mirror of
https://github.com/tu-darmstadt-informatik/stosigsysfs.git
synced 2025-12-13 10:25:49 +00:00
Mehr formeln, anderes Format
This commit is contained in:
parent
d1b88a313b
commit
19626cd593
99
document.tex
99
document.tex
@ -1,8 +1,9 @@
|
||||
%%This is a very basic article template.
|
||||
%%There is just one section and two subsections.
|
||||
|
||||
\documentclass[accentcolor=tud9c,10pt,nochapname]{tudexercise}
|
||||
\documentclass[accentcolor=tud9c,10pt,nochapname]{tudreport}
|
||||
\usepackage{mathtools}
|
||||
\usepackage{ngerman}
|
||||
\DeclareMathSizes{10}{12}{8}{8}
|
||||
\begin{document}
|
||||
|
||||
@ -16,20 +17,20 @@
|
||||
\maketitle
|
||||
|
||||
\tableofcontents
|
||||
\numberwithin{equation}{section}
|
||||
\section{Kombinatorik \& reine Stochastik}
|
||||
\numberwithin{equation}{chapter}
|
||||
\chapter{Kombinatorik \& reine Stochastik}
|
||||
|
||||
\subsection{Wahrscheinlichkeitsdichtefunktion}
|
||||
\section{Wahrscheinlichkeitsdichtefunktion}
|
||||
\begin{equation}
|
||||
f(x) = P(X=x)
|
||||
\end{equation}
|
||||
|
||||
\subsection{Verteilungsfunktion}
|
||||
\section{Verteilungsfunktion}
|
||||
\begin{equation}
|
||||
F(x) = P(X\leq x) = \int\limits_{-\infty}^x f(t)dt
|
||||
\end{equation}
|
||||
|
||||
\subsection{Formel von Bayes}
|
||||
\section{Formel von Bayes}
|
||||
|
||||
\begin{equation}
|
||||
P(A|B) = \frac{P(A \cap B)}{P(B)}
|
||||
@ -38,8 +39,8 @@
|
||||
|
||||
|
||||
|
||||
\subsection{Erwartungswerte}
|
||||
\subsubsection{Allgmeine Erwartungswertberechnung}
|
||||
\section{Erwartungswerte}
|
||||
\subsection{Allgmeine Erwartungswertberechnung}
|
||||
|
||||
|
||||
Sei $f(x)$ die Wahrscheinlichkeitsdichtefunktion von $X$
|
||||
@ -48,7 +49,7 @@ Sei $f(x)$ die Wahrscheinlichkeitsdichtefunktion von $X$
|
||||
E(X) = \int\limits_{-\infty}^\infty x \cdot f(x) dx
|
||||
\end{equation}
|
||||
|
||||
\subsubsection{Erweiterte Erwartungswertberechnung}
|
||||
\subsection{Erweiterte Erwartungswertberechnung}
|
||||
|
||||
Sei $Y=g(X)$ und $f(x)$ die Wahrscheinlichkeitsdichtefunktion von $X$
|
||||
|
||||
@ -56,42 +57,62 @@ Sei $Y=g(X)$ und $f(x)$ die Wahrscheinlichkeitsdichtefunktion von $X$
|
||||
E[Y] = E[g(X)] = \int\limits_{-\infty}^\infty g(x) \cdot f(x) dx
|
||||
\end{equation}
|
||||
|
||||
\subsubsection{Rechenregeln für Erwartungswerte}
|
||||
\subsection{Rechenregeln für Erwartungswerte}
|
||||
\begin{equation}
|
||||
E[A \cdot B] = E[A] \cdot E[B]
|
||||
\end{equation}4
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
E[aX +b] = aE[X] + b
|
||||
\end{equation}
|
||||
|
||||
\subsection{Verteilungen}
|
||||
\section{Verteilungen}
|
||||
|
||||
\subsubsection{Normalverteilung}
|
||||
\subsection{Normalverteilung}
|
||||
\begin{equation}
|
||||
f(x) = \frac{1}{\sigma \sqrt{2 \pi}} e^{- \frac{1}{2} \left(\frac{t-\mu}{\sigma}\right)^2}
|
||||
\end{equation}
|
||||
|
||||
\chapter{Discrete-Time-Fourier-Transformation}
|
||||
|
||||
\section{Prozesse}
|
||||
\section{Abtastung}
|
||||
\subsection{Im Zeitbereich}
|
||||
Sei $x_c(t)$ das zu abtastende Signal und $T_s=\frac{1}{f_s}$ die Abtastdauer bzw. Abtastfrequenz
|
||||
\begin{equation}
|
||||
x_s(t)=\sum\limits_{n=-\infty}^\infty x_c(nT_s)\delta(t-nT_s)
|
||||
\end{equation}
|
||||
\subsection{Im Frequenzbereich}
|
||||
|
||||
\subsection{Strikte Stationarität}
|
||||
\begin{align}
|
||||
X_s(j\Omega)&=\frac{1}{T_s}\sum\limits_{k=-\infty}^\infty X_c(j(\Omega-\frac{2\pi k}{T_s})) \notag\\
|
||||
&=\frac{1}{T_s}\sum\limits_{k=-\infty}^\infty X_c(j\Omega-kj\Omega_s) \quad \text{mit} \quad \Omega_s=\frac{2\pi}{T_s}\\
|
||||
\end{align}
|
||||
|
||||
\subsubsection{Zusammenhang $\Omega$ und $n$}
|
||||
ACHTUNG: Dieser zusammenhang ist in SSS etwas anders im gegensatz zu dem Hilfsblatt von DSS
|
||||
\begin{equation}
|
||||
\omega = \Omega T_s
|
||||
\end{equation}
|
||||
|
||||
\chapter{Prozesse}
|
||||
|
||||
\section{Strikte Stationarität}
|
||||
\begin{equation}
|
||||
F_x(x_1,\dots ,x_N;n_1,\dots,n_N) = F_x(x_1,\dots ,x_N;n_1+n_0,\dots ,n_N+n_0) \quad \text{mit $N\rightarrow \infty$}
|
||||
\end{equation}
|
||||
|
||||
\subsection{Second order moment function(SOMF)}
|
||||
\section{Second order moment function(SOMF)}
|
||||
\begin{equation}
|
||||
r_{XX}(n_1,n_2)=E[X(n_1)X(n_2)]
|
||||
\end{equation}
|
||||
\subsubsection{Stationär im weiteren Sinne}
|
||||
\subsection{Stationär im weiteren Sinne} \label{stationary}
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
E[X(n)]&=\text{const.} \\
|
||||
r_{XX}(n_1,n_2) &= r_{XX}(\kappa) = E[X(n+\kappa)\cdot X(n)] \quad \text{mit} \quad \kappa = |n_2-n_1|
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
\subsubsection{Eigenschaften der SOMF}
|
||||
\subsection{Eigenschaften der SOMF}
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
r_{XX}(0) &= E[X(n)^2]=\sigma_X^2+\mu_x^2 \\
|
||||
@ -100,16 +121,16 @@ r_{XX}(0) &\geq|r_{XX}(\kappa)| \quad ,|\kappa|>0
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
\subsection{Cross-SOMF}
|
||||
\section{Cross-SOMF}
|
||||
\begin{equation}
|
||||
r_{XY}(n_1,n_2) = E[X(n_1) \cdot Y(n_2)]
|
||||
\end{equation}
|
||||
|
||||
\subsubsection{Gemeinsame Statonarität (joint stationary)}
|
||||
\begin{equation}
|
||||
\subsection{Gemeinsame Statonarität (joint stationary)}\label{jointstationary}
|
||||
\begin{equation}
|
||||
r_{XY} = r_{XY}(n_1-n_2) = r_{XY}(\kappa) \quad\text{mit}\quad \kappa=n_1-n_2
|
||||
\end{equation}
|
||||
\subsubsection{Eigenschaften der Cross-SOMF}
|
||||
\subsection{Eigenschaften der Cross-SOMF}
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
r_{XY}(-\kappa) &= r_{YX}(\kappa) \\
|
||||
@ -117,12 +138,40 @@ r_{XY}(-\kappa) &= r_{YX}(\kappa) \\
|
||||
|r_{XY}(\kappa)| &\leq \frac{1}{2}(r_{XX}(0)+r_{YY}(0))
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
\subsubsection{Unkorreliertheit (uncorrelated)}
|
||||
\subsection{Unkorreliertheit (uncorrelated)}
|
||||
\begin{equation}
|
||||
r_{XY}(\kappa)=\mu_x \cdot \mu_y
|
||||
\end{equation}
|
||||
\subsubsection{Orthogonalität}
|
||||
\subsection{Orthogonalität}
|
||||
\begin{equation}
|
||||
r_{XY}(\kappa)=0
|
||||
\end{equation}
|
||||
\end{document}
|
||||
\section{Central-SOMF}
|
||||
\begin{equation}
|
||||
c_{XX}(n+\kappa,n) = E[(X(n+\kappa)-E[X(n+\kappa)]) \cdot (X(n)-E[X(n)])]
|
||||
\end{equation}
|
||||
|
||||
\subsection{Eigenschaften der Central-SOMF}
|
||||
Falls $X$ zumindest \emph{stationär im weiteren Sinne}(\ref{stationary}) ist, gilt
|
||||
\begin{equation}
|
||||
c_{XX}(\kappa)=r_{XX}(\kappa)-(E[X(n)])^2
|
||||
\end{equation}
|
||||
|
||||
\subsection{Überführung der Central-SOMF in die Varianz}
|
||||
\begin{equation}
|
||||
c_{XX}(0)=Var(X)
|
||||
\end{equation}
|
||||
\section{Kovarianz (Covariance)}
|
||||
\begin{equation}
|
||||
c_{XX}(n+\kappa,n) = r_{XX}(n+\kappa,n)-E[X(n+k)]E[X(n)]
|
||||
\end{equation}
|
||||
|
||||
\subsection{Eigenschaften der Kovarianz}
|
||||
|
||||
Falls $X$ und $Y$ zumindest \emph{gemeinsam stationär im weiteren Sinne }(\ref{jointstationary}) sind, gilt:
|
||||
|
||||
\begin{equation}
|
||||
c_{XY}(\kappa)=r_{XY}(\kappa)-E[X(n)]E[Y(n)]
|
||||
\end{equation}
|
||||
|
||||
\end{document}
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user