>> from sklearn.svm import SVC
>>> pipe_svc = Pipeline([('scl', StandardScaler()),
...                      ('clf', SVC(random_state=1))])
>>> param_range = [0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0]
>>> param_grid = [{'clf__C': param_range, 
...                'clf__kernel': ['linear']},
...               {'clf__C': param_range, 
...                'clf__gamma': param_range, 
...                'clf__kernel': ['rbf']}]
>>> gs = GridSearchCV(estimator=pipe_svc, 
...                   param_grid=param_grid, 
...                   scoring='accuracy', 
...                   cv=10,
...                   n_jobs=-1)
>>> gs = gs.fit(X_train, y_train)
>>> print(gs.best_score_) 
0.978021978022
>>> print(gs.best_params_)
{'clf__C': 0.1, 'clf__kernel': 'linear'}

Using the preceding code, we initialized a GridSearchCV object from the  
sklearn.grid_search module to train and tune a support vector machine (SVM) 
pipeline. We set the param_grid parameter of GridSearchCV to a list of dictionaries 
to specify the parameters that we'd want to tune. For the linear SVM, we only 
evaluated the inverse regularization parameter C; for the RBF kernel SVM, we tuned 
both the C and gamma parameter. Note that the gamma parameter is specific to kernel 
SVMs. After we used the training data to perform the grid search, we obtained the 
score of the best-performing model via the best_score_ attribute and looked at its 
parameters, that can be accessed via the best_params_ attribute. In this particular 
case, the linear SVM model with 'clf__C'= 0.1' yielded the best k-fold cross-
validation accuracy: 97.8 percent.
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Finally, we will use the independent test dataset to estimate the performance of the 
best selected model, which is available via the best_estimator_ attribute of the 
GridSearchCV object:

>>> clf = gs.best_estimator_
>>> clf.fit(X_train, y_train)
>>> print('Test accuracy: %.3f' % clf.score(X_test, y_test))
Test accuracy: 0.965

Although grid search is a powerful approach for finding the optimal set of 
parameters, the evaluation of all possible parameter combinations is also 
computationally very expensive. An alternative approach to sampling 
different parameter combinations using scikit-learn is randomized search. 
Using the RandomizedSearchCV class in scikit-learn, we can draw 
random parameter combinations from sampling distributions with a 
specified budget. More details and examples for its usage can be found 
at http://scikit-learn.org/stable/modules/grid_search.
html#randomized-parameter-optimization.

Algorithm selection with nested  
cross-validation
Using k-fold cross-validation in combination with grid search is a useful approach 
for fine-tuning the performance of a machine learning model by varying its 
hyperparameters values as we saw in the previous subsection. If we want to select 
among different machine learning algorithms though, another recommended 
approach is nested cross-validation, and in a nice study on the bias in error 
estimation, Varma and Simon concluded that the true error of the estimate is almost 
unbiased relative to the test set when nested cross-validation is used (S. Varma and 
R. Simon. Bias in Error Estimation When Using Cross-validation for Model Selection. BMC 
bioinformatics, 7(1):91, 2006).

http://scikit-learn.org/stable/modules/grid_search.html#randomized-parameter-optimization
http://scikit-learn.org/stable/modules/grid_search.html#randomized-parameter-optimization
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In nested cross-validation, we have an outer k-fold cross-validation loop to split the 
data into training and test folds, and an inner loop is used to select the model using 
k-fold cross-validation on the training fold. After model selection, the test fold is then 
used to evaluate the model performance. The following figure explains the concept 
of nested cross-validation with five outer and two inner folds, which can be useful 
for large data sets where computational performance is important; this particular 
type of nested cross-validation is also known as 5x2 cross-validation:

In scikit-learn, we can perform nested cross-validation as follows:

>>> gs = GridSearchCV(estimator=pipe_svc, 
...                   param_grid=param_grid,
...                   scoring='accuracy', 
   ...                   cv=10, 
   ...                   n_jobs=-1)
>>> scores = cross_val_score(gs, X, y, scoring='accuracy', cv=5)
>>> print('CV accuracy: %.3f +/- %.3f' % (
...               np.mean(scores), np.std(scores)))
CV accuracy: 0.978 +/- 0.012
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The returned average cross-validation accuracy gives us a good estimate of what  
to expect if we tune the hyperparameters of a model and then use it on unseen data.  
For example, we can use the nested cross-validation approach to compare an  
SVM model to a simple decision tree classifier; for simplicity, we will only tune  
its depth parameter:

>>> from sklearn.tree import DecisionTreeClassifier
>>> gs = GridSearchCV(
...       estimator=DecisionTreeClassifier(random_state=0),
...       param_grid=[
...            {'max_depth': [1, 2, 3, 4, 5, 6, 7, None]}],
...       scoring='accuracy', 
...       cv=5)
>>> scores = cross_val_score(gs, 
...                          X_train, 
...                          y_train, 
...                          scoring='accuracy',
...                          cv=5)
>>> print('CV accuracy: %.3f +/- %.3f' % (
...                     np.mean(scores), np.std(scores)))
CV accuracy: 0.908 +/- 0.045

As we can see here, the nested cross-validation performance of the SVM  
model (97.8 percent) is notably better than the performance of the decision tree  
(90.8 percent). Thus, we'd expect that it might be the better choice for classifying  
new data that comes from the same population as this particular dataset.

Looking at different performance 
evaluation metrics
In the previous sections and chapters, we evaluated our models using the model 
accuracy, which is a useful metric to quantify the performance of a model in general. 
However, there are several other performance metrics that can be used to measure a 
model's relevance, such as precision, recall, and the F1-score.
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Reading a confusion matrix
Before we get into the details of different scoring metrics, let's print a so-called 
confusion matrix, a matrix that lays out the performance of a learning algorithm. 
The confusion matrix is simply a square matrix that reports the counts of the true 
positive, true negative, false positive, and false negative predictions of a classifier, 
as shown in the following figure:

Although these metrics can be easily computed manually by comparing the true and 
predicted class labels, scikit-learn provides a convenient confusion_matrix function 
that we can use as follows:

>>> from sklearn.metrics import confusion_matrix
>>> pipe_svc.fit(X_train, y_train)
>>> y_pred = pipe_svc.predict(X_test)
>>> confmat = confusion_matrix(y_true=y_test, y_pred=y_pred)
>>> print(confmat)
[[71  1]
 [ 2 40]]

The array that was returned after executing the preceding code provides us with 
information about the different types of errors the classifier made on the test dataset 
that we can map onto the confusion matrix illustration in the previous figure using 
matplotlib's matshow function:

>>> fig, ax = plt.subplots(figsize=(2.5, 2.5))
>>> ax.matshow(confmat, cmap=plt.cm.Blues, alpha=0.3)
>>> for i in range(confmat.shape[0]):
...     for j in range(confmat.shape[1]):
...         ax.text(x=j, y=i,
...                 s=confmat[i, j], 
...                 va='center', ha='center')
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>>> plt.xlabel('predicted label')
>>> plt.ylabel('true label')
>>> plt.show()

Now, the confusion matrix plot as shown here should make the results a little bit 
easier to interpret:

Assuming that class 1 (malignant) is the positive class in this example, our model 
correctly classified 71 of the samples that belong to class 0 (false negatives) and 40 
samples that belong to class 1 (true positives), respectively. However, our model 
also incorrectly misclassified 2 samples from class 0 as class 1 (false negatives), and it 
predicted that 1 sample is benign although it is a malignant tumor (false positive). In 
the next section, we will learn how we can use this information to calculate various 
different error metrics.

Optimizing the precision and recall of a 
classification model
Both the prediction error (ERR) and accuracy (ACC) provide general information 
about how many samples are misclassified. The error can be understood as the 
sum of all false predictions divided by the number of total predications, and the 
accuracy is calculated as the sum of correct predictions divided by the total number 
of predictions, respectively:

FP FNERR
FP FN TP TN

+
=

+ + +



Learning Best Practices for Model Evaluation and Hyperparameter Tuning

[ 192 ]

The prediction accuracy can then be calculated directly from the error:

1TP TNACC ERR
FP FN TP TN

+
= = −

+ + +

The true positive rate (TPR) and false positive rate (FPR) are performance metrics 
that are especially useful for imbalanced class problems:

FP FPFPR
N FP TN

= =
+

TP TPTPR
P FN TP

= =
+

In tumor diagnosis, for example, we are more concerned about the detection 
of malignant tumors in order to help a patient with the appropriate treatment. 
However, it is also important to decrease the number of benign tumors that were 
incorrectly classified as malignant (false positives) to not unnecessarily concern a 
patient. In contrast to the FPR, the true positive rate provides useful information 
about the fraction of positive (or relevant) samples that were correctly identified out 
of the total pool of positives (P).

Precision (PRE) and recall (REC) are performance metrics that are related to those 
true positive and true negative rates, and in fact, recall is synonymous to the true 
positive rate:

TPPRE
TP FP

=
+

TP TPREC TPR
P FN TP

= = =
+

In practice, often a combination of precision and recall is used, the so-called F1-score:

1 2 PRE RECF
PRE REC

×
=

+
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These scoring metrics are all implemented in scikit-learn and can be imported from 
the sklearn.metrics module, as shown in the following snippet:

>>> from sklearn.metrics import precision_score
>>> from sklearn.metrics  import recall_score, f1_score
>>> print('Precision: %.3f' % precision_score(
...              y_true=y_test, y_pred=y_pred))
Precision: 0.976
>>> print('Recall: %.3f' % recall_score(
...              y_true=y_test, y_pred=y_pred))
Recall: 0.952
>>> print('F1: %.3f' % f1_score(
...              y_true=y_test, y_pred=y_pred))
F1: 0.964

Furthermore, we can use a different scoring metric other than accuracy in 
GridSearch via the scoring parameter. A complete list of the different values that 
are accepted by the scoring parameter can be found at http://scikit-learn.org/
stable/modules/model_evaluation.html.

Remember that the positive class in scikit-learn is the class that is labeled as class 1. 
If we want to specify a different positive label, we can construct our own scorer via 
the make_scorer function, which we can then directly provide as an argument to the 
scoring parameter in GridSearchCV:

>>> from sklearn.metrics import make_scorer, f1_score
>>> scorer = make_scorer(f1_score, pos_label=0)
>>> gs = GridSearchCV(estimator=pipe_svc,
...                   param_grid=param_grid,
...                   scoring=scorer,
...                   cv=10)

Plotting a receiver operating characteristic
Receiver operator characteristic (ROC) graphs are useful tools for selecting models 
for classification based on their performance with respect to the false positive and 
true positive rates, which are computed by shifting the decision threshold of the 
classifier. The diagonal of an ROC graph can be interpreted as random guessing, 
and classification models that fall below the diagonal are considered as worse than 
random guessing. A perfect classifier would fall into the top-left corner of the graph 
with a true positive rate of 1 and a false positive rate of 0. Based on the ROC curve, 
we can then compute the so-called area under the curve (AUC) to characterize the 
performance of a classification model.

http://scikit-learn.org/stable/modules/model_evaluation.html
http://scikit-learn.org/stable/modules/model_evaluation.html
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Similar to ROC curves, we can compute precision-recall curves for the 
different probability thresholds of a classifier. A function for plotting 
those precision-recall curves is also implemented in scikit-learn and is 
documented at http://scikit-learn.org/stable/modules/
generated/sklearn.metrics.precision_recall_curve.html.

By executing the following code example, we will plot an ROC curve of a classifier 
that only uses two features from the Breast Cancer Wisconsin dataset to predict 
whether a tumor is benign or malignant. Although we are going to use the 
same logistic regression pipeline that we defined previously, we are making the 
classification task more challenging for the classifier so that the resulting ROC curve 
becomes visually more interesting. For similar reasons, we are also reducing the 
number of folds in the StratifiedKFold validator to three. The code is as follows:

>>> from sklearn.metrics import roc_curve, auc
>>> from scipy import interp
>>> X_train2 = X_train[:, [4, 14]]
>>> cv = StratifiedKFold(y_train, 
...                      n_folds=3, 
...                      random_state=1)
>>> fig = plt.figure(figsize=(7, 5))
>>> mean_tpr = 0.0
>>> mean_fpr = np.linspace(0, 1, 100)
>>> all_tpr = []

>>> for i, (train, test) in enumerate(cv):
...     probas = pipe_lr.fit(X_train2[train],                          
>>> y_train[train]).predict_proba(X_train2[test])    
...     fpr, tpr, thresholds = roc_curve(y_train[test], 

http://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_curve.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_curve.html
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...                                     probas[:, 1], 

...                                     pos_label=1)

...     mean_tpr += interp(mean_fpr, fpr, tpr)

...     mean_tpr[0] = 0.0

...     roc_auc = auc(fpr, tpr)

...     plt.plot(fpr, 

...              tpr, 

...              lw=1, 

...              label='ROC fold %d (area = %0.2f)' 

...                     % (i+1, roc_auc))
>>> plt.plot([0, 1], 
...          [0, 1], 
...          linestyle='--', 
...          color=(0.6, 0.6, 0.6), 
...          label='random guessing')
>>> mean_tpr /= len(cv)
>>> mean_tpr[-1] = 1.0
>>> mean_auc = auc(mean_fpr, mean_tpr)
>>> plt.plot(mean_fpr, mean_tpr, 'k--',
...          label='mean ROC (area = %0.2f)' % mean_auc, lw=2)
>>> plt.plot([0, 0, 1], 
...          [0, 1, 1], 
...          lw=2, 
...          linestyle=':', 
...          color='black', 
...          label='perfect performance')
>>> plt.xlim([-0.05, 1.05])
>>> plt.ylim([-0.05, 1.05])
>>> plt.xlabel('false positive rate')
>>> plt.ylabel('true positive rate')
>>> plt.title('Receiver Operator Characteristic')
>>> plt.legend(loc="lower right")
>>> plt.show()
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In the preceding code example, we used the already familiar StratifiedKFold class 
from scikit-learn and calculated the ROC performance of the LogisticRegression 
classifier in our pipe_lr pipeline using the roc_curve function from the  
sklearn.metrics module separately for each iteration. Furthermore, we 
interpolated the average ROC curve from the three folds via the interp function 
that we imported from SciPy and calculated the area under the curve via the auc 
function. The resulting ROC curve indicates that there is a certain degree of variance 
between the different folds, and the average ROC AUC (0.75) falls between a perfect 
score (1.0) and random guessing (0.5):

If we are just interested in the ROC AUC score, we could also directly import the 
roc_auc_score function from the sklearn.metrics submodule. The following code 
calculates the classifier's ROC AUC score on the independent test dataset after fitting 
it on the two-feature training set:

>>> pipe_svc = pipe_svc.fit(X_train2, y_train)
>>> y_pred2 = pipe_svc.predict(X_test[:, [4, 14]])
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>>> from sklearn.metrics import roc_auc_score
>>> from sklearn.metrics import accuracy_score
>>> print('ROC AUC: %.3f' % roc_auc_score(
...        y_true=y_test, y_score=y_pred2))
ROC AUC: 0.671

>>> print('Accuracy: %.3f' % accuracy_score(
...        y_true=y_test, y_pred=y_pred2))
Accuracy: 0.728

Reporting the performance of a classifier as the ROC AUC can yield further insights 
in a classifier's performance with respect to imbalanced samples. However, while 
the accuracy score can be interpreted as a single cut-off point on a ROC curve, A. P. 
Bradley showed that the ROC AUC and accuracy metrics mostly agree with each 
other (A. P. Bradley. The Use of the Area Under the ROC Curve in the Evaluation of 
Machine Learning Algorithms. Pattern recognition, 30(7):1145–1159, 1997).

The scoring metrics for multiclass 
classification
The scoring metrics that we discussed in this section are specific to binary 
classification systems. However, scikit-learn also implements macro and micro 
averaging methods to extend those scoring metrics to multiclass problems via  
One vs. All (OvA) classification. The micro-average is calculated from the individual 
true positives, true negatives, false positives, and false negatives of the system. 
For example, the micro-average of the precision score in a k-class system can be 
calculated as follows:

1

1 1

k
micro

k k

TP TPPRE
TP TP FP FP

+ +
=

+ + + + +

...
... ...

The macro-average is simply calculated as the average scores of the different systems:

1 k
macro

PRE PREPRE
k

+ +
=

...

Micro-averaging is useful if we want to weight each instance or prediction equally, 
whereas macro-averaging weights all classes equally to evaluate the overall 
performance of a classifier with regard to the most frequent class labels.
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If we are using binary performance metrics to evaluate multiclass classification 
models in scikit-learn, a normalized or weighted variant of the macro-average is 
used by default. The weighted macro-average is calculated by weighting the score of 
each class label by the number of true instances when calculating the average. The 
weighted macro-average is useful if we are dealing with class imbalances, that is, 
different numbers of instances for each label.

While the weighted macro-average is the default for multiclass problems in  
scikit-learn, we can specify the averaging method via the average parameter  
inside the different scoring functions that we import from the sklean.metrics 
module, for example, the precision_score or make_scorer functions:

>>> pre_scorer = make_scorer(score_func=precision_score, 
...                          pos_label=1, 
...                          greater_is_better=True, 
...                          average='micro')

Summary
In the beginning of this chapter, we discussed how to chain different transformation 
techniques and classifiers in convenient model pipelines that helped us to train and 
evaluate machine learning models more efficiently. We then used those pipelines to 
perform k-fold cross-validation, one of the essential techniques for model selection 
and evaluation. Using k-fold cross-validation, we plotted learning and validation 
curves to diagnose the common problems of learning algorithms, such as overfitting 
and underfitting. Using grid search, we further fine-tuned our model. We concluded 
this chapter by looking at a confusion matrix and various different performance 
metrics that can be useful to further optimize a model's performance for a specific 
problem task. Now, we should be well-equipped with the essential techniques to 
build supervised machine learning models for classification successfully.

In the next chapter, we will take a look at ensemble methods, methods that allow 
us to combine multiple models and classification algorithms to boost the predictive 
performance of a machine learning system even further.
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Combining Different Models 
for Ensemble Learning

In the previous chapter, we focused on the best practices for tuning and evaluating 
different models for classification. In this chapter, we will build upon these 
techniques and explore different methods for constructing a set of classifiers that  
can often have a better predictive performance than any of its individual members. 
You will learn how to:

•	 Make predictions based on majority voting
•	 Reduce overfitting by drawing random combinations of the training set  

with repetition
•	 Build powerful models from weak learners that learn from their mistakes

Learning with ensembles
The goal behind ensemble methods is to combine different classifiers into a  
meta-classifier that has a better generalization performance than each individual 
classifier alone. For example, assuming that we collected predictions from 10 experts, 
ensemble methods would allow us to strategically combine these predictions by the 
10 experts to come up with a prediction that is more accurate and robust than the 
predictions by each individual expert. As we will see later in this chapter, there are 
several different approaches for creating an ensemble of classifiers. In this section, 
we will introduce a basic perception about how ensembles work and why they are 
typically recognized for yielding a good generalization performance.



Combining Different Models for Ensemble Learning

[ 200 ]

In this chapter, we will focus on the most popular ensemble methods that use the 
majority voting principle. Majority voting simply means that we select the class 
label that has been predicted by the majority of classifiers, that is, received more than 
50 percent of the votes. Strictly speaking, the term majority vote refers to binary 
class settings only. However, it is easy to generalize the majority voting principle to 
multi-class settings, which is called plurality voting. Here, we select the class label 
that received the most votes (mode). The following diagram illustrates the concept 
of majority and plurality voting for an ensemble of 10 classifiers where each unique 
symbol (triangle, square, and circle) represents a unique class label:

Using the training set, we start by training m different classifiers ( 1, , mC C… ). 
Depending on the technique, the ensemble can be built from different classification 
algorithms, for example, decision trees, support vector machines, logistic regression 
classifiers, and so on. Alternatively, we can also use the same base classification 
algorithm fitting different subsets of the training set. One prominent example of this 
approach would be the random forest algorithm, which combines different decision 
tree classifiers. The following diagram illustrates the concept of a general ensemble 
approach using majority voting:
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To predict a class label via a simple majority or plurality voting, we combine the 
predicted class labels of each individual classifier jC  and select the class label ŷ  that 
received the most votes:

( ) ( ) ( ){ }1 2ˆ , , , my mode C C C= …x x x

For example, in a binary classification task where 1 1class = −  and 2 1class = + , we can 
write the majority vote prediction as follows:

( ) ( ) ( )1 0

1

m
ji

j
j

if C
C sign C

otherwise

 ≥  = =  
−  

∑∑
x

x x

To illustrate why ensemble methods can work better than individual classifiers 
alone, let's apply the simple concepts of combinatorics. For the following example, 
we make the assumption that all n base classifiers for a binary classification task have 
an equal error rate ε . Furthermore, we assume that the classifiers are independent 
and the error rates are not correlated. Under those assumptions, we can simply 
express the error probability of an ensemble of base classifiers as a probability  
mass function of a binomial distribution:

( ) ( )1
n

n kk
ensemble

k

n
P y k

k
ε ε ε−≥ = − =∑

Here, nk  is the binomial coefficient n choose k. In other words, we compute the 
probability that the prediction of the ensemble is wrong. Now let's take a look  
at a more concrete example of 11 base classifiers ( 11n = ) with an error rate of  
0.25 ( 0.25ε = ):

( ) ( )11
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As we can see, the error rate of the ensemble (0.034) is much lower than the error 
rate of each individual classifier (0.25) if all the assumptions are met. Note that, in 
this simplified illustration, a 50-50 split by an even number of classifiers n is treated 
as an error, whereas this is only true half of the time. To compare such an idealistic 
ensemble classifier to a base classifier over a range of different base error rates, let's 
implement the probability mass function in Python:

>>> from scipy.misc import comb
>>> import math
>>> def ensemble_error(n_classifier, error):
...     k_start = math.ceil(n_classifier / 2.0)
...     probs = [comb(n_classifier, k) * 
...              error**k * 
...              (1-error)**(n_classifier - k) 
...              for k in range(k_start, n_classifier + 1)]
...     return sum(probs)
>>> ensemble_error(n_classifier=11, error=0.25)
0.034327507019042969

After we've implemented the ensemble_error function, we can compute the 
ensemble error rates for a range of different base errors from 0.0 to 1.0 to visualize 
the relationship between ensemble and base errors in a line graph:

>>> import numpy as np
>>> error_range = np.arange(0.0, 1.01, 0.01)
>>> ens_errors = [ensemble_error(n_classifier=11, error=error) 
...               for error in error_range]
>>> import matplotlib.pyplot as plt
>>> plt.plot(error_range, ens_errors, 
...          label='Ensemble error', 
...          linewidth=2)
>>> plt.plot(error_range, error_range, 
...          linestyle='--', label='Base error',
...          linewidth=2)
>>> plt.xlabel('Base error')
>>> plt.ylabel('Base/Ensemble error')
>>> plt.legend(loc='upper left')
>>> plt.grid()
>>> plt.show()

As we can see in the resulting plot, the error probability of an ensemble is always 
better than the error of an individual base classifier as long as the base classifiers 
perform better than random guessing ( 0.5ε < ). Note that the y-axis depicts the base  
error (dotted line) as well as the ensemble error (continuous line):
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Implementing a simple majority vote 
classifier
After the short introduction to ensemble learning in the previous section, let's start 
with a warm-up exercise and implement a simple ensemble classifier for majority 
voting in Python. Although the following algorithm also generalizes to multi-class 
settings via plurality voting, we will use the term majority voting for simplicity as is 
also often done in literature.

The algorithm that we are going to implement will allow us to combine different 
classification algorithms associated with individual weights for confidence. Our 
goal is to build a stronger meta-classifier that balances out the individual classifiers' 
weaknesses on a particular dataset. In more precise mathematical terms, we can 
write the weighted majority vote as follows:

( )( )
1

ˆ arg max
m

j A ji j
y w C iχ

=

= =∑ x
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Here, jw  is a weight associated with a base classifier, jC , ŷ  is the predicted class label 
of the ensemble, Aχ  (Greek chi) is the characteristic function ( )jC i A = ∈ x , and A is the 
set of unique class labels. For equal weights, we can simplify this equation and write 
it as follows:

( ) ( ) ( ){ }1 2ˆ , , , my mode C C C= …x x x

To better understand the concept of weighting, we will now take a look at a  
more concrete example. Let's assume that we have an ensemble of three base 
classifiers jC  ( { })0,1j∈  and want to predict the class label of a given sample instance x. 
Two out of three base classifiers predict the class label 0, and one 3C  predicts that the 
sample belongs to class 1. If we weight the predictions of each base classifier equally, 
the majority vote will predict that the sample belongs to class 0:

( ) ( ) ( )1 2 30, 0, 1C x C x C x→ → →

{ }ˆ 0,0,1 0y mode= =

Now let's assign a weight of 0.6 to 3C  and weight 1C  and 2C  by a coefficient of 0.2, 
respectively.

( )( )
1

ˆ arg max
m

j A ji j
y w C iχ

=

= =∑ x

[ ]0 0 1arg max 0.2 0.2 0.6 1
i

i i i= × + × + × =

More intuitively, since 3 0.2 0.6× = , we can say that the prediction made by 3C  has 
three times more weight than the predictions by 1C  or 2C , respectively. We can write 
this as follows:

{ }ˆ 0,0,1,1,1 1y mode= =
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To translate the concept of the weighted majority vote into Python code, we can use 
NumPy's convenient argmax and bincount functions:

>>> import numpy as np
>>> np.argmax(np.bincount([0, 0, 1], 
...           weights=[0.2, 0.2, 0.6]))
1

As discussed in Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn, 
certain classifiers in scikit-learn can also return the probability of a predicted class 
label via the predict_proba method. Using the predicted class probabilities instead 
of the class labels for majority voting can be useful if the classifiers in our ensemble 
are well calibrated. The modified version of the majority vote for predicting class 
labels from probabilities can be written as follows:

1

ˆ arg max
m

j iji j
y w p

=

= ∑

Here, ijp  is the predicted probability of the jth classifier for class label i.

To continue with our previous example, let's assume that we have a binary 
classification problem with class labels { }0,1i∈  and an ensemble of three classifiers jC

( { }1,2,3j∈ ). Let's assume that the classifier jC  returns the following class membership 
probabilities for a particular sample x :

( ) [ ] ( ) [ ] ( ) [ ]1 2 30.9,0.1 , 0.8,0.2 , 0.4,0.6C C C→ → →x x x

We can then calculate the individual class probabilities as follows:

( )0 | 0.2 0.9 0.2 0.8 0.6 0.4 0.58p i = × + × + × =x

( )1 | 0.2 0.1 0.2 0.2 0.6 0.06 0.42p i = × + × + × =x

( ) ( )0 1ˆ arg max | , | 0
i

y p i p i= =  x x
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To implement the weighted majority vote based on class probabilities, we can again 
make use of NumPy using numpy.average and np.argmax:

>>> ex = np.array([[0.9, 0.1],
...                [0.8, 0.2],
...                [0.4, 0.6]])
>>> p = np.average(ex, axis=0, weights=[0.2, 0.2, 0.6])
>>> p
array([ 0.58,  0.42])
>>> np.argmax(p)
0

Putting everything together, let's now implement a MajorityVoteClassifier  
in Python:

from sklearn.base import BaseEstimator
from sklearn.base import ClassifierMixin
from sklearn.preprocessing import LabelEncoder
from sklearn.externals import six
from sklearn.base import clone
from sklearn.pipeline import _name_estimators
import numpy as np
import operator

class MajorityVoteClassifier(BaseEstimator,
                             ClassifierMixin):
    """ A majority vote ensemble classifier

    Parameters
    ----------
    classifiers : array-like, shape = [n_classifiers]
      Different classifiers for the ensemble

    vote : str, {'classlabel', 'probability'}
      Default: 'classlabel'
      If 'classlabel' the prediction is based on
      the argmax of class labels. Else if
      'probability', the argmax of the sum of
      probabilities is used to predict the class label
      (recommended for calibrated classifiers).

    weights : array-like, shape = [n_classifiers]
      Optional, default: None
      If a list of `int` or `float` values are
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      provided, the classifiers are weighted by
      importance; Uses uniform weights if `weights=None`.

    """
    def __init__(self, classifiers,
                 vote='classlabel', weights=None):

        self.classifiers = classifiers
        self.named_classifiers = {key: value for
                                  key, value in
                                  _name_estimators(classifiers)}
        self.vote = vote
        self.weights = weights

    def fit(self, X, y):
        """ Fit classifiers.

        Parameters
        ----------
        X : {array-like, sparse matrix},
            shape = [n_samples, n_features]
            Matrix of training samples.

        y : array-like, shape = [n_samples]
            Vector of target class labels.

        Returns
        -------
        self : object

        """
        # Use LabelEncoder to ensure class labels start
        # with 0, which is important for np.argmax
        # call in self.predict
        self.lablenc_ = LabelEncoder()
        self.lablenc_.fit(y)
        self.classes_ = self.lablenc_.classes_
        self.classifiers_ = []
        for clf in self.classifiers:
            fitted_clf = clone(clf).fit(X,
                              self.lablenc_.transform(y))
            self.classifiers_.append(fitted_clf)
        return self
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I added a lot of comments to the code to better understand the individual parts. 
However, before we implement the remaining methods, let's take a quick break 
and discuss some of the code that may look confusing at first. We used the parent 
classes BaseEstimator and ClassifierMixin to get some base functionality for free, 
including the methods get_params and set_params to set and return the classifier's 
parameters as well as the score method to calculate the prediction accuracy, 
respectively. Also note that we imported six to make the MajorityVoteClassifier 
compatible with Python 2.7.

Next we will add the predict method to predict the class label via majority vote 
based on the class labels if we initialize a new MajorityVoteClassifier object 
with vote='classlabel'. Alternatively, we will be able to initialize the ensemble 
classifier with vote='probability' to predict the class label based on the class 
membership probabilities. Furthermore, we will also add a predict_proba method 
to return the average probabilities, which is useful to compute the Receiver Operator 
Characteristic area under the curve (ROC AUC).

    def predict(self, X):
        """ Predict class labels for X.

        Parameters
        ----------
        X : {array-like, sparse matrix},
            Shape = [n_samples, n_features]
            Matrix of training samples.

        Returns
        ----------
        maj_vote : array-like, shape = [n_samples]
            Predicted class labels.

        """
        if self.vote == 'probability':
            maj_vote = np.argmax(self.predict_proba(X),
                                 axis=1)
        else:  # 'classlabel' vote

            #  Collect results from clf.predict calls
            predictions = np.asarray([clf.predict(X)
                                      for clf in
                                      self.classifiers_]).T

            maj_vote = np.apply_along_axis(
                           lambda x:
                           np.argmax(np.bincount(x,                                             
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                                        weights=self.weights)),
                           axis=1,
                           arr=predictions)
        maj_vote = self.lablenc_.inverse_transform(maj_vote)
        return maj_vote

    def predict_proba(self, X):
        """ Predict class probabilities for X.

        Parameters
        ----------
        X : {array-like, sparse matrix},
            shape = [n_samples, n_features]
            Training vectors, where n_samples is
            the number of samples and
            n_features is the number of features.

        Returns
        ----------
        avg_proba : array-like,
            shape = [n_samples, n_classes]
            Weighted average probability for
            each class per sample.

        """
        probas = np.asarray([clf.predict_proba(X)
                             for clf in self.classifiers_])
        avg_proba = np.average(probas, 
                               axis=0, weights=self.weights)
        return avg_proba

    def get_params(self, deep=True):
        """ Get classifier parameter names for GridSearch"""
        if not deep:
            return super(MajorityVoteClassifier,
                         self).get_params(deep=False)
        else:
            out = self.named_classifiers.copy()
            for name, step in\ 
                    six.iteritems(self.named_classifiers):
                for key, value in six.iteritems(
                        step.get_params(deep=True)):
                    out['%s__%s' % (name, key)] = value
            return out
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Also, note that we defined our own modified version of the get_params methods to 
use the _name_estimators function in order to access the parameters of individual 
classifiers in the ensemble. This may look a little bit complicated at first, but it will 
make perfect sense when we use grid search for hyperparameter-tuning in  
later sections.

Although our MajorityVoteClassifier implementation is 
very useful for demonstration purposes, I also implemented a more 
sophisticated version of the majority vote classifier in scikit-learn. It 
will become available as sklearn.ensemble.VotingClassifier 
in the next release version (v0.17).

Combining different algorithms for 
classification with majority vote
Now it is about time to put the MajorityVoteClassifier that we implemented in 
the previous section into action. But first, let's prepare a dataset that we can test it 
on. Since we are already familiar with techniques to load datasets from CSV files, 
we will take a shortcut and load the Iris dataset from scikit-learn's dataset module. 
Furthermore, we will only select two features, sepal width and petal length, to make 
the classification task more challenging. Although our MajorityVoteClassifier 
generalizes to multiclass problems, we will only classify flower samples from the two 
classes, Iris-Versicolor and Iris-Virginica, to compute the ROC AUC. The code is  
as follows:

>>> from sklearn import datasets
>>> from sklearn.cross_validation import train_test_split
>>> from sklearn.preprocessing import StandardScaler
>>> from sklearn.preprocessing import LabelEncoder
>>> iris = datasets.load_iris()
>>> X, y = iris.data[50:, [1, 2]], iris.target[50:]
>>> le = LabelEncoder()
>>> y = le.fit_transform(y)
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Note that scikit-learn uses the predict_proba method (if applicable) 
to compute the ROC AUC score. In Chapter 3, A Tour of Machine Learning 
Classifiers Using Scikit-learn, we saw how the class probabilities are 
computed in logistic regression models. In decision trees, the probabilities 
are calculated from a frequency vector that is created for each node 
at training time. The vector collects the frequency values of each class 
label computed from the class label distribution at that node. Then the 
frequencies are normalized so that they sum up to 1. Similarly, the class 
labels of the k-nearest neighbors are aggregated to return the normalized 
class label frequencies in the k-nearest neighbors algorithm. Although the 
normalized probabilities returned by both the decision tree and k-nearest 
neighbors classifier may look similar to the probabilities obtained from a 
logistic regression model, we have to be aware that these are actually not 
derived from probability mass functions.

Next we split the Iris samples into 50 percent training and 50 percent test data:

>>> X_train, X_test, y_train, y_test =\
...        train_test_split(X, y, 
...                         test_size=0.5, 
...                         random_state=1)

Using the training dataset, we now will train three different classifiers—a  
logistic regression classifier, a decision tree classifier, and a k-nearest neighbors 
classifier—and look at their individual performances via a 10-fold cross-validation  
on the training dataset before we combine them into an ensemble classifier:

>>> from sklearn.cross_validation import cross_val_score
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.tree import DecisionTreeClassifier
>>> from sklearn.neighbors import KNeighborsClassifier 
>>> from sklearn.pipeline import Pipeline
>>> import numpy as np
>>> clf1 = LogisticRegression(penalty='l2', 
...                           C=0.001, 
...                           random_state=0)
>>> clf2 = DecisionTreeClassifier(max_depth=1, 
...                               criterion='entropy', 
...                               random_state=0)
>>> clf3 = KNeighborsClassifier(n_neighbors=1, 
...                             p=2, 
...                             metric='minkowski')
>>> pipe1 = Pipeline([['sc', StandardScaler()],
...                   ['clf', clf1]])
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>>> pipe3 = Pipeline([['sc', StandardScaler()],
...                   ['clf', clf3]])
>>> clf_labels = ['Logistic Regression', 'Decision Tree', 'KNN']
>>> print('10-fold cross validation:\n')
>>> for clf, label in zip([pipe1, clf2, pipe3], clf_labels):
...     scores = cross_val_score(estimator=clf, 
>>>                              X=X_train, 
>>>                              y=y_train, 
>>>                              cv=10, 
>>>                              scoring='roc_auc')
>>>     print("ROC AUC: %0.2f (+/- %0.2f) [%s]" 
...                % (scores.mean(), scores.std(), label))

The output that we receive, as shown in the following snippet, shows that the 
predictive performances of the individual classifiers are almost equal:

10-fold cross validation:

ROC AUC: 0.92 (+/- 0.20) [Logistic Regression]
ROC AUC: 0.92 (+/- 0.15) [Decision Tree]
ROC AUC: 0.93 (+/- 0.10) [KNN]

You may be wondering why we trained the logistic regression and k-nearest 
neighbors classifier as part of a pipeline. The reason behind it is that, as discussed  
in Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn, both the  
logistic regression and k-nearest neighbors algorithms (using the Euclidean distance 
metric) are not scale-invariant in contrast with decision trees. Although the Iris 
features are all measured on the same scale (cm), it is a good habit to work with 
standardized features.

Now let's move on to the more exciting part and combine the individual classifiers 
for majority rule voting in our MajorityVoteClassifier:

>>> mv_clf = MajorityVoteClassifier(
...                 classifiers=[pipe1, clf2, pipe3])
>>> clf_labels += ['Majority Voting']
>>> all_clf = [pipe1, clf2, pipe3, mv_clf]
>>> for clf, label in zip(all_clf, clf_labels):
...     scores = cross_val_score(estimator=clf, 
...                              X=X_train, 
...                              y=y_train, 
...                              cv=10, 
...                              scoring='roc_auc')
...     print("Accuracy: %0.2f (+/- %0.2f) [%s]" 
...                % (scores.mean(), scores.std(), label))
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ROC AUC: 0.92 (+/- 0.20) [Logistic Regression]
ROC AUC: 0.92 (+/- 0.15) [Decision Tree]
ROC AUC: 0.93 (+/- 0.10) [KNN]
ROC AUC: 0.97 (+/- 0.10) [Majority Voting]

As we can see, the performance of the MajorityVotingClassifier has substantially 
improved over the individual classifiers in the 10-fold cross-validation evaluation.

Evaluating and tuning the ensemble 
classifier
In this section, we are going to compute the ROC curves from the test set to check if 
the MajorityVoteClassifier generalizes well to unseen data. We should remember 
that the test set is not to be used for model selection; its only purpose is to report an 
unbiased estimate of the generalization performance of a classifier system. The code 
is as follows:

>>> from sklearn.metrics import roc_curve
>>> from sklearn.metrics import auc
>>> colors = ['black', 'orange', 'blue', 'green']
>>> linestyles = [':', '--', '-.', '-']
>>> for clf, label, clr, ls \
...         in zip(all_clf, clf_labels, colors, linestyles):
...     # assuming the label of the positive class is 1
...     y_pred = clf.fit(X_train, 
...                      y_train).predict_proba(X_test)[:, 1]
...     fpr, tpr, thresholds = roc_curve(y_true=y_test, 
...                                      y_score=y_pred)
...     roc_auc = auc(x=fpr, y=tpr)
...     plt.plot(fpr, tpr, 
...              color=clr, 
...              linestyle=ls, 
...              label='%s (auc = %0.2f)' % (label, roc_auc))
>>> plt.legend(loc='lower right')
>>> plt.plot([0, 1], [0, 1], 
...          linestyle='--', 
...          color='gray', 
...          linewidth=2)
>>> plt.xlim([-0.1, 1.1])
>>> plt.ylim([-0.1, 1.1])
>>> plt.grid()
>>> plt.xlabel('False Positive Rate')
>>> plt.ylabel('True Positive Rate')
>>> plt.show()
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As we can see in the resulting ROC, the ensemble classifier also performs well on  
the test set (ROC AUC = 0.95), whereas the k-nearest neighbors classifier seems to  
be overfitting the training data (training ROC AUC = 0.93, test ROC AUC = 0.86):

Since we only selected two features for the classification examples, it would be 
interesting to see what the decision region of the ensemble classifier actually 
looks like. Although it is not necessary to standardize the training features prior 
to model fitting because our logistic regression and k-nearest neighbors pipelines 
will automatically take care of this, we will standardize the training set so that the 
decision regions of the decision tree will be on the same scale for visual purposes. 
The code is as follows:

>>> sc = StandardScaler()
>>> X_train_std = sc.fit_transform(X_train)
>>> from itertools import product
>>> x_min = X_train_std[:, 0].min() - 1
>>> x_max = X_train_std[:, 0].max() + 1
>>> y_min = X_train_std[:, 1].min() - 1
>>> y_max = X_train_std[:, 1].max() + 1
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>>> xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1),
...                      np.arange(y_min, y_max, 0.1))
>>> f, axarr = plt.subplots(nrows=2, ncols=2, 
...                         sharex='col', 
...                         sharey='row', 
...                         figsize=(7, 5))
>>> for idx, clf, tt in zip(product([0, 1], [0, 1]),
...                         all_clf, clf_labels):
...     clf.fit(X_train_std, y_train)
...     Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
...     Z = Z.reshape(xx.shape)
...     axarr[idx[0], idx[1]].contourf(xx, yy, Z, alpha=0.3)    
...     axarr[idx[0], idx[1]].scatter(X_train_std[y_train==0, 0], 
...                                   X_train_std[y_train==0, 1], 
...                                   c='blue', 
...                                   marker='^',
...                                   s=50)    
...     axarr[idx[0], idx[1]].scatter(X_train_std[y_train==1, 0], 
...                                   X_train_std[y_train==1, 1], 
...                                   c='red', 
...                                   marker='o',
...                                   s=50)   
...     axarr[idx[0], idx[1]].set_title(tt)
>>> plt.text(-3.5, -4.5, 
...          s='Sepal width [standardized]', 
...          ha='center', va='center', fontsize=12)
>>> plt.text(-10.5, 4.5, 
...          s='Petal length [standardized]', 
...          ha='center', va='center', 
...          fontsize=12, rotation=90)
>>> plt.show()
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Interestingly but also as expected, the decision regions of the ensemble classifier 
seem to be a hybrid of the decision regions from the individual classifiers. At first 
glance, the majority vote decision boundary looks a lot like the decision boundary of 
the k-nearest neighbor classifier. However, we can see that it is orthogonal to the y 
axis for 1sepal width ≥ , just like the decision tree stump:

Before you learn how to tune the individual classifier parameters for ensemble 
classification, let's call the get_params method to get a basic idea of how we can 
access the individual parameters inside a GridSearch object:

>>> mv_clf.get_params()
{'decisiontreeclassifier': DecisionTreeClassifier(class_weight=None, 
criterion='entropy', max_depth=1,
             max_features=None, max_leaf_nodes=None, min_samples_
leaf=1,
             min_samples_split=2, min_weight_fraction_leaf=0.0,
             random_state=0, splitter='best'),
 'decisiontreeclassifier__class_weight': None,
 'decisiontreeclassifier__criterion': 'entropy',
 [...]
 'decisiontreeclassifier__random_state': 0,
 'decisiontreeclassifier__splitter': 'best',
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 'pipeline-1': Pipeline(steps=[('sc', StandardScaler(copy=True, with_
mean=True, with_std=True)), ('clf', LogisticRegression(C=0.001, class_
weight=None, dual=False, fit_intercept=True,
           intercept_scaling=1, max_iter=100, multi_class='ovr',
           penalty='l2', random_state=0, solver='liblinear', 
tol=0.0001,
           verbose=0))]),
 'pipeline-1__clf': LogisticRegression(C=0.001, class_weight=None, 
dual=False, fit_intercept=True,
           intercept_scaling=1, max_iter=100, multi_class='ovr',
           penalty='l2', random_state=0, solver='liblinear', 
tol=0.0001,
           verbose=0),
 'pipeline-1__clf__C': 0.001,
 'pipeline-1__clf__class_weight': None,
 'pipeline-1__clf__dual': False,
 [...]
 'pipeline-1__sc__with_std': True,
 'pipeline-2': Pipeline(steps=[('sc', StandardScaler(copy=True, with_
mean=True, with_std=True)), ('clf', KNeighborsClassifier(algorithm='au
to', leaf_size=30, metric='minkowski',
            metric_params=None, n_neighbors=1, p=2, 
weights='uniform'))]),
 'pipeline-2__clf': KNeighborsClassifier(algorithm='auto', leaf_
size=30, metric='minkowski',
            metric_params=None, n_neighbors=1, p=2, 
weights='uniform'),
 'pipeline-2__clf__algorithm': 'auto',
 [...]
 'pipeline-2__sc__with_std': True}

Based on the values returned by the get_params method, we now know how to 
access the individual classifier's attributes. Let's now tune the inverse regularization 
parameter C of the logistic regression classifier and the decision tree depth via a grid 
search for demonstration purposes. The code is as follows:

>>> from sklearn.grid_search import GridSearchCV
>>> params = {'decisiontreeclassifier__max_depth': [1, 2],
...           'pipeline-1__clf__C': [0.001, 0.1, 100.0]}
>>> grid = GridSearchCV(estimator=mv_clf, 
...                     param_grid=params, 
...                     cv=10, 
...                     scoring='roc_auc')
>>> grid.fit(X_train, y_train)
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After the grid search has completed, we can print the different hyperparameter  
value combinations and the average ROC AUC scores computed via 10-fold  
cross-validation. The code is as follows:

>>> for params, mean_score, scores in grid.grid_scores_:
...     print("%0.3f+/-%0.2f %r"
...            % (mean_score, scores.std() / 2, params))
0.967+/-0.05 {'pipeline-1__clf__C': 0.001, 'decisiontreeclassifier__
max_depth': 1}
0.967+/-0.05 {'pipeline-1__clf__C': 0.1, 'decisiontreeclassifier__max_
depth': 1}
1.000+/-0.00 {'pipeline-1__clf__C': 100.0, 'decisiontreeclassifier__
max_depth': 1}
0.967+/-0.05 {'pipeline-1__clf__C': 0.001, 'decisiontreeclassifier__
max_depth': 2}
0.967+/-0.05 {'pipeline-1__clf__C': 0.1, 'decisiontreeclassifier__max_
depth': 2}
1.000+/-0.00 {'pipeline-1__clf__C': 100.0, 'decisiontreeclassifier__
max_depth': 2}

>>> print('Best parameters: %s' % grid.best_params_)
Best parameters: {'pipeline-1__clf__C': 100.0, 
'decisiontreeclassifier__max_depth': 1}

>>> print('Accuracy: %.2f' % grid.best_score_)
Accuracy: 1.00

As we can see, we get the best cross-validation results when we choose a lower 
regularization strength (C = 100.0) whereas the tree depth does not seem to affect 
the performance at all, suggesting that a decision stump is sufficient to separate 
the data. To remind ourselves that it is a bad practice to use the test dataset more 
than once for model evaluation, we are not going to estimate the generalization 
performance of the tuned hyperparameters in this section. We will move on swiftly 
to an alternative approach for ensemble learning: bagging.

The majority vote approach we implemented in this section is 
sometimes also referred to as stacking. However, the stacking 
algorithm is more typically used in combination with a logistic 
regression model that predicts the final class label using the 
predictions of the individual classifiers in the ensemble as input, 
which has been described in more detail by David H. Wolpert in D. H. 
Wolpert. Stacked generalization. Neural networks, 5(2):241–259, 1992.
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Bagging – building an ensemble of 
classifiers from bootstrap samples
Bagging is an ensemble learning technique that is closely related to the 
MajorityVoteClassifier that we implemented in the previous section,  
as illustrated in the following diagram:
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However, instead of using the same training set to fit the individual classifiers in the 
ensemble, we draw bootstrap samples (random samples with replacement) from the 
initial training set, which is why bagging is also known as bootstrap aggregating. 
To provide a more concrete example of how bootstrapping works, let's consider 
the example shown in the following figure. Here, we have seven different training 
instances (denoted as indices 1-7) that are sampled randomly with replacement 
in each round of bagging. Each bootstrap sample is then used to fit a classifier jC , 
which is most typically an unpruned decision tree:

Bagging is also related to the random forest classifier that we introduced in  
Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn. In fact, random 
forests are a special case of bagging where we also use random feature subsets  
to fit the individual decision trees. Bagging was first proposed by Leo Breiman  
in a technical report in 1994; he also showed that bagging can improve the accuracy 
of unstable models and decrease the degree of overfitting. I highly recommend  
you read about his research in L. Breiman. Bagging Predictors. Machine Learning, 
24(2):123–140, 1996, which is freely available online, to learn more about bagging.
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To see bagging in action, let's create a more complex classification problem using  
the Wine dataset that we introduced in Chapter 4, Building Good Training Sets – Data 
Preprocessing. Here, we will only consider the Wine classes 2 and 3, and we select two 
features: Alcohol and Hue.

>>> import pandas as pd
>>> df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/machine-
learning-databases/wine/wine.data', header=None)
>>> df_wine.columns = ['Class label', 'Alcohol', 
...                    'Malic acid', 'Ash', 
...                    'Alcalinity of ash', 
...                    'Magnesium', 'Total phenols', 
...                    'Flavanoids', 'Nonflavanoid phenols',
...                    'Proanthocyanins', 
...                    'Color intensity', 'Hue', 
...                    'OD280/OD315 of diluted wines', 
...                    'Proline']
>>> df_wine = df_wine[df_wine['Class label'] != 1]
>>> y = df_wine['Class label'].values
>>> X = df_wine[['Alcohol', 'Hue']].values

Next we encode the class labels into binary format and split the dataset into  
60 percent training and 40 percent test set, respectively:

>>> from sklearn.preprocessing import LabelEncoder
>>> from sklearn.cross_validation import train_test_split
>>> le = LabelEncoder()
>>> y = le.fit_transform(y)
>>> X_train, X_test, y_train, y_test =\
...            train_test_split(X, y, 
...                             test_size=0.40, 
...                             random_state=1)

A BaggingClassifier algorithm is already implemented in scikit-learn, which we 
can import from the ensemble submodule. Here, we will use an unpruned decision 
tree as the base classifier and create an ensemble of 500 decision trees fitted on 
different bootstrap samples of the training dataset:

>>> from sklearn.ensemble import BaggingClassifier
>>> tree = DecisionTreeClassifier(criterion='entropy', 
...                               max_depth=None)
>>> bag = BaggingClassifier(base_estimator=tree,
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...                         n_estimators=500, 

...                         max_samples=1.0, 

...                         max_features=1.0, 

...                         bootstrap=True, 

...                         bootstrap_features=False, 

...                         n_jobs=1, 

...                         random_state=1)

Next we will calculate the accuracy score of the prediction on the training and test 
dataset to compare the performance of the bagging classifier to the performance of a 
single unpruned decision tree:

>>> from sklearn.metrics import accuracy_score
>>> tree = tree.fit(X_train, y_train)
>>> y_train_pred = tree.predict(X_train)
>>> y_test_pred = tree.predict(X_test)
>>> tree_train = accuracy_score(y_train, y_train_pred)
>>> tree_test = accuracy_score(y_test, y_test_pred)
>>> print('Decision tree train/test accuracies %.3f/%.3f'
...        % (tree_train, tree_test))
Decision tree train/test accuracies 1.000/0.854

Based on the accuracy values that we printed by executing the preceding  
code snippet, the unpruned decision tree predicts all class labels of the training 
samples correctly; however, the substantially lower test accuracy indicates high 
variance (overfitting) of the model:

>>> bag = bag.fit(X_train, y_train)
>>> y_train_pred = bag.predict(X_train)
>>> y_test_pred = bag.predict(X_test)
>>> bag_train = accuracy_score(y_train, y_train_pred) 
>>> bag_test = accuracy_score(y_test, y_test_pred) 
>>> print('Bagging train/test accuracies %.3f/%.3f'
...        % (bag_train, bag_test))
Bagging train/test accuracies 1.000/0.896

Although the training accuracies of the decision tree and bagging classifier are 
similar on the training set (both 1.0), we can see that the bagging classifier has a 
slightly better generalization performance as estimated on the test set. Next let's 
compare the decision regions between the decision tree and bagging classifier:

>>> x_min = X_train[:, 0].min() - 1
>>> x_max = X_train[:, 0].max() + 1
>>> y_min = X_train[:, 1].min() - 1
>>> y_max = X_train[:, 1].max() + 1
>>> xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1),
...                      np.arange(y_min, y_max, 0.1))
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>>> f, axarr = plt.subplots(nrows=1, ncols=2, 
...                         sharex='col', 
...                         sharey='row', 
...                         figsize=(8, 3))
>>> for idx, clf, tt in zip([0, 1],
...                         [tree, bag],
...                         ['Decision Tree', 'Bagging']):
...     clf.fit(X_train, y_train)
...     
...     Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
...     Z = Z.reshape(xx.shape)
...     axarr[idx].contourf(xx, yy, Z, alpha=0.3)
...     axarr[idx].scatter(X_train[y_train==0, 0], 
...                        X_train[y_train==0, 1], 
...                        c='blue', marker='^')    
...     axarr[idx].scatter(X_train[y_train==1, 0], 
...                        X_train[y_train==1, 1], 
...                        c='red', marker='o')    
...     axarr[idx].set_title(tt)
>>> axarr[0].set_ylabel(Alcohol', fontsize=12)
>>> plt.text(10.2, -1.2, 
...          s=Hue', 
...          ha='center', va='center', fontsize=12)
>>> plt.show()

As we can see in the resulting plot, the piece-wise linear decision boundary of the 
three-node deep decision tree looks smoother in the bagging ensemble:
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We only looked at a very simple bagging example in this section. In practice, more 
complex classification tasks and datasets' high dimensionality can easily lead to 
overfitting in single decision trees and this is where the bagging algorithm can really 
play out its strengths. Finally, we shall note that the bagging algorithm can be an 
effective approach to reduce the variance of a model. However, bagging is ineffective 
in reducing model bias, which is why we want to choose an ensemble of classifiers 
with low bias, for example, unpruned decision trees.

Leveraging weak learners via adaptive 
boosting
In this section about ensemble methods, we will discuss boosting with a special 
focus on its most common implementation, AdaBoost (short for Adaptive Boosting).

The original idea behind AdaBoost was formulated by Robert Schapire in 
1990 (R. E. Schapire. The Strength of Weak Learnability. Machine learning, 
5(2):197–227, 1990). After Robert Schapire and Yoav Freund presented the 
AdaBoost algorithm in the Proceedings of the Thirteenth International 
Conference (ICML 1996), AdaBoost became one of the most widely used 
ensemble methods in the years that followed (Y. Freund, R. E. Schapire, et 
al. Experiments with a New Boosting Algorithm. In ICML, volume 96, pages 
148–156, 1996). In 2003, Freund and Schapire received the Goedel Prize 
for their groundbreaking work, which is a prestigious prize for the most 
outstanding publications in the computer science field.

In boosting, the ensemble consists of very simple base classifiers, also often referred 
to as weak learners, that have only a slight performance advantage over random 
guessing. A typical example of a weak learner would be a decision tree stump. 
The key concept behind boosting is to focus on training samples that are hard 
to classify, that is, to let the weak learners subsequently learn from misclassified 
training samples to improve the performance of the ensemble. In contrast to bagging, 
the initial formulation of boosting, the algorithm uses random subsets of training 
samples drawn from the training dataset without replacement. The original boosting 
procedure is summarized in four key steps as follows:

1.	 Draw a random subset of training samples 1d  without replacement from the 
training set D  to train a weak learner 1C .

2.	 Draw second random training subset 2d  without replacement from the 
training set and add 50 percent of the samples that were previously 
misclassified to train a weak learner 2C .
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3.	 Find the training samples 3d  in the training set D  on which 1C  and 2C  
disagree to train a third weak learner 3C .

4.	 Combine the weak learners 1C , 2C , and 3C  via majority voting.

As discussed by Leo Breiman (L. Breiman. Bias, Variance, and Arcing Classifiers. 1996), 
boosting can lead to a decrease in bias as well as variance compared to bagging 
models. In practice, however, boosting algorithms such as AdaBoost are also known 
for their high variance, that is, the tendency to overfit the training data (G. Raetsch, 
T. Onoda, and K. R. Mueller. An Improvement of Adaboost to Avoid Overfitting. In Proc. 
of the Int. Conf. on Neural Information Processing. Citeseer, 1998).

In contrast to the original boosting procedure as described here, AdaBoost uses 
the complete training set to train the weak learners where the training samples are 
reweighted in each iteration to build a strong classifier that learns from the mistakes 
of the previous weak learners in the ensemble. Before we dive deeper into the 
specific details of the AdaBoost algorithm, let's take a look at the following  
figure to get a better grasp of the basic concept behind AdaBoost:



Combining Different Models for Ensemble Learning

[ 226 ]

To walk through the AdaBoost illustration step by step, we start with subfigure 1, 
which represents a training set for binary classification where all training samples 
are assigned equal weights. Based on this training set, we train a decision stump 
(shown as a dashed line) that tries to classify the samples of the two classes (triangles 
and circles) as well as possible by minimizing the cost function (or the impurity score 
in the special case of decision tree ensembles). For the next round (subfigure 2),  
we assign a larger weight to the two previously misclassified samples (circles). 
Furthermore, we lower the weight of the correctly classified samples. The next 
decision stump will now be more focused on the training samples that have the 
largest weights, that is, the training samples that are supposedly hard to classify. 
The weak learner shown in subfigure 2 misclassifies three different samples from 
the circle-class, which are then assigned a larger weight as shown in subfigure 3. 
Assuming that our AdaBoost ensemble only consists of three rounds of boosting, we 
would then combine the three weak learners trained on different reweighted training 
subsets by a weighted majority vote, as shown in subfigure 4.

Now that have a better understanding behind the basic concept of AdaBoost, let's 
take a more detailed look at the algorithm using pseudo code. For clarity, we will 
denote element-wise multiplication by the cross symbol ( )×  and the dot product 
between two vectors by a dot symbol ( )⋅ , respectively. The steps are as follows:

1.	 Set weight vector w  to uniform weights where 1ii
w =∑

2.	 For j in m boosting rounds, do the following:
3.	 Train a weighted weak learner: (train , ,jC = X y w ).
4.	 Predict class labels: ( )ˆ predict ,jy C= X .
5.	 Compute weighted error rate: ( )ˆε = ⋅ ==w y y .

6.	 Compute coefficient: 10.5logj
εα
ε
−

= .

7.	 Update weights: ( )ˆ: exp jα= × − × ×w w y y .

8.	 Normalize weights to sum to 1: : ii
w= ∑w w / .

9.	 Compute final prediction: ( )( )( )1
ˆ predict , 0m

j jj
C

=
= × >∑y Xα .

Note that the expression ( )ˆ ==y y  in step 5 refers to a vector of 1s and 0s, where a 1 is 
assigned if the prediction is correct and 0 is assigned otherwise.
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Although the AdaBoost algorithm seems to be pretty straightforward, let's walk 
through a more concrete example using a training set consisting of 10 training 
samples as illustrated in the following table:

The first column of the table depicts the sample indices of the training samples 1 
to 10. In the second column, we see the feature values of the individual samples 
assuming this is a one-dimensional dataset. The third column shows the true class 
label iy  for each training sample ix , where { }1, 1iy ∈ − . The initial weights are shown in 
the fourth column; we initialize the weights to uniform and normalize them to sum 
to one. In the case of the 10 sample training set, we therefore assign the 0.1 to each 
weight iw  in the weight vector w . The predicted class labels ŷ  are shown in the  
fifth column, assuming that our splitting criterion is 3.0x ≤ . The last column of the 
table then shows the updated weights based on the update rules that we defined  
in the pseudocode.

Since the computation of the weight updates may look a little bit complicated at first, 
we will now follow the calculation step by step. We start by computing the weighted 
error rate ε  as described in step 5:

0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0
30.1 0 0.3

10

ε = × + × + × + × + × + × + × + ×

+ × = =

Next we compute the coefficient jα  (shown in step 6), which is later used in step 7 to 
update the weights as well as for the weights in majority vote prediction (step 10):

( )0.5log 1
0.424j

ε
α

ε
−

= ≈
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After we have computed the coefficient jα  we can now update the weight vector 
using the following equation:

( )ˆ: exp jα= × − × ×w w y y

Here, ˆ ×y y  is an element-wise multiplication between the vectors of the predicted 
and true class labels, respectively. Thus, if a prediction ˆiy  is correct, ˆi iy y×  will have a 
positive sign so that we decrease the ith weight since jα  is a positive number as well:

( )0.1 exp 0.424 1 1 0.066× − × × ≈

Similarly, we will downweight the ith weight if ˆiy  predicted the label incorrectly  
like this:

( )( )0.1 exp 0.424 1 1 0.153× − × × − ≈

Or like this:

( ) ( )( )0.1 exp 0.424 1 1 0.153× − × − × ≈

After we update each weight in the weight vector, we normalize the weights so  
that they sum up to 1 (step 8):

:
ii
w

=
∑

ww

Here, 7 0.065 3 0.153 0.914ii
w = × + × =∑ .

Thus, each weight that corresponds to a correctly classified sample will be  
reduced from the initial value of 0.1 to 0.066 / 0.914 0.072≈  for the next round  
of boosting. Similarly, the weights of each incorrectly classified sample will  
increase from 0.1 to 0.153 / 0.914 0.167≈ .
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This was AdaBoost in a nutshell. Skipping to the more practical part, let's now train 
an AdaBoost ensemble classifier via scikit-learn. We will use the same Wine subset 
that we used in the previous section to train the bagging meta-classifier. Via the 
base_estimator attribute, we will train the AdaBoostClassifier on 500 decision 
tree stumps:

>>> from sklearn.ensemble import AdaBoostClassifier
>>> tree = DecisionTreeClassifier(criterion='entropy', 
...                               max_depth=1)
>>> ada = AdaBoostClassifier(base_estimator=tree,
...                          n_estimators=500, 
...                          learning_rate=0.1,
...                          random_state=0)
>>> tree = tree.fit(X_train, y_train)
>>> y_train_pred = tree.predict(X_train)
>>> y_test_pred = tree.predict(X_test)
>>> tree_train = accuracy_score(y_train, y_train_pred)
>>> tree_test = accuracy_score(y_test, y_test_pred)
>>> print('Decision tree train/test accuracies %.3f/%.3f'
...       % (tree_train, tree_test))
Decision tree train/test accuracies 0.845/0.854

As we can see, the decision tree stump seems to overfit the training data in contrast 
with the unpruned decision tree that we saw in the previous section:

>>> ada = ada.fit(X_train, y_train)
>>> y_train_pred = ada.predict(X_train)
>>> y_test_pred = ada.predict(X_test)
>>> ada_train = accuracy_score(y_train, y_train_pred) 
>>> ada_test = accuracy_score(y_test, y_test_pred) 
>>> print('AdaBoost train/test accuracies %.3f/%.3f'
...       % (ada_train, ada_test))
AdaBoost train/test accuracies 1.000/0.875

As we can see, the AdaBoost model predicts all class labels of the training set 
correctly and also shows a slightly improved test set performance compared to the 
decision tree stump. However, we also see that we introduced additional variance by 
our attempt to reduce the model bias.
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Although we used another simple example for demonstration purposes, we can 
see that the performance of the AdaBoost classifier is slightly improved compared 
to the decision stump and achieved very similar accuracy scores to the bagging 
classifier that we trained in the previous section. However, we should note that it is 
considered as bad practice to select a model based on the repeated usage of the test 
set. The estimate of the generalization performance may be too optimistic, which we 
discussed in more detail in Chapter 6, Learning Best Practices for Model Evaluation and 
Hyperparameter Tuning.

Finally, let's check what the decision regions look like:

>>> x_min = X_train[:, 0].min() - 1
>>> x_max = X_train[:, 0].max() + 1
>>> y_min = X_train[:, 1].min() - 1
>>> y_max = X_train[:, 1].max() + 1
>>> xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1),
...                      np.arange(y_min, y_max, 0.1))
>>> f, axarr = plt.subplots(1, 2, 
...                         sharex='col', 
...                         sharey='row', 
...                         figsize=(8, 3))
>>> for idx, clf, tt in zip([0, 1],
...                         [tree, ada],
...                         ['Decision Tree', 'AdaBoost']):
...     clf.fit(X_train, y_train)   
...     Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
...     Z = Z.reshape(xx.shape)
...     axarr[idx].contourf(xx, yy, Z, alpha=0.3)
...     axarr[idx].scatter(X_train[y_train==0, 0], 
...                        X_train[y_train==0, 1], 
...                        c='blue', 
...                        marker='^')
...     axarr[idx].scatter(X_train[y_train==1, 0], 
...                        X_train[y_train==1, 1], 
...                        c='red',
...                        marker='o')
... axarr[idx].set_title(tt)
... axarr[0].set_ylabel('Alcohol', fontsize=12)
>>> plt.text(10.2, -1.2, 
...          s=Hue', 
...          ha='center', 
...          va='center', 
...          fontsize=12)    
>>> plt.show()
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By looking at the decision regions, we can see that the decision boundary of the 
AdaBoost model is substantially more complex than the decision boundary of the 
decision stump. In addition, we note that the AdaBoost model separates the feature 
space very similarly to the bagging classifier that we trained in the previous section.

As concluding remarks about ensemble techniques, it is worth noting that  
ensemble learning increases the computational complexity compared to individual 
classifiers. In practice, we need to think carefully whether we want to pay the price 
of increased computational costs for an often relatively modest improvement of 
predictive performance.

An often-cited example of this trade-off is the famous $1 Million Netflix Prize, which 
was won using ensemble techniques. The details about the algorithm were published 
in A. Toescher, M. Jahrer, and R. M. Bell. The Bigchaos Solution to the Netflix Grand 
Prize. Netflix prize documentation, 2009 (which is available at http://www.stat.
osu.edu/~dmsl/GrandPrize2009_BPC_BigChaos.pdf). Although the winning 
team received the $1 million prize money, Netflix never implemented their model 
due to its complexity, which made it unfeasible for a real-world application. To 
quote their exact words (http://techblog.netflix.com/2012/04/netflix-
recommendations-beyond-5-stars.html):

"[…] additional accuracy gains that we measured did not seem to justify the 
engineering effort needed to bring them into a production environment."

http://www.stat.osu.edu/~dmsl/GrandPrize2009_BPC_BigChaos.pdf
http://www.stat.osu.edu/~dmsl/GrandPrize2009_BPC_BigChaos.pdf
http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-stars.html
http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-stars.html
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Summary
In this chapter, we looked at some of the most popular and widely used techniques 
for ensemble learning. Ensemble methods combine different classification models  
to cancel out their individual weakness, which often results in stable and  
well-performing models that are very attractive for industrial applications  
as well as machine learning competitions.

In the beginning of this chapter, we implemented a MajorityVoteClassifier in 
Python that allows us to combine different algorithm for classification. We then 
looked at bagging, a useful technique to reduce the variance of a model by drawing 
random bootstrap samples from the training set and combining the individually 
trained classifiers via majority vote. Then we discussed AdaBoost, which is an 
algorithm that is based on weak learners that subsequently learn from mistakes.

Throughout the previous chapters, we discussed different learning algorithms, 
tuning, and evaluation techniques. In the following chapter, we will look at a 
particular application of machine learning, sentiment analysis, which has certainly 
become an interesting topic in the era of the Internet and social media.
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Applying Machine Learning to 
Sentiment Analysis

In this Internet and social media time and age, people's opinions, reviews, and 
recommendations have become a valuable resource for political science and 
businesses. Thanks to modern technologies, we are now able to collect and analyze 
such data most efficiently. In this chapter, we will delve into a subfield of natural 
language processing (NLP) called sentiment analysis and learn how to use machine 
learning algorithms to classify documents based on their polarity: the attitude of the 
writer. The topics that we will cover in the following sections include:

•	 Cleaning and preparing text data
•	 Building feature vectors from text documents
•	 Training a machine learning model to classify positive and negative  

movie reviews
•	 Working with large text datasets using out-of-core learning

Obtaining the IMDb movie review dataset
Sentiment analysis, sometimes also called opinion mining, is a popular sub-
discipline of the broader field of NLP; it analyzes the polarity of documents. A 
popular task in sentiment analysis is the classification of documents based on the 
expressed opinions or emotions of the authors with regard to a particular topic.
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In this chapter, we will be working with a large dataset of movie reviews from the 
Internet Movie Database (IMDb) that has been collected by Maas et al. (A. L. Maas, 
R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. Learning Word Vectors for 
Sentiment Analysis. In the proceedings of the 49th Annual Meeting of the Association 
for Computational Linguistics: Human Language Technologies, pages 142–150, 
Portland, Oregon, USA, June 2011. Association for Computational Linguistics). The 
movie review dataset consists of 50,000 polar movie reviews that are labeled as either 
positive or negative; here, positive means that a movie was rated with more than six 
stars on IMDb, and negative means that a movie was rated with fewer than five 
stars on IMDb. In the following sections, we will learn how to extract meaningful 
information from a subset of these movie reviews to build a machine learning  
model that can predict whether a certain reviewer liked or disliked a movie.

A compressed archive of the movie review dataset (84.1 MB) can be downloaded 
from http://ai.stanford.edu/~amaas/data/sentiment/ as a gzip-compressed 
tarball archive:

•	 If you are working with Linux or Mac OS X, you can open a new terminal 
window, use cd to go into the download directory, and execute tar -zxf 
aclImdb_v1.tar.gz to decompress the dataset

•	 If you are working with Windows, you can download a free archiver  
such as 7-Zip (http://www.7-zip.org) to extract the files from the 
download archive

Having successfully extracted the dataset, we will now assemble the individual 
text documents from the decompressed download archive into a single CSV file. 
In the following code section, we will be reading the movie reviews into a pandas 
DataFrame object, which can take up to 10 minutes on a standard desktop computer. 
To visualize the progress and estimated time until completion, we will use the 
PyPrind (Python Progress Indicator, https://pypi.python.org/pypi/PyPrind/) 
package that I developed several years ago for such purposes. PyPrind can be 
installed by executing the command: pip install pyprind.

>>> import pyprind
>>> import pandas as pd
>>> import os
>>> pbar = pyprind.ProgBar(50000)
>>> labels = {'pos':1, 'neg':0}
>>> df = pd.DataFrame()
>>> for s in ('test', 'train'):
...    for l in ('pos', 'neg'):
...        path ='./aclImdb/%s/%s' % (s, l)
...        for file in os.listdir(path):
...            with open(os.path.join(path, file), 'r') as infile:

http://ai.stanford.edu/~amaas/data/sentiment/
http://www.7-zip.org
https://pypi.python.org/pypi/PyPrind/
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...                txt = infile.read()

...           df = df.append([[txt, labels[l]]], ignore_index=True)

...            pbar.update()
>>> df.columns = ['review', 'sentiment']
0%                          100%
[##############################] | ETA[sec]: 0.000 
Total time elapsed: 725.001 sec

Executing the preceding code, we first initialized a new progress bar object pbar 
with 50,000 iterations, which is the number of documents we were going to read in. 
Using the nested for loops, we iterated over the train and test subdirectories in 
the main aclImdb directory and read the individual text files from the pos and neg 
subdirectories that we eventually appended to the DataFrame df—together with an 
integer class label (1 = positive and 0 = negative).

Since the class labels in the assembled dataset are sorted, we will now shuffle 
DataFrame using the permutation function from the np.random submodule—this 
will be useful to split the dataset into training and test sets in later sections when we 
will stream the data from our local drive directly. For our own convenience, we will 
also store the assembled and shuffled movie review dataset as a CSV file:

>>> import numpy as np
>>> np.random.seed(0)
>>> df = df.reindex(np.random.permutation(df.index))
>>> df.to_csv('./movie_data.csv', index=False)

Since we are going to use this dataset later in this chapter, let us quickly confirm that 
we successfully saved the data in the right format by reading in the CSV and printing 
an excerpt of the first three samples:

>>> df = pd.read_csv('./movie_data.csv')
>>> df.head(3)

If you are running the code examples in IPython Notebook, you should now see the 
first three samples of the dataset, as shown in the following table:

0

1

2

review sentiment

1

0

0

In 1974, the teenager Martha Moxley (Maggie Gr...

OK... so... I really like Kris Kristofferson a...

***SPOILER*** Do not read this, if you think a...
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Introducing the bag-of-words model
We remember from Chapter 4, Building Good Training Sets – Data Preprocessing, that 
we have to convert categorical data, such as text or words, into a numerical form 
before we can pass it on to a machine learning algorithm. In this section, we will 
introduce the bag-of-words model that allows us to represent text as numerical 
feature vectors. The idea behind the bag-of-words model is quite simple and can be 
summarized as follows:

1.	 We create a vocabulary of unique tokens—for example, words—from the 
entire set of documents.

2.	 We construct a feature vector from each document that contains the counts of 
how often each word occurs in the particular document.

Since the unique words in each document represent only a small subset of all the 
words in the bag-of-words vocabulary, the feature vectors will consist of mostly 
zeros, which is why we call them sparse. Do not worry if this sounds too abstract; in 
the following subsections, we will walk through the process of creating a simple bag-
of-words model step-by-step.

Transforming words into feature vectors
To construct a bag-of-words model based on the word counts in the respective 
documents, we can use the CountVectorizer class implemented in scikit-learn. As 
we will see in the following code section, the CountVectorizer class takes an array 
of text data, which can be documents or just sentences, and constructs the bag-of-
words model for us:

>>> import numpy as np
>>> from sklearn.feature_extraction.text import CountVectorizer
>>> count = CountVectorizer()
>>> docs = np.array([
...        'The sun is shining',
...        'The weather is sweet',
...        'The sun is shining and the weather is sweet'])
>>> bag = count.fit_transform(docs)

By calling the fit_transform method on CountVectorizer, we just constructed 
the vocabulary of the bag-of-words model and transformed the following three 
sentences into sparse feature vectors:

1.	 The sun is shining

2.	 The weather is sweet

3.	 The sun is shining and the weather is sweet
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Now let us print the contents of the vocabulary to get a better understanding of the 
underlying concepts:

>>> print(count.vocabulary_)
{'the': 5, 'shining': 2, 'weather': 6, 'sun': 3, 'is': 1, 'sweet': 4, 
'and': 0}

As we can see from executing the preceding command, the vocabulary is stored in a 
Python dictionary, which maps the unique words that are mapped to integer indices. 
Next let us print the feature vectors that we just created:

>>> print(bag.toarray())
[[0 1 1 1 0 1 0]
 [0 1 0 0 1 1 1]
 [1 2 1 1 1 2 1]]

Each index position in the feature vectors shown here corresponds to the integer 
values that are stored as dictionary items in the CountVectorizer vocabulary. For 
example, the first feature at index position 0 resembles the count of the word and, 
which only occurs in the last document, and the word is at index position 1 (the 2nd 
feature in the document vectors) occurs in all three sentences. Those values in the 
feature vectors are also called the raw term frequencies: tf (t,d)—the number of times 
a term t occurs in a document d.

The sequence of items in the bag-of-words model that we just created 
is also called the 1-gram or unigram model—each item or token in the 
vocabulary represents a single word. More generally, the contiguous 
sequences of items in NLP—words, letters, or symbols—is also called an 
n-gram. The choice of the number n in the n-gram model depends on the 
particular application; for example, a study by Kanaris et al. revealed that 
n-grams of size 3 and 4 yield good performances in anti-spam filtering 
of e-mail messages (Ioannis Kanaris, Konstantinos Kanaris, Ioannis 
Houvardas, and Efstathios Stamatatos. Words vs Character N-Grams 
for Anti-Spam Filtering. International Journal on Artificial Intelligence 
Tools, 16(06):1047–1067, 2007). To summarize the concept of the n-gram 
representation, the 1-gram and 2-gram representations of our first 
document "the sun is shining" would be constructed as follows:

•	 1-gram: "the", "sun", "is", "shining"
•	 2-gram: "the sun", "sun is", "is shining" 

The CountVectorizer class in scikit-learn allows us to use different 
n-gram models via its ngram_range parameter. While a 1-gram 
representation is used by default, we could switch to a 2-gram 
representation by initializing a new CountVectorizer instance with 
ngram_range=(2,2).
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Assessing word relevancy via term 
frequency-inverse document frequency
When we are analyzing text data, we often encounter words that occur across 
multiple documents from both classes. Those frequently occurring words typically 
don't contain useful or discriminatory information. In this subsection, we will learn 
about a useful technique called term frequency-inverse document frequency  
(tf-idf) that can be used to downweight those frequently occurring words in the 
feature vectors. The tf-idf can be defined as the product of the term frequency and 
the inverse document frequency:

( ) ( ) ( )tf-idf t,d , idf t,dtf t d= ×

Here the tf(t, d) is the term frequency that we introduced in the previous section,  
and the inverse document frequency idf(t, d) can be calculated as:

( ) ( )
idf t,d ,

1+df d,t
dnlog=

where dn  is the total number of documents, and df(d, t) is the number of documents 
d that contain the term t. Note that adding the constant 1 to the denominator is 
optional and serves the purpose of assigning a non-zero value to terms that occur in 
all training samples; the log is used to ensure that low document frequencies are not 
given too much weight.

Scikit-learn implements yet another transformer, the TfidfTransformer, that  
takes the raw term frequencies from CountVectorizer as input and transforms  
them into tf-idfs:

>>> from sklearn.feature_extraction.text import TfidfTransformer
>>> tfidf = TfidfTransformer()
>>> np.set_printoptions(precision=2)
>>> print(tfidf.fit_transform(count.fit_transform(docs)).toarray())
[[ 0.    0.43  0.56  0.56  0.    0.43  0.  ]
 [ 0.    0.43  0.    0.    0.56  0.43  0.56]
 [ 0.4   0.48  0.31  0.31  0.31  0.48  0.31]] 
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As we saw in the previous subsection, the word is had the largest term frequency 
in the 3rd document, being the most frequently occurring word. However, after 
transforming the same feature vector into tf-idfs, we see that the word is is  
now associated with a relatively small tf-idf (0.31) in document 3 since it is 
also contained in documents 1 and 2 and thus is unlikely to contain any useful, 
discriminatory information.

However, if we'd manually calculated the tf-idfs of the individual terms in our 
feature vectors, we'd have noticed that the TfidfTransformer calculates the tf-idfs 
slightly differently compared to the standard textbook equations that we defined 
earlier. The equations for the idf and tf-idf that were implemented in scikit-learn are:

( ) ( )
1idf t,d

1 df d,t
dnlog +

=
+

The tf-idf equation that was implemented in scikit-learn is as follows:

( ) ( ) ( )( )tf-idf t,d t,d idf t,d 1tf= × +

While it is also more typical to normalize the raw term frequencies before  
calculating the tf-idfs, the TfidfTransformer normalizes the tf-idfs directly.  
By default (norm='l2'), scikit-learn's TfidfTransformer applies the  
L2-normalization, which returns a vector of length 1 by dividing an  
un-normalized feature vector v by its L2-norm:

( )1/22 2 2
2 1 2

1

norm n
n ii

v v vv
v v v v v

=

= = =
+ + + ∑�

To make sure that we understand how TfidfTransformer works, let us walk 
through an example and calculate the tf-idf of the word is in the 3rd document.

The word is has a term frequency of 2 (tf = 2) in document 3, and the document 
frequency of this term is 3 since the term is occurs in all three documents (df = 3). 
Thus, we can calculate the idf as follows:

( ) 1 3"is",d3 log 0
1 3

idf +
= =

+
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Now in order to calculate the tf-idf, we simply need to add 1 to the inverse document 
frequency and multiply it by the term frequency:

( ) ( )tf-idf " ",d3 2 0 1 2is = × + =

If we repeated these calculations for all terms in the 3rd document, we'd obtain the 
following tf-idf vectors: [1.69, 2.00, 1.29, 1.29, 1.29, 2.00, and 1.29]. However, we 
notice that the values in this feature vector are different from the values that we 
obtained from the TfidfTransformer that we used previously. The final step that 
we are missing in this tf-idf calculation is the L2-normalization, which can be applied 
as follows:

( ) [ ]

[ ]

2 2 2 2 2 2 2

1.69, 2.00, 1.29, 1.29, 1.29, 2.00, 1.29
tf-idf " ",d3

1.69 , 2.00 1.29 1.29 1.29 2.00 1.29

0.40, 0.48, 0.31, 0.31, 0.31, 0.48, 0.31

norm
is

+ + + + +

=

As we can see, the results now match the results returned by scikit-learn's 
TfidfTransformer. Since we now understand how tf-idfs are calculated, let us 
proceed to the next sections and apply those concepts to the movie review dataset.

Cleaning text data
In the previous subsections, we learned about the bag-of-words model, term 
frequencies, and tf-idfs. However, the first important step—before we build our  
bag-of-words model—is to clean the text data by stripping it of all unwanted 
characters. To illustrate why this is important, let us display the last 50 characters 
from the first document in the reshuffled movie review dataset:

>>> df.loc[0, 'review'][-50:] 
'is seven.<br /><br />Title (Brazil): Not Available'

As we can see here, the text contains HTML markup as well as punctuation and 
other non-letter characters. While HTML markup does not contain much useful 
semantics, punctuation marks can represent useful, additional information in certain 
NLP contexts. However, for simplicity, we will now remove all punctuation marks 
but only keep emoticon characters such as ":)" since those are certainly useful for 
sentiment analysis. To accomplish this task, we will use Python's regular expression 
(regex) library, re, as shown here:

>>> import re
>>> def preprocessor(text):
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...     text = re.sub('<[^>]*>', '', text)

...     emoticons = re.findall('(?::|;|=)(?:-)?(?:\)|\(|D|P)', text)

...     text = re.sub('[\W]+', ' ', text.lower()) + \  
                 '.join(emoticons).replace('-', '')
...     return text

Via the first regex <[^>]*> in the preceding code section, we tried to remove the 
entire HTML markup that was contained in the movie reviews. Although many 
programmers generally advise against the use of regex to parse HTML, this regex 
should be sufficient to clean this particular dataset. After we removed the HTML 
markup, we used a slightly more complex regex to find emoticons, which we 
temporarily stored as emoticons. Next we removed all non-word characters from 
the text via the regex [\W]+, converted the text into lowercase characters, and 
eventually added the temporarily stored emoticons to the end of the processed 
document string. Additionally, we removed the nose character (-) from the emoticons 
for consistency.

Although regular expressions offer an efficient and convenient 
approach to searching for characters in a string, they also come with 
a steep learning curve. Unfortunately, an in-depth discussion of 
regular expressions is beyond the scope of this book. However, you 
can find a great tutorial on the Google Developers portal at https://
developers.google.com/edu/python/regular-expressions or 
check out the official documentation of Python's re module at https://
docs.python.org/3.4/library/re.html.

Although the addition of the emoticon characters to the end of the cleaned document 
strings may not look like the most elegant approach, the order of the words doesn't 
matter in our bag-of-words model if our vocabulary only consists of 1-word tokens. 
But before we talk more about splitting documents into individual terms, words, or 
tokens, let us confirm that our preprocessor works correctly:

>>> preprocessor(df.loc[0, 'review'][-50:])
'is seven title brazil not available'
>>> preprocessor("</a>This :) is :( a test :-)!")
'this is a test :) :( :)'

Lastly, since we will make use of the cleaned text data over and over again during the 
next sections, let us now apply our preprocessor function to all movie reviews in 
our DataFrame:

>>> df['review'] = df['review'].apply(preprocessor)

https://developers.google.com/edu/python/regular-expressions
https://developers.google.com/edu/python/regular-expressions
https://docs.python.org/3.4/library/re.html
https://docs.python.org/3.4/library/re.html


Applying Machine Learning to Sentiment Analysis

[ 242 ]

Processing documents into tokens
Having successfully prepared the movie review dataset, we now need to think 
about how to split the text corpora into individual elements. One way to tokenize 
documents is to split them into individual words by splitting the cleaned document 
at its whitespace characters:

>>> def tokenizer(text):
...    return text.split()
>>> tokenizer('runners like running and thus they run')
['runners', 'like', 'running', 'and', 'thus', 'they', 'run']

In the context of tokenization, another useful technique is word stemming, which is 
the process of transforming a word into its root form that allows us to map related 
words to the same stem. The original stemming algorithm was developed by Martin 
F. Porter in 1979 and is hence known as the Porter stemmer algorithm (Martin F. 
Porter. An algorithm for suffix stripping. Program: electronic library and information 
systems, 14(3):130–137, 1980). The Natural Language Toolkit for Python (NLTK, 
http://www.nltk.org) implements the Porter stemming algorithm, which we 
will use in the following code section. In order to install the NLTK, you can simply 
execute pip install nltk.

>>> from nltk.stem.porter import PorterStemmer
>>> porter = PorterStemmer()
>>> def tokenizer_porter(text):
...    return [porter.stem(word) for word in text.split()]
>>> tokenizer_porter('runners like running and thus they run') 
['runner', 'like', 'run', 'and', 'thu', 'they', 'run']

Although NLTK is not the focus of the chapter, I highly recommend you 
to visit the NLTK website as well as the official NLTK book, which is 
freely available at http://www.nltk.org/book/, if you are interested 
in more advanced applications in NLP.

Using PorterStemmer from the nltk package, we modified our tokenizer function 
to reduce words to their root form, which was illustrated by the previous simple 
example where the word running was stemmed to its root form run.

http://www.nltk.org
http://www.nltk.org/book/
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The Porter stemming algorithm is probably the oldest and simplest 
stemming algorithm. Other popular stemming algorithms include the 
newer Snowball stemmer (Porter2 or "English" stemmer) or the Lancaster 
stemmer (Paice-Husk stemmer), which is faster but also more aggressive 
than the Porter stemmer. Those alternative stemming algorithms are also 
available through the NLTK package (http://www.nltk.org/api/
nltk.stem.html).
While stemming can create non-real words, such as thu, (from thus) as 
shown in the previous example, a technique called lemmatization aims to 
obtain the canonical (grammatically correct) forms of individual words—
the so-called lemmas. However, lemmatization is computationally more 
difficult and expensive compared to stemming and, in practice, it has 
been observed that stemming and lemmatization have little impact on the 
performance of text classification (Michal Toman, Roman Tesar, and Karel 
Jezek. Influence of word normalization on text classification. Proceedings of 
InSciT, pages 354–358, 2006).

Before we jump into the next section where will train a machine learning model 
using the bag-of-words model, let us briefly talk about another useful topic called 
stop-word removal. Stop-words are simply those words that are extremely common 
in all sorts of texts and likely bear no (or only little) useful information that can be 
used to distinguish between different classes of documents. Examples of stop-words 
are is, and, has, and the like. Removing stop-words can be useful if we are working 
with raw or normalized term frequencies rather than tf-idfs, which are already 
downweighting frequently occurring words.

In order to remove stop-words from the movie reviews, we will use the set of 127 
English stop-words that is available from the NLTK library, which can be obtained 
by calling the nltk.download function:

>>> import nltk
>>> nltk.download('stopwords')

After we have downloaded the stop-words set, we can load and apply the English 
stop-word set as follows:

>>> from nltk.corpus import stopwords
>>> stop = stopwords.words('english')
>>>  [w for w in tokenizer_porter('a runner likes running and runs a 
lot')[-10:] if w not in stop]

['runner', 'like', 'run', 'run', 'lot']

http://www.nltk.org/api/nltk.stem.html
http://www.nltk.org/api/nltk.stem.html
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Training a logistic regression model for 
document classification
In this section, we will train a logistic regression model to classify the movie reviews 
into positive and negative reviews. First, we will divide the DataFrame of cleaned 
text documents into 25,000 documents for training and 25,000 documents for testing:

>>> X_train = df.loc[:25000, 'review'].values
>>> y_train = df.loc[:25000, 'sentiment'].values
>>> X_test = df.loc[25000:, 'review'].values
>>> y_test = df.loc[25000:, 'sentiment'].values

Next we will use a GridSearchCV object to find the optimal set of parameters for our 
logistic regression model using 5-fold stratified cross-validation:

>>> from sklearn.grid_search import GridSearchCV
>>> from sklearn.pipeline import Pipeline
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.feature_extraction.text import TfidfVectorizer
>>> tfidf = TfidfVectorizer(strip_accents=None, 
...                         lowercase=False, 
...                         preprocessor=None)
>>> param_grid = [{'vect__ngram_range': [(1,1)],
...               'vect__stop_words': [stop, None],
...               'vect__tokenizer': [tokenizer,
...                                   tokenizer_porter],
...               'clf__penalty': ['l1', 'l2'],
...               'clf__C': [1.0, 10.0, 100.0]},
...             {'vect__ngram_range': [(1,1)],
...               'vect__stop_words': [stop, None],
...               'vect__tokenizer': [tokenizer,
...                                   tokenizer_porter],
...               'vect__use_idf':[False],
...               'vect__norm':[None],
...               'clf__penalty': ['l1', 'l2'],
...               'clf__C': [1.0, 10.0, 100.0]}
...             ]
>>> lr_tfidf = Pipeline([('vect', tfidf),
...                     ('clf',
...                      LogisticRegression(random_state=0))])
>>> gs_lr_tfidf = GridSearchCV(lr_tfidf, param_grid, 
...                           scoring='accuracy',
...                           cv=5, verbose=1,
...                           n_jobs=-1)
>>> gs_lr_tfidf.fit(X_train, y_train)
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When we initialized the GridSearchCV object and its parameter grid using 
the preceding code, we restricted ourselves to a limited number of parameter 
combinations since the number of feature vectors, as well as the large vocabulary, 
can make the grid search computationally quite expensive; using a standard Desktop 
computer, our grid search may take up to 40 minutes to complete.

In the previous code example, we replaced the CountVectorizer and 
TfidfTransformer from the previous subsection with the TfidfVectorizer,  
which combines the latter transformer objects. Our param_grid consisted of two 
parameter dictionaries. In the first dictionary, we used the TfidfVectorizer  
with its default settings (use_idf=True, smooth_idf=True, and norm='l2') to 
calculate the tf-idfs; in the second dictionary, we set those parameters to  
use_idf=False, smooth_idf=False, and norm=None in order to train a model  
based on raw term frequencies. Furthermore, for the logistic regression classifier 
itself, we trained models using L2 and L1 regularization via the penalty parameter 
and compared different regularization strengths by defining a range of values for  
the inverse-regularization parameter C.

After the grid search has finished, we can print the best parameter set:

>>> print('Best parameter set: %s ' % gs_lr_tfidf.best_params_)
Best parameter set: {'clf__C': 10.0, 'vect__stop_words': None, 
'clf__penalty': 'l2', 'vect__tokenizer': <function tokenizer at 
0x7f6c704948c8>, 'vect__ngram_range': (1, 1)} 

As we can see here, we obtained the best grid search results using the regular 
tokenizer without Porter stemming, no stop-word library, and tf-idfs in combination 
with a logistic regression classifier that uses L2 regularization with the regularization 
strength C=10.0.

Using the best model from this grid search, let us print the 5-fold cross-validation 
accuracy scores on the training set and the classification accuracy on the test dataset:

>>> print('CV Accuracy: %.3f' 
...       % gs_lr_tfidf.best_score_)
CV Accuracy: 0.897
>>> clf = gs_lr_tfidf.best_estimator_
>>> print('Test Accuracy: %.3f' 
...     % clf.score(X_test, y_test))
Test Accuracy: 0.899

The results reveal that our machine learning model can predict whether a movie 
review is positive or negative with 90 percent accuracy.
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A still very popular classifier for text classification is the Naïve Bayes 
classifier, which gained popularity in applications of e-mail spam 
filtering. Naïve Bayes classifiers are easy to implement, computationally 
efficient, and tend to perform particularly well on relatively small datasets 
compared to other algorithms. Although we don't discuss Naïve Bayes 
classifiers in this book, the interested reader can find my article about 
Naïve Text classification that I made freely available on arXiv (S. Raschka. 
Naive Bayes and Text Classification I - introduction and Theory. Computing 
Research Repository (CoRR), abs/1410.5329, 2014. http://arxiv.org/
pdf/1410.5329v3.pdf).

Working with bigger data – online 
algorithms and out-of-core learning
If you executed the code examples in the previous section, you may have noticed 
that it could be computationally quite expensive to construct the feature vectors for 
the 50,000 movie review dataset during grid search. In many real-world applications 
it is not uncommon to work with even larger datasets that may even exceed our 
computer's memory. Since not everyone has access to supercomputer facilities, we 
will now apply a technique called out-of-core learning that allows us to work with 
such large datasets.

Back in Chapter 2, Training Machine Learning Algorithms for Classification, we 
introduced the concept of stochastic gradient descent, which is an optimization 
algorithm that updates the model's weights using one sample at a time. In this 
section, we will make use of the partial_fit function of the SGDClassifier in 
scikit-learn to stream the documents directly from our local drive and train a logistic 
regression model using small minibatches of documents.

First, we define a tokenizer function that cleans the unprocessed text data from 
our movie_data.csv file that we constructed in the beginning of this chapter and 
separates it into word tokens while removing stop words.

>>> import numpy as np
>>> import re
>>> from nltk.corpus import stopwords
>>> stop = stopwords.words('english')
>>> def tokenizer(text):
...     text = re.sub('<[^>]*>', '', text)
...     emoticons = re.findall('(?::|;|=)(?:-)?(?:\)|\(|D|P)',
...                            text.lower())
...     text = re.sub('[\W]+', ' ', text.lower()) \

http://arxiv.org/pdf/1410.5329v3.pdf
http://arxiv.org/pdf/1410.5329v3.pdf
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...            + ' '.join(emoticons).replace('-', '')

...     tokenized = [w for w in text.split() if w not in stop]

...     return tokenized

Next we define a generator function, stream_docs, that reads in and returns one 
document at a time:

>>> def stream_docs(path):
...    with open(path, 'r') as csv:
...        next(csv) # skip header
...        for line in csv:
...            text, label = line[:-3], int(line[-2])
...            yield text, label

To verify that our stream_docs function works correctly, let us read in the first 
document from the movie_data.csv file, which should return a tuple consisting of 
the review text as well as the corresponding class label:

>>> next(stream_docs(path='./movie_data.csv'))
('"In 1974, the teenager Martha Moxley ... ',1)

We will now define a function, get_minibatch, that will take a document stream 
from the stream_docs function and return a particular number of documents 
specified by the size parameter:

>>> def get_minibatch(doc_stream, size):
...     docs, y = [], []
...         try:
...             for _ in range(size):
...                 text, label = next(doc_stream)
...                 docs.append(text)
...                 y.append(label)
...         except StopIteration:
...             return None, None
...         return docs, y

Unfortunately, we can't use the CountVectorizer for out-of-core learning since it 
requires holding the complete vocabulary in memory. Also, the TfidfVectorizer 
needs to keep the all feature vectors of the training dataset in memory to calculate 
the inverse document frequencies. However, another useful vectorizer for text 
processing implemented in scikit-learn is HashingVectorizer. HashingVectorizer 
is data-independent and makes use of the Hashing trick via the 32-bit MurmurHash3 
algorithm by Austin Appleby (https://sites.google.com/site/murmurhash/).

>>> from sklearn.feature_extraction.text import HashingVectorizer
>>> from sklearn.linear_model import SGDClassifier

https://sites.google.com/site/murmurhash/
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>>> vect = HashingVectorizer(decode_error='ignore', 
...                          n_features=2**21,
...                          preprocessor=None, 
...                          tokenizer=tokenizer)
>>> clf = SGDClassifier(loss='log', random_state=1, n_iter=1)
>>> doc_stream = stream_docs(path='./movie_data.csv')

Using the preceding code, we initialized HashingVectorizer with our tokenizer 
function and set the number of features to 212 . Furthermore, we reinitialized a 
logistic regression classifier by setting the loss parameter of the SGDClassifier to 
log—note that, by choosing a large number of features in the HashingVectorizer, 
we reduce the chance to cause hash collisions but we also increase the number of 
coefficients in our logistic regression model.

Now comes the really interesting part. Having set up all the complementary 
functions, we can now start the out-of-core learning using the following code:

>>> import pyprind
>>> pbar = pyprind.ProgBar(45)
>>> classes = np.array([0, 1])
>>> for _ in range(45):
...     X_train, y_train = get_minibatch(doc_stream, size=1000)
...     if not X_train:
...         break
...     X_train = vect.transform(X_train)
...     clf.partial_fit(X_train, y_train, classes=classes)
...     pbar.update()
0%                          100%
[##############################] | ETA[sec]: 0.000 
Total time elapsed: 50.063 sec

Again, we made use of the PyPrind package in order to estimate the progress of our 
learning algorithm. We initialized the progress bar object with 45 iterations and, in 
the following for loop, we iterated over 45 minibatches of documents where each 
minibatch consists of 1,000 documents each.

Having completed the incremental learning process, we will use the last 5,000 
documents to evaluate the performance of our model:

>>> X_test, y_test = get_minibatch(doc_stream, size=5000)
>>> X_test = vect.transform(X_test)
>>> print('Accuracy: %.3f' % clf.score(X_test, y_test))
Accuracy: 0.868
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As we can see, the accuracy of the model is 87 percent, slightly below the  
accuracy that we achieved in the previous section using the grid search for 
hyperparameter tuning. However, out-of-core learning is very memory-efficient  
and took less than a minute to complete. Finally, we can use the last 5,000  
documents to update our model:

>>> clf = clf.partial_fit(X_test, y_test)

If you are planning to continue directly with Chapter 9, Embedding a Machine Learning 
Model into a Web Application, I recommend you to keep the current Python session 
open. In the next chapter, will use the model that we just trained to learn how to save 
it to disk for later use and embed it into a web application.

Although the bag-of-words model is still the most commonly used 
model for text classification, it does not consider sentence structure and 
grammar. A popular extension of the bag-of-words model is Latent 
Dirichlet allocation, which is a topic model that considers the latent 
semantics of words (D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet 
allocation. The Journal of machine Learning research, 3:993–1022, 2003).
A more modern alternative to the bag-of-words model is word2vec, an 
algorithm that Google released in 2013 (T. Mikolov, K. Chen, G. Corrado, 
and J. Dean. Efficient Estimation of Word Representations in Vector Space. 
arXiv preprint arXiv:1301.3781, 2013). The word2vec algorithm is an 
unsupervised learning algorithm based on neural networks that attempts 
to automatically learn the relationship between words. The idea behind 
word2vec is to put words that have similar meanings into similar clusters; 
via clever vector-spacing, the model can reproduce certain words using 
simple vector math, for example, king – man + woman = queen.
The original C-implementation, with useful links to the relevant papers 
and alternative implementations, can be found at https://code.
google.com/p/word2vec/.

https://code.google.com/p/word2vec/
https://code.google.com/p/word2vec/
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Summary
In this chapter, we learned how to use machine learning algorithms to classify text 
documents based on their polarity, which is a basic task in sentiment analysis in 
the field of natural language processing. Not only did we learn how to encode a 
document as a feature vector using the bag-of-words model, but we also learned  
how to weight the term frequency by relevance using term frequency-inverse 
document frequency.

Working with text data can be computationally quite expensive due to the large 
feature vectors that are created during this process; in the last section, we learned 
how to utilize out-of-core or incremental learning to train a machine learning 
algorithm without loading the whole dataset into a computer's memory.

In the next chapter, we will use our document classifier and learn how to embed it 
into a web application.
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Embedding a Machine 
Learning Model into  

a Web Application
In the previous chapters, you learned about the many different machine  
learning concepts and algorithms that can help us with better and more efficient 
decision-making. However, machine learning techniques are not limited to offline 
applications and analyses, and they can be the predictive engine of your web 
services. For example, popular and useful applications of machine learning models 
in web applications include spam detection in submission forms, search engines, 
recommendation systems for media or shopping portals, and many more.

In this chapter, you will learn how to embed a machine learning model into  
a web application that can not only classify but also learn from data in real-time.  
The topics that we will cover are as follows:

•	 Saving the current state of a trained machine learning model
•	 Using SQLite databases for data storage
•	 Developing a web application using the popular Flask web framework
•	 Deploying a machine learning application to a public web server
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Serializing fitted scikit-learn estimators
Training a machine learning model can be computationally quite expensive, as we 
have seen in Chapter 8, Applying Machine Learning to Sentiment Analysis. Surely, we 
don't want to train our model every time we close our Python interpreter and want 
to make a new prediction or reload our web application? One option for model 
persistence is Python's in-built pickle module (https://docs.python.org/3.4/
library/pickle.html), which allows us to serialize and de-serialize Python object 
structures to compact byte code, so that we can save our classifier in its current state 
and reload it if we want to classify new samples without needing to learn the model 
from the training data all over again. Before you execute the following code, please 
make sure that you have trained the out-of-core logistic regression model from the 
last section of Chapter 8, Applying Machine Learning to Sentiment Analysis, and have it 
ready in your current Python session:

>>> import pickle
>>> import os
>>> dest = os.path.join('movieclassifier', 'pkl_objects')
>>> if not os.path.exists(dest):
...     os.makedirs(dest) 
>>> pickle.dump(stop, 
...          open(os.path.join(dest, 'stopwords.pkl'),'wb'),
...          protocol=4)   
>>> pickle.dump(clf,
...          open(os.path.join(dest, 'classifier.pkl'), 'wb'),
...          protocol=4)

Using the preceding code, we created a movieclassifier directory where we will 
later store the files and data for our web application. Within this movieclassifier 
directory, we created a pkl_objects subdirectory to save the serialized Python 
objects to our local drive. Via pickle's dump method, we then serialized the trained 
logistic regression model as well as the stop word set from the NLTK library so that 
we don't have to install the NLTK vocabulary on our server. The dump method takes 
as its first argument the object that we want to pickle, and for the second argument 
we provided an open file object that the Python object will be written to. Via the wb 
argument inside the open function, we opened the file in binary mode for pickle, 
and we set protocol=4 to choose the latest and most efficient pickle protocol that 
has been added to Python 3.4. (If you have problems using protocol 4, please check 
if you are using the latest Python 3 version install. Alternatively, you may consider 
choosing a lower protocol number)

https://docs.python.org/3.4/library/pickle.html
https://docs.python.org/3.4/library/pickle.html
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Our logistic regression model contains several NumPy arrays, such as the 
weight vector, and a more efficient way to serialize NumPy arrays is to 
use the alternative joblib library. To ensure compatibility with the server 
environment that we will use in later sections, we will use the standard 
pickle approach. If you are interested, you can find more information 
about joblib at https://pypi.python.org/pypi/joblib.

We don't need to pickle the HashingVectorizer, since it does not need to be fitted. 
Instead, we can create a new Python script file, from which we can import the 
vectorizer into our current Python session. Now, copy the following code and  
save it as vectorizer.py in the movieclassifier directory:

from sklearn.feature_extraction.text import HashingVectorizer
import re
import os
import pickle

cur_dir = os.path.dirname(__file__)
stop = pickle.load(open(
                os.path.join(cur_dir, 
                'pkl_objects', 
                'stopwords.pkl'), 'rb'))

def tokenizer(text):
    text = re.sub('<[^>]*>', '', text)
    emoticons = re.findall('(?::|;|=)(?:-)?(?:\)|\(|D|P)',
                           text.lower())
    text = re.sub('[\W]+', ' ', text.lower()) \
                   + ' '.join(emoticons).replace('-', '')
    tokenized = [w for w in text.split() if w not in stop]
    return tokenized

vect = HashingVectorizer(decode_error='ignore',
                         n_features=2**21,
                         preprocessor=None,
                         tokenizer=tokenizer)

https://pypi.python.org/pypi/joblib
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After we have pickled the Python objects and created the vectorizer.py file, it  
would now be a good idea to restart our Python interpreter or IPython Notebook 
kernel to test if we can deserialize the objects without error. However, please note  
that unpickling data from an untrusted source can be a potential security risk since  
the pickle module is not secure against malicious code. From your terminal, navigate 
to the movieclassifier directory, start a new Python session and execute the 
following code to verify that you can import the vectorizer and unpickle the classifier:

>>> import pickle
>>> import re
>>> import os
>>> from vectorizer import vect
>>> clf = pickle.load(open(
...        os.path.join('pkl_objects', 
...                     'classifier.pkl'), 'rb'))

After we have successfully loaded the vectorizer and unpickled the classifier, we can 
now use these objects to pre-process document samples and make predictions about 
their sentiment:

>>> import numpy as np
>>> label = {0:'negative', 1:'positive'}
>>> example = ['I love this movie']
>>> X = vect.transform(example)
>>> print('Prediction: %s\nProbability: %.2f%%' %\
...       (label[clf.predict(X)[0]], 
...        np.max(clf.predict_proba(X))*100))
Prediction: positive
Probability: 91.56%

Since our classifier returns the class labels as integers, we defined a simple 
Python dictionary to map those integers to their sentiment. We then used the 
HashingVectorizer to transform the simple example document into a word vector 
X. Finally, we used the predict method of the logistic regression classifier to predict 
the class label as well as the predict_proba method to return the corresponding 
probability of our prediction. Note that the predict_proba method call returns an 
array with a probability value for each unique class label. Since the class label with 
the largest probability corresponds to the class label that is returned by the predict 
call, we used the np.max function to return the probability of the predicted class.
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Setting up a SQLite database for data 
storage
In this section, we will set up a simple SQLite database to collect optional feedback 
about the predictions from users of the web application. We can use this feedback to 
update our classification model. SQLite is an open source SQL database engine that 
doesn't require a separate server to operate, which makes it ideal for smaller projects 
and simple web applications. Essentially, a SQLite database can be understood 
as a single, self-contained database file that allows us to directly access storage 
files. Furthermore, SQLite doesn't require any system-specific configuration and is 
supported by all common operating systems. It has gained a reputation for being 
very reliable as it is used by popular companies, such as Google, Mozilla, Adobe, 
Apple, Microsoft, and many more. If you want to learn more about SQLite,  
I recommend you visit the official website at http://www.sqlite.org.

Fortunately, following Python's batteries included philosophy, there is already an 
API in the Python standard library, sqlite3, which allows us to work with SQLite 
databases (for more information about sqlite3, please visit https://docs.python.
org/3.4/library/sqlite3.html).

By executing the following code, we will create a new SQLite database inside the 
movieclassifier directory and store two example movie reviews:

>>> import sqlite3
>>> import os
>>> conn = sqlite3.connect('reviews.sqlite')
>>> c = conn.cursor()
>>> c.execute('CREATE TABLE review_db'\
...           ' (review TEXT, sentiment INTEGER, date TEXT)')
>>> example1 = 'I love this movie'
>>> c.execute("INSERT INTO review_db"\
...           " (review, sentiment, date) VALUES"\
...           " (?, ?, DATETIME('now'))", (example1, 1))
>>> example2 = 'I disliked this movie'
>>> c.execute("INSERT INTO review_db"\
...           " (review, sentiment, date) VALUES"\
...           " (?, ?, DATETIME('now'))", (example2, 0))
>>> conn.commit()
>>> conn.close()

http://www.sqlite.org
https://docs.python.org/3.4/library/sqlite3.html
https://docs.python.org/3.4/library/sqlite3.html
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Following the preceding code example, we created a connection (conn) to an SQLite 
database file by calling sqlite3's connect method, which created the new database 
file reviews.sqlite in the movieclassifier directory if it didn't already exist. 
Please note that SQLite doesn't implement a replace function for existing tables; 
you need to delete the database file manually from your file browser if you want to 
execute the code a second time. Next, we created a cursor via the cursor method, 
which allows us to traverse over the database records using the powerful SQL 
syntax. Via the first execute call, we then created a new database table, review_db. 
We used this to store and access database entries. Along with review_db, we also 
created three columns in this database table: review, sentiment, and date. We used 
these to store two example movie reviews and respective class labels (sentiments). 
Using the SQL command DATETIME('now'), we also added date-and timestamps 
to our entries. In addition to the timestamps, we used the question mark symbols 
(?) to pass the movie review texts (example1 and example2) and the corresponding 
class labels (1 and 0) as positional arguments to the execute method as members of 
a tuple. Lastly, we called the commit method to save the changes that we made to the 
database and closed the connection via the close method.

To check if the entries have been stored in the database table correctly, we will now 
reopen the connection to the database and use the SQL SELECT command to fetch all 
rows in the database table that have been committed between the beginning of the 
year 2015 and today:

>>> conn = sqlite3.connect('reviews.sqlite')
>>> c = conn.cursor()
>>> c.execute("SELECT * FROM review_db WHERE date"\
...     " BETWEEN '2015-01-01 00:00:00' AND DATETIME('now')")
>>> results = c.fetchall()
>>> conn.close()
>>> print(results)
[('I love this movie', 1, '2015-06-02 16:02:12'), ('I disliked this 
movie', 0, '2015-06-02 16:02:12')]

Alternatively, we could also use the free Firefox browser plugin SQLite Manager 
(available at https://addons.mozilla.org/en-US/firefox/addon/sqlite-
manager/), which offers a nice GUI interface for working with SQLite databases  
as shown in the following screenshot:

https://addons.mozilla.org/en-US/firefox/addon/sqlite-manager/
https://addons.mozilla.org/en-US/firefox/addon/sqlite-manager/
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Developing a web application with Flask
After we have prepared the code to classify movie reviews in the previous 
subsection, let's discuss the basics of the Flask web framework to develop our web 
application. After Armin Ronacher's initial release of Flask in 2010, the framework 
has gained huge popularity over the years and examples of popular applications that 
make use of Flask include LinkedIn and Pinterest. Since Flask is written in Python, it 
provides us Python programmers with a convenient interface for embedding existing 
Python code such as our movie classifier.

Flask is also known as microframework, which means that its core is 
kept lean and simple but can be easily extended with other libraries. 
Although the learning curve of the lightweight Flask API is not 
nearly as steep as those of other popular Python web frameworks, 
such as Django, I encourage you to take a look at the official Flask 
documentation at http://flask.pocoo.org/docs/0.10/ to 
learn more about its functionality.

If the Flask library is not already installed in your current Python environment,  
you can simply install it via pip from your terminal (at the time of writing, the  
latest stable release was Version 0.10.1):

pip install flask

http://flask.pocoo.org/docs/0.10/
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Our first Flask web application
In this subsection, we will develop a very simple web application to become more 
familiar with the Flask API before we implement our movie classifier. First, we create 
a directory tree:

1st_flask_app_1/
    app.py
    templates/
        first_app.html

The app.py file will contain the main code that will be executed by the Python 
interpreter to run the Flask web application. The templates directory is the directory 
in which Flask will look for static HTML files for rendering in the web browser.  
Let's now take a look at the contents of app.py:

from flask import Flask, render_template

app = Flask(__name__)

@app.route('/')
def index():
    return render_template('first_app.html')

if __name__ == '__main__':
    app.run()

In this case, we run our application as a single module, thus we initialized a new 
Flask instance with the argument __name__ to let Flask know that it can find the 
HTML template folder (templates) in the same directory where it is located. Next, 
we used the route decorator (@app.route('/')) to specify the URL that should 
trigger the execution of the index function. Here, our index function simply renders 
the HTML file first_app.html, which is located in the templates folder. Lastly, 
we used the run function to only run the application on the server when this script 
is directly executed by the Python interpreter, which we ensured using the if 
statement with __name__ == '__main__'.
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Now, let's take a look at the contents of the first_app.html file. If you are not 
familiar with the HTML syntax yet, I recommend you visit http://www.w3schools.
com/html/default.asp for useful tutorials for learning the basics of HTML.

<!doctype html>
<html>
  <head>
    <title>First app</title>
  </head>
  <body>
  <div>Hi, this is my first Flask web app!</div>
  </body>
</html>

Here, we have simply filled an empty HTML template file with a div element  
(a block level element) that contains the sentence: Hi, this is my first Flask 
web app!. Conveniently, Flask allows us to run our apps locally, which is useful  
for developing and testing web applications before we deploy them on a public  
web server. Now, let's start our web application by executing the command from  
the terminal inside the 1st_flask_app_1 directory:

python3 app.py

We should now see a line such as the following displayed in the terminal:

* Running on http://127.0.0.1:5000/

This line contains the address of our local server. We can now enter this address in 
our web browser to see the web application in action. If everything has executed 
correctly, we should now see a simple website with the content: Hi, this is my first 
Flask web app!.

Form validation and rendering
In this subsection, we will extend our simple Flask web application with HTML 
form elements to learn how to collect data from a user using the WTForms library 
(https://wtforms.readthedocs.org/en/latest/), which can be installed via pip:

pip install wtforms

http://www.w3schools.com/html/default.asp
http://www.w3schools.com/html/default.asp
https://wtforms.readthedocs.org/en/latest/
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This web app will prompt a user to type in his or her name into a text field, as shown 
in the following screenshot:

After the submission button (Say Hello) has been clicked and the form is validated,  
a new HTML page will be rendered to display the user's name.

The new directory structure that we need to set up for this application looks like this:

1st_flask_app_2/
    app.py
    static/
        style.css
    templates/
        _formhelpers.html
        first_app.html
        hello.html

The following are the contents of our modified app.py file:

from flask import Flask, render_template, request
from wtforms import Form, TextAreaField, validators
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app = Flask(__name__)

class HelloForm(Form):
    sayhello = TextAreaField('',[validators.DataRequired()])

@app.route('/')
def index():
    form = HelloForm(request.form)
    return render_template('first_app.html', form=form)

@app.route('/hello', methods=['POST'])
def hello():
    form = HelloForm(request.form)
    if request.method == 'POST' and form.validate():
        name = request.form['sayhello']
        return render_template('hello.html', name=name)
    return render_template('first_app.html', form=form)

if __name__ == '__main__':
    app.run(debug=True)

Using wtforms, we extended the index function with a text field that we will 
embed in our start page using the TextAreaField class, which automatically checks 
whether a user has provided valid input text or not. Furthermore, we defined a 
new function, hello, which will render an HTML page hello.html if the form has 
been validated. Here, we used the POST method to transport the form data to the 
server in the message body. Finally, by setting the argument debug=True inside the 
app.run method, we further activated Flask's debugger. This is a useful feature for 
developing new web applications.

Now, we will implement a generic macro in the file _formhelpers.html via the 
Jinja2 templating engine, which we will later import in our first_app.html file  
to render the text field:

{% macro render_field(field) %}
  <dt>{{ field.label }}
  <dd>{{ field(**kwargs)|safe }}
  {% if field.errors %}
    <ul class=errors>
    {% for error in field.errors %}
      <li>{{ error }}</li>
    {% endfor %}
    </ul>
  {% endif %}
  </dd>
{% endmacro %}
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An in-depth discussion about the Jinja2 templating language is beyond the scope 
of this book. However, you can find a comprehensive documentation of the Jinja2 
syntax at http://jinja.pocoo.org.

Next, we set up a simple Cascading Style Sheets (CSS) file, style.css, to 
demonstrate how the look and feel of HTML documents can be modified. We have 
to save the following CSS file, which will simply double the font size of our HTML 
body elements, in a subdirectory called static, which is the default directory where 
Flask looks for static files such as CSS. The code is as follows:

body {
  font-size: 2em;
}

The following are the contents of the modified first_app.html file that will now 
render a text form where a user can enter a name:

<!doctype html>
<html>
  <head>
    <title>First app</title>
  <link rel="stylesheet" href="{{ url_for('static',  
    filename='style.css') }}">
  </head>
  <body>

{% from "_formhelpers.html" import render_field %}

<div>What's your name?</div>
<form method=post action="/hello">
  <dl>
    {{ render_field(form.sayhello) }}
  </dl>
  <input type=submit value='Say Hello' name='submit_btn'>
</form>
  </body>
</html>

http://jinja.pocoo.org


Chapter 9

[ 263 ]

In the header section of first_app.html, we loaded the CSS file. It should now 
alter the size of all text elements in the HTML body. In the HTML body section, we 
imported the form macro from _formhelpers.html and we rendered the sayhello 
form that we specified in the app.py file. Furthermore, we added a button to the 
same form element so that a user can submit the text field entry.

Lastly, we create a hello.html file that will be rendered via the line return  
render_template('hello.html', name=name) inside the hello function,  
which we defined in the app.py script to display the text that a user submitted  
via the text field. The code is as follows:

<!doctype html>
<html>
  <head>
    <title>First app</title>
  <link rel="stylesheet" href="{{ url_for('static',  
    filename='style.css') }}">
  </head>
  <body>

<div>Hello {{ name }}</div>
  </body>
</html>

Having set up our modified Flask web application, we can run it locally by executing 
the following command from the app's main directory and we can view the result in 
our web browser at http://127.0.0.1:5000/:

python3 app.py

If you are new to web development, some of those concepts may seem 
very complicated at first sight. In that case, I encourage you to simply 
set up the preceding files in a directory on your hard drive and examine 
them closely. You will see that the Flask web framework is actually pretty 
straightforward and much simpler than it might initially appear! Also, for 
more help, don't forget to look at the excellent Flask documentation and 
examples at http://flask.pocoo.org/docs/0.10/.

http://flask.pocoo.org/docs/0.10/
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Turning the movie classifier into a web 
application
Now that we are somewhat familiar with the basics of Flask web development, let's 
advance to the next step and implement our movie classifier into a web application. 
In this section, we will develop a web application that will first prompt a user to 
enter a movie review, as shown in the following screenshot:

After the review has been submitted, the user will see a new page that shows the 
predicted class label and the probability of the prediction. Furthermore, the user 
will be able to provide feedback about this prediction by clicking on the Correct or 
Incorrect button, as shown in the following screenshot:
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If a user clicked on either the Correct or Incorrect button, our classification model 
will be updated with respect to the user's feedback. Furthermore, we will also store 
the movie review text provided by the user as well as the suggested class label, 
which can be inferred from the button click, in a SQLite database for future reference. 
The third page that the user will see after clicking on one of the feedback buttons is a 
simple thank you screen with a Submit another review button that redirects the user 
back to the start page. This is shown in the following screenshot:

Before we take a closer look at the code implementation of this web application, I 
encourage you to take a look at the live demo that I uploaded at http://raschkas.
pythonanywhere.com to get a better understanding of what we are trying to 
accomplish in this section.

http://raschkas.pythonanywhere.com
http://raschkas.pythonanywhere.com
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To start with the big picture, let's take a look at the directory tree that we are going to 
create for this movie classification app, which is shown here:

In the previous section of this chapter, we already created the vectorizer.py file, 
the SQLite database reviews.sqlite, and the pkl_objects subdirectory with the 
pickled Python objects.

The app.py file in the main directory is the Python script that contains our Flask 
code, and we will use the review.sqlite database file (which we created earlier  
in this chapter) to store the movie reviews that are being submitted to our web app. 
The templates subdirectory contains the HTML templates that will be rendered by 
Flask and displayed in the browser, and the static subdirectory will contain  
a simple CSS file to adjust the look of the rendered HTML code.

Since the app.py file is rather long, we will conquer it in two steps. The first section 
of app.py imports the Python modules and objects that we are going to need, as 
 well as the code to unpickle and set up our classification model:

from flask import Flask, render_template, request
from wtforms import Form, TextAreaField, validators
import pickle
import sqlite3
import os
import numpy as np
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# import HashingVectorizer from local dir
from vectorizer import vect

app = Flask(__name__)

######## Preparing the Classifier
cur_dir = os.path.dirname(__file__)
clf = pickle.load(open(os.path.join(cur_dir, 
                 'pkl_objects/classifier.pkl'), 'rb'))
db = os.path.join(cur_dir, 'reviews.sqlite')

def classify(document):
    label = {0: 'negative', 1: 'positive'}
    X = vect.transform([document])
    y = clf.predict(X)[0]
    proba = np.max(clf.predict_proba(X))
    return label[y], proba

def train(document, y):
    X = vect.transform([document])
    clf.partial_fit(X, [y])

def sqlite_entry(path, document, y):
    conn = sqlite3.connect(path)
    c = conn.cursor()
    c.execute("INSERT INTO review_db (review, sentiment, date)"\
    " VALUES (?, ?, DATETIME('now'))", (document, y))
    conn.commit()
    conn.close()

This first part of the app.py script should look very familiar to us by now. We simply 
imported the HashingVectorizer and unpickled the logistic regression classifier. 
Next, we defined a classify function to return the predicted class label as well 
as the corresponding probability prediction of a given text document. The train 
function can be used to update the classifier given that a document and a class label 
are provided. Using the sqlite_entry function, we can store a submitted movie 
review in our SQLite database along with its class label and timestamp for our 
personal records. Note that the clf object will be reset to its original, pickled state if 
we restart the web application. At the end of this chapter, you will learn how to use 
the data that we collect in the SQLite database to update the classifier permanently.
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The concepts in the second part of the app.py script should also look quite familiar 
to us:

app = Flask(__name__)
class ReviewForm(Form):
    moviereview = TextAreaField('',
                                [validators.DataRequired(),
                                validators.length(min=15)])

@app.route('/')
def index():
    form = ReviewForm(request.form)
    return render_template('reviewform.html', form=form)

@app.route('/results', methods=['POST'])
def results():
    form = ReviewForm(request.form)
    if request.method == 'POST' and form.validate():
        review = request.form['moviereview']
        y, proba = classify(review)
        return render_template('results.html',
                                content=review,
                                prediction=y,
                                probability=round(proba*100, 2))
    return render_template('reviewform.html', form=form)

@app.route('/thanks', methods=['POST'])
def feedback():
    feedback = request.form['feedback_button']
    review = request.form['review']
    prediction = request.form['prediction']

    inv_label = {'negative': 0, 'positive': 1}
    y = inv_label[prediction]
    if feedback == 'Incorrect':
        y = int(not(y))
    train(review, y)
    sqlite_entry(db, review, y)
    return render_template('thanks.html')

if __name__ == '__main__':
    app.run(debug=True)
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We defined a ReviewForm class that instantiates a TextAreaField, which will 
be rendered in the reviewform.html template file (the landing page of our web 
app). This, in turn, is rendered by the index function. With the validators.
length(min=15) parameter, we require the user to enter a review that contains at least 
15 characters. Inside the results function, we fetch the contents of the submitted web 
form and pass it on to our classifier to predict the sentiment of the movie classifier, 
which will then be displayed in the rendered results.html template.

The feedback function may look a little bit complicated at first glance. It essentially 
fetches the predicted class label from the results.html template if a user clicked 
on the Correct or Incorrect feedback button, and transforms the predicted sentiment 
back into an integer class label that will be used to update the classifier via the train 
function, which we implemented in the first section of the app.py script. Also, a new 
entry to the SQLite database will be made via the sqlite_entry function if feedback 
was provided, and eventually the thanks.html template will be rendered to thank 
the user for the feedback.

Next, let's take a look at the reviewform.html template, which constitutes the 
starting page of our application:

<!doctype html>
<html>
<head>
    <title>Movie Classification</title>
</head>
  <body>

<h2>Please enter your movie review:</h2>

{% from "_formhelpers.html" import render_field %}

<form method=post action="/results">
  <dl>
    {{ render_field(form.moviereview, cols='30', rows='10') }}
  </dl>
  <div>
    <input type=submit value='Submit review' name='submit_btn'>
  </div>
</form>

  </body>
</html>
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Here, we simply imported the same _formhelpers.html template that we defined 
in the Form validation and rendering section earlier in this chapter. The render_field 
function of this macro is used to render a TextAreaField where a user can provide a 
movie review and submit it via the Submit review button displayed at the bottom of 
the page. This TextAreaField is 30 columns wide and 10 rows tall.

Our next template, results.html, looks a little bit more interesting:

<!doctype html>
<html>
  <head>
    <title>Movie Classification</title>
  <link rel="stylesheet" href="{{ url_for('static',  
    filename='style.css') }}">
  </head>
  <body>

<h3>Your movie review:</h3>
<div>{{ content }}</div>

<h3>Prediction:</h3>
<div>This movie review is <strong>{{ prediction }}</strong>
  (probability: {{ probability }}%).</div>

<div id='button'>
  <form action="/thanks" method="post">
    <input type=submit value='Correct' name='feedback_button'>
    <input type=submit value='Incorrect' name='feedback_button'>
    <input type=hidden value='{{ prediction }}' name='prediction'>
    <input type=hidden value='{{ content }}' name='review'>
  </form>
</div>

<div id='button'>
  <form action="/">
    <input type=submit value='Submit another review'>
  </form>
</div>

  </body>
</html>
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First, we inserted the submitted review as well as the results of the prediction in the 
corresponding fields {{ content }}, {{ prediction }}, and {{ probability }}. 
You may notice that we used the {{ content }} and {{ prediction }} placeholder 
variables a second time in the form that contains the Correct and Incorrect buttons. 
This is a workaround to POST those values back to the server to update the classifier 
and store the review in case the user clicks on one of those two buttons. Furthermore, 
we imported a CSS file (style.css) at the beginning of the results.html file. The 
setup of this file is quite simple; it limits the width of the contents of this web app to 
600 pixels and moves the Incorrect and Correct buttons labeled with the div id  
button down by 20 pixels:

body{
  width:600px;
}
#button{
  padding-top: 20px;
}

This CSS file is merely a placeholder, so please feel free to adjust it to adjust the look 
and feel of the web app to your liking.

The last HTML file we will implement for our web application is the thanks.html 
template. As the name suggests, it simply provides a nice thank you message to the 
user after providing feedback via the Correct or Incorrect button. Furthermore, we 
put a Submit another review button at the bottom of this page, which will redirect 
the user to the starting page. The contents of the thanks.html file are as follows:

<!doctype html>
<html>
  <head>
    <title>Movie Classification</title>
</head>
  <body>

<h3>Thank you for your feedback!</h3>
<div id='button'>
  <form action="/">
    <input type=submit value='Submit another review'>
  </form>
</div>

  </body>
</html>
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Now, it would be a good idea to start the web app locally from our terminal via the 
following command before we advance to the next subsection and deploy it on a 
public web server:

python3 app.py

After we have finished testing our app, we also shouldn't forget to remove the 
debug=True argument in the app.run() command of our app.py script.

Deploying the web application to a public 
server
After we have tested the web application locally, we are now ready to deploy our 
web application onto a public web server. For this tutorial, we will be using the 
PythonAnywhere web hosting service, which specializes in the hosting of Python 
web applications and makes it extremely simple and hassle-free. Furthermore, 
PythonAnywhere offers a beginner account option that lets us run a single web 
application free of charge.

To create a new PythonAnywhere account, we visit the website at https://www.
pythonanywhere.com and click on the Pricing & signup link that is located in the 
top-right corner. Next, we click on the Create a Beginner account button where we 
need to provide a username, password, and a valid e-mail address. After we have 
read and agreed to the terms and conditions, we should have a new account.

Unfortunately, the free beginner account doesn't allow us to access the remote server 
via the SSH protocol from our command-line terminal. Thus, we need to use the 
PythonAnywhere web interface to manage our web application. But before we can 
upload our local application files to the server, need to create a new web application 
for our PythonAnywhere account. After we clicking on the Dashboard button in the 
top-right corner, we have access to the control panel shown at the top of the page. 
Next, we click on the Web tab that is now visible at the top of the page. We proceed 
by clicking on the Add a new web app button on the left, which lets us create a new 
Python 3.4 Flask web application that we name movieclassifier.

After creating a new application for our PythonAnywhere account, we head over to 
the Files tab to upload the files from our local movieclassifier directory using the 
PythonAnywhere web interface. After uploading the web application files that we 
created locally on our computer, we should have a movieclassifier directory in 
our PythonAnywhere account. It contains the same directories and files as our local 
movieclassifier directory has, as shown in the following screenshot:

https://www.pythonanywhere.com
https://www.pythonanywhere.com
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Lastly, we head over to the Web tab one more time and click on the Reload 
<username>.pythonanywhere.com button to propagate the changes and refresh our 
web application. Finally, our web app should now be up and running and publicly 
available via the address <username>.pythonanywhere.com.

Unfortunately, web servers can be quite sensitive to the tiniest problems 
in our web app. If you are experiencing problems with running the web 
application on PythonAnywhere and are receiving error messages in your 
browser, you can check the server and error logs which can be accessed 
from the Web tab in your PythonAnywhere account to better diagnose 
the problem.
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Updating the movie review classifier
While our predictive model is updated on-the-fly whenever a user provides 
feedback about the classification, the updates to the clf object will be reset if the 
web server crashes or restarts. If we reload the web application, the clf object 
will be reinitialized from the classifier.pkl pickle file. One option to apply 
the updates permanently would be to pickle the clf object once again after each 
update. However, this would become computationally very inefficient with a 
growing number of users and could corrupt the pickle file if users provide feedback 
simultaneously. An alternative solution is to update the predictive model from the 
feedback data that is being collected in the SQLite database. One option would be 
to download the SQLite database from the PythonAnywhere server, update the clf 
object locally on our computer, and upload the new pickle file to PythonAnywhere. 
To update the classifier locally on our computer, we create an update.py script file 
in the movieclassifier directory with the following contents:

import pickle
import sqlite3
import numpy as np
import os

# import HashingVectorizer from local dir
from vectorizer import vect

def update_model(db_path, model, batch_size=10000):

    conn = sqlite3.connect(db_path)
    c = conn.cursor()
    c.execute('SELECT * from review_db')

    results = c.fetchmany(batch_size)
    while results:
        data = np.array(results)
        X = data[:, 0]
        y = data[:, 1].astype(int)

        classes = np.array([0, 1])
        X_train = vect.transform(X)
        clf.partial_fit(X_train, y, classes=classes)
        results = c.fetchmany(batch_size)

    conn.close()
    return None
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cur_dir = os.path.dirname(__file__)

clf = pickle.load(open(os.path.join(cur_dir,
                 'pkl_objects',
                 'classifier.pkl'), 'rb'))
db = os.path.join(cur_dir, 'reviews.sqlite')

update_model(db_path=db, model=clf, batch_size=10000)

# Uncomment the following lines if you are sure that
# you want to update your classifier.pkl file
# permanently.

# pickle.dump(clf, open(os.path.join(cur_dir,
#             'pkl_objects', 'classifier.pkl'), 'wb')
#             , protocol=4)

The update_model function will fetch entries from the SQLite database in batches of 
10,000 entries at a time unless the database contains fewer entries. Alternatively, we 
could also fetch one entry at a time by using fetchone instead of fetchmany, which 
would be computationally very inefficient. Using the alternative fetchall method 
could be a problem if we are working with large datasets that exceed the computer 
or server's memory capacity.

Now that we have created the update.py script, we could also upload it to the 
movieclassifier directory on PythonAnywhere and import the update_model 
function in the main application script app.py to update the classifier from the 
SQLite database every time we restart the web application. In order to do so, we just 
need to add a line of code to import the update_model function from the update.py 
script at the top of app.py:

# import update function from local dir
from update import update_model

We then need to call the update_model function in the main application body:

…
if __name__ == '__main__':
    update_model(filepath=db, model=clf, batch_size=10000)
…
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Summary
In this chapter, you learned about many useful and practical topics that extend our 
knowledge of machine learning theory. You learned how to serialize a model after 
training and how to load it for later use cases. Furthermore, we created a SQLite 
database for efficient data storage and created a web application that lets us make 
our movie classifier available to the outside world.

Throughout this book, we have really discussed a lot about machine learning 
concepts, best practices, and supervised models for classification. In the next chapter, 
we will take a look at another subcategory of supervised learning, regression 
analysis, which lets us predict outcome variables on a continuous scale, in contrast 
to the categorical class labels of the classification models that we have been working 
with so far.
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Predicting Continuous  
Target Variables with 
Regression Analysis 

Throughout the previous chapters, you learned a lot about the main concepts  
behind supervised learning and trained many different models for classification tasks 
to predict group memberships or categorical variables. In this chapter, we will take  
a dive into another subcategory of supervised learning: regression analysis.

Regression models are used to predict target variables on a continuous scale, 
which makes them attractive for addressing many questions in science as well as 
applications in industry, such as understanding relationships between variables, 
evaluating trends, or making forecasts. One example would be predicting the sales  
of a company in future months.

In this chapter, we will discuss the main concepts of regression models and cover  
the following topics:

•	 Exploring and visualizing datasets
•	 Looking at different approaches to implement linear regression models
•	 Training regression models that are robust to outliers
•	 Evaluating regression models and diagnosing common problems
•	 Fitting regression models to nonlinear data
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Introducing a simple linear regression 
model
The goal of simple (univariate) linear regression is to model the relationship between 
a single feature (explanatory variable x) and a continuous valued response (target 
variable y). The equation of a linear model with one explanatory variable is defined 
as follows:

0 1y w w x= +

Here, the weight 0w  represents the y axis intercepts and 1w  is the coefficient of 
the explanatory variable. Our goal is to learn the weights of the linear equation to 
describe the relationship between the explanatory variable and the target variable, 
which can then be used to predict the responses of new explanatory variables that 
were not part of the training dataset.

Based on the linear equation that we defined previously, linear regression can be 
understood as finding the best-fitting straight line through the sample points, as 
shown in the following figure:

This best-fitting line is also called the regression line, and the vertical lines from the 
regression line to the sample points are the so-called offsets or residuals—the errors 
of our prediction.
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The special case of one explanatory variable is also called simple linear regression, 
but of course we can also generalize the linear regression model to multiple 
explanatory variables. Hence, this process is called multiple linear regression:

0 0 1 1
0

n
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i

y w x w x w x w x w x
=

= + +…+ = =∑

Here, 0w  is the y axis intercept with 0 1x = .

Exploring the Housing Dataset
Before we implement our first linear regression model, we will introduce a new 
dataset, the Housing Dataset, which contains information about houses in the 
suburbs of Boston collected by D. Harrison and D.L. Rubinfeld in 1978. The Housing 
Dataset has been made freely available and can be downloaded from the UCI machine 
learning repository at https://archive.ics.uci.edu/ml/datasets/Housing.

The features of the 506 samples may be summarized as shown in the excerpt of the 
dataset description:

•	 CRIM: This is the per capita crime rate by town
•	 ZN: This is the proportion of residential land zoned for lots larger than  

25,000 sq.ft.
•	 INDUS: This is the proportion of non-retail business acres per town
•	 CHAS: This is the Charles River dummy variable (this is equal to 1 if tract 

bounds river; 0 otherwise)
•	 NOX: This is the nitric oxides concentration (parts per 10 million)
•	 RM: This is the average number of rooms per dwelling
•	 AGE: This is the proportion of owner-occupied units built prior to 1940
•	 DIS: This is the weighted distances to five Boston employment centers
•	 RAD: This is the index of accessibility to radial highways
•	 TAX: This is the full-value property-tax rate per $10,000
•	 PTRATIO: This is the pupil-teacher ratio by town
•	 B: This is calculated as 1000(Bk - 0.63)^2, where Bk is the proportion of 

people of African American descent by town
•	 LSTAT: This is the percentage lower status of the population
•	 MEDV: This is the median value of owner-occupied homes in $1000s

https://archive.ics.uci.edu/ml/datasets/Housing
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For the rest of this chapter, we will regard the housing prices (MEDV) as our 
target variable—the variable that we want to predict using one or more of the 13 
explanatory variables. Before we explore this dataset further, let's fetch it from the 
UCI repository into a pandas DataFrame:

>>> import pandas as pd
>>> df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-
databases/housing/housing.data', 
...                 header=None, sep='\s+')
>>> df.columns = ['CRIM', 'ZN', 'INDUS', 'CHAS', 
...              'NOX', 'RM', 'AGE', 'DIS', 'RAD', 
...              'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']
>>> df.head()

To confirm that the dataset was loaded successfully, we displayed the first five lines 
of the dataset, as shown in the following screenshot:

Visualizing the important characteristics of a 
dataset
Exploratory Data Analysis (EDA) is an important and recommended first step prior 
to the training of a machine learning model. In the rest of this section, we will use 
some simple yet useful techniques from the graphical EDA toolbox that may help 
us to visually detect the presence of outliers, the distribution of the data, and the 
relationships between features.

First, we will create a scatterplot matrix that allows us to visualize the pair-wise 
correlations between the different features in this dataset in one place. To plot the 
scatterplot matrix, we will use the pairplot function from the seaborn library 
(http://stanford.edu/~mwaskom/software/seaborn/), which is a Python library 
for drawing statistical plots based on matplotlib:

>>> import matplotlib.pyplot as plt
>>> import seaborn as sns
>>> sns.set(style='whitegrid', context='notebook')
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>>> cols = ['LSTAT', 'INDUS', 'NOX', 'RM', 'MEDV']
>>> sns.pairplot(df[cols], size=2.5);
>>> plt.show()

As we can see in the following figure, the scatterplot matrix provides us with a 
useful graphical summary of the relationships in a dataset:

Importing the seaborn library modifies the default aesthetics of 
matplotlib for the current Python session. If you do not want to 
use seaborn's style settings, you can reset the matplotlib settings 
by executing the following command:

>>> sns.reset_orig()
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Due to space constraints and for purposes of readability, we only plotted five 
columns from the dataset: LSTAT, INDUS, NOX, RM, and MEDV. However,  
you are encouraged to create a scatterplot matrix of the whole DataFrame to  
further explore the data. 

Using this scatterplot matrix, we can now quickly eyeball how the data is distributed 
and whether it contains outliers. For example, we can see that there is a linear 
relationship between RM and the housing prices MEDV (the fifth column of the 
fourth row). Furthermore, we can see in the histogram (the lower right subplot in  
the scatter plot matrix) that the MEDV variable seems to be normally distributed  
but contains several outliers.

Note that in contrast to common belief, training a linear regression model 
does not require that the explanatory or target variables are normally 
distributed. The normality assumption is only a requirement for certain 
statistical tests and hypothesis tests that are beyond the scope of this book 
(Montgomery, D. C., Peck, E. A., and Vining, G. G. Introduction to linear 
regression analysis. John Wiley and Sons, 2012, pp.318–319).

To quantify the linear relationship between the features, we will now create a 
correlation matrix. A correlation matrix is closely related to the covariance matrix 
that we have seen in the section about principal component analysis (PCA) in 
Chapter 4, Building Good Training Sets – Data Preprocessing. Intuitively, we can 
interpret the correlation matrix as a rescaled version of the covariance matrix. 
In fact, the correlation matrix is identical to a covariance matrix computed from 
standardized data.

The correlation matrix is a square matrix that contains the Pearson product-moment 
correlation coefficients (often abbreviated as Pearson's r), which measure the linear 
dependence between pairs of features. The correlation coefficients are bounded 
to the range -1 and 1. Two features have a perfect positive correlation if 1r = , no 
correlation if 0r = , and a perfect negative correlation if 1r = − , respectively. As 
mentioned previously, Pearson's correlation coefficient can simply be calculated as 
the covariance between two features x  and y  (numerator) divided by the product 
of their standard deviations (denominator):

( )( ) ( )( )
( )( ) ( )( )

1

2 2

1 1

n i i
x yi xy

n ni i x y
x yi i

x y
r

x y

µ µ σ
σ σµ µ

=

= =

 − − = =
− −

∑

∑ ∑



Chapter 10

[ 283 ]

Here, µ  denotes the sample mean of the corresponding feature, xyσ  is the 
covariance between the features x  and y , and xσ  and yσ  are the features'  
standard deviations, respectively.

We can show that the covariance between standardized features is in 
fact equal to their linear correlation coefficient.
Let's first standardize the features x  and y , to obtain their z-scores 
which we will denote as x′  and y′ , respectively:

, yx

x y

yxx y
µµ

σ σ
′ ′

−−
= =

Remember that we calculate the (population) covariance between two 
features as follows:
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Since standardization centers a feature variable at mean 0, we can now 
calculate the covariance between the scaled features as follows:
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In the following code example, we will use NumPy's corrcoef function on the five 
feature columns that we previously visualized in the scatterplot matrix, and we will 
use seaborn's heatmap function to plot the correlation matrix array as a heat map:

>>> import numpy as np
>>> cm = np.corrcoef(df[cols].values.T)
>>> sns.set(font_scale=1.5)
>>> hm = sns.heatmap(cm, 
...            cbar=True,
...            annot=True, 
...            square=True,
...            fmt='.2f',
...            annot_kws={'size': 15},
...            yticklabels=cols,
...            xticklabels=cols)
>>> plt.show()

As we can see in the resulting figure, the correlation matrix provides us with another 
useful summary graphic that can help us to select features based on their respective 
linear correlations:

To fit a linear regression model, we are interested in those features that have a high 
correlation with our target variable MEDV. Looking at the preceding correlation 
matrix, we see that our target variable MEDV shows the largest correlation with 
the LSTAT variable (-0.74). However, as you might remember from the scatterplot 
matrix, there is a clear nonlinear relationship between LSTAT and MEDV. On the 
other hand, the correlation between RM and MEDV is also relatively high (0.70) and 
given the linear relationship between those two variables that we observed in the 
scatterplot, RM seems to be a good choice for an exploratory variable to introduce 
the concepts of a simple linear regression model in the following section.
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Implementing an ordinary least squares 
linear regression model
At the beginning of this chapter, we discussed that linear regression can be 
understood as finding the best-fitting straight line through the sample points of 
our training data. However, we have neither defined the term best-fitting nor have 
we discussed the different techniques of fitting such a model. In the following 
subsections, we will fill in the missing pieces of this puzzle using the Ordinary 
Least Squares (OLS) method to estimate the parameters of the regression line that 
minimizes the sum of the squared vertical distances (residuals or errors) to the 
sample points.

Solving regression for regression parameters 
with gradient descent
Consider our implementation of the ADAptive LInear NEuron (Adaline) from 
Chapter 2, Training Machine Learning Algorithms for Classification; we remember that 
the artificial neuron uses a linear activation function and we defined a cost function 
( )J ⋅ , which we minimized to learn the weights via optimization algorithms, such as 

Gradient Descent (GD) and Stochastic Gradient Descent (SGD). This cost function 
in Adaline is the Sum of Squared Errors (SSE). This is identical to the OLS cost 
function that we defined:
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Here, ŷ  is the predicted value ˆ Ty w x=  (note that the term 1/2 is just used for 
convenience to derive the update rule of GD). Essentially, OLS linear regression 
can be understood as Adaline without the unit step function so that we obtain 
continuous target values instead of the class labels -1 and 1. To demonstrate the 
similarity, let's take the GD implementation of Adaline from Chapter 2, Training 
Machine Learning Algorithms for Classification, and remove the unit step function to 
implement our first linear regression model:

class LinearRegressionGD(object):

    def __init__(self, eta=0.001, n_iter=20):
        self.eta = eta
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        self.n_iter = n_iter

    def fit(self, X, y):
        self.w_ = np.zeros(1 + X.shape[1])
        self.cost_ = []

        for i in range(self.n_iter):
            output = self.net_input(X)
            errors = (y - output)
            self.w_[1:] += self.eta * X.T.dot(errors)
            self.w_[0] += self.eta * errors.sum()
            cost = (errors**2).sum() / 2.0
            self.cost_.append(cost)
        return self

    def net_input(self, X):
        return np.dot(X, self.w_[1:]) + self.w_[0]

    def predict(self, X):
        return self.net_input(X)

If you need a refresher about how the weights are being updated—taking a step in 
the opposite direction of the gradient—please revisit the Adaline section in Chapter 2, 
Training Machine Learning Algorithms for Classification.

To see our LinearRegressionGD regressor in action, let's use the RM (number of 
rooms) variable from the Housing Data Set as the explanatory variable to train a 
model that can predict MEDV (the housing prices). Furthermore, we will standardize 
the variables for better convergence of the GD algorithm. The code is as follows:

>>> X = df[['RM']].values
>>> y = df['MEDV'].values
>>> from sklearn.preprocessing import StandardScaler
>>> sc_x = StandardScaler()
>>> sc_y = StandardScaler()
>>> X_std = sc_x.fit_transform(X)
>>> y_std = sc_y.fit_transform(y)
>>> lr = LinearRegressionGD()
>>> lr.fit(X_std, y_std)
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We discussed in Chapter 2, Training Machine Learning Algorithms for Classification, 
that it is always a good idea to plot the cost as a function of the number of epochs 
(passes over the training dataset) when we are using optimization algorithms, such 
as gradient descent, to check for convergence. To cut a long story short, let's plot the 
cost against the number of epochs to check if the linear regression has converged:

>>> plt.plot(range(1, lr.n_iter+1), lr.cost_)
>>> plt.ylabel('SSE')
>>> plt.xlabel('Epoch')
>>> plt.show()

As we can see in the following plot, the GD algorithm converged after the fifth epoch:

Next, let's visualize how well the linear regression line fits the training data. To do 
so, we will define a simple helper function that will plot a scatterplot of the training 
samples and add the regression line:

>>> def lin_regplot(X, y, model):
...     plt.scatter(X, y, c='blue')
...     plt.plot(X, model.predict(X), color='red')    
...     return None

Now, we will use this lin_regplot function to plot the number of rooms against 
house prices:

>>> lin_regplot(X_std, y_std, lr)
>>> plt.xlabel('Average number of rooms [RM] (standardized)')
>>> plt.ylabel('Price in $1000\'s [MEDV] (standardized)')
>>> plt.show()
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As we can see in the following plot, the linear regression line reflects the general 
trend that house prices tend to increase with the number of rooms:

Although this observation makes intuitive sense, the data also tells us that the 
number of rooms does not explain the house prices very well in many cases. Later  
in this chapter, we will discuss how to quantify the performance of a regression 
model. Interestingly, we also observe a curious line 3y = , which suggests that the 
prices may have been clipped. In certain applications, it may also be important to 
report the predicted outcome variables on its original scale. To scale the predicted 
price outcome back on the Price in $1000's axes, we can simply apply the  
inverse_transform method of the StandardScaler:

>>> num_rooms_std = sc_x.transform([5.0]) 
>>> price_std = lr.predict(num_rooms_std)
>>> print("Price in $1000's: %.3f" % \
...       sc_y.inverse_transform(price_std))
Price in $1000's: 10.840

In the preceding code example, we used the previously trained linear regression 
model to predict the price of a house with five rooms. According to our model,  
such a house is worth $10,840.
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On a side note, it is also worth mentioning that we technically don't have to update 
the weights of the intercept if we are working with standardized variables since the  
y axis intercept is always 0 in those cases. We can quickly confirm this by printing 
the weights:

>>> print('Slope: %.3f' % lr.w_[1])
Slope: 0.695
>>> print('Intercept: %.3f' % lr.w_[0])
Intercept: -0.000

Estimating the coefficient of a regression 
model via scikit-learn
In the previous section, we implemented a working model for regression  
analysis. However, in a real-world application, we may be interested in more 
efficient implementations, for example, scikit-learn's LinearRegression object  
that makes use of the LIBLINEAR library and advanced optimization algorithms 
that work better with unstandardized variables. This is sometimes desirable for 
certain applications:

>>> from sklearn.linear_model import LinearRegression
>>> slr = LinearRegression()
>>> slr.fit(X, y)
>>> print('Slope: %.3f' % slr.coef_[0])
Slope: 9.102
>>> print('Intercept: %.3f' % slr.intercept_)
Intercept: -34.671

As we can see by executing the preceding code, scikit-learn's LinearRegression 
model fitted with the unstandardized RM and MEDV variables yielded different 
model coefficients. Let's compare it to our own GD implementation by plotting 
MEDV against RM:

>>> lin_regplot(X, y, slr)
>>> plt.xlabel('Average number of rooms [RM] (standardized)')
>>> plt.ylabel('Price in $1000\'s [MEDV] (standardized)')
>>> plt.show()
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Now, when we plot the training data and our fitted model by executing the code 
above, we can see that the overall result looks identical to our GD implementation:

As an alternative to using machine learning libraries, there is a  
closed-form solution for solving OLS involving a system of linear 
equations that can be found in most introductory statistics textbooks:
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Here, yµ  is the mean of the true target values and ŷµ  is the mean of the 
predicted response.
The advantage of this method is that it is guaranteed to find the optimal 
solution analytically. However, if we are working with very large 
datasets, it can be computationally too expensive to invert the matrix in 
this formula (sometimes also called the normal equation) or the sample 
matrix may be singular (non-invertible), which is why we may prefer 
iterative methods in certain cases.
If you are interested in more information on how to obtain the normal 
equations, I recommend you take a look at Dr. Stephen Pollock's chapter, 
The Classical Linear Regression Model from his lectures at the University 
of Leicester, which are available for free at http://www.le.ac.uk/
users/dsgp1/COURSES/MESOMET/ECMETXT/06mesmet.pdf.

http://www.le.ac.uk/users/dsgp1/COURSES/MESOMET/ECMETXT/06mesmet.pdf
http://www.le.ac.uk/users/dsgp1/COURSES/MESOMET/ECMETXT/06mesmet.pdf
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Fitting a robust regression model using 
RANSAC
Linear regression models can be heavily impacted by the presence of outliers. 
In certain situations, a very small subset of our data can have a big effect on the 
estimated model coefficients. There are many statistical tests that can be used to 
detect outliers, which are beyond the scope of the book. However, removing  
outliers always requires our own judgment as a data scientist, as well as our  
domain knowledge.

As an alternative to throwing out outliers, we will look at a robust method of 
regression using the RANdom SAmple Consensus (RANSAC) algorithm,  
which fits a regression model to a subset of the data, the so-called inliers.

We can summarize the iterative RANSAC algorithm as follows:

1.	 Select a random number of samples to be inliers and fit the model.
2.	 Test all other data points against the fitted model and add those points  

that fall within a user-given tolerance to the inliers.
3.	 Refit the model using all inliers.
4.	 Estimate the error of the fitted model versus the inliers.
5.	 Terminate the algorithm if the performance meets a certain user-defined 

threshold or if a fixed number of iterations has been reached; go back to  
step 1 otherwise.

Let's now wrap our linear model in the RANSAC algorithm using scikit-learn's 
RANSACRegressor object:

>>> from sklearn.linear_model import RANSACRegressor
>>> ransac = RANSACRegressor(LinearRegression(), 
...            max_trials=100, 
...            min_samples=50, 
...            residual_metric=lambda x: np.sum(np.abs(x), axis=1), 
...            residual_threshold=5.0, 
...            random_state=0)
>>> ransac.fit(X, y)
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We set the maximum number of iterations of the RANSACRegressor to 100, and using 
min_samples=50, we set the minimum number of the randomly chosen samples to 
be at least 50. Using the residual_metric parameter, we provided a callable lambda 
function that simply calculates the absolute vertical distances between the fitted line 
and the sample points. By setting the residual_threshold parameter to 5.0, we 
only allowed samples to be included in the inlier set if their vertical distance to the 
fitted line is within 5 distance units, which works well on this particular dataset. By 
default, scikit-learn uses the MAD estimate to select the inlier threshold, where MAD 
stands for the Median Absolute Deviation of the target values y. However, the choice 
of an appropriate value for the inlier threshold is problem-specific, which is one 
disadvantage of RANSAC. Many different approaches have been developed over the 
recent years to select a good inlier threshold automatically. You can find a detailed 
discussion in R. Toldo and A. Fusiello's. Automatic Estimation of the Inlier Threshold in 
Robust Multiple Structures Fitting (in Image Analysis and Processing–ICIAP 2009,  
pages 123–131. Springer, 2009).

After we have fitted the RANSAC model, let's obtain the inliers and outliers from the 
fitted RANSAC linear regression model and plot them together with the linear fit:

>>> inlier_mask = ransac.inlier_mask_
>>> outlier_mask = np.logical_not(inlier_mask)
>>> line_X = np.arange(3, 10, 1)
>>> line_y_ransac = ransac.predict(line_X[:, np.newaxis])
>>> plt.scatter(X[inlier_mask], y[inlier_mask], 
...             c='blue', marker='o', label='Inliers')
>>> plt.scatter(X[outlier_mask], y[outlier_mask],
...             c='lightgreen', marker='s', label='Outliers')
>>> plt.plot(line_X, line_y_ransac, color='red')
>>> plt.xlabel('Average number of rooms [RM]')
>>> plt.ylabel('Price in $1000\'s [MEDV]')
>>> plt.legend(loc='upper left')
>>> plt.show()
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As we can see in the following scatterplot, the linear regression model was fitted on 
the detected set of inliers shown as circles:

When we print the slope and intercept of the model executing the following code, 
we can see that the linear regression line is slightly different from the fit that we 
obtained in the previous section without RANSAC:

>>> print('Slope: %.3f' % ransac.estimator_.coef_[0])
Slope: 9.621
>>> print('Intercept: %.3f' % ransac.estimator_.intercept_)
Intercept: -37.137

Using RANSAC, we reduced the potential effect of the outliers in this dataset,  
but we don't know if this approach has a positive effect on the predictive 
performance for unseen data. Thus, in the next section we will discuss how to 
evaluate a regression model for different approaches, which is a crucial part of 
building systems for predictive modeling.
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Evaluating the performance of linear 
regression models
In the previous section, we discussed how to fit a regression model on training data. 
However, you learned in previous chapters that it is crucial to test the model on data 
that it hasn't seen during training to obtain an unbiased estimate of its performance.

As we remember from Chapter 6, Learning Best Practices for Model Evaluation and 
Hyperparameter Tuning, we want to split our dataset into separate training and 
test datasets where we use the former to fit the model and the latter to evaluate its 
performance to generalize to unseen data. Instead of proceeding with the simple 
regression model, we will now use all variables in the dataset and train a multiple 
regression model:

>>> from sklearn.cross_validation import train_test_split
>>> X = df.iloc[:, :-1].values
>>> y = df['MEDV'].values
>>> X_train, X_test, y_train, y_test = train_test_split(
...       X, y, test_size=0.3, random_state=0)
>>> slr = LinearRegression()
>>> slr.fit(X_train, y_train)
>>> y_train_pred = slr.predict(X_train)
>>> y_test_pred = slr.predict(X_test)

Since our model uses multiple explanatory variables, we can't visualize the linear 
regression line (or hyperplane to be precise) in a two-dimensional plot, but we 
can plot the residuals (the differences or vertical distances between the actual and 
predicted values) versus the predicted values to diagnose our regression model. 
Those residual plots are a commonly used graphical analysis for diagnosing 
regression models to detect nonlinearity and outliers, and to check if the errors  
are randomly distributed.

Using the following code, we will now plot a residual plot where we simply subtract 
the true target variables from our predicted responses:

>>> plt.scatter(y_train_pred, y_train_pred - y_train, 
...             c='blue', marker='o', label='Training data')
>>> plt.scatter(y_test_pred,  y_test_pred - y_test,
...             c='lightgreen', marker='s', label='Test data')
>>> plt.xlabel('Predicted values')
>>> plt.ylabel('Residuals')
>>> plt.legend(loc='upper left')
>>> plt.hlines(y=0, xmin=-10, xmax=50, lw=2, color='red')
>>> plt.xlim([-10, 50])
>>> plt.show()
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After executing the code, we should see a residual plot with a line passing through 
the x axis origin as shown here:

In the case of a perfect prediction, the residuals would be exactly zero, which we will 
probably never encounter in realistic and practical applications. However, for a good 
regression model, we would expect that the errors are randomly distributed and 
the residuals should be randomly scattered around the centerline. If we see patterns 
in a residual plot, it means that our model is unable to capture some explanatory 
information, which is leaked into the residuals as we can slightly see in our preceding 
residual plot. Furthermore, we can also use residual plots to detect outliers, which are 
represented by the points with a large deviation from the centerline.

Another useful quantitative measure of a model's performance is the so-called  
Mean Squared Error (MSE), which is simply the average value of the SSE cost 
function that we minimize to fit the linear regression model. The MSE is useful  
to for comparing  different regression models or for tuning their parameters via  
a grid search and cross-validation:
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Execute the following code:

>>> from sklearn.metrics import mean_squared_error
>>> print('MSE train: %.3f, test: %.3f' % (
        mean_squared_error(y_train, y_train_pred),
        mean_squared_error(y_test, y_test_pred)))
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We will see that the MSE on the training set is 19.96, and the MSE of the test set is 
much larger with a value of 27.20, which is an indicator that our model is overfitting 
the training data.

Sometimes it may be more useful to report the coefficient of determination ( 2R ), which 
can be understood as a standardized version of the MSE, for better interpretability of 
the model performance. In other words, 2R  is the fraction of response variance that is 
captured by the model. The 2R  value is defined as follows:
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Let's quickly show that 2R  is indeed just a rescaled version of the MSE:
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For the training dataset, 2R  is bounded between 0 and 1, but it can become  
negative for the test set. If 2 1R = , the model fits the data perfectly with a 
corresponding 0MSE = .

Evaluated on the training data, the 2R  of our model is 0.765, which doesn't sound 
too bad. However, the 2R  on the test dataset is only 0.673, which we can compute  
by executing the following code:

>>> from sklearn.metrics import r2_score
>>> print('R^2 train: %.3f, test: %.3f' % 
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...       (r2_score(y_train, y_train_pred),

...        r2_score(y_test, y_test_pred)))

Using regularized methods for regression
As we discussed in Chapter 3, A Tour of Machine Learning Classifiers Using  
Scikit-learn, regularization is one approach to tackle the problem of overfitting by 
adding additional information, and thereby shrinking the parameter values of the 
model to induce a penalty against complexity. The most popular approaches to 
regularized linear regression are the so-called Ridge Regression, Least Absolute 
Shrinkage and Selection Operator (LASSO) and Elastic Net method.

Ridge regression is an L2 penalized model where we simply add the squared sum of 
the weights to our least-squares cost function:
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By increasing the value of the hyperparameter λ , we increase the regularization 
strength and shrink the weights of our model. Please note that we don't regularize 
the intercept term 0w .

An alternative approach that can lead to sparse models is the LASSO. Depending 
on the regularization strength, certain weights can become zero, which makes the 
LASSO also useful as a supervised feature selection technique:
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However, a limitation of the LASSO is that it selects at most n  variables if m > n . A 
compromise between Ridge regression and the LASSO is the Elastic Net, which has a 
L1 penalty to generate sparsity and a L2 penalty to overcome some of the limitations 
of the LASSO, such as the number of selected variables.

( ) ( ) ( )( )2
2

1 2
1 1 1

ˆ
n m m

i i
j jElasticNet

i j j

J w y y w wλ λ
= = =

= − + +∑ ∑ ∑

Those regularized regression models are all available via scikit-learn, and the 
usage is similar to the regular regression model except that we have to specify the 
regularization strength via the parameter λ , for example, optimized via k-fold  
cross-validation.

A Ridge Regression model can be initialized as follows:

>>> from sklearn.linear_model import Ridge
>>> ridge = Ridge(alpha=1.0)

Note that the regularization strength is regulated alpha, which is similar to  
the parameter λ . Likewise, we can initialize a LASSO regressor from the  
linear_model submodule:

>>> from sklearn.linear_model import Lasso
>>> lasso = Lasso(alpha=1.0)

Lastly, the ElasticNet implementation allows us to vary the L1 to L2 ratio:

>>> from sklearn.linear_model import ElasticNet
>>> lasso = ElasticNet(alpha=1.0, l1_ratio=0.5)

For example, if we set l1_ratio to 1.0, the ElasticNet regressor would be 
equal to LASSO regression. For more detailed information about the different 
implementations of linear regression, please see the documentation at  
http://scikit-learn.org/stable/modules/linear_model.html.

Turning a linear regression model into a 
curve – polynomial regression
In the previous sections, we assumed a linear relationship between explanatory and 
response variables. One way to account for the violation of linearity assumption is  
to use a polynomial regression model by adding polynomial terms:

2 2
0 1 2 ... d

dy w w x w x x w x= + + + +

http://scikit-learn.org/stable/modules/linear_model.html
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Here, d  denotes the degree of the polynomial. Although we can use polynomial 
regression to model a nonlinear relationship, it is still considered a multiple  
linear regression model because of the linear regression coefficients w .

We will now discuss how to use the PolynomialFeatures transformer class from 
scikit-learn to add a quadratic term ( 2d = ) to a simple regression problem with  
one explanatory variable, and compare the polynomial to the linear fit. The steps  
are as follows:

1.	 Add a second degree polynomial term:
from sklearn.preprocessing import PolynomialFeatures
>>> X = np.array([258.0, 270.0, 294.0,
…                          320.0, 342.0, 368.0,
…                          396.0, 446.0, 480.0,
…                          586.0])[:, np.newaxis]

>>> y = np.array([236.4, 234.4, 252.8,
…                         298.6, 314.2, 342.2,
…                         360.8, 368.0, 391.2,
…                         390.8])
>>> lr = LinearRegression()
>>> pr = LinearRegression()
>>> quadratic = PolynomialFeatures(degree=2)
>>> X_quad = quadratic.fit_transform(X)

2.	 Fit a simple linear regression model for comparison:
>>> lr.fit(X, y)
>>> X_fit = np.arange(250,600,10)[:, np.newaxis]
>>> y_lin_fit = lr.predict(X_fit)

3.	 Fit a multiple regression model on the transformed features for  
polynomial regression:

>>> pr.fit(X_quad, y)
>>> y_quad_fit = pr.predict(quadratic.fit_transform(X_fit))
Plot the results:
>>> plt.scatter(X, y, label='training points')
>>> plt.plot(X_fit, y_lin_fit, 
...          label='linear fit', linestyle='--')
>>> plt.plot(X_fit, y_quad_fit,
...          label='quadratic fit')
>>> plt.legend(loc='upper left')
>>> plt.show()
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In the resulting plot, we can see that the polynomial fit captures the relationship 
between the response and explanatory variable much better than the linear fit:

>>> y_lin_pred = lr.predict(X)
>>> y_quad_pred = pr.predict(X_quad)
>>> print('Training MSE linear: %.3f, quadratic: %.3f' % (
...         mean_squared_error(y, y_lin_pred),
...         mean_squared_error(y, y_quad_pred)))
Training MSE linear: 569.780, quadratic: 61.330
>>> print('Training  R^2 linear: %.3f, quadratic: %.3f' % (
...         r2_score(y, y_lin_pred),
...         r2_score(y, y_quad_pred)))
Training  R^2 linear: 0.832, quadratic: 0.982

As we can see after executing the preceding code, the MSE decreased from 570 
(linear fit) to 61 (quadratic fit), and the coefficient of determination reflects a closer  
fit to the quadratic model ( 2 0.982R = ) as opposed to the linear fit ( 2 0.832R = ) in  
this particular toy problem.

Modeling nonlinear relationships in the 
Housing Dataset
After we discussed how to construct polynomial features to fit nonlinear relationships 
in a toy problem, let's now take a look at a more concrete example and apply those 
concepts to the data in the Housing Dataset. By executing the following code, we will 
model the relationship between house prices and LSTAT (percent lower status of the 
population) using second degree (quadratic) and third degree (cubic) polynomials  
and compare it to a linear fit.
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The code is as follows:

>>> X = df[['LSTAT']].values
>>> y = df['MEDV'].values
>>> regr = LinearRegression()

# create polynomial features
>>> quadratic = PolynomialFeatures(degree=2)
>>> cubic = PolynomialFeatures(degree=3)
>>> X_quad = quadratic.fit_transform(X)
>>> X_cubic = cubic.fit_transform(X)

# linear fit
>>> X_fit = np.arange(X.min(), X.max(), 1)[:, np.newaxis]
>>> regr = regr.fit(X, y)
>>> y_lin_fit = regr.predict(X_fit)
>>> linear_r2 = r2_score(y, regr.predict(X))

# quadratic fit
>>> regr = regr.fit(X_quad, y)
>>> y_quad_fit = regr.predict(quadratic.fit_transform(X_fit))
>>> quadratic_r2 = r2_score(y, regr.predict(X_quad))

# cubic fit
>>> regr = regr.fit(X_cubic, y)
>>> y_cubic_fit = regr.predict(cubic.fit_transform(X_fit))
>>> cubic_r2 = r2_score(y, regr.predict(X_cubic))

# plot results
>>> plt.scatter(X, y, 
...             label='training points', 
...             color='lightgray')
>>> plt.plot(X_fit, y_lin_fit, 
...          label='linear (d=1), $R^2=%.2f$' 
...            % linear_r2, 
...          color='blue', 
...          lw=2, 
...          linestyle=':')
>>> plt.plot(X_fit, y_quad_fit, 
...          label='quadratic (d=2), $R^2=%.2f$' 
...            % quadratic_r2,
...          color='red', 
...          lw=2,
...          linestyle='-')
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>>> plt.plot(X_fit, y_cubic_fit, 
...          label='cubic (d=3), $R^2=%.2f$' 
...            % cubic_r2,
...          color='green', 
...          lw=2, 
...          linestyle='--')
>>> plt.xlabel('% lower status of the population [LSTAT]')
>>> plt.ylabel('Price in $1000\'s [MEDV]')
>>> plt.legend(loc='upper right')
>>> plt.show()

As we can see in the resulting plot, the cubic fit captures the relationship between 
the house prices and LSTAT better than the linear and quadratic fit. However, we 
should be aware that adding more and more polynomial features increases the 
complexity of a model and therefore increases the chance of overfitting. Thus, in 
practice, it is always recommended that you evaluate the performance of the model 
on a separate test dataset to estimate the generalization performance:

In addition, polynomial features are not always the best choice for modeling nonlinear 
relationships. For example, just by looking at the MEDV-LSTAT scatterplot, we could 
propose that a log transformation of the LSTAT feature variable and the square root of 
MEDV may project the data onto a linear feature space suitable for a linear regression 
fit. Let's test this hypothesis by executing the following code:

# transform features
>>> X_log = np.log(X)
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>>> y_sqrt = np.sqrt(y)

# fit features
>>> X_fit = np.arange(X_log.min()-1, 
...                   X_log.max()+1, 1)[:, np.newaxis]
>>> regr = regr.fit(X_log, y_sqrt)
>>> y_lin_fit = regr.predict(X_fit)
>>> linear_r2 = r2_score(y_sqrt, regr.predict(X_log))

# plot results
>>> plt.scatter(X_log, y_sqrt,
...             label='training points',
...             color='lightgray')
>>> plt.plot(X_fit, y_lin_fit, 
...          label='linear (d=1), $R^2=%.2f$' % linear_r2, 
...          color='blue', 
...          lw=2)
>>> plt.xlabel('log(% lower status of the population [LSTAT])')
>>> plt.ylabel('$\sqrt{Price \; in \; \$1000\'s [MEDV]}$')
>>> plt.legend(loc='lower left')
>>> plt.show()

After transforming the explanatory onto the log space and taking the square root 
of the target variables, we were able to capture the relationship between the two 
variables with a linear regression line that seems to fit the data better ( 2 0.69R = )  
than any of the polynomial feature transformations previously:
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Dealing with nonlinear relationships using 
random forests
In this section, we are going to take a look at random forest regression, which is 
conceptually different from the previous regression models in this chapter. A random 
forest, which is an ensemble of multiple decision trees, can be understood as the sum 
of piecewise linear functions in contrast to the global linear and polynomial regression 
models that we discussed previously. In other words, via the decision tree algorithm, 
we are subdividing the input space into smaller regions that become more manageable.

Decision tree regression
An advantage of the decision tree algorithm is that it does not require any 
transformation of the features if we are dealing with nonlinear data. We remember 
from Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn, that we grow 
a decision tree by iteratively splitting its nodes until the leaves are pure or a stopping 
criterion is satisfied. When we used decision trees for classification, we defined 
entropy as a measure of impurity to determine which feature split maximizes the 
Information Gain (IG), which can be defined as follows for a binary split:

( ) ( ),
1

p p
p

IG D x I D I
N

= −

Here, x  is the feature to perform the split, pN  is the number of samples in the 
parent node, I  is the impurity function, pD  is the subset of training samples in 
the parent node, and D  and D  are the subsets of training samples in the left and 
right child node after the split. Remember that our goal is to find the feature split 
that maximizes the information gain, or in other words, we want to find the feature 
split that reduces the impurities in the child nodes. In Chapter 3, A Tour of Machine 
Learning Classifiers Using Scikit-learn, we used entropy as a measure of impurity, 
which is a useful criterion for classification. To use a decision tree for regression,  
we will replace entropy as the impurity measure of a node t  by the MSE:
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Here, 
tN  is the number of training samples at node t , tD  is the training subset  

at node t , ( )iy  is the true target value, and ˆty  is the predicted target value  
(sample mean):
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∈

= ∑

In the context of decision tree regression, the MSE is often also referred to as 
within-node variance, which is why the splitting criterion is also better known 
as variance reduction. To see what the line fit of a decision tree looks like, let's use 
the DecisionTreeRegressor implemented in scikit-learn to model the nonlinear 
relationship between the MEDV and LSTAT variables:

>>> from sklearn.tree import DecisionTreeRegressor
>>> X = df[['LSTAT']].values
>>> y = df['MEDV'].values
>>> tree = DecisionTreeRegressor(max_depth=3)
>>> tree.fit(X, y)
>>> sort_idx = X.flatten().argsort()
   >>> lin_regplot(X[sort_idx], y[sort_idx], tree)
>>> plt.xlabel('% lower status of the population [LSTAT]')
>>> plt.ylabel('Price in $1000\'s [MEDV]')
>>> plt.show()

As we can see from the resulting plot, the decision tree captures the general  
trend in the data. However, a limitation of this model is that it does not capture 
the continuity and differentiability of the desired prediction. In addition, we 
need to be careful about choosing an appropriate value for the depth of the tree 
to not overfit or underfit the data; here, a depth of 3 seems to be a good choice:
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In the next section, we will take a look at a more robust way for fitting regression 
trees: random forests.

Random forest regression
As we discussed in Chapter 3, A Tour of Machine Learning Classifiers Using  
Scikit-learn, the random forest algorithm is an ensemble technique that combines 
multiple decision trees. A random forest usually has a better generalization 
performance than an individual decision tree due to randomness that helps to 
decrease the model variance. Other advantages of random forests are that they are 
less sensitive to outliers in the dataset and don't require much parameter tuning.  
The only parameter in random forests that we typically need to experiment with 
is the number of trees in the ensemble. The basic random forests algorithm for 
regression is almost identical to the random forest algorithm for classification that 
we discussed in Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn. 
The only difference is that we use the MSE criterion to grow the individual decision 
trees, and the predicted target variable is calculated as the average prediction over all 
decision trees.

Now, let's use all the features in the Housing Dataset to fit a random forest 
regression model on 60 percent of the samples and evaluate its performance  
on the remaining 40 percent. The code is as follows:

>>> X = df.iloc[:, :-1].values
>>> y = df['MEDV'].values
>>> X_train, X_test, y_train, y_test =\
...       train_test_split(X, y, 
...                        test_size=0.4, 
...                        random_state=1)

>>> from sklearn.ensemble import RandomForestRegressor
>>> forest = RandomForestRegressor(                             ..
.                                n_estimators=1000, 
...                                criterion='mse', 
...                                random_state=1, 
...                                n_jobs=-1)
>>> forest.fit(X_train, y_train)
>>> y_train_pred = forest.predict(X_train)
>>> y_test_pred = forest.predict(X_test)
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>>> print('MSE train: %.3f, test: %.3f' % (
...        mean_squared_error(y_train, y_train_pred),
...        mean_squared_error(y_test, y_test_pred)))
>>> print('R^2 train: %.3f, test: %.3f' % (
...        r2_score(y_train, y_train_pred),
...        r2_score(y_test, y_test_pred)))
MSE train: 3.235, test: 11.635
R^2 train: 0.960, test: 0.871

Unfortunately, we see that the random forest tends to overfit the training data. 
However, it's still able to explain the relationship between the target and  
explanatory variables relatively well ( 2 0.871R =  on the test dataset).

Lastly, let's also take a look at the residuals of the prediction:

>>> plt.scatter(y_train_pred,  
...             y_train_pred - y_train, 
...             c='black', 
...             marker='o', 
...             s=35,
...             alpha=0.5,
...             label='Training data')
>>> plt.scatter(y_test_pred,  
...             y_test_pred - y_test, 
...             c='lightgreen', 
...             marker='s', 
...             s=35,
...             alpha=0.7,
...             label='Test data')
>>> plt.xlabel('Predicted values')
>>> plt.ylabel('Residuals')
>>> plt.legend(loc='upper left')
>>> plt.hlines(y=0, xmin=-10, xmax=50, lw=2, color='red')
>>> plt.xlim([-10, 50])
>>> plt.show()
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As it was already summarized by the 2R  coefficient, we can see that the model  
fits the training data better than the test data, as indicated by the outliers in the y 
axis direction. Also, the distribution of the residuals does not seem to be completely 
random around the zero center point, indicating that the model is not able to  
capture all the exploratory information. However, the residual plot indicates a  
large improvement over the residual plot of the linear model that we plotted  
earlier in this chapter:

In Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn, 
we also discussed the kernel trick that can be used in combination 
with support vector machine (SVM) for classification, which is useful 
if we are dealing with nonlinear problems. Although a discussion is 
beyond of the scope of this book, SVMs can also be used in nonlinear 
regression tasks. The interested reader can find more information 
about Support Vector Machines for regression in an excellent report by 
S. R. Gunn: S. R. Gunn et al. Support Vector Machines for Classification 
and Regression. (ISIS technical report, 14, 1998). An  SVM regressor is 
also implemented in scikit-learn, and more information about its usage 
can be found at http://scikit-learn.org/stable/modules/
generated/sklearn.svm.SVR.html#sklearn.svm.SVR.

http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html#sklearn.svm.SVR
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html#sklearn.svm.SVR
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Summary
At the beginning of this chapter, you learned about using simple linear regression 
analysis to model the relationship between a single explanatory variable and a 
continuous response variable. We then discussed a useful explanatory data analysis 
technique to look at patterns and anomalies in data, which is an important first step 
in predictive modeling tasks.

We built our first model by implementing linear regression using a gradient-based 
optimization approach. We then saw how to utilize scikit-learn's linear models 
for regression and also implement a robust regression technique (RANSAC) as an 
approach for dealing with outliers. To assess the predictive performance of regression 
models, we computed the mean sum of squared errors and the related 2R  metric. 
Furthermore, we also discussed a useful graphical approach to diagnose the problems 
of regression models: the residual plot.

After we discussed how regularization can be applied to regression models to reduce 
the model complexity and avoid overfitting, we also introduced several approaches 
to model nonlinear relationships, including polynomial feature transformation and 
random forest regressors.

We discussed supervised learning, classification, and regression analysis, in great 
detail throughout the previous chapters. In the next chapter, we are going to discuss 
another interesting subfield of machine learning: unsupervised learning. In the next 
chapter, you will learn how to use cluster analysis for finding hidden structures in 
data in the absence of target variables.
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Working with Unlabeled  
Data – Clustering Analysis

In the previous chapters, we used supervised learning techniques to build machine 
learning models using data where the answer was already known—the class labels 
were already available in our training data. In this chapter, we will switch gears and 
explore cluster analysis, a category of unsupervised learning techniques that allows 
us to discover hidden structures in data where we do not know the right answer 
upfront. The goal of clustering is to find a natural grouping in data such that items  
in the same cluster are more similar to each other than those from different clusters.

Given its exploratory nature, clustering is an exciting topic and, in this chapter, 
you will learn about the following concepts that can help you to organize data into 
meaningful structures:

•	 Finding centers of similarity using the popular k-means algorithm
•	 Using a bottom-up approach to build hierarchical cluster trees
•	 Identifying arbitrary shapes of objects using a density-based  

clustering approach
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Grouping objects by similarity using 
k-means
In this section, we will discuss one of the most popular clustering algorithms, 
k-means, which is widely used in academia as well as in industry. Clustering  
(or cluster analysis) is a technique that allows us to find groups of similar  
objects, objects that are more related to each other than to objects in other groups. 
Examples of business-oriented applications of clustering include the grouping 
of documents, music, and movies by different topics, or finding customers 
that share similar interests based on common purchase behaviors as a basis for 
recommendation engines.

As we will see in a moment, the k-means algorithm is extremely easy to implement 
but is also computationally very efficient compared to other clustering algorithms, 
which might explain its popularity. The k-means algorithm belongs to the category 
of prototype-based clustering. We will discuss two other categories of clustering, 
hierarchical and density-based clustering, later in this chapter. Prototype-based 
clustering means that each cluster is represented by a prototype, which can either 
be the centroid (average) of similar points with continuous features, or the medoid 
(the most representative or most frequently occurring point) in the case of categorical 
features. While k-means is very good at identifying clusters of spherical shape, one 
of the drawbacks of this clustering algorithm is that we have to specify the number 
of clusters k a priori. An inappropriate choice for k can result in poor clustering 
performance. Later in this chapter, we will discuss the elbow method and silhouette 
plots, which are useful techniques to evaluate the quality of a clustering to help us 
determine the optimal number of clusters k.

Although k-means clustering can be applied to data in higher dimensions, we will 
walk through the following examples using a simple two-dimensional dataset for  
the purpose of visualization:

>>> from sklearn.datasets import make_blobs
>>> X, y = make_blobs(n_samples=150, 
...                   n_features=2, 
...                   centers=3,
...                   cluster_std=0.5, 
...                   shuffle=True, 
...                   random_state=0)

>>> import matplotlib.pyplot as plt
>>> plt.scatter(X[:,0],
...             X[:,1], 
...             c='white', 
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...             marker='o', 

...             s=50)
>>> plt.grid()
>>> plt.show()

The dataset that we just created consists of 150 randomly generated points that are 
roughly grouped into three regions with higher density, which is visualized via a 
two-dimensional scatterplot:

In real-world applications of clustering, we do not have any ground truth category 
information about those samples; otherwise, it would fall into the category of 
supervised learning. Thus, our goal is to group the samples based on their feature 
similarities, which we can be achieved using the k-means algorithm that can be 
summarized by the following four steps:

1.	 Randomly pick k centroids from the sample points as initial cluster centers.

2.	 Assign each sample to the nearest centroid ( )jµ , { }1, ,j k∈ … .
3.	 Move the centroids to the center of the samples that were assigned to it.
4.	 Repeat the steps 2 and 3 until the cluster assignment do not change or a  

user-defined tolerance or a maximum number of iterations is reached.
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Now the next question is how do we measure similarity between objects? We can define 
similarity as the opposite of distance, and a commonly used distance for clustering 
samples with continuous features is the squared Euclidean distance between two 
points x and y in m-dimensional space:

( ) ( )2 22
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,
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j j
j

d x y
=

= − = −∑x y x y

Note that, in the preceding equation, the index j refers to the jth dimension  
(feature column) of the sample points x and y. In the rest of this section, we will use 
the superscripts i and j to refer to the sample index and cluster index, respectively.

Based on this Euclidean distance metric, we can describe the k-means algorithm  
as a simple optimization problem, an iterative approach for minimizing the within-
cluster sum of squared errors (SSE), which is sometimes also called cluster inertia:
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Here, ( )jµ  is the representative point (centroid) for cluster j, and ( ), 1i jw =  if the sample 
( )ix  is in cluster j; ( ), 0i jw =  otherwise.

Now that you have learned how the simple k-means algorithm works, let's apply it 
to our sample dataset using the KMeans class from scikit-learn's cluster module:

>>> from sklearn.cluster import KMeans
>>> km = KMeans(n_clusters=3, 
...             init='random', 
...             n_init=10,
...             max_iter=300, 
...             tol=1e-04,
...             random_state=0)
>>> y_km = km.fit_predict(X)

Using the preceding code, we set the number of desired clusters to 3; specifying the 
number of clusters a priori is one of the limitations of k-means. We set n_init=10 to 
run the k-means clustering algorithms 10 times independently with different random 
centroids to choose the final model as the one with the lowest SSE. Via the max_iter 
parameter, we specify the maximum number of iterations for each single run (here, 
300). Note that the k-means implementation in scikit-learn stops early if it converges 
before the maximum number of iterations is reached. 
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However, it is possible that k-means does not reach convergence for a particular 
run, which can be problematic (computationally expensive) if we choose relatively 
large values for max_iter. One way to deal with convergence problems is to choose 
larger values for tol, which is a parameter that controls the tolerance with regard to 
the changes in the within-cluster sum-squared-error to declare convergence. In the 
preceding code, we chose a tolerance of 1e-04 (=0.0001).

K-means++
So far, we discussed the classic k-means algorithm that uses a random seed to 
place the initial centroids, which can sometimes result in bad clusterings or slow 
convergence if the initial centroids are chosen poorly. One way to address this 
issue is to run the k-means algorithm multiple times on a dataset and choose the 
best performing model in terms of the SSE. Another strategy is to place the initial 
centroids far away from each other via the k-means++ algorithm, which leads 
to better and more consistent results than the classic k-means (D. Arthur and S. 
Vassilvitskii. k-means++: The Advantages of Careful Seeding. In Proceedings of the 
eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages 1027–1035. 
Society for Industrial and Applied Mathematics, 2007). 

The initialization in k-means++ can be summarized as follows:

1.	 Initialize an empty set M  to store the k centroids being selected.
2.	 Randomly choose the first centroid ( )jµ  from the input samples and  

assign it to M .
3.	 For each sample ( )ix  that is not in M , find the minimum squared distance 

( )( )2
,id Mx  to any of the centroids in M .

4.	 To randomly select the next centroid ( )pµ , use a weighted probability 

distribution equal to 
( )( )

( )( )

2p

2

,

,i
i

d

d∑

M

M

µ

x .
5.	 Repeat steps 2 and 3 until k  centroids are chosen.
6.	 Proceed with the classic k-means algorithm.

To use k-means++ with scikit-learn's KMeans object, we just 
need to set the init parameter to k-means++ (the default 
setting) instead of random.
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Another problem with k-means is that one or more clusters can be empty. Note that 
this problem does not exist for k-medoids or fuzzy C-means, an algorithm that we 
will discuss in the next subsection. However, this problem is accounted for in the 
current k-means implementation in scikit-learn. If a cluster is empty, the algorithm 
will search for the sample that is farthest away from the centroid of the empty 
cluster. Then it will reassign the centroid to be this farthest point.

When we are applying k-means to real-world data using a Euclidean 
distance metric, we want to make sure that the features are measured 
on the same scale and apply z-score standardization or min-max 
scaling if necessary.

After we predicted the cluster labels y_km and discussed the challenges of the 
k-means algorithm, let's now visualize the clusters that k-means identified in  
the dataset together with the cluster centroids. These are stored under the  
centers_ attribute of the fitted KMeans object:

>>> plt.scatter(X[y_km==0,0], 
...             X[y_km ==0,1], 
...             s=50, 
...             c='lightgreen', 
...             marker='s', 
...             label='cluster 1')
>>> plt.scatter(X[y_km ==1,0], 
...             X[y_km ==1,1], 
...             s=50, 
...             c='orange', 
...             marker='o', 
...             label='cluster 2')
>>> plt.scatter(X[y_km ==2,0], 
...             X[y_km ==2,1], 
...             s=50, 
...             c='lightblue', 
...             marker='v', 
...             label='cluster 3')
>>> plt.scatter(km.cluster_centers_[:,0],
...             km.cluster_centers_[:,1], 
...             s=250, 
...             marker='*', 
...             c='red', 
...             label='centroids')
>>> plt.legend()
>>> plt.grid()
>>> plt.show()
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In the following scatterplot, we can see that k-means placed the three centroids at the 
center of each sphere, which looks like a reasonable grouping given this dataset:

Although k-means worked well on this toy dataset, we need to note some of the 
main challenges of k-means. One of the drawbacks of k-means is that we have to 
specify the number of clusters k a priori, which may not always be so obvious in  
real-world applications, especially if we are working with a higher dimensional 
dataset that cannot be visualized. The other properties of k-means are that clusters 
do not overlap and are not hierarchical, and we also assume that there is at least  
one item in each cluster.

Hard versus soft clustering
Hard clustering describes a family of algorithms where each sample in a dataset 
is assigned to exactly one cluster, as in the k-means algorithm that we discussed in 
the previous subsection. In contrast, algorithms for soft clustering (sometimes also 
called fuzzy clustering) assign a sample to one or more clusters. A popular example 
of soft clustering is the fuzzy C-means (FCM) algorithm (also called soft k-means 
or fuzzy k-means). The original idea goes back to the 1970s where Joseph C. Dunn 
first proposed an early version of fuzzy clustering to improve k-means (J. C. Dunn. 
A Fuzzy Relative of the Isodata Process and its Use in Detecting Compact Well-separated 
Clusters. 1973). Almost a decade later, James C. Bedzek published his work on the 
improvements of the fuzzy clustering algorithm, which is now known as the FCM 
algorithm (J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. 
Springer Science & Business Media, 2013).
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The FCM procedure is very similar to k-means. However, we replace the hard  
cluster assignment by probabilities for each point belonging to each cluster. In 
k-means, we could express the cluster membership of a sample x by a sparse  
vector of binary values:
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Here, the index position with value 1 indicates the cluster centroid ( )jµ  the sample 
is assigned to (assuming { }3, 1, 2, 3k j= ∈ ). In contrast, a membership vector in FCM 
could be represented as follows:
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Here, each value falls in the range [0, 1] and represents a probability of membership 
to the respective cluster centroid. The sum of the memberships for a given sample is 
equal to 1. Similarly to the k-means algorithm, we can summarize the FCM algorithm 
in four key steps:

1.	 Specify the number of k centroids and randomly assign the cluster 
memberships for each point.

2.	 Compute the cluster centroids ( )jµ , { }1, ,j k∈ … .
3.	 Update the cluster memberships for each point.
4.	 Repeat steps 2 and 3 until the membership coefficients do not change or a 

user-defined tolerance or a maximum number of iterations is reached.

The objective function of FCM—we abbreviate it by mJ —looks very similar to the 
within cluster sum-squared-error that we minimize in k-means:

( ) ( ) ( ) 2,

21 1
, [1, )

n k
m i j i j

m
i j

J w m
= =

= − ∈ ∞∑∑ x µ



Chapter 11

[ 319 ]

However, note that the membership indicator ( ),i jw  is not a binary value as in 
k-means ( ) { }, 0,1i jw ∈ ) but a real value that denotes the cluster membership probability 

( ) [ ],( 0,1i jw ∈ ). You also may have noticed that we added an additional exponent  
to ( ),i jw ; the exponent m, any number greater or equal to 1 (typically m = 2), is the 
so-called fuzziness coefficient (or simply fuzzifier) that controls the degree of 
fuzziness. The larger the value of m , the smaller the cluster membership ( ),i jw  
becomes, which leads to fuzzier clusters. The cluster membership probability  
itself is calculated as follows:
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For example, if we chose three cluster centers as in the previous k-means example, 
we could calculate the membership of the ( )ix  sample belonging to the ( )jµ  cluster as:
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The center ( )jµ  of a cluster itself is calculated as the mean of all samples in the cluster 
weighted by the membership degree of belonging to its own cluster:
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Just by looking at the equation to calculate the cluster memberships, it is intuitive 
to say that each iteration in FCM is more expensive than an iteration in k-means. 
However, FCM typically requires fewer iterations overall to reach convergence. 
Unfortunately, the FCM algorithm is currently not implemented in scikit-learn. 
However, it has been found in practice that both k-means and FCM produce very 
similar clustering outputs, as described in a study by Soumi Ghosh and Sanjay K. 
Dubey (S. Ghosh and S. K. Dubey. Comparative Analysis of k-means and Fuzzy c-means 
Algorithms. IJACSA, 4:35–38, 2013).
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Using the elbow method to find the optimal 
number of clusters
One of the main challenges in unsupervised learning is that we do not know the 
definitive answer. We don't have the ground truth class labels in our dataset that 
allow us to apply the techniques that we used in Chapter 6,  Learning Best Practices for 
Model Evaluation and Hyperparameter Tuning, in order to evaluate the performance of 
a supervised model. Thus, in order to quantify the quality of clustering, we need to 
use intrinsic metrics—such as the within-cluster SSE (distortion) that we discussed 
earlier in this chapter—to compare the performance of different k-means clusterings. 
Conveniently, we don't need to compute the within-cluster SSE explicitly as it is 
already accessible via the inertia_ attribute after fitting a KMeans model:

>>> print('Distortion: %.2f' % km.inertia_)
Distortion: 72.48

Based on the within-cluster SSE, we can use a graphical tool, the so-called elbow 
method, to estimate the optimal number of clusters k for a given task. Intuitively,  
we can say that, if k increases, the distortion will decrease. This is because the  
samples will be closer to the centroids they are assigned to. The idea behind the 
elbow method is to identify the value of k where the distortion begins to increase 
most rapidly, which will become more clear if we plot distortion for different  
values of k:

>>> distortions = []
>>> for i in range(1, 11):
...     km = KMeans(n_clusters=i, 
...                 init='k-means++', 
...                 n_init=10, 
...                 max_iter=300, 
...                 random_state=0)
>>>     km.fit(X)
>>>     distortions.append(km.inertia_)
>>> plt.plot(range(1,11), distortions, marker='o')
>>> plt.xlabel('Number of clusters')
>>> plt.ylabel('Distortion')
>>> plt.show()
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As we can see in the following plot, the elbow is located at k = 3, which provides 
evidence that k = 3 is indeed a good choice for this dataset:

Quantifying the quality of clustering via 
silhouette plots
Another intrinsic metric to evaluate the quality of a clustering is silhouette analysis, 
which can also be applied to clustering algorithms other than k-means that we will 
discuss later in this chapter. Silhouette analysis can be used as a graphical tool to plot 
a measure of how tightly grouped the samples in the clusters are. To calculate the 
silhouette coefficient of a single sample in our dataset, we can apply the following 
three steps:

1.	 Calculate the cluster cohesion ( )ia  as the average distance between a sample 
( )ix  and all other points in the same cluster.

2.	 Calculate the cluster separation ( )ib  from the next closest cluster as  
the average distance between the sample ( )ix  and all samples in the  
nearest cluster.

3.	 Calculate the silhouette ( )is  as the difference between cluster cohesion and 
separation divided by the greater of the two, as shown here:
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The silhouette coefficient is bounded in the range -1 to 1. Based on the preceding 
formula, we can see that the silhouette coefficient is 0 if the cluster separation 
and cohesion are equal ( ( ) ( )i ib a= ). Furthermore, we get close to an ideal silhouette 
coefficient of 1 if ( ) ( )i ib a>> , since ( )ib  quantifies how dissimilar a sample is to other 
clusters, and ( )ia  tells us how similar it is to the other samples in its own cluster, 
respectively.

The silhouette coefficient is available as silhouette_samples from scikit-learn's 
metric module, and optionally the silhouette_scores can be imported. This 
calculates the average silhouette coefficient across all samples, which is equivalent to 
numpy.mean(silhouette_samples(…)). By executing the following code, we will 
now create a plot of the silhouette coefficients for a k-means clustering with 3k = :

>>> km = KMeans(n_clusters=3, 
...             init='k-means++', 
...             n_init=10, 
...             max_iter=300,
...             tol=1e-04,
...             random_state=0)
>>> y_km = km.fit_predict(X)

>>> import numpy as np
>>> from matplotlib import cm
>>> from sklearn.metrics import silhouette_samples
>>> cluster_labels = np.unique(y_km)
>>> n_clusters = cluster_labels.shape[0]
>>> silhouette_vals = silhouette_samples(X, 
...                                      y_km, 
...                                      metric='euclidean')
>>> y_ax_lower, y_ax_upper = 0, 0
>>> yticks = []
>>> for i, c in enumerate(cluster_labels):
...     c_silhouette_vals = silhouette_vals[y_km == c]
...     c_silhouette_vals.sort()
...     y_ax_upper += len(c_silhouette_vals)
...     color = cm.jet(i / n_clusters)
...     plt.barh(range(y_ax_lower, y_ax_upper), 
...              c_silhouette_vals, 
...              height=1.0, 
...              edgecolor='none', 
...              color=color)
...     yticks.append((y_ax_lower + y_ax_upper) / 2)
...     y_ax_lower += len(c_silhouette_vals)
>>> silhouette_avg = np.mean(silhouette_vals)
>>> plt.axvline(silhouette_avg,
...             color="red", 
...             linestyle="--") 
>>> plt.yticks(yticks, cluster_labels + 1)
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>>> plt.ylabel('Cluster')
>>> plt.xlabel('Silhouette coefficient')
>>> plt.show()

Through a visual inspection of the silhouette plot, we can quickly scrutinize the sizes 
of the different clusters and identify clusters that contain outliers:

As we can see in the preceding silhouette plot, our silhouette coefficients are not even 
close to 0, which can be an indicator of a good clustering. Furthermore, to summarize 
the goodness of our clustering, we added the average silhouette coefficient to the 
plot (dotted line).

To see how a silhouette plot looks for a relatively bad clustering, let's seed the 
k-means algorithm with two centroids only:

>>> km = KMeans(n_clusters=2, 
...             init='k-means++', 
...             n_init=10, 
...             max_iter=300,
...             tol=1e-04,
...             random_state=0)
>>> y_km = km.fit_predict(X)

>>> plt.scatter(X[y_km==0,0], 
...             X[y_km==0,1], 
...             s=50, c='lightgreen', 
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...             marker='s', 

...             label='cluster 1')
>>> plt.scatter(X[y_km==1,0], 
...             X[y_km==1,1], 
...             s=50, 
...             c='orange', 
...             marker='o', 
...             label='cluster 2')
>>> plt.scatter(km.cluster_centers_[:,0], 
...             km.cluster_centers_[:,1], 
...             s=250, 
...             marker='*', 
...             c='red', 
...             label='centroids')
>>> plt.legend()
>>> plt.grid()
>>> plt.show()

As we can see in the following scatterplot, one of the centroids falls between two of 
the three spherical groupings of the sample points. Although the clustering does not 
look completely terrible, it is suboptimal.

Next we create the silhouette plot to evaluate the results. Please keep in mind that 
we typically do not have the luxury of visualizing datasets in two-dimensional 
scatterplots in real-world problems, since we typically work with data in higher 
dimensions:

>>> cluster_labels = np.unique(y_km)
>>> n_clusters = cluster_labels.shape[0]
>>> silhouette_vals = silhouette_samples(X, 
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...                                      y_km, 

...                                      metric='euclidean')
>>> y_ax_lower, y_ax_upper = 0, 0
yticks = []
>>> for i, c in enumerate(cluster_labels):
...     c_silhouette_vals = silhouette_vals[y_km == c]
...     c_silhouette_vals.sort()
...     y_ax_upper += len(c_silhouette_vals)
...     color = cm.jet(i / n_clusters)
...     plt.barh(range(y_ax_lower, y_ax_upper), 
...              c_silhouette_vals, 
...              height=1.0, 
...              edgecolor='none', 
...              color=color)
...     yticks.append((y_ax_lower + y_ax_upper) / 2)
...     y_ax_lower += len(c_silhouette_vals)
>>> silhouette_avg = np.mean(silhouette_vals)
>>> plt.axvline(silhouette_avg, color="red", linestyle="--") 
>>> plt.yticks(yticks, cluster_labels + 1)
>>> plt.ylabel('Cluster')
>>> plt.xlabel('Silhouette coefficient')
>>> plt.show()

As we can see in the resulting plot, the silhouettes now have visibly different lengths 
and width, which yields further evidence for a suboptimal clustering:
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Organizing clusters as a hierarchical tree
In this section, we will take a look at an alternative approach to prototype-based 
clustering: hierarchical clustering. One advantage of hierarchical clustering 
algorithms is that it allows us to plot dendrograms (visualizations of a binary 
hierarchical clustering), which can help with the interpretation of the results by 
creating meaningful taxonomies. Another useful advantage of this hierarchical 
approach is that we do not need to specify the number of clusters upfront.

The two main approaches to hierarchical clustering are agglomerative and divisive 
hierarchical clustering. In divisive hierarchical clustering, we start with one cluster 
that encompasses all our samples, and we iteratively split the cluster into smaller 
clusters until each cluster only contains one sample. In this section, we will focus 
on agglomerative clustering, which takes the opposite approach. We start with each 
sample as an individual cluster and merge the closest pairs of clusters until only one 
cluster remains.

The two standard algorithms for agglomerative hierarchical clustering are single 
linkage and complete linkage. Using single linkage, we compute the distances 
between the most similar members for each pair of clusters and merge the two 
clusters for which the distance between the most similar members is the smallest. 
The complete linkage approach is similar to single linkage but, instead of comparing 
the most similar members in each pair of clusters, we compare the most dissimilar 
members to perform the merge. This is shown in the following diagram:
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Other commonly used algorithms for agglomerative hierarchical 
clustering include average linkage and Ward's linkage. In average 
linkage, we merge the cluster pairs based on the minimum average 
distances between all group members in the two clusters. In Ward's 
method, those two clusters that lead to the minimum increase of the  
total within-cluster SSE are merged.

In this section, we will focus on agglomerative clustering using the complete  
linkage approach. This is an iterative procedure that can be summarized by the 
following steps:

1.	 Compute the distance matrix of all samples.
2.	 Represent each data point as a singleton cluster.
3.	 Merge the two closest clusters based on the distance of the most dissimilar 

(distant) members.
4.	 Update the similarity matrix.
5.	 Repeat steps 2 to 4 until one single cluster remains.

Now we will discuss how to compute the distance matrix (step 1). But first, let's 
generate some random sample data to work with. The rows represent different 
observations (IDs 0 to 4), and the columns are the different features (X, Y, Z) of  
those samples:

>>> import pandas as pd
>>> import numpy as np
>>> np.random.seed(123)
>>> variables = ['X', 'Y', 'Z']
>>> labels = ['ID_0','ID_1','ID_2','ID_3','ID_4']
>>> X = np.random.random_sample([5,3])*10
>>> df = pd.DataFrame(X, columns=variables, index=labels)
>>> df
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After executing the preceding code, we should now see the following  
distance matrix:

Performing hierarchical clustering on a 
distance matrix
To calculate the distance matrix as input for the hierarchical clustering algorithm,  
we will use the pdist function from SciPy's spatial.distance submodule:

>>> from scipy.spatial.distance import pdist, squareform
>>> row_dist = pd.DataFrame(squareform(
...            pdist(df, metric='euclidean')), 
...            columns=labels, index=labels)
>>> row_dist

Using the preceding code, we calculated the Euclidean distance between each pair 
of sample points in our dataset based on the features X, Y, and Z. We provided 
the condensed distance matrix—returned by pdist—as input to the squareform 
function to create a symmetrical matrix of the pair-wise distances, as shown here:
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Next we will apply the complete linkage agglomeration to our clusters using the 
linkage function from SciPy's cluster.hierarchy submodule, which returns  
a so-called linkage matrix.

However, before we call the linkage function, let's take a careful look at the function 
documentation:

>>> from scipy.cluster.hierarchy import linkage
>>> help(linkage)
[…]
Parameters:
  y : ndarray
    A condensed or redundant distance matrix. A condensed 
    distance matrix is a flat array containing the upper 
    triangular of the distance matrix. This is the form 
    that pdist returns. Alternatively, a collection of m 
    observation vectors in n dimensions may be passed as 
    an m by n array.

  method : str, optional
    The linkage algorithm to use. See the Linkage Methods 
    section below for full descriptions.

  metric : str, optional
    The distance metric to use. See the distance.pdist 
    function for a list of valid distance metrics.

 Returns:
  Z : ndarray
    The hierarchical clustering encoded as a linkage matrix.
[…]

Based on the function description, we conclude that we can use a condensed distance 
matrix (upper triangular) from the pdist function as an input attribute. Alternatively, 
we could also provide the initial data array and use the euclidean metric as a function 
argument in linkage. However, we should not use the squareform distance matrix 
that we defined earlier, since it would yield different distance values from those 
expected. To sum it up, the three possible scenarios are listed here:

•	 Incorrect approach: In this approach, we use the squareform distance matrix. 
The code is as follows:
>>> from scipy.cluster.hierarchy import linkage
>>> row_clusters = linkage(row_dist, 
...                        method='complete', 
...                        metric='euclidean')
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•	 Correct approach: In this approach, we use the condensed distance matrix. 
The code is as follows:
>>> row_clusters = linkage(pdist(df, metric='euclidean'),
...                        method='complete')

•	 Correct approach: In this approach, we use the input sample matrix.  
The code is as follows:

>>> row_clusters = linkage(df.values, 
...                        method='complete', 
...                        metric='euclidean')

To take a closer look at the clustering results, we can turn them to a pandas 
DataFrame (best viewed in IPython Notebook) as follows:

>>> pd.DataFrame(row_clusters, 
...      columns=['row label 1', 
...               'row label 2', 
...               'distance', 
...               'no. of items in clust.'],
...      index=['cluster %d' %(i+1) for i in
...             range(row_clusters.shape[0])])

As shown in the following table, the linkage matrix consists of several rows where 
each row represents one merge. The first and second columns denote the most 
dissimilar members in each cluster, and the third row reports the distance between 
those members. The last column returns the count of the members in each cluster.

Now that we have computed the linkage matrix, we can visualize the results in the 
form of a dendrogram:

>>> from scipy.cluster.hierarchy import dendrogram
# make dendrogram black (part 1/2)
# from scipy.cluster.hierarchy import set_link_color_palette
# set_link_color_palette(['black'])
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>>> row_dendr = dendrogram(row_clusters, 
...                       labels=labels,
...                       # make dendrogram black (part 2/2)
...                       # color_threshold=np.inf
...                       )
>>> plt.tight_layout()
>>> plt.ylabel('Euclidean distance')
>>> plt.show()

If you are executing the preceding code or reading the e-book version of this book, 
you will notice that the branches in the resulting dendrogram are shown in different 
colors. The coloring scheme is derived from a list of matplotlib colors that are 
cycled for the distance thresholds in the dendrogram. For example, to display the 
dendrograms in black, you can uncomment the respective sections that I inserted in 
the preceding code.

Such a dendrogram summarizes the different clusters that were formed during the 
agglomerative hierarchical clustering; for example, we can see that the samples  
ID_0 and ID_4, followed by ID_1 and ID_2, are the most similar ones based on  
the Euclidean distance metric.
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Attaching dendrograms to a heat map
In practical applications, hierarchical clustering dendrograms are often used in 
combination with a heat map, which allows us to represent the individual values in 
the sample matrix with a color code. In this section, we will discuss how to attach a 
dendrogram to a heat map plot and order the rows in the heat map correspondingly.

However, attaching a dendrogram to a heat map can be a little bit tricky, so let's go 
through this procedure step by step:

1.	 We create a new figure object and define the x axis position, y axis 
position, width, and height of the dendrogram via the add_axes attribute. 
Furthermore, we rotate the dendrogram 90 degrees counter-clockwise.  
The code is as follows:
>>> fig = plt.figure(figsize=(8,8))
>>> axd = fig.add_axes([0.09,0.1,0.2,0.6])
>>> row_dendr = dendrogram(row_clusters, orientation='right')

2.	 Next we reorder the data in our initial DataFrame according to the clustering 
labels that can be accessed from the dendrogram object, which is essentially a 
Python dictionary, via the leaves key. The code is as follows:
>>> df_rowclust = df.ix[row_dendr['leaves'][::-1]]

3.	 Now we construct the heat map from the reordered DataFrame and position 
it right next to the dendrogram:
>>> axm = fig.add_axes([0.23,0.1,0.6,0.6])
>>> cax = axm.matshow(df_rowclust, 
...              interpolation='nearest', cmap='hot_r')

4.	 Finally we will modify the aesthetics of the heat map by removing the axis 
ticks and hiding the axis spines. Also, we will add a color bar and assign  
the feature and sample names to the x and y axis tick labels, respectively.  
The code is as follows:

>>> axd.set_xticks([])
>>> axd.set_yticks([])
>>> for i in axd.spines.values():
...     i.set_visible(False)
>>> fig.colorbar(cax)
>>> axm.set_xticklabels([''] + list(df_rowclust.columns))
>>> axm.set_yticklabels([''] + list(df_rowclust.index))
>>> plt.show()
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After following the previous steps, the heat map should be displayed with the 
dendrogram attached:

As we can see, the row order in the heat map reflects the clustering of the samples  
in the dendrogram. In addition to a simple dendrogram, the color-coded values  
of each sample and feature in the heat map provide us with a nice summary of  
the dataset.
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Applying agglomerative clustering via  
scikit-learn
In this section, we saw how to perform agglomerative hierarchical clustering  
using SciPy. However, there is also an AgglomerativeClustering implementation 
in scikit-learn, which allows us to choose the number of clusters that we want to 
return. This is useful if we want to prune the hierarchical cluster tree. By setting  
the n_cluster parameter to 2, we will now cluster the samples into two groups 
using the same complete linkage approach based on the Euclidean distance metric  
as before:

>>> from sklearn.cluster import AgglomerativeClustering
>>> ac = AgglomerativeClustering(n_clusters=2,
...                              affinity='euclidean', 
...                              linkage='complete')
>>> labels = ac.fit_predict(X)
>>> print('Cluster labels: %s' % labels)
Cluster labels: [0 1 1 0 0]

Looking at the predicted cluster labels, we can see that the first, fourth, and fifth 
sample (ID_0, ID_3, and ID_4) were assigned to one cluster (0), and the samples 
ID_1 and ID_2 were assigned to a second cluster (1), which is consistent with the 
results that we can observe in the dendrogram.

Locating regions of high density via 
DBSCAN
Although we can't cover the vast number of different clustering algorithms in this 
chapter, let's at least introduce one more approach to clustering: Density-based 
Spatial Clustering of Applications with Noise (DBSCAN). The notion of density  
in DBSCAN is defined as the number of points within a specified radius ε .

In DBSCAN, a special label is assigned to each sample (point) using the  
following criteria:

•	 A point is considered as core point if at least a specified number (MinPts) of 
neighboring points fall within the specified radius ε

•	 A border point is a point that has fewer neighbors than MinPts within ε ,  
but lies within the ε  radius of a core point

•	 All other points that are neither core nor border points are considered as 
noise points
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After labeling the points as core, border, or noise points, the DBSCAN algorithm can 
be summarized in two simple steps:

1.	 Form a separate cluster for each core point or a connected group of core 
points (core points are connected if they are no farther away than ε ).

2.	 Assign each border point to the cluster of its corresponding core point.

To get a better understanding of what the result of DBSCAN can look like before 
jumping to the implementation, let's summarize what you have learned about core 
points, border points, and noise points in the following figure:

One of the main advantages of using DBSCAN is that it does not assume that the 
clusters have a spherical shape as in k-means. Furthermore, DBSCAN is different 
from k-means and hierarchical clustering in that it doesn't necessarily assign each 
point to a cluster but is capable of removing noise points.

For a more illustrative example, let's create a new dataset of half-moon-shaped 
structures to compare k-means clustering, hierarchical clustering, and DBSCAN:

>>> from sklearn.datasets import make_moons
>>> X, y = make_moons(n_samples=200, 
...                   noise=0.05, 
...                   random_state=0)
>>> plt.scatter(X[:,0], X[:,1])
>>> plt.show()
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As we can see in the resulting plot, there are two visible, half-moon-shaped groups 
consisting of 100 sample points each:

We will start by using the k-means algorithm and complete linkage clustering to see 
whether one of those previously discussed clustering algorithms can successfully 
identify the half-moon shapes as separate clusters. The code is as follows:

>>> f, (ax1, ax2) = plt.subplots(1, 2, figsize=(8,3))
>>> km = KMeans(n_clusters=2, 
...             random_state=0)
>>> y_km = km.fit_predict(X)
>>> ax1.scatter(X[y_km==0,0], 
...             X[y_km==0,1], 
...             c='lightblue', 
...             marker='o', 
...             s=40, 
...             label='cluster 1')
>>> ax1.scatter(X[y_km==1,0], 
...             X[y_km==1,1], 
...             c='red', 
...             marker='s', 
...             s=40, 
...             label='cluster 2')
>>> ax1.set_title('K-means clustering')
>>> ac = AgglomerativeClustering(n_clusters=2, 
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...                              affinity='euclidean',

...                              linkage='complete')
>>> y_ac = ac.fit_predict(X)
>>> ax2.scatter(X[y_ac==0,0], 
...             X[y_ac==0,1], 
...             c='lightblue', 
...             marker='o', 
...             s=40, 
...             label='cluster 1')
>>> ax2.scatter(X[y_ac==1,0], 
...             X[y_ac==1,1], 
...             c='red', 
...             marker='s', 
...             s=40, 
...             label='cluster 2')
>>> ax2.set_title('Agglomerative clustering')
>>> plt.legend()
>>> plt.show()

Based on the visualized clustering results, we can see that the k-means algorithm is 
unable to separate the two clusters, and the hierarchical clustering algorithm was 
challenged by those complex shapes:

Finally, let's try the DBSCAN algorithm on this dataset to see if it can find the two 
half-moon-shaped clusters using a density-based approach:

>>> from sklearn.cluster import DBSCAN
>>> db = DBSCAN(eps=0.2, 
...             min_samples=5, 
...             metric='euclidean')
>>> y_db = db.fit_predict(X)
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>>> plt.scatter(X[y_db==0,0], 
...             X[y_db==0,1], 
...             c='lightblue', 
...             marker='o', 
...             s=40, 
...             label='cluster 1')
>>> plt.scatter(X[y_db==1,0], 
...             X[y_db==1,1], 
...             c='red', 
...             marker='s', 
...             s=40, 
...             label='cluster 2')
>>> plt.legend()
>>> plt.show()

The DBSCAN algorithm can successfully detect the half-moon shapes, which 
highlights one of the strengths of DBSCAN (clustering data of arbitrary shapes)



Chapter 11

[ 339 ]

However, we should also note some of the disadvantages of DBSCAN. With an 
increasing number of features in our dataset—given a fixed size training set—the 
negative effect of the curse of dimensionality increases. This is especially a problem 
if we are using the Euclidean distance metric. However, the problem of the curse of 
dimensionality is not unique to DBSCAN; it also affects other clustering algorithms 
that use the Euclidean distance metric, for example, the k-means and hierarchical 
clustering algorithms. In addition, we have two hyperparameters in DBSCAN 
(MinPts and ε ) that need to be optimized to yield good clustering results. Finding a 
good combination of MinPts and ε  can be problematic if the density differences in 
the dataset are relatively large.

So far, we saw three of the most fundamental categories of clustering 
algorithms: prototype-based clustering with k-means, agglomerative 
hierarchical clustering, and density-based clustering via DBSCAN. 
However, I also want to mention a fourth class of more advanced 
clustering algorithms that we have not covered in this chapter: 
graph-based clustering. Probably the most prominent members of 
the graph-based clustering family are spectral clustering algorithms. 
Although there are many different implementations of spectral 
clustering, they all have in common that they use the eigenvectors 
of a similarity matrix to derive the cluster relationships. Since 
spectral clustering is beyond the scope of this book, you can read 
the excellent tutorial by Ulrike von Luxburg to learn more about this 
topic (U. Von Luxburg. A Tutorial on Spectral Clustering. Statistics and 
computing, 17(4):395–416, 2007). It is freely available from arXiv at 
http://arxiv.org/pdf/0711.0189v1.pdf.

Note that, in practice, it is not always obvious which algorithm will perform best on 
a given dataset, especially if the data comes in multiple dimensions that make it hard 
or impossible to visualize. Furthermore, it is important to emphasize that a successful 
clustering does not only depend on the algorithm and its hyperparameters. Rather, 
the choice of an appropriate distance metric and the use of domain knowledge that 
can help guide the experimental setup can be even more important.

http://arxiv.org/pdf/0711.0189v1.pdf
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Summary
In this chapter, you learned about three different clustering algorithms that can 
help us with the discovery of hidden structures or information in data. We started 
this chapter with a prototype-based approach, k-means, which clusters samples 
into spherical shapes based on a specified number of cluster centroids. Since 
clustering is an unsupervised method, we do not enjoy the luxury of ground truth 
labels to evaluate the performance of a model. Thus, we looked at useful intrinsic 
performance metrics such as the elbow method or silhouette analysis as an attempt 
to quantify the quality of clustering.

We then looked at a different approach to clustering: agglomerative  
hierarchical clustering. Hierarchical clustering does not require specifying  
the number of clusters upfront, and the result can be visualized in a dendrogram 
representation, which can help with the interpretation of the results. The last 
clustering algorithm that we saw in this chapter was DBSCAN, an algorithm that 
groups points based on local densities and is capable of handling outliers and 
identifying nonglobular shapes.

After this excursion into the field of unsupervised learning, it is now about time to 
introduce some of the most exciting machine learning algorithms for supervised 
learning: multilayer artificial neural networks. After their recent resurgence, neural 
networks are once again the hottest topic in machine learning research. Thanks to 
the recently developed deep learning algorithms, neural networks are conceived 
as state-of-the-art for many complex tasks such as image classification and speech 
recognition. In Chapter 12, Training Artificial Neural Networks for Image Recognition, 
we will construct our own multilayer neural network from scratch. In Chapter 13, 
Parallelizing Neural Network Training with Theano, we will introduce powerful libraries 
that can help us to train complex network architectures most efficiently.
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Training Artificial Neural 
Networks for Image 

Recognition
As you may know, deep learning is getting a lot of press and is without any doubt 
the hottest topic in the machine learning field. Deep learning can be understood 
as a set of algorithms that were developed to train artificial neural networks with 
many layers most efficiently. In this chapter, you will learn the basic concepts of 
artificial neural networks so that you will be well equipped to further explore the 
most exciting areas of research in the machine learning field, as well as the advanced 
Python-based deep learning libraries that are currently being developed.

The topics that we will cover are as follows:

•	 Getting a conceptual understanding of multi-layer neural networks
•	 Training neural networks for image classification
•	 Implementing the powerful backpropagation algorithm
•	 Debugging neural network implementations
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Modeling complex functions with 
artificial neural networks
At the beginning of this book, we started our journey through machine learning 
algorithms with artificial neurons in Chapter 2, Training Machine Learning Algorithms 
for Classification. Artificial neurons represent the building blocks of the multi-layer 
artificial neural networks that we are going to discuss in this chapter. The basic 
concept behind artificial neural networks was built upon hypotheses and models 
of how the human brain works to solve complex problem tasks. Although artificial 
neural networks have gained a lot of popularity in recent years, early studies of 
neural networks go back to the 1940s when Warren McCulloch and Walter Pitt first 
described how neurons could work. However, in the decades that followed the first 
implementation of the McCulloch-Pitt neuron model, Rosenblatt's perceptron in 
the 1950s, many researchers and machine learning practitioners slowly began to lose 
interest in neural networks since no one had a good solution for training a neural 
network with multiple layers. Eventually, interest in neural networks was rekindled 
in 1986 when D.E. Rumelhart, G.E. Hinton, and R.J. Williams were involved in the 
(re)discovery and popularization of the backpropagation algorithm to train neural 
networks more efficiently, which we will discuss in more detail later in this chapter 
(Rumelhart, David E.; Hinton, Geoffrey E.; Williams, Ronald J. (1986). Learning 
Representations by Back-propagating Errors. Nature 323 (6088): 533–536).

During the previous decade, many more major breakthroughs resulted in what we 
now call deep learning algorithms, which can be used to create feature detectors 
from unlabeled data to pre-train deep neural networks—neural networks that are 
composed of many layers. Neural networks are a hot topic not only in academic 
research, but also in big technology companies such as Facebook, Microsoft, and 
Google who invest heavily in artificial neural networks and deep learning research. 
As of today, complex neural networks powered by deep learning algorithms are 
considered as state-of-the-art when it comes to complex problem solving such as 
image and voice recognition. Popular examples of the products in our everyday life 
that are powered by deep learning are Google's image search and Google Translate, 
an application for smartphones that can automatically recognize text in images 
for real-time translation into 20 languages (http://googleresearch.blogspot.
com/2015/07/how-google-translate-squeezes-deep.html). 

http://googleresearch.blogspot.com/2015/07/how-google-translate-squeezes-deep.html
http://googleresearch.blogspot.com/2015/07/how-google-translate-squeezes-deep.html
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Many more exciting applications of deep neural networks are under active 
development at major tech companies, for example, Facebook's DeepFace for 
tagging images (Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. DeepFace: Closing 
the gap to human-level performance in face verification. In Computer Vision and 
Pattern Recognition CVPR, 2014 IEEE Conference, pages 1701–1708) and Baidu's 
DeepSpeech, which is able to handle voice queries in Mandarin (A. Hannun, 
C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger, S. Satheesh, S. 
Sengupta, A. Coates, et al. DeepSpeech: Scaling up end-to-end speech recognition. arXiv 
preprint arXiv:1412.5567, 2014). In addition, the pharmaceutical industry recently 
started to use deep learning techniques for drug discovery and toxicity prediction, 
and research has shown that these novel techniques substantially exceed the 
performance of traditional methods for virtual screening (T. Unterthiner, A. Mayr, G. 
Klambauer, and S. Hochreiter. Toxicity prediction using deep learning. arXiv preprint 
arXiv:1503.01445, 2015).

Single-layer neural network recap
This chapter is all about multi-layer neural networks, how they work, and how 
to train them to solve complex problems. However, before we dig deeper into a 
particular multi-layer neural network architecture, let's briefly reiterate some of the 
concepts of single-layer neural networks that we introduced in Chapter 2, Training 
Machine Learning Algorithms for Classification, namely, the ADAptive LInear NEuron 
(Adaline) algorithm that is shown in the following figure:
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In Chapter 2, Training Machine Learning Algorithms for Classification, we implemented 
the Adaline algorithm to perform binary classification, and we used a gradient 
descent optimization algorithm to learn the weight coefficients of the model. In  
every epoch (pass over the training set), we updated the weight vector w  using  
the following update rule:

( ): , where Jη= + ∆ ∆ = − ∇w w w w w

In other words, we computed the gradient based on the whole training set and 
updated the weights of the model by taking a step into the opposite direction of the 
gradient ( )J∇ w . In order to find the optimal weights of the model, we optimized an 
objective function that we defined as the Sum of Squared Errors (SSE) cost function 
( )J w . Furthermore, we multiplied the gradient by a factor, the learning rate η , which 

we chose carefully to balance the speed of learning against the risk of overshooting 
the global minimum of the cost function.

In gradient descent optimization, we updated all weights simultaneously after each 
epoch, and we defined the partial derivative for each weight jw  in the weight vector 
w  as follows:

( ) ( ) ( )( ) ( )ii i
j

ij

J y a x
w
∂

= −
∂ ∑w

Here ( )iy  is the target class label of a particular sample ( )ix , and ( )ia  is the activation 
of the neuron, which is a linear function in the special case of Adaline. Furthermore, 
we defined the activation function ( )φ ⋅  as follows:

( )z z aφ = =

Here, the net input  is a linear combination of the weights that are connecting the 
input to the output layer:

j jj
z w x= =∑ Tw x

While we used the activation ( )zφ  to compute the gradient update, we implemented 
a threshold function (Heaviside function) to squash the continuous-valued output 
into binary class labels for prediction:

( )1 0ˆ
1
if g z

y
otherwise

 ≥
= 

−
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Note that although Adaline consists of two layers, one input layer 
and one output layer, it is called a single-layer network because of 
its single link between the input and output layers.

Introducing the multi-layer neural network 
architecture
In this section, we will see how to connect multiple single neurons to a multi-layer 
feedforward neural network; this special type of network is also called a multi-layer 
perceptron (MLP). The following figure explains the concept of an MLP consisting 
of three layers: one input layer, one hidden layer, and one output layer. The units in 
the hidden layer are fully connected to the input layer, and the output layer is fully 
connected to the hidden layer, respectively. If such a network has more than one 
hidden layer, we also call it a deep artificial neural network.

We could add an arbitrary number of hidden layers to the MLP to create 
deeper network architectures. Practically, we can think of the number of 
layers and units in a neural network as additional hyperparameters that 
we want to optimize for a given problem task using the cross-validation 
that we discussed in Chapter 6, Learning Best Practices for Model Evaluation 
and Hyperparameter Tuning.
However, the error gradients that we will calculate later via 
backpropagation would become increasingly small as more layers are 
added to a network. This vanishing gradient problem makes the model 
learning more challenging. Therefore, special algorithms have been 
developed to pretrain such deep neural network structures, which is 
called deep learning.
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As shown in the preceding figure, we denote the i th activation unit in the l th layer 
as ( )l

ia , and the activation units ( )1
0a  and ( )2

0a  are the bias units, respectively, which we  
set equal to 1. The activation of the units in the input layer is just its input plus the 
bias unit:

( )

( )

( )

( )

( )

( )

1
0

1
1 11

1

1
i

i
mm

a
xaa

xa

   
   
   = =   
   
     

��

Each unit in layer l  is connected to all units in layer 1l +  via a weight coefficient. 
For example, the connection between the k th unit in layer l  to the j th unit in layer 

1l +  would be written as ( )
,
l
j kw . Please note that the superscript i  in ( )i

mx  stands for 
the i th sample, not the i th layer. In the following paragraphs, we will often omit the 
superscript i  for clarity.

While one unit in the output layer would suffice for a binary classification task, 
we saw a more general form of a neural network in the preceding figure, which 
allows us to perform multi-class classification via a generalization of the One-vs-
All (OvA) technique. To better understand how this works, remember the one-hot 
representation of categorical variables that we introduced in Chapter 4, Building Good 
Training Sets – Data Preprocessing. For example, we would encode the three class 
labels in the familiar Iris dataset (0=Setosa, 1=Versicolor, 2=Virginica)  
as follows:

1 0 0
0 0 , 1 1 , 2 0

0 0 1

     
     = = =     
          

This one-hot vector representation allows us to tackle classification tasks with an 
arbitrary number of unique class labels present in the training set.
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If you are new to neural network representations, the terminology around the indices 
(subscripts and superscripts) may look a little bit confusing at first. You may wonder 
why we wrote ( )

,
l
j kw  and not ( )

,
l
k jw  to refer to the weight coefficient that connects the  

k th unit in layer l  to the j th unit in layer 1l + . What may seem a little bit quirky 
at first will make much more sense in later sections when we vectorize the neural 
network representation. For example, we will summarize the weights that connect 
the input and hidden layer by a matrix ( ) [ ]11 h m× +∈�W , where h  is the number of 
hidden units and 1m +  is the number of hidden units plus bias unit. Since it is 
important to internalize this notation to follow the concepts later in this chapter, let's 
summarize what we just discussed in a descriptive illustration of a simplified 3-4-3 
multi-layer perceptron:

Activating a neural network via forward 
propagation
In this section, we will describe the process of forward propagation to calculate the 
output of an MLP model. To understand how it fits into the context of learning an 
MLP model, let's summarize the MLP learning procedure in three simple steps:

1.	 Starting at the input layer, we forward propagate the patterns of the training 
data through the network to generate an output.

2.	 Based on the network's output, we calculate the error that we want to 
minimize using a cost function that we will describe later.

3.	 We backpropagate the error, find its derivative with respect to each weight in 
the network, and update the model.



Training Artificial Neural Networks for Image Recognition

[ 348 ]

Finally, after repeating the steps for multiple epochs and learning the weights of 
the MLP, we use forward propagation to calculate the network output and apply a 
threshold function to obtain the predicted class labels in the one-hot representation, 
which we described in the previous section.

Now, let's walk through the individual steps of forward propagation to generate  
an output from the patterns in the training data. Since each unit in the hidden unit  
is connected to all units in the input layers, we first calculate the activation ( )2

1a   
as follows:

( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 1 1 1 1 1
1 0 1,0 1 1,1 1,m mz a w a w a w= + + +�

( ) ( )( )2 2
1 1a zφ=

Here, ( )2
1z  is the net input and ( )φ ⋅  is the activation function, which has to be 

differentiable to learn the weights that connect the neurons using a gradient-based 
approach. To be able to solve complex problems such as image classification, we 
need nonlinear activation functions in our MLP model, for example, the sigmoid 
(logistic) activation function that we used in logistic regression in Chapter 3, A Tour 
of Machine Learning Classifiers Using Scikit-learn:

( ) 1
1 zz
e

φ −=
+

As we can remember, the sigmoid function is an S-shaped curve that maps the net 
input  onto a logistic distribution in the range 0 to 1, which passes the origin at  
z = 0.5, as shown in the following graph:
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The MLP is a typical example of a feedforward artificial neural network. The term 
feedforward refers to the fact that each layer serves as the input to the next layer 
without loops, in contrast to recurrent neural networks, an architecture that we will 
discuss later in this chapter. The term multi-layer perceptron may sound a little 
bit confusing, since the artificial neurons in this network architecture are typically 
sigmoid units, not perceptrons. Intuitively, we can think of the neurons in the MLP as 
logistic regression units that return values in the continuous range between 0 and 1.

For purposes of code efficiency and readability, we will now write the activation in a 
more compact form using the concepts of basic linear algebra, which will allow us to 
vectorize our code implementation via NumPy rather than writing multiple nested 
and expensive Python for loops:

( ) ( ) ( )2 1 1=z W a

( ) ( )( )2 2φ= za
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Here, ( )1a  is our [ ]1 1m + ×  dimensional feature vector of a sample ( )ix  plus bias unit. 
( )1W  is an [ ]1h m× +  dimensional weight matrix where h  is the number of hidden 

units in our neural network. After matrix-vector multiplication, we obtain the 1h×  
dimensional net input vector ( )2z  to calculate the activation ( )2a  (where ( )2 1h×∈�a ). 
Furthermore, we can generalize this computation to all n  samples in the training set:

( ) ( ) ( )2 1 1 T
 =  Z W A

Here, ( )1A  is now an [ ]1n m× +  matrix, and the matrix-matrix multiplication will result 
in a h n×  dimensional net input matrix ( )2Z . Finally, we apply the activation function 
( )φ ⋅  to each value in the net input matrix to get the h n×  activation matrix ( )2A  for the 

next layer (here, output layer):

( ) ( )( )2 2φ=A Z

Similarly, we can rewrite the activation of the output layer in the vectorized form:

( ) ( ) ( )3 2 2Z = W A

Here, we multiply the t h×  matrix ( )2W  (t is the number of output units) by the h n×  
dimensional matrix ( )2A  to obtain the t n×  dimensional matrix ( )3Z  (the columns in this 
matrix represent the outputs for each sample).

Lastly, we apply the sigmoid activation function to obtain the continuous valued 
output of our network:

( ) ( )( ) ( ), t nφ ×∈3 3 3 �A = Z A

Classifying handwritten digits
In the previous section, we covered a lot of the theory around neural networks, 
which can be a little bit overwhelming if you are new to this topic. Before we 
continue with the discussion of the algorithm for learning the weights of the MLP 
model, backpropagation, let's take a short break from the theory and see a neural 
network in action.
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Neural network theory can be quite complex, thus I want to recommend 
two additional resources that cover some of the concepts that we discuss 
in this chapter in more detail:
T. Hastie, J. Friedman, and R. Tibshirani. The Elements of Statistical 
Learning, Volume 2. Springer, 2009.
C. M. Bishop et al. Pattern Recognition and Machine Learning, Volume 1. 
Springer New York, 2006.

In this section, we will train our first multi-layer neural network to classify 
handwritten digits from the popular MNIST dataset (short for Mixed National 
Institute of Standards and Technology database) that has been constructed 
by Yann LeCun et al. and serves as a popular benchmark dataset for machine 
learning algorithms (Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based 
Learning Applied to Document Recognition. Proceedings of the IEEE, 86(11):2278-2324, 
November 1998).

Obtaining the MNIST dataset
The MNIST dataset is publicly available at http://yann.lecun.com/exdb/mnist/ 
and consists of the following four parts:

•	 Training set images: train-images-idx3-ubyte.gz (9.9 MB, 47 MB 
unzipped, and 60,000 samples)

•	 Training set labels: train-labels-idx1-ubyte.gz (29 KB, 60 KB unzipped, 
and 60,000 labels)

•	 Test set images: t10k-images-idx3-ubyte.gz (1.6 MB, 7.8 MB, unzipped 
and 10,000 samples)

•	 Test set labels: t10k-labels-idx1-ubyte.gz (5 KB, 10 KB unzipped, and 
10,000 labels)

The MNIST dataset was constructed from two datasets of the US National Institute 
of Standards and Technology (NIST). The training set consists of handwritten digits 
from 250 different people, 50 percent high school students, and 50 percent employees 
from the Census Bureau. Note that the test set contains handwritten digits from 
different people following the same split.

After downloading the files, I recommend unzipping the files using the Unix/Linux  
gzip tool from the command line terminal for efficiency using the following 
command in your local MNIST download directory:

gzip *ubyte.gz -d

http://yann.lecun.com/exdb/mnist/
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Alternatively, you could use your favorite unzipping tool if you are working with  
a machine running on Microsoft Windows. The images are stored in byte format,  
and we will read them into NumPy arrays that we will use to train and test our  
MLP implementation:

import os
import struct
import numpy as np

def load_mnist(path, kind='train'):
    """Load MNIST data from `path`"""
    labels_path = os.path.join(path, 
                               '%s-labels-idx1-ubyte' 
                                % kind)
    images_path = os.path.join(path, 
                               '%s-images-idx3-ubyte' 
                               % kind)
        
    with open(labels_path, 'rb') as lbpath:
        magic, n = struct.unpack('>II', 
                                 lbpath.read(8))
        labels = np.fromfile(lbpath, 
                             dtype=np.uint8)

    with open(images_path, 'rb') as imgpath:
        magic, num, rows, cols = struct.unpack(">IIII", 
                                               imgpath.read(16))
        images = np.fromfile(imgpath, 
                    dtype=np.uint8).reshape(len(labels), 784)
 
    return images, labels

The load_mnist function returns two arrays, the first being an n m×  dimensional 
NumPy array (images), where n  is the number of samples and m  is the number 
of features. The training dataset consists of 60,000 training digits and the test set 
contains 10,000 samples, respectively. The images in the MNIST dataset consist of 
28 28×  pixels, and each pixel is represented by a gray scale intensity value. Here, we 
unroll the 28 28×  pixels into 1D row vectors, which represent the rows in our image 
array (784 per row or image). The second array (labels) returned by the load_mnist 
function contains the corresponding target variable, the class labels (integers 0-9) of 
the handwritten digits.
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The way we read in the image might seem a little bit strange at first:

magic, n = struct.unpack('>II', lbpath.read(8))
labels = np.fromfile(lbpath, dtype=np.int8)

To understand how these two lines of code work, let's take a look at the dataset 
description from the MNIST website:

 [offset] [type]          [value]          [description]

0000     32 bit integer  0x00000801(2049) magic number (MSB first)

0004     32 bit integer  60000            number of items

0008     unsigned byte   ??               label

0009     unsigned byte   ??               label

........

xxxx     unsigned byte   ??               label

Using the two lines of the preceding code, we first read in the magic number, which is 
a description of the file protocol as well as the number of items (n) from the file buffer 
before we read the following bytes into a NumPy array using the fromfile method. 
The fmt parameter value >II that we passed as an argument to struct.unpack has 
two parts:

•	 >: This is the big-endian (defines the order in which a sequence of bytes is 
stored); if you are unfamiliar with the terms big-endian and small-endian,  
you can find an excellent article about Endianness on Wikipedia  
(https://en.wikipedia.org/wiki/Endianness).

•	 I: This is an unsigned integer.

By executing the following code, we will now load the 60,000 training instances as 
well as the 10,000 test samples from the mnist directory where we unzipped the 
MNIST dataset:

>>> X_train, y_train = load_mnist('mnist', kind='train')
>>> print('Rows: %d, columns: %d' 
...        % (X_train.shape[0], X_train.shape[1]))
Rows: 60000, columns: 784

>>> X_test, y_test = load_mnist('mnist', kind='t10k')
>>> print('Rows: %d, columns: %d'
...        % (X_test.shape[0], X_test.shape[1]))
Rows: 10000, columns: 784

https://en.wikipedia.org/wiki/Endianness
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To get a idea what the images in MNIST look like, let's visualize examples of the 
digits 0-9 after reshaping the 784-pixel vectors from our feature matrix into the 
original 28 × 28 image that we can plot via matplotlib's imshow function:

>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(nrows=2, ncols=5, sharex=True, 
sharey=True,)
>>> ax = ax.flatten()
>>> for i in range(10):
...    img = X_train[y_train == i][0].reshape(28, 28)
...    ax[i].imshow(img, cmap='Greys', interpolation='nearest')
>>> ax[0].set_xticks([])
>>> ax[0].set_yticks([])
>>> plt.tight_layout()
>>> plt.show()

We should now see a plot of the 2 5×  subfigures showing a representative image of 
each unique digit:

In addition, let's also plot multiple examples of the same digit to see how different 
those handwriting examples really are:

>>> fig, ax = plt.subplots(nrows=5, 
...                        ncols=5, 
...                        sharex=True, 
...                        sharey=True,)
>>> ax = ax.flatten()
>>> for i in range(25):
...     img = X_train[y_train == 7][i].reshape(28, 28)
...     ax[i].imshow(img, cmap='Greys', interpolation='nearest')
>>> ax[0].set_xticks([])
>>> ax[0].set_yticks([])
>>> plt.tight_layout()
>>> plt.show()
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After executing the code, we should now see the first 25 variants of the digit 7.

Optionally, we can save the MNIST image data and labels as CSV files to open them 
in programs that do not support their special byte format. However, we should be 
aware that the CSV file format will take up substantially more space on your local 
drive, as listed here:

•	 train_img.csv: 109.5 MB
•	 train_labels.csv: 120 KB
•	 test_img.csv: 18.3 MB
•	 test_labels: 20 KB

If we decide to save those CSV files, we can execute the following code in our Python 
session after loading the MNIST data into NumPy arrays:

>>> np.savetxt('train_img.csv', X_train, 
...            fmt='%i', delimiter=',')
>>> np.savetxt('train_labels.csv', y_train,
...            fmt='%i', delimiter=',')
>>> np.savetxt('test_img.csv', X_test,
...            fmt='%i', delimiter=',')
>>> np.savetxt('test_labels.csv', y_test, 
...            fmt='%i', delimiter=',')
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Once we have saved the CSV files, we can load them back into Python using 
NumPy's genfromtxt function:

>>> X_train = np.genfromtxt('train_img.csv', 
...                         dtype=int, delimiter=',')
>>> y_train = np.genfromtxt('train_labels.csv',
...                         dtype=int, delimiter=',')
>>> X_test = np.genfromtxt('test_img.csv',
...                        dtype=int, delimiter=',')
>>> y_test = np.genfromtxt('test_labels.csv',
...                        dtype=int, delimiter=',')

However, it will take substantially longer to load the MNIST data from the CSV files, 
thus I recommend you stick to the original byte format if possible.

Implementing a multi-layer perceptron
In this subsection, we will now implement the code of an MLP with one input, one 
hidden, and one output layer to classify the images in the MNIST dataset. I have tried 
to keep the code as simple as possible. However, it may seem a little bit complicated 
at first, and I encourage you to download the sample code for this chapter from the 
Packt Publishing website, where you can find this MLP implementation annotated 
with comments and syntax highlighting for better readability. If you are not running 
the code from the accompanying IPython notebook, I recommend you copy it  
into a Python script file in your current working directory, for example,  
neuralnet.py, which you can then import into your current Python session  
via the following command:

from neuralnet import NeuralNetMLP

The code will contain parts that we have not talked about yet, such as the 
backpropagation algorithm, but most of the code should look familiar to you based 
on the Adaline implementation in Chapter 2, Training Machine Learning Algorithms 
for Classification, and the discussion of forward propagation in earlier sections. Do 
not worry if not all of the code makes immediate sense to you; we will follow up 
on certain parts later in this chapter. However, going over the code at this stage can 
make it easier to follow the theory later.

import numpy as np
from scipy.special import expit
import sys

class NeuralNetMLP(object):
    def __init__(self, n_output, n_features, n_hidden=30,
                 l1=0.0, l2=0.0, epochs=500, eta=0.001, 
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                 alpha=0.0, decrease_const=0.0, shuffle=True, 
                 minibatches=1, random_state=None):
        np.random.seed(random_state)
        self.n_output = n_output
        self.n_features = n_features
        self.n_hidden = n_hidden
        self.w1, self.w2 = self._initialize_weights()
        self.l1 = l1
        self.l2 = l2
        self.epochs = epochs
        self.eta = eta
        self.alpha = alpha
        self.decrease_const = decrease_const
        self.shuffle = shuffle
        self.minibatches = minibatches

    def _encode_labels(self, y, k):
        onehot = np.zeros((k, y.shape[0]))
        for idx, val in enumerate(y):
            onehot[val, idx] = 1.0
        return onehot

    def _initialize_weights(self):
        w1 = np.random.uniform(-1.0, 1.0,       
                     size=self.n_hidden*(self.n_features + 1))
        w1 = w1.reshape(self.n_hidden, self.n_features + 1)
        w2 = np.random.uniform(-1.0, 1.0,
                     size=self.n_output*(self.n_hidden + 1))
        w2 = w2.reshape(self.n_output, self.n_hidden + 1)
        return w1, w2

    def _sigmoid(self, z):
        # expit is equivalent to 1.0/(1.0 + np.exp(-z))
        return expit(z)

    def _sigmoid_gradient(self, z):
        sg = self._sigmoid(z)
        return sg * (1 - sg)

    def _add_bias_unit(self, X, how='column'):
        if how == 'column':
            X_new = np.ones((X.shape[0], X.shape[1]+1))
            X_new[:, 1:] = X
        elif how == 'row':
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            X_new = np.ones((X.shape[0]+1, X.shape[1]))
            X_new[1:, :] = X
        else:
            raise AttributeError('`how` must be `column` or `row`')
        return X_new

    def _feedforward(self, X, w1, w2):
        a1 = self._add_bias_unit(X, how='column')
        z2 = w1.dot(a1.T)
        a2 = self._sigmoid(z2)
        a2 = self._add_bias_unit(a2, how='row')
        z3 = w2.dot(a2)
        a3 = self._sigmoid(z3)
        return a1, z2, a2, z3, a3

    def _L2_reg(self, lambda_, w1, w2):
        return (lambda_/2.0) * (np.sum(w1[:, 1:] ** 2)\
                + np.sum(w2[:, 1:] ** 2))

    def _L1_reg(self, lambda_, w1, w2):
        return (lambda_/2.0) * (np.abs(w1[:, 1:]).sum()\
                + np.abs(w2[:, 1:]).sum())

    def _get_cost(self, y_enc, output, w1, w2):
        term1 = -y_enc * (np.log(output))
        term2 = (1 - y_enc) * np.log(1 - output)
        cost = np.sum(term1 - term2)
        L1_term = self._L1_reg(self.l1, w1, w2)
        L2_term = self._L2_reg(self.l2, w1, w2)
        cost = cost + L1_term + L2_term
        return cost

    def _get_gradient(self, a1, a2, a3, z2, y_enc, w1, w2):
        # backpropagation
        sigma3 = a3 - y_enc
        z2 = self._add_bias_unit(z2, how='row')
        sigma2 = w2.T.dot(sigma3) * self._sigmoid_gradient(z2)
        sigma2 = sigma2[1:, :]
        grad1 = sigma2.dot(a1)
        grad2 = sigma3.dot(a2.T)

        # regularize
        grad1[:, 1:] += (w1[:, 1:] * (self.l1 + self.l2))
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        grad2[:, 1:] += (w2[:, 1:] * (self.l1 + self.l2))

        return grad1, grad2

    def predict(self, X):
        a1, z2, a2, z3, a3 = self._feedforward(X, self.w1, self.w2)
        y_pred = np.argmax(z3, axis=0)
        return y_pred

    def fit(self, X, y, print_progress=False):
        self.cost_ = []
        X_data, y_data = X.copy(), y.copy()
        y_enc = self._encode_labels(y, self.n_output)

        delta_w1_prev = np.zeros(self.w1.shape)
        delta_w2_prev = np.zeros(self.w2.shape)

        for i in range(self.epochs):

            # adaptive learning rate
            self.eta /= (1 + self.decrease_const*i)

            if print_progress:
                sys.stderr.write(
                        '\rEpoch: %d/%d' % (i+1, self.epochs))
                sys.stderr.flush()

            if self.shuffle:
                idx = np.random.permutation(y_data.shape[0])
                X_data, y_data = X_data[idx], y_data[idx]

            mini = np.array_split(range(
                         y_data.shape[0]), self.minibatches)
            for idx in mini:

                # feedforward
                a1, z2, a2, z3, a3 = self._feedforward(
                                     X[idx], self.w1, self.w2)
                cost = self._get_cost(y_enc=y_enc[:, idx],
                                      output=a3,
                                      w1=self.w1,
                                      w2=self.w2)
                self.cost_.append(cost)



Training Artificial Neural Networks for Image Recognition

[ 360 ]

                # compute gradient via backpropagation
                grad1, grad2 = self._get_gradient(a1=a1, a2=a2,
                                            a3=a3, z2=z2,
                                            y_enc=y_enc[:, idx],
                                            w1=self.w1,
                                            w2=self.w2)

                # update weights
                delta_w1, delta_w2 = self.eta * grad1,\
                                     self.eta * grad2
                self.w1 -= (delta_w1 + (self.alpha * delta_w1_prev))
                self.w2 -= (delta_w2 + (self.alpha * delta_w2_prev))
                delta_w1_prev, delta_w2_prev = delta_w1, delta_w2

        return self

Now, let's initialize a new 784-50-10 MLP, a neural network with 784 input units 
(n_features), 50 hidden units (n_hidden), and 10 output units (n_output):

>>> nn = NeuralNetMLP(n_output=10, 
...                   n_features=X_train.shape[1], 
...                   n_hidden=50, 
...                   l2=0.1, 
...                   l1=0.0, 
...                   epochs=1000, 
...                   eta=0.001,
...                   alpha=0.001,
...                   decrease_const=0.00001,
...                   shuffle=True,
...                   minibatches=50, 
...                   random_state=1)

As you may have noticed, by going over our preceding MLP implementation,  
we also implemented some additional features, which are summarized here:

•	 l2: The λ  parameter for L2 regularization to decrease the degree of 
overfitting; equivalently, l1 is the λ  parameter for L1 regularization.

•	 epochs: The number of passes over the training set.
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•	 eta: The learning rate η .
•	 alpha: A parameter for momentum learning to add a factor of the previous 

gradient to the weight update for faster learning ( ) 1Jt t tη α −∆ = ∇ + ∆w w w  
(where t  is the current time step or epoch).

•	 decrease_const: The decrease constant d  for an adaptive learning rate n  
that decreases over time for better convergence /1 t dη + × .

•	 shuffle: Shuffling the training set prior to every epoch to prevent the 
algorithm from getting stuck in cycles.

•	 Minibatches: Splitting of the training data into k mini-batches in each epoch. 
The gradient is computed for each mini-batch separately instead of the entire 
training data for faster learning.

Next, we train the MLP using 60,000 samples from the already shuffled MNIST 
training dataset. Before you execute the following code, please note that training the 
neural network may take 10-30 minutes on standard desktop computer hardware:

>>> nn.fit(X_train, y_train, print_progress=True)
Epoch: 1000/1000

Similar to our previous Adaline implementation, we save the cost for each epoch  
in a cost_ list that we can now visualize, making sure that the optimization 
algorithm reached convergence. Here, we only plot every 50th step to account for  
the 50 mini-batches (50 mini-batches × 1000 epochs). The code is as follows:

>>> plt.plot(range(len(nn.cost_)), nn.cost_)
>>> plt.ylim([0, 2000])
>>> plt.ylabel('Cost')
>>> plt.xlabel('Epochs * 50')
>>> plt.tight_layout()
>>> plt.show()
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As we see in the following plot, the graph of the cost function looks very noisy.  
This is due to the fact that we trained our neural network with mini-batch learning,  
a variant of stochastic gradient descent.

Although we can already see in the plot that the optimization algorithm converged 
after approximately 800 epochs (40,000/50 = 800), let's plot a smoother version of 
the cost function against the number of epochs by averaging over the mini-batch 
intervals. The code is as follows:

>>> batches = np.array_split(range(len(nn.cost_)), 1000)
>>> cost_ary = np.array(nn.cost_)
>>> cost_avgs = [np.mean(cost_ary[i]) for i in batches]

>>> plt.plot(range(len(cost_avgs)),
...          cost_avgs, 
...          color='red')
>>> plt.ylim([0, 2000])
>>> plt.ylabel('Cost')
>>> plt.xlabel('Epochs')
>>> plt.tight_layout()
>>> plt.show()
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The following plot gives us a clearer picture indicating that the training algorithm 
converged shortly after the 800th epoch:

Now, let's evaluate the performance of the model by calculating the  
prediction accuracy:

>>> y_train_pred = nn.predict(X_train)
>>> acc = np.sum(y_train == y_train_pred, axis=0) / X_train.shape[0]
>>> print('Training accuracy: %.2f%%' % (acc * 100))
Training accuracy: 97.74%

As we can see, the model classifies most of the training digits correctly, but how does 
it generalize to data that it has not seen before? Let's calculate the accuracy on 10,000 
images in the test dataset:

>>> y_test_pred = nn.predict(X_test)
>>> acc = np.sum(y_test == y_test_pred, axis=0) / X_test.shape[0]
>>> print('Training accuracy: %.2f%%' % (acc * 100))
Test accuracy: 96.18%

Based on the small discrepancy between training and test accuracy, we can conclude 
that the model only slightly overfits the training data. To further fine-tune the 
model, we could change the number of hidden units, values of the regularization 
parameters, learning rate, values of the decrease constant, or the adaptive learning 
using the techniques that we discussed in Chapter 6, Learning Best Practices for Model 
Evaluation and Hyperparameter Tuning (this is left as an exercise for the reader).
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Now, let's take a look at some of the images that our MLP struggles with:

>>> miscl_img = X_test[y_test != y_test_pred][:25]
>>> correct_lab = y_test[y_test != y_test_pred][:25]
>>> miscl_lab= y_test_pred[y_test != y_test_pred][:25]

>>> fig, ax = plt.subplots(nrows=5, 
...                        ncols=5, 
...                        sharex=True, 
...                        sharey=True,)
>>> ax = ax.flatten()
>>> for i in range(25):
...     img = miscl_img[i].reshape(28, 28)
...     ax[i].imshow(img, 
...                  cmap='Greys', 
...                  interpolation='nearest')
...     ax[i].set_title('%d) t: %d p: %d' 
...                     % (i+1, correct_lab[i], miscl_lab[i]))
>>> ax[0].set_xticks([])
>>> ax[0].set_yticks([])
>>> plt.tight_layout()
>>> plt.show()

We should now see a 5 5×  subplot matrix where the first number in the subtitles 
indicates the plot index, the second number indicates the true class label (t), and the 
third number stands for the predicted class label (p).
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As we can see in the preceding figure, some of those images are even challenging  
for us humans to classify correctly. For example, we can see that the digit 9 is 
classified as a 3 or 8 if the lower part of the digit has a hook-like curvature  
(subplots 3, 16, and 17).

Training an artificial neural network
Now that we have seen a neural network in action and have gained a basic 
understanding of how it works by looking over the code, let's dig a little bit deeper 
into some of the concepts, such as the logistic cost function and the backpropagation 
algorithm that we implemented to learn the weights.

Computing the logistic cost function
The logistic cost function that we implemented as the _get_cost method is actually 
pretty simple to follow since it is the same cost function that we described in the 
logistic regression section in Chapter 3, A Tour of Machine Learning Classifiers  
Using Scikit-learn.

( ) ( ) ( )( ) ( )( ) ( )( )
1

log 1 log 1
n

i i i i

i
J y a y a

=

= − + − −∑w

Here, ( )ia  is the sigmoid activation of the i th unit in one of the layers which we 
compute in the forward propagation step:

( ) ( )( )i ia zφ=

Now, let's add a regularization term, which allows us to reduce the degree of 
overfitting. As you will recall from earlier chapters, the L2 and L1 regularization 
terms are defined as follows (remember that we don't regularize the bias units):

2 12
2 1

1 1
2 and 1

m m

j j
j j

L w L wλ λ λ λ
= =

= = = =∑ ∑w w
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Although our MLP implementation supports both L1 and L2 regularization, we will 
now only focus on the L2 regularization term for simplicity. However, the same 
concepts apply to the L1 regularization term. By adding the L2 regularization term  
to our logistic cost function, we obtain the following equation:

( ) ( ) ( )( ) ( )( ) ( )( ) 2

2
1

log 1 log 1
2

n
i i i i

i
J y a y a λ

=

 = + − − +  
∑w w

Since we implemented an MLP for multi-class classification, this returns an output 
vector of t  elements, which we need to compare with the 1t×  dimensional target 
vector in the one-hot encoding representation. For example, the activation of the 
third layer and the target class (here: class 2) for a particular sample may look  
like this:

( )3

0.1 0
0.9 1

,

0.3 0

a y

   
   
   = =
   
   
   

� �

Thus, we need to generalize the logistic cost function to all activation units j  in our 
network. So our cost function (without the regularization term) becomes:

( ) ( ) ( )( ) ( )( ) ( )( )
1 1

log 1 log 1
n t

i i i i
j j j j

i k
J y a y a

= =

= − + − −∑∑w

Here, the superscript i  is the index of a particular sample in our training set.

The following generalized regularization term may look a little bit complicated at 
first, but here we are just calculating the sum of all weights of a layer l  (without the 
bias term) that we added to the first column:
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The following equation represents the L2-penalty term:

( )( )
1 1 2

,
1 1 12

L ul ul
l
j i

l i j
wλ − +

= = =

+ ∑∑∑

Remember that our goal is to minimize the cost function ( )J w . Thus, we need to 
calculate the partial derivative of matrix W  with respect to each weight for every 
layer in the network:

( ) ( )
,
l
j i

J
w
∂

∂
W

In the next section, we will talk about the backpropagation algorithm, which allows 
us to calculate these partial derivatives to minimize the cost function.

Note that W  consists of multiple matrices. In a multi-layer perceptron with one 
hidden unit, we have the weight matrix ( )1W , which connects the input to the hidden 
layer, and ( )2W , which connects the hidden layer to the output layer. An intuitive 
visualization of the matrix W  is provided in the following figure:

In this simplified figure, it may seem that both ( )1W  and ( )2W  have the same number 
of rows and columns, which is typically not the case unless we initialize an MLP 
with the same number of hidden units, output units, and input features.
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If this may sound confusing, stay tuned for the next section where we will 
discuss the dimensionality of ( )1W  and ( )2W  in more detail in the context of the 
backpropagation algorithm.

Training neural networks via backpropagation
In this section, we will go through the math of backpropagation to understand 
how you can learn the weights in a neural network very efficiently. Depending 
on how comfortable you are with mathematical representations, the following 
equations may seem relatively complicated at first. Many people prefer a bottom-up 
approach and like to go over the equations step by step to develop an intuition for 
algorithms. However, if you prefer a top-down approach and want to learn about 
backpropagation without all the mathematical notations, I recommend you to read 
the next section Developing your intuition for backpropagation first and revisit this 
section later.

In the previous section, we saw how to calculate the cost as the difference between 
the activation of the last layer and the target class label. Now, we will see how the 
backpropagation algorithm works to update the weights in our MLP model, which 
we implemented in the _get_gradient method. As we recall from the beginning 
of this chapter, we first need to apply forward propagation in order to obtain the 
activation of the output layer, which we formulated as follows:

( ) ( ) ( ) ( )2 1 1 net input of the hidden layer
T

 
 Z = W A

( ) ( )( ) ( )2 2 activation of the hidden layerφA = Z

( ) ( ) ( ) ( )2 2 net input of theoutput layer=3Z Z A

( ) ( )( ) ( )3 activation of theoutput layerφ= 3A Z
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Concisely, we just forward propagate the input features through the connection in 
the network as shown here:

In backpropagation, we propagate the error from right to left. We start by calculating 
the error vector of the output layer:

( ) ( )3 3a yδ = −

Here, y  is the vector of the true class labels.

Next, we calculate the error term of the hidden layer:

( ) ( )( ) ( )
( )( )

( )

2
2 2 2

2

T z

z

φ∂
= ∗

∂
Wδ δ

Here, 
( )( )

( )

2

2

z

z

φ∂

∂
 is simply the derivative of the sigmoid activation function, which we 

implemented as _sigmoid_gradient:

( ) ( ) ( )( )( )2 21
z

a a
z

φ∂
= ∗ −

∂

Note that the asterisk symbol ( )∗  means element-wise multiplication in this context.
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Although, it is not important to follow the next equations, you may be 
curious as to how I obtained the derivative of the activation function. I 
summarized the derivation step by step here:

( ) 1  
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( )
21 1

11 zz ee −−

 = −  ++  

( ) ( )( )2
z zφ φ= −

( ) ( )( )1z zφ φ= −

( )1a a= −

To better understand how we compute the ( )2δ  term, let's walk through it in more 
detail. In the preceding equation, we multiplied the transpose ( )( )2 T

W  of the t h×  
dimensional matrix ( )2W ; t is the number of output class labels and h is the number 
of hidden units). Now, ( )( )2 T

W  becomes an h t×  dimensional matrix with ( )2δ , which 
is a 1t×  dimensional vector. We then performed a pair-wise multiplication between 

( )( ) ( )2 3T
δW  and ( ) ( )( )( )2 21a a∗ − , which is also a 1t×  dimensional vector. Eventually,  

after obtaining the δ  terms, we can now write the derivation of the cost function  
as follows:

( ) ( ) ( ) ( )1

,

l l
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i j

J a
w

δ +∂
=

∂
W



Chapter 12

[ 371 ]

Next, we need to accumulate the partial derivative of every j th node in layer l  and 
the i th error of the node in layer 1l + :

( ) ( ) ( ) ( )1
, ,:l l l l
i j i j j ia δ +∆ = ∆ +

Remember that we need to compute ( )
,
l
i j∆  for every sample in the training set. Thus, 

it is easier to implement it as a vectorized version like in our preceding MLP code 
implementation:

( ) ( ) ( ) ( )( )1 Tl l l lδ +∆ = ∆ + A

After we have accumulated the partial derivatives, we can add the regularization 
term as follows:

( ) ( ) ( ) ( ): except for the bias terml l lλ∆ = ∆ +

Lastly, after we have computed the gradients, we can now update the weights by 
taking an opposite step towards the gradient:

( ) ( ) ( ):l l lη= − ∆W W

To bring everything together, let's summarize backpropagation in the  
following figure:



Training Artificial Neural Networks for Image Recognition

[ 372 ]

Developing your intuition for 
backpropagation
Although backpropagation was rediscovered and popularized almost 30 years 
ago, it still remains one of the most widely used algorithms to train artificial neural 
networks very efficiently. In this section, we'll see a more intuitive summary and the 
bigger picture of how this fascinating algorithm works.

In essence, backpropagation is just a very computationally efficient approach 
to compute the derivatives of a complex cost function. Our goal is to use those 
derivatives to learn the weight coefficients for parameterizing a multi-layer  
artificial neural network. The challenge in the parameterization of neural networks 
is that we are typically dealing with a very large number of weight coefficients in 
a high-dimensional feature space. In contrast to other cost functions that we have 
seen in previous chapters, the error surface of a neural network cost function is not 
convex or smooth. There are many bumps in this high-dimensional cost surface 
(local minima) that we have to overcome in order to find the global minimum  
of the cost function.

You may recall the concept of the chain rule from your introductory calculus classes. 
The chain rule is an approach to deriving a complex, nested function, for example, 

( )( )f g x y=  that is broken down into basic components:

y f g
x g x
∂ ∂ ∂

=
∂ ∂ ∂

In the context of computer algebra, a set of techniques has been developed to solve 
such problems very efficiently, which is also known as automatic differentiation. If you 
are interested in learning more about automatic differentiation in machine learning 
applications, I recommend you to refer to the following resource: A. G. Baydin and 
B. A. Pearlmutter. Automatic Differentiation of Algorithms for Machine Learning. arXiv 
preprint arXiv:1404.7456, 2014, which is freely available on arXiv at http://arxiv.
org/pdf/1404.7456.pdf.

http://arxiv.org/pdf/1404.7456.pdf
http://arxiv.org/pdf/1404.7456.pdf
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Automatic differentiation comes with two modes, the forward and the reverse mode, 
respectively. Backpropagation is simply just a special case of the reverse-mode 
automatic differentiation. The key point is that applying the chain rule in the forward 
mode can be quite expensive since we would have to multiply large matrices for 
each layer (Jacobians) that we eventually multiply by a vector to obtain the output. 
The trick of the reverse mode is that we start from right to left: we multiply a matrix 
by a vector, which yields another vector that is multiplied by the next matrix and 
so on. Matrix-vector multiplication is computationally much cheaper than matrix-
matrix multiplication, which is why backpropagation is one of the most popular 
algorithms used in neural network training.

Debugging neural networks with gradient 
checking
Implementations of artificial neural networks can be quite complex, and it is always 
a good idea to manually check that we have implemented backpropagation correctly. 
In this section, we will talk about a simple procedure called gradient checking, 
which is essentially a comparison between our analytical gradients in the network 
and numerical gradients. Gradient checking is not specific to feedforward neural 
networks but can be applied to any other neural network architecture that uses 
gradient-based optimization. Even if you are planning to implement more trivial 
algorithms using gradient-based optimization, such as linear regression, logistic 
regression, and support vector machines, it is generally not a bad idea to check if the 
gradients are computed correctly.

In the previous sections, we defined a cost function ( )J W  where W  is the matrix 
of the weight coefficients of an artificial network. Note that ( )J W  is—roughly 
speaking—a "stacked" matrix consisting of the matrices ( )1W  and ( )2W  in a multi-layer 
perceptron with one hidden unit. We defined ( )1W  as the [ ]1h m× + -dimensional matrix 
that connects the input layer to the hidden layer, where h  is the number of hidden 
units and m  is the number of features (input units). The matrix ( )2W  that connects the 
hidden layer to the output layer has the dimensions t h× , where t  is the number of 
output units. We then calculated the derivative of the cost function for a weight ( )

,
l
i jw  

as follows:

( ) ( )
,
l
i j

J
w
∂

∂
W
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Remember that we are updating the weights by taking an opposite step towards the 
direction of the gradient. In gradient checking, we compare this analytical solution to 
a numerically approximated gradient:

( ) ( )
( )( ) ( )( ), ,

,

 l l
i j i j

l
i j

J w J w
J

w

ε

ε

+ −∂
≈

∂

 
W

Here, ε  is typically a very small number, for example 1e-5 (note that 1e-5 is just 
a more convenient notation for 0.00001). Intuitively, we can think of this finite 
difference approximation as the slope of the secant line connecting the points of the 
cost function for the two weights w  and w ε+  (both are scalar values), as shown in 
the following figure. We are omitting the superscripts and subscripts for simplicity.

An even better approach that yields a more accurate approximation of the  
gradient is to compute the symmetric (or centered) difference quotient given  
by the two-point formula:

( )( ) ( )( ), , 
 

2

l l
i j i jJ w J wε ε

ε

+ − − 



Chapter 12

[ 375 ]

Typically, the approximated difference between the numerical gradient  nJ ′  and 
analytical gradient  aJ ′  is then calculated as the L2 vector norm. For practical 
reasons, we unroll the computed gradient matrices into flat vectors so that we can 
calculate the error (the difference between the gradient vectors) more conveniently:

2
'  'n aerror J J= −

One problem is that the error is not scale invariant (small errors are more significant 
if the weight vector norms are small too). Thus, it is recommended to calculate a 
normalized difference:

2

2 2

'  '
  

' '
n a

n a

J J
relativeerror

J J
−

=
+

Now, we want the relative error between the numerical gradient and the analytical 
gradient to be as small as possible. Before we implement gradient checking, we need 
to discuss one more detail: what is the acceptable error threshold to pass the gradient 
check? The relative error threshold for passing the gradient check depends on the 
complexity of the network architecture. As a rule of thumb, the more hidden layers 
we add, the larger the difference between the numerical and analytical gradient can 
become if backpropagation is implemented correctly. Since we have implemented a 
relatively simple neural network architecture in this chapter, we want to be rather 
strict about the threshold and define the following rules:

•	 Relative error <= 1e-7 means everything is okay!
•	 Relative error <= 1e-4 means the condition is problematic, and we should 

look into it.
•	 Relative error > 1e-4 means there is probably something wrong in our code.

Now we have established these ground rules, let's implement gradient checking.  
To do so, we can simply take the NeuralNetMLP class that we implemented 
previously and add the following method to the class body:

def _gradient_checking(self, X, y_enc, w1, 
                       w2, epsilon, grad1, grad2):
    """ Apply gradient checking (for debugging only)

    Returns
    ---------
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    relative_error : float
      Relative error between the numerically
      approximated gradients and the backpropagated gradients.

    """
    num_grad1 = np.zeros(np.shape(w1))
    epsilon_ary1 = np.zeros(np.shape(w1))
    for i in range(w1.shape[0]):
        for j in range(w1.shape[1]):
            epsilon_ary1[i, j] = epsilon
            a1, z2, a2, z3, a3 = self._feedforward(
                                           X, 
                                           w1 - epsilon_ary1, 
                                           w2)
            cost1 = self._get_cost(y_enc, 
                                   a3, 
                                   w1-epsilon_ary1, 
                                   w2)
            a1, z2, a2, z3, a3 = self._feedforward(
                                         X, 
                                         w1 + epsilon_ary1, 
                                         w2)
            cost2 = self._get_cost(y_enc, 
                                   a3, 
                                   w1 + epsilon_ary1, 
                                   w2)
            num_grad1[i, j] = (cost2 - cost1) / (2 * epsilon)
            epsilon_ary1[i, j] = 0

    num_grad2 = np.zeros(np.shape(w2))
    epsilon_ary2 = np.zeros(np.shape(w2))
    for i in range(w2.shape[0]):
        for j in range(w2.shape[1]):
            epsilon_ary2[i, j] = epsilon
            a1, z2, a2, z3, a3 = self._feedforward(
                                            X, 
                                            w1, 
                                            w2 - epsilon_ary2)
            cost1 = self._get_cost(y_enc, 
                                   a3, 
                                   w1, 
                                   w2 - epsilon_ary2)
            a1, z2, a2, z3, a3 = self._feedforward(
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                                          X, 
                                          w1, 
                                          w2 + epsilon_ary2)
            cost2 = self._get_cost(y_enc, 
                                   a3, 
                                   w1, 
                                   w2 + epsilon_ary2)
            num_grad2[i, j] = (cost2 - cost1) / (2 * epsilon)
            epsilon_ary2[i, j] = 0

    num_grad = np.hstack((num_grad1.flatten(),
                          num_grad2.flatten()))
    grad = np.hstack((grad1.flatten(), grad2.flatten()))
    norm1 = np.linalg.norm(num_grad - grad)
    norm2 = np.linalg.norm(num_grad)
    norm3 = np.linalg.norm(grad)
    relative_error = norm1 / (norm2 + norm3)
    return relative_error 

The _gradient_checking code seems rather simple. However, my personal 
recommendation is to keep it as simple as possible. Our goal is to double-check 
the gradient computation, so we want to make sure that we do not introduce any 
additional mistakes in gradient checking by writing efficient but complex code. 
Next, we only need to make a small modification to the fit method. In the following 
code, I omitted the code at the beginning of the fit function for clarity, and the only 
lines that we need to add to the method are implemented between the comments ## 
start gradient checking and ## end gradient checking:

class MLPGradientCheck(object):
    [...]
    def fit(self, X, y, print_progress=False):
        [...] 
                # compute gradient via backpropagation
                grad1, grad2 = self._get_gradient(
                                       a1=a1, 
                                       a2=a2,
                                       a3=a3, 
                                       z2=z2,
                                       y_enc=y_enc[:, idx],
                                       w1=self.w1,
                                       w2=self.w2)
                
                ## start gradient checking
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                grad_diff = self._gradient_checking(
                                     X=X[idx],
                                     y_enc=y_enc[:, idx],
                                     w1=self.w1, 
                                     w2=self.w2,
                                     epsilon=1e-5,
                                     grad1=grad1, 
                                     grad2=grad2)
                if grad_diff <= 1e-7:
                    print('Ok: %s' % grad_diff)
                elif grad_diff <= 1e-4:
                    print('Warning: %s' % grad_diff)
                else:
                    print('PROBLEM: %s' % grad_diff)
              
                ## end gradient checking
                
                # update weights; [alpha * delta_w_prev] 
                # for momentum learning
                delta_w1 = self.eta * grad1
                delta_w2 = self.eta * grad2
                self.w1 -= (delta_w1 +\
                           (self.alpha * delta_w1_prev))
                self.w2 -= (delta_w2 +\
                           (self.alpha * delta_w2_prev))
                delta_w1_prev = delta_w1
                delta_w2_prev = delta_w2

        return self

Assuming that we named our modified multi-layer perceptron class 
MLPGradientCheck, we can now initialize a new MLP with 10 hidden layers. Also, 
we disable regularization, adaptive learning, and momentum learning. In addition, 
we use regular gradient descent by setting minibatches to 1. The code is as follows:

>>> nn_check = MLPGradientCheck(n_output=10, 
                                n_features=X_train.shape[1], 
                                n_hidden=10, 
                                l2=0.0, 
                                l1=0.0, 
                                epochs=10, 
                                eta=0.001,
                                alpha=0.0,
                                decrease_const=0.0,
                                minibatches=1, 
                                random_state=1)
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One downside of gradient checking is that it is computationally very, very expensive. 
Training a neural network with gradient checking enabled is so slow that we really 
only want to use it for debugging purposes. For this reason, it is not uncommon to 
run gradient checking only on a handful of training samples (here, we choose 5).  
The code is as follows:

>>> nn_check.fit(X_train[:5], y_train[:5], print_progress=False)
Ok: 2.56712936241e-10
Ok: 2.94603251069e-10
Ok: 2.37615620231e-10
Ok: 2.43469423226e-10
Ok: 3.37872073158e-10
Ok: 3.63466384861e-10
Ok: 2.22472120785e-10
Ok: 2.33163708438e-10
Ok: 3.44653686551e-10
Ok: 2.17161707211e-10 

As we can see from the code output, our multi-layer perceptron passes this test with 
excellent results.

Convergence in neural networks
You might be wondering why we did not use regular gradient descent but  
mini-batch learning to train our neural network for the handwritten digit 
classification. You may recall our discussion on stochastic gradient descent that we 
used to implement online learning. In online learning, we compute the gradient based 
on a single training example ( )1k =  at a time to perform the weight update. Although 
this is a stochastic approach, it often leads to very accurate solutions with a much 
faster convergence than regular gradient descent. Mini-batch learning is a special 
form of stochastic gradient descent where we compute the gradient based on a subset 
k  of the n  training samples with 1 k n< < . Mini-batch learning has the advantage 
over online learning that we can make use of our vectorized implementations to 
improve computational efficiency. However, we can update the weights much faster 
than in regular gradient descent. Intuitively, you can think of mini-batch learning 
as predicting the vote turnout of a presidential election from a poll by asking only a 
representative subset of the population rather than asking the entire population.
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In addition, we added more tuning parameters such as the decrease constant and 
a parameter for an adaptive learning rate. The reason is that neural networks are 
much harder to train than simpler algorithms such as Adaline, logistic regression, or 
support vector machines. In multi-layer neural networks, we typically have hundreds, 
thousands, or even billions of weights that we need to optimize. Unfortunately, the 
output function has a rough surface and the optimization algorithm can easily become 
trapped in local minima, as shown in the following figure:

Note that this representation is extremely simplified since our neural network has 
many dimensions; it makes it impossible to visualize the actual cost surface for the 
human eye. Here, we only show the cost surface for a single weight on the x axis. 
However, the main message is that we do not want our algorithm to get trapped in 
local minima. By increasing the learning rate, we can more readily escape such local 
minima. On the other hand, we also increase the chance of overshooting the global 
optimum if the learning rate is too large. Since we initialize the weights randomly, 
we start with a solution to the optimization problem that is typically hopelessly 
wrong. A decrease constant, which we defined earlier, can help us to climb down the 
cost surface faster in the beginning and the adaptive learning rate allows us to better 
anneal to the global minimum.
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Other neural network architectures
In this chapter, we discussed one of the most popular feedforward neural network 
representations, the multi-layer perceptron. Neural networks are currently one of the 
most active research topics in the machine learning field, and there are many other 
neural network architectures that are well beyond the scope of this book. If you are 
interested in learning more about neural networks and algorithms for deep learning, 
I recommend reading the introduction and overview; Y. Bengio. Learning Deep 
Architectures for AI. Foundations and Trends in Machine Learning, 2(1):1–127, 2009. 
Yoshua Bengio's book is currently freely available at http://www.iro.umontreal.
ca/~bengioy/papers/ftml_book.pdf. 

Although neural networks really are a topic for another book, let's take at least a 
brief look at two other popular architectures, convolutional neural networks and 
recurrent neural networks.

Convolutional Neural Networks
Convolutional Neural Networks (CNNs or ConvNets) gained popularity in 
computer vision due to their extraordinary good performance on image classification 
tasks. As of today, CNNs are one of the most popular neural network architectures in 
deep learning. The key idea behind convolutional neural networks is to build many 
layers of feature detectors to take the spatial arrangement of pixels in an input image 
into account. Note that there exist many different variants of CNNs. In this section, 
we will discuss only the general idea behind this architecture. If you are interested 
in learning more about CNNs, I recommend you to take a look at the publications of 
Yann LeCun (http://yann.lecun.com), who is one of the co-inventors of CNNs. In 
particular, I can recommend the following literature for getting started with CNNs:

•	 Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based Learning 
Applied to Document Recognition. Proceedings of the IEEE, 86(11):2278–2324, 
1998.

•	 P. Y. Simard, D. Steinkraus, and J. C. Platt. Best Practices for Convolutional 
Neural Networks Applied to Visual Document Analysis. IEEE, 2003, p.958.

http://www.iro.umontreal.ca/~bengioy/papers/ftml_book.pdf
http://www.iro.umontreal.ca/~bengioy/papers/ftml_book.pdf
http://yann.lecun.com
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As you will recall from our multi-layer perceptron implementation, we unrolled 
the images into feature vectors and these inputs were fully connected to the hidden 
layer—spatial information was not encoded in this network architecture. In CNNs, 
we use receptive fields to connect the input layer to a feature map. These receptive 
fields can be understood as overlapping windows that we slide over the pixels of 
an input image to create a feature map. The stride lengths of the window sliding as 
well as the window size are additional hyperparameters of the model that we need 
to define a priori. The process of creating the feature map is also called convolution. 
An example of such a convolutional layer, the layer that connects the input pixels to 
each unit in the feature map, is shown in the following figure:

It is important to note that the feature detectors are replicates, which means that the 
receptive fields that map the features to the units in the next layer share the same 
weights. Here, the key idea is that if a feature detector is useful in one part of the 
image, it might be useful in another part as well. The nice side effect of this approach 
is that it greatly reduces the number of parameters that need to be learned. Since 
we allow different patches of the image to be represented in different ways, CNNs 
are particularly good at recognizing objects of different sizes and different positions 
in an image. We do not need to worry so much about rescaling and centering the 
images as it has been done in MNIST.

In CNNs, a convolutional layer is followed by a pooling layer (sometimes also 
called sub-sampling). In pooling, we summarize neighboring feature detectors to 
reduce the number of features for the next layer. Pooling can be understood as a 
simple method of feature extraction where we take the average or maximum value 
of a patch of neighboring features and pass it on to the next layer. To create a deep 
convolutional neural network, we stack multiple layers—alternating between 
convolutional and pooling layers—before we connect it to a multi-layer perceptron 
for classification. This is shown in the following figure:
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Recurrent Neural Networks
Recurrent Neural Networks (RNNs) can be thought of as feedforward neural 
networks with feedback loops or backpropagation through time. In RNNs, the 
neurons only fire for a limited amount of time before they are (temporarily) 
deactivated. In turn, these neurons activate other neurons that fire at a later point 
in time. Basically, we can think of recurrent neural networks as MLPs with an 
additional time variable. The time component and dynamic structure allows  
the network to use not only the current inputs but also the inputs that it  
encountered earlier.
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Although RNNs achieved remarkable results in speech recognition, language 
translation, and connected handwriting recognition, these network architectures 
are typically much harder to train. This is because we cannot simply backpropagate 
the error layer by layer; we have to consider the additional time component, 
which amplifies the vanishing and exploding gradient problem. In 1997, Juergen 
Schmidhuber and his co-workers introduced the so-called long short-term memory 
units to overcome this problem: Long Short Term Memory (LSTM) units;  
S. Hochreiter and J. Schmidhuber. Long Short-term Memory. Neural Computation, 
9(8):1735–1780, 1997.

However, we should note that there are many different variants of RNNs, and a 
detailed discussion is beyond the scope of this book.

A few last words about neural network 
implementation
You might be wondering why we went through all of this theory just to implement 
a simple multi-layer artificial network that can classify handwritten digits instead 
of using an open source Python machine learning library. One reason is that at 
the time of writing this book, scikit-learn does not have an MLP implementation. 
More importantly, we (machine learning practitioners) should have at least a basic 
understanding of the algorithms that we are using in order to apply machine 
learning techniques appropriately and successfully.

Now that we know how feedforward neural networks work, we are ready to 
explore more sophisticated Python libraries built on top of NumPy such as Theano 
(http://deeplearning.net/software/theano/), which allows us to construct 
neural networks more efficiently. We will see this in Chapter 13, Parallelizing Neural 
Network Training with Theano. Over the last couple of years, Theano has gained a lot of 
popularity among machine learning researchers, who use it to construct deep neural 
networks because of its ability to optimize mathematical expressions for computations 
on multi-dimensional arrays utilizing Graphical Processing Units (GPUs).

A great collection of Theano tutorials can be found at http://deeplearning.net/
software/theano/tutorial/index.html#tutorial.

There are also a number of interesting libraries that are being actively developed to 
train neural networks in Theano, which you should keep on your radar:

•	 Pylearn2 (http://deeplearning.net/software/pylearn2/)
•	 Lasagne (https://lasagne.readthedocs.org/en/latest/)
•	 Keras (http://keras.io)

(http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/tutorial/index.html#tutorial
http://deeplearning.net/software/theano/tutorial/index.html#tutorial
http://deeplearning.net/software/pylearn2/
https://lasagne.readthedocs.org/en/latest/
http://keras.io
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Summary
In this chapter, you have learned about the most important concepts behind  
multi-layer artificial neural networks, which are currently the hottest topic in 
machine learning research. In Chapter 2, Training Machine Learning Algorithms for 
Classification, we started our journey with simple single-layer neural network 
structures and now we have connected multiple neurons to a powerful neural 
network architecture to solve complex problems such as handwritten digit 
recognition. We demystified the popular backpropagation algorithm, which is one of 
the building blocks of many neural network models that are used in deep learning. 
After learning about the backpropagation algorithm, we were able to update the 
weights of such a complex neural network. We also added useful modifications such 
as mini-batch learning and an adaptive learning rate that allows us to train a neural 
network more efficiently.
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Parallelizing Neural Network 
Training with Theano

In the previous chapter, we went over a lot of mathematical concepts to understand 
how feedforward artificial neural networks and multilayer perceptrons in particular 
work. First and foremost, having a good understanding of the mathematical 
underpinnings of machine learning algorithms is very important, since it helps 
us to use those powerful algorithms most effectively and correctly. Throughout 
the previous chapters, you dedicated a lot of time to learning the best practices of 
machine learning, and you even practiced implementing algorithms yourself from 
scratch. In this chapter, you can lean back a little bit and rest on your laurels, I want 
you to enjoy this exciting journey through one of the most powerful libraries that 
is used by machine learning researchers to experiment with deep neural networks 
and train them very efficiently. Most of modern machine learning research utilizes 
computers with powerful Graphics Processing Units (GPUs). If you are interested 
in diving into deep learning, which is currently the hottest topic in machine learning 
research, this chapter is definitely for you. However, do not worry if you do not have 
access to GPUs; in this chapter, the use of GPUs will be optional, not required.

Before we get started, let me give you a brief overview of the topics that we will 
cover in this chapter:

•	 Writing optimized machine learning code with Theano
•	 Choosing activation functions for artificial neural networks
•	 Using the Keras deep learning library for fast and easy experimentation



Parallelizing Neural Network Training with Theano

[ 388 ]

Building, compiling, and running 
expressions with Theano
In this section, we will explore the powerful Theano tool, which has been 
designed to train machine learning models most effectively using Python. The 
Theano development started back in 2008 in the LISA lab (short for Laboratoire 
d'Informatique des Systèmes Adaptatifs (http://lisa.iro.umontreal.ca)) lead 
by Yoshua Bengio.

Before we discuss what Theano really is and what it can do for us to speed up our 
machine learning tasks, let's discuss some of the challenges when we are running 
expensive calculations on our hardware. Luckily, the performance of computer 
processors keeps on improving constantly over the years, which allows us to train 
more powerful and complex learning systems to improve the predictive performance 
of our machine learning models. Even the cheapest desktop computer hardware 
that is available nowadays comes with processing units that have multiple cores. 
In the previous chapters, we saw that many functions in scikit-learn allow us to 
spread the computations over multiple processing units. However, by default, 
Python is limited to execution on one core, due to the Global Interpreter Lock (GIL). 
However, although we take advantage of its multiprocessing library to distribute 
computations over multiple cores, we have to consider that even advanced desktop 
hardware rarely comes with more than 8 or 16 such cores.

If we think back of the previous chapter where we implemented a very simple 
multilayer perceptron with only one hidden layer consisting of 50 units, we already 
had to optimize approximately 1000 weights to learn a model for a very simple 
image classification task. The images in MNIST are rather small (28 x 28 pixels), 
and we can only imagine the explosion in the number of parameters if we want to 
add additional hidden layers or work with images that have higher pixel densities. 
Such a task would quickly become unfeasible for a single processing unit. Now, the 
question is how can we tackle such problems more effectively? The obvious solution 
to this problem is to use GPUs. GPUs are real power horses. You can think of a 
graphics card as a small computer cluster inside your machine. Another advantage is 
that modern GPUs are relatively cheap compared to the state-of-the-art CPUs, as we 
can see in the following overview:

http://lisa.iro.umontreal.ca
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Sources for this can be found on the following websites:

•	 http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-980-
ti/specifications

•	 http://ark.intel.com/products/82930/Intel-Core-i7-5960X-
Processor-Extreme-Edition-20M-Cache-up-to-3_50-GHz

(date: August 20, 2015)

At 70 percent of the price of a modern CPU, we can get a GPU that has 450 times 
more cores, and is capable of around 15 times more floating-point calculations per 
second. So, what is holding us back from utilizing GPUs for our machine learning 
tasks? The challenge is that writing code to target GPUs is not as trivial as executing 
Python code in our interpreter. There are special packages such as CUDA and 
OpenCL that allow us to target the GPU. However, writing code in CUDA or 
OpenCL is probably not the most convenient environment for implementing  
and running machine learning algorithms. The good news is that this is what  
Theano was developed for!

http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-980-ti/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-980-ti/specifications
http://ark.intel.com/products/82930/Intel-Core-i7-5960X-Processor-Extreme-Edition-20M-Cache-up-to-3_50-GHz
http://ark.intel.com/products/82930/Intel-Core-i7-5960X-Processor-Extreme-Edition-20M-Cache-up-to-3_50-GHz
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What is Theano?
What exactly is Theano—a programming language, a compiler, or a Python 
library? It turns out that it fits all these descriptions. Theano has been developed to 
implement, compile, and evaluate mathematical expressions very efficiently with 
a strong focus on multidimensional arrays (tensors). It comes with an option to 
run code on CPU(s). However, its real power comes from utilizing GPUs to take 
advantage of the large memory bandwidths and great capabilities for floating point 
math. Using Theano, we can easily run code in parallel over shared memory as well. 
In 2010, the developers of Theano reported an 1.8x faster performance than NumPy 
when the code was run on the CPU, and if Theano targeted the GPU, it was even 11x 
faster than NumPy (J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. 
Desjardins, J. Turian, D. Warde-Farley, and Y. Bengio. Theano: A CPU and GPU Math 
Compiler in Python. In Proc. 9th Python in Science Conf, pages 1–7, 2010.). Now, keep 
in mind that this benchmark is from 2010, and Theano has improved significantly 
over the years, and so have the capabilities of modern graphics cards.

So, how does Theano relate to NumPy? Theano is built on top of NumPy and it has 
a very similar syntax, which makes the usage very convenient for people who are 
already familiar with the latter. To be fair, Theano is not just "NumPy on steroids" 
as many people would describe it, but it also shares some similarities with SymPy 
(http://www.sympy.org), a Python package for symbolic computations (or symbolic 
algebra). As we saw in previous chapters, in NumPy, we describe what our variables 
are, and how we want to combine them; then, the code is executed line by line. In 
Theano, however, we write down the problem first and the description of how  
we want to analyze it. Then, Theano optimizes and compiles code for us using  
C/C++, or CUDA/OpenCL if we want to run it on the GPU. In order to generate the 
optimized code for us, Theano needs to know the scope of our problem; think of it 
as a tree of operations (or a graph of symbolic expressions). Note that Theano is still 
under active development, and many new features are added and improvements are 
made on a regular basis. In this chapter, we will explore the basic concepts behind 
Theano and learn how to use it for machine learning tasks. Since Theano is a large 
library with many advanced features, it would be impossible to cover all of them in 
this book. However, I will provide useful links to the excellent online documentation 
(http://deeplearning.net/software/theano/) if you want to learn more about 
this library.

http://www.sympy.org
http://deeplearning.net/software/theano/
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First steps with Theano
In this section, we will take our first steps with Theano. Depending on how your 
system is set up, you typically can just use the pip installer and install Theano from 
PyPI by executing the following from your command-line terminal:

pip install Theano

If you should experience problems with the installation procedure, I recommend you 
to read more about system and platform-specific recommendations that are provided 
at http://deeplearning.net/software/theano/install.html. Note that all 
the code in this chapter can be run on your CPU; using the GPU is entirely optional 
but recommended if you fully want to enjoy the benefits of Theano. If you have a 
graphics card that supports either CUDA or OpenCL, please refer to the up-to-date 
tutorial at http://deeplearning.net/software/theano/tutorial/using_gpu.
html#using-gpu to set it up appropriately.

At its core, Theano is built around so-called tensors to evaluate symbolic 
mathematical expressions. Tensors can be understood as a generalization of scalars, 
vectors, matrices, and so on. More concretely, a scalar can be defined as a rank-0 
tensor, a vector as a rank-1 tensor, a matrix as rank-2 tensor, and matrices stacked in 
a third dimension as rank-3 tensors. As a warm-up exercise, we will start with the 
use of simple scalars from the Theano tensor module to compute a net input z  of a 
sample point x  in a one dimensional dataset with weight 1w  and bias 0w :

1 1 0z x w w= × +

The code is as follows:

>>> import theano
>>> from theano import tensor as T

# initialize
>>> x1 = T.scalar()
>>> w1 = T.scalar()
>>> w0 = T.scalar()
>>> z1 = w1 * x1 + w0

# compile
>>> net_input = theano.function(inputs=[w1, x1, w0], 
...                             outputs=z1)

# execute
>>> print('Net input: %.2f' % net_input(2.0, 1.0, 0.5))
Net input: 2.50

http://deeplearning.net/software/theano/install.html
http://deeplearning.net/software/theano/tutorial/using_gpu.html#using-gpu
http://deeplearning.net/software/theano/tutorial/using_gpu.html#using-gpu
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This was pretty straightforward, right? If we write code in Theano, we just have to 
follow three simple steps: define the symbols (Variable objects), compile the code, 
and execute it. In the initialization step, we defined three symbols, x1, w1, and w0, to 
compute z1. Then, we compiled a function net_input to compute the net input z1.

However, there is one particular detail that deserves special attention if we write 
Theano code: the type of our variables (dtype). Consider it as a blessing or burden, 
but in Theano we need to choose whether we want to use 64 or 32 bit integers or 
floats, which greatly affects the performance of the code. Let's discuss those variable 
types in more detail in the next section.

Configuring Theano
Nowadays, no matter whether we run Mac OS X, Linux, or Microsoft Windows,  
we mainly use software and applications using 64-bit memory addresses. However, 
if we want to accelerate the evaluation of mathematical expressions on GPUs, we 
still often rely on the older 32-bit memory addresses. Currently, this is the only 
supported computing architecture in Theano. In this section, we will see how  
to configure Theano appropriately. If you are interested in more details about  
the Theano configuration, please refer to the online documentation at  
http://deeplearning.net/software/theano/library/config.html.

When we are implementing machine learning algorithms, we are mostly working 
with floating point numbers. By default, both NumPy and Theano use the double-
precision floating-point format (float64). However, it would be really useful to 
toggle back and forth float64 (CPU), and float32 (GPU) when we are developing 
Theano code for prototyping on CPU and execution on GPU. For example, to access 
the default settings for Theano's float variables, we can execute the following code in 
our Python interpreter:

>>> print(theano.config.floatX)
float64

If you have not modified any settings after the installation of Theano, the floating 
point default should be float64. However, we can simply change it to float32 in 
our current Python session via the following code:

>>> theano.config.floatX = 'float32'

Note that although the current GPU utilization in Theano requires float32 types, 
we can use both float64 and float32 on our CPUs. Thus, if you want to change the 
default settings globally, you can change the settings in your THEANO_FLAGS variable 
via the command-line (Bash) terminal:

export THEANO_FLAGS=floatX=float32 

http://deeplearning.net/software/theano/library/config.html


Chapter 13

[ 393 ]

Alternatively, you can apply these settings only to a particular Python script,  
by running it as follows:

THEANO_FLAGS=floatX=float32 python your_script.py

So far, we discussed how to set the default floating-point types to get the best bang 
for the buck on our GPU using Theano. Next, let's discuss the options to toggle 
between CPU and GPU execution. If we execute the following code, we can check 
whether we are using CPU or GPU:

>>> print(theano.config.device)
cpu

My personal recommendation is to use cpu as default, which makes prototyping  
and code debugging easier. For example, you can run Theano code on your CPU  
by executing it a script, as from your command-line terminal:

THEANO_FLAGS=device=cpu,floatX=float64 python your_script.py

However, once we have implemented the code and want to run it most efficiently 
utilizing our GPU hardware, we can then run it via the following code without 
making additional modifications to our original code:

THEANO_FLAGS=device=gpu,floatX=float32 python your_script.py

It may also be convenient to create a .theanorc file in your home directory to  
make these configurations permanent. For example, to always use float32 and the 
GPU, you can create such a .theanorc file including these settings. The command is 
as follows:

echo -e "\n[global]\nfloatX=float32\ndevice=gpu\n" >> ~/.theanorc

If you are not operating on a MacOS X or Linux terminal, you can create a .theanorc 
file manually using your favorite text editor and add the following contents:

[global]
floatX=float32
device=gpu

Now that we know how to configure Theano appropriately with respect to our 
available hardware, we can discuss how to use more complex array structures in  
the next section.
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Working with array structures
In this section, we will discuss how to use array structures in Theano using its 
tensor module. By executing the following code, we will create a simple 2 x 3 
matrix, and calculate the column sums using Theano's optimized tensor expressions:

>>> import numpy as np

# initialize
>>> x = T.fmatrix(name='x')
>>> x_sum = T.sum(x, axis=0)

# compile
>>> calc_sum = theano.function(inputs=[x], outputs=x_sum)

# execute (Python list)
>>> ary = [[1, 2, 3], [1, 2, 3]]
>>> print('Column sum:', calc_sum(ary))
Column sum: [ 2.  4.  6.]

# execute (NumPy array)
>>> ary = np.array([[1, 2, 3], [1, 2, 3]], 
...                dtype=theano.config.floatX)
>>> print('Column sum:', calc_sum(ary))
Column sum: [ 2.  4.  6.]

As we saw earlier, there are just three basic steps that we have to follow when we 
are using Theano: defining the variable, compiling the code, and executing it. The 
preceding example shows that Theano can work with both Python and NumPy 
types: list and numpy.ndarray.

Note that we used the optional name argument (here, x) when we created 
the fmatrix TensorVariable, which can be helpful to debug our code 
or print the Theano graph. For example, if we'd print the fmatrix 
symbol x without giving it a name, the print function would return its 
TensorType:

>>> print(x)
<TensorType(float32, matrix)>

However, if the TensorVariable was initialized with a name  
argument x as in our preceding example, it would be returned by  
the print function:

>>> print(x)
x

The TensorType can be accessed via the type method:
>>> print(x.type())
<TensorType(float32, matrix)>
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Theano also has a very smart memory management system that reuses memory 
to make it fast. More concretely, Theano spreads memory space across multiple 
devices, CPUs and GPUs; to track changes in the memory space, it aliases the 
respective buffers. Next, we will take a look at the shared variable, which allows us 
to spread large objects (arrays) and grants multiple functions read and write access, 
so that we can also perform updates on those objects after compilation. A detailed 
description of the memory handling in Theano is beyond the scope of this book. 
Thus, I encourage you to follow-up on the up-to-date information about Theano and 
memory management at http://deeplearning.net/software/theano/tutorial/
aliasing.html.

# initialize
>>> x = T.fmatrix('x')
>>> w = theano.shared(np.asarray([[0.0, 0.0, 0.0]], 
                                 dtype=theano.config.floatX))
>>> z = x.dot(w.T)
>>> update = [[w, w + 1.0]]

# compile
>>> net_input = theano.function(inputs=[x], 
...                             updates=update, 
...                             outputs=z)

# execute
>>> data = np.array([[1, 2, 3]], 
...                 dtype=theano.config.floatX)
>>> for i in range(5):
...     print('z%d:' % i, net_input(data))
z0: [[ 0.]]
z1: [[ 6.]]
z2: [[ 12.]]
z3: [[ 18.]]
z4: [[ 24.]]

As you can see, sharing memory via Theano is really easy: In the preceding example, 
we defined an update variable where we declared that we want to update an array w 
by a value 1.0 after each iteration in the for loop. After we defined which object we 
want to update and how, we passed this information to the update parameter of the 
theano.function compiler.

http://deeplearning.net/software/theano/tutorial/aliasing.html
http://deeplearning.net/software/theano/tutorial/aliasing.html
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Another neat trick in Theano is to use the givens variable to insert values into 
the graph before compiling it. Using this approach, we can reduce the number of 
transfers from RAM over CPUs to GPUs to speed up learning algorithms that use 
shared variables. If we use the inputs parameter in theano.function, data is 
transferred from the CPU to the GPU multiple times, for example, if we iterate over a 
dataset multiple times (epochs) during gradient descent. Using givens, we can keep 
the dataset on the GPU if it fits into its memory (for example, if we are learning with 
mini-batches). The code is as follows:

# initialize
>>> data = np.array([[1, 2, 3]], 
...                 dtype=theano.config.floatX)
>>> x = T.fmatrix('x')
>>> w = theano.shared(np.asarray([[0.0, 0.0, 0.0]], 
...                              dtype=theano.config.floatX))
>>> z = x.dot(w.T)
>>> update = [[w, w + 1.0]]

# compile
>>> net_input = theano.function(inputs=[], 
...                             updates=update, 
...                             givens={x: data},
...                             outputs=z)

# execute
>>> for i in range(5):
...     print('z:', net_input())
z0: [[ 0.]]
z1: [[ 6.]]
z2: [[ 12.]]
z3: [[ 18.]]
z4: [[ 24.]]

Looking at the preceding code example, we also see that the givens attribute  
is a Python dictionary that maps a variable name to the actual Python object.  
Here, we set this name when we defined the fmatrix.
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Wrapping things up – a linear regression 
example
Now that we familiarized ourselves with Theano, let's take a look at a really practical 
example and implement Ordinary Least Squares (OLS) regression. For a quick 
refresher on regression analysis, please refer to Chapter 10, Predicting Continuous 
Target Variables with Regression Analysis.

Let's start by creating a small one-dimensional toy dataset with five training samples:

>>> X_train = np.asarray([[0.0], [1.0], 
...                       [2.0], [3.0], 
...                       [4.0], [5.0], 
...                       [6.0], [7.0], 
...                       [8.0], [9.0]], 
...                      dtype=theano.config.floatX)
>>> y_train = np.asarray([1.0, 1.3, 
...                       3.1, 2.0, 
...                       5.0, 6.3, 
...                       6.6, 7.4, 
...                       8.0, 9.0], 
...                      dtype=theano.config.floatX)

Note that we are using theano.config.floatX when we construct the NumPy 
arrays, so we can optionally toggle back and forth between CPU and GPU  
if we want.

Next, let's implement a training function to learn the weights of the linear regression 
model, using the sum of squared errors cost function. Note that 0w  is the bias unit  
(the y axis intercept at 0x = ). The code is as follows:

import theano
from theano import tensor as T
import numpy as np

def train_linreg(X_train, y_train, eta, epochs):

    costs = []
    # Initialize arrays
    eta0 = T.fscalar('eta0')
    y = T.fvector(name='y') 
    X = T.fmatrix(name='X')   
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    w = theano.shared(np.zeros(
                        shape=(X_train.shape[1] + 1),
                        dtype=theano.config.floatX),
                      name='w')
    
    # calculate cost
    net_input = T.dot(X, w[1:]) + w[0]
    errors = y - net_input
    cost = T.sum(T.pow(errors, 2)) 

    # perform gradient update
    gradient = T.grad(cost, wrt=w)
    update = [(w, w - eta0 * gradient)]

    # compile model
    train = theano.function(inputs=[eta0],
                            outputs=cost,
                            updates=update,
                            givens={X: X_train,
                                    y: y_train,})      
    
    for _ in range(epochs):
        costs.append(train(eta))
    
    return costs, w

A really nice feature in Theano is the grad function that we used in the preceding 
code example. The grad function automatically computes the derivative of an 
expression with respect to its parameters that we passed to the function as the  
wrt argument.

After we implemented the training function, let's train our linear regression model 
and take a look at the values of the Sum of Squared Errors (SSE) cost function to 
check if it converged:

>>> import matplotlib.pyplot as plt
>>> costs, w = train_linreg(X_train, y_train, eta=0.001, epochs=10)
>>> plt.plot(range(1, len(costs)+1), costs)
>>> plt.tight_layout()
>>> plt.xlabel('Epoch')
>>> plt.ylabel('Cost')
>>> plt.show()
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As we can see in the following plot, the learning algorithm already converged after 
the fifth epoch:

So far so good; by looking at the cost function, it seems that we built a working 
regression model from this particular dataset. Now, let's compile a new function  
to make predictions based on the input features:

def predict_linreg(X, w):
    Xt = T.matrix(name='X')
    net_input = T.dot(Xt, w[1:]) + w[0]
    predict = theano.function(inputs=[Xt], 
                              givens={w: w}, 
                              outputs=net_input)
    return predict(X)

Implementing a predict function was pretty straightforward following the three-
step procedure of Theano: define, compile, and execute. Next, let's plot the linear 
regression fit on the training data:

>>> plt.scatter(X_train, 
...             y_train, 
...             marker='s', 
...             s=50)
>>> plt.plot(range(X_train.shape[0]), 
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...          predict_linreg(X_train, w), 

...          color='gray', 

...          marker='o', 

...          markersize=4, 

...          linewidth=3)
>>> plt.xlabel('x')
>>> plt.ylabel('y')
>>> plt.show()

As we can see in the resulting plot, our model fits the data points appropriately:

Implementing a simple regression model was a good exercise to become familiar 
with the Theano API. However, our ultimate goal is to play out the advantages of 
Theano, that is, implementing powerful artificial neural networks. We should now be 
equipped with all the tools we would need to implement the multilayer perceptron 
from Chapter 12, Training Artificial Neural Networks for Image Recognition, in Theano. 
However, this would be rather boring, right? Thus, we will take a look at one of my 
favorite deep learning libraries built on top of Theano to make the experimentation 
with neural networks as convenient as possible. However, before we introduce the 
Keras library, let's first discuss the different choices of activation functions in neural 
networks in the next section.
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Choosing activation functions for 
feedforward neural networks
For simplicity, we have only discussed the sigmoid activation function in context 
of multilayer feedforward neural networks so far; we used in the hidden layer as 
well as the output layer in the multilayer perceptron implementation in Chapter 12, 
Training Artificial Neural Networks for Image Recognition. Although we referred to this 
activation function as sigmoid function—as it is commonly called in literature—the 
more precise definition would be logistic function or negative log-likelihood function. In 
the following subsections, you will learn more about alternative sigmoidal functions 
that are useful for implementing multilayer neural networks.

Technically, we could use any function as activation function in multilayer  
neural networks as long as it is differentiable. We could even use linear activation 
functions such as in Adaline (Chapter 2, Training Machine Learning Algorithms 
for Classification). However, in practice, it would not be very useful to use linear 
activation functions for both hidden and output layers, since we want to introduce 
nonlinearity in a typical artificial neural network to be able to tackle complex 
problem tasks. The sum of linear functions yields a linear function after all.

The logistic activation function that we used in the previous chapter probably 
mimics the concept of a neuron in a brain most closely: we can think of it as 
probability of whether a neuron fires or not. However, logistic activation functions 
can be problematic if we have highly negative inputs, since the output of the sigmoid 
function would be close to zero in this case. If the sigmoid function returns outputs 
that are close to zero, the neural network would learn very slowly and it becomes 
more likely that it gets trapped in local minima during training. This is why people 
often prefer a hyperbolic tangent as activation function in hidden layers. Before we 
discuss what a hyperbolic tangent looks like, let's briefly recapitulate some of the 
basics of the logistic function and look at a generalization that makes it more useful 
for multi-class classification tasks.
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Logistic function recap
As we mentioned it in the introduction to this section, the logistic function, often 
just called the sigmoid function, is in fact a special case of a sigmoid function. 
We recall from the section on logistic regression in Chapter 3, A Tour of Machine 
Learning Classifiers Using Scikit-learn, that we can use the logistic function to model 
the probability that sample x  belongs to the positive class (class 1) in a binary 
classification task:

( ) 1
1logistic zz
e

φ −=
+

Here, the scalar variable z  is defined as the net input:
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0
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Note that 0w  is the bias unit (y-axis intercept, 0 1x = ). To provide a more concrete 
example, let's assume a model for a two-dimensional data point x and a model with 
the following weight coefficients assigned to the vector w :

>>> X = np.array([[1, 1.4, 1.5]])
>>> w = np.array([0.0, 0.2, 0.4])

>>> def net_input(X, w):
...     z = X.dot(w)
...     return z

>>> def logistic(z):
...     return 1.0 / (1.0 + np.exp(-z))

>>> def logistic_activation(X, w):
...     z = net_input(X, w)
...     return logistic(z)

>>> print('P(y=1|x) = %.3f' 
...       % logistic_activation(X, w)[0])
P(y=1|x) = 0.707
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If we calculate the net input and use it to activate a logistic neuron with those 
particular feature values and weight coefficients, we get back a value of 0.707,  
which we can interpret as a 70.7 percent probability that this particular sample x  
belongs to the positive class. In Chapter 12, Training Artificial Neural Networks for  
Image Recognition, we used the one-hot encoding technique to compute the values  
in the output layer consisting of multiple logistic activation units. However, as 
we will demonstrate with the following code example, an output layer consisting 
of multiple logistic activation units does not produce meaningful, interpretable 
probability values:

# W : array, shape = [n_output_units, n_hidden_units+1]
#          Weight matrix for hidden layer -> output layer.
# note that first column (A[:][0] = 1) are the bias units
>>> W = np.array([[1.1, 1.2, 1.3, 0.5],
...               [0.1, 0.2, 0.4, 0.1],
...               [0.2, 0.5, 2.1, 1.9]])

# A : array, shape = [n_hidden+1, n_samples]
#          Activation of hidden layer.
# note that first element (A[0][0] = 1) is the bias unit
>>> A = np.array([[1.0], 
...               [0.1], 
...               [0.3], 
...               [0.7]])

# Z : array, shape = [n_output_units, n_samples]
#          Net input of the output layer.
>>> Z = W.dot(A) 
>>> y_probas = logistic(Z)
>>> print('Probabilities:\n', y_probas)
Probabilities:
 [[ 0.87653295]
 [ 0.57688526]
 [ 0.90114393]]

As we can see in the output, the probability that the particular sample belongs to the 
first class is almost 88 percent, the probability that the particular sample belongs to 
the second class is almost 58 percent, and the probability that the particular sample 
belongs to the third class is 90 percent, respectively. This is clearly confusing, since 
we all know that a percentage should intuitively be expressed as a fraction of 100. 
However, this is in fact not a big concern if we only use our model to predict the 
class labels, not the class membership probabilities.

>>> y_class = np.argmax(Z, axis=0)
>>> print('predicted class label: %d' % y_class[0])
predicted class label: 2
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However, in certain contexts, it can be useful to return meaningful class probabilities 
for multi-class predictions. In the next section, we will take a look at a generalization 
of the logistic function, the softmax function, which can help us with this task.

Estimating probabilities in multi-class 
classification via the softmax function
The softmax function is a generalization of the logistic function that allows us 
to compute meaningful class-probabilities in multi-class settings (multinomial 
logistic regression). In softmax, the probability of a particular sample with net 
input z  belongs to the i th class can be computed with a normalization term in the 
denominator that is the sum of all M  linear functions:
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To see softmax in action, let's code it up in Python:

>>> def softmax(z): 
...     return np.exp(z) / np.sum(np.exp(z))

>>> def softmax_activation(X, w):
...     z = net_input(X, w)
...     return sigmoid(z)

>>> y_probas = softmax(Z)
>>> print('Probabilities:\n', y_probas)
Probabilities:
 [[ 0.40386493]
 [ 0.07756222]
 [ 0.51857284]]
>>> y_probas.sum()
1.0
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As we can see, the predicted class probabilities now sum up to one, as we would 
expect. It is also notable that the probability for the second class is close to zero, since 
there is a large gap between 1z  and ( )max z . However, note that the predicted class 
label is the same as in the logistic function. Intuitively, it may help to think of the 
softmax function as a normalized logistic function that is useful to obtain meaningful 
class-membership predictions in multi-class settings.

>>> y_class = np.argmax(Z, axis=0)
>>> print('predicted class label: 
...        %d' % y_class[0])
predicted class label: 2

Broadening the output spectrum by using a 
hyperbolic tangent
Another sigmoid function that is often used in the hidden layers of artificial neural 
networks is the hyperbolic tangent (tanh), which can be interpreted as a rescaled 
version of the logistic function.
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The advantage of the hyperbolic tangent over the logistic function is that it has a 
broader output spectrum and ranges the open interval (-1, 1), which can improve the 
convergence of the back propagation algorithm (C. M. Bishop. Neural networks for 
pattern recognition. Oxford university press, 1995, pp. 500-501). In contrast, the logistic 
function returns an output signal that ranges the open interval (0, 1). For an intuitive 
comparison of the logistic function and the hyperbolic tangent, let's plot two sigmoid 
functions in a one-dimensional space:

>>> import matplotlib.pyplot as plt

>>> def tanh(z):
...     e_p = np.exp(z) 
...     e_m = np.exp(-z)
...     return (e_p - e_m) / (e_p + e_m)  

>>> z = np.arange(-5, 5, 0.005)
>>> log_act = logistic(z)
>>> tanh_act = tanh(z)

>>> plt.ylim([-1.5, 1.5])
>>> plt.xlabel('net input $z$')
>>> plt.ylabel('activation $\phi(z)$')
>>> plt.axhline(1, color='black', linestyle='--')
>>> plt.axhline(0.5, color='black', linestyle='--')
>>> plt.axhline(0, color='black', linestyle='--')
>>> plt.axhline(-1, color='black', linestyle='--')

>>> plt.plot(z, tanh_act, 
...          linewidth=2, 
...          color='black', 
...          label='tanh')
>>> plt.plot(z, log_act, 
...          linewidth=2, 
...          color='lightgreen', 
...          label='logistic')

>>> plt.legend(loc='lower right')
>>> plt.tight_layout()
>>> plt.show()
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As we can see, the shapes of the two sigmoidal curves look very similar; however, 
the tanh function has 2x larger output space than the logistic function:

Note that we implemented the logistic and tanh functions verbosely for the 
purpose of illustration. In practice, we can use NumPy's tanh function to achieve  
the same results:

>>>  tanh_act = np.tanh(z)

In addition, the logistic function is available in SciPy's special module:

>>> from scipy.special import expit
>>> log_act = expit(z)
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Now that we know more about the different activation functions that are commonly 
used in artificial neural networks, let's conclude this section with an overview of the 
different activation function that we encountered in this book.

Training neural networks efficiently using 
Keras
In this section, we will take a look at Keras, one of the most recently developed 
libraries to facilitate neural network training. The development on Keras started in 
the early months of 2015; as of today, it has evolved into one of the most popular 
and widely used libraries that are built on top of Theano, and allows us to utilize our 
GPU to accelerate neural network training. One of its prominent features is that it's 
a very intuitive API, which allows us to implement neural networks in only a few 
lines of code. Once you have Theano installed, you can install Keras from PyPI by 
executing the following command from your terminal command line:

pip install Keras
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For more information about Keras, please visit the official website at  
http://keras.io.

To see what neural network training via Keras looks like, let's implement  
a multilayer perceptron to classify the handwritten digits from the MNIST  
dataset, which we introduced in the previous chapter. The MNIST dataset  
can be downloaded from http://yann.lecun.com/exdb/mnist/ in four  
parts as listed here:

•	 train-images-idx3-ubyte.gz: These are training set images  
(9912422 bytes)

•	 train-labels-idx1-ubyte.gz: These are training set labels (28881 bytes)
•	 t10k-images-idx3-ubyte.gz: These are test set images (1648877 bytes)
•	 t10k-labels-idx1-ubyte.gz: These are test set labels (4542 bytes)

After downloading and unzipped the archives, we place the files into a directory 
mnist in our current working directory, so that we can load the training as well as  
the test dataset using the following function:

import os
import struct
import numpy as np
 
def load_mnist(path, kind='train'):
    """Load MNIST data from `path`"""
    labels_path = os.path.join(path, 
                               '%s-labels-idx1-ubyte' 
                                % kind)
    images_path = os.path.join(path, 
                               '%s-images-idx3-ubyte' 
                               % kind)
        
    with open(labels_path, 'rb') as lbpath:
        magic, n = struct.unpack('>II', 
                                 lbpath.read(8))
        labels = np.fromfile(lbpath, 
                             dtype=np.uint8)

    with open(images_path, 'rb') as imgpath:
        magic, num, rows, cols = struct.unpack(">IIII", 
                                               imgpath.read(16))
        images = np.fromfile(imgpath, 
                             dtype=np.uint8).reshape(len(labels), 784)
 

http://keras.io
http://yann.lecun.com/exdb/mnist/
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    return images, labels
X_train, y_train = load_mnist('mnist', kind='train')
print('Rows: %d, columns: %d' % (X_train.shape[0], X_train.shape[1]))
Rows: 60000, columns: 784
X_test, y_test = load_mnist('mnist', kind='t10k')
print('Rows: %d, columns: %d' % (X_test.shape[0], X_test.shape[1]))
Rows: 10000, columns: 784

On the following pages, we will walk through the code examples for using Keras 
step by step, which you can directly execute from your Python interpreter. However, 
if you are interested in training the neural network on your GPU, you can either put 
it into a Python script, or download the respective code from the Packt Publishing 
website. In order to run the Python script on your GPU, execute the following 
command from the directory where the mnist_keras_mlp.py file is located:

    THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python mnist_
keras_mlp.py

To continue with the preparation of the training data, let's cast the MNIST image 
array into 32-bit format:

>>> import theano 
>>> theano.config.floatX = 'float32'
>>> X_train = X_train.astype(theano.config.floatX) 
>>> X_test = X_test.astype(theano.config.floatX)

Next, we need to convert the class labels (integers 0-9) into the one-hot format. 
Fortunately, Keras provides a convenient tool for this:

>>> from keras.utils import np_utils
>>> print('First 3 labels: ', y_train[:3])
First 3 labels:  [5 0 4]
>>> y_train_ohe = np_utils.to_categorical(y_train) 
>>> print('\nFirst 3 labels (one-hot):\n', y_train_ohe[:3])
First 3 labels (one-hot):
 [[ 0.  0.  0.  0.  0.  1.  0.  0.  0.  0.]
 [ 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  1.  0.  0.  0.  0.  0.]]
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Now, we can get to the interesting part and implement a neural network. Here, we 
will use the same architecture as in Chapter 12, Training Artificial Neural Networks for 
Image Recognition. However, we will replace the logistic units in the hidden layer 
with hyperbolic tangent activation functions, replace the logistic function in the 
output layer with softmax, and add an additional hidden layer. Keras makes these 
tasks very simple, as you can see in the following code implementation:

>>> from keras.models import Sequential
>>> from keras.layers.core import Dense
>>> from keras.optimizers import SGD

>>> np.random.seed(1) 

>>> model = Sequential()
>>> model.add(Dense(input_dim=X_train.shape[1], 
...                 output_dim=50, 
...                 init='uniform', 
...                 activation='tanh'))

>>> model.add(Dense(input_dim=50, 
...                 output_dim=50, 
...                 init='uniform', 
...                 activation='tanh'))

>>> model.add(Dense(input_dim=50, 
...                 output_dim=y_train_ohe.shape[1], 
...                 init='uniform', 
...                 activation='softmax'))

>>> sgd = SGD(lr=0.001, decay=1e-7, momentum=.9)
>>> model.compile(loss='categorical_crossentropy', optimizer=sgd)

First, we initialize a new model using the Sequential class to implement a 
feedforward neural network. Then, we can add as many layers to it as we like. 
However, since the first layer that we add is the input layer, we have to make sure 
that the input_dim attribute matches the number of features (columns) in the 
training set (here, 768). Also, we have to make sure that the number of output units 
(output_dim) and input units (input_dim) of two consecutive layers match. In the 
preceding example, we added two hidden layers with 50 hidden units plus 1 bias 
unit each. Note that bias units are initialized to 0 in fully connected networks in 
Keras. This is in contrast to the MLP implementation in Chapter 12, Training Artificial 
Neural Networks for Image Recognition, where we initialized the bias units to 1, which 
is a more common (not necessarily better) convention. 
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Finally, the number of units in the output layer should be equal to the number of 
unique class labels—the number of columns in the one-hot encoded class label 
array. Before we can compile our model, we also have to define an optimizer. In the 
preceding example, we chose a stochastic gradient descent optimization, which we 
are already familiar with, from previous chapters. Furthermore, we can set values 
for the weight decay constant and momentum learning to adjust the learning rate 
at each epoch as discussed in Chapter 12, Training Artificial Neural Networks for Image 
Recognition. Lastly, we set the cost (or loss) function to categorical_crossentropy. 
The (binary) cross-entropy is just the technical term for the cost function in logistic 
regression, and the categorical cross-entropy is its generalization for multi-class 
predictions via softmax. After compiling the model, we can now train it by calling 
the fit method. Here, we are using mini-batch stochastic gradient with a batch size 
of 300 training samples per batch. We train the MLP over 50 epochs, and we can 
follow the optimization of the cost function during training by setting verbose=1. 
The validation_split parameter is especially handy, since it will reserve 10 
percent of the training data (here, 6,000 samples) for validation after each epoch,  
so that we can check if the model is overfitting during training.

>>> model.fit(X_train, 
...           y_train_ohe, 
...           nb_epoch=50, 
...           batch_size=300, 
...           verbose=1, 
...           validation_split=0.1, 
...           show_accuracy=True)
Train on 54000 samples, validate on 6000 samples
Epoch 0
54000/54000 [==============================] - 1s - loss: 2.2290 - 
acc: 0.3592 - val_loss: 2.1094 - val_acc: 0.5342
Epoch 1
54000/54000 [==============================] - 1s - loss: 1.8850 - 
acc: 0.5279 - val_loss: 1.6098 - val_acc: 0.5617
Epoch 2
54000/54000 [==============================] - 1s - loss: 1.3903 - 
acc: 0.5884 - val_loss: 1.1666 - val_acc: 0.6707
Epoch 3
54000/54000 [==============================] - 1s - loss: 1.0592 - 
acc: 0.6936 - val_loss: 0.8961 - val_acc: 0.7615
[…]
Epoch 49
54000/54000 [==============================] - 1s - loss: 0.1907 - 
acc: 0.9432 - val_loss: 0.1749 - val_acc: 0.9482
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Printing the value of the cost function is extremely useful during training, since 
we can quickly spot whether the cost is decreasing during training and stop the 
algorithm earlier if otherwise to tune the hyperparameters values.

To predict the class labels, we can then use the predict_classes method to return 
the class labels directly as integers:

>>> y_train_pred = model.predict_classes(X_train, verbose=0)
>>> print('First 3 predictions: ', y_train_pred[:3])
>>> First 3 predictions:  [5 0 4]

Finally, let's print the model accuracy on training and test sets:

>>> train_acc = np.sum(
...       y_train == y_train_pred, axis=0) / X_train.shape[0]
>>> print('Training accuracy: %.2f%%' % (train_acc * 100))
Training accuracy: 94.51%

>>> y_test_pred = model.predict_classes(X_test, verbose=0)
>>> test_acc = np.sum(y_test == y_test_pred,
...                   axis=0) / X_test.shape[0]
print('Test accuracy: %.2f%%' % (test_acc * 100))
Test accuracy: 94.39%

Note that this is just a very simple neural network without optimized tuning 
parameters. If you are interested in playing more with Keras, please feel free  
to further tweak the learning rate, momentum, weight decay, and number of  
hidden units.

Although Keras is great library for implementing and experimenting 
with neural networks, there are many other Theano wrapper 
libraries that are worth mentioning. A prominent example is 
Pylearn2 (http://deeplearning.net/software/pylearn2/), 
which has been developed in the LISA lab in Montreal. Also, 
Lasagne (https://github.com/Lasagne/Lasagne) may be 
of interest to you if you prefer a more minimalistic but extensible 
library, that offers more control over the underlying Theano code.

http://deeplearning.net/software/pylearn2/
https://github.com/Lasagne/Lasagne
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Summary
I hope you enjoyed this last chapter of an exciting tour of machine learning. 
Throughout this book, we covered all of the essential topics that this field has to 
offer, and you should now be well equipped to put those techniques into action to 
solve real-world problems.

We started our journey with a brief overview of the different types of learning  
tasks: supervised learning, reinforcement learning, and unsupervised learning.  
We discussed several different learning algorithms that can be used for classification, 
starting with simple single-layer neural networks in Chapter 2, Training Machine 
Learning Algorithms for Classification. Then, we discussed more advanced classification 
algorithms in Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn, and 
you learned about the most important aspects of a machine learning pipeline in 
Chapter 4, Building Good Training Sets – Data Preprocessing and Chapter 5, Compressing 
Data via Dimensionality Reduction. Remember that even the most advanced algorithm 
is limited by the information in the training data that it gets to learn from. In  
Chapter 6, Learning Best Practices for Model Evaluation and Hyperparameter Tuning,  
you learned about the best practices to build and evaluate predictive models,  
which is another important aspect in machine learning applications. If one single 
learning algorithm does not achieve the performance we desire, it can sometimes  
be helpful to create an ensemble of experts to make a prediction. We discussed this  
in Chapter 7, Combining Different Models for Ensemble Learning. In Chapter 8, Applying 
Machine Learning to Sentiment Analysis, we applied machine learning to analyze 
the probably most interesting form of data in the modern age that is dominated by 
social media platforms on the Internet: text documents. However, machine learning 
techniques are not limited to offline data analysis, and in Chapter 9, Embedding a 
Machine Learning Model into a Web Application, we saw how to embed a machine 
learning model into a web application to share it with the outside world. For the 
most part, our focus was on algorithms for classification, probably the most popular 
application of machine learning. However, this is not where it ends! In Chapter 10, 
Predicting Continuous Target Variables with Regression Analysis, we explored several 
algorithms for regression analysis to predict continuous-valued output values. 
Another exciting subfield of machine learning is clustering analysis, which can help 
us to find hidden structures in data even if our training data does not come with the  
right answers to learn from. We discussed this in Chapter 11, Working with Unlabeled 
Data – Clustering Analysis.
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In the last two chapters of this book, we caught a glimpse of the most beautiful 
and most exciting algorithms in the whole machine learning field: artificial neural 
networks. Although deep learning really is beyond the scope of this book, I hope I 
could at least kindle your interest to follow the most recent advancement in this field. 
If you are considering a career as machine learning researcher, or even if you just 
want to keep up to date with the current advancement in this field, I can recommend 
you to follow the works of the leading experts in this field, such as Geoff Hinton 
(http://www.cs.toronto.edu/~hinton/), Andrew Ng (http://www.andrewng.
org), Yann LeCun (http://yann.lecun.com), Juergen Schmidhuber (http://
people.idsia.ch/~juergen/), and Yoshua Bengio (http://www.iro.umontreal.
ca/~bengioy), just to name a few. Also, please do not hesitate to join the scikit-learn, 
Theano, and Keras mailing lists to participate in interesting discussions around these 
libraries, and machine learning in general. I am looking forward to meet you there! 
You are always welcome to contact me if you have any questions about this book or 
need some general tips about machine learning.

I hope this journey through the different aspects of machine learning was really 
worthwhile, and you learned many new and useful skills to advance your career  
and apply them to real-world problem solving.

http://www.cs.toronto.edu/~hinton/
http://www.andrewng.org
http://www.andrewng.org
http://yann.lecun.com
http://people.idsia.ch/~juergen/
http://people.idsia.ch/~juergen/
http://www.iro.umontreal.ca/~bengioy
http://www.iro.umontreal.ca/~bengioy
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