diff --git a/approach.tex b/approach.tex index affdc9d..13fd99d 100644 --- a/approach.tex +++ b/approach.tex @@ -265,13 +265,14 @@ l_{R}^k = \ell_{reg} (R_k^* - R_k), \begin{equation} l_{t}^k = \ell_{reg} (t_k^* - t_k), \end{equation} +and \begin{equation} -l_{p}^k = \ell_{reg} (p_k^* - p_k). +l_{p}^k = \ell_{reg} (p_k^* - p_k) \end{equation} are the smooth-$\ell_1$ losses for the predicted rotation, translation and pivot, respectively and \begin{equation} -l_o^k = \ell_{cls}(o_k, o_k^*). +l_o^k = \ell_{cls}(o_k, o_k^*) \end{equation} is the (categorical) cross-entropy loss for the predicted classification into moving and non-moving objects. diff --git a/experiments.tex b/experiments.tex index 0450cd3..1fe49ea 100644 --- a/experiments.tex +++ b/experiments.tex @@ -82,11 +82,16 @@ p_k^* = t_t^k and compute the ground truth object motion $\{R_k^*, t_k^*\} \in \mathbf{SE}(3)$ as \begin{equation} -R_k^* = \mathrm{inv}(R_{cam}^*) \cdot R_{t+1}^k \cdot \mathrm{inv}(R_t^k), +R_k^* = R_{t+1}^k \cdot R_{cam}^* \cdot \mathrm{inv}(R_t^k), \end{equation} \begin{equation} -t_k^* = t_{t+1}^{k} - R_k^* \cdot t_t^k. +t_k^* = \mathrm{inv}(R_{cam}^*) \cdot t_{t+1}^{k} + t_{cam^{-1}}^* - R_k^* \cdot t_t^k, \end{equation} +where +\begin{equation} +t_{cam^{-1}}^* = t_{t}^{ex} - inv(R_{cam}^*) \cdot t_{t+1}^{ex}. +\end{equation} + As for the camera, we define $o_k^* \in \{ 0, 1 \}$, \begin{equation}