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Abstract

In manytree-structued parallel computationsthe size
and structue of a treethat representsa parallel computa-
tion is unpredictableat compile-timethetreeevolvesgrad-
ually during the course of the computation. Whensud a
computatioris performedon a static network,the dynamic
tree embeddingproblemis to distribute the tree nodesto
the processos of the networksud that all the processos
receiveroughlythe sameamountof load andthatcommuni-
catingnodesare assignedo neighboringprocessas. Fur-
thermok, whena new treenodeis geneated,it shouldbe
immediatelyassignedo a processorfor executionwithout
anyinformationonthefurtherevolvingofthetree;andload
distribution is performedby all processas in a totally dis-
tributedfashion.

We studythe problemof embeddinglynamicallyevolv-
ing treesin butterflies. We evaluate the performanceof
a random-walk-basedlgorithm. Our performancedata
demonstate that butterflieshavecompaable performance
with hypecubedn supportingree-structuedparallel com-
putations.

1 Intr oduction
1.1 Problem Definition

High performancearallelcomputingrequiresdistribut-
ing processe a parallelcomputationover processorsn
a parallel computersuch that all the processorgeceve
roughly the sameamountof load and that communicat-
ing processesireassignedo neighboringprocessorsLet
G = (V,€) be ataskinteractiongraphwhich represents
a parallel computationwhereV = {vy,vs,...,upr} iS @
setof M processegi.e., tasks),and £ is a setof edges
that standfor intertaskcommunicationsLet A' = (P,C)
be a graphwhich represents static network, where? =
{Py,P1,P,,...,Py_1} is asetof N processorsandC is
a setof interprocessoconnections.The load distribution
problemis to embeda taskinteractiongraphinto a static
network. An embeddings actually a mappingfunction

¢ : V — P from the setof processeso the set of pro-
cessorssuchthat ¢(v;) is the processoon which process
v; IS executed.

The embeddingproblemcanbe classifiednto two cate-
gories,namely staticembeddinganddynamicembedding.
Staticembeddings doneat compile-time,wherethe com-
pletetaskinteractiongraphg is given. Dynamicembedding
is performedatrun-time, wherethetaskinteractiongraphg
is notknown in advance andit evolvesandexpandsgradu-
ally duringthe courseof a parallelcomputation.It is more
difficult to achieve good performancen dynamicembed-
ding thanin staticembedding.While staticembeddingof
varioustask graphsinto variousnetworks hasbeenexten-
sively studied(see[33] andthe referencesherein),a little
work hasbeendonefor dynamicembedding.

Many parallel computationsare tree-structured(i.e.,
where@ is a tree). Examplesare divide-and-conqueal-
gorithms, backtracksearching branch-and-boundompu-
tations, game-treesvaluation, functional and logical pro-
gramming, and various numeric computations. In these
tree-structuregarallelcomputationsthe sizeandstructure
of a tree that represents parallel computationis unpre-
dictableat compile-time.Thetreeevolvesgraduallyduring
the courseof the computation. Initially, thereis one pro-
cess,i.e., theroot of a tree. This processcould resideon
ary processofcalledtheinitial or origin processor)As the
computationproceedsexisting processesi.e., treenodes)
createnew processesandthesechild processeshouldbe
assignedmmediatelyto someprocessor$or executionac-
cordingto a mappingfunction ¢.

Theabove applicationsnotivatethe problemof dynamic
tree embedding(or, dynamic load distribution for tree-
structuredcomputation®n staticnetworks). In sucha dy-
namic setting, the mappingfunction ¢ is not available in
advanceandmustbe calculatedat run-time. It is desirable
for atreenodeto be mappedo a processowithoutary in-
formationon the furtherevolving of thetree. Whena new
treenodeis generatedt shouldbeimmediatelyassignedo
aprocessofor execution. Whenatreenodew;, executing
onprocessoP’;, spavnsanew nodev;,, P;, shouldselecia
processo;, = ¢(v;,) andsendv;, to P;, for processing.
Sucha decisionis madelocally on P;, without consulting
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to otherprocessors.Therefore the load distribution func-
tion ¢ is computedby all processor# atotally distributed
fashion.lt is requiredthatthemappingfunction¢ is easyto
calculatefor fastloaddistribution andlow systenmcost.It is
alsorequiredthatthereis nocentralizeccontrolmechanism,
no centralizedaskdispatcherno globalloadstatusrecord,
no exchangeof currentload statusinformationamongthe
processorsandno processnigration(i.e., onceatreenode
v; is assignedo processon(v;), v; cannotmove to another
processor).

Therearetwo importantperformanceconsiderationsn
all embeddingroblems.Thefirst oneis themaximurmload
perprocessarTheload L; onaprocessoP; is thenumber
of treenodesassignedo P;, i.e.,L; = |{v; | ¢(vi) = P;}|.
Clearly, an embeddings should minimize the maximum
load Ly ax = maxg<j<n(L;), suchthatall the proces-
sorsperformapproximatelyequalamountof computation.
In otherwords,the M treenodesshouldbedistributedover
the N processorss evenly as possible,suchthat all the
computingpower are efficiently utilized. Anotherimpor-
tant consideratioris the dilation A of an embeddingthat
is, the maximumdistancebetweena pair of communicat-
ing processesn the network. Formally, we have A =
max(y,, ,viz)ég(diSt(¢(Ui1 ), 3(viy))), WherediSt(Ph > Pj2)
is the distancebetweentwo processorsn the network .
The dilation affects communicationoverheadand should
alsobe minimized. Smalldilation provideshigh communi-
cationlocality. Hence processethatneedto communicate
to eachotherduringthe computatiorshouldbe assignedo
processorthatarecloseto eachother

Basedon the factthattherearea wide spectrunof tree-
structuredapplicationsin computerscienceand engineer
ing, andthe wide availability of distributed memorymul-
ticomputerswith staticinterconnectiometworks, dynamic
treeembeddinglgorithmswith high performanceredefi-
nitely very important.

1.2 RandomizedTreeEmbedding

A numberof leading scientistspioneeredthe research
in this field. Bhattand Cai [2] werethe first to raisethe
problemof dynamictreeembeddingn staticnetworks (hy-
percubedn [2]). They proposedindanalyzedarandomized
treeembeddingstratgy for maintainingdynamicallyevolv-
ing binary treeson hypercubenetworks. The algorithmis
random-valk-basedndalsousedocal rearrangementor
arbitrarybinarytrees their algorithmachiezesoptimalload
O(M/N) anddilation O(log log N') with high probability
[31.

Sincethen,dynamictreegrowing algorithmshave been
investigatedby several researcherin recentyears. Ran-
domizationis justified by observingthat minimization of
the maximum load and dilation are conflicting require-
ments.In particular Leightonetal. shavedthatary deter
ministic algorithmwhich dynamicallyembedsan M -node
binarytreein an N-nodehypercubesuchthatthemaximum
loadis O(M /N), musthave notonly maximumbut alsoav-
eragedilation Q(1/log N) [13]. Thereforeadynamictree

embeddingalgorithmthat simultaneouslyminimizesmax-
imum load and dilation (within constantfactors)mustbe
randomized.

For embeddingn hypercubesand butterflies, Leighton
etal. alsoreducedthe dilationto O(1) and achieved op-
timal load anddilation simultaneouslyvithin constanfac-
tors. Aiello andLeighton[1] consideredhe congestiorof
embeddingsi.e., the maximumnumberof tree edgesthat
areroutedthroughary singlecommunicatiorink of a hy-
percubeBhattetal. [4] studiedthetrade-ofs betweerload
imbalanceandcongestion.

Dynamicallyevolving treeshave alsobeentreatedfrom
other points of view. Karp andZhangpresentedandom-
ized parallel backtrackand branch-and-boundlgorithms
on completelyconnectedhetworksthatrunin optimaltime
with high probability[12]. Ranadestrengthenethe result
by consideringbutterflieswhich are boundeddegree net-
works[36]. Insteadof embeddingreeswith smalldilation
and even load distribution, the aim of their researchs to
minimize the parallelexecutiontime. Thesepioneerstud-
ies have beenfollowed by a numberof otherresearchers
[6, 8, 10, 11, 34].

1.3 Our Approach

The randomizedree embeddingalgorithms,which we
have beenstudyingand will continueto investigate,are
random-valk-based Essentially suchan algorithmallows
anewly createdprocesgo take arandomwalk of shortdis-
tanceto reacha processonearby Formally, whena new
treenodew; is createdon processor;,, the nodev; is al-
lowedto take a randomwalk of A steps:P;;, — P;, —
Pj, —» --- — Pj,. Letdeg(/, j) denotethedegreeof pro-
cessorP; in V. Then,forall1 < k < A, P;, is selected
amongall thedeg (N, j,—1) neighborof P;, . with equal
probability. Whenproces; reachesP;,, , it is assignedo
P;, andexecutedon P;,, i.e., ¢(v;) = P;,. We call this
algorithmthe CanonicalAlgorithm Therearemary varia-
tionsof the CanonicalAlgorithm whichareworth of further
investigation(seege.g.,[5, 29)).

It is clearthat by usingthe above randomizedree em-
beddingalgorithm, the distancebetweeneachpair of par
ent/childis at most A. Hence,the algorithm generates
dilation-A embedding. The value A can be chosenas a
small constant.(We do not allow procesamigration,since
this may increasdlilation arbitrarily.) The remainingcon-
cernis to analyzethe maximumload L4 x. The perfor
manceof arandomizedreeembeddinganbe measureas
follows. Let M denotethetreesize,and N the numberof
processorin anetwork . Assumehatby usingatreeem-
beddingalgorithm, the expectednumberof tree nodesas-
signedto processo; is L;. We areinterestedn themaxi-
mumexpectedoad Ly; 4 x = max(Lg, Ly, ...,Ly_1). Let
Lopr bethe bestpossiblemaximumexpectedoad on all
theprocessorg,e., Lopr = M /N. Theperformanceatio
of arandomizedreeembeddings @ = Lyrax/Lopr. If
we considerthe performanceatio o, asa functionof tree
heighth, thena, = limy_, ay is calledthe asymptotic
performanceatio.
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Theperformanceatio « is determinedy the numberof
processorsV, the topology of the network A/, the length
of arandomwalk A, the numberof treenodesM, andthe
model of randomtrees,and even the choiceof the initial
processar The performanceatio « is expectedto be as
closeto one as possible. It is shavn in [16] thatthe ex-
pectedexecutiontime of a parallelcomputationsupported
by arandomizedreeembeddinglgorithmis no morethan
a + 1 timesthe optimalexecutiontime.

We have discorered a methodto analyzethe perfor
manceof random-valk-basedandomizedree embedding
algorithmsin staticinterconnectiometworks. Our method
employs recurrencerelationsand linear systemsof equa-
tionsthatcharacterizéhe expectedoad on eachprocessor
By usingtheserecurrenceelationsand linear systemsof
equationswe can easily obtain numericaldatawhich are
quiteillustrative andcorvincing,make generabbsenations
from thesedata,and prove theseobsenationsanalytically
Themethodwasinitially developedor hypercubeg§l6, 17].
However, it turnsout thatthe analysismethodologycanbe
extended,generalizedand appliedto the analysisof dy-
namictreeembeddingn arbitrarynetworks. Previousanal-
ysis mentionedabove areall network-dependentlt is still
likely that ad hoc network-dependenainalysistechniques
will be developedto handledifferentnetwork topologies.
However, our methodis versatile, network-independent,
andreadilyto be appliedto variousnetworks. In this sense,
our novel methodologyis substantiallydifferentfrom pre-
viousapproacheandis worth of moreattentionandfurther
investigation.The presenipapermakesnew effort towards
this direction. In particular we apply the CanonicalAlgo-
rithm to butterfly networks.

2 TreeModels

To evaluatethe performancef randomizedreeembed-
ding,weneedmodelsof randontrees.A numbernf random
treemodelshave beenproposedn [15, 16, 17]. References
[7,9, 15, 16, 17, 35 containfor morediscussioron these
treemodels. Here,we only give the definitionsof the fol-
lowing deterministicandprobabilistictreemodels.

¢ In aCompletelreewith branchingfactorb andheight
h, every nodehasb children. Nodeson level h are
leaves.

e A Complete-Tee-BasetRandonilreehasafixedhight
h. Thenumberof childrenof all treenodeson level [,
where0 < [ < h — 1, areindependentind identi-
cally (i.i.d.) randomvariableswith an arbitrary prob-
ability distribution (u;0, ui,1, w2, ---, Ut,p, ---), Where
up, b > 0, is the probability that a nodeon level
spavnsb children. A nodeon level h mustbe a leaf
node,andit cannotcreatenew processes.

e Theheighth of aRandomize€ompletelreeis aran-
domvariablewith anarbitraryprobability distribution
(vo, 1,02, ..., Up, ---), Whereuvy, is the probability that
the tree heightis A > 0. Underthe condition that

thetreeheightis h, the numberof childrenof all tree
nodeson level I, where0 < | < h — 1, arei.i.d. ran-
domvariableswith anarbitraryprobabilitydistribution

(uh,l,O; Uh,1,15Uh,1,25 -+~ Wh,1,by )

e In a Repoduction Treg the numberof children of
all treenodesarei.i.d. randomvariableswith anar
bitrary probability distribution (ug, u1,us, ---, up, -..),
with meanb = u; + 2us + 3us + ---, andb < 1.

Our researchso far hasbeenprimarily focusedon com-
plete treesand reproductiontrees. However, extensions
to complete-tree-basedndomtreesandrandomizectom-
pletetreesarestraightforward.

3 The Algorithm and Analysis

Considerthe classof b-ary completetrees. Let N' =
(P, C) beanarbitrarynetwork. For anasymmetricmetwork
N, thequality of anembeddinglepend®n theinitial pro-
cessori.e., wherethe root procesgesides. Let us define
LN(hJ(stleQ)!Whereh 2 010 S 0 S A! 0 S jl;j? < N,
to betheexpectedoadon processof;, in adilation-A em-
bedding(producedby the CanonicalAlgorithm) of a com-
plete b-ary treewith height in network A/, when P}, is
theinitial processqrandtheroot hasé morestepsto goin
its randomwalk. Let 5(j,1), n(4,2), ..., n(j,deg(N, j))
denotetheindicesof thedeg (N, j) neighborsof processor
P;. Thefollowing theorem originally provedin [21], pro-
videsa generalmethodfor analyzingthe embeddingof b-
ary completetrees(producedoy the CanonicalAlgorithm)
in generahetworks.

Theorem 1. Lys(h,d, j1,J2) satisfiesthe following recur
rencerelation:

Ly (0,0,41,51) =1, 0<ji<N-1
Ly (0,0,51,2) =0, 0<ji#j2a <N-1
Ly (h,0,j1,51) =1+ bLy(h — 1, A, j1, jr),
h>1,0< i <N -1
Lar(h,0,j1,j2) =bLa(h— 1, A j1, j2),
h>1,0<j1#52<N-1;
Ly (h, 6,341, j2)
deg(N,j1)
=V 2 =1k,

k=1

The recurrenceaelationgivenin Theoreml providesa
systematiavay to calculatethe expectedoad on eachpro-
cessoin thestyleof dynamicprogramming32]. Forh > 0
and0 < 0 < A, definely, 5 to be

LN(h7 6’ 0’ 0)
LN(h7 55 ]‘5 0)

La(h,6,N —1,0) La(h,6,N —1,1) La(h,6,N — 1,N
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Thenthe computatiomproceedssfollows:

£0,0 — 50,1 — [,0,2 — - = ﬁo,A
Lio — Lin —= Li2 — -+ = Lia
£2,0 — ﬁz,l — ﬁz,z — = E27A

Lro10 — Lr-11 — Lhr_12 — -+ = Lria
Lo

where Lo o is the identity matrix. This is a two dimen-
sionalrecurrenceelation,with our desiredresultsgivenby

L4,0, which providesthe expectedoadson all processors.

Therefore the computationatompleity of this procedure
is O(N%Adeg(N)h) = O(N2Adeg(N)log M) to calcu-
late L0, wheredeg(N) = maxo<;j<n—_1(deg(N,j)) is

the maximumdegreeof all processorsMoreover, we only

needto keep Ly s—1 whenwe calculately, s, thatis, the

numberof variabless O(N?).

The reproductiontree modelis handledin a different
way. LetLN((S;jl;jZ) where( S o S A, 0 S j13j2 < Nr
be the expectedoad on processorP;, in adilation-A em-
bedding(producedy the CanonicalAlgorithm) of arepro-
ductiontreein network /', whenP;, is theinitial processar
andthe root of the tree hasd more stepsto go. The fol-
lowing theorem originally provedin [21], providesa gen-
eral methodfor analyzingthe embeddingof reproduction
treeg(producedy the CanonicalAlgorithm) in generahet-
works.

Theorem2. Ly (8, j1, jo) satisfieghefollowing linearsys-
temof equations:

I_/N(O,j1,j1):1+EI_/N(A,].1,].1), OSjISN_li
Ly (0,41, 2) = bLn (A, j1, j2), 0<ji#j2 S N -1
LN((S:jlajZ)
1 deg(N,j1)
= T A7 E 0 — ]-1 j ’k ) - )
dea(N'.31) ; ~( n(j1, k), j2)

1<6<A, 0<ji,ja <N-L

Theequationsn Theoren? comprisea linear systemof
equationswith (A + 1) N2 variables.A closedform solu-
tionto theabovelinearsystenof equatiorseemdlifficult to
find in general However, numericalsolutionscanbe found
easilyusinganiterative technique.For 0 < § < A, define
Lstobe

Lxr(8,0,0)
Lxr(8,1,0)

Ly (8,0,1)
LN(63111) Ly

In(,N 1,00 Ln(6,N —1,1) In(6,N—1,N —1)

‘The computationproceedsas follows. First, the matrix
Lo is initialized suchthat £(0, j1,j2) = M/N for all

;

SO

A
:

/
/ /
[ I

Figure 1. The 3-dimensional
work.

butterfly net-

0 < j1,j2 £ N — 1. Then,werepeathefollowing compu-
tation

E_o—>£_1—>£_2—>---—)ZA—>EO,

until the matrix £, becomestable.Sincewe only needto
keepLs_1 whenwe calculateLs, the numberof variables
is O(N?).

By usingthe abore analyticalmethod,the performance
of the CanonicalAlgorithm in variousstatic networks has
beenstudiedextensiely. Closedform solutionsto the ex-
pectedload on eachprocessoin dilation-1 embeddingof
completetreesandreproductiondreesin completelycon-
nectednetworks and bus systemswere foundin [15]. In
[16, 17, 28, 29], we evaluatedthe performancehe Canon-
ical Algorithm and its improved versionsin hypercubes.
Known resultshave also beenreportedfor k-ary n-cubes
andits specialcasesuchasringsandtori [18]; asymmetric
networkssuchaslineararrays[19] andmesheg5, 21, 25];
symmetricnetworkslik e barrel-shiftersandllliac networks
[20], cube-connectedycles[22], andhypercubimetworks,
including wrappedbutterflies, shufle-exchangenetworks,
andde Bruijn graphg26].

4 Embeddingin Butterfly Networks

In ac-dimensionabutterflyhaving N = (¢ + 1)2¢ pro-
cessorsaprocessois representedy P, ;), where) < r <
¢, and0 < j < 2° (seeFigurel). Processor#’ ;. o), FPir1),
«.es P(r2c_1) comprisdevelr. Generallyprocessori level
r areconnectedo thosein levelsr —1 andr + 1. In particu-
lar, P, ;) hasfour neighborsP, 11 jy, Pir—1,j1)s P15
wherej = j1ja -+ -j. andy’ = jij4 - - - j.. differ exactlyin
therth bit, andj andj” = ji'j5 - - - j// differ exactlyin the
(r + 1)stbit, wherel < r < ¢—-1,and0 < j < 2¢
However, processorin level 0 areconnectednly to those
in level 1, while processorsn level ¢ are connectecbnly
to thosein level ¢ — 1. In particular P ;) hastwo neigh-
bors,i.e., P ;) and P ;y, wherej and;’ differ exactlyin
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thefirst bit, and P, ;) hastwo neighborsj.e., P._; ; and
P._1,5), wherej andj’ differ exactly in thelastbit. (See
[14] for detaileddiscussioron the butterfly network andits
variations.)

LetusdefineLg(h,d,r,j,7',5"), whereh > 0,0 < 0 <
A0 < <e0<4,j < 2¢tobetheexpectedoad
on processoi, ;. in adilation-A embeddingproduced
by the CanonicalAfgorith m) of a completeb-ary treewith
heighth in a butterfly network, when P, ; is the initial
processqrandtheroothasé morestepso goin its random
walk. By usingTheoreml, we getarecurrenceelationfor
Lg(h,d,r,4,r',3")in Figure2

Slmllarly, let LB(6 T, ], r',j") where0 < § < A,
0<rr <e¢0<jj < 2¢ bethe expectedioad on
processorP( 1.4 in adilation-A embeddingproducedby
theCanonicalAlgorithm) of areproductiortreein a butter
fly network, whenP,,. ; is theinitial processqrandtheroot
of thetreehasd morestepsto go. By usingTheorem2, we
getarecurrenceelationfor Lg (6,7, 7,r', j') in Figure3.

In theabcverecurrenceelationsifj = j1J2 - Je, then
i) = jijo -+ Jr---jo, Wwherel < r < c.

5 Numerical Data

To showv the performancedata, we considera 3-
dimensionabutterfly network with N = 32 processorsin
Tablesl-3, we demonstrat¢éhe performanceatio o, of the
CanonicalAlgorithm in embeddingompleteb-ary trees.

Table 1 shaws that the choice of the initial processor
P+ j+) affectsay,. However, nomatterwhattheinitial pro-
cessorns, eventuallyaj, convergesto the sameasymptotic
performanceatio a,, ash — oco.

Table2 shavstheimpactof dilation A, i.e., thelengthof
arandomwalk. It is noticedthatbutterfliesarebipartitenet-
works. Thereforejf A is even,only half of the processors
areusedin embeddingwhich impliesthata; > 2 [30].
To achieve good performance A shouldbe odd. For the
sameparity of A, larger A doesimprove the performance
ratio ay, andin sucha case,ash — oo, «a; approaches
theasymptotigperformanceatio o, whichdepend®nthe
parity of A.

In Table3, we shawv theperformanceatio oy, for various
branchingfactord, andwe obserethatay, is anincreasing
function of b. The asymptoticperformanceaatio a., de-
pendsonb.

Basedon the abore numericaldata,we conjecturethat
the asymptoticperformanceratio of the CanonicalAlgo-
rithm in embeddingompleteb-arytreesin ac-dimensional
butterfly network is

2b 1

1
a°°:2<1+2)’ A even

and

Whenc is large,we have a, =~ 2b/(b+ 1) for odd A and
as =~ 2 for even A. Suchperformancds comparablgo
thatof thehypercube$28].

LB(O,O,T’,j,T’,j):l,
LB(0707T7j7TIJjI):07
0<rr <e¢ 0<j4,5' <2° (r4) # (', 5);
Lg(h,0,r,4,7,5) =1+ bLe(h—1,A,r,5,7,5),
h>1,0<r<e¢ 0<j<2%
Lg(h,0,r,4,7",j')y =bLg(h —1,A,r,4,7",5"),
h>1,0<rr" <e¢ 0<j,j <2° (r,j) # (v,
Lg(h,d,r,4,7',5") =
(1 A
Z(LB(h,(S—l,ril,g,r,g)
+Lg(h,d — 1,7 — 1,5 ' 5"
+LB(h,6—1,r+1,j(r+1),r',j’)),
1<r<c—-1,0<j <25
%(LB(h,é—l,l,j,r’,j')
+Lp(h,d -1, 1,j<1>,r',j')),
r=0,0<j<2
%(LB(h,é—l,c—l,j,r',j')
+LB(h,6—l,c—l,j(c),r',j')),
\ r=c 0<5 <25

0<r<e 0<j<2%

h>0,1<6<A 0<rr <e 0<j,j <20

Figure 2. Recurrence relation for the expected
load Lg(h,d,r, 4,7, j5").

EB(OJT’jJTJJ):1+BEB(A7TJJJT’j)7
0<r<ec 0<5 <25
EB(()’TJj’ /r'l’jl) = I_)EB(A7/’.’]’ TI’j’)’

0<rr <e¢ 0<j,j <2 (r,j) # (', j");

EB(57r7jarlajl) =
1/-
( _<LB(5_ 1,7‘:|: 17.7-77‘17.7',)

! +Lp(6 — 1,7 — 1,5 ¢ )
+Lp(0 = 1,r + 1,50, 51)),
1<r<c—-1,0<75<2%
%(EB(é—l,l,j,r’,j')
+Lp(0 - 1,1,50,7',5)),
r=0,0<j<2
%(EB((S—l,c—l,j,r’,j’)
+Lp(d—1,e=1,59,0", 1),
\ r=c¢ 0<j5 <25
1<0<A, 0L <c 07,5 <2

Figure 3. Recurrence relation for the expected
load Lg(6,r,j,7",5").
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Tablel. Performancdatioay, vs. Initial Processofr*, j*).
(&N = 32, completereewith b = 2, A = 1)

L0 (19
3.556 3.556
4,661 4.661
3.075 3.075
3.601 3.601
2.737 2.737
2.994 2.994
2.493 2.493
2.619 2.619
2.313 2.313
2.376 2.376
2179 2.179
2.210 2.210
2.078 2.078
2.094 2.094
2.003 2.003
2.011 2.011
1.947 1.947
1.951 1.951
1.904 1.904
1.906 1.906
1.873 1.873
1.874 1.874
1.849 1.849
1.850 1.850
1.831 1.831
1.831 1.831

(0,0)
5.333

h (0,4)
5

6 2898

7

8

5.333
2.898
4.016
2.380
3.222
2.243
2.739
2.131
2.437
2.044
2.241
1.978
2.109
1.928
2.019
1.890
1.955
1.862
1.908
1.841
1.875
1.825
1.850
1.813
1.832
1.805

2,0
3.556
4.661
3.075
3.601
2.737
2.994
2.493
2.619
2.313
2.376
2.179
2.210
2.078
2.094
2.003
2.011
1.947
1.951
1.904
1.906
1.873
1.874
1.849
1.850
1.831
1.831

(2,4)

3.556
4.661
3.075
3.601
2.737
2.994
2.493
2.619
2.313
2.376
2.179
2.210
2.078
2.094
2.003
2.011
1.947
1.951
1.904
1.906
1.873
1.874
1.849
1.850
1.831
1.831

4.016

2.380
9 3.222
10 2.243
11 2.739
12 2131
13 2437
14 2.044
15 2.241
16 1.978
17 2.109
18 1.928
19 2.019
20 1.890
21 1.955
22 1862
23 1.908
24 1841
25 1.875
26 1.825
27 1.850
28 1.813
29 1832
30 1.805

The performancef the CanonicalAlgorithm in embed-
ding reproductiortreesis shavn in Table4, whereay; =
Lyrax/(M/N),andM = 1/(1 — b) is theexpectedhum-
berof nodesin areproductiortree. A generakreatmenof
embeddingeproductiortreesis givenin [24], whereit is
proventhatfor anarbitrarynetwork A" with N processors,
asM — oo, agy approachetheratio of themaximumnode
degreeto theaveragenodedegree,i.e.,

( max(do,dl,dg...,dN,l) )

lim ap=N
M—oc0

do+dy+dy+---+dn-1

whered; = deg(/N,j) is the degreeof processo?;. By
theabove result,we know thatwhenA is odd, the asymp-
totic performanceatio of the CanonicalAlgorithm in em-
beddingreproductiortreesin butterfliesis

1

Whenc is large,we have a, ~ 1 for odd A.

6 Conclusions

We have evaluatedthe performanceof a random-valk-
basedalgorithmfor embeddinglynamicallyevolving trees
in butterfly networks. Our performancedatademonstrate
that butterflieshave comparableperformancewith hyper
cubesin supportingree-structuregarallelcomputations.

Table2. Performancé&atioay vs. RandomWalk LengthA.
(N = 32, completereewith b = 2, (r*, j*) = (0,0))

A=1
5.333

h A=2
5

6 2.898

7

8

9

3.421
3.280
3.150
3.042
2.954
2.886
2.832
2.792
2.761
2.738
2.720
2.707
2.697
2.689
2.684
2.679
2.676
2.674
2.672
2.671
2.670
2.669
2.668
2.668
2.668
2.667

A=3
2.538
1.959
2.083
1.865
1.902
1.817
1.829
1.795
1.799
1.785
1.787
1.781
1.782
1.779
1.779
1.778
1.778
1.778
1.778
1.778
1.778
1.778
1.778
1.778
1.778
1.778

A=4
2.924
2.837
2.775
2.734
2.708
2.692
2.681
2.675
2.672
2.670
2.668
2.668
2.667
2.667
2.667
2.667
2.667
2.667
2.667
2.667
2.667
2.667
2.667
2.667
2.667
2.667

A=5
2.056
1.821
1.862
1.793
1.802
1.782
1.785
1.779
1.780
1.778
1.778
1.778
1.778
1.778
1.778
1.778
1.778
1.778
1.778
1.778
1.778
1.778
1.778
1.778
1.778
1.778

A=6
2.754
2.717
2.695
2.682
2.675
2.671
2.669
2.668
2.667
2.667
2.667
2.667
2.667
2.667
2.667
2.667
2.667
2.667
2.667
2.667
2.667
2.667
2.667
2.667
2.667
2.667

4.016

2.380

3.222
10 2.243
11 2.739
12 2131
13 2.437
14 2.044
15 2.241
16 1.978
17 2.109
18 1.928
19 2.019
20 1.890
21 1.955
22 1.862
23 1.908
24 1841
25 1.875
26 1.825
27 1.850
28 1.813
29 1.832
30 1.805

Table3. Performancé&atioay, vs. BranchingFactorb.
(N = 32, completetree, A =1, (r*, j*) = (0,0))

b=2
5 5333
6 2.898
7 4.016
8
9

b=3

5.547
2.831
4.199
2.648
3.425
2.492
2.959
2.371
2.665
2.278
2472
2.209
2.340
2.157
2.248
2.118
2.183
2.088
2.136
2.066
2.101
2.050
2.075
2.037
2.056
2.028

b=4

5.767
3.012
4.392
2.813
3.603
2.648
3.126
2.521
2.823
2.424
2.624
2.352
2.488
2.297
2.392
2.256
2.324
2.225
2.275
2.202
2.239
2.185
2.212
2.172
2.192
2.162

b=5

5.941
3.133
4.538
2.925
3.732
2.755
3.243
2.623
2.933
2.523
2.728
2.448
2.588
2.391
2.490
2.349
2.419
2.317
2.368
2.294
2.331
2.276
2.303
2.262
2.283
2.252

b==6

6.075
3.220
4.648
3.006
3.827
2.831
3.329
2.696
3.012
2.594
2.803
2.517
2.660
2.459
2.559
2.416
2.488
2.383
2.435
2.359
2.397
2.341
2.369
2.327
2.348
2.317

b="7

6.181
3.286
4.733
3.067
3.900
2.888
3.394
2.751
3.073
2.647
2.860
2.569
2.714
2.510
2.612
2.466
2.539
2.433
2.486
2.408
2.447
2.389
2.418
2.375
2.397
2.365

2.380

3.222
10 2.243
11 2.739
12 2131
13  2.437
14 2.044
15 2.241
16 1.978
17  2.109
18 1.928
19 2.019
20 1.890
21 1.955
22 1.862
23 1.908
24 1.841
25 1.875
26 1.825
27 1.850
28 1.813
29 1.832
30 1.805
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Table4. Performancéatioay; vs. RandomWalk LengthA.

(N = 32, reproductiortree,(r*, j*) = (0,0))

M A=1 A=2 A=3 A=4 A=5 A=6
100 1.649 2708 1426 2672 1.377 2.659
200 1.495 2.688 1.380 2.669 1.355 2.663
300 1.442 2681 1.365 2669 1348 2.664
400 1.415 2.678 1.357 2.668 1.344 2.665
500 1.399 2675 1.352 2668 1.342 2.665
600 1.388 2.674 1.349 2668 1.341 2.665
700 1.380 2.673 1.347 2667 1.340 2.666
800 1.374 2672 1.345 2667 1.339 2.666
900 1.370 2.672 1.344 2667 1.338 2.666
1000 1.366 2.671 1.343 2667 1.338 2.666
1100 1.363 2671 1.342 2667 1337 2.666
1200 1.361 2.670 1.341 2667 1337 2.666
1300 1.359 2.670 1.341 2667 1.337 2.666
1400 1.357 2670 1.340 2.667 1.336 2.666
1500 1.355 2.670 1.340 2.667 1.336 2.666
1600 1.354 2669 1.339 2667 1.336 2.666
1700 1.353 2.669 1.339 2667 1.336 2.666
1800 1.352 2.669 1.339 2667 1.336 2.666
1900 1.351 2.669 1.338 2667 1.336 2.666
2000 1.350 2.669 1.338 2.667 1.336 2.666
2100 1.349 2.669 1.338 2667 1.335 2.666
2200 1.348 2.669 1.338 2.667 1.335 2.666
2300 1.348 2.669 1.337 2667 1335 2.666
2400 1.347 2.669 1.337 2667 1335 2.666
2500 1.347 2.668 1.337 2667 1335 2.666
oo 1.333 2667 1.333 2667 1333 2.667
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