Certificate Path
Processing (RFC 5280)

6.1.2 Initialization

v

i=1

Y

6.1.3 Basic
Certificate processing

-— =i+l

i

no 6.1.4 Prepare for
Certificate i+1

yes

6.1.5 Wrap Up

VARIABLEN:

e
|
|

|
| cp: certificate path

: n: length of cp

| - iteration counter

I C: current certificate

: uips: user-initial-policy-set

| ipolmap_inh: initial-policy-mapping-inhibit
l'iexpol: initial-explicit-policy

| iapol_inh: initial-any-policy-inhibit
I iper_st: initial-permitted-subtrees
' iexc_st: initial excluded subtrees
| v_pol_t: valid_policy_tree

I p_st: permitted_subtrees

| ex_st: excluded_subtrees

I ex_pol: explicit_policy

: in_ap: inhibit_any-policy

| pol_map: policy_mapping
I'w_pk: working_public_key

: w_pk_a: w_pk_algorithm

I w_pk_p: w_pk_parameters
I'w_iss: working_issuer_name

| m_path: max_path_length
:_v_pol_n_s: valid_policy_node_set

INPUT:

- Certificate Path of length n (cp, n)

- current date/time (date)

- user-initial-policy-set (uips)

- trust anchor information (trust)

- initial-policy-mapping-inhibit (ipolmap_inh)
- initial-explicit-policy (iexpol)

- initial-any-policy-inhibit (iapol_inh)

- initial-permitted-subtrees (iper_st)

- initial excluded subtrees (iexc_st)

Y
a) v_pol_t = {ANY, {}, {any}}

b) p_st =iper_st

c) ex_st =iexc_st

e) iapol_inh

in_ap=n+1 in_ap=0

FALSE 7 polmap. mh TRUE

pol_map=n+1 pol_map=0

v

g-j) setw_pk_a, w_pk, w_pk_p,
w_iss according to trust

'

k) m_path=n

'

C = first certificate in path

i

6.1.3 Basic Certificate Processing 6.1.3 d) process policies

Y v

a) (1) verify: Cis signed with P_OID = first policy in C and
w_pk, w_pk_a, w_pk_p qualifier_set = qualifier set for policy P_OID
no
ok?
yes
a) (2) verify: C.notBefore <= date <= C.notAfter y
1) (i) For all nodes N v
no in v_pol_t of depth (i-1) o
ok? with P_OID in expected_ _ver|fy. (|q_ap >.O) |l
- . (i<n && C is self-issued)
yes policies of N: append
Node N' =
a) (3) verify: Cis revoked at date {P_OID, qualifier_set, {P_OID}}
es
ok? Y
no yes no) 4
node appended /ok?
a) (4) verify: C.issuer == w_iss in last step? .
yes
no .
ok? 2) FOR EACH node N in
yes v_pol_t of depth (i-1):
1) (ii) For all nodes N FOR EACH Policy Q_OID in
b,c) verify name constraints in v_pol_t of depth (i-1) expected_policies of N
with ANY in where Q_OID does not
expected_policies of N: appear as a child of N:
append Node N' = a?pend Node
{P_OID, qualifier_set, {P_OID}} N'={Q_OID, qualifier_set,{Q_OID}}

policy extension

in C?
yes v no P_OID=
— C next policy and
d) process policies e) v_pol_t=NULL g”pfgllglsiseg; qualifier_set=
) next
qualifier set
A4

yes

f) verify: (ex_pol >0) || (v_pol_t '= null)

3) Delete recursively all nodes of depth <= (i-1)
Y that have no child nodes

<okl > sTOP v

6.1.4 Prepare for Certificate i+1

VERIFY: C contains Policy
Mapping Extension?

yes

no

VERIFY: ANY as issuerDomainPolicy
or subjectbomainPolicy
in Policy Mapping Extension?

es
STOP |« Y

no

ID_P=first issuer
domain policy

spol=set of policies, ID_P
is mapped to

pol_map>0

no

v

w_iss = C.subjectName

w_pk = C.subjectPublickey

w_pk_a = C.subjectPublickeyAlg
w_pk_p = C.subjectPublicKeyParams

v

process hame constraints

yes
C self-issued?

ex_pol = max (0,ex_pol-1)
pol_map = max (0,pol_map-1)
in_ap = max (0,in_ap-1)

|

v

IF requireExplictPolicy is set in C THEN
ex_pol = min(ex_pol,C.requireExplicitPolicy)

v

IF inhibitPolicyMapping is set in C THEN
pol_map = min(pol_map,C.inhibitPolicyMapping)

N.expected_policies = spol

v

\4 V
FOR EACH node N in delete each node
v_pol_t of depth i N of depth
where ID_P == iwithID_P ==
N.valid_policy, SET N.valid_policy

v

IF no such N has
N.valid_policy==ID_P

AND there is a node N'

of depth i with
N'.valid_policy==ANY

THEN append a

node Q to the

father of N' with

Q= {ID_P, N'.qualifier_set, spol}

recursively delete
all nodes of

depth i-1 that have
no child node

ID_P = next
— issuer domain
policy

all issuer_domain
policies processed?

A4

IF inhibitAnyPolicy is set in C THEN
in_ap = min(in_ap,C.inhibitAnyPolicy)

m_path = m_path-1

v

IF pathLengthConstraint is set in C THEN
m_path = min(m_path,C.pathLengthConstraint)

A4

IF keyUsage extension is set in C:
VERIFY: keyCertSign bit is set

no

OK?

yes

recognize and process
other extensions of C.

no
OK?

yes

C = next certificate in path

v

STOP

6.1.5 Wrap Up

l

ex_pol = max (0,ex_pol-1)

'

IF policy constraints extension is
included in C AND
requireExplicitPolicy is present and
has a value of 0 THEN ex_pol =0

'

w_pk = C.subjectPublicKey
w_pk_a = C.subjectPublicKkeyAlg
w_pk_p = C.SubjectPublicKkeyParam

'

recognize and process
other extensions of C.

yes

uips == ANY?

valid_policy node_set =
set of nodes whose parent
nodes have valid_policy==ANY

!

FOR EACH node N in
valid_policy_node_set:

IF N.valid_policy is NOT in uips
and N.valid_policy != ANY
THEN delete the node and all
its children

IF v_pol_t includes a node N of depth n
with N.valid_policy==ANY THEN

FOR EACH P_OID in uips that is not the
valid_policy of a node in the
valid_policy_node_set, append

a node N’ to the father-node of N

with N'={P_OID,N.qualifier_set,{P_OID}}
and delete node N.

l

recursively delete all nodes of
depth i-1 or less that have no child node

VERIFY: ex_pol >0 ||
v_pol_t!= NULL

OUTPUT:
v_pol_t, w_pk,
w_pk_a,w_pk p

yes no

STOP

	CertPathValidationRFC5280
	CertPathValidationRFC5280_Main
	CertPathValidationRFC5280_Main.vsd
	Zeichenblatt-1

	CertPathValidationRFC5280_BasicCertProc
	CertPathValidationRFC5280_NextCert2

	CertPathValidationRFC5280_WrapUp
	CertPathValidationRFC5280_WrapUp.vsd
	Zeichenblatt-1

