mirror of
https://github.com/tu-darmstadt-informatik/stosigsysfs.git
synced 2025-12-13 10:25:49 +00:00
gitignore
This commit is contained in:
parent
2e652799f7
commit
b871ea9637
27
.gitignore
vendored
Normal file
27
.gitignore
vendored
Normal file
@ -0,0 +1,27 @@
|
||||
*.aux
|
||||
*.bbl
|
||||
*.blg
|
||||
*.dvi
|
||||
*.fdb_latexmk
|
||||
*.glg
|
||||
*.glo
|
||||
*.gls
|
||||
*.idx
|
||||
*.ilg
|
||||
*.ind
|
||||
*.ist
|
||||
*.lof
|
||||
*.log
|
||||
*.lot
|
||||
*.nav
|
||||
*.nlo
|
||||
*.out
|
||||
*.pdfsync
|
||||
*.ps
|
||||
*.snm
|
||||
*.synctex.gz
|
||||
*.toc
|
||||
*.vrb
|
||||
*.maf
|
||||
*.mtc
|
||||
*.mtc0
|
||||
27
document.tex
27
document.tex
@ -341,7 +341,7 @@ S_{XX}(e^{j\omega},\xi) &= \lim_{M \rightarrow \infty} \frac{\E\left[\left|X_N\l
|
||||
\text{mit}\notag\\
|
||||
X_N(e^{j\omega},\xi) &=\sum\limits_{n=-M}^M x_N(n,\xi) e^{-j\omega n}
|
||||
\end{align}
|
||||
\subsubsection{Eigenschaften der PSD}
|
||||
\subsubsection{Eigenschaften der Leistungsspektraldichte}
|
||||
\begin{subequations}
|
||||
\begin{alignat}{3}
|
||||
S_{XX}(e^{j \omega})^*&=S_{XX}(e^{j \omega}) \quad &\text{mit}\quad X(n)\in \mathbb{C} \\
|
||||
@ -360,7 +360,16 @@ P_{XX}&=\int\limits_{-\pi}^\pi S_{XX}(e^{j\omega}) \frac{d\omega}{2\pi} = r_{XX}
|
||||
\begin{equation}
|
||||
S_{XY}(e^{j\omega},\xi) = \lim_{M \rightarrow \infty} \frac{\E\left[X_N\left(e^{j\omega},\xi\right)Y_N\left(e^{j\omega},\xi\right)^*\right]}{2M+1}\\
|
||||
\end{equation}
|
||||
|
||||
\subsubsection{Eigenschaften der Kreuzleistungsdichte}
|
||||
\begin{subequations}
|
||||
\begin{alignat}{3}
|
||||
S_{XY}(e^{j \omega})^*&=S_{YX}(e^{j \omega}) \quad &\text{mit}\quad X(n),Y(n)\in \mathbb{C} \\
|
||||
S_{XY}(e^{j \omega})^*&=S_{YX}(-e^{j \omega}) \quad &\text{mit}\quad X(n),Y(n)\in \mathbb{R} \\
|
||||
\mathfrak{Re}\{S_{XY}(e^{j \omega})\}&\text{ und }\mathfrak{Re}\{S_{YX}(e^{j \omega})\} &\text{sind gerade, wenn } X(n),Y(n) \in \mathbb{R}\\
|
||||
\mathfrak{Im}\{S_{XY}(e^{j \omega})\}&\text{ und }\mathfrak{Im}\{S_{YX}(e^{j \omega})\} &\text{sind ungerade, wenn } X(n),Y(n) \in \mathbb{R}\\
|
||||
S_{XY}(e^{j \omega})&=S_{YX}(e^{j \omega}) =0 \quad &\text{wenn $X(n)$ und $Y(n)$ orthogonal (\ref{ortho})}
|
||||
\end{alignat}
|
||||
\end{subequations}
|
||||
\subsection{Durchschnittliche Kreuzleistung zweier Zufallsprozesse}
|
||||
\begin{equation}
|
||||
P_{XY}=\int\limits_{-\pi}^\pi S_{XY}(e^{j\omega}) \frac{d\omega}{2\pi}
|
||||
@ -381,6 +390,20 @@ r_{XX}(\kappa)&=\mathcal{F}^{-1}\{S_{XX}(e^{j\omega})\}=\int\limits_{-\pi}^\pi S
|
||||
\begin{equation}
|
||||
S_{XY}(e^{j\omega})=\mathcal{F}\{r_{XY}(\kappa)\}=\sum\limits_{k=-\infty}^\infty r_{XY}(\kappa) e^{-k\omega \kappa}
|
||||
\end{equation}
|
||||
|
||||
|
||||
\section{Kohärenz (coherence)} \label{coherence}
|
||||
\begin{equation}
|
||||
\rm{Coh}_{XY}(e^{j\omega})=\frac{\left|S_{XY}(e^{j\omega})\right|^2}{S_{XX}(e^{j\omega})S_{YY}(e^{j\omega})}
|
||||
\end{equation}
|
||||
\subsection{Eigenschaften der Kohärenz}
|
||||
Die Kohärenz zwischen den Zufallsprozessen $X(n)$ und $Y(n)$ besagt, wie gut $X$ zu $Y$ bei einer gegebenen Frequenz $\omega$ korrespondiert.
|
||||
\begin{equation}
|
||||
0\leq\rm{Coh}_{XY}(e^{j\omega})\leq 1
|
||||
\end{equation}
|
||||
|
||||
|
||||
|
||||
\chapter{Sonstiges}
|
||||
\section{Spezielle Funktionen}
|
||||
\subsection{Gaussian white noise process}
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user