Python Machine Learning

Unlock deeper insights into machine learning with this vital guide
to cutting-edge predictive analytics

Foreword by Dr. Randal S. Olson
Artificial Intelligence and Machine Learning Researcher, University of Pennsylvania

PACKT

Python Machine Learning

Unlock deeper insights into machine learning with this
vital guide to cutting-edge predictive analytics

Sebastian Raschka

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

Python Machine Learning

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2015
Production reference: 1160915

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78355-513-0

www . packtpub.com

www.packtpub.com

Credits

Author
Sebastian Raschka

Reviewers
Richard Dutton

Dave Julian
Vahid Mirjalili
Hamidreza Sattari

Dmytro Taranovsky

Commissioning Editor
Akkram Hussain

Acquisition Editors
Rebecca Youe

Meeta Rajani

Content Development Editor
Riddhi Tuljapurkar

Technical Editors
Madhunikita Sunil Chindarkar

Taabish Khan

Copy Editors
Roshni Banerjee

Stephan Copestake

Project Coordinator
Kinjal Bari

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Sheetal Aute

Abhinash Sahu

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

Foreword

We live in the midst of a data deluge. According to recent estimates, 2.5 quintillion
(10'®) bytes of data are generated on a daily basis. This is so much data that over 90
percent of the information that we store nowadays was generated in the past decade
alone. Unfortunately, most of this information cannot be used by humans. Either the
data is beyond the means of standard analytical methods, or it is simply too vast for
our limited minds to even comprehend.

Through Machine Learning, we enable computers to process, learn from, and draw
actionable insights out of the otherwise impenetrable walls of big data. From the
massive supercomputers that support Google's search engines to the smartphones
that we carry in our pockets, we rely on Machine Learning to power most of the
world around us — often, without even knowing it.

As modern pioneers in the brave new world of big data, it then behooves us to learn
more about Machine Learning. What is Machine Learning and how does it work?
How can I use Machine Learning to take a glimpse into the unknown, power my
business, or just find out what the Internet at large thinks about my favorite movie?
All of this and more will be covered in the following chapters authored by my good
friend and colleague, Sebastian Raschka.

When away from taming my otherwise irascible pet dog, Sebastian has tirelessly
devoted his free time to the open source Machine Learning community. Over the
past several years, Sebastian has developed dozens of popular tutorials that cover
topics in Machine Learning and data visualization in Python. He has also developed
and contributed to several open source Python packages, several of which are now
part of the core Python Machine Learning workflow.

Owing to his vast expertise in this field, I am confident that Sebastian's insights into
the world of Machine Learning in Python will be invaluable to users of all experience
levels. I wholeheartedly recommend this book to anyone looking to gain a broader
and more practical understanding of Machine Learning.

Dr. Randal S. Olson
Artificial Intelligence and Machine Learning Researcher, University of Pennsylvania

About the Author

Sebastian Raschka is a PhD student at Michigan State University, who develops
new computational methods in the field of computational biology. He has been
ranked as the number one most influential data scientist on GitHub by Analytics
Vidhya. He has a yearlong experience in Python programming and he has conducted
several seminars on the practical applications of data science and machine learning.
Talking and writing about data science, machine learning, and Python really
motivated Sebastian to write this book in order to help people develop data-driven
solutions without necessarily needing to have a machine learning background.

He has also actively contributed to open source projects and methods that he
implemented, which are now successfully used in machine learning competitions,
such as Kaggle. In his free time, he works on models for sports predictions, and if he
is not in front of the computer, he enjoys playing sports.

I would like to thank my professors, Arun Ross and Pang-Ning Tan,
and many others who inspired me and kindled my great interest in
pattern classification, machine learning, and data mining.

I would like to take this opportunity to thank the great Python
community and developers of open source packages who helped
me create the perfect environment for scientific research and
data science.

A special thanks goes to the core developers of scikit-learn. As a
contributor to this project, I had the pleasure to work with great
people, who are not only very knowledgeable when it comes to
machine learning, but are also excellent programmers.

Lastly, I want to thank you all for showing an interest in this book,
and I sincerely hope that I can pass on my enthusiasm to join the
great Python and machine learning communities.

About the Reviewers

Richard Dutton started programming the ZX Spectrum when he was 8 years old
and his obsession carried him through a confusing array of technologies and roles in
the fields of technology and finance.

He has worked with Microsoft, and as a Director at Barclays, his current obsession is
a mashup of Python, machine learning, and block chain.

If he's not in front of a computer, he can be found in the gym or at home with a glass
of wine while he looks at his iPhone. He calls this balance.

Dave Julian is an IT consultant and teacher with over 15 years of experience. He
has worked as a technician, project manager, programmer, and web developer. His
current projects include developing a crop analysis tool as part of integrated pest
management strategies in greenhouses. He has a strong interest in the intersection of
biology and technology with a belief that smart machines can help solve the world's
most important problems.

Vahid Mirjalili received his PhD in mechanical engineering from Michigan State
University, where he developed novel techniques for protein structure refinement
using molecular dynamics simulations. Combining his knowledge from the fields of
statistics, data mining, and physics he developed powerful data-driven approaches
that helped him and his research group to win two recent worldwide competitions
for protein structure prediction and refinement, CASP, in 2012 and 2014.

While working on his doctorate degree, he decided to join the Computer Science
and Engineering Department at Michigan State University to specialize in the field
of machine learning. His current research projects involve the development of
unsupervised machine learning algorithms for the mining of massive datasets. He is
also a passionate Python programmer and shares his implementations of clustering
algorithms on his personal website at http://vahidmirjalili.com.

http://vahidmirjalili.com

Hamidreza Sattari is an IT professional and has been involved in several areas of
software engineering, from programming to architecture, as well as management.
He holds a master's degree in software engineering from Herriot-Watt University,
UK, and a bachelor's degree in electrical engineering (electronics) from Tehran Azad
University, Iran. In recent years, his areas of interest have been big data and Machine
Learning. He coauthored the book Spring Web Services 2 Cookbook and he maintains
his blog at http://justdeveloped-blog.blogspot .com/.

Dmytro Taranovsky is a software engineer with an interest and background in
Python, Linux, and machine learning. Originally from Kiev, Ukraine, he moved

to the United States in 1996. From an early age, he displayed a passion for science
and knowledge, winning mathematics and physics competitions. In 1999, he was
chosen to be a member of the U.S. Physics Team. In 2005, he graduated from the
Massachusetts Institute of Technology, majoring in mathematics. Later, he worked as
a software engineer on a text transformation system for computer-assisted medical
transcriptions (eScription). Although he originally worked on Perl, he appreciated
the power and clarity of Python, and he was able to scale the system to very

large data sizes. Afterwards, he worked as a software engineer and analyst for an
algorithmic trading firm. He also made significant contributions to the foundation
of mathematics, including creating and developing an extension to the language
of set theory and its connection to large cardinal axioms, developing a notion of
constructive truth, and creating a system of ordinal notations and implementing
them in Python. He also enjoys reading, likes to go outdoors, and tries to make the
world a better place.

http://justdeveloped-blog.blogspot.com/

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www. PacktPub. com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub. com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at servicee@packtpub. com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

[a] PACKT

https://www2.packtpub.com/books/subscription/packtlib

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
* Fully searchable across every book published by Packt

* Copy and paste, print, and bookmark content

¢ On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

Table of Contents

Preface vii
Chapter 1: Giving Computers the Ability to Learn from Data 1
Building intelligent machines to transform data into knowledge 2
The three different types of machine learning 2
Making predictions about the future with supervised learning 3
Classification for predicting class labels 3
Regression for predicting continuous outcomes 4
Solving interactive problems with reinforcement learning 6
Discovering hidden structures with unsupervised learning 6
Finding subgroups with clustering 7
Dimensionality reduction for data compression 7
An introduction to the basic terminology and notations 8
A roadmap for building machine learning systems 10
Preprocessing — getting data into shape 11
Training and selecting a predictive model 12
Evaluating models and predicting unseen data instances 13
Using Python for machine learning 13
Installing Python packages 13
Summary 15
Chapter 2: Training Machine Learning Algorithms
for Classification 17
Artificial neurons — a brief glimpse into the early history
of machine learning 18
Implementing a perceptron learning algorithm in Python 24
Training a perceptron model on the Iris dataset 27
Adaptive linear neurons and the convergence of learning 33
Minimizing cost functions with gradient descent 34

[il

Table of Contents

Implementing an Adaptive Linear Neuron in Python 36
Large scale machine learning and stochastic gradient descent 42
Summary 47
Chapter 3: A Tour of Machine Learning Classifiers Using
Scikit-learn 49
Choosing a classification algorithm 49
First steps with scikit-learn 50
Training a perceptron via scikit-learn 50
Modeling class probabilities via logistic regression 56
Logistic regression intuition and conditional probabilities 56
Learning the weights of the logistic cost function 59
Training a logistic regression model with scikit-learn 62
Tackling overfitting via regularization 65
Maximum margin classification with support vector machines 69
Maximum margin intuition 70
Dealing with the nonlinearly separable case using slack variables 71
Alternative implementations in scikit-learn 74
Solving nonlinear problems using a kernel SVM 75
Using the kernel trick to find separating hyperplanes in higher
dimensional space 44
Decision tree learning 80
Maximizing information gain — getting the most bang for the buck 82
Building a decision tree 88
Combining weak to strong learners via random forests 90
K-nearest neighbors — a lazy learning algorithm 92
Summary 96
Chapter 4: Building Good Training Sets — Data Preprocessing 99
Dealing with missing data 99
Eliminating samples or features with missing values 101
Imputing missing values 102
Understanding the scikit-learn estimator API 102
Handling categorical data 104
Mapping ordinal features 104
Encoding class labels 105
Performing one-hot encoding on nominal features 106
Partitioning a dataset in training and test sets 108
Bringing features onto the same scale 110
Selecting meaningful features 112

Sparse solutions with L1 regularization 112

Lii]

Table of Contents

Sequential feature selection algorithms 118
Assessing feature importance with random forests 124
Summary 126

Chapter 5: Compressing Data via Dimensionality Reduction 127
Unsupervised dimensionality reduction via principal
component analysis 128

Total and explained variance 130

Feature transformation 133

Principal component analysis in scikit-learn 135
Supervised data compression via linear discriminant analysis 138

Computing the scatter matrices 140

Selecting linear discriminants for the new feature subspace 143

Projecting samples onto the new feature space 145

LDA via scikit-learn 146
Using kernel principal component analysis for nonlinear mappings 148

Kernel functions and the kernel trick 148

Implementing a kernel principal component analysis in Python 154

Example 1 — separating half-moon shapes 155
Example 2 — separating concentric circles 159

Projecting new data points 162

Kernel principal component analysis in scikit-learn 166
Summary 167

Chapter 6: Learning Best Practices for Model Evaluation
and Hyperparameter Tuning 169
Streamlining workflows with pipelines 169

Loading the Breast Cancer Wisconsin dataset 170

Combining transformers and estimators in a pipeline 171
Using k-fold cross-validation to assess model performance 173

The holdout method 173

K-fold cross-validation 175
Debugging algorithms with learning and validation curves 179

Diagnosing bias and variance problems with learning curves 180

Addressing overfitting and underfitting with validation curves 183
Fine-tuning machine learning models via grid search 185

Tuning hyperparameters via grid search 186

Algorithm selection with nested cross-validation 187
Looking at different performance evaluation metrics 189

Reading a confusion matrix 190

Optimizing the precision and recall of a classification model 191

[iii]

Table of Contents

Plotting a receiver operating characteristic 193
The scoring metrics for multiclass classification 197
Summary 198
Chapter 7: Combining Different Models for Ensemble Learning 199
Learning with ensembles 199
Implementing a simple majority vote classifier 203
Combining different algorithms for classification with majority vote 210
Evaluating and tuning the ensemble classifier 213
Bagging — building an ensemble of classifiers from
bootstrap samples 219
Leveraging weak learners via adaptive boosting 224
Summary 232
Chapter 8: Applying Machine Learning to Sentiment Analysis 233
Obtaining the IMDb movie review dataset 233
Introducing the bag-of-words model 236
Transforming words into feature vectors 236
Assessing word relevancy via term frequency-inverse
document frequency 238
Cleaning text data 240
Processing documents into tokens 242
Training a logistic regression model for document classification 244
Working with bigger data — online algorithms and
out-of-core learning 246
Summary 250
Chapter 9: Embedding a Machine Learning Model into
a Web Application 251
Serializing fitted scikit-learn estimators 252
Setting up a SQLite database for data storage 255
Developing a web application with Flask 257
Ouir first Flask web application 258
Form validation and rendering 259
Turning the movie classifier into a web application 264
Deploying the web application to a public server 272
Updating the movie review classifier 274
Summary 276

[iv]

Table of Contents

Chapter 10: Predicting Continuous Target Variables

with Regression Analysis 277
Introducing a simple linear regression model 278
Exploring the Housing Dataset 279

Visualizing the important characteristics of a dataset 280
Implementing an ordinary least squares linear regression model 285
Solving regression for regression parameters with gradient descent 285
Estimating the coefficient of a regression model via scikit-learn 289
Fitting a robust regression model using RANSAC 291
Evaluating the performance of linear regression models 294
Using regularized methods for regression 297
Turning a linear regression model into a curve — polynomial
regression 298
Modeling nonlinear relationships in the Housing Dataset 300
Dealing with nonlinear relationships using random forests 304
Decision tree regression 304
Random forest regression 306
Summary 309

Chapter 11: Working with Unlabeled Data — Clustering Analysis 311

Grouping objects by similarity using k-means 312
K-means++ 315
Hard versus soft clustering 317
Using the elbow method to find the optimal number of clusters 320
Quantifying the quality of clustering via silhouette plots 321

Organizing clusters as a hierarchical tree 326
Performing hierarchical clustering on a distance matrix 328
Attaching dendrograms to a heat map 332
Applying agglomerative clustering via scikit-learn 334

Locating regions of high density via DBSCAN 334

Summary 340

Chapter 12: Training Artificial Neural Networks for Image

Recognition 341
Modeling complex functions with artificial neural networks 342

Single-layer neural network recap 343
Introducing the multi-layer neural network architecture 345
Activating a neural network via forward propagation 347

[v]

Table of Contents

Classifying handwritten digits 350
Obtaining the MNIST dataset 351
Implementing a multi-layer perceptron 356

Training an artificial neural network 365
Computing the logistic cost function 365
Training neural networks via backpropagation 368

Developing your intuition for backpropagation 372

Debugging neural networks with gradient checking 373

Convergence in neural networks 379

Other neural network architectures 381
Convolutional Neural Networks 381
Recurrent Neural Networks 383

A few last words about neural network implementation 384

Summary 385

Chapter 13: Parallelizing Neural Network Training with Theano 387

Building, compiling, and running expressions with Theano 388
What is Theano? 390
First steps with Theano 391
Configuring Theano 392
Working with array structures 394
Wrapping things up — a linear regression example 397

Choosing activation functions for feedforward neural networks 401
Logistic function recap 402
Estimating probabilities in multi-class classification via the
softmax function 404
Broadening the output spectrum by using a hyperbolic tangent 405

Training neural networks efficiently using Keras 408

Summary 414

Index 417

[vil

Preface

I probably don't need to tell you that machine learning has become one of the most
exciting technologies of our time and age. Big companies, such as Google, Facebook,
Apple, Amazon, IBM, and many more, heavily invest in machine learning research
and applications for good reasons. Although it may seem that machine learning has
become the buzzword of our time and age, it is certainly not a hype. This exciting
field opens the way to new possibilities and has become indispensable to our daily
lives. Talking to the voice assistant on our smart phones, recommending the right
product for our customers, stopping credit card fraud, filtering out spam from our
e-mail inboxes, detecting and diagnosing medical diseases, the list goes on and on.

If you want to become a machine learning practitioner, a better problem solver, or
maybe even consider a career in machine learning research, then this book is for you!
However, for a novice, the theoretical concepts behind machine learning can be quite
overwhelming. Yet, many practical books that have been published in recent years
will help you get started in machine learning by implementing powerful learning
algorithms. In my opinion, the use of practical code examples serve an important
purpose. They illustrate the concepts by putting the learned material directly into
action. However, remember that with great power comes great responsibility! The
concepts behind machine learning are too beautiful and important to be hidden in

a black box. Thus, my personal mission is to provide you with a different book; a
book that discusses the necessary details regarding machine learning concepts, offers
intuitive yet informative explanations on how machine learning algorithms work,
how to use them, and most importantly, how to avoid the most common pitfalls.

If you type "machine learning" as a search term in Google Scholar, it returns an
overwhelmingly large number-1,800,000 publications. Of course, we cannot discuss
all the nitty-gritty details about all the different algorithms and applications that have
emerged in the last 60 years. However, in this book, we will embark on an exciting
journey that covers all the essential topics and concepts to give you a head start in this
field. If you find that your thirst for knowledge is not satisfied, there are many useful
resources that can be used to follow up on the essential breakthroughs in this field.

[vii]

Preface

If you have already studied machine learning theory in detail, this book will show
you how to put your knowledge into practice. If you have used machine learning
techniques before and want to gain more insight into how machine learning really
works, this book is for you! Don't worry if you are completely new to the machine
learning field; you have even more reason to be excited. I promise you that machine
learning will change the way you think about the problems you want to solve and
will show you how to tackle them by unlocking the power of data.

Before we dive deeper into the machine learning field, let me answer your most
important question, "why Python?" The answer is simple: it is powerful yet very
accessible. Python has become the most popular programming language for data
science because it allows us to forget about the tedious parts of programming and
offers us an environment where we can quickly jot down our ideas and put concepts
directly into action.

Reflecting on my personal journey, I can truly say that the study of machine learning
made me a better scientist, thinker, and problem solver. In this book, I want to

share this knowledge with you. Knowledge is gained by learning, the key is our
enthusiasm, and the true mastery of skills can only be achieved by practice. The road
ahead may be bumpy on occasions, and some topics may be more challenging than
others, but I hope that you will embrace this opportunity and focus on the reward.
Remember that we are on this journey together, and throughout this book, we will
add many powerful techniques to your arsenal that will help us solve even the
toughest problems the data-driven way.

What this book covers

Chapter 1, Giving Computers the Ability to Learn from Data, introduces you to the
main subareas of machine learning to tackle various problem tasks. In addition, it
discusses the essential steps for creating a typical machine learning model building
pipeline that will guide us through the following chapters.

Chapter 2, Training Machine Learning Algorithms for Classification, goes back to

the origin of machine learning and introduces binary perceptron classifiers and
adaptive linear neurons. This chapter is a gentle introduction to the fundamentals
of pattern classification and focuses on the interplay of optimization algorithms and
machine learning.

Chapter 3, A Tour of Machine Learning Classifirs Using Scikit-learn, describes the
essential machine learning algorithms for classification and provides practical
examples using one of the most popular and comprehensive open source machine
learning libraries, scikit-learn.

[viii]

Preface

Chapter 4, Building Good Training Sets — Data Preprocessing, discusses how to deal with
the most common problems in unprocessed datasets, such as missing data. It also
discusses several approaches to identify the most informative features in datasets
and teaches you how to prepare variables of different types as proper inputs for
machine learning algorithms.

Chapter 5, Compressing Data via Dimensionality Reduction, describes the essential
techniques to reduce the number of features in a dataset to smaller sets while
retaining most of their useful and discriminatory information. It discusses the
standard approach to dimensionality reduction via principal component analysis
and compares it to supervised and nonlinear transformation techniques.

Chapter 6, Learning Best Practices for Model Evaluation and Hyperparameter Tuning,
discusses the do's and don'ts for estimating the performances of predictive models.
Moreover, it discusses different metrics for measuring the performance of our
models and techniques to fine-tune machine learning algorithms.

Chapter 7, Combining Different Models for Ensemble Learning, introduces you to the
different concepts of combining multiple learning algorithms effectively. It teaches
you how to build ensembles of experts to overcome the weaknesses of individual
learners, resulting in more accurate and reliable predictions.

Chapter 8, Applying Machine Learning to Sentiment Analysis, discusses the essential
steps to transform textual data into meaningful representations for machine learning
algorithms to predict the opinions of people based on their writing.

Chapter 9, Embedding a Machine Learning Model into a Web Application, continues with
the predictive model from the previous chapter and walks you through the essential
steps of developing web applications with embedded machine learning models.

Chapter 10, Predicting Continuous Target Variables with Regression Analysis, discusses
the essential techniques for modeling linear relationships between target and
response variables to make predictions on a continuous scale. After introducing
different linear models, it also talks about polynomial regression and

tree-based approaches.

Chapter 11, Working with Unlabeled Data - Clustering Analysis, shifts the focus to a
different subarea of machine learning, unsupervised learning. We apply algorithms
from three fundamental families of clustering algorithms to find groups of objects
that share a certain degree of similarity.

[ix]

Preface

Chapter 12, Training Artificial Neural Networks for Image Recognition, extends the
concept of gradient-based optimization, which we first introduced in Chapter 2,
Training Machine Learning Algorithms for Classification, to build powerful, multilayer
neural networks based on the popular backpropagation algorithm.

Chapter 13, Parallelizing Neural Network Training with Theano, builds upon the
knowledge from the previous chapter to provide you with a practical guide for
training neural networks more efficiently. The focus of this chapter is on Theano, an
open source Python library that allows us to utilize multiple cores of modern GPUs.

What you need for this book

The execution of the code examples provided in this book requires an installation
of Python 3.4.3 or newer on Mac OS X, Linux, or Microsoft Windows. We will make
frequent use of Python's essential libraries for scientific computing throughout this
book, including SciPy, NumPy, scikit-learn, matplotlib, and pandas.

The first chapter will provide you with instructions and useful tips to set up your
Python environment and these core libraries. We will add additional libraries to
our repertoire and installation instructions are provided in the respective chapters:
the NLTK library for natural language processing (Chapter 8, Applying Machine
Learning to Sentiment Analysis), the Flask web framework (Chapter 9, Embedding a
Machine Learning Algorithm into a Web Application), the seaborn library for statistical
data visualization (Chapter 10, Predicting Continuous Target Variables with Regression
Analysis), and Theano for efficient neural network training on graphical processing
units (Chapter 13, Parallelizing Neural Network Training with Theano).

Who this book is for

If you want to find out how to use Python to start answering critical questions
of your data, pick up Python Machine Learning —whether you want start from
scratch or want to extend your data science knowledge, this is an essential and
unmissable resource.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

[x]

Preface

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"And already installed packages can be updated via the - -upgrade flag."

A block of code is set as follows:

>>> import matplotlib.pyplot as plt
>>> import numpy as np

>>> y = df.iloc[0:100, 4].values

>>> y = np.where(y == 'Iris-setosa', -1, 1)

>>> X = df.iloc[0:100, [0, 2]].values

>>> plt.scatter(X[:50, 0], X[:50, 1],

.. color="'red', marker='x', label='setosa')
>>> plt.scatter (X[50:100, 0], X[50:100, 1],

.. color="'blue', marker='o', label='versicolor')
>>> plt.xlabel ('petal length')

>>> plt.ylabel ('sepal length')

>>> plt.legend(loc="'upper left')

>>> plt.show()

Any command-line input or output is written as follows:
> dot -Tpng tree.dot -o tree.png

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "After we
click on the Dashboard button in the top-right corner, we have access to the control
panel shown at the top of the page."

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

[xi]

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub. com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http://www.
packtpub. com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http: //www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or

added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

[xii]

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[xiii]

Giving Computers the Ability
to Learn from Data

In my opinion, machine learning, the application and science of algorithms that makes
sense of data, is the most exciting field of all the computer sciences! We are living in
an age where data comes in abundance; using the self-learning algorithms from the
field of machine learning, we can turn this data into knowledge. Thanks to the many
powerful open source libraries that have been developed in recent years, there has
probably never been a better time to break into the machine learning field and learn
how to utilize powerful algorithms to spot patterns in data and make predictions
about future events.

In this chapter, we will learn about the main concepts and different types of machine
learning. Together with a basic introduction to the relevant terminology, we will lay
the groundwork for successfully using machine learning techniques for practical
problem solving.

In this chapter, we will cover the following topics:

* The general concepts of machine learning
* The three types of learning and basic terminology
* The building blocks for successfully designing machine learning systems

* Installing and setting up Python for data analysis and machine learning

[11]

Giving Computers the Ability to Learn from Data

Building intelligent machines to
transform data into knowledge

In this age of modern technology, there is one resource that we have in abundance: a
large amount of structured and unstructured data. In the second half of the twentieth
century, machine learning evolved as a subfield of artificial intelligence that involved
the development of self-learning algorithms to gain knowledge from that data in
order to make predictions. Instead of requiring humans to manually derive rules
and build models from analyzing large amounts of data, machine learning offers a
more efficient alternative for capturing the knowledge in data to gradually improve
the performance of predictive models, and make data-driven decisions. Not only is
machine learning becoming increasingly important in computer science research but
it also plays an ever greater role in our everyday life. Thanks to machine learning,
we enjoy robust e-mail spam filters, convenient text and voice recognition software,
reliable Web search engines, challenging chess players, and, hopefully soon, safe and
efficient self-driving cars.

The three different types of
machine learning

In this section, we will take a look at the three types of machine learning: supervised
learning, unsupervised learning, and reinforcement learning. We will learn about the
fundamental differences between the three different learning types and, using
conceptual examples, we will develop an intuition for the practical problem
domains where these can be applied:

Unsupervised Supervised
Learning Learning

Learning

Reinforcement |

[2]

Chapter 1

Making predictions about the future with
supervised learning

The main goal in supervised learning is to learn a model from labeled training data
that allows us to make predictions about unseen or future data. Here, the term
supervised refers to a set of samples where the desired output signals (labels) are
already known.

Considering the example of e-mail spam filtering, we can train a model using a
supervised machine learning algorithm on a corpus of labeled e-mail, e-mail that are
correctly marked as spam or not-spam, to predict whether a new e-mail belongs to
either of the two categories. A supervised learning task with discrete class labels, such
as in the previous e-mail spam-filtering example, is also called a classification task.
Another subcategory of supervised learning is regression, where the outcome signal is
a continuous value:

Labels

Machine Learning
Algorithm

E>| Predictive Model ‘l::>‘ Prediction ‘

Classification for predicting class labels

Classification is a subcategory of supervised learning where the goal is to
predict the categorical class labels of new instances based on past observations.
Those class labels are discrete, unordered values that can be understood as the
group memberships of the instances. The previously mentioned example of
e-mail-spam detection represents a typical example of a binary classification
task, where the machine learning algorithm learns a set of rules in order to
distinguish between two possible classes: spam and non-spam e-mail.

[31]

Giving Computers the Ability to Learn from Data

However, the set of class labels does not have to be of a binary nature. The predictive
model learned by a supervised learning algorithm can assign any class label that was
presented in the training dataset to a new, unlabeled instance. A typical example of

a multi-class classification task is handwritten character recognition. Here, we could
collect a training dataset that consists of multiple handwritten examples of each letter
in the alphabet. Now, if a user provides a new handwritten character via an input
device, our predictive model will be able to predict the correct letter in the alphabet
with certain accuracy. However, our machine learning system would be unable to
correctly recognize any of the digits zero to nine, for example, if they were not part
of our training dataset.

The following figure illustrates the concept of a binary classification task given 30
training samples: 15 training samples are labeled as negative class (circles) and 15
training samples are labeled as positive class (plus signs). In this scenario, our dataset
is two-dimensional, which means that each sample has two values associated with
it: x, and x,. Now, we can use a supervised machine learning algorithm to learn a
rule —the decision boundary represented as a black dashed line —that can separate
those two classes and classify new data into each of those two categories given its x,
and x, values:

-
-4
-+

+

v

Regression for predicting continuous outcomes

We learned in the previous section that the task of classification is to assign
categorical, unordered labels to instances. A second type of supervised learning is
the prediction of continuous outcomes, which is also called regression analysis. In
regression analysis, we are given a number of predictor (explanatory) variables and a
continuous response variable (outcome), and we try to find a relationship between
those variables that allows us to predict an outcome.

[4]

Chapter 1

For example, let's assume that we are interested in predicting the Math SAT
scores of our students. If there is a relationship between the time spent studying
for the test and the final scores, we could use it as training data to learn a model
that uses the study time to predict the test scores of future students who are
planning to take this test.

The term regression was devised by Francis Galton in his article
. Regression Towards Mediocrity in Hereditary Stature in 1886. Galton
% described the biological phenomenon that the variance of height
L in a population does not increase over time. He observed that
the height of parents is not passed on to their children but the
children's height is regressing towards the population mean.

The following figure illustrates the concept of linear regression. Given a predictor
variable x and a response variable y, we fit a straight line to this data that minimizes
the distance —most commonly the average squared distance —between the sample
points and the fitted line. We can now use the intercept and slope learned from this
data to predict the outcome variable of new data:

v

[51]

Giving Computers the Ability to Learn from Data

Solving interactive problems with
reinforcement learning

Another type of machine learning is reinforcement learning. In reinforcement
learning, the goal is to develop a system (agent) that improves its performance
based on interactions with the environment. Since the information about the current
state of the environment typically also includes a so-called reward signal, we can
think of reinforcement learning as a field related to supervised learning. However, in
reinforcement learning this feedback is not the correct ground truth label or value,
but a measure of how well the action was measured by a reward function. Through
the interaction with the environment, an agent can then use reinforcement learning
to learn a series of actions that maximizes this reward via an exploratory
trial-and-error approach or deliberative planning.

A popular example of reinforcement learning is a chess engine. Here, the agent decides
upon a series of moves depending on the state of the board (the environment), and the
reward can be defined as win or lose at the end of the game:

Environment

Reward Action

State

Agent

Discovering hidden structures with
unsupervised learning

In supervised learning, we know the right answer beforehand when we train

our model, and in reinforcement learning, we define a measure of reward for
particular actions by the agent. In unsupervised learning, however, we are dealing
with unlabeled data or data of unknown structure. Using unsupervised learning
techniques, we are able to explore the structure of our data to extract meaningful
information without the guidance of a known outcome variable or reward function.

[6]

Chapter 1

Finding subgroups with clustering

Clustering is an exploratory data analysis technique that allows us to organize a

pile of information into meaningful subgroups (clusters) without having any prior
knowledge of their group memberships. Each cluster that may arise during the
analysis defines a group of objects that share a certain degree of similarity but are
more dissimilar to objects in other clusters, which is why clustering is also sometimes
called "unsupervised classification." Clustering is a great technique for structuring
information and deriving meaningful relationships among data, For example, it
allows marketers to discover customer groups based on their interests in order to
develop distinct marketing programs.

The figure below illustrates how clustering can be applied to organizing unlabeled
data into three distinct groups based on the similarity of their features x, and x,:

A
------- ~
,l" O 'ﬁ\\
\
/S0 0 N\
I 1
08 o
]
‘\ O O !
‘\ O ll
S, O ’,'
-
X :.‘ ----- "J
1 =T een===
a/’b (@] \\ ,/‘ © .“\\
{ ey /5% @
I \
1 © 9 i ! O i
\o @ /% 0009 |
~ s’ A}
e Ne e of
S . o

5
>
Xz

Dimensionality reduction for data compression

Another subfield of unsupervised learning is dimensionality reduction. Often we are
working with data of high dimensionality —each observation comes with a high
number of measurements — that can present a challenge for limited storage space
and the computational performance of machine learning algorithms. Unsupervised
dimensionality reduction is a commonly used approach in feature preprocessing
to remove noise from data, which can also degrade the predictive performance of
certain algorithms, and compress the data onto a smaller dimensional subspace
while retaining most of the relevant information.

[71

Giving Computers the Ability to Learn from Data

Sometimes, dimensionality reduction can also be useful for visualizing data—for
example, a high-dimensional feature set can be projected onto one-, two-, or
three-dimensional feature spaces in order to visualize it via 3D- or 2D-scatterplots
or histograms. The figure below shows an example where non-linear dimensionality
reduction was applied to compress a 3D Swiss Roll onto a

new 2D feature subspace:

An introduction to the basic terminology
and notations

Now that we have discussed the three broad categories of machine

learning — supervised, unsupervised, and reinforcement learning —let us have

a look at the basic terminology that we will be using in the next chapters. The
following table depicts an excerpt of the Iris dataset, which is a classic example in
the field of machine learning. The Iris dataset contains the measurements of 150
iris flowers from three different species: Setosa, Versicolor, and Viriginica. Here, each
flower sample represents one row in our data set, and the flower measurements in
centimeters are stored as columns, which we also call the features of the dataset:

[8]

Chapter 1

Samples
(instances, observations)

Sepal
width

Petal

length

Petal

| 1 5.1 35 1.4 0.2 Setosa
2 4.9 30 14 0.2 Setosa
50 |64 35 45 1.2 Versicolor
150 | 5.9 30 5.0 1.8 Virginica
Features

(attributes, measurements, dimensions)

Sepal

Class labels
(targets)

To keep the notation and implementation simple yet efficient, we will make use of
some of the basics of linear algebra. In the following chapters, we will use a matrix
and vector notation to refer to our data. We will follow the common convention to
represent each sample as separate row in a feature matrix X, where each feature is
stored as a separate column.

The Iris dataset, consisting of 150 samples and 4 features, can then be written as a

150x4 matrix X e R*™*;

<0

xl 3 Y—l
x{;} 1__22) xil}
(2150} x?(,lSO] x_{‘l 50)

[o]

Giving Computers the Ability to Learn from Data

For the rest of this book, we will use the superscript (i) to refer to the ith
training sample, and the subscript j to refer to the jth dimension of the
training dataset.

We use lower-case, bold-face letters to refer to vectors (x € R"x}) and
upper-case, bold-face letters to refer to matrices, respectively (X e R™")).
To refer to single elements in a vector or matrix, we write the letters in

italics x") or x((;)), respectively).

For example, xl15 * refers to the first dimension of flower sample 150, the
sepal width. Thus, each row in this feature matrix represents one flower

. . . . i 1x4
instance and can be written as four-dimensional column vector x() eR™,

0 =[30 A0 50 0]

% ‘ 150x1
S Each feature dimension is a 150-dimensional row vector x(l) e RV ,
for example:

¥ .(150)

J

Similarly, we store the target variables (here: class labels) as a

y(l)

150-dimensional column vector y=| ... (ye {Setosa, Versicolor, Virginica})'
(150)

y

A roadmap for building machine learning
systems

In the previous sections, we discussed the basic concepts of machine learning and the
three different types of learning. In this section, we will discuss other important parts
of a machine learning system accompanying the learning algorithm. The diagram
below shows a typical workflow diagram for using machine learning in predictive
modeling, which we will discuss in the following subsections:

[10]

Chapter 1

Feature Extraction and Scaling
Feature Selection
Dimensionality Reduction

Sampling

/ \ /’_ Labels ————'i\ / \

]
, 3 [
] i
. [

> Learning > Final Model - New Data
L Training Dataset Algorithm H
abels v i

> ! i v

Raw TestDataset |[=qf======r=ss=ceqiecece==d i Labels

Data Y i

\ Preprocessing /\ Learning /-\\ Evaluation/\ Prediction Y,

Model Selection
Cross-Validation

Perfarmance Metrics
Hyperparameter Optimization

Preprocessing — getting data into shape

Raw data rarely comes in the form and shape that is necessary for the optimal
performance of a learning algorithm. Thus, the preprocessing of the data is one of the
most crucial steps in any machine learning application. If we take the Iris flower
dataset from the previous section as an example, we could think of the raw data

as a series of flower images from which we want to extract meaningful features.
Useful features could be the color, the hue, the intensity of the flowers, the height,
and the flower lengths and widths. Many machine learning algorithms also require
that the selected features are on the same scale for optimal performance, which is
often achieved by transforming the features in the range [0, 1] or a standard normal
distribution with zero mean and unit variance, as we will see in the later chapters.

Some of the selected features may be highly correlated and therefore redundant
to a certain degree. In those cases, dimensionality reduction techniques are useful
for compressing the features onto a lower dimensional subspace. Reducing the
dimensionality of our feature space has the advantage that less storage space is
required, and the learning algorithm can run much faster.

[11]

Giving Computers the Ability to Learn from Data

To determine whether our machine learning algorithm not only performs well on the
training set but also generalizes well to new data, we also want to randomly divide
the dataset into a separate training and test set. We use the training set to train and
optimize our machine learning model, while we keep the test set until the very end
to evaluate the final model.

Training and selecting a predictive model

As we will see in later chapters, many different machine learning algorithms have
been developed to solve different problem tasks. An important point that can be
summarized from David Wolpert's famous No Free Lunch Theorems is that we can't
get learning "for free" (The Lack of A Priori Distinctions Between Learning Algorithms,
D.H. Wolpert 1996; No Free Lunch Theorems for Optimization, D.H. Wolpert and W.G.
Macready, 1997). Intuitively, we can relate this concept to the popular saying, "I
suppose it is tempting, if the only tool you have is a hammer, to treat everything as if it
were a nail" (Abraham Maslow, 1966). For example, each classification algorithm
has its inherent biases, and no single classification model enjoys superiority if we
don't make any assumptions about the task. In practice, it is therefore essential to
compare at least a handful of different algorithms in order to train and select the
best performing model. But before we can compare different models, we first
have to decide upon a metric to measure performance. One commonly used
metric is classification accuracy, which is defined as the proportion of correctly
classified instances.

One legitimate question to ask is: how do we know which model performs well on the
final test dataset and real-world data if we don't use this test set for the model selection

but keep it for the final model evaluation? In order to address the issue embedded in
this question, different cross-validation techniques can be used where the training
dataset is further divided into training and validation subsets in order to estimate the
generalization performance of the model. Finally, we also cannot expect that the default
parameters of the different learning algorithms provided by software libraries are
optimal for our specific problem task. Therefore, we will make frequent use of
hyperparameter optimization techniques that help us to fine-tune the performance of
our model in later chapters. Intuitively, we can think of those hyperparameters as
parameters that are not learned from the data but represent the knobs of a model
that we can turn to improve its performance, which will become much clearer in
later chapters when we see actual examples.

[12]

Chapter 1

Evaluating models and predicting unseen
data instances

After we have selected a model that has been fitted on the training dataset, we can
use the test dataset to estimate how well it performs on this unseen data to estimate
the generalization error. If we are satisfied with its performance, we can now use

this model to predict new, future data. It is important to note that the parameters for
the previously mentioned procedures —such as feature scaling and dimensionality
reduction—are solely obtained from the training dataset, and the same parameters are
later re-applied to transform the test dataset, as well as any new data samples —the
performance measured on the test data may be overoptimistic otherwise.

Using Python for machine learning

Python is one of the most popular programming languages for data science
and therefore enjoys a large number of useful add-on libraries developed by
its great community.

Although the performance of interpreted languages, such as Python, for
computation-intensive tasks is inferior to lower-level programming languages,
extension libraries such as NumPy and SciPy have been developed that build upon
lower layer Fortran and C implementations for fast and vectorized operations on
multidimensional arrays.

For machine learning programming tasks, we will mostly refer to the scikit-learn
library, which is one of the most popular and accessible open source machine
learning libraries as of today.

Installing Python packages

Python is available for all three major operating systems —Microsoft Windows,
Mac OS X, and Linux —and the installer, as well as the documentation, can be
downloaded from the official Python website: https://www.python.org.

This book is written for Python version >= 3.4.3, and it is recommended

you use the most recent version of Python 3 that is currently available,

although most of the code examples may also be compatible with Python >=2.7.10.
If you decide to use Python 2.7 to execute the code examples, please make sure
that you know about the major differences between the two Python versions. A
good summary about the differences between Python 3.4 and 2.7 can be found at
https://wiki.python.org/moin/Python2orPython3.

[13]

https://www.python.org
https://wiki.python.org/moin/Python2orPython3

Giving Computers the Ability to Learn from Data

The additional packages that we will be using throughout this book can be
installed via the pip installer program, which has been part of the Python
standard library since Python 3.3. More information about pip can be found
at https://docs.python.org/3/installing/index.html.

After we have successfully installed Python, we can execute pip from the command
line terminal to install additional Python packages:

pip install SomePackage
Already installed packages can be updated via the - -upgrade flag:

pip install SomePackage --upgrade

A highly recommended alternative Python distribution for scientific computing

is Anaconda by Continuum Analytics. Anaconda is a free —including commercial
use —enterprise-ready Python distribution that bundles all the essential Python
packages for data science, math, and engineering in one user-friendly
cross-platform distribution. The Anaconda installer can be downloaded at
http://continuum.io/downloads#py34, and an Anaconda quick start-guide is
available at https://store.continuum.io/static/img/Anaconda-Quickstart.
pdf.

After successfully installing Anaconda, we can install new Python packages using
the following command:

conda install SomePackage

Existing packages can be updated using the following command:

conda update SomePackage

Throughout this book, we will mainly use NumPy's multi-dimensional arrays to store
and manipulate data. Occasionally, we will make use of pandas, which is a library
built on top of NumPy that provides additional higher level data manipulation

tools that make working with tabular data even more convenient. To augment our
learning experience and visualize quantitative data, which is often extremely useful
to intuitively make sense of it, we will use the very customizable matplotlib library.

[14]

https://docs.python.org/3/installing/index.html
http://continuum.io/downloads#py34
https://store.continuum.io/static/img/Anaconda-Quickstart.pdf
https://store.continuum.io/static/img/Anaconda-Quickstart.pdf

Chapter 1

The version numbers of the major Python packages that were used for writing this
book are listed below. Please make sure that the version numbers of your installed
packages are equal to, or greater than, those version numbers to ensure the code
examples run correctly:

* NumPy19.1

e SciPy 0.14.0

* scikit-learn 0.15.2
* matplotlib 1.4.0

* pandas0.15.2

Summary

In this chapter, we explored machine learning on a very high level and familiarized
ourselves with the big picture and major concepts that we are going to explore in the
next chapters in more detail.

We learned that supervised learning is composed of two important subfields:
classification and regression. While classification models allow us to categorize
objects into known classes, we can use regression analysis to predict the continuous
outcomes of target variables. Unsupervised learning not only offers useful
techniques for discovering structures in unlabeled data, but it can also be

useful for data compression in feature preprocessing steps.

We briefly went over the typical roadmap for applying machine learning to
problem tasks, which we will use as a foundation for deeper discussions and
hands-on examples in the following chapters. Eventually, we set up our Python
environment and installed and updated the required packages to get ready to see
machine-learning in action.

[15]

Giving Computers the Ability to Learn from Data

In the following chapter, we will implement one of the earliest machine learning
algorithms for classification that will prepare us for Chapter 3, A Tour of Machine
Learning Classifiers Using Scikit-learn, where we cover more advanced machine
learning algorithms using the scikit-learn open source machine learning library. Since
machine learning algorithms learn from data, it is critical that we feed them useful
information, and in Chapter 4, Building Good Training Sets — Data Preprocessing we will
take a look at important data preprocessing techniques. In Chapter 5, Compressing Data
via Dimensionality Reduction, we will learn about dimensionality reduction techniques
that can help us to compress our dataset onto a lower-dimensional feature subspace,
which can be beneficial for computational efficiency. An important aspect of building
machine learning models is to evaluate their performance and to estimate how well
they can make predictions on new, unseen data. In Chapter 6, Learning Best Practices for
Model Evaluation and Hyperparameter Tuning we will learn all about the best practices
for model tuning and evaluation. In certain scenarios, we still may not be satisfied with
the performance of our predictive model although we may have spent hours or days
extensively tuning and testing. In Chapter 7, Combining Different Models for Ensemble
Learning we will learn how to combine different machine learning models to build
even more powerful predictive systems.

After we covered all of the important concepts of a typical machine learning pipeline,
we will implement a model for predicting emotions in text in Chapter 8, Applying
Machine Learning to Sentiment Analysis, and in Chapter 9, Embedding a Machine Learning
Model into a Web Application, we will embed it into a Web application to share it with
the world. In Chapter 10, Predicting Continuous Target Variables with Regression Analysis
we will then use machine learning algorithms for regression analysis that allow us to
predict continuous output variables, and in Chapter 11, Working with Unlabelled Data

- Clustering Analysis we will apply clustering algorithms that will allow us to find
hidden structures in data. The last chapter in this book will cover artificial neural
networks that will allow us to tackle complex problems, such as image and speech
recognition, which is currently one of the hottest topics in machine-learning research.

[16]

Training Machine Learning
Algorithms for Classification

In this chapter, we will make use of one of the first algorithmically described
machine learning algorithms for classification, the perceptron and adaptive linear
neurons. We will start by implementing a perceptron step by step in Python and
training it to classify different flower species in the Iris dataset. This will help us to
understand the concept of machine learning algorithms for classification and how
they can be efficiently implemented in Python. Discussing the basics of optimization
using adaptive linear neurons will then lay the groundwork for using more powerful
classifiers via the scikit-learn machine-learning library in Chapter 3, A Tour of Machine
Learning Classifiers Using Scikit-learn.

The topics that we will cover in this chapter are as follows:

* Building an intuition for machine learning algorithms
* Using pandas, NumPy, and matplotlib to read in, process, and visualize data

* Implementing linear classification algorithms in Python

[17]

Training Machine Learning Algorithms for Classification

Artificial neurons — a brief glimpse into
the early history of machine learning

Before we discuss the perceptron and related algorithms in more detail, let us take
a brief tour through the early beginnings of machine learning. Trying to understand
how the biological brain works to design artificial intelligence, Warren McCullock
and Walter Pitts published the first concept of a simplified brain cell, the so-called

McCullock-Pitts (MCP) neuron, in 1943 (W. S. McCulloch and W. Pitts. A Logical
Calculus of the Ideas Immanent in Nervous Activity. The bulletin of mathematical

biophysics, 5(4):115-133, 1943). Neurons are interconnected nerve cells in the brain

that are involved in the processing and transmitting of chemical and electrical

signals, which is illustrated in the following figure:

Input

Signals

.)

Dendrites

Cell nucleus

Myelin sheath

Axon
terminals

\

—

|

Output

Signals

McCullock and Pitts described such a nerve cell as a simple logic gate with binary
outputs; multiple signals arrive at the dendrites, are then integrated into the cell

body, and, if the accumulated signal exceeds a certain threshold, an output signal
is generated that will be passed on by the axon.

[18]

Chapter 2

Only a few years later, Frank Rosenblatt published the first concept of the perceptron
learning rule based on the MCP neuron model (F. Rosenblatt, The Perceptron, a
Perceiving and Recognizing Automaton. Cornell Aeronautical Laboratory, 1957). With
his perceptron rule, Rosenblatt proposed an algorithm that would automatically
learn the optimal weight coefficients that are then multiplied with the input features
in order to make the decision of whether a neuron fires or not. In the context of
supervised learning and classification, such an algorithm could then be used to
predict if a sample belonged to one class or the other.

More formally, we can pose this problem as a binary classification task where we
refer to our two classes as 1 (positive class) and -1 (negative class) for simplicity. We

can then define an activation function ¢(Z) that takes a linear combination of certain
input values X and a corresponding weight vector w , where z is the so-called net

input (Z=wWX, +...+W,X,):

W] xl
w= . , X =
Wm xm

Now, if the activation of a particular sample x('), that is, the output of ¢(Z) ,1is
greater than a defined threshold 6, we predict class 1 and class -1, otherwise, in the

perceptron algorithm, the activation function () isa simple unit step function, which
is sometimes also called the Heaviside step function:

¢(Z):{ 1ifz>6

—1 otherwise

[19]

Training Machine Learning Algorithms for Classification

For simplicity, we can bring the threshold € to the left side of the equation and

define a weight-zero as W, = —6 and x, =1, so that we write Z in a more compact

T
form z=WyX, + WX, +...+ W, X, =W X and ¢(z)={

lifz>6

—1 otherwise .

In the following sections, we will often make use of basic notations from
linear algebra. For example, we will abbreviate the sum of the products
of the values in X and W using a vector dot product, whereas superscript
T stands for transpose, which is an operation that transforms a column
vector into a row vector and vice versa:

— _ m A
ZEW WX WX, =D X, =W x

4
For example: [1 2 3]>< 5 1=1x4+2%x5+3x6=32.
6

Furthermore, the transpose operation can also be applied to a matrix to
reflect it over its diagonal, for example:

T

1 2

1 35
3 4 =
[246}

56

In this book, we will only use the very basic concepts from linear algebra.
However, if you need a quick refresher, please take a look at Zico Kolter's
excellent Linear Algebra Review and Reference, which is freely available
athttp://www.cs.cmu.edu/~zkolter/course/linalg/linalg
notes.pdf.

The following figure illustrates how the net input Z = w'x is squashed into a binary
output (-1 or 1) by the activation function of the perceptron (left subfigure) and how it
can be used to discriminate between two linearly separable classes (right subfigure):

[20]

http://www.cs.cmu.edu/~zkolter/course/linalg/linalg_notes.pdf
http://www.cs.cmu.edu/~zkolter/course/linalg/linalg_notes.pdf

Chapter 2

d(wix) =0
b(wx) A \

¢(w'x) <0 o , Pwx)20

o i+ *t

1 OO o Oi +

w © ot 4

O + +
Z © o . +
O o I+ + +
0 I

The whole idea behind the MCP neuron and Rosenblatt's thresholded perceptron
model is to use a reductionist approach to mimic how a single neuron in the brain
works: it either fires or it doesn't. Thus, Rosenblatt's initial perceptron rule is fairly
simple and can be summarized by the following steps:

1. Initialize the weights to 0 or small random numbers.

(@)

2. For each training sample X : perform the following steps:

1. Compute the output value J .
2. Update the weights.

Here, the output value is the class label predicted by the unit step function that we
defined earlier, and the simultaneous update of each weight W, in the weight vector

W can be more formally written as:
wi=w, +Aw; .

The value of Aw +» which is used to update the weight W;, is calculated by the
perceptron learning rule:

[21]

Training Machine Learning Algorithms for Classification

Where 7 is the learning rate (a constant between 0.0 and 1.0), y(i) is the true class

label of the i th training sample, and f/(i) is the predicted class label. It is important to
note that all weights in the weight vector are being updated simultaneously, which

means that we don't recompute the f/(i) before all of the weights AW; were updated.
Concretely, for a 2D dataset, we would write the update as follows:

Aw, =1 (y(i) - output(i))
Aw, =1 (y(i) - output(i)) xl(l)
Aw, =7 (y(i) — output(i)) x;)

Before we implement the perceptron rule in Python, let us make a simple thought
experiment to illustrate how beautifully simple this learning rule really is. In the
two scenarios where the perceptron predicts the class label correctly, the weights
remain unchanged:

Aw, =n (=17 ==17)x] =0

However, in the case of a wrong prediction, the weights are being pushed towards
the direction of the positive or negative target class, respectively:

Aw, = 77(1(1‘) __l(i))x:) _ 77(2))((,[)

()
To get a better intuition for the multiplicative factor X; , let us go through another
simple example, where:

P =41, Y =—1, p=1

[22]

Chapter 2

0
Let's assume that x; =0.5, and we misclassify this sample as -1. In this case, we
))
would increase the corresponding weight by 1 so that the activation x; =w; will be
more positive the next time we encounter this sample and thus will be more likely to

be above the threshold of the unit step function to classify the sample as +1:

aw] =(17=-17)0.5" =(2)0.5 =1

U]
The weight update is proportional to the value of X; . For example, if we have

(@)
another sample x; =2 that is incorrectly classified as -1, we'd push the decision
boundary by an even larger extend to classify this sample correctly the next time:

Aw, = (1(1') _ _1(5))2(1') _ (2)2(") -4

It is important to note that the convergence of the perceptron is only guaranteed if
the two classes are linearly separable and the learning rate is sufficiently small. If the
two classes can't be separated by a linear decision boundary, we can set a maximum
number of passes over the training dataset (epochs) and/or a threshold for the
number of tolerated misclassifications — the perceptron would never stop updating
the weights otherwise:

h . F 9
Linearly separable T Not linearly separable Not linearly separable
1 o
e (o]
o /& ©o o + %0
X, o 0 I 4 + X, 0 + + X, (o] +++++ *
Qo ! & * 0.90% 4, * + o
o ./ °
o! - * o ©
" +* o s
X X; i X;

Downloading the example code

You can download the example code files from your account at

~ http://www.packtpub.com for all the Packt Publishing books
Q you have purchased. If you purchased this book elsewhere, you

can visit http: //www.packtpub.com/support and register to

have the files e-mailed directly to you.

[23]

http://www.packtpub.com
http://www.packtpub.com/support

Training Machine Learning Algorithms for Classification

Now, before we jump into the implementation in the next section, let us summarize
what we just learned in a simple figure that illustrates the general concept of
the perceptron:

Error

@ » Output

Net input Activation
function function

The preceding figure illustrates how the perceptron receives the inputs of a sample
x and combines them with the weights W to compute the net input. The net input
is then passed on to the activation function (here: the unit step function), which
generates a binary output -1 or +1 —the predicted class label of the sample. During
the learning phase, this output is used to calculate the error of the prediction and
update the weights.

Implementing a perceptron learning
algorithm in Python

In the previous section, we learned how Rosenblatt's perceptron rule works; let us
now go ahead and implement it in Python and apply it to the Iris dataset that we
introduced in Chapter 1, Giving Computers the Ability to Learn from Data. We will take
an objected-oriented approach to define the perceptron interface as a Python class,
which allows us to initialize new perceptron objects that can learn from data via a
fit method, and make predictions via a separate predict method. As a convention,
we add an underscore to attributes that are not being created upon the initialization
of the object but by calling the object's other methods —for example, self.w_.

[24]

Chapter 2

If you are not yet familiar with Python's scientific libraries or need a
refresher, please see the following resources:
NumPy: http://wiki.scipy.org/Tentative NumPy Tutorial
. Pandas: http://pandas.pydata.org/pandas-docs/stable/
% tutorials.html
> Matplotlib: http://matplotlib.org/ussers/beginner.html

Also, to better follow the code examples, I recommend you download
the IPython notebooks from the Packt website. For a general
introduction to IPython notebooks, please visit https://ipython.
org/ipython-doc/3/notebook/index.html.

import numpy as np
class Perceptron (object) :
""n"perceptron classifier.

Parameters
eta : float

Learning rate (between 0.0 and 1.0)
n iter : int

Passes over the training dataset.

Attributes
w_ : ld-array
Weights after fitting.
errors_ : list
Number of misclassifications in every epoch.

nmnn

def init (self, eta=0.01, n iter=10):
self.eta = eta
self.n iter = n iter

def fit(self, X, y):
""r"Fit training data.

Parameters

X : {array-like}, shape = [n_samples, n features]
Training vectors, where n samples
is the number of samples and

[25]

http://wiki.scipy.org/Tentative_NumPy_Tutorial
http://pandas.pydata.org/pandas-docs/stable/tutorials.html
http://pandas.pydata.org/pandas-docs/stable/tutorials.html
http://matplotlib.org/ussers/beginner.html
https://ipython.org/ipython-doc/3/notebook/index.html
https://ipython.org/ipython-doc/3/notebook/index.html

Training Machine Learning Algorithms for Classification

n features is the number of features.
y : array-like, shape = [n_samples]
Target values.

self : object

self.w_ = np.zeros(l + X.shapel[l])

self.errors = []

for in range(self.n iter):
errors = 0

for xi, target in zip(X, vy):
update = self.eta * (target - self.predict(xi))
self.w _[1:] += update * xi
self.w_[0] += update
errors += int (update != 0.0)
self.errors_ .append(errors)
return self

def net input (self, X):
""rCalculate net input"""
return np.dot (X, self.w [1:]) + self.w [0]

def predict(self, X):
"""Return class label after unit step"""
return np.where(self.net input(X) >= 0.0, 1, -1)

Using this perceptron implementation, we can now initialize new Perceptron
objects with a given learning rate eta and n_iter, which is the number of epochs
(passes over the training set). Via the £it method we initialize the weights in

self.w_to a zero-vector R"™" where m stands for the number of dimensions
(features) in the dataset where we add 1 for the zero-weight (that is, the threshold).

NumPy indexing for one-dimensional arrays works similarly to Python
+ lists using the square-bracket ([1) notation. For two-dimensional arrays,
% the first indexer refers to the row number, and the second indexer to the
’ column number. For example, we would use X [2, 3] to select the third
row and fourth column of a 2D array X.

[26]

Chapter 2

After the weights have been initialized, the £it method loops over all individual
samples in the training set and updates the weights according to the perceptron
learning rule that we discussed in the previous section. The class labels are predicted
by the predict method, which is also called in the £it method to predict the class
label for the weight update, but predict can also be used to predict the class labels
of new data after we have fitted our model. Furthermore, we also collect the number
of misclassifications during each epoch in the list self.errors_ so that we can

later analyze how well our perceptron performed during the training. The np . dot
function that is used in the net_input method simply calculates the vector dot
product w' x.

B Instead of using NumPy to calculate the vector dot product N

between two arrays a and b via a.dot (b) ornp.dot (a, b),
we could also perform the calculation in pure Python via
sum([j*j for i,j in zip(a, b)]l.However, the advantage of
using NumPy over classic Python for-loop structures is that its arithmetic
operations are vectorized. Vectorization means that an elemental
. arithmetic operation is automatically applied to all elements in an array.
% By formulating our arithmetic operations as a sequence of instructions

s on an array rather than performing a set of operations for each element
one at a time, we can make better use of our modern CPU architectures
with Single Instruction, Multiple Data (SIMD) support. Furthermore,
NumPy uses highly optimized linear algebra libraries, such as Basic
Linear Algebra Subprograms (BLAS) and Linear Algebra Package
(LAPACK) that have been written in C or Fortran. Lastly, NumPy also
allows us to write our code in a more compact and intuitive way using
the basics of linear algebra, such as vector and matrix dot products.

Training a perceptron model on the Iris
dataset

To test our perceptron implementation, we will load the two flower classes Setosa
and Versicolor from the Iris dataset. Although, the perceptron rule is not restricted to
two dimensions, we will only consider the two features sepal length and petal length
for visualization purposes. Also, we only chose the two flower classes Setosa and
Versicolor for practical reasons. However, the perceptron algorithm can be extended
to multi-class classification — for example, through the One-vs.-All technique.

[27]

Training Machine Learning Algorithms for Classification

One-vs.-All (OvA), or sometimes also called One-vs.-Rest (OvR), is a
technique, us to extend a binary classifier to multi-class problems. Using
OvVA, we can train one classifier per class, where the particular class
is treated as the positive class and the samples from all other classes
are considered as the negative class. If we were to classify a new data
L

sample, we would use our ¢ (Z) classifiers, where 7 is the number of
class labels, and assign the class label with the highest confidence to
the particular sample. In the case of the perceptron, we would use OvA
to choose the class label that is associated with the largest absolute net
input value.

First, we will use the pandas library to load the Iris dataset directly from the UCI
Machine Learning Repository into a DataFrame object and print the last five lines via
the tail method to check that the data was loaded correctly:

>>> import pandas as pd
>>> df = pd.read csv('https://archive.ics.uci.edu/ml/"

'machine-learning-databases/iris/iris.data', header=None)

>>> df.tail()

o 1 |2 (3 |4

145 (6.7 |3.0 (5.2 | 2.3 | Iris-virginica
146 6.3 |2.5|5.0 [1.9 | Iris-virginica

147 |6.5|3.0|5.2 | 2.0 | Iris-virginica
148 |6.2 | 3.4 |5.4 | 2.3 | Iris-virginica
149 |5.9|3.0(5.1|1.8 | Iris-virginica

Next, we extract the first 100 class labels that correspond to the 50 Iris-Setosa and 50
Iris-Versicolor flowers, respectively, and convert the class labels into the two integer
class labels 1 (Versicolor) and -1 (Setosa) that we assign to a vector y where the values
method of a pandas DataFrame yields the corresponding NumPy representation.
Similarly, we extract the first feature column (sepal length) and the third feature
column (petal length) of those 100 training samples and assign them to a feature
matrix X, which we can visualize via a two-dimensional scatter plot:

>>> import matplotlib.pyplot as plt

>>> import numpy as np

>>> y = df.iloc[0:100, 4] .values

[28]

Chapter 2

>>> y = np.where(y == 'Iris-setosa', -1, 1)
>>> X = df.iloc[0:100, [0, 2]].values
>>> plt.scatter(X[:50, 0], X[:50, 11,
color='red', marker='o', label='setosa')
>>> plt.scatter(X[50:100, 0], X[50:100, 11,
color='blue', marker='x', label='versicolor')
>>> plt.xlabel ('petal length')
>>> plt.ylabel('sepal length')
>>> plt.legend(loc="'upper left')
>>> plt.show()

After executing the preceding code example we should now see the
following scatterplot:

6 T Ll T I T L
e® e setosa
xXx versicolor
s||xxx versicolo x . |
X ¥ X x X x
X o X X x 2 x x X ix
X%y X x X x
4 x x e xx
) %
= » XX
£ x %
2 3F X R
2
©
by
u12' L[]]]
P . o
g9 .II' ' l l": g ° .

1F ® o R

0 | 1 | 1 1 1

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

petal length [cm]

Now it's time to train our perceptron algorithm on the Iris data subset that we just
extracted. Also, we will plot the misclassification error for each epoch to check
if the algorithm converged and found a decision boundary that separates the two Iris
flower classes:

>>> ppn = Perceptron(eta=0.1, n iter=10)
>>> ppn.fit (X, y)

>>> plt.plot(range(l, len(ppn.errors) + 1), ppn.errors ,

[29]

Training Machine Learning Algorithms for Classification

marker='o"')
>>> plt.xlabel ('Epochs')
>>> plt.ylabel ('Number of misclassifications')

>>> plt.show()

After executing the preceding code, we should see the plot of the misclassification
errors versus the number of epochs, as shown next:

3.0

25}

2.0

1.5

1.0

Number of misclassifications

0.5

0.0
1 2 3 4 5 6 7 8 9 10

Epochs

As we can see in the preceding plot, our perceptron already converged after the
sixth epoch and should now be able to classify the training samples perfectly. Let
us implement a small convenience function to visualize the decision boundaries
for 2D datasets:

from matplotlib.colors import ListedColormap
def plot_decision regions(X, y, classifier, resolution=0.02):
setup marker generator and color map

markers = ('s', 'x', 'o', '*', 'v')

colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')

[30]

Chapter 2

cmap = ListedColormap (colors[:len(np.unique(y))])

plot the decision surface

x1 min, x1 max = X[:, 0] .min() - 1, X[:, O0].max() + 1

x2 min, x2 max = X[:, 1]l.min() - 1, X[:, 1].max() + 1

xx1l, xx2 = np.meshgrid(np.arange(xl min, xl1 max, resolution),
np.arange (x2 min, x2 max, resolution))

Z = classifier.predict(np.array([xxl.ravel(), xx2.ravel()]).T)

Z = Z.reshape (xx1l.shape)

plt.contourf (xx1, xx2, Z, alpha=0.4, cmap=cmap)

plt.xlim(xxl.min(), xxl.max())

plt.ylim(xx2.min (), xx2.max())

plot class samples
for idx, cl in enumerate(np.unique(y)):
plt.scatter (x=X[y == ¢cl, 0], y=X[y == cl, 1],
alpha=0.8, c=cmap(idx),

marker=markers[idx], label=cl)

First, we define a number of colors and markers and create a color map from

the list of colors via ListedColormap. Then, we determine the minimum and
maximum values for the two features and use those feature vectors to create a pair
of grid arrays xx1 and xx2 via the NumPy meshgrid function. Since we trained
our perceptron classifier on two feature dimensions, we need to flatten the grid
arrays and create a matrix that has the same number of columns as the Iris training
subset so that we can use the predict method to predict the class labels z of the
corresponding grid points. After reshaping the predicted class labels z into a grid
with the same dimensions as xx1 and xx2, we can now draw a contour plot via
matplotlib's contourf function that maps the different decision regions to different
colors for each predicted class in the grid array:

>>> plot decision regions(X, y, classifier=ppn)
>>> plt.xlabel ('sepal length [cm]')

>>> plt.ylabel('petal length [cm]')

>>> plt.legend(loc='upper left')

>>> plt.show()

[31]

Training Machine Learning Algorithms for Classification

After executing the preceding code example, we should now see a plot of the
decision regions, as shown in the following figure:

petal length [cm]

4 5 6 7
sepal length [cm]

As we can see in the preceding plot, the perceptron learned a decision boundary that
was able to classify all flower samples in the Iris training subset perfectly.

Although the perceptron classified the two Iris flower classes
perfectly, convergence is one of the biggest problems of the
_ perceptron. Frank Rosenblatt proved mathematically that the
perceptron learning rule converges if the two classes can be
L separated by a linear hyperplane. However, if classes cannot
be separated perfectly by such a linear decision boundary, the
weights will never stop updating unless we set a maximum
number of epochs.

[32]

Chapter 2

Adaptive linear neurons and the
convergence of learning

In this section, we will take a look at another type of single-layer neural network:
ADAptive LInear NEuron (Adaline). Adaline was published, only a few years
after Frank Rosenblatt's perceptron algorithm, by Bernard Widrow and his doctoral
student Tedd Hoff, and can be considered as an improvement on the latter

(B. Widrow et al. Adaptive "Adaline" neuron using chemical "memistors". Number
Technical Report 1553-2. Stanford Electron. Labs. Stanford, CA, October 1960). The
Adaline algorithm is particularly interesting because it illustrates the key concept
of defining and minimizing cost functions, which will lay the groundwork for
understanding more advanced machine learning algorithms for classification, such
as logistic regression and support vector machines, as well as regression models that
we will discuss in future chapters.

The key difference between the Adaline rule (also known as the Widrow-Hoff rule)
and Rosenblatt's perceptron is that the weights are updated based on a linear
activation function rather than a unit step function like in the perceptron. In Adaline,

this linear activation function ¢(Z) is simply the identity function of the net input so
that ¢(w'x)=w'x
While the linear activation function is used for learning the weights, a quantizer,

which is similar to the unit step function that we have seen before, can then be used
to predict the class labels, as illustrated in the following figure:

—@— Output

Net input Activation Quantizer
function function

[33]

Training Machine Learning Algorithms for Classification

If we compare the preceding figure to the illustration of the perceptron algorithm
that we saw earlier, the difference is that we know to use the continuous valued
output from the linear activation function to compute the model error and update
the weights, rather than the binary class labels.

Minimizing cost functions with gradient
descent

One of the key ingredients of supervised machine learning algorithms is to define
an objective function that is to be optimized during the learning process. This
objective function is often a cost function that we want to minimize. In the case

of Adaline, we can define the cost function J to learn the weights as the Sum of
Squared Errors (SSE) between the calculated outcome and the true class label

s =3 2 (" =0(="))

The term % is just added for our convenience; it will make it easier to derive the
gradient, as we will see in the following paragraphs. The main advantage of this
continuous linear activation function is —in contrast to the unit step function — that
the cost function becomes differentiable. Another nice property of this cost function
is that it is convex; thus, we can use a simple, yet powerful, optimization algorithm
called gradient descent to find the weights that minimize our cost function to classify
the samples in the Iris dataset.

As illustrated in the following figure, we can describe the principle behind gradient
descent as climbing down a hill until a local or global cost minimum is reached. In each
iteration, we take a step away from the gradient where the step size is determined by
the value of the learning rate as well as the slope of the gradient:

[34]

Chapter 2

Gradient

Using gradient descent, we can now update the weights by taking a step away from
the gradient VJ (w) of our cost function J (w) :

w=w+Aw

Here, the weight change Aw is defined as the negative gradient multiplied by the
learning rate 7:

Aw =—nAT (w)

To compute the gradient of the cost function, we need to compute the partial

oJ i i i
- . RIS RN
derivative of the cost function with respect to each weight W; ow; :

oJ ; ;
' . Aw =—n UPYRUNNG
so that we can write the update of weight »; as: W= ow, " Z(y ¢(Z))X i

Since we update all weights simultaneously, our Adaline learning rule becomes
w=w+Aw,

[35]

Training Machine Learning Algorithms for Classification

- -
For those who are familiar with calculus, the partial derivative of the SSE
cost function with respect to the jth weight in can be obtained as follows:

o/ _01 (y(,)_¢(z(,~)))2

1 0 i i
a2 -0

=% Zz(ym _¢(Z<f)))%(y<f> —¢(z<">))

Although the Adaline learning rule looks identical to the perceptron rule, the ¢(Z))

with Z) w’ x") is a real number and not an integer class label. Furthermore,

the weight update is calculated based on all samples in the training set (instead of
updating the weights incrementally after each sample), which is why this approach
is also referred to as "batch" gradient descent.

Implementing an Adaptive Linear Neuron in
Python

Since the perceptron rule and Adaline are very similar, we will take the perceptron
implementation that we defined earlier and change the £it method so that the
weights are updated by minimizing the cost function via gradient descent:

class AdalineGD (object) :
"""ADAptive LInear NEuron classifier.

Parameters

[36]

Chapter 2

eta

float
Learning rate (between 0.0 and 1.0)

n iter : int

Passes over the training dataset.

Attributes

ld-array
Weights after fitting.

errors_ : list

def

def

Number of misclassifications in every epoch.

__init (self, eta=0.01, n_iter=50):
self.eta = eta
self.n iter = n iter

fit(self, X, y):
"ne Fit training data.

Parameters

X : {array-like}, shape = [n_samples, n_ features]

Training vectors,

where n_samples is the number of samples and

n features is the number of features.
y : array-like, shape = [n_samples]
Target values.

self : object

self.w_ = np.zeros(l + X.shapel[l])
self.cost = []

for i in range(self.n iter):
output = self.net input (X)
errors = (y - output)
self.w _[1:] += self.eta * X.T.dot (errors)
self.w_[0] += self.eta * errors.sum()

[37]

Training Machine Learning Algorithms for Classification

cost = (errors**2).sum() / 2.0
self.cost .append(cost)
return self

def net input(self, X):
""rCalculate net input"""
return np.dot (X, self.w [1:]) + self.w [0]

def activation (self, X):
""rCompute linear activation""™"
return self.net input (X)

def predict(self, X):
"""Return class label after unit step"""
return np.where(self.activation(X) >= 0.0, 1, -1)

Instead of updating the weights after evaluating each individual training
sample, as in the perceptron, we calculate the gradient based on the whole
training dataset via self.eta * errors.sum() for the zero-weight and via

self.eta * X.T.dot (errors) for the weights 1 to m where X.T.dot (errors)

is a matrix-vector multiplication between our feature matrix and the error vector.
Similar to the previous perceptron implementation, we collect the cost values in
alist self.cost_ to check if the algorithm converged after training.
B Performing a matrix-vector multiplication is similar to calculating a
vector dot product where each row in the matrix is treated as a single
row vector. This vectorized approach represents a more compact
notation and results in a more efficient computation using NumPy.

For example:

7
1 2 3 g Ix74+2%x8+3%9 50
X = =
4 5 6 9 4x7+5%x8+6%9 122

[38]

Chapter 2

In practice, it often requires some experimentation to find a good learning rate 7 for
optimal convergence. So, let's choose two different learning rates #=0.1 and #=0.0001
to start with and plot the cost functions versus the number of epochs to see how well
the Adaline implementation learns from the training data.

The learning rate 7, as well as the number of epochsn_iter, are
. the so-called hyperparameters of the perceptron and Adaline learning
% algorithms. In Chapter 4, Building Good Training Sets — Data Preprocessing,
L we will take a look at different techniques to automatically find the
values of different hyperparameters that yield optimal performance of
the classification model.

Let us now plot the cost against the number of epochs for the two different
learning rates:

>>> fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(8, 4))

>>> adal = AdalineGD(n_ iter=10, eta=0.01).fit(X, y)

>>> ax[0] .plot(range(1l, len(adal.cost) + 1),
np.logl0(adal.cost), marker='o')

>>> ax[0] .set xlabel ('Epochs')

>>> ax[0] .set _ylabel('log(Sum-squared-error) ')

>>> ax[0] .set title('Adaline - Learning rate 0.01')

>>> ada2 = AdalineGD(n_ iter=10, eta=0.0001).fit(X, y)

>>> ax[1l] .plot(range(1l, len(ada2.cost) + 1),
ada2.cost , marker='o')

>>> ax[1l] .set xlabel ('Epochs')

>>> ax[1l] .set ylabel ('Sum-squared-error')

>>> ax[l] .set title('Adaline - Learning rate 0.0001"')

>>> plt.show()

[39]

Training Machine Learning Algorithms for Classification

As we can see in the resulting cost function plots next, we encountered two different
types of problems. The left chart shows what could happen if we choose a learning
rate that is too large —instead of minimizing the cost function, the error becomes
larger in every epoch because we overshoot the global minimum:

30 Adaline - Learning rate 0.01 50 Adaline - Learning rate 0.0001
48| .
= o
@ £
o v 46
& ®
£ P 44 R
3 g
- v
]
42 y
0 L L L 1 L 1 L 1 40 1 L L L 1 1 1 1
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Epochs Epochs

Although we can see that the cost decreases when we look at the right plot, the
chosen learning rate 7 =0.0001 is so small that the algorithm would require a
very large number of epochs to converge. The following figure illustrates how we
change the value of a particular weight parameter to minimize the cost function J
(left subfigure). The subfigure on the right illustrates what happens if we choose a
learning rate that is too large, we overshoot the global minimum:

Initial
A weight
3
J(w) \ /_— Gradient J(w)
!
' Global cost minimum
- Jmin(.w) o
w w

[40]

Chapter 2

Many machine learning algorithms that we will encounter throughout this book
require some sort of feature scaling for optimal performance, which we will discuss
in more detail in Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn.
Gradient descent is one of the many algorithms that benefit from feature scaling.
Here, we will use a feature scaling method called standardization, which gives our
data the property of a standard normal distribution. The mean of each feature

is centered at value 0 and the feature column has a standard deviation of 1. For
example, to standardize the J th feature, we simply need to subtract the sample
mean //, from every training sample and divide it by its standard deviation o;:

Here x; is a vector consisting of the J th feature values of all training samples 7 .

Standardization can easily be achieved using the NumPy methods mean and std:

>>> X std = np.copy (X)
>>> X stdl[:,0] (X[:,0] - X[:,0].mean()) / X[:,0].std()

(X[:,1]1 - XI[:,1] .mean()) / XI[:,1].std()

>>> X stdl[:,1]

After standardization, we will train the Adaline again and see that it now converges
using a learning rate 7 = 0.01:

>>> ada = AdalineGD(n_iter=15, eta=0.01)

>>> ada.fit(X std, y)

>>> plot_decision regions(X std, y, classifier=ada)
>>> plt.title('Adaline - Gradient Descent')

>>> plt.xlabel('sepal length [standardized]')

>>> plt.ylabel ('petal length [standardized]')

>>> plt.legend(loc='upper left')

>>> plt.show()

>>> plt.plot(range(l, len(ada.cost) + 1), ada.cost , marker='o')
>>> plt.xlabel ('Epochs')

>>> plt.ylabel ('Sum-squared-error')

>>> plt.show()

[41]

Training Machine Learning Algorithms for Classification

After executing the preceding code, we should see a figure of the decision regions as
well as a plot of the declining cost, as shown in the following figure:

Adaline - Gradient Descent

50

w B
=] =

b
I=]

petal length [standardized]
Sum-squared-error

10

-2 -1 L] 1 2 3 o 2 4 B 8 10 12 14 16
sepal length [standardized] Epochs.

As we can see in the preceding plots, the Adaline now converges after training on
the standardized features using a learning rate 77 = 0.01. However, note that the SSE
remains non-zero even though all samples were classified correctly.

Large scale machine learning and stochastic
gradient descent

In the previous section, we learned how to minimize a cost function by taking a step
into the opposite direction of a gradient that is calculated from the whole training
set; this is why this approach is sometimes also referred to as batch gradient descent.
Now imagine we have a very large dataset with millions of data points, which is not
uncommon in many machine learning applications. Running batch gradient descent
can be computationally quite costly in such scenarios since we need to reevaluate the
whole training dataset each time we take one step towards the global minimum.

A popular alternative to the batch gradient descent algorithm is stochastic gradient
descent, sometimes also called iterative or on-line gradient descent. Instead of updating

the weights based on the sum of the accumulated errors over all samples £

Aw = nz(y(i) _ ¢(Z(i))) x(i),

We update the weights incrementally for each training sample:

,7(P ¢(Z(f)))x<f>

[42]

Chapter 2

Although stochastic gradient descent can be considered as an approximation of
gradient descent, it typically reaches convergence much faster because of the more
frequent weight updates. Since each gradient is calculated based on a single training
example, the error surface is noisier than in gradient descent, which can also have
the advantage that stochastic gradient descent can escape shallow local minima more
readily. To obtain accurate results via stochastic gradient descent, it is important to
present it with data in a random order, which is why we want to shuffle the training
set for every epoch to prevent cycles.

In stochastic gradient descent implementations, the fixed learning rate 7

is often replaced by an adaptive learning rate that decreases over time,
G

%@‘ for example, [number of iterations] +c, where ¢, and C, are constants.
Note that stochastic gradient descent does not reach the global minimum
but an area very close to it. By using an adaptive learning rate, we can
achieve further annealing to a better global minimum

Another advantage of stochastic gradient descent is that we can use it for online
learning. In online learning, our model is trained on-the-fly as new training data
arrives. This is especially useful if we are accumulating large amounts of data—for
example, customer data in typical web applications. Using online learning, the
system can immediately adapt to changes and the training data can be discarded
after updating the model if storage space in an issue.

A compromise between batch gradient descent and stochastic gradient
descent is the so-called mini-batch learning. Mini-batch learning can be
understood as applying batch gradient descent to smaller subsets of

. the training data—for example, 50 samples at a time. The advantage

% over batch gradient descent is that convergence is reached faster
L via mini-batches because of the more frequent weight updates.

Furthermore, mini-batch learning allows us to replace the for-loop
over the training samples in Stochastic Gradient Descent (SGD) by
vectorized operations, which can further improve the computational
efficiency of our learning algorithm.

[43]

Training Machine Learning Algorithms for Classification

Since we already implemented the Adaline learning rule using gradient descent,

we only need to make a few adjustments to modify the learning algorithm to update
the weights via stochastic gradient descent. Inside the £it method, we will now
update the weights after each training sample. Furthermore, we will implement

an additional partial_fit method, which does not reinitialize the weights, for
on-line learning. In order to check if our algorithm converged after training, we

will calculate the cost as the average cost of the training samples in each epoch.
Furthermore, we will add an option to shuffle the training data before each epoch
to avoid cycles when we are optimizing the cost function; via the random_state
parameter, we allow the specification of a random seed for consistency:

from numpy.random import seed

class AdalineSGD (object) :
"""ADAptive LInear NEuron classifier.

Parameters
eta : float

Learning rate (between 0.0 and 1.0)
n iter : int

Passes over the training dataset.

Attributes
w_ : ld-array
Weights after fitting.
errors_ : list
Number of misclassifications in every epoch.
shuffle : bool (default: True)
Shuffles training data every epoch
if True to prevent cycles.
random_state : int (default: None)
Set random state for shuffling
and initializing the weights.

wun
def init (self, eta=0.01, n iter=10,
shuffle=True, random state=None) :
self.eta = eta
self.n_iter = n_iter
self.w_initialized = False
self.shuffle = shuffle

[44]

Chapter 2

def

if random state:
seed (random_state)

fit(self, X, y):
"ne Fit training data.

Parameters
X : {array-like}, shape = [n_samples, n features]
Training vectors, where n samples
is the number of samples and
n features is the number of features.
y : array-like, shape = [n_samples]
Target values.

self : object

self. initialize weights (X.shape[1l])
self.cost = []
for i in range(self.n iter):
if self.shuffle:
X, y = self. shuffle(X, y)
cost = []
for xi, target in zip(X, vy):
cost.append (self. update weights(xi, target))
avg_cost = sum(cost)/len(y)
self.cost_ .append(avg cost)
return self

def partial fit(self, X, y):

""rEit training data without reinitializing the weights"""
if not self.w initialized:

self. initialize weights (X.shape[1l])
if y.ravel() .shape[0] > 1:

for xi, target in zip(X, vy):

self. update weights(xi, target)

else:

self. update weights(X, y)
return self

def shuffle(self, X, y):

[45]

Training Machine Learning Algorithms for Classification

"mrshuffle training data""™"
r = np.random.permutation(len(y))
return X[r], ylrl]

def initialize weights(self, m):
""rnTnitialize weights to zeros"""
self.w_ = np.zeros(l + m)
self.w _initialized = True

def update weights(self, xi, target):
"""Apply Adaline learning rule to update the weights""™"
output = self.net input (xi)
error = (target - output)
self.w _[1:] += self.eta * xi.dot (error)
self.w_[0] += self.eta * error
cost = 0.5 * error**2
return cost

def net input (self, X):
""rmCalculate net input"""
return np.dot (X, self.w [1:]) + self.w [0]

def activation (self, X):
""rCompute linear activation""™"
return self.net input (X)

def predict(self, X):
"""Return class label after unit step"""
return np.where(self.activation(X) >= 0.0, 1, -1)

The _shuffle method that we are now using in the AdalinesGD classifier works

as follows: via the permutation function in numpy . random, we generate a random
sequence of unique numbers in the range 0 to 100. Those numbers can then be used
as indices to shuffle our feature matrix and class label vector.

We can then use the fit method to train the AdalinescD classifier and use our
plot_decision_regions to plot our training results:

>>>

>>>

>>>

>>>

>>>

>>>

ada = AdalineSGD(n_iter=15, eta=0.01, random state=1)
ada.fit (X_std, y)

plot decision regions (X std, y, classifier=ada)
plt.title('Adaline - Stochastic Gradient Descent')
plt.xlabel ('sepal length [standardized]')

plt.ylabel ('petal length [standardized]')

[46]

Chapter 2

>>> plt.legend(loc="'upper left')

>>> plt.show()

>>> plt.plot(range(l, len(ada.cost) + 1), ada.cost , marker='o')
>>> plt.xlabel ('Epochs')

>>> plt.ylabel ('Average Cost')

>>> plt.show()

The two plots that we obtain from executing the preceding code example are shown
in the following figure:

Adaline - Stochastic Gradient Descent

0.25

0.20

Average Cost
=
=
il

=
-
=

petal length [standardized]

0.05F

0.00 - 1 L L A
-2 -1 0 1 2 3 0 2 4 6 8 10 12 14 16
sepal length [standardized] Epochs

As we can see, the average cost goes down pretty quickly, and the final decision
boundary after 15 epochs looks similar to the batch gradient descent with Adaline.
If we want to update our model —for example, in an on-line learning scenario with
streaming data—we could simply call the partial_fit method on individual
samples —for instance, ada.partial fit (X_std[0, :1, yI[0]l).

Summary

In this chapter, we gained a good understanding of the basic concepts of linear
classifiers for supervised learning. After we implemented a perceptron, we saw how
we can train adaptive linear neurons efficiently via a vectorized implementation

of gradient descent and on-line learning via stochastic gradient descent. Now that
we have seen how to implement simple classifiers in Python, we are ready to move
on to the next chapter where we will use the Python scikit-learn machine learning
library to get access to more advanced and powerful off-the-shelf machine learning
classifiers that are commonly used in academia as well as in industry.

[47]

A Tour of Machine Learning
Classifiers Using Scikit-learn

In this chapter, we will take a tour through a selection of popular and powerful
machine learning algorithms that are commonly used in academia as well as in the
industry. While learning about the differences between several supervised learning
algorithms for classification, we will also develop an intuitive appreciation of their
individual strengths and weaknesses. Also, we will take our first steps with the
scikit-learn library, which offers a user-friendly interface for using those algorithms
efficiently and productively.

The topics that we will learn about throughout this chapter are as follows:

* Introduction to the concepts of popular classification algorithms
* Using the scikit-learn machine learning library

* Questions to ask when selecting a machine learning algorithm

Choosing a classification algorithm

Choosing an appropriate classification algorithm for a particular problem task
requires practice: each algorithm has its own quirks and is based on certain
assumptions. To restate the "No Free Lunch" theorem: no single classifier works best
across all possible scenarios. In practice, it is always recommended that you compare
the performance of at least a handful of different learning algorithms to select the
best model for the particular problem; these may differ in the number of features

or samples, the amount of noise in a dataset, and whether the classes are linearly
separable or not.

[49]

A Tour of Machine Learning Classifiers Using Scikit-learn

Eventually, the performance of a classifier, computational power as well as
predictive power, depends heavily on the underlying data that are available for
learning. The five main steps that are involved in training a machine learning
algorithm can be summarized as follows:

Selection of features.

Choosing a performance metric.

Choosing a classifier and optimization algorithm.

Evaluating the performance of the model.

A

Tuning the algorithm.

Since the approach of this book is to build machine learning knowledge step by step,
we will mainly focus on the principal concepts of the different algorithms in this
chapter and revisit topics such as feature selection and preprocessing, performance
metrics, and hyperparameter tuning for more detailed discussions later in this book.

First steps with scikit-learn

In Chapter 2, Training Machine Learning Algorithms for Classification, you learned about
two related learning algorithms for classification: the perceptron rule and Adaline,
which we implemented in Python by ourselves. Now we will take a look at the
scikit-learn API, which combines a user-friendly interface with a highly optimized
implementation of several classification algorithms. However, the scikit-learn library
offers not only a large variety of learning algorithms, but also many convenient
functions to preprocess data and to fine-tune and evaluate our models. We will
discuss this in more detail together with the underlying concepts in Chapter 4,
Building Good Training Sets — Data Preprocessing, and Chapter 5, Compressing

Data via Dimensionality Reduction.

Training a perceptron via scikit-learn

To get started with the scikit-learn library, we will train a perceptron model
similar to the one that we implemented in Chapter 2, Training Machine Learning
Algorithms for Classification. For simplicity, we will use the already familiar Iris
dataset throughout the following sections. Conveniently, the Iris dataset is already
available via scikit-learn, since it is a simple yet popular dataset that is frequently
used for testing and experimenting with algorithms. Also, we will only use two
features from the Iris flower dataset for visualization purposes.

[50]

Chapter 3

We will assign the petal length and petal width of the 150 flower samples to the feature
matrix X and the corresponding class labels of the flower species to the vector y:

>>> from sklearn import datasets
>>> import numpy as np

>>> iris = datasets.load iris()
>>> X = iris.datal:, [2, 3]]

>>> y = iris.target

If we executed np.unique (y) to return the different class labels stored in iris.
target, we would see that the Iris flower class names, Iris-Setosa, Iris-Versicolor,
and Iris-Virginica, are already stored as integers (0, 1, 2), which is recommended
for the optimal performance of many machine learning libraries.

To evaluate how well a trained model performs on unseen data, we will further split
the dataset into separate training and test datasets. Later in Chapter 5, Compressing
Data via Dimensionality Reduction, we will discuss the best practices around model
evaluation in more detail:

>>> from sklearn.cross validation import train test split
>>> X train, X test, y train, y test = train test split(
X, y, test size=0.3, random state=0)

Using the train test_split function from scikit-learn's cross_validation
module, we randomly split the X and y arrays into 30 percent test data (45 samples)
and 70 percent training data (105 samples).

Many machine learning and optimization algorithms also require feature scaling
for optimal performance, as we remember from the gradient descent example
in Chapter 2, Training Machine Learning Algorithms for Classification. Here, we will
standardize the features using the Standardscaler class from scikit-learn's
preprocessing module:

>>> from sklearn.preprocessing import StandardScaler
>>> sc = StandardScaler ()

>>> sc.fit (X _train)

>>> X train std = sc.transform(X train)

>>> X test std = sc.transform(X test)

[51]

A Tour of Machine Learning Classifiers Using Scikit-learn

Using the preceding code, we loaded the standardscaler class from the
preprocessing module and initialized a new standardscaler object that we assigned
to the variable sc. Using the £it method, StandardScaler estimated the parameters
M (sample mean) and O (standard deviation) for each feature dimension from the
training data. By calling the transform method, we then standardized the training
data using those estimated parameters £ and O . Note that we used the same
scaling parameters to standardize the test set so that both the values in the training
and test dataset are comparable to each other.

Having standardized the training data, we can now train a perceptron model. Most

algorithms in scikit-learn already support multiclass classification by default via the
One-vs.-Rest (OvR) method, which allows us to feed the three flower classes to the

perceptron all at once. The code is as follows:

>>> from sklearn.linear model import Perceptron
>>> ppn = Perceptron(n iter=40, etal0=0.1, random state=0)
>>> ppn.fit (X_train_std, y_train)

The scikit-learn interface reminds us of our perceptron implementation in Chapter 2,
Training Machine Learning Algorithms for Classification: after loading the Perceptron
class from the 1inear_model module, we initialized a new pPerceptron object and
trained the model via the £it method. Here, the model parameter etao is equivalent
to the learning rate eta that we used in our own perceptron implementation, and the
parameter n_iter defines the number of epochs (passes over the training set). As
we remember from Chapter 2, Training Machine Learning Algorithms for Classification,
finding an appropriate learning rate requires some experimentation. If the learning
rate is too large, the algorithm will overshoot the global cost minimum. If the
learning rate is too small, the algorithm requires more epochs until convergence,
which can make the learning slow —especially for large datasets. Also, we used the
random_state parameter for reproducibility of the initial shuffling of the training
dataset after each epoch.

Having trained a model in scikit-learn, we can make predictions via the predict
method, just like in our own perceptron implementation in Chapter 2, Training
Machine Learning Algorithms for Classification. The code is as follows:

>>> y pred = ppn.predict (X test std)
>>> print ('Misclassified samples: %d' % (y _test != y pred).sum())
Misclassified samples: 4

[52]

Chapter 3

On executing the preceding code, we see that the perceptron misclassifies 4 out of the
45 flower samples. Thus, the misclassification error on the test dataset is 0.089 or 8.9
percent (4/45~0.089).

Instead of the misclassification error, many machine learning
% practitioners report the classification accuracy of a model, which is
2o~ simply calculated as follows:

1 - misclassification error = 0.911 or 91.1 percent.

Scikit-learn also implements a large variety of different performance metrics that are
available via the metrics module. For example, we can calculate the classification
accuracy of the perceptron on the test set as follows:

>>> from sklearn.metrics import accuracy score
>>> print ('Accuracy: %.2f' % accuracy score(y_test, y pred))
0.91

Here, y_test are the true class labels and y_pred are the class labels that we
predicted previously.

) L
Note that we evaluate the performance of our models based
on the test set in this chapter. In Chapter 5, Compressing Data via
Dimensionality Reduction, you will learn about useful techniques,

% including graphical analysis such as learning curves, to detect
T and prevent overfitting. Overfitting means that the model

captures the patterns in the training data well, but fails to
generalize well to unseen data.

Finally, we can use our plot_decision_regions function from Chapter 2, Training
Machine Learning Algorithms for Classification, to plot the decision regions of our
newly trained perceptron model and visualize how well it separates the different
flower samples. However, let's add a small modification to highlight the samples
from the test dataset via small circles:

from matplotlib.colors import ListedColormap
import matplotlib.pyplot as plt

def plot decision regions (X, y, classifier,
test idx=None, resolution=0.02):

setup marker generator and color map

[53]

A Tour of Machine Learning Classifiers Using Scikit-learn

markers = ('s', 'x', 'o', '*', 'v')
colors = ('red', 'blue', 'lightgreen', 'gray',6 'cyan')
cmap = ListedColormap (colors[:len(np.unique(y))])

plot the decision surface

x1l min, x1 max = X[:, 0] .min() - 1, X[:, 0].max() + 1
x2 min, x2 max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx1l, xx2 = np.meshgrid(np.arange(xl min, x1 max, resolution),

np.arange (x2 min, x2 max, resolution))
Z = classifier.predict(np.array([xxl.ravel(), xx2.ravel()]).T)
Z = Z.reshape (xx1.shape)
plt.contourf (xx1, xx2, Z, alpha=0.4, cmap=cmap)
plt.xlim(xxl.min(), xx1.max())
plt.ylim(xx2.min (), xx2.max())

plot all samples
X test, y test = X[test idx, :], yltest idx]
for idx, cl in enumerate (np.unique(y)) :
plt.scatter (x=X[y == cl, 0], y=X[y == cl, 11,
alpha=0.8, c=cmap(idx),
marker=markers [idx], label=cl)

highlight test samples
if test idx:
X test, y test = X[test idx, :], yltest idx]
plt.scatter(X test[:, 0], X test[:, 1], c='",
alpha=1.0, linewidth=1, marker='o',
s=55, label='test set')

With the slight modification that we made to the plot_decision_regions function
(highlighted in the preceding code), we can now specify the indices of the samples
that we want to mark on the resulting plots. The code is as follows:

>>> X combined std = np.vstack((X train std, X test std))
>>> y combined = np.hstack((y train, y test))
>>> plot_decision regions (X=X _combined std,
y=y_combined,
classifier=ppn,
o test idx=range (105,150))
>>> plt.xlabel ('petal length [standardized]')
>>> plt.ylabel ('petal width [standardized]')
>>> plt.legend(loc="upper left')
>>> plt.show()

[54]

Chapter 3

As we can see in the resulting plot, the three flower classes cannot be perfectly
separated by a linear decision boundaries:

m@g O
xXx 1
000 2
Q00 test set

petal width [standardized]
o

-2 -1 0 1 2
petal length [standardized]

We remember from our discussion in Chapter 2, Training Machine Learning Algorithms
for Classification, that the perceptron algorithm never converges on datasets that
aren't perfectly linearly separable, which is why the use of the perceptron algorithm
is typically not recommended in practice. In the following sections, we will look at
more powerful linear classifiers that converge to a cost minimum even if the classes
are not perfectly linearly separable.

The Perceptron as well as other scikit-learn functions and
. classes have additional parameters that we omit for clarity.
You can read more about those parameters using the help
& function in Python (for example, help (Perceptron)) or by
going through the excellent scikit-learn online documentation
athttp://scikit-learn.org/stable/.

[55]

http://scikit-learn.org/stable/

A Tour of Machine Learning Classifiers Using Scikit-learn

Modeling class probabilities via logistic
regression

Although the perceptron rule offers a nice and easygoing introduction to machine
learning algorithms for classification, its biggest disadvantage is that it never
converges if the classes are not perfectly linearly separable. The classification task
in the previous section would be an example of such a scenario. Intuitively, we can
think of the reason as the weights are continuously being updated since there is
always at least one misclassified sample present in each epoch. Of course, you can
change the learning rate and increase the number of epochs, but be warned that the
perceptron will never converge on this dataset. To make better use of our time, we
will now take a look at another simple yet more powerful algorithm for linear and
binary classification problems: logistic regression. Note that, in spite of its name,
logistic regression is a model for classification, not regression.

Logistic regression intuition and conditional
probabilities

Logistic regression is a classification model that is very easy to implement but
performs very well on linearly separable classes. It is one of the most widely used
algorithms for classification in industry. Similar to the perceptron and Adaline, the
logistic regression model in this chapter is also a linear model for binary classification
that can be extended to multiclass classification via the OvR technique.

To explain the idea behind logistic regression as a probabilistic model, let's first
introduce the odds ratio, which is the odds in favor of a particular event. The odds

ratio can be written as ﬁ, where p stands for the probability of the positive
event. The term positive event does not necessarily mean good, but refers to the event
that we want to predict, for example, the probability that a patient has a certain
disease; we can think of the positive event as class label y = 1. We can then further
define the logit function, which is simply the logarithm of the odds ratio (log-odds):

p

(1-p)

logit(p) =log

[56]

Chapter 3

The logit function takes input values in the range 0 to 1 and transforms them to
values over the entire real number range, which we can use to express a linear
relationship between feature values and the log-odds:

lOgit(p(y =1 x)) =WyXy + WX, + W, X, = Zn:wmxm =w'x
i=0

Here, p(»=1|x) is the conditional probability that a particular sample belongs to
class 1 given its features x.

Now what we are actually interested in is predicting the probability that a certain
sample belongs to a particular class, which is the inverse form of the logit function. It
is also called the logistic function, sometimes simply abbreviated as sigmoid function
due to its characteristic S-shape.

1
1+e*

4(2)

Here, z is the net input, that is, the linear combination of weights and sample features
and can be calculated as z =w'x =w, +wx, +---+w,x,,.

Now let's simply plot the sigmoid function for some values in the range -7 to 7 to see
what it looks like:

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> def sigmoid(z):
return 1.0 / (1.0 + np.exp(-2))
>>> z = np.arange(-7, 7, 0.1)
>>> phi z = sigmoid(z)
>>> plt.plot(z, phi z)
>>> plt.axvline (0.0, color='k')
>>> plt.axhspan(0.0, 1.0, facecolor='1.0', alpha=1.0, ls='dotted')
>>> plt.axhline(y=0.5, ls='dotted',6 color='k')
>>> plt.yticks([0.0, 0.5, 1.0])
>>> plt.ylim(-0.1, 1.1)
>>> plt.xlabel('z")
>>> plt.ylabel ('$\phi (z)$')
>>> plt.show()

[57]

A Tour of Machine Learning Classifiers Using Scikit-learn

As a result of executing the previous code example, we should now see the S-shaped
(sigmoidal) curve:

We can see that #(2) approaches 1 if z goes towards infinity (Z — %), since e’

becomes very small for large values of z. Similarly, #(z) goes towards 0 for z — —©
as the result of an increasingly large denominator. Thus, we conclude that this
sigmoid function takes real number values as input and transforms them to values in

the range [0, 1] with an intercept at #(z)=0.5,

To build some intuition for the logistic regression model, we can relate it to our
previous Adaline implementation in Chapter 2, Training Machine Learning Algorithms
for Classification. In Adaline, we used the identity function ¢(z)=z as the activation
function. In logistic regression, this activation function simply becomes the sigmoid
function that we defined earlier, which is illustrated in the following figure:

Error

A

Net input Sigmoid Quantizer
function function

[58]

Chapter 3

The output of the sigmoid function is then interpreted as the probability of particular
sample belonging to class 1 ¢(z)=P(y=1|x;w), given its features x parameterized by
the weights w. For example, if we compute #(z)=08 fora particular flower sample,

it means that the chance that this sample is an Iris-Versicolor flower is 80 percent.
Similarly, the probability that this flower is an Iris-Setosa flower can be calculated as
P(y=0]x;w)=1-P(y=0[x;w)=02 or 20 percent. The predicted probability can then
simply be converted into a binary outcome via a quantizer (unit step function):

1 ifg(z)=0.5
ﬁ:{ if$(z)>

0 otherwise

If we look at the preceding sigmoid plot, this is equivalent to the following:

. {1 if z>0.0

0 otherwise

In fact, there are many applications where we are not only interested in the predicted
class labels, but where estimating the class-membership probability is particularly
useful. Logistic regression is used in weather forecasting, for example, to not

only predict if it will rain on a particular day but also to report the chance of rain.
Similarly, logistic regression can be used to predict the chance that a patient has a
particular disease given certain symptoms, which is why logistic regression enjoys
wide popularity in the field of medicine.

Learning the weights of the logistic cost
function

You learned how we could use the logistic regression model to predict probabilities
and class labels. Now let's briefly talk about the parameters of the model, for
example, weights w. In the previous chapter, we defined the sum-squared-error
cost function:

[59]

A Tour of Machine Learning Classifiers Using Scikit-learn

We minimized this in order to learn the weights w for our Adaline classification
model. To explain how we can derive the cost function for logistic regression,
let's first define the likelihood L that we want to maximize when we build a
logistic regression model, assuming that the individual samples in our dataset are
independent of one another. The formula is as follows:

(i) 1-

1)~ =FT P 1250)) (912

XU

In practice, it is easier to maximize the (natural) log of this equation, which is called
the log-likelihood function:

1(w) =tog L (w) = T tog (")) + (15" Jog(1-9(=)

Firstly, applying the log function reduces the potential for numerical underflow,
which can occur if the likelihoods are very small. Secondly, we can convert the
product of factors into a summation of factors, which makes it easier to obtain
the derivative of this function via the addition trick, as you may remember

from calculus.

Now we could use an optimization algorithm such as gradient ascent to maximize
this log-likelihood function. Alternatively, let's rewrite the log-likelihood as a cost
function J that can be minimized using gradient descent as in Chapter 2, Training
Machine Learning Algorithms for Classification:

I w) = 35 -toa{(2)) (15 g 1-(=")

i=1

To get a better grasp on this cost function, let's take a look at the cost that we
calculate for one single-sample instance:

J($(=).3:w) = ~ylog((z))~(1-y)log 1-4(2))

[60]

Chapter 3

Looking at the preceding equation, we can see that the first term becomes zero if

y= O, and the second term becomes zero if ¥ =1, respectively:

—log(4(z)) ify=1

I(9(2).yiw)= ~log(1-¢(z)) if y=0

The following plot illustrates the cost for the classification of a single-sample instance
for different values of ¢(Z) :

5 T T 1 I 1
— Jw)ify=1 I
- - J(w)if y=0 |
4+ i
!
!
!
3 s
— !
e y
- ’
21 // .
-~
1 - §
0 == ’I - L I Il
0.0 0.2 0.4 0.6 0.8 1.0
o(z)

We can see that the cost approaches 0 (plain blue line) if we correctly predict that

a sample belongs to class 1. Similarly, we can see on the y axis that the cost also
approaches 0 if we correctly predict y =0 (dashed line). However, if the prediction
is wrong, the cost goes towards infinity. The moral is that we penalize wrong
predictions with an increasingly larger cost.

[61]

A Tour of Machine Learning Classifiers Using Scikit-learn

Training a logistic regression model with
scikit-learn

If we were to implement logistic regression ourselves, we could simply substitute
the cost function J in our Adaline implementation from Chapter 2, Training Machine
Learning Algorithms for Classification, by the new cost function:

J(w)= _Z,-: 0 1og(¢(z<")))+ (l_yu))10g(1 _¢(Z<,-)))

This would compute the cost of classifying all training samples per epoch and we
would end up with a working logistic regression model. However, since scikit-learn
implements a highly optimized version of logistic regression that also supports
multiclass settings off-the-shelf, we will skip the implementation and use the
sklearn.linear model.LogisticRegression class as well as the familiar fit
method to train the model on the standardized flower training dataset:

>>> from sklearn.linear model import LogisticRegression
>>> lr = LogisticRegression(C=1000.0, random state=0)
>>> lr.fit (X train std, y train)
>>> plot decision regions (X combined std,
y combined, classifier=lr,
.. test idx=range(105,150))
>>> plt.xlabel ('petal length [standardized]')
>>> plt.ylabel ('petal width [standardized]')
>>> plt.legend(loc="upper left')
>>> plt.show()

After fitting the model on the training data, we plotted the decision regions, training
samples and test samples, as shown here:

[62]

Chapter 3

s@p 0
xxx 1
000 2

000 test set

petal width [standardized]
o

-2 -1 0 1 2
petal length [standardized]

Looking at the preceding code that we used to train the LogisticRegression
model, you might now be wondering, "What is this mysterious parameter c?"
We will get to this in a second, but let's briefly go over the concept of overfitting
and regularization in the next subsection first.

Furthermore, we can predict the class-membership probability of the samples via
the predict_proba method. For example, we can predict the probabilities of the
first Iris-Setosa sample:

>>> lr.predict proba (X test std[0,:])
This returns the following array:

array([[0.000, 0.063, 0.93711)

[63]

A Tour of Machine Learning Classifiers Using Scikit-learn

The preceding array tells us that the model predicts a chance of 93.7 percent that the
sample belongs to the Iris-Virginica class, and a 6.3 percent chance that the sample is
a Iris-Versicolor flower.

We can show that the weight update in logistic regression via gradient descent is
indeed equal to the equation that we used in Adaline in Chapter 2, Training Machine
Learning Algorithms for Classification. Let's start by calculating the partial derivative of
the log-likelihood function with respect to the jth weight:

1 0
e e

Before we continue, let's calculate the partial derivative of the sigmoid function first:

0 o 1 1
= e =

. 1 1
a) E e ey)
A 1+eZ) l+e l+e

=¢(2)(1-¢(2))

Now we can resubstitute
the following:

63 #(z) = ¢(Z)(1—¢(Z)) in our first equation to obtain

J

1 1 0
(%(z)‘“‘”l—ﬂzﬂm(*

J

ol o) — L s (1-a(2)) -2z
_(y (Z) (1 y)1—¢(Z)J¢()(1 ¢())6w.

J

[64]

Chapter 3

Remember that the goal is to find the weights that maximize the log-likelihood so
that we would perform the update for each weight as follows:

= w, (-2
i=1

Since we update all weights simultaneously, we can write the general update rule
as follows:

w=w+Aw

We define Aw as follows:

Aw=nVI(w)

Since maximizing the log-likelihood is equal to minimizing the cost function J that
we defined earlier, we can write the gradient descent update rule as follows:

n

Aw, = —n% _ nzl:(ym ~4(=0))
J =

w=w+Aw, Aw = —nVJ(w)

This is equal to the gradient descent rule in Adaline in Chapter 2, Training Machine
Learning Algorithms for Classification.

Tackling overfitting via regularization

Overfitting is a common problem in machine learning, where a model performs well
on training data but does not generalize well to unseen data (test data). If a model
suffers from overfitting, we also say that the model has a high variance, which can
be caused by having too many parameters that lead to a model that is too complex
given the underlying data. Similarly, our model can also suffer from underfitting
(high bias), which means that our model is not complex enough to capture the
pattern in the training data well and therefore also suffers from low performance

on unseen data.

[65]

A Tour of Machine Learning Classifiers Using Scikit-learn

Although we have only encountered linear models for classification so far, the
problem of overfitting and underfitting can be best illustrated by using a more
complex, nonlinear decision boundary as shown in the following figure:

o

i \ X, . X21
\\ ° o, o
°\+ O;,+ G +
v |+ Lo+

o' + o+ @+

= * o \+ ol’ +
+ N+ +'s + .b+ +
° g > d o\" — ----a‘\ —
Underfitting %1 Good X1 Overfitting X1
(high bias) compromise (high variance)

Variance measures the consistency (or variability) of the model
prediction for a particular sample instance if we would retrain
the model multiple times, for example, on different subsets of

the training dataset. We can say that the model is sensitive to the
randomness in the training data. In contrast, bias measures how far
off the predictions are from the correct values in general if we rebuild

the model multiple times on different training datasets; bias is the
measure of the systematic error that is not due to randomness.

One way of finding a good bias-variance tradeoff is to tune the complexity of
the model via regularization. Regularization is a very useful method to handle
collinearity (high correlation among features), filter out noise from data, and
eventually prevent overfitting. The concept behind regularization is to introduce
additional information (bias) to penalize extreme parameter weights. The most
common form of regularization is the so-called L2 regularization (sometimes also
called L2 shrinkage or weight decay), which can be written as follows:

Al =23 w2
ol =23

[66]

Chapter 3

Here, A is the so-called regularization parameter.

Regularization is another reason why feature scaling such as
standardization is important. For regularization to work properly,
’ we need to ensure that all our features are on comparable scales.

In order to apply regularization, we just need to add the regularization term to the
cost function that we defined for logistic regression to shrink the weights:

n

J(w)= {Z(—log(¢(z(i)))+(1- y<f>))(—1og(1 —¢(Z<f>)))} +%IIW||2

i=1

Via the regularization parameter A, we can then control how well we fit the training
data while keeping the weights small. By increasing the value of 4, we increase the
regularization strength.

The parameter c that is implemented for the LogisticRegression class in
scikit-learn comes from a convention in support vector machines, which will be
the topic of the next section. ¢ is directly related to the regularization parameter A1,
which is its inverse:

c=1
A

So we can rewrite the regularized cost function of logistic regression as follows:

3 8) = | 3-tog{(=)) o (1-3))(-toe(1 (")) [+ ST

i=1

[67]

A Tour of Machine Learning Classifiers Using Scikit-learn

Consequently, decreasing the value of the inverse regularization parameter ¢ means
that we are increasing the regularization strength, which we can visualize by plotting
the L2 regularization path for the two weight coefficients:

(1, 0
5):
LogisticRegression (C=10**c,

>>> weights, params =
>>> for c¢ in np.arange (-5,
lr = random_ state=0)
lr.fit (X train std, y train)
weights.append(lr.coef [1])
params.append (10**c)
weights =

>>> np.array (weights)

>>> plt.plot (params, weights[:, 0],
label='petal length')
plt.plot (params, weights[:, 1],

label="'petal width')

>>> linestyle='--",

>>>

>>>

>>>

>>>

>>>

plt
plt

plt

plt.

.Xscale

.ylabel ('weight coefficient')
.xlabel
plt.

(rch)

legend (loc="upper left')
('log')

show ()

By executing the preceding code, we fitted ten logistic regression models with
different values for the inverse-regularization parameter c. For the purposes of
illustration, we only collected the weight coefficients of the class 2 vs. all classifier.
Remember that we are using the OvR technique for multiclass classification.

As we can see in the resulting plot, the weight coefficients shrink if we decrease the
parameter C, that is, if we increase the regularization strength:

3 T T T T T T T T
— petal length
21| = - petal width
t 1
2
)
b5
g o ==
£ ~
o >
g1 "
\
Y
N \
-3 s v = "y " " = pe] 4
107 10° 107 10° 107 10 10 10 10 10
C

[68]

Chapter 3

Since an in-depth coverage of the individual classification algorithms

exceeds the scope of this book, I warmly recommend Dr. Scott
Menard's Logistic Regression: From Introductory to Advanced Concepts

and Applications, Sage Publications, to readers who want to learn more

about logistic regression.

Maximum margin classification with
support vector machines

Another powerful and widely used learning algorithm is the support vector
machine (SVM), which can be considered as an extension of the perceptron. Using
the perceptron algorithm, we minimized misclassification errors. However, in SVMs,
our optimization objective is to maximize the margin. The margin is defined as the
distance between the separating hyperplane (decision boundary) and the training
samples that are closest to this hyperplane, which are the so-called support vectors.
This is illustrated in the following figure:

Margin
Support vectors
Xz 4 N : X2 4
S MY Decision boundary
\\'+ wix=0
N +
N+ +
o 6\' \ + + . + t PR
N \ “negative” positive
L PO : R hyperplane hyperplane
O Ty =
A > wix=-1 > wix=1
X
Which hyperplane? SVM: !
eh Tiyperplanes Maximize the margin

[69]

A Tour of Machine Learning Classifiers Using Scikit-learn

Maximum margin intuition

The rationale behind having decision boundaries with large margins is that they tend
to have a lower generalization error whereas models with small margins are more
prone to overfitting. To get an intuition for the margin maximization, let's take a
closer look at those positive and negative hyperplanes that are parallel to the decision
boundary, which can be expressed as follows:

wo+w'x, =1 (1)
wy+w'x,,, =-1 (2)

If we subtract those two linear equations (1) and (2) from each other, we get:
= w’ (xpos —xneg) =2

We can normalize this by the length of the vector w, which is defined as follows:

[l =y 2273
Wi = Wi

So we arrive at the following equation:

T
w (xpos - xneg) 2

[[

The left side of the preceding equation can then be interpreted as the distance
between the positive and negative hyperplane, which is the so-called margin that we
want to maximize.

[70]

Chapter 3

Now the objective function of the SVM becomes the maximization of this margin
2

by maximizing M under the constraint that the samples are classified correctly,
which can be written as follows:

w, +w x> 1if Y1) =1
W, + wlx) <1 z'fy(i) =-1

These two equations basically say that all negative samples should fall on one side
of the negative hyperplane, whereas all the positive samples should fall behind the
positive hyperplane. This can also be written more compactly as follows:

y(i) (wo + wa(i)) 21V,

2

1
In practice, though, it is easier to minimize the reciprocal term _”w , which can be
solved by quadratic programming. However, a detailed discussion about quadratic
programming is beyond the scope of this book, but if you are interested, you can
learn more about Support Vector Machines (SVM) in Vladimir Vapnik's The Nature
of Statistical Learning Theory, Springer Science & Business Media, or Chris].C. Burges'
excellent explanation in A Tutorial on Support Vector Machines for Pattern Recognition
(Data mining and knowledge discovery, 2(2):121-167, 1998).

Dealing with the nonlinearly separable case
using slack variables

Although we don't want to dive much deeper into the more involved

mathematical concepts behind the margin classification, let's briefly mention the
slack variable ¢. It was introduced by Vladimir Vapnik in 1995 and led to the
so-called soft-margin classification. The motivation for introducing the slack variable
¢ was that the linear constraints need to be relaxed for nonlinearly separable data to
allow convergence of the optimization in the presence of misclassifications under the
appropriate cost penalization.

[71]

A Tour of Machine Learning Classifiers Using Scikit-learn

The positive-values slack variable is simply added to the linear constraints:
wix¥ >1 if y(i) 1= g(i)
wlx < -1 if y(i) =1+§(i)

So the new objective to be minimized (subject to the preceding constraints) becomes:
1 2 (,)
Ul + [3¢

Using the variable ¢, we can then control the penalty for misclassification. Large
values of ¢ correspond to large error penalties whereas we are less strict about
misclassification errors if we choose smaller values for c. We can then we use the
parameter C to control the width of the margin and therefore tune the bias-variance
trade-off as illustrated in the following figure:

Xz 4 . X7 A :
' I +
1
o !t ++
1
Oo | + +
1
o' le |
XI'
Large value for Small value for
parameter C parameter C

This concept is related to regularization, which we discussed previously in the

context of regularized regression where increasing the value of ¢ increases the bias
and lowers the variance of the model.

[72]

Chapter 3

Now that we learned the basic concepts behind the linear SVM, let's train a SVM
model to classify the different flowers in our Iris dataset:

>>> from sklearn.svm import SVC

>>> svm = SVC(kernel='linear', C=1.0, random state=0)
>>> svm.fit (X train std, y train)
>>> plot decision regions (X combined std,

y combined, classifier=svm,

R test idx=range (105,150))
>>> plt.xlabel ('petal length [standardized]')
>>> plt.ylabel ('petal width [standardized]')
>>> plt.legend(loc="'upper left')
>>> plt.show ()

The decision regions of the SVM visualized after executing the preceding code
example are shown in the following plot:

m@g O
xXx 1
000 2
000 test set

petal width [standardized]
o

-2 -1 0 1 2
petal length [standardized]

[73]

A Tour of Machine Learning Classifiers Using Scikit-learn

Logistic regression versus SVM

In practical classification tasks, linear logistic regression and
linear SVMs often yield very similar results. Logistic regression
tries to maximize the conditional likelihoods of the training

* data, which makes it more prone to outliers than SVMs. The

%‘%‘ SVMs mostly care about the points that are closest to the

decision boundary (support vectors). On the other hand, logistic
regression has the advantage that it is a simpler model that can
be implemented more easily. Furthermore, logistic regression
models can be easily updated, which is attractive when working
with streaming data.

Alternative implementations in scikit-learn

The perceptron and LogisticRegression classes that we used in the previous
sections via scikit-learn make use of the LIBLINEAR library, which is a highly
optimized C/C++ library developed at the National Taiwan University (http://
www.csie.ntu.edu.tw/~cjlin/liblinear/). Similarly, the svc class that we
used to train an SVM makes use of LIBSVM, which is an equivalent C/C++ library
specialized for SVMs (http://www.csie.ntu.edu.tw/~cjlin/libsvm/).

The advantage of using LIBLINEAR and LIBSVM over native Python
implementations is that they allow an extremely quick training of large amounts

of linear classifiers. However, sometimes our datasets are too large to fit into
computer memory. Thus, scikit-learn also offers alternative implementations via
the sGbclassifier class, which also supports online learning via the partial fit
method. The concept behind the sGDClassifier class is similar to the stochastic
gradient algorithm that we implemented in Chapter 2, Training Machine Learning
Algorithms for Classification, for Adaline. We could initialize the stochastic gradient
descent version of the perceptron, logistic regression, and support vector machine
with default parameters as follows:

>>> from sklearn.linear model import SGDClassifier
>>> ppn = SGDClassifier(loss='perceptron')

>>> lr = SGDClassifier (loss='log')

>>> svm = SGDClassifier (loss='hinge')

[74]

http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Chapter 3

Solving nonlinear problems using a
kernel SVM

Another reason why SVMs enjoy high popularity among machine learning
practitioners is that they can be easily kernelized to solve nonlinear classification
problems. Before we discuss the main concept behind kernel SVM, let's first define and
create a sample dataset to see how such a nonlinear classification problem may look.

Using the following code, we will create a simple dataset that has the form of
an XOR gate using the 1logical_xor function from NumPy, where 100 samples
will be assigned the class label 1 and 100 samples will be assigned the class
label -1, respectively:

>>> np.random.seed (0)

>>> X xor = np.random.randn (200, 2)

>>> y xor = np.logical xor(X xor[:, 0] > 0, X xor[:, 1] > 0)
>>> y xor = np.where(y xor, 1, -1)

>>> plt.scatter (X xor[y xor==1, 0], X xor[y xor==1, 1],
c='b', marker='x', label='1l")

>>> plt.scatter (X xor[y xor==-1, 0], X xor[y xor==-1, 1],

c='r', marker='s', label='-1")

>>> plt.ylim(-3.0)

>>> plt.legend()

>>> plt.show()

After executing the code, we will have an XOR dataset with random noise,
as shown in the following figure:

3 T T
xxx 1
* L mEm -1
21 x % x . a |
x & X
]]]
X x = . "
1+ xxx ® * []] " .- -] h
™]
xX x X e Xx o .
x&xxx x xf& *a ge® g @ .II
L x X X] L] |
0 ™ :.- |, * ngrxx * ® *
] I." ‘I X% XX %
= 'l- sm Tn §‘x x
-1} ™ J x x >)((x % -
L]]]
‘. ‘ % X* =
=2}] . % 4
x
-3 L L 1 ! 1
-3 -2 -1 0 1 2 3

A Tour of Machine Learning Classifiers Using Scikit-learn

Obviously, we would not be able to separate samples from the positive and negative
class very well using a linear hyperplane as the decision boundary via the linear
logistic regression or linear SVM model that we discussed in earlier sections.

The basic idea behind kernel methods to deal with such linearly inseparable data
is to create nonlinear combinations of the original features to project them onto a

higher dimensional space via a mapping function ¢(-) where it becomes linearly
separable. As shown in the next figure, we can transform a two-dimensional dataset
onto a new three-dimensional feature space where the classes become separable via

the following projection:
¢(xl,x2) :(21,22,23) = ()cl,)cz,)c]2 +x§)

This allows us to separate the two classes shown in the plot via a linear hyperplane
that becomes a nonlinear decision boundary if we project it back onto the original

feature space:

15 - - - - - [20
- L]
10 L [|
T O 15
. ="y 8 el e
0s a LA " Bt ya. T." &, 1.0
. PR e, cb ‘-‘-: o By
Xy o wt ; AL —_— e o5 23
. b “: . R
e = . %hﬂ‘
e $e. - 0.0
0 . et —_— ———-05
-li10 ‘* 1015
; 0500 05 19 ;5_;51.00.500 %3
15 1.0 0.5 0o 05 10 15 2 1
Xy 1
-1
15 -~ - - -
'. l. . --‘
o5 b g " - W
. P RN
X2 o ..' . ;‘. T Te
AN P LY
-05 o - e
-10 Tred 5.. - : l. "
I—15 =10 -0.5 00 as 10 15
Xy

[76]

Chapter 3

Using the kernel trick to find separating
hyperplanes in higher dimensional space

To solve a nonlinear problem using an SVM, we transform the training data onto

a higher dimensional feature space via a mapping function #(-) and train a linear
SVM model to classify the data in this new feature space. Then we can use the same
mapping function #(-) to transform new, unseen data to classify it using the linear
SVM model.

However, one problem with this mapping approach is that the construction of
the new features is computationally very expensive, especially if we are dealing
with high-dimensional data. This is where the so-called kernel trick comes into
play. Although we didn't go into much detail about how to solve the quadratic
programming task to train an SVM, in practice all we need is to replace the dot

product x"x) by ¢(x(’))r ¢(x“)) In order to save the expensive step of calculating
this dot product between two points explicitly, we define a so-called kernel function:

k(£, x(;f)) _ ¢(x<1>)r ¢(x(.i))‘

One of the most widely used kernels is the Radial Basis Function kernel
(RBF kernel) or Gaussian kernel:

2

()

[

k(x(i), x('i)) = exp =

This is often simplified to:

k(x,x0) = exp (_ 7”"@)

)

1
Here, 7= 5,7 1sa free parameter that is to be optimized.

Roughly speaking, the term kernel can be interpreted as a similarity function between
a pair of samples. The minus sign inverts the distance measure into a similarity score
and, due to the exponential term, the resulting similarity score will fall into a range
between 1 (for exactly similar samples) and 0 (for very dissimilar samples).

[77]

A Tour of Machine Learning Classifiers Using Scikit-learn

Now that we defined the big picture behind the kernel trick, let's see if we can train
a kernel SVM that is able to draw a nonlinear decision boundary that separates the
XOR data well. Here, we simply use the svc class from scikit-learn that we imported
earlier and replace the parameter kernel='linear' with kernel="rbf"':

>>> svm = SVC(kernel='rbf', random state=0, gamma=0.10, C=10.0)
>>> svm.fit (X xor, y xor)

>>> plot decision regions (X xor, y xor, classifier=svm)

>>> plt.legend(loc="'upper left')

>>> plt.show ()

As we can see in the resulting plot, the kernel SVM separates the XOR data
relatively well:

The y parameter, which we set to gamma=0.1, can be understood as a cut-off
parameter for the Gaussian sphere. If we increase the value for 7, we increase the
influence or reach of the training samples, which leads to a softer decision boundary.
To get a better intuition for 7, let's apply RBF kernel SVM to our Iris flower dataset:

>>> svm = SVC(kernel='rbf', random state=0, gamma=0.2, C=1.0)
>>> svm.fit (X_train std, y train)
>>> plot _decision regions (X combined std,

[78]

Chapter 3

y_combined, classifier=svm,
test idx=range(105,150))

>>> plt.xlabel ('petal length [standardized]')
>>> plt.ylabel ('petal width [standardized]')
>>> plt.legend(loc="'upper left')

>>> plt.show()

Since we chose a relatively small value for 7, the resulting decision boundary of the
RBF kernel SVM model will be relatively soft, as shown in the following figure:

m@g 0
xxx 1
000 2

OCO test set

petal width [standardized]

-2 -1 0 1 2
petal length [standardized]

Now let's increase the value of 7 and observe the effect on the decision boundary:

>>>

>>>

>>>

>>>

>>>

>>>

>>>

svm = SVC(kernel='rbf', random state=0, gamma=100.0, C=1.0)
svm.fit (X_train std, y train)
plot_decision_ regions (X _combined std,

y_combined, classifier=svm,

test idx=range(105,150))
plt.xlabel ('petal length [standardized]')
plt.ylabel ('petal width [standardized]')
plt.legend(loc="'upper left')
plt.show()

[79]

A Tour of Machine Learning Classifiers Using Scikit-learn

In the resulting plot, we can now see that the decision boundary around the classes 0
and 1 is much tighter using a relatively large value of 7 :

z@m 0
2 xxx 1]
—_ 00Co 2
e
a 000 test set
5 1f]
©
R
j =
8
Y ok i
=
kel
=
=X
-2+ 4
=2 -1 0 1 2
petal length [standardized]

Although the model fits the training dataset very well, such a classifier will
likely have a high generalization error on unseen data, which illustrates that the
optimization of 7 also plays an important role in controlling overfitting.

Decision tree learning

Decision tree classifiers are attractive models if we care about interpretability.
Like the name decision tree suggests, we can think of this model as breaking down
our data by making decisions based on asking a series of questions.

[80]

Chapter 3

Let's consider the following example where we use a decision tree to decide upon an
activity on a particular day:

Work to do?

Yes No

Stay in Outlook?

Sunny Over. Rainy

cast

Go to beach Go running Friends busy?

Yes No

Stay in Go to movies

Based on the features in our training set, the decision tree model learns a series of
questions to infer the class labels of the samples. Although the preceding figure
illustrated the concept of a decision tree based on categorical variables, the same
concept applies if our features. This also works if our features are real numbers like
in the Iris dataset. For example, we could simply define a cut-off value along the
sepal width feature axis and ask a binary question "sepal width > 2.8 cm?"

Using the decision algorithm, we start at the tree root and split the data on the
feature that results in the largest information gain (IG), which will be explained in
more detail in the following section. In an iterative process, we can then repeat this
splitting procedure at each child node until the leaves are pure. This means that the
samples at each node all belong to the same class. In practice, this can result in a very
deep tree with many nodes, which can easily lead to overfitting. Thus, we typically
want to prune the tree by setting a limit for the maximal depth of the tree.

[81]

A Tour of Machine Learning Classifiers Using Scikit-learn

Maximizing information gain — getting the
most bang for the buck

In order to split the nodes at the most informative features, we need to define an
objective function that we want to optimize via the tree learning algorithm. Here,
our objective function is to maximize the information gain at each split, which we
define as follows:

6(D,.1)=1(2,) -3 51 (1)

Here, fis the feature to perform the split, D, and D, are the dataset of the parent
and jth child node, I is our impurity measure, N, is the total number of samples at
the parent node, and N, is the number of samples in the jth child node. As we can
see, the information gam is simply the difference between the impurity of the parent
node and the sum of the child node impurities — the lower the impurity of the child
nodes, the larger the information gain. However, for simplicity and to reduce the
combinatorial search space, most libraries (including scikit-learn) implement binary

decision trees. This means that each parent node is split into two child nodes, D,

and Dright
Ne 1 Nri
1G(D,,a)=1(D,)- z\;pf 1(D,,)~ N‘i’" 1(Dy)

Now, the three impurity measures or splitting criteria that are commonly used in
binary decision trees are Gini index (/;), entropy ({4), and the classification error
(I:). Let's start with the definition of entropy for all non-empty classes ((i[7)#0):

1, (1)==3 p(i|1)log, p(il1)

i=l1

[82]

Chapter 3

Here, »(il7) is the proportion of the samples that belongs to class ¢ for a particular
node t. The entropy is therefore 0 if all samples at a node belong to the same class,
and the entropy is maximal if we have a uniform class distribution. For example, in
a binary class setting, the entropy is 0 if p(i=1|¢)=1 or p(i=0]£)=0_If the classes are
distributed uniformly with p(i=1/1)=0.5 and p(i=0[1)=0.5, the entropy is 1. Therefore,
we can say that the entropy criterion attempts to maximize the mutual information
in the tree.

Intuitively, the Gini index can be understood as a criterion to minimize the
probability of misclassification:

C

1 ()= X p(i10)(-p(i1)=1- 3 p(i11)

i=1

Similar to entropy, the Gini index is maximal if the classes are perfectly mixed,
for example, in a binary class setting (¢ =2):

1—20.52 =0.5

i=l1

However, in practice both the Gini index and entropy typically yield very similar
results and it is often not worth spending much time on evaluating trees using
different impurity criteria rather than experimenting with different pruning cut-offs.

Another impurity measure is the classification error:

I, :l—max{p(i|t)}

[83]

A Tour of Machine Learning Classifiers Using Scikit-learn

This is a useful criterion for pruning but not recommended for growing a decision
tree, since it is less sensitive to changes in the class probabilities of the nodes. We
can illustrate this by looking at the two possible splitting scenarios shown in the
following figure:

A B

(40, 40) (40, 40)

|(3o, 1o>| |(1o,30)| |(2o,40)| |(20,0)|

We start with a dataset D, at the parent node D, that consists of 40 samples from
class 1 and 40 samples from class 2 that we split into two datasets D,, and D,
respectively. The information gain using the classification error as a splitting

criterion would be the same (/G, =0.25) in both scenario A and B:

1,(D,)=1-05=05
3
A:IE(D,eﬂ)zl—Z:OQS

A:]E(D”.gh,):l—%:0.25

A:1G, =0.5 —%0.25—%0.25 =0.25

B:1,(D,,)=1-—=

| B

1
3
B:1,(D,,)=1-1=0

B:IG, =0.5—§x%—020.25

[84]

Chapter 3

However, the Gini index would favor the split in scenario B(IG, =0.16) over scenario
A(IG; =0.125), which is indeed more pure:

I,(D,)=1-(0.5"+0.5")=0.5

A:1,(D,,) =1—U%T +GJ2] = % =0.375
A:15(D,,,)=1 —[GJZ + sz] = % =0.375

A, = 0.5—%0.375—%0.375 =0.125

B:1,(D

right

)=1-(1+0*)=0
6 _ =
B:1Gs =0.5-04-0=0.16

Similarly, the entropy criterion would favor scenario B(IG, =0.19) over
scenario 4(/G, =0.31):

1,(D,)=-(0.5log,(0.5)+0.5 log, (0.5)) =1

3 3) 1 1
A:1, (D)= —(Zlogz (Zj + log, (ZD =0.81

[85]

A Tour of Machine Learning Classifiers Using Scikit-learn

1 1) 3 3
4:1,(D,,)= _(Z log, [Zj +7log, [ZD =0.81

A4:1G, =1—%0.81—§0.81 =0.19

2 2) 4 4
B:1, (D,eﬁ) = —(glog2+(gj+glog2+(gn =0.92

B:IH(Dright)ZO

B:1G, =1—§0.92—0=0.31

For a more visual comparison of the three different impurity criteria that we
discussed previously, let's plot the impurity indices for the probability range [0, 1]
for class 1. Note that we will also add in a scaled version of the entropy (entropy/2)
to observe that the Gini index is an intermediate measure between entropy and the
classification error. The code is as follows:

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> def gini(p):

. return (p)*(1 - (p)) + (1 - p)*(1 - (1-p))
>>> def entropy(p) :

return - p*np.log2(p) - (1 - p)*np.log2((1l - p))

>>> def error(p):
Cen return 1 - np.max([p, 1 - pl)
>>> X = np.arange(0.0, 1.0, 0.01)

>>> ent = [entropy(p) if p != 0 else None for p in x]
>>> sc_ent = [e*0.5 if e else None for e in ent]
>>> err = [error (i) for 1 in x]

>>> fig = plt.figure()

>>> ax = plt.subplot(111)

>>> for i, lab, 1ls, ¢, in zip([ent, sc_ent, gini(x), err],
['Entropy', 'Entropy (scaled)',
'Gini Impurity',

[86]

Chapter 3

>>>

>>>

>>>

>>>

>>>

>>>

>>>

'Misclassification Error'],
[r=r, '=r, te=r, =],
['black', 'lightgray',
'red', 'green', 'cyan'l):
line = ax.plot(x, i, label=lab,
linestyle=1ls, lw=2, color=c)
ax.legend(loc="'upper center', bbox to anchor=(0.5, 1.15),
ncol=3, fancybox=True, shadow=False)
ax.axhline(y=0.5, linewidth=1, color='k', linestyle='--"')
ax.axhline(y=1.0, linewidth=1, color='k', linestyle='--"')
plt.ylim([0, 1.1])
plt.xlabel ('p(i=1)"')
plt.ylabel ('Impurity Index')
plt.show ()

The plot produced by the preceding code example is as follows:

— Entropy = = Gini Impurity =+ = Misclassification Error

Entropy (scaled)

Impurity Index

1.0

0.8

0.2

p(i=1)

[87]

A Tour of Machine Learning Classifiers Using Scikit-learn

Building a decision tree

Decision trees can build complex decision boundaries by dividing the feature

space into rectangles. However, we have to be careful since the deeper the decision
tree, the more complex the decision boundary becomes, which can easily result in
overfitting. Using scikit-learn, we will now train a decision tree with a maximum
depth of 3 using entropy as a criterion for impurity. Although feature scaling may be
desired for visualization purposes, note that feature scaling is not a requirement for
decision tree algorithms. The code is as follows:

>>> from sklearn.tree import DecisionTreeClassifier
>>> tree = DecisionTreeClassifier(criterion='entropy',
max _depth=3, random state=0)
>>> tree.fit (X train, y train)
>>> X combined = np.vstack((X_train, X test))
>>> y combined = np.hstack((y_train, y_test))
>>> plot_decision_regions (X_combined, y_ combined,
. classifier=tree, test_ idx=range(105,150))
>>>plt.xlabel ('petal length [cm]')
>>>plt.ylabel ('petal width [cm]')
>>> plt.legend(loc="'upper left')
>>> plt.show()

After executing the preceding code example, we get the typical axis-parallel decision
boundaries of the decision tree:

30 mEg 0
T xxx 1 i
25k 000 2 i
000 test set
20 B
e
h=] | .
s 1.5
3 10} * -
(=}
0.5k E
0.0 e
_05 - -
0 1 2 3 4 5 6 7
petal length

[88]

Chapter 3

A nice feature in scikit-learn is that it allows us to export the decision tree as a

.dot file after training, which we can visualize using the GraphViz program. This
program is freely available at http: //www.graphviz.org and supported by Linux,
Windows, and Mac OS X.

First, we create the .dot file via scikit-learn using the export_graphviz function
from the tree submodule, as follows:

>>> from sklearn.tree import export graphviz
>>> export graphviz(tree,
out file='tree.dot',

feature names=['petal length', 'petal width'])

After we have installed GraphViz on our computer, we can convert the tree. dot file
into a PNG file by executing the following command from the command line in the
location where we saved the tree.dot file:

> dot -Tpng tree.dot -o tree.png

petal width <= 0.7500
entropy = 1.57991767826
samples = 105

N

entropy = 0.0000
samples = 34
value=[34. 0. 0]

petal length <= 4.9500
entropy = 0.992976886609
samples = 71

N

petal width <= 1.6500
entropy = 0.43055186701
samples = 34

petal length <= 5.0500
entropy = 0.179256066928
samples = 37

\

l

entropy = 0.0000
samples = 30
value =[0. 30. 0]

entropy = 0.8113
samples = 4
value=[0. 1. 3.]

entropy =0.8113
samples = 4
value=[0. 1. 3]

entropy = 0.0000
samples = 33
value=[0. 0. 33/]

Looking at the decision tree figure that we created via GraphViz, we can now nicely
trace back the splits that the decision tree determined from our training dataset.
We started with 105 samples at the root and split it into two child nodes with 34
and 71 samples each using the petal with cut-off < 0.75 cm. After the first split,
we can see that the left child node is already pure and only contains samples from
the Iris-Setosa class (entropy = 0). The further splits on the right are then used to
separate the samples from the Iris-Versicolor and Iris-Virginica classes.

[89]

http://www.graphviz.org

A Tour of Machine Learning Classifiers Using Scikit-learn

Combining weak to strong learners via
random forests

Random forests have gained huge popularity in applications of machine learning
during the last decade due to their good classification performance, scalability, and
ease of use. Intuitively, a random forest can be considered as an ensemble of decision
trees. The idea behind ensemble learning is to combine weak learners to build a
more robust model, a strong learner, that has a better generalization error and is less
susceptible to overfitting. The random forest algorithm can be summarized in four
simple steps:

1. Draw arandom bootstrap sample of size n (randomly choose n samples from
the training set with replacement).

2. Grow a decision tree from the bootstrap sample. At each node:
1. Randomly select d features without replacement.

2. Split the node using the feature that provides the best split
according to the objective function, for instance, by maximizing
the information gain.

3. Repeat the steps 1 to 2 k times.

Aggregate the prediction by each tree to assign the class label by majority
vote. Majority voting will be discussed in more detail in Chapter 7, Combining
Different Models for Ensemble Learning.

There is a slight modification in step 2 when we are training the individual decision
trees: instead of evaluating all features to determine the best split at each node, we
only consider a random subset of those.

Although random forests don't offer the same level of interpretability as decision
trees, a big advantage of random forests is that we don't have to worry so much
about choosing good hyperparameter values. We typically don't need to prune the
random forest since the ensemble model is quite robust to noise from the individual
decision trees. The only parameter that we really need to care about in practice is the
number of trees k (step 3) that we choose for the random forest. Typically, the larger
the number of trees, the better the performance of the random forest classifier at the
expense of an increased computational cost.

[90]

Chapter 3

Although it is less common in practice, other hyperparameters of the random
forest classifier that can be optimized — using techniques we will discuss in

Chapter 5, Compressing Data via Dimensionality Reduction —are the size n

of the bootstrap sample (step 1) and the number of features d that is randomly
chosen for each split (step 2.1), respectively. Via the sample size n of the bootstrap
sample, we control the bias-variance tradeoff of the random forest. By choosing

a larger value for n, we decrease the randomness and thus the forest is more

likely to overfit. On the other hand, we can reduce the degree of overfitting by
choosing smaller values for n at the expense of the model performance. In most
implementations, including the RandomForestClassifier implementation in
scikit-learn, the sample size of the bootstrap sample is chosen to be equal to the
number of samples in the original training set, which usually provides a good
bias-variance tradeoff. For the number of features d at each split, we want to choose
a value that is smaller than the total number of features in the training set. A
reasonable default that is used in scikit-learn and other implementations is ¢ =/m ,
where m is the number of features in the training set.

Conveniently, we don't have to construct the random forest classifier from individual
decision trees by ourselves; there is already an implementation in scikit-learn that
we can use:

>>> from sklearn.ensemble import RandomForestClassifier

>>> forest = RandomForestClassifier (criterion='entropy',
n_estimators=10,
random_ state=1,
n_jobs=2)

>>> forest.fit (X train, y train)

>>> plot decision regions (X combined, y combined,

.. classifier=forest, test idx=range(105,150))

>>> plt.xlabel ('petal length')

>>> plt.ylabel ('petal width')

>>> plt.legend(loc="upper left')

>>> plt.show()

[91]

A Tour of Machine Learning Classifiers Using Scikit-learn

After executing the preceding code, we should see the decision regions formed by
the ensemble of trees in the random forest, as shown in the following figure:

30 sEp O
T xxx 1 |
25k 000 2 i
000 test set
20F -
S
=] = _
3 1.5
S 10k X .
o
05F i
0.0F i
-0.5F B
0 1 2 3 4 5 6 7
petal length

Using the preceding code, we trained a random forest from 10 decision trees via the
n_estimators parameter and used the entropy criterion as an impurity measure to
split the nodes. Although we are growing a very small random forest from a very
small training dataset, we used the n_jobs parameter for demonstration purposes,
which allows us to parallelize the model training using multiple cores of our
computer (here, two).

K-nearest neighbors — a lazy learning
algorithm

The last supervised learning algorithm that we want to discuss in this chapter is the
k-nearest neighbor classifier (KNN), which is particularly interesting because it is
fundamentally different from the learning algorithms that we have discussed so far.

KNN is a typical example of a lazy learner. It is called lazy not because of its
apparent simplicity, but because it doesn't learn a discriminative function from
the training data but memorizes the training dataset instead.

[92]

Chapter 3

. [
Parametric versus nonparametric models

Machine learning algorithms can be grouped into parametric and
nonparametric models. Using parametric models, we estimate
parameters from the training dataset to learn a function that can
classify new data points without requiring the original training dataset
anymore. Typical examples of parametric models are the perceptron,
. logistic regression, and the linear SVM. In contrast, nonparametric
% models can't be characterized by a fixed set of parameters, and the
L= number of parameters grows with the training data. Two examples of

nonparametric models that we have seen so far are the decision tree
classifier/random forest and the kernel SVM.

KNN belongs to a subcategory of nonparametric models that is
described as instance-based learning. Models based on instance-based
learning are characterized by memorizing the training dataset, and lazy
learning is a special case of instance-based learning that is associated
with no (zero) cost during the learning process.

The KNN algorithm itself is fairly straightforward and can be summarized by the
following steps:

1. Choose the number of k and a distance metric.

2. Find the k nearest neighbors of the sample that we want to classify.

3. Assign the class label by majority vote.

The following figure illustrates how a new data point (?) is assigned the triangle class
label based on majority voting among its five nearest neighbors.

" 1 W -
X L Ix A)

- A A“‘&/A p \

OV ‘ Predict

— e -_lT""/_\‘- H::HHH‘ @ = A
+ ++ o /

-+
+ +
Xy -

[93]

A Tour of Machine Learning Classifiers Using Scikit-learn

Based on the chosen distance metric, the KNN algorithm finds the k samples in the
training dataset that are closest (most similar) to the point that we want to classify.
The class label of the new data point is then determined by a majority vote among
its k nearest neighbors.

The main advantage of such a memory-based approach is that the classifier
immediately adapts as we collect new training data. However, the downside is that
the computational complexity for classifying new samples grows linearly with the
number of samples in the training dataset in the worst-case scenario —unless the
dataset has very few dimensions (features) and the algorithm has been implemented
using efficient data structures such as KD-trees. J. H. Friedman, J. L. Bentley, and R.
A. Finkel. An algorithm for finding best matches in logarithmic expected time. ACM
Transactions on Mathematical Software (TOMS), 3(3):209-226, 1977. Furthermore, we
can't discard training samples since no training step is involved. Thus, storage space
can become a challenge if we are working with large datasets.

By executing the following code, we will now implement a KNN model in
scikit-learn using an Euclidean distance metric:

>>> from sklearn.neighbors import KNeighborsClassifier

>>> knn = KNeighborsClassifier (n neighbors=5, p=2,
metric='minkowski')

>>> knn.fit (X_train_std, y_train)

>>> plot decision regions (X combined std, y combined,

o classifier=knn, test idx=range(105,150))

>>> plt.xlabel ('petal length [standardized]')

>>> plt.ylabel ('petal width [standardized]')

>>> plt.show()

By specifying five neighbors in the KNN model for this dataset, we obtain a
relatively smooth decision boundary, as shown in the following figure:

[94]

Chapter 3

test set

petal width [standardized]
o

-2 -1 0 1 2
petal length [standardized]

In the case of a tie, the scikit-learn implementation of the KNN

algorithm will prefer the neighbors with a closer distance to the
~—sample. If the neighbors have a similar distance, the algorithm will

choose the class label that comes first in the training dataset.

The right choice of k is crucial to find a good balance between over- and underfitting.
We also have to make sure that we choose a distance metric that is appropriate for

the features in the dataset. Often, a simple Euclidean distance measure is used for
real-valued samples, for example, the flowers in our Iris dataset, which have features
measured in centimeters. However, if we are using a Euclidean distance measure, it

is also important to standardize the data so that each feature contributes equally to
the distance. The 'minkowski' distance that we used in the previous code is just a
generalization of the Euclidean and Manhattan distance that can be written as follows:

d(x(i),x(i)) - Z

k

0

[95]

A Tour of Machine Learning Classifiers Using Scikit-learn

It becomes the Euclidean distance if we set the parameter p=2 or the Manhatten
distance at p=1, respectively. Many other distance metrics are available in scikit-learn
and can be provided to the metric parameter. They are listed at http://scikit-
learn.org/stable/modules/generated/sklearn.neighbors.DistanceMetric.
html.

The curse of dimensionality

It is important to mention that KNN is very susceptible to
overfitting due to the curse of dimensionality. The curse of
dimensionality describes the phenomenon where the feature
space becomes increasingly sparse for an increasing number
. of dimensions of a fixed-size training dataset. Intuitively, we
& can think of even the closest neighbors being too far away in a
L high-dimensional space to give a good estimate.

We have discussed the concept of regularization in the section
about logistic regression as one way to avoid overfitting. However,
in models where regularization is not applicable such as decision
trees and KNN, we can use feature selection and dimensionality
reduction techniques to help us avoid the curse of dimensionality.
This will be discussed in more detail in the next chapter.

Summary

In this chapter, you learned about many different machine algorithms that are

used to tackle linear and nonlinear problems. We have seen that decision trees are
particularly attractive if we care about interpretability. Logistic regression is not only
a useful model for online learning via stochastic gradient descent, but also allows us
to predict the probability of a particular event. Although support vector machines
are powerful linear models that can be extended to nonlinear problems via the
kernel trick, they have many parameters that have to be tuned in order to make good
predictions. In contrast, ensemble methods such as random forests don't require
much parameter tuning and don't overfit so easily as decision trees, which makes

it an attractive model for many practical problem domains. The K-nearest neighbor
classifier offers an alternative approach to classification via lazy learning that allows
us to make predictions without any model training but with a more computationally
expensive prediction step.

[96]

http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.DistanceMetric.html
http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.DistanceMetric.html
http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.DistanceMetric.html

Chapter 3

However, even more important than the choice of an appropriate learning algorithm
is the available data in our training dataset. No algorithm will be able to make good
predictions without informative and discriminatory features.

In the next chapter, we will discuss important topics regarding the preprocessing
of data, feature selection, and dimensionality reduction, which we will need to
build powerful machine learning models. Later in Chapter 6, Learning Best Practices
for Model Evaluation and Hyperparameter Tuning, we will see how we can evaluate
and compare the performance of our models and learn useful tricks to fine-tune the
different algorithms.

[97]

Building Good Training
Sets — Data Preprocessing

The quality of the data and the amount of useful information that it contains are key
factors that determine how well a machine learning algorithm can learn. Therefore,
it is absolutely critical that we make sure to examine and preprocess a dataset before
we feed it to a learning algorithm. In this chapter, we will discuss the essential data
preprocessing techniques that will help us to build good machine learning models.

The topics that we will cover in this chapter are as follows:

* Removing and imputing missing values from the dataset
* Getting categorical data into shape for machine learning algorithms

* Selecting relevant features for the model construction

Dealing with missing data

It is not uncommon in real-world applications that our samples are missing one

or more values for various reasons. There could have been an error in the data
collection process, certain measurements are not applicable, particular fields could
have been simply left blank in a survey, for example. We typically see missing
values as the blank spaces in our data table or as placeholder strings such as NaN
(Not A Number).

[99]

Building Good Training Sets — Data Preprocessing

Unfortunately, most computational tools are unable to handle such missing values
or would produce unpredictable results if we simply ignored them. Therefore, it

is crucial that we take care of those missing values before we proceed with further
analyses. But before we discuss several techniques for dealing with missing values,
let's create a simple example data frame from a CSV (comma-separated values) file
to get a better grasp of the problem:

>>> import pandas as pd

>>> from io import StringIO

>>> csv_data = '''A,B,C,D
1.0,2.0,3.0,4.0
5.0,6.0,,8.0
0.0,11.0,12.0, """
>>> # If you are using Python 2.7, you need
>>> # to convert the string to unicode:
>>> # csv_data = unicode(csv_data)
>>> df = pd.read csv(StringIO(csv_data))
>>> df
A B c D
1 2 3 4
5 6 NaN 8
2 0 11 12 NaN

Using the preceding code, we read CSV-formatted data into a pandas DataFrame
via the read_csv function and noticed that the two missing cells were replaced by
NaN. The stringIo function in the preceding code example was simply used for the
purposes of illustration. It allows us to read the string assigned to csv_data into a
pandas DataFrame as if it was a regular CSV file on our hard drive.

For a larger DataFrame, it can be tedious to look for missing values manually; in this
case, we can use the isnull method to return a DataFrame with Boolean values that
indicate whether a cell contains a numeric value (False) or if data is missing (True).
Using the sum method, we can then return the number of missing values per column
as follows:

>>> df.isnull () .sum()
A 0
B 0
C 1
D 1

dtype: inté4

[100]

Chapter 4

This way, we can count the number of missing values per column; in the
following subsections, we will take a look at different strategies for how to
deal with this missing data.

Although scikit-learn was developed for working with NumPy
arrays, it can sometimes be more convenient to preprocess data
using pandas' DataFrame. We can always access the underlying
. NumPy array of the DataFrame via the values attribute before
% we feed it into a scikit-learn estimator:
s>

>>> df.values

array ([[1., 2., 3., 4.7,
[5., 6., nan, 8.1,
[10., 11., 12., nanll)

Eliminating samples or features with missing
values

One of the easiest ways to deal with missing data is to simply remove the
corresponding features (columns) or samples (rows) from the dataset entirely;
rows with missing values can be easily dropped via the dropna method:

>>> df .dropna /()
A B C D
o 1 2 3 4

Similarly, we can drop columns that have at least one NaN in any row by setting the
axis argument to 1:

>>> df .dropna (axis=1)

A B
0 1 2
1 5 6
2 0 11

The dropna method supports several additional parameters that can come in handy:

only drop rows where all columns are NaN
>>> df .dropna (how="'all")

drop rows that have not at least 4 non-NaN values
>>> df .dropna (thresh=4)

only drop rows where NaN appear in specific columns (here: 'C')
>>> df .dropna (subset=['C'])

[101]

Building Good Training Sets — Data Preprocessing

Although the removal of missing data seems to be a convenient approach, it also
comes with certain disadvantages; for example, we may end up removing too
many samples, which will make a reliable analysis impossible. Or, if we remove too
many feature columns, we will run the risk of losing valuable information that our
classifier needs to discriminate between classes. In the next section, we will thus
look at one of the most commonly used alternatives for dealing with missing
values: interpolation techniques.

Imputing missing values

Often, the removal of samples or dropping of entire feature columns is simply not
feasible, because we might lose too much valuable data. In this case, we can use
different interpolation techniques to estimate the missing values from the other
training samples in our dataset. One of the most common interpolation techniques is
mean imputation, where we simply replace the missing value by the mean value of
the entire feature column. A convenient way to achieve this is by using the Imputer
class from scikit-learn, as shown in the following code:

>>> from sklearn.preprocessing import Imputer

>>> imr = Imputer (missing values='NaN',6 strategy='mean',6 axis=0)
>>> imr = imr.fit (df)
>>> imputed_data = imr.transform(df.values)
>>> imputed data
array ([[1., 2., 3., 4.7,
[5., 6., 3., 8.1,
[10., 11., 12., 4.11)

Here, we replaced each NaN value by the corresponding mean, which is separately
calculated for each feature column. If we changed the setting axis=0 to axis=1, we'd
calculate the row means. Other options for the strategy parameter are median or
most_frequent, where the latter replaces the missing values by the most frequent
values. This is useful for imputing categorical feature values.

Understanding the scikit-learn estimator API

In the previous section, we used the Imputer class from scikit-learn to impute
missing values in our dataset. The Imputer class belongs to the so-called transformer
classes in scikit-learn that are used for data transformation. The two essential
methods of those estimators are fit and transform. The £it method is used to
learn the parameters from the training data, and the transform method uses those
parameters to transform the data. Any data array that is to be transformed needs to
have the same number of features as the data array that was used to fit the model.
The following figure illustrates how a transformer fitted on the training data is used
to transform a training dataset as well as a new test dataset:

[102]

Chapter 4

N
Training Test

Data Data

‘ est.fit(X_train)

Model

est.transform(X_train) est.transform(X_test)

Transformed Transformed)
Training Data Test Data

The classifiers that we used in Chapter 3, A Tour of Machine Learning Classifiers Using
Scikit-Learn, belong to the so-called estimators in scikit-learn with an API that is
conceptually very similar to the transformer class. Estimators have a predict
method but can also have a transform method, as we will see later. As you may
recall, we also used the £it method to learn the parameters of a model when we
trained those estimators for classification. However, in supervised learning tasks, we
additionally provide the class labels for fitting the model, which can then be used to
make predictions about new data samples via the predict method, as illustrated in
the following figure:

Training Training
Data Labels

est.predict(X_train, y_train) -
Model | Test Data

est.predict(X_test): =
- i
N\ /

Predicted
labels

[103]

Building Good Training Sets — Data Preprocessing

Handling categorical data

So far, we have only been working with numerical values. However, it is not
uncommon that real-world datasets contain one or more categorical feature columns.
When we are talking about categorical data, we have to further distinguish between
nominal and ordinal features. Ordinal features can be understood as categorical
values that can be sorted or ordered. For example, T-shirt size would be an ordinal
feature, because we can define an order XL > L > M. In contrast, nominal features
don't imply any order and, to continue with the previous example, we could think of
T-shirt color as a nominal feature since it typically doesn't make sense to say that, for
example, red is larger than blue.

Before we explore different techniques to handle such categorical data, let's create a
new data frame to illustrate the problem:

>>> import pandas as pd
>>> df = pd.DataFrame ([

['green', 'M', 10.1, 'classl'],
['red', 'L', 13.5, 'class2'],
.. ['blue', 'XL', 15.3, 'classl']l])
>>> df.columns = ['color', 'size', 'price', 'classlabel!']
>>> df
color size price classlabel
0 green M 10.1 classl
red L 13.5 class2
2 blue XL 15.3 classl

As we can see in the preceding output, the newly created DataFrame contains a
nominal feature (color), an ordinal feature (size), and a numerical feature (price)
column. The class labels (assuming that we created a dataset for a supervised
learning task) are stored in the last column. The learning algorithms for classification
that we discuss in this book do not use ordinal information in class labels.

Mapping ordinal features

To make sure that the learning algorithm interprets the ordinal features correctly, we
need to convert the categorical string values into integers. Unfortunately, there is no
convenient function that can automatically derive the correct order of the labels of
our size feature. Thus, we have to define the mapping manually. In the following
simple example, let's assume that we know the difference between features, for
example, XL=L+1=M+2.

>>> size mapping = {
'XL': 3,
'L': 2,

[104]

Chapter 4

M': 1}
>>> df ['size'] = df['size'] .map(size mapping)
>>> df
color size price classlabel
0 green 1 10.1 classl
1 red 2 13.5 class2
2 blue 3 15.3 classl

If we want to transform the integer values back to the original string

representation at a later stage, we can simply define a reverse-mapping

dictionary inv_size mapping = {v: k for k, v in size mapping.items() }
that can then be used via the pandas' map method on the transformed feature column
similar to the size mapping dictionary that we used previously.

Encoding class labels

Many machine learning libraries require that class labels are encoded as integer
values. Although most estimators for classification in scikit-learn convert class
labels to integers internally, it is considered good practice to provide class labels as
integer arrays to avoid technical glitches. To encode the class labels, we can use an
approach similar to the mapping of ordinal features discussed previously. We need
to remember that class labels are not ordinal, and it doesn't matter which integer
number we assign to a particular string-label. Thus, we can simply enumerate the
class labels starting at 0:

>>> import numpy as np

>>> class _mapping = {label:idx for idx,label in
enumerate(np.unique(df['classlabel']))}

>>> class_mapping

{'classi': 0, 'class2': 1}

Next we can use the mapping dictionary to transform the class labels into integers:

>>> df ['classlabel'] = df['classlabel'] .map(class mapping)

>>> df

color size price classlabel
0 green 1 10.1 0
1 red 2 13.5 1
2 blue 3 15.3 0

[105]

Building Good Training Sets — Data Preprocessing

We can reverse the key-value pairs in the mapping dictionary as follows to map the

converted class labels back to the original string representation:

>>> inv_class mapping = {v: k for k, v in class mapping.items() }
>>> df ['classlabel'] = df['classlabel'] .map(inv_class_mapping)
>>> df
color size price classlabel
0 green 1 10.1 classl
red 2 13.5 class2
2 blue 3 15.3 classl

Alternatively, there is a convenient LabelEncoder class directly implemented in
scikit-learn to achieve the same:

>>> from sklearn.preprocessing import LabelEncoder

>>> class_le = LabelEncoder ()

>>> y = class_le.fit_transform(df['classlabel'] .values)
>>> Yy

array ([0, 1, 0])

Note that the fit_transform method is just a shortcut for calling £fit and
transform separately, and we can use the inverse_transform method to
transform the integer class labels back into their original string representation:

>>> class_le.inverse transform(y)
array(['classl', 'class2', 'classl'], dtype=object)

Performing one-hot encoding on nominal
features

In the previous section, we used a simple dictionary-mapping approach to convert

the ordinal size feature into integers. Since scikit-learn's estimators treat class labels
without any order, we used the convenient LabelEncoder class to encode the string
labels into integers. It may appear that we could use a similar approach to transform

the nominal color column of our dataset, as follows:

>>> X = df[['color', 'size',6 'price'l]].values
>>> color le = LabelEncoder ()

>>> X[:, 0] = color le.fit transform(X[:, 0])
>>> X

array([[1, 1, 10.1],
[2, 2, 13.5],
[0, 3, 15.3]1], dtype=object)

[106]

Chapter 4

After executing the preceding code, the first column of the NumPy array x now
holds the new color values, which are encoded as follows:

* blue>0
* green—>1
e red—>2

If we stop at this point and feed the array to our classifier, we will make one of the
most common mistakes in dealing with categorical data. Can you spot the problem?
Although the color values don't come in any particular order, a learning algorithm
will now assume that green is larger than blue, and red is larger than green. Although
this assumption is incorrect, the algorithm could still produce useful results.
However, those results would not be optimal.

A common workaround for this problem is to use a technique called one-hot
encoding. The idea behind this approach is to create a new dummy feature for each
unique value in the nominal feature column. Here, we would convert the color
feature into three new features: blue, green, and red. Binary values can then be
used to indicate the particular color of a sample; for example, a blue sample can be
encoded as blue=1, green=0, red=0. To perform this transformation, we can use the
OneHotEncoder that is implemented in the scikit-learn.preprocessing module:

>>> from sklearn.preprocessing import OneHotEncoder
>>> ohe = OneHotEncoder (categorical features=[0])
>>> ohe.fit_transform(X) .toarray ()

array([[0. , 1. , 0. , 1. , 10.11,
[0., 0. , 1. , 2. , 13.5],
[1., 0. , 0. , 3., 15.3]11)

When we initialized the oneHotEncoder, we defined the column position of the
variable that we want to transform via the categorical features parameter (note
that color is the first column in the feature matrix x). By default, the oneHotEncoder
returns a sparse matrix when we use the transform method, and we converted the
sparse matrix representation into a regular (dense) NumPy array for the purposes of
visualization via the toarray method. Sparse matrices are simply a more efficient
way of storing large datasets, and one that is supported by many scikit-learn
functions, which is especially useful if it contains a lot of zeros. To omit the toarray
step, we could initialize the encoder as oneHotEncoder (..., sparse=False) to return
aregular NumPy array.

[107]

Building Good Training Sets — Data Preprocessing

An even more convenient way to create those dummy features via one-hot encoding
is to use the get_dummies method implemented in pandas. Applied on a DataFrame,
the get_dummies method will only convert string columns and leave all other
columns unchanged:

>>> pd.get dummies (df [['price', 'color', 'size']l])

price size color blue color green color red
0 10.1 1 0 1 0
1 13.5 2 0 0 1
2 15.3 3 1 0 0

Partitioning a dataset in training and test
sets

We briefly introduced the concept of partitioning a dataset into separate datasets for
training and testing in Chapter 1, Giving Computers the Ability to Learn from Data, and
Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn. Remember that the
test set can be understood as the ultimate test of our model before we let it loose on
the real world. In this section, we will prepare a new dataset, the Wine dataset. After
we have preprocessed the dataset, we will explore different techniques for feature
selection to reduce the dimensionality of a dataset.

The Wine dataset is another open-source dataset that is available from the UCI
machine learning repository (https://archive.ics.uci.edu/ml/datasets/Wine);
it consists of 178 wine samples with 13 features describing their different chemical
properties.

Using the pandas library, we will directly read in the open source Wine dataset from
the UCI machine learning repository:

>>> df wine = pd.read csv('https://archive.ics.uci.edu/ml/machine-
learning-databases/wine/wine.data', header=None)

>>> df wine.columns = ['Class label', 'Alcohol',
'Malic acid', 'Ash',
'Alcalinity of ash', 'Magnesium',
'Total phenols', 'Flavanoids',
'Nonflavanoid phenols',
'Proanthocyanins',
'Color intensity', 'Hue',
'0D280/0D315 of diluted wines',
'Proline']

>>> print('Class labels', np.unique(df wine['Class label']))
Class labels [1 2 3]
>>> df_wine.head ()

[108]

https://archive.ics.uci.edu/ml/datasets/Wine

Chapter 4

The 13 different features in the Wine dataset, describing the chemical properties of
the 178 wine samples, are listed in the following table:

Class Malic Alcalinity . Total . Nonflavanoid . Color OD",_BOIODMS N
Alcohol . Ash Mag Fl d Proanthocyanins | . |Hue | of diluted Proline
label acid of ash phenols phenols intensity |
wines

o1 14.23 1.71 [2.43|15.6 127 2.80 3.06 0.28 2.29 5.64 1.04 |3.92 1065
1|1 13.20 1.78 (214 (11.2 100 2.65 2.76 0.26 1.28 4.38 1.05(3.40 1050
21 13.16 [2.36 |2.67|18.6 101 2.80 3.24 0.30 2.81 5.68 1.03(3.17 1185
31 14.37 195 (2.50(16.8 113 3.85 3.49 0.24 2.18 7.80 0.86 |3.45 1480
41 13.24 (259 |2.87|21.0 118 2.80 2.69 0.39 1.82 4.32 1.04 |2.93 735

The samples belong to one of three different classes, 1, 2, and 3, which refer to the
three different types of grapes that have been grown in different regions in Italy.

A convenient way to randomly partition this dataset into a separate test and
training dataset is to use the train_test_split function from scikit-learn's
cross_validation submodule:

>>> from sklearn.cross validation import train test split
>>> X, y = df wine.iloc[:, 1:].values, df wine.iloc[:, 0].values
>>> X train, X test, y train, y test = \

train test split (X, y, test size=0.3, random state=0)

First, we assigned the NumPy array representation of feature columns 1-13 to the
variable x, and we assigned the class labels from the first column to the variable
y. Then, we used the train_test_split function to randomly split X and y into
separate training and test datasets. By setting test_size=0.3 we assigned 30
percent of the wine samples to X_test and y_test, and the remaining 70 percent
of the samples were assigned to X_train and y_train, respectively.

If we are dividing a dataset into training and test datasets, we have to
keep in mind that we are withholding valuable information that the
learning algorithm could benefit from. Thus, we don't want to allocate
too much information to the test set. However, the smaller the test set,
. the more inaccurate the estimation of the generalization error. Dividing
% a dataset into training and test sets is all about balancing this trade-off.
L= In practice, the most commonly used splits are 60:40, 70:30, or 80:20,
depending on the size of the initial dataset. However, for large datasets,
90:10 or 99:1 splits into training and test subsets are also common and
appropriate. Instead of discarding the allocated test data after model
training and evaluation, it is a good idea to retrain a classifier on the
entire dataset for optimal performance.

[109]

Building Good Training Sets — Data Preprocessing

Bringing features onto the same scale

Feature scaling is a crucial step in our preprocessing pipeline that can easily be
forgotten. Decision trees and random forests are one of the very few machine
learning algorithms where we don't need to worry about feature scaling. However,
the majority of machine learning and optimization algorithms behave much

better if features are on the same scale, as we saw in Chapter 2, Training Machine
Learning Algorithms for Classification, when we implemented the gradient descent
optimization algorithm.

The importance of feature scaling can be illustrated by a simple example. Let's
assume that we have two features where one feature is measured on a scale from

1 to 10 and the second feature is measured on a scale from 1 to 100,000. When we
think of the squared error function in Adaline in Chapter 2, Training Machine Learning
Algorithms for Classification, it is intuitive to say that the algorithm will mostly be busy
optimizing the weights according to the larger errors in the second feature. Another
example is the k-nearest neighbors (KNN) algorithm with a Euclidean distance
measure; the computed distances between samples will be dominated by the second
feature axis.

Now, there are two common approaches to bringing different features onto the same
scale: normalization and standardization. Those terms are often used quite loosely
in different fields, and the meaning has to be derived from the context. Most often,
normalization refers to the rescaling of the features to a range of [0, 1], which is a
special case of min-max scaling. To normalize our data, we can simply apply the
min-max scaling to each feature column, where the new value x! of a sample x
can be calculated as follows:

Here, x" isa particular sample, x_. is the smallest value in a feature column,

and x,_, the largest value, respectively.

The min-max scaling procedure is implemented in scikit-learn and can be used
as follows:

>>> from sklearn.preprocessing import MinMaxScaler
>>> mms = MinMaxScaler ()

>>> X train norm = mms.fit transform(X train)

>>> X test norm = mms.transform(X test)

[110]

Chapter 4

Although normalization via min-max scaling is a commonly used technique that
is useful when we need values in a bounded interval, standardization can be more
practical for many machine learning algorithms. The reason is that many linear
models, such as the logistic regression and SVM that we remember from Chapter 3,
A Tour of Machine Learning Classifiers Using Scikit-learn, initialize the weights to 0 or
small random values close to 0. Using standardization, we center the feature columns
at mean 0 with standard deviation 1 so that the feature columns take the form of

a normal distribution, which makes it easier to learn the weights. Furthermore,
standardization maintains useful information about outliers and makes the
algorithm less sensitive to them in contrast to min-max scaling, which scales

the data to a limited range of values.

The procedure of standardization can be expressed by the following equation:

Here, . is the sample mean of a particular feature column and o, the corresponding
standard deviation, respectively.

The following table illustrates the difference between the two commonly used
feature scaling techniques, standardization and normalization on a simple sample
dataset consisting of numbers 0 to 5:

input standardized normalized
0.0 -1.336306 0.0
1.0 -0.801784 0.2
2.0 -0.267261 0.4
3.0 0.267261 0.6
4.0 0.801784 0.8
5.0 1.336306 1.0

Similar to MinMaxScaler, scikit-learn also implements a class for standardization:

>>> from sklearn.preprocessing import StandardScaler
>>> stdsc = StandardScaler()

>>> X train std = stdsc.fit transform(X train)

>>> X test std = stdsc.transform(X test)

[111]

Building Good Training Sets — Data Preprocessing

Again, it is also important to highlight that we fit the Standardscaler only once
on the training data and use those parameters to transform the test set or any new
data point.

Selecting meaningful features

If we notice that a model performs much better on a training dataset than on the test
dataset, this observation is a strong indicator for overfitting. Overfitting means that
model fits the parameters too closely to the particular observations in the training
dataset but does not generalize well to real data—we say that the model has a high
variance. A reason for overfitting is that our model is too complex for the given
training data and common solutions to reduce the generalization error are listed

as follows:

* Collect more training data

* Introduce a penalty for complexity via regularization

* Choose a simpler model with fewer parameters

* Reduce the dimensionality of the data
Collecting more training data is often not applicable. In the next chapter, we will
learn about a useful technique to check whether more training data is helpful at all.

In the following sections and subsections, we will look at common ways to reduce
overfitting by regularization and dimensionality reduction via feature selection.

Sparse solutions with L1 regularization

We recall from Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn,
that L2 regularization is one approach to reduce the complexity of a model by
penalizing large individual weights, where we defined the L2 norm of our weight
vector w as follows:

m
. 2 _ 2
L2:|w], = w;
Jj=1

Another approach to reduce the model complexity is the related L1 regularization:

Lt = |

[112]

Chapter 4

Here, we simply replaced the square of the weights by the sum of the absolute
values of the weights. In contrast to L2 regularization, L1 regularization yields sparse
feature vectors; most feature weights will be zero. Sparsity can be useful in practice
if we have a high-dimensional dataset with many features that are irrelevant,
especially cases where we have more irrelevant dimensions than samples. In this
sense, L1 regularization can be understood as a technique for feature selection.

To better understand how L1 regularization encourages sparsity, let's take a step
back and take a look at a geometrical interpretation of regularization. Let's plot the
contours of a convex cost function for two weight coefficients W; and w,. Here, we
will consider the sum of the squared errors (SSE) cost function that we used for
Adaline in Chapter 2, Training Machine Learning Algorithms for Classification, since

it is symmetrical and easier to draw than the cost function of logistic regression;
however, the same concepts apply to the latter. Remember that our goal is to find the
combination of weight coefficients that minimize the cost function for the training
data, as shown in the following figure (the point in the middle of the ellipses):

A
w,
Minimize cost

A\ 4

Now, we can think of regularization as adding a penalty term to the cost function to
encourage smaller weights; or, in other words, we penalize large weights.

[113]

Building Good Training Sets — Data Preprocessing

Thus, by increasing the regularization strength via the regularization

parameter A, we shrink the weights towards zero and decrease the dependence
of our model on the training data. Let's illustrate this concept in the following
figure for the L2 penalty term.

Minimize cost

Aliwil2 /
)<. "

Minimize penalty Minimize cost + penalty

Y

The quadratic L2 regularization term is represented by the shaded ball. Here, our
weight coefficients cannot exceed our regularization budget —the combination of the
weight coefficients cannot fall outside the shaded area. On the other hand, we still
want to minimize the cost function. Under the penalty constraint, our best effort is
to choose the point where the L2 ball intersects with the contours of the unpenalized
cost function. The larger the value of the regularization parameter 4 gets, the faster
the penalized cost function grows, which leads to a narrower L2 ball. For example,
if we increase the regularization parameter towards infinity, the weight coefficients
will become effectively zero, denoted by the center of the L2 ball. To summarize the
main message of the example: our goal is to minimize the sum of the unpenalized
cost function plus the penalty term, which can be understood as adding bias and
preferring a simpler model to reduce the variance in the absence of sufficient
training data to fit the model.

[114]

Chapter 4

Now let's discuss L1 regularization and sparsity. The main concept behind L1
regularization is similar to what we have discussed here. However, since the L1
penalty is the sum of the absolute weight coefficients (remember that the L2 term
is quadratic), we can represent it as a diamond shape budget, as shown in the
following figure:

A
W,
Allwlly
@ —>
Wy
Minimize cost + penalty
h”1=0)

In the preceding figure, we can see that the contour of the cost function touches the
L1 diamond at w, =0. Since the contours of an L1 regularized system are sharp, it is
more likely that the optimum — that is, the intersection between the ellipses of the
cost function and the boundary of the L1 diamond —is located on the axes, which
encourages sparsity. The mathematical details of why L1 regularization can lead to
sparse solutions are beyond the scope of this book. If you are interested, an excellent
section on L2 versus L1 regularization can be found in section 3.4 of The Elements of
Statistical Learning, Trevor Hastie, Robert Tibshirani, and Jerome Friedman, Springer.

For regularized models in scikit-learn that support L1 regularization, we can simply
set the penalty parameter to '11' to yield the sparse solution:

>>> from sklearn.linear model import LogisticRegression
>>> LogisticRegression (penalty="'11")

[115]

Building Good Training Sets — Data Preprocessing

Applied to the standardized Wine data, the L1 regularized logistic regression would
yield the following sparse solution:

>>> lr = LogisticRegression(penalty='11', C=0.1)

>>> lr.fit (X_train_std, y_train)

>>> print ('Training accuracy:', lr.score(X train std, y train))
Training accuracy: 0.983870967742

>>> print ('Test accuracy:',6 lr.score(X test std, y test))

Test accuracy: 0.981481481481

Both training and test accuracies (both 98 percent) do not indicate any overfitting
of our model. When we access the intercept terms via the 1r.intercept_ attribute,
we can see that the array returns three values:

>>> lr.intercept
array([-0.38379237, -0.1580855 , -0.70047966])

Since we the fit the LogisticRegression object on a multiclass dataset, it uses the
One-vs-Rest (OvR) approach by default where the first intercept belongs to the
model that fits class 1 versus class 2 and 3; the second value is the intercept of the
model that fits class 2 versus class 1 and 3; and the third value is the intercept of the
model that fits class 3 versus class 1 and 2, respectively:

>>> lr.coef

array([[0.280, 0.000, 0.000, -0.0282, 0.000,
0.000, 0.710, 0.000, 0.000, 0.000,

.000, 0.000, 1.236],

.644, -0.0688 , -0.0572, 0.000, 0.000,

.000, 0.000, 0.000, 0.000, -0.927,

.060, 0.000, -0.371],

.000, 0.061, 0.000, 0.000, 0.000,

.000, -0.637, 0.000, 0.000, 0.499,

.358, -0.570, 0.000

—
I

—

~ O O O O O O o

—
—

The weight array that we accessed via the 1r.coef_ attribute contains three rows of
weight coefficients, one weight vector for each class. Each row consists of 13 weights
where each weight is multiplied by the respective feature in the 13-dimensional
Wine dataset to calculate the net input:

_ _ m _ T
Z=WX oW X, = Z_Fox‘iwj =w'x

[116]

Chapter 4

We notice that the weight vectors are sparse, which means that they only have a few
non-zero entries. As a result of the L1 regularization, which serves as a method for
feature selection, we just trained a model that is robust to the potentially irrelevant
features in this dataset.

Lastly, let's plot the regularization path, which is the weight coefficients of the
different features for different regularization strengths:

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax = plt.subplot (111)

>>> colors = ['blue', 'green', 'red', 'cyan',
'magenta', 'yellow',6 ‘'black',
'pink', 'lightgreen', 'lightblue',
'gray', 'indigo', 'orange'l]

>>> weights, params = [], []

>>> for c¢ in np.arange(-4, 6):

lr = LogisticRegression(penalty='11",
C=10**c,
random_state=0)

lr.fit (X train std, y train)
weights.append(lr.coef [1])
params.append (10**c)

>>> weights = np.array(weights)

>>> for column, color in zip(range (weights.shape[l]), colors):
plt.plot (params, weights[:, column],

label=df wine.columns [column+1],
color=color)

>>> plt.axhline (0, color='black', linestyle='--', linewidth=3)

>>> plt.x1lim([10** (-5), 10**5])

>>> plt.ylabel ('weight coefficient')

>>> plt.xlabel('C')

>>> plt.xscale('log')

>>> plt.legend(loc="upper left')

>>> ax.legend(loc='upper center',

bbox_to_anchor=(1.38, 1.03),
ncol=1, fancybox=True)
>>> plt.show()

[117]

Building Good Training Sets — Data Preprocessing

The resulting plot provides us with further insights about the behavior of L1
regularization. As we can see, all features weights will be zero if we penalize the
model with a strong regularization parameter (C <0.1); C is the inverse of the
regularization parameter A .

10 T T T T T T

— Alcohol

— Malic acid

— Ash
Alcalinity of ash

— Magnesium
Total phenols

— Flavanoids
Nonflavanoid phenols
Proanthocyanins
Color intensity

— Hue

— 0D280/0D315 of diluted wines
Proline

weight coefficient

204

=25 1 1 1 1 1 L L L
10° 10* 10° 10° 10" 10° 100 10° 10° 10° 10°
C

Sequential feature selection algorithms

An alternative way to reduce the complexity of the model and avoid overfitting

is dimensionality reduction via feature selection, which is especially useful for
unregularized models. There are two main categories of dimensionality reduction
techniques: feature selection and feature extraction. Using feature selection, we
select a subset of the original features. In feature extraction, we derive information
from the feature set to construct a new feature subspace. In this section, we will
take a look at a classic family of feature selection algorithms. In the next chapter,
Chapter 5, Compressing Data via Dimensionality Reduction, we will learn about
different feature extraction techniques to compress a dataset onto a lower
dimensional feature subspace.

Sequential feature selection algorithms are a family of greedy search algorithms that
are used to reduce an initial d-dimensional feature space to a k-dimensional feature
subspace where k < d. The motivation behind feature selection algorithms is to
automatically select a subset of features that are most relevant to the problem to
improve computational efficiency or reduce the generalization error of the model by
removing irrelevant features or noise, which can be useful for algorithms that don't
support regularization. A classic sequential feature selection algorithm is Sequential
Backward Selection (SBS), which aims to reduce the dimensionality of the initial
feature subspace with a minimum decay in performance of the classifier to improve
upon computational efficiency. In certain cases, SBS can even improve the predictive
power of the model if a model suffers from overfitting.

[118]

Chapter 4

Greedy algorithms make locally optimal choices at each stage of
a combinatorial search problem and generally yield a suboptimal
solution to the problem in contrast to exhaustive search algorithms,
%“ which evaluate all possible combinations and are guaranteed to find
’ the optimal solution. However, in practice, an exhaustive search is
often computationally not feasible, whereas greedy algorithms allow
for a less complex, computationally more efficient solution.

The idea behind the SBS algorithm is quite simple: SBS sequentially removes features
from the full feature subset until the new feature subspace contains the desired
number of features. In order to determine which feature is to be removed at each
stage, we need to define criterion function J that we want to minimize. The criterion
calculated by the criterion function can simply be the difference in performance of
the classifier after and before the removal of a particular feature. Then the feature

to be removed at each stage can simply be defined as the feature that maximizes

this criterion; or, in more intuitive terms, at each stage we eliminate the feature that
causes the least performance loss after removal. Based on the preceding definition of
SBS, we can outline the algorithm in 4 simple steps:

1. [Initialize the algorithm with k =d, where d is the dimensionality of the full
feature space X,.

2. Determine the feature x~ that maximizes the criterion x = argmaxJ (X, - x))
where xeX,.

3. Remove the feature x~ from the feature set: x, -1 = x,-1=x,~x k=k-1,

Terminate if k equals the number of desired features, if not, go to step 2.

You can find a detailed evaluation of several sequential
feature algorithms in Comparative Study of Techniques for Large
% Scale Feature Selection, F. Ferri, P. Pudil, M. Hatef, and]. Kittler.
s ; . -
Comparative study of techniques for large-scale feature selection.
Pattern Recognition in Practice IV, pages 403-413, 1994.

Unfortunately, the SBS algorithm is not implemented in scikit-learn, yet. But since it
is so simple, let's go ahead and implement it in Python from scratch:

from sklearn.base import clone

from itertools import combinations

import numpy as np

from sklearn.cross validation import train test split
from sklearn.metrics import accuracy score

[119]

Building Good Training Sets — Data Preprocessing

class SBS() :
def _ init_ (self, estimator, k_features,

scoring=accuracy_score,
test_size=0.25, random state=1):
self.scoring = scoring
self.estimator = clone(estimator)
self.k features = k features
self.test _size = test_size
self.random state = random state

def fit(self, X, y):
X _train, X test, y train, y test = \
train test split (X, y, test size=self.test size,
random_state=self.random state)

dim = X train.shape[1]

self.indices_ = tuple(range(dim))
self.subsets = [self.indices_]
score = self. calc score(X train, y train,

X test, y _test, self.indices)
self.scores = [score]

while dim > self.k features:

scores = []

subsets = []

for p in combinations(self.indices , r=dim-1):
score = self. calc_score(X train, y train,

X test, y test, p)
scores.append (score)
subsets.append (p)

best = np.argmax(scores)
self.indices_ = subsets[best]
self.subsets .append(self.indices)
dim -= 1

self.scores_ .append(scores [best])
self .k score = self.scores [-1]

return self

def transform(self, X):
return X[:, self.indices]

[120]

Chapter 4

def calc score(self, X train, y train,
X test, y test, indices):

self.estimator.fit (X _train[:, indices], y_ train)
y pred = self.estimator.predict (X test[:, indices])
score = self.scoring(y test, y pred)

return score

In the preceding implementation, we defined the k_features parameter to

specify the desired number of features we want to return. By default, we use the
accuracy_score from scikit-learn to evaluate the performance of a model and
estimator for classification on the feature subsets. Inside the while loop of the fit
method, the feature subsets created by the itertools.combination function are
evaluated and reduced until the feature subset has the desired dimensionality.

In each iteration, the accuracy score of the best subset is collected in a list self.
scores_ based on the internally created test dataset x_test. We will use those
scores later to evaluate the results. The column indices of the final feature subset are
assigned to self.indices_, which we can use via the transform method to return
a new data array with the selected feature columns. Note that, instead of calculating
the criterion explicitly inside the £it method, we simply removed the feature that is
not contained in the best performing feature subset.

Now, let's see our SBS implementation in action using the KNN classifier
from scikit-learn:

>>> from sklearn.neighbors import KNeighborsClassifier
>>> import matplotlib.pyplot as plt

>>> knn = KNeighborsClassifier (n neighbors=2)

>>> sbs = SBS(knn, k features=1)

>>> sbs.fit (X _train std, y_train)

Although our SBS implementation already splits the dataset into a test and
training dataset inside the fit function, we still fed the training dataset X_train
to the algorithm. The SBS £it method will then create new training-subsets for
testing (validation) and training, which is why this test set is also called validation
dataset. This approach is necessary to prevent our original test set becoming part of the
training data.

Remember that our SBS algorithm collects the scores of the best feature subset at
each stage, so let's move on to the more exciting part of our implementation and plot
the classification accuracy of the KNN classifier that was calculated on the validation
dataset. The code is as follows:

>>> k_feat = [len(k) for k in sbs.subsets]
>>> plt.plot(k feat, sbs.scores , marker='o')
>>> plt.ylim([0.7, 1.11)

[121]

Building Good Training Sets — Data Preprocessing

>>> plt.ylabel ('Accuracy')

>>> plt.xlabel ('Number of features')
>>> plt.grid()

>>> plt.show()

As we can see in the following plot, the accuracy of the KNN classifier improved on
the validation dataset as we reduced the number of features, which is likely due to a
decrease of the curse of dimensionality that we discussed in the context of the KNN
algorithm in Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn. Also,
we can see in the following plot that the classifier achieved 100 percent accuracy for
k={5,6,7,8 9, 10}

1.10 ! ; ! T ! T
1.05 | | - . -
1.00 -
0.95

0.90 -

Accuracy

0.85

I S S TR N -

070 i ; i ; i ;
0 2 4 6 8 10 12 14

Number of features

To satisfy our own curiosity, let's see what those five features are that yielded such a
good performance on the validation dataset:

>>> k5 = list (sbs.subsets [8])
>>> print (df wine.columns[1:] [k5])

Index(['Alcohol', 'Malic acid', 'Alcalinity of ash', 'Hue',
'Proline'], dtype='object')

Using the preceding code, we obtained the column indices of the 5-feature subset
from the 9" position in the sbs. subsets_ attribute and returned the corresponding
feature names from the column-index of the pandas Wine pataFrame.

[122]

Chapter 4

Next let's evaluate the performance of the KNN classifier on the original test set:

>>> knn.fit (X train std, y_ train)

>>> print ('Training accuracy:', knn.score(X train std, y train))
Training accuracy: 0.983870967742

>>> print ('Test accuracy:', knn.score(X test std, y test))

Test accuracy: 0.944444444444

In the preceding code, we used the complete feature set and obtained ~98.4 percent
accuracy on the training dataset. However, the accuracy on the test dataset was
slightly lower (~94.4 percent), which is an indicator of a slight degree of overfitting.
Now let's use the selected 5-feature subset and see how well KNN performs:

>>> knn.fit (X train std[:, k5], y train)

>>> print ('Training accuracy:',

.. knn.score (X train std[:, k5], y train))
Training accuracy: 0.959677419355

>>> print ('Test accuracy:',

.. knn.score (X test std[:, k5], y test))
Test accuracy: 0.962962962963

Using fewer than half of the original features in the Wine dataset, the prediction
accuracy on the test set improved by almost 2 percent. Also, we reduced overfitting,
which we can tell from the small gap between test (~96.3 percent) and training
(~96.0 percent) accuracy.

Feature selection algorithms in scikit-learn
There are many more feature selection algorithms available via scikit-
. learn. Those include recursive backward elimination based on feature
% weights, tree-based methods to select features by importance, and

~ univariate statistical tests. A comprehensive discussion of the different
feature selection methods is beyond the scope of this book, but a good
summary with illustrative examples can be found at http://scikit-
learn.org/stable/modules/feature selection.html.

[123]

http://scikit-learn.org/stable/modules/feature_selection.html
http://scikit-learn.org/stable/modules/feature_selection.html

Building Good Training Sets — Data Preprocessing

Assessing feature importance with
random forests

In the previous sections, you learned how to use L1 regularization to zero out
irrelevant features via logistic regression and use the SBS algorithm for feature
selection. Another useful approach to select relevant features from a dataset is to
use a random forest, an ensemble technique that we introduced in Chapter 3,

A Tour of Machine Learning Classifiers Using Scikit-learn. Using a random forest, we
can measure feature importance as the averaged impurity decrease computed from
all decision trees in the forest without making any assumptions whether our data is
linearly separable or not. Conveniently, the random forest implementation in scikit-
learn already collects feature importances for us so that we can access them via

the feature_importances_ attribute after fitting a RandomForestClassifier. By
executing the following code, we will now train a forest of 10,000 trees on the Wine
dataset and rank the 13 features by their respective importance measures. Remember
(from our discussion in Chapter 3, A Tour of Machine Learning Classifiers Using
Scikit-learn) that we don't need to use standardized or normalized tree-based
models. The code is as follows:

>>> from sklearn.ensemble import RandomForestClassifier

>>> feat_labels = df_wine.columns[1:]

>>> forest = RandomForestClassifier(n_estimators=10000,
random_state=0,
n_jobs=-1)

>>> forest.fit (X_train, y train)

>>> importances = forest.feature importances_

>>> indices = np.argsort (importances) [::-1]

>>> for f in range (X train.shape[1l]):

print ("%2d) %$-*s %f" % (£ + 1, 30,
feat labels[f],
. importances [indices[£f]]))
Alcohol 0.182508

1)

2) Malic acid 0.158574
3) Ash 0.150954
4) Alcalinity of ash 0.131983
5) Magnesium 0.106564
6) Total phenols 0.078249
7) Flavanoids 0.060717
8) Nonflavanoid phenols 0.032039
9) Proanthocyanins 0.025385
10) Color intensity 0.022369
11) Hue 0.022070

[124]

Chapter 4

12)
13)
>>>

>>>

>>>

>>>
>>>

>>>

0D280/0D315 of diluted wines 0.014655
Proline 0.013933
plt.title('Feature Importances')
plt.bar (range (X train.shape[1l]),
importances[indices],
color="'1lightblue’,
align='center')
plt.xticks (range (X train.shape([1]),
feat labels, rotation=90)
plt.xlim([-1, X train.shape[1]])
plt.tight layout ()
plt.show ()

After executing the preceding code, we created a plot that ranks the different features
in the Wine dataset by their relative importance; note that the feature importances
are normalized so that they sum up to 1.0.

0.20
0.15
0.10
0.05

0.00

Feature Importance
1

L L L L L L L L L
l||||l|||||||||||l|||||||
T 2 5 5 E 4 8 4 2 2 8 § ¢
] = S c
% & < © 2 2 e 2 = 7] T c =
w s c = o)
o] c] o = P
= L o o = © = > U o
© 2 & = = a9 c -
= -_ M ——
= c o © o h=! = = +
o ﬁ c o =] -
s} ©
~ S o o 4
< > £ 6
= N
c —
o m
= (]
o
—
=)
@
o~
[
o

[125]

Building Good Training Sets — Data Preprocessing

We can conclude that the alcohol content of wine is the most discriminative feature
in the dataset based on the average impurity decrease in the 10,000 decision trees.
Interestingly, the three top-ranked features in the preceding plot are also among the
top five features in the selection by the SBS algorithm that we implemented in the
previous section. However, as far as interpretability is concerned, the random forest
technique comes with an important gotcha that is worth mentioning. For instance, if
two or more features are highly correlated, one feature may be ranked very highly
while the information of the other feature(s) may not be fully captured. On the other
hand, we don't need to be concerned about this problem if we are merely interested
in the predictive performance of a model rather than the interpretation of feature
importances. To conclude this section about feature importances and random forests,
it is worth mentioning that scikit-learn also implements a transform method that
selects features based on a user-specified threshold after model fitting, which is
useful if we want to use the RandomForestClassifier as a feature selector and
intermediate step in a scikit-learn pipeline, which allows us to connect different
preprocessing steps with an estimator, as we will see in Chapter 6, Learning Best
Practices for Model Evaluation and Hyperparameter Tuning. For example, we could set
the threshold to 0.15 to reduce the dataset to the 3 most important features, Alcohol,
Malic acid, and Ash using the following code:

>>> X selected = forest.transform(X train, threshold=0.15)
>>> X selected.shape
(124, 3)

Summary

We started this chapter by looking at useful techniques to make sure that we handle
missing data correctly. Before we feed data to a machine learning algorithm, we also
have to make sure that we encode categorical variables correctly, and we have seen
how we can map ordinal and nominal features values to integer representations.

Moreover, we briefly discussed L1 regularization, which can help us to avoid
overfitting by reducing the complexity of a model. As an alternative approach for
removing irrelevant features, we used a sequential feature selection algorithm to
select meaningful features from a dataset.

In the next chapter, you will learn about yet another useful approach to
dimensionality reduction: feature extraction. It allows us to compress features
onto a lower dimensional subspace rather than removing features entirely as in
feature selection.

[126]

Compressing Data via
Dimensionality Reduction

In Chapter 4, Building Good Training Sets — Data Preprocessing, you learned about the
different approaches for reducing the dimensionality of a dataset using different
feature selection techniques. An alternative approach to feature selection for
dimensionality reduction is feature extraction. In this chapter, you will learn about three
fundamental techniques that will help us to summarize the information content of a
dataset by transforming it onto a new feature subspace of lower dimensionality than
the original one. Data compression is an important topic in machine learning, and it
helps us to store and analyze the increasing amounts of data that are produced

and collected in the modern age of technology. In this chapter, we will cover the
following topics:

* Principal component analysis (PCA) for unsupervised data compression

* Linear Discriminant Analysis (LDA) as a supervised dimensionality
reduction technique for maximizing class separability

* Nonlinear dimensionality reduction via kernel principal
component analysis

[127]

Compressing Data via Dimensionality Reduction

Unsupervised dimensionality reduction
via principal component analysis

Similar to feature selection, we can use feature extraction to reduce the number of
features in a dataset. However, while we maintained the original features when we
used feature selection algorithms, such as sequential backward selection, we use feature
extraction to transform or project the data onto a new feature space. In the context

of dimensionality reduction, feature extraction can be understood as an approach

to data compression with the goal of maintaining most of the relevant information.
Feature extraction is typically used to improve computational efficiency but can

also help to reduce the curse of dimensionality — especially if we are working with
nonregularized models.

Principal component analysis (PCA) is an unsupervised linear transformation
technique that is widely used across different fields, most prominently for
dimensionality reduction. Other popular applications of PCA include exploratory
data analyses and de-noising of signals in stock market trading, and the analysis
genome data and gene expression levels in the field of bioinformatics. PCA helps us
to identify patterns in data based on the correlation between features. In a nutshell,
PCA aims to find the directions of maximum variance in high-dimensional data and
projects it onto a new subspace with equal or fewer dimensions that the original one.
The orthogonal axes (principal components) of the new subspace can be interpreted
as the directions of maximum variance given the constraint that the new feature axes
are orthogonal to each other as illustrated in the following figure. Here, x, and x, are
the original feature axes, and PC1 and PC2 are the principal components:

x
Xy X X

v

[128]

Chapter 5

If we use PCA for dimensionality reduction, we construct a d xk -dimensional
transformation matrix w that allows us to map a sample vector X onto a new
k -dimensional feature subspace that has fewer dimensions than the original
d -dimensional feature space:

x:[xl,xz,...,xd], xeR?

YxW, weR™

Z:[zl,zz,...,zk], zeR¥

As a result of transforming the original d -dimensional data onto this new

k -dimensional subspace (typically & <<d), the first principal component will have
the largest possible variance, and all consequent principal components will have the
largest possible variance given that they are uncorrelated (orthogonal) to the other
principal components. Note that the PCA directions are highly sensitive to data
scaling, and we need to standardize the features prior to PCA if the features were
measured on different scales and we want to assign equal importance to all features.

Before looking at the PCA algorithm for dimensionality reduction in more detail,
let's summarize the approach in a few simple steps:

1.

2.
3.
4

o

Standardize the d -dimensional dataset.
Construct the covariance matrix.
Decompose the covariance matrix into its eigenvectors and eigenvalues.

Select k eigenvectors that correspond to the k largest eigenvalues,
where k& is the dimensionality of the new feature subspace (k<d).

Construct a projection matrix W from the "top" k eigenvectors.

Transform the d -dimensional input dataset X using the projection
matrix W to obtain the new k -dimensional feature subspace.

[129]

Compressing Data via Dimensionality Reduction

Total and explained variance

In this subsection, we will tackle the first four steps of a principal component
analysis: standardizing the data, constructing the covariance matrix, obtaining the
eigenvalues and eigenvectors of the covariance matrix, and sorting the eigenvalues
by decreasing order to rank the eigenvectors.

First, we will start by loading the Wine dataset that we have been working with
in Chapter 4, Building Good Training Sets — Data Preprocessing:

>>> import pandas as pd

>>> df wine = pd.read csv('https://archive.ics.uci.edu/ml/machine-
learning-databases/wine/wine.data', header=None)

Next, we will process the Wine data into separate training and test sets — using 70
percent and 30 percent of the data, respectively —and standardize it to unit variance.

>>> from sklearn.cross validation import train test split
>>> from sklearn.preprocessing import StandardScaler
>>> X, y = df wine.iloc[:, 1:].values, df wine.iloc[:, 0].values
>>> X train, X test, y train, y test =\
train test split (X, vy,
test size=0.3, random state=0)
>>> sc = StandardScaler()
>>> X train std = sc.fit transform(X train)
>>> X test std = sc.fit transform(X test)

After completing the mandatory preprocessing steps by executing the preceding
code, let's advance to the second step: constructing the covariance matrix. The
symmetric d xd -dimensional covariance matrix, where d is the number of
dimensions in the dataset, stores the pairwise covariances between the different
features. For example, the covariance between two features x; and x, on the

population level can be calculated via the following equation:

Oy = li(x(/) —,u/.)(x,(f) _'uk)

noia

Here, #; and #, are the sample means of feature / and k, respectively. Note that
the sample means are zero if we standardize the dataset. A positive covariance
between two features indicates that the features increase or decrease together,
whereas a negative covariance indicates that the features vary in opposite directions.
For example, a covariance matrix of three features can then be written as (note that -
stands for the Greek letter sigima, which is not to be confused with the sum symbol):

[130]

Chapter 5

2
O-l O-l 2 O-l 3

_ 2
z— 0y O, Op

2
0-3 1 032 63

The eigenvectors of the covariance matrix represent the principal components
(the directions of maximum variance), whereas the corresponding eigenvalues
will define their magnitude. In the case of the Wine dataset, we would obtain 13
eigenvectors and eigenvalues from the 13x13-dimensional covariance matrix.

Now, let's obtain the eigenpairs of the covariance matrix. As we surely remember
from our introductory linear algebra or calculus classes, an eigenvalue v satisfies
the following condition:

Sv=Ay

Here, A is a scalar: the eigenvalue. Since the manual computation of eigenvectors
and eigenvalues is a somewhat tedious and elaborate task, we will use the
linalg.eig function from NumPy to obtain the eigenpairs of the Wine
covariance matrix:

>>> import numpy as np
>>> cov_mat = np.cov (X train std.T)
>>> eigen vals, eigen vecs = np.linalg.eig(cov_mat)

°

>>> print ('\nEigenvalues \n%s' % eigen vals)

Eigenvalues

[4.8923083 2.46635032 1.42809973 1.01233462 0.84906459
0.60181514

0.52251546 0.08414846 0.33051429 0.29595018 0.16831254 0.21432212
0.2399553]

Using the numpy . cov function, we computed the covariance matrix of the
standardized training dataset. Using the 1inalg.eig function, we performed the
eigendecomposition that yielded a vector (eigen_vals) consisting of 13 eigenvalues
and the corresponding eigenvectors stored as columns in a 13x13-dimensional
matrix (eigen_ vecs).

Since we want to reduce the dimensionality of our dataset by compressing it onto

a new feature subspace, we only select the subset of the eigenvectors (principal
components) that contains most of the information (variance). Since the eigenvalues
define the magnitude of the eigenvectors, we have to sort the eigenvalues by
decreasing magnitude; we are interested in the top k eigenvectors based on the
values of their corresponding eigenvalues. But before we collect those & most
informative eigenvectors, let's plot the variance explained ratios of the eigenvalues.

[131]

Compressing Data via Dimensionality Reduction

The variance explained ratio of an eigenvalue 4, is simply the fraction of an
eigenvalue 4, and the total sum of the eigenvalues:

A

J

d
A
j=1J

Using the NumPy cumsum function, we can then calculate the cumulative sum of
explained variances, which we will plot via matplotlib's step function:

>>> tot = sum(eigen vals)
>>> var _exp = [(1 / tot) for i in

sorted(eigen vals, reverse=True)]
>>> cum_var exp = np.cumsum(var_exp)

>>> import matplotlib.pyplot as plt

>>> plt.bar(range(1l,14), var exp, alpha=0.5, align='center',
label='individual explained variance')

>>> plt.step(range(1l,14), cum var exp, where='mid',
label='cumulative explained variance')

>>> plt.ylabel ('Explained variance ratio')

>>> plt.xlabel ('Principal components')

>>> plt.legend(loc="'best')

>>> plt.show()

The resulting plot indicates that the first principal component alone accounts for
40 percent of the variance. Also, we can see that the first two principal components
combined explain almost 60 percent of the variance in the data:

1.2 T T T T T
— cumulative explained variance
| | individual explained variance

=
=]

o o
=)]

bd
'S

Explained variance ratio

0.2

0.0
6 8 14

Principal components

[132]

Chapter 5

Although the explained variance plot reminds us of the feature importance that we
computed in Chapter 4, Building Good Training Sets — Data Preprocessing, via random
forests, we shall remind ourselves that PCA is an unsupervised method, which
means that information about the class labels is ignored. Whereas a random forest
uses the class membership information to compute the node impurities, variance
measures the spread of values along a feature axis.

Feature transformation

After we have successfully decomposed the covariance matrix into eigenpairs,
let's now proceed with the last three steps to transform the Wine dataset onto
the new principal component axes. In this section, we will sort the eigenpairs
by descending order of the eigenvalues, construct a projection matrix from the
selected eigenvectors, and use the projection matrix to transform the data onto
the lower-dimensional subspace.

We start by sorting the eigenpairs by decreasing order of the eigenvalues:

>>> eigen pairs =[(np.abs(eigen vals[i]),eigen vecs[:,1i])
for i inrange(len(eigen vals))]
>>> eigen pairs.sort (reverse=True)

Next, we collect the two eigenvectors that correspond to the two largest values to
capture about 60 percent of the variance in this dataset. Note that we only chose two
eigenvectors for the purpose of illustration, since we are going to plot the data via

a two-dimensional scatter plot later in this subsection. In practice, the number of
principal components has to be determined from a trade-off between computational
efficiency and the performance of the classifier:

>>> w= np.hstack((eigen pairs([0] [1] [:, np.newaxis],
eigen pairs[1] [1] [:, np.newaxis]))

>>> print ('Matrix W:\n',w)

Matrix W:

[[0.14669811 0.50417079]

[-0.24224554 0.24216889]

[-0.02993442 0.28698484]

[-0.25519002 -0.06468718]

[0.12079772 0.22995385]

[0.38934455 0.09363991]

[0.42326486 0.01088622]

[-0.30634956 0.01870216]

[0.30572219 0.03040352]

[-0.09869191 0.54527081]

[133]

Compressing Data via Dimensionality Reduction

[0.30032535 -0.27924322]
[0.36821154 -0.174365]
[0.29259713 0.36315461]]

By executing the preceding code, we have created a 13x2-dimensional projection
matrix W from the top two eigenvectors. Using the projection matrix, we can now
transform a sample x (represented as 1x13-dimensional row vector) onto the PCA
subspace obtaining x’, a now two-dimensional sample vector consisting of two
new features:

x'=xW

>>> X train std[0] .dot (w)
array ([2.59891628, 0.004840891])

Similarly, we can transform the entire 124x13-dimensional training dataset onto the
two principal components by calculating the matrix dot product:

X'=XW

>>> X train pca = X_train std.dot (w)

Lastly, let's visualize the transformed Wine training set, now stored as an
124x2 -dimensional matrix, in a two-dimensional scatterplot:

>>> colors = ['r', 'b', 'g'l]

>>> markers = ['s', 'x', 'o'l]

>>> for 1, ¢, m in zip(np.unique(y train), colors, markers):
plt.scatter (X train pcaly_train==1, 0],

X_train pcaly train==1, 1],

e c=c, label=1, marker=m)

>>> plt.xlabel ('PC 1')

>>> plt.ylabel ('PC 2')

>>> plt.legend(loc="'lower left')

>>> plt.show()

As we can see in the resulting plot (shown in the next figure), the data is more
spread along the x-axis — the first principal component — than the second principal
component (y-axis), which is consistent with the explained variance ratio plot that
we created in the previous subsection. However, we can intuitively see that a linear
classifier will likely be able to separate the classes well:

[134]

Chapter 5

4 T
3F o o »
2t Y B "
e ‘ll BEg
° []
o, © ® CL L
1 L] " Ry
® *l.. .‘ = '.. =
° B_g8
~ 0 ° ° x. hd x® ma =®
tij x x '
=1 x x * 2 % x %
o K%
=2 X o KA ox
* o] x
-3 mmm 1 o
_al xxx 2 %
e0o 3
_5 1
-6 -4 -2 0 2 4 6
PC1

Although we encoded the class labels information for the purpose of illustration in
the preceding scatter plot, we have to keep in mind that PCA is an unsupervised
technique that doesn't use class label information.

Principal component analysis in scikit-learn

Although the verbose approach in the previous subsection helped us to follow the
inner workings of PCA, we will now discuss how to use the pca class implemented
in scikit-learn. pca is another one of scikit-learn's transformer classes, where we first
fit the model using the training data before we transform both the training data and
the test data using the same model parameters. Now, let's use the pca from scikit-
learn on the Wine training dataset, classify the transformed samples via logistic
regression, and visualize the decision regions via the plot_decision_region
function that we defined in Chapter 2, Training Machine Learning Algorithms

for Classification:

from matplotlib.colors import ListedColormap
def plot decision regions (X, y, classifier, resolution=0.02):

setup marker generator and color map

markers = ('s', 'x', 'o', '™ 1)
colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')

cmap = ListedColormap (colors[:len(np.unique(y))])

plot the decision surface

[135]

Compressing Data via Dimensionality Reduction

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

x1 min, x1 max = X[:, 0] .min() - 1, X[:, 0].max() + 1

x2 min, x2 max = X[:, 1].min() - 1, X[:, 1].max() + 1

xx1l, xx2 = np.meshgrid(np.arange(xl min, x1 max, resolution),
np.arange (x2 min, x2 max, resolution))

Z = classifier.predict(np.array([xxl.ravel(), xx2.ravel()]).T)

Z = Z.reshape (xx1.shape)

plt.contourf (xx1, xx2, Z, alpha=0.4, cmap=cmap)

plt.xlim(xxl.min(), xx1l.max())

plt.ylim(xx2.min(), xx2.max())

plot class samples
for idx, cl in enumerate (np.unique(y)) :
plt.scatter (x=X[y == cl, 0], y=X[y == cl, 1],
alpha=0.8, c=cmap(idx),
marker=markers[idx], label=cl)

from sklearn.linear model import LogisticRegression
from sklearn.decomposition import PCA

pca = PCA(n_components=2)

lr = LogisticRegression()

X train pca = pca.fit transform(X train std)

X test pca = pca.transform(X test std)
lr.fit (X train pca, y train)

plot decision regions (X train pca, y train, classifier=1lr)
plt.xlabel ('PC1'")

plt.ylabel ('PC2")

plt.legend(loc="'lower left')

plt.show()

By executing the preceding code, we should now see the decision regions for the
training model reduced to the two principal component axes.

PC1l

[136]

Chapter 5

If we compare the PCA projection via scikit-learn with our own PCA
implementation, we notice that the plot above is a mirror image of the previous
PCA via our step-by-step approach. Note that this is not due to an error in any of
those two implementations, but the reason for this difference is that, depending on
the eigensolver, eigenvectors can have either negative or positive signs. Not that it
matters, but we could simply revert the mirror image by multiplying the data with
-1 if we wanted to; note that eigenvectors are typically scaled to unit length 1. For
the sake of completeness, let's plot the decision regions of the logistic regression on
the transformed test dataset to see if it can separate the classes well:

>>> plot decision regions (X test pca, y test, classifier=1lr)
>>> plt.xlabel ('PC1l')

>>> plt.ylabel ('PC2"')

>>> plt.legend(loc="'lower left')

>>> plt.show()

After we plot the decision regions for the test set by executing the preceding code,
we can see that logistic regression performs quite well on this small two-dimensional
feature subspace and only misclassifies one sample in the test dataset.

T T T T
nt |]
] =]
3 i
-}
=] L
2f ° 9 1
s _ Ba o
| @ 4
1 B ‘. o o o
~ o e
o 0F o - i "] |
o I P '-
e x
—1k - b4
1 o 5w % X
i = -,
=2 * x xx x b
ogog 1 *x ® X
3 x=xx 2 N
b4
000 3
_4 L I 'l L 'l I N
-4 =2 0 2 4
PC1

If we are interested in the explained variance ratios of the different principal
components, we can simply initialize the pca class with the n_components parameter
set to None, so all principal components are kept and the explained variance ratio can
then be accessed via the explained variance ratio attribute:

>>> pca = PCA(n_components=None)
>>> X train pca = pca.fit transform(X train std)
>>> pca.explained variance ratio_

[137]

Compressing Data via Dimensionality Reduction

array ([0.37329648, 0.18818926, 0.10896791, 0.07724389,
0.06478595,

0.04592014, 0.03986936, 0.02521914, 0.02258181, 0.01830924,
0.01635336, 0.01284271, 0.006420761])

Note that we set n_components=None when we initialized the PCA class so that
it would return all principal components in sorted order instead of performing a
dimensionality reduction.

Supervised data compression via linear
discriminant analysis

Linear Discriminant Analysis (LDA) can be used as a technique for feature
extraction to increase the computational efficiency and reduce the degree of
over-fitting due to the curse of dimensionality in nonregularized models.

The general concept behind LDA is very similar to PCA, whereas PCA attempts to
find the orthogonal component axes of maximum variance in a dataset; the goal in
LDA is to find the feature subspace that optimizes class separability. Both LDA and
PCA are linear transformation techniques that can be used to reduce the number of
dimensions in a dataset; the former is an unsupervised algorithm, whereas the latter is
supervised. Thus, we might intuitively think that LDA is a superior feature extraction
technique for classification tasks compared to PCA. However, A.M. Martinez reported
that preprocessing via PCA tends to result in better classification results in an image
recognition task in certain cases, for instance, if each class consists of only a small
number of samples (A. M. Martinez and A. C. Kak. PCA Versus LDA. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 23(2):228-233, 2001).

Although LDA is sometimes also called Fisher's LDA, Ronald A.
Fisher initially formulated Fisher's Linear Discriminant for two-class
classification problems in 1936 (R. A. Fisher. The Use of Multiple

. Measurements in Taxonomic Problems. Annals of Eugenics, 7(2):179-188,

% 1936). Fisher's Linear Discriminant was later generalized for
L multi-class problems by C. Radhakrishna Rao under the assumption

of equal class covariances and normally distributed classes in
1948, which we now call LDA (C. R. Rao. The Utilization of Multiple
Measurements in Problems of Biological Classification. Journal of the Royal
Statistical Society. Series B (Methodological), 10(2):159-203, 1948).

[138]

Chapter 5

The following figure summarizes the concept of LDA for a two-class problem.
Samples from class 1 are shown as crosses and samples from class 2 are shown
as circles, respectively:

F
x X e ®
x X . e o
x
xxxx P
1D2| [N e
x ®
o ‘..
X 5 X e % °
Xx e ®
X x P
x ®

A linear discriminant, as shown on the x-axis (LD 1), would separate the two
normally distributed classes well. Although the exemplary linear discriminant
shown on the y-axis (LD 2) captures a lot of the variance in the dataset, it
would fail as a good linear discriminant since it does not capture any of the
class-discriminatory information.

One assumption in LDA is that the data is normally distributed. Also, we assume
that the classes have identical covariance matrices and that the features are
statistically independent of each other. However, even if one or more of those
assumptions are slightly violated, LDA for dimensionality reduction can still work
reasonably well (R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. 2nd.
Edition. New York, 2001).

Before we take a look into the inner workings of LDA in the following subsections,
let's summarize the key steps of the LDA approach:

1. Standardize the d-dimensional dataset (d is the number of features).

2. For each class, compute the d -dimensional mean vector.

3. Construct the between-class scatter matrix S, and the within-class scatter
matrix S, .

[139]

Compressing Data via Dimensionality Reduction

4. Compute the eigenvectors and corresponding eigenvalues of the
matrix S'S,.

5. Choose the k eigenvectors that correspond to the & largest eigenvalues to
construct a dxk -dimensional transformation matrix w ; the eigenvectors are
the columns of this matrix.

6. Project the samples onto the new feature subspace using the transformation
matrix W .

The assumptions that we make when we are using LDA are that the

features are normally distributed and independent of each other.

Also, the LDA algorithm assumes that the covariance matrices for the
% individual classes are identical. However, even if we violate those

assumptions to a certain extent, LDA may still work reasonably well in

dimensionality reduction and classification tasks (R. O. Duda, P. E. Hart,

and D. G. Stork. Pattern Classification. 2nd. Edition. New York, 2001).

Computing the scatter matrices

Since we have already standardized the features of the Wine dataset in the PCA
section at the beginning of this chapter, we can skip the first step and proceed with
the calculation of the mean vectors, which we will use to construct the within-class
scatter matrix and between-class scatter matrix, respectively. Each mean vector m,
stores the mean feature value #, with respect to the samples of class i:

This results in three mean vectors:

Iui ,alcohol

m. = /ui,ma:licacid l€{1,2,3}

L lui,proline i

[140]

Chapter 5

>>> np.set printoptions(precision=4)
>>> mean_vecs = []
>>> for label in range(1,4):

mean_vecs.append (np.mean (

X train std[y train==label], axis=0))

print ('MV %s: %s\n' %(label, mean vecs[label-1]))
MV 1: [0.9259 -0.3091 0.2592 -0.7989 0.3039 0.9608 1.0515 -0.6306
0.5354

0.2209 0.4855 0.798 1.2017]

MV 2: [-0.8727 -0.3854 -0.4437 0.2481 -0.2409 -0.1059 0.0187 -0.0164
0.1095

-0.8796 0.4392 0.2776 -0.7016]

MV 3: [0.1637 0.8929 0.3249 0.5658 -0.01 -0.9499 -1.228 0.7436
-0.7652

0.979 -1.1698 -1.3007 -0.3912]

Using the mean vectors, we can now compute the within-class scatter matrix S, :
C
Sy =25,
i=1

This is calculated by summing up the individual scatter matrices s, of each
individual class i:

$,= Y (x—m)(x=m,)

xeD;

>>> d = 13 # number of features
>>> S W = np.zeros((d, d))
>>> for label,mv in zip(range(1l,4), mean vecs):
class _scatter = np.zeros((d, d))
for row in X[y == labell:
row, mv = row.reshape(d, 1), mv.reshape(d, 1)
class_scatter += (row-mv) .dot ((row-mv) .T)
S W += class_scatter
>>> print ('Within-class scatter matrix: %sx%s'
R % (S_W.shape[0], S W.shape[1l]))
Within-class scatter matrix: 13x13

[141]

Compressing Data via Dimensionality Reduction

The assumption that we are making when we are computing the scatter matrices
is that the class labels in the training set are uniformly distributed. However, if
we print the number of class labels, we see that this assumption is violated:

>>> print ('Class label distribution: %s'

.. % np.bincount (y train) [1:])
Class label distribution: [40 49 35]

Thus, we want to scale the individual scatter matrices S, before we sum them up
as scatter matrix S,. When we divide the scatter matrices by the number of class
samples N,, we can see that computing the scatter matrix is in fact the same as
computing the covariance matrix ;. The covariance matrix is a normalized
version of the scatter matrix:

2 :NLISW =Nii§(x—mf)(x—m[)r

>>> d = 13 # number of features

>>> S W = np.zeros((d, 4))

>>> for label,mv in zip(range(l, 4), mean vecs):
class_scatter = np.cov(X train std[y train==label] .T)
S W += class_scatter

>>> print ('Scaled within-class scatter matrix: %$sx%s'

% (S_W.shape[0], S W.shape[l]))
Scaled within-class scatter matrix: 13x13

After we have computed the scaled within-class scatter matrix (or covariance
matrix), we can move on to the next step and compute the between-class scatter
matrix S, :

Here, m is the overall mean that is computed, including samples from all classes.

>>> mean _overall = np.mean(X train std, axis=0)
>>> d = 13 # number of features
>>> S B = np.zeros((d, d))
>>> for i,mean_vec in enumerate (mean_vecs) :
n = X[y==i+1, :].shape[0]
mean_vec = mean vec.reshape(d, 1)
mean_overall = mean overall.reshape(d, 1)

S B += n * (mean_vec - mean_overall) .dot(

[142]

Chapter 5

(mean _vec - mean_ overall) .T)
print ('Between-class scatter matrix: %sx%s'
% (S_B.shape[0], S B.shapel[l]))
Between-class scatter matrix: 13x13

Selecting linear discriminants for the new

feature subspace

The remaining steps of the LDA are similar to the steps of the PCA. However,
instead of performing the eigendecomposition on the covariance matrix, we solve
the generalized eigenvalue problem of the matrix S,'S,:

>>>eigen vals, eigen vecs =\
..np.linalg.eig(np.linalg.inv(S_W) .dot (S_B))

After we computed the eigenpairs, we can now sort the eigenvalues in
descending order:

>>> eigen pairs = [(np.abs(eigen vals[i]), eigen vecs[:,i])
for i in range(len(eigen vals))]
>>> eigen pairs = sorted(eigen pairs,
key=lambda k: k[0], reverse=True)
>>> print ('Eigenvalues in decreasing order:\n')
>>> for eigen val in eigen pairs:
print (eigen val([0])

Eigenvalues in decreasing order:

643.015384346
225.086981854
1.37146633984e-13
.68434188608e-14
.16877714935e-14
.16877714935e-14
.7673351616le-14
.7544790902e-14
.7544790902e-14
.30295239559%e-14
.30295239559%e-14
.9101018959e-14
.86601693797e-16

W P DN W WWHd O,

[143]

Compressing Data via Dimensionality Reduction

Those who are a little more familiar with linear algebra may know that the rank of
the dxd -dimensional covariance matrix can be at most 4-1, and we can indeed see
that we only have two nonzero eigenvalues (the eigenvalues 3-13 are not exactly
zero, but this is due to the floating point arithmetic in NumPy). Note that in the
rare case of perfect collinearity (all aligned sample points fall on a straight line),
the covariance matrix would have rank one, which would result in only one
eigenvector with a nonzero eigenvalue.

To measure how much of the class-discriminatory information is captured by the
linear discriminants (eigenvectors), let's plot the linear discriminants by decreasing
eigenvalues similar to the explained variance plot that we created in the PCA section.
For simplicity, we will call the content of the class-discriminatory information
discriminability.

>>> tot = sum(eigen vals.real)

>>> discr = [(1 / tot) for 1 in sorted(eigen vals.real, reverse=True)]

>>> cum _discr = np.cumsum(discr)

>>> plt.bar (range(l, 14), discr, alpha=0.5, align='center',
label="'individual "discriminability"'")

>>> plt.step(range(1l, 14), cum discr, where='mid',

c. label="'cumulative "discriminability"')

>>> plt.ylabel ('"discriminability" ratio')

>>> plt.xlabel ('Linear Discriminants')

>>> plt.ylim([-0.1, 1.11])

>>> plt.legend(loc="'best"')

>>> plt.show()

As we can see in the resulting figure, the first two linear discriminants capture
about 100 percent of the useful information in the Wine training dataset:

1.0} E
0.8} 4
2
®
206} —
= — cumulative "discriminability"
2 I individual "discriminability”
E 04} g
2
£
- 0.2
0.0 ———— e e]
0 2 4 6 8 10 12 14
Linear Discriminants

[144]

Chapter 5

Let's now stack the two most discriminative eigenvector columns to create the
transformation matrix »:

>>> w = np.hstack((eigen pairs[0] [1] [:, np.newaxis] .real,
eigen pairs([1] [1] [:, np.newaxis].real))

>>> print ('Matrix W:\n', w)

Matrix W:

[[-0.0707 -0.3778]

[0.0359 -0.2223]
[-0.0263 -0.3813]
[0.1875 0.2955]
[-0.0033 0.0143]
[0.2328 0.0151]
[-0.7719 0.2149]
[-0.0803 0.0726]
[0.0896 0.1767]
[0.1815 -0.29009]
[-0.0631 0.2376]
[-0.3794 0.0867]
[-0.3355 -0.586 1]

Projecting samples onto the new feature
space

Using the transformation matrix # that we created in the previous subsection,
we can now transform the training data set by multiplying the matrices:

X'=Xw

>>> X train lda = X train std.dot (w)
>>> colors = ['r', 'b', 'g'l
>>> markers = ['s', 'x', 'o'l]
>>> for 1, ¢, m in zip(np.unique(y train), colors, markers):
plt.scatter (X train ldaly train==1, 0],
X train ldaly train==1, 1],
o c=c, label=1l, marker=m)
>>> plt.xlabel ('LD 1')
>>> plt.ylabel ('LD 2')
>>> plt.legend(loc="upper right')
>>> plt.show()

[145]

Compressing Data via Dimensionality Reduction

As we can see in the resulting plot, the three wine classes are now linearly separable
in the new feature subspace:

4 T T T T I
X sEm 1
3+ xXx 2|
| X L %o 3_
X
X 2§Q<& ®
X< % x
~ 1 x < ?x X B
g X% X
0 | [7] o9 1
[] m® x ® 0¥ o o
] ® e 3
-1 ... ' .. .~.
°)
g - o®
-2 - & o® © i
- °

-3 L L 1 ! 1

-3 -2 -1 0 1 2 3
LD 1

LDA via scikit-learn

The step-by-step implementation was a good exercise for understanding the inner
workings of LDA and understanding the differences between LDA and PCA.
Now, let's take a look at the LDA class implemented in scikit-learn:

>>> from sklearn.lda import LDA
>>> lda = LDA(n_components=2)
>>> X train lda = lda.fit transform(X train std, y train)

Next, let's see how the logistic regression classifier handles the lower-dimensional
training dataset after the LDA transformation:

>>> lr = LogisticRegression ()

>>> 1lr = lr.fit (X train lda, y train)

>>> plot decision regions (X train lda, y train, classifier=1lr)
>>> plt.xlabel ('LD 1')

>>> plt.ylabel ('LD 2')

>>> plt.legend(loc="'lower left')

>>> plt.show()

[146]

Chapter 5

Looking at the resulting plot, we see that the logistic regression model misclassifies
one of the samples from class 2:

By lowering the regularization strength, we could probably shift the decision
boundaries so that the logistic regression models classify all samples in the training
dataset correctly. However, let's take a look at the results on the test set:

>>>

>>>

>>>

>>>

>>>

>>>

X test lda = lda.transform(X test std)
plot decision regions (X test lda, y test, classifier=1lr)

plt
plt

.xlabel ('LD 1"')
.ylabel ('LD 2')
plt.
plt.

legend (loc="'lower left!')
show ()

As we can see in the resulting plot, the logistic regression classifier is able to get a
perfect accuracy score for classifying the samples in the test dataset by only using a
two-dimensional feature subspace instead of the original 13 Wine features:

Compressing Data via Dimensionality Reduction

Using kernel principal component
analysis for nonlinear mappings

Many machine learning algorithms make assumptions about the linear separability
of the input data. You learned that the perceptron even requires perfectly linearly
separable training data to converge. Other algorithms that we have covered so far
assume that the lack of perfect linear separability is due to noise: Adaline, logistic
regression, and the (standard) support vector machine (SVM) to just name a few.
However, if we are dealing with nonlinear problems, which we may encounter
rather frequently in real-world applications, linear transformation techniques for
dimensionality reduction, such as PCA and LDA, may not be the best choice. In this
section, we will take a look at a kernelized version of PCA, or kernel PCA, which
relates to the concepts of kernel SVM that we remember from Chapter 3, A Tour of
Machine Learning Classifiers Using Scikit-learn. Using kernel PCA, we will learn how to
transform data that is not linearly separable onto a new, lower-dimensional subspace
that is suitable for linear classifiers.

Linear vs. nonlinear problems
N
x xx " X X
x
X x % x x X x X
» L]
x % * ° PELLLTN .
X X ° L] b4 ‘.. X x
X X X X . ® X3 x { o e)\ x
. e ® le o "eo® 1
[]) ® !
e ® L] “. e ® 0 ’f
o ° . X N e ® /S
e ® B “upoee” X
x x
X1 X1

Kernel functions and the kernel trick

As we remember from our discussion about kernel SVMs in Chapter 3, A Tour of
Machine Learning Classifiers Using Scikit-learn, we can tackle nonlinear problems

by projecting them onto a new feature space of higher dimensionality where the
classes become linearly separable. To transform the samples xeR* onto this higher
k -dimensional subspace, we defined a nonlinear mapping function ¢:

¢:R >R" (k>>d)

[148]

Chapter 5

We can think of ¢ as a function that creates nonlinear combinations of the original
features to map the original 4-dimensional dataset onto a larger, k -dimensional
feature space. For example, if we had feature vector xeR“ (x is a column vector
consisting of 4 features) with two dimensions (4 =2), a potential mapping onto

a 3D space could be as follows:

x =[x, xz]r

L

T
2 2
[xl s 22X, X, , X,]

In other words, via kernel PCA we perform a nonlinear mapping that

transforms the data onto a higher-dimensional space and use standard PCA in this
higher-dimensional space to project the data back onto a lower-dimensional space
where the samples can be separated by a linear classifier (under the condition that the
samples can be separated by density in the input space). However, one downside of
this approach is that it is computationally very expensive, and this is where we use
the kernel trick. Using the kernel trick, we can compute the similarity between two
high-dimension feature vectors in the original feature space.

z

Before we proceed with more details about using the kernel trick to tackle this
computationally expensive problem, let's look back at the standard PCA approach
that we implemented at the beginning of this chapter. We computed the covariance
between two features k and J as follows:

) ..) 1 :
Since the standardizing of features centers them at mean zero, for instance, ;ij“ =0,
we can simplify this equation as follows: ‘

1

o
noic

[149]

Compressing Data via Dimensionality Reduction

Note that the preceding equation refers to the covariance between two features;

now, let's write the general equation to calculate the covariance matrix :
1N o o
zz _Zx(t) X7
nig

Bernhard Scholkopf generalized this approach (B. Scholkopf, A. Smola, and

K.-R. Muller. Kernel Principal Component Analysis. pages 583-588, 1997) so that we
can replace the dot products between samples in the original feature space by the
nonlinear feature combinations via ¢:

=)o)y

To obtain the eigenvectors — the principal components — from this covariance matrix,
we have to solve the following equation:

Ty =Av

Here, 4 and v are the eigenvalues and eigenvectors of the covariance matrix £, and
a can be obtained by extracting the eigenvectors of the kernel (similarity) matrix K
as we will see in the following paragraphs.

The derivation of the kernel matrix is as follows:

First, let's write the covariance matrix as in matrix notation, where #(X) is an
nxk -dimensional matrix:

=22 0(x)o(x") =2 p(X) 4(x)

[150]

Chapter 5

Now, we can write the eigenvector equation as follows:
| i i T
v:;Za('9(x")=2g(X)" a
=1

Since Xv = Av, we get:

Lo(x) 6(X)¢(X) a=29(xX) a

n

Multiplying it by #(X) on both sides yields the following result:

Lo(x)$(X) 6(X)4(X) a=19(X)$(X) a

n

Here, K is the similarity (kernel) matrix:
T
K=¢(X)¢(X)

As we recall from the SVM section in Chapter 3, A Tour of Machine Learning Classifiers
Using Scikit-learn, we use the kernel trick to avoid calculating the pairwise dot
products of the samples X under ¢ explicitly by using a kernel function K so that
we don't need to calculate the eigenvectors explicitly:

k(xmr¢ﬂ):¢(xm)f¢(ﬂﬂ)

In other words, what we obtain after kernel PCA are the samples already projected
onto the respective components rather than constructing a transformation matrix as
in the standard PCA approach. Basically, the kernel function (or simply kernel) can
be understood as a function that calculates a dot product between two vectors—a
measure of similarity.

[151]

Compressing Data via Dimensionality Reduction

The most commonly used kernels are as follows:

* The polynomial kernel:
k (x(i),x(j)) = (x(i)Tx(j) + G)P

Here, @ is the threshold and P is the power that has to be specified
by the user.

* The hyperbolic tangent (sigmoid) kernel:

k (x(i),x(j)) = tanh (nx(i)rx(j) + 0)

* The Radial Basis Function (RBF) or Gaussian kernel that we will use in the
following examples in the next subsection:

It is also written as follows:

k (x("),x(j)) — exp (_7 Hx(,-))

2)
To summarize what we have discussed so far, we can define the following three

steps to implement an RBF kernel PCA:

1. We compute the kernel (similarity) matrix k, where we need to calculate
the following:
)

k(xm’x(n) _ exp(_ ny(,«) W)

[152]

Chapter 5

We do this for each pair of samples:

_K(xm,xm) K(x“%xuu " K(xﬂhxwu

K<xchxau (xuhxuw L K(xuhxwu
K =

K(x("),x(l)) K'(x(d)’x(z)) K(x(”),x("))

For example, if our dataset contains 100 training samples, the symmetric
kernel matrix of the pair-wise similarities would be 100x100 dimensional.

2. We center the kernel matrix £ using the following equation:

K'=K-1,K-KI1,+1 K1,

Here, | isan nxn- dimensional matrix (the same dimensions as the kernel

matrix) where all values are equal to L
n

3. We collect the top k eigenvectors of the centered kernel matrix based on
their corresponding eigenvalues, which are ranked by decreasing magnitude.
In contrast to standard PCA, the eigenvectors are not the principal
component axes but the samples projected onto those axes.

At this point, you may be wondering why we need to center the kernel matrix in the
second step. We previously assumed that we are working with standardized data,
where all features have mean zero when we formulated the covariance matrix and
replaced the dot products by the nonlinear feature combinations via ¢.Thus, the
centering of the kernel matrix in the second step becomes necessary, since we do
not compute the new feature space explicitly and we cannot guarantee that the new
feature space is also centered at zero.

In the next section, we will put those three steps into action by implementing a
kernel PCA in Python.

[153]

Compressing Data via Dimensionality Reduction

Implementing a kernel principal component
analysis in Python

In the previous subsection, we discussed the core concepts behind kernel PCA.

Now, we are going to implement an RBF kernel PCA in Python following the three
steps that summarized the kernel PCA approach. Using the SciPy and NumPy helper
functions, we will see that implementing a kernel PCA is actually really simple:

from scipy.spatial.distance import pdist, squareform
from scipy import exp

from scipy.linalg import eigh

import numpy as np

def rbf kernel pca (X, gamma, n_components) :

RBF kernel PCA implementation.

Parameters

X: {NumPy ndarray}, shape = [n_samples, n features]

gamma: float
Tuning parameter of the RBF kernel

n_components: int
Number of principal components to return

Returns

X pc: {NumPy ndarray}, shape = [n_samples, k_features]
Projected dataset

nmnn
Calculate pairwise squared Euclidean distances

in the MxN dimensional dataset.
sq dists = pdist (X, 'sgeuclidean')

Convert pairwise distances into a square matrix.
mat sqg dists = squareform(sqg_dists)

Compute the symmetric kernel matrix.
K = exp(-gamma * mat sqg dists)

[154]

Chapter 5

Center the kernel matrix.

N = K.shape[0]

one n = np.ones((N,N)) / N

K = K - one n.dot(K) - K.dot(one n) + one n.dot(K).dot (one n)

Obtaining eigenpairs from the centered kernel matrix
numpy.eigh returns them in sorted order
eigvals, eigvecs = eigh(K)

Collect the top k eigenvectors (projected samples)
X pc = np.column stack((eigvecs[:, -1i]
for i in range(l, n_components + 1)))

return X pc

One downside of using an RBF kernel PCA for dimensionality reduction is that

we have to specify the parameter 7 a priori. Finding an appropriate value for 7
requires experimentation and is best done using algorithms for parameter tuning, for
example, grid search, which we will discuss in more detail in Chapter 6, Learning Best
Practices for Model Evaluation and Hyperparameter Tuning.

Example 1 — separating half-moon shapes

Now, let's apply our rbf_kernel_pca on some nonlinear example datasets.
We will start by creating a two-dimensional dataset of 100 sample points
representing two half-moon shapes:

>>> from sklearn.datasets import make moons

>>> X, y = make moons(n_samples=100, random state=123)
>>> plt.scatter (X[y==0, 0], X[y==0, 1],

.. color='red', marker='"", alpha=0.5)
>>> plt.scatter (X[y==1, 0], X[y==1, 1],

.. color='blue', marker='o', alpha=0.5)
>>> plt.show()

[155]

Compressing Data via Dimensionality Reduction

For the purposes of illustration, the half-moon of triangular symbols shall represent
one class and the half-moon depicted by the circular symbols represent the samples
from another class:

T T T T T T T

1.0} ﬂabAanaAﬁbﬂ 4
ad AAA
A A
A A
A A
A A
A A
A A

0.5} ,:A °® A,: ° .

A L] A L]

A ° A o

A] A L]

A] A []

A ® A @

A ° A °

A o A o
0.0 A L) A [] 4
L] L]
L] L]
L] L]
L) L
-] L]
° o
... ...
... ...
-0.5}F ®000o00® .
-1.5 -1.0 =0.5 0.0 0.5 1.0 1.5 2.0 2.5

Clearly, these two half-moon shapes are not linearly separable and our goal is to
unfold the half-moons via kernel PCA so that the dataset can serve as a suitable input
for a linear classifier. But first, let's see what the dataset looks like if we project it onto
the principal components via standard PCA:

>>> from sklearn.decomposition import PCA

>>> scikit pca = PCA(n_components=2)

>>> X spca = scikit pca.fit transform(X)

>>> fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3))

>>> ax[0] .scatter (X spcaly==0, 0], X spcaly==0, 11,
color='red', marker='"', alpha=0.5)

>>> ax[0] .scatter (X spcaly==1, 0], X spcaly==1, 11,
color="'blue', marker='o', alpha=0.5)

>>> ax[1l] .scatter (X spcaly==0, 0], np.zeros((50,1))+0.02,
color='red', marker='"', alpha=0.5)

>>> ax[1l] .scatter (X spcaly==1, 0], np.zeros((50,1))-0.02,
color="'blue', marker='o', alpha=0.5)

[156]

Chapter 5

>>>

ax[0] .set _xlabel ('PC1l')

ax[0] .set_ylabel ('PC2')
>>> ax[1].set_ylim([-1, 1])

ax[1] .set_yticks([])
>>> ax[1l] .set xlabel ('PC1')
>>> plt.show()

>>>

>>>

Clearly, we can see in the resulting figure that a linear classifier would be unable to
perform well on the dataset transformed via standard PCA:

0.8
0.6
0.4
0.2
0.0

-0.2}

-0.4}

-0.6}

-0.8 L L L L I Il L 1 1 1 1
-2.0-15-1.0-05 0.0 05 1.0 15 20 -2.0-1.5-1.0-05 0.0 05 1.0 15 2.0

PC1 PC1

PC2

.......0000000.
bbbbp.

pb
Bopppp bbb

Il 1 Il

Note that when we plotted the first principal component only (right subplot),

we shifted the triangular samples slightly upwards and the circular samples
slightly downwards to better visualize the class overlap.

_ Please remember that PCA is an unsupervised method and does not
% use class label information in order to maximize the variance in contrast
& to LDA. Here, the triangular and circular symbols were just added for
visualization purposes to indicate the degree of separation.

Now, let's try out our kernel PCA function rbf_kernel_ pca, which we implemented
in the previous subsection:

>>> from matplotlib.ticker import FormatStrFormatter

>>> X_kpca = rbf_kernel pca (X, gamma=15, n_components=2)

>>> fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3))

>>> ax[0] .scatter (X _kpcaly==0, 0], X kpcaly==0, 1],
color='red', marker='"', alpha=0.5)

’

>>> ax[0] .scatter (X _kpcaly==1, 0], X kpcaly==1, 1],

[157]

http://sebastianraschka.com/Articles/2014_python_lda.html

Compressing Data via Dimensionality Reduction

color='blue', marker='o', alpha=0.5)

>>> ax[1l] .scatter (X kpcaly==0, 0], np.zeros((50,1))+0.02,
color='red', marker='"", alpha=0.5)

>>> ax[1l] .scatter (X kpcaly==1, 0], np.zeros((50,1))-0.02,
color='blue', marker='o', alpha=0.5)

>>> ax[0] .set xlabel ('PC1')

>>> ax[0] .set _ylabel ('PC2'")

>>> ax[1].set_ylim([-1, 1])

>>> ax[1l] .set_yticks([])

>>> ax[1l] .set xlabel ('PC1')

>>> ax[0] .xaxis.set major formatter (FormatStrFormatter ('%0.1£f'))

>>> ax[1l] .xaxis.set major formatter (FormatStrFormatter ('%0.1£f'))

>>> plt.show()

We can now see that the two classes (circles and triangles) are linearly well separated
so that it becomes a suitable training dataset for linear classifiers:

0.20 T T T T T T T T T T T T T T
0.15
010} fm%“% .f\]
Fy 'y o e
00sp 4 A, o8 s
™~ A e A
g Q.00 i : eiiiiii
-0.05} 4 LA % e
A A [
A e
_010 - Mbﬁ .d -
—-0.15} B
- 20 1 | 1 1 1 1 1 1 | L L L L L
—0.26-0.150.160.050.000.050.100.150.20 -0.26-0.150.16-0.050.000.050.100.150.20
PC1 PC1

Unfortunately, there is no universal value for the tuning parameter 7 that works
well for different datasets. To find a 7 value that is appropriate for a given problem
requires experimentation. In Chapter 6, Learning Best Practices for Model Evaluation and
Hyperparameter Tuning, we will discuss techniques that can help us to automate the
task of optimizing such tuning parameters. Here, I will use values for 7 that I found
produce good results.

[158]

Chapter 5

Example 2 — separating concentric circles

In the previous subsection, we showed you how to separate half-moon shapes via
kernel PCA. Since we put so much effort into understanding the concepts of kernel
PCA, let's take a look at another interesting example of a nonlinear problem:
concentric circles.

The code is as follows:

>>> from sklearn.datasets import make circles

>>> X, y = make circles(n_samples=1000,

random_ state=123, noise=0.1, factor=0.2)
>>> plt.scatter (X[y==0, 0], X[y==0, 1],

color='red', marker='"', alpha=0.5)
>>> plt.scatter(X[y==1, 0], X[y==1, 1],

ce color="'blue', marker='o', alpha=0.5)
>>> plt.show()

Again, we assume a two-class problem where the triangle shapes represent one class
and the circle shapes represent another class, respectively:

1-5 T T T T T

1.0}

0.5}

=15 .
=15 -1.0 -0.5 0.0 0.5 1.0 15

[159]

Compressing Data via Dimensionality Reduction

Let's start with the standard PCA approach to compare it with the results of the RBF
kernel PCA:

>>> scikit pca = PCA(n_components=2)

>>> X _spca = scikit_pca.fit_transform(X)

>>> fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3))

>>> ax[0] .scatter (X spcaly==0, 0], X spcaly==0, 1],
color='red', marker='"', alpha=0.5)

>>> ax[0] .scatter (X spcaly==1, 0], X spcaly==1, 1],
color='blue', marker='o', alpha=0.5)

>>> ax[1l] .scatter (X spcal[y==0, 0], np.zeros((500,1))+0.02,

color='red', marker='"', alpha=0.5)

>>> ax[1l] .scatter (X spcaly==1, 0], np.zeros((500,1))-0.02,
color='blue', marker='o', alpha=0.5)

>>> ax[0] .set _xlabel ('PC1')

>>> ax[0] .set_ylabel ('PC2'")

>>> ax[1] .set_ylim([-1, 11)

>>> ax[1] .set_yticks([])

>>> ax[1] .set _xlabel ('PC1')

>>> plt.show()

Again, we can see that standard PCA is not able to produce results suitable for
training a linear classifier:

1‘5 U U U T T U U U T T

1.0+

0.5+

0.0}

PC2

15 -10 -05 00 05 10 15 -15 -1.0 -05 00 05 10 1.5
PC1 PC1

[160]

Chapter 5

Given an appropriate value for 7, let's see if we are luckier using the RBF kernel
PCA implementation:

>>> X _kpca = rbf_kernel pca (X, gamma=15, n_components=2)

>>> fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3))

>>> ax[0] .scatter (X _kpcaly==0, 0], X kpcaly==0, 1],
color='red', marker='"', alpha=0.5)

>>> ax[0] .scatter (X _kpcaly==1, 0], X kpcaly==1, 1],
color="blue', marker='o', alpha=0.5)

>>> ax[1l] .scatter (X _kpca[y==0, 0], np.zeros((500,1))+0.02,
color='red', marker='"', alpha=0.5)

>>> ax[1l] .scatter (X _kpcal[y==1, 0], np.zeros((500,1))-0.02,

e color="'blue', marker='o', alpha=0.5)

>>> ax[0] .set_xlabel ('PC1')

>>> ax[0] .set_ylabel ('PC2')

>>> ax[1] .set_ylim([-1, 1])

>>> ax[1] .set_yticks ([])

>>> ax[1] .set_xlabel ('PC1')

>>> plt.show()

Again, the RBF kernel PCA projected the data onto a new subspace where the two
classes become linearly separable:

0-08 T T T Ll T T T T T T T U
0.06 ‘i;‘l!sl!hh. |
0.04 -
5 }'s\
0.02} ,ggf 1‘” .
™~ (]
g 0.00F - A B cn—
-0.02} .
-0.04} i
-0.06 | .
— .08 il 1 1 1 L L 1 1 L L L 1
—0.06-0.04-0.020.00 0.02 0.04 0.06 0.08 —0.06-0.04-0.020.00 0.02 0.04 0.06 0.08
PC1 PC1

[161]

Compressing Data via Dimensionality Reduction

Projecting new data points

In the two previous example applications of kernel PCA, the half-moon shapes
and the concentric circles, we projected a single dataset onto a new feature. In
real applications, however, we may have more than one dataset that we want to
transform, for example, training and test data, and typically also new samples we
will collect after the model building and evaluation. In this section, you will learn
how to project data points that were not part of the training dataset.

As we remember from the standard PCA approach at the beginning of this chapter,
we project data by calculating the dot product between a transformation matrix and
the input samples; the columns of the projection matrix are the top k eigenvectors
(v) that we obtained from the covariance matrix. Now, the question is how can we
transfer this concept to kernel PCA? If we think back to the idea behind kernel PCA,
we remember that we obtained an eigenvector (@) of the centered kernel matrix
(not the covariance matrix), which means that those are the samples that are already
projected onto the principal component axis v . Thus, if we want to project a new
sample X' onto this principal component axis, we'd need to compute the following:

(x") v

Fortunately, we can use the kernel trick so that we don't have to calculate the
projection ¢(x')" v explicitly. However, it is worth noting that kernel PCA, in contrast
to standard PCA, is a memory-based method, which means that we have to reuse
the original training set each time to project new samples. We have to calculate the
pairwise RBF kernel (similarity) between each i th sample in the training dataset and
the new sample x':

$x v = Ea9() 9(")

= Zam k(1))T

Here, eigenvectors @ and eigenvalues 4 of the Kernel matrix K satisfy the
following condition in the equation:

Ka=/a

[162]

Chapter 5

After calculating the similarity between the new samples and the samples in the
training set, we have to normalize the eigenvector @ by its eigenvalue. Thus, let's
modify the rbf_kernel pca function that we implemented earlier so that it also
returns the eigenvalues of the kernel matrix:

from scipy.spatial.distance import pdist, squareform
from scipy import exp

from scipy.linalg import eigh

import numpy as np

def rbf kernel pca (X, gamma, n_components) :

nnn

RBF kernel PCA implementation.

Parameters

X: {NumPy ndarray}, shape = [n_samples, n features]

gamma: float
Tuning parameter of the RBF kernel

n_components: int
Number of principal components to return

Returns

X pc: {NumPy ndarray}, shape = [n samples, k_features]
Projected dataset

lambdas: list
Eigenvalues

mnn

Calculate pairwise squared Euclidean distances
in the MxN dimensional dataset.

sq dists = pdist (X, 'sgeuclidean')

Convert pairwise distances into a square matrix.
mat sq dists = squareform(sg dists)

Compute the symmetric kernel matrix.
K = exp(-gamma * mat sqg dists)

[163]

Compressing Data via Dimensionality Reduction

Center the kernel matrix.

N = K.shape[0]

one n = np.ones((N,N)) / N

K = K - one n.dot(K) - K.dot(one n) + one n.dot(K).dot (one n)

Obtaining eigenpairs from the centered kernel matrix
numpy.eigh returns them in sorted order
eigvals, eigvecs = eigh(K)

Collect the top k eigenvectors (projected samples)
alphas = np.column_ stack((eigvecs|[:,-1]
for i in range(1l,n components+1)))

Collect the corresponding eigenvalues
lambdas = [eigvals[-i] for i in range(1l,n components+1)]

return alphas, lambdas

Now, let's create a new half-moon dataset and project it onto a one-dimensional
subspace using the updated RBF kernel PCA implementation:

>>> X, y = make moons(n_samples=100, random state=123)
>>> alphas, lambdas =rbf kernel pca (X, gamma=15, n_components=1)

To make sure that we implement the code for projecting new samples, let's assume
that the 26th point from the half-moon dataset is a new data point x', and our task is
to project it onto this new subspace:

>>> X new = X[25]

>>> X Nnew

array ([1.8713187 , 0.00928245])

>>> x _proj = alphas([25] # original projection

>>> X_Proj

array ([0.07877284])

>>> def project x(x new, X, gamma, alphas, lambdas):
pair dist = np.array([np.sum(

(x_new-row) **2) for row in X])
k = np.exp(-gamma * pair dist)
return k.dot (alphas / lambdas)

[164]

Chapter 5

By executing the following code, we are able to reproduce the original projection.
Using the project_x function, we will be able to project any new data samples as
well. The code is as follows:

>>> X _reproj = project x(x_new, X,

gamma=15, alphas=alphas, lambdas=lambdas)
>>> X_reproj
array ([0.07877284])

Lastly, let's visualize the projection on the first principal component:

>>> plt.scatter (alphas[y==0, 0], np.zeros((50)),
- color='red', marker='"',alpha=0.5)
>>> plt.scatter (alphas[y==1, 0], np.zeros((50)),
color='blue', marker='o', alpha=0.5)
>>> plt.scatter(x proj, 0, color='black',
label='original projection of point X[25]',
'Ar, s=100)
>>> plt.scatter(x_reproj, 0, color='green',
label='remapped point X[25]',
marker='x', s=500)

marker=

>>> plt.legend (scatterpoints=1)
>>> plt.show()

As we can see in the following scatterplot, we mapped the sample x’ onto the first
principal component correctly:

0-010 1 L 1 1 T 1 1
A original projection of point X[25]
remapped point X[25]

0.005 :

0.000 o MMM A A ooo+ -

—0.005 :

—0.010 I L L I 1 I I
-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20

[165]

Compressing Data via Dimensionality Reduction

Kernel principal component analysis in
scikit-learn

For our convenience, scikit-learn implements a kernel PCA class in the
sklearn.decomposition submodule. The usage is similar to the standard
PCA class, and we can specify the kernel via the kernel parameter:

>>> from sklearn.decomposition import KernelPCA

>>> X, y = make_moons (n_samples=100, random_state=123)

>>> scikit_kpca = KernelPCA (n_components=2,
kernel="'rbf', gamma=15)

>>> X_skernpca = scikit_kpca.fit_transform(X)

To see if we get results that are consistent with our own kernel PCA
implementation, let's plot the transformed half-moon shape data onto the
first two principal components:

>>> plt.scatter (X skernpcaly==0, 0], X skernpcaly==0, 1],

c. alpha=0.5)

>>> plt.scatter (X skernpcaly==1, 0], X skernpcaly==1, 1],
)

[l

color="red', marker=
... color="'blue', marker='o', alpha=0.5
>>> plt.xlabel ('PC1"')

>>> plt.ylabel ('PC2"')
>>> plt.show()

As we can see, the results of the scikit-learn KernelPCAa are consistent with our
own implementation:

0.4 r
0.3} e A, °®
0.2}
0.1f
0.0}

0.1}

0.2}

PC2
EEEER
>"D’b> Ll

-0.3F A A °

-0.4} p

-0.5 . L
-0.4 -0.2 0.0 0.2 0.4

PC1

[166]

Chapter 5

Scikit-learn also implements advanced techniques for
. nonlinear dimensionality reduction that are beyond the scope
of this book. You can find a nice overview of the current
— implementations in scikit-learn complemented with illustrative
examples athttp://scikit-learn.org/stable/
modules/manifold.html.

Summary

In this chapter, you learned about three different, fundamental dimensionality
reduction techniques for feature extraction: standard PCA, LDA, and kernel PCA.
Using PCA, we projected data onto a lower-dimensional subspace to maximize

the variance along the orthogonal feature axes while ignoring the class labels.

LDA, in contrast to PCA, is a technique for supervised dimensionality reduction,
which means that it considers class information in the training dataset to attempt to
maximize the class-separability in a linear feature space. Lastly, you learned about a
kernelized version of PCA, which allows you to map nonlinear datasets onto a
lower-dimensional feature space where the classes become linearly separable.

Equipped with these essential preprocessing techniques, you are now well prepared
to learn about the best practices for efficiently incorporating different preprocessing
techniques and evaluating the performance of different models in the next chapter.

[167]

http://scikit-learn.org/stable/modules/manifold.html
http://scikit-learn.org/stable/modules/manifold.html

Learning Best Practices
for Model Evaluation and
Hyperparameter Tuning

In the previous chapters, you learned about the essential machine learning
algorithms for classification and how to get our data into shape before we feed it into
those algorithms. Now, it's time to learn about the best practices of building good
machine learning models by fine-tuning the algorithms and evaluating the model's
performance! In this chapter, we will learn how to:

* Obtain unbiased estimates of a model's performance
* Diagnose the common problems of machine learning algorithms
* Fine-tune machine learning models

* Evaluate predictive models using different performance metrics

Streamlining workflows with pipelines

When we applied different preprocessing techniques in the previous chapters, such
as standardization for feature scaling in Chapter 4, Building Good Training Sets — Data
Preprocessing, or principal component analysis for data compression in Chapter 5,
Compressing Data via Dimensionality Reduction, you learned that we have to reuse the
parameters that were obtained during the fitting of the training data to scale and
compress any new data, for example, the samples in the separate test dataset.

In this section, you will learn about an extremely handy tool, the Pipeline

class in scikit-learn. It allows us to fit a model including an arbitrary number

of transformation steps and apply it to make predictions about new data.

[169]

Learning Best Practices for Model Evaluation and Hyperparameter Tuning

Loading the Breast Cancer Wisconsin dataset

In this chapter, we will be working with the Breast Cancer Wisconsin dataset, which
contains 569 samples of malignant and benign tumor cells. The first two columns

in the dataset store the unique ID numbers of the samples and the corresponding
diagnosis (M=malignant, B=benign), respectively. The columns 3-32 contain 30
real-value features that have been computed from digitized images of the cell

nuclei, which can be used to build a model to predict whether a tumor is benign

or malignant. The Breast Cancer Wisconsin dataset has been deposited on the UCI
machine learning repository and more detailed information about this dataset can be
found at https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsi
n+ (Diagnostic).

In this section we will read in the dataset, and split it into training and test datasets
in three simple steps:

1. We will start by reading in the dataset directly from the UCI website
using pandas:

>>> import pandas as pd

>>> df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-
learning-databases/breast-cancer-wisconsin/wdbc.data',
header=None)

2. Next, we assign the 30 features to a NumPy array X. Using LabelEncoder,
we transform the class labels from their original string representation
(M and B) into integers:
>>> from sklearn.preprocessing import LabelEncoder
>>> X = df.loc[:, 2:].values

>>> vy = df.loc[:, 1].values

>>> le = LabelEncoder ()
Y

>>> = le.fit_transform(y)

After encoding the class labels (diagnosis) in an array y, the malignant
tumors are now represented as class 1, and the benign tumors are
represented as class 0, respectively, which we can illustrate by calling
the transform method of LabelEncoder on two dummy class labels:

>>> le.transform(['M', 'B'])
array ([1, 0])

[170]

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

Chapter 6

3. Before we construct our first model pipeline in the following subsection, let's
divide the dataset into a separate training dataset (80 percent of the data) and
a separate test dataset (20 percent of the data):

>>> from sklearn.cross validation import train test split
>>> X train, X test, y train, y test = \
train test split (X, y, test size=0.20, random state=1)

Combining transformers and estimators in a
pipeline

In the previous chapter, you learned that many learning algorithms require input
features on the same scale for optimal performance. Thus, we need to standardize
the columns in the Breast Cancer Wisconsin dataset before we can feed them to a
linear classifier, such as logistic regression. Furthermore, let's assume that we want
to compress our data from the initial 30 dimensions onto a lower two-dimensional
subspace via principal component analysis (PCA), a feature extraction technique
for dimensionality reduction that we introduced in Chapter 5, Compressing Data via
Dimensionality Reduction. Instead of going through the fitting and transformation
steps for the training and test dataset separately, we can chain the StandardScaler,
PCA, and LogisticRegression objects in a pipeline:

>>> from sklearn.preprocessing import StandardScaler
>>> from sklearn.decomposition import PCA
>>> from sklearn.linear model import LogisticRegression
>>> from sklearn.pipeline import Pipeline
>>> pipe 1lr = Pipeline([('scl', StandardScaler()),
('pca', PCA(n_components=2)),
('clf', LogisticRegression(random state=1))])
>>> pipe lr.fit (X train, y train)
>>> print ('Test Accuracy: %.3f' % pipe lr.score(X test, y test))
Test Accuracy: 0.947

The Pipeline object takes a list of tuples as input, where the first value in each tuple
is an arbitrary identifier string that we can use to access the individual elements in
the pipeline, as we will see later in this chapter, and the second element in every
tuple is a scikit-learn transformer or estimator.

[171]

Learning Best Practices for Model Evaluation and Hyperparameter Tuning

The intermediate steps in a pipeline constitute scikit-learn transformers, and the

last step is an estimator. In the preceding code example, we built a pipeline that
consisted of two intermediate steps, a StandardScaler and a PCA transformer, and a
logistic regression classifier as a final estimator. When we executed the £it method
on the pipeline pipe_1r, the Standardscaler performed fit and transform on the
training data, and the transformed training data was then passed onto the next object
in the pipeline, the pca. Similar to the previous step, pca also executed £it and
transform on the scaled input data and passed it to the final element of the pipeline,
the estimator. We should note that there is no limit to the number of intermediate
steps in this pipeline. The concept of how pipelines work is summarized in the
following figure:

Class labels
Training set Test set
@ pipeline.ﬁ'& /@ pipeline.predict
V4 N
fit & transform |~ Scaling .| transform
fit & transform

Dimensionality transform
Reduction <

>
fit Learning Algorithm
~a|

<

Predictive Model LLM) Class labels

[172]

Chapter 6

Using k-fold cross-validation to assess
model performance

One of the key steps in building a machine learning model is to estimate its
performance on data that the model hasn't seen before. Let's assume that we fit our
model on a training dataset and use the same data to estimate how well it performs
in practice. We remember from the Tackling overfitting via reqularization section in
Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn, that a model can
either suffer from underfitting (high bias) if the model is too simple, or it can overfit
the training data (high variance) if the model is too complex for the underlying
training data. To find an acceptable bias-variance trade-off, we need to evaluate

our model carefully. In this section, you will learn about the useful cross-validation
techniques holdout cross-validation and k-fold cross-validation, which can help us
to obtain reliable estimates of the model's generalization error, that is, how well the
model performs on unseen data.

The holdout method

A classic and popular approach for estimating the generalization performance of
machine learning models is holdout cross-validation. Using the holdout method,
we split our initial dataset into a separate training and test dataset — the former is
used for model training, and the latter is used to estimate its performance. However,
in typical machine learning applications, we are also interested in tuning and
comparing different parameter settings to further improve the performance for
making predictions on unseen data. This process is called model selection, where
the term model selection refers to a given classification problem for which we want
to select the optimal values of tuning parameters (also called hyperparameters).
However, if we reuse the same test dataset over and over again during model
selection, it will become part of our training data and thus the model will be more
likely to overfit. Despite this issue, many people still use the test set for model
selection, which is not a good machine learning practice.

[173]

Learning Best Practices for Model Evaluation and Hyperparameter Tuning

A better way of using the holdout method for model selection is to separate the data
into three parts: a training set, a validation set, and a test set. The training set is used
to fit the different models, and the performance on the validation set is then used
for the model selection. The advantage of having a test set that the model hasn't
seen before during the training and model selection steps is that we can obtain a
less biased estimate of its ability to generalize to new data. The following figure
illustrates the concept of holdout cross-validation where we use a validation set

to repeatedly evaluate the performance of the model after training using different
parameter values. Once we are satisfied with the tuning of parameter values, we
estimate the models' generalization error on the test dataset:

‘ Original set ‘

‘ Training set ‘ Test set ‘

‘ Training set Validation set Test set ‘

Training, tuning, and
evaluation -

P

Machine learning
algorithm

Predictive Model)4
. v Final performance estimate

A disadvantage of the holdout method is that the performance estimate is
sensitive to how we partition the training set into the training and validation
subsets; the estimate will vary for different samples of the data. In the next
subsection, we will take a look at a more robust technique for performance
estimation, k-fold cross-validation, where we repeat the holdout method k
times on k subsets of the training data.

[174]

Chapter 6

K-fold cross-validation

In k-fold cross-validation, we randomly split the training dataset into k folds without
replacement, where -1 folds are used for the model training and one fold is used
for testing. This procedure is repeated k times so that we obtain k models and
performance estimates.

- -
In case you are not familiar with the terms sampling with and without
replacement, let's walk through a simple thought experiment. Let's
assume we are playing a lottery game where we randomly draw numbers
from an urn. We start with an urn that holds five unique numbers 0, 1, 2,
3, and 4, and we draw exactly one number each turn. In the first round,
the chance of drawing a particular number from the urn would be 1/5.
Now, in sampling without replacement, we do not put the number back
into the urn after each turn. Consequently, the probability of drawing a
particular number from the set of remaining numbers in the next round

. depends on the previous round. For example, if we have a remaining set

% of numbers 0, 1, 2, and 4, the chance of drawing number 0 would become

~ 1/4 in the next turn.

However, in random sampling with replacement, we always return

the drawn number to the urn so that the probabilities of drawing a
particular number at each turn does not change; we can draw the same
number more than once. In other words, in sampling with replacement,
the samples (numbers) are independent and have a covariance zero. For
example, the results from five rounds of drawing random numbers could
look like this:

* Random sampling without replacement: 2,1, 3, 4, 0

* Random sampling with replacement: 1, 3, 3, 4, 1
| |

We then calculate the average performance of the models based on the different,
independent folds to obtain a performance estimate that is less sensitive to the
subpartitioning of the training data compared to the holdout method. Typically,

we use k-fold cross-validation for model tuning, that is, finding the optimal
hyperparameter values that yield a satisfying generalization performance. Once we
have found satisfactory hyperparameter values, we can retrain the model on the
complete training set and obtain a final performance estimate using the independent
test set.

[175]

Learning Best Practices for Model Evaluation and Hyperparameter Tuning

Since k-fold cross-validation is a resampling technique without replacement, the
advantage of this approach is that each sample point will be part of a training

and test dataset exactly once, which yields a lower-variance estimate of the model
performance than the holdout method. The following figure summarizes the concept
behind k-fold cross-validation with 4 =10. The training data set is divided into 10
folds, and during the 10 iterations, 9 folds are used for training, and 1 fold will be
used as the test set for the model evaluation. Also, the estimated performances E,
(for example, classification accuracy or error) for each fold are then used to calculate
the estimated average performance E of the model:

Training set |

Training folds Test fold

I —
| |
1% iteration ‘ ‘ | ‘ | ‘ | ‘ | - El

E

wovenen [T T T T T [T W] =&
10
svessn [T T T T T T M T] = & *

10 iteration - ‘ | ‘ | ‘ [‘ ‘ | — EIO

The standard value for k in k-fold cross-validation is 10, which is typically a
reasonable choice for most applications. However, if we are working with relatively
small training sets, it can be useful to increase the number of folds. If we increase
the value of k, more training data will be used in each iteration, which results in

a lower bias towards estimating the generalization performance by averaging

the individual model estimates. However, large values of k will also increase the
runtime of the cross-validation algorithm and yield estimates with higher variance
since the training folds will be more similar to each other. On the other hand, if we
are working with large datasets, we can choose a smaller value for k, for example,
k=5, and still obtain an accurate estimate of the average performance of the model
while reducing the computational cost of refitting and evaluating the model on the
different folds.

[176]

Chapter 6

A special case of k-fold cross validation is the leave-one-out (LOO)
cross-validation method. In LOO, we set the number of folds equal to the

number of training samples (k = 1) so that only one training sample is
g used for testing during each iteration. This is a recommended approach

for working with very small datasets.

A slight improvement over the standard k-fold cross-validation approach is

stratified k-fold cross-validation, which can yield better bias and variance estimates,
especially in cases of unequal class proportions, as it has been shown in a study by

R. Kohavi et al. (R. Kohavi et al. A Study of Cross-validation and Bootstrap for Accuracy
Estimation and Model Selection. In Ijcai, volume 14, pages 1137-1145, 1995). In stratified
cross-validation, the class proportions are preserved in each fold to ensure that each
fold is representative of the class proportions in the training dataset, which we will
illustrate by using the StratifiedkFold iterator in scikit-learn:

>>> import numpy as np
>>> from sklearn.cross_validation import StratifiedKFold
>>> kfold = StratifiedKFold(y=y train,

n folds=10,

random_state=1)
>>> scores = []
>>> for k, (train, test) in enumerate (kfold) :
pipe lr.fit (X train(train], y train[train])
score = pipe lr.score (X train[test], y train[test])
scores.append (score)
print ('Fold: %s, Class dist.: %s, Acc: %.3f' % (k+1,
c. np.bincount (y train(train]), score))
Fold:

1, Class dist.: [256 153], Acc: 0.891
Fold: 2, Class dist.: [256 153], Acc: 0.978
Fold: 3, Class dist.: [256 153], Acc: 0.978
Fold: 4, Class dist.: [256 153], Acc: 0.913
Fold: 5, Class dist.: [256 153], Acc: 0.935
Fold: 6, Class dist.: [257 153], Acc: 0.978
Fold: 7, Class dist.: [257 153], Acc: 0.933
Fold: 8, Class dist.: [257 153], Acc: 0.956
Fold: 9, Class dist.: [257 153], Acc: 0.978

Fold: 10, Class dist.: [257 153], Acc: 0.956

>>> print ('CV accuracy: %.3f +/- %$.3f' % (

c. np.mean (scores), np.std(scores)))
CV accuracy: 0.950 +/- 0.029

[177]

Learning Best Practices for Model Evaluation and Hyperparameter Tuning

First, we initialized the Stratifiedkfold iterator from the
sklearn.cross_validation module with the class labels y train in the
training set, and specified the number of folds via the n_folds parameter.

When we used the kfold iterator to loop through the k folds, we used the
returned indices in train to fit the logistic regression pipeline that we set up

at the beginning of this chapter. Using the pile_1lr pipeline, we ensured that the
samples were scaled properly (for instance, standardized) in each iteration. We
then used the test indices to calculate the accuracy score of the model, which
we collected in the scores list to calculate the average accuracy and the standard
deviation of the estimate.

Although the previous code example was useful to illustrate how k-fold
cross-validation works, scikit-learn also implements a k-fold cross-validation
scorer, which allows us to evaluate our model using stratified k-fold
cross-validation more efficiently:

>>> from sklearn.cross validation import cross_val score
>>> scores = cross_val score(estimator=pipe 1lr,
X=X train,
y=y train,
cv=10,
n_jobs=1)
>>> print ('CV accuracy scores: %s' % scores)
CV accuracy scores: [0.89130435 0.97826087 0.97826087
0.91304348 0.93478261 0.97777778
0.93333333 0.95555556 0.97777778
0.95555556]
>>> print ('CV accuracy: %.3f +/- %.3f' % (np.mean(scores),
np.std(scores)))
CV accuracy: 0.950 +/- 0.029

An extremely useful feature of the cross_val_score approach is that we can
distribute the evaluation of the different folds across multiple CPUs on our machine.
If we set the n_jobs parameter to 1, only one CPU will be used to evaluate the
performances just like in our stratifiedkFold example previously. However, by
setting n_jobs=2 we could distribute the 10 rounds of cross-validation to two CPUs
(if available on our machine), and by setting n_jobs=-1, we can use all available
CPUs on our machine to do the computation in parallel.

[178]

Chapter 6

Please note that a detailed discussion of how the variance of the
generalization performance is estimated in cross-validation is
beyond the scope of this book, but you can find a detailed discussion
in this excellent article by M. Markatou et al (M. Markatou, H. Tian,
S. Biswas, and G. M. Hripcsak. Analysis of Variance of Cross-validation
Estimators of the Generalization Error. Journal of Machine Learning
2 Research, 6:1127-1168, 2005).

You can also read about alternative cross-validation techniques,
such as the .632 Bootstrap cross-validation method (B. Efron and

R. Tibshirani. Improvements on Cross-validation: The 632+ Bootstrap
Method. Journal of the American Statistical Association, 92(438):548-560,
1997).

Debugging algorithms with learning and
validation curves

In this section, we will take a look at two very simple yet powerful diagnostic tools
that can help us to improve the performance of a learning algorithm: learning
curves and validation curves. In the next subsections, we will discuss how we

can use learning curves to diagnose if a learning algorithm has a problem with
overfitting (high variance) or underfitting (high bias). Furthermore, we will

take a look at validation curves that can help us address the common issues

of a learning algorithm.

[179]

Learning Best Practices for Model Evaluation and Hyperparameter Tuning

Diagnosing bias and variance problems with
learning curves

If a model is too complex for a given training dataset — there are too many degrees

of freedom or parameters in this model — the model tends to overfit the training

data and does not generalize well to unseen data. Often, it can help to collect more
training samples to reduce the degree of overfitting. However, in practice, it can
often be very expensive or simply not feasible to collect more data. By plotting the
model training and validation accuracies as functions of the training set size, we can
easily detect whether the model suffers from high variance or high bias, and whether
the collection of more data could help to address this problem. But before we discuss
how to plot learning curves in sckit-learn, let's discuss those two common model
issues by walking through the following illustration:

0 High bias _ High variance

Accuracy
Accuracy

s

— 1 —
Number of training samples n Number of training samples

Good bias-variance trade-off

Training accuracy
— Walidation accuracy

Desired accuracy

Accuracy

Number of training samples

[180]

Chapter 6

The graph in the upper-left shows a model with high bias. This model has both

low training and cross-validation accuracy, which indicates that it underfits the
training data. Common ways to address this issue are to increase the number of
parameters of the model, for example, by collecting or constructing additional
features, or by decreasing the degree of regularization, for example, in SVM or
logistic regression classifiers. The graph in the upper-right shows a model that
suffers from high variance, which is indicated by the large gap between the training
and cross-validation accuracy. To address this problem of overfitting, we can collect
more training data or reduce the complexity of the model, for example, by increasing
the regularization parameter; for unregularized models, it can also help to decrease
the number of features via feature selection (Chapter 4, Building Good Training

Sets - Data Preprocessing) or feature extraction (Chapter 5, Compressing Data via
Dimensionality Reduction). We shall note that collecting more training data decreases
the chance of overfitting. However, it may not always help, for example, when the
training data is extremely noisy or the model is already very close to optimal.

In the next subsection, we will see how to address those model issues using
validation curves, but let's first see how we can use the learning curve function
from scikit-learn to evaluate the model:

>>> import matplotlib.pyplot as plt
>>> from sklearn.learning curve import learning curve
>>> pipe 1lr = Pipeline ([
('scl', StandardScaler()),
('clf', LogisticRegression
penalty='12', random state=0))])
>>> train sizes, train scores, test scores =\
learning curve (estimator=pipe 1r,
X=X train,

y=y_ train,
train sizes=np.linspace(0.1, 1.0, 10),
cv=10,
n_jobs=1)
>>> train mean = np.mean(train scores, axis=1)

>>> train std = np.std(train scores, axis=1)
>>> test mean = np.mean(test scores, axis=1)
>>> test std = np.std(test scores, axis=1)
>>> plt.plot(train sizes, train mean,
color="'blue', marker='o',
markersize=5,
label='training accuracy')
>>> plt.fill between(train_sizes,
train _mean + train_std,

train _mean - train_std,

[181]

Learning Best Practices for Model Evaluation and Hyperparameter Tuning

alpha=0.15, color='blue')
>>> plt.plot(train sizes, test mean,
color='green', linestyle='--"',
marker='s', markersize=5,
label='validation accuracy')
>>> plt.fill between(train sizes,
test mean + test std,
test mean - test std,
alpha=0.15, color='green')
>>> plt.grid()
>>> plt.xlabel ('Number of training samples')
>>> plt.ylabel ('Accuracy')
>>> plt.legend(loc="'lower right')
>>> plt.ylim([0.8, 1.0])
>>> plt.show()

After we have successfully executed the preceding code, we will obtain the following
learning curve plot:

1.00

-
=
(%]
<<
: : e—e training accuracy
: = @ validation accuracy
0.80 I | I I i i i i
0 50 100 150 200 250 300 350 400 450

Number of training samples

[182]

Chapter 6

Via the train_sizes parameter in the learning_curve function, we can control the
absolute or relative number of training samples that are used to generate the learning
curves. Here, we set train sizes=np.linspace (0.1, 1.0, 10) tousel10 evenly
spaced relative intervals for the training set sizes. By default, the learning curve
function uses stratified k-fold cross-validation to calculate the cross-validation
accuracy, and we set £ =10 via the cv parameter. Then, we simply calculate the
average accuracies from the returned cross-validated training and test scores for the
different sizes of the training set, which we plotted using matplotlib's plot function.
Furthermore, we add the standard deviation of the average accuracies to the plot
using the £111_between function to indicate the variance of the estimate.

As we can see in the preceding learning curve plot, our model performs quite
well on the test dataset. However, it may be slightly overfitting the training
data indicated by a relatively small, but visible, gap between the training and
cross-validation accuracy curves.

Addressing overfitting and underfitting with
validation curves

Validation curves are a useful tool for improving the performance of a model by
addressing issues such as overfitting or underfitting. Validation curves are related to
learning curves, but instead of plotting the training and test accuracies as functions
of the sample size, we vary the values of the model parameters, for example, the
inverse regularization parameter C in logistic regression. Let's go ahead and see
how we create validation curves via sckit-learn:

>>> from sklearn.learning curve import validation_curve
>>> param range = [0.001, 0.01, 0.1, 1.0, 10.0, 100.0]
>>> train scores, test scores = validation curve(
estimator=pipe 1lr,
X=X train,
y=y_ train,
param name='clf C',
param range=param_range,
cv=10)
>>> train mean = np.mean(train scores, axis=1)
>>> train std = np.std(train scores, axis=1)
>>> test mean = np.mean(test scores, axis=1)
>>> test std = np.std(test scores, axis=1)

[183]

Learning Best Practices for Model Evaluation and Hyperparameter Tuning

>>> plt.plot (param range, train mean,
color="'blue', marker='o',
markersize=5,
label='training accuracy')
>>> plt.fill between(param range, train mean + train std,
train mean - train std, alpha=0.15,
color="'blue')
>>> plt.plot (param range, test mean,
color='green', linestyle='--"',
marker='s', markersize=5,
label='validation accuracy')
>>> plt.fill between (param range,
test mean + test std,
test mean - test std,
alpha=0.15, color='green')
>>> plt.grid()
>>> plt.xscale('log')
>>> plt.legend(loc="'lower right')
>>> plt.xlabel ('Parameter C')
>>> plt.ylabel ('Accuracy')
>>> plt.ylim([0.8, 1.0])
>>> plt.show()

Using the preceding code, we obtained the validation curve plot for the parameter c:

1.00

0.95
=
=
o
‘5 090 - oot LT R P RREETETRERL: R RRERRRRERR
ot ' : : :
<

0.85) oo S e -

e—e training accuracy
- : = @ validation accuracy
0.80 - - I I
10° 107 10" 10° 10' 10°

Parameter C

[184]

Chapter 6

Similar to the 1earning curve function, the validation curve function uses
stratified k-fold cross-validation by default to estimate the performance of the model
if we are using algorithms for classification. Inside the validation_curve function,
we specified the parameter that we wanted to evaluate. In this case, it is ¢, the inverse
regularization parameter of the LogisticRegression classifier, which we wrote as
'clf_ C' to access the LogisticRegression object inside the scikit-learn pipeline
for a specified value range that we set via the param_range parameter. Similar to the
learning curve example in the previous section, we plotted the average training and
cross-validation accuracies and the corresponding standard deviations.

Although the differences in the accuracy for varying values of ¢ are subtle, we can
see that the model slightly underfits the data when we increase the regularization
strength (small values of c). However, for large values of ¢, it means lowering the
strength of regularization, so the model tends to slightly overfit the data. In this case,
the sweet spot appears to be around c=0.1.

Fine-tuning machine learning models via
grid search

In machine learning, we have two types of parameters: those that are learned from
the training data, for example, the weights in logistic regression, and the parameters
of a learning algorithm that are optimized separately. The latter are the tuning
parameters, also called hyperparameters, of a model, for example, the regularization
parameter in logistic regression or the depth parameter of a decision tree.

In the previous section, we used validation curves to improve the performance of a
model by tuning one of its hyperparameters. In this section, we will take a look at a
powerful hyperparameter optimization technique called grid search that can further
help to improve the performance of a model by finding the optimal combination of
hyperparameter values.

[185]

Learning Best Practices for Model Evaluation and Hyperparameter Tuning

Tuning hyperparameters via grid search

The approach of grid search is quite simple, it's a brute-force exhaustive search
paradigm where we specify a list of values for different hyperparameters, and the
computer evaluates the model performance for each combination of those to obtain
the optimal set:

>>> from sklearn.grid search import GridSearchCVv
>>> from sklearn.svm import SVC

>>> pipe svc = Pipeline([('scl', StandardScaler()),
R ('clf', SvVC(random state=1))])
>>> param range = [0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0]
>>> param grid = [{'clf C': param range,
'clf kernel': ['linear'l]},

{'clf cC': param range,
'clf gamma': param range,
'clf kernel': ['rbf']l}]
GridSearchCV (estimator=pipe svc,
param grid=param grid,

>>> gs

scoring="'accuracy',
cv=10,
n_jobs=-1)

>>> gs gs.fit (X train, y train)
>>> print (gs.best score)
0.978021978022

>>> print (gs.best params)

{rclf cC': 0.1, 'clf kernel': 'linear'}

Using the preceding code, we initialized a GridSearchcv object from the
sklearn.grid_search module to train and tune a support vector machine (SVM)
pipeline. We set the param_grid parameter of Gridsearchcv to a list of dictionaries
to specify the parameters that we'd want to tune. For the linear SVM, we only
evaluated the inverse regularization parameter c; for the RBF kernel SVM, we tuned
both the ¢ and gamma parameter. Note that the gamma parameter is specific to kernel
SVMs. After we used the training data to perform the grid search, we obtained the
score of the best-performing model via the best_score_ attribute and looked at its
parameters, that can be accessed via the best_params_ attribute. In this particular
case, the linear SVM model with 'c1f c'= 0.1' yielded the best k-fold cross-
validation accuracy: 97.8 percent.

[186]

Chapter 6

Finally, we will use the independent test dataset to estimate the performance of the
best selected model, which is available via the best_estimator attribute of the
GridSearchCV object:

>>> clf = gs.best estimator

>>> clf.fit (X train, y train

>>> print ('Test accuracy: %.3f' % clf.score(X test, y test))
Test accuracy: 0.965

Although grid search is a powerful approach for finding the optimal set of
parameters, the evaluation of all possible parameter combinations is also
computationally very expensive. An alternative approach to sampling
different parameter combinations using scikit-learn is randomized search.

%»\ Using the RandomizedSearchCV class in scikit-learn, we can draw

’ random parameter combinations from sampling distributions with a

specified budget. More details and examples for its usage can be found
athttp://scikit-learn.org/stable/modules/grid search.
html#randomized-parameter-optimization.

Algorithm selection with nested
cross-validation

Using k-fold cross-validation in combination with grid search is a useful approach
for fine-tuning the performance of a machine learning model by varying its
hyperparameters values as we saw in the previous subsection. If we want to select
among different machine learning algorithms though, another recommended
approach is nested cross-validation, and in a nice study on the bias in error
estimation, Varma and Simon concluded that the true error of the estimate is almost
unbiased relative to the test set when nested cross-validation is used (S. Varma and
R. Simon. Bias in Error Estimation When Using Cross-validation for Model Selection. BMC
bioinformatics, 7(1):91, 2006).

[187]

http://scikit-learn.org/stable/modules/grid_search.html#randomized-parameter-optimization
http://scikit-learn.org/stable/modules/grid_search.html#randomized-parameter-optimization

Learning Best Practices for Model Evaluation and Hyperparameter Tuning

In nested cross-validation, we have an outer k-fold cross-validation loop to split the
data into training and test folds, and an inner loop is used to select the model using
k-fold cross-validation on the training fold. After model selection, the test fold is then
used to evaluate the model performance. The following figure explains the concept
of nested cross-validation with five outer and two inner folds, which can be useful
for large data sets where computational performance is important; this particular

type of nested cross-validation is also known as 5x2 cross-validation:

‘ Training folds

| Test fold |

|]

— Outer loop

Train with optimal
parameters

‘ Training fold | Validation fold

— Inner loop

Tune parameters

In scikit-learn, we can perform nested cross-validation as follows:

>>> gs

GridSearchCV (estimator=pipe svc,

param grid=param grid,

scoring='accuracy',

cv=10,
n_jobs=-1)

>>> scores cross_val score(gs, X, Yy,

>>> print ('CV accuracy: %.3f +/- %.3f' %
np.mean (scores) ,

CV accuracy: 0.978 +/- 0.012

scoring='accuracy',

(

np.std(scores)))

[188]

cv=5)

Chapter 6

The returned average cross-validation accuracy gives us a good estimate of what

to expect if we tune the hyperparameters of a model and then use it on unseen data.
For example, we can use the nested cross-validation approach to compare an

SVM model to a simple decision tree classifier; for simplicity, we will only tune

its depth parameter:

>>> from sklearn.tree import DecisionTreeClassifier
>>> gs = GridSearchCV (
estimator=DecisionTreeClassifier (random state=0),
param grid=[
{'max depth': [1, 2, 3, 4, 5, 6, 7, Nonel}l,
scoring='accuracy',

cv=5)
>>> scores = cross_val_score(gs,
X train,
y train,

scoring='accuracy',

cv=5)
>>> print ('CV accuracy: %.3f +/- %.3f' % (
.. np.mean (scores), np.std(scores)))
CV accuracy: 0.908 +/- 0.045

As we can see here, the nested cross-validation performance of the SVM

model (97.8 percent) is notably better than the performance of the decision tree
(90.8 percent). Thus, we'd expect that it might be the better choice for classifying
new data that comes from the same population as this particular dataset.

Looking at different performance
evaluation metrics

In the previous sections and chapters, we evaluated our models using the model
accuracy, which is a useful metric to quantify the performance of a model in general.
However, there are several other performance metrics that can be used to measure a
model's relevance, such as precision, recall, and the Fl-score.

[189]

Learning Best Practices for Model Evaluation and Hyperparameter Tuning

Reading a confusion matrix

Before we get into the details of different scoring metrics, let's print a so-called
confusion matrix, a matrix that lays out the performance of a learning algorithm.
The confusion matrix is simply a square matrix that reports the counts of the true
positive, true negative, false positive, and false negative predictions of a classifier,
as shown in the following figure:

Predicted class
P N
True False
P | Positives Negatives
(TP) (FN)
Actual
Class
False True
N | Positives Negatives
(FP) (TN)

Although these metrics can be easily computed manually by comparing the true and
predicted class labels, scikit-learn provides a convenient confusion_matrix function
that we can use as follows:

>>> from sklearn.metrics import confusion matrix
>>> pipe svec.fit (X train, y train)
>>> y pred = pipe svc.predict (X test)

>>> confmat = confusion matrix(y true=y test, y pred=y pred)
>>> print (confmat)

[[71 1]

[2 40]]

The array that was returned after executing the preceding code provides us with
information about the different types of errors the classifier made on the test dataset
that we can map onto the confusion matrix illustration in the previous figure using
matplotlib's mat show function:

>>> fig, ax = plt.subplots(figsize=(2.5, 2.5))
>>> ax.matshow (confmat, cmap=plt.cm.Blues, alpha=0.3)
>>> for i in range (confmat.shape([0]) :
for j in range (confmat.shape[1l]) :
ax.text (x=j, y=1i,
s=confmat [i, j],
va='center', ha='center')

[190]

Chapter 6

>>> plt.xlabel ('predicted label!')
>>> plt.ylabel ('true label!')
>>> plt.show()

Now, the confusion matrix plot as shown here should make the results a little bit
easier to interpret:

0 1
T T
oOF 71 1 B
]
0
L
b
=
1l 2 40
predicted label

Assuming that class 1 (malignant) is the positive class in this example, our model
correctly classified 71 of the samples that belong to class 0 (false negatives) and 40
samples that belong to class 1 (true positives), respectively. However, our model
also incorrectly misclassified 2 samples from class 0 as class 1 (false negatives), and it
predicted that 1 sample is benign although it is a malignant tumor (false positive). In
the next section, we will learn how we can use this information to calculate various
different error metrics.

Optimizing the precision and recall of a
classification model

Both the prediction error (ERR) and accuracy (ACC) provide general information
about how many samples are misclassified. The error can be understood as the
sum of all false predictions divided by the number of total predications, and the
accuracy is calculated as the sum of correct predictions divided by the total number
of predictions, respectively:

_ FP+FN
FP+FN +TP+TN

[191]

Learning Best Practices for Model Evaluation and Hyperparameter Tuning

The prediction accuracy can then be calculated directly from the error:

TP+TN

ACC =
FP+FN+TP+TN

=1-ERR

The true positive rate (TPR) and false positive rate (FPR) are performance metrics
that are especially useful for imbalanced class problems:

ppr=tP__FP
N FP+IN
pr=1P__TP
P FN+TP

In tumor diagnosis, for example, we are more concerned about the detection

of malignant tumors in order to help a patient with the appropriate treatment.
However, it is also important to decrease the number of benign tumors that were
incorrectly classified as malignant (false positives) to not unnecessarily concern a
patient. In contrast to the FPR, the true positive rate provides useful information
about the fraction of positive (or relevant) samples that were correctly identified out
of the total pool of positives (P).

Precision (PRE) and recall (REC) are performance metrics that are related to those
true positive and true negative rates, and in fact, recall is synonymous to the true
positive rate:

g-_ 1P

TP+ FP
REC:TPR:E:L
P FN+TP

In practice, often a combination of precision and recall is used, the so-called F1-score:

| _, PRExREC
PRE + REC

[192]

Chapter 6

These scoring metrics are all implemented in scikit-learn and can be imported from
the sklearn.metrics module, as shown in the following snippet:

>>> from sklearn.metrics import precision score
>>> from sklearn.metrics import recall score, fl1 score
>>> print ('Precision: %.3f' % precision score(
y_true=y test, y pred=y pred))

Precision: 0.976
>>> print ('Recall: %.3f' % recall score(
c. y_true=y test, y pred=y pred))
Recall: 0.952
>>> print ('Fl1: %.3f' % fl1_score(
c. y_true=y test, y pred=y pred))

Fl: 0.964
Furthermore, we can use a different scoring metric other than accuracy in
GridSearch via the scoring parameter. A complete list of the different values that
are accepted by the scoring parameter can be found at http://scikit-learn.org/
stable/modules/model evaluation.html.

Remember that the positive class in scikit-learn is the class that is labeled as class 1.
If we want to specify a different positive label, we can construct our own scorer via
the make_scorer function, which we can then directly provide as an argument to the
scoring parameter in GridSearchCV:

>>> from sklearn.metrics import make scorer, £l score
>>> scorer = make scorer (fl score, pos_ label=0)
>>> gs = GridSearchCV(estimator=pipe svc,
param grid=param grid,
scoring=scorer,
cv=10)

Plotting a receiver operating characteristic

Receiver operator characteristic (ROC) graphs are useful tools for selecting models
for classification based on their performance with respect to the false positive and
true positive rates, which are computed by shifting the decision threshold of the
classifier. The diagonal of an ROC graph can be interpreted as random guessing,
and classification models that fall below the diagonal are considered as worse than
random guessing. A perfect classifier would fall into the top-left corner of the graph
with a true positive rate of 1 and a false positive rate of 0. Based on the ROC curve,
we can then compute the so-called area under the curve (AUC) to characterize the
performance of a classification model.

[193]

http://scikit-learn.org/stable/modules/model_evaluation.html
http://scikit-learn.org/stable/modules/model_evaluation.html

Learning Best Practices for Model Evaluation and Hyperparameter Tuning

those precision-recall curves is also implemented in scikit-learn and is

Similar to ROC curves, we can compute precision-recall curves for the
different probability thresholds of a classifier. A function for plotting

documented at http://scikit-learn.org/stable/modules/
generated/sklearn.metrics.precision recall curve.html.

By executing the following code example, we will plot an ROC curve of a classifier
that only uses two features from the Breast Cancer Wisconsin dataset to predict
whether a tumor is benign or malignant. Although we are going to use the

same logistic regression pipeline that we defined previously, we are making the
classification task more challenging for the classifier so that the resulting ROC curve
becomes visually more interesting. For similar reasons, we are also reducing the
number of folds in the stratifiedKFold validator to three. The code is as follows:

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

from sklearn.metrics import roc_curve, auc

from scipy import interp

X train2 = X train[:, [4, 14]]
cv = StratifiedKFold(y_train,
n folds=3,

random_ state=1)
fig = plt.figure(figsize=(7, 5))
mean_tpr = 0.0
mean fpr = np.linspace(0, 1, 100)
all tpr = [I]

for i, (train, test) in enumerate (cv) :

probas = pipe lr.fit (X train2[train],
y_train[train]) .predict proba (X train2[test])

fpr, tpr, thresholds = roc_curve(y train[test],

[194]

http://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_curve.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_curve.html

Chapter 6

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

mean_ tpr += interp(mean fpr, fpr, tpr)
mean_tpr[0] = 0.0
roc_auc = auc(fpr, tpr)
plt.plot (fpr,
tpr,
lw=1,
label='ROC fold %d (area = %0.
% (i+1, roc_auc))
plt.plot ([0, 11,
[0, 17,
linestyle='--",
color=(0.6, 0.6, 0.6),
label="'random guessing')
mean_tpr /= len(cv)
mean_tpr[-1] = 1.0
mean_auc = auc(mean fpr, mean tpr)
plt.plot (mean fpr, mean tpr, 'k--',
label='mean ROC (area = %0.2f)' %

plt.

plt
plt
plt
plt

plt.

plot ([0, 0, 1

[o, 1, 1
lw=2,

linestyl
color="'Db

1,
1,

e=l:l’
lack',

probas|[:,

1],

pos_label=1)

label="'perfect performance')

.x1im([-0.05,
.ylim([-0.05,
.xlabel ('false positive rate')

title ('Receiver Operator Characteristic')

1.051)
1.051)

.ylabel ('true positive rate')
plt.
plt.

legend(loc="lower right")

show ()

°

mean_auc,

[195]

Learning Best Practices for Model Evaluation and Hyperparameter Tuning

In the preceding code example, we used the already familiar stratifiedkFold class
from scikit-learn and calculated the ROC performance of the LogisticRegression
classifier in our pipe_1r pipeline using the roc_curve function from the
sklearn.metrics module separately for each iteration. Furthermore, we
interpolated the average ROC curve from the three folds via the interp function
that we imported from SciPy and calculated the area under the curve via the auc
function. The resulting ROC curve indicates that there is a certain degree of variance
between the different folds, and the average ROC AUC (0.75) falls between a perfect
score (1.0) and random guessing (0.5):

Receiver Operator Characteristic

LOF coeerrmnimii i ey A

0.8

o
(=)]
T

o
S
1

true positive rate

ROC fold 1 (area = 0.69)

: | — ROC fold 2 (area = 0.78)

02 i 7 — ROC fold 3 (area = 0.76)
: - - random guessing

: - - mean ROC (area = 0.75)

0.0} Z N BETTIT perfect performance]

1

L

0.0 0.2 0.4 0.6 0.8 1.0
false positive rate

If we are just interested in the ROC AUC score, we could also directly import the
roc_auc_score function from the sklearn.metrics submodule. The following code
calculates the classifier's ROC AUC score on the independent test dataset after fitting
it on the two-feature training set:

>>> pipe svc = pipe svc.fit (X train2, y train)
>>> y pred2 = pipe svc.predict (X test[:, [4, 14]1])

[196]

Chapter 6

>>> from sklearn.metrics import roc auc_score
>>> from sklearn.metrics import accuracy score
>>> print ('ROC AUC: %.3f' % roc_auc_score(

.. y _true=y test, y score=y pred2))
ROC AUC: 0.671

>>> print ('Accuracy: %.3f' % accuracy score(
.. y _true=y test, y pred=y pred2))
Accuracy: 0.728

Reporting the performance of a classifier as the ROC AUC can yield further insights
in a classifier's performance with respect to imbalanced samples. However, while
the accuracy score can be interpreted as a single cut-off point on a ROC curve, A. P.
Bradley showed that the ROC AUC and accuracy metrics mostly agree with each
other (A. P. Bradley. The Use of the Area Under the ROC Curve in the Evaluation of
Machine Learning Algorithms. Pattern recognition, 30(7):1145-1159, 1997).

The scoring metrics for multiclass
classification

The scoring metrics that we discussed in this section are specific to binary
classification systems. However, scikit-learn also implements macro and micro
averaging methods to extend those scoring metrics to multiclass problems via

One vs. All (OvA) classification. The micro-average is calculated from the individual
true positives, true negatives, false positives, and false negatives of the system.

For example, the micro-average of the precision score in a k-class system can be
calculated as follows:

PREmicro = TI)I S Tl)k
IR +++TPF + FPB +-+ FP,

The macro-average is simply calculated as the average scores of the different systems:

PRE - PRE, +++ PRE,

macro k

Micro-averaging is useful if we want to weight each instance or prediction equally,
whereas macro-averaging weights all classes equally to evaluate the overall
performance of a classifier with regard to the most frequent class labels.

[197]

Learning Best Practices for Model Evaluation and Hyperparameter Tuning

If we are using binary performance metrics to evaluate multiclass classification
models in scikit-learn, a normalized or weighted variant of the macro-average is
used by default. The weighted macro-average is calculated by weighting the score of
each class label by the number of true instances when calculating the average. The
weighted macro-average is useful if we are dealing with class imbalances, that is,
different numbers of instances for each label.

While the weighted macro-average is the default for multiclass problems in
scikit-learn, we can specify the averaging method via the average parameter
inside the different scoring functions that we import from the sklean.metrics
module, for example, the precision_score or make scorer functions:

>>> pre scorer = make scorer (score func=precision score,
pos_label=1,
greater is better=True,

average='micro')

Summary

In the beginning of this chapter, we discussed how to chain different transformation
techniques and classifiers in convenient model pipelines that helped us to train and
evaluate machine learning models more efficiently. We then used those pipelines to
perform k-fold cross-validation, one of the essential techniques for model selection
and evaluation. Using k-fold cross-validation, we plotted learning and validation
curves to diagnose the common problems of learning algorithms, such as overfitting
and underfitting. Using grid search, we further fine-tuned our model. We concluded
this chapter by looking at a confusion matrix and various different performance
metrics that can be useful to further optimize a model's performance for a specific
problem task. Now, we should be well-equipped with the essential techniques to
build supervised machine learning models for classification successfully.

In the next chapter, we will take a look at ensemble methods, methods that allow
us to combine multiple models and classification algorithms to boost the predictive
performance of a machine learning system even further.

[198]

Combining Different Models
for Ensemble Learning

In the previous chapter, we focused on the best practices for tuning and evaluating
different models for classification. In this chapter, we will build upon these
techniques and explore different methods for constructing a set of classifiers that
can often have a better predictive performance than any of its individual members.
You will learn how to:

* Make predictions based on majority voting

* Reduce overfitting by drawing random combinations of the training set
with repetition

* Build powerful models from weak learners that learn from their mistakes

Learning with ensembles

The goal behind ensemble methods is to combine different classifiers into a
meta-classifier that has a better generalization performance than each individual
classifier alone. For example, assuming that we collected predictions from 10 experts,
ensemble methods would allow us to strategically combine these predictions by the
10 experts to come up with a prediction that is more accurate and robust than the
predictions by each individual expert. As we will see later in this chapter, there are
several different approaches for creating an ensemble of classifiers. In this section,
we will introduce a basic perception about how ensembles work and why they are
typically recognized for yielding a good generalization performance.

[199]

Combining Different Models for Ensemble Learning

In this chapter, we will focus on the most popular ensemble methods that use the
majority voting principle. Majority voting simply means that we select the class
label that has been predicted by the majority of classifiers, that is, received more than
50 percent of the votes. Strictly speaking, the term majority vote refers to binary
class settings only. However, it is easy to generalize the majority voting principle to
multi-class settings, which is called plurality voting. Here, we select the class label
that received the most votes (mode). The following diagram illustrates the concept
of majority and plurality voting for an ensemble of 10 classifiers where each unique
symbol (triangle, square, and circle) represents a unique class label:

0000000000 .u:iiny
000000, L LA iy

....AAADDD Plurality

Using the training set, we start by training m different classifiers (C,.....C,,).
Depending on the technique, the ensemble can be built from different classification
algorithms, for example, decision trees, support vector machines, logistic regression
classifiers, and so on. Alternatively, we can also use the same base classification
algorithm fitting different subsets of the training set. One prominent example of this
approach would be the random forest algorithm, which combines different decision
tree classifiers. The following diagram illustrates the concept of a general ensemble
approach using majority voting:

Training set
=
9]
3
Classification o
— Q
models G G v Crm N
Predictions P P ‘e P
Voting
Final prediction P

[200]

Chapter 7

To predict a class label via a simple majority or plurality voting, we combine the
predicted class labels of each individual classifier ¢, and select the class label 7 that
received the most votes:

)7=m0d€{Cl(x),C2(x),...,C (x)}

For example, in a binary classification task where classl =—1 and class2 =+1, we can
write the majority vote prediction as follows:

C(x)=sigr{$cj(x)}={ LY C(x)20

—1 otherwise

To illustrate why ensemble methods can work better than individual classifiers
alone, let's apply the simple concepts of combinatorics. For the following example,
we make the assumption that all n base classifiers for a binary classification task have
an equal error rate ¢. Furthermore, we assume that the classifiers are independent
and the error rates are not correlated. Under those assumptions, we can simply
express the error probability of an ensemble of base classifiers as a probability

mass function of a binomial distribution:

P(yzk)= Z<Z>gk (1=6)"" = o

Here, <Z} is the binomial coefficient n choose k. In other words, we compute the
probability that the prediction of the ensemble is wrong. Now let's take a look
at a more concrete example of 11 base classifiers (» =11) with an error rate of
0.25 (¢=0.25):

= /11)
P(y>k)= <k >o.25" (1-¢)"" =0.034
6

k=

[201]

Combining Different Models for Ensemble Learning

As we can see, the error rate of the ensemble (0.034) is much lower than the error
rate of each individual classifier (0.25) if all the assumptions are met. Note that, in
this simplified illustration, a 50-50 split by an even number of classifiers n is treated
as an error, whereas this is only true half of the time. To compare such an idealistic
ensemble classifier to a base classifier over a range of different base error rates, let's
implement the probability mass function in Python:

>>> from scipy.misc import comb
>>> import math
>>> def ensemble error(n _classifier, error):
k start = math.ceil(n classifier / 2.0)
probs = [comb(n classifier, k) *
error**k *
(1-error) ** (n_classifier - k)
for k in range(k_start, n _classifier + 1)]
return sum(probs)
>>> ensemble error(n classifier=11, error=0.25)
0.034327507019042969

After we've implemented the ensemble_error function, we can compute the
ensemble error rates for a range of different base errors from 0.0 to 1.0 to visualize
the relationship between ensemble and base errors in a line graph:

>>> import numpy as np

>>> error range = np.arange (0.0, 1.01, 0.01)

>>> ens_errors = [ensemble error(n classifier=11, error=error)

.. for error in error range]

>>> import matplotlib.pyplot as plt

>>> plt.plot (error range, ens_errors,
label='Ensemble error',
linewidth=2)

>>> plt.plot (error range, error_ range,
linestyle='--', label='Base error',
linewidth=2)

>>> plt.xlabel ('Base error')

>>> plt.ylabel ('Base/Ensemble error')

>>> plt.legend(loc="upper left')

>>> plt.grid()

>>> plt.show()

As we can see in the resulting plot, the error probability of an ensemble is always
better than the error of an individual base classifier as long as the base classifiers
perform better than random guessing (¢ <0.5). Note that the y-axis depicts the base
error (dotted line) as well as the ensemble error (continuous line):

[202]

Chapter 7

1.0

I
— Ensemble error|:
= = Base error :

o
o]
|

o
o
I
by
i

o
~
T

Base/Ensemble error

o
[\
T

i
0.0 0.2 0.4 0.6 0.8 1.0
Base error

Implementing a simple majority vote
classifier

After the short introduction to ensemble learning in the previous section, let's start
with a warm-up exercise and implement a simple ensemble classifier for majority
voting in Python. Although the following algorithm also generalizes to multi-class
settings via plurality voting, we will use the term majority voting for simplicity as is
also often done in literature.

The algorithm that we are going to implement will allow us to combine different
classification algorithms associated with individual weights for confidence. Our
goal is to build a stronger meta-classifier that balances out the individual classifiers
weaknesses on a particular dataset. In more precise mathematical terms, we can
write the weighted majority vote as follows:

h% =argmljc1x2wj;(A (Cj (x) =i)
j=1

[203]

Combining Different Models for Ensemble Learning

Here, "/ is a weight associated with a base classifier, C;, ¥ is the predicted class label
of the ensemble, 7, (Greek chi) is the characteristic function [C,(x)=i€ 4], and A is the
set of unique class labels. For equal weights, we can simplify this equation and write
it as follows:

j/:mode{Cl(x),C2 (x),...,C (x)}

To better understand the concept of weighting, we will now take a look at a

more concrete example. Let's assume that we have an ensemble of three base
classifiers ¢, (j<{o.1}) and want to predict the class label of a given sample instance x.
Two out of three base classifiers predict the class label 0, and one C; predicts that the
sample belongs to class 1. If we weight the predictions of each base classifier equally,
the majority vote will predict that the sample belongs to class 0:

C (x) -0, C, (x) -0, G, (x) —1
y= mode{0,0,l} =0

Now let's assign a weight of 0.6 to ¢, and weight ¢, and ¢. by a coefficient of 0.2,
respectively.

f/=argmiax2wj;(A (Cj (x)=i)
j=1
=argmax[0.2xi, +0.2xi,+0.6xi | =1

More intuitively, since 3x0.2=0.6, we can say that the prediction made by C; has
three times more weight than the predictions by C or ¢, respectively. We can write
this as follows:

y= mode{0,0,l,l,l} =1

[204]

Chapter 7

To translate the concept of the weighted majority vote into Python code, we can use
NumPy's convenient argmax and bincount functions:

>>> import numpy as np

>>> np.argmax (np.bincount ([0, 0, 1],
weights=[0.2, 0.2, 0.6]))

1

As discussed in Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn,
certain classifiers in scikit-learn can also return the probability of a predicted class
label via the predict_proba method. Using the predicted class probabilities instead
of the class labels for majority voting can be useful if the classifiers in our ensemble
are well calibrated. The modified version of the majority vote for predicting class
labels from probabilities can be written as follows:

m
y = argmax WP,
=l

Here, p; is the predicted probability of the jth classifier for class label i.

To continue with our previous example, let's assume that we have a binary
classification problem with class labels i € {0,1} and an ensemble of three classifiers C;
(se{1.2.3}). Let's assume that the classifier ¢, returns the following class membership
probabilities for a particular sample x:

C,(x) >[0.9,0.1], C, (x) —>[0.8,0.2], C,(x) —>[0.4,0.6]

We can then calculate the individual class probabilities as follows:

p(i0 | x) =0.2x0.9+0.2x0.8+0.6x0.4=0.58

p(iy | x)=0.2x0.140.2x0.2+0.6x0.06 = 0.42

)A/:argm?x[p(io | x)sp(il |x):|:0

[205]

Combining Different Models for Ensemble Learning

To implement the weighted majority vote based on class probabilities, we can again
make use of NumPy using numpy . average and np . argmax:

>>> ex = np.array([[0.9, 0.1],
[0.8, 0.2],
[0.4, 0.6]11)
>>> p = np.average (ex, axis=0, weights=[0.2, 0.2, 0.6])
>>> D
array ([0.58, 0.421)
>>> np.argmax (p)
0

Putting everything together, let's now implement a MajorityVoteClassifier
in Python:

from sklearn.base import BaseEstimator

from sklearn.base import ClassifierMixin

from sklearn.preprocessing import LabelEncoder
from sklearn.externals import six

from sklearn.base import clone

from sklearn.pipeline import name estimators
import numpy as np

import operator

class MajorityVoteClassifier (BaseEstimator,
ClassifierMixin) :
"mr A majority vote ensemble classifier

Parameters
classifiers : array-like, shape = [n_classifiers]
Different clagssifiers for the ensemble

vote : str, {'classlabel', 'probability'}
Default: 'classlabel'
If 'classlabel' the prediction is based on
the argmax of class labels. Else if
'probability', the argmax of the sum of
probabilities is used to predict the class label
(recommended for calibrated classifiers).

weights : array-like, shape = [n classifiers]
Optional, default: None
If a list of ~

int~ or “float® values are

[206]

Chapter 7

provided, the classifiers are weighted by
importance; Uses uniform weights if “weights=None~.

def init (self, classifiers,
vote='classlabel', weights=None) :

self.classifiers = classifiers
self.named classifiers = {key: value for
key, value in
_name_estimators(classifiers)}
self.vote = vote
self .weights = weights

def fit(self, X, y):
nnn pFit classifiers.

Parameters
X : {array-like, sparse matrix},
shape = [n samples, n_ features]

Matrix of training samples.

y : array-like, shape = [n_samples]
Vector of target class labels.

self : object

Use LabelEncoder to ensure class labels start
with 0, which is important for np.argmax
call in self.predict

self.lablenc = LabelEncoder ()
self.lablenc .fit(y)

self.classes_ = self.lablenc .classes_
self.classifiers = []

for clf in self.classifiers:
fitted clf = clone(clf) .fit (X,
self.lablenc_ .transform(y))
self.classifiers .append(fitted clf)
return self

[207]

Combining Different Models for Ensemble Learning

I added a lot of comments to the code to better understand the individual parts.
However, before we implement the remaining methods, let's take a quick break

and discuss some of the code that may look confusing at first. We used the parent
classes BaseEstimator and ClassifierMixin to get some base functionality for free,
including the methods get_params and set_params to set and return the classifier's
parameters as well as the score method to calculate the prediction accuracy,
respectively. Also note that we imported six to make the MajorityvVoteClassifier
compatible with Python 2.7.

Next we will add the predict method to predict the class label via majority vote
based on the class labels if we initialize a new MajorityVoteClassifier object

with vote="classlabel'. Alternatively, we will be able to initialize the ensemble
classifier with vote="'probability' to predict the class label based on the class
membership probabilities. Furthermore, we will also add a predict_proba method
to return the average probabilities, which is useful to compute the Receiver Operator
Characteristic area under the curve (ROC AUC).

def predict(self, X):
nnn predict class labels for X.

Parameters
X : {array-like, sparse matrix},
Shape = [n samples, n_ features]

Matrix of training samples.

Returns

maj vote : array-like, shape = [n_samples]
Predicted class labels.

nnn

if self.vote == 'probability':
maj vote = np.argmax(self.predict proba (X),
axis=1)

else: # 'classlabel' vote

Collect results from clf.predict calls
predictions = np.asarray([clf.predict (X)
for clf in
self.classifiers]).T

maj vote = np.apply along axis(
lambda x:
np.argmax (np.bincount (x,

[208]

Chapter 7

def

def

weights=self.weights)),
axis=1,
arr=predictions)
maj vote = self.lablenc .inverse transform(maj vote)
return maj_ vote

predict proba (self, X):
nnw predict class probabilities for X.

Parameters
X : {array-like, sparse matrix},
shape = [n samples, n_ features]

Training vectors, where n samples is
the number of samples and
n features is the number of features.

avg_proba : array-like,
shape = [n _samples, n_classes]
Weighted average probability for
each class per sample.

probas = np.asarray([clf.predict proba (X)
for clf in self.classifiers])
avg_proba = np.average (probas,
axis=0, weights=self.weights)
return avg proba

get params (self, deep=True):
"mmo Get classifier parameter names for GridSearch"""
if not deep:
return super (MajorityVoteClassifier,
self) .get params (deep=False)
else:
out = self.named classifiers.copy()
for name, step in\
six.iteritems (self.named classifiers):
for key, value in six.iteritems(
step.get params (deep=True)) :
out['%$s_ %s' % (name, key)] = value
return out

[209]

Combining Different Models for Ensemble Learning

Also, note that we defined our own modified version of the get params methods to
use the name_estimators function in order to access the parameters of individual
classifiers in the ensemble. This may look a little bit complicated at first, but it will
make perfect sense when we use grid search for hyperparameter-tuning in

later sections.

Although our MajorityVoteClassifier implementation is
+ very useful for demonstration purposes, I also implemented a more
sophisticated version of the majority vote classifier in scikit-learn. It
' will become available as sklearn.ensemble.VotingClassifier
in the next release version (v0.17).

Combining different algorithms for
classification with majority vote

Now it is about time to put the MajorityvVoteClassifier that we implemented in
the previous section into action. But first, let's prepare a dataset that we can test it

on. Since we are already familiar with techniques to load datasets from CSV files,

we will take a shortcut and load the Iris dataset from scikit-learn's dataset module.
Furthermore, we will only select two features, sepal width and petal length, to make
the classification task more challenging. Although our MajorityVoteClassifier
generalizes to multiclass problems, we will only classify flower samples from the two
classes, Iris-Versicolor and Iris-Virginica, to compute the ROC AUC. The code is

as follows:

>>> from sklearn import datasets

>>> from sklearn.cross validation import train test split
>>> from sklearn.preprocessing import StandardScaler

>>> from sklearn.preprocessing import LabelEncoder

>>> iris = datasets.load iris()

>>> X, y = iris.data[50:, [1, 2]], iris.target[50:]

>>> le = LabelEncoder ()

>>> y = le.fit transform(y)

[210]

Chapter 7

Note that scikit-learn uses the predict_proba method (if applicable)
to compute the ROC AUC score. In Chapter 3, A Tour of Machine Learning
Classifiers Using Scikit-learn, we saw how the class probabilities are
computed in logistic regression models. In decision trees, the probabilities
are calculated from a frequency vector that is created for each node
. at training time. The vector collects the frequency values of each class
% label computed from the class label distribution at that node. Then the
= frequencies are normalized so that they sum up to 1. Similarly, the class

labels of the k-nearest neighbors are aggregated to return the normalized
class label frequencies in the k-nearest neighbors algorithm. Although the
normalized probabilities returned by both the decision tree and k-nearest
neighbors classifier may look similar to the probabilities obtained from a
logistic regression model, we have to be aware that these are actually not
derived from probability mass functions.

Next we split the Iris samples into 50 percent training and 50 percent test data:

>>> X _train, X test, y train, y test =\
train test split (X, vy,
test size=0.5,
random_state=1)

Using the training dataset, we now will train three different classifiers —a

logistic regression classifier, a decision tree classifier, and a k-nearest neighbors
classifier —and look at their individual performances via a 10-fold cross-validation
on the training dataset before we combine them into an ensemble classifier:

>>> from sklearn.cross validation import cross val score
>>> from sklearn.linear model import LogisticRegression
>>> from sklearn.tree import DecisionTreeClassifier
>>> from sklearn.neighbors import KNeighborsClassifier
>>> from sklearn.pipeline import Pipeline
>>> import numpy as np
>>> clfl = LogisticRegression(penalty='12",

C=0.001,

random_state=0)
>>> clf2

DecisionTreeClassifier (max depth=1,
criterion="'entropy',
random_state=0)

>>> clf3 = KNeighborsClassifier (n neighbors=1,

p=2,
metric='minkowski!')
>>> pipel = Pipeline([['sc', StandardScaler ()],

[rclf', clf1]])

[211]

Combining Different Models for Ensemble Learning

>>> pipe3 = Pipeline([['sc', StandardScaler ()],
C. ['clf', cl£f3]1)
>>> clf labels = ['Logistic Regression', 'Decision Tree', 'KNN']

>>> print ('10-fold cross validation:\n')
>>> for clf, label in zip([pipel, clf2, pipe3], clf labels):

scores = cross val score(estimator=clf,
>>> X=X train,
>>> y=y train,
>>> cv=10,
>>> scoring='roc_auc')
>>> print ("ROC AUC: %0.2f (+/- %0.2f) [%s]"
% (scores.mean(), scores.std(), label))

The output that we receive, as shown in the following snippet, shows that the
predictive performances of the individual classifiers are almost equal:

10-fold cross validation:

ROC AUC: 0.92 (+/- 0.20) [Logistic Regression]
ROC AUC: 0.92 (+/- 0.15) [Decision Treel]
ROC AUC: 0.93 (+/- 0.10) [KNN]

You may be wondering why we trained the logistic regression and k-nearest
neighbors classifier as part of a pipeline. The reason behind it is that, as discussed
in Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn, both the

logistic regression and k-nearest neighbors algorithms (using the Euclidean distance
metric) are not scale-invariant in contrast with decision trees. Although the Iris
features are all measured on the same scale (cm), it is a good habit to work with
standardized features.

Now let's move on to the more exciting part and combine the individual classifiers
for majority rule voting in our MajorityVoteClassifier:

>>> mv_clf = MajorityVoteClassifier(
ce classifiers=[pipel, clf2, pipe3])
>>> clf labels += ['Majority Voting']
>>> all clf = [pipel, clf2, pipe3, mv_clf]
>>> for clf, label in zip(all clf, clf labels):
scores = cross_val_ score(estimator=clf,
X=X_train,
y=y train,
cv=10,
scoring='roc_auc')
print ("Accuracy: %0.2f (+/- %0.2f) [%s]"

°

% (scores.mean(), scores.std(), label))

[212]

Chapter 7

ROC AUC: 0.92 (+/- 0.20) [Logistic Regression]
ROC AUC: 0.92 (+/- 0.15) [Decision Treel]

ROC AUC: 0.93 (+/- 0.10) [KNN]

ROC AUC: 0.97 (+/- 0.10) [Majority Voting]

As we can see, the performance of the MajorityVotingClassifier has substantially
improved over the individual classifiers in the 10-fold cross-validation evaluation.

Evaluating and tuning the ensemble
classifier

In this section, we are going to compute the ROC curves from the test set to check if
the MajorityVoteClassifier generalizes well to unseen data. We should remember
that the test set is not to be used for model selection; its only purpose is to report an
unbiased estimate of the generalization performance of a classifier system. The code
is as follows:

>>>
>>>
>>>
>>>

>>>

>>>

>>>

>>>
>>>
>>>
>>>
>>>

>>>

from sklearn.metrics import roc_curve
from sklearn.metrics import auc
colors = ['black', 'orange', 'blue', 'green']
linestyles = [':', '-=', '-=.', "'-']
for clf, label, clr, 1ls \
in zip(all clf, clf labels, colors, linestyles):
assuming the label of the positive class is 1
y_pred = clf.fit (X_train,
y_train) .predict proba (X test) [:, 1]
fpr, tpr, thresholds = roc_curve(y true=y test,
y_score=y pred)
roc_auc = auc(x=fpr, y=tpr)
plt.plot (fpr, tpr,
color=clr,
linestyle=1s,
label='%s (auc = %0.2f)' % (label, roc_auc))
plt.legend(loc="'lower right')
plt.plot ([0, 1], [0, 1],
linestyle='--"',
color='gray',
linewidth=2)

plt.xlim([-0.1, 1.1])
plt.ylim([-0.21, 1.1])
plt.grid()

plt.xlabel ('False Positive Rate')
plt.ylabel ('True Positive Rate')
plt.show()

[213]

Combining Different Models for Ensemble Learning

As we can see in the resulting ROC, the ensemble classifier also performs well on
the test set (ROC AUC = 0.95), whereas the k-nearest neighbors classifier seems to
be overfitting the training data (training ROC AUC = 0.93, test ROC AUC = 0.86):

10_| S ’f....._
. I L P
- -
: : : : : ,' :
0.8} : ! L CF ISERTTIROe Feeereennenes B .
© L . . I’/ . .
] - . B
o)
-g05_m_””mr”mqm”m””MT”__;;E{M_MHM?M_MHM?M__
G ' ! e _ _ :
=] ° . "l . . B
o 04_ "_
w : P : : :
2 ' : o . . :
'= l' . ” . . .
0.2 : S Logistic Regression (auc = 0.92)
' ; s Decision Tree (auc = 0.89)
el --- KNN (auc = 0.86)
| | | | | 1
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Since we only selected two features for the classification examples, it would be
interesting to see what the decision region of the ensemble classifier actually
looks like. Although it is not necessary to standardize the training features prior
to model fitting because our logistic regression and k-nearest neighbors pipelines
will automatically take care of this, we will standardize the training set so that the
decision regions of the decision tree will be on the same scale for visual purposes.
The code is as follows:

>>>

>>>

>>>

>>>

>>>

>>>

>>>

sc = StandardScaler ()
X train std = sc.fit transform(X train)
from itertools import product

x min = X train std[:, 0] .min() -
X max = X train std[:, 0] .max() +
y min = X train std[:, 1] .min() -

e

y max = X train std[:, 1].max() +

[214]

Chapter 7

>>> XX, yy = np.meshgrid(np.arange(x min, x max, 0.1),
np.arange (y min, y max, 0.1))
>>> f, axarr = plt.subplots(nrows=2, ncols=2,
sharex='col',
sharey="'row',
o figsize=(7, 5))
>>> for idx, clf, tt in zip(product ([0, 1], [0, 1]),
all clf, clf labels):
clf.fit (X train std, y train)
Z = clf.predict(np.c [xx.ravel(), yy.ravel()])
Z = Z.reshape (xx.shape)
axarr [idx[0], idx[1]].contourf (xx, yy, Z, alpha=0.3)

axarr [idx[0], idx[1]].scatter (X train std[y train==0, 0],
X train stdl[y train==0, 1],
c="'blue',
marker='"",
s=50)

axarr [idx[0], idx[1]].scatter (X train std[y train==1, 0],
X train stdly train==1, 1],

c='red',
marker='o"',
s=50)
o axarr [idx[0], idx[1]].set title(tt)
>>> plt.text(-3.5, -4.5,
s='Sepal width [standardized]',
o ha='center', va='center', fontsize=12)
>>> plt.text(-10.5, 4.5,
s='Petal length [standardized]',
ha='center', va='center',
o fontsize=12, rotation=90)
>>> plt.show()

[215]

Combining Different Models for Ensemble Learning

Interestingly but also as expected, the decision regions of the ensemble classifier
seem to be a hybrid of the decision regions from the individual classifiers. At first
glance, the majority vote decision boundary looks a lot like the decision boundary of
the k-nearest neighbor classifier. However, we can see that it is orthogonal to the y
axis for sepal width > 1, just like the decision tree stump:

Logistic Regression Decision Tree
3L 4L .
2 = ... 1r
it o §o88 || o §o88
— [] [
5 of e ! ;‘ 1t e ! ;‘ .
§ | Aa T A 4
5 -1t AA, A‘A‘ - AA, A‘A‘
s 5| AA A 11 AA A 1
=
3—3 1 f L L 1 f L L L 1 L L
2,
= KNN Majority Voting
-'6_. T T T T T T T T T T T T
c 3} 1F .
2 ® o ® o
- 2t 1t 4
B .. 1..
g | o .88 || o §o88 |
°f S TYNE TR I TV T
A h Aa *‘
-1}t AA, A,h - AA, A,A
2 AA AA
-3 L L L L L L I L L L L L
-3 -2 -1 0 1 2 -3 -2 -1 0 1 2
Sepal width [standardized]

Before you learn how to tune the individual classifier parameters for ensemble
classification, let's call the get_params method to get a basic idea of how we can
access the individual parameters inside a GridSearch object:

>>> mv_clf.get params ()
{'decisiontreeclassifier': DecisionTreeClassifier (class_weight=None,
criterion='entropy', max depth=1,
max_ features=None, max leaf nodes=None, min samples
leaf=1,
min samples split=2, min weight fraction leaf=0.0,
random_ state=0, splitter='best'),
'decisiontreeclassifier class weight': None,

'decisiontreeclassifier criterion': 'entropy',
[...1]

'decisiontreeclassifier random state': 0,
'decisiontreeclassifier splitter': 'best’',

[216]

Chapter 7

'pipeline-1': Pipeline(steps=[('sc', StandardScaler (copy=True, with
mean=True, with std=True)), ('clf', LogisticRegression(C=0.001, class_
weight=None, dual=False, fit intercept=True,

intercept scaling=1, max iter=100, multi class='ovr',

penalty='12', random state=0, solver='liblinear’',
tol=0.0001,
verbose=0))1),
'pipeline-1 clf': LogisticRegression(C=0.001, class weight=None,

dual=False, fit intercept=True,
intercept scaling=1, max iter=100, multi class='ovr',
penalty='12"', random state=0, solver='liblinear’',
tol=0.0001,
verbose=0) ,
'pipeline-1 clf C': 0.001,
'pipeline-1 clf class weight': None,
'pipeline-1 clf dual': False,
[...]

'pipeline-1 sc_ with std': True,

'pipeline-2': Pipeline(steps=[('sc', StandardScaler (copy=True, with
mean=True, with std=True)), ('clf', KNeighborsClassifier (algorithm='au
to', leaf size=30, metric='minkowski',

metric params=None, n _neighbors=1, p=2,
weights='uniform'))]),
'pipeline-2 clf': KNeighborsClassifier(algorithm='auto', leaf
size=30, metric='minkowski',
metric params=None, n _neighbors=1, p=2,
weights="uniform'),
'pipeline-2 clf algorithm': 'auto',
[...]

'pipeline-2 sc_ with std': True}

Based on the values returned by the get_params method, we now know how to
access the individual classifier's attributes. Let's now tune the inverse regularization
parameter C of the logistic regression classifier and the decision tree depth via a grid
search for demonstration purposes. The code is as follows:

>>> from sklearn.grid search import GridSearchCVv
>>> params = {'decisiontreeclassifier max depth': [1, 2],
'pipeline-1_ ¢lf_C': [0.001, 0.1, 100.0]}
>>> grid = GridSearchCV(estimator=mv_clf,
param _grid=params,
cv=10,
scoring='roc_auc')
>>> grid.fit (X train, y train)

[217]

Combining Different Models for Ensemble Learning

After the grid search has completed, we can print the different hyperparameter
value combinations and the average ROC AUC scores computed via 10-fold
cross-validation. The code is as follows:

>>> for params, mean score, scores in grid.grid scores :

print ("$0.3f+/-%0.2f %r"
.. % (mean_score, scores.std() / 2, params))
0.967+/-0.05 {'pipeline-1_ clf C': 0.001, 'decisiontreeclassifier
max_depth': 1}
0.967+/-0.05 {'pipeline-1_ clf C': 0.1, 'decisiontreeclassifier max_
depth': 1}
1.000+/-0.00 {'pipeline-1_ clf C': 100.0, 'decisiontreeclassifier
max_depth': 1}
0.967+/-0.05 {'pipeline-1_ clf C': 0.001, 'decisiontreeclassifier
max_depth': 2}
0.967+/-0.05 {
depth': 2}
1.000+/-0.00 {'pipeline-1_ clf C': 100.0, 'decisiontreeclassifier
max_depth': 2}

'pipeline-1 clf C': 0.1, 'decisiontreeclassifier max_

)

>>> print ('Best parameters: %s' % grid.best params)
Best parameters: {'pipeline-1 clf C': 100.0,
'decisiontreeclassifier max depth': 1}

>>> print ('Accuracy: %.2f' % grid.best score)
Accuracy: 1.00

As we can see, we get the best cross-validation results when we choose a lower
regularization strength (c = 100. 0) whereas the tree depth does not seem to affect
the performance at all, suggesting that a decision stump is sufficient to separate

the data. To remind ourselves that it is a bad practice to use the test dataset more
than once for model evaluation, we are not going to estimate the generalization
performance of the tuned hyperparameters in this section. We will move on swiftly
to an alternative approach for ensemble learning: bagging.

The majority vote approach we implemented in this section is
sometimes also referred to as stacking. However, the stacking
> algorithm is more typically used in combination with a logistic
% regression model that predicts the final class label using the
’ predictions of the individual classifiers in the ensemble as input,
which has been described in more detail by David H. Wolpert in D. H.
Wolpert. Stacked generalization. Neural networks, 5(2):241-259, 1992.

[218]

Chapter 7

Bagging — building an ensemble of
classifiers from bootstrap samples

Bagging is an ensemble learning technique that is closely related to the
MajorityVoteClassifier that we implemented in the previous section,

as illustrated in the following diagram:

Bootstrap
samples

T

\..

Classification

models 1

C
Predictions P,

Final prediction

'TTahﬂngset

a— | =
~

CZ
} !
P.
} !
Voting
¥
P

! elep mapn

[219]

Combining Different Models for Ensemble Learning

However, instead of using the same training set to fit the individual classifiers in the
ensemble, we draw bootstrap samples (random samples with replacement) from the
initial training set, which is why bagging is also known as bootstrap aggregating.
To provide a more concrete example of how bootstrapping works, let's consider

the example shown in the following figure. Here, we have seven different training
instances (denoted as indices 1-7) that are sampled randomly with replacement

in each round of bagging. Each bootstrap sample is then used to fit a classifier C;,
which is most typically an unpruned decision tree:

Sample Bagging Bagging

indices round 1 round 2
1 2 7
2 2 3
3 1 2
4 3 1
5 7 1
6 2 7
7 4 7

Bagging is also related to the random forest classifier that we introduced in

Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn. In fact, random
forests are a special case of bagging where we also use random feature subsets

to fit the individual decision trees. Bagging was first proposed by Leo Breiman

in a technical report in 1994; he also showed that bagging can improve the accuracy
of unstable models and decrease the degree of overfitting. I highly recommend

you read about his research in L. Breiman. Bagging Predictors. Machine Learning,
24(2):123-140, 1996, which is freely available online, to learn more about bagging.

[220]

Chapter 7

To see bagging in action, let's create a more complex classification problem using

the Wine dataset that we introduced in Chapter 4, Building Good Training Sets — Data
Preprocessing. Here, we will only consider the Wine classes 2 and 3, and we select two
features: Alcohol and Hue.

>>>

import pandas as pd

>>> df wine = pd.read csv('https://archive.ics.uci.edu/ml/machine-
learning-databases/wine/wine.data', header=None)

>>> df wine.columns = ['Class label', 'Alcohol',
'Malic acid', 'Ash',
'Alcalinity of ash',
'Magnesium', 'Total phenols',
'Flavanoids', 'Nonflavanoid phenols',
'Proanthocyanins',
'Color intensity', 'Hue',
'0D280/0D315 of diluted wines',
'Proline']

>>> df wine = df wine[df wine['Class label'] != 1]

>>>

>>>

y = df wine['Class label'] .values
X = df wine[['Alcohol', 'Hue'l]].values

Next we encode the class labels into binary format and split the dataset into
60 percent training and 40 percent test set, respectively:

>>>

>>>

>>>

>>>

>>>

from sklearn.preprocessing import LabelEncoder
from sklearn.cross validation import train test split
le = LabelEncoder ()
y = le.fit transform(y)
X train, X _test, y train, y test =\
train test split (X, vy,
test size=0.40,
random_state=1)

A BaggingClassifier algorithm is already implemented in scikit-learn, which we
can import from the ensemble submodule. Here, we will use an unpruned decision
tree as the base classifier and create an ensemble of 500 decision trees fitted on
different bootstrap samples of the training dataset:

>>> from sklearn.ensemble import BaggingClassifier

>>> tree = DecisionTreeClassifier (criterion='entropy',

max_depth=None)

>>> bag = BaggingClassifier (base estimator=tree,

[221]

Combining Different Models for Ensemble Learning

n _estimators=500,
max_samples=1.0,

max_ features=1.0,
bootstrap=True,

bootstrap features=False,
n_jobs=1,

random_ state=1)

Next we will calculate the accuracy score of the prediction on the training and test
dataset to compare the performance of the bagging classifier to the performance of a
single unpruned decision tree:

>>> from sklearn.metrics import accuracy_ score

>>> tree = tree.fit (X train, y train)

>>> y train pred = tree.predict (X_train)

>>> y test pred = tree.predict (X test)

>>> tree_train = accuracy_ score(y train, y train pred)

>>> tree test = accuracy score(y test, y test pred)

>>> print ('Decision tree train/test accuracies %.3f/%.3f'
% (tree_train, tree test))

Decision tree train/test accuracies 1.000/0.854

Based on the accuracy values that we printed by executing the preceding

code snippet, the unpruned decision tree predicts all class labels of the training
samples correctly; however, the substantially lower test accuracy indicates high
variance (overfitting) of the model:

>>> bag = bag.fit(X_train, y train)

>>> y train pred = bag.predict (X train)

>>> y test pred = bag.predict (X test)

>>> bag train = accuracy score(y train, y train pred)
>>> bag test = accuracy score(y_test, y test pred)

°

>>> print ('Bagging train/test accuracies %.3f/%.3f"'

°

R % (bag train, bag test))
Bagging train/test accuracies 1.000/0.896

Although the training accuracies of the decision tree and bagging classifier are
similar on the training set (both 1.0), we can see that the bagging classifier has a
slightly better generalization performance as estimated on the test set. Next let's
compare the decision regions between the decision tree and bagging classifier:

>>> xX, yy = np.meshgrid(np.arange(x _min, x max, 0.1)

>>> x min = X train[:, 0].min() - 1
>>> x max = X train[:, 0] .max() + 1
>>> y min = X train[:, 1] .min() - 1
>>> y max = X train[:, 1] .max() + 1
(
(

np.arange (y min, y max, 0.1))

[222]

Chapter 7

>>> f, axarr = plt.subplots(nrows=1l, ncols=2,
sharex="'col"',
sharey="'row',
o figsize=(8, 3))
>>> for idx, clf, tt in zip([0, 11,
[tree, bagl,
['Decision Tree', 'Bagging'l):
clf.fit (X train, y train)

Z = clf.predict(np.c [xx.ravel(), yy.ravel()])
Z = Z.reshape (xx.shape)
axarr [idx] .contourf (xx, yy, Z, alpha=0.3)
axarr [idx] .scatter (X train[y train==0, 0],
X train[y train==0, 1],
c='blue', marker='"")
axarr [idx] .scatter (X train[y train==1, 0],
X train[y train==1, 1],
c='red', marker='o')
axarr [idx] .set title(tt)
>>> axarr[0] .set ylabel (Alcohol', fontsize=12)
>>> plt.text(10.2, -1.2,
s=Hue',
o ha='center', va='center', fontsize=12)
>>> plt.show()

As we can see in the resulting plot, the piece-wise linear decision boundary of the
three-node deep decision tree looks smoother in the bagging ensemble:

- Decision Tree Bagging
2.0f 1 F .
1.5_ “ _ [~ “ N
— A A A A
2 Y X Y e
g ‘A.‘g:a“ &t ‘&, N A“A‘:&“ &t ‘&, 1
< i ;h .:b.. 1L o.. .:b.o i
0.5 e °
0.0} 1t '
=05} L I 1 I ! B I 1 I I N
11 12 13 14 15 11 12 13 14 15
Hue

[223]

Combining Different Models for Ensemble Learning

We only looked at a very simple bagging example in this section. In practice, more
complex classification tasks and datasets' high dimensionality can easily lead to
overfitting in single decision trees and this is where the bagging algorithm can really
play out its strengths. Finally, we shall note that the bagging algorithm can be an
effective approach to reduce the variance of a model. However, bagging is ineffective
in reducing model bias, which is why we want to choose an ensemble of classifiers
with low bias, for example, unpruned decision trees.

Leveraging weak learners via adaptive
boosting

In this section about ensemble methods, we will discuss boosting with a special
focus on its most common implementation, AdaBoost (short for Adaptive Boosting).

The original idea behind AdaBoost was formulated by Robert Schapire in
1990 (R. E. Schapire. The Strength of Weak Learnability. Machine learning,
5(2):197-227,1990). After Robert Schapire and Yoav Freund presented the
. AdaBoost algorithm in the Proceedings of the Thirteenth International
% Conference (ICML 1996), AdaBoost became one of the most widely used
s ensemble methods in the years that followed (Y. Freund, R. E. Schapire, et
al. Experiments with a New Boosting Algorithm. In ICML, volume 96, pages
148-156, 1996). In 2003, Freund and Schapire received the Goedel Prize
for their groundbreaking work, which is a prestigious prize for the most
outstanding publications in the computer science field.

In boosting, the ensemble consists of very simple base classifiers, also often referred
to as weak learners, that have only a slight performance advantage over random
guessing. A typical example of a weak learner would be a decision tree stump.

The key concept behind boosting is to focus on training samples that are hard

to classify, that is, to let the weak learners subsequently learn from misclassified
training samples to improve the performance of the ensemble. In contrast to bagging,
the initial formulation of boosting, the algorithm uses random subsets of training
samples drawn from the training dataset without replacement. The original boosting
procedure is summarized in four key steps as follows:

1. Draw a random subset of training samples ¢ without replacement from the
training set D to train a weak learner C,.

2. Draw second random training subset 4, without replacement from the
training set and add 50 percent of the samples that were previously
misclassified to train a weak learner ¢,.

[224]

Chapter 7

3. Find the training samples d, in the training set D on which ¢, and C,
disagree to train a third weak learner ¢, .

4. Combine the weak learners C,, C,, and ¢, via majority voting.

As discussed by Leo Breiman (L. Breiman. Bias, Variance, and Arcing Classifiers. 1996),
boosting can lead to a decrease in bias as well as variance compared to bagging
models. In practice, however, boosting algorithms such as AdaBoost are also known
for their high variance, that is, the tendency to overfit the training data (G. Raetsch,
T. Onoda, and K. R. Mueller. An Improvement of Adaboost to Avoid Overfitting. In Proc.
of the Int. Conf. on Neural Information Processing. Citeseer, 1998).

In contrast to the original boosting procedure as described here, AdaBoost uses

the complete training set to train the weak learners where the training samples are
reweighted in each iteration to build a strong classifier that learns from the mistakes
of the previous weak learners in the ensemble. Before we dive deeper into the
specific details of the AdaBoost algorithm, let's take a look at the following

figure to get a better grasp of the basic concept behind AdaBoost:

L) .) : .
® o ' ® o
______________ g
A x 1 A&
ol @ A L, 2| @ “
A I A
O A 4 . : A 4
» @
N .I N . :
®9 ® o
T | =
A I | &
X2 . - :A x2 .: AA
S A
. L A ® I A 4
1 - 1 ~
X1 ! Xq !

[225]

Combining Different Models for Ensemble Learning

To walk through the AdaBoost illustration step by step, we start with subfigure 1,
which represents a training set for binary classification where all training samples
are assigned equal weights. Based on this training set, we train a decision stump
(shown as a dashed line) that tries to classify the samples of the two classes (triangles
and circles) as well as possible by minimizing the cost function (or the impurity score
in the special case of decision tree ensembles). For the next round (subfigure 2),

we assign a larger weight to the two previously misclassified samples (circles).
Furthermore, we lower the weight of the correctly classified samples. The next
decision stump will now be more focused on the training samples that have the
largest weights, that is, the training samples that are supposedly hard to classify.

The weak learner shown in subfigure 2 misclassifies three different samples from

the circle-class, which are then assigned a larger weight as shown in subfigure 3.
Assuming that our AdaBoost ensemble only consists of three rounds of boosting, we
would then combine the three weak learners trained on different reweighted training
subsets by a weighted majority vote, as shown in subfigure 4.

Now that have a better understanding behind the basic concept of AdaBoost, let's
take a more detailed look at the algorithm using pseudo code. For clarity, we will
denote element-wise multiplication by the cross symbol (x) and the dot product
between two vectors by a dot symbol (-), respectively. The steps are as follows:
Set weight vector w to uniform weights where D w, =1

For j in m boosting rounds, do the following:

Train a weighted weak learner: C, = train(X, y,w).

Predict class labels: j = predict(C;, X).

Compute weighted error rate: ¢ =w-(y=y).

. . 1-
Compute coefficient: , =0.5log—- .

Update weights: w:=wx exp(—aj X Px y) .

Normalize weights tosumto 1: w==w/ > w,.

O X N gl XD

m
J=1

Compute final prediction: y= (Z (aj x predict(Cj,X)) > 0).

Note that the expression (3 ==y) in step 5 refers to a vector of 1s and 0s, where a 1 is
assigned if the prediction is correct and 0 is assigned otherwise.

[226]

Chapter 7

Although the AdaBoost algorithm seems to be pretty straightforward, let's walk
through a more concrete example using a training set consisting of 10 training
samples as illustrated in the following table:

Sample x y Welghts y(x<=3.0)? Correct? Updated
indices weights
1 1.0 1 0.1 1 Yes 0.072

2 2.0 1 0.1 1 Yes 0.072

3 3.0 1 0.1 1 Yes 0.072

4 4.0 -1 0.1 -1 Yes 0.072

5 5.0 -1 0.1 -1 Yes 0.072

3] 6.0 -1 0.1 -1 Yes 0.072

7 7.0 1 0.1 -1 Yes 0.167

8 8.0 1 0.1 -1 Yes 0.167

9 9.0 1 0.1 -1 Yes 0.167
10 10.0 -1 0.1 -1 Yes 0.072

The first column of the table depicts the sample indices of the training samples 1

to 10. In the second column, we see the feature values of the individual samples
assuming this is a one-dimensional dataset. The third column shows the true class
label y, for each training sample x;, where y, <{1,-1}. The initial weights are shown in
the fourth column; we initialize the weights to uniform and normalize them to sum
to one. In the case of the 10 sample training set, we therefore assign the 0.1 to each
weight w, in the weight vector w . The predicted class labels y are shown in the
fifth column, assuming that our splitting criterion is x<3.0. The last column of the
table then shows the updated weights based on the update rules that we defined

in the pseudocode.

Since the computation of the weight updates may look a little bit complicated at first,
we will now follow the calculation step by step. We start by computing the weighted
error rate ¢ as described in step 5:

e=0.1x0+0.1x0+0.1x0+0.1x0+0.1x0+0.1x0+0.1x0+0.1x0

+0.1x0=i:0.3
10

Next we compute the coefficient «; (shown in step 6), which is later used in step 7 to
update the weights as well as for the weights in majority vote prediction (step 10):

05 log(l - 5)

J

~0.424
&

[227]

Combining Different Models for Ensemble Learning

After we have computed the coefficient @; we can now update the weight vector
using the following equation:

w::wxexp(—ajxj;xy)

Here, jxy is an element-wise multiplication between the vectors of the predicted
and true class labels, respectively. Thus, if a prediction J, is correct, 7, xy, will have a
positive sign so that we decrease the ith weight since ¢; is a positive number as well:

0.1x exp(—0.424 x 1% 1) ~0.066

Similarly, we will downweight the ith weight if J; predicted the label incorrectly
like this:

0.1x exp(—0.424x1x(~1)) = 0.153

Or like this:

0.1x exp(—0.424x(~1)x(1)) ~0.153

After we update each weight in the weight vector, we normalize the weights so
that they sum up to 1 (step 8):

Here, Y w, =7x0.065+3x0.153=0.914 .

Thus, each weight that corresponds to a correctly classified sample will be
reduced from the initial value of 0.1 to 0.066/0.914 ~ 0.072 for the next round
of boosting. Similarly, the weights of each incorrectly classified sample will
increase from 0.1 to 0.153/0.914 ~0.167 .

[228]

Chapter 7

This was AdaBoost in a nutshell. Skipping to the more practical part, let's now train
an AdaBoost ensemble classifier via scikit-learn. We will use the same Wine subset
that we used in the previous section to train the bagging meta-classifier. Via the
base estimator attribute, we will train the AdaBoostClassifier on 500 decision
tree stumps:

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

from sklearn.ensemble import AdaBoostClassifier
tree = DecisionTreeClassifier (criterion='entropy',
max_depth=1)

ada = AdaBoostClassifier (base estimator=tree,
n_estimators=500,
learning rate=0.1,
random_state=0)

tree = tree.fit(X train, y train)

y_train pred = tree.predict (X train)

y _test pred = tree.predict (X test)

tree train = accuracy score(y train, y train pred)

tree test = accuracy_ score(y test, y test pred)

print ('Decision tree train/test accuracies %.3f/%.3f'

)

% (tree_train, tree test))

Decision tree train/test accuracies 0.845/0.854

As we can see, the decision tree stump seems to overfit the training data in contrast
with the unpruned decision tree that we saw in the previous section:

>>>

>>>

>>>

>>>

>>>

>>>

ada = ada.fit (X train, y train)

y_train pred = ada.predict (X train)

y _test pred = ada.predict (X test)

ada_train = accuracy score(y train, y train pred)
ada_test = accuracy_ score(y test, y test pred)
print ('AdaBoost train/test accuracies %.3f/%.3f'

)

% (ada_train, ada test))

AdaBoost train/test accuracies 1.000/0.875

As we can see, the AdaBoost model predicts all class labels of the training set
correctly and also shows a slightly improved test set performance compared to the
decision tree stump. However, we also see that we introduced additional variance by
our attempt to reduce the model bias.

[229]

Combining Different Models for Ensemble Learning

Although we used another simple example for demonstration purposes, we can

see that the performance of the AdaBoost classifier is slightly improved compared
to the decision stump and achieved very similar accuracy scores to the bagging
classifier that we trained in the previous section. However, we should note that it is
considered as bad practice to select a model based on the repeated usage of the test
set. The estimate of the generalization performance may be too optimistic, which we
discussed in more detail in Chapter 6, Learning Best Practices for Model Evaluation and
Hyperparameter Tuning.

Finally, let's check what the decision regions look like:

>>> xX, yy = np.meshgrid(np.arange(x_min, x max, 0.1)

>>> x min = X train[:, 0].min() - 1
>>> x max = X train[:, 0] .max() + 1
>>> y min = X train[:, 1] .min() - 1
>>> y max = X train[:, 1] .max() + 1
(
(

np.arange (y min, y max, 0.1))
>>> f, axarr = plt.subplots(l, 2,
sharex="'col"',
sharey="'row',
figsize=(8, 3))
>>> for idx, clf, tt in zip ([0, 1],
[tree, ada]l,
['Decision Tree', 'AdaBoost']):
clf.fit (X _train, y train)
Z = clf.predict(np.c_ [xx.ravel(), yy.ravel()])
Z = Z.reshape (xx.shape)
axarr [idx] .contourf (xx, yy, Z, alpha=0.3)
axarr [idx] .scatter (X _train[y train==0, 0],
X train[y train==0, 1],
c="'blue',
marker='"1)

axarr [idx] .scatter (X _train[y train==1, 0],
X train[y train==1, 1],
c='red',

marker='o")
axarr [idx] .set _title(tt)
axarr [0] .set_ylabel ('Alcohol', fontsize=12)
>>> plt.text(10.2, -1.2,
s=Hue',
ha='center',
va='center',
.. fontsize=12)
>>> plt.show()

[230]

Chapter 7

By looking at the decision regions, we can see that the decision boundary of the
AdaBoost model is substantially more complex than the decision boundary of the
decision stump. In addition, we note that the AdaBoost model separates the feature
space very similarly to the bagging classifier that we trained in the previous section.

- Decision Tree AdaBoost
2.0F 'E:
1.5F 1+ ey
— NG A A A
2 A ig " ‘: *a‘ At
e LO0f }ch e 1r loh&n -
kY] 4 4AA ° 4 Addteo “ 008
< B °o. e 11 ° °g0 %o
0.5 °
0.0} 1t
=05} I I I I ! B I L I I N
11 12 13 14 15 11 12 13 14 15
Hue

As concluding remarks about ensemble techniques, it is worth noting that
ensemble learning increases the computational complexity compared to individual
classifiers. In practice, we need to think carefully whether we want to pay the price
of increased computational costs for an often relatively modest improvement of
predictive performance.

An often-cited example of this trade-off is the famous $1 Million Netflix Prize, which
was won using ensemble techniques. The details about the algorithm were published
in A. Toescher, M. Jahrer, and R. M. Bell. The Bigchaos Solution to the Netflix Grand
Prize. Netflix prize documentation, 2009 (which is available at http://www.stat.
osu.edu/~dmsl/GrandPrize2009_BPC_BigChaos.pdf). Although the winning

team received the $1 million prize money, Netflix never implemented their model
due to its complexity, which made it unfeasible for a real-world application. To
quote their exact words (http://techblog.netflix.com/2012/04/netflix-
recommendations-beyond-5-stars.html):

"[...] additional accuracy gains that we measured did not seem to justify the
engineering effort needed to bring them into a production environment."

[231]

http://www.stat.osu.edu/~dmsl/GrandPrize2009_BPC_BigChaos.pdf
http://www.stat.osu.edu/~dmsl/GrandPrize2009_BPC_BigChaos.pdf
http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-stars.html
http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-stars.html

Combining Different Models for Ensemble Learning

Summary

In this chapter, we looked at some of the most popular and widely used techniques
for ensemble learning. Ensemble methods combine different classification models
to cancel out their individual weakness, which often results in stable and
well-performing models that are very attractive for industrial applications

as well as machine learning competitions.

In the beginning of this chapter, we implemented a MajorityvVoteClassifierin
Python that allows us to combine different algorithm for classification. We then
looked at bagging, a useful technique to reduce the variance of a model by drawing
random bootstrap samples from the training set and combining the individually
trained classifiers via majority vote. Then we discussed AdaBoost, which is an
algorithm that is based on weak learners that subsequently learn from mistakes.

Throughout the previous chapters, we discussed different learning algorithms,
tuning, and evaluation techniques. In the following chapter, we will look at a
particular application of machine learning, sentiment analysis, which has certainly
become an interesting topic in the era of the Internet and social media.

[232]

Applying Machine Learning to

Sentiment Analysis

In this Internet and social media time and age, people's opinions, reviews, and
recommendations have become a valuable resource for political science and
businesses. Thanks to modern technologies, we are now able to collect and analyze
such data most efficiently. In this chapter, we will delve into a subfield of natural
language processing (NLP) called sentiment analysis and learn how to use machine
learning algorithms to classify documents based on their polarity: the attitude of the
writer. The topics that we will cover in the following sections include:

Cleaning and preparing text data
Building feature vectors from text documents

Training a machine learning model to classify positive and negative
movie reviews

Working with large text datasets using out-of-core learning

Obtaining the IMDb movie review dataset

Sentiment analysis, sometimes also called opinion mining, is a popular sub-
discipline of the broader field of NLP; it analyzes the polarity of documents. A
popular task in sentiment analysis is the classification of documents based on the
expressed opinions or emotions of the authors with regard to a particular topic.

[233]

Applying Machine Learning to Sentiment Analysis

In this chapter, we will be working with a large dataset of movie reviews from the
Internet Movie Database (IMDb) that has been collected by Maas et al. (A. L. Maas,
R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. Learning Word Vectors for
Sentiment Analysis. In the proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies, pages 142-150,
Portland, Oregon, USA, June 2011. Association for Computational Linguistics). The
movie review dataset consists of 50,000 polar movie reviews that are labeled as either
positive or negative; here, positive means that a movie was rated with more than six
stars on IMDDb, and negative means that a movie was rated with fewer than five
stars on IMDD. In the following sections, we will learn how to extract meaningful
information from a subset of these movie reviews to build a machine learning
model that can predict whether a certain reviewer liked or disliked a movie.

A compressed archive of the movie review dataset (84.1 MB) can be downloaded
ﬁonlhttp://ai.stanford.edu/~amaas/data/sentiment/aszlgzqyconnpﬂﬁsed
tarball archive:

* If you are working with Linux or Mac OS X, you can open a new terminal
window, use cd to go into the download directory, and execute tar -zxf
aclImdb_vl.tar.gz to decompress the dataset

* If you are working with Windows, you can download a free archiver
such as 7-Zip (http://www.7-zip.org) to extract the files from the
download archive

Having successfully extracted the dataset, we will now assemble the individual

text documents from the decompressed download archive into a single CSV file.

In the following code section, we will be reading the movie reviews into a pandas
DataFrame object, which can take up to 10 minutes on a standard desktop computer.
To visualize the progress and estimated time until completion, we will use the
PyPrind (Python Progress Indicator, https://pypi.python.org/pypi/PyPrind/)
package that I developed several years ago for such purposes. PyPrind can be
installed by executing the command: pip install pyprind.

>>> import pyprind
>>> import pandas as pd
>>> import os
>>> pbar = pyprind.ProgBar (50000)
>>> labels = {'pos':1, 'neg':0}
>>> df = pd.DataFrame ()
>>> for s in ('test', 'train'):
for 1 in ('pos', 'neg'):
path ='./aclImdb/%s/%s' % (s, 1)
for file in os.listdir(path):
with open(os.path.join(path, file), 'r') as infile:

[234]

http://ai.stanford.edu/~amaas/data/sentiment/
http://www.7-zip.org
https://pypi.python.org/pypi/PyPrind/

Chapter 8

txt = infile.read()
df = df.append([[txt, labels[1]]], ignore index=True)
pbar.update ()
>>> df.columns = ['review', 'sentiment']
0% 100%

CHESH S R HAE] | ETA[sec]l: 0.000
Total time elapsed: 725.001 sec

Executing the preceding code, we first initialized a new progress bar object pbar
with 50,000 iterations, which is the number of documents we were going to read in.
Using the nested for loops, we iterated over the train and test subdirectories in
the main ac11Imdb directory and read the individual text files from the pos and neg
subdirectories that we eventually appended to the DataFrame df—together with an
integer class label (1 = positive and 0 = negative).

Since the class labels in the assembled dataset are sorted, we will now shuffle
DataFrame using the permutation function from the np . random submodule — this
will be useful to split the dataset into training and test sets in later sections when we
will stream the data from our local drive directly. For our own convenience, we will
also store the assembled and shuffled movie review dataset as a CSV file:

>>> import numpy as np

>>> np.random.seed (0)

>>> df = df.reindex (np.random.permutation (df.index))
>>> df.to_csv('./movie data.csv', index=False)

Since we are going to use this dataset later in this chapter, let us quickly confirm that
we successfully saved the data in the right format by reading in the CSV and printing
an excerpt of the first three samples:

>>> df = pd.read csv('./movie data.csv')
>>> df .head(3)

If you are running the code examples in IPython Notebook, you should now see the
tirst three samples of the dataset, as shown in the following table:

review sentiment
0| In 1974, the teenager Martha Moxley (Maggie Gr... | 1

1| OK... so... | really like Kris Kristofferson a... 0
2| ***SPOILER*** Do not read this, if you think a... 0

[235]

Applying Machine Learning to Sentiment Analysis

Introducing the bag-of-words model

We remember from Chapter 4, Building Good Training Sets — Data Preprocessing, that
we have to convert categorical data, such as text or words, into a numerical form
before we can pass it on to a machine learning algorithm. In this section, we will
introduce the bag-of-words model that allows us to represent text as numerical
feature vectors. The idea behind the bag-of-words model is quite simple and can be
summarized as follows:

1. We create a vocabulary of unique tokens — for example, words — from the
entire set of documents.

2. We construct a feature vector from each document that contains the counts of
how often each word occurs in the particular document.

Since the unique words in each document represent only a small subset of all the
words in the bag-of-words vocabulary, the feature vectors will consist of mostly
zeros, which is why we call them sparse. Do not worry if this sounds too abstract; in
the following subsections, we will walk through the process of creating a simple bag-
of-words model step-by-step.

Transforming words into feature vectors

To construct a bag-of-words model based on the word counts in the respective
documents, we can use the CountVectorizer class implemented in scikit-learn. As
we will see in the following code section, the Countvectorizer class takes an array
of text data, which can be documents or just sentences, and constructs the bag-of-
words model for us:

>>> import numpy as np
>>> from sklearn.feature extraction.text import CountVectorizer
>>> count = CountVectorizer ()
>>> docs = np.array ([
'The sun is shining',
'The weather is sweet',
c. 'The sun is shining and the weather is sweet'])
>>> bag = count.fit transform(docs)

By calling the fit_transform method on CountVectorizer, we just constructed
the vocabulary of the bag-of-words model and transformed the following three
sentences into sparse feature vectors:

1. The sun is shining

2. The weather is sweet

3. The sun is shining and the weather is sweet

[236]

Chapter 8

Now let us print the contents of the vocabulary to get a better understanding of the
underlying concepts:

>>> print (count.vocabulary)
{'the': 5, 'shining': 2, 'weather': 6, 'sun': 3, 'is': 1, 'sweet': 4,
'and': 0}

As we can see from executing the preceding command, the vocabulary is stored in a
Python dictionary, which maps the unique words that are mapped to integer indices.
Next let us print the feature vectors that we just created:

>>> print (bag.toarray())
[[01 110 10]
[01 0011 1]
[1 21112 1]]

Each index position in the feature vectors shown here corresponds to the integer
values that are stored as dictionary items in the countvectorizer vocabulary. For
example, the first feature at index position 0 resembles the count of the word and,
which only occurs in the last document, and the word is at index position 1 (the 2nd
feature in the document vectors) occurs in all three sentences. Those values in the
feature vectors are also called the raw term frequencies: ff (f,d) —the number of times
a term f occurs in a document 4.

The sequence of items in the bag-of-words model that we just created
is also called the 1-gram or unigram model —each item or token in the
vocabulary represents a single word. More generally, the contiguous
sequences of items in NLP —words, letters, or symbols —is also called an
n-gram. The choice of the number 7 in the n-gram model depends on the
particular application; for example, a study by Kanaris et al. revealed that
n-grams of size 3 and 4 yield good performances in anti-spam filtering
of e-mail messages (Ioannis Kanaris, Konstantinos Kanaris, loannis
Houvardas, and Efstathios Stamatatos. Words vs Character N-Grams
for Anti-Spam Filtering. International Journal on Artificial Intelligence
%‘ Tools, 16(06):1047-1067, 2007). To summarize the concept of the n-gram
representation, the 1-gram and 2-gram representations of our first
document "the sun is shining" would be constructed as follows:

* 1l-gram: "the", "sun", "is", "shining"

e 2-gram: "the sun", "sunis", "is shining"
The CountVectorizer class in scikit-learn allows us to use different
n-gram models via its ngram_range parameter. While a 1-gram
representation is used by default, we could switch to a 2-gram
representation by initializing a new CountVectorizer instance with
ngram_range=(2,2).

[237]

Applying Machine Learning to Sentiment Analysis

Assessing word relevancy via term
frequency-inverse document frequency

When we are analyzing text data, we often encounter words that occur across
multiple documents from both classes. Those frequently occurring words typically
don't contain useful or discriminatory information. In this subsection, we will learn
about a useful technique called term frequency-inverse document frequency
(tf-idf) that can be used to downweight those frequently occurring words in the
feature vectors. The tf-idf can be defined as the product of the term frequency and
the inverse document frequency:

tfidf (t,d) = of (£, d) xidf (t.d)

Here the #f(t, d) is the term frequency that we introduced in the previous section,
and the inverse document frequency idf(t, d) can be calculated as:

n,

1df (t,d)=log ———
1 (’) 0g1+df(d’t)’

where 7, is the total number of documents, and df(d, t) is the number of documents
d that contain the term t. Note that adding the constant 1 to the denominator is
optional and serves the purpose of assigning a non-zero value to terms that occur in
all training samples; the log is used to ensure that low document frequencies are not
given too much weight.

Scikit-learn implements yet another transformer, the TfidfTransformer, that
takes the raw term frequencies from CountVectorizer as input and transforms
them into tf-idfs:

>>> from sklearn.feature_extraction.text import TfidfTransformer
>>> tfidf = TfidfTransformer ()
>>> np.set printoptions (precision=2)
>>> print (tfidf.fit_transform(count.fit_ transform(docs)) .toarray())
[l o. 0.43 0.56 0.56 0. 0.43 0.]

[o. 0.43 0. 0. 0.56 0.43 0.56]

[0.4 0.48 0.31 0.31 0.31 0.48 0.31]]

[238]

Chapter 8

As we saw in the previous subsection, the word is had the largest term frequency
in the 3rd document, being the most frequently occurring word. However, after
transforming the same feature vector into tf-idfs, we see that the word is is

now associated with a relatively small tf-idf (0.31) in document 3 since it is

also contained in documents 1 and 2 and thus is unlikely to contain any useful,
discriminatory information.

However, if we'd manually calculated the tf-idfs of the individual terms in our
feature vectors, we'd have noticed that the TfidfTransformer calculates the tf-idfs
slightly differently compared to the standard textbook equations that we defined
earlier. The equations for the idf and tf-idf that were implemented in scikit-learn are:

l1+n,

ldf(t,d) = lOgm

The tf-idf equation that was implemented in scikit-learn is as follows:
tf-idf (t.d) =7 (t.d)x (idf (t,d)+1)

While it is also more typical to normalize the raw term frequencies before
calculating the tf-idfs, the TfidfTransformer normalizes the tf-idfs directly.
By default (norm="12"), scikit-learn's TfidfTransformer applies the
L2-normalization, which returns a vector of length 1 by dividing an
un-normalized feature vector v by its L2-norm:

v \% v
v =

norm = ||V||2 - \/V12 +V22 +"'+V5 (Zn VA)I/Z

i=1 i

To make sure that we understand how TfidfTransformer works, let us walk
through an example and calculate the tf-idf of the word is in the 3rd document.

The word is has a term frequency of 2 (tf = 2) in document 3, and the document
frequency of this term is 3 since the term is occurs in all three documents (df = 3).
Thus, we can calculate the idf as follows:

1+3
df ("is",d3) = log—= =0
idf ("is",d3) g1

[239]

Applying Machine Learning to Sentiment Analysis

Now in order to calculate the tf-idf, we simply need to add 1 to the inverse document
frequency and multiply it by the term frequency:

thidf ("is",d3) = 2x(0+1) =2

If we repeated these calculations for all terms in the 3rd document, we'd obtain the
following tf-idf vectors: [1.69, 2.00, 1.29, 1.29, 1.29, 2.00, and 1.29]. However, we
notice that the values in this feature vector are different from the values that we
obtained from the TfidfTransformer that we used previously. The final step that
we are missing in this tf-idf calculation is the L2-normalization, which can be applied
as follows:

[1.69, 2.00, 1.29, 1.29,1.29, 2.00, 1.29]
o J1.69%, 2.00% +1.297 + 1.297 + 1.29% + 2.00% + 1.29°
=[0.40, 0.48, 0.31, 0.31, 0.31, 0.48, 0.31]

tF-idf ("is", d3)

As we can see, the results now match the results returned by scikit-learn's
TfidfTransformer. Since we now understand how tf-idfs are calculated, let us
proceed to the next sections and apply those concepts to the movie review dataset.

Cleaning text data

In the previous subsections, we learned about the bag-of-words model, term
frequencies, and tf-idfs. However, the first important step —before we build our
bag-of-words model —is to clean the text data by stripping it of all unwanted
characters. To illustrate why this is important, let us display the last 50 characters
from the first document in the reshuffled movie review dataset:

>>> df.loc [0, 'review'] [-50:]
'is seven.

Title (Brazil): Not Available'

As we can see here, the text contains HTML markup as well as punctuation and
other non-letter characters. While HTML markup does not contain much useful
semantics, punctuation marks can represent useful, additional information in certain
NLP contexts. However, for simplicity, we will now remove all punctuation marks
but only keep emoticon characters such as ":)" since those are certainly useful for
sentiment analysis. To accomplish this task, we will use Python's regular expression
(regex) library, re, as shown here:

>>> import re
>>> def preprocessor (text) :

[240]

Chapter 8

text = re.sub('<[*>]1*>', '', text)
emoticons = re.findall (' (?::];|=)(?2:-)?2(?2:\) |\ (|D|P)"', text)
text = re.sub (' [\W]+', ' ', text.lower()) + \

'.join(emoticons) .replace('-', '")
return text

Via the first regex < [*>] *> in the preceding code section, we tried to remove the
entire HTML markup that was contained in the movie reviews. Although many
programmers generally advise against the use of regex to parse HTML, this regex
should be sufficient to clean this particular dataset. After we removed the HTML
markup, we used a slightly more complex regex to find emoticons, which we
temporarily stored as emoticons. Next we removed all non-word characters from
the text via the regex [\W] +, converted the text into lowercase characters, and
eventually added the temporarily stored emoticons to the end of the processed
document string. Additionally, we removed the nose character (-) from the emoticons
for consistency.

Although regular expressions offer an efficient and convenient
approach to searching for characters in a string, they also come with
. asteep learning curve. Unfortunately, an in-depth discussion of
% regular expressions is beyond the scope of this book. However, you
L can find a great tutorial on the Google Developers portal at https://

developers.google.com/edu/python/regular-expressions or
check out the official documentation of Python's re module at https: //
docs.python.org/3.4/library/re.html.

Although the addition of the emoticon characters to the end of the cleaned document
strings may not look like the most elegant approach, the order of the words doesn't
matter in our bag-of-words model if our vocabulary only consists of 1-word tokens.
But before we talk more about splitting documents into individual terms, words, or
tokens, let us confirm that our preprocessor works correctly:

>>> preprocessor (df.loc[0, 'review'][-50:])

'is seven title brazil not available'

>>> preprocessor ("This :) is :(a test :-)!")
'this is a test :) :(:)'

Lastly, since we will make use of the cleaned text data over and over again during the
next sections, let us now apply our preprocessor function to all movie reviews in
our DataFrame:

>>> df ['review'] = df['review'] .apply (preprocessor)

[241]

https://developers.google.com/edu/python/regular-expressions
https://developers.google.com/edu/python/regular-expressions
https://docs.python.org/3.4/library/re.html
https://docs.python.org/3.4/library/re.html

Applying Machine Learning to Sentiment Analysis

Processing documents into tokens

Having successfully prepared the movie review dataset, we now need to think
about how to split the text corpora into individual elements. One way to tokenize
documents is to split them into individual words by splitting the cleaned document
at its whitespace characters:

>>> def tokenizer (text):

return text.split()
>>> tokenizer ('runners like running and thus they run')
['runners', 'like', 'running', 'and', 'thus', 'they', 'run'l]

In the context of tokenization, another useful technique is word stemming, which is
the process of transforming a word into its root form that allows us to map related
words to the same stem. The original stemming algorithm was developed by Martin
F. Porter in 1979 and is hence known as the Porter stemmer algorithm (Martin F.
Porter. An algorithm for suffix stripping. Program: electronic library and information
systems, 14(3):130-137, 1980). The Natural Language Toolkit for Python (NLTK,
http://www.nltk.org) implements the Porter stemming algorithm, which we

will use in the following code section. In order to install the NLTK, you can simply
execute pip install nltk.

>>> from nltk.stem.porter import PorterStemmer
>>> porter = PorterStemmer ()
>>> def tokenizer porter (text):
return [porter.stem(word) for word in text.split ()]
>>> tokenizer porter ('runners like running and thus they run')
['runner', 'like', 'run', 'and', 'thu', 'they', 'run']

_ Although NLTK is not the focus of the chapter, I highly recommend you
a to visit the NLTK website as well as the official NLTK book, which is
i freely available at http://www.nltk.org/book/, if you are interested
in more advanced applications in NLP.

Using PorterStemmer from the nltk package, we modified our tokenizer function
to reduce words to their root form, which was illustrated by the previous simple
example where the word running was stemmed to its root form run.

[242]

http://www.nltk.org
http://www.nltk.org/book/

Chapter 8

The Porter stemming algorithm is probably the oldest and simplest
stemming algorithm. Other popular stemming algorithms include the
newer Snowball stemmer (Porter2 or "English" stemmer) or the Lancaster
stemmer (Paice-Husk stemmer), which is faster but also more aggressive
than the Porter stemmer. Those alternative stemming algorithms are also
available through the NLTK package (http://www.nltk.org/api/
nltk.stem.html).

% While stemming can create non-real words, such as thu, (from thus) as
S~ shown in the previous example, a technique called lemmatization aims to

obtain the canonical (grammatically correct) forms of individual words—
the so-called lemmas. However, lemmatization is computationally more
difficult and expensive compared to stemming and, in practice, it has
been observed that stemming and lemmatization have little impact on the
performance of text classification (Michal Toman, Roman Tesar, and Karel
Jezek. Influence of word normalization on text classification. Proceedings of
InSciT, pages 354-358, 2006).

Before we jump into the next section where will train a machine learning model
using the bag-of-words model, let us briefly talk about another useful topic called
stop-word removal. Stop-words are simply those words that are extremely common
in all sorts of texts and likely bear no (or only little) useful information that can be
used to distinguish between different classes of documents. Examples of stop-words
are is, and, has, and the like. Removing stop-words can be useful if we are working
with raw or normalized term frequencies rather than tf-idfs, which are already
downweighting frequently occurring words.

In order to remove stop-words from the movie reviews, we will use the set of 127
English stop-words that is available from the NLTK library, which can be obtained
by calling the nl1tk.download function:

>>> import nltk
>>> nltk.download ('stopwords')

After we have downloaded the stop-words set, we can load and apply the English
stop-word set as follows:

>>> from nltk.corpus import stopwords

>>> stop = stopwords.words ('english')

>>> [w for w in tokenizer porter('a runner likes running and runs a
lot') [-10:] if w not in stop]

['runner', 'like', 'run', 'run', 'lot']

[243]

http://www.nltk.org/api/nltk.stem.html
http://www.nltk.org/api/nltk.stem.html

Applying Machine Learning to Sentiment Analysis

Training a logistic regression model for
document classification

In this section, we will train a logistic regression model to classify the movie reviews
into positive and negative reviews. First, we will divide the DataFrame of cleaned
text documents into 25,000 documents for training and 25,000 documents for testing:

>>> X _train = df.loc[:25000, 'review'].values
>>> y train = df.loc[:25000, 'sentiment'].values
>>> X _test = df.loc[25000:, 'review'].values

>>> y test = df.loc[25000:, 'sentiment'].values

Next we will use a GridsearchCV object to find the optimal set of parameters for our
logistic regression model using 5-fold stratified cross-validation:

>>> from sklearn.grid search import GridSearchCVv
>>> from sklearn.pipeline import Pipeline
>>> from sklearn.linear model import LogisticRegression
>>> from sklearn.feature_extraction.text import TfidfVectorizer
>>> tfidf = TfidfVectorizer (strip_ accents=None,
lowercase=False,
preprocessor=None)

>>> param grid = [{'vect ngram range': [(1,1)],
'vect_ stop words': [stop, None],
'vect_ tokenizer': [tokenizer,

tokenizer porter],
'clf penalty': ['1l1', '1l2'],
'elf C': [1.0, 10.0, 100.01},
{'vect ngram range': [(1,1)],

'vect_ stop words': [stop, None],
'vect_ tokenizer': [tokenizer,

tokenizer porter],
'vect_ use idf':[False],
'vect_ norm': [None],
'clf penalty': ['1l1', '1l2'],
'e¢lf C': [1.0, 10.0, 100.0]}
R]
>>> 1lr tfidf = Pipeline([('vect',6 tfidf),
('clf',
Ce. LogisticRegression(random state=0))])
>>> gs_1lr_ tfidf = GridSearchCV(lr_tfidf, param grid,
scoring="'accuracy',
cv=5, verbose=1,
.. n_jobs=-1)
>>> gs_1lr_ tfidf.fit (X train, y train)

[244]

Chapter 8

When we initialized the GridsearchcV object and its parameter grid using

the preceding code, we restricted ourselves to a limited number of parameter
combinations since the number of feature vectors, as well as the large vocabulary,
can make the grid search computationally quite expensive; using a standard Desktop
computer, our grid search may take up to 40 minutes to complete.

In the previous code example, we replaced the countvectorizer and
TfidfTransformer from the previous subsection with the Tfidfvectorizer,
which combines the latter transformer objects. Our param_grid consisted of two
parameter dictionaries. In the first dictionary, we used the TfidfVectorizer
with its default settings (use_idf=True, smooth_idf=True, and norm='12") to
calculate the tf-idfs; in the second dictionary, we set those parameters to

use idf=False, smooth idf=False, and norm=None in order to train a model
based on raw term frequencies. Furthermore, for the logistic regression classifier
itself, we trained models using L2 and L1 regularization via the penalty parameter
and compared different regularization strengths by defining a range of values for
the inverse-regularization parameter c.

After the grid search has finished, we can print the best parameter set:

>>> print ('Best parameter set: %s ' % gs lr tfidf.best params)

Best parameter set: {'clf C': 10.0, 'vect stop words': None,
'clf penalty': 'l2', 'vect tokenizer': <function tokenizer at
0x7£6c704948c8>, 'vect ngram range': (1, 1)}

As we can see here, we obtained the best grid search results using the regular
tokenizer without Porter stemming, no stop-word library, and tf-idfs in combination
with a logistic regression classifier that uses L2 regularization with the regularization
strength c=10.0.

Using the best model from this grid search, let us print the 5-fold cross-validation
accuracy scores on the training set and the classification accuracy on the test dataset:

>>> print ('CV Accuracy: %.3f'
R % gs_lr tfidf.best score)
CV Accuracy: 0.897

>>> clf = gs 1lr tfidf.best estimator
>>> print ('Test Accuracy: %.3f'

.. % clf.score(X test, y test))
Test Accuracy: 0.899

The results reveal that our machine learning model can predict whether a movie
review is positive or negative with 90 percent accuracy.

[245]

Applying Machine Learning to Sentiment Analysis

A still very popular classifier for text classification is the Naive Bayes
classifier, which gained popularity in applications of e-mail spam
filtering. Naive Bayes classifiers are easy to implement, computationally
. efficient, and tend to perform particularly well on relatively small datasets
% compared to other algorithms. Although we don't discuss Naive Bayes
s classifiers in this book, the interested reader can find my article about
Naive Text classification that I made freely available on arXiv (S. Raschka.
Naive Bayes and Text Classification I - introduction and Theory. Computing
Research Repository (CoRR), abs/1410.5329, 2014. http: //arxiv.org/
pdf/1410.5329v3.pdf).

Working with bigger data — online
algorithms and out-of-core learning

If you executed the code examples in the previous section, you may have noticed
that it could be computationally quite expensive to construct the feature vectors for
the 50,000 movie review dataset during grid search. In many real-world applications
it is not uncommon to work with even larger datasets that may even exceed our
computer's memory. Since not everyone has access to supercomputer facilities, we
will now apply a technique called out-of-core learning that allows us to work with
such large datasets.

Back in Chapter 2, Training Machine Learning Algorithms for Classification, we
introduced the concept of stochastic gradient descent, which is an optimization
algorithm that updates the model's weights using one sample at a time. In this
section, we will make use of the partial fit function of the SGDClassifier in
scikit-learn to stream the documents directly from our local drive and train a logistic
regression model using small minibatches of documents.

First, we define a tokenizer function that cleans the unprocessed text data from
our movie_data.csv file that we constructed in the beginning of this chapter and
separates it into word tokens while removing stop words.

>>> import numpy as np
>>> import re
>>> from nltk.corpus import stopwords

>>> stop = stopwords.words ('english')
>>> def tokenizer (text) :
text = re.sub('<[*>]1*>', '', text)
emoticons = re.findall(' (?::|;]|=) (?:-)2(?:\) |\ (|D|P)",
text.lower())
text = re.sub (' [\W]+', ' ', text.lower()) \

[246]

http://arxiv.org/pdf/1410.5329v3.pdf
http://arxiv.org/pdf/1410.5329v3.pdf

Chapter 8

+ ' '.join(emoticons) .replace('-', ''")
tokenized = [w for w in text.split() if w not in stopl
return tokenized

Next we define a generator function, stream_docs, that reads in and returns one
document at a time:

>>> def stream docs(path):
with open(path, 'r') as csv:
next (csv) # skip header
for line in csv:
text, label = linel[:-3], int(line[-21)
yield text, label

To verify that our stream docs function works correctly, let us read in the first
document from the movie_data.csv file, which should return a tuple consisting of
the review text as well as the corresponding class label:

>>> next (stream docs (path='./movie data.csv'))
('""In 1974, the teenager Martha Moxley ... ',1)

We will now define a function, get minibatch, that will take a document stream
from the stream docs function and return a particular number of documents
specified by the size parameter:

>>> def get minibatch(doc_stream, size):
docs, y = [1, [I
try:
for in range(size):
text, label = next (doc_ stream)
docs.append (text)
y.append (label)
except StopIteration:
return None, None
return docs, y

Unfortunately, we can't use the Countvectorizer for out-of-core learning since it
requires holding the complete vocabulary in memory. Also, the TfidfVectorizer
needs to keep the all feature vectors of the training dataset in memory to calculate
the inverse document frequencies. However, another useful vectorizer for text
processing implemented in scikit-learn is HashingVectorizer. HashingVectorizer
is data-independent and makes use of the Hashing trick via the 32-bit MurmurHash3
algorithm by Austin Appleby (https://sites.google.com/site/murmurhash/).

>>> from sklearn.feature extraction.text import HashingVectorizer
>>> from sklearn.linear model import SGDClassifier

[247]

https://sites.google.com/site/murmurhash/

Applying Machine Learning to Sentiment Analysis

>>> vect = HashingVectorizer (decode error='ignore',

>>>

>>>

n features=2**21,
preprocessor=None,
tokenizer=tokenizer)
clf = SGDClassifier(loss='log', random state=1, n iter=1)
doc_stream = stream docs (path='./movie data.csv')

Using the preceding code, we initialized HashingVectorizer with our tokenizer
function and set the number of features to 2?'. Furthermore, we reinitialized a
logistic regression classifier by setting the 1oss parameter of the sGbclassifier to
log—note that, by choosing a large number of features in the Hashingvectorizer,
we reduce the chance to cause hash collisions but we also increase the number of
coefficients in our logistic regression model.

Now comes the really interesting part. Having set up all the complementary
functions, we can now start the out-of-core learning using the following code:

>>>
>>>
>>>

>>>

0%

import pyprind
pbar = pyprind.ProgBar (45)
classes = np.array ([0, 1])
for _ in range(45):
X train, y train = get minibatch(doc_stream, size=1000)
if not X train:
break
X train = vect.transform(X train)
clf.partial fit(X train, y train, classes=classes)
pbar.update ()
100%

CHEHH R HHHAE] | ETA[sec]l: 0.000
Total time elapsed: 50.063 sec

Again, we made use of the PyPrind package in order to estimate the progress of our
learning algorithm. We initialized the progress bar object with 45 iterations and, in
the following for loop, we iterated over 45 minibatches of documents where each
minibatch consists of 1,000 documents each.

Having completed the incremental learning process, we will use the last 5,000
documents to evaluate the performance of our model:

>>>

>>>

>>>

X test, y test = get minibatch(doc_stream, size=5000)
X test = vect.transform(X test)
print ('Accuracy: %.3f' % clf.score(X test, y test))

Accuracy: 0.868

[248]

Chapter 8

As we can see, the accuracy of the model is 87 percent, slightly below the
accuracy that we achieved in the previous section using the grid search for
hyperparameter tuning. However, out-of-core learning is very memory-efficient
and took less than a minute to complete. Finally, we can use the last 5,000
documents to update our model:

>>> clf = clf.partial fit (X test, y test)

If you are planning to continue directly with Chapter 9, Embedding a Machine Learning
Model into a Web Application, I recommend you to keep the current Python session
open. In the next chapter, will use the model that we just trained to learn how to save
it to disk for later use and embed it into a web application.

Although the bag-of-words model is still the most commonly used

model for text classification, it does not consider sentence structure and
grammar. A popular extension of the bag-of-words model is Latent
Dirichlet allocation, which is a topic model that considers the latent
semantics of words (D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet
allocation. The Journal of machine Learning research, 3:993-1022, 2003).

A more modern alternative to the bag-of-words model is word2vec, an
. algorithm that Google released in 2013 (T. Mikolov, K. Chen, G. Corrado,
% and J. Dean. Efficient Estimation of Word Representations in Vector Space.

L= arXiv preprint arXiv:1301.3781, 2013). The word2vec algorithm is an
unsupervised learning algorithm based on neural networks that attempts
to automatically learn the relationship between words. The idea behind
word2vec is to put words that have similar meanings into similar clusters;
via clever vector-spacing, the model can reproduce certain words using
simple vector math, for example, king — man + woman = queen.

The original C-implementation, with useful links to the relevant papers
and alternative implementations, can be found at https://code.
google.com/p/word2vec/.

[249]

https://code.google.com/p/word2vec/
https://code.google.com/p/word2vec/

Applying Machine Learning to Sentiment Analysis

Summary

In this chapter, we learned how to use machine learning algorithms to classify text
documents based on their polarity, which is a basic task in sentiment analysis in
the field of natural language processing. Not only did we learn how to encode a
document as a feature vector using the bag-of-words model, but we also learned
how to weight the term frequency by relevance using term frequency-inverse
document frequency.

Working with text data can be computationally quite expensive due to the large
feature vectors that are created during this process; in the last section, we learned
how to utilize out-of-core or incremental learning to train a machine learning
algorithm without loading the whole dataset into a computer's memory.

In the next chapter, we will use our document classifier and learn how to embed it
into a web application.

[250]

Embedding a Machine
Learning Model into
a Web Application

In the previous chapters, you learned about the many different machine

learning concepts and algorithms that can help us with better and more efficient
decision-making. However, machine learning techniques are not limited to offline
applications and analyses, and they can be the predictive engine of your web
services. For example, popular and useful applications of machine learning models
in web applications include spam detection in submission forms, search engines,
recommendation systems for media or shopping portals, and many more.

In this chapter, you will learn how to embed a machine learning model into
a web application that can not only classify but also learn from data in real-time.
The topics that we will cover are as follows:

* Saving the current state of a trained machine learning model

* Using SQLite databases for data storage

* Developing a web application using the popular Flask web framework

* Deploying a machine learning application to a public web server

[251]

Embedding a Machine Learning Model into a Web Application

Serializing fitted scikit-learn estimators

Training a machine learning model can be computationally quite expensive, as we
have seen in Chapter 8, Applying Machine Learning to Sentiment Analysis. Surely, we
don't want to train our model every time we close our Python interpreter and want
to make a new prediction or reload our web application? One option for model
persistence is Python's in-built pickle module (https://docs.python.org/3.4/
library/pickle.html), which allows us to serialize and de-serialize Python object
structures to compact byte code, so that we can save our classifier in its current state
and reload it if we want to classify new samples without needing to learn the model
from the training data all over again. Before you execute the following code, please
make sure that you have trained the out-of-core logistic regression model from the
last section of Chapter 8, Applying Machine Learning to Sentiment Analysis, and have it
ready in your current Python session:

>>> import pickle
>>> import os
>>> dest = os.path.join('movieclassifier', 'pkl objects')
>>> if not os.path.exists(dest):
ce os.makedirs (dest)
>>> pickle.dump (stop,
open (os.path.join(dest, 'stopwords.pkl'),'wb'),
c. protocol=4)
>>> pickle.dump (clf,
open (os.path.join(dest, 'classifier.pkl'), 'wb'),
protocol=4)

Using the preceding code, we created a movieclassifier directory where we will
later store the files and data for our web application. Within this movieclassifier
directory, we created a pkl_objects subdirectory to save the serialized Python
objects to our local drive. Via pickle's dump method, we then serialized the trained
logistic regression model as well as the stop word set from the NLTK library so that
we don't have to install the NLTK vocabulary on our server. The dump method takes
as its first argument the object that we want to pickle, and for the second argument
we provided an open file object that the Python object will be written to. Via the wb
argument inside the open function, we opened the file in binary mode for pickle,
and we set protocol=4 to choose the latest and most efficient pickle protocol that
has been added to Python 3.4. (If you have problems using protocol 4, please check
if you are using the latest Python 3 version install. Alternatively, you may consider
choosing a lower protocol number)

[252]

https://docs.python.org/3.4/library/pickle.html
https://docs.python.org/3.4/library/pickle.html

Chapter 9

Our logistic regression model contains several NumPy arrays, such as the
. weight vector, and a more efficient way to serialize NumPy arrays is to
% use the alternative joblib library. To ensure compatibility with the server
L environment that we will use in later sections, we will use the standard
pickle approach. If you are interested, you can find more information
about joblib at https://pypi.python.org/pypi/joblib.

We don't need to pickle the HashingVectorizer, since it does not need to be fitted.
Instead, we can create a new Python script file, from which we can import the
vectorizer into our current Python session. Now, copy the following code and

save it as vectorizer.py in the movieclassifier directory:

from sklearn.feature extraction.text import HashingVectorizer
import re

import os

import pickle

cur_dir = os.path.dirname(_file)

stop = pickle.load (open/(
os.path.join(cur dir,
'pkl objects',
'stopwords.pkl'), 'rb'))

def tokenizer (text) :

text = re.sub('<[*>]1*>', '', text)
emoticons = re.findall (' (?::];|=) (?:-)2(?2:\)|\(|D|P)",
text.lower())
text = re.sub('[\W]+', ' ', text.lower()) \
+ ' '.join(emoticons) .replace('-', ''")
tokenized = [w for w in text.split() if w not in stopl]

return tokenized

vect = HashingVectorizer (decode error='ignore',
n_features=2**21,
preprocessor=None,
tokenizer=tokenizer)

[253]

https://pypi.python.org/pypi/joblib

Embedding a Machine Learning Model into a Web Application

After we have pickled the Python objects and created the vectorizer.py file, it
would now be a good idea to restart our Python interpreter or IPython Notebook
kernel to test if we can deserialize the objects without error. However, please note
that unpickling data from an untrusted source can be a potential security risk since
the pickle module is not secure against malicious code. From your terminal, navigate
to the movieclassifier directory, start a new Python session and execute the
following code to verify that you can import the vectorizer and unpickle the classifier:

>>> import pickle
>>> import re
>>> import os
>>> from vectorizer import vect
>>> clf = pickle.load (open (
os.path.join('pkl objects',
'classifier.pkl'), 'rb'))

After we have successfully loaded the vectorizer and unpickled the classifier, we can
now use these objects to pre-process document samples and make predictions about
their sentiment:

>>> import numpy as np

>>> label = {0:'negative', 1:'positive'}

>>> example = ['I love this movie']

>>> X = vect.transform(example)

>>> print ('Prediction: %s\nProbability: %.2£%%' %\
(label [clf.predict (X) [0]],
np.max (clf.predict proba (X)) *100))

Prediction: positive

Probability: 91.56%

Since our classifier returns the class labels as integers, we defined a simple

Python dictionary to map those integers to their sentiment. We then used the
HashingVectorizer to transform the simple example document into a word vector
x. Finally, we used the predict method of the logistic regression classifier to predict
the class label as well as the predict_proba method to return the corresponding
probability of our prediction. Note that the predict_proba method call returns an
array with a probability value for each unique class label. Since the class label with
the largest probability corresponds to the class label that is returned by the predict
call, we used the np . max function to return the probability of the predicted class.

[254]

Chapter 9

Setting up a SQL.ite database for data
storage

In this section, we will set up a simple SQLite database to collect optional feedback
about the predictions from users of the web application. We can use this feedback to
update our classification model. SQLite is an open source SQL database engine that
doesn't require a separate server to operate, which makes it ideal for smaller projects
and simple web applications. Essentially, a SQLite database can be understood

as a single, self-contained database file that allows us to directly access storage

files. Furthermore, SQLite doesn't require any system-specific configuration and is
supported by all common operating systems. It has gained a reputation for being
very reliable as it is used by popular companies, such as Google, Mozilla, Adobe,
Apple, Microsoft, and many more. If you want to learn more about SQLite,

I recommend you visit the official website at http://www.sglite.org.

Fortunately, following Python's batteries included philosophy, there is already an
APl in the Python standard library, sqlite3, which allows us to work with SQLite
databases (for more information about sqlite3, please visit https://docs.python.
org/3.4/library/sqlite3.html).

By executing the following code, we will create a new SQLite database inside the
movieclassifier directory and store two example movie reviews:

>>> import sqglite3
>>> import os
>>> conn = sglite3.connect ('reviews.sqglite')
>>> Cc = conn.cursor ()
>>> c.execute ('CREATE TABLE review db'\
' (review TEXT, sentiment INTEGER, date TEXT)')
>>> examplel = 'I love this movie'
>>> c.execute ("INSERT INTO review db"\
" (review, sentiment, date) VALUES"\
" (?, ?, DATETIME('now'))", (examplel, 1))
>>> example2 = 'I disliked this movie!'
>>> c.execute ("INSERT INTO review db"\
" (review, sentiment, date) VALUES"\
" (?, ?, DATETIME('now'))", (example2, 0))
>>> conn.commit ()
>>> conn.close()

[255]

http://www.sqlite.org
https://docs.python.org/3.4/library/sqlite3.html
https://docs.python.org/3.4/library/sqlite3.html

Embedding a Machine Learning Model into a Web Application

Following the preceding code example, we created a connection (conn) to an SQLite
database file by calling sqlite3's connect method, which created the new database
file reviews.sqglite in the movieclassifier directory if it didn't already exist.
Please note that SQLite doesn't implement a replace function for existing tables;

you need to delete the database file manually from your file browser if you want to
execute the code a second time. Next, we created a cursor via the cursor method,
which allows us to traverse over the database records using the powerful SQL
syntax. Via the first execute call, we then created a new database table, review_db.
We used this to store and access database entries. Along with review_db, we also
created three columns in this database table: review, sentiment, and date. We used
these to store two example movie reviews and respective class labels (sentiments).
Using the SQL command DATETIME ('now'), we also added date-and timestamps

to our entries. In addition to the timestamps, we used the question mark symbols

(?) to pass the movie review texts (examplel and example2) and the corresponding
class labels (1 and 0) as positional arguments to the execute method as members of
a tuple. Lastly, we called the commit method to save the changes that we made to the
database and closed the connection via the close method.

To check if the entries have been stored in the database table correctly, we will now
reopen the connection to the database and use the SQL SELECT command to fetch all
rows in the database table that have been committed between the beginning of the
year 2015 and today:

>>> conn = sglite3.connect('reviews.sqglite!')
>>> C = conn.cursor ()
>>> c.execute ("SELECT * FROM review db WHERE date"\
" BETWEEN '2015-01-01 00:00:00' AND DATETIME('now')")
>>> results = c.fetchall()
>>> conn.close()
>>> print (results)

[('I love this movie', 1, '2015-06-02 16:02:12'), ('I disliked this
movie', 0, '2015-06-02 16:02:12"')]

Alternatively, we could also use the free Firefox browser plugin SQLite Manager
(available at https://addons.mozilla.org/en-US/firefox/addon/sqlite-
manager /), which offers a nice GUI interface for working with SQLite databases
as shown in the following screenshot:

[256]

https://addons.mozilla.org/en-US/firefox/addon/sqlite-manager/
https://addons.mozilla.org/en-US/firefox/addon/sqlite-manager/

Chapter 9

% D @ £ 1 =4 ﬁ T M Directory B | (Select Profile Database) a Go

reviews.sqlite u [Structure Browse & Search Execute SQL

b Master Table (1) |

v Tables (1) TABLE review_db Search Show All Add
v review db rowid review sentiment date
reviow 1 [11ove this movie |1 |e015-08-02 16:02:12 |
sentment i 2 |1 distiked this movie o |e015-06-02 16:02:12 |
date 5
> Views (0) :
> Indexes (0) &
> Triggers (0)

SQLite 2.8.5 Gecko33.1 08.3.1-signed Exclusive Number of files in selected directory: 7

Developing a web application with Flask

After we have prepared the code to classify movie reviews in the previous
subsection, let's discuss the basics of the Flask web framework to develop our web
application. After Armin Ronacher's initial release of Flask in 2010, the framework
has gained huge popularity over the years and examples of popular applications that
make use of Flask include LinkedIn and Pinterest. Since Flask is written in Python, it
provides us Python programmers with a convenient interface for embedding existing
Python code such as our movie classifier.

Flask is also known as microframework, which means that its core is
kept lean and simple but can be easily extended with other libraries.
» Although the learning curve of the lightweight Flask API is not
% nearly as steep as those of other popular Python web frameworks,
e such as Django, I encourage you to take a look at the official Flask
documentation at http://flask.pocoo.org/docs/0.10/ to
learn more about its functionality.

If the Flask library is not already installed in your current Python environment,
you can simply install it via pip from your terminal (at the time of writing, the
latest stable release was Version 0.10.1):

pip install flask

[257]

http://flask.pocoo.org/docs/0.10/

Embedding a Machine Learning Model into a Web Application

Our first Flask web application

In this subsection, we will develop a very simple web application to become more
familiar with the Flask API before we implement our movie classifier. First, we create
a directory tree:

1st flask app_ 1/
app.py
templates/
first _app.html

The app . py file will contain the main code that will be executed by the Python
interpreter to run the Flask web application. The templates directory is the directory
in which Flask will look for static HTML files for rendering in the web browser.

Let's now take a look at the contents of app .py:

from flask import Flask, render template
app = Flask(__name_)

@app.route('/")
def index():
return render_ template('first app.html')

if _ name_

== '_main__ ':
app.run/()

In this case, we run our application as a single module, thus we initialized a new
Flask instance with the argument __name__ to let Flask know that it can find the
HTML template folder (templates) in the same directory where it is located. Next,
we used the route decorator (eapp.route ('/')) to specify the URL that should
trigger the execution of the index function. Here, our index function simply renders
the HTML file first_app.html, which is located in the templates folder. Lastly,
we used the run function to only run the application on the server when this script
is directly executed by the Python interpreter, which we ensured using the i £
statement with name == ' main_ '.

[258]

Chapter 9

Now, let's take a look at the contents of the first_app.html file. If you are not
familiar with the HTML syntax yet, I recommend you visit http://www.w3schools.
com/html/default.asp for useful tutorials for learning the basics of HTML.

<ldoctype htmls>
<html>
<head>
<title>First app</title>
</head>
<body>
<div>Hi, this is my first Flask web app!</div>
</body>
</html>

Here, we have simply filled an empty HTML template file with a div element

(a block level element) that contains the sentence: Hi, this is my first Flask
web app!. Conveniently, Flask allows us to run our apps locally, which is useful
for developing and testing web applications before we deploy them on a public
web server. Now, let's start our web application by executing the command from
the terminal inside the 1st_flask_app_1 directory:

python3 app.py
We should now see a line such as the following displayed in the terminal:
* Running on http://127.0.0.1:5000/

This line contains the address of our local server. We can now enter this address in
our web browser to see the web application in action. If everything has executed
correctly, we should now see a simple website with the content: Hi, this is my first
Flask web app!.

Form validation and rendering

In this subsection, we will extend our simple Flask web application with HTML
form elements to learn how to collect data from a user using the WTForms library
(https://wtforms.readthedocs.org/en/latest/), which can be installed via pip:

pip install wtforms

[259]

http://www.w3schools.com/html/default.asp
http://www.w3schools.com/html/default.asp
https://wtforms.readthedocs.org/en/latest/

Embedding a Machine Learning Model into a Web Application

This web app will prompt a user to type in his or her name into a text field, as shown
in the following screenshot:

o0 e [l * LA ALK 127.0.0.1 &

What's your name?

Sebastian|

Say Hello

After the submission button (Say Hello) has been clicked and the form is validated,
a new HTML page will be rendered to display the user's name.

o009 I * Y HAARKL 127.0.0.1:5000/hello]

Hello Sebastian

The new directory structure that we need to set up for this application looks like this:

1st flask app 2/

app.py

static/
style.css

templates/
_formhelpers.html
first app.html
hello.html

The following are the contents of our modified app . py file:

from flask import Flask, render template, request
from wtforms import Form, TextAreaField, validators

[260]

Chapter 9

app = Flask(_ name)

class HelloForm(Form) :
sayhello = TextAreaField('', [validators.DataRequired()])

@app.route('/")
def index():
form = HelloForm(request.form)
return render template('first app.html', form=form)

@app.route ('/hello', methods=['POST'])

def hello():
form = HelloForm(request.form)
if request.method == 'POST' and form.validate() :
name = request.form['sayhello']
return render template('hello.html', name=name)
return render template('first app.html', form=form)
if name == ' main ':

app . run (debug=True)

Using wt forms, we extended the index function with a text field that we will
embed in our start page using the TextAreaField class, which automatically checks
whether a user has provided valid input text or not. Furthermore, we defined a

new function, hello, which will render an HTML page hello.html if the form has
been validated. Here, we used the POST method to transport the form data to the
server in the message body. Finally, by setting the argument debug=True inside the
app . run method, we further activated Flask's debugger. This is a useful feature for
developing new web applications.

Now, we will implement a generic macro in the file _formhelpers.html via the
Jinja2 templating engine, which we will later import in our first_app.html file
to render the text field:

{% macro render field(field) %}
<dt>{{ field.label }}
<dd>{{ field(**kwargs) |safe }}
{$ if field.errors %}
<ul class=errors>
{% for error in field.errors %}
{{ error }}</1lis
{% endfor %}
</uls>
{% endif %}
</dd>
{% endmacro %}

[261]

Embedding a Machine Learning Model into a Web Application

An in-depth discussion about the Jinja2 templating language is beyond the scope
of this book. However, you can find a comprehensive documentation of the Jinja2
syntax at http://jinja.pocoo.org.

Next, we set up a simple Cascading Style Sheets (CSS) file, style.css, to
demonstrate how the look and feel of HTML documents can be modified. We have
to save the following CSS file, which will simply double the font size of our HTML
body elements, in a subdirectory called static, which is the default directory where
Flask looks for static files such as CSS. The code is as follows:

body
font-size: 2em;

}

The following are the contents of the modified first_app.html file that will now
render a text form where a user can enter a name:

<!doctype htmls>
<html>
<head>
<title>First app</title>
<link rel="stylesheet" href="{{ url for('static',
filename="'style.css') }}">
</head>
<body>

{$ from " formhelpers.html" import render field %}

<div>What's your name?</div>
<form method=post action="/hello">

<dl>

{{ render field(form.sayhello) }}

</dl>

<input type=submit value='Say Hello' name='submit btn's>
</form>

</body>
</html>

[262]

http://jinja.pocoo.org

Chapter 9

In the header section of first app.html, we loaded the CSS file. It should now
alter the size of all text elements in the HTML body. In the HTML body section, we
imported the form macro from _formhelpers.html and we rendered the sayhello
form that we specified in the app . py file. Furthermore, we added a button to the
same form element so that a user can submit the text field entry.

Lastly, we create a hello.html file that will be rendered via the line return
render template('hello.html', name=name) inside the hello function,
which we defined in the app . py script to display the text that a user submitted
via the text field. The code is as follows:

<!ldoctype htmls>
<html>
<head>
<title>First app</title>
<link rel="stylesheet" href="{{ url for('static',
filename='style.css') }}">
</head>
<body>

<divsHello {{ name }}</div>
</body>
</html>

Having set up our modified Flask web application, we can run it locally by executing
the following command from the app's main directory and we can view the result in
our web browser at http://127.0.0.1:5000/:

python3 app.py

If you are new to web development, some of those concepts may seem
very complicated at first sight. In that case, I encourage you to simply
+ set up the preceding files in a directory on your hard drive and examine
% them closely. You will see that the Flask web framework is actually pretty
g straightforward and much simpler than it might initially appear! Also, for
more help, don't forget to look at the excellent Flask documentation and
examples at http://flask.pocoo.org/docs/0.10/.

[263]

http://flask.pocoo.org/docs/0.10/

Embedding a Machine Learning Model into a Web Application

Turning the movie classifier into a web
application

Now that we are somewhat familiar with the basics of Flask web development, let's
advance to the next step and implement our movie classifier into a web application.

In this section, we will develop a web application that will first prompt a user to
enter a movie review, as shown in the following screenshot:

[] ® < Em| fat @ ACA (D) & raschkas.pythonanywhere.com/ & i a

Please enter your movie review:

| love this movie!

Submit review

After the review has been submitted, the user will see a new page that shows the
predicted class label and the probability of the prediction. Furthermore, the user
will be able to provide feedback about this prediction by clicking on the Correct or
Incorrect button, as shown in the following screenshot:

[264]

Chapter 9

ene < O @ © AAlO raschias pynonanynereconvesus & % 5[
Your movie review:

I love this movie!

Prediction:

This movie review is positive (probability: 90.86%).

Correct Incorrect

Submit another review

If a user clicked on either the Correct or Incorrect button, our classification model
will be updated with respect to the user's feedback. Furthermore, we will also store
the movie review text provided by the user as well as the suggested class label,
which can be inferred from the button click, in a SQLite database for future reference.
The third page that the user will see after clicking on one of the feedback buttons is a
simple thank you screen with a Submit another review button that redirects the user
back to the start page. This is shown in the following screenshot:

[] ® < [Em} fat @ AA @ raschkas.pythonanywhere.com/thanks O | a |+

Thank you for your feedback!

Submit another review

Before we take a closer look at the code implementation of this web application, I
encourage you to take a look at the live demo that I uploaded at http://raschkas.
pythonanywhere. com to get a better understanding of what we are trying to
accomplish in this section.

[265]

http://raschkas.pythonanywhere.com
http://raschkas.pythonanywhere.com

Embedding a Machine Learning Model into a Web Application

To start with the big picture, let's take a look at the directory tree that we are going to
create for this movie classification app, which is shown here:

L app.py
¥ || pkl_objects
ﬁ classifier.pkl
4 stopwords.pkl
| reviews.sqlite
v [static

@ style.css
v | | templates

o _formhelpers.htmi
e results.html
e reviewform.html
@ thanks.html

L4 vectorizer.py

In the previous section of this chapter, we already created the vectorizer.py file,
the SQLite database reviews.sglite, and the pkl objects subdirectory with the
pickled Python objects.

The app . py file in the main directory is the Python script that contains our Flask
code, and we will use the review.sglite database file (which we created earlier

in this chapter) to store the movie reviews that are being submitted to our web app.
The templates subdirectory contains the HTML templates that will be rendered by
Flask and displayed in the browser, and the static subdirectory will contain

a simple CSS file to adjust the look of the rendered HTML code.

Since the app . py file is rather long, we will conquer it in two steps. The first section
of app . py imports the Python modules and objects that we are going to need, as
well as the code to unpickle and set up our classification model:

from flask import Flask, render template, request
from wtforms import Form, TextAreaField, validators
import pickle

import sqglite3

import os

import numpy as np

[266]

Chapter 9

import HashingVectorizer from local dir
from vectorizer import vect

app = Flask(_ name)

##H###H##H#H Preparing the Classifier
cur dir = os.path.dirname(file)
clf = pickle.load(open(os.path.join(cur_ dir,
'pkl objects/classifier.pkl'), 'rb'))
db = os.path.join(cur dir, 'reviews.sqglite')

def classify(document) :
label = {0: 'negative', 1: 'positive'}
X = vect.transform([document])
y = clf.predict (X) [0]
proba = np.max(clf.predict proba (X))
return label[y], proba

def train(document, vy):
X = vect.transform([document])
clf.partial fit (X, [y])

def sglite entry(path, document, y):
conn = sqglite3.connect (path)
c = conn.cursor ()
c.execute ("INSERT INTO review db (review, sentiment, date)"\
" VALUES (?, ?, DATETIME('now'))", (document, y))
conn.commit ()
conn.close ()

This first part of the app . py script should look very familiar to us by now. We simply
imported the HashingVectorizer and unpickled the logistic regression classifier.
Next, we defined a classify function to return the predicted class label as well

as the corresponding probability prediction of a given text document. The train
function can be used to update the classifier given that a document and a class label
are provided. Using the sqlite_entry function, we can store a submitted movie
review in our SQLite database along with its class label and timestamp for our
personal records. Note that the c1f object will be reset to its original, pickled state if
we restart the web application. At the end of this chapter, you will learn how to use
the data that we collect in the SQLite database to update the classifier permanently.

[267]

Embedding a Machine Learning Model into a Web Application

The concepts in the second part of the app . py script should also look quite familiar
to us:

app = Flask(_name)
class ReviewForm (Form) :
moviereview = TextAreaField('"',
[validators.DataRequired (),
validators.length (min=15)1)

@app.route('/")
def index():
form = ReviewForm(request.form)
return render template('reviewform.html', form=form)

@app.route (' /results', methods=['POST'])
def results():

form = ReviewForm(request.form)
if request.method == 'POST' and form.validate():
review = request.form['moviereview!']

y, proba = classify(review)
return render template('results.html',
content=review,
prediction=y,
probability=round (proba*100, 2))
return render template('reviewform.html', form=form)

@app.route (' /thanks', methods=['POST'])

def feedback():
feedback = request.form['feedback button']
review = request.form['review']
prediction = request.form['prediction']

inv_label = {'negative': 0, 'positive': 1}
y = inv_label [prediction]
if feedback == 'Incorrect':
y = int (not (y))
train(review, vy)
sglite entry(db, review, y)
return render template('thanks.html')

if name == ' main ':

app . run (debug=True)

[268]

Chapter 9

We defined a ReviewForm class that instantiates a TextAreaField, which will

be rendered in the reviewform.html template file (the landing page of our web

app). This, in turn, is rendered by the index function. With the validators.

length (min=15) parameter, we require the user to enter a review that contains at least
15 characters. Inside the results function, we fetch the contents of the submitted web
form and pass it on to our classifier to predict the sentiment of the movie classifier,
which will then be displayed in the rendered results.html template.

The feedback function may look a little bit complicated at first glance. It essentially
fetches the predicted class label from the results.html template if a user clicked

on the Correct or Incorrect feedback button, and transforms the predicted sentiment
back into an integer class label that will be used to update the classifier via the train
function, which we implemented in the first section of the app . py script. Also, a new
entry to the SQLite database will be made via the sgqlite_entry function if feedback
was provided, and eventually the thanks.html template will be rendered to thank
the user for the feedback.

Next, let's take a look at the reviewform.html template, which constitutes the
starting page of our application:

<!ldoctype htmls>
<html>
<head>
<titles>Movie Classification</titles>
</head>
<body>

<h2>Please enter your movie review:</h2>

)

{$ from " formhelpers.html" import render field %}

<form method=post action="/results">
<dl>
{{ render field(form.moviereview, cols='30', rows='10") }}
</dl>
<div>
<input type=submit value='Submit review' name='submit btn'>
</divs>
</form>

</body>
</html>

[269]

Embedding a Machine Learning Model into a Web Application

Here, we simply imported the same _formhelpers.html template that we defined
in the Form validation and rendering section earlier in this chapter. The render_field
function of this macro is used to render a TextAreaField where a user can provide a
movie review and submit it via the Submit review button displayed at the bottom of
the page. This TextAreaField is 30 columns wide and 10 rows tall.

Our next template, results.html, looks a little bit more interesting;:

<!doctype htmls>
<html>
<head>
<title>Movie Classification</title>
<link rel="stylesheet" href="{{ url for('static',
filename="'style.css') }}">
</head>
<body>

<h3>Your movie review:</h3>
<div>{{ content }}</div>

<h3>Prediction:</h3>
<div>This movie review is {{ prediction }}

°

(probability: {{ probability }}%).</div>

<div id='button's>
<form action="/thanks" method="post">
<input type=submit value='Correct' name='feedback button's>
<input type=submit value='Incorrect' name='feedback button's>
<input type=hidden value='{{ prediction }}' name='prediction'>
<input type=hidden value='{{ content }}' name='review'>
</form>

</div>

<div id='button's>
<form action="/">
<input type=submit value='Submit another review's>
</form>

</div>

</body>
</html>

[270]

Chapter 9

First, we inserted the submitted review as well as the results of the prediction in the
corresponding fields {{ content }}, {{ prediction }},and {{ probability }}
You may notice that we used the {{ content }}and {{ prediction }} placeholder
variables a second time in the form that contains the Correct and Incorrect buttons.
This is a workaround to pOST those values back to the server to update the classifier
and store the review in case the user clicks on one of those two buttons. Furthermore,
we imported a CSSfile (style.css) at the beginning of the results.html file. The
setup of this file is quite simple; it limits the width of the contents of this web app to
600 pixels and moves the Incorrect and Correct buttons labeled with the div id

but ton down by 20 pixels:

body{
width:600px;

}

#button{
padding-top: 20px;

}

This CSS file is merely a placeholder, so please feel free to adjust it to adjust the look
and feel of the web app to your liking.

The last HTML file we will implement for our web application is the thanks.html
template. As the name suggests, it simply provides a nice thank you message to the
user after providing feedback via the Correct or Incorrect button. Furthermore, we
put a Submit another review button at the bottom of this page, which will redirect
the user to the starting page. The contents of the thanks.html file are as follows:

<ldoctype htmls>
<html>
<head>
<titles>Movie Classification</titles>
</head>
<body>

<h3>Thank you for your feedback!</h3>
<div id='button's>
<form action="/">
<input type=submit value='Submit another review's>
</form>
</divs>

</body>
</html>

[271]

Embedding a Machine Learning Model into a Web Application

Now, it would be a good idea to start the web app locally from our terminal via the
following command before we advance to the next subsection and deploy it on a
public web server:

python3 app.py

After we have finished testing our app, we also shouldn't forget to remove the
debug=True argument in the app. run () command of our app . py script.

Deploying the web application to a public
server

After we have tested the web application locally, we are now ready to deploy our
web application onto a public web server. For this tutorial, we will be using the
PythonAnywhere web hosting service, which specializes in the hosting of Python
web applications and makes it extremely simple and hassle-free. Furthermore,
PythonAnywhere offers a beginner account option that lets us run a single web
application free of charge.

To create a new PythonAnywhere account, we visit the website at https://www.
pythonanywhere . com and click on the Pricing & signup link that is located in the
top-right corner. Next, we click on the Create a Beginner account button where we
need to provide a username, password, and a valid e-mail address. After we have
read and agreed to the terms and conditions, we should have a new account.

Unfortunately, the free beginner account doesn't allow us to access the remote server
via the SSH protocol from our command-line terminal. Thus, we need to use the
PythonAnywhere web interface to manage our web application. But before we can
upload our local application files to the server, need to create a new web application
for our PythonAnywhere account. After we clicking on the Dashboard button in the
top-right corner, we have access to the control panel shown at the top of the page.
Next, we click on the Web tab that is now visible at the top of the page. We proceed
by clicking on the Add a new web app button on the left, which lets us create a new
Python 3.4 Flask web application that we name movieclassifier.

After creating a new application for our PythonAnywhere account, we head over to
the Files tab to upload the files from our local movieclassifier directory using the
PythonAnywhere web interface. After uploading the web application files that we
created locally on our computer, we should have a movieclassifier directory in
our PythonAnywhere account. It contains the same directories and files as our local
movieclassifier directory has, as shown in the following screenshot:

[272]

https://www.pythonanywhere.com
https://www.pythonanywhere.com

Chapter 9

e0e m * O A LAR K (0] & pythonanywhere.com & i] F
25 7
rg!,(j;._, nonanywhere

Consoles Files Web Schedule Databases

/> home > raschkas > & movieclassifier Open Bash console here
Enter new directory name New

& _ pycache_/ [}

%@ pkl_objects/ (7]

& static/ i

& templates/ [}
Enter new file name New

b app.py & & i 201506021635 30KB

E reviews.sqlite 4 i 2015-06-0402:19 7.0KB

Upload a file: Choose File N file selected 6% full (32.2 MB of your 512.0 MB quota)

Copyright © 2015 PythonAnywhere LLP — Terms — Privacy
"Python" is a registered trademark of the Python Software Foundation.

Lastly, we head over to the Web tab one more time and click on the Reload
<username>.pythonanywhere.com button to propagate the changes and refresh our
web application. Finally, our web app should now be up and running and publicly
available via the address <usernames.pythonanywhere. com.

Unfortunately, web servers can be quite sensitive to the tiniest problems
. in our web app. If you are experiencing problems with running the web
a application on PythonAnywhere and are receiving error messages in your
L= browser, you can check the server and error logs which can be accessed
from the Web tab in your PythonAnywhere account to better diagnose
the problem.

[273]

Embedding a Machine Learning Model into a Web Application

Updating the movie review classifier

While our predictive model is updated on-the-fly whenever a user provides
feedback about the classification, the updates to the c1f object will be reset if the
web server crashes or restarts. If we reload the web application, the c1£ object

will be reinitialized from the classifier.pkl pickle file. One option to apply

the updates permanently would be to pickle the c1£ object once again after each
update. However, this would become computationally very inefficient with a
growing number of users and could corrupt the pickle file if users provide feedback
simultaneously. An alternative solution is to update the predictive model from the
feedback data that is being collected in the SQLite database. One option would be
to download the SQLite database from the PythonAnywhere server, update the c1£
object locally on our computer, and upload the new pickle file to PythonAnywhere.
To update the classifier locally on our computer, we create an update. py script file
in the movieclassifier directory with the following contents:

import
import
import
import

pickle
sglite3
numpy as np
os

import HashingVectorizer from local dir
from vectorizer import vect

def update _model (db_path, model, batch size=10000) :
conn = sglite3.connect (db_path)

c = conn.cursor ()

c.execute ('SELECT * from review db')

results = c.fetchmany(batch_size)

while results:

data = np.array(results)

X = datal:, 0]

y = datal:, 1l].astype(int)

classes = np.array ([0, 11)

X train = vect.transform(X)

clf.partial fit(X train, vy,
results =

classes=classes)
c.fetchmany (batch_size)

conn.close ()

return None

[274]

Chapter 9

cur dir = os.path.dirname(file)

clf = pickle.load(open(os.path.join(cur_dir,
'pkl objects',
'classifier.pkl'), 'rb'))

db = os.path.join(cur dir, 'reviews.sqglite')

update model (db _path=db, model=clf, batch size=10000)

Uncomment the following lines if you are sure that
you want to update your classifier.pkl file
permanently.

pickle.dump(clf, open(os.path.join(cur dir,
'pkl objects', 'classifier.pkl'), 'wb')
, protocol=4)

The update model function will fetch entries from the SQLite database in batches of
10,000 entries at a time unless the database contains fewer entries. Alternatively, we
could also fetch one entry at a time by using fetchone instead of fetchmany, which
would be computationally very inefficient. Using the alternative fetchall method
could be a problem if we are working with large datasets that exceed the computer
or server's memory capacity.

Now that we have created the update.py script, we could also upload it to the
movieclassifier directory on PythonAnywhere and import the update_model
function in the main application script app . py to update the classifier from the
SQLite database every time we restart the web application. In order to do so, we just
need to add a line of code to import the update_model function from the update.py
script at the top of app . py:

import update function from local dir
from update import update model

We then need to call the update_model function in the main application body:

if name == ' main_ ':
update model (filepath=db, model=clf, batch size=10000)

[275]

Embedding a Machine Learning Model into a Web Application

Summary

In this chapter, you learned about many useful and practical topics that extend our
knowledge of machine learning theory. You learned how to serialize a model after
training and how to load it for later use cases. Furthermore, we created a SQLite
database for efficient data storage and created a web application that lets us make
our movie classifier available to the outside world.

Throughout this book, we have really discussed a lot about machine learning
concepts, best practices, and supervised models for classification. In the next chapter,
we will take a look at another subcategory of supervised learning, regression
analysis, which lets us predict outcome variables on a continuous scale, in contrast
to the categorical class labels of the classification models that we have been working
with so far.

[276]

10

Predicting Continuous
Target Variables with
Regression Analysis

Throughout the previous chapters, you learned a lot about the main concepts
behind supervised learning and trained many different models for classification tasks
to predict group memberships or categorical variables. In this chapter, we will take
a dive into another subcategory of supervised learning: regression analysis.

Regression models are used to predict target variables on a continuous scale,

which makes them attractive for addressing many questions in science as well as
applications in industry, such as understanding relationships between variables,
evaluating trends, or making forecasts. One example would be predicting the sales
of a company in future months.

In this chapter, we will discuss the main concepts of regression models and cover
the following topics:

* Exploring and visualizing datasets

* Looking at different approaches to implement linear regression models

* Training regression models that are robust to outliers

* Evaluating regression models and diagnosing common problems

* Fitting regression models to nonlinear data

[277]

Predicting Continuous Target Variables with Regression Analysis

Introducing a simple linear regression
model

The goal of simple (univariate) linear regression is to model the relationship between
a single feature (explanatory variable x) and a continuous valued response (target
variable y). The equation of a linear model with one explanatory variable is defined
as follows:

y=w,+wx

Here, the weight W, represents the y axis intercepts and W, is the coefficient of
the explanatory variable. Our goal is to learn the weights of the linear equation to
describe the relationship between the explanatory variable and the target variable,
which can then be used to predict the responses of new explanatory variables that
were not part of the training dataset.

Based on the linear equation that we defined previously, linear regression can be
understood as finding the best-fitting straight line through the sample points, as
shown in the following figure:

A
¥ =Wy + WX

@
a \
o
@
> vertical offset
g 19-vl
[=
o
Q.
]
= Ay
= w, (slope)

B//i m & =8y / &x
™~ (x, v)

w, (intercept)

\
/

v

X (explanatory variable)

This best-fitting line is also called the regression line, and the vertical lines from the
regression line to the sample points are the so-called offsets or residuals — the errors
of our prediction.

[278]

Chapter 10

The special case of one explanatory variable is also called simple linear regression,
but of course we can also generalize the linear regression model to multiple
explanatory variables. Hence, this process is called multiple linear regression:

n
_ _ _ T
y—WOXO+W1X1+...+Wm.Xm = Ewl.xi =W X

i=0

Here, W, is the y axis intercept with X, =1.

Exploring the Housing Dataset

Before we implement our first linear regression model, we will introduce a new
dataset, the Housing Dataset, which contains information about houses in the
suburbs of Boston collected by D. Harrison and D.L. Rubinfeld in 1978. The Housing
Dataset has been made freely available and can be downloaded from the UCI machine
learning repository at https://archive.ics.uci.edu/ml/datasets/Housing.

The features of the 506 samples may be summarized as shown in the excerpt of the
dataset description:
* CRIM: This is the per capita crime rate by town

* ZN: This is the proportion of residential land zoned for lots larger than
25,000 sq.ft.

* INDUS: This is the proportion of non-retail business acres per town

e CHAS: This is the Charles River dummy variable (this is equal to 1 if tract
bounds river; 0 otherwise)

* NOX: This is the nitric oxides concentration (parts per 10 million)

* RM: This is the average number of rooms per dwelling

* AGE: This is the proportion of owner-occupied units built prior to 1940
* DIS: This is the weighted distances to five Boston employment centers
* RAD: This is the index of accessibility to radial highways

* TAX: This is the full-value property-tax rate per $10,000

* PTRATIO: This is the pupil-teacher ratio by town

* B: This is calculated as 1000(Bk - 0.63)"2, where Bk is the proportion of
people of African American descent by town

* LSTAT: This is the percentage lower status of the population

* MEDV: This is the median value of owner-occupied homes in $1000s

[279]

https://archive.ics.uci.edu/ml/datasets/Housing

Predicting Continuous Target Variables with Regression Analysis

For the rest of this chapter, we will regard the housing prices (MEDV) as our
target variable — the variable that we want to predict using one or more of the 13
explanatory variables. Before we explore this dataset further, let's fetch it from the
UCl repository into a pandas DataFrame:

>>> import pandas as pd

>>> df = pd.read csv('https://archive.ics.uci.edu/ml/machine-learning-
databases/housing/housing.data’,

.. header=None, sep='\s+"')

>>> df.columns = ['CRIM', 'ZN', 'INDUS', 'CHAS',

'NOX', 'RM', 'AGE', 'DIS', 'RAD',
'"TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']

>>> df.head ()

To confirm that the dataset was loaded successfully, we displayed the first five lines
of the dataset, as shown in the following screenshot:

CRIM ZN |INDUS |[CHAS |[NOX |RM | AGE |DIS RAD | TAX |PTRATIO |B LSTAT |MEDV
0/0.00632|18 |2.31 |O 0.538|6.575|65.214.0900(1 296 (15.3 396.90|4.98 |24.0
1(0.02731|{0 |[7.07 0 0.469|6.421|78.914.9671|2 242 117.8 396.90|9.14 |21.6
2(0.02729(0 |7.07 0 0.469|7.185(61.1|4.9671|2 242 |17.8 392.8314.03 |34.7
3(0.03237|0 (2.18 |0 0.458)6.998|45.8|6.0622|3 222 |18.7 394.63|2.94 |33.4
4(0.06905(0 |2.18 |O 0.458|7.147 | 54.2|6.0622| 3 222 |18.7 396.90|5.33 |36.2

Visualizing the important characteristics of a
dataset

Exploratory Data Analysis (EDA) is an important and recommended first step prior
to the training of a machine learning model. In the rest of this section, we will use
some simple yet useful techniques from the graphical EDA toolbox that may help
us to visually detect the presence of outliers, the distribution of the data, and the
relationships between features.

First, we will create a scatterplot matrix that allows us to visualize the pair-wise
correlations between the different features in this dataset in one place. To plot the
scatterplot matrix, we will use the pairplot function from the seaborn library
(http://stanford.edu/~mwaskom/software/seaborn/), which is a Python library
for drawing statistical plots based on matplotlib:

>>> import matplotlib.pyplot as plt
>>> import seaborn as sns
>>> sns.set (style='whitegrid', context='notebook')

[280]

Chapter 10

>>> cols = ['LSTAT', 'INDUS', 'NOX', 'RM', 'MEDV']
>>> sns.pairplot (df [cols], size=2.5);

>>> plt.show ()

As we can see in the following figure, the scatterplot matrix provides us with a
useful graphical summary of the relationships in a dataset:

=2 B |
< T ﬁ : ‘% %@“
= & > HEE L . ’
w2 b =
=] T“ R e il B 1
o E.. e £ &
Z: & $ T Wairi
o , T e
osbagEs] W B
z: & Vo3 h, IR B
E : *‘-' il ‘:;- 1 iI gé-:i:'l - P -‘\:‘:
Wy %P!I‘ %’1 o
> . Al By [T
8 = . %ﬂé z, &:i 3 : .: i
S: g Wi W B

'LSTAT INDUS NOX RM MEDV

Importing the seaborn library modifies the default aesthetics of
matplotlib for the current Python session. If you do not want to
use seaborn's style settings, you can reset the matplotlib settings
by executing the following command:

>>> sns.reset_orig()

[281]

Predicting Continuous Target Variables with Regression Analysis

Due to space constraints and for purposes of readability, we only plotted five
columns from the dataset: LSTAT, INDUS, NOX, RM, and MEDV. However,
you are encouraged to create a scatterplot matrix of the whole DataFrame to
further explore the data.

Using this scatterplot matrix, we can now quickly eyeball how the data is distributed
and whether it contains outliers. For example, we can see that there is a linear
relationship between RM and the housing prices MEDYV (the fifth column of the
fourth row). Furthermore, we can see in the histogram (the lower right subplot in
the scatter plot matrix) that the MEDYV variable seems to be normally distributed
but contains several outliers.

Note that in contrast to common belief, training a linear regression model
_ does not require that the explanatory or target variables are normally
% distributed. The normality assumption is only a requirement for certain
L= statistical tests and hypothesis tests that are beyond the scope of this book
(Montgomery, D. C., Peck, E. A., and Vining, G. G. Introduction to linear
regression analysis. John Wiley and Sons, 2012, pp.318-319).

To quantify the linear relationship between the features, we will now create a
correlation matrix. A correlation matrix is closely related to the covariance matrix
that we have seen in the section about principal component analysis (PCA) in
Chapter 4, Building Good Training Sets — Data Preprocessing. Intuitively, we can
interpret the correlation matrix as a rescaled version of the covariance matrix.

In fact, the correlation matrix is identical to a covariance matrix computed from
standardized data.

The correlation matrix is a square matrix that contains the Pearson product-moment
correlation coefficients (often abbreviated as Pearson's r), which measure the linear
dependence between pairs of features. The correlation coefficients are bounded

to the range -1 and 1. Two features have a perfect positive correlation if 7 =1, no
correlation if 7 =0, and a perfect negative correlation if 7 =—1, respectively. As
mentioned previously, Pearson's correlation coefficient can simply be calculated as
the covariance between two features x and ¥ (numerator) divided by the product
of their standard deviations (denominator):

Y[-m)0"m)] o

Xy

VL L)

[282]

Chapter 10

Here, # denotes the sample mean of the corresponding feature, o, is the

covariance between the features X and y,and o, and O, are the features'
standard deviations, respectively.

We can show that the covariance between standardized features is in
fact equal to their linear correlation coefficient.

Let's first standardize the features x and y, to obtain their z-scores
which we will denote as X' and y' , respectively:

r:x_;ux’yr:y_luy

o, o,

X

Remember that we calculate the (population) covariance between two
features as follows:

7 =L B w3

Since standardization centers a feature variable at mean 0, we can now
calculate the covariance between the scaled features as follows:

o, = Y (x-0)(r-0)

Through resubstitution, we get the following result:

I &G x—p, || Y—H
2 :

(o O'y
1 C i i
LB
n-o o, -
xTy 1
We can simplify it as follows:
o
L Xy
i Gy
Xy

[283]

Predicting Continuous Target Variables with Regression Analysis

In the following code example, we will use NumPy's corrcoef function on the five
feature columns that we previously visualized in the scatterplot matrix, and we will
use seaborn's heatmap function to plot the correlation matrix array as a heat map:

>>> import numpy as np

>>> cm = np.corrcoef (df [cols] .values.T)

>>> sns.set (font scale=1.5)

>>> hm = sns.heatmap (cm,
cbar=True,
annot=True,
square=True,
fmt='.2f",
annot_kws={'size': 15},
yticklabels=cols,

.. xticklabels=cols)

>>> plt.show()

As we can see in the resulting figure, the correlation matrix provides us with another
useful summary graphic that can help us to select features based on their respective
linear correlations:

LSTAT INDUS NOX RM MEDV

To fit a linear regression model, we are interested in those features that have a high
correlation with our target variable MEDV. Looking at the preceding correlation
matrix, we see that our target variable MEDV shows the largest correlation with

the LSTAT variable (-0.74). However, as you might remember from the scatterplot
matrix, there is a clear nonlinear relationship between LSTAT and MEDV. On the
other hand, the correlation between RM and MEDV is also relatively high (0.70) and
given the linear relationship between those two variables that we observed in the
scatterplot, RM seems to be a good choice for an exploratory variable to introduce
the concepts of a simple linear regression model in the following section.

[284]

Chapter 10

Implementing an ordinary least squares
linear regression model

At the beginning of this chapter, we discussed that linear regression can be
understood as finding the best-fitting straight line through the sample points of
our training data. However, we have neither defined the term best-fitting nor have
we discussed the different techniques of fitting such a model. In the following
subsections, we will fill in the missing pieces of this puzzle using the Ordinary
Least Squares (OLS) method to estimate the parameters of the regression line that
minimizes the sum of the squared vertical distances (residuals or errors) to the
sample points.

Solving regression for regression parameters
with gradient descent

Consider our implementation of the ADAptive LInear NEuron (Adaline) from
Chapter 2, Training Machine Learning Algorithms for Classification; we remember that
the artificial neuron uses a linear activation function and we defined a cost function
J(-), which we minimized to learn the weights via optimization algorithms, such as
Gradient Descent (GD) and Stochastic Gradient Descent (SGD). This cost function
in Adaline is the Sum of Squared Errors (SSE). This is identical to the OLS cost
function that we defined:

l n
25

Here, is the predicted value = w"x (note that the term 1/2 is just used for
convenience to derive the update rule of GD). Essentially, OLS linear regression
can be understood as Adaline without the unit step function so that we obtain
continuous target values instead of the class labels -1 and 1. To demonstrate the
similarity, let's take the GD implementation of Adaline from Chapter 2, Training
Machine Learning Algorithms for Classification, and remove the unit step function to
implement our first linear regression model:

class LinearRegressionGD (object) :

def init (self, eta=0.001, n_iter=20):
self.eta = eta

[285]

Predicting Continuous Target Variables with Regression Analysis

self.n iter = n iter

def fit(self, X, y):

self.w_ = np.zeros(l + X.shapel[l])
self.cost = []

for i in range(self.n iter):
output = self.net input (X)
errors = (y - output)
self.w [1:] += self.eta * X.T.dot (errors)

self.w _[0] += self.eta * errors.sum()
cost = (errors**2).sum() / 2.0
self.cost .append(cost)

return self

def net input (self, X):

return np.dot (X, self.w [1:]) + self.w [0]

def predict(self, X):

return self.net input (X)

If you need a refresher about how the weights are being updated — taking a step in
the opposite direction of the gradient — please revisit the Adaline section in Chapter 2,
Training Machine Learning Algorithms for Classification.

To see our LinearRegressionGD regressor in action, let's use the RM (number of
rooms) variable from the Housing Data Set as the explanatory variable to train a
model that can predict MEDV (the housing prices). Furthermore, we will standardize
the variables for better convergence of the GD algorithm. The code is as follows:

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

X
Y

dE[['RM']] .values
df ['MEDV'] .values

from sklearn.preprocessing import StandardScaler

sc_x = StandardScaler()

sc_y = StandardScaler()

X_std = sc_x.fit_transform(X)

y _std = sc_y.fit transform(y)

1r

= LinearRegressionGD ()

lr. fit (X std, y std)

[286]

Chapter 10

We discussed in Chapter 2, Training Machine Learning Algorithms for Classification,
that it is always a good idea to plot the cost as a function of the number of epochs
(passes over the training dataset) when we are using optimization algorithms, such
as gradient descent, to check for convergence. To cut a long story short, let's plot the
cost against the number of epochs to check if the linear regression has converged:

>>> plt.plot(range(1l, lr.n iter+l), lr.cost)
>>> plt.ylabel ('SSE')

>>> plt.xlabel ('Epoch')

>>> plt.show()

As we can see in the following plot, the GD algorithm converged after the fifth epoch:

260 T T

240

220 4

200 B
w
@
@

180 |

180 |

140}

120 - -

0 5 10 15 20
Epoch

Next, let's visualize how well the linear regression line fits the training data. To do
so, we will define a simple helper function that will plot a scatterplot of the training
samples and add the regression line:

>>> def lin regplot (X, y, model):
plt.scatter (X, y, c='blue')
plt.plot (X, model.predict (X), color='red')
return None

Now, we will use this 1in_regplot function to plot the number of rooms against
house prices:

>>> lin regplot (X_std, y_std, 1lr)

>>> plt.xlabel ('Average number of rooms [RM] (standardized)')
>>> plt.ylabel ('Price in $1000\'s [MEDV] (standardized)')

>>> plt.show()

[287]

Predicting Continuous Target Variables with Regression Analysis

As we can see in the following plot, the linear regression line reflects the general
trend that house prices tend to increase with the number of rooms:

Price in $1000's [MEDV] (standardized)

-5 -4 -3 -2 -1 0 1 2 3 4
Average number of rooms [RM] (standardized)

Although this observation makes intuitive sense, the data also tells us that the
number of rooms does not explain the house prices very well in many cases. Later
in this chapter, we will discuss how to quantify the performance of a regression

model. Interestingly, we also observe a curious line ¥ =3, which suggests that the
prices may have been clipped. In certain applications, it may also be important to
report the predicted outcome variables on its original scale. To scale the predicted
price outcome back on the Price in $1000's axes, we can simply apply the

inverse transform method of the StandardScaler:

>>> num_rooms_std = sc_x.transform([5.0])
>>> price std = lr.predict (num rooms_std)
>>> print ("Price in $1000's: %.3f" % \

c.. sc_y.inverse_ transform(price_std))
Price in $1000's: 10.840

In the preceding code example, we used the previously trained linear regression
model to predict the price of a house with five rooms. According to our model,
such a house is worth $10,840.

[288]

Chapter 10

On a side note, it is also worth mentioning that we technically don't have to update
the weights of the intercept if we are working with standardized variables since the
y axis intercept is always 0 in those cases. We can quickly confirm this by printing
the weights:

>>> print ('Slope: %.3f' % 1lr.w_[1])
Slope: 0.695

>>> print ('Intercept: %.3f' % lr.w_[0])
Intercept: -0.000

Estimating the coefficient of a regression
model via scikit-learn

In the previous section, we implemented a working model for regression
analysis. However, in a real-world application, we may be interested in more
efficient implementations, for example, scikit-learn's LinearRegression object
that makes use of the LIBLINEAR library and advanced optimization algorithms
that work better with unstandardized variables. This is sometimes desirable for
certain applications:

>>> from sklearn.linear model import LinearRegression
>>> slr = LinearRegression()

>>> slr.fit (X, y)

>>> print ('Slope: %.3f' % slr.coef [0])

Slope: 9.102

>>> print ('Intercept: %.3f' % slr.intercept)
Intercept: -34.671

As we can see by executing the preceding code, scikit-learn's LinearRegression
model fitted with the unstandardized RM and MEDV variables yielded different
model coefficients. Let's compare it to our own GD implementation by plotting
MEDV against RM:

>>> lin regplot (X, y, slr)

>>> plt.xlabel ('Average number of rooms [RM] (standardized)')
>>> plt.ylabel ('Price in $1000\'s [MEDV] (standardized)')

>>> plt.show()

[289]

Predicting Continuous Target Variables with Regression Analysis

Now, when we plot the training data and our fitted model by executing the code
above, we can see that the overall result looks identical to our GD implementation:

60 T T T T T T

50 -

40

30

20

Price in $1000's [MEDV]

10

_10 1 L 1 1 L 1
3

Average number of rooms [RM]

As an alternative to using machine learning libraries, there is a
closed-form solution for solving OLS involving a system of linear
equations that can be found in most introductory statistics textbooks:

w=(X"x)" X"y
Wo = H, — H Hs

Here, K, is the mean of the true target values and #; is the mean of the
predicted response.

%@‘ The advantage of this method is that it is guaranteed to find the optimal
solution analytically. However, if we are working with very large
datasets, it can be computationally too expensive to invert the matrix in
this formula (sometimes also called the normal equation) or the sample
matrix may be singular (non-invertible), which is why we may prefer
iterative methods in certain cases.

If you are interested in more information on how to obtain the normal
equations, I recommend you take a look at Dr. Stephen Pollock's chapter,
The Classical Linear Regression Model from his lectures at the University

of Leicester, which are available for free at http://www.le.ac.uk/
users/dsgpl/COURSES/MESOMET/ECMETXT/O6mesmet . pdf.

[290]

http://www.le.ac.uk/users/dsgp1/COURSES/MESOMET/ECMETXT/06mesmet.pdf
http://www.le.ac.uk/users/dsgp1/COURSES/MESOMET/ECMETXT/06mesmet.pdf

Chapter 10

Fitting a robust regression model using
RANSAC

Linear regression models can be heavily impacted by the presence of outliers.
In certain situations, a very small subset of our data can have a big effect on the
estimated model coefficients. There are many statistical tests that can be used to
detect outliers, which are beyond the scope of the book. However, removing
outliers always requires our own judgment as a data scientist, as well as our
domain knowledge.

As an alternative to throwing out outliers, we will look at a robust method of
regression using the RANdom SAmple Consensus (RANSAC) algorithm,
which fits a regression model to a subset of the data, the so-called inliers.

We can summarize the iterative RANSAC algorithm as follows:

1. Select a random number of samples to be inliers and fit the model.

2. Test all other data points against the fitted model and add those points
that fall within a user-given tolerance to the inliers.

Refit the model using all inliers.
Estimate the error of the fitted model versus the inliers.

5. Terminate the algorithm if the performance meets a certain user-defined
threshold or if a fixed number of iterations has been reached; go back to
step 1 otherwise.

Let's now wrap our linear model in the RANSAC algorithm using scikit-learn's
RANSACRegressor object:

>>> from sklearn.linear model import RANSACRegressor
>>> ransac = RANSACRegressor (LinearRegression(),
max_trials=100,
min samples=50,
residual metric=lambda x: np.sum(np.abs(x), axis=1),
residual threshold=5.0,
random_state=0)
>>> ransac.fit (X, y)

[291]

Predicting Continuous Target Variables with Regression Analysis

We set the maximum number of iterations of the RANSACRegressor to 100, and using
min_samples=50, we set the minimum number of the randomly chosen samples to
be at least 50. Using the residual_metric parameter, we provided a callable 1ambda
function that simply calculates the absolute vertical distances between the fitted line
and the sample points. By setting the residual_threshold parameter to 5.0, we
only allowed samples to be included in the inlier set if their vertical distance to the
fitted line is within 5 distance units, which works well on this particular dataset. By
default, scikit-learn uses the MAD estimate to select the inlier threshold, where MAD
stands for the Median Absolute Deviation of the target values y. However, the choice
of an appropriate value for the inlier threshold is problem-specific, which is one
disadvantage of RANSAC. Many different approaches have been developed over the
recent years to select a good inlier threshold automatically. You can find a detailed
discussion in R. Toldo and A. Fusiello's. Automatic Estimation of the Inlier Threshold in
Robust Multiple Structures Fitting (in Image Analysis and Processing-ICIAP 2009,
pages 123-131. Springer, 2009).

After we have fitted the RANSAC model, let's obtain the inliers and outliers from the
fitted RANSAC linear regression model and plot them together with the linear fit:

>>> inlier mask = ransac.inlier mask_
>>> outlier mask = np.logical not (inlier mask)
>>> line X = np.arange (3, 10, 1)
>>> line y ransac = ransac.predict(line X[:, np.newaxisl])
>>> plt.scatter (X[inlier mask], yl[inlier mask],
c='blue', marker='o', label='Inliers')
>>> plt.scatter (X[outlier mask], yloutlier mask],
c='lightgreen', marker='s', label='Outliers')
>>> plt.plot(line X, line y ransac, color='red')
>>> plt.xlabel ('Average number of rooms [RM]')
>>> plt.ylabel ('Price in $1000\'s [MEDV]')
>>> plt.legend(loc="upper left')
>>> plt.show()

[292]

Chapter 10

As we can see in the following scatterplot, the linear regression model was fitted on
the detected set of inliers shown as circles:

60 T T T T T T T

e®e Inliers
ooo Outliers o oo oo ogoMme

Price in $1000's [MEDV]

L L L L 1
3 4 5 6 7 8 9 10
Average number of rooms [RM]

|
%]
o

When we print the slope and intercept of the model executing the following code,
we can see that the linear regression line is slightly different from the fit that we
obtained in the previous section without RANSAC:

>>> print ('Slope: %.3f' % ransac.estimator .coef [0])
Slope: 9.621

>>> print ('Intercept: %.3f' % ransac.estimator .intercept)
Intercept: -37.137

Using RANSAC, we reduced the potential effect of the outliers in this dataset,
but we don't know if this approach has a positive effect on the predictive
performance for unseen data. Thus, in the next section we will discuss how to
evaluate a regression model for different approaches, which is a crucial part of
building systems for predictive modeling.

[293]

Predicting Continuous Target Variables with Regression Analysis

Evaluating the performance of linear
regression models

In the previous section, we discussed how to fit a regression model on training data.
However, you learned in previous chapters that it is crucial to test the model on data
that it hasn't seen during training to obtain an unbiased estimate of its performance.

As we remember from Chapter 6, Learning Best Practices for Model Evaluation and
Hyperparameter Tuning, we want to split our dataset into separate training and
test datasets where we use the former to fit the model and the latter to evaluate its
performance to generalize to unseen data. Instead of proceeding with the simple
regression model, we will now use all variables in the dataset and train a multiple
regression model:

>>> from sklearn.cross validation import train test split

>>> X = df.iloc[:, :-1].values

>>> y = df ['MEDV'] .values

>>> X train, X test, y train, y test = train test split(
X, y, test _size=0.3, random state=0)

>>> slr = LinearRegression()

>>> slr.fit (X train, y train)

>>> y train pred = slr.predict (X train)

>>> y test pred = slr.predict (X test)

Since our model uses multiple explanatory variables, we can't visualize the linear
regression line (or hyperplane to be precise) in a two-dimensional plot, but we
can plot the residuals (the differences or vertical distances between the actual and
predicted values) versus the predicted values to diagnose our regression model.
Those residual plots are a commonly used graphical analysis for diagnosing
regression models to detect nonlinearity and outliers, and to check if the errors
are randomly distributed.

Using the following code, we will now plot a residual plot where we simply subtract
the true target variables from our predicted responses:

>>> plt.scatter(y train pred, y train pred - y train,

... c='blue', marker='o', label='Training data')
>>> plt.scatter(y test pred, vy test pred - y test,

c. c='lightgreen', marker='s', label='Test data')
>>> plt.xlabel ('Predicted values')

>>> plt.ylabel ('Residuals')

>>> plt.legend(loc="upper left')

>>> plt.hlines(y=0, xmin=-10, xmax=50, lw=2, color='red')
>>> plt.x1lim([-10, 501)

>>> plt.show()

(
(
(
(

[294]

Chapter 10

After executing the code, we should see a residual plot with a line passing through
the x axis origin as shown here:

20

T T T

e®e Training data
ooo Test data

10

Residuals

_30 1 L L L
-10 0 10 20 30 40 50

Predicted values

In the case of a perfect prediction, the residuals would be exactly zero, which we will
probably never encounter in realistic and practical applications. However, for a good
regression model, we would expect that the errors are randomly distributed and

the residuals should be randomly scattered around the centerline. If we see patterns
in a residual plot, it means that our model is unable to capture some explanatory
information, which is leaked into the residuals as we can slightly see in our preceding
residual plot. Furthermore, we can also use residual plots to detect outliers, which are
represented by the points with a large deviation from the centerline.

Another useful quantitative measure of a model's performance is the so-called
Mean Squared Error (MSE), which is simply the average value of the SSE cost
function that we minimize to fit the linear regression model. The MSE is useful
to for comparing different regression models or for tuning their parameters via
a grid search and cross-validation:

MSE = %g(y(") -5

Execute the following code:

>>> from sklearn.metrics import mean_ squared error

>>> print ('MSE train: %.3f, test: %.3f' % (
mean_squared_error (y train, y train pred),
mean_squared_error (y_test, y test pred)))

[295]

Predicting Continuous Target Variables with Regression Analysis

We will see that the MSE on the training set is 19.96, and the MSE of the test set is
much larger with a value of 27.20, which is an indicator that our model is overfitting
the training data.

Sometimes it may be more useful to report the coefficient of determination (R*), which
can be understood as a standardized version of the MSE, for better interpretability of

the model performance. In other words, R ? is the fraction of response variance that is
captured by the model. The R’ value is defined as follows:

Here, SSE is the sum of squared errors and SST is the total sum of squares

n i 2 . P . .
SST = zizl(- ,uy) , or in other words, it is simply the variance of the response.

Let's quickly show that R” is indeed just a rescaled version of the MSE:

R=1-2=

SST

MSE
Var (y)

1—

For the training dataset, R? is bounded between 0 and 1, but it can become
negative for the test set. If R* =1, the model fits the data perfectly with a
corresponding MSE =0 .

Evaluated on the training data, the R? of our model is 0.765, which doesn't sound

too bad. However, the R? on the test dataset is only 0.673, which we can compute
by executing the following code:

>>> from sklearn.metrics import r2 score

)

>>> print ('R*2 train: %.3f, test: %.3f' %

[296]

Chapter 10

(r2_score(y train, y train pred),
r2 score(y test, y test pred)))

Using regularized methods for regression

As we discussed in Chapter 3, A Tour of Machine Learning Classifiers Using
Scikit-learn, regularization is one approach to tackle the problem of overfitting by
adding additional information, and thereby shrinking the parameter values of the
model to induce a penalty against complexity. The most popular approaches to
regularized linear regression are the so-called Ridge Regression, Least Absolute
Shrinkage and Selection Operator (LASSO) and Elastic Net method.

Ridge regression is an L2 penalized model where we simply add the squared sum of
the weights to our least-squares cost function:

(W) =3 (4415 + 21wl

i=1

Here:

L2: Al w||§=lZw_/,2
Jj=1

By increasing the value of the hyperparameter 4, we increase the regularization
strength and shrink the weights of our model. Please note that we don't regularize
the intercept term w, .

An alternative approach that can lead to sparse models is the LASSO. Depending
on the regularization strength, certain weights can become zero, which makes the
LASSO also useful as a supervised feature selection technique:

J(W)LASSO = Zn:(y(i) _j’(i))2 + 1| WHI

i=1

Here:

Ll:/1||W||1=1i|W_i|
=1

[297]

Predicting Continuous Target Variables with Regression Analysis

However, a limitation of the LASSO is that it selects at most # variables if m>n. A
compromise between Ridge regression and the LASSO is the Elastic Net, which has a
L1 penalty to generate sparsity and a L2 penalty to overcome some of the limitations
of the LASSO, such as the number of selected variables.

COMNES 3 FLEE) RED 3T Y
i= J= J=

Those regularized regression models are all available via scikit-learn, and the
usage is similar to the regular regression model except that we have to specify the
regularization strength via the parameter A, for example, optimized via k-fold
cross-validation.

A Ridge Regression model can be initialized as follows:

>>> from sklearn.linear model import Ridge
>>> ridge = Ridge (alpha=1.0)

Note that the regularization strength is regulated alpha, which is similar to
the parameter /. Likewise, we can initialize a LASSO regressor from the
linear model submodule:

>>> from sklearn.linear model import Lasso
>>> lasso = Lasso(alpha=1.0)

Lastly, the ElasticNet implementation allows us to vary the L1 to L2 ratio:

>>> from sklearn.linear_model import ElasticNet
>>> lasso = ElasticNet (alpha=1.0, 11 ratio=0.5)

For example, if we set 11_ratio to 1.0, the ElasticNet regressor would be
equal to LASSO regression. For more detailed information about the different
implementations of linear regression, please see the documentation at
http://scikit-learn.org/stable/modules/linear model.html.

Turning a linear regression model into a
curve — polynomial regression

In the previous sections, we assumed a linear relationship between explanatory and
response variables. One way to account for the violation of linearity assumption is
to use a polynomial regression model by adding polynomial terms:

— 2.2 d
V=W, WX+ wx X+ wx

[298]

http://scikit-learn.org/stable/modules/linear_model.html

Chapter 10

Here, d denotes the degree of the polynomial. Although we can use polynomial
regression to model a nonlinear relationship, it is still considered a multiple
linear regression model because of the linear regression coefficients w'.

We will now discuss how to use the PolynomialFeatures transformer class from
scikit-learn to add a quadratic term (4 =2) to a simple regression problem with
one explanatory variable, and compare the polynomial to the linear fit. The steps
are as follows:

1.

Add a second degree polynomial term:

from sklearn.preprocessing import PolynomialFeatures
>>> X = np.array([258.0, 270.0, 294.0,
320.0, 342.0, 368.0,
396.0, 446.0, 480.0,
586.0]) [:, np.newaxis]

>>> y = np.array([236.4, 234.4, 252.8,
298.6, 314.2, 342.2,
360.8, 368.0, 391.2,
390.81)

>>> lr = LinearRegression/()

>>> pr = LinearRegression/()

>>> quadratic = PolynomialFeatures (degree=2)

>>> X quad = quadratic.fit transform(X)

Fit a simple linear regression model for comparison:

>>> lr.fit (X, y)
>>> X fit = np.arange(250,600,10) [:, np.newaxis]
>>> y lin fit = lr.predict (X fit)

Fit a multiple regression model on the transformed features for
polynomial regression:

>>> pr.fit (X quad, y)

>>> y quad fit = pr.predict (quadratic.fit transform(X fit))
Plot the results:

>>> plt.scatter (X, y, label='training points')

>>> plt.plot (X fit, y lin fit,

o label='linear fit', linestyle='--")

>>> plt.plot (X fit, y quad fit,

c. label='quadratic fit')

>>> plt.legend(loc="upper left')

>>> plt.show()

[299]

Predicting Continuous Target Variables with Regression Analysis

In the resulting plot, we can see that the polynomial fit captures the relationship
between the response and explanatory variable much better than the linear fit:

450

- - linear fit -
— quadratic fit -
400 e®e training points <

350

300

250

200
200 250 300 350 400 450 500 550 600 650

>>> y lin pred = lr.predict (X)

>>> y quad pred = pr.predict (X quad)

>>> print ('Training MSE linear: %.3f, quadratic: %.3f' % (
mean_ squared error(y, y lin pred),

R mean_ squared error(y, y quad pred)))

Training MSE linear: 569.780, quadratic: 61.330

>>> print ('Training R"2 linear: %.3f, quadratic: %.3f' % (
r2 score(y, y_lin pred),

R r2 score(y, y quad pred)))

Training R™*2 linear: 0.832, quadratic: 0.982

As we can see after executing the preceding code, the MSE decreased from 570
(linear fit) to 61 (quadratic fit), and the coefficient of determination reflects a closer
fit to the quadratic model (R* =0.982) as opposed to the linear fit (g> = (.832) in
this particular toy problem.

Modeling nonlinear relationships in the
Housing Dataset

After we discussed how to construct polynomial features to fit nonlinear relationships
in a toy problem, let's now take a look at a more concrete example and apply those
concepts to the data in the Housing Dataset. By executing the following code, we will
model the relationship between house prices and LSTAT (percent lower status of the
population) using second degree (quadratic) and third degree (cubic) polynomials
and compare it to a linear fit.

[300]

Chapter 10

The code is as follows:

df [['LSTAT']] .values
df ['MEDV'] .values
>>> regr = LinearRegression ()

>>> X

>>> y

create polynomial features

>>> quadratic = PolynomialFeatures (degree=2)
>>> cubic = PolynomialFeatures (degree=3)

>>> X quad = quadratic.fit transform(X)

>>> X cubic = cubic.fit transform(X)

linear fit

>>> X fit = np.arange(X.min(), X.max(), 1) [:, np.newaxis]
>>> regr = regr.fit (X, y)

>>> y lin fit = regr.predict (X fit)

>>> linear r2 = r2 score(y, regr.predict (X))

quadratic fit

>>> regr = regr.fit (X quad, y)

>>> y quad fit = regr.predict (quadratic.fit transform(X fit))
>>> quadratic_r2 = r2 score(y, regr.predict (X quad))

cubic fit

>>> regr = regr.fit(X cubic, y)

>>> y cubic fit = regr.predict(cubic.fit transform(X fit))
>>> cubic r2 = r2 score(y, regr.predict (X cubic))

plot results
>>> plt.scatter (X, v,
label='training points',
. color="'1lightgray"')
>>> plt.plot (X fit, y lin fit,
label='linear (d=1), S$R*2=%.2f$"'
% linear r2,
color="'blue',
lw=2,
.. linestyle="':")
>>> plt.plot (X fit, y quad fit,
label='quadratic (d=2), $R"2=%.2f3'
% quadratic r2,
color="'red',
lw=2,
linestyle="'-")

[301]

Predicting Continuous Target Variables with Regression Analysis

>>> plt.plot (X fit, y cubic fit,
label="'cubic (d=3), $R"2=%.2f$"'
% cubic r2,
color="'green',
lw=2,
linestyle='--")
>>> plt.xlabel ('$ lower status of the population [LSTAT]')
>>> plt.ylabel ('Price in $1000\'s [MEDV]')
>>> plt.legend(loc="upper right')
>>> plt.show()

As we can see in the resulting plot, the cubic fit captures the relationship between
the house prices and LSTAT better than the linear and quadratic fit. However, we
should be aware that adding more and more polynomial features increases the
complexity of a model and therefore increases the chance of overfitting. Thus, in
practice, it is always recommended that you evaluate the performance of the model
on a separate test dataset to estimate the generalization performance:

EU T T T T T T T T
----- linear (d=1), R* =0.51
50 — quadratic (d=2), R* =0.64]
: _ 2 0 pe
= 40l - qualndhratm (.d_B)' R” =0.66 ||
2 training points
=]
5 30
(=]
S
& 201 il
£
8
£ 10}]
of]
-10 L L 1 L L L 1 L
-5 0 5 10 15 20 25 30 35 40
% lower status of the population [LSTAT]

In addition, polynomial features are not always the best choice for modeling nonlinear
relationships. For example, just by looking at the MEDV-LSTAT scatterplot, we could
propose that a log transformation of the LSTAT feature variable and the square root of
MEDYV may project the data onto a linear feature space suitable for a linear regression

fit. Let's test this hypothesis by executing the following code:

transform features
>>> X log = np.log(X)

[302]

Chapter 10

>>> y sgrt = np.sqrt(y)

fit features

>>> X fit = np.arange(X log.min() -1,

o X log.max()+1, 1) [:, np.newaxis]
>>> regr = regr.fit (X log, y sqgrt)

>>> y lin fit = regr.predict (X fit)

>>> linear r2 = r2 score(y_sqgrt, regr.predict (X log))

plot results
>>> plt.scatter (X log, y sqgrt,
label='training points',
color="'1lightgray"')
>>> plt.plot (X fit, y lin fit,
label='linear (d=1), $R"2=%.2f$' % linear r2,
color="blue',
lw=2)
>>> plt.xlabel ('log (% lower status of the population [LSTAT])')
>>> plt.ylabel ('$\sgrt{Price \; in \; \$1000\'s [MEDV]}$"')
>>> plt.legend(loc="'lower left')
>>> plt.show()

After transforming the explanatory onto the log space and taking the square root
of the target variables, we were able to capture the relationship between the two

variables with a linear regression line that seems to fit the data better (R*> =0.69)

than any of the polynomial feature transformations previously:

V Price in $1000's[MEDV,

ol| = linear (d=1), r* =0.69
training points

1 1 1 L 1
-1 0 1 2 3

log(% lower status of the population [LSTAT])

.
w

[303]

Predicting Continuous Target Variables with Regression Analysis

Dealing with nonlinear relationships using
random forests

In this section, we are going to take a look at random forest regression, which is
conceptually different from the previous regression models in this chapter. A random
forest, which is an ensemble of multiple decision trees, can be understood as the sum
of piecewise linear functions in contrast to the global linear and polynomial regression
models that we discussed previously. In other words, via the decision tree algorithm,
we are subdividing the input space into smaller regions that become more manageable.

Decision tree regression

An advantage of the decision tree algorithm is that it does not require any
transformation of the features if we are dealing with nonlinear data. We remember
from Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn, that we grow
a decision tree by iteratively splitting its nodes until the leaves are pure or a stopping
criterion is satisfied. When we used decision trees for classification, we defined
entropy as a measure of impurity to determine which feature split maximizes the
Information Gain (IG), which can be defined as follows for a binary split:

IG(Dp’x):I(Dp)—NLI

P

Here, x is the feature to perform the split, N, is the number of samples in the
parent node, / is the impurity function, D, is the subset of training samples in

the parent node, and D and D are the subsets of training samples in the left and
right child node after the split. Remember that our goal is to find the feature split
that maximizes the information gain, or in other words, we want to find the feature
split that reduces the impurities in the child nodes. In Chapter 3, A Tour of Machine
Learning Classifiers Using Scikit-learn, we used entropy as a measure of impurity,
which is a useful criterion for classification. To use a decision tree for regression,
we will replace entropy as the impurity measure of a node ¢ by the MSE:

1(£) = MSE(t) = %Z ,

el

[304]

Chapter 10

Here, y, is the number of training samples at node 7, D, is the training subset

atnode 7, , is the true target value, and J, is the predicted target value
(sample mean):

~ 1 ;
Y :Nzy()

ieD,

In the context of decision tree regression, the MSE is often also referred to as
within-node variance, which is why the splitting criterion is also better known
as variance reduction. To see what the line fit of a decision tree looks like, let's use
the DecisionTreeRegressor implemented in scikit-learn to model the nonlinear
relationship between the MEDV and LSTAT variables:

>>> from sklearn.tree import DecisionTreeRegressor
dE[['LSTAT']] .values

df ['MEDV'] .values

>>> tree = DecisionTreeRegressor (max_ depth=3)

>>> tree.fit (X, vy)

>>> X

>>> Yy

>>> sort idx = X.flatten() .argsort ()
>>> lin regplot (X[sort idx], yl[sort idx], tree)
>>> plt.xlabel ('%$ lower status of the population [LSTAT]')
>>> plt.ylabel ('Price in $1000\'s [MEDV]')
>>> plt.show()

As we can see from the resulting plot, the decision tree captures the general
trend in the data. However, a limitation of this model is that it does not capture
the continuity and differentiability of the desired prediction. In addition, we
need to be careful about choosing an appropriate value for the depth of the tree
to not overfit or underfit the data; here, a depth of 3 seems to be a good choice:

60 T T
20
=
fim]
o 40
=
e
[=]
8 wf
b
£
3 20}
o
10
D A A ' A A ' A A
-5 1] 5 10 15 20 25 30 35 40
% lower status of the population [LSTAT]

[305]

Predicting Continuous Target Variables with Regression Analysis

In the next section, we will take a look at a more robust way for fitting regression
trees: random forests.

Random forest regression

As we discussed in Chapter 3, A Tour of Machine Learning Classifiers Using
Scikit-learn, the random forest algorithm is an ensemble technique that combines
multiple decision trees. A random forest usually has a better generalization
performance than an individual decision tree due to randomness that helps to
decrease the model variance. Other advantages of random forests are that they are
less sensitive to outliers in the dataset and don't require much parameter tuning.
The only parameter in random forests that we typically need to experiment with

is the number of trees in the ensemble. The basic random forests algorithm for
regression is almost identical to the random forest algorithm for classification that
we discussed in Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn.
The only difference is that we use the MSE criterion to grow the individual decision
trees, and the predicted target variable is calculated as the average prediction over all
decision trees.

Now, let's use all the features in the Housing Dataset to fit a random forest
regression model on 60 percent of the samples and evaluate its performance
on the remaining 40 percent. The code is as follows:

df.iloc[:, :-1].values
>>> y = df ['MEDV'] .values
>>> X train, X test, y train, y test =\

>>> X

train test split (X, vy,
test size=0.4,
random state=1)

>>> from sklearn.ensemble import RandomForestRegressor
>>> forest = RandomForestRegressor (
n_estimators=1000,

criterion='mse',
random_state=1,
n_jobs=-1)

>>> forest.fit (X train, y train)

>>> y train pred = forest.predict(X_train)

>>> y test_pred = forest.predict (X_test)

[306]

Chapter 10

>>> print ('MSE train: %.3f, test: %.3f' % (
mean squared error(y train, y train pred),
mean squared error(y test, y test pred)))
>>> print ('R*2 train: %.3f, test: %.3f' % (
r2 score(y train, y train pred),
c. r2 score(y test, y test pred)))
MSE train: 3.235, test: 11.635
R®2 train: 0.960, test: 0.871

Unfortunately, we see that the random forest tends to overfit the training data.
However, it's still able to explain the relationship between the target and
explanatory variables relatively well (g2 = (0.871 on the test dataset).

Lastly, let's also take a look at the residuals of the prediction:

>>> plt.scatter(y train pred,
y_train pred - y train,
c="'black',
marker='o"',
s=35,
alpha=0.5,
label='Training data')
>>> plt.scatter(y test pred,
y _test pred - y test,
c='lightgreen',
marker='s',
s=35,
alpha=0.7,
label="'Test data')
>>> plt.xlabel ('Predicted values')

>>> plt.legend(loc="upper left')

(
>>> plt.ylabel ('Residuals')

(
>>> plt.hlines(y=0, xmin=-10, xmax=50, lw=2, color='red')
>>> plt.xlim([-10, 50])

>>> plt.show()

[307]

Predicting Continuous Target Variables with Regression Analysis

As it was already summarized by the R? coefficient, we can see that the model

fits the training data better than the test data, as indicated by the outliers in the y
axis direction. Also, the distribution of the residuals does not seem to be completely
random around the zero center point, indicating that the model is not able to
capture all the exploratory information. However, the residual plot indicates a
large improvement over the residual plot of the linear model that we plotted

earlier in this chapter:

Residuals

25 : - :
e®e Training data
20 pog Test data o 1
15 |- 1
10}
5
0
-5
_10 -
_15 L] L 1
-10 0 10 20 30 40 50
Predicted values

In Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn,

we also discussed the kernel trick that can be used in combination
with support vector machine (SVM) for classification, which is useful
if we are dealing with nonlinear problems. Although a discussion is
beyond of the scope of this book, SVMs can also be used in nonlinear
regression tasks. The interested reader can find more information
about Support Vector Machines for regression in an excellent report by
S. R. Gunn: S. R. Gunn et al. Support Vector Machines for Classification
and Regression. (ISIS technical report, 14, 1998). An SVM regressor is
also implemented in scikit-learn, and more information about its usage
can be found at http://scikit-learn.org/stable/modules/
generated/sklearn.svm.SVR.html#sklearn.svm.SVR.

[308]

http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html#sklearn.svm.SVR
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html#sklearn.svm.SVR

Chapter 10

Summary

At the beginning of this chapter, you learned about using simple linear regression
analysis to model the relationship between a single explanatory variable and a
continuous response variable. We then discussed a useful explanatory data analysis
technique to look at patterns and anomalies in data, which is an important first step
in predictive modeling tasks.

We built our first model by implementing linear regression using a gradient-based
optimization approach. We then saw how to utilize scikit-learn's linear models

for regression and also implement a robust regression technique (RANSAC) as an
approach for dealing with outliers. To assess the predictive performance of regression

models, we computed the mean sum of squared errors and the related R*> metric.
Furthermore, we also discussed a useful graphical approach to diagnose the problems
of regression models: the residual plot.

After we discussed how regularization can be applied to regression models to reduce
the model complexity and avoid overfitting, we also introduced several approaches
to model nonlinear relationships, including polynomial feature transformation and
random forest regressors.

We discussed supervised learning, classification, and regression analysis, in great
detail throughout the previous chapters. In the next chapter, we are going to discuss
another interesting subfield of machine learning: unsupervised learning. In the next
chapter, you will learn how to use cluster analysis for finding hidden structures in
data in the absence of target variables.

[309]

11

Working with Unlabeled
Data — Clustering Analysis

In the previous chapters, we used supervised learning techniques to build machine
learning models using data where the answer was already known — the class labels
were already available in our training data. In this chapter, we will switch gears and
explore cluster analysis, a category of unsupervised learning techniques that allows
us to discover hidden structures in data where we do not know the right answer
upfront. The goal of clustering is to find a natural grouping in data such that items
in the same cluster are more similar to each other than those from different clusters.

Given its exploratory nature, clustering is an exciting topic and, in this chapter,
you will learn about the following concepts that can help you to organize data into
meaningful structures:

* Finding centers of similarity using the popular k-means algorithm

* Using a bottom-up approach to build hierarchical cluster trees

* Identifying arbitrary shapes of objects using a density-based
clustering approach

[311]

Working with Unlabeled Data - Clustering Analysis

Grouping objects by similarity using
k-means

In this section, we will discuss one of the most popular clustering algorithms,
k-means, which is widely used in academia as well as in industry. Clustering

(or cluster analysis) is a technique that allows us to find groups of similar

objects, objects that are more related to each other than to objects in other groups.
Examples of business-oriented applications of clustering include the grouping

of documents, music, and movies by different topics, or finding customers

that share similar interests based on common purchase behaviors as a basis for
recommendation engines.

As we will see in a moment, the k-means algorithm is extremely easy to implement
but is also computationally very efficient compared to other clustering algorithms,
which might explain its popularity. The k-means algorithm belongs to the category
of prototype-based clustering. We will discuss two other categories of clustering,
hierarchical and density-based clustering, later in this chapter. Prototype-based
clustering means that each cluster is represented by a prototype, which can either
be the centroid (average) of similar points with continuous features, or the medoid
(the most representative or most frequently occurring point) in the case of categorical
features. While k-means is very good at identifying clusters of spherical shape, one
of the drawbacks of this clustering algorithm is that we have to specify the number
of clusters k a priori. An inappropriate choice for k can result in poor clustering
performance. Later in this chapter, we will discuss the elbow method and silhouette
plots, which are useful techniques to evaluate the quality of a clustering to help us
determine the optimal number of clusters k.

Although k-means clustering can be applied to data in higher dimensions, we will
walk through the following examples using a simple two-dimensional dataset for
the purpose of visualization:

>>> from sklearn.datasets import make blobs
>>> X, y = make blobs(n_samples=150,
n_ features=2,
centers=3,
cluster std=0.5,
shuffle=True,
random_state=0)

>>> import matplotlib.pyplot as plt
>>> plt.scatter (X[:,0],

X[:,1],

c='white',

[312]

Chapter 11

marker='o"',
s=50)

>>> plt.grid()
>>> plt.show()

The dataset that we just created consists of 150 randomly generated points that are

roughly grouped into three regions with higher density, which is visualized via a
two-dimensional scatterplot:

In real-world applications of clustering, we do not have any ground truth category
information about those samples; otherwise, it would fall into the category of
supervised learning. Thus, our goal is to group the samples based on their feature
similarities, which we can be achieved using the k-means algorithm that can be
summarized by the following four steps:

Randomly pick k centroids from the sample points as initial cluster centers.

1
2. Assign each sample to the nearest centroid ,u(j) , J€ {L---:k } .

3. Move the centroids to the center of the samples that were assigned to it.
4

Repeat the steps 2 and 3 until the cluster assignment do not change or a
user-defined tolerance or a maximum number of iterations is reached.

[313]

Working with Unlabeled Data - Clustering Analysis

Now the next question is how do we measure similarity between objects? We can define
similarity as the opposite of distance, and a commonly used distance for clustering
samples with continuous features is the squared Euclidean distance between two
points x and y in m-dimensional space:

d(x.y) :Z(x/ _y./)2 =||x—y||§

J=1

Note that, in the preceding equation, the index j refers to the jth dimension
(feature column) of the sample points x and y. In the rest of this section, we will use
the superscripts i and j to refer to the sample index and cluster index, respectively.

Based on this Euclidean distance metric, we can describe the k-means algorithm
as a simple optimization problem, an iterative approach for minimizing the within-
cluster sum of squared errors (SSE), which is sometimes also called cluster inertia:

SSE=Y ﬁ i)

i=1 j=I

2

X~)

2

Here, #” is the representative point (centroid) for cluster j, and w/ =1 if the sample
x is in cluster 75w = otherwise.

Now that you have learned how the simple k-means algorithm works, let's apply it
to our sample dataset using the KMeans class from scikit-learn's cluster module:

>>> from sklearn.cluster import KMeans

>>> km = KMeans (n_clusters=3,
init='random',
n _init=10,
max_iter=300,
tol=1e-04,

R random_state=0)

>>> y km = km.fit predict (X)

Using the preceding code, we set the number of desired clusters to 3; specifying the
number of clusters a priori is one of the limitations of k-means. We setn_init=10 to
run the k-means clustering algorithms 10 times independently with different random
centroids to choose the final model as the one with the lowest SSE. Via the max_iter
parameter, we specify the maximum number of iterations for each single run (here,
300). Note that the k-means implementation in scikit-learn stops early if it converges
before the maximum number of iterations is reached.

[314]

Chapter 11

However, it is possible that k-means does not reach convergence for a particular
run, which can be problematic (computationally expensive) if we choose relatively
large values for max_iter. One way to deal with convergence problems is to choose
larger values for tol, which is a parameter that controls the tolerance with regard to
the changes in the within-cluster sum-squared-error to declare convergence. In the
preceding code, we chose a tolerance of 1e-04 (=0.0001).

K-means++

So far, we discussed the classic k-means algorithm that uses a random seed to

place the initial centroids, which can sometimes result in bad clusterings or slow
convergence if the initial centroids are chosen poorly. One way to address this

issue is to run the k-means algorithm multiple times on a dataset and choose the
best performing model in terms of the SSE. Another strategy is to place the initial
centroids far away from each other via the k-means++ algorithm, which leads

to better and more consistent results than the classic k-means (D. Arthur and S.
Vassilvitskii. k-means++: The Advantages of Careful Seeding. In Proceedings of the
eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages 1027-1035.
Society for Industrial and Applied Mathematics, 2007).

The initialization in k-means++ can be summarized as follows:

1. Initialize an empty set M to store the k centroids being selected.

2. Randomly choose the first centroid 4 from the input samples and
assign it to M.

3. For each sample x"” that is not in M, find the minimum squared distance
d(x".M)" to any of the centroids in M.
4. Torandomly select the next centroid p", use a weighted probability
d(M”,M)Z
distribution equal to > d x(f),M)z .
Repeat steps 2 and 3 until k centroids are chosen.

Proceed with the classic k-means algorithm.

To use k-means++ with scikit-learn's KMeans object, we just

need to set the init parameter to k-means++ (the default

setting) instead of random.

[315]

Working with Unlabeled Data - Clustering Analysis

Another problem with k-means is that one or more clusters can be empty. Note that
this problem does not exist for k-medoids or fuzzy C-means, an algorithm that we
will discuss in the next subsection. However, this problem is accounted for in the
current k-means implementation in scikit-learn. If a cluster is empty, the algorithm
will search for the sample that is farthest away from the centroid of the empty
cluster. Then it will reassign the centroid to be this farthest point.

. When we are applying k-means to real-world data using a Euclidean
distance metric, we want to make sure that the features are measured
s on the same scale and apply z-score standardization or min-max
scaling if necessary.

After we predicted the cluster labels y_km and discussed the challenges of the
k-means algorithm, let's now visualize the clusters that k-means identified in
the dataset together with the cluster centroids. These are stored under the
centers_ attribute of the fitted KMeans object:

>>> plt.scatter (X[y km==0,0],
X[y _km ==0,11,
s=50,
c='lightgreen',
marker='s"',
label='cluster 1'")
>>> plt.scatter (X[y km ==1,0],
X[y km ==1,1],
s=50,
c='orange',
marker='o"',
label='cluster 2'")
>>> plt.scatter (X[y _km ==2,0],
X[y _km ==2,11,
s=50,
c='lightblue',
marker='v',
label='cluster 3'")
>>> plt.scatter (km.cluster centers [:,0],
km.cluster centers [:,1],
s=250,
marker="'*"',
c='red',
c. label="'centroids")
>>> plt.legend()
>>> plt.grid()
>>> plt.show()

[316]

Chapter 11

In the following scatterplot, we can see that k-means placed the three centroids at the
center of each sphere, which looks like a reasonable grouping given this dataset:

6 ! ' ' ! ! !

' : |ooo cluster 1
000--c-§uster-2-]
| |vVy cluster 3

..Mk centroids |-

039 °°
20 °° |
o]
[e N ®]
___ doj0
_1 1 1 1 1 1 1
-3 -2 -1 0 1 2 3 4

Although k-means worked well on this toy dataset, we need to note some of the
main challenges of k-means. One of the drawbacks of k-means is that we have to
specify the number of clusters k a priori, which may not always be so obvious in
real-world applications, especially if we are working with a higher dimensional
dataset that cannot be visualized. The other properties of k-means are that clusters
do not overlap and are not hierarchical, and we also assume that there is at least
one item in each cluster.

Hard versus soft clustering

Hard clustering describes a family of algorithms where each sample in a dataset

is assigned to exactly one cluster, as in the k-means algorithm that we discussed in
the previous subsection. In contrast, algorithms for soft clustering (sometimes also
called fuzzy clustering) assign a sample to one or more clusters. A popular example
of soft clustering is the fuzzy C-means (FCM) algorithm (also called soft k-means
or fuzzy k-means). The original idea goes back to the 1970s where Joseph C. Dunn
tirst proposed an early version of fuzzy clustering to improve k-means (J. C. Dunn.
A Fuzzy Relative of the Isodata Process and its Use in Detecting Compact Well-separated
Clusters. 1973). Almost a decade later, James C. Bedzek published his work on the
improvements of the fuzzy clustering algorithm, which is now known as the FCM
algorithm (J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms.
Springer Science & Business Media, 2013).

[317]

Working with Unlabeled Data - Clustering Analysis

The FCM procedure is very similar to k-means. However, we replace the hard
cluster assignment by probabilities for each point belonging to each cluster. In
k-means, we could express the cluster membership of a sample x by a sparse
vector of binary values:

,u(l) -0
,u(z) —1
u(3) -0

Here, the index position with value 1 indicates the cluster centroid 4" the sample
is assigned to (assuming =3, j {1, 2, 3}). In contrast, a membership vector in FCM
could be represented as follows:

,u(l) — 0.1
u? - 0.85
1 —0.05

Here, each value falls in the range [0, 1] and represents a probability of membership
to the respective cluster centroid. The sum of the memberships for a given sample is
equal to 1. Similarly to the k-means algorithm, we can summarize the FCM algorithm
in four key steps:

1. Specify the number of k centroids and randomly assign the cluster
memberships for each point.

Compute the cluster centroids u, je {1,- --,k} .
Update the cluster memberships for each point.
Repeat steps 2 and 3 until the membership coefficients do not change or a

user-defined tolerance or a maximum number of iterations is reached.

The objective function of FCM —we abbreviate it by J, —looks very similar to the
within cluster sum-squared-error that we minimize in k-means:

n k

Jy= 33w

i=1 j=1

O _ 0|
XU

, me[l,)

[318]

Chapter 11

However, note that the membership indicator w™) isnota binary value as in
k-means w’ €{0,1}) but a real value that denotes the cluster membership probability

o efo.1])- You also may have noticed that we added an additional exponent

to w"/); the exponent 1, any number greater or equal to 1 (typically m = 2), is the
so-called fuzziness coefficient (or simply fuzzifier) that controls the degree of
fuzziness. The larger the value of m , the smaller the cluster membership i)
becomes, which leads to fuzzier clusters. The cluster membership probability

itself is calculated as follows:

-1

W) = ; Hx(i) _ﬂ(p) z

For example, if we chose three cluster centers as in the previous k-means example,
we could calculate the membership of the x sample belonging to the 4 cluster as:

i . R L . R — -
O [N (N N (P

- [0 [0 [0

2 2 2

The center 1" of a cluster itself is calculated as the mean of all samples in the cluster
weighted by the membership degree of belonging to its own cluster:

0 z:’:l w07) ()

M - zn Wm(i’j)
i=1

Just by looking at the equation to calculate the cluster memberships, it is intuitive
to say that each iteration in FCM is more expensive than an iteration in k-means.
However, FCM typically requires fewer iterations overall to reach convergence.
Unfortunately, the FCM algorithm is currently not implemented in scikit-learn.
However, it has been found in practice that both k-means and FCM produce very
similar clustering outputs, as described in a study by Soumi Ghosh and Sanjay K.
Dubey (S. Ghosh and S. K. Dubey. Comparative Analysis of k-means and Fuzzy c-means
Algorithms. IJACSA, 4:35-38, 2013).

[319]

Working with Unlabeled Data - Clustering Analysis

Using the elbow method to find the optimal
number of clusters

One of the main challenges in unsupervised learning is that we do not know the
definitive answer. We don't have the ground truth class labels in our dataset that
allow us to apply the techniques that we used in Chapter 6, Learning Best Practices for
Model Evaluation and Hyperparameter Tuning, in order to evaluate the performance of
a supervised model. Thus, in order to quantify the quality of clustering, we need to
use intrinsic metrics —such as the within-cluster SSE (distortion) that we discussed
earlier in this chapter —to compare the performance of different k-means clusterings.
Conveniently, we don't need to compute the within-cluster SSE explicitly as it is
already accessible via the inertia_ attribute after fitting a KkMeans model:

>>> print ('Distortion: %.2f' % km.inertia)
Distortion: 72.48

Based on the within-cluster SSE, we can use a graphical tool, the so-called elbow
method, to estimate the optimal number of clusters k for a given task. Intuitively,
we can say that, if k increases, the distortion will decrease. This is because the
samples will be closer to the centroids they are assigned to. The idea behind the
elbow method is to identify the value of k where the distortion begins to increase
most rapidly, which will become more clear if we plot distortion for different
values of k:

>>> distortions = []
>>> for i in range (1, 11):

km = KMeans (n_clusters=i,
init='k-means++"',
n init=10,
max_iter=300,
R random_state=0)
>>> km.fit (X)

>>> distortions.append (km.inertia)
>>> plt.plot(range(1l,11), distortions, marker='o')

>>> plt.xlabel ('Number of clusters')
>>> plt.ylabel ('Distortion')
>>> plt.show()

[320]

Chapter 11

As we can see in the following plot, the elbow is located at k = 3, which provides
evidence that k = 3 is indeed a good choice for this dataset:

800 T T T T T T T T

700

600

500

400

Distortion

300

200

100

0 1 1 L L L L 1
1 2 3 4 5 6 7 8 9 10

Number of clusters

Quantifying the quality of clustering via
silhouette plots

Another intrinsic metric to evaluate the quality of a clustering is silhouette analysis,
which can also be applied to clustering algorithms other than k-means that we will
discuss later in this chapter. Silhouette analysis can be used as a graphical tool to plot
a measure of how tightly grouped the samples in the clusters are. To calculate the
silhouette coefficient of a single sample in our dataset, we can apply the following
three steps:

1. Calculate the cluster cohesion 4" as the average distance between a sample
x' and all other points in the same cluster.

2. Calculate the cluster separation »” from the next closest cluster as
the average distance between the sample x" and all samples in the
nearest cluster.

3. Calculate the silhouette s as the difference between cluster cohesion and
separation divided by the greater of the two, as shown here:

Working with Unlabeled Data - Clustering Analysis

The silhouette coefficient is bounded in the range -1 to 1. Based on the preceding
formula, we can see that the silhouette coefficient is 0 if the cluster separation

and cohesion are equal (»") = 4"). Furthermore, we get close to an ideal silhouette
coefficient of 1 if) >> 41, since p") quantifies how dissimilar a sample is to other
clusters, and 4" tells us how similar it is to the other samples in its own cluster,
respectively.

The silhouette coefficient is available as silhouette samples from scikit-learn's
metric module, and optionally the silhouette_scores can be imported. This
calculates the average silhouette coefficient across all samples, which is equivalent to
numpy .mean (silhouette_samples (..)). By executing the following code, we will
now create a plot of the silhouette coefficients for a k-means clustering with & =3:

>>> km = KMeans (n_clusters=3,
init='k-means++"',
n init=10,
max_iter=300,
tol=1e-04,

.. random_state=0)

>>> y km = km.fit predict (X)

>>> import numpy as np

>>> from matplotlib import cm

>>> from sklearn.metrics import silhouette samples
>>> cluster labels = np.unique(y km)

>>> n_clusters = cluster labels.shape[0]
>>> silhouette vals = silhouette samples (X,
y_knm,
.. metric='euclidean')
>>> y ax lower, y ax upper = 0, O

>>> yticks = []
>>> for i, ¢ in enumerate (cluster labels):
c_silhouette vals = silhouette vals[y km == c]
c_silhouette vals.sort ()
y_ax upper += len(c_silhouette vals)
color = cm.jet (i / n_clusters)
plt.barh(range(y ax lower, y_ ax_upper),
c_silhouette vals,
height=1.0,
edgecolor="'none',
color=color)
yticks.append((y ax_lower + y_ ax upper) / 2)
y_ax lower += len(c_silhouette vals)
>>> silhouette avg = np.mean(silhouette vals)
>>> plt.axvline(silhouette_ avg,
color="red",
.. linestyle="--")
>>> plt.yticks(yticks, cluster labels + 1)

[322]

Chapter 11

>>> plt.ylabel ('Cluster')
>>> plt.xlabel ('Silhouette coefficient')
>>> plt.show()

Through a visual inspection of the silhouette plot, we can quickly scrutinize the sizes
of the different clusters and identify clusters that contain outliers:

Cluster

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Silhouette coefficient

As we can see in the preceding silhouette plot, our silhouette coefficients are not even
close to 0, which can be an indicator of a good clustering. Furthermore, to summarize
the goodness of our clustering, we added the average silhouette coefficient to the
plot (dotted line).

To see how a silhouette plot looks for a relatively bad clustering, let's seed the
k-means algorithm with two centroids only:

>>> km = KMeans (n clusters=2,
init='k-means++"',
n init=10,
max_iter=300,
tol=1e-04,

- random_state=0)

>>> y _km = km.fit predict (X)

>>> plt.scatter (X[y km==0,0],
X[y km==0,1],
s=50, c='lightgreen',

[323]

Working with Unlabeled Data - Clustering Analysis

marker='s',
C. label="'cluster 1')
>>> plt.scatter (X[y km==1,0],
X[y _km==1,11,
s=50,
c='orange',
marker='o"',
label="'cluster 2"')
>>> plt.scatter (km.cluster centers [:,0],
km.cluster centers [:,1],
s=250,
marker="'*"',
c='red',
e label="'centroids"')
>>> plt.legend()
>>> plt.grid()
>>> plt.show()

As we can see in the following scatterplot, one of the centroids falls between two of
the three spherical groupings of the sample points. Although the clustering does not
look completely terrible, it is suboptimal.

6 T I T T 1 1
:) : - |O0O cluster 1
Sl 000%08 000 cluster 2 |4
: : ° :0@8 - ke centroids
4 e o ;
Lo BRI > S TR ST

%0 20 X g° 9000
R T OOy SRR SOURUIUROON SUPRUOROON

: : : : = :
Lo
| ? | - Jgiy W
ob i BT
_1 1 L 1 1 1 1
-3 =2 -1 0 1 2 3 4

Next we create the silhouette plot to evaluate the results. Please keep in mind that
we typically do not have the luxury of visualizing datasets in two-dimensional
scatterplots in real-world problems, since we typically work with data in higher
dimensions:

>>> cluster labels = np.unique (y km)
>>> n_clusters = cluster_ labels.shape[0]
>>> silhouette vals = silhouette samples (X,

[324]

Chapter 11

y_km,
C. metric='euclidean')
>>> y ax lower, y ax upper = 0, O
yticks = []
>>> for i, ¢ in enumerate(cluster labels):

c_silhouette vals = silhouette vals[y km == c]
c_silhouette vals.sort()
y_ax upper += len(c_silhouette vals)
color = cm.jet (i / n_clusters)
plt.barh(range(y ax lower, y ax_upper),

c_silhouette vals,

height=1.0,

edgecolor="'none',

color=color)
yticks.append((y _ax lower + y_ax_upper) / 2)
y_ax lower += len(c_silhouette vals)

>>> silhouette avg = np.mean(silhouette vals)

>>> plt.
>>> plt.
>>> plt.
>>> plt.
>>> plt.

axvline (silhouette avg, color="red", linestyle="--")
yticks (yticks, cluster labels + 1)

ylabel ('Cluster')

xlabel ('Silhouette coefficient')

show ()

As we can see in the resulting plot, the silhouettes now have visibly different lengths
and width, which yields further evidence for a suboptimal clustering:

Cluster

0.0 0.2 0.4 0.6 0.8
Silhouette coefficient

[325]

Working with Unlabeled Data - Clustering Analysis

Organizing clusters as a hierarchical tree

In this section, we will take a look at an alternative approach to prototype-based
clustering: hierarchical clustering. One advantage of hierarchical clustering
algorithms is that it allows us to plot dendrograms (visualizations of a binary
hierarchical clustering), which can help with the interpretation of the results by
creating meaningful taxonomies. Another useful advantage of this hierarchical
approach is that we do not need to specify the number of clusters upfront.

The two main approaches to hierarchical clustering are agglomerative and divisive
hierarchical clustering. In divisive hierarchical clustering, we start with one cluster
that encompasses all our samples, and we iteratively split the cluster into smaller
clusters until each cluster only contains one sample. In this section, we will focus

on agglomerative clustering, which takes the opposite approach. We start with each
sample as an individual cluster and merge the closest pairs of clusters until only one
cluster remains.

The two standard algorithms for agglomerative hierarchical clustering are single
linkage and complete linkage. Using single linkage, we compute the distances
between the most similar members for each pair of clusters and merge the two
clusters for which the distance between the most similar members is the smallest.
The complete linkage approach is similar to single linkage but, instead of comparing
the most similar members in each pair of clusters, we compare the most dissimilar
members to perform the merge. This is shown in the following diagram:

Most similar members
(single linkage)

|

Most dissimilar members
(complete linkage)

[326]

Chapter 11

Other commonly used algorithms for agglomerative hierarchical
. clustering include average linkage and Ward's linkage. In average
a linkage, we merge the cluster pairs based on the minimum average
L distances between all group members in the two clusters. In Ward's
method, those two clusters that lead to the minimum increase of the
total within-cluster SSE are merged.

In this section, we will focus on agglomerative clustering using the complete
linkage approach. This is an iterative procedure that can be summarized by the
following steps:

1. Compute the distance matrix of all samples.
2. Represent each data point as a singleton cluster.

3. Merge the two closest clusters based on the distance of the most dissimilar
(distant) members.

Update the similarity matrix.

Repeat steps 2 to 4 until one single cluster remains.

Now we will discuss how to compute the distance matrix (step 1). But first, let's
generate some random sample data to work with. The rows represent different

observations (IDs 0 to 4), and the columns are the different features (X, Y, Z) of

those samples:

>>> import pandas as pd

>>> import numpy as np

>>> np.random.seed (123)

>>> variables = ['X', 'Y', 'Z']

>>> labels = ['ID 0','ID 1','ID 2','ID 3','ID 4']

>>> X = np.random.random sample([5,3])*10

>>> df = pd.DataFrame (X, columns=variables, index=labels)
>>> df

[327]

Working with Unlabeled Data - Clustering Analysis

After executing the preceding code, we should now see the following

distance matrix:

X

Y

Z

ID_O

6.964692

2.861393

2.268515

ID_1

5.513148

7.194690

4.231065

ID_2

0.807642

6.848297

4.809319

ID_3

3.921175

3.431780

7.290497

ID_4

4.385722

0.596779

3.980443

Performing hierarchical clustering on a
distance matrix

To calculate the distance matrix as input for the hierarchical clustering algorithm,
we will use the pdist function from SciPy's spatial .distance submodule:

>>> from scipy.spatial.distance import pdist, squareform

>>> row_dist pd.DataFrame (squareform (

pdist (df, metric='euclidean')),
columns=1labels, index=labels)

>>> row_dist

Using the preceding code, we calculated the Euclidean distance between each pair
of sample points in our dataset based on the features X, Y, and Z. We provided
the condensed distance matrix —returned by pdist —as input to the squareform
function to create a symmetrical matrix of the pair-wise distances, as shown here:

ID_O ID_1 ID_2 ID_3 ID_4

ID_O

0.000000

4973534

5.516653

5.899885

3.835396

ID_1

4.973534

0.000000

4.347073

5.104311

6.698233

ID_2

5.516653

4.347073

0.000000

7.244262

8.316594

ID_3

5.899885

5.104311

7.244262

0.000000

4.382864

ID_4

3.835396

6.698233

8.316594

4.382864

0.000000

[328]

Chapter 11

Next we will apply the complete linkage agglomeration to our clusters using the
linkage function from SciPy's cluster.hierarchy submodule, which returns
a so-called linkage matrix.

However, before we call the 1inkage function, let's take a careful look at the function
documentation:

>>> from scipy.cluster.hierarchy import linkage

>>> help(linkage)

[...]

Parameters:

y : ndarray

A condensed or redundant distance matrix. A condensed
distance matrix is a flat array containing the upper
triangular of the distance matrix. This is the form
that pdist returns. Alternatively, a collection of m
observation vectors in n dimensions may be passed as
an m by n array.

method : str, optional

The linkage algorithm to use. See the Linkage Methods
section below for full descriptions.

metric : str, optional
The distance metric to use. See the distance.pdist
function for a list of valid distance metrics.

Returns:
Z : ndarray

The hierarchical clustering encoded as a linkage matrix.

[...]

Based on the function description, we conclude that we can use a condensed distance
matrix (upper triangular) from the pdist function as an input attribute. Alternatively,
we could also provide the initial data array and use the euclidean metric as a function
argument in 1inkage. However, we should not use the squareform distance matrix
that we defined earlier, since it would yield different distance values from those
expected. To sum it up, the three possible scenarios are listed here:

* Incorrect approach: In this approach, we use the squareform distance matrix.
The code is as follows:

>>> from scipy.cluster.hierarchy import linkage

>>> row_clusters = linkage(row dist,
method="'complete"',
metric='euclidean')

[329]

Working with Unlabeled Data - Clustering Analysis

Correct approach: In this approach, we use the condensed distance matrix.
The code is as follows:

>>> row_clusters = linkage(pdist (df, metric='euclidean'),
method="'complete')

Correct approach: In this approach, we use the input sample matrix.
The code is as follows:

>>> row_clusters = linkage (df.values,
method="'complete"',
metric='euclidean')

To take a closer look at the clustering results, we can turn them to a pandas
DataFrame (best viewed in IPython Notebook) as follows:

>>> pd.DataFrame (row clusters,

columns=['row label 1°',

'row label 2',

'distance’',

'no. of items in clust.'],
index=['cluster %d' %(i+l) for i in

range (row_clusters.shape[0])])

As shown in the following table, the linkage matrix consists of several rows where
each row represents one merge. The first and second columns denote the most
dissimilar members in each cluster, and the third row reports the distance between
those members. The last column returns the count of the members in each cluster.

row label 1 |row label 2 | distance | no. of items in clust.
cluster 1|0 4 3.835396 |2
cluster 2 | 1 2 4.347073|2
cluster 3 |3 5 5.899885 |3
cluster 4 |6 7 8.316594 |5

Now that we have computed the linkage matrix, we can visualize the results in the
form of a dendrogram:

>>> from scipy.cluster.hierarchy import dendrogram

make dendrogram black (part 1/2)

from scipy.cluster.hierarchy import set link color palette
set link color palette(['black'])

[330]

Chapter 11

>>> row_dendr = dendrogram(row clusters,

labels=1abels,

make dendrogram black (part 2/2)
color_ threshold=np.inf

ce)

>>> plt.tight layout ()
>>> plt.ylabel ('Euclidean distance')
>>> plt.show()

If you are executing the preceding code or reading the e-book version of this book,
you will notice that the branches in the resulting dendrogram are shown in different
colors. The coloring scheme is derived from a list of matplotlib colors that are

cycled for the distance thresholds in the dendrogram. For example, to display the
dendrograms in black, you can uncomment the respective sections that I inserted in
the preceding code.

Euclidean distance

ID_1 ID 2 ID_3 ID_0 D 4

Such a dendrogram summarizes the different clusters that were formed during the
agglomerative hierarchical clustering; for example, we can see that the samples
ID_0 and ID_4, followed by ID_1 and ID_2, are the most similar ones based on
the Euclidean distance metric.

[331]

Working with Unlabeled Data - Clustering Analysis

Attaching dendrograms to a heat map

In practical applications, hierarchical clustering dendrograms are often used in
combination with a heat map, which allows us to represent the individual values in
the sample matrix with a color code. In this section, we will discuss how to attach a
dendrogram to a heat map plot and order the rows in the heat map correspondingly.

However, attaching a dendrogram to a heat map can be a little bit tricky, so let's go
through this procedure step by step:

1.

We create a new figure object and define the x axis position, y axis
position, width, and height of the dendrogram via the add_axes attribute.
Furthermore, we rotate the dendrogram 90 degrees counter-clockwise.
The code is as follows:

>>> fig = plt.figure(figsize=(8,8))

>>> axd = fig.add axes([0.09,0.1,0.2,0.6])

>>> row_dendr = dendrogram(row clusters, orientation='right')

Next we reorder the data in our initial DataFrame according to the clustering
labels that can be accessed from the dendrogram object, which is essentially a
Python dictionary, via the 1eaves key. The code is as follows:

>>> df rowclust = df.ix[row _dendr['leaves'] [::-1]]

Now we construct the heat map from the reordered DataFrame and position
it right next to the dendrogram:

>>> axm = fig.add axes([0.23,0.1,0.6,0.6])
>>> cax = axm.matshow(df_ rowclust,
interpolation='nearest', cmap='hot r')

Finally we will modify the aesthetics of the heat map by removing the axis
ticks and hiding the axis spines. Also, we will add a color bar and assign
the feature and sample names to the x and y axis tick labels, respectively.
The code is as follows:

>>> axd.set xticks([])
>>> axd.set_yticks([])
>>> for i1 in axd.spines.values():
i.set_visible (False)
>>> fig.colorbar (cax)
>>> axm.set_xticklabels([''] + list(df_rowclust.columns))
>>> axm.set yticklabels([''] + list(df_rowclust.index))
>>> plt.show()

[332]

Chapter 11

After following the previous steps, the heat map should be displayed with the
dendrogram attached:

ID_0

ID_3

ID_2

ID_1

As we can see, the row order in the heat map reflects the clustering of the samples
in the dendrogram. In addition to a simple dendrogram, the color-coded values
of each sample and feature in the heat map provide us with a nice summary of
the dataset.

[333]

Working with Unlabeled Data - Clustering Analysis

Applying agglomerative clustering via
scikit-learn

In this section, we saw how to perform agglomerative hierarchical clustering

using SciPy. However, there is also an AgglomerativeClustering implementation
in scikit-learn, which allows us to choose the number of clusters that we want to
return. This is useful if we want to prune the hierarchical cluster tree. By setting
then_cluster parameter to 2, we will now cluster the samples into two groups
using the same complete linkage approach based on the Euclidean distance metric
as before:

>>> from sklearn.cluster import AgglomerativeClustering
>>> ac = AgglomerativeClustering(n_clusters=2,
affinity='euclidean',
Ce linkage="'complete!')
>>> labels = ac.fit predict (X)

>>> print ('Cluster labels: %$s' % labels)
Cluster labels: [0 1 1 0 0]

Looking at the predicted cluster labels, we can see that the first, fourth, and fifth
sample (ID_0, ID_3, and ID_4) were assigned to one cluster (0), and the samples
ID_1 and ID_2 were assigned to a second cluster (1), which is consistent with the
results that we can observe in the dendrogram.

Locating regions of high density via
DBSCAN

Although we can't cover the vast number of different clustering algorithms in this
chapter, let's at least introduce one more approach to clustering: Density-based
Spatial Clustering of Applications with Noise (DBSCAN). The notion of density
in DBSCAN is defined as the number of points within a specified radius ¢ .

In DBSCAN, a special label is assigned to each sample (point) using the
following criteria:

* A point is considered as core point if at least a specified number (MinPts) of
neighboring points fall within the specified radius &

* A border point is a point that has fewer neighbors than MinPts within &,
but lies within the & radius of a core point

* All other points that are neither core nor border points are considered as
noise points

[334]

Chapter 11

After labeling the points as core, border, or noise points, the DBSCAN algorithm can

be summarized in two simple steps:

1. Form a separate cluster for each core point or a connected group of core
points (core points are connected if they are no farther away than ¢).

2. Assign each border point to the cluster of its corresponding core point.

To get a better understanding of what the result of DBSCAN can look like before
jumping to the implementation, let's summarize what you have learned about core
points, border points, and noise points in the following figure:

Noise point

Core point

Border point

One of the main advantages of using DBSCAN is that it does not assume that the
clusters have a spherical shape as in k-means. Furthermore, DBSCAN is different
from k-means and hierarchical clustering in that it doesn't necessarily assign each

point to a cluster but is capable of removing noise points.

For a more illustrative example, let's create a new dataset of half-moon-shaped
structures to compare k-means clustering, hierarchical clustering, and DBSCAN:

>>> from sklearn.datasets import make moons

>>> X, y = make moons (n_samples=200,
noise=0.05,

R random_state=0)

>>> plt.scatter(X[:,0], X[:,1])

>>> plt.show()

[335]

Working with Unlabeled Data - Clustering Analysis

As we can see in the resulting plot, there are two visible, half-moon-shaped groups
consisting of 100 sample points each:

1.5 T T T T T T T
1.0 A o®
. '.'fo! a:".::£
e ']
0.5} .’.sr L 01? i
k1 L8 % 3
b) < T
° oo
0.0 ° o
o e° ® oo
(3 o
. soue’
(1}
—-0.5} -‘ﬁiﬂﬂuh.mr=r ° .
_10 1 L L L L I I
=15 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

We will start by using the k-means algorithm and complete linkage clustering to see
whether one of those previously discussed clustering algorithms can successfully
identify the half-moon shapes as separate clusters. The code is as follows:

>>> £, (axl, ax2) = plt.subplots(l, 2, figsize=(8,3))
>>> km = KMeans (n clusters=2,
R random_state=0)
>>> y km = km.fit predict (X)
>>> axl.scatter (X[y km==0,0],
X[y km==0,1],
c='lightblue’,
marker='o"',
s=40,
label="'cluster 1'")
>>> axl.scatter (X[y km==1,0],
X[y km==1,1],
c='red',
marker='s"',
=40,
label="'cluster 2'")
>>> axl.set title('K-means clustering')
>>> ac = AgglomerativeClustering(n clusters=2,

[336]

Chapter 11

affinity='euclidean',
linkage='complete')
>>> y ac = ac.fit predict (X)
>>> ax2.scatter (X[y ac==0,01],
X[y _ac==0,11,
c='lightblue’,
marker='o"',
s=40,
label='cluster 1'")
>>> ax2.scatter (X[y ac==1,0],
X[y ac==1,11,
c='red',
marker='s',
s=40,
label='cluster 2'")
>>> ax2.set title('Agglomerative clustering')
>>> plt.legend()
>>> plt.show()

Based on the visualized clustering results, we can see that the k-means algorithm is
unable to separate the two clusters, and the hierarchical clustering algorithm was
challenged by those complex shapes:

K-means clustering Agglomerative clustering

1.5 . y - 1.5 - -
000 cluster 1
1.0 . 1.0} mEm cluster 2 |4
0.5 0.5
0.0 g 0.0 .
-0.5} 4 -o0s5} :

0 L 'l L L 1.0 L L 'l 1
-1.5 -1.0 -0.5 0.0 05 1.0 15 20 25 -1.5 -1.0 -0.5 0.0 05 10 15 20 25

Finally, let's try the DBSCAN algorithm on this dataset to see if it can find the two
half-moon-shaped clusters using a density-based approach:

>>> from sklearn.cluster import DBSCAN
>>> db = DBSCAN (eps=0.2,

min samples=5,
.. metric='euclidean')
>>> y db = db.fit predict (X)

[337]

Working with Unlabeled Data - Clustering Analysis

>>> plt.scatter (X[y db==0,01],
X[y _db==0,11,
c='lightblue’,
marker='o"',
s=40,
c. label='cluster 1'")
>>> plt.scatter (X[y db==1,01],
X[y db==1,11,
c='red',
marker='s',
s=40,
c. label='cluster 2'")
>>> plt.legend()
>>> plt.show()

The DBSCAN algorithm can successfully detect the half-moon shapes, which
highlights one of the strengths of DBSCAN (clustering data of arbitrary shapes)

15 T T T T T T
000 cluster1l
EEg cluster 2

10} 6?%0@(? @gga%%]

Lo 1 Lo

_1.0] L 1 L L] L
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

[338]

Chapter 11

However, we should also note some of the disadvantages of DBSCAN. With an
increasing number of features in our dataset—given a fixed size training set—the
negative effect of the curse of dimensionality increases. This is especially a problem

if we are using the Euclidean distance metric. However, the problem of the curse of
dimensionality is not unique to DBSCAN; it also affects other clustering algorithms
that use the Euclidean distance metric, for example, the k-means and hierarchical
clustering algorithms. In addition, we have two hyperparameters in DBSCAN
(MinPts and &) that need to be optimized to yield good clustering results. Finding a
good combination of MinPts and & can be problematic if the density differences in
the dataset are relatively large.

So far, we saw three of the most fundamental categories of clustering
algorithms: prototype-based clustering with k-means, agglomerative
hierarchical clustering, and density-based clustering via DBSCAN.
However, I also want to mention a fourth class of more advanced
clustering algorithms that we have not covered in this chapter:
graph-based clustering. Probably the most prominent members of
+ the graph-based clustering family are spectral clustering algorithms.
% Although there are many different implementations of spectral
g clustering, they all have in common that they use the eigenvectors
of a similarity matrix to derive the cluster relationships. Since
spectral clustering is beyond the scope of this book, you can read
the excellent tutorial by Ulrike von Luxburg to learn more about this
topic (U. Von Luxburg. A Tutorial on Spectral Clustering. Statistics and
computing, 17(4):395-416, 2007). It is freely available from arXiv at
http://arxiv.org/pdf/0711.0189v1.pdf.

Note that, in practice, it is not always obvious which algorithm will perform best on
a given dataset, especially if the data comes in multiple dimensions that make it hard
or impossible to visualize. Furthermore, it is important to emphasize that a successful
clustering does not only depend on the algorithm and its hyperparameters. Rather,
the choice of an appropriate distance metric and the use of domain knowledge that
can help guide the experimental setup can be even more important.

[339]

http://arxiv.org/pdf/0711.0189v1.pdf

Working with Unlabeled Data - Clustering Analysis

Summary

In this chapter, you learned about three different clustering algorithms that can
help us with the discovery of hidden structures or information in data. We started
this chapter with a prototype-based approach, k-means, which clusters samples
into spherical shapes based on a specified number of cluster centroids. Since
clustering is an unsupervised method, we do not enjoy the luxury of ground truth
labels to evaluate the performance of a model. Thus, we looked at useful intrinsic
performance metrics such as the elbow method or silhouette analysis as an attempt
to quantify the quality of clustering.

We then looked at a different approach to clustering: agglomerative

hierarchical clustering. Hierarchical clustering does not require specifying

the number of clusters upfront, and the result can be visualized in a dendrogram
representation, which can help with the interpretation of the results. The last
clustering algorithm that we saw in this chapter was DBSCAN, an algorithm that
groups points based on local densities and is capable of handling outliers and
identifying nonglobular shapes.

After this excursion into the field of unsupervised learning, it is now about time to
introduce some of the most exciting machine learning algorithms for supervised
learning: multilayer artificial neural networks. After their recent resurgence, neural
networks are once again the hottest topic in machine learning research. Thanks to
the recently developed deep learning algorithms, neural networks are conceived

as state-of-the-art for many complex tasks such as image classification and speech
recognition. In Chapter 12, Training Artificial Neural Networks for Image Recognition,

we will construct our own multilayer neural network from scratch. In Chapter 13,
Parallelizing Neural Network Training with Theano, we will introduce powerful libraries
that can help us to train complex network architectures most efficiently.

[340]

12

Training Artificial Neural
Networks for Image
Recognition

As you may know, deep learning is getting a lot of press and is without any doubt
the hottest topic in the machine learning field. Deep learning can be understood

as a set of algorithms that were developed to train artificial neural networks with
many layers most efficiently. In this chapter, you will learn the basic concepts of
artificial neural networks so that you will be well equipped to further explore the
most exciting areas of research in the machine learning field, as well as the advanced
Python-based deep learning libraries that are currently being developed.

The topics that we will cover are as follows:

* Getting a conceptual understanding of multi-layer neural networks
* Training neural networks for image classification
* Implementing the powerful backpropagation algorithm

* Debugging neural network implementations

[341]

Training Artificial Neural Networks for Image Recognition

Modeling complex functions with
artificial neural networks

At the beginning of this book, we started our journey through machine learning
algorithms with artificial neurons in Chapter 2, Training Machine Learning Algorithms
for Classification. Artificial neurons represent the building blocks of the multi-layer
artificial neural networks that we are going to discuss in this chapter. The basic
concept behind artificial neural networks was built upon hypotheses and models

of how the human brain works to solve complex problem tasks. Although artificial
neural networks have gained a lot of popularity in recent years, early studies of
neural networks go back to the 1940s when Warren McCulloch and Walter Pitt first
described how neurons could work. However, in the decades that followed the first
implementation of the McCulloch-Pitt neuron model, Rosenblatt's perceptron in
the 1950s, many researchers and machine learning practitioners slowly began to lose
interest in neural networks since no one had a good solution for training a neural
network with multiple layers. Eventually, interest in neural networks was rekindled
in 1986 when D.E. Rumelhart, G.E. Hinton, and R.]. Williams were involved in the
(re)discovery and popularization of the backpropagation algorithm to train neural
networks more efficiently, which we will discuss in more detail later in this chapter
(Rumelhart, David E.; Hinton, Geoffrey E.; Williams, Ronald J. (1986). Learning
Representations by Back-propagating Errors. Nature 323 (6088): 533-536).

During the previous decade, many more major breakthroughs resulted in what we
now call deep learning algorithms, which can be used to create feature detectors
from unlabeled data to pre-train deep neural networks —neural networks that are
composed of many layers. Neural networks are a hot topic not only in academic
research, but also in big technology companies such as Facebook, Microsoft, and
Google who invest heavily in artificial neural networks and deep learning research.
As of today, complex neural networks powered by deep learning algorithms are
considered as state-of-the-art when it comes to complex problem solving such as
image and voice recognition. Popular examples of the products in our everyday life
that are powered by deep learning are Google's image search and Google Translate,
an application for smartphones that can automatically recognize text in images

for real-time translation into 20 languages (http://googleresearch.blogspot .
com/2015/07/how-google-translate-squeezes-deep.html).

[342]

http://googleresearch.blogspot.com/2015/07/how-google-translate-squeezes-deep.html
http://googleresearch.blogspot.com/2015/07/how-google-translate-squeezes-deep.html

Chapter 12

Many more exciting applications of deep neural networks are under active
development at major tech companies, for example, Facebook's DeepFace for
tagging images (Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. DeepFace: Closing
the gap to human-level performance in face verification. In Computer Vision and
Pattern Recognition CVPR, 2014 IEEE Conference, pages 1701-1708) and Baidu's
DeepSpeech, which is able to handle voice queries in Mandarin (A. Hannun,

C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger, S. Satheesh, S.
Sengupta, A. Coates, et al. DeepSpeech: Scaling up end-to-end speech recognition. arXiv
preprint arXiv:1412.5567, 2014). In addition, the pharmaceutical industry recently
started to use deep learning techniques for drug discovery and toxicity prediction,
and research has shown that these novel techniques substantially exceed the
performance of traditional methods for virtual screening (T. Unterthiner, A. Mayr, G.
Klambauer, and S. Hochreiter. Toxicity prediction using deep learning. arXiv preprint
arXiv:1503.01445, 2015).

Single-layer neural network recap

This chapter is all about multi-layer neural networks, how they work, and how

to train them to solve complex problems. However, before we dig deeper into a
particular multi-layer neural network architecture, let's briefly reiterate some of the
concepts of single-layer neural networks that we introduced in Chapter 2, Training
Machine Learning Algorithms for Classification, namely, the ADAptive LInear NEuron
(Adaline) algorithm that is shown in the following figure:

=00 Activation
function

2 Predicted
“ class label

Net input Unit step

et function function
_ .+ Weight

Input coefficients

values

[343]

Training Artificial Neural Networks for Image Recognition

In Chapter 2, Training Machine Learning Algorithms for Classification, we implemented
the Adaline algorithm to perform binary classification, and we used a gradient
descent optimization algorithm to learn the weight coefficients of the model. In
every epoch (pass over the training set), we updated the weight vector w using
the following update rule:

w=w+Aw, where Aw =-nVI(w)

In other words, we computed the gradient based on the whole training set and
updated the weights of the model by taking a step into the opposite direction of the
gradient vi(w). In order to find the optimal weights of the model, we optimized an
objective function that we defined as the Sum of Squared Errors (SSE) cost function
J(w). Furthermore, we multiplied the gradient by a factor, the learning rate 77, which
we chose carefully to balance the speed of learning against the risk of overshooting
the global minimum of the cost function.

In gradient descent optimization, we updated all weights simultaneously after each
epoch, and we defined the partial derivative for each weight w; in the weight vector
w as follows:

()= 3 (1" =)

j i

Here y" is the target class label of a particular sample x”, and 4" is the activation
of the neuron, which is a linear function in the special case of Adaline. Furthermore,
we defined the activation function 4(-) as follows:

¢(z)=z:a

Here, the net input z is a linear combination of the weights that are connecting the
input to the output layer:

_ T
Z—ijjxj =W X

While we used the activation #(z) to compute the gradient update, we implemented
a threshold function (Heaviside function) to squash the continuous-valued output
into binary class labels for prediction:

. {1 if g(z)=0

—1 otherwise

[344]

Chapter 12

Note that although Adaline consists of two layers, one input layer

and one output layer, it is called a single-layer network because of
"~ its single link between the input and output layers.

Introducing the multi-layer neural network
architecture

In this section, we will see how to connect multiple single neurons to a multi-layer
feedforward neural network; this special type of network is also called a multi-layer
perceptron (MLP). The following figure explains the concept of an MLP consisting
of three layers: one input layer, one hidden layer, and one output layer. The units in
the hidden layer are fully connected to the input layer, and the output layer is fully
connected to the hidden layer, respectively. If such a network has more than one
hidden layer, we also call it a deep artificial neural network.

1% Layer R Layer 3" Layer
(input layer) (hidden layer) (output layer)

We could add an arbitrary number of hidden layers to the MLP to create
deeper network architectures. Practically, we can think of the number of
layers and units in a neural network as additional hyperparameters that
we want to optimize for a given problem task using the cross-validation
that we discussed in Chapter 6, Learning Best Practices for Model Evaluation

and Hyperparameter Tuning.

/~~— However, the error gradients that we will calculate later via
backpropagation would become increasingly small as more layers are
added to a network. This vanishing gradient problem makes the model
learning more challenging. Therefore, special algorithms have been
developed to pretrain such deep neural network structures, which is
called deep learning.

[345]

Training Artificial Neural Networks for Image Recognition

As shown in the preceding figure, we denote the ith activation unit in the /th layer
as a”, and the activation units a(()‘) and a((f) are the bias units, respectively, which we
set equal to 1. The activation of the units in the input layer is just its input plus the
bias unit:

Each unit in layer / is connected to all units in layer /+1 via a weight coefficient.

For example, the connection between the & ™ unit in layer / to the / th unit in layer
I+1 would be written as wﬁ’} Please note that the superscript i in xf,;) stands for
the i ™ sample, not the i ™ layer. In the following paragraphs, we will often omit the

superscript i for clarity.

While one unit in the output layer would suffice for a binary classification task,

we saw a more general form of a neural network in the preceding figure, which
allows us to perform multi-class classification via a generalization of the One-vs-
All (OvA) technique. To better understand how this works, remember the one-hot
representation of categorical variables that we introduced in Chapter 4, Building Good
Training Sets — Data Preprocessing. For example, we would encode the three class
labels in the familiar Iris dataset (0=Setosa, 1=Versicolor, 2=Virginica)

as follows:

1 0 0
0=0[,1=[1],2=]0
0 1

This one-hot vector representation allows us to tackle classification tasks with an
arbitrary number of unique class labels present in the training set.

[346]

Chapter 12

If you are new to neural network representations, the terminology around the indices
(subscripts and superscripts) may look a little bit confusing at first. You may wonder

why we wrote w(/i and not w,(cl), to refer to the weight coefficient that connects the
k™ unit in layer / to the /™ unit in layer /+1. What may seem a little bit quirky

at first will make much more sense in later sections when we vectorize the neural
network representation. For example, we will summarize the weights that connect
the input and hidden layer by a matrix W) e R""*! where 4 is the number of
hidden units and m+1 is the number of hidden units plus bias unit. Since it is
important to internalize this notation to follow the concepts later in this chapter, let's
summarize what we just discussed in a descriptive illustration of a simplified 3-4-3
multi-layer perceptron:

layer /=1 with 3 layer [=2 with 3
Input units (m=3) hidden units (h=3) Layer /=3
not counting bias not counting bias with 3 output

n units (r=3)

connects 1% non-bias
Number of layers: L=3 neuron in layer to the 3
unit layer 3

Activating a neural network via forward
propagation

In this section, we will describe the process of forward propagation to calculate the

output of an MLP model. To understand how it fits into the context of learning an
MLP model, let's summarize the MLP learning procedure in three simple steps:

1. Starting at the input layer, we forward propagate the patterns of the training
data through the network to generate an output.

2. Based on the network's output, we calculate the error that we want to
minimize using a cost function that we will describe later.

3. We backpropagate the error, find its derivative with respect to each weight in
the network, and update the model.

[347]

Training Artificial Neural Networks for Image Recognition

Finally, after repeating the steps for multiple epochs and learning the weights of
the MLP, we use forward propagation to calculate the network output and apply a
threshold function to obtain the predicted class labels in the one-hot representation,
which we described in the previous section.

Now, let's walk through the individual steps of forward propagation to generate
an output from the patterns in the training data. Since each unit in the hidden unit
is connected to all units in the input layers, we first calculate the activation a'”

as follows:

1
N

2 = a0l 4) 4oy gl

= g(:0)

Here, = is the net input and #(*) is the activation function, which has to be
differentiable to learn the weights that connect the neurons using a gradient-based
approach. To be able to solve complex problems such as image classification, we
need nonlinear activation functions in our MLP model, for example, the sigmoid
(logistic) activation function that we used in logistic regression in Chapter 3, A Tour
of Machine Learning Classifiers Using Scikit-learn:

1
1+e*

4(2)

As we can remember, the sigmoid function is an S-shaped curve that maps the net
input z onto a logistic distribution in the range 0 to 1, which passes the origin at
z = 0.5, as shown in the following graph:

[348]

Chapter 12

(z

=

n
T

The MLP is a typical example of a feedforward artificial neural network. The term
feedforward refers to the fact that each layer serves as the input to the next layer
without loops, in contrast to recurrent neural networks, an architecture that we will
discuss later in this chapter. The term multi-layer perceptron may sound a little

bit confusing, since the artificial neurons in this network architecture are typically
sigmoid units, not perceptrons. Intuitively, we can think of the neurons in the MLP as
logistic regression units that return values in the continuous range between 0 and 1.

For purposes of code efficiency and readability, we will now write the activation in a
more compact form using the concepts of basic linear algebra, which will allow us to
vectorize our code implementation via NumPy rather than writing multiple nested
and expensive Python for loops:

[349]

Training Artificial Neural Networks for Image Recognition

Here, 4" is our [7+1]x1 dimensional feature vector of a sample x' plus bias unit.

w" is an nx[m+1] dimensional weight matrix where # is the number of hidden

units in our neural network. After matrix-vector multiplication, we obtain the /x1
dimensional net input vector z? to calculate the activation a? (where ¢® ¢ R™).
Furthermore, we can generalize this computation to all /7 samples in the training set:

70 _ [A(I)T

Here, 4" is now an nx[m+1] matrix, and the matrix-matrix multiplication will result
ina hxn dimensional net input matrix z". Finally, we apply the activation function
#(") to each value in the net input matrix to get the hxn activation matrix 4 for the
next layer (here, output layer):

A(Z) — ¢(Z(2))

Similarly, we can rewrite the activation of the output layer in the vectorized form:

Here, we multiply the 7x/ matrix w® (tis the number of output units) by the sxn
dimensional matrix 4 to obtain the tx» dimensional matrix z® (the columns in this
matrix represent the outputs for each sample).

Lastly, we apply the sigmoid activation function to obtain the continuous valued
output of our network:

A® = ¢(Z(3)), A®) c R

Classifying handwritten digits

In the previous section, we covered a lot of the theory around neural networks,
which can be a little bit overwhelming if you are new to this topic. Before we
continue with the discussion of the algorithm for learning the weights of the MLP
model, backpropagation, let's take a short break from the theory and see a neural
network in action.

[350]

Chapter 12

Neural network theory can be quite complex, thus I want to recommend
two additional resources that cover some of the concepts that we discuss
in this chapter in more detail:

% T. Hastie,]. Friedman, and R. Tibshirani. The Elements of Statistical
’ Learning, Volume 2. Springer, 2009.

C. M. Bishop et al. Pattern Recognition and Machine Learning, Volume 1.
Springer New York, 2006.

In this section, we will train our first multi-layer neural network to classify
handwritten digits from the popular MNIST dataset (short for Mixed National
Institute of Standards and Technology database) that has been constructed

by Yann LeCun et al. and serves as a popular benchmark dataset for machine
learning algorithms (Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
Learning Applied to Document Recognition. Proceedings of the IEEE, 86(11):2278-2324,
November 1998).

Obtaining the MNIST dataset

The MNIST dataset is publicly available at http://yann.lecun.com/exdb/mnist/
and consists of the following four parts:

* Training set images: train-images-idx3-ubyte.gz (9.9 MB, 47 MB
unzipped, and 60,000 samples)

* Training set labels: train-labels-idx1l-ubyte.gz (29 KB, 60 KB unzipped,

and 60,000 labels)

* Test set images: t10k-images-idx3-ubyte.gz (1.6 MB, 7.8 MB, unzipped
and 10,000 samples)

* Test set labels: t10k-1labels-idx1l-ubyte.gz (5 KB, 10 KB unzipped, and
10,000 labels)

The MNIST dataset was constructed from two datasets of the US National Institute
of Standards and Technology (NIST). The training set consists of handwritten digits
from 250 different people, 50 percent high school students, and 50 percent employees
from the Census Bureau. Note that the test set contains handwritten digits from
different people following the same split.

After downloading the files, I recommend unzipping the files using the Unix/Linux
gzip tool from the command line terminal for efficiency using the following
command in your local MNIST download directory:

gzip *ubyte.gz -d

[351]

http://yann.lecun.com/exdb/mnist/

Training Artificial Neural Networks for Image Recognition

Alternatively, you could use your favorite unzipping tool if you are working with
a machine running on Microsoft Windows. The images are stored in byte format,
and we will read them into NumPy arrays that we will use to train and test our
MLP implementation:

import os
import struct
import numpy as np

def load mnist (path, kind='train'):
""nToad MNIST data from “path™m"""
labels path = os.path.join(path,
'$s-labels-idx1l-ubyte'
% kind)
images_path = os.path.join(path,
'$s-images-idx3-ubyte’
% kind)

with open(labels path, 'rb') as lbpath:
magic, n = struct.unpack('sII',
lbpath.read(8))
labels = np.fromfile(lbpath,
dtype=np.uint8)

with open(images path, 'rb') as imgpath:
magic, num, rows, cols = struct.unpack(">IIII",
imgpath.read (16))
images = np.fromfile (imgpath,
dtype=np.uint8) .reshape (len(labels), 784)

return images, labels

The 1load_mnist function returns two arrays, the first being an nxm dimensional
NumPy array (images), where 7 is the number of samples and m is the number

of features. The training dataset consists of 60,000 training digits and the test set
contains 10,000 samples, respectively. The images in the MNIST dataset consist of
28x28 pixels, and each pixel is represented by a gray scale intensity value. Here, we
unroll the 28x28 pixels into 1D row vectors, which represent the rows in our image
array (784 per row or image). The second array (1abels) returned by the load mnist
function contains the corresponding target variable, the class labels (integers 0-9) of
the handwritten digits.

[352]

Chapter 12

The way we read in the image might seem a little bit strange at first:

magic, n = struct.unpack('>II', lbpath.read(8))
labels = np.fromfile (lbpath, dtype=np.int8)

To understand how these two lines of code work, let's take a look at the dataset
description from the MNIST website:

[offset] [typel [value] [description]
0000 32 bit integer 0x00000801(2049) magic number (MSB first)

0004 32 bit integer 60000 number of items
0008 unsigned byte ?? label
0009 unsigned byte ?? label
xxxx unsigned byte ?? label

Using the two lines of the preceding code, we first read in the magic number, which is
a description of the file protocol as well as the number of items (n) from the file buffer

before we read the following bytes into a NumPy array using the fromfile method.
The fmt parameter value >1I that we passed as an argument to struct .unpack has

two parts:

e >: This is the big-endian (defines the order in which a sequence of bytes is
stored); if you are unfamiliar with the terms big-endian and small-endian,
you can find an excellent article about Endianness on Wikipedia
(https://en.wikipedia.org/wiki/Endianness).

* I:This is an unsigned integer.

By executing the following code, we will now load the 60,000 training instances as
well as the 10,000 test samples from the mnist directory where we unzipped the
MNIST dataset:

>>> X train, y train = load mnist('mnist', kind='train')
>>> print ('Rows: %d, columns: %d'
o

.. % (X _train.shape[0], X train.shape([l]))
Rows: 60000, columns: 784

>>> X test, y test = load mnist('mnist', kind='tl10k')
>>> print ('Rows: %d, columns: %d'

.. % (X _test.shape[0], X test.shapel[l]))
Rows: 10000, columns: 784

[353]

https://en.wikipedia.org/wiki/Endianness

Training Artificial Neural Networks for Image Recognition

To get a idea what the images in MNIST look like, let's visualize examples of the
digits 0-9 after reshaping the 784-pixel vectors from our feature matrix into the
original 28 x 28 image that we can plot via matplotlib's imshow function:

>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(nrows=2, ncols=5, sharex=True,
sharey=True,)
>>> ax = ax.flatten()
>>> for i in range(10):
img = X train(y train == i] [0] .reshape (28, 28)
ax[i] .imshow(img, cmap='Greys', interpolation='nearest')
>>> ax[0] .set_xticks([])
>>> ax[0] .set_yticks([])
>>> plt.tight layout ()
>>> plt.show()

We should now see a plot of the 2x5 subfigures showing a representative image of
each unique digit:

O /234
S e\7 8 4

In addition, let's also plot multiple examples of the same digit to see how different
those handwriting examples really are:

>>> fig, ax = plt.subplots (nrows=5,
ncols=5,
sharex=True,
sharey=True,)
>>> ax = ax.flatten()
>>> for i in range(25):
img = X trainly train == 7] [i] .reshape (28, 28)
ax[i] .imshow(img, cmap='Greys', interpolation='nearest')
>>> ax[0] .set_xticks([])
>>> ax[0] .set_yticks ([])
>>> plt.tight layout ()
>>> plt.show()

[354]

Chapter 12

After executing the code, we should now see the first 25 variants of the digit 7.

7713117
77172717
7
7

77) L7
7 1" 77
TN 7 L7

Optionally, we can save the MNIST image data and labels as CSV files to open them
in programs that do not support their special byte format. However, we should be
aware that the CSV file format will take up substantially more space on your local
drive, as listed here:

* train img.csv:109.5 MB
* train labels.csv:120 KB
* test img.csv:18.3 MB

* test labels:20KB

If we decide to save those CSV files, we can execute the following code in our Python
session after loading the MNIST data into NumPy arrays:

>>> np.savetxt ('train img.csv', X train,
fmt='%1i', delimiter=',"')

>>> np.savetxt ('train labels.csv', y train,
fmt='%1i', delimiter=',"')

>>> np.savetxt ('test img.csv', X test,
fmt='%1i', delimiter=',"')

>>> np.savetxt ('test labels.csv', y test,
fmt='%1i', delimiter=',"')

[355]

Training Artificial Neural Networks for Image Recognition

Once we have saved the CSV files, we can load them back into Python using
NumPy's genfromtxt function:

>>> X train = np.genfromtxt ('train img.csv',
dtype=int, delimiter=',")
>>> y train = np.genfromtxt ('train labels.csv',
dtype=int, delimiter=',"')
>>> X test = np.genfromtxt ('test img.csv',
dtype=int, delimiter=',")
>>> y test = np.genfromtxt ('test labels.csv',
dtype=int, delimiter=',")

However, it will take substantially longer to load the MNIST data from the CSV files,
thus I recommend you stick to the original byte format if possible.

Implementing a multi-layer perceptron

In this subsection, we will now implement the code of an MLP with one input, one
hidden, and one output layer to classify the images in the MNIST dataset. I have tried
to keep the code as simple as possible. However, it may seem a little bit complicated
at first, and I encourage you to download the sample code for this chapter from the
Packt Publishing website, where you can find this MLP implementation annotated
with comments and syntax highlighting for better readability. If you are not running
the code from the accompanying IPython notebook, I recommend you copy it

into a Python script file in your current working directory, for example,

neuralnet .py, which you can then import into your current Python session

via the following command:

from neuralnet import NeuralNetMLP

The code will contain parts that we have not talked about yet, such as the
backpropagation algorithm, but most of the code should look familiar to you based
on the Adaline implementation in Chapter 2, Training Machine Learning Algorithms
for Classification, and the discussion of forward propagation in earlier sections. Do
not worry if not all of the code makes immediate sense to you; we will follow up
on certain parts later in this chapter. However, going over the code at this stage can
make it easier to follow the theory later.

import numpy as np
from scipy.special import expit
import sys

class NeuralNetMLP (object) :
def init (self, n output, n features, n hidden=30,
11=0.0, 12=0.0, epochs=500, eta=0.001,

[356]

Chapter 12

def

def

def

def

def

alpha=0.0, decrease const=0.0, shuffle=True,
minibatches=1, random_ state=None) :
np.random. seed (random_state)
self.n output = n output
self.n features = n features
self.n hidden = n hidden
self.wl, self.w2 = self. initialize weights()
self.11 = 11
self.12 = 12
self.epochs = epochs
self.eta = eta
self.alpha = alpha
self.decrease const = decrease_ const
self.shuffle = shuffle
self .minibatches = minibatches

_encode_labels(self, y, k):

onehot = np.zeros((k, y.shapel0]))

for idx, val in enumerate(y):
onehot [val, idx] = 1.0

return onehot

_initialize weights (self):
wl = np.random.uniform(-1.0, 1.0,
size=self.n hidden* (self.n features + 1))
wl = wl.reshape(self.n hidden, self.n features + 1)
w2 = np.random.uniform(-1.0, 1.0,
size=self.n output*(self.n hidden + 1))
w2 = w2.reshape(self.n output, self.n hidden + 1)
return wl, w2

_sigmoid(self, =z):
expit is equivalent to 1.0/(1.0 + np.exp(-2z))
return expit(z)

_sigmoid gradient (self, z):
sg = self. sigmoid(z)

return sg * (1 - sg)

_add _bias unit(self, X, how='column') :

if how == 'column':
X_new = np.ones((X.shape[0], X.shape[1l]l+1))
X new[:, 1:] =X

elif how == 'row':

[357]

Training Artificial Neural Networks for Image Recognition

X_new = np.ones((X.shape[0]+1, X.shape[1l]))

X new[l:, :] =X
else:

raise AttributeError (' “how™ must be “column™ or “row ')
return X new

def feedforward(self, X, wl, w2):

al = self. add bias unit (X, how='column')
z2 = wl.dot(al.T)

a2 = self. sigmoid(z2)

a2 = self. add bias unit (a2, how='row')
z3 = w2.dot (a2)

a3 = self. sigmoid(z3)

return al, z2, a2, z3, a3

def L2 reg(self, lambda , wl, w2):
return (lambda_/2.0) * (np.sum(wl[:, 1:] ** 2)\
+ np.sum(w2[:, 1:]1 ** 2))

def L1 reg(self, lambda , wl, w2):
return (lambda_/2.0) * (np.abs(wl[:, 1:1).sum()\

+ np.abs(w2[:, 1:]1).sum())

def get cost(self, y enc, output, wl, w2):

terml = -y enc * (np.log(output))
term2 = (1 - y enc) * np.log(l - output)
cost = np.sum(terml - term2)

Ll term = self. Ll reg(self.1ll, wl, w2)
L2 term = self. L2 reg(self.l2, wl, w2)
cost = cost + L1 _term + L2 term

return cost

def get gradient(self, al, a2, a3, z2, y enc, wl, w2):
backpropagation
sigma3 = a3 - y_enc
z2 = self. add bias unit (z2, how='row')
sigma2 = w2.T.dot (sigma3) * self. sigmoid gradient (z2)
sigma2 = sigma2[1l:, :]
gradl

sigma2.dot (al)
grad2 = sigma3.dot (a2.T)

regularize
gradl[:, 1:]1 += (wl[:, 1:] * (self.ll + self.12))

[358]

Chapter 12

def

def

grad2[:, 1:]1 += (w2[:, 1:] * (self.ll + self.12))
return gradl, grad2

predict (self, X):

al, z2, a2, z3, a3 = self. feedforward(X, self.wl,
y _pred = np.argmax(z3, axis=0)

return y pred

fit (self, X, y, print progress=False) :
self.cost = []

X data, y data = X.copy(), y.copy()

y _enc = self. encode labels(y, self.n output)

delta wl prev = np.zeros(self.wl.shape)
delta w2 prev = np.zeros(self.w2.shape)

for i in range(self.epochs) :

adaptive learning rate
self.eta /= (1 + self.decrease const*i)

if print progress:
sys.stderr.write (

self.w2)

'"\rEpoch: %d/%d' % (i+1, self.epochs))

sys.stderr.flush()

if self.shuffle:

idx = np.random.permutation(y data.shape[0])

X data, y data = X datalidx], y datal[idx]

mini = np.array split (range(

y_data.shape[0]), self.minibatches)

for idx in mini:

feedforward
al, z2, a2, z3, a3 = self. feedforward(

X[idx], self.wl, self.w2)

cost = self. get cost(y enc=y encl[:, idx],
output=a3,
wl=self.wl,
w2=self.w2)

self.cost .append(cost)

[359]

Training Artificial Neural Networks for Image Recognition

compute gradient via backpropagation

gradl, grad2 = self. get gradient(al=al, a2=a2,
a3=a3, z2=z2,
y_enc=y_encl[:, idx],
wl=self.wl,
w2=self.w2)

update weights
delta wl, delta w2 = self.eta * gradl, \

self.eta * grad2
self.wl -= (delta wl + (self.alpha * delta wl prev))
self.w2 -= (delta w2 + (self.alpha * delta w2 prev))
delta wl prev, delta w2 prev = delta wl, delta w2

return self

Now, let's initialize a new 784-50-10 MLP, a neural network with 784 input units
(n_features), 50 hidden units (n_hidden), and 10 output units (n_output):

>>> nn = NeuralNetMLP (n output=10,
n features=X train.shapel[l],
n_hidden=50,
12=0.1,
11=0.0,
epochs=1000,
eta=0.001,
alpha=0.001,
decrease const=0.00001,
shuffle=True,
minibatches=50,
random_state=1)

As you may have noticed, by going over our preceding MLP implementation,
we also implemented some additional features, which are summarized here:

* 12: The A4 parameter for L2 regularization to decrease the degree of
overfitting; equivalently, 11 is the A parameter for L1 regularization.

* epochs: The number of passes over the training set.

[360]

Chapter 12

eta: The learning rate 77.

alpha: A parameter for momentum learning to add a factor of the previous
gradient to the weight update for faster learning Aw, =nVI(w,)+aAw,_,
(where ¢ is the current time step or epoch).

decrease_const: The decrease constant d for an adaptive learning rate »
that decreases over time for better convergence 7/1+#xd .

shuffle: Shuffling the training set prior to every epoch to prevent the
algorithm from getting stuck in cycles.

Minibatches: Splitting of the training data into k mini-batches in each epoch.
The gradient is computed for each mini-batch separately instead of the entire
training data for faster learning.

Next, we train the MLP using 60,000 samples from the already shuffled MNIST
training dataset. Before you execute the following code, please note that training the
neural network may take 10-30 minutes on standard desktop computer hardware:

>>>

nn.fit (X train, y train, print progress=True)

Epoch: 1000/1000

Similar

to our previous Adaline implementation, we save the cost for each epoch

in a cost_ list that we can now visualize, making sure that the optimization
algorithm reached convergence. Here, we only plot every 50th step to account for
the 50 mini-batches (50 mini-batches x 1000 epochs). The code is as follows:

>>>

>>>

>>>

>>>

>>>

>>>

plt.plot (range(len(nn.cost)), nn.cost)
plt.ylim ([0, 2000])

plt.ylabel ('Cost!')

plt.xlabel ('Epochs * 50')

plt.tight layout ()

plt.show()

[361]

Training Artificial Neural Networks for Image Recognition

As we see in the following plot, the graph of the cost function looks very noisy.
This is due to the fact that we trained our neural network with mini-batch learning,
a variant of stochastic gradient descent.

2000

1500

1000

Cost

500

0 10000 20000 30000 40000 50000
Epochs * 50

Although we can already see in the plot that the optimization algorithm converged
after approximately 800 epochs (40,000/50 = 800), let's plot a smoother version of
the cost function against the number of epochs by averaging over the mini-batch
intervals. The code is as follows:

>>> batches = np.array split(range(len(nn.cost)), 1000)
>>> cost ary = np.array(nn.cost)
>>> cost_avgs = [np.mean(cost_ary[i]) for i in batches]

>>> plt.plot (range (len(cost_avgs)),
cost_avgs,

- color="'red"')

>>> plt.ylim ([0, 2000])

>>> plt.ylabel('Cost')

>>> plt.xlabel ('Epochs!')

>>> plt.tight layout ()

>>> plt.show()

[362]

Chapter 12

The following plot gives us a clearer picture indicating that the training algorithm
converged shortly after the 800th epoch:

2000

1500}

1000

Cost

500

0 200 400 600 800 1000
Epochs

Now, let's evaluate the performance of the model by calculating the
prediction accuracy:

>>> y train pred = nn.predict (X train)
>>> acc = np.sum(y train == y train pred, axis=0) / X train.shapel[0]

>>> print ('Training accuracy: %.2f%%' % (acc * 100))
Training accuracy: 97.74%

As we can see, the model classifies most of the training digits correctly, but how does
it generalize to data that it has not seen before? Let's calculate the accuracy on 10,000
images in the test dataset:

>>> y test pred = nn.predict (X test)

>>> acc = np.sum(y test == y test pred, axis=0) / X test.shape[0]
>>> print ('Training accuracy: %.2f%%' % (acc * 100))

Test accuracy: 96.18%

Based on the small discrepancy between training and test accuracy, we can conclude
that the model only slightly overfits the training data. To further fine-tune the
model, we could change the number of hidden units, values of the regularization
parameters, learning rate, values of the decrease constant, or the adaptive learning
using the techniques that we discussed in Chapter 6, Learning Best Practices for Model
Evaluation and Hyperparameter Tuning (this is left as an exercise for the reader).

[363]

Training Artificial Neural Networks for Image Recognition

Now, let's take a look at some of the images that our MLP struggles with:

>>> miscl img = X test[y test != y test pred] [:25]
>>> correct lab = y test[y test != y test pred] [:25]
>>> miscl lab= y test pred[y test != y test pred] [:25]

>>> fig, ax = plt.subplots (nrows=5,
ncols=5,
sharex=True,
sharey=True,)
>>> ax = ax.flatten()
>>> for i in range(25):
img = miscl img[i] .reshape (28, 28)
ax[i] .imshow (img,
cmap="'Greys',
interpolation='nearest')
ax[i] .set_title('%d) t: %d p: %d!'
% (i+1, correct lab[i], miscl lab[il))
>>> ax[0] .set_xticks([])
>>> ax[0] .set_yticks([])
>>> plt.tight layout ()
>>> plt.show()

We should now see a 5x5 subplot matrix where the first number in the subtitles
indicates the plot index, the second number indicates the true class label (t), and the
third number stands for the predicted class label (p).

Lt 4p:0 2)t:2p: 4 3)t:9p:3 4)t:4p:6 5)t:6p: 0

Ll A g yA @)

6)t:8p:4 Tt2p:0 8)t2p:7 9t 4p:9 10)t:5p:3

% [¥ S

1)t:3p:7 12)t:8p:2 13)t:4p:6 14)t:8p:7 15)t:6p: 0
> s | [5][e
16)t:9p:8 17)t:9p:3 18)t:8p:2 19)t:5p:3 20)t:9p: 4

v 8 S 4

21)t: 7 p:3 22)t:4p:9 23)t:3p:7 24)t:4p:6 25t 1p:8

1 s A \

QU

xn

(&s/

-+

[364]

Chapter 12

As we can see in the preceding figure, some of those images are even challenging
for us humans to classify correctly. For example, we can see that the digit 9 is
classified as a 3 or 8 if the lower part of the digit has a hook-like curvature
(subplots 3, 16, and 17).

Training an artificial neural network

Now that we have seen a neural network in action and have gained a basic
understanding of how it works by looking over the code, let's dig a little bit deeper
into some of the concepts, such as the logistic cost function and the backpropagation
algorithm that we implemented to learn the weights.

Computing the logistic cost function

The logistic cost function that we implemented as the _get_cost method is actually
pretty simple to follow since it is the same cost function that we described in the
logistic regression section in Chapter 3, A Tour of Machine Learning Classifiers

Using Scikit-learn.

J(w):_ﬁiyUHOngU+(l—y@)kg(y_aw)
i=1

Here, a"” is the sigmoid activation of the i unit in one of the layers which we
compute in the forward propagation step:

Now, let's add a regularization term, which allows us to reduce the degree of
overfitting. As you will recall from earlier chapters, the L2 and L1 regularization
terms are defined as follows (remember that we don't regularize the bias units):

L2=2|w. = /121 w? and Ll=2||w| = zi|wj|
J= J=

[365]

Training Artificial Neural Networks for Image Recognition

Although our MLP implementation supports both L1 and L2 regularization, we will
now only focus on the L2 regularization term for simplicity. However, the same
concepts apply to the L1 regularization term. By adding the L2 regularization term
to our logistic cost function, we obtain the following equation:

700 =[S35 0n(a (15 1) [+ 2w

Since we implemented an MLP for multi-class classification, this returns an output
vector of 7 elements, which we need to compare with the 7x1 dimensional target
vector in the one-hot encoding representation. For example, the activation of the
third layer and the target class (here: class 2) for a particular sample may look

like this:

0.1 0
0.9 1
a(3) = . , y = :
0.3 0

Thus, we need to generalize the logistic cost function to all activation units J in our
network. So our cost function (without the regularization term) becomes:

J(w)= —Zn:iyy) log(aﬁ.i))+(1 —yﬁ.i))log(l - a_gi))

i=1 k=1

Here, the superscript i is the index of a particular sample in our training set.

The following generalized regularization term may look a little bit complicated at
first, but here we are just calculating the sum of all weights of a layer / (without the
bias term) that we added to the first column:

J(w)= —{iz::zt_;yﬁ.") log(¢(z(i))j)+(1—y_gi))log(l—¢(z("))1)}

—

1+

2 ()

1 i=1 j=1

+

(SRR
.

~
1l

[366]

Chapter 12

The following equation represents the L2-penalty term:

giii(wﬁg)z

=1 i=l j=I

g)

Remember that our goal is to minimize the cost function J(w). Thus, we need to
calculate the partial derivative of matrix W with respect to each weight for every
layer in the network:

In the next section, we will talk about the backpropagation algorithm, which allows
us to calculate these partial derivatives to minimize the cost function.

Note that w consists of multiple matrices. In a multi-layer perceptron with one
hidden unit, we have the weight matrix w" which connects the input to the hidden
layer, and w", which connects the hidden layer to the output layer. An intuitive
visualization of the matrix W is provided in the following figure:

Hidden units (rows)
QOutput units (rows)

In this simplified figure, it may seem that both w" and W have the same number
of rows and columns, which is typically not the case unless we initialize an MLP
with the same number of hidden units, output units, and input features.

[367]

Training Artificial Neural Networks for Image Recognition

If this may sound confusing, stay tuned for the next section where we will
discuss the dimensionality of #" and #"” in more detail in the context of the
backpropagation algorithm.

Training neural networks via backpropagation

In this section, we will go through the math of backpropagation to understand

how you can learn the weights in a neural network very efficiently. Depending

on how comfortable you are with mathematical representations, the following
equations may seem relatively complicated at first. Many people prefer a bottom-up
approach and like to go over the equations step by step to develop an intuition for
algorithms. However, if you prefer a top-down approach and want to learn about
backpropagation without all the mathematical notations, I recommend you to read
the next section Developing your intuition for backpropagation first and revisit this
section later.

In the previous section, we saw how to calculate the cost as the difference between
the activation of the last layer and the target class label. Now, we will see how the
backpropagation algorithm works to update the weights in our MLP model, which
we implemented in the _get_gradient method. As we recall from the beginning
of this chapter, we first need to apply forward propagation in order to obtain the
activation of the output layer, which we formulated as follows:

T
z9 =" [A(l)] (netinput of the hidden layer)
A = ¢(Z (2)) (activation of the hidden layer)
z® =z 40 (netinput of the output layer)

AY = ¢(Z (3)) (activation of the output layer)

[368]

Chapter 12

Concisely, we just forward propagate the input features through the connection in
the network as shown here:

In backpropagation, we propagate the error from right to left. We start by calculating
the error vector of the output layer:

Here, y is the vector of the true class labels.

Next, we calculate the error term of the hidden layer:

. a¢(z(2))

@ _ (@) 52
Y =(w?) 8 >0

o 22
Here, — &y~ is simply the derivative of the sigmoid activation function, which we
implemented as _sigmoid gradient:

99(2) _ (a(1-a®))

Oz

Note that the asterisk symbol (*) means element-wise multiplication in this context.

[369]

Training Artificial Neural Networks for Image Recognition

Although, it is not important to follow the next equations, you may be
curious as to how I obtained the derivative of the activation function. I
summarized the derivation step by step here:

¢’(Z) :g(l +1ez j

i (1+e7) _(Hle‘z T

To better understand how we compute the 5 term, let's walk through it in more
detail. In the preceding equation, we multiplied the transpose ()" of the rxh
dimensional matrix w®; t is the number of output class labels and / is the number
of hidden units). Now, (W(”)T becomes an #x¢ dimensional matrix with §?, which
isa tx1 dimensional vector. We then performed a pair-wise multiplication between

;
(Wm) 5" and ((l(z) *(1 *a(z))), which is also a rx1 dimensional vector. Eventually,
after obtaining the § terms, we can now write the derivation of the cost function
as follows:

[370]

Chapter 12

Next, we need to accumulate the partial derivative of every J th node in layer / and
the i ™ error of the node in layer /+1:

A = AV 4 00

1] 5] J

(1)

Remember that we need to compute A;’ for every sample in the training set. Thus,
it is easier to implement it as a vectorized version like in our preceding MLP code
implementation:

T

A = AV 4 50 (40)

After we have accumulated the partial derivatives, we can add the regularization
term as follows:

AV = A0 4 20 (except for the bias term)

Lastly, after we have computed the gradients, we can now update the weights by
taking an opposite step towards the gradient:

W(/) — W(’) _nA(/)

To bring everything together, let's summarize backpropagation in the
following figure:

-
O (W) =als"
o () j Y
Wi {error term of the output layer)
(compute gradient) 3
N o =4)
(1), —
— N S N
Input x LS " Output 74— targety
~ N\ \ K
<:>/ p— 4
) (21
(2) . '\]\;') E‘g(z""]
o= NE
W =(w?) 6V —
[#4
(emor term of the hidden layer)

[371]

Training Artificial Neural Networks for Image Recognition

Developing your intuition for
backpropagation

Although backpropagation was rediscovered and popularized almost 30 years

ago, it still remains one of the most widely used algorithms to train artificial neural
networks very efficiently. In this section, we'll see a more intuitive summary and the
bigger picture of how this fascinating algorithm works.

In essence, backpropagation is just a very computationally efficient approach

to compute the derivatives of a complex cost function. Our goal is to use those
derivatives to learn the weight coefficients for parameterizing a multi-layer
artificial neural network. The challenge in the parameterization of neural networks
is that we are typically dealing with a very large number of weight coefficients in
a high-dimensional feature space. In contrast to other cost functions that we have
seen in previous chapters, the error surface of a neural network cost function is not
convex or smooth. There are many bumps in this high-dimensional cost surface
(local minima) that we have to overcome in order to find the global minimum

of the cost function.

You may recall the concept of the chain rule from your introductory calculus classes.
The chain rule is an approach to deriving a complex, nested function, for example,

/ (g (x)) =y that is broken down into basic components:

Y_d%
Ox 0Og Ox

In the context of computer algebra, a set of techniques has been developed to solve
such problems very efficiently, which is also known as automatic differentiation. If you
are interested in learning more about automatic differentiation in machine learning
applications, I recommend you to refer to the following resource: A. G. Baydin and
B. A. Pearlmutter. Automatic Differentiation of Algorithms for Machine Learning. arXiv
preprint arXiv:1404.7456, 2014, which is freely available on arXiv at http://arxiv.
org/pdf/1404.7456.pdf.

[372]

http://arxiv.org/pdf/1404.7456.pdf
http://arxiv.org/pdf/1404.7456.pdf

Chapter 12

Automatic differentiation comes with two modes, the forward and the reverse mode,
respectively. Backpropagation is simply just a special case of the reverse-mode
automatic differentiation. The key point is that applying the chain rule in the forward
mode can be quite expensive since we would have to multiply large matrices for
each layer (Jacobians) that we eventually multiply by a vector to obtain the output.
The trick of the reverse mode is that we start from right to left: we multiply a matrix
by a vector, which yields another vector that is multiplied by the next matrix and

so on. Matrix-vector multiplication is computationally much cheaper than matrix-
matrix multiplication, which is why backpropagation is one of the most popular
algorithms used in neural network training.

Debugging neural networks with gradient
checking

Implementations of artificial neural networks can be quite complex, and it is always
a good idea to manually check that we have implemented backpropagation correctly.
In this section, we will talk about a simple procedure called gradient checking,

which is essentially a comparison between our analytical gradients in the network
and numerical gradients. Gradient checking is not specific to feedforward neural
networks but can be applied to any other neural network architecture that uses
gradient-based optimization. Even if you are planning to implement more trivial
algorithms using gradient-based optimization, such as linear regression, logistic
regression, and support vector machines, it is generally not a bad idea to check if the
gradients are computed correctly.

In the previous sections, we defined a cost function /(W) where w is the matrix

of the weight coefficients of an artificial network. Note that J(#) is—roughly
speaking —a "stacked" matrix consisting of the matrices W) and w® in a multi-layer
perceptron with one hidden unit. We defined w as the hx[m+1]-dimensional matrix
that connects the input layer to the hidden layer, where / is the number of hidden
units and m is the number of features (input units). The matrix W that connects the
hidden layer to the output layer has the dimensions x4, where ¢ is the number of
output units. We then calculated the derivative of the cost function for a weight w,(l,)
as follows:

[373]

Training Artificial Neural Networks for Image Recognition

Remember that we are updating the weights by taking an opposite step towards the
direction of the gradient. In gradient checking, we compare this analytical solution to
a numerically approximated gradient:

Here, ¢ is typically a very small number, for example 1e-5 (note that 1e-5 is just

a more convenient notation for 0.00001). Intuitively, we can think of this finite
difference approximation as the slope of the secant line connecting the points of the
cost function for the two weights w and w+ & (both are scalar values), as shown in
the following figure. We are omitting the superscripts and subscripts for simplicity.

A
cost
J(w)
Jw=0.1)
Jw=0.1+¢) :
*lw=0.1)-Jw=0.1+¢)

1 1 ~
| I -

0.1 0.2 w

An even better approach that yields a more accurate approximation of the
gradient is to compute the symmetric (or centered) difference quotient given
by the two-point formula:

[374]

Chapter 12

Typically, the approximated difference between the numerical gradient .J, and
analytical gradient J) is then calculated as the L2 vector norm. For practical
reasons, we unroll the computed gradient matrices into flat vectors so that we can
calculate the error (the difference between the gradient vectors) more conveniently:

— v
error—”Jn S,

One problem is that the error is not scale invariant (small errors are more significant
if the weight vector norms are small too). Thus, it is recommended to calculate a
normalized difference:

||J'n_ J'a

2
'
[,

relative error = ;
,

2

Now, we want the relative error between the numerical gradient and the analytical
gradient to be as small as possible. Before we implement gradient checking, we need
to discuss one more detail: what is the acceptable error threshold to pass the gradient
check? The relative error threshold for passing the gradient check depends on the
complexity of the network architecture. As a rule of thumb, the more hidden layers
we add, the larger the difference between the numerical and analytical gradient can
become if backpropagation is implemented correctly. Since we have implemented a
relatively simple neural network architecture in this chapter, we want to be rather
strict about the threshold and define the following rules:

* Relative error <= le-7 means everything is okay!

* Relative error <= le-4 means the condition is problematic, and we should
look into it.

* Relative error > le-4 means there is probably something wrong in our code.

Now we have established these ground rules, let's implement gradient checking.
To do so, we can simply take the NeuralNetMLP class that we implemented
previously and add the following method to the class body:

def _gradient_checking(self, X, y_enc, wl,
w2, epsilon, gradl, grad2):
" Apply gradient checking (for debugging only)

Returns

[375]

Training Artificial Neural Networks for Image Recognition

relative error : float
Relative error between the numerically
approximated gradients and the backpropagated gradients.

num gradl = np.zeros (np.shape (wl))
epsilon aryl = np.zeros (np.shape(wl))
for i in range(wl.shape[0]) :

for j in range(wl.shape[1l]):

epsilon aryl[i, j] = epsilon
al, z2, a2, z3, a3 = self. feedforward(
X,
wl - epsilon aryl,
w2)
costl = self. get cost(y enc,
as,
wl-epsilon aryl,
w2)
al, z2, a2, z3, a3 = self. feedforward(
X,
wl + epsilon aryl,
w2)
cost2 = self. get cost(y enc,
as,
wl + epsilon aryl,
w2)
num_gradl[i, j] = (cost2 - costl) / (2 * epsilon)

epsilon aryl[i, j] = 0

num _grad2 = np.zeros (np.shape (w2))
epsilon ary2 = np.zeros (np.shape (w2))
for i in range (w2.shape[0]) :

for j in range (w2.shape[1l]) :

epsilon ary2[i, j] = epsilon
al, z2, a2, z3, a3 = self. feedforward(
X,
wl,
w2 - epsilon_ary?2)
costl = self. get cost(y enc,
as,
wl,
w2 - epsilon ary2)
al, z2, a2, z3, a3 = self. feedforward(

[376]

Chapter 12

X,
wl,
w2 + epsilon_ary?2)
cost2 = self. get cost(y enc,
as,
wl,
w2 + epsilon ary2)
num_grad2[i, j] = (cost2 - costl) / (2 * epsilon)
epsilon ary2[i, j] = 0

num grad = np.hstack((num gradl.flatten(),
num _grad2.flatten()))
grad = np.hstack((gradl.flatten(), grad2.flatten()))
norml = np.linalg.norm(num grad - grad)
norm2 = np.linalg.norm(num_grad)
norm3 = np.linalg.norm(grad)
relative error = norml / (norm2 + norm3)
return relative error

The gradient checking code seems rather simple. However, my personal
recommendation is to keep it as simple as possible. Our goal is to double-check

the gradient computation, so we want to make sure that we do not introduce any
additional mistakes in gradient checking by writing efficient but complex code.
Next, we only need to make a small modification to the £it method. In the following
code, I omitted the code at the beginning of the fit function for clarity, and the only
lines that we need to add to the method are implemented between the comments ##
start gradient checkingand ## end gradient checking:

class MLPGradientCheck (object) :

[...]
def fit(self, X, y, print progress=False) :
[...]
compute gradient via backpropagation
gradl, grad2 = self. get gradient(
al=al,
az2=az2,
a3=a3,
z2=22,
y _enc=y encl[:, idx],
wl=self.wl,
w2=self.w2)

start gradient checking

[377]

Training Artificial Neural Networks for Image Recognition

grad diff = self. gradient checking(
X=X [idx],
y enc=y encl[:, idx],
wl=self.wl,
w2=self.w2,
epsilon=1le-5,
gradl=gradl,
grad2=grad2)
if grad diff <= le-7:
print ('Ok: %s' % grad diff)
elif grad diff <= le-4:
print ('Warning: %s' % grad diff)
else:
print ('PROBLEM: %s' % grad diff)

end gradient checking

update weights; [alpha * delta w prev]
for momentum learning

delta wl = self.eta * gradl

delta w2 = self.eta * grad2

self.wl -= (delta wl +\
(self.alpha * delta wl prev))
self.w2 -= (delta w2 +\

(self.alpha * delta w2 prev))
delta wl prev = delta wl
delta w2 prev = delta w2

return self

Assuming that we named our modified multi-layer perceptron class
MLPGradientCheck, we can now initialize a new MLP with 10 hidden layers. Also,
we disable regularization, adaptive learning, and momentum learning. In addition,
we use regular gradient descent by setting minibatches to 1. The code is as follows:

>>> nn_check = MLPGradientCheck (n_output=10,
n features=X train.shapel[l],
n_hidden=10,
12=0.0,
11=0.0,
epochs=10,
eta=0.001,
alpha=0.0,
decrease_const=0.0,
minibatches=1,
random_state=1)

[378]

Chapter 12

One downside of gradient checking is that it is computationally very, very expensive.
Training a neural network with gradient checking enabled is so slow that we really
only want to use it for debugging purposes. For this reason, it is not uncommon to
run gradient checking only on a handful of training samples (here, we choose 5).

The code is as follows:

>>> nn_check.fit (X train[:5], y train[:5], print progress=False)
Ok: 2.56712936241e-10

Ok: 2.94603251069e-10
Ok: 2.37615620231e-10
Ok: 2.43469423226e-10
Ok: 3.37872073158e-10
Ok: 3.63466384861e-10
Ok: 2.22472120785e-10
Ok: 2.33163708438e-10
Ok: 3.44653686551e-10
Ok: 2.17161707211e-10

As we can see from the code output, our multi-layer perceptron passes this test with
excellent results.

Convergence in neural networks

You might be wondering why we did not use regular gradient descent but
mini-batch learning to train our neural network for the handwritten digit
classification. You may recall our discussion on stochastic gradient descent that we
used to implement online learning. In online learning, we compute the gradient based
on a single training example (k =1) at a time to perform the weight update. Although
this is a stochastic approach, it often leads to very accurate solutions with a much
faster convergence than regular gradient descent. Mini-batch learning is a special
form of stochastic gradient descent where we compute the gradient based on a subset
k of the n training samples with 1<k <#. Mini-batch learning has the advantage
over online learning that we can make use of our vectorized implementations to
improve computational efficiency. However, we can update the weights much faster
than in regular gradient descent. Intuitively, you can think of mini-batch learning

as predicting the vote turnout of a presidential election from a poll by asking only a
representative subset of the population rather than asking the entire population.

[379]

Training Artificial Neural Networks for Image Recognition

In addition, we added more tuning parameters such as the decrease constant and

a parameter for an adaptive learning rate. The reason is that neural networks are
much harder to train than simpler algorithms such as Adaline, logistic regression, or
support vector machines. In multi-layer neural networks, we typically have hundreds,
thousands, or even billions of weights that we need to optimize. Unfortunately, the
output function has a rough surface and the optimization algorithm can easily become
trapped in local minima, as shown in the following figure:

A local
cost minimum

/

Global
cost minimum

Jw)

A\ 4

w

Note that this representation is extremely simplified since our neural network has
many dimensions; it makes it impossible to visualize the actual cost surface for the
human eye. Here, we only show the cost surface for a single weight on the x axis.
However, the main message is that we do not want our algorithm to get trapped in
local minima. By increasing the learning rate, we can more readily escape such local
minima. On the other hand, we also increase the chance of overshooting the global
optimum if the learning rate is too large. Since we initialize the weights randomly,
we start with a solution to the optimization problem that is typically hopelessly
wrong. A decrease constant, which we defined earlier, can help us to climb down the
cost surface faster in the beginning and the adaptive learning rate allows us to better
anneal to the global minimum.

[380]

Chapter 12

Other neural network architectures

In this chapter, we discussed one of the most popular feedforward neural network
representations, the multi-layer perceptron. Neural networks are currently one of the
most active research topics in the machine learning field, and there are many other
neural network architectures that are well beyond the scope of this book. If you are
interested in learning more about neural networks and algorithms for deep learning,
I recommend reading the introduction and overview; Y. Bengio. Learning Deep
Architectures for Al. Foundations and Trends in Machine Learning, 2(1):1-127, 2009.
Yoshua Bengio's book is currently freely available at http: //www.iro.umontreal.
ca/~bengioy/papers/ftml book.pdf.

Although neural networks really are a topic for another book, let's take at least a
brief look at two other popular architectures, convolutional neural networks and
recurrent neural networks.

Convolutional Neural Networks

Convolutional Neural Networks (CNNs or ConvNets) gained popularity in
computer vision due to their extraordinary good performance on image classification
tasks. As of today, CNNs are one of the most popular neural network architectures in
deep learning. The key idea behind convolutional neural networks is to build many
layers of feature detectors to take the spatial arrangement of pixels in an input image
into account. Note that there exist many different variants of CNNSs. In this section,
we will discuss only the general idea behind this architecture. If you are interested

in learning more about CNNs, I recommend you to take a look at the publications of
Yann LeCun (http://yann.lecun.com), who is one of the co-inventors of CNNs. In
particular, I can recommend the following literature for getting started with CNNs:

* Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based Learning
Applied to Document Recognition. Proceedings of the IEEE, 86(11):2278-2324,
1998.

* P.Y.Simard, D. Steinkraus, and J. C. Platt. Best Practices for Convolutional
Neural Networks Applied to Visual Document Analysis. IEEE, 2003, p.958.

[381]

http://www.iro.umontreal.ca/~bengioy/papers/ftml_book.pdf
http://www.iro.umontreal.ca/~bengioy/papers/ftml_book.pdf
http://yann.lecun.com

Training Artificial Neural Networks for Image Recognition

As you will recall from our multi-layer perceptron implementation, we unrolled

the images into feature vectors and these inputs were fully connected to the hidden
layer —spatial information was not encoded in this network architecture. In CNNSs,
we use receptive fields to connect the input layer to a feature map. These receptive
fields can be understood as overlapping windows that we slide over the pixels of

an input image to create a feature map. The stride lengths of the window sliding as
well as the window size are additional hyperparameters of the model that we need
to define a priori. The process of creating the feature map is also called convolution.
An example of such a convolutional layer, the layer that connects the input pixels to
each unit in the feature map, is shown in the following figure:

input image feature maps

It is important to note that the feature detectors are replicates, which means that the
receptive fields that map the features to the units in the next layer share the same
weights. Here, the key idea is that if a feature detector is useful in one part of the
image, it might be useful in another part as well. The nice side effect of this approach
is that it greatly reduces the number of parameters that need to be learned. Since

we allow different patches of the image to be represented in different ways, CNNs
are particularly good at recognizing objects of different sizes and different positions
in an image. We do not need to worry so much about rescaling and centering the
images as it has been done in MNIST.

In CNNs, a convolutional layer is followed by a pooling layer (sometimes also
called sub-sampling). In pooling, we summarize neighboring feature detectors to
reduce the number of features for the next layer. Pooling can be understood as a
simple method of feature extraction where we take the average or maximum value
of a patch of neighboring features and pass it on to the next layer. To create a deep
convolutional neural network, we stack multiple layers —alternating between
convolutional and pooling layers —before we connect it to a multi-layer perceptron
for classification. This is shown in the following figure:

[382]

Chapter 12

I convolutional layer | pooling layer | fully connected MLP |

output label

feature maps classifier

input image
feature maps

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) can be thought of as feedforward neural
networks with feedback loops or backpropagation through time. In RNNSs, the
neurons only fire for a limited amount of time before they are (temporarily)
deactivated. In turn, these neurons activate other neurons that fire at a later point
in time. Basically, we can think of recurrent neural networks as MLPs with an
additional time variable. The time component and dynamic structure allows

the network to use not only the current inputs but also the inputs that it
encountered earlier.

recurrence

input layer hidden layer output layer

[383]

Training Artificial Neural Networks for Image Recognition

Although RNNs achieved remarkable results in speech recognition, language
translation, and connected handwriting recognition, these network architectures
are typically much harder to train. This is because we cannot simply backpropagate
the error layer by layer; we have to consider the additional time component,

which amplifies the vanishing and exploding gradient problem. In 1997, Juergen
Schmidhuber and his co-workers introduced the so-called long short-term memory
units to overcome this problem: Long Short Term Memory (LSTM) units;

S. Hochreiter and J. Schmidhuber. Long Short-term Memory. Neural Computation,
9(8):1735-1780, 1997.

However, we should note that there are many different variants of RNNs, and a
detailed discussion is beyond the scope of this book.

A few last words about neural network
implementation

You might be wondering why we went through all of this theory just to implement
a simple multi-layer artificial network that can classify handwritten digits instead
of using an open source Python machine learning library. One reason is that at

the time of writing this book, scikit-learn does not have an MLP implementation.
More importantly, we (machine learning practitioners) should have at least a basic
understanding of the algorithms that we are using in order to apply machine
learning techniques appropriately and successfully.

Now that we know how feedforward neural networks work, we are ready to

explore more sophisticated Python libraries built on top of NumPy such as Theano
(http://deeplearning.net/software/theano/), which allows us to construct
neural networks more efficiently. We will see this in Chapter 13, Parallelizing Neural
Network Training with Theano. Over the last couple of years, Theano has gained a lot of
popularity among machine learning researchers, who use it to construct deep neural
networks because of its ability to optimize mathematical expressions for computations
on multi-dimensional arrays utilizing Graphical Processing Units (GPUs).

A great collection of Theano tutorials can be found at http://deeplearning.net/
software/theano/tutorial/index.html#tutorial.

There are also a number of interesting libraries that are being actively developed to
train neural networks in Theano, which you should keep on your radar:

* Pylearn2 (http://deeplearning.net/software/pylearn2/)

* Lasagne (https://lasagne.readthedocs.org/en/latest/)

* Keras (http://keras.io)

[384]

(http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/tutorial/index.html#tutorial
http://deeplearning.net/software/theano/tutorial/index.html#tutorial
http://deeplearning.net/software/pylearn2/
https://lasagne.readthedocs.org/en/latest/
http://keras.io

Chapter 12

Summary

In this chapter, you have learned about the most important concepts behind
multi-layer artificial neural networks, which are currently the hottest topic in
machine learning research. In Chapter 2, Training Machine Learning Algorithms for
Classification, we started our journey with simple single-layer neural network
structures and now we have connected multiple neurons to a powerful neural
network architecture to solve complex problems such as handwritten digit
recognition. We demystified the popular backpropagation algorithm, which is one of
the building blocks of many neural network models that are used in deep learning.
After learning about the backpropagation algorithm, we were able to update the
weights of such a complex neural network. We also added useful modifications such
as mini-batch learning and an adaptive learning rate that allows us to train a neural
network more efficiently.

[385]

Parallelizing Neural Network
Training with Theano

In the previous chapter, we went over a lot of mathematical concepts to understand
how feedforward artificial neural networks and multilayer perceptrons in particular
work. First and foremost, having a good understanding of the mathematical
underpinnings of machine learning algorithms is very important, since it helps

us to use those powerful algorithms most effectively and correctly. Throughout

the previous chapters, you dedicated a lot of time to learning the best practices of
machine learning, and you even practiced implementing algorithms yourself from
scratch. In this chapter, you can lean back a little bit and rest on your laurels, I want
you to enjoy this exciting journey through one of the most powerful libraries that

is used by machine learning researchers to experiment with deep neural networks
and train them very efficiently. Most of modern machine learning research utilizes
computers with powerful Graphics Processing Units (GPUs). If you are interested
in diving into deep learning, which is currently the hottest topic in machine learning
research, this chapter is definitely for you. However, do not worry if you do not have
access to GPUs; in this chapter, the use of GPUs will be optional, not required.

Before we get started, let me give you a brief overview of the topics that we will
cover in this chapter:

* Writing optimized machine learning code with Theano

* Choosing activation functions for artificial neural networks

* Using the Keras deep learning library for fast and easy experimentation

[387]

Parallelizing Neural Network Training with Theano

Building, compiling, and running
expressions with Theano

In this section, we will explore the powerful Theano tool, which has been

designed to train machine learning models most effectively using Python. The
Theano development started back in 2008 in the LISA lab (short for Laboratoire
d'Informatique des Systemes Adaptatifs (http://lisa.iro.umontreal.ca)) lead
by Yoshua Bengio.

Before we discuss what Theano really is and what it can do for us to speed up our
machine learning tasks, let's discuss some of the challenges when we are running
expensive calculations on our hardware. Luckily, the performance of computer
processors keeps on improving constantly over the years, which allows us to train
more powerful and complex learning systems to improve the predictive performance
of our machine learning models. Even the cheapest desktop computer hardware

that is available nowadays comes with processing units that have multiple cores.

In the previous chapters, we saw that many functions in scikit-learn allow us to
spread the computations over multiple processing units. However, by default,
Python is limited to execution on one core, due to the Global Interpreter Lock (GIL).
However, although we take advantage of its multiprocessing library to distribute
computations over multiple cores, we have to consider that even advanced desktop
hardware rarely comes with more than 8 or 16 such cores.

If we think back of the previous chapter where we implemented a very simple
multilayer perceptron with only one hidden layer consisting of 50 units, we already
had to optimize approximately 1000 weights to learn a model for a very simple
image classification task. The images in MNIST are rather small (28 x 28 pixels),

and we can only imagine the explosion in the number of parameters if we want to
add additional hidden layers or work with images that have higher pixel densities.
Such a task would quickly become unfeasible for a single processing unit. Now, the
question is how can we tackle such problems more effectively? The obvious solution
to this problem is to use GPUs. GPUs are real power horses. You can think of a
graphics card as a small computer cluster inside your machine. Another advantage is
that modern GPUs are relatively cheap compared to the state-of-the-art CPUs, as we
can see in the following overview:

[388]

http://lisa.iro.umontreal.ca

Chapter 13

Base Clock Frequency 3.0 GHz 1.0 GHz
Cores 8 2816
Memory Bandwidth 68 GB/s 336.5 GB/s
Floating-Point Calculations 354 GFLOPS 5632 GFLOPS
Cost $1000.00 $700.00

Sources for this can be found on the following websites:

* http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-980-
ti/specifications

® http://ark.intel.com/products/82930/Intel-Core-i7-5960X-
Processor-Extreme-Edition-20M-Cache-up-to-3 50-GHz

(date: August 20, 2015)

At 70 percent of the price of a modern CPU, we can get a GPU that has 450 times
more cores, and is capable of around 15 times more floating-point calculations per
second. So, what is holding us back from utilizing GPUs for our machine learning
tasks? The challenge is that writing code to target GPUs is not as trivial as executing
Python code in our interpreter. There are special packages such as CUDA and
OpenCL that allow us to target the GPU. However, writing code in CUDA or
OpenCL is probably not the most convenient environment for implementing

and running machine learning algorithms. The good news is that this is what
Theano was developed for!

[389]

http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-980-ti/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-980-ti/specifications
http://ark.intel.com/products/82930/Intel-Core-i7-5960X-Processor-Extreme-Edition-20M-Cache-up-to-3_50-GHz
http://ark.intel.com/products/82930/Intel-Core-i7-5960X-Processor-Extreme-Edition-20M-Cache-up-to-3_50-GHz

Parallelizing Neural Network Training with Theano

What is Theano?

What exactly is Theano —a programming language, a compiler, or a Python

library? It turns out that it fits all these descriptions. Theano has been developed to
implement, compile, and evaluate mathematical expressions very efficiently with

a strong focus on multidimensional arrays (tensors). It comes with an option to

run code on CPU(s). However, its real power comes from utilizing GPUs to take
advantage of the large memory bandwidths and great capabilities for floating point
math. Using Theano, we can easily run code in parallel over shared memory as well.
In 2010, the developers of Theano reported an 1.8x faster performance than NumPy
when the code was run on the CPU, and if Theano targeted the GPU, it was even 11x
faster than NumPy (J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G.
Desjardins, J. Turian, D. Warde-Farley, and Y. Bengio. Theano: A CPU and GPU Math
Compiler in Python. In Proc. 9th Python in Science Conf, pages 1-7, 2010.). Now, keep
in mind that this benchmark is from 2010, and Theano has improved significantly
over the years, and so have the capabilities of modern graphics cards.

So, how does Theano relate to NumPy? Theano is built on top of NumPy and it has

a very similar syntax, which makes the usage very convenient for people who are
already familiar with the latter. To be fair, Theano is not just "NumPy on steroids"

as many people would describe it, but it also shares some similarities with SymPy
(http://www.sympy.org), a Python package for symbolic computations (or symbolic
algebra). As we saw in previous chapters, in NumPy, we describe what our variables
are, and how we want to combine them; then, the code is executed line by line. In
Theano, however, we write down the problem first and the description of how

we want to analyze it. Then, Theano optimizes and compiles code for us using
C/C++, or CUDA/OpenCL if we want to run it on the GPU. In order to generate the
optimized code for us, Theano needs to know the scope of our problem; think of it

as a tree of operations (or a graph of symbolic expressions). Note that Theano is still
under active development, and many new features are added and improvements are
made on a regular basis. In this chapter, we will explore the basic concepts behind
Theano and learn how to use it for machine learning tasks. Since Theano is a large
library with many advanced features, it would be impossible to cover all of them in
this book. However, I will provide useful links to the excellent online documentation
(http://deeplearning.net/software/theano/) if you want to learn more about
this library.

[390]

http://www.sympy.org
http://deeplearning.net/software/theano/

Chapter 13

First steps with Theano

In this section, we will take our first steps with Theano. Depending on how your
system is set up, you typically can just use the pip installer and install Theano from
PyPI by executing the following from your command-line terminal:

pip install Theano

If you should experience problems with the installation procedure, I recommend you
to read more about system and platform-specific recommendations that are provided
athttp://deeplearning.net/software/theano/install.html. Note that all

the code in this chapter can be run on your CPU; using the GPU is entirely optional
but recommended if you fully want to enjoy the benefits of Theano. If you have a
graphics card that supports either CUDA or OpenCL, please refer to the up-to-date
hﬁoﬁalathttp://deeplearning.net/software/theano/tutorial/using_gpu.
html#using-gpu to set it up appropriately.

At its core, Theano is built around so-called tensors to evaluate symbolic
mathematical expressions. Tensors can be understood as a generalization of scalars,
vectors, matrices, and so on. More concretely, a scalar can be defined as a rank-0
tensor, a vector as a rank-1 tensor, a matrix as rank-2 tensor, and matrices stacked in
a third dimension as rank-3 tensors. As a warm-up exercise, we will start with the
use of simple scalars from the Theano tensor module to compute a net input z of a
sample point X in a one dimensional dataset with weight w, and bias w),:

Z=XXW +W,

The code is as follows:

>>> import theano
>>> from theano import tensor as T

initialize

>>> x1 = T.scalar()
>>> wl = T.sgcalar()
>>> w0 = T.sgcalar()
>>> z1 = wl * x1 + wO

compile
>>> net_ input = theano.function (inputs=[wl, x1, wO0],
outputs=z1)

execute
>>> print ('Net input: %.2f' % net input(2.0, 1.0, 0.5))
Net input: 2.50

[391]

http://deeplearning.net/software/theano/install.html
http://deeplearning.net/software/theano/tutorial/using_gpu.html#using-gpu
http://deeplearning.net/software/theano/tutorial/using_gpu.html#using-gpu

Parallelizing Neural Network Training with Theano

This was pretty straightforward, right? If we write code in Theano, we just have to
follow three simple steps: define the symbols (variable objects), compile the code,
and execute it. In the initialization step, we defined three symbols, x1, w1, and wo, to
compute z1. Then, we compiled a function net_input to compute the net input z1.

However, there is one particular detail that deserves special attention if we write
Theano code: the type of our variables (dtype). Consider it as a blessing or burden,
but in Theano we need to choose whether we want to use 64 or 32 bit integers or
floats, which greatly affects the performance of the code. Let's discuss those variable
types in more detail in the next section.

Configuring Theano

Nowadays, no matter whether we run Mac OS X, Linux, or Microsoft Windows,

we mainly use software and applications using 64-bit memory addresses. However,
if we want to accelerate the evaluation of mathematical expressions on GPUs, we
still often rely on the older 32-bit memory addresses. Currently, this is the only
supported computing architecture in Theano. In this section, we will see how

to configure Theano appropriately. If you are interested in more details about

the Theano configuration, please refer to the online documentation at
http://deeplearning.net/software/theano/library/config.html.

When we are implementing machine learning algorithms, we are mostly working
with floating point numbers. By default, both NumPy and Theano use the double-
precision floating-point format (£1oat64). However, it would be really useful to
toggle back and forth floate4 (CPU), and float32 (GPU) when we are developing
Theano code for prototyping on CPU and execution on GPU. For example, to access
the default settings for Theano's float variables, we can execute the following code in
our Python interpreter:

>>> print (theano.config.floatX)
floate64

If you have not modified any settings after the installation of Theano, the floating
point default should be £1cat64. However, we can simply change it to f1oat32 in
our current Python session via the following code:

>>> theano.config.floatX = 'float32'

Note that although the current GPU utilization in Theano requires £1oat32 types,
we can use both floaté64 and float32 on our CPUs. Thus, if you want to change the
default settings globally, you can change the settings in your THEANO FLAGS variable
via the command-line (Bash) terminal:

export THEANO FLAGS=floatX=float32

[392]

http://deeplearning.net/software/theano/library/config.html

Chapter 13

Alternatively, you can apply these settings only to a particular Python script,
by running it as follows:

THEANO FLAGS=floatX=float32 python your script.py

So far, we discussed how to set the default floating-point types to get the best bang
for the buck on our GPU using Theano. Next, let's discuss the options to toggle
between CPU and GPU execution. If we execute the following code, we can check
whether we are using CPU or GPU:

>>> print (theano.config.device)
cpu

My personal recommendation is to use cpu as default, which makes prototyping
and code debugging easier. For example, you can run Theano code on your CPU
by executing it a script, as from your command-line terminal:

THEANO FLAGS=device=cpu, floatX=float64 python your script.py

However, once we have implemented the code and want to run it most efficiently
utilizing our GPU hardware, we can then run it via the following code without
making additional modifications to our original code:

THEANO_ FLAGS=device=gpu, floatX=float32 python your script.py

It may also be convenient to create a . theanorc file in your home directory to

make these configurations permanent. For example, to always use float32 and the
GPU, you can create such a . theanorc file including these settings. The command is
as follows:

echo -e "\n[globall\nfloatX=float32\ndevice=gpu\n" >> ~/.theanorc

If you are not operating on a MacOS X or Linux terminal, you can create a . theanorc
file manually using your favorite text editor and add the following contents:

[globall
floatX=float32
device=gpu

Now that we know how to configure Theano appropriately with respect to our
available hardware, we can discuss how to use more complex array structures in
the next section.

[393]

Parallelizing Neural Network Training with Theano

Working with array structures

In this section, we will discuss how to use array structures in Theano using its
tensor module. By executing the following code, we will create a simple 2 x 3
matrix, and calculate the column sums using Theano's optimized tensor expressions:

>>> import numpy as np
initialize
>>> x = T.fmatrix (name='x")

>>> x_sum = T.sum(x, axis=0)

compile
>>> calc_sum = theano.function (inputs=[x], outputs=x_sum)

execute (Python list)

>>> ary = [[1, 2, 3], [1, 2, 31]
>>> print ('Column sum:', calc_sum(ary))
Column sum: [2. 4. 6.]

execute (NumPy array)

>>> ary = np.array([[1, 2, 3], [1, 2, 31],

Ce dtype=theano.config.floatX)
>>> print ('Column sum:', calc_sum(ary))
Column sum: [2. 4. 6.]

As we saw earlier, there are just three basic steps that we have to follow when we
are using Theano: defining the variable, compiling the code, and executing it. The
preceding example shows that Theano can work with both Python and NumPy
types: 1ist and numpy.ndarray.

Note that we used the optional name argument (here, x) when we created
the fmatrix TensorVariable, which can be helpful to debug our code
or print the Theano graph. For example, if we'd print the fmatrix
symbol x without giving it a name, the print function would return its
TensorType:

>>> print (x)

<TensorType (float32, matrix) >

% However, if the TensorVariable was initialized with a name
~ argument x as in our preceding example, it would be returned by

the print function:

>>> print (x)

X

The TensorType can be accessed via the type method:

>>> print (x.type())
<TensorType (float32, matrix) >

[394]

Chapter 13

Theano also has a very smart memory management system that reuses memory

to make it fast. More concretely, Theano spreads memory space across multiple
devices, CPUs and GPUs; to track changes in the memory space, it aliases the
respective buffers. Next, we will take a look at the shared variable, which allows us
to spread large objects (arrays) and grants multiple functions read and write access,
so that we can also perform updates on those objects after compilation. A detailed
description of the memory handling in Theano is beyond the scope of this book.
Thus, I encourage you to follow-up on the up-to-date information about Theano and
memory management at http://deeplearning.net/software/theano/tutorial/
aliasing.html.

initialize

>>> x = T.fmatrix('x")

>>> w = theano.shared(np.asarray([[0.0, 0.0, 0.0]1,
dtype=theano.config.floatX))

>>> z = x.dot (w.T)

>>> update = [[w, w + 1.0]]

compile

>>> net_input = theano.function (inputs=[x],
updates=update,
outputs=z)

execute
>>> data = np.array([[1, 2, 311,
dtype=theano.config.floatX)
>>> for i in range(5) :
print ('z%d:' % i, net input (data))

z0: [[0.]11
zl: [[6.]11
z2: [[12.]]
z3: [[18.]1]
z4: [[24.]1]

As you can see, sharing memory via Theano is really easy: In the preceding example,
we defined an update variable where we declared that we want to update an array w
by a value 1.0 after each iteration in the for loop. After we defined which object we

want to update and how, we passed this information to the update parameter of the

theano. function compiler.

[395]

http://deeplearning.net/software/theano/tutorial/aliasing.html
http://deeplearning.net/software/theano/tutorial/aliasing.html

Parallelizing Neural Network Training with Theano

Another neat trick in Theano is to use the givens variable to insert values into

the graph before compiling it. Using this approach, we can reduce the number of
transfers from RAM over CPUs to GPUs to speed up learning algorithms that use
shared variables. If we use the inputs parameter in theano. function, data is
transferred from the CPU to the GPU multiple times, for example, if we iterate over a
dataset multiple times (epochs) during gradient descent. Using givens, we can keep
the dataset on the GPU if it fits into its memory (for example, if we are learning with
mini-batches). The code is as follows:

initialize
>>> data = np.array([[1, 2, 311,
dtype=theano.config.floatX)
>>> x = T.fmatrix('x")
>>> w = theano.shared(np.asarray([[0.0, 0.0, 0.0]1,
dtype=theano.config.floatX))
>>> z = x.dot (w.T)

>>> update = [[w, w + 1.0]]

compile

>>> net_input = theano.function (inputs=[],
updates=update,
givens={x: data},
outputs=z)

execute
>>> for i in range(5) :

print ('z:', net input())
z0: [[0.]]
z1l: [[6.1]
z2: [[12.]]
z3: [[18.]1]
z4: [[24.]1]

Looking at the preceding code example, we also see that the givens attribute
is a Python dictionary that maps a variable name to the actual Python object.
Here, we set this name when we defined the fmatrix.

[396]

Chapter 13

Wrapping things up — a linear regression
example

Now that we familiarized ourselves with Theano, let's take a look at a really practical
example and implement Ordinary Least Squares (OLS) regression. For a quick
refresher on regression analysis, please refer to Chapter 10, Predicting Continuous
Target Variables with Regression Analysis.

Let's start by creating a small one-dimensional toy dataset with five training samples:

>>> X train = np.asarray([[0.0], [1.0],
[(2.0], [3.0],
[4.0], [5.0],
[6.0], [7.01,

[(8.0], [9.0]1,
dtype=theano.config.floatX)
>>> y train = np.asarray([1.0, 1.3,

3.1, 2.0,
5.0, 6.3,
6.6, 7.4,
8.0, 9.0],

dtype=theano.config.floatX)

Note that we are using theano.config. floatX when we construct the NumPy
arrays, so we can optionally toggle back and forth between CPU and GPU
if we want.

Next, let's implement a training function to learn the weights of the linear regression
model, using the sum of squared errors cost function. Note that w, is the bias unit
(the y axis intercept at x =0). The code is as follows:

import theano
from theano import tensor as T
import numpy as np

def train linreg(X_ train, y train, eta, epochs):

costs = []

Initialize arrays
eta0 = T.fscalar('etal')
y = T.fvector (name='y"')
X = T.fmatrix (name='X")

[397]

Parallelizing Neural Network Training with Theano

w = theano.shared (np.zeros (
shape= (X train.shape([1l] + 1),
dtype=theano.config.floatX),

name="'w')

calculate cost

net_input = T.dot (X, w[l:]) + wl[O]
errors = y - net input

cost = T.sum(T.pow(errors, 2))

perform gradient update
gradient = T.grad(cost, wrt=w)
update = [(w, w - eta0 * gradient)]

compile model
train = theano.function(inputs=[etal],
outputs=cost,
updates=update,
givens={X: X train,
y: y_train,})

for _ in range (epochs) :
costs.append (train(eta))

return costs, w

A really nice feature in Theano is the grad function that we used in the preceding
code example. The grad function automatically computes the derivative of an
expression with respect to its parameters that we passed to the function as the

wrt argument.

After we implemented the training function, let's train our linear regression model
and take a look at the values of the Sum of Squared Errors (SSE) cost function to
check if it converged:

>>> import matplotlib.pyplot as plt

>>> costs, w = train linreg(X train, y train, eta=0.001, epochs=10)
>>> plt.plot(range (1, len(costs)+1l), costs)

>>> plt.tight layout ()

>>> plt.xlabel ('Epoch')

>>> plt.ylabel ('Cost')

>>> plt.show()

[398]

Chapter 13

As we can see in the following plot, the learning algorithm already converged after
the fifth epoch:

350 T T T T T T 1 T

300

250

200

Cost

150

100

50

5 6 7 8 9 10
Epoch

So far so good; by looking at the cost function, it seems that we built a working
regression model from this particular dataset. Now, let's compile a new function
to make predictions based on the input features:

def predict linreg (X, w):
Xt = T.matrix (name='X")
net _input = T.dot (Xt, w[l:]) + w[O0]
predict = theano.function (inputs=[Xt],
givens={w: w},
outputs=net_input)
return predict (X)

Implementing a predict function was pretty straightforward following the three-
step procedure of Theano: define, compile, and execute. Next, let's plot the linear
regression fit on the training data:

>>> plt.scatter (X train,
y_train,
marker='s',
R s=50)
>>> plt.plot (range (X_train.shape[0]),

[399]

Parallelizing Neural Network Training with Theano

predict linreg(X train, w),
color="'gray',
marker='o"',
markersize=4,
c. linewidth=3)
>>> plt.xlabel ('x"')
>>> plt.ylabel('y"')
>>> plt.show()

As we can see in the resulting plot, our model fits the data points appropriately:

12 T T T T T

10} .

Implementing a simple regression model was a good exercise to become familiar
with the Theano API. However, our ultimate goal is to play out the advantages of
Theano, that is, implementing powerful artificial neural networks. We should now be
equipped with all the tools we would need to implement the multilayer perceptron
from Chapter 12, Training Artificial Neural Networks for Image Recognition, in Theano.
However, this would be rather boring, right? Thus, we will take a look at one of my
favorite deep learning libraries built on top of Theano to make the experimentation
with neural networks as convenient as possible. However, before we introduce the
Keras library, let's first discuss the different choices of activation functions in neural
networks in the next section.

[400]

Chapter 13

Choosing activation functions for
feedforward neural networks

For simplicity, we have only discussed the sigmoid activation function in context

of multilayer feedforward neural networks so far; we used in the hidden layer as
well as the output layer in the multilayer perceptron implementation in Chapter 12,
Training Artificial Neural Networks for Image Recognition. Although we referred to this
activation function as sigmoid function —as it is commonly called in literature — the
more precise definition would be logistic function or negative log-likelihood function. In
the following subsections, you will learn more about alternative sigmoidal functions
that are useful for implementing multilayer neural networks.

Technically, we could use any function as activation function in multilayer

neural networks as long as it is differentiable. We could even use linear activation
functions such as in Adaline (Chapter 2, Training Machine Learning Algorithms

for Classification). However, in practice, it would not be very useful to use linear
activation functions for both hidden and output layers, since we want to introduce
nonlinearity in a typical artificial neural network to be able to tackle complex
problem tasks. The sum of linear functions yields a linear function after all.

The logistic activation function that we used in the previous chapter probably
mimics the concept of a neuron in a brain most closely: we can think of it as
probability of whether a neuron fires or not. However, logistic activation functions
can be problematic if we have highly negative inputs, since the output of the sigmoid
function would be close to zero in this case. If the sigmoid function returns outputs
that are close to zero, the neural network would learn very slowly and it becomes
more likely that it gets trapped in local minima during training. This is why people
often prefer a hyperbolic tangent as activation function in hidden layers. Before we
discuss what a hyperbolic tangent looks like, let's briefly recapitulate some of the
basics of the logistic function and look at a generalization that makes it more useful
for multi-class classification tasks.

[401]

Parallelizing Neural Network Training with Theano

Logistic function recap

As we mentioned it in the introduction to this section, the logistic function, often
just called the sigmoid function, is in fact a special case of a sigmoid function.

We recall from the section on logistic regression in Chapter 3, A Tour of Machine
Learning Classifiers Using Scikit-learn, that we can use the logistic function to model
the probability that sample x belongs to the positive class (class 1) in a binary
classification task:

1
1+e*

¢lugistic (z)

Here, the scalar variable z is defined as the net input:

m
T
Z= WX+t W, X, = E XW, =W X
=0

Note that w, is the bias unit (y-axis intercept, x, =1). To provide a more concrete
example, let's assume a model for a two-dimensional data point x and a model with
the following weight coefficients assigned to the vector w:

>>> X = np.array([[1, 1.4, 1.5]11)
>>> w = np.array([0.0, 0.2, 0.4])

>>> def net input (X, w):
z = X.dot (w)
return z

>>> def logistic(z):
return 1.0 / (1.0 + np.exp(-2))

>>> def logistic activation (X, w):
z = net_ input (X, w)
return logistic(z)

>>> print ('P(y=1|x) = %.3f'
.. % logistic_activation(X, w) [0])
P(y=1|x) = 0.707

[402]

Chapter 13

If we calculate the net input and use it to activate a logistic neuron with those
particular feature values and weight coefficients, we get back a value of 0.707,
which we can interpret as a 70.7 percent probability that this particular sample x
belongs to the positive class. In Chapter 12, Training Artificial Neural Networks for
Image Recognition, we used the one-hot encoding technique to compute the values
in the output layer consisting of multiple logistic activation units. However, as
we will demonstrate with the following code example, an output layer consisting
of multiple logistic activation units does not produce meaningful, interpretable
probability values:

W : array, shape = [n output units, n hidden units+1]
Weight matrix for hidden layer -> output layer.
note that first column (A[:][0] = 1) are the bias units
>>> W = np.array([[1.1, 1.2, 1.3, 0.5],

[0.1, 0.2, 0.4, 0.1],

(0.2, 0.5, 2.1, 1.9]1])
A : array, shape = [n hidden+l, n samples]
Activation of hidden layer.

note that first element (A[0] [0] = 1) is the bias unit
>>> A = np.array([[1.0],

[0.11,

[0.31,

[0.711)
Z : array, shape = [n output units, n_samples]
Net input of the output layer.
>>> Z = W.dot (A)
>>> y probas = logistic(Z)
>>> print ('Probabilities:\n', y probas)
Probabilities:

[[0.87653295]
[0.57688526]
[0.90114393]]

As we can see in the output, the probability that the particular sample belongs to the
first class is almost 88 percent, the probability that the particular sample belongs to
the second class is almost 58 percent, and the probability that the particular sample
belongs to the third class is 90 percent, respectively. This is clearly confusing, since
we all know that a percentage should intuitively be expressed as a fraction of 100.
However, this is in fact not a big concern if we only use our model to predict the
class labels, not the class membership probabilities.

>>> y class = np.argmax(Z, axis=0)
>>> print ('predicted class label: %d' % y class[0])
predicted class label: 2

[403]

Parallelizing Neural Network Training with Theano

However, in certain contexts, it can be useful to return meaningful class probabilities
for multi-class predictions. In the next section, we will take a look at a generalization
of the logistic function, the softmax function, which can help us with this task.

Estimating probabilities in multi-class
classification via the softmax function

The softmax function is a generalization of the logistic function that allows us

to compute meaningful class-probabilities in multi-class settings (multinomial
logistic regression). In softmax, the probability of a particular sample with net
input z belongs to the i th class can be computed with a normalization term in the
denominator that is the sum of all M linear functions:

z

P(y:i|Z):¢softmax(Z): Aei[l z

ZmZI em

To see softmax in action, let's code it up in Python:

>>> def softmax(z) :
return np.exp(z) / np.sum(np.exp(z))

>>> def softmax_activation(X, w):
z = net_input (X, w)
return sigmoid(z)

>>> y probas = softmax(Z)
>>> print ('Probabilities:\n', y probas)
Probabilities:
[[0.40386493]
[0.07756222]
[0.51857284]]
>>> y_probas.sum()
1.0

[404]

Chapter 13

As we can see, the predicted class probabilities now sum up to one, as we would
expect. It is also notable that the probability for the second class is close to zero, since
there is a large gap between z, and max(z). However, note that the predicted class
label is the same as in the logistic function. Intuitively, it may help to think of the
softmax function as a normalized logistic function that is useful to obtain meaningful
class-membership predictions in multi-class settings.

>>> y class = np.argmax(Z, axis=0)
>>> print ('predicted class label:
%d' % y class[0])
predicted class label: 2

Broadening the output spectrum by using a
hyperbolic tangent

Another sigmoid function that is often used in the hidden layers of artificial neural
networks is the hyperbolic tangent (tanh), which can be interpreted as a rescaled
version of the logistic function.

¢tanh (Z) = 2 X ¢logixlic (2 x Z) _1 = ZZ ;Z—z
1
¢logistic (Z) - 1+ e—z

logistic(2x z)x2 -1

[405]

Parallelizing Neural Network Training with Theano

The advantage of the hyperbolic tangent over the logistic function is that it has a
broader output spectrum and ranges the open interval (-1, 1), which can improve the
convergence of the back propagation algorithm (C. M. Bishop. Neural networks for
pattern recognition. Oxford university press, 1995, pp. 500-501). In contrast, the logistic
function returns an output signal that ranges the open interval (0, 1). For an intuitive
comparison of the logistic function and the hyperbolic tangent, let's plot two sigmoid
functions in a one-dimensional space:

>>> import matplotlib.pyplot as plt
>>> def tanh(z):

ep np.exp(z)
e m = np.exp(-z)

return (e p - em) / (e p + e m)

>>> z = np.arange (-5, 5, 0.005)
>>> log_act = logistic(z)
>>> tanh act = tanh(z)

>>> plt.ylim([-1.5, 1.5])

>>> plt.xlabel ('net input z')

>>> plt.ylabel ('activation $\phi(z)s$')
>>> plt.axhline(l, color='black', linestyle='--"')
>>> plt.axhline (0.5, color='black', linestyle='--"')
OI

>>> plt.axhline color="'black', linestyle='--"')

(
(
(
>>> plt.axhline (-1, color='black', linestyle='--"')
>>> plt.plot(z, tanh act,

linewidth=2,

color="'black',

label='tanh')
>>> plt.plot(z, log_ act,

linewidth=2,

color="'lightgreen',

label='logistic')

>>> plt.legend(loc="'lower right')
>>> plt.tight layout ()
>>> plt.show()

[406]

Chapter 13

As we can see, the shapes of the two sigmoidal curves look very similar; however,
the tanh function has 2x larger output space than the logistic function:

1.5 T T T T T

1.0

0S5 =m = mm e e e e e e e e e e e e e e -

00f - === . o e e e e e e e e e e e - - -

activation ¢(z)

-0.5

-1.0 — tanh

logistic

-1.5] 1 I]

net input z

Note that we implemented the 1ogistic and tanh functions verbosely for the
purpose of illustration. In practice, we can use NumPy's tanh function to achieve

the same results:
>>> tanh act = np.tanh(z)
In addition, the logistic function is available in SciPy's special module:

>>> from scipy.special import expit
>>> log act = expit(z)

[407]

Parallelizing Neural Network Training with Theano

Now that we know more about the different activation functions that are commonly
used in artificial neural networks, let's conclude this section with an overview of the
different activation function that we encountered in this book.

Activation function Equation Example 1D Graph
Unit step 0, z<0, Perceptron
(Heaviside) P(z) = {(1.5, z=0, variant —
1, z>0,
Sign (Signum) -1, z<0, Perceptron |
) = {o_ z=0, variant -
1, z>0, -
Linear Adaline, linear
P =z regression 74.
. . - 1
Piece-wise linear 1, | z? I] Suppt_)rt vector L —
#)=4z+% -3<z<jz, machine —_—
0, z< -1,
Logistic (si . "
ogistic (sigmoid) |].Dngl'IC‘
#) = - = regression, 1
¢ Multi-layer NN
Hyperbolic tangent L =g Multi-layer NN
P(z) = Py /

Training neural networks efficiently using
Keras

In this section, we will take a look at Keras, one of the most recently developed
libraries to facilitate neural network training. The development on Keras started in
the early months of 2015; as of today, it has evolved into one of the most popular
and widely used libraries that are built on top of Theano, and allows us to utilize our
GPU to accelerate neural network training. One of its prominent features is that it's

a very intuitive API, which allows us to implement neural networks in only a few
lines of code. Once you have Theano installed, you can install Keras from PyPI by
executing the following command from your terminal command line:

pip install Keras

[408]

Chapter 13

For more information about Keras, please visit the official website at
http://keras.io.

To see what neural network training via Keras looks like, let's implement
a multilayer perceptron to classify the handwritten digits from the MNIST
dataset, which we introduced in the previous chapter. The MNIST dataset
can be downloaded from http://yann.lecun.com/exdb/mnist/ in four
parts as listed here:

* train-images-idx3-ubyte.gz: These are training set images

(9912422 bytes)
* train-labels-idxl-ubyte.gz: These are training set labels (28881 bytes)
* tlOk-images-idx3-ubyte.gz: These are test set images (1648877 bytes)
* tlOk-labels-idxl-ubyte.gz: These are test set labels (4542 bytes)

After downloading and unzipped the archives, we place the files into a directory
mnist in our current working directory, so that we can load the training as well as
the test dataset using the following function:

import os
import struct
import numpy as np

def load mnist (path, kind='train'):
"""Toad MNIST data from “path~™"""
labels path = os.path.join(path,
'$s-labels-idx1-ubyte'
% kind)
images_path = os.path.join(path,
'$s-images-idx3-ubyte'
% kind)

with open(labels path, 'rb') as lbpath:
magic, n = struct.unpack('s>II',
lbpath.read(8))
labels = np.fromfile (lbpath,
dtype=np.uint8)

with open(images path, 'rb') as imgpath:
magic, num, rows, cols = struct.unpack("sIIII",
imgpath.read (16))
images = np.fromfile (imgpath,
dtype=np.uint8) .reshape (len(labels), 784)

[409]

http://keras.io
http://yann.lecun.com/exdb/mnist/

Parallelizing Neural Network Training with Theano

return images, labels
X train, y train = load mnist ('mnist', kind='train')
print ('Rows: %d, columns: %d' % (X train.shape([0], X train.shape[1l]))
Rows: 60000, columns: 784
X test, y test = load mnist ('mnist', kind='tl0k')
print ('Rows: %d, columns: %d' % (X test.shape[0], X test.shape[l]))
Rows: 10000, columns: 784

On the following pages, we will walk through the code examples for using Keras
step by step, which you can directly execute from your Python interpreter. However,
if you are interested in training the neural network on your GPU, you can either put
it into a Python script, or download the respective code from the Packt Publishing
website. In order to run the Python script on your GPU, execute the following
command from the directory where the mnist_keras_mlp.py file is located:

THEANO FLAGS=mode=FAST RUN,device=gpu, floatX=float32 python mnist
keras mlp.py

To continue with the preparation of the training data, let's cast the MNIST image
array into 32-bit format:

>>> import theano

>>> theano.config.floatX = 'float32'

>>> X train = X train.astype(theano.config.floatX)
>>> X test = X test.astype(theano.config.floatX)

Next, we need to convert the class labels (integers 0-9) into the one-hot format.
Fortunately, Keras provides a convenient tool for this:

>>> from keras.utils import np utils
>>> print ('First 3 labels: ', y train[:3])
First 3 labels: [5 0 4]
>>> y train ohe = np utils.to categorical (y_ train)
>>> print ('\nFirst 3 labels (one-hot):\n', y train ohel[:3])
First 3 labels (one-hot):
([ro. o. 0. 0. 0. 1. 0. 0. 0. 0.]
[1. 0. 0. ©O0. 0. 0. O0. O0. 0. 0.]
[0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]]

[410]

Chapter 13

Now, we can get to the interesting part and implement a neural network. Here, we
will use the same architecture as in Chapter 12, Training Artificial Neural Networks for
Image Recognition. However, we will replace the logistic units in the hidden layer
with hyperbolic tangent activation functions, replace the logistic function in the
output layer with softmax, and add an additional hidden layer. Keras makes these
tasks very simple, as you can see in the following code implementation:

>>> from keras.models import Sequential
>>> from keras.layers.core import Dense
>>> from keras.optimizers import SGD

>>> np.random.seed (1)

>>> model = Sequential ()

>>> model.add (Dense (input dim=X train.shape([1],
output dim=50,
init='uniform',

activation='tanh'))

>>> model.add (Dense (input_dim=50,
output dim=50,
init='uniform',

activation='tanh'))

>>> model.add (Dense (input_dim=50,
output dim=y train ohe.shape[1l],
init='uniform',

activation='softmax"'))

>>> sgd = SGD(1lr=0.001, decay=le-7, momentum=.9)
>>> model.compile(loss="'categorical crossentropy', optimizer=sgd)

First, we initialize a new model using the sequential class to implement a
feedforward neural network. Then, we can add as many layers to it as we like.
However, since the first layer that we add is the input layer, we have to make sure
that the input_dim attribute matches the number of features (columns) in the
training set (here, 768). Also, we have to make sure that the number of output units
(output_dim) and input units (input_dim) of two consecutive layers match. In the
preceding example, we added two hidden layers with 50 hidden units plus 1 bias
unit each. Note that bias units are initialized to 0 in fully connected networks in
Keras. This is in contrast to the MLP implementation in Chapter 12, Training Artificial
Neural Networks for Image Recognition, where we initialized the bias units to 1, which
is a more common (not necessarily better) convention.

[411]

Parallelizing Neural Network Training with Theano

Finally, the number of units in the output layer should be equal to the number of
unique class labels — the number of columns in the one-hot encoded class label
array. Before we can compile our model, we also have to define an optimizer. In the
preceding example, we chose a stochastic gradient descent optimization, which we
are already familiar with, from previous chapters. Furthermore, we can set values
for the weight decay constant and momentum learning to adjust the learning rate
at each epoch as discussed in Chapter 12, Training Artificial Neural Networks for Image
Recognition. Lastly, we set the cost (or loss) function to categorical_crossentropy
The (binary) cross-entropy is just the technical term for the cost function in logistic
regression, and the categorical cross-entropy is its generalization for multi-class
predictions via softmax. After compiling the model, we can now train it by calling
the £it method. Here, we are using mini-batch stochastic gradient with a batch size
of 300 training samples per batch. We train the MLP over 50 epochs, and we can
follow the optimization of the cost function during training by setting verbose=1.
The validation_split parameter is especially handy, since it will reserve 10
percent of the training data (here, 6,000 samples) for validation after each epoch,

so that we can check if the model is overfitting during training.

>>> model.fit (X train,
y_train ohe,
nb_epoch=50,
batch size=300,
verbose=1,
validation split=0.1,
show_accuracy=True)
Train on 54000 samples, validate on 6000 samples

Epoch 0

54000/54000 [==============================] - 1ls - loss: 2.2290 -
acc: 0.3592 - val loss: 2.1094 - val acc: 0.5342

Epoch 1

54000/54000 [==============================] - 1ls - loss: 1.8850 -
acc: 0.5279 - val loss: 1.6098 - val acc: 0.5617

Epoch 2

54000/54000 [==============================] - 1ls - loss: 1.3903 -
acc: 0.5884 - val loss: 1.1666 - val acc: 0.6707

Epoch 3

54000/54000 [==============================] - 1ls - loss: 1.0592 -

acc: 0.6936 - val loss: 0.8961 - val acc: 0.7615

[..]

Epoch 49

54000/54000 [==============================] - 1ls - loss: 0.1907 -
acc: 0.9432 - val loss: 0.1749 - val acc: 0.9482

[412]

Chapter 13

Printing the value of the cost function is extremely useful during training, since
we can quickly spot whether the cost is decreasing during training and stop the
algorithm earlier if otherwise to tune the hyperparameters values.

To predict the class labels, we can then use the predict_classes method to return
the class labels directly as integers:

>>> y train pred = model.predict classes (X train, verbose=0)
>>> print ('First 3 predictions: ', y train pred[:3])
>>> First 3 predictions: [5 0 4]

Finally, let's print the model accuracy on training and test sets:

>>> train_acc = np.sum(
y_train == y train pred, axis=0) / X train.shape[0]

>>> print ('Training accuracy: %.2£%%' % (train acc * 100))
Training accuracy: 94.51%

>>> y test_pred = model.predict_classes(X_test, verbose=0)
>>> test _acc = np.sum(y test == y test pred,
axis=0) / X_test.shape[0]

print ('Test accuracy: %.2f%%' % (test_acc * 100))
Test accuracy: 94.39%

Note that this is just a very simple neural network without optimized tuning
parameters. If you are interested in playing more with Keras, please feel free
to further tweak the learning rate, momentum, weight decay, and number of
hidden units.

Although Keras is great library for implementing and experimenting
with neural networks, there are many other Theano wrapper
_ libraries that are worth mentioning. A prominent example is
% Pylearn2 (http://deeplearning.net/software/pylearn2/),
e which has been developed in the LISA lab in Montreal. Also,
Lasagne (https://github.com/Lasagne/Lasagne) may be
of interest to you if you prefer a more minimalistic but extensible
library, that offers more control over the underlying Theano code.

[413]

http://deeplearning.net/software/pylearn2/
https://github.com/Lasagne/Lasagne

Parallelizing Neural Network Training with Theano

Summary

I hope you enjoyed this last chapter of an exciting tour of machine learning.
Throughout this book, we covered all of the essential topics that this field has to
offer, and you should now be well equipped to put those techniques into action to
solve real-world problems.

We started our journey with a brief overview of the different types of learning

tasks: supervised learning, reinforcement learning, and unsupervised learning.

We discussed several different learning algorithms that can be used for classification,
starting with simple single-layer neural networks in Chapter 2, Training Machine
Learning Algorithms for Classification. Then, we discussed more advanced classification
algorithms in Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn, and
you learned about the most important aspects of a machine learning pipeline in
Chapter 4, Building Good Training Sets — Data Preprocessing and Chapter 5, Compressing
Data via Dimensionality Reduction. Remember that even the most advanced algorithm
is limited by the information in the training data that it gets to learn from. In

Chapter 6, Learning Best Practices for Model Evaluation and Hyperparameter Tuning,

you learned about the best practices to build and evaluate predictive models,

which is another important aspect in machine learning applications. If one single
learning algorithm does not achieve the performance we desire, it can sometimes

be helpful to create an ensemble of experts to make a prediction. We discussed this
in Chapter 7, Combining Different Models for Ensemble Learning. In Chapter 8, Applying
Machine Learning to Sentiment Analysis, we applied machine learning to analyze

the probably most interesting form of data in the modern age that is dominated by
social media platforms on the Internet: text documents. However, machine learning
techniques are not limited to offline data analysis, and in Chapter 9, Embedding a
Machine Learning Model into a Web Application, we saw how to embed a machine
learning model into a web application to share it with the outside world. For the
most part, our focus was on algorithms for classification, probably the most popular
application of machine learning. However, this is not where it ends! In Chapter 10,
Predicting Continuous Target Variables with Regression Analysis, we explored several
algorithms for regression analysis to predict continuous-valued output values.
Another exciting subfield of machine learning is clustering analysis, which can help
us to find hidden structures in data even if our training data does not come with the
right answers to learn from. We discussed this in Chapter 11, Working with Unlabeled
Data - Clustering Analysis.

[414]

Chapter 13

In the last two chapters of this book, we caught a glimpse of the most beautiful

and most exciting algorithms in the whole machine learning field: artificial neural
networks. Although deep learning really is beyond the scope of this book, I hope I
could at least kindle your interest to follow the most recent advancement in this field.
If you are considering a career as machine learning researcher, or even if you just
want to keep up to date with the current advancement in this field, I can recommend
you to follow the works of the leading experts in this field, such as Geoff Hinton
(http://www.cs.toronto.edu/~hinton/), Andrew Ng (http://www.andrewng.
org), Yann LeCun (http://yann.lecun.com), Juergen Schmidhuber (http://
people.idsia.ch/~juergen/), and Yoshua Bengio (http://www.iro.umontreal.
ca/~bengioy), just to name a few. Also, please do not hesitate to join the scikit-learn,
Theano, and Keras mailing lists to participate in interesting discussions around these
libraries, and machine learning in general. I am looking forward to meet you there!
You are always welcome to contact me if you have any questions about this book or
need some general tips about machine learning.

I hope this journey through the different aspects of machine learning was really
worthwhile, and you learned many new and useful skills to advance your career
and apply them to real-world problem solving.

[415]

http://www.cs.toronto.edu/~hinton/
http://www.andrewng.org
http://www.andrewng.org
http://yann.lecun.com
http://people.idsia.ch/~juergen/
http://people.idsia.ch/~juergen/
http://www.iro.umontreal.ca/~bengioy
http://www.iro.umontreal.ca/~bengioy

Symbols

5x2 cross-validation 188
7-Zip
URL 234

A

accuracy (ACC) 191
activation functions, for feedforward neural
networks
logistic function recap 402-404
output spectrum, broadening with
hyperbolic tangent 405-407
probabilities, estimating in multi-class
classification via softmax
function 404, 405
selecting 401
adaptive boosting
weak learners, leveraging via 224-231
ADAptive LInear NEuron (Adaline) 33, 285
adaptive linear neurons
about 33
cost functions, minimizing with gradient
descent 34-36
implementing, in Python 36-42
large scale machine learning 42-47
stochastic gradient descent 42-47
agglomerative clustering
about 326
applying, via scikit-learn 334
algorithms
debugging, with learning and validation
curves 179

Index

algorithm selection
with nested cross-validation 187-189
area under the curve (AUC) 193
artificial neural network
logistic cost function, computing 365-367
neural networks, training via
backpropagation 368-371
training 365
artificial neurons 18
average linkage 327

B

backpropagation 368, 369
intuition, developing 372
bagging 218-220
bag-of-words model
defining 236
documents, processing into tokens 242, 243
text data, cleaning 240, 241
vocabulary, creating 236
word relevancy, assessing via term
frequency-inverse document
frequency 238-240
words, transforming into feature
vectors 236, 237
basic terminology 8
boosting 224
bootstrap aggregating 220
border point 334
Breast Cancer Wisconsin dataset
loading 170

[417]

C

Cascading Style Sheets (CSS) 262
categorical data
class labels, encoding 105, 106
handling 104
one-hot encoding, performing on nominal
features 106, 107
ordinal features, mapping 104, 105
classification algorithm
selecting 49, 50
classification error 82
class probabilities,
modeling via logistic regression
about 56
logistic regression intuition and conditional
probabilities 56-59
logistic regression model, training with
scikit-learn 62-65
overfitting, tackling via
regularization 65-68
weights, of logistic cost function 59-61
cluster inertia 314
clusters
organizing, as hierarchical tree 326, 327
complete linkage 326
complex functions, modeling with artificial
neural networks
about 342
multi-layer neural network
architecture 345-347
neural network, activating via forward
propagation 347-350
single-layer neural network recap 343, 344
Computing Research Repository (CoRR)
URL 246
confusion matrix
reading 190, 191
convergence, in neural networks 379, 380
convolution 382
convolutional layer 382
Convolutional Neural Networks
(CNNs or ConvNets) 381, 382
core point 334
CSV (comma-separated values) 100
curse of dimensionality 96

D

dataset
partitioning, in training and
test sets 108, 109
data storage
SQLite database, setting up for 255, 256
DBSCAN
about 334
disadvantages 339
high density regions, locating via 335-339
decision regions 53
decision tree learning
about 80, 81
decision tree, building 88, 89
information gain, maximizing 82-86
weak to strong learners, combining via
random forests 90-92
decision tree regression 304, 305
decision trees 304
decision trees classifiers 80
deep learning 341
dendrograms
about 326
attaching, to heat map 332, 333
Density-based Spatial Clustering of
Applications with Noise.
See DBSCAN
depth parameter 185
dimensionality reduction 118
distance matrix
hierarchical clustering,
performing on 328-331
divisive hierarchical clustering 326
document classification
logistic regression model,
training for 244-246
dummy feature 107

E

Elastic Net method 297
elbow method
about 312, 320
used, for finding optimal number of
clusters 320

[418]

ensemble classifier
evaluating 213-218
tuning 213-218
ensemble methods 199
ensemble of classifiers
building, from bootstrap
samples 219-224
ensembles
learning with 199-202
entropy 82
epoch 344
error (ERR) 191
Exploratory Data Analysis (EDA) 280

F

false positive rate (FPR) 192
feature detectors 342, 381
feature extraction 118
feature importance
assessing, with random forests 124-126
feature map 382
feature scaling
about 110
illustrating 110, 111
feature selection
about 112,118
sparse solutions,
with L1 regularization 112-117
fitted scikit-learn estimators
serializing 252-254
Flask web application
defining 258, 259
developing 257
form validation 259-263
rendering 259-263
flower dataset 50
forward propagation
neural network, activating via 347-350
fuzzifier 319
fuzziness 319
fuzziness coefficient 319
fuzzy clustering 317
fuzzy C-means (FCM) algorithm 317
fuzzy k-means 317

G

Gaussian kernel 152
Gini index 82
Global Interpreter Lock (GIL) 388
Google Developers portal
URL 241
gradient checking
about 373
neural networks, debugging with 373-379
gradient descent optimization
algorithm 344
GraphViz
URL 89
grid search
about 185
hyperparameters, tuning via 186
machine learning models,
fine-tuning via 185

H

handwritten digits

classifying 350
hard clustering

about 317

versus soft clustering 317-319
heat map

about 332

dendrograms, attaching to 332, 333
hidden layer 345
hierarchical and density-based

clustering 312

hierarchical clustering

about 326

performing, on distance matrix 328-331
high density regions

locating, via DBSCAN 334-339
holdout cross-validation 173
holdout method

about 173

disadvantage 174
Housing Dataset

about 279

characteristics 280-284

[419]

exploring 279, 280

features 279

URL 279
HTML basics

URL 259
hyperbolic tangent (sigmoid) kernel 152
hyperbolic tangent (tanh) 405
hyperparameters

about 173, 345

tuning, via grid search 186

IMDb movie review dataset
obtaining 233-235
in-built pickle module
URL 252
Information Gain (IG) 304
instance-based learning 93
intelligent machines
building, to transform data into
knowledge 2
Internet Movie Database (IMDDb) 234
inverse document frequency 238
IPython notebooks
URL 25
Iris dataset 8,9, 50, 210
Iris-Setosa 51
Iris-Versicolor 51, 210
Iris-Virginica 51, 210

J

Jinja2 syntax

URL 262
joblib
URL 253
K
Keras
about 408
URL 409

used, for training neural networks 408-413

kernel
hyperbolic tangent (sigmoid) kernel 152
polynomial kernel 152
Radial Basis Function (RBF) 152

kernel functions 148-151
kernel principal component analysis

implementing, in Python 154, 155
using, for nonlinear mappings 148

kernel principal component analysis,

examples
concentric circles, separating 159-161
half-moon shapes, separating 155-158
new data points, projecting 162-165

kernel principal component analysis,

scikit-learn 166

kernel SVM 75
kernel trick 148-151
k-fold cross-validation

about 173-178
holdout method 173
used, for assessing model performance 173

k-means

about 312
used, for grouping objects by
similarity 312-315

K-means++ 315-317

k-nearest neighbor classifier (KNN) 92
k-nearest neighbors 92

KNN algorithm 93-96

L

L1 regularization

sparse solutions 112-117

L2 regularization 66, 112
Lancaster stemmer 243
Lasagne

URL 413

Latent Dirichlet allocation 249
lazy learner 92

LDA, via scikit-learn 146,147
learning curves

about 179
bias and variance problems,
diagnosing with 180-182

learning rate 344

Least Absolute Shrinkage and Selection

Operator (LASSO) 297

leave-one-out (LOO) cross-validation

method 177

lemmas 243

[420]

lemmatization 243

LIBLINEAR
URL 74

LIBSVM
URL 74

linear regression model
performance, evaluating 294-296
turning, into curve 298-300

linkage matrix 329

LISA lab
reference 388

logistic function 57

logistic regression 56, 348

logistic regression model
training, for document

classification 244-246
logit function 56
Long Short Term Memory (LSTM) 384

machine learning
history 18-24
Python, using for 13
reinforcement learning 2
supervised learning 2
unsupervised learning 2
machine learning models
fine-tuning, via grid search 185
macro averaging method 197
majority vote 90
majority voting principle 200
margin 69
margin classification
alternative implementations,
in scikit-learn 74
maximum margin intuition 70, 71
nonlinearly separable case,
dealing with 71, 72
Matplotlib
URL 25
McCulloch-Pitt neuron model 342
mean imputation 102
Mean Squared Error (MSE) 295
Median Absolute Deviation (MAD) 292
metric parameter
reference 96

micro averaging method 197
missing data, dealing with

about 99, 100

features, eliminating 101
missing values, inputing 102
samples, eliminating 101
scikit-learn estimator API 102

MNIST dataset

about 351

multi-layer perceptron,
implementing 356-365

obtaining 351-356

set images, testing 351

set images, training 351

set labels, testing 351

set labels, training 351

URL 351

model performance

assessing, k-fold cross-validation used 173

model persistence 252
model selection 173
movie classifier

turning, into web application 264-271

movie review classifier

updating 274, 275

movie review dataset

URL 234

multi-layer feedforward neural

network 345

multi-layer perceptron (MLP) 345
multiple linear regression 279
MurmurHash3 function

URL 247

N

natural language processing (NLP) 233
nested cross-validation

used, for algorithm selection 187-189

neural network architectures

about 381
Convolutional Neural Networks
(CNNs or ConvNets) 381, 382
Recurrent Neural
Networks (RNNs) 383, 384

neural network implementation 384

[421]

neural networks
convergence 379, 380
developing, with gradient
checking 373-379
training, Keras used 408-413
n-gram 237
NLTK
URL 242
noise points 334
nominal features 104
non-empty classes 82
nonlinear mappings
kernel principal component analysis,
using for 148
nonlinear problems, solving with
kernel SVM
about 75, 76
kernel trick, using for finding separating
hyperplanes 77-80
nonlinear relationships
dealing with, random forests used 304
modeling, in Housing Dataset 300-303
nonparametric models 93
normal equation 290
normalization 110
notations 8§, 9
NumPy
URL 25

(0

objects
grouping by similarity,
k-means used 312-315
odds ratio 56
offsets 278
one-hot encoding 107
one-hot representation 346
One-vs.-All (OvA) 28
One-vs.-Rest (OVvR) 28
online algorithms
defining 246-249
opinion mining 233
ordinal features 104
ordinary least squares linear
regression model
about 285

coefficient, estimating via
scikit-learn 289, 290
implementing 285
regression, solving for regression
parameters with gradient
descent 285-289
Ordinary Least Squares (OLS)
regression 397
out-of-core learning
defining 246-249
overfitting 53, 65,112

P

Pandas
URL 25
parametric models 93
Pearson product-moment correlation
coefficients 282
perceptron 50
perceptron learning algorithm
implementing, in Python 24-27
perceptron model
training, on Iris dataset 27-32
performance evaluation metrics
about 189
confusion matrix, reading 190, 191
metrics, scoring for multiclass
classification 197, 198
precision and recall of classification model,
optimizing 191, 193
receiver operator characteristic (ROC)
graphs, plotting 193-197
petal length 51, 210
petal width 51
pipelines
transformers and estimators,
combining in 171
workflows, streamlining with 169
plurality voting 200
polynomial kernel 152
polynomial regression 298-300
pooling layer 382
Porter stemmer algorithm 242
precision (PRE) 192
precision-recall curves 194
principal component analysis (PCA) 282

[422]

principal component analysis,
scikit-learn 135-137
prototype-based clustering 312
public server
web application, deploying to 272,273
Pylearn2
URL 413
PyPrind
URL 234
Python
about 13
kernel principal component analysis,
implementing in 154, 155
packages, installing 13-15
references 14
using, for machine learning 13
PythonAnywhere account
URL 272

Q

quality of clustering
quantifying, via silhouette plots 321-324

R

Radial Basis Function (RBF)

about 152

implementing 152, 153
random forest regression 304-308
random forests 90
RANdom SAmple Consensus (RANSAC)

algorithm 291
raw term frequencies 237
recall (REC) 192
receptive fields 382
Recurrent Neural
Networks (RNNs) 383, 384

regression line 278
regular expression (regex) 240
regularization 365
regularization parameter 67,185
regularized methods

using, for regression 297, 298
reinforcement learning

about 6

interactive problems, solving with 6

residual plots 294
residuals 278
Ridge Regression 297
roadmap, for machine learning systems
about 10
models, evaluating 13
predictive model, selecting 12
predictive model, training 12
preprocessing 11
unseen data instances, predicting 13
robust regression model
fitting, RANSAC used 291-293
ROC area under the curve (ROC AUC) 210

S

scatterplot matrix 280
scenarios, distance values
correct approach 330
incorrect approach 329
scikit-learn
about 50
agglomerative clustering, applying via 334
perceptron, training via 50-55
reference link 167
scikit-learn estimator API 102, 103
scikit-learn online documentation
URL 55
sentiment analysis 233
sepal width 210
Sequential Backward Selection (SBS) 118
sequential feature selection
algorithms 118-123
sigmoid function 57
sigmoid (logistic) activation function 348
silhouette analysis 321
silhouette coefficient 321
silhouette plots
about 312
quality of clustering,
quantifying via 321-324
simple linear regression model 278, 279
simple majority vote classifier
different algorithms, combining
with majority vote 210-212
implementing 203-210

[423]

single linkage 326
Snowball stemmer 243
soft clustering
about 317
versus hard clustering 317-319
soft k-means 317
softmax function 404
sparse 236
spectral clustering algorithms 339
SQLite database
setting up, for data storage 255, 256
squared Euclidean distance 314
S-shaped (sigmoidal) curve 58
stacking 218
standardization 110, 169
stochastic gradient descent 246
Stochastic Gradient Descent (SGD) 285
stop-word removal 243
strong learner 90
sub-sampling 382
Sum of Squared Errors (SSE) 285, 398, 344
supervised data compression, via linear
discriminant analysis
about 138-140
linear discriminants, selecting for new
feature subspace 143-145
samples, projecting onto new
feature space 145
scatter matrices, computing 140-142
supervised learning
about 3

classification, for predicting class labels 3, 4

predictions, making with 3
regression, for predicting continuous
outcomes 4, 5
support vector
machine (SVM) 69, 148, 186, 308
support vectors 69
SymPy
about 390
URL 390

T

term frequency 238
term frequency-inverse document
frequency (tf-idf) 238
Theano
about 390
array structures, working with 394-396
configuring 392, 393
linear regression example 397-400
reference 390
working with 391, 392
threshold function 344
transformer classes 102
transformers and estimators
combining, in pipeline 171
true positive rate (TPR) 192

U

underfitting 65
unigram model 237
unsupervised dimensionality reduction,
via principal component analysis
about 128, 129
explained variance 130-133
feature transformation 133-135
total variance 130-133
unsupervised learning
about 6
dimensionality reduction,
for data compression 7, 8
hidden structures, discovering with 6
subgroups, finding with clustering 7
techniques 311

\'

validation curves
about 179
overfitting and underfitting, addressing
with 183, 185
validation dataset 121
vectorization 27

[424]

w

Ward's linkage 327
weak learners
about 90, 224
leveraging, via adaptive boosting 224-231
web application
deploying, to public server 272,273
developing, with Flask 257
implementation, URL 265
movie classifier, turning into 264-271
movie review classifier, updating 274, 275
Wine dataset
about 108, 221
Alcohol class 221

features 109
Hue class 221
URL 108

word2vec

about 249
URL 249

word stemming 242
workflows

streamlining, with pipelines 169

WTForms library

URL 259

[425]

open source

community experience distilled

PUBLISHING

Thank you for buying
Python Machine Learning

About Packt Publishing

Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www . packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to authorepacktpub. com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

open source

community experience distilled

PUBLISHING

Building Machine Learning
Systems with Python
Second Edition

Building Machine Learning
Systems with Python

Second Edition

ISBN: 978-1-78439-277-2 Paperback: 326 pages

Get more from your data through creating practical
machine learning systems with Python

1. Build your own Python-based machine learning
systems tailored to solve any problem.

2. Discover how Python offers a multiple context
solution for create machine learning systems.

3. Practical scenarios using the key Python
machine learning libraries to successfully
implement in your projects.

Mastering Machine Learning
with scikit-learn

Mastering Machine Learning with

scikit-learn
ISBN: 978-1-78398-836-5 Paperback: 238 pages

Apply effective learning algorithms to real-world
problems using scikit-learn

1. Design and troubleshoot machine learning
systems for common tasks including regression,
classification, and clustering.

2. Acquaint yourself with popular machine
learning algorithms, including decision trees,
logistic regression, and support
vector machines.

3. A practical example-based guide to help you
gain expertise in implementing and evaluating
machine learning systems using scikit-learn.

Please check www.PacktPub.com for information on our titles

open source

community experience distilled

PUBLISHING

Learning scikit-learn:
Machine Learning in Python

Learning scikit-learn: Machine

Learning in Python
ISBN: 978-1-78328-193-0 Paperback: 118 pages

Experience the benefits of machine learning techniques
by applying them to real-world problems using
Python and the open source scikit-learn library

1. Use Python and scikit-learn to create
intelligent applications.

2. Apply regression techniques to predict future
behaviour and learn to cluster items in groups
by their similarities.

3. Make use of classification techniques to
perform image recognition and
document classification.

Building Machine Learning
Systems with Python

Building Machine Learning

Systems with Python
ISBN: 978-1-78216-140-0 Paperback: 290 pages

Master the art of machine learning with Python and
build effective machine learning systems with this
intensive hands-on guide

1. Master Machine Learning using a broad set of
Python libraries and start building your own
Python-based ML systems.

2. Understand the best practices for
modularization and code organization while
putting your application to scale.

3. Covers classification, regression, feature
engineering, and much more guided by
practical examples.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	Foreword
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Giving Computers the Ability to Learn from Data

	Building intelligent machines to transform data into knowledge
	The three different types of
machine learning
	Making predictions about the future with supervised learning
	Classification for predicting class labels
	Regression for predicting continuous outcomes

	Solving interactive problems with reinforcement learning
	Discovering hidden structures with unsupervised learning
	Finding subgroups with clustering
	Dimensionality reduction for data compression

	An introduction to the basic terminology and notations
	A roadmap for building machine learning systems
	Preprocessing – getting data into shape
	Training and selecting a predictive model
	Evaluating models and predicting unseen data instances

	Using Python for machine learning
	Installing Python packages

	Summary

	Chapter 2: Training Machine Learning Algorithms for Classification

	Artificial neurons – a brief glimpse into the early history of machine learning
	Implementing a perceptron learning algorithm in Python
	Training a perceptron model on the Iris dataset

	Adaptive linear neurons and the convergence of learning
	Minimizing cost functions with gradient descent
	Implementing an Adaptive Linear Neuron in Python

	Large scale machine learning and stochastic gradient descent

	Summary

	Chapter 3: A Tour of Machine Learning Classifiers Using Scikit-learn

	Choosing a classification algorithm
	First steps with scikit-learn
	Training a perceptron via scikit-learn

	Modeling class probabilities via logistic regression
	Logistic regression intuition and conditional probabilities
	Learning the weights of the logistic cost function
	Training a logistic regression model with scikit-learn
	Tackling overfitting via regularization

	Maximum margin classification with support vector machines
	Maximum margin intuition
	Dealing with the nonlinearly separable case using slack variables
	Alternative implementations in scikit-learn

	Solving nonlinear problems using a kernel SVM
	Using the kernel trick to find separating hyperplanes in higher dimensional space

	Decision tree learning
	Maximizing information gain – getting the most bang for the buck
	Building a decision tree
	Combining weak to strong learners via random forests

	K-nearest neighbors – a lazy learning algorithm
	Summary

	Chapter 4: Building Good Training
Sets – Data Preprocessing

	Dealing with missing data
	Eliminating samples or features with missing values
	Imputing missing values
	Understanding the scikit-learn estimator API

	Handling categorical data
	Mapping ordinal features
	Encoding class labels
	Performing one-hot encoding on nominal features

	Partitioning a dataset in training and test sets
	Bringing features onto the same scale
	Selecting meaningful features
	Sparse solutions with L1 regularization
	Sequential feature selection algorithms

	Assessing feature importance with random forests

	Summary

	Chapter 5: Compressing Data via Dimensionality Reduction

	Unsupervised dimensionality reduction via principal component analysis
	Total and explained variance
	Feature transformation
	Principal component analysis in scikit-learn

	Supervised data compression via linear discriminant analysis
	Computing the scatter matrices
	Selecting linear discriminants for the new feature subspace
	Projecting samples onto the new feature space
	LDA via scikit-learn

	Using kernel principal component analysis for nonlinear mappings
	Kernel functions and the kernel trick
	Implementing a kernel principal component analysis in Python
	Example 1 – separating half-moon shapes

	Example 2 – separating concentric circles

	Projecting new data points
	Kernel principal component analysis in
scikit-learn

	Summary

	Chapter 6: Learning Best Practices for Model Evaluation and Hyperparameter Tuning

	Streamlining workflows with pipelines
	Loading the Breast Cancer Wisconsin dataset
	Combining transformers and estimators in a pipeline

	Using k-fold cross-validation to assess model performance
	The holdout method
	K-fold cross-validation

	Debugging algorithms with learning and validation curves
	Diagnosing bias and variance problems with learning curves
	Addressing overfitting and underfitting with validation curves

	Fine-tuning machine learning models via grid search
	Tuning hyperparameters via grid search
	Algorithm selection with nested
cross-validation

	Looking at different performance evaluation metrics
	Reading a confusion matrix
	Optimizing the precision and recall of a classification model
	Plotting a receiver operating characteristic
	The scoring metrics for multiclass classification

	Summary

	Chapter 7: Combining Different Models for Ensemble Learning

	Learning with ensembles
	Implementing a simple majority vote classifier
	Combining different algorithms for classification with majority vote

	Evaluating and tuning the ensemble classifier
	Bagging – building an ensemble of classifiers from bootstrap samples
	Leveraging weak learners via adaptive boosting
	Summary

	Chapter 8: Applying Machine Learning to Sentiment Analysis

	Obtaining the IMDb movie review dataset
	Introducing the bag-of-words model
	Transforming words into feature vectors
	Assessing word relevancy via term frequency-inverse document frequency
	Cleaning text data
	Processing documents into tokens

	Training a logistic regression model for document classification
	Working with bigger data – online algorithms and out-of-core learning
	Summary

	Chapter 9: Embedding a Machine Learning Model into
a Web Application

	Serializing fitted scikit-learn estimators
	Setting up a SQLite database for data storage
	Developing a web application with Flask
	Our first Flask web application
	Form validation and rendering

	Turning the movie classifier into a web application
	Deploying the web application to a public server
	Updating the movie review classifier

	Summary

	Chapter 10: Predicting Continuous
Target Variables with Regression Analysis

	Introducing a simple linear regression model
	Exploring the Housing Dataset
	Visualizing the important characteristics of a dataset

	Implementing an ordinary least squares linear regression model
	Solving regression for regression parameters with gradient descent
	Estimating the coefficient of a regression model via scikit-learn

	Fitting a robust regression model using RANSAC
	Evaluating the performance of linear regression models
	Using regularized methods for regression
	Turning a linear regression model into a curve – polynomial regression
	Modeling nonlinear relationships in the Housing Dataset
	Dealing with nonlinear relationships using random forests
	Decision tree regression
	Random forest regression

	Summary

	Chapter 11
: Working with Unlabeled
Data – Clustering Analysis
	Grouping objects by similarity using k-means
	K-means++
	Hard versus soft clustering
	Using the elbow method to find the optimal number of clusters
	Quantifying the quality of clustering via silhouette plots

	Organizing clusters as a hierarchical tree
	Performing hierarchical clustering on a distance matrix
	Attaching dendrograms to a heat map
	Applying agglomerative clustering via
scikit-learn

	Locating regions of high density via DBSCAN
	Summary

	Chapter 12: Training Artificial Neural Networks for Image Recognition

	Modeling complex functions with artificial neural networks
	Single-layer neural network recap
	Introducing the multi-layer neural network architecture
	Activating a neural network via forward propagation

	Classifying handwritten digits
	Obtaining the MNIST dataset
	Implementing a multi-layer perceptron

	Training an artificial neural network
	Computing the logistic cost function
	Training neural networks via backpropagation

	Developing your intuition for backpropagation
	Debugging neural networks with gradient checking
	Convergence in neural networks
	Other neural network architectures
	Convolutional Neural Networks
	Recurrent Neural Networks

	A few last words about neural network implementation
	Summary

	Chapter 13: Parallelizing Neural Network Training with Theano

	Building, compiling, and running expressions with Theano
	What is Theano?
	First steps with Theano
	Configuring Theano
	Working with array structures
	Wrapping things up – a linear regression example

	Choosing activation functions for feedforward neural networks
	Logistic function recap
	Estimating probabilities in multi-class classification via the softmax function
	Broadening the output spectrum by using a hyperbolic tangent

	Training neural networks efficiently using Keras
	Summary

	Index

