Effekt‘l'uJ a Va

prog rammieren

Programmer’s Choice

Pearson

Education VAV ADDISON-WESLEY

Joshua Bloch

Effektiv Java
programmieren

Deutsche Ubersetzung von Reder Translations

¥y ADDISON-WESLEY

An imprint of Pearson Education

Minchen e Boston e San Francisco e Harlow, England
Don Mills, Ontario e Sydney ¢ Mexico City
Madrid ¢« Amsterdam

http://www.addison-wesley.de
http://www.pearsoned.de
http://www.pearsoned.de
http://www.addison-wesley.de

Die Deutsche Bibliothek — CIP-Einheitsaufnahme

Ein Titeldatensatz fiir diese Publikation ist bei
Der Deutschen Bibliothek erhaltlich.

Die Informationen in diesem Produkt werden ohne Riicksicht auf einen eventuellen Patentschutz veroffentlicht.
Warennamen werden ohne Gewéhrleistung der freien Verwendbarkeit benutzt. Bei der Zusammenstellung von
Abbildungen und Texten wurde mit grofSter Sorgfalt vorgegangen. Trotzdem kénnen Fehler nicht vollstandig ausge-
schlossen werden. Verlag, Herausgeber und Autoren kénnen fiir fehlerhafte Angaben und deren Folgen weder eine
juristische Verantwortung noch irgendeine Haftung tibernehmen. Fiir Verbesserungsvorschlige und Hinweise auf
Fehler sind Verlag und Herausgeber dankbar.

Alle Rechte vorbehalten, auch die der fotomechanischen Wiedergabe und der Speicherung in elektronischen Medien.
Die gewerbliche Nutzung der in diesem Produkt gezeigten Modelle und Arbeiten ist nicht zuldssig.

Fast alle Hardware- und Softwarebezeichnungen, die in diesem Buch erwédhnt werden, sind gleichzeitig eingetragene
Warenzeichen oder sollten als solche betrachtet werden.

Umwelthinweis:

Dieses Produkt wurde auf chlorfrei gebleichtem Papier gedruckt.

Die Einschrumpffolie — zum Schutz vor Verschmutzung — ist aus umweltvertraglichem
und recyclingfahigem PE-Material.

Authorized translation from the English language edition, entitled EFFECTIVE JAVA™ PROGRAMMING
LANGUAGE GUIDE, 1st Edition by BLOCH, JOSHUA, published by Pearson Education, Inc., publishing as Addison
Wesley Professional, Copyright © 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303 USA.
All rights reserved.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording or by any information storage retrieval system, without permission
from Pearson Education, Inc.

GERMAN language edition published by PEARSON EDUCATION DEUTSCHLAND, Copyright © 2002 Addison-
Wesley

Autorisierte Ubersetzung der englischen Ausgabe mit dem Titel EFFECTIVE JAVA™, PROGRAMMING LANGUAGE
GUIDE, 1. Auflage, von BLOCH, JOSHUA. Veréffentlicht von Pearson Education, Inc., Addison Wesley Professional,
Copyright © 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303 USA.

Alle Rechte vorbehalten.

54 3 21
05 04 03 02

ISBN 3-8273-1933-1

© 2002 by Addison-Wesley Verlag,

ein Imprint der Pearson Education Deutschland GmbH
Martin-Kollar-Strafie 10-12, D-81829 Miinchen/Germany

Alle Rechte vorbehalten

Einbandgestaltung: Christine Rechl, Miinchen

Titelbild: Mutisia sp., Mutisie. © Karl Blossfeldt Archiv —

Ann und Jiirgen Wilde, Ziilpich/VG Bild-Kunst Bonn, 2001.
Lektorat: Christiane Auf, cauf@pearson.de

Korrektorat: Susanne Franz, Ottobrunn

Herstellung: Monika Weiher, mweiher@pearson.de

Satz: reemers publishing services gmbh, Krefeld, www.reemers.de
Druck und Verarbeitung: Kosel, Kempten, www.Koeselbuch.de
Printed in Germany

Inhalt

2.1
22

2.3
24
2.5
2.6

3.2
3.3
3.4
3.5

4.1
42
43
44

4.5

Vorbemerkung
Vorwort
Danksagungen
Einfilhrung

Objekte erzeugen und zerstéren

Thema 1: Verwenden Sie statische Factory-Methoden statt Konstruktoren
Thema 2: Erzwingen Sie mit einem privaten Konstruktor

die Singleton-Eigenschaft

Thema 3: Mit einem privaten Konstruktor Nichtinstanziierbarkeit erzwingen
Thema 4: Vermeiden Sie die Erzeugung von Objektduplikaten

Thema 5: Eliminieren Sie alte Objektreferenzen

Thema 6: Vermeiden Sie Finalizer

Allen Objekten gemeinsame Methoden

Thema 7: Halten Sie beim Uberschreiben von equals den

allgemeinen Vertrag ein

Thema 8: Uberschreiben Sie hashCode immer, wenn Sie equals tiberschreiben
Thema 9: Uberschreiben Sie toString immer

Thema 10: Vorsicht beim Uberschreiben von clone

Thema 11: Implementieren Sie Comparable

Klassen und Interfaces

Thema 12: Minimieren Sie die Zugreifbarkeit von Klassen und Attributen
Thema 13: Bevorzugen Sie Unverdnderbarkeit

Thema 14: Komposition ist besser als Vererbung

Thema 15: Entweder Sie entwerfen und dokumentieren

fiir die Vererbung oder Sie verbieten sie

Thema 16: Nutzen Sie besser Interfaces als abstrakte Klassen

19
19

23
25
26
30
33

39

39

55
57
65

71

71
75
83

89
94

6 Inhalt
4.6 Thema 17: Verwenden Sie Interfaces ausschliefilich zur Typdefinition 99
4.7 Thema 18: Ziehen Sie statische Attributklassen den nicht-statischen vor 101
5 Ersatz fiir C-Konstrukte 107
5.1 Thema 19: Ersetzen Sie Strukturen durch Klassen 107
52 Thema 20: Ersetzen Sie Unions durch Klassenhierarchien 109
5.3 Thema 21: Ersetzen Sie Enum-Konstrukte durch Klassen 113
5.4 Thema 22: Ersetzen Sie Funktionszeiger durch Klassen und Interfaces 123
6 Methoden 127
6.1 Thema 23: Priifen Sie die Giiltigkeit der Parameter 127
6.2 Thema 24: Machen Sie bei Bedarf defensive Kopien 129
6.3 Thema 25: Entwerfen Sie die Methodensignaturen sorgfaltig 133
6.4 Thema 26: Verwenden Sie Methodeniiberladung vorsichtig 136
6.5 Thema 27: Geben Sie nicht null, sondern Arrays der Lange null zuriick 141
6.6 Thema 28: Schreiben Sie Doc-Kommentare fiir alle

offen gelegten API-Elemente 142
7 Allgemeine Programmierung 147
7.1 Thema 29: Minimieren Sie den Giiltigkeitsbereich lokaler Variablen 147
7.2 Thema 30: Sie miissen die Bibliotheken kennen und nutzen 150
7.3 Thema 31: Meiden Sie float und double, wenn Sie genaue Antworten wollen 154
74 Thema 32: Vermeiden Sie Strings, wo andere Typen sich besser eignen 156
7.5 Thema 33: Hiiten Sie sich vor der Langsamkeit von String-Verkettungen 159
7.6 Thema 34: Referenzieren Sie Objekte iiber ihre Interfaces 160
7.7 Thema 35: Nutzen Sie eher Interfaces als Reflection 162
7.8 Thema 36: Verwenden Sie native Methoden mit Vorsicht 165
7.9 Thema 37: Optimieren Sie nur mit Vorsicht 166
7.10 Thema 38: Halten Sie sich an die allgemein anerkannten

Namenskonventionen 169
8 Ausnahmen 173
8.1 Thema 39: Verwenden Sie Ausnahmen nur fiir Ausnahmebedingungen 173
8.2 Thema 40: Gepriifte Ausnahmen fiir behebbare Situationen,

Laufzeitausnahmen fiir Programmierfehler 176
8.3 Thema 41: Vermeiden Sie den unnétigen Einsatz von gepriiften Ausnahmen 178
8.4 Thema 42: Bevorzugen Sie Standardausnahmen 180
8.5 Thema 43: Losen Sie Ausnahmen aus, die zur Abstraktion passen 182
8.6 Thema 44: Dokumentieren Sie alle Ausnahmen, die eine Methode auslost 184
8.7 Thema 45: Geben Sie in Detailnachrichten Fehlerinformationen an 186
8.8 Thema 46: Streben Sie nach Fehleratomizitat 187
8.9 Thema 47: Ignorieren Sie keine Ausnahmen 189

Inhalt 7
9 Threads 191
9.1 Thema 48: Synchronisieren Sie den Zugriff auf gemeinsam genutzte,

veranderliche Daten 191
9.2 Thema 49: Vermeiden Sie {iberméafiige Synchronisierung 197
9.3 Thema 50: Rufen Sie wait nie aufSerhalb einer wait-Schleife auf 202
9.4 Thema 51: Verlassen Sie sich nicht auf den Thread-Planer 204
9.5 Thema 52: Dokumentieren Sie die Thread-Sicherheit 208
9.6 Thema 53: Vermeiden Sie Thread-Gruppen 211
10 Serialisierung 213
10.1 Thema 54: Implementieren Sie Serializable mit Vorsicht 213
10.2 Thema 55: Ziehen Sie die Nutzung einer eigenen serialisierten

Form in Erwagung 218
10.3 Thema 56: Schreiben Sie readObject-Methoden defensiv 224
104 Thema 57: Stellen Sie wenn nétig eine readResolve-Methode zur Verfiigung 230

Quellen 233

Index 237

Vorbemerkung

Wenn ein Kollege zu Ihnen kdme und sagte: »Frau von mir heute nacht wird herstellen
das uniibliche Essen im Heim. Du komme?¢ dann kdmen Thnen vermutlich drei Dinge
in den Sinn: Drittens, dass Sie schon zum Essen verabredet sind, zweitens, dass
Deutsch wohl nicht die Muttersprache dieses Kollegen ist, und erstens eine grofle Ver-
wirrung.

Wenn Sie jemals selbst eine Fremdsprache gelernt und dann versucht haben, sie aufler-
halb des Klassenzimmers anzuwenden, dann wissen Sie, dass Sie drei Dinge beherr-
schen miissen: Die Struktur der Sprache (ihre Grammatik), die Bezeichnungen der
Sachen, iiber die Sie reden mdochten (das Vokabular), und die Art, wie man alltagliche
Dinge effektiv und normal ausdriickt (die Verwendung). Leider werden im Unterricht
allzu oft nur die ersten beiden Dinge gelehrt, und Sie stellen fest, dass die Mutter-
sprachler nur mit Miihe ernst bleiben konnen, wahrend Sie versuchen, sich verstand-
lich zu machen.

Mit einer Programmiersprache ist es ganz dhnlich. Sie miissen den Sprachkern verste-
hen: Ist er algorithmisch, funktional oder objektorientiert? Sie miissen das Vokabular
kennen: Welche Datenstrukturen, Operationen und Fahigkeiten stellen die Standard-
bibliotheken zur Verfiigung? Und Sie miissen vertraut sein mit der normalen und effek-
tiven Strukturierung des Codes. Oft behandeln Biicher tiber Programmiersprachen nur
die ersten beiden Themen oder gehen nur punktuell auf die Verwendung ein. Das liegt
vielleicht daran, dass die ersten beiden Themen in mancher Hinsicht einfacher sind. Die
Grammatik und das Vokabular sind Eigenschaften der Sprache selbst, aber die Verwen-
dung ist eine Eigenschaft der Gemeinschaft, in der die Sprache genutzt wird.

So ist z.B. Java eine objektorientierte Programmiersprache mit Einfachvererbung und
unterstiitzt einen imperativen (anweisungsorientierten) Codierstil in den einzelnen
Methoden. Bibliotheken gibt es fiir die grafische Anzeige, Netzwerkprogrammierung,
verteilte Systeme und Sicherheit. Doch wie setzt man die Sprache am besten in die Pra-
xis um?

Es gibt noch einen weiteren Punkt: Im Gegensatz zur gesprochenen Sprache und den
meisten Biichern und Zeitschriften dndern sich Programme mit der Zeit. Es reicht
nicht, Code zu schreiben, der funktioniert und von anderen Personen verstanden wird;

10 Vorbemerkung

Sie miissen den Code auch so organisieren, dass er sich leicht dndern ldsst. Es gibt
immer zehn verschiedene Mdglichkeiten, den Code fiir eine Aufgabe A zu schreiben.
Von diesen zehn Moglichkeiten sind sieben schrég, ineffizient oder verwirrend. Doch
welche der iibrigen drei bietet die grofite Wahrscheinlichkeit, dass sie dem Code
gleichkommt, der ndchstes Jahr im Software-Release fiir die Aufgabe A eingesetzt
wird?

Die Grammatik von Java konnen Sie aus einer Vielzahl von Biichern lernen, darunter
Die Programmiersprache Java von Arnold, Gosling und Holmes [Addison-Wesley, 2001]
oder die Java-Sprachspezifikation von Gosling, Arnold, Steele und Bracha [Addison-
Wesley, 1997]. Und es gibt "zig Biicher iiber die Java-Bibliotheken und -APIs.

Dieses Buch kiimmert sich um das dritte Bediirfnis beim Lernen einer Sprache: ihre
normale und effektive Verwendung. Joshua Bloch hat bei Sun Microsystems Jahre
daran gearbeitet, Java zu erweitern, zu implementieren und einzusetzen. Dabei hat er
den Code vieler anderer Entwickler gelesen, darunter auch meinen. Hier gibt er nun
systematisch strukturiert gute Ratschldge, wie Sie Ihren Code derart aufbauen, dass er
gut funktioniert, dass er von anderen verstanden wird, dass spatere Anderungen keine
Kopfschmerzen mehr machen miissen, und dass Ihre Programme angenehm, elegant
und schon werden.

Guy L. Steele Jr.
Burlington, Massachusetts

April 2001

Vorwort

Im Jahre 1996 machte ich mich auf den grofien Treck nach Westen, um fiir jene Firma
zu arbeiten, die sich damals noch JavaSoft nannte, denn jeder wusste, dass dort die
Post abging. In den fiinf Jahren, die seither vergangen sind, diente ich als Architekt fiir
Bibliotheken der Java-Plattform. Ich entwarf, implementierte und wartete viele dieser
Bibliotheken und betreute weitere als Consultant. Diese Bibliotheken in den Jahren zu
betreuen, in denen Java reifte, war eine Chance, wie man sie nur einmal im Leben
bekommt. Ohne Ubertreibung kann ich sagen: Ich hatte das Privileg, mit einigen der
besten Software-Entwickler unserer Generation zu arbeiten. Dabei lernte ich viel tiber
die Programmiersprache Java: Was daran funktionierte und was nicht, und wie man
aus der Sprache und ihren Bibliotheken am meisten Nutzen zieht.

In diesem Buch versuche ich, meine Erfahrungen an Sie weiterzugeben, damit Sie
meine Erfolge teilen konnen, aber meine Fehler vermeiden. Das Format dieses Buches
orientiert sich an Effective C++ von Scott Meyers [1998]. Es besteht aus fiinfzig Themen,
die jeweils eine konkrete Regel vermitteln, wie Sie Ihre Programme und Entwiirfe ver-
bessern konnen. Ich fand dieses Format aufSerordentlich effektiv und hoffe, dass Sie
dem zustimmen werden.

In vielen Fallen nahm ich mir die Freiheit, die Themen mit Beispielen aus der Praxis zu
veranschaulichen, die den Java-Plattformbibliotheken entnommen sind. Bei der
Beschreibung von Dingen, die man auch besser hidtte machen kénnen, hielt ich mich
moglichst an selbst geschriebenen Code, aber gelegentlich habe ich auch auf Code von
Kollegen zuriickgegriffen. Es tut mir aufrichtig Leid, falls ich trotz all meiner Bemii-
hungen damit irgendjemand zu nahe getreten sein sollte. Negativbeispiele werden
nicht als Schuldzuweisungen sondern im Geiste einer guten Zusammenarbeit aufge-
fiihrt, damit wir alle von den Erfahrungen unserer Vorgianger lernen kénnen.

Dieses Buch wendet sich zwar nicht ausschliefSlich an Entwickler wieder verwendba-
rer Komponenten, aber natiirlich schlagen sich darin meine Erfahrungen aus zwanzig
Jahren Entwicklungsarbeit an solchen Komponenten nieder. Ich denke immer daran,
APIs zu exportieren, und ermutige Sie, dasselbe zu tun. Auch wenn Sie keine wieder
verwendbaren Komponenten entwickeln, verbessert dieser Ansatz die Qualitét Ihrer
Software. Aufierdem geschieht es oft, dass man eine wieder verwendbare Komponente
schreibt, ohne es zu wissen: Sie schreiben etwas Niitzliches, geben es an Thren Kollegen

12 Vorwort

nebenan weiter, und ehe Sie sichs versehen, haben Sie schon zehn Benutzer. An diesem
Punkt konnen Sie das API schon nicht mehr nach Belieben dndern und freuen sich,
wenn Sie das API schon beim Schreiben der Software sorgféltig entworfen haben.

Meine Konzentration auf den API-Entwurf mag den Anhingern der neuen, leichtge-
wichtigen Software-Entwicklungsmethoden wie z.B. Extreme Programming [Beck, 1999]
ein wenig unnatiirlich erscheinen. Diese Methoden zielen darauf ab, das einfachste
funktionsfdhige Programm zu schreiben. Wenn Sie sich einem solchen Verfahren ver-
schrieben haben, werden Sie jedoch feststellen, dass eine Betonung des API-Entwurfs
im Refactoring-Prozess gute Dienste leistet. Die wichtigsten Ziele des Refactoring sind
die Verbesserung der Systemstruktur und die Vermeidung doppelt geschriebenen
Codes. Dies kann man unmdoglich erreichen, wenn man keine gut entworfenen APIs
fiir die Systemkomponenten hat.

Keine Sprache ist perfekt, aber einige sind hervorragend. Ich habe festgestellt, dass
Java und seine Bibliotheken die Qualitdt und Produktivitat immens férdern, und dass
es eine Freude ist, damit zu arbeiten. Hoffentlich kann Ihnen dieses Buch einiges von
meiner Begeisterung vermitteln und helfen, diese Sprache noch wirkungsvoller und
freudiger zu nutzen.

Joshua Bloch
Cupertino, Kalifornien

April 2001

Danksagungen

Ich danke Patrick Chan, der mir vorschlug, dieses Buch zu schreiben, und diese Idee
auch Lisa Friendly, der Lektorin dieser Reihe, Tim Lindholm, dem technischen Lektor,
und Mike Hendrickson, dem Cheflektor von Addison-Wesley Professional vortrug.
Allen drei Verlagsmitarbeitern danke ich dafiir, dass sie mich zu diesem Projekt ermu-
tigten und mit iibermenschlicher Geduld und unerschiitterlichem Glauben darauf ver-
trauten, dass ich tatsdchlich eines Tages dieses Buch schreiben wiirde.

Ich danke James Gosling und seinem Originalteam dafiir, dass sie die fantastische
Sache, iiber die ich schreibe, ersannen und ich danke vielen der Java-Plattform-Ingeni-
eure, die in Goslings Fufistapfen traten. Vor allem danke ich meinen Kollegen in der
Java Platform Tools and Libraries Group von Sun fiir ihre Kommentare, Ermutigung
und Unterstiitzung. Zu dem Team gehoren Andrew Bennett, Joe Darcy, Neal Gafter,
Iris Garcia, Konstantin Kladko, Ian Little, Mike McCloskey und Mark Reinhold. Friiher
waren auch Zhenghua Li, Bill Maddox und Naveen Sanjeeva noch dabei.

Ich danke auch meinem Manager Andrew Bennett und meinem Direktor Larry Abra-
hams, die dieses Projekt uneingeschrankt und mit Begeisterung unterstiitzten. Rich
Green, dem stellvertretenden Engineering-Leiter bei Java Software, danke ich dafiir,
dass er eine Umgebung schuf, in der Ingenieure die Freiheit haben, kreativ zu denken
und ihre Arbeit zu veroffentlichen.

Ich hatte das Gliick, die besten Gutachter zu haben, die man sich nur vorstellen kann,
und bin jedem von ihnen aufrichtig zu Dank verpflichtet: Andrew Bennett, Cindy
Bloch, Dan Bloch, Beth Bottos, Joe Bowbeer, Gilad Bracha, Mary Campione, Joe Darcy,
David Eckhardt, Joe Fialli, Lisa Friendly, James Gosling, Peter Haggar, Brian Kernig-
han, Konstantin Kladko, Doug Lea, Zhenghua Li, Tim Lindholm, Mike McCloskey, Tim
Peierls, Mark Reinhold, Ken Russell, Bill Shannon, Peter Stout, Phil Wadler und noch
zwei weitere, die ungenannt bleiben mdochten. Alle haben eine grofie Anzahl Vor-
schldge beigesteuert, die dieses Buch wesentlich verbesserten und mir viele Peinlich-
keiten ersparten. Falls noch irgendwelche Fehler {ibrig sind, so bin nur ich alleine
dafiir verantwortlich.

14 Danksagungen

Viele Kollegen bei Sun und anderen Unternehmen fithrten mit mir technische Diskus-
sionen, die die Qualitdt dieses Buchs verbesserten. Unter anderen steuerten Ben
Gomes, Steffen Grarup, Peter Kessler, Richard Roda, John Rose und David Stoutamire
niitzliche Erkenntnisse bei. Ein besonderer Dank gebiihrt Doug Lea, der viele Gedan-
ken aus diesem Buch priifte und grofziigig seine Zeit und sein Wissen dafiir zur Verfii-
gung stellte.

Ich danke Julie Dinicola, Jacqui Doucette, Mike Hendrickson, Heather Olszyk, Tracy
Russ und dem ganzen Addison-Wesley-Team fiir die Unterstiitzung und Professionali-
tdt. Trotz des unglaublichen Termindrucks blieben sie immer freundlich und zuvor-
kommend.

Guy Steele danke ich fiir das Vorwort. Ich fiihle mich geehrt, dass er sich bereit erklart
hat, an diesem Projekt mitzuwirken.

Abschlieflend danke ich meiner Frau Cindy Bloch dafiir, dass sie mich ermutigte und
bisweilen massiv unter Druck setzte, dieses Buch zu schreiben, jedes Thema in seiner
Rohfassung durchlas, mir bei FrameMaker half, den Index erstellte und mein Projekt
immer tolerierte.

| Einfliihrung

Dieses Buch soll Ihnen helfen, die Programmiersprache Java™ und ihre wichtigsten
Bibliotheken java.lang, java.util und in geringerem Mafle auch java.io moglichst wir-
kungsvoll einzusetzen. Von Zeit zu Zeit wird hier auch von anderen Bibliotheken die
Rede sein, aber die Programmierung grafischer Benutzeroberflichen oder die Enter-
prise-APIs sind nicht Gegenstand dieses Buchs.

Das Buch besteht aus 57 Themen, die jeweils eine Regel vermitteln. In den Regeln sind
Verfahren fixiert, die die meisten erfahrenen Programmierer fiir die besten halten. Die
Themen sind lose in neun Kapitel gruppiert, von denen jedes einen umfangreicheren
Aspekt des Software-Entwurfs behandelt. Das Buch ist nicht dafiir gedacht, dass man
es von vorne bis hinten durchliest: Jedes Thema wird mehr oder weniger selbststandig
abgehandelt. Viele Querverweise zwischen den Themen erméglichen es Ihnen, sich in
dem Buch leicht zurechtzufinden.

Die meisten Themen werden durch Beispielprogramme veranschaulicht. Ein wichtiger
Bestandteil dieses Buchs sind die Code-Beispiele, die viele Entwurfsmuster und Idi-
ome erkldaren. Manche sind édlteren Datums, wie z.B. Singleton (Thema 2), und andere
neuer, wie z.B. Finalizer Guardian (Thema 6) und Defensives readResolve (Thema 57).
Uber einen separaten Index kénnen Sie diese Muster und Idiome leicht nachschlagen.
Wo es angebracht war, habe ich Querverweise auf das Standardwerk Design Patterns
[Gamma 1995] eingefiigt, das bei Addison Wesley unter dem Titel Entwurfsmuster auch
als Ubersetzung erschienen ist.

Viele Themen enthalten ein oder mehrere Programmbeispiele, die zeigen, was man
moglichst nicht tun sollte. Solche abschreckenden Beispiele sind mit einem Kommen-
tar wie z.B. »//Tun Sie das nicht!«deutlich gekennzeichnet. In jedem Fall wird im
Thema erklédrt, warum dies ein schlechtes Beispiel ist, und ein alternativer Ansatz vor-
gestellt.

Dies ist kein Anfangerbuch: Es setzt voraus, dass Sie sich bereits gut mit Java ausken-
nen. Wenn das nicht der Fall ist, sollten Sie eine der vielen guten Einfithrungen in
Betracht ziehen, z.B. die von Arnold [2000] oder die von Campione [2000]. Zwar kann
jeder, der Java kennt, dieses Buch lesen, aber es soll auch fortgeschrittenen Program-
mierern noch gute Denkansétze bieten.

16 | Einfiihrung

Die meisten Regeln in diesem Buch sind von einigen wenigen Grundprinzipien abge-
leitet. Klarheit und Einfachheit sind von iiberragender Bedeutung. Der Benutzer eines
Moduls sollte niemals von dessen Verhalten iiberrascht sein. Module sollten moglichst
klein sein, aber auch nicht zu klein. (In diesem Buch meint der Begriff »Modul« jede
wieder verwendbare Softwarekomponente, angefangen bei einer einzelnen Methode
bis hin zu einem komplexen, aus mehreren Paketen bestehenden System.) Code sollte
besser wieder verwendet als kopiert werden. Die Abhingigkeiten zwischen Modulen
sollten auf ein Minimum reduziert sein. Fehler sollten moglichst frithzeitig entdeckt
werden, im Idealfall zur Kompilierungszeit.

Die Regeln in diesem Buch treffen zwar nicht in hundert Prozent der Fille zu, aber in
der iiberwiegenden Mehrzahl erweisen sie sich als die beste Losung. Sie sollten die
Regeln nicht sklavisch befolgen, sondern gelegentlich davon abweichen, wenn es gute
Griinde dafiir gibt. Wie fast alles, erlernen Sie auch die Kunst der guten Programmie-
rung am besten, wenn Sie sich zuerst die Regeln einprigen und danach lernen, wann
man davon abweichen sollte.

In diesem Buch geht es zumeist nicht um Performance, sondern darum, klare, richtige,
benutzbare, stabile, flexible und wartungsfreundliche Programme zu schreiben. Wenn
Sie dies konnen, dann diirfte es Ihnen leicht fallen, die benétigte Leistung zu erzielen
(Thema 37). In manchen Themen geht es auch um Performance und einige Themen
geben sogar Performance-Messungen an. Diese Zahlen, vor denen immer die Phrase
»auf meinem Rechner« steht, sollten Sie bestenfalls als Ndherungswerte ansehen.

Mein Rechner ist ein in die Jahre gekommener, selbst zusammengebauter 400-MHz-
Pentium® II mit 128 MB RAM, auf dem der 1.3-Release des Java 2 Standard Edition
Software Development Kit (SDK) von Sun unter Microsoft Windows NT® 4.0 lauft. Zu
dem SDK gehort die Java HotSpot™ Client VM von Sun, eine Client-Implementierung
der Java Virtual Machine, die dem neuesten Stand der Technik entspricht.

Manchmal muss man konkrete Releases nennen, wenn man tiiber die Merkmale von
Java und seinen Bibliotheken redet. Weil es kiirzer ist, verwendet dieses Buch »Engi-
neering-Versionsnummern« an Stelle der offiziellen Namen der Releases. Tabelle 1.1
zeigt die Namen

Offizieller Release-Name Engineering-Versionsnummer
JDK I.1.x / JRE I.1.x 1.1
Java 2-Plattform, Standard Edition, v 1.2 1.2
Java 2-Plattform, Standard Edition, v |.3 1.3
Java 2-Plattform, Standard Edition, v |.4 1.4

Tabelle 1.1: Versionen der Java-Plattform

17

Obwohl in manchen Themen auch neue Features des 1.4-Release vorkommen, werden
diese — von wenigen Ausnahmen abgesehen — in den Programmbeispielen nicht
genutzt. Die Beispiele wurden mit den 1.3-Releases getestet. Die meisten, wenn nicht
sogar alle, diirften mit dem Release 1.2 unverandert laufen.

Die Beispiele sind in verniinftigem Mafle vollstandig, wobei allerdings die Lesbarkeit
an erster Stelle steht. Sie verwenden freiziigig Klassen der Pakete java.util und
Jjava.io. Um die Beispiele kompilieren zu kénnen, miissen Sie gegebenenfalls eine oder
beide der folgenden Importanweisungen angeben:

import java.util.*;

import java.io.*;
Auch andere Quelltextteile wurden ausgelassen. Unter http://java.sun.com/docs/books/
effective finden Sie die Website zu diesem Buch; sie enthilt zu jedem Beispiel eine
erweiterte Version, die Sie kompilieren und ausfiihren kénnen.

Technische Begriffe werden zumeist so verwendet, wie Sie in der Java-Sprachspezifika-
tion (2. Auflage) definiert sind. Einige wenige Begriffe verdienen es, gesondert erwédhnt
zu werden. Java unterstiitzt vier Arten von Typen: Interfaces, Klassen, Arrays und
Grundtypen. Die ersten drei sind Referenztypen. Klasseninstanzen und Arrays sind
Objekte, Grundtypen sind es nicht. Zu den Attributen einer Klasse gehoren Felder,
Methoden, Attributklassen und Attribut-Interfaces. Eine Methodensignatur besteht aus
dem Namen der Methode und den Typen ihrer formalen Parameter, aber der Riick-
gabetyp der Methode gehdrt nicht zur Signatur.

In diesem Buch werden einige Termini abweichend von der Java-Sprachspezifikation
verwendet. Im Gegensatz zur Sprachspezifikation verwenden wir hier Vererbung als
Synonym fiir Unterklassenbildung. Wir wenden den Begriff der Vererbung nicht auf
Interfaces an, sondern sagen, dass eine Klasse ein Interface implementiert, oder dass ein
Interface ein anderes erweitert. Fiir die Zugriffsebene, die gilt, wenn nichts anderes
angegeben ist, verwendet dieses Buch den aussagekraftigen Begriff »paketprivat«
anstatt des technisch korrekten Wortes »Standardzugriff [JLS, 6.6.1]«.

Dieses Buch verwendet einige technische Begriffe, die in der Java Language Specification
nicht definiert werden. Der Begriff »exportiertes API« oder schlicht »API« meint Klas-
sen, Interfaces, Konstruktoren, Attribute und serialisierte Formen, mit denen ein Pro-
grammierer auf eine Klasse, ein Interface oder ein Paket zugreift. (Der Begriff API —
kurz fiir Application Programming Interface — wird dem ansonsten gern genutzten Wort
Interface vorgezogen, um eine Verwechslung mit dem gleichnamigen Sprachkonstrukt
zu vermeiden.) Ein Programmierer, der ein Programm unter Verwendung eines API
schreibt, wird als Benutzer des betreffenden API bezeichnet. Eine Klasse, deren Imple-
mentierung ein API verwendet, nennen wir einen Client des betreffenden APL

http://java.sun.com/docs/books/

18 | Einfiihrung

Klassen, Interfaces, Konstruktoren, Attribute und serialisierte Zugriffsformen werden
kollektiv als API-Elemente bezeichnet. Ein exportiertes API besteht aus den API-Ele-
menten, auf die von auflerhalb des Pakets, in dem das API definiert ist, zugegriffen
werden kann. Dies sind die API-Elemente, die jeder Client nutzen kann, und deren
Unterstiitzung der Autor des API zusichert. Es ist kein Zufall, dass dies auch die Ele-
mente sind, flir die das Javadoc-Programm im Standardmodus seine Dokumenta-
tionen generiert. Grob gesagt besteht das exportierte API eines Pakets aus den
offentlichen und geschiitzten Attributen und Konstruktoren jeder offentlichen Klasse
und jedes offentlichen Interfaces dieses Pakets.

2 Objekte erzeugen und zerstoren

Dieses Kapitel handelt davon, wie Objekte erzeugt und zerstért werden: Wann und
wie Sie Objekte anlegen, wann und wie Sie das Anlegen von Objekten eher vermeiden,
wie Sie eine rechtzeitige Zerstorung der Objekte gewahrleisten und wie Sie die Bereini-
gung managen, die der Objektzerstérung vorausgehen muss.

2.1 Thema I: Verwenden Sie statische Factory-Methoden
statt Konstruktoren

Der normale Weg, auf dem eine Klasse einem Client eine Instanz gibt, besteht darin,
einen offentlichen Konstruktor zur Verfiigung zu stellen. Es gibt jedoch noch eine
andere, weniger bekannte Technik, die dennoch zum Arsenal jedes Programmierers
gehoren sollte: Eine Klasse kann auch eine statische Factory-Methode zur Verfiigung stel-
len. Diese ist einfach eine statische Methode, die eine Instanz der Klasse zurtiickgibt. Im
Folgenden sehen Sie ein einfaches Beispiel aus der Klasse Boolean (der Hiillenklasse fiir
den Grundtyp boolean). Diese statische Factory-Methode, die im 1.4-Release neu hinzu-
kam, iibersetzt einen Wert mit dem Grundtyp boolean in eine Boolean-Objektreferenz:

public static Boolean valueOf(boolean b) f{
return (b ? Boolean.TRUE : Boolean.FALSE);
}

Eine Klasse kann ihren Clients statische Factory-Methoden zusétzlich zu oder an Stelle
von Konstruktoren zur Verfiigung stellen. Dies hat Vor- und Nachteile.

Ein Vorteil der statischen Factory-Methoden besteht darin, dass sie im Gegensatz zu
Konstruktoren Namen haben. Wenn die Parameter eines Konstruktors das Riickgabe-
objekt nicht beschreiben, dann kann eine Klasse durch eine statische Factory-Methode
mit einem gut gewdhlten Namen leichter benutzbar und der resultierende Client-Code
leichter lesbar werden. So konnte man z.B. den Konstruktor Biginteger(int, int, Ran-
dom), der einen BigInteger zuriickliefert, der wahrscheinlich eine Primzahl ist, besser als
statische Factory-Methode mit dem Namen BigInteger.probablePrime ausdriicken.
(Diese statische Factory-Methode wurde schliefilich auch im 1.4-Release hinzugeftigt.)

20 2 Objekte erzeugen und zerstoren

Eine Klasse kann nur einen einzigen Konstruktor mit einer gegebenen Signatur haben.
Programmierer lavieren um diese Einschrankung herum, indem sie zwei Konstrukto-
ren angeben, deren Parameterlisten sich nur im Hinblick auf die Reihenfolge der Para-
metertypen unterscheiden. Das ist jedoch kein gutes Verfahren. Der Benutzer eines
solchen APIs wird sich nie merken konnen, welcher Konstruktor welcher ist, und
irgendwann versehentlich den verkehrten aufrufen. Der Leser eines Programms, das
diese Konstruktoren verwendet, weify nicht, was der Code eigentlich tut, es sei denn, er
schldgt in der Klassendokumentation nach.

Da statische Factory-Methoden Namen haben, unterliegen sie nicht wie Konstruktoren
der Einschrankung, dass eine Klasse nur eine solche Methode mit einer gegebenen Sig-
natur haben kann. Wenn bei Ihnen der Fall eintritt, dass eine Klasse offenbar mehrere
Konstruktoren mit derselben Signatur benétigt, dann sollten Sie in Erwédgung ziehen,
einen oder mehrere Konstruktoren durch statische Factory-Methoden zu ersetzen,
deren Unterschiede durch gut gewahlte Namen hervorgehoben werden.

Ein zweiter Vorteil statischer Factory-Methoden besteht darin, dass sie im Gegen-
satz zu Konstruktoren nicht bei jedem Aufruf ein neues Objekt erzeugen miissen.
Dies ermdglicht es unverdnderlichen Klassen (Thema 13), vorgefertigte Instanzen zu
verwenden oder Instanzen bei ihrer Erzeugung zu cachen und dann wiederholt auszu-
geben. So werden {iberfliissige Objektduplikate vermieden. Die Methode Boolean.
valueOf(boolean) veranschaulicht diese Technik: Sie erzeugt nie ein Objekt. Dieses Ver-
fahren kann die Performance massiv steigern, wenn haufig dquivalente Objekte ange-
fordert werden, vor allem, wenn diese Objekte auch noch aufwéndig zu erzeugen sind.

Die Fahigkeit statischer Factory-Methoden, bei wiederholten Aufrufen immer dasselbe
Objekt zuriickzugeben, konnen Sie auch nutzen, um streng zu kontrollieren, welche
Instanzen zu einem gegebenen Zeitpunkt existieren. Dies kann aus zwei Griinden
notig sein: Erstens gewdhrleistet es, dass Sie ein Singleton-Objekt haben (Thema 2),
und zweitens kann eine unverdanderliche Klasse auf diese Art sicherstellen, dass keine
zwei gleichen Instanzen vorhanden sind. a.equals(b) genau dann wenn a==b. Wenn
eine Klasse dies garantieren kann, dann kénnen ihre Clients den Operator == an Stelle
der Methode equals(Object) nutzen und damit massive Performance-Vorteile erzielen.
Das in Thema 21 beschriebene Muster einer typsicheren Enum implementiert diese
Optimierung und die Methode String.intern tut dies in einer eingeschrankten Weise
ebenfalls.

Der dritte Vorteil der statischen Factory-Methoden besteht darin, dass sie im Gegen-
satz zu Konstruktoren ein Objekt von jedem Untertyp ihres Riickgabetyps liefern
konnen. So konnen Sie die Klasse des Riickgabeobjekts sehr flexibel wahlen.

Eine Anwendung dieser Flexibilitit sehen Sie, wenn ein API Objekte zuriickgeben
kann, ohne deren Klassen 6ffentlich zu machen. Wenn die Implementierungsklassen in
dieser Weise verborgen bleiben, kann dies ein API sehr kompakt machen. Diese Tech-

Thema |: Verwenden Sie statische Factory-Methoden statt Konstruktoren 21

nik wird z.B. bei Interface-basierten Architekturen eingesetzt, in denen Interfaces
natiirliche Riickgabetypen fiir statische Factory-Methoden zur Verfiigung stellen.

So verfiigt z.B. das Collections Framework iiber zwanzig Bequemlichkeitsimplemen-
tierungen seiner Sammlungs-Interfaces, darunter unveranderliche Sammlungen, syn-
chronisierte Sammlungen und andere mehr. Die Mehrzahl dieser Implementierungen
werden iiber statische Factory-Methoden in eine einzelne, nicht-instanziierbare Klasse
(java.util.Collections) exportiert. Die Klassen der Riickgabeobjekte sind nichtoffent-
lich.

Das Collections Framework API ist viel kleiner, als es sein wiirde, wenn es zwanzig
separate Offentliche Klassen fiir die Bequemlichkeitsimplementierungen exportieren
wiirde. Es wurde nicht nur die schiere Substanz des APIs reduziert, sondern auch sein
»konzeptionelles Gewicht«. Da der Benutzer weifs, dass das Riickgabeobjekt exakt das
vom entsprechenden Interface spezifizierte API hat, braucht er keine zusitzlichen
Klassendokumentationen zu lesen. AuSerdem erfordert die Verwendung einer solchen
statischen Factory-Methode, dass der Client das Riickgabeobjekt nicht {iber dessen
Implementierungsklasse, sondern tiber dessen Interface referenziert, was allgemein als
guter Stil betrachtet wird (Thema 34).

Die Klasse eines von einer 6ffentlichen statischen Factory-Methode zuriickgegebenen
Objekts kann nicht nur nichtoffentlich sein; sie kann sich auch je nach den Werten der
Parameter, die der statischen Factory iibergeben werden, von Aufruf zu Aufruf
dndern. Jede Klasse, die ein Untertyp des deklarierten Riickgabetyps ist, ist zuldssig.
Die Klasse des Riickgabeobjekts kann sich auflerdem von Release zu Release dndern,
um die Software wartungsfreundlicher zu machen.

Die Klasse des Objekts, das eine statische Factory-Methode zuriickliefert, braucht zu
dem Zeitpunkt, an dem die Klasse mit der statischen Factory-Methode geschrieben
wird, noch nicht einmal zu existieren. Solche flexiblen statischen Factory-Methoden
bilden die Grundlage von Dienstanbieterarchitekturen wie der Java Cryptography Exten-
sion (JCE). Eine Dienstanbieterarchitektur ist ein System, in dem die Anbieter den Nut-
zern der Architektur mehrere Implementierungen eines API zur Verfiigung stellen. Es
liefert einen Mechanismus zum Registrieren dieser Implementierungen, der diese zur
Nutzung bereitstellt. Die Clients der betreffenden Architektur nutzen das API ohne
sich um die Implementierung kiimmern zu miissen.

In der JCE registriert der Systemadministrator eine Implementierungsklasse, indem er
einer Properties-Datei einen Eintrag hinzufiigt, der einen String-Schliissel dem ent-
sprechenden Klassennamen zuordnet. Clients verwenden eine statische Factory-
Methode, die den Schliissel als Parameter entgegennimmt. Die statische Factory-
Methode schlédgt das Class-Objekt in einer Map nach, die mit der Properties-Datei initi-
alisiert wurde, und instanziiert die Klasse mit der Methode Class.newInstance. Die fol-
gende Implementierungsskizze soll diese Technik verdeutlichen:

22 2 Objekte erzeugen und zerstoren

// Skizze einer Dienstanbieterarchitektur

public abstract class Foo f{
// Ordnet String-Schllssel dem Class-Objekt zu
private static Map implementations = null;

// Initialisiert beim ersten Aufruf die Implementierungs-Map
private static synchronized void initMapIfNecessary() f{
if (implementations == null) f
implementations = new HashMap();

// Lade Implementierungsklassennamen und -schliissel aus
// Eigenschaftsdatei; Ubersetze Namen mit Class.forName
// in Class-0Objekte und speichere Zuordnungen.

public static Foo getInstance(String key) f{
initMapIfNecessary();
Class ¢ = (Class) implementations.get(key);
if (¢ == null)

return new DefaultFoo();

try f{

return (Foo) c.newlnstance();
} catch (Exception e) |

return new DefaultFoo();
}

}

Der wichtigste Nachteil statischer Factory-Methoden ist der, dass Sie von Klassen
ohne offentliche oder geschiitzte Konstruktoren keine Unterklassen bilden kénnen.
Das gilt auch fiir nichtoffentliche Klassen, die von offentlichen statischen Factorys
zuriickgegeben wurden. So ist es z.B. nicht mdoglich, irgendeine der Klassen der
Bequemlichkeitsimplementierungen aus dem Collections Framework zu erweitern.
Moglicherweise ist dies jedoch eigentlich ein Segen, da es Programmierer ermutigt,
Komposition statt Vererbung zu nutzen (Thema 14).

Ein zweiter Nachteil der statischen Factory-Methoden besteht darin, dass sie sich
nicht so leicht von anderen statischen Methoden unterscheiden lassen. Sie sind in
der API-Dokumentation nicht in gleicher Weise wie die Konstruktoren hervorgehoben.
Auflerdem stellen sie eine Abweichung von der Norm dar. Daher kénnen Sie mogli-
cherweise nur schwerlich aus der Klassendokumentation ersehen, wie Sie eine Klasse
instanziieren, die statt Konstruktoren statische Factory-Methoden zur Verfiigung stellt.
Diesen Nachteil konnen Sie abmildern, indem Sie sich an die Standard-Namens-

Thema 2: Erzwingen Sie mit einem privaten Konstruktor die Singleton-Eigenschaft 23

konventionen halten. Diese Konventionen sind zwar noch nicht abschliefSend definiert,
aber es kristallisieren sich zwei gebrauchliche Namen fiir statische Factory-Methoden
heraus:

valueOf gibt eine Instanz zuriick, die grob gesagt denselben Wert wie ihre Parameter
hat. Statische Factory-Methoden dieses Namens sind eigentlich Operatoren zur
Typumwandlung.

getInstance gibt eine Instanz zuriick, die zwar durch ihre Parameter beschrieben ist,
aber nicht wirklich denselben Wert wie diese hat. Gibt im Falle von Singleton-
Objekten die einzige Instanz zuriick. Dieser Name kommt oft in Dienstanbieter-
architekturen vor.

Zusammengefasst kann man sagen, dass statische Factory-Methoden und offentliche
Konstruktoren beide ihren Zweck haben, und dass es sich lohnt, ihre jeweiligen Star-
ken zu kennen. Bitte stellen Sie nicht gleich reflexartig Konstruktoren bereit, ohne
zuvor auch iiber statische Factorys nachgedacht zu haben, die oft besser geeignet sind.
Wenn Sie beide Moglichkeiten gegeneinander abgewogen haben und immer noch
unentschlossen sind, dann sollten Sie schon allein deshalb eher einen Konstruktor defi-
nieren, weil es so die Norm ist.

2.2 Thema 2: Erzwingen Sie mit einem privaten Konstruktor
die Singleton-Eigenschaft
Ein Singleton ist eine Klasse, die genau ein Mal instanziiert wird [Gamma 1998, S. 127].

In der Regel reprdsentieren Singletons eine Systemkomponente, die inhdrent einzig-
artig ist, z.B. einen Videobildschirm oder ein Dateisystem.

Singletons konnen Sie auf zwei Arten implementieren. Beide Moglichkeiten stiitzen
sich darauf, den Konstruktor privat zu halten und ein 6ffentliches statisches Attribut
bereitzustellen, mit dem Clients auf die einzige Instanz der Klasse zugreifen konnen.
In dem einen Ansatz ist dieses 6ffentliche statische Attribut ein finales Feld:

// Singleton mit finalem Feld

public class Elvis f
public static final Elvis INSTANCE = new Elvis();
private Elvis() {

}

// Rest wird ausgelassen

24 2 Objekte erzeugen und zerstoren

Der private Konstruktor wird nur ein Mal aufgerufen, ndmlich, um das 6ffentliche, sta-
tische, finale Feld Elvis.INSTANCE zu initialisieren. Das Fehlen eines 6ffentlichen oder
geschiitzten Konstruktors garantiert fiir ein »monoelvistisches« Universum: Sobald die
Klasse E1vis initialisiert wurde, gibt es genau eine Elvis-Instanz — nicht mehr und nicht
weniger. Ein Client kann dies nicht andern.

Der zweite Ansatz besteht darin, statt des offentlichen, statischen, finalen Felds eine
oOffentliche statische Factory-Methode zu liefern:

// Singleton mit statischer Factory
public class Elvis {
private static final Elvis INSTANCE = new Elvis();

private Elvis() {
}

public static Elvis getInstance() f{
return INSTANCE;
}

// Rest wird ausgelassen
}

Jeder Aufruf der statischen Methode Elvis.getInstance gibt dieselbe Objektreferenz
zuriick, und kein anderer Elvis wird je erzeugt.

Der Hauptvorteil des ersten Ansatzes besteht darin, dass die Deklarationen der Attri-
bute, die die Klasse ausmachen, bereits klarstellen, dass diese Klasse ein Singleton ist:
Da das offentliche statische Feld final ist, wird es immer dieselbe Objektreferenz spei-
chern. Eventuell ergibt sich dadurch auch ein kleiner Performance-Vorteil fiir den ers-
ten Ansatz, aber eine gute JVM-Implementierung diirfte diesen wieder wettmachen,
indem sie den Aufruf der statischen Factory-Methode im zweiten Ansatz direkt an die
benotigte Stelle setzt (inlining).

Der zweite Ansatz hat den Hauptvorteil, dass er Ihnen die Flexibilitdt gibt, ohne Ande-
rung des APIs zu entscheiden, ob die Klasse ein Singleton sein soll oder nicht. Die sta-
tische Factory-Methode fiir einen Singleton gibt die eine vorhandene Instanz der
Klasse zuriick, konnte aber mit Leichtigkeit so modifiziert werden, dass sie z.B. fiir
jeden Thread, der die Methode aufruft, eine eindeutige Instanz zurtickliefert.

Alles in allem ist also der erste Ansatz sinnvoll, wenn Sie ganz sicher sind, dass die
Klasse fiir immer ein Singleton bleibt. Wenn Sie sich spéater eventuell umentscheiden
mochten, sollten Sie den zweiten Ansatz wihlen.

Um eine Singleton-Klasse serialisierbar zu machen (Kapitel 10), geniigt es nicht, ihrer
Deklaration lediglich implements Serializable hinzuzufiigen. Um die Singleton-Garan-
tie zu erhalten, miissen Sie auch eine readResolve-Methode zur Verfiigung stellen

Thema 3: Mit einem privaten Konstruktor Nichtinstanziierbarkeit erzwingen 25

(Thema 57). Andernfalls fiihrt jede Deserialisierung einer serialisierten Instanz dazu,
dass eine neue Instanz gebildet wird, die im Falle unseres Beispiels wiederum das Auf-
treten mehrerer Elvisse zur Folge hat. Um dies zu verhindern, schreiben Sie in die
Elvis-Klasse folgende readResolve-Methode:

// Diese readResolve-Methode erhdlt die Singleton-Eigenschaft
private Object readResolve() throws ObjectStreamException f
/*
* Gib den einzig wahren Elvis zurilick und Uberlasse die
* Elvis-Imitatoren der Garbage Collection.
*/
return INSTANCE;
}

Dieses Thema und das Thema 21 haben eine Gemeinsamkeit: Sie behandeln das typ-
sichere Enum-Muster. In beiden Fillen werden in Verbindung mit den 6ffentlichen, stati-
schen Attributen private Konstruktoren eingesetzt, um zu gewéhrleisten, dass nach
ihrer Initialisierung keine neuen Instanzen der jeweiligen Klasse mehr erzeugt werden.
Bei diesem Thema wird nur eine einzige Instanz der Klasse erzeugt und beim Thema
21 wird fiir jedes Attribut des Aufzahlungstyps (enumerated type) genau eine Instanz
erzeugt. Im nichsten Thema (Thema 3) fithren wir diesen Ansatz noch einen Schritt
weiter: Das Fehlen eines offentlichen Konstruktors wird genutzt, um sicherzustellen,
dass niemals irgendwelche Instanzen der Klasse erzeugt werden.

2.3 Thema 3: Mit einem privaten Konstruktor
Nichtinstanziierbarkeit erzwingen

Gelegentlich mochten Sie eine Klasse schreiben, die nur eine Zusammenstellung von
statischen Methoden und statischen Feldern ist. Solche Klassen haben einen schlechten
Ruf, denn manche Programmierer missbrauchen sie dazu, prozedurale Programme in
objektorientierten Programmiersprachen zu schreiben. Es gibt jedoch auch zuldssige
Nutzungsmoglichkeiten fiir sie. Man kann sie verwenden, um verwandte Methoden
fiir Werte oder Arrays von Grundtypen zusammenzufassen, wie dies in java.lang.Math
oder java.util.Arrays der Fall ist, oder um statische Methoden fiir Objekte zusammen-
zufassen, die ein bestimmtes Interface in der Art von java.util.Collections implemen-
tieren. Auflerdem kann man damit Methoden fiir eine finale Klasse zusammenfassen,
um die Klasse nicht erweitern zu miissen.

Solche Dienstklassen wurden nicht dafiir geschaffen, instanziiert zu werden: Eine Instanz
davon wére unsinnig. Mangels expliziter Konstruktoren stellt jedoch der Compiler einen
offentlichen, parameterlosen Standardkonstruktor zur Verfiigung. Fiir den Benutzer ist die-
ser Konstruktor nicht von einem anderen zu unterscheiden. Es kommt gar nicht so selten
vor, dass in verdffentlichten APIs Klassen ungewollt instanziierbar sind.

26 2 Objekte erzeugen und zerstoren

Sie konnen die Nichtinstanziierbarkeit einer Klasse nicht erzwingen, indem Sie sie
abstrakt machen. Die Klasse kann immer noch erweitert und die Unterklasse instanzi-
iert werden. Aufierdem verleitet das den Benutzer zu der irrigen Annahme, die Klasse
sei zur Vererbung da (Thema 15). Es gibt jedoch ein Idiom, mit dem Sie die Nicht-
instanziierbarkeit gewéhrleisten kénnen. Da ein Standardkonstruktor nur dann gene-
riert wird, wenn eine Klasse keine expliziten Konstruktoren besitzt, kénnen Sie eine
Klasse nichtinstanziierbar machen, indem Sie einen einzigen, expliziten privaten
Konstruktor hineinschreiben.

// Nichtinstanziierbare Dienstklasse

public class UtilityClass |

// Unterdricke Standardkonstruktor, damit keine Instanziierung moglich
private UtilityClass() f{
// Dieser Konstruktor wird nie aufgerufen
}
// Rest wird ausgelassen
}

Da der explizite Konstruktor privat ist, kann man von aufserhalb der Klasse nicht
darauf zugreifen. So ist garantiert, dass die Klasse nie instanziiert wird, da man davon
ausgehen kann, dass der Konstruktor nicht von innerhalb der Klasse aus aufgerufen
wird. Dieses Idiom ist gelinde gesagt nicht sehr intuitiv: Ein Konstruktor wird extra
dafiir zur Verfiigung gestellt, um nicht aufgerufen zu werden. Daher sollten Sie einen
Kommentar einftigen, der den Zweck des Konstruktors beschreibt.

Ein Nebeneffekt dieses Idioms ist, dass es auch eine Unterklassenbildung der betref-
fenden Klasse verhindert. Alle Konstruktoren miissen explizit oder implizit einen
zugreifbaren Konstruktor der Oberklasse aufrufen und eine eventuelle Unterklasse
hitte keinen Oberklassenkonstruktor, den sie aufrufen konnte.

2.4 Thema 4: Vermeiden Sie die Erzeugung von
Objektduplikaten

Oft ist es angebracht, ein einzelnes Objekt wieder zu verwenden, anstatt jedes Mal,
wenn es notig ist, ein ganz neues funktionell dquivalentes Objekt anzulegen. Wieder-
verwendung geht schneller und ist besserer Stil. Ein Objekt ist immer wieder verwend-
bar, wenn es unverinderlich ist (Thema 13).

Die folgende Anweisung gibt ein Extrembeispiel, wie Sie es gerade nicht machen soll-
ten:

String s = new String("blod"); // Tun Sie das nicht!

Thema 4: Vermeiden Sie die Erzeugung von Objektduplikaten 27

Die Anweisung erzeugt bei jeder Ausfiihrung eine neue String-Instanz und keine die-
ser Objekterzeugungen ist wirklich notwendig. Das Argument des String-Konstruk-
tors ("b16d") ist selbst eine Instanz von String, die funktionell identisch zu allen von
diesem Konstruktor angelegten Objekten ist. Wenn Sie dies in einer Schleife oder einer
héufig aufgerufenen Methode tun, konnen Millionen iiberfliissiger String-Instanzen
erzeugt werden.

Eine verbesserte Version ist die folgende:
String s = "Nicht mehr blod";

Diese Version benutzt nur eine Instanz von String, anstatt bei jeder Ausfiithrung eine
neue zu erschaffen. Aufierdem ist gewdhrleistet, dass das Objekt von jedem anderen
Code wieder verwendet wird, der in derselben virtuellen Maschine lduft und zuféllig
denselben Zeichenkettenliteral verwendet (JLS, 3.10.5).

Oft konnen Sie Objektduplikate vermeiden, indem Sie auf unverédnderlichen Klassen,
die beide Moglichkeiten bieten, statische Factory-Methoden (Thema 1) statt Konstruk-
toren verwenden. So ist z.B. die statische Factory-Methode Boolean.value0f(String)
dem Konstruktor Boolean(String) fast immer vorzuziehen. Der Konstruktor erzeugt bei
jedem Aufruf ein neues Objekt, wahrend die statische Factory-Methode dies zu kei-
nem Zeitpunkt tun muss.

Sie konnen nicht nur unverdnderliche Objekte wieder verwenden, sondern auch ver-
dnderliche Objekte, von denen Sie wissen, dass sie nie modifiziert werden. Hier sehen
Sie ein etwas subtileres und wesentlich haufigeres Beispiel fiir etwas, das Sie nie tun
sollten. Es geht um verdnderliche Objekte, die nicht mehr modifiziert werden, nach-
dem ihre Werte einmal berechnet worden sind:

public class Person f
private final Date birthDate;
// Weitere Felder werden ausgelassen

public Person(Date birthDate) f{
this.birthDate = birthDate;

}

// Tun Sie das nicht!

public boolean isBabyBoomer() f
Calendar gmtCal =

Calendar.getInstance(TimeZone.getTimeZone("GMT"));
gmtCal.set(1946, Calendar.JANUARY, 1, 0, 0, 0);
Date boomStart = gmtCal.getTime();
gmtCal.set(1965, Calendar.JANUARY, 1, 0, 0, 0);
Date boomEnd = gmtCal.getTime();
return .birthDate.compareTo(boomStart) >= 0 &&
birthDate.compareTo(boomEnd) < O0;

28 2 Objekte erzeugen und zerstoren

Die Methode isBabyBoomer erzeugt bei jedem Aufruf unnétigerweise einen neuen Calen-
dar, eine neue TimeZone und zwei neue Date-Instanzen. Die folgende Version behebt
diese Ineffizienz durch einen statischen Initialisierer:

class Person {
private final Date birthDate;

public Person(Date birthDate) f{
this.birthDate = birthDate;
}

/**

* Anfangs- und Enddatum des Babybooms.
*/

private static final Date BOOM_START;
private static final Date BOOM_END;

static |
Calendar gmtCal =
Calendar.getInstance(TimeZone.getTimeZone("GMT"));
gmtCal.set(1946, Calendar.JANUARY, 1, 0, 0, 0);
BOOM_START = gmtCal.getTime();
gmtCal.set(1965, Calendar.JANUARY, 1, 0, 0, 0);
BOOM_END = gmtCal.getTime();

public boolean isBabyBoomer() {
return .birthDate.compareTo(BOOM_START) >= 0 &&
birthDate.compareTo(BOOM_END) < 0;

}

Die verbesserte Version der Klasse Person erzeugt Calendar-, TimeZone- und Date-Instan-
zen nur ein einziges Mal bei ihrer Initialisierung, und nicht jedes Mal, wenn isBabyBoo-
mer aufgerufen wird. Das fiihrt zu bedeutenden Performance-Gewinnen, wenn die
Methode hiufig aufgerufen wird. Auf meinem Rechner braucht die Ursprungsversion
fiir eine Million Aufrufe 36.000 Millisekunden, die verbesserte Version hingegen nur
370 Millisekunden: Sie ist hundertmal schneller. Und nicht nur die Performance, auch
die Klarheit wachst. Wenn Sie boomStart und boomEnd aus lokalen Variablen in finale sta-
tische Felder verwandeln, verdeutlichen Sie damit, dass diese Daten als Konstanten
behandelt werden und machen den Code letztlich leichter verstandlich. Der Vollstan-
digkeit halber sei allerdings gesagt, dass diese Art von Optimierung nicht in jedem
Falle derart drastische Einsparungen zur Folge hat, da Calendar-Instanzen ganz beson-
ders aufwiandig zu erzeugen sind.

Wenn die Methode isBabyBoomer nie aufgerufen wird, dann initialisiert die verbesserte
Version der Person-Klasse die Felder BOOM_START und BOOM_END ganz unnétigerweise. Sie

Thema 4: Vermeiden Sie die Erzeugung von Objektduplikaten 29

konnen diese tiberfliissigen Initialisierungen zwar verhindern, indem Sie diese Felder
beim ersten Aufruf der Methode isBabyBoomer faul initialisieren (Thema 48), aber ratsam
ist das nicht. Wie es bei der faulen Initialisierung oft der Fall ist, wiirde dies die Imple-
mentierung verkomplizieren und wahrscheinlich keine spiirbare Performance-Steige-
rung zur Folge haben (Thema 37).

In allen bisherigen Beispielen zu diesem Thema war offensichtlich, dass die betreffen-
den Objekte wieder verwendbar waren, weil sie unverdnderlich waren. Es gibt andere
Falle, wo dies nicht so offensichtlich ist. Betrachten Sie z.B. Adapter [Gamma 1998,
S.139], auch Views genannt. Ein Adapter ist ein Objekt, das etwas an ein dahinter ste-
hendes Objekt delegiert und somit fiir dieses dahinter stehende Objekt ein alternatives
Interface darstellt. Da ein Adapter keinen anderen Zustand als den des dahinter ste-
henden Objekts hat, eriibrigt es sich, mehr als eine Instanz eines gegebenen Adapters
eines gegebenen Objekts zu erzeugen.

So gibt z.B. die keySet-Methode des Map-Interfaces eine Set-View des Map-Objekts
zuriick, die aus allen in der Map befindlichen Schliisseln besteht. Wenn man naiv ist,
konnte man meinen, dass jeder Aufruf von keySet eine neue Instanz von Set erzeugen
miisste. Doch in Wirklichkeit gibt jeder Aufruf von keySet auf einem gegebenen Map-
Objekt dieselbe Instanz von Set zuriick. Zwar ist die zuriickgelieferte Set-Instanz
eigentlich verdnderlich, aber alle Riickgabeobjekte sind funktionell identisch: Wenn
sich ein Riickgabeobjekt dndert, tun dies auch alle anderen, weil hinter allen dieselbe
Instanz von Map steht.

Sie sollten dieses Thema nicht dahingehend missverstehen, dass Sie nun denken,
Objekterzeugung sein grundsatzlich aufwéandig und daher zu vermeiden. Im Gegen-
teil: Die Erzeugung und Anforderung kleiner Objekte, deren Konstruktoren wenig
expliziter Arbeit verrichten, ist billig. Das gilt besonders fiir moderne JVM-Implemen-
tierungen. Generell ist es eine gute Sache, wenn Sie zusétzliche Objekte erzeugen, um
ein Programm klarer, einfacher oder méachtiger zu machen.

Umgekehrt ist es schlecht, wenn Sie das Erzeugen neuer Objekte vermeiden, indem Sie
einen eigenen Objektpool pflegen, es sei denn, die Objekte im Pool sind extreme
Schwergewichte. Ein prototypisches Beispiel eines Objekts, das einen Objektpool wirk-
lich rechtfertigt, ist eine Datenbankverbindung. Der Aufwand, eine Verbindung aufzu-
bauen, ist so grofs, dass es sinnvoll ist, solche Objekte wiederzuverwenden. Im
Allgemeinen fiihrt die Pflege eigener Objektpools jedoch zu uniibersichtlichem Code,
erhohtem Hauptspeicher-Footprint und Performance-Einbuflen. Moderne JVM-Imple-
mentierungen haben optimierte Garbage Collectors, die solche Objektpools locker
iiberfliissig machen, wenn es um leichtgewichtige Objekte geht.

Das Gegenargument zu diesem Thema ist Thema 24 iiber das defensive Kopieren. Das
vorliegende Thema rét: »Erzeugen Sie kein neues Objekt, wenn Sie ein bestehendes
wieder verwenden konnen,« wahrend Thema 24 sagt: »Verwenden Sie ein bestehendes

30 2 Objekte erzeugen und zerstoren

Objekt nicht erneut, wenn Sie auch ein neues erzeugen kénnen«. Die Kosten der Wie-
derverwendung eines Objekts sind jedoch, wenn defensives Kopieren erforderlich
wird, viel grofler als die Kosten einer unnétigen Erzeugung eines Objektduplikats.
Wenn Sie nicht dort, wo es nétig ist, defensive Kopien anlegen, konnen Sie sich grass-
liche Fehler und Sicherheitslocher einhandeln; eine iiberfliissige Objekterzeugung
beeintrachtigt hingegen nur den Stil und die Performance.

2.5 Thema 5: Eliminieren Sie alte Objektreferenzen

Wenn Sie von einer Sprache mit manueller Speicherverwaltung wie C oder C++ zu
einer Sprache mit Garbage Collection wechseln, wird Ihr Job als Programmierer viel
leichter, weil Ihre Objekte automatisch bereinigt werden, wenn Sie sie nicht mehr beno-
tigen. Beim ersten Mal ist es fast wie Zauberei. Leicht entsteht dabei der Eindruck, dass
Sie sich nun um die Speicherverwaltung tiberhaupt nicht mehr zu kiitmmern brauchen,
aber dies ist nicht ganz richtig.

Betrachten Sie bitte die folgende einfache Stack-Implementierung:

// Finden Sie das ""Speicherleck"?
public class Stack f{
private Object[] elements;
private int size = 0;

public Stack(int initialCapacity) f{
this.elements = new ObjectlinitialCapacityl;
}

public void push(Object e) f{
ensureCapacity();
elementslsizet+] = e;

}

public Object pop() f{
if (size == 0)
throw new EmptyStackException();
return elementsl--sizel;
}

/**
* Schaffe flr mindestens ein weiteres Element Platz,
* indem du die Kapazitdt jedes Mal, wenn das Array
* wachsen muss, ungefdhr verdoppelst.
*/
private void ensureCapacity() f
if (elements.length == size) {
Objectl[] oldElements = elements;
elements = new Object[2 * elements.length + 11;

Thema 5: Eliminieren Sie alte Objektreferenzen 31

System.arraycopy(oldElements, 0, elements, 0, size);

}

Dieses Programm hat keine offensichtlichen Fehler. Sie konnen es eingehend testen
und es wiirde jeden Test bestehen, aber da lauert noch ein Problem. Salopp gesagt hat
das Programm ein »Speicherleck«, das sich stillschweigend in Form von Performance-
Einbufien niederschlagen kann, verursacht durch eine erhohte Aktivitdt des Garbage
Collectors oder einen erhohten Hauptspeicher-Footprint. In Extremfallen kénnen sol-
che Speicherlecks zu Festplatten-Paging oder sogar einem Programmabsturz wegen
eines OutOfMemoryError fithren, aber solche Abstiirze sind extrem selten.

Wo also steckt dieses Speicherleck? Wenn ein Stack wachst und dann wieder schrumpft,
werden die Objekte, die aus dem Stack geholt wurden, nicht mit der Garbage Collection
bereinigt. Das gilt auch, wenn das Programm, das den Stack benutzt, keine Referenzen
mehr auf diese Objekte enthalt. Der Grund dafiir ist, dass der Stack alte Referenzen auf
diese Objekte behalt. Eine alte Referenz ist eine Referenz, die niemals dereferenziert
wird. In diesem Fall sind alle Referenzen aufSerhalb des »aktiven Teils« des Element-
Arrays alt. Der aktive Teil besteht aus den Elementen, deren Index kleiner als size ist.

Speicherlecks in Sprachen mit Garbage Collection (man spricht auch treffender von
unbeabsichtigt zuriickgehaltenen Objekten) sind perfide. Wird eine Objektreferenz unbe-
absichtigt zurtickbehalten, so ist nicht nur das betreffende Objekt von der Garbage Col-
lection ausgenommen, sondern auch alle Objekte, von denen es Referenzen hat usw.
Selbst wenn nur ein paar Objektreferenzen unbeabsichtigt zuriickbehalten werden,
kann das eine grofle Menge Objekte von der Garbage Collection ausschliefien und
eventuell die Performance stark beeintrachtigen.

Probleme dieser Art lassen sich ganz leicht beheben: Wenn Referenzen obsolet werden,
machen Sie Nullreferenzen daraus. Im Falle unserer Stack-Klasse wird die Referenz auf
ein Objekt obsolet, sobald es dem Stack entnommen wird. Die korrigierte Version der
pop-Methode sieht also folgendermafien aus:

public Object pop() f{
if (size==0)
throw new EmptyStackException();
Object result = elementsl--sizel;
elementslsize] = null; // Eliminiere alte Referenz
return result;

}

Wenn Sie alte Referenzen auf null setzen, hat dies noch einen Vorteil: Werden sie spéter
versehentlich dereferenziert, so bricht das Programm sofort mit einer Nul1PointerExcep-
tion ab, anstatt stillschweigend etwas Verkehrtes zu machen. Es ist immer gut, Pro-
grammierfehler so frith wie moglich zu entdecken.

32 2 Objekte erzeugen und zerstoren

Wenn Programmierer dieses Problem erstmals erkannt haben, {iberkompensieren sie
gelegentlich, indem sie jede Objektreferenz auf null setzen, sobald das Programm sie
nicht mehr benétigt. Das ist weder nétig noch wiinschenswert, weil es das Programm
unnoétig voll stopft und eventuell sogar auf Kosten der Performance geht. Das »Aus-
nullen« von Objektreferenzen sollte nicht die Regel, sondern die Ausnahme sein. Die
beste Moglichkeit, eine alte Referenz zu eliminieren, besteht darin, die Variable, in der
sie gespeichert war, entweder wiederzuverwenden oder sie aus dem Giiltigkeits-
bereich herausfallen zu lassen. Das geschieht ganz natiirlich, wenn Sie jede Variable im
kleinstmoglichen Giiltigkeitsbereich definieren (Thema 29). Bitte beachten Sie, dass es
bei modernen JVM-Implementierungen nicht reicht, nur den Block zu verlassen, in der
eine Variable definiert ist: Sie miissen auch die umgebende Methode verlassen, damit
die Referenz verschwindet.

Wann also sollte man eine Referenz auf null setzen? Welcher Aspekt der Klasse Stack
macht sie verddchtig, Speicherlecks zu verursachen? Einfach ausgedriickt verwaltet die
Klasse Stack ihren eigenen Speicher. Der Speicher-Pool besteht aus den Elementen des
items-Arrays (den Zellen mit den Objektreferenzen, nicht den Objekten selbst). Die Ele-
mente im aktiven Teil des Arrays (wie er oben definiert wurde) sind zugewiesen und die
im restlichen Teil sind frei. Der Garbage Collector kann dies nicht wissen: Fiir ihn sind
alle Objektreferenzen des items-Arrays gleichermaflen giiltig. Nur der Programmierer
weifs, dass der inaktive Teil des Arrays unwichtig ist. Dies kann er dem Garbage Col-
lector mitteilen, indem er die Array-Elemente manuell ausnullt, sobald sie in den in-
aktiven Teil des Arrays rutschen.

Allgemein ausgedriickt: Immer wenn eine Klasse ihren eigenen Speicher verwaltet,
sollte der Programmierer auf Speicherlecks achten. Bei jeder Elementfreigabe sollten
alle in diesem Element gespeicherten Referenzen ausgenullt werden.

Auch Caches sind eine hdufige Ursache fiir Speicherlecks. Wenn Sie eine Objektrefe-
renz cachen, dann kann sie leicht in Vergessenheit geraten und noch lange im Cache
verbleiben, wenn sie ldngst irrelevant geworden ist. Fiir dieses Problem gibt es zwei
mogliche Losungen. Wenn Sie einen Cache implementieren, in dem ein Eintrag genau
so lange relevant bleibt, wie es aufSerhalb des Caches Referenzen auf den Schliissel die-
ses Eintrags gibt, dann sollten Sie diesen Cache als WeakHashMap anlegen. Die Eintrdge
werden dann automatisch aus ihm entfernt, sobald sie obsolet werden. Der hiufigere
Fall ist jedoch, dass der Zeitraum nicht so genau definiert ist, fiir den ein Cache-Eintrag
relevant bleibt: Die Eintrdge verlieren einfach mit wachsendem Alter an Wert. Dann
sollte der Cache gelegentlich von nicht mehr benutzten Eintrdgen gereinigt werden.
Diese Bereinigung konnen Sie von einem Hintergrund-Thread (z.B. iiber das API
Jjava.util.Timer) erledigen lassen oder als Nebeneffekt des Cachens neuer Eintrdge
implementieren. Die im Release 1.4 hinzugekommene Klasse java.util.LinkedHashMap
hat eine Methode namens removeEldestEntry, die den zweiten Ansatz erleichtert.

Thema 6: Vermeiden Sie Finalizer 33

Da sich Speicherlecks nicht durch offensichtliche Fehlfunktionen dufiern, kénnen sie
jahrelang in einem System verbleiben. Normalerweise entdecken Sie Speicherlecks nur
durch sorgfiltige Untersuchung des Codes oder mithilfe eines Debugging-Tools
namens Heap-Profiler. Daher sollten Sie moglichst lernen, Probleme wie dieses schon
ehe sie auftreten zu antizipieren und zu vermeiden.

2.6 Thema 6: Vermeiden Sie Finalizer

Finalizer sind unberechenbar, manchmal gefdhrlich und fast immer {iiberfliissig. Sie
konnen Fehlverhalten, Leistungsverschlechterungen und Portierprobleme verursa-
chen. Zwar gibt es auch fiir Finalizer ein paar zuldssige Einsatzmoglichkeiten, aber
grundsétzlich sollten Sie Finalizer vermeiden.

C++-Programmierer sollen bitte Finalizer nicht als Entsprechung der C++-Destrukto-
ren betrachten. In C++ sind Destruktoren das normale Verfahren, mit dem die Ressour-
cen eines Objekts wieder freigegeben werden; sie sind das notwendige Gegenstiick zu
den Konstruktoren. Doch Java hat den Garbage Collector, um den Speicher eines
Objekts wieder zuriickzuholen, wenn dieses nicht mehr referenziert wird; der Pro-
grammierer braucht dazu nichts zu tun. C++-Destruktoren holen auch andere als Spei-
cherressourcen zuriick. In Java gibt es zu diesem Zweck den try-finally-Block.

Es gibt keine Garantie dafiir, dass die Finalizer auch prompt ausgefiihrt werden [JLS,
12.6]. Zwischen dem Zeitpunkt, zu dem ein Objekt unerreichbar wird, und dem Zeit-
punkt, zu dem sein Finalizer ausgefiihrt wird, kann beliebig viel Zeit vergehen. Das
bedeutet, dass Sie niemals einen Finalizer fiir zeitkritische Dinge einsetzen diirfen.
Es wire z.B. ein grober Fehler, mit einem Finalizer offene Dateien zu schlieffen, denn
Deskriptoren fiir offene Dateien stehen nur begrenzt zur Verfiigung. Wenn viele
Dateien offen bleiben, weil die JVM Finalizer erst spat ausfiihrt, dann stiirzt ein Pro-
gramm moglicherweise ab, weil es keine Dateien mehr 6ffnen kann.

Wie schnell Finalizer ausgefiihrt werden, hiangt vor allem vom Garbage-Collection-
Algorithmus ab. Dieser ist jedoch bei jeder JVM-Implementierung ganz unterschied-
lich. Das Verhalten eines Programms, das sich auf eine rasche Ausfiihrung der Finali-
zer stiitzt, kann entsprechend unterschiedlich sein. Es ist gut moglich, dass ein solches
Programm auf der JVM, auf der Sie es testen, perfekt funktioniert, und dann auf der
JVM, die Ihr wichtigster Kunde bevorzugt, schméhlich scheitert.

Ein verspateter Objektabschluss ist nicht nur ein theoretisches Problem. Wenn Sie einer
Klasse einen Finalizer geben, kann sich unter ganz speziellen Bedingungen die Frei-
gabe der Instanzen dieser Klasse auf unbestimmte Zeit verschieben. Ein Kollege von
mir suchte einmal den Fehler in einer lang laufenden GUI-Applikation, die aus uner-
findlichen Griinden immer mit einem OutOfMemoryError abstiirzte. Bei der Analyse
zeigte sich, dass die Applikation zum Zeitpunkt ihres Scheiterns Tausende von Grafik-

34 2 Objekte erzeugen und zerstoren

objekten in ihrer Finalizer-Schlange stehen hatte, die nur darauf warteten, abgeschlos-
sen und freigegeben zu werden. Doch leider war der Finalizer-Thread von allen
Threads der Applikation der mit der niedrigsten Prioritdt und daher wurden die
Objekte nicht in demselben Mafe abgeschlossen, wie sie unerreichbar wurden. Da sich
die JLS nicht darauf festlegt, welcher Thread die Finalizer letztlich ausfiihrt, konnen sie
diese Art von Problemen in portierbarer Form nur ausschalten, indem Sie auf Finalizer
verzichten.

Die JLS bietet nicht nur keine Garantie fiir eine prompte Ausfiithrung der Finalizer, sie
bietet noch nicht einmal eine Garantie dafiir, dass diese iiberhaupt ausgefiihrt werden.
Es ist gut moglich und sogar wahrscheinlich, dass ein Programm endet, ohne auf eini-
gen unerreichbar gewordenen Objekten einen Finalizer auch nur aufgerufen zu haben.
Daher diirfen Sie sich nie darauf verlassen, dass ein Finalizer einen wichtigen persis-
tenten Zustand aktualisiert. Wenn Sie sich z.B. darauf verlassen, dass ein Finalizer
eine persistente Sperre auf einer gemeinsam genutzten Ressource wie beispielsweise
einer Datenbank freigibt, laufen Sie Gefahr, dass Ihr gesamtes verteiltes System eine
Vollbremsung macht.

Lassen Sie sich nicht von den Methoden System.gc und System.runFinalization in Versu-
chung fiihren. Diese vergrofiern vielleicht die Chancen, dass Finalizer ausgefiihrt wer-
den, aber garantieren tun sie dies nicht. Die einzigen Methoden, die dies angeblich
garantieren sind System.runFinalizersOnExit und ihr Gegenstiick Runtime.runFinalizers
OnExit. Doch diese Methoden haben tédliche Fehler und wurden deswegen verworfen.

Wenn Sie nun immer noch nicht davon tiberzeugt sind, dass Finalizer gemieden werden
sollten, gebe ich Ihnen noch etwas Anderes zu bedenken: Wenn beim Objektabschluss
eine nicht abgefangene Ausnahme ausgeldst wird, so wird diese ignoriert und der
Abschluss des betreffenden Objekts beendet [JLS, 12.6]. Nicht abgefangene Ausnahmen
konnen Objekte in inkonsistentem Zustand zur{icklassen. Wenn ein anderer Thread ein
solches inkonsistentes Objekt zu nutzen versucht, kann es zu irgendeinem nicht-deter-
ministischen Verhalten kommen. Normalerweise beendet eine nicht abgefangene Aus-
nahme den Thread und gibt einen Stack-Trace aus, aber nicht, wenn sie in einem
Finalizer auftritt: In einem solchen Fall generiert sie noch nicht einmal eine Warnung.

Was sollten Sie also anderes tun, als einen Finalizer zu schreiben, wenn Sie eine Klasse
haben, deren Objekte Ressourcen wie z.B. Dateien oder Threads kapseln, die abge-
schlossen werden miissen? Sie stellen einfach eine explizite Abschlussmethode zur Ver-
fligung und verlangen von Clients der Klasse, dass sie diese Methode auf jeder Instanz
aufrufen, die nicht mehr benétigt wird. Hier muss erwahnt werden, dass die Instanz
nachvollziehen muss, ob sie abgeschlossen wurde: Die explizite Abschlussmethode
muss in einem privaten Feld aufzeichnen, dass das Objekt ungiiltig geworden ist, und
andere Methoden miissen dieses Feld betrachten und eine I1legalStateException
auslosen, wenn sie nach Abschluss des Objekts noch aufgerufen wurden.

Thema 6: Vermeiden Sie Finalizer 35

Ein typisches Beispiel fiir eine explizite Abschlussmethode ist die close-Methode auf
InputStream und OutputStream. Ein weiteres Beispiel ist die cancel-Methode auf
Jjava.util.Timer, die fiir die erforderliche Zustandsdnderung sorgt, damit der Thread
einer Timer-Instanz sich selbst reibungslos abschliefit. Beispiele aus java.awt sind
Graphics.dispose und Window.dispose. Diese Methoden werden oft libersehen, was sich
absehbar stark auf die Leistung auswirkt. Eine verwandte Methode ist Image.flush: Sie
gibt alle Ressourcen frei, die mit einer Image-Instanz verbunden sind, lasst diese Instanz
jedoch in einem nach wie vor benutzbaren Zustand und reserviert die betreffenden
Ressourcen wenn notig erneut.

Oft verbinden Sie die expliziten Abschlussmethoden mit dem try-finally-Kon-
strukt, um einen raschen Objektabschluss zu gewahrleisten. Der Aufruf der explizi-
ten Abschlussmethode innerhalb der finally-Klausel sorgt dafiir, dass die Methode
auch dann ausgefiihrt wird, wenn wéhrend der Objektnutzung eine Ausnahme ausge-
16st wird:

// try-finally-Block garantiert Ausfihrung der Abschlussmethode
Foo foo = new Foo(...);
try {

// Machen Sie mit foo alles Notige

b finally {
foo.terminate(); // Explizite Abschlussmethode
}

Wozu sind denn nun die Finalizer gut? Es gibt zwei zuldssige Anwendungen dafiir.
Zum einen sind Finalizer ein »Sicherheitsnetz« fiir den Fall, dass der Inhaber eines
Objekts vergisst, die explizite Abschlussmethode aufzurufen, die Sie gemifl meinem
Ratschlag im vorigen Absatz zur Verfiigung gestellt haben. Zwar gibt es keine Garantie
dafiir, dass der Finalizer prompt aufgerufen wird, aber Sie geben die wichtige Res-
source besser spét als nie frei. Das gilt fiir die (hoffentlich seltenen) Fille, in denen der
Client seinen Teil der Vereinbarung nicht einhélt und die explizite Abschlussmethode
nicht aufruft. Die drei Klassen, die als Beispiele fiir explizite Abschlussmethoden
genannt wurden (InputStream, OutputStream und Timer), haben auch Finalizer als Sicher-
heitsnetz fiir den Fall, dass ihre Abschlussmethoden nicht aufgerufen werden.

Zweitens haben Finalizer ihre Berechtigung bei Objekten mit Native Peers. Ein Native
Peer ist ein natives Objekt mit normalen Objekt-Delegierungen iiber native Methoden.
Da ein Native Peer kein normales Objekt ist, hat der Garbage Collector keine Kenntnis
von ihm und kann es auch nicht freigeben, wenn sein normaler Peer freigegeben wird.
Ein Finalizer eignet sich dann gut fiir diese Aufgabe, wenn der Native Peer keine wichti-
gen Ressourcen hilt. Halt er jedoch Ressourcen, die rasch abgeschlossen werden miis-
sen, dann sollte die Klasse, wie oben bereits gesagt, eine explizite Abschlussmethode
haben. Die Abschlussmethode sollte alles Erforderliche tun, damit die wichtige Res-

36 2 Objekte erzeugen und zerstoren

source wieder frei wird. Die Abschlussmethode kann selbst eine native Methode sein
oder sie kann eine native Methode aufrufen.

Es ist wichtig darauf hinzuweisen, dass »FinalizerVerkettung« nicht automatisch statt-
findet. Wenn eine andere Klasse als Object einen Finalizer hat und eine Unterklasse die-
sen uberschreibt, muss der Unterklassen-Finalizer den Oberklassen-Finalizer manuell
aufrufen. Sie sollten die Unterklasse in einem try-Block abschlieffen und den Oberklas-
sen-Finalizer in dem dazu gehorigen finally-Block aufrufen. So ist gewéahrleistet, dass
der Oberklassen-Finalizer auch dann ausgefiithrt wird, wenn der Unterklassen-
Abschluss eine Ausnahme auslost und umgekehrt:

// Manuelle Finalizer-Verkettung
protected void finalize() throws Throwable {
try |
// SchlieB den Unterklassen-Zustand ab

b finally |
super.finalize();
}
}

Wenn etwas, das die Unterklasse implementiert, den Finalizer der Oberklasse iiber-
schreibt, dabei aber vergisst, den Oberklassen-Finalizer manuell aufzurufen (oder dies
absichtlich nicht tut), dann wird dieser Oberklassen-Finalizer nie aufgerufen. Sie kon-
nen sich gegen eine derart nachldssig oder bosartig geschriebene Unterklasse wehren,
indem Sie fiir jedes abzuschliefende Objekt ein zusatzliches Objekt erzeugen. Anstatt
den Finalizer in die Klasse zu setzen, die abgeschlossen werden soll, setzen Sie ihn in
eine anonyme Klasse (Thema 18), die einzig dazu da ist, die sie umgebende Instanz
abzuschlieflen. Fiir jede Instanz der umgebenden Klasse wird eine einzige Instanz der
anonymen Klasse — ein so genannter Finalizer-Wiichter — erzeugt. Die umgebende
Klasse speichert die einzige Referenz auf ihren Finalizer-Wéchter in einem privaten
Instanzfeld, damit der Finalizer-Wéachter unmittelbar vor der umgebenden Instanz ein
Kandidat fiir den Objektabschluss wird. Wenn der Wéchter abgeschlossen wird, fithrt
er die fiir die umgebende Instanz gewtinschte Abschlussaktivitat durch, gerade so, als
sei sein Finalizer eine Methode dieser umgebenden Klasse:

// Idiom fiir einen Finalizer-Wachter
public class Foo f{
// Der einzige Zweck dieses Objekts ist der Abschluss des &uBeren Foo-Objekts
private final Object finalizerGuardian = new Object() f{
protected void finalize() throws Throwable f{
// SchlieBe das &uBere Foo-Objekt ab

// Rest wird ausgelassen

Thema 6: Vermeiden Sie Finalizer 37

Beachten Sie, dass die offentliche Klasse Foo keinen Finalizer (aufSer dem trivialen, von
Object geerbten) hat. Daher spielt es keine Rolle, ob ein Unterklassen-Finalizer
super.finalize aufruft oder nicht. Diese Technik sollten Sie fiir jede nicht-finale 6ffent-
liche Klasse in Betracht ziehen, die einen Finalizer hat.

Fazit: Verwenden Sie Finalizer nur als Sicherheitsnetz oder um unwichtige native Res-
sourcen abzuschliefien. In den seltenen Fillen, in denen Sie einen Finalizer einsetzen,
diirfen Sie nicht vergessen, super.finalize aufzurufen. Zum Schluss ein Tipp: Wenn Sie
einen Finalizer mit einer 6ffentlichen, nicht-finalen Klasse benutzen miissen, sollten Sie
auch einen Finalizer-Wachter erstellen, um die Ausfithrung des Finalizers auch dann
zu gewdhrleisten, wenn ein Unterklassen-Finalizer super.finalize nicht aufruft.

3 Allen Objekten gemeinsame Methoden

Object ist zwar eine konkrete Klasse, in erster Linie darauf angelegt, erweitert zu wer-
den. Alle ihre nicht-finalen Methoden (equals, hashCode, toString, clone und finalize)
haben explizite allgemeine Vertrige, da sie dafiir entworfen sind, iiberschrieben zu wer-
den. Jede Klasse, die diese Methoden tiberschreibt, muss den allgemeinen Vertrag die-
ser Methoden einhalten, da ansonsten andere Klassen, die von diesen Vertragen
abhéngig sind, nicht einwandfrei mit dieser Klasse zusammenarbeiten kénnen.

In diesem Kapitel erfahren Sie, wann und wie Sie die nicht-finalen Object-Methoden
iiberschreiben. Die Methode finalize besprechen wir nicht in diesem Kapitel, sondern
im Thema 6. Comparable.compareTo ist zwar keine Methode der Klasse 0Object, wird
wegen ihres dhnlichen Charakters aber ebenfalls in diesem Kapitel behandelt.

3.1 Thema 7: Halten Sie beim Uberschreiben von equals
den allgemeinen Vertrag ein

Das Uberschreiben der Methode equals scheint zwar einfach zu sein, man kann dabei
aber viele und zum Teil fatale Fehler machen. Am einfachsten vermeiden Sie Probleme,
indem Sie die Methode equals {iberhaupt nicht tiberschreiben. Auf diese Art ist jede
Instanz nur mit sich selbst gleich. Dies ist immer dann die richtige Entscheidung, wenn
eine der folgenden Bedingungen zutrifft:

Jede Instanz der Klasse ist ihrer Natur nach eindeutig. Dies trifft auf Klassen zu,
die keine Werte, sondern aktive Entitdten reprasentieren. Ein Beispiel sind Threads.
Die von Object bereitgestellte Implementierung von equals hat fiir derartige Klassen
genau das richtige Verhalten.

Es spielt fiir Sie keine Rolle, ob die Klasse einen Test auf »logische Gleichheit«
bereitstellt. So kann es z.B. sein, dass java.util.Random die Methode equals iiber-
schrieben hat, um zu priifen, ob zwei Random-Instanzen dieselbe Folge von Zufalls-
zahlen hervorbringen, die Designer aber der Meinung waren, dass die Kunden
diese Funktionalitdt weder benétigen noch wiinschen. Unter diesen Umstdnden
reicht die aus Object geerbte Implementierung von equals aus.

40 3 Allen Objekten gemeinsame Methoden

Eine Oberklasse hat equals bereits iiberschrieben und das aus der Oberklasse
geerbte Verhalten passt auch fiir diese Klasse. So erben z.B. die meisten Imple-
mentierungen von Set die equals-Implementierung aus AbstractSet, Implementie-
rungen von List erben aus AbstractlList und Implementierungen von Map erben aus
AbstractMap.

Die Klasse ist privat oder paketprivat und Sie sind sicher, dass die Methode

equals nie aufgerufen wird. Unter diesen Umstdnden sollten Sie die Methode

equals fiir den Fall, dass sie eines Tages doch aufgerufen wird, unbedingt tiberschrei-

ben:

public boolean equals(Object o) {

throw new UnsupportedOperationException();

}
Wann soll man Object.equals also liberschreiben? Wenn eine Klasse die logische Gleich-
heit kennt, die sich von der reinen Gleichheit der Objekte unterscheidet, dann hat eine
Oberklasse equals bereits iiberschrieben, um das gewtinschte Verhalten zu implemen-
tieren. Dies ist normalerweise bei Wertklassen wie z.B. Integer oder Date der Fall. Ein
Programmierer, der mit der Methode equals Referenzen auf Wertobjekte vergleicht,
mochte nicht herausfinden, ob sie auf dasselbe Objekte referieren, sondern ob sie
logisch dquivalent sind. Das Uberschreiben der Methode equals ist nicht nur nétig, um
die Erwartungen der Programmierer zu erfiillen, sondern ermoglicht es den Instanzen
der Klasse auch, als Zuordnungsschliissel oder Mengenelemente mit vorhersehbarem
und winschenswertem Verhalten zu dienen.

Der Wertklassentyp typsichere Enum (Thema 21) verlangt nicht, dass die Methode
equals lberschrieben wird. Da typsichere Enum-Klassen gewdahrleisten, dass es jeweils
mindestens ein Objekt mit jedem Wert gibt, ist die Methode equals der Klasse Object
gleichbedeutend mit einer logischen equals-Methode fiir derartige Klassen.

Wenn Sie die Methode equals iiberschreiben, brauchen Sie ihren allgemeinen Vertrag
nicht zu &ndern. Den folgenden Vertrag haben wir aus der Spezifikation zu
Jjava.lang.0Object kopiert:

Die Methode equals implementiert eine Aquivalenzbeziehung:

— Sie ist reflexiv: Fiir jeden Referenzwert x muss x.equals(x) den Wert true zuriick-
geben.

— Sie ist symmetrisch: Fiir alle Referenzwerte x und y muss x.equals(y) genau dann
den Wert true zuriickgeben, wenn y.equals(x) den Wert true zuriickgibt.

— Sie ist transitiv: Fiir alle Referenzwerte x, y und z muss x.equals(z) den Wert true
zuriickgeben, wenn x.equals(y) den Wert true zuriickgibt und y.equals(z) den
Wert true zuriickgibt.

Thema 7: Halten Sie beim Uberschreiben von equals den allgemeinen Vertrag ein 41

— Sie ist konsistent: Fiir alle Referenzwerte x und y geben Mehrfachaufrufe von
x.equals(y) konsistent true oder konsistent false zuriick, sofern keine Informa-
tionen, die in equals-Vergleichen auf dem Objekt verwendet werden, gedndert
wurden.

— Fiir jeden Referenzwert x, der nicht nu11 ist, muss x.equals(nul1) den Wert false
zuriickgeben.

Wenn Sie kein Faible fiir Mathematik haben, erscheint Ihnen dieser Vertrag zwar mog-
licherweise etwas erschreckend, aber ignorieren Sie ihn auf keinen Fall! Wenn Sie ihn
verletzen, kann es geschehen, dass sich Ihr Programm unberechenbar verhilt oder
abstiirzt, und es kann sehr schwierig werden, die Fehlerquelle ausfindig zu machen.
Um mit John Donne zu sprechen: Keine Klasse ist eine Insel. Instanzen einer Klasse
werden hiufig an eine andere Klasse tibergeben. Viele Klassen, auch alle Sammlungs-
klassen, verlassen sich darauf, dass die ihnen iibergebenen Objekte dem Vertrag der
Methode equals entsprechen.

Nachdem Sie nun wissen, welche Konsequenzen Verletzungen des Vertrags von equals
nach sich ziehen kénnen, wollen wir uns den Vertrag genauer ansehen. Die gute Nach-
richt ist, dass der Vertrag zwar vielleicht kompliziert aussieht, aber nicht wirklich son-
derlich kompliziert ist. Wenn Sie ihn einmal verstanden haben, kénnen Sie ihn leicht
einhalten. Sehen wir uns also die fiinf Bedingungen der Reihe nach an:

Reflexivitit: Die erste Bedingung besagt einfach, dass ein Objekt mit sich selbst gleich
sein muss. Man kann sich kaum vorstellen, dass jemand diese Bedingungen unbeab-
sichtigt verletzt. Wenn Sie sie verletzen und dann eine Instanz Ihrer Klasse einer
Sammlung hinzufiigen, teilt die Methode contains der Sammlung hochstwahrschein-
lich mit, dass die Sammlung die Instanz, die Sie gerade hinzugefiigt haben, nicht ent-
halt.

Symmetrie: Die zweite Bedingung besagt, dass zwei Objekte sich dariiber einigen
miissen, ob sie gleich sind. Im Gegensatz zur ersten Bedingungen sind unbeabsichtigte
Verletzungen dieser Bedingung durchaus vorstellbar. Betrachten Sie z.B. die folgende
Klasse:

/**
* String, der die GroB-/Kleinschreibung nicht
* perticksichtigt. Die GroB-/Kleinschreibung der urspriinglichen
* String wird von toString beibehalten, in Vergleichen aber
* ignoriert.
*/
public final class CaselnsensitiveString {
private String s;

public CaselnsensitiveString(String s) |
if (s == null)
throw new NullPointerException();

42 3 Allen Objekten gemeinsame Methoden

this.s = s;
}

// Fehler - verletzt die Symmetrie!
public boolean equals(Object o) f
if (o instanceof CaselnsensitiveString)
return s.equalsIgnoreCase(
((CaselnsensitiveString)o).s);
if (o instanceof String) // Ein-Weg-Interoperabilitdt!
return s.equalsIgnoreCase((String)o);
return false;

// Rest wird ausgelassen
}

Die wohlmeinende equals-Methode in dieser Klasse versucht naiv, mit gewohnlichen
Strings zu arbeiten. Nehmen wir z.B. an, wir hitten einen String, der die Grof3- und
Kleinschreibung berticksichtigt, und einen normalen String:

CaselnsensitiveString cis = new CaselnsensitiveString("Polish");

String s = "polish";
Erwartungsgemaf$ gibt cis.equals(s) den Wert true zuriick. Das Problem besteht hier
darin, dass zwar die Methode equals in CaselnsensitiveString normale Strings kennt,
die Methode equals in String aber Strings, die die Grof- und Kleinschreibung ignorie-
ren, einfach {ibersieht. s.equals(cis) gibt daher false zuriick und verletzt damit ein-
deutig die Symmetrie. Nehmen wir nun an, Sie fiigten der Sammlung einen String
hinzu, die die Grofs- und Kleinschreibung nicht berticksichtigt:

List Tist = new ArraylList();
Tist.add(cis);

Was gibt die Methode 1ist.contains(s) hier zurtick? Das weifs niemand. In Suns aktuel-
ler Implementierung gibt sie zuféllig false zuriick, aber das ist eben nur ein Kunst-
produkt dieser Implementierung. In einer anderen Implementierung kann die
Methode genauso gut true zuriickgeben oder eine Laufzeitausnahme auslésen. Sobald
Sie den Vertrag von equals verletzt haben, konnen Sie nicht mehr vorhersagen, wie
andere Objekte sich bei einem Zusammentreffen mit Ihrem Objekt verhalten werden.

Um dieses Problem zu beheben, brauchen Sie nur den schlecht durchdachten Versuch
riickgédngig zu machen, aus der Methode equals heraus mit String zusammenarbeiten
zu wollen. Sobald Sie dies gemacht haben, kénnen Sie die Methode so abandern, dass
sie nur noch ein return hat:

public boolean equals(Object o) f
return o instanceof CaselnsensitiveString &&
((CaselnsensitiveString)o).s.equalsIgnoreCase(s);

Thema 7: Halten Sie beim Uberschreiben von equals den allgemeinen Vertrag ein 43

Transitivitit: Die dritte Bedingung des Vertrags von equals besagt Folgendes: Wenn
das erste Objekt mit dem zweiten und das zweite mit dem dritten gleich ist, dann ist
auch das erste Objekt mit dem dritten gleich. Auch hier kann man sich wieder leicht
vorstellen, dass diese Bedingung unbeabsichtigt verletzt wird. Nehmen wir z.B. an,
dass ein Programmierer eine Unterklasse erstellt, die ihrer Oberklasse einen neuen
Aspekt hinzufiigt. Anders ausgedriickt: Die Unterklasse fiigt eine Information hinzu,
die sich auf den equals-Vergleich auswirkt. Beginnen wir mit einer einfachen, unveran-
derlichen, zweidimensionalen Klasse namens Point:

public class Point f{
private final int x;
private final int y;
public Point(int x, int y) f
this.x = x;
this.y = vy;

public boolean equals(Object o) {
if (!(o instanceof Point))
return false;
Point p = (Point)o;
return p.x == x && p.y == y;

// Rest wird ausgelassen
}

Angenommen, Sie wollten diese Klasse so erweitern, dass ein Punkt auch eine Farbe
haben kann:

public class ColorPoint extends Point f{
private Color color;

public ColorPoint(int x, int y, Color color) {
super(x, y);
this.color = color;

// Rest wird ausgelassen
}

Wie sollte die Methode equals aussehen? Wenn Sie sie ganz weglassen, ist die Imple-
mentierung aus Point geerbt und Informationen zur Farbe werden in equals-Verglei-
chen ignoriert. Dies verletzt zwar den Vertrag von equals nicht, ist aber dennoch
eindeutig nicht akzeptabel. Nehmen wir an, Sie schrieben eine equals-Methode, die nur
dann true zuriickgibt, wenn ihr Argument ein anderer Farbpunkt mit derselben Farbe
und Position ist:

44 3 Allen Objekten gemeinsame Methoden

// Fehler - verletzt die Symmetrie!
public boolean equals(Object o) {
if (!(o instanceof ColorPoint))
return false;
ColorPoint cp = (ColorPoint)o;
return super.equals(o) && cp.color == color;
}

Bei dieser Methode besteht das Problem darin, dass Sie moglicherweise verschiedene
Ergebnisse erhalten, wenn Sie einen Punkt mit einem Farbpunkt vergleichen und
umgekehrt: Der erste Vergleich ignoriert die Farbe, der zweite gibt immer false
zuriick, da das Argument nicht den richtigen Typ hat. Um dies zu veranschaulichen,
wollen wir einen Punkt und einen Farbpunkt erstellen:

Point p = new Point(1l, 2);
ColorPoint cp = new ColorPoint(l, 2, Color.RED);

Hier gibt p.equals(cp) den Wert true, cp.equals(p) hingegen false zuriick. Sie kénnen
dieses Problem zu losen versuchen, indem Sie dafiir sorgen, dass ColorPoint.equals bei
»gemischten Vergleichen« die Farbe ignoriert:

// Fehler - verletzt die Transitivitat.
public boolean equals(Object o) f
if (!(o instanceof Point))
return false;

// Wenn o ein normaler Point ist, dann fiihre einen
// farbenblinden Vergleich durch.
if (!(o instanceof ColorPoint))

return o.equals(this);

// o ist ein ColorPoint; flhre einen vollstdndigen Vergleich
// durch
ColorPoint cp = (ColorPoint)o;
return super.equals(o) && cp.color == color;
}

Dieses Verfahren sorgt zwar fiir Symmetrie, allerdings auf Kosten der Transitivitét:

ColorPoint pl = new ColorPoint(1l, 2, Color.RED);
Point p2 = new Point(1l, 2);
ColorPoint p3 = new ColorPoint(l, 2, Color.BLUE);

Hier geben pl.equals(p2) und p2.equals(p3) den Wert true zuriick, wéahrend
pl.equals(p3) den Wert false zurlickgibt, wodurch die Transitivitdt eindeutig verletzt
wird. Die ersten beiden Vergleiche sind »farbenblind«, wahrend der dritte die Farbe
berticksichtigt.

Wie sieht die Losung also aus? Dies ist offenbar ein grundlegendes Problem von Aqui-
valenzbeziehungen in objektorientierten Sprachen. Es gibt keine Madglichkeit, wie
man eine instanziierbare Klasse erweitern und einen Aspekt hinzuzufiigen und

Thema 7: Halten Sie beim Uberschreiben von equals den allgemeinen Vertrag ein 45

zugleich den Vertrag von equals einhalten kann. Allerdings gibt es eine gute Umge-
hungsmoglichkeit: Folgen Sie dem Rat im Thema 14, »Komposition ist besser als Ver-
erbung«: Machen Sie die Klasse ColorPoint nicht zu einer Erweiterung von Point,
sondern geben Sie ihr ein privates Point-Feld und eine offentliche view-Methode
(Thema 4), die den Punkt zuriickgibt, der sich an derselben Position befindet wie die-
ser Farbpunkt:

// Fugt einen Aspekt hinzu, ohne den Vertrag von equals zu
// verletzen.
public class ColorPoint f

private Point point;

private Color color;

public ColorPoint(int x, int y, Color color) f
point = new Point(x, y);
this.color = color;

/**
* Gibt die Punktansicht dieses Farbpunkts zuriick.
*/
public Point asPoint() {
return point;
}

public boolean equals(Object o) f{
if (I(o instanceof ColorPoint))
return false;
ColorPoint cp = (ColorPoint)o;
return cp.point.equals(point) && cp.color.equals(color);

// Rest wird ausgelassen
}

In Javas Plattformbibliotheken gibt es einige Klassen, die eine instanziierbare Klasse
erweitern und einen Aspekt hinzufiigen. So erweitert java.sql.Timestamp z.B.
Jjava.util.Date und fiigt das Feld nanoseconds hinzu. Die equals-Implementierung fiir
Timestamp verletzt die Symmetrie und kann zu unvorhergesehenem Verhalten fiihren,
falls Timstamp- und Date-Objekte in derselben Sammlung verwendet oder auf andere
Art miteinander vermischt werden. Die Klasse Timestamp enthélt eine Haftungsaus-
schlussklausel, die die Programmierer davor warnt, Date- und Timestamp-Objekte zu
vermischen. Solange Sie beide nicht vermischen, kommt es auch nicht zu Problemen,
aber es wurden auch keine Vorkehrungen getroffen, um Sie vom Vermischen abzuhal-
ten, und die daraus resultierenden Fehler konnen schwer zu beheben sein. Die Klasse
TimeStamp ist eine Anomalie und sollte nicht emuliert werden.

Beachten Sie, dass Sie einer abstrakten Klasse durchaus einen Aspekt hinzufiigen kon-
nen, ohne den Vertrag von equals zu verletzen. Dies ist fiir diejenigen Klassenhierar-

46 3 Allen Objekten gemeinsame Methoden

chien wichtig, die Sie erhalten, wenn Sie dem Rat in Thema 20 befolgen: »Ersetzen Sie
Unions durch Klassenhierarchien«. So konnen Sie z.B. die abstrakte Klasse Shape mit
den beiden Unterklassen Circle und Rectangle haben, wobei Shape keine Aspekte hat,
Circle das Feld radius hinzuftigt und Rectangle die Felder Tength und width hinzufiigt.
Derartige Probleme treten nicht auf, wenn es unmoglich ist, eine Instanz der Ober-
klasse zu erzeugen.

Konsistenz: Die vierte Bedingung des Vertrags von equals besagt, dass zwei gleiche
Objekte fiir immer gleich bleiben miissen, sofern nicht eines von ihnen (oder beide)
gedndert wird. Dies ist eigentlich weniger eine echte Bedingung als vielmehr eine Erin-
nerung daran, dass verdnderliche Objekte im Gegensatz zu unverdnderlichen zu ver-
schiedenen Zeiten mit verschiedenen Objekten gleich sein kénnen. Wenn Sie eine
Klasse schreiben, miissen Sie genau iiberlegen, ob sie unverdnderlich sein soll (Thema
13). Wenn Sie zu dem Schluss kommen, dass die Klasse nicht unveranderlich sein soll,
dann miissen Sie sicherstellen, dass die Methode equals die Restriktion durchsetzt,
dass gleiche Objekte fiir immer gleich und ungleiche Objekte fiir immer ungleich blei-
ben.

Nicht-Null: Die letzte Bedingung besagt, dass alle Objekte ungleich nu11 sein miissen.
Man kann sich zwar kaum vorstellen, dass man bei einem Aufruf von o.equals(null)
aus Versehen true zuriickgibt, aber es ist durchaus vorstellbar, dass man aus Versehen
eine Nul1PointerException auslost. Der allgemeine Vertrag lasst dies nicht zu. Viele Klas-
sen haben equals-Methoden, die davor durch einen ausdriicklichen nul1-Test schiitzen:

public boolean equals(Object o) |
if (0o == null)
return false;

}

Dieser Test ist nicht unbedingt erforderlich. Damit die Methode equals ihr Argument
auf Gleichheit hin priifen kann, muss sie das Argument zuerst in einen passenden Typ
umwandeln, damit seine Zugreifer aufgerufen und auf seine Felder zugegriffen wer-
den kann. Vor der Umwandlung muss die Methode mit dem Operator instanceof prii-
fen, ob ihr Argument den richtigen Typ hat:

public boolean equals(Object o) {
if (!(o instanceof MyType))
return false;

}

Wenn diese Typpriifung fehlt und der Methode equals ein Argument des falschen Typs
iibergeben wird, dann 19st die Methode equals eine ClassCastException aus, die den Ver-
trag von equals verletzt. Aber der Operator instanceof ist so angegeben, dass er unab-
hingig vom Typ des zweiten Operanden false zuriickgibt, falls sein erster Operand

Thema 7: Halten Sie beim Uberschreiben von equals den allgemeinen Vertrag ein 47

null ist [JSL, 15.19.2]. Daher gibt die Typpriifung false zuriick, falls null {ibergeben
wird. Sie brauchen also keine eigene nul1-Priifung durchzufiihren. Im Folgenden fas-
sen wir die Anleitung fiir eine hochwertige equals-Methode noch einmal zusammen:

1. Priifen Sie mit dem Operator ==, ob das Argument eine Referenz auf dieses
Objekt ist. Wenn dies der Fall ist, geben Sie true zurtick. Dies ist lediglich eine Leis-
tungsoptimierung, allerdings eine, die sich bei potenziell aufwéandigen Vergleichen
lohnt.

2. Priifen Sie mit dem Operator instanceof, ob das Argument den richtigen Typ hat.
Ist dies nicht der Fall, dann geben Sie false zuriick. Normalerweise ist der richtige
Typ die Klasse, in der die Methode vorkommt. Gelegentlich ist er auch ein von die-
ser Klasse implementiertes Interface. Verwenden Sie dann ein Interface, wenn die
Klasse ein Interface implementiert, das den Vertrag von equals so verfeinert, dass
Vergleiche {iber mehrere Klassen zuléssig sind, die dieses Interface implementieren.
Die Sammlungs-Interfaces Set, List, Map und Map.Entry haben diese Eigenschaft.

3. Wandeln Sie das Argument in den richtigen Typ um. Da dieser Umwandlung ein
instanceof-Test vorangeht, ist sie auf jeden Fall erfolgreich.

4. Priifen Sie fiir jedes »bedeutungstragende« Feld der Klasse, ob dieses Feld des
Arguments mit dem entsprechenden Feld des Objekts iibereinstimmt. Wenn alle
diese Priifungen erfolgreich verlaufen, geben Sie true zuriick, anderenfalls geben
Sie false zuriick. Wenn der Typ im Schritt 2 ein Interface ist, dann miissen Sie mit
Interface-Methoden auf die bedeutungstragenden Felder des Arguments zugreifen.
Wenn der Typ eine Klasse ist, konnen Sie je nach der Zugriffsmodifikation vielleicht
direkt auf die Felder zugreifen. Bei einfachen Feldern, deren Typ weder float noch
double ist, verwenden Sie fiir Vergleiche den Operator ==. Fiir Referenzfelder rufen
Sie die Methode equals rekursiv auf, bei f1oat-Feldern tibersetzen Sie die int-Werte
mit Float.floatToIntBits und vergleichen die int-Werte mit dem Operator ==. Bei
double-Feldern libersetzen Sie die 1ong-Werte mit Double.doubleToLongbits und ver-
gleichen die 1ong-Werte mit dem Operator ==. (Die besondere Behandlung von
float- und double-Feldern ist wegen Float.NaN, -0.0f und der analogen double-
Konstanten erforderlich. Weitere Informationen dazu finden Sie in der Dokumenta-
tion zu Float.equals.) Bei Array-Feldern wenden Sie diese Richtlinien auf jedes
Element an. Bei einigen Felder von Objektreferenzen sind nul1-Werte zuldssig. Um
eine NullPointerException zu vermeiden, vergleichen Sie solche Felder mit dem
folgenden Ausdruck:

(field == null ? o.field == null : field.equals(o.field))

Diese Alternative ist moglicherweise schneller, wenn field und o.field hdufig iden-
tische Objektreferenzen sind.

(field == o.field || (field != null && field.equals(o.field)))

48 3 Allen Objekten gemeinsame Methoden

Bei einigen Klassen wie z.B. der bereits gezeigten CaselnsensitiveString sind die
Feldvergleiche komplexer als einfache Gleichheitspriifungen. Ob dies zutrifft, sollte
aus der Spezifikation zu der betreffenden Klasse hervorgehen. Wenn dies der Fall
ist, sollten Sie eventuell in jedem Objekt eine Hauptform speichern, damit die
Methode equals auf diesen Hauptformen statt aufwéndigeren ungenauen Verglei-
chen genaue Vergleiche ohne grofien Aufwand durchfithren kann. Dieses Verfahren
ist fiir unverinderliche Klassen (Thema 13) besser geeignet, da die Hauptform bei
Anderungen des Objekts immer aktuell gehalten werden muss.

Die Reihenfolge, in der die Felder verglichen werden, kann sich auf die Leistung
der Methode equals auswirken. Um die bestmogliche Leistung zu erzielen, sollten
Sie zuerst diejenigen Felder vergleichen, bei denen Unterschiede wahrscheinlicher
sind oder deren Vergleich aufwéndiger ist oder bei denen im Idealfall beides
zutrifft. Vergleichen Sie auf keinen Fall Felder, die nicht zum logischen Zustand
eines Objekts gehoren, also z.B. Object-Felder, die der Synchronisierung von Opera-
tionen dienen. Redundante Felder, die aus »bedeutungstragenden« Feldern berech-
net werden konnen, brauchen Sie zwar nicht zu vergleichen, allerdings kénnen Sie
dadurch die Leistung der Methode equals verbessern. Wenn ein redundantes Feld
eine zusammenfassende Beschreibung des gesamten Objekts ist, dann erspart
Ihnen der Vergleich dieses Felds die Miihe, bei einem Scheitern des Vergleichs die
tatsdchlichen Daten vergleichen zu miissen.

5. Wenn Sie die Methode equals geschrieben haben, stellen Sie sich drei Fragen: Ist
sie symmetrisch? Ist sie transitiv? Ist sie konsistent? (Die anderen beiden Mog-
lichkeiten kiimmern sich selbst um sich.) Trifft dies nicht zu, so miissen Sie heraus-
finden, warum diese Eigenschaften nicht zutreffen, und die Methode entsprechend
andern.

Unter dem Thema 8 finden Sie ein konkretes Beispiel fiir eine equals-Methode, die nach
diesem Rezept konstruiert wurde. Abschliefiend noch ein paar Warnungen:

Uberschreiben Sie hashCode immer, wenn Sie equals iiberschreiben. (Thema 8)

Versuchen Sie nicht, schlau zu sein. Wenn Sie Felder einfach auf Gleichheit priifen,
koénnen Sie den Vertrag von equals problemlos einhalten. Wenn Sie zu aggressiv
nach Aquivalenz suchen, geraten Sie schnell in Schwierigkeiten. Ganz allgemein
sind alle Arten von Aliasnamen eine schlechte Idee. So sollte die Klasse File z.B.
nicht versuchen, symbolische Links gleichzusetzen, die auf dieselbe Datei verwei-
sen. Zum Gliick macht sie dies auch nicht.

Schreiben Sie keine equals-Methode, die sich auf unzuverldssige Ressourcen
stiitzt. Wenn Sie dies machen, wird es Thnen extrem schwer fallen, die Konsistenz-
bedingung zu erfiillen. Die equals-Methode von java.net.URL verldsst sich z.B.
darauf, dass die IP-Adressen der Hosts in URLs verglichen werden. Die Uberset-
zung eines Host-Namens in eine IP-Adresse kann einen Netzwerkzugriff erforder-

Thema 8: Uberschreiben Sie hashCode immer, wenn Sie equals tiberschreiben 49

lich machen und es gibt keine Garantie dafiir, das sie iiber lingere Zeit immer
dasselbe Ergebnis liefert. Dadurch kann es geschehen, dass URLs equals-Methode
den Vertrag von equals verletzt. In der Praxis hat dies bereits zu Problemen gefiihrt.
(Leider kann dieses Verhalten auf Grund von Kompatibilitdtsanforderungen nicht
gedndert werden.) Abgesehen von einigen Ausnahmen sollten equals-Methoden
immer deterministische Berechnungen auf speicherresidenten Objekten vorneh-
men.

Ersetzen Sie Object in der Deklaration von equals nicht durch einen anderen Typ.
Nicht selten schreiben Programmierer eine equals-Methode wie die folgende und
benétigen dann Stunden, um herauszufinden, warum sie nicht funktioniert:

public boolean equals(MyClass o) f

}

Das Problem besteht hier darin, dass diese Methode die Methode Object.equals,
deren Typ Object ist, nicht iiberschreibt, sondern iiberlidt (Thema 26). Es ist zwar in
Ordnung, eine solche »stark typisierte« equals-Methode zusitzlich zu der normalen
bereitzustellen, solange beide Methoden dasselbe Ergebnis zuriickgeben, aber
einen zwingenden Grund gibt es hierfiir nicht. Unter bestimmten Umstanden mag
dies die Leistung zwar geringfiigig verbessern, was jedoch nicht fiir die erhchte
Komplexitat entschddigt (Thema 37).

3.2 Thema 8: Uberschreiben Sie hashCode immer, wenn Sie
equals Uberschreiben

Héufig entstehen Fehler dadurch, dass man die Methode hashCode zu {iberschreiben
vergisst. Sie miissen hashCode in jeder Klasse iiberschreiben, die equals iiberschreibt.
Wenn Sie dies nicht machen, verletzen Sie den allgemeinen Vertrag von Object.hash-
Code. Dann kann Ihre Klasse mit den Hash-basierten Sammlungen, wozu auch HashMap,
HashSet und Hashtable gehoren, nicht mehr richtig zusammenarbeiten.

Den folgenden Vertrag haben wir aus der Spezifikation fiir java.lang.0Object kopiert:

Wenn die Methode hashCode wahrend der Ausfithrung einer Anwendung mehr als
ein Mal auf demselben Objekt aufgerufen wird, muss sie konsistent dieselbe ganze
Zahl zuriickgeben, sofern keine in equals-Vergleichen auf dem Objekt verwendeten
Informationen gedndert wurden. Diese ganze Zahl braucht zwischen mehreren
Ausfiihrungen derselben Anwendung nicht konsistent zu bleiben.

Wenn zwei Objekte laut der Methode equals(Object) gleich sind, dann muss ein
Aufruf der Methode hashCode auf beiden Objekten dasselbe ganzzahlige Ergebnis
erbringen.

50 3 Allen Objekten gemeinsame Methoden

Es ist nicht erforderlich, dass ein Aufruf der Methode hashCode bei zwei Objekten,
die laut der Methode equals(Object) ungleich sind, auf jedem der Objekte ein ein-
deutiges ganzzahliges Ergebnis liefert. Allerdings sollte dem Programmierer
bewusst sein, dass eindeutige ganzzahlige Ergebnisse bei ungleichen Objekten die
Leistung von Hash-Tabellen verbessern kénnen.

Die wesentliche Bedingung, die verletzt wird, wenn Sie hashCode nicht iiberschei-
ben, ist die zweite: Gleiche Objekte miissen gleiche Hash-Codes haben. Moglicher-
weise sind zwei eindeutige Instanzen laut der equals-Methode der Klasse logisch
gleich, aber fiir die Methode hashCode der Klasse Object sind sie dennoch nur zwei
Objekte, die nichts miteinander gemeinsam haben. Daher gibt die Methode hashCode
des Objekts nicht, wie der Vertrag es verlangt, zwei gleiche Zahlen, sondern zwei
scheinbar zufallig Zahlen zurtick.

Betrachten Sie z.B. die folgende vereinfachte Klasse PhoneNumber, deren equals-Methode
wir nach der Anleitung im Thema 7 konstruiert haben:

public final class PhoneNumber
private final short areaCode;
private final short exchange;
private final short extension;

public PhoneNumber(int areaCode, int exchange,
int extension) f

rangeCheck(areaCode, 999, "area code");
rangeCheck(exchange, 999, "exchange");
rangeCheck(extension, 9999, "extension");
this.areaCode = (short) areaCode;
this.exchange = (short) exchange;
this.extension = (short) extension;

private static void rangeCheck(int arg, int max,
String name) |
if (arg < 0 || arg > max)
throw new ITlegalArgumentException(name +": " + arg);

public boolean equals(Object o) {
if (o == this)
return true;
if (!(o instanceof PhoneNumber))
return false;
PhoneNumber pn = (PhoneNumber)o;
return pn.extension == extension &&
pn.exchange == exchange &&
pn.areaCode == areaCode;

Thema 8: Uberschreiben Sie hashCode immer, wenn Sie equals tiberschreiben 51

// Keine hashCode-Methode!

. // Rest wird ausgelassen
}

Nehmen wir nun an, Sie versuchten diese Klasse mit einer HashMap zu verwenden:

Map m = new HashMap();
m.put(new PhoneNumber (408, 867, 5309), "Jdenny");

Hier erwarten Sie vielleicht, dass m.get(new PhoneNumber(408, 867, 5309))den Wert
"Jenny" zuriickgibt. Tatsdchlich wird aber nu11 zuriickgegeben. Beachten Sie, dass wir
zwei Instanzen von PhoneNumber verwenden: eine fiir Eintrdge in die HashMap und eine
zweite, identische, fiir den (versuchten) Abruf. Dadurch, dass die Klasse PhoneNumber
die Methode hashCode nicht tiberschreibt, haben die beiden gleichen Instanzen unglei-
che Hash-Codes. Der Vertrag von hashCode wird also verletzt. So kommt es, dass die
Methode put die Telefonnummer in dem einen Hash-Bucket speichert, die Methode get
diese Nummer aber in einem anderen Hash-Bucket sucht. Um dieses Problem zu
16sen, brauchen Sie fiir die Klasse PhoneNumber nur die richtige hashCode-Methode bereit-
zustellen.

Wie sollte die Methode hashCode also aussehen? Es ist einfach, eine Methode zu schrei-
ben, die zwar zuléssig, aber nicht gut ist. Die folgende ist z.B. zuléssig, sollte aber kei-
nesfalls verwendet werden:

// Die schlechteste zuldssige Hash-Funktion lberhaupt -
// verwenden Sie sie nie!
public int hashCode() { return 42; |}

Diese Methode ist zuldssig, da sie gewdhrleistet, dass gleiche Objekte auch den glei-
chen Hash-Code haben. Sie ist miserabel, da sie gewé&hrleistet, dass alle Objekte densel-
ben Hash-Code haben. Alle Objekte verwenden also denselben Hash-Bucket und aus
Hash-Tabellen werden verkettete Listen. Programme, die linearen Zeitaufwand benoti-
gen sollten, bendtigen stattdessen einen quadratischen Zeitaufwand. Bei grofien Hash-
Tabellen ist dies gleichbedeutend mit dem Unterschied zwischen Funktionieren und
Nichtfunktionieren.

Eine gute Hash-Funktion bringt fiir ungleiche Objekte normalerweise ungleiche Hash-
Codes hervor. Dies ist genau das, was die dritte Bedingung des Vertrags von hashCode
bedeutet. Im Idealfall sollte eine Hash-Funktion eine verniinftige Sammlung unglei-
cher Instanzen gleichmifig tiber alle moglichen Hash-Werte verteilen. Es kann extrem
schwierig sein, dieses Ideal zu erreichen. Gliicklicherweise ist eine recht gute Annéhe-
rung nicht allzu schwer zu erzielen. Im Folgenden zeigen wir Ihnen eine einfache
Anleitung:

1. Speichern Sie einige konstante Nicht-Null-Werte, z.B. 17, in die int-Variable result.

52

3 Allen Objekten gemeinsame Methoden

2. Gehen Sie bei jedem bedeutungstragenden Feld f in Ihrem Objekt (d.h. bei jedem
Feld, das von der equals-Methode beriicksichtigt wird) folgendermafien vor:

a. Berechnen Sie fiir das Feld den int-Hashcode c:

i
ii.
iii.
iv.

V.

Vi.

Vii.

Wenn das Feld ein boolean ist, berechnen Sie (f 2 0 : 1).

Wenn das Feld ein byte, char, short oder int ist, berechnen Sie (int)f.
Wenn das Feld ein 1ong ist, berechnen Sie (int)(f * (f >>> 32)).
Wenn das Feld ein float ist, berechnen Sie Float.floatToIntBits(f).

Wenn das Feld ein double ist, berechnen Sie Double.doubleTolLongBits(f) und
stellen Sie den dadurch erhaltenen 1ong-Wert wie im Schritt 2.a.iii dar.

Wenn das Feld eine Objektreferenz ist und die Methode equals dieser
Klasse das Feld durch einen rekursiven Aufruf von equals vergleicht, dann
rufen Sie hashCode auf diesem Feld rekursiv auf. Wenn ein komplexerer Ver-
gleich erforderlich ist, berechnen Sie eine »kanonische Darstellung« fiir
dieses Feld und rufen hashCode auf der kanonischen Darstellung auf. Wenn
der Wert des Feldes nul1 ist, geben Sie 0 (oder eine andere Konstante, aber 0
ist der gangige Wert) zuriick.

Wenn das Feld ein Array ist, behandeln Sie es so, als sei jedes Element ein
separates Feld. Berechnen Sie also fiir jedes bedeutungstragende Element
einen Hash-Code, indem Sie diese Regeln rekursiv anwenden, und kom-

binieren Sie diese Werte, wie es im Schritt 2.b beschrieben wird.

b. Kombinieren Sie den in Schritt a berechneten Hash-Code ¢ folgendermafien in
result:

result = 37*result + c;

3. Geben Sie result zuriick.

4. Wenn Sie die Methode hashCode geschrieben haben, fragen Sie sich selbst, ob gleiche
Instanzen auch gleiche Hash-Codes haben. Ist dies nicht der Fall, so finden Sie den
Grund heraus und beheben Sie das Problem.

Es ist moglich, redundante Felder aus der Berechnung des Hash-Codes auszuschliefSen.

Anders ausgedriickt: Es ist moglich, alle Felder auszuschlielen, deren Wert aus Fel-
dern berechnet werden kann, die in die Berechnung aufgenommen wurden. Sie miis-
sen unbedingt alle Felder ausschlieflen, die nicht in Gleichheitsvergleichen verwendet
werden. Wenn Sie diese Felder nicht ausschliefSen, verletzen Sie moglicherweise die
zweite Bedingung des Vertrages von hashCode.

Da im Schritt 1 ein Anfangswert verwendet wird, der nicht 0 ist, beeinflussen Anfangs-
felder, deren im zweiten Schritt berechneter Hash-Wert 0 ist, den Hash-Wert. Wiirden
Sie im ersten Schritt als Anfangswert 0 verwenden, dann hétten solche Anfangsfelder

Thema 8: Uberschreiben Sie hashCode immer, wenn Sie equals tiberschreiben 53

keinerlei Auswirkung auf den Hash-Wert, wodurch die Anzahl der Kollisionen zuneh-
men konnte. Den Wert 17 haben wir willkiirlich gewéhlt.

Auf Grund der Multiplikation im Schritt 2.b ist der Hash-Wert von der Reihenfolge der
Felder abhéngig. Dadurch erhalten Sie eine wesentlich bessere Hash-Funktion, falls die
Klasse mehrere dhnliche Felder enthilt. Wenn Sie die Multiplikation z.B. aus einer nach
unserer Anleitung erstellten String-Hash-Funktion weglassen, haben alle Anagramme
identische Hash-Codes. Den Multiplikator 37 haben wir gewahlt, da dies eine unge-
rade Primzahl ist. Ware der Multiplikator gerade und die Multiplikation flosse {tiber,
dann gingen Informationen verloren, weil die Multiplikation mit 2 mit der Verschie-
bung gleichbedeutend ist. Die Vorteile der Verwendung von Primzahlen sind weniger
klar. Es ist einfach tiblich, fiir diesen Zweck Primzahlen zu verwenden.

Wenden wir diese Anleitung nun also auf die Klasse PhoneNumber an. Es gibt drei bedeu-
tungstragende Felder, die alle den Typ short haben. Eine unkomplizierte Anwendung
der Anleitung ergibt die folgende Hash-Funktion:

public int hashCode() {
int result = 17;
result = 37*result + areaCode;
result = 37*result + exchange;
result = 37*result + extension;
return result;

!

Da diese Methode das Ergebnis einer einfachen, deterministischen Berechnung
zurtickgibt, bei der nur die drei bedeutungstragenden Felder in einer Instanz von
PhoneNumber eingegeben werden, sollte klar sein, dass gleiche Instanzen von PhoneNumber
auch gleiche Hash-Codes haben. Diese Methode ist eine durchaus verniinftige Imple-
mentierung von hashCode fiir PhoneNumber und steht denen in Javas Plattformbiblio-
theken der Version 1.4 in nichts nach. Sie ist einfach, relativ schnell und verteilt die
ungleichen Telefonnummern gut auf die einzelnen Hash-Buckets.

Falls eine Klasse unverdanderlich und der Aufwand fiir die Berechnung des Hash-
Codes erheblich ist, sollten Sie den Hash-Code eventuell im Objekt zwischenspeichern,
statt ihn jedes Mal, wenn er angefordert wird, neu zu berechnen. Wenn Sie erwarten,
dass die meisten Objekte dieses Typs als Hash-Keys verwendet werden, dann sollten
Sie den Hash-Code dann berechnen, wenn die Instanz erzeugt wird. Ansonsten kon-
nen Sie den Hash-Code auch faul initialisieren, wenn hashCode zum ersten Mal aufge-
rufen wird (Thema 48). Moglicherweise verdient unsere Klasse PhoneNumber diese
Behandlung nicht, aber wir zeigen Ihnen dennoch, wie Sie dies machen:

// faul initialisierte, gecachte hashCode-Methode
private volatile int hashCode = 0; // (Siehe Thema 48)

public int hashCode() f{

54 3 Allen Objekten gemeinsame Methoden

if (hashCode == 0) |
int result = 17;
result = 37*result + areaCode;
result = 37*result + exchange;
result = 37*result + extension;
hashCode = result;

}
return hashCode;
}

Die Anleitung in diesem Thema ergibt zwar einigermafsen gute Hash-Funktionen, aber
keine perfekten. Auch Javas Plattformbibliotheken der Version 1.4 enthalten keine der-
artigen Hash-Funktionen. Das Schreiben solcher Hash-Funktionen ist ein Thema fiir
aktive Forschungsarbeit und wird am besten Mathematikern und Informatikern tiber-
lassen. Vielleicht wird eine zukiinftige Version der Java-Plattform perfekte Hash-
Funktionen fiir ihre Klassen und Dienstmethoden bereitstellen, damit auch ein
Durchschnittsprogrammierer derartige Hash-Funktionen konstruieren kann. Bis dahin
sollten die in diesem Thema beschriebenen Verfahren fiir die meisten Anwendungen
ausreichen.

Lassen Sie sich nicht dazu hinreifien, bedeutungstragende Teile eines Objekts aus
der Berechnung des Hash-Codes auszuschlieffen, um die Leistung zu verbessern.
Dadurch erhalten Sie eine Hash-Funktion, die moglicherweise schneller lauft, deren
Qualitdt aber so weit absinkt, dass Hash-Tabellen auf Grund ihrer Langsamkeit nicht
mehr verwendbar sind. Insbesondere die Hash-Funktion kann in der Praxis mit einer
groien Sammlung von Instanzen konfrontiert sein, die sich in den Bereichen, die Sie
ignorieren, erheblich unterscheiden. Wenn dies geschieht, ordnet die Hash-Funktion
alle Instanzen einigen wenigen Hash-Codes zu und der Zeitaufwand fiir auf Hashes
basierende Sammlungen potenziert sich. Dieses Problem besteht nicht nur in der Theo-
rie. Die bis zur Version 1.2 in allen Java-Plattformversionen implementierte Hash-
Funktion String hat hochstens sechzehn Zeichen gepriift, die vom ersten Zeichen ab
gleichméafig iiber den String verteilt waren. Bei grofien Sammlungen hierarchischer
Namen (z.B. URLs) hat diese Hash-Funktion genau das gerade beschriebene fehler-
hafte Verhalten an den Tag gelegt.

Viele Klassen in Javas Plattformbibliotheken wie z.B. String, Integer und Date geben
den genauen Wert, den ihre hashCode-Methode zuriickgibt, als Funktion des Instanz-
wertes an. In der Regel ist dies keine gute Idee, da es Ihre Moglichkeiten, die Hash-
Funktion in spéteren Versionen zu verbessern, erheblich einschrankt. Wenn Sie die Ein-
zelheiten einer Hash-Funktion nicht angeben und dann einen Fehler finden, konnen
Sie diesen Fehler in der niachsten Version der Hash-Funktion beheben, ohne fiirchten
zu miissen, dass sie vielleicht nicht mehr mit den Clients kompatibel ist, die von den
genauen von der Hash-Funktion zuriickgegebenen Werten abhangen.

Thema 9: Uberschreiben Sie toString immer 55

3.3 Thema 9: Uberschreiben Sie toString immer

Jjava.lang.Object stellt zwar eine Implementierung der Methode toString bereit, gibt
aber einen String zuriick, der meist nicht den Erwartungen der Benutzer Threr Klasse
entspricht. Er besteht aus einem Klassennamen gefolgt vom »at«-Zeichen (@) und der
Hexadezimaldarstellung des Hash-Codes ohne Vorzeichen: »PhoneNumber@163b91«. Der
allgemeine Vertrag von toString besagt, dass der zuriickgegebene String »eine knappe,
aber aussagekréftige und fiir Menschen leicht lesbare Darstellung« sein soll. Man
konnte zwar argumentieren, dass der String »PhoneNumber@163b91« knapp und leicht les-
bar ist, aber im Vergleich zu »(408) 867-5309« sagt er sicher nicht sehr viel aus. Der Ver-
trag von toString enthdlt auflerdem den Satz »Es wird empfohlen, dass alle
Unterklassen diese Methode iiberschreiben.« Ein wirklich guter Rat!

Eine gute String-Implementierung ist zwar weniger wichtig als die Einhaltung der Ver-
trage von equals und hashCode (Themen 7 und 8), aber indem Sie eine gute String-
Implementierung bereitstellen, erleichtern Sie die Verwendung Ihrer Klasse erheb-
lich. Die Methode toString wird automatisch aufgerufen, wenn Ihr Objekt an printin,
an den String-Verkettungsoperator + oder (ab Version 1.4) an assert iibergeben wird.
Wenn Sie eine gute toString-Methode bereitstellen, konnen Sie mit der folgenden
Codezeile ganz einfach eine sinnvolle Diagnosenachricht erstellen:

System.out.printin("Failed to connect: " + phoneNumber);

Die Programmierer werden Diagnosemeldungen auf jeden Fall auf diese Art schrei-
ben, ob Sie toString nun tiberschreiben oder nicht. Aber Sie werden die Meldungen nur
lesen koénnen, wenn Sie toString iiberschreiben. Die Vorteile einer guten toString-
Methode sind nicht auf Instanzen der Klasse beschrankt, sondern erstrecken sich auch
auf die Objekte, die Referenzen auf diese Instanzen enthalten, also insbesondere auf
Sammlungen. Welche Formulierung wiirden Sie lieber sehen, wenn Sie eine Zuord-
nung ausgeben: » { Jenny=PhoneNumber@163b91} « oder »{Jenny=(408) 867-5309}«?

Wenn maglich, sollte die Methode toString alle im Objekt enthaltenen interessanten
Informationen zuriickgeben, wie wir es gerade im Beispiel mit den Telefonnummern
gezeigt haben. Nicht moglich ist dies dann, wenn das Objekt zu grof3 ist oder einen
Zustand enthalt, der der String-Darstellung nicht férderlich ist. In diesem Fall sollte
toString eine Zusammenfassung wie z.B. »Telefonbuch von Manhattan (1487536 Ein-
trage)« oder »Thread[main, 5, main]« zurtickgeben. Im Idealfall sollte der String keiner
Erklarung bediirfen. (Das Thread-Beispiel besteht diesen Test nicht.)

Eine wichtige Entscheidung, die Sie bei der Implementierung der Methode toString
treffen miissen, ist die, ob Sie das Format des Ergebniswerts in der Dokumentation
angeben mochten. Wir empfehlen Ihnen, diese Angabe bei Wertklassen wie z.B. Telefon-
nummern oder Matrizen zu machen. Die Angabe des Formats hat den Vorteil, dass sie
eine eindeutige und fiir Menschen lesbare Standarddarstellung des Objekts liefert.

56 3 Allen Objekten gemeinsame Methoden

Diese Darstellung kann fiir die Ein- und Ausgabe und in persistenten, fiir Menschen
lesbaren Datenobjekten wie z.B. XML-Dokumenten verwendet werden. Wenn Sie das
Format angeben, sollten Sie in der Regel auch einen passenden String-Konstruktor
(oder eine statische Factory; vgl. Thema 1) angeben, damit die Programmierer leicht
zwischen dem Objekt und seiner String-Darstellung hin- und heriibersetzen kénnen.
Dieses Verfahren verwenden viele Wertklassen in Javas Plattformbibliotheken, u.a.
BigInteger, BigDecimal und die meisten einfachen Hiillenklassen.

Andererseits hat die Angabe des Formats fiir den Ergebniswert von toString den
Nachteil, dass Sie bei dem einmal angegebenen Format bleiben miissen, sofern Ihre
Klasse stark genutzt wird. Die Programmierer schreiben Code, um die Darstellung zu
parsen, zu generieren und in persistente Daten einzubetten. Wenn Sie die Darstellung
in einer spéteren Version dndern, zerstoren Sie den Code und die Daten dieser Pro-
grammierer, wodurch Sie sich nicht gerade beliebt machen. Wenn Sie kein Format
angeben, sichern Sie sich die erforderliche Flexibilitdt, um in einer spéteren Version
Informationen hinzuzufiigen oder das Format zu verbessern.

Unabhingig davon, ob Sie das Format angeben, sollten Sie Ihre Absichten sorgfil-
tig dokumentieren. Wenn Sie das Format angeben, sollten Sie dies sehr prézise
machen. Der folgende Code zeigt die Methode toString fiir die Klasse PhoneNumber aus
dem Thema 8.

/**

Gibt die String-Darstellung dieser Telefonnummer zuriick.
Der String besteht aus vierzehn Zeichen mit dem Format
"(XXX) YYY-ZZ77", wobei XXX die Ortsnetzkennzahl, YYY die
Vermittlungsstelle und 7777 die Erweiterung ist. (Jeder
GroBbuchstabe steht fiir eine Dezimalziffer.)

Wenn einer der drei Teile dieser Telefonnumer zu klein ist,

um sein Feld zu flllen, dann wird das Feld mit fiihrenden Nullen
geftillt. Wenn der Wert der Erweiterung z.B. 123 ist, dann Tauten
die letzten vier Zeichen der String-Darstellung "0123".

Beachten Sie, dass zwischen der schlieBenden Klammer der
Ortskennzahl und der ersten Ziffer der Vermittlung eine einzelne
Leerstelle eingeflgt wird.

LR R T S S T N S N

*/
public String toString() |
return "(" + toPaddedString(areaCode, 3) + ") " +
toPaddedString(exchange, 3) + "-" +
toPaddedString(extension, 4);

/**

* Ubersetzt ein int in einen string der angegebenen Linge, mit
* fihrenden Nullen als Auspolsterung. Nimmt an, dass i >= 0,

* 1 <= length <= 10, and Integer.toString(i) <= length.

Thema 10: Vorsicht beim Uberschreiben von clone 57

*/

private static String toPaddedString(int i, int length) {
String s = Integer.toString(i);
return ZEROSCTength - s.length()] + s;

}

private static Stringl] ZEROS =
{ o s HOII , HOOH s IIOOOII s I\OOOOH , IIOOOOOH s
"000000", "0000000", "00000000", "000000000"};

Wenn Sie kein Format angeben mochten, sollte der Dokumentationskommentar unge-
fahr folgendermafien aussehen:

/**
Gibt eine kurze Beschreibung des Verfahrens zuriick. Die genauen

Einzelheiten der Darstellung sind nicht angegeben und k&nnen
gedndert werden, aber die folgende Darstellung ist gdngig:

* ok X % of

"[Potion #9: type=love, smell=turpentine, look=india inkl"
*/
public String toString() { ... }
Wenn ein Programmierer diesen Kommentar liest und trotzdem Code oder persistente
Daten produziert, die von Einzelheiten des Formats abhéngen, ist er fiir Schaden in
Folge von Anderungen des Formats selbst verantwortlich.

Unabhingig davon, ob Sie das Format angeben, ist es immer sinnvoll, den Pro-
grammzugriff auf alle Informationen zu erméglichen, die im von toString zuriickge-
gebenen Wert enthalten sind. So sollte die Klasse PhoneNumber zB. den Zugriff auf die
Ortsnetzkennzahl, die Vermittlungsstelle und die Erweiterung ermoglichen. Wenn Sie
dies nicht machen, zwingen Sie die Programmierer, die diese Informationen benétigen,
den String zu parsen. Dieser Prozess verringert nicht nur die Leistung und ladt den
Programmierern unnotige Arbeit auf, sondern ist auch fehleranfallig und lasst Systeme
bei Anderungen des Formats abstiirzen. Wenn Sie keine Zugriffsmoglichkeit bieten,
machen Sie aus dem String-Format ein De-Facto-API, auch wenn Sie angegeben haben,
dass sich das Format dndern kann.

3.4 Thema 10: Vorsicht beim Uberschreiben von clone

Das Interface Cloneable war als Mixin-Interface (Thema 16) gedacht, mit dem Objekte
bekannt geben konnen, dass Sie das Klonen zulassen. Leider wird es dieser Intention
nicht gerecht. Sein erster Mangel besteht darin, dass es keine clone-Methode hat und
die clone-Methode der Klasse Object geschiitzt ist. Die einzige Moglichkeit, die
Methode clone auf einem Objekt aufzurufen, das einfach nur Cloneable implementiert,
ist die Reflection (Thema 35). Selbst ein reflexiver Aufruf ist nicht unbedingt erfolgreich,
da es keine Garantie dafiir gibt, dass das Objekt eine clone-Methode hat, auf die man

58 3 Allen Objekten gemeinsame Methoden

zugreifen kann. Trotz dieses und anderer Mangel wird dieses Interface doch so héufig
verwendet, dass es sich lohnt, es zu verstehen. In diesem Thema erfahren Sie, wie Sie
eine clone-Methode mit gutem Verhalten implementieren, wann dies angemessen ist
und welche Alternativen es gibt.

Was macht Cloneable also wirklich, wenn es keine Methoden enthilt? Es bestimmt das
Verhalten von Objects geschiitzter clone-Implementierung: Wenn eine Klasse Coneable
implementiert, dann gibt die clone-Methode von Object eine Feld-fiir-Feld-Kopie des
Objekts zuriick. Ansonsten lost sie eine CloneNotSupportedException aus. Dies ist eine fiir
Interfaces hochst untypische Verwendung, die nicht emuliert werden sollte. Wenn Sie
ein Interface implementieren, sagen Sie dadurch normalerweise etwas dariiber aus,
was eine Klasse fiir ihre Clients tun kann. Bei Cloneable hingegen dndern Sie dadurch
das Verhalten einer geschiitzten Methode in einer Oberklasse.

Damit die Implementierung des Interface Cloneable sich auf eine Klasse auswirkt, miis-
sen die Klasse und alle ihre Oberklassen ein relativ komplexes, nicht erzwingbares und
grofitenteils nicht dokumentiertes Protokoll einhalten. Dadurch ergibt sich ein aufler-
sprachlicher Mechanismus: Dieser erzeugt ein Objekt, ohne einen Konstruktor aufzu-
rufen.

Der allgemeine Vertrag der Methode clone ist diirftig. Wir haben ihn aus der Spezifika-
tion zu java.lang.Object kopiert:

Erzeugt eine Kopie dieses Objekts und gibt sie zuriick. Die genaue Bedeutung des
Wortes »Kopie« kann von der Klasse des Objekts abhingen. Allgemein hat der
Ausdruck

x.clone() != x

fiir jedes Objekt x den Wert true und der folgende Ausdruck
x.clone().getClass() == x.getClass()

ist true. Dies sind jedoch keine absoluten Anforderungen.
x.clone().equals(x)

ist normalerweise zwar true, aber dies ist nicht absolut erforderlich. Das Kopieren
eines Objekts erfordert normalerweise die Erzeugung einer neuen Instanz der
Klasse dieses Objekts, kann aber auch das Kopieren interner Datenstrukturen erfor-
dern. Es werden keine Konstruktoren aufgerufen.

Bei diesem Vertrag gibt es mehrere Probleme. Die Bedingung, dass keine Konstrukto-
ren aufgerufen werden, ist zu stark. Eine clone-Methode mit gutem Verhalten kann
Konstruktoren aufrufen, um intern in dem gerade erstellten c1one Objekte zu erzeugen.
Wenn die Klasse final ist, kann clone sogar ein von einem Konstruktor erzeugtes
Objekt zuriickgeben.

Thema 10: Vorsicht beim Uberschreiben von clone 59

Die Bedingung, dass x.clone().getClass() normalerweise mit x.getClass() identisch
sein soll, ist zu schwach. In der Praxis gehen die Programmierer davon aus, dass dann,
wenn sie eine Klasse erweitern und super.clone aus der Oberklasse aufrufen, das
zurtickgegebene Objekt eine Instanz der Oberklasse sein wird. Die einzige Art, wie eine
Oberklasse diese Funktionalitit bereitstellen kann, besteht darin, ein durch einen Auf-
ruf von super.clone erhaltenes Objekt zuriickzugeben. Wenn eine clone-Methode ein
Objekt zuriickgibt, das von einem Konstruktor erzeugt wurde, dann wird es die fal-
sche Klasse haben. Wenn Sie die clone-Methode in einer nicht-finalen Klasse iiber-
schreiben, sollten Sie daher ein Objekt zuriickgeben, das Sie durch einen Aufruf
von super.clone erhalten haben. Wenn alle Oberklassen einer Klasse diese Regel befol-
gen, dann ruft ein Aufruf von super.clone letztlich die clone-Methode von Object auf
und erzeugt eine Instanz der richtigen Klasse. Dieses Verfahren hat gewisse Ahnlich-
keit mit der automatischen Konstruktorverkettung, wird jedoch nicht erzwungen.

In der Version 1.3 formuliert das Interface Cloneable nicht ausdriicklich, welche Verant-
wortung eine Klasse durch die Implementierung dieses Interface tibernimmt. Die Spe-
zifikation beschréankt sich darauf, anzugeben, wie die Implementierung des Interface
das Verhalten der clone-Implementierung in Object beeinflusst. In der Praxis erwartet
man von einer Klasse, die Cloneable implementiert, dass sie eine ordentlich funktio-
nierende Offentliche clone-Methode bereitstellt. Normalerweise ist dies nur dann
moglich, wenn alle Oberklassen der Klasse eine offentliche oder geschiitzte clone-
Implementierung mit gutem Verhalten bereitstellen.

Nehmen wir z.B. an, Sie wollten Cloneable in einer Klasse implementieren, deren Ober-
klassen clone-Methoden mit gutem Verhalten bereitstellen. Ob das Objekt, das Sie von
super.clone() erhalten, dem Ergebnis gleicht, das Sie am Ende zuriickgeben werden,
héangt von der Natur der Klasse ab. Aus der Sicht der einzelnen Oberklassen ist dieses
Objekt ein voll funktionsfahiger Klon des urspriinglichen Objekts. Die in Ihrer Klasse
deklarierten Felder (falls es welche gibt) haben Werte, die mit denen des geklonten
Objekts identisch sind. Falls jedes Feld einen einfachen Wert oder eine Referenz auf ein
unverdnderliches Objekt enthélt, entspricht das zuriickgegebene Objekt vielleicht
genau lhren Bediirfnissen. In diesem Fall ist keine weitere Verarbeitung erforderlich.
Dies ist z.B. bei der Klasse PhoneNumber im Thema 8 der Fall. Hier brauchen Sie nur noch
eine offentliche Zugriffsmoglichkeit auf die geschiitzte clone-Methode der Klasse
Object bereitzustellen:

public Object clone() |
try |
return super.clone();
} catch(CloneNotSupportedException e) |
throw new Error("Assertion failure"); // Nie mdglich
}

60 3 Allen Objekten gemeinsame Methoden

Wenn Ihr Objekt jedoch Felder enthilt, die auf veranderliche Objekte referieren, kann
diese Implementierung der Methode clone fatale Folgen haben. Betrachten Sie z.B. die
Klasse Stack im Thema 5:

public class Stack f{
private Objectl] elements;
private int size = 0;

public Stack(int initialCapacity) f{
this.elements = new ObjectlinitialCapacity];
J

public void push(Object e) f
ensureCapacity();
elements[size++] = e;

public Object pop() |
if (size == 0)
throw new EmptyStackException();
Object result = elementsl--sizel;
elementslsizel = null; // eliminiere obsolete Referenz
return result;

// Sichere Raum fir mindestens ein weiteres Element.
private void ensureCapacity() f{
if (elements.length == size) {
Object oldElements[] = elements;
elements = new Object[? * elements.length + 11;
System.arraycopy(oldETements, 0, elements, 0, size);

}

Angenommen, Sie mochten diese Klasse klonierbar machen. Wenn ihre c1one-Methode
nur super.clone() zuriickgibt, dann wird die resultierende Stack-Instanz zwar in
ihrem size-Feld den korrekten Wert aufweisen, doch ihr elements-Feld wird nach wie
vor auf dasselbe Array referieren wie die urspriingliche Stack-Instanz. Eine Modifika-
tion des Originals wird die Invarianten des Klons zerstéren und umgekehrt. Sie werden
rasch feststellen, dass Ihr Programm unsinnige Ergebnisse hervorbringt oder eine Array
IndexOutOfBoundsException auslost.

Wenn Sie den einzigen Konstruktor der Stack-Klasse aufrufen, dann kann es nie zu die-
ser Situation kommen. Tatsdchlich fungiert die clone-Methode als eine andere Art
Konstruktor: Sie miissen sicherstellen, dass sie das Originalobjekt nicht schadigt
und dass sie die Invarianten auf dem Klon korrekt einrichtet. Damit die clone-

Thema 10: Vorsicht beim Uberschreiben von clone 61

Methode auf Stack richtig funktioniert, muss sie die Interna des Stacks kopieren. Dies
tun Sie am einfachsten, indem Sie clone rekursiv auf dem elements-Array aufrufen:

public Object clone() throws CloneNotSupportedException f{
Stack result = (Stack) super.clone();
result.elements = (Objectl[]) elements.clone();
return result;

}

Beachten Sie, dass diese Losung nicht funktionieren wiirde, wenn das buckets-Feld
final wére. Dann diirfte die clone-Methode dem Feld keinen neuen Wert zuweisen.
Dies ist ein Grundsatzproblem: Die clone-Architektur ist mit der normalen Benut-
zung von final-Feldern, die sich auf verdnderliche Objekte beziehen, nicht verein-
bar. Davon ausgenommen sind Félle, in denen verdanderliche Objekte in sicherer Weise
von einem Objekt und seinem Klon gemeinsam genutzt werden kénnen. Eventuell
miissen Sie von einigen Feldern die final-Modifikatoren entfernen, um eine Klasse klo-
nierbar zu machen.

Es ist nicht immer ausreichend, clone rekursiv aufzurufen. Nehmen wir z.B. an, Sie
schreiben eine clone-Methode fiir eine Hash-Tabelle, deren Interna in einem Array von
Buckets bestehen, wobei jeder Bucket den ersten Eintrag in einer verketteten Liste von
Schliissel / Wert-Paaren referenziert oder — im Falle eines leeren Buckets — nul1 ist. Aus
Leistungsgriinden implementiert die Klasse eine eigene, leichtgewichtige einfach ver-
kettete Liste anstatt java.util.LinkedList intern zu verwenden:

public class HashTable implements Cloneable f{
private Entry[] buckets = ...;

private static class Entry f
Object key;
Object value;
Entry next;

Entry(Object key, Object value, Entry next) |
this.key = key;
this.value = value;
this.next = next;

. // Rest wird weggelassen
}

Angenommen, Sie klonen nur das Bucket-Array rekursiv, wie wir es auch mit dem
Stack taten:

// Kaputt - fihrt zu gemeinsamem internen Zustand!
public Object clone() throws CloneNotSupportedException f{
HashTable result = (HashTable) super.clone();

62 3 Allen Objekten gemeinsame Methoden

result.buckets = (Entry[]) buckets.clone();
return result;
}

Obwohl der Klon sein eigenes Bucket-Array hat, referenziert dieses Array dieselben
verketteten Listen wie das Original. Das kann leicht zu nicht-deterministischem Ver-
halten des Klons und seines Originals fithren. Um dieses Problem zu beheben, miissen
Sie die verkettete Liste kopieren, die jeden Bucket einzeln enthilt. Im Folgenden sehen
Sie ein gebrduchliches Verfahren:

public class HashTable implements Cloneable f{
private Entry[] buckets = ...;

private static class Entry {
Object key;
Object value;
Entry next;

Entry(Object key, Object value, Entry next) f
this.key = key;
this.value = value;
this.next = next;

// Kopiere rekursiv die verkettete Liste, die mit
// diesem Entry anfdngt
Entry deepCopy() {
return new Entry(key, value,
next == null ? null : next.deepCopy());

public Object clone() throws CloneNotSupportedException f{
HashTable result = (HashTable) super.clone();
result.buckets = new Entrylbuckets.lengthl;
for (int i = 0; i < buckets.length; i++)

if (buckets[i] != null)
result.buckets[il = (Entry)
buckets[i].deepCopy();

return result;

. // Rest wird weggelassen
}

Die private Klasse HashTable.Entry wurde so ergédnzt, dass sie nunmehr auch eine
Methode fiir »tiefes Kopieren« unterstiitzt. Die clone-Methode auf HashTable weist ein
neues buckets-Array der richtigen Grofle zu und durchlduft das urspriingliche buckets-
Array, wobei sie von jedem nicht-leeren Bucket eine Tiefenkopie anfertigt. Die Tiefen-
kopiemethode auf Entry ruft sich selbst rekursiv auf, um die gesamte verkettete Liste

Thema 10: Vorsicht beim Uberschreiben von clone 63

zu kopieren, die mit dem Eintrag beginnt. Diese Technik ist gut und schén und funk-
tioniert auch, wenn die Buckets nicht zu lang sind, aber sie ist kein gutes Verfahren
zum Klonen einer verketteten Liste, da sie fiir jedes Element der Liste einen Stack-
Frame konsumiert. Wenn die Liste lang ist, kann sie leicht einen Stack-Uberlauf verur-
sachen. Damit es dazu nicht kommt, konnen Sie die Rekursion in deepCopy durch Itera-
tion ersetzen:

// Kopiere iterativ die verkettete Liste, die mit
// diesem Entry beginnt
Entry deepCopy() f{

Entry result = new Entry(key, value, next);

for (Entry p = result; p.next != null; p = p.next)
p.next = new Entry(p.next.key, p.next.value, p.next.next);

return result;
1

Der letzte Ansatz zum Klonen komplexer Objekte ist Folgender: Sie rufen super.clone
auf, setzen alle Felder des resultierenden Objekts in ihren jungfraulichen Zustand und
rufen dann {ibergeordnete Methoden auf, um den Zustand des Objekts wiederherzu-
stellen. In unserem Hashtable-Beispiel wiirde das buckets-Feld mit einem neuen Bucket-
Array initialisiert und die (hier nicht gezeigte) Methode put(key, value) fiir jede
Schliissel-Wert-Entsprechung in der zu klonenden Hash-Tabelle aufgerufen. Mit die-
sem Verfahren erhalten Sie eine einfache, recht elegante clone-Methode, die allerdings
nicht ganz so schnell ist wie die clone-Methode, die das Innenleben des Objekts und
seines Klons direkt manipuliert.

Wie ein Konstruktor, so sollte auch eine clone-Methode auf dem Klon, der gerade ange-
legt wird, keine nicht-finalen Methoden aufrufen (Thema 15). Wenn clone eine tiber-
schriebene Methode aufruft, dann wird diese ausgefiihrt, noch ehe die Unterklasse, in
der sie definiert ist, Gelegenheit hatte, ihren Zustand in dem Klon festzulegen. Das
wiirde wahrscheinlich den Klon und das Original inkonsistent machen. Daher sollte
die im vorigen Abschnitt beschriebene put(key.value)-Methode entweder final oder
privat gemacht werden. (Wenn sie privat ist, dann ist sie vermutlich die »Hilfs-
methode« zu einer nicht-finalen 6ffentlichen Methode.)

Die clone-Methode von Object ist so deklariert, dass sie eine CloneNotSupportedException
auslost, aber {iiberschreibende clone-Methoden haben eventuell diese Deklaration
nicht. Die clone-Methoden finaler Klassen sollten diese Deklaration weglassen, da
Methoden, die keine gepriiften Exceptions auslosen, einfacher zu benutzen sind
(Thema 41). Wenn eine erweiterbare Klasse — vor allem eine, die fiir die Vererbung
geschaffen wurde (Thema 15) — die clone-Methode tiberschreibt, dann sollte die tiber-
schreibende clone-Methode die Deklaration der CloneNotSupportedException einschlie-

64 3 Allen Objekten gemeinsame Methoden

fien. Dann konnen sich Unterklassen auf elegante Weise auch gegen die Klonierbarkeit
entscheiden, indem sie die folgende c1one-Methode bereitstellen:

// Clone-Methode, mit der Instanzen garantiert

// nicht geklont werden kénnen

public final Object clone() throws CloneNotSupportedException f{
throw new CloneNotSupportedException();

}

Die Befolgung dieses Ratschlags ist zwar nicht unabdingbar, da die clone-Methode
einer Unterklasse, die kein Klonen zulassen soll, immer noch eine Ausnahme wie die
UnsupportedOperationException auslosen kann, wenn die von ihr tiberschriebene clone-
Methode keine CloneNotSupportedException deklariert. In der Praxis gilt jedoch, dass
unter solchen Umstanden die CloneNotSupportedException die einzig korrekte ist.

Rekapitulieren wir: Alle Klassen, die Cloneable implementieren, sollten clone mit einer
Offentlichen Methode iiberschreiben. Diese 6ffentliche Methode sollte zuerst
super.clone aufrufen und dann die Felder reparieren, die dies eventuell nétig haben.
Das bedeutet in aller Regel, dass verdnderliche Objekte, die die interne »Tiefenstruk-
tur« des zu klonenden Objekts ausmachen, kopiert und die Referenzen auf diese
Objekte durch Referenzen auf die Kopien ersetzt werden. Sie konnen diese internen
Kopien zwar generell anlegen, indem Sie clone rekursiv aufrufen, aber dies ist nicht
immer das beste Verfahren. Wenn die Klasse nur primitive Felder oder Referenzen auf
unverdnderliche Objekte enthélt, dann brauchen wahrscheinlich {iberhaupt keine Fel-
der repariert zu werden. Doch auch von dieser Regel gibt es Ausnahmen. So miissen
Sie z.B. ein Feld, das eine Seriennummer oder eine andere eindeutige Identifikation
enthélt, oder ein Feld, das den Erstellungszeitpunkt des Objekts reprasentiert, auch
dann reparieren, wenn es einen Grundtyp hat oder unveranderlich ist.

Muss es wirklich so kompliziert sein? Nur selten. Wenn Sie eine Klasse erweitern, die
Cloneable implementiert, haben Sie gar keine andere Wahl als eine clone-Methode mit
gutem Verhalten zu implementieren. Anderenfalls liefern Sie vielleicht besser ein
anderes Mittel zum Kopieren von Objekten oder verzichten einfach auf diese Fahig-
keit. Es hat z.B. kaum Sinn, wenn unverdnderliche Klassen Objektkopien unterstiitzen,
da die Kopien buchstablich nicht vom Original zu unterscheiden wéren.

Eine schone Sache zum Kopieren von Objekten ist ein Kopiekonstruktor. Dabei han-
delt es sich einfach um einen Konstruktor, der ein einziges Argument entgegennimmt,
dessen Typ die Klasse ist, die den Konstruktor enthélt. Ein Beispiel:

public Yum(Yum yum);

Eine kleinere Abwandlung besteht darin, anstelle eines Konstruktors eine statische
Factory-Methode zur Verfiigung zu stellen.:

public static Yum newInstance(Yum yum);

Thema | |: Implementieren Sie Comparable 65

Der Ansatz mit dem Kopiekonstruktor und seiner Variante einer statischen Factory
kann gegentiber Cloneable/clone viele Vorteile bieten: Er stiitzt sich auf keinen ris-
kanten Objekterzeugungsmechanismus aufierhalb der Sprache, er erfordert keine Befol-
gung schlecht dokumentierter Konventionen, die sich nicht erzwingen lassen, er
widerspricht nicht der eigentlichen Verwendung finaler Felder, er verlangt vom Client
nicht, eine tberfliissige, gepriifte Ausnahme abzufangen und er stellt dem Client ein
statisch typgebundenes Objekt zur Verfiigung. Es ist zwar unmdglich, einen Kopiekon-
struktor oder eine statische Factory in ein Interface zu packen, aber auch Cloneable funk-
tioniert nicht als Interface, weil es keine offentliche c1one-Methode hat. Daher biifen Sie
auch keine Inferface-Funktionalitdt ein, wenn Sie statt einer c1one-Methode einen Kopie-
konstruktor verwenden.

Aufierdem kann ein Kopiekonstruktor (oder eine statische Factory) ein Argument ent-
gegennehmen, deren Typ ein geeignetes, von der Klasse implementiertes Interface ist.
So stellen z.B. alle Allzweck-Implementierungen von Sammlungsklassen per Konven-
tion einen Kopiekonstruktor zur Verfiigung, dessen Argument den Typ Collection oder
Map hat. Kopiekonstruktoren von Interfaces gestatten es dem Client, die Implementie-
rung der Kopie zu wihlen, anstatt ihm die Implementierung des Originals aufzuzwin-
gen. Angenommen, Sie haben z.B. LinkedList 1 und mochten sie als ArrayList kopieren.
Die clone-Methode bietet diese Funktionalitat nicht, aber mit einem Kopiekonstruktor
geht es ganz leicht: new ArraylList(1).

In Anbetracht all der Probleme, die Cloneable aufwirft, kann man guten Gewissens
sagen, dass andere Interfaces diese Klasse nicht erweitern sollten, und dass Klassen,
die fiir die Vererbung entworfen werden (Thema 15), sie nicht implementieren sollten.
Wegen ihrer vielen Schwiachen wird die clone-Methode von manchen Profi-Program-
mierern nie tiberschrieben oder aufgerufen, es sei denn, um Arrays billig zu kopieren.
Wenn Sie auf einer fiir die Vererbung entworfenen Klasse nicht wenigstens eine
geschiitzte clone-Methode mit gutem Verhalten liefern, dann kénnen Unterklassen die-
ser Klasse Cloneable nicht implementieren.

3.5 Thema I I: Implementieren Sie Comparable

Im Gegensatz zu den anderen in diesem Kapitel besprochenen Methoden ist compareTo
nicht in Object deklariert, sondern es ist die einzige Methode des Interface
Jjava.lang.Comparable. Ihrem Wesen nach dhnelt sie der equals-Methode aus Object, doch
sie gestattet neben einfachen Gleichheitsvergleichen auch Vergleiche der Reihenfolge.
Eine Klasse, die Comparable implementiert, zeigt dadurch, dass ihre Instanzen eine
natiirliche Reihenfolge haben. Ein Array von Objekten, die Comparable implementieren, ist
ganz einfach zu sortieren:

Arrays.sort(a);

66 3 Allen Objekten gemeinsame Methoden

Ebenso einfach ist es, das Array zu durchsuchen, Extremwerte zu berechnen und auto-
matisch sortierte Sammlungen von Comparable-Objekten zu pflegen. So gibt z.B. das fol-
gende Programm, das darauf beruht, dass Comparable von String implementiert wird,
eine alphabetisierte Liste seiner Kommandozeilenargumente aus, aus der die Dupli-
kate getilgt sind:

public class WordList f
public static void main(Stringl] args) f{
Set s = new TreeSet();
s.addAT11(Arrays.asList(args));
System.out.printin(s);

}

Indem Sie Comparable implementieren, ermdglichen Sie es Ihrer Klasse, mit all den vie-
len generischen Algorithmen und Sammlungsklassenimplementierungen zusammen-
zuarbeiten, die sich auf dieses Interface stiitzen. Mit minimalem Aufwand erreichen
Sie einen gewaltigen Machtzuwachs. Buchstablich alle Wertklassen der Java-Plattform-
bibliotheken implementieren Comparable. Wenn Sie eine Wertklasse mit einer offensicht-
lichen natiirlichen Ordnung schreiben — z.B. mit alphabetischer Reihenfolge oder
nummerischer oder chronologischer Ordnung -, dann miissen Sie dieses Interface
unbedingt implementieren. Wie sie dabei vorgehen, erfahren Sie in diesem Thema.

Der allgemeine Vertrag fiir die Methode compareTo dhnelt dem Wesen nach dem der
equals-Methode. Ich habe ihn aus der Spezifikation von Comparable fiir Sie kopiert:

Vergleicht dieses Objekt hinsichtlich der Reihenfolge mit dem angegebenen Objekt. Gibt eine
negative ganze Zahl, null oder eine positive ganze Zahl zuriick, je nachdem, ob dieses Objekt
kleiner, gleich oder grifSer als das angegebene Objekt ist. Lost C1assCastException aus, wenn
der Typ des angegebenen Objekts einen Vergleich mit diesem Objekt unmaglich macht.

In der nachfolgenden Beschreibung meint die Notation sgn(Ausdruck) die mathematische
signum-Funktion, die definitionsgemifs —1, 0 oder 1 zuriickgibt, je nachdem, ob der Wert
von Ausdruck negativ, null oder positiv ist.

Der Implementor muss fiir alle x und y gewihrleisten, dass sgn(x.compareTo(y)) ==
-sgn(y.compareTo(x)). (Das impliziert, dass x.compareTo(y) eine Ausnahme auslo-
sen muss, genau dann wenn y.compareTo(x) eine Ausnahme auslost.)

— Der Implementor muss auflerdem gewihrleisten, dass die Relation transitiv ist: (x.com-
pareTo(y)>0 && y.compareTo(z)>0) impliziert x.compareTo(z)>0.

- Auflerdem muss der Implementor gewiihrleisten, dass fiir alle z gilt: x.compareTo(y) ==
0 impliziert, dass sgn(x.compareTo(z)) == sgn(y.compareTo(z)).

— Es ist unbedingt ratsam, aber nicht strikt erforderlich, dass (x.compareTo(y)==0) ==
(x.equals(y)). Jede Klasse, die das Comparab]e-Interface implementiert und diese Bedin-

Thema | |: Implementieren Sie Comparable 67

gqung verletzt, muss dies klar anzeigen. Wir empfehlen die Formulierung: »Hinweis: Die
natiirliche Ordnung dieser Klasse ist inkonsistent mit equals.«

Lassen Sie sich nicht von der mathematischen Natur dieses Vertrags ablenken. Wie der
Vertrag von equals (Thema 7) ist auch der compareTo-Vertrag weniger kompliziert als er
aussieht. Jede verniinftige Ordnungsbeziehung innerhalb einer Klasse geniigt dem
compareTo-Vertrag. Im Gegensatz zu equals muss compareTo nicht klasseniibergreifend
funktionieren: Wenn sich zwei zu vergleichende Objektreferenzen auf Objekte unter-
schiedlicher Klassen beziehen, darf compareTo auch eine ClassCastException ausldsen.
Und genau das sollte compareTo unter solchen Umstédnden auch tun. Obwohl der Ver-
trag Vergleiche zwischen Klassen nicht von vornherein ausschliefst, gibt es auch im
Release 1.4 keine Klassen in den Java-Plattformbibliotheken, die solche Vergleiche
unterstiitzen.

Wie eine Klasse, die den hashCode-Vertrag verletzt, andere, vom Hashing abhdngige
Klassen zerstéren kann, so kann auch eine Klasse, die den compareTo-Vertrag verletzt,
andere Klassen zerstoren, die von Vergleichen abhdngen. Dazu gehdren auch sortierte
Sammlungen, TreeSet und TreeMap sowie die Hilfsklassen Collections und Arrays, die
Such- und Sortieralgorithmen enthalten.

Gehen wir einmal den compareTo-Vertrag durch. Als Erstes besagt er: Wenn Sie die Ver-
gleichsrichtung zwischen zwei Objektreferenzen umkehren, dann geschieht das, was
man erwarten wiirde: Wenn das erste Objekt kleiner als das zweite ist, dann muss das
zweite grofler als das erste sein, wenn das erste Objekt gleich dem zweiten ist, dann
muss auch das zweite gleich dem ersten sein, und wenn das erste Objekt grofier als das
zweite ist, dann muss das zweite kleiner als das erste sein. Als Zweites besagt der Ver-
trag: Ist ein Objekt groBer als das zweite und das zweite grofer als das dritte, dann
muss das erste auch grofier als das dritte sein. Die letzte Aussage des Vertrags ist: Alle
Objekte, die gleich sind, miissen auch dann gleich sein, wenn man sie mit einem ande-
ren Objekt dieser Menge vergleicht.

Aus diesen drei Vorschriften ergibt sich, dass der Gleichheitstest einer compareTo-
Methode denselben Beschrankungen unterliegt, die auch der equals-Vertrag vorsieht:
Reflexivitdt, Symmetrie, Transitivitdt und Nicht-Null-Vorschrift. Also gibt es auch die-
selbe Falle: Es gibt einfach keine Moglichkeit, eine instanziierbare Klasse um einen
neuen Aspekt zu erweitern und dabei den compareTo-Vertrag beizubehalten (Thema 7).
Es gibt jedoch auch denselben Workaround: Wenn Sie einer Klasse, die Comparable
implementiert, einen wichtigen Aspekt hinzufiigen méchten, dann erweitern Sie sie
nicht, sondern schreiben eine separate Klasse, die ein Feld der ersten Klasse enthlt.
Dann stellen Sie eine »View«-Methode zur Verfiigung, die dieses Feld zuriickliefert.
Nun kénnen Sie auf der zweiten Klasse jede beliebige compareTo-Methode implementie-
ren. Indessen kann der Client der Klasse, wenn nétig, die zweite Klasse als eine Instanz
der ersten betrachten.

68 3 Allen Objekten gemeinsame Methoden

Der letzte Absatz des compareTo-Vertrags, der eher einen dringenden Rat als eine Vor-
schrift darstellt, besagt einfach, dass der von compareTo geforderte Gleichheitstest gene-
rell dieselben Ergebnisse zuriickgeben sollte wie der der equals-Methode. Wenn diese
Vorschrift befolgt wird, so sagt man: Die von compareTo geforderte Ordnung ist konsis-
tent mit equals. Wird die Vorschrift nicht befolgt, so ist die Ordnung inkonsistent mit
equals. Eine Klasse, deren compareTo-Methode eine mit equals inkonsistente Ordnung
verlangt, funktioniert zwar dennoch, aber sortierte Sammlungen, die Elemente der
Klasse enthalten, gehorchen moglicherweise nicht dem allgemeinen Vertrag des pas-
senden Sammlungs-Interfaces (Collection, Set oder Map). Das liegt daran, dass die allge-
meinen Vertrédge fiir diese Interfaces auf der Grundlage der equals-Methode definiert
sind, sortierte Sammlungen jedoch nicht den Gleichheitstest von equals, sondern den
von compareTo anwenden. Das ist zwar noch keine Katastrophe, aber Sie sollten sich
dennoch davor hiiten.

Betrachten Sie z.B. die Klasse Float, deren compareTo-Methode inkonsistent mit equals
ist. Wenn Sie ein HashSet erzeugen und Float(-0.0f) sowie Float(0.0f) hinzufiigen,
dann enthélt die Menge zwei Elemente, da die beiden hinzugekommenen Instanzen
von Float bei einem Vergleich mit der equals-Methode ungleich sind. Wenn Sie aber
dasselbe mit einem TreeSet anstelle eines HashSet machen, dann wird die Menge nur
ein Element enthalten, da die beiden Float-Instanzen bei einem Vergleich mit der com-
pareTo-Methode gleich sind. (Einzelheiten dariiber finden Sie in der Dokumentation zu
Float.)

Das Schreiben einer compareTo-Methode dhnelt dem Schreiben einer equals-Methode,
aber es gibt einige wichtige Unterschiede. Sie brauchen den Typ des Arguments vor
der Typumwandlung nicht zu priifen. Hat das Argument nicht den passenden Typ,
dann miisste die compareTo-Methode eine ClassCastException auslosen. Ist das Argument
null, dann miisste sie eine NullPointerException auslosen. Dies ist genau dasselbe Ver-
halten, das Sie feststellen, wenn Sie nur das Argument in den passenden Typ umwan-
deln und dann auf seine Attribute zugreifen.

Die Vergleiche zwischen den Feldern sind eher Reihenfolgenvergleiche als Gleichheits-
vergleiche. Vergleichen Sie Objektreferenzfelder, indem Sie die compareTo-Methode
rekursiv aufrufen. Wenn ein Feld Comparable nicht implementiert oder Sie eine nicht-
standardméfiige Reihenfolge mochten, dann kénnen Sie stattdessen einen expliziten
Comparator einsetzen. Entweder schreiben Sie einen eigenen oder Sie verwenden einen
bereits vorhandenen wie z.B. den der folgenden compareTo-Methode der Klasse Case
InsensitiveString aus Thema 7:

public int compareTo(Object o) {
CaselnsensitiveString cis = (CaselnsensitiveString)o;
return String.CASE_INSENSITIVE_ORDER.compare(s, cis.s);

Thema | |: Implementieren Sie Comparable 69

Vergleichen Sie primitive Felder mit den relationalen Operatoren < und > und Arrays,
indem Sie diese Richtlinien auf die einzelnen Elemente anwenden. Wenn eine Klasse
mehrere wichtige Felder hat, ist die Reihenfolge, in der Sie diese Felder vergleichen,
von Bedeutung. Sie miissen mit dem wichtigsten Feld beginnen und sich nach unten
vorarbeiten. Wenn ein Vergleich etwas anderes als null ergibt (null bedeutet Gleich-
heit), dann sind Sie fertig und geben einfach das Ergebnis zuriick. Wenn die wichtigs-
ten Felder gleich sind, vergleichen Sie die zweitwichtigsten Felder usw. Sind alle
Felder gleich, so sind die Objekte gleich und Sie geben null zuriick. Die folgende con-
pareTo-Methode aus der Klasse PhoneNumber aus Thema 8 demonstriert diese Technik:

public int compareTo(Object o) f{
PhoneNumber pn = (PhoneNumber)o;

// Vergleiche Vorwahlen
if (areaCode < pn.areaCode)

return -1;
if (areaCode > pn.areaCode)
return 1;

// Vorwahlen sind gleich,
// vergleiche Hauptnummern
if (exchange < pn.exchange)

return -1;
if (exchange > pn.exchange)
return 1;

// Vorwahlen und Hauptnummern sind gleich,
// vergleiche Durchwahlen
if (extension < pn.extension)

return -1;
if (extension > pn.extension)
return 1;

return 0; // Alle Felder sind gleich
}

Obwohl diese Methode gut arbeitet, ldsst sie sich noch verbessern. Erinnern Sie sich,
dass der Vertrag fiir compareTo nicht die Groflenordnung, sondern nur das Vorzeichen
des Riickgabewerts angibt. Diesen Umstand konnen Sie nutzen, um den Code ein-
facher und schneller zu machen:

public int compareTo(Object o) {
PhoneNumber pn = (PhoneNumber)o;

// Vergleiche Vorwahlen
int areaCodeDiff = areaCode - pn.areaCode;
if (areaCodeDiff != 0)

return areaCodeDiff;

70 3 Allen Objekten gemeinsame Methoden

// Vorwahlen sind gleich,
// vergleiche Hauptnummern
int exchangeDiff = exchange - pn.exchange;
if (exchangeDiff !=0)
return exchangeDiff;

// Vorwahlen und Hauptnummern sind gleich,
// vergleiche Durchwahlen
return extension - pn.extension;

}

Dieser Trick funktioniert hier gut; er sollte aber nur mit extremer Vorsicht angewandt
werden. Tun Sie dies nur, wenn Sie ganz sicher sind, dass das betreffende Feld nicht
negativ sein kann oder — allgemeiner ausgedriickt — dass die Differenz zwischen dem
Hochst- und dem Mindestwert, den das Feld haben kann, kleiner oder gleich INTE-
GER.MAX_VALUE (231-1) ist. Der Trick ist nicht allgemeingiiltig, weil ein vorzeichenbehafte-
ter 32-Bit-Integer zu klein ist, um die Differenz zwischen zwei beliebigen 32-Bit-
Integern aufzunehmen. Wenn i ein gro8er positiver Integer und j ein grofier negativer
Integer ist, dann fiihrt (i-j) zu einem Uberlauf und gibt einen negativen Wert zuriick.
Dann funktioniert die resultierende compareTo-Methode nicht, gibt fiir manche Argu-
mente sinnlose Ergebnisse zuriick und verletzt die ersten beiden Vorschriften des com-
pareTo-Vertrags. Dieses Problem existiert nicht nur in der Theorie; es hat schon echte
Systeme zum Absturz gebracht. Solche Fehler sind nur schwer zu beheben, da die
schadhafte compareTo-Methode mit vielen Eingabewerten korrekt arbeitet.

4 Klassen und Interfaces

Klassen und Interfaces sind das Herz der Programmiersprache Java: Sie sind ihre ele-
mentarsten Abstraktionseinheiten. Java hat viele méachtige Elemente, mit denen Sie
Klassen und Interfaces entwerfen kdnnen. Dieses Kapitel enthalt Richtlinien, die Ihnen
helfen, diese Elemente bestmoglich zu nutzen, damit Ihre Klassen und Interfaces ver-
wendbatr, stabil und flexibel werden.

4.1 Thema |2: Minimieren Sie die Zugreifbarkeit von Klassen
und Attributen

Der wichtigste Faktor, der ein gutes Modul von einem schlechten unterscheidet, ist das
Ausmaf, in dem das Modul seine internen Daten und Implementierungsdetails vor
anderen Modulen verbirgt. Ein gut entworfenes Modul verbirgt alle seine Implemen-
tierungsdetails und hat eine klare Trennung von API und Implementierung. Dann
kommunizieren Module nur iiber ihre APIs miteinander und kiimmern sich nicht um
die Interna des jeweils anderen. Dieses Verbergen von Informationen, auch Kapselung
genannt, ist eine der Grundséulen des Software-Designs [Parnas72].

Das Verbergen von Informationen ist aus vielen Griinden wichtig, die zumeist darauf
beruhen, dass dadurch die Module, die ein System bilden, voneinander abgekoppelt
werden. So kdnnen Sie sie einzeln entwickeln, testen, optimieren, einsetzen, verstehen
und dndern. Dies verkiirzt die Entwicklungszeit, da die Module parallel entwickelt
werden konnen. Es erleichtert die Wartung, da Module schnell verstanden und
debuggt werden konnen, ohne andere Module in Mitleidenschaft zu ziehen. Zwar
fiihrt das Verbergen von Informationen an und fiir sich noch nicht zu einer Leistungs-
verbesserung, aber es schafft eine Grundlage fiir wirkungsvolles Leistungs-Tuning.
Sobald ein System vollstandig ist und ein Systemprofil gezeigt hat, welche Module
Leistungsprobleme verursachen (Thema 37), konnen Sie diese Module optimieren,
ohne die Korrektheit der anderen Module zu beeintrdchtigen. Das Verbergen von
Informationen fordert auch die Wiederverwendung von Software, da die einzelnen
Module nicht voneinander abhdngen und sich oft in anderen Zusammenhéangen als
denen, in denen sie entwickelt wurden, als niitzlich erweisen. Uberdies mindert das

72 4 Klassen und Interfaces

Verbergen von Informationen die Risiken bei der Erstellung grofler Systeme: Einzelne
Module kénnen auch dann gut sein, wenn das System insgesamt noch nichts taugt.

Die Programmiersprache Java hat viele Funktionen, die beim Verbergen von Informa-
tionen helfen. Eine derartige Funktion ist der Zugriffskontrollmechanismus [JLS, 6.6],
der tiber die Zugreifbarkeit von Klassen, Interfaces und Attributen entscheidet. Die
Zugreifbarkeit eines Elements wird durch die Stelle festgelegt, an der es deklariert ist,
und durch einen eventuell in seiner Deklaration vorhandenen Zugriffsmodifikator
(private, protected und public). Fiir das Verbergen von Informationen ist die richtige
Benutzung dieser Modifikatoren von zentraler Bedeutung.

Als Faustregel gilt: Schrianken Sie den Zugriff auf jede Klasse und jedes Attribut so
weit wie moglich ein. Mit anderen Worten: Sie sollten die niedrigste Zugriffsebene
wahlen, bei der Thre Software noch funktioniert.

Fiir Toplevel-Klassen und -Interfaces (also keine geschachtelten) gibt es zwei mogliche
Zugriffsebenen: paketprivat und dffentlich. Wenn Sie eine Toplevel-Klasse oder ein
Toplevel-Interface mit dem Modifikator public deklarieren, ist der Zugriff 6ffentlich;
andernfalls ist er paketprivat. Sie sollten eine Toplevel-Klasse oder ein Toplevel-Inter-
face so oft wie irgend moglich als paketprivat deklarieren. Dadurch wird diese Klasse
oder dieses Interface ein Bestandteil der Implementierung und nicht des exportierten
APIs seines Pakets, und Sie konnen es in einem nachfolgenden Release dndern, erset-
zen oder herausnehmen, ohne Schaden fiir die bestehenden Clients befiirchten zu
miissen. Wenn Sie diese Elemente 6ffentlich machen, sind Sie aus Kompatibilitatsgriin-
den verpflichtet, sie fiir immer zu unterstiitzen.

Wenn Sie eine paketprivate Toplevel-Klasse oder ein paketprivates Toplevel-Interface
nur von einer einzigen Klasse aus nutzen, sollten Sie diese(s) als private, geschachtelte
Klasse (oder privates geschachteltes Interface) der benutzenden Klasse definieren
(Thema 18). Das schrankt die Zugriffsmoglichkeit noch mehr ein. Noch wichtiger ist es
jedoch, dass Sie eine unnéotigerweise 6ffentliche Klasse paketprivat machen, denn eine
paketprivate Klasse gehort zur Implementierung und nicht zum API eines Pakets.

Fir Attribute (Felder, Methoden, geschachtelte Klassen und geschachtelte Interfaces)
sind vier Zugriffsebenen mdglich. Diese sind hier nach zunehmenden Zugriffsmog-
lichkeiten aufgelistet:

privat — Das Attribut ist nur innerhalb der Toplevel-Klasse zugreifbar, in der es
deklariert ist.

paketprivat — Auf das Attribut kann jede Klasse des Pakets, in dem es deklariert ist,
zugreifen. Diese Zugriffsebene, die man auch als Standardzugriff bezeichnet, gilt,
wenn kein Zugriffsmodifikator angegeben wird.

Thema 12: Minimieren Sie die Zugreifbarkeit von Klassen und Attributen 73

geschiitzt — Mit gewissen Einschrankungen [JLS, 6.6.2] konnen auch Unterklassen
der Klasse, in der das betreffende Attribut deklariert ist, sowie jede andere Klasse
des Pakets, in dem es deklariert ist, auf das Attribut zugreifen.

offentlich — Auf das Attribut kann von tiberall her zugegriffen werden.

Nachdem Sie das offentliche API IThrer Klasse sorgfiltig entworfen haben, sollte Thr
erster Reflex sein, alle anderen Attribute privat zu machen. Nur wenn eine andere
Klasse in demselben Paket wirklich auf eines dieser Attribute zugreifen muss, sollten
Sie den Modifikator private beiseite lassen, wodurch das Attribut paketprivat wird.
Wenn das oft erforderlich wird, sollten Sie sich Ihren Systementwurf noch einmal
genauer ansehen: Vielleicht erhalten Sie mit einer anderen Dekomposition Klassen, die
besser voneinander abgekoppelt sind. Private und paketprivate Attribute sind beide
Teil der Implementierung einer Klasse und haben normalerweise keinen Einfluss auf
ihr exportiertes API. Dennoch koénnen diese Felder ein »Leck« zur exportierten API
haben, wenn die Klasse Serializable implementiert (Themen 54 und 55).

Viel umfangreicher wird der Zugriff auf Attribute offentlicher Klassen, wenn die
Zugriffsebene von paketprivat auf geschiitzt umgestellt wird. Ein geschiitztes Attribut
ist Teil des exportierten APIs einer Klasse und muss in alle Ewigkeit unterstiitzt wer-
den. Ja mehr noch, ein geschiitztes Attribut einer exportierten Klasse gibt ein offent-
liches Versprechen fiir ein Implementierungsdetail ab (Thema 15). Geschiitzte
Attribute sind nur relativ selten wirklich notig.

Es gibt eine Regel, die Ihre Moglichkeiten mindert, den Zugriff auf Methoden einzu-
schranken. Wenn eine Methode eine Oberklassenmethode iiberschreibt, dann darf sie
in der Unterklasse keine niedrigere Zugriffsebene als in der Oberklasse haben [JLS,
8.4.6.3]. So wird gewdhrleistet, dass eine Instanz der Unterklasse iiberall dort benutz-
bar ist, wo auch eine Instanz der Oberklasse benutzbar ist. Wenn Sie gegen diese Regel
verstoflen, meldet IThnen der Compiler einen Fehler, sobald Sie versuchen, die Unter-
klasse zu kompilieren. Ein Sonderfall dieser Regel ist: Wenn eine Klasse ein Interface
implementiert, miissen alle Klassenmethoden, die auch in dem Interface vorhanden
sind, als offentlich deklariert sein. Das ist so, weil alle Methoden in einem Interface
implizit 6ffentlich sind.

Offentliche Klassen sollten wenn iiberhaupt nur selten &ffentliche Felder haben (im
Gegensatz zu 6ffentlichen Methoden). Wenn ein Feld nicht-final ist, oder wenn es eine
finale Referenz auf ein veranderliches Objekt enthalt, dann verzichten Sie, indem Sie
das Feld offentlich machen, auf die Moglichkeit, die Werte einzuschranken, die in dem
Feld gespeichert werden kénnen. Uberdies kénnen Sie dann auch nichts tun, wenn das
Feld modifiziert wird. Eine einfache Konsequenz daraus ist, dass Klassen mit 6ffent-
lichen verdanderlichen Feldern nicht Thread-sicher sind. Selbst wenn ein Feld final ist

74 4 Klassen und Interfaces

und kein verdnderliches Objekt referenziert, verzichten Sie, indem Sie es als 6ffentlich
deklarieren, auf die Flexibilitét, auf eine neue interne Datenrepréasentation umzuschal-
ten, in der das Feld nicht existiert.

Es gibt eine Ausnahme von der Regel, dass offentliche Klassen keine 6ffentlichen Fel-
der haben sollten. Klassen diirfen Konstanten iiber Felder offen legen, die als public
static final deklariert sind. Nach Konvention beginnen die Namen solcher Felder mit
Grofsbuchstaben; mehrere Worter werden durch Unterstriche voneinander getrennt
(Thema 38). Es ist wichtig, dass solche Felder entweder Grundtypen oder Referenzen
auf unverdnderliche Objekte enthalten (Thema 13). Ein finales Feld, das eine Referenz
auf ein verdnderliches Objekt enthilt, hat alle Nachteile eines nicht-finalen Felds. Die
Referenz kann zwar nicht gedndert werden, wohl aber das referenzierte Objekt — mit
katastrophalen Folgen.

Beachten Sie, dass ein Array, dessen Linge nicht null ist, immer verdnderlich ist. Also
ist es grundsdtzlich verkehrt, ein als public static final deklariertes Array-Feld zu
haben. Wenn eine Klasse ein solches Feld hat, kénnen ihre Clients den Array-Inhalt
andern, was eine hdufige Ursache fiir Sicherheitslocher ist.

// Potenzielles Sicherheitsloch!
public static final Typell VALUES = { ... };

Das offentliche Array sollten Sie durch ein privates Array und eine 6ffentliche, unver-
anderliche Liste ersetzen:

private static final Typel[] PRIVATE_VALUES = { ... };

public static final List VALUES =
Collections.unmodifiablelist(Arrays.asList(PRIVATE_VALUES));

Wenn Sie Typsicherheit zur Kompilierungszeit gewéahrleisten und dafiir eine Leis-
tungseinbufSe hinnehmen mochten, konnen Sie auch das offentliche Array-Feld durch
eine offentliche Methode ersetzen, die eine Kopie des privaten Arrays zuriickgibt:

private static final Typel[] PRIVATE_VALUES = { ... };

public static final Typel] values() f
return (Typel]1) PRIVATE_VALUES.clone();
}

Fazit: Sie sollten die Zugriffsmoglichkeiten so restriktiv wie moglich behandeln. Zuerst
sollten Sie sorgfiltig ein minimales 6ffentliches API entwerfen und dabei vermeiden,
dass irgendwelche Klassen, Interfaces oder Attribute unnétigerweise in das API gelan-
gen. Mit Ausnahme der public static final-Felder sollten 6ffentliche Klassen gar keine
offentlichen Felder haben. Stellen Sie sicher, dass die von public static final-Feldern
referenzierten Objekte unverdnderlich sind.

Thema 13: Bevorzugen Sie Unverdnderbarkeit 75

4.2 Thema |3: Bevorzugen Sie Unveranderbarkeit

Eine unverédnderliche Klasse ist einfach eine Klasse, deren Instanzen nicht gedndert
werden koénnen. Alle Informationen der einzelnen Instanzen werden geliefert, wenn
die Instanz erzeugt wird, und bleiben fiir die Lebensdauer des Objekts gleich. Die
Java-Plattformbibliotheken enthalten viele unveranderliche Klassen, darunter String,
die Hiillenklassen fiir die Grundtypen sowie BigInteger und BigDecimal. Dafiir gibt es
viele gute Griinde: Unverédnderliche Klassen lassen sich leichter entwerfen, implemen-
tieren und nutzen, als verdanderliche Klassen. Sie sind weniger fehleranfallig und siche-
rer.

Sie machen eine Klasse unveranderlich, indem Sie die folgenden fiinf Regeln befolgen:

1. Liefern Sie keine Methoden, die das Objekt @ndern (so genannte Anderungs-
methoden).

2. Sorgen Sie dafiir, dass keine Methoden iiberschrieben werden konnen. Dadurch
verhindern Sie, dass unachtsam oder bosartig implementierte Unterklassen das
unveranderliche Verhalten der Klasse zunichte machen. Generell verhindern Sie ein
Uberschreiben von Methoden, indem Sie die Klasse final machen, aber dazu gibt es
auch Alternativen, auf die wir spéter noch zu sprechen kommen.

3. Machen Sie alle Felder final. Damit machen Sie Thre Absichten auf eine Weise
deutlich, die das System durchsetzen kann. Auflerdem miissen Sie eventuell ein
korrektes Verhalten gewdihrleisten, wenn eine Referenz auf eine neu erzeugte
Instanz ohne Synchronisation von einem Thread an einen anderen {ibergeben wird,
je nachdem, welche Ergebnisse die Bemiithungen um eine Uberarbeitung des
Speichermodells [PughOla] noch erbringen.

4. Machen Sie alle Felder privat. Dann konnen Clients die Felder nicht unmittelbar
dndern. Technisch konnen unverdnderliche Klassen zwar durchaus public final-
Felder mit Grundtypen oder Referenzen auf unverdnderliche Objekte haben, aber
ratsam ist dies nicht, denn es schliefit eine Anderung der internen Darstellung in
einem spéteren Release von vornherein aus (Thema 12).

5. Sorgen Sie dafiir, dass der Zugriff auf verinderliche Komponenten exklusiv ist.
Wenn Ihre Klasse Felder hat, die sich auf veranderliche Objekte beziehen, miissen
Sie dafiir sorgen, dass Clients dieser Klasse keine Referenzen auf diese Objekte
erhalten konnen. Sie diirfen ein solches Feld niemals mit einer von einem Client
gelieferten Objektreferenz initialisieren oder die Objektreferenz von einer Zugriffs-
methode zuriickgeben. Erstellen Sie in Konstruktoren, Zugriffsmethoden und read-
Object-Methoden (Thema 56) nur defensive Kopien (Thema 24).

76 4 Klassen und Interfaces

Viele der Beispielklassen in den vorangegangenen Themen sind unverdnderlich. Eine
solche Klasse ist PhoneNumber aus Thema 8, die zwar fiir jedes Attribut Zugriffsmetho-
den hat, aber keine entsprechenden Anderungsmethoden. Im Folgenden sehen Sie ein
etwas komplexeres Beispiel:

public final class Complex f{
private final float re;
private final float im;

public Complex(float re, float im) {
this.re = re;
this.im = im;

}

// Zugriffsmethoden ohne entsprechende Anderungsmethoden
public float realPart() { return re; |
public float imaginaryPart() { return im; !

public Complex add(Complex c) f
return new Complex(re + c.re, im + c.im);
}

public Complex subtract(Complex c) f{
return new Complex(re - c.re, im - c.im);

}

public Complex multiply(Complex c) f
return new Complex(re*c.re - im*c.im,
re*c.im + im*c.re);

public Complex divide(Complex c) f{
float tmp = c.re*c.re + c.im*c.im;
return new Complex((re*c.re + im*c.im)/tmp,
(im*c.re - re*c.im)/tmp);

public boolean equals(Object o) |
if (0o == this)
return true;
if (!(o instanceof Complex))
return false;
Complex ¢ = (Complex)o;

return (Float.floatToIntBits(re) == // Am Ende von Thema
Float.floatToIntBits(c.re)) && // 7 sehen Sie, warum
(Float.floatToIntBits(im) == // floatToIntBits
Float.floatToIntBits(im)); // benutzt wird.

}
public int hashCode() f{
int result = 17 + Float.floatToIntBits(re);

Thema |3: Bevorzugen Sie Unverdnderbarkeit 77

result = 37*result + Float.floatToIntBits(im);
return result;
}

public String toString() {
return "(" + re + "+ " +dim+ "i)";
}
}

Diese Klasse stellt eine komplexe Zahl dar, also eine Zahl, die sowohl einen reellen als
auch einen imagindren Teil hat. Zusétzlich zu den Standardmethoden aus Object stellt
sie Zugriffsmethoden fiir den reellen und den imaginéren Teil der Zahl zur Verfiigung
und liefert die vier arithmetischen Grundoperationen: Addition, Subtraktion, Multipli-
kation und Division. Beachten Sie, wie diese arithmetischen Operationen eine neue
Complex-Instanz erzeugen und zuriickgeben, anstatt die vorliegende Instanz zu modifi-
zieren. Dieses Muster wird auf die meisten nicht-trivialen, unveranderlichen Klassen
angewandt. Man nennt es den funktionalen Ansatz, da die Methoden das Ergebnis
zurtickgeben, das sie erhalten, wenn sie eine Funktion auf ihren Operanden anwen-
den, ohne diesen zu verdndern. Vergleichen Sie dies mit dem {iblicheren prozeduralen
Ansatz, bei dem Methoden eine Prozedur auf ihren Operanden anwenden und
dadurch eine Zustandsdanderung dieses Operanden verursachen.

Der funktionale Ansatz wirkt vielleicht unnatiirlich, wenn Sie ihn noch nicht kennen,
aber er macht die Unverdnderbarkeit moglich, die viele Vorteile hat. Unveranderliche
Objekte sind einfach. Ein unveranderliches Objekt kann nur einen einzigen Zustand
haben: Den, in dem es erzeugt wurde. Wenn Sie gewdihrleisten, dass alle Konstrukto-
ren Klasseninvarianten herstellen, dann haben Sie die Garantie, dass diese Invarianten
fiir alle Zukunft wahr bleiben. Sie oder der Programmierer, der die Klasse nutzt, brau-
chen dafiir nichts mehr zu unternehmen. Dagegen konnen verdnderliche Objekte
beliebig komplexe Zustandsraume haben. Wenn die Dokumentation keine prazise
Beschreibung der Zustandsinderungen liefert, die die Anderungsmethoden verur-
sachen, dann kann es schwierig oder gar unmoglich werden, eine veranderliche Klasse
zuverldssig einzusetzen.

Unveridnderliche Objekte sind inhdrent Thread-sicher und erfordern daher keine
Synchronisierung. Sie konnen nicht dadurch inkonsistent werden, dass mehrere
Threads gleichzeitig auf sie zugreifen. Einfacher konnen sie Thread-Sicherheit gar
nicht herstellen. Kein Thread kann auf einem unverdnderlichen Objekt jemals
irgendeine Auswirkung eines anderen Threads erkennen. Daher kénnen unverander-
liche Objekte nach Belieben gemeinsam genutzt werden. Unverdnderliche Klassen
sollten diesen Vorteil nutzen und Clients auffordern, unverianderliche Instanzen wann
immer moglich wiederzuverwenden. Ganz einfach kénnen Sie dies erreichen, indem
Sie fiir oft benutzte Werte public static final-Konstanten liefern. Die Complex-Klasse
konnte z.B. folgende Konstanten haben:

78 4 Klassen und Interfaces

public static final Complex ZERO = new Complex(0, 0);
public static final Complex ONE = new Complex(1l, 0);
public static final Complex I = new Complex(0, 1);

Dies kénnen Sie auch noch einen Schritt weiter treiben: Ein unveranderliches Objekt
kann statische Factorys zur Verfiigung stellen, die oft angeforderte Instanzen cachen
und die Erzeugung neuer Instanzen vermeiden, wenn eine bereits existierende Instanz
angefordert wird. Die Klassen BigInteger und Boolean haben beide derartige statische
Factory-Methoden. Die Verwendung von statischen Factorys veranlasst Clients, bereits
vorhandene Instanzen gemeinsam zu nutzen, anstatt neue zu erzeugen, was den Auf-
wand fiir Hauptspeicher-Footprints und Garbage Collection mindert.

Dass unverdnderliche Objekte nach Belieben gemeinsam genutzt werden kénnen,
fiihrt unter anderem dazu, dass Sie nie defensiv kopieren miissen (Thema 24). Tatsdchlich
brauchen Sie {iberhaupt keine Kopien zu machen, da die Kopien fiir alle Zeit zu den
Originalen dquivalent sein wiirden. Also brauchen und sollten Sie fiir eine unveran-
derliche Klasse keine clone-Methode und keinen Kopiekonstruktor (Thema 10) zur Ver-
figung stellen. Da man dies in der Friihzeit von Java noch nicht erkannt hatte, besitzt
die Klasse String einen Kopiekonstruktor, aber Sie sollten ihn so gut wie nie einsetzen
(Thema 4).

Sie konnen nicht nur unverdnderliche Objekte, sondern auch ihre Interna gemeinsam
nutzen. Die Klasse BigInteger verwendet z.B. intern eine Vorzeichen-Gréfienordnung-
Darstellung. Das Vorzeichen wird durch einen int dargestellt und die Gréf8enordnung
durch ein int-Array. Die Methode negate erstellt einen neuen BigInteger derselben Gro-
Benordnung, aber mit umgekehrtem Vorzeichen. Sie braucht das Array nicht zu kopie-
ren: der neu erzeugte BigInteger zeigt auf dasselbe interne Array wie der alte.

Unveridnderliche Objekte sind vorziigliche Bausteine fiir andere Objekte, seien
diese nun verdnderlich oder unverdnderlich. Sie kénnen die Invarianten eines komple-
xen Objekts viel leichter beibehalten, wenn Sie wissen, dass sich die Objekte, aus denen
es besteht, nicht andern. Ein Sonderfall dieses Prinzips besteht darin, dass unverander-
liche Objekte grofsartige Map-Schliissel und Set-Elemente sind: Sie brauchen sich keine
Sorgen zu machen, dass ihre Werte sich noch dandern kénnten, wenn sie bereits in der
Map oder dem Set sind, und dass dadurch die Invarianten der Map oder des Sets zer-
stort werden konnten.

Der einzige wirkliche Nachteil der unverinderlichen Klassen besteht darin, dass sie
fiir jeden verschiedenen Wert ein separates Objekt erfordern. Die Erzeugung dieser
Objekte kann kostspielig sein, insbesondere, wenn sie grof8 sind. Angenommen, Sie
haben einen BigInteger mit einer Million Bits und mdchten sein niedrigstes Bit
umschalten.

BigInteger moby = ...;
moby = moby.f1ipBit(0);

Thema |3: Bevorzugen Sie Unverdnderbarkeit 79

Die Methode f1ipBit erzeugt eine neue Instanz von BigInteger, die ebenfalls eine Mil-
lion Bits lang ist und sich nur in einem einzigen Bit von der ersten Instanz unterschei-
det. Die Methode braucht Zeit und Speicherplatz proportional zur Groéfie von
BigInteger. Vergleichen Sie dies einmal mit java.util.BitSet: Wie BigInteger stellt auch
BitSet eine beliebig lange Folge von Bits dar, aber im Gegensatz zu BigInteger ist BitSet
verdnderbar. Die Klasse BitSet stellt eine Methode zur Verfiigung, mit der Sie den
Zustand eines einzigen Bits einer Million-Bit-Instanz in einem konstanten Zeitraum
dndern konnen.

Das Problem mit der Leistung wird noch schlimmer, wenn Sie eine aus mehreren
Schritten bestehende Operation durchfithren, die bei jedem Schritt ein neues Objekt
anlegt und zum Schluss alle Objekte aufier dem Endergebnis wieder verwirft. Es gibt
zwei Moglichkeiten, diesem Problem zu begegnen. Entweder, Sie schétzen ein, welche
mehrere Schritte umfassenden Operationen oft erforderlich sein werden, und stellen
diese Operationen als Primitive zur Verfligung. Wenn eine aus mehreren Schritten
bestehende Operation als Primitive verfiigbar ist, braucht die unverdnderliche Klasse
nicht bei jedem Schritt ein separates Objekt zu erzeugen. Intern kann die unverander-
liche Klasse beliebig intelligent sein. So hat z.B. BigInteger eine paketprivate, verdn-
derliche »Begleiterklasse«, die sie nutzt, um Mehrschrittoperationen wie z.B. modulare
Exponentialberechnungen schneller auszufiihren. Verdnderliche Begleiterklassen sind
aus den oben aufgefiihrten Griinden viel schwerer zu benutzen, aber zum Gliick brau-
chen Sie das auch nicht: Die eigentlich harte Arbeit haben Ihnen die Implementoren
von BigInteger bereits abgenommen.

Dieser Ansatz funktioniert gut, wenn Sie genau vorhersagen konnen, welche komple-
xen Operationen tiber mehrere Stadien hinweg die Clients auf Ihrer unverdnderlichen
Klasse ausfiihren werden. Wissen Sie dies nicht, so sollten Sie am besten eine dffentliche,
verdnderliche Begleiterklasse zur Verfiigung stellen. In den Java-Plattformbibliotheken
ist das Hauptbeispiel fiir diesen Ansatz die Klasse String, deren verdnderliche Beglei-
terklasse StringBuffer ist. Aufierdem spielt unter bestimmten Umstdnden BitSet die
Rolle des verdnderlichen Begleiters von BigInteger.

Da Sie nun wissen, wie Sie eine unveranderliche Klasse herstellen, und das Fiir und
Wider der Unverdnderbarkeit kennen, wollen wir jetzt einige Entwurfsalternativen
betrachten. Bitte erinnern Sie sich, dass eine Klasse, die Unverdanderbarkeit garantiert,
nicht zulassen darf, dass irgendeine ihrer Methoden {iberschrieben wird. Sie kdnnen
die Klasse final machen, aber es gibt auch noch zwei weitere Moglichkeiten, dies zu
gewdhrleisten: Die eine besteht darin, anstelle der Klasse selbst jede ihrer Methoden
final zu machen. Der einzige Vorteil davon ist, dass Programmierer die Klasse dann
erweitern konnen, indem sie neue Methoden hinzufiigen, die den alten {ibergestiilpt
sind. Da es jedoch ebenso wirksam ist, wenn Sie die neuen Methoden in einer separa-
ten, nicht-instanziierbaren Hilfsklasse (Thema 3) als statische Methoden zur Verfiigung
stellen, rate ich von diesem Ansatz ab.

80 4 Klassen und Interfaces

Eine zweite Alternative besteht darin, alle Konstruktoren der Klasse privat oder paket-
privat zu machen und o6ffentliche statische Factorys anstelle der 6ffentlichen Konstruk-
toren bereitzustellen (Thema 1). Um dies zu konkretisieren, sehen Sie hier, wie die
Klasse Complex mit diesem Ansatz aussehen wiirde:

// Unverdnderliche Klasse mit statischen Factorys anstelle von Konstruktoren
public class Complex f{

private final float re;

private final float im;

private Complex(float re, float im) |
this.re = re;
this.im = im;

}

public static Complex valueOf(float re, float im) f
return new Complex(re, im);
}

. // Rest bleibt unverdndert
}

Dieser Ansatz wird zwar nicht so hdufig gewaihlt, aber er ist von allen drei Alternati-
ven die beste. Er ist am flexibelsten, da er die Verwendung mehrerer paketprivater
Implementierungsklassen ermoglicht. Fiir ihre aufSerhalb des Pakets angesiedelten
Clients ist die unverdnderliche Klasse im Endeffekt final, da es unmdglich ist, eine
Klasse zu erweitern, die aus einem anderen Paket stammt und keinen offentlichen
oder geschiitzten Konstruktor hat. Dieser Ansatz bietet nicht nur die Flexibilitdt mehr-
facher Implementierungsklassen, sondern ermoglicht es auch, die Leistung der Klasse
in nachfolgenden Releases dadurch zu tunen, dass die Objekt-Caching-Fahigkeiten der
statischen Factorys verbessert werden.

Statische Factorys haben gegeniiber Konstruktoren noch viele weitere Vorteile, wie wir
in Thema 1 bereits gesehen haben. Angenommen, Sie mochten z.B. ein Mittel zur Ver-
fligung stellen, um eine komplexe Zahl basierend auf ihren Polkoordinaten zu erzeu-
gen. Mit Konstruktoren wiirde das unsauber, da der natiirliche Konstruktor dieselbe
Signatur haben wiirde, die wir bereits benutzt haben: Complex(float, float). Doch mit
statischen Factorys geht es ganz leicht: Sie fiigen einfach eine zweite statische Factory
hinzu, deren Name ihre Funktion klar bezeichnet:

public static Complex valueOfPolar(float r, float theta) f
return new Complex((float) (r * Math.cos(theta)),
(float) (r * Math.sin(theta)));
}

Als BigInteger und BigDecimal geschrieben wurden, war noch nicht allgemein bekannt,
dass unverdnderliche Klassen effektiv final sein mussten. Daher konnen alle Methoden
dieser beiden Klassen iiberschrieben werden. Leider konnte man dies nachtraglich

Thema |3: Bevorzugen Sie Unverdnderbarkeit 81

nicht mehr korrigieren, da man die Aufwiértskompatibilitdt beibehalten musste. Wenn
Sie eine Klasse schreiben, deren Sicherheit von der Unveranderbarkeit eines Biglnte-
ger- oder BigDecimal-Arguments von einem nicht-vertrauenswiirdigen Client abhangt,
miissen Sie sich vergewissern, dass das Argument auch wirklich ein »richtiger« BigIn-
teger oder BigDecimal ist und keine Instanz einer nicht-vertrauenswiirdigen Unter-
klasse. Wenn letzteres der Fall ist, dann miissen Sie es defensiv kopieren, weil Sie
annehmen miissen, dass es veranderlich sein konnte (Thema 24).

public void foo(BigInteger b) f
if (b.getClass() != Biglnteger.class)
b = new BigInteger(b.toByteArray());

J

In der Liste der Regeln fiir unverdnderliche Klassen am Anfang dieses Themas steht,
dass keine Methoden das Objekt modifizieren diirfen und dass alle Felder final sein
miissen. Diese Regeln sind eigentlich ein wenig strikter als notig gefasst und kdnnen
zur Leistungssteigerung auch ein wenig gedehnt werden. In Wahrheit darf nur keine
Methode eine von auflen sichtbare Zustandsdnderung des Objekts herbeifiihren. Den-
noch haben viele unveranderliche Klassen ein oder mehrere nicht-finale, redundante
Felder, in denen sie die Ergebnisse aufwéndiger Berechnungen cachen, wenn diese
zum ersten Mal benétigt werden. Wird zu einem spateren Zeitpunkt dieselbe Berech-
nung gefordert, so wird der gecachte Wert zuriickgegeben, um einen erneuten Berech-
nungsaufwand zu sparen. Dieser Trick funktioniert nur deshalb, weil das Objekt
unverdnderlich ist: Seine Unverdnderbarkeit garantiert dafiir, dass die Berechnung,
wenn sie erneut durchgefiihrt wiirde, dasselbe Ergebnis bringen wiirde.

Die hashCode-Methode von PhoneNumber (Thema 8) berechnet z.B. den Hash-Code, wenn
sie zum ersten Mal aufgerufen wird, und cacht ihn dann fiir den Fall, dass er noch ein-
mal benétigt wird. Diese Technik, die ein klassisches Beispiel fiir faule Initialisierung
darstellt (Thema 48), wird auch von der Klasse String genutzt. Sie bendtigen keine Syn-
chronisierung, da es keine Frage ist, ob der Hash-Wert einmal oder zweimal berechnet
wird. Im Folgenden sehen Sie das allgemeine Idiom, mit dem Sie eine gecachte, faul
initialisierte Funktion eines unveranderlichen Objekts zuriickgeben kénnen:

// Gecachte, faul initialisierte Funktion eines unverdnderlichen Objekts
private volatile Foo cachedFooVal = UNLIKELY_FOO_VALUE;

public Foo foo() f{
int result = cachedFooVal;
if (result == UNLIKELY_FOO_VALUE)
result = cachedFooVal = fooValue();
return result;
}

// Private Hilfsfunktion zur Berechnung des foo-Werts
private Foo fooVal() { ... |

82 4 Klassen und Interfaces

In Bezug auf die Serialisierbarkeit muss ich auf eine Falle aufmerksam machen. Wenn
Ihre unveranderliche Klasse Serializable implementieren soll und ein oder mehrere Fel-
der hat, die auf verdnderliche Objekte referieren, miissen Sie eine explizite readObject-
oder readResolve-Methode beisteuern, und zwar auch dann, wenn die serialisierte Stan-
dardform annehmbar ist. Die standardméfiige readObject-Methode wiirde es einem
Angreifer ermoglichen, eine verdnderliche Instanz Ihrer ansonsten unveranderlichen
Klasse zu erzeugen. Dies wird in Thema 56 noch eingehender behandelt.

Fazit: Bitte widerstehen Sie der Versuchung, fiir jede get-Methode auch eine set-
Methode zu schreiben. Klassen sollten unverinderlich sein, wenn es keinen guten
Grund gibt, sie verdnderlich zu machen. Unverdnderliche Klassen haben viele Vorteile
und ihr einziger Nachteil ist, dass sie unter bestimmten Umstdnden Leistungsprobleme
verursachen kénnen. Sie sollten immer Objekte mit kleinen Werten wie z.B. PhoneNum-
ber und Complex unverdnderlich machen. (In den Java-Plattformbibliotheken gibt es
mehrere Klassen, darunter java.util.Date und java.awt.Point, die unverdnderlich
sein sollten, es aber nicht sind.) Aufierdem sollten Sie moglichst Objekte mit groieren
Werten wie z.B. String und Biglnteger ebenfalls unveranderlich machen. Sie sollten
fiir Thre unverédnderliche Klasse nur dann eine offentliche, verdnderliche Begleiterklasse
liefern, wenn Sie ganz sicher sind, dass dies fiir eine annehmbare Leistung unbedingt
erforderlich ist (Thema 37).

Fiir manche Klassen ist Unverdnderbarkeit unpraktisch. Dazu gehoren so genannte
Prozessklassen wie z.B. Thread und TimerTask. Wenn eine Klasse nicht unverinderlich
gemacht werden kann, sollten Sie immerhin ihre Verinderbarkeit moéglichst weitge-
hend einschrinken. Wenn Sie die Anzahl der Zustdnde reduzieren, die ein Objekt
annehmen kann, konnen Sie das Objekt besser verstehen, und die Fehleranfilligkeit
sinkt. Daher sollten Konstruktoren nur vollstindig initialisierte Objekte erzeugen,
deren Invarianten alle feststehen, und sie sollten keine nur teilweise fertigen Instan-
zen an andere Methoden {ibergeben, wenn es dafiir keine sehr guten Griinde gibt.
Auch sollten Sie keine Methode zur »Re-Initialisierung« zur Verfiigung stellen, die es
ermdglicht, ein Objekt wiederzuverwenden, als sei es mit einem anderen Anfangszu-
stand erzeugt worden. Eine Re-Initialisierungsmethode macht alles komplizierter und
bietet dafiir kaum oder gar keinen Leistungszuwachs.

Die Klasse TimerTask veranschaulicht diese Prinzipien. Sie ist verdnderlich, aber ihr
Zustandsraum wurde absichtlich klein gehalten. Sie erzeugen eine Instanz, planen den
Zeitpunkt ihrer Ausfiihrung und konnen sie optional auch verwerfen. Wenn ein Timer-
Task abgeschlossen oder abgebrochen wurde, kénnen Sie ihn nicht erneut planen.

Abschliefiend zu diesem Thema ein Hinweis zur Klasse Comp1ex: Dieses Beispiel diente nur
dazu, die Unverdnderbarkeit zu illustrieren. Es ist keine Implementierung komplexer
Zahlen fiir den Industrieeinsatz. Sie verwendet fiir die komplexe Multiplikation und Divi-
sion die Standardformeln, die keine korrekte Rundung bieten und fiir komplexe NaNs
und Unendlichkeiten nur wenig Semantik haben [Kahan 1991, Smith 1962, Thomas 1994].

Thema 14: Komposition ist besser als Vererbung 83

4.3 Thema |4: Komposition ist besser als Vererbung

Vererbung ist ein machtiges Werkzeug, um die Wiederverwendung von Code zu errei-
chen, aber es ist nicht fiir jeden Job geeignet. Wenn Sie Vererbung nicht richtig einset-
zen, wird Thre Software instabil. Sicher kénnen Sie Vererbung innerhalb eines Pakets
verwenden, wo dieselben Programmierer die Implementierungen von Unter- und
Oberklasse kontrollieren. Es ist ebenfalls sicher, Vererbung beim Erweitern von Klassen
zu verwenden, die speziell zum Erweitern entworfen und dokumentiert wurden

(Thema 15).

Wenn Sie jedoch von normalen, konkreten Klassen iiber Paketgrenzen hinweg etwas
vererben, begeben Sie sich in Gefahr. Bitte erinnern Sie sich: In diesem Buch wird das
Wort »Vererbung« im Sinne von Implementierungsvererbung benutzt (wenn eine Klasse
eine andere erweitert). Die in diesem Thema behandelten Probleme beziehen sich nicht
auf die Interface-Vererbung (bei der eine Klasse ein Interface implementiert oder ein
Interface ein anderes erweitert).

Anders als ein Methodenaufruf bricht Vererbung die Kapselung auf [Snyder 1986].
Mit anderen Worten: Eine Unterklasse hangt von den Implementierungsdetails ihrer
Oberklasse ab, um richtig zu funktionieren. Die Implementierung der Oberklasse kann
sich von Release zu Release dndern und wenn sie das tut, kann die Unterklasse daran
zerbrechen, auch wenn ihr Code tiberhaupt nicht angefasst wurde. Folglich muss eine
Unterklasse immer gemeinsam mit ihrer Oberklasse weiterentwickelt werden, es sei
denn, die Autoren der Oberklasse haben diese speziell zum Zwecke der Erweiterung
entworfen und dokumentiert.

Um dies zu konkretisieren, wollen wir einmal annehmen, wir hitten ein Programm,
das HashSet verwendet. Um die Leistung unseres Programms zu steigern, miissen wir
von dem HashSet erfragen, wie viele Elemente seit seiner Erzeugung hinzugefiigt wur-
den (nicht zu verwechseln mit der aktuellen Grofie, die zurtickgeht, wenn ein Element
entfernt wird). Um diese Funktionalitdt zu erhalten, schreiben wir eine Variante von
HashSet, die die Anzahl der versuchten Elementeinfiigungen immer zdhlt und eine
Methode fiir den Zugriff auf diesen Zahlerstand exportiert. Die Klasse HashSet hat zwei
Methoden, die Elemente hinzufiigen konnen: add und addA11. Also {iberschreiben wir
diese beiden Methoden:

// Kaputt - Schlechte Anwendung fiir Vererbung!

public class InstrumentedHashSet extends HashSet f{
// Die Anzahl der versuchten Elementeinfligungen
private int addCount = 0;

public InstrumentedHashSet() f{
}

public InstrumentedHashSet(Collection c) f{

84 4 Klassen und Interfaces

super(c);

public InstrumentedHashSet(int initCap, float ToadFactor) f{
super(initCap, loadFactor);
}

public boolean add(Object o) |
addCount++;
return super.add(o);

}

public boolean addA11(Collection c) f
addCount += c.size();
return super.addAl1(c);

}

public int getAddCount() f{
return addCount;
}
}

Diese Klasse mag vielleicht verniinftig aussehen, aber sie funktioniert nicht. Angenom-
men, wir erzeugten eine Instanz und fiigten mit der Methode addA11 drei Elemente
hinzu:

InstrumentedHashSet s = new InstrumentedHashSet();
s.addA11(Arrays.aslist(new Stringl] {"Snap","Crackle","Pop"}));

Wir wiirden erwarten, dass die getAddCount-Methode an diesem Punkt drei zuriickgibt,
aber sie gibt sechs zuriick. Was ist schiefgegangen? Intern wurde die HashSet-Methode
addA11 auf der add-Methode implementiert, auch wenn HashSet dieses Implementie-
rungsdetail aus nachvollziehbaren Griinden nicht dokumentiert. Die addA11-Methode
in InstrumentedHashSet addierte drei zu addCount und rief dann die addA11-Implementie-
rung von HashSet iiber super.addAll auf. Dies wiederum rief fiir jedes Element einmal
die add-Methode auf, wie sie in InstrumentedHashSet tiberschrieben wurde. Jeder dieser
drei Aufrufe addierte eins zum addCount, sodass der Gesamtzuwachs zum Schluss
sechs betrug: Jedes mit der addA11-Methode hinzugefiigte Element wird doppelt
gezdhlt.

Wir konnten die Unterklasse »reparieren«, indem wir das Uberschreiben der addA11-
Methode beiseite lassen. Dann wiirde zwar die resultierende Klasse funktionieren, aber
ihre korrekte Funktion hinge davon ab, dass die addA11-Methode der Klasse HashSet auf
ihrer add-Methode implementiert wére. Diese »Selbstnutzung« ist ein Implementie-
rungsdetail, dessen Giiltigkeit nicht fiir alle Java-Implementierungen garantiert werden
kann, und das sich tiberdies von Release zu Release dndern kann. Daher ware die resul-
tierende Klasse InstrumentedHashSet instabil.

Thema 14: Komposition ist besser als Vererbung 85

Etwas besser wire es, die addA11-Methode so zu iiberschreiben, dass sie die angegebene
Sammlung durchlduft und fiir jedes Element einmal die add-Methode aufruft. Dies
wiirde das korrekte Ergebnis garantieren, egal ob die addA11-Methode der Klasse HashSet
auf ihrer add-Methode implementiert ist oder nicht, denn die addA11-Implementierung
von HashSet wiirde dann nicht mehr aufgerufen. Doch auch dies 16st nicht alle unsere
Probleme. Letztlich bedeutet es eine Re-Implementierung von Oberklassenmethoden,
die eventuell zu einer Selbstnutzung fiihren kann. Dies ist schwierig, zeitaufwandig
und fehleranfillig. AufSerdem ist es nicht immer moglich, da einige Methoden nicht
implementiert werden kénnen, ohne Zugriff auf private Felder zu haben, auf die die
Unterklasse nicht zugreifen darf.

Eine andere, verwandte Ursache fiir instabile Unterklassen besteht darin, dass ihre
Oberklasse in kiinftigen Releases neue Methoden hinzubekommen kann. Angenom-
men, die Sicherheit eines Programms hidngt davon ab, dass alle Elemente, die in
bestimmte Sammlungen eingefiigt werden, einem bestimmten Pradikat geniigen. Dies
konnen Sie garantieren, indem Sie eine Unterklasse der Sammlung bilden und jede
Methode tiberschreiben, die ein Element hinzufiigen konnte, um vor dem Hinzufiigen
des Elements sicherzustellen, dass das Pradikat gilt. Das funktioniert so lange, bis in
einem zukiinftigen Release die Oberklasse eine neue Methode erhilt, die ein Element
hinzuftigen kann. Sobald dies geschieht, wird es moglich, einer Instanz der Unter-
klasse ein »illegales« Element hinzuzufiigen: Sie brauchen nur die neue Methode auf-
zurufen, die in der Unterklasse nicht tiberschrieben ist. Dieses Problem besteht nicht
nur in der Theorie: Als Hashtable und Vector nachtraglich {iberarbeitet wurden, um in
das Collections Framework integriert zu werden, mussten mehrere derartige Sicher-
heitslocher gestopft werden.

Beide geschilderten Probleme entstehen dadurch, dass Methoden {iberschrieben wur-
den. Sie denken vielleicht, es sei sicher, eine Klasse zu erweitern, wenn Sie nur neue
Methoden hinzufiigen und keine bestehenden tiberschreiben. Diese Art der Erweite-
rung ist zwar weit sicherer, aber auch nicht ganz risikolos. Wenn die Oberklasse in
einem spiteren Release eine neue Methode erhilt und Sie das Pech haben, dass Sie der
Unterklasse eine Methode mit derselben Signatur aber einem anderen Riickgabetyp
gegeben haben, dann wird Thre Unterklasse nicht mehr kompiliert [JLS, 8.4.6.3]. Wenn
Sie der Unterklasse eine Methode mit genau derselben Signatur geben, wie sie die
neue Oberklassenmethode hat, dann iiberschreiben Sie diese nunmehr und haben folg-
lich die beiden oben geschilderten Probleme. Auflerdem ist es zweifelhaft, dass Ihre
Methode den Vertrag der neuen Oberklassenmethode erfiillt, da dieser Vertrag zu dem
Zeitpunkt, als Sie Ihre Unterklassenmethode schrieben, noch gar nicht existierte.

Zum Gliick gibt es einen Weg, alle zuvor beschriebenen Probleme zu vermeiden.
Anstatt eine bestehende Klasse zu erweitern, geben Sie Ihrer neuen Klasse ein privates
Feld, das eine Instanz der bestehenden Klasse referenziert. Dieses Design bezeichnet
man als Komposition, da die bestehende Klasse eine Komponente der neuen wird. Jede

86 4 Klassen und Interfaces

Instanzmethode der neuen Klasse ruft die entsprechende Methode auf der enthaltenen
Instanz der bestehenden Klasse auf und gibt die Ergebnisse zuriick. Dies bezeichnet
man als Weiterleitung (forwarding) und die Methoden in den neuen Klassen sind
Weiterleitungsmethoden. Die resultierende Klasse ist absolut stabil und héngt nicht von
den Implementierungsdetails der bestehenden Klasse ab. Sie kénnen sogar der beste-
henden Klasse neue Methoden geben, ohne dass sich dies auf die neue Klasse aus-
wirkt. Um dies zu konkretisieren, sehen Sie hier einen Ersatz fiir InstrumentedHashSet,
der mit Komposition und Weiterleitung konzipiert wurde:

// Hullenklasse - nutzt Komposition statt Vererbung
public class InstrumentedSet implements Set f{
private final Set s;
private int addCount = 0;

public InstrumentedSet(Set s) |{
this.s = s;
}

public boolean add(Object o) {
addCount++;
return s.add(o);

}

public boolean addA11(Collection c) |
addCount += c.size();
return s.addA11(c);

public int getAddCount() f{
return addCount;
}

// Weiterleitungsmethoden

public void clear() [s.clear(); }
public boolean contains(Object o) { return s.contains(o); }
public boolean isEmpty() { return s.isEmpty(); }
public int size() { return s.size(); }
public Iterator iterator() { return s.iterator(); |}
public boolean remove(Object o) { return s.remove(o); }

public boolean containsAT1(Collection c)

{ return s.containsAll(c); !
public boolean removeAll(Collection c)

{ return s.removeAll(c); }
public boolean retainAll(Collection ¢)

{ return s.retainAll(c); }
public Objectl] toArray() { return s.toArray();
public Object[] toArray(Objectl] a) { return s.toArray(a); !
public boolean equals(Object o) { return s.equals(o); |

Thema 14: Komposition ist besser als Vererbung 87

public int hashCode() { return s.hashCode(); !
public String toString() { return s.toString(); |}
}

Der Entwurf der Klasse InstrumentedSet wird durch das Set-Interface moglich, das die
Funktionalitdt der Klasse HashSet aufnimmt. Er ist nicht nur stabil, sondern auch
extrem flexibel. Die Klasse InstrumentedSet implementiert das Set-Interface und hat
einen einzigen Konstruktor, dessen Argument ebenfalls vom Typ Set ist. Im Grunde
transformiert die Klasse nur ein Set in ein anderes und fiigt die Instrumentierungs-
funktionalitat hinzu. Anders als bei dem Vererbungsverfahren, das nur mit einer einzi-
gen, konkreten Klasse funktioniert und einen separaten Konstruktor fiir jeden
unterstiitzten Konstruktor der Oberklasse erfordert, konnen Sie diese Hiillenklasse
nutzen, um jede beliebige Set-Implementierung zu instrumentieren, und sie funktio-
niert auch im Zusammenhang mit jedem bereits vorhandenen Konstruktor. Ein Bei-
spiel:

Set sl = new InstrumentedSet(new TreeSet(list));

Set s2 = new InstrumentedSet(new HashSet(capacity, loadFactor));

Die Klasse InstrumentedSet kann sogar dazu verwendet werden, voriibergehend eine
set-Instanz zu instrumentieren, die bereits ohne Instrumentierung benutzt worden ist.

static void f(Set s) |
InstrumentedSet sInst = new InstrumentedSet(s);
. // Nutzen Sie in dieser Methode sInst statt s
}

Die Klasse InstrumentedSet wird als Hiillenklasse bezeichnet, weil jede Instanz von
InstrumentedSet eine andere Set-Instanz einhiillt. Man nennt dies auch das Dekorierer-
Muster [Gamma 1998, S. 175], da die Klasse InstrumentedSet eine Menge »dekorierts,
indem sie die Instrumentierung hinzufiigt. Manchmal wird die Kombination von
Komposition und Weiterleitung auch falschlich als Delegation bezeichnet. Technisch
handelt es sich erst dann um eine Delegation, wenn das Hiillenobjekt sich selbst an das
eingehiillte Objekt tibergibt [Gamma 1998, S. 20].

Hiillenklassen haben nur wenige Nachteile. Einer ist, dass sich Hiillenklassen nicht fiir
Callback-Architekturen eignen, in denen Objekte fiir spatere Aufrufe (»Callbacks«) Refe-
renzen auf sich selbst an andere Objekte iibergeben. Da das eingehiillte Objekt nichts
von seinem Hiillenobjekt weif3, tibergibt es eine Referenz auf sich selbst (this) und die
Callbacks entwischen dem Hiillenobjekt. Dies nennt man das SELF-Problem [Lieber-
man 1986]. Manch einer macht sich Sorgen, dass die Weiterleitung von Methoden-
aufrufen oder die Hauptspeicherbelastung durch Hiillenobjekte die Leistung
beeintrachtigen konnte. Doch in der Praxis zeigt sich, dass keines von beiden beson-
dere Auswirkungen hat. Es ist zwar ein wenig langweilig, Weiterleitungsmethoden zu
schreiben, aber dies wird zum Teil dadurch wieder wettgemacht, dass Sie nur einen
einzigen Konstruktor schreiben miissen.

88 4 Klassen und Interfaces

Die Vererbung eignet sich nur dort, wo die Unterklasse in Wirklichkeit ein Untertyp der
Oberklasse ist. Mit anderen Worten: Eine Klasse B sollte eine Klasse A nur dann erwei-
tern, wenn zwischen den beiden Klassen eine »ist-ein«-Beziehung besteht. Wenn Sie
eine Klasse B eine Klasse A erweitern lassen méchten, miissen Sie sich fragen: »Ist auch
wirklich jedes B ein A?« Wenn Sie diese Frage nicht wahrheitsgemafd bejahen konnen,
sollte B A nicht erweitern. Ist die Antwort nein, so sollte B oftmals eine private Instanz
von A enthalten und ein kleineres und einfacheres API haben: A ist kein wesentlicher
Teil von B, sondern nur ein Detail von Bs Implementierung.

In den Java-Plattformbibliotheken finden Sie einige offensichtliche Verletzungen dieses
Prinzips. Da z.B. ein Stack kein Vector ist, sollte Stack die Klasse Vector nicht erwei-
tern. Auch ist eine Eigenschaftsliste keine Hash-Tabelle, und daher sollte Properties
nicht Hashtable erweitern. In beiden Fillen wére Komposition angebracht gewesen.

Wenn Sie Vererbung nutzen, wo Komposition angebracht ist, legen Sie unnétigerweise
Implementierungsdetails offen. Das resultierende API bindet Sie an die Ursprungsim-
plementierung und schréankt die Leistung Ihrer Klasse fiir alle Zukunft ein. Was jedoch
noch schlimmer ist: Indem Sie Interna offen legen, lassen Sie Clients direkt auf diese
zugreifen. Im giinstigsten Fall fiihrt das nur zu einer verworrenen Semantik. Wenn sich
p z.B. auf eine Properties-Instanz bezieht, dann kann p.getProperty(key) andere
Ergebnisse bringen als p.get(key): Die erste Methode berticksichtigt Standardwerte,
die zweite, aus Hashtable geerbte, tut dies nicht. Noch schlimmer ist jedoch, dass der
Client Invarianten der Unterklasse zerstoren kann, indem er die Oberklasse direkt
modifiziert. Im Falle von Properties beabsichtigten die Entwickler, als Schliissel und
Werte nur Strings zuzulassen, aber mit einem direkten Zugriff auf die zugrunde lie-
gende Klasse Hashtable kann diese Invariante verletzt werden. Wenn dies geschehen
ist, konnen andere Teile des Properties-APIs (Toad und store) nicht mehr benutzt
werden. Als man dieses Problem entdeckte, war es zu spat, um es zu beheben, da
Clients bereits von der Benutzung von Schliisseln und Werten abhingen, die keine
Strings waren.

Einige abschlieflende Fragen sollten Sie noch stellen, ehe Sie sich fiir Vererbung statt
Komposition entscheiden. Hat die Klasse, die Sie eventuell erweitern mochten, irgend-
welche Mangel in ihrem API? Wenn ja: Fiihlen Sie sich wohl dabei, diese Médngel in das
API Ihrer eigenen Klasse zu {ibernehmen? Vererbung tragt die API-Méngel der Ober-
klasse immer weiter, wihrend Sie mit Komposition ein neues API entwerfen konnen,
das diese Mingel verbirgt.

Zusammenfassend kann man sagen, dass Vererbung zwar machtig aber auch proble-
matisch ist, weil sie die Kapselung verletzt. Sie ist nur dann geeignet, wenn zwischen
der Unterklasse und der Oberklasse eine echte Untertyp-Beziehung existiert. Selbst
dann kann Vererbung noch zu Instabilitét fithren, wenn die Unterklasse in einem ande-
ren Paket liegt als die Oberklasse und die Oberklasse nicht zum Erweitern geschaffen
wurde. Um diese Instabilitdt zu vermeiden, sollten Sie statt Vererbung Komposition

Thema 15: Entweder Sie entwerfen und dokumentieren fiir die Vererbung oder Sie verbieten sie 89

und Weiterleitung nutzen. Dies gilt vor allem dann, wenn ein Interface vorhanden ist,
das sich fiir die Implementierung einer Hiillenklasse eignet. Hiillenklassen sind nicht
nur stabiler, sondern auch méchtiger als Unterklassen.

44 Thema I5: Entweder Sie entwerfen und dokumentieren
fir die Vererbung oder Sie verbieten sie

Thema 14 warnte Sie vor den Gefahren, eine »fremde« Klasse zu erweitern, die nicht
fiir die Vererbung entworfen und dokumentiert wurde. Was bedeutet es, dass eine
Klasse fiir die Vererbung entworfen und dokumentiert ist?

Erstens muss die Klasse genau dokumentieren, was beim Uberschreiben irgendwel-
cher ihrer Methoden geschieht. Mit anderen Worten: Die Klasse muss ihre Selbstnut-
zung tiberschreibbarer Methoden dokumentieren. Fiir jede 6ffentliche oder geschiitzte
Methode und jeden offentlichen oder geschiitzten Konstruktor muss die jeweilige
Dokumentation aussagen, welche {iberschreibbaren Methoden aufgerufen werden, in
welcher Reihenfolge das geschieht, und wie die Ergebnisse jedes Aufrufs die nachfol-
gende Verarbeitung beeinflussen. (Mit iiberschreibbar meine ich nicht-final und entweder
offentlich oder geschiitzt.) Allgemeiner ausgedriickt: Eine Klasse muss genau doku-
mentieren unter welchen Umstidnden sie eine iiberschreibbare Methode aufrufen darf.
Aufrufe konnen z.B. von Hintergrund-Threads oder statischen Initialisierern kommen.

Nach Konvention enthilt eine Methode, die tiberschreibbare Methoden aufruft, am
Ende ihres Doc-Kommentars eine Beschreibung dieser Aufrufe. Die Beschreibung
beginnt mit: »Diese Implementierung«. Bitte missverstehen Sie diese Formulierung
nicht als Hinweis darauf, dass sich das Verhalten von Release zu Release dndern kann.
Sie bedeutet lediglich, dass die Beschreibung die innere Arbeit der Methode betrifft. Im
Folgenden sehen Sie ein aus der Spezifikation von java.util.AbstractCollection kopier-
tes Beispiel:

public boolean remove(Object o)

Entfernt, falls vorhanden, eine einzelne Instanz des angegebenen Elements aus dieser
Sammlung (optional). Formaler ausgedriickt: entfernt ein Element e, sodass (o==nul1
? e==null : o.equals(e)), wenn die Sammlung ein oder mehrere solcher Elemente ent-
halt. Gibt true zuriick, wenn die Sammlung das angegebene Element enthielt (oder
entsprechend, wenn sich die Sammlung aufgrund des Aufrufs gedndert hat).

Diese Implementierung durchlduft die Sammlung und sucht nach dem ange-
gebenen Element. Wenn sie es findet, entfernt sie es mit der remove-Methode des Ite-
rators aus der Sammlung. Beachten Sie, dass diese Implementierung eine
UnsupportedOperationException auslost, wenn der von der iterator-Methode dieser
Sammlung zuriickgegebene Iterator die remove-Methode nicht implementiert.

90 4 Klassen und Interfaces

Diese Dokumentation lisst keinen Zweifel daran, dass ein Uberschreiben der iterator-
Methode das Verhalten der remove-Methode beeinflusst. Aufserdem beschreibt sie ganz
genau, wie das Verhalten des von der iterator-Methode zuriickgegebenen Iterators
das Verhalten der remove-Methode beeinflusst. Stellen Sie dies einmal der Situation aus
Thema 14 gegeniiber, in der der Programmierer, der eine Unterklasse zu HashSet
schrieb, nicht sagen konnte, ob das Uberschreiben der add-Methode das Verhalten der
addA11-Methode beeinflussen wiirde oder nicht.

Verletzt dies nicht die Regel, dass eine gute API-Dokumentation beschreiben sollte, was
eine gegebene Methode tut und wie sie es tut? Doch! Dies ist leider eine Folge des
Umstands, dass Vererbung die Kapselung verletzt. Um eine Klasse so zu dokumentie-
ren, dass eine sichere Unterklassenbildung moglich ist, miissen Sie Implementierungs-
details beschreiben, die ansonsten nicht angegeben werden.

Ein Entwurf fiir die Vererbung ist mehr als nur eine Dokumentation der Selbstnut-
zungsmuster. Damit Programmierer ohne tiberméflige Miihe wirkungsvolle Unterklas-
sen schreiben konnen, muss eine Klasse Hooks zu ihren internen Ablaufen in Form
sorgfiltig ausgewdhlter geschiitzter Methoden oder, in seltenen Fillen, geschiitzter
Felder zur Verfligung stellen. Betrachten Sie z.B. die Methode removeRange aus
java.util.AbstractlList:

protected void removeRange(int fromIndex, int tolndex)

Entfernt aus dieser Liste alle Elemente, deren Index zwischen einschliefSlich fromIn-
dex und ausschlieflich toIndex liegt. Schiebt alle nachfolgenden Elemente nach links
(mindert ihren Index). Dieser Aufruf verkiirzt die ArraylList um (tolndex - fromIn-
dex) Elemente. (Wenn tolndex==fromIndex, dann hat diese Operation keine Auswir-
kungen.)

Diese Methode wird von der clear-Operation auf dieser Liste und ihren Unterlisten
aufgerufen. Wenn Sie diese Methode tiberschreiben, um Vorteil aus den Interna der
Listenimplementierung zu ziehen, kénnen Sie dadurch die Leistung der clear-Ope-
ration auf dieser Liste und ihren Unterlisten massiv steigern.

Diese Implementierung holte einen Listeniterator, der vor fromIndex positioniert
wird, und ruft wiederholt zuerst ListIterator.next und dann ListIterator.remove
auf, bis das gesamte Intervall entfernt wurde. Achtung: Wenn ListIterator.remove
einen linearen Zeitaufwand bedeutet, so bedeutet diese Implementierung einen
quadratischen Zeitaufwand.

Parameter:

fromIndex Index des ersten zu entfernenden Elements.

tolndex Index hinter dem letzten zu entfernenden Element.

Thema 15: Entweder Sie entwerfen und dokumentieren fiir die Vererbung oder Sie verbieten sie 91

Diese Methode ist fiir Benutzer einer List-Implementierung nicht von Interesse. Sie
wird einzig zu dem Zweck bereitgestellt, damit Unterklassen leichter eine schnelle
clear-Methode auf Unterlisten zur Verfiigung stellen konnen. Wenn keine removeRange-
Methode vorhanden ist, miissen die Unterklassen sonst bei einem Aufruf der clear-
Methode auf Unterlisten mit quadratischer Leistung arbeiten oder den ganzen subList-
Mechanismus von Grund auf neu schreiben — keine leichte Aufgabe!

Doch wie entscheidet man, welche geschiitzten Methoden oder Felder offengelegt wer-
den sollten, wenn eine Klasse fiir die Vererbung entworfen wird? Leider gibt es dafiir
keine goldene Regel. Das Beste, was Sie tun konnen ist, scharf nachzudenken, die Lage
so gut wie moglich einzuschitzen und dann einige Unterklassen zu schreiben, um Ihre
Meinung zu testen. Sie sollten moglichst wenige geschiitzte Methoden und Felder zur
Verfiigung stellen, da jede(s) sie an ein Implementierungsdetail bindet. Andererseits
diirfen Sie auch nicht zu wenige zur Verfiigung stellen, da eine Klasse, der eine
geschiitzte Methode fehlt, fiir die Vererbung praktisch unbrauchbar werden kann.

Wenn Sie eine Klasse fiir die Vererbung entwerfen, die in groffem Mafistab eingesetzt
werden soll, dann mdiissen Sie sich im Klaren dariiber sein, dass Sie fiir immer an die
von Thnen dokumentierten Selbstnutzungsmuster und die in den geschiitzten Metho-
den und Feldern der Klasse implizit vorhandenen Implementierungsentscheidungen
gebunden sind. Diese Verpflichtungen kénnen es schwierig oder unmoglich machen,
die Leistung oder Funktionalitdt der Klasse in nachfolgenden Releases zu verbessern.

Beachten Sie bitte auch, dass die speziell fiir eine Vererbung notwendige Dokumenta-
tion die normale Dokumentation {iberlddt, die fiir Programmierer gedacht ist, die
Instanzen Threr Klasse erzeugen und darauf Methoden aufrufen. Zu dem Zeitpunkt,
da ich dieses schreibe, ist noch kein Werkzeug und keine Kommentarkonvention in
Sicht, mit der sich die normale API-Dokumentation von den Informationen trennen
liele, die nur fiir solche Programmierer interessant sind, die Unterklassen implemen-
tieren.

Um Vererbung zu ermoglichen, muss eine Klasse noch ein paar weitere Einschrénkun-
gen beachten: Konstruktoren diirfen keine iiberschreibbaren Methoden aufrufen,
weder direkt noch indirekt. Ein Verstofs gegen diese Regel fiihrt zu einem Program-
mabsturz. Da der Oberklassenkonstruktor vor dem Unterklassenkonstruktor lauft,
wird die tiberschreibende Methode in der Unterklasse aufgerufen, ehe der Unterklas-
senkonstruktor aufgerufen wurde. Wenn die iiberschreibende Methode von irgend-
welchen Initialisierungen abhingt, die der Unterklassenkonstruktor vornimmt, dann
wird sich die Methode nicht erwartungsgemaf$ verhalten. Um dies zu konkretisieren,
zeige ich Ihnen hier eine kleine Klasse, die gegen diese Regel verstofst:

public class Super {
// Kaputt - Der Konstruktor ruft eine {berschreibbare Methode
auf
public Super() {
m();

92 4 Klassen und Interfaces

}

public void m() f{
}
}

Hier ist eine Unterklasse, die m iiberschreibt, das irrtiimlich von dem einzigen Kon-
struktor von Super aufgerufen wird:

final class Sub extends Super f
private final Date date; // final, vom Konstruktor gesetzt

Sub() H{
date = new Date();
}

// Uberschreibt Super.m, aufgerufen vom Konstruktor Super()
public void m() f{

System.out.printin(date);
}

public static void main(Stringl] args) f{
Sub s = new Sub();
s.m();

}

Man kénnte denken, dass dieses Programm das Datum zweimal ausgibt, aber beim
ersten Mal gibt es null aus, weil die Methode m vom Konstruktor Super() aufgerufen
wird, ehe der Konstruktor Sub() Gelegenheit hatte, das date-Feld zu initialisieren.
Beachten Sie, dass dieses Programm ein final-Feld in zwei verschiedenen Zustanden
beobachtet.

Die Interfaces Cloneable und Serializable stellen Sie vor besondere Probleme,
wenn Sie etwas zur Vererbung entwerfen. Eine fiir die Vererbung entwickelte Klasse
sollte generell keines dieser beiden Interfaces implementieren, da sie Programmierern,
die diese Klasse dann erweitern méochten, grofSe Schwierigkeiten macht. Sie konnen
jedoch besondere Mafinahmen ergreifen, damit Unterklassen diese Interfaces imple-
mentieren konnen, aber nicht miissen. Diese Mafinahmen sind in den Themen 10 und
54 beschrieben.

Wenn Sie in einer Klasse Cloneable oder Serializable implementieren mochten, die
fiir die Vererbung da ist, miissen Sie auf Folgendes achten: Da sich die Methoden clone
und readObject ganz dhnlich wie Konstruktoren verhalten, gilt fiir sie auch dieselbe
Einschrankung. Weder clone noch readObject diirfen je eine iiberschreibbare
Methode aufrufen, weder direkt noch indirekt. Im Falle der Methode readObject
wird die tiberschreibende Methode laufen, ehe der Zustand der Unterklasse deseriali-
siert wurde. Im Falle der c1one-Methode wird die tiberschreibende Methode laufen, ehe

Thema 15: Entweder Sie entwerfen und dokumentieren fiir die Vererbung oder Sie verbieten sie 93

die clone-Methoden der Unterklasse die Gelegenheit hatten, den Zustand des Klons zu
festzulegen. Beides fiihrt wahrscheinlich zu einem Programmabsturz. Im Falle der
clone-Methode kann dieser Absturz sowohl das geklonte Objekt als auch den Klon
selbst beschadigen.

AbschlieBend: Wenn Sie beschlieflen, in einer Klasse, die fiir die Vererbung da ist,
Serializable zu implementieren, und diese Klasse eine readResolve- oder eine write
Replace-Methode hat, dann miissen Sie diese Methode geschiitzt statt privat machen.
Wenn diese Methoden privat sind, werden sie von den Unterklassen stillschweigend
iibergangen. Dies ist ein weiterer Fall, in dem ein Implementierungsdetail in das API
einer Klasse einfliefst, damit Vererbung stattfinden kann.

Mittlerweile sollte offensichtlich sein: Wenn Sie eine Klasse fiir die Vererbung ent-
werfen, unterliegt diese Klasse engen Beschrankungen. Deshalb sollten Sie eine sol-
che Entscheidung nicht leichtfertig treffen. In einigen Fillen, wie z.B. bei abstrakten
Klassen mit Geriistimplementierungen von Interfaces (Thema 16), ist dies zwar genau
das Richtige, aber in anderen Féllen, wie z.B. bei unverdnderlichen Klassen (Thema 13)
ist es genau das Falsche.

Und was ist mit den ganz normalen, konkreten Klassen? Traditionell sind diese weder
final, noch sind sie fiir die Unterklassenbildung geschaffen und dokumentiert, doch
dieser Umstand ist gefdhrlich. Immer wenn Sie an einer solchen Klasse etwas éndern,
besteht die Gefahr, dass Client-Klassen kaputtgehen, die diese Klasse erweitern. Auch
dieses Problem besteht nicht nur in der Theorie. Es ist nicht uniiblich, dass Sie Fehler-
meldungen iiber Unterklassen erhalten, nachdem Sie die Interna einer nicht-finalen,
konkreten Klasse gedndert haben, die fiir die Vererbung weder geschaffen noch doku-
mentiert war.

Dieses Problem l6sen Sie am besten, indem Sie fiir Klassen, die nicht so geschaffen
und dokumentiert sind, dass man sie in sicherer Weise erweitern konnte, die Unter-
klassenbildung ganz verbieten. Dazu gibt es zwei Moglichkeiten: Die einfachere der
beiden besteht darin, die Klasse als final zu deklarieren. Alternativ konnen Sie auch
alle Konstruktoren privat oder paketprivat machen und &ffentliche, statische Factorys
an Stelle von Konstruktoren hinzufiigen. Diese Alternative, die Ihnen die Flexibilitat
gibt, intern Unterklassen zu nutzen, wird in Thema 13 erklédrt. Beide Moglichkeiten
sind in Ordnung.

Dieser Ratschlag wird auch Kritik hervorrufen, da viele Programmierer sich daran
gewohnt haben, Unterklassen von normalen konkreten Klassen zu schreiben, um so
etwas wie Instrumentierung, Benachrichtigung und Synchronisation hinzuzufiigen
oder die Funktionalitdt einzuschranken. Wenn eine Klasse ein Interface implementiert,
das ihr Wesen wiedergibt — z.B. Set, List oder Map — dann kénnen Sie die Unterklassen-
bildung getrost verbieten. Das in Thema 14 beschriebene Hiillenklassenmuster ist besser
als Vererbung, wenn Sie die Funktionalitdt &ndern mochten.

94 4 Klassen und Interfaces

Wenn eine konkrete Klasse kein Standard-Interface implementiert, dann miissen Sie
eben einigen Programmierern Umstédnde machen, indem Sie die Vererbung verbieten.
Wenn Sie das Gefiihl haben, Sie kommen nicht umhin, die Vererbung aus einer solchen
Klasse zu erlauben, dann kénnen Sie dies in verniinftiger Weise tun, indem Sie dafiir
sorgen, dass die Klasse nie eine ihrer iiberschreibbaren Methoden aufruft. Dies miissen
Sie auch dokumentieren. Mit anderen Worten: Sie miissen vollstindig unterbinden,
dass die Klasse tiberschreibbare Methoden selbst nutzt. Dadurch erhalten Sie eine
Klasse, die sich in sicherer Weise erweitern lasst. Das Uberschreiben einer Methode
kann nie das Verhalten einer anderen Methode beeinflussen.

Sie kénnen auch mechanisch ohne Anderung des Klassenverhaltens unterbinden, dass
eine Klasse {iberschreibbare Methoden selbst nutzt. Dazu setzen Sie den Rumpf jeder
tiberschreibbaren Methode in eine private »Hilfsmethode« und lassen die tiberschreib-
baren Methoden jeweils ihre private Hilfsmethode aufrufen. Dann ersetzen Sie jede
Selbstnutzung einer tiberschreibbaren Methode durch einen direkten Aufruf der priva-
ten Hilfsmethode dieser tiberschreibbaren Methode.

4.5 Thema |16: Nutzen Sie besser Interfaces
als abstrakte Klassen

Java bietet zwei Mechanismen, mit denen Sie einen Typ definieren kénnen, der
mehrere Implementierungen zulésst: Interfaces und abstrakte Klassen. Der deutlichste
Unterschied zwischen beiden ist der, dass abstrakte Klassen Implementierungen eini-
ger Methoden enthalten diirfen, Interfaces dagegen nicht. Doch noch wichtiger ist der
Unterschied, dass eine Klasse, die den von einer abstrakten Klasse definierten Typ
implementieren soll, eine Unterklasse dieser abstrakten Klasse sein muss. Jede Klasse,
die alle erforderlichen Methoden definiert und sich an den allgemeinen Vertrag halt,
darf ein Interface implementieren, egal wo sie in der Klassenhierarchie steht. Dass in
Java nur Einfachvererbung zuldssig ist, schrankt die Nutzung von abstrakten Klassen
als Typdefinitionen stark ein.

Sie konnen auch vorhandene Klassen zurechtbiegen, damit sie ein neues Interface
implementieren kénnen. Dazu brauchen Sie lediglich die erforderlichen Methoden,
falls noch nicht vorhanden, hinzuzufiigen und eine implements-Klausel in die Klassen-
deklaration setzen. Es wurden z.B. viele bereits existierende Klassen nachtrédglich so
iiberarbeitet, dass sie das Interface Comparable implementierten, als dieses neu einge-
fiihrt wurde. Doch im Allgemeinen konnen Sie bestehende Klassen nicht mehr so
umarbeiten, dass sie eine neue abstrakte Klasse erweitern. Wenn Sie mdchten, dass
zwei Klassen dieselbe abstrakte Klasse erweitern, dann miissen Sie diese abstrakte
Klasse ganz weit oben in die Typhierarchie setzen, wo sie eine Unterklasse eines Vor-
fahren beider Klassen ist. Dies fiigt jedoch der Typhierarchie grofien Schaden zu: Alle

Thema | 6: Nutzen Sie besser Interfaces als abstrakte Klassen 95

Abkémmlinge des gemeinsamen Vorfahren wiirden gezwungen, die neue abstrakte
Klasse zu erweitern, egal ob es gut fiir sie ist oder nicht.

Interfaces sind ideal, um Mixins zu definieren. Ein Mixin ist ein Typ, den eine Klasse
zuséatzlich zu ihrem »Primértyp« implementieren kann, um zu deklarieren, dass sie ein
optionales Verhalten zur Verfligung stellt. So ist z.B. Comparable ein Mixin-Interface,
mittels dem eine Klasse deklarieren kann, dass ihre Instanzen im Hinblick auf andere
untereinander vergleichbare Objekte geordnet sein sollen. Ein solches Interface heifst
Mixin, weil es erlaubt, dass die optionale Funktionalitat »in die Hauptfunktionalitat
des Typs hineingemixt« wird. Mit abstrakten Klassen kénnen Sie aus demselben
Grund keine Mixins definieren, aus dem Sie sie auch nicht nachtréaglich bestehenden
Klassen tiiberstiilpen konnen. Eine Klasse kann nicht mehr als eine Elternklasse haben
und es gibt in der Klassenhierarchie keinen verniinftigen Platz, an den Sie ein Mixin
setzen konnten.

Interfaces ermoglichen die Konstruktion nicht-hierarchischer Typarchitekturen. Mit
Typhierarchien konnen Sie manche Dinge ganz prachtig organisieren, aber andere
Dinge widersetzen sich einer strikten Hierarchie. Angenommen, wir hitten ein Inter-
face, das einen Sénger darstellt, und ein anderes Interface, das einen Liedtexter darstellt:

public interface Singer f
AudioClip Sing(Song s);

}

public interface Songwriter f{
Song compose(boolean hit);

}

Im wahren Leben sind manche Sanger zugleich auch Liedtexter. Da wir diese Typen
nicht mit abstrakten Klassen, sondern mit Interfaces definierten, ist es absolut zuldssig,
dass eine einzelne Klasse sowohl Singer als auch Songwriter implementiert. Wir konnen
sogar ein drittes Interface definieren, das beides implementiert und neue Methoden
hinzufiigt, die fiir diese Kombination geeignet sind:

public interface SingerSongwriter extends Singer, Songwriter {
AudioClip strum();
void actSensitive();

}

Sie bendtigen nicht immer dieses Maf$ an Flexibilitdt, aber wenn Sie es tun, dann kon-
nen Ihnen Interfaces das Leben retten. Die Alternative ware eine vollig iiberladene
Klassenhierarchie, in der fiir jede unterstiitzte Attributkombination eine Extra-Klasse
stehen miisste. Wenn Sie im Typsystem n Attribute haben, dann miissen Sie 2" mog-
liche Attributkombinationen unterstiitzen. Man nennt dies eine kombinatorische
Explosion. Uberfrachtete Klassenhierarchien fiihren wiederum zu iiberfrachteten Klas-
sen, in denen sich viele Methoden nur durch den Typ ihrer Argumente unterscheiden,
da die Klassenhierarchie keine Typen hat, um hiufige Verhaltensweisen darzustellen.

96 4 Klassen und Interfaces

Interfaces ermoglichen sichere und machtige Funktionalitidtsverbesserungen {iiber
das Hiillenklassen-Idiom, das in Thema 14 beschrieben wird. Wenn Sie Typen mit
abstrakten Klassen definieren, dann hat der Programmierer, der Funktionen hinzufi-
gen mochte, keine andere Moglichkeit als die Vererbung. Die resultierenden Klassen
sind schwicher und instabiler als Hiillenklassen.

Interfaces diirfen zwar keine Methodenimplementierungen enthalten, aber wenn Sie
Typen mithilfe von Interfaces definieren, dann bedeutet das nicht, dass Sie den Pro-
grammierern keine Implementierungsunterstiitzung geben. Sie kénnen die Stirken
von Interfaces und abstrakten Klassen biindeln, indem Sie eine abstrakte Skelettim-
plementierungsklasse liefern, die mit jedem nicht-trivialen Interface, das Sie exportie-
ren, genutzt werden kann. Hier definiert das Interface zwar immer noch den Typ, aber
die Skelettimplementierung macht die ganze Implementierungsarbeit.

Nach Konvention bezeichnet man Skelettimplementierungen als Abstractlnterface,
wobei Interface der Name des implementierten Interfaces ist. So bietet z.B. das Collec-
tions Framework fiir jedes wichtige Sammlungs-Interface eine Skelettimplementie-
rung: AbstractCollection, AbstractSet, AbstractlList und AbstractMap.

Wenn der Entwurf stimmt, machen es Skelettimplementierungen den Programmierern
sehr einfach, eigene Implementierungen ihrer Interfaces bereitzustellen. Hier finden Sie
z.B. eine statische Factory-Methode mit einer vollstdndigen, funktionierenden List-
Implementierung:

// List-Adapter flr int-Array
static List intArrayAsList(final int[] a) f{
if (a == null)
throw new NullPointerException();

return new AbstractList() {
public Object get(int i) f
return new Integer(alil);
}

public int size() {
return a.length;
}

public Object set(int i, Object o) |
int oldval = alil;
alil = ((Integer)o).intValue();
return new Integer(oldVal);

}

Wenn Sie iiberlegen, was eine List-Implementierung alles fiir Sie tut, dann ist dieses
Beispiel eine machtvolle Demonstration der Féhigkeiten von Skelettimplementierun-

Thema | 6: Nutzen Sie besser Interfaces als abstrakte Klassen 97

gen. Zuféllig ist das Beispiel auch ein Adapter [Gamma 1998, S. 139], mit dem Sie ein
int-Array als Liste von Integer-Instanzen betrachten konnen. Durch das viele Hin- und
Heriibersetzen von int-Werten und Integer-Instanzen ist die Leistung nicht so blen-
dend. Beachten Sie, dass eine statische Factory zur Verfiigung gestellt wird, und dass
die Klasse eine nicht-zugreifbare anonyme Klasse (Thema 18) ist, die in der statischen
Factory verborgen liegt.

Das Schone an Skelettimplementierungen ist, dass man mit ihnen die Implementie-
rungsunterstiitzung abstrakter Klassen herstellen kann, ohne den strengen Beschran-
kungen zu unterliegen, denen abstrakte Klassen als Typdefinitionen gehorchen
miissen. Fiir die meisten Implementierer eines Interface ist es zwar das néchstliegende,
die Skelettimplementierung zu erweitern, aber dies ist strikt optional. Wenn eine
bereits vorhandene Klasse nicht dazu gebracht werden kann, dass sie die Skelettimple-
mentierung erweitert, dann kann sie das Interface immer noch manuell implementie-
ren. Aufierdem kann die Skelettimplementierung dem Implementierer immer noch
helfen. Die Klasse, die das Interface implementiert, kann Aufrufe von Interface-Metho-
den an eine enthaltene Instanz einer privaten inneren Klasse weiterleiten, die diese
Skelettimplementierung erweitert. Diese Technik, die man auch »simulierte Mehrfach-
vererbung« nennt, hangt eng mit dem in Thema 14 behandelten Hiillenklassenidiom
zusammen. Sie hat die meisten Vorteile der Mehrfachvererbung, aber nicht ihre
Tiicken.

Das Schreiben einer Skelettimplementierung ist einfach, aber etwas langweilig. Zuerst
miissen Sie das Interface untersuchen und entscheiden, welche Methoden Primitive
sind, also welche der anderen implementiert werden kénnen. Diese Primitive werden
die abstrakten Methoden in Threr Skelettimplementierung. Danach miissen Sie fiir alle
anderen Methoden des Interfaces konkrete Implementierungen zur Verfiigung stellen.
Im Folgenden sehen Sie z.B. eine Skelettimplementierung des Interfaces Map.Entry.
Momentan gehort diese Klasse noch nicht zu den Java-Plattformbibliotheken, aber sie
sollte besser darin aufgenommen werden:

// Skelettimplementierung

public abstract class AbstractMapEntry implements Map.Entry f{
// Primitive
public abstract Object getKey();
public abstract Object getValue();

// Eintrdge in verdnderlichen Maps missen diese Methode
// Uberschreiben.
public Object setValue(Object value) f{
throw new UnsupportedOperationException();
}

// Implementiert den allgemeinen Vertrag von Map.Entry.equals
public boolean equals(Object o) f{
if (o == this)

98 4 Klassen und Interfaces

return true;

if (! (o instanceof Map.Entry))
return false;

Map.Entry arg = (Map.Entry)o;

return eq(getKey(), arg.getKey()) &&
eq(getValue(), arg.getValue());
}

private static boolean eq(Object ol, Object 02) f{
return (ol == null ? 02 == null : ol.equals(02));
}

// Implementiert den allgemeinen Vertrag von Map.Entry.hashcode
public int hashCode() f{
return
(getKey() == null ? 0 : getKey().hashCode()) *
(getValue() == null ? 0 : getValue().hashCode());

J

Da Skelettimplementierungen fiir die Vererbung geschaffen sind, sollten Sie sich an
alle Entwurfs- und Dokumentationsrichtlinien in Thema 15 halten. Um es kurz zu hal-
ten, wurden die Doc-Kommentare aus dem obigen Beispiel ausgelassen, aber eine gute
Dokumentation ist fiir Skelettimplementierungen absolut unerlésslich.

Wenn Sie Typen, die mehrere Implementierungen erlauben, mit abstrakten Klassen
definieren, so hat dies einen grofien Vorteil gegeniiber Interfaces: Eine abstrakte
Klasse ldsst sich viel leichter weiterentwickeln als ein Interface. Wenn Sie einer abs-
trakten Klasse in einem spateren Release eine neue Methode hinzufiigen mochten,
koénnen Sie immer noch eine konkrete Methode dafiir nehmen, die eine verniinftige
Standardimplementierung enthilt. Alle existierenden Implementierungen der abstrak-
ten Klasse stellen dann die neue Methode zur Verfiigung. Bei Interfaces funktioniert
das nicht.

Im Allgemeinen ist es unmoglich, einem 6ffentlichen Interface eine Methode hinzuzu-
fligen, ohne alle vorhandenen Programme zu zerstoren, die dieses Interface nutzen.
Den Klassen, die das Interface zuvor implementierten, fehlt die neue Methode, sodass
sie sich nicht mehr kompilieren lassen. Sie konnten zwar den Schaden ein wenig
begrenzen, indem Sie die neue Methode dem Interface und der Skelettimplementie-
rung zugleich hinzufiigen, aber eine wirkliche Lésung ist das nicht. Jede Implementie-
rung, die nicht von der Skelettimplementierung erbt, wire dann immer noch
schadhaft.

Daher miissen Sie 6ffentliche Interfaces sorgfaltig entwerfen. Sobald ein Interface ver-
offentlicht und tiberall implementiert ist, kann es nicht mehr gedndert werden. Sie
miissen es schon beim ersten Versuch richtig machen. Wenn ein Interface einen kleinen

Thema 17: Verwenden Sie Interfaces ausschlieBlich zur Typdefinition 99

Mangel hat, dann wird es Sie und die Benutzer in alle Zukunft damit drgern; hat es
jedoch einen ernsten Schaden, so kann es das gesamte API zerstoren. Wenn Sie ein
neues Interface veroffentlichen, lassen Sie es am besten von moglichst vielen Program-
mierern in méglichst vielen Formen implementieren, ehe Sie es endgiiltig »absegnenc.
Dann konnen Sie eventuelle Méngel frith genug erkennen, um sie noch beheben zu
konnen.

Fazit: Ein Interface ist im Allgemeinen der beste Weg, um einen Typ zu definieren, der
mehrere Implementierungen ermdglicht. Eine Ausnahme bildet der Fall, in dem eine
einfache Weiterentwicklungsmoglichkeit wichtiger ist, als Flexibilitat und Machtigkeit.
Unter diesen Umstdnden miissen Sie den Typ mit einer abstrakten Klasse definieren.
Tun Sie dies aber nur, wenn Sie ganz sicher sind, die damit einhergehenden Beschrén-
kungen zu verstehen und verkraften zu kénnen. Wenn Sie ein nicht-triviales Interface
exportieren, sollten Sie moglichst auch eine Skelettimplementierung mitliefern. Und
Sie sollten alle Ihre 6ffentlichen Interfaces duferst sorgfaltig entwerfen und griindlich
testen, indem Sie mehrere Implementierungen schreiben.

4.6 Thema |7: Verwenden Sie Interfaces ausschlieBlich
zur Typdefinition

Wenn eine Klasse ein Interface implementiert, dann dient dieses Interface als Typ, mit
dem auf Instanzen der Klasse referiert werden kann. Also gibt die Tatsache, dass eine
Klasse ein Interface implementiert, Aufschluss tiber das, was ein Client mit Instanzen
dieser Klasse tun kann. Fiir keinen anderen Zweck sollte man ein Interface definieren.

Eine Art von Interface, die bei diesem Test durchfillt, ist das so genannte Konstanten-
Interface. Ein solches Interface hat keine Methoden, sondern besteht nur als statischen,
finalen Feldern, die je eine Konstante exportieren. Klassen, die diese Konstanten benut-
zen, implementieren das Interface, um die Konstantennamen nicht mit einem Klassen-
namen qualifizieren zu miissen. Ein Beispiel:

// Konstanten-Interface-Muster: Nicht benutzen!
public interface PhysicalConstants f{
// Avogadros Zahl (1/mol)
static final double AVOGADROS_NUMBER = 6.02214199e23;

// Boltzmann-Konstante (J/K)
static final double BOLTZMANN_CONSTANT = 1.3806503e-23;

// Masse eines Elektrons (kg)
static final double ELECTRON_MASS = 09.10938188e-31;

100 4 Klassen und Interfaces

Das Konstanten-Interface-Muster ist eine schlechte Anwendung von Interfaces.
Dass eine Klasse intern einige Konstanten benutzt, ist ein Implementierungsdetail. Die
Implementierung eines Konstanten-Interfaces lésst dieses Detail in das exportierte API
der Klasse einflieflen. Fiir die Benutzer einer Klasse spielt es keine Rolle, ob sie ein
Konstanten-Interface implementiert. Es kann die Benutzer sogar verwirren. Ja schlim-
mer noch: Es begriindet eine Verpflichtung. Wenn die Klasse in einem kiinftigen
Release so gedndert wird, dass sie die Konstanten nicht mehr benutzen muss, muss sie
nach wie vor das Interface implementieren, um die Bindrkompatibilitit zu gewahrleis-
ten. Wenn eine nicht-finale Klasse ein Konstanten-Interface implementiert, sind die
Namensrdaume aller ihrer Unterklassen mit den Konstanten aus dem Interface ver-
seucht.

In den Java-Plattformbibliotheken gibt es mehrere Konstanten-Interfaces, darunter
auch java.io.0ObjectStreamConstants. Diese Interfaces sollten Sie als Anomalien betrach-
ten und nicht emulieren.

Wenn Sie Konstanten exportieren mochten, haben Sie mehrere verniinftige Moglichkei-
ten dafiir. Wenn die Konstanten eng mit einer bestehenden Klasse oder einem Interface
verbunden sind, sollten Sie sie dieser Klasse oder diesem Interface hinzufiigen. So
exportieren z.B. alle nummerischen Hiillenklassen der Java-Plattformbibliotheken —
z.B. Integer und Float — die Konstanten MIN_VALUE und MAX_VALUE. Wenn die Konstanten
am ehesten als Mitglieder eines Aufzdhlungstyps angesehen werden kénnen, sollten
Sie sie mit einer typsicheren Enum-Klasse exportieren (Thema 21). Andernfalls sollten
Sie die Konstanten mit einer nicht-instanziierbaren Dienstklasse (Thema 3) exportie-
ren. Hier sehen Sie eine Dienstklassenversion des obigen PhysicalConstants-Beispiels:

// Konstanten-Dienstklasse
public class PhysicalConstants f{
private PhysicalConstants() { | // verhindert Instanziierung

public static final double AVOGADROS_NUMBER = 6.02214199e23;

public static final double BOLTZMANN_CONSTANT = 1.3806503e-23;

public static final double ELECTRON_MASS = 9.10938188e-31;
}

Zwar erfordert die Dienstklassenversion von PhysicalConstants, dass Clients die
Konstantennamen mit einem Klassennamen qualifizieren, aber das ist kein zu hoher
Preis dafiir, dass die APIs korrekt bleiben. Es ist moglich, dass die Sprache irgendwann
auch das Importieren statischer Felder gestattet. Bis es so weit ist, konnen Sie tiberma-
Bige Typdefinitionen verhindern, indem Sie gebrauchliche Konstanten in lokalen Vari-
ablen oder privaten statischen Feldern speichern. Ein Beispiel:

private static final double PI = Math.PI;

Zusammenfassend gesagt, sollten Interfaces nur zum Definieren von Typen dienen. Sie
sollten nicht dafiir herhalten, Konstanten zu exportieren.

Thema |8: Ziehen Sie statische Attributklassen den nicht-statischen vor 101

4.7 Thema |8: Ziehen Sie statische Attributklassen
den nicht-statischen vor

Eine geschachtelte Klasse ist eine Klasse, die innerhalb einer anderen Klasse definiert ist.
Sie ist einzig dazu da, ihrer umgebenden Klasse zu dienen. Wire eine geschachtelte
Klasse in irgendeinem anderen Zusammenhang niitzlich, dann wire sie eine Toplevel-
Klasse. Es gibt vier Arten von geschachtelten Klassen: statische Attributklassen, nicht-
statische Attributklassen, anonyme Klassen und lokale Klassen. Alle aufler der ersten Art
nennt man innere Klassen. In diesem Thema erfahren Sie, welche Art von geschachtelter
Klasse Sie warum verwenden sollten.

Eine statische Attributklasse ist die einfachste Form einer geschachtelten Klasse. Am
besten stellen Sie sie sich als normale Klasse vor, die zuféillt innerhalb einer anderen
Klasse deklariert ist, und Zugriff auf alle Attribute der umgebenden Klasse hat, selbst
auf die privaten. Eine statische Attributklasse ist ein statisches Attribut ihrer umgeben-
den Klasse und gehorcht denselben Zugriffsregeln wie andere statische Attribute auch.
Wenn sie als privat deklariert ist, kann nur innerhalb der umgebenden Klasse darauf
zugegriffen werden usw.

Haufig dient eine statische Attributklasse als 6ffentliche Hilfsklasse, die nur zusammen
mit ihrer umgebenden Klasse niitzlich ist. Betrachten Sie z.B. eine typsichere Aufzéh-
lung, die beschreibt, welche Operationen ein Rechner (Thema 21) unterstiitzt. Die
Klasse Operation sollte eine Offentliche, statische Attributklasse der Klasse Calculator
sein. Clients der Klasse Calculator konnten dann mit Namen wie Calculator.Operation.
PLUS und Calculator.Operation.MINUS auf Operationen Bezug nehmen. Diese Verwendung
werden Sie weiter unten in diesem Thema noch sehen.

Der einzige Syntaxunterschied zwischen statischen und nicht-statischen Attributklas-
sen besteht darin, dass statische Attributklassen in ihren Deklarationen den Modifika-
tor static haben. Trotz der dhnlichen Syntax sind jedoch diese beiden Arten von
geschachtelten Klassen sehr unterschiedlich. Jede Instanz einer nicht-statischen Attri-
butklasse hangt implizit mit einer umgebenden Instanz der sie enthaltenden Klasse
zusammen. In Instanzmethoden einer nicht-statischen Attributklasse kénnen Sie
Methoden auf der umgebenden Instanz aufrufen. Wenn Sie eine Referenz auf eine
Instanz einer nicht-statischen Attributklasse haben, konnen Sie eine Referenz auf die
umgebende Instanz erhalten. Wenn eine Instanz einer geschachtelten Klasse isoliert
von einer Instanz ihrer umgebenden Klasse existieren kann, dann kann die geschach-
telte Klasse keine nicht-statische Attributklasse sein: Ohne umgebende Instanz kénnen
Sie unmoglich eine Instanz einer nicht-statischen Attributklasse erzeugen.

Die Verbindung zwischen einer nicht-statischen Attributklasseninstanz und ihrer
umgebenden Instanz wird begriindet, wenn die Attributklasseninstanz erzeugt wird:
Danach kann sie nicht mehr gedndert werden. Normalerweise wird diese Verbindung

102 4 Klassen und Interfaces

automatisch hergestellt, indem in einer Instanzmethode der umgebenden Klasse ein
Konstruktor der nicht-statischen Attributklasse aufgerufen wird. Es ist moglich —
wenngleich selten —, dass diese Verbindung mit dem Ausdruck enclosingInstance.new
MemberClass(args) manuell hergestellt wird. Erwartungsgemafs braucht diese Verbin-
dung Platz in der nicht-statischen Attributklasseninstanz und verlédngert die Konstruk-
tionszeit dieser Instanz.

Oft dient eine nicht-statische Attributklasse dazu, einen Adapter [Gamma 1998, S. 139]
zu definieren, mit dem eine Instanz der duflieren Klasse wie eine Instanz einer ganz
unverbundenen Klasse betrachtet werden kann. So benutzen z.B. Implementierungen
des Map-Interfaces in der Regel nicht-statische Attributklassen, um ihre Sammlungs-
Views zu implementieren, die von den Map-Methoden keySet, entrySet und values
zuriickgegeben werden.

// Typische Verwendung einer nicht-statischen Attributklasse
public class MySet extends AbstractSet {
. // GroBteil der Klasse wird weggelassen

public Iterator iterator() f
return new Mylterator();
}

private class MyIterator implements Iterator |

J
J

Wenn Sie eine Attributklasse deklarieren, die nicht auf eine umgebende Instanz
zugreifen muss, diirfen Sie nicht den Modifikator static in der Deklaration verges-
sen, der diese Klasse zu einer statischen Attributklasse macht. Wenn Sie den static-
Modifikator weglassen, enthilt jede Instanz eine tiberfliissige Referenz auf das umge-
bende Objekt. Die Erhaltung dieser Referenz kostet Zeit und Platz und bringt nichts
ein. Falls Sie je eine Instanz ohne umgebende Instanz zuweisen miissen, kénnen Sie
dies nicht, da Instanzen nicht-statischer Attributklassen immer eine umgebende
Instanz haben miissen.

Oft dienen private statische Attributklassen dazu, Komponenten des Objekts darzu-
stellen, das die umgebende Klasse reprasentiert. Betrachten Sie z.B. eine Instanz von
Map, die Schliissel und Werte einander zuordnet. Map-Instanzen haben fiir jedes Schliis-
sel/Wert-Paar in der Map ein internes Entry-Objekt. Doch wéhrend jeder Eintrag mit
einer Map zusammenhéngt, brauchen die Methoden, die auf einem Eintrag arbeiten
(getKey, getValue und setValue), keinen Zugriff auf die Map zu haben. Daher wire es
Verschwendung, Eintrdge durch eine nicht-statische Attributklasse darzustellen; hier
wire eine private statische Attributklasse am besten. Wenn Sie versehentlich den

Thema |8: Ziehen Sie statische Attributklassen den nicht-statischen vor 103

static-Modifikator in der Eintragsdeklaration auslassen, arbeitet zwar die Map immer
noch, aber jeder Eintrag enthélt dann eine iiberfliissige Referenz auf die Map, die Platz
und Zeit vergeudet.

Doppelt wichtig ist die richtige Wahl zwischen einer statischen und einer nicht-stati-
schen Attributklasse, wenn die fragliche Klasse ein dffentliches oder geschiitztes Attri-
but einer exportierten Klasse ist. In diesem Fall ist die Attributklasse ein Element des
exportierten APIs und kann in einem nachfolgenden Release nicht mehr von einer
nicht-statischen auf eine statische Attributklasse umgestellt werden, ohne die Binér-
kompatibilitdt zu verletzen.

Anonyme Klassen gleichen keinem anderen Element der Programmiersprache Java.
Wie Sie sich denken konnen, hat eine anonyme Klasse keinen Namen. Sie ist kein Attri-
but ihrer umgebenden Klasse. Sie wird nicht mit den anderen Attributen zusammen
deklariert, sondern im Moment ihrer Verwendung gleichzeitig deklariert und instanzi-
iert. Anonyme Klassen diirfen iiberall dort im Code stehen, wo auch ein Ausdruck
zuldssig wére. Anonyme Klassen verhalten sich je nachdem, wo sie auftreten, ent-
weder wie statische oder wie nicht-statische Klassen. Sie haben umgebende Instanzen,
wenn sie in einem nicht-statischen Kontext auftreten.

Die Verwendung anonymer Klassen unterliegt mehreren Beschriankungen. Da sie
gleichzeitig deklariert und instanziiert wird, kann eine anonyme Klasse nur dann ver-
wendet werden, wenn sie instanziiert werden soll, und nur an einer einzigen Stelle im
Code. Da anonyme Klassen keinen Namen haben, kdnnen sie nur eingesetzt werden,
wenn nach ihrer Instanziierung nie mehr auf sie Bezug genommen zu werden braucht.
Anonyme Klassen implementieren Methoden in der Regel nur in ihrem Interface oder
ihrer Oberklasse. Sie deklarieren keine neuen Methoden, da es keinen benennbaren
Typ gibt, mit dem auf diese neuen Methoden zugegriffen werden kénnte. Da anonyme
Klassen in Ausdriicken auftreten, sollten sie sehr kurz sein, also nicht mehr als rund
zwanzig Zeilen lang. Liangere anonyme Klassen wiirden die Lesbarkeit des Pro-
gramms beeintrachtigen.

Héufig dienen anonyme Klassen dazu, ein Funktionsobjekt wie z.B. eine Instanz von
Comparator zu erzeugen. Der folgende Methodenaufruf sortiert z.B. ein Array von
Strings nach deren Léange:

// Typische Verwendung einer anonymen Klasse
Arrays.sort(args, new Comparator() {
public int compare(Object ol, Object 02) f{
return ((String)ol).length() - ((String)o2).length();
}
1)

Eine andere hiufige Verwendung einer anonymen Klasse ist die Erzeugung eines Pro-
zessobjekts wie z.B. einer Instanz von Thread, Runnable oder TimerTask. Ein drittes Einsatz-
feld ist eine statische Factory-Methode (siehe Methode intArrayAsList in Thema 16).

104 4 Klassen und Interfaces

Eine vierte hdufige Verwendung betrifft die public static final Feld-Intialisierer aus-
gefeilter typsicherer Aufzdhlungen, die fiir jede Instanz eine separate Unterklasse
erfordern (siehe Klasse Operation in Thema 21). Wenn Sie die Klasse Operation gemaf3
dem obigen Ratschlag zu einer statischen Attributklasse von Calculator gemacht
haben, dann sind die einzelnen Operation-Konstanten doppelt geschachtelte Klassen:

// Typische Verwendung einer &ffentlichen, statischen Attributklasse
public class Calculator f{
public static abstract class Operation f{
private final String name;

Operation(String name) { this.name = name; |}
public String toString() { return this.name; |

// Perform arithmetic op represented by this constant
abstract double eval(double x, double y);

// doppelt geschachtelte anonyme Klassen

public static final Operation PLUS = new Operation("+") {
double eval(double x, double y) { return x + y; }

bs

public static final Operation MINUS = new Operation("-") {
double eval(double x, double y) { return x - y; |

b

public static final Operation TIMES = new Operation("*") {
double eval(double x, double y) { return x * y; |}

Vs

public static final Operation DIVIDE = new Operation("/") {
double eval(double x, double y) { return x / y; |}

Vs

// Gib die Ergebnisse der angegebenen Berechnung zuriick
public double calculate(double x, Operation op, double y) {
return op.eval(x, y);
}
}

Lokale Klassen sind vielleicht die seltenste unter den vier Arten geschachtelter Klas-
sen. Eine lokale Klasse konnen Sie tiberall dort deklarieren, wo eine lokale Variable
deklariert wird, und sie unterliegt denselben Regeln hinsichtlich des Giiltigkeits-
bereichs. Lokale Klassen haben mit jeder der drei anderen Arten von geschachtelten
Klassen etwas gemeinsam. Wie Attributklassen haben sie Namen und kénnen wieder-
holt eingesetzt werden. Wie anonyme Klassen haben sie umgebende Instanzen, genau
dann wenn sie in einem nicht-statischen Kontext benutzt werden. Wie lokale Klassen
sollten sie kurz sein, damit die Lesbarkeit der umgebenden Methode oder des Initiali-
sierers nicht darunter leidet.

Thema |8: Ziehen Sie statische Attributklassen den nicht-statischen vor 105

Zusammenfassend gesagt gibt es vier verschiedene Arten von geschachtelten Klassen,
die alle ihren Sinn haben. Wenn eine geschachtelte Klasse aufSerhalb einer einzigen
Methode sichtbar sein muss oder zu lang ist, um ohne Weiteres in eine Methode hin-
einzupassen, sollten Sie eine Attributklasse verwenden. Wenn jede Instanz der Attri-
butklasse eine Referenz auf ihre umgebende Instanz haben muss, machen Sie sie nicht-
statisch; ansonsten machen Sie sie statisch. Wenn die Klasse in eine Methode hineinge-
hort, Sie Instanzen von nur einem Ort erzeugen miissen, und ein Typ, der die Klasse
charakterisiert, bereits vorhanden ist, machen Sie eine anonyme Klasse daraus,
andernfalls eine lokale Klasse.

5 Ersatz fur C-Konstrukte

Java hat viel mit C gemeinsam, aber es fehlen auch viele C-Konstrukte. In den meisten
Fallen ist klar, warum sie weggelassen wurden und wie man ohne sie zurechtkommt.
Dieses Kapitel schldgt Ersatzlosungen fiir mehrere fehlende C-Konstrukte vor, bei
denen der Fall nicht so klar liegt.

Der rote Faden zwischen den Themen dieses Kapitels ist, dass alle fehlenden Kon-
strukte nicht objektorientiert, sondern datenorientiert sind. Java bietet ein méchtiges
Typsystem, das die vorgeschlagenen Ersatzlosungen ausnutzen, um eine hochwer-
tigere Abstraktion zu liefern, als die von ihnen ersetzten C-Konstrukte.

Selbst wenn Sie dieses Kapitel iiberspringen mochten, lohnt es sich, Thema 21 zu lesen,
in dem das typsichere Enum-Muster beschrieben wird. Es ist ein Ersatz fiir das enum-
Konstrukt von C. Dieses Muster ist zurzeit noch nicht sehr bekannt, hat aber mehrere
Vorteile gegentiber den gegenwiértig gebrauchlichen Methoden.

5.1 Thema 19: Ersetzen Sie Strukturen durch Klassen

Das C-Konstrukt struct wurde bei Java weggelassen, weil eine Klasse all das und noch
mehr leistet, was eine Struktur tut. Eine Struktur fasst nur mehrere Datenfelder zu
einem einzigen Objekt zusammen; eine Klasse hingegen verbindet das resultierende
Objekt mit Operationen und ermdglicht es, die Datenfelder vor den Benutzern des
Objekts zu verbergen. Mit anderen Worten kann eine Klasse ihre Daten in einem Objekt
kapseln, auf das nur {iber seine Methoden zugegriffen werden kann. So hat der Imple-
mentierer die Freiheit, die Reprdsentation im Laufe der Zeit zu &ndern (Thema 12).

Manche C-Programmierer glauben, wenn sie zum ersten Mal mit Java zu tun haben,
dass Klassen unter bestimmten Umstdnden zu schwergewichtig sind, um Strukturen
ersetzen zu konnen. Das ist jedoch nicht der Fall. Degenerierte Klassen, die nur aus
Datenfeldern bestehen, sind in etwa zu den C-Strukturen dquivalent:

// Degenerierte Klassen wie diese sollten nicht 6ffentlich
// sein!
class Point {

public float x;

public float y;

108 5 Ersatz fiir C-Konstrukte

Da auf solche Klassen {iber ihre Datenfelder zugegriffen wird, bieten sie nicht die Vor-
teile der Kapselung. Sie konnen die Darstellung einer solchen Klasse nicht dndern,
ohne auch ihr API zu dndern, Sie konnen keine Invarianten durchsetzen und auch
keine Hilfsmafinahmen ergreifen, wenn ein Feld modifiziert wird. Objektorientierten
Hardlinern unter den Programmierern sind solche Klassen ein Grauel; sie mochten sie
am liebsten immer durch private Felder und o6ffentliche Zugriffsmethoden ersetzen:

// Gekapselte Strukturklasse
class Point |

private float x;

private float y;

public Point(float x, float y) {
this.x = x;
this.y = y;

}

public float getX() { return x; |
public float getY() { return y; |

I
< X

public void setX(float x) { this.x
public void setY(float y) { this.y
}

Im Hinblick auf 6ffentliche Klassen haben die Hardliner natiirlich Recht: Wenn eine
Klasse auflerhalb der Grenzen ihres Pakets zugreifbar ist, steuert jeder kluge Program-
mierer Zugriffsmethoden bei, um sich die Flexibilitdt zu erhalten, die interne Repra-
sentation der Klasse spdter noch dndern zu konnen. Wenn eine 6ffentliche Klasse ihre
Datenfelder offen legen wiirde, hitte man keine Chance mehr, die Représentation
nachtrdglich dndern zu konnen, da Client-Code fiir 6ffentliche Klassen {iiber das
gesamte bekannte Universum verbreitet sein kann.

Ist eine Klasse jedoch paketprivat oder eine private geschachtelte Klasse, so ist gegen
das Offenlegen ihrer Datenfelder an und fiir sich nichts einzuwenden, wenn diese tat-
sachlich die Abstraktion beschreiben, die diese Klasse liefert. Dieser Ansatz stiftet
weniger sichtbare Unordnung als der Ansatz mit den Zugriffsmethoden. Dies gilt
sowohl fiir die Klassendefinition als auch fiir den Client-Code, der die Klasse nutzt.
Der Client-Code ist an die interne Représentation der Klasse gebunden und dieser
Code ist wiederum auf das Paket beschrankt, zu dem die Klasse gehort. Wenn der
unwahrscheinliche Fall eintritt, dass eine Anderung der Représentation wiinschens-
wert wird, dann kann diese Anderung bewirkt werden, ohne irgendwelchen Code
auflerhalb des Pakets anzufassen. Im Falle einer privaten, geschachtelten Klasse wird
der Skopus der Anderung noch stirker eingeschrénkt, ndmlich auf die umgebende
Klasse.

Thema 20: Ersetzen Sie Unions durch Klassenhierarchien 109

In den Java-Plattformbibliotheken gibt es mehrere Klassen, die die Vorschrift verletzen,
dass offentliche Klassen keine Felder unmittelbar offen legen sollen. Hervorstechende
Beispiele sind die Klassen Point und Dimension aus dem Paket java.awt. Diese Klassen
sollten Sie nicht nachahmen, sondern als abschreckende Beispiele betrachten. In
Thema 37 wird beschrieben, wie die Entscheidung, Interna der Dimension-Klasse offen
zu legen, zu einem bosen Leistungsproblem fiihrte, das nicht ohne Beeintrachtigung
der Clients behoben werden konnte.

5.2 Thema 20: Ersetzen Sie Unions durch Klassenhierarchien

Das union-Konstrukt von C dient zumeist der Definition von Strukturen, die mehr als
einen Datentyp speichern kénnen. Eine solche Struktur hat in der Regel mindestens
zwei Felder: Eine Union und ein Tag. Das Tag ist ein normales Feld, das angibt, wel-
chen der moglichen Typen die Union speichert. Normalerweise hat es einen enum-Typ.
Eine Struktur mit einer Union und einem Tag wird manchmal auch als discriminated
Union bezeichnet.

In dem C-Codebeispiel unten ist der Typ shape_t eine discriminated Union, mit der Sie
entweder ein Rechteck oder einen Kreis darstellen konnen. Die Funktion area nimmt
einen Zeiger auf eine shape_t-Struktur entgegen und gibt ihren Bereich oder, wenn die
Struktur ungtiltig ist, -1.0 zurtick.

/* Discriminated Union */
f#Finclude "math.h"
typedef enum {RECTANGLE, CIRCLE} shapeType_t;

typedef struct {
double Tength;
double width;

} rectangleDimensions_t;

typedef struct {
double radius;
} circleDimensions_t;

typedef struct f{
shapeType_t tag;

union {
rectangleDimensions_t rectangle;
circleDimensions_t circle;
} dimensions;
} shape_t;

double area(shape_t *shape) |
switch(shape->tag) |
case RECTANGLE: f{

110 5 Ersatz fiir C-Konstrukte

double Tength = shape->dimensions.rectangle.length;
double width = shape->dimensions.rectangle.width;
return length * width;

}

case CIRCLE: f{
doubTe r = shape->dimensions.circle.radius;
return M_PI * (r*r);

}

default: return -1.0; /* Ungliltiges Tag */

}
}

Die Entwickler von Java beschlossen, das union-Konstrukt wegzulassen, weil es einen
viel besseren Mechanismus gibt, um einen einzelnen Datentyp zu definieren, der
Objekte verschiedener Typen darstellen kann: die Bildung von Untertypen. Eine dis-
criminated Union ist eigentlich nichts als ein Abklatsch einer Klassenhierarchie.

Um eine discriminated Union in eine Klassenhierarchie zu verwandeln, definieren Sie
eine abstrakte Klasse, die fiir jede Operation, deren Verhalten von dem Wert des Tags
abhéngt, eine abstrakte Methode enthélt. Im obigen Beispiel ist area die einzige derar-
tige Operation. Diese abstrakte Klasse ist die Wurzel der Klassenhierarchie. Wenn es
irgendwelche Operationen gibt, deren Verhalten nicht von dem Tag-Wert abhéngt,
miissen Sie diese Operationen in konkrete Methoden der Wurzelklasse verwandeln.
Ebenso gilt: Wenn aufier dem Tag und der Union irgendwelche Datenfelder in der
discriminated Union sind, so stellen diese Felder Daten dar, die allen Typen gemein-
sam sind, und sollten daher der Wurzelklasse hinzugefiigt werden. In unserem Bei-
spiel gibt es keine derartigen typunabhéngigen Operationen oder Datenfelder.

Als Néchstes definieren Sie fiir jeden Typ, der von der discriminated Union dargestellt
werden kann, eine konkrete Unterklasse der Wurzelklasse. Im obigen Beispiel sind das
die Typen circle und rectangle. Binden Sie in jede Unterklasse die Datenfelder ein, die
fiir ihren Typ spezifisch sind. In dem Beispiel ist radius spezifisch fiir circle, und Tength
und width sind spezifisch fiir rectangle. Aufierdem sollten Sie in jede Unterklasse die
passende Implementierung jeder abstrakten Klasse der Wurzelklasse hineinschreiben.
Im Folgenden sehen Sie die Klassenhierarchie zu dem Beispiel mit der discriminated
Union:

abstract class Shape f{
abstract double area();
}

class Circle extends Shape |
final double radius;

Circle(double radius) { this.radius = radius; |

Thema 20: Ersetzen Sie Unions durch Klassenhierarchien 111

double area() { return Math.PI * radius*radius; }
}

class Rectangle extends Shape f
final double length;
final double width;

Rectangle(double length, double width) f
this.length = Tength;
this.width = width;
}
double area() { return length * width; |
}

Eine Klassenhierarchie bietet eine Menge Vorteile gegeniiber einer discriminated
Union. Ein Hauptvorteil ist, dass die Klassenhierarchie fiir Typsicherheit sorgt. In
unserem Beispiel ist jede Instanz von Shape entweder ein giiltiger Circle oder ein giilti-
ges Rectangle. Leicht kann es passieren, dass Sie eine shape_t-Struktur generieren, die
kompletter Miill ist, weil die Verbindung zwischen dem Tag und der Union von der
Sprache nicht erzwungen wird. Wenn das Tag anzeigt, dass shape_t ein Rechteck dar-
stellt, aber die Union auf einen Kreis eingestellt wurde, dann geht nichts mehr. Selbst
wenn eine discriminated Union korrekt initialisiert wurde, kann sie immer noch einer
Funktion tibergeben werden, die fiir ihren Tag-Wert ungeeignet ist.

Ein zweiter Vorteil der Klassenhierarchie ist der einfache und klare Code. Die discrimi-
nated Union ist vollgestopft mit allem Moglichen: Der enun-Typ wird deklariert, das
Tag-Feld wird deklariert, der Tag-Wert kann gewechselt werden, unerwartete Tag-
Werte werden behandelt und dergleichen mehr. Noch schlechter lesbar wird der Code
der discriminated Union durch den Umstand, dass die Operationen fiir die verschiede-
nen Typen nicht nach Typen getrennt, sondern vermischt darin stehen.

Ein dritter Vorteil der Klassenhierarchie ist ihre leichte Erweiterbarkeit, die selbst dann
zum Tragen kommt, wenn mehrere Personen unabhéngig voneinander an ihr arbeiten.
Um eine Klassenhierarchie zu erweitern, fiigen Sie einfach eine neue Unterklasse
hinzu. Wenn Sie eine der abstrakten Oberklassenmethoden zu iiberschreiben verges-
sen, sagt IThnen dies der Compiler klar und deutlich. Wenn Sie dagegen eine discrimi-
nated Union erweitern mochten, miissen Sie in den Quellcode hineingehen. Sie
miissen in jeder Operation auf der discriminated Union dem enun-Typ einen neuen
Wert und der switch-Anweisung einen neuen Fall hinzufiigen und zum Schluss alles
noch einmal neu kompilieren. Wenn Sie bei einer Methode den neuen Fall vergessen,
stellen Sie das erst zur Laufzeit fest, und auch dann nur, wenn Sie sorgféltig auf uner-
kannte Tag-Werte hin priifen und fiir eine geeignete Fehlermeldung sorgen.

Ein vierter Vorteil der Klassenhierarchie ist, dass sie natiirliche Hierarchiebeziehungen
zwischen Typen widerspiegeln kann. Dies gestattet mehr Flexibilitdt und eine bessere
Typpriifung zur Ubersetzungszeit. Angenommen, die discriminated Union im ersten

112 5 Ersatz fiir C-Konstrukte

Beispiel wiirde auch Quadrate (Squares) mit einbeziehen. Die Klassenhierarchie kon-
nen Sie so gestalten, dass sie die Tatsache widerspiegelt, dass ein Quadrat ein Sonder-
fall eines Rechtecks ist (wir gehen davon aus, dass beide unveranderlich sind):

class Square extends Rectangle f{
Square(double side) f{
super(side, side);
}

double side() f{

return length; // oder entsprechend width
}
}

Die Klassenhierarchie in diesem Beispiel ist nicht die einzige, mit der man die discrimi-
nated Union hitte ersetzen kdnnen. Sie verkorpert mehrere bemerkenswerte Entwurf-
sentscheidungen. Auf die Klassen in der Hierarchie — ausgenommen Square — wird
nicht iiber Zugriffsmethoden, sondern iiber ihre Felder zugegriffen. Der Grund ist die
Kiirze, aber bei 6ffentlichen Klassen wire das nicht akzeptabel (Thema 19). Die Klas-
sen sind unverdnderlich. Das geht nicht immer, ist aber generell eine gute Sache
(Thema 13).

Da Java kein union-Konstrukt kennt, konnte man annehmen, es bestehe gar keine
Gefahr, dass jemand eine discriminated Union implementiert. Es ist jedoch méglich,
Code zu schreiben, der viele der Nachteile dieses Konstrukts hat. Wann immer Sie in
Versuchung sind, eine Klasse mit einem expliziten Tag-Feld zu schreiben, sollten Sie
iiberlegen, ob Sie das Tag nicht auch beiseite lassen und die Klasse durch eine Klassen-
hierarchie ersetzen konnten.

Eine andere Anwendung des union-Konstrukts von C hat mit discriminated Unions gar
nichts zu tun: Es geht um die Betrachtung der internen Représentation eines Daten-
stiicks, wobei absichtlich das Typsystem verletzt wird. Diese Verwendung sehen Sie in
dem folgenden C-Codefragment, das die rechnerspezifische Hexadezimaldarstellung
eines float-Werts ausgibt:

union {
float f;
int bits;
} sleaze;
sleaze.f = 6.699e-41; /* Setz Daten in ein Feld der Union... */

printf("%x\n", sleaze.bits); /* ...und lies sie aus dem anderen. */

Diese nicht-portierbare Verwendung von union kann zwar speziell fiir die Systempro-
grammierung niitzlich sein, hat aber in Java keine Entsprechung. Sie widerspricht dem
Geist dieser Sprache, der Typsicherheit garantiert und alles unternimmt, um die Pro-
grammierer von den rechnerspezifischen, internen Repréasentationen abzuschneiden.

Thema 21: Ersetzen Sie Enum-Konstrukte durch Klassen 113

Das Paket java.lang enthdlt zwar Methoden zur Ubersetzung von Gleitkommazahlen
in Bitdarstellungen, aber diese Methoden sind mit genau spezifizierter Bitdarstellung
definiert, um die Portierbarkeit zu gewéhrleisten. Das nachfolgende Code-Fragment,
das dem obigen C-Fragment in etwa entspricht, gibt garantiert auf jeder Plattform das-
selbe Ergebnis aus:

System.out.printin(
Integer.toHexString(Float.floatToIntBits(6.699e-41f)));

5.3 Thema 21: Ersetzen Sie Enum-Konstrukte durch Klassen

Das enun-Konstrukt von C wurde bei Java weggelassen. Dem Namen nach definiert es
einen Aufzihlungstyp: einen Typ, dessen giiltige Werte aus einer festgelegten Menge
von Konstanten bestehen. Doch leider definiert das enum-Konstrukt die Aufzahlungs-
typen nur schlecht. Es definiert nur eine Menge benannter, ganzzahliger Konstanten
und bietet keinerlei Typsicherheit und nur wenig Bequemlichkeit. Sie konnen in giilti-
gem C nicht nur dieses schreiben:

typedef enum {FUJI, PIPPIN, GRANNY_SMITH} apple_t;
typedef enum {NAVEL, TEMPLE, BLOOD} orange_t;
orange_t myFavorite = PIPPIN; /* Apfel und Birnen vergleichen */

sondern auch die nachfolgende Ungeheuerlichkeit:
orange_t x = (FUJI - PIPPIN)/TEMPLE; /* Schwachsinn! */

Das enum-Konstrukt stellt keinen Namensraum fiir die Konstanten her, die es generiert.
Daher steht die nachfolgende Deklaration, die einen der Namen wieder verwendet, im
Konflikt zu der Deklaration von orange_t:

typedef enum {BLOOD, SWEAT, TEARS} fluid_t;

Typen, die mit dem enum-Konstrukt definiert wurden, sind empfindlich. Wenn Sie
einem solchen Typ Konstanten hinzuftigen, ohne seine Clients neu zu kompilieren,
und nicht auf die Erhaltung aller zuvor existierenden Konstantenwerte achten, so fithrt
dies zu chaotischem Verhalten. Es ist unmdglich, dass mehrere Personen unabhangig
voneinander einem solchen Typ Konstanten hinzufiigen, denn ihre neuen Aufzdh-
lungskonstanten werden wahrscheinlich Konflikte verursachen. Das enum-Konstrukt
bietet keinen Weg, um auf einfache Weise Aufzdhlungskonstanten in druckbare Strings
zu {ibersetzen oder die Konstanten in einem Typ aufzuzéhlen.

Leider hat das meistgenutzte Muster fiir Aufzahlungstypen in Java dieselben Méngel
wie das enum-Konstrukt von C:

// Das int enum-Muster - problematisch!!
public class PlayingCard f{
public static final int SUIT_CLUBS =0;

114 5 Ersatz fiir C-Konstrukte

public static final int SUIT_DIAMONDS = 1;
public static final int SUIT_HEARTS = 2;
public static final int SUIT_SPADES = 3;

}

Eventuell finden Sie eine Variante dieses Musters vor, die statt String-Konstanten int-
Konstanten verwendet. Diese Varianten diirfen Sie nie benutzen. Sie stellt zwar fiir ihre
Konstanten druckbare Strings zur Verfiigung, kann aber Leistungsprobleme verur-
sachen, weil sie sich auf String-Vergleiche stiitzt. Auflerdem kann sie naive Benutzer
veranlassen, String-Konstanten in den Client-Code fest einzugeben, statt die entspre-
chenden Feldnamen zu verwenden. Wenn eine solche, fest eingegebene String-Kon-
stante einen Tippfehler enthilt, wird dieser zur Ubersetzungszeit nicht erkannt und
ruft spater Laufzeitfehler hervor.

Zum Gliick bietet Java eine Alternative, die alle Probleme der gebrduchlichen int- und
String-Muster 16st und zudem auch noch Vorteile bringt. Sie heifst typsicheres Enum-
Muster. Es ist leider noch recht unbekannt. Sein Grundgedanke ist einfach: Sie definie-
ren eine Klasse, die ein einzelnes Element des Aufzdhlungstyps enthalt, und geben kei-
nen Offentlichen Konstruktor an. Stattdessen liefern Sie fiir jede Konstante des
Aufzdhlungstyps ein public static final-Feld. In seiner einfachsten Form sieht dieses
Muster folgendermafien aus:

// Das typsichere Enum-Muster
public class Suit f
private final String name;

private Suit(String name) { this.name = name; |

public String toString() { return name; !

public static final Suit CLUBS
public static final Suit DIAMONDS
public static final Suit HEARTS
public static final Suit SPADES

new Suit("clubs");
new Suit("diamonds");
new Suit("hearts");
new Suit("spades");

}

Da Clients keine Moglichkeit haben, Objekte der Klasse zu erzeugen oder sie zu erwei-
tern, kann es von diesem Typ nur die Objekte geben, die tiber die public static final-
Felder exportiert werden. Obwohl die Klasse nicht als final deklariert ist, gibt es keine
Moglichkeit, sie zu erweitern. Unterklassenkonstruktoren miissen einen Oberklassen-
konstruktor aufrufen, und ein solcher steht nicht zur Verfiigung.

Wie sein Name schon sagt, ist das typsichere Enum-Muster zur Ubersetzungszeit typ-
sicher. Wenn Sie eine Methode mit einem Parameter vom Typ Suit deklarieren, haben
Sie die Garantie, dass jede an diese Methode iibergebene Nicht-Null-Objektreferenz
eine der vier giiltigen Kartenfarben darstellt. Jeder Versuch, ein Objekt mit einem

Thema 21: Ersetzen Sie Enum-Konstrukte durch Klassen 115

unzulédssigen Typ zu iibergeben, wird zur Ubersetzungszeit abgefangen. Gleiches gilt
flir Versuche, einen Ausdruck mit einem Aufzdhlungstyp einer Variablen eines ande-
ren Aufzihlungstyps zuzuweisen. Mehrere typsichere Enum-Klassen mit identisch
benannten Aufzdhlungskonstanten konnen friedlich koexistieren, da jede Klasse ihren
eigenen Namensraum hat.

Sie konnen einer typsicheren Enum-Klasse Konstanten hinzuftigen, ohne ihre Clients
neu kompilieren zu miissen, denn die public static-Objektreferenz-Felder mit den
Aufzdhlungskonstanten bilden eine Isolierschicht zwischen dem Client und der
Enum-Klasse. Die Konstanten selbst werden — anders als in dem bekannteren int-Mus-
ter und seiner String-Variante — niemals in die Clients hineinkompiliert.

Da typsichere Enums voll ausgereifte Klassen sind, kénnen Sie, wie zuvor gezeigt, die
toString-Methode iiberschreiben und gestatten, dass Werte in druckbare Zeichen iiber-
setzt werden. Auf Wunsch kénnen Sie auch noch einen Schritt weiter gehen und mit
den standardméfiigen Mitteln typsichere Enums internationalisieren. Beachten Sie,
dass String-Namen nur von der toString-Methode und nicht fiir Gleichheitsvergleiche
genutzt werden, da die von Object geerbte equals-Implementierung einen Referenz-
identitatsvergleich durchfiihrt.

Sie konnen einer typsicheren Enum-Klasse jede geeignete Methode hinzufiigen.
Unsere Suit-Klasse kénnte z.B. von einer Methode profitieren, die die Kartenfarbe
zuriickgibt, oder von einer, die das Bildsymbol der betreffenden Farbe zuriickliefert.
Eine Klasse kann als einfache typsichere Enum anfangen und sich mit der Zeit zu einer
Abstraktion mit umfassenden Funktionen mausern.

Da Sie typsicheren Enum-Klassen beliebige Methoden geben konne, kénnen sie auch
jedes beliebige Interface implementieren. Angenommen, Sie mochten, dass Suit das
Interface Comparable implementiert, damit die Clients ihre Karten nach Farbe sortieren
konnen.

Im Folgenden sehen Sie eine kleine Abwandlung des Originalmusters, die dies leistet.
Mit der statischen Variablen nextOrdinal wird jeder Instanz bei ihrer Erzeugung eine
Ordinalzahl zugewiesen. Diese wird von der compareTo-Methode genutzt, um die
Instanzen zu ordnen:

// typsichere Enum mit Ordinalzahlen
public class Suit implements Comparable f
private final String name;

// Erzeuge Ordinalzahl der ndchsten Farbe
private static int nextOrdinal = 0;

// Weise dieser Farbe eine Ordinalzahl zu
private final int ordinal = nextOrdinal++;

116 5 Ersatz fiir C-Konstrukte

private Suit(String name) { this.name = name;)}
public String toString() { return name; !
public int compareTo(Object o) f

return ordinal - ((Suit)o).ordinal;
}

public static final Suit CLUBS new Suit("clubs");
public static final Suit DIAMONDS = new Suit("diamonds");
public static final Suit HEARTS new Suit("hearts");
public static final Suit SPADES new Suit("spades");

}

Da die Konstanten der typsicheren Enum Objekte sind, konnen Sie sie in Sammlungen
einfligen. Angenommen, Sie mochten, dass die Klasse Suit eine unverdnderliche Liste
der Kartenfarben in der iiblichen Reihenfolge exportiert. Dazu brauchen Sie der Klasse
nur die folgenden beiden Felddeklarationen hinzufiigen:

private static final Suitl] PRIVATE_VALUES =
{ CLUBS, DIAMONDS, HEARTS, SPADES };

public static final List VALUES =
Collections.unmodifiablelList(Arrays.asList(PRIVATE_VALUES));

Anders als bei dem typsicheren Enum-Muster in seiner einfachsten Form kénnen Klas-
sen des oben gezeigten Musters mit den Ordinalzahlen auch serialisierbar gemacht
werden (Kapitel 10). Das kostet etwas Miihe: Es reicht nicht, einfach impTements Seria-
Tizable in die Klassendeklaration zu schreiben; Sie miissen auch eine readResolve-
Methode zur Verfiigung stellen (Thema 57):

private Object readResolve() throws ObjectStreamException f
return PRIVATE_VALUESCordinall; // kanonisch machen
}

Diese Methode, die vom Serialisierungssystem automatisch aufgerufen wird, verhin-
dert, dass nach einer Deserialisierung doppelte Konstanten nebeneinander existieren.
So ist garantiert, dass jede Enum-Konstante immer nur durch ein einziges Objekt dar-
gestellt wird, und Object.equals braucht nicht mehr tiberschrieben zu werden. Ohne
diese Garantie wiirde Object.equals einen verkehrten negativen Wert zuriickgeben,
wenn es auf zwei getrennte, aber gleiche Aufzihlungskonstanten trifft. Achtung: Da
sich die readResolve-Methode auf das PRIVATE_VALUES-Array bezieht, miissen Sie dieses
Array auch dann deklarieren, wenn Sie gar keine VALUES exportieren mdchten. Und da
das name-Feld von der readResolve-Methode nicht benutzt wird, konnen und miissen
Sie es transient machen.

Die resultierende Klasse ist etwas empfindlich. Konstruktoren fiir etwaige neue Werte
miissen hinter denen fiir alle bereits vorhandenen Werte stehen, damit gewahrleistet
ist, dass die zuvor serialisierten Instanzen ihren Wert nicht dndern, wenn sie deseriali-

Thema 21: Ersetzen Sie Enum-Konstrukte durch Klassen 117

siert werden. Das ist so, weil die serialisierte Form (Thema 55) einer Aufzahlungskon-
stante nur in ihrer Ordinalzahl besteht. Wenn sich die zu einer Ordinalzahl gehorende
Aufzdhlungskonstante éndert, iibernimmt eine serialisierte Konstante mit dieser Ordi-
nalzahl den neuen Wert, wenn sie deserialisiert wird.

Eventuell hangen mit jeder Konstante Verhaltensweisen zusammen, die nur innerhalb
des Pakets zum Tragen kommen, zu dem die typsichere Enum-Klasse gehort. Solche
Verhaltensweisen implementieren Sie am besten als paketprivate Methoden der betref-
fenden Klasse. Dann trigt jede Enum-Konstante eine verborgene Sammlung von Ver-
haltensweisen mit sich, die es dem Paket des Aufzdhlungstyps ermoglicht, passend zu
reagieren, wenn es auf diese Konstante trifft.

Wenn eine typsichere Enum-Klasse Methoden hat, deren Verhalten von einer Klassen-
konstante zur anderen deutlich unterschiedlich ist, dann sollten Sie fiir jede Konstante
eine eigene private Klasse oder anonyme innere Klasse verwenden. So erhilt jede
Konstante ihre eigene Implementierung von jeder dieser Methoden und ruft auch
automatisch die richtige Implementierung auf. Die Alternative wiére, jede derartige
Methode als Verzweigung in mehrere Richtungen zu strukturieren, die sich je nach der
Konstante, auf der sie aufgerufen wird, anders verhalt. Diese Alternative ist hésslich,
fehleranféllig und vermutlich schédlicher fiir die Leistung, als das automatische
Methoden-Dispatching der virtuellen Maschine.

Die nachfolgende typsichere Enum-Klasse veranschaulicht die beiden oben beschrie-
benen Techniken. Diese Klasse namens Operation stellt eine Operation eines einfachen
Taschenrechners mit vier Funktionen dar. Aufierhalb des Pakets, in dem sie definiert
ist, kénnen Sie mit einer Operation-Konstante lediglich die Object-Methoden aufrufen
(toString, hashCode, equals usw.). Innerhalb des Pakets konnen Sie jedoch die von der
Konstanten dargestellte Rechenoperation ausfiihren. Das Paket konnte ein hoher ange-
siedeltes Taschenrechner-Objekt exportieren, das wiederum eine oder mehrere Metho-
den exportiert, die eine Operation-Konstante als Parameter entgegennehmen. Beachten
Sie, dass Operation selbst eine abstrakte Klasse ist, die eine einzige, paketprivate abs-
trakte Methode namens eval enthilt, die die entsprechende Rechenoperation ausfiihrt.
Fiir jede Konstante ist eine anonyme innere Klasse definiert, sodass jede Konstante ihre
eigene Version von eval definieren kann:

// Typsichere Enum, Konstanten sind mit Verhalten verbunden
public abstract class Operation {

private final String name;

Operation(String name) { this.name = name; |}

public String toString() { return this.name; |}

// Fuhre die Rechenoperation gemdB dieser Konstante durch.
abstract double eval(double x, double y);

118 5 Ersatz fiir C-Konstrukte

public static final Operation PLUS = new Operation("+") {
double eval(double x, double y) { return x + y; }

Vs

public static final Operation MINUS = new Operation("-") f
double eval(double x, double y) { return x - y; |

b

public static final Operation TIMES = new Operation("*") f{
double eval(double x, double y) { return x * y; }

b

public static final Operation DIVIDED_BY =
new Operation("/") f{

double eval(double x, double y) { return x / y; |

}

Allgemein ausgedriickt sind typsichere Enums hinsichtlich der Leistung vergleichbar
mit int-Aufzdhlungskonstanten. Da nie zwei getrennte Instanzen einer typsicheren
Enum-Klasse denselben Wert darstellen konnen, werden sie mit den schnellen Refe-
renzidentitdtsvergleichen auf logische Gleichheit hin gepriift. Clients einer typsicheren
Enum-Klasse kénnen statt der equals-Methode den ==-Operator verwenden. Die Ergeb-
nisse sind garantiert dieselben und iiberdies ist der Operator woméglich sogar schnel-
ler.

Wenn eine typsichere Enum-Klasse allgemein von Nutzen ist, sollte sie eine Toplevel-
Klasse sein. Ist ihre Verwendung an eine spezielle Toplevel-Klasse gebunden, so sollte
sie eine statische Attributklasse dieser Toplevel-Klasse sein (Thema 18). Die Klasse ent-
halt z.B. eine Sammlung von int-Aufzahlungskonstanten, die Rundungsmodi fiir Dezi-
malbriiche darstellen. Diese Rundungsmodi sind eine niitzliche Abstraktion, die nicht
grundsétzlich an die Klasse BigDecimal gebunden ist; man hétte sie also besser als los-
geloste Klasse java.math.RoundingMode implementiert. Das hitte jeden Programmierer,
der Rundungsmodi benétigt, veranlasst, die Modi dieser Klasse zu benutzen und die
Konsistenz zwischen den APIs wére besser geworden.

Das in beiden obigen Suit-Implementierungen angegebene, elementare typsichere
Enum-Muster ist festgelegt: Benutzer konnen dem Aufzahlungstyp keine neuen Ele-
mente hinzufiigen, da seine Klasse keine Konstruktoren hat, auf die ein Benutzer
zugreifen konnte. Im Endeffekt wird die Klasse dadurch final, egal ob sie mit dem
Zugriffsmodifikator final deklariert wurde oder nicht. Normalerweise ist es genau
dies, was Sie mochten, aber gelegentlich mochten Sie auch eine typsichere Enum-
Klasse erweiterbar machen. Dies konnte z.B. der Fall sein, wenn Sie eine typsichere
Enum zur Darstellung von Bildkodierungsformaten verwenden und méchten, dass
andere Programmierer Unterstiitzung fiir neue Formate hinzuftigen kénnen.

Um eine typsichere Enum erweiterbar zu machen, fiigen Sie einfach einen geschiitzten
Konstruktor hinzu. Dann kénnen andere Programmierer die Klasse erweitern und
ihren Unterklassen neue Konstanten hinzufiigen. Uber Konstantenkonflikte brauchen

Thema 21: Ersetzen Sie Enum-Konstrukte durch Klassen 119

Sie sich nicht in dem Mafse zu sorgen, als verwendeten Sie das int-Aufzdhlungsmuster.
Die erweiterbare Variante des typsicheren Enum-Musters nutzt den Paket-Namens-
raum, um einen »wie von Zauberhand verwalteten« eigenen Namensraum fiir die
erweiterbare Aufzdhlung anzulegen. Mehrere Organisationen kénnen die Aufzéhlung
dann erweitern, ohne voneinander zu wissen, ohne dass ihre Erweiterungen jemals
Konflikte verursachen.

Nur weil Sie einem Aufzdhlungstyp ein Element hinzugefiigt haben, bedeutet dies
noch nicht, dass das Element auch vollstandig unterstiitzt wird: Den Methoden, die ein
Element des Aufzdhlungstyps entgegennehmen, kann eventuell auch ein dem Pro-
grammierer unbekanntes Element iibergeben werden. Mehrfachverzweigungen auf
festgelegten Aufzdhlungstypen sind bereits fragwiirdig, aber auf erweiterbaren Auf-
zdhlungstypen sind sie regelrecht todlich, da sie nicht jedes Mal, wenn ein Program-
mierer den Typ erweitert, wie durch Zauberei einen neuen Zweig wachsen lassen
konnen.

Mit diesem Problem konnen Sie fertig werden, indem Sie der typsicheren Enum-Klasse
alle Methoden geben, die notwendig sind, um das Verhalten einer Konstante der
Klasse zu beschreiben. Methoden, die den Clients der Klasse nichts niitzen, sollten Sie
schiitzen: So sind sie vor den Clients verborgen, kénnen aber von Unterklassen iiber-
schrieben werden. Wenn eine solche Methode keine verniinftige Standardimplemen-
tierung hat, sollte sie nicht nur geschiitzt, sondern auch abstrakt sein.

Erweiterbare, typsichere Enum-Klassen sollten die Methoden equals und hashCode
durch finale Methoden tiberschreiben, die die entsprechenden Methoden aus Object
aufrufen. So verhindern Sie, dass eine Unterklasse diese Methoden versehentlich tiber-
schreibt, und halten die Garantie aufrecht, dass alle Objekte des Aufzdhlungstyps, die
gleich sind, auch identisch sind (a.equals(b) genau dann wenn a==b):

//Methoden, die das Uberschreiben verhindern

public final boolean equals(Object that) f{
return super.equals(that);

}

public final int hashCode() f{
return super.hashCode();
}

Beachten Sie, dass die erweiterbare Variante (extensible) nicht mit der Vergleichsvari-
ante (comparable) kompatibel ist: Wenn Sie beide kombinierten, hinge die Reihenfolge
der Unterklassenelemente davon ab, in welcher Reihenfolge diese Unterklassen initia-
lisiert wurden. Diese kénnte jedoch von Programm zu Programm und von Ausfiih-
rung zu Ausfithrung unterschiedlich sein.

Die erweiterbare Variante des typsicheren Enum-Musters ist zwar mit der serialisier-
baren kompatibel, aber eine Kombination beider Varianten erfordert einige Sorgfalt.

120 5 Ersatz fiir C-Konstrukte

Jede Unterklasse muss eigene Ordinalzahlen zuweisen und eine eigene readResolve-
Methode zur Verfligung stellen. Im Grunde ist jede Klasse dafiir verantwortlich, ihre
eigenen Instanzen zu serialisieren und zu deserialisieren. Um dies zu konkretisieren
sehen Sie hier eine Version der Klasse Operation, die sowohl erweiterbar als auch seria-
lisierbar ist:

// Serialisierbare, erweiterbare typsichere Enum

public abstract class Operation implements Serializable f
private final transient String name;
protected Operation(String name) { this.name = name; }

public static Operation PLUS = new Operation("+")
protected double eval(double x, double y) { return x+y; |
b
public static Operation MINUS = new Operation("-") f{
protected double eval(double x, double y) { return x-y; }
b
public static Operation TIMES = new Operation("*") f{
protected double eval(double x, double y) { return x*y; |
b
public static Operation DIVIDE = new Operation("/") {
protected double eval(double x, double y) { return x/y; |
b

// Fihre Rechenoperation gemdB dieser Konstante aus
protected abstract double eval(double x, double y);

public String toString() { return this.name; |
// Hindere Unterklassen am Uberschreiben von Object.equals
public final boolean equals(Object that) {
return super.equals(that);
}
public final int hashCode() f{
return super.hashCode();
}

// Diese 4 Deklarationen sind fiir die Serialisierung notig
private static int nextOrdinal = 0;
private final int ordinal = nextOrdinal++;
private static final Operationl] VALUES =
{ PLUS, MINUS, TIMES, DIVIDE };
Object readResolve() throws ObjectStreamException f{
return VALUESCordinall; // kanonisch machen
}
}

Hier sehen Sie eine Unterklasse von Operation, die Logarithmus- und Exponential-
Operationen hinzufiigt. Diese Unterklasse konnte aufSerhalb des Pakets mit der {iberar-
beiteten Operation-Klasse existieren. Sie konnte 6ffentlich und erweiterbar sein. Mehrere
unabhingig voneinander geschriebenen Unterklassen konnen friedlich koexistieren:

Thema 21: Ersetzen Sie Enum-Konstrukte durch Klassen 121

// Unterklasse der erweiterbaren, serialisierbaren

// typsicheren Enum

abstract class ExtendedOperation extends Operation f
ExtendedOperation(String name) { super(name); |

public static Operation LOG = new ExtendedOperation("log") f
protected double eval(double x, double y) f
return Math.log(y) / Math.log(x);
}
b
public static Operation EXP = new ExtendedOperation("exp") {
protected double eval(double x, double y) f
return Math.pow(x, y);
}
b

// Diese 4 Deklarationen sind fiir die Serialisierung notig
private static int nextOrdinal = 0;
private final int ordinal = nextOrdinal++;
private static final Operation[] VALUES = { LOG, EXP };
Object readResolve() throws ObjectStreamException {
return VALUESLordinall; // kanonisch machen
}
}

Beachten Sie, dass die readResolve-Methoden in den soeben gezeigten Klassen nicht
privat, sondern paketprivat sind. Das ist notwendig, weil die Instanzen von Operation
und ExtendedOperation tatsdchlich Instanzen anonymer Unterklassen sind. Daher waren
private readResolve-Methoden wirkungslos (Thema 57).

Das typsichere Enum-Muster hat einige Nachteile im Vergleich zum int-Muster. Viel-
leicht der einzige bedeutende Nachteil ist der, dass es komplizierter ist, typsichere
Enum-Konstanten zu Mengen zusammenzufassen. Bei int-Enums tun Sie dies traditio-
nell, indem Sie Aufzdhlungskonstantenwerte wéhlen, von denen jeder eine andere
Zweierpotenz ist, und eine Menge als bitweises ODER der relevanten Konstanten dar-
stellen:

// Bit-Flag-Variante des int-Enum-Musters
public static final int SUIT_CLUBS =1;
public static final int SUIT_DIAMONDS ;
pubTic static final int SUIT_HEARTS

public static final int SUIT_SPADES =

2;
4;
8.

public static final int SUIT_BLACK = SUIT_CLUBS | SUIT_SPADES;

Mengen von Aufzdhlungstypkonstanten lassen sich in dieser Weise knapp und sehr
schnell darstellen. Fiir Mengen von typsicheren Enum-Konstanten kénnen Sie eine All-
zweck-Set-Implementierung des Collections Frameworks benutzen, die jedoch weni-
ger knapp und schnell ist:

122 5 Ersatz fiir C-Konstrukte

Set blackSuits = new HashSet();
blackSuits.add(Suit.CLUBS);
blackSuits.add(Suit.SPADES);

Den Nachteil, dass Sie Mengen von typsicheren Enum-Konstanten nicht so knapp und
schnell machen konnen wie Mengen von int-Enum-Konstanten, kénnen Sie mildern,
indem Sie eine spezielle Set-Implementierung liefern, die nur Elemente eines einzigen
Typs entgegennimmt und die Menge intern als Bitvektor darstellt. Eine solche Menge
implementieren Sie am besten in demselben Paket, in dem sich auch ihr Elementtyp
befindet, damit iiber ein paketprivates Feld oder eine Methode Zugriff auf einen Bit-
wert besteht, der intern mit jeder typsicheren Enum-Konstante verbunden ist. Es ist
sinnvoll, 6ffentliche Konstruktoren zu liefern, die kurze Elementfolgen als Parameter
entgegennehmen, damit Idiome wie dieses moglich sind:

hand.discard(new SuitSet(Suit.CLUBS, Suit.SPADES));

Gegentiber int-Enums haben typsichere Enums den kleinen Nachteil, dass Sie sie nicht
in switch-Anweisungen benutzen konnen, da sie keine integralen Konstanten sind. Sie
miissen stattdessen eine if-Anweisung wie die folgende verwenden:

if (suit == Suit.CLUBS) {

} els.é.if (suit == Suit.DIAMONDS) f{
} eTs.é‘if (suit == Suit.HEARTS) f{

} els.é.if (suit == Suit.SPADES) f{

b else |
throw new NullPointerException("Null Suit"); // suit == null
J

Die i f-Anweisung lauft vielleicht nicht ganz so schnell wie die switch-Anweisung, aber
wahrscheinlich ist der Unterschied nicht grofS. Auflerdem diirften fiir typsichere
Enum-Konstanten nur selten Mehrfachverzweigungen erforderlich sein, weil sie sich,
wie in dem Operator-Beispiel dargestellt, fiir das automatische Methoden-Dispatching
der JVM eignen.

Ein anderer kleiner Performance-Nachteil von typsicheren Enums ist, dass es Zeit und
Speicherplatz kostet, Enum-Typklassen zu laden und die Konstantenobjekte zu erzeu-
gen. Doch dieses Problem wird in der Praxis nur auf Geraten mit sehr begrenzten Res-
sourcen wie z.B. Handys und Toastern zu Tage treten.

Fazit: Typsichere Enums haben grofie Vorteile gegeniiber int-Enums und keiner ihrer
Nachteile ist gravierend, solange Sie einen Aufzdhlungstyp nicht hauptsichlich als
Element einer Menge oder in einer Umgebung mit sehr knappen Ressourcen einsetzen.
Folglich sollten Sie, wenn die Umstdnde einen Aufzihlungstyp erforderlich machen,
immer zuerst an das typsichere Enum-Muster denken. APIs, die typsichere Enums

Thema 22: Ersetzen Sie Funktionszeiger durch Klassen und Interfaces 123

nutzen, sind viel programmiererfreundlicher als APIs mit int-Enums. Der einzige
Grund, weshalb typsichere Enums in den Java-Plattform-APIs nicht haufiger genutzt
werden, ist, dass sie noch nicht bekannt waren, als viele dieser APIs geschrieben wur-
den. Abschliefend mochte ich noch einmal betonen, dass Aufzahlungstypen jeder Art
nur relativ selten wirklich notwendig sind, da die Unterklassenbildung eine umfas-
sende Nutzung dieser Typen tiberfliissig gemacht hat (Thema 20).

5.4 Thema 22: Ersetzen Sie Funktionszeiger
durch Klassen und Interfaces

C unterstiitzt Funktionszeiger, mit denen ein Programm die Fahigkeit zum Aufruf einer
bestimmten Funktion speichern und iibermitteln kann. Funktionszeiger sind dazu da,
dass der Aufrufer einer Funktion ihr Verhalten spezialisieren kann, indem er einen Zei-
ger auf eine zweite Funktion iibergibt, was manchmal auch als Callback bezeichnet
wird. Die Funktion gsort aus der C-Standardbibliothek nimmt z.B. einen Zeiger auf
eine Vergleichsfunktion entgegen, die sie benutzt, um die zu sortierenden Elemente zu
vergleichen. Die Vergleichsfunktion nimmt zwei Parameter entgegen: Jeder ist ein Zei-
ger auf ein Element. Sie gibt eine negative ganze Zahl zuriick, wenn das Element, auf
das der erste Parameter zeigt, kleiner als das Element ist, auf das der zweite Parameter
zeigt. Im umgekehrten Fall gibt sie eine positive ganze Zahl zuriick und wenn beide
Elemente gleich sind, gibt sie null zuriick. Sie kénnen verschiedene Sortierreihenfolgen
erhalten, indem Sie verschiedene Vergleichsfunktionen iibergeben. Dies ist ein Beispiel
fiir das Strategiemuster [Gamma 1998, S. 315]: Die Vergleichsfunktion ist eine Strategie
zum Sortieren der Elemente.

Auf Funktionszeiger hat man in Java verzichtet, da Sie dieselbe Funktionalitdt auch
mit Objektreferenzen erzielen konnen. Wenn Sie eine Methode auf einem Objekt aufru-
fen, wird normalerweise eine Operation auf diesem Objekt ausgefiihrt. Es ist jedoch
auch moglich, ein Objekt zu definieren, dessen Methoden Operationen auf anderen
Objekten ausfiihren, die den Methoden explizit {ibergeben werden. Eine Instanz einer
Klasse, die genau eine solche Methode exportiert, ist im Endeffekt ein Zeiger auf diese
Methode. Solche Instanzen bezeichnet man als Funktionsobjekte. Betrachten Sie z.B. die
folgende Klasse:

class StringlengthComparator {
public int compare(String sl, String s2) {
return sl.length() - s2.length();
}
}

Diese Klasse exportiert eine einzige Methode, die zwei Strings entgegennimmt und
eine negative ganze Zahl zuriickgibt, wenn der erste String kiirzer als der zweite ist,
eine positive ganze Zahl, wenn der Fall umgekehrt liegt und null, wenn beide Strings

124 5 Ersatz fiir C-Konstrukte

gleich lang sind. Diese Methode ist eine Vergleichsmethode (comparator), die Strings
nach ihrer Lange statt, wie es eher iiblich ist, nach dem Alphabet ordnet. Eine Referenz
auf ein StringLengthComparator-Objekt dient als »Funktionszeiger« auf diese Vergleichs-
methode und gestattet es, diese auf beliebigen String-Paaren aufzurufen. Mit anderen
Worten ist eine Instanz von StringlLengthComparator eine konkrete Strategie zum Zeichen-
kettenvergleich.

Wie es fiir Konkrete-Strategie-Klassen typisch ist, ist auch die Klasse StringLength
Comparator zustandslos. Da sie keine Felder hat, sind alle Instanzen der Klasse funktional
dquivalent. Sie konnte daher ebenso gut ein Singleton sein, um tiiberfliissigen Aufwand
fiir Objekterzeugungen zu sparen (Themen 4 und 2):

class StringlengthComparator {
private StringlLengthComparator() { |

public static final StringlLengthComparator
INSTANCE = new StringlLengthComparator();

public int compare(String sl, String s2) |
return sl.length() - s2.length();
}
}

Um einer Methode eine Instanz von StringLengthComparator zu iibergeben, bendtigen
wir einen passenden Typ fiir den Parameter. StringlLengthComparator ware eine schlechte
Wahl, da Clients dann keine andere Vergleichsstrategie iibergeben kénnten. Wir miis-
sen also stattdessen ein Comparator-Interface definieren und StringlLengthComparator so
andern, dass er dieses Interface implementiert. Mit anderen Worten miissen wir fiir die
Konkrete-Strategie-Klasse ein Strategie-Interface definieren:

// Strategie-Interface
public interface Comparator f

public int compare(Object ol, Object 02);
}

Diese Definition des Comparator-Interfaces stammt zuféllig aus dem Paket java.util, aber
sie ist keine grofie Kunst: Sie hitten es ebenso gut selbst definieren kénnen. Damit das
Interface auch auf Vergleichsmethoden fiir andere Objekte als Strings anwendbar ist,
nimmt seine compare-Methode Parameter vom Typ Object und nicht vom Typ String ent-
gegen. Daher muss die zuvor gezeigte Klasse leicht abgeédndert werden, um Comparator
zu implementieren: Die Object-Parameter miissen zuerst in den Typ String umgewan-
delt werden, bevor die 1ength-Methode aufgerufen werden kann.

Konkrete-Strategie-Klassen werden oft mithilfe von anonymen Klassen (Thema 18)
definiert. Die folgende Anweisung sortiert ein String-Array nach der Linge der
Strings:

Thema 22: Ersetzen Sie Funktionszeiger durch Klassen und Interfaces 125

Arrays.sort(stringArray, new Comparator() f{
public int compare(Object ol, Object 02) f{
String sl = (String)ol;
String s2 = (String)o2;
return sl.length() - s2.length();

1)

Da das Strategie-Interface fiir alle seine Konkrete-Strategie-Instanzen als Typ dient,
brauchen Sie eine Konkrete-Strategie-Klasse nicht 6ffentlich zu machen, um eine kon-
krete Strategie zu exportieren. Stattdessen kann auch eine »Host«-Klasse ein 6ffent-
liches, statisches Feld (oder eine offentliche, statische Factory-Methode) exportieren,
deren Typ das Strategie-Interface ist, und die Konkrete-Strategie-Klasse kann eine pri-
vate, geschachtelte Klasse des Hosts sein. Im nachfolgenden Beispiel wird statt einer
anonymen Klasse eine statische Attributklasse verwendet, damit die Konkrete-Strate-
gie-Klasse Serializable als zweites Interface implementieren kann.

// Konkrete Strategie exportieren
class Host {
// Bulk of class omitted

private static class StrlLenCmp
implements Comparator, Serializable f{
public int compare(Object ol, Object 02) f{
String sl = (String)ol;
String s2 = (String)o2;
return sl.length() - s2.length();

J

// Zuriickgegebener Comparator ist serialisierbar
public static final Comparator
STRING_LENGTH_COMPARATOR = new StrlLenCmp();
}

Die Klasse String verwendet dieses Muster, um eine von der Grof3- und Kleinschrei-
bung unabhingige String-Vergleichsmethode iiber ihr CASE_INSENSITIVE_ORDER-Feld zu
exportieren.

Fazit: Die Funktionszeiger von C dienen hauptséachlich dazu, das Strategiemuster zu
implementieren. Um dies in Java zu tun, deklarieren Sie ein Interface, das die Strategie
reprasentiert, und eine Klasse, die dieses Interface fiir jede konkrete Strategie imple-
mentiert. Wird eine konkrete Strategie nur ein einziges Mal benutzt, so wird ihre
Klasse mithilfe einer anonymen Klasse deklariert und instanziiert. Wird eine konkrete
Strategie dagegen fiir den wiederholten Gebrauch exportiert, so ist ihre Klasse in der
Regel eine private, statische Attributklasse, die iiber ein public static final-Feld
exportiert wird, dessen Typ das Strategie-Interface ist.

6 Methoden

Dieses Kapitel behandelt diverse Aspekte des Methodenentwurfs: Wie Sie Parameter
und Riickgabewerte handhaben, wie Sie Methodensignaturen entwerfen und wie Sie
Ihre Methoden dokumentieren. Vieles davon gilt fiir Konstruktoren und Methoden
gleichermafien. Wie Kapitel 5 stellt auch dieses Kapitel die Verwendbarkeit, Stabilit&t
und Flexibilitdt in den Mittelpunkt.

6.1 Thema 23: Priifen Sie die Giiltigkeit der Parameter

Die meisten Methoden und Konstruktoren unterliegen Einschrdnkungen hinsichtlich
der Werte, die ihren Parametern {ibergeben werden kénnen. So ist es z.B. nichts Unge-
wohnliches, dass Indexwerte nicht-negativ und Objektreferenzen nicht-null sein miis-
sen. Alle derartigen Restriktionen sollten Sie deutlich dokumentieren und ihre
Einhaltung iiberdies durch Priifungen zu Beginn des Methodenrumpfs verifizieren.
Dies ist ein Sonderfall des allgemeinen Grundsatzes, und Sie sollten versuchen, Fehler
moglichst frith nach ihrem Auftreten aufzuspiiren. Sonst wird es immer wahrschein-
licher, dass sie entweder tiberhaupt nicht entdeckt werden, oder dass im Falle ihrer
Entdeckung die eigentliche Fehlerquelle nur noch schwer zu ermitteln ist.

Wenn einer Methode ein ungiiltiger Parameter {ibergeben wird und die Methode ihre
Parameter vor der Ausfiithrung priift, dann scheitert sie schnell und sauber mit einer
geeigneten Ausnahme. Priift die Methode ihre Parameter nicht, so kénnen mehrere
Dinge passieren. Die Methode kann mit einer verwirrenden Ausnahme mitten in der
Ausfiihrung scheitern oder, schlimmer noch, sie kann normal zuriickkehren, aber in
aller Stille das verkehrte Ergebnis berechnen. Am schlimmsten ist es jedoch, wenn die
Methode normal zuriickkehrt, aber dabei ein Objekt in inkonsistentem Zustand
zuriickldsst. Dann verursacht sie an einem ganz anderen Punkt im Code zu irgend-
einem unvorhersehbaren Zeitpunkt einen Fehler.

Fiir 6ffentliche Methoden legen Sie mit dem @throws-Tag der Javadoc fest, welche Aus-
nahme bei einer Verletzung der Parameterrestriktionen ausgelost wird (Thema 44). Die
gebrauchlichsten Ausnahmen in diesem Fall sind I11egalArgumentException, IndexOutOf
BoundsException oder NullPointerException (Thema 42). Wenn Sie die Beschrankungen

128 6 Methoden

fiir die Parameter einer Methode und die Ausnahmen, die im Falle ihrer Verletzung
ausgelost werden, dokumentieren, dann ist es ganz einfach, die Restriktionen auch zu
erzwingen. Hier sehen Sie ein typisches Beispiel:

/**

* Gibt einen BigInteger mit dem Wert (this mod m) zurilck. Diese

* Methode unterscheidet sich insofern von der Restmethode, als sie
* immer einen nicht-negativen BigInteger zurlickgibt.

*

* @param m der Modulo, er muss positiv sein.

* @return this mod m.

*

@throws ArithmeticException if m <= 0.
*/
public BigInteger mod(BigInteger m) f
if (m.signum() <= 0)
throw new ArithmeticException("Modulus not positive");

. // Jetzt Berechnung durchfiihren
}

Fiir eine nicht-exportierte Methode sollten Sie als Autor des Pakets kontrollieren, unter
welchen Umstdanden die Methode aufgerufen wird. So kénnen und miissen Sie sicher-
stellen, dass immer nur giiltige Parameterwerte iibergeben werden. Daher sollten
nicht-6ffentliche Methoden immer ihre Parameter priifen. Dies tun sie nicht mit nor-
malen Priifungen, sondern anhand von Annahmen. Wenn Sie eine Java-Version ver-
wenden, die Annahmen (assertions) unterstiitzt (Version 1.4 und folgende), dann
sollten Sie das assert-Konstrukt verwenden, anderenfalls sollten Sie einen Makeshift-
Annahmemechanismus etablieren.

Besonders wichtig ist es, dass Sie die Giiltigkeit von Parametern priifen, die nicht von
einer Methode benutzt, sondern zur spiteren Verwendung gespeichert werden.
Betrachten Sie z.B. die Factory-Methode in Thema 16, die ein int-Array entgegen-
nimmt und eine List-Ansicht dieses Arrays zuriickgibt. Wenn ein Client dieser
Methode null iibergeben wiirde, so wiirde sie eine NullPointerException zuriickgeben,
weil sie eine explizite Priifung enthélt. Wiirde man diese Priifung auslassen, so wiirde
die Methode eine Referenz auf eine neu erzeugte List-Instanz zuriickgeben, die eine
NullPointerException auslost, sobald ein Client sie zu nutzen versucht. Doch dann kann
der Ursprung der List-Instanz bereits sehr schwer festzustellen sein, und das Debug-
ging wiirde auflerordentlich kompliziert.

Konstruktoren sind ein Sonderfall des Prinzips, dass Sie die Giiltigkeit von Parame-
tern, die zur spéteren Nutzung gespeichert werden, priifen sollten. Bei Konstruktoren
ist diese Giiltigkeitspriifung sehr wichtig, damit kein Objekt erzeugt wird, dass Klas-
seninvarianten verletzt.

Von der Regel, dass Sie die Methodenparameter priifen sollten, ehe Sie die Berechnung
beginnen, gibt es auch Ausnahmen. Eine wichtige Ausnahme ist der Fall, bei dem eine

Thema 24: Machen Sie bei Bedarf defensive Kopien 129

Giiltigkeitspriifung teuer oder undurchfiihrbar wére und implizit wahrend der Berech-
nung durchgefiihrt wird. Nehmen Sie z.B. eine Methode, die eine Liste von Objekten
sortiert, wie etwa Collections.sort(List). Alle Objekte in der Liste miissen miteinander
vergleichbar sein. Wahrend die Liste sortiert wird, wird jedes ihrer Objekte mit einem
anderen Objekt der Liste verglichen. Sind die Objekte nicht wechselseitig vergleichbar,
so gibt eine dieser Vergleichsoperationen eine ClassCastException aus, und dies ist
genau das, was die Sortiermethode tun sollte. Daher hitte es wenig Zweck vorzeitig zu
priifen, ob die Listenelemente miteinander vergleichbar sind. Beachten Sie jedoch, dass
eine unscharfe Anwendung dieser Technik zu einem Verlust an Fehleratomizitat
(Thema 46) fiihren kann.

Gelegentlich leistet eine Berechnung die erforderliche Giiltigkeitspriifung implizit auf
einem Parameter, 16st jedoch bei einem Scheitern des Tests die falsche Ausnahme aus.
Die Ausnahme, die die Berechnung aufgrund eines ungiiltigen Parameterwerts aus-
16st, ist also eine andere, als die Methode laut Dokumentation eigentlich auslésen
sollte. Unter solchen Umstdnden sollten Sie das in Thema 43 beschriebene Idiom zur
Ausnahmentibersetzung dazu verwenden, die erste Ausnahme in die korrekte umzu-
wandeln.

Bitte missverstehen Sie dieses Thema nicht dahingehend, dass Parameterrestriktionen
etwa eine gute Sache seien. Im Gegenteil: Sie sollten Ihre Methoden so allgemein wie
irgend moglich formulieren. Je weniger Beschrankungen Sie den Parametern auferle-
gen, umso besser ist es. Voraussetzung ist allerdings, dass die Methode auch mit allen
Parameterwerten, die sie entgegennimmt, etwas Sinnvolles anfangen kann. Oft geho-
ren Restriktionen allerdings zu der implementierten Abstraktion dazu.

Zusammenfassend kann man sagen: Immer wenn Sie eine Methode oder einen Kon-
struktor schreiben, sollten Sie sich {iberlegen, welchen Beschrankungen ihre oder seine
Parameter unterliegen. Diese Beschrankungen sollten Sie dokumentieren und ihre Ein-
haltung durch explizite Priifungen am Anfang des Methodenrumpfs erzwingen. Bitte
machen Sie sich dies zur Gewohnheit: Der geringe Aufwand macht sich schon beim
ersten Mal, wo eine Giiltigkeitspriifung scheitert, mit Zins und Zinseszins bezahlt.

6.2 Thema 24: Machen Sie bei Bedarf defensive Kopien

Es ist unter anderem deswegen eine Freude, mit Java zu arbeiten, weil Java eine sichere
Sprache ist. Das bedeutet: Wenn keine nativen Methoden vorliegen, ist Java immun gegen
Puffer-Uberldufe, Array-Uberldufe, Zeigerfehler und andere Speicherzuweisungsfehler,
die unsichere Sprachen wie C und C++ plagen. In einer sicheren Sprache kénnen Sie
Klassen mit der absoluten Gewissheit schreiben, dass ihre Invarianten immer wahr blei-
ben, egal was in einem anderen Teil des Systems passiert. In Sprachen, die den gesamten
Speicher als ein einziges, gigantisches Array behandeln, ist das unmoglich.

130 6 Methoden

Doch auch in einer sicheren Sprache miissen Sie selbst Hand anlegen, um von anderen
Klassen isoliert zu bleiben. Sie miissen defensiv programmieren und immer davon
ausgehen, dass Clients Ihrer Klasse alles versuchen werden, um ihre Invarianten zu
zerstoren. Das kann auch tatsdchlich der Fall sein, ndmlich dann, wenn jemand ver-
sucht, die Sicherheit Ihres Systems auSer Kraft zu setzen. Doch eher wahrscheinlich ist,
dass Thre Klasse mit unerwarteten Verhaltensweisen aufgrund von Fehlern der Pro-
grammierer fertig werden muss, die Ihr API nutzen. In beiden Féllen lohnt sich die
Zeit, die Sie darauf verwenden, Klassen zu schreiben, die sich von Clients mit schlech-
tem Verhalten nicht stéren lassen.

Zwar kann keine andere Klasse den inneren Zustand eines Objekts ohne dessen Zutun
dndern, doch tiberraschend leicht geschieht es, dass das Objekt ungewollt diese Hilfe
beisteuert. Betrachten Sie z.B. die folgende Klasse, die angeblich einen unveridnder-
lichen Zeitraum darstellt:

// Kaputte "unverdnderlicher"-Zeitraum-Klasse
public final class Period f{

private final Date start;

private final Date end;

/**
* @param Anfang des Zeitraums.
* @param Ende des Zeitraums; darf nicht vor Anfang liegen.
* @throws ITlegalArgumentException wenn Anfang hinter Ende.
* @throws NullPointerException wenn Anfang oder Ende = null.
*/
public Period(Date start, Date end) f{

if (start.compareTo(end) > 0)

throw new I1TegalArgumentException(start + " after "
+ end);
this.start = start;
this.end = end;

public Date start() {
return start;

}

public Date end() {
return end;

}

// Rest wird weggelassen
}

Auf den ersten Blick scheint diese Klasse unveranderlich und macht den Eindruck,
dass sie die Invariante erzwingt, nach der der Anfang eines Zeitraums nicht nach sei-
nem Ende liegen darf. Diese Invariante kann man aber ganz leicht mithilfe der Tatsa-
che verletzen, dass Date verdanderlich ist.

Thema 24: Machen Sie bei Bedarf defensive Kopien 131

// Attackiere Interna einer Period-Instanz
Date start = new Date();

Date end = new Date();

Period p = new Period(start, end);
end.setYear(78); // Andert die Interna von p!

Um die Interna einer Period-Instanz vor derartigen Angriffen zu schiitzen, miissen Sie
unbedingt eine defensive Kopie jedes verdnderlichen Parameters des Konstruktors
anfertigen und als Bestandteile der Period-Instanz die Kopien statt der Originale ver-
wenden:

// Reparierter Konstruktor - macht defensive Kopien der Parameter
public Period(Date start, Date end) f

this.start = new Date(start.getTime());

this.end = new Date(end.getTime());

if (this.start.compareTo(this.end) > 0)
throw new ITlegalArgumentException(start +" after "+ end);
}

Mit dem neuen Konstruktor wirkt sich die obige Attacke nicht auf die Period-Instanz
aus. Beachten Sie, dass defensive Kopien angelegt werden, bevor die Giiltigkeit der
Parameter gepriift wird (Thema 23), und dass die Giiltigkeitspriifung mit den
Kopien und nicht mit den Originalen stattfinden muss. Das erscheint widersinnig,
ist aber notig. Es schiitzt die Klasse davor, dass ein anderer Thread in dem »Zeitfenster
der Angreifbarkeit« die Parameter dndert, das sich zwischen der Priifung und dem
Kopieren der Parameter 6ffnet.

Beachten Sie aufSerdem, dass wir nicht die clone-Methode von Date zum Anlegen der
defensiven Kopien einsetzten. Da Date nicht-final ist, besteht keine Garantie, dass die
clone-Methode wirklich ein Objekt zuriickgibt, dessen Klasse java.util.Date ist. Sie
konnte auch eine Instanz einer nicht-vertrauenswiirdigen Unterklasse zuriickgeben,
die eigens dafiir geschaffen wurde, Unheil zu stiften. Eine solche Unterklasse konnte
z.B. eine Referenz auf jede Instanz, in dem Augenblick, in dem diese erzeugt wird, in
einer privaten, statischen Liste festhalten und dem Angreifer Zugriff auf diese Liste
geben. Dann konnte der Angreifer mit allen Instanzen tun, was er wollte. Um solche
Attacken zu verhindern, diirfen Sie nie die clone-Methode zum defensiven Kopieren
eines Parameters einsetzen, dessen Typ von nicht-vertrauenswiirdigen Personen
erweitert werden kann.

Der Ersatzkonstruktor schiitzt zwar gegen die oben geschilderte Attacke, aber es ist
noch immer moglich, eine Period-Instanz zu dndern, da ihre Zugriffsmethoden Zugriff
auf ihre verdanderlichen Interna geben.

// Iweite Attacke auf die Interna einer Period-Instanz
Date start = new Date();
Date end = new Date();

132 6 Methoden

Period p = new Period(start, end);
p.end().setYear(78); // Andert die Interna von p!

Um sich gegen diese zweite Attacke zu wehren, brauchen Sie nur die Zugriffsmetho-
den so zu andern, dass sie defensive Kopien der verinderlichen, internen Felder
zuriickgeben:

// Reparierte Zugriffsmethoden - Tegen defensive Kopien interner Felder an
public Date start() f{

return (Date) start.clone();
}

public Date end() f
return (Date) end.clone();
}

Mit dem neuen Konstruktor und den neuen Zugriffsmethoden ist Period tatsdchlich
unverdnderlich. Egal wie bosartig oder inkompetent ein Programmierer ist: Er findet
einfach keinen Weg, um die Invariante zu verletzen, dass der Anfang des Zeitraums
nicht hinter seinem Ende liegen darf. Es kann ndmlich keine andere Klasse als nur
Period selbst Zugriff auf eines der verdanderlichen Felder einer Period-Instanz erlangen.
Diese Felder sind nun wirklich im Objekt gekapselt.

Beachten Sie, dass die neuen Zugriffsmethoden im Gegensatz zu dem neuen Konstruk-
tor die defensiven Kopien mit der clone-Methode anlegen. Das ist in Ordnung (aber
nicht unbedingt erforderlich), denn wir wissen genau, dass die Klasse der internen
Date-Objekte von Period auch wirklich java.util.Date ist, und keine nicht-vertrauens-
wiirdige Unterklasse davon.

Defensives Kopieren von Parametern ist nicht nur fiir unverdnderliche Klassen gut.
Immer wenn Sie eine Methode oder einen Konstruktor schreiben, um ein vom Client
geliefertes Objekt in eine interne Datenstruktur einzubinden, miissen Sie iiberlegen, ob
dieses Objekt des Clients eventuell verdnderlich ist. Ist dies der Fall, so miissen Sie dar-
iiber nachdenken, ob Thre Klasse eine Anderung des Objekts auch nach seiner Einfii-
gung in die Datenstruktur noch verkraften kann. Wenn nicht, dann miissen Sie es
defensiv kopieren und statt des Originals die Kopie in die Datenstruktur iibernehmen.
Wenn Sie z.B. iiberlegen, eine vom Client stammende Objektreferenz als Element in
eine interne Set-Instanz oder als Schliissel in eine interne Map-Instanz zu tibernehmen,
dann miissen Sie daran denken, dass die Invarianten der Menge oder Map zerstort
wiirden, wenn das Objekt nach seiner Ubernahme noch geéndert wiirde.

Dasselbe gilt fiir das defensive Kopieren interner Komponenten, bevor diese an die
Clients zuriickgegeben werden. Egal ob Ihre Klasse veranderlich ist oder nicht: Sie soll-
ten es sich auf jeden Fall zweimal {iberlegen, ob Sie eine Referenz auf eine interne
Komponente, die verdnderlich ist, zuriickgeben. Dann geben Sie vielleicht besser eine
defensive Kopie zurtiick. Wichtig ist auch, daran zu denken, dass Arrays mit Nichtnull-

Thema 25: Entwerfen Sie die Methodensignaturen sorgfltig 133

Lange immer verdnderlich sind. Daher sollten Sie immer eine defensive Kopie eines
internen Arrays anlegen, ehe Sie es an einen Client zuriickgeben. Alternativ konnen
Sie auch eine unverdnderliche View des Arrays an den Benutzer zuriickgeben. Beide
Techniken werden in Thema 12 gezeigt.

Aus alledem konnen Sie die Lehre ziehen, dass Sie moglichst immer unverénderliche
Objekte als Bestandteile Threr Objekte verwenden sollten, damit Sie sich nicht um das
defensive Kopieren zu kiimmern brauchen (Thema 13). Im Falle unseres Period-Bei-
spiels ist es so, dass geiibte Programmierer oft den von Date.getTime() zuriickgegebe-
nen Grundtyp Tong als interne Zeitdarstellung nutzen und keine Referenz auf ein Date-
Objekt. Dies tun sie vor allem deshalb, weil Date veranderlich ist.

Es ist nicht immer passend, eine defensive Kopie eines verdnderlichen Parameters
anzulegen, ehe er in das Objekt integriert wird. Es gibt Methoden und Konstruktoren,
deren Aufruf einen expliziten Handoff des Objekts anzeigt, das von einem Parameter
referenziert wird. Beim Aufruf einer solchen Methode verspricht der Client, dass er
das Objekt nicht mehr unmittelbar modifizieren wird. Eine (Konstruktor)-Methode,
die die Steuerung eines vom Client gelieferten, verdnderlichen Objekts {ibernehmen
will, muss dies in ihrer Dokumentation deutlich machen.

Klassen mit Methoden oder Konstruktoren, deren Aufruf eine Steuerungsiibernahme
anzeigt, konnen sich nicht gegen bosartige Clients wehren. Solche Klassen sind nur
dann hinnehmbar, wenn sich die Klasse und ihr Client gegenseitig vertrauen kénnen,
oder wenn die Schddigung der Klasseninvarianten niemand anders als den Client
beeintrachtigen wiirde. Letztere Situation ergibt sich z.B. in dem Hiillenklassenmuster
(Thema 14). Je nach dem Wesen der Hiillenklasse konnte der Client ihre Invarianten
zerstoren, indem er direkt auf ein eingehiilltes Objekt zugreift, doch dies wiirde in aller
Regel nur dem Client selbst schaden.

6.3 Thema 25: Entwerfen Sie die Methodensignaturen
sorgfiltig

Dieses Thema ist ein Sammelsurium von API-Entwurfstipps, die jeweils keine eigenen
Themenkapitel rechtfertigen. Doch zusammengenommen helfen sie IThnen dabei, Ihr
API leichter erlernbar und benutzbar und weniger fehleranfillig zu machen.

Wihlen Sie Methodennamen sorgfiltig. Namen sollten sich immer nach den Stan-
dard-Namenskonventionen richten (Thema 38). Ihr wichtigstes Ziel sollte es sein, die
Namen so zu wiahlen, dass sie verstindlich und konsistent mit den anderen Namen
desselben Pakets sind. Thr zweites Ziel sollte darin bestehen, die Namen auch mit tiber-
greifenden Vereinbarungen konsistent zu halten, wenn solche vorhanden sind. Im
Zweifel konnen Sie sich an die Java-Bibliothek-APIs halten. Es gibt zwar viele Inkon-

134 6 Methoden

sistenzen, die bei der Grofie und dem Umfang der Bibliotheken unvermeidlich sind,
aber es gibt auch Ubereinkiinfte. Eine unschitzbare Ressource ist das Buch The Java
Developers Almanac [Chan00] von Patrick Chan, das die Methodendeklarationen jeder
einzelnen Methode der Java-Plattformbibliotheken mit einem alphabetischen Index
enthélt. Wenn Sie sich z.B. fragen, ob Sie eine Methode remove oder delete nennen soll-
ten, dann sagt Ihnen ein kurzer Blick in den Index dieses Buchs, dass remove tiblicher
ist. Es gibt Hunderte Methoden, deren Namen mit remove beginnen und nur eine Hand
voll, deren Namen mit delete anfangen.

Ubertreiben Sie es nicht mit den Bequemlichkeitsmethoden. Jede Methode sollte
»sich selbst tragen«. Zu viele Methoden fithren dazu, dass eine Klasse schwer zu ler-
nen, anzuwenden, zu dokumentieren, zu testen und zu warten ist. Das gilt besonders
fiir Interfaces, bei denen iiberméfig viele Methoden sowohl den Implementierern als
auch den Nutzern das Leben schwer machen. Fiir jede von Ihrem Typ unterstiitzte
Aktion miissen Sie eine vollstindig funktionale Methode liefern. Sie sollten nur dann
eine »Kurzform« fiir eine Operation in Betracht ziehen, wenn sie sehr oft benutzt wird.
Im Zweifel lassen Sie sie besser weg.

Vermeiden Sie lange Parameterlisten. Als Regel sollten Sie drei Parameter als Maxi-
mum betrachten; umso besser, wenn es weniger sind. Die meisten Programmierer kon-
nen sich lange Parameterlisten nicht merken. Wenn viele Ihrer Methoden mehr als drei
Parameter haben, dann ist Ihr API nur mit stindigem Nachschlagen in der Dokumen-
tation benutzbar. Besonders schlimm sind lange Folgen von Parametern desselben
Typs. Dann konnen sich die Benutzer Thres APIs zum einen die Reihenfolge der Para-
meter nicht merken, doch zum anderen werden ihre Programme, wenn sie versehent-
lich Parameter an die falsche Stelle setzen, dennoch kompiliert und ausgefiihrt. Sie tun
nur nicht das, was ihre Autoren wollten.

Es gibt zwei Moglichkeiten, libermédfiig lange Parameterlisten abzukiirzen. Die eine
besteht darin, die Methode in mehrere Methoden zu zerlegen, von denen jede nur eine
Teilmenge der Parameter erfordert. Wenn Sie das nicht sorgfaltig genug machen, erhal-
ten Sie vielleicht zu viele Methoden, aber es kann auch die Anzahl der Methoden
verringern, indem es die Orthogonalitit erhoht. Betrachten Sie z.B. das Interface
java.util.List. Es hat keine Methoden zum Suchen des ersten oder letzten Index eines
Elements einer Teilliste; jede dieser Methoden wiirde drei Parameter erfordern. Statt-
dessen hat es die subList-Methode, die zwei Parameter entgegennimmt und eine View
einer Teilliste zuriickgibt. Diese Methode ldsst sich mit den Methoden index0f und
TastIndex0f kombinieren, die jeweils einen einzigen Parameter erfordern, und schon
haben Sie die gewiinschte Funktionalitit. Ja mehr noch: Sie kénnen die subList-
Methode auch mit jeder anderen Methode kombinieren, die auf einer List-Instanz ope-
riert, um auf Teillisten jede beliebige Berechnung auszufiihren. Das resultierende API
hat ein hervorragendes Verhiltnis von Méachtigkeit zu Gewicht.

Thema 25: Entwerfen Sie die Methodensignaturen sorgfdltig 135

Eine zweite Moglichkeit zur Abkiirzung langer Parameterlisten besteht in der Erstel-
lung von Hilfsklassen, die Parameterzusammenstellungen speichern. In der Regel sind
solche Hilfsklassen statische Attributklassen (Thema 18). Diese Technik ist dann zu
empfehlen, wenn oft eine Parameterfolge auftritt, die eine ganz andere Entitét repra-
sentiert. Nehmen wir z.B. an, Sie schreiben eine Klasse, die ein Kartenspiel darstellt,
und Sie stellen fest, dass Sie immer wieder zwei Parameter tibergeben, die den Wert
und die Farbe einer Karte reprasentieren. Ihr API und die Interna Ihrer Klasse werden
wabhrscheinlich besser, wenn Sie eine Hilfsklasse hinzufiigen, die eine Karte repréasen-
tiert, und jedes Auftreten der beiden Parameter durch einen einzigen Parameter — die
Hilfsklasse — ersetzen.

Bei Parametertypen sollten Sie die Interfaces den Klassen vorziehen. Immer wenn
ein Interface existiert, das einen Parameter definieren kann, sollten Sie statt einer
Klasse, die dieses Interface implementiert, lieber direkt das Interface verwenden. Es
gibt z.B. keinen Grund, eine Methode zu schreiben, die Hashtable als Eingabe verwen-
det; verwenden Sie stattdessen Map. Dann konnen Sie eine Hashtable tibergeben, oder
auch eine HashMap, eine TreeMap, eine Teil-Map einer TreeMap oder jede beliebige Map-Imp-
lementierung, die vielleicht noch geschrieben wird. Wenn Sie statt eines Interfaces eine
Klasse verwenden, beschranken Sie Ihren Client auf eine bestimmte Implementierung
und erzwingen eine iiberfliissige und potenziell auch aufwindige Kopieroperation,
wenn die Eingabedaten zufillig in einer anderen Form vorliegen.

Verwenden Sie Funktionsobjekte (Thema 22) vorsichtig. Manche Sprachen -
namentlich Smalltalk und die diversen Lisp-Dialekte — férdern einen Programmierstil,
der reich an Objekten ist, die Funktionen darstellen, welche wieder auf andere Objekte
angewendet werden. Programmierer mit Erfahrung in solchen Sprachen kénnten in
Versuchung geraten, in Java einen dhnlichen Programmierstil zu pflegen, aber das
wire duflerst unpassend. Am einfachsten kénnen Sie ein Funktionsobjekt mit einer
anonymen Klasse erzeugen (Thema 18), doch selbst dies fiihrt zu einer verworrenen
Semantik und zu einer im Vergleich zu Inline-Steuerungsstrukturen geringeren Macht
und Leistung. Aufierdem ist es heute nicht mehr tiblich, dauernd Funktionsobjekte zu
erzeugen und sie von Methode zu Methode weiterzureichen. Daher haben andere Pro-
grammierer Schwierigkeiten, Ihren Code zu verstehen, wenn Sie so programmieren.
Das soll nun nicht heifsen, dass Funktionsobjekte nicht auch ihre Berechtigung hatten:
Sie sind fiir viele michtige Entwurfsmuster wie z.B. Strategie [Gamma 1998, S. 315] und
Besucher [Gamma 1998, S. 331] sogar sehr wichtig. Sie sollten jedoch nur mit gutem
Grund eingesetzt werden.

136 6 Methoden

6.4 Thema 26: Verwenden Sie Methodeniiberladung
vorsichtig

Im Folgenden sehen Sie einen gutwilligen Versuch, Sammlungen danach zu klassifizie-
ren, ob sie Mengen, Listen oder eine andere Art von Sammlungen sind:

// Kaputt - falsche Verwendung der {berladung!
public class CollectionClassifier f
public static String classify(Set s) |
return "Set";
}

public static String classify(List 1) {
return "List";
}

public static String classify(Collection c) |
return "Unknown Collection";

}

public static void main(Stringl] args) f{
Collectionl] tests = new Collectionl] {
new HashSet(), // Eine Menge
new ArraylList(), // Eine Liste
new HashMap().values() // Weder Menge noch Liste
Vs

for (int i = 0; i < tests.length; i++)
System.out.printin(classify(testslil));

}

Sie erwarten nun vielleicht, dass dieses Programm zuerst »Set«, dann »List« und dann
»Unknown Collection« ausgibt, aber das tut es nicht: Es gibt drei Mal »Unknown Collec-
tion« aus. Warum passiert das? Weil die classify-Methode iiberladen ist und erst zur
Kompilierungszeit entschieden wird, welche Uberladung der Methode aufgerufen
wird. Der Parametertyp ist bei allen drei Schleifendurchldufen zur Kompilierungszeit
derselbe: Collection. Der Laufzeittyp ist zwar bei jedem Durchlauf ein anderer, aber
das wirkt sich nicht auf die Wahl der Uberladung aus. Da der Parametertyp zur Kom-
pilierungszeit Collection ist, ist die einzig anwendbare Uberladung die dritte, ndmlich
classify(Collection), und diese Uberladung wird auch bei jeder Iteration aufgerufen.

Das Verhalten des Programms ist nicht intuitiv, da die Wahl unter iiberladenen
Methoden statisch ist, wihrend die Wahl unter iiberschriebenen Methoden dyna-
misch ist. Die richtige Version einer iiberschriebenen Methode wird zur Laufzeit je nach
dem Laufzeittyp des Objekts gewahlt, auf dem die Methode aufgerufen wird. Erinnern
Sie sich: Eine Methode wird tiberschrieben, wenn eine Unterklasse eine Methoden-
deklaration enthalt, die genau dieselbe Signatur hat, wie eine Methodendeklaration

Thema 26: Verwenden Sie Methodeniiberladung vorsichtig 137

einer Elternklasse. Wenn eine Instanzmethode in einer Unterklasse iiberschrieben wird
und diese Methode auf einer Instanz der Unterklasse aufgerufen wird, dann wird die
iiberschreibende Methode aus der Unterklasse ausgefiihrt, egal welchen Typ die Unter-
klasseninstanz zur Kompilierungszeit hat. Dies sehen Sie konkret an dem folgenden
kleinen Programm:

class A {
String name() { return "A"; }
}

class B extends A {
String name() { return "B"; }
}

class C extends A {
String name() { return "C"; !}
}

public class Overriding f{
public static void main(Stringl] args) f{
AL] tests = new AL] { new A(), new B(), new C() };

for (int i = 0; i < tests.length; i++)
System.out.print(testslil.name());

J

Die Methode name wird in der Klasse A deklariert und in den Klassen B und C {iber-
schrieben. Erwartungsgemaf$ gibt dieses Programm »ABC« aus, obwohl der Typ der
Instanz zur Kompilierungszeit bei jedem Schleifendurchlauf A ist. Der Typ, den ein
Objekt zur Kompilierungszeit hat, hat keine Auswirkungen darauf, welche Methode
ausgefiihrt wird, wenn eine tiberschriebene Methode aufgerufen wird: Es wird immer
die »spezifischste« iiberschreibende Methode ausgefiihrt. Sehen Sie sich dagegen das
Uberladen an, bei dem der Laufzeittyp eines Objekts keine Auswirkungen darauf hat,
welche Uberladung ausgefiihrt wird: Diese Wahl wird zur Kompilierungszeit getroffen
und orientiert sich ausschliefSlich an den Parametertypen zur Kompilierungszeit.

In dem CollectionClassifier-Beispiel sollte das Programm den Parametertyp erkennen,
indem es je nach dem Laufzeittyp des Parameters automatisch zu der geeigneten
Methodeniiberladung geht, wie es die name-Methode im »ABC«-Beispiel tut. Die
Methodeniiberladung hat diese Funktionalitit einfach nicht. Sie kénnen das Pro-
gramm reparieren, indem Sie alle drei Uberladungen von classify durch eine einzelne
Methode ersetzen, die einen expliziten instanceof-Test durchfiihrt:

public static String classify(Collection ¢) f
return (c instanceof Set ? "Set" :
(c instanceof List ? "List" : "Unknown Collection"));

138 6 Methoden

Da das Uberschreiben die Regel und das Uberladen die Ausnahme ist, ist das Uber-
schreiben auch mafigeblich dafiir, welches Verhalten die Leute bei einem Methoden-
aufruf erwarten. Wie das CollectionClassifier-Beispiel zeigt, kann eine Uberladung
diese Erwartungen leicht tduschen. Es ist schlechter Stil, Code zu schreiben, dessen
Verhalten dem Durchschnittsprogrammierer nicht auf den ersten Blick einleuchtet. Das
gilt besonders fiir APIs. Wenn der typische Benutzer eines APIs nicht weif3, welche von
mehreren Methodeniiberladungen bei einer gegebenen Menge Parameter aufgerufen
wird, dann wird die Benutzung dieses APIs wahrscheinlich zu Fehlern fiihren. Diese
Fehler zeigen sich dann als fehlerhaftes Laufzeitverhalten und viele Programmierer
werden die Ursache nicht finden kénnen. Daher sollten Sie einen verwirrenden Ein-
satz von Uberladungen vermeiden.

Doch was genau ist eigentlich ein verwirrender Einsatz von Uberladungen? Ein siche-
res, konservatives Verfahren besteht darin, niemals zwei Uberladungen mit dersel-
ben Anzahl Parameter zu exportieren. Wenn Sie sich daran halten, sind Programmierer
nie im Zweifel dariiber, welche Uberladung auf eine gegebene Parametermenge ange-
wendet wird. Diese Beschrankung ist nicht sonderlich beschwerlich, denn Sie kénnen
Methoden ja auch unterschiedliche Namen geben, statt sie zu iiberladen.

Betrachten Sie z.B. die Klasse ObjectOutputStream. Sie hat fiir jeden Grundtyp und
mehrere Referenztypen eine eigene Variante ihrer write-Methode. Anstatt die write-
Methode zu tiberladen, haben diese Varianten Signaturen wie writeBoolean(boolean),
writeInt(int) und writeLong(long). Ein zusatzlicher Vorteil dieses Namensmusters, im
Gegensatz zur Uberladung, besteht darin, dass Sie auch read-Methoden mit analogen
Namen bereitstellen konnen, z.B. readBoolean(boolean), readInt(int) und readLong(long).
Die Klasse ObjectInputStream hat auch tatsachlich read-Methoden mit diesen Namen.

Bei Konstruktoren haben Sie nicht die Moglichkeit, verschiedene Namen zu verwen-
den: Mehrere Konstruktoren fiir eine Klasse sind immer tiberladen. In manchen Féllen
haben Sie die Moglichkeit, statt Konstruktoren statische Factorys zu exportieren
(Thema 1), doch dies ist nicht immer moglich. Ein Pluspunkt ist, dass Sie sich bei Kon-
struktoren keine Gedanken {iiber Interaktionen von Uberladen und Uberschreiben
machen miissen, da man Konstruktoren gar nicht tiberschreiben kann. Da Sie wahr-
scheinlich ab und zu Gelegenheit haben werden, mehrere Konstruktoren zu exportie-
ren, lohnt es sich zu wissen, wann dies sicher ist.

Wenn in jedem Fall klar ist, welche Uberladung jeweils zu einer gegebenen Parameter-
menge dazugehort, dann kénnen Sie Mehrfachiiberladungen mit gleichen Parame-
teranzahlen exportieren, ohne die Programmierer in Verwirrung zu stiirzen. Dieser
Fall tritt beispielsweise dann ein, wenn in jedem Paar von Uberladungen zumindest
ein passender, formaler Parameter in beiden Uberladungen einen »radikal unter-
schiedlichen« Typ hat. Zwei Typen sind radikal unterschiedlich, wenn es ganz klar
ausgeschlossen ist, eine Instanz des einen Typs in den anderen umzuwandeln. Dann

Thema 26: Verwenden Sie Methodeniiberladung vorsichtig 139

entscheiden allein die Laufzeittypen der Parameter dariiber, welche Uberladung auf
eine gegebene, tatsdchliche Parametermenge angewendet wird. Da diese Wahl nicht
durch die Parametertypen zur Kompilierungszeit beeinflusst werden kann, 16st sich
die Hauptfehlerquelle in Luft auf.

ArrayList hat beispielsweise einen Konstruktor, der einen int entgegennimmt und einen
zweiten Konstruktor, der eine Collection entgegennimmt. Es ist nur schwerlich vorstell-
bar, dass irgendjemand {iber die Frage, welcher dieser beiden Konstruktoren wann auf-
gerufen werden muss, in Verwirrung gerét, denn Grundtypen und Referenztypen sind
radikal unterschiedlich. In dhnlicher Weise hat BigInteger einen Konstruktor, der ein
byte-Array entgegennimmt und einen, der einen String akzeptiert, und auch dies kann
keine Verwirrung stiften. Array-Typen und Klassen (aufler Object) sind radikal unter-
schiedlich. Dasselbe gilt fiir Array-Typen und Interfaces (aufler Serializable und
Cloneable). Ein letztes Beispiel: Throwable hat mit dem Release 1.4 einen Konstruktor, der
einen String entgegennimmt und einen, der ein Throwable-Objekt akzeptiert. Die Klassen
String und Throwable sind nicht verwandt, d.h. keine der beiden Klassen ist ein Abkomm-
ling der anderen. Da ein Objekt unmoglich eine Instanz zweier nicht-verwandter Klas-
sen sein kann, sind solche nicht-verwandten Klassen radikal unterschiedlich.

Es gibt noch einige weitere Beispiele fiir Paare von Typen, die sich nicht ineinander
konvertieren lassen [JLS, 5.1.7], aber wenn Sie iiber die bereits erwadhnten, einfachen
Félle hinausgehen, kann es fiir den durchschnittlichen Programmierer sehr schwierig
werden, zu erkennen, welche Uberladung auf eine tatsichliche Parametermenge
anwendbar ist. Die Spezifikation, die festlegt, welche Uberladung ausgewhlt wird, ist
komplex, und nur wenige Programmierer kénnen sie wirklich durchschauen [JLS,
15.12.1-3].

Gelegentlich sind Sie gezwungen, die obigen Richtlinien zu verletzen, wenn Sie vor-
handene Klassen so zurechtstutzen méchten, dass sie neue Interfaces implementieren.
So hatten z.B. viele der Werttypen in den Java-Plattformbibliotheken »self-typed« com-
pareTo-Methoden, ehe das Interface Comparable eingefiihrt wurde. Hier ist die Deklara-
tion der »self-typed« compareTo-Methode von String:

public int compareTo(String s);

Als das Comparable-Interface eingefiihrt wurde, wurden alle diese Klassen so iiberarbei-
tet, dass sie dieses Interface implementierten. Dazu musste eine allgemeinere compa-
reTo-Methode mit folgender Deklaration eingesetzt werden:

public int compareTo(Object o);

Die damit einhergehende Uberladung verletzt zwar die oben geschilderten Richtlinien,
richtet aber keinen Schaden an, sofern beide iiberladenen Methoden genau dasselbe
tun, wenn sie auf denselben Parametern aufgerufen werden. Der Programmierer weifs
vielleicht nicht, welche Uberladung aufgerufen wird, aber das spielt auch keine Rolle,

140 6 Methoden

solange beide dasselbe Ergebnis bringen. Standardmafig erzielt man ein solches Ver-
halten, indem man die allgemeinere Uberladung den Aufruf an die speziellere Uber-
ladung weiterleiten lasst:

public int compareTo(Object o) f{
return compareTo((String) o);
}

Ein dhnliches Idiom wird manchmal fiir die equals-Methoden eingesetzt:

public boolean equals(Object o) f
return o instanceof String && equals((String) 0);
}

Dieses Idiom ist harmlos und kann eine etwas verbesserte Leistung zur Folge haben,
wenn der Parametertyp zur Kompilierungszeit zu dem Parameter der spezielleren
Uberladung passt. Doch dies ist natiirlich nicht immer der Miihe wert (Thema 37).

Zwar befolgen die Java-Plattformbibliotheken im Wesentlichen den Rat dieses Themas,
doch an einigen Stellen wird auch dagegen verstofien. So exportiert z.B. die Klasse
String die beiden {iberladenen statischen Factory-Methoden valueOf(charl]) und
valueOf(Object), die ganz unterschiedliche Sachen machen, wenn man ihnen die-
selbe Objektreferenz {ibergibt. Dafiir gibt es keine Rechtfertigung und Sie sollten es als
eine Abweichung betrachten, die richtig Verwirrung stiften kann.

Zusammenfassend kann man sagen: Sie sollten keine Methoden blofs deswegen {tiber-
laden, weil es moglich ist. Generell sollten Sie keine Methoden mit mehreren Signatu-
ren uiberladen, die dieselbe Parameteranzahl haben. In manchen Fillen, insbesondere
bei Konstruktoren, kann die Befolgung dieser Regel jedoch unméglich sein. Dann soll-
ten Sie durch Hinzufiigen von Typumwandlungen zumindest verhindern, dass die-
selbe Parametermenge verschiedenen Uberladungen iibergeben werden kann. Wenn
eine solche Situation jedoch unvermeidlich ist — z.B. weil Sie eine bestehende Klasse so
iiberarbeiten, dass sie ein neues Interface implementiert —, dann sollten Sie gewahrleis-
ten, dass sich alle Uberladungen identisch verhalten, wenn man ihnen dieselben Para-
meter iibergibt. Wenn Sie dies unterlassen, konnen die Programmierer die iiberladene
(Konstruktor)-Methode nicht wirkungsvoll einsetzen und verstehen ihre Funktions-
weise auch nicht.

Thema 27: Geben Sie nicht null, sondern Arrays der Ldnge null zuriick 141

6.5 Thema 27: Geben Sie nicht null, sondern Arrays der
Lange null zuriick
Héufig sehen Sie Methoden wie die folgende:
private List cheesesInStock = ...;

/**

* @return ein Array mit allen Kdsesorten im Laden

* oder null, wenn es keinen Ké&se gibt.
*/
public Cheesel[] getCheeses() |
if (cheesesInStock.size() == 0)
return null;

}

Nichts spricht dafiir, einen Sonderfall fiir die Situation einzufiihren, dass es keinen
Kése gibt. Das fiihrt nur dazu, dass der Client zuséitzlichen Code benétigt, um den
Riickgabewert nu11 zu verarbeiten. Ein Beispiel:

Cheesel] cheeses = shop.getCheeses();

if (cheeses != null &&
Arrays.asList(shop.getCheeses()).contains(Cheese.STILTON))
System.out.printin("Sehr schon, den nehme ich.");

anstelle von:

if (Arrays.asList(shop.getCheeses()).contains(Cheese.STILTON))
System.out.printin("Sehr schon, den nehme ich.");

Diese Art von Umschreibung wird bei fast allen Methoden erforderlich, die statt eines
Arrays der Lange null den Wert nu11 zuriickgeben. Der Code ist fehleranféllig, weil der
Programmierer, der den Client schreibt, vielleicht vergisst, den Sonderfall einzufiigen,
der den Riickgabewert null verarbeitet. Ein solcher Fehler kann jahrelang unbemerkt
bleiben, da solche Methoden normalerweise ein oder mehrere Objekte zurtickgeben.
Weniger bedeutend, aber immer noch erwdahnenswert ist der Umstand, dass die Riick-
gabe von null anstelle eines Arrays der Lange null auch die Array-Riickgabemethode
selbst verkompliziert.

Manchmal hort man das Argument, der Riickgabewert nu11 sei besser als ein Array der
Lange null, weil er den Aufwand der Array-Zuweisung spart. Doch dieses Argument
geht aus zwei Griinden ins Leere: Erstens sollte man auf dieser Ebene nur dann an die
Leistung denken, wenn ein Profiling gezeigt hat, dass die betreffende Methode tatsach-
lich Leistungseinbufien verursacht (Thema 37). Zweitens konnen Sie nach jedem Auf-
ruf, der keine Elemente zuriickgibt, dasselbe Array der Lange null zuriickliefern, da
solche Arrays unverdnderlich sind und unveranderliche Objekte nach Herzenslust

142 6 Methoden

gemeinsam genutzt werden kénnen (Thema 13). Und genau dies geschieht auch, wenn
Sie das Standardidiom verwenden, mit dem Elemente aus einer Sammlung in ein typ-
gebundenes Array gespeichert werden:

private List cheesesInStock = ...;

private final static Cheesel[] NULL_CHEESE_ARRAY = new Cheesel0];

/**
* @return ein Array mit allen Kdsesorten im Laden.
*/
public Cheesel] getCheeses() f{
return (Cheesel]) cheesesInStock.toArray(NULL_CHEESE_ARRAY);
}

In diesem Idiom wird eine Array-Konstante der Lange null an die toArray-Methode
iibergeben, um den gewdiinschten Riickgabetyp anzuzeigen. Normalerweise weist die
toArray-Methode das Riickgabe-Array zu, aber wenn die Sammlung leer ist, passt sie in
das Eingabe-Array, und die Spezifikation von Collection.toArray(Object[]) garantiert,
dass dieses Eingabe-Array zuriickgeliefert wird, wenn es groff genug ist, um die
Sammlung aufzunehmen. Also weist dieses Idiom nie ein Array der Lange null zu,
sondern verwendet stattdessen immer wieder die »Typspezifikationskonstante«.

Fazit: Es gibt keinerlei Grund, aus einer Methode mit einem Array-Wert null statt
eines Arrays der Liange null zuriickzugeben. Dieses Idiom ist wahrscheinlich eine
Hinterlassenschaft der Programmiersprache C, in der Array-Langen getrennt von den
eigentlichen Arrays zuriickgegeben werden. In C bringt es keinen Vorteil, ein Array
zuzuweisen, wenn als Lange null zuriickgegeben wird.

6.6 Thema 28: Schreiben Sie Doc-Kommentare fiir alle
offen gelegten API-Elemente

Damit ein API benutzbar ist, muss es dokumentiert sein. Frither wurde die API-Doku-
mentation manuell erstellt und es war schwer, die Dokumentation mit der Entwicklung
des Codes synchron zu halten. Die Java-Programmierumgebung erleichtert diese
Aufgabe nun mit einem Dienstprogramm namens Javadoc. Es generiert die API-Doku-
mentation automatisch aus dem Quellcode und speziell formatierten Dokumentations-
kommentaren, die allgemein auch als Doc-Kommentare bezeichnet werden. Javadoc bietet
eine einfache, weit verbreitete und wirkungsvolle Moglichkeit, APIs zu dokumentieren.

Wenn Sie die Konventionen fiir Doc-Kommentare noch nicht kennen, sollten Sie sie
schnell erlernen. Zwar gehoren diese Konventionen nicht zur Programmiersprache
Java, aber de facto stellen sie ein API dar, das jeder Programmierer kennen muss. In
The Javadoc Tool Home Page [Javadoc-b] sind die Konventionen definiert.

Thema 28: Schreiben Sie Doc-Kommentare fiir alle offen gelegten API-Elemente 143

Um TIhr API korrekt zu dokumentieren, miissen Sie vor exportierte Klassen, Inter-
faces, Konstruktoren, Methoden und Felddeklarationen jeweils einen Doc-Kom-
mentar setzen. Davon gibt es nur eine einzige Ausnahme, die am Ende dieses Themas
erklart wird. Ist kein Doc-Kommentar vorhanden, so kann Javadoc bestenfalls die
Deklaration als einzige Dokumentation des betreffenden API-Elements wiedergeben.
Ein API ohne Dokumentationskommentare ist frustrierend und fehleranfallig. Um
wartungsfreundlichen Code zu schreiben, sollten Sie auch fiir nicht-exportierte Klas-
sen, Interfaces, Konstruktoren und Felder Doc-Kommentare schreiben.

Der Doc-Kommentar fiir eine Methode sollte kurz den Vertrag zwischen der
Methode und ihrem Client beschreiben. Aufier bei Methoden in Klassen, die zur Ver-
erbung geschaffen wurden (Thema 15), sollte der Vertrag sagen, was die Methode tut,
und nicht, wie sie es tut. Der Doc-Kommentar sollte alle Vorbedingungen der Methode
aufzahlen. Das sind die Gegebenheiten, die zutreffen miissen, damit ein Client die
Methode aufrufen kann. Auflerdem miissen die Nachbedingungen aufgefithrt werden,
also die Dinge, die zutreffen miissen, nachdem der Aufruf erfolgreich abgeschlossen
ist. Die Vorbedingungen werden implizit durch die @throws-Tags fiir ungepriifte Aus-
nahmen beschrieben: Jede ungepriifte Ausnahme entspricht einer Verletzung der Vor-
bedingungen. Aufierdem konnen Vorbedingungen zusammen mit den betreffenden
Parametern in deren @param-Tags spezifiziert werden.

Neben den Vor- und Nachbedingungen sollten Methoden auch eventuelle Nebeneffekte
dokumentieren. Ein Nebeneffekt ist eine erkennbare Zustandsanderung des Systems,
die nicht ganz klar zur Erzielung der Nachbedingung erforderlich ist. Wenn eine
Methode beispielsweise einen Hintergrund-Thread startet, sollte die Dokumentation
dies vermerken. Abschliefend sollten Dokumentationskommentare auch die Thread-
Sicherheit einer Klasse beschreiben, die in Thema 52 noch behandelt wird.

Um ihren Vertrag vollstindig zu beschreiben, sollte der Doc-Kommentar fiir eine
Methode fiir jeden Parameter ein @param-Tag haben, sowie ein @return-Tag, sofern die
Methode nicht den Riickgabetyp void hat, und fiir jede gepriifte oder ungepriifte Aus-
nahme, die die Methode auslosen kann, ein @throws-Tag (Thema 44). Laut Konvention
sollte der auf ein @param- oder ein @return-Tag folgende Text ein Hauptsatz sein, der den
vom Parameter oder Riickgabewert dargestellten Wert beschreibt. Der Text hinter
einem @throws-Tag sollte das Wort »wenn« gefolgt von einem Hauptsatz enthalten, der
beschreibt, unter welchen Bedingungen die Ausnahme ausgeldst wird. Gelegentlich
werden auch Rechenausdriicke anstelle von Hauptsidtzen eingesetzt. Alle diese Kon-
ventionen werden im folgenden kurzen Doc-Kommentar veranschaulicht, der dem
List-Interface entnommen ist.

/**

* Gibt das Element an der angegebenen Listenposition zuriick.
*

* @param index Index des Riickgabeelements; mus nicht-negativ

144 6 Methoden

* und kleiner als die GroBe der Liste sein.
* @return das Element an der angegebenen Listenposition.
* @throws IndexOutOfBoundsException wenn Index nicht im

* Wertebereich
* (<tt>index &1t; 0 || index >:= this.size()</tt>).
*/

Object get(int index);

Beachten Sie den Einsatz von HTML-Metazeichen und -Tags in diesem Doc-Kommen-
tar. Javadoc iibersetzt Doc-Kommentare in HTML und jedes beliebige HTML-Element
in einem Doc-Kommentar landet schliefSlich in dem resultierenden HTML-Dokument.
Manchmal gehen Programmierer so weit, dass sie HTML-Tabellen in ihre Doc-Kom-
mentare einbetten, doch dies ist nicht sehr iiblich. Die meistgenutzten Tags sind <p>
zum Trennen von Absétzen, <code> und <tt> fiir Code-Fragmente und <pre> fiir langere
Code-Fragmente.

Die Tags <code> und <tt> sind im Grofien und Ganzen &quivalent. <code> ist
gebrauchlicher und laut HTML 4.01-Spezifikation generell vorzuziehen, da <tt> ein
Fontstilelement ist. (Stylesheets werden gegeniiber Fontstilelementen bevorzugt
[HTML401].) Dennoch verwenden manche Programmierer lieber <tt>, da es kiirzer
und unauffélliger ist.

Vergessen Sie nicht, dass Sie Escape-Sequenzen setzen miissen, um HTML-Metazei-
chen wie Kleiner als (<), Groer als (>) und das kaufménnische Und-Zeichen (&) zu
generieren. Fiir das Kleiner-als-Zeichen verwenden Sie »&1t:«, fiir das Grofer-als-Zei-
chen »>« und fiir das kaufménnische Und-Zeichen »&«. Die Verwendung von
Escape-Sequenzen veranschaulicht das @throws-Tag im obigen Doc-Kommentar.

Zum Schluss miissen Sie noch das Wort »this« in dem Doc-Kommentar beachten. Laut
Konvention bezieht es sich immer auf das Objekt, auf dem die Methode aufgerufen
wird, wenn es im Doc-Kommentar fiir eine Instanzmethode steht.

Der erste Satz jedes Doc-Kommentars enthilt die zusammenfassende Beschreibung des
Elements, zu dem der Kommentar gehort. Diese Zusammenfassung muss eine abge-
schlossene Beschreibung der Funktionalitdt des dazugehorigen Konstrukts sein. Damit
keine Verwirrung entsteht, sollten keine zwei Attribute oder Konstruktoren einer
Klasse oder eines Interfaces dieselbe zusammenfassende Beschreibung haben. Bitte
achten Sie besonders auf Uberladungen, denn fiir diese steht in der Textbeschreibung
oft derselbe erste Satz.

Setzen Sie bitte auch keinen Schlusspunkt innerhalb des ersten Satzes eines Doc-Kom-
mentars, denn sonst wird die zusammenfassende Beschreibung zu friith abgeschnitten.
So wiirde z.B. ein Doc-Kommentar, der mit den Worten »Ein Universitdtsabschluss wie
M.A. oder Dr.« beginnt, die zusammenfassende Beschreibung »Ein Universitdtsab-
schluss wie M.« zur Folge haben. Dieses Problem umgehen Sie am besten, indem Sie
Abkiirzungen und Ausdriicke, die den Punkt als Trennzeichen verwenden, in zusam-

Thema 28: Schreiben Sie Doc-Kommentare fiir alle offen gelegten API-Elemente 145

menfassenden Beschreibungen unterlassen. Sie konnen zwar einen Punkt auch einfii-
gen, indem Sie ihn durch seine nummerische Codierung ».: « ersetzen, aber das macht
den Quellcode nicht gerade hiibscher:

/**
* Ein Universitdtsabschluss wie M#46;A. oder
* Dr&df46; .
*/
public class Degree { ... }
Zu sagen, die zusammenfassende Beschreibung sei der erste Satz in einem Doc-Kom-
mentar, ist in gewisser Weise irrefithrend. Die Konvention verlangt kaum jemals, dass
es ein vollstandiger Satz sein muss. Bei Methoden und Konstruktoren sollte die zusam-
menfassende Beschreibung eine Verbalphrase sein, die die von der Methode ausge-
fithrte Aktion beschreibt. Zwei Beispiele:

ArrayList(int initialCapacity) — Erzeugt eine leere Liste mit der angegebenen
Anfangskapazitat.

Collection.size() — Gibt die Anzahl der Elemente dieser Sammlung zuriick.

Fiir Klassen, Interfaces und Felder sollte die zusammenfassende Beschreibung eine
Nominalphrase sein, die beschreibt, was das Feld oder eine Instanz der Klasse oder des
Interfaces repréasentiert. Zwei Beispiele:

TimerTask — Ein Task, der von einem Timer zur Ausfithrung zu einem bestimmten
Zeitpunkt oder zur wiederholten Ausfithrung vorgemerkt wird.

Math.PI — Der double-Wert, der nédher als irgendein anderer an Pi herankommt, das
Verhiltnis zwischen Umfang und Durchmesser eines Kreises.

Mit den hier beschriebenen Konventionen fiir Doc-Kommentare kommen Sie bereits
aus, aber es gibt noch viele weitere. Mehrere Styleguides behandeln das Schreiben von
Doc-Kommentaren [Javadoc-a, Vermeulen 2000] und es gibt auch Dienstprogramme,
die die Einhaltung dieser Regeln priifen [Doclint].

Seit dem Release 1.2.2 kann Javadoc Methodenkommentare »automatisch wiederver-
wenden« oder »erben«. Wenn eine Methode keinen Doc-Kommentar hat, sucht Java-
doc den spezifischen, anwendbaren Doc-Kommentar und gibt dabei Interfaces den
Vorrang vor Oberklassen. Einzelheiten tiber den Suchalgorithmus finden Sie in The
Javadoc Manual.

Dies bedeutet, dass Klassen nunmehr die Doc-Kommentare von den Interfaces, die sie
implementieren, wieder verwenden konnen, anstatt diese Kommentare kopieren zu
miissen. Diese Fahigkeit erspart uns die Last, mehrere beinahe identische Doc-Kom-
mentarmengen pflegen zu miissen. Es hat jedoch auch eine Einschrankung: Die Verer-
bung von Doc-Kommentaren geht nur nach dem Prinzip »alles oder nichts«. Die

146 6 Methoden

erbende Methode kann den geerbten Doc-Kommentar auf keine Weise modifizieren.
Oft macht eine Methode den von einem Interface geerbten Vertrag noch spezifischer,
und in einem solchen Fall benétigt sie tatsachlich einen eigenen Doc-Kommentar.

Eine einfache Moglichkeit, die Fehlerwahrscheinlichkeit in Doc-Kommentaren zu sen-
ken, besteht darin, die von Javadoc erzeugten HTML-Dateien durch ein Programm zu
schicken, das die Giiltigkeit von HTML priift: einen so genannten HTML Validity Che-
cker. Dieses Programm findet viele Fehler beim Setzen von HTML-Tags und auch feh-
lende Escape-Sequenzen fiir HTML-Metazeichen. Mehrere HTML Validity Checker
stehen zum Herunterladen zur Verfiigung, darunter auch weblint [Weblint].

Auf eine Schwierigkeit muss im Zusammenhang mit Doc-Kommentaren hingewiesen
werden. Doc-Kommentare fiir alle exportierten Elemente eines APIs sind zwar erfor-
derlich, aber oft noch nicht genug. Fiir komplexe APIs mit vielen zusammenhéngen-
den Klassen miissen Sie eine Dokumentation in Form eines externen Dokuments
liefern, das die iibergreifende Architektur des APIs beschreibt. Wenn ein solches Doku-
ment existiert, sollten die Doc-Kommentare der betreffenden Klasse oder des Pakets
einen Link auf es enthalten.

Zusammenfassend kann man sagen, dass Dokumentationskommentare der beste und
effektivste Weg sind, ein API zu dokumentieren. Fiir alle exportierten API-Elemente
sind sie zwingend erforderlich. Sie sollten stilistisch konsistent und den Standardkon-
ventionen angepasst sein. Vergessen Sie nicht, dass in Doc-Kommentaren beliebige
HTML-Elemente erlaubt sind, wobei HTML-Metazeichen jedoch mit Escape-Sequen-
zen dargestellt werden miissen.

/ Allgemeine Programmierung

In diesem Kapitel geht es vor allem um die technischen Einzelheiten von Java. Behan-
delt werden lokale Variablen, die Verwendung von Bibliotheken, der Einsatz der ver-
schiedenen Datentypen und zwei sprachexterne Ressourcen: Reflection und native
Methoden. Zum Schluss werden Optimierungen und Namenskonventionen erldutert.

7.1 Thema 29: Minimieren Sie den Giiltigkeitsbereich
lokaler Variablen

Seinem Wesen nach dhnelt dieses Thema dem Thema 12, »Minimieren Sie die Zugreif-
barkeit von Klassen und Attributen« Indem Sie den Giiltigkeitsbereich lokaler Variab-
len moglichst klein halten, machen Sie IThren Code lesbarer und wartungsfreundlicher
und mindern die Fehleranfalligkeit.

In der Programmiersprache C miissen lokale Variablen am Anfang eines Blocks dekla-
riert werden und die Programmierer halten sich aus Gewohnheit immer noch daran.
Doch diese Gewohnheit sollten Sie aufgeben. Zur Erinnerung: In Java kénnen Sie tiber-
all dort Variablen deklarieren, wo auch eine Anweisung zuldssig ware.

Die michtigste Technik zum Minimieren des Giiltigkeitsbereichs einer lokalen
Variablen besteht darin, sie dort zu deklarieren, wo sie zum ersten Mal benutzt
wird. Wenn eine Variable schon vor ihrem Einsatz deklariert wird, ist sie nur lastig:
eben ein Ding mehr, das den Leser ablenkt, der eigentlich wissen mdchte, was das Pro-
gramm tut. Zu dem Zeitpunkt ihrer Nutzung kann sich der Leser vielleicht schon nicht
mebhr an ihren Typ oder Anfangswert erinnern. Wenn sich das Programm weiterentwi-
ckelt und die Variable nicht mehr benutzt wird, kann man leicht vergessen die Dekla-
ration zu entfernen, wenn diese weit von dem Punkt entfernt steht, an dem die
Variable erstmals zum Einsatz kommt.

Der Giiltigkeitsbereich einer lokalen Variablen kann nicht nur durch verfriihte, son-
dern auch durch verspétete Deklaration zu groff werden. Er erstreckt sich von der
Deklaration bis zum Ende des enthaltenden Blocks. Wird eine Variable aufierhalb des
Blocks deklariert, in dem sie benutzt wird, dann bleibt sie fiir das Programm auch

148 7 Aligemeine Programmierung

dann noch sichtbar, wenn es den Block verlassen hat. Wenn eine Variable versehentlich
vor oder hinter dem Punkt verwendet wird, an dem ihre Nutzung beabsichtigt war, so
kann das katastrophale Folgen haben.

Fast jede Deklaration einer lokalen Variablen sollte einen Initialisierer enthalten.
Wenn Sie zu wenig Informationen haben, um eine Variable verniinftig initialisieren zu
konnen, dann sollten Sie die Deklaration verschieben, bis Sie genug wissen. Eine Aus-
nahme von dieser Regel bilden die try-catch-Anweisungen. Wenn eine Variable von
einer Methode initialisiert wird, die eine gepriifte Ausnahme auslost, dann muss sie
innerhalb eines try-Blocks initialisiert werden. Wenn der Wert auflerhalb des try-
Blocks verwendet werden muss, dann muss sie vor dem try-Block deklariert werden,
also an einem Punkt, an dem sie noch nicht »verniinftig initialisiert« werden kann. Ein
Beispiel dafiir finden Sie in Thema 35.

Schleifen bieten eine besondere Chance, den Giiltigkeitsbereich von Variablen zu mini-
mieren. In einer for-Schleife konnen Sie Schleifenvariablen deklarieren, deren Giiltig-
keitsbereich genau auf die Gegend beschrénkt ist, in der sie gebraucht werden. (Diese
Gegend erstreckt sich auf den Schleifenrumpf sowie die Initialisierung, den Test und
das Update vor dem Schleifenrumpf.) Daher sollten Sie den for-Schleifen gegeniiber
den while-Schleifen den Vorzug geben, immer vorausgesetzt, dass die Inhalte der
Schleifenvariablen nach Abschluss der Schleife nicht mehr benétigt werden.

Als Beispiel sehen Sie hier das bevorzugte Idiom zum Abarbeiten einer Sammlung:

for (Iterator i = c.iterator(); i.hasNext();) {
doSomething(i.next());
}

Um zu verstehen, warum diese for-Schleife besser als die ndherliegende while-Schleife
ist, sollten Sie sich folgendes Code-Fragment anschauen, das zwei while-Schleifen und
einen Fehler enthalt:

Iterator i = c.iterator();
while (i.hasNext()) f

doSomething(i.next());
}

Iterator 12 = c2.iterator();

while (i.hasNext()) f{ // Fehler!
doSomethingElse(i2.next());

}

Die zweite Schleife enthélt einen Fehler, der durch Kopieren und Einfiigen entsteht: Sie
initialisiert die neue Schleifenvariable i2, verwendet aber die alte Variable i, die leider
immer noch Giiltigkeit hat. Der resultierende Code wird fehlerfrei kompiliert und
lauft, ohne eine Ausnahme auszulOsen, aber er tut das Falsche. Anstatt c2 zu durchlau-

Thema 29: Minimieren Sie den Giiltigkeitsbereich lokaler Variablen 149

fen endet die zweite Schleife sofort und vermittelt den falschen Eindruck, dass c2 leer
sei. Da das Programm diesen Fehler stillschweigend macht, kann es lange dauern, bis
er entdeckt wird.

Wenn Sie einen solchen Kopieren&Einfiigen-Fehler in dem bevorzugten Idiom fiir for-
Schleifen begehen, dann wird der resultierende Code nicht kompiliert. Die Schleifen-
variable aus der ersten Schleife hitte dann namlich an dem Punkt, wo sich die zweite
Schleife befindet, keine Giiltigkeit:

for (Iterator i = c.iterator(); i.hasNext();) f
doSomething(i.next());
}

// Statischer Fehler - Das Symbol i wird nicht aufgeldst

for (Iterator i2 = c2.iterator(); i.hasNext();) {
doSomething(i2.next());

}

Ja mehr noch: Wenn Sie das for-Schleifen-Idiom benutzen, dann laufen Sie weniger
Gefahr, Kopieren&Einfiigen-Fehler zu machen, da es keinen Anlass gibt, in den beiden
Schleifen verschiedene Variablennamen zu verwenden. Da die Schleifen vo6llig vonein-
ander unabhingig sind, kann gefahrlos derselbe Variablenname wieder verwendet
werden, was auch als guter Stil gilt.

Und noch einen weiteren — wenn auch kleinen — Vorteil hat die for-Schleife gegeniiber
der while-Schleife: Das for-Schleifen-Idiom ist um eine Zeile kiirzer. Das tragt dazu bei,
dass die umgebende Methode in ein Editorfenster von fester GrofSe hineinpasst und
somit besser lesbar wird.

Hier ist ein weiteres Schleifenidiom, das iiber eine Liste iteriert und den Giltigkeits-
bereich lokaler Variablen minimiert:

// Hochleistungsidiom zum Durchlaufen von Listen mit wahlfreiem Zugriff

for (int i =0, n = list.size(); i <n; i++) |
doSomething(list.get(i));

}

Dieses Idiom ist niitzlich fiir List-Implementierungen mit wahlfreiem Zugriff wie z.B.
ArrayList und Vector, denn es lauft wahrscheinlich schneller als das oben gezeigte
»bevorzugte Idiom« fiir solche Listen. Wichtig ist hier, dass es zwei Schleifenvariablen
hat, ndmlich i und n, die beide genau den richtigen Giiltigkeitsbereich haben. Die
zweite Variable ist wichtig fiir die Leistung des Idioms. Ohne sie miisste die Schleife
bei jeder Iteration einmal die size-Methode aufrufen, was den Leistungsvorteil
zunichte machen wiirde. Der Einsatz dieses Idioms ist dann angebracht, wenn Sie
sicher sind, dass die Liste auch wirklich wahlfreien Zugriff bietet. Andernfalls poten-
ziert sich der Zeitaufwand.

150 7 Aligemeine Programmierung

Fiir andere Aufgaben mit Schleifen gibt es dhnliche Idiome, beispielsweise dieses:

for (int i = 0, n = expensiveComputation(); 1 < n; i++) {
doSomething(i);
}

Auch dieses Idiom benutzt wieder zwei Schleifenvariablen und die zweite Variable, n,
dient dazu, den Aufwand einer redundanten Berechnung bei jeder Iteration zu sparen.
Grundsitzlich sollten Sie dieses Idiom einsetzen, wenn der Schleifentest einen Metho-
denaufruf enthalt, der garantiert bei jeder Iteration dasselbe Ergebnis erbringt.

Eine letzte Technik, mit der Sie den Giiltigkeitsbereich lokaler Variablen minimieren
konnen, besteht darin, alle Methoden klein und konzentriert zu formulieren. Wenn
Sie zwei Aktivititen in derselben Methode kombinieren, dann konnen lokale Variab-
len, die fiir die eine Aktivitdt eine Rolle spielen, in den Giiltigkeitsbereich des Codes
gelangen, der die andere Aktivitdt ausfithrt. Um dies auszuschlieffen machen Sie ein-
fach aus einer Methode zwei und formulieren fiir jede Aktivitat eine.

7.2 Thema 30: Sie missen die Bibliotheken kennen und
nutzen

Angenommen, Sie mochten ganzzahlige Zufallszahlen zwischen null und einer Ober-
grenze generieren. Mit dieser géngigen Aufgabe konfrontiert, wiirden viele Program-
mierer eine kleine Methode schreiben, die etwa folgendermafien aussieht:

static Random rnd = new Random();

// Gangig, aber mangelhaft!
static int random(int n) {

return Math.abs(rnd.nextInt()) % n;
}

Diese Methode ist nicht schlecht, aber sie ist auch nicht perfekt: Sie hat ndmlich drei
Maingel. Erstens: Wenn n eine kleine Zweierpotenz ist, dann wiederholt sich die
Zufallszahlenfolge schon nach recht kurzer Zeit. Zweitens: Wenn n keine Zweierpotenz
ist, dann werden einige Zahlen im Durchschnitt hdufiger zuriickgegeben als andere.
Wenn n grof3 ist, kann dieser Mangel ziemlich deutlich ausfallen. Grafisch wird dies
durch das folgende Programm demonstriert, das eine Million Zufallszahlen aus einem
sorgfaltig ausgewdhlten Intervall generiert und dann ausgibt, wie viele der Zahlen auf
die niedrigere Halfte des Intervalls entfallen:

public static void main(Stringl] args) f{
int n =2 * (Integer.MAX_VALUE / 3);
int Tow = 0;
for (int i = 0; i < 1000000; i++)
if (random(n) < n/2)

Thema 30: Sie miissen die Bibliotheken kennen und nutzen 151

Towt+;

System.out.printin(low);
}

Funktionierte die random-Methode gut, so wiirde das Programm eine Zahl im Bereich
einer halben Million ausgeben, doch wenn Sie es ausfiihren, stellen Sie fest, dass diese
Zahl bei 666.666 liegt. Zwei Drittel der von der random-Methode generierten Zahlen ent-
fallen auf die niedrigere Halfte des Intervalls!

Der dritte Mangel der random-Methode besteht darin, dass sie in seltenen Fallen auch
katastrophal versagen kann, indem sie eine Zahl zuriickgibt, die nicht im angegebenen
Intervall liegt. Das liegt daran, dass die Methode versucht, den von rnd.nextInt()
zuriickgegebenen Wert mit Math.abs auf eine nicht-negative, ganze Zahl abzubilden.
Wenn nextInt() den Wert Integer.MIN_VALUE zuriickgibt, dann gibt Math.abs auch Inte-
ger .MIN_VALUE zuriick, und der Restoperator (%) liefert, falls n keine Zweierpotenz ist,
eine negative Zahl. Das lasst das Programm fast unweigerlich scheitern — ein Scheitern,
das sich vielleicht nur schwer reproduzieren lasst.

Um eine random-Version ohne diese drei Médngel zu schreiben, miissten Sie eine Menge
iiber lineare, kongruente Pseudozufallszahlen-Generatoren, Zahlentheorie und Zwei-
erkomplement-Arithmetik wissen. Doch zum Gliick brauchen Sie sich darum nicht zu
kiimmern: Das hat man Ihnen bereits abgenommen. Die Methode heifit Random.next
Int(int) und wurde im Release 1.2 zu dem Paket java.util der Standardbibliothek
hinzugefiigt.

Sie brauchen sich also nicht mit den Einzelheiten abzugeben, wie nextInt(int) seinen
Job erledigt (natiirlich kénnen Sie, falls Sie unter unheilbarer Neugier leiden, die
Dokumentation oder den Quellcode studieren). Ein leitender Ingenieur mit Fachwis-
sen iiber Algorithmen verbrachte viel Zeit mit dem Entwurf, der Implementierung
und dem Testen dieser Methode und zeigte sie dann Fachexperten, um auch ganz
sicherzugehen, dass sie richtig ist. Dann durchlief die Bibliothek einen Betatest, wurde
verodffentlicht und wird nun schon seit mehreren Jahren von Tausenden Programmie-
rern umfassend genutzt. Bisher hat man keinen Mangel in der Methode gefunden,
doch selbst wenn dies noch geschehen sollte, wird er im néchsten Release behoben
werden. Durch Verwendung der Standardbibliothek nutzen Sie das Wissen der
Experten, die sie schrieben, und die Erfahrung Tausender, die sie schon vor IThnen
einsetzten.

Die Nutzung der Bibliotheken hat den zweiten Vorteil, dass Sie keine Zeit damit verlie-
ren, ad-hoc-Losungen fiir Probleme zu entwickeln, die nur am Rande mit Ihrer Arbeit
zu tun haben. Wenn Sie wie die meisten Programmierer denken, dann verbringen Sie
Ihre Zeit lieber damit, an Threr Applikation zu arbeiten, anstatt irgendwelche Klemp-
nerarbeiten auf darunter liegenden Ebenen zu tun.

152 7 Aligemeine Programmierung

Ein dritter Vorteil der Nutzung von Standardbibliotheken ist der, dass ihre Leistung mit
der Zeit immer besser wird, ohne dass Sie irgendetwas dazu tun miissten. Da sie von
Vielen genutzt werden und dabei auch an den Benchmarks der Industrie gemessen wer-
den, sind die Organisationen, die diese Bibliotheken liefern, stark daran interessiert,
dass sie immer schneller laufen. So wurde z.B. java.math, die Standardbibliothek fir
Arithmetik mit mehrfacher Genauigkeit, im Release 1.3 neu geschrieben, was zu massi-
ven Leistungssteigerungen fiihrte.

Bibliotheken erweitern mit der Zeit auch ihre Funktionalitit. Wenn eine Bibliotheks-
klasse eine wichtige Funktion vermissen ldsst, dann wird dies in der Entwickler-
gemeinschaft publik gemacht. Die Java-Plattform wurde schon immer durch viele
Beitrdge dieser Gemeinschaft weiterentwickelt. Frither war dies noch ein informeller
Prozess, aber mittlerweile ist er formalisiert und wird als Java Community Process
(JCP) bezeichnet. Wie auch immer: Fehlende Funktionen werden mit der Zeit nachge-
liefert.

Ein letzter Vorteil der Nutzung von Standardbibliotheken besteht darin, dass Sie Ihren
Code im Mainstream ansiedeln. Solcher Code ist lesbarer, wartungsfreundlicher und
fur die Masse der Entwickler leichter wieder verwendbar.

Bei so vielen Vorteilen scheint es nur logisch, dass man besser Bibliotheksfunktionen
als ad-hoc-Implementierungen verwenden sollte. Aber dennoch tun viele Program-
mierer dies nicht. Warum? Vielleicht, weil sie nichts von der Existenz der Bibliotheks-
funktionen wissen. In jedem Haupt-Release werden die Bibliotheken um eine
Vielzahl von Funktionen erweitert und es lohnt sich, diese Erweiterungen zu
beobachten. Sie konnen die Dokumentation online {iberfliegen oder in einem der vie-
len einschldgigen Biicher Einzelheiten iiber die Bibliotheken nachlesen [J2SE-APIs,
Chan 2000, Flanagan 1999, Chan 1998]. Die Bibliotheken sind zwar zu umfangreich, als
dass Sie die gesamte Dokumentation lesen konnten, aber jeder Programmierer sollte
mindestens mit dem Inhalt von java.lang, java.util und in geringerem Mafe auch
Jjava.io vertraut sein. Das Wissen iiber andere Bibliotheken koénnen Sie sich je nach
Bedarf aneignen.

Es wiirde den Rahmen dieses Themas sprengen, alle Bibliotheksfunktionen hier aufzu-
fiihren, doch einige verdienen eine besondere Erwdhnung. Im Release 1.2 wurde dem
Paket java.util das Collections Framework hinzugefiigt. Es sollte zum Handwerkszeug
jedes Programmierers gehoren. Das Collections Framework ist eine einheitliche Archi-
tektur zur Darstellung und Bearbeitung von Sammlungen. Es ermdglicht Ihnen,
Sammlungen unabhéngig von den Einzelheiten ihrer Darstellung zu bearbeiten. Es
mindert die Programmierarbeit und steigert die Leistung. Dariiber hinaus ermdglicht
es die Zusammenarbeit zwischen nicht-verwandten APIs, erleichtert den Entwurf und
das Erlernen neuer APIs und férdert die Wiederverwendung von Software.

Thema 30: Sie miissen die Bibliotheken kennen und nutzen 153

Das Collections Framework ist auf sechs Sammlungs-Interfaces aufgebaut (Collection,
Set, List, Map, SortedList und SortedMap). Es enthdlt Implementierungen dieser Inter-
faces und Algorithmen zu ihrer Bearbeitung. Die althergebrachten Sammlungsklassen
Vector und Hashtable wurden so iiberarbeitet, dass sie in das Framework passen; Sie
konnen es also nutzen und dabei die alten Klassen beibehalten.

Mit diesem Framework kénnen Sie viele banale Aufgaben mit viel weniger Code erle-
digen. Angenommen, Sie haben z.B. einen String-Vektor und mdochten ihn alphabetisch
sortieren. Dazu geniigt eine einzige Zeile:

Collections.sort(v);

Wenn Sie dasselbe ohne Unterscheidung der Grofs- und Kleinschreibung tun méochten,
verwenden Sie Folgendes:

Collections.sort(v, String.CASE_INSENSITIVE_ORDER);

Angenommen, Sie mochten alle Array-Elemente ausgeben. Viele Programmierer tun
das mit einer for-Schleife, aber folgendes Idiom macht dies tiberfliissig:

System.out.printin(Arrays.asList(a));

Nehmen wir zum Schluss an, Sie mochten alle Schliissel wissen, fiir die die beiden
Hashtable-Instanzen hl und h2 dieselben Zuordnungen enthalten. Vor dem Collections
Framework hitte man dafiir eine Menge Code schreiben miissen, aber jetzt geht es in
drei Zeilen:

Map tmp = new HashMap(hl);
tmp.entrySet().retainAl1(h2.entrySet());
Set result = tmp.keySet();

Die obigen Beispiele zeigen noch nicht einmal einen Bruchteil dessen, was Sie mit dem
Collections Framework alles machen kéonnen. Wenn Sie an Einzelheiten interessiert
sind, sollten Sie sich auf der Website von Sun die Dokumentation [Collections] dazu
anschauen oder das Tutorial lesen [Bloch 1999].

Eine extern entwickelte Bibliothek, die hier Erwdhnung verdient, ist util.concurrent
[Lea 2001] von Doug Lea. Sie stellt hochklassige Dienstprogramme fiir die Nebenldu-
figkeit zur Verfiigung, die die Programmierung mit mehreren Threads erleichtern.

Auch der Release 1.4 bietet viel Neues in den Bibliotheken. Wichtige Erweiterungen
sind z.B.:

Jjava.util.regex — Eine ausgereifte Funktion fiir reguldre Ausdriicke wie bei Perl.

java.util.prefs — Eine Funktion zur persistenten Speicherung von Benutzerprife-
renzen und Programmkonfigurationsdaten.

154 7 Aligemeine Programmierung

java.nio — Eine leistungsstarke I/O-Funktion einschliefllich scalable I/O (wie beim
poll-Aufruf unter Unix) und memory-mapped 1/O (wie beim mmap-Aufruf unter Unix).

Java.util.LinkedHashSet, LinkedHashMap, IdentityHashMap — Neue Sammlungsimple-
mentierungen.

Gelegentlich entspricht vielleicht eine Bibliotheksfunktion nicht Ihren Bediirfnissen. Je
spezieller Ihre Wiinsche sind, umso eher kann dies eintreten. Ihr erster Impuls sollte es
zwar sein, die Bibliotheken zu nutzen, aber wenn Sie sich angesehen haben, was diese
in einem bestimmten Bereich zu bieten haben, und das Gebotene nicht IThren Wiin-
schen entspricht, dann sollten Sie eine andere Implementierung verwenden. Bei einer
endlichen Anzahl von Bibliotheken gibt es immer etwas, das die gebotene Funktionali-
tat nicht abdeckt. Wenn das, was Sie benotigen, einfach nicht da ist, dann miissen Sie es
selbst implementieren.

Fazit: Sie sollten das Rad nicht neu erfinden. Wenn Sie eine Aufgabe vor sich sehen, die
ziemlich normal aussieht, dann gibt es vielleicht in den Bibliotheken schon eine Klasse,
die das macht, was Sie wollen. Finden Sie eine, dann nutzen Sie sie, wenn nicht, dann
priifen Sie noch einmal nach. So guten Code wie den in den Bibliotheken kénnen Sie
im Allgemeinen nicht selbst schreiben und die Bibliotheken werden auflerdem noch
dauernd verbessert. Ich will IThnen hier nicht Ihre Fahigkeiten als Programmierer
absprechen, doch schon durch die Gréflenordnung der investierten Bemiihungen ist
Kklar, dass der Bibliothekscode mehr Aufmerksamkeit erhélt, als ein einzelner Program-
mierer derselben Funktion jemals widmen konnte.

7.3 Thema 31: Meiden Sie float und double, wenn Sie genaue
Antworten wollen

Die Typen float und double wurden vor allem fiir wissenschaftliche und technische
Berechnungen geschaffen. Sie fiihren bindre Gleitkommaarithmetik aus, die sorgfaltig ent-
wickelt wurde, um rasch fiir viele GréfSenordnungen gute Naherungswerte zu liefern.
Sie liefern aber keine exakten Ergebnisse und sollten dort, wo diese erforderlich sind,
auch nicht eingesetzt werden. Besonders schlecht eignen sich float und double fiir
Wihrungsrechnung, da es unmoglich ist, 0,1 (oder irgendeine negative Zehnerpotenz)
als float oder double exakt darzustellen.

Nehmen wir z.B. an, Sie haben 1,03 € in der Tasche und geben 42 Cent aus. Wie viel
Geld bleibt Thnen? Hier sehen Sie ein naives Programmfragment, das dies zu beant-
worten versucht.

System.out.printin(1.03 - .42);

Thema 31: Meiden Sie float und double, wenn Sie genaue Antworten wollen 155

Leider lautet die Ausgabe 0.6100000000000001. Dies ist kein Einzelfall: Angenommen,
Sie haben einen Euro und kaufen neun Dichtungsringe zu je zehn Cent. Wie viel Wech-
selgeld bekommen Sie heraus?

System.out.printin(1.00 - 9*.10);

Nach diesem Programmfragment erhalten Sie 0.09999999999999995 €. Nun denken Sie
vielleicht, Sie konnten das Problem l9sen, indem Sie einfach die Ergebnisse vor dem
Ausgeben runden, aber auch dies funktioniert leider nicht immer. Angenommen, Sie
haben einen Euro und sehen ein Regal mit leckeren Bonbons, die 10 Cent, 20 Cent, 30
Cent usw. bis hinauf zu einem Euro kosten. Sie kaufen von jeder Sorte ein Stiick, begin-
nend mit dem Bonbon fiir 10 Cent, bis Ihr Restgeld fiir ein weiteres Bonbon nicht mehr
ausreicht. Wie viele Bonbons kaufen Sie und wie viel Wechselgeld erhalten Sie zuriick?
Das folgende naive Programm soll dies beantworten:

// Kaputt - verwendet Gleitkommazahlen fiir Wahrungsrechnung!
public static void main(Stringl] args) {
double funds = 1.00;
int itemsBought = 0;
for (double price = .10; funds >= price; price += .10) {
funds -= price;
itemsBought++;
}
System.out.printin(itemsBought + " Waren gekauft.");
System.out.printin("Wechselgeld: _" + funds);
}

Wenn Sie dies ausfiihren, stellen Sie fest, dass Sie drei Bonbons kaufen konnen und
0.3999999999999999 € iibrig behalten. Das ist falsch! Die richtige Losung erfordert die
Verwendung von BigDecimal, int oder long fiir Wahrungsrechnung. Hier wurde das
obige Programm einfach so umgeschrieben, dass es BigDecimal statt doubTe benutzt:

public static void main(Stringl] args) f
final BigDecimal TEN_CENTS = new BigDecimal(".10");

int itemsBought = 0;
BigDecimal funds = new BigDecimal("1.00");
for (BigDecimal price = TEN_CENTS;
funds.compareTo(price) >= 0;
price = price.add(TEN_CENTS)) {
itemsBought++;
funds = funds.subtract(price);
}
System.out.printin(itemsBought + " Waren gekauft.");
System.out.printin("Restgeld: _" + funds);
}

Wenn Sie das iiberarbeitete Programm ausfiihren, stellen Sie fest, dass Sie vier Bonbons
kaufen kénnen und 0,00 € iibrig behalten. Das ist richtig. Doch die Verwendung von

156 7 Aligemeine Programmierung

BigDecimal hat zwei Nachteile: Sie ist unbequemer als die Verwendung eines arithmeti-
schen Grundtyps und iiberdies langsamer. Der zweite Nachteil ist irrelevant, wenn Sie
nur eine einzige kleine Aufgabe 16sen, aber der erste kann lastig sein.

Eine Alternative zu BigDecimal ist die Verwendung von int oder Tong, je nachdem, um
welche Betrdge es geht, wobei Sie den Dezimalpunkt selbst nachverfolgen miissen. In
diesem Beispiel ist der nédchstliegende Ansatz, alle Berechnungen nicht in Euro son-
dern in Cent auszufiihren. Im Folgenden sehen Sie eine entsprechende iiberarbeitete
Fassung des Programmes:

public static void main(Stringl] args) f{
int itemsBought = 0;
int funds = 100;
for (int price = 10; funds >= price; price += 10) {
itemsBought++;
funds -= price;
}
System.out.printin(itemsBought + " Waren gekauft.");
System.out.printin("Restgeld: "+ funds + " Cent");
}

Zusammenfassend kann man sagen, dass Sie fiir Berechnungen, die ganz exakte Ant-
worten erbringen miissen, keine float- oder double-Werte verwenden sollten. Wenn das
System den Dezimalpunkt im Auge behalten soll und es Sie nicht stort, auf die
Bequemlichkeit eines Grundtyps zu verzichten, benutzen Sie BigDecimal. Dieser Typ
hat den zusitzlichen Vorteil, dass Sie damit volle Kontrolle {iber die Rundung haben,
wobei Sie bei jeder Operation, die eine Rundung erforderlich macht, aus acht Run-
dungsmodi auswidhlen konnen. Das ist sehr praktisch, wenn Sie Berechnungen
betriebswirtschaftlicher Natur durchfiihren, bei denen der Rundungsmodus gesetzlich
vorgeschrieben ist. Wenn es Thnen vorrangig um Leistung geht und es Sie nicht stort,
den Dezimalpunkt selbst im Auge zu behalten, und wenn iiberdies die Zahlen nicht zu
grofs sind, dann konnen Sie int oder 1ong benutzen. Sind die Zahlen nicht langer als
neun Dezimalziffern, so nehmen Sie int, sind sie nicht langer als 18 Ziffern, so nehmen
Sie Tong. Wenn Ihre Zahlen mehr als 18 Ziffern lang sind, miissen Sie BigDecimal benut-
zen.

7.4 Thema 32: Vermeiden Sie Strings, wo andere Typen sich
besser eignen

Strings wurden fiir die Textdarstellung geschaffen, und das konnen sie wirklich gut.
Da Strings so hdufig sind und von der Sprache so gut unterstiitzt werden, gibt es eine
natiirliche Tendenz, sie auch fiir andere Dinge als fiir ihren urspriinglichen Zweck zu
benutzen. Dieses Thema erkldrt, was Sie mit Strings nicht tun sollten.

Thema 32: Vermeiden Sie Strings, wo andere Typen sich besser eignen 157

Strings sind ein schlechter Ersatz fiir andere Werttypen. Wenn ein Datum aus einer
Datei, aus dem Netz oder iiber die Tastatur in ein Programm gelangt, dann haufig in
String-Form. Natiirlich neigt man dazu, es so zu belassen, doch dies ist nur dann
gerechtfertigt, wenn es seinem Wesen nach tatséchlich ein Text ist. Ist es nummerisch,
so sollte es in den entsprechenden Zahlentyp umgewandelt werden, etwa in int, float
oder BigInteger. Ist es die Antwort auf eine Ja/Nein-Frage, so ist boolean der richtige
Typ. Allgemeiner ausgedriickt: Wenn es einen geeigneten Werttyp gibt, sei er nun ein
Grundtyp oder eine Objektreferenz, so sollten Sie ihn nutzen, und wenn es noch kei-
nen gibt, dann sollten Sie einen schreiben. So selbstverstindlich dieser Rat klingen
mag, so oft wird er verletzt.

Strings sind ein schlechter Ersatz fiir Aufzahlungstypen. Wie bereits in Thema 21
gesagt sind typsichere Enums und int-Werte viel bessere Aufzahlungstypkonstanten
als Strings.

Strings sind ein schlechter Ersatz fiir Aggregattypen. Wenn eine Entitit mehrere
Komponenten hat, dann sollten Sie sie nicht in Form eines einzelnen Strings darstellen.
Im Folgenden sehen Sie z.B. eine Codezeile, die aus einem tatsdchlichen System
stammt. Die Bezeichnernamen wurden gedndert, um niemanden blofizustellen:

// Schlechter Einsatz von String als Aggregattyp
String compoundKey = className + "#" + i.next();

Dieser Ansatz hat viele Nachteile. Wenn das Zeichen, das zum Trennen der Felder
dient, in einem der Felder auftritt, gibt es Chaos. Um auf einzelne Felder zuzugreifen,
miissen Sie den String parsen. Das geht langsam und ist lastig und fehleranféllig. Sie
konnen keine equals-, toString- oder compareTo-Methoden liefern, sondern sind
gezwungen, mit dem Verhalten auszukommen, das Thnen String zur Verfiigung stellt.
Ein besserer Ansatz wire es, einfach eine Klasse zu schreiben, die den Aggregattyp
reprasentiert, oft in Form einer privaten, statischen Attributklasse (Thema 18).

Strings sind ein schlechter Ersatz fiir Capabilities. Gelegentlich werden Strings dazu
benutzt, Zugriff auf eine Funktionalitdt zu geben. Nehmen Sie z.B. den Entwurf einer
Thread-lokalen Variablenfunktion. Eine solche Funktion stellt Variablen zur Verfii-
gung, fiir die jeder Thread seinen eigenen Wert hat. Vor einigen Jahren hatten mehrere
Leute, die eine solche Funktion entwerfen sollten, unabhéngig voneinander dieselbe
Idee: Einen Entwurf, in dem vom Client gelieferte String-Schliissel Zugriff auf den
Inhalt einer Thread-lokalen Variablen geben:

// Kaputt - falsche Verwendung von String als Capability!
public class Threadlocal f{
private Threadlocal() { } // nicht-instanziierbar

// Setzt den Wert des aktuellen Threads flr die genannte Variable.
public static void set(String key, Object value);

158 7 Aligemeine Programmierung

// Gibt den Wert des aktuellen Threads fiir die genannte Variable zurlick.
public static Object get(String key);
}

Dieser Ansatz stellt Sie vor das Problem, dass die Schliissel einen gemeinsam genutz-
ten, globalen Namensraum reprasentieren. Wenn zwei getrennte Clients des Pakets
beschlieflen, fiir ihre Thread-lokale Variable denselben Namen zu verwenden, dann
teilen sie ungewollt diese Variable. Im Allgemeinen wird dies dazu fiihren, dass beide
Clients scheitern. Auflerdem ist die Sicherheit beeintréchtigt: Ein bosartiger Client
konnte absichtlich denselben Schliissel wie ein anderer benutzen, um sich unberechtigt
Zugriff auf die Daten dieses anderen Clients zu verschaffen.

Dieses API kénnen Sie reparieren, indem Sie den String durch einen falschungssiche-
ren Schliissel ersetzen (der manchmal auch Capability genannt wird).

public class Threadlocal f{
private Threadlocal() { | // nicht-instanziierbar

public static class Key |
Key() {}
}

// Generiert einen eindeutigen, fdlschungssicheren Schliissel
public static Key getKey() f{

return new Key();
}

public static void set(Key key, Object value);
public static Object get(Key key);
}

Dies 16st zwar beide Probleme des mit Strings arbeitenden APlIs, aber Sie konnen es
noch besser machen. Sie brauchen eigentlich die statischen Methoden gar nicht mehr.
Diese konnen jetzt Instanzmethoden auf dem Schliissel werden, und nun ist der
Schliissel auch gar kein Schliissel mehr, sondern eine Thread-lokale Variable. An die-
sem Punkt haben Sie auch nichts mehr von der nicht-instanziierbaren Toplevel-Klasse,
also konnen Sie sie genauso gut weglassen und die geschachtelte Klasse in ThreadLocal
umbenennen:

public class Threadlocal f
public ThreadLocal() { }
public void set(Object value);
public Object get();

}

Nun haben Sie in groben Ziigen das API, das von java.util.ThreadlLocal zur Verfiigung
gestellt wird. Es 16st nicht nur die Probleme mit dem String-basierten API, sondern ist
auch schneller und eleganter als jedes der Schliissel-basierten APIs.

Thema 33: Hiiten Sie sich vor der Langsamkeit von String-Verkettungen 159

Fazit: Der natiirlichen Neigung, Objekte als Strings darzustellen, sollten Sie widerste-
hen, wenn bessere Datentypen vorhanden sind oder geschrieben werden kénnen. Bei
unsachgemaéfier Verwendung sind Strings sperriger, unflexibler, langsamer und fehler-
anfalliger als andere Typen. Oft werden Strings félschlich zur Darstellung von Grund-
typen, Aufzdhlungstypen oder Aggregattypen eingesetzt.

7.5 Thema 33: Hiiten Sie sich vor der Langsamkeit von
String-Verkettungen

Der String-Verkettungsoperator (+) ist praktisch, um ein paar Strings zu einem einzi-
gen zusammenzufassen. Er kann ganz prima eine einzelne Ausgabezeile generieren
oder die String-Darstellung eines kleinen Objekts von festgelegter Grofle erzeugen,
aber das geht nur im Kleinen. Wenn Sie den String-Verkettungsoperator wiederholt
anwenden, um 7n Strings zu verketten, dann wichst der Zeitaufwand im Quadrat
von 7. Dies ist eine ungliickselige Konsequenz aus der Tatsache, dass Strings unverin-
derlich sind (Thema 13). Wenn Sie zwei Strings verketten, wird der Inhalt von beiden
kopiert.

Betrachten Sie beispielsweise die folgende Methode, die eine String-Darstellung einer
Rechnung aufbaut, indem sie fiir jeden gekauften Artikel eine Zeile anfiigt:

// Falscher Einsatz der String-Verkettung - furchtbar langsam!
public String statement() {
String s = "";
for (int 1 = 0; i < numltems(); i++)
s += lineForItem(i); // String-Verkettung
return s;
}

Diese Methode lduft bei vielen Artikeln quédlend langsam. Um eine annehmbare
Geschwindigkeit zu erreichen, sollten Sie StringBuffer statt String verwenden, um
die Rechnung wihrend der Erstellung zu speichern:

public String statement() {
StringBuffer s = new StringBuffer(numItems() * LINE_WIDTH);
for (int 1 = 0; 1 < numltems(); i++)
s.append(TineForItem(i));
return s.toString();
1

Der Leistungsunterschied ist dramatisch. Wenn numItems 11 zuriickgibt und TineForItem
einen konstanten, 80 Zeichen langen String, dann lauft die zweite Methode auf mei-
nem Computer 90 Mal schneller als die erste. Da die erste Methode quadratische Arti-
kel-Anzahlen hat und die zweite lineare, ist der Unterschied bei grofien Artikelmengen
sogar noch ausgepragter. Beachten Sie, dass die zweite Methode im Voraus einen

160 7 Aligemeine Programmierung

StringBuffer reserviert, der grofs genug fiir das Ergebnis ist. Selbst wenn man sie so
definiert, dass sie nur einen StringBuffer mit Standardgrofie benutzt, ist sie immer
noch 45 Mal so schnell wie die erste Methode.

Daraus ergibt sich eine einfache Lehre: Verwenden Sie den String-Verkettungsoperator
nur fiir die Kombination einiger weniger Strings, es sei denn, die Geschwindigkeit ist
vollig nebensdchlich. Nutzen Sie besser die append-Methode von StringBuffer. Als
Alternative kénnen Sie auch ein Zeichen-Array verwenden oder die Strings nachein-
ander verarbeiten, anstatt sie zu verketten.

7.6 Thema 34: Referenzieren Sie Objekte liber ihre
Interfaces

Thema 25 gibt Thnen den Rat, dass Sie statt Klassen besser Interfaces als Parameter-
typen einsetzen sollten. Allgemeiner ausgedriickt: Sie sollten Interfaces beim Referen-
zieren von Objekten generell den Vorzug gegeniiber Klassen geben. Wenn geeignete
Interface-Typen existieren, sollten Sie Parameter, Riickgabewerte, Variablen und
Felder alle mit Interface-Typen deklarieren. Nur bei der Objekterzeugung miissen Sie
wirklich auf die Klasse des Objekts Bezug nehmen. Um dies zu konkretisieren, zeige
ich Thnen Vector, eine Implementierung des List-Interfaces. Bitte machen Sie sich Fol-
gendes zur Gewohnheit:

// Gut - Interface wird als Typ verwendet
List subscribers = new Vector();

Schreiben Sie nie Folgendes:

// Schlecht - Klasse wird als Typ verwendet!
Vector subscribers = new Vector();

Wenn Sie sich angewohnen, Interfaces als Typen zu verwenden, dann wird Ihr Pro-
gramm viel flexibler. Wenn Sie beschliefsen, die Implementierung zu wechseln, dann
brauchen Sie nur den Klassennamen im Konstruktor zu @ndern (oder eine andere stati-
sche Factory zu verwenden). Die erste Deklaration konnte z.B. wie folgt umgeéndert
werden:

List subscribers = new ArraylList();

Aller umgebender Code wiirde dann immer noch laufen. Der umgebende Code kannte
den alten Implementierungstyp iiberhaupt nicht, daher ist ihm auch die Anderung
egal.

Da gibt es nur eine Schwierigkeit: Wenn die Originalimplementierung eine Spezial-
funktionalitdt hatte, die vom allgemeinen Vertrag des Interfaces nicht gefordert wird,
und der Code sich auf diese Funktionalitat stiitzte, dann ist es wichtig, dass auch die

Thema 34: Referenzieren Sie Objekte iiber ihre Interfaces 161

neue Implementierung sie zur Verfiigung stellt. Wenn sich z.B. der Code rund um die
erste Deklaration auf die Tatsache stiitzen wiirde, dass Vector synchronisiert ist, dann
wire es verkehrt, Vector in der Deklaration gegen ArrayList auszutauschen.

Warum sollten Sie die Implementierung wechseln wollen? Deshalb, weil die neue
Implementierung eine bessere Leistung hat oder eine wiinschenswerte Zusatzfunktio-
nalitdt bietet. Dafiir gibt es aus der realen Welt ein Beispiel mit der Klasse ThreadLocal.
Intern verwendet diese Klasse in Thread ein paketprivates Map-Feld, um Thread-spezifi-
sche Werte mit ThreadLocal-Instanzen zu assoziieren. Im Release 1.3 wurde dieses Feld
mit einer HashMap-Instanz initialisiert. Im Release 1.4 erhielt die Plattform eine neue,
spezielle Map-Implementierung namens IdentityHashMap. Wenn man eine einzige Code-
Zeile so abanderte, dass das Feld mit einer IdentityHashMap statt einer HashMap initiali-
siert wurde, dann wurde ThreadlLocal schneller.

Wire das Feld nicht als Map, sondern als HashMap deklariert worden, so wére nicht garan-
tiert, dass die Anderung einer einzelnen Codezeile schon ausreicht. Hatte der Client-
Code HashMap-Operationen auflerhalb des Map-Interfaces verwendet oder die Map einer
Methode tibergeben, die HashMap benotigt, so liele er sich nicht mehr kompilieren,
wenn das Feld in eine IdentityHashMap umgewandelt wiirde. Wenn Sie das Feld mit
dem Interface-Typ deklarieren, bleiben Sie »sauber«.

Es ist vollig in Ordnung, ein Objekt iiber eine Klasse statt ein Interface zu referen-
zieren, wenn kein geeignetes Interface existiert. Nehmen Sie z.B. die Wertklassen wie
String und BigInteger. Wer solche Klassen schreibt, hat normalerweise nicht mehrere
Implementierungen im Kopf. Oft sind sie final und selten gibt es entsprechende Inter-
faces fiir sie. Es ist vollig angemessen, eine Wertklasse als Parameter, Variable, Feld
oder Riickgabetyp zu verwenden. Allgemeiner ausgedriickt: Wenn es zu einer konkre-
ten Klasse kein Interface gibt, dann haben Sie gar keine andere Wahl, als sie tiber ihre
Klasse zu referenzieren, egal ob diese einen Wert reprasentiert oder nicht.

Ein zweiter Fall, in dem Sie keinen geeigneten Interface-Typ haben, tritt dann ein,
wenn Objekte zu einer Architektur gehoren, deren elementare Typen Klassen sind und
keine Interfaces. Wenn ein Objekt zu einer solchen Klassenarchitektur gehort, dann sollte
es besser iiber seine — normalerweise abstrakte — Basisklasse referenziert werden, statt
iiber seine Implementierungsklasse. In diese Kategorie féllt z.B. die Klasse java.util.
TimerTask.

Ein letzter Fall, in dem Sie keinen geeigneten Interface-Typ haben, sind Klassen, die
zwar ein Interface implementieren, aber zusétzliche Methoden zur Verfiigung stellen,
die das Interface nicht hat. Dazu gehort z.B. LinkedList. Eine solche Klasse sollte nur
dann zum Referenzieren ihrer Instanzen dienen, wenn sich das Programm auf die
zusétzlichen Methoden stiitzt; sie sollte jedoch nie als Parametertyp genutzt werden
(Thema 25).

162 7 Aligemeine Programmierung

Diese Fille sollen keine umfassende Darstellung sein, sondern nur ein Gefiihl dafiir
vermitteln, in welchen Situationen Sie ein Objekt auch iiber seine Klasse referenzieren
koénnen. In der Praxis ist meist offensichtlich, ob ein gegebenes Objekt ein geeignetes
Interface hat. Ist dies der Fall, so wird Ihr Programm flexibler, wenn Sie das Objekt
uber sein Interface referenzieren; anderenfalls nehmen Sie einfach aus der Klassenhier-
archie die hochste Klasse, die die erforderliche Funktionalitit hat.

7.7 Thema 35: Nutzen Sie eher Interfaces als Reflection

Die Reflection aus java.lang.reflect gibt programmgesteuert Zugriff auf Informa-
tionen {iber geladene Klassen. Wenn Sie eine C1ass-Instanz haben, kénnen Sie Construc-
tor-, Method- und Field-Instanzen erhalten, die die Konstruktoren, Methoden und
Felder der von der Class-Instanz reprdsentierten Klasse darstellen. Diese Objekte
geben programmgesteuerten Zugriff auf die Attributnamen, Feldtypen, Methoden-
signaturen usw. der Klasse.

Auflerdem konnen Sie mit Constructor-, Method- und Field-Instanzen mit deren
zugrunde liegenden Gegenstiicken reflektiv arbeiten: Sie kénnen mit der zugrunde lie-
genden Klasse Instanzen erzeugen, Methoden aufrufen und auf Felder zugreifen,
indem Sie Methoden auf den Constructor-, Method- und Field-Instanzen aufrufen. So
konnen Sie z.B. mit Method. invoke jede beliebige Methode auf jedem beliebigen Objekt
jeder beliebigen Klasse aufrufen (natiirlich im Rahmen der {iblichen Sicherheits-
beschrankungen). Mit Reflection kann eine Klasse die andere benutzen. Das gilt auch
dann, wenn die zweite Klasse zu dem Zeitpunkt, an dem die erste kompiliert wurde,
noch gar nicht existierte. Doch das hat auch seinen Preis:

Sie biiflen alle Vorteile der Typpriifung zur Kompilierungszeit ein, einschliefslich
der Ausnahmenpriifung. Wenn ein Programm versucht, eine nicht vorhandene
oder nicht zugreifbare Methode reflektiv aufzurufen, stiirzte es, falls Sie keine Vor-
kehrungen getroffen haben, zur Laufzeit ab.

Der Code, mit dem Sie reflektiven Zugriff geben, ist schwerfillig und wortreich.
Er ist schwer zu schreiben und zu lesen.

Die Leistung wird schlechter. Im Release 1.3 dauerte ein reflektiver Methodenauf-
ruf auf meinem Computer 40 Mal so lange wie ein normaler. Im Release 1.4 erhielt
die Reflection eine neue Architektur und lduft nun viel schneller, ist aber immer
noch doppelt so langsam wie ein normaler Zugriff, und dabei wird es vermutlich
auch bleiben.

Die Reflection war urspriinglich fiir Komponenten-basierte Application-Builder-Tools
gedacht. Solche Tools laden Klassen nach Bedarf und finden mittels Reflection heraus,
welche Methoden und Konstruktoren diese Klassen unterstiitzen. Die Tools erlauben

Thema 35: Nutzen Sie eher Interfaces als Reflection 163

es den Benutzern, interaktiv Applikationen zu erstellen, die auf diese Klassen zugrei-
fen, aber die generierten Applikationen greifen auf die Klassen normal zu und nicht
reflektiv. Die Reflection wird nur zur Entwurfszeit eingesetzt. Hier gilt die Regel: Grei-
fen Sie nie in normalen Applikationen zur Laufzeit reflektiv auf Objekte zu.

Manche fortgeschrittenen Applikationen erfordern den Einsatz von Reflection. Bei-
spiele dafiir sind Klassen-Browser, Objekt-Inspektoren, Code-Analyse-Tools und inter-
pretative, eingebettete Systeme. Auflerdem eignet sich Reflection fiir RPC-Systeme,
damit die Notwendigkeit fiir Stub-Compiler wegféllt. Wenn Sie nicht genau wissen, ob
Ihre Applikationen in eine dieser Kategorien gehort, dann tut sie dies vermutlich nicht.

Sie konnen mit wenig Aufwand viele Vorteile der Reflection geniefSen, wenn Sie sie
nur in sehr eingeschrinkter Form verwenden. Fiir viele Programme, die eine Klasse
nutzen miissen, die zur Kompilierungszeit noch nicht zur Verfiigung steht, gibt es zur
Kompilierungszeit ein geeignetes Interface oder eine Oberklasse, um auf die betref-
fende Klasse referenzieren zu kénnen (Thema 34). Wenn dies der Fall ist, konnen Sie
Instanzen reflektiv erzeugen und normal iiber ihr Interface oder ihre Oberklasse
auf sie zugreifen. Wenn der entsprechende Konstruktor keine Parameter hat, was
normalerweise der Fall ist, dann brauchen Sie noch nicht einmal das Paket
java.lang.reflect zu benutzen: Die Methode Class.newInstance liefert Ihnen die beno-
tigte Funktionalitét.

Als Beispiel sehen Sie hier ein Programm, das eine Instanz von Set erzeugt, deren
Klasse durch das erste Kommandozeilenargument spezifiziert ist. Das Programm fiigt
die restlichen Kommandozeilenargumente in die Menge ein und gibt diese Menge aus.
Unabhéngig vom ersten Argument gibt es die restlichen Argumente ohne Doppelnen-
nungen aus. Die Reihenfolge hingt von der im ersten Argument angegebenen Klasse
ab. Wenn Sie »java.util.HashSet,« angeben, werden sie offensichtlich in Zufallsreihen-
folge ausgegeben; wenn Sie jedoch »java.util.TreeSet,« angeben, dann erscheinen die
Argumente in alphabetischer Reihenfolge, denn die Elemente eines TreeSet sind sor-
tiert:

// Reflektive Instanziierung mit Zugriff lber Interface
public static void main(Stringl] args) {

// Ubersetze Klassennamen in Klassenobjekt

Class cl = null;

try {
cl = Class.forName(args[0]);

} catch(ClassNotFoundException e) f{
System.err.printin("Klasse nicht gefunden.");
System.exit(1l);

}

// Instanziiere die Klasse
Set s = null;
try |

164 7 Aligemeine Programmierung

s = (Set) cl.newlnstance();

} catch(I1legalAccessException e) {
System.err.printin("Kein Zugriff auf die Klasse.");
System.exit(1l);

} catch(InstantiationException e) f{
System.err.printin("Klasse nicht instanziierbar.");
System.exit(1l);

}

// Gib die Menge aus
s.addA1T(Arrays.asList(args).sublList(1l, args.length-1));
System.out.printin(s);

}

Dies hier ist zwar nur ein Spielzeugprogramm, aber die demonstrierte Technik ist sehr
maéchtig. Sie konnen das Spielzeugprogramm problemlos in einen generischen Men-
gentester verwandeln, der die angegebene Set-Implementierung validiert, indem er
aggressiv eine oder mehrere Instanzen manipuliert und sich vergewissert, dass sie
auch dem Set-Vertrag geniigen. Ebenso gut koénnen Sie aus diesem Programm ein
generisches Set-Performance-Analyse-Tool machen. Die hier gezeigte Technik ist sogar
so wirkungsvoll, dass Sie damit ein voll funktionstaugliches Service Provider Framework
implementieren kénnen (Thema 1). Im Allgemeinen ist diese Technik das einzige, was
Sie fiir Reflection brauchen.

Im ersten Beispiel sehen Sie zwei Nachteile der Reflection aus dem Beispielprogramm.
Erstens kann das Beispiel drei Laufzeitfehler auslosen, die alle statische Fehler waren,
wenn keine reflektive Instanziierung verwendet wiirde. Zweitens braucht es zwanzig
lange Codezeilen, eine Instanz der Klasse von ihrem Namen aus zu generieren, wohin-
gegen ein Konstruktoraufruf bequem in eine einzige Zeile passt. Diese Nachteile
beschranken sich jedoch auf den Teil des Programms, der das Objekt instanziiert.
Sobald es instanziiert ist, ist es nicht mehr von einer beliebigen anderen Set-Instanz zu
unterscheiden. In einem echten Programm bliebe der Grofiteil des Codes also von die-
ser eingeschréankten Nutzung der Reflection unberiihrt.

Eine legitime — wenn auch seltene — Verwendung der Reflection besteht darin, die
Abhéngigkeiten einer Klasse von anderen Klassen, Methoden oder Feldern zu durch-
brechen, die zur Laufzeit womoglich fehlen. Das kann niitzlich sein, wenn Sie ein
Paket schreiben, das mit mehreren Versionen eines anderen Pakets funktionieren muss.
Das Verfahren besteht darin, dass Sie Thr Paket mit der Minimalumgebung kompilie-
ren, in der es gerade noch funktioniert. Das ist normalerweise die <este Version. Auf
neuere Klassen oder Methoden greifen Sie dann reflektiv zu. Damit dies funktioniert,
miissen Sie Vorkehrungen treffen, wenn Sie auf neuere Klassen oder Methoden zugrei-
fen mochten, die zur Laufzeit fehlen. Solche Mafinahmen konnten darin bestehen, das-
selbe Ziel mit anderen Mitteln zu erreichen oder mit eingeschrankter Funktionalitdt zu
arbeiten.

Thema 36: Verwenden Sie native Methoden mit Vorsicht 165

Insgesamt ist Reflection eine méchtige Fahigkeit, die Sie fiir bestimmte, hochqualifi-
zierte Aufgaben der Systemprogrammierung benétigen, die aber auch viele Nachteile
hat. Wenn Sie ein Programm schreiben, das mit Klassen arbeiten muss, die zur Kompi-
lierungszeit noch unbekannt sind, dann sollten Sie Reflection nach Méglichkeit nur
zum Instanziieren der Objekte benutzen. Den Zugriff auf diese Objekte geben Sie {iber
ein Interface oder eine Oberklasse, die zur Kompilierungszeit bekannt ist.

7.8 Thema 36: Verwenden Sie native Methoden mit Vorsicht

Mit dem Java Native Interface (JNI) konnen Java-Applikationen native Methoden aufru-
fen. Das sind spezielle Methoden, die in nativen Programmiersprachen wie etwa C oder
C++ geschrieben wurden. Native Methoden kénnen beliebige Berechnungen in nati-
ven Sprachen ausfiihren und dann zu Java zuriickkehren.

Historisch gesehen hatten native Methoden drei Haupteinsatzbereiche: Sie gaben
Zugriff auf plattformspezifische Sachen wie Registrys und Dateisperren. Sie gaben
Zugriff auf Bibliotheken mit altem Code, der wiederum Zugriff auf alte Daten gab.
Und sie dienten dazu, leistungskritische Teile der Applikation in nativen Sprachen zu
schreiben, damit sie schneller lief.

Es ist zuldssig, mit nativen Methoden Zugriff auf plattformspezifische Elemente zu
geben, aber in dem Mafe, wie die Java-Plattform immer ausgereifter wird, stellt auch
sie mehr und mehr Funktionen bereit, die frither nur auf Host-Plattformen zu finden
waren. So bietet z.B. das im Release 1.4 hinzugekommene Paket java.util.prefs die
Funktionalitit einer Registry. Es ist auch legitim, auf alten Code tiber native Methoden
zuzugreifen, aber dafiir gibt es auch bessere Mittel. So bietet z.B. das JDBC-API Zugriff
auf alte Datenbanken.

Seit dem Release 1.3 ist es kaum noch zu empfehlen, mit nativen Methoden bessere
Leistung anzustreben. In fritheren Releases mag dies oft notwendig gewesen sein,
aber die JVM-Implementierungen sind heute viel schneller. Die meisten Aufgaben
konnen Sie nun fast ebenso schnell auch ohne native Methoden 16sen. Ein Beispiel: Als
im Release 1.1 java.math hinzukam, baute die Implementierung von BigInteger auf
einer schnellen, in C geschriebenen Bibliothek fiir arithmetische Berechnungen mit
mehrfacher Genauigkeit auf. Damals war das aus Leistungsgriinden noch notwendig.
Doch im Release 1.3 war BigInteger komplett neu in Java geschrieben und sorgfiltig
getunt. Die neue Version ist bei den meisten Operationen und Operandengrofien auf
den Sun-Implementierungen der 1.3-JVM schneller als das Original.

Der Einsatz nativer Methoden hat ernste Nachteile. Da native Sprachen nicht sicher
sind (Thema 24), sind Applikationen mit nativen Methoden nicht mehr gegen Spei-
cherkorruptionsfehler gefeit. Da native Methoden plattformabhéngig sind, sind solche
Applikationen auch nicht mehr frei portierbar. Nativen Code miissen Sie fiir jede Ziel-

166 7 Aligemeine Programmierung

plattform neu kompilieren und eventuell auch umschreiben. Da das Eintreten in und
Austreten aus nativem Code unveranderlich hohen Aufwand bedeutet, konnen native
Methoden die Leistung sogar verschlechtern, wenn sie nur kleinere Arbeiten ausfiihren.
Und iiberdies sind sie auch noch schwer zu schreiben und zu lesen.

Fazit: Denken Sie besser zweimal nach, ehe Sie native Methoden einsetzen. Verwenden
Sie sie selten oder gar nicht zur Leistungssteigerung. Wenn Sie native Methoden fiir
den Zugriff auf Ressourcen oder alte Bibliotheken nehmen miissen, sollten Sie nur ein
Minimum an nativem Code verwenden und diesen griindlich testen. Ein einziger Feh-
ler im nativen Code kann Ihre ganze Applikation kaputt machen.

7.9 Thema 37: Optimieren Sie nur mit Vorsicht

Uber Optimierung gibt es drei Aphorismen, die jeder kennen sollte. Vielleicht sind
diese Spriiche schon tiberbeansprucht, aber falls Sie sie doch noch nicht kennen, gebe
ich sie hier wieder:

Im Namen der Effizienz (und ohne sie wirklich zu erreichen) werden mehr Programmier-
siinden begangen als aus jedem anderen Grund — Dummbheit eingeschlossen.

William A. Wulf [Wulf 1972]

In 97 Prozent der Fille konnen Sie kleine Effizienzerwigungen vergessen: Verfriihte Opti-
mierungsanstrengungen sind die Wurzel allen Ubels.

Donald E. Knuth [Knuth 1974]

In Fragen der Optimierung gibt es zwei Regeln:
Regel Nummer 1: Tun Sie es nicht.

Regel Nummer 2 (nur fiir Profis): Tun Sie es noch nicht — zumindest so lange, bis Sie eine
vollig klare, unoptimierte Losung haben.

M. A. Jackson [Jackson 1975]

Alle diese Spriiche entstanden zwanzig Jahre vor Java. Sie vermitteln eine tiefe Wahr-
heit tiber Optimierung: Oft schadet sie mehr als sie nutzt, vor allem, wenn Sie zu friih
darangehen. Dann erstellen Sie vielleicht Software, die weder schnell noch korrekt und
auflerdem auch noch schwer zu reparieren ist.

Verzichten Sie nicht aus Leistungsgriinden auf solide Architekturprinzipien. Versu-
chen Sie, Thre Programme lieber gut als schnell zu machen. Wenn ein gutes Pro-
gramm zu langsam lauft, dann gestattet seine Architektur, es zu optimieren. Gute
Programme verbergen Informationen: Wenn moglich stecken sie Entwurfsentscheidun-
gen in einzelne Module, damit einzelne Entscheidungen spéter noch revidiert werden
kénnen, ohne den Rest des Systems zu tangieren (Thema 32).

Thema 37: Optimieren Sie nur mit Vorsicht 167

Das bedeutet nicht, dass Sie die Leistung ganz ignorieren kénnen, bis Ihr Programm
vollstandig ist. Implementierungsprobleme kénnen Sie durch spétere Optimierungen
noch beheben, aber durchgéngige Fehler in der Architektur, die die Leistung beein-
trachtigen, sind spater kaum noch zu bereinigen, ohne das System neu zu schreiben.
Wenn Sie im Nachhinein eine tragende Saule Ihres Entwurfs dndern, dann erhalten Sie
eventuell ein schlecht strukturiertes System, das schwer zu warten und weiterzuent-
wickeln ist. Daher sollten Sie sich schon beim Entwurf tiber die Leistung Gedanken
machen.

Vermeiden Sie Entwurfsentscheidungen, die die Leistung beschrianken. Die Teile
eines Entwurfs, die nachtrdglich am schwersten zu dndern sind, sind die, die Interak-
tionen zwischen Modulen und mit der Auflenwelt spezifizieren. Dies sind zuallererst
APIs, Ubertragungsprotokolle und persistente Datenformate. Diese Entwurfsbestand-
teile sind nicht nur nachtraglich schwer zu dndern, sondern schranken unter Umstan-
den auch die Leistung stark ein, die das System spéter maximal erreichen kann.

Beriicksichtigen Sie, welche Folgen Ihre API-Entwurfsentscheidungen fiir die Leis-
tung haben. Einen o6ffentlichen Typ verdnderlich zu machen kann eine Menge iiber-
fliissiges defensives Kopieren notwendig machen (Thema 24). Und wenn Sie in einer
offentlichen Klasse Vererbung nutzen, wo Komposition besser geeignet wire, dann
bleibt die Klasse fiir immer an ihre Oberklasse gebunden, was der Leistung der Unter-
Kklasse kiinstliche Einschrankungen auferlegt (Thema 14). Ein letztes Beispiel: Wenn Sie
in einem API statt eines Interfaces einen Implementierungstyp verwenden, sind Sie an
eine spezielle Implementierung auch dann gebunden, wenn in Zukunft schnellere
Implementierungen auf den Markt kommen (Thema 34).

Die Auswirkungen des API-Entwurfs auf die Leistung sind &duflerst real. Nehmen Sie
z.B. die getSize-Methode der Klasse java.awt.Component. Wenn Sie entscheiden, dass
diese leistungskritische Methode eine Dimension-Instanz zuriickgeben soll und dass
Dimension-Instanzen verdnderlich sein sollen, dann muss jede Implementierung dieser
Methode bei jedem Aufruf eine neue Dimension-Instanz allozieren. Obwohl es seit
Release 1.3 relativ wenig aufwiandig ist, kleine Objekte zuzuweisen, kann doch eine
iberfliissige Zuweisung von Millionen von Objekten die Leistung wirklich beeintrach-
tigen.

In diesem Fall gab es mehrere Alternativen. Im Idealfall sollte Dimension unveréander-
lich sein (Thema 13). Alternativ kénnte auch die getSize-Methode durch zwei Metho-
den ersetzt werden, die die einzelnen Grundbestandteile eines Dimension-Objekts
zurtickgeben. Tatsdchlich wurden dem Component-API mit dem Release 1.2 aus Leis-
tungsgriinden zwei solche Methoden hinzugefiigt. Alterer Client-Code verwendet
allerdings immer noch die getSize-Methode und leidet unter den Folgen, die die
urspriinglichen API-Entwurfsentscheidungen fiir die Leistung haben.

168 7 Aligemeine Programmierung

Zum Gliick gehen in der Regel gute API-Entwurfsentscheidungen und gute Leistung
Hand in Hand. Sie sollten niemals ein API verbiegen, um mehr Leistung zu erhal-
ten. Das ursdchliche Leistungsproblem wird vielleicht in einem spéteren Plattform-
Release oder in einer anderen zugrunde liegenden Software in Zukunft behoben, aber
das entstellte API und die Frage, wie Sie es nun richtig unterstiitzen, bereiten Thnen fiir
den Rest Ihres Lebens Kopfschmerzen.

Wenn Sie Ihr Programm sorgfiltig aufgebaut und eine klare, knappe und wohlstruktu-
rierte Implementierung dafiir hergestellt haben, dann ist vielleicht der richtige Zeit-
punkt, iiber eine Optimierung nachzudenken, falls Sie nun noch nicht mit der Leistung
des Programms zufrieden sind. Erinnern Sie sich, dass Jacksons Optimierungsregeln
lauteten: »Tun Sie es nicht.« und »(Nur fiir Profis): Tun Sie es noch nicht.« Er hitte noch
eine dritte Regel hinzuftigen kénnen: Messen Sie vor und nach jedem Optimierungs-
versuch die Leistung.

Vielleicht wird es Sie iiberraschen, was Sie dabei feststellen. Oft haben Optimierungs-
versuche keine messbaren Auswirkungen auf die Leistung, und manchmal wird die
Leistung sogar schlechter. Der Hauptgrund dafiir ist, dass Sie nur schwer einschétzen
konnen, womit Thr Programm am meisten Zeit verbringt. Der Teil des Programms, den
Sie fiir langsam halten, ist vielleicht gar nicht der Ubeltiter. In diesem Fall verschwen-
den Sie Ihre Zeit mit dem Versuch, ihn zu optimieren. Es ist bekannt, dass Programme
80 Prozent ihrer Zeit in 20 Prozent ihres Codes verbringen.

Profiling-Tools kénnen Ihnen die Entscheidung erleichtern, worauf Sie Ihre Optimie-
rungsbemiithungen konzentrieren sollten. Solche Tools geben Ihnen Laufzeitinformati-
onen dariiber, wie viel Zeit jede Methode ungefahr braucht und wie oft sie aufgerufen
wird. Dies hilft Ihnen nicht nur, Ihre Tuning-Anstrengungen zu konzentrieren, sondern
warnt Sie auch, wenn ein Algorithmus umgeschrieben werden sollte. Wenn in Ihrem
Programm ein quadratischer (oder schlimmerer) Algorithmus lauert, kann auch kein
noch so gutes Tuning das Problem beheben. Sie miissen den Algorithmus gegen einen
effizienteren austauschen. Je mehr Code das System hat, umso wichtiger wird ein Pro-
filierungswerkzeug. Es ist, als suchten Sie eine Nadel im Heuhaufen: Je grofier der
Heuhaufen, desto wichtiger ist der Metalldetektor. Das Java 2-SDK wird mit einem ein-
fachen Profilierungswerkzeug geliefert, und mehrere weitere, ausgefeiltere Profiling-
Tools sind kéuflich zu erwerben.

Auf der Java-Plattform ist es sogar noch nétiger als auf traditionelleren Plattformen,
die Auswirkungen einer Optimierung zu messen, da Java kein starkes Performance-
Modell besitzt. Die relativen Kosten der diversen Grundoperationen sind nicht klar
definiert. Die »semantische Kluft« zwischen dem, was der Programmierer schreibt,
und dem, was die CPU ausfiihrt, ist weit grofier als in traditionellen kompilierten
Sprachen. Dadurch ldsst sich der Einfluss einer Optimierung auf die Leistung kaum
zuverldssig voraussagen. Uber die Leistung kursieren haufenweise Geschichten, die
sich als Halbwahrheiten oder schlichte Liigen erweisen.

Thema 38: Halten Sie sich an die allgemein anerkannten Namenskonventionen 169

Das Performance-Modell ist nicht nur schlecht definiert, sondern es andert sich auch mit
jeder JVM-Implementierung und jedem Release. Wenn Sie ein Programm auf mehreren
JVM-Implementierungen ausfithren mochten, ist es wichtig, auf jeder auch die Auswir-
kungen Ihrer Optimierung zu messen. Gelegentlich miissen Sie hinsichtlich der Leis-
tung auf unterschiedlichen JVM-Implementierungen auch Kompromisse schlieflen.

Fazit: Versuchen Sie nicht, schnelle Programme zu schreiben: Versuchen Sie, gute zu
schreiben. Die Schnelligkeit kommt schon noch. Machen Sie sich beim Systementwurf
Gedanken {iber die Leistung, vor allem, wenn Sie APIs, Ubertragungsprotokolle und
Formate fiir persistente Daten entwerfen. Wenn das System fertig ist, messen Sie seine
Leistung. Ist es schnell genug, so sind Sie fertig. Wenn nicht, dann sollten Sie mit einem
Profilierungswerkzeug die Problemquelle ausfindig machen und nur die relevanten
Systemteile optimieren. Als erstes sollten Sie jedoch die Wahl Ihrer Algorithmen hin-
terfragen: Keine Optimierung kann einen schlechten Algorithmus ausbiigeln. Wieder-
holen Sie diesen Prozess wenn notig und messen Sie nach jeder Anderung die Leistung
erneut, bis Sie zufrieden sind.

7.10 Thema 38: Halten Sie sich an die allgemein anerkannten
Namenskonventionen

Die Java-Plattform hat gut eingefiihrte Namenskonventionen, die zum Grofiteil in The
Java Language Specification [JLS, 6.8] stehen. Vereinfacht ausgedriickt gibt es zwei Arten
von Namenskonventionen: typografische und grammatische.

Es gibt nur wenige typografische Namenskonventionen, ndmlich fiir Pakete, Klassen,
Interfaces, Methoden und Felder. Sie sollten sich an diese Konventionen halten, sofern
keine sehr guten Griinde dagegen sprechen. Wenn ein API gegen diese Konventionen
verstofit, dann ist es nur noch schwer benutzbar, und wenn eine Implementierung dies
tut, dann wird sie wartungsunfreundlich. In beiden Féllen konnen solche Verstofse
andere Programmierer verwirren und verdrgern, die mit dem Code arbeiten, und sie
konnen Irrtiimer begriinden, die wiederum zu Fehlern fiihren. Die Konventionen wer-
den in diesem Thema zusammengefasst.

Paketnamen sollten hierarchisch aufgebaut und ihre Teile durch Punkte getrennt sein.
Die Teile sollten aus Kleinbuchstaben und in seltenen Fillen auch aus Ziffern bestehen.
Der Name jedes Pakets, das aufierhalb Ihrer Organisation genutzt werden soll, sollte
mit dem Domainnamen Ihrer Organisation beginnen, wobei zuerst die Toplevel-
Domain kommt. Beispiele sind edu.cmu, com.sun und gov.nsa. Die Standardbibliotheken
und optionalen Pakete, deren Namen mit java und javax beginnen, bilden Ausnahmen
von dieser Regel. Benutzer diirfen keine Pakete erstellen, deren Namen mit java oder
Jjavax beginnen. Detaillierte Regeln fiir die Konvertierung von Internet-Domainnamen
in Paketnamenpriéfixe finden Sie in The Java Language Specification [JLS, 7.7].

170 7 Aligemeine Programmierung

Der Rest eines Paketnamens sollte aus einem oder mehreren Teilen bestehen, die das
Paket beschreiben. Diese Teile sollten kurz sein, also allgemein nicht mehr als acht
Zeichen haben. Bitte verwenden Sie bedeutungsvolle Abkiirzungen, also eher util als
utilities. Akronyme wie z.B. awt sind auch akzeptabel. Generell sollte ein Teil aus
einem einzelnen Wort oder einer Abkiirzung bestehen.

In vielen Paketnamen wurde dem Internet-Domainnamen nur ein einziger Teil hinzu-
gefligt. Zusitzliche Teile eignen sich fiir grofSe Pakete, deren Umfang eine informelle
Hierarchie erfordert. So hat z.B. das Paket javax.swing eine umfangreiche Hierarchie
von Paketnamen wie z.B. javax.swing.plaf.metal. Solche Pakete werden oft auch als
Unterpakete bezeichnet, obwohl sie dies nur nach Konvention sind: Die Sprache unter-
stiitzt Pakethierarchien nicht.

Klassen- und Interface-Namen sollten aus einem oder mehreren Wortern bestehen,
wobei der erste Buchstabe jedes Wortes ein Grofibuchstabe ist, wie in Timer oder
TimerTask. Abkiirzungen sollten Sie vermeiden, ausgenommen Akronyme und be-
stimmte geldufige Abkiirzungen wie max oder min. Uber die Frage, ob Akronyme kom-
plett in GrofSbuchstaben oder blof8 mit einem GrofSbuchstaben am Anfang geschrieben
werden sollen, hat man sich nicht so recht einigen kdnnen. Die erste Variante ist haufi-
ger, aber auch fiir die zweite gibt es starke Griinde. Selbst wenn mehrere Akronyme
aneinandergehdngt werden, konnen Sie dann immer noch erkennen, wo ein Wort
beginnt und das andere endet. Welchen Klassennamen wiirden Sie lieber sehen: HTTPURL
oder HttpUrl?

Methoden- und Feldnamen befolgen dieselben typografischen Konventionen wie die
Namen von Klassen und Interfaces, mit der Einschrankung, dass der erste Buchstabe
eines Methoden- oder Feldnamens kleingeschrieben sein sollte wie in remove oder ensu-
reCapacity. Wenn das erste Wort eines Methoden- oder Feldnamens ein Akronym ist,
sollte es kleingeschrieben werden.

Die einzige Ausnahme von dieser Regel sind »Konstantenfelder«, deren Namen aus
einem oder mehreren grofigeschriebenen Wortern mit Unterstrichen dazwischen
bestehen sollte, wie in VALUES oder NEGATIVE_INFINITY. Ein Konstantenfeld ist ein stati-
sches finales Feld, dessen Wert unverdnderlich ist. Wenn ein statisches finales Feld
einen Grundtyp oder einen unverdnderlichen Referenztyp hat (Thema 13), dann ist es
ein Konstantenfeld. Ist sein Typ verdnderbar, so kann es immer noch ein Konstanten-
feld sein, wenn das referenzierte Objekt unverdnderlich ist. So kann z.B. eine typ-
sichere Enum ihr Universum von Aufzdhlungskonstanten in eine unverdnderliche
List-Konstante exportieren. Beachten Sie, dass Konstantenfelder die einzige Verwen-
dung von Unterstrichen darstellen, die empfehlenswert ist.

Lokale Variablen gehorchen dhnlichen typografischen Konventionen wie Attribute,
mit der Einschrankung, dass in ihnen auch Abkiirzungen, einzelne Zeichen und kurze

Thema 38: Halten Sie sich an die allgemein anerkannten Namenskonventionen 171

Zeichenfolgen zulédssig sind, deren Bedeutung von dem Kontext abhédngt, in dem die
lokale Variable auftritt. Beispiele sind 1, xref, houseNumber.

Tabelle 7.1 gibt Beispiele fiir typografische Konventionen zur schnellen Orientierung.

Bezeichnertyp Beispiele

Paket com.sun.medialib, com.sun.jdi.event

Klasse oder Interface Timer, TimerTask, KeyFactorySpi, HttpServlet
Methode oder Feld remove, ensureCapacity, getCrc
Konstantenfeld VALUES, NEGATIVE_INFINITY

Lokale Variable i, xref, houseNumber

Tabelle 7.1: Beispiele fiir typografische Konventionen

Die grammatischen Namenskonventionen sind flexibler und umstrittener als die typo-
grafischen. Es gibt keine ausgesprochenen grammatischen Namenskonventionen fiir
Pakete. Klassen werden im Allgemeinen mit einem Substantiv oder einer Nominal-
phrase benannt, z.B. Timer oder Bufferediriter. Interfaces werden wie Klassen benannt,
z.B. Collection oder Comparator, oder mit einer englischen Adjektivendung wie »-able«
oder »-ible« wie z.B. in Runnable oder Accessible.

Methoden, die eine Aktion ausfiithren, werden allgemein mit einem Verb oder einer
Verbalphrase bezeichnet, wie z.B. append oder drawImage. Methoden, die einen boolean-
Wert zuriickgeben, haben Namen, die mit dem Wort »1is« beginnen, gefolgt von einem
Substantiv, einer Nominalphrase, einem Wort oder einer Phrase, das oder die Adjektiv-
funktion hat, wie z.B. in isDigit, isProbablePrime, isEmpty, isEnabled, isRunning.

Methoden, die eine nicht-boolesche Funktion oder ein Attribut des Objektes zuriick-
geben, auf dem sie aufgerufen werden, werden in der Regel mit einem Substantiv,
einer Nominalphrase oder einer mit dem Verb »get« beginnenden Verbalphrase
bezeichnet, so z.B. in size, hashCode oder getTime. Manchmal wird behauptet, nur die
dritte (mit »get« beginnende) Form sei zuldssig, aber diese Behauptung entbehrt jegli-
cher Grundlage. Die ersten beiden Formen fiihren in der Regel zu lesbarerem Code:

if (car.speed() > 2 * SPEED_LIMIT)
generateAudibleAlert("Auf Polizei achten!");

Die mit »get« beginnende Form ist verbindlich, wenn die Klasse der betreffenden
Methode eine Bean [JavaBeans] ist, und sie ist ratsam, wenn Sie in Erwédgung ziehen,
die Klasse spater einmal in eine Bean zu verwandeln. Auflerdem spricht alles fiir diese
Form, wenn die Klasse eine Methode hat, die dasselbe Attribut mit set setzt. In diesem
Fall sollten die beiden Methoden getAttribut und setAttribut heiflen.

172 7 Aligemeine Programmierung

Einige Methodennamen verdienen eine spezielle Erwdhnung. Methoden, die den Typ
eines Objekts konvertieren und ein unabhdngiges Objekt eines anderen Typs zuriicklie-
fern, werden oft toTyp genannt, z.B. toString, toArray. Methoden, die eine View zuriickge-
ben (Thema 4), die einen anderen Typ hat als das empfangende Objekt, werden oft asTyp
genannt, z.B. asList. Methoden, die einen Grundtyp zuriickgeben, der denselben Typ
hat wie das Objekt, auf dem sie aufgerufen wurden, werden oft typValue genannt, z.B.
intValue. Haufige Namen fiir statische Factorys sind value0f und getInstance (Thema 1).

Grammatische Konventionen oder Feldnamen sind weniger fixiert und unwichtiger
als die Konventionen fiir Klassen-, Interface- und Methodennamen, denn gut entwor-
fene APIs enthalten wenn {iberhaupt nur wenige offengelegte Felder. Felder vom Typ
boolean werden in der Regel wie boolesche Zugriffsmethoden benannt, wobei nur das
»is« am Anfang wegféllt, wie z.B. in initialized oder composite. Felder mit anderen
Typen werden normalerweise mit Substantiven oder Nominalphrasen bezeichnet, wie
z.B. height, digits oder bodyStyle. Grammatische Konventionen fiir lokale Variablen
dhneln denen fiir Felder, sind aber noch schwicher.

Zusammenfassend kann ich Thnen nur dazu raten, die Standardnamenskonventionen
so zu verinnerlichen, dass sie Ihnen zur zweiten Natur werden. Die typografischen
Konventionen sind einfach und klar; die grammatischen sind komplexer und weniger
streng. In The Java Language Specification [JLS, 6.8] heifst es: »Bitte befolgen Sie diese
Konventionen nicht sklavisch, wenn die langjihrige Ubung etwas Anderes verlangen
wiirde.« Folgen Sie Threm gesunden Menschenverstand.

8 Ausnhahmen

Wenn man sie vorteilhaft einsetzt, konnen Ausnahmen die Lesbarkeit, Zuverladssigkeit
und Wartungsfreundlichkeit eines Programms verbessern. Doch bei unsachgemafiem
Gebrauch konnen sie auch das Gegenteil bewirken. In diesem Kapitel finden Sie Richt-
linien fiir den wirkungsvollen Einsatz von Ausnahmen.

8.1 Thema 39: Verwenden Sie Ausnahmen nur fur
Ausnahmebedingungen

Wenn Sie Pech haben, stolpern Sie vielleicht eines Tages iiber ein Codestiick wie dieses:

// Schrecklicher Missbrauch von Ausnahmen. Tun Sie dies nie!
try {
int 1 =0;
while(true)
ali++].f();
} catch(ArrayIndexOutOfBoundsException e) f{
1

Was macht dieser Code eigentlich? Dass man dies nicht auf den ersten Blick sieht, ist
schon Grund genug, ihn nicht zu verwenden. Bei ndherer Betrachtung ist er eine
furchtbare Fehleinschédtzung eines Idioms, das die Elemente eines Arrays durchlaufen
sollte. Die Endlosschleife endet, indem sie in dem Moment, wo sie einen Zugriff auf
ein Element aufierhalb der Array-Grenzen versucht, eine ArrayIndexOutOfBounds
Exception auslost, abfangt und dann ignoriert. Sie soll eine Entsprechung des fiir jeden
Programmierer sofort erkennbaren Standardidioms sein, mit dem ein Array durchlau-
fen wird:

for (int i = 0; i < a.length; i++)
alil.f();

Doch warum sollte irgendjemand das Idiom mit der Ausnahme dem bewé&hrten Idiom
vorziehen? Dies ist ein missgliickter Versuch, die Leistung zu steigern. Er beruht auf
der falschlichen Annahme, dass der normale Schleifenende-Test (i < a.length) tiber-
fliissig ist, da die VM bereits die Grenzen aller Array-Zugriffe priift. Diese Uberlegung
ist aber aus drei Griinden falsch:

174 8 Ausnahmen

Da Ausnahmen fiir Ausnahmebedingungen da sind, versuchen wenn iiberhaupt
nur wenige JVM-Implementierungen, ihre Leistung zu optimieren. Im Allgemeinen
ist es aufwidndig, eine Ausnahme zu erzeugen, auszuldésen und abzufangen.

Wenn Sie Code in einen try-catch-Block setzen, vereiteln Sie damit bestimmte Opti-
mierungen, die sonst von modernen JVM-Implementierungen geleistet werden.

Das Standardidiom zum Durchlaufen eines Arrays fiihrt nicht unbedingt zu iiber-
fliissigen Uberpriifungen: In manchen modernen JVM-Implementierungen werden
solche Priifungen durch Optimierung ausgeschaltet.

Tatsdchlich lauft das Idiom mit der Ausnahme auf allen JVM-Implementierungen viel
langsamer als das standardméflige. Auf meinem Computer brauchte es bei einer
Schleife von 0 bis 100 siebzig Mal langer als das Standardidiom.

Das Schleifenidiom mit der Ausnahme verschleiert nicht nur den eigentlichen Zweck
des Codes und macht ihn langsamer: Es gibt auch keine Garantie, dass es immer lauft.
Wenn in einem anderen Programmteil ein Fehler ist, kann das Idiom still und heimlich
versagen und diesen Fehler maskieren, was das Debugging sehr kompliziert macht.
Angenommen, die Berechnung im Schleifenrumpf enthilt einen Fehler, der zu einem,
die Array-Grenzen {iiberschreitenden Zugriff bei einem ganz anderen Array fiihrt.
Wenn Sie ein verniinftiges Schleifenidiom verwenden, dann wiirde der Fehler eine
nicht-abgefangene Ausnahme auslosen, die den Thread sofort mit der entsprechenden
Fehlermeldung abbrechen ldsst. Wenn Sie jedoch dieses {ible Schleifenidiom mit der
Ausnahme verwenden, dann wiirde die fehlerbedingte Ausnahme abgefangen und als
normales Schleifenende fehlinterpretiert.

Die Moral von der Geschicht’: Wie der Name schon sagt, sind Ausnahmen nur fiir
Ausnahmebedingungen da. Sie sollten nie fiir den normalen Kontrollfluss einge-
setzt werden. Noch allgemeiner gesagt: Geben Sie standardmafSigen, leicht erkenn-
baren Idiomen den Vorzug vor oberschlauen Idiomen, die angeblich schneller laufen.
Selbst wenn das stimmt, dann bleibt es vielleicht bei den standigen Verbesserungen an
den JVM-Implementierungen nicht dabei. Doch die subtilen Fehler und Wartungspro-
bleme durch oberschlaue Idiome bleiben Ihnen mit Sicherheit erhalten.

Dieses Prinzip hat auch Konsequenzen fiir den API-Entwurf. Ein gut entworfenes API
darf seinen Client nicht zwingen, fiir den normalen Kontrollfluss Ausnahmen zu
verwenden. Eine Klasse mit einer »zustandsabhédngigen« Methode, die unter bestimm-
ten, unvorhersehbaren Umstdnden aufgerufen werden kann, sollte generell eine sepa-
rate »Zustandstestmethode« haben, die anzeigt, ob ein Aufruf der ersten Methode
angebracht ist. So hat z.B. die Klasse Iterator die zustandsabhdngige Methode next, die
das ndchste Element der Iteration zuriickgibt, und die entsprechende Zustandstest-
methode hasNext. Dadurch kann das Standardidiom {iber eine Sammlung iterieren:

Thema 39: Verwenden Sie Ausnahmen nur fiir Ausnahmebedingungen 175

for (Iterator i = collection.iterator(); i.hasNext();) |
Foo foo = (Foo) i.next();

}

Wenn Iterator keine hasNext-Methode hétte, miisste der Client Folgendes tun:

// Verwenden Sie nie dieses scheuBliche Idiom zum Durchlaufen
// einer Sammlung!
try {
Iterator i = collection.iterator();
while(true) f{
Foo foo = (Foo) i.next();

}
} catch (NoSuchElementException e) {
}

Nach dem Beispiel fiir eine Iteration iiber ein Array am Anfang dieses Themas diirfte
Ihnen dies bekannt vorkommen. Das Idiom mit der Ausnahme ist nicht nur lang und
irrefithrend, sondern wahrscheinlich auch noch wesentlich langsamer als das Standard-
idiom und aufierdem kann es Fehler in anderen Systemteilen maskieren.

Eine Alternative zu einer separaten Zustandstestmethode ist eine zustandsabhéngige
Methode, die einen Spezialwert wie etwa null zuriickgibt, wenn sie auf einem Objekt
aufgerufen ist, das den falschen Zustand hat. Diese Technik wiirde sich z.B. fiir Iterator
eignen, da nu11 fiir die Methode next ein zuldssiger Riickgabewert ist.

Im Folgenden sehen Sie einige Richtlinien fiir die Wahl zwischen einer Zustandstest-
methode und einem Spezialriickgabewert. Wenn Sie auf ein Objekt nebenldufig ohne
externe Synchronisierung zugreifen mochten oder das betreffende Objekt von auflen
herbeigefiihrte Zustandsdanderungen erfahrt, dann kann es sehr wichtig sein, einen
Spezialriickgabewert zu verwenden, da sich der Zustand des Objekts zwischen dem
Aufruf einer Zustandstestmethode und ihrer entsprechenden zustandsabhidngigen
Methode dndern kann. Leistungserwédgungen konnen fiir einen Spezialriickgabewert
sprechen, wenn eine separate Zustandstestmethode dieselbe Arbeit der zustands-
abhangigen Methode notwendigerweise noch einmal leisten miisste. Doch wenn alles
andere gleich bleibt, ist eine Zustandstestmethode etwas besser als ein Spezialriick-
gabewert: Sie ist besser lesbar und bei fehlerhafter Anwendung leichter zu entdecken
und zu korrigieren.

176 8 Ausnahmen

8.2 Thema 40: Gepriifte Ausnahmen fiir behebbare
Situationen, Laufzeitausnahmen fiir Programmierfehler

Java bietet drei Arten von Ausnahmen: gepriifte Ausnahmen, Laufzeitausnahmen und
Fehler. Unter den Programmierern herrscht manchmal Unsicherheit iiber die Frage,
wann welche Ausnahme richtig ist. Dies lasst sich zwar nicht immer klar abgrenzen,
aber es gibt einige allgemeine Regeln, die die Wahl leichter machen.

Die Hauptregel in der Frage, ob Sie eine gepriifte oder eine ungepriifte Ausnahme ver-
wenden, lautet: Verwenden Sie gepriifte Ausnahmen dann, wenn der Aufrufer gute
Chancen hat, sich wieder zu erholen. Durch das Auslosen einer gepriiften Ausnahme
zwingen Sie den Aufrufer, diese in einer catch-Klausel zu behandeln oder nach aufien
weiterzugeben. Jede gepriifte Ausnahme, die eine Methode laut ihrer Deklaration aus-
16sen kann, gibt also dem API-Benutzer einen starken Hinweis darauf, dass die mit ihr
verbundene Ausnahmebedingung eine Folge des Methodenaufrufs sein konnte.

Indem er den API-Benutzer mit einer gepriiften Ausnahme konfrontiert, gibt der API-
Designer diesem den Auftrag, die Ausnahmebedingung zu beheben. Diesen Auftrag
kann der Benutzer auch missachten, indem er die Ausnahme abfangt und ignoriert,
aber dies sollte normalerweise nicht sein (Thema 47).

Es gibt zwei Arten von ungepriiften Ausnahmen: Laufzeitausnahmen und Fehler.
Beide verhalten sich identisch: Sie sind »Throwables«, die nicht abgefangen werden
miissen und sollen. Wenn ein Programm eine ungepriifte Ausnahme oder einen Fehler
auslost, ist eine Erholung normalerweise unmdglich und eine weitere Programmaus-
fiihrung wiirde mehr schaden als niitzen. Wenn ein Programm eine solche Ausnahme
nicht abféngt, veranlasst es den aktuellen Thread, mit einer passenden Fehlermeldung
abzubrechen.

Verwenden Sie Laufzeitausnahmen, um auf Programmierfehler hinzuweisen. Die
iberwiegende Mehrheit der Laufzeitausnahmen zeigen Vorbedingungsverletzungen an.
Eine Vorbedingungsverletzung liegt dann vor, wenn der Client eines APIs den Vertrag
der API-Spezifikation nicht erfiillt. So steht z.B. im Vertrag fiir den Array-Zugriff, dass
der Array-Index zwischen null und der Array-Lange minus eins liegen muss. Eine
ArrayIndexOutOfBoundsException zeigt an, dass diese Vorbedingung verletzt wurde.

Obwohl die JLS es nicht unbedingt verlangt, gibt es die starke Konvention, dass der
Einsatz von Fehlern fiir die JVM reserviert ist, damit diese auf fehlende Ressourcen,
Scheitern der Invarianten oder andere Bedingungen hinweisen kann, die eine weitere
Programmausfithrung unméglich machen [Chan 1998, Horstman 2000]. Da diese Kon-
vention fast tiberall befolgt wird, sollten Sie besser keine neuen Unterklassen von Error
implementieren. Alle ungepriiften Ausnahmen, die Sie implementieren, sollten mit-
telbar oder unmittelbar Unterklassen von RuntimeException sein.

Thema 40: Gepriifte Ausnahmen fiir behebbare Situationen ... 177

Es ist moglich, eine Ausnahme zu definieren, die keine Unterklasse von Exception, Run-
timeException oder Error ist. Die JLS sagt zwar nicht unmittelbar etwas tiber »Throw-
ables« aus, spezifiziert aber implizit, dass diese dasselbe Verhalten an den Tag legen,
wie normale gepriifte Ausnahmen (die ihrerseits Unterklassen von Exception und nicht
von RuntimeException sind). Doch wann sollten Sie so ein Ding benutzen? Mit einem
Wort: nie. Es bietet keine Vorteile gegentiber einer normalen, gepriiften Ausnahme und
wiirde den Benutzer Thres APIs nur verwirren.

Fazit: Verwenden Sie gepriifte Ausnahmen nur fiir behebbare Fehlerbedingungen und
Laufzeitausnahmen fiir Programmierfehler. Natiirlich ist die Situation nicht immer
entweder-oder. Nehmen Sie z.B. den Fall, dass eine Ressource erschopft ist: Dieser
kann ebenso durch einen Programmierfehler wie durch Zuweisung eines zu langen
Arrays oder gar eine tatsdchliche Ressourcenknappheit entstehen. Ist der Grund eine
voriibergehende Ressourcenknappheit oder eine Nachfragespitze, dann ist die Bedin-
gung vielleicht ganz gut zu beheben. Der API-Designer muss letztlich entscheiden, ob
eine Erschopfung einer Ressource voraussichtlich behebbar ist oder nicht. Wenn ja,
dann ist eine gepriifte Ausnahme angebracht, wenn nicht, dann eine Laufzeitaus-
nahme. Wenn nicht feststeht, ob eine Erholung moglich ist, dann sollten Sie aus den in
Thema 41 dargestellten Griinden am besten eine ungepriifte Ausnahme verwenden.

API-Designer vergessen oft, dass Ausnahmen vollwertige Objekte sind, auf denen
beliebige Methoden definiert werden kénnen. Solche Methoden dienen hauptsachlich
dazu, den Code zu liefern, der die Ausnahme abfingt, und zusétzlich tiber die Bedin-
gung zu informieren, die die Auslésung der Ausnahme verursachte. Mangels solcher
Methoden sind Programmierer auch schon einmal darauf gekommen, die String-Dar-
stellung einer Ausnahme zu parsen, um sich Zusatzinformationen zu beschaffen. Das
ist extrem schlechter Stil. Da Klassen nur selten die Einzelheiten ihrer String-Darstel-
lungen spezifizieren, konnen sich diese Darstellungen mit jeder Implementierung und
jedem Release dndern. Daher ist Code, der die String-Darstellung einer Ausnahme
parst, in aller Regel nicht portierbar und zerbrechlich.

Da gepriifte Ausnahmen generell auf behebbare Bedingungen hinweisen, ist bei sol-
chen Ausnahmen ganz besonders wichtig, dass sie Methoden haben, mit deren Hilfe
sich der Aufrufer erholen kann. Angenommen, eine gepriifte Ausnahme wird ausge-
16st, wenn ein Versuch, mit einem Kartentelefon zu telefonieren, fehlschldgt, weil der
Anrufer nicht genug Geld auf seiner Karte hatte. Diese Ausnahme sollte eine Zugriffs-
methode haben, mit der der Fehlbetrag abgefragt werden kann, damit dieser an den
Telefonbenutzer weitergegeben werden kann.

178 8 Ausnahmen

8.3 Thema 41: Vermeiden Sie den unnétigen Einsatz von
gepriiften Ausnahmen

Gepriifte Ausnahmen sind etwas Wunderbares. Im Gegensatz zu Riickgabecodes zwin-
gen sie den Programmierer, sich um die Ausnahmebedingungen zu kiimmern, was die
Zuverlassigkeit stark verbessert. Doch ein Ubermafl an gepriiften Ausnahmen kann
die Benutzung eines APIs zur Qual machen. Wenn eine Methode eine oder mehrere
gepriifte Ausnahmen auslost, muss der Code, der diese Methode aufruft, die Ausnah-
men in einem oder mehreren catch-Blocken behandeln oder deklarieren, dass er die
Ausnahmen auslost und sie dann nach auflen weiterleiten. Beides ist fiir den Program-
mierer eine Last.

Diese Last ist gerechtfertigt, wenn die Ausnahmebedingung nicht durch korrekte
Benutzung des APIs zu verhindern ist und aufSerdem die Programmierer, die das API
benutzen, etwas Sinnvolles tun konnen, wenn sie mit der Ausnahme konfrontiert wer-
den. Wenn nicht beides zutrifft, dann ist eine ungepriifte Ausnahme besser. Sie sollten
sich fragen, wie der Programmierer die Ausnahme behandeln wird. Ist dies das Beste,
was man tun kann?

} catch(TheCheckedException e) f
throw new Error("Falsche Grundannahme"); // Darf nie passieren!
J

Und wie wir’s damit?

I catch(TheCheckedException e) f
e.printStackTrace(); // Na gut, dann eben nicht.
System.exit(1);

}

Wenn der Programmierer, der das API benutzt, nichts besseres unternehmen kann,
dann wiére eine ungepriifte Ausnahme besser geeignet. Ein Beispiel fiir eine Aus-
nahme, die diesen Test nicht besteht, ist CloneNotSupportedException. Sie wird von der
Methode 0Object.clone ausgeldst, die nur auf solchen Objekten aufgerufen werden
sollte, die Cloneable implementieren (Thema 10). In der Praxis hat der catch-Block fast
immer den Charakter eines Scheiterns der Grundannahme. Die Tatsache, dass die Aus-
nahme gepriift ist, bietet dem Programmierer keinen Vorteil, sondern macht nur Arbeit
und verkompliziert die Programme.

Die zusitzliche Last, die Sie dem Programmierer mit einer gepriiften Ausnahme auf-
biirden, ist noch viel schwerer, wenn dies die einzige gepriifte Ausnahme ist, die eine
Methode ausgibt. Gibt es noch mehr, so muss die Methode ohnehin schon in einem
try-Block auftauchen, und fiir die Ausnahme ist lediglich noch ein weiterer catch-Block
notwendig. Wenn eine Methode nur eine einzige gepriifte Ausnahme ausldst, dann

Thema 41: Vermeiden Sie den unndtigen Einsatz von gepriiften Ausnahmen 179

muss nur fiir diese Ausnahme auch ein try-Block fiir die Methode her. Unter solchen
Umsténden sollten Sie sich schon fragen, ob Sie nicht irgendwie die gepriifte Aus-
nahme vermeiden konnen.

Eine Technik, mit der Sie eine gepriifte in eine ungepriifte Ausnahme verwandeln kon-
nen, besteht darin, aus der Methode, die die Ausnahme auslost, zwei Methoden zu
machen. Die erste gibt einen boolean-Wert zuriick, der anzeigt, ob die Ausnahme aus-
gelost wiirde. Diese Anderung des APIs verwandelt folgende Aufrufsequenz:

// Aufruf mit geprifter Ausnahme
try {
obj.action(args);
} catch(TheCheckedException e) f
// Behandele Ausnahmebedingung

}
in diese:

// Aufruf mit Zustandstestmethoden und ungepriifter Ausnahme
if (obj.actionPermitted(args)) f{

obj.action(args);
} else {

// Behandele Ausnahmebedingung

}

Diese Umwandlung ist nicht immer das Richtige, aber dort, wo sie angebracht ist, kann sie
die API-Benutzung erleichtern. Die zweite Aufrufsequenz ist zwar nicht schoner als
die erste, aber das resultierende API ist flexibler. Wenn der Programmierer weif3, dass
der Aufruf klappen wird, oder wenn er damit zufrieden ist, dass der Thread bei einem
Fehlschlag des Aufrufs endet, dann wiirde die Umformung auch die folgende einfache
Aufrufsequenz gestatten:

obj.action(args);

Wenn Sie vermuten, dass die einfache Aufrufsequenz die Norm sein wird, dann kann
auch diese API-Umformung das Richtige sein. Sie fiihrt zu einem API, das im Wesent-
lichen mit dem »Zustandstestmethoden«-API aus Thema 39 identisch ist und auch die-
selben Fallstricke hat: Wenn auf ein Objekt nebenldufig ohne externe Synchronisierung
zugegriffen wird oder wenn das Objekt Gegenstand extern veranlasster Zustands-
anderungen ist, dann ist diese Umformung nicht das Richtige, weil sich der Objektzu-
stand in der Zeit zwischen dem Aufruf von actionPermitted und dem Aufruf von action
dndern kann. Wenn eine separate actionPermitted-Methode jedoch notwendigerweise
dieselbe Arbeit der action-Methode noch einmal tun wiirde, dann kann die Umfor-
mung auch wegen Leistungserwédgungen ausscheiden.

180 8 Ausnahmen

8.4 Thema 42: Bevorzugen Sie Standardausnahmen

Eine Sache, durch die sich Programmierprofis am starksten von Anféngern unterschei-
den, ist, dass die Experten fiir ihren Code ein hohes Mafi an Wiederverwendbarkeit
anstreben und normalerweise auch erreichen. Ausnahmen bilden keine Ausnahme
von der Regel, dass wiederverwendbarer Code eine gute Sache ist. Die Java-Plattform-
bibliotheken stellen einige elementare ungepriifte Ausnahmen zur Verfiigung, die den
Ausnahmenbedarf der meisten APIs schon grofitenteils decken. Diese gebrauchlichen
Ausnahmen werden in diesem Thema behandelt.

Die Wiederverwendung bereits vorhandener Ausnahmen hat mehrere Vorteile. Der
wichtigste ist der, dass Thr API dadurch einfacher zu lernen und zu nutzen ist, weil es
den Konventionen folgt, mit denen die Programmierer bereits vertraut sind. Direkt
danach kommt der Vorteil, dass die Programme, die Ihr API benutzen, dann leichter
zu lesen sind, weil sie nicht voller unbekannter Ausnahmen stecken. Und aufSerdem
bedeuten weniger Ausnahmeklassen auch weniger Arbeitsspeicherbelegung und
schnelleres Laden von Klassen.

Eine weitere, oft genutzte Ausnahme ist I11egalStateException. Diese Ausnahme wird
in der Regel ausgeldst, wenn der Aufruf wegen des Zustands des Empfangerobjekts
unzuldssig war. Sie wére z.B. dann die Ausnahme der Wahl, wenn der Aufrufer ein
Objekt zu benutzen versucht, ehe es ordentlich initialisiert wurde.

Letztlich sind zwar alle falschen Methodenaufrufe auf ein unzuldssiges Argument
oder einen unzuldssigen Zustand zuriickzufiihren, aber standardméfiig werden fiir
bestimmte Arten von unzuldssigen Argumenten und Zustdnden andere Ausnahmen
verwendet. Wenn ein Aufrufer einem Parameter, der keine nul1-Werte haben darf, den
Wert nul1l iibergibt, dann wird laut Konvention keine I11egalArgumentException, sondern
eine NullPointerException ausgeldst, und wenn ein Aufrufer einem Parameter, der
einen Index einer Folge darstellt, einen aufierhalb des zuldssigen Wertebereichs liegen-
den Wert {ibergibt, dann sollte er statt einer I11egalArgumentException eine IndexOutOf
BoundsException erhalten.

Eine andere Allzweckausnahme, die Sie kennen sollten, ist ConcurrentModificationEx-
ception. Sie sollten diese Ausnahme ausldsen, wenn ein Objekt, das nur von einen ein-
zigen Thread oder mit externer Synchronisierung benutzt werden sollte, feststellt, dass
es nebenldufig gedndert wird oder wurde.

Ein letztes Beispiel fiir eine erwdhnenswerte Allzweckausnahme ist Unsupported
OperationException. Diese Ausnahme sollten Sie auslosen, wenn ein Objekt eine Opera-
tion, die versucht wird, nicht unterstiitzt. Verglichen mit den anderen in diesem Thema
behandelten Ausnahmen wird sie nur selten benutzt, da die meisten Objekte alle von
ihnen implementierten Methoden auch unterstiitzen. Diese Ausnahme wird von Inter-
face-Implementierungen verwendet, die eine oder mehrere mogliche Operationen, die

Thema 42: Bevorzugen Sie Standardausnahmen 181

von dem Interface definiert werden, nicht unterstiitzen. So wiirde z.B. eine List-Imple-
mentierung, die nur fiir das Anhdngen (mit append) da ist, diese Ausnahme auslosen,
wenn jemand versuchte, ein Element zu 16schen.

Tabelle 8.1 fasst die am haufigsten wieder verwendeten Ausnahmen zusammen.

Ausnahme Verwendung

[1TegalArgumentException bei ungeeigneten Parameterwerten
I1legalStateException wenn der Objektzustand keinen Methodenaufruf zuldsst
NullPointerException wenn der Parameterwert verbotenerweise null ist
IndexOut0fBoundsException wenn der Wert des Indexparameters auBerhalb des

Wertebereichs liegt

ConcurrentModificationkxception wenn eine verbotene, nebenliufige Anderung des
Objektzustands aufgedeckt wird

UnsupportedOperationException wenn das Objekt die Methode nicht unterstiitzt

Tabelle 8.1: Ausnahmen

Dies sind zwar bei weitem die am haufigsten wiederverwendeten Ausnahmen in den
Java-Plattformbibliotheken, aber wenn die Umstinde es rechtfertigen, knnen auch
andere Ausnahmen wieder verwendet werden. So konnten Sie z.B. ArithmeticException
und NumberFormatException wiederverwenden, wenn Sie arithmetische Objekte wie
komplexe Zahlen oder Matrizen implementierten. Wenn eine Ausnahme Ihren Bediirf-
nissen geniigt, dann nutzen Sie sie. Tun Sie dies allerdings nur, wenn die Bedingungen,
unter denen Sie sie auslosen wiirden, mit denen in der Dokumentation der Ausnahme
iibereinstimmen. Die Wiederverwendung muss sich auf die Semantik griinden und
nicht nur auf einen Namen. Wenn Sie noch mehr Fehlerinformationen geben mochten,
konnen Sie auch eine Unterklasse zu einer bereits bestehenden Ausnahme schreiben
(Thema 45).

Zum Schluss miissen Sie sich noch klar machen, dass die Wahl der richtigen Ausnahme
nicht immer eine exakte Wissenschaft ist. Auch die Bedingungen in der Verwendungs-
spalte von Tabelle 8.1 schliefSen sich nicht gegenseitig aus. Nehmen Sie z.B. den Fall
eines Objekts, das ein Kartenspiel reprasentiert: Angenommen, es gibt eine Kartenaus-
teilungsmethode, die als Argument die Anzahl der Karten bekommt, die jeder Spieler
erhélt. Wenn der Aufrufer diesem Parameter einen Wert iibergibe, der die Anzahl der
verbleibenden Karten des Spiels iibersteigt, so konnten Sie dafiir eine I11egalArgument
Exception (der Parameterwert von handSize ist zu grofs) oder eine I11egalStateException
(das Spiel-Objekt enthdlt zu wenige Karten, um die Anfrage zu befriedigen) benutzen.
In diesem Fall macht die I11egalArgumentException einen guten Eindruck, aber feste
Regeln dafiir gibt es nicht.

182 8 Ausnahmen

8.5 Thema 43: Losen Sie Ausnahmen aus, die zur
Abstraktion passen

Es fithrt zu Verwirrung, wenn eine Methode eine Ausnahme auslost, die in keinem
erkennbaren Zusammenhang mit der Aufgabe steht, die sie ausfiihrt. Das ist oft der
Fall, wenn eine Methode eine Ausnahme weiterleitet, die von einer Abstraktion einer
tieferen Ebene ausgelost wurde. Das ist nicht nur verwirrend, sondern macht auch das
API der hoheren Ebene mit den Implementierungdetails schmutzig. Wenn die Imple-
mentierung der hoheren Ebene in einem spéteren Release gedndert wird, konnen sich
auch die von ihr ausgeldsten Ausnahmen dndern. Dadurch konnen bestehende Client-
Programme kaputtgehen.

Um dieses Problem zu vermeiden, sollten hohere Ebenen die Ausnahmen der darun-
terliegenden Ebenen abfangen und stattdessen Ausnahmen auslésen, die anhand
der Abstraktion der hoheren Ebene erklirbar sind. Dieses als »Ausnahme-Uberset-
zung« bezeichnete Idiom sieht folgendermafen aus:

// Ausnahme-(bersetzung

try |
// Verwende Abstraktion einer niedrigeren Ebene
// und Ubersetze in die hdhere Ebene.

} catch(LowerlLevelException e) |{
throw new HigherLevelException(...);
}

Hier sehen Sie ein Beispiel einer Ausnahme-Transaktion. Es entstammt der Klasse
AbstractSequentiallist, einer Skelettimplementierung (Thema 16) des List-Interfaces. In
diesem Beispiel wird die Ausnahme-Ubersetzung von der Spezifikation der get-
Methode im List-Interface gefordert:

/**
* Gibt die Elemente an der angegebenen Stelle dieser Liste zuriick.
* @throws IndexOutOfBoundsException, wenn Index nicht
* im Wertebereich.
* (index < 0 || index >= size()).
*/
public Object get(int index) f{
ListIterator i = TistIterator(index);
try |
return i.next();
} catch(NoSuchETementException e) {
throw new IndexOutOfBoundsException("Index: " + index);
}
}

Eine Sonderform der Ausnahme-Ubersetzung namens Ausnahmen-Verkettung eignet
sich fiir solche Fille, in denen die Ausnahme der niedrigeren Ebene jemandem beim

Thema 43: Losen Sie Ausnahmen aus, die zur Abstraktion passen 183

Debuggen einer Situation helfen kann, die die Ursache der Ausnahme war. Bei diesem
Ansatz speichert die Ausnahme der hoheren Ebene die Ausnahme der niedrigeren
Ebene und stellt eine Zugriffsmethode zur Verfiigung, mit der sich die Ausnahme der
niedrigeren Ebene abrufen lasst:

// Ausnahmen-Verkettung

try |
// Verwende Abstraktion einer niedrigeren Ebene
// und Ubersetze in die hdhere Ebene.

} catch (LowerlLevelException e) {
throw new HigherlLevelException(e);
}

Seit dem Release 1.4 wird die Ausnahmen-Verkettung von Throwable unterstiitzt. Wenn
Sie Release 1.4 (oder eine Folgeversion) einsetzen mochten, kénnen Sie diese Unter-
stiitzung nutzen, indem Sie den Konstruktor Ihrer htheren Ausnahme eine Verkettung
mit Throwable(Throwable) herstellen lassen.

// Ausnahmen-Verkettung in Release 1.4

HigherLevelException(Throwable t) f
super(t);

}

Wenn Sie mit einem &dlteren Release arbeiten mochten, dann muss Thre Ausnahme die
Ausnahme der niedrigeren Ebene speichern und eine Zugriffsmethode zur Verfiigung
stellen:

// Ausnahmen-Verkettung vor Release 1.4
private Throwable cause;

HigherLevelException(Throwable t) {
cause = t;
}

public Throwable getCause() f{
return cause;
}

Indem Sie die Zugriffsmethode getCause nennen und ihr die oben gezeigte Deklaration
geben, stellen Sie sicher, dass Ihre Ausnahme mit der Verkettungsfunktion der Platt-
form zusammenarbeiten wird, falls Sie einmal zu Release 1.4 oder folgenden wechseln
mochten. Dies hat den Vorteil, dass der Stacktrace der niedrigeren Ausnahme in den
der hoheren Ausnahme in der {iblichen Art und Weise integriert wird, und erlaubt es
zusétzlich, dass Standard-Debugging-Tools auf die niedrigere Ausnahme zugreifen
konnen.

Zwar ist es besser eine Ausnahme zu iibersetzen, als sie unbedacht von niedrigeren zu
hoheren Ebenen weiterzureichen, aber dies sollten Sie auch nicht iiberstrapazieren.

184 8 Ausnahmen

Das beste, was Sie wenn moglich mit Ausnahmen von niedrigeren Ebenen tun kénnen,
ist, sie ganz zu vermeiden, indem Sie gewédhrleisten, dass die Methoden der niedrigen
Ebenen Erfolg haben, ehe Sie sie aufrufen. Manchmal kénnen Sie dies erreichen, indem Sie
explizit die Giiltigkeit der Methodenparameter der héheren Ebene priifen, ehe Sie sie an
die niedrigeren Ebenen iibergeben.

Wenn sich Ausnahmen von niedrigeren Ebenen nicht verhindern lassen, dann besteht
die zweitbeste Losung darin, dass die hohere Ebene diese Ausnahmen stillschweigend
umgeht und den Aufrufer der htheren Methode von den Problemen der niedrigeren
Ebene isoliert. Unter solchen Umstédnden kann es gut sein, die Ausnahme mit einem
geeigneten Werkzeug wie z.B. dem in Release 1.4 eingefiihrten java.util.logging zu
protokollieren. Dann kann ein Administrator das Problem untersuchen, wahrend der
Client-Code und die Benutzer davon unberiihrt bleiben.

In Situationen, in denen sich Ausnahmen niedrigerer Ebenen weder vermeiden noch
die hoheren Ebenen davon isolieren lassen, sollten Sie immer die Ausnahme-Uberset-
zung verwenden. Nur wenn zufillig die Spezifikation der niedrigeren Methode garan-
tiert, dass alle von ihr ausgelosten Ausnahmen fiir die hohere Ebene geeignet sind,
sollte eine Weitergabe von Ausnahmen von unten nach oben gestattet sein.

8.6 Thema 44: Dokumentieren Sie alle Ausnahmen,
die eine Methode auslost

Eine Beschreibung der Ausnahmen, die eine Methode auslosen kann, ist ein wichtiger
Teil der Dokumentation, die fiir den richtigen Einsatz der Methode erforderlich ist.
Daher miissen Sie sich unbedingt die Zeit nehmen, sémtliche Ausnahmen samtlicher
Methoden sorgfaltig zu dokumentieren.

Deklarieren Sie gepriifte Ausnahmen immer einzeln und dokumentieren Sie mit-
hilfe des @throws-Tags von Javadoc ganz genau die Bedingungen, unter denen jede
Ausnahme ausgelost wird. Bitte kiirzen Sie das nicht ab, indem Sie deklarieren, dass
eine Methode eine Oberklasse mehrerer von ihr méglicherweise ausgegebener Aus-
nahmeklassen auslost. Ein Extrembeispiel: Deklarieren Sie nie in einer Methode
»throws Exception« oder, schlimmer noch, »throws Throwable«. Eine solche Deklaration
gibt dem Programmierer keinerlei Hinweis auf die Ausnahmen, die die Methode aus-
l6sen kann, und behindert iiberdies auch noch die Nutzung der Methode, weil sie jede
andere Ausnahme, die in demselben Kontext ausgegeben werden kann, verschleiert.

Zwar wird von Java nicht unbedingt gefordert, dass Programmierer die ungepriiften
Ausnahmen dokumentieren miissen, die eine Methode auslosen kann, aber es emp-
fiehlt sich dennoch, diese ebenso sorgfltig zu dokumentieren wie die gepriiften Aus-
nahmen. Ungepriifte Ausnahmen stellen allgemein Programmierfehler dar (Thema 40).

Thema 44: Dokumentieren Sie alle Ausnahmen, die eine Methode auslost 185

Wenn Sie den Programmierern alle gemachten Fehler vorstellen, dann helfen Sie ihnen,
diese Fehler zu vermeiden. Eine gut dokumentierte Liste mit allen ungepriiften Aus-
nahmen, die eine Methode auslésen kann, beschreibt wirkungsvoll, welche Vorbedin-
gungen fiir ihre erfolgreiche Ausfiihrung erforderlich sind. Es ist ganz wichtig, dass die
Dokumentation jeder Methode ihre Vorbedingungen beschreibt, und dies tun Sie am
besten, indem Sie ihre ungepriiften Ausnahmen dokumentieren.

Ganz besonders wichtig ist es, dass Methoden in Interfaces dokumentieren, welche
ungepriiften Ausnahmen sie auslosen konnen. Diese Dokumentation gehort zum allge-
meinen Vertrag des Interfaces und ermoglicht es, dass sich mehrere Implementierungen
des Interfaces gleich verhalten.

Bitte dokumentieren Sie mit dem @throws-Tag von Javadoc jede ungepriifte Ausnahme,
die eine Methode auslosen kann. Verwenden Sie aber nicht das Schliisselwort throws,
um ungepriifte Ausnahmen in die Methodendeklaration hineinzuschreiben. Der Pro-
grammierer, der Ihr API benutzt, muss erkennen kénnen, welche Ausnahmen gepriift
und welche ungepriift sind, da sich seine Aufgaben je nach Fall unterscheiden. Die
Dokumentation, die das @throws-Tag von Javadoc generiert, wenn kein von der throws-
Deklaration generierter Methoden-Header vorhanden ist, ist ein deutlich sichtbarer Hin-
weis, der dem Programmierer hilft, gepriifte Ausnahmen von ungepriiften zu unter-
scheiden.

Man muss sagen, dass die Dokumentation samtlicher ungepriifter Ausnahmen fiir
jede Methode ein Ideal ist, das in der Realitdt nicht immer erreichbar ist. Wenn eine
Klasse iiberarbeitet wird, dann bedeutet es keine Verletzung der Quell- oder Binar-
kompatibilitdt, wenn eine exportierte Methode so umgeschrieben wird, dass sie noch
weitere ungepriifte Ausnahmen ausldst. Angenommen, eine Klasse ruft eine Methode
einer anderen, unabhéngig von der ersten geschriebenen Klasse auf. Die Autoren der
ersten Klasse haben vielleicht alle ungepriiften Ausnahmen jeder Methode sorgfaltig
dokumentiert, aber wenn die zweite Klasse derart {iberarbeitet wird, dass sie noch
mehr ungepriifte Ausnahmen auslost, dann wird sehr wahrscheinlich die erste (nicht
iiberarbeitete) Klasse die neuen ungepriiften Ausnahmen weitergeben, obwohl sie sie
nicht deklariert.

Wenn eine Ausnahme von vielen Methoden in einer Klasse immer aus demselben
Grund ausgeldst wird, dann kann sie auch im Dokumentationskommentar zu der
Klasse dokumentiert werden, anstatt sie fiir jede Methode einzeln zu dokumentieren.
Ein Beispiel dafiir ist die Nul1PointerException. Es ist in Ordnung, wenn die Klassen-
dokumentation sinngeméfl besagt: »Alle Methoden dieser Klasse 16sen eine NullPoin-
terException aus, wenn ihnen in irgendeinem Parameter ein nu11-Objekt iibergeben
wird«.

186 8 Ausnahmen

8.7 Thema 45: Geben Sie in Detailnachrichten
Fehlerinformationen an

Wenn ein Programm wegen einer nicht-abgefangenen Ausnahme abbricht, gibt das
System automatisch den Stacktrace der Ausnahme aus. Dieser enthélt die String-Dar-
stellung der Ausnahme, also das Ergebnis ihrer toString-Methode. Sie besteht norma-
lerweise aus dem Klassennamen der Ausnahme, gefolgt von ihrer Detailnachricht. Oft
ist dies die einzige Information, an die sich die Programmierer oder Techniker bei der
Untersuchung eines Software-Fehlers halten koénnen. Wenn der Fehler nicht leicht
reproduzierbar ist, kann es schwierig oder unmoglich sein, mehr dariiber zu erfahren.
Daher ist es von entscheidender Bedeutung, dass die toString-Methode der Ausnahme
moglichst viel {iber die Fehlerursache verrédt. Mit anderen Worten: Die String-Darstel-
lung einer Ausnahme sollte den Fehler fiir eine spatere Analyse festhalten.

Um einen Fehler festzuhalten, sollte die String-Darstellung einer Ausnahme die
Werte aller Parameter und Felder enthalten, die zu der Ausnahme »beigetragen«
haben. So sollte z.B. die Detailnachricht zu einer IndexOutOfBoundsException die Unter-
und Obergrenze des Wertebereichs und den tatsdchlichen Indexwert, der nicht inner-
halb dieser Grenzen lag, nennen. Diese Information sagt viel {iber den Fehler aus. Jeder
einzelne Wert oder alle drei Werte konnten falsch sein. Der tatsdchliche Index kénnte
um eins kleiner als die Untergrenze oder gleich der Obergrenze sein, oder er koénnte
ein Wert sein, der vollig danebenliegt. Die Untergrenze konnte grofier als die Ober-
grenze sein (ein ernster interner Invariantenfehler). Jede dieser Situationen weist auf
ein anderes Problem hin. Dem Programmierer hilft es sehr bei der Fehlerdiagnose,
wenn er weif$, nach welcher Art von Fehler er {iberhaupt sucht.

So wichtig es ist, alle »harten Daten« in die String-Darstellung einer Ausnahme aufzu-
nehmen, so unwichtig ist es, wortreiche Erklarungen dazu zu schreiben. Der Stacktrace
soll gemeinsam mit den Quelldateien analysiert werden und enthélt normalerweise
die Angabe, von welcher Datei und welcher Zeilennummer die Ausnahme ausgeldst
wurde, sowie die Dateien und Zeilennummern aller anderen Methodenaufrufe im
Stack. Weitschweifige Fehlerbeschreibungen sind in der Regel {iberfliissig, da die
Informationen durch Lesen des Quellcodes erschlossen werden konnen.

Die String-Darstellung einer Ausnahme sollte nicht mit einer Fehlermeldung auf
Benutzerebene verwechselt werden, die fiir Endanwender verstiandlich sein muss. Im
Gegensatz zu dieser ist die String-Darstellung vor allem fiir Programmierer oder Tech-
niker gedacht, denen sie bei der Fehleranalyse hilft. Daher ist der Inhalt der Informa-
tion weit wichtiger als ihre Allgemeinverstandlichkeit.

Sie konnen sicherstellen, dass Ausnahmen in ihren String-Darstellungen ausreichende
Fehlerinformationen geben, indem Sie in den Konstruktoren der Ausnahmen diese
Informationen anstelle einer Detailnachricht in String-Form fordern. Die Detailnach-

Thema 46: Streben Sie nach Fehleratomizitdt 187

richt kann dann automatisch so generiert werden, dass sie die Informationen enthilt.
So konnte z.B. die Index0OutOfBoundsException statt eines String-Konstruktors den folgen-
den Konstruktor haben:

/**

* Erzeuge eine IndexOutOfBoundsException.

*

* @param lowerBound Kleinster zuldssiger Indexwert.

* @param upperBound GroBter zuldssiger Indexwert plus eins.

* @param index Tatsdchlicher Indexwert.

*/

public IndexOutOfBoundsException(int TowerBound, int upperBound,
int index) f

// Erzeuge eine Detailnachricht, die den Fehler festhdlt.
super("Untergrenze: " + lowerBound +

", Obergrenze: " + upperBound +

", Index: + index);

"

}

Leider nutzen die Java-Plattformbibliotheken dieses Idiom kaum, obwohl dies ratsam
wire. Es macht es den Programmierern leicht, eine Ausnahme auszuldsen, die den
Fehler festhalt. Ja mehr noch: Die Programmierer kénnen gar nicht mehr anders, als
den Fehler festzuhalten! Letztlich erreicht das Idiom, dass der Code eine hervor-
ragende String-Darstellung fiir eine Ausnahme in der Ausnahmenklasse selbst gene-
riert, statt dass er von jedem Benutzer der Klasse fordert, die String-Darstellung
iiberfliissigerweise immer wieder neu zu generieren.

Wie Thema 40 bereits nahegelegte, kann es gut sein, wenn eine Ausnahme Zugriffs-
methoden fiir ihre Fehlerinformationen (in unserem Beispiel 1owerBound, upperBound und
index) liefert. Solche Zugriffsmethoden sind fiir gepriifte Ausnahmen noch wichtiger
als fiir ungepriifte, da die Fehlerinformationen bei der Erholung von einem Fehler hel-
fen konnen. Es ist zwar selten, aber doch vorstellbar, dass ein Programmierer vielleicht
programmgesteuerten Zugriff auf die Einzelheiten einer ungepriiften Ausnahme
mochte. Doch selbst fiir ungepriifte Ausnahmen ist es ratsam, grundsétzlich Zugriffs-
methoden zur Verfiigung zu stellen (Thema 9).

8.8 Thema 46: Streben Sie nach Fehleratomizitat

Auch nachdem ein Objekt eine Ausnahme ausgeldst hat, ist es generell wiinschens-
wert, dass es weiter in einem wohldefinierten, benutzbaren Zustand bleibt, selbst
wenn der Fehler mitten in einer Operation aufgetreten ist. Das gilt ganz besonders fiir
gepriifte Ausnahmen, von denen sich der Aufrufer normalerweise wieder erholen
sollte. Allgemein gesagt sollte ein gescheiterter Methodenaufruf das Objekt in dem
Zustand zuriicklassen, den es vor dem Aufruf hatte. Eine Methode mit dieser Eigen-
schaft bezeichnet man als fehleratomar.

188 8 Ausnahmen

Diesen Effekt kann man auf mehrere Arten erzielen. Die einfachste besteht darin, dass
Sie unverdnderliche Objekte entwerfen (Thema 13). Wenn ein Objekt unverdnderlich
ist, dann gibt es die Fehleratomizitit gratis. Ein Scheitern einer Operation kann dann
zwar die Erzeugung eines neuen Objekts vereiteln, aber niemals ein vorhandenes
Objekt in inkonsistentem Zustand hinterlassen, da der Zustand jedes Objekts bei sei-
ner Erzeugung konsistent ist und danach nicht mehr gedndert werden kann.

Fiir Methoden, die auf verdnderlichen Objekten arbeiten, lasst sich die Fehleratomizi-
tdt am leichtesten erreichen, indem Sie die Parameter vor der Operation auf Giiltigkeit
iiberpriifen (Thema 23). Dann werden eventuelle Ausnahmen ausgeldst, bevor die
Objektmodifikation beginnt. Betrachten Sie z.B. die Stack.pop-Methode aus Thema 5:

public Object pop() |
if (size == 0)
throw new EmptyStackException();
Object result = elementsl--sizel;
elementslsizel = null; // Eliminiere Uberfllssige Referenz
return result;
}

Wenn Sie die Grofienpriifung am Anfang weglassen wiirden, dann wiirde die Metho-
den zwar immer noch bei einem Versuch, ein Element aus einem leeren Stack zu
entnehmen, eine Ausnahme auslosen, aber sie wiirde das Groflenfeld in einem inkon-
sistenten (negativen) Zustand hinterlassen. Dann wiirden alle zukiinftigen Methoden-
aufrufe auf dem Objekt scheitern. Auflerdem wiirde die von der pop-Methode
ausgeloste Ausnahme nicht zu der Abstraktion passen (Thema 43).

Ein ganz dhnlicher Ansatz, um Fehleratomizitédt zu erreichen, ist der folgende: Sie ord-
nen die Berechnungen so, dass jeder Teil, der eventuell fehlschlagen kénnte, vor jedem
Teil liegt, der das Objekt modifiziert. Dieser Ansatz ist die natiirliche Erweiterung des
vorherigen, wenn die Argumente nicht gepriift werden kénnen, ohne einen Teil der
Berechnung durchzufiihren. Betrachten Sie z.B. eine TreeMap, deren Elemente in einer
bestimmten Reihenfolge sortiert werden. Um einer TreeMap ein Element hinzuzufiigen,
muss dieses einen Typ haben, der mit dem Ordnungsverfahren von TreeMap verglichen
werden kann. Jeder Versuch, ein Element vom falschen Typ hinzuzufiigen, scheitert
nattiirlich mit einer ClassCastException. Das ist das Ergebnis, wenn ein Element in dem
Baum gesucht wird, bevor er in irgendeiner Weise modifiziert worden ist.

Ein dritter und viel seltenerer Ansatz zum Erreichen von Fehleratomizitit besteht
darin, einen Recovery-Code zu schreiben, der einen mitten in einer Operation auftreten-
den Fehler abfangt und das Objekt veranlasst, seinen Zustand bis zu dem Punkt, an
dem die Operation begann, zurtickzurollen. Dieser Ansatz wird vor allem fiir persis-
tente Datenstrukturen verwendet.

Ein letzter Ansatz, mit dem Sie Fehleratomizitit herstellen konnen, ist folgender: Sie
fiihren die Operation auf einer temporédren Kopie des Objekts durch und ersetzen den

Thema 47: Ignorieren Sie keine Ausnahmen 189

Inhalt des Objekts durch diese temporadre Kopie, sobald die Operation abgeschlossen
ist. Dieser Ansatz ergibt sich auf natiirliche Weise, wenn die Berechnung schneller aus-
gefiihrt werden kann, nachdem die Daten in einer temporaren Datenstruktur gespei-
chert wurden. So speichert z.B. die Methode Collections.sort ihre Eingabeliste vor
dem Sortieren in einem Array, um Aufwand zu sparen, wenn sie in der inneren
Schleife der Sortieroperation auf die Elemente zugreift. Dies wird zwar aus Leistungs-
erwagungen gemacht, bietet aber den zusitzlichen Vorteil, dass die Eingabeliste unter
Garantie unbertihrt bleibt, wenn die Sortierung scheitert.

Fehleratomizitat ist zwar generell wiinschenswert, aber nicht immer mdglich. Ein Bei-
spiel: Wenn zwei Threads nebenldufig ohne verniinftige Synchronisierung versuchen,
dasselbe Objekt zu dndern, dann kann dieses Objekt in inkonsistentem Zustand
zurtickbleiben. Daher ware es falsch, anzunehmen, dass ein Objekt noch benutzbar ist,
nachdem man eine ConcurrentModificationException abgefangen hat. Von Fehlern ist (im
Gegensatz zu Ausnahmen) in aller Regel keine Erholung méglich und Methoden, die
Fehler auslosen, sollten noch nicht einmal den Versuch machen, die Fehleratomizitit
zu erhalten.

Selbst wenn Fehleratomizitdt moglich ist, ist sie nicht immer wiinschenswert. Bei eini-
gen Operationen wiirde sich dadurch der Aufwand oder die Komplexitit stark erho-
hen. Doch oft kénnen Sie Fehleratomizitit ganz leicht erreichen, wenn Sie sich iiber
das Problem im Klaren sind. Eine Regel lautet: Jede Ausnahme, die zur Methoden-
spezifikation gehort, sollte das Objekt in demselben Zustand zuriicklassen, den es vor
dem Methodenaufruf hatte. Wo diese Regel verletzt wird, sollte die API-Dokumenta-
tion klar sagen, in welchem Zustand das Objekt zurtickbleibt. Doch leider entsprechen
viele der existierenden API-Dokumentationen nicht diesem Idealbild.

8.9 Thema 47: Ignorieren Sie keine Ausnahmen

Dieser Rat scheint zwar naheliegend, wird aber so oft verletzt, dass man ihn immer
wiederholen sollte. Wenn die Entwickler eines APIs eine Methode deklarieren, die eine
Ausnahme auslost, dann versuchen Sie Thnen damit etwas mitzuteilen. Dies diirfen Sie
nicht ignorieren! Es ist ganz leicht, Ausnahmen zu ignorieren, indem man den Metho-
denaufruf mit einer try-Anweisung mit einem leeren catch-Block umgibt:

// Leerer catch-Block ignoriert Ausnahme - sehr verddchtig!
try f

} catch (SomeException e) f
}

Ein leerer catch-Block verstofit gegen den Sinn und Zweck der Ausnahmen: Diese
sollen Sie zwingen, Ausnahmebedingungen zu behandeln. Das Ignorieren einer Aus-

190 8 Ausnahmen

nahme ist dasselbe, als wiirden Sie einen Feueralarm ignorieren — und auflerdem auch
noch abschalten, damit auch sonst niemand sieht, dass es tatsachlich brennt. Vielleicht
werden Sie nicht erwischt, aber die Folgen sind katastrophal. Wann immer Sie einen
leeren catch-Block sehen, sollte Ihre Alarmglocke angehen. Der catch-Block sollte
zumindest einen Kommentar enthalten, der erklirt, warum die Ausnahme ignoriert
werden soll.

Dies kann z.B. dann richtig sein, wenn eine Ausnahme die Bildwiedergabe einer Ani-
mation betrifft. Wenn der Bildschirm in regelmafiigen Abstinden aktualisiert wird,
dann behandeln Sie einen fliichtigen Fehler am besten, indem Sie ihn ignorieren und
die nachste Aktualisierung abwarten.

Die Empfehlung dieses Themas gilt auch fiir gepriifte und ungepriifte Ausnahmen.
Egal ob eine Ausnahme eine vorhersagbare Ausnahmebedingung oder einen Program-
mierfehler repréasentiert: Wenn Sie sie mit einem leeren catch-Block ignorieren, haben
Sie ein Programm, das auch bei einem Fehler ganz gerduschlos weiterlauft. Es kann
dann zu irgendeinem zukiinftigen Zeitpunkt scheitern, und zwar an einer Stelle im
Code, die in keinem Zusammenhang mit der Problemursache steht. Die richtige
Behandlung einer Ausnahme kann den Fehler auch ganz verhiiten. Schon das blofie
Weiterleiten einer ungepriiften Ausnahme nach aufSen fiithrt immerhin dazu, dass das
Programm sauber abbricht und gibt Informationen, die beim Debugging helfen.

9 Threads

Mit Threads kénnen Sie mehrere Aktivitdten in demselben Programm nebenlédufig aus-
fithren. Da Multithreaded-Programmierung schwieriger als Singlethreaded-Program-
mierung ist, gilt hier der Rat aus Thema 30 in besonderem Mafle: Wenn es eine
Bibliotheksklasse gibt, die ihnen die Multithreaded-Programmierung auf unterster
Ebene ersparen kann, dann sollten Sie sie um Himmels Willen nutzen. Ein Beispiel
dafiir ist die Klasse java.util.Timer, und das Paket util.concurrent von Doug Lea [Lea
2001] liefert eine ganze Sammlung von Threading-Dienstprogrammen auf hoherer
Ebene. Selbst wenn Sie dort, wo es moglich ist, solche Bibliotheken nutzen, miissen Sie
immer noch gelegentlich Multithreaded-Code schreiben oder pflegen. In diesem
Kapitel finden Sie Ratschlédge, die Ihnen helfen, klare, richtige und gut dokumentierte
Multithreaded-Programme zu schreiben.

9.1 Thema 48: Synchronisieren Sie den Zugriff auf
gemeinsam genutzte, veranderliche Daten

Das Schliisselwort synchronized gewihrleistet, dass immer nur ein einziger Thread eine
Anweisung oder einen Block ausfiihren kann. Viele Programmierer halten die Syn-
chronisierung nur fiir ein Mittel zum gegenseitigen Ausschluss, das verhindert, dass
ein Objekt in inkonsistentem Zustand betrachtet wird, wiahrend gerade ein anderer
Thread es modifiziert. In dieser View wird ein Objekt in konsistentem Zustand erzeugt
(Thema 13) und von den Methoden, die auf es zugreifen, gesperrt. Diese Methoden
beobachten seinen Zustand und konnen optional einen Zustandsiibergang veranlassen,
bei dem das Objekt von einem konsistenten Zustand in einen anderen tibergeht. Der
korrekte Einsatz von Synchronisierung garantiert, dass keine Methode das Objekt je in
inkonsistentem Zustand zu sehen bekommt.

Diese Sicht ist zwar richtig, aber noch nicht vollstindig. Die Synchronisierung verhin-
dert nicht nur, dass ein Thread ein Objekt in inkonsistentem Zustand zu sehen
bekommt, sondern gewihrleistet {iberdies, dass Objekte in einer geordneten Folge von
Zustandsiibergéngen, die scheinbar sequenziell ausgefiihrt werden, von einem konsis-
tenten Zustand in den nachsten wechseln. Jeder Thread, der in eine synchronisierte
Methode oder einen ebensolchen Block eintritt, sieht die Auswirkungen aller von der-

192 9 Threads

selben Sperre kontrollierten, vorangegangenen Zustandsiibergénge. Wenn ein Thread
den synchronisierten Bereich wieder verlassen hat, dann sieht ein anderer Thread, der
nun in den von derselben Sperre synchronisierten Bereich eintritt, die von dem ersten
Thread verursachten Zustandsédnderungen, falls es welche gibt.

Die Sprache garantiert, dass das Lesen oder Schreiben einer einzelnen Variablen atomar
ist, sofern diese Variable nicht den Typ Tong oder double hat. Anders ausgedriickt: Wenn
Sie eine Variable lesen, die nicht den Typ 1ong oder double hat, dann wird garantiert ein
Wert zuriickgegeben, der von einem Thread in dieser Variablen gespeichert worden ist,
selbst wenn mehrere Threads die Variable nebenldufig ohne Synchronisierung dndern.

Vielleicht haben Sie schon einmal gehort, man solle beim Lesen oder Schreiben ato-
marer Daten die Synchronisierung aus Leistungsgriinden unterlassen. Dieser Rat ist
auf gefdhrliche Weise falsch. Zwar gewdahrleistet die Atomizitdtsgarantie, dass kein
Thread beim Lesen atomarer Daten einen Zufallswert sieht, aber sie garantiert nicht,
dass ein Wert, der von einem Thread geschrieben wurde, fiir den anderen auch sicht-
bar ist. Die Synchronisierung ist sowohl fiir eine zuverldssige Kommunikation zwi-
schen den Threads als auch fiir den gegenseitigen Ausschluss notwendig. Dies ist
eine Folge eines ziemlich technischen Aspekts von Java, ndmlich des Speichermodells
[JLS, 17]. Dieses wird zwar wahrscheinlich in einem kiinftigen Release noch kréftig
iiberarbeitet werden [Pugh 0Ola], aber nicht im Hinblick auf den erwidhnten Sach-
verhalt.

Wenn Sie den Zugriff auf eine gemeinsam genutzte Variable nicht synchronisieren,
dann kann dies iibel ausgehen, selbst wenn die Variable atomar lesbar und schreibbar
ist. Betrachten Sie die folgende Funktion zur Erzeugung von Seriennummern:

// Kaputt - muss synchronisiert werden!
private static int nextSerialNumber = 0;

public static int generateSerialNumber() f{
return nextSerialNumber++;
}

Diese Funktion soll garantieren, dass jeder Aufruf von generateSerialNumber eine
andere Seriennummer zuriickgibt, so lange nicht mehr als 232 Aufrufe stattgefunden
haben. Es ist keine Synchronisierung erforderlich, um die Invarianten des Seriennum-
merngenerators zu schiitzen, da er gar keine hat. Sein Zustand besteht in einem einzi-
gen, atomar beschreibbaren Feld (nextSerialNumber) und alle Feldwerte, die moglich
sind, sind auch zuldssig. Doch die Methode arbeitet nicht ohne Synchronisierung. Da
der Inkrementierungsoperator (++) das Feld nextSerialNumber sowohl liest als auch
beschreibt, ist er nicht atomar. Lesen und Schreiben sind unabhingige Operationen,
die nacheinander ausgefiihrt werden. Folglich kénnen mehrere nebenldufige Threads
das Feld nextSerialNumber mit demselben Wert zu sehen bekommen und dieselbe Seri-
ennummer zuriickgeben.

Thema 48: Synchronisieren Sie den Zugriff auf gemeinsam genutzte, verdnderliche Daten 193

Noch iiberraschender ist, dass ein Thread generateSerialNumber mehrfach aufrufen und
eine Folge von Seriennummern von null bis n erhalten und danach ein anderer Thread
generateSerialNumber aufrufen und die Seriennummer null erhalten kann. Ohne Syn-
chronisierung sieht der zweite Thread vielleicht keine der Anderungen, die der erste
gemacht hat. Dies ist eine Folge des oben erwdhnten Speichermodellproblems.

Die Reparatur der Methode generateSerialNumber ist ganz einfach: Sie fiigen ihrer
Deklaration den Modifikator synchronized hinzu. Damit ist gewédhrleistet, dass mehrere
Aufrufe nicht miteinander verzahnt werden und dass jeder Aufruf die Auswirkungen
aller vorangegangenen sieht. Um die Methode wasserdicht zu machen, sollten Sie statt
int besser 1ong verwenden oder eine Ausnahme auslosen, wenn nextSerialNumber einen
Umbruch versucht.

Sehen Sie nun, wie ein Thread angehalten wird. Die Plattform stellt zwar Methoden
fiir einen unfreiwilligen Thread-Abbruch zur Verfiigung, aber diese Methoden sind
veraltet, weil sie inhédrent unsicher sind: Ihre Benutzung kann zu einer Objektinkonsis-
tenz fithren. Am besten halten Sie einen Thread an, indem Sie ihn einfach ein Feld
abfragen lassen, dessen Wert so eingestellt werden kann, dass er den Thread zum
Anhalten veranlasst. Dieses Feld ist normalerweise ein boolean-Wert oder eine Objekt-
referenz. Da das Lesen und Schreiben eines solchen Felds atomare Vorgange sind, wer-
den vielleicht einige Programmierer versucht sein, beim Zugriff auf dieses Feld die
Synchronisierung beiseite zu lassen. Daher sehen Sie gelegentlich Code wie diesen:

// Kaputt - muss synchronisiert werden!
public class StoppableThread extends Thread f{
private boolean stopRequested = false;

public void run() {
boolean done = false;

while (!stopRequested && !done) f{
. // Tue alles Erforderliche.
}
}

public void requestStop() f
stopRequested = true;
J
}

Dieser Code hat das Problem, dass es ohne Synchronisierung auch keine Garantie gibt,
wann - falls iiberhaupt — der beendigungsfihige Thread eine Anderung des Werts von
stopRequested »sieht«, die von einem anderen Thread veranlasst wurde. Folglich ist die
requestStop-Methode unter Umstédnden vollig wirkungslos. Wenn Sie nicht auf einem
Mehrprozessorsystem arbeiten, dann werden Sie zwar in der Praxis dieses problemati-
sche Verhalten nur selten finden, aber moglich ist alles. Am einfachsten beheben Sie
das Problem, indem Sie allen Zugriff auf das Feld stopRequested synchronisieren:

194 9 Threads

// Korrekt synchronisierte, kooperative Thread-Beendigung
public class StoppableThread extends Thread f{
private boolean stopRequested = false;

public void run() {
boolean done = false;

while (!stopRequested() && !done) f{
. // Tue alles Erforderliche.
}

public synchronized void requestStop() {
stopRequested = true;
}

private synchronized boolean stopRequested() f
return stopRequested;

}
J

Beachten Sie, dass die Aktionen der synchronisierten Methoden atomar sind: Die Syn-
chronisierung dient nur zu der Kommunikation zwischen den Methoden, nicht zu
ihrem gegenseitigen Ausschluss. Es ist klar, dass der tiberarbeitete Code funktioniert,
und der Synchronisierungsaufwand fiir jede Schleifeniteration ist wahrscheinlich nicht
spirbar. Dariiber hinaus gibt es jedoch noch eine Alternative, die ein bisschen knapper
und eventuell auch schneller ist. Die Synchronisierung kann unterbleiben, wenn
stopRequested als volatile deklariert wird. Dieser Modifikator garantiert, dass jeder
Thread, der ein Feld liest, den zuletzt geschriebenen Wert zu sehen bekommt.

Der Preis dafiir, dass der Zugriff auf stopRequested unsynchronisiert bleibt, ist im obi-
gen Beispiel vergleichsweise gering: Die Auswirkung der requestStop-Methode kann
sich auf unbestimmte Zeit verschieben. Wenn Sie es jedoch versdaumen, den Zugriff auf
verdnderliche, gemeinsam genutzte Daten zu synchronisieren, dann zahlen Sie einen
weit hoheren Preis. Betrachten Sie das Doppelpriifungsidiom fiir die faule Initialisierung;:

// Das Doppelpriifungsidiom fiir die faule Initialisierung - kaputt!
private static Foo foo = null;

public static Foo getFoo() f{
if (foo == null) f{
synchronized (Foo.class) f{
if (foo == null)
foo = new Foo();

}
return foo;

Thema 48: Synchronisieren Sie den Zugriff auf gemeinsam genutzte, verdnderliche Daten 195

Hinter diesem Idiom steht die Idee, dass Sie den Synchronisierungsaufwand in dem
geldufigen Fall, dass auf das Feld (foo) nach seiner Initialisierung zugegriffen wird,
vermeiden koénnen. Die Synchronisierung soll nur verhindern, dass mehrere Threads
dasselbe Feld initialisieren. Das Idiom garantiert jedoch, dass das Feld mindestens ein
Mal initialisiert wird, und dass alle Threads, die getFoo aufrufen, den korrekten Wert
fiir die Objektreferenz erhalten. Doch leider gibt es keine Garantie, dass die Objektrefe-
renz ordentlich arbeitet. Wenn ein Thread die Referenz unsynchronisiert liest und dann
auf dem referenzierten Objekt eine Methode aufruft, dann kann diese Methode das
Objekt in einem nur teilinitialisierten Zustand vorfinden und grandios scheitern.

Dass ein Thread ein faul erzeugtes Objekt in einem teilinitialisierten Zustand zu sehen
bekommt, widerspricht jeder Intuition. Das Objekt wurde vollstindig erzeugt, bevor
die Referenz in dem Feld, aus dem andere Threads (foo) sie lesen kénnen, »veroffent-
licht« wurde. Doch ohne Synchronisierung gibt es keine Garantie, dass ein Thread, der
eine »verodffentlichte« Objektreferenz liest, auch wirklich alle Daten sieht, die vor der
Veroffentlichung der Referenz gespeichert wurden. Insbesondere garantiert das Lesen
einer veroffentlichten Objektreferenz nicht, dass der Lese-Thread die neuesten Werte
der Daten sieht, die die Interna des referenzierten Objekts ausmachen. Im Allgemeinen
funktioniert das Doppelpriifungsidiom nicht. Es funktioniert nur, wenn die gemein-
sam genutzte Variable statt einer Objektreferenz einen Wert eines Grundtyps speichert
[Pugh 2001b].

Dieses Problem konnen Sie auf mehrere Weisen beheben. Am einfachsten ist es, auf die
faule Initialisierung ganz zu verzichten:

// Normale statische Initialisierung (nicht faul)
private static final Foo foo = new Foo();

public static Foo getFoo() f
return foo;
}

Das funktioniert ganz klar, und die Methode getFoo kénnte gar nicht schneller sein. Es
benoétigt weder Synchronisierung noch Berechnungen. Wie in Thema 37 besprochen,
sollten Sie einfache, klare und richtige Programme schreiben und die Optimierung bis
zum Schluss aufschieben, und Sie sollten nur dann optimieren, wenn Messungen
beweisen, dass dies auch nétig ist. Daher ist es generell am besten, wenn Sie auf die
faule Initialisierung verzichten. Wenn Sie dies tun und dann durch Aufwandsmessun-
gen feststellen, dass es so nicht geht, dann besteht die zweitbeste Losung darin, die
faule Initialisierung mit einer korrekt synchronisierten Methode zu erledigen:

// Korrekt synchronisierte faule Initialisierung
private static Foo foo = null;

public static synchronized Foo getFoo() f{
if (foo == null)

196 9 Threads

foo = new Foo();
return foo;
}

Diese Methode funktioniert garantiert, erfordert aber bei jedem Aufruf einen Synchro-
nisierungsaufwand. Dieser ist jedoch bei modernen JVM-Implementierungen recht
klein. Dennoch: Wenn Sie durch Leistungsmessungen auf Ihrem System festgestellt
haben, dass Sie sich weder eine normale noch eine faule Initialisierung bei jedem
Zugriff leisten konnen, gibt es noch eine andere Moglichkeit. Das Idiom einer Holder-
Klasse fiir bedarfsgerechte Initialisierung eignet sich dann, wenn ein statisches Feld auf-
wandig zu initialisieren ist und eventuell iiberhaupt nicht benétigt wird, aber dann,
wenn es notwendig wird, auch intensiv benutzt wird. Hier ist das Idiom:

// Das Idiom einer Holder-Klasse filir bedarfsgerechte Initialisierung
private static class FooHolder {

static final Foo foo = new Foo();
}

public static Foo getFoo() { return FooHolder.foo; }

Das Idiom zieht Vorteile aus der Garantie, dass eine Klasse erst initialisiert wird, wenn
sie gebraucht wird [JLS, 12.4.1]. Wenn die Methode getFoo erstmals aufgerufen wird,
liest sie das Feld FooHolder.foo und veranlasst die Initialisierung der Klasse FooHolder.
Das Schone an diesem Idiom ist, dass die Methode getFoo unsynchronisiert ist und nur
einen Feldzugriff erledigt. So steigt der Aufwand fiir den Zugriff durch die faule Initi-
alisierung praktisch nicht an. Der einzige Nachteil des Idioms ist, dass es nicht mit
Instanzfeldern, sondern nur mit statischen Feldern funktioniert.

Zusammenfassend kann man sagen: Wann immer mehrere Threads gemeinsam auf
verdnderliche Daten zugreifen, muss jeder Lese- oder Schreib-Thread eine Sperre
erwerben. Lassen Sie sich durch die Garantie fiir atomare Lese- und Schreibvorgédnge
nicht von einer korrekten Synchronisierung abbringen. Ohne Synchronisierung ist
auch nicht garantiert, welche der Anderungen, die ein Thread vorgenommen hat, von
einem anderen Thread beobachtet wird. Unsynchronisierter Datenzugriff kann zu
Lebendigkeits- und Sicherheitsversagen fithren. Solche Versagensfille sind extrem
schwer reproduzierbar. Sie konnen vom Zeitpunkt abhdngen und sind stark von den
JVM-Implementierungsdetails und der Hardware, auf der die JVM lduft, abhédngig.

Der Modifikator volatile ist unter bestimmten Umstinden eine mogliche Alternative
zur normalen Synchronisierung, aber dies ist eine Technik fiir Fortgeschrittene. Uber-
dies wird sich erst nach Abschluss der Revisionsarbeiten am Speichermodell zeigen,
inwieweit sie anwendbar bleiben wird.

Thema 49: Vermeiden Sie libermdBige Synchronisierung 197

9.2 Thema 49: Vermeiden Sie libermaBige Synchronisierung

Thema 48 warnt vor den Gefahren unzureichender Synchronisierung, und das jetzige
Thema behandelt das gegenteilige Problem. Je nach Situation kann ein Ubermaf an
Synchronisierung die Leistung verschlechtern, Deadlocks hervorrufen und sogar
nicht-deterministisches Verhalten verursachen.

Um die Deadlock-Gefahr zu vermeiden, iibergeben Sie in einer synchronisierten
Methode oder einem synchronisierten Block niemals die Steuerung an den Client.
Mit anderen Worten: Rufen Sie in einem synchronisierten Bereich nie eine 6ffentliche
oder geschiitzte Methode auf, die dazu da ist, tiberschrieben zu werden. (Solche
Methoden sind in der Regel abstrakt, haben aber gelegentlich eine konkrete Standard-
implementierung.) Aus der Sicht der Klasse, die den synchronisierten Bereich enthilt,
ist eine solche Methode fremd. Die Klasse weif3 nicht, was die Methode tut, und kann
sie nicht steuern. Ein Client konnte eine Implementierung einer fremden Methode lie-
fern, die einen weiteren Thread erzeugt, der einen Callback der Klasse vornimmt. Der
neu erzeugte Thread kénnte dann versuchen, dieselbe Sperre zu erwerben, die der Ori-
ginal-Thread halt. Dadurch wiirde der neue Thread blockieren. Wenn die Methode, die
ihn erzeugte, darauf wartet, dass er fertig wird, kommt es zu einem Deadlock.

An der folgenden Klasse, die eine Arbeitsschlange implementiert, wird dies konkret. Die
Klasse gibt den Clients die Moglichkeit, Arbeitsschritte fiir eine asynchrone Verarbei-
tung in eine Schlange zu stellen. Die Methode enqueue kann so oft wie notig aufgerufen
werden. Der Konstruktor startet einen Hintergrund-Thread, der Elemente in derselben
Reihenfolge aus der Schlange entfernt, wie sie hinzugekommen waren, und durch
Aufruf der Methode processItem verarbeitet. Wenn die Arbeitsschlange nicht mehr
benotigt wird, ruft der Client die Methode stop auf, damit der Thread nach Abschluss
aller noch laufenden Arbeitsschritte elegant endet.

public abstract class WorkQueue {
private final List queue = new LinkedList();
private boolean stopped = false;

protected WorkQueue() { new WorkerThread().start(); !

public final void enqueue(Object workItem) f{
synchronized (queue) f{
queue.add(workItem);
queue.notify();

}

public final void stop() |

synchronized (queue) f
stopped = true;
queue.notify();

198 9 Threads

}
protected abstract void processItem(Object workItem)
throws InterruptedException;

// Kaputt - ruft fremde Methode in synchronisiertem Block auf!
private class WorkerThread extends Thread f{
public void run() {
while (true) { // Hauptschleife
synchronized (queue) {
try {
while (queue.isEmpty() && !stopped)
queue.wait();
} catch (InterruptedException e) {
return;

J

if (stopped)
return;

Object workItem = queue.remove(0);
try {
processItem(workItem); // Lock held!
} catch (InterruptedException e) |{
return;
}

}

Um diese Klasse zu benutzen, miissen Sie eine Unterklasse mit einer Implementierung
der abstrakten Methode processItem bilden. So gibt z.B. die folgende Unterklasse jeden
Arbeitsschritt aus, aber nicht mehr als einen pro Sekunde, egal wie oft Arbeitsschritte
in die Schlange gestellt werden:

class DisplayQueue extends WorkQueue f{
protected void processItem(Object workItem)
throws InterruptedException f{
System.out.printin(workItem);
Thread.sleep(1000);

}

Da die Klasse WorkQueue die abstrakte Methode processItem aus einem synchronisierten
Block heraus aufruft, kommt es zu einem Deadlock. Die folgende Unterklasse verur-
sacht den Deadlock in der oben beschriebenen Form:

Thema 49: Vermeiden Sie libermdBige Synchronisierung 199

class DeadlockQueue extends WorkQueue f{
protected void processltem(final Object workItem)

throws InterruptedException f

// Erzeuge einen neuen Thread, der workItem zur

// Schlange zuriickgibt

Thread child = new Thread() f
public void run() { enqueue(workItem); !}

Vs

child.start();

child.join(); // Deadlock!

}

Dieses Beispiel ist etwas an den Haaren herbeigezogen, weil es keinen verniinftigen
Grund gibt, warum die processiten-Methode einen Hintergrund-Thread erzeugen
sollte. Aber das Problem ist wirklichkeitsnah. Aus einem synchronisierten Block
heraus Methoden aufzurufen, die von auflen kommen, hat in realen Systemen wie z.B.
GUI-Toolkits schon viele Deadlocks verursacht. Zum Gliick ldsst sich dieses Problem
leicht beheben. Sie verlagern einfach den Methodenaufruf wie hier gezeigt aus dem
synchronisierten Block heraus:

// Fremde Methode auBerhalb eines synchronisierten Blocks
// - "Offener Aufruf"
private class WorkerThread extends Thread f{
public void run() {
while (true) { // Hauptschleife
Object workItem = null;
synchronized (queue) {
try {
while (queue.isEmpty() && !stopped)
queue.wait();
} catch (InterruptedException e) |
return;
}
if (stopped)
return;
workItem = queue.remove(0);
}
try {
processItem(workItem); // Keine Sperre gehalten
} catch (InterruptedException e) {
return;
}

}

Eine fremde Methode, die aufierhalb eines synchronisierten Bereichs aufgerufen wird,
bezeichnet man als offenen Aufruf [Lea 2000, 2.4.1.3]. Offene Aufrufe verhindern nicht
nur Deadlocks, sondern kénnen auch die Nebenldufigkeit stark verbessern. Eine

200 9 Threads

fremde Methode kann beliebig lange laufen. In dieser Zeit wiirde anderen Threads der
Zugriff auf das gemeinsam genutzte Objekt unnétig verweigert, wenn die fremde
Methode in dem synchronisierten Bereich aufgerufen wiirde.

Eine Regel lautet: Tun Sie moglichst wenig Arbeit in synchronisierten Bereichen.
Beschaffen Sie die Sperre, untersuchen Sie die gemeinsam genutzten Daten, wandeln
Sie sie so weit wie nétig um und geben Sie die Sperre wieder frei. Wenn Sie eine zeit-
raubende Aktivitat ausfithren miissen, sollten Sie einen Weg finden, dies aufierhalb des
synchronisierten Bereichs zu tun.

Der Aufruf einer fremden Methode in einem synchronisierten Bereich kann schlim-
mere Abstiirze als Deadlocks hervorrufen, wenn die fremde Methode aufgerufen wird,
wihrend die durch den synchronisierten Bereich geschiitzten Invarianten fiir einen
Moment ihre Giiltigkeit verloren haben. (Das kann nicht in dem Beispiel mit der
kaputten Arbeitsschlange passieren, da die Schlange sich bei Aufruf von processItemin
einem konsistenten Zustand befindet.) Solche Abstiirze kommen nicht vor, wenn aus
der fremden Methode heraus ein neuer Thread erzeugt wird; sie kommen vor, wenn
die fremde Methode selbst einen Callback der defekten Klasse macht. Da Sperren in
Java rekursiv sind, kommt es bei solchen Aufrufen zu keinem Deadlock, sehr wohl aber,
wenn die Aufrufe von einem anderen Thread gemacht werden. Da der aufrufende
Thread die Sperre bereits hilt, hat er Erfolg, wenn er versucht, sie ein zweites Mal zu
erwerben, auch wenn gerade eine andere Operation, die mit dieser konzeptionell gar
nichts zu tun hat, auf den durch die Sperre geschiitzten Daten ausgefiihrt wird. Ein sol-
ches Versagen kann katastrophale Folgen haben. Im Grunde hat die Sperre ihren
Zweck nicht erfiillt. Rekursive Sperren erleichtern zwar die Erstellung von objekt-
orientierten Multithreaded-Programmen, konnen aber auch aus einem Lebendigkeits-
versagen ein Sicherheitsversagen machen.

Im ersten Teil dieses Themas ging es um Nebenlédufigkeitsprobleme. Nun wenden wir
uns der Leistung zu. Der Aufwand fiir Synchronisierungen ist zwar seit der Friihzeit
von Java stark zuriickgegangen, aber ganz verschwinden wird er nie. Wenn eine oft
genutzte Operation unnotig synchronisiert wird, kann sie die Leistung massiv beein-
trachtigen. Nehmen Sie z.B. die Klassen StringBuffer und BufferedInputStream. Sie sind
Thread-sicher (Thema 52), werden aber fast immer nur von einem einzigen Thread
benutzt. Die Sperre, die sie erwirken, ist also normalerweise tiberfliissig. Da sie fein
abgestimmte Methoden unterstiitzen, die auf Ebene einzelner Zeichen oder Bytes
arbeiten, leisten diese Klassen mit den Sperren nicht nur tiberfliissige Arbeit, sondern
auch noch viel zu viel davon. Das kann die Leistung sehr verschlechtern. In einem
Bericht war von einer Leistungseinbufie von 20 Prozent in einer realen Applikation die
Rede [Heydon 1999]. Zwar werden Sie nur selten derart dramatische Leistungsein-
buflen aufgrund von Synchronisierung beobachten, aber fiinf bis zehn Prozent sind
immer moglich.

Thema 49: Vermeiden Sie libermdBige Synchronisierung 201

Man kann zwar argumentieren, dies liege im Bereich der »kleinen Effizienzdinge«, die
wir laut Knuth vergessen konnen (Thema 37). Wenn Sie aber eine Abstraktion auf
niedriger Ebene schreiben, die normalerweise nur von einem einzigen Thread oder als
Komponente eines grofieren, synchronisierten Objekts genutzt werden wird, dann soll-
ten Sie eventuell auf eine interne Synchronisierung der Klasse verzichten. Egal ob Sie
die Klasse synchronisieren oder nicht: Es ist auf jeden Fall wichtig, dass Sie ihre Eigen-
schaften beziiglich der Thread-Sicherheit dokumentieren (Thema 52).

Nicht immer ist klar, ob eine gegebene Klasse interne Synchronisierung durchfiihren
sollte. Aus der Nomenklatur von Thema 52 geht nicht immer deutlich hervor, ob eine
Klasse Thread-sicher oder Thread-kompatibel gemacht werden sollte. Die nachfolgenden
Richtlinien sollen Thnen diese Entscheidung erleichtern.

Wenn Sie eine Klasse schreiben, die sowohl unter Umstdnden, die eine Synchronisie-
rung erfordern, als auch unter Umstédnden, in denen keine Synchronisierung erforder-
lich ist, stark genutzt wird, dann wére es verniinftig, sowohl eine synchronisierte
(Thread-sichere) als auch eine unsynchronisierte (Thread-kompatible) Variante davon
zur Verfligung zu stellen. Dies kénnen Sie z.B. tun, indem Sie eine Hiillenklasse liefern
(Thema 14), die ein Interface implementiert, welches die Klasse beschreibt und die
geeignete Synchronisierung erledigt, bevor sie die Methodenaufrufe an die entspre-
chende Methode des eingehiillten Objekts weiterleitet. Diesen Ansatz verfolgt z.B. das
Collections Framework, und auch java.util.Random hétte ihn besser verfolgen sollen.
Ein zweiter Ansatz, der sich fiir Klassen eignet, die nicht zum Erweitern oder Reimple-
mentieren da sind, ist folgender: Sie liefern eine unsynchronisierte Klasse und eine
Unterklasse, die nur aus synchronisierten Methoden besteht, die ihre Gegenstiicke in
der Oberklasse aufrufen.

Ein guter Grund, eine Klasse intern zu synchronisieren, besteht z.B. dann, wenn sie fiir
stark nebenldufige Nutzung geschrieben ist, und Sie durch eine fein abgestimmte
interne Synchronisierung eine deutlich verbesserte Nebenldufigkeit erzielen kénnen.
So kénnen Sie z.B. eine nicht-grofSenverdnderliche Hash-Tabelle implementieren, die
den Zugriff auf jeden Bucket separat synchronisiert. Dadurch wird die Nebenlaufigkeit
viel besser, als wenn Sie die gesamte Tabelle sperren wiirden, um Zugriff auf einen ein-
zigen Eintrag zu geben.

Wenn eine Klasse oder eine statische Methode von einem verdnderlichen, statischen
Feld abhédngt, muss sie auch dann intern synchronisiert werden, wenn sie normaler-
weise nur von einem einzigen Thread benutzt wird. Anders als bei einer gemeinsam
genutzten Instanz ist es dem Client hier nicht méglich, extern zu synchronisieren, da
nicht garantiert ist, dass andere Clients dasselbe tun werden. Ein Beispiel fiir diese
Situation ist die statische Methode Math. random.

Fazit: Um Deadlock und Datenkorruption zu vermeiden, sollten Sie aus einem syn-
chronisierten Bereich heraus nie eine fremde Methode aufrufen. Allgemeiner ausge-

202 9 Threads

driickt: Versuchen Sie, in synchronisierten Bereichen so wenig Arbeit wie moglich
auszufiithren. Wenn Sie eine verdnderliche Klasse entwerfen, miissen Sie iiberlegen, ob
diese ihre eigene Synchronisierung iibernehmen muss. Wenn Sie die Synchronisierung
beiseite lassen, dann sparen Sie zwar heute nicht mehr viel Zeit, aber doch ein wenig.
Ihre Entscheidung sollte darauf beruhen, ob die Abstraktion hauptsédchlich fiir die
Multithreaded-Verwendung da ist. Bitte dokumentieren Sie Ihren Entschluss klar und
deutlich.

9.3 Thema 50: Rufen Sie wait nie auBBerhalb
einer wait-Schleife auf

Mit der Methode Object.wait veranlassen Sie einen Thread, auf eine Bedingung zu
warten. Sie muss in einem synchronisierten Programmteil aufgerufen werden, der das
Objekt, auf dem sie aufgerufen wird, sperrt. Hier sehen Sie das Standardidiom fiir
die Verwendung der wait-Methode:

synchronized (obj) f
while (<Bedingung gilt nicht>)
obj.wait();

. // Fihre je nach Bedingung eine Aktion aus
}

Verwenden Sie zum Aufruf der wait-Methode immer das Idiom der wait-Schleife.
Rufen Sie sie nie auflerhalb einer Schleife auf. Die Schleife ist dazu da, die Bedingung
vor und nach dem Warten zu testen.

Indem Sie die Bedingung vor dem Warten testen und den Wartevorgang iiberspringen,
wenn die Bedingung bereits eingetreten ist, stellen Sie die Lebendigkeit sicher. Wenn die
Bedingung bereits zutrifft und die Methode notify (oder notifyAll) schon aufgerufen
wurde, bevor ein Thread zu warten beginnt, so gibt es keine Garantie dafiir, dass der
Thread jemals aus seinem Wartezustand erwachen wird.

Sie miissen die Bedingung nach dem Warten testen und erneut warten, falls sie nicht
zutrifft. Dies ist zur Aufrechterhaltung der Sicherheit notwendig. Wenn der Thread
seine Aktion fortsetzt, obwohl die Bedingung nicht zutrifft, kann er die von der Sperre
geschiitzten Invarianten verletzen. Es gibt verschiedene Griinde, weshalb ein Thread
aufwachen kann, wenn die Bedingung nicht zutrifft:

Vielleicht hat ein anderer Thread die Sperre erworben und den geschiitzten
Zustand zwischen dem Zeitpunkt, zu dem ein Thread notify aufrief, und dem Zeit-
punkt, zu dem der wartende Thread aufwachte, gedndert.

Thema 50: Rufen Sie wait nie auBBerhalb einer wait-Schleife auf 203

Vielleicht hat auch ein anderer Thread notify aus Versehen oder mit boser Absicht
zu einer Zeit aufgerufen, zu der die Bedingung nicht zutraf. Wenn Klassen auf
offentlich zugreifbare Objekte warten, setzen sie sich selbst solchen Gefahren aus.
Jeder wait-Aufruf in einer synchronisierten Methode eines 6ffentlich zugreifbaren
Objekts ist potenziell von diesem Problem bedroht.

Eventuell ist der benachrichtigende Thread beim Aufwecken wartender Threads zu
»grofiziigig«. Zum Beispiel muss der benachrichtigende Thread vielleicht notifyAll
aufrufen, obwohl nur fiir einige der wartenden Threads die Bedingung eingetreten
ist.

Gegebenenfalls ist der wartende Thread auch ohne ein notify aufgewacht. Dies
bezeichnet man als grundloses Aufwachen. Obwohl The Java Language Specification
[JLS] diese Moglichkeit nicht erwédhnt, verwenden viele JVM-Implementierungen
Threading-Verfahren, bei denen in seltenen Fillen grundloses Aufwachen vor-
kommt [Posix, 11.4.3.6.1].

Damit hdangt die Frage zusammen, ob Sie wartende Threads mit notify oder notifyAll
aufwecken sollten. (Erinnern Sie sich: notify weckt einen einzigen wartenden Thread,
wenn ein solcher vorhanden ist, und notifyAll weckt alle wartenden Threads.) Oft
wird behauptet, man solle immer notifyAll verwenden. Das ist ein verniinftiger, kon-
servativer Rat, sofern alle wait-Aufrufe innerhalb von while-Schleifen stehen. Es fiihrt
immer zu richtigen Ergebnissen, weil es garantiert, dass Sie die Threads, die geweckt
werden miissen, auch tatsdchlich wecken. Vielleicht wecken Sie dartiber hinaus noch
ein paar andere Threads auf, aber das beeintrachtigt nicht die Richtigkeit Thres Pro-
gramms. Diese Threads priifen die Bedingung, auf die sie warten, und warten weiter,
wenn diese noch nicht zutrifft.

Vielleicht beschliefien Sie, zur Optimierung notify statt notifyA11l aufzurufen, wenn alle
Threads, die in der Wartemenge stehen, auf dieselbe Bedingung warten, und immer
nur ein einziger dieser Threads einen Vorteil davon haben kann, wenn die Bedingung
wahr wird. Beides trifft in trivialer Weise zu, wenn nur ein einziger Thread auf ein
bestimmtes Objekt wartet (wie in dem WorkQueue-Beispiel in Thema 50). Selbst wenn
diese Bedingungen scheinbar zutreffen, kann es auch Griinde geben notifyAll statt
notify aufzurufen. Wie Sie der wait-Aufruf innerhalb einer Schleife gegen boswillige
Benachrichtigungen auf einem o6ffentlichen Objekt schiitzt, so schiitzt Sie die Verwen-
dung von notifyAll statt notify vor versehentlich oder boswillig veranlassten Wartezu-
stdnden seitens eines anderen Threads. Sonst konnten solche Wartezustinde eine
wichtige Benachrichtigung »verschlucken« und ihr Empfanger wartet immer weiter.
Die Methode notifyAll wurde in dem WorkQueue-Beispiel deshalb nicht verwendet, weil
der Arbeits-Thread auf ein privates Objekt (queue) wartet und somit keine Gefahr eines
versehentlich oder boswillig veranlassten Wartens besteht.

204 9 Threads

Der Rat, notifyAll statt notify zu verwenden, hat einen Haken: notifyAll kann zwar
nicht die Richtigkeit, wohl aber die Leistung eines Programms beeintréchtigen. Tat-
sdchlich wiachst der Zeitaufwand bei bestimmten Datenstrukturen im Hinblick auf die
Anzahl der wartenden Threads nicht linear, sondern quadratisch. Davon betroffen sind
solche Datenstrukturen, fiir die zu jedem Zeitpunkt nur eine gewisse Anzahl der
Threads einen Sonderstatus erhalten, wahrend die anderen Threads warten miissen.
Beispiele dafiir sind Semaphoren, Bounded Buffers und Lese-/Schreib-Sperren.

Wenn Sie eine solche Datenstruktur implementieren und jeden Thread aufwecken,
wenn er fiir einen »Sonderstatus« in Frage kommt, dann wecken Sie jeden Thread fiir
insgesamt n Wakeups einmal auf. Falls Sie alle n Threads wecken, wenn nur einer
einen Sonderstatus bekommen kann und die tibrigen -1 Threads wieder warten mdis-
sen, haben Sie am Ende, also zu dem Zeitpunkt, wo alle wartenden Threads einen Son-
derstatus erhalten haben, n + (n - 1) + (n - 2) ... + 1 Wakeups. Die Summe dieser
Folge ist O(nz). Wenn Sie wissen, dass die Anzahl der Threads immer klein bleibt, dann
wirft das in der Praxis vielleicht keine Probleme auf, aber wenn Sie sich dessen nicht so
sicher sind, ist es wichtig, eine selektivere Wakeup-Strategie zu verwenden.

Wenn alle Threads, die den Sonderstatus haben wollen, logisch dquivalent sind, dann
brauchen Sie nur mit Sorgfalt notify statt notifyAll einzusetzen. Wenn jedoch zu jedem
Zeitpunkt nur wenige der wartenden Threads den Sonderstatus bekommen koénnen,
dann miissen Sie ein Muster namens Specific Notification [Cargill 1996, Lea 1999] nut-
zen. Dieses Muster ist nicht Thema dieses Buchs.

Zusammenfassend kann man sagen: Rufen Sie wait immer mit dem Standardidiom
innerhalb einer while-Schleife auf. Es gibt keinen Grund, der dagegen sprache. Norma-
lerweise verwenden Sie besser notifyAll als notify. In manchen Situationen kann
dadurch die Leistung allerdings leiden. Wenn Sie notify benutzen, miissen Sie sehr
darauf achten, dass die Lebendigkeit erhalten bleibt.

9.4 Thema 51: Verlassen Sie sich nicht auf den Thread-Planer

Wenn mehrere Threads lauffihig sind, entscheidet der Thread-Planer dartiber, welcher
Thread als erster laufen darf und wie lange. Jede verniinftige JVM-Implementierung
wird versuchen, bei dieser Entscheidung fair zu sein, aber wie sie das genau macht, ist
je nach Implementierung sehr unterschiedlich. Daher sollten sich gute Multithreaded-
Programme nicht auf die Einzelheiten dieser Strategien verlassen. Ein Programm, des-
sen Richtigkeit oder Leistung von dem Thread-Planer abhingt, ist wahrscheinlich
nicht portierbar.

Am besten schreiben Sie eine stabile, reaktionsschnelle und portierbare Multithreaded-
Applikation, indem Sie sicherstellen, dass zu jedem Zeitpunkt immer nur wenige
Threads lauffahig sind. Dann hat der Thread-Planer keine grofse Wahl: Er fiihrt einfach

Thema 51: Verlassen Sie sich nicht auf den Thread-Planer 205

die lauffdhigen Threads so lange aus, bis sie aufhoren, lauffahig zu sein. So konnen
auch grundverschiedene Thread-Planungsalgorithmen das Verhalten des Programms
kaum beeinflussen.

Die wichtigste Technik, mit der Sie die Anzahl der lauffdhigen Threads klein halten,
besteht darin, jeden Thread nur wenig Arbeit tun zu lassen und dann mit Object.wait
auf eine Bedingung oder mit Thread.sleep auf das Verstreichen einer gewissen Zeit zu
warten. Threads sollten nur selten mit busy-wait immer wieder eine Datenstruktur prii-
fen und darauf warten, dass etwas geschieht. Das kann das Programm nicht nur fiir
die Launen des Planers anfillig machen, sondern auch die Prozessorlast erhéhen,
wodurch die Menge an niitzlicher Arbeit, die andere Prozesse auf demselben Compu-
ter ausfiihren kénnen, zurtickgeht.

Das Arbeitsschlangenbeispiel in Thema 49 befolgt diese Ratschlige: Wenn die vom
Client gelieferte processItem-Methode sich gut verhilt, dann verbringt der Arbeits-
Thread seine meiste Zeit damit, auf einem Monitor darauf zu warten, dass die
Schlange nicht leer wird. Als extrem abschreckendes Beispiel sollten Sie sich einmal
diese perverse Neuimplementierung von WorkQueue ansehen, die busy-wait statt eines
Monitors verwendet:

// Entsetzliches Programm - benutzt busy-wait statt Object.wait!
public abstract class WorkQueue f{

private final List queue = new LinkedlList();

private boolean stopped = false;

protected WorkQueue() { new WorkerThread().start(); }

public final void enqueue(Object workItem) {
synchronized (queue) { queue.add(workItem); !
}
public final void stop() |
synchronized (queue) { stopped = true; |
}
protected abstract void processItem(Object workItem)
throws InterruptedException;
private class WorkerThread extends Thread f{
public void run() {
final Object QUEUE_IS_EMPTY = new Object();
while (true) { // Hauptschleife
Object workItem = QUEUE_IS_EMPTY;
synchronized (queue) f
if (stopped)
return;
if (lqueue.isEmpty())
workItem = queue.remove(0);
}

if (workItem != QUEUE_IS_EMPTY) {

206 9 Threads

try f{
processItem(workItem);

} catch (InterruptedException e) |
return;

}

}

Damit Sie eine Vorstellung davon bekommen, was Sie eine solche Implementierung
kostet, werfen Sie einen Blick auf die folgende Mini-Benchmark, die zwei Arbeits-
schlangen erzeugt und eine Arbeit zwischen ihnen hin- und herschiebt. (Bei dieser
Arbeit handelt es sich um eine Referenz auf die jeweils letzte Schlange, die als eine Art
Riickgabeadresse fungiert.) Das Programm lduft vor Beginn der Messungen zehn
Sekunden, damit sich das System »aufwédrmen« kann. Dann z&hlt es die Anzahl der
Rundreisen von Schlange zu Schlange in den folgenden zehn Sekunden. Auf meinem
Computer macht die Endversion der in Thema 49 besprochenen WorkQueue 23.000
Rundreisen, wéihrend die perverse Implementierung oben nur 17 Rundreisen pro
Sekunde schafft:

class PingPongQueue extends WorkQueue {
volatile int count = 0;

protected void processItem(final Object sender) {
count++;
WorkQueue recipient = (WorkQueue) sender;
recipient.enqueue(this);

public class WaitQueuePerf {
public static void main(Stringl] args) f{
PingPongQueue ql = new PingPongQueue();
PingPongQueue q2 = new PingPongQueue();
gl.enqueue(qg2); // Starte das System

// Gib dem System 10 Aufwdrmsekunden.
try f{
Thread.sleep(10000);
} catch (InterruptedException e) {
}

// Messe die Anzahl der Rundreisen in 10 Sekunden.
int count = ql.count;
try f{

Thread.sleep(10000);

Thema 51: Verlassen Sie sich nicht auf den Thread-Planer 207

} catch (InterruptedException e) {
}
System.out.printin(qgl.count - count);

gl.stop();
g2.stop();

}

Die WorkQueue-Implementierung oben mag zwar ein bisschen an den Haaren herbeige-
zogen aussehen, aber es kommt gar nicht so selten vor, dass Multithreaded-Systeme
einen oder mehrere Threads unnétigerweise lauffdhig halten. Die Folgen mogen nicht
so extrem wie die hier gezeigten sein, aber die Leistung und Portierbarkeit sind den-
noch beeintrachtigt.

Wenn Sie mit einem Programm konfrontiert sind, das kaum lauft, weil einige seiner
Threads im Verhilinis zu anderen nicht geniigend Prozessorzeit bekommen, dann
»reparieren« Sie es nicht, indem Sie Thread.yield-Aufrufe einbauen. Damit bringen
Sie zwar vielleicht das Programm wieder zum Laufen, erhalten aber vom Leistungs-
standpunkt her gesehen ein nicht-portierbares Programm. Dieselben yield-Aufrufe,
die auf der einen JVM-Implementierung die Leistung steigern, konnen sie auf einer
anderen schmaélern und auf einer dritten ganz wirkungslos bleiben. Thread.yield hat
keine Semantik, die sich testen liefse. Besser ist es, Sie @ndern die Struktur der Applika-
tion und reduzieren die Anzahl der nebenldufig lauffahigen Threads.

Eine dhnliche Technik mit dhnlichen Tiicken ist die Anpassung der Thread-Priorititen.
Thread-Priorititen gehdren zu den am wenigsten portierbaren Eigenschaften der
Java-Plattform. Es ist zwar nicht unverniinftig, die Reaktionsschnelligkeit einer Applika-
tion zu tunen, indem Sie ein paar Thread-Prioritaten &ndern, aber es ist auch kaum jemals
notig und die Ergebnisse sind auf jeder JVM-Implementierung andere. Sie kénnen kein
ernsthaftes Lebendigkeitsproblem l6sen, indem Sie Thread-Priorititen anpassen. Das
Problem wiirde nur immer wiederkehren, bis Sie die Wurzel des Ubels behoben haben.

Die meisten Programmierer werden aus Thread.yield allenfalls den einen Vorteil
ziehen konnen, dass es beim Testen die Nebenldufigkeit des Programms kiinstlich
erhoht. Das fordert Fehler zu Tage, indem es einen grofleren Teil des Zustandsraums
des Programms auslotet. Dadurch wichst das Vertrauen auf die Richtigkeit des Sys-
tems. Diese Technik hat sich als sehr wirkungsvoll erwiesen, wo es darum ging, subtile
Nebenlaufigkeitsfehler zu finden.

Fazit: Machen Sie die Richtigkeit Threr Applikation nicht von dem Thread-Planer
abhéngig, denn sonst erhalten Sie ein Programm, das weder stabil noch portabel ist.
Verlassen Sie sich auch nicht auf Thread.yield oder Thread-Priorititen Diese Sachen
sind nur Hinweise fiir den Planer. Sie konnen sie gezielt einsetzen, um die Qualitat
eines Dienstes einer bereits laufenden Implementierung zu verbessern, aber niemals,
um ein Programm zu »reparieren«, das kaum lduft.

208 9 Threads

9.5 Thema 52: Dokumentieren Sie die Thread-Sicherheit

Wie sich eine Klasse verhélt, deren Instanzen oder statische Methoden nebenldufig
genutzt werden, ist ein wichtiger Teil des Vertrags, den diese Klasse mit ihren Clients
schliefst. Wenn Sie diesen Teil des Verhaltens einer Klasse nicht dokumentieren, konnen
die Programmierer, die die Klasse nutzen, dariiber nur Mutmafiungen anstellen. Wenn
diese Mutmafiungen falsch sind, dann kann das Programm zu wenig oder zu viel Syn-
chronisierung an den Tag legen (Themen 48 und 49). Beides kann zu schwerwiegenden
Fehlern fiihren.

Manchmal wird behauptet, die Benutzer konnten die Thread-Sicherheit einer Methode
feststellen, indem sie in der Javadoc-Dokumentation nachschauen, ob der Modifikator
synchronized vorhanden ist. Das ist aus mehreren Griinden falsch: Das Dienstpro-
gramm Javadoc zeigte zwar vor der Version 1.2 in seiner Ausgabe den Modifikator
synchronized an, aber dies nur aufgrund eines Fehlers, der nun behoben ist. Die Anwe-
senheit des synchronized-Modifikators in einer Methodendeklaration ist ein Imple-
mentierungsdetail und nicht Teil des exportierten APIs. Der Modifikator zeigt nicht
zuverldssig an, dass eine Methode Thread-sicher ist, und er kann sich von Release zu
Release dndern.

Ja mehr noch: Die Behauptung, das Schliisselwort synchronized geniige bereits, um
Thread-Sicherheit zu dokumentieren, beruht auf der verbreiteten Fehlannahme,
Thread-Sicherheit sei eine Alles-oder-Nichts-Eigenschaft. Doch in Wirklichkeit kann
eine Klasse viele Ebenen von Thread-Sicherheit unterstiitzen. Um eine sichere Nut-
zung mit mehreren Threads zu gestatten, muss eine Klasse klar dokumentieren,
welche Ebene der Thread-Sicherheit sie unterstiitzt.

Die folgende Liste fasst die Ebenen der Thread-Sicherheit zusammen, die eine Klasse
unterstiitzen kann. Diese Liste erhebt keinen Anspruch auf Vollstindigkeit, sondern
deckt nur die haufigen Falle ab. Die Namen in dieser Liste sind keine Standardnamen,
da es auf diesem Gebiet keine allgemein anerkannten Konventionen gibt:

unverinderbar: Instanzen der Klasse erscheinen ihren Clients konstant. Es ist keine
externe Synchronisierung erforderlich. Beispiele: String, Integer, BigInteger (Thema
13).

Thread-sicher: Instanzen der Klasse sind verdnderlich, aber alle Methoden sind
ausreichend intern synchronisiert, um Instanzen nebenldufig nutzen zu konnen,
ohne dass eine externe Synchronisierung erforderlich wird. Nebenlaufige Aufrufe
sehen so aus, als wiirden sie seriell in einer allgemein giiltigen Reihenfolge abgear-
beitet. Beispiele: Random, java.util.Timer.

bedingt Thread-sicher: Ebenso wie Thread-sicher, allerdings enthdlt die Klasse
(oder eine mit ihr verbundene Klasse) Methoden, die der Reihe nach aufgerufen
werden miissen, ohne dass andere Threads dazwischenkommen diirfen. Um dies

Thema 52: Dokumentieren Sie die Thread-Sicherheit 209

zu verhindern, muss der Client fiir die Dauer der Sequenz eine geeignete Sperre
erwerben. Beispiele: Hashtable und Vector, deren Iteratoren eine externe Synchroni-
sierung erfordern.

Thread-kompatibel: Instanzen der Klasse konnen sicher nebenldufig genutzt
werden, wenn Sie jeden Methodenaufruf (und in manchen Fillen jede Metho-
denaufrufsequenz) mit externer Synchronisierung umgeben. Beispiele sind die All-
zweckimplementierungen von Sammlungen wie z.B. ArrayList und HashMap.

Thread-feindlich: Die Klasse ist fiir die nebenldufige Benutzung durch mehrere
Threads selbst dann nicht sicher, wenn alle Methodenaufrufe mit externer Synchro-
nisierung umgeben sind. Thread-Feindlichkeit ergibt sich normalerweise dann,
wenn Methoden statische Daten modifizieren, die andere Threads beeinflussen.
Zum Glick gibt es nur sehr wenige Thread-feindliche Klassen oder Methoden in
den Plattformbibliotheken. Die Thread-feindliche Methode System.runFinalizers
OnExit wurde ausgemustert.

Die Dokumentation einer bedingt Thread-sicheren Klasse erfordert Sorgfalt. Sie miis-
sen anzeigen, welche Aufrufsequenzen eine externe Synchronisierung erfordern und
welche Sperre (oder, in seltenen Fillen: welche Sperren) erworben werden muss, um
einen nebenldufigen Zugriff auszuschliefSen. In der Regel ist dies die Sperre auf der
Instanz selbst, aber davon gibt es auch Ausnahmen. Wenn ein Objekt eine alternative
View auf ein anderes Objekt darstellt, muss der Client eine Sperre auf das dahinter ste-
hende Objekt erwerben, damit keine direkten Anderungen an diesem méglich sind. So
sollte z.B. die Dokumentation fiir Hashtable.keys in etwa Folgendes aussagen:

»Wenn auch nur entfernt die Gefahr besteht, dass ein anderer Thread diese Hash-
Tabelle modifizieren konnte, konnen Sie nur dann in sicherer Form ihre Schliissel mit
einer Aufzdhlung durchlaufen, wenn Sie vor dem Aufruf der Aufzdhlungsmethode
die Hashtable-Instanz sperren und die Sperre so lange aufrecht erhalten, bis Sie damit
fertig sind. Sie tun dies mithilfe der zuriickgegebenen Enumeration wie folgt:

Hashtable h = ...;

synchronized (h) {
for (Enumeration e = h.keys(); e.hasMoreElements();)
f(e.nextElement());
}

Seit dem Release 1.3 steht dies nicht mehr in der Dokumentation zu Hashtable, doch
hoffentlich wird dieser Mangel bald behoben. Ganz generell sollten die Java-Plattform-
bibliotheken ihre Thread-Sicherheit noch besser dokumentieren.

Die Verpflichtung, ein gesperrtes Objekt mit 6ffentlichem Zugriff zu benutzen, ermég-
licht es den Clients zwar, ohne Unterbrechung eine Methodenaufrufsequenz abzuar-

210 9 Threads

beiten, aber diese Flexibilitat hat auch ihren Preis. Ein boswilliger Client konnte eine
Denial-of-Service-Attacke starten, indem er einfach nur die Sperre auf dem Objekt auf-
recht erhalt.

// Denial-of-Service-Attacke
synchronized (importantObject) f{

Thread.sleep(Integer.MAX_VALUE); // Deaktiviere importantObject
}

Wenn Thnen diese Denial-of-Service-Attacke Sorgen bereitet, sollten Sie die Opera-
tionen mit einem privaten Sperrobjekt synchronisieren:

// Idiom: privates Sperrobjekt vereitelt Denial-of-Service-Attacke
private Object lock = new Object();

public void foo() {
synchronized(lock) f{

}
}

Da die Sperre auf einem Objekt erworben wird, auf das Clients keinen Zugriff haben,
ist das enthaltende Objekt gegen die oben gezeigte Denial-of-Service-Attacke gefeit.
Beachten Sie, dass bedingt Thread-sichere Klassen immer fiir solche Attacken anfallig
sind, denn sie miissen dokumentieren, welche Sperre erworben werden muss, um
Operationssequenzen atomar auszufithren. Allerdings konnen Sie Thread-sichere
Klassen mit dem Privates-Sperrobjekt-Idiom vor dieser Attacke schiitzen.

Besonders in Klassen, die fiir die Vererbung entworfen wurden, eignen sich interne
Objekte zum Sperren (Thema 15). Ein Beispiel dafiir ist die Klasse WorkQueue aus Thema 49.
Wiirde die Oberklasse ihre Instanzen zum Sperren verwenden, so konnte eine Unter-
klasse versehentlich die Arbeit dieser Oberklasse storen. Indem sie dieselbe Sperre fiir
verschiedene Zwecke einsetzen, konnten die Ober- und die Unterklasse sich »gegenseitig
auf die Fiifse treten«.

Zusammenfassend kann man sagen, dass jede Klasse ihre Eigenschaften beziiglich der
Thread-Sicherheit klar dokumentieren sollte. Das geht nur mit sorgfaltig formulierten
Prosabeschreibungen. Der Modifikator synchronized spielt fiir die Dokumentation der
Thread-Sicherheit einer Klasse keine Rolle. Es ist allerdings wichtig, dass bedingt
Thread-sichere Klassen dokumentieren, welches Objekt gesperrt werden muss, damit
Methodenaufrufsequenzen atomar ausgefithrt werden koénnen. Im Allgemeinen
gehort die Beschreibung der Thread-Sicherheit einer Klasse in den Dokumentations-
kommentar zu dieser Klasse, aber Methoden mit speziellen Thread-Sicherheitseigen-
schaften sollten diese in eigenen Dokumentationskommentaren beschreiben.

Thema 53: Vermeiden Sie Thread-Gruppen 211

9.6 Thema 53: Vermeiden Sie Thread-Gruppen

Neben Threads, Sperren und Monitoren sind Thread-Gruppen eine weitere Basis-
abstraktion des Threading-Systems. Urspriinglich sollten Thread-Gruppen Mechanis-
men sein, mit denen Applets aus Sicherheitsgriinden isoliert werden sollten. Dieses
Versprechen haben sie nie eingeldst und ihre Bedeutung fiir die Sicherheit ist so gering,
dass sie im Grundlagenwerk iiber das Sicherheitsmodell von Java 2 [Gong 1999] noch
nicht einmal erwdhnt werden.

Doch wenn Thread-Gruppen schon keine nennenswerte Sicherheitsfunktion haben,
welche Funktion haben sie dann iiberhaupt? Naherungsweise kann man sagen: Sie
ermoglichen es Ihnen, Thread-Grundoperationen auf mehrere Threads zugleich anzu-
wenden. Mehrere dieser Grundoperationen wurden verworfen und die iibrigen wer-
den nur selten benutzt. Per Saldo bieten Thread-Gruppen eigentlich kaum niitzliche
Funktionen.

Spafligerweise ist das ThreadGroup-API ausgerechnet im Hinblick auf die Thread-Sicher-
heit schwach. Um eine Liste der aktiven Threads in einer Thread-Gruppe zu bekom-
men, miissen Sie die enumerate-Methode aufrufen, die als Parameter ein Array
entgegennimmt, das grofi genug ist, um alle aktiven Threads aufzunehmen. Die
Methode activeCount gibt die Anzahl der aktiven Threads in einer Thread-Gruppe
zuriick, aber es besteht keine Garantie dafiir, dass diese Zahl auch dann noch stimmt,
wenn ein Array reserviert und an die enumerate-Methode iibergeben wurde. Ist das
Array zu klein, so wird die enumerate-Methode irgendwelche weiteren Threads still-
schweigend iibergehen.

Das API, mit dem Sie eine Liste der Teilgruppen einer Thread-Gruppe holen, hat 4hn-
liche Mangel. Diese Probleme hitte man zwar durch Hinzufligung neuer Methoden
beheben konnen, aber da es dafiir keinen wirklichen Bedarf gibt, ist dies unterblieben.
Thread-Gruppen sind im Grofien und Ganzen obsolet geworden.

Insgesamt bieten Thread-Gruppen kaum etwas Nutzbares, und das, was sie bieten, ist
mangelhaft. Am besten betrachten Sie Thread-Gruppen als ein fehlgeschlagenes Expe-
riment und vergessen sie ganz schnell wieder. Wenn Sie eine Klasse entwerfen, die mit
logischen Gruppen von Threads umgeht, speichern Sie einfach die Thread-Referenzen,
aus denen jede logische Gruppe besteht, in einem Array oder einer Sammlung. Ein
aufmerksamer Leser kOnnte nun einwenden, dass dieser Rat scheinbar dem aus
Thema 30 wiederspricht, der besagt: »Lernen Sie die Bibliotheken kennen und nutzen
Sie sie.« Doch in diesem Fall ist der Rat aus Thema 30 falsch.

Es gibt eine winzige Ausnahme von der Regel, dass Sie Thread-Gruppen vergessen
sollten. Ein kleines Stiickchen Funktionalitdt steht einzig im ThreadGroup-API zur
Verftigung: Die Methode ThreadGroup.uncaughtException wird automatisch aufgerufen,
wenn ein Thread der Gruppe eine nicht-abgefangene Ausnahme auslost. Diese

212 9 Threads

Methode wird von der »Ausfiihrungsumgebung« dazu genutzt, angemessen auf nicht-
abgefangene Ausnahmen zu reagieren. Die Standardimplementierung gibt einen
Stacktrace in den Standardfehlerstrom aus. Gelegentlich méchten Sie vielleicht diese
Implementierung tiberschreiben, um z.B. den Stacktrace in ein applikationsspezifi-
sches Protokoll zu leiten.

|0 Serialisierung

Dieses Kapitel behandelt das API zur Objektserialisierung. Dieses API ermoglicht die
Kodierung von Objekten als Bytestrome und ihre anschlieffende Rekonstruktion aus
diesen Bytetstrom-Kodierungen. Die Kodierung eines Objekts als Bytestrom nennt
man Serialisierung und den umgekehrten Vorgang Deserialisierung. Wenn das Objekt
serialisiert wurde, konnen Sie seine Kodierung von einer laufenden VM zu einer ande-
ren iibermitteln oder zur spateren Deserialisierung auf der Platte speichern. Die Seria-
lisierung ist die Standard-Objektdarstellung zur Leitungsiibertragung im Rahmen
einer Remote-Kommunikation und das Standardformat fiir persistente Daten in der
JavaBeans"'-Komponentenarchitektur.

10.1 Thema 54: Implementieren Sie Serializable mit Vorsicht

Sie konnen die Instanzen einer Klasse ganz einfach serialisierbar machen, indem Sie
der Klassendeklaration die Worte »implements Serializable«hinzufitigen. Da das so
leicht ist, glauben viele Programmierer, dass Serialisierung ihnen wenig Arbeit macht.
Doch in Wahrheit ist es nicht so einfach. Zunachst ist der Aufwand, eine Klasse seriali-
sierbar zu machen, vielleicht vernachlissigbar, aber auf lange Sicht ist er oft betracht-
lich.

Ein wichtiger Kostenfaktor beim Implementieren von Serializable besteht darin,
dass es Thnen die Flexibilitit nimmt, die Implementierung einer Klasse nach ihrer
Verdffentlichung noch zu dndern. Wenn eine Klasse Serializable implementiert, dann
wird ihre Bytestrom-Kodierung (oder ihre serialisierte Form) Teil ihres exportierten
APIs. Haben Sie die Klasse erst iiberall verbreitet, so sind Sie gezwungen, die seriali-
sierte Form in alle Ewigkeit zu unterstiitzen, genau wie andere Teile des exportierten
APIs auch. Wenn Sie sich nicht die Miithe machen, eine eigene serialisierte Form zu ent-
werfen, sondern einfach die Voreinstellung akzeptieren, dann bleibt die serialisierte
Form fiir immer an die urspriingliche interne Reprasentation der Klasse gebunden.
Mit anderen Worten: Wenn Sie die serialisierte Standardform annehmen, werden die
privaten und paketprivaten Instanzfelder der Klasse Teil ihres exportierten APIs und
die Praxis, den Zugriff auf Felder zu minimieren (Thema 12), verliert ihre Wirkung als
Mittel zum Verbergen von Informationen.

214 10 Serialisierung

Wenn Sie die serialisierte Standardform akzeptieren und spater die interne Représenta-
tion der Klasse &ndern, kann dies zu einer inkompatiblen Anderung der serialisierten
Form fiithren. Clients, die eine Instanz mit der alten Version der Klasse zu serialisieren
und mit ihrer neuen Version zu deserialisieren versuchen, werden Opfer von Programm-
abstiirzen. Es ist zwar moglich, die interne Reprasentation zu &ndern und die urspriing-
liche serialisierte Form beizubehalten (mittels ObjectOutputStream.putFields und
ObjectInputStream.readFields), aber das kann schwierig sein und sichtbare Unschonhei-
ten im Quellcode hinterlassen. Daher sollten Sie sorgféltig eine hochwertige serialisierte
Form entwickeln, mit der Sie auch auf lange Sicht leben kénnen (Thema 55). Das macht
zwar die Entwicklung teurer, aber es lohnt sich. Selbst eine gut entworfene serialisierte
Form schrénkt die Entwicklungsmoglichkeiten einer Klasse ein, aber eine schlecht ent-
worfene kann die Klasse regelrecht verstiimmeln.

Ein einfaches Beispiel fiir die Einschrankungen, die eine Serialisierung fiir die Weiter-
entwicklung bedeutet, sind die so genannten »Strom-eindeutigen Bezeichner«, besser
bekannt als Serienversion-UIDs. Jeder serialisierbaren Klasse ist eine eindeutige Identifi-
kationsnummer zugeordnet. Wenn Sie diese nicht explizit spezifizieren, indem Sie ein
private static final long-Feld namens serialVersionUID deklarieren, generiert das Sys-
tem sie automatisch, indem es eine komplexe deterministische Prozedur auf die Klasse
anwendet. Der automatisch generierte Wert wird beeinflusst von dem Namen der
Klasse, den Namen der Interfaces, die sie implementiert und all ihren 6ffentlichen und
geschiitzten Attributen. Wenn Sie eines dieser Dinge in irgendeiner Weise éndern,
indem Sie z.B. eine triviale Bequemlichkeitsmethode hinzufiigen, dann &ndert sich
auch die Seriennummer-UID. Wenn Sie keine explizite Seriennummer-UID deklarie-
ren, geht die Kompatibilitédt verloren.

Ein zweiter Kostenfaktor beim Implementieren von Serializable ist der, dass es die
Wahrscheinlichkeit von Fehlern und Sicherheitslochern erhoht. Normalerweise wer-
den Objekte mit Konstruktoren erzeugt. Die Serialisierung ist ein auflersprachlicher
Mechanismus zum Erzeugen von Objekten. Egal ob Sie das Standardverhalten akzeptie-
ren oder {iberschreiben, die Deserialisierung ist ein »verborgener Konstruktor«, der
dieselben Fragen aufwirft wie jeder andere Konstruktor auch. Da kein expliziter Kon-
struktor vorliegt, vergisst man leicht, sicherzustellen, dass auch die Deserialisierung
alle Invarianten garantiert, die durch die echten Konstruktoren eingefiihrt wurden,
und dass sie keinem Angreifer erlaubt, Zugriff auf die Interna des zu konstruierenden
Objekts zu erlangen. Wenn Sie sich auf den standardmafSigen Deserialisierungsmecha-
nismus verlassen, dann konnen Objekte leicht Opfer von Invariantenkorruption oder
unberechtigtem Zugriff werden (Thema 56).

Ein dritter Kostenfaktor beim Implementieren von Serializable ergibt sich daraus,
dass es den Testaufwand fiir eine neue Version der Klasse erhoht. Wenn eine seriali-
sierbare Klasse tiberarbeitet wird, ist es wichtig zu priifen, dass es moglich ist, eine
Instanz in der neuen Version zu serialisieren und in der alten zu deserialisieren und

Thema 54: Implementieren Sie Serializable mit Vorsicht 215

umgekehrt. Der Testaufwand ist also proportional zum Produkt aus der Anzahl der
serialisierbaren Klassen und der Anzahl der Releases, und die kann hoch sein. Diese
Tests konnen Sie nicht automatisch einrichten, da Sie nicht nur die Bindrkompatibilitiit,
sondern auch die semantische Kompatibilitit testen miissen. Mit anderen Worten miissen
Sie sicherstellen, dass der Serialisierungs-/Deserialisierungsprozess sowohl Erfolg hat
als auch ein getreues Ebenbild des Originalobjekts hervorbringt. Je grofer die Ande-
rung an einer serialisierbaren Klasse, umso mehr muss getestet werden. Die Testerfor-
dernisse schrumpfen, wenn schon beim Schreiben der Klasse eine eigene serialisierte
Form sorgfaltig entwickelt wurde (Thema 55), aber ganz ohne Testen kommen Sie nie
aus.

Die Entscheidung, das Interface Serializable zu implementieren, sollten Sie nicht
auf die leichte Schulter nehmen. Sie hat echte Vorteile: Sie ist entscheidend, wenn eine
Klasse Teil einer Architektur sein soll, die sich in Fragen der Objektiibermittlung oder
Persistenz auf Serialisierung stiitzt. Aufserdem erleichtert sie die Verwendung einer
Klasse als Komponente einer anderen Klasse, die Serializable implementieren muss.
Doch es bedeutet auch viel Aufwand, Serializable zu implementieren. Immer, wenn
Sie eine Klasse implementieren, sollten Sie daher Kosten und Nutzen gegeneinander
abwégen. Als Faustregel gilt: Wertklassen wie Date und BigInteger sollten Serializable
implementieren, und ebenso die meisten Sammlungsklassen. Klassen, die aktive
Entititen darstellen, z.B. Thread-Pools, sollten Serializable nur in Ausnahmefillen
implementieren. Da es seit dem Release 1.4 einen auf XML beruhenden Persistenz-
mechanismus fiir JavaBeans gibt, brauchen Beans nun Serializable nicht mehr zu
implementieren.

Klassen, die fiir die Vererbung da sind (Thema 15), sollten Serializable nur selten
implementieren und Interfaces sollten es nur selten erweitern. Ein Verstoff gegen
diese Regel bedeutet eine grofie Last fiir jeden, der die Klasse erweitert oder das Inter-
face implementiert. Manchmal ist ein solcher Verstoff jedoch auch angebracht, z.B.
dann, wenn eine Klasse oder ein Interface speziell dazu da ist, in einem Framework zu
arbeiten, dessen Bestandteile alle Serializable implementieren miissen. Dann ist es
ganz sinnvoll, dass die betreffende Klasse oder das Interface ebenfalls Serializable
implementiert oder erweitert.

Die Entscheidung, nicht zu implementieren, hat eine Tiicke: Wenn eine fiir die Ver-
erbung entworfene Klasse nicht serialisierbar ist, dann wird es vielleicht unmoglich,
eine serialisierbare Unterklasse zu schreiben. Dies gilt insbesondere dann, wenn die
Oberklasse keinen erreichbaren, parameterlosen Konstruktor zur Verfiigung stellt.
Daher sollten Sie nicht-serialisierbare Klassen, die fiir die Vererbung da sind, mit
einem parameterlosen Konstruktor ausstatten. Das geht oft ganz miihelos, weil viele
solche Klassen keinen Zustand haben. Das gilt allerdings nicht in jedem Fall.

216 10 Serialisierung

Am besten erzeugen Sie Objekte so, das alle ihre Invarianten bereits fertig eingerichtet
sind (Thema 13). Wenn Sie dazu Client-Informationen benétigen, ist die Verwendung
eines parameterlosen Konstruktors von vorneherein ausgeschlossen. Sollten Sie einer
Klasse, deren iibrige Konstruktoren ihre Invarianten einrichten, arglos einen parame-
terlosen Konstruktor und eine Initialisierungsmethode hinzufiigen, so verkomplizie-
ren Sie damit den Zustandsraum der Klasse und die Fehlerwahrscheinlichkeit steigt.

Hier sehen Sie, wie Sie einer nicht-serialisierbaren, erweiterbaren Klasse einen para-
meterlosen Konstruktor geben konnen, ohne diese Nachteile in Kauf zu nehmen.
Angenommen, die Klasse hat einen einzigen Konstruktor:

public AbstractFoo(int x, int y) { ... |}

Die folgende Umformung fiigt einen geschiitzten, parameterlosen Konstruktor und
eine Initialisierungsmethode hinzu. Die Initialisierungsmethode hat dieselben Para-
meter wie der normale Konstruktor und richtet auch dieselben Invarianten ein:

// Nicht-serialisierbare zustandshaltige Klassen, die
// eine serialisierbare Unterklasse gestatten
public abstract class AbstractFoo f{

private int x, y; // Zustand

private boolean initialized = false;

public AbstractFoo(int x, int y) { initialize(x, y); }

/**

* Dieser Konstruktor und die nachfolgende Methode machen es
* moglich, dass die readObject-Methode der Unterklasse den
* internen Zustand initialisieren kann.

*/

protected AbstractFoo() { !

protected final void initialize(int x, int y) |
if (initialized)
throw new I1legalStateException(
"Bereits initialisiert");
this.x = x;
this.y = vy;
. // Tue den Rest der Arbeit des Originalkonstruktors

initialized = true;

/**

* Diese Methoden geben Zugriff auf den internen Zustand, damit
* er manuell von der writeObject-Methode der Unterklasse

* serialisiert werden kann.

*/

protected final int getX() { return x; |

protected final int getY() { return y; |}

Thema 54: Implementieren Sie Serializable mit Vorsicht 217

// Muss von allen &ffentlichen Instanzmethoden
// aufgerufen werden
private void checkInit() throws I1legalStateException f{
if (linitialized)
throw new I1legalStateException("Nicht initialisiert");

. // Rest wurde weggelassen

}

Alle Instanzmethoden in AbstractFoo miissen checkInit aufrufen, ehe sie ihre Arbeit
beginnen. Damit ist sichergestellt, dass Methodenaufrufe rasch und sauber scheitern,
wenn eine schlecht geschriebene Unterklasse eine Instanz nicht initialisiert. Wenn Sie
diesen Mechanismus haben, ist es recht einfach, eine serialisierbare Unterklasse zu
implementieren.

// Serialisierbare Unterklasse einer nicht-serialisierbaren,
// zustandshaltigen Klasse
public class Foo extends AbstractFoo implements Serializable f{
private void readObject(ObjectInputStream s)
throws I[0Exception, ClassNotFoundException f{
s.defaultReadObject();

// Deserialisiere und initialisiere den
// Oberklassenzustand manuell.

int x = s.readInt();

int y = s.readInt();

initialize(x, y);

private void writeObject(ObjectOutputStream s)
throws I0Exception f{
s.defaultWriteObject();

// Serialisiere den Oberklassenzustand manuell
s.writelnt(getX());
s.writelnt(getY());

// Der Konstruktor nutzt keinen dieser schonen Mechanismen
public Foo(int x, int y) { super(x, y); }
}

Innere Klassen (Thema 18) sollten wenn iiberhaupt nur selten Serializable imple-
mentieren. Sie verwenden vom Compiler generierte synthetische Felder, um Referenzen
auf die umschlieflenden Instanzen und Werte lokaler Variablen aus umschliefSlenden Giil-
tigkeitsbereichen zu speichern. Wie diese Felder zur Klassendefinition passen, wird
ebenso wenig spezifiziert wie die Namen anonymer und lokaler Klassen. Daher ist die
standardmaifSige serialisierte Form einer inneren Klasse schlecht definiert. Eine stati-
sche Attributklasse kann jedoch Serializable implementieren.

218 10 Serialisierung

Fazit: Serializable ist nur scheinbar einfach zu implementieren. Wenn Sie Ihre Klasse
nicht nach kurzem Gebrauch wegwerfen mochten, dann bedeutet die Implementie-
rung von Serializable eine ernste Verpflichtung, die Sie sorgféltig abwégen sollten.
Besondere Vorsicht ist angebracht, wenn eine Klasse fiir die Vererbung entworfen
wurde. Fiir solche Klassen gibt es ein Mittelding zwischen der Implementierung und
dem Verbot von Serializable in Unterklassen: Sie stellen einen zugreifbaren, parame-
terlosen Konstruktor zur Verfligung. So konnen Unterklassen Serializable implemen-
tieren, sind aber nicht dazu gezwungen.

10.2 Thema 55: Ziehen Sie die Nutzung einer eigenen
serialisierten Form in Erwagung

Wenn Sie unter Zeitdruck eine Klasse schreiben, dann ist es im Allgemeinen gut, wenn
Sie Ihre Kréfte auf den bestméglichen API-Entwurf konzentrieren. Manchmal bedeutet
dies, dass Sie eine »Wegwerfimplementierung« verdffentlichen, von der Sie bereits
wissen, dass sie in einem zukiinftigen Release ersetzt werden wird. Normalerweise ist
das kein Problem, doch wenn die Klasse Serializable implementiert und die standard-
maflige serialisierte Form verwendet, kommen Sie spater nie mehr ganz von der Weg-
werfimplementierung weg. Sie wird Ihnen immer die serialisierte Form vorschreiben.
Dieses Problem existiert nicht nur in der Theorie: Es ist schon mehreren Klassen der
Java-Plattformbibliotheken so ergangen, darunter auch BigInteger.

Akzeptieren Sie nie die standardmaifige serialisierte Form, ohne zu iiberlegen, ob
sie auch wirklich geeignet ist. Die Annahme der standardmaéfiigen serialisierten Form
sollten Sie bewusst im Hinblick darauf entscheiden, ob diese Kodierung vom Stand-
punkt der Flexibilitat, Leistung und Richtigkeit her verniinftig ist. Allgemein ausge-
driickt: Akzeptieren Sie diese Standardform nur, wenn sie weitgehend identisch mit
der Kodierung ist, die Sie wiahlen wiirden, wenn Sie eine eigene serialisierte Form ent-
werfen wiirden.

Die standardméfliige serialisierte Form eines Objekts ist eine ganz wirkungsvolle
Kodierung der physischen Reprasentation des Objektgraphs, der in dem betreffenden
Objekt wurzelt. Mit anderen Worten: Sie beschreibt die Daten, die in dem Objekt und
jedem von ihm aus erreichbaren anderen Objekt enthalten sind. Aufserdem beschreibt
sie die Topologie, die alle diese Objekte miteinander verkniipft. Die ideale serialisierte
Form eines Objekts enthdlt nur die logischen Daten, die es darstellt, und ist von der
physischen Reprasentation unabhéngig.

Die standardmaifige serialisierte Form eignet sich wahrscheinlich dann, wenn die
physische Reprdsentation eines Objekts mit seinem logischen Inhalt identisch ist.
So wire z.B. fiir die folgende Klasse, die den Namen einer Person darstellt, die stan-
dardmaéfige serialisierte Form geeignet:

Thema 55: Ziehen Sie die Nutzung einer eigenen serialisierten Form in Erwdgung 219

// Guter Kandidat flr die standardmdBige serialisierte Form

public class Name implements Serializable {
/**

* Nachname. Muss nicht-null sein.
* @serial

*/

private String lastName;

/*x*

* Vorname. Muss nicht-null sein.

* @serial

*/

private String firstName;

/**

* Mittelinitiale oder '\u0000' wenn der Name keine hat.
* @serial

*/

private char middlelnitial;

. // Rest wurde weggelassen.
1

Logisch gesehen besteht ein Name aus zwei Strings, die einen Nachnamen und einen
Vornamen darstellen, und aus einem Zeichen fiir die Mittelinitiale. Die Instanzfelder in
Name spiegeln diesen logischen Inhalt exakt wider.

Selbst wenn Sie beschliefsen sollten, dass die standardmiflige serialisierte Form
angemessen ist, miissen Sie oft noch eine readObject-Methode bereitstellen, um die
Invarianten und die Sicherheit zu gewahrleisten. In dem Namensbeispiel konnte die
readObject-Methode sicherstellen, dass 1astName und firstName nicht-null sind. Das wird
in Thema 56 noch ausfiihrlicher behandelt.

Beachten Sie, dass die Felder TastName, firstName und middlelnitial mit Dokumenta-
tionskommentaren versehen sind, obwohl sie privat sind. Der Grund dafiir ist, dass diese
privaten Felder ein 6ffentliches API — die serialisierte Form der Klasse — definieren und
dieses offentliche API muss dokumentiert werden. Das @serial-Tag weist Javadoc an,
diese Dokumentation auf eine Extraseite zu setzen, die die serialisierten Formen doku-
mentiert.

Die folgende Klasse ist ein Gegenbeispiel zu Name. Sie stellt eine Liste von Strings dar
(wobei wir fiir den Moment einmal vergessen wollen, dass Sie mit einer der List-Stan-
dardimplementierungen aus der Bibliothek besser fahren):

// Schlechter Kandidat fiir die standardmdBige serialisierte Form
public class StringlList implements Serializable f{

private int size = 0;

private Entry head = null;

220

10 Serialisierung

private static class Entry implements Serializable {
String data;
Entry next;
Entry previous;

. // Rest wurde weggelassen.

}

Logisch gesehen stellt diese Klasse eine Folge von Strings dar, doch physisch gesehen
ist diese Sequenz eine doppelt verkettete Liste. Wenn Sie die standardmaéflige seriali-
sierte Form akzeptieren, so wird diese in quilender Ausfiihrlichkeit jeden Eintrag in

der

verketteten Liste und alle Verkettungen zwischen diesen Eintrdgen in beide Rich-

tungen darstellen.

Die Verwendung der standardmifligen serialisierten Form in Fillen, wo die physi-

sch

e Reprisentation eines Objekts deutlich vom logischen Inhalt seiner Daten

abweicht, hat vier Nachteile:

Ein

Sie bindet das exportierte API fiir immer an die interne Darstellung. Im obigen
Beispiel wird die private Klasse StringList.Entry Teil des offentlichen APIs. Wenn
die Darstellung in einem zukiinftigen Release gedndert wird, dann muss die Klasse
StringlList immer noch die Darstellung als verkettete Liste als Eingabe akzeptieren
und als Ausgabe generieren. Sie wird den Code zur Bearbeitung verketteter Listen
nie wieder los, selbst wenn sie diese nicht mehr benutzt.

Sie kann iibermif8ig viel Platz belegen. Im obigen Beispiel stellt die serialisierte
Form {iberfliissigerweise jeden Eintrag in der verketteten Liste sowie jede Verket-
tung dar. Diese Eintrdge und Verkettungen sind nur Implementierungsdetails, die
nicht in die serialisierte Form gehdéren. Da diese serialisierte Form {ibermafiig lang
ist, dauert es sehr lange, sie iiber das Netz zu {ibermitteln oder auf der Festplatte zu
speichern.

Sie kann iibermifiig viel Zeit brauchen. Da die Serialisierungslogik nichts {iber
die Topologie des Objektgraphs weifs, muss sie den Graph mithsam durchqueren.
Im obigen Beispiel wiirde es reichen, einfach nur den next-Referenzen zu folgen.

Sie kann Stack-Uberldufe verursachen. Die Standardserialisierungsprozedur
durchquert den Objektgraph rekursiv, was selbst bei relativ kleinen Objektgraphen
zu Stack-Uberldufen fithren kann. Auf meinem Computer verursacht die Serialisie-
rung einer StringlList-Instanz mit 1200 Elementen einen Stack-Uberlauf. Wie viele
Elemente es braucht, bis dieses Problem auftritt, mag je nach JVM-Implementie-
rung unterschiedlich sein. Vielleicht tritt das Problem auf manchen Implementie-
rungen auch gar nicht auf.

e verniinftige serialisierte Form fiir StringList besteht einfach aus der Anzahl der

Strings in der Liste, gefolgt von den Strings selbst. Das sind die logischen Daten, die

Thema 55: Ziehen Sie die Nutzung einer eigenen serialisierten Form in Erwdgung 221

eine Stringlist reprédsentiert, ohne die Einzelheiten ihrer physischen Darstellung. Hier
sehen Sie eine tiberarbeitete Version von Stringlist, deren Methoden writeObject und
readObject diese serialisierte Form implementieren. Zur Erinnerung: Der Modifikator
transient weist darauf hin, dass bei der standardmafiigen serialisierten Form einer
Klasse ein Instanzfeld weggelassen wird.

// StringlList mit einer verniinftigen eigenen serialisierten Form
public class StringlList implements Serializable f{

private transient int size = 0;

private transient Entry head = null;

// Nicht mehr serialsierbar!
private static class Entry {
String data;
Entry next;
Entry previous;

// Flugt den angegebenen String an die Liste an.
public void add(String s) { ... |}

Serialisiere diese <tt>Stringlist</tt>-Instanz.

in ihr) wird ausgegeben (<tt>int</tt>), gefolgt von
allen Elementen (alles <tt>Strings</tt>), in der
richtigen Reihenfolge.
*/
private void writeObject(ObjectOutputStream s)
throws I0Exception f
s.defaultWriteObject();
s.writelnt(size);

*
*
* @serialData Die GroBe der Liste (Anzahl der Strings
*
*
*

// Schreibe alle Elemente in der richtigen Reihenfolge.
for (Entry e = head; e != null; e = e.next)
s.writeObject(e.data);

private void readObject(ObjectInputStream s)
throws I0Exception, ClassNotFoundException f{
s.defaultReadObject();
int size = s.readInt();

// Lies alle Elemente und setze sie in die Liste.

for (int i = 0; 1 < size; i++)
add((String)s.readObject());

. // Rest wird weggelassen.

222 10 Serialisierung

Beachten Sie, dass die writeObject-Methode defaultWriteObject aufruft und dass die read-
Object-Methode defaultReadObject aufruft, obwohl alle Felder der Stringlist transient
sind. Wenn alle Instanzfelder transient sind, ist es zwar technisch maglich, auf den
Aufruf von defaultWriteObject und defaultReadObject zu verzichten, aber ratsam ist das
nicht. Selbst wenn alle Instanzfelder transient sind, wirkt sich der Aufruf von defaultWri -
teObject auf die serialisierte Form so aus, dass sie viel flexibler wird. Die resultierende
serialisierte Form ermdglicht es Ihnen, in einem spéteren Release nicht-transiente Instanz-
felder hinzuzufiigen und gleichzeitig die Auf- und Abwartskompatibilitdt zu erhalten.
Wenn eine Instanz in einer neueren Version serialisiert und in einer <eren deserialisiert
wird, dann werden die hinzugekommenen Felder ignoriert. Wiirde die readObject-
Methode der alteren Version nicht defaultReadObject aufrufen, so wiirde die Deserialisie-
rung mit einer StreamCorruptedException scheitern.

Beachten Sie, dass die writeObject-Methode, obwohl sie privat ist, einen Dokumenta-
tionskommentar hat. Er ist analog zu dem Dokumentationskommentar fiir die privaten
Felder der Klasse Name. Diese private Methode definiert ein 6ffentliches API — namlich
die serialisierte Form — und das offentliche API muss dokumentiert werden. Wie das
@serial-Tag fiir Felder weist auch das @serialData-Tag fiir Methoden Javadoc an, diese
Dokumentation auf die Seiten iiber serialisierte Formen zu setzen.

Damit Sie einen Eindruck bekommen, von welchen Gréfienordnungen bei der vorheri-
gen Leistungsdiskussion die Rede war: Wenn die durchschnittliche String-Lénge zehn
Zeichen betragt, dann benoétigt die serialisierte Version der iiberarbeiteten Fassung von
Stringlist rund halb so viel Platz wie die des Originals. Auf meinem Computer geht
das Serialisieren der neuen Version von StringlList bei durchschnittlich zehn Zeichen
langen Strings rund zweieinhalb mal so schnell wie bei der alten Version. Auflerdem
gibt es keine Probleme mit Speicheriiberlaufen, wodurch praktisch beliebig lange
Stringlists serialisiert werden konnen.

Die standardmaéfige serialisierte Form ware fiir StringList nicht gut, doch fiir manche
andere Klassen wire sie noch viel schlimmer. Bei StringlList ist sie nur unflexibel und
langsam aber immerhin korrekt in dem Sinne, dass das Serialisieren und Deserialisieren
einer Stringlist-Instanz eine genaue Kopie des Originalobjekts ergibt, bei der alle
Invarianten noch intakt sind. Das gilt aber nicht fiir Objekte, deren Invarianten an
implementierungsspezifische Details gebunden sind.

Nehmen Sie z.B. den Fall einer Hash-Tabelle. Ihre physische Reprasentation ist eine
Folge von Hash-Buckets mit den Schliissel/ Wert-Paaren. In welchen Bucket ein Ein-
trag kommt, hdngt von dem Hash-Code des Schliissels ab. Es gibt jedoch grundsétzlich
keine Garantie, dass dieser bei jeder JVM-Implementierung derselbe ist. Tatsdchlich ist
noch nicht einmal garantiert, dass er bei jeder Ausfithrung auf derselben [VM-Imple-
mentierung derselbe ist. Daher wére es ein boser Fehler, wenn Sie fiir eine Hash-

Thema 55: Ziehen Sie die Nutzung einer eigenen serialisierten Form in Erwdgung 223

Tabelle die standardmaéfsige serialisierte Form akzeptieren wiirden. Das Serialisieren
und anschlieffende Deserialisieren der Hash-Tabelle kénnte ein Objekt mit ernsthaft
beschéddigten Invarianten ergeben.

Egal ob Sie die standardmaéfig serialisierte Form verwenden oder nicht: Jedes Instanz-
feld, das nicht als transient deklariert ist, wird bei einem Aufruf der Methode default
WriteObject serialisiert. Wenn moglich sollten Sie daher jedes Instanz-Feld transient
machen. Dazu gehoren auch redundante Felder, deren Werte aus »Primardatenfel-
dern« berechnet werden kénnen, wie z.B. ein zwischengespeicherter Hash-Wert. Eben-
falls dazu gehoren Felder, deren Werte an eine bestimmte Ausfithrung der JVM
gebunden sind, wie z.B. ein 1ong-Feld, das einen Zeiger auf eine native Datenstruktur
reprasentiert. Ehe Sie entscheiden, ein Feld nicht-transient zu machen, sollten Sie
sich davon iiberzeugen, dass sein Wert Teil des logischen Objektzustands ist. Wenn
Sie eine eigene serialisierte Form verwenden, sollten vor allen Dingen die Instanzfel-
der als transient deklariert sein, wie es in dem obigen StringlList-Beispiel der Fall ist.

Wenn Sie die standardmaéfige serialisierte Form verwenden und ein oder mehrere Fel-
der als transient deklariert haben, miissen Sie daran denken, dass diese Felder mit
ihren Standardwerten initialisiert werden, wenn eine Instanz deserialisiert wird: nu11 fiir
Objektreferenzfelder, null fiir nummerische Grundtypen und false fiir boolean-Felder
[JLS, 4.5.5]. Wenn diese Werte fiir bestimmte transient-Felder nicht akzeptabel sind,
miissen Sie eine readObject-Methode liefern, die die defaultReadObject-Methode aufruft
und dann die transient-Felder mit akzeptablen Werten wiederherstellt (Thema 56).
Alternativ konnen Sie diese Felder auch, wenn sie das erste Mal benétigt werden, mit
fauler Initialisierung erzeugen.

Egal welche serialisierte Form Sie wahlen: Deklarieren Sie in jeder serialisierbaren
Klasse, die Sie schreiben, einen expliziten Serienversion-UID. Damit scheiden die
Serienversion-UID schon einmal als potenzielle Fehlerquelle aus (Thema 54) und
etwas schneller wird das Ganze auch. Wenn Sie keinen Serienversion-UID zur Verfii-
gung stellen, muss er zur Laufzeit aufwéndig berechnet werden.

Ein Serienversion-UID kénnen Sie ganz einfach berechnen, indem Sie Ihrer Klasse fol-
gende Zeile hinzufiigen:

private static final long serialVersionUID = randomLongValue ;

Es spielt keine grole Rolle, welchen Wert Sie fiir randomLongValue einsetzen. Ublicher-
weise generieren Sie den Wert, indem Sie das Dienstprogramm serialver auf der
Klasse ausfiihren, aber Sie konnen ebenso gut eine beliebige Zahl nehmen, die Ihnen
einféllt. Wenn Sie jemals eine neue Version der Klasse erstellen mochten, die mit den
bereits vorhandenen inkompatibel ist, brauchen Sie nur den Wert in der Deklaration zu
dndern. Dann scheitert jeder Versuch, serialisierte Instanzen der <eren Versionen mit
der neuen zu deserialisieren mit einer InvalidClassException.

224 10 Serialisierung

Fazit: Wenn Sie entschieden haben, dass eine Klasse serialisierbar sein soll (Thema 54),
dann sollten Sie sich genau tiberlegen, was die serialisierte Form tun soll. Verwenden
Sie die standardmaéfiige serialisierte Form nur dann, wenn sie eine verniinftige
Beschreibung des logischen Objektzustands gibt. Sie sollten dem Entwurf der seriali-
sierten Version einer Klasse ebensoviel Zeit widmen wie dem Entwurf ihrer exportier-
ten Methoden. Ebenso wenig wie Sie aus zukiinftigen Versionen exportierte Methoden
herausnehmen konnen, konnen Sie Felder aus der serialisierten Form herausnehmen:
Sie miissen fiir immer erhalten bleiben, damit die Serialisierungskompatibilitat
gewdhrleistet ist. Wenn Sie die falsche serialisierte Form wéhlen, so macht dies die
Klasse dauerhaft komplizierter und langsamer.

10.3 Thema 56: Schreiben Sie readObject-Methoden defensiv

Thema 24 enthilt eine unveranderliche Klasse fiir Datumsintervalle, die veranderliche
private date-Felder enthilt. Die Klasse tut sehr viel fiir ihre Invarianten und ihre
Unverdnderbarkeit, indem sie die Date-Objekte in ihrem Konstruktor und ihren
Zugriffsmethoden defensiv kopiert. Hier sehen Sie diese Klasse:

// Unverdnderliche Klasse, die defensiv kopiert.
public final class Period {

private final Date start;

private final Date end;

/**
* @param beginnt den Zeitraum.
* @param beendet den Zeitraum; muss nach start kommen.
* @throws Il1legalArgument wenn start hinter end liegt.
* @throws NullPointerException wenn start oder end = null.
*/
public Period(Date start, Date end) |
this.start = new Date(start.getTime());
this.end = new Date(end.getTime());

if (this.start.compareTo(this.end) > 0)
throw new I1legalArgumentException(start +" > "+ end);
public Date start () { return (Date) start.clone(); |
public Date end () { return (Date) end.clone(); |
public String toString() { return start + " - " + end; |

. // Rest wird weggelassen.

Thema 56: Schreiben Sie readObject-Methoden defensiv 225

Angenommen, Sie beschliefSen, dass diese Klasse serialisierbar sein soll. Da die physi-
sche Darstellung eines Period-Objekts seinen logischen Dateninhalt exakt widerspie-
gelt, ist es durchaus verniinftig, die standardmaéflige serialisierte Form zu verwenden
(Thema 55). Daher scheint es so, als miissten Sie lediglich die Klasse durch Hinzuftigen
der Worte »implements Serializable« zur Klassendeklaration serialisierbar machen.
Doch wenn Sie dies tun wiirden, dann kénnte die Klasse nicht mehr fiir ihre wichtigen
Invarianten garantieren.

Das Problem besteht darin, dass die readobject-Methode in Wirklichkeit ein zusitzlicher
Konstruktor ist, der dieselbe Sorgfalt wie jeder andere Konstruktor verlangt. Da jeder
Konstruktor seine Argumente auf Giiltigkeit (Thema 23) priift und sie, wo es notig ist,
defensiv kopiert (Thema 24), muss auch readObject dies tun. Wenn eine readObject-
Methode eines dieser Dinge versaumt, kann ein Angreifer relativ leicht die Klasseninva-
rianten verletzen.

Salopp ausgedriickt ist readObject ein Konstruktor, der als einzigen Parameter einen
Bytestrom entgegennimmt. Normalerweise wird dieser Bytestrom durch Serialisieren
einer normal konstruierten Instanz generiert. Probleme gibt es, wenn readObject mit
einem Bytestrom zu tun hat, der extra dafiir konstruiert wurde, ein Objekt zu erzeu-
gen, das die Invarianten seiner Klasse verletzt. Wenn wir der Klassendeklaration von
Period nur die Worte »implements Serializable« hinzugefiigt hdtten, dann wiirde das
folgende hissliche Programm eine Period-Instanz hervorbringen, deren Ende vor
ihrem Anfang liegt:

public class BogusPeriod f{
// Bytestrom kann nicht von einer echten Period-Instanz sein
private static final bytel] serializedForm = new bytel] f
(byte)Oxac, (byte)Oxed, 0x00, 0x05, 0x73, 0x72, 0x00, 0x06,
0x50, 0x65, 0x72, 0x69, 0x6f, Ox64, 0x40, Ox7e, (byte)0xf8,
0x2b, Ox4f, 0x46, (byte)Oxc0, (byte)Oxf4, 0x02, 0x00, 0x02,
Ox4c, 0x00, 0x03, Ox65, Ox6e, Ox64, 0x74, 0x00, 0x10, Ox4c,
Ox6a, 0x61, 0x76, 0x61, Ox2f, 0x75, 0x74, 0x69, Ox6c, 0x2f,
0x44, 0x61, 0x74, 0x65, 0x3b, O0x4c, 0x00, 0x05, 0x73, 0x74,
0x61, 0x72, 0x74, 0x71, 0x00, Ox7e, 0x00, 0x01, 0x78, 0x70,
0x73, 0x72, 0x00, OxOe, Oxb6ba, Ox61, 0x76, 0x61, 0x2e, 0x75,
0x74, 0x69, 0x6c, 0Ox2e, 0x44, 0x61, 0x74, 0x65, 0x68, Oxba,
(byte)0x81, 0x01, 0x4b, 0x59, 0x74, 0x19, 0x03, 0x00, 0x00,
0x78, 0x70, 0x77, 0x08, 0x00, 0x00, 0x00, 0x66, (byte)0Oxdf,
Ox6e, Oxle, 0x00, 0x78, 0x73, 0x71, 0x00, Ox7e, 0x00, 0x03,
0x77, 0x08, 0x00, 0x00, 0x00, (byte)Oxd5, 0x17, 0x69, 0x22,
0x00, 0x78 };

public static void main(Stringl] args) f{
Period p = (Period) deserialize(serializedForm);
System.out.printin(p);

226 10 Serialisierung

// Gibt Objekt mit der angegebenen serialisierten Form zuriick
public static Object deserialize(bytel] sf) {
try f{
InputStream is = new ByteArrayInputStream(sf);
ObjectInputStream ois = new ObjectInputStream(is);
return ois.readObject();
} catch (Exception e) f{
throw new ITlegalArgumentException(e.toString());
}

J

Der Array-Literal byte, mit dem serializedForm initialisiert wird, wurde durch Seriali-
sieren einer normalen Period-Instanz und manuelles Bearbeiten des resultierenden
Bytestroms erzeugt. Die Einzelheiten des Stroms spielen fiir dieses Beispiel keine Rolle.
Wenn Sie sich jedoch dafiir interessieren: Das Bytestrom-Format der Serialisierung ist
in der Java™ Object Serialization Specification [Serialization, 6] beschrieben. Wenn Sie
dieses Programm laufen lassen, dann gibt es aus: »Fri Jan 01 12:00:00 PST 1999 - Sun
Jan 01 12:00:00 PST 1984«. Wenn Sie Period serialisierbar machen, kénnen Sie ein Objekt
erzeugen, das seine Klasseninvarianten verletzt. Dieses Problem beheben Sie, indem
Sie fiir Period eine readObject-Methode liefern, die defaultReadObject aufruft und dann
die Giiltigkeit des deserialisierten Objekts priift. Wenn diese Giiltigkeitspriifung fehl-
schlagt, 16st die Methode readObject eine InvalidObjectException aus, die verhindert,
dass die Deserialisierung zum Abschluss kommt.

private void readObject(ObjectInputStream s)
throws I0Exception, ClassNotFoundException f{
s.defaultReadObject();

// Prife, ob die Invarianten gewdhrleistet sind.
if (start.compareTo(end) > 0)
throw new InvalidObjectException(start +" hinter "+ end);
}

Diese Reparatur verhindert zwar, dass ein Angreifer eine unzuldssige Period-Instanz
erzeugt, aber dahinter lauert noch ein kniffligeres Problem. Man kénnte immer noch
eine verdnderliche Period-Instanz erzeugen, indem man einen Bytestrom fabriziert, der
mit einem Bytestrom beginnt, der eine giiltige Period-Instanz darstellt, und daran
zusdtzliche Referenzen auf die privaten Date-Felder im Inneren der Period-Instanz
anhangt. Der Angreifer liest zuerst die Period-Instanz aus dem ObjectInputStream und
dann die »boswilligen Objektreferenzenc, die an den Strom angehdngt wurden. Diese
Referenzen geben ihm Zugriff auf die Objekte, auf die die privaten Date-Felder inner-
halb des Period-Objekts referieren. Indem er diese Date-Instanzen &ndert, kann der
Angreifer die Period-Instanzen verfalschen. Die folgende Klasse demonstriert eine sol-
che Attacke:

Thema 56: Schreiben Sie readObject-Methoden defensiv 227

public class MutablePeriod f{
// Eine Period-Instanz
public final Period period;

// Startfeld von period, Zugriff darf nicht erlaubt sein.
public final Date start;

// End-Feld von period, Zugriff darf nicht erlaubt sein.
public final Date end;

public MutablePeriod() f{
try |
ByteArrayOutputStream bos =
new ByteArrayOutputStream();
ObjectOutputStream out =
new ObjectOutputStream(bos);

// Serialisiere eine glltige Period-Instanz.
out.writeObject(new Period(new Date(), new Date()));

/*

* Hdnge bose "Refs auf vorige Objekte" flr interne
* Date-Felder in Period an. Einzelheiten in "Java
* Object Serialization Specification," Abschn. 6.4.
*/

bytel] ref = { 0x71, 0, Ox7e, 0, 5 }; // Ref. Nr. 5
bos.write(ref); // Start-Feld

refl4] = 4; // Ref. Nr. 4

bos.write(ref); // End-Feld

// Deserialisiere Period und "gestohlene" Date-Refs.
ObjectInputStream in = new ObjectInputStream(
new ByteArrayInputStream(bos.toByteArray()));
period = (Period) in.readObject();
start = (Date) in.readObject();
end (Date) in.readObject();
} catch (Exception e) {
throw new RuntimeException(e.toString());

}

}

Folgendes Programm zeigt die Attacke:

public static void main(Stringl] args) f
MutablePeriod mp = new MutablePeriod();
Period p = mp.period;

Date pkEnd = mp.end;

// Nun wollen wir mal die Uhr zuriickdrehen.
pEnd.setYear(78);
System.out.printin(p);

228 10 Serialisierung

// Hole die Sechzigerjahre zuriick!
pEnd.setYear(69);
System.out.printin(p);

}

Das Programm erzeugt folgende Ausgabe:

Wed Mar 07 23:30:01 PST 2001 - Tue Mar 07 23:30:01 PST 1978
Wed Mar 07 23:30:01 PST 2001 - Fri Mar 07 23:30:01 PST 1969

Die Period-Instanz wird zwar mit intakten Invarianten erzeugt, aber ihre internen
Bestandteile lassen sich nach Belieben dndern. Sobald ein Angreifer eine verdanderliche
Period-Instanz hat, kann er groflen Schaden anrichten, indem er sie einer Klasse tiber-
gibt, deren Sicherheit von der Unverédnderlichkeit von Period abhdngt. Das ist nicht an
den Haaren herbeigezogen: Es gibt Klassen, deren Sicherheit von der Unveranderlich-
keit von String abhéngt.

Das Problem besteht, weil die readObject-Methode von Period zu wenig defensiv
kopiert. Wenn ein Objekt deserialisiert wird, miissen Sie jedes Feld defensiv kopie-
ren, das eine Objektreferenz enthilt, die kein Client haben darf. Daher muss jede
serialisierbare unverdnderliche Klasse, die private verdnderliche Komponenten ent-
hélt, diese Komponenten in ihrer readobject-Methode defensiv kopieren. Die folgende
readObject-Methode geniigt, um die Invarianten und die Unverédnderlichkeit von
Period zu gewdhrleisten:

private void readObject(ObjectInputStream s)
throws I0Exception, ClassNotFoundException f{
s.defaultReadObject();

// Defensive Kopie unverdnderlicher Komponenten
start = new Date(start.getTime());
end = new Date(end.getTime());

// Prifung der Gultigkeit der Invarianten
if (start.compareTo(end) > 0)
throw new InvalidObjectException(start +" after "+ end);
}

Beachten Sie, dass die defensive Kopie vor der Giiltigkeitspriifung angelegt wird, und
dass wir fiir das defensive Kopieren nicht die clone-Methode von Date verwendeten.
Beides sind Voraussetzungen, um Period gegen Angriffe zu schiitzen (Thema 24).
Beachten Sie auflerdem, dass defensives Kopieren nicht fiir finale Felder moglich ist.
Um die Methode readObject benutzen zu konnen, miissen wir die Felder start und end
nicht-final machen. Das ist zwar schade, aber auf jeden Fall das kleinere Ubel. Mit der
neuen readObject-Methode und ohne den Modifikator final fiir die Felder start und
end kann die Klasse MutablePeriod nichts mehr anrichten. Das obige Angriffsprogramm
hat nunmehr folgende Ausgabe:

Thema 56: Schreiben Sie readObject-Methoden defensiv 229

Thu Mar 08 00:03:45 PST 2001 - Thu Mar 08 00:03:45 PST 2001
Thu Mar 08 00:03:45 PST 2001 - Thu Mar 08 00:03:45 PST 2001

Es gibt einen einfachen Test, um zu entscheiden, ob die standardméfiige readObject-
Methode in Ordnung ist. Ware Thnen wohl dabei, einen 6ffentlichen Konstruktor hin-
zuzufiigen, der die Werte jedes nicht-transienten Feldes Ihres Objekts als Parameter
nimmt und die Werte ohne irgendeine Art von Giiltigkeitspriifung in den Feldern spei-
chert? Wenn Sie dies nicht bejahen kénnen, dann miissen Sie eine explizite readObject-
Methode beisteuern, die alle fiir einen Konstruktor erforderlichen Giiltigkeitspriifun-
gen und defensiven Kopien erledigt.

Es gibt noch eine andere Ahnlichkeit zwischen readobject-Methoden und Konstrukto-
ren, und diese betrifft nicht-finale serialisierbare Klassen. Eine readObject-Methode
darf weder direkt noch indirekt eine tiberschreibbare Methode aufrufen (Thema 15).
Wenn Sie dagegen verstofien und die Methode tiberschrieben wird, dann wird die
iiberschreibende Methode ausgefiihrt, ehe der Zustand der Unterklasse deserialisiert
worden ist. Dies fithrt wahrscheinlich zu einem Programmabsturz.

Fazit: Immer wenn Sie eine readObject-Methode schreiben, miissen Sie dabei im Kopf
behalten, dass Sie eigentlich einen offentlichen Konstruktor schreiben, der auf jeden
Fall eine giiltige Instanz erzeugen muss, egal welchen Bytestrom er iibergeben
bekommt. Gehen Sie nicht davon aus, dass der Bytestrom eine tatsdchliche serialisierte
Instanz reprasentiert. Die Beispiele in diesem Thema betreffen zwar eine Klasse, die
die standardméfige serialisierte Form verwendet, aber alle damit zusammenhéangen-
den Probleme treffen ebenso auf Klassen mit eigener serialisierter Form zu. Hier sind
noch einmal die Richtlinien zusammengefasst, wie Sie eine wasserdichte readObject-
Methode schreiben.

Bei Klassen mit Objektreferenz-Feldern, die privat bleiben miissen, kopieren Sie
defensiv jedes Objekt, das in einem solchen Feld gespeichert werden soll. In diese
Kategorie gehoren z.B. verdnderliche Komponenten unveranderlicher Klassen.

Bei Klasse mit Invarianten miissen Sie diese Invarianten priifen und eine Invalid
ObjectException auslosen, wenn eine Priifung fehlschldgt. Die Priifungen sollten
nach einem eventuellen defensiven Kopieren stattfinden.

Wenn ein gesamter Objektgraph nach seiner Deserialisierung validiert werden
muss, verwenden Sie das Interface ObjectInputValidation. Die Nutzung dieses Inter-
faces ist nicht Thema dieses Buchs. Ein Beispiel finden Sie in The Java Class Libraries,
Second Edition, Volume 1 [Chan 1998, S. 1256].

Rufen Sie weder direkt noch indirekt irgendwelche iiberschreibbaren Methoden in
der Klasse auf.

Alternativ zu einer readObject-Methode konnen Sie auch die Methode readResolve ver-
wenden. Diese Alternative wird in Thema 57 vorgestellt.

230 10 Serialisierung

10.4 Thema 57: Stellen Sie wenn notig eine readResolve-
Methode zur Verfiigung

Thema 2 beschreibt das Singleton-Muster und gibt das folgende Beispiel einer Single-
ton-Klasse. Diese Klasse beschrankt den Zugriff auf ihren Konstruktor, um zu gewéhr-
leisten, dass nur eine einzige Instanz erzeugt wird.

public class Elvis {
public static final Elvis INSTANCE = new Elvis();

private Elvis() {

}

// Rest wird weggelassen.
}

Wie in Thema 2 gesagt, wére diese Klasse kein Singleton mehr, wenn man die Worte
implements Serializable in ihre Deklaration schriebe. Es spielt weder eine Rolle, ob
die Klasse die standardméfiige oder eine eigene serialisierte Form verwendet (Thema
55), noch, ob sie eine explizite readObject-Methode liefert (Thema 56). Jede readObject-
Methode, sei sie nun explizit oder voreingestellt, gibt eine neu erzeugte Instanz
zuriick, die nicht dieselbe Instanz ist, die bei der Klasseninitialisierung angelegt
wurde. Vor dem Release 1.2 war es nicht moglich, eine serialisierbare Singleton-Klasse
zu schreiben.

Im Release 1.2 kam zur Serialisierung das readResolve-Feature hinzu [Serialization, 3.6].
Wenn die Klasse eines zu deserialisierenden Objekts eine readResolve-Methode mit der
richtigen Deklaration definiert, wird diese Methode nach der Deserialisierung auf dem
neu erzeugten Objekt aufgerufen. Dann wird statt des neu erzeugten Objekts die von
dieser Methode gelieferte Objektreferenz zuriickgeliefert. In den meisten Anwendun-
gen dieses Features wird keine Referenz auf das neu erzeugte Objekt zuriickbehalten.
Das Objekt wird sofort fiir die Garbage Collection freigegeben.

Wenn Sie die Elvis-Klasse Serializable implementieren lassen, dann garantiert die fol-
gende readResolve-Methode die Singleton-Eigenschaft:

private Object readResolve() throws ObjectStreamException f
// Gib den einzig wahren Elvis zuriick und Tass die Elvis-
// Imitation vom Garbage Collector abholen.
return INSTANCE;

}

Diese Methode ignoriert das deserialisierte Objekt und gibt einfach die einzig wahre
Elvis-Instanz zuriick, die bei der Klasseninitialisierung erzeugt wurde. Daher braucht
die serialisierte Form einer E1vis-Instanz keine echten Daten zu enthalten; alle Instanz-

Thema 57: Stellen Sie wenn ndétig eine readResolve-Methode zur Verfiigung 231

felder sollten als transient gekennzeichnet sein. Das gilt nicht nur fiir Elvis, sondern
fiir alle Singletons.

Sie brauchen nicht nur fiir Singletons, sondern fiir jede Instanz-kontrollierende Klasse
eine readResolve-Methode. Mit anderen Worten benétigen Sie readResolve fiir alle Klas-
sen, die die Objekterzeugung streng kontrollieren, um eine Invariante zu bewahren.
Ein anderes Beispiel fiir eine Instanz-kontrollierende Klasse ist eine typsichere Enum
(Thema 21), deren readResolve-Methode die kanonische Instanz zuriickgeben muss, die
die angegebene Aufzdhlungskonstante reprasentiert. Es gibt folgende Faustregel:
Wenn Sie eine serialisierbare Klasse schreiben, die keine 6ffentlichen oder geschiitzten
Konstruktoren enthilt, dann tiberlegen Sie bitte, ob eine readResolve-Methode erforder-
lich ist.

Zweitens konnen Sie die readResolve-Methode als konservative Alternative zu der in
Thema 56 empfohlenen, defensiven readObject-Methode einsetzen. Bei diesem
Ansatz werden alle Giiltigkeitspriifungen und defensiven Kopien der readObject-
Methode durch die Giiltigkeitspriifung und defensiven Kopien ersetzt, die ein norma-
ler Konstruktor leistet. Wenn die standardmaéfige serialisierte Form benutzt wird, kann
die readobject-Methode ganz wegfallen. Wie in Thema 56 erklédrt, kann dadurch ein
boéswilliger Client eine Instanz mit kaputten Invarianten erzeugen. Doch diese potenzi-
ell geschddigte Instanz tritt niemals in Aktion: Sie wird nur nach Eingabewerten fiir
einen offentlichen Konstruktor oder eine statische Factory durchsucht und dann ver-
worfen.

Das Schone an diesem Ansatz: Er sorgt dafiir, dass die aulersprachlichen Bestandteile
der Serialisierung buchstablich verschwinden und macht es unmoglich, irgendwelche
Klasseninvarianten zu verletzen, die vorhanden waren, bevor die Klasse serialisierbar
wurde. Konkret sehen Sie diese Technik an der folgenden readResolve-Methode, die
anstelle der defensiven readObject-Methode aus dem Period-Beispiel in Thema 56 ver-
wendet werden kann:

// Das defensive readResolve-Idiom

private Object readResolve() throws ObjectStreamException f
return new Period(start, end);

}

Diese readResolve-Methode vereitelt beide in Thema 56 beschriebenen Attacken. Das
defensive readResolve-Idiom hat mehrere Vorteile gegeniiber einer defensiven readOb-
ject-Methode: Es ist eine Technik, mit der Sie eine Klasse mechanisch serialisierbar
machen, ohne ihre Invarianten zu gefdhrden. Es erfordert nur wenig Code und wenig
Denkarbeit und funktioniert garantiert. Und aufierdem eliminiert es die kiinstlichen
Beschrankungen, die fiir finale Felder bei einer Serialisierung gelten.

Das defensive readResolve-Idiom sehen Sie zwar nicht oft, aber es verdient mehr
Beachtung. Sein grofiter Nachteil ist, dass es sich nicht fiir Klassen eignet, die aufser-

232 10 Serialisierung

halb ihres eigenen Pakets Vererbung gestatten. Doch dies ist bei unveranderlichen
Klassen kein Problem, da sie generell final sind (Thema 13). Ein kleinerer Nachteil
besteht darin, dass dieses Idiom die Deserialisierung etwas langsamer macht, weil es
die Erzeugung eines zusitzlichen Objekts erfordert. Auf meinem Computer lauft die
Deserialisierung von Period-Instanzen rund ein Prozent langsamer im Vergleich zur
readObject-Methode.

Der Zugriff auf die readResolve-Methode ist sehr gut. Wenn Sie einer finalen Klasse
wie z.B. einem Singleton eine readResolve-Methode geben, dann sollte sie privat sein.
Geben Sie einer nicht-finalen Klasse eine readResolve-Methode, so miissen Sie den
Zugriff darauf sorgfaltig bedenken. Ist die Methode privat, so gilt sie nicht fiir Unter-
klassen. Ist sie paketprivat, so gilt sie nur fiir Unterklassen in demselben Paket. Ist sie
geschiitzt oder offentlich, so gilt sie fiir alle Unterklassen, die sie nicht tiberschreiben.
Wenn eine readResolve-Methode geschiitzt oder 6ffentlich ist und eine Unterklasse sie
nicht iiberschreibt, so erhalten Sie durch Deserialisierung einer serialisierten Instanz
dieser Unterklasse eine Instanz der Oberklasse. Das ist wohl nicht das, was Sie wollten.

Der vorige Abschnitt gab schon einen Hinweis auf den Grund, weshalb die readResolve-
Methode in Klassen, die Vererbung zulassen, nicht anstelle einer defensiven readobject-
Methode eingesetzt werden darf. Wére die readResolve-Methode der Oberklasse final, so
wiirde sie eine korrekte Deserialisierung der Unterklasseninstanzen verhindern. Wire
sie liberschreibbar, so konnte eine bose Unterklasse sie mit einer Methode aufler Kraft
setzen, die eine geschédigte Instanz zurtiickliefert.

Zusammenfassend kann man sagen, dass Sie eine readResolve-Methode benutzen miis-
sen, um die »Instanzkontrollinvarianten« von Singletons und anderen Instanz-kontrol-
lierenden Klassen zu schiitzen. Die readResolve-Methode verwandelt eigentlich die
readObject-Methode von einem praktisch 6ffentlichen Konstruktor in eine 6ffentliche
statische Factory. Aufierdem gibt Ihnen die readResolve-Methode bei Klassen, die eine
Vererbung auflerhalb ihres Pakets verbieten, eine einfache Alternative zu einer defen-
siven readObject-Methode.

Quellen

[Arnold 2000] Arnold, Ken, James Gosling, David Holmes. The Java™Programming
Language, Third Edition. Addison-Wesley, Boston, 2000. ISBN: 0201704331.

[Beck99] Beck, Kent. Extreme Programming Explained: Embrace Change. Addison-Wes-
ley, Reading, MA, 1999. ISBN: 0201616416.

[Bloch 1999] Bloch, Joshua. »Collections« In: The Java™utorial Continued: The Rest of
the JDK™. Mary Campione, Kathy Walrath, Alison Huml und das Tutorial-Team.
Addison-Wesley, Reading, MA, 1999. ISBN: 0201485583. S. 17-93. Auch verfiigbar
unter: http://java.sun.com/docs/books/tutorial/collections/index.html.

[Campione 2000] Campione, Mary, Kathy Walrath, Alison Huml. The Java™utorial
Continued: A Short Course on the Basics. Addison-Wesley, Boston, MA, 2000. ISBN:
0201703939. Auch verfiigbar unter: http://java.sun.com/docs/books/tutorial/index.html.

[Cargill 1996] Cargill, Thomas. »Specific Notification for Java Thread Synchroniza-
tion.« Proceedings of the Pattern Languages of Programming Conference, 1996.

[Chan 2000] Chan, Patrick. The Java™Developers Almanac 2000 , Addison-Wesley, Bos-
ton, MA, 2000. ISBN: 0201432994

[Chan 1998] Chan, Patrick, Rosanna Lee und Douglas Kramer. The Java™lass Libraries
Second Edition, Volume 1, Addison-Wesley, Reading, MA, 1998. ISBN: 0201310023.

[Collections] The Collections Framework. Sun Microsystems. Miarz 2001. http://
java.sun.com/j2se/1.3/docs/guide/collections/index.html.

[Doclint] Doclint. Ernst de Haan. Marz 2001. http://www.znerd.demon.nl/doclint/.

[Flanagan 1999] Flanagan, David. Java™n a Nutshell, Third Edition , O'Reilly and Asso-
ciates, Sebastopol, CA, 1999. ISBN: 1565924878.

[Gamma 1995] Gamma, Erich, Richard Helm, Ralph Johnson und John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley, Reading,
MA, 1995. ISBN: 0201633612.

[Gong 1999] Gong, Li. Inside Java™ Platform Security , Addison-Wesley, Reading, MA,
1999. ISBN: 0201310007.

http://java.sun.com/docs/books/tutorial/collections/index.html
http://java.sun.com/docs/books/tutorial/index.html
http://java.sun.com/j2se/1.3/docs/guide/collections/index.html
http://www.znerd.demon.nl/doclint/
http://java.sun.com/j2se/1.3/docs/guide/collections/index.html

234 Quellen

[Heydon 1999] Allan Heydon und Marc A. Najork. »Performance Limitations of the
Java Core Libraries.« In: ACM 1999 Java Grande Conference, S. 35-41. ACM Press, Juni
1999. Auch verfligbar unter: http://research.compaq.com/SRC/mercator/papers/java99/

final.pdf
[Horstman 2000] Horstmann, Cay und Gary Cornell. Core Java™ 2: Volume II, Advanced
Features, Prentice Hall, Palo Alto, CA, 2000. ISBN: 0130819344.

[HTML401] HTML 4.01 Specification. World Wide Web Consortium. Dezember 1999.
http:/fwww.w3.org/TR/1999/REC-htmi401-19991224/.

[J2SE-APIs] Java™ 2 Platform, Standard Edition, v 1.3 API Specification. Sun Micro-
systems. March 2001. http://java.sun.com/j2se/1.3/docs/apifoverview-summary.html.

[Jackson 1975]Jackson, M.A. Principles of Program Design, Academic Press, London,
1975. ISBN: 0123790506.

[JavaBeans] JavaBeans™ Spec. Sun Microsystems. Méarz 2001. http://java.sun.com/pro-
ducts/javabeans/docs/spec.html.

[Javadoc-a] How to Write Doc Comments for Javadoc. Sun Microsystems. Januar 2001.
http://java.sun.com/j2se/javadoc/writingdoccomments/.

[Javadoc-b] Javadoc Tool Home Page. Sun Microsystems. Januar 2001. hitp://java.sun.com/
j2sefjavadoc/index.html.

[JLS] Gosling, James, Bill Joy, Guy Steele, Gilad Bracha. The Java™ Language Specifica-
tion, Second Edition, Addison-Wesley, Boston, 2000. ISBN: 0201310082.

[Kahan 1991] Kahan, William und J. W. Thomas. Augmenting a Programming Language
with Complex Arithmetic, UCB/CSD-91-667, University of California, Berkeley, 1991.

[Knuth 1974] Knuth, Donald. »Structured Programming with go to Statements.« Com-
puting Surveys 6 (1974): 261-301.

[Lea 2001] Owverview of Package util.concurrent Release 1.3.0. State University of New
York, Oswego. 12. Januar 2001. http://g.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/con-
current/intro.html.

[Lea 2000] Lea, Doug. Concurrent Programming in Java™: Design Principles and Patterns,
Second Edition, Addison-Wesley, Boston, 2000. ISBN: 0201310090.

[Lieberman 1986] Lieberman, Henry. »Using Prototypical Objects to Implement Shared
Behavior in Object-Oriented Systems.« Proceedings of the First ACM Conference on
Object-Oriented Programming Systems, Languages, and Applications, S. 214-223, Portland,
September 1986. ACM Press.

[Meyers 1998] Meyers, Scott. Effective C++, Second Edition: 50 Specific Ways to Improve
Your Programs and Designs. Addison-Wesley, Reading, MA, 1998. ISBN: 0201924889.

http://research.compaq.com/SRC/mercator/papers/Java99/
http://www.w3.org/TR/1999/REC-html401-19991224/
http://java.sun.com/j2se/1.3/docs/api/overview-summary.html
http://java.sun.com/pro-ducts/javabeans/docs/spec.html
http://java.sun.com/j2se/javadoc/writingdoccomments/
http://java.sun.com/
http://g.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/con-current/intro.html
http://g.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/con-current/intro.html

Quellen 235

[Parnas 1972] Parnas, D.L. »On the Criteria to Be Used in Decomposing Systems into
Modules.« Communications of the ACM 15 (1972): 1053-1058.

[Posix] 9945-1:1996 (ISO/IEC) [IEEE/ANSI Std. 1003.1 1995 Edition] Information Tech-
nology—Portable Operating System Interface (POSIX)—Part 1: System Application: Program
Interface (API) [C Language] (ANSI), IEEE Standards Press, ISBN: 1559375736.

[Pugh 2001a] The Java Memory Model. Ed. William Pugh. University of Maryland.
March 2001.http://www.cs.umd.edu/~pugh/java/memoryModel/.

[Pugh 2001b] The »Double-Checked Locking is Broken« Declaration. Ed. William Pugh.
University of Maryland. Méarz 2001. http://www.cs.umd.edu/~pugh/java/memoryModel/
DoubleCheckedLocking.html.

[Serialization] Java™ Object Serialization Specification. Sun Microsystems. Méarz 2001.
http://java.sun.com/j2se/1.3/docs/quide/serialization/spec/serial TOC.doc.html.

[Smith 1962] Smith, Robert. » Algorithm 116 Complex Division.« In: Communications of
the ACM, 5.8 (August 1962): 435.

[Snyder 1986] Synder, Alan. »Encapsulation and Inheritance in Object-Oriented Pro-
gramming Languages.« In: Object-Oriented Programming Systems, Languages, and Appli-
cations Conference Proceedings, 38—45, 1986. ACM Press.

[Thomas 1994] Thomas, Jim und Jerome T. Coonen. »Issues Regarding Imaginary
Types for C and C++.« In: The Journal of C Language Translation, 5.3 (Marz 1994): 134—
138.

[Vermeulen 2000] Vermeulen, Allan, Scott W. Ambler, Greg Bumgardener, Eldon Metz,
Trevor Mesfeldt, Jim Shur, Patrick Thompson. The Elements of Java™ Style, Cambridge
University Press, Cambridge, United Kingdom, 2001. ISBN: 0521777682.

[Weblint] The Weblint Home Page. Weblint.org. Méarz 2001. http://www.weblint.org/.

[Wulf 1972] Wulf, W. »A Case Against the GOTO.« Proceedings of the 25th ACM National
Conference 2 (1972): 791-797.

http://www.cs.umd.edu/~pugh/java/memoryModel/
http://java.sun.com/j2se/1.3/docs/guide/serialization/spec/serialTOC.doc.html
http://www.weblint.org/

Index

@param-Tag 143
@return-Tag 143
@serialData-Tag 222
@serial-Tag 219
@throws-Tag 127, 143, 184

A

abstrakte Klassen

als Ersatz fiir discriminated Union 110
Aspekt hinzufiigen 45
Beispiele
Ersatz fiir discriminated
Union 110
Skelettimplementierung 97
statische Attributklasse 104
typsicheres Enum-Verhalten
hinzufiigen 117
fiir Geriistimplementierungen 93
fiir Skelettimplementierung 96
fiir Vererbung 93
Nichtinstanziierbarkeit 26
typsicheren Enums Verhalten
hinzuftigen 117
vs. Interfaces 94, 99
Weiterentwicklung, vs. Interfaces 98

allgemeiner Vertrag 39, 185

clone 58

compareTo 66

equals 40

hashCode 49
Interface-Implementierung 94
toString 55

alte Objektreferenzen 30, 60
Annahmen, und Parameterpriifung 128

anonyme Klassen 101, 103f.
als Funktionsobjekte 135
als Konkrete-Strategie-Klassen 124
Beispiele
Finalizer-Wéachter 36
in Adaptern 96
in typsicheren Enums 104, 118
Einschrankungen 103
Finalizer-Wachter 36
in Adaptern 97
in typsicheren Enums 117
Verwendung 103
API siehe exportiertes API
API-Elemente 18
dokumentieren 142, 146
API-Entwurf
Ausnahmen 174, 176
Folgen fiir die Leistung 167
Architektur
Dienstanbieter 21
Interface-basierte 21
Klassen- 161
Architekturen
Callback- 87
nicht-hierarchische
Typarchitekturen 95
Arrays 17
defensiv kopieren 74, 133
der Lange null und
Unveranderbarkeit 141
in 6ffentlichen Feldern,
Sicherheitsloch 74
Léange null vs. null als
Riickgabewert 141f.

238

Index

Nichtnull-Lange und

Veranderbarkeit 133
Arrays der Lange null

Unveranderbarkeit 141

vs. null als Riickgabewert 141f.
atomare Daten 192

Synchronisierung 192, 194
Attribute 17

Zugreifbarkeit 72

Zugreifbarkeit minimieren 71

Zugriff minimieren 75
Attribut-Interfaces 17
Attributklassen 17

statische vs. nicht-statische 101, 105
Ausnahmen 173, 190

behandeln mit

ThreadGroup.uncaughtException 211

Detailnachrichten 186f.

Dokumentation 184, 186

Dokumentation im Rahmen der

Methodendokumentation 143

Fehlerinformationen 186

gebrauchliche 127, 181

gepriifte vs. Laufzeit- 176, 178

gepriifte zu ungepriiften machen 179

ignorieren 189f.

Kontrollfluss 174

Leistung 173

Methoden darauf definieren 177

nicht abgefangene, beim

Objektabschluss 34

nur fiir Ausnahme-

bedingungen 173, 176

standardmaéflige bevorzugen 180, 182

Ubersetzung 129, 182

Verkettung 182

vermeiden 178, 180, 184

Zweck der gepriiften 176

Zweck von Laufzeitausnahmen 176
Ausnahmentibersetzung 129, 182
Ausnahmen-Verkettung 182
aufersprachliche Mechanismen

native Methoden 165

Reflection 162

Serialisierung 214
auflersprachlicher Mechanismus,

Klonen 58

B
Basisklassen 161
bedingt Thread-sicher 208
Denial-of-Service-Attacke 210
dokumentieren 209
Sperrobjekt dokumentieren 210
Begleiterklassen, veranderliche 79
Beispiel, Point 43
Beispiele
A,B,C 137
AbstractFoo 216
AbstractMapEntry 97
anonyme innere Klasse 103
BogusPeriod 225
Calculator 104
CaselnsensitiveString 41
Circle 110
CollectionClassifier 136
ColorPoint 43, 45
Comparator 124
Complex 76, 80
DeadlockQueue 199
Degree 145
DisplayQueue 198
Elvis 23f., 230
Entry 61f., 220f.
ExtendedOperation 121
Foo
Finalizer-Wachter 36
serialisierbare Unterklasse einer
nicht-serialisierbaren Klasse 217
FooHolder 196
HashTable 61f.
Host 125
InstrumentedHashSet 83
InstrumentedSet 86
Key 158
MutablePeriod 227
Mylterator 102
MySet 102
Name 219
Operation 104, 117, 120
Overriding 137
Period 130, 224
Person 27f.
PhoneNumber 50
PhysicalConstants 99f.

Index

239

PlayingCard 113

Point 108

Rectangle 111

Shape 110

Singer 95

SingerSongwriter 95

Songwriter 95

Square 112

Stack 30, 60

StoppableThread 193f.

StringLengthComparator 123f.

StringList 219, 221

StrLenCmp 125

Sub 92

Suit 114f.

Super 91

ThreadLocal 157f.

UtilityClass 26

WaitQueuePerf 206

WordList 66

WorkerThread 198f., 205

WorkQueue 197, 205
Benutzer 17
bequeme Initialisierung 53
Bibliotheken 150, 154

fiir Multithreaded-

Programmierung 191
BigDecimal, fiir

Wihrungsrechnung 154, 156
Bindrkompatibilitdt 215
Bounded Buffers 204
busy-wait 205

C
Callback-Architekturen 87
Callbacks 87, 123
Client 17
clone 39, 57, 65
allgemeiner Vertrag 58f.
als Konstruktor 60, 92
Beispiele
defensive Kopien 74, 132, 224
implementieren 61f.
Beispiele fiir Implementierung 59
defensive Kopien 74, 131
defensives Kopieren 228

Kopiekonstruktor als Alternative 65

nicht-finale Methoden 63, 92
Referenz auf veranderliche
Objekte 60, 63
unverdnderliche Objekte 78

Unvereinbarkeit mit final-Feldern 61

Cloneable Interface 57
Alternativen 64f.
Beispiele 61f.
Implementierungsanleitungen 64
Verhalten 58
zur Vererbung entwerfen 92
Zweck 57
Collections Framework 152
Comparable-Interface 65, 70
Comparator
anonyme Klassen 103
Beispiele 103, 123ff.
Instanz 103
Interface 124
Klasse 68, 124
compareTo 39, 65
allgemeiner Vertrag 66, 68
Anleitungen 68, 70
Beispiel zur Verwendung 28
Beispiele 68f., 116,226
Uberladung 140

Verwendung 130f., 155, 224, 228

Beispiele zur Verwendung 27
konsistent oder inkonsistent mit
equals 68

Unterschiede zu equals 67

D
Datenkonsistenz
bei Fehlern erhalten 187, 189
Synchronisierung 191, 197
Deadlock, verhindern 197, 199
defaultReadObject
Beispiele 217, 221, 226, 228
transient-Felder 222f.
defaultWriteObject
Beispiele 217, 221
transient-Felder 222f.
defensive Kopie 129, 133
Array 133
clone 131
readResolve als Alternative 231

240

Index

unveranderliche Objekte 78

veranderliche interne Felder 132

Vergleich mit Wiederverwendung

von Objekten 30

von veranderlichen Parametern 131
defensives Kopieren

clone 228

Deserialisierung 228
Degenerierte Klassen 107
Delegation 87
Denial-of-Service-Attacke 210
Deserialisierung 232

Abschluss verhindern 226

als Konstruktor 214

Singletons 25

typsichere Enums 116
Detailnachricht 186
Dienstanbieter Architektur 21
Dienstklassen 25

Alternative zu Konstanten-

Interfaces 100
discriminated Unions 109

Klassenhierarchien als Ersatz 109, 113

Doc-Kommentare 142

Dokumentation 142, 146
@param-Tag 143
@return-Tag 143
@serialData-Tag 222
@serial-Tag 219
@throws-Tag 127, 143, 184
Ausnahmen 184, 186
bedingte Thread-Sicherheit 209
erforderliche Sperren 209f.
Ergebniswert von toString 55
flir serialisierte Felder 219
fiir Vererbung 89f.
héufiger Ausnahmen in der
Klasse 185
HTML in Javadoc 144
Javadoc 142, 146
Links auf Architekturdokumente
Javadoc 146
Methoden 143
Nachbedingungen 143
Nebeneffekte 143
Objektzustand nach Ausnahme 189
Parameterrestriktionen 127

Selbstnutzung tiberschreibbarer
Methoden 89, 94
Steuerungsiibernahme 133
synchronized-Modifikator 208
Thread-Sicherheit 143, 208, 211
Vererbung von Doc-
Kommentaren 145
Vorbedingungen 143, 185
writeObject fiir Serialisierung 222
zusammenfassende Beschreibung 144
Dokumentationskommentare 142
Doppelpriifungsidiom 194, 196
double, wann vermeiden 154, 156

E
eigene serialisierte Form 213, 218, 224
Beispiel 221
transient-Felder 223
einfache Felder, equals 47
Enum, Klassen als Ersatz 113, 123
equals 39, 49
abstrakte Klasse erweitern 45
allgemeiner Vertrag 40
als nichtunterstiitze Operation
(Beispiel) 40
Beispiel zum allgemeinen
Vertrag 42, 45
Beispiel zur Verletzung des
allgemeinen Vertrags 42, 44
Beispiele
allgemeiner Vertrag 97
fir typsichere Enums 119
Uberschreiben verhindern 120
Weiterleitung 140
Beispiele zu unbeabsichtigtem
Uberladen 49
Beispiele zum allgemeinen Vertrag 46
Hauptform 48
instanziierbare Klasse erweitern 45
Methodenweiterleitung 140
typsichere Enums 40, 119
iiberschreiben 39f.
Uberschreiben von hashCode 48f., 55
unbeabsichtigtes Uberladen 49
Erweiterung 17
Cloneable-Interface 92
equals und Klassen- 45

Index

241

Klassen 83

Klassenhierarchien 111

Serializable-Interface 92, 215

typsichere Enums 118

von Interfaces 95

von Klassen 93

compareTo 67

von Skelettimplementierungen 97
Erweiterung von Klassen,

private Konstruktoren 80
explizite Abschlussmethode 34, 36
exportiertes API 17

Attributklassen 103

Doc-Kommentare 146

Konstanten-Interface-Muster 100

Serialisierung 213

synchronized-Modifikator 208

Zugriffsebenen 72

F
faule Initialisierung 21, 29, 81
Doppelpriifungsidiom 194
Holder-Klasse fiir bedarfsgemafle
Initialisierung 195
Fehler 176
Fehleratomizitat 129, 187, 189
fein abgestimmte Synchronisierung 201
Felder 17
Anfangswerte 223
clone 60
compareTo 68
defensive Kopien 132
dokumentieren 143, 145, 219
equals 47
final siehe final-Felder
geschiitzte 90
hashCode-Methode 52
Interface-Typen 160
Kapselung 108
Konstante 74
Konstanten-Interface-Muster 99
Namenskonventionen 170, 172
Offentliche 73
offenlegen 74, 108
redundante 48, 52
Reflection 162
Serialisierung 224

synthetische 217
Thread-Sicherheit 73
transient siehe transiente Felder
Unveranderbarkeit 75
Zugriffsebenen 72
zustandslose Klassen 124
finale Felder
kein defensives Kopieren mit
readObject 228
Konstanten 74, 170
Konstanten-Interface-Muster 99
readResolve 231
Referenzen auf veranderliche
Objekte 74
typsichere Enums 114
finales Feld, fiir Singleton-
Implementierung 23
final-Felder, Unvereinbarkeit mit
clone 61
Finalizer 33
Ausfiihrungszeit 33
Vergleich mit. expliziter
Abschlussmethode 34, 36
Verkettung 36
Verwendung 35
wichtiger persistenter Zustand 34
Finalizer-Verkettung 36
Finalizer-Wachter 36
float, compareTo inconsistent
with equals 68
float, wann vermeiden 154, 156
for-Schleifen, besser als while 148
fremde Methoden 197
Beispiel 198
Deadlock 200
Deadlocks 197
Sicherheitsversagen 200
funktionaler Ansatz 77
Funktionsobjekte 103, 123, 135
Funktionszeiger 123

G

gegenseitiger Ausschluss 191

gekapselte Strukturklasse 108

gepriifte Ausnahmen 176
dokumentieren 184
ignorieren 189f.

242

Index

unnotige vermeiden 178, 180
unteilbare Fehler 187
zu ungepriiften machen 179
Zugriffsmethodenin 177, 187
Zweck 176

geschachtelte Klassen 72, 101, 105

als Konkrete-Strategie-Klassen 125

Zugriffsebenen 72
Grundtypen 17

compareTo 69
Giiltigkeitsbereich von Variablen

alte Referenzen 32

lokal 147, 150

Schleife 148

H

Handoff 133

hashCode 39
faule Initialisierung 81
lazy initialization 53
Schreibweise 51
typsichere Enums 119

Uberschreiben von equals 48f., 55

unverdnderliche Objekte 53
Hauptform 48
Heap-Profiler 33
Hilfsklasse 101
Hilfsklassen 135
im Collections Framework 67
Holder-Klasse fiir bedarfsgerechte
Initialisierung 196
Hiillenklassen 86, 88
Alternative zu Konstanten-
Interfaces 100
zum Synchronisieren
unsynchronisierter Klassen 201
zur Synchronisierung 201

I
implementiert 17
Implementierungsvererbung 83
Informationen verbergen 166
Initialisierung
bei Objekterzeugung 82
Beispiel fiir bequeme 53
Beispiel zur statischen 28
Beispiele 195f.
Doppelpriifungsidiom 194

Schleifenvariablen 148
serialisierbare Unterklassen 216
statische 195
bequeme 53
defensive Kopien 75
faule 21, 29, 194
Felder, beim Deserialisieren 223
Holder-Klasse fiir bedarfsgemaéfie
Initialisierung 196
lokale Variablen 148
serialisierbare Unterklassen
ermdglichen 216
statische 28
unfertige Objekte betrachten 92
vor dem Abschluss Objekte
betrachten 195
Initialisierung, faule, Beispiele 81
inkonsistent mit equals 68
Innere Klassen, und Serialisierung 217
innere Klassen 101
instanzgesteuerte Klasse
Dienstklassen 25
Singleton 23
typsichere Enums 114
instanzkontrollierende Klassen 231
readResolve 231
int, fiir Wahrungsrechnung 154, 156
Interface-Architekturen 94, 99
Interface-basierte Architektur 21
Interfaces 17, 71, 105
als Parametertypen 135
Cloneable 57, 65
Comparable 65, 70
dokumentieren 143, 145, 185
fiir nicht-hierarchische
Typarchitekturen 95
Konstanten- 99, 101
Mixin 57, 95
Mixins definieren 95
Namenskonventionen 170f.
Objekte referenzieren 160, 162
Serializable 213, 218
Serializable erweitern 215
Skelettimplementierungen 96, 98
Strategie- 124
vs. abstrakte Klassen 94, 99
vs. Reflection 165
Weiterentwicklung 98

Index

243

Zugriffsebenen 72
zur Funktionalititsverbesserung 96
zur Typdefinition 99, 101
Zweck 99, 101
interfaces, vs. reflection 162
Interface-Vererbung 83

J

JavaBeans
Serialisierung 213
XML 215

Javadoc 142

K

Kapselung 71, 107
Datenfelder 108
durch Vererbung aufbrechen 83

Klassen 17,71, 105
Attribute 17
Attributklassen 17
Basis- 161
dokumentieren 143, 145

Thread-Sicherheit 208, 211

Ebenen der Thread-Sicherheit 208f.
Ersatz fiir C-Enum 113, 123
Ersatz fiir C-structs 107, 109
Ersatz fiir Funktionszeiger 123
fiir Vererbung dokumentieren 89f.
fiir Vererbung entwerfen 90, 94
Hierarchien als Ersatz fiir
discriminated Unions 109, 113
Hilfs- fiir kiirzere Parameterlisten 135
Instanzen 17
Namenskonventionen 170f.
nicht verwandte 139
separate 67
unveranderliche siehe
Unveranderbarkeit
unverbundene 102
Zugreifbarkeit minimieren 71
Zugriff minimieren 75
Zugriffsebenen 72
zustandshaltige 216
zustandslose 124

Klassen, anonyme siehe
anonyme Klassen

Klassen, lokale siehe lokale Klassen

Klassenarchitektur 161
Klassenerweiterung, richtig einsetzen 88
Klassenhierarchien 94
als Ersatz fiir discriminated
Unions 109, 113
kombinatorische Explosion 95
Klon, Kopiekonstruktor als
Alternative 64
kombinatorische Explosion 95
Komposition 22, 85
besser als Vererbung 83, 89
konkrete Strategie 124
konsistent mit equals 68
Konsistenzanforderung
im equals-Vertrag 41, 46
im Vertrag von hashCode 49
Konstanten
Datentypen 74
in Interfaces 99, 101
in typsicheren Enums 113, 123
Namenskonventionen 170
Zugreifbarkeit 74
Konstanten-Dienstklasse 100
Konstanten-Interface 99
Konstruktor 17
Aufruf Giiberschreibbarer Methoden 91
Beispiele
fiir typsichere Enums 114
in Singletons 23f.
in unveranderlichen Klassen 130f.
Nichtinstanziierbarkeit
erzwingen 26
Beispiele, tiberschreibbare
Methoden 91
clone 60
defensive Kopien 131
Deserialisierung 214
dokumentieren, Selbstnutzung 89
durch statische Factory
ersetzen 19, 23
fur typsichere Enums 114, 118
Invarianten festlegen 82
Invarianten herstellen 77
Kopie 64,78
Nichtinstanziierbarkeit
erzwingen 25f.
parameterloser 25, 215

244

Index

readObiject 225

Signatur 20

Singleton-Eigenschaft

erzwingen 23, 25

Standard 25

tiberladen 138
Konstruktoren, dokumentieren 143
kooperative Thread-Beendigung 194
Kopiekonstruktor 64, 78

L
Laufzeitausnahmen 176
dokumentieren 143
vs. gepriifte Ausnahmen 176, 178
Lebendigkeit sicherstellen,
Thread-Prioritaten 207
Lebendigkeit, gewdhrleisten 197, 202
Leistung siehe Optimierungen
Lese-/Schreib-Sperren 204
lokale Klassen 101, 104
lokale Variablen 147
deklarieren 147
Giltigkeitsbereich
minimieren 147, 150
initialisieren 148
Namenskonventionen 170ff.
long, fiir Wahrungsrechnung 154, 156

M

Methode
Namenskonventionen 22
statische Factory siehe statische
Factory-Methode

Methoden 17, 127, 146
Ausnahmen dokumentieren 184, 186
defensives Kopieren vor
Parameterpriifung 131
dokumentieren 144

Thread-Sicherheit 208, 211

dokumentieren, tiberschreibbar 89
expliziter Abschluss 34, 36
Fehleratomizitat 187, 189
fremde 197
fremde siehe fremde Methoden
gemeinsame fiir alle Objekte 39, 70
klein und konzentriert 150
Namen 133

Namenskonventionen 170f.
native 35, 165f.
Parameter auf Giiltigkeit
priifen 127, 129
Parameterlisten 134
Reihenfolge der Berechnungen 188
Signaturen entwerfen 133, 136
uberladene, statische Auswahl 136
Uberladung 136, 140
gleiche Parameteranzahl 138, 140

uberschreiben 136f.
iiberschreiben, dynamische Wahl 136
Unveranderbarkeit und
Uberschreiben 79
Vererbung von Doc-
Kommentaren 145
zu Ausnahmeklassen hinzufiigen 177
Zugriffs-, vs. 6ffentliche Felder 108f.
Zugriffsebenen 72f.
Zustandstest vs.
Spezialriickgabewert 175

Methoden weiterleiten, in
Hiillenklassen 201

Mixin-Interface 57

Modul 16

Monty Python-Zitat 141

N
Nachbedingungen 143
Namenskonventionen 22, 169
native Methoden 35, 165f.
native Peers 35
Nebenlaufigkeit
Dienstprogramme fiir
Multithreading 191
fein abgestimmte Synchroni-
sierung 201
Methodenverhalten
dokumentieren 208, 211
mit Dienstprogrammen
erleichtern 153
offene Aufrufe 199
zu Testzwecken erhohen 207
nicht-hierarchische Typarchitekturen 95
Nichtinstanziierbarkeit 25f.
Nicht-Null, im allgemeinen Vertrag von
equals 46

Index

245

Nicht-Null-Vorschrift, im allgemeinen
Vertrag von compareTo 67
nicht-statische Attributklassen 101
Adapter definieren 102
Beispiel 102
statische sind besser 101, 105
notify vs. notifyAll 203f.

(o]
Objekt
alte Objektreferenzen beseitigen 30
Funktions- 103
obsolete Referenzen eliminieren 33
wieder verwenden 26
Wiederverwendung 30
Objekt Pool 29
Objekte 17
deserialisieren 213, 232
erzeugen und zerstoren 19
gemeinsame Methoden 39, 70
in teilinitialisiertem Zustand 92
in teilinitialisiertem Zustand
betrachten 195
Prozess- 103
reflektiven Zugriff vermeiden 163f.
serialisieren 213, 232
tiber Basisklassen referenzieren 161
uber Interfaces referenzieren 160, 162
unverdnderliche siehe
Unverdnderbarkeit
Objektserialisierung 213
obsolete Objektreferenzen 33
Optimierung
== statt equals 20, 47
statische Initialisierung 28f.
Wiederverwendung von
Objekten 26, 30
Optimierungen 166, 169
Initialisierung 195
notify vs. notify All 203
StringBuffer 159f.
try-catch-Blocke 174

P
Pakete, Namenskonventionen 169, 171
paketprivat

Konstruktoren 93

Zugriffsebene 17, 72

Parameter, Giiltigkeit priifen 127, 129
Parameterlisten 134f.

von Konstruktoren 20
parameterloser Konstruktor 25, 215
Performance-Modell 168
Primitive, hashCode 52
protokollieren 184
Prozessobjekte 103

R
radikal unterschiedliche Typen 138
readObject 224, 230
als weiterer Konstruktor 225
Annehmbarkeit 229
defensiv 224, 230
defensives Kopieren 228
finale Felder 228
fiir unverdnderliche Objekte 82
inkompatibel mit Singletons 230
readResolve als Alternative 231
standardmafiige serialisierte
Form 219, 223
transient-Felder 223
uberschreibbare Methoden 92, 229
readResolve 230, 232
als Alternative zu readObject 231
Beispiele 116, 120f., 230f.
fiir Instanz-kontrollierende
Klassen 231
fiir Singletons 24, 230
fur typsichere Enums 116, 120
fiir unverdnderliche Objekte 82
Zugriffsebenen 93, 121, 232
Recovery-Code 188
redundante Felder 48, 52
Referenztypen 17
compareTo 68
hashCode 52
Reflection
clone-Methode 57
Laufzeitabhédngigkeiten
durchbrechen 164
Nachteile 162, 164
urspriinglicher Zweck 162
vs. Interfaces 165
zur Objekterzeugung 163
reflection, vs. interfaces 162

246

Index

Reflexivitat
compareTo 67
equals 41
rekursive Sperren 200
Rezepte
Aufruf von wait 202
clone 64
compareTo 68, 70
erweiterbare typsichere Enum 118
Finalizer-Wachter 36
hashCode 51
Komposition 85
nichtinstanziierbare Klasse 26
readObject 229
Singleton 23
statische Factory-Methode 19
typsichere Enums 114
typsichere Enums, erweiterbar,
serialisierbar 119
typsichere Enums, serialisierbar 116

S
Schleifen
for besser als while 148
Giiltigkeitsbereich von Variablen
minimieren 148
wait-Aufruf 202, 204
Schleifenvariablen 148
Selbstnutzung
bei Vererbung unterbinden 94
dokumentieren fiir Vererbung 89
Semaphoren 204
serialisierte Form
als Teil des exportierteen APIs 213
defaultWriteObject 222
dokumentieren 219
eigene siehe eigene serialisierte Form
innere Klasse 217
standardmaéflige siehe standardmaflige
serialisierte Form
typsichere Enum 117
von Singletons 230
Serialisierung 213, 232
Aufwand 213
aufsersprachlicher Mechanismus 214
Auswirkung auf exportiertes API 213
dokumentieren 219, 222
innere Klassen 217

Interface-Erweiterung 215
JavaBeans 213
Unveranderbarkeit 82
Vererbung 215
Serializable-Interface, zur Vererbung
entwerfen 92
serialver-Dienstprogramm 223
Serienversion-UID, in serialisierbaren
Klassen deklarieren 223
Serienversion-UIDs 214
Service Provider Framework,
Reflection 164
Sicherheit
gewdhrleisten 191, 197
versagen 196, 200
wait 202
Signatur 17, 133, 136
simulierte Mehrfachvererbung 97
Singleton 23
Deserialisierung 25
durch privaten Konstruktor
erzwingen 23, 25
inkompatibel mit readObject 230
readResolve 24, 230
serialisierte Form 231
Skelettimplementierung 96, 182
Specific Notification 204
Speicherleck 31
Beispiel 30
Ursachen 31, 33
Speichermodell 75, 192
Sperren
fiir Klassen auf verschiedenen Thread-
Sicherheitsebenen 208
in Multithreaded-Program-
men 191, 197
mit privaten Objekten 210
rekursive 200
Spezialriickgabewert, vs.
Zustandstestmethode 175
Standardkonstruktor 25
standardmaéfige serialisierte Form
Anfangswerte von transient-
Feldern 223
Kriterien fiir die Annahme 218
Nachteile 220
transient-Modifikator 221
Standardzugriff 17, 72

Index

247

statisch, Initialisierer 28

statische Attributklassen 101
besser als nicht-statische 101, 105
fiir Aggregate besser als String 157
fur kiirzere Parameterlisten 135
haufige Verwendung 101f., 104
Serialisierung 217
Strategiemuster implementieren 125
typsichere Enums
implementieren 118

statische Factory-Methode 19, 24, 27
als Grundlage fiir
Dienstanbieterarchitektur 21
als Klon-Ersatz 64
anonyme Klassen 103
Ersatz fiir Konstruktor 19, 23
Flexibilitat 20
fiir instanzgesteuerte Klassen 20
fiir unveranderliche Objekte 80
Nachteile gegentiber Konstruktor 22
Namenskonventionen 22
Strategiemuster 125

Vorteile gegeniiber Konstruktoren 19

statische Felder
Strategiemuster 125
unveranderliche Objekte 24
verdnderliche, synchronisieren 201
statisches Feld, Holder-Klasse fiir
bedarfsgerechte Initialisierung 196
Strategie-Interface 124
Stream Unique Identifier 223
String-Darstellung 55, 57
Strings, schlechter Ersatz fiir andere
Typen 156, 159
String-Verkettung 159f.
Strom-eindeutige Bezeichner 214
struct, durch Klasse ersetzen 107
Struktur, Klasse als Ersatz 109
Symmetrie
compareTo 67
equals 41
Synchronisierung
durch Unterklassenbildung 201
fein abgestimmte 201

fiir Thread-Kommunikation 192, 196

gegenseitiger Ausschluss 191
gemeinsam genutzte, verdnderliche

Daten 191, 197

interne 201

Leistung 197, 200

von atomaren Daten 192, 194
synchronized-Modifikator

als Implementierungsdetail 208

Dokumentation 208

Zweck 191
synthetische Felder 217

T
Thead-Prioritaten 207
Thread.yield 207
testen 207
Thread-Beendigung, kooperative 194
Thread-feindlich 209
Thread-Gruppen 211f.
Thread-kompatibel 209
vs. Thread-sicher 201
Thread-Planer 204, 208
Threads 191
Thread-sicher 208
vs. Thread-kompatibel 201
Thread-Sicherheit 210
dokumentieren 208, 211
Ebenen 208
Klassen mit 6ffentlichen,
veranderlichen Feldern 73
ThreadGroup-API 211
Unveranderbarkeit 77
toString 39
allgemeiner Vertrag 55
Ausnahmen 186
Ergebniswert als De-Facto-API 57
Ergebniswert dokumentieren 55, 57
uberschreiben 55, 57, 115
transient-Felder 221
Beispiele 120, 221
defaultReadObject 222f.
defaultWriteObject 222f.
Deserialisierung 223
eigene serialisierte Form 223
logischer Objektzustand 223
readResolve 116
Singletons 231
transient-Modifikator 221

248 Index
Transitivitat Unterklassenbildung 17

compareTo 67 equals 43, 45

equals 43 RuntimeException vs. Error 176

Typen, radikal unterschiedliche 138
typsichere Enums 114
anonyme Klassen 117
equals 40
Ersatz fiir C-Enums 113, 123
implementieren, Toplevel- vs. statische
Attributklasse 118
Konstruktoren 114
Nachteile 121
readResolve 231
und equals 119
und hashCode 119
Varianten, Comparable 115
Varianten, Erweiterbarkeit 118
Varianten, serialisierbar 116
Verhalten hinzufiigen 118
Verhaltensweisen hinzufiigen 115

V)
iiberfliissige Objektreferenzen 188
Uberladung siehe Methoden,
Uberladungen
iuiberschreiben siehe Methoden,
uiberschreiben
Ubersetzung, von Ausnahmen 129, 182
umgebende Instanz 101
anonyme Klassen 103
Finalizer-Wachter 36
lokale Klasse 104
nicht-statische Attributklasse 101
umschlieflende Instanz,
Serialisierung 217
unbeabsichtigtes Zuriickhalten von
Objekten siehe Speicherleck
ungepriifte Ausnahmen 178
dokumentieren 143, 184
Idiome zur Kennzeichnung 185
ignorieren 189f.
standardmafiige 180
zu gepriiften machen 179
ungewollt instanziierbare Klasse 25
Unions, Klassenhierarchien als
Ersatz 109, 113

verbieten 93
Verbot 22, 26
Zugriffsebenen von Methoden 73
Unterklassenbildung siehe auch
Erweiterung
unveranderbar, Thread-
Sicherheitsebene 208
Unveranderbarkeit 75, 83
Arrays der Lange null 141
Beispiele 76
kaputte Klasse 130
Serialisierung 224
statische Factorys 80
Cloneable 64
defensive Kopien 130, 132
funktionaler Ansatz 77
Konstanten 170
Nachteil 78
readObject 224, 228
readResolve 232
Regeln 75
Serialisierung 82, 224, 230
statische Factorys 80
Vorteile 77
Unveranderlichkeit
Hauptform 48
Konstanten 74
und hashCode 53
Wiederverwendung von Objekten 26
util.concurrent 153, 191

v
Variablen
atomare Operationen 192
lokale siehe lokale Variablen
mit Interface-Typen deklarieren 160
Schleifen- 148
veranderliche Begleiterklassen 79
Verbergen von Informationen 71
Vererbung 17
Beispiel 83
besser ist Komposition 83, 89
dokumentieren 89f.

Index

249

durch Hooks erleichtern 90

entwerfen 94

Entwurf 90

Griinde fiir Instabilitat 85

Implementierung vs. Interface 83

inkompatibel mit readResolve 232

Nutzung 88

Selbstnutzung tiberschreibbarer

Methoden unterbinden 94

Serialisierung 215

Sperren mit internen Objekten 210

iiberschreibbare Methoden 91

und Kapselung 83

verbieten 93

von Doc-Kommentaren 145
Vererbung siehe auch Erweiterung
View, Erhalt der Unveranderbarkeit 133
Views

Namenskonventionen 172

sperren 209

und nicht-statische

Attributklassen 102

Unterklassenbildung vermeiden 45

Wiederverwendung von Objekten 29

zur Vermeidung von Unterklassen 67
volatile-Modifikator 194

Beispiele 53, 81, 206
Vorbedingungen 143, 185

w
wait-Schleife 202, 204
Weiterleitung 86
an private Erweiterung einer
Skelettimplementierung 97
Weiterleitungsmethoden 86
Beispiel 86

in Hullenklassen 87
konsistentes Verhalten bei Uberladung
erzielen 140
Objektkomposition 86
while-Schleife, for besser als while 148

X
XML, zur Persistenz von JavaBeans 215

z
Zugriffsebenen 17

Klassen und Interfaces 72

Konstanten 74

readResolve 232

uberschreibende Methoden 73

von Attributen 72

von statischen Attributklassen 101
Zugriffskontrolle 72
Zugriffsmethode

fiir Ausnahme einer niedrigen

Ebene 183

fiir Ergebnisinformationen von

toString 57
Zugriffsmethoden 108

Beispiele 132

defensive Kopien 75, 132

fur Fehlerinformationen 177

Namenskonventionen 172

Unveranderbarkeit 75

vs. Offentliche Felder 108f., 112
zusammenfassende Beschreibung 144
Zustandsdnderung 77
Zustandstestmethode 174f., 179
Zustandsiibergang 191

Aoam Bipw

o\ Aborson wester

ERterprise

Erameworks

Pramesl, IR e he

e

dVda

_

Das esammenspiel der Java-Architehturen

\

www.addison-wesley.de

F

EXCELLENTCE

Enterprise Java
Anwendungen

Java-Technologien professionell einsetzen

Adam Bien

Hier finden Sie eine umfassende Beschrei-
bung der J2EE-Architektur und eines horizon-
talen Frameworks - des,Small Java Frame-
works” (SJF). Neben klassischen Patterns wer-
den die wichtigsten APIs vorgestellt. Darauf
aufbauend beschiftigen Sie sich mit der Ent-
wicklung des SJF-Frameworks und Fragen wie
Classloading, Konfiguration, Persistence, Ver-
teilung und Clustering. Abschlie3end werden
die Performance des Frameworks und die
Verwendung unterschiedlicher Ansatze wie
»Value Objects” untersucht.

Programmer s Choice
280 Seiten, 1 CD-ROM

€ 44,95 [D] / sFr 78,00
ISBN 3-8273-1777-0

vAv ADDISON-WESLEY

@)

Fiomiam Haweirees |

www.addison-wesley.de

F

EXCELLENTCE

Java 2-Programmierung
mit IBM Visual Age

Florian Hawlitzek

Kompetent und umfassend fiihrt Sie diese
zweite Auflage des bewdhrten Titels von
Florian Hawlitzek in die Softwareentwicklung
mit IBM VisualAge for Java ein.Im ersten Teil
erhalten Sie einen Uberblick tiber die Kon-
zepte der Programmiersprache Java 2 und die
Bestandteile der verschiedenen Versionen von
VisualAge for Java, Version 3.5 und 4.0. Daran
anschlieBend wird die Entwicklungsumge-
bung von VisualAge mit seinen Browsern und
Werkzeugen vorgestellt und schrittweise die
Entwicklung einer einfachen Anwendung
demonstriert. Der dritte Teil richtet sich an
Java-Neulinge: Er gibt - speziell auf VisualAge
zugeschnitten - eine Einflihrung in die
Sprache.Im letzten Abschnitt wird VisualAge
for Java fur Fortgeschrittene behandelt,
Schwerpunkte bilden dabei die grafische
Programmierung mit dem Visual Composition
Editor und die vielfiltigen Enterprise Features.

Programmer s Choice

598 Seiten, 1 CD-ROM, 2. Auflage
€ 44,95 [D] / sFr 78,00
ISBN 3-8273-1801-7

v‘v ADDISON-WESLEY

HE SI1GN

o

b S
A
- Vom den
Erfindesn
g won I
I
s sbtumtien
darea ervdon 1 g
Kinw Aawoin « Jamis ¢+ Davio Howmis I-
Proqgra = D

d|

www.addison-wesley.de

F

EXCELLENTCE

Die Programmiersprache
Java

Ken Arnold, James Gosling, David Holmes

Von den Erfindern von Java! Diese umfassende
Einflihrung richtet sich auf professionellem
Niveau gleichermaf3en an Einsteiger und an
Java-Profis. Java-Neulinge erhalten durch die
pragnanten Beispiele und detaillierten Erldu-
terungen der Features ein tiefes Verstéandnis
der machtigen Moéglichkeiten von Java. Fort-
geschrittene und Profis kdnnen das Buch als
Referenz fiir ihre tégliche Arbeit, insbesondere
fur die Spezialitaten von Java 2 (JDK 1.3) ver-
wenden. Alle wichtigen Aspekte wie Klassen,
Bibliotheken, APls, Garbage Collection etc.
werden eingehend behandelt und erklart.

Programmer s Choice
628 Seiten

€ 59,95 [D]/ sFr 108,00
ISBN 3-8273-1821-1

vAv ADDISON-WESLEY

T HE SIGN O

Grafische
e hen
erviafien

| Srteaktiee

[—

Pau Frscwurs

-~ Y e
e o=
l.". dalill l\‘_
Provrammicrrune

Wy apocson wesiey

I 4

www.addison-wesley.de

F

EXCELLENTCE

Grafikprogrammierung
mit Java-Swing

Fur Einsteiger in die
Graphikprogrammierung mit JAVA.

Paul Fischer

Dieses Buch behandelt die wichtigste Graphik-
Bibliothek von JAVA, die Swing-Bibliothek. Zunachst
werden die Grundkomponenten vorgestellt, die es
dem Benutzer schnell erlauben, Fenster auf dem
Bildschirm darzustellen und mit Inhalt zu fullen.
AnschlieBend werden weitere graphische Kompo-
nenten beschrieben, die einen Dialog zwischen
Programm und Benutzer ermdglichen. Dazu geh6-
ren Knopfe, Mentis und Dialogfenster. Es wird erldu-
tert, wie einfach die Einbindung der Maus in eigene
Anwendungen ist. Stets demonstrieren kleine Pro-
gramme die Funktionen der Komponenten. Durch
Kombination verschiedener graphischer Elemente
ist es dann auf einfache Weise mdglich, anspruchs-
vollere Benutzeroberflachen zu erstellen. Als Bei-
spiele hierflr findet man einen einfachen Texteditor,
je ein Programm zur Darstellung und Bearbeitung
von Vektor- bzw. Pixel-Graphiken und einen kleinen
Web-Browser. Ubungen und Vorschlage fiir eigene
Projekte sollen bei der Einarbeitung in die Graphik-
programmierung helfen. Vorausgesetzt werden le-
diglich Grundkenntnisse der Programmiersprache
JAVA. Alle Programme sind unabhéngig von einer
bestimmten Entwicklungsumgebung.

Programmer s Choice
192 Seiten, 1 CD-ROM

€ 29,95 [D] / sFr 53,00
ISBN 3-8273-1910-2

v‘v ADDISON-WESLEY

@)

Guido Kroger

B Brpngyry,
LT rirl

= B

g AL fory

™

CJavh 2

Handbuch

der Java-Programmierung

2 Auflage

L3, g,
[T b T T,
I&m'z“&:;.m

A
¥y ADDISON-WESLEY

7]

www.addison-wesley.de

v

F

EXCELLENTCE

Go To Java 2

Handbuch der Java-Programmierung
2. Auflage

Guido Kriiger

Das Standardwerk von Guido Kriiger liegt nun
in zweiter und erweiterter Auflage als Hand-
buch der Java-Programmierung vor. Seine
wichtigsten Merkmale sind die umfassende
Darstellung aller wichtigen Java-Themen, die
Praxisndhe, eine grofle Menge an unmittelbar
verwendbaren Beispielprogrammen sowie die
klare und didaktisch sinnvolle Struktur. Die
beigefiigte HTML-Version ist ideal als Nach-
schlagewerk und ein unentbehrliches Hilfs-
mittel am Arbeitsplatz jedes Java-Entwicklers.

Go To
1224 Seiten, 1 CD-ROM

€ 49,95 [D]/ sFr 88,00
ISBN 3-8273-1710-X

v‘v ADDISON-WESLEY

	Cover
	Effektiv Java programmieren
	Inhalt
	Vorbemerkung
	Vorwort
	Danksagungen
	Einführung
	Objekte erzeugen und zerstören
	Allen Objekten gemeinsame Methoden
	Klassen und Interfaces
	Ersatz für C-Konstrukte
	Methoden
	Allgemeine Programmierung
	Ausnahmen
	Threads
	Serialisierung
	Quellen
	Index

	Vorbemerkung
	Vorwort
	Danksagungen
	Einführung
	Objekte erzeugen und zerstören
	Thema 1: Verwenden Sie statische Factory-Methoden statt Konstruktoren
	Thema 2: Erzwingen Sie mit einem privaten Konstruktor die Singleton-Eigenschaft
	Thema 3: Mit einem privaten Konstruktor Nichtinstanziierbarkeit erzwingen
	Thema 4: Vermeiden Sie die Erzeugung von Objektduplikaten
	Thema 5: Eliminieren Sie alte Objektreferenzen
	Thema 6: Vermeiden Sie Finalizer

	Allen Objekten gemeinsame Methoden
	Thema 7: Halten Sie beim Überschreiben von equals den allgemeinen Vertrag ein
	Thema 8: Überschreiben Sie hashCode immer, wenn Sie equals überschreiben
	Thema 9: Überschreiben Sie toString immer
	Thema 10: Vorsicht beim Überschreiben von clone
	Thema 11: Implementieren Sie Comparable

	Klassen und Interfaces
	Thema 12: Minimieren Sie die Zugreifbarkeit von Klassen und Attributen
	Thema 13: Bevorzugen Sie Unveränderbarkeit
	Thema 14: Komposition ist besser als Vererbung
	Thema 15: Entweder Sie entwerfen und dokumentieren für die Vererbung oder Sie verbieten sie
	Thema 16: Nutzen Sie besser Interfaces als abstrakte Klassen
	Thema 17: Verwenden Sie Interfaces ausschließlich zur Typdefinition
	Thema 18: Ziehen Sie statische Attributklassen den nicht-statischen vor

	Ersatz für C-Konstrukte
	Thema 19: Ersetzen Sie Strukturen durch Klassen
	Thema 20: Ersetzen Sie Unions durch Klassenhierarchien
	Thema 21: Ersetzen Sie Enum-Konstrukte durch Klassen
	Thema 22: Ersetzen Sie Funktionszeiger durch Klassen und Interfaces

	Methoden
	Thema 23: Prüfen Sie die Gültigkeit der Parameter
	Thema 24: Machen Sie bei Bedarf defensive Kopien
	Thema 25: Entwerfen Sie die Methodensignaturen sorgfältig
	Thema 26: Verwenden Sie Methodenüberladung vorsichtig
	Thema 27: Geben Sie nicht null, sondern Arrays der Länge null zurück
	Thema 28: Schreiben Sie Doc-Kommentare für alle offen gelegten API- Elemente

	Allgemeine Programmierung
	Thema 29: Minimieren Sie den Gültigkeitsbereich lokaler Variablen
	Thema 30: Sie müssen die Bibliotheken kennen und nutzen
	Thema 31: Meiden Sie float und double, wenn Sie genaue Antworten wollen
	Thema 32: Vermeiden Sie Strings, wo andere Typen sich besser eignen
	Thema 33: Hüten Sie sich vor der Langsamkeit von String-Verkettungen
	Thema 34: Referenzieren Sie Objekte über ihre Interfaces
	Thema 35: Nutzen Sie eher Interfaces als Reflection
	Thema 36: Verwenden Sie native Methoden mit Vorsicht
	Thema 37: Optimieren Sie nur mit Vorsicht
	Thema 38: Halten Sie sich an die allgemein anerkannten Namenskonventionen

	Ausnahmen
	Thema 39: Verwenden Sie Ausnahmen nur für Ausnahmebedingungen
	Thema 40: Geprüfte Ausnahmen für behebbare Situationen, Laufzeitausnahmen für Programmierfehler
	Thema 41: Vermeiden Sie den unnötigen Einsatz von geprüften Ausnahmen
	Thema 42: Bevorzugen Sie Standardausnahmen
	Thema 43: Lösen Sie Ausnahmen aus, die zur Abstraktion passen
	Thema 44: Dokumentieren Sie alle Ausnahmen, die eine Methode auslöst
	Thema 45: Geben Sie in Detailnachrichten Fehlerinformationen an
	Thema 46: Streben Sie nach Fehleratomizität
	Thema 47: Ignorieren Sie keine Ausnahmen

	Threads
	Thema 48: Synchronisieren Sie den Zugriff auf gemeinsam genutzte, veränderliche Daten
	Thema 49: Vermeiden Sie übermäßige Synchronisierung
	Thema 50: Rufen Sie wait nie außerhalb einer wait-Schleife auf
	Thema 51: Verlassen Sie sich nicht auf den Thread-Planer
	Thema 52: Dokumentieren Sie die Thread-Sicherheit
	Thema 53: Vermeiden Sie Thread-Gruppen

	Serialisierung
	Thema 54: Implementieren Sie Serializable mit Vorsicht
	Thema 55: Ziehen Sie die Nutzung einer eigenen serialisierten Form in Erwägung
	Thema 56: Schreiben Sie readObject-Methoden defensiv
	Thema 57: Stellen Sie wenn nötig eine readResolve-Methode zur Verfügung

	Quellen
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

