

Programmer’s Choice

Joshua Bloch

Effektiv Java
programmieren
Deutsche Übersetzung von Reder Translations

An imprint of Pearson Education

München • Boston • San Francisco • Harlow, England
Don Mills, Ontario • Sydney • Mexico City
Madrid • Amsterdam

http://www.addison-wesley.de
http://www.pearsoned.de
http://www.pearsoned.de
http://www.addison-wesley.de

Die Deutsche Bibliothek – CIP-Einheitsaufnahme

Ein Titeldatensatz für diese Publikation ist bei
Der Deutschen Bibliothek erhältlich.

Die Informationen in diesem Produkt werden ohne Rücksicht auf einen eventuellen Patentschutz veröffentlicht.
Warennamen werden ohne Gewährleistung der freien Verwendbarkeit benutzt. Bei der Zusammenstellung von
Abbildungen und Texten wurde mit größter Sorgfalt vorgegangen. Trotzdem können Fehler nicht vollständig ausge-
schlossen werden. Verlag, Herausgeber und Autoren können für fehlerhafte Angaben und deren Folgen weder eine
juristische Verantwortung noch irgendeine Haftung übernehmen. Für Verbesserungsvorschläge und Hinweise auf
Fehler sind Verlag und Herausgeber dankbar.

Alle Rechte vorbehalten, auch die der fotomechanischen Wiedergabe und der Speicherung in elektronischen Medien.
Die gewerbliche Nutzung der in diesem Produkt gezeigten Modelle und Arbeiten ist nicht zulässig.

Fast alle Hardware- und Softwarebezeichnungen, die in diesem Buch erwähnt werden, sind gleichzeitig eingetragene
Warenzeichen oder sollten als solche betrachtet werden.

Umwelthinweis:
Dieses Produkt wurde auf chlorfrei gebleichtem Papier gedruckt.
Die Einschrumpffolie – zum Schutz vor Verschmutzung – ist aus umweltverträglichem
und recyclingfähigem PE-Material.

Authorized translation from the English language edition, entitled EFFECTIVE JAVA™ PROGRAMMING
LANGUAGE GUIDE, 1st Edition by BLOCH, JOSHUA, published by Pearson Education, Inc., publishing as Addison
Wesley Professional, Copyright © 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303 USA.
All rights reserved.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording or by any information storage retrieval system, without permission
from Pearson Education, Inc.

GERMAN language edition published by PEARSON EDUCATION DEUTSCHLAND, Copyright © 2002 Addison-
Wesley

Autorisierte Übersetzung der englischen Ausgabe mit dem Titel EFFECTIVE JAVA™, PROGRAMMING LANGUAGE
GUIDE, 1. Auflage, von BLOCH, JOSHUA. Veröffentlicht von Pearson Education, Inc., Addison Wesley Professional,
Copyright © 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303 USA.
Alle Rechte vorbehalten.

5 4 3 2 1

05 04 03 02

ISBN 3-8273-1933-1

© 2002 by Addison-Wesley Verlag,
ein Imprint der Pearson Education Deutschland GmbH
Martin-Kollar-Straße 10–12, D-81829 München/Germany
Alle Rechte vorbehalten
Einbandgestaltung: Christine Rechl, München
Titelbild: Mutisia sp., Mutisie. © Karl Blossfeldt Archiv –
Ann und Jürgen Wilde, Zülpich/VG Bild-Kunst Bonn, 2001.
Lektorat: Christiane Auf, cauf@pearson.de
Korrektorat: Susanne Franz, Ottobrunn
Herstellung: Monika Weiher, mweiher@pearson.de
Satz: reemers publishing services gmbh, Krefeld, www.reemers.de
Druck und Verarbeitung: Kösel, Kempten, www.Koeselbuch.de
Printed in Germany

Inhalt

Vorbemerkung 9

Vorwort 11

Danksagungen 13

1 Einführung 15

2 Objekte erzeugen und zerstören 19
2.1 Thema 1: Verwenden Sie statische Factory-Methoden statt Konstruktoren 19
2.2 Thema 2: Erzwingen Sie mit einem privaten Konstruktor

die Singleton-Eigenschaft 23
2.3 Thema 3: Mit einem privaten Konstruktor Nichtinstanziierbarkeit erzwingen 25
2.4 Thema 4: Vermeiden Sie die Erzeugung von Objektduplikaten 26
2.5 Thema 5: Eliminieren Sie alte Objektreferenzen 30
2.6 Thema 6: Vermeiden Sie Finalizer 33

3 Allen Objekten gemeinsame Methoden 39
3.1 Thema 7: Halten Sie beim Überschreiben von equals den

 allgemeinen Vertrag ein 39
3.2 Thema 8: Überschreiben Sie hashCode immer, wenn Sie equals überschreiben 49
3.3 Thema 9: Überschreiben Sie toString immer 55
3.4 Thema 10: Vorsicht beim Überschreiben von clone 57
3.5 Thema 11: Implementieren Sie Comparable 65

4 Klassen und Interfaces 71
4.1 Thema 12: Minimieren Sie die Zugreifbarkeit von Klassen und Attributen 71
4.2 Thema 13: Bevorzugen Sie Unveränderbarkeit 75
4.3 Thema 14: Komposition ist besser als Vererbung 83
4.4 Thema 15: Entweder Sie entwerfen und dokumentieren

für die Vererbung oder Sie verbieten sie 89
4.5 Thema 16: Nutzen Sie besser Interfaces als abstrakte Klassen 94

6 Inhalt

4.6 Thema 17: Verwenden Sie Interfaces ausschließlich zur Typdefinition 99
4.7 Thema 18: Ziehen Sie statische Attributklassen den nicht-statischen vor 101

5 Ersatz für C-Konstrukte 107
5.1 Thema 19: Ersetzen Sie Strukturen durch Klassen 107
5.2 Thema 20: Ersetzen Sie Unions durch Klassenhierarchien 109
5.3 Thema 21: Ersetzen Sie Enum-Konstrukte durch Klassen 113
5.4 Thema 22: Ersetzen Sie Funktionszeiger durch Klassen und Interfaces 123

6 Methoden 127
6.1 Thema 23: Prüfen Sie die Gültigkeit der Parameter 127
6.2 Thema 24: Machen Sie bei Bedarf defensive Kopien 129
6.3 Thema 25: Entwerfen Sie die Methodensignaturen sorgfältig 133
6.4 Thema 26: Verwenden Sie Methodenüberladung vorsichtig 136
6.5 Thema 27: Geben Sie nicht null, sondern Arrays der Länge null zurück 141
6.6 Thema 28: Schreiben Sie Doc-Kommentare für alle

offen gelegten API-Elemente 142

7 Allgemeine Programmierung 147
7.1 Thema 29: Minimieren Sie den Gültigkeitsbereich lokaler Variablen 147
7.2 Thema 30: Sie müssen die Bibliotheken kennen und nutzen 150
7.3 Thema 31: Meiden Sie float und double, wenn Sie genaue Antworten wollen 154
7.4 Thema 32: Vermeiden Sie Strings, wo andere Typen sich besser eignen 156
7.5 Thema 33: Hüten Sie sich vor der Langsamkeit von String-Verkettungen 159
7.6 Thema 34: Referenzieren Sie Objekte über ihre Interfaces 160
7.7 Thema 35: Nutzen Sie eher Interfaces als Reflection 162
7.8 Thema 36: Verwenden Sie native Methoden mit Vorsicht 165
7.9 Thema 37: Optimieren Sie nur mit Vorsicht 166
7.10 Thema 38: Halten Sie sich an die allgemein anerkannten

Namenskonventionen 169

8 Ausnahmen 173
8.1 Thema 39: Verwenden Sie Ausnahmen nur für Ausnahmebedingungen 173
8.2 Thema 40: Geprüfte Ausnahmen für behebbare Situationen,

Laufzeitausnahmen für Programmierfehler 176
8.3 Thema 41: Vermeiden Sie den unnötigen Einsatz von geprüften Ausnahmen 178
8.4 Thema 42: Bevorzugen Sie Standardausnahmen 180
8.5 Thema 43: Lösen Sie Ausnahmen aus, die zur Abstraktion passen 182
8.6 Thema 44: Dokumentieren Sie alle Ausnahmen, die eine Methode auslöst 184
8.7 Thema 45: Geben Sie in Detailnachrichten Fehlerinformationen an 186
8.8 Thema 46: Streben Sie nach Fehleratomizität 187
8.9 Thema 47: Ignorieren Sie keine Ausnahmen 189

Inhalt 7

9 Threads 191
9.1 Thema 48: Synchronisieren Sie den Zugriff auf gemeinsam genutzte,

veränderliche Daten 191
9.2 Thema 49: Vermeiden Sie übermäßige Synchronisierung 197
9.3 Thema 50: Rufen Sie wait nie außerhalb einer wait-Schleife auf 202
9.4 Thema 51: Verlassen Sie sich nicht auf den Thread-Planer 204
9.5 Thema 52: Dokumentieren Sie die Thread-Sicherheit 208
9.6 Thema 53: Vermeiden Sie Thread-Gruppen 211

10 Serialisierung 213
10.1 Thema 54: Implementieren Sie Serializable mit Vorsicht 213
10.2 Thema 55: Ziehen Sie die Nutzung einer eigenen serialisierten

Form in Erwägung 218
10.3 Thema 56: Schreiben Sie readObject-Methoden defensiv 224
10.4 Thema 57: Stellen Sie wenn nötig eine readResolve-Methode zur Verfügung 230

Quellen 233

Index 237

Vorbemerkung

Wenn ein Kollege zu Ihnen käme und sagte: »Frau von mir heute nacht wird herstellen
das unübliche Essen im Heim. Du komme?«, dann kämen Ihnen vermutlich drei Dinge
in den Sinn: Drittens, dass Sie schon zum Essen verabredet sind, zweitens, dass
Deutsch wohl nicht die Muttersprache dieses Kollegen ist, und erstens eine große Ver-
wirrung.

Wenn Sie jemals selbst eine Fremdsprache gelernt und dann versucht haben, sie außer-
halb des Klassenzimmers anzuwenden, dann wissen Sie, dass Sie drei Dinge beherr-
schen müssen: Die Struktur der Sprache (ihre Grammatik), die Bezeichnungen der
Sachen, über die Sie reden möchten (das Vokabular), und die Art, wie man alltägliche
Dinge effektiv und normal ausdrückt (die Verwendung). Leider werden im Unterricht
allzu oft nur die ersten beiden Dinge gelehrt, und Sie stellen fest, dass die Mutter-
sprachler nur mit Mühe ernst bleiben können, während Sie versuchen, sich verständ-
lich zu machen.

Mit einer Programmiersprache ist es ganz ähnlich. Sie müssen den Sprachkern verste-
hen: Ist er algorithmisch, funktional oder objektorientiert? Sie müssen das Vokabular
kennen: Welche Datenstrukturen, Operationen und Fähigkeiten stellen die Standard-
bibliotheken zur Verfügung? Und Sie müssen vertraut sein mit der normalen und effek-
tiven Strukturierung des Codes. Oft behandeln Bücher über Programmiersprachen nur
die ersten beiden Themen oder gehen nur punktuell auf die Verwendung ein. Das liegt
vielleicht daran, dass die ersten beiden Themen in mancher Hinsicht einfacher sind. Die
Grammatik und das Vokabular sind Eigenschaften der Sprache selbst, aber die Verwen-
dung ist eine Eigenschaft der Gemeinschaft, in der die Sprache genutzt wird.

So ist z.B. Java eine objektorientierte Programmiersprache mit Einfachvererbung und
unterstützt einen imperativen (anweisungsorientierten) Codierstil in den einzelnen
Methoden. Bibliotheken gibt es für die grafische Anzeige, Netzwerkprogrammierung,
verteilte Systeme und Sicherheit. Doch wie setzt man die Sprache am besten in die Pra-
xis um?

Es gibt noch einen weiteren Punkt: Im Gegensatz zur gesprochenen Sprache und den
meisten Büchern und Zeitschriften ändern sich Programme mit der Zeit. Es reicht
nicht, Code zu schreiben, der funktioniert und von anderen Personen verstanden wird;

10 Vorbemerkung

Sie müssen den Code auch so organisieren, dass er sich leicht ändern lässt. Es gibt
immer zehn verschiedene Möglichkeiten, den Code für eine Aufgabe A zu schreiben.
Von diesen zehn Möglichkeiten sind sieben schräg, ineffizient oder verwirrend. Doch
welche der übrigen drei bietet die größte Wahrscheinlichkeit, dass sie dem Code
gleichkommt, der nächstes Jahr im Software-Release für die Aufgabe A eingesetzt
wird?

Die Grammatik von Java können Sie aus einer Vielzahl von Büchern lernen, darunter
Die Programmiersprache Java von Arnold, Gosling und Holmes [Addison-Wesley, 2001]
oder die Java-Sprachspezifikation von Gosling, Arnold, Steele und Bracha [Addison-
Wesley, 1997]. Und es gibt ’zig Bücher über die Java-Bibliotheken und -APIs.

Dieses Buch kümmert sich um das dritte Bedürfnis beim Lernen einer Sprache: ihre
normale und effektive Verwendung. Joshua Bloch hat bei Sun Microsystems Jahre
daran gearbeitet, Java zu erweitern, zu implementieren und einzusetzen. Dabei hat er
den Code vieler anderer Entwickler gelesen, darunter auch meinen. Hier gibt er nun
systematisch strukturiert gute Ratschläge, wie Sie Ihren Code derart aufbauen, dass er
gut funktioniert, dass er von anderen verstanden wird, dass spätere Änderungen keine
Kopfschmerzen mehr machen müssen, und dass Ihre Programme angenehm, elegant
und schön werden.

Guy L. Steele Jr.

Burlington, Massachusetts

April 2001

Vorwort

Im Jahre 1996 machte ich mich auf den großen Treck nach Westen, um für jene Firma
zu arbeiten, die sich damals noch JavaSoft nannte, denn jeder wusste, dass dort die
Post abging. In den fünf Jahren, die seither vergangen sind, diente ich als Architekt für
Bibliotheken der Java-Plattform. Ich entwarf, implementierte und wartete viele dieser
Bibliotheken und betreute weitere als Consultant. Diese Bibliotheken in den Jahren zu
betreuen, in denen Java reifte, war eine Chance, wie man sie nur einmal im Leben
bekommt. Ohne Übertreibung kann ich sagen: Ich hatte das Privileg, mit einigen der
besten Software-Entwickler unserer Generation zu arbeiten. Dabei lernte ich viel über
die Programmiersprache Java: Was daran funktionierte und was nicht, und wie man
aus der Sprache und ihren Bibliotheken am meisten Nutzen zieht.

In diesem Buch versuche ich, meine Erfahrungen an Sie weiterzugeben, damit Sie
meine Erfolge teilen können, aber meine Fehler vermeiden. Das Format dieses Buches
orientiert sich an Effective C++ von Scott Meyers [1998]. Es besteht aus fünfzig Themen,
die jeweils eine konkrete Regel vermitteln, wie Sie Ihre Programme und Entwürfe ver-
bessern können. Ich fand dieses Format außerordentlich effektiv und hoffe, dass Sie
dem zustimmen werden.

In vielen Fällen nahm ich mir die Freiheit, die Themen mit Beispielen aus der Praxis zu
veranschaulichen, die den Java-Plattformbibliotheken entnommen sind. Bei der
Beschreibung von Dingen, die man auch besser hätte machen können, hielt ich mich
möglichst an selbst geschriebenen Code, aber gelegentlich habe ich auch auf Code von
Kollegen zurückgegriffen. Es tut mir aufrichtig Leid, falls ich trotz all meiner Bemü-
hungen damit irgendjemand zu nahe getreten sein sollte. Negativbeispiele werden
nicht als Schuldzuweisungen sondern im Geiste einer guten Zusammenarbeit aufge-
führt, damit wir alle von den Erfahrungen unserer Vorgänger lernen können.

Dieses Buch wendet sich zwar nicht ausschließlich an Entwickler wieder verwendba-
rer Komponenten, aber natürlich schlagen sich darin meine Erfahrungen aus zwanzig
Jahren Entwicklungsarbeit an solchen Komponenten nieder. Ich denke immer daran,
APIs zu exportieren, und ermutige Sie, dasselbe zu tun. Auch wenn Sie keine wieder
verwendbaren Komponenten entwickeln, verbessert dieser Ansatz die Qualität Ihrer
Software. Außerdem geschieht es oft, dass man eine wieder verwendbare Komponente
schreibt, ohne es zu wissen: Sie schreiben etwas Nützliches, geben es an Ihren Kollegen

12 Vorwort

nebenan weiter, und ehe Sie sichs versehen, haben Sie schon zehn Benutzer. An diesem
Punkt können Sie das API schon nicht mehr nach Belieben ändern und freuen sich,
wenn Sie das API schon beim Schreiben der Software sorgfältig entworfen haben.

Meine Konzentration auf den API-Entwurf mag den Anhängern der neuen, leichtge-
wichtigen Software-Entwicklungsmethoden wie z.B. Extreme Programming [Beck, 1999]
ein wenig unnatürlich erscheinen. Diese Methoden zielen darauf ab, das einfachste
funktionsfähige Programm zu schreiben. Wenn Sie sich einem solchen Verfahren ver-
schrieben haben, werden Sie jedoch feststellen, dass eine Betonung des API-Entwurfs
im Refactoring-Prozess gute Dienste leistet. Die wichtigsten Ziele des Refactoring sind
die Verbesserung der Systemstruktur und die Vermeidung doppelt geschriebenen
Codes. Dies kann man unmöglich erreichen, wenn man keine gut entworfenen APIs
für die Systemkomponenten hat.

Keine Sprache ist perfekt, aber einige sind hervorragend. Ich habe festgestellt, dass
Java und seine Bibliotheken die Qualität und Produktivität immens fördern, und dass
es eine Freude ist, damit zu arbeiten. Hoffentlich kann Ihnen dieses Buch einiges von
meiner Begeisterung vermitteln und helfen, diese Sprache noch wirkungsvoller und
freudiger zu nutzen.

Joshua Bloch

Cupertino, Kalifornien

April 2001

Danksagungen

Ich danke Patrick Chan, der mir vorschlug, dieses Buch zu schreiben, und diese Idee
auch Lisa Friendly, der Lektorin dieser Reihe, Tim Lindholm, dem technischen Lektor,
und Mike Hendrickson, dem Cheflektor von Addison-Wesley Professional vortrug.
Allen drei Verlagsmitarbeitern danke ich dafür, dass sie mich zu diesem Projekt ermu-
tigten und mit übermenschlicher Geduld und unerschütterlichem Glauben darauf ver-
trauten, dass ich tatsächlich eines Tages dieses Buch schreiben würde.

Ich danke James Gosling und seinem Originalteam dafür, dass sie die fantastische
Sache, über die ich schreibe, ersannen und ich danke vielen der Java-Plattform-Ingeni-
eure, die in Goslings Fußstapfen traten. Vor allem danke ich meinen Kollegen in der
Java Platform Tools and Libraries Group von Sun für ihre Kommentare, Ermutigung
und Unterstützung. Zu dem Team gehören Andrew Bennett, Joe Darcy, Neal Gafter,
Iris Garcia, Konstantin Kladko, Ian Little, Mike McCloskey und Mark Reinhold. Früher
waren auch Zhenghua Li, Bill Maddox und Naveen Sanjeeva noch dabei.

Ich danke auch meinem Manager Andrew Bennett und meinem Direktor Larry Abra-
hams, die dieses Projekt uneingeschränkt und mit Begeisterung unterstützten. Rich
Green, dem stellvertretenden Engineering-Leiter bei Java Software, danke ich dafür,
dass er eine Umgebung schuf, in der Ingenieure die Freiheit haben, kreativ zu denken
und ihre Arbeit zu veröffentlichen.

Ich hatte das Glück, die besten Gutachter zu haben, die man sich nur vorstellen kann,
und bin jedem von ihnen aufrichtig zu Dank verpflichtet: Andrew Bennett, Cindy
Bloch, Dan Bloch, Beth Bottos, Joe Bowbeer, Gilad Bracha, Mary Campione, Joe Darcy,
David Eckhardt, Joe Fialli, Lisa Friendly, James Gosling, Peter Haggar, Brian Kernig-
han, Konstantin Kladko, Doug Lea, Zhenghua Li, Tim Lindholm, Mike McCloskey, Tim
Peierls, Mark Reinhold, Ken Russell, Bill Shannon, Peter Stout, Phil Wadler und noch
zwei weitere, die ungenannt bleiben möchten. Alle haben eine große Anzahl Vor-
schläge beigesteuert, die dieses Buch wesentlich verbesserten und mir viele Peinlich-
keiten ersparten. Falls noch irgendwelche Fehler übrig sind, so bin nur ich alleine
dafür verantwortlich.

14 Danksagungen

Viele Kollegen bei Sun und anderen Unternehmen führten mit mir technische Diskus-
sionen, die die Qualität dieses Buchs verbesserten. Unter anderen steuerten Ben
Gomes, Steffen Grarup, Peter Kessler, Richard Roda, John Rose und David Stoutamire
nützliche Erkenntnisse bei. Ein besonderer Dank gebührt Doug Lea, der viele Gedan-
ken aus diesem Buch prüfte und großzügig seine Zeit und sein Wissen dafür zur Verfü-
gung stellte.

Ich danke Julie Dinicola, Jacqui Doucette, Mike Hendrickson, Heather Olszyk, Tracy
Russ und dem ganzen Addison-Wesley-Team für die Unterstützung und Professionali-
tät. Trotz des unglaublichen Termindrucks blieben sie immer freundlich und zuvor-
kommend.

Guy Steele danke ich für das Vorwort. Ich fühle mich geehrt, dass er sich bereit erklärt
hat, an diesem Projekt mitzuwirken.

Abschließend danke ich meiner Frau Cindy Bloch dafür, dass sie mich ermutigte und
bisweilen massiv unter Druck setzte, dieses Buch zu schreiben, jedes Thema in seiner
Rohfassung durchlas, mir bei FrameMaker half, den Index erstellte und mein Projekt
immer tolerierte.

1 Einführung

Dieses Buch soll Ihnen helfen, die Programmiersprache Java™ und ihre wichtigsten
Bibliotheken java.lang, java.util und in geringerem Maße auch java.io möglichst wir-
kungsvoll einzusetzen. Von Zeit zu Zeit wird hier auch von anderen Bibliotheken die
Rede sein, aber die Programmierung grafischer Benutzeroberflächen oder die Enter-
prise-APIs sind nicht Gegenstand dieses Buchs.

Das Buch besteht aus 57 Themen, die jeweils eine Regel vermitteln. In den Regeln sind
Verfahren fixiert, die die meisten erfahrenen Programmierer für die besten halten. Die
Themen sind lose in neun Kapitel gruppiert, von denen jedes einen umfangreicheren
Aspekt des Software-Entwurfs behandelt. Das Buch ist nicht dafür gedacht, dass man
es von vorne bis hinten durchliest: Jedes Thema wird mehr oder weniger selbstständig
abgehandelt. Viele Querverweise zwischen den Themen ermöglichen es Ihnen, sich in
dem Buch leicht zurechtzufinden.

Die meisten Themen werden durch Beispielprogramme veranschaulicht. Ein wichtiger
Bestandteil dieses Buchs sind die Code-Beispiele, die viele Entwurfsmuster und Idi-
ome erklären. Manche sind älteren Datums, wie z.B. Singleton (Thema 2), und andere
neuer, wie z.B. Finalizer Guardian (Thema 6) und Defensives readResolve (Thema 57).
Über einen separaten Index können Sie diese Muster und Idiome leicht nachschlagen.
Wo es angebracht war, habe ich Querverweise auf das Standardwerk Design Patterns
[Gamma 1995] eingefügt, das bei Addison Wesley unter dem Titel Entwurfsmuster auch
als Übersetzung erschienen ist.

Viele Themen enthalten ein oder mehrere Programmbeispiele, die zeigen, was man
möglichst nicht tun sollte. Solche abschreckenden Beispiele sind mit einem Kommen-
tar wie z.B. »//Tun Sie das nicht!« deutlich gekennzeichnet. In jedem Fall wird im
Thema erklärt, warum dies ein schlechtes Beispiel ist, und ein alternativer Ansatz vor-
gestellt.

Dies ist kein Anfängerbuch: Es setzt voraus, dass Sie sich bereits gut mit Java ausken-
nen. Wenn das nicht der Fall ist, sollten Sie eine der vielen guten Einführungen in
Betracht ziehen, z.B. die von Arnold [2000] oder die von Campione [2000]. Zwar kann
jeder, der Java kennt, dieses Buch lesen, aber es soll auch fortgeschrittenen Program-
mierern noch gute Denkansätze bieten.

16 1 Einführung

Die meisten Regeln in diesem Buch sind von einigen wenigen Grundprinzipien abge-
leitet. Klarheit und Einfachheit sind von überragender Bedeutung. Der Benutzer eines
Moduls sollte niemals von dessen Verhalten überrascht sein. Module sollten möglichst
klein sein, aber auch nicht zu klein. (In diesem Buch meint der Begriff »Modul« jede
wieder verwendbare Softwarekomponente, angefangen bei einer einzelnen Methode
bis hin zu einem komplexen, aus mehreren Paketen bestehenden System.) Code sollte
besser wieder verwendet als kopiert werden. Die Abhängigkeiten zwischen Modulen
sollten auf ein Minimum reduziert sein. Fehler sollten möglichst frühzeitig entdeckt
werden, im Idealfall zur Kompilierungszeit.

Die Regeln in diesem Buch treffen zwar nicht in hundert Prozent der Fälle zu, aber in
der überwiegenden Mehrzahl erweisen sie sich als die beste Lösung. Sie sollten die
Regeln nicht sklavisch befolgen, sondern gelegentlich davon abweichen, wenn es gute
Gründe dafür gibt. Wie fast alles, erlernen Sie auch die Kunst der guten Programmie-
rung am besten, wenn Sie sich zuerst die Regeln einprägen und danach lernen, wann
man davon abweichen sollte.

In diesem Buch geht es zumeist nicht um Performance, sondern darum, klare, richtige,
benutzbare, stabile, flexible und wartungsfreundliche Programme zu schreiben. Wenn
Sie dies können, dann dürfte es Ihnen leicht fallen, die benötigte Leistung zu erzielen
(Thema 37). In manchen Themen geht es auch um Performance und einige Themen
geben sogar Performance-Messungen an. Diese Zahlen, vor denen immer die Phrase
»auf meinem Rechner« steht, sollten Sie bestenfalls als Näherungswerte ansehen.

Mein Rechner ist ein in die Jahre gekommener, selbst zusammengebauter 400-MHz-
Pentium® II mit 128 MB RAM, auf dem der 1.3-Release des Java 2 Standard Edition
Software Development Kit (SDK) von Sun unter Microsoft Windows NT® 4.0 läuft. Zu
dem SDK gehört die Java HotSpot™ Client VM von Sun, eine Client-Implementierung
der Java Virtual Machine, die dem neuesten Stand der Technik entspricht.

Manchmal muss man konkrete Releases nennen, wenn man über die Merkmale von
Java und seinen Bibliotheken redet. Weil es kürzer ist, verwendet dieses Buch »Engi-
neering-Versionsnummern« an Stelle der offiziellen Namen der Releases. Tabelle 1.1
zeigt die Namen

Offizieller Release-Name Engineering-Versionsnummer

JDK 1.1.x / JRE 1.1.x 1.1

Java 2-Plattform, Standard Edition, v 1.2 1.2

Java 2-Plattform, Standard Edition, v 1.3 1.3

Java 2-Plattform, Standard Edition, v 1.4 1.4

Tabelle 1.1: Versionen der Java-Plattform

17

Obwohl in manchen Themen auch neue Features des 1.4-Release vorkommen, werden
diese – von wenigen Ausnahmen abgesehen – in den Programmbeispielen nicht
genutzt. Die Beispiele wurden mit den 1.3-Releases getestet. Die meisten, wenn nicht
sogar alle, dürften mit dem Release 1.2 unverändert laufen.

Die Beispiele sind in vernünftigem Maße vollständig, wobei allerdings die Lesbarkeit
an erster Stelle steht. Sie verwenden freizügig Klassen der Pakete java.util und
java.io. Um die Beispiele kompilieren zu können, müssen Sie gegebenenfalls eine oder
beide der folgenden Importanweisungen angeben:

import java.util.*;
import java.io.*;

Auch andere Quelltextteile wurden ausgelassen. Unter http://java.sun.com/docs/books/
effective finden Sie die Website zu diesem Buch; sie enthält zu jedem Beispiel eine
erweiterte Version, die Sie kompilieren und ausführen können.

Technische Begriffe werden zumeist so verwendet, wie Sie in der Java-Sprachspezifika-
tion (2. Auflage) definiert sind. Einige wenige Begriffe verdienen es, gesondert erwähnt
zu werden. Java unterstützt vier Arten von Typen: Interfaces, Klassen, Arrays und
Grundtypen. Die ersten drei sind Referenztypen. Klasseninstanzen und Arrays sind
Objekte, Grundtypen sind es nicht. Zu den Attributen einer Klasse gehören Felder,
Methoden, Attributklassen und Attribut-Interfaces. Eine Methodensignatur besteht aus
dem Namen der Methode und den Typen ihrer formalen Parameter, aber der Rück-
gabetyp der Methode gehört nicht zur Signatur.

In diesem Buch werden einige Termini abweichend von der Java-Sprachspezifikation
verwendet. Im Gegensatz zur Sprachspezifikation verwenden wir hier Vererbung als
Synonym für Unterklassenbildung. Wir wenden den Begriff der Vererbung nicht auf
Interfaces an, sondern sagen, dass eine Klasse ein Interface implementiert, oder dass ein
Interface ein anderes erweitert. Für die Zugriffsebene, die gilt, wenn nichts anderes
angegeben ist, verwendet dieses Buch den aussagekräftigen Begriff »paketprivat«
anstatt des technisch korrekten Wortes »Standardzugriff [JLS, 6.6.1]« .

Dieses Buch verwendet einige technische Begriffe, die in der Java Language Specification
nicht definiert werden. Der Begriff »exportiertes API« oder schlicht »API« meint Klas-
sen, Interfaces, Konstruktoren, Attribute und serialisierte Formen, mit denen ein Pro-
grammierer auf eine Klasse, ein Interface oder ein Paket zugreift. (Der Begriff API –
kurz für Application Programming Interface – wird dem ansonsten gern genutzten Wort
Interface vorgezogen, um eine Verwechslung mit dem gleichnamigen Sprachkonstrukt
zu vermeiden.) Ein Programmierer, der ein Programm unter Verwendung eines API
schreibt, wird als Benutzer des betreffenden API bezeichnet. Eine Klasse, deren Imple-
mentierung ein API verwendet, nennen wir einen Client des betreffenden API.

http://java.sun.com/docs/books/

18 1 Einführung

Klassen, Interfaces, Konstruktoren, Attribute und serialisierte Zugriffsformen werden
kollektiv als API-Elemente bezeichnet. Ein exportiertes API besteht aus den API-Ele-
menten, auf die von außerhalb des Pakets, in dem das API definiert ist, zugegriffen
werden kann. Dies sind die API-Elemente, die jeder Client nutzen kann, und deren
Unterstützung der Autor des API zusichert. Es ist kein Zufall, dass dies auch die Ele-
mente sind, für die das Javadoc-Programm im Standardmodus seine Dokumenta-
tionen generiert. Grob gesagt besteht das exportierte API eines Pakets aus den
öffentlichen und geschützten Attributen und Konstruktoren jeder öffentlichen Klasse
und jedes öffentlichen Interfaces dieses Pakets.

2 Objekte erzeugen und zerstören

Dieses Kapitel handelt davon, wie Objekte erzeugt und zerstört werden: Wann und
wie Sie Objekte anlegen, wann und wie Sie das Anlegen von Objekten eher vermeiden,
wie Sie eine rechtzeitige Zerstörung der Objekte gewährleisten und wie Sie die Bereini-
gung managen, die der Objektzerstörung vorausgehen muss.

2.1 Thema 1: Verwenden Sie statische Factory-Methoden
statt Konstruktoren

Der normale Weg, auf dem eine Klasse einem Client eine Instanz gibt, besteht darin,
einen öffentlichen Konstruktor zur Verfügung zu stellen. Es gibt jedoch noch eine
andere, weniger bekannte Technik, die dennoch zum Arsenal jedes Programmierers
gehören sollte: Eine Klasse kann auch eine statische Factory-Methode zur Verfügung stel-
len. Diese ist einfach eine statische Methode, die eine Instanz der Klasse zurückgibt. Im
Folgenden sehen Sie ein einfaches Beispiel aus der Klasse Boolean (der Hüllenklasse für
den Grundtyp boolean). Diese statische Factory-Methode, die im 1.4-Release neu hinzu-
kam, übersetzt einen Wert mit dem Grundtyp boolean in eine Boolean-Objektreferenz:

public static Boolean valueOf(boolean b) {
 return (b ? Boolean.TRUE : Boolean.FALSE);
}

Eine Klasse kann ihren Clients statische Factory-Methoden zusätzlich zu oder an Stelle
von Konstruktoren zur Verfügung stellen. Dies hat Vor- und Nachteile.

Ein Vorteil der statischen Factory-Methoden besteht darin, dass sie im Gegensatz zu
Konstruktoren Namen haben. Wenn die Parameter eines Konstruktors das Rückgabe-
objekt nicht beschreiben, dann kann eine Klasse durch eine statische Factory-Methode
mit einem gut gewählten Namen leichter benutzbar und der resultierende Client-Code
leichter lesbar werden. So könnte man z.B. den Konstruktor BigInteger(int, int, Ran-
dom), der einen BigInteger zurückliefert, der wahrscheinlich eine Primzahl ist, besser als
statische Factory-Methode mit dem Namen BigInteger.probablePrime ausdrücken.
(Diese statische Factory-Methode wurde schließlich auch im 1.4-Release hinzugefügt.)

20 2 Objekte erzeugen und zerstören

Eine Klasse kann nur einen einzigen Konstruktor mit einer gegebenen Signatur haben.
Programmierer lavieren um diese Einschränkung herum, indem sie zwei Konstrukto-
ren angeben, deren Parameterlisten sich nur im Hinblick auf die Reihenfolge der Para-
metertypen unterscheiden. Das ist jedoch kein gutes Verfahren. Der Benutzer eines
solchen APIs wird sich nie merken können, welcher Konstruktor welcher ist, und
irgendwann versehentlich den verkehrten aufrufen. Der Leser eines Programms, das
diese Konstruktoren verwendet, weiß nicht, was der Code eigentlich tut, es sei denn, er
schlägt in der Klassendokumentation nach.

Da statische Factory-Methoden Namen haben, unterliegen sie nicht wie Konstruktoren
der Einschränkung, dass eine Klasse nur eine solche Methode mit einer gegebenen Sig-
natur haben kann. Wenn bei Ihnen der Fall eintritt, dass eine Klasse offenbar mehrere
Konstruktoren mit derselben Signatur benötigt, dann sollten Sie in Erwägung ziehen,
einen oder mehrere Konstruktoren durch statische Factory-Methoden zu ersetzen,
deren Unterschiede durch gut gewählte Namen hervorgehoben werden.

Ein zweiter Vorteil statischer Factory-Methoden besteht darin, dass sie im Gegen-
satz zu Konstruktoren nicht bei jedem Aufruf ein neues Objekt erzeugen müssen.
Dies ermöglicht es unveränderlichen Klassen (Thema 13), vorgefertigte Instanzen zu
verwenden oder Instanzen bei ihrer Erzeugung zu cachen und dann wiederholt auszu-
geben. So werden überflüssige Objektduplikate vermieden. Die Methode Boolean.
valueOf(boolean) veranschaulicht diese Technik: Sie erzeugt nie ein Objekt. Dieses Ver-
fahren kann die Performance massiv steigern, wenn häufig äquivalente Objekte ange-
fordert werden, vor allem, wenn diese Objekte auch noch aufwändig zu erzeugen sind.

Die Fähigkeit statischer Factory-Methoden, bei wiederholten Aufrufen immer dasselbe
Objekt zurückzugeben, können Sie auch nutzen, um streng zu kontrollieren, welche
Instanzen zu einem gegebenen Zeitpunkt existieren. Dies kann aus zwei Gründen
nötig sein: Erstens gewährleistet es, dass Sie ein Singleton-Objekt haben (Thema 2),
und zweitens kann eine unveränderliche Klasse auf diese Art sicherstellen, dass keine
zwei gleichen Instanzen vorhanden sind. a.equals(b) genau dann wenn a==b. Wenn
eine Klasse dies garantieren kann, dann können ihre Clients den Operator == an Stelle
der Methode equals(Object) nutzen und damit massive Performance-Vorteile erzielen.
Das in Thema 21 beschriebene Muster einer typsicheren Enum implementiert diese
Optimierung und die Methode String.intern tut dies in einer eingeschränkten Weise
ebenfalls.

Der dritte Vorteil der statischen Factory-Methoden besteht darin, dass sie im Gegen-
satz zu Konstruktoren ein Objekt von jedem Untertyp ihres Rückgabetyps liefern
können. So können Sie die Klasse des Rückgabeobjekts sehr flexibel wählen.

Eine Anwendung dieser Flexibilität sehen Sie, wenn ein API Objekte zurückgeben
kann, ohne deren Klassen öffentlich zu machen. Wenn die Implementierungsklassen in
dieser Weise verborgen bleiben, kann dies ein API sehr kompakt machen. Diese Tech-

Thema 1: Verwenden Sie statische Factory-Methoden statt Konstruktoren 21

nik wird z.B. bei Interface-basierten Architekturen eingesetzt, in denen Interfaces
natürliche Rückgabetypen für statische Factory-Methoden zur Verfügung stellen.

So verfügt z.B. das Collections Framework über zwanzig Bequemlichkeitsimplemen-
tierungen seiner Sammlungs-Interfaces, darunter unveränderliche Sammlungen, syn-
chronisierte Sammlungen und andere mehr. Die Mehrzahl dieser Implementierungen
werden über statische Factory-Methoden in eine einzelne, nicht-instanziierbare Klasse
(java.util.Collections) exportiert. Die Klassen der Rückgabeobjekte sind nichtöffent-
lich.

Das Collections Framework API ist viel kleiner, als es sein würde, wenn es zwanzig
separate öffentliche Klassen für die Bequemlichkeitsimplementierungen exportieren
würde. Es wurde nicht nur die schiere Substanz des APIs reduziert, sondern auch sein
»konzeptionelles Gewicht« . Da der Benutzer weiß, dass das Rückgabeobjekt exakt das
vom entsprechenden Interface spezifizierte API hat, braucht er keine zusätzlichen
Klassendokumentationen zu lesen. Außerdem erfordert die Verwendung einer solchen
statischen Factory-Methode, dass der Client das Rückgabeobjekt nicht über dessen
Implementierungsklasse, sondern über dessen Interface referenziert, was allgemein als
guter Stil betrachtet wird (Thema 34).

Die Klasse eines von einer öffentlichen statischen Factory-Methode zurückgegebenen
Objekts kann nicht nur nichtöffentlich sein; sie kann sich auch je nach den Werten der
Parameter, die der statischen Factory übergeben werden, von Aufruf zu Aufruf
ändern. Jede Klasse, die ein Untertyp des deklarierten Rückgabetyps ist, ist zulässig.
Die Klasse des Rückgabeobjekts kann sich außerdem von Release zu Release ändern,
um die Software wartungsfreundlicher zu machen.

Die Klasse des Objekts, das eine statische Factory-Methode zurückliefert, braucht zu
dem Zeitpunkt, an dem die Klasse mit der statischen Factory-Methode geschrieben
wird, noch nicht einmal zu existieren. Solche flexiblen statischen Factory-Methoden
bilden die Grundlage von Dienstanbieterarchitekturen wie der Java Cryptography Exten-
sion (JCE). Eine Dienstanbieterarchitektur ist ein System, in dem die Anbieter den Nut-
zern der Architektur mehrere Implementierungen eines API zur Verfügung stellen. Es
liefert einen Mechanismus zum Registrieren dieser Implementierungen, der diese zur
Nutzung bereitstellt. Die Clients der betreffenden Architektur nutzen das API ohne
sich um die Implementierung kümmern zu müssen.

In der JCE registriert der Systemadministrator eine Implementierungsklasse, indem er
einer Properties-Datei einen Eintrag hinzufügt, der einen String-Schlüssel dem ent-
sprechenden Klassennamen zuordnet. Clients verwenden eine statische Factory-
Methode, die den Schlüssel als Parameter entgegennimmt. Die statische Factory-
Methode schlägt das Class-Objekt in einer Map nach, die mit der Properties-Datei initi-
alisiert wurde, und instanziiert die Klasse mit der Methode Class.newInstance. Die fol-
gende Implementierungsskizze soll diese Technik verdeutlichen:

22 2 Objekte erzeugen und zerstören

// Skizze einer Dienstanbieterarchitektur
public abstract class Foo {
 // Ordnet String-Schlüssel dem Class-Objekt zu
 private static Map implementations = null;

 // Initialisiert beim ersten Aufruf die Implementierungs-Map
 private static synchronized void initMapIfNecessary() {
 if (implementations == null) {
 implementations = new HashMap();

 // Lade Implementierungsklassennamen und –schlüssel aus
 // Eigenschaftsdatei; übersetze Namen mit Class.forName
 // in Class-Objekte und speichere Zuordnungen.
 ...
 }
 }

 public static Foo getInstance(String key) {
 initMapIfNecessary();
 Class c = (Class) implementations.get(key);
 if (c == null)

 return new DefaultFoo();

 try {
 return (Foo) c.newInstance();
 } catch (Exception e) {
 return new DefaultFoo();
 }
 }
}

Der wichtigste Nachteil statischer Factory-Methoden ist der, dass Sie von Klassen
ohne öffentliche oder geschützte Konstruktoren keine Unterklassen bilden können.
Das gilt auch für nichtöffentliche Klassen, die von öffentlichen statischen Factorys
zurückgegeben wurden. So ist es z.B. nicht möglich, irgendeine der Klassen der
Bequemlichkeitsimplementierungen aus dem Collections Framework zu erweitern.
Möglicherweise ist dies jedoch eigentlich ein Segen, da es Programmierer ermutigt,
Komposition statt Vererbung zu nutzen (Thema 14).

Ein zweiter Nachteil der statischen Factory-Methoden besteht darin, dass sie sich
nicht so leicht von anderen statischen Methoden unterscheiden lassen. Sie sind in
der API-Dokumentation nicht in gleicher Weise wie die Konstruktoren hervorgehoben.
Außerdem stellen sie eine Abweichung von der Norm dar. Daher können Sie mögli-
cherweise nur schwerlich aus der Klassendokumentation ersehen, wie Sie eine Klasse
instanziieren, die statt Konstruktoren statische Factory-Methoden zur Verfügung stellt.
Diesen Nachteil können Sie abmildern, indem Sie sich an die Standard-Namens-

Thema 2: Erzwingen Sie mit einem privaten Konstruktor die Singleton-Eigenschaft 23

konventionen halten. Diese Konventionen sind zwar noch nicht abschließend definiert,
aber es kristallisieren sich zwei gebräuchliche Namen für statische Factory-Methoden
heraus:

� valueOf gibt eine Instanz zurück, die grob gesagt denselben Wert wie ihre Parameter
hat. Statische Factory-Methoden dieses Namens sind eigentlich Operatoren zur
Typumwandlung.

� getInstance gibt eine Instanz zurück, die zwar durch ihre Parameter beschrieben ist,
aber nicht wirklich denselben Wert wie diese hat. Gibt im Falle von Singleton-
Objekten die einzige Instanz zurück. Dieser Name kommt oft in Dienstanbieter-
architekturen vor.

Zusammengefasst kann man sagen, dass statische Factory-Methoden und öffentliche
Konstruktoren beide ihren Zweck haben, und dass es sich lohnt, ihre jeweiligen Stär-
ken zu kennen. Bitte stellen Sie nicht gleich reflexartig Konstruktoren bereit, ohne
zuvor auch über statische Factorys nachgedacht zu haben, die oft besser geeignet sind.
Wenn Sie beide Möglichkeiten gegeneinander abgewogen haben und immer noch
unentschlossen sind, dann sollten Sie schon allein deshalb eher einen Konstruktor defi-
nieren, weil es so die Norm ist.

2.2 Thema 2: Erzwingen Sie mit einem privaten Konstruktor
die Singleton-Eigenschaft

Ein Singleton ist eine Klasse, die genau ein Mal instanziiert wird [Gamma 1998, S. 127].
In der Regel repräsentieren Singletons eine Systemkomponente, die inhärent einzig-
artig ist, z.B. einen Videobildschirm oder ein Dateisystem.

Singletons können Sie auf zwei Arten implementieren. Beide Möglichkeiten stützen
sich darauf, den Konstruktor privat zu halten und ein öffentliches statisches Attribut
bereitzustellen, mit dem Clients auf die einzige Instanz der Klasse zugreifen können.
In dem einen Ansatz ist dieses öffentliche statische Attribut ein finales Feld:

// Singleton mit finalem Feld
public class Elvis {
 public static final Elvis INSTANCE = new Elvis();

 private Elvis() {
 ...
 }

 ... // Rest wird ausgelassen
}

24 2 Objekte erzeugen und zerstören

Der private Konstruktor wird nur ein Mal aufgerufen, nämlich, um das öffentliche, sta-
tische, finale Feld Elvis.INSTANCE zu initialisieren. Das Fehlen eines öffentlichen oder
geschützten Konstruktors garantiert für ein »monoelvistisches« Universum: Sobald die
Klasse Elvis initialisiert wurde, gibt es genau eine Elvis-Instanz – nicht mehr und nicht
weniger. Ein Client kann dies nicht ändern.

Der zweite Ansatz besteht darin, statt des öffentlichen, statischen, finalen Felds eine
öffentliche statische Factory-Methode zu liefern:

// Singleton mit statischer Factory
public class Elvis {
 private static final Elvis INSTANCE = new Elvis();

 private Elvis() {
 ...
 }

 public static Elvis getInstance() {
 return INSTANCE;
 }

 ... // Rest wird ausgelassen
}

Jeder Aufruf der statischen Methode Elvis.getInstance gibt dieselbe Objektreferenz
zurück, und kein anderer Elvis wird je erzeugt.

Der Hauptvorteil des ersten Ansatzes besteht darin, dass die Deklarationen der Attri-
bute, die die Klasse ausmachen, bereits klarstellen, dass diese Klasse ein Singleton ist:
Da das öffentliche statische Feld final ist, wird es immer dieselbe Objektreferenz spei-
chern. Eventuell ergibt sich dadurch auch ein kleiner Performance-Vorteil für den ers-
ten Ansatz, aber eine gute JVM-Implementierung dürfte diesen wieder wettmachen,
indem sie den Aufruf der statischen Factory-Methode im zweiten Ansatz direkt an die
benötigte Stelle setzt (inlining).

Der zweite Ansatz hat den Hauptvorteil, dass er Ihnen die Flexibilität gibt, ohne Ände-
rung des APIs zu entscheiden, ob die Klasse ein Singleton sein soll oder nicht. Die sta-
tische Factory-Methode für einen Singleton gibt die eine vorhandene Instanz der
Klasse zurück, könnte aber mit Leichtigkeit so modifiziert werden, dass sie z.B. für
jeden Thread, der die Methode aufruft, eine eindeutige Instanz zurückliefert.

Alles in allem ist also der erste Ansatz sinnvoll, wenn Sie ganz sicher sind, dass die
Klasse für immer ein Singleton bleibt. Wenn Sie sich später eventuell umentscheiden
möchten, sollten Sie den zweiten Ansatz wählen.

Um eine Singleton-Klasse serialisierbar zu machen (Kapitel 10), genügt es nicht, ihrer
Deklaration lediglich implements Serializable hinzuzufügen. Um die Singleton-Garan-
tie zu erhalten, müssen Sie auch eine readResolve-Methode zur Verfügung stellen

Thema 3: Mit einem privaten Konstruktor Nichtinstanziierbarkeit erzwingen 25

(Thema 57). Andernfalls führt jede Deserialisierung einer serialisierten Instanz dazu,
dass eine neue Instanz gebildet wird, die im Falle unseres Beispiels wiederum das Auf-
treten mehrerer Elvisse zur Folge hat. Um dies zu verhindern, schreiben Sie in die
Elvis-Klasse folgende readResolve-Methode:

// Diese readResolve-Methode erhält die Singleton-Eigenschaft
private Object readResolve() throws ObjectStreamException {
 /*
 * Gib den einzig wahren Elvis zurück und überlasse die
 * Elvis-Imitatoren der Garbage Collection.
 */
 return INSTANCE;
}

Dieses Thema und das Thema 21 haben eine Gemeinsamkeit: Sie behandeln das typ-
sichere Enum-Muster. In beiden Fällen werden in Verbindung mit den öffentlichen, stati-
schen Attributen private Konstruktoren eingesetzt, um zu gewährleisten, dass nach
ihrer Initialisierung keine neuen Instanzen der jeweiligen Klasse mehr erzeugt werden.
Bei diesem Thema wird nur eine einzige Instanz der Klasse erzeugt und beim Thema
21 wird für jedes Attribut des Aufzählungstyps (enumerated type) genau eine Instanz
erzeugt. Im nächsten Thema (Thema 3) führen wir diesen Ansatz noch einen Schritt
weiter: Das Fehlen eines öffentlichen Konstruktors wird genutzt, um sicherzustellen,
dass niemals irgendwelche Instanzen der Klasse erzeugt werden.

2.3 Thema 3: Mit einem privaten Konstruktor
Nichtinstanziierbarkeit erzwingen

Gelegentlich möchten Sie eine Klasse schreiben, die nur eine Zusammenstellung von
statischen Methoden und statischen Feldern ist. Solche Klassen haben einen schlechten
Ruf, denn manche Programmierer missbrauchen sie dazu, prozedurale Programme in
objektorientierten Programmiersprachen zu schreiben. Es gibt jedoch auch zulässige
Nutzungsmöglichkeiten für sie. Man kann sie verwenden, um verwandte Methoden
für Werte oder Arrays von Grundtypen zusammenzufassen, wie dies in java.lang.Math
oder java.util.Arrays der Fall ist, oder um statische Methoden für Objekte zusammen-
zufassen, die ein bestimmtes Interface in der Art von java.util.Collections implemen-
tieren. Außerdem kann man damit Methoden für eine finale Klasse zusammenfassen,
um die Klasse nicht erweitern zu müssen.

Solche Dienstklassen wurden nicht dafür geschaffen, instanziiert zu werden: Eine Instanz
davon wäre unsinnig. Mangels expliziter Konstruktoren stellt jedoch der Compiler einen
öffentlichen, parameterlosen Standardkonstruktor zur Verfügung. Für den Benutzer ist die-
ser Konstruktor nicht von einem anderen zu unterscheiden. Es kommt gar nicht so selten
vor, dass in veröffentlichten APIs Klassen ungewollt instanziierbar sind.

26 2 Objekte erzeugen und zerstören

Sie können die Nichtinstanziierbarkeit einer Klasse nicht erzwingen, indem Sie sie
abstrakt machen. Die Klasse kann immer noch erweitert und die Unterklasse instanzi-
iert werden. Außerdem verleitet das den Benutzer zu der irrigen Annahme, die Klasse
sei zur Vererbung da (Thema 15). Es gibt jedoch ein Idiom, mit dem Sie die Nicht-
instanziierbarkeit gewährleisten können. Da ein Standardkonstruktor nur dann gene-
riert wird, wenn eine Klasse keine expliziten Konstruktoren besitzt, können Sie eine
Klasse nichtinstanziierbar machen, indem Sie einen einzigen, expliziten privaten
Konstruktor hineinschreiben.

// Nichtinstanziierbare Dienstklasse

public class UtilityClass {

 // Unterdrücke Standardkonstruktor, damit keine Instanziierung möglich
 private UtilityClass() {
 // Dieser Konstruktor wird nie aufgerufen
 }
 ... // Rest wird ausgelassen
}

Da der explizite Konstruktor privat ist, kann man von außerhalb der Klasse nicht
darauf zugreifen. So ist garantiert, dass die Klasse nie instanziiert wird, da man davon
ausgehen kann, dass der Konstruktor nicht von innerhalb der Klasse aus aufgerufen
wird. Dieses Idiom ist gelinde gesagt nicht sehr intuitiv: Ein Konstruktor wird extra
dafür zur Verfügung gestellt, um nicht aufgerufen zu werden. Daher sollten Sie einen
Kommentar einfügen, der den Zweck des Konstruktors beschreibt.

Ein Nebeneffekt dieses Idioms ist, dass es auch eine Unterklassenbildung der betref-
fenden Klasse verhindert. Alle Konstruktoren müssen explizit oder implizit einen
zugreifbaren Konstruktor der Oberklasse aufrufen und eine eventuelle Unterklasse
hätte keinen Oberklassenkonstruktor, den sie aufrufen könnte.

2.4 Thema 4: Vermeiden Sie die Erzeugung von
Objektduplikaten

Oft ist es angebracht, ein einzelnes Objekt wieder zu verwenden, anstatt jedes Mal,
wenn es nötig ist, ein ganz neues funktionell äquivalentes Objekt anzulegen. Wieder-
verwendung geht schneller und ist besserer Stil. Ein Objekt ist immer wieder verwend-
bar, wenn es unveränderlich ist (Thema 13).

Die folgende Anweisung gibt ein Extrembeispiel, wie Sie es gerade nicht machen soll-
ten:

String s = new String("blöd"); // Tun Sie das nicht!

Thema 4: Vermeiden Sie die Erzeugung von Objektduplikaten 27

Die Anweisung erzeugt bei jeder Ausführung eine neue String-Instanz und keine die-
ser Objekterzeugungen ist wirklich notwendig. Das Argument des String-Konstruk-
tors ("blöd") ist selbst eine Instanz von String, die funktionell identisch zu allen von
diesem Konstruktor angelegten Objekten ist. Wenn Sie dies in einer Schleife oder einer
häufig aufgerufenen Methode tun, können Millionen überflüssiger String-Instanzen
erzeugt werden.

Eine verbesserte Version ist die folgende:

String s = "Nicht mehr blöd";

Diese Version benutzt nur eine Instanz von String, anstatt bei jeder Ausführung eine
neue zu erschaffen. Außerdem ist gewährleistet, dass das Objekt von jedem anderen
Code wieder verwendet wird, der in derselben virtuellen Maschine läuft und zufällig
denselben Zeichenkettenliteral verwendet (JLS, 3.10.5).

Oft können Sie Objektduplikate vermeiden, indem Sie auf unveränderlichen Klassen,
die beide Möglichkeiten bieten, statische Factory-Methoden (Thema 1) statt Konstruk-
toren verwenden. So ist z.B. die statische Factory-Methode Boolean.valueOf(String)
dem Konstruktor Boolean(String) fast immer vorzuziehen. Der Konstruktor erzeugt bei
jedem Aufruf ein neues Objekt, während die statische Factory-Methode dies zu kei-
nem Zeitpunkt tun muss.

Sie können nicht nur unveränderliche Objekte wieder verwenden, sondern auch ver-
änderliche Objekte, von denen Sie wissen, dass sie nie modifiziert werden. Hier sehen
Sie ein etwas subtileres und wesentlich häufigeres Beispiel für etwas, das Sie nie tun
sollten. Es geht um veränderliche Objekte, die nicht mehr modifiziert werden, nach-
dem ihre Werte einmal berechnet worden sind:

public class Person {
 private final Date birthDate;
 // Weitere Felder werden ausgelassen

 public Person(Date birthDate) {
 this.birthDate = birthDate;
 }
 // Tun Sie das nicht!
 public boolean isBabyBoomer() {
 Calendar gmtCal =
 Calendar.getInstance(TimeZone.getTimeZone("GMT"));
 gmtCal.set(1946, Calendar.JANUARY, 1, 0, 0, 0);
 Date boomStart = gmtCal.getTime();
 gmtCal.set(1965, Calendar.JANUARY, 1, 0, 0, 0);
 Date boomEnd = gmtCal.getTime();
 return .birthDate.compareTo(boomStart) >= 0 &&
 birthDate.compareTo(boomEnd) < 0;
 }
}

28 2 Objekte erzeugen und zerstören

Die Methode isBabyBoomer erzeugt bei jedem Aufruf unnötigerweise einen neuen Calen-
dar, eine neue TimeZone und zwei neue Date-Instanzen. Die folgende Version behebt
diese Ineffizienz durch einen statischen Initialisierer:

class Person {
 private final Date birthDate;

 public Person(Date birthDate) {
 this.birthDate = birthDate;
 }

 /**
 * Anfangs- und Enddatum des Babybooms.
 */
 private static final Date BOOM_START;
 private static final Date BOOM_END;

 static {
 Calendar gmtCal =
 Calendar.getInstance(TimeZone.getTimeZone("GMT"));
 gmtCal.set(1946, Calendar.JANUARY, 1, 0, 0, 0);
 BOOM_START = gmtCal.getTime();
 gmtCal.set(1965, Calendar.JANUARY, 1, 0, 0, 0);
 BOOM_END = gmtCal.getTime();
 }

 public boolean isBabyBoomer() {
 return .birthDate.compareTo(BOOM_START) >= 0 &&
 birthDate.compareTo(BOOM_END) < 0;
 }
}

Die verbesserte Version der Klasse Person erzeugt Calendar-, TimeZone- und Date-Instan-
zen nur ein einziges Mal bei ihrer Initialisierung, und nicht jedes Mal, wenn isBabyBoo-
mer aufgerufen wird. Das führt zu bedeutenden Performance-Gewinnen, wenn die
Methode häufig aufgerufen wird. Auf meinem Rechner braucht die Ursprungsversion
für eine Million Aufrufe 36.000 Millisekunden, die verbesserte Version hingegen nur
370 Millisekunden: Sie ist hundertmal schneller. Und nicht nur die Performance, auch
die Klarheit wächst. Wenn Sie boomStart und boomEnd aus lokalen Variablen in finale sta-
tische Felder verwandeln, verdeutlichen Sie damit, dass diese Daten als Konstanten
behandelt werden und machen den Code letztlich leichter verständlich. Der Vollstän-
digkeit halber sei allerdings gesagt, dass diese Art von Optimierung nicht in jedem
Falle derart drastische Einsparungen zur Folge hat, da Calendar-Instanzen ganz beson-
ders aufwändig zu erzeugen sind.

Wenn die Methode isBabyBoomer nie aufgerufen wird, dann initialisiert die verbesserte
Version der Person-Klasse die Felder BOOM_START und BOOM_END ganz unnötigerweise. Sie

Thema 4: Vermeiden Sie die Erzeugung von Objektduplikaten 29

können diese überflüssigen Initialisierungen zwar verhindern, indem Sie diese Felder
beim ersten Aufruf der Methode isBabyBoomer faul initialisieren (Thema 48), aber ratsam
ist das nicht. Wie es bei der faulen Initialisierung oft der Fall ist, würde dies die Imple-
mentierung verkomplizieren und wahrscheinlich keine spürbare Performance-Steige-
rung zur Folge haben (Thema 37).

In allen bisherigen Beispielen zu diesem Thema war offensichtlich, dass die betreffen-
den Objekte wieder verwendbar waren, weil sie unveränderlich waren. Es gibt andere
Fälle, wo dies nicht so offensichtlich ist. Betrachten Sie z.B. Adapter [Gamma 1998,
S. 139], auch Views genannt. Ein Adapter ist ein Objekt, das etwas an ein dahinter ste-
hendes Objekt delegiert und somit für dieses dahinter stehende Objekt ein alternatives
Interface darstellt. Da ein Adapter keinen anderen Zustand als den des dahinter ste-
henden Objekts hat, erübrigt es sich, mehr als eine Instanz eines gegebenen Adapters
eines gegebenen Objekts zu erzeugen.

So gibt z.B. die keySet-Methode des Map-Interfaces eine Set-View des Map-Objekts
zurück, die aus allen in der Map befindlichen Schlüsseln besteht. Wenn man naiv ist,
könnte man meinen, dass jeder Aufruf von keySet eine neue Instanz von Set erzeugen
müsste. Doch in Wirklichkeit gibt jeder Aufruf von keySet auf einem gegebenen Map-
Objekt dieselbe Instanz von Set zurück. Zwar ist die zurückgelieferte Set-Instanz
eigentlich veränderlich, aber alle Rückgabeobjekte sind funktionell identisch: Wenn
sich ein Rückgabeobjekt ändert, tun dies auch alle anderen, weil hinter allen dieselbe
Instanz von Map steht.

Sie sollten dieses Thema nicht dahingehend missverstehen, dass Sie nun denken,
Objekterzeugung sein grundsätzlich aufwändig und daher zu vermeiden. Im Gegen-
teil: Die Erzeugung und Anforderung kleiner Objekte, deren Konstruktoren wenig
expliziter Arbeit verrichten, ist billig. Das gilt besonders für moderne JVM-Implemen-
tierungen. Generell ist es eine gute Sache, wenn Sie zusätzliche Objekte erzeugen, um
ein Programm klarer, einfacher oder mächtiger zu machen.

Umgekehrt ist es schlecht, wenn Sie das Erzeugen neuer Objekte vermeiden, indem Sie
einen eigenen Objektpool pflegen, es sei denn, die Objekte im Pool sind extreme
Schwergewichte. Ein prototypisches Beispiel eines Objekts, das einen Objektpool wirk-
lich rechtfertigt, ist eine Datenbankverbindung. Der Aufwand, eine Verbindung aufzu-
bauen, ist so groß, dass es sinnvoll ist, solche Objekte wiederzuverwenden. Im
Allgemeinen führt die Pflege eigener Objektpools jedoch zu unübersichtlichem Code,
erhöhtem Hauptspeicher-Footprint und Performance-Einbußen. Moderne JVM-Imple-
mentierungen haben optimierte Garbage Collectors, die solche Objektpools locker
überflüssig machen, wenn es um leichtgewichtige Objekte geht.

Das Gegenargument zu diesem Thema ist Thema 24 über das defensive Kopieren. Das
vorliegende Thema rät: »Erzeugen Sie kein neues Objekt, wenn Sie ein bestehendes
wieder verwenden können,« während Thema 24 sagt: »Verwenden Sie ein bestehendes

30 2 Objekte erzeugen und zerstören

Objekt nicht erneut, wenn Sie auch ein neues erzeugen können« . Die Kosten der Wie-
derverwendung eines Objekts sind jedoch, wenn defensives Kopieren erforderlich
wird, viel größer als die Kosten einer unnötigen Erzeugung eines Objektduplikats.
Wenn Sie nicht dort, wo es nötig ist, defensive Kopien anlegen, können Sie sich gräss-
liche Fehler und Sicherheitslöcher einhandeln; eine überflüssige Objekterzeugung
beeinträchtigt hingegen nur den Stil und die Performance.

2.5 Thema 5: Eliminieren Sie alte Objektreferenzen

Wenn Sie von einer Sprache mit manueller Speicherverwaltung wie C oder C++ zu
einer Sprache mit Garbage Collection wechseln, wird Ihr Job als Programmierer viel
leichter, weil Ihre Objekte automatisch bereinigt werden, wenn Sie sie nicht mehr benö-
tigen. Beim ersten Mal ist es fast wie Zauberei. Leicht entsteht dabei der Eindruck, dass
Sie sich nun um die Speicherverwaltung überhaupt nicht mehr zu kümmern brauchen,
aber dies ist nicht ganz richtig.

Betrachten Sie bitte die folgende einfache Stack-Implementierung:

// Finden Sie das ""Speicherleck"?
public class Stack {
 private Object[] elements;
 private int size = 0;

 public Stack(int initialCapacity) {
 this.elements = new Object[initialCapacity];
 }

 public void push(Object e) {
 ensureCapacity();
 elements[size++] = e;
 }

 public Object pop() {
 if (size == 0)
 throw new EmptyStackException();
 return elements[--size];
 }

 /**
 * Schaffe für mindestens ein weiteres Element Platz,
 * indem du die Kapazität jedes Mal, wenn das Array
 * wachsen muss, ungefähr verdoppelst.
 */
 private void ensureCapacity() {
 if (elements.length == size) {
 Object[] oldElements = elements;
 elements = new Object[2 * elements.length + 1];

Thema 5: Eliminieren Sie alte Objektreferenzen 31

 System.arraycopy(oldElements, 0, elements, 0, size);
 }
 }
}

Dieses Programm hat keine offensichtlichen Fehler. Sie können es eingehend testen
und es würde jeden Test bestehen, aber da lauert noch ein Problem. Salopp gesagt hat
das Programm ein »Speicherleck« , das sich stillschweigend in Form von Performance-
Einbußen niederschlagen kann, verursacht durch eine erhöhte Aktivität des Garbage
Collectors oder einen erhöhten Hauptspeicher-Footprint. In Extremfällen können sol-
che Speicherlecks zu Festplatten-Paging oder sogar einem Programmabsturz wegen
eines OutOfMemoryError führen, aber solche Abstürze sind extrem selten.

Wo also steckt dieses Speicherleck? Wenn ein Stack wächst und dann wieder schrumpft,
werden die Objekte, die aus dem Stack geholt wurden, nicht mit der Garbage Collection
bereinigt. Das gilt auch, wenn das Programm, das den Stack benutzt, keine Referenzen
mehr auf diese Objekte enthält. Der Grund dafür ist, dass der Stack alte Referenzen auf
diese Objekte behält. Eine alte Referenz ist eine Referenz, die niemals dereferenziert
wird. In diesem Fall sind alle Referenzen außerhalb des »aktiven Teils« des Element-
Arrays alt. Der aktive Teil besteht aus den Elementen, deren Index kleiner als size ist.

Speicherlecks in Sprachen mit Garbage Collection (man spricht auch treffender von
unbeabsichtigt zurückgehaltenen Objekten) sind perfide. Wird eine Objektreferenz unbe-
absichtigt zurückbehalten, so ist nicht nur das betreffende Objekt von der Garbage Col-
lection ausgenommen, sondern auch alle Objekte, von denen es Referenzen hat usw.
Selbst wenn nur ein paar Objektreferenzen unbeabsichtigt zurückbehalten werden,
kann das eine große Menge Objekte von der Garbage Collection ausschließen und
eventuell die Performance stark beeinträchtigen.

Probleme dieser Art lassen sich ganz leicht beheben: Wenn Referenzen obsolet werden,
machen Sie Nullreferenzen daraus. Im Falle unserer Stack-Klasse wird die Referenz auf
ein Objekt obsolet, sobald es dem Stack entnommen wird. Die korrigierte Version der
pop-Methode sieht also folgendermaßen aus:

public Object pop() {
 if (size==0)
 throw new EmptyStackException();
 Object result = elements[--size];
 elements[size] = null; // Eliminiere alte Referenz
 return result;
}

Wenn Sie alte Referenzen auf null setzen, hat dies noch einen Vorteil: Werden sie später
versehentlich dereferenziert, so bricht das Programm sofort mit einer NullPointerExcep-
tion ab, anstatt stillschweigend etwas Verkehrtes zu machen. Es ist immer gut, Pro-
grammierfehler so früh wie möglich zu entdecken.

32 2 Objekte erzeugen und zerstören

Wenn Programmierer dieses Problem erstmals erkannt haben, überkompensieren sie
gelegentlich, indem sie jede Objektreferenz auf null setzen, sobald das Programm sie
nicht mehr benötigt. Das ist weder nötig noch wünschenswert, weil es das Programm
unnötig voll stopft und eventuell sogar auf Kosten der Performance geht. Das »Aus-
nullen« von Objektreferenzen sollte nicht die Regel, sondern die Ausnahme sein. Die
beste Möglichkeit, eine alte Referenz zu eliminieren, besteht darin, die Variable, in der
sie gespeichert war, entweder wiederzuverwenden oder sie aus dem Gültigkeits-
bereich herausfallen zu lassen. Das geschieht ganz natürlich, wenn Sie jede Variable im
kleinstmöglichen Gültigkeitsbereich definieren (Thema 29). Bitte beachten Sie, dass es
bei modernen JVM-Implementierungen nicht reicht, nur den Block zu verlassen, in der
eine Variable definiert ist: Sie müssen auch die umgebende Methode verlassen, damit
die Referenz verschwindet.

Wann also sollte man eine Referenz auf null setzen? Welcher Aspekt der Klasse Stack
macht sie verdächtig, Speicherlecks zu verursachen? Einfach ausgedrückt verwaltet die
Klasse Stack ihren eigenen Speicher. Der Speicher-Pool besteht aus den Elementen des
items-Arrays (den Zellen mit den Objektreferenzen, nicht den Objekten selbst). Die Ele-
mente im aktiven Teil des Arrays (wie er oben definiert wurde) sind zugewiesen und die
im restlichen Teil sind frei. Der Garbage Collector kann dies nicht wissen: Für ihn sind
alle Objektreferenzen des items-Arrays gleichermaßen gültig. Nur der Programmierer
weiß, dass der inaktive Teil des Arrays unwichtig ist. Dies kann er dem Garbage Col-
lector mitteilen, indem er die Array-Elemente manuell ausnullt, sobald sie in den in-
aktiven Teil des Arrays rutschen.

Allgemein ausgedrückt: Immer wenn eine Klasse ihren eigenen Speicher verwaltet,
sollte der Programmierer auf Speicherlecks achten. Bei jeder Elementfreigabe sollten
alle in diesem Element gespeicherten Referenzen ausgenullt werden.

Auch Caches sind eine häufige Ursache für Speicherlecks. Wenn Sie eine Objektrefe-
renz cachen, dann kann sie leicht in Vergessenheit geraten und noch lange im Cache
verbleiben, wenn sie längst irrelevant geworden ist. Für dieses Problem gibt es zwei
mögliche Lösungen. Wenn Sie einen Cache implementieren, in dem ein Eintrag genau
so lange relevant bleibt, wie es außerhalb des Caches Referenzen auf den Schlüssel die-
ses Eintrags gibt, dann sollten Sie diesen Cache als WeakHashMap anlegen. Die Einträge
werden dann automatisch aus ihm entfernt, sobald sie obsolet werden. Der häufigere
Fall ist jedoch, dass der Zeitraum nicht so genau definiert ist, für den ein Cache-Eintrag
relevant bleibt: Die Einträge verlieren einfach mit wachsendem Alter an Wert. Dann
sollte der Cache gelegentlich von nicht mehr benutzten Einträgen gereinigt werden.
Diese Bereinigung können Sie von einem Hintergrund-Thread (z.B. über das API
java.util.Timer) erledigen lassen oder als Nebeneffekt des Cachens neuer Einträge
implementieren. Die im Release 1.4 hinzugekommene Klasse java.util.LinkedHashMap
hat eine Methode namens removeEldestEntry, die den zweiten Ansatz erleichtert.

Thema 6: Vermeiden Sie Finalizer 33

Da sich Speicherlecks nicht durch offensichtliche Fehlfunktionen äußern, können sie
jahrelang in einem System verbleiben. Normalerweise entdecken Sie Speicherlecks nur
durch sorgfältige Untersuchung des Codes oder mithilfe eines Debugging-Tools
namens Heap-Profiler. Daher sollten Sie möglichst lernen, Probleme wie dieses schon
ehe sie auftreten zu antizipieren und zu vermeiden.

2.6 Thema 6: Vermeiden Sie Finalizer

Finalizer sind unberechenbar, manchmal gefährlich und fast immer überflüssig. Sie
können Fehlverhalten, Leistungsverschlechterungen und Portierprobleme verursa-
chen. Zwar gibt es auch für Finalizer ein paar zulässige Einsatzmöglichkeiten, aber
grundsätzlich sollten Sie Finalizer vermeiden.

C++-Programmierer sollen bitte Finalizer nicht als Entsprechung der C++-Destrukto-
ren betrachten. In C++ sind Destruktoren das normale Verfahren, mit dem die Ressour-
cen eines Objekts wieder freigegeben werden; sie sind das notwendige Gegenstück zu
den Konstruktoren. Doch Java hat den Garbage Collector, um den Speicher eines
Objekts wieder zurückzuholen, wenn dieses nicht mehr referenziert wird; der Pro-
grammierer braucht dazu nichts zu tun. C++-Destruktoren holen auch andere als Spei-
cherressourcen zurück. In Java gibt es zu diesem Zweck den try-finally-Block.

Es gibt keine Garantie dafür, dass die Finalizer auch prompt ausgeführt werden [JLS,
12.6]. Zwischen dem Zeitpunkt, zu dem ein Objekt unerreichbar wird, und dem Zeit-
punkt, zu dem sein Finalizer ausgeführt wird, kann beliebig viel Zeit vergehen. Das
bedeutet, dass Sie niemals einen Finalizer für zeitkritische Dinge einsetzen dürfen.
Es wäre z.B. ein grober Fehler, mit einem Finalizer offene Dateien zu schließen, denn
Deskriptoren für offene Dateien stehen nur begrenzt zur Verfügung. Wenn viele
Dateien offen bleiben, weil die JVM Finalizer erst spät ausführt, dann stürzt ein Pro-
gramm möglicherweise ab, weil es keine Dateien mehr öffnen kann.

Wie schnell Finalizer ausgeführt werden, hängt vor allem vom Garbage-Collection-
Algorithmus ab. Dieser ist jedoch bei jeder JVM-Implementierung ganz unterschied-
lich. Das Verhalten eines Programms, das sich auf eine rasche Ausführung der Finali-
zer stützt, kann entsprechend unterschiedlich sein. Es ist gut möglich, dass ein solches
Programm auf der JVM, auf der Sie es testen, perfekt funktioniert, und dann auf der
JVM, die Ihr wichtigster Kunde bevorzugt, schmählich scheitert.

Ein verspäteter Objektabschluss ist nicht nur ein theoretisches Problem. Wenn Sie einer
Klasse einen Finalizer geben, kann sich unter ganz speziellen Bedingungen die Frei-
gabe der Instanzen dieser Klasse auf unbestimmte Zeit verschieben. Ein Kollege von
mir suchte einmal den Fehler in einer lang laufenden GUI-Applikation, die aus uner-
findlichen Gründen immer mit einem OutOfMemoryError abstürzte. Bei der Analyse
zeigte sich, dass die Applikation zum Zeitpunkt ihres Scheiterns Tausende von Grafik-

34 2 Objekte erzeugen und zerstören

objekten in ihrer Finalizer-Schlange stehen hatte, die nur darauf warteten, abgeschlos-
sen und freigegeben zu werden. Doch leider war der Finalizer-Thread von allen
Threads der Applikation der mit der niedrigsten Priorität und daher wurden die
Objekte nicht in demselben Maße abgeschlossen, wie sie unerreichbar wurden. Da sich
die JLS nicht darauf festlegt, welcher Thread die Finalizer letztlich ausführt, können sie
diese Art von Problemen in portierbarer Form nur ausschalten, indem Sie auf Finalizer
verzichten.

Die JLS bietet nicht nur keine Garantie für eine prompte Ausführung der Finalizer, sie
bietet noch nicht einmal eine Garantie dafür, dass diese überhaupt ausgeführt werden.
Es ist gut möglich und sogar wahrscheinlich, dass ein Programm endet, ohne auf eini-
gen unerreichbar gewordenen Objekten einen Finalizer auch nur aufgerufen zu haben.
Daher dürfen Sie sich nie darauf verlassen, dass ein Finalizer einen wichtigen persis-
tenten Zustand aktualisiert. Wenn Sie sich z.B. darauf verlassen, dass ein Finalizer
eine persistente Sperre auf einer gemeinsam genutzten Ressource wie beispielsweise
einer Datenbank freigibt, laufen Sie Gefahr, dass Ihr gesamtes verteiltes System eine
Vollbremsung macht.

Lassen Sie sich nicht von den Methoden System.gc und System.runFinalization in Versu-
chung führen. Diese vergrößern vielleicht die Chancen, dass Finalizer ausgeführt wer-
den, aber garantieren tun sie dies nicht. Die einzigen Methoden, die dies angeblich
garantieren sind System.runFinalizersOnExit und ihr Gegenstück Runtime.runFinalizers
OnExit. Doch diese Methoden haben tödliche Fehler und wurden deswegen verworfen.

Wenn Sie nun immer noch nicht davon überzeugt sind, dass Finalizer gemieden werden
sollten, gebe ich Ihnen noch etwas Anderes zu bedenken: Wenn beim Objektabschluss
eine nicht abgefangene Ausnahme ausgelöst wird, so wird diese ignoriert und der
Abschluss des betreffenden Objekts beendet [JLS, 12.6]. Nicht abgefangene Ausnahmen
können Objekte in inkonsistentem Zustand zurücklassen. Wenn ein anderer Thread ein
solches inkonsistentes Objekt zu nutzen versucht, kann es zu irgendeinem nicht-deter-
ministischen Verhalten kommen. Normalerweise beendet eine nicht abgefangene Aus-
nahme den Thread und gibt einen Stack-Trace aus, aber nicht, wenn sie in einem
Finalizer auftritt: In einem solchen Fall generiert sie noch nicht einmal eine Warnung.

Was sollten Sie also anderes tun, als einen Finalizer zu schreiben, wenn Sie eine Klasse
haben, deren Objekte Ressourcen wie z.B. Dateien oder Threads kapseln, die abge-
schlossen werden müssen? Sie stellen einfach eine explizite Abschlussmethode zur Ver-
fügung und verlangen von Clients der Klasse, dass sie diese Methode auf jeder Instanz
aufrufen, die nicht mehr benötigt wird. Hier muss erwähnt werden, dass die Instanz
nachvollziehen muss, ob sie abgeschlossen wurde: Die explizite Abschlussmethode
muss in einem privaten Feld aufzeichnen, dass das Objekt ungültig geworden ist, und
andere Methoden müssen dieses Feld betrachten und eine IllegalStateException

auslösen, wenn sie nach Abschluss des Objekts noch aufgerufen wurden.

Thema 6: Vermeiden Sie Finalizer 35

Ein typisches Beispiel für eine explizite Abschlussmethode ist die close-Methode auf
InputStream und OutputStream. Ein weiteres Beispiel ist die cancel-Methode auf
java.util.Timer, die für die erforderliche Zustandsänderung sorgt, damit der Thread
einer Timer-Instanz sich selbst reibungslos abschließt. Beispiele aus java.awt sind
Graphics.dispose und Window.dispose. Diese Methoden werden oft übersehen, was sich
absehbar stark auf die Leistung auswirkt. Eine verwandte Methode ist Image.flush: Sie
gibt alle Ressourcen frei, die mit einer Image-Instanz verbunden sind, lässt diese Instanz
jedoch in einem nach wie vor benutzbaren Zustand und reserviert die betreffenden
Ressourcen wenn nötig erneut.

Oft verbinden Sie die expliziten Abschlussmethoden mit dem try-finally-Kon-
strukt, um einen raschen Objektabschluss zu gewährleisten. Der Aufruf der explizi-
ten Abschlussmethode innerhalb der finally-Klausel sorgt dafür, dass die Methode
auch dann ausgeführt wird, wenn während der Objektnutzung eine Ausnahme ausge-
löst wird:

// try-finally-Block garantiert Ausführung der Abschlussmethode
Foo foo = new Foo(...);
try {
 // Machen Sie mit foo alles Nötige
 ...
} finally {
 foo.terminate(); // Explizite Abschlussmethode
}

Wozu sind denn nun die Finalizer gut? Es gibt zwei zulässige Anwendungen dafür.
Zum einen sind Finalizer ein »Sicherheitsnetz« für den Fall, dass der Inhaber eines
Objekts vergisst, die explizite Abschlussmethode aufzurufen, die Sie gemäß meinem
Ratschlag im vorigen Absatz zur Verfügung gestellt haben. Zwar gibt es keine Garantie
dafür, dass der Finalizer prompt aufgerufen wird, aber Sie geben die wichtige Res-
source besser spät als nie frei. Das gilt für die (hoffentlich seltenen) Fälle, in denen der
Client seinen Teil der Vereinbarung nicht einhält und die explizite Abschlussmethode
nicht aufruft. Die drei Klassen, die als Beispiele für explizite Abschlussmethoden
genannt wurden (InputStream, OutputStream und Timer), haben auch Finalizer als Sicher-
heitsnetz für den Fall, dass ihre Abschlussmethoden nicht aufgerufen werden.

Zweitens haben Finalizer ihre Berechtigung bei Objekten mit Native Peers. Ein Native
Peer ist ein natives Objekt mit normalen Objekt-Delegierungen über native Methoden.
Da ein Native Peer kein normales Objekt ist, hat der Garbage Collector keine Kenntnis
von ihm und kann es auch nicht freigeben, wenn sein normaler Peer freigegeben wird.
Ein Finalizer eignet sich dann gut für diese Aufgabe, wenn der Native Peer keine wichti-
gen Ressourcen hält. Hält er jedoch Ressourcen, die rasch abgeschlossen werden müs-
sen, dann sollte die Klasse, wie oben bereits gesagt, eine explizite Abschlussmethode
haben. Die Abschlussmethode sollte alles Erforderliche tun, damit die wichtige Res-

36 2 Objekte erzeugen und zerstören

source wieder frei wird. Die Abschlussmethode kann selbst eine native Methode sein
oder sie kann eine native Methode aufrufen.

Es ist wichtig darauf hinzuweisen, dass »FinalizerVerkettung« nicht automatisch statt-
findet. Wenn eine andere Klasse als Object einen Finalizer hat und eine Unterklasse die-
sen überschreibt, muss der Unterklassen-Finalizer den Oberklassen-Finalizer manuell
aufrufen. Sie sollten die Unterklasse in einem try-Block abschließen und den Oberklas-
sen-Finalizer in dem dazu gehörigen finally-Block aufrufen. So ist gewährleistet, dass
der Oberklassen-Finalizer auch dann ausgeführt wird, wenn der Unterklassen-
Abschluss eine Ausnahme auslöst und umgekehrt:

// Manuelle Finalizer-Verkettung
protected void finalize() throws Throwable {
 try {
 // Schließ den Unterklassen-Zustand ab
 ...
 } finally {
 super.finalize();
 }
}

Wenn etwas, das die Unterklasse implementiert, den Finalizer der Oberklasse über-
schreibt, dabei aber vergisst, den Oberklassen-Finalizer manuell aufzurufen (oder dies
absichtlich nicht tut), dann wird dieser Oberklassen-Finalizer nie aufgerufen. Sie kön-
nen sich gegen eine derart nachlässig oder bösartig geschriebene Unterklasse wehren,
indem Sie für jedes abzuschließende Objekt ein zusätzliches Objekt erzeugen. Anstatt
den Finalizer in die Klasse zu setzen, die abgeschlossen werden soll, setzen Sie ihn in
eine anonyme Klasse (Thema 18), die einzig dazu da ist, die sie umgebende Instanz
abzuschließen. Für jede Instanz der umgebenden Klasse wird eine einzige Instanz der
anonymen Klasse – ein so genannter Finalizer-Wächter – erzeugt. Die umgebende
Klasse speichert die einzige Referenz auf ihren Finalizer-Wächter in einem privaten
Instanzfeld, damit der Finalizer-Wächter unmittelbar vor der umgebenden Instanz ein
Kandidat für den Objektabschluss wird. Wenn der Wächter abgeschlossen wird, führt
er die für die umgebende Instanz gewünschte Abschlussaktivität durch, gerade so, als
sei sein Finalizer eine Methode dieser umgebenden Klasse:

// Idiom für einen Finalizer-Wächter
public class Foo {
 // Der einzige Zweck dieses Objekts ist der Abschluss des äußeren Foo-Objekts
 private final Object finalizerGuardian = new Object() {
 protected void finalize() throws Throwable {
 // Schließe das äußere Foo-Objekt ab
 ...
 }
 };
 ... // Rest wird ausgelassen
}

Thema 6: Vermeiden Sie Finalizer 37

Beachten Sie, dass die öffentliche Klasse Foo keinen Finalizer (außer dem trivialen, von
Object geerbten) hat. Daher spielt es keine Rolle, ob ein Unterklassen-Finalizer
super.finalize aufruft oder nicht. Diese Technik sollten Sie für jede nicht-finale öffent-
liche Klasse in Betracht ziehen, die einen Finalizer hat.

Fazit: Verwenden Sie Finalizer nur als Sicherheitsnetz oder um unwichtige native Res-
sourcen abzuschließen. In den seltenen Fällen, in denen Sie einen Finalizer einsetzen,
dürfen Sie nicht vergessen, super.finalize aufzurufen. Zum Schluss ein Tipp: Wenn Sie
einen Finalizer mit einer öffentlichen, nicht-finalen Klasse benutzen müssen, sollten Sie
auch einen Finalizer-Wächter erstellen, um die Ausführung des Finalizers auch dann
zu gewährleisten, wenn ein Unterklassen-Finalizer super.finalize nicht aufruft.

3 Allen Objekten gemeinsame Methoden

Object ist zwar eine konkrete Klasse, in erster Linie darauf angelegt, erweitert zu wer-
den. Alle ihre nicht-finalen Methoden (equals, hashCode, toString, clone und finalize)
haben explizite allgemeine Verträge, da sie dafür entworfen sind, überschrieben zu wer-
den. Jede Klasse, die diese Methoden überschreibt, muss den allgemeinen Vertrag die-
ser Methoden einhalten, da ansonsten andere Klassen, die von diesen Verträgen
abhängig sind, nicht einwandfrei mit dieser Klasse zusammenarbeiten können.

In diesem Kapitel erfahren Sie, wann und wie Sie die nicht-finalen Object-Methoden
überschreiben. Die Methode finalize besprechen wir nicht in diesem Kapitel, sondern
im Thema 6. Comparable.compareTo ist zwar keine Methode der Klasse Object, wird
wegen ihres ähnlichen Charakters aber ebenfalls in diesem Kapitel behandelt.

3.1 Thema 7: Halten Sie beim Überschreiben von equals
den allgemeinen Vertrag ein

Das Überschreiben der Methode equals scheint zwar einfach zu sein, man kann dabei
aber viele und zum Teil fatale Fehler machen. Am einfachsten vermeiden Sie Probleme,
indem Sie die Methode equals überhaupt nicht überschreiben. Auf diese Art ist jede
Instanz nur mit sich selbst gleich. Dies ist immer dann die richtige Entscheidung, wenn
eine der folgenden Bedingungen zutrifft:

� Jede Instanz der Klasse ist ihrer Natur nach eindeutig. Dies trifft auf Klassen zu,
die keine Werte, sondern aktive Entitäten repräsentieren. Ein Beispiel sind Threads.
Die von Object bereitgestellte Implementierung von equals hat für derartige Klassen
genau das richtige Verhalten.

� Es spielt für Sie keine Rolle, ob die Klasse einen Test auf »logische Gleichheit«
bereitstellt. So kann es z.B. sein, dass java.util.Random die Methode equals über-
schrieben hat, um zu prüfen, ob zwei Random-Instanzen dieselbe Folge von Zufalls-
zahlen hervorbringen, die Designer aber der Meinung waren, dass die Kunden
diese Funktionalität weder benötigen noch wünschen. Unter diesen Umständen
reicht die aus Object geerbte Implementierung von equals aus.

40 3 Allen Objekten gemeinsame Methoden

� Eine Oberklasse hat equals bereits überschrieben und das aus der Oberklasse
geerbte Verhalten passt auch für diese Klasse. So erben z.B. die meisten Imple-
mentierungen von Set die equals-Implementierung aus AbstractSet, Implementie-
rungen von List erben aus AbstractList und Implementierungen von Map erben aus
AbstractMap.

� Die Klasse ist privat oder paketprivat und Sie sind sicher, dass die Methode
equals nie aufgerufen wird. Unter diesen Umständen sollten Sie die Methode
equals für den Fall, dass sie eines Tages doch aufgerufen wird, unbedingt überschrei-
ben:

public boolean equals(Object o) {
 throw new UnsupportedOperationException();
}

Wann soll man Object.equals also überschreiben? Wenn eine Klasse die logische Gleich-
heit kennt, die sich von der reinen Gleichheit der Objekte unterscheidet, dann hat eine
Oberklasse equals bereits überschrieben, um das gewünschte Verhalten zu implemen-
tieren. Dies ist normalerweise bei Wertklassen wie z.B. Integer oder Date der Fall. Ein
Programmierer, der mit der Methode equals Referenzen auf Wertobjekte vergleicht,
möchte nicht herausfinden, ob sie auf dasselbe Objekte referieren, sondern ob sie
logisch äquivalent sind. Das Überschreiben der Methode equals ist nicht nur nötig, um
die Erwartungen der Programmierer zu erfüllen, sondern ermöglicht es den Instanzen
der Klasse auch, als Zuordnungsschlüssel oder Mengenelemente mit vorhersehbarem
und wünschenswertem Verhalten zu dienen.

Der Wertklassentyp typsichere Enum (Thema 21) verlangt nicht, dass die Methode
equals überschrieben wird. Da typsichere Enum-Klassen gewährleisten, dass es jeweils
mindestens ein Objekt mit jedem Wert gibt, ist die Methode equals der Klasse Object
gleichbedeutend mit einer logischen equals-Methode für derartige Klassen.

Wenn Sie die Methode equals überschreiben, brauchen Sie ihren allgemeinen Vertrag
nicht zu ändern. Den folgenden Vertrag haben wir aus der Spezifikation zu
java.lang.Object kopiert:

Die Methode equals implementiert eine Äquivalenzbeziehung:

– Sie ist reflexiv: Für jeden Referenzwert x muss x.equals(x) den Wert true zurück-
geben.

– Sie ist symmetrisch: Für alle Referenzwerte x und y muss x.equals(y) genau dann
den Wert true zurückgeben, wenn y.equals(x) den Wert true zurückgibt.

– Sie ist transitiv: Für alle Referenzwerte x, y und z muss x.equals(z) den Wert true
zurückgeben, wenn x.equals(y) den Wert true zurückgibt und y.equals(z) den
Wert true zurückgibt.

Thema 7: Halten Sie beim Überschreiben von equals den allgemeinen Vertrag ein 41

– Sie ist konsistent: Für alle Referenzwerte x und y geben Mehrfachaufrufe von
x.equals(y) konsistent true oder konsistent false zurück, sofern keine Informa-
tionen, die in equals-Vergleichen auf dem Objekt verwendet werden, geändert
wurden.

– Für jeden Referenzwert x, der nicht null ist, muss x.equals(null) den Wert false
zurückgeben.

Wenn Sie kein Faible für Mathematik haben, erscheint Ihnen dieser Vertrag zwar mög-
licherweise etwas erschreckend, aber ignorieren Sie ihn auf keinen Fall! Wenn Sie ihn
verletzen, kann es geschehen, dass sich Ihr Programm unberechenbar verhält oder
abstürzt, und es kann sehr schwierig werden, die Fehlerquelle ausfindig zu machen.
Um mit John Donne zu sprechen: Keine Klasse ist eine Insel. Instanzen einer Klasse
werden häufig an eine andere Klasse übergeben. Viele Klassen, auch alle Sammlungs-
klassen, verlassen sich darauf, dass die ihnen übergebenen Objekte dem Vertrag der
Methode equals entsprechen.

Nachdem Sie nun wissen, welche Konsequenzen Verletzungen des Vertrags von equals
nach sich ziehen können, wollen wir uns den Vertrag genauer ansehen. Die gute Nach-
richt ist, dass der Vertrag zwar vielleicht kompliziert aussieht, aber nicht wirklich son-
derlich kompliziert ist. Wenn Sie ihn einmal verstanden haben, können Sie ihn leicht
einhalten. Sehen wir uns also die fünf Bedingungen der Reihe nach an:

Reflexivität: Die erste Bedingung besagt einfach, dass ein Objekt mit sich selbst gleich
sein muss. Man kann sich kaum vorstellen, dass jemand diese Bedingungen unbeab-
sichtigt verletzt. Wenn Sie sie verletzen und dann eine Instanz Ihrer Klasse einer
Sammlung hinzufügen, teilt die Methode contains der Sammlung höchstwahrschein-
lich mit, dass die Sammlung die Instanz, die Sie gerade hinzugefügt haben, nicht ent-
hält.

Symmetrie: Die zweite Bedingung besagt, dass zwei Objekte sich darüber einigen
müssen, ob sie gleich sind. Im Gegensatz zur ersten Bedingungen sind unbeabsichtigte
Verletzungen dieser Bedingung durchaus vorstellbar. Betrachten Sie z.B. die folgende
Klasse:

/**
 * String, der die Groß-/Kleinschreibung nicht
 * berücksichtigt. Die Groß-/Kleinschreibung der ursprünglichen
 * String wird von toString beibehalten, in Vergleichen aber
 * ignoriert.
 */
public final class CaseInsensitiveString {
 private String s;

 public CaseInsensitiveString(String s) {
 if (s == null)
 throw new NullPointerException();

42 3 Allen Objekten gemeinsame Methoden

 this.s = s;
 }

 // Fehler - verletzt die Symmetrie!
 public boolean equals(Object o) {
 if (o instanceof CaseInsensitiveString)
 return s.equalsIgnoreCase(
 ((CaseInsensitiveString)o).s);
 if (o instanceof String) // Ein-Weg-Interoperabilität!
 return s.equalsIgnoreCase((String)o);
 return false;
 }
 ... // Rest wird ausgelassen
}

Die wohlmeinende equals-Methode in dieser Klasse versucht naiv, mit gewöhnlichen
Strings zu arbeiten. Nehmen wir z.B. an, wir hätten einen String, der die Groß- und
Kleinschreibung berücksichtigt, und einen normalen String:

CaseInsensitiveString cis = new CaseInsensitiveString("Polish");
String s = "polish";

Erwartungsgemäß gibt cis.equals(s) den Wert true zurück. Das Problem besteht hier
darin, dass zwar die Methode equals in CaseInsensitiveString normale Strings kennt,
die Methode equals in String aber Strings, die die Groß- und Kleinschreibung ignorie-
ren, einfach übersieht. s.equals(cis) gibt daher false zurück und verletzt damit ein-
deutig die Symmetrie. Nehmen wir nun an, Sie fügten der Sammlung einen String
hinzu, die die Groß- und Kleinschreibung nicht berücksichtigt:

List list = new ArrayList();
list.add(cis);

Was gibt die Methode list.contains(s) hier zurück? Das weiß niemand. In Suns aktuel-
ler Implementierung gibt sie zufällig false zurück, aber das ist eben nur ein Kunst-
produkt dieser Implementierung. In einer anderen Implementierung kann die
Methode genauso gut true zurückgeben oder eine Laufzeitausnahme auslösen. Sobald
Sie den Vertrag von equals verletzt haben, können Sie nicht mehr vorhersagen, wie
andere Objekte sich bei einem Zusammentreffen mit Ihrem Objekt verhalten werden.

Um dieses Problem zu beheben, brauchen Sie nur den schlecht durchdachten Versuch
rückgängig zu machen, aus der Methode equals heraus mit String zusammenarbeiten
zu wollen. Sobald Sie dies gemacht haben, können Sie die Methode so abändern, dass
sie nur noch ein return hat:

public boolean equals(Object o) {
 return o instanceof CaseInsensitiveString &&
 ((CaseInsensitiveString)o).s.equalsIgnoreCase(s);
}

Thema 7: Halten Sie beim Überschreiben von equals den allgemeinen Vertrag ein 43

Transitivität: Die dritte Bedingung des Vertrags von equals besagt Folgendes: Wenn
das erste Objekt mit dem zweiten und das zweite mit dem dritten gleich ist, dann ist
auch das erste Objekt mit dem dritten gleich. Auch hier kann man sich wieder leicht
vorstellen, dass diese Bedingung unbeabsichtigt verletzt wird. Nehmen wir z.B. an,
dass ein Programmierer eine Unterklasse erstellt, die ihrer Oberklasse einen neuen
Aspekt hinzufügt. Anders ausgedrückt: Die Unterklasse fügt eine Information hinzu,
die sich auf den equals-Vergleich auswirkt. Beginnen wir mit einer einfachen, unverän-
derlichen, zweidimensionalen Klasse namens Point:

public class Point {
 private final int x;
 private final int y;
 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }

 public boolean equals(Object o) {
 if (!(o instanceof Point))
 return false;
 Point p = (Point)o;
 return p.x == x && p.y == y;
 }

 ... // Rest wird ausgelassen
}

Angenommen, Sie wollten diese Klasse so erweitern, dass ein Punkt auch eine Farbe
haben kann:

public class ColorPoint extends Point {
 private Color color;

 public ColorPoint(int x, int y, Color color) {
 super(x, y);
 this.color = color;
 }

 ... // Rest wird ausgelassen
}

Wie sollte die Methode equals aussehen? Wenn Sie sie ganz weglassen, ist die Imple-
mentierung aus Point geerbt und Informationen zur Farbe werden in equals-Verglei-
chen ignoriert. Dies verletzt zwar den Vertrag von equals nicht, ist aber dennoch
eindeutig nicht akzeptabel. Nehmen wir an, Sie schrieben eine equals-Methode, die nur
dann true zurückgibt, wenn ihr Argument ein anderer Farbpunkt mit derselben Farbe
und Position ist:

44 3 Allen Objekten gemeinsame Methoden

// Fehler - verletzt die Symmetrie!
public boolean equals(Object o) {
 if (!(o instanceof ColorPoint))
 return false;
 ColorPoint cp = (ColorPoint)o;
 return super.equals(o) && cp.color == color;
}

Bei dieser Methode besteht das Problem darin, dass Sie möglicherweise verschiedene
Ergebnisse erhalten, wenn Sie einen Punkt mit einem Farbpunkt vergleichen und
umgekehrt: Der erste Vergleich ignoriert die Farbe, der zweite gibt immer false
zurück, da das Argument nicht den richtigen Typ hat. Um dies zu veranschaulichen,
wollen wir einen Punkt und einen Farbpunkt erstellen:

Point p = new Point(1, 2);
ColorPoint cp = new ColorPoint(1, 2, Color.RED);

Hier gibt p.equals(cp) den Wert true, cp.equals(p) hingegen false zurück. Sie können
dieses Problem zu lösen versuchen, indem Sie dafür sorgen, dass ColorPoint.equals bei
»gemischten Vergleichen« die Farbe ignoriert:

// Fehler - verletzt die Transitivität.
public boolean equals(Object o) {
 if (!(o instanceof Point))
 return false;

 // Wenn o ein normaler Point ist, dann führe einen
 // farbenblinden Vergleich durch.
 if (!(o instanceof ColorPoint))
 return o.equals(this);

 // o ist ein ColorPoint; führe einen vollständigen Vergleich
 // durch
 ColorPoint cp = (ColorPoint)o;
 return super.equals(o) && cp.color == color;
}

Dieses Verfahren sorgt zwar für Symmetrie, allerdings auf Kosten der Transitivität:

ColorPoint p1 = new ColorPoint(1, 2, Color.RED);
Point p2 = new Point(1, 2);
ColorPoint p3 = new ColorPoint(1, 2, Color.BLUE);

Hier geben p1.equals(p2) und p2.equals(p3) den Wert true zurück, während
p1.equals(p3) den Wert false zurückgibt, wodurch die Transitivität eindeutig verletzt
wird. Die ersten beiden Vergleiche sind »farbenblind« , während der dritte die Farbe
berücksichtigt.

Wie sieht die Lösung also aus? Dies ist offenbar ein grundlegendes Problem von Äqui-
valenzbeziehungen in objektorientierten Sprachen. Es gibt keine Möglichkeit, wie
man eine instanziierbare Klasse erweitern und einen Aspekt hinzuzufügen und

Thema 7: Halten Sie beim Überschreiben von equals den allgemeinen Vertrag ein 45

zugleich den Vertrag von equals einhalten kann. Allerdings gibt es eine gute Umge-
hungsmöglichkeit: Folgen Sie dem Rat im Thema 14, »Komposition ist besser als Ver-
erbung« : Machen Sie die Klasse ColorPoint nicht zu einer Erweiterung von Point,
sondern geben Sie ihr ein privates Point-Feld und eine öffentliche view-Methode
(Thema 4), die den Punkt zurückgibt, der sich an derselben Position befindet wie die-
ser Farbpunkt:

// Fügt einen Aspekt hinzu, ohne den Vertrag von equals zu
// verletzen.
public class ColorPoint {
 private Point point;
 private Color color;

 public ColorPoint(int x, int y, Color color) {
 point = new Point(x, y);
 this.color = color;
 }

 /**
 * Gibt die Punktansicht dieses Farbpunkts zurück.
 */
 public Point asPoint() {
 return point;
 }

 public boolean equals(Object o) {
 if (!(o instanceof ColorPoint))
 return false;
 ColorPoint cp = (ColorPoint)o;
 return cp.point.equals(point) && cp.color.equals(color);
 }

 ... // Rest wird ausgelassen
}

In Javas Plattformbibliotheken gibt es einige Klassen, die eine instanziierbare Klasse
erweitern und einen Aspekt hinzufügen. So erweitert java.sql.Timestamp z.B.
java.util.Date und fügt das Feld nanoseconds hinzu. Die equals-Implementierung für
Timestamp verletzt die Symmetrie und kann zu unvorhergesehenem Verhalten führen,
falls Timstamp- und Date-Objekte in derselben Sammlung verwendet oder auf andere
Art miteinander vermischt werden. Die Klasse Timestamp enthält eine Haftungsaus-
schlussklausel, die die Programmierer davor warnt, Date- und Timestamp-Objekte zu
vermischen. Solange Sie beide nicht vermischen, kommt es auch nicht zu Problemen,
aber es wurden auch keine Vorkehrungen getroffen, um Sie vom Vermischen abzuhal-
ten, und die daraus resultierenden Fehler können schwer zu beheben sein. Die Klasse
TimeStamp ist eine Anomalie und sollte nicht emuliert werden.

Beachten Sie, dass Sie einer abstrakten Klasse durchaus einen Aspekt hinzufügen kön-
nen, ohne den Vertrag von equals zu verletzen. Dies ist für diejenigen Klassenhierar-

46 3 Allen Objekten gemeinsame Methoden

chien wichtig, die Sie erhalten, wenn Sie dem Rat in Thema 20 befolgen: »Ersetzen Sie
Unions durch Klassenhierarchien« . So können Sie z.B. die abstrakte Klasse Shape mit
den beiden Unterklassen Circle und Rectangle haben, wobei Shape keine Aspekte hat,
Circle das Feld radius hinzufügt und Rectangle die Felder length und width hinzufügt.
Derartige Probleme treten nicht auf, wenn es unmöglich ist, eine Instanz der Ober-
klasse zu erzeugen.

Konsistenz: Die vierte Bedingung des Vertrags von equals besagt, dass zwei gleiche
Objekte für immer gleich bleiben müssen, sofern nicht eines von ihnen (oder beide)
geändert wird. Dies ist eigentlich weniger eine echte Bedingung als vielmehr eine Erin-
nerung daran, dass veränderliche Objekte im Gegensatz zu unveränderlichen zu ver-
schiedenen Zeiten mit verschiedenen Objekten gleich sein können. Wenn Sie eine
Klasse schreiben, müssen Sie genau überlegen, ob sie unveränderlich sein soll (Thema
13). Wenn Sie zu dem Schluss kommen, dass die Klasse nicht unveränderlich sein soll,
dann müssen Sie sicherstellen, dass die Methode equals die Restriktion durchsetzt,
dass gleiche Objekte für immer gleich und ungleiche Objekte für immer ungleich blei-
ben.

Nicht-Null: Die letzte Bedingung besagt, dass alle Objekte ungleich null sein müssen.
Man kann sich zwar kaum vorstellen, dass man bei einem Aufruf von o.equals(null)
aus Versehen true zurückgibt, aber es ist durchaus vorstellbar, dass man aus Versehen
eine NullPointerException auslöst. Der allgemeine Vertrag lässt dies nicht zu. Viele Klas-
sen haben equals-Methoden, die davor durch einen ausdrücklichen null-Test schützen:

public boolean equals(Object o) {
 if (o == null)
 return false;
 ...
}

Dieser Test ist nicht unbedingt erforderlich. Damit die Methode equals ihr Argument
auf Gleichheit hin prüfen kann, muss sie das Argument zuerst in einen passenden Typ
umwandeln, damit seine Zugreifer aufgerufen und auf seine Felder zugegriffen wer-
den kann. Vor der Umwandlung muss die Methode mit dem Operator instanceof prü-
fen, ob ihr Argument den richtigen Typ hat:

public boolean equals(Object o) {
 if (!(o instanceof MyType))
 return false;
 ...
}

Wenn diese Typprüfung fehlt und der Methode equals ein Argument des falschen Typs
übergeben wird, dann löst die Methode equals eine ClassCastException aus, die den Ver-
trag von equals verletzt. Aber der Operator instanceof ist so angegeben, dass er unab-
hängig vom Typ des zweiten Operanden false zurückgibt, falls sein erster Operand

Thema 7: Halten Sie beim Überschreiben von equals den allgemeinen Vertrag ein 47

null ist [JSL, 15.19.2]. Daher gibt die Typprüfung false zurück, falls null übergeben
wird. Sie brauchen also keine eigene null-Prüfung durchzuführen. Im Folgenden fas-
sen wir die Anleitung für eine hochwertige equals-Methode noch einmal zusammen:

1. Prüfen Sie mit dem Operator ==, ob das Argument eine Referenz auf dieses
Objekt ist. Wenn dies der Fall ist, geben Sie true zurück. Dies ist lediglich eine Leis-
tungsoptimierung, allerdings eine, die sich bei potenziell aufwändigen Vergleichen
lohnt.

2. Prüfen Sie mit dem Operator instanceof, ob das Argument den richtigen Typ hat.
Ist dies nicht der Fall, dann geben Sie false zurück. Normalerweise ist der richtige
Typ die Klasse, in der die Methode vorkommt. Gelegentlich ist er auch ein von die-
ser Klasse implementiertes Interface. Verwenden Sie dann ein Interface, wenn die
Klasse ein Interface implementiert, das den Vertrag von equals so verfeinert, dass
Vergleiche über mehrere Klassen zulässig sind, die dieses Interface implementieren.
Die Sammlungs-Interfaces Set, List, Map und Map.Entry haben diese Eigenschaft.

3. Wandeln Sie das Argument in den richtigen Typ um. Da dieser Umwandlung ein
instanceof-Test vorangeht, ist sie auf jeden Fall erfolgreich.

4. Prüfen Sie für jedes »bedeutungstragende« Feld der Klasse, ob dieses Feld des
Arguments mit dem entsprechenden Feld des Objekts übereinstimmt. Wenn alle
diese Prüfungen erfolgreich verlaufen, geben Sie true zurück, anderenfalls geben
Sie false zurück. Wenn der Typ im Schritt 2 ein Interface ist, dann müssen Sie mit
Interface-Methoden auf die bedeutungstragenden Felder des Arguments zugreifen.
Wenn der Typ eine Klasse ist, können Sie je nach der Zugriffsmodifikation vielleicht
direkt auf die Felder zugreifen. Bei einfachen Feldern, deren Typ weder float noch
double ist, verwenden Sie für Vergleiche den Operator ==. Für Referenzfelder rufen
Sie die Methode equals rekursiv auf, bei float-Feldern übersetzen Sie die int-Werte
mit Float.floatToIntBits und vergleichen die int-Werte mit dem Operator ==. Bei
double-Feldern übersetzen Sie die long-Werte mit Double.doubleToLongbits und ver-
gleichen die long-Werte mit dem Operator ==. (Die besondere Behandlung von
float- und double-Feldern ist wegen Float.NaN, -0.0f und der analogen double-
Konstanten erforderlich. Weitere Informationen dazu finden Sie in der Dokumenta-
tion zu Float.equals.) Bei Array-Feldern wenden Sie diese Richtlinien auf jedes
Element an. Bei einigen Felder von Objektreferenzen sind null-Werte zulässig. Um
eine NullPointerException zu vermeiden, vergleichen Sie solche Felder mit dem
folgenden Ausdruck:

 (field == null ? o.field == null : field.equals(o.field))

Diese Alternative ist möglicherweise schneller, wenn field und o.field häufig iden-
tische Objektreferenzen sind.

 (field == o.field || (field != null && field.equals(o.field)))

48 3 Allen Objekten gemeinsame Methoden

Bei einigen Klassen wie z.B. der bereits gezeigten CaseInsensitiveString sind die
Feldvergleiche komplexer als einfache Gleichheitsprüfungen. Ob dies zutrifft, sollte
aus der Spezifikation zu der betreffenden Klasse hervorgehen. Wenn dies der Fall
ist, sollten Sie eventuell in jedem Objekt eine Hauptform speichern, damit die
Methode equals auf diesen Hauptformen statt aufwändigeren ungenauen Verglei-
chen genaue Vergleiche ohne großen Aufwand durchführen kann. Dieses Verfahren
ist für unveränderliche Klassen (Thema 13) besser geeignet, da die Hauptform bei
Änderungen des Objekts immer aktuell gehalten werden muss.

Die Reihenfolge, in der die Felder verglichen werden, kann sich auf die Leistung
der Methode equals auswirken. Um die bestmögliche Leistung zu erzielen, sollten
Sie zuerst diejenigen Felder vergleichen, bei denen Unterschiede wahrscheinlicher
sind oder deren Vergleich aufwändiger ist oder bei denen im Idealfall beides
zutrifft. Vergleichen Sie auf keinen Fall Felder, die nicht zum logischen Zustand
eines Objekts gehören, also z.B. Object-Felder, die der Synchronisierung von Opera-
tionen dienen. Redundante Felder, die aus »bedeutungstragenden« Feldern berech-
net werden können, brauchen Sie zwar nicht zu vergleichen, allerdings können Sie
dadurch die Leistung der Methode equals verbessern. Wenn ein redundantes Feld
eine zusammenfassende Beschreibung des gesamten Objekts ist, dann erspart
Ihnen der Vergleich dieses Felds die Mühe, bei einem Scheitern des Vergleichs die
tatsächlichen Daten vergleichen zu müssen.

5. Wenn Sie die Methode equals geschrieben haben, stellen Sie sich drei Fragen: Ist
sie symmetrisch? Ist sie transitiv? Ist sie konsistent? (Die anderen beiden Mög-
lichkeiten kümmern sich selbst um sich.) Trifft dies nicht zu, so müssen Sie heraus-
finden, warum diese Eigenschaften nicht zutreffen, und die Methode entsprechend
ändern.

Unter dem Thema 8 finden Sie ein konkretes Beispiel für eine equals-Methode, die nach
diesem Rezept konstruiert wurde. Abschließend noch ein paar Warnungen:

� Überschreiben Sie hashCode immer, wenn Sie equals überschreiben. (Thema 8)

� Versuchen Sie nicht, schlau zu sein. Wenn Sie Felder einfach auf Gleichheit prüfen,
können Sie den Vertrag von equals problemlos einhalten. Wenn Sie zu aggressiv
nach Äquivalenz suchen, geraten Sie schnell in Schwierigkeiten. Ganz allgemein
sind alle Arten von Aliasnamen eine schlechte Idee. So sollte die Klasse File z.B.
nicht versuchen, symbolische Links gleichzusetzen, die auf dieselbe Datei verwei-
sen. Zum Glück macht sie dies auch nicht.

� Schreiben Sie keine equals-Methode, die sich auf unzuverlässige Ressourcen
stützt. Wenn Sie dies machen, wird es Ihnen extrem schwer fallen, die Konsistenz-
bedingung zu erfüllen. Die equals-Methode von java.net.URL verlässt sich z.B.
darauf, dass die IP-Adressen der Hosts in URLs verglichen werden. Die Überset-
zung eines Host-Namens in eine IP-Adresse kann einen Netzwerkzugriff erforder-

Thema 8: Überschreiben Sie hashCode immer, wenn Sie equals überschreiben 49

lich machen und es gibt keine Garantie dafür, das sie über längere Zeit immer
dasselbe Ergebnis liefert. Dadurch kann es geschehen, dass URLs equals-Methode
den Vertrag von equals verletzt. In der Praxis hat dies bereits zu Problemen geführt.
(Leider kann dieses Verhalten auf Grund von Kompatibilitätsanforderungen nicht
geändert werden.) Abgesehen von einigen Ausnahmen sollten equals-Methoden
immer deterministische Berechnungen auf speicherresidenten Objekten vorneh-
men.

� Ersetzen Sie Object in der Deklaration von equals nicht durch einen anderen Typ.
Nicht selten schreiben Programmierer eine equals-Methode wie die folgende und
benötigen dann Stunden, um herauszufinden, warum sie nicht funktioniert:

public boolean equals(MyClass o) {
 ...
}

Das Problem besteht hier darin, dass diese Methode die Methode Object.equals,
deren Typ Object ist, nicht überschreibt, sondern überlädt (Thema 26). Es ist zwar in
Ordnung, eine solche »stark typisierte« equals-Methode zusätzlich zu der normalen
bereitzustellen, solange beide Methoden dasselbe Ergebnis zurückgeben, aber
einen zwingenden Grund gibt es hierfür nicht. Unter bestimmten Umständen mag
dies die Leistung zwar geringfügig verbessern, was jedoch nicht für die erhöhte
Komplexität entschädigt (Thema 37).

3.2 Thema 8: Überschreiben Sie hashCode immer, wenn Sie
equals überschreiben

Häufig entstehen Fehler dadurch, dass man die Methode hashCode zu überschreiben
vergisst. Sie müssen hashCode in jeder Klasse überschreiben, die equals überschreibt.
Wenn Sie dies nicht machen, verletzen Sie den allgemeinen Vertrag von Object.hash-
Code. Dann kann Ihre Klasse mit den Hash-basierten Sammlungen, wozu auch HashMap,
HashSet und Hashtable gehören, nicht mehr richtig zusammenarbeiten.

Den folgenden Vertrag haben wir aus der Spezifikation für java.lang.Object kopiert:

� Wenn die Methode hashCode während der Ausführung einer Anwendung mehr als
ein Mal auf demselben Objekt aufgerufen wird, muss sie konsistent dieselbe ganze
Zahl zurückgeben, sofern keine in equals-Vergleichen auf dem Objekt verwendeten
Informationen geändert wurden. Diese ganze Zahl braucht zwischen mehreren
Ausführungen derselben Anwendung nicht konsistent zu bleiben.

� Wenn zwei Objekte laut der Methode equals(Object) gleich sind, dann muss ein
Aufruf der Methode hashCode auf beiden Objekten dasselbe ganzzahlige Ergebnis
erbringen.

50 3 Allen Objekten gemeinsame Methoden

� Es ist nicht erforderlich, dass ein Aufruf der Methode hashCode bei zwei Objekten,
die laut der Methode equals(Object) ungleich sind, auf jedem der Objekte ein ein-
deutiges ganzzahliges Ergebnis liefert. Allerdings sollte dem Programmierer
bewusst sein, dass eindeutige ganzzahlige Ergebnisse bei ungleichen Objekten die
Leistung von Hash-Tabellen verbessern können.

Die wesentliche Bedingung, die verletzt wird, wenn Sie hashCode nicht überschei-
ben, ist die zweite: Gleiche Objekte müssen gleiche Hash-Codes haben. Möglicher-
weise sind zwei eindeutige Instanzen laut der equals-Methode der Klasse logisch
gleich, aber für die Methode hashCode der Klasse Object sind sie dennoch nur zwei
Objekte, die nichts miteinander gemeinsam haben. Daher gibt die Methode hashCode
des Objekts nicht, wie der Vertrag es verlangt, zwei gleiche Zahlen, sondern zwei
scheinbar zufällig Zahlen zurück.

Betrachten Sie z.B. die folgende vereinfachte Klasse PhoneNumber, deren equals-Methode
wir nach der Anleitung im Thema 7 konstruiert haben:

public final class PhoneNumber {
 private final short areaCode;
 private final short exchange;
 private final short extension;

 public PhoneNumber(int areaCode, int exchange,
 int extension) {
 rangeCheck(areaCode, 999, "area code");
 rangeCheck(exchange, 999, "exchange");
 rangeCheck(extension, 9999, "extension");
 this.areaCode = (short) areaCode;
 this.exchange = (short) exchange;
 this.extension = (short) extension;
 }

 private static void rangeCheck(int arg, int max,
 String name) {
 if (arg < 0 || arg > max)
 throw new IllegalArgumentException(name +": " + arg);
 }

 public boolean equals(Object o) {
 if (o == this)
 return true;
 if (!(o instanceof PhoneNumber))
 return false;
 PhoneNumber pn = (PhoneNumber)o;
 return pn.extension == extension &&
 pn.exchange == exchange &&
 pn.areaCode == areaCode;
 }

Thema 8: Überschreiben Sie hashCode immer, wenn Sie equals überschreiben 51

 // Keine hashCode-Methode!

 ... // Rest wird ausgelassen
}

Nehmen wir nun an, Sie versuchten diese Klasse mit einer HashMap zu verwenden:

 Map m = new HashMap();
 m.put(new PhoneNumber(408, 867, 5309), "Jenny");

Hier erwarten Sie vielleicht, dass m.get(new PhoneNumber(408, 867, 5309))den Wert
"Jenny" zurückgibt. Tatsächlich wird aber null zurückgegeben. Beachten Sie, dass wir
zwei Instanzen von PhoneNumber verwenden: eine für Einträge in die HashMap und eine
zweite, identische, für den (versuchten) Abruf. Dadurch, dass die Klasse PhoneNumber
die Methode hashCode nicht überschreibt, haben die beiden gleichen Instanzen unglei-
che Hash-Codes. Der Vertrag von hashCode wird also verletzt. So kommt es, dass die
Methode put die Telefonnummer in dem einen Hash-Bucket speichert, die Methode get
diese Nummer aber in einem anderen Hash-Bucket sucht. Um dieses Problem zu
lösen, brauchen Sie für die Klasse PhoneNumber nur die richtige hashCode-Methode bereit-
zustellen.

Wie sollte die Methode hashCode also aussehen? Es ist einfach, eine Methode zu schrei-
ben, die zwar zulässig, aber nicht gut ist. Die folgende ist z.B. zulässig, sollte aber kei-
nesfalls verwendet werden:

// Die schlechteste zulässige Hash-Funktion überhaupt -
// verwenden Sie sie nie!
public int hashCode() { return 42; }

Diese Methode ist zulässig, da sie gewährleistet, dass gleiche Objekte auch den glei-
chen Hash-Code haben. Sie ist miserabel, da sie gewährleistet, dass alle Objekte densel-
ben Hash-Code haben. Alle Objekte verwenden also denselben Hash-Bucket und aus
Hash-Tabellen werden verkettete Listen. Programme, die linearen Zeitaufwand benöti-
gen sollten, benötigen stattdessen einen quadratischen Zeitaufwand. Bei großen Hash-
Tabellen ist dies gleichbedeutend mit dem Unterschied zwischen Funktionieren und
Nichtfunktionieren.

Eine gute Hash-Funktion bringt für ungleiche Objekte normalerweise ungleiche Hash-
Codes hervor. Dies ist genau das, was die dritte Bedingung des Vertrags von hashCode
bedeutet. Im Idealfall sollte eine Hash-Funktion eine vernünftige Sammlung unglei-
cher Instanzen gleichmäßig über alle möglichen Hash-Werte verteilen. Es kann extrem
schwierig sein, dieses Ideal zu erreichen. Glücklicherweise ist eine recht gute Annähe-
rung nicht allzu schwer zu erzielen. Im Folgenden zeigen wir Ihnen eine einfache
Anleitung:

1. Speichern Sie einige konstante Nicht-Null-Werte, z.B. 17, in die int-Variable result.

52 3 Allen Objekten gemeinsame Methoden

2. Gehen Sie bei jedem bedeutungstragenden Feld f in Ihrem Objekt (d.h. bei jedem
Feld, das von der equals-Methode berücksichtigt wird) folgendermaßen vor:

a. Berechnen Sie für das Feld den int-Hashcode c:

i. Wenn das Feld ein boolean ist, berechnen Sie (f ? 0 : 1).

ii. Wenn das Feld ein byte, char, short oder int ist, berechnen Sie (int)f.

iii. Wenn das Feld ein long ist, berechnen Sie (int)(f ^ (f >>> 32)).

iv. Wenn das Feld ein float ist, berechnen Sie Float.floatToIntBits(f).

v. Wenn das Feld ein double ist, berechnen Sie Double.doubleToLongBits(f) und
stellen Sie den dadurch erhaltenen long-Wert wie im Schritt 2.a.iii dar.

vi. Wenn das Feld eine Objektreferenz ist und die Methode equals dieser
Klasse das Feld durch einen rekursiven Aufruf von equals vergleicht, dann
rufen Sie hashCode auf diesem Feld rekursiv auf. Wenn ein komplexerer Ver-
gleich erforderlich ist, berechnen Sie eine »kanonische Darstellung« für
dieses Feld und rufen hashCode auf der kanonischen Darstellung auf. Wenn
der Wert des Feldes null ist, geben Sie 0 (oder eine andere Konstante, aber 0
ist der gängige Wert) zurück.

vii. Wenn das Feld ein Array ist, behandeln Sie es so, als sei jedes Element ein
separates Feld. Berechnen Sie also für jedes bedeutungstragende Element
einen Hash-Code, indem Sie diese Regeln rekursiv anwenden, und kom-
binieren Sie diese Werte, wie es im Schritt 2.b beschrieben wird.

b. Kombinieren Sie den in Schritt a berechneten Hash-Code c folgendermaßen in
result:

 result = 37*result + c;

3. Geben Sie result zurück.

4. Wenn Sie die Methode hashCode geschrieben haben, fragen Sie sich selbst, ob gleiche
Instanzen auch gleiche Hash-Codes haben. Ist dies nicht der Fall, so finden Sie den
Grund heraus und beheben Sie das Problem.

Es ist möglich, redundante Felder aus der Berechnung des Hash-Codes auszuschließen.
Anders ausgedrückt: Es ist möglich, alle Felder auszuschließen, deren Wert aus Fel-
dern berechnet werden kann, die in die Berechnung aufgenommen wurden. Sie müs-
sen unbedingt alle Felder ausschließen, die nicht in Gleichheitsvergleichen verwendet
werden. Wenn Sie diese Felder nicht ausschließen, verletzen Sie möglicherweise die
zweite Bedingung des Vertrages von hashCode.

Da im Schritt 1 ein Anfangswert verwendet wird, der nicht 0 ist, beeinflussen Anfangs-
felder, deren im zweiten Schritt berechneter Hash-Wert 0 ist, den Hash-Wert. Würden
Sie im ersten Schritt als Anfangswert 0 verwenden, dann hätten solche Anfangsfelder

Thema 8: Überschreiben Sie hashCode immer, wenn Sie equals überschreiben 53

keinerlei Auswirkung auf den Hash-Wert, wodurch die Anzahl der Kollisionen zuneh-
men könnte. Den Wert 17 haben wir willkürlich gewählt.

Auf Grund der Multiplikation im Schritt 2.b ist der Hash-Wert von der Reihenfolge der
Felder abhängig. Dadurch erhalten Sie eine wesentlich bessere Hash-Funktion, falls die
Klasse mehrere ähnliche Felder enthält. Wenn Sie die Multiplikation z.B. aus einer nach
unserer Anleitung erstellten String-Hash-Funktion weglassen, haben alle Anagramme
identische Hash-Codes. Den Multiplikator 37 haben wir gewählt, da dies eine unge-
rade Primzahl ist. Wäre der Multiplikator gerade und die Multiplikation flösse über,
dann gingen Informationen verloren, weil die Multiplikation mit 2 mit der Verschie-
bung gleichbedeutend ist. Die Vorteile der Verwendung von Primzahlen sind weniger
klar. Es ist einfach üblich, für diesen Zweck Primzahlen zu verwenden.

Wenden wir diese Anleitung nun also auf die Klasse PhoneNumber an. Es gibt drei bedeu-
tungstragende Felder, die alle den Typ short haben. Eine unkomplizierte Anwendung
der Anleitung ergibt die folgende Hash-Funktion:

 public int hashCode() {
 int result = 17;
 result = 37*result + areaCode;
 result = 37*result + exchange;
 result = 37*result + extension;
 return result;
 }

Da diese Methode das Ergebnis einer einfachen, deterministischen Berechnung
zurückgibt, bei der nur die drei bedeutungstragenden Felder in einer Instanz von
PhoneNumber eingegeben werden, sollte klar sein, dass gleiche Instanzen von PhoneNumber
auch gleiche Hash-Codes haben. Diese Methode ist eine durchaus vernünftige Imple-
mentierung von hashCode für PhoneNumber und steht denen in Javas Plattformbiblio-
theken der Version 1.4 in nichts nach. Sie ist einfach, relativ schnell und verteilt die
ungleichen Telefonnummern gut auf die einzelnen Hash-Buckets.

Falls eine Klasse unveränderlich und der Aufwand für die Berechnung des Hash-
Codes erheblich ist, sollten Sie den Hash-Code eventuell im Objekt zwischenspeichern,
statt ihn jedes Mal, wenn er angefordert wird, neu zu berechnen. Wenn Sie erwarten,
dass die meisten Objekte dieses Typs als Hash-Keys verwendet werden, dann sollten
Sie den Hash-Code dann berechnen, wenn die Instanz erzeugt wird. Ansonsten kön-
nen Sie den Hash-Code auch faul initialisieren, wenn hashCode zum ersten Mal aufge-
rufen wird (Thema 48). Möglicherweise verdient unsere Klasse PhoneNumber diese
Behandlung nicht, aber wir zeigen Ihnen dennoch, wie Sie dies machen:

// faul initialisierte, gecachte hashCode-Methode
private volatile int hashCode = 0; // (Siehe Thema 48)

public int hashCode() {

54 3 Allen Objekten gemeinsame Methoden

 if (hashCode == 0) {
 int result = 17;
 result = 37*result + areaCode;
 result = 37*result + exchange;
 result = 37*result + extension;
 hashCode = result;
 }
 return hashCode;
}

Die Anleitung in diesem Thema ergibt zwar einigermaßen gute Hash-Funktionen, aber
keine perfekten. Auch Javas Plattformbibliotheken der Version 1.4 enthalten keine der-
artigen Hash-Funktionen. Das Schreiben solcher Hash-Funktionen ist ein Thema für
aktive Forschungsarbeit und wird am besten Mathematikern und Informatikern über-
lassen. Vielleicht wird eine zukünftige Version der Java-Plattform perfekte Hash-
Funktionen für ihre Klassen und Dienstmethoden bereitstellen, damit auch ein
Durchschnittsprogrammierer derartige Hash-Funktionen konstruieren kann. Bis dahin
sollten die in diesem Thema beschriebenen Verfahren für die meisten Anwendungen
ausreichen.

Lassen Sie sich nicht dazu hinreißen, bedeutungstragende Teile eines Objekts aus
der Berechnung des Hash-Codes auszuschließen, um die Leistung zu verbessern.
Dadurch erhalten Sie eine Hash-Funktion, die möglicherweise schneller läuft, deren
Qualität aber so weit absinkt, dass Hash-Tabellen auf Grund ihrer Langsamkeit nicht
mehr verwendbar sind. Insbesondere die Hash-Funktion kann in der Praxis mit einer
großen Sammlung von Instanzen konfrontiert sein, die sich in den Bereichen, die Sie
ignorieren, erheblich unterscheiden. Wenn dies geschieht, ordnet die Hash-Funktion
alle Instanzen einigen wenigen Hash-Codes zu und der Zeitaufwand für auf Hashes
basierende Sammlungen potenziert sich. Dieses Problem besteht nicht nur in der Theo-
rie. Die bis zur Version 1.2 in allen Java-Plattformversionen implementierte Hash-
Funktion String hat höchstens sechzehn Zeichen geprüft, die vom ersten Zeichen ab
gleichmäßig über den String verteilt waren. Bei großen Sammlungen hierarchischer
Namen (z.B. URLs) hat diese Hash-Funktion genau das gerade beschriebene fehler-
hafte Verhalten an den Tag gelegt.

Viele Klassen in Javas Plattformbibliotheken wie z.B. String, Integer und Date geben
den genauen Wert, den ihre hashCode-Methode zurückgibt, als Funktion des Instanz-
wertes an. In der Regel ist dies keine gute Idee, da es Ihre Möglichkeiten, die Hash-
Funktion in späteren Versionen zu verbessern, erheblich einschränkt. Wenn Sie die Ein-
zelheiten einer Hash-Funktion nicht angeben und dann einen Fehler finden, können
Sie diesen Fehler in der nächsten Version der Hash-Funktion beheben, ohne fürchten
zu müssen, dass sie vielleicht nicht mehr mit den Clients kompatibel ist, die von den
genauen von der Hash-Funktion zurückgegebenen Werten abhängen.

Thema 9: Überschreiben Sie toString immer 55

3.3 Thema 9: Überschreiben Sie toString immer

java.lang.Object stellt zwar eine Implementierung der Methode toString bereit, gibt
aber einen String zurück, der meist nicht den Erwartungen der Benutzer Ihrer Klasse
entspricht. Er besteht aus einem Klassennamen gefolgt vom »at« -Zeichen (@) und der
Hexadezimaldarstellung des Hash-Codes ohne Vorzeichen: »PhoneNumber@163b91« . Der
allgemeine Vertrag von toString besagt, dass der zurückgegebene String »eine knappe,
aber aussagekräftige und für Menschen leicht lesbare Darstellung« sein soll. Man
könnte zwar argumentieren, dass der String »PhoneNumber@163b91« knapp und leicht les-
bar ist, aber im Vergleich zu »(408) 867-5309« sagt er sicher nicht sehr viel aus. Der Ver-
trag von toString enthält außerdem den Satz »Es wird empfohlen, dass alle
Unterklassen diese Methode überschreiben.« Ein wirklich guter Rat!

Eine gute String-Implementierung ist zwar weniger wichtig als die Einhaltung der Ver-
träge von equals und hashCode (Themen 7 und 8), aber indem Sie eine gute String-
Implementierung bereitstellen, erleichtern Sie die Verwendung Ihrer Klasse erheb-
lich. Die Methode toString wird automatisch aufgerufen, wenn Ihr Objekt an println,
an den String-Verkettungsoperator + oder (ab Version 1.4) an assert übergeben wird.
Wenn Sie eine gute toString-Methode bereitstellen, können Sie mit der folgenden
Codezeile ganz einfach eine sinnvolle Diagnosenachricht erstellen:

System.out.println("Failed to connect: " + phoneNumber);

Die Programmierer werden Diagnosemeldungen auf jeden Fall auf diese Art schrei-
ben, ob Sie toString nun überschreiben oder nicht. Aber Sie werden die Meldungen nur
lesen können, wenn Sie toString überschreiben. Die Vorteile einer guten toString-
Methode sind nicht auf Instanzen der Klasse beschränkt, sondern erstrecken sich auch
auf die Objekte, die Referenzen auf diese Instanzen enthalten, also insbesondere auf
Sammlungen. Welche Formulierung würden Sie lieber sehen, wenn Sie eine Zuord-
nung ausgeben: »{Jenny=PhoneNumber@163b91}« oder »{Jenny=(408) 867-5309}« ?

Wenn möglich, sollte die Methode toString alle im Objekt enthaltenen interessanten
Informationen zurückgeben, wie wir es gerade im Beispiel mit den Telefonnummern
gezeigt haben. Nicht möglich ist dies dann, wenn das Objekt zu groß ist oder einen
Zustand enthält, der der String-Darstellung nicht förderlich ist. In diesem Fall sollte
toString eine Zusammenfassung wie z.B. »Telefonbuch von Manhattan (1487536 Ein-
träge)« oder »Thread[main, 5, main]« zurückgeben. Im Idealfall sollte der String keiner
Erklärung bedürfen. (Das Thread-Beispiel besteht diesen Test nicht.)

Eine wichtige Entscheidung, die Sie bei der Implementierung der Methode toString
treffen müssen, ist die, ob Sie das Format des Ergebniswerts in der Dokumentation
angeben möchten. Wir empfehlen Ihnen, diese Angabe bei Wertklassen wie z.B. Telefon-
nummern oder Matrizen zu machen. Die Angabe des Formats hat den Vorteil, dass sie
eine eindeutige und für Menschen lesbare Standarddarstellung des Objekts liefert.

56 3 Allen Objekten gemeinsame Methoden

Diese Darstellung kann für die Ein- und Ausgabe und in persistenten, für Menschen
lesbaren Datenobjekten wie z.B. XML-Dokumenten verwendet werden. Wenn Sie das
Format angeben, sollten Sie in der Regel auch einen passenden String-Konstruktor
(oder eine statische Factory; vgl. Thema 1) angeben, damit die Programmierer leicht
zwischen dem Objekt und seiner String-Darstellung hin- und herübersetzen können.
Dieses Verfahren verwenden viele Wertklassen in Javas Plattformbibliotheken, u.a.
BigInteger, BigDecimal und die meisten einfachen Hüllenklassen.

Andererseits hat die Angabe des Formats für den Ergebniswert von toString den
Nachteil, dass Sie bei dem einmal angegebenen Format bleiben müssen, sofern Ihre
Klasse stark genutzt wird. Die Programmierer schreiben Code, um die Darstellung zu
parsen, zu generieren und in persistente Daten einzubetten. Wenn Sie die Darstellung
in einer späteren Version ändern, zerstören Sie den Code und die Daten dieser Pro-
grammierer, wodurch Sie sich nicht gerade beliebt machen. Wenn Sie kein Format
angeben, sichern Sie sich die erforderliche Flexibilität, um in einer späteren Version
Informationen hinzuzufügen oder das Format zu verbessern.

Unabhängig davon, ob Sie das Format angeben, sollten Sie Ihre Absichten sorgfäl-
tig dokumentieren. Wenn Sie das Format angeben, sollten Sie dies sehr präzise
machen. Der folgende Code zeigt die Methode toString für die Klasse PhoneNumber aus
dem Thema 8.

/**
 * Gibt die String-Darstellung dieser Telefonnummer zurück.
 * Der String besteht aus vierzehn Zeichen mit dem Format
 * "(XXX) YYY-ZZZZ", wobei XXX die Ortsnetzkennzahl, YYY die
 * Vermittlungsstelle und ZZZZ die Erweiterung ist. (Jeder
 * Großbuchstabe steht für eine Dezimalziffer.)
 *
 * Wenn einer der drei Teile dieser Telefonnumer zu klein ist,
 * um sein Feld zu füllen, dann wird das Feld mit führenden Nullen
 * gefüllt. Wenn der Wert der Erweiterung z.B. 123 ist, dann lauten
 * die letzten vier Zeichen der String-Darstellung "0123".
 *
 * Beachten Sie, dass zwischen der schließenden Klammer der
 * Ortskennzahl und der ersten Ziffer der Vermittlung eine einzelne
 * Leerstelle eingefügt wird.
 */
public String toString() {
 return "(" + toPaddedString(areaCode, 3) + ") " +
 toPaddedString(exchange, 3) + "-" +
 toPaddedString(extension, 4);
}

/**
 * Übersetzt ein int in einen string der angegebenen Länge, mit
 * führenden Nullen als Auspolsterung. Nimmt an, dass i >= 0,
 * 1 <= length <= 10, and Integer.toString(i) <= length.

Thema 10: Vorsicht beim Überschreiben von clone 57

 */
private static String toPaddedString(int i, int length) {
 String s = Integer.toString(i);
 return ZEROS[length - s.length()] + s;
}

private static String[] ZEROS =
 {"", "0", "00", "000", "0000", "00000",
 "000000", "0000000", "00000000", "000000000"};

Wenn Sie kein Format angeben möchten, sollte der Dokumentationskommentar unge-
fähr folgendermaßen aussehen:

/**
 * Gibt eine kurze Beschreibung des Verfahrens zurück. Die genauen
 * Einzelheiten der Darstellung sind nicht angegeben und können
 * geändert werden, aber die folgende Darstellung ist gängig:
 *
 * "[Potion #9: type=love, smell=turpentine, look=india ink]"
 */
public String toString() { ... }

Wenn ein Programmierer diesen Kommentar liest und trotzdem Code oder persistente
Daten produziert, die von Einzelheiten des Formats abhängen, ist er für Schäden in
Folge von Änderungen des Formats selbst verantwortlich.

Unabhängig davon, ob Sie das Format angeben, ist es immer sinnvoll, den Pro-
grammzugriff auf alle Informationen zu ermöglichen, die im von toString zurückge-
gebenen Wert enthalten sind. So sollte die Klasse PhoneNumber zB. den Zugriff auf die
Ortsnetzkennzahl, die Vermittlungsstelle und die Erweiterung ermöglichen. Wenn Sie
dies nicht machen, zwingen Sie die Programmierer, die diese Informationen benötigen,
den String zu parsen. Dieser Prozess verringert nicht nur die Leistung und lädt den
Programmierern unnötige Arbeit auf, sondern ist auch fehleranfällig und lässt Systeme
bei Änderungen des Formats abstürzen. Wenn Sie keine Zugriffsmöglichkeit bieten,
machen Sie aus dem String-Format ein De-Facto-API, auch wenn Sie angegeben haben,
dass sich das Format ändern kann.

3.4 Thema 10: Vorsicht beim Überschreiben von clone

Das Interface Cloneable war als Mixin-Interface (Thema 16) gedacht, mit dem Objekte
bekannt geben können, dass Sie das Klonen zulassen. Leider wird es dieser Intention
nicht gerecht. Sein erster Mangel besteht darin, dass es keine clone-Methode hat und
die clone-Methode der Klasse Object geschützt ist. Die einzige Möglichkeit, die
Methode clone auf einem Objekt aufzurufen, das einfach nur Cloneable implementiert,
ist die Reflection (Thema 35). Selbst ein reflexiver Aufruf ist nicht unbedingt erfolgreich,
da es keine Garantie dafür gibt, dass das Objekt eine clone-Methode hat, auf die man

58 3 Allen Objekten gemeinsame Methoden

zugreifen kann. Trotz dieses und anderer Mängel wird dieses Interface doch so häufig
verwendet, dass es sich lohnt, es zu verstehen. In diesem Thema erfahren Sie, wie Sie
eine clone-Methode mit gutem Verhalten implementieren, wann dies angemessen ist
und welche Alternativen es gibt.

Was macht Cloneable also wirklich, wenn es keine Methoden enthält? Es bestimmt das
Verhalten von Objects geschützter clone-Implementierung: Wenn eine Klasse Coneable
implementiert, dann gibt die clone-Methode von Object eine Feld-für-Feld-Kopie des
Objekts zurück. Ansonsten löst sie eine CloneNotSupportedException aus. Dies ist eine für
Interfaces höchst untypische Verwendung, die nicht emuliert werden sollte. Wenn Sie
ein Interface implementieren, sagen Sie dadurch normalerweise etwas darüber aus,
was eine Klasse für ihre Clients tun kann. Bei Cloneable hingegen ändern Sie dadurch
das Verhalten einer geschützten Methode in einer Oberklasse.

Damit die Implementierung des Interface Cloneable sich auf eine Klasse auswirkt, müs-
sen die Klasse und alle ihre Oberklassen ein relativ komplexes, nicht erzwingbares und
größtenteils nicht dokumentiertes Protokoll einhalten. Dadurch ergibt sich ein außer-
sprachlicher Mechanismus: Dieser erzeugt ein Objekt, ohne einen Konstruktor aufzu-
rufen.

Der allgemeine Vertrag der Methode clone ist dürftig. Wir haben ihn aus der Spezifika-
tion zu java.lang.Object kopiert:

Erzeugt eine Kopie dieses Objekts und gibt sie zurück. Die genaue Bedeutung des
Wortes »Kopie« kann von der Klasse des Objekts abhängen. Allgemein hat der
Ausdruck

 x.clone() != x

für jedes Objekt x den Wert true und der folgende Ausdruck

 x.clone().getClass() == x.getClass()

ist true. Dies sind jedoch keine absoluten Anforderungen.

 x.clone().equals(x)

ist normalerweise zwar true, aber dies ist nicht absolut erforderlich. Das Kopieren
eines Objekts erfordert normalerweise die Erzeugung einer neuen Instanz der
Klasse dieses Objekts, kann aber auch das Kopieren interner Datenstrukturen erfor-
dern. Es werden keine Konstruktoren aufgerufen.

Bei diesem Vertrag gibt es mehrere Probleme. Die Bedingung, dass keine Konstrukto-
ren aufgerufen werden, ist zu stark. Eine clone-Methode mit gutem Verhalten kann
Konstruktoren aufrufen, um intern in dem gerade erstellten clone Objekte zu erzeugen.
Wenn die Klasse final ist, kann clone sogar ein von einem Konstruktor erzeugtes
Objekt zurückgeben.

Thema 10: Vorsicht beim Überschreiben von clone 59

Die Bedingung, dass x.clone().getClass() normalerweise mit x.getClass() identisch
sein soll, ist zu schwach. In der Praxis gehen die Programmierer davon aus, dass dann,
wenn sie eine Klasse erweitern und super.clone aus der Oberklasse aufrufen, das
zurückgegebene Objekt eine Instanz der Oberklasse sein wird. Die einzige Art, wie eine
Oberklasse diese Funktionalität bereitstellen kann, besteht darin, ein durch einen Auf-
ruf von super.clone erhaltenes Objekt zurückzugeben. Wenn eine clone-Methode ein
Objekt zurückgibt, das von einem Konstruktor erzeugt wurde, dann wird es die fal-
sche Klasse haben. Wenn Sie die clone-Methode in einer nicht-finalen Klasse über-
schreiben, sollten Sie daher ein Objekt zurückgeben, das Sie durch einen Aufruf
von super.clone erhalten haben. Wenn alle Oberklassen einer Klasse diese Regel befol-
gen, dann ruft ein Aufruf von super.clone letztlich die clone-Methode von Object auf
und erzeugt eine Instanz der richtigen Klasse. Dieses Verfahren hat gewisse Ähnlich-
keit mit der automatischen Konstruktorverkettung, wird jedoch nicht erzwungen.

In der Version 1.3 formuliert das Interface Cloneable nicht ausdrücklich, welche Verant-
wortung eine Klasse durch die Implementierung dieses Interface übernimmt. Die Spe-
zifikation beschränkt sich darauf, anzugeben, wie die Implementierung des Interface
das Verhalten der clone-Implementierung in Object beeinflusst. In der Praxis erwartet
man von einer Klasse, die Cloneable implementiert, dass sie eine ordentlich funktio-
nierende öffentliche clone-Methode bereitstellt. Normalerweise ist dies nur dann
möglich, wenn alle Oberklassen der Klasse eine öffentliche oder geschützte clone-
Implementierung mit gutem Verhalten bereitstellen.

Nehmen wir z.B. an, Sie wollten Cloneable in einer Klasse implementieren, deren Ober-
klassen clone-Methoden mit gutem Verhalten bereitstellen. Ob das Objekt, das Sie von
super.clone() erhalten, dem Ergebnis gleicht, das Sie am Ende zurückgeben werden,
hängt von der Natur der Klasse ab. Aus der Sicht der einzelnen Oberklassen ist dieses
Objekt ein voll funktionsfähiger Klon des ursprünglichen Objekts. Die in Ihrer Klasse
deklarierten Felder (falls es welche gibt) haben Werte, die mit denen des geklonten
Objekts identisch sind. Falls jedes Feld einen einfachen Wert oder eine Referenz auf ein
unveränderliches Objekt enthält, entspricht das zurückgegebene Objekt vielleicht
genau Ihren Bedürfnissen. In diesem Fall ist keine weitere Verarbeitung erforderlich.
Dies ist z.B. bei der Klasse PhoneNumber im Thema 8 der Fall. Hier brauchen Sie nur noch
eine öffentliche Zugriffsmöglichkeit auf die geschützte clone-Methode der Klasse
Object bereitzustellen:

public Object clone() {
 try {
 return super.clone();
 } catch(CloneNotSupportedException e) {
 throw new Error("Assertion failure"); // Nie möglich
 }
}

60 3 Allen Objekten gemeinsame Methoden

Wenn Ihr Objekt jedoch Felder enthält, die auf veränderliche Objekte referieren, kann
diese Implementierung der Methode clone fatale Folgen haben. Betrachten Sie z.B. die
Klasse Stack im Thema 5:

public class Stack {
 private Object[] elements;
 private int size = 0;

 public Stack(int initialCapacity) {
 this.elements = new Object[initialCapacity];
 }

 public void push(Object e) {
 ensureCapacity();
 elements[size++] = e;
 }

 public Object pop() {
 if (size == 0)
 throw new EmptyStackException();
 Object result = elements[--size];
 elements[size] = null; // eliminiere obsolete Referenz
 return result;
 }

 // Sichere Raum für mindestens ein weiteres Element.
 private void ensureCapacity() {
 if (elements.length == size) {
 Object oldElements[] = elements;
 elements = new Object[2 * elements.length + 1];
 System.arraycopy(oldElements, 0, elements, 0, size);
 }
 }
}

Angenommen, Sie möchten diese Klasse klonierbar machen. Wenn ihre clone-Methode
nur super.clone() zurückgibt, dann wird die resultierende Stack-Instanz zwar in
ihrem size-Feld den korrekten Wert aufweisen, doch ihr elements-Feld wird nach wie
vor auf dasselbe Array referieren wie die ursprüngliche Stack-Instanz. Eine Modifika-
tion des Originals wird die Invarianten des Klons zerstören und umgekehrt. Sie werden
rasch feststellen, dass Ihr Programm unsinnige Ergebnisse hervorbringt oder eine Array
IndexOutOfBoundsException auslöst.

Wenn Sie den einzigen Konstruktor der Stack-Klasse aufrufen, dann kann es nie zu die-
ser Situation kommen. Tatsächlich fungiert die clone-Methode als eine andere Art
Konstruktor: Sie müssen sicherstellen, dass sie das Originalobjekt nicht schädigt
und dass sie die Invarianten auf dem Klon korrekt einrichtet. Damit die clone-

Thema 10: Vorsicht beim Überschreiben von clone 61

Methode auf Stack richtig funktioniert, muss sie die Interna des Stacks kopieren. Dies
tun Sie am einfachsten, indem Sie clone rekursiv auf dem elements-Array aufrufen:

public Object clone() throws CloneNotSupportedException {
 Stack result = (Stack) super.clone();
 result.elements = (Object[]) elements.clone();
 return result;
}

Beachten Sie, dass diese Lösung nicht funktionieren würde, wenn das buckets-Feld
final wäre. Dann dürfte die clone-Methode dem Feld keinen neuen Wert zuweisen.
Dies ist ein Grundsatzproblem: Die clone-Architektur ist mit der normalen Benut-
zung von final-Feldern, die sich auf veränderliche Objekte beziehen, nicht verein-
bar. Davon ausgenommen sind Fälle, in denen veränderliche Objekte in sicherer Weise
von einem Objekt und seinem Klon gemeinsam genutzt werden können. Eventuell
müssen Sie von einigen Feldern die final-Modifikatoren entfernen, um eine Klasse klo-
nierbar zu machen.

Es ist nicht immer ausreichend, clone rekursiv aufzurufen. Nehmen wir z.B. an, Sie
schreiben eine clone-Methode für eine Hash-Tabelle, deren Interna in einem Array von
Buckets bestehen, wobei jeder Bucket den ersten Eintrag in einer verketteten Liste von
Schlüssel/Wert-Paaren referenziert oder – im Falle eines leeren Buckets – null ist. Aus
Leistungsgründen implementiert die Klasse eine eigene, leichtgewichtige einfach ver-
kettete Liste anstatt java.util.LinkedList intern zu verwenden:

public class HashTable implements Cloneable {
 private Entry[] buckets = ...;

 private static class Entry {
 Object key;
 Object value;
 Entry next;

 Entry(Object key, Object value, Entry next) {
 this.key = key;
 this.value = value;
 this.next = next;
 }
 }

 ... // Rest wird weggelassen
}

Angenommen, Sie klonen nur das Bucket-Array rekursiv, wie wir es auch mit dem
Stack taten:

// Kaputt – führt zu gemeinsamem internen Zustand!
public Object clone() throws CloneNotSupportedException {
 HashTable result = (HashTable) super.clone();

62 3 Allen Objekten gemeinsame Methoden

 result.buckets = (Entry[]) buckets.clone();
 return result;
}

Obwohl der Klon sein eigenes Bucket-Array hat, referenziert dieses Array dieselben
verketteten Listen wie das Original. Das kann leicht zu nicht-deterministischem Ver-
halten des Klons und seines Originals führen. Um dieses Problem zu beheben, müssen
Sie die verkettete Liste kopieren, die jeden Bucket einzeln enthält. Im Folgenden sehen
Sie ein gebräuchliches Verfahren:

public class HashTable implements Cloneable {
 private Entry[] buckets = ...;

 private static class Entry {
 Object key;
 Object value;
 Entry next;

 Entry(Object key, Object value, Entry next) {
 this.key = key;
 this.value = value;
 this.next = next;
 }

 // Kopiere rekursiv die verkettete Liste, die mit
 // diesem Entry anfängt
 Entry deepCopy() {
 return new Entry(key, value,
 next == null ? null : next.deepCopy());
 }
 }

 public Object clone() throws CloneNotSupportedException {
 HashTable result = (HashTable) super.clone();
 result.buckets = new Entry[buckets.length];
 for (int i = 0; i < buckets.length; i++)
 if (buckets[i] != null)
 result.buckets[i] = (Entry)
 buckets[i].deepCopy();

 return result;
 }
 ... // Rest wird weggelassen
}

Die private Klasse HashTable.Entry wurde so ergänzt, dass sie nunmehr auch eine
Methode für »tiefes Kopieren« unterstützt. Die clone-Methode auf HashTable weist ein
neues buckets-Array der richtigen Größe zu und durchläuft das ursprüngliche buckets-
Array, wobei sie von jedem nicht-leeren Bucket eine Tiefenkopie anfertigt. Die Tiefen-
kopiemethode auf Entry ruft sich selbst rekursiv auf, um die gesamte verkettete Liste

Thema 10: Vorsicht beim Überschreiben von clone 63

zu kopieren, die mit dem Eintrag beginnt. Diese Technik ist gut und schön und funk-
tioniert auch, wenn die Buckets nicht zu lang sind, aber sie ist kein gutes Verfahren
zum Klonen einer verketteten Liste, da sie für jedes Element der Liste einen Stack-
Frame konsumiert. Wenn die Liste lang ist, kann sie leicht einen Stack-Überlauf verur-
sachen. Damit es dazu nicht kommt, können Sie die Rekursion in deepCopy durch Itera-
tion ersetzen:

// Kopiere iterativ die verkettete Liste, die mit
// diesem Entry beginnt
Entry deepCopy() {
 Entry result = new Entry(key, value, next);

 for (Entry p = result; p.next != null; p = p.next)
 p.next = new Entry(p.next.key, p.next.value, p.next.next);

 return result;
}

Der letzte Ansatz zum Klonen komplexer Objekte ist Folgender: Sie rufen super.clone
auf, setzen alle Felder des resultierenden Objekts in ihren jungfräulichen Zustand und
rufen dann übergeordnete Methoden auf, um den Zustand des Objekts wiederherzu-
stellen. In unserem Hashtable-Beispiel würde das buckets-Feld mit einem neuen Bucket-
Array initialisiert und die (hier nicht gezeigte) Methode put(key, value) für jede
Schlüssel-Wert-Entsprechung in der zu klonenden Hash-Tabelle aufgerufen. Mit die-
sem Verfahren erhalten Sie eine einfache, recht elegante clone-Methode, die allerdings
nicht ganz so schnell ist wie die clone-Methode, die das Innenleben des Objekts und
seines Klons direkt manipuliert.

Wie ein Konstruktor, so sollte auch eine clone-Methode auf dem Klon, der gerade ange-
legt wird, keine nicht-finalen Methoden aufrufen (Thema 15). Wenn clone eine über-
schriebene Methode aufruft, dann wird diese ausgeführt, noch ehe die Unterklasse, in
der sie definiert ist, Gelegenheit hatte, ihren Zustand in dem Klon festzulegen. Das
würde wahrscheinlich den Klon und das Original inkonsistent machen. Daher sollte
die im vorigen Abschnitt beschriebene put(key,value)-Methode entweder final oder
privat gemacht werden. (Wenn sie privat ist, dann ist sie vermutlich die »Hilfs-
methode« zu einer nicht-finalen öffentlichen Methode.)

Die clone-Methode von Object ist so deklariert, dass sie eine CloneNotSupportedException
auslöst, aber überschreibende clone-Methoden haben eventuell diese Deklaration
nicht. Die clone-Methoden finaler Klassen sollten diese Deklaration weglassen, da
Methoden, die keine geprüften Exceptions auslösen, einfacher zu benutzen sind
(Thema 41). Wenn eine erweiterbare Klasse – vor allem eine, die für die Vererbung
geschaffen wurde (Thema 15) – die clone-Methode überschreibt, dann sollte die über-
schreibende clone-Methode die Deklaration der CloneNotSupportedException einschlie-

64 3 Allen Objekten gemeinsame Methoden

ßen. Dann können sich Unterklassen auf elegante Weise auch gegen die Klonierbarkeit
entscheiden, indem sie die folgende clone-Methode bereitstellen:

// Clone-Methode, mit der Instanzen garantiert
// nicht geklont werden können
public final Object clone() throws CloneNotSupportedException {
 throw new CloneNotSupportedException();
}

Die Befolgung dieses Ratschlags ist zwar nicht unabdingbar, da die clone-Methode
einer Unterklasse, die kein Klonen zulassen soll, immer noch eine Ausnahme wie die
UnsupportedOperationException auslösen kann, wenn die von ihr überschriebene clone-
Methode keine CloneNotSupportedException deklariert. In der Praxis gilt jedoch, dass
unter solchen Umständen die CloneNotSupportedException die einzig korrekte ist.

Rekapitulieren wir: Alle Klassen, die Cloneable implementieren, sollten clone mit einer
öffentlichen Methode überschreiben. Diese öffentliche Methode sollte zuerst
super.clone aufrufen und dann die Felder reparieren, die dies eventuell nötig haben.
Das bedeutet in aller Regel, dass veränderliche Objekte, die die interne »Tiefenstruk-
tur« des zu klonenden Objekts ausmachen, kopiert und die Referenzen auf diese
Objekte durch Referenzen auf die Kopien ersetzt werden. Sie können diese internen
Kopien zwar generell anlegen, indem Sie clone rekursiv aufrufen, aber dies ist nicht
immer das beste Verfahren. Wenn die Klasse nur primitive Felder oder Referenzen auf
unveränderliche Objekte enthält, dann brauchen wahrscheinlich überhaupt keine Fel-
der repariert zu werden. Doch auch von dieser Regel gibt es Ausnahmen. So müssen
Sie z.B. ein Feld, das eine Seriennummer oder eine andere eindeutige Identifikation
enthält, oder ein Feld, das den Erstellungszeitpunkt des Objekts repräsentiert, auch
dann reparieren, wenn es einen Grundtyp hat oder unveränderlich ist.

Muss es wirklich so kompliziert sein? Nur selten. Wenn Sie eine Klasse erweitern, die
Cloneable implementiert, haben Sie gar keine andere Wahl als eine clone-Methode mit
gutem Verhalten zu implementieren. Anderenfalls liefern Sie vielleicht besser ein
anderes Mittel zum Kopieren von Objekten oder verzichten einfach auf diese Fähig-
keit. Es hat z.B. kaum Sinn, wenn unveränderliche Klassen Objektkopien unterstützen,
da die Kopien buchstäblich nicht vom Original zu unterscheiden wären.

Eine schöne Sache zum Kopieren von Objekten ist ein Kopiekonstruktor. Dabei han-
delt es sich einfach um einen Konstruktor, der ein einziges Argument entgegennimmt,
dessen Typ die Klasse ist, die den Konstruktor enthält. Ein Beispiel:

public Yum(Yum yum);

Eine kleinere Abwandlung besteht darin, anstelle eines Konstruktors eine statische
Factory-Methode zur Verfügung zu stellen.:

public static Yum newInstance(Yum yum);

Thema 11: Implementieren Sie Comparable 65

Der Ansatz mit dem Kopiekonstruktor und seiner Variante einer statischen Factory
kann gegenüber Cloneable/clone viele Vorteile bieten: Er stützt sich auf keinen ris-
kanten Objekterzeugungsmechanismus außerhalb der Sprache, er erfordert keine Befol-
gung schlecht dokumentierter Konventionen, die sich nicht erzwingen lassen, er
widerspricht nicht der eigentlichen Verwendung finaler Felder, er verlangt vom Client
nicht, eine überflüssige, geprüfte Ausnahme abzufangen und er stellt dem Client ein
statisch typgebundenes Objekt zur Verfügung. Es ist zwar unmöglich, einen Kopiekon-
struktor oder eine statische Factory in ein Interface zu packen, aber auch Cloneable funk-
tioniert nicht als Interface, weil es keine öffentliche clone-Methode hat. Daher büßen Sie
auch keine Inferface-Funktionalität ein, wenn Sie statt einer clone-Methode einen Kopie-
konstruktor verwenden.

Außerdem kann ein Kopiekonstruktor (oder eine statische Factory) ein Argument ent-
gegennehmen, deren Typ ein geeignetes, von der Klasse implementiertes Interface ist.
So stellen z.B. alle Allzweck-Implementierungen von Sammlungsklassen per Konven-
tion einen Kopiekonstruktor zur Verfügung, dessen Argument den Typ Collection oder
Map hat. Kopiekonstruktoren von Interfaces gestatten es dem Client, die Implementie-
rung der Kopie zu wählen, anstatt ihm die Implementierung des Originals aufzuzwin-
gen. Angenommen, Sie haben z.B. LinkedList l und möchten sie als ArrayList kopieren.
Die clone-Methode bietet diese Funktionalität nicht, aber mit einem Kopiekonstruktor
geht es ganz leicht: new ArrayList(l).

In Anbetracht all der Probleme, die Cloneable aufwirft, kann man guten Gewissens
sagen, dass andere Interfaces diese Klasse nicht erweitern sollten, und dass Klassen,
die für die Vererbung entworfen werden (Thema 15), sie nicht implementieren sollten.
Wegen ihrer vielen Schwächen wird die clone-Methode von manchen Profi-Program-
mierern nie überschrieben oder aufgerufen, es sei denn, um Arrays billig zu kopieren.
Wenn Sie auf einer für die Vererbung entworfenen Klasse nicht wenigstens eine
geschützte clone-Methode mit gutem Verhalten liefern, dann können Unterklassen die-
ser Klasse Cloneable nicht implementieren.

3.5 Thema 11: Implementieren Sie Comparable

Im Gegensatz zu den anderen in diesem Kapitel besprochenen Methoden ist compareTo
nicht in Object deklariert, sondern es ist die einzige Methode des Interface
java.lang.Comparable. Ihrem Wesen nach ähnelt sie der equals-Methode aus Object, doch
sie gestattet neben einfachen Gleichheitsvergleichen auch Vergleiche der Reihenfolge.
Eine Klasse, die Comparable implementiert, zeigt dadurch, dass ihre Instanzen eine
natürliche Reihenfolge haben. Ein Array von Objekten, die Comparable implementieren, ist
ganz einfach zu sortieren:

Arrays.sort(a);

66 3 Allen Objekten gemeinsame Methoden

Ebenso einfach ist es, das Array zu durchsuchen, Extremwerte zu berechnen und auto-
matisch sortierte Sammlungen von Comparable-Objekten zu pflegen. So gibt z.B. das fol-
gende Programm, das darauf beruht, dass Comparable von String implementiert wird,
eine alphabetisierte Liste seiner Kommandozeilenargumente aus, aus der die Dupli-
kate getilgt sind:

public class WordList {
 public static void main(String[] args) {
 Set s = new TreeSet();
 s.addAll(Arrays.asList(args));
 System.out.println(s);
 }
}

Indem Sie Comparable implementieren, ermöglichen Sie es Ihrer Klasse, mit all den vie-
len generischen Algorithmen und Sammlungsklassenimplementierungen zusammen-
zuarbeiten, die sich auf dieses Interface stützen. Mit minimalem Aufwand erreichen
Sie einen gewaltigen Machtzuwachs. Buchstäblich alle Wertklassen der Java-Plattform-
bibliotheken implementieren Comparable. Wenn Sie eine Wertklasse mit einer offensicht-
lichen natürlichen Ordnung schreiben – z.B. mit alphabetischer Reihenfolge oder
nummerischer oder chronologischer Ordnung –, dann müssen Sie dieses Interface
unbedingt implementieren. Wie sie dabei vorgehen, erfahren Sie in diesem Thema.

Der allgemeine Vertrag für die Methode compareTo ähnelt dem Wesen nach dem der
equals-Methode. Ich habe ihn aus der Spezifikation von Comparable für Sie kopiert:

Vergleicht dieses Objekt hinsichtlich der Reihenfolge mit dem angegebenen Objekt. Gibt eine
negative ganze Zahl, null oder eine positive ganze Zahl zurück, je nachdem, ob dieses Objekt
kleiner, gleich oder größer als das angegebene Objekt ist. Löst ClassCastException aus, wenn
der Typ des angegebenen Objekts einen Vergleich mit diesem Objekt unmöglich macht.

In der nachfolgenden Beschreibung meint die Notation sgn(Ausdruck) die mathematische
signum-Funktion, die definitionsgemäß – 1, 0 oder 1 zurückgibt, je nachdem, ob der Wert
von Ausdruck negativ, null oder positiv ist.

Der Implementor muss für alle x und y gewährleisten, dass sgn(x.compareTo(y)) ==
-sgn(y.compareTo(x)). (Das impliziert, dass x.compareTo(y) eine Ausnahme auslö-
sen muss, genau dann wenn y.compareTo(x) eine Ausnahme auslöst.)

– Der Implementor muss außerdem gewährleisten, dass die Relation transitiv ist: (x.com-
pareTo(y)>0 && y.compareTo(z)>0) impliziert x.compareTo(z)>0.

– Außerdem muss der Implementor gewährleisten, dass für alle z gilt: x.compareTo(y) ==
0 impliziert, dass sgn(x.compareTo(z)) == sgn(y.compareTo(z)).

– Es ist unbedingt ratsam, aber nicht strikt erforderlich, dass (x.compareTo(y)==0) ==

(x.equals(y)). Jede Klasse, die das Comparable-Interface implementiert und diese Bedin-

Thema 11: Implementieren Sie Comparable 67

gung verletzt, muss dies klar anzeigen. Wir empfehlen die Formulierung: »Hinweis: Die
natürliche Ordnung dieser Klasse ist inkonsistent mit equals.«

Lassen Sie sich nicht von der mathematischen Natur dieses Vertrags ablenken. Wie der
Vertrag von equals (Thema 7) ist auch der compareTo-Vertrag weniger kompliziert als er
aussieht. Jede vernünftige Ordnungsbeziehung innerhalb einer Klasse genügt dem
compareTo-Vertrag. Im Gegensatz zu equals muss compareTo nicht klassenübergreifend
funktionieren: Wenn sich zwei zu vergleichende Objektreferenzen auf Objekte unter-
schiedlicher Klassen beziehen, darf compareTo auch eine ClassCastException auslösen.
Und genau das sollte compareTo unter solchen Umständen auch tun. Obwohl der Ver-
trag Vergleiche zwischen Klassen nicht von vornherein ausschließt, gibt es auch im
Release 1.4 keine Klassen in den Java-Plattformbibliotheken, die solche Vergleiche
unterstützen.

Wie eine Klasse, die den hashCode-Vertrag verletzt, andere, vom Hashing abhängige
Klassen zerstören kann, so kann auch eine Klasse, die den compareTo-Vertrag verletzt,
andere Klassen zerstören, die von Vergleichen abhängen. Dazu gehören auch sortierte
Sammlungen, TreeSet und TreeMap sowie die Hilfsklassen Collections und Arrays, die
Such- und Sortieralgorithmen enthalten.

Gehen wir einmal den compareTo-Vertrag durch. Als Erstes besagt er: Wenn Sie die Ver-
gleichsrichtung zwischen zwei Objektreferenzen umkehren, dann geschieht das, was
man erwarten würde: Wenn das erste Objekt kleiner als das zweite ist, dann muss das
zweite größer als das erste sein, wenn das erste Objekt gleich dem zweiten ist, dann
muss auch das zweite gleich dem ersten sein, und wenn das erste Objekt größer als das
zweite ist, dann muss das zweite kleiner als das erste sein. Als Zweites besagt der Ver-
trag: Ist ein Objekt größer als das zweite und das zweite größer als das dritte, dann
muss das erste auch größer als das dritte sein. Die letzte Aussage des Vertrags ist: Alle
Objekte, die gleich sind, müssen auch dann gleich sein, wenn man sie mit einem ande-
ren Objekt dieser Menge vergleicht.

Aus diesen drei Vorschriften ergibt sich, dass der Gleichheitstest einer compareTo-
Methode denselben Beschränkungen unterliegt, die auch der equals-Vertrag vorsieht:
Reflexivität, Symmetrie, Transitivität und Nicht-Null-Vorschrift. Also gibt es auch die-
selbe Falle: Es gibt einfach keine Möglichkeit, eine instanziierbare Klasse um einen
neuen Aspekt zu erweitern und dabei den compareTo-Vertrag beizubehalten (Thema 7).
Es gibt jedoch auch denselben Workaround: Wenn Sie einer Klasse, die Comparable
implementiert, einen wichtigen Aspekt hinzufügen möchten, dann erweitern Sie sie
nicht, sondern schreiben eine separate Klasse, die ein Feld der ersten Klasse enthält.
Dann stellen Sie eine »View« -Methode zur Verfügung, die dieses Feld zurückliefert.
Nun können Sie auf der zweiten Klasse jede beliebige compareTo-Methode implementie-
ren. Indessen kann der Client der Klasse, wenn nötig, die zweite Klasse als eine Instanz
der ersten betrachten.

68 3 Allen Objekten gemeinsame Methoden

Der letzte Absatz des compareTo-Vertrags, der eher einen dringenden Rat als eine Vor-
schrift darstellt, besagt einfach, dass der von compareTo geforderte Gleichheitstest gene-
rell dieselben Ergebnisse zurückgeben sollte wie der der equals-Methode. Wenn diese
Vorschrift befolgt wird, so sagt man: Die von compareTo geforderte Ordnung ist konsis-
tent mit equals. Wird die Vorschrift nicht befolgt, so ist die Ordnung inkonsistent mit
equals. Eine Klasse, deren compareTo-Methode eine mit equals inkonsistente Ordnung
verlangt, funktioniert zwar dennoch, aber sortierte Sammlungen, die Elemente der
Klasse enthalten, gehorchen möglicherweise nicht dem allgemeinen Vertrag des pas-
senden Sammlungs-Interfaces (Collection, Set oder Map). Das liegt daran, dass die allge-
meinen Verträge für diese Interfaces auf der Grundlage der equals-Methode definiert
sind, sortierte Sammlungen jedoch nicht den Gleichheitstest von equals, sondern den
von compareTo anwenden. Das ist zwar noch keine Katastrophe, aber Sie sollten sich
dennoch davor hüten.

Betrachten Sie z.B. die Klasse Float, deren compareTo-Methode inkonsistent mit equals
ist. Wenn Sie ein HashSet erzeugen und Float(-0.0f) sowie Float(0.0f) hinzufügen,
dann enthält die Menge zwei Elemente, da die beiden hinzugekommenen Instanzen
von Float bei einem Vergleich mit der equals-Methode ungleich sind. Wenn Sie aber
dasselbe mit einem TreeSet anstelle eines HashSet machen, dann wird die Menge nur
ein Element enthalten, da die beiden Float-Instanzen bei einem Vergleich mit der com-
pareTo-Methode gleich sind. (Einzelheiten darüber finden Sie in der Dokumentation zu
Float.)

Das Schreiben einer compareTo-Methode ähnelt dem Schreiben einer equals-Methode,
aber es gibt einige wichtige Unterschiede. Sie brauchen den Typ des Arguments vor
der Typumwandlung nicht zu prüfen. Hat das Argument nicht den passenden Typ,
dann müsste die compareTo-Methode eine ClassCastException auslösen. Ist das Argument
null, dann müsste sie eine NullPointerException auslösen. Dies ist genau dasselbe Ver-
halten, das Sie feststellen, wenn Sie nur das Argument in den passenden Typ umwan-
deln und dann auf seine Attribute zugreifen.

Die Vergleiche zwischen den Feldern sind eher Reihenfolgenvergleiche als Gleichheits-
vergleiche. Vergleichen Sie Objektreferenzfelder, indem Sie die compareTo-Methode
rekursiv aufrufen. Wenn ein Feld Comparable nicht implementiert oder Sie eine nicht-
standardmäßige Reihenfolge möchten, dann können Sie stattdessen einen expliziten
Comparator einsetzen. Entweder schreiben Sie einen eigenen oder Sie verwenden einen
bereits vorhandenen wie z.B. den der folgenden compareTo-Methode der Klasse Case
InsensitiveString aus Thema 7:

public int compareTo(Object o) {
 CaseInsensitiveString cis = (CaseInsensitiveString)o;
 return String.CASE_INSENSITIVE_ORDER.compare(s, cis.s);
}

Thema 11: Implementieren Sie Comparable 69

Vergleichen Sie primitive Felder mit den relationalen Operatoren < und > und Arrays,
indem Sie diese Richtlinien auf die einzelnen Elemente anwenden. Wenn eine Klasse
mehrere wichtige Felder hat, ist die Reihenfolge, in der Sie diese Felder vergleichen,
von Bedeutung. Sie müssen mit dem wichtigsten Feld beginnen und sich nach unten
vorarbeiten. Wenn ein Vergleich etwas anderes als null ergibt (null bedeutet Gleich-
heit), dann sind Sie fertig und geben einfach das Ergebnis zurück. Wenn die wichtigs-
ten Felder gleich sind, vergleichen Sie die zweitwichtigsten Felder usw. Sind alle
Felder gleich, so sind die Objekte gleich und Sie geben null zurück. Die folgende com-
pareTo-Methode aus der Klasse PhoneNumber aus Thema 8 demonstriert diese Technik:

public int compareTo(Object o) {
 PhoneNumber pn = (PhoneNumber)o;

 // Vergleiche Vorwahlen
 if (areaCode < pn.areaCode)
 return -1;
 if (areaCode > pn.areaCode)
 return 1;

 // Vorwahlen sind gleich,
 // vergleiche Hauptnummern
 if (exchange < pn.exchange)
 return -1;
 if (exchange > pn.exchange)
 return 1;

 // Vorwahlen und Hauptnummern sind gleich,
 // vergleiche Durchwahlen
 if (extension < pn.extension)
 return -1;
 if (extension > pn.extension)
 return 1;

 return 0; // Alle Felder sind gleich
}

Obwohl diese Methode gut arbeitet, lässt sie sich noch verbessern. Erinnern Sie sich,
dass der Vertrag für compareTo nicht die Größenordnung, sondern nur das Vorzeichen
des Rückgabewerts angibt. Diesen Umstand können Sie nutzen, um den Code ein-
facher und schneller zu machen:

public int compareTo(Object o) {
 PhoneNumber pn = (PhoneNumber)o;

 // Vergleiche Vorwahlen
 int areaCodeDiff = areaCode - pn.areaCode;
 if (areaCodeDiff != 0)
 return areaCodeDiff;

70 3 Allen Objekten gemeinsame Methoden

 // Vorwahlen sind gleich,
 // vergleiche Hauptnummern
 int exchangeDiff = exchange - pn.exchange;
 if (exchangeDiff != 0)
 return exchangeDiff;

 // Vorwahlen und Hauptnummern sind gleich,
 // vergleiche Durchwahlen
 return extension - pn.extension;
}

Dieser Trick funktioniert hier gut; er sollte aber nur mit extremer Vorsicht angewandt
werden. Tun Sie dies nur, wenn Sie ganz sicher sind, dass das betreffende Feld nicht
negativ sein kann oder – allgemeiner ausgedrückt – dass die Differenz zwischen dem
Höchst- und dem Mindestwert, den das Feld haben kann, kleiner oder gleich INTE-
GER.MAX_VALUE (231-1) ist. Der Trick ist nicht allgemeingültig, weil ein vorzeichenbehafte-
ter 32-Bit-Integer zu klein ist, um die Differenz zwischen zwei beliebigen 32-Bit-
Integern aufzunehmen. Wenn i ein großer positiver Integer und j ein großer negativer
Integer ist, dann führt (i-j) zu einem Überlauf und gibt einen negativen Wert zurück.
Dann funktioniert die resultierende compareTo-Methode nicht, gibt für manche Argu-
mente sinnlose Ergebnisse zurück und verletzt die ersten beiden Vorschriften des com-
pareTo-Vertrags. Dieses Problem existiert nicht nur in der Theorie; es hat schon echte
Systeme zum Absturz gebracht. Solche Fehler sind nur schwer zu beheben, da die
schadhafte compareTo-Methode mit vielen Eingabewerten korrekt arbeitet.

4 Klassen und Interfaces

Klassen und Interfaces sind das Herz der Programmiersprache Java: Sie sind ihre ele-
mentarsten Abstraktionseinheiten. Java hat viele mächtige Elemente, mit denen Sie
Klassen und Interfaces entwerfen können. Dieses Kapitel enthält Richtlinien, die Ihnen
helfen, diese Elemente bestmöglich zu nutzen, damit Ihre Klassen und Interfaces ver-
wendbar, stabil und flexibel werden.

4.1 Thema 12: Minimieren Sie die Zugreifbarkeit von Klassen
und Attributen

Der wichtigste Faktor, der ein gutes Modul von einem schlechten unterscheidet, ist das
Ausmaß, in dem das Modul seine internen Daten und Implementierungsdetails vor
anderen Modulen verbirgt. Ein gut entworfenes Modul verbirgt alle seine Implemen-
tierungsdetails und hat eine klare Trennung von API und Implementierung. Dann
kommunizieren Module nur über ihre APIs miteinander und kümmern sich nicht um
die Interna des jeweils anderen. Dieses Verbergen von Informationen, auch Kapselung
genannt, ist eine der Grundsäulen des Software-Designs [Parnas72].

Das Verbergen von Informationen ist aus vielen Gründen wichtig, die zumeist darauf
beruhen, dass dadurch die Module, die ein System bilden, voneinander abgekoppelt
werden. So können Sie sie einzeln entwickeln, testen, optimieren, einsetzen, verstehen
und ändern. Dies verkürzt die Entwicklungszeit, da die Module parallel entwickelt
werden können. Es erleichtert die Wartung, da Module schnell verstanden und
debuggt werden können, ohne andere Module in Mitleidenschaft zu ziehen. Zwar
führt das Verbergen von Informationen an und für sich noch nicht zu einer Leistungs-
verbesserung, aber es schafft eine Grundlage für wirkungsvolles Leistungs-Tuning.
Sobald ein System vollständig ist und ein Systemprofil gezeigt hat, welche Module
Leistungsprobleme verursachen (Thema 37), können Sie diese Module optimieren,
ohne die Korrektheit der anderen Module zu beeinträchtigen. Das Verbergen von
Informationen fördert auch die Wiederverwendung von Software, da die einzelnen
Module nicht voneinander abhängen und sich oft in anderen Zusammenhängen als
denen, in denen sie entwickelt wurden, als nützlich erweisen. Überdies mindert das

72 4 Klassen und Interfaces

Verbergen von Informationen die Risiken bei der Erstellung großer Systeme: Einzelne
Module können auch dann gut sein, wenn das System insgesamt noch nichts taugt.

Die Programmiersprache Java hat viele Funktionen, die beim Verbergen von Informa-
tionen helfen. Eine derartige Funktion ist der Zugriffskontrollmechanismus [JLS, 6.6],
der über die Zugreifbarkeit von Klassen, Interfaces und Attributen entscheidet. Die
Zugreifbarkeit eines Elements wird durch die Stelle festgelegt, an der es deklariert ist,
und durch einen eventuell in seiner Deklaration vorhandenen Zugriffsmodifikator
(private, protected und public). Für das Verbergen von Informationen ist die richtige
Benutzung dieser Modifikatoren von zentraler Bedeutung.

Als Faustregel gilt: Schränken Sie den Zugriff auf jede Klasse und jedes Attribut so
weit wie möglich ein. Mit anderen Worten: Sie sollten die niedrigste Zugriffsebene
wählen, bei der Ihre Software noch funktioniert.

Für Toplevel-Klassen und -Interfaces (also keine geschachtelten) gibt es zwei mögliche
Zugriffsebenen: paketprivat und öffentlich. Wenn Sie eine Toplevel-Klasse oder ein
Toplevel-Interface mit dem Modifikator public deklarieren, ist der Zugriff öffentlich;
andernfalls ist er paketprivat. Sie sollten eine Toplevel-Klasse oder ein Toplevel-Inter-
face so oft wie irgend möglich als paketprivat deklarieren. Dadurch wird diese Klasse
oder dieses Interface ein Bestandteil der Implementierung und nicht des exportierten
APIs seines Pakets, und Sie können es in einem nachfolgenden Release ändern, erset-
zen oder herausnehmen, ohne Schaden für die bestehenden Clients befürchten zu
müssen. Wenn Sie diese Elemente öffentlich machen, sind Sie aus Kompatibilitätsgrün-
den verpflichtet, sie für immer zu unterstützen.

Wenn Sie eine paketprivate Toplevel-Klasse oder ein paketprivates Toplevel-Interface
nur von einer einzigen Klasse aus nutzen, sollten Sie diese(s) als private, geschachtelte
Klasse (oder privates geschachteltes Interface) der benutzenden Klasse definieren
(Thema 18). Das schränkt die Zugriffsmöglichkeit noch mehr ein. Noch wichtiger ist es
jedoch, dass Sie eine unnötigerweise öffentliche Klasse paketprivat machen, denn eine
paketprivate Klasse gehört zur Implementierung und nicht zum API eines Pakets.

Für Attribute (Felder, Methoden, geschachtelte Klassen und geschachtelte Interfaces)
sind vier Zugriffsebenen möglich. Diese sind hier nach zunehmenden Zugriffsmög-
lichkeiten aufgelistet:

� privat – Das Attribut ist nur innerhalb der Toplevel-Klasse zugreifbar, in der es
deklariert ist.

� paketprivat – Auf das Attribut kann jede Klasse des Pakets, in dem es deklariert ist,
zugreifen. Diese Zugriffsebene, die man auch als Standardzugriff bezeichnet, gilt,
wenn kein Zugriffsmodifikator angegeben wird.

Thema 12: Minimieren Sie die Zugreifbarkeit von Klassen und Attributen 73

� geschützt – Mit gewissen Einschränkungen [JLS, 6.6.2] können auch Unterklassen
der Klasse, in der das betreffende Attribut deklariert ist, sowie jede andere Klasse
des Pakets, in dem es deklariert ist, auf das Attribut zugreifen.

� öffentlich – Auf das Attribut kann von überall her zugegriffen werden.

Nachdem Sie das öffentliche API Ihrer Klasse sorgfältig entworfen haben, sollte Ihr
erster Reflex sein, alle anderen Attribute privat zu machen. Nur wenn eine andere
Klasse in demselben Paket wirklich auf eines dieser Attribute zugreifen muss, sollten
Sie den Modifikator private beiseite lassen, wodurch das Attribut paketprivat wird.
Wenn das oft erforderlich wird, sollten Sie sich Ihren Systementwurf noch einmal
genauer ansehen: Vielleicht erhalten Sie mit einer anderen Dekomposition Klassen, die
besser voneinander abgekoppelt sind. Private und paketprivate Attribute sind beide
Teil der Implementierung einer Klasse und haben normalerweise keinen Einfluss auf
ihr exportiertes API. Dennoch können diese Felder ein »Leck« zur exportierten API
haben, wenn die Klasse Serializable implementiert (Themen 54 und 55).

Viel umfangreicher wird der Zugriff auf Attribute öffentlicher Klassen, wenn die
Zugriffsebene von paketprivat auf geschützt umgestellt wird. Ein geschütztes Attribut
ist Teil des exportierten APIs einer Klasse und muss in alle Ewigkeit unterstützt wer-
den. Ja mehr noch, ein geschütztes Attribut einer exportierten Klasse gibt ein öffent-
liches Versprechen für ein Implementierungsdetail ab (Thema 15). Geschützte
Attribute sind nur relativ selten wirklich nötig.

Es gibt eine Regel, die Ihre Möglichkeiten mindert, den Zugriff auf Methoden einzu-
schränken. Wenn eine Methode eine Oberklassenmethode überschreibt, dann darf sie
in der Unterklasse keine niedrigere Zugriffsebene als in der Oberklasse haben [JLS,
8.4.6.3]. So wird gewährleistet, dass eine Instanz der Unterklasse überall dort benutz-
bar ist, wo auch eine Instanz der Oberklasse benutzbar ist. Wenn Sie gegen diese Regel
verstoßen, meldet Ihnen der Compiler einen Fehler, sobald Sie versuchen, die Unter-
klasse zu kompilieren. Ein Sonderfall dieser Regel ist: Wenn eine Klasse ein Interface
implementiert, müssen alle Klassenmethoden, die auch in dem Interface vorhanden
sind, als öffentlich deklariert sein. Das ist so, weil alle Methoden in einem Interface
implizit öffentlich sind.

Öffentliche Klassen sollten wenn überhaupt nur selten öffentliche Felder haben (im
Gegensatz zu öffentlichen Methoden). Wenn ein Feld nicht-final ist, oder wenn es eine
finale Referenz auf ein veränderliches Objekt enthält, dann verzichten Sie, indem Sie
das Feld öffentlich machen, auf die Möglichkeit, die Werte einzuschränken, die in dem
Feld gespeichert werden können. Überdies können Sie dann auch nichts tun, wenn das
Feld modifiziert wird. Eine einfache Konsequenz daraus ist, dass Klassen mit öffent-
lichen veränderlichen Feldern nicht Thread-sicher sind. Selbst wenn ein Feld final ist

74 4 Klassen und Interfaces

und kein veränderliches Objekt referenziert, verzichten Sie, indem Sie es als öffentlich
deklarieren, auf die Flexibilität, auf eine neue interne Datenrepräsentation umzuschal-
ten, in der das Feld nicht existiert.

Es gibt eine Ausnahme von der Regel, dass öffentliche Klassen keine öffentlichen Fel-
der haben sollten. Klassen dürfen Konstanten über Felder offen legen, die als public
static final deklariert sind. Nach Konvention beginnen die Namen solcher Felder mit
Großbuchstaben; mehrere Wörter werden durch Unterstriche voneinander getrennt
(Thema 38). Es ist wichtig, dass solche Felder entweder Grundtypen oder Referenzen
auf unveränderliche Objekte enthalten (Thema 13). Ein finales Feld, das eine Referenz
auf ein veränderliches Objekt enthält, hat alle Nachteile eines nicht-finalen Felds. Die
Referenz kann zwar nicht geändert werden, wohl aber das referenzierte Objekt – mit
katastrophalen Folgen.

Beachten Sie, dass ein Array, dessen Länge nicht null ist, immer veränderlich ist. Also
ist es grundsätzlich verkehrt, ein als public static final deklariertes Array-Feld zu
haben. Wenn eine Klasse ein solches Feld hat, können ihre Clients den Array-Inhalt
ändern, was eine häufige Ursache für Sicherheitslöcher ist.

// Potenzielles Sicherheitsloch!
public static final Type[] VALUES = { ... };

Das öffentliche Array sollten Sie durch ein privates Array und eine öffentliche, unver-
änderliche Liste ersetzen:

private static final Type[] PRIVATE_VALUES = { ... };

public static final List VALUES =
 Collections.unmodifiableList(Arrays.asList(PRIVATE_VALUES));

Wenn Sie Typsicherheit zur Kompilierungszeit gewährleisten und dafür eine Leis-
tungseinbuße hinnehmen möchten, können Sie auch das öffentliche Array-Feld durch
eine öffentliche Methode ersetzen, die eine Kopie des privaten Arrays zurückgibt:

private static final Type[] PRIVATE_VALUES = { ... };

public static final Type[] values() {
 return (Type[]) PRIVATE_VALUES.clone();
}

Fazit: Sie sollten die Zugriffsmöglichkeiten so restriktiv wie möglich behandeln. Zuerst
sollten Sie sorgfältig ein minimales öffentliches API entwerfen und dabei vermeiden,
dass irgendwelche Klassen, Interfaces oder Attribute unnötigerweise in das API gelan-
gen. Mit Ausnahme der public static final-Felder sollten öffentliche Klassen gar keine
öffentlichen Felder haben. Stellen Sie sicher, dass die von public static final-Feldern
referenzierten Objekte unveränderlich sind.

Thema 13: Bevorzugen Sie Unveränderbarkeit 75

4.2 Thema 13: Bevorzugen Sie Unveränderbarkeit

Eine unveränderliche Klasse ist einfach eine Klasse, deren Instanzen nicht geändert
werden können. Alle Informationen der einzelnen Instanzen werden geliefert, wenn
die Instanz erzeugt wird, und bleiben für die Lebensdauer des Objekts gleich. Die
Java-Plattformbibliotheken enthalten viele unveränderliche Klassen, darunter String,
die Hüllenklassen für die Grundtypen sowie BigInteger und BigDecimal. Dafür gibt es
viele gute Gründe: Unveränderliche Klassen lassen sich leichter entwerfen, implemen-
tieren und nutzen, als veränderliche Klassen. Sie sind weniger fehleranfällig und siche-
rer.

Sie machen eine Klasse unveränderlich, indem Sie die folgenden fünf Regeln befolgen:

1. Liefern Sie keine Methoden, die das Objekt ändern (so genannte Änderungs-
methoden).

2. Sorgen Sie dafür, dass keine Methoden überschrieben werden können. Dadurch
verhindern Sie, dass unachtsam oder bösartig implementierte Unterklassen das
unveränderliche Verhalten der Klasse zunichte machen. Generell verhindern Sie ein
Überschreiben von Methoden, indem Sie die Klasse final machen, aber dazu gibt es
auch Alternativen, auf die wir später noch zu sprechen kommen.

3. Machen Sie alle Felder final. Damit machen Sie Ihre Absichten auf eine Weise
deutlich, die das System durchsetzen kann. Außerdem müssen Sie eventuell ein
korrektes Verhalten gewährleisten, wenn eine Referenz auf eine neu erzeugte
Instanz ohne Synchronisation von einem Thread an einen anderen übergeben wird,
je nachdem, welche Ergebnisse die Bemühungen um eine Überarbeitung des
Speichermodells [Pugh01a] noch erbringen.

4. Machen Sie alle Felder privat. Dann können Clients die Felder nicht unmittelbar
ändern. Technisch können unveränderliche Klassen zwar durchaus public final-
Felder mit Grundtypen oder Referenzen auf unveränderliche Objekte haben, aber
ratsam ist dies nicht, denn es schließt eine Änderung der internen Darstellung in
einem späteren Release von vornherein aus (Thema 12).

5. Sorgen Sie dafür, dass der Zugriff auf veränderliche Komponenten exklusiv ist.
Wenn Ihre Klasse Felder hat, die sich auf veränderliche Objekte beziehen, müssen
Sie dafür sorgen, dass Clients dieser Klasse keine Referenzen auf diese Objekte
erhalten können. Sie dürfen ein solches Feld niemals mit einer von einem Client
gelieferten Objektreferenz initialisieren oder die Objektreferenz von einer Zugriffs-
methode zurückgeben. Erstellen Sie in Konstruktoren, Zugriffsmethoden und read-
Object-Methoden (Thema 56) nur defensive Kopien (Thema 24).

76 4 Klassen und Interfaces

Viele der Beispielklassen in den vorangegangenen Themen sind unveränderlich. Eine
solche Klasse ist PhoneNumber aus Thema 8, die zwar für jedes Attribut Zugriffsmetho-
den hat, aber keine entsprechenden Änderungsmethoden. Im Folgenden sehen Sie ein
etwas komplexeres Beispiel:

public final class Complex {
 private final float re;
 private final float im;

 public Complex(float re, float im) {
 this.re = re;
 this.im = im;
 }

 // Zugriffsmethoden ohne entsprechende Änderungsmethoden
 public float realPart() { return re; }
 public float imaginaryPart() { return im; }

 public Complex add(Complex c) {
 return new Complex(re + c.re, im + c.im);
 }

 public Complex subtract(Complex c) {
 return new Complex(re - c.re, im - c.im);
 }

 public Complex multiply(Complex c) {
 return new Complex(re*c.re - im*c.im,
 re*c.im + im*c.re);
 }

 public Complex divide(Complex c) {
 float tmp = c.re*c.re + c.im*c.im;
 return new Complex((re*c.re + im*c.im)/tmp,
 (im*c.re - re*c.im)/tmp);
 }

 public boolean equals(Object o) {
 if (o == this)
 return true;
 if (!(o instanceof Complex))
 return false;
 Complex c = (Complex)o;
 return (Float.floatToIntBits(re) == // Am Ende von Thema
 Float.floatToIntBits(c.re)) && // 7 sehen Sie, warum
 (Float.floatToIntBits(im) == // floatToIntBits
 Float.floatToIntBits(im)); // benutzt wird.
 }
 public int hashCode() {
 int result = 17 + Float.floatToIntBits(re);

Thema 13: Bevorzugen Sie Unveränderbarkeit 77

 result = 37*result + Float.floatToIntBits(im);
 return result;
 }

 public String toString() {
 return "(" + re + " + " + im + "i)";
 }
}

Diese Klasse stellt eine komplexe Zahl dar, also eine Zahl, die sowohl einen reellen als
auch einen imaginären Teil hat. Zusätzlich zu den Standardmethoden aus Object stellt
sie Zugriffsmethoden für den reellen und den imaginären Teil der Zahl zur Verfügung
und liefert die vier arithmetischen Grundoperationen: Addition, Subtraktion, Multipli-
kation und Division. Beachten Sie, wie diese arithmetischen Operationen eine neue
Complex-Instanz erzeugen und zurückgeben, anstatt die vorliegende Instanz zu modifi-
zieren. Dieses Muster wird auf die meisten nicht-trivialen, unveränderlichen Klassen
angewandt. Man nennt es den funktionalen Ansatz, da die Methoden das Ergebnis
zurückgeben, das sie erhalten, wenn sie eine Funktion auf ihren Operanden anwen-
den, ohne diesen zu verändern. Vergleichen Sie dies mit dem üblicheren prozeduralen
Ansatz, bei dem Methoden eine Prozedur auf ihren Operanden anwenden und
dadurch eine Zustandsänderung dieses Operanden verursachen.

Der funktionale Ansatz wirkt vielleicht unnatürlich, wenn Sie ihn noch nicht kennen,
aber er macht die Unveränderbarkeit möglich, die viele Vorteile hat. Unveränderliche
Objekte sind einfach. Ein unveränderliches Objekt kann nur einen einzigen Zustand
haben: Den, in dem es erzeugt wurde. Wenn Sie gewährleisten, dass alle Konstrukto-
ren Klasseninvarianten herstellen, dann haben Sie die Garantie, dass diese Invarianten
für alle Zukunft wahr bleiben. Sie oder der Programmierer, der die Klasse nutzt, brau-
chen dafür nichts mehr zu unternehmen. Dagegen können veränderliche Objekte
beliebig komplexe Zustandsräume haben. Wenn die Dokumentation keine präzise
Beschreibung der Zustandsänderungen liefert, die die Änderungsmethoden verur-
sachen, dann kann es schwierig oder gar unmöglich werden, eine veränderliche Klasse
zuverlässig einzusetzen.

Unveränderliche Objekte sind inhärent Thread-sicher und erfordern daher keine
Synchronisierung. Sie können nicht dadurch inkonsistent werden, dass mehrere
Threads gleichzeitig auf sie zugreifen. Einfacher können sie Thread-Sicherheit gar
nicht herstellen. Kein Thread kann auf einem unveränderlichen Objekt jemals
irgendeine Auswirkung eines anderen Threads erkennen. Daher können unveränder-
liche Objekte nach Belieben gemeinsam genutzt werden. Unveränderliche Klassen
sollten diesen Vorteil nutzen und Clients auffordern, unveränderliche Instanzen wann
immer möglich wiederzuverwenden. Ganz einfach können Sie dies erreichen, indem
Sie für oft benutzte Werte public static final-Konstanten liefern. Die Complex-Klasse
könnte z.B. folgende Konstanten haben:

78 4 Klassen und Interfaces

public static final Complex ZERO = new Complex(0, 0);
public static final Complex ONE = new Complex(1, 0);
public static final Complex I = new Complex(0, 1);

Dies können Sie auch noch einen Schritt weiter treiben: Ein unveränderliches Objekt
kann statische Factorys zur Verfügung stellen, die oft angeforderte Instanzen cachen
und die Erzeugung neuer Instanzen vermeiden, wenn eine bereits existierende Instanz
angefordert wird. Die Klassen BigInteger und Boolean haben beide derartige statische
Factory-Methoden. Die Verwendung von statischen Factorys veranlasst Clients, bereits
vorhandene Instanzen gemeinsam zu nutzen, anstatt neue zu erzeugen, was den Auf-
wand für Hauptspeicher-Footprints und Garbage Collection mindert.

Dass unveränderliche Objekte nach Belieben gemeinsam genutzt werden können,
führt unter anderem dazu, dass Sie nie defensiv kopieren müssen (Thema 24). Tatsächlich
brauchen Sie überhaupt keine Kopien zu machen, da die Kopien für alle Zeit zu den
Originalen äquivalent sein würden. Also brauchen und sollten Sie für eine unverän-
derliche Klasse keine clone-Methode und keinen Kopiekonstruktor (Thema 10) zur Ver-
fügung stellen. Da man dies in der Frühzeit von Java noch nicht erkannt hatte, besitzt
die Klasse String einen Kopiekonstruktor, aber Sie sollten ihn so gut wie nie einsetzen
(Thema 4).

Sie können nicht nur unveränderliche Objekte, sondern auch ihre Interna gemeinsam
nutzen. Die Klasse BigInteger verwendet z.B. intern eine Vorzeichen-Größenordnung-
Darstellung. Das Vorzeichen wird durch einen int dargestellt und die Größenordnung
durch ein int-Array. Die Methode negate erstellt einen neuen BigInteger derselben Grö-
ßenordnung, aber mit umgekehrtem Vorzeichen. Sie braucht das Array nicht zu kopie-
ren: der neu erzeugte BigInteger zeigt auf dasselbe interne Array wie der alte.

Unveränderliche Objekte sind vorzügliche Bausteine für andere Objekte, seien
diese nun veränderlich oder unveränderlich. Sie können die Invarianten eines komple-
xen Objekts viel leichter beibehalten, wenn Sie wissen, dass sich die Objekte, aus denen
es besteht, nicht ändern. Ein Sonderfall dieses Prinzips besteht darin, dass unveränder-
liche Objekte großartige Map-Schlüssel und Set-Elemente sind: Sie brauchen sich keine
Sorgen zu machen, dass ihre Werte sich noch ändern könnten, wenn sie bereits in der
Map oder dem Set sind, und dass dadurch die Invarianten der Map oder des Sets zer-
stört werden könnten.

Der einzige wirkliche Nachteil der unveränderlichen Klassen besteht darin, dass sie
für jeden verschiedenen Wert ein separates Objekt erfordern. Die Erzeugung dieser
Objekte kann kostspielig sein, insbesondere, wenn sie groß sind. Angenommen, Sie
haben einen BigInteger mit einer Million Bits und möchten sein niedrigstes Bit
umschalten.

BigInteger moby = ...;
moby = moby.flipBit(0);

Thema 13: Bevorzugen Sie Unveränderbarkeit 79

Die Methode flipBit erzeugt eine neue Instanz von BigInteger, die ebenfalls eine Mil-
lion Bits lang ist und sich nur in einem einzigen Bit von der ersten Instanz unterschei-
det. Die Methode braucht Zeit und Speicherplatz proportional zur Größe von
BigInteger. Vergleichen Sie dies einmal mit java.util.BitSet: Wie BigInteger stellt auch
BitSet eine beliebig lange Folge von Bits dar, aber im Gegensatz zu BigInteger ist BitSet
veränderbar. Die Klasse BitSet stellt eine Methode zur Verfügung, mit der Sie den
Zustand eines einzigen Bits einer Million-Bit-Instanz in einem konstanten Zeitraum
ändern können.

Das Problem mit der Leistung wird noch schlimmer, wenn Sie eine aus mehreren
Schritten bestehende Operation durchführen, die bei jedem Schritt ein neues Objekt
anlegt und zum Schluss alle Objekte außer dem Endergebnis wieder verwirft. Es gibt
zwei Möglichkeiten, diesem Problem zu begegnen. Entweder, Sie schätzen ein, welche
mehrere Schritte umfassenden Operationen oft erforderlich sein werden, und stellen
diese Operationen als Primitive zur Verfügung. Wenn eine aus mehreren Schritten
bestehende Operation als Primitive verfügbar ist, braucht die unveränderliche Klasse
nicht bei jedem Schritt ein separates Objekt zu erzeugen. Intern kann die unveränder-
liche Klasse beliebig intelligent sein. So hat z.B. BigInteger eine paketprivate, verän-
derliche »Begleiterklasse« , die sie nutzt, um Mehrschrittoperationen wie z.B. modulare
Exponentialberechnungen schneller auszuführen. Veränderliche Begleiterklassen sind
aus den oben aufgeführten Gründen viel schwerer zu benutzen, aber zum Glück brau-
chen Sie das auch nicht: Die eigentlich harte Arbeit haben Ihnen die Implementoren
von BigInteger bereits abgenommen.

Dieser Ansatz funktioniert gut, wenn Sie genau vorhersagen können, welche komple-
xen Operationen über mehrere Stadien hinweg die Clients auf Ihrer unveränderlichen
Klasse ausführen werden. Wissen Sie dies nicht, so sollten Sie am besten eine öffentliche,
veränderliche Begleiterklasse zur Verfügung stellen. In den Java-Plattformbibliotheken
ist das Hauptbeispiel für diesen Ansatz die Klasse String, deren veränderliche Beglei-
terklasse StringBuffer ist. Außerdem spielt unter bestimmten Umständen BitSet die
Rolle des veränderlichen Begleiters von BigInteger.

Da Sie nun wissen, wie Sie eine unveränderliche Klasse herstellen, und das Für und
Wider der Unveränderbarkeit kennen, wollen wir jetzt einige Entwurfsalternativen
betrachten. Bitte erinnern Sie sich, dass eine Klasse, die Unveränderbarkeit garantiert,
nicht zulassen darf, dass irgendeine ihrer Methoden überschrieben wird. Sie können
die Klasse final machen, aber es gibt auch noch zwei weitere Möglichkeiten, dies zu
gewährleisten: Die eine besteht darin, anstelle der Klasse selbst jede ihrer Methoden
final zu machen. Der einzige Vorteil davon ist, dass Programmierer die Klasse dann
erweitern können, indem sie neue Methoden hinzufügen, die den alten übergestülpt
sind. Da es jedoch ebenso wirksam ist, wenn Sie die neuen Methoden in einer separa-
ten, nicht-instanziierbaren Hilfsklasse (Thema 3) als statische Methoden zur Verfügung
stellen, rate ich von diesem Ansatz ab.

80 4 Klassen und Interfaces

Eine zweite Alternative besteht darin, alle Konstruktoren der Klasse privat oder paket-
privat zu machen und öffentliche statische Factorys anstelle der öffentlichen Konstruk-
toren bereitzustellen (Thema 1). Um dies zu konkretisieren, sehen Sie hier, wie die
Klasse Complex mit diesem Ansatz aussehen würde:

// Unveränderliche Klasse mit statischen Factorys anstelle von Konstruktoren
public class Complex {
 private final float re;
 private final float im;

 private Complex(float re, float im) {
 this.re = re;
 this.im = im;
 }

 public static Complex valueOf(float re, float im) {
 return new Complex(re, im);
 }

 ... // Rest bleibt unverändert
}

Dieser Ansatz wird zwar nicht so häufig gewählt, aber er ist von allen drei Alternati-
ven die beste. Er ist am flexibelsten, da er die Verwendung mehrerer paketprivater
Implementierungsklassen ermöglicht. Für ihre außerhalb des Pakets angesiedelten
Clients ist die unveränderliche Klasse im Endeffekt final, da es unmöglich ist, eine
Klasse zu erweitern, die aus einem anderen Paket stammt und keinen öffentlichen
oder geschützten Konstruktor hat. Dieser Ansatz bietet nicht nur die Flexibilität mehr-
facher Implementierungsklassen, sondern ermöglicht es auch, die Leistung der Klasse
in nachfolgenden Releases dadurch zu tunen, dass die Objekt-Caching-Fähigkeiten der
statischen Factorys verbessert werden.

Statische Factorys haben gegenüber Konstruktoren noch viele weitere Vorteile, wie wir
in Thema 1 bereits gesehen haben. Angenommen, Sie möchten z.B. ein Mittel zur Ver-
fügung stellen, um eine komplexe Zahl basierend auf ihren Polkoordinaten zu erzeu-
gen. Mit Konstruktoren würde das unsauber, da der natürliche Konstruktor dieselbe
Signatur haben würde, die wir bereits benutzt haben: Complex(float, float). Doch mit
statischen Factorys geht es ganz leicht: Sie fügen einfach eine zweite statische Factory
hinzu, deren Name ihre Funktion klar bezeichnet:

public static Complex valueOfPolar(float r, float theta) {
 return new Complex((float) (r * Math.cos(theta)),
 (float) (r * Math.sin(theta)));
}

Als BigInteger und BigDecimal geschrieben wurden, war noch nicht allgemein bekannt,
dass unveränderliche Klassen effektiv final sein mussten. Daher können alle Methoden
dieser beiden Klassen überschrieben werden. Leider konnte man dies nachträglich

Thema 13: Bevorzugen Sie Unveränderbarkeit 81

nicht mehr korrigieren, da man die Aufwärtskompatibilität beibehalten musste. Wenn
Sie eine Klasse schreiben, deren Sicherheit von der Unveränderbarkeit eines BigInte-
ger- oder BigDecimal-Arguments von einem nicht-vertrauenswürdigen Client abhängt,
müssen Sie sich vergewissern, dass das Argument auch wirklich ein »richtiger« BigIn-
teger oder BigDecimal ist und keine Instanz einer nicht-vertrauenswürdigen Unter-
klasse. Wenn letzteres der Fall ist, dann müssen Sie es defensiv kopieren, weil Sie
annehmen müssen, dass es veränderlich sein könnte (Thema 24).

public void foo(BigInteger b) {
 if (b.getClass() != BigInteger.class)
 b = new BigInteger(b.toByteArray());
 ...
}

In der Liste der Regeln für unveränderliche Klassen am Anfang dieses Themas steht,
dass keine Methoden das Objekt modifizieren dürfen und dass alle Felder final sein
müssen. Diese Regeln sind eigentlich ein wenig strikter als nötig gefasst und können
zur Leistungssteigerung auch ein wenig gedehnt werden. In Wahrheit darf nur keine
Methode eine von außen sichtbare Zustandsänderung des Objekts herbeiführen. Den-
noch haben viele unveränderliche Klassen ein oder mehrere nicht-finale, redundante
Felder, in denen sie die Ergebnisse aufwändiger Berechnungen cachen, wenn diese
zum ersten Mal benötigt werden. Wird zu einem späteren Zeitpunkt dieselbe Berech-
nung gefordert, so wird der gecachte Wert zurückgegeben, um einen erneuten Berech-
nungsaufwand zu sparen. Dieser Trick funktioniert nur deshalb, weil das Objekt
unveränderlich ist: Seine Unveränderbarkeit garantiert dafür, dass die Berechnung,
wenn sie erneut durchgeführt würde, dasselbe Ergebnis bringen würde.

Die hashCode-Methode von PhoneNumber (Thema 8) berechnet z.B. den Hash-Code, wenn
sie zum ersten Mal aufgerufen wird, und cacht ihn dann für den Fall, dass er noch ein-
mal benötigt wird. Diese Technik, die ein klassisches Beispiel für faule Initialisierung
darstellt (Thema 48), wird auch von der Klasse String genutzt. Sie benötigen keine Syn-
chronisierung, da es keine Frage ist, ob der Hash-Wert einmal oder zweimal berechnet
wird. Im Folgenden sehen Sie das allgemeine Idiom, mit dem Sie eine gecachte, faul
initialisierte Funktion eines unveränderlichen Objekts zurückgeben können:

// Gecachte, faul initialisierte Funktion eines unveränderlichen Objekts
private volatile Foo cachedFooVal = UNLIKELY_FOO_VALUE;

public Foo foo() {
 int result = cachedFooVal;
 if (result == UNLIKELY_FOO_VALUE)
 result = cachedFooVal = fooValue();
 return result;
}

// Private Hilfsfunktion zur Berechnung des foo-Werts
private Foo fooVal() { ... }

82 4 Klassen und Interfaces

In Bezug auf die Serialisierbarkeit muss ich auf eine Falle aufmerksam machen. Wenn
Ihre unveränderliche Klasse Serializable implementieren soll und ein oder mehrere Fel-
der hat, die auf veränderliche Objekte referieren, müssen Sie eine explizite readObject-
oder readResolve-Methode beisteuern, und zwar auch dann, wenn die serialisierte Stan-
dardform annehmbar ist. Die standardmäßige readObject-Methode würde es einem
Angreifer ermöglichen, eine veränderliche Instanz Ihrer ansonsten unveränderlichen
Klasse zu erzeugen. Dies wird in Thema 56 noch eingehender behandelt.

Fazit: Bitte widerstehen Sie der Versuchung, für jede get-Methode auch eine set-
Methode zu schreiben. Klassen sollten unveränderlich sein, wenn es keinen guten
Grund gibt, sie veränderlich zu machen. Unveränderliche Klassen haben viele Vorteile
und ihr einziger Nachteil ist, dass sie unter bestimmten Umständen Leistungsprobleme
verursachen können. Sie sollten immer Objekte mit kleinen Werten wie z.B. PhoneNum-
ber und Complex unveränderlich machen. (In den Java-Plattformbibliotheken gibt es
mehrere Klassen, darunter java.util.Date und java.awt.Point, die unveränderlich
sein sollten, es aber nicht sind.) Außerdem sollten Sie möglichst Objekte mit größeren
Werten wie z.B. String und BigInteger ebenfalls unveränderlich machen. Sie sollten
für Ihre unveränderliche Klasse nur dann eine öffentliche, veränderliche Begleiterklasse
liefern, wenn Sie ganz sicher sind, dass dies für eine annehmbare Leistung unbedingt
erforderlich ist (Thema 37).

Für manche Klassen ist Unveränderbarkeit unpraktisch. Dazu gehören so genannte
Prozessklassen wie z.B. Thread und TimerTask. Wenn eine Klasse nicht unveränderlich
gemacht werden kann, sollten Sie immerhin ihre Veränderbarkeit möglichst weitge-
hend einschränken. Wenn Sie die Anzahl der Zustände reduzieren, die ein Objekt
annehmen kann, können Sie das Objekt besser verstehen, und die Fehleranfälligkeit
sinkt. Daher sollten Konstruktoren nur vollständig initialisierte Objekte erzeugen,
deren Invarianten alle feststehen, und sie sollten keine nur teilweise fertigen Instan-
zen an andere Methoden übergeben, wenn es dafür keine sehr guten Gründe gibt.
Auch sollten Sie keine Methode zur »Re-Initialisierung« zur Verfügung stellen, die es
ermöglicht, ein Objekt wiederzuverwenden, als sei es mit einem anderen Anfangszu-
stand erzeugt worden. Eine Re-Initialisierungsmethode macht alles komplizierter und
bietet dafür kaum oder gar keinen Leistungszuwachs.

Die Klasse TimerTask veranschaulicht diese Prinzipien. Sie ist veränderlich, aber ihr
Zustandsraum wurde absichtlich klein gehalten. Sie erzeugen eine Instanz, planen den
Zeitpunkt ihrer Ausführung und können sie optional auch verwerfen. Wenn ein Timer-
Task abgeschlossen oder abgebrochen wurde, können Sie ihn nicht erneut planen.

Abschließend zu diesem Thema ein Hinweis zur Klasse Complex: Dieses Beispiel diente nur
dazu, die Unveränderbarkeit zu illustrieren. Es ist keine Implementierung komplexer
Zahlen für den Industrieeinsatz. Sie verwendet für die komplexe Multiplikation und Divi-
sion die Standardformeln, die keine korrekte Rundung bieten und für komplexe NaNs
und Unendlichkeiten nur wenig Semantik haben [Kahan 1991, Smith 1962, Thomas 1994].

Thema 14: Komposition ist besser als Vererbung 83

4.3 Thema 14: Komposition ist besser als Vererbung

Vererbung ist ein mächtiges Werkzeug, um die Wiederverwendung von Code zu errei-
chen, aber es ist nicht für jeden Job geeignet. Wenn Sie Vererbung nicht richtig einset-
zen, wird Ihre Software instabil. Sicher können Sie Vererbung innerhalb eines Pakets
verwenden, wo dieselben Programmierer die Implementierungen von Unter- und
Oberklasse kontrollieren. Es ist ebenfalls sicher, Vererbung beim Erweitern von Klassen
zu verwenden, die speziell zum Erweitern entworfen und dokumentiert wurden
(Thema 15).

Wenn Sie jedoch von normalen, konkreten Klassen über Paketgrenzen hinweg etwas
vererben, begeben Sie sich in Gefahr. Bitte erinnern Sie sich: In diesem Buch wird das
Wort »Vererbung« im Sinne von Implementierungsvererbung benutzt (wenn eine Klasse
eine andere erweitert). Die in diesem Thema behandelten Probleme beziehen sich nicht
auf die Interface-Vererbung (bei der eine Klasse ein Interface implementiert oder ein
Interface ein anderes erweitert).

Anders als ein Methodenaufruf bricht Vererbung die Kapselung auf [Snyder 1986].
Mit anderen Worten: Eine Unterklasse hängt von den Implementierungsdetails ihrer
Oberklasse ab, um richtig zu funktionieren. Die Implementierung der Oberklasse kann
sich von Release zu Release ändern und wenn sie das tut, kann die Unterklasse daran
zerbrechen, auch wenn ihr Code überhaupt nicht angefasst wurde. Folglich muss eine
Unterklasse immer gemeinsam mit ihrer Oberklasse weiterentwickelt werden, es sei
denn, die Autoren der Oberklasse haben diese speziell zum Zwecke der Erweiterung
entworfen und dokumentiert.

Um dies zu konkretisieren, wollen wir einmal annehmen, wir hätten ein Programm,
das HashSet verwendet. Um die Leistung unseres Programms zu steigern, müssen wir
von dem HashSet erfragen, wie viele Elemente seit seiner Erzeugung hinzugefügt wur-
den (nicht zu verwechseln mit der aktuellen Größe, die zurückgeht, wenn ein Element
entfernt wird). Um diese Funktionalität zu erhalten, schreiben wir eine Variante von
HashSet, die die Anzahl der versuchten Elementeinfügungen immer zählt und eine
Methode für den Zugriff auf diesen Zählerstand exportiert. Die Klasse HashSet hat zwei
Methoden, die Elemente hinzufügen können: add und addAll. Also überschreiben wir
diese beiden Methoden:

// Kaputt – Schlechte Anwendung für Vererbung!
public class InstrumentedHashSet extends HashSet {
 // Die Anzahl der versuchten Elementeinfügungen
 private int addCount = 0;

 public InstrumentedHashSet() {
 }

 public InstrumentedHashSet(Collection c) {

84 4 Klassen und Interfaces

 super(c);
 }

 public InstrumentedHashSet(int initCap, float loadFactor) {
 super(initCap, loadFactor);
 }

 public boolean add(Object o) {
 addCount++;
 return super.add(o);
 }

 public boolean addAll(Collection c) {
 addCount += c.size();
 return super.addAll(c);
 }

 public int getAddCount() {
 return addCount;
 }
}

Diese Klasse mag vielleicht vernünftig aussehen, aber sie funktioniert nicht. Angenom-
men, wir erzeugten eine Instanz und fügten mit der Methode addAll drei Elemente
hinzu:

InstrumentedHashSet s = new InstrumentedHashSet();
s.addAll(Arrays.asList(new String[] {"Snap","Crackle","Pop"}));

Wir würden erwarten, dass die getAddCount-Methode an diesem Punkt drei zurückgibt,
aber sie gibt sechs zurück. Was ist schiefgegangen? Intern wurde die HashSet-Methode
addAll auf der add-Methode implementiert, auch wenn HashSet dieses Implementie-
rungsdetail aus nachvollziehbaren Gründen nicht dokumentiert. Die addAll-Methode
in InstrumentedHashSet addierte drei zu addCount und rief dann die addAll-Implementie-
rung von HashSet über super.addAll auf. Dies wiederum rief für jedes Element einmal
die add-Methode auf, wie sie in InstrumentedHashSet überschrieben wurde. Jeder dieser
drei Aufrufe addierte eins zum addCount, sodass der Gesamtzuwachs zum Schluss
sechs betrug: Jedes mit der addAll-Methode hinzugefügte Element wird doppelt
gezählt.

Wir könnten die Unterklasse »reparieren« , indem wir das Überschreiben der addAll-
Methode beiseite lassen. Dann würde zwar die resultierende Klasse funktionieren, aber
ihre korrekte Funktion hinge davon ab, dass die addAll-Methode der Klasse HashSet auf
ihrer add-Methode implementiert wäre. Diese »Selbstnutzung« ist ein Implementie-
rungsdetail, dessen Gültigkeit nicht für alle Java-Implementierungen garantiert werden
kann, und das sich überdies von Release zu Release ändern kann. Daher wäre die resul-
tierende Klasse InstrumentedHashSet instabil.

Thema 14: Komposition ist besser als Vererbung 85

Etwas besser wäre es, die addAll-Methode so zu überschreiben, dass sie die angegebene
Sammlung durchläuft und für jedes Element einmal die add-Methode aufruft. Dies
würde das korrekte Ergebnis garantieren, egal ob die addAll-Methode der Klasse HashSet
auf ihrer add-Methode implementiert ist oder nicht, denn die addAll-Implementierung
von HashSet würde dann nicht mehr aufgerufen. Doch auch dies löst nicht alle unsere
Probleme. Letztlich bedeutet es eine Re-Implementierung von Oberklassenmethoden,
die eventuell zu einer Selbstnutzung führen kann. Dies ist schwierig, zeitaufwändig
und fehleranfällig. Außerdem ist es nicht immer möglich, da einige Methoden nicht
implementiert werden können, ohne Zugriff auf private Felder zu haben, auf die die
Unterklasse nicht zugreifen darf.

Eine andere, verwandte Ursache für instabile Unterklassen besteht darin, dass ihre
Oberklasse in künftigen Releases neue Methoden hinzubekommen kann. Angenom-
men, die Sicherheit eines Programms hängt davon ab, dass alle Elemente, die in
bestimmte Sammlungen eingefügt werden, einem bestimmten Prädikat genügen. Dies
können Sie garantieren, indem Sie eine Unterklasse der Sammlung bilden und jede
Methode überschreiben, die ein Element hinzufügen könnte, um vor dem Hinzufügen
des Elements sicherzustellen, dass das Prädikat gilt. Das funktioniert so lange, bis in
einem zukünftigen Release die Oberklasse eine neue Methode erhält, die ein Element
hinzufügen kann. Sobald dies geschieht, wird es möglich, einer Instanz der Unter-
klasse ein »illegales« Element hinzuzufügen: Sie brauchen nur die neue Methode auf-
zurufen, die in der Unterklasse nicht überschrieben ist. Dieses Problem besteht nicht
nur in der Theorie: Als Hashtable und Vector nachträglich überarbeitet wurden, um in
das Collections Framework integriert zu werden, mussten mehrere derartige Sicher-
heitslöcher gestopft werden.

Beide geschilderten Probleme entstehen dadurch, dass Methoden überschrieben wur-
den. Sie denken vielleicht, es sei sicher, eine Klasse zu erweitern, wenn Sie nur neue
Methoden hinzufügen und keine bestehenden überschreiben. Diese Art der Erweite-
rung ist zwar weit sicherer, aber auch nicht ganz risikolos. Wenn die Oberklasse in
einem späteren Release eine neue Methode erhält und Sie das Pech haben, dass Sie der
Unterklasse eine Methode mit derselben Signatur aber einem anderen Rückgabetyp
gegeben haben, dann wird Ihre Unterklasse nicht mehr kompiliert [JLS, 8.4.6.3]. Wenn
Sie der Unterklasse eine Methode mit genau derselben Signatur geben, wie sie die
neue Oberklassenmethode hat, dann überschreiben Sie diese nunmehr und haben folg-
lich die beiden oben geschilderten Probleme. Außerdem ist es zweifelhaft, dass Ihre
Methode den Vertrag der neuen Oberklassenmethode erfüllt, da dieser Vertrag zu dem
Zeitpunkt, als Sie Ihre Unterklassenmethode schrieben, noch gar nicht existierte.

Zum Glück gibt es einen Weg, alle zuvor beschriebenen Probleme zu vermeiden.
Anstatt eine bestehende Klasse zu erweitern, geben Sie Ihrer neuen Klasse ein privates
Feld, das eine Instanz der bestehenden Klasse referenziert. Dieses Design bezeichnet
man als Komposition, da die bestehende Klasse eine Komponente der neuen wird. Jede

86 4 Klassen und Interfaces

Instanzmethode der neuen Klasse ruft die entsprechende Methode auf der enthaltenen
Instanz der bestehenden Klasse auf und gibt die Ergebnisse zurück. Dies bezeichnet
man als Weiterleitung (forwarding) und die Methoden in den neuen Klassen sind
Weiterleitungsmethoden. Die resultierende Klasse ist absolut stabil und hängt nicht von
den Implementierungsdetails der bestehenden Klasse ab. Sie können sogar der beste-
henden Klasse neue Methoden geben, ohne dass sich dies auf die neue Klasse aus-
wirkt. Um dies zu konkretisieren, sehen Sie hier einen Ersatz für InstrumentedHashSet,
der mit Komposition und Weiterleitung konzipiert wurde:

// Hüllenklasse – nutzt Komposition statt Vererbung
public class InstrumentedSet implements Set {
 private final Set s;
 private int addCount = 0;

 public InstrumentedSet(Set s) {
 this.s = s;
 }

 public boolean add(Object o) {
 addCount++;
 return s.add(o);
 }

 public boolean addAll(Collection c) {
 addCount += c.size();
 return s.addAll(c);
 }

 public int getAddCount() {
 return addCount;
 }

 // Weiterleitungsmethoden
 public void clear() { s.clear(); }
 public boolean contains(Object o) { return s.contains(o); }
 public boolean isEmpty() { return s.isEmpty(); }
 public int size() { return s.size(); }
 public Iterator iterator() { return s.iterator(); }
 public boolean remove(Object o) { return s.remove(o); }
 public boolean containsAll(Collection c)
 { return s.containsAll(c); }
 public boolean removeAll(Collection c)
 { return s.removeAll(c); }
 public boolean retainAll(Collection c)
 { return s.retainAll(c); }
 public Object[] toArray() { return s.toArray(); }
 public Object[] toArray(Object[] a) { return s.toArray(a); }
 public boolean equals(Object o) { return s.equals(o); }

Thema 14: Komposition ist besser als Vererbung 87

 public int hashCode() { return s.hashCode(); }
 public String toString() { return s.toString(); }
}

Der Entwurf der Klasse InstrumentedSet wird durch das Set-Interface möglich, das die
Funktionalität der Klasse HashSet aufnimmt. Er ist nicht nur stabil, sondern auch
extrem flexibel. Die Klasse InstrumentedSet implementiert das Set-Interface und hat
einen einzigen Konstruktor, dessen Argument ebenfalls vom Typ Set ist. Im Grunde
transformiert die Klasse nur ein Set in ein anderes und fügt die Instrumentierungs-
funktionalität hinzu. Anders als bei dem Vererbungsverfahren, das nur mit einer einzi-
gen, konkreten Klasse funktioniert und einen separaten Konstruktor für jeden
unterstützten Konstruktor der Oberklasse erfordert, können Sie diese Hüllenklasse
nutzen, um jede beliebige Set-Implementierung zu instrumentieren, und sie funktio-
niert auch im Zusammenhang mit jedem bereits vorhandenen Konstruktor. Ein Bei-
spiel:

Set s1 = new InstrumentedSet(new TreeSet(list));
Set s2 = new InstrumentedSet(new HashSet(capacity, loadFactor));

Die Klasse InstrumentedSet kann sogar dazu verwendet werden, vorübergehend eine
set-Instanz zu instrumentieren, die bereits ohne Instrumentierung benutzt worden ist.

static void f(Set s) {
 InstrumentedSet sInst = new InstrumentedSet(s);
 ... // Nutzen Sie in dieser Methode sInst statt s
}

Die Klasse InstrumentedSet wird als Hüllenklasse bezeichnet, weil jede Instanz von
InstrumentedSet eine andere Set-Instanz einhüllt. Man nennt dies auch das Dekorierer-
Muster [Gamma 1998, S. 175], da die Klasse InstrumentedSet eine Menge »dekoriert« ,
indem sie die Instrumentierung hinzufügt. Manchmal wird die Kombination von
Komposition und Weiterleitung auch fälschlich als Delegation bezeichnet. Technisch
handelt es sich erst dann um eine Delegation, wenn das Hüllenobjekt sich selbst an das
eingehüllte Objekt übergibt [Gamma 1998, S. 20].

Hüllenklassen haben nur wenige Nachteile. Einer ist, dass sich Hüllenklassen nicht für
Callback-Architekturen eignen, in denen Objekte für spätere Aufrufe (»Callbacks«) Refe-
renzen auf sich selbst an andere Objekte übergeben. Da das eingehüllte Objekt nichts
von seinem Hüllenobjekt weiß, übergibt es eine Referenz auf sich selbst (this) und die
Callbacks entwischen dem Hüllenobjekt. Dies nennt man das SELF-Problem [Lieber-
man 1986]. Manch einer macht sich Sorgen, dass die Weiterleitung von Methoden-
aufrufen oder die Hauptspeicherbelastung durch Hüllenobjekte die Leistung
beeinträchtigen könnte. Doch in der Praxis zeigt sich, dass keines von beiden beson-
dere Auswirkungen hat. Es ist zwar ein wenig langweilig, Weiterleitungsmethoden zu
schreiben, aber dies wird zum Teil dadurch wieder wettgemacht, dass Sie nur einen
einzigen Konstruktor schreiben müssen.

88 4 Klassen und Interfaces

Die Vererbung eignet sich nur dort, wo die Unterklasse in Wirklichkeit ein Untertyp der
Oberklasse ist. Mit anderen Worten: Eine Klasse B sollte eine Klasse A nur dann erwei-
tern, wenn zwischen den beiden Klassen eine »ist-ein« -Beziehung besteht. Wenn Sie
eine Klasse B eine Klasse A erweitern lassen möchten, müssen Sie sich fragen: »Ist auch
wirklich jedes B ein A?« Wenn Sie diese Frage nicht wahrheitsgemäß bejahen können,
sollte B A nicht erweitern. Ist die Antwort nein, so sollte B oftmals eine private Instanz
von A enthalten und ein kleineres und einfacheres API haben: A ist kein wesentlicher
Teil von B, sondern nur ein Detail von Bs Implementierung.

In den Java-Plattformbibliotheken finden Sie einige offensichtliche Verletzungen dieses
Prinzips. Da z.B. ein Stack kein Vector ist, sollte Stack die Klasse Vector nicht erwei-
tern. Auch ist eine Eigenschaftsliste keine Hash-Tabelle, und daher sollte Properties
nicht Hashtable erweitern. In beiden Fällen wäre Komposition angebracht gewesen.

Wenn Sie Vererbung nutzen, wo Komposition angebracht ist, legen Sie unnötigerweise
Implementierungsdetails offen. Das resultierende API bindet Sie an die Ursprungsim-
plementierung und schränkt die Leistung Ihrer Klasse für alle Zukunft ein. Was jedoch
noch schlimmer ist: Indem Sie Interna offen legen, lassen Sie Clients direkt auf diese
zugreifen. Im günstigsten Fall führt das nur zu einer verworrenen Semantik. Wenn sich
p z.B. auf eine Properties-Instanz bezieht, dann kann p.getProperty(key) andere
Ergebnisse bringen als p.get(key): Die erste Methode berücksichtigt Standardwerte,
die zweite, aus Hashtable geerbte, tut dies nicht. Noch schlimmer ist jedoch, dass der
Client Invarianten der Unterklasse zerstören kann, indem er die Oberklasse direkt
modifiziert. Im Falle von Properties beabsichtigten die Entwickler, als Schlüssel und
Werte nur Strings zuzulassen, aber mit einem direkten Zugriff auf die zugrunde lie-
gende Klasse Hashtable kann diese Invariante verletzt werden. Wenn dies geschehen
ist, können andere Teile des Properties-APIs (load und store) nicht mehr benutzt
werden. Als man dieses Problem entdeckte, war es zu spät, um es zu beheben, da
Clients bereits von der Benutzung von Schlüsseln und Werten abhingen, die keine
Strings waren.

Einige abschließende Fragen sollten Sie noch stellen, ehe Sie sich für Vererbung statt
Komposition entscheiden. Hat die Klasse, die Sie eventuell erweitern möchten, irgend-
welche Mängel in ihrem API? Wenn ja: Fühlen Sie sich wohl dabei, diese Mängel in das
API Ihrer eigenen Klasse zu übernehmen? Vererbung trägt die API-Mängel der Ober-
klasse immer weiter, während Sie mit Komposition ein neues API entwerfen können,
das diese Mängel verbirgt.

Zusammenfassend kann man sagen, dass Vererbung zwar mächtig aber auch proble-
matisch ist, weil sie die Kapselung verletzt. Sie ist nur dann geeignet, wenn zwischen
der Unterklasse und der Oberklasse eine echte Untertyp-Beziehung existiert. Selbst
dann kann Vererbung noch zu Instabilität führen, wenn die Unterklasse in einem ande-
ren Paket liegt als die Oberklasse und die Oberklasse nicht zum Erweitern geschaffen
wurde. Um diese Instabilität zu vermeiden, sollten Sie statt Vererbung Komposition

Thema 15: Entweder Sie entwerfen und dokumentieren für die Vererbung oder Sie verbieten sie 89

und Weiterleitung nutzen. Dies gilt vor allem dann, wenn ein Interface vorhanden ist,
das sich für die Implementierung einer Hüllenklasse eignet. Hüllenklassen sind nicht
nur stabiler, sondern auch mächtiger als Unterklassen.

4.4 Thema 15: Entweder Sie entwerfen und dokumentieren
für die Vererbung oder Sie verbieten sie

Thema 14 warnte Sie vor den Gefahren, eine »fremde« Klasse zu erweitern, die nicht
für die Vererbung entworfen und dokumentiert wurde. Was bedeutet es, dass eine
Klasse für die Vererbung entworfen und dokumentiert ist?

Erstens muss die Klasse genau dokumentieren, was beim Überschreiben irgendwel-
cher ihrer Methoden geschieht. Mit anderen Worten: Die Klasse muss ihre Selbstnut-
zung überschreibbarer Methoden dokumentieren. Für jede öffentliche oder geschützte
Methode und jeden öffentlichen oder geschützten Konstruktor muss die jeweilige
Dokumentation aussagen, welche überschreibbaren Methoden aufgerufen werden, in
welcher Reihenfolge das geschieht, und wie die Ergebnisse jedes Aufrufs die nachfol-
gende Verarbeitung beeinflussen. (Mit überschreibbar meine ich nicht-final und entweder
öffentlich oder geschützt.) Allgemeiner ausgedrückt: Eine Klasse muss genau doku-
mentieren unter welchen Umständen sie eine überschreibbare Methode aufrufen darf.
Aufrufe können z.B. von Hintergrund-Threads oder statischen Initialisierern kommen.

Nach Konvention enthält eine Methode, die überschreibbare Methoden aufruft, am
Ende ihres Doc-Kommentars eine Beschreibung dieser Aufrufe. Die Beschreibung
beginnt mit: »Diese Implementierung« . Bitte missverstehen Sie diese Formulierung
nicht als Hinweis darauf, dass sich das Verhalten von Release zu Release ändern kann.
Sie bedeutet lediglich, dass die Beschreibung die innere Arbeit der Methode betrifft. Im
Folgenden sehen Sie ein aus der Spezifikation von java.util.AbstractCollection kopier-
tes Beispiel:

public boolean remove(Object o)

Entfernt, falls vorhanden, eine einzelne Instanz des angegebenen Elements aus dieser
Sammlung (optional). Formaler ausgedrückt: entfernt ein Element e, sodass (o==null
? e==null : o.equals(e)), wenn die Sammlung ein oder mehrere solcher Elemente ent-
hält. Gibt true zurück, wenn die Sammlung das angegebene Element enthielt (oder
entsprechend, wenn sich die Sammlung aufgrund des Aufrufs geändert hat).

Diese Implementierung durchläuft die Sammlung und sucht nach dem ange-
gebenen Element. Wenn sie es findet, entfernt sie es mit der remove-Methode des Ite-
rators aus der Sammlung. Beachten Sie, dass diese Implementierung eine
UnsupportedOperationException auslöst, wenn der von der iterator-Methode dieser
Sammlung zurückgegebene Iterator die remove-Methode nicht implementiert.

90 4 Klassen und Interfaces

Diese Dokumentation lässt keinen Zweifel daran, dass ein Überschreiben der iterator-
Methode das Verhalten der remove-Methode beeinflusst. Außerdem beschreibt sie ganz
genau, wie das Verhalten des von der iterator-Methode zurückgegebenen Iterators
das Verhalten der remove-Methode beeinflusst. Stellen Sie dies einmal der Situation aus
Thema 14 gegenüber, in der der Programmierer, der eine Unterklasse zu HashSet
schrieb, nicht sagen konnte, ob das Überschreiben der add-Methode das Verhalten der
addAll-Methode beeinflussen würde oder nicht.

Verletzt dies nicht die Regel, dass eine gute API-Dokumentation beschreiben sollte, was
eine gegebene Methode tut und wie sie es tut? Doch! Dies ist leider eine Folge des
Umstands, dass Vererbung die Kapselung verletzt. Um eine Klasse so zu dokumentie-
ren, dass eine sichere Unterklassenbildung möglich ist, müssen Sie Implementierungs-
details beschreiben, die ansonsten nicht angegeben werden.

Ein Entwurf für die Vererbung ist mehr als nur eine Dokumentation der Selbstnut-
zungsmuster. Damit Programmierer ohne übermäßige Mühe wirkungsvolle Unterklas-
sen schreiben können, muss eine Klasse Hooks zu ihren internen Abläufen in Form
sorgfältig ausgewählter geschützter Methoden oder, in seltenen Fällen, geschützter
Felder zur Verfügung stellen. Betrachten Sie z.B. die Methode removeRange aus
java.util.AbstractList:

protected void removeRange(int fromIndex, int toIndex)

Entfernt aus dieser Liste alle Elemente, deren Index zwischen einschließlich fromIn-
dex und ausschließlich toIndex liegt. Schiebt alle nachfolgenden Elemente nach links
(mindert ihren Index). Dieser Aufruf verkürzt die ArrayList um (toIndex - fromIn-
dex) Elemente. (Wenn toIndex==fromIndex, dann hat diese Operation keine Auswir-
kungen.)

Diese Methode wird von der clear-Operation auf dieser Liste und ihren Unterlisten
aufgerufen. Wenn Sie diese Methode überschreiben, um Vorteil aus den Interna der
Listenimplementierung zu ziehen, können Sie dadurch die Leistung der clear-Ope-
ration auf dieser Liste und ihren Unterlisten massiv steigern.

Diese Implementierung holte einen Listeniterator, der vor fromIndex positioniert
wird, und ruft wiederholt zuerst ListIterator.next und dann ListIterator.remove
auf, bis das gesamte Intervall entfernt wurde. Achtung: Wenn ListIterator.remove
einen linearen Zeitaufwand bedeutet, so bedeutet diese Implementierung einen
quadratischen Zeitaufwand.

Parameter:

fromIndex Index des ersten zu entfernenden Elements.

toIndex Index hinter dem letzten zu entfernenden Element.

Thema 15: Entweder Sie entwerfen und dokumentieren für die Vererbung oder Sie verbieten sie 91

Diese Methode ist für Benutzer einer List-Implementierung nicht von Interesse. Sie
wird einzig zu dem Zweck bereitgestellt, damit Unterklassen leichter eine schnelle
clear-Methode auf Unterlisten zur Verfügung stellen können. Wenn keine removeRange-
Methode vorhanden ist, müssen die Unterklassen sonst bei einem Aufruf der clear-
Methode auf Unterlisten mit quadratischer Leistung arbeiten oder den ganzen subList-
Mechanismus von Grund auf neu schreiben – keine leichte Aufgabe!

Doch wie entscheidet man, welche geschützten Methoden oder Felder offengelegt wer-
den sollten, wenn eine Klasse für die Vererbung entworfen wird? Leider gibt es dafür
keine goldene Regel. Das Beste, was Sie tun können ist, scharf nachzudenken, die Lage
so gut wie möglich einzuschätzen und dann einige Unterklassen zu schreiben, um Ihre
Meinung zu testen. Sie sollten möglichst wenige geschützte Methoden und Felder zur
Verfügung stellen, da jede(s) sie an ein Implementierungsdetail bindet. Andererseits
dürfen Sie auch nicht zu wenige zur Verfügung stellen, da eine Klasse, der eine
geschützte Methode fehlt, für die Vererbung praktisch unbrauchbar werden kann.

Wenn Sie eine Klasse für die Vererbung entwerfen, die in großem Maßstab eingesetzt
werden soll, dann müssen Sie sich im Klaren darüber sein, dass Sie für immer an die
von Ihnen dokumentierten Selbstnutzungsmuster und die in den geschützten Metho-
den und Feldern der Klasse implizit vorhandenen Implementierungsentscheidungen
gebunden sind. Diese Verpflichtungen können es schwierig oder unmöglich machen,
die Leistung oder Funktionalität der Klasse in nachfolgenden Releases zu verbessern.

Beachten Sie bitte auch, dass die speziell für eine Vererbung notwendige Dokumenta-
tion die normale Dokumentation überlädt, die für Programmierer gedacht ist, die
Instanzen Ihrer Klasse erzeugen und darauf Methoden aufrufen. Zu dem Zeitpunkt,
da ich dieses schreibe, ist noch kein Werkzeug und keine Kommentarkonvention in
Sicht, mit der sich die normale API-Dokumentation von den Informationen trennen
ließe, die nur für solche Programmierer interessant sind, die Unterklassen implemen-
tieren.

Um Vererbung zu ermöglichen, muss eine Klasse noch ein paar weitere Einschränkun-
gen beachten: Konstruktoren dürfen keine überschreibbaren Methoden aufrufen,
weder direkt noch indirekt. Ein Verstoß gegen diese Regel führt zu einem Program-
mabsturz. Da der Oberklassenkonstruktor vor dem Unterklassenkonstruktor läuft,
wird die überschreibende Methode in der Unterklasse aufgerufen, ehe der Unterklas-
senkonstruktor aufgerufen wurde. Wenn die überschreibende Methode von irgend-
welchen Initialisierungen abhängt, die der Unterklassenkonstruktor vornimmt, dann
wird sich die Methode nicht erwartungsgemäß verhalten. Um dies zu konkretisieren,
zeige ich Ihnen hier eine kleine Klasse, die gegen diese Regel verstößt:

public class Super {
 // Kaputt - Der Konstruktor ruft eine überschreibbare Methode
auf
 public Super() {
 m();

92 4 Klassen und Interfaces

 }

 public void m() {
 }
}

Hier ist eine Unterklasse, die m überschreibt, das irrtümlich von dem einzigen Kon-
struktor von Super aufgerufen wird:

final class Sub extends Super {
 private final Date date; // final, vom Konstruktor gesetzt

 Sub() {
 date = new Date();
 }

 // Überschreibt Super.m, aufgerufen vom Konstruktor Super()
 public void m() {
 System.out.println(date);
 }

 public static void main(String[] args) {
 Sub s = new Sub();
 s.m();
 }
}

Man könnte denken, dass dieses Programm das Datum zweimal ausgibt, aber beim
ersten Mal gibt es null aus, weil die Methode m vom Konstruktor Super() aufgerufen
wird, ehe der Konstruktor Sub() Gelegenheit hatte, das date-Feld zu initialisieren.
Beachten Sie, dass dieses Programm ein final-Feld in zwei verschiedenen Zuständen
beobachtet.

Die Interfaces Cloneable und Serializable stellen Sie vor besondere Probleme,
wenn Sie etwas zur Vererbung entwerfen. Eine für die Vererbung entwickelte Klasse
sollte generell keines dieser beiden Interfaces implementieren, da sie Programmierern,
die diese Klasse dann erweitern möchten, große Schwierigkeiten macht. Sie können
jedoch besondere Maßnahmen ergreifen, damit Unterklassen diese Interfaces imple-
mentieren können, aber nicht müssen. Diese Maßnahmen sind in den Themen 10 und
54 beschrieben.

Wenn Sie in einer Klasse Cloneable oder Serializable implementieren möchten, die
für die Vererbung da ist, müssen Sie auf Folgendes achten: Da sich die Methoden clone
und readObject ganz ähnlich wie Konstruktoren verhalten, gilt für sie auch dieselbe
Einschränkung. Weder clone noch readObject dürfen je eine überschreibbare
Methode aufrufen, weder direkt noch indirekt. Im Falle der Methode readObject
wird die überschreibende Methode laufen, ehe der Zustand der Unterklasse deseriali-
siert wurde. Im Falle der clone-Methode wird die überschreibende Methode laufen, ehe

Thema 15: Entweder Sie entwerfen und dokumentieren für die Vererbung oder Sie verbieten sie 93

die clone-Methoden der Unterklasse die Gelegenheit hatten, den Zustand des Klons zu
festzulegen. Beides führt wahrscheinlich zu einem Programmabsturz. Im Falle der
clone-Methode kann dieser Absturz sowohl das geklonte Objekt als auch den Klon
selbst beschädigen.

Abschließend: Wenn Sie beschließen, in einer Klasse, die für die Vererbung da ist,
Serializable zu implementieren, und diese Klasse eine readResolve- oder eine write
Replace-Methode hat, dann müssen Sie diese Methode geschützt statt privat machen.
Wenn diese Methoden privat sind, werden sie von den Unterklassen stillschweigend
übergangen. Dies ist ein weiterer Fall, in dem ein Implementierungsdetail in das API
einer Klasse einfließt, damit Vererbung stattfinden kann.

Mittlerweile sollte offensichtlich sein: Wenn Sie eine Klasse für die Vererbung ent-
werfen, unterliegt diese Klasse engen Beschränkungen. Deshalb sollten Sie eine sol-
che Entscheidung nicht leichtfertig treffen. In einigen Fällen, wie z.B. bei abstrakten
Klassen mit Gerüstimplementierungen von Interfaces (Thema 16), ist dies zwar genau
das Richtige, aber in anderen Fällen, wie z.B. bei unveränderlichen Klassen (Thema 13)
ist es genau das Falsche.

Und was ist mit den ganz normalen, konkreten Klassen? Traditionell sind diese weder
final, noch sind sie für die Unterklassenbildung geschaffen und dokumentiert, doch
dieser Umstand ist gefährlich. Immer wenn Sie an einer solchen Klasse etwas ändern,
besteht die Gefahr, dass Client-Klassen kaputtgehen, die diese Klasse erweitern. Auch
dieses Problem besteht nicht nur in der Theorie. Es ist nicht unüblich, dass Sie Fehler-
meldungen über Unterklassen erhalten, nachdem Sie die Interna einer nicht-finalen,
konkreten Klasse geändert haben, die für die Vererbung weder geschaffen noch doku-
mentiert war.

Dieses Problem lösen Sie am besten, indem Sie für Klassen, die nicht so geschaffen
und dokumentiert sind, dass man sie in sicherer Weise erweitern könnte, die Unter-
klassenbildung ganz verbieten. Dazu gibt es zwei Möglichkeiten: Die einfachere der
beiden besteht darin, die Klasse als final zu deklarieren. Alternativ können Sie auch
alle Konstruktoren privat oder paketprivat machen und öffentliche, statische Factorys
an Stelle von Konstruktoren hinzufügen. Diese Alternative, die Ihnen die Flexibilität
gibt, intern Unterklassen zu nutzen, wird in Thema 13 erklärt. Beide Möglichkeiten
sind in Ordnung.

Dieser Ratschlag wird auch Kritik hervorrufen, da viele Programmierer sich daran
gewöhnt haben, Unterklassen von normalen konkreten Klassen zu schreiben, um so
etwas wie Instrumentierung, Benachrichtigung und Synchronisation hinzuzufügen
oder die Funktionalität einzuschränken. Wenn eine Klasse ein Interface implementiert,
das ihr Wesen wiedergibt – z.B. Set, List oder Map – dann können Sie die Unterklassen-
bildung getrost verbieten. Das in Thema 14 beschriebene Hüllenklassenmuster ist besser
als Vererbung, wenn Sie die Funktionalität ändern möchten.

94 4 Klassen und Interfaces

Wenn eine konkrete Klasse kein Standard-Interface implementiert, dann müssen Sie
eben einigen Programmierern Umstände machen, indem Sie die Vererbung verbieten.
Wenn Sie das Gefühl haben, Sie kommen nicht umhin, die Vererbung aus einer solchen
Klasse zu erlauben, dann können Sie dies in vernünftiger Weise tun, indem Sie dafür
sorgen, dass die Klasse nie eine ihrer überschreibbaren Methoden aufruft. Dies müssen
Sie auch dokumentieren. Mit anderen Worten: Sie müssen vollständig unterbinden,
dass die Klasse überschreibbare Methoden selbst nutzt. Dadurch erhalten Sie eine
Klasse, die sich in sicherer Weise erweitern lässt. Das Überschreiben einer Methode
kann nie das Verhalten einer anderen Methode beeinflussen.

Sie können auch mechanisch ohne Änderung des Klassenverhaltens unterbinden, dass
eine Klasse überschreibbare Methoden selbst nutzt. Dazu setzen Sie den Rumpf jeder
überschreibbaren Methode in eine private »Hilfsmethode« und lassen die überschreib-
baren Methoden jeweils ihre private Hilfsmethode aufrufen. Dann ersetzen Sie jede
Selbstnutzung einer überschreibbaren Methode durch einen direkten Aufruf der priva-
ten Hilfsmethode dieser überschreibbaren Methode.

4.5 Thema 16: Nutzen Sie besser Interfaces
als abstrakte Klassen

Java bietet zwei Mechanismen, mit denen Sie einen Typ definieren können, der
mehrere Implementierungen zulässt: Interfaces und abstrakte Klassen. Der deutlichste
Unterschied zwischen beiden ist der, dass abstrakte Klassen Implementierungen eini-
ger Methoden enthalten dürfen, Interfaces dagegen nicht. Doch noch wichtiger ist der
Unterschied, dass eine Klasse, die den von einer abstrakten Klasse definierten Typ
implementieren soll, eine Unterklasse dieser abstrakten Klasse sein muss. Jede Klasse,
die alle erforderlichen Methoden definiert und sich an den allgemeinen Vertrag hält,
darf ein Interface implementieren, egal wo sie in der Klassenhierarchie steht. Dass in
Java nur Einfachvererbung zulässig ist, schränkt die Nutzung von abstrakten Klassen
als Typdefinitionen stark ein.

Sie können auch vorhandene Klassen zurechtbiegen, damit sie ein neues Interface
implementieren können. Dazu brauchen Sie lediglich die erforderlichen Methoden,
falls noch nicht vorhanden, hinzuzufügen und eine implements-Klausel in die Klassen-
deklaration setzen. Es wurden z.B. viele bereits existierende Klassen nachträglich so
überarbeitet, dass sie das Interface Comparable implementierten, als dieses neu einge-
führt wurde. Doch im Allgemeinen können Sie bestehende Klassen nicht mehr so
umarbeiten, dass sie eine neue abstrakte Klasse erweitern. Wenn Sie möchten, dass
zwei Klassen dieselbe abstrakte Klasse erweitern, dann müssen Sie diese abstrakte
Klasse ganz weit oben in die Typhierarchie setzen, wo sie eine Unterklasse eines Vor-
fahren beider Klassen ist. Dies fügt jedoch der Typhierarchie großen Schaden zu: Alle

Thema 16: Nutzen Sie besser Interfaces als abstrakte Klassen 95

Abkömmlinge des gemeinsamen Vorfahren würden gezwungen, die neue abstrakte
Klasse zu erweitern, egal ob es gut für sie ist oder nicht.

Interfaces sind ideal, um Mixins zu definieren. Ein Mixin ist ein Typ, den eine Klasse
zusätzlich zu ihrem »Primärtyp« implementieren kann, um zu deklarieren, dass sie ein
optionales Verhalten zur Verfügung stellt. So ist z.B. Comparable ein Mixin-Interface,
mittels dem eine Klasse deklarieren kann, dass ihre Instanzen im Hinblick auf andere
untereinander vergleichbare Objekte geordnet sein sollen. Ein solches Interface heißt
Mixin, weil es erlaubt, dass die optionale Funktionalität »in die Hauptfunktionalität
des Typs hineingemixt« wird. Mit abstrakten Klassen können Sie aus demselben
Grund keine Mixins definieren, aus dem Sie sie auch nicht nachträglich bestehenden
Klassen überstülpen können. Eine Klasse kann nicht mehr als eine Elternklasse haben
und es gibt in der Klassenhierarchie keinen vernünftigen Platz, an den Sie ein Mixin
setzen könnten.

Interfaces ermöglichen die Konstruktion nicht-hierarchischer Typarchitekturen. Mit
Typhierarchien können Sie manche Dinge ganz prächtig organisieren, aber andere
Dinge widersetzen sich einer strikten Hierarchie. Angenommen, wir hätten ein Inter-
face, das einen Sänger darstellt, und ein anderes Interface, das einen Liedtexter darstellt:

public interface Singer {
 AudioClip Sing(Song s);
}
public interface Songwriter {
 Song compose(boolean hit);
}

Im wahren Leben sind manche Sänger zugleich auch Liedtexter. Da wir diese Typen
nicht mit abstrakten Klassen, sondern mit Interfaces definierten, ist es absolut zulässig,
dass eine einzelne Klasse sowohl Singer als auch Songwriter implementiert. Wir können
sogar ein drittes Interface definieren, das beides implementiert und neue Methoden
hinzufügt, die für diese Kombination geeignet sind:

public interface SingerSongwriter extends Singer, Songwriter {
 AudioClip strum();
 void actSensitive();
}

Sie benötigen nicht immer dieses Maß an Flexibilität, aber wenn Sie es tun, dann kön-
nen Ihnen Interfaces das Leben retten. Die Alternative wäre eine völlig überladene
Klassenhierarchie, in der für jede unterstützte Attributkombination eine Extra-Klasse
stehen müsste. Wenn Sie im Typsystem n Attribute haben, dann müssen Sie 2n mög-
liche Attributkombinationen unterstützen. Man nennt dies eine kombinatorische
Explosion. Überfrachtete Klassenhierarchien führen wiederum zu überfrachteten Klas-
sen, in denen sich viele Methoden nur durch den Typ ihrer Argumente unterscheiden,
da die Klassenhierarchie keine Typen hat, um häufige Verhaltensweisen darzustellen.

96 4 Klassen und Interfaces

Interfaces ermöglichen sichere und mächtige Funktionalitätsverbesserungen über
das Hüllenklassen-Idiom, das in Thema 14 beschrieben wird. Wenn Sie Typen mit
abstrakten Klassen definieren, dann hat der Programmierer, der Funktionen hinzufü-
gen möchte, keine andere Möglichkeit als die Vererbung. Die resultierenden Klassen
sind schwächer und instabiler als Hüllenklassen.

Interfaces dürfen zwar keine Methodenimplementierungen enthalten, aber wenn Sie
Typen mithilfe von Interfaces definieren, dann bedeutet das nicht, dass Sie den Pro-
grammierern keine Implementierungsunterstützung geben. Sie können die Stärken
von Interfaces und abstrakten Klassen bündeln, indem Sie eine abstrakte Skelettim-
plementierungsklasse liefern, die mit jedem nicht-trivialen Interface, das Sie exportie-
ren, genutzt werden kann. Hier definiert das Interface zwar immer noch den Typ, aber
die Skelettimplementierung macht die ganze Implementierungsarbeit.

Nach Konvention bezeichnet man Skelettimplementierungen als AbstractInterface,
wobei Interface der Name des implementierten Interfaces ist. So bietet z.B. das Collec-
tions Framework für jedes wichtige Sammlungs-Interface eine Skelettimplementie-
rung: AbstractCollection, AbstractSet, AbstractList und AbstractMap.

Wenn der Entwurf stimmt, machen es Skelettimplementierungen den Programmierern
sehr einfach, eigene Implementierungen ihrer Interfaces bereitzustellen. Hier finden Sie
z.B. eine statische Factory-Methode mit einer vollständigen, funktionierenden List-
Implementierung:

// List-Adapter für int-Array
static List intArrayAsList(final int[] a) {
 if (a == null)
 throw new NullPointerException();

 return new AbstractList() {
 public Object get(int i) {
 return new Integer(a[i]);
 }

 public int size() {
 return a.length;
 }

 public Object set(int i, Object o) {
 int oldVal = a[i];
 a[i] = ((Integer)o).intValue();
 return new Integer(oldVal);
 }
 };
}

Wenn Sie überlegen, was eine List-Implementierung alles für Sie tut, dann ist dieses
Beispiel eine machtvolle Demonstration der Fähigkeiten von Skelettimplementierun-

Thema 16: Nutzen Sie besser Interfaces als abstrakte Klassen 97

gen. Zufällig ist das Beispiel auch ein Adapter [Gamma 1998, S. 139], mit dem Sie ein
int-Array als Liste von Integer-Instanzen betrachten können. Durch das viele Hin- und
Herübersetzen von int-Werten und Integer-Instanzen ist die Leistung nicht so blen-
dend. Beachten Sie, dass eine statische Factory zur Verfügung gestellt wird, und dass
die Klasse eine nicht-zugreifbare anonyme Klasse (Thema 18) ist, die in der statischen
Factory verborgen liegt.

Das Schöne an Skelettimplementierungen ist, dass man mit ihnen die Implementie-
rungsunterstützung abstrakter Klassen herstellen kann, ohne den strengen Beschrän-
kungen zu unterliegen, denen abstrakte Klassen als Typdefinitionen gehorchen
müssen. Für die meisten Implementierer eines Interface ist es zwar das nächstliegende,
die Skelettimplementierung zu erweitern, aber dies ist strikt optional. Wenn eine
bereits vorhandene Klasse nicht dazu gebracht werden kann, dass sie die Skelettimple-
mentierung erweitert, dann kann sie das Interface immer noch manuell implementie-
ren. Außerdem kann die Skelettimplementierung dem Implementierer immer noch
helfen. Die Klasse, die das Interface implementiert, kann Aufrufe von Interface-Metho-
den an eine enthaltene Instanz einer privaten inneren Klasse weiterleiten, die diese
Skelettimplementierung erweitert. Diese Technik, die man auch »simulierte Mehrfach-
vererbung« nennt, hängt eng mit dem in Thema 14 behandelten Hüllenklassenidiom
zusammen. Sie hat die meisten Vorteile der Mehrfachvererbung, aber nicht ihre
Tücken.

Das Schreiben einer Skelettimplementierung ist einfach, aber etwas langweilig. Zuerst
müssen Sie das Interface untersuchen und entscheiden, welche Methoden Primitive
sind, also welche der anderen implementiert werden können. Diese Primitive werden
die abstrakten Methoden in Ihrer Skelettimplementierung. Danach müssen Sie für alle
anderen Methoden des Interfaces konkrete Implementierungen zur Verfügung stellen.
Im Folgenden sehen Sie z.B. eine Skelettimplementierung des Interfaces Map.Entry.
Momentan gehört diese Klasse noch nicht zu den Java-Plattformbibliotheken, aber sie
sollte besser darin aufgenommen werden:

// Skelettimplementierung
public abstract class AbstractMapEntry implements Map.Entry {
 // Primitive
 public abstract Object getKey();
 public abstract Object getValue();

 // Einträge in veränderlichen Maps müssen diese Methode
 // überschreiben.
 public Object setValue(Object value) {
 throw new UnsupportedOperationException();
 }

 // Implementiert den allgemeinen Vertrag von Map.Entry.equals
 public boolean equals(Object o) {
 if (o == this)

98 4 Klassen und Interfaces

 return true;
 if (! (o instanceof Map.Entry))
 return false;
 Map.Entry arg = (Map.Entry)o;

 return eq(getKey(), arg.getKey()) &&
 eq(getValue(), arg.getValue());
 }

 private static boolean eq(Object o1, Object o2) {
 return (o1 == null ? o2 == null : o1.equals(o2));
 }

 // Implementiert den allgemeinen Vertrag von Map.Entry.hashcode
 public int hashCode() {
 return
 (getKey() == null ? 0 : getKey().hashCode()) ^
 (getValue() == null ? 0 : getValue().hashCode());
 }
}

Da Skelettimplementierungen für die Vererbung geschaffen sind, sollten Sie sich an
alle Entwurfs- und Dokumentationsrichtlinien in Thema 15 halten. Um es kurz zu hal-
ten, wurden die Doc-Kommentare aus dem obigen Beispiel ausgelassen, aber eine gute
Dokumentation ist für Skelettimplementierungen absolut unerlässlich.

Wenn Sie Typen, die mehrere Implementierungen erlauben, mit abstrakten Klassen
definieren, so hat dies einen großen Vorteil gegenüber Interfaces: Eine abstrakte
Klasse lässt sich viel leichter weiterentwickeln als ein Interface. Wenn Sie einer abs-
trakten Klasse in einem späteren Release eine neue Methode hinzufügen möchten,
können Sie immer noch eine konkrete Methode dafür nehmen, die eine vernünftige
Standardimplementierung enthält. Alle existierenden Implementierungen der abstrak-
ten Klasse stellen dann die neue Methode zur Verfügung. Bei Interfaces funktioniert
das nicht.

Im Allgemeinen ist es unmöglich, einem öffentlichen Interface eine Methode hinzuzu-
fügen, ohne alle vorhandenen Programme zu zerstören, die dieses Interface nutzen.
Den Klassen, die das Interface zuvor implementierten, fehlt die neue Methode, sodass
sie sich nicht mehr kompilieren lassen. Sie könnten zwar den Schaden ein wenig
begrenzen, indem Sie die neue Methode dem Interface und der Skelettimplementie-
rung zugleich hinzufügen, aber eine wirkliche Lösung ist das nicht. Jede Implementie-
rung, die nicht von der Skelettimplementierung erbt, wäre dann immer noch
schadhaft.

Daher müssen Sie öffentliche Interfaces sorgfältig entwerfen. Sobald ein Interface ver-
öffentlicht und überall implementiert ist, kann es nicht mehr geändert werden. Sie
müssen es schon beim ersten Versuch richtig machen. Wenn ein Interface einen kleinen

Thema 17: Verwenden Sie Interfaces ausschließlich zur Typdefinition 99

Mangel hat, dann wird es Sie und die Benutzer in alle Zukunft damit ärgern; hat es
jedoch einen ernsten Schaden, so kann es das gesamte API zerstören. Wenn Sie ein
neues Interface veröffentlichen, lassen Sie es am besten von möglichst vielen Program-
mierern in möglichst vielen Formen implementieren, ehe Sie es endgültig »absegnen« .
Dann können Sie eventuelle Mängel früh genug erkennen, um sie noch beheben zu
können.

Fazit: Ein Interface ist im Allgemeinen der beste Weg, um einen Typ zu definieren, der
mehrere Implementierungen ermöglicht. Eine Ausnahme bildet der Fall, in dem eine
einfache Weiterentwicklungsmöglichkeit wichtiger ist, als Flexibilität und Mächtigkeit.
Unter diesen Umständen müssen Sie den Typ mit einer abstrakten Klasse definieren.
Tun Sie dies aber nur, wenn Sie ganz sicher sind, die damit einhergehenden Beschrän-
kungen zu verstehen und verkraften zu können. Wenn Sie ein nicht-triviales Interface
exportieren, sollten Sie möglichst auch eine Skelettimplementierung mitliefern. Und
Sie sollten alle Ihre öffentlichen Interfaces äußerst sorgfältig entwerfen und gründlich
testen, indem Sie mehrere Implementierungen schreiben.

4.6 Thema 17: Verwenden Sie Interfaces ausschließlich
zur Typdefinition

Wenn eine Klasse ein Interface implementiert, dann dient dieses Interface als Typ, mit
dem auf Instanzen der Klasse referiert werden kann. Also gibt die Tatsache, dass eine
Klasse ein Interface implementiert, Aufschluss über das, was ein Client mit Instanzen
dieser Klasse tun kann. Für keinen anderen Zweck sollte man ein Interface definieren.

Eine Art von Interface, die bei diesem Test durchfällt, ist das so genannte Konstanten-
Interface. Ein solches Interface hat keine Methoden, sondern besteht nur als statischen,
finalen Feldern, die je eine Konstante exportieren. Klassen, die diese Konstanten benut-
zen, implementieren das Interface, um die Konstantennamen nicht mit einem Klassen-
namen qualifizieren zu müssen. Ein Beispiel:

 // Konstanten-Interface-Muster: Nicht benutzen!
public interface PhysicalConstants {
 // Avogadros Zahl (1/mol)
 static final double AVOGADROS_NUMBER = 6.02214199e23;

 // Boltzmann-Konstante (J/K)
 static final double BOLTZMANN_CONSTANT = 1.3806503e-23;

 // Masse eines Elektrons (kg)
 static final double ELECTRON_MASS = 9.10938188e-31;
}

100 4 Klassen und Interfaces

Das Konstanten-Interface-Muster ist eine schlechte Anwendung von Interfaces.
Dass eine Klasse intern einige Konstanten benutzt, ist ein Implementierungsdetail. Die
Implementierung eines Konstanten-Interfaces lässt dieses Detail in das exportierte API
der Klasse einfließen. Für die Benutzer einer Klasse spielt es keine Rolle, ob sie ein
Konstanten-Interface implementiert. Es kann die Benutzer sogar verwirren. Ja schlim-
mer noch: Es begründet eine Verpflichtung. Wenn die Klasse in einem künftigen
Release so geändert wird, dass sie die Konstanten nicht mehr benutzen muss, muss sie
nach wie vor das Interface implementieren, um die Binärkompatibilität zu gewährleis-
ten. Wenn eine nicht-finale Klasse ein Konstanten-Interface implementiert, sind die
Namensräume aller ihrer Unterklassen mit den Konstanten aus dem Interface ver-
seucht.

In den Java-Plattformbibliotheken gibt es mehrere Konstanten-Interfaces, darunter
auch java.io.ObjectStreamConstants. Diese Interfaces sollten Sie als Anomalien betrach-
ten und nicht emulieren.

Wenn Sie Konstanten exportieren möchten, haben Sie mehrere vernünftige Möglichkei-
ten dafür. Wenn die Konstanten eng mit einer bestehenden Klasse oder einem Interface
verbunden sind, sollten Sie sie dieser Klasse oder diesem Interface hinzufügen. So
exportieren z.B. alle nummerischen Hüllenklassen der Java-Plattformbibliotheken –
z.B. Integer und Float – die Konstanten MIN_VALUE und MAX_VALUE. Wenn die Konstanten
am ehesten als Mitglieder eines Aufzählungstyps angesehen werden können, sollten
Sie sie mit einer typsicheren Enum-Klasse exportieren (Thema 21). Andernfalls sollten
Sie die Konstanten mit einer nicht-instanziierbaren Dienstklasse (Thema 3) exportie-
ren. Hier sehen Sie eine Dienstklassenversion des obigen PhysicalConstants-Beispiels:

// Konstanten-Dienstklasse
public class PhysicalConstants {
 private PhysicalConstants() { } // verhindert Instanziierung

 public static final double AVOGADROS_NUMBER = 6.02214199e23;
 public static final double BOLTZMANN_CONSTANT = 1.3806503e-23;
 public static final double ELECTRON_MASS = 9.10938188e-31;
}

Zwar erfordert die Dienstklassenversion von PhysicalConstants, dass Clients die
Konstantennamen mit einem Klassennamen qualifizieren, aber das ist kein zu hoher
Preis dafür, dass die APIs korrekt bleiben. Es ist möglich, dass die Sprache irgendwann
auch das Importieren statischer Felder gestattet. Bis es so weit ist, können Sie übermä-
ßige Typdefinitionen verhindern, indem Sie gebräuchliche Konstanten in lokalen Vari-
ablen oder privaten statischen Feldern speichern. Ein Beispiel:

 private static final double PI = Math.PI;

Zusammenfassend gesagt, sollten Interfaces nur zum Definieren von Typen dienen. Sie
sollten nicht dafür herhalten, Konstanten zu exportieren.

Thema 18: Ziehen Sie statische Attributklassen den nicht-statischen vor 101

4.7 Thema 18: Ziehen Sie statische Attributklassen
den nicht-statischen vor

Eine geschachtelte Klasse ist eine Klasse, die innerhalb einer anderen Klasse definiert ist.
Sie ist einzig dazu da, ihrer umgebenden Klasse zu dienen. Wäre eine geschachtelte
Klasse in irgendeinem anderen Zusammenhang nützlich, dann wäre sie eine Toplevel-
Klasse. Es gibt vier Arten von geschachtelten Klassen: statische Attributklassen, nicht-
statische Attributklassen, anonyme Klassen und lokale Klassen. Alle außer der ersten Art
nennt man innere Klassen. In diesem Thema erfahren Sie, welche Art von geschachtelter
Klasse Sie warum verwenden sollten.

Eine statische Attributklasse ist die einfachste Form einer geschachtelten Klasse. Am
besten stellen Sie sie sich als normale Klasse vor, die zufällt innerhalb einer anderen
Klasse deklariert ist, und Zugriff auf alle Attribute der umgebenden Klasse hat, selbst
auf die privaten. Eine statische Attributklasse ist ein statisches Attribut ihrer umgeben-
den Klasse und gehorcht denselben Zugriffsregeln wie andere statische Attribute auch.
Wenn sie als privat deklariert ist, kann nur innerhalb der umgebenden Klasse darauf
zugegriffen werden usw.

Häufig dient eine statische Attributklasse als öffentliche Hilfsklasse, die nur zusammen
mit ihrer umgebenden Klasse nützlich ist. Betrachten Sie z.B. eine typsichere Aufzäh-
lung, die beschreibt, welche Operationen ein Rechner (Thema 21) unterstützt. Die
Klasse Operation sollte eine öffentliche, statische Attributklasse der Klasse Calculator
sein. Clients der Klasse Calculator könnten dann mit Namen wie Calculator.Operation.
PLUS und Calculator.Operation.MINUS auf Operationen Bezug nehmen. Diese Verwendung
werden Sie weiter unten in diesem Thema noch sehen.

Der einzige Syntaxunterschied zwischen statischen und nicht-statischen Attributklas-
sen besteht darin, dass statische Attributklassen in ihren Deklarationen den Modifika-
tor static haben. Trotz der ähnlichen Syntax sind jedoch diese beiden Arten von
geschachtelten Klassen sehr unterschiedlich. Jede Instanz einer nicht-statischen Attri-
butklasse hängt implizit mit einer umgebenden Instanz der sie enthaltenden Klasse
zusammen. In Instanzmethoden einer nicht-statischen Attributklasse können Sie
Methoden auf der umgebenden Instanz aufrufen. Wenn Sie eine Referenz auf eine
Instanz einer nicht-statischen Attributklasse haben, können Sie eine Referenz auf die
umgebende Instanz erhalten. Wenn eine Instanz einer geschachtelten Klasse isoliert
von einer Instanz ihrer umgebenden Klasse existieren kann, dann kann die geschach-
telte Klasse keine nicht-statische Attributklasse sein: Ohne umgebende Instanz können
Sie unmöglich eine Instanz einer nicht-statischen Attributklasse erzeugen.

Die Verbindung zwischen einer nicht-statischen Attributklasseninstanz und ihrer
umgebenden Instanz wird begründet, wenn die Attributklasseninstanz erzeugt wird:
Danach kann sie nicht mehr geändert werden. Normalerweise wird diese Verbindung

102 4 Klassen und Interfaces

automatisch hergestellt, indem in einer Instanzmethode der umgebenden Klasse ein
Konstruktor der nicht-statischen Attributklasse aufgerufen wird. Es ist möglich –
wenngleich selten –, dass diese Verbindung mit dem Ausdruck enclosingInstance.new
MemberClass(args) manuell hergestellt wird. Erwartungsgemäß braucht diese Verbin-
dung Platz in der nicht-statischen Attributklasseninstanz und verlängert die Konstruk-
tionszeit dieser Instanz.

Oft dient eine nicht-statische Attributklasse dazu, einen Adapter [Gamma 1998, S. 139]
zu definieren, mit dem eine Instanz der äußeren Klasse wie eine Instanz einer ganz
unverbundenen Klasse betrachtet werden kann. So benutzen z.B. Implementierungen
des Map-Interfaces in der Regel nicht-statische Attributklassen, um ihre Sammlungs-
Views zu implementieren, die von den Map-Methoden keySet, entrySet und values
zurückgegeben werden.

// Typische Verwendung einer nicht-statischen Attributklasse
public class MySet extends AbstractSet {
 ... // Großteil der Klasse wird weggelassen

 public Iterator iterator() {
 return new MyIterator();
 }

 private class MyIterator implements Iterator {
 ...
 }
}

Wenn Sie eine Attributklasse deklarieren, die nicht auf eine umgebende Instanz
zugreifen muss, dürfen Sie nicht den Modifikator static in der Deklaration verges-
sen, der diese Klasse zu einer statischen Attributklasse macht. Wenn Sie den static-
Modifikator weglassen, enthält jede Instanz eine überflüssige Referenz auf das umge-
bende Objekt. Die Erhaltung dieser Referenz kostet Zeit und Platz und bringt nichts
ein. Falls Sie je eine Instanz ohne umgebende Instanz zuweisen müssen, können Sie
dies nicht, da Instanzen nicht-statischer Attributklassen immer eine umgebende
Instanz haben müssen.

Oft dienen private statische Attributklassen dazu, Komponenten des Objekts darzu-
stellen, das die umgebende Klasse repräsentiert. Betrachten Sie z.B. eine Instanz von
Map, die Schlüssel und Werte einander zuordnet. Map-Instanzen haben für jedes Schlüs-
sel/Wert-Paar in der Map ein internes Entry-Objekt. Doch während jeder Eintrag mit
einer Map zusammenhängt, brauchen die Methoden, die auf einem Eintrag arbeiten
(getKey, getValue und setValue), keinen Zugriff auf die Map zu haben. Daher wäre es
Verschwendung, Einträge durch eine nicht-statische Attributklasse darzustellen; hier
wäre eine private statische Attributklasse am besten. Wenn Sie versehentlich den

Thema 18: Ziehen Sie statische Attributklassen den nicht-statischen vor 103

static-Modifikator in der Eintragsdeklaration auslassen, arbeitet zwar die Map immer
noch, aber jeder Eintrag enthält dann eine überflüssige Referenz auf die Map, die Platz
und Zeit vergeudet.

Doppelt wichtig ist die richtige Wahl zwischen einer statischen und einer nicht-stati-
schen Attributklasse, wenn die fragliche Klasse ein öffentliches oder geschütztes Attri-
but einer exportierten Klasse ist. In diesem Fall ist die Attributklasse ein Element des
exportierten APIs und kann in einem nachfolgenden Release nicht mehr von einer
nicht-statischen auf eine statische Attributklasse umgestellt werden, ohne die Binär-
kompatibilität zu verletzen.

Anonyme Klassen gleichen keinem anderen Element der Programmiersprache Java.
Wie Sie sich denken können, hat eine anonyme Klasse keinen Namen. Sie ist kein Attri-
but ihrer umgebenden Klasse. Sie wird nicht mit den anderen Attributen zusammen
deklariert, sondern im Moment ihrer Verwendung gleichzeitig deklariert und instanzi-
iert. Anonyme Klassen dürfen überall dort im Code stehen, wo auch ein Ausdruck
zulässig wäre. Anonyme Klassen verhalten sich je nachdem, wo sie auftreten, ent-
weder wie statische oder wie nicht-statische Klassen. Sie haben umgebende Instanzen,
wenn sie in einem nicht-statischen Kontext auftreten.

Die Verwendung anonymer Klassen unterliegt mehreren Beschränkungen. Da sie
gleichzeitig deklariert und instanziiert wird, kann eine anonyme Klasse nur dann ver-
wendet werden, wenn sie instanziiert werden soll, und nur an einer einzigen Stelle im
Code. Da anonyme Klassen keinen Namen haben, können sie nur eingesetzt werden,
wenn nach ihrer Instanziierung nie mehr auf sie Bezug genommen zu werden braucht.
Anonyme Klassen implementieren Methoden in der Regel nur in ihrem Interface oder
ihrer Oberklasse. Sie deklarieren keine neuen Methoden, da es keinen benennbaren
Typ gibt, mit dem auf diese neuen Methoden zugegriffen werden könnte. Da anonyme
Klassen in Ausdrücken auftreten, sollten sie sehr kurz sein, also nicht mehr als rund
zwanzig Zeilen lang. Längere anonyme Klassen würden die Lesbarkeit des Pro-
gramms beeinträchtigen.

Häufig dienen anonyme Klassen dazu, ein Funktionsobjekt wie z.B. eine Instanz von
Comparator zu erzeugen. Der folgende Methodenaufruf sortiert z.B. ein Array von
Strings nach deren Länge:

// Typische Verwendung einer anonymen Klasse
Arrays.sort(args, new Comparator() {
 public int compare(Object o1, Object o2) {
 return ((String)o1).length() - ((String)o2).length();
 }
});

Eine andere häufige Verwendung einer anonymen Klasse ist die Erzeugung eines Pro-
zessobjekts wie z.B. einer Instanz von Thread, Runnable oder TimerTask. Ein drittes Einsatz-
feld ist eine statische Factory-Methode (siehe Methode intArrayAsList in Thema 16).

104 4 Klassen und Interfaces

Eine vierte häufige Verwendung betrifft die public static final Feld-Intialisierer aus-
gefeilter typsicherer Aufzählungen, die für jede Instanz eine separate Unterklasse
erfordern (siehe Klasse Operation in Thema 21). Wenn Sie die Klasse Operation gemäß
dem obigen Ratschlag zu einer statischen Attributklasse von Calculator gemacht
haben, dann sind die einzelnen Operation-Konstanten doppelt geschachtelte Klassen:

// Typische Verwendung einer öffentlichen, statischen Attributklasse
public class Calculator {
 public static abstract class Operation {
 private final String name;

 Operation(String name) { this.name = name; }

 public String toString() { return this.name; }

 // Perform arithmetic op represented by this constant
 abstract double eval(double x, double y);

 // doppelt geschachtelte anonyme Klassen
 public static final Operation PLUS = new Operation("+") {
 double eval(double x, double y) { return x + y; }
 };
 public static final Operation MINUS = new Operation("-") {
 double eval(double x, double y) { return x - y; }
 };
 public static final Operation TIMES = new Operation("*") {
 double eval(double x, double y) { return x * y; }
 };
 public static final Operation DIVIDE = new Operation("/") {
 double eval(double x, double y) { return x / y; }
 };
 }

 // Gib die Ergebnisse der angegebenen Berechnung zurück
 public double calculate(double x, Operation op, double y) {
 return op.eval(x, y);
 }
}

Lokale Klassen sind vielleicht die seltenste unter den vier Arten geschachtelter Klas-
sen. Eine lokale Klasse können Sie überall dort deklarieren, wo eine lokale Variable
deklariert wird, und sie unterliegt denselben Regeln hinsichtlich des Gültigkeits-
bereichs. Lokale Klassen haben mit jeder der drei anderen Arten von geschachtelten
Klassen etwas gemeinsam. Wie Attributklassen haben sie Namen und können wieder-
holt eingesetzt werden. Wie anonyme Klassen haben sie umgebende Instanzen, genau
dann wenn sie in einem nicht-statischen Kontext benutzt werden. Wie lokale Klassen
sollten sie kurz sein, damit die Lesbarkeit der umgebenden Methode oder des Initiali-
sierers nicht darunter leidet.

Thema 18: Ziehen Sie statische Attributklassen den nicht-statischen vor 105

Zusammenfassend gesagt gibt es vier verschiedene Arten von geschachtelten Klassen,
die alle ihren Sinn haben. Wenn eine geschachtelte Klasse außerhalb einer einzigen
Methode sichtbar sein muss oder zu lang ist, um ohne Weiteres in eine Methode hin-
einzupassen, sollten Sie eine Attributklasse verwenden. Wenn jede Instanz der Attri-
butklasse eine Referenz auf ihre umgebende Instanz haben muss, machen Sie sie nicht-
statisch; ansonsten machen Sie sie statisch. Wenn die Klasse in eine Methode hineinge-
hört, Sie Instanzen von nur einem Ort erzeugen müssen, und ein Typ, der die Klasse
charakterisiert, bereits vorhanden ist, machen Sie eine anonyme Klasse daraus,
andernfalls eine lokale Klasse.

5 Ersatz für C-Konstrukte

Java hat viel mit C gemeinsam, aber es fehlen auch viele C-Konstrukte. In den meisten
Fällen ist klar, warum sie weggelassen wurden und wie man ohne sie zurechtkommt.
Dieses Kapitel schlägt Ersatzlösungen für mehrere fehlende C-Konstrukte vor, bei
denen der Fall nicht so klar liegt.

Der rote Faden zwischen den Themen dieses Kapitels ist, dass alle fehlenden Kon-
strukte nicht objektorientiert, sondern datenorientiert sind. Java bietet ein mächtiges
Typsystem, das die vorgeschlagenen Ersatzlösungen ausnutzen, um eine hochwer-
tigere Abstraktion zu liefern, als die von ihnen ersetzten C-Konstrukte.

Selbst wenn Sie dieses Kapitel überspringen möchten, lohnt es sich, Thema 21 zu lesen,
in dem das typsichere Enum-Muster beschrieben wird. Es ist ein Ersatz für das enum-
Konstrukt von C. Dieses Muster ist zurzeit noch nicht sehr bekannt, hat aber mehrere
Vorteile gegenüber den gegenwärtig gebräuchlichen Methoden.

5.1 Thema 19: Ersetzen Sie Strukturen durch Klassen

Das C-Konstrukt struct wurde bei Java weggelassen, weil eine Klasse all das und noch
mehr leistet, was eine Struktur tut. Eine Struktur fasst nur mehrere Datenfelder zu
einem einzigen Objekt zusammen; eine Klasse hingegen verbindet das resultierende
Objekt mit Operationen und ermöglicht es, die Datenfelder vor den Benutzern des
Objekts zu verbergen. Mit anderen Worten kann eine Klasse ihre Daten in einem Objekt
kapseln, auf das nur über seine Methoden zugegriffen werden kann. So hat der Imple-
mentierer die Freiheit, die Repräsentation im Laufe der Zeit zu ändern (Thema 12).

Manche C-Programmierer glauben, wenn sie zum ersten Mal mit Java zu tun haben,
dass Klassen unter bestimmten Umständen zu schwergewichtig sind, um Strukturen
ersetzen zu können. Das ist jedoch nicht der Fall. Degenerierte Klassen, die nur aus
Datenfeldern bestehen, sind in etwa zu den C-Strukturen äquivalent:

// Degenerierte Klassen wie diese sollten nicht öffentlich
// sein!
class Point {
 public float x;
 public float y;
}

108 5 Ersatz für C-Konstrukte

Da auf solche Klassen über ihre Datenfelder zugegriffen wird, bieten sie nicht die Vor-
teile der Kapselung. Sie können die Darstellung einer solchen Klasse nicht ändern,
ohne auch ihr API zu ändern, Sie können keine Invarianten durchsetzen und auch
keine Hilfsmaßnahmen ergreifen, wenn ein Feld modifiziert wird. Objektorientierten
Hardlinern unter den Programmierern sind solche Klassen ein Gräuel; sie möchten sie
am liebsten immer durch private Felder und öffentliche Zugriffsmethoden ersetzen:

// Gekapselte Strukturklasse
class Point {
 private float x;
 private float y;

 public Point(float x, float y) {
 this.x = x;
 this.y = y;
 }

 public float getX() { return x; }
 public float getY() { return y; }

 public void setX(float x) { this.x = x; }
 public void setY(float y) { this.y = y; }
}

Im Hinblick auf öffentliche Klassen haben die Hardliner natürlich Recht: Wenn eine
Klasse außerhalb der Grenzen ihres Pakets zugreifbar ist, steuert jeder kluge Program-
mierer Zugriffsmethoden bei, um sich die Flexibilität zu erhalten, die interne Reprä-
sentation der Klasse später noch ändern zu können. Wenn eine öffentliche Klasse ihre
Datenfelder offen legen würde, hätte man keine Chance mehr, die Repräsentation
nachträglich ändern zu können, da Client-Code für öffentliche Klassen über das
gesamte bekannte Universum verbreitet sein kann.

Ist eine Klasse jedoch paketprivat oder eine private geschachtelte Klasse, so ist gegen
das Offenlegen ihrer Datenfelder an und für sich nichts einzuwenden, wenn diese tat-
sächlich die Abstraktion beschreiben, die diese Klasse liefert. Dieser Ansatz stiftet
weniger sichtbare Unordnung als der Ansatz mit den Zugriffsmethoden. Dies gilt
sowohl für die Klassendefinition als auch für den Client-Code, der die Klasse nutzt.
Der Client-Code ist an die interne Repräsentation der Klasse gebunden und dieser
Code ist wiederum auf das Paket beschränkt, zu dem die Klasse gehört. Wenn der
unwahrscheinliche Fall eintritt, dass eine Änderung der Repräsentation wünschens-
wert wird, dann kann diese Änderung bewirkt werden, ohne irgendwelchen Code
außerhalb des Pakets anzufassen. Im Falle einer privaten, geschachtelten Klasse wird
der Skopus der Änderung noch stärker eingeschränkt, nämlich auf die umgebende
Klasse.

Thema 20: Ersetzen Sie Unions durch Klassenhierarchien 109

In den Java-Plattformbibliotheken gibt es mehrere Klassen, die die Vorschrift verletzen,
dass öffentliche Klassen keine Felder unmittelbar offen legen sollen. Hervorstechende
Beispiele sind die Klassen Point und Dimension aus dem Paket java.awt. Diese Klassen
sollten Sie nicht nachahmen, sondern als abschreckende Beispiele betrachten. In
Thema 37 wird beschrieben, wie die Entscheidung, Interna der Dimension-Klasse offen
zu legen, zu einem bösen Leistungsproblem führte, das nicht ohne Beeinträchtigung
der Clients behoben werden konnte.

5.2 Thema 20: Ersetzen Sie Unions durch Klassenhierarchien

Das union-Konstrukt von C dient zumeist der Definition von Strukturen, die mehr als
einen Datentyp speichern können. Eine solche Struktur hat in der Regel mindestens
zwei Felder: Eine Union und ein Tag. Das Tag ist ein normales Feld, das angibt, wel-
chen der möglichen Typen die Union speichert. Normalerweise hat es einen enum-Typ.
Eine Struktur mit einer Union und einem Tag wird manchmal auch als discriminated
Union bezeichnet.

In dem C-Codebeispiel unten ist der Typ shape_t eine discriminated Union, mit der Sie
entweder ein Rechteck oder einen Kreis darstellen können. Die Funktion area nimmt
einen Zeiger auf eine shape_t-Struktur entgegen und gibt ihren Bereich oder, wenn die
Struktur ungültig ist, -1.0 zurück.

/* Discriminated Union */
#include "math.h"
typedef enum {RECTANGLE, CIRCLE} shapeType_t;

typedef struct {
 double length;
 double width;
} rectangleDimensions_t;

typedef struct {
 double radius;
} circleDimensions_t;

typedef struct {
 shapeType_t tag;
 union {
 rectangleDimensions_t rectangle;
 circleDimensions_t circle;
 } dimensions;
} shape_t;

double area(shape_t *shape) {
 switch(shape->tag) {
 case RECTANGLE: {

110 5 Ersatz für C-Konstrukte

 double length = shape->dimensions.rectangle.length;
 double width = shape->dimensions.rectangle.width;
 return length * width;
 }
 case CIRCLE: {
 double r = shape->dimensions.circle.radius;
 return M_PI * (r*r);
 }
 default: return -1.0; /* Ungültiges Tag */
 }
}

Die Entwickler von Java beschlossen, das union-Konstrukt wegzulassen, weil es einen
viel besseren Mechanismus gibt, um einen einzelnen Datentyp zu definieren, der
Objekte verschiedener Typen darstellen kann: die Bildung von Untertypen. Eine dis-
criminated Union ist eigentlich nichts als ein Abklatsch einer Klassenhierarchie.

Um eine discriminated Union in eine Klassenhierarchie zu verwandeln, definieren Sie
eine abstrakte Klasse, die für jede Operation, deren Verhalten von dem Wert des Tags
abhängt, eine abstrakte Methode enthält. Im obigen Beispiel ist area die einzige derar-
tige Operation. Diese abstrakte Klasse ist die Wurzel der Klassenhierarchie. Wenn es
irgendwelche Operationen gibt, deren Verhalten nicht von dem Tag-Wert abhängt,
müssen Sie diese Operationen in konkrete Methoden der Wurzelklasse verwandeln.
Ebenso gilt: Wenn außer dem Tag und der Union irgendwelche Datenfelder in der
discriminated Union sind, so stellen diese Felder Daten dar, die allen Typen gemein-
sam sind, und sollten daher der Wurzelklasse hinzugefügt werden. In unserem Bei-
spiel gibt es keine derartigen typunabhängigen Operationen oder Datenfelder.

Als Nächstes definieren Sie für jeden Typ, der von der discriminated Union dargestellt
werden kann, eine konkrete Unterklasse der Wurzelklasse. Im obigen Beispiel sind das
die Typen circle und rectangle. Binden Sie in jede Unterklasse die Datenfelder ein, die
für ihren Typ spezifisch sind. In dem Beispiel ist radius spezifisch für circle, und length
und width sind spezifisch für rectangle. Außerdem sollten Sie in jede Unterklasse die
passende Implementierung jeder abstrakten Klasse der Wurzelklasse hineinschreiben.
Im Folgenden sehen Sie die Klassenhierarchie zu dem Beispiel mit der discriminated
Union:

abstract class Shape {
 abstract double area();
}

class Circle extends Shape {
 final double radius;

 Circle(double radius) { this.radius = radius; }

Thema 20: Ersetzen Sie Unions durch Klassenhierarchien 111

 double area() { return Math.PI * radius*radius; }
}

class Rectangle extends Shape {
 final double length;
 final double width;

 Rectangle(double length, double width) {
 this.length = length;
 this.width = width;
 }
 double area() { return length * width; }
}

Eine Klassenhierarchie bietet eine Menge Vorteile gegenüber einer discriminated
Union. Ein Hauptvorteil ist, dass die Klassenhierarchie für Typsicherheit sorgt. In
unserem Beispiel ist jede Instanz von Shape entweder ein gültiger Circle oder ein gülti-
ges Rectangle. Leicht kann es passieren, dass Sie eine shape_t-Struktur generieren, die
kompletter Müll ist, weil die Verbindung zwischen dem Tag und der Union von der
Sprache nicht erzwungen wird. Wenn das Tag anzeigt, dass shape_t ein Rechteck dar-
stellt, aber die Union auf einen Kreis eingestellt wurde, dann geht nichts mehr. Selbst
wenn eine discriminated Union korrekt initialisiert wurde, kann sie immer noch einer
Funktion übergeben werden, die für ihren Tag-Wert ungeeignet ist.

Ein zweiter Vorteil der Klassenhierarchie ist der einfache und klare Code. Die discrimi-
nated Union ist vollgestopft mit allem Möglichen: Der enum-Typ wird deklariert, das
Tag-Feld wird deklariert, der Tag-Wert kann gewechselt werden, unerwartete Tag-
Werte werden behandelt und dergleichen mehr. Noch schlechter lesbar wird der Code
der discriminated Union durch den Umstand, dass die Operationen für die verschiede-
nen Typen nicht nach Typen getrennt, sondern vermischt darin stehen.

Ein dritter Vorteil der Klassenhierarchie ist ihre leichte Erweiterbarkeit, die selbst dann
zum Tragen kommt, wenn mehrere Personen unabhängig voneinander an ihr arbeiten.
Um eine Klassenhierarchie zu erweitern, fügen Sie einfach eine neue Unterklasse
hinzu. Wenn Sie eine der abstrakten Oberklassenmethoden zu überschreiben verges-
sen, sagt Ihnen dies der Compiler klar und deutlich. Wenn Sie dagegen eine discrimi-
nated Union erweitern möchten, müssen Sie in den Quellcode hineingehen. Sie
müssen in jeder Operation auf der discriminated Union dem enum-Typ einen neuen
Wert und der switch-Anweisung einen neuen Fall hinzufügen und zum Schluss alles
noch einmal neu kompilieren. Wenn Sie bei einer Methode den neuen Fall vergessen,
stellen Sie das erst zur Laufzeit fest, und auch dann nur, wenn Sie sorgfältig auf uner-
kannte Tag-Werte hin prüfen und für eine geeignete Fehlermeldung sorgen.

Ein vierter Vorteil der Klassenhierarchie ist, dass sie natürliche Hierarchiebeziehungen
zwischen Typen widerspiegeln kann. Dies gestattet mehr Flexibilität und eine bessere
Typprüfung zur Übersetzungszeit. Angenommen, die discriminated Union im ersten

112 5 Ersatz für C-Konstrukte

Beispiel würde auch Quadrate (Squares) mit einbeziehen. Die Klassenhierarchie kön-
nen Sie so gestalten, dass sie die Tatsache widerspiegelt, dass ein Quadrat ein Sonder-
fall eines Rechtecks ist (wir gehen davon aus, dass beide unveränderlich sind):

class Square extends Rectangle {
 Square(double side) {
 super(side, side);
 }

 double side() {
 return length; // oder entsprechend width
 }
}

Die Klassenhierarchie in diesem Beispiel ist nicht die einzige, mit der man die discrimi-
nated Union hätte ersetzen können. Sie verkörpert mehrere bemerkenswerte Entwurf-
sentscheidungen. Auf die Klassen in der Hierarchie – ausgenommen Square – wird
nicht über Zugriffsmethoden, sondern über ihre Felder zugegriffen. Der Grund ist die
Kürze, aber bei öffentlichen Klassen wäre das nicht akzeptabel (Thema 19). Die Klas-
sen sind unveränderlich. Das geht nicht immer, ist aber generell eine gute Sache
(Thema 13).

Da Java kein union-Konstrukt kennt, könnte man annehmen, es bestehe gar keine
Gefahr, dass jemand eine discriminated Union implementiert. Es ist jedoch möglich,
Code zu schreiben, der viele der Nachteile dieses Konstrukts hat. Wann immer Sie in
Versuchung sind, eine Klasse mit einem expliziten Tag-Feld zu schreiben, sollten Sie
überlegen, ob Sie das Tag nicht auch beiseite lassen und die Klasse durch eine Klassen-
hierarchie ersetzen könnten.

Eine andere Anwendung des union-Konstrukts von C hat mit discriminated Unions gar
nichts zu tun: Es geht um die Betrachtung der internen Repräsentation eines Daten-
stücks, wobei absichtlich das Typsystem verletzt wird. Diese Verwendung sehen Sie in
dem folgenden C-Codefragment, das die rechnerspezifische Hexadezimaldarstellung
eines float-Werts ausgibt:

union {
 float f;
 int bits;
} sleaze;

sleaze.f = 6.699e-41; /* Setz Daten in ein Feld der Union... */
printf("%x\n", sleaze.bits); /* ...und lies sie aus dem anderen. */

Diese nicht-portierbare Verwendung von union kann zwar speziell für die Systempro-
grammierung nützlich sein, hat aber in Java keine Entsprechung. Sie widerspricht dem
Geist dieser Sprache, der Typsicherheit garantiert und alles unternimmt, um die Pro-
grammierer von den rechnerspezifischen, internen Repräsentationen abzuschneiden.

Thema 21: Ersetzen Sie Enum-Konstrukte durch Klassen 113

Das Paket java.lang enthält zwar Methoden zur Übersetzung von Gleitkommazahlen
in Bitdarstellungen, aber diese Methoden sind mit genau spezifizierter Bitdarstellung
definiert, um die Portierbarkeit zu gewährleisten. Das nachfolgende Code-Fragment,
das dem obigen C-Fragment in etwa entspricht, gibt garantiert auf jeder Plattform das-
selbe Ergebnis aus:

System.out.println(
 Integer.toHexString(Float.floatToIntBits(6.699e-41f)));

5.3 Thema 21: Ersetzen Sie Enum-Konstrukte durch Klassen

Das enum-Konstrukt von C wurde bei Java weggelassen. Dem Namen nach definiert es
einen Aufzählungstyp: einen Typ, dessen gültige Werte aus einer festgelegten Menge
von Konstanten bestehen. Doch leider definiert das enum-Konstrukt die Aufzählungs-
typen nur schlecht. Es definiert nur eine Menge benannter, ganzzahliger Konstanten
und bietet keinerlei Typsicherheit und nur wenig Bequemlichkeit. Sie können in gülti-
gem C nicht nur dieses schreiben:

typedef enum {FUJI, PIPPIN, GRANNY_SMITH} apple_t;
typedef enum {NAVEL, TEMPLE, BLOOD} orange_t;
orange_t myFavorite = PIPPIN; /* Äpfel und Birnen vergleichen */

sondern auch die nachfolgende Ungeheuerlichkeit:

orange_t x = (FUJI - PIPPIN)/TEMPLE; /* Schwachsinn! */

Das enum-Konstrukt stellt keinen Namensraum für die Konstanten her, die es generiert.
Daher steht die nachfolgende Deklaration, die einen der Namen wieder verwendet, im
Konflikt zu der Deklaration von orange_t:

typedef enum {BLOOD, SWEAT, TEARS} fluid_t;

Typen, die mit dem enum-Konstrukt definiert wurden, sind empfindlich. Wenn Sie
einem solchen Typ Konstanten hinzufügen, ohne seine Clients neu zu kompilieren,
und nicht auf die Erhaltung aller zuvor existierenden Konstantenwerte achten, so führt
dies zu chaotischem Verhalten. Es ist unmöglich, dass mehrere Personen unabhängig
voneinander einem solchen Typ Konstanten hinzufügen, denn ihre neuen Aufzäh-
lungskonstanten werden wahrscheinlich Konflikte verursachen. Das enum-Konstrukt
bietet keinen Weg, um auf einfache Weise Aufzählungskonstanten in druckbare Strings
zu übersetzen oder die Konstanten in einem Typ aufzuzählen.

Leider hat das meistgenutzte Muster für Aufzählungstypen in Java dieselben Mängel
wie das enum-Konstrukt von C:

// Das int enum-Muster - problematisch!!
public class PlayingCard {
 public static final int SUIT_CLUBS = 0;

114 5 Ersatz für C-Konstrukte

 public static final int SUIT_DIAMONDS = 1;
 public static final int SUIT_HEARTS = 2;
 public static final int SUIT_SPADES = 3;
 ...
}

Eventuell finden Sie eine Variante dieses Musters vor, die statt String-Konstanten int-
Konstanten verwendet. Diese Varianten dürfen Sie nie benutzen. Sie stellt zwar für ihre
Konstanten druckbare Strings zur Verfügung, kann aber Leistungsprobleme verur-
sachen, weil sie sich auf String-Vergleiche stützt. Außerdem kann sie naive Benutzer
veranlassen, String-Konstanten in den Client-Code fest einzugeben, statt die entspre-
chenden Feldnamen zu verwenden. Wenn eine solche, fest eingegebene String-Kon-
stante einen Tippfehler enthält, wird dieser zur Übersetzungszeit nicht erkannt und
ruft später Laufzeitfehler hervor.

Zum Glück bietet Java eine Alternative, die alle Probleme der gebräuchlichen int- und
String-Muster löst und zudem auch noch Vorteile bringt. Sie heißt typsicheres Enum-
Muster. Es ist leider noch recht unbekannt. Sein Grundgedanke ist einfach: Sie definie-
ren eine Klasse, die ein einzelnes Element des Aufzählungstyps enthält, und geben kei-
nen öffentlichen Konstruktor an. Stattdessen liefern Sie für jede Konstante des
Aufzählungstyps ein public static final-Feld. In seiner einfachsten Form sieht dieses
Muster folgendermaßen aus:

// Das typsichere Enum-Muster
public class Suit {
 private final String name;

 private Suit(String name) { this.name = name; }

 public String toString() { return name; }

 public static final Suit CLUBS = new Suit("clubs");
 public static final Suit DIAMONDS = new Suit("diamonds");
 public static final Suit HEARTS = new Suit("hearts");
 public static final Suit SPADES = new Suit("spades");
}

Da Clients keine Möglichkeit haben, Objekte der Klasse zu erzeugen oder sie zu erwei-
tern, kann es von diesem Typ nur die Objekte geben, die über die public static final-
Felder exportiert werden. Obwohl die Klasse nicht als final deklariert ist, gibt es keine
Möglichkeit, sie zu erweitern. Unterklassenkonstruktoren müssen einen Oberklassen-
konstruktor aufrufen, und ein solcher steht nicht zur Verfügung.

Wie sein Name schon sagt, ist das typsichere Enum-Muster zur Übersetzungszeit typ-
sicher. Wenn Sie eine Methode mit einem Parameter vom Typ Suit deklarieren, haben
Sie die Garantie, dass jede an diese Methode übergebene Nicht-Null-Objektreferenz
eine der vier gültigen Kartenfarben darstellt. Jeder Versuch, ein Objekt mit einem

Thema 21: Ersetzen Sie Enum-Konstrukte durch Klassen 115

unzulässigen Typ zu übergeben, wird zur Übersetzungszeit abgefangen. Gleiches gilt
für Versuche, einen Ausdruck mit einem Aufzählungstyp einer Variablen eines ande-
ren Aufzählungstyps zuzuweisen. Mehrere typsichere Enum-Klassen mit identisch
benannten Aufzählungskonstanten können friedlich koexistieren, da jede Klasse ihren
eigenen Namensraum hat.

Sie können einer typsicheren Enum-Klasse Konstanten hinzufügen, ohne ihre Clients
neu kompilieren zu müssen, denn die public static-Objektreferenz-Felder mit den
Aufzählungskonstanten bilden eine Isolierschicht zwischen dem Client und der
Enum-Klasse. Die Konstanten selbst werden – anders als in dem bekannteren int-Mus-
ter und seiner String-Variante – niemals in die Clients hineinkompiliert.

Da typsichere Enums voll ausgereifte Klassen sind, können Sie, wie zuvor gezeigt, die
toString-Methode überschreiben und gestatten, dass Werte in druckbare Zeichen über-
setzt werden. Auf Wunsch können Sie auch noch einen Schritt weiter gehen und mit
den standardmäßigen Mitteln typsichere Enums internationalisieren. Beachten Sie,
dass String-Namen nur von der toString-Methode und nicht für Gleichheitsvergleiche
genutzt werden, da die von Object geerbte equals-Implementierung einen Referenz-
identitätsvergleich durchführt.

Sie können einer typsicheren Enum-Klasse jede geeignete Methode hinzufügen.
Unsere Suit-Klasse könnte z.B. von einer Methode profitieren, die die Kartenfarbe
zurückgibt, oder von einer, die das Bildsymbol der betreffenden Farbe zurückliefert.
Eine Klasse kann als einfache typsichere Enum anfangen und sich mit der Zeit zu einer
Abstraktion mit umfassenden Funktionen mausern.

Da Sie typsicheren Enum-Klassen beliebige Methoden geben könne, können sie auch
jedes beliebige Interface implementieren. Angenommen, Sie möchten, dass Suit das
Interface Comparable implementiert, damit die Clients ihre Karten nach Farbe sortieren
können.

Im Folgenden sehen Sie eine kleine Abwandlung des Originalmusters, die dies leistet.
Mit der statischen Variablen nextOrdinal wird jeder Instanz bei ihrer Erzeugung eine
Ordinalzahl zugewiesen. Diese wird von der compareTo-Methode genutzt, um die
Instanzen zu ordnen:

// typsichere Enum mit Ordinalzahlen
public class Suit implements Comparable {
 private final String name;

 // Erzeuge Ordinalzahl der nächsten Farbe
 private static int nextOrdinal = 0;

 // Weise dieser Farbe eine Ordinalzahl zu
 private final int ordinal = nextOrdinal++;

116 5 Ersatz für C-Konstrukte

 private Suit(String name) { this.name = name; }

 public String toString() { return name; }

 public int compareTo(Object o) {
 return ordinal - ((Suit)o).ordinal;
 }

 public static final Suit CLUBS = new Suit("clubs");
 public static final Suit DIAMONDS = new Suit("diamonds");
 public static final Suit HEARTS = new Suit("hearts");
 public static final Suit SPADES = new Suit("spades");
}

Da die Konstanten der typsicheren Enum Objekte sind, können Sie sie in Sammlungen
einfügen. Angenommen, Sie möchten, dass die Klasse Suit eine unveränderliche Liste
der Kartenfarben in der üblichen Reihenfolge exportiert. Dazu brauchen Sie der Klasse
nur die folgenden beiden Felddeklarationen hinzufügen:

private static final Suit[] PRIVATE_VALUES =
 { CLUBS, DIAMONDS, HEARTS, SPADES };
public static final List VALUES =
 Collections.unmodifiableList(Arrays.asList(PRIVATE_VALUES));

Anders als bei dem typsicheren Enum-Muster in seiner einfachsten Form können Klas-
sen des oben gezeigten Musters mit den Ordinalzahlen auch serialisierbar gemacht
werden (Kapitel 10). Das kostet etwas Mühe: Es reicht nicht, einfach implements Seria-
lizable in die Klassendeklaration zu schreiben; Sie müssen auch eine readResolve-
Methode zur Verfügung stellen (Thema 57):

private Object readResolve() throws ObjectStreamException {
 return PRIVATE_VALUES[ordinal]; // kanonisch machen
}

Diese Methode, die vom Serialisierungssystem automatisch aufgerufen wird, verhin-
dert, dass nach einer Deserialisierung doppelte Konstanten nebeneinander existieren.
So ist garantiert, dass jede Enum-Konstante immer nur durch ein einziges Objekt dar-
gestellt wird, und Object.equals braucht nicht mehr überschrieben zu werden. Ohne
diese Garantie würde Object.equals einen verkehrten negativen Wert zurückgeben,
wenn es auf zwei getrennte, aber gleiche Aufzählungskonstanten trifft. Achtung: Da
sich die readResolve-Methode auf das PRIVATE_VALUES-Array bezieht, müssen Sie dieses
Array auch dann deklarieren, wenn Sie gar keine VALUES exportieren möchten. Und da
das name-Feld von der readResolve-Methode nicht benutzt wird, können und müssen
Sie es transient machen.

Die resultierende Klasse ist etwas empfindlich. Konstruktoren für etwaige neue Werte
müssen hinter denen für alle bereits vorhandenen Werte stehen, damit gewährleistet
ist, dass die zuvor serialisierten Instanzen ihren Wert nicht ändern, wenn sie deseriali-

Thema 21: Ersetzen Sie Enum-Konstrukte durch Klassen 117

siert werden. Das ist so, weil die serialisierte Form (Thema 55) einer Aufzählungskon-
stante nur in ihrer Ordinalzahl besteht. Wenn sich die zu einer Ordinalzahl gehörende
Aufzählungskonstante ändert, übernimmt eine serialisierte Konstante mit dieser Ordi-
nalzahl den neuen Wert, wenn sie deserialisiert wird.

Eventuell hängen mit jeder Konstante Verhaltensweisen zusammen, die nur innerhalb
des Pakets zum Tragen kommen, zu dem die typsichere Enum-Klasse gehört. Solche
Verhaltensweisen implementieren Sie am besten als paketprivate Methoden der betref-
fenden Klasse. Dann trägt jede Enum-Konstante eine verborgene Sammlung von Ver-
haltensweisen mit sich, die es dem Paket des Aufzählungstyps ermöglicht, passend zu
reagieren, wenn es auf diese Konstante trifft.

Wenn eine typsichere Enum-Klasse Methoden hat, deren Verhalten von einer Klassen-
konstante zur anderen deutlich unterschiedlich ist, dann sollten Sie für jede Konstante
eine eigene private Klasse oder anonyme innere Klasse verwenden. So erhält jede
Konstante ihre eigene Implementierung von jeder dieser Methoden und ruft auch
automatisch die richtige Implementierung auf. Die Alternative wäre, jede derartige
Methode als Verzweigung in mehrere Richtungen zu strukturieren, die sich je nach der
Konstante, auf der sie aufgerufen wird, anders verhält. Diese Alternative ist hässlich,
fehleranfällig und vermutlich schädlicher für die Leistung, als das automatische
Methoden-Dispatching der virtuellen Maschine.

Die nachfolgende typsichere Enum-Klasse veranschaulicht die beiden oben beschrie-
benen Techniken. Diese Klasse namens Operation stellt eine Operation eines einfachen
Taschenrechners mit vier Funktionen dar. Außerhalb des Pakets, in dem sie definiert
ist, können Sie mit einer Operation-Konstante lediglich die Object-Methoden aufrufen
(toString, hashCode, equals usw.). Innerhalb des Pakets können Sie jedoch die von der
Konstanten dargestellte Rechenoperation ausführen. Das Paket könnte ein höher ange-
siedeltes Taschenrechner-Objekt exportieren, das wiederum eine oder mehrere Metho-
den exportiert, die eine Operation-Konstante als Parameter entgegennehmen. Beachten
Sie, dass Operation selbst eine abstrakte Klasse ist, die eine einzige, paketprivate abs-
trakte Methode namens eval enthält, die die entsprechende Rechenoperation ausführt.
Für jede Konstante ist eine anonyme innere Klasse definiert, sodass jede Konstante ihre
eigene Version von eval definieren kann:

// Typsichere Enum, Konstanten sind mit Verhalten verbunden
public abstract class Operation {
 private final String name;

 Operation(String name) { this.name = name; }

 public String toString() { return this.name; }

 // Führe die Rechenoperation gemäß dieser Konstante durch.
 abstract double eval(double x, double y);

118 5 Ersatz für C-Konstrukte

 public static final Operation PLUS = new Operation("+") {
 double eval(double x, double y) { return x + y; }
 };
 public static final Operation MINUS = new Operation("-") {
 double eval(double x, double y) { return x - y; }
 };
 public static final Operation TIMES = new Operation("*") {
 double eval(double x, double y) { return x * y; }
 };
 public static final Operation DIVIDED_BY =
 new Operation("/") {
 double eval(double x, double y) { return x / y; }
 };
}

Allgemein ausgedrückt sind typsichere Enums hinsichtlich der Leistung vergleichbar
mit int-Aufzählungskonstanten. Da nie zwei getrennte Instanzen einer typsicheren
Enum-Klasse denselben Wert darstellen können, werden sie mit den schnellen Refe-
renzidentitätsvergleichen auf logische Gleichheit hin geprüft. Clients einer typsicheren
Enum-Klasse können statt der equals-Methode den ==-Operator verwenden. Die Ergeb-
nisse sind garantiert dieselben und überdies ist der Operator womöglich sogar schnel-
ler.

Wenn eine typsichere Enum-Klasse allgemein von Nutzen ist, sollte sie eine Toplevel-
Klasse sein. Ist ihre Verwendung an eine spezielle Toplevel-Klasse gebunden, so sollte
sie eine statische Attributklasse dieser Toplevel-Klasse sein (Thema 18). Die Klasse ent-
hält z.B. eine Sammlung von int-Aufzählungskonstanten, die Rundungsmodi für Dezi-
malbrüche darstellen. Diese Rundungsmodi sind eine nützliche Abstraktion, die nicht
grundsätzlich an die Klasse BigDecimal gebunden ist; man hätte sie also besser als los-
gelöste Klasse java.math.RoundingMode implementiert. Das hätte jeden Programmierer,
der Rundungsmodi benötigt, veranlasst, die Modi dieser Klasse zu benutzen und die
Konsistenz zwischen den APIs wäre besser geworden.

Das in beiden obigen Suit-Implementierungen angegebene, elementare typsichere
Enum-Muster ist festgelegt: Benutzer können dem Aufzählungstyp keine neuen Ele-
mente hinzufügen, da seine Klasse keine Konstruktoren hat, auf die ein Benutzer
zugreifen könnte. Im Endeffekt wird die Klasse dadurch final, egal ob sie mit dem
Zugriffsmodifikator final deklariert wurde oder nicht. Normalerweise ist es genau
dies, was Sie möchten, aber gelegentlich möchten Sie auch eine typsichere Enum-
Klasse erweiterbar machen. Dies könnte z.B. der Fall sein, wenn Sie eine typsichere
Enum zur Darstellung von Bildkodierungsformaten verwenden und möchten, dass
andere Programmierer Unterstützung für neue Formate hinzufügen können.

Um eine typsichere Enum erweiterbar zu machen, fügen Sie einfach einen geschützten
Konstruktor hinzu. Dann können andere Programmierer die Klasse erweitern und
ihren Unterklassen neue Konstanten hinzufügen. Über Konstantenkonflikte brauchen

Thema 21: Ersetzen Sie Enum-Konstrukte durch Klassen 119

Sie sich nicht in dem Maße zu sorgen, als verwendeten Sie das int-Aufzählungsmuster.
Die erweiterbare Variante des typsicheren Enum-Musters nutzt den Paket-Namens-
raum, um einen »wie von Zauberhand verwalteten« eigenen Namensraum für die
erweiterbare Aufzählung anzulegen. Mehrere Organisationen können die Aufzählung
dann erweitern, ohne voneinander zu wissen, ohne dass ihre Erweiterungen jemals
Konflikte verursachen.

Nur weil Sie einem Aufzählungstyp ein Element hinzugefügt haben, bedeutet dies
noch nicht, dass das Element auch vollständig unterstützt wird: Den Methoden, die ein
Element des Aufzählungstyps entgegennehmen, kann eventuell auch ein dem Pro-
grammierer unbekanntes Element übergeben werden. Mehrfachverzweigungen auf
festgelegten Aufzählungstypen sind bereits fragwürdig, aber auf erweiterbaren Auf-
zählungstypen sind sie regelrecht tödlich, da sie nicht jedes Mal, wenn ein Program-
mierer den Typ erweitert, wie durch Zauberei einen neuen Zweig wachsen lassen
können.

Mit diesem Problem können Sie fertig werden, indem Sie der typsicheren Enum-Klasse
alle Methoden geben, die notwendig sind, um das Verhalten einer Konstante der
Klasse zu beschreiben. Methoden, die den Clients der Klasse nichts nützen, sollten Sie
schützen: So sind sie vor den Clients verborgen, können aber von Unterklassen über-
schrieben werden. Wenn eine solche Methode keine vernünftige Standardimplemen-
tierung hat, sollte sie nicht nur geschützt, sondern auch abstrakt sein.

Erweiterbare, typsichere Enum-Klassen sollten die Methoden equals und hashCode
durch finale Methoden überschreiben, die die entsprechenden Methoden aus Object
aufrufen. So verhindern Sie, dass eine Unterklasse diese Methoden versehentlich über-
schreibt, und halten die Garantie aufrecht, dass alle Objekte des Aufzählungstyps, die
gleich sind, auch identisch sind (a.equals(b) genau dann wenn a==b):

//Methoden, die das Überschreiben verhindern
public final boolean equals(Object that) {
 return super.equals(that);
}

public final int hashCode() {
 return super.hashCode();
}

Beachten Sie, dass die erweiterbare Variante (extensible) nicht mit der Vergleichsvari-
ante (comparable) kompatibel ist: Wenn Sie beide kombinierten, hinge die Reihenfolge
der Unterklassenelemente davon ab, in welcher Reihenfolge diese Unterklassen initia-
lisiert wurden. Diese könnte jedoch von Programm zu Programm und von Ausfüh-
rung zu Ausführung unterschiedlich sein.

Die erweiterbare Variante des typsicheren Enum-Musters ist zwar mit der serialisier-
baren kompatibel, aber eine Kombination beider Varianten erfordert einige Sorgfalt.

120 5 Ersatz für C-Konstrukte

Jede Unterklasse muss eigene Ordinalzahlen zuweisen und eine eigene readResolve-
Methode zur Verfügung stellen. Im Grunde ist jede Klasse dafür verantwortlich, ihre
eigenen Instanzen zu serialisieren und zu deserialisieren. Um dies zu konkretisieren
sehen Sie hier eine Version der Klasse Operation, die sowohl erweiterbar als auch seria-
lisierbar ist:

// Serialisierbare, erweiterbare typsichere Enum
public abstract class Operation implements Serializable {
 private final transient String name;
 protected Operation(String name) { this.name = name; }

 public static Operation PLUS = new Operation("+") {
 protected double eval(double x, double y) { return x+y; }
 };
 public static Operation MINUS = new Operation("-") {
 protected double eval(double x, double y) { return x-y; }
 };
 public static Operation TIMES = new Operation("*") {
 protected double eval(double x, double y) { return x*y; }
 };
 public static Operation DIVIDE = new Operation("/") {
 protected double eval(double x, double y) { return x/y; }
 };

 // Führe Rechenoperation gemäß dieser Konstante aus
 protected abstract double eval(double x, double y);

 public String toString() { return this.name; }
 // Hindere Unterklassen am Überschreiben von Object.equals
 public final boolean equals(Object that) {
 return super.equals(that);
 }
 public final int hashCode() {
 return super.hashCode();
 }

 // Diese 4 Deklarationen sind für die Serialisierung nötig
 private static int nextOrdinal = 0;
 private final int ordinal = nextOrdinal++;
 private static final Operation[] VALUES =
 { PLUS, MINUS, TIMES, DIVIDE };
 Object readResolve() throws ObjectStreamException {
 return VALUES[ordinal]; // kanonisch machen
 }
}

Hier sehen Sie eine Unterklasse von Operation, die Logarithmus- und Exponential-
Operationen hinzufügt. Diese Unterklasse könnte außerhalb des Pakets mit der überar-
beiteten Operation-Klasse existieren. Sie könnte öffentlich und erweiterbar sein. Mehrere
unabhängig voneinander geschriebenen Unterklassen können friedlich koexistieren:

Thema 21: Ersetzen Sie Enum-Konstrukte durch Klassen 121

// Unterklasse der erweiterbaren, serialisierbaren
// typsicheren Enum
abstract class ExtendedOperation extends Operation {
 ExtendedOperation(String name) { super(name); }

 public static Operation LOG = new ExtendedOperation("log") {
 protected double eval(double x, double y) {
 return Math.log(y) / Math.log(x);
 }
 };
 public static Operation EXP = new ExtendedOperation("exp") {
 protected double eval(double x, double y) {
 return Math.pow(x, y);
 }
 };

 // Diese 4 Deklarationen sind für die Serialisierung nötig
 private static int nextOrdinal = 0;
 private final int ordinal = nextOrdinal++;
 private static final Operation[] VALUES = { LOG, EXP };
 Object readResolve() throws ObjectStreamException {
 return VALUES[ordinal]; // kanonisch machen
 }
}

Beachten Sie, dass die readResolve-Methoden in den soeben gezeigten Klassen nicht
privat, sondern paketprivat sind. Das ist notwendig, weil die Instanzen von Operation
und ExtendedOperation tatsächlich Instanzen anonymer Unterklassen sind. Daher wären
private readResolve-Methoden wirkungslos (Thema 57).

Das typsichere Enum-Muster hat einige Nachteile im Vergleich zum int-Muster. Viel-
leicht der einzige bedeutende Nachteil ist der, dass es komplizierter ist, typsichere
Enum-Konstanten zu Mengen zusammenzufassen. Bei int-Enums tun Sie dies traditio-
nell, indem Sie Aufzählungskonstantenwerte wählen, von denen jeder eine andere
Zweierpotenz ist, und eine Menge als bitweises ODER der relevanten Konstanten dar-
stellen:

// Bit-Flag-Variante des int-Enum-Musters
public static final int SUIT_CLUBS = 1;
public static final int SUIT_DIAMONDS = 2;
public static final int SUIT_HEARTS = 4;
public static final int SUIT_SPADES = 8;

public static final int SUIT_BLACK = SUIT_CLUBS | SUIT_SPADES;

Mengen von Aufzählungstypkonstanten lassen sich in dieser Weise knapp und sehr
schnell darstellen. Für Mengen von typsicheren Enum-Konstanten können Sie eine All-
zweck-Set-Implementierung des Collections Frameworks benutzen, die jedoch weni-
ger knapp und schnell ist:

122 5 Ersatz für C-Konstrukte

Set blackSuits = new HashSet();
blackSuits.add(Suit.CLUBS);
blackSuits.add(Suit.SPADES);

Den Nachteil, dass Sie Mengen von typsicheren Enum-Konstanten nicht so knapp und
schnell machen können wie Mengen von int-Enum-Konstanten, können Sie mildern,
indem Sie eine spezielle Set-Implementierung liefern, die nur Elemente eines einzigen
Typs entgegennimmt und die Menge intern als Bitvektor darstellt. Eine solche Menge
implementieren Sie am besten in demselben Paket, in dem sich auch ihr Elementtyp
befindet, damit über ein paketprivates Feld oder eine Methode Zugriff auf einen Bit-
wert besteht, der intern mit jeder typsicheren Enum-Konstante verbunden ist. Es ist
sinnvoll, öffentliche Konstruktoren zu liefern, die kurze Elementfolgen als Parameter
entgegennehmen, damit Idiome wie dieses möglich sind:

hand.discard(new SuitSet(Suit.CLUBS, Suit.SPADES));

Gegenüber int-Enums haben typsichere Enums den kleinen Nachteil, dass Sie sie nicht
in switch-Anweisungen benutzen können, da sie keine integralen Konstanten sind. Sie
müssen stattdessen eine if-Anweisung wie die folgende verwenden:

if (suit == Suit.CLUBS) {
 ...
} else if (suit == Suit.DIAMONDS) {
 ...
} else if (suit == Suit.HEARTS) {
 ...
} else if (suit == Suit.SPADES) {
 ...
} else {
 throw new NullPointerException("Null Suit"); // suit == null
}

Die if-Anweisung läuft vielleicht nicht ganz so schnell wie die switch-Anweisung, aber
wahrscheinlich ist der Unterschied nicht groß. Außerdem dürften für typsichere
Enum-Konstanten nur selten Mehrfachverzweigungen erforderlich sein, weil sie sich,
wie in dem Operator-Beispiel dargestellt, für das automatische Methoden-Dispatching
der JVM eignen.

Ein anderer kleiner Performance-Nachteil von typsicheren Enums ist, dass es Zeit und
Speicherplatz kostet, Enum-Typklassen zu laden und die Konstantenobjekte zu erzeu-
gen. Doch dieses Problem wird in der Praxis nur auf Geräten mit sehr begrenzten Res-
sourcen wie z.B. Handys und Toastern zu Tage treten.

Fazit: Typsichere Enums haben große Vorteile gegenüber int-Enums und keiner ihrer
Nachteile ist gravierend, solange Sie einen Aufzählungstyp nicht hauptsächlich als
Element einer Menge oder in einer Umgebung mit sehr knappen Ressourcen einsetzen.
Folglich sollten Sie, wenn die Umstände einen Aufzählungstyp erforderlich machen,
immer zuerst an das typsichere Enum-Muster denken. APIs, die typsichere Enums

Thema 22: Ersetzen Sie Funktionszeiger durch Klassen und Interfaces 123

nutzen, sind viel programmiererfreundlicher als APIs mit int-Enums. Der einzige
Grund, weshalb typsichere Enums in den Java-Plattform-APIs nicht häufiger genutzt
werden, ist, dass sie noch nicht bekannt waren, als viele dieser APIs geschrieben wur-
den. Abschließend möchte ich noch einmal betonen, dass Aufzählungstypen jeder Art
nur relativ selten wirklich notwendig sind, da die Unterklassenbildung eine umfas-
sende Nutzung dieser Typen überflüssig gemacht hat (Thema 20).

5.4 Thema 22: Ersetzen Sie Funktionszeiger
durch Klassen und Interfaces

C unterstützt Funktionszeiger, mit denen ein Programm die Fähigkeit zum Aufruf einer
bestimmten Funktion speichern und übermitteln kann. Funktionszeiger sind dazu da,
dass der Aufrufer einer Funktion ihr Verhalten spezialisieren kann, indem er einen Zei-
ger auf eine zweite Funktion übergibt, was manchmal auch als Callback bezeichnet
wird. Die Funktion qsort aus der C-Standardbibliothek nimmt z.B. einen Zeiger auf
eine Vergleichsfunktion entgegen, die sie benutzt, um die zu sortierenden Elemente zu
vergleichen. Die Vergleichsfunktion nimmt zwei Parameter entgegen: Jeder ist ein Zei-
ger auf ein Element. Sie gibt eine negative ganze Zahl zurück, wenn das Element, auf
das der erste Parameter zeigt, kleiner als das Element ist, auf das der zweite Parameter
zeigt. Im umgekehrten Fall gibt sie eine positive ganze Zahl zurück und wenn beide
Elemente gleich sind, gibt sie null zurück. Sie können verschiedene Sortierreihenfolgen
erhalten, indem Sie verschiedene Vergleichsfunktionen übergeben. Dies ist ein Beispiel
für das Strategiemuster [Gamma 1998, S. 315]: Die Vergleichsfunktion ist eine Strategie
zum Sortieren der Elemente.

Auf Funktionszeiger hat man in Java verzichtet, da Sie dieselbe Funktionalität auch
mit Objektreferenzen erzielen können. Wenn Sie eine Methode auf einem Objekt aufru-
fen, wird normalerweise eine Operation auf diesem Objekt ausgeführt. Es ist jedoch
auch möglich, ein Objekt zu definieren, dessen Methoden Operationen auf anderen
Objekten ausführen, die den Methoden explizit übergeben werden. Eine Instanz einer
Klasse, die genau eine solche Methode exportiert, ist im Endeffekt ein Zeiger auf diese
Methode. Solche Instanzen bezeichnet man als Funktionsobjekte. Betrachten Sie z.B. die
folgende Klasse:

class StringLengthComparator {
 public int compare(String s1, String s2) {
 return s1.length() - s2.length();
 }
}

Diese Klasse exportiert eine einzige Methode, die zwei Strings entgegennimmt und
eine negative ganze Zahl zurückgibt, wenn der erste String kürzer als der zweite ist,
eine positive ganze Zahl, wenn der Fall umgekehrt liegt und null, wenn beide Strings

124 5 Ersatz für C-Konstrukte

gleich lang sind. Diese Methode ist eine Vergleichsmethode (comparator), die Strings
nach ihrer Länge statt, wie es eher üblich ist, nach dem Alphabet ordnet. Eine Referenz
auf ein StringLengthComparator-Objekt dient als »Funktionszeiger« auf diese Vergleichs-
methode und gestattet es, diese auf beliebigen String-Paaren aufzurufen. Mit anderen
Worten ist eine Instanz von StringLengthComparator eine konkrete Strategie zum Zeichen-
kettenvergleich.

Wie es für Konkrete-Strategie-Klassen typisch ist, ist auch die Klasse StringLength
Comparator zustandslos. Da sie keine Felder hat, sind alle Instanzen der Klasse funktional
äquivalent. Sie könnte daher ebenso gut ein Singleton sein, um überflüssigen Aufwand
für Objekterzeugungen zu sparen (Themen 4 und 2):

class StringLengthComparator {
 private StringLengthComparator() { }

 public static final StringLengthComparator
 INSTANCE = new StringLengthComparator();

 public int compare(String s1, String s2) {
 return s1.length() - s2.length();
 }
}

Um einer Methode eine Instanz von StringLengthComparator zu übergeben, benötigen
wir einen passenden Typ für den Parameter. StringLengthComparator wäre eine schlechte
Wahl, da Clients dann keine andere Vergleichsstrategie übergeben könnten. Wir müs-
sen also stattdessen ein Comparator-Interface definieren und StringLengthComparator so
ändern, dass er dieses Interface implementiert. Mit anderen Worten müssen wir für die
Konkrete-Strategie-Klasse ein Strategie-Interface definieren:

// Strategie-Interface
public interface Comparator {
 public int compare(Object o1, Object o2);
}

Diese Definition des Comparator-Interfaces stammt zufällig aus dem Paket java.util, aber
sie ist keine große Kunst: Sie hätten es ebenso gut selbst definieren können. Damit das
Interface auch auf Vergleichsmethoden für andere Objekte als Strings anwendbar ist,
nimmt seine compare-Methode Parameter vom Typ Object und nicht vom Typ String ent-
gegen. Daher muss die zuvor gezeigte Klasse leicht abgeändert werden, um Comparator
zu implementieren: Die Object-Parameter müssen zuerst in den Typ String umgewan-
delt werden, bevor die length-Methode aufgerufen werden kann.

Konkrete-Strategie-Klassen werden oft mithilfe von anonymen Klassen (Thema 18)
definiert. Die folgende Anweisung sortiert ein String-Array nach der Länge der
Strings:

Thema 22: Ersetzen Sie Funktionszeiger durch Klassen und Interfaces 125

Arrays.sort(stringArray, new Comparator() {
 public int compare(Object o1, Object o2) {
 String s1 = (String)o1;
 String s2 = (String)o2;
 return s1.length() - s2.length();
 }
});

Da das Strategie-Interface für alle seine Konkrete-Strategie-Instanzen als Typ dient,
brauchen Sie eine Konkrete-Strategie-Klasse nicht öffentlich zu machen, um eine kon-
krete Strategie zu exportieren. Stattdessen kann auch eine »Host« -Klasse ein öffent-
liches, statisches Feld (oder eine öffentliche, statische Factory-Methode) exportieren,
deren Typ das Strategie-Interface ist, und die Konkrete-Strategie-Klasse kann eine pri-
vate, geschachtelte Klasse des Hosts sein. Im nachfolgenden Beispiel wird statt einer
anonymen Klasse eine statische Attributklasse verwendet, damit die Konkrete-Strate-
gie-Klasse Serializable als zweites Interface implementieren kann.

// Konkrete Strategie exportieren
class Host {
 ... // Bulk of class omitted

 private static class StrLenCmp
 implements Comparator, Serializable {
 public int compare(Object o1, Object o2) {
 String s1 = (String)o1;
 String s2 = (String)o2;
 return s1.length() - s2.length();
 }
 }

 // Zurückgegebener Comparator ist serialisierbar
 public static final Comparator
 STRING_LENGTH_COMPARATOR = new StrLenCmp();
}

Die Klasse String verwendet dieses Muster, um eine von der Groß- und Kleinschrei-
bung unabhängige String-Vergleichsmethode über ihr CASE_INSENSITIVE_ORDER-Feld zu
exportieren.

Fazit: Die Funktionszeiger von C dienen hauptsächlich dazu, das Strategiemuster zu
implementieren. Um dies in Java zu tun, deklarieren Sie ein Interface, das die Strategie
repräsentiert, und eine Klasse, die dieses Interface für jede konkrete Strategie imple-
mentiert. Wird eine konkrete Strategie nur ein einziges Mal benutzt, so wird ihre
Klasse mithilfe einer anonymen Klasse deklariert und instanziiert. Wird eine konkrete
Strategie dagegen für den wiederholten Gebrauch exportiert, so ist ihre Klasse in der
Regel eine private, statische Attributklasse, die über ein public static final-Feld
exportiert wird, dessen Typ das Strategie-Interface ist.

6 Methoden

Dieses Kapitel behandelt diverse Aspekte des Methodenentwurfs: Wie Sie Parameter
und Rückgabewerte handhaben, wie Sie Methodensignaturen entwerfen und wie Sie
Ihre Methoden dokumentieren. Vieles davon gilt für Konstruktoren und Methoden
gleichermaßen. Wie Kapitel 5 stellt auch dieses Kapitel die Verwendbarkeit, Stabilität
und Flexibilität in den Mittelpunkt.

6.1 Thema 23: Prüfen Sie die Gültigkeit der Parameter

Die meisten Methoden und Konstruktoren unterliegen Einschränkungen hinsichtlich
der Werte, die ihren Parametern übergeben werden können. So ist es z.B. nichts Unge-
wöhnliches, dass Indexwerte nicht-negativ und Objektreferenzen nicht-null sein müs-
sen. Alle derartigen Restriktionen sollten Sie deutlich dokumentieren und ihre
Einhaltung überdies durch Prüfungen zu Beginn des Methodenrumpfs verifizieren.
Dies ist ein Sonderfall des allgemeinen Grundsatzes, und Sie sollten versuchen, Fehler
möglichst früh nach ihrem Auftreten aufzuspüren. Sonst wird es immer wahrschein-
licher, dass sie entweder überhaupt nicht entdeckt werden, oder dass im Falle ihrer
Entdeckung die eigentliche Fehlerquelle nur noch schwer zu ermitteln ist.

Wenn einer Methode ein ungültiger Parameter übergeben wird und die Methode ihre
Parameter vor der Ausführung prüft, dann scheitert sie schnell und sauber mit einer
geeigneten Ausnahme. Prüft die Methode ihre Parameter nicht, so können mehrere
Dinge passieren. Die Methode kann mit einer verwirrenden Ausnahme mitten in der
Ausführung scheitern oder, schlimmer noch, sie kann normal zurückkehren, aber in
aller Stille das verkehrte Ergebnis berechnen. Am schlimmsten ist es jedoch, wenn die
Methode normal zurückkehrt, aber dabei ein Objekt in inkonsistentem Zustand
zurücklässt. Dann verursacht sie an einem ganz anderen Punkt im Code zu irgend-
einem unvorhersehbaren Zeitpunkt einen Fehler.

Für öffentliche Methoden legen Sie mit dem @throws-Tag der Javadoc fest, welche Aus-
nahme bei einer Verletzung der Parameterrestriktionen ausgelöst wird (Thema 44). Die
gebräuchlichsten Ausnahmen in diesem Fall sind IllegalArgumentException, IndexOutOf
BoundsException oder NullPointerException (Thema 42). Wenn Sie die Beschränkungen

128 6 Methoden

für die Parameter einer Methode und die Ausnahmen, die im Falle ihrer Verletzung
ausgelöst werden, dokumentieren, dann ist es ganz einfach, die Restriktionen auch zu
erzwingen. Hier sehen Sie ein typisches Beispiel:

/**
 * Gibt einen BigInteger mit dem Wert (this mod m) zurück. Diese
 * Methode unterscheidet sich insofern von der Restmethode, als sie
 * immer einen nicht-negativen BigInteger zurückgibt.
 *
 * @param m der Modulo, er muss positiv sein.
 * @return this mod m.
 * @throws ArithmeticException if m <= 0.
 */
public BigInteger mod(BigInteger m) {
 if (m.signum() <= 0)
 throw new ArithmeticException("Modulus not positive");

 ... // Jetzt Berechnung durchführen
}

Für eine nicht-exportierte Methode sollten Sie als Autor des Pakets kontrollieren, unter
welchen Umständen die Methode aufgerufen wird. So können und müssen Sie sicher-
stellen, dass immer nur gültige Parameterwerte übergeben werden. Daher sollten
nicht-öffentliche Methoden immer ihre Parameter prüfen. Dies tun sie nicht mit nor-
malen Prüfungen, sondern anhand von Annahmen. Wenn Sie eine Java-Version ver-
wenden, die Annahmen (assertions) unterstützt (Version 1.4 und folgende), dann
sollten Sie das assert-Konstrukt verwenden, anderenfalls sollten Sie einen Makeshift-
Annahmemechanismus etablieren.

Besonders wichtig ist es, dass Sie die Gültigkeit von Parametern prüfen, die nicht von
einer Methode benutzt, sondern zur späteren Verwendung gespeichert werden.
Betrachten Sie z.B. die Factory-Methode in Thema 16, die ein int-Array entgegen-
nimmt und eine List-Ansicht dieses Arrays zurückgibt. Wenn ein Client dieser
Methode null übergeben würde, so würde sie eine NullPointerException zurückgeben,
weil sie eine explizite Prüfung enthält. Würde man diese Prüfung auslassen, so würde
die Methode eine Referenz auf eine neu erzeugte List-Instanz zurückgeben, die eine
NullPointerException auslöst, sobald ein Client sie zu nutzen versucht. Doch dann kann
der Ursprung der List-Instanz bereits sehr schwer festzustellen sein, und das Debug-
ging würde außerordentlich kompliziert.

Konstruktoren sind ein Sonderfall des Prinzips, dass Sie die Gültigkeit von Parame-
tern, die zur späteren Nutzung gespeichert werden, prüfen sollten. Bei Konstruktoren
ist diese Gültigkeitsprüfung sehr wichtig, damit kein Objekt erzeugt wird, dass Klas-
seninvarianten verletzt.

Von der Regel, dass Sie die Methodenparameter prüfen sollten, ehe Sie die Berechnung
beginnen, gibt es auch Ausnahmen. Eine wichtige Ausnahme ist der Fall, bei dem eine

Thema 24: Machen Sie bei Bedarf defensive Kopien 129

Gültigkeitsprüfung teuer oder undurchführbar wäre und implizit während der Berech-
nung durchgeführt wird. Nehmen Sie z.B. eine Methode, die eine Liste von Objekten
sortiert, wie etwa Collections.sort(List). Alle Objekte in der Liste müssen miteinander
vergleichbar sein. Während die Liste sortiert wird, wird jedes ihrer Objekte mit einem
anderen Objekt der Liste verglichen. Sind die Objekte nicht wechselseitig vergleichbar,
so gibt eine dieser Vergleichsoperationen eine ClassCastException aus, und dies ist
genau das, was die Sortiermethode tun sollte. Daher hätte es wenig Zweck vorzeitig zu
prüfen, ob die Listenelemente miteinander vergleichbar sind. Beachten Sie jedoch, dass
eine unscharfe Anwendung dieser Technik zu einem Verlust an Fehleratomizität
(Thema 46) führen kann.

Gelegentlich leistet eine Berechnung die erforderliche Gültigkeitsprüfung implizit auf
einem Parameter, löst jedoch bei einem Scheitern des Tests die falsche Ausnahme aus.
Die Ausnahme, die die Berechnung aufgrund eines ungültigen Parameterwerts aus-
löst, ist also eine andere, als die Methode laut Dokumentation eigentlich auslösen
sollte. Unter solchen Umständen sollten Sie das in Thema 43 beschriebene Idiom zur
Ausnahmenübersetzung dazu verwenden, die erste Ausnahme in die korrekte umzu-
wandeln.

Bitte missverstehen Sie dieses Thema nicht dahingehend, dass Parameterrestriktionen
etwa eine gute Sache seien. Im Gegenteil: Sie sollten Ihre Methoden so allgemein wie
irgend möglich formulieren. Je weniger Beschränkungen Sie den Parametern auferle-
gen, umso besser ist es. Voraussetzung ist allerdings, dass die Methode auch mit allen
Parameterwerten, die sie entgegennimmt, etwas Sinnvolles anfangen kann. Oft gehö-
ren Restriktionen allerdings zu der implementierten Abstraktion dazu.

Zusammenfassend kann man sagen: Immer wenn Sie eine Methode oder einen Kon-
struktor schreiben, sollten Sie sich überlegen, welchen Beschränkungen ihre oder seine
Parameter unterliegen. Diese Beschränkungen sollten Sie dokumentieren und ihre Ein-
haltung durch explizite Prüfungen am Anfang des Methodenrumpfs erzwingen. Bitte
machen Sie sich dies zur Gewohnheit: Der geringe Aufwand macht sich schon beim
ersten Mal, wo eine Gültigkeitsprüfung scheitert, mit Zins und Zinseszins bezahlt.

6.2 Thema 24: Machen Sie bei Bedarf defensive Kopien

Es ist unter anderem deswegen eine Freude, mit Java zu arbeiten, weil Java eine sichere
Sprache ist. Das bedeutet: Wenn keine nativen Methoden vorliegen, ist Java immun gegen
Puffer-Überläufe, Array-Überläufe, Zeigerfehler und andere Speicherzuweisungsfehler,
die unsichere Sprachen wie C und C++ plagen. In einer sicheren Sprache können Sie
Klassen mit der absoluten Gewissheit schreiben, dass ihre Invarianten immer wahr blei-
ben, egal was in einem anderen Teil des Systems passiert. In Sprachen, die den gesamten
Speicher als ein einziges, gigantisches Array behandeln, ist das unmöglich.

130 6 Methoden

Doch auch in einer sicheren Sprache müssen Sie selbst Hand anlegen, um von anderen
Klassen isoliert zu bleiben. Sie müssen defensiv programmieren und immer davon
ausgehen, dass Clients Ihrer Klasse alles versuchen werden, um ihre Invarianten zu
zerstören. Das kann auch tatsächlich der Fall sein, nämlich dann, wenn jemand ver-
sucht, die Sicherheit Ihres Systems außer Kraft zu setzen. Doch eher wahrscheinlich ist,
dass Ihre Klasse mit unerwarteten Verhaltensweisen aufgrund von Fehlern der Pro-
grammierer fertig werden muss, die Ihr API nutzen. In beiden Fällen lohnt sich die
Zeit, die Sie darauf verwenden, Klassen zu schreiben, die sich von Clients mit schlech-
tem Verhalten nicht stören lassen.

Zwar kann keine andere Klasse den inneren Zustand eines Objekts ohne dessen Zutun
ändern, doch überraschend leicht geschieht es, dass das Objekt ungewollt diese Hilfe
beisteuert. Betrachten Sie z.B. die folgende Klasse, die angeblich einen unveränder-
lichen Zeitraum darstellt:

// Kaputte "unveränderlicher"-Zeitraum-Klasse
public final class Period {
 private final Date start;
 private final Date end;

 /**
 * @param Anfang des Zeitraums.
 * @param Ende des Zeitraums; darf nicht vor Anfang liegen.
 * @throws IllegalArgumentException wenn Anfang hinter Ende.
 * @throws NullPointerException wenn Anfang oder Ende = null.
 */
 public Period(Date start, Date end) {
 if (start.compareTo(end) > 0)
 throw new IllegalArgumentException(start + " after "
 + end);
 this.start = start;
 this.end = end;
 }

 public Date start() {
 return start;
 }
 public Date end() {
 return end;
 }

 ... // Rest wird weggelassen
}

Auf den ersten Blick scheint diese Klasse unveränderlich und macht den Eindruck,
dass sie die Invariante erzwingt, nach der der Anfang eines Zeitraums nicht nach sei-
nem Ende liegen darf. Diese Invariante kann man aber ganz leicht mithilfe der Tatsa-
che verletzen, dass Date veränderlich ist.

Thema 24: Machen Sie bei Bedarf defensive Kopien 131

// Attackiere Interna einer Period-Instanz
Date start = new Date();
Date end = new Date();
Period p = new Period(start, end);
end.setYear(78); // Ändert die Interna von p!

Um die Interna einer Period-Instanz vor derartigen Angriffen zu schützen, müssen Sie
unbedingt eine defensive Kopie jedes veränderlichen Parameters des Konstruktors
anfertigen und als Bestandteile der Period-Instanz die Kopien statt der Originale ver-
wenden:

// Reparierter Konstruktor – macht defensive Kopien der Parameter
public Period(Date start, Date end) {
 this.start = new Date(start.getTime());
 this.end = new Date(end.getTime());

 if (this.start.compareTo(this.end) > 0)
 throw new IllegalArgumentException(start +" after "+ end);
}

Mit dem neuen Konstruktor wirkt sich die obige Attacke nicht auf die Period-Instanz
aus. Beachten Sie, dass defensive Kopien angelegt werden, bevor die Gültigkeit der
Parameter geprüft wird (Thema 23), und dass die Gültigkeitsprüfung mit den
Kopien und nicht mit den Originalen stattfinden muss. Das erscheint widersinnig,
ist aber nötig. Es schützt die Klasse davor, dass ein anderer Thread in dem »Zeitfenster
der Angreifbarkeit« die Parameter ändert, das sich zwischen der Prüfung und dem
Kopieren der Parameter öffnet.

Beachten Sie außerdem, dass wir nicht die clone-Methode von Date zum Anlegen der
defensiven Kopien einsetzten. Da Date nicht-final ist, besteht keine Garantie, dass die
clone-Methode wirklich ein Objekt zurückgibt, dessen Klasse java.util.Date ist. Sie
könnte auch eine Instanz einer nicht-vertrauenswürdigen Unterklasse zurückgeben,
die eigens dafür geschaffen wurde, Unheil zu stiften. Eine solche Unterklasse könnte
z.B. eine Referenz auf jede Instanz, in dem Augenblick, in dem diese erzeugt wird, in
einer privaten, statischen Liste festhalten und dem Angreifer Zugriff auf diese Liste
geben. Dann könnte der Angreifer mit allen Instanzen tun, was er wollte. Um solche
Attacken zu verhindern, dürfen Sie nie die clone-Methode zum defensiven Kopieren
eines Parameters einsetzen, dessen Typ von nicht-vertrauenswürdigen Personen
erweitert werden kann.

Der Ersatzkonstruktor schützt zwar gegen die oben geschilderte Attacke, aber es ist
noch immer möglich, eine Period-Instanz zu ändern, da ihre Zugriffsmethoden Zugriff
auf ihre veränderlichen Interna geben.

// Zweite Attacke auf die Interna einer Period-Instanz
Date start = new Date();
Date end = new Date();

132 6 Methoden

Period p = new Period(start, end);
p.end().setYear(78); // Ändert die Interna von p!

Um sich gegen diese zweite Attacke zu wehren, brauchen Sie nur die Zugriffsmetho-
den so zu ändern, dass sie defensive Kopien der veränderlichen, internen Felder
zurückgeben:

// Reparierte Zugriffsmethoden - legen defensive Kopien interner Felder an
public Date start() {
 return (Date) start.clone();
}

public Date end() {
 return (Date) end.clone();
}

Mit dem neuen Konstruktor und den neuen Zugriffsmethoden ist Period tatsächlich
unveränderlich. Egal wie bösartig oder inkompetent ein Programmierer ist: Er findet
einfach keinen Weg, um die Invariante zu verletzen, dass der Anfang des Zeitraums
nicht hinter seinem Ende liegen darf. Es kann nämlich keine andere Klasse als nur
Period selbst Zugriff auf eines der veränderlichen Felder einer Period-Instanz erlangen.
Diese Felder sind nun wirklich im Objekt gekapselt.

Beachten Sie, dass die neuen Zugriffsmethoden im Gegensatz zu dem neuen Konstruk-
tor die defensiven Kopien mit der clone-Methode anlegen. Das ist in Ordnung (aber
nicht unbedingt erforderlich), denn wir wissen genau, dass die Klasse der internen
Date-Objekte von Period auch wirklich java.util.Date ist, und keine nicht-vertrauens-
würdige Unterklasse davon.

Defensives Kopieren von Parametern ist nicht nur für unveränderliche Klassen gut.
Immer wenn Sie eine Methode oder einen Konstruktor schreiben, um ein vom Client
geliefertes Objekt in eine interne Datenstruktur einzubinden, müssen Sie überlegen, ob
dieses Objekt des Clients eventuell veränderlich ist. Ist dies der Fall, so müssen Sie dar-
über nachdenken, ob Ihre Klasse eine Änderung des Objekts auch nach seiner Einfü-
gung in die Datenstruktur noch verkraften kann. Wenn nicht, dann müssen Sie es
defensiv kopieren und statt des Originals die Kopie in die Datenstruktur übernehmen.
Wenn Sie z.B. überlegen, eine vom Client stammende Objektreferenz als Element in
eine interne Set-Instanz oder als Schlüssel in eine interne Map-Instanz zu übernehmen,
dann müssen Sie daran denken, dass die Invarianten der Menge oder Map zerstört
würden, wenn das Objekt nach seiner Übernahme noch geändert würde.

Dasselbe gilt für das defensive Kopieren interner Komponenten, bevor diese an die
Clients zurückgegeben werden. Egal ob Ihre Klasse veränderlich ist oder nicht: Sie soll-
ten es sich auf jeden Fall zweimal überlegen, ob Sie eine Referenz auf eine interne
Komponente, die veränderlich ist, zurückgeben. Dann geben Sie vielleicht besser eine
defensive Kopie zurück. Wichtig ist auch, daran zu denken, dass Arrays mit Nichtnull-

Thema 25: Entwerfen Sie die Methodensignaturen sorgfältig 133

Länge immer veränderlich sind. Daher sollten Sie immer eine defensive Kopie eines
internen Arrays anlegen, ehe Sie es an einen Client zurückgeben. Alternativ können
Sie auch eine unveränderliche View des Arrays an den Benutzer zurückgeben. Beide
Techniken werden in Thema 12 gezeigt.

Aus alledem können Sie die Lehre ziehen, dass Sie möglichst immer unveränderliche
Objekte als Bestandteile Ihrer Objekte verwenden sollten, damit Sie sich nicht um das
defensive Kopieren zu kümmern brauchen (Thema 13). Im Falle unseres Period-Bei-
spiels ist es so, dass geübte Programmierer oft den von Date.getTime() zurückgegebe-
nen Grundtyp long als interne Zeitdarstellung nutzen und keine Referenz auf ein Date-
Objekt. Dies tun sie vor allem deshalb, weil Date veränderlich ist.

Es ist nicht immer passend, eine defensive Kopie eines veränderlichen Parameters
anzulegen, ehe er in das Objekt integriert wird. Es gibt Methoden und Konstruktoren,
deren Aufruf einen expliziten Handoff des Objekts anzeigt, das von einem Parameter
referenziert wird. Beim Aufruf einer solchen Methode verspricht der Client, dass er
das Objekt nicht mehr unmittelbar modifizieren wird. Eine (Konstruktor)-Methode,
die die Steuerung eines vom Client gelieferten, veränderlichen Objekts übernehmen
will, muss dies in ihrer Dokumentation deutlich machen.

Klassen mit Methoden oder Konstruktoren, deren Aufruf eine Steuerungsübernahme
anzeigt, können sich nicht gegen bösartige Clients wehren. Solche Klassen sind nur
dann hinnehmbar, wenn sich die Klasse und ihr Client gegenseitig vertrauen können,
oder wenn die Schädigung der Klasseninvarianten niemand anders als den Client
beeinträchtigen würde. Letztere Situation ergibt sich z.B. in dem Hüllenklassenmuster
(Thema 14). Je nach dem Wesen der Hüllenklasse könnte der Client ihre Invarianten
zerstören, indem er direkt auf ein eingehülltes Objekt zugreift, doch dies würde in aller
Regel nur dem Client selbst schaden.

6.3 Thema 25: Entwerfen Sie die Methodensignaturen
sorgfältig

Dieses Thema ist ein Sammelsurium von API-Entwurfstipps, die jeweils keine eigenen
Themenkapitel rechtfertigen. Doch zusammengenommen helfen sie Ihnen dabei, Ihr
API leichter erlernbar und benutzbar und weniger fehleranfällig zu machen.

Wählen Sie Methodennamen sorgfältig. Namen sollten sich immer nach den Stan-
dard-Namenskonventionen richten (Thema 38). Ihr wichtigstes Ziel sollte es sein, die
Namen so zu wählen, dass sie verständlich und konsistent mit den anderen Namen
desselben Pakets sind. Ihr zweites Ziel sollte darin bestehen, die Namen auch mit über-
greifenden Vereinbarungen konsistent zu halten, wenn solche vorhanden sind. Im
Zweifel können Sie sich an die Java-Bibliothek-APIs halten. Es gibt zwar viele Inkon-

134 6 Methoden

sistenzen, die bei der Größe und dem Umfang der Bibliotheken unvermeidlich sind,
aber es gibt auch Übereinkünfte. Eine unschätzbare Ressource ist das Buch The Java
Developers Almanac [Chan00] von Patrick Chan, das die Methodendeklarationen jeder
einzelnen Methode der Java-Plattformbibliotheken mit einem alphabetischen Index
enthält. Wenn Sie sich z.B. fragen, ob Sie eine Methode remove oder delete nennen soll-
ten, dann sagt Ihnen ein kurzer Blick in den Index dieses Buchs, dass remove üblicher
ist. Es gibt Hunderte Methoden, deren Namen mit remove beginnen und nur eine Hand
voll, deren Namen mit delete anfangen.

Übertreiben Sie es nicht mit den Bequemlichkeitsmethoden. Jede Methode sollte
»sich selbst tragen« . Zu viele Methoden führen dazu, dass eine Klasse schwer zu ler-
nen, anzuwenden, zu dokumentieren, zu testen und zu warten ist. Das gilt besonders
für Interfaces, bei denen übermäßig viele Methoden sowohl den Implementierern als
auch den Nutzern das Leben schwer machen. Für jede von Ihrem Typ unterstützte
Aktion müssen Sie eine vollständig funktionale Methode liefern. Sie sollten nur dann
eine »Kurzform« für eine Operation in Betracht ziehen, wenn sie sehr oft benutzt wird.
Im Zweifel lassen Sie sie besser weg.

Vermeiden Sie lange Parameterlisten. Als Regel sollten Sie drei Parameter als Maxi-
mum betrachten; umso besser, wenn es weniger sind. Die meisten Programmierer kön-
nen sich lange Parameterlisten nicht merken. Wenn viele Ihrer Methoden mehr als drei
Parameter haben, dann ist Ihr API nur mit ständigem Nachschlagen in der Dokumen-
tation benutzbar. Besonders schlimm sind lange Folgen von Parametern desselben
Typs. Dann können sich die Benutzer Ihres APIs zum einen die Reihenfolge der Para-
meter nicht merken, doch zum anderen werden ihre Programme, wenn sie versehent-
lich Parameter an die falsche Stelle setzen, dennoch kompiliert und ausgeführt. Sie tun
nur nicht das, was ihre Autoren wollten.

Es gibt zwei Möglichkeiten, übermäßig lange Parameterlisten abzukürzen. Die eine
besteht darin, die Methode in mehrere Methoden zu zerlegen, von denen jede nur eine
Teilmenge der Parameter erfordert. Wenn Sie das nicht sorgfältig genug machen, erhal-
ten Sie vielleicht zu viele Methoden, aber es kann auch die Anzahl der Methoden
verringern, indem es die Orthogonalität erhöht. Betrachten Sie z.B. das Interface
java.util.List. Es hat keine Methoden zum Suchen des ersten oder letzten Index eines
Elements einer Teilliste; jede dieser Methoden würde drei Parameter erfordern. Statt-
dessen hat es die subList-Methode, die zwei Parameter entgegennimmt und eine View
einer Teilliste zurückgibt. Diese Methode lässt sich mit den Methoden indexOf und
lastIndexOf kombinieren, die jeweils einen einzigen Parameter erfordern, und schon
haben Sie die gewünschte Funktionalität. Ja mehr noch: Sie können die subList-
Methode auch mit jeder anderen Methode kombinieren, die auf einer List-Instanz ope-
riert, um auf Teillisten jede beliebige Berechnung auszuführen. Das resultierende API
hat ein hervorragendes Verhältnis von Mächtigkeit zu Gewicht.

Thema 25: Entwerfen Sie die Methodensignaturen sorgfältig 135

Eine zweite Möglichkeit zur Abkürzung langer Parameterlisten besteht in der Erstel-
lung von Hilfsklassen, die Parameterzusammenstellungen speichern. In der Regel sind
solche Hilfsklassen statische Attributklassen (Thema 18). Diese Technik ist dann zu
empfehlen, wenn oft eine Parameterfolge auftritt, die eine ganz andere Entität reprä-
sentiert. Nehmen wir z.B. an, Sie schreiben eine Klasse, die ein Kartenspiel darstellt,
und Sie stellen fest, dass Sie immer wieder zwei Parameter übergeben, die den Wert
und die Farbe einer Karte repräsentieren. Ihr API und die Interna Ihrer Klasse werden
wahrscheinlich besser, wenn Sie eine Hilfsklasse hinzufügen, die eine Karte repräsen-
tiert, und jedes Auftreten der beiden Parameter durch einen einzigen Parameter – die
Hilfsklasse – ersetzen.

Bei Parametertypen sollten Sie die Interfaces den Klassen vorziehen. Immer wenn
ein Interface existiert, das einen Parameter definieren kann, sollten Sie statt einer
Klasse, die dieses Interface implementiert, lieber direkt das Interface verwenden. Es
gibt z.B. keinen Grund, eine Methode zu schreiben, die Hashtable als Eingabe verwen-
det; verwenden Sie stattdessen Map. Dann können Sie eine Hashtable übergeben, oder
auch eine HashMap, eine TreeMap, eine Teil-Map einer TreeMap oder jede beliebige Map-Imp-
lementierung, die vielleicht noch geschrieben wird. Wenn Sie statt eines Interfaces eine
Klasse verwenden, beschränken Sie Ihren Client auf eine bestimmte Implementierung
und erzwingen eine überflüssige und potenziell auch aufwändige Kopieroperation,
wenn die Eingabedaten zufällig in einer anderen Form vorliegen.

Verwenden Sie Funktionsobjekte (Thema 22) vorsichtig. Manche Sprachen –
namentlich Smalltalk und die diversen Lisp-Dialekte – fördern einen Programmierstil,
der reich an Objekten ist, die Funktionen darstellen, welche wieder auf andere Objekte
angewendet werden. Programmierer mit Erfahrung in solchen Sprachen könnten in
Versuchung geraten, in Java einen ähnlichen Programmierstil zu pflegen, aber das
wäre äußerst unpassend. Am einfachsten können Sie ein Funktionsobjekt mit einer
anonymen Klasse erzeugen (Thema 18), doch selbst dies führt zu einer verworrenen
Semantik und zu einer im Vergleich zu Inline-Steuerungsstrukturen geringeren Macht
und Leistung. Außerdem ist es heute nicht mehr üblich, dauernd Funktionsobjekte zu
erzeugen und sie von Methode zu Methode weiterzureichen. Daher haben andere Pro-
grammierer Schwierigkeiten, Ihren Code zu verstehen, wenn Sie so programmieren.
Das soll nun nicht heißen, dass Funktionsobjekte nicht auch ihre Berechtigung hätten:
Sie sind für viele mächtige Entwurfsmuster wie z.B. Strategie [Gamma 1998, S. 315] und
Besucher [Gamma 1998, S. 331] sogar sehr wichtig. Sie sollten jedoch nur mit gutem
Grund eingesetzt werden.

136 6 Methoden

6.4 Thema 26: Verwenden Sie Methodenüberladung
vorsichtig

Im Folgenden sehen Sie einen gutwilligen Versuch, Sammlungen danach zu klassifizie-
ren, ob sie Mengen, Listen oder eine andere Art von Sammlungen sind:

// Kaputt – falsche Verwendung der Überladung!
public class CollectionClassifier {
 public static String classify(Set s) {
 return "Set";
 }

 public static String classify(List l) {
 return "List";
 }

 public static String classify(Collection c) {
 return "Unknown Collection";
 }

 public static void main(String[] args) {
 Collection[] tests = new Collection[] {
 new HashSet(), // Eine Menge
 new ArrayList(), // Eine Liste
 new HashMap().values() // Weder Menge noch Liste
 };

 for (int i = 0; i < tests.length; i++)
 System.out.println(classify(tests[i]));
 }
}

Sie erwarten nun vielleicht, dass dieses Programm zuerst »Set« , dann »List« und dann
»Unknown Collection« ausgibt, aber das tut es nicht: Es gibt drei Mal »Unknown Collec-
tion« aus. Warum passiert das? Weil die classify-Methode überladen ist und erst zur
Kompilierungszeit entschieden wird, welche Überladung der Methode aufgerufen
wird. Der Parametertyp ist bei allen drei Schleifendurchläufen zur Kompilierungszeit
derselbe: Collection. Der Laufzeittyp ist zwar bei jedem Durchlauf ein anderer, aber
das wirkt sich nicht auf die Wahl der Überladung aus. Da der Parametertyp zur Kom-
pilierungszeit Collection ist, ist die einzig anwendbare Überladung die dritte, nämlich
classify(Collection), und diese Überladung wird auch bei jeder Iteration aufgerufen.

Das Verhalten des Programms ist nicht intuitiv, da die Wahl unter überladenen
Methoden statisch ist, während die Wahl unter überschriebenen Methoden dyna-
misch ist. Die richtige Version einer überschriebenen Methode wird zur Laufzeit je nach
dem Laufzeittyp des Objekts gewählt, auf dem die Methode aufgerufen wird. Erinnern
Sie sich: Eine Methode wird überschrieben, wenn eine Unterklasse eine Methoden-
deklaration enthält, die genau dieselbe Signatur hat, wie eine Methodendeklaration

Thema 26: Verwenden Sie Methodenüberladung vorsichtig 137

einer Elternklasse. Wenn eine Instanzmethode in einer Unterklasse überschrieben wird
und diese Methode auf einer Instanz der Unterklasse aufgerufen wird, dann wird die
überschreibende Methode aus der Unterklasse ausgeführt, egal welchen Typ die Unter-
klasseninstanz zur Kompilierungszeit hat. Dies sehen Sie konkret an dem folgenden
kleinen Programm:

class A {
 String name() { return "A"; }
}

class B extends A {
 String name() { return "B"; }
}

class C extends A {
 String name() { return "C"; }
}

public class Overriding {
 public static void main(String[] args) {
 A[] tests = new A[] { new A(), new B(), new C() };

 for (int i = 0; i < tests.length; i++)
 System.out.print(tests[i].name());
 }
}

Die Methode name wird in der Klasse A deklariert und in den Klassen B und C über-
schrieben. Erwartungsgemäß gibt dieses Programm »ABC« aus, obwohl der Typ der
Instanz zur Kompilierungszeit bei jedem Schleifendurchlauf A ist. Der Typ, den ein
Objekt zur Kompilierungszeit hat, hat keine Auswirkungen darauf, welche Methode
ausgeführt wird, wenn eine überschriebene Methode aufgerufen wird: Es wird immer
die »spezifischste« überschreibende Methode ausgeführt. Sehen Sie sich dagegen das
Überladen an, bei dem der Laufzeittyp eines Objekts keine Auswirkungen darauf hat,
welche Überladung ausgeführt wird: Diese Wahl wird zur Kompilierungszeit getroffen
und orientiert sich ausschließlich an den Parametertypen zur Kompilierungszeit.

In dem CollectionClassifier-Beispiel sollte das Programm den Parametertyp erkennen,
indem es je nach dem Laufzeittyp des Parameters automatisch zu der geeigneten
Methodenüberladung geht, wie es die name-Methode im »ABC« -Beispiel tut. Die
Methodenüberladung hat diese Funktionalität einfach nicht. Sie können das Pro-
gramm reparieren, indem Sie alle drei Überladungen von classify durch eine einzelne
Methode ersetzen, die einen expliziten instanceof-Test durchführt:

public static String classify(Collection c) {
 return (c instanceof Set ? "Set" :
 (c instanceof List ? "List" : "Unknown Collection"));
}

138 6 Methoden

Da das Überschreiben die Regel und das Überladen die Ausnahme ist, ist das Über-
schreiben auch maßgeblich dafür, welches Verhalten die Leute bei einem Methoden-
aufruf erwarten. Wie das CollectionClassifier-Beispiel zeigt, kann eine Überladung
diese Erwartungen leicht täuschen. Es ist schlechter Stil, Code zu schreiben, dessen
Verhalten dem Durchschnittsprogrammierer nicht auf den ersten Blick einleuchtet. Das
gilt besonders für APIs. Wenn der typische Benutzer eines APIs nicht weiß, welche von
mehreren Methodenüberladungen bei einer gegebenen Menge Parameter aufgerufen
wird, dann wird die Benutzung dieses APIs wahrscheinlich zu Fehlern führen. Diese
Fehler zeigen sich dann als fehlerhaftes Laufzeitverhalten und viele Programmierer
werden die Ursache nicht finden können. Daher sollten Sie einen verwirrenden Ein-
satz von Überladungen vermeiden.

Doch was genau ist eigentlich ein verwirrender Einsatz von Überladungen? Ein siche-
res, konservatives Verfahren besteht darin, niemals zwei Überladungen mit dersel-
ben Anzahl Parameter zu exportieren. Wenn Sie sich daran halten, sind Programmierer
nie im Zweifel darüber, welche Überladung auf eine gegebene Parametermenge ange-
wendet wird. Diese Beschränkung ist nicht sonderlich beschwerlich, denn Sie können
Methoden ja auch unterschiedliche Namen geben, statt sie zu überladen.

Betrachten Sie z.B. die Klasse ObjectOutputStream. Sie hat für jeden Grundtyp und
mehrere Referenztypen eine eigene Variante ihrer write-Methode. Anstatt die write-
Methode zu überladen, haben diese Varianten Signaturen wie writeBoolean(boolean),
writeInt(int) und writeLong(long). Ein zusätzlicher Vorteil dieses Namensmusters, im
Gegensatz zur Überladung, besteht darin, dass Sie auch read-Methoden mit analogen
Namen bereitstellen können, z.B. readBoolean(boolean), readInt(int) und readLong(long).
Die Klasse ObjectInputStream hat auch tatsächlich read-Methoden mit diesen Namen.

Bei Konstruktoren haben Sie nicht die Möglichkeit, verschiedene Namen zu verwen-
den: Mehrere Konstruktoren für eine Klasse sind immer überladen. In manchen Fällen
haben Sie die Möglichkeit, statt Konstruktoren statische Factorys zu exportieren
(Thema 1), doch dies ist nicht immer möglich. Ein Pluspunkt ist, dass Sie sich bei Kon-
struktoren keine Gedanken über Interaktionen von Überladen und Überschreiben
machen müssen, da man Konstruktoren gar nicht überschreiben kann. Da Sie wahr-
scheinlich ab und zu Gelegenheit haben werden, mehrere Konstruktoren zu exportie-
ren, lohnt es sich zu wissen, wann dies sicher ist.

Wenn in jedem Fall klar ist, welche Überladung jeweils zu einer gegebenen Parameter-
menge dazugehört, dann können Sie Mehrfachüberladungen mit gleichen Parame-
teranzahlen exportieren, ohne die Programmierer in Verwirrung zu stürzen. Dieser
Fall tritt beispielsweise dann ein, wenn in jedem Paar von Überladungen zumindest
ein passender, formaler Parameter in beiden Überladungen einen »radikal unter-
schiedlichen« Typ hat. Zwei Typen sind radikal unterschiedlich, wenn es ganz klar
ausgeschlossen ist, eine Instanz des einen Typs in den anderen umzuwandeln. Dann

Thema 26: Verwenden Sie Methodenüberladung vorsichtig 139

entscheiden allein die Laufzeittypen der Parameter darüber, welche Überladung auf
eine gegebene, tatsächliche Parametermenge angewendet wird. Da diese Wahl nicht
durch die Parametertypen zur Kompilierungszeit beeinflusst werden kann, löst sich
die Hauptfehlerquelle in Luft auf.

ArrayList hat beispielsweise einen Konstruktor, der einen int entgegennimmt und einen
zweiten Konstruktor, der eine Collection entgegennimmt. Es ist nur schwerlich vorstell-
bar, dass irgendjemand über die Frage, welcher dieser beiden Konstruktoren wann auf-
gerufen werden muss, in Verwirrung gerät, denn Grundtypen und Referenztypen sind
radikal unterschiedlich. In ähnlicher Weise hat BigInteger einen Konstruktor, der ein
byte-Array entgegennimmt und einen, der einen String akzeptiert, und auch dies kann
keine Verwirrung stiften. Array-Typen und Klassen (außer Object) sind radikal unter-
schiedlich. Dasselbe gilt für Array-Typen und Interfaces (außer Serializable und
Cloneable). Ein letztes Beispiel: Throwable hat mit dem Release 1.4 einen Konstruktor, der
einen String entgegennimmt und einen, der ein Throwable-Objekt akzeptiert. Die Klassen
String und Throwable sind nicht verwandt, d.h. keine der beiden Klassen ist ein Abkömm-
ling der anderen. Da ein Objekt unmöglich eine Instanz zweier nicht-verwandter Klas-
sen sein kann, sind solche nicht-verwandten Klassen radikal unterschiedlich.

Es gibt noch einige weitere Beispiele für Paare von Typen, die sich nicht ineinander
konvertieren lassen [JLS, 5.1.7], aber wenn Sie über die bereits erwähnten, einfachen
Fälle hinausgehen, kann es für den durchschnittlichen Programmierer sehr schwierig
werden, zu erkennen, welche Überladung auf eine tatsächliche Parametermenge
anwendbar ist. Die Spezifikation, die festlegt, welche Überladung ausgewählt wird, ist
komplex, und nur wenige Programmierer können sie wirklich durchschauen [JLS,
15.12.1-3].

Gelegentlich sind Sie gezwungen, die obigen Richtlinien zu verletzen, wenn Sie vor-
handene Klassen so zurechtstutzen möchten, dass sie neue Interfaces implementieren.
So hatten z.B. viele der Werttypen in den Java-Plattformbibliotheken »self-typed« com-
pareTo-Methoden, ehe das Interface Comparable eingeführt wurde. Hier ist die Deklara-
tion der »self-typed« compareTo-Methode von String:

 public int compareTo(String s);

Als das Comparable-Interface eingeführt wurde, wurden alle diese Klassen so überarbei-
tet, dass sie dieses Interface implementierten. Dazu musste eine allgemeinere compa-
reTo-Methode mit folgender Deklaration eingesetzt werden:

 public int compareTo(Object o);

Die damit einhergehende Überladung verletzt zwar die oben geschilderten Richtlinien,
richtet aber keinen Schaden an, sofern beide überladenen Methoden genau dasselbe
tun, wenn sie auf denselben Parametern aufgerufen werden. Der Programmierer weiß
vielleicht nicht, welche Überladung aufgerufen wird, aber das spielt auch keine Rolle,

140 6 Methoden

solange beide dasselbe Ergebnis bringen. Standardmäßig erzielt man ein solches Ver-
halten, indem man die allgemeinere Überladung den Aufruf an die speziellere Über-
ladung weiterleiten lässt:

 public int compareTo(Object o) {
 return compareTo((String) o);
 }

Ein ähnliches Idiom wird manchmal für die equals-Methoden eingesetzt:

 public boolean equals(Object o) {
 return o instanceof String && equals((String) o);
 }

Dieses Idiom ist harmlos und kann eine etwas verbesserte Leistung zur Folge haben,
wenn der Parametertyp zur Kompilierungszeit zu dem Parameter der spezielleren
Überladung passt. Doch dies ist natürlich nicht immer der Mühe wert (Thema 37).

Zwar befolgen die Java-Plattformbibliotheken im Wesentlichen den Rat dieses Themas,
doch an einigen Stellen wird auch dagegen verstoßen. So exportiert z.B. die Klasse
String die beiden überladenen statischen Factory-Methoden valueOf(char[]) und
valueOf(Object), die ganz unterschiedliche Sachen machen, wenn man ihnen die-
selbe Objektreferenz übergibt. Dafür gibt es keine Rechtfertigung und Sie sollten es als
eine Abweichung betrachten, die richtig Verwirrung stiften kann.

Zusammenfassend kann man sagen: Sie sollten keine Methoden bloß deswegen über-
laden, weil es möglich ist. Generell sollten Sie keine Methoden mit mehreren Signatu-
ren überladen, die dieselbe Parameteranzahl haben. In manchen Fällen, insbesondere
bei Konstruktoren, kann die Befolgung dieser Regel jedoch unmöglich sein. Dann soll-
ten Sie durch Hinzufügen von Typumwandlungen zumindest verhindern, dass die-
selbe Parametermenge verschiedenen Überladungen übergeben werden kann. Wenn
eine solche Situation jedoch unvermeidlich ist – z.B. weil Sie eine bestehende Klasse so
überarbeiten, dass sie ein neues Interface implementiert –, dann sollten Sie gewährleis-
ten, dass sich alle Überladungen identisch verhalten, wenn man ihnen dieselben Para-
meter übergibt. Wenn Sie dies unterlassen, können die Programmierer die überladene
(Konstruktor)-Methode nicht wirkungsvoll einsetzen und verstehen ihre Funktions-
weise auch nicht.

Thema 27: Geben Sie nicht null, sondern Arrays der Länge null zurück 141

6.5 Thema 27: Geben Sie nicht null, sondern Arrays der
Länge null zurück

Häufig sehen Sie Methoden wie die folgende:

private List cheesesInStock = ...;

/**
 * @return ein Array mit allen Käsesorten im Laden
 * oder null, wenn es keinen Käse gibt.
 */
public Cheese[] getCheeses() {
 if (cheesesInStock.size() == 0)
 return null;
 ...
}

Nichts spricht dafür, einen Sonderfall für die Situation einzuführen, dass es keinen
Käse gibt. Das führt nur dazu, dass der Client zusätzlichen Code benötigt, um den
Rückgabewert null zu verarbeiten. Ein Beispiel:

Cheese[] cheeses = shop.getCheeses();
if (cheeses != null &&
 Arrays.asList(shop.getCheeses()).contains(Cheese.STILTON))
 System.out.println("Sehr schön, den nehme ich.");

anstelle von:

if (Arrays.asList(shop.getCheeses()).contains(Cheese.STILTON))
 System.out.println("Sehr schön, den nehme ich.");

Diese Art von Umschreibung wird bei fast allen Methoden erforderlich, die statt eines
Arrays der Länge null den Wert null zurückgeben. Der Code ist fehleranfällig, weil der
Programmierer, der den Client schreibt, vielleicht vergisst, den Sonderfall einzufügen,
der den Rückgabewert null verarbeitet. Ein solcher Fehler kann jahrelang unbemerkt
bleiben, da solche Methoden normalerweise ein oder mehrere Objekte zurückgeben.
Weniger bedeutend, aber immer noch erwähnenswert ist der Umstand, dass die Rück-
gabe von null anstelle eines Arrays der Länge null auch die Array-Rückgabemethode
selbst verkompliziert.

Manchmal hört man das Argument, der Rückgabewert null sei besser als ein Array der
Länge null, weil er den Aufwand der Array-Zuweisung spart. Doch dieses Argument
geht aus zwei Gründen ins Leere: Erstens sollte man auf dieser Ebene nur dann an die
Leistung denken, wenn ein Profiling gezeigt hat, dass die betreffende Methode tatsäch-
lich Leistungseinbußen verursacht (Thema 37). Zweitens können Sie nach jedem Auf-
ruf, der keine Elemente zurückgibt, dasselbe Array der Länge null zurückliefern, da
solche Arrays unveränderlich sind und unveränderliche Objekte nach Herzenslust

142 6 Methoden

gemeinsam genutzt werden können (Thema 13). Und genau dies geschieht auch, wenn
Sie das Standardidiom verwenden, mit dem Elemente aus einer Sammlung in ein typ-
gebundenes Array gespeichert werden:

private List cheesesInStock = ...;

private final static Cheese[] NULL_CHEESE_ARRAY = new Cheese[0];

/**
 * @return ein Array mit allen Käsesorten im Laden.
 */
public Cheese[] getCheeses() {
 return (Cheese[]) cheesesInStock.toArray(NULL_CHEESE_ARRAY);
}

In diesem Idiom wird eine Array-Konstante der Länge null an die toArray-Methode
übergeben, um den gewünschten Rückgabetyp anzuzeigen. Normalerweise weist die
toArray-Methode das Rückgabe-Array zu, aber wenn die Sammlung leer ist, passt sie in
das Eingabe-Array, und die Spezifikation von Collection.toArray(Object[]) garantiert,
dass dieses Eingabe-Array zurückgeliefert wird, wenn es groß genug ist, um die
Sammlung aufzunehmen. Also weist dieses Idiom nie ein Array der Länge null zu,
sondern verwendet stattdessen immer wieder die »Typspezifikationskonstante« .

Fazit: Es gibt keinerlei Grund, aus einer Methode mit einem Array-Wert null statt
eines Arrays der Länge null zurückzugeben. Dieses Idiom ist wahrscheinlich eine
Hinterlassenschaft der Programmiersprache C, in der Array-Längen getrennt von den
eigentlichen Arrays zurückgegeben werden. In C bringt es keinen Vorteil, ein Array
zuzuweisen, wenn als Länge null zurückgegeben wird.

6.6 Thema 28: Schreiben Sie Doc-Kommentare für alle
offen gelegten API-Elemente

Damit ein API benutzbar ist, muss es dokumentiert sein. Früher wurde die API-Doku-
mentation manuell erstellt und es war schwer, die Dokumentation mit der Entwicklung
des Codes synchron zu halten. Die Java-Programmierumgebung erleichtert diese
Aufgabe nun mit einem Dienstprogramm namens Javadoc. Es generiert die API-Doku-
mentation automatisch aus dem Quellcode und speziell formatierten Dokumentations-
kommentaren, die allgemein auch als Doc-Kommentare bezeichnet werden. Javadoc bietet
eine einfache, weit verbreitete und wirkungsvolle Möglichkeit, APIs zu dokumentieren.

Wenn Sie die Konventionen für Doc-Kommentare noch nicht kennen, sollten Sie sie
schnell erlernen. Zwar gehören diese Konventionen nicht zur Programmiersprache
Java, aber de facto stellen sie ein API dar, das jeder Programmierer kennen muss. In
The Javadoc Tool Home Page [Javadoc-b] sind die Konventionen definiert.

Thema 28: Schreiben Sie Doc-Kommentare für alle offen gelegten API-Elemente 143

Um Ihr API korrekt zu dokumentieren, müssen Sie vor exportierte Klassen, Inter-
faces, Konstruktoren, Methoden und Felddeklarationen jeweils einen Doc-Kom-
mentar setzen. Davon gibt es nur eine einzige Ausnahme, die am Ende dieses Themas
erklärt wird. Ist kein Doc-Kommentar vorhanden, so kann Javadoc bestenfalls die
Deklaration als einzige Dokumentation des betreffenden API-Elements wiedergeben.
Ein API ohne Dokumentationskommentare ist frustrierend und fehleranfällig. Um
wartungsfreundlichen Code zu schreiben, sollten Sie auch für nicht-exportierte Klas-
sen, Interfaces, Konstruktoren und Felder Doc-Kommentare schreiben.

Der Doc-Kommentar für eine Methode sollte kurz den Vertrag zwischen der
Methode und ihrem Client beschreiben. Außer bei Methoden in Klassen, die zur Ver-
erbung geschaffen wurden (Thema 15), sollte der Vertrag sagen, was die Methode tut,
und nicht, wie sie es tut. Der Doc-Kommentar sollte alle Vorbedingungen der Methode
aufzählen. Das sind die Gegebenheiten, die zutreffen müssen, damit ein Client die
Methode aufrufen kann. Außerdem müssen die Nachbedingungen aufgeführt werden,
also die Dinge, die zutreffen müssen, nachdem der Aufruf erfolgreich abgeschlossen
ist. Die Vorbedingungen werden implizit durch die @throws-Tags für ungeprüfte Aus-
nahmen beschrieben: Jede ungeprüfte Ausnahme entspricht einer Verletzung der Vor-
bedingungen. Außerdem können Vorbedingungen zusammen mit den betreffenden
Parametern in deren @param-Tags spezifiziert werden.

Neben den Vor- und Nachbedingungen sollten Methoden auch eventuelle Nebeneffekte
dokumentieren. Ein Nebeneffekt ist eine erkennbare Zustandsänderung des Systems,
die nicht ganz klar zur Erzielung der Nachbedingung erforderlich ist. Wenn eine
Methode beispielsweise einen Hintergrund-Thread startet, sollte die Dokumentation
dies vermerken. Abschließend sollten Dokumentationskommentare auch die Thread-
Sicherheit einer Klasse beschreiben, die in Thema 52 noch behandelt wird.

Um ihren Vertrag vollständig zu beschreiben, sollte der Doc-Kommentar für eine
Methode für jeden Parameter ein @param-Tag haben, sowie ein @return-Tag, sofern die
Methode nicht den Rückgabetyp void hat, und für jede geprüfte oder ungeprüfte Aus-
nahme, die die Methode auslösen kann, ein @throws-Tag (Thema 44). Laut Konvention
sollte der auf ein @param- oder ein @return-Tag folgende Text ein Hauptsatz sein, der den
vom Parameter oder Rückgabewert dargestellten Wert beschreibt. Der Text hinter
einem @throws-Tag sollte das Wort »wenn« gefolgt von einem Hauptsatz enthalten, der
beschreibt, unter welchen Bedingungen die Ausnahme ausgelöst wird. Gelegentlich
werden auch Rechenausdrücke anstelle von Hauptsätzen eingesetzt. Alle diese Kon-
ventionen werden im folgenden kurzen Doc-Kommentar veranschaulicht, der dem
List-Interface entnommen ist.

/**
 * Gibt das Element an der angegebenen Listenposition zurück.
 *
 * @param index Index des Rückgabeelements; mus nicht-negativ

144 6 Methoden

 * und kleiner als die Größe der Liste sein.
 * @return das Element an der angegebenen Listenposition.
 * @throws IndexOutOfBoundsException wenn Index nicht im
 * Wertebereich
 * (<tt>index < 0 || index >= this.size()</tt>).
 */
Object get(int index);

Beachten Sie den Einsatz von HTML-Metazeichen und -Tags in diesem Doc-Kommen-
tar. Javadoc übersetzt Doc-Kommentare in HTML und jedes beliebige HTML-Element
in einem Doc-Kommentar landet schließlich in dem resultierenden HTML-Dokument.
Manchmal gehen Programmierer so weit, dass sie HTML-Tabellen in ihre Doc-Kom-
mentare einbetten, doch dies ist nicht sehr üblich. Die meistgenutzten Tags sind <p>
zum Trennen von Absätzen, <code> und <tt> für Code-Fragmente und <pre> für längere
Code-Fragmente.

Die Tags <code> und <tt> sind im Großen und Ganzen äquivalent. <code> ist
gebräuchlicher und laut HTML 4.01-Spezifikation generell vorzuziehen, da <tt> ein
Fontstilelement ist. (Stylesheets werden gegenüber Fontstilelementen bevorzugt
[HTML401].) Dennoch verwenden manche Programmierer lieber <tt>, da es kürzer
und unauffälliger ist.

Vergessen Sie nicht, dass Sie Escape-Sequenzen setzen müssen, um HTML-Metazei-
chen wie Kleiner als (<), Größer als (>) und das kaufmännische Und-Zeichen (&) zu
generieren. Für das Kleiner-als-Zeichen verwenden Sie »<« , für das Größer-als-Zei-
chen »>« und für das kaufmännische Und-Zeichen »&« . Die Verwendung von
Escape-Sequenzen veranschaulicht das @throws-Tag im obigen Doc-Kommentar.

Zum Schluss müssen Sie noch das Wort »this« in dem Doc-Kommentar beachten. Laut
Konvention bezieht es sich immer auf das Objekt, auf dem die Methode aufgerufen
wird, wenn es im Doc-Kommentar für eine Instanzmethode steht.

Der erste Satz jedes Doc-Kommentars enthält die zusammenfassende Beschreibung des
Elements, zu dem der Kommentar gehört. Diese Zusammenfassung muss eine abge-
schlossene Beschreibung der Funktionalität des dazugehörigen Konstrukts sein. Damit
keine Verwirrung entsteht, sollten keine zwei Attribute oder Konstruktoren einer
Klasse oder eines Interfaces dieselbe zusammenfassende Beschreibung haben. Bitte
achten Sie besonders auf Überladungen, denn für diese steht in der Textbeschreibung
oft derselbe erste Satz.

Setzen Sie bitte auch keinen Schlusspunkt innerhalb des ersten Satzes eines Doc-Kom-
mentars, denn sonst wird die zusammenfassende Beschreibung zu früh abgeschnitten.
So würde z.B. ein Doc-Kommentar, der mit den Worten »Ein Universitätsabschluss wie
M.A. oder Dr.« beginnt, die zusammenfassende Beschreibung »Ein Universitätsab-

schluss wie M.« zur Folge haben. Dieses Problem umgehen Sie am besten, indem Sie
Abkürzungen und Ausdrücke, die den Punkt als Trennzeichen verwenden, in zusam-

Thema 28: Schreiben Sie Doc-Kommentare für alle offen gelegten API-Elemente 145

menfassenden Beschreibungen unterlassen. Sie können zwar einen Punkt auch einfü-
gen, indem Sie ihn durch seine nummerische Codierung ».« ersetzen, aber das macht
den Quellcode nicht gerade hübscher:

/**
 * Ein Universitätsabschluss wie M.A. oder
 * Dr..
 */
public class Degree { ... }

Zu sagen, die zusammenfassende Beschreibung sei der erste Satz in einem Doc-Kom-
mentar, ist in gewisser Weise irreführend. Die Konvention verlangt kaum jemals, dass
es ein vollständiger Satz sein muss. Bei Methoden und Konstruktoren sollte die zusam-
menfassende Beschreibung eine Verbalphrase sein, die die von der Methode ausge-
führte Aktion beschreibt. Zwei Beispiele:

� ArrayList(int initialCapacity) – Erzeugt eine leere Liste mit der angegebenen
Anfangskapazität.

� Collection.size() – Gibt die Anzahl der Elemente dieser Sammlung zurück.

Für Klassen, Interfaces und Felder sollte die zusammenfassende Beschreibung eine
Nominalphrase sein, die beschreibt, was das Feld oder eine Instanz der Klasse oder des
Interfaces repräsentiert. Zwei Beispiele:

� TimerTask – Ein Task, der von einem Timer zur Ausführung zu einem bestimmten
Zeitpunkt oder zur wiederholten Ausführung vorgemerkt wird.

� Math.PI – Der double-Wert, der näher als irgendein anderer an Pi herankommt, das
Verhältnis zwischen Umfang und Durchmesser eines Kreises.

Mit den hier beschriebenen Konventionen für Doc-Kommentare kommen Sie bereits
aus, aber es gibt noch viele weitere. Mehrere Styleguides behandeln das Schreiben von
Doc-Kommentaren [Javadoc-a, Vermeulen 2000] und es gibt auch Dienstprogramme,
die die Einhaltung dieser Regeln prüfen [Doclint].

Seit dem Release 1.2.2 kann Javadoc Methodenkommentare »automatisch wiederver-
wenden« oder »erben« . Wenn eine Methode keinen Doc-Kommentar hat, sucht Java-
doc den spezifischen, anwendbaren Doc-Kommentar und gibt dabei Interfaces den
Vorrang vor Oberklassen. Einzelheiten über den Suchalgorithmus finden Sie in The
Javadoc Manual.

Dies bedeutet, dass Klassen nunmehr die Doc-Kommentare von den Interfaces, die sie
implementieren, wieder verwenden können, anstatt diese Kommentare kopieren zu
müssen. Diese Fähigkeit erspart uns die Last, mehrere beinahe identische Doc-Kom-
mentarmengen pflegen zu müssen. Es hat jedoch auch eine Einschränkung: Die Verer-
bung von Doc-Kommentaren geht nur nach dem Prinzip »alles oder nichts« . Die

146 6 Methoden

erbende Methode kann den geerbten Doc-Kommentar auf keine Weise modifizieren.
Oft macht eine Methode den von einem Interface geerbten Vertrag noch spezifischer,
und in einem solchen Fall benötigt sie tatsächlich einen eigenen Doc-Kommentar.

Eine einfache Möglichkeit, die Fehlerwahrscheinlichkeit in Doc-Kommentaren zu sen-
ken, besteht darin, die von Javadoc erzeugten HTML-Dateien durch ein Programm zu
schicken, das die Gültigkeit von HTML prüft: einen so genannten HTML Validity Che-
cker. Dieses Programm findet viele Fehler beim Setzen von HTML-Tags und auch feh-
lende Escape-Sequenzen für HTML-Metazeichen. Mehrere HTML Validity Checker
stehen zum Herunterladen zur Verfügung, darunter auch weblint [Weblint].

Auf eine Schwierigkeit muss im Zusammenhang mit Doc-Kommentaren hingewiesen
werden. Doc-Kommentare für alle exportierten Elemente eines APIs sind zwar erfor-
derlich, aber oft noch nicht genug. Für komplexe APIs mit vielen zusammenhängen-
den Klassen müssen Sie eine Dokumentation in Form eines externen Dokuments
liefern, das die übergreifende Architektur des APIs beschreibt. Wenn ein solches Doku-
ment existiert, sollten die Doc-Kommentare der betreffenden Klasse oder des Pakets
einen Link auf es enthalten.

Zusammenfassend kann man sagen, dass Dokumentationskommentare der beste und
effektivste Weg sind, ein API zu dokumentieren. Für alle exportierten API-Elemente
sind sie zwingend erforderlich. Sie sollten stilistisch konsistent und den Standardkon-
ventionen angepasst sein. Vergessen Sie nicht, dass in Doc-Kommentaren beliebige
HTML-Elemente erlaubt sind, wobei HTML-Metazeichen jedoch mit Escape-Sequen-
zen dargestellt werden müssen.

7 Allgemeine Programmierung

In diesem Kapitel geht es vor allem um die technischen Einzelheiten von Java. Behan-
delt werden lokale Variablen, die Verwendung von Bibliotheken, der Einsatz der ver-
schiedenen Datentypen und zwei sprachexterne Ressourcen: Reflection und native
Methoden. Zum Schluss werden Optimierungen und Namenskonventionen erläutert.

7.1 Thema 29: Minimieren Sie den Gültigkeitsbereich
lokaler Variablen

Seinem Wesen nach ähnelt dieses Thema dem Thema 12, »Minimieren Sie die Zugreif-
barkeit von Klassen und Attributen«. Indem Sie den Gültigkeitsbereich lokaler Variab-
len möglichst klein halten, machen Sie Ihren Code lesbarer und wartungsfreundlicher
und mindern die Fehleranfälligkeit.

In der Programmiersprache C müssen lokale Variablen am Anfang eines Blocks dekla-
riert werden und die Programmierer halten sich aus Gewohnheit immer noch daran.
Doch diese Gewohnheit sollten Sie aufgeben. Zur Erinnerung: In Java können Sie über-
all dort Variablen deklarieren, wo auch eine Anweisung zulässig wäre.

Die mächtigste Technik zum Minimieren des Gültigkeitsbereichs einer lokalen
Variablen besteht darin, sie dort zu deklarieren, wo sie zum ersten Mal benutzt
wird. Wenn eine Variable schon vor ihrem Einsatz deklariert wird, ist sie nur lästig:
eben ein Ding mehr, das den Leser ablenkt, der eigentlich wissen möchte, was das Pro-
gramm tut. Zu dem Zeitpunkt ihrer Nutzung kann sich der Leser vielleicht schon nicht
mehr an ihren Typ oder Anfangswert erinnern. Wenn sich das Programm weiterentwi-
ckelt und die Variable nicht mehr benutzt wird, kann man leicht vergessen die Dekla-
ration zu entfernen, wenn diese weit von dem Punkt entfernt steht, an dem die
Variable erstmals zum Einsatz kommt.

Der Gültigkeitsbereich einer lokalen Variablen kann nicht nur durch verfrühte, son-
dern auch durch verspätete Deklaration zu groß werden. Er erstreckt sich von der
Deklaration bis zum Ende des enthaltenden Blocks. Wird eine Variable außerhalb des
Blocks deklariert, in dem sie benutzt wird, dann bleibt sie für das Programm auch

148 7 Allgemeine Programmierung

dann noch sichtbar, wenn es den Block verlassen hat. Wenn eine Variable versehentlich
vor oder hinter dem Punkt verwendet wird, an dem ihre Nutzung beabsichtigt war, so
kann das katastrophale Folgen haben.

Fast jede Deklaration einer lokalen Variablen sollte einen Initialisierer enthalten.
Wenn Sie zu wenig Informationen haben, um eine Variable vernünftig initialisieren zu
können, dann sollten Sie die Deklaration verschieben, bis Sie genug wissen. Eine Aus-
nahme von dieser Regel bilden die try-catch-Anweisungen. Wenn eine Variable von
einer Methode initialisiert wird, die eine geprüfte Ausnahme auslöst, dann muss sie
innerhalb eines try-Blocks initialisiert werden. Wenn der Wert außerhalb des try-
Blocks verwendet werden muss, dann muss sie vor dem try-Block deklariert werden,
also an einem Punkt, an dem sie noch nicht »vernünftig initialisiert« werden kann. Ein
Beispiel dafür finden Sie in Thema 35.

Schleifen bieten eine besondere Chance, den Gültigkeitsbereich von Variablen zu mini-
mieren. In einer for-Schleife können Sie Schleifenvariablen deklarieren, deren Gültig-
keitsbereich genau auf die Gegend beschränkt ist, in der sie gebraucht werden. (Diese
Gegend erstreckt sich auf den Schleifenrumpf sowie die Initialisierung, den Test und
das Update vor dem Schleifenrumpf.) Daher sollten Sie den for-Schleifen gegenüber
den while-Schleifen den Vorzug geben, immer vorausgesetzt, dass die Inhalte der
Schleifenvariablen nach Abschluss der Schleife nicht mehr benötigt werden.

Als Beispiel sehen Sie hier das bevorzugte Idiom zum Abarbeiten einer Sammlung:

for (Iterator i = c.iterator(); i.hasNext();) {
 doSomething(i.next());
}

Um zu verstehen, warum diese for-Schleife besser als die näherliegende while-Schleife
ist, sollten Sie sich folgendes Code-Fragment anschauen, das zwei while-Schleifen und
einen Fehler enthält:

Iterator i = c.iterator();
while (i.hasNext()) {
 doSomething(i.next());
}
 ...

Iterator i2 = c2.iterator();
while (i.hasNext()) { // Fehler!
 doSomethingElse(i2.next());
}

Die zweite Schleife enthält einen Fehler, der durch Kopieren und Einfügen entsteht: Sie
initialisiert die neue Schleifenvariable i2, verwendet aber die alte Variable i, die leider
immer noch Gültigkeit hat. Der resultierende Code wird fehlerfrei kompiliert und
läuft, ohne eine Ausnahme auszulösen, aber er tut das Falsche. Anstatt c2 zu durchlau-

Thema 29: Minimieren Sie den Gültigkeitsbereich lokaler Variablen 149

fen endet die zweite Schleife sofort und vermittelt den falschen Eindruck, dass c2 leer
sei. Da das Programm diesen Fehler stillschweigend macht, kann es lange dauern, bis
er entdeckt wird.

Wenn Sie einen solchen Kopieren&Einfügen-Fehler in dem bevorzugten Idiom für for-
Schleifen begehen, dann wird der resultierende Code nicht kompiliert. Die Schleifen-
variable aus der ersten Schleife hätte dann nämlich an dem Punkt, wo sich die zweite
Schleife befindet, keine Gültigkeit:

for (Iterator i = c.iterator(); i.hasNext();) {
 doSomething(i.next());
}
 ...

// Statischer Fehler – Das Symbol i wird nicht aufgelöst
for (Iterator i2 = c2.iterator(); i.hasNext();) {
 doSomething(i2.next());
}

Ja mehr noch: Wenn Sie das for-Schleifen-Idiom benutzen, dann laufen Sie weniger
Gefahr, Kopieren&Einfügen-Fehler zu machen, da es keinen Anlass gibt, in den beiden
Schleifen verschiedene Variablennamen zu verwenden. Da die Schleifen völlig vonein-
ander unabhängig sind, kann gefahrlos derselbe Variablenname wieder verwendet
werden, was auch als guter Stil gilt.

Und noch einen weiteren – wenn auch kleinen – Vorteil hat die for-Schleife gegenüber
der while-Schleife: Das for-Schleifen-Idiom ist um eine Zeile kürzer. Das trägt dazu bei,
dass die umgebende Methode in ein Editorfenster von fester Größe hineinpasst und
somit besser lesbar wird.

Hier ist ein weiteres Schleifenidiom, das über eine Liste iteriert und den Gültigkeits-
bereich lokaler Variablen minimiert:

// Hochleistungsidiom zum Durchlaufen von Listen mit wahlfreiem Zugriff
for (int i = 0, n = list.size(); i < n; i++) {
 doSomething(list.get(i));
}

Dieses Idiom ist nützlich für List-Implementierungen mit wahlfreiem Zugriff wie z.B.
ArrayList und Vector, denn es läuft wahrscheinlich schneller als das oben gezeigte
»bevorzugte Idiom« für solche Listen. Wichtig ist hier, dass es zwei Schleifenvariablen
hat, nämlich i und n, die beide genau den richtigen Gültigkeitsbereich haben. Die
zweite Variable ist wichtig für die Leistung des Idioms. Ohne sie müsste die Schleife
bei jeder Iteration einmal die size-Methode aufrufen, was den Leistungsvorteil
zunichte machen würde. Der Einsatz dieses Idioms ist dann angebracht, wenn Sie
sicher sind, dass die Liste auch wirklich wahlfreien Zugriff bietet. Andernfalls poten-
ziert sich der Zeitaufwand.

150 7 Allgemeine Programmierung

Für andere Aufgaben mit Schleifen gibt es ähnliche Idiome, beispielsweise dieses:

for (int i = 0, n = expensiveComputation(); i < n; i++) {
 doSomething(i);
}

Auch dieses Idiom benutzt wieder zwei Schleifenvariablen und die zweite Variable, n,
dient dazu, den Aufwand einer redundanten Berechnung bei jeder Iteration zu sparen.
Grundsätzlich sollten Sie dieses Idiom einsetzen, wenn der Schleifentest einen Metho-
denaufruf enthält, der garantiert bei jeder Iteration dasselbe Ergebnis erbringt.

Eine letzte Technik, mit der Sie den Gültigkeitsbereich lokaler Variablen minimieren
können, besteht darin, alle Methoden klein und konzentriert zu formulieren. Wenn
Sie zwei Aktivitäten in derselben Methode kombinieren, dann können lokale Variab-
len, die für die eine Aktivität eine Rolle spielen, in den Gültigkeitsbereich des Codes
gelangen, der die andere Aktivität ausführt. Um dies auszuschließen machen Sie ein-
fach aus einer Methode zwei und formulieren für jede Aktivität eine.

7.2 Thema 30: Sie müssen die Bibliotheken kennen und
nutzen

Angenommen, Sie möchten ganzzahlige Zufallszahlen zwischen null und einer Ober-
grenze generieren. Mit dieser gängigen Aufgabe konfrontiert, würden viele Program-
mierer eine kleine Methode schreiben, die etwa folgendermaßen aussieht:

static Random rnd = new Random();

// Gängig, aber mangelhaft!
static int random(int n) {
 return Math.abs(rnd.nextInt()) % n;
}

Diese Methode ist nicht schlecht, aber sie ist auch nicht perfekt: Sie hat nämlich drei
Mängel. Erstens: Wenn n eine kleine Zweierpotenz ist, dann wiederholt sich die
Zufallszahlenfolge schon nach recht kurzer Zeit. Zweitens: Wenn n keine Zweierpotenz
ist, dann werden einige Zahlen im Durchschnitt häufiger zurückgegeben als andere.
Wenn n groß ist, kann dieser Mangel ziemlich deutlich ausfallen. Grafisch wird dies
durch das folgende Programm demonstriert, das eine Million Zufallszahlen aus einem
sorgfältig ausgewählten Intervall generiert und dann ausgibt, wie viele der Zahlen auf
die niedrigere Hälfte des Intervalls entfallen:

public static void main(String[] args) {
 int n = 2 * (Integer.MAX_VALUE / 3);
 int low = 0;
 for (int i = 0; i < 1000000; i++)
 if (random(n) < n/2)

Thema 30: Sie müssen die Bibliotheken kennen und nutzen 151

 low++;

 System.out.println(low);
}

Funktionierte die random-Methode gut, so würde das Programm eine Zahl im Bereich
einer halben Million ausgeben, doch wenn Sie es ausführen, stellen Sie fest, dass diese
Zahl bei 666.666 liegt. Zwei Drittel der von der random-Methode generierten Zahlen ent-
fallen auf die niedrigere Hälfte des Intervalls!

Der dritte Mangel der random-Methode besteht darin, dass sie in seltenen Fällen auch
katastrophal versagen kann, indem sie eine Zahl zurückgibt, die nicht im angegebenen
Intervall liegt. Das liegt daran, dass die Methode versucht, den von rnd.nextInt()
zurückgegebenen Wert mit Math.abs auf eine nicht-negative, ganze Zahl abzubilden.
Wenn nextInt() den Wert Integer.MIN_VALUE zurückgibt, dann gibt Math.abs auch Inte-
ger.MIN_VALUE zurück, und der Restoperator (%) liefert, falls n keine Zweierpotenz ist,
eine negative Zahl. Das lässt das Programm fast unweigerlich scheitern – ein Scheitern,
das sich vielleicht nur schwer reproduzieren lässt.

Um eine random-Version ohne diese drei Mängel zu schreiben, müssten Sie eine Menge
über lineare, kongruente Pseudozufallszahlen-Generatoren, Zahlentheorie und Zwei-
erkomplement-Arithmetik wissen. Doch zum Glück brauchen Sie sich darum nicht zu
kümmern: Das hat man Ihnen bereits abgenommen. Die Methode heißt Random.next
Int(int) und wurde im Release 1.2 zu dem Paket java.util der Standardbibliothek
hinzugefügt.

Sie brauchen sich also nicht mit den Einzelheiten abzugeben, wie nextInt(int) seinen
Job erledigt (natürlich können Sie, falls Sie unter unheilbarer Neugier leiden, die
Dokumentation oder den Quellcode studieren). Ein leitender Ingenieur mit Fachwis-
sen über Algorithmen verbrachte viel Zeit mit dem Entwurf, der Implementierung
und dem Testen dieser Methode und zeigte sie dann Fachexperten, um auch ganz
sicherzugehen, dass sie richtig ist. Dann durchlief die Bibliothek einen Betatest, wurde
veröffentlicht und wird nun schon seit mehreren Jahren von Tausenden Programmie-
rern umfassend genutzt. Bisher hat man keinen Mangel in der Methode gefunden,
doch selbst wenn dies noch geschehen sollte, wird er im nächsten Release behoben
werden. Durch Verwendung der Standardbibliothek nutzen Sie das Wissen der
Experten, die sie schrieben, und die Erfahrung Tausender, die sie schon vor Ihnen
einsetzten.

Die Nutzung der Bibliotheken hat den zweiten Vorteil, dass Sie keine Zeit damit verlie-
ren, ad-hoc-Lösungen für Probleme zu entwickeln, die nur am Rande mit Ihrer Arbeit
zu tun haben. Wenn Sie wie die meisten Programmierer denken, dann verbringen Sie
Ihre Zeit lieber damit, an Ihrer Applikation zu arbeiten, anstatt irgendwelche Klemp-
nerarbeiten auf darunter liegenden Ebenen zu tun.

152 7 Allgemeine Programmierung

Ein dritter Vorteil der Nutzung von Standardbibliotheken ist der, dass ihre Leistung mit
der Zeit immer besser wird, ohne dass Sie irgendetwas dazu tun müssten. Da sie von
Vielen genutzt werden und dabei auch an den Benchmarks der Industrie gemessen wer-
den, sind die Organisationen, die diese Bibliotheken liefern, stark daran interessiert,
dass sie immer schneller laufen. So wurde z.B. java.math, die Standardbibliothek für
Arithmetik mit mehrfacher Genauigkeit, im Release 1.3 neu geschrieben, was zu massi-
ven Leistungssteigerungen führte.

Bibliotheken erweitern mit der Zeit auch ihre Funktionalität. Wenn eine Bibliotheks-
klasse eine wichtige Funktion vermissen lässt, dann wird dies in der Entwickler-
gemeinschaft publik gemacht. Die Java-Plattform wurde schon immer durch viele
Beiträge dieser Gemeinschaft weiterentwickelt. Früher war dies noch ein informeller
Prozess, aber mittlerweile ist er formalisiert und wird als Java Community Process
(JCP) bezeichnet. Wie auch immer: Fehlende Funktionen werden mit der Zeit nachge-
liefert.

Ein letzter Vorteil der Nutzung von Standardbibliotheken besteht darin, dass Sie Ihren
Code im Mainstream ansiedeln. Solcher Code ist lesbarer, wartungsfreundlicher und
für die Masse der Entwickler leichter wieder verwendbar.

Bei so vielen Vorteilen scheint es nur logisch, dass man besser Bibliotheksfunktionen
als ad-hoc-Implementierungen verwenden sollte. Aber dennoch tun viele Program-
mierer dies nicht. Warum? Vielleicht, weil sie nichts von der Existenz der Bibliotheks-
funktionen wissen. In jedem Haupt-Release werden die Bibliotheken um eine
Vielzahl von Funktionen erweitert und es lohnt sich, diese Erweiterungen zu
beobachten. Sie können die Dokumentation online überfliegen oder in einem der vie-
len einschlägigen Bücher Einzelheiten über die Bibliotheken nachlesen [J2SE-APIs,
Chan 2000, Flanagan 1999, Chan 1998]. Die Bibliotheken sind zwar zu umfangreich, als
dass Sie die gesamte Dokumentation lesen könnten, aber jeder Programmierer sollte
mindestens mit dem Inhalt von java.lang, java.util und in geringerem Maße auch
java.io vertraut sein. Das Wissen über andere Bibliotheken können Sie sich je nach
Bedarf aneignen.

Es würde den Rahmen dieses Themas sprengen, alle Bibliotheksfunktionen hier aufzu-
führen, doch einige verdienen eine besondere Erwähnung. Im Release 1.2 wurde dem
Paket java.util das Collections Framework hinzugefügt. Es sollte zum Handwerkszeug
jedes Programmierers gehören. Das Collections Framework ist eine einheitliche Archi-
tektur zur Darstellung und Bearbeitung von Sammlungen. Es ermöglicht Ihnen,
Sammlungen unabhängig von den Einzelheiten ihrer Darstellung zu bearbeiten. Es
mindert die Programmierarbeit und steigert die Leistung. Darüber hinaus ermöglicht
es die Zusammenarbeit zwischen nicht-verwandten APIs, erleichtert den Entwurf und
das Erlernen neuer APIs und fördert die Wiederverwendung von Software.

Thema 30: Sie müssen die Bibliotheken kennen und nutzen 153

Das Collections Framework ist auf sechs Sammlungs-Interfaces aufgebaut (Collection,
Set, List, Map, SortedList und SortedMap). Es enthält Implementierungen dieser Inter-
faces und Algorithmen zu ihrer Bearbeitung. Die althergebrachten Sammlungsklassen
Vector und Hashtable wurden so überarbeitet, dass sie in das Framework passen; Sie
können es also nutzen und dabei die alten Klassen beibehalten.

Mit diesem Framework können Sie viele banale Aufgaben mit viel weniger Code erle-
digen. Angenommen, Sie haben z.B. einen String-Vektor und möchten ihn alphabetisch
sortieren. Dazu genügt eine einzige Zeile:

 Collections.sort(v);

Wenn Sie dasselbe ohne Unterscheidung der Groß- und Kleinschreibung tun möchten,
verwenden Sie Folgendes:

 Collections.sort(v, String.CASE_INSENSITIVE_ORDER);

Angenommen, Sie möchten alle Array-Elemente ausgeben. Viele Programmierer tun
das mit einer for-Schleife, aber folgendes Idiom macht dies überflüssig:

 System.out.println(Arrays.asList(a));

Nehmen wir zum Schluss an, Sie möchten alle Schlüssel wissen, für die die beiden
Hashtable-Instanzen h1 und h2 dieselben Zuordnungen enthalten. Vor dem Collections
Framework hätte man dafür eine Menge Code schreiben müssen, aber jetzt geht es in
drei Zeilen:

Map tmp = new HashMap(h1);
tmp.entrySet().retainAll(h2.entrySet());
Set result = tmp.keySet();

Die obigen Beispiele zeigen noch nicht einmal einen Bruchteil dessen, was Sie mit dem
Collections Framework alles machen können. Wenn Sie an Einzelheiten interessiert
sind, sollten Sie sich auf der Website von Sun die Dokumentation [Collections] dazu
anschauen oder das Tutorial lesen [Bloch 1999].

Eine extern entwickelte Bibliothek, die hier Erwähnung verdient, ist util.concurrent
[Lea 2001] von Doug Lea. Sie stellt hochklassige Dienstprogramme für die Nebenläu-
figkeit zur Verfügung, die die Programmierung mit mehreren Threads erleichtern.

Auch der Release 1.4 bietet viel Neues in den Bibliotheken. Wichtige Erweiterungen
sind z.B.:

� java.util.regex – Eine ausgereifte Funktion für reguläre Ausdrücke wie bei Perl.

� java.util.prefs – Eine Funktion zur persistenten Speicherung von Benutzerpräfe-
renzen und Programmkonfigurationsdaten.

154 7 Allgemeine Programmierung

� java.nio – Eine leistungsstarke I/O-Funktion einschließlich scalable I/O (wie beim
poll-Aufruf unter Unix) und memory-mapped I/O (wie beim mmap-Aufruf unter Unix).

� java.util.LinkedHashSet, LinkedHashMap, IdentityHashMap – Neue Sammlungsimple-
mentierungen.

Gelegentlich entspricht vielleicht eine Bibliotheksfunktion nicht Ihren Bedürfnissen. Je
spezieller Ihre Wünsche sind, umso eher kann dies eintreten. Ihr erster Impuls sollte es
zwar sein, die Bibliotheken zu nutzen, aber wenn Sie sich angesehen haben, was diese
in einem bestimmten Bereich zu bieten haben, und das Gebotene nicht Ihren Wün-
schen entspricht, dann sollten Sie eine andere Implementierung verwenden. Bei einer
endlichen Anzahl von Bibliotheken gibt es immer etwas, das die gebotene Funktionali-
tät nicht abdeckt. Wenn das, was Sie benötigen, einfach nicht da ist, dann müssen Sie es
selbst implementieren.

Fazit: Sie sollten das Rad nicht neu erfinden. Wenn Sie eine Aufgabe vor sich sehen, die
ziemlich normal aussieht, dann gibt es vielleicht in den Bibliotheken schon eine Klasse,
die das macht, was Sie wollen. Finden Sie eine, dann nutzen Sie sie, wenn nicht, dann
prüfen Sie noch einmal nach. So guten Code wie den in den Bibliotheken können Sie
im Allgemeinen nicht selbst schreiben und die Bibliotheken werden außerdem noch
dauernd verbessert. Ich will Ihnen hier nicht Ihre Fähigkeiten als Programmierer
absprechen, doch schon durch die Größenordnung der investierten Bemühungen ist
klar, dass der Bibliothekscode mehr Aufmerksamkeit erhält, als ein einzelner Program-
mierer derselben Funktion jemals widmen könnte.

7.3 Thema 31: Meiden Sie float und double, wenn Sie genaue
Antworten wollen

Die Typen float und double wurden vor allem für wissenschaftliche und technische
Berechnungen geschaffen. Sie führen binäre Gleitkommaarithmetik aus, die sorgfältig ent-
wickelt wurde, um rasch für viele Größenordnungen gute Näherungswerte zu liefern.
Sie liefern aber keine exakten Ergebnisse und sollten dort, wo diese erforderlich sind,
auch nicht eingesetzt werden. Besonders schlecht eignen sich float und double für
Währungsrechnung, da es unmöglich ist, 0,1 (oder irgendeine negative Zehnerpotenz)
als float oder double exakt darzustellen.

Nehmen wir z.B. an, Sie haben 1,03 € in der Tasche und geben 42 Cent aus. Wie viel
Geld bleibt Ihnen? Hier sehen Sie ein naives Programmfragment, das dies zu beant-
worten versucht.

System.out.println(1.03 - .42);

Thema 31: Meiden Sie float und double, wenn Sie genaue Antworten wollen 155

Leider lautet die Ausgabe 0.6100000000000001. Dies ist kein Einzelfall: Angenommen,
Sie haben einen Euro und kaufen neun Dichtungsringe zu je zehn Cent. Wie viel Wech-
selgeld bekommen Sie heraus?

System.out.println(1.00 - 9*.10);

Nach diesem Programmfragment erhalten Sie 0.09999999999999995 €. Nun denken Sie
vielleicht, Sie könnten das Problem lösen, indem Sie einfach die Ergebnisse vor dem
Ausgeben runden, aber auch dies funktioniert leider nicht immer. Angenommen, Sie
haben einen Euro und sehen ein Regal mit leckeren Bonbons, die 10 Cent, 20 Cent, 30
Cent usw. bis hinauf zu einem Euro kosten. Sie kaufen von jeder Sorte ein Stück, begin-
nend mit dem Bonbon für 10 Cent, bis Ihr Restgeld für ein weiteres Bonbon nicht mehr
ausreicht. Wie viele Bonbons kaufen Sie und wie viel Wechselgeld erhalten Sie zurück?
Das folgende naive Programm soll dies beantworten:

// Kaputt – verwendet Gleitkommazahlen für Währungsrechnung!
public static void main(String[] args) {
 double funds = 1.00;
 int itemsBought = 0;
 for (double price = .10; funds >= price; price += .10) {
 funds -= price;
 itemsBought++;
 }
 System.out.println(itemsBought + " Waren gekauft.");
 System.out.println("Wechselgeld: _" + funds);
}

Wenn Sie dies ausführen, stellen Sie fest, dass Sie drei Bonbons kaufen können und
0.3999999999999999 € übrig behalten. Das ist falsch! Die richtige Lösung erfordert die
Verwendung von BigDecimal, int oder long für Währungsrechnung. Hier wurde das
obige Programm einfach so umgeschrieben, dass es BigDecimal statt double benutzt:

public static void main(String[] args) {
 final BigDecimal TEN_CENTS = new BigDecimal(".10");

 int itemsBought = 0;
 BigDecimal funds = new BigDecimal("1.00");
 for (BigDecimal price = TEN_CENTS;
 funds.compareTo(price) >= 0;
 price = price.add(TEN_CENTS)) {
 itemsBought++;
 funds = funds.subtract(price);
 }
 System.out.println(itemsBought + " Waren gekauft.");
 System.out.println("Restgeld: _" + funds);
}

Wenn Sie das überarbeitete Programm ausführen, stellen Sie fest, dass Sie vier Bonbons
kaufen können und 0,00 € übrig behalten. Das ist richtig. Doch die Verwendung von

156 7 Allgemeine Programmierung

BigDecimal hat zwei Nachteile: Sie ist unbequemer als die Verwendung eines arithmeti-
schen Grundtyps und überdies langsamer. Der zweite Nachteil ist irrelevant, wenn Sie
nur eine einzige kleine Aufgabe lösen, aber der erste kann lästig sein.

Eine Alternative zu BigDecimal ist die Verwendung von int oder long, je nachdem, um
welche Beträge es geht, wobei Sie den Dezimalpunkt selbst nachverfolgen müssen. In
diesem Beispiel ist der nächstliegende Ansatz, alle Berechnungen nicht in Euro son-
dern in Cent auszuführen. Im Folgenden sehen Sie eine entsprechende überarbeitete
Fassung des Programms:

public static void main(String[] args) {
 int itemsBought = 0;
 int funds = 100;
 for (int price = 10; funds >= price; price += 10) {
 itemsBought++;
 funds -= price;
 }
 System.out.println(itemsBought + " Waren gekauft.");
 System.out.println("Restgeld: "+ funds + " Cent");
}

Zusammenfassend kann man sagen, dass Sie für Berechnungen, die ganz exakte Ant-
worten erbringen müssen, keine float- oder double-Werte verwenden sollten. Wenn das
System den Dezimalpunkt im Auge behalten soll und es Sie nicht stört, auf die
Bequemlichkeit eines Grundtyps zu verzichten, benutzen Sie BigDecimal. Dieser Typ
hat den zusätzlichen Vorteil, dass Sie damit volle Kontrolle über die Rundung haben,
wobei Sie bei jeder Operation, die eine Rundung erforderlich macht, aus acht Run-
dungsmodi auswählen können. Das ist sehr praktisch, wenn Sie Berechnungen
betriebswirtschaftlicher Natur durchführen, bei denen der Rundungsmodus gesetzlich
vorgeschrieben ist. Wenn es Ihnen vorrangig um Leistung geht und es Sie nicht stört,
den Dezimalpunkt selbst im Auge zu behalten, und wenn überdies die Zahlen nicht zu
groß sind, dann können Sie int oder long benutzen. Sind die Zahlen nicht länger als
neun Dezimalziffern, so nehmen Sie int, sind sie nicht länger als 18 Ziffern, so nehmen
Sie long. Wenn Ihre Zahlen mehr als 18 Ziffern lang sind, müssen Sie BigDecimal benut-
zen.

7.4 Thema 32: Vermeiden Sie Strings, wo andere Typen sich
besser eignen

Strings wurden für die Textdarstellung geschaffen, und das können sie wirklich gut.
Da Strings so häufig sind und von der Sprache so gut unterstützt werden, gibt es eine
natürliche Tendenz, sie auch für andere Dinge als für ihren ursprünglichen Zweck zu
benutzen. Dieses Thema erklärt, was Sie mit Strings nicht tun sollten.

Thema 32: Vermeiden Sie Strings, wo andere Typen sich besser eignen 157

Strings sind ein schlechter Ersatz für andere Werttypen. Wenn ein Datum aus einer
Datei, aus dem Netz oder über die Tastatur in ein Programm gelangt, dann häufig in
String-Form. Natürlich neigt man dazu, es so zu belassen, doch dies ist nur dann
gerechtfertigt, wenn es seinem Wesen nach tatsächlich ein Text ist. Ist es nummerisch,
so sollte es in den entsprechenden Zahlentyp umgewandelt werden, etwa in int, float
oder BigInteger. Ist es die Antwort auf eine Ja/Nein-Frage, so ist boolean der richtige
Typ. Allgemeiner ausgedrückt: Wenn es einen geeigneten Werttyp gibt, sei er nun ein
Grundtyp oder eine Objektreferenz, so sollten Sie ihn nutzen, und wenn es noch kei-
nen gibt, dann sollten Sie einen schreiben. So selbstverständlich dieser Rat klingen
mag, so oft wird er verletzt.

Strings sind ein schlechter Ersatz für Aufzählungstypen. Wie bereits in Thema 21
gesagt sind typsichere Enums und int-Werte viel bessere Aufzählungstypkonstanten
als Strings.

Strings sind ein schlechter Ersatz für Aggregattypen. Wenn eine Entität mehrere
Komponenten hat, dann sollten Sie sie nicht in Form eines einzelnen Strings darstellen.
Im Folgenden sehen Sie z.B. eine Codezeile, die aus einem tatsächlichen System
stammt. Die Bezeichnernamen wurden geändert, um niemanden bloßzustellen:

// Schlechter Einsatz von String als Aggregattyp
String compoundKey = className + "#" + i.next();

Dieser Ansatz hat viele Nachteile. Wenn das Zeichen, das zum Trennen der Felder
dient, in einem der Felder auftritt, gibt es Chaos. Um auf einzelne Felder zuzugreifen,
müssen Sie den String parsen. Das geht langsam und ist lästig und fehleranfällig. Sie
können keine equals-, toString- oder compareTo-Methoden liefern, sondern sind
gezwungen, mit dem Verhalten auszukommen, das Ihnen String zur Verfügung stellt.
Ein besserer Ansatz wäre es, einfach eine Klasse zu schreiben, die den Aggregattyp
repräsentiert, oft in Form einer privaten, statischen Attributklasse (Thema 18).

Strings sind ein schlechter Ersatz für Capabilities. Gelegentlich werden Strings dazu
benutzt, Zugriff auf eine Funktionalität zu geben. Nehmen Sie z.B. den Entwurf einer
Thread-lokalen Variablenfunktion. Eine solche Funktion stellt Variablen zur Verfü-
gung, für die jeder Thread seinen eigenen Wert hat. Vor einigen Jahren hatten mehrere
Leute, die eine solche Funktion entwerfen sollten, unabhängig voneinander dieselbe
Idee: Einen Entwurf, in dem vom Client gelieferte String-Schlüssel Zugriff auf den
Inhalt einer Thread-lokalen Variablen geben:

// Kaputt – falsche Verwendung von String als Capability!
public class ThreadLocal {
 private ThreadLocal() { } // nicht-instanziierbar

 // Setzt den Wert des aktuellen Threads für die genannte Variable.
 public static void set(String key, Object value);

158 7 Allgemeine Programmierung

 // Gibt den Wert des aktuellen Threads für die genannte Variable zurück.
 public static Object get(String key);
}

Dieser Ansatz stellt Sie vor das Problem, dass die Schlüssel einen gemeinsam genutz-
ten, globalen Namensraum repräsentieren. Wenn zwei getrennte Clients des Pakets
beschließen, für ihre Thread-lokale Variable denselben Namen zu verwenden, dann
teilen sie ungewollt diese Variable. Im Allgemeinen wird dies dazu führen, dass beide
Clients scheitern. Außerdem ist die Sicherheit beeinträchtigt: Ein bösartiger Client
könnte absichtlich denselben Schlüssel wie ein anderer benutzen, um sich unberechtigt
Zugriff auf die Daten dieses anderen Clients zu verschaffen.

Dieses API können Sie reparieren, indem Sie den String durch einen fälschungssiche-
ren Schlüssel ersetzen (der manchmal auch Capability genannt wird).

public class ThreadLocal {
 private ThreadLocal() { } // nicht-instanziierbar

 public static class Key {
 Key() { }
 }

 // Generiert einen eindeutigen, fälschungssicheren Schlüssel
 public static Key getKey() {
 return new Key();
 }

 public static void set(Key key, Object value);
 public static Object get(Key key);
}

Dies löst zwar beide Probleme des mit Strings arbeitenden APIs, aber Sie können es
noch besser machen. Sie brauchen eigentlich die statischen Methoden gar nicht mehr.
Diese können jetzt Instanzmethoden auf dem Schlüssel werden, und nun ist der
Schlüssel auch gar kein Schlüssel mehr, sondern eine Thread-lokale Variable. An die-
sem Punkt haben Sie auch nichts mehr von der nicht-instanziierbaren Toplevel-Klasse,
also können Sie sie genauso gut weglassen und die geschachtelte Klasse in ThreadLocal
umbenennen:

public class ThreadLocal {
 public ThreadLocal() { }
 public void set(Object value);
 public Object get();
}

Nun haben Sie in groben Zügen das API, das von java.util.ThreadLocal zur Verfügung
gestellt wird. Es löst nicht nur die Probleme mit dem String-basierten API, sondern ist
auch schneller und eleganter als jedes der Schlüssel-basierten APIs.

Thema 33: Hüten Sie sich vor der Langsamkeit von String-Verkettungen 159

Fazit: Der natürlichen Neigung, Objekte als Strings darzustellen, sollten Sie widerste-
hen, wenn bessere Datentypen vorhanden sind oder geschrieben werden können. Bei
unsachgemäßer Verwendung sind Strings sperriger, unflexibler, langsamer und fehler-
anfälliger als andere Typen. Oft werden Strings fälschlich zur Darstellung von Grund-
typen, Aufzählungstypen oder Aggregattypen eingesetzt.

7.5 Thema 33: Hüten Sie sich vor der Langsamkeit von
String-Verkettungen

Der String-Verkettungsoperator (+) ist praktisch, um ein paar Strings zu einem einzi-
gen zusammenzufassen. Er kann ganz prima eine einzelne Ausgabezeile generieren
oder die String-Darstellung eines kleinen Objekts von festgelegter Größe erzeugen,
aber das geht nur im Kleinen. Wenn Sie den String-Verkettungsoperator wiederholt
anwenden, um n Strings zu verketten, dann wächst der Zeitaufwand im Quadrat
von n. Dies ist eine unglückselige Konsequenz aus der Tatsache, dass Strings unverän-
derlich sind (Thema 13). Wenn Sie zwei Strings verketten, wird der Inhalt von beiden
kopiert.

Betrachten Sie beispielsweise die folgende Methode, die eine String-Darstellung einer
Rechnung aufbaut, indem sie für jeden gekauften Artikel eine Zeile anfügt:

// Falscher Einsatz der String-Verkettung – furchtbar langsam!
public String statement() {
 String s = "";
 for (int i = 0; i < numItems(); i++)
 s += lineForItem(i); // String-Verkettung
 return s;
}

Diese Methode läuft bei vielen Artikeln quälend langsam. Um eine annehmbare
Geschwindigkeit zu erreichen, sollten Sie StringBuffer statt String verwenden, um
die Rechnung während der Erstellung zu speichern:

public String statement() {
 StringBuffer s = new StringBuffer(numItems() * LINE_WIDTH);
 for (int i = 0; i < numItems(); i++)
 s.append(lineForItem(i));
 return s.toString();
}

Der Leistungsunterschied ist dramatisch. Wenn numItems 11 zurückgibt und lineForItem
einen konstanten, 80 Zeichen langen String, dann läuft die zweite Methode auf mei-
nem Computer 90 Mal schneller als die erste. Da die erste Methode quadratische Arti-
kel-Anzahlen hat und die zweite lineare, ist der Unterschied bei großen Artikelmengen
sogar noch ausgeprägter. Beachten Sie, dass die zweite Methode im Voraus einen

160 7 Allgemeine Programmierung

StringBuffer reserviert, der groß genug für das Ergebnis ist. Selbst wenn man sie so
definiert, dass sie nur einen StringBuffer mit Standardgröße benutzt, ist sie immer
noch 45 Mal so schnell wie die erste Methode.

Daraus ergibt sich eine einfache Lehre: Verwenden Sie den String-Verkettungsoperator
nur für die Kombination einiger weniger Strings, es sei denn, die Geschwindigkeit ist
völlig nebensächlich. Nutzen Sie besser die append-Methode von StringBuffer. Als
Alternative können Sie auch ein Zeichen-Array verwenden oder die Strings nachein-
ander verarbeiten, anstatt sie zu verketten.

7.6 Thema 34: Referenzieren Sie Objekte über ihre
Interfaces

Thema 25 gibt Ihnen den Rat, dass Sie statt Klassen besser Interfaces als Parameter-
typen einsetzen sollten. Allgemeiner ausgedrückt: Sie sollten Interfaces beim Referen-
zieren von Objekten generell den Vorzug gegenüber Klassen geben. Wenn geeignete
Interface-Typen existieren, sollten Sie Parameter, Rückgabewerte, Variablen und
Felder alle mit Interface-Typen deklarieren. Nur bei der Objekterzeugung müssen Sie
wirklich auf die Klasse des Objekts Bezug nehmen. Um dies zu konkretisieren, zeige
ich Ihnen Vector, eine Implementierung des List-Interfaces. Bitte machen Sie sich Fol-
gendes zur Gewohnheit:

// Gut - Interface wird als Typ verwendet
List subscribers = new Vector();

Schreiben Sie nie Folgendes:

// Schlecht - Klasse wird als Typ verwendet!
Vector subscribers = new Vector();

Wenn Sie sich angewöhnen, Interfaces als Typen zu verwenden, dann wird Ihr Pro-
gramm viel flexibler. Wenn Sie beschließen, die Implementierung zu wechseln, dann
brauchen Sie nur den Klassennamen im Konstruktor zu ändern (oder eine andere stati-
sche Factory zu verwenden). Die erste Deklaration könnte z.B. wie folgt umgeändert
werden:

List subscribers = new ArrayList();

Aller umgebender Code würde dann immer noch laufen. Der umgebende Code kannte
den alten Implementierungstyp überhaupt nicht, daher ist ihm auch die Änderung
egal.

Da gibt es nur eine Schwierigkeit: Wenn die Originalimplementierung eine Spezial-
funktionalität hatte, die vom allgemeinen Vertrag des Interfaces nicht gefordert wird,
und der Code sich auf diese Funktionalität stützte, dann ist es wichtig, dass auch die

Thema 34: Referenzieren Sie Objekte über ihre Interfaces 161

neue Implementierung sie zur Verfügung stellt. Wenn sich z.B. der Code rund um die
erste Deklaration auf die Tatsache stützen würde, dass Vector synchronisiert ist, dann
wäre es verkehrt, Vector in der Deklaration gegen ArrayList auszutauschen.

Warum sollten Sie die Implementierung wechseln wollen? Deshalb, weil die neue
Implementierung eine bessere Leistung hat oder eine wünschenswerte Zusatzfunktio-
nalität bietet. Dafür gibt es aus der realen Welt ein Beispiel mit der Klasse ThreadLocal.
Intern verwendet diese Klasse in Thread ein paketprivates Map-Feld, um Thread-spezifi-
sche Werte mit ThreadLocal-Instanzen zu assoziieren. Im Release 1.3 wurde dieses Feld
mit einer HashMap-Instanz initialisiert. Im Release 1.4 erhielt die Plattform eine neue,
spezielle Map-Implementierung namens IdentityHashMap. Wenn man eine einzige Code-
Zeile so abänderte, dass das Feld mit einer IdentityHashMap statt einer HashMap initiali-
siert wurde, dann wurde ThreadLocal schneller.

Wäre das Feld nicht als Map, sondern als HashMap deklariert worden, so wäre nicht garan-
tiert, dass die Änderung einer einzelnen Codezeile schon ausreicht. Hätte der Client-
Code HashMap-Operationen außerhalb des Map-Interfaces verwendet oder die Map einer
Methode übergeben, die HashMap benötigt, so ließe er sich nicht mehr kompilieren,
wenn das Feld in eine IdentityHashMap umgewandelt würde. Wenn Sie das Feld mit
dem Interface-Typ deklarieren, bleiben Sie »sauber« .

Es ist völlig in Ordnung, ein Objekt über eine Klasse statt ein Interface zu referen-
zieren, wenn kein geeignetes Interface existiert. Nehmen Sie z.B. die Wertklassen wie
String und BigInteger. Wer solche Klassen schreibt, hat normalerweise nicht mehrere
Implementierungen im Kopf. Oft sind sie final und selten gibt es entsprechende Inter-
faces für sie. Es ist völlig angemessen, eine Wertklasse als Parameter, Variable, Feld
oder Rückgabetyp zu verwenden. Allgemeiner ausgedrückt: Wenn es zu einer konkre-
ten Klasse kein Interface gibt, dann haben Sie gar keine andere Wahl, als sie über ihre
Klasse zu referenzieren, egal ob diese einen Wert repräsentiert oder nicht.

Ein zweiter Fall, in dem Sie keinen geeigneten Interface-Typ haben, tritt dann ein,
wenn Objekte zu einer Architektur gehören, deren elementare Typen Klassen sind und
keine Interfaces. Wenn ein Objekt zu einer solchen Klassenarchitektur gehört, dann sollte
es besser über seine – normalerweise abstrakte – Basisklasse referenziert werden, statt
über seine Implementierungsklasse. In diese Kategorie fällt z.B. die Klasse java.util.
TimerTask.

Ein letzter Fall, in dem Sie keinen geeigneten Interface-Typ haben, sind Klassen, die
zwar ein Interface implementieren, aber zusätzliche Methoden zur Verfügung stellen,
die das Interface nicht hat. Dazu gehört z.B. LinkedList. Eine solche Klasse sollte nur
dann zum Referenzieren ihrer Instanzen dienen, wenn sich das Programm auf die
zusätzlichen Methoden stützt; sie sollte jedoch nie als Parametertyp genutzt werden
(Thema 25).

162 7 Allgemeine Programmierung

Diese Fälle sollen keine umfassende Darstellung sein, sondern nur ein Gefühl dafür
vermitteln, in welchen Situationen Sie ein Objekt auch über seine Klasse referenzieren
können. In der Praxis ist meist offensichtlich, ob ein gegebenes Objekt ein geeignetes
Interface hat. Ist dies der Fall, so wird Ihr Programm flexibler, wenn Sie das Objekt
über sein Interface referenzieren; anderenfalls nehmen Sie einfach aus der Klassenhier-
archie die höchste Klasse, die die erforderliche Funktionalität hat.

7.7 Thema 35: Nutzen Sie eher Interfaces als Reflection

Die Reflection aus java.lang.reflect gibt programmgesteuert Zugriff auf Informa-
tionen über geladene Klassen. Wenn Sie eine Class-Instanz haben, können Sie Construc-
tor-, Method- und Field-Instanzen erhalten, die die Konstruktoren, Methoden und
Felder der von der Class-Instanz repräsentierten Klasse darstellen. Diese Objekte
geben programmgesteuerten Zugriff auf die Attributnamen, Feldtypen, Methoden-
signaturen usw. der Klasse.

Außerdem können Sie mit Constructor-, Method- und Field-Instanzen mit deren
zugrunde liegenden Gegenstücken reflektiv arbeiten: Sie können mit der zugrunde lie-
genden Klasse Instanzen erzeugen, Methoden aufrufen und auf Felder zugreifen,
indem Sie Methoden auf den Constructor-, Method- und Field-Instanzen aufrufen. So
können Sie z.B. mit Method.invoke jede beliebige Methode auf jedem beliebigen Objekt
jeder beliebigen Klasse aufrufen (natürlich im Rahmen der üblichen Sicherheits-
beschränkungen). Mit Reflection kann eine Klasse die andere benutzen. Das gilt auch
dann, wenn die zweite Klasse zu dem Zeitpunkt, an dem die erste kompiliert wurde,
noch gar nicht existierte. Doch das hat auch seinen Preis:

� Sie büßen alle Vorteile der Typprüfung zur Kompilierungszeit ein, einschließlich
der Ausnahmenprüfung. Wenn ein Programm versucht, eine nicht vorhandene
oder nicht zugreifbare Methode reflektiv aufzurufen, stürzte es, falls Sie keine Vor-
kehrungen getroffen haben, zur Laufzeit ab.

� Der Code, mit dem Sie reflektiven Zugriff geben, ist schwerfällig und wortreich.
Er ist schwer zu schreiben und zu lesen.

� Die Leistung wird schlechter. Im Release 1.3 dauerte ein reflektiver Methodenauf-
ruf auf meinem Computer 40 Mal so lange wie ein normaler. Im Release 1.4 erhielt
die Reflection eine neue Architektur und läuft nun viel schneller, ist aber immer
noch doppelt so langsam wie ein normaler Zugriff, und dabei wird es vermutlich
auch bleiben.

Die Reflection war ursprünglich für Komponenten-basierte Application-Builder-Tools
gedacht. Solche Tools laden Klassen nach Bedarf und finden mittels Reflection heraus,
welche Methoden und Konstruktoren diese Klassen unterstützen. Die Tools erlauben

Thema 35: Nutzen Sie eher Interfaces als Reflection 163

es den Benutzern, interaktiv Applikationen zu erstellen, die auf diese Klassen zugrei-
fen, aber die generierten Applikationen greifen auf die Klassen normal zu und nicht
reflektiv. Die Reflection wird nur zur Entwurfszeit eingesetzt. Hier gilt die Regel: Grei-
fen Sie nie in normalen Applikationen zur Laufzeit reflektiv auf Objekte zu.

Manche fortgeschrittenen Applikationen erfordern den Einsatz von Reflection. Bei-
spiele dafür sind Klassen-Browser, Objekt-Inspektoren, Code-Analyse-Tools und inter-
pretative, eingebettete Systeme. Außerdem eignet sich Reflection für RPC-Systeme,
damit die Notwendigkeit für Stub-Compiler wegfällt. Wenn Sie nicht genau wissen, ob
Ihre Applikationen in eine dieser Kategorien gehört, dann tut sie dies vermutlich nicht.

Sie können mit wenig Aufwand viele Vorteile der Reflection genießen, wenn Sie sie
nur in sehr eingeschränkter Form verwenden. Für viele Programme, die eine Klasse
nutzen müssen, die zur Kompilierungszeit noch nicht zur Verfügung steht, gibt es zur
Kompilierungszeit ein geeignetes Interface oder eine Oberklasse, um auf die betref-
fende Klasse referenzieren zu können (Thema 34). Wenn dies der Fall ist, können Sie
Instanzen reflektiv erzeugen und normal über ihr Interface oder ihre Oberklasse
auf sie zugreifen. Wenn der entsprechende Konstruktor keine Parameter hat, was
normalerweise der Fall ist, dann brauchen Sie noch nicht einmal das Paket
java.lang.reflect zu benutzen: Die Methode Class.newInstance liefert Ihnen die benö-
tigte Funktionalität.

Als Beispiel sehen Sie hier ein Programm, das eine Instanz von Set erzeugt, deren
Klasse durch das erste Kommandozeilenargument spezifiziert ist. Das Programm fügt
die restlichen Kommandozeilenargumente in die Menge ein und gibt diese Menge aus.
Unabhängig vom ersten Argument gibt es die restlichen Argumente ohne Doppelnen-
nungen aus. Die Reihenfolge hängt von der im ersten Argument angegebenen Klasse
ab. Wenn Sie »java.util.HashSet,« angeben, werden sie offensichtlich in Zufallsreihen-
folge ausgegeben; wenn Sie jedoch »java.util.TreeSet,« angeben, dann erscheinen die
Argumente in alphabetischer Reihenfolge, denn die Elemente eines TreeSet sind sor-
tiert:

// Reflektive Instanziierung mit Zugriff über Interface
public static void main(String[] args) {
 // Übersetze Klassennamen in Klassenobjekt
 Class cl = null;
 try {
 cl = Class.forName(args[0]);
 } catch(ClassNotFoundException e) {
 System.err.println("Klasse nicht gefunden.");
 System.exit(1);
 }

 // Instanziiere die Klasse
 Set s = null;
 try {

164 7 Allgemeine Programmierung

 s = (Set) cl.newInstance();
 } catch(IllegalAccessException e) {
 System.err.println("Kein Zugriff auf die Klasse.");
 System.exit(1);
 } catch(InstantiationException e) {
 System.err.println("Klasse nicht instanziierbar.");
 System.exit(1);
 }

 // Gib die Menge aus
 s.addAll(Arrays.asList(args).subList(1, args.length-1));
 System.out.println(s);
}

Dies hier ist zwar nur ein Spielzeugprogramm, aber die demonstrierte Technik ist sehr
mächtig. Sie können das Spielzeugprogramm problemlos in einen generischen Men-
gentester verwandeln, der die angegebene Set-Implementierung validiert, indem er
aggressiv eine oder mehrere Instanzen manipuliert und sich vergewissert, dass sie
auch dem Set-Vertrag genügen. Ebenso gut können Sie aus diesem Programm ein
generisches Set-Performance-Analyse-Tool machen. Die hier gezeigte Technik ist sogar
so wirkungsvoll, dass Sie damit ein voll funktionstaugliches Service Provider Framework
implementieren können (Thema 1). Im Allgemeinen ist diese Technik das einzige, was
Sie für Reflection brauchen.

Im ersten Beispiel sehen Sie zwei Nachteile der Reflection aus dem Beispielprogramm.
Erstens kann das Beispiel drei Laufzeitfehler auslösen, die alle statische Fehler wären,
wenn keine reflektive Instanziierung verwendet würde. Zweitens braucht es zwanzig
lange Codezeilen, eine Instanz der Klasse von ihrem Namen aus zu generieren, wohin-
gegen ein Konstruktoraufruf bequem in eine einzige Zeile passt. Diese Nachteile
beschränken sich jedoch auf den Teil des Programms, der das Objekt instanziiert.
Sobald es instanziiert ist, ist es nicht mehr von einer beliebigen anderen Set-Instanz zu
unterscheiden. In einem echten Programm bliebe der Großteil des Codes also von die-
ser eingeschränkten Nutzung der Reflection unberührt.

Eine legitime – wenn auch seltene – Verwendung der Reflection besteht darin, die
Abhängigkeiten einer Klasse von anderen Klassen, Methoden oder Feldern zu durch-
brechen, die zur Laufzeit womöglich fehlen. Das kann nützlich sein, wenn Sie ein
Paket schreiben, das mit mehreren Versionen eines anderen Pakets funktionieren muss.
Das Verfahren besteht darin, dass Sie Ihr Paket mit der Minimalumgebung kompilie-
ren, in der es gerade noch funktioniert. Das ist normalerweise die älteste Version. Auf
neuere Klassen oder Methoden greifen Sie dann reflektiv zu. Damit dies funktioniert,
müssen Sie Vorkehrungen treffen, wenn Sie auf neuere Klassen oder Methoden zugrei-
fen möchten, die zur Laufzeit fehlen. Solche Maßnahmen könnten darin bestehen, das-
selbe Ziel mit anderen Mitteln zu erreichen oder mit eingeschränkter Funktionalität zu
arbeiten.

Thema 36: Verwenden Sie native Methoden mit Vorsicht 165

Insgesamt ist Reflection eine mächtige Fähigkeit, die Sie für bestimmte, hochqualifi-
zierte Aufgaben der Systemprogrammierung benötigen, die aber auch viele Nachteile
hat. Wenn Sie ein Programm schreiben, das mit Klassen arbeiten muss, die zur Kompi-
lierungszeit noch unbekannt sind, dann sollten Sie Reflection nach Möglichkeit nur
zum Instanziieren der Objekte benutzen. Den Zugriff auf diese Objekte geben Sie über
ein Interface oder eine Oberklasse, die zur Kompilierungszeit bekannt ist.

7.8 Thema 36: Verwenden Sie native Methoden mit Vorsicht

Mit dem Java Native Interface (JNI) können Java-Applikationen native Methoden aufru-
fen. Das sind spezielle Methoden, die in nativen Programmiersprachen wie etwa C oder
C++ geschrieben wurden. Native Methoden können beliebige Berechnungen in nati-
ven Sprachen ausführen und dann zu Java zurückkehren.

Historisch gesehen hatten native Methoden drei Haupteinsatzbereiche: Sie gaben
Zugriff auf plattformspezifische Sachen wie Registrys und Dateisperren. Sie gaben
Zugriff auf Bibliotheken mit altem Code, der wiederum Zugriff auf alte Daten gab.
Und sie dienten dazu, leistungskritische Teile der Applikation in nativen Sprachen zu
schreiben, damit sie schneller lief.

Es ist zulässig, mit nativen Methoden Zugriff auf plattformspezifische Elemente zu
geben, aber in dem Maße, wie die Java-Plattform immer ausgereifter wird, stellt auch
sie mehr und mehr Funktionen bereit, die früher nur auf Host-Plattformen zu finden
waren. So bietet z.B. das im Release 1.4 hinzugekommene Paket java.util.prefs die
Funktionalität einer Registry. Es ist auch legitim, auf alten Code über native Methoden
zuzugreifen, aber dafür gibt es auch bessere Mittel. So bietet z.B. das JDBC-API Zugriff
auf alte Datenbanken.

Seit dem Release 1.3 ist es kaum noch zu empfehlen, mit nativen Methoden bessere
Leistung anzustreben. In früheren Releases mag dies oft notwendig gewesen sein,
aber die JVM-Implementierungen sind heute viel schneller. Die meisten Aufgaben
können Sie nun fast ebenso schnell auch ohne native Methoden lösen. Ein Beispiel: Als
im Release 1.1 java.math hinzukam, baute die Implementierung von BigInteger auf
einer schnellen, in C geschriebenen Bibliothek für arithmetische Berechnungen mit
mehrfacher Genauigkeit auf. Damals war das aus Leistungsgründen noch notwendig.
Doch im Release 1.3 war BigInteger komplett neu in Java geschrieben und sorgfältig
getunt. Die neue Version ist bei den meisten Operationen und Operandengrößen auf
den Sun-Implementierungen der 1.3-JVM schneller als das Original.

Der Einsatz nativer Methoden hat ernste Nachteile. Da native Sprachen nicht sicher
sind (Thema 24), sind Applikationen mit nativen Methoden nicht mehr gegen Spei-
cherkorruptionsfehler gefeit. Da native Methoden plattformabhängig sind, sind solche
Applikationen auch nicht mehr frei portierbar. Nativen Code müssen Sie für jede Ziel-

166 7 Allgemeine Programmierung

plattform neu kompilieren und eventuell auch umschreiben. Da das Eintreten in und
Austreten aus nativem Code unveränderlich hohen Aufwand bedeutet, können native
Methoden die Leistung sogar verschlechtern, wenn sie nur kleinere Arbeiten ausführen.
Und überdies sind sie auch noch schwer zu schreiben und zu lesen.

Fazit: Denken Sie besser zweimal nach, ehe Sie native Methoden einsetzen. Verwenden
Sie sie selten oder gar nicht zur Leistungssteigerung. Wenn Sie native Methoden für
den Zugriff auf Ressourcen oder alte Bibliotheken nehmen müssen, sollten Sie nur ein
Minimum an nativem Code verwenden und diesen gründlich testen. Ein einziger Feh-
ler im nativen Code kann Ihre ganze Applikation kaputt machen.

7.9 Thema 37: Optimieren Sie nur mit Vorsicht

Über Optimierung gibt es drei Aphorismen, die jeder kennen sollte. Vielleicht sind
diese Sprüche schon überbeansprucht, aber falls Sie sie doch noch nicht kennen, gebe
ich sie hier wieder:

Im Namen der Effizienz (und ohne sie wirklich zu erreichen) werden mehr Programmier-
sünden begangen als aus jedem anderen Grund – Dummheit eingeschlossen.

William A. Wulf [Wulf 1972]

In 97 Prozent der Fälle können Sie kleine Effizienzerwägungen vergessen: Verfrühte Opti-
mierungsanstrengungen sind die Wurzel allen Übels.

Donald E. Knuth [Knuth 1974]

In Fragen der Optimierung gibt es zwei Regeln:

Regel Nummer 1: Tun Sie es nicht.

Regel Nummer 2 (nur für Profis): Tun Sie es noch nicht – zumindest so lange, bis Sie eine
völlig klare, unoptimierte Lösung haben.

M. A. Jackson [Jackson 1975]

Alle diese Sprüche entstanden zwanzig Jahre vor Java. Sie vermitteln eine tiefe Wahr-
heit über Optimierung: Oft schadet sie mehr als sie nutzt, vor allem, wenn Sie zu früh
darangehen. Dann erstellen Sie vielleicht Software, die weder schnell noch korrekt und
außerdem auch noch schwer zu reparieren ist.

Verzichten Sie nicht aus Leistungsgründen auf solide Architekturprinzipien. Versu-
chen Sie, Ihre Programme lieber gut als schnell zu machen. Wenn ein gutes Pro-
gramm zu langsam läuft, dann gestattet seine Architektur, es zu optimieren. Gute
Programme verbergen Informationen: Wenn möglich stecken sie Entwurfsentscheidun-
gen in einzelne Module, damit einzelne Entscheidungen später noch revidiert werden
können, ohne den Rest des Systems zu tangieren (Thema 32).

Thema 37: Optimieren Sie nur mit Vorsicht 167

Das bedeutet nicht, dass Sie die Leistung ganz ignorieren können, bis Ihr Programm
vollständig ist. Implementierungsprobleme können Sie durch spätere Optimierungen
noch beheben, aber durchgängige Fehler in der Architektur, die die Leistung beein-
trächtigen, sind später kaum noch zu bereinigen, ohne das System neu zu schreiben.
Wenn Sie im Nachhinein eine tragende Säule Ihres Entwurfs ändern, dann erhalten Sie
eventuell ein schlecht strukturiertes System, das schwer zu warten und weiterzuent-
wickeln ist. Daher sollten Sie sich schon beim Entwurf über die Leistung Gedanken
machen.

Vermeiden Sie Entwurfsentscheidungen, die die Leistung beschränken. Die Teile
eines Entwurfs, die nachträglich am schwersten zu ändern sind, sind die, die Interak-
tionen zwischen Modulen und mit der Außenwelt spezifizieren. Dies sind zuallererst
APIs, Übertragungsprotokolle und persistente Datenformate. Diese Entwurfsbestand-
teile sind nicht nur nachträglich schwer zu ändern, sondern schränken unter Umstän-
den auch die Leistung stark ein, die das System später maximal erreichen kann.

Berücksichtigen Sie, welche Folgen Ihre API-Entwurfsentscheidungen für die Leis-
tung haben. Einen öffentlichen Typ veränderlich zu machen kann eine Menge über-
flüssiges defensives Kopieren notwendig machen (Thema 24). Und wenn Sie in einer
öffentlichen Klasse Vererbung nutzen, wo Komposition besser geeignet wäre, dann
bleibt die Klasse für immer an ihre Oberklasse gebunden, was der Leistung der Unter-
klasse künstliche Einschränkungen auferlegt (Thema 14). Ein letztes Beispiel: Wenn Sie
in einem API statt eines Interfaces einen Implementierungstyp verwenden, sind Sie an
eine spezielle Implementierung auch dann gebunden, wenn in Zukunft schnellere
Implementierungen auf den Markt kommen (Thema 34).

Die Auswirkungen des API-Entwurfs auf die Leistung sind äußerst real. Nehmen Sie
z.B. die getSize-Methode der Klasse java.awt.Component. Wenn Sie entscheiden, dass
diese leistungskritische Methode eine Dimension-Instanz zurückgeben soll und dass
Dimension-Instanzen veränderlich sein sollen, dann muss jede Implementierung dieser
Methode bei jedem Aufruf eine neue Dimension-Instanz allozieren. Obwohl es seit
Release 1.3 relativ wenig aufwändig ist, kleine Objekte zuzuweisen, kann doch eine
überflüssige Zuweisung von Millionen von Objekten die Leistung wirklich beeinträch-
tigen.

In diesem Fall gab es mehrere Alternativen. Im Idealfall sollte Dimension unveränder-
lich sein (Thema 13). Alternativ könnte auch die getSize-Methode durch zwei Metho-
den ersetzt werden, die die einzelnen Grundbestandteile eines Dimension-Objekts
zurückgeben. Tatsächlich wurden dem Component-API mit dem Release 1.2 aus Leis-
tungsgründen zwei solche Methoden hinzugefügt. Älterer Client-Code verwendet
allerdings immer noch die getSize-Methode und leidet unter den Folgen, die die
ursprünglichen API-Entwurfsentscheidungen für die Leistung haben.

168 7 Allgemeine Programmierung

Zum Glück gehen in der Regel gute API-Entwurfsentscheidungen und gute Leistung
Hand in Hand. Sie sollten niemals ein API verbiegen, um mehr Leistung zu erhal-
ten. Das ursächliche Leistungsproblem wird vielleicht in einem späteren Plattform-
Release oder in einer anderen zugrunde liegenden Software in Zukunft behoben, aber
das entstellte API und die Frage, wie Sie es nun richtig unterstützen, bereiten Ihnen für
den Rest Ihres Lebens Kopfschmerzen.

Wenn Sie Ihr Programm sorgfältig aufgebaut und eine klare, knappe und wohlstruktu-
rierte Implementierung dafür hergestellt haben, dann ist vielleicht der richtige Zeit-
punkt, über eine Optimierung nachzudenken, falls Sie nun noch nicht mit der Leistung
des Programms zufrieden sind. Erinnern Sie sich, dass Jacksons Optimierungsregeln
lauteten: »Tun Sie es nicht.« und »(Nur für Profis): Tun Sie es noch nicht.« Er hätte noch
eine dritte Regel hinzufügen können: Messen Sie vor und nach jedem Optimierungs-
versuch die Leistung.

Vielleicht wird es Sie überraschen, was Sie dabei feststellen. Oft haben Optimierungs-
versuche keine messbaren Auswirkungen auf die Leistung, und manchmal wird die
Leistung sogar schlechter. Der Hauptgrund dafür ist, dass Sie nur schwer einschätzen
können, womit Ihr Programm am meisten Zeit verbringt. Der Teil des Programms, den
Sie für langsam halten, ist vielleicht gar nicht der Übeltäter. In diesem Fall verschwen-
den Sie Ihre Zeit mit dem Versuch, ihn zu optimieren. Es ist bekannt, dass Programme
80 Prozent ihrer Zeit in 20 Prozent ihres Codes verbringen.

Profiling-Tools können Ihnen die Entscheidung erleichtern, worauf Sie Ihre Optimie-
rungsbemühungen konzentrieren sollten. Solche Tools geben Ihnen Laufzeitinformati-
onen darüber, wie viel Zeit jede Methode ungefähr braucht und wie oft sie aufgerufen
wird. Dies hilft Ihnen nicht nur, Ihre Tuning-Anstrengungen zu konzentrieren, sondern
warnt Sie auch, wenn ein Algorithmus umgeschrieben werden sollte. Wenn in Ihrem
Programm ein quadratischer (oder schlimmerer) Algorithmus lauert, kann auch kein
noch so gutes Tuning das Problem beheben. Sie müssen den Algorithmus gegen einen
effizienteren austauschen. Je mehr Code das System hat, umso wichtiger wird ein Pro-
filierungswerkzeug. Es ist, als suchten Sie eine Nadel im Heuhaufen: Je größer der
Heuhaufen, desto wichtiger ist der Metalldetektor. Das Java 2-SDK wird mit einem ein-
fachen Profilierungswerkzeug geliefert, und mehrere weitere, ausgefeiltere Profiling-
Tools sind käuflich zu erwerben.

Auf der Java-Plattform ist es sogar noch nötiger als auf traditionelleren Plattformen,
die Auswirkungen einer Optimierung zu messen, da Java kein starkes Performance-
Modell besitzt. Die relativen Kosten der diversen Grundoperationen sind nicht klar
definiert. Die »semantische Kluft« zwischen dem, was der Programmierer schreibt,
und dem, was die CPU ausführt, ist weit größer als in traditionellen kompilierten
Sprachen. Dadurch lässt sich der Einfluss einer Optimierung auf die Leistung kaum
zuverlässig voraussagen. Über die Leistung kursieren haufenweise Geschichten, die
sich als Halbwahrheiten oder schlichte Lügen erweisen.

Thema 38: Halten Sie sich an die allgemein anerkannten Namenskonventionen 169

Das Performance-Modell ist nicht nur schlecht definiert, sondern es ändert sich auch mit
jeder JVM-Implementierung und jedem Release. Wenn Sie ein Programm auf mehreren
JVM-Implementierungen ausführen möchten, ist es wichtig, auf jeder auch die Auswir-
kungen Ihrer Optimierung zu messen. Gelegentlich müssen Sie hinsichtlich der Leis-
tung auf unterschiedlichen JVM-Implementierungen auch Kompromisse schließen.

Fazit: Versuchen Sie nicht, schnelle Programme zu schreiben: Versuchen Sie, gute zu
schreiben. Die Schnelligkeit kommt schon noch. Machen Sie sich beim Systementwurf
Gedanken über die Leistung, vor allem, wenn Sie APIs, Übertragungsprotokolle und
Formate für persistente Daten entwerfen. Wenn das System fertig ist, messen Sie seine
Leistung. Ist es schnell genug, so sind Sie fertig. Wenn nicht, dann sollten Sie mit einem
Profilierungswerkzeug die Problemquelle ausfindig machen und nur die relevanten
Systemteile optimieren. Als erstes sollten Sie jedoch die Wahl Ihrer Algorithmen hin-
terfragen: Keine Optimierung kann einen schlechten Algorithmus ausbügeln. Wieder-
holen Sie diesen Prozess wenn nötig und messen Sie nach jeder Änderung die Leistung
erneut, bis Sie zufrieden sind.

7.10 Thema 38: Halten Sie sich an die allgemein anerkannten
Namenskonventionen

Die Java-Plattform hat gut eingeführte Namenskonventionen, die zum Großteil in The
Java Language Specification [JLS, 6.8] stehen. Vereinfacht ausgedrückt gibt es zwei Arten
von Namenskonventionen: typografische und grammatische.

Es gibt nur wenige typografische Namenskonventionen, nämlich für Pakete, Klassen,
Interfaces, Methoden und Felder. Sie sollten sich an diese Konventionen halten, sofern
keine sehr guten Gründe dagegen sprechen. Wenn ein API gegen diese Konventionen
verstößt, dann ist es nur noch schwer benutzbar, und wenn eine Implementierung dies
tut, dann wird sie wartungsunfreundlich. In beiden Fällen können solche Verstöße
andere Programmierer verwirren und verärgern, die mit dem Code arbeiten, und sie
können Irrtümer begründen, die wiederum zu Fehlern führen. Die Konventionen wer-
den in diesem Thema zusammengefasst.

Paketnamen sollten hierarchisch aufgebaut und ihre Teile durch Punkte getrennt sein.
Die Teile sollten aus Kleinbuchstaben und in seltenen Fällen auch aus Ziffern bestehen.
Der Name jedes Pakets, das außerhalb Ihrer Organisation genutzt werden soll, sollte
mit dem Domainnamen Ihrer Organisation beginnen, wobei zuerst die Toplevel-
Domain kommt. Beispiele sind edu.cmu, com.sun und gov.nsa. Die Standardbibliotheken
und optionalen Pakete, deren Namen mit java und javax beginnen, bilden Ausnahmen
von dieser Regel. Benutzer dürfen keine Pakete erstellen, deren Namen mit java oder
javax beginnen. Detaillierte Regeln für die Konvertierung von Internet-Domainnamen
in Paketnamenpräfixe finden Sie in The Java Language Specification [JLS, 7.7].

170 7 Allgemeine Programmierung

Der Rest eines Paketnamens sollte aus einem oder mehreren Teilen bestehen, die das
Paket beschreiben. Diese Teile sollten kurz sein, also allgemein nicht mehr als acht
Zeichen haben. Bitte verwenden Sie bedeutungsvolle Abkürzungen, also eher util als
utilities. Akronyme wie z.B. awt sind auch akzeptabel. Generell sollte ein Teil aus
einem einzelnen Wort oder einer Abkürzung bestehen.

In vielen Paketnamen wurde dem Internet-Domainnamen nur ein einziger Teil hinzu-
gefügt. Zusätzliche Teile eignen sich für große Pakete, deren Umfang eine informelle
Hierarchie erfordert. So hat z.B. das Paket javax.swing eine umfangreiche Hierarchie
von Paketnamen wie z.B. javax.swing.plaf.metal. Solche Pakete werden oft auch als
Unterpakete bezeichnet, obwohl sie dies nur nach Konvention sind: Die Sprache unter-
stützt Pakethierarchien nicht.

Klassen- und Interface-Namen sollten aus einem oder mehreren Wörtern bestehen,
wobei der erste Buchstabe jedes Wortes ein Großbuchstabe ist, wie in Timer oder
TimerTask. Abkürzungen sollten Sie vermeiden, ausgenommen Akronyme und be-
stimmte geläufige Abkürzungen wie max oder min. Über die Frage, ob Akronyme kom-
plett in Großbuchstaben oder bloß mit einem Großbuchstaben am Anfang geschrieben
werden sollen, hat man sich nicht so recht einigen können. Die erste Variante ist häufi-
ger, aber auch für die zweite gibt es starke Gründe. Selbst wenn mehrere Akronyme
aneinandergehängt werden, können Sie dann immer noch erkennen, wo ein Wort
beginnt und das andere endet. Welchen Klassennamen würden Sie lieber sehen: HTTPURL
oder HttpUrl?

Methoden- und Feldnamen befolgen dieselben typografischen Konventionen wie die
Namen von Klassen und Interfaces, mit der Einschränkung, dass der erste Buchstabe
eines Methoden- oder Feldnamens kleingeschrieben sein sollte wie in remove oder ensu-
reCapacity. Wenn das erste Wort eines Methoden- oder Feldnamens ein Akronym ist,
sollte es kleingeschrieben werden.

Die einzige Ausnahme von dieser Regel sind »Konstantenfelder« , deren Namen aus
einem oder mehreren großgeschriebenen Wörtern mit Unterstrichen dazwischen
bestehen sollte, wie in VALUES oder NEGATIVE_INFINITY. Ein Konstantenfeld ist ein stati-
sches finales Feld, dessen Wert unveränderlich ist. Wenn ein statisches finales Feld
einen Grundtyp oder einen unveränderlichen Referenztyp hat (Thema 13), dann ist es
ein Konstantenfeld. Ist sein Typ veränderbar, so kann es immer noch ein Konstanten-
feld sein, wenn das referenzierte Objekt unveränderlich ist. So kann z.B. eine typ-
sichere Enum ihr Universum von Aufzählungskonstanten in eine unveränderliche
List-Konstante exportieren. Beachten Sie, dass Konstantenfelder die einzige Verwen-
dung von Unterstrichen darstellen, die empfehlenswert ist.

Lokale Variablen gehorchen ähnlichen typografischen Konventionen wie Attribute,
mit der Einschränkung, dass in ihnen auch Abkürzungen, einzelne Zeichen und kurze

Thema 38: Halten Sie sich an die allgemein anerkannten Namenskonventionen 171

Zeichenfolgen zulässig sind, deren Bedeutung von dem Kontext abhängt, in dem die
lokale Variable auftritt. Beispiele sind i, xref, houseNumber.

Tabelle 7.1 gibt Beispiele für typografische Konventionen zur schnellen Orientierung.

Die grammatischen Namenskonventionen sind flexibler und umstrittener als die typo-
grafischen. Es gibt keine ausgesprochenen grammatischen Namenskonventionen für
Pakete. Klassen werden im Allgemeinen mit einem Substantiv oder einer Nominal-
phrase benannt, z.B. Timer oder BufferedWriter. Interfaces werden wie Klassen benannt,
z.B. Collection oder Comparator, oder mit einer englischen Adjektivendung wie »-able«
oder »-ible« wie z.B. in Runnable oder Accessible.

Methoden, die eine Aktion ausführen, werden allgemein mit einem Verb oder einer
Verbalphrase bezeichnet, wie z.B. append oder drawImage. Methoden, die einen boolean-
Wert zurückgeben, haben Namen, die mit dem Wort »is« beginnen, gefolgt von einem
Substantiv, einer Nominalphrase, einem Wort oder einer Phrase, das oder die Adjektiv-
funktion hat, wie z.B. in isDigit, isProbablePrime, isEmpty, isEnabled, isRunning.

Methoden, die eine nicht-boolesche Funktion oder ein Attribut des Objektes zurück-
geben, auf dem sie aufgerufen werden, werden in der Regel mit einem Substantiv,
einer Nominalphrase oder einer mit dem Verb »get« beginnenden Verbalphrase
bezeichnet, so z.B. in size, hashCode oder getTime. Manchmal wird behauptet, nur die
dritte (mit »get« beginnende) Form sei zulässig, aber diese Behauptung entbehrt jegli-
cher Grundlage. Die ersten beiden Formen führen in der Regel zu lesbarerem Code:

if (car.speed() > 2 * SPEED_LIMIT)
 generateAudibleAlert("Auf Polizei achten!");

Die mit »get« beginnende Form ist verbindlich, wenn die Klasse der betreffenden
Methode eine Bean [JavaBeans] ist, und sie ist ratsam, wenn Sie in Erwägung ziehen,
die Klasse später einmal in eine Bean zu verwandeln. Außerdem spricht alles für diese
Form, wenn die Klasse eine Methode hat, die dasselbe Attribut mit set setzt. In diesem
Fall sollten die beiden Methoden getAttribut und setAttribut heißen.

Bezeichnertyp Beispiele

Paket com.sun.medialib, com.sun.jdi.event

Klasse oder Interface Timer, TimerTask, KeyFactorySpi, HttpServlet

Methode oder Feld remove, ensureCapacity, getCrc

Konstantenfeld VALUES, NEGATIVE_INFINITY

Lokale Variable i, xref, houseNumber

Tabelle 7.1: Beispiele für typografische Konventionen

172 7 Allgemeine Programmierung

Einige Methodennamen verdienen eine spezielle Erwähnung. Methoden, die den Typ
eines Objekts konvertieren und ein unabhängiges Objekt eines anderen Typs zurücklie-
fern, werden oft toTyp genannt, z.B. toString, toArray. Methoden, die eine View zurückge-
ben (Thema 4), die einen anderen Typ hat als das empfangende Objekt, werden oft asTyp
genannt, z.B. asList. Methoden, die einen Grundtyp zurückgeben, der denselben Typ
hat wie das Objekt, auf dem sie aufgerufen wurden, werden oft typValue genannt, z.B.
intValue. Häufige Namen für statische Factorys sind valueOf und getInstance (Thema 1).

Grammatische Konventionen oder Feldnamen sind weniger fixiert und unwichtiger
als die Konventionen für Klassen-, Interface- und Methodennamen, denn gut entwor-
fene APIs enthalten wenn überhaupt nur wenige offengelegte Felder. Felder vom Typ
boolean werden in der Regel wie boolesche Zugriffsmethoden benannt, wobei nur das
»is« am Anfang wegfällt, wie z.B. in initialized oder composite. Felder mit anderen
Typen werden normalerweise mit Substantiven oder Nominalphrasen bezeichnet, wie
z.B. height, digits oder bodyStyle. Grammatische Konventionen für lokale Variablen
ähneln denen für Felder, sind aber noch schwächer.

Zusammenfassend kann ich Ihnen nur dazu raten, die Standardnamenskonventionen
so zu verinnerlichen, dass sie Ihnen zur zweiten Natur werden. Die typografischen
Konventionen sind einfach und klar; die grammatischen sind komplexer und weniger
streng. In The Java Language Specification [JLS, 6.8] heißt es: »Bitte befolgen Sie diese
Konventionen nicht sklavisch, wenn die langjährige Übung etwas Anderes verlangen
würde.« Folgen Sie Ihrem gesunden Menschenverstand.

8 Ausnahmen

Wenn man sie vorteilhaft einsetzt, können Ausnahmen die Lesbarkeit, Zuverlässigkeit
und Wartungsfreundlichkeit eines Programms verbessern. Doch bei unsachgemäßem
Gebrauch können sie auch das Gegenteil bewirken. In diesem Kapitel finden Sie Richt-
linien für den wirkungsvollen Einsatz von Ausnahmen.

8.1 Thema 39: Verwenden Sie Ausnahmen nur für
Ausnahmebedingungen

Wenn Sie Pech haben, stolpern Sie vielleicht eines Tages über ein Codestück wie dieses:

// Schrecklicher Missbrauch von Ausnahmen. Tun Sie dies nie!
try {
 int i = 0;
 while(true)
 a[i++].f();
} catch(ArrayIndexOutOfBoundsException e) {
}

Was macht dieser Code eigentlich? Dass man dies nicht auf den ersten Blick sieht, ist
schon Grund genug, ihn nicht zu verwenden. Bei näherer Betrachtung ist er eine
furchtbare Fehleinschätzung eines Idioms, das die Elemente eines Arrays durchlaufen
sollte. Die Endlosschleife endet, indem sie in dem Moment, wo sie einen Zugriff auf
ein Element außerhalb der Array-Grenzen versucht, eine ArrayIndexOutOfBounds

Exception auslöst, abfängt und dann ignoriert. Sie soll eine Entsprechung des für jeden
Programmierer sofort erkennbaren Standardidioms sein, mit dem ein Array durchlau-
fen wird:

for (int i = 0; i < a.length; i++)
 a[i].f();

Doch warum sollte irgendjemand das Idiom mit der Ausnahme dem bewährten Idiom
vorziehen? Dies ist ein missglückter Versuch, die Leistung zu steigern. Er beruht auf
der fälschlichen Annahme, dass der normale Schleifenende-Test (i < a.length) über-
flüssig ist, da die VM bereits die Grenzen aller Array-Zugriffe prüft. Diese Überlegung
ist aber aus drei Gründen falsch:

174 8 Ausnahmen

� Da Ausnahmen für Ausnahmebedingungen da sind, versuchen wenn überhaupt
nur wenige JVM-Implementierungen, ihre Leistung zu optimieren. Im Allgemeinen
ist es aufwändig, eine Ausnahme zu erzeugen, auszulösen und abzufangen.

� Wenn Sie Code in einen try-catch-Block setzen, vereiteln Sie damit bestimmte Opti-
mierungen, die sonst von modernen JVM-Implementierungen geleistet werden.

� Das Standardidiom zum Durchlaufen eines Arrays führt nicht unbedingt zu über-
flüssigen Überprüfungen: In manchen modernen JVM-Implementierungen werden
solche Prüfungen durch Optimierung ausgeschaltet.

Tatsächlich läuft das Idiom mit der Ausnahme auf allen JVM-Implementierungen viel
langsamer als das standardmäßige. Auf meinem Computer brauchte es bei einer
Schleife von 0 bis 100 siebzig Mal länger als das Standardidiom.

Das Schleifenidiom mit der Ausnahme verschleiert nicht nur den eigentlichen Zweck
des Codes und macht ihn langsamer: Es gibt auch keine Garantie, dass es immer läuft.
Wenn in einem anderen Programmteil ein Fehler ist, kann das Idiom still und heimlich
versagen und diesen Fehler maskieren, was das Debugging sehr kompliziert macht.
Angenommen, die Berechnung im Schleifenrumpf enthält einen Fehler, der zu einem,
die Array-Grenzen überschreitenden Zugriff bei einem ganz anderen Array führt.
Wenn Sie ein vernünftiges Schleifenidiom verwenden, dann würde der Fehler eine
nicht-abgefangene Ausnahme auslösen, die den Thread sofort mit der entsprechenden
Fehlermeldung abbrechen lässt. Wenn Sie jedoch dieses üble Schleifenidiom mit der
Ausnahme verwenden, dann würde die fehlerbedingte Ausnahme abgefangen und als
normales Schleifenende fehlinterpretiert.

Die Moral von der Geschicht’: Wie der Name schon sagt, sind Ausnahmen nur für
Ausnahmebedingungen da. Sie sollten nie für den normalen Kontrollfluss einge-
setzt werden. Noch allgemeiner gesagt: Geben Sie standardmäßigen, leicht erkenn-
baren Idiomen den Vorzug vor oberschlauen Idiomen, die angeblich schneller laufen.
Selbst wenn das stimmt, dann bleibt es vielleicht bei den ständigen Verbesserungen an
den JVM-Implementierungen nicht dabei. Doch die subtilen Fehler und Wartungspro-
bleme durch oberschlaue Idiome bleiben Ihnen mit Sicherheit erhalten.

Dieses Prinzip hat auch Konsequenzen für den API-Entwurf. Ein gut entworfenes API
darf seinen Client nicht zwingen, für den normalen Kontrollfluss Ausnahmen zu
verwenden. Eine Klasse mit einer »zustandsabhängigen« Methode, die unter bestimm-
ten, unvorhersehbaren Umständen aufgerufen werden kann, sollte generell eine sepa-
rate »Zustandstestmethode« haben, die anzeigt, ob ein Aufruf der ersten Methode
angebracht ist. So hat z.B. die Klasse Iterator die zustandsabhängige Methode next, die
das nächste Element der Iteration zurückgibt, und die entsprechende Zustandstest-
methode hasNext. Dadurch kann das Standardidiom über eine Sammlung iterieren:

Thema 39: Verwenden Sie Ausnahmen nur für Ausnahmebedingungen 175

for (Iterator i = collection.iterator(); i.hasNext();) {
 Foo foo = (Foo) i.next();
 ...
}

Wenn Iterator keine hasNext-Methode hätte, müsste der Client Folgendes tun:

// Verwenden Sie nie dieses scheußliche Idiom zum Durchlaufen
// einer Sammlung!
try {
 Iterator i = collection.iterator();
 while(true) {
 Foo foo = (Foo) i.next();
 ...
 }
} catch (NoSuchElementException e) {
}

Nach dem Beispiel für eine Iteration über ein Array am Anfang dieses Themas dürfte
Ihnen dies bekannt vorkommen. Das Idiom mit der Ausnahme ist nicht nur lang und
irreführend, sondern wahrscheinlich auch noch wesentlich langsamer als das Standard-
idiom und außerdem kann es Fehler in anderen Systemteilen maskieren.

Eine Alternative zu einer separaten Zustandstestmethode ist eine zustandsabhängige
Methode, die einen Spezialwert wie etwa null zurückgibt, wenn sie auf einem Objekt
aufgerufen ist, das den falschen Zustand hat. Diese Technik würde sich z.B. für Iterator
eignen, da null für die Methode next ein zulässiger Rückgabewert ist.

Im Folgenden sehen Sie einige Richtlinien für die Wahl zwischen einer Zustandstest-
methode und einem Spezialrückgabewert. Wenn Sie auf ein Objekt nebenläufig ohne
externe Synchronisierung zugreifen möchten oder das betreffende Objekt von außen
herbeigeführte Zustandsänderungen erfährt, dann kann es sehr wichtig sein, einen
Spezialrückgabewert zu verwenden, da sich der Zustand des Objekts zwischen dem
Aufruf einer Zustandstestmethode und ihrer entsprechenden zustandsabhängigen
Methode ändern kann. Leistungserwägungen können für einen Spezialrückgabewert
sprechen, wenn eine separate Zustandstestmethode dieselbe Arbeit der zustands-
abhängigen Methode notwendigerweise noch einmal leisten müsste. Doch wenn alles
andere gleich bleibt, ist eine Zustandstestmethode etwas besser als ein Spezialrück-
gabewert: Sie ist besser lesbar und bei fehlerhafter Anwendung leichter zu entdecken
und zu korrigieren.

176 8 Ausnahmen

8.2 Thema 40: Geprüfte Ausnahmen für behebbare
Situationen, Laufzeitausnahmen für Programmierfehler

Java bietet drei Arten von Ausnahmen: geprüfte Ausnahmen, Laufzeitausnahmen und
Fehler. Unter den Programmierern herrscht manchmal Unsicherheit über die Frage,
wann welche Ausnahme richtig ist. Dies lässt sich zwar nicht immer klar abgrenzen,
aber es gibt einige allgemeine Regeln, die die Wahl leichter machen.

Die Hauptregel in der Frage, ob Sie eine geprüfte oder eine ungeprüfte Ausnahme ver-
wenden, lautet: Verwenden Sie geprüfte Ausnahmen dann, wenn der Aufrufer gute
Chancen hat, sich wieder zu erholen. Durch das Auslösen einer geprüften Ausnahme
zwingen Sie den Aufrufer, diese in einer catch-Klausel zu behandeln oder nach außen
weiterzugeben. Jede geprüfte Ausnahme, die eine Methode laut ihrer Deklaration aus-
lösen kann, gibt also dem API-Benutzer einen starken Hinweis darauf, dass die mit ihr
verbundene Ausnahmebedingung eine Folge des Methodenaufrufs sein könnte.

Indem er den API-Benutzer mit einer geprüften Ausnahme konfrontiert, gibt der API-
Designer diesem den Auftrag, die Ausnahmebedingung zu beheben. Diesen Auftrag
kann der Benutzer auch missachten, indem er die Ausnahme abfängt und ignoriert,
aber dies sollte normalerweise nicht sein (Thema 47).

Es gibt zwei Arten von ungeprüften Ausnahmen: Laufzeitausnahmen und Fehler.
Beide verhalten sich identisch: Sie sind »Throwables« , die nicht abgefangen werden
müssen und sollen. Wenn ein Programm eine ungeprüfte Ausnahme oder einen Fehler
auslöst, ist eine Erholung normalerweise unmöglich und eine weitere Programmaus-
führung würde mehr schaden als nützen. Wenn ein Programm eine solche Ausnahme
nicht abfängt, veranlasst es den aktuellen Thread, mit einer passenden Fehlermeldung
abzubrechen.

Verwenden Sie Laufzeitausnahmen, um auf Programmierfehler hinzuweisen. Die
überwiegende Mehrheit der Laufzeitausnahmen zeigen Vorbedingungsverletzungen an.
Eine Vorbedingungsverletzung liegt dann vor, wenn der Client eines APIs den Vertrag
der API-Spezifikation nicht erfüllt. So steht z.B. im Vertrag für den Array-Zugriff, dass
der Array-Index zwischen null und der Array-Länge minus eins liegen muss. Eine
ArrayIndexOutOfBoundsException zeigt an, dass diese Vorbedingung verletzt wurde.

Obwohl die JLS es nicht unbedingt verlangt, gibt es die starke Konvention, dass der
Einsatz von Fehlern für die JVM reserviert ist, damit diese auf fehlende Ressourcen,
Scheitern der Invarianten oder andere Bedingungen hinweisen kann, die eine weitere
Programmausführung unmöglich machen [Chan 1998, Horstman 2000]. Da diese Kon-
vention fast überall befolgt wird, sollten Sie besser keine neuen Unterklassen von Error
implementieren. Alle ungeprüften Ausnahmen, die Sie implementieren, sollten mit-
telbar oder unmittelbar Unterklassen von RuntimeException sein.

Thema 40: Geprüfte Ausnahmen für behebbare Situationen … 177

Es ist möglich, eine Ausnahme zu definieren, die keine Unterklasse von Exception, Run-
timeException oder Error ist. Die JLS sagt zwar nicht unmittelbar etwas über »Throw-
ables« aus, spezifiziert aber implizit, dass diese dasselbe Verhalten an den Tag legen,
wie normale geprüfte Ausnahmen (die ihrerseits Unterklassen von Exception und nicht
von RuntimeException sind). Doch wann sollten Sie so ein Ding benutzen? Mit einem
Wort: nie. Es bietet keine Vorteile gegenüber einer normalen, geprüften Ausnahme und
würde den Benutzer Ihres APIs nur verwirren.

Fazit: Verwenden Sie geprüfte Ausnahmen nur für behebbare Fehlerbedingungen und
Laufzeitausnahmen für Programmierfehler. Natürlich ist die Situation nicht immer
entweder-oder. Nehmen Sie z.B. den Fall, dass eine Ressource erschöpft ist: Dieser
kann ebenso durch einen Programmierfehler wie durch Zuweisung eines zu langen
Arrays oder gar eine tatsächliche Ressourcenknappheit entstehen. Ist der Grund eine
vorübergehende Ressourcenknappheit oder eine Nachfragespitze, dann ist die Bedin-
gung vielleicht ganz gut zu beheben. Der API-Designer muss letztlich entscheiden, ob
eine Erschöpfung einer Ressource voraussichtlich behebbar ist oder nicht. Wenn ja,
dann ist eine geprüfte Ausnahme angebracht, wenn nicht, dann eine Laufzeitaus-
nahme. Wenn nicht feststeht, ob eine Erholung möglich ist, dann sollten Sie aus den in
Thema 41 dargestellten Gründen am besten eine ungeprüfte Ausnahme verwenden.

API-Designer vergessen oft, dass Ausnahmen vollwertige Objekte sind, auf denen
beliebige Methoden definiert werden können. Solche Methoden dienen hauptsächlich
dazu, den Code zu liefern, der die Ausnahme abfängt, und zusätzlich über die Bedin-
gung zu informieren, die die Auslösung der Ausnahme verursachte. Mangels solcher
Methoden sind Programmierer auch schon einmal darauf gekommen, die String-Dar-
stellung einer Ausnahme zu parsen, um sich Zusatzinformationen zu beschaffen. Das
ist extrem schlechter Stil. Da Klassen nur selten die Einzelheiten ihrer String-Darstel-
lungen spezifizieren, können sich diese Darstellungen mit jeder Implementierung und
jedem Release ändern. Daher ist Code, der die String-Darstellung einer Ausnahme
parst, in aller Regel nicht portierbar und zerbrechlich.

Da geprüfte Ausnahmen generell auf behebbare Bedingungen hinweisen, ist bei sol-
chen Ausnahmen ganz besonders wichtig, dass sie Methoden haben, mit deren Hilfe
sich der Aufrufer erholen kann. Angenommen, eine geprüfte Ausnahme wird ausge-
löst, wenn ein Versuch, mit einem Kartentelefon zu telefonieren, fehlschlägt, weil der
Anrufer nicht genug Geld auf seiner Karte hatte. Diese Ausnahme sollte eine Zugriffs-
methode haben, mit der der Fehlbetrag abgefragt werden kann, damit dieser an den
Telefonbenutzer weitergegeben werden kann.

178 8 Ausnahmen

8.3 Thema 41: Vermeiden Sie den unnötigen Einsatz von
geprüften Ausnahmen

Geprüfte Ausnahmen sind etwas Wunderbares. Im Gegensatz zu Rückgabecodes zwin-
gen sie den Programmierer, sich um die Ausnahmebedingungen zu kümmern, was die
Zuverlässigkeit stark verbessert. Doch ein Übermaß an geprüften Ausnahmen kann
die Benutzung eines APIs zur Qual machen. Wenn eine Methode eine oder mehrere
geprüfte Ausnahmen auslöst, muss der Code, der diese Methode aufruft, die Ausnah-
men in einem oder mehreren catch-Blöcken behandeln oder deklarieren, dass er die
Ausnahmen auslöst und sie dann nach außen weiterleiten. Beides ist für den Program-
mierer eine Last.

Diese Last ist gerechtfertigt, wenn die Ausnahmebedingung nicht durch korrekte
Benutzung des APIs zu verhindern ist und außerdem die Programmierer, die das API
benutzen, etwas Sinnvolles tun können, wenn sie mit der Ausnahme konfrontiert wer-
den. Wenn nicht beides zutrifft, dann ist eine ungeprüfte Ausnahme besser. Sie sollten
sich fragen, wie der Programmierer die Ausnahme behandeln wird. Ist dies das Beste,
was man tun kann?

} catch(TheCheckedException e) {
 throw new Error("Falsche Grundannahme"); // Darf nie passieren!
}

Und wie wär’s damit?

} catch(TheCheckedException e) {
 e.printStackTrace(); // Na gut, dann eben nicht.
 System.exit(1);
}

Wenn der Programmierer, der das API benutzt, nichts besseres unternehmen kann,
dann wäre eine ungeprüfte Ausnahme besser geeignet. Ein Beispiel für eine Aus-
nahme, die diesen Test nicht besteht, ist CloneNotSupportedException. Sie wird von der
Methode Object.clone ausgelöst, die nur auf solchen Objekten aufgerufen werden
sollte, die Cloneable implementieren (Thema 10). In der Praxis hat der catch-Block fast
immer den Charakter eines Scheiterns der Grundannahme. Die Tatsache, dass die Aus-
nahme geprüft ist, bietet dem Programmierer keinen Vorteil, sondern macht nur Arbeit
und verkompliziert die Programme.

Die zusätzliche Last, die Sie dem Programmierer mit einer geprüften Ausnahme auf-
bürden, ist noch viel schwerer, wenn dies die einzige geprüfte Ausnahme ist, die eine
Methode ausgibt. Gibt es noch mehr, so muss die Methode ohnehin schon in einem
try-Block auftauchen, und für die Ausnahme ist lediglich noch ein weiterer catch-Block
notwendig. Wenn eine Methode nur eine einzige geprüfte Ausnahme auslöst, dann

Thema 41: Vermeiden Sie den unnötigen Einsatz von geprüften Ausnahmen 179

muss nur für diese Ausnahme auch ein try-Block für die Methode her. Unter solchen
Umständen sollten Sie sich schon fragen, ob Sie nicht irgendwie die geprüfte Aus-
nahme vermeiden können.

Eine Technik, mit der Sie eine geprüfte in eine ungeprüfte Ausnahme verwandeln kön-
nen, besteht darin, aus der Methode, die die Ausnahme auslöst, zwei Methoden zu
machen. Die erste gibt einen boolean-Wert zurück, der anzeigt, ob die Ausnahme aus-
gelöst würde. Diese Änderung des APIs verwandelt folgende Aufrufsequenz:

// Aufruf mit geprüfter Ausnahme
try {
 obj.action(args);
} catch(TheCheckedException e) {
 // Behandele Ausnahmebedingung
 ...
}

in diese:

// Aufruf mit Zustandstestmethoden und ungeprüfter Ausnahme
if (obj.actionPermitted(args)) {
 obj.action(args);
} else {
 // Behandele Ausnahmebedingung
 ...
}

Diese Umwandlung ist nicht immer das Richtige, aber dort, wo sie angebracht ist, kann sie
die API-Benutzung erleichtern. Die zweite Aufrufsequenz ist zwar nicht schöner als
die erste, aber das resultierende API ist flexibler. Wenn der Programmierer weiß, dass
der Aufruf klappen wird, oder wenn er damit zufrieden ist, dass der Thread bei einem
Fehlschlag des Aufrufs endet, dann würde die Umformung auch die folgende einfache
Aufrufsequenz gestatten:

obj.action(args);

Wenn Sie vermuten, dass die einfache Aufrufsequenz die Norm sein wird, dann kann
auch diese API-Umformung das Richtige sein. Sie führt zu einem API, das im Wesent-
lichen mit dem »Zustandstestmethoden« -API aus Thema 39 identisch ist und auch die-
selben Fallstricke hat: Wenn auf ein Objekt nebenläufig ohne externe Synchronisierung
zugegriffen wird oder wenn das Objekt Gegenstand extern veranlasster Zustands-
änderungen ist, dann ist diese Umformung nicht das Richtige, weil sich der Objektzu-
stand in der Zeit zwischen dem Aufruf von actionPermitted und dem Aufruf von action
ändern kann. Wenn eine separate actionPermitted-Methode jedoch notwendigerweise
dieselbe Arbeit der action-Methode noch einmal tun würde, dann kann die Umfor-
mung auch wegen Leistungserwägungen ausscheiden.

180 8 Ausnahmen

8.4 Thema 42: Bevorzugen Sie Standardausnahmen

Eine Sache, durch die sich Programmierprofis am stärksten von Anfängern unterschei-
den, ist, dass die Experten für ihren Code ein hohes Maß an Wiederverwendbarkeit
anstreben und normalerweise auch erreichen. Ausnahmen bilden keine Ausnahme
von der Regel, dass wiederverwendbarer Code eine gute Sache ist. Die Java-Plattform-
bibliotheken stellen einige elementare ungeprüfte Ausnahmen zur Verfügung, die den
Ausnahmenbedarf der meisten APIs schon größtenteils decken. Diese gebräuchlichen
Ausnahmen werden in diesem Thema behandelt.

Die Wiederverwendung bereits vorhandener Ausnahmen hat mehrere Vorteile. Der
wichtigste ist der, dass Ihr API dadurch einfacher zu lernen und zu nutzen ist, weil es
den Konventionen folgt, mit denen die Programmierer bereits vertraut sind. Direkt
danach kommt der Vorteil, dass die Programme, die Ihr API benutzen, dann leichter
zu lesen sind, weil sie nicht voller unbekannter Ausnahmen stecken. Und außerdem
bedeuten weniger Ausnahmeklassen auch weniger Arbeitsspeicherbelegung und
schnelleres Laden von Klassen.

Eine weitere, oft genutzte Ausnahme ist IllegalStateException. Diese Ausnahme wird
in der Regel ausgelöst, wenn der Aufruf wegen des Zustands des Empfängerobjekts
unzulässig war. Sie wäre z.B. dann die Ausnahme der Wahl, wenn der Aufrufer ein
Objekt zu benutzen versucht, ehe es ordentlich initialisiert wurde.

Letztlich sind zwar alle falschen Methodenaufrufe auf ein unzulässiges Argument
oder einen unzulässigen Zustand zurückzuführen, aber standardmäßig werden für
bestimmte Arten von unzulässigen Argumenten und Zuständen andere Ausnahmen
verwendet. Wenn ein Aufrufer einem Parameter, der keine null-Werte haben darf, den
Wert null übergibt, dann wird laut Konvention keine IllegalArgumentException, sondern
eine NullPointerException ausgelöst, und wenn ein Aufrufer einem Parameter, der
einen Index einer Folge darstellt, einen außerhalb des zulässigen Wertebereichs liegen-
den Wert übergibt, dann sollte er statt einer IllegalArgumentException eine IndexOutOf
BoundsException erhalten.

Eine andere Allzweckausnahme, die Sie kennen sollten, ist ConcurrentModificationEx-
ception. Sie sollten diese Ausnahme auslösen, wenn ein Objekt, das nur von einen ein-
zigen Thread oder mit externer Synchronisierung benutzt werden sollte, feststellt, dass
es nebenläufig geändert wird oder wurde.

Ein letztes Beispiel für eine erwähnenswerte Allzweckausnahme ist Unsupported

OperationException. Diese Ausnahme sollten Sie auslösen, wenn ein Objekt eine Opera-
tion, die versucht wird, nicht unterstützt. Verglichen mit den anderen in diesem Thema
behandelten Ausnahmen wird sie nur selten benutzt, da die meisten Objekte alle von
ihnen implementierten Methoden auch unterstützen. Diese Ausnahme wird von Inter-
face-Implementierungen verwendet, die eine oder mehrere mögliche Operationen, die

Thema 42: Bevorzugen Sie Standardausnahmen 181

von dem Interface definiert werden, nicht unterstützen. So würde z.B. eine List-Imple-
mentierung, die nur für das Anhängen (mit append) da ist, diese Ausnahme auslösen,
wenn jemand versuchte, ein Element zu löschen.

Tabelle 8.1 fasst die am häufigsten wieder verwendeten Ausnahmen zusammen.

Dies sind zwar bei weitem die am häufigsten wiederverwendeten Ausnahmen in den
Java-Plattformbibliotheken, aber wenn die Umstände es rechtfertigen, können auch
andere Ausnahmen wieder verwendet werden. So könnten Sie z.B. ArithmeticException
und NumberFormatException wiederverwenden, wenn Sie arithmetische Objekte wie
komplexe Zahlen oder Matrizen implementierten. Wenn eine Ausnahme Ihren Bedürf-
nissen genügt, dann nutzen Sie sie. Tun Sie dies allerdings nur, wenn die Bedingungen,
unter denen Sie sie auslösen würden, mit denen in der Dokumentation der Ausnahme
übereinstimmen. Die Wiederverwendung muss sich auf die Semantik gründen und
nicht nur auf einen Namen. Wenn Sie noch mehr Fehlerinformationen geben möchten,
können Sie auch eine Unterklasse zu einer bereits bestehenden Ausnahme schreiben
(Thema 45).

Zum Schluss müssen Sie sich noch klar machen, dass die Wahl der richtigen Ausnahme
nicht immer eine exakte Wissenschaft ist. Auch die Bedingungen in der Verwendungs-
spalte von Tabelle 8.1 schließen sich nicht gegenseitig aus. Nehmen Sie z.B. den Fall
eines Objekts, das ein Kartenspiel repräsentiert: Angenommen, es gibt eine Kartenaus-
teilungsmethode, die als Argument die Anzahl der Karten bekommt, die jeder Spieler
erhält. Wenn der Aufrufer diesem Parameter einen Wert übergäbe, der die Anzahl der
verbleibenden Karten des Spiels übersteigt, so könnten Sie dafür eine IllegalArgument
Exception (der Parameterwert von handSize ist zu groß) oder eine IllegalStateException
(das Spiel-Objekt enthält zu wenige Karten, um die Anfrage zu befriedigen) benutzen.
In diesem Fall macht die IllegalArgumentException einen guten Eindruck, aber feste
Regeln dafür gibt es nicht.

Ausnahme Verwendung

IllegalArgumentException bei ungeeigneten Parameterwerten

IllegalStateException wenn der Objektzustand keinen Methodenaufruf zulässt

NullPointerException wenn der Parameterwert verbotenerweise null ist

IndexOutOfBoundsException wenn der Wert des Indexparameters außerhalb des
Wertebereichs liegt

ConcurrentModificationException wenn eine verbotene, nebenläufige Änderung des
Objektzustands aufgedeckt wird

UnsupportedOperationException wenn das Objekt die Methode nicht unterstützt

Tabelle 8.1: Ausnahmen

182 8 Ausnahmen

8.5 Thema 43: Lösen Sie Ausnahmen aus, die zur
Abstraktion passen

Es führt zu Verwirrung, wenn eine Methode eine Ausnahme auslöst, die in keinem
erkennbaren Zusammenhang mit der Aufgabe steht, die sie ausführt. Das ist oft der
Fall, wenn eine Methode eine Ausnahme weiterleitet, die von einer Abstraktion einer
tieferen Ebene ausgelöst wurde. Das ist nicht nur verwirrend, sondern macht auch das
API der höheren Ebene mit den Implementierungdetails schmutzig. Wenn die Imple-
mentierung der höheren Ebene in einem späteren Release geändert wird, können sich
auch die von ihr ausgelösten Ausnahmen ändern. Dadurch können bestehende Client-
Programme kaputtgehen.

Um dieses Problem zu vermeiden, sollten höhere Ebenen die Ausnahmen der darun-
terliegenden Ebenen abfangen und stattdessen Ausnahmen auslösen, die anhand
der Abstraktion der höheren Ebene erklärbar sind. Dieses als »Ausnahme-Überset-
zung« bezeichnete Idiom sieht folgendermaßen aus:

// Ausnahme-Übersetzung
try {
 // Verwende Abstraktion einer niedrigeren Ebene
 // und übersetze in die höhere Ebene.
 ...
} catch(LowerLevelException e) {
 throw new HigherLevelException(...);
}

Hier sehen Sie ein Beispiel einer Ausnahme-Transaktion. Es entstammt der Klasse
AbstractSequentialList, einer Skelettimplementierung (Thema 16) des List-Interfaces. In
diesem Beispiel wird die Ausnahme-Übersetzung von der Spezifikation der get-
Methode im List-Interface gefordert:

/**
 * Gibt die Elemente an der angegebenen Stelle dieser Liste zurück.
 * @throws IndexOutOfBoundsException, wenn Index nicht
 * im Wertebereich.
 * (index < 0 || index >= size()).
 */
public Object get(int index) {
 ListIterator i = listIterator(index);
 try {
 return i.next();
 } catch(NoSuchElementException e) {
 throw new IndexOutOfBoundsException("Index: " + index);
 }
}

Eine Sonderform der Ausnahme-Übersetzung namens Ausnahmen-Verkettung eignet
sich für solche Fälle, in denen die Ausnahme der niedrigeren Ebene jemandem beim

Thema 43: Lösen Sie Ausnahmen aus, die zur Abstraktion passen 183

Debuggen einer Situation helfen kann, die die Ursache der Ausnahme war. Bei diesem
Ansatz speichert die Ausnahme der höheren Ebene die Ausnahme der niedrigeren
Ebene und stellt eine Zugriffsmethode zur Verfügung, mit der sich die Ausnahme der
niedrigeren Ebene abrufen lässt:

// Ausnahmen-Verkettung
try {
 // Verwende Abstraktion einer niedrigeren Ebene
 // und übersetze in die höhere Ebene.
 ...
} catch (LowerLevelException e) {
 throw new HigherLevelException(e);
}

Seit dem Release 1.4 wird die Ausnahmen-Verkettung von Throwable unterstützt. Wenn
Sie Release 1.4 (oder eine Folgeversion) einsetzen möchten, können Sie diese Unter-
stützung nutzen, indem Sie den Konstruktor Ihrer höheren Ausnahme eine Verkettung
mit Throwable(Throwable) herstellen lassen.

// Ausnahmen-Verkettung in Release 1.4
HigherLevelException(Throwable t) {
 super(t);
}

Wenn Sie mit einem älteren Release arbeiten möchten, dann muss Ihre Ausnahme die
Ausnahme der niedrigeren Ebene speichern und eine Zugriffsmethode zur Verfügung
stellen:

// Ausnahmen-Verkettung vor Release 1.4
private Throwable cause;

HigherLevelException(Throwable t) {
 cause = t;
}

public Throwable getCause() {
 return cause;
}

Indem Sie die Zugriffsmethode getCause nennen und ihr die oben gezeigte Deklaration
geben, stellen Sie sicher, dass Ihre Ausnahme mit der Verkettungsfunktion der Platt-
form zusammenarbeiten wird, falls Sie einmal zu Release 1.4 oder folgenden wechseln
möchten. Dies hat den Vorteil, dass der Stacktrace der niedrigeren Ausnahme in den
der höheren Ausnahme in der üblichen Art und Weise integriert wird, und erlaubt es
zusätzlich, dass Standard-Debugging-Tools auf die niedrigere Ausnahme zugreifen
können.

Zwar ist es besser eine Ausnahme zu übersetzen, als sie unbedacht von niedrigeren zu
höheren Ebenen weiterzureichen, aber dies sollten Sie auch nicht überstrapazieren.

184 8 Ausnahmen

Das beste, was Sie wenn möglich mit Ausnahmen von niedrigeren Ebenen tun können,
ist, sie ganz zu vermeiden, indem Sie gewährleisten, dass die Methoden der niedrigen
Ebenen Erfolg haben, ehe Sie sie aufrufen. Manchmal können Sie dies erreichen, indem Sie
explizit die Gültigkeit der Methodenparameter der höheren Ebene prüfen, ehe Sie sie an
die niedrigeren Ebenen übergeben.

Wenn sich Ausnahmen von niedrigeren Ebenen nicht verhindern lassen, dann besteht
die zweitbeste Lösung darin, dass die höhere Ebene diese Ausnahmen stillschweigend
umgeht und den Aufrufer der höheren Methode von den Problemen der niedrigeren
Ebene isoliert. Unter solchen Umständen kann es gut sein, die Ausnahme mit einem
geeigneten Werkzeug wie z.B. dem in Release 1.4 eingeführten java.util.logging zu
protokollieren. Dann kann ein Administrator das Problem untersuchen, während der
Client-Code und die Benutzer davon unberührt bleiben.

In Situationen, in denen sich Ausnahmen niedrigerer Ebenen weder vermeiden noch
die höheren Ebenen davon isolieren lassen, sollten Sie immer die Ausnahme-Überset-
zung verwenden. Nur wenn zufällig die Spezifikation der niedrigeren Methode garan-
tiert, dass alle von ihr ausgelösten Ausnahmen für die höhere Ebene geeignet sind,
sollte eine Weitergabe von Ausnahmen von unten nach oben gestattet sein.

8.6 Thema 44: Dokumentieren Sie alle Ausnahmen,
die eine Methode auslöst

Eine Beschreibung der Ausnahmen, die eine Methode auslösen kann, ist ein wichtiger
Teil der Dokumentation, die für den richtigen Einsatz der Methode erforderlich ist.
Daher müssen Sie sich unbedingt die Zeit nehmen, sämtliche Ausnahmen sämtlicher
Methoden sorgfältig zu dokumentieren.

Deklarieren Sie geprüfte Ausnahmen immer einzeln und dokumentieren Sie mit-
hilfe des @throws-Tags von Javadoc ganz genau die Bedingungen, unter denen jede
Ausnahme ausgelöst wird. Bitte kürzen Sie das nicht ab, indem Sie deklarieren, dass
eine Methode eine Oberklasse mehrerer von ihr möglicherweise ausgegebener Aus-
nahmeklassen auslöst. Ein Extrembeispiel: Deklarieren Sie nie in einer Methode
»throws Exception« oder, schlimmer noch, »throws Throwable« . Eine solche Deklaration
gibt dem Programmierer keinerlei Hinweis auf die Ausnahmen, die die Methode aus-
lösen kann, und behindert überdies auch noch die Nutzung der Methode, weil sie jede
andere Ausnahme, die in demselben Kontext ausgegeben werden kann, verschleiert.

Zwar wird von Java nicht unbedingt gefordert, dass Programmierer die ungeprüften
Ausnahmen dokumentieren müssen, die eine Methode auslösen kann, aber es emp-
fiehlt sich dennoch, diese ebenso sorgfältig zu dokumentieren wie die geprüften Aus-
nahmen. Ungeprüfte Ausnahmen stellen allgemein Programmierfehler dar (Thema 40).

Thema 44: Dokumentieren Sie alle Ausnahmen, die eine Methode auslöst 185

Wenn Sie den Programmierern alle gemachten Fehler vorstellen, dann helfen Sie ihnen,
diese Fehler zu vermeiden. Eine gut dokumentierte Liste mit allen ungeprüften Aus-
nahmen, die eine Methode auslösen kann, beschreibt wirkungsvoll, welche Vorbedin-
gungen für ihre erfolgreiche Ausführung erforderlich sind. Es ist ganz wichtig, dass die
Dokumentation jeder Methode ihre Vorbedingungen beschreibt, und dies tun Sie am
besten, indem Sie ihre ungeprüften Ausnahmen dokumentieren.

Ganz besonders wichtig ist es, dass Methoden in Interfaces dokumentieren, welche
ungeprüften Ausnahmen sie auslösen können. Diese Dokumentation gehört zum allge-
meinen Vertrag des Interfaces und ermöglicht es, dass sich mehrere Implementierungen
des Interfaces gleich verhalten.

Bitte dokumentieren Sie mit dem @throws-Tag von Javadoc jede ungeprüfte Ausnahme,
die eine Methode auslösen kann. Verwenden Sie aber nicht das Schlüsselwort throws,
um ungeprüfte Ausnahmen in die Methodendeklaration hineinzuschreiben. Der Pro-
grammierer, der Ihr API benutzt, muss erkennen können, welche Ausnahmen geprüft
und welche ungeprüft sind, da sich seine Aufgaben je nach Fall unterscheiden. Die
Dokumentation, die das @throws-Tag von Javadoc generiert, wenn kein von der throws-
Deklaration generierter Methoden-Header vorhanden ist, ist ein deutlich sichtbarer Hin-
weis, der dem Programmierer hilft, geprüfte Ausnahmen von ungeprüften zu unter-
scheiden.

Man muss sagen, dass die Dokumentation sämtlicher ungeprüfter Ausnahmen für
jede Methode ein Ideal ist, das in der Realität nicht immer erreichbar ist. Wenn eine
Klasse überarbeitet wird, dann bedeutet es keine Verletzung der Quell- oder Binär-
kompatibilität, wenn eine exportierte Methode so umgeschrieben wird, dass sie noch
weitere ungeprüfte Ausnahmen auslöst. Angenommen, eine Klasse ruft eine Methode
einer anderen, unabhängig von der ersten geschriebenen Klasse auf. Die Autoren der
ersten Klasse haben vielleicht alle ungeprüften Ausnahmen jeder Methode sorgfältig
dokumentiert, aber wenn die zweite Klasse derart überarbeitet wird, dass sie noch
mehr ungeprüfte Ausnahmen auslöst, dann wird sehr wahrscheinlich die erste (nicht
überarbeitete) Klasse die neuen ungeprüften Ausnahmen weitergeben, obwohl sie sie
nicht deklariert.

Wenn eine Ausnahme von vielen Methoden in einer Klasse immer aus demselben
Grund ausgelöst wird, dann kann sie auch im Dokumentationskommentar zu der
Klasse dokumentiert werden, anstatt sie für jede Methode einzeln zu dokumentieren.
Ein Beispiel dafür ist die NullPointerException. Es ist in Ordnung, wenn die Klassen-
dokumentation sinngemäß besagt: »Alle Methoden dieser Klasse lösen eine NullPoin-
terException aus, wenn ihnen in irgendeinem Parameter ein null-Objekt übergeben
wird« .

186 8 Ausnahmen

8.7 Thema 45: Geben Sie in Detailnachrichten
Fehlerinformationen an

Wenn ein Programm wegen einer nicht-abgefangenen Ausnahme abbricht, gibt das
System automatisch den Stacktrace der Ausnahme aus. Dieser enthält die String-Dar-
stellung der Ausnahme, also das Ergebnis ihrer toString-Methode. Sie besteht norma-
lerweise aus dem Klassennamen der Ausnahme, gefolgt von ihrer Detailnachricht. Oft
ist dies die einzige Information, an die sich die Programmierer oder Techniker bei der
Untersuchung eines Software-Fehlers halten können. Wenn der Fehler nicht leicht
reproduzierbar ist, kann es schwierig oder unmöglich sein, mehr darüber zu erfahren.
Daher ist es von entscheidender Bedeutung, dass die toString-Methode der Ausnahme
möglichst viel über die Fehlerursache verrät. Mit anderen Worten: Die String-Darstel-
lung einer Ausnahme sollte den Fehler für eine spätere Analyse festhalten.

Um einen Fehler festzuhalten, sollte die String-Darstellung einer Ausnahme die
Werte aller Parameter und Felder enthalten, die zu der Ausnahme »beigetragen«
haben. So sollte z.B. die Detailnachricht zu einer IndexOutOfBoundsException die Unter-
und Obergrenze des Wertebereichs und den tatsächlichen Indexwert, der nicht inner-
halb dieser Grenzen lag, nennen. Diese Information sagt viel über den Fehler aus. Jeder
einzelne Wert oder alle drei Werte könnten falsch sein. Der tatsächliche Index könnte
um eins kleiner als die Untergrenze oder gleich der Obergrenze sein, oder er könnte
ein Wert sein, der völlig danebenliegt. Die Untergrenze könnte größer als die Ober-
grenze sein (ein ernster interner Invariantenfehler). Jede dieser Situationen weist auf
ein anderes Problem hin. Dem Programmierer hilft es sehr bei der Fehlerdiagnose,
wenn er weiß, nach welcher Art von Fehler er überhaupt sucht.

So wichtig es ist, alle »harten Daten« in die String-Darstellung einer Ausnahme aufzu-
nehmen, so unwichtig ist es, wortreiche Erklärungen dazu zu schreiben. Der Stacktrace
soll gemeinsam mit den Quelldateien analysiert werden und enthält normalerweise
die Angabe, von welcher Datei und welcher Zeilennummer die Ausnahme ausgelöst
wurde, sowie die Dateien und Zeilennummern aller anderen Methodenaufrufe im
Stack. Weitschweifige Fehlerbeschreibungen sind in der Regel überflüssig, da die
Informationen durch Lesen des Quellcodes erschlossen werden können.

Die String-Darstellung einer Ausnahme sollte nicht mit einer Fehlermeldung auf
Benutzerebene verwechselt werden, die für Endanwender verständlich sein muss. Im
Gegensatz zu dieser ist die String-Darstellung vor allem für Programmierer oder Tech-
niker gedacht, denen sie bei der Fehleranalyse hilft. Daher ist der Inhalt der Informa-
tion weit wichtiger als ihre Allgemeinverständlichkeit.

Sie können sicherstellen, dass Ausnahmen in ihren String-Darstellungen ausreichende
Fehlerinformationen geben, indem Sie in den Konstruktoren der Ausnahmen diese
Informationen anstelle einer Detailnachricht in String-Form fordern. Die Detailnach-

Thema 46: Streben Sie nach Fehleratomizität 187

richt kann dann automatisch so generiert werden, dass sie die Informationen enthält.
So könnte z.B. die IndexOutOfBoundsException statt eines String-Konstruktors den folgen-
den Konstruktor haben:

/**
 * Erzeuge eine IndexOutOfBoundsException.
 *
 * @param lowerBound Kleinster zulässiger Indexwert.
 * @param upperBound Größter zulässiger Indexwert plus eins.
 * @param index Tatsächlicher Indexwert.
 */
public IndexOutOfBoundsException(int lowerBound, int upperBound,
 int index) {
 // Erzeuge eine Detailnachricht, die den Fehler festhält.
 super("Untergrenze: " + lowerBound +
 ", Obergrenze: " + upperBound +
 ", Index: " + index);
}

Leider nutzen die Java-Plattformbibliotheken dieses Idiom kaum, obwohl dies ratsam
wäre. Es macht es den Programmierern leicht, eine Ausnahme auszulösen, die den
Fehler festhält. Ja mehr noch: Die Programmierer können gar nicht mehr anders, als
den Fehler festzuhalten! Letztlich erreicht das Idiom, dass der Code eine hervor-
ragende String-Darstellung für eine Ausnahme in der Ausnahmenklasse selbst gene-
riert, statt dass er von jedem Benutzer der Klasse fordert, die String-Darstellung
überflüssigerweise immer wieder neu zu generieren.

Wie Thema 40 bereits nahegelegte, kann es gut sein, wenn eine Ausnahme Zugriffs-
methoden für ihre Fehlerinformationen (in unserem Beispiel lowerBound, upperBound und
index) liefert. Solche Zugriffsmethoden sind für geprüfte Ausnahmen noch wichtiger
als für ungeprüfte, da die Fehlerinformationen bei der Erholung von einem Fehler hel-
fen können. Es ist zwar selten, aber doch vorstellbar, dass ein Programmierer vielleicht
programmgesteuerten Zugriff auf die Einzelheiten einer ungeprüften Ausnahme
möchte. Doch selbst für ungeprüfte Ausnahmen ist es ratsam, grundsätzlich Zugriffs-
methoden zur Verfügung zu stellen (Thema 9).

8.8 Thema 46: Streben Sie nach Fehleratomizität

Auch nachdem ein Objekt eine Ausnahme ausgelöst hat, ist es generell wünschens-
wert, dass es weiter in einem wohldefinierten, benutzbaren Zustand bleibt, selbst
wenn der Fehler mitten in einer Operation aufgetreten ist. Das gilt ganz besonders für
geprüfte Ausnahmen, von denen sich der Aufrufer normalerweise wieder erholen
sollte. Allgemein gesagt sollte ein gescheiterter Methodenaufruf das Objekt in dem
Zustand zurücklassen, den es vor dem Aufruf hatte. Eine Methode mit dieser Eigen-
schaft bezeichnet man als fehleratomar.

188 8 Ausnahmen

Diesen Effekt kann man auf mehrere Arten erzielen. Die einfachste besteht darin, dass
Sie unveränderliche Objekte entwerfen (Thema 13). Wenn ein Objekt unveränderlich
ist, dann gibt es die Fehleratomizität gratis. Ein Scheitern einer Operation kann dann
zwar die Erzeugung eines neuen Objekts vereiteln, aber niemals ein vorhandenes
Objekt in inkonsistentem Zustand hinterlassen, da der Zustand jedes Objekts bei sei-
ner Erzeugung konsistent ist und danach nicht mehr geändert werden kann.

Für Methoden, die auf veränderlichen Objekten arbeiten, lässt sich die Fehleratomizi-
tät am leichtesten erreichen, indem Sie die Parameter vor der Operation auf Gültigkeit
überprüfen (Thema 23). Dann werden eventuelle Ausnahmen ausgelöst, bevor die
Objektmodifikation beginnt. Betrachten Sie z.B. die Stack.pop-Methode aus Thema 5:

public Object pop() {
 if (size == 0)
 throw new EmptyStackException();
 Object result = elements[--size];
 elements[size] = null; // Eliminiere überflüssige Referenz
 return result;
}

Wenn Sie die Größenprüfung am Anfang weglassen würden, dann würde die Metho-
den zwar immer noch bei einem Versuch, ein Element aus einem leeren Stack zu
entnehmen, eine Ausnahme auslösen, aber sie würde das Größenfeld in einem inkon-
sistenten (negativen) Zustand hinterlassen. Dann würden alle zukünftigen Methoden-
aufrufe auf dem Objekt scheitern. Außerdem würde die von der pop-Methode
ausgelöste Ausnahme nicht zu der Abstraktion passen (Thema 43).

Ein ganz ähnlicher Ansatz, um Fehleratomizität zu erreichen, ist der folgende: Sie ord-
nen die Berechnungen so, dass jeder Teil, der eventuell fehlschlagen könnte, vor jedem
Teil liegt, der das Objekt modifiziert. Dieser Ansatz ist die natürliche Erweiterung des
vorherigen, wenn die Argumente nicht geprüft werden können, ohne einen Teil der
Berechnung durchzuführen. Betrachten Sie z.B. eine TreeMap, deren Elemente in einer
bestimmten Reihenfolge sortiert werden. Um einer TreeMap ein Element hinzuzufügen,
muss dieses einen Typ haben, der mit dem Ordnungsverfahren von TreeMap verglichen
werden kann. Jeder Versuch, ein Element vom falschen Typ hinzuzufügen, scheitert
natürlich mit einer ClassCastException. Das ist das Ergebnis, wenn ein Element in dem
Baum gesucht wird, bevor er in irgendeiner Weise modifiziert worden ist.

Ein dritter und viel seltenerer Ansatz zum Erreichen von Fehleratomizität besteht
darin, einen Recovery-Code zu schreiben, der einen mitten in einer Operation auftreten-
den Fehler abfängt und das Objekt veranlasst, seinen Zustand bis zu dem Punkt, an
dem die Operation begann, zurückzurollen. Dieser Ansatz wird vor allem für persis-
tente Datenstrukturen verwendet.

Ein letzter Ansatz, mit dem Sie Fehleratomizität herstellen können, ist folgender: Sie
führen die Operation auf einer temporären Kopie des Objekts durch und ersetzen den

Thema 47: Ignorieren Sie keine Ausnahmen 189

Inhalt des Objekts durch diese temporäre Kopie, sobald die Operation abgeschlossen
ist. Dieser Ansatz ergibt sich auf natürliche Weise, wenn die Berechnung schneller aus-
geführt werden kann, nachdem die Daten in einer temporären Datenstruktur gespei-
chert wurden. So speichert z.B. die Methode Collections.sort ihre Eingabeliste vor
dem Sortieren in einem Array, um Aufwand zu sparen, wenn sie in der inneren
Schleife der Sortieroperation auf die Elemente zugreift. Dies wird zwar aus Leistungs-
erwägungen gemacht, bietet aber den zusätzlichen Vorteil, dass die Eingabeliste unter
Garantie unberührt bleibt, wenn die Sortierung scheitert.

Fehleratomizität ist zwar generell wünschenswert, aber nicht immer möglich. Ein Bei-
spiel: Wenn zwei Threads nebenläufig ohne vernünftige Synchronisierung versuchen,
dasselbe Objekt zu ändern, dann kann dieses Objekt in inkonsistentem Zustand
zurückbleiben. Daher wäre es falsch, anzunehmen, dass ein Objekt noch benutzbar ist,
nachdem man eine ConcurrentModificationException abgefangen hat. Von Fehlern ist (im
Gegensatz zu Ausnahmen) in aller Regel keine Erholung möglich und Methoden, die
Fehler auslösen, sollten noch nicht einmal den Versuch machen, die Fehleratomizität
zu erhalten.

Selbst wenn Fehleratomizität möglich ist, ist sie nicht immer wünschenswert. Bei eini-
gen Operationen würde sich dadurch der Aufwand oder die Komplexität stark erhö-
hen. Doch oft können Sie Fehleratomizität ganz leicht erreichen, wenn Sie sich über
das Problem im Klaren sind. Eine Regel lautet: Jede Ausnahme, die zur Methoden-
spezifikation gehört, sollte das Objekt in demselben Zustand zurücklassen, den es vor
dem Methodenaufruf hatte. Wo diese Regel verletzt wird, sollte die API-Dokumenta-
tion klar sagen, in welchem Zustand das Objekt zurückbleibt. Doch leider entsprechen
viele der existierenden API-Dokumentationen nicht diesem Idealbild.

8.9 Thema 47: Ignorieren Sie keine Ausnahmen

Dieser Rat scheint zwar naheliegend, wird aber so oft verletzt, dass man ihn immer
wiederholen sollte. Wenn die Entwickler eines APIs eine Methode deklarieren, die eine
Ausnahme auslöst, dann versuchen Sie Ihnen damit etwas mitzuteilen. Dies dürfen Sie
nicht ignorieren! Es ist ganz leicht, Ausnahmen zu ignorieren, indem man den Metho-
denaufruf mit einer try-Anweisung mit einem leeren catch-Block umgibt:

// Leerer catch-Block ignoriert Ausnahme – sehr verdächtig!
try {
 ...
} catch (SomeException e) {
}

Ein leerer catch-Block verstößt gegen den Sinn und Zweck der Ausnahmen: Diese
sollen Sie zwingen, Ausnahmebedingungen zu behandeln. Das Ignorieren einer Aus-

190 8 Ausnahmen

nahme ist dasselbe, als würden Sie einen Feueralarm ignorieren – und außerdem auch
noch abschalten, damit auch sonst niemand sieht, dass es tatsächlich brennt. Vielleicht
werden Sie nicht erwischt, aber die Folgen sind katastrophal. Wann immer Sie einen
leeren catch-Block sehen, sollte Ihre Alarmglocke angehen. Der catch-Block sollte
zumindest einen Kommentar enthalten, der erklärt, warum die Ausnahme ignoriert
werden soll.

Dies kann z.B. dann richtig sein, wenn eine Ausnahme die Bildwiedergabe einer Ani-
mation betrifft. Wenn der Bildschirm in regelmäßigen Abständen aktualisiert wird,
dann behandeln Sie einen flüchtigen Fehler am besten, indem Sie ihn ignorieren und
die nächste Aktualisierung abwarten.

Die Empfehlung dieses Themas gilt auch für geprüfte und ungeprüfte Ausnahmen.
Egal ob eine Ausnahme eine vorhersagbare Ausnahmebedingung oder einen Program-
mierfehler repräsentiert: Wenn Sie sie mit einem leeren catch-Block ignorieren, haben
Sie ein Programm, das auch bei einem Fehler ganz geräuschlos weiterläuft. Es kann
dann zu irgendeinem zukünftigen Zeitpunkt scheitern, und zwar an einer Stelle im
Code, die in keinem Zusammenhang mit der Problemursache steht. Die richtige
Behandlung einer Ausnahme kann den Fehler auch ganz verhüten. Schon das bloße
Weiterleiten einer ungeprüften Ausnahme nach außen führt immerhin dazu, dass das
Programm sauber abbricht und gibt Informationen, die beim Debugging helfen.

9 Threads

Mit Threads können Sie mehrere Aktivitäten in demselben Programm nebenläufig aus-
führen. Da Multithreaded-Programmierung schwieriger als Singlethreaded-Program-
mierung ist, gilt hier der Rat aus Thema 30 in besonderem Maße: Wenn es eine
Bibliotheksklasse gibt, die ihnen die Multithreaded-Programmierung auf unterster
Ebene ersparen kann, dann sollten Sie sie um Himmels Willen nutzen. Ein Beispiel
dafür ist die Klasse java.util.Timer, und das Paket util.concurrent von Doug Lea [Lea
2001] liefert eine ganze Sammlung von Threading-Dienstprogrammen auf höherer
Ebene. Selbst wenn Sie dort, wo es möglich ist, solche Bibliotheken nutzen, müssen Sie
immer noch gelegentlich Multithreaded-Code schreiben oder pflegen. In diesem
Kapitel finden Sie Ratschläge, die Ihnen helfen, klare, richtige und gut dokumentierte
Multithreaded-Programme zu schreiben.

9.1 Thema 48: Synchronisieren Sie den Zugriff auf
gemeinsam genutzte, veränderliche Daten

Das Schlüsselwort synchronized gewährleistet, dass immer nur ein einziger Thread eine
Anweisung oder einen Block ausführen kann. Viele Programmierer halten die Syn-
chronisierung nur für ein Mittel zum gegenseitigen Ausschluss, das verhindert, dass
ein Objekt in inkonsistentem Zustand betrachtet wird, während gerade ein anderer
Thread es modifiziert. In dieser View wird ein Objekt in konsistentem Zustand erzeugt
(Thema 13) und von den Methoden, die auf es zugreifen, gesperrt. Diese Methoden
beobachten seinen Zustand und können optional einen Zustandsübergang veranlassen,
bei dem das Objekt von einem konsistenten Zustand in einen anderen übergeht. Der
korrekte Einsatz von Synchronisierung garantiert, dass keine Methode das Objekt je in
inkonsistentem Zustand zu sehen bekommt.

Diese Sicht ist zwar richtig, aber noch nicht vollständig. Die Synchronisierung verhin-
dert nicht nur, dass ein Thread ein Objekt in inkonsistentem Zustand zu sehen
bekommt, sondern gewährleistet überdies, dass Objekte in einer geordneten Folge von
Zustandsübergängen, die scheinbar sequenziell ausgeführt werden, von einem konsis-
tenten Zustand in den nächsten wechseln. Jeder Thread, der in eine synchronisierte
Methode oder einen ebensolchen Block eintritt, sieht die Auswirkungen aller von der-

192 9 Threads

selben Sperre kontrollierten, vorangegangenen Zustandsübergänge. Wenn ein Thread
den synchronisierten Bereich wieder verlassen hat, dann sieht ein anderer Thread, der
nun in den von derselben Sperre synchronisierten Bereich eintritt, die von dem ersten
Thread verursachten Zustandsänderungen, falls es welche gibt.

Die Sprache garantiert, dass das Lesen oder Schreiben einer einzelnen Variablen atomar
ist, sofern diese Variable nicht den Typ long oder double hat. Anders ausgedrückt: Wenn
Sie eine Variable lesen, die nicht den Typ long oder double hat, dann wird garantiert ein
Wert zurückgegeben, der von einem Thread in dieser Variablen gespeichert worden ist,
selbst wenn mehrere Threads die Variable nebenläufig ohne Synchronisierung ändern.

Vielleicht haben Sie schon einmal gehört, man solle beim Lesen oder Schreiben ato-
marer Daten die Synchronisierung aus Leistungsgründen unterlassen. Dieser Rat ist
auf gefährliche Weise falsch. Zwar gewährleistet die Atomizitätsgarantie, dass kein
Thread beim Lesen atomarer Daten einen Zufallswert sieht, aber sie garantiert nicht,
dass ein Wert, der von einem Thread geschrieben wurde, für den anderen auch sicht-
bar ist. Die Synchronisierung ist sowohl für eine zuverlässige Kommunikation zwi-
schen den Threads als auch für den gegenseitigen Ausschluss notwendig. Dies ist
eine Folge eines ziemlich technischen Aspekts von Java, nämlich des Speichermodells
[JLS, 17]. Dieses wird zwar wahrscheinlich in einem künftigen Release noch kräftig
überarbeitet werden [Pugh 01a], aber nicht im Hinblick auf den erwähnten Sach-
verhalt.

Wenn Sie den Zugriff auf eine gemeinsam genutzte Variable nicht synchronisieren,
dann kann dies übel ausgehen, selbst wenn die Variable atomar lesbar und schreibbar
ist. Betrachten Sie die folgende Funktion zur Erzeugung von Seriennummern:

// Kaputt – muss synchronisiert werden!
private static int nextSerialNumber = 0;

public static int generateSerialNumber() {
 return nextSerialNumber++;
}

Diese Funktion soll garantieren, dass jeder Aufruf von generateSerialNumber eine
andere Seriennummer zurückgibt, so lange nicht mehr als 232 Aufrufe stattgefunden
haben. Es ist keine Synchronisierung erforderlich, um die Invarianten des Seriennum-
merngenerators zu schützen, da er gar keine hat. Sein Zustand besteht in einem einzi-
gen, atomar beschreibbaren Feld (nextSerialNumber) und alle Feldwerte, die möglich
sind, sind auch zulässig. Doch die Methode arbeitet nicht ohne Synchronisierung. Da
der Inkrementierungsoperator (++) das Feld nextSerialNumber sowohl liest als auch
beschreibt, ist er nicht atomar. Lesen und Schreiben sind unabhängige Operationen,
die nacheinander ausgeführt werden. Folglich können mehrere nebenläufige Threads
das Feld nextSerialNumber mit demselben Wert zu sehen bekommen und dieselbe Seri-
ennummer zurückgeben.

Thema 48: Synchronisieren Sie den Zugriff auf gemeinsam genutzte, veränderliche Daten 193

Noch überraschender ist, dass ein Thread generateSerialNumber mehrfach aufrufen und
eine Folge von Seriennummern von null bis n erhalten und danach ein anderer Thread
generateSerialNumber aufrufen und die Seriennummer null erhalten kann. Ohne Syn-
chronisierung sieht der zweite Thread vielleicht keine der Änderungen, die der erste
gemacht hat. Dies ist eine Folge des oben erwähnten Speichermodellproblems.

Die Reparatur der Methode generateSerialNumber ist ganz einfach: Sie fügen ihrer
Deklaration den Modifikator synchronized hinzu. Damit ist gewährleistet, dass mehrere
Aufrufe nicht miteinander verzahnt werden und dass jeder Aufruf die Auswirkungen
aller vorangegangenen sieht. Um die Methode wasserdicht zu machen, sollten Sie statt
int besser long verwenden oder eine Ausnahme auslösen, wenn nextSerialNumber einen
Umbruch versucht.

Sehen Sie nun, wie ein Thread angehalten wird. Die Plattform stellt zwar Methoden
für einen unfreiwilligen Thread-Abbruch zur Verfügung, aber diese Methoden sind
veraltet, weil sie inhärent unsicher sind: Ihre Benutzung kann zu einer Objektinkonsis-
tenz führen. Am besten halten Sie einen Thread an, indem Sie ihn einfach ein Feld
abfragen lassen, dessen Wert so eingestellt werden kann, dass er den Thread zum
Anhalten veranlasst. Dieses Feld ist normalerweise ein boolean-Wert oder eine Objekt-
referenz. Da das Lesen und Schreiben eines solchen Felds atomare Vorgänge sind, wer-
den vielleicht einige Programmierer versucht sein, beim Zugriff auf dieses Feld die
Synchronisierung beiseite zu lassen. Daher sehen Sie gelegentlich Code wie diesen:

// Kaputt – muss synchronisiert werden!
public class StoppableThread extends Thread {
 private boolean stopRequested = false;

 public void run() {
 boolean done = false;

 while (!stopRequested && !done) {
 ... // Tue alles Erforderliche.
 }
 }

 public void requestStop() {
 stopRequested = true;
 }
}

Dieser Code hat das Problem, dass es ohne Synchronisierung auch keine Garantie gibt,
wann – falls überhaupt – der beendigungsfähige Thread eine Änderung des Werts von
stopRequested »sieht« , die von einem anderen Thread veranlasst wurde. Folglich ist die
requestStop-Methode unter Umständen völlig wirkungslos. Wenn Sie nicht auf einem
Mehrprozessorsystem arbeiten, dann werden Sie zwar in der Praxis dieses problemati-
sche Verhalten nur selten finden, aber möglich ist alles. Am einfachsten beheben Sie
das Problem, indem Sie allen Zugriff auf das Feld stopRequested synchronisieren:

194 9 Threads

// Korrekt synchronisierte, kooperative Thread-Beendigung
public class StoppableThread extends Thread {
 private boolean stopRequested = false;

 public void run() {
 boolean done = false;

 while (!stopRequested() && !done) {
 ... // Tue alles Erforderliche.
 }
 }

 public synchronized void requestStop() {
 stopRequested = true;
 }

 private synchronized boolean stopRequested() {
 return stopRequested;
 }
}

Beachten Sie, dass die Aktionen der synchronisierten Methoden atomar sind: Die Syn-
chronisierung dient nur zu der Kommunikation zwischen den Methoden, nicht zu
ihrem gegenseitigen Ausschluss. Es ist klar, dass der überarbeitete Code funktioniert,
und der Synchronisierungsaufwand für jede Schleifeniteration ist wahrscheinlich nicht
spürbar. Darüber hinaus gibt es jedoch noch eine Alternative, die ein bisschen knapper
und eventuell auch schneller ist. Die Synchronisierung kann unterbleiben, wenn
stopRequested als volatile deklariert wird. Dieser Modifikator garantiert, dass jeder
Thread, der ein Feld liest, den zuletzt geschriebenen Wert zu sehen bekommt.

Der Preis dafür, dass der Zugriff auf stopRequested unsynchronisiert bleibt, ist im obi-
gen Beispiel vergleichsweise gering: Die Auswirkung der requestStop-Methode kann
sich auf unbestimmte Zeit verschieben. Wenn Sie es jedoch versäumen, den Zugriff auf
veränderliche, gemeinsam genutzte Daten zu synchronisieren, dann zahlen Sie einen
weit höheren Preis. Betrachten Sie das Doppelprüfungsidiom für die faule Initialisierung:

// Das Doppelprüfungsidiom für die faule Initialisierung - kaputt!
private static Foo foo = null;

public static Foo getFoo() {
 if (foo == null) {
 synchronized (Foo.class) {
 if (foo == null)
 foo = new Foo();
 }
 }
 return foo;
}

Thema 48: Synchronisieren Sie den Zugriff auf gemeinsam genutzte, veränderliche Daten 195

Hinter diesem Idiom steht die Idee, dass Sie den Synchronisierungsaufwand in dem
geläufigen Fall, dass auf das Feld (foo) nach seiner Initialisierung zugegriffen wird,
vermeiden können. Die Synchronisierung soll nur verhindern, dass mehrere Threads
dasselbe Feld initialisieren. Das Idiom garantiert jedoch, dass das Feld mindestens ein
Mal initialisiert wird, und dass alle Threads, die getFoo aufrufen, den korrekten Wert
für die Objektreferenz erhalten. Doch leider gibt es keine Garantie, dass die Objektrefe-
renz ordentlich arbeitet. Wenn ein Thread die Referenz unsynchronisiert liest und dann
auf dem referenzierten Objekt eine Methode aufruft, dann kann diese Methode das
Objekt in einem nur teilinitialisierten Zustand vorfinden und grandios scheitern.

Dass ein Thread ein faul erzeugtes Objekt in einem teilinitialisierten Zustand zu sehen
bekommt, widerspricht jeder Intuition. Das Objekt wurde vollständig erzeugt, bevor
die Referenz in dem Feld, aus dem andere Threads (foo) sie lesen können, »veröffent-
licht« wurde. Doch ohne Synchronisierung gibt es keine Garantie, dass ein Thread, der
eine »veröffentlichte« Objektreferenz liest, auch wirklich alle Daten sieht, die vor der
Veröffentlichung der Referenz gespeichert wurden. Insbesondere garantiert das Lesen
einer veröffentlichten Objektreferenz nicht, dass der Lese-Thread die neuesten Werte
der Daten sieht, die die Interna des referenzierten Objekts ausmachen. Im Allgemeinen
funktioniert das Doppelprüfungsidiom nicht. Es funktioniert nur, wenn die gemein-
sam genutzte Variable statt einer Objektreferenz einen Wert eines Grundtyps speichert
[Pugh 2001b].

Dieses Problem können Sie auf mehrere Weisen beheben. Am einfachsten ist es, auf die
faule Initialisierung ganz zu verzichten:

// Normale statische Initialisierung (nicht faul)
private static final Foo foo = new Foo();

public static Foo getFoo() {
 return foo;
}

Das funktioniert ganz klar, und die Methode getFoo könnte gar nicht schneller sein. Es
benötigt weder Synchronisierung noch Berechnungen. Wie in Thema 37 besprochen,
sollten Sie einfache, klare und richtige Programme schreiben und die Optimierung bis
zum Schluss aufschieben, und Sie sollten nur dann optimieren, wenn Messungen
beweisen, dass dies auch nötig ist. Daher ist es generell am besten, wenn Sie auf die
faule Initialisierung verzichten. Wenn Sie dies tun und dann durch Aufwandsmessun-
gen feststellen, dass es so nicht geht, dann besteht die zweitbeste Lösung darin, die
faule Initialisierung mit einer korrekt synchronisierten Methode zu erledigen:

// Korrekt synchronisierte faule Initialisierung
private static Foo foo = null;

public static synchronized Foo getFoo() {
 if (foo == null)

196 9 Threads

 foo = new Foo();
 return foo;
}

Diese Methode funktioniert garantiert, erfordert aber bei jedem Aufruf einen Synchro-
nisierungsaufwand. Dieser ist jedoch bei modernen JVM-Implementierungen recht
klein. Dennoch: Wenn Sie durch Leistungsmessungen auf Ihrem System festgestellt
haben, dass Sie sich weder eine normale noch eine faule Initialisierung bei jedem
Zugriff leisten können, gibt es noch eine andere Möglichkeit. Das Idiom einer Holder-
Klasse für bedarfsgerechte Initialisierung eignet sich dann, wenn ein statisches Feld auf-
wändig zu initialisieren ist und eventuell überhaupt nicht benötigt wird, aber dann,
wenn es notwendig wird, auch intensiv benutzt wird. Hier ist das Idiom:

// Das Idiom einer Holder-Klasse für bedarfsgerechte Initialisierung
private static class FooHolder {
 static final Foo foo = new Foo();
}

public static Foo getFoo() { return FooHolder.foo; }

Das Idiom zieht Vorteile aus der Garantie, dass eine Klasse erst initialisiert wird, wenn
sie gebraucht wird [JLS, 12.4.1]. Wenn die Methode getFoo erstmals aufgerufen wird,
liest sie das Feld FooHolder.foo und veranlasst die Initialisierung der Klasse FooHolder.
Das Schöne an diesem Idiom ist, dass die Methode getFoo unsynchronisiert ist und nur
einen Feldzugriff erledigt. So steigt der Aufwand für den Zugriff durch die faule Initi-
alisierung praktisch nicht an. Der einzige Nachteil des Idioms ist, dass es nicht mit
Instanzfeldern, sondern nur mit statischen Feldern funktioniert.

Zusammenfassend kann man sagen: Wann immer mehrere Threads gemeinsam auf
veränderliche Daten zugreifen, muss jeder Lese- oder Schreib-Thread eine Sperre
erwerben. Lassen Sie sich durch die Garantie für atomare Lese- und Schreibvorgänge
nicht von einer korrekten Synchronisierung abbringen. Ohne Synchronisierung ist
auch nicht garantiert, welche der Änderungen, die ein Thread vorgenommen hat, von
einem anderen Thread beobachtet wird. Unsynchronisierter Datenzugriff kann zu
Lebendigkeits- und Sicherheitsversagen führen. Solche Versagensfälle sind extrem
schwer reproduzierbar. Sie können vom Zeitpunkt abhängen und sind stark von den
JVM-Implementierungsdetails und der Hardware, auf der die JVM läuft, abhängig.

Der Modifikator volatile ist unter bestimmten Umständen eine mögliche Alternative
zur normalen Synchronisierung, aber dies ist eine Technik für Fortgeschrittene. Über-
dies wird sich erst nach Abschluss der Revisionsarbeiten am Speichermodell zeigen,
inwieweit sie anwendbar bleiben wird.

Thema 49: Vermeiden Sie übermäßige Synchronisierung 197

9.2 Thema 49: Vermeiden Sie übermäßige Synchronisierung

Thema 48 warnt vor den Gefahren unzureichender Synchronisierung, und das jetzige
Thema behandelt das gegenteilige Problem. Je nach Situation kann ein Übermaß an
Synchronisierung die Leistung verschlechtern, Deadlocks hervorrufen und sogar
nicht-deterministisches Verhalten verursachen.

Um die Deadlock-Gefahr zu vermeiden, übergeben Sie in einer synchronisierten
Methode oder einem synchronisierten Block niemals die Steuerung an den Client.
Mit anderen Worten: Rufen Sie in einem synchronisierten Bereich nie eine öffentliche
oder geschützte Methode auf, die dazu da ist, überschrieben zu werden. (Solche
Methoden sind in der Regel abstrakt, haben aber gelegentlich eine konkrete Standard-
implementierung.) Aus der Sicht der Klasse, die den synchronisierten Bereich enthält,
ist eine solche Methode fremd. Die Klasse weiß nicht, was die Methode tut, und kann
sie nicht steuern. Ein Client könnte eine Implementierung einer fremden Methode lie-
fern, die einen weiteren Thread erzeugt, der einen Callback der Klasse vornimmt. Der
neu erzeugte Thread könnte dann versuchen, dieselbe Sperre zu erwerben, die der Ori-
ginal-Thread hält. Dadurch würde der neue Thread blockieren. Wenn die Methode, die
ihn erzeugte, darauf wartet, dass er fertig wird, kommt es zu einem Deadlock.

An der folgenden Klasse, die eine Arbeitsschlange implementiert, wird dies konkret. Die
Klasse gibt den Clients die Möglichkeit, Arbeitsschritte für eine asynchrone Verarbei-
tung in eine Schlange zu stellen. Die Methode enqueue kann so oft wie nötig aufgerufen
werden. Der Konstruktor startet einen Hintergrund-Thread, der Elemente in derselben
Reihenfolge aus der Schlange entfernt, wie sie hinzugekommen waren, und durch
Aufruf der Methode processItem verarbeitet. Wenn die Arbeitsschlange nicht mehr
benötigt wird, ruft der Client die Methode stop auf, damit der Thread nach Abschluss
aller noch laufenden Arbeitsschritte elegant endet.

public abstract class WorkQueue {
 private final List queue = new LinkedList();
 private boolean stopped = false;

 protected WorkQueue() { new WorkerThread().start(); }

 public final void enqueue(Object workItem) {
 synchronized (queue) {
 queue.add(workItem);
 queue.notify();
 }
 }

 public final void stop() {
 synchronized (queue) {
 stopped = true;
 queue.notify();

198 9 Threads

 }
 }
 protected abstract void processItem(Object workItem)
 throws InterruptedException;

 // Kaputt - ruft fremde Methode in synchronisiertem Block auf!
 private class WorkerThread extends Thread {
 public void run() {
 while (true) { // Hauptschleife
 synchronized (queue) {
 try {
 while (queue.isEmpty() && !stopped)
 queue.wait();
 } catch (InterruptedException e) {
 return;
 }

 if (stopped)
 return;

 Object workItem = queue.remove(0);
 try {
 processItem(workItem); // Lock held!
 } catch (InterruptedException e) {
 return;
 }
 }
 }
 }
 }
}

Um diese Klasse zu benutzen, müssen Sie eine Unterklasse mit einer Implementierung
der abstrakten Methode processItem bilden. So gibt z.B. die folgende Unterklasse jeden
Arbeitsschritt aus, aber nicht mehr als einen pro Sekunde, egal wie oft Arbeitsschritte
in die Schlange gestellt werden:

class DisplayQueue extends WorkQueue {
 protected void processItem(Object workItem)
 throws InterruptedException {
 System.out.println(workItem);
 Thread.sleep(1000);
 }
}

Da die Klasse WorkQueue die abstrakte Methode processItem aus einem synchronisierten
Block heraus aufruft, kommt es zu einem Deadlock. Die folgende Unterklasse verur-
sacht den Deadlock in der oben beschriebenen Form:

Thema 49: Vermeiden Sie übermäßige Synchronisierung 199

class DeadlockQueue extends WorkQueue {
 protected void processItem(final Object workItem)
 throws InterruptedException {
 // Erzeuge einen neuen Thread, der workItem zur
 // Schlange zurückgibt
 Thread child = new Thread() {
 public void run() { enqueue(workItem); }
 };
 child.start();
 child.join(); // Deadlock!
 }
}

Dieses Beispiel ist etwas an den Haaren herbeigezogen, weil es keinen vernünftigen
Grund gibt, warum die processItem-Methode einen Hintergrund-Thread erzeugen
sollte. Aber das Problem ist wirklichkeitsnah. Aus einem synchronisierten Block
heraus Methoden aufzurufen, die von außen kommen, hat in realen Systemen wie z.B.
GUI-Toolkits schon viele Deadlocks verursacht. Zum Glück lässt sich dieses Problem
leicht beheben. Sie verlagern einfach den Methodenaufruf wie hier gezeigt aus dem
synchronisierten Block heraus:

// Fremde Methode außerhalb eines synchronisierten Blocks
// - "Offener Aufruf"
private class WorkerThread extends Thread {
 public void run() {
 while (true) { // Hauptschleife
 Object workItem = null;
 synchronized (queue) {
 try {
 while (queue.isEmpty() && !stopped)
 queue.wait();
 } catch (InterruptedException e) {
 return;
 }
 if (stopped)
 return;
 workItem = queue.remove(0);
 }
 try {
 processItem(workItem); // Keine Sperre gehalten
 } catch (InterruptedException e) {
 return;
 }
 }
 }
}

Eine fremde Methode, die außerhalb eines synchronisierten Bereichs aufgerufen wird,
bezeichnet man als offenen Aufruf [Lea 2000, 2.4.1.3]. Offene Aufrufe verhindern nicht
nur Deadlocks, sondern können auch die Nebenläufigkeit stark verbessern. Eine

200 9 Threads

fremde Methode kann beliebig lange laufen. In dieser Zeit würde anderen Threads der
Zugriff auf das gemeinsam genutzte Objekt unnötig verweigert, wenn die fremde
Methode in dem synchronisierten Bereich aufgerufen würde.

Eine Regel lautet: Tun Sie möglichst wenig Arbeit in synchronisierten Bereichen.
Beschaffen Sie die Sperre, untersuchen Sie die gemeinsam genutzten Daten, wandeln
Sie sie so weit wie nötig um und geben Sie die Sperre wieder frei. Wenn Sie eine zeit-
raubende Aktivität ausführen müssen, sollten Sie einen Weg finden, dies außerhalb des
synchronisierten Bereichs zu tun.

Der Aufruf einer fremden Methode in einem synchronisierten Bereich kann schlim-
mere Abstürze als Deadlocks hervorrufen, wenn die fremde Methode aufgerufen wird,
während die durch den synchronisierten Bereich geschützten Invarianten für einen
Moment ihre Gültigkeit verloren haben. (Das kann nicht in dem Beispiel mit der
kaputten Arbeitsschlange passieren, da die Schlange sich bei Aufruf von processItem in
einem konsistenten Zustand befindet.) Solche Abstürze kommen nicht vor, wenn aus
der fremden Methode heraus ein neuer Thread erzeugt wird; sie kommen vor, wenn
die fremde Methode selbst einen Callback der defekten Klasse macht. Da Sperren in
Java rekursiv sind, kommt es bei solchen Aufrufen zu keinem Deadlock, sehr wohl aber,
wenn die Aufrufe von einem anderen Thread gemacht werden. Da der aufrufende
Thread die Sperre bereits hält, hat er Erfolg, wenn er versucht, sie ein zweites Mal zu
erwerben, auch wenn gerade eine andere Operation, die mit dieser konzeptionell gar
nichts zu tun hat, auf den durch die Sperre geschützten Daten ausgeführt wird. Ein sol-
ches Versagen kann katastrophale Folgen haben. Im Grunde hat die Sperre ihren
Zweck nicht erfüllt. Rekursive Sperren erleichtern zwar die Erstellung von objekt-
orientierten Multithreaded-Programmen, können aber auch aus einem Lebendigkeits-
versagen ein Sicherheitsversagen machen.

Im ersten Teil dieses Themas ging es um Nebenläufigkeitsprobleme. Nun wenden wir
uns der Leistung zu. Der Aufwand für Synchronisierungen ist zwar seit der Frühzeit
von Java stark zurückgegangen, aber ganz verschwinden wird er nie. Wenn eine oft
genutzte Operation unnötig synchronisiert wird, kann sie die Leistung massiv beein-
trächtigen. Nehmen Sie z.B. die Klassen StringBuffer und BufferedInputStream. Sie sind
Thread-sicher (Thema 52), werden aber fast immer nur von einem einzigen Thread
benutzt. Die Sperre, die sie erwirken, ist also normalerweise überflüssig. Da sie fein
abgestimmte Methoden unterstützen, die auf Ebene einzelner Zeichen oder Bytes
arbeiten, leisten diese Klassen mit den Sperren nicht nur überflüssige Arbeit, sondern
auch noch viel zu viel davon. Das kann die Leistung sehr verschlechtern. In einem
Bericht war von einer Leistungseinbuße von 20 Prozent in einer realen Applikation die
Rede [Heydon 1999]. Zwar werden Sie nur selten derart dramatische Leistungsein-
bußen aufgrund von Synchronisierung beobachten, aber fünf bis zehn Prozent sind
immer möglich.

Thema 49: Vermeiden Sie übermäßige Synchronisierung 201

Man kann zwar argumentieren, dies liege im Bereich der »kleinen Effizienzdinge« , die
wir laut Knuth vergessen können (Thema 37). Wenn Sie aber eine Abstraktion auf
niedriger Ebene schreiben, die normalerweise nur von einem einzigen Thread oder als
Komponente eines größeren, synchronisierten Objekts genutzt werden wird, dann soll-
ten Sie eventuell auf eine interne Synchronisierung der Klasse verzichten. Egal ob Sie
die Klasse synchronisieren oder nicht: Es ist auf jeden Fall wichtig, dass Sie ihre Eigen-
schaften bezüglich der Thread-Sicherheit dokumentieren (Thema 52).

Nicht immer ist klar, ob eine gegebene Klasse interne Synchronisierung durchführen
sollte. Aus der Nomenklatur von Thema 52 geht nicht immer deutlich hervor, ob eine
Klasse Thread-sicher oder Thread-kompatibel gemacht werden sollte. Die nachfolgenden
Richtlinien sollen Ihnen diese Entscheidung erleichtern.

Wenn Sie eine Klasse schreiben, die sowohl unter Umständen, die eine Synchronisie-
rung erfordern, als auch unter Umständen, in denen keine Synchronisierung erforder-
lich ist, stark genutzt wird, dann wäre es vernünftig, sowohl eine synchronisierte
(Thread-sichere) als auch eine unsynchronisierte (Thread-kompatible) Variante davon
zur Verfügung zu stellen. Dies können Sie z.B. tun, indem Sie eine Hüllenklasse liefern
(Thema 14), die ein Interface implementiert, welches die Klasse beschreibt und die
geeignete Synchronisierung erledigt, bevor sie die Methodenaufrufe an die entspre-
chende Methode des eingehüllten Objekts weiterleitet. Diesen Ansatz verfolgt z.B. das
Collections Framework, und auch java.util.Random hätte ihn besser verfolgen sollen.
Ein zweiter Ansatz, der sich für Klassen eignet, die nicht zum Erweitern oder Reimple-
mentieren da sind, ist folgender: Sie liefern eine unsynchronisierte Klasse und eine
Unterklasse, die nur aus synchronisierten Methoden besteht, die ihre Gegenstücke in
der Oberklasse aufrufen.

Ein guter Grund, eine Klasse intern zu synchronisieren, besteht z.B. dann, wenn sie für
stark nebenläufige Nutzung geschrieben ist, und Sie durch eine fein abgestimmte
interne Synchronisierung eine deutlich verbesserte Nebenläufigkeit erzielen können.
So können Sie z.B. eine nicht-größenveränderliche Hash-Tabelle implementieren, die
den Zugriff auf jeden Bucket separat synchronisiert. Dadurch wird die Nebenläufigkeit
viel besser, als wenn Sie die gesamte Tabelle sperren würden, um Zugriff auf einen ein-
zigen Eintrag zu geben.

Wenn eine Klasse oder eine statische Methode von einem veränderlichen, statischen
Feld abhängt, muss sie auch dann intern synchronisiert werden, wenn sie normaler-
weise nur von einem einzigen Thread benutzt wird. Anders als bei einer gemeinsam
genutzten Instanz ist es dem Client hier nicht möglich, extern zu synchronisieren, da
nicht garantiert ist, dass andere Clients dasselbe tun werden. Ein Beispiel für diese
Situation ist die statische Methode Math.random.

Fazit: Um Deadlock und Datenkorruption zu vermeiden, sollten Sie aus einem syn-
chronisierten Bereich heraus nie eine fremde Methode aufrufen. Allgemeiner ausge-

202 9 Threads

drückt: Versuchen Sie, in synchronisierten Bereichen so wenig Arbeit wie möglich
auszuführen. Wenn Sie eine veränderliche Klasse entwerfen, müssen Sie überlegen, ob
diese ihre eigene Synchronisierung übernehmen muss. Wenn Sie die Synchronisierung
beiseite lassen, dann sparen Sie zwar heute nicht mehr viel Zeit, aber doch ein wenig.
Ihre Entscheidung sollte darauf beruhen, ob die Abstraktion hauptsächlich für die
Multithreaded-Verwendung da ist. Bitte dokumentieren Sie Ihren Entschluss klar und
deutlich.

9.3 Thema 50: Rufen Sie wait nie außerhalb
einer wait-Schleife auf

Mit der Methode Object.wait veranlassen Sie einen Thread, auf eine Bedingung zu
warten. Sie muss in einem synchronisierten Programmteil aufgerufen werden, der das
Objekt, auf dem sie aufgerufen wird, sperrt. Hier sehen Sie das Standardidiom für
die Verwendung der wait-Methode:

synchronized (obj) {
 while (<Bedingung gilt nicht>)
 obj.wait();

 ... // Führe je nach Bedingung eine Aktion aus
}

Verwenden Sie zum Aufruf der wait-Methode immer das Idiom der wait-Schleife.
Rufen Sie sie nie außerhalb einer Schleife auf. Die Schleife ist dazu da, die Bedingung
vor und nach dem Warten zu testen.

Indem Sie die Bedingung vor dem Warten testen und den Wartevorgang überspringen,
wenn die Bedingung bereits eingetreten ist, stellen Sie die Lebendigkeit sicher. Wenn die
Bedingung bereits zutrifft und die Methode notify (oder notifyAll) schon aufgerufen
wurde, bevor ein Thread zu warten beginnt, so gibt es keine Garantie dafür, dass der
Thread jemals aus seinem Wartezustand erwachen wird.

Sie müssen die Bedingung nach dem Warten testen und erneut warten, falls sie nicht
zutrifft. Dies ist zur Aufrechterhaltung der Sicherheit notwendig. Wenn der Thread
seine Aktion fortsetzt, obwohl die Bedingung nicht zutrifft, kann er die von der Sperre
geschützten Invarianten verletzen. Es gibt verschiedene Gründe, weshalb ein Thread
aufwachen kann, wenn die Bedingung nicht zutrifft:

� Vielleicht hat ein anderer Thread die Sperre erworben und den geschützten
Zustand zwischen dem Zeitpunkt, zu dem ein Thread notify aufrief, und dem Zeit-
punkt, zu dem der wartende Thread aufwachte, geändert.

Thema 50: Rufen Sie wait nie außerhalb einer wait-Schleife auf 203

� Vielleicht hat auch ein anderer Thread notify aus Versehen oder mit böser Absicht
zu einer Zeit aufgerufen, zu der die Bedingung nicht zutraf. Wenn Klassen auf
öffentlich zugreifbare Objekte warten, setzen sie sich selbst solchen Gefahren aus.
Jeder wait-Aufruf in einer synchronisierten Methode eines öffentlich zugreifbaren
Objekts ist potenziell von diesem Problem bedroht.

� Eventuell ist der benachrichtigende Thread beim Aufwecken wartender Threads zu
»großzügig« . Zum Beispiel muss der benachrichtigende Thread vielleicht notifyAll
aufrufen, obwohl nur für einige der wartenden Threads die Bedingung eingetreten
ist.

� Gegebenenfalls ist der wartende Thread auch ohne ein notify aufgewacht. Dies
bezeichnet man als grundloses Aufwachen. Obwohl The Java Language Specification
[JLS] diese Möglichkeit nicht erwähnt, verwenden viele JVM-Implementierungen
Threading-Verfahren, bei denen in seltenen Fällen grundloses Aufwachen vor-
kommt [Posix, 11.4.3.6.1].

Damit hängt die Frage zusammen, ob Sie wartende Threads mit notify oder notifyAll
aufwecken sollten. (Erinnern Sie sich: notify weckt einen einzigen wartenden Thread,
wenn ein solcher vorhanden ist, und notifyAll weckt alle wartenden Threads.) Oft
wird behauptet, man solle immer notifyAll verwenden. Das ist ein vernünftiger, kon-
servativer Rat, sofern alle wait-Aufrufe innerhalb von while-Schleifen stehen. Es führt
immer zu richtigen Ergebnissen, weil es garantiert, dass Sie die Threads, die geweckt
werden müssen, auch tatsächlich wecken. Vielleicht wecken Sie darüber hinaus noch
ein paar andere Threads auf, aber das beeinträchtigt nicht die Richtigkeit Ihres Pro-
gramms. Diese Threads prüfen die Bedingung, auf die sie warten, und warten weiter,
wenn diese noch nicht zutrifft.

Vielleicht beschließen Sie, zur Optimierung notify statt notifyAll aufzurufen, wenn alle
Threads, die in der Wartemenge stehen, auf dieselbe Bedingung warten, und immer
nur ein einziger dieser Threads einen Vorteil davon haben kann, wenn die Bedingung
wahr wird. Beides trifft in trivialer Weise zu, wenn nur ein einziger Thread auf ein
bestimmtes Objekt wartet (wie in dem WorkQueue-Beispiel in Thema 50). Selbst wenn
diese Bedingungen scheinbar zutreffen, kann es auch Gründe geben notifyAll statt
notify aufzurufen. Wie Sie der wait-Aufruf innerhalb einer Schleife gegen böswillige
Benachrichtigungen auf einem öffentlichen Objekt schützt, so schützt Sie die Verwen-
dung von notifyAll statt notify vor versehentlich oder böswillig veranlassten Wartezu-
ständen seitens eines anderen Threads. Sonst könnten solche Wartezustände eine
wichtige Benachrichtigung »verschlucken« und ihr Empfänger wartet immer weiter.
Die Methode notifyAll wurde in dem WorkQueue-Beispiel deshalb nicht verwendet, weil
der Arbeits-Thread auf ein privates Objekt (queue) wartet und somit keine Gefahr eines
versehentlich oder böswillig veranlassten Wartens besteht.

204 9 Threads

Der Rat, notifyAll statt notify zu verwenden, hat einen Haken: notifyAll kann zwar
nicht die Richtigkeit, wohl aber die Leistung eines Programms beeinträchtigen. Tat-
sächlich wächst der Zeitaufwand bei bestimmten Datenstrukturen im Hinblick auf die
Anzahl der wartenden Threads nicht linear, sondern quadratisch. Davon betroffen sind
solche Datenstrukturen, für die zu jedem Zeitpunkt nur eine gewisse Anzahl der
Threads einen Sonderstatus erhalten, während die anderen Threads warten müssen.
Beispiele dafür sind Semaphoren, Bounded Buffers und Lese-/Schreib-Sperren.

Wenn Sie eine solche Datenstruktur implementieren und jeden Thread aufwecken,
wenn er für einen »Sonderstatus« in Frage kommt, dann wecken Sie jeden Thread für
insgesamt n Wakeups einmal auf. Falls Sie alle n Threads wecken, wenn nur einer
einen Sonderstatus bekommen kann und die übrigen n-1 Threads wieder warten müs-
sen, haben Sie am Ende, also zu dem Zeitpunkt, wo alle wartenden Threads einen Son-
derstatus erhalten haben, n + (n – 1) + (n – 2) ... + 1 Wakeups. Die Summe dieser
Folge ist O(n2). Wenn Sie wissen, dass die Anzahl der Threads immer klein bleibt, dann
wirft das in der Praxis vielleicht keine Probleme auf, aber wenn Sie sich dessen nicht so
sicher sind, ist es wichtig, eine selektivere Wakeup-Strategie zu verwenden.

Wenn alle Threads, die den Sonderstatus haben wollen, logisch äquivalent sind, dann
brauchen Sie nur mit Sorgfalt notify statt notifyAll einzusetzen. Wenn jedoch zu jedem
Zeitpunkt nur wenige der wartenden Threads den Sonderstatus bekommen können,
dann müssen Sie ein Muster namens Specific Notification [Cargill 1996, Lea 1999] nut-
zen. Dieses Muster ist nicht Thema dieses Buchs.

Zusammenfassend kann man sagen: Rufen Sie wait immer mit dem Standardidiom
innerhalb einer while-Schleife auf. Es gibt keinen Grund, der dagegen spräche. Norma-
lerweise verwenden Sie besser notifyAll als notify. In manchen Situationen kann
dadurch die Leistung allerdings leiden. Wenn Sie notify benutzen, müssen Sie sehr
darauf achten, dass die Lebendigkeit erhalten bleibt.

9.4 Thema 51: Verlassen Sie sich nicht auf den Thread-Planer

Wenn mehrere Threads lauffähig sind, entscheidet der Thread-Planer darüber, welcher
Thread als erster laufen darf und wie lange. Jede vernünftige JVM-Implementierung
wird versuchen, bei dieser Entscheidung fair zu sein, aber wie sie das genau macht, ist
je nach Implementierung sehr unterschiedlich. Daher sollten sich gute Multithreaded-
Programme nicht auf die Einzelheiten dieser Strategien verlassen. Ein Programm, des-
sen Richtigkeit oder Leistung von dem Thread-Planer abhängt, ist wahrscheinlich
nicht portierbar.

Am besten schreiben Sie eine stabile, reaktionsschnelle und portierbare Multithreaded-
Applikation, indem Sie sicherstellen, dass zu jedem Zeitpunkt immer nur wenige
Threads lauffähig sind. Dann hat der Thread-Planer keine große Wahl: Er führt einfach

Thema 51: Verlassen Sie sich nicht auf den Thread-Planer 205

die lauffähigen Threads so lange aus, bis sie aufhören, lauffähig zu sein. So können
auch grundverschiedene Thread-Planungsalgorithmen das Verhalten des Programms
kaum beeinflussen.

Die wichtigste Technik, mit der Sie die Anzahl der lauffähigen Threads klein halten,
besteht darin, jeden Thread nur wenig Arbeit tun zu lassen und dann mit Object.wait
auf eine Bedingung oder mit Thread.sleep auf das Verstreichen einer gewissen Zeit zu
warten. Threads sollten nur selten mit busy-wait immer wieder eine Datenstruktur prü-
fen und darauf warten, dass etwas geschieht. Das kann das Programm nicht nur für
die Launen des Planers anfällig machen, sondern auch die Prozessorlast erhöhen,
wodurch die Menge an nützlicher Arbeit, die andere Prozesse auf demselben Compu-
ter ausführen können, zurückgeht.

Das Arbeitsschlangenbeispiel in Thema 49 befolgt diese Ratschläge: Wenn die vom
Client gelieferte processItem-Methode sich gut verhält, dann verbringt der Arbeits-
Thread seine meiste Zeit damit, auf einem Monitor darauf zu warten, dass die
Schlange nicht leer wird. Als extrem abschreckendes Beispiel sollten Sie sich einmal
diese perverse Neuimplementierung von WorkQueue ansehen, die busy-wait statt eines
Monitors verwendet:

// Entsetzliches Programm - benutzt busy-wait statt Object.wait!
public abstract class WorkQueue {
 private final List queue = new LinkedList();
 private boolean stopped = false;

 protected WorkQueue() { new WorkerThread().start(); }

 public final void enqueue(Object workItem) {
 synchronized (queue) { queue.add(workItem); }
 }
 public final void stop() {
 synchronized (queue) { stopped = true; }
 }
 protected abstract void processItem(Object workItem)
 throws InterruptedException;
 private class WorkerThread extends Thread {
 public void run() {
 final Object QUEUE_IS_EMPTY = new Object();
 while (true) { // Hauptschleife
 Object workItem = QUEUE_IS_EMPTY;
 synchronized (queue) {
 if (stopped)
 return;
 if (!queue.isEmpty())
 workItem = queue.remove(0);
 }

 if (workItem != QUEUE_IS_EMPTY) {

206 9 Threads

 try {
 processItem(workItem);
 } catch (InterruptedException e) {
 return;
 }
 }
 }
 }
 }
}

Damit Sie eine Vorstellung davon bekommen, was Sie eine solche Implementierung
kostet, werfen Sie einen Blick auf die folgende Mini-Benchmark, die zwei Arbeits-
schlangen erzeugt und eine Arbeit zwischen ihnen hin- und herschiebt. (Bei dieser
Arbeit handelt es sich um eine Referenz auf die jeweils letzte Schlange, die als eine Art
Rückgabeadresse fungiert.) Das Programm läuft vor Beginn der Messungen zehn
Sekunden, damit sich das System »aufwärmen« kann. Dann zählt es die Anzahl der
Rundreisen von Schlange zu Schlange in den folgenden zehn Sekunden. Auf meinem
Computer macht die Endversion der in Thema 49 besprochenen WorkQueue 23.000
Rundreisen, während die perverse Implementierung oben nur 17 Rundreisen pro
Sekunde schafft:

class PingPongQueue extends WorkQueue {
 volatile int count = 0;

 protected void processItem(final Object sender) {
 count++;
 WorkQueue recipient = (WorkQueue) sender;
 recipient.enqueue(this);
 }
}

public class WaitQueuePerf {
 public static void main(String[] args) {
 PingPongQueue q1 = new PingPongQueue();
 PingPongQueue q2 = new PingPongQueue();
 q1.enqueue(q2); // Starte das System

 // Gib dem System 10 Aufwärmsekunden.
 try {
 Thread.sleep(10000);
 } catch (InterruptedException e) {
 }

 // Messe die Anzahl der Rundreisen in 10 Sekunden.
 int count = q1.count;
 try {
 Thread.sleep(10000);

Thema 51: Verlassen Sie sich nicht auf den Thread-Planer 207

 } catch (InterruptedException e) {
 }
 System.out.println(q1.count - count);

 q1.stop();
 q2.stop();
 }
}

Die WorkQueue-Implementierung oben mag zwar ein bisschen an den Haaren herbeige-
zogen aussehen, aber es kommt gar nicht so selten vor, dass Multithreaded-Systeme
einen oder mehrere Threads unnötigerweise lauffähig halten. Die Folgen mögen nicht
so extrem wie die hier gezeigten sein, aber die Leistung und Portierbarkeit sind den-
noch beeinträchtigt.

Wenn Sie mit einem Programm konfrontiert sind, das kaum läuft, weil einige seiner
Threads im Verhältnis zu anderen nicht genügend Prozessorzeit bekommen, dann
»reparieren« Sie es nicht, indem Sie Thread.yield-Aufrufe einbauen. Damit bringen
Sie zwar vielleicht das Programm wieder zum Laufen, erhalten aber vom Leistungs-
standpunkt her gesehen ein nicht-portierbares Programm. Dieselben yield-Aufrufe,
die auf der einen JVM-Implementierung die Leistung steigern, können sie auf einer
anderen schmälern und auf einer dritten ganz wirkungslos bleiben. Thread.yield hat
keine Semantik, die sich testen ließe. Besser ist es, Sie ändern die Struktur der Applika-
tion und reduzieren die Anzahl der nebenläufig lauffähigen Threads.

Eine ähnliche Technik mit ähnlichen Tücken ist die Anpassung der Thread-Prioritäten.
Thread-Prioritäten gehören zu den am wenigsten portierbaren Eigenschaften der
Java-Plattform. Es ist zwar nicht unvernünftig, die Reaktionsschnelligkeit einer Applika-
tion zu tunen, indem Sie ein paar Thread-Prioritäten ändern, aber es ist auch kaum jemals
nötig und die Ergebnisse sind auf jeder JVM-Implementierung andere. Sie können kein
ernsthaftes Lebendigkeitsproblem lösen, indem Sie Thread-Prioritäten anpassen. Das
Problem würde nur immer wiederkehren, bis Sie die Wurzel des Übels behoben haben.

Die meisten Programmierer werden aus Thread.yield allenfalls den einen Vorteil
ziehen können, dass es beim Testen die Nebenläufigkeit des Programms künstlich
erhöht. Das fördert Fehler zu Tage, indem es einen größeren Teil des Zustandsraums
des Programms auslotet. Dadurch wächst das Vertrauen auf die Richtigkeit des Sys-
tems. Diese Technik hat sich als sehr wirkungsvoll erwiesen, wo es darum ging, subtile
Nebenläufigkeitsfehler zu finden.

Fazit: Machen Sie die Richtigkeit Ihrer Applikation nicht von dem Thread-Planer
abhängig, denn sonst erhalten Sie ein Programm, das weder stabil noch portabel ist.
Verlassen Sie sich auch nicht auf Thread.yield oder Thread-Prioritäten Diese Sachen
sind nur Hinweise für den Planer. Sie können sie gezielt einsetzen, um die Qualität
eines Dienstes einer bereits laufenden Implementierung zu verbessern, aber niemals,
um ein Programm zu »reparieren« , das kaum läuft.

208 9 Threads

9.5 Thema 52: Dokumentieren Sie die Thread-Sicherheit

Wie sich eine Klasse verhält, deren Instanzen oder statische Methoden nebenläufig
genutzt werden, ist ein wichtiger Teil des Vertrags, den diese Klasse mit ihren Clients
schließt. Wenn Sie diesen Teil des Verhaltens einer Klasse nicht dokumentieren, können
die Programmierer, die die Klasse nutzen, darüber nur Mutmaßungen anstellen. Wenn
diese Mutmaßungen falsch sind, dann kann das Programm zu wenig oder zu viel Syn-
chronisierung an den Tag legen (Themen 48 und 49). Beides kann zu schwerwiegenden
Fehlern führen.

Manchmal wird behauptet, die Benutzer könnten die Thread-Sicherheit einer Methode
feststellen, indem sie in der Javadoc-Dokumentation nachschauen, ob der Modifikator
synchronized vorhanden ist. Das ist aus mehreren Gründen falsch: Das Dienstpro-
gramm Javadoc zeigte zwar vor der Version 1.2 in seiner Ausgabe den Modifikator
synchronized an, aber dies nur aufgrund eines Fehlers, der nun behoben ist. Die Anwe-
senheit des synchronized-Modifikators in einer Methodendeklaration ist ein Imple-
mentierungsdetail und nicht Teil des exportierten APIs. Der Modifikator zeigt nicht
zuverlässig an, dass eine Methode Thread-sicher ist, und er kann sich von Release zu
Release ändern.

Ja mehr noch: Die Behauptung, das Schlüsselwort synchronized genüge bereits, um
Thread-Sicherheit zu dokumentieren, beruht auf der verbreiteten Fehlannahme,
Thread-Sicherheit sei eine Alles-oder-Nichts-Eigenschaft. Doch in Wirklichkeit kann
eine Klasse viele Ebenen von Thread-Sicherheit unterstützen. Um eine sichere Nut-
zung mit mehreren Threads zu gestatten, muss eine Klasse klar dokumentieren,
welche Ebene der Thread-Sicherheit sie unterstützt.

Die folgende Liste fasst die Ebenen der Thread-Sicherheit zusammen, die eine Klasse
unterstützen kann. Diese Liste erhebt keinen Anspruch auf Vollständigkeit, sondern
deckt nur die häufigen Fälle ab. Die Namen in dieser Liste sind keine Standardnamen,
da es auf diesem Gebiet keine allgemein anerkannten Konventionen gibt:

� unveränderbar: Instanzen der Klasse erscheinen ihren Clients konstant. Es ist keine
externe Synchronisierung erforderlich. Beispiele: String, Integer, BigInteger (Thema
13).

� Thread-sicher: Instanzen der Klasse sind veränderlich, aber alle Methoden sind
ausreichend intern synchronisiert, um Instanzen nebenläufig nutzen zu können,
ohne dass eine externe Synchronisierung erforderlich wird. Nebenläufige Aufrufe
sehen so aus, als würden sie seriell in einer allgemein gültigen Reihenfolge abgear-
beitet. Beispiele: Random, java.util.Timer.

� bedingt Thread-sicher: Ebenso wie Thread-sicher, allerdings enthält die Klasse
(oder eine mit ihr verbundene Klasse) Methoden, die der Reihe nach aufgerufen
werden müssen, ohne dass andere Threads dazwischenkommen dürfen. Um dies

Thema 52: Dokumentieren Sie die Thread-Sicherheit 209

zu verhindern, muss der Client für die Dauer der Sequenz eine geeignete Sperre
erwerben. Beispiele: Hashtable und Vector, deren Iteratoren eine externe Synchroni-
sierung erfordern.

� Thread-kompatibel: Instanzen der Klasse können sicher nebenläufig genutzt
werden, wenn Sie jeden Methodenaufruf (und in manchen Fällen jede Metho-
denaufrufsequenz) mit externer Synchronisierung umgeben. Beispiele sind die All-
zweckimplementierungen von Sammlungen wie z.B. ArrayList und HashMap.

� Thread-feindlich: Die Klasse ist für die nebenläufige Benutzung durch mehrere
Threads selbst dann nicht sicher, wenn alle Methodenaufrufe mit externer Synchro-
nisierung umgeben sind. Thread-Feindlichkeit ergibt sich normalerweise dann,
wenn Methoden statische Daten modifizieren, die andere Threads beeinflussen.
Zum Glück gibt es nur sehr wenige Thread-feindliche Klassen oder Methoden in
den Plattformbibliotheken. Die Thread-feindliche Methode System.runFinalizers
OnExit wurde ausgemustert.

Die Dokumentation einer bedingt Thread-sicheren Klasse erfordert Sorgfalt. Sie müs-
sen anzeigen, welche Aufrufsequenzen eine externe Synchronisierung erfordern und
welche Sperre (oder, in seltenen Fällen: welche Sperren) erworben werden muss, um
einen nebenläufigen Zugriff auszuschließen. In der Regel ist dies die Sperre auf der
Instanz selbst, aber davon gibt es auch Ausnahmen. Wenn ein Objekt eine alternative
View auf ein anderes Objekt darstellt, muss der Client eine Sperre auf das dahinter ste-
hende Objekt erwerben, damit keine direkten Änderungen an diesem möglich sind. So
sollte z.B. die Dokumentation für Hashtable.keys in etwa Folgendes aussagen:

»Wenn auch nur entfernt die Gefahr besteht, dass ein anderer Thread diese Hash-
Tabelle modifizieren könnte, können Sie nur dann in sicherer Form ihre Schlüssel mit
einer Aufzählung durchlaufen, wenn Sie vor dem Aufruf der Aufzählungsmethode
die Hashtable-Instanz sperren und die Sperre so lange aufrecht erhalten, bis Sie damit
fertig sind. Sie tun dies mithilfe der zurückgegebenen Enumeration wie folgt:

Hashtable h = ...;

synchronized (h) {
 for (Enumeration e = h.keys(); e.hasMoreElements();)
 f(e.nextElement());
}

Seit dem Release 1.3 steht dies nicht mehr in der Dokumentation zu Hashtable, doch
hoffentlich wird dieser Mangel bald behoben. Ganz generell sollten die Java-Plattform-
bibliotheken ihre Thread-Sicherheit noch besser dokumentieren.

Die Verpflichtung, ein gesperrtes Objekt mit öffentlichem Zugriff zu benutzen, ermög-
licht es den Clients zwar, ohne Unterbrechung eine Methodenaufrufsequenz abzuar-

210 9 Threads

beiten, aber diese Flexibilität hat auch ihren Preis. Ein böswilliger Client könnte eine
Denial-of-Service-Attacke starten, indem er einfach nur die Sperre auf dem Objekt auf-
recht erhält.

// Denial-of-Service-Attacke
synchronized (importantObject) {
 Thread.sleep(Integer.MAX_VALUE); // Deaktiviere importantObject
}

Wenn Ihnen diese Denial-of-Service-Attacke Sorgen bereitet, sollten Sie die Opera-
tionen mit einem privaten Sperrobjekt synchronisieren:

// Idiom: privates Sperrobjekt vereitelt Denial-of-Service-Attacke
private Object lock = new Object();

public void foo() {
 synchronized(lock) {
 ...
 }
}

Da die Sperre auf einem Objekt erworben wird, auf das Clients keinen Zugriff haben,
ist das enthaltende Objekt gegen die oben gezeigte Denial-of-Service-Attacke gefeit.
Beachten Sie, dass bedingt Thread-sichere Klassen immer für solche Attacken anfällig
sind, denn sie müssen dokumentieren, welche Sperre erworben werden muss, um
Operationssequenzen atomar auszuführen. Allerdings können Sie Thread-sichere
Klassen mit dem Privates-Sperrobjekt-Idiom vor dieser Attacke schützen.

Besonders in Klassen, die für die Vererbung entworfen wurden, eignen sich interne
Objekte zum Sperren (Thema 15). Ein Beispiel dafür ist die Klasse WorkQueue aus Thema 49.
Würde die Oberklasse ihre Instanzen zum Sperren verwenden, so könnte eine Unter-
klasse versehentlich die Arbeit dieser Oberklasse stören. Indem sie dieselbe Sperre für
verschiedene Zwecke einsetzen, könnten die Ober- und die Unterklasse sich »gegenseitig
auf die Füße treten« .

Zusammenfassend kann man sagen, dass jede Klasse ihre Eigenschaften bezüglich der
Thread-Sicherheit klar dokumentieren sollte. Das geht nur mit sorgfältig formulierten
Prosabeschreibungen. Der Modifikator synchronized spielt für die Dokumentation der
Thread-Sicherheit einer Klasse keine Rolle. Es ist allerdings wichtig, dass bedingt
Thread-sichere Klassen dokumentieren, welches Objekt gesperrt werden muss, damit
Methodenaufrufsequenzen atomar ausgeführt werden können. Im Allgemeinen
gehört die Beschreibung der Thread-Sicherheit einer Klasse in den Dokumentations-
kommentar zu dieser Klasse, aber Methoden mit speziellen Thread-Sicherheitseigen-
schaften sollten diese in eigenen Dokumentationskommentaren beschreiben.

Thema 53: Vermeiden Sie Thread-Gruppen 211

9.6 Thema 53: Vermeiden Sie Thread-Gruppen

Neben Threads, Sperren und Monitoren sind Thread-Gruppen eine weitere Basis-
abstraktion des Threading-Systems. Ursprünglich sollten Thread-Gruppen Mechanis-
men sein, mit denen Applets aus Sicherheitsgründen isoliert werden sollten. Dieses
Versprechen haben sie nie eingelöst und ihre Bedeutung für die Sicherheit ist so gering,
dass sie im Grundlagenwerk über das Sicherheitsmodell von Java 2 [Gong 1999] noch
nicht einmal erwähnt werden.

Doch wenn Thread-Gruppen schon keine nennenswerte Sicherheitsfunktion haben,
welche Funktion haben sie dann überhaupt? Näherungsweise kann man sagen: Sie
ermöglichen es Ihnen, Thread-Grundoperationen auf mehrere Threads zugleich anzu-
wenden. Mehrere dieser Grundoperationen wurden verworfen und die übrigen wer-
den nur selten benutzt. Per Saldo bieten Thread-Gruppen eigentlich kaum nützliche
Funktionen.

Spaßigerweise ist das ThreadGroup-API ausgerechnet im Hinblick auf die Thread-Sicher-
heit schwach. Um eine Liste der aktiven Threads in einer Thread-Gruppe zu bekom-
men, müssen Sie die enumerate-Methode aufrufen, die als Parameter ein Array
entgegennimmt, das groß genug ist, um alle aktiven Threads aufzunehmen. Die
Methode activeCount gibt die Anzahl der aktiven Threads in einer Thread-Gruppe
zurück, aber es besteht keine Garantie dafür, dass diese Zahl auch dann noch stimmt,
wenn ein Array reserviert und an die enumerate-Methode übergeben wurde. Ist das
Array zu klein, so wird die enumerate-Methode irgendwelche weiteren Threads still-
schweigend übergehen.

Das API, mit dem Sie eine Liste der Teilgruppen einer Thread-Gruppe holen, hat ähn-
liche Mängel. Diese Probleme hätte man zwar durch Hinzufügung neuer Methoden
beheben können, aber da es dafür keinen wirklichen Bedarf gibt, ist dies unterblieben.
Thread-Gruppen sind im Großen und Ganzen obsolet geworden.

Insgesamt bieten Thread-Gruppen kaum etwas Nutzbares, und das, was sie bieten, ist
mangelhaft. Am besten betrachten Sie Thread-Gruppen als ein fehlgeschlagenes Expe-
riment und vergessen sie ganz schnell wieder. Wenn Sie eine Klasse entwerfen, die mit
logischen Gruppen von Threads umgeht, speichern Sie einfach die Thread-Referenzen,
aus denen jede logische Gruppe besteht, in einem Array oder einer Sammlung. Ein
aufmerksamer Leser könnte nun einwenden, dass dieser Rat scheinbar dem aus
Thema 30 wiederspricht, der besagt: »Lernen Sie die Bibliotheken kennen und nutzen
Sie sie.« Doch in diesem Fall ist der Rat aus Thema 30 falsch.

Es gibt eine winzige Ausnahme von der Regel, dass Sie Thread-Gruppen vergessen
sollten. Ein kleines Stückchen Funktionalität steht einzig im ThreadGroup-API zur
Verfügung: Die Methode ThreadGroup.uncaughtException wird automatisch aufgerufen,
wenn ein Thread der Gruppe eine nicht-abgefangene Ausnahme auslöst. Diese

212 9 Threads

Methode wird von der »Ausführungsumgebung« dazu genutzt, angemessen auf nicht-
abgefangene Ausnahmen zu reagieren. Die Standardimplementierung gibt einen
Stacktrace in den Standardfehlerstrom aus. Gelegentlich möchten Sie vielleicht diese
Implementierung überschreiben, um z.B. den Stacktrace in ein applikationsspezifi-
sches Protokoll zu leiten.

10 Serialisierung

Dieses Kapitel behandelt das API zur Objektserialisierung. Dieses API ermöglicht die
Kodierung von Objekten als Byteströme und ihre anschließende Rekonstruktion aus
diesen Bytetstrom-Kodierungen. Die Kodierung eines Objekts als Bytestrom nennt
man Serialisierung und den umgekehrten Vorgang Deserialisierung. Wenn das Objekt
serialisiert wurde, können Sie seine Kodierung von einer laufenden VM zu einer ande-
ren übermitteln oder zur späteren Deserialisierung auf der Platte speichern. Die Seria-
lisierung ist die Standard-Objektdarstellung zur Leitungsübertragung im Rahmen
einer Remote-Kommunikation und das Standardformat für persistente Daten in der
JavaBeans™-Komponentenarchitektur.

10.1 Thema 54: Implementieren Sie Serializable mit Vorsicht

Sie können die Instanzen einer Klasse ganz einfach serialisierbar machen, indem Sie
der Klassendeklaration die Worte »implements Serializable« hinzufügen. Da das so
leicht ist, glauben viele Programmierer, dass Serialisierung ihnen wenig Arbeit macht.
Doch in Wahrheit ist es nicht so einfach. Zunächst ist der Aufwand, eine Klasse seriali-
sierbar zu machen, vielleicht vernachlässigbar, aber auf lange Sicht ist er oft beträcht-
lich.

Ein wichtiger Kostenfaktor beim Implementieren von Serializable besteht darin,
dass es Ihnen die Flexibilität nimmt, die Implementierung einer Klasse nach ihrer
Veröffentlichung noch zu ändern. Wenn eine Klasse Serializable implementiert, dann
wird ihre Bytestrom-Kodierung (oder ihre serialisierte Form) Teil ihres exportierten
APIs. Haben Sie die Klasse erst überall verbreitet, so sind Sie gezwungen, die seriali-
sierte Form in alle Ewigkeit zu unterstützen, genau wie andere Teile des exportierten
APIs auch. Wenn Sie sich nicht die Mühe machen, eine eigene serialisierte Form zu ent-
werfen, sondern einfach die Voreinstellung akzeptieren, dann bleibt die serialisierte
Form für immer an die ursprüngliche interne Repräsentation der Klasse gebunden.
Mit anderen Worten: Wenn Sie die serialisierte Standardform annehmen, werden die
privaten und paketprivaten Instanzfelder der Klasse Teil ihres exportierten APIs und
die Praxis, den Zugriff auf Felder zu minimieren (Thema 12), verliert ihre Wirkung als
Mittel zum Verbergen von Informationen.

214 10 Serialisierung

Wenn Sie die serialisierte Standardform akzeptieren und später die interne Repräsenta-
tion der Klasse ändern, kann dies zu einer inkompatiblen Änderung der serialisierten
Form führen. Clients, die eine Instanz mit der alten Version der Klasse zu serialisieren
und mit ihrer neuen Version zu deserialisieren versuchen, werden Opfer von Programm-
abstürzen. Es ist zwar möglich, die interne Repräsentation zu ändern und die ursprüng-
liche serialisierte Form beizubehalten (mittels ObjectOutputStream.putFields und
ObjectInputStream.readFields), aber das kann schwierig sein und sichtbare Unschönhei-
ten im Quellcode hinterlassen. Daher sollten Sie sorgfältig eine hochwertige serialisierte
Form entwickeln, mit der Sie auch auf lange Sicht leben können (Thema 55). Das macht
zwar die Entwicklung teurer, aber es lohnt sich. Selbst eine gut entworfene serialisierte
Form schränkt die Entwicklungsmöglichkeiten einer Klasse ein, aber eine schlecht ent-
worfene kann die Klasse regelrecht verstümmeln.

Ein einfaches Beispiel für die Einschränkungen, die eine Serialisierung für die Weiter-
entwicklung bedeutet, sind die so genannten »Strom-eindeutigen Bezeichner« , besser
bekannt als Serienversion-UIDs. Jeder serialisierbaren Klasse ist eine eindeutige Identifi-
kationsnummer zugeordnet. Wenn Sie diese nicht explizit spezifizieren, indem Sie ein
private static final long-Feld namens serialVersionUID deklarieren, generiert das Sys-
tem sie automatisch, indem es eine komplexe deterministische Prozedur auf die Klasse
anwendet. Der automatisch generierte Wert wird beeinflusst von dem Namen der
Klasse, den Namen der Interfaces, die sie implementiert und all ihren öffentlichen und
geschützten Attributen. Wenn Sie eines dieser Dinge in irgendeiner Weise ändern,
indem Sie z.B. eine triviale Bequemlichkeitsmethode hinzufügen, dann ändert sich
auch die Seriennummer-UID. Wenn Sie keine explizite Seriennummer-UID deklarie-
ren, geht die Kompatibilität verloren.

Ein zweiter Kostenfaktor beim Implementieren von Serializable ist der, dass es die
Wahrscheinlichkeit von Fehlern und Sicherheitslöchern erhöht. Normalerweise wer-
den Objekte mit Konstruktoren erzeugt. Die Serialisierung ist ein außersprachlicher
Mechanismus zum Erzeugen von Objekten. Egal ob Sie das Standardverhalten akzeptie-
ren oder überschreiben, die Deserialisierung ist ein »verborgener Konstruktor« , der
dieselben Fragen aufwirft wie jeder andere Konstruktor auch. Da kein expliziter Kon-
struktor vorliegt, vergisst man leicht, sicherzustellen, dass auch die Deserialisierung
alle Invarianten garantiert, die durch die echten Konstruktoren eingeführt wurden,
und dass sie keinem Angreifer erlaubt, Zugriff auf die Interna des zu konstruierenden
Objekts zu erlangen. Wenn Sie sich auf den standardmäßigen Deserialisierungsmecha-
nismus verlassen, dann können Objekte leicht Opfer von Invariantenkorruption oder
unberechtigtem Zugriff werden (Thema 56).

Ein dritter Kostenfaktor beim Implementieren von Serializable ergibt sich daraus,
dass es den Testaufwand für eine neue Version der Klasse erhöht. Wenn eine seriali-
sierbare Klasse überarbeitet wird, ist es wichtig zu prüfen, dass es möglich ist, eine
Instanz in der neuen Version zu serialisieren und in der alten zu deserialisieren und

Thema 54: Implementieren Sie Serializable mit Vorsicht 215

umgekehrt. Der Testaufwand ist also proportional zum Produkt aus der Anzahl der
serialisierbaren Klassen und der Anzahl der Releases, und die kann hoch sein. Diese
Tests können Sie nicht automatisch einrichten, da Sie nicht nur die Binärkompatibilität,
sondern auch die semantische Kompatibilität testen müssen. Mit anderen Worten müssen
Sie sicherstellen, dass der Serialisierungs-/Deserialisierungsprozess sowohl Erfolg hat
als auch ein getreues Ebenbild des Originalobjekts hervorbringt. Je größer die Ände-
rung an einer serialisierbaren Klasse, umso mehr muss getestet werden. Die Testerfor-
dernisse schrumpfen, wenn schon beim Schreiben der Klasse eine eigene serialisierte
Form sorgfältig entwickelt wurde (Thema 55), aber ganz ohne Testen kommen Sie nie
aus.

Die Entscheidung, das Interface Serializable zu implementieren, sollten Sie nicht
auf die leichte Schulter nehmen. Sie hat echte Vorteile: Sie ist entscheidend, wenn eine
Klasse Teil einer Architektur sein soll, die sich in Fragen der Objektübermittlung oder
Persistenz auf Serialisierung stützt. Außerdem erleichtert sie die Verwendung einer
Klasse als Komponente einer anderen Klasse, die Serializable implementieren muss.
Doch es bedeutet auch viel Aufwand, Serializable zu implementieren. Immer, wenn
Sie eine Klasse implementieren, sollten Sie daher Kosten und Nutzen gegeneinander
abwägen. Als Faustregel gilt: Wertklassen wie Date und BigInteger sollten Serializable
implementieren, und ebenso die meisten Sammlungsklassen. Klassen, die aktive
Entitäten darstellen, z.B. Thread-Pools, sollten Serializable nur in Ausnahmefällen
implementieren. Da es seit dem Release 1.4 einen auf XML beruhenden Persistenz-
mechanismus für JavaBeans gibt, brauchen Beans nun Serializable nicht mehr zu
implementieren.

Klassen, die für die Vererbung da sind (Thema 15), sollten Serializable nur selten
implementieren und Interfaces sollten es nur selten erweitern. Ein Verstoß gegen
diese Regel bedeutet eine große Last für jeden, der die Klasse erweitert oder das Inter-
face implementiert. Manchmal ist ein solcher Verstoß jedoch auch angebracht, z.B.
dann, wenn eine Klasse oder ein Interface speziell dazu da ist, in einem Framework zu
arbeiten, dessen Bestandteile alle Serializable implementieren müssen. Dann ist es
ganz sinnvoll, dass die betreffende Klasse oder das Interface ebenfalls Serializable
implementiert oder erweitert.

Die Entscheidung, nicht zu implementieren, hat eine Tücke: Wenn eine für die Ver-
erbung entworfene Klasse nicht serialisierbar ist, dann wird es vielleicht unmöglich,
eine serialisierbare Unterklasse zu schreiben. Dies gilt insbesondere dann, wenn die
Oberklasse keinen erreichbaren, parameterlosen Konstruktor zur Verfügung stellt.
Daher sollten Sie nicht-serialisierbare Klassen, die für die Vererbung da sind, mit
einem parameterlosen Konstruktor ausstatten. Das geht oft ganz mühelos, weil viele
solche Klassen keinen Zustand haben. Das gilt allerdings nicht in jedem Fall.

216 10 Serialisierung

Am besten erzeugen Sie Objekte so, das alle ihre Invarianten bereits fertig eingerichtet
sind (Thema 13). Wenn Sie dazu Client-Informationen benötigen, ist die Verwendung
eines parameterlosen Konstruktors von vorneherein ausgeschlossen. Sollten Sie einer
Klasse, deren übrige Konstruktoren ihre Invarianten einrichten, arglos einen parame-
terlosen Konstruktor und eine Initialisierungsmethode hinzufügen, so verkomplizie-
ren Sie damit den Zustandsraum der Klasse und die Fehlerwahrscheinlichkeit steigt.

Hier sehen Sie, wie Sie einer nicht-serialisierbaren, erweiterbaren Klasse einen para-
meterlosen Konstruktor geben können, ohne diese Nachteile in Kauf zu nehmen.
Angenommen, die Klasse hat einen einzigen Konstruktor:

public AbstractFoo(int x, int y) { ... }

Die folgende Umformung fügt einen geschützten, parameterlosen Konstruktor und
eine Initialisierungsmethode hinzu. Die Initialisierungsmethode hat dieselben Para-
meter wie der normale Konstruktor und richtet auch dieselben Invarianten ein:

// Nicht-serialisierbare zustandshaltige Klassen, die
// eine serialisierbare Unterklasse gestatten
public abstract class AbstractFoo {
 private int x, y; // Zustand
 private boolean initialized = false;

 public AbstractFoo(int x, int y) { initialize(x, y); }

 /**
 * Dieser Konstruktor und die nachfolgende Methode machen es
 * möglich, dass die readObject-Methode der Unterklasse den
 * internen Zustand initialisieren kann.
 */
 protected AbstractFoo() { }

 protected final void initialize(int x, int y) {
 if (initialized)
 throw new IllegalStateException(
 "Bereits initialisiert");
 this.x = x;
 this.y = y;
 ... // Tue den Rest der Arbeit des Originalkonstruktors
 initialized = true;
 }

 /**
 * Diese Methoden geben Zugriff auf den internen Zustand, damit
 * er manuell von der writeObject–Methode der Unterklasse
 * serialisiert werden kann.
 */
 protected final int getX() { return x; }
 protected final int getY() { return y; }

Thema 54: Implementieren Sie Serializable mit Vorsicht 217

 // Muss von allen öffentlichen Instanzmethoden
 // aufgerufen werden
 private void checkInit() throws IllegalStateException {
 if (!initialized)
 throw new IllegalStateException("Nicht initialisiert");
 }
 ... // Rest wurde weggelassen
}

Alle Instanzmethoden in AbstractFoo müssen checkInit aufrufen, ehe sie ihre Arbeit
beginnen. Damit ist sichergestellt, dass Methodenaufrufe rasch und sauber scheitern,
wenn eine schlecht geschriebene Unterklasse eine Instanz nicht initialisiert. Wenn Sie
diesen Mechanismus haben, ist es recht einfach, eine serialisierbare Unterklasse zu
implementieren.

// Serialisierbare Unterklasse einer nicht-serialisierbaren,
// zustandshaltigen Klasse
public class Foo extends AbstractFoo implements Serializable {
 private void readObject(ObjectInputStream s)
 throws IOException, ClassNotFoundException {
 s.defaultReadObject();

 // Deserialisiere und initialisiere den
 // Oberklassenzustand manuell.
 int x = s.readInt();
 int y = s.readInt();
 initialize(x, y);
 }

 private void writeObject(ObjectOutputStream s)
 throws IOException {
 s.defaultWriteObject();

 // Serialisiere den Oberklassenzustand manuell
 s.writeInt(getX());
 s.writeInt(getY());
 }

 // Der Konstruktor nutzt keinen dieser schönen Mechanismen
 public Foo(int x, int y) { super(x, y); }
}

Innere Klassen (Thema 18) sollten wenn überhaupt nur selten Serializable imple-
mentieren. Sie verwenden vom Compiler generierte synthetische Felder, um Referenzen
auf die umschließenden Instanzen und Werte lokaler Variablen aus umschließenden Gül-
tigkeitsbereichen zu speichern. Wie diese Felder zur Klassendefinition passen, wird
ebenso wenig spezifiziert wie die Namen anonymer und lokaler Klassen. Daher ist die
standardmäßige serialisierte Form einer inneren Klasse schlecht definiert. Eine stati-
sche Attributklasse kann jedoch Serializable implementieren.

218 10 Serialisierung

Fazit: Serializable ist nur scheinbar einfach zu implementieren. Wenn Sie Ihre Klasse
nicht nach kurzem Gebrauch wegwerfen möchten, dann bedeutet die Implementie-
rung von Serializable eine ernste Verpflichtung, die Sie sorgfältig abwägen sollten.
Besondere Vorsicht ist angebracht, wenn eine Klasse für die Vererbung entworfen
wurde. Für solche Klassen gibt es ein Mittelding zwischen der Implementierung und
dem Verbot von Serializable in Unterklassen: Sie stellen einen zugreifbaren, parame-
terlosen Konstruktor zur Verfügung. So können Unterklassen Serializable implemen-
tieren, sind aber nicht dazu gezwungen.

10.2 Thema 55: Ziehen Sie die Nutzung einer eigenen
serialisierten Form in Erwägung

Wenn Sie unter Zeitdruck eine Klasse schreiben, dann ist es im Allgemeinen gut, wenn
Sie Ihre Kräfte auf den bestmöglichen API-Entwurf konzentrieren. Manchmal bedeutet
dies, dass Sie eine »Wegwerfimplementierung« veröffentlichen, von der Sie bereits
wissen, dass sie in einem zukünftigen Release ersetzt werden wird. Normalerweise ist
das kein Problem, doch wenn die Klasse Serializable implementiert und die standard-
mäßige serialisierte Form verwendet, kommen Sie später nie mehr ganz von der Weg-
werfimplementierung weg. Sie wird Ihnen immer die serialisierte Form vorschreiben.
Dieses Problem existiert nicht nur in der Theorie: Es ist schon mehreren Klassen der
Java-Plattformbibliotheken so ergangen, darunter auch BigInteger.

Akzeptieren Sie nie die standardmäßige serialisierte Form, ohne zu überlegen, ob
sie auch wirklich geeignet ist. Die Annahme der standardmäßigen serialisierten Form
sollten Sie bewusst im Hinblick darauf entscheiden, ob diese Kodierung vom Stand-
punkt der Flexibilität, Leistung und Richtigkeit her vernünftig ist. Allgemein ausge-
drückt: Akzeptieren Sie diese Standardform nur, wenn sie weitgehend identisch mit
der Kodierung ist, die Sie wählen würden, wenn Sie eine eigene serialisierte Form ent-
werfen würden.

Die standardmäßige serialisierte Form eines Objekts ist eine ganz wirkungsvolle
Kodierung der physischen Repräsentation des Objektgraphs, der in dem betreffenden
Objekt wurzelt. Mit anderen Worten: Sie beschreibt die Daten, die in dem Objekt und
jedem von ihm aus erreichbaren anderen Objekt enthalten sind. Außerdem beschreibt
sie die Topologie, die alle diese Objekte miteinander verknüpft. Die ideale serialisierte
Form eines Objekts enthält nur die logischen Daten, die es darstellt, und ist von der
physischen Repräsentation unabhängig.

Die standardmäßige serialisierte Form eignet sich wahrscheinlich dann, wenn die
physische Repräsentation eines Objekts mit seinem logischen Inhalt identisch ist.
So wäre z.B. für die folgende Klasse, die den Namen einer Person darstellt, die stan-
dardmäßige serialisierte Form geeignet:

Thema 55: Ziehen Sie die Nutzung einer eigenen serialisierten Form in Erwägung 219

// Guter Kandidat für die standardmäßige serialisierte Form
public class Name implements Serializable {
 /**
 * Nachname. Muss nicht-null sein.
 * @serial
 */
 private String lastName;

 /**
 * Vorname. Muss nicht-null sein.
 * @serial
 */
 private String firstName;

 /**
 * Mittelinitiale oder '\u0000' wenn der Name keine hat.
 * @serial
 */
 private char middleInitial;

 ... // Rest wurde weggelassen.
}

Logisch gesehen besteht ein Name aus zwei Strings, die einen Nachnamen und einen
Vornamen darstellen, und aus einem Zeichen für die Mittelinitiale. Die Instanzfelder in
Name spiegeln diesen logischen Inhalt exakt wider.

Selbst wenn Sie beschließen sollten, dass die standardmäßige serialisierte Form
angemessen ist, müssen Sie oft noch eine readObject-Methode bereitstellen, um die
Invarianten und die Sicherheit zu gewährleisten. In dem Namensbeispiel könnte die
readObject-Methode sicherstellen, dass lastName und firstName nicht-null sind. Das wird
in Thema 56 noch ausführlicher behandelt.

Beachten Sie, dass die Felder lastName, firstName und middleInitial mit Dokumenta-
tionskommentaren versehen sind, obwohl sie privat sind. Der Grund dafür ist, dass diese
privaten Felder ein öffentliches API – die serialisierte Form der Klasse – definieren und
dieses öffentliche API muss dokumentiert werden. Das @serial-Tag weist Javadoc an,
diese Dokumentation auf eine Extraseite zu setzen, die die serialisierten Formen doku-
mentiert.

Die folgende Klasse ist ein Gegenbeispiel zu Name. Sie stellt eine Liste von Strings dar
(wobei wir für den Moment einmal vergessen wollen, dass Sie mit einer der List-Stan-
dardimplementierungen aus der Bibliothek besser fahren):

// Schlechter Kandidat für die standardmäßige serialisierte Form
public class StringList implements Serializable {
 private int size = 0;
 private Entry head = null;

220 10 Serialisierung

 private static class Entry implements Serializable {
 String data;
 Entry next;
 Entry previous;
 }

 ... // Rest wurde weggelassen.
}

Logisch gesehen stellt diese Klasse eine Folge von Strings dar, doch physisch gesehen
ist diese Sequenz eine doppelt verkettete Liste. Wenn Sie die standardmäßige seriali-
sierte Form akzeptieren, so wird diese in quälender Ausführlichkeit jeden Eintrag in
der verketteten Liste und alle Verkettungen zwischen diesen Einträgen in beide Rich-
tungen darstellen.

Die Verwendung der standardmäßigen serialisierten Form in Fällen, wo die physi-
sche Repräsentation eines Objekts deutlich vom logischen Inhalt seiner Daten
abweicht, hat vier Nachteile:

� Sie bindet das exportierte API für immer an die interne Darstellung. Im obigen
Beispiel wird die private Klasse StringList.Entry Teil des öffentlichen APIs. Wenn
die Darstellung in einem zukünftigen Release geändert wird, dann muss die Klasse
StringList immer noch die Darstellung als verkettete Liste als Eingabe akzeptieren
und als Ausgabe generieren. Sie wird den Code zur Bearbeitung verketteter Listen
nie wieder los, selbst wenn sie diese nicht mehr benutzt.

� Sie kann übermäßig viel Platz belegen. Im obigen Beispiel stellt die serialisierte
Form überflüssigerweise jeden Eintrag in der verketteten Liste sowie jede Verket-
tung dar. Diese Einträge und Verkettungen sind nur Implementierungsdetails, die
nicht in die serialisierte Form gehören. Da diese serialisierte Form übermäßig lang
ist, dauert es sehr lange, sie über das Netz zu übermitteln oder auf der Festplatte zu
speichern.

� Sie kann übermäßig viel Zeit brauchen. Da die Serialisierungslogik nichts über
die Topologie des Objektgraphs weiß, muss sie den Graph mühsam durchqueren.
Im obigen Beispiel würde es reichen, einfach nur den next-Referenzen zu folgen.

� Sie kann Stack-Überläufe verursachen. Die Standardserialisierungsprozedur
durchquert den Objektgraph rekursiv, was selbst bei relativ kleinen Objektgraphen
zu Stack-Überläufen führen kann. Auf meinem Computer verursacht die Serialisie-
rung einer StringList-Instanz mit 1200 Elementen einen Stack-Überlauf. Wie viele
Elemente es braucht, bis dieses Problem auftritt, mag je nach JVM-Implementie-
rung unterschiedlich sein. Vielleicht tritt das Problem auf manchen Implementie-
rungen auch gar nicht auf.

Eine vernünftige serialisierte Form für StringList besteht einfach aus der Anzahl der
Strings in der Liste, gefolgt von den Strings selbst. Das sind die logischen Daten, die

Thema 55: Ziehen Sie die Nutzung einer eigenen serialisierten Form in Erwägung 221

eine StringList repräsentiert, ohne die Einzelheiten ihrer physischen Darstellung. Hier
sehen Sie eine überarbeitete Version von StringList, deren Methoden writeObject und
readObject diese serialisierte Form implementieren. Zur Erinnerung: Der Modifikator
transient weist darauf hin, dass bei der standardmäßigen serialisierten Form einer
Klasse ein Instanzfeld weggelassen wird.

// StringList mit einer vernünftigen eigenen serialisierten Form
public class StringList implements Serializable {
 private transient int size = 0;
 private transient Entry head = null;

 // Nicht mehr serialsierbar!
 private static class Entry {
 String data;
 Entry next;
 Entry previous;
 }

 // Fügt den angegebenen String an die Liste an.
 public void add(String s) { ... }

 /**
 * Serialisiere diese <tt>StringList</tt>-Instanz.
 *
 * @serialData Die Größe der Liste (Anzahl der Strings
 * in ihr) wird ausgegeben (<tt>int</tt>), gefolgt von
 * allen Elementen (alles <tt>Strings</tt>), in der
 * richtigen Reihenfolge.
 */
 private void writeObject(ObjectOutputStream s)
 throws IOException {
 s.defaultWriteObject();
 s.writeInt(size);

 // Schreibe alle Elemente in der richtigen Reihenfolge.
 for (Entry e = head; e != null; e = e.next)
 s.writeObject(e.data);
 }

 private void readObject(ObjectInputStream s)
 throws IOException, ClassNotFoundException {
 s.defaultReadObject();
 int size = s.readInt();

 // Lies alle Elemente und setze sie in die Liste.
 for (int i = 0; i < size; i++)
 add((String)s.readObject());
 }

 ... // Rest wird weggelassen.
}

222 10 Serialisierung

Beachten Sie, dass die writeObject-Methode defaultWriteObject aufruft und dass die read-
Object-Methode defaultReadObject aufruft, obwohl alle Felder der StringList transient
sind. Wenn alle Instanzfelder transient sind, ist es zwar technisch möglich, auf den
Aufruf von defaultWriteObject und defaultReadObject zu verzichten, aber ratsam ist das
nicht. Selbst wenn alle Instanzfelder transient sind, wirkt sich der Aufruf von defaultWri-
teObject auf die serialisierte Form so aus, dass sie viel flexibler wird. Die resultierende
serialisierte Form ermöglicht es Ihnen, in einem späteren Release nicht-transiente Instanz-
felder hinzuzufügen und gleichzeitig die Auf- und Abwärtskompatibilität zu erhalten.
Wenn eine Instanz in einer neueren Version serialisiert und in einer älteren deserialisiert
wird, dann werden die hinzugekommenen Felder ignoriert. Würde die readObject-
Methode der älteren Version nicht defaultReadObject aufrufen, so würde die Deserialisie-
rung mit einer StreamCorruptedException scheitern.

Beachten Sie, dass die writeObject-Methode, obwohl sie privat ist, einen Dokumenta-
tionskommentar hat. Er ist analog zu dem Dokumentationskommentar für die privaten
Felder der Klasse Name. Diese private Methode definiert ein öffentliches API – nämlich
die serialisierte Form – und das öffentliche API muss dokumentiert werden. Wie das
@serial-Tag für Felder weist auch das @serialData-Tag für Methoden Javadoc an, diese
Dokumentation auf die Seiten über serialisierte Formen zu setzen.

Damit Sie einen Eindruck bekommen, von welchen Größenordnungen bei der vorheri-
gen Leistungsdiskussion die Rede war: Wenn die durchschnittliche String-Länge zehn
Zeichen beträgt, dann benötigt die serialisierte Version der überarbeiteten Fassung von
StringList rund halb so viel Platz wie die des Originals. Auf meinem Computer geht
das Serialisieren der neuen Version von StringList bei durchschnittlich zehn Zeichen
langen Strings rund zweieinhalb mal so schnell wie bei der alten Version. Außerdem
gibt es keine Probleme mit Speicherüberläufen, wodurch praktisch beliebig lange
StringLists serialisiert werden können.

Die standardmäßige serialisierte Form wäre für StringList nicht gut, doch für manche
andere Klassen wäre sie noch viel schlimmer. Bei StringList ist sie nur unflexibel und
langsam aber immerhin korrekt in dem Sinne, dass das Serialisieren und Deserialisieren
einer StringList-Instanz eine genaue Kopie des Originalobjekts ergibt, bei der alle
Invarianten noch intakt sind. Das gilt aber nicht für Objekte, deren Invarianten an
implementierungsspezifische Details gebunden sind.

Nehmen Sie z.B. den Fall einer Hash-Tabelle. Ihre physische Repräsentation ist eine
Folge von Hash-Buckets mit den Schlüssel/Wert-Paaren. In welchen Bucket ein Ein-
trag kommt, hängt von dem Hash-Code des Schlüssels ab. Es gibt jedoch grundsätzlich
keine Garantie, dass dieser bei jeder JVM-Implementierung derselbe ist. Tatsächlich ist
noch nicht einmal garantiert, dass er bei jeder Ausführung auf derselben JVM-Imple-
mentierung derselbe ist. Daher wäre es ein böser Fehler, wenn Sie für eine Hash-

Thema 55: Ziehen Sie die Nutzung einer eigenen serialisierten Form in Erwägung 223

Tabelle die standardmäßige serialisierte Form akzeptieren würden. Das Serialisieren
und anschließende Deserialisieren der Hash-Tabelle könnte ein Objekt mit ernsthaft
beschädigten Invarianten ergeben.

Egal ob Sie die standardmäßig serialisierte Form verwenden oder nicht: Jedes Instanz-
feld, das nicht als transient deklariert ist, wird bei einem Aufruf der Methode default
WriteObject serialisiert. Wenn möglich sollten Sie daher jedes Instanz-Feld transient
machen. Dazu gehören auch redundante Felder, deren Werte aus »Primärdatenfel-
dern« berechnet werden können, wie z.B. ein zwischengespeicherter Hash-Wert. Eben-
falls dazu gehören Felder, deren Werte an eine bestimmte Ausführung der JVM
gebunden sind, wie z.B. ein long-Feld, das einen Zeiger auf eine native Datenstruktur
repräsentiert. Ehe Sie entscheiden, ein Feld nicht-transient zu machen, sollten Sie
sich davon überzeugen, dass sein Wert Teil des logischen Objektzustands ist. Wenn
Sie eine eigene serialisierte Form verwenden, sollten vor allen Dingen die Instanzfel-
der als transient deklariert sein, wie es in dem obigen StringList-Beispiel der Fall ist.

Wenn Sie die standardmäßige serialisierte Form verwenden und ein oder mehrere Fel-
der als transient deklariert haben, müssen Sie daran denken, dass diese Felder mit
ihren Standardwerten initialisiert werden, wenn eine Instanz deserialisiert wird: null für
Objektreferenzfelder, null für nummerische Grundtypen und false für boolean-Felder
[JLS, 4.5.5]. Wenn diese Werte für bestimmte transient-Felder nicht akzeptabel sind,
müssen Sie eine readObject-Methode liefern, die die defaultReadObject-Methode aufruft
und dann die transient-Felder mit akzeptablen Werten wiederherstellt (Thema 56).
Alternativ können Sie diese Felder auch, wenn sie das erste Mal benötigt werden, mit
fauler Initialisierung erzeugen.

Egal welche serialisierte Form Sie wählen: Deklarieren Sie in jeder serialisierbaren
Klasse, die Sie schreiben, einen expliziten Serienversion-UID. Damit scheiden die
Serienversion-UID schon einmal als potenzielle Fehlerquelle aus (Thema 54) und
etwas schneller wird das Ganze auch. Wenn Sie keinen Serienversion-UID zur Verfü-
gung stellen, muss er zur Laufzeit aufwändig berechnet werden.

Ein Serienversion-UID können Sie ganz einfach berechnen, indem Sie Ihrer Klasse fol-
gende Zeile hinzufügen:

private static final long serialVersionUID = randomLongValue ;

Es spielt keine große Rolle, welchen Wert Sie für randomLongValue einsetzen. Üblicher-
weise generieren Sie den Wert, indem Sie das Dienstprogramm serialver auf der
Klasse ausführen, aber Sie können ebenso gut eine beliebige Zahl nehmen, die Ihnen
einfällt. Wenn Sie jemals eine neue Version der Klasse erstellen möchten, die mit den
bereits vorhandenen inkompatibel ist, brauchen Sie nur den Wert in der Deklaration zu
ändern. Dann scheitert jeder Versuch, serialisierte Instanzen der älteren Versionen mit
der neuen zu deserialisieren mit einer InvalidClassException.

224 10 Serialisierung

Fazit: Wenn Sie entschieden haben, dass eine Klasse serialisierbar sein soll (Thema 54),
dann sollten Sie sich genau überlegen, was die serialisierte Form tun soll. Verwenden
Sie die standardmäßige serialisierte Form nur dann, wenn sie eine vernünftige
Beschreibung des logischen Objektzustands gibt. Sie sollten dem Entwurf der seriali-
sierten Version einer Klasse ebensoviel Zeit widmen wie dem Entwurf ihrer exportier-
ten Methoden. Ebenso wenig wie Sie aus zukünftigen Versionen exportierte Methoden
herausnehmen können, können Sie Felder aus der serialisierten Form herausnehmen:
Sie müssen für immer erhalten bleiben, damit die Serialisierungskompatibilität
gewährleistet ist. Wenn Sie die falsche serialisierte Form wählen, so macht dies die
Klasse dauerhaft komplizierter und langsamer.

10.3 Thema 56: Schreiben Sie readObject-Methoden defensiv

Thema 24 enthält eine unveränderliche Klasse für Datumsintervalle, die veränderliche
private date-Felder enthält. Die Klasse tut sehr viel für ihre Invarianten und ihre
Unveränderbarkeit, indem sie die Date-Objekte in ihrem Konstruktor und ihren
Zugriffsmethoden defensiv kopiert. Hier sehen Sie diese Klasse:

// Unveränderliche Klasse, die defensiv kopiert.
public final class Period {
 private final Date start;
 private final Date end;

 /**
 * @param beginnt den Zeitraum.
 * @param beendet den Zeitraum; muss nach start kommen.
 * @throws IllegalArgument wenn start hinter end liegt.
 * @throws NullPointerException wenn start oder end = null.
 */
 public Period(Date start, Date end) {
 this.start = new Date(start.getTime());
 this.end = new Date(end.getTime());

 if (this.start.compareTo(this.end) > 0)
 throw new IllegalArgumentException(start +" > "+ end);
 }

 public Date start () { return (Date) start.clone(); }

 public Date end () { return (Date) end.clone(); }

 public String toString() { return start + " - " + end; }

 ... // Rest wird weggelassen.
}

Thema 56: Schreiben Sie readObject-Methoden defensiv 225

Angenommen, Sie beschließen, dass diese Klasse serialisierbar sein soll. Da die physi-
sche Darstellung eines Period-Objekts seinen logischen Dateninhalt exakt widerspie-
gelt, ist es durchaus vernünftig, die standardmäßige serialisierte Form zu verwenden
(Thema 55). Daher scheint es so, als müssten Sie lediglich die Klasse durch Hinzufügen
der Worte »implements Serializable« zur Klassendeklaration serialisierbar machen.
Doch wenn Sie dies tun würden, dann könnte die Klasse nicht mehr für ihre wichtigen
Invarianten garantieren.

Das Problem besteht darin, dass die readObject-Methode in Wirklichkeit ein zusätzlicher
Konstruktor ist, der dieselbe Sorgfalt wie jeder andere Konstruktor verlangt. Da jeder
Konstruktor seine Argumente auf Gültigkeit (Thema 23) prüft und sie, wo es nötig ist,
defensiv kopiert (Thema 24), muss auch readObject dies tun. Wenn eine readObject-
Methode eines dieser Dinge versäumt, kann ein Angreifer relativ leicht die Klasseninva-
rianten verletzen.

Salopp ausgedrückt ist readObject ein Konstruktor, der als einzigen Parameter einen
Bytestrom entgegennimmt. Normalerweise wird dieser Bytestrom durch Serialisieren
einer normal konstruierten Instanz generiert. Probleme gibt es, wenn readObject mit
einem Bytestrom zu tun hat, der extra dafür konstruiert wurde, ein Objekt zu erzeu-
gen, das die Invarianten seiner Klasse verletzt. Wenn wir der Klassendeklaration von
Period nur die Worte »implements Serializable« hinzugefügt hätten, dann würde das
folgende hässliche Programm eine Period-Instanz hervorbringen, deren Ende vor
ihrem Anfang liegt:

public class BogusPeriod {
 // Bytestrom kann nicht von einer echten Period-Instanz sein
 private static final byte[] serializedForm = new byte[] {
 (byte)0xac, (byte)0xed, 0x00, 0x05, 0x73, 0x72, 0x00, 0x06,
 0x50, 0x65, 0x72, 0x69, 0x6f, 0x64, 0x40, 0x7e, (byte)0xf8,
 0x2b, 0x4f, 0x46, (byte)0xc0, (byte)0xf4, 0x02, 0x00, 0x02,
 0x4c, 0x00, 0x03, 0x65, 0x6e, 0x64, 0x74, 0x00, 0x10, 0x4c,
 0x6a, 0x61, 0x76, 0x61, 0x2f, 0x75, 0x74, 0x69, 0x6c, 0x2f,
 0x44, 0x61, 0x74, 0x65, 0x3b, 0x4c, 0x00, 0x05, 0x73, 0x74,
 0x61, 0x72, 0x74, 0x71, 0x00, 0x7e, 0x00, 0x01, 0x78, 0x70,
 0x73, 0x72, 0x00, 0x0e, 0x6a, 0x61, 0x76, 0x61, 0x2e, 0x75,
 0x74, 0x69, 0x6c, 0x2e, 0x44, 0x61, 0x74, 0x65, 0x68, 0x6a,
 (byte)0x81, 0x01, 0x4b, 0x59, 0x74, 0x19, 0x03, 0x00, 0x00,
 0x78, 0x70, 0x77, 0x08, 0x00, 0x00, 0x00, 0x66, (byte)0xdf,
 0x6e, 0x1e, 0x00, 0x78, 0x73, 0x71, 0x00, 0x7e, 0x00, 0x03,
 0x77, 0x08, 0x00, 0x00, 0x00, (byte)0xd5, 0x17, 0x69, 0x22,
 0x00, 0x78 };

 public static void main(String[] args) {
 Period p = (Period) deserialize(serializedForm);
 System.out.println(p);
 }

226 10 Serialisierung

 // Gibt Objekt mit der angegebenen serialisierten Form zurück
 public static Object deserialize(byte[] sf) {
 try {
 InputStream is = new ByteArrayInputStream(sf);
 ObjectInputStream ois = new ObjectInputStream(is);
 return ois.readObject();
 } catch (Exception e) {
 throw new IllegalArgumentException(e.toString());
 }
 }
}

Der Array-Literal byte, mit dem serializedForm initialisiert wird, wurde durch Seriali-
sieren einer normalen Period-Instanz und manuelles Bearbeiten des resultierenden
Bytestroms erzeugt. Die Einzelheiten des Stroms spielen für dieses Beispiel keine Rolle.
Wenn Sie sich jedoch dafür interessieren: Das Bytestrom-Format der Serialisierung ist
in der Java™ Object Serialization Specification [Serialization, 6] beschrieben. Wenn Sie
dieses Programm laufen lassen, dann gibt es aus: »Fri Jan 01 12:00:00 PST 1999 - Sun
Jan 01 12:00:00 PST 1984« . Wenn Sie Period serialisierbar machen, können Sie ein Objekt
erzeugen, das seine Klasseninvarianten verletzt. Dieses Problem beheben Sie, indem
Sie für Period eine readObject-Methode liefern, die defaultReadObject aufruft und dann
die Gültigkeit des deserialisierten Objekts prüft. Wenn diese Gültigkeitsprüfung fehl-
schlägt, löst die Methode readObject eine InvalidObjectException aus, die verhindert,
dass die Deserialisierung zum Abschluss kommt.

private void readObject(ObjectInputStream s)
 throws IOException, ClassNotFoundException {
 s.defaultReadObject();

 // Prüfe, ob die Invarianten gewährleistet sind.
 if (start.compareTo(end) > 0)
 throw new InvalidObjectException(start +" hinter "+ end);
}

Diese Reparatur verhindert zwar, dass ein Angreifer eine unzulässige Period-Instanz
erzeugt, aber dahinter lauert noch ein kniffligeres Problem. Man könnte immer noch
eine veränderliche Period-Instanz erzeugen, indem man einen Bytestrom fabriziert, der
mit einem Bytestrom beginnt, der eine gültige Period-Instanz darstellt, und daran
zusätzliche Referenzen auf die privaten Date-Felder im Inneren der Period-Instanz
anhängt. Der Angreifer liest zuerst die Period-Instanz aus dem ObjectInputStream und
dann die »böswilligen Objektreferenzen« , die an den Strom angehängt wurden. Diese
Referenzen geben ihm Zugriff auf die Objekte, auf die die privaten Date-Felder inner-
halb des Period-Objekts referieren. Indem er diese Date-Instanzen ändert, kann der
Angreifer die Period-Instanzen verfälschen. Die folgende Klasse demonstriert eine sol-
che Attacke:

Thema 56: Schreiben Sie readObject-Methoden defensiv 227

public class MutablePeriod {
 // Eine Period-Instanz
 public final Period period;

 // Startfeld von period, Zugriff darf nicht erlaubt sein.
 public final Date start;

 // End-Feld von period, Zugriff darf nicht erlaubt sein.
 public final Date end;

 public MutablePeriod() {
 try {
 ByteArrayOutputStream bos =
 new ByteArrayOutputStream();
 ObjectOutputStream out =
 new ObjectOutputStream(bos);

 // Serialisiere eine gültige Period-Instanz.
 out.writeObject(new Period(new Date(), new Date()));

 /*
 * Hänge böse "Refs auf vorige Objekte" für interne
 * Date-Felder in Period an. Einzelheiten in "Java
 * Object Serialization Specification," Abschn. 6.4.
 */
 byte[] ref = { 0x71, 0, 0x7e, 0, 5 }; // Ref. Nr. 5
 bos.write(ref); // Start-Feld
 ref[4] = 4; // Ref. Nr. 4
 bos.write(ref); // End-Feld

 // Deserialisiere Period und "gestohlene" Date-Refs.
 ObjectInputStream in = new ObjectInputStream(
 new ByteArrayInputStream(bos.toByteArray()));
 period = (Period) in.readObject();
 start = (Date) in.readObject();
 end = (Date) in.readObject();
 } catch (Exception e) {
 throw new RuntimeException(e.toString());
 }
 }
}

Folgendes Programm zeigt die Attacke:

public static void main(String[] args) {
 MutablePeriod mp = new MutablePeriod();
 Period p = mp.period;
 Date pEnd = mp.end;

 // Nun wollen wir mal die Uhr zurückdrehen.
 pEnd.setYear(78);
 System.out.println(p);

228 10 Serialisierung

 // Hole die Sechzigerjahre zurück!
 pEnd.setYear(69);
 System.out.println(p);
}

Das Programm erzeugt folgende Ausgabe:

Wed Mar 07 23:30:01 PST 2001 - Tue Mar 07 23:30:01 PST 1978
Wed Mar 07 23:30:01 PST 2001 - Fri Mar 07 23:30:01 PST 1969

Die Period-Instanz wird zwar mit intakten Invarianten erzeugt, aber ihre internen
Bestandteile lassen sich nach Belieben ändern. Sobald ein Angreifer eine veränderliche
Period-Instanz hat, kann er großen Schaden anrichten, indem er sie einer Klasse über-
gibt, deren Sicherheit von der Unveränderlichkeit von Period abhängt. Das ist nicht an
den Haaren herbeigezogen: Es gibt Klassen, deren Sicherheit von der Unveränderlich-
keit von String abhängt.

Das Problem besteht, weil die readObject-Methode von Period zu wenig defensiv
kopiert. Wenn ein Objekt deserialisiert wird, müssen Sie jedes Feld defensiv kopie-
ren, das eine Objektreferenz enthält, die kein Client haben darf. Daher muss jede
serialisierbare unveränderliche Klasse, die private veränderliche Komponenten ent-
hält, diese Komponenten in ihrer readObject-Methode defensiv kopieren. Die folgende
readObject-Methode genügt, um die Invarianten und die Unveränderlichkeit von
Period zu gewährleisten:

private void readObject(ObjectInputStream s)
 throws IOException, ClassNotFoundException {
 s.defaultReadObject();

 // Defensive Kopie unveränderlicher Komponenten
 start = new Date(start.getTime());
 end = new Date(end.getTime());

 // Prüfung der Gültigkeit der Invarianten
 if (start.compareTo(end) > 0)
 throw new InvalidObjectException(start +" after "+ end);
}

Beachten Sie, dass die defensive Kopie vor der Gültigkeitsprüfung angelegt wird, und
dass wir für das defensive Kopieren nicht die clone-Methode von Date verwendeten.
Beides sind Voraussetzungen, um Period gegen Angriffe zu schützen (Thema 24).
Beachten Sie außerdem, dass defensives Kopieren nicht für finale Felder möglich ist.
Um die Methode readObject benutzen zu können, müssen wir die Felder start und end
nicht-final machen. Das ist zwar schade, aber auf jeden Fall das kleinere Übel. Mit der
neuen readObject-Methode und ohne den Modifikator final für die Felder start und
end kann die Klasse MutablePeriod nichts mehr anrichten. Das obige Angriffsprogramm
hat nunmehr folgende Ausgabe:

Thema 56: Schreiben Sie readObject-Methoden defensiv 229

Thu Mar 08 00:03:45 PST 2001 - Thu Mar 08 00:03:45 PST 2001
Thu Mar 08 00:03:45 PST 2001 - Thu Mar 08 00:03:45 PST 2001

Es gibt einen einfachen Test, um zu entscheiden, ob die standardmäßige readObject-
Methode in Ordnung ist. Wäre Ihnen wohl dabei, einen öffentlichen Konstruktor hin-
zuzufügen, der die Werte jedes nicht-transienten Feldes Ihres Objekts als Parameter
nimmt und die Werte ohne irgendeine Art von Gültigkeitsprüfung in den Feldern spei-
chert? Wenn Sie dies nicht bejahen können, dann müssen Sie eine explizite readObject-
Methode beisteuern, die alle für einen Konstruktor erforderlichen Gültigkeitsprüfun-
gen und defensiven Kopien erledigt.

Es gibt noch eine andere Ähnlichkeit zwischen readObject-Methoden und Konstrukto-
ren, und diese betrifft nicht-finale serialisierbare Klassen. Eine readObject-Methode
darf weder direkt noch indirekt eine überschreibbare Methode aufrufen (Thema 15).
Wenn Sie dagegen verstoßen und die Methode überschrieben wird, dann wird die
überschreibende Methode ausgeführt, ehe der Zustand der Unterklasse deserialisiert
worden ist. Dies führt wahrscheinlich zu einem Programmabsturz.

Fazit: Immer wenn Sie eine readObject-Methode schreiben, müssen Sie dabei im Kopf
behalten, dass Sie eigentlich einen öffentlichen Konstruktor schreiben, der auf jeden
Fall eine gültige Instanz erzeugen muss, egal welchen Bytestrom er übergeben
bekommt. Gehen Sie nicht davon aus, dass der Bytestrom eine tatsächliche serialisierte
Instanz repräsentiert. Die Beispiele in diesem Thema betreffen zwar eine Klasse, die
die standardmäßige serialisierte Form verwendet, aber alle damit zusammenhängen-
den Probleme treffen ebenso auf Klassen mit eigener serialisierter Form zu. Hier sind
noch einmal die Richtlinien zusammengefasst, wie Sie eine wasserdichte readObject-
Methode schreiben.

� Bei Klassen mit Objektreferenz-Feldern, die privat bleiben müssen, kopieren Sie
defensiv jedes Objekt, das in einem solchen Feld gespeichert werden soll. In diese
Kategorie gehören z.B. veränderliche Komponenten unveränderlicher Klassen.

� Bei Klasse mit Invarianten müssen Sie diese Invarianten prüfen und eine Invalid
ObjectException auslösen, wenn eine Prüfung fehlschlägt. Die Prüfungen sollten
nach einem eventuellen defensiven Kopieren stattfinden.

� Wenn ein gesamter Objektgraph nach seiner Deserialisierung validiert werden
muss, verwenden Sie das Interface ObjectInputValidation. Die Nutzung dieses Inter-
faces ist nicht Thema dieses Buchs. Ein Beispiel finden Sie in The Java Class Libraries,
Second Edition, Volume 1 [Chan 1998, S. 1256].

� Rufen Sie weder direkt noch indirekt irgendwelche überschreibbaren Methoden in
der Klasse auf.

Alternativ zu einer readObject-Methode können Sie auch die Methode readResolve ver-
wenden. Diese Alternative wird in Thema 57 vorgestellt.

230 10 Serialisierung

10.4 Thema 57: Stellen Sie wenn nötig eine readResolve-
Methode zur Verfügung

Thema 2 beschreibt das Singleton-Muster und gibt das folgende Beispiel einer Single-
ton-Klasse. Diese Klasse beschränkt den Zugriff auf ihren Konstruktor, um zu gewähr-
leisten, dass nur eine einzige Instanz erzeugt wird.

public class Elvis {
 public static final Elvis INSTANCE = new Elvis();

 private Elvis() {
 ...
 }

 ... // Rest wird weggelassen.
}

Wie in Thema 2 gesagt, wäre diese Klasse kein Singleton mehr, wenn man die Worte
implements Serializable in ihre Deklaration schriebe. Es spielt weder eine Rolle, ob
die Klasse die standardmäßige oder eine eigene serialisierte Form verwendet (Thema
55), noch, ob sie eine explizite readObject-Methode liefert (Thema 56). Jede readObject-
Methode, sei sie nun explizit oder voreingestellt, gibt eine neu erzeugte Instanz
zurück, die nicht dieselbe Instanz ist, die bei der Klasseninitialisierung angelegt
wurde. Vor dem Release 1.2 war es nicht möglich, eine serialisierbare Singleton-Klasse
zu schreiben.

Im Release 1.2 kam zur Serialisierung das readResolve-Feature hinzu [Serialization, 3.6].
Wenn die Klasse eines zu deserialisierenden Objekts eine readResolve-Methode mit der
richtigen Deklaration definiert, wird diese Methode nach der Deserialisierung auf dem
neu erzeugten Objekt aufgerufen. Dann wird statt des neu erzeugten Objekts die von
dieser Methode gelieferte Objektreferenz zurückgeliefert. In den meisten Anwendun-
gen dieses Features wird keine Referenz auf das neu erzeugte Objekt zurückbehalten.
Das Objekt wird sofort für die Garbage Collection freigegeben.

Wenn Sie die Elvis-Klasse Serializable implementieren lassen, dann garantiert die fol-
gende readResolve-Methode die Singleton-Eigenschaft:

private Object readResolve() throws ObjectStreamException {
 // Gib den einzig wahren Elvis zurück und lass die Elvis-
 // Imitation vom Garbage Collector abholen.
 return INSTANCE;
}

Diese Methode ignoriert das deserialisierte Objekt und gibt einfach die einzig wahre
Elvis-Instanz zurück, die bei der Klasseninitialisierung erzeugt wurde. Daher braucht
die serialisierte Form einer Elvis-Instanz keine echten Daten zu enthalten; alle Instanz-

Thema 57: Stellen Sie wenn nötig eine readResolve-Methode zur Verfügung 231

felder sollten als transient gekennzeichnet sein. Das gilt nicht nur für Elvis, sondern
für alle Singletons.

Sie brauchen nicht nur für Singletons, sondern für jede Instanz-kontrollierende Klasse
eine readResolve-Methode. Mit anderen Worten benötigen Sie readResolve für alle Klas-
sen, die die Objekterzeugung streng kontrollieren, um eine Invariante zu bewahren.
Ein anderes Beispiel für eine Instanz-kontrollierende Klasse ist eine typsichere Enum
(Thema 21), deren readResolve-Methode die kanonische Instanz zurückgeben muss, die
die angegebene Aufzählungskonstante repräsentiert. Es gibt folgende Faustregel:
Wenn Sie eine serialisierbare Klasse schreiben, die keine öffentlichen oder geschützten
Konstruktoren enthält, dann überlegen Sie bitte, ob eine readResolve-Methode erforder-
lich ist.

Zweitens können Sie die readResolve-Methode als konservative Alternative zu der in
Thema 56 empfohlenen, defensiven readObject-Methode einsetzen. Bei diesem
Ansatz werden alle Gültigkeitsprüfungen und defensiven Kopien der readObject-
Methode durch die Gültigkeitsprüfung und defensiven Kopien ersetzt, die ein norma-
ler Konstruktor leistet. Wenn die standardmäßige serialisierte Form benutzt wird, kann
die readObject-Methode ganz wegfallen. Wie in Thema 56 erklärt, kann dadurch ein
böswilliger Client eine Instanz mit kaputten Invarianten erzeugen. Doch diese potenzi-
ell geschädigte Instanz tritt niemals in Aktion: Sie wird nur nach Eingabewerten für
einen öffentlichen Konstruktor oder eine statische Factory durchsucht und dann ver-
worfen.

Das Schöne an diesem Ansatz: Er sorgt dafür, dass die außersprachlichen Bestandteile
der Serialisierung buchstäblich verschwinden und macht es unmöglich, irgendwelche
Klasseninvarianten zu verletzen, die vorhanden waren, bevor die Klasse serialisierbar
wurde. Konkret sehen Sie diese Technik an der folgenden readResolve-Methode, die
anstelle der defensiven readObject-Methode aus dem Period-Beispiel in Thema 56 ver-
wendet werden kann:

// Das defensive readResolve-Idiom
private Object readResolve() throws ObjectStreamException {
 return new Period(start, end);
}

Diese readResolve-Methode vereitelt beide in Thema 56 beschriebenen Attacken. Das
defensive readResolve-Idiom hat mehrere Vorteile gegenüber einer defensiven readOb-
ject-Methode: Es ist eine Technik, mit der Sie eine Klasse mechanisch serialisierbar
machen, ohne ihre Invarianten zu gefährden. Es erfordert nur wenig Code und wenig
Denkarbeit und funktioniert garantiert. Und außerdem eliminiert es die künstlichen
Beschränkungen, die für finale Felder bei einer Serialisierung gelten.

Das defensive readResolve-Idiom sehen Sie zwar nicht oft, aber es verdient mehr
Beachtung. Sein größter Nachteil ist, dass es sich nicht für Klassen eignet, die außer-

232 10 Serialisierung

halb ihres eigenen Pakets Vererbung gestatten. Doch dies ist bei unveränderlichen
Klassen kein Problem, da sie generell final sind (Thema 13). Ein kleinerer Nachteil
besteht darin, dass dieses Idiom die Deserialisierung etwas langsamer macht, weil es
die Erzeugung eines zusätzlichen Objekts erfordert. Auf meinem Computer läuft die
Deserialisierung von Period-Instanzen rund ein Prozent langsamer im Vergleich zur
readObject-Methode.

Der Zugriff auf die readResolve-Methode ist sehr gut. Wenn Sie einer finalen Klasse
wie z.B. einem Singleton eine readResolve-Methode geben, dann sollte sie privat sein.
Geben Sie einer nicht-finalen Klasse eine readResolve-Methode, so müssen Sie den
Zugriff darauf sorgfältig bedenken. Ist die Methode privat, so gilt sie nicht für Unter-
klassen. Ist sie paketprivat, so gilt sie nur für Unterklassen in demselben Paket. Ist sie
geschützt oder öffentlich, so gilt sie für alle Unterklassen, die sie nicht überschreiben.
Wenn eine readResolve-Methode geschützt oder öffentlich ist und eine Unterklasse sie
nicht überschreibt, so erhalten Sie durch Deserialisierung einer serialisierten Instanz
dieser Unterklasse eine Instanz der Oberklasse. Das ist wohl nicht das, was Sie wollten.

Der vorige Abschnitt gab schon einen Hinweis auf den Grund, weshalb die readResolve-
Methode in Klassen, die Vererbung zulassen, nicht anstelle einer defensiven readObject-
Methode eingesetzt werden darf. Wäre die readResolve-Methode der Oberklasse final, so
würde sie eine korrekte Deserialisierung der Unterklasseninstanzen verhindern. Wäre
sie überschreibbar, so könnte eine böse Unterklasse sie mit einer Methode außer Kraft
setzen, die eine geschädigte Instanz zurückliefert.

Zusammenfassend kann man sagen, dass Sie eine readResolve-Methode benutzen müs-
sen, um die »Instanzkontrollinvarianten« von Singletons und anderen Instanz-kontrol-
lierenden Klassen zu schützen. Die readResolve-Methode verwandelt eigentlich die
readObject-Methode von einem praktisch öffentlichen Konstruktor in eine öffentliche
statische Factory. Außerdem gibt Ihnen die readResolve-Methode bei Klassen, die eine
Vererbung außerhalb ihres Pakets verbieten, eine einfache Alternative zu einer defen-
siven readObject-Methode.

Quellen

[Arnold 2000] Arnold, Ken, James Gosling, David Holmes. The Java™ Programming
Language, Third Edition. Addison-Wesley, Boston, 2000. ISBN: 0201704331.

[Beck99] Beck, Kent. Extreme Programming Explained: Embrace Change. Addison-Wes-
ley, Reading, MA, 1999. ISBN: 0201616416.

[Bloch 1999] Bloch, Joshua. »Collections«. In: The Java™ Tutorial Continued: The Rest of
the JDK™ . Mary Campione, Kathy Walrath, Alison Huml und das Tutorial-Team.
Addison-Wesley, Reading, MA, 1999. ISBN: 0201485583. S. 17–93. Auch verfügbar
unter: http://java.sun.com/docs/books/tutorial/collections/index.html.

[Campione 2000] Campione, Mary, Kathy Walrath, Alison Huml. The Java™ Tutorial
Continued: A Short Course on the Basics. Addison-Wesley, Boston, MA, 2000. ISBN:
0201703939. Auch verfügbar unter: http://java.sun.com/docs/books/tutorial/index.html.

[Cargill 1996] Cargill, Thomas. »Specific Notification for Java Thread Synchroniza-
tion.« Proceedings of the Pattern Languages of Programming Conference, 1996.

[Chan 2000] Chan, Patrick. The Java™ Developers Almanac 2000 , Addison-Wesley, Bos-
ton, MA, 2000. ISBN: 0201432994.

[Chan 1998] Chan, Patrick, Rosanna Lee und Douglas Kramer. The Java™ Class Libraries
Second Edition, Volume 1, Addison-Wesley, Reading, MA, 1998. ISBN: 0201310023.

[Collections] The Collections Framework. Sun Microsystems. März 2001. http://
java.sun.com/j2se/1.3/docs/guide/collections/index.html.

[Doclint] Doclint. Ernst de Haan. März 2001. http://www.znerd.demon.nl/doclint/.

[Flanagan 1999] Flanagan, David. Java™ in a Nutshell, Third Edition , O’Reilly and Asso-
ciates, Sebastopol, CA, 1999. ISBN: 1565924878.

[Gamma 1995] Gamma, Erich, Richard Helm, Ralph Johnson und John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley, Reading,
MA, 1995. ISBN: 0201633612.

[Gong 1999] Gong, Li. Inside Java™ 2 Platform Security , Addison-Wesley, Reading, MA,
1999. ISBN: 0201310007.

http://java.sun.com/docs/books/tutorial/collections/index.html
http://java.sun.com/docs/books/tutorial/index.html
http://java.sun.com/j2se/1.3/docs/guide/collections/index.html
http://www.znerd.demon.nl/doclint/
http://java.sun.com/j2se/1.3/docs/guide/collections/index.html

234 Quellen

[Heydon 1999] Allan Heydon und Marc A. Najork. »Performance Limitations of the
Java Core Libraries.« In: ACM 1999 Java Grande Conference, S. 35–41. ACM Press, Juni
1999. Auch verfügbar unter: http://research.compaq.com/SRC/mercator/papers/Java99/
final.pdf

[Horstman 2000] Horstmann, Cay und Gary Cornell. Core Java™ 2: Volume II, Advanced
Features, Prentice Hall, Palo Alto, CA, 2000. ISBN: 0130819344.

[HTML401] HTML 4.01 Specification. World Wide Web Consortium. Dezember 1999.
http://www.w3.org/TR/1999/REC-html401-19991224/.

[J2SE-APIs] Java™ 2 Platform, Standard Edition, v 1.3 API Specification. Sun Micro-
systems. March 2001. http://java.sun.com/j2se/1.3/docs/api/overview-summary.html.

[Jackson 1975]Jackson, M.A. Principles of Program Design, Academic Press, London,
1975. ISBN: 0123790506.

[JavaBeans] JavaBeans™ Spec. Sun Microsystems. März 2001. http://java.sun.com/pro-
ducts/javabeans/docs/spec.html.

[Javadoc-a] How to Write Doc Comments for Javadoc. Sun Microsystems. Januar 2001.
http://java.sun.com/j2se/javadoc/writingdoccomments/.

[Javadoc-b] Javadoc Tool Home Page. Sun Microsystems. Januar 2001. http://java.sun.com/
j2se/javadoc/index.html.

[JLS] Gosling, James, Bill Joy, Guy Steele, Gilad Bracha. The Java™ Language Specifica-
tion, Second Edition, Addison-Wesley, Boston, 2000. ISBN: 0201310082.

[Kahan 1991] Kahan, William und J. W. Thomas. Augmenting a Programming Language
with Complex Arithmetic, UCB/CSD-91-667, University of California, Berkeley, 1991.

[Knuth 1974] Knuth, Donald. »Structured Programming with go to Statements.« Com-
puting Surveys 6 (1974): 261–301.

[Lea 2001] Overview of Package util.concurrent Release 1.3.0. State University of New
York, Oswego. 12. Januar 2001. http://g.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/con-
current/intro.html.

[Lea 2000] Lea, Doug. Concurrent Programming in Java™ : Design Principles and Patterns,
Second Edition, Addison-Wesley, Boston, 2000. ISBN: 0201310090.

[Lieberman 1986] Lieberman, Henry. »Using Prototypical Objects to Implement Shared
Behavior in Object-Oriented Systems.« Proceedings of the First ACM Conference on
Object-Oriented Programming Systems, Languages, and Applications, S. 214–223, Portland,
September 1986. ACM Press.

[Meyers 1998] Meyers, Scott. Effective C++, Second Edition: 50 Specific Ways to Improve
Your Programs and Designs. Addison-Wesley, Reading, MA, 1998. ISBN: 0201924889.

http://research.compaq.com/SRC/mercator/papers/Java99/
http://www.w3.org/TR/1999/REC-html401-19991224/
http://java.sun.com/j2se/1.3/docs/api/overview-summary.html
http://java.sun.com/pro-ducts/javabeans/docs/spec.html
http://java.sun.com/j2se/javadoc/writingdoccomments/
http://java.sun.com/
http://g.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/con-current/intro.html
http://g.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/con-current/intro.html

Quellen 235

[Parnas 1972] Parnas, D.L. »On the Criteria to Be Used in Decomposing Systems into
Modules.« Communications of the ACM 15 (1972): 1053–1058.

[Posix] 9945-1:1996 (ISO/IEC) [IEEE/ANSI Std. 1003.1 1995 Edition] Information Tech-
nology— Portable Operating System Interface (POSIX)— Part 1: System Application: Program
Interface (API) [C Language] (ANSI), IEEE Standards Press, ISBN: 1559375736.

[Pugh 2001a] The Java Memory Model. Ed. William Pugh. University of Maryland.
March 2001.http://www.cs.umd.edu/~pugh/java/memoryModel/.

[Pugh 2001b] The »Double-Checked Locking is Broken« Declaration. Ed. William Pugh.
University of Maryland. März 2001. http://www.cs.umd.edu/~pugh/java/memoryModel/
DoubleCheckedLocking.html.

[Serialization] Java™ Object Serialization Specification. Sun Microsystems. März 2001.
http://java.sun.com/j2se/1.3/docs/guide/serialization/spec/serialTOC.doc.html.

[Smith 1962] Smith, Robert. »Algorithm 116 Complex Division.« In: Communications of
the ACM, 5.8 (August 1962): 435.

[Snyder 1986] Synder, Alan. »Encapsulation and Inheritance in Object-Oriented Pro-
gramming Languages.« In: Object-Oriented Programming Systems, Languages, and Appli-
cations Conference Proceedings, 38–45, 1986. ACM Press.

[Thomas 1994] Thomas, Jim und Jerome T. Coonen. »Issues Regarding Imaginary
Types for C and C++.« In: The Journal of C Language Translation, 5.3 (März 1994): 134–
138.

[Vermeulen 2000] Vermeulen, Allan, Scott W. Ambler, Greg Bumgardener, Eldon Metz,
Trevor Mesfeldt, Jim Shur, Patrick Thompson. The Elements of Java™ Style, Cambridge
University Press, Cambridge, United Kingdom, 2001. ISBN: 0521777682.

[Weblint] The Weblint Home Page. Weblint.org. März 2001. http://www.weblint.org/.

[Wulf 1972] Wulf, W. »A Case Against the GOTO.« Proceedings of the 25th ACM National
Conference 2 (1972): 791–797.

http://www.cs.umd.edu/~pugh/java/memoryModel/
http://java.sun.com/j2se/1.3/docs/guide/serialization/spec/serialTOC.doc.html
http://www.weblint.org/

Index

@param-Tag 143
@return-Tag 143
@serialData-Tag 222
@serial-Tag 219
@throws-Tag 127, 143, 184

A
abstrakte Klassen

als Ersatz für discriminated Union 110
Aspekt hinzufügen 45
Beispiele

Ersatz für discriminated
Union 110
Skelettimplementierung 97
statische Attributklasse 104
typsicheres Enum-Verhalten
hinzufügen 117

für Gerüstimplementierungen 93
für Skelettimplementierung 96
für Vererbung 93
Nichtinstanziierbarkeit 26
typsicheren Enums Verhalten
hinzufügen 117
vs. Interfaces 94, 99
Weiterentwicklung, vs. Interfaces 98

allgemeiner Vertrag 39, 185
clone 58
compareTo 66
equals 40
hashCode 49
Interface-Implementierung 94
toString 55

alte Objektreferenzen 30, 60
Annahmen, und Parameterprüfung 128

anonyme Klassen 101, 103f.
als Funktionsobjekte 135
als Konkrete-Strategie-Klassen 124
Beispiele

Finalizer-Wächter 36
in Adaptern 96
in typsicheren Enums 104, 118

Einschränkungen 103
Finalizer-Wächter 36
in Adaptern 97
in typsicheren Enums 117
Verwendung 103

API siehe exportiertes API
API-Elemente 18

dokumentieren 142, 146
API-Entwurf

Ausnahmen 174, 176
Folgen für die Leistung 167

Architektur
Dienstanbieter 21
Interface-basierte 21
Klassen- 161

Architekturen
Callback- 87
nicht-hierarchische
Typarchitekturen 95

Arrays 17
defensiv kopieren 74, 133
der Länge null und
Unveränderbarkeit 141
in öffentlichen Feldern,
Sicherheitsloch 74
Länge null vs. null als
Rückgabewert 141f.

238 Index

Nichtnull-Länge und
Veränderbarkeit 133

Arrays der Länge null
Unveränderbarkeit 141
vs. null als Rückgabewert 141f.

atomare Daten 192
Synchronisierung 192, 194

Attribute 17
Zugreifbarkeit 72
Zugreifbarkeit minimieren 71
Zugriff minimieren 75

Attribut-Interfaces 17
Attributklassen 17

statische vs. nicht-statische 101, 105
Ausnahmen 173, 190

behandeln mit
ThreadGroup.uncaughtException 211
Detailnachrichten 186f.
Dokumentation 184, 186
Dokumentation im Rahmen der
Methodendokumentation 143
Fehlerinformationen 186
gebräuchliche 127, 181
geprüfte vs. Laufzeit- 176, 178
geprüfte zu ungeprüften machen 179
ignorieren 189f.
Kontrollfluss 174
Leistung 173
Methoden darauf definieren 177
nicht abgefangene, beim
Objektabschluss 34
nur für Ausnahme-
bedingungen 173, 176
standardmäßige bevorzugen 180, 182
Übersetzung 129, 182
Verkettung 182
vermeiden 178, 180, 184
Zweck der geprüften 176
Zweck von Laufzeitausnahmen 176

Ausnahmenübersetzung 129, 182
Ausnahmen-Verkettung 182
außersprachliche Mechanismen

native Methoden 165
Reflection 162
Serialisierung 214

außersprachlicher Mechanismus,
Klonen 58

B
Basisklassen 161
bedingt Thread-sicher 208

Denial-of-Service-Attacke 210
dokumentieren 209
Sperrobjekt dokumentieren 210

Begleiterklassen, veränderliche 79
Beispiel, Point 43
Beispiele

A, B, C 137
AbstractFoo 216
AbstractMapEntry 97
anonyme innere Klasse 103
BogusPeriod 225
Calculator 104
CaseInsensitiveString 41
Circle 110
CollectionClassifier 136
ColorPoint 43, 45
Comparator 124
Complex 76, 80
DeadlockQueue 199
Degree 145
DisplayQueue 198
Elvis 23f., 230
Entry 61f., 220f.
ExtendedOperation 121
Foo

Finalizer-Wächter 36
serialisierbare Unterklasse einer
nicht-serialisierbaren Klasse 217

FooHolder 196
HashTable 61f.
Host 125
InstrumentedHashSet 83
InstrumentedSet 86
Key 158
MutablePeriod 227
MyIterator 102
MySet 102
Name 219
Operation 104, 117, 120
Overriding 137
Period 130, 224
Person 27f.
PhoneNumber 50
PhysicalConstants 99f.

Index 239

PlayingCard 113
Point 108
Rectangle 111
Shape 110
Singer 95
SingerSongwriter 95
Songwriter 95
Square 112
Stack 30, 60
StoppableThread 193f.
StringLengthComparator 123f.
StringList 219, 221
StrLenCmp 125
Sub 92
Suit 114f.
Super 91
ThreadLocal 157f.
UtilityClass 26
WaitQueuePerf 206
WordList 66
WorkerThread 198f., 205
WorkQueue 197, 205

Benutzer 17
bequeme Initialisierung 53
Bibliotheken 150, 154

für Multithreaded-
Programmierung 191

BigDecimal, für
Währungsrechnung 154, 156

Binärkompatibilität 215
Bounded Buffers 204
busy-wait 205

C
Callback-Architekturen 87
Callbacks 87, 123
Client 17
clone 39, 57, 65

allgemeiner Vertrag 58f.
als Konstruktor 60, 92
Beispiele

defensive Kopien 74, 132, 224
implementieren 61f.

Beispiele für Implementierung 59
defensive Kopien 74, 131
defensives Kopieren 228
Kopiekonstruktor als Alternative 65

nicht-finale Methoden 63, 92
Referenz auf veränderliche
Objekte 60, 63
unveränderliche Objekte 78
Unvereinbarkeit mit final-Feldern 61

Cloneable Interface 57
Alternativen 64f.
Beispiele 61f.
Implementierungsanleitungen 64
Verhalten 58
zur Vererbung entwerfen 92
Zweck 57

Collections Framework 152
Comparable-Interface 65, 70
Comparator

anonyme Klassen 103
Beispiele 103, 123ff.
Instanz 103
Interface 124
Klasse 68, 124

compareTo 39, 65
allgemeiner Vertrag 66, 68
Anleitungen 68, 70
Beispiel zur Verwendung 28
Beispiele 68f., 116, 226

Überladung 140
Verwendung 130f., 155, 224, 228

Beispiele zur Verwendung 27
konsistent oder inkonsistent mit
equals 68
Unterschiede zu equals 67

D
Datenkonsistenz

bei Fehlern erhalten 187, 189
Synchronisierung 191, 197

Deadlock, verhindern 197, 199
defaultReadObject

Beispiele 217, 221, 226, 228
transient-Felder 222f.

defaultWriteObject
Beispiele 217, 221
transient-Felder 222f.

defensive Kopie 129, 133
Array 133
clone 131
readResolve als Alternative 231

240 Index

unveränderliche Objekte 78
veränderliche interne Felder 132
Vergleich mit Wiederverwendung
von Objekten 30
von veränderlichen Parametern 131

defensives Kopieren
clone 228
Deserialisierung 228

Degenerierte Klassen 107
Delegation 87
Denial-of-Service-Attacke 210
Deserialisierung 232

Abschluss verhindern 226
als Konstruktor 214
Singletons 25
typsichere Enums 116

Detailnachricht 186
Dienstanbieter Architektur 21
Dienstklassen 25

Alternative zu Konstanten-
Interfaces 100

discriminated Unions 109
Klassenhierarchien als Ersatz 109, 113

Doc-Kommentare 142
Dokumentation 142, 146

@param-Tag 143
@return-Tag 143
@serialData-Tag 222
@serial-Tag 219
@throws-Tag 127, 143, 184
Ausnahmen 184, 186
bedingte Thread-Sicherheit 209
erforderliche Sperren 209f.
Ergebniswert von toString 55
für serialisierte Felder 219
für Vererbung 89f.
häufiger Ausnahmen in der
Klasse 185
HTML in Javadoc 144
Javadoc 142, 146
Links auf Architekturdokumente
Javadoc 146
Methoden 143
Nachbedingungen 143
Nebeneffekte 143
Objektzustand nach Ausnahme 189
Parameterrestriktionen 127

Selbstnutzung überschreibbarer
Methoden 89, 94
Steuerungsübernahme 133
synchronized-Modifikator 208
Thread-Sicherheit 143, 208, 211
Vererbung von Doc-
Kommentaren 145
Vorbedingungen 143, 185
writeObject für Serialisierung 222
zusammenfassende Beschreibung 144

Dokumentationskommentare 142
Doppelprüfungsidiom 194, 196
double, wann vermeiden 154, 156

E
eigene serialisierte Form 213, 218, 224

Beispiel 221
transient-Felder 223

einfache Felder, equals 47
Enum, Klassen als Ersatz 113, 123
equals 39, 49

abstrakte Klasse erweitern 45
allgemeiner Vertrag 40
als nichtunterstütze Operation
(Beispiel) 40
Beispiel zum allgemeinen
Vertrag 42, 45
Beispiel zur Verletzung des
allgemeinen Vertrags 42, 44
Beispiele

allgemeiner Vertrag 97
für typsichere Enums 119
Überschreiben verhindern 120
Weiterleitung 140

Beispiele zu unbeabsichtigtem
Überladen 49
Beispiele zum allgemeinen Vertrag 46
Hauptform 48
instanziierbare Klasse erweitern 45
Methodenweiterleitung 140
typsichere Enums 40, 119
überschreiben 39f.
Überschreiben von hashCode 48f., 55
unbeabsichtigtes Überladen 49

Erweiterung 17
Cloneable-Interface 92
equals und Klassen- 45

Index 241

Klassen 83
Klassenhierarchien 111
Serializable-Interface 92, 215
typsichere Enums 118
von Interfaces 95
von Klassen 93

compareTo 67
von Skelettimplementierungen 97

Erweiterung von Klassen,
private Konstruktoren 80

explizite Abschlussmethode 34, 36
exportiertes API 17

Attributklassen 103
Doc-Kommentare 146
Konstanten-Interface-Muster 100
Serialisierung 213
synchronized-Modifikator 208
Zugriffsebenen 72

F
faule Initialisierung 21, 29, 81

Doppelprüfungsidiom 194
Holder-Klasse für bedarfsgemäße
Initialisierung 195

Fehler 176
Fehleratomizität 129, 187, 189
fein abgestimmte Synchronisierung 201
Felder 17

Anfangswerte 223
clone 60
compareTo 68
defensive Kopien 132
dokumentieren 143, 145, 219
equals 47
final siehe final-Felder
geschützte 90
hashCode-Methode 52
Interface-Typen 160
Kapselung 108
Konstante 74
Konstanten-Interface-Muster 99
Namenskonventionen 170, 172
öffentliche 73
offenlegen 74, 108
redundante 48, 52
Reflection 162
Serialisierung 224

synthetische 217
Thread-Sicherheit 73
transient siehe transiente Felder
Unveränderbarkeit 75
Zugriffsebenen 72
zustandslose Klassen 124

finale Felder
kein defensives Kopieren mit
readObject 228
Konstanten 74, 170
Konstanten-Interface-Muster 99
readResolve 231
Referenzen auf veränderliche
Objekte 74
typsichere Enums 114

finales Feld, für Singleton-
Implementierung 23

final-Felder, Unvereinbarkeit mit
clone 61

Finalizer 33
Ausführungszeit 33
Vergleich mit. expliziter
Abschlussmethode 34, 36
Verkettung 36
Verwendung 35
wichtiger persistenter Zustand 34

Finalizer-Verkettung 36
Finalizer-Wächter 36
float, compareTo inconsistent

with equals 68
float, wann vermeiden 154, 156
for-Schleifen, besser als while 148
fremde Methoden 197

Beispiel 198
Deadlock 200
Deadlocks 197
Sicherheitsversagen 200

funktionaler Ansatz 77
Funktionsobjekte 103, 123, 135
Funktionszeiger 123

G
gegenseitiger Ausschluss 191
gekapselte Strukturklasse 108
geprüfte Ausnahmen 176

dokumentieren 184
ignorieren 189f.

242 Index

unnötige vermeiden 178, 180
unteilbare Fehler 187
zu ungeprüften machen 179
Zugriffsmethoden in 177, 187
Zweck 176

geschachtelte Klassen 72, 101, 105
als Konkrete-Strategie-Klassen 125
Zugriffsebenen 72

Grundtypen 17
compareTo 69

Gültigkeitsbereich von Variablen
alte Referenzen 32
lokal 147, 150
Schleife 148

H
Handoff 133
hashCode 39

faule Initialisierung 81
lazy initialization 53
Schreibweise 51
typsichere Enums 119
Überschreiben von equals 48f., 55
unveränderliche Objekte 53

Hauptform 48
Heap-Profiler 33
Hilfsklasse 101
Hilfsklassen 135

im Collections Framework 67
Holder-Klasse für bedarfsgerechte

Initialisierung 196
Hüllenklassen 86, 88

Alternative zu Konstanten-
Interfaces 100
zum Synchronisieren
unsynchronisierter Klassen 201
zur Synchronisierung 201

I
implementiert 17
Implementierungsvererbung 83
Informationen verbergen 166
Initialisierung

bei Objekterzeugung 82
Beispiel für bequeme 53
Beispiel zur statischen 28
Beispiele 195f.

Doppelprüfungsidiom 194

Schleifenvariablen 148
serialisierbare Unterklassen 216
statische 195

bequeme 53
defensive Kopien 75
faule 21, 29, 194
Felder, beim Deserialisieren 223
Holder-Klasse für bedarfsgemäße
Initialisierung 196
lokale Variablen 148
serialisierbare Unterklassen
ermöglichen 216
statische 28
unfertige Objekte betrachten 92
vor dem Abschluss Objekte
betrachten 195

Initialisierung, faule, Beispiele 81
inkonsistent mit equals 68
Innere Klassen, und Serialisierung 217
innere Klassen 101
instanzgesteuerte Klasse

Dienstklassen 25
Singleton 23
typsichere Enums 114

instanzkontrollierende Klassen 231
readResolve 231

int, für Währungsrechnung 154, 156
Interface-Architekturen 94, 99
Interface-basierte Architektur 21
Interfaces 17, 71, 105

als Parametertypen 135
Cloneable 57, 65
Comparable 65, 70
dokumentieren 143, 145, 185
für nicht-hierarchische
Typarchitekturen 95
Konstanten- 99, 101
Mixin 57, 95
Mixins definieren 95
Namenskonventionen 170f.
Objekte referenzieren 160, 162
Serializable 213, 218
Serializable erweitern 215
Skelettimplementierungen 96, 98
Strategie- 124
vs. abstrakte Klassen 94, 99
vs. Reflection 165
Weiterentwicklung 98

Index 243

Zugriffsebenen 72
zur Funktionalitätsverbesserung 96
zur Typdefinition 99, 101
Zweck 99, 101

interfaces, vs. reflection 162
Interface-Vererbung 83

J
JavaBeans

Serialisierung 213
XML 215

Javadoc 142

K
Kapselung 71, 107

Datenfelder 108
durch Vererbung aufbrechen 83

Klassen 17, 71, 105
Attribute 17
Attributklassen 17
Basis- 161
dokumentieren 143, 145

Thread-Sicherheit 208, 211
Ebenen der Thread-Sicherheit 208f.
Ersatz für C-Enum 113, 123
Ersatz für C-structs 107, 109
Ersatz für Funktionszeiger 123
für Vererbung dokumentieren 89f.
für Vererbung entwerfen 90, 94
Hierarchien als Ersatz für
discriminated Unions 109, 113
Hilfs- für kürzere Parameterlisten 135
Instanzen 17
Namenskonventionen 170f.
nicht verwandte 139
separate 67
unveränderliche siehe
Unveränderbarkeit
unverbundene 102
Zugreifbarkeit minimieren 71
Zugriff minimieren 75
Zugriffsebenen 72
zustandshaltige 216
zustandslose 124

Klassen, anonyme siehe
anonyme Klassen

Klassen, lokale siehe lokale Klassen

Klassenarchitektur 161
Klassenerweiterung, richtig einsetzen 88
Klassenhierarchien 94

als Ersatz für discriminated
Unions 109, 113
kombinatorische Explosion 95

Klon, Kopiekonstruktor als
Alternative 64

kombinatorische Explosion 95
Komposition 22, 85

besser als Vererbung 83, 89
konkrete Strategie 124
konsistent mit equals 68
Konsistenzanforderung

im equals-Vertrag 41, 46
im Vertrag von hashCode 49

Konstanten
Datentypen 74
in Interfaces 99, 101
in typsicheren Enums 113, 123
Namenskonventionen 170
Zugreifbarkeit 74

Konstanten-Dienstklasse 100
Konstanten-Interface 99
Konstruktor 17

Aufruf überschreibbarer Methoden 91
Beispiele

für typsichere Enums 114
in Singletons 23f.
in unveränderlichen Klassen 130f.
Nichtinstanziierbarkeit
erzwingen 26

Beispiele, überschreibbare
Methoden 91
clone 60
defensive Kopien 131
Deserialisierung 214
dokumentieren, Selbstnutzung 89
durch statische Factory
ersetzen 19, 23
für typsichere Enums 114, 118
Invarianten festlegen 82
Invarianten herstellen 77
Kopie 64, 78
Nichtinstanziierbarkeit
erzwingen 25f.
parameterloser 25, 215

244 Index

readObject 225
Signatur 20
Singleton-Eigenschaft
erzwingen 23, 25
Standard 25
überladen 138

Konstruktoren, dokumentieren 143
kooperative Thread-Beendigung 194
Kopiekonstruktor 64, 78

L
Laufzeitausnahmen 176

dokumentieren 143
vs. geprüfte Ausnahmen 176, 178

Lebendigkeit sicherstellen,
Thread-Prioritäten 207

Lebendigkeit, gewährleisten 197, 202
Leistung siehe Optimierungen
Lese-/Schreib-Sperren 204
lokale Klassen 101, 104
lokale Variablen 147

deklarieren 147
Gültigkeitsbereich
minimieren 147, 150
initialisieren 148
Namenskonventionen 170ff.

long, für Währungsrechnung 154, 156

M
Methode

Namenskonventionen 22
statische Factory siehe statische
Factory-Methode

Methoden 17, 127, 146
Ausnahmen dokumentieren 184, 186
defensives Kopieren vor
Parameterprüfung 131
dokumentieren 144

Thread-Sicherheit 208, 211
dokumentieren, überschreibbar 89
expliziter Abschluss 34, 36
Fehleratomizität 187, 189
fremde 197
fremde siehe fremde Methoden
gemeinsame für alle Objekte 39, 70
klein und konzentriert 150
Namen 133

Namenskonventionen 170f.
native 35, 165f.
Parameter auf Gültigkeit
prüfen 127, 129
Parameterlisten 134
Reihenfolge der Berechnungen 188
Signaturen entwerfen 133, 136
überladene, statische Auswahl 136
Überladung 136, 140

gleiche Parameteranzahl 138, 140
überschreiben 136f.
überschreiben, dynamische Wahl 136
Unveränderbarkeit und
Überschreiben 79
Vererbung von Doc-
Kommentaren 145
zu Ausnahmeklassen hinzufügen 177
Zugriffs-, vs. öffentliche Felder 108f.
Zugriffsebenen 72f.
Zustandstest vs.
Spezialrückgabewert 175

Methoden weiterleiten, in
Hüllenklassen 201

Mixin-Interface 57
Modul 16
Monty Python-Zitat 141

N
Nachbedingungen 143
Namenskonventionen 22, 169
native Methoden 35, 165f.
native Peers 35
Nebenläufigkeit

Dienstprogramme für
Multithreading 191
fein abgestimmte Synchroni-
sierung 201
Methodenverhalten
dokumentieren 208, 211
mit Dienstprogrammen
erleichtern 153
offene Aufrufe 199
zu Testzwecken erhöhen 207

nicht-hierarchische Typarchitekturen 95
Nichtinstanziierbarkeit 25f.
Nicht-Null, im allgemeinen Vertrag von

equals 46

Index 245

Nicht-Null-Vorschrift, im allgemeinen
Vertrag von compareTo 67

nicht-statische Attributklassen 101
Adapter definieren 102
Beispiel 102
statische sind besser 101, 105

notify vs. notifyAll 203f.

O
Objekt

alte Objektreferenzen beseitigen 30
Funktions- 103
obsolete Referenzen eliminieren 33
wieder verwenden 26
Wiederverwendung 30

Objekt Pool 29
Objekte 17

deserialisieren 213, 232
erzeugen und zerstören 19
gemeinsame Methoden 39, 70
in teilinitialisiertem Zustand 92
in teilinitialisiertem Zustand
betrachten 195
Prozess- 103
reflektiven Zugriff vermeiden 163f.
serialisieren 213, 232
über Basisklassen referenzieren 161
über Interfaces referenzieren 160, 162
unveränderliche siehe
Unveränderbarkeit

Objektserialisierung 213
obsolete Objektreferenzen 33
Optimierung

== statt equals 20, 47
statische Initialisierung 28f.
Wiederverwendung von
Objekten 26, 30

Optimierungen 166, 169
Initialisierung 195
notify vs. notifyAll 203
StringBuffer 159f.
try-catch-Blöcke 174

P
Pakete, Namenskonventionen 169, 171
paketprivat

Konstruktoren 93
Zugriffsebene 17, 72

Parameter, Gültigkeit prüfen 127, 129
Parameterlisten 134f.

von Konstruktoren 20
parameterloser Konstruktor 25, 215
Performance-Modell 168
Primitive, hashCode 52
protokollieren 184
Prozessobjekte 103

R
radikal unterschiedliche Typen 138
readObject 224, 230

als weiterer Konstruktor 225
Annehmbarkeit 229
defensiv 224, 230
defensives Kopieren 228
finale Felder 228
für unveränderliche Objekte 82
inkompatibel mit Singletons 230
readResolve als Alternative 231
standardmäßige serialisierte
Form 219, 223
transient-Felder 223
überschreibbare Methoden 92, 229

readResolve 230, 232
als Alternative zu readObject 231
Beispiele 116, 120f., 230f.
für Instanz-kontrollierende
Klassen 231
für Singletons 24, 230
für typsichere Enums 116, 120
für unveränderliche Objekte 82
Zugriffsebenen 93, 121, 232

Recovery-Code 188
redundante Felder 48, 52
Referenztypen 17

compareTo 68
hashCode 52

Reflection
clone-Methode 57
Laufzeitabhängigkeiten
durchbrechen 164
Nachteile 162, 164
ursprünglicher Zweck 162
vs. Interfaces 165
zur Objekterzeugung 163

reflection, vs. interfaces 162

246 Index

Reflexivität
compareTo 67
equals 41

rekursive Sperren 200
Rezepte

Aufruf von wait 202
clone 64
compareTo 68, 70
erweiterbare typsichere Enum 118
Finalizer-Wächter 36
hashCode 51
Komposition 85
nichtinstanziierbare Klasse 26
readObject 229
Singleton 23
statische Factory-Methode 19
typsichere Enums 114
typsichere Enums, erweiterbar,
serialisierbar 119
typsichere Enums, serialisierbar 116

S
Schleifen

for besser als while 148
Gültigkeitsbereich von Variablen
minimieren 148
wait-Aufruf 202, 204

Schleifenvariablen 148
Selbstnutzung

bei Vererbung unterbinden 94
dokumentieren für Vererbung 89

Semaphoren 204
serialisierte Form

als Teil des exportierteen APIs 213
defaultWriteObject 222
dokumentieren 219
eigene siehe eigene serialisierte Form
innere Klasse 217
standardmäßige siehe standardmäßige
serialisierte Form
typsichere Enum 117
von Singletons 230

Serialisierung 213, 232
Aufwand 213
außersprachlicher Mechanismus 214
Auswirkung auf exportiertes API 213
dokumentieren 219, 222
innere Klassen 217

Interface-Erweiterung 215
JavaBeans 213
Unveränderbarkeit 82
Vererbung 215

Serializable-Interface, zur Vererbung
entwerfen 92

serialver-Dienstprogramm 223
Serienversion-UID, in serialisierbaren

Klassen deklarieren 223
Serienversion-UIDs 214
Service Provider Framework,

Reflection 164
Sicherheit

gewährleisten 191, 197
versagen 196, 200
wait 202

Signatur 17, 133, 136
simulierte Mehrfachvererbung 97
Singleton 23

Deserialisierung 25
durch privaten Konstruktor
erzwingen 23, 25
inkompatibel mit readObject 230
readResolve 24, 230
serialisierte Form 231

Skelettimplementierung 96, 182
Specific Notification 204
Speicherleck 31

Beispiel 30
Ursachen 31, 33

Speichermodell 75, 192
Sperren

für Klassen auf verschiedenen Thread-
Sicherheitsebenen 208
in Multithreaded-Program-
men 191, 197
mit privaten Objekten 210
rekursive 200

Spezialrückgabewert, vs.
Zustandstestmethode 175

Standardkonstruktor 25
standardmäßige serialisierte Form

Anfangswerte von transient-
Feldern 223
Kriterien für die Annahme 218
Nachteile 220
transient-Modifikator 221

Standardzugriff 17, 72

Index 247

statisch, Initialisierer 28
statische Attributklassen 101

besser als nicht-statische 101, 105
für Aggregate besser als String 157
für kürzere Parameterlisten 135
häufige Verwendung 101f., 104
Serialisierung 217
Strategiemuster implementieren 125
typsichere Enums
implementieren 118

statische Factory-Methode 19, 24, 27
als Grundlage für
Dienstanbieterarchitektur 21
als Klon-Ersatz 64
anonyme Klassen 103
Ersatz für Konstruktor 19, 23
Flexibilität 20
für instanzgesteuerte Klassen 20
für unveränderliche Objekte 80
Nachteile gegenüber Konstruktor 22
Namenskonventionen 22
Strategiemuster 125
Vorteile gegenüber Konstruktoren 19

statische Felder
Strategiemuster 125
unveränderliche Objekte 24
veränderliche, synchronisieren 201

statisches Feld, Holder-Klasse für
bedarfsgerechte Initialisierung 196

Strategie-Interface 124
Stream Unique Identifier 223
String-Darstellung 55, 57
Strings, schlechter Ersatz für andere

Typen 156, 159
String-Verkettung 159f.
Strom-eindeutige Bezeichner 214
struct, durch Klasse ersetzen 107
Struktur, Klasse als Ersatz 109
Symmetrie

compareTo 67
equals 41

Synchronisierung
durch Unterklassenbildung 201
fein abgestimmte 201
für Thread-Kommunikation 192, 196
gegenseitiger Ausschluss 191
gemeinsam genutzte, veränderliche

Daten 191, 197
interne 201
Leistung 197, 200
von atomaren Daten 192, 194

synchronized-Modifikator
als Implementierungsdetail 208
Dokumentation 208
Zweck 191

synthetische Felder 217

T
Thead-Prioritäten 207
Thread.yield 207

testen 207
Thread-Beendigung, kooperative 194
Thread-feindlich 209
Thread-Gruppen 211f.
Thread-kompatibel 209

vs. Thread-sicher 201
Thread-Planer 204, 208
Threads 191
Thread-sicher 208

vs. Thread-kompatibel 201
Thread-Sicherheit 210

dokumentieren 208, 211
Ebenen 208
Klassen mit öffentlichen,
veränderlichen Feldern 73
ThreadGroup-API 211
Unveränderbarkeit 77

toString 39
allgemeiner Vertrag 55
Ausnahmen 186
Ergebniswert als De-Facto-API 57
Ergebniswert dokumentieren 55, 57
überschreiben 55, 57, 115

transient-Felder 221
Beispiele 120, 221
defaultReadObject 222f.
defaultWriteObject 222f.
Deserialisierung 223
eigene serialisierte Form 223
logischer Objektzustand 223
readResolve 116
Singletons 231

transient-Modifikator 221

248 Index

Transitivität
compareTo 67
equals 43

Typen, radikal unterschiedliche 138
typsichere Enums 114

anonyme Klassen 117
equals 40
Ersatz für C-Enums 113, 123
implementieren, Toplevel- vs. statische
Attributklasse 118
Konstruktoren 114
Nachteile 121
readResolve 231
und equals 119
und hashCode 119
Varianten, Comparable 115
Varianten, Erweiterbarkeit 118
Varianten, serialisierbar 116
Verhalten hinzufügen 118
Verhaltensweisen hinzufügen 115

U
überflüssige Objektreferenzen 188
Überladung siehe Methoden,

Überladungen
überschreiben siehe Methoden,

überschreiben
Übersetzung, von Ausnahmen 129, 182
umgebende Instanz 101

anonyme Klassen 103
Finalizer-Wächter 36
lokale Klasse 104
nicht-statische Attributklasse 101

umschließende Instanz,
Serialisierung 217

unbeabsichtigtes Zurückhalten von
Objekten siehe Speicherleck

ungeprüfte Ausnahmen 178
dokumentieren 143, 184
Idiome zur Kennzeichnung 185
ignorieren 189f.
standardmäßige 180
zu geprüften machen 179

ungewollt instanziierbare Klasse 25
Unions, Klassenhierarchien als

Ersatz 109, 113

Unterklassenbildung 17
equals 43, 45
RuntimeException vs. Error 176
verbieten 93
Verbot 22, 26
Zugriffsebenen von Methoden 73

Unterklassenbildung siehe auch
Erweiterung

unveränderbar, Thread-
Sicherheitsebene 208

Unveränderbarkeit 75, 83
Arrays der Länge null 141
Beispiele 76

kaputte Klasse 130
Serialisierung 224
statische Factorys 80

Cloneable 64
defensive Kopien 130, 132
funktionaler Ansatz 77
Konstanten 170
Nachteil 78
readObject 224, 228
readResolve 232
Regeln 75
Serialisierung 82, 224, 230
statische Factorys 80
Vorteile 77

Unveränderlichkeit
Hauptform 48
Konstanten 74
und hashCode 53
Wiederverwendung von Objekten 26

util.concurrent 153, 191

V
Variablen

atomare Operationen 192
lokale siehe lokale Variablen
mit Interface-Typen deklarieren 160
Schleifen- 148

veränderliche Begleiterklassen 79
Verbergen von Informationen 71
Vererbung 17

Beispiel 83
besser ist Komposition 83, 89
dokumentieren 89f.

Index 249

durch Hooks erleichtern 90
entwerfen 94
Entwurf 90
Gründe für Instabilität 85
Implementierung vs. Interface 83
inkompatibel mit readResolve 232
Nutzung 88
Selbstnutzung überschreibbarer
Methoden unterbinden 94
Serialisierung 215
Sperren mit internen Objekten 210
überschreibbare Methoden 91
und Kapselung 83
verbieten 93
von Doc-Kommentaren 145

Vererbung siehe auch Erweiterung
View, Erhalt der Unveränderbarkeit 133
Views

Namenskonventionen 172
sperren 209
und nicht-statische
Attributklassen 102
Unterklassenbildung vermeiden 45
Wiederverwendung von Objekten 29
zur Vermeidung von Unterklassen 67

volatile-Modifikator 194
Beispiele 53, 81, 206

Vorbedingungen 143, 185

W
wait-Schleife 202, 204
Weiterleitung 86

an private Erweiterung einer
Skelettimplementierung 97

Weiterleitungsmethoden 86
Beispiel 86

in Hüllenklassen 87
konsistentes Verhalten bei Überladung
erzielen 140
Objektkomposition 86

while-Schleife, for besser als while 148

X
XML, zur Persistenz von JavaBeans 215

Z
Zugriffsebenen 17

Klassen und Interfaces 72
Konstanten 74
readResolve 232
überschreibende Methoden 73
von Attributen 72
von statischen Attributklassen 101

Zugriffskontrolle 72
Zugriffsmethode

für Ausnahme einer niedrigen
Ebene 183
für Ergebnisinformationen von
toString 57

Zugriffsmethoden 108
Beispiele 132
defensive Kopien 75, 132
für Fehlerinformationen 177
Namenskonventionen 172
Unveränderbarkeit 75
vs. öffentliche Felder 108f., 112

zusammenfassende Beschreibung 144
Zustandsänderung 77
Zustandstestmethode 174f., 179
Zustandsübergang 191

Hier finden Sie eine umfassende Beschrei-
bung der J2EE-Architektur und eines horizon-
talen Frameworks - des „Small Java Frame-
works“ (SJF). Neben klassischen Patterns wer-
den die wichtigsten APIs vorgestellt. Darauf
aufbauend beschäftigen Sie sich mit der Ent-
wicklung des SJF-Frameworks und Fragen wie
Classloading, Konfiguration, Persistence, Ver-
teilung und Clustering. Abschließend werden
die Performance des Frameworks und die
Verwendung unterschiedlicher Ansätze wie
„Value Objects“ untersucht.

Programmer´s Choice

280 Seiten, 1 CD-ROM
€ 44,95 [D] / sFr 78,00
ISBN 3-8273-1777-0

Enterprise Java
Anwendungen

Java-Technologien professionell einsetzen

Adam Bien

T H E S I G N O F E X C E L L E N C E

Kompetent und umfassend führt Sie diese
zweite Auflage des bewährten Titels von
Florian Hawlitzek in die Softwareentwicklung
mit IBM VisualAge for Java ein. Im ersten Teil
erhalten Sie einen Überblick über die Kon-
zepte der Programmiersprache Java 2 und die
Bestandteile der verschiedenen Versionen von
VisualAge for Java, Version 3.5 und 4.0. Daran
anschließend wird die Entwicklungsumge-
bung von VisualAge mit seinen Browsern und
Werkzeugen vorgestellt und schrittweise die
Entwicklung einer einfachen Anwendung
demonstriert. Der dritte Teil richtet sich an
Java-Neulinge: Er gibt - speziell auf VisualAge
zugeschnitten - eine Einführung in die
Sprache. Im letzten Abschnitt wird VisualAge
for Java für Fortgeschrittene behandelt,
Schwerpunkte bilden dabei die grafische
Programmierung mit dem Visual Composition
Editor und die vielfältigen Enterprise Features.

Programmer´s Choice

598 Seiten, 1 CD-ROM, 2. Auflage
€ 44,95 [D] / sFr 78,00
ISBN 3-8273-1801-7

Java 2-Programmierung
mit IBM Visual Age

Florian Hawlitzek

T H E S I G N O F E X C E L L E N C E

Von den Erfindern von Java! Diese umfassende
Einführung richtet sich auf professionellem
Niveau gleichermaßen an Einsteiger und an
Java-Profis. Java-Neulinge erhalten durch die
prägnanten Beispiele und detaillierten Erläu-
terungen der Features ein tiefes Verständnis
der mächtigen Möglichkeiten von Java. Fort-
geschrittene und Profis können das Buch als
Referenz für ihre tägliche Arbeit, insbesondere
für die Spezialitäten von Java 2 (JDK 1.3) ver-
wenden. Alle wichtigen Aspekte wie Klassen,
Bibliotheken, APIs, Garbage Collection etc.
werden eingehend behandelt und erklärt.

Programmer´s Choice

628 Seiten
€ 59,95 [D] / sFr 108,00
ISBN 3-8273-1821-1

Die Programmiersprache
Java

Ken Arnold, James Gosling, David Holmes

T H E S I G N O F E X C E L L E N C E

Dieses Buch behandelt die wichtigste Graphik-
Bibliothek von JAVA, die Swing-Bibliothek. Zunächst
werden die Grundkomponenten vorgestellt, die es
dem Benutzer schnell erlauben, Fenster auf dem
Bildschirm darzustellen und mit Inhalt zu füllen.
Anschließend werden weitere graphische Kompo-
nenten beschrieben, die einen Dialog zwischen
Programm und Benutzer ermöglichen. Dazu gehö-
ren Knöpfe, Menüs und Dialogfenster. Es wird erläu-
tert, wie einfach die Einbindung der Maus in eigene
Anwendungen ist. Stets demonstrieren kleine Pro-
gramme die Funktionen der Komponenten. Durch
Kombination verschiedener graphischer Elemente
ist es dann auf einfache Weise möglich, anspruchs-
vollere Benutzeroberflächen zu erstellen. Als Bei-
spiele hierfür findet man einen einfachen Texteditor,
je ein Programm zur Darstellung und Bearbeitung
von Vektor- bzw. Pixel-Graphiken und einen kleinen
Web-Browser. Übungen und Vorschläge für eigene
Projekte sollen bei der Einarbeitung in die Graphik-
programmierung helfen. Vorausgesetzt werden le-
diglich Grundkenntnisse der Programmiersprache
JAVA. Alle Programme sind unabhängig von einer
bestimmten Entwicklungsumgebung.

Programmer´s Choice

192 Seiten, 1 CD-ROM
€ 29,95 [D] / sFr 53,00
ISBN 3-8273-1910-2

Grafikprogrammierung
mit Java-Swing

Für Einsteiger in die
Graphikprogrammierung mit JAVA.

Paul Fischer

T H E S I G N O F E X C E L L E N C E

Das Standardwerk von Guido Krüger liegt nun
in zweiter und erweiterter Auflage als Hand-
buch der Java-Programmierung vor. Seine
wichtigsten Merkmale sind die umfassende
Darstellung aller wichtigen Java-Themen, die
Praxisnähe, eine große Menge an unmittelbar
verwendbaren Beispielprogrammen sowie die
klare und didaktisch sinnvolle Struktur. Die
beigefügte HTML-Version ist ideal als Nach-
schlagewerk und ein unentbehrliches Hilfs-
mittel am Arbeitsplatz jedes Java-Entwicklers.

Go To

1224 Seiten, 1 CD-ROM
€ 49,95 [D] / sFr 88,00
ISBN 3-8273-1710-X

Go To Java 2
Handbuch der Java-Programmierung
2. Auflage

Guido Krüger

T H E S I G N O F E X C E L L E N C E

	Cover
	Effektiv Java programmieren
	Inhalt
	Vorbemerkung
	Vorwort
	Danksagungen
	Einführung
	Objekte erzeugen und zerstören
	Allen Objekten gemeinsame Methoden
	Klassen und Interfaces
	Ersatz für C-Konstrukte
	Methoden
	Allgemeine Programmierung
	Ausnahmen
	Threads
	Serialisierung
	Quellen
	Index

	Vorbemerkung
	Vorwort
	Danksagungen
	Einführung
	Objekte erzeugen und zerstören
	Thema 1: Verwenden Sie statische Factory-Methoden statt Konstruktoren
	Thema 2: Erzwingen Sie mit einem privaten Konstruktor die Singleton-Eigenschaft
	Thema 3: Mit einem privaten Konstruktor Nichtinstanziierbarkeit erzwingen
	Thema 4: Vermeiden Sie die Erzeugung von Objektduplikaten
	Thema 5: Eliminieren Sie alte Objektreferenzen
	Thema 6: Vermeiden Sie Finalizer

	Allen Objekten gemeinsame Methoden
	Thema 7: Halten Sie beim Überschreiben von equals den allgemeinen Vertrag ein
	Thema 8: Überschreiben Sie hashCode immer, wenn Sie equals überschreiben
	Thema 9: Überschreiben Sie toString immer
	Thema 10: Vorsicht beim Überschreiben von clone
	Thema 11: Implementieren Sie Comparable

	Klassen und Interfaces
	Thema 12: Minimieren Sie die Zugreifbarkeit von Klassen und Attributen
	Thema 13: Bevorzugen Sie Unveränderbarkeit
	Thema 14: Komposition ist besser als Vererbung
	Thema 15: Entweder Sie entwerfen und dokumentieren für die Vererbung oder Sie verbieten sie
	Thema 16: Nutzen Sie besser Interfaces als abstrakte Klassen
	Thema 17: Verwenden Sie Interfaces ausschließlich zur Typdefinition
	Thema 18: Ziehen Sie statische Attributklassen den nicht-statischen vor

	Ersatz für C-Konstrukte
	Thema 19: Ersetzen Sie Strukturen durch Klassen
	Thema 20: Ersetzen Sie Unions durch Klassenhierarchien
	Thema 21: Ersetzen Sie Enum-Konstrukte durch Klassen
	Thema 22: Ersetzen Sie Funktionszeiger durch Klassen und Interfaces

	Methoden
	Thema 23: Prüfen Sie die Gültigkeit der Parameter
	Thema 24: Machen Sie bei Bedarf defensive Kopien
	Thema 25: Entwerfen Sie die Methodensignaturen sorgfältig
	Thema 26: Verwenden Sie Methodenüberladung vorsichtig
	Thema 27: Geben Sie nicht null, sondern Arrays der Länge null zurück
	Thema 28: Schreiben Sie Doc-Kommentare für alle offen gelegten API- Elemente

	Allgemeine Programmierung
	Thema 29: Minimieren Sie den Gültigkeitsbereich lokaler Variablen
	Thema 30: Sie müssen die Bibliotheken kennen und nutzen
	Thema 31: Meiden Sie float und double, wenn Sie genaue Antworten wollen
	Thema 32: Vermeiden Sie Strings, wo andere Typen sich besser eignen
	Thema 33: Hüten Sie sich vor der Langsamkeit von String-Verkettungen
	Thema 34: Referenzieren Sie Objekte über ihre Interfaces
	Thema 35: Nutzen Sie eher Interfaces als Reflection
	Thema 36: Verwenden Sie native Methoden mit Vorsicht
	Thema 37: Optimieren Sie nur mit Vorsicht
	Thema 38: Halten Sie sich an die allgemein anerkannten Namenskonventionen

	Ausnahmen
	Thema 39: Verwenden Sie Ausnahmen nur für Ausnahmebedingungen
	Thema 40: Geprüfte Ausnahmen für behebbare Situationen, Laufzeitausnahmen für Programmierfehler
	Thema 41: Vermeiden Sie den unnötigen Einsatz von geprüften Ausnahmen
	Thema 42: Bevorzugen Sie Standardausnahmen
	Thema 43: Lösen Sie Ausnahmen aus, die zur Abstraktion passen
	Thema 44: Dokumentieren Sie alle Ausnahmen, die eine Methode auslöst
	Thema 45: Geben Sie in Detailnachrichten Fehlerinformationen an
	Thema 46: Streben Sie nach Fehleratomizität
	Thema 47: Ignorieren Sie keine Ausnahmen

	Threads
	Thema 48: Synchronisieren Sie den Zugriff auf gemeinsam genutzte, veränderliche Daten
	Thema 49: Vermeiden Sie übermäßige Synchronisierung
	Thema 50: Rufen Sie wait nie außerhalb einer wait-Schleife auf
	Thema 51: Verlassen Sie sich nicht auf den Thread-Planer
	Thema 52: Dokumentieren Sie die Thread-Sicherheit
	Thema 53: Vermeiden Sie Thread-Gruppen

	Serialisierung
	Thema 54: Implementieren Sie Serializable mit Vorsicht
	Thema 55: Ziehen Sie die Nutzung einer eigenen serialisierten Form in Erwägung
	Thema 56: Schreiben Sie readObject-Methoden defensiv
	Thema 57: Stellen Sie wenn nötig eine readResolve-Methode zur Verfügung

	Quellen
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

