
Certificate Path

Processing (RFC 5280)

6.1.2 Initialization

i=1

Input

6.1.3 Basic

Certificate processing

i=n

6.1.5 Wrap Up

Output

6.1.4 Prepare for

Certificate i+1

i=i+1

VARIABLEN:

cp: certificate path

n: length of cp

i: iteration counter

C: current certificate

uips: user-initial-policy-set

ipolmap_inh: initial-policy-mapping-inhibit

iexpol: initial-explicit-policy

iapol_inh: initial-any-policy-inhibit

iper_st: initial-permitted-subtrees

iexc_st: initial excluded subtrees

v_pol_t: valid_policy_tree

p_st: permitted_subtrees

ex_st: excluded_subtrees

ex_pol: explicit_policy

in_ap: inhibit_any-policy

pol_map: policy_mapping

w_pk: working_public_key

w_pk_a: w_pk_algorithm

w_pk_p: w_pk_parameters

w_iss: working_issuer_name

m_path: max_path_length

v_pol_n_s: valid_policy_node_set

INPUT:

- Certificate Path of length n (cp, n)

- current date/time (date)

- user-initial-policy-set (uips)

- trust anchor information (trust)

- initial-policy-mapping-inhibit (ipolmap_inh)

- initial-explicit-policy (iexpol)

- initial-any-policy-inhibit (iapol_inh)

- initial-permitted-subtrees (iper_st)

- initial excluded subtrees (iexc_st)

a) v_pol_t = {ANY, {}, {any}}

b) p_st = iper_st

c) ex_st = iexc_st

ex_pol=n+1

in_ap=n+1

ex_pol=0

in_ap=0

pol_map=n+1 pol_map=0

d) iexpol

e) iapol_inh

f) ipolmap_inh

g-j) set w_pk_a, w_pk, w_pk_p,

w_iss according to trust

k) m_path=n

C = first certificate in path

FALSE TRUE

FALSE TRUE

TRUEFALSE

no

yes

6.1.3 Basic Certificate Processing

ok?

b,c) verify name constraints

ok?

d) process policies e) v_pol_t=NULL

policy extension
in C?yes

f) verify: (ex_pol >0) || (v_pol_t != null)

ok? STOP

yes

yes

no

no

no

no

a) (1) verify: C is signed with
w_pk, w_pk_a, w_pk_p

ok?

a) (2) verify: C.notBefore <= date <= C.notAfter

ok?

a) (3) verify: C is revoked at date

ok?

a) (4) verify: C.issuer == w_iss

yes

yes

yes

no

no

yes

P_OID = first policy in C and
qualifier_set = qualifier set for policy P_OID

3) Delete recursively all nodes of depth <= (i-1)
that have no child nodes

2) FOR EACH node N in
v_pol_t of depth (i-1):
FOR EACH Policy Q_OID in
expected_policies of N
where Q_OID does not
appear as a child of N:
append Node
N'={Q_OID, qualifier_set,{Q_OID}}

verify: (in_ap >0) ||
(i<n && C is self-issued)

1) (i) For all nodes N
in v_pol_t of depth (i-1)
with P_OID in expected_
policies of N: append
Node N' =
{P_OID, qualifier_set, {P_OID}}

6.1.3 d) process policies

P_OID
== ANY

no

node appended
in last step?

1) (ii) For all nodes N
in v_pol_t of depth (i-1)
with ANY in
expected_policies of N:
append Node N' =
{P_OID, qualifier_set, {P_OID}}

ok?

yes

no

noyes

yes

all policies in
C processed?

P_OID=
next policy and
qualifier_set=

next
qualifier set

no

yes

no

6.1.4 Prepare for Certificate i+1

VERIFY: ANY as issuerDomainPolicy
or subjectDomainPolicy

in Policy Mapping Extension?

VERIFY: C contains Policy
Mapping Extension?

ID_P=first issuer
domain policy

pol_map>0

no

no

yes

yes

spol=set of policies, ID_P
is mapped to

yes

FOR EACH node N in
v_pol_t of depth i
where ID_P ==
N.valid_policy, SET
N.expected_policies = spol

IF no such N has
N.valid_policy==ID_P
AND there is a node N'
of depth i with
N'.valid_policy==ANY
THEN append a
node Q to the
father of N' with
Q= {ID_P, N'.qualifier_set, spol}

delete each node
N of depth
i with ID_P ==
N.valid_policy

no

recursively delete
all nodes of
depth i-1 that have
no child node

all issuer_domain
policies processed?

ID_P = next
issuer domain
policy

no

yes

w_iss = C.subjectName
w_pk = C.subjectPublicKey
w_pk_a = C.subjectPublicKeyAlg
w_pk_p = C.subjectPublicKeyParams

process name constraints

C self-issued?

ex_pol = max (0,ex_pol-1)
pol_map = max (0,pol_map-1)
in_ap = max (0,in_ap-1)

IF requireExplictPolicy is set in C THEN
ex_pol = min(ex_pol,C.requireExplicitPolicy)

IF inhibitPolicyMapping is set in C THEN
pol_map = min(pol_map,C.inhibitPolicyMapping)

IF inhibitAnyPolicy is set in C THEN
in_ap = min(in_ap,C.inhibitAnyPolicy)

C is CA-Cert?

yes

no

yes

no

STOP

C self-issued?

m_path>0?

yes

no

IF pathLengthConstraint is set in C THEN
m_path = min(m_path,C.pathLengthConstraint)

IF keyUsage extension is set in C:
VERIFY: keyCertSign bit is set

OK?

recognize and process
other extensions of C.

OK? STOP

yes

yes

no

no

yes

no

m_path = m_path-1

C = next certificate in path

ex_pol = max (0,ex_pol-1)

6.1.5 Wrap Up

IF policy constraints extension is

included in C AND

requireExplicitPolicy is present and

has a value of 0 THEN ex_pol = 0

w_pk = C.subjectPublicKey

w_pk_a = C.subjectPublicKeyAlg

w_pk_p = C.SubjectPublicKeyParam

recognize and process

other extensions of C.

uips == ANY?

v_pol_t == NULL?

VERIFY: ex_pol >0 ||

v_pol_t != NULL

recursively delete all nodes of

depth i-1 or less that have no child node

IF v_pol_t includes a node N of depth n

with N.valid_policy==ANY THEN

FOR EACH P_OID in uips that is not the

valid_policy of a node in the

valid_policy_node_set, append

a node N’ to the father-node of N

with N’={P_OID,N.qualifier_set,{P_OID}}

and delete node N.

FOR EACH node N in

valid_policy_node_set:

IF N.valid_policy is NOT in uips

and N.valid_policy != ANY

THEN delete the node and all

its children

valid_policy_node_set =

set of nodes whose parent

nodes have valid_policy==ANY

no yes

yes

OK? STOP
OUTPUT:

v_pol_t, w_pk,

w_pk_a, w_pk_p

noyes

no

	CertPathValidationRFC5280
	CertPathValidationRFC5280_Main
	CertPathValidationRFC5280_Main.vsd
	Zeichenblatt-1

	CertPathValidationRFC5280_BasicCertProc
	CertPathValidationRFC5280_NextCert2

	CertPathValidationRFC5280_WrapUp
	CertPathValidationRFC5280_WrapUp.vsd
	Zeichenblatt-1

