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1 Kombinatorik & reine Stochastik

1.1 Wabhrscheinlichkeitsdichtefunktion

Sei Fy(x) die Verteilungsfunktion der Zufallsvariablen X

dFyx(x)
feo=—; (1.1)
X
1.1.1 Eigenschaften der Wahrscheinlichkeitsdichtefunktion
fx(x)=0 (1.2a)
fx(x)=PX =x) (1.2b)

1.1.2 Berechnung bei Abhangigkeit zu anderer Zufallsvariablen

Sei Y = g(X) und die Wahrscheinlichkeitsdichtefunktion von Y, f,(t), sei gesucht,
wahrend die Wahrscheinlichkeitsdichtefunktion f,.(t) gegeben ist,

-1 d
fy(t):fx(g (t)) d_g (1.3)
y
1.2 Verteilungsfunktion
f(t) sei die Wahrscheinlichkeitsdichtefunktion der Zufallsvariablen X
F(x)=PX <x)= J f(t)dt (1.9




1.2.1 Eigenschaften der Verteilungsfunktion

0<Fx(x)<1 (1.5a)
Fx(o0)=1 (1.5b)
Fx(=00)=0 (1.50)
Fx(x)ist rechtsstetig, d.h.

lirr(l)FX(x-i-e) = Fx(x) (1.5d)

1.2.2 Wabhrscheinlichkeitsrechnung mittels der Verteilungsfunktion
Fla—)= lin(l)FX(x —€) (1.6a)
PX=a)=F(a)—F(a—) (1.6b)
P(a<X <b)=F(b)—F(a) (1.6¢)
P(a<X <b)=F(b-)—F(a-) (1.6d)
P(a<X <b)=F(b)—F(a—) (1.6€)
PX>a)=1-F(a) (1.6)

1.3 Verteilungen
1.3.1 Normalverteilung
f0= ——e 3 () 1.7
Y e '




1.3.2 Rechteckverteilung

1
— t<b
f(t)={b—a a=r= (1.8)
0 sonst
0 x<a
F(x)= ﬁ x € (a, b] (1.9
1 x>b
1.3.3 Exponentialverteilung
0 t<0
t)= 1.10
) {MM 0 (1.10)
0 x<0
F(x)—{l_e_h >0 (1.11)
1.4 Formel von Bayes
P(ANB P(A, - P(B|A
P(AIB) = % = P(A|B) = M (1.12)
P(BIA;) - P(A)
i=1
1.5 Erwartungswerte
1.5.1 Erwartungswertberechnung
Allgemein
Sei f(x) die Wahrscheinlichkeitsdichtefunktion von X
oo
E(X)= f x - f(x)dx (1.13)

—0o0




Erweitert

Sei Y = g(X) und f(x) die Wahrscheinlichkeitsdichtefunktion von X

[0.8]
E[Y]=E[g(X)] = j g(x) - f(x)dx (1.14)
1.5.2 Rechenregeln fiir Erwartungswerte
Sei A eine von B unabhéngige Zufallsvariable
E[A-B] =E[A]-E[B] (1.15)
Sei X eine Zufallsvariable und a, b jeweils Konstanten
E[aX+b] =aE[X]+Db (1.16)
Seien X; Zufallsvariablen
n n
E le} = E[X/] (1.17)
i=0 i=0
1.6 Varianz
1.6.1 Berechnung der Varianz
Var (X) =E(X?) —E(X)? (1.18)
1.6.2 Rechenregeln fir Varianzen
Var (aX + b) = a®Var (x) (1.19)
Seien X; Zufallsvariablen
n n
Var {ZX1:| = ZVar [X;:] (1.20)
0 i=0

i=




1.7 Konvergenz

Es wird eine Konvergenz von Zufallsvariablen X; mit k =0,1,2... betrachtet:

1.7.1 Konvergenz mit Wahrscheinlichkeit eins (Convergence with probability
one)

P(lim |xk—x|=o) =1 (1.21)
k—00

1.7.2 Konvergenz im “Mean Square Sense”

LimE [|X, - X|*?] =0 1.22
Jim E [1X; - X ?] (1.22)

1.7.3 Convergence in Pobability

lim P (X3 —X|>€)=0 (1.23)
k—o0

1.7.4 Convergence in Distribution

klim Fy, (x) =Fx(x) Fir alle stetigen punkte x aus Fy (1.24)
—00

1.7.5 Gewichtung der Konvergenzen

* Convergence with probability 1 (1.7.1) implies convergence in probability
(1.7.3)

* Convergence with probability 1 (1.7.1) implies convergence in the MSS
(1.7.2), provided second order moments exist.

* Convergence in the MSS (1.7.2) implies convergence in probability (1.7.3).

* Convergence in probability (1.7.3) implies convergence in distribution
(1.7.4).




2 Discrete-Time-Fourier-
Transformation

2.1 Abtastung

2.1.1 Im Zeitbereich

Sei x.(t) das zu abtastende Signal und T, = fls die Abtastdauer bzw. Abtastfrequenz

[e8)

x(0)= Y x(nT)8(t —nT,) (2.1)

n=—oo

2.1.2 Im Frequenzbereich

) 1 & ) 2k
X0 =7 >, X(Q- 7))
S k=—o0 s
1 & . . . _2m
=T D X(j2-kj) mit Q= T (2.2)
k=—00
2.3)
2.2 Transformation
2.2.1 Ricktransformation
T
x[n] = JX(ej‘”)ej””dw (2.4)

=T
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2.2.2 Zusammenhang Q und n

ACHTUNG: Dieser zusammenhang ist in SSS etwas anders im gegensatz zu dem
Hilfsblatt von DSS

w=QT, (2.5)

2.2.3 Berechnen einer Ubertragungsfunktion im zeitdiskreten Fall

1. Zeitkontinuierliches H(e/®) = }% berechnen

2. Formel aus (2.2.2) einsetzen, um H(jQ2) zu erreichen

1



3 Prozesse

3.1 Strikte Stationaritat

Fo(xq,.0,XN3,. -

ny) =F(xq,...,xy;n1 +1g,...,ny +1ny) MitN — o0 (3.1)

3.2 Second order moment function(SOMF)

rxx(ny,ny) = E[X(n1)X(ny)] 3.2)

3.2.1 Stationdr im weiteren Sinne
E[X(n)] = const. (3.3a)
ryx(ny,ny) =ryxx (k) =E[X(n+«)-X(n)] mit x=|ny—n, (3.3b)

3.2.2 Eigenschaften der SOMF
rex(0) =E[X(n)*] = 0% +u2 (3.4a)
rxx () = ryx(—x) (3.4b)
rxx(0) = [ryx (<), |k[>0 (3.40)
3.3 Cross-SOMF

rxy(ny,ny) =E[X(ny) - Y(ny)] 3.5)

12



3.3.1 Gemeinsame Statonaritat (joint stationary)

Sei X(n) und Y(n) nach (3.2.1) stationdr, dann sind die Prozesse gemeinsam sta-

tiondr, wenn gilt:

I'yy = rxy(nl — nz) = er(K) mit k= ny —ny (36)
3.3.2 Eigenschaften der Cross-SOMF
rxy (—x) = ryx (&) (3.7a)
[rxy ()] < 4/ 7xx(0) - ryy (0) (3.7b)
1
Irxy ()| < E(rXX(O) +ryy(0)) (3.70)
3.3.3 Unkorreliertheit (uncorrelated) anhand der Cross-SOMF
rxy (k) =ty - by =E[X(n+x)]E[Y(n)] (3.8
3.3.4 Orthogonalitat
rxy(K)=0 (3.9
3.4 Kovarianz (Covariance,Central-SOMF)
cxx(n+x,nN)=E[X(n+x)—EXn+x)]) X(n)—EX({)]] (3.10a)
cxx(n+x,n)=ryx(n+x,n)—E[X(n+k)]E[X(n)] (3.10b)

13



3.4.1 Eigenschaften der Kovarianz

Falls X zumindest stationdr im weiteren Sinne(3.2.1) ist, gilt

exx () = rxx (1) = (B [X(n)])? (3.1D)

3.4.2 Uberfiihrung der Central-SOMF in die Varianz

CXX(O) = Var (X) (3.12)

3.5 Kreuz-Kovarianz (Cross-covariance)

cxy(n+x,n)=E[X(n+x)—EXn+x)]) - (Y(n)—E[Y(n)]] (3.13a)
cxy(n+x,n)=ryy(n+x,n) —E[X(n+k)]E[Y(n)] (3.13b)

3.5.1 Eigenschaften der Kreuzkovarianz

Falls X und Y zumindest gemeinsam stationdr im weiteren Sinne (3.3.1) sind, gilt:

cxy (k) = ryy (k) —E[X(n)]E[Y (n)] (3.14)

3.5.2 Unkorreliertheit (uncorrelated) anhand der Kreuzkovarianz

ny(K) =0 (315)

3.6 Komplexe Prozesse

Seien X(n) und Y (n) reale Zufallsprozesse, so ist
Z(n)=X(n)+jY(n) (3.16)

ein Komplexer Zufallsprozess

14



3.6.1 Erwartungswert eines Komplexen Zufallsprozess

E[Z(M)] =EX(m)]+JE[Y(n)] (3.17)

3.6.2 SOMF eines Komplexen Zufallsprozess

rzz(ny,ny) =E[Z(ny) - Z(ny)*] (3.18)

Besondere Eigenschaften

Fiir einen komplexen Zufallsprozess, welcher stationdr im weiteren Sinne(3.2.1) ist,
gilt
rzz(—K)zrzz(K)* (319)

3.6.3 cross-SOMF komplexer Zufallsprozesse

rz,25(N1,n2) = E[Z1(n1) - Z5(ny)"] (3.20)

3.6.4 Kovarianz (Covariance) eines komplexen Zufallsprozess

czz(n+1x,n)=E[(Z(n+x)—E[Z(n+x)])-(Z(n) —E[Z(n)])*] (3.21)

3.6.5 Kreuzkovarianz(cross-covariance) komplexer Zufallsprozesse

cziz,(n+1,1) =E[(Z1(n+x) —E[Z,(n+)]) - (Zo(n) —E[Z,(m)])"]  (3.22)

3.6.6 Eigenschaften komplexer Zufallsprozesse

Unkorreliertheit verhalt sich wie (3.5.2), genauso wie Orthogonalitdt (3.3.4)

15



4 Spektraldichten (Power Spectral
Density)

4.1 Leistungsdichte

411 Leistungsspektraldichte (Power Spectral Density,PSD)

E UXN (efw,g)ﬂ

jo Y= 1i
Sxx (!, &) A}lgloo M1 (4.1)
mit
Xy(e®,8)= Y xy(n,&eon (4.2)
n=—M
Eigenschaften der Leistungsspektraldichte

Sxx(ejw)* = SXX(ejw) mit X(n) eC (433)

Syx(€/©)>0 mit X(n)eC (4.3b)

Syx(e779) =Syx(e/®) mit X(n)eR (4.3¢)

16



4.1.2 Durchschnittliche Leistung eines Zufallsprozesses

T

o dw
Pyx = J Sxx(e’*) o rxx(0) (4.4a)

—T

— (4.4b)

4.1.3 Kreuzleistungsdichte (cross-power density)

E [xy (08 1 (.2) ]
2M +1

Sxy(e’®, &)= lim (4.5)
M—00

Eigenschaften der Kreuzleistungsdichte

Sxy(e7°)* = Syx (/) mit X(n),Y(n)€C (4.6a)
Sxy(e7°)* = Syx(—e/®) mit X(n),Y(n)eR (4.6b)
Re{Syy(e/°)} und Re{Syx(e/*)} sind gerade, wenn X(n),Y(n) eR  (4.6¢)
Im{Syy (e’®)} und Im{Syx(e/*)}  sind ungerade, wenn X(n),Y(n) €R (4.6d)
Sxy(e/°)=Syx(e/*)=0 wenn X(n) und Y (n) orthogonal (3.3.4) (4.6e)

4.1.4 Durchschnittliche Kreuzleistung zweier Zufallsprozesse

T

. dw
Pyy = J Sxy(e7?) o 4.7)

=T

17



4.1.5 Wiener-Khinchine theorem

Ist X(n) ein im weiteren Sinne stationdrer(3.2.1) Zufallsprozess, do kann die Leis-
tungsspektraldichte (4.1.1) aus der Fourier-Transformation der Momentenfunktion
gweiter Ordnung(SOMF) (3.2) gewonnen werden:

Sxx(e1) = Flryx (K0} = D rgx()e e (4.82)
k=—00
und invers
-1 jw [ jwk dw
rxx(K) =F  {Sxx(e’“)} = | Sxy(e )E (4.8b)

-7

4.1.6 Kreuzleistungsdichte durch Cross-SOMF

[c8)

Sxr(el?) = Flrey (O} = Y rey(K)e e (4.9)
k=—o00
4.2 Kohéarenz (coherence)
S Gl

4.2.1 Eigenschaften der Koharenz

Die Kohérenz zwischen den Zufallsprozessen X(n) und Y (n) besagt, wie gut X zu
Y bei einer gegebenen Frequenz w korrespondiert.

0 < Cohyy(e®) <1 (4.11)

18



4.3 Root Mean Square (RMS) und Gleichsstrom (DC) Werte

4.3.1 DC-Values

M

Xge = Jim —— HZMX(H) =E[X(n)] = uy (4.12)

4.3.2 Normalisierte DC-Leistung

1 d ’ 2 2
Pac= | lim oo HZZ:MX(n) =E[X(n)]? =X2, (4.13)
4.3.3 RMS-Value
T
M dw

XRMS = Sxx(e]w) E (414)

D X()? = /rex(0) =
M

lim
M=o 2M +1 4=

—T

4.4 Spektrum

4.41 Spektrum eines stationdren Zufallsprozesses

Ist X(n) ein stationdrer (3.1) Zufallsprozess, so ist sein Spektrum die Fouriertrans-

formierte der Kovarianzfunktion (3.4)

0

CXX(ejw): Z Cxx(n)e_jwn

n=-—00

(4.15)

19



Eigenschaften des Spektrums

1. Wenn ), |cxx(n)| < oo, dann existiert Cxyx und ist begrenzt und stetig
2. Cxy ist Real, 27t-Periodisch und Cyx >0
3.

1 (" o
Cxx(n) = ﬂ j CXX(er)erndw (416)

—T

4.4.2 Kreuzspektrum zweier gemeinsam stationarer Zufallsprozesse

Ist X(n) und Y(n) gemeinsam stationdr (3.3.1), dann ist das Kreuzspektrum defi-

niert durch
o0

Cry (/)= Y cxy(m)een (4.17)

n=-—o0o

Eigenschaften der Kreuzspektrums

Das Spektrum eines Realen Zufallsprozesses ist komplett im Intervall [0, ] be-
stimmt

Cxy (/) = Cyx (/)" (4.18a)
1 jwy,jwn
cxy(n) = o Cxy(e’®)e/“"dw (4.18b)

Wenn X(n),Y(n) € R dann
Cxx(e/®) = Cxx(e77*) (4.18¢)
Cxy (€/°) = Cxy(e77°)" = Cyx(e77/°) = Cyx(e/*)* (4.18d)

20



5 Filter

5.1 Lineare Filter

Wenn X(n) und Y(n) stationdr (3.1) sind, h(n) eine Impulsantwort eines LTI-
Systems ist und das Filter stabil (5.1.1) ist, existiert mit Wahrscheinlichkeit 1 (1.7.1)

o0 o0

Y(n)= Y. h(k)X(n—k)= Y h(n—k)X(k) (5.1

k=—o00 k=—o00

5.1.1 Stabilitat

Die Stabilitét eines Filters ist gegeben, wenn:

D ()] < 0o (5.2)

5.1.2 Eigenschaften eines Linearen Filters

e Ist X(n) stationdr (3.1) und E[|X(n)|] < co, dann ist Y (n) stationdr

* Y(n) wird linearer Prozess genannt (linear process)

5.1.3 Instabiler linearer Filter

Ist das Filter nicht stabil (5.1.1), aber fIH(ej‘“Idw < o00) trifft zu und fiir
X(n) Yllexx(n) < oo, sodann existiert im Mean-Square-Sense (1.7.2) die Formel
(5.1) und Y (n) ist stationdr im weiteren Sinne (3.2.1) mit

00

py =E[¥(m)]= D h(EX(n k)] = pxH(e) (5.3)

k=—o00

21



5.1.4 Kreukovarianz des Ausgangs des Filters

crx= Y, h(K)exx(x —k) (5.4a)
k=—00
Cyx(e/®) = H(e’) Cyx (/) (5.4b)
jw jwy ,—jwkK dw
Cyx = J H(e!*)Cxx(e?“)e™ ey (5.4¢)
Y
5.1.5 Kreukovarianz des Ausgangs zweier Filter
()= D0 D h(hy(D) - cxyxy (k —k+1) (5.52)
k=—o00l=—00
Cyyv, (k) = hy () * hy(K)" * cx x, () (5.5b)
Cryy, () = Hy (/) Hy(e/®) *Cyy x, (1) (5.50)
5.1.6 Kaskade linearer Filter
H() =] [Hi(e) (5.6a)
i=1
Cry(e/®) = Cyx (&) | | |Hi(e™) | (5.6b)
i=1
Cyx(e’?) = Cxx (/) l_[Hi(er) (5.60)

i=1

5.2 Matched Filter

22



5.2.1 Annahmen des Matched Filters

* Das eingehende Signal X(n) besteht entweder aus einem Signal mit Rau-
schen oder nur Rauschen:

_Js(m)+Vv(n)
X(n)= {V(n) (5.7)

* Dabei ist s(n) reelwertig, deterministisch und betrachtet in n € [0, N)

e E[V(n)]=0und Cyy(e/) bekannt

5.2.2 Ziel des Matched Filters

Maximierung des Signal-Rausch-Verhéltnis:
S 2
(—) =max|50(;0)|2 (5.8)
N E[Vo(ng)?]

5.2.3 Ubertragungsfunktion des Matched Filters

Sei S(e/®) = Z{s(n)}, Cyy das Spektrum des Rauschens, n, die Abtastunszeit, bei
welcher (S/N) berechnet wird, und k eine reele Konstante

S(ejw) *
Cyy(e/®)
Dabei geht der Signalverlauf am Ende des Filters verloren und der Filter kann zur
Signaldetektion genutzt werden

H(e/®) =k e~ J@no (5.9)

5.2.4 Matched Filter fir WeiBes Rauschen

Bei weiflem Rauschen wird die Impulsantwort des Filters zu
h(n)=c-s(ng—n) (5.10)

= Die Impulsantwort des Filters ist das bekannte Signal "riickwérts gespielt” und
um ng, verschoben
Der Signal zu Rausch Abstand ergibt sich dann zu:

S E
(_) . (5.11)
N Jout oy
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5.3 Wiener Filter

5.3.1 Ziel des Wiener Filters

Der Wiener Filter versucht die optimale Schitzung (nach (1.7.2)) eines Zufallspro-
zesses durch die Beobachtung eines anderen Prozesses

5.3.2 Annahmen des Wiener Filters

Not Observable

X(n) e - =(n)

Y(n) ——s| h(n), H(e¥)

Observable

* X(n) ist der zu schitzende Zufallsprozess
* Y(n) ist der betrachtete Zufallsprozess
* ¢(n) ist der Fehlerprozess

* X(n) und Y(n) sind reelwertig, mittelwertfrei und gemeinsam stationdr im
weiteren Sinne (3.3.1)

* Aufgrund der gemeinsamen Stationaritdt im weiteren Sinne (3.3.1) der bei-
den Prozesse ist die Impulsantwort h(n) stabil und der Fehlerprozess e(n)
stationdr im weiteren Sinne (3.2.1)

5.3.3 Die Ubertragungsfunktion des Wiener Filters

Enstehend aus den Wiener-Hopf-Gleichungen
cxy (K) = hope(K) * Cyy (1) KEZ (5.12a)
ny(ejw) = Gop[(ejw) ny(ejw) weR (512b)
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erlangt man die optimale Ubertragungsfunktion:

i CXY(ejw)
Joy — 2~ 7
Hop(e/®) Cor (@) (5.13)
5.3.4 Mean Square Error des Wiener Filters
o0
Qnin = Cxx(0) = D hope(m)Cyy (m) (5.14a)
m=—00
qmin =p(0) mit (5.14b)
p(x) = Cxx (k) — hope (k) * cyx ()
5.3.5 Der Wiener Filter mit additivem Rasuchen
4 Cyx(eI®
Hope(€/) = xxle™) (5.15)

Cxx(e/®) + Cyy(e/®)
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6 Sonstiges

6.1 Spezielle Funktionen

6.1.1 Gaussian white noise process

GauSSsches weiSSes Rauschen ist immer stationdr (3.1)

E[W(n)] = O0ryw(x)= 0‘24,5(K) (6.1a)
Sww(e'®) =0}, (6.1b)
6.1.2 Kronecker delta function
1 k=0
6(x) = 6.2
(x) { 0 K#£0 (6.2)
6.2 Mathematische niitzliche Formeln
6.2.1 Ungleichung von Schwarz
b 2 b b
J p1(w)pr(w)dw| < J lo1(w)Pdw | - j lpa(w)Pdw (6.3)

a
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