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1 Kombinatorik & reine Stochastik

1.1 Wahrscheinlichkeitsdichtefunktion

Sei FX (x) die Verteilungsfunktion der Zufallsvariablen X

f (x) =
dFX (x)

d x
(1.1)

1.1.1 Eigenschaften der Wahrscheinlichkeitsdichtefunktion

fX (x)≥ 0 (1.2a)

fX (x) = P(X = x) (1.2b)

1.1.2 Berechnung bei Abhängigkeit zu anderer Zufallsvariablen

Sei Y = g(X ) und die Wahrscheinlichkeitsdichtefunktion von Y, f y(t), sei gesucht,
während die Wahrscheinlichkeitsdichtefunktion fx (t) gegeben ist,

f y(t) = fx (g
−1(t))

�

�

�

�

d

d y
g−1

�

�

�

�

(1.3)

1.2 Verteilungsfunktion

f (t) sei die Wahrscheinlichkeitsdichtefunktion der Zufallsvariablen X

F(x) = P(X ≤ x) =

x
∫

−∞

f (t)d t (1.4)
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1.2.1 Eigenschaften der Verteilungsfunktion

0≤ FX (x)≤ 1 (1.5a)

FX (∞) = 1 (1.5b)

FX (−∞) = 0 (1.5c)

FX (x)ist rechtsstetig, d.h.

lim
ε→0

FX (x + ε) = FX (x) (1.5d)

1.2.2 Wahrscheinlichkeitsrechnung mittels der Verteilungsfunktion

F(a−) = lim
ε→0

FX (x − ε) (1.6a)

P(X = a) = F(a)− F(a−) (1.6b)

P(a < X ≤ b) = F(b)− F(a) (1.6c)

P(a ≤ X < b) = F(b−)− F(a−) (1.6d)

P(a ≤ X ≤ b) = F(b)− F(a−) (1.6e)

P(X > a) = 1− F(a) (1.6f)

1.3 Verteilungen

1.3.1 Normalverteilung

f (x) =
1

σ
p

2π
e−

1
2

� t−µ
σ

�2

(1.7)
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1.3.2 Rechteckverteilung

f (t) =

(

1
b−a

a < t < b

0 sonst
(1.8)

F(x) =







0 x ≤ a
x−a
b−a

x ∈ (a, b]

1 x > b

(1.9)

1.3.3 Exponentialverteilung

f (t) =

(

0 t < 0

λe−λt t ≥ 0
(1.10)

F(x) =

(

0 x < 0

1− e−λt x ≥ 0
(1.11)

1.4 Formel von Bayes

P(A|B) =
P(A∩ B)

P(B)
⇒ P(Ak|B) =

P(Ak · P(B|Ak))
n
∑

i=1
P(B|Ai) · P(Ai)

(1.12)

1.5 Erwartungswerte

1.5.1 Erwartungswertberechnung

Allgemein

Sei f (x) die Wahrscheinlichkeitsdichtefunktion von X

E (X ) =

∞
∫

−∞

x · f (x)d x (1.13)
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Erweitert

Sei Y = g(X ) und f (x) die Wahrscheinlichkeitsdichtefunktion von X

E [Y ] = E [g(X )] =

∞
∫

−∞

g(x) · f (x)d x (1.14)

1.5.2 Rechenregeln für Erwartungswerte

Sei A eine von B unabhängige Zufallsvariable

E [A · B] = E [A] · E [B] (1.15)

Sei X eine Zufallsvariable und a, b jeweils Konstanten

E [aX + b] = aE [X ] + b (1.16)

Seien X i Zufallsvariablen

E





n
∑

i=0

X i



=
n
∑

i=0

E [X i] (1.17)

1.6 Varianz

1.6.1 Berechnung der Varianz

Var (X ) = E (X 2)− E (X )2 (1.18)

1.6.2 Rechenregeln für Varianzen

Var (aX + b) = a2Var (x) (1.19)

Seien X i Zufallsvariablen

Var





n
∑

i=0

X i



=
n
∑

i=0

Var [X i] (1.20)
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1.7 Konvergenz

Es wird eine Konvergenz von Zufallsvariablen Xk mit k = 0, 1,2 . . . betrachtet:

1.7.1 Konvergenz mit Wahrscheinlichkeit eins (Convergence with probability
one)

P
�

lim
k→∞

|Xk − X |= 0
�

= 1 (1.21)

1.7.2 Konvergenz im “Mean Square Sense”

lim
k→∞

E
�

|Xk − X |2
�

= 0 (1.22)

1.7.3 Convergence in Pobability

lim
k→∞

P
�

|Xk − X |> ε
�

= 0 (1.23)

1.7.4 Convergence in Distribution

lim
k→∞

FXk
(x) = FX (x) Für alle stetigen punkte x aus FX (1.24)

1.7.5 Gewichtung der Konvergenzen

• Convergence with probability 1 (1.7.1) implies convergence in probability
(1.7.3)

• Convergence with probability 1 (1.7.1) implies convergence in the MSS
(1.7.2), provided second order moments exist.

• Convergence in the MSS (1.7.2) implies convergence in probability (1.7.3).

• Convergence in probability (1.7.3) implies convergence in distribution
(1.7.4).
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2 Discrete-Time-Fourier-
Transformation

2.1 Abtastung

2.1.1 Im Zeitbereich

Sei xc(t) das zu abtastende Signal und Ts =
1
fs

die Abtastdauer bzw. Abtastfrequenz

xs(t) =
∞
∑

n=−∞
xc(nTs)δ(t − nTs) (2.1)

2.1.2 Im Frequenzbereich

Xs( jΩ) =
1

Ts

∞
∑

k=−∞
X c( j(Ω−

2πk

Ts
))

=
1

Ts

∞
∑

k=−∞
X c( jΩ− k jΩs) mit Ωs =

2π

Ts
(2.2)

(2.3)

2.2 Transformation

2.2.1 Rücktransformation

x[n] =

π
∫

−π

X (e jω) e jωndω (2.4)
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2.2.2 Zusammenhang Ω und n

ACHTUNG: Dieser zusammenhang ist in SSS etwas anders im gegensatz zu dem
Hilfsblatt von DSS

ω= ΩTs (2.5)

2.2.3 Dirac-Kamm

η(ω) =
∞
∑

l=−∞
δ(ω+ 2πl) (2.6)

2.2.4 Berechnen einer Übertragungsfunktion im zeitdiskreten Fall

1. Zeitkontinuierliches H(e jω) = Y (e jω)
X (e jω)

berechnen

2. Formel aus (2.2.2) einsetzen, um H( jΩ) zu erreichen
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3 Prozesse

3.1 Strikte Stationarität

Fx (x1, . . . , xN ; n1, . . . , nN ) = Fx (x1, . . . , xN ; n1 + n0, . . . , nN + n0) mit N →∞ (3.1)

3.2 Second order moment function(SOMF)

rX X (n1, n2) = E [X (n1)X (n2)] (3.2)

3.2.1 Stationär im weiteren Sinne

E [X (n)] = const. (3.3a)

rX X (n1, n2) = rX X (κ) = E [X (n+κ) · X (n)] mit κ= |n2 − n1| (3.3b)

3.2.2 Eigenschaften der SOMF

rX X (0) = E [X (n)2] = σ2
X +µ

2
x (3.4a)

rX X (κ) = rX X (−κ) (3.4b)

rX X (0)≥ |rX X (κ)| , |κ|> 0 (3.4c)

3.3 Cross-SOMF

rX Y (n1, n2) = E [X (n1) · Y (n2)] (3.5)
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3.3.1 Gemeinsame Statonarität (joint stationary)

Sei X (n) und Y (n) nach (3.2.1) stationär, dann sind die Prozesse gemeinsam sta-
tionär, wenn gilt:

rX Y = rX Y (n1 − n2) = rX Y (κ) mit κ= n1 − n2 (3.6)

3.3.2 Eigenschaften der Cross-SOMF

rX Y (−κ) = rY X (κ) (3.7a)

|rX Y (κ)| ≤
p

rX X (0) · rY Y (0) (3.7b)

|rX Y (κ)| ≤
1

2
(rX X (0) + rY Y (0)) (3.7c)

3.3.3 Unkorreliertheit (uncorrelated) anhand der Cross-SOMF

rX Y (κ) = µx ·µy = E [X (n+κ)]E [Y (n)] (3.8)

3.3.4 Orthogonalität

rX Y (κ) = 0 (3.9)

3.4 Kovarianz (Covariance,Central-SOMF)

cX X (n+κ, n) = E [(X (n+κ)− E [X (n+κ)]) · (X (n)− E [X (n)])] (3.10a)

cX X (n+κ, n) = rX X (n+κ, n)− E [X (n+ k)]E [X (n)] (3.10b)
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3.4.1 Eigenschaften der Kovarianz

Falls X zumindest stationär im weiteren Sinne(3.2.1) ist, gilt

cX X (κ) = rX X (κ)− (E [X (n)])2 (3.11)

3.4.2 Überführung der Central-SOMF in die Varianz

cX X (0) = Var (X ) (3.12)

3.5 Kreuz-Kovarianz (Cross-covariance)

cX Y (n+κ, n) = E [(X (n+κ)− E [X (n+κ)]) · (Y (n)− E [Y (n)])] (3.13a)

cX Y (n+κ, n) = rX Y (n+κ, n)− E [X (n+ k)]E [Y (n)] (3.13b)

3.5.1 Eigenschaften der Kreuzkovarianz

Falls X und Y zumindest gemeinsam stationär im weiteren Sinne (3.3.1) sind, gilt:

cX Y (κ) = rX Y (κ)− E [X (n)]E [Y (n)] (3.14)

3.5.2 Unkorreliertheit (uncorrelated) anhand der Kreuzkovarianz

cX Y (κ) = 0 (3.15)

3.6 Komplexe Prozesse

Seien X (n) und Y (n) reale Zufallsprozesse, so ist

Z(n)=̂X (n) + jY (n) (3.16)

ein Komplexer Zufallsprozess
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3.6.1 Erwartungswert eines Komplexen Zufallsprozess

E [Z(n)] = E [X (n)] + jE [Y (n)] (3.17)

3.6.2 SOMF eines Komplexen Zufallsprozess

rZ Z (n1, n2) = E [Z(n1) · Z(n2)
∗] (3.18)

Besondere Eigenschaften

Für einen komplexen Zufallsprozess, welcher stationär im weiteren Sinne(3.2.1) ist,
gilt

rZ Z (−κ) = rZ Z (κ)
∗ (3.19)

3.6.3 cross-SOMF komplexer Zufallsprozesse

rZ1Z2
(n1, n2) = E [Z1(n1) · Z2(n2)

∗] (3.20)

3.6.4 Kovarianz (Covariance) eines komplexen Zufallsprozess

cZ Z (n+κ, n) = E [(Z(n+κ)− E [Z(n+κ)]) · (Z(n)− E [Z(n)])∗] (3.21)

3.6.5 Kreuzkovarianz(cross-covariance) komplexer Zufallsprozesse

cZ1Z2
(n+κ, n) = E [(Z1(n+κ)− E [Z1(n+κ)]) · (Z2(n)− E [Z2(n)])

∗] (3.22)

3.6.6 Eigenschaften komplexer Zufallsprozesse

Unkorreliertheit verhält sich wie (3.5.2), genauso wie Orthogonalität (3.3.4)
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4 Spektraldichten (Power Spectral
Density)

4.1 Leistungsdichte

4.1.1 Leistungsspektraldichte (Power Spectral Density,PSD)

SX X (e
jω,ξ) = lim

M→∞

E
�

�

�

�XN

�

e jω,ξ
�

�

�

�

2
�

2M + 1
(4.1)

mit

XN (e
jω,ξ) =

M
∑

n=−M

xN (n,ξ)e− jωn (4.2)

Eigenschaften der Leistungsspektraldichte

SX X (e
jω)∗ = SX X (e

jω) mit X (n) ∈ C (4.3a)

SX X (e
jω)≥ 0 mit X (n) ∈ C (4.3b)

SX X (e
− jω) = SX X (e

jω) mit X (n) ∈ R (4.3c)
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4.1.2 Durchschnittliche Leistung eines Zufallsprozesses

PX X =

π
∫

−π

SX X (e
jω)

dω

2π
= rX X (0) (4.4a)

= lim
M→∞

π
∫

−π

E
�

�

�

�XN

�

e jω,ξ
�

�

�

�

2
�

2M + 1

dω

2π
(4.4b)

4.1.3 Kreuzleistungsdichte (cross-power density)

SX Y (e
jω,ξ) = lim

M→∞

E
h

XN

�

e jω,ξ
�

YN

�

e jω,ξ
�∗i

2M + 1
(4.5)

Eigenschaften der Kreuzleistungsdichte

SX Y (e
jω)∗ = SY X (e

jω) mit X (n), Y (n) ∈ C (4.6a)

SX Y (e
jω)∗ = SY X (−e jω) mit X (n), Y (n) ∈ R (4.6b)

Re{SX Y (e
jω)} und Re{SY X (e

jω)} sind gerade, wenn X (n), Y (n) ∈ R (4.6c)

Im{SX Y (e
jω)} und Im{SY X (e

jω)} sind ungerade, wenn X (n), Y (n) ∈ R (4.6d)

SX Y (e
jω) = SY X (e

jω) = 0 wenn X (n) und Y (n) orthogonal (3.3.4) (4.6e)

4.1.4 Durchschnittliche Kreuzleistung zweier Zufallsprozesse

PX Y =

π
∫

−π

SX Y (e
jω)

dω

2π
(4.7)
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4.1.5 Wiener-Khinchine theorem

Ist X (n) ein im weiteren Sinne stationärer(3.2.1) Zufallsprozess, do kann die Leis-
tungsspektraldichte (4.1.1) aus der Fourier-Transformation der Momentenfunktion
zweiter Ordnung(SOMF) (3.2) gewonnen werden:

SX X (e
jω) =F{rX X (κ)}=

∞
∑

k=−∞
rX X (κ)e

−kωκ (4.8a)

und invers

rX X (κ) =F−1{SX X (e
jω) }=

π
∫

−π

SX Y (e
jωκ)

dω

2π
(4.8b)

4.1.6 Kreuzleistungsdichte durch Cross-SOMF

SX Y (e
jω) =F{rX Y (κ)}=

∞
∑

k=−∞
rX Y (κ)e

−kωκ (4.9)

4.2 Kohärenz (coherence)

CohXY(e
jω) =

�

�SXY(ejω)
�

�

2

SXX(ejω)SYY(ejω)
(4.10)

4.2.1 Eigenschaften der Kohärenz

Die Kohärenz zwischen den Zufallsprozessen X (n) und Y (n) besagt, wie gut X zu
Y bei einer gegebenen Frequenz ω korrespondiert.

0≤ CohXY(e
jω) ≤ 1 (4.11)
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4.3 Root Mean Square (RMS) und Gleichsstrom (DC) Werte

4.3.1 DC-Values

Xdc = lim
M→∞

1

2M + 1

M
∑

n=−M

X (n) = E [X (n)] = µX (4.12)

4.3.2 Normalisierte DC-Leistung

Pdc =



 lim
M→∞

1

2M + 1

M
∑

n=−M

X (n)





2

= E [X (n)]2 = X 2
dc (4.13)

4.3.3 RMS-Value

XRMS =

√

√

√

√ lim
M→∞

1

2M + 1

M
∑

n=−M

X (n)2 =
p

rX X (0) =

√

√

√

√

√

π
∫

−π

SX X (e jω)
dω

2π
(4.14)

4.4 Spektrum

4.4.1 Spektrum eines stationären Zufallsprozesses

Ist X (n) ein stationärer (3.1) Zufallsprozess, so ist sein Spektrum die Fouriertrans-
formierte der Kovarianzfunktion (3.4)

CX X (e
jω) =

∞
∑

n=−∞
cx x (n)e

− jωn (4.15)
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Eigenschaften des Spektrums

1. Wenn
∑

n |cX X (n)|<∞, dann existiert CX X und ist begrenzt und stetig

2. CX X ist Real, 2π-Periodisch und CX X ≥ 0

3.

cX X (n) =
1

2π

∫ π

−π
CX X (e

jω)e jωndω (4.16)

4.4.2 Kreuzspektrum zweier gemeinsam stationärer Zufallsprozesse

Ist X (n) und Y (n) gemeinsam stationär (3.3.1), dann ist das Kreuzspektrum defi-
niert durch

CX Y (e
jω) =

∞
∑

n=−∞
cX Y (n)e

− jωn (4.17)

Eigenschaften der Kreuzspektrums

Das Spektrum eines Realen Zufallsprozesses ist komplett im Intervall [0,π] be-
stimmt

CX Y (e
jω) = CY X (e

jω)∗ (4.18a)

cX Y (n) =
1

2π

π
∫

−π

CX Y (e
jω)e jωndω (4.18b)

Wenn X (n), Y (n) ∈ R dann

CX X (e
jω) = CX X (e

− jω) (4.18c)

CX Y (e
jω) = CX Y (e

− jω)∗ = CY X (e
− jω) = CY X (e

jω)∗ (4.18d)
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5 Filter

5.1 Lineare Filter

Wenn X (n) und Y (n) stationär (3.1) sind, h(n) eine Impulsantwort eines LTI-
Systems ist und das Filter stabil (5.1.1) ist, existiert mit Wahrscheinlichkeit 1 (1.7.1)

Y (n) =
∞
∑

k=−∞
h(k)X (n− k) =

∞
∑

k=−∞
h(n− k)X (k) (5.1)

5.1.1 Stabilität

Die Stabilität eines Filters ist gegeben, wenn:
∑

|h(n)|<∞ (5.2)

5.1.2 Eigenschaften eines Linearen Filters

• Ist X (n) stationär (3.1) und E [|X (n)|]<∞, dann ist Y (n) stationär

• Y (n) wird linearer Prozess genannt (linear process)

5.1.3 Instabiler linearer Filter

Ist das Filter nicht stabil (5.1.1), aber
∫

|H(e jω|dω < ∞) trifft zu und für
X (n)

∑

|cX X (n) < ∞, sodann existiert im Mean-Square-Sense (1.7.2) die Formel
(5.1) und Y (n) ist stationär im weiteren Sinne (3.2.1) mit

µY = E [Y (n)] =
∞
∑

k=−∞
h(k)E [X (n− k)] = µX H(e j0) (5.3)
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5.1.4 Kreukovarianz des Ausgangs des Filters

cY X =
∞
∑

k=−∞
h(k)cX X (κ− k) (5.4a)

CY X (e
jω) = H(e jω)CX X (e

jω) (5.4b)

cY X =

π
∫

−π

H(e jω)CX X (e
jω) e− jωκ dω

2π
(5.4c)

5.1.5 Kreukovarianz des Ausgangs zweier Filter

cY1Y2
(κ) =

∞
∑

k=−∞

∞
∑

l=−∞
h1(k)h2(l) · cX1X2

(κ− k+ l) (5.5a)

cY1Y2
(κ) = h1(κ) ? h2(κ)

∗ ? cX1X2
(κ) (5.5b)

CY1Y2
(e jω) = H1(e

jω)H2(e
jω) ∗CX1X2

(e jω) (5.5c)

5.1.6 Kaskade linearer Filter

H(e jω) =
L
∏

i=1

Hi(e
jω) (5.6a)

CY Y (e
jω) = CX X (e

jω)
L
∏

i=1

�

�Hi(e
jω)
�

�

2
(5.6b)

CY X (e
jω) = CX X (e

jω)
L
∏

i=1

Hi(e
jω) (5.6c)

5.2 Matched Filter
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5.2.1 Annahmen des Matched Filters

• Das eingehende Signal X (n) besteht entweder aus einem Signal mit Rau-
schen oder nur Rauschen:

X (n) =

(

s(n) + V (n)

V (n)
(5.7)

• Dabei ist s(n) reelwertig, deterministisch und betrachtet in n ∈ [0, N)

• E[V (n)] = 0 und CV V (e jω) bekannt

5.2.2 Ziel des Matched Filters

Maximierung des Signal-Rausch-Verhältnis:
�

S

N

�

=max
|s0(n0)|2

E [V0(n0)2]
(5.8)

5.2.3 Übertragungsfunktion des Matched Filters

Sei S(e jω) = F{s(n)}, CV V das Spektrum des Rauschens, n0 die Abtastunszeit, bei
welcher (S/N) berechnet wird, und k eine reele Konstante

H(e jω) = k
S(e jω) ∗

CV V (e jω)
e− jωn0 (5.9)

Dabei geht der Signalverlauf am Ende des Filters verloren und der Filter kann zur
Signaldetektion genutzt werden

5.2.4 Matched Filter für Weißes Rauschen

Bei weißem Rauschen wird die Impulsantwort des Filters zu

h(n)≡ c · s(n0 − n) (5.10)

⇒ Die Impulsantwort des Filters ist das bekannte Signal ”rückwärts gespielt” und
um n0 verschoben
Der Signal zu Rausch Abstand ergibt sich dann zu:

�

S

N

�

out
=

Es

σ2
V

(5.11)
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5.3 Wiener Filter

5.3.1 Ziel des Wiener Filters

Der Wiener Filter versucht die optimale Schätzung (nach (1.7.2)) eines Zufallspro-
zesses durch die Beobachtung eines anderen Prozesses

5.3.2 Annahmen des Wiener Filters

• X (n) ist der zu schätzende Zufallsprozess

• Y (n) ist der betrachtete Zufallsprozess

• ε(n) ist der Fehlerprozess

• X (n) und Y (n) sind reelwertig, mittelwertfrei und gemeinsam stationär im
weiteren Sinne (3.3.1)

• Aufgrund der gemeinsamen Stationarität im weiteren Sinne (3.3.1) der bei-
den Prozesse ist die Impulsantwort h(n) stabil und der Fehlerprozess ε(n)
stationär im weiteren Sinne (3.2.1)

5.3.3 Die Übertragungsfunktion des Wiener Filters

Enstehend aus den Wiener-Hopf-Gleichungen

cX Y (κ) = hopt(κ) ? CY Y (κ) κ ∈ Z (5.12a)

CX Y (e
jω) = Gopt(e

jω)CY Y (e
jω) ω ∈ R (5.12b)
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erlangt man die optimale Übertragungsfunktion:

Hopt(e
jω) =

CX Y (e jω)

CY Y (e jω)
(5.13)

5.3.4 Mean Square Error des Wiener Filters

qmin = CX X (0)−
∞
∑

m=−∞
hopt(m)CX Y (m) (5.14a)

qmin = p(0) mit (5.14b)

p(κ) = CX X (κ)− hopt(κ) ? cY X (κ)

5.3.5 Der Wiener Filter mit additivem Rasuchen

Hopt(e
jω) =

CX X (e jω)

CX X (e jω) + CV V (e jω)
(5.15)
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6 Sonstiges

6.1 Spezielle Funktionen

6.1.1 Gaussian white noise process

GauSSsches weißes Rauschen ist immer stationär (3.1)

E [W (n)] = 0 (6.1a)

rWW (κ) = σ
2
Wδ(κ) (6.1b)

SWW (e
jω) = σ2

W (6.1c)

6.1.2 Kronecker delta function

δ(κ) =

(

1 κ= 0

0 κ 6= 0
(6.2)

6.2 Mathematische nützliche Formeln

6.2.1 Ungleichung von Schwarz

�

�

�

�

�

�

�

b
∫

a

ϕ1(ω)ϕ2(ω)dω

�

�

�

�

�

�

�

2

≤









b
∫

a

|ϕ1(ω)|2dω









·









b
∫

a

|ϕ2(ω)|2dω









(6.3)
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6.2.2 Orthogonalitäts- und Normierungsbeziehungen

2π
∫

0

cos(mt)cos(nt)d t = 0 für m 6= n (6.4a)

2π
∫

0

sin(mt)sin(nt)d t = 0 für m 6= n (6.4b)

2π
∫

0

cos(mt)sin(nt)d t = 0 (6.4c)

2π
∫

0

cos2(nt) =

(

π für n≥ 1

2π für n= 0
(6.4d)

2π
∫

0

sin2(nt) =

(

π für n≥ 1

0 für n= 0
(6.4e)

2π
∫

0

cos(k+ nt)d t = 0 mit k = const (6.4f)

2π
∫

0

sin(k+ nt)d t = 0 mit k = const (6.4g)
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