diff --git a/ws2012/Bachelor Thesis/Literatur/00_wo_steht_was?.rtf b/ws2012/Bachelor Thesis/Literatur/00_wo_steht_was?.rtf new file mode 100644 index 00000000..090d392b --- /dev/null +++ b/ws2012/Bachelor Thesis/Literatur/00_wo_steht_was?.rtf @@ -0,0 +1,9 @@ +{\rtf1\ansi\ansicpg1252\cocoartf1187\cocoasubrtf340 +{\fonttbl\f0\fswiss\fcharset0 Helvetica;} +{\colortbl;\red255\green255\blue255;} +\paperw11900\paperh16840\margl1440\margr1440\vieww10800\viewh8400\viewkind0 +\pard\tx566\tx1133\tx1700\tx2267\tx2834\tx3401\tx3968\tx4535\tx5102\tx5669\tx6236\tx6803\pardirnatural + +\f0\b\fs24 \cf0 Wartezeitgleichverteilung: +\b0 \ + -> HBS2001 S 6-35 "Die Fahrzeuge in einer Zufahrt, die in einer Phase zu bedienen sind, werden sich auf die einzelnen Fahrstreifen so verteilen, dass sie etwa gleich lang warten m\'fcssen"} \ No newline at end of file diff --git a/ws2012/Bachelor Thesis/Literatur/01_Koennte man gebrauchen.rtf b/ws2012/Bachelor Thesis/Literatur/01_Koennte man gebrauchen.rtf new file mode 100644 index 00000000..dd5c42d4 --- /dev/null +++ b/ws2012/Bachelor Thesis/Literatur/01_Koennte man gebrauchen.rtf @@ -0,0 +1,25 @@ +{\rtf1\ansi\ansicpg1252\cocoartf1187\cocoasubrtf370 +{\fonttbl\f0\fswiss\fcharset0 Helvetica;} +{\colortbl;\red255\green255\blue255;} +\paperw11900\paperh16840\margl1440\margr1440\vieww13080\viewh8400\viewkind0 +\pard\tx566\tx1133\tx1700\tx2267\tx2834\tx3401\tx3968\tx4535\tx5102\tx5669\tx6236\tx6803\pardirnatural + +\f0\fs24 \cf0 B\'fccher:\ +\pard\pardeftab720 + +\b \cf0 \ + +\b0 GRIN Verlag- Verkehrsmanagement in Deutschland: Band 1:\ + - enth\'e4lt unter anderem Erkl\'e4rung, Aufbau und mehr Infos \'fcber Induktionsschleifen\ +\ +http://books.google.de/books?id=AHYCxoXoxDoC&pg=PA9&lpg=PA9&dq=stra\'dfe+induktionsschleifen+belegungsdauer&source=bl&ots=4v2Ps1ICA4&sig=GOCATDu6DMZUbvwLQq5-N72uyK0&hl=de&sa=X&ei=UnS3UJicMsrEtAbl6IDoCw&ved=0CCYQ6AEwAQ#v=onepage&q=stra\'dfe%20induktionsschleifen%20belegungsdauer&f=false\ +\ +\ +\pard\pardeftab720\sa240 +\cf0 Th. Schwerdtfeger:\uc0\u8232 \'93Makroskopisches Simulationsmodell f\'fcr Schnellstra\'dfennetze mit Ber\'fccksichtigung von Einzelfahrzeugen (DYNEMO)\'93\u8232 \'93Stra\'dfenbau und Stra\'dfenverkehrstechnik\'93, Heft 500 (1985), BMV, Bonn\ +\pard\pardeftab720 +\cf0 \ +\ +\ +\ +} \ No newline at end of file diff --git a/ws2012/Bachelor Thesis/Literatur/02_weitere Literatur.rtf b/ws2012/Bachelor Thesis/Literatur/02_weitere Literatur.rtf new file mode 100644 index 00000000..6d7c84d9 --- /dev/null +++ b/ws2012/Bachelor Thesis/Literatur/02_weitere Literatur.rtf @@ -0,0 +1,26 @@ +{\rtf1\ansi\ansicpg1252\cocoartf1187\cocoasubrtf370 +{\fonttbl\f0\fswiss\fcharset0 Helvetica;} +{\colortbl;\red255\green255\blue255;} +\paperw11900\paperh16840\margl1440\margr1440\vieww10800\viewh8400\viewkind0 +\pard\tx566\tx1133\tx1700\tx2267\tx2834\tx3401\tx3968\tx4535\tx5102\tx5669\tx6236\tx6803\pardirnatural + +\f0\fs24 \cf0 Zellularautomat f\'fcr Verkehrsflussmodelierung:\ +{\field{\*\fldinst{HYPERLINK "http://www.thp.uni-koeln.de/~as/Mypage/verkehr.html"}}{\fldrslt http://www.thp.uni-koeln.de/~as/Mypage/verkehr.html}}\ +\ +\ +Einleitung:\ +Neuzulassungen 2012:\ +- https://www.destatis.de/DE/ZahlenFakten/Wirtschaftsbereiche/TransportVerkehr/UnternehmenInfrastrukturFahrzeugbestand/Tabellen/Neuzulassungen.html\ +\ +Ford Europaufrage 2012:\ +- http://media.ford.com/article_display.cfm?article_id=37386\ +\ +RiSLA:\ +Richtlinien f\'fcr Lichtsignalanlagen 2010:\ +ISBN: 978-3-939715-91-7\ +\ +HBS 2001:\ +Handbuch f\'fcr Bemessung von Stra\'dfenverkehrsanlagen (Fassung 1009)\ +{\field{\*\fldinst{HYPERLINK "http://www.fgsv-verlag.de/catalog/product_info.php?products_id=945"}}{\fldrslt http://www.fgsv-verlag.de/catalog/product_info.php?products_id=945}}\ +\pard\pardeftab720\sl320 +\cf0 ISBN 978-3-941790-35-3} \ No newline at end of file diff --git a/ws2012/Bachelor Thesis/Literatur/08-lsa.pdf b/ws2012/Bachelor Thesis/Literatur/08-lsa.pdf new file mode 100644 index 00000000..2c42dfd1 Binary files /dev/null and b/ws2012/Bachelor Thesis/Literatur/08-lsa.pdf differ diff --git a/ws2012/Bachelor Thesis/Literatur/2008DAElfers.pdf b/ws2012/Bachelor Thesis/Literatur/2008DAElfers.pdf new file mode 100644 index 00000000..c17ae2c1 --- /dev/null +++ b/ws2012/Bachelor Thesis/Literatur/2008DAElfers.pdf @@ -0,0 +1,22692 @@ +%PDF-1.4 +% +5 0 obj +<< /S /GoTo /D (chapter.1) >> +endobj +8 0 obj +(Einleitung) +endobj +9 0 obj +<< /S /GoTo /D (section.1.1) >> +endobj +12 0 obj +(Gliederung) +endobj +13 0 obj +<< /S /GoTo /D (chapter.2) >> +endobj +16 0 obj +(Aktionsvorhersage - Anwendung und Problematik) +endobj +17 0 obj +<< /S /GoTo /D (section.2.1) >> +endobj +20 0 obj +(Probleme der Aktionsvorhersage) +endobj +21 0 obj +<< /S /GoTo /D (subsection.2.1.1) >> +endobj +24 0 obj +(Granularit\344tsproblem) +endobj +25 0 obj +<< /S /GoTo /D (subsection.2.1.2) >> +endobj +28 0 obj +(Ungen\374gender Referenzdatenumfang) +endobj +29 0 obj +<< /S /GoTo /D (subsection.2.1.3) >> +endobj +32 0 obj +(Unsicherheiten der Dom\344ne) +endobj +33 0 obj +<< /S /GoTo /D (subsection.2.1.4) >> +endobj +36 0 obj +(Relevanzproblem) +endobj +37 0 obj +<< /S /GoTo /D (subsection.2.1.5) >> +endobj +40 0 obj +(Problem des begrenzten Trainingsaufwands) +endobj +41 0 obj +<< /S /GoTo /D (subsection.2.1.6) >> +endobj +44 0 obj +(Problem des begrenzten Inferenzaufwands) +endobj +45 0 obj +<< /S /GoTo /D (section.2.2) >> +endobj +48 0 obj +(RoboCup) +endobj +49 0 obj +<< /S /GoTo /D (subsection.2.2.1) >> +endobj +52 0 obj +(Small Size League) +endobj +53 0 obj +<< /S /GoTo /D (subsection.2.2.2) >> +endobj +56 0 obj +(Simulation League) +endobj +57 0 obj +<< /S /GoTo /D (subsection.2.2.3) >> +endobj +60 0 obj +(Middle Size League) +endobj +61 0 obj +<< /S /GoTo /D (subsection.2.2.4) >> +endobj +64 0 obj +(Weitere Ligen) +endobj +65 0 obj +<< /S /GoTo /D (section.2.3) >> +endobj +68 0 obj +(Aktionsvorhersage im RoboCup) +endobj +69 0 obj +<< /S /GoTo /D (section.2.4) >> +endobj +72 0 obj +(Dom\344nenspezifische Anforderungen) +endobj +73 0 obj +<< /S /GoTo /D (section.2.5) >> +endobj +76 0 obj +(Zielsetzung und Anforderungen) +endobj +77 0 obj +<< /S /GoTo /D (chapter.3) >> +endobj +80 0 obj +(Methoden der Aktionsvorhersage) +endobj +81 0 obj +<< /S /GoTo /D (section.3.1) >> +endobj +84 0 obj +(Logischer Ansatz) +endobj +85 0 obj +<< /S /GoTo /D (section.3.2) >> +endobj +88 0 obj +(Symbolischer Ansatz) +endobj +89 0 obj +<< /S /GoTo /D (section.3.3) >> +endobj +92 0 obj +(Fallbasiertes Schlie\337en) +endobj +93 0 obj +<< /S /GoTo /D (section.3.4) >> +endobj +96 0 obj +(Probabilistischer Ansatz) +endobj +97 0 obj +<< /S /GoTo /D (section*.4) >> +endobj +100 0 obj +(Bayessche Netze) +endobj +101 0 obj +<< /S /GoTo /D (subsection.3.4.1) >> +endobj +104 0 obj +(Markov Modell) +endobj +105 0 obj +<< /S /GoTo /D (subsection.3.4.2) >> +endobj +108 0 obj +(IPAM) +endobj +109 0 obj +<< /S /GoTo /D (subsection.3.4.3) >> +endobj +112 0 obj +(LEV- und KO- Algorithmus) +endobj +113 0 obj +<< /S /GoTo /D (subsection.3.4.4) >> +endobj +116 0 obj +(Dynamische Bayessche Netze) +endobj +117 0 obj +<< /S /GoTo /D (subsection.3.4.5) >> +endobj +120 0 obj +(Hidden Markov Modell) +endobj +121 0 obj +<< /S /GoTo /D (subsection.3.4.6) >> +endobj +124 0 obj +(Relationales Markov Modell) +endobj +125 0 obj +<< /S /GoTo /D (subsection.3.4.7) >> +endobj +128 0 obj +(Probabilistisches Relationales Modell) +endobj +129 0 obj +<< /S /GoTo /D (subsection.3.4.8) >> +endobj +132 0 obj +(Dynamisches Probabilistisches Relationales Modell) +endobj +133 0 obj +<< /S /GoTo /D (section.3.5) >> +endobj +136 0 obj +(Diskussion und Zusammenfassung) +endobj +137 0 obj +<< /S /GoTo /D (chapter.4) >> +endobj +140 0 obj +(Probabilistische Aktionsvorhersage) +endobj +141 0 obj +<< /S /GoTo /D (section.4.1) >> +endobj +144 0 obj +(Probabilistische Inferenz) +endobj +145 0 obj +<< /S /GoTo /D (subsection.4.1.1) >> +endobj +148 0 obj +(Inferenz im Hidden Markov Modell) +endobj +149 0 obj +<< /S /GoTo /D (subsection.4.1.2) >> +endobj +152 0 obj +(Inferenz im relationalen Markov Modell) +endobj +153 0 obj +<< /S /GoTo /D (section.4.2) >> +endobj +156 0 obj +(Relationales Hidden Markov Modell) +endobj +157 0 obj +<< /S /GoTo /D (subsection.4.2.1) >> +endobj +160 0 obj +(Inferenz im relationalen Hidden Markov Modell) +endobj +161 0 obj +<< /S /GoTo /D (subsection.4.2.2) >> +endobj +164 0 obj +(Komplexit\344t und Optimierung des relationalen Hidden Markov Modells) +endobj +165 0 obj +<< /S /GoTo /D (subsection.4.2.3) >> +endobj +168 0 obj +(Bestimmung der Modellparameter des relationalen Hidden Markov Modells) +endobj +169 0 obj +<< /S /GoTo /D (section.4.3) >> +endobj +172 0 obj +(Diskretisierung der Zust\344nde) +endobj +173 0 obj +<< /S /GoTo /D (section.4.4) >> +endobj +176 0 obj +(Diskretisierung der Zeit) +endobj +177 0 obj +<< /S /GoTo /D (section.4.5) >> +endobj +180 0 obj +(Anwendung in der RoboCup Dom\344ne) +endobj +181 0 obj +<< /S /GoTo /D (section.4.6) >> +endobj +184 0 obj +(Konkretisierung der relationalen Inferenz) +endobj +185 0 obj +<< /S /GoTo /D (section.4.7) >> +endobj +188 0 obj +(Diskussion und Zusammenfassung) +endobj +189 0 obj +<< /S /GoTo /D (subsection.4.7.1) >> +endobj +192 0 obj +(Das relationale Hidden Markov Modell) +endobj +193 0 obj +<< /S /GoTo /D (subsection.4.7.2) >> +endobj +196 0 obj +(Die Anwendung im RoboCup) +endobj +197 0 obj +<< /S /GoTo /D (chapter.5) >> +endobj +200 0 obj +(Implementierung) +endobj +201 0 obj +<< /S /GoTo /D (section.5.1) >> +endobj +204 0 obj +(Aktionsvorhersage) +endobj +205 0 obj +<< /S /GoTo /D (subsection.5.1.1) >> +endobj +208 0 obj +(Strukturbeschreibung des relationalen Hidden Markov Modells) +endobj +209 0 obj +<< /S /GoTo /D (subsection.5.1.2) >> +endobj +212 0 obj +(Lernen der Modellparameter) +endobj +213 0 obj +<< /S /GoTo /D (subsection.5.1.3) >> +endobj +216 0 obj +(Inferenz) +endobj +217 0 obj +<< /S /GoTo /D (subsection.5.1.4) >> +endobj +220 0 obj +(Benutzerschnittstelle) +endobj +221 0 obj +<< /S /GoTo /D (section.5.2) >> +endobj +224 0 obj +(Aktionserkennung, Konvertierung, qualitative Weltbeschreibung und Validierung) +endobj +225 0 obj +<< /S /GoTo /D (chapter.6) >> +endobj +228 0 obj +(Evaluation) +endobj +229 0 obj +<< /S /GoTo /D (section.6.1) >> +endobj +232 0 obj +(Inferenzg\374te) +endobj +233 0 obj +<< /S /GoTo /D (subsection.6.1.1) >> +endobj +236 0 obj +(Das Relevanzproblem - Das Problem der mehrdeutigen Evidenz) +endobj +237 0 obj +<< /S /GoTo /D (subsection.6.1.2) >> +endobj +240 0 obj +(Das Problem der \374berstarken Generalisierung) +endobj +241 0 obj +<< /S /GoTo /D (subsection.6.1.3) >> +endobj +244 0 obj +(Validierung durch den Hypothesenrang) +endobj +245 0 obj +<< /S /GoTo /D (section*.5) >> +endobj +248 0 obj +(Testszenario) +endobj +249 0 obj +<< /S /GoTo /D (section*.6) >> +endobj +252 0 obj +(Ergebnis) +endobj +253 0 obj +<< /S /GoTo /D (section*.7) >> +endobj +256 0 obj +(Diskussion) +endobj +257 0 obj +<< /S /GoTo /D (subsection.6.1.4) >> +endobj +260 0 obj +(Validierung durch Wahrheitsmatritzen) +endobj +261 0 obj +<< /S /GoTo /D (section*.8) >> +endobj +264 0 obj +(Testszenario) +endobj +265 0 obj +<< /S /GoTo /D (section*.9) >> +endobj +268 0 obj +(Ergebnis) +endobj +269 0 obj +<< /S /GoTo /D (section*.10) >> +endobj +272 0 obj +(Diskussion) +endobj +273 0 obj +<< /S /GoTo /D (subsection.6.1.5) >> +endobj +276 0 obj +(Validierung \374ber die Granularit\344tsebenen) +endobj +277 0 obj +<< /S /GoTo /D (section*.11) >> +endobj +280 0 obj +(Testszenario) +endobj +281 0 obj +<< /S /GoTo /D (section*.12) >> +endobj +284 0 obj +(Ergebnis) +endobj +285 0 obj +<< /S /GoTo /D (section*.13) >> +endobj +288 0 obj +(Diskussion) +endobj +289 0 obj +<< /S /GoTo /D (section.6.2) >> +endobj +292 0 obj +(Robustheit) +endobj +293 0 obj +<< /S /GoTo /D (subsection.6.2.1) >> +endobj +296 0 obj +(Testszenario) +endobj +297 0 obj +<< /S /GoTo /D (subsection.6.2.2) >> +endobj +300 0 obj +(Ergebnis) +endobj +301 0 obj +<< /S /GoTo /D (subsection.6.2.3) >> +endobj +304 0 obj +(Diskussion) +endobj +305 0 obj +<< /S /GoTo /D (section.6.3) >> +endobj +308 0 obj +(Performanz) +endobj +309 0 obj +<< /S /GoTo /D (subsection.6.3.1) >> +endobj +312 0 obj +(Inferenzaufwand) +endobj +313 0 obj +<< /S /GoTo /D (section*.14) >> +endobj +316 0 obj +(Testszenario) +endobj +317 0 obj +<< /S /GoTo /D (section*.15) >> +endobj +320 0 obj +(Ergebnis) +endobj +321 0 obj +<< /S /GoTo /D (section*.16) >> +endobj +324 0 obj +(Diskussion) +endobj +325 0 obj +<< /S /GoTo /D (subsection.6.3.2) >> +endobj +328 0 obj +(Aufwand der Vorberechnungen) +endobj +329 0 obj +<< /S /GoTo /D (section*.17) >> +endobj +332 0 obj +(Testszenario) +endobj +333 0 obj +<< /S /GoTo /D (section*.18) >> +endobj +336 0 obj +(Ergebnis) +endobj +337 0 obj +<< /S /GoTo /D (section*.19) >> +endobj +340 0 obj +(Diskussion) +endobj +341 0 obj +<< /S /GoTo /D (section.6.4) >> +endobj +344 0 obj +(Zusammenfassende Bewertung) +endobj +345 0 obj +<< /S /GoTo /D (chapter.7) >> +endobj +348 0 obj +(Diskussion und Ausblick) +endobj +349 0 obj +<< /S /GoTo /D (section.7.1) >> +endobj +352 0 obj +(Zielsetzung) +endobj +353 0 obj +<< /S /GoTo /D (section.7.2) >> +endobj +356 0 obj +(Zusammenfassung) +endobj +357 0 obj +<< /S /GoTo /D (section.7.3) >> +endobj +360 0 obj +(Ausblick) +endobj +361 0 obj +<< /S /GoTo /D (chapter*.20) >> +endobj +364 0 obj +(Literaturverzeichnis) +endobj +365 0 obj +<< /S /GoTo /D (appendix.A) >> +endobj +368 0 obj +(Modellstruktur) +endobj +369 0 obj +<< /S /GoTo /D (section.A.1) >> +endobj +372 0 obj +(Richtungsabstraktion) +endobj +373 0 obj +<< /S /GoTo /D (section.A.2) >> +endobj +376 0 obj +(Distanzabstraktion) +endobj +377 0 obj +<< /S /GoTo /D (section.A.3) >> +endobj +380 0 obj +(Strukturbeschreibende Dateien) +endobj +381 0 obj +<< /S /GoTo /D (subsection.A.3.1) >> +endobj +384 0 obj +(Attribute) +endobj +385 0 obj +<< /S /GoTo /D (subsection.A.3.2) >> +endobj +388 0 obj +(Pr\344dikate \(Sichtbar\)) +endobj +389 0 obj +<< /S /GoTo /D (subsection.A.3.3) >> +endobj +392 0 obj +(Pr\344dikate \(Versteckt\)) +endobj +393 0 obj +<< /S /GoTo /D (appendix.B) >> +endobj +396 0 obj +(Evaluation) +endobj +397 0 obj +<< /S /GoTo /D (section.B.1) >> +endobj +400 0 obj +(Tests) +endobj +401 0 obj +<< /S /GoTo /D (section.B.2) >> +endobj +404 0 obj +(Resultate) +endobj +405 0 obj +<< /S /GoTo /D (subsection.B.2.1) >> +endobj +408 0 obj +(Inferenzg\374te - Wahrheitsmatritzen) +endobj +409 0 obj +<< /S /GoTo /D (subsection.B.2.2) >> +endobj +412 0 obj +(Inferenzg\374te - Diagramme) +endobj +413 0 obj +<< /S /GoTo /D (subsection.B.2.3) >> +endobj +416 0 obj +(Performanz - Diagramme) +endobj +417 0 obj +<< /S /GoTo /D (appendix.C) >> +endobj +420 0 obj +(CD Anhang) +endobj +421 0 obj +<< /S /GoTo /D [422 0 R /Fit ] >> +endobj +425 0 obj << +/Length 535 +/Filter /FlateDecode +>> +stream +xڭMo0:[nҮ0[szPc%Dv:eKѡMˇ Z#&/7AQ"0 +)C -d\;8\Hwv]S4o_s&@ɠ\c%1b7 M5 +Pv@Ua-KB-VJ2HcТDe&IjG_n"nm|hh\7 pixX|8>@ՅG Q9-2:jkU}PN2KzQ|2 lƅή]/a0l5Ʈ|Yfj2fzzm*pPSAcymјwt| T6dVqacrѹOX~K"~Ѓ_T+Ll`9MWSL.[LhF!ſ%N4LaD,CG[hN@|zێpÝЮkI=~$r]b6f=-7ޝ"yz3 +endstream +endobj +422 0 obj << +/Type /Page +/Contents 425 0 R +/Resources 424 0 R +/MediaBox [0 0 595.276 841.89] +/Parent 431 0 R +>> endobj +423 0 obj << +/Type /XObject +/Subtype /Image +/Width 440 +/Height 77 +/BitsPerComponent 8 +/ColorSpace /DeviceRGB +/Length 25491 +/Filter/FlateDecode +/DecodeParms<> +>> +stream +x}wUյ{rf&EB X(*`4IԨM4 $'j3KlI|/F&( a2 sO{X_~y3ܹ}vYW?ls+CNHq F?۵x_`q`"oHALEL ]zVR%`0@ ]Ljf@rAocǗQCO̦gQ21Q~g |!"` \wode0c7Y$+WL o0{~ΛK8"jX/MGQb::HiM@1M-aV + + Acb-۸ 5tD0#]X!Q߆Ǥb`p.vP @1B&}c'>(Rk(`}X>/ _"P>C% }+> 0 tII##L>PG4JMᘁi~-32`&a A,Ej enx`0Q]4 @2dXx*(`Rc§ 2@ PJP0)LvR'uR"5(&̶(s-7# `gĀG($T "5pL2 b TQ|Ό$ 1<@! A{2 a7LM67(Y(Qj\8#\0Q1ι` !Bp9 ~;: +Ɉ+,x;c ? +6 dR