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Abstract

In manytree-structured parallel computations,the size
andstructure of a treethat representsa parallel computa-
tion is unpredictableat compile-time;thetreeevolvesgrad-
ually during the courseof the computation.Whensuch a
computationis performedon a staticnetwork,thedynamic
tree embeddingproblemis to distribute the tree nodesto
the processors of the networksuch that all the processors
receiveroughlythesameamountof loadandthatcommuni-
catingnodesare assignedto neighboringprocessors. Fur-
thermore, whena new treenodeis generated,it shouldbe
immediatelyassignedto a processorfor executionwithout
anyinformationonthefurtherevolvingof thetree;andload
distribution is performedby all processors in a totally dis-
tributedfashion.

We studythe problemof embeddingdynamicallyevolv-
ing treesin butterflies. We evaluate the performanceof
a random-walk-basedalgorithm. Our performancedata
demonstratethat butterflieshavecomparableperformance
with hypercubesin supportingtree-structuredparallel com-
putations.

1 Intr oduction

1.1 ProblemDefinition

High performanceparallelcomputingrequiresdistribut-
ing processesin a parallelcomputationover processorsin
a parallel computersuch that all the processorsreceive
roughly the sameamountof load and that communicat-
ing processesareassignedto neighboringprocessors.Let���������
	��

be a task interactiongraphwhich represents
a parallel computation,where

�
���������
�������������
�����
is a

set of � processes(i.e., tasks),and
	

is a set of edges
that standfor intertaskcommunications.Let  �!�#"$�&%'�
be a graphwhich representsa staticnetwork, where

"(��*)�+��,)-�.�/)������������/)�0�12�.�
is a setof 3 processors,and

%
is

a setof interprocessorconnections.The load distribution
problemis to embeda task interactiongraphinto a static
network. An embeddingis actually a mappingfunction

465 �879"
from the set of processesto the set of pro-

cessors,suchthat
4 ����:;�

is the processoron which process� :
is executed.

Theembeddingproblemcanbeclassifiedinto two cate-
gories,namely, staticembeddinganddynamicembedding.
Staticembeddingis doneat compile-time,wherethecom-
pletetaskinteractiongraph

�
is given.Dynamicembedding

is performedat run-time,wherethetaskinteractiongraph
�

is notknown in advance,andit evolvesandexpandsgradu-
ally duringthecourseof a parallelcomputation.It is more
difficult to achieve goodperformancein dynamicembed-
ding thanin staticembedding.While staticembeddingof
varioustaskgraphsinto variousnetworks hasbeenexten-
sively studied(see[33] andthe referencestherein),a little
work hasbeendonefor dynamicembedding.

Many parallel computationsare tree-structured(i.e.,
where

�
is a tree). Examplesare divide-and-conqueral-

gorithms,backtracksearching,branch-and-boundcompu-
tations,game-treeevaluation, functional and logical pro-
gramming,and various numeric computations. In these
tree-structuredparallelcomputations,thesizeandstructure
of a tree that representsa parallel computationis unpre-
dictableat compile-time.Thetreeevolvesgraduallyduring
the courseof the computation. Initially, thereis onepro-
cess,i.e., the root of a tree. This processcould resideon
any processor(calledtheinitial or origin processor).As the
computationproceeds,existing processes(i.e., treenodes)
createnew processes,andthesechild processesshouldbe
assignedimmediatelyto someprocessorsfor executionac-
cordingto amappingfunction

4
.

Theaboveapplicationsmotivatetheproblemof dynamic
tree embedding(or, dynamic load distribution for tree-
structuredcomputationson staticnetworks). In sucha dy-
namic setting,the mappingfunction

4
is not available in

advanceandmustbecalculatedat run-time. It is desirable
for a treenodeto bemappedto a processorwithoutany in-
formationon the furtherevolving of the tree. Whena new
treenodeis generated,it shouldbeimmediatelyassignedto
a processorfor execution.Whena treenode

� :=<
executing

onprocessor
)2> <

spawnsanew node
� :�?

,
)@> <

shouldselecta
processor

) > ? � 4 ����: ? �
andsend

��: ?
to
) > ?

for processing.
Sucha decisionis madelocally on

) > <
without consulting
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to otherprocessors.Therefore,the load distribution func-
tion

4
is computedby all processorsin a totally distributed

fashion.It is requiredthatthemappingfunction
4

is easyto
calculatefor fastloaddistributionandlow systemcost.It is
alsorequiredthatthereis nocentralizedcontrolmechanism,
nocentralizedtaskdispatcher, no globalloadstatusrecord,
no exchangeof currentload statusinformationamongthe
processors,andnoprocessmigration(i.e.,oncea treenode��:

is assignedto processor
4 �#��:A�

,
��:

cannotmoveto another
processor).

Therearetwo importantperformanceconsiderationsin
all embeddingproblems.Thefirst oneis themaximumload
perprocessor. Theload B > onaprocessor

)@>
is thenumber

of treenodesassignedto
)@>

, i.e., B >C�EDF�*� : D 4 �#� : �G�H)2>��ID .
Clearly, an embedding

4
shouldminimize the maximum

load B �KJ2L(�NMPO�QR+�ST>VUW0X� B >*� , suchthat all the proces-
sorsperformapproximatelyequalamountof computation.
In otherwords,the � treenodesshouldbedistributedover
the 3 processorsas evenly as possible,suchthat all the
computingpower areefficiently utilized. Another impor-
tant considerationis the dilation Y of an embedding,that
is, the maximumdistancebetweena pair of communicat-
ing processesin the network. Formally, we have Y �MXO�Q[Z�\,] <*^ \/] ?�_A`�a �cbIdfe&g�� 4 �#��: < �h� 4 ����: ? �
�,� , where

bIdfe
g*��) > < �,) > ? �
is the distancebetweentwo processorsin the network  .
The dilation affects communicationoverheadand should
alsobeminimized.Smalldilationprovideshighcommuni-
cationlocality. Hence,processesthatneedto communicate
to eachotherduringthecomputationshouldbeassignedto
processorsthatarecloseto eachother.

Basedon thefactthattherearea wide spectrumof tree-
structuredapplicationsin computerscienceand engineer-
ing, andthe wide availability of distributedmemorymul-
ticomputerswith staticinterconnectionnetworks,dynamic
treeembeddingalgorithmswith highperformancearedefi-
nitely very important.

1.2 RandomizedTreeEmbedding

A numberof leadingscientistspioneeredthe research
in this field. Bhatt and Cai [2] were the first to raisethe
problemof dynamictreeembeddingin staticnetworks(hy-
percubesin [2]). They proposedandanalyzeda randomized
treeembeddingstrategy for maintainingdynamicallyevolv-
ing binary treeson hypercubenetworks. The algorithmis
random-walk-basedandalsouseslocal rearrangement.For
arbitrarybinarytrees,theiralgorithmachievesoptimalloadiX� �kjh3 � anddilation

iX�#l�m�nol�m�n 3 � with high probability
[3].

Sincethen,dynamictreegrowing algorithmshave been
investigatedby several researchersin recentyears. Ran-
domizationis justified by observingthat minimization of
the maximum load and dilation are conflicting require-
ments.In particular, Leightonet al. showedthatany deter-
ministic algorithmwhich dynamicallyembedsan � -node
binarytreein an 3 -nodehypercube,suchthatthemaximum
loadis

iX� �kjV3 � , musthavenotonly maximumbut alsoav-
eragedilation p �;q l�m�n 3 � [13]. Therefore,a dynamictree

embeddingalgorithmthat simultaneouslyminimizesmax-
imum load and dilation (within constantfactors)mustbe
randomized.

For embeddingin hypercubesandbutterflies,Leighton
et al. alsoreducedthe dilation to

iX�
r*�
andachieved op-

timal loadanddilation simultaneouslywithin constantfac-
tors. Aiello andLeighton[1] consideredthecongestionof
embeddings,i.e., the maximumnumberof treeedgesthat
areroutedthroughany singlecommunicationlink of a hy-
percube.Bhattetal. [4] studiedthetrade-offsbetweenload
imbalanceandcongestion.

Dynamicallyevolving treeshave alsobeentreatedfrom
otherpointsof view. Karp andZhangpresentedrandom-
ized parallel backtrackand branch-and-boundalgorithms
on completelyconnectednetworksthatrun in optimaltime
with high probability [12]. Ranadestrengthenedthe result
by consideringbutterflieswhich are boundeddegreenet-
works[36]. Insteadof embeddingtreeswith smalldilation
andeven load distribution, the aim of their researchis to
minimize the parallelexecutiontime. Thesepioneerstud-
ies have beenfollowed by a numberof other researchers
[6, 8, 10, 11, 34].

1.3 Our Approach

The randomizedtreeembeddingalgorithms,which we
have beenstudying and will continueto investigate,are
random-walk-based.Essentially, suchanalgorithmallows
a newly createdprocessto takea randomwalk of shortdis-
tanceto reacha processornearby. Formally, whena new
treenode

��:
is createdon processor

) >;s
, thenode

��:
is al-

lowed to take a randomwalk of Y steps:
) >As 7t) > < 7) > ? 7vu�u�uw7() >;x

. Let
bIy�nW�  �{zR� denotethedegreeof pro-

cessor
) >

in  . Then,for all
r}|�~�| Y ,

) >&�
is selected

amongall the
bIy�n��  �;z.� 12� � neighborsof

) >&��� <
with equal

probability. Whenprocess
� :

reaches
)@> x

, it is assignedto)2> x
andexecutedon

)@> x
, i.e.,

4 ��� : ����)2> x
. We call this

algorithmtheCanonicalAlgorithm. Therearemany varia-
tionsof theCanonicalAlgorithmwhichareworthof further
investigation(see,e.g.,[5, 29]).

It is clearthat by usingthe above randomizedtreeem-
beddingalgorithm,the distancebetweeneachpair of par-
ent/child is at most Y . Hence,the algorithmgeneratesa
dilation-Y embedding. The value Y can be chosenas a
small constant.(We do not allow processmigration,since
this may increasedilation arbitrarily.) Theremainingcon-
cernis to analyzethe maximumload B ��J2L . The perfor-
manceof arandomizedtreeembeddingcanbemeasuredas
follows. Let � denotethe treesize,and 3 thenumberof
processorsin anetwork  . Assumethatby usingatreeem-
beddingalgorithm,the expectednumberof treenodesas-
signedto processor

)@>
is B > . Weareinterestedin themaxi-

mumexpectedload B �KJ2L��kMPO�Q@� B +�� B �*��������� B 0�12��� . LetB����@� be thebestpossiblemaximumexpectedloadon all
theprocessors,i.e., B����@� � �kjh3 . Theperformanceratio
of a randomizedtreeembeddingis � � B �KJ2L j�B����@� . If
we considertheperformanceratio ��� asa functionof tree
height � , then ��� �6l�d�M �.� ��� � is calledtheasymptotic
performanceratio.
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Theperformanceratio � is determinedby thenumberof
processors3 , the topologyof the network  , the length
of a randomwalk Y , thenumberof treenodes� , andthe
modelof randomtrees,andeven the choiceof the initial
processor. The performanceratio � is expectedto be as
closeto one as possible. It is shown in [16] that the ex-
pectedexecutiontime of a parallelcomputationsupported
by arandomizedtreeembeddingalgorithmis nomorethan��� r timestheoptimalexecutiontime.

We have discovered a method to analyzethe perfor-
manceof random-walk-basedrandomizedtreeembedding
algorithmsin staticinterconnectionnetworks. Our method
employs recurrencerelationsand linear systemsof equa-
tionsthatcharacterizetheexpectedloadon eachprocessor.
By using theserecurrencerelationsand linear systemsof
equations,we caneasilyobtainnumericaldatawhich are
quiteillustrativeandconvincing,makegeneralobservations
from thesedata,andprove theseobservationsanalytically.
Themethodwasinitially developedfor hypercubes[16, 17].
However, it turnsout that theanalysismethodologycanbe
extended,generalized,and appliedto the analysisof dy-
namictreeembeddingin arbitrarynetworks.Previousanal-
ysismentionedabove areall network-dependent.It is still
likely that ad hoc network-dependentanalysistechniques
will be developedto handledifferentnetwork topologies.
However, our method is versatile, network-independent,
andreadilyto beappliedto variousnetworks. In thissense,
our novel methodologyis substantiallydifferentfrom pre-
viousapproachesandis worthof moreattentionandfurther
investigation.Thepresentpapermakesnew effort towards
this direction. In particular, we apply theCanonicalAlgo-
rithm to butterflynetworks.

2 TreeModels

To evaluatetheperformanceof randomizedtreeembed-
ding,weneedmodelsof randomtrees.A numberof random
treemodelshavebeenproposedin [15, 16, 17]. References
[7, 9, 15, 16, 17, 35] containfor morediscussionon these
treemodels.Here,we only give the definitionsof the fol-
lowing deterministicandprobabilistictreemodels.� In a CompleteTreewith branchingfactor � andheight� , every nodehas � children. Nodeson level � are

leaves.� A Complete-Tree-BasedRandomTreehasafixedhight� . Thenumberof childrenof all treenodeson level � ,
where � | � | ��� r , are independentand identi-
cally (i.i.d.) randomvariableswith anarbitraryprob-
ability distribution

���[� ^ +��
�W� ^ �.�,�[� ^ �����������,�[� ^   ������� � , where�[� ^   , �¢¡£� , is the probability that a nodeon level �
spawns � children. A nodeon level � mustbe a leaf
node,andit cannotcreatenew processes.� Theheight � of a RandomizedCompleteTreeis a ran-
domvariablewith anarbitraryprobabilitydistribution�#� + �
� � �
� � ���������
� � �������F� , where

� � is theprobability that
the tree height is ��¡
� . Under the condition that

the treeheightis � , thenumberof childrenof all tree
nodeson level � , where � | � | �$� r , arei.i.d. ran-
domvariableswith anarbitraryprobabilitydistribution�#� � ^ � ^ +��,� � ^ � ^ �.�
� � ^ � ^ �����������
� � ^ � ^   �������F� .� In a Reproduction Tree, the numberof children of
all treenodesare i.i.d. randomvariableswith an ar-
bitrary probability distribution

�#�W+��,�2���
�������������,�   �������F� ,
with mean¤ � ��� � �¦¥ � � �¦§ ��¨ � u�u�u , and ¤��© r .

Our researchso far hasbeenprimarily focusedon com-
plete treesand reproductiontrees. However, extensions
to complete-tree-basedrandomtreesandrandomizedcom-
pletetreesarestraightforward.

3 The Algorithm and Analysis

Considerthe classof � -ary completetrees. Let  ��="$�
%@�
beanarbitrarynetwork. For anasymmetricnetwork , thequality of anembeddingdependson theinitial pro-

cessor, i.e., wherethe root processresides. Let us defineB�ª � � �,«��;z � �{z � � , where�¬¡­� , � |­«�| Y , � |¢z � �;z � ©­3 ,
to betheexpectedloadonprocessor

) > ?
in adilation-Y em-

bedding(producedby theCanonicalAlgorithm) of a com-
plete � -ary treewith height � in network  , when

)@> <
is

the initial processor, andtheroot has
«

morestepsto go in
its randomwalk. Let ® ��z���r*� , ® ��z�� ¥ � , ..., ® ��z��/bIy�n2�  �;zR�
�
denotetheindicesof the

bIy�n��  �;zR� neighborsof processor)2>
. Thefollowing theorem,originally provedin [21], pro-

videsa generalmethodfor analyzingthe embeddingof � -
ary completetrees(producedby theCanonicalAlgorithm)
in generalnetworks.

Theorem 1. B�ª � � �/«��{z � �{z � � satisfiesthe following recur-
rencerelation:¯[°$±#²�³&²�³c´*µh³�´*µ,¶@·­¸*³¹²»º¼´*µGº¾½À¿�¸*Á¯ ° ±#²�³&²�³c´ µ ³�´VÂh¶@·�²�³¹²»º¼´ µÄÃ·�´VÂÅº�½À¿�¸*Á¯ ° ±#Æ[³A²�³�´ µ ³�´ µ ¶'·�¸�ÇÉÈ�¯ ° ±#Æ�¿�¸*³&ÊË³c´ µ ³�´ µ ¶,³ÆKÌÍ¸�³�²»º¼´*µGº¢½Î¿�¸*Á¯ ° ±#Æ[³A²�³�´ µ ³�´VÂh¶'·�È/¯ ° ±#ÆÏ¿�¸�³
ÊË³�´ µ ³�´VÂh¶,³ÆKÌÍ¸�³�²»º¼´*µ Ã·�´ Â º�½Î¿�¸�Á¯ ° ±#Æ[³;Ð�³�´ µ ³�´VÂh¶

· ¸Ñ�Ò/Ó ±ÕÔÖ³�´ µ ¶ ×/ØcÙ�Ú
°�Û Ü <
ÝÞ ß
à µ ¯ ° ±#Æ[³&Ð�¿�¸�³&áT±â´ µ ³Aãw¶,³�´VÂh¶,³

ÆKÌ�²�³�¸äº�ÐCº¢Êå³�²»º¼´ µ ³�´VÂæº�½ç¿è¸*é
The recurrencerelationgiven in Theorem1 providesa

systematicway to calculatetheexpectedloadon eachpro-
cessorin thestyleof dynamicprogramming[32]. For �¼¡­�
and � |­«�| Y , defineêÅ� ^ ë to beìí
î
ï °Kð�ñIò{ó/òcô*ò;ôVõ ï °XðfñRòcó/ò{ô*ò
ö,õ ÷
÷
÷ ï °Kð�ñIò{ó/òcô*òAø�ù$ö,õï °Kð�ñIò{ó/ò&öhò;ôVõ ï °XðfñRòcó/ò
öhò
ö,õ ÷
÷
÷ ï °Kð�ñIò{ó/ò&öhòAø�ù$ö,õ

...
...

...
...ï °XðfñRòcó/ò{ø¦ù$öhòcôVõ ï °KðfñRò{ó/ò{ø¦ùPöhò,ö,õ�÷
÷
÷ ï °XðfñRòcó/ò{ø¦ù$öhò{ø¦ù$ö,õ

úâû
ü¼ý
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Thenthecomputationproceedsasfollows:þ�ÿ Û ÿ � þ�ÿ Û µ � þ�ÿ Û Â � ������� þ�ÿ Û �
þ µAÛ ÿ � þ µAÛ µ � þ µAÛ Â � ������� þ µAÛ �
þ Â Û ÿ � þ Â Û µ � þ Â Û Â � ������� þ Â Û �

...
...

...
����� ...þ���� µAÛ ÿ � þ	��� µAÛ µ � þ	��� µAÛ Â � ������� þ	��� µAÛ �

þ � Û ÿ
where ê + ^ + is the identity matrix. This is a two dimen-

sionalrecurrencerelation,with ourdesiredresultsgivenbyêæ� ^ + , which providestheexpectedloadson all processors.
Therefore,thecomputationalcomplexity of this procedure
is
iX� 3 � Y bIy�n��  � � �å��iX� 3 � Y bIy�n[�  �Il�m�n � � to calcu-

late êÅ� ^ + , where
bIy�n[�  �¼�!MPO�QI+�ST>VSW0�1@����bTy�n��  �{zR�,� is

themaximumdegreeof all processors.Moreover, we only
needto keep ê � ^ ë 12� whenwe calculateê � ^ ë , that is, the
numberof variablesis

iX� 3 � � .
The reproductiontree model is handledin a different

way. Let ¤B ª ��«��{z��.�;z��.� where� |k«X| Y , � |¦z��.�;z*� ©k3 ,
be theexpectedloadon processor

)@> ?
in a dilation-Y em-

bedding(producedby theCanonicalAlgorithm) of a repro-
ductiontreein network  , when

) > <
is theinitial processor,

and the root of the treehas
«

morestepsto go. The fol-
lowing theorem,originally provedin [21], providesa gen-
eral methodfor analyzingthe embeddingof reproduction
trees(producedby theCanonicalAlgorithm) in generalnet-
works.

Theorem2. ¤B�ª ��«��;z � �{z � � satisfiesthefollowing linearsys-
temof equations:
¯ ° ±#²�³�´ µ ³�´ µ ¶@·�¸�Ç 
È 
¯ ° ±�Êå³�´ µ ³�´ µ ¶,³¹²�º¼´ µ º�½Î¿�¸�Á
¯[°$±#²�³�´*µh³�´ Â ¶@· 
È 
¯W°P±�ÊË³�´*µh³c´ Â ¶,³ ²»º¼´*µ Ã·è´ Â º�½Î¿�¸�Á
¯ ° ±=Ð�³#´ µ ³�´VÂh¶

· ¸Ñ�Ò�Ó ±ÕÔÖ³�´ µ ¶ ×�ØcÙ�Ú
°�Û Ü <,ÝÞ ß
à µ 
¯[°$±=Ðo¿�¸�³&á ±â´*µ�³
ã�¶,³�´ Â ¶,³
¸äº�Ð�º¾ÊË³'²»º¼´ µ ³�´VÂäº�½Î¿�¸�é

Theequationsin Theorem2 comprisea linearsystemof
equationswith

� YE� r*� 3 � variables.A closedform solu-
tion to theabovelinearsystemof equationseemsdifficult to
find in general.However, numericalsolutionscanbefound
easilyusinganiterative technique.For � |Î«}| Y , define¤ê ë to beìí
î

�ï ° ð�ó/ò;ô*òcôVõ �ï ° ð�ó/òcô*ò,ö,õ ÷
÷
÷ �ï ° ð�ó/ò;ô*ò{ø¦ù$ö,õ�ï ° ð�ó/ò,öhòcôVõ �ï ° ð�ó/ò&öhò,ö,õ ÷
÷
÷ �ï ° ð�ó/ò,öhò{ø¦ù$ö,õ
...

...
. ..

...�ï °Xð�ó/ò;øÍùPöhò;ôVõ �ï °Pð�ó/ò;øÍù$öhò,ö,õ�÷
÷
÷ �ï °Kð�ó/òAø¦ùPöhò;ø¦ùPö,õ
ú û
ü�ý

The computationproceedsas follows. First, the matrix¤ê + is initialized such that ¤ê � � �{z � �;z � �À� �kjV3 for all

� � � � � � � � 
	� ô
� � � � � � � � 
	� ö
� � � � � � � � 
	���
� � � � � � � � 
	���

� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � � �
� � � � � � � � � � �� � � � � � � � � � �

� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � � �
� � � � � �� � � � � �� � � � � �� � � � � � � � � � � �� � � � � �� � � � � �� � � � � �
� � � � � � � � � � � �� � � � � � � � � � � �

� � ô
1 2 3 4 5 6 7

Figure 1. The 3-dimensional butterfly net-
work.

� |¢z��.�;z*��| 3�� r . Then,werepeatthefollowing compu-
tation

¤ê +»7 ¤ê �Ä7 ¤ê �C7vu�u�uw7 ¤ê�� 7 ¤ê +w�
until thematrix ¤ê + becomesstable.Sincewe only needto
keep ¤ê ë 12� whenwe calculate ¤ê ë , thenumberof variables
is
iX� 3 � � .
By usingtheabove analyticalmethod,theperformance

of the CanonicalAlgorithm in variousstaticnetworks has
beenstudiedextensively. Closedform solutionsto theex-
pectedload on eachprocessorin dilation-1 embeddingof
completetreesandreproductionstreesin completelycon-
nectednetworks and bus systemswere found in [15]. In
[16, 17, 28, 29], we evaluatedtheperformancetheCanon-
ical Algorithm and its improved versionsin hypercubes.
Known resultshave alsobeenreportedfor

~
-ary � -cubes

andits specialcasessuchasringsandtori [18]; asymmetric
networkssuchaslineararrays[19] andmeshes[5, 21, 25];
symmetricnetworkslike barrel-shiftersandIlliac networks
[20], cube-connectedcycles[22], andhypercubicnetworks,
including wrappedbutterflies,shuffle-exchangenetworks,
anddeBruijn graphs[26].

4 Embedding in Butterfly Networks

In a � -dimensionalbutterflyhaving 3 ��� �o� r.� ¥�� pro-
cessors,aprocessoris representedby

)�Z � ^ > _ , where� |"!K|� , and � |¦z ©H¥�� (seeFigure1). Processors
)�Z � ^ + _ , )�Z � ^ � _ ,

...,
)GZ#� ^ ��$/1@� _ compriselevel

!
. Generally, processorsin level!

areconnectedto thosein levels
! � r and

! � r . In particu-
lar,

)GZ#� ^ > _ hasfour neighbors
)�Z �&% � ^ > _ , )GZ#� 1@� ^ >(' _ , )�Z �() � ^ >(' ' _ ,

where
z¬�Hz��
z���u�u�ucz � and

z+*�� z+*� z+*� u�u�ucz+*� differ exactly in
the

!
th bit, and

z
and

z+* *@��z�* *� z+* *� u�u�ucz+* *� differ exactly in the�,! � r.� st bit, where
r­|-!k| �å� r , and � |�z ©8¥�� .

However, processorsin level � areconnectedonly to those
in level 1, while processorsin level � areconnectedonly
to thosein level �Ä� r . In particular,

)�Z + ^ > _ hastwo neigh-
bors,i.e.,

)�Z � ^ > _ and
)GZ � ^ > ' _ , where

z
and

z+*
differ exactly in

4

0-7695-1573-8/02/$17.00 (C) 2002 IEEE



thefirst bit, and
)�Z � ^ > _ hastwo neighbors,i.e.,

)�Z � 12� ^ > _ and)GZ � 1@� ^ > ' _ , where
z

and
z+*

differ exactly in the lastbit. (See
[14] for detaileddiscussionon thebutterflynetwork andits
variations.)

Let usdefineB/. � � �/«��0!��;z��(!1*c�;z+*��
, where�¬¡�� , � |�«Ë|Y , � |2!��0!1*Å| � , � |�z��{z+* ©�¥�� , to be theexpectedload

on processor
)GZ � ' ^ > ' _ in a dilation-Y embedding(produced

by theCanonicalAlgorithm) of a complete� -ary treewith
height � in a butterfly network, when

)�Z � ^ > _ is the initial
processor, andtheroothas

«
morestepsto go in its random

walk. By usingTheorem1, wegeta recurrencerelationforB . � � �/«��0!��;z��(!1*c�;z+*��
in Figure2.

Similarly, let ¤B . ��«��(!��{z��0! * �{z * �
where � | « | Y ,� |3!��0!1*K| � , � | z��{z+* ©!¥4� , be the expectedload on

processor
)�Z � ' ^ > ' _ in a dilation-Y embedding(producedby

theCanonicalAlgorithm) of a reproductiontreein abutter-
fly network,when

)�Z � ^ > _ is theinitial processor, andtheroot
of thetreehas

«
morestepsto go. By usingTheorem2, we

geta recurrencerelationfor ¤B . ��«��(!��{z��0! * �{z * �
in Figure3.

In theaboverecurrencerelations,if
zX�Íz��,z��Gu�u�u;z � , thenz Z#� _ �¦z � z � u�u�u ¤z � u�u�u;z � , where

rÏ|5!�| � .
5 Numerical Data

To show the performancedata, we consider a 3-
dimensionalbutterfly network with 3 � §�¥ processors.In
Tables1-3,wedemonstratetheperformanceratio � � of the
CanonicalAlgorithm in embeddingcomplete� -ary trees.

Table 1 shows that the choiceof the initial processor)GZ �76 ^ > 6 _ affects� � . However, nomatterwhattheinitial pro-
cessoris, eventually � � convergesto the sameasymptotic
performanceratio ��� as � 798

.
Table2 showstheimpactof dilation Y , i.e.,thelengthof

arandomwalk. It is noticedthatbutterfliesarebipartitenet-
works. Therefore,if Y is even,only half of theprocessors
areusedin embedding,which implies that ����¡!¥ [30].
To achieve goodperformance,Y shouldbe odd. For the
sameparity of Y , larger Y doesimprove the performance
ratio ��� , and in sucha case,as � 7:8

, ��� approaches
theasymptoticperformanceratio ��� whichdependsonthe
parityof Y .

In Table3,weshow theperformanceratio � � for various
branchingfactor � , andwe observe that � � is anincreasing
function of � . The asymptoticperformanceratio ��� de-
pendson � .

Basedon the above numericaldata,we conjecturethat
the asymptoticperformanceratio of the CanonicalAlgo-
rithm in embeddingcomplete� -ary treesin a � -dimensional
butterflynetwork is

��� �3; ¥���-� r=< ;2r � r� < � Y odd
�

and � � � ¥ ; r � r� < � Y even
�

When � is large,we have � �?> ¥���j � ��� r.� for odd Y and��� > ¥ for even Y . Suchperformanceis comparableto
thatof thehypercubes[28].

B/. � � � � �(!��{z��0!��;zR���çr�� � |5!Ë| � � � |¢z ©�¥ �A@B/. � � � � �(!��{z��0! * �{z * �G� � �� |5!��0! * | � � � |�z��{z * ©�¥ � �ä�,!��{zR�CB�E�,! * �{z * � @B . � � � � �0!��{z��(!��{zR�G�Îr �Ö�hB . � �P� r�� Y �0!��{z��(!��{zR�h��¬¡ r�� � |5!K| � � � |�z ©�¥ �D@B . � � � � �0!��{z��(! * �{z * ��� �VB . � �X� r�� Y �(!��{z��0! * �{z * �h�
�¬¡ r�� � |5!��0! * | � � � |�z��{z * ©�¥ � �ä�,!��{zR�CB�E�,! * �{z * � @B . � � �,«��(!��{z��0! * �{z * ���EFFFFFFFFFFFFFFFFFFFFG FFFFFFFFFFFFFFFFFFFFH

rIKJ*B/. � � �/« � r��0!MLkr��;z��0! * �{z * �
�»B . � � �/« � r��(! � r��;z Z � _ �(! * �;z * �
�»B . � � �/« � r��(! � r��;z Z �() � _ �0! * �{z * �ON��rÏ|P!K| �Å� r�� � |¢z © ¥4� @r

¥ J B/. � � �/« � r���r��;z��0! * �;z * �
�»B/. � � �/« � r���r��;z Z � _ �0! * �{z * �ON��!Ï� � � � |�z ©�¥4� @r

¥ J*B . � � �/« � r�� �æ� r��{z��0! * �{z * �
�»B . � � �/« � r�� �æ� r��{z Z � _ �0! * �{z * �ON��!Ï� � � � |¢z © ¥4� @�¬¡Ö� �är»|�«�| Y � � |"!��(! * | � � � |¢z��{z * ©­¥ � �

Figure 2. Recurrence relation for the expected
load B . � � �/«��0!��;z��(!1*c�;z+*��

.

¤B . � � �0!��{z��(!��{zR�G�Àr �¦¤� ¤B . � Y �0!��;z��0!��{zR�V�� |5!�| � � � |¾z ©�¥ � @¤B/. � � �0!��{z��(! * �;z * ��� ¤� ¤B/. � Y �0!��;z��(! * �;z * �V�
� |5!��0! * | � � � |�z��;z * ©�¥ � �Ä�Q!��{zR�CB�ç�,! * �{z * � @¤B/. ��«��(!��{z��0! * �{z * ���EFFFFFFFFFFFFFFFFFFFFG FFFFFFFFFFFFFFFFFFFFH

rIRJ ¤B . ��« � r��0!SL r��{z��0! * �{z * �
� ¤B . �c« � r��0! � r��{z Z � _ �(! * �;z * �
� ¤B/. �c« � r��0! � r��{z Z �&) � _ �(! * �;z * � N �r�|"!K| �o� r�� � |�z © ¥ � @r

¥ J ¤B . ��« � r���r��{z��0! * �{z * �
� ¤B . �c« � r���r��;z Z � _ �(! * �;z * �ON��!å� � � � |¢z © ¥4� @r

¥ J ¤B/. ��« � r�� �o� r��{z��0! * �{z * �
� ¤B/. �c« � r�� �æ� r��{z Z � _ �0! * �{z * � N �!å� � � � |�z ©�¥4� @rÏ|�«Ë| Y � � |P!��(! * | � � � |�z��{z * © ¥ � �

Figure 3. Recurrence relation for the expected
load ¤B�. �c«��0!��;z��(!1*c�;z+*��

.
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Table1. PerformanceRatio ��� vs. Initial Processor
�Q!4T��;zUT��

.
( 3 � §�¥ , completetreewith � � ¥ , Y �Àr )Æ ±#²�³
².¶ ±#²�³OV�¶ ±;¸�³&².¶ ±;¸�³WV�¶ ±QX�³
².¶ ±QX�³YV�¶

5 5.333 5.333 3.556 3.556 3.556 3.556
6 2.898 2.898 4.661 4.661 4.661 4.661
7 4.016 4.016 3.075 3.075 3.075 3.075
8 2.380 2.380 3.601 3.601 3.601 3.601
9 3.222 3.222 2.737 2.737 2.737 2.737
10 2.243 2.243 2.994 2.994 2.994 2.994
11 2.739 2.739 2.493 2.493 2.493 2.493
12 2.131 2.131 2.619 2.619 2.619 2.619
13 2.437 2.437 2.313 2.313 2.313 2.313
14 2.044 2.044 2.376 2.376 2.376 2.376
15 2.241 2.241 2.179 2.179 2.179 2.179
16 1.978 1.978 2.210 2.210 2.210 2.210
17 2.109 2.109 2.078 2.078 2.078 2.078
18 1.928 1.928 2.094 2.094 2.094 2.094
19 2.019 2.019 2.003 2.003 2.003 2.003
20 1.890 1.890 2.011 2.011 2.011 2.011
21 1.955 1.955 1.947 1.947 1.947 1.947
22 1.862 1.862 1.951 1.951 1.951 1.951
23 1.908 1.908 1.904 1.904 1.904 1.904
24 1.841 1.841 1.906 1.906 1.906 1.906
25 1.875 1.875 1.873 1.873 1.873 1.873
26 1.825 1.825 1.874 1.874 1.874 1.874
27 1.850 1.850 1.849 1.849 1.849 1.849
28 1.813 1.813 1.850 1.850 1.850 1.850
29 1.832 1.832 1.831 1.831 1.831 1.831
30 1.805 1.805 1.831 1.831 1.831 1.831

Theperformanceof theCanonicalAlgorithm in embed-
ding reproductiontreesis shown in Table4, where � � �
B �KJ2L j � �Àjh3 � , and � �çr j �&r �¢¤� � is theexpectednum-
berof nodesin a reproductiontree. A generaltreatmentof
embeddingreproductiontreesis given in [24], whereit is
proventhat for anarbitrarynetwork  with 3 processors,
as � 7Z8

, � � approachestheratioof themaximumnode
degreeto theaveragenodedegree,i.e.,

l�d�M� � � � � � 3 ; MPO�Q@�Q[ + �&[ � �([ � �������([ 0�12� �[�+ � [R� � [w� � u�u�u � [w0�12�=< �
where

[ > � bIy�n[�  �{zR� is the degreeof processor
) >

. By
theabove result,we know thatwhen Y is odd,theasymp-
totic performanceratio of theCanonicalAlgorithm in em-
beddingreproductiontreesin butterfliesis

��� �Îr � r� �
When � is large,wehave ��� > r

for odd Y .

6 Conclusions

We have evaluatedthe performanceof a random-walk-
basedalgorithmfor embeddingdynamicallyevolving trees
in butterfly networks. Our performancedatademonstrate
that butterflieshave comparableperformancewith hyper-
cubesin supportingtree-structuredparallelcomputations.

Table2. PerformanceRatio ��� vs. RandomWalk Length Y .
( 3 � §�¥ , completetreewith � � ¥ , �Q! T �;z T �G�E� � � � � )Æ \ � ö \ �]� \ �^� \ �]_ \ ��` \ ��a
5 5.333 3.421 2.538 2.924 2.056 2.754
6 2.898 3.280 1.959 2.837 1.821 2.717
7 4.016 3.150 2.083 2.775 1.862 2.695
8 2.380 3.042 1.865 2.734 1.793 2.682
9 3.222 2.954 1.902 2.708 1.802 2.675
10 2.243 2.886 1.817 2.692 1.782 2.671
11 2.739 2.832 1.829 2.681 1.785 2.669
12 2.131 2.792 1.795 2.675 1.779 2.668
13 2.437 2.761 1.799 2.672 1.780 2.667
14 2.044 2.738 1.785 2.670 1.778 2.667
15 2.241 2.720 1.787 2.668 1.778 2.667
16 1.978 2.707 1.781 2.668 1.778 2.667
17 2.109 2.697 1.782 2.667 1.778 2.667
18 1.928 2.689 1.779 2.667 1.778 2.667
19 2.019 2.684 1.779 2.667 1.778 2.667
20 1.890 2.679 1.778 2.667 1.778 2.667
21 1.955 2.676 1.778 2.667 1.778 2.667
22 1.862 2.674 1.778 2.667 1.778 2.667
23 1.908 2.672 1.778 2.667 1.778 2.667
24 1.841 2.671 1.778 2.667 1.778 2.667
25 1.875 2.670 1.778 2.667 1.778 2.667
26 1.825 2.669 1.778 2.667 1.778 2.667
27 1.850 2.668 1.778 2.667 1.778 2.667
28 1.813 2.668 1.778 2.667 1.778 2.667
29 1.832 2.668 1.778 2.667 1.778 2.667
30 1.805 2.667 1.778 2.667 1.778 2.667

Table3. PerformanceRatio ��� vs. BranchingFactor � .
( 3 � §w¥ , completetree, Y �Àr , �,!4T��{zUT��G�ç� � � � � )Æ ÈG·"X ÈG·cb ÈG·dV ÈG·"e ÈG·cf ÈG·hg
5 5.333 5.547 5.767 5.941 6.075 6.181
6 2.898 2.831 3.012 3.133 3.220 3.286
7 4.016 4.199 4.392 4.538 4.648 4.733
8 2.380 2.648 2.813 2.925 3.006 3.067
9 3.222 3.425 3.603 3.732 3.827 3.900
10 2.243 2.492 2.648 2.755 2.831 2.888
11 2.739 2.959 3.126 3.243 3.329 3.394
12 2.131 2.371 2.521 2.623 2.696 2.751
13 2.437 2.665 2.823 2.933 3.012 3.073
14 2.044 2.278 2.424 2.523 2.594 2.647
15 2.241 2.472 2.624 2.728 2.803 2.860
16 1.978 2.209 2.352 2.448 2.517 2.569
17 2.109 2.340 2.488 2.588 2.660 2.714
18 1.928 2.157 2.297 2.391 2.459 2.510
19 2.019 2.248 2.392 2.490 2.559 2.612
20 1.890 2.118 2.256 2.349 2.416 2.466
21 1.955 2.183 2.324 2.419 2.488 2.539
22 1.862 2.088 2.225 2.317 2.383 2.433
23 1.908 2.136 2.275 2.368 2.435 2.486
24 1.841 2.066 2.202 2.294 2.359 2.408
25 1.875 2.101 2.239 2.331 2.397 2.447
26 1.825 2.050 2.185 2.276 2.341 2.389
27 1.850 2.075 2.212 2.303 2.369 2.418
28 1.813 2.037 2.172 2.262 2.327 2.375
29 1.832 2.056 2.192 2.283 2.348 2.397
30 1.805 2.028 2.162 2.252 2.317 2.365
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Table4. PerformanceRatio � � vs. RandomWalk Length Y .
( 3 � §w¥ , reproductiontree,

�Q!4T��;zUT����ç� � � � � )i \ � ö \ �]� \ �^� \ �^_ \ ��` \ �^a
100 1.649 2.708 1.426 2.672 1.377 2.659
200 1.495 2.688 1.380 2.669 1.355 2.663
300 1.442 2.681 1.365 2.669 1.348 2.664
400 1.415 2.678 1.357 2.668 1.344 2.665
500 1.399 2.675 1.352 2.668 1.342 2.665
600 1.388 2.674 1.349 2.668 1.341 2.665
700 1.380 2.673 1.347 2.667 1.340 2.666
800 1.374 2.672 1.345 2.667 1.339 2.666
900 1.370 2.672 1.344 2.667 1.338 2.666
1000 1.366 2.671 1.343 2.667 1.338 2.666
1100 1.363 2.671 1.342 2.667 1.337 2.666
1200 1.361 2.670 1.341 2.667 1.337 2.666
1300 1.359 2.670 1.341 2.667 1.337 2.666
1400 1.357 2.670 1.340 2.667 1.336 2.666
1500 1.355 2.670 1.340 2.667 1.336 2.666
1600 1.354 2.669 1.339 2.667 1.336 2.666
1700 1.353 2.669 1.339 2.667 1.336 2.666
1800 1.352 2.669 1.339 2.667 1.336 2.666
1900 1.351 2.669 1.338 2.667 1.336 2.666
2000 1.350 2.669 1.338 2.667 1.336 2.666
2100 1.349 2.669 1.338 2.667 1.335 2.666
2200 1.348 2.669 1.338 2.667 1.335 2.666
2300 1.348 2.669 1.337 2.667 1.335 2.666
2400 1.347 2.669 1.337 2.667 1.335 2.666
2500 1.347 2.668 1.337 2.667 1.335 2.666j 1.333 2.667 1.333 2.667 1.333 2.667
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[6] Ö. Eǧeciǒglu andM. Ibel, “Asymptotichypercubeembed-
dings of dynamic

ã
-ary trees,” CongressusNumerantium,

vol. 126,pp.21-32,1997.

[7] W. Feller, AnIntroductionto ProbabilityTheoryandIts Ap-
plications, Vol. 1, 3rd Ed.,JohnWiley & Sons,1968.

[8] J. GaberandB. Toursel,“Randomizedload distribution of
arbitrarytreeson a distributednetwork,” Proc. of 13th An-
nual ACM Symp.on AppliedComputing, pp. 564-568,At-
lanta,Georgia,February1998.

[9] T. Harris, The Theory of Branching Processes, Springer,
Berlin, 1963.

[10] V. HeunandE.W. Mayr, “Efficient dynamicembeddingof
arbitrary binary trees into hypercubes,” Lecture Notesin
ComputerScience, vol. 1117,pp.287-298,Springer-Verlag,
1996.

[11] C. Kaklamanisand G. Persiano,“Branch-and-boundand
backtracksearchon mesh-connectedarraysof processors,”
Proc. of ACM Symp.on Parallel Algorithmsand Architec-
tures, pp.118-126,1992.

[12] R.M. Karp andY. Zhang,“Randomizedparallelalgorithms
for backtracksearchand branch-and-boundcomputation,”
Journalof theACM, vol. 40,no.3, pp.765-789,1993.

[13] F.T. Leighton, M.J. Newman, A.G. Ranade, and E.J.
Schwabe,“Dynamic treeembeddingsin butterfliesandhy-
percubes,” SIAMJournal on Computing, vol. 21, no. 4, pp.
639-654,1992.

[14] F.T. Leighton, Introductionto Parallel Algorithmsand Ar-
chitectures: Arrays

�
Trees

�
Hypercubes, Morgan Kauf-

mann,1992.

[15] K. Li, “Maintenanceof tree structuredcomputationson
parallel and distributed computersystems,” Proc. of 11th
Annual ACM Symp.on Applied Computing, pp. 337-343,
Philadelphia,Pennsylvania,February1996.

[16] K. Li, “On dynamictreegrowing in hypercubes,” Proc. of
12th AnnualACM Symp.on AppliedComputing, pp. 496-
503,SanJose,California,February1997.

[17] K. Li, “Determiningtheexpectedloadof dynamictreeem-
beddingsin hypercubes,” Proc. of 17th InternationalCon-
ferenceon Distributed ComputingSystems, pp. 508-515,
Baltimore,Maryland,May 1997.

[18] K. Li, “A randomizedalgorithmfor dynamictreegrowing
on
ã
-ary k -cubes,” Proc. of International Conferenceon

Parallel andDistributedProcessingTechniquesand Appli-
cations, vol. II, pp.600-609,LasVegas,Nevada,June1997.

[19] K. Li, “Analysisof randomizedloaddistribution for repro-
ductiontreesin linear arraysandrings,” Proc. of 11th An-
nual InternationalSymp.on High PerformanceComputing
Systems, pp.199-215,Manitoba,Canada,July 1997.

[20] K. Li, “Barrel shifter – a close approximation to the
completelyconnectednetwork in supportingdynamictree
structuredcomputations,” Proc. of 49th IEEE National
Aerospaceand ElectronicsConference, pp. 202-215,Day-
ton,Ohio,July 1997.

[21] K. Li, “Performancemodelingandanalysisof dynamictree
embeddingin meshnetworks,” Proc. of 9th International
ConferenceonParallel andDistributedComputingandSys-
tems, pp.470-475,Washington,DC, October1997.

7

0-7695-1573-8/02/$17.00 (C) 2002 IEEE



[22] K. Li, “Performanceevaluationof probabilistictreeembed-
ding in cube-connectedcycles,” Proc. of 13thAnnualACM
Symp.on AppliedComputing, pp. 584-592,Atlanta, Geor-
gia,February1998.

[23] K. Li, “Asymptoticallyoptimalrandomizedtreeembedding
in staticnetworks,” Proc. of IPPS/SPDP’98 (mergedsym-
posiumof the 12th InternationalParallel ProcessingSym-
posiumandthe9th Symposiumon Parallel andDistributed
Processing), pp.423-430,Orlando,Florida,March1998.

[24] K. Li, “Analyzing the performanceof a probabilisticalgo-
rithm for embeddingreproductiontreesin staticnetworks,”
Proc. of 6th High PerformanceComputingSymposium, pp.
197-202,Boston,Massachusetts,April 1998.

[25] K. Li, “Asymptoticperformanceanalysisof randomizedtree
growing in meshes,” Proc. of 6th High PerformanceCom-
puting Symposium, pp. 222-227, Boston, Massachusetts,
April 1998.

[26] K. Li, “A comparative performanceevaluationof random-
izedtreeembeddingin hypercubicnetworks,” Proc.of Inter-
nationalConferenceonParallel andDistributedProcessing
Techniquesand Applications, vol. IV, pp. 1796-1805,Las
Vegas,Nevada,July1998.

[27] K. Li, “Efficient randomizedloaddistribution for treestruc-
turedcomputationsonparallelanddistributedcomputersys-
tems,” InternationalJournalof ComputerMathematics, vol.
71,pp.21-34,1999.

[28] K. Li, “A methodfor evaluatingthe expectedload of dy-
namictreeembeddingsin hypercubes,” InternationalJour-
nal on Foundationsof ComputerScience, vol. 11,no.2, pp.
207-230,2000.

[29] K. Li and J.E. Dorband, “Asymptotically optimal proba-
bilistic embeddingalgorithmsfor supportingtreestructured
computationsin hypercubes,” Proc.of the7thSymposiumon
the Frontiers of MassivelyParallel Computations, pp. 218-
225,Annapolis,Maryland,February1999.

[30] K. Li, Y. Pan, H. Shen, G.H. Young, and S.-Q. Zheng,
“Lower boundsfor dynamic tree embeddingin bipartite
graphs,” JournalofParallel andDistributedComputing, vol.
53,no.2, pp.119-143,1998.

[31] K. Li and X. Shen,“Optimal embeddingof healthytrees
usingrandomwalk,” Proc.of 11thInternationalConference
on Parallel andDistributedComputingandSystems, vol. 1,
pp.50-55,Cambridge,Massachusetts,November1999.

[32] U. Manber, Introduction to Algorithms - A Creative Ap-
proach, Addison-Wesley, 1989.

[33] B. MonienandH. Sudborough,“Embeddingoneintercon-
nectionnetwork in another,” in ComputationalGraphThe-
ory, G. Tinhofer, E. Mayr, H. Noltemeier, andM.M. Syslo,
eds.,pp.257-282,Springer-Verlag,New York, 1990.

[34] M.A. Palis andD.S.L.Wei, “Backtrackingandbranch-and-
bound on mesh-connectedcomputerswith reconfigurable
buses,” Proc. of 7th International Conferenceon Parallel
andDistributedComputingandSystems, pp.243-247,1995.

[35] J. Pearl,Heuristics: Intelligent Search Strategiesfor Com-
puterProblemSolving, Addison-Wesley, 1984.

[36] A.G. Ranade,“Optimal speedupfor backtracksearchon a
butterfly network,” Proc.of 3rd ACM Symp.on Parallel Al-
gorithmsandArchitectures, pp.40-48,1991.

[37] H. Shen,K. Li, Y. Pan,G.H.Young,andS.-Q.Zheng,“Per-
formanceanalysisfor dynamictreeembeddingin

ã
-partite

networks by randomwalk,” Journal of Parallel and Dis-
tributedComputing, vol. 50,no.1, pp.144-156,1998.

8

0-7695-1573-8/02/$17.00 (C) 2002 IEEE


	IPDPS 2002
	Return to Main Menu


