Performant Java programmieren



Die Reihe Programmer’s Choice

Von Profis fiir Profis
Folgende Titel sind bereits erschienen:

Bjarne Stroustrup
Die C++-Programmiersprache
1072 Seiten, ISBN 3-8273-1660-X

Elmar Warken
Kylix — Delphi fiir Linux
1018 Seiten, ISBN 3-8273-1686-3

Don Box, Aaron Skonnard, John Lam
Essential XML
320 Seiten, ISBN 3-8273-1769-X

Elmar Warken
Delphi 6
1334 Seiten, ISBN 3-8273-1773-8

Bruno Schienmann
Kontinuierliches Anforderungsmanagement
392 Seiten, ISBN 3-8273-1787-8

Damian Conway
Objektorientiertes Programmieren mit Perl
632 Seiten, ISBN 3-8273-1812-2

Ken Arnold, James Gosling, David Holmes
Die Programmiersprache Java
628 Seiten, ISBN 3-8273-1821-1

Kent Beck, Martin Fowler
Extreme Programming planen
152 Seiten, ISBN 3-8273-1832-7

Jens Hartwig
PostgreSQL — professionell und praxisnah
456 Seiten, ISBN 3-8273-1860-2

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides
Entwurfsmuster
480 Seiten, ISBN 3-8273-1862-9

Heinz-Gerd Raymans
MySQL im Einsatz
618 Seiten, ISBN 3-8273-1887-4

Dusan Petkovic, Markus Briiderl
Java in Datenbanksystemen
424 Seiten, ISBN 3-8273-1889-0

Joshua Bloch
Effektiv Java programmieren
250 Seiten, ISBN 3-8273-1933-1



PEARSON

A
T

- : \ A 4 ADDISON-WESLEY
Education

Hendrik Schreiber

Performant Java
programmieren

¥y ADDISON-WESLEY

An imprint of Pearson Education

Munchen e Boston e San Francisco e Harlow, England
Don Mills, Ontario e Sydney ¢ Mexico City
Madrid e Amsterdam



http://www.pearsoned.de
http://www.awl.de/main/main.asp?page=bookdetails&ISBN=3827320038
http://www.awl.de/main/main.asp?page=bookdetails&ISBN=3827320038

Sandini Bib

Die Deutsche Bibliothek — CIP-Einheitsaufnahme

Ein Titeldatensatz fiir diese Publikation ist bei
Der Deutschen Bibliothek erhiltlich.

Die Informationen in diesem Produkt werden ohne Riicksicht auf einen
eventuellen Patentschutz veréffentlicht.

Warennamen werden ohne Gewahrleistung der freien Verwendbarkeit benutzt.
Bei der Zusammenstellung von Abbildungen und Texten wurde mit grofiter
Sorgfalt vorgegangen.

Trotzdem kénnen Fehler nicht vollstandig ausgeschlossen werden.

Verlag, Herausgeber und Autoren konnen fiir fehlerhafte Angaben

und deren Folgen weder eine juristische Verantwortung noch

irgendeine Haftung {ibernehmen.

Fiir Verbesserungsvorschlage und Hinweise auf Fehler sind Verlag und
Herausgeber dankbar.

Alle Rechte vorbehalten, auch die der fotomechanischen Wiedergabe und der
Speicherung in elektronischen Medien.

Die gewerbliche Nutzung der in diesem Produkt gezeigten Modelle und Arbeiten
ist nicht zuléssig.

Fast alle Hardware- und Softwarebezeichnungen, die in diesem Buch erwédhnt werden,
sind gleichzeitig eingetragene Warenzeichen oder sollten als solche betrachtet werden.

Umwelthinweis:

Dieses Produkt wurde auf chlorfrei gebleichtem Papier gedruckt.

Die Einschrumpffolie — zum Schutz vor Verschmutzung — ist aus umweltvertraglichem
und recyclingfahigem PE-Material.

54 3 21
05 04 03 02
ISBN 3-8273-2003-8

© 2002 by Addison-Wesley Verlag,

ein Imprint der Pearson Education Deutschland GmbH,
Martin-Kollar-Strale 10-12, D-81829 Miinchen/Germany

Alle Rechte vorbehalten

Einbandgestaltung: Christine Rechl, Miinchen

Titelbild: Cirsium oleraceum, Kohldistel. © Karl Blossfeldt Archiv
Ann und Jiirgen Wilde, Ziilpich/ VG Bild-Kunst Bonn, 2002
Lektorat: Christiane Auf, cauf@pearson.de; Tobias Draxler, tdraxler@pearson.de
Herstellung: Monika Weiher, mweiher@pearson.de
CD-Mastering: Gregor Kopietz, gkopietz@pearson.de

Satz: reemers publishing services gmbh, Krefeld, www.reemers.de
Druck und Verarbeitung: Bercker Graphischer Betrieb, Kevelaer
Printed in Germany



Sandini Bib

Erfahrung Karpfen, Neugier Hecht.
(Manfred Hinrich)



Sandini Bib



Inhalt

1.1
1.2
1.3
1.4

21
22
2.3
231
232
2.3.3
234

3.1

3.1.1
3.1.2
3.1.3
3.14
3.15
32

3.2.1
322
323
324
3.3

3.3.1
332

Vorwort

Zum Buch
Danksagungen

Java ist zu langsam

Was ist Performance?
Empfundene Performance
Gesunder Menschenverstand
Wissen ist Performance

Entwicklungsprozess

Analyse und Design

Kodieren und Testen
Integrieren und Testen

Mikro- und Makro-Benchmarks
Testldnge

Auswertung

Wie héufig testen?

Virtuelle Maschinen

Bytecode-Ausfiihrung
Interpreter
Just-in-Time-Compiler

Dynamisch angepasste Ubersetzung

Ahead-of-Time-Ubersetzung
Java in Silizium

Garbage Collection
Objekt-Lebenszyklus

Garbage Collection-Algorithmen
Performance-Mafse

HotSpots Garbage Collection
Industrie-Benchmarks
VolanoMark

SPEC JVM98

11
12

15

16
18
18
20

23

25
26
27
27
29
29
30

31

32
33
33
33
36
38
38
39
41
44
44
46
46
47



8 Inhalt
3.3.3  SPEC]BB2000 48
3.3.4 jBYTEMark 48
3.3.5 ECperf 48
3.4 Die richtige VM auswéhlen 49
4 Messwerkzeuge 51
4.1 Profiler 52
42 Hprof 52
42.1 Speicherabbild erstellen 53
422 CPU-Profiling 58
423  Monitor-Information 64
4.3 HotSpot-Profiling 68
4.4 Jinsight 71
4.5 Mikro-Benchmarks 71
4.6 Makro-Benchmarks 72
4.7 Performance Metriken 72
4.8 Speicher-Schnittstellen 72
48.1 Speicherverbrauch 73
482 Geschwatzige Garbage Collection 81
4.8.3 Manuelle Speicherbereinigung 83
5 Zeichenketten 85
5.1 Strings einfiigen 85
52 Strings anfiigen 87
53 Bedingtes Erstellen von Strings 90
54 Stringvergleiche 92
55 Grofs- und Kleinschreibung 95
55.1 Vergleich mittels equalsIgnoreCase() 96
552 toLowerCase() oder toUpperCase(), das ist hier die Frage 96
5.5.3 Wenn A gleich a sein soll 100
5.6 Strings sortieren 103
5.7 Formatieren 104
5.7.1 Nachrichten erstellen 105
5.7.2  Datum und Zeit 106
5.8 String-Analyse 109
5.8.1 Datum und Zeit 112
5.8.2  Strings teilen 116
5.8.3 Reguldre Ausdriicke und lexikalische Analyse mit Grammatiken 120
6 Bedingte Ausfiihrung, Schleifen und Switches 121
6.1 Bedingte Ausfiihrung 121
6.1.1 Logische Operatoren 121
6.1.2  String-Switches 122
6.1.3  Befehlsobjekte 124
6.2 Schleifen 127
6.2.1 Loop Invariant Code Motion 128



Inhalt 9
6.2.2  Teure Array-Zugriffe 129
6.2.3  Loop Unrolling 130
6.2.4  Schleifen vorzeitig verlassen 131
6.2.5  Ausnahmeterminierte Schleifen 132
6.2.6  Iteratoren oder nicht? 134
6.3 Optimale Switches 137
7 Ausnahmen 141
7.1 Ausnahmen durch sinnvolle Schnittstellen vermeiden 141
7.2 Kosten von Try-Catch-Blécken in Schleifen 143
7.3 Keine eigenen Ausnahme-Hierarchien 145
7.4 Automatisch loggende Ausnahmen 147
7.5 Ausnahmen wieder verwenden 147
8 Datenstrukturen und Algorithmen 151
8.1 Grof3-O-Notation 151
8.2 Collections-Framework 153
8.2.1 Collections, Sets und Listen 153
822 Maps 156
8.2.3 Hashbasierte Strukturen optimieren 158
8.2.4 Collections 160
8.3 Jenseits des Collections-Frameworks 162
8.3.1 Zahlen sortieren 162
8.3.2  GrofSe Tabellen 166
8.4 Caches 174
84.1 Austauschstrategien 175
8.4.2  Elementspezifische Invalidierung 176
8.4.3 Schreibverfahren 176
8.44  Gecachte Map 177
84.5 Caches mit LinkedHashMap 182
8.4.6 Schwache Referenzen 184
9 Threads 187
9.1 Gefahrlich lebt sich’s schneller 187
9.1.1  Sicherheit durch Synchronisation 189
9.12  Synchronisationskosten 189
9.1.3 Threadsichere Datenstrukturen 193
9.14 Double-Check-Idiom 194
9.1.5 Sprunghafte Variablen 196
9.2 Allgemeine Threadprogrammierung 196
9.2.1 Threads starten 196
9.22  Threadpool 197
9.2.3 Kommunikation zwischen Threads 204
9.2.4  Warten oder schlafen? 206
9.2.5  Prioritaten setzen und Vorrang lassen 206
9.3 Skalieren mit Threads 207



10 Inhalt
9.4 Threads in Benutzeroberflachen 211
9.41 Lebendige AWT-Oberflachen 211
9.42 Threads in Swing 215
10 Effiziente Ein- und Ausgabe 217
10.1  Fallstudie Dateikopieren 217
10.2  Texte ausgeben 221
10.3  Texte einlesen 226
10.4  Dateicache 227
10.5  Skalierbare Server 237
10.5.1 Hittpd der alten Schule 238
10.5.2 Nicht-blockierender Httpd 242
10.5.3 Vergleichende Rechenspiele 255
l RMI und Serialisierung 259
11.1 Effiziente Serialisierung 259
11.1.1 Datenmenge verkleinern 260
11.1.2 Optimierte logische Darstellung 266
11.2  Latenzzeiten und Overhead 270
11.3  Verteilte Speicherbereinigung 271
12 XML 273
121 SAX,DOM & Co 273
12.1.1 SAX 273
12.1.2 DOM 275
12.1.3 Pull-Parser 276
12.2  Kleiner Modellvergleich 279
12.3  Den richtigen Parser wéhlen 281
124 XML ausgeben 282
12.5 DOM-Badume traversieren 285
126 XML komprimieren 286
12.6.1 HTTP 287
12.6.2 Binarformate 291
13 Applikationen starten 301
13.1 Klassen laden und initialisieren 301
13.2  Verzogertes Klassenladen 303
13.3  Friihes Klassenladen 304
134  Geschwitziges Klassenladen 306
13.5  Klassenarchive 307
13.6  Start-Fenster fiir grofSe Applikationen 308
13.7  Mehrere Applikationen in einer VM starten 312
Letzte Worte 317
Literatur 319
Index 321



Vorwort

Seit ich 1996 mit Java in Beriihrung kam, war Performance in der ein oder anderen
Form immer ein wichtiges Thema. Zundchst war es essentiell, die Gréfse von Applets
zu verringern, dann eine in Java verfasste Skriptsprache zu optimieren und schliefSlich
musste kleinen sowie grofsfen Anwendungen der CPU-Hunger abgewo6hnt werden.

Wihrenddessen wurden die Virtuellen Maschinen immer schneller, Just-in-Time-Com-
piler 16sten Interpreter ab und Ahead-of-Time-Compiler sowie HotSpot betraten das
Spielfeld. Mit den unterschiedlichen VMs dnderten sich auch die Tricks und Kniffe, die
mit der letzten VM noch zu grofien Performance-Gewinnen gefiihrt hatten. Schliefslich
entwickelte Sun mit groler Unterstiitzung der Industrie Enterprise-APIs, die zu J2EE
(Java 2 Enterprise Edition) gebtindelt wurden. Die daraus resultierenden Produkte, die
Applikationsserver, sind der bisher grofste Erfolg, den Java erzielt hat. Mittlerweile ist
Java jenseits des Hypes. Java ist etabliert.

Doch natiirlich hat Java auch Kritiker, hat sie immer gehabt. Und gerade die sehen in
der Performance Javas grofiten Schwachpunkt. Dass diese Kritik nicht ganz unberech-
tigt ist, zeigen die Probleme, die auch Java-Jiinger gelegentlich haben. Oftmals ist es
dabei Unwissenheit, die zu Schwierigkeiten fiihrt, und nicht Java an sich.

Doch trotz Javas Erfolg und akuter Performance-Probleme gab es bis dato kaum deut-
sche Biicher iiber Java-Performance, dariiber, wie man Programme schreibt, so dass sie
performant werden. Dies hat mich dazu motiviert, dieses Buch zu schreiben.

Zum Buch

Das Buch ist grob in zwei Teile geteilt. In den ersten vier Kapiteln gehe ich auf Grund-
lagen ein, die meiner Ansicht nach als Hintergrundwissen unentbehrlich sind. Hier
werden Fragen beantwortet wie: Was ist Performance? Welche Bordmittel brauche ich,
um effizient programmieren zu konnen? Wie sieht ein Entwicklungsprozess aus, der
zu leistungsfahiger Software fithren kann? Wie funktionieren Java VMs und welche
Werkzeuge stehen zum Testen, Messen und Optimieren zur Verfiigung?



12 Vorwort

Im zweiten Teil fokussiert jedes Kapitel einen Themenbereich aus dem Programmie-
reralltag. Dies sind allgemeine Entwicklungstechniken, aber auch Spezialthemen wie
beispielsweise Thread-Programmierung oder XML. Dabei wird anhand von Beispielen
plastisch vorgefiihrt, was zu einer Performance-Verbesserung fithren kann und was
eher nicht. Dabei lege ich Wert darauf, guten Stil nicht auf dem Geschwindigkeitsaltar
zu opfern. Einige der Beispiele sind zum besseren Verstandnis zudem mit UML-Dia-
grammen illustriert.

Es ware vermessen zu behaupten, dass die Ideen zu allen Tipps und Hinweisen zwi-
schen meinen eigenen Ohren entstanden. Tatsdchlich fufien viele der beschriebenen
Optimierungstechniken auf Ideen anderer Entwickler, Autoren und Kollegen. Es han-
delt sich also um Best Practices, wie es so schon auf Neudeutsch heif3t.

Viele der Beispiele sind Listings, die Sie auch in elektronischer Form auf der beiliegen-
den CD-ROM bzw. im WWW unter der Adresse http://fwww.tagtraum.com/performance/
finden und so besser nachvollziehen kénnen. Soweit nicht anders angegeben, habe ich
iibrigens fiir alle Messungen ein Dell Inspiron 7500 Notebook mit Intel Pentium III
500 Mhz und Microsoft Windows 2000 Professional benutzt.

Selbstverstandlich habe ich mir die allergrofite Miihe gegeben, Fehler zu vermeiden.
Doch bekanntlich steckt der Teufel im Detail und genau wie jedes grofiere Programm
hat jedes Buch Fehler. Zudem werden sicher einige der angegebenen URLs mit der Zeit
ungiiltig. Wenn Sie einen Fehler finden, schreiben Sie mir (hs@tagtraum.com) oder dem
Verlag, so dass ich ihn auf der Errata-Seite der Website richtig stellen kann.

Danksagungen

Zuallererst mochte ich mich bei Ihnen bedanken. Es gibt so viele gute Biicher, daher
betrachte ich es als Kompliment, dass Sie ausgerechnet mein Buch erworben haben.
Danke! Ich hoffe dieses Buch erweist sich fiir Sie als niitzlich und endet nicht als Staub-
fanger im Regal der ungelesenen Biicher.

Ganz abgesehen davon ist es eine Ehre, sich tiber rund 300 Seiten verbreiten zu diirfen
und dafiir auch noch bezahlt zu werden. Diese Ehre wurde mir zuteil durch das Ver-
trauen von Addison-Wesley und die Tatsache, dass mich die innoQ Deutschland
GmbH grofizligigerweise fiir vier Monate freistellte. Genau aus diesem Grund muss
ich mich an dieser Stelle nicht fiir unzéhlige durchgearbeitete Nédchte und Wochenen-
den bei meinen Néchsten entschuldigen, wie das in anderen Biichern so haufig der Fall
ist. Stattdessen mochte ich mich fiir die Unterstiitzung bei der innoQ im Allgemeinen
und Stefan Tilkov im Besonderen herzlich bedanken.



Danksagungen 13

Dank auch an Christiane Auf, Tobias Draxler und Philipp Burkart von Addison-Wesley
fiir die unkomplizierte Zusammenarbeit und an Michael Neumann von Line Informa-
tion GmbH fiir detailliertes Feedback und einen charmanten Hang zum Perfektionis-
mus. Und schliefSlich gilt mein Dank all jenen, die mich wéhrend des Schreibens
ermutigten und mit Rat, Zuneigung und anderen wichtigen Dingen unterstiitzten.
Danke Jennifer Fuller, Barbara, Rolf und Marc Schreiber, Phillip Ghadir, Enke Eisen-
berg und Jason Sullivan.

Hendrik Schreiber
Raleigh, North Carolina, Mai 2002



Sandini Bib



| Java ist zu langsam

Seit es Java gibt, gibt es Kritiker, die behaupten, Java sei zu langsam fiir dieses und
jenes. Die automatische Speicherbereinigung (Garbage Collection) fresse die gesamte
Rechenzeit auf und iiberhaupt, interpretierte Sprachen seien die Wurzel allen Ubels.

Zu leugnen, dass Java in den ersten Versionen ein Performance-Problem hatte, hiefSe
zu behaupten, dass Sanduhr-Mauszeiger ein Symbol fiir Produktivitit sind und ein
Repaint auch an schnellen Rechnern noch mit blolem Auge nachvollziehbar sein
muss. Denn so viel steht fest: Java {iberzeugte bestimmt nicht durch Geschwindigkeit.
Es waren andere Eigenschaften wie Sicherheit, Netzwerkfahigkeit und Portabilitat, die
die Massen verfiihrten.

Nun sind seit der ersten Java-Version einige Jahre vergangen und die Hersteller von
Java Ausfithrungsumgebungen, den Java Virtuellen Maschinen (Java VM), hatten Zeit
diese zu optimieren und die ein oder andere Finesse einzubauen. In der Zwischenzeit
sind zudem die Rechner sehr viel schneller geworden (Abbildung 1.1).

50
45

o /
35 /
30 /

2 /
[o)]
E 25
5 s
20
15
10 //
5 /
0 T T T T T

1995 1996 1997 1998 1999 2000

Abbildung 1.1: Von Mitte 1995 bis Anfang 2000 hat sich die Leistung bei Integer-Operationen von Intel-Desktop-
Prozessoren mehr als verzehnfacht. Quelle: http://www.spec.org.



16 I Java ist zu langsam

Und trotzdem hat Java immer noch den Ruf langsam zu sein. Gerade Programmierer,
die aus anderen Sprachen zu Java wechseln (miissen!), stimmen gerne in den Chor der
Norgler ein. Java sei nicht performant, und das wiirde mit C/C++/Delphi/Perl/Assembler/
etc. viel schneller laufen. Zugegeben, dies mag in einigen Fallen stimmen. Aber abgese-
hen davon, dass solch unreflektierte Pauschal-Kritik ganz erheblich nerven kann, ist
sie unproduktiv und bringt den Kritisierenden in Verruf. Denn wenn der Bauer nicht
schwimmen kann, liegt’s bekanntlich an der Badehose.

Studien belegen, dass Performance-Unterschiede von Programmen, die in der gleichen
Sprache, aber von verschiedenen Entwicklern verfasst wurden, mindestens so grof3
sind wie die Performance-Unterschiede von Programmen, die in unterschiedlichen
Sprachen geschrieben wurden [Prechelt00, 5.29].

. Was ist Performance!?

Bevor wir uns damit beschaftigen, wie wir die Performance unserer Programme ver-
bessern, wollen wir zundchst einmal klaren, was unter Performance zu verstehen ist.
Leider ist Performance einer jener Anglizismen, die ihre volle Bedeutung nicht auf den
ersten Blick entfalten.

Performance ist nicht nur reine Rechengeschwindigkeit. Zur Performance eines Pro-
gramms gehoren auflerdem die Geschwindigkeit von Ein-/Ausgabe-Operationen
sowie der Speicherverbrauch. So kann, wenn nur wenig schneller Speicher zur Verfii-
gung steht, ein schnelles Programm mit hohem Speicherbedarf offensichtlich weniger
performant sein als ein langsames Programm mit geringem Speicherbedarf. An diesem
Beispiel wird schon klar, dass das Inanspruchnehmen von Rechenleistung, Speicher
und Ein-/Ausgabe-Operationen oft in einem gespannten Verhéltnis zueinander ste-
hen. Verbraucht ein Programm wenig Speicher, so benétigt es oft eine hohe Rechenleis-
tung. Ist die benotigte Rechenleistung gering, so ist hdufig eine hohe Ein-/Ausgabe-
Geschwindigkeit vonnoten. Wenn jedoch die Ein-/Ausgabe-Geschwindigkeit irrele-
vant ist, erweist sich unter Umstidnden der Speicherverbrauch als sehr hoch.

Uberspitzt gesehen dringt sich der Eindruck auf, dass das Produkt der bendtigten
Ein-/Ausgabe- (EA) und Rechenleistung (R) sowie des Speicherverbrauchs (M) von n
verschiedenen Problemlosungen konstant ist:

EA *R *M, = konst

Nun ist dies leider keine erwiesene Tatsache, sondern allenfalls eine interessante
Hypothese. Jedoch eine, die uns weiterbringt. Einmal angenommen, die Formel wére
eine anerkannte Tatsache und giiltig fiir alle Programme dieser Welt. Dann miissten



Was ist Performance? 17

wir nur noch die genauen technischen Daten der Zielplattform beim Hersteller erfra-
gen und konnten fiir eben diese Zielplattform die optimale Version des Programms
schreiben. Ein fahiges Team vorausgesetzt, ware der schwierigste Teil der Aufgabe ver-
mutlich, die korrekten Daten vom Hersteller zu bekommen.

Nun ist die obige Formel aber leider keine Tatsache. Rechenleistung und Ein-/Aus-
gabe-Geschwindigkeit gleichberechtigt in einer Formel zu verewigen erscheint hochst
riskant, und auch nur einen der drei Werte verlasslich zu messen, ist ein mehr als heik-
les Unterfangen. Wir erkennen jedoch, dass ein Programm an sich nicht performant ist.
Es kann lediglich in einer bestimmten Umgebung performant sein. Daraus folgt:

Performant sind solche Programme, die die vorhandenen Ressourcen effizient nutzen.

Nehmen wir zum Beispiel einen Webserver. Vereinfacht betrachtet ist es seine Aufgabe,
Dateien von der Festplatte zu einem Netzwerkadapter zu kopieren. Auf den ersten
Blick sind also ein mdéglichst schneller Netzwerkadapter, eine moglichst schnelle Fest-
platte und eine moglichst schnelle Verbindung zwischen beiden Gerédten nétig. Mit
anderen Worten: Ein schneller Webserver zeichnet sich durch besonders effiziente
Ein-/ Ausgabe-Operationen aus.

Nun ist eine Festplatte verglichen mit dem Hauptspeicher in der Regel nicht besonders
schnell. Es macht also Sinn, die Dateien im Hauptspeicher zu halten statt jedes Mal von
der langsamen Festplatte zu lesen (siehe auch Kapitel 10.4 Dateicache). Leider ist jedoch
der Hauptspeicher meist nicht grofs genug fiir alle Dateien. Es ist also erstrebenswert,
nur solche Dateien im Speicher zu halten, die besonders hédufig nachgefragt werden.

Anstatt nur die offensichtlich notwendigen Ressourcen zu nutzen, bedient sich der
Webserver aller ihm zur Verfligung stehenden Ressourcen, die der Leistungssteige-
rung dienen: des Netzwerkadapters, der Festplatte und des Hauptspeichers. Und zwar
mit Betonung auf ihm zur Verfiigung stehenden. Keinesfalls mehr!

Versucht der Webserver mehr Dateien im Hauptspeicher zu halten als realer und somit
schneller Speicher vorhanden ist, macht das keinen Sinn. Im Gegenteil, Dateien wiir-
den in den Hauptspeicher geladen, um anschlielend vom Betriebssystem wieder auf
die Festplatte ausgelagert zu werden. Dateien wiren also unnétigerweise doppelt auf
der Festplatte vorhanden und belegten wertvollen Speicherplatz. Hinzu kdme der
erhebliche Aufwand, den das Betriebssystem betreiben muss, um Speicherseiten ein-
und auszulagern. Hierfiir gibt es einen Namen: Ressourcenverschwendung.

Nun liegt es in der Natur der Sache, dass optimale Ressourcennutzung und Ver-
schwendung nahe beieinander liegen. Geschickt haushalten ist daher die halbe Miete.



18 I Java ist zu langsam

|.2 Empfundene Performance

Es gibt jedoch Programme, die nach allen Regeln der Kunst optimiert wurden, gemaf3
obiger Definition performant sind und dennoch von Benutzern als langsam bezeichnet
werden. Und leider lassen sich Nutzer nur selten durch technische Argumente von der
Performance eines Programms tiberzeugen.

Empfundene Performance ist letztlich, was zihlt.

Die gilt insbesondere, wenn der Nutzer direkt mit dem Programm interagiert. So macht
es einen grofien Unterschied, ob ein Programm Benutzeraktionen einfach ignoriert oder
ob es mittels eines Sanduhrzeigers signalisiert, dass es gerade beschéftigt ist. Ein Positiv-
Beispiel sind die gangigen Webbrowser. Wéahrend sie Daten tiber das Netz laden, zeigen
sie dem Nutzer durch eine Animation an, dass sie beschéftigt sind. Ublicherweise befin-
det sich in der Statusleiste zudem eine Fortschrittsanzeige, die dem Benutzer ein Gefiihl
dafiir vermittelt, wie lange er noch zu warten hat. Meist werden sogar Teilergebnisse
unmittelbar dargestellt. Dariiber hinaus versetzt ein Abbruch-Knopf den Nutzer in eine
psychologisch wichtige Machtposition. Er kann selbst entscheiden, ob er noch ldnger
warten mochte oder nicht, d.h. er muss sich nicht dem Programm unterordnen. Und
Nutzer hassen nichts mehr, als sich einem Programm unterzuordnen.

Grundsatzlich gilt: Wenn Wartepausen unvermeidbar sind, muss der Nutzer moglichst
iiber den Fortschritt des Prozesses informiert werden. Ist dies nicht moglich, sollte ihm
beispielsweise durch eine Animation signalisiert werden, dass der Prozess noch im
Gange ist. Kommt auch das nicht in Frage, so muss dem Nutzer zumindest vermittelt
werden, dass das Programm gerade beschéftigt ist.

Ende 2001 lief im deutschen Fernsehen ein Werbespot der Deutschen Bundesbahn, in
dem sie auf ihre Piinktlichkeit im Vergleich zu anderen Verkehrsmitteln hinwies. Im
Spot wurden wartende Passagiere per Anzeigetafel und Durchsage iiber die dreiminii-
tige Verspdtung eines Zuges unterrichtet, was zu einer Grofidemonstration fiihrte. Ein-
mal abgesehen davon, dass viele sich iiber jede nur dreiminiitige Verspatung eines
Bundesbahnzuges freuen wiirden, illustriert der Spot, wie wichtig es ist, den Nutzer
auf dem Laufenden zu halten. Stellen Sie sich nur einmal vor, die Bahn hatte ihre Kun-
den nach zweiminiitigem Warten noch immer nicht iiber die Verspatung informiert.
Was wiéren dann wohl die Folgen gewesen ...

.3 Gesunder Menschenverstand

Wir wissen nun, worauf es ankommt: Effizient mit den vorhandenen Ressourcen haus-
halten und Riicksicht auf die nicht-funktionalen Bediirfnisse der Benutzer nehmen.

Blofs — wie erreichen wir das?



Gesunder Menschenverstand 19

Ich behaupte, die 16sbaren Performance-Probleme bekommen Sie mit Wissen, Neu-
gierde und ein wenig gesundem Menschenverstand in den Griff. Fiir die unldsbaren
miissen Sie vermutlich etwas Zeit investieren, denn dank Moores Gesetz! hat Zeit bis-
lang noch die meisten Performance-Probleme geldst. Nun ist Zeit jedoch knapp, wes-
halb wir uns lieber mit den 16sbaren Problemen auseinander setzen.

Rufen Sie sich ins Gedachtnis zurtick, dass Java eine Hochsprache ist. Java bietet exzellente
Abstraktionen fiir Betriebssystemspezialitaten und die darunter liegende Hardware. So
miissen Sie sich beispielsweise nie mit den Eigenheiten einer Prozessorarchitektur herum-
schlagen. Die Besonderheiten des ausfiihrenden Systems werden so weit es geht weg-
abstrahiert. An seine Stelle treten die VM und die Klassenbibliotheken der Java-Plattform.

Nun ist eine Hochsprache wie Java weit mehr als die Abstraktion von Betriebssystem
und Hardware. Java ist objektorientiert, besitzt eine automatische Speicherbereini-
gung, bietet ein Sicherheitskonzept, verfiigt {iber ausgereifte Netzwerkunterstiitzung
etc. All dies hat einen Preis. Und manchmal besteht dieser Preis darin, dass etwas ein-
fach aussieht, es in Wirklichkeit aber nicht ist. Oder anders gesagt, dass der Schein
triigt. Thre Neugierde und Ihr Verstand helfen Ihnen die Wahrheit herauszufinden.

Betrachten wir ein Beispiel:

public void allocate() |
{
bytel] a = new byte[10000001;
}
{
bytel] a = new byte[10000001;
!

bytel] a = new bytel[10000007;

}
Listing I.1: Hoffen auf die Miillabfuhr

Man wiirde erwarten, dass die Methode allocate() problemlos ausfiihrbar ist — wird
doch der Array a jeweils in einem eigenen Block deklariert und dann dieser Block
sofort verlassen. Nach dem Verlassen ist a somit nicht mehr sichtbar; jetzt sollte die
Speicherbereinigung zum Zuge kommen. Doch weit gefehlt. Mit den meisten VMs
resultiert das Ausfithren der Methode nach einigen byte-Array-Allokationen in einem
OutOfMemoryError. Der Grund dafiir ist einfach: die byte-Arrays sind auflerhalb ihres

1 Gemifs Moores Gesetz verdoppelt sich die Transistordichte integrierter Schaltkreise alle 18 Monate.
Entsprechend erhoht sich auch die Leistungsfahigkeit von Mikroprozessoren. Das Gesetz wurde
Mitte der 60er Jahre vom spéteren Intel-Griinder Gordon Moore aufgestellt und bezog sich zunachst
auf einen Zeitraum von je 12 Monaten. Seit 1970 hat es sich alle 18 Monate bewahrheitet.



20 I Java ist zu langsam

Blocks zwar nicht mehr sichtbar, d.h. man kann auf a nicht mehr zugreifen, aus Griin-
den der Effizienz werden die auf dem Stack allozierten Referenzen jedoch erst beim
Verlassen der Methode vom Garbage Collector eingesammelt. Denkt man kurz darii-
ber nach, leuchtet dieses Verhalten sofort ein. Wiirde der Garbage Collector nach jedem
Block oder gar Statement aufgerufen, wire die VM vollauf mit sich selbst beschaftigt.
Der auszufiihrende Code verkdme zur Nebensache.

.4 Wissen ist Performance

Zugegeben, obiges Beispiel hat viel mit Wissen {iber die Interna von VMs und Garbage
Collectoren zu tun. Aber gerade das macht es so geeignet. Wissen ist eines Ihrer wich-
tigsten Werkzeuge zum Optimieren von Programmen.

Nun kann man Wissen erwerben, nur leider nicht im Supermarkt um die Ecke. Man
muss es sich aneignen. Beispielsweise indem man ein Buch liest, mal eine Stunde in
der Java-Sprachspezifikation stobert oder sich mit Kollegen austauscht. Wichtige Res-
sourcen miissen zudem unmittelbar fiir alle Entwickler verfiigbar sein.

Entsprechendes gilt fiir viele Berufe, in denen Menschen hauptséchlich fiirs Denken
bezahlt werden. So gibt es im Journalismus die so genannten Bordmittel, die jeder gute
Journalist an seinem Arbeitsplatz haben sollte. Fiir einen Politikredakteur gehdren
dazu beispielsweise der so genannte Oeckl, ein Buch mit Telefonnummern und Adres-
sen aller wichtigen Personen und Organisationen der Bundesrepublik Deutschland,
sowie das Munzinger Archiv, eine Sammlung von Lebensldufen aller wichtigen Perso-
nen des o6ffentlichen Lebens. Ohne diese beiden Nachschlagewerke ist es quasi unmog-
lich, guten politischen Journalismus zu betreiben. Ein Telefon und ein Computer mit
einem Redaktionssystem allein reichen einfach nicht.

Das Gleiche gilt fiir Java-Entwickler.

Man kann keine guten Java-Programme schreiben, wenn man nicht direkten, lokalen Zugriff
auf die Java-API-Dokumentation und den Java-Quellcode hat.

Das bedeutet, dass Sie nach dem Herunterladen des Java Development Kits (JDK) auch
noch die zugehorige Dokumentation herunterladen miissen. Entpacken Sie die Doku-
mentation und setzen Sie in Ihrem Browser ein Lesezeichen auf den API-Teil. Anschlie-
Bend — und dies ist der Schritt, den die meisten leider vergessen — entpacken Sie die
Datei src.jar bzw. im Fall von JDK 1.4 die Datei src.zip, die sich iiblicherweise im Basis-
verzeichnis des JDKs befindet.

C:\>cd jdk1.3.1
C:\jdkl.3.1>bin\jar xf src.jar

Listing 1.2: Entpacken des Sun JDK 1.3.1 Java-Quellcodes auf einem Windows-System



Wissen ist Performance 21

C:\>cd j2sdkl.4.0

C:\j2sdkl.4.0>mkdir src

C:\j2sdkl.4.0>cd src
C:\j2sdkl.4.0\src>..\bin\jar -xf ..\src.zip

Listing 1.3: Entpacken des Sun JDK [.4.0 Java-Quellcodes auf einem Windows-System

Der Java-Quellcode befindet sich nun im Verzeichnis C:\jdk1.3.1\src bzw.
C:\j2sdk1.4.0\src. Konfigurieren Sie Ihre Entwicklungsumgebung so, dass Sie problem-
los auf den Code zugreifen konnen. Denn obgleich die API-Dokumentation von Java
vorbildlich ist, gilt die alte Programmiererweisheit:

Die Wahrheit steht im Code.

Und kein ernst zu nehmender Entwickler kann es sich leisten, die Wahrheit zu ignorie-
ren.

Leider liegen oft nicht alle verwendeten Bibliotheken im Quellcode vor. Sofern es die
Lizenzbedingungen zulassen, erweisen hier Decompiler wie jad (http://kpdus.tripod.com/
jad.html) wertvolle Dienste.

Einige Entwicklungsumgebungen? erlauben es dem Entwickler, per Mausklick zum
Quellcode einer Methode oder einer Klasse zu navigieren. Kaufen Sie Ihren Entwick-
lern eine solche IDE oder {iberzeugen Sie Ihren Projektleiter davon, Ihnen und Thren
Kollegen eine solche IDE zu kaufen. Ihre Produktivitit wird sich steigern und dank
Ihrer Neugierde werden Sie sich langfristig mehr Wissen aneignen. Wissen dariiber,
was tatsdchlich passiert, wenn Sie diese oder jene unscheinbare Methode aufrufen.

Dieses Wissen tiber die verwendeten Klassenbibliotheken wird Thnen letztendlich
helfen, performanten Code zu schreiben.

Natiirlich miissen Sie nicht den Quellcode jeder Klasse vor Gebrauch studieren. Es
reicht vollkommen, sich bei Bedarf die kritischen Stellen anzuschauen. Dartiber hinaus
gibt es jedoch Dinge, die Sie auf jeden Fall wissen sollten. Diese will dieses Buch ver-
mitteln.

2 Z.B. Intelli]IDEA, http://www.intellij.com/.



Sandini Bib



2 Entwicklungsprozess

Wenn Sie kurz vor der Ubergabe Thres zweijahrigen, performancekritischen Projektes
zum ersten Mal die Leistungsfahigkeit Ihrer Software messen und feststellen, dass Sie
Ihr Ziel um einige Grolenordnungen verfehlt haben, werden Sie schnell merken, dass
Sie etwas falsch gemacht haben. Und zwar von Anfang an. Denn jetzt, kurz vor der
Ubergabe, sind die Kosten, die Performance noch zu erhéhen, gewohnlich exorbitant.
Im Allgemeinen wird davon ausgegangen, dass, wenn Sie Software nach dem oben
beschriebenen Modell entwickeln, die Kosten fiir Anderungen mit dem Projektfort-
schritt exponentiell steigen (Abbildung 2.1).

Anderungskosten

.
Ll

Projektfortschritt

Abbildung 2.1: In traditionellen Wasserfall-Projekten steigen die Kosten von Anderungen exponentiell mit dem
Projektfortschritt [vgl. Beck00, S. 21].

Es ist wichtig festzustellen, dass nicht die Entwickler einen lausigen Job abgeliefert
haben, sondern diejenigen, die fiir den Entwicklungsprozess verantwortlich waren.

Performante Software ldsst sich nur mit einem auf dieses Ziel abgestimmten Prozess
entwickeln. Es reicht nicht, ein Programm kurz vor der Abgabe zum ersten Mal durch-
zumessen. Das ist so, als wiirden Sie ein Auto bauen, in das Sie am Auslieferungstag
einsteigen, um zu sehen, wie schnell es denn fahrt und ob die Geschwindigkeit der in
der Werbebroschiire abgedruckten entspricht.



24 2 Entwicklungsprozess

Es hat sich die Einsicht durchgesetzt, dass vielleicht Kleinstprogramme auf einen Schlag
fertig gestellt werden kénnen. Alle anderen miissen modularisiert sowie schrittweise
verbessert und ausgebaut werden. Daher beruhen die meisten modernen Software-Ent-
wicklungs-Methoden auf iterativer Verfeinerung und inkrementeller Erweiterung. So
werden funktionierende Teilergebnisse geschaffen, die bereits einen Wert fiir den Kun-
den darstellen. Zudem kénnen Probleme friihzeitig und somit rechtzeitig erkannt wer-
den. Denn kurz vor der Abgabe ist es meistens zu spat und zu teuer, um das Projekt noch
zu retten. Daraus folgt, dass die Performance eines Programms genau wie seine Funk-
tion rechtzeitig und kontinuierlich getestet werden muss. Dies widerspricht gleich meh-
reren populdren Weisheiten:

Rules of Optimization:
Rule 1: Don’t do it.
Rule 2: (for experts only): Don’t do it yet.

(M. A. Jackson)

More computing sins are committed in the name of efficiency (without necessarily
achieving it) than for any other single reason — including blind stupidity.

(W.A. Wulf)

We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil.

(Donald Knuth)

In allen drei Zitaten steckt ein Kérnchen Wahrheit. Wir sollten jedoch nicht vergessen,
dass die Performance eines Programms Teil der Anforderungen ist und daher nicht
einfach unter den Tisch fallen darf oder morgen erledigt werden kann. Denn nachtrag-
lich optimierte Programme lehren einem haufig das Fiirchten ...

Im Folgenden wird als Beispiel ein prototypischer Prozess umrissen. Halten Sie sich
nicht sklavisch an diesen Prozess! Kein Prozess ist so gut, dass man ihn zur Bibel erkla-
ren sollte. Nutzen Sie ihn als Anregung und gebrauchen Sie ihn mit Verstand.!

Seine Essenz ist es, das Messen der Performance als Teil des funktionalen Testens und
das Testen als Teil des Entwickelns zu begreifen sowie iterativ-inkrementell vorzugehen.

Messen ist Testen und Testen ist Entwickeln.

Bauen Sie in jeder Iteration kleine funktionierende Einheiten, die Sie in der nédchsten
Iteration erweitern oder verbessern. Beginnen Sie dabei mit den Einheiten, die fiir den
Kunden den groiten Wert darstellen.

1 Siehe auch Manifesto for Agile Software Development — http://www.agilealliance.org/.



Analyse und Design 25

Sie werden feststellen, dass im Folgenden keine Rollen oder Verantwortlichkeiten defi-
niert werden, sondern nur Tatigkeiten bzw. Ziele. Das ist durchaus so gewollt. Gew6hn-
lich findet sich jemand fiir eine gegebene Aufgabe. Und vielleicht muss nicht jeder
immer dasselbe machen. Wenn Sie das Know-how Ihrer Mitarbeiter als schiitzenswerte
Investition betrachten, ist das sogar angebracht. Kommen Sie auf keinen Fall auf die
Idee, Analysieren, Entwerfen und Kodieren strikt zu trennen und die Aufgaben ver-
schiedenen Personen zuzuordnen, die sich evtl. nicht mégen oder gar raumlich und zeit-
lich voneinander getrennt arbeiten. Alle Projektphasen greifen ineinander und gehen
ineinander tiber. Obwohl hier mehrere Schritte der Reihe nach vorgestellt werden, ist es
eher hinderlich, sich immer genau an diese Reihenfolge zu halten. Stattdessen kann es
durchaus Sinn machen, von Phase zwei direkt in Phase eins oder drei zu springen.

Folgendes sind die drei Hauptphasen des Prozesses:
Analyse und Design
Kodieren und Testen
Integrieren und Testen

Kénnte man Analysen und Designs verlasslich und mit vertretbarem Aufwand formal
testen, ohne zuvor den Code schreiben zu miissen, so hiefle die erste Phase Analyse,
Design und Testen. Nun ist dem nicht so, was das Testen in den anderen beiden Phasen
umso wichtiger macht. Daher gehe ich nach der Beschreibung der drei Prozess-Phasen
noch einmal auf verschiedene Aspekte des Testens und Messens ein. Doch hier sind
zundchst einmal die drei Phasen.

2.1 Analyse und Design

Je besser Sie Ihre Aufgabe verstehen, desto passender wird Thr Design ausfallen. Fin-
den Sie gemeinsam mit dem Kunden heraus, wie die Rahmenbedingungen aussehen
(Betriebssystem, Leistung und Anzahl der Prozessoren, Bandbreite der Netzwerk-
anbindung, Bildschirmauflosung etc.). Fragen Sie nach allem, was irgendwie Einfluss
auf die Leistungsfahigkeit der zu erstellenden Software haben konnte. Nur, wenn Sie
die Laufzeitumgebung gut kennen, konnen Sie passende Software schreiben.

Versuchen Sie aufler den reguldren funktionalen Anforderungen moglichst genaue
Performance-Anforderungen zu vereinbaren, beispielsweise indem Sie die Anwen-
dungsfille (Use-Cases) oder Stories? der reguldren Analyse mit Laufzeit-Toleranzen
fiir performancekritische Transaktionen versehen. Vergessen Sie diesen Schritt auf kei-
nen Fall! Wenn Sie nicht wissen, was der Kunde wiinscht, wissen Sie nicht, wann Sie

2 Stories sind das Extreme-Programming-Aquivalent zu Anwendungsfillen. Es handelt sich hierbei
um die kurze Beschreibung eines Features, zu Papier gebracht auf einer Karteikarte.



26 2 Entwicklungsprozess

fertig sind, somit ist Arger vorprogrammiert. Betrachten Sie jedoch weder die funktio-
nalen noch die Performance-Anforderungen als endgiiltig. Es liegt in der Natur der
Anforderungen, dass sie sich &ndern und Sie darauf reagieren miissen.

Das Wissen iiber die Laufzeitumgebung und die Anforderungen des Kunden versetzt
Sie und Ihr Team in die Lage, ein Design zu erstellen, von dem Sie annehmen, dass es
der Aufgabe gerecht wird. Dank Threr und der Qualifikation Ihrer Mitarbeiter haben
Sie berechtigten Grund an das Design zu glauben. Verfallen Sie jedoch nicht dem Irr-
tum, dass Sie zu diesem Zeitpunkt wissen, dass Ihr Design die gesetzten Erwartungen
erfiillt. Sie sollten daher erwidgen, die kritischsten Teile Ihres Designs zu verifizieren,
indem Sie zunichst einen Prototypen entwerfen und diesen fiir eine Machbarkeitsstu-
die verwenden. Vergessen Sie nicht, dass das Wichtigste am Prototypen ist, ihn nach
Gebrauch wegzuschmeiflen. Fangen Sie noch einmal von vorne an und Sie werden
langfristig Zeit gewinnen.

Analyse und Design sind in einem iterativ-inkrementellen Prozess niemals eine einma-
lige Angelegenheit. Daher ist es selbstverstidndlich, dass Erkenntnisse aus allen ande-
ren Phasen in der néchsten Iteration in die Analyse-und-Design-Phase einfliefSen. Dies
gilt genauso fiir alle folgenden Phasen.

2.2 Kodieren und Testen

Wihrend der Kodierungsphase wird das Design in Code gegossen. Hierzu gehort
auch der entsprechende Testcode. Wahrend dieser fiir einzelne Klassen und fiir die
Komponenten-Integration von den Entwicklern selbst geschrieben wird, sollten die
System-Tests vom Kunden erstellt werden, und zwar mit Unterstiitzung aus Ihrem
Team.

Kent Beck und andere Verfechter agiler Methoden propagieren das Schreiben von Tests
vor dem Schreiben des zu testenden Codes (Test First). Auf diese Weise miissen die
Entwickler sich zunéchst mit einer Aufiensicht auf ihre Software beschiftigen, sie
machen sich zundchst Gedanken iiber das Benutzen und dann erst {iber das Imple-
mentieren. Dies fiihrt in der Regel zu besseren Tests und somit zu besserem Code.
Zudem wissen die Entwickler genau, wann sie fertig sind — ndmlich wenn alle Tests
laufen, insbesondere auch die &lterer Programmteile.

Spétestens, wenn Sie iiber ein System verfiigen, zu dem Sie Performance-Anforderun-
gen haben, sollten Sie entsprechende Testtreiber fiir das System fertig gestellt haben. Je
frither Sie Ihre Software testen, desto besser. Blicken Sie der Wahrheit ins Auge: Nicht
zu wissen, ob man einen Speicherfresser oder CPU-Zyklen-Verbrenner erstellt hat, ist
weitaus schlimmer, als es zu wissen.



Integrieren und Testen 27

Wenn Sie dank der prédzisen Anforderungen Ihres Kunden oder Ihrer eigenen Messda-
ten genau wissen, dass Klasse A die Methode B auf System C in D Sekunden ausfiihren
konnen muss, schdtzen Sie sich gliicklich. Sie konnen auf unterster Ebene neben dem
funktionalen Unit-Test auch einen Performance-Unit-Test schreiben. Noch friiher kon-
nen Sie nicht testen.

Vermischen Sie dabei auf keinen Fall funktionale Tests mit Performance-Tests. Sie wol-
len in der Lage sein, sehr schnell das korrekte Funktionieren Threr Klassen nachzuwei-
sen. Performance-Tests bendtigen aber gewohnlich etwas langer als funktionale Tests.
Ungeduldige Entwickler (also fast alle) wiirden daher entsprechend seltener testen.
Das Vermischen der beiden Testarten ist also kontraproduktiv.

2.3 Integrieren und Testen

In der Integrations- und Testphase wird der bereits von den Entwicklern wahrend des
Kodierens getestete Code zusammengefiihrt und einem Integrationstest unterzogen.
Hier kommen die bereits erstellten funktionalen und leistungsorientierten Testtreiber
zum Einsatz. Beachten Sie, dass Sie immer funktionale Tests benotigen und diese auch
bei jeder Integration ausfiihren sollten.

Leistungstests sind nur etwas wert, wenn sichergestellt ist, dass die erbrachten Leistungen
auch den funktionalen Anforderungen geniigen.

Die gemessenen Resultate flieflen natiirlich in folgende Analyse-und-Design- und
Kodierungsphasen ein. Wichtig ist dies insbesondere, wenn die Resultate nicht akzep-
tabel sind. Evtl. miissen Sie die gesamte Architektur iiberdenken. Wenn Sie friihzeitig
mit dem Testen begonnen haben, sollte dies jedoch kein Problem sein.

2.3.1 Mikro- und Makro-Benchmarks

Wie schon angedeutet, sollten Sie Thre Software Performance-Tests auf verschiedenen
Ebenen unterziehen (Abbildung 2.2). Auf unterster Ebene stehen Performance-Unit-Tests
(Mikro-Benchmarks), auf oberster Ebene stehen System-Performance-Tests (Makro-
Benchmarks).

Angenommen, Sie erstellen eine Applikation, die unter anderem grofie Datenmengen
in eine Protokoll-Datei schreiben muss. Daher entschlieSen Sie sich einen dedizierten
Protokoll-Dienst zu schreiben. Ein sinnvoller Performance-Unit-Test wire beispiels-
weise zu messen, wie schnell der Protokoll-Writer Thres Dienstes 10.000 Eintrage aus-
geben kann. Mit Hilfe des Tests konnen Sie entsprechende Daten sammeln und die
Protokoll-Writer-Klasse kontinuierlich verbessern.



Sandini Bib

28 2 Entwicklungsprozess

Auf Systemebene jedoch ist das Schreiben von Protokollen nur ein Teilaspekt der
Gesamtperformance. lhre Testtreiber sollten daher nicht nur isolierte Eigenschaften
Ihres Programms testen, sondern moglichst reale Szenarien nachempfinden. Diese Art
des Testens wird auch als Makro-Benchmarking bezeichnet.

Eine gute Ausgangsbasis fiir Testszenarien sind die in der Analyse erstellten Anwen-
dungsfélle oder Stories. Fragen Sie Ihren Kunden nach realistischen Testdaten und der
relativen Héufigkeit der verschiedenen Abldaufe. Besser noch, nehmen Sie Testdaten an
einem bestehenden System auf. Entsprechende Werkzeuge konnen dabei sehr hilfreich
sein (siehe Kapitel 4.6 Makro-Benchmarks). Verfiittern Sie dann diese Daten an Thren Test-
treiber. So kénnen Sie realistische Tests durchfithren und aussagekriftige Ergebnisse
erhalten.

Makro-Benchmarks
. A

SystemTest

]

IntegrationsTest

Komponente

Kommuhikation
A

Komponente

KomponentenTest

KlassenTest
KlassenTest

Klasse

v
Mikro-Benchmarks

Abbildung 2.2: Verschiedene Testebenen in einem System. Die Paket-Ebene wurde ausgelassen, da ein Paket in Java
nicht unbedingt eine semantische, sondern eher eine strukturelle Einheit ist und daher nicht direkt mit einem Funk-
tions- oder Performance-Test assoziiert ist. In der Regel reicht es, alle Klassentests eines Pakets auszufiihren, um
das Paket zu testen.



Integrieren und Testen 29

Unter Umstdnden werden Sie beim Testen feststellen, dass Sie zwar verhdltnismégig
schnell Protokolldaten schreiben konnen, dies aber leider immer in Momenten pas-
siert, in denen der Benutzer gerade etwas eingeben muss, jedoch nicht kann, da das
System mit den Protokolldaten beschéftigt ist.

Oder Sie stellen fest, dass Sie zwar in der Lage sind, sehr schnell sehr viele Protokoll-
Ereignisse zu verarbeiten, diese jedoch tiber eine sehr langsame Schnittstelle angelie-
fert werden. Somit niitzt es IThnen wenig, die Daten schnell schreiben zu kénnen. Der
Flaschenhals sitzt an anderer Stelle.

Mikro-Benchmarks sind sehr niitzlich zum Optimieren kleiner, isolierter Programm-
teile. Sie zeigen Ihnen aber immer nur einen Ausschnitt des Gesamtbildes. Makro-
Benchmarks hingegen sind zum Optimieren Ihres Codes oft nutzlos, liefern Ihnen
jedoch wichtige Daten, wenn es um das Optimieren des Systems inklusive VM und
Hardware geht. Beide Testarten ergénzen sich also.

2.3.2 Testldange

Sowohl fiir Mikro- als auch fiir Makro-Benchmarks gilt, dass Testldufe nicht zu kurz
sein diirfen, um aussagekréftige Ergebnisse zu produzieren. Mikro-Benchmarks soll-
ten mindestens fiinf Sekunden laufen, Makro-Benchmarks einiges langer. Beachten Sie,
dass Teile Ihrer Laufzeitumgebung wie Caches oder die Java VM erst nach einer gewis-
sen Laufzeit ihre volle Leistung entfalten. Beispielsweise konnten frithe HotSpot-Versi-
onen Methoden, die nur einmal ausgefiihrt werden, nur interpretieren. Immer noch
gilt, dass der adaptive Compiler erst nach einer gewissen Laufzeit zum Zuge kommt.

2.3.3 Auswertung

Fiihren Sie aufsferdem immer mehrere Testlaufe durch. So konnen Sie sich ein Bild von
der Streuung der Messergebnisse machen. Statistische Werte, die Sie auf jeden Fall
erheben sollten, sind:

Bestes Ergebnis
Schlechtestes Ergebnis
Durchschnittliches Ergebnis

Dartiber hinaus konnen Mafizahlen wie Standardabweichung, Median, geometrisches
Mittel etc. das Vergleichen der Ergebnisse mehrerer Testsessions erheblich erleichtern.
Ein handelsiibliches Tabellenkalkulations-Programm kann bei der Analyse der gemes-
senen Werte niitzliche Dienste erweisen.



30 2 Entwicklungsprozess

2.3.4 Wie haufig testen?

Leistungstests sollten dem Aufwand angemessen hdufig durchgefiihrt werden. Handelt
es sich beispielsweise um ein verteiltes System und der Kunde kann oder will Ihnen kein
geeignetes Testsystem zur Verfiigung stellen, miissen Sie vielleicht die Entwickler-
maschinen zu Testzwecken missbrauchen. Gewo6hnlich sind Entwickler nicht besonders
begeistert, wenn sie auf einer Maschine arbeiten miissen, die gerade an einem verteilten
Lasttest teilnimmt. Also miissen Mittagspausen, Abende und Wochenenden herhalten.
Niemand arbeitet gerne zu diesen Zeiten. Wenn Sie die Stimmung in Ihrem Team nicht
allzu sehr strapazieren wollen, testen Sie nicht zu hdufig und versuchen Sie stattdessen
gemeinsam mit dem Kunden die Testbedingungen zu verbessern.

Anders sieht es aus, wenn Sie erkennen, dass Sie ein echtes Performance-Problem
haben. Es kann sich durchaus lohnen, mehrere komplette Releasezyklen nur an der
Performance zu arbeiten. Je besser Sie messen, desto grofier sind die Chancen, dass Sie
das Problem verstehen und eine gute Losungs-Strategie entwickeln.

Es gilt also Augenmafl zu bewahren. Nochmals: Leistungstests machen nur bei funk-
tionierenden Softwareeinheiten Sinn. Zu viele Leistungstests fithren leicht dazu, dass
die funktionale Qualitdt leidet, zu wenig Leistungstest fithren zum spiten Erkennen
von Problemen. Es ist also der goldene Mittelweg gefragt.



Sandini Bib

3 Virtuelle Maschinen

Um zu wissen, wie man einen Motor frisiert, sollte man wissen, wie er funktioniert.
Daher wollen wir uns in diesem Kapitel ein wenig mit Javas Virtueller Maschine
beschaftigen.

Die Java VM ist eine abstrakte Maschine. Doch genau wie ein echter Prozessor hat sie
einen Befehlssatz und manipuliert zur Laufzeit verschiedene Speicherbereiche. Sie
setzt jedoch keinerlei spezifische Hardware voraus, sondern wird emuliert. Der emu-
lierte Prozessortyp ist eine Kellermaschine mit mehreren Stacks.

Operanden Stack

Java Virtual | Java Virtual
Machine Machine
Stack Stack

Java Virtual
Machine
Stack

Abbildung 3.1: Schematischer Uberblick iiber die Java VM



32 3 Virtuelle Maschinen

Die Grundbestandteile der VM sind jeweils ein Java Virtual Machine Stack pro Thread!
sowie der von allen Threads geteilte Heap-Speicher (Abbildung 3.1). Im Heap werden
samtliche Objekt-Instanzen sowie Klassen und Interfaces gehalten. Letztere befinden
sich dabei in einem speziellen Bereich namens Method-Area. Der Heap wird automa-
tisch durch die Speicherbereinigung verwaltet.

Jeder Stack enthélt eine Reihe von so genannten Frames. Wahrend der Ausfiihrung
eines Java-Programms wird fiir jeden Methodenaufruf ein Frame angelegt, auf den
Stack gelegt und nach Ausfiihrung der Methode wieder heruntergenommen. Ein
Frame enthédlt bzw. verweist auf alle wichtigen Daten, die zur Ausfithrung der
Methode nétig sind. Zu jedem Stack existiert zudem ein Programmzéahler, der auf die
Adresse des gerade ausgefiihrten Codes zeigt.

Vereinfacht dargestellt wird beim Start der VM die zu startende Klasse geladen, ein
Thread initialisiert und dessen Programmzéhler auf den Beginn der statischen main()-
Methode der Klasse gesetzt. Dann werden nacheinander die im Bytecode der main()-
Methode enthaltenen VM-Befehle und somit das Programm ausgefiihrt.

Absichtlich beschreibt die Java-VM-Spezifikation kaum Implementierungsdetails und
lasst VM-Herstellern viele Freiheiten. Die Hauptunterscheidungsmerkmale zwischen
heute erhéltlichen VMs liegen in der Art und Weise, wie der Java-Bytecode ausgefiihrt
und wie der Heap verwaltet wird. Im Folgenden werden verschiedene Strategien fiir
beides erldutert. Dariiber hinaus werden wir kurz auf verschiedene Leistungstests ein-
gehen, die bei der Entscheidung fiir oder gegen eine VM hilfreich sein konnen.

3.1 Bytecode-Ausfiihrung

Java-Bytecode ldsst sich auf verschiedene Weisen ausfiihren. Dazu gehoren:
Interpretieren

Unmittelbar vor der Ausfithrung in Bindrcode ibersetzen (Just-in-Time, JIT) und
dann den Bindrcode ausfithren

Sofort nach dem Erstellen in Bindrcode tibersetzen und diesen spéter ausfiihren
(Ahead-of-Time, AOT)

Teilweise interpretieren und erst wenn notwendig dynamisch in Bindrcode tiberset-
zen (Dynamic-Adaptive-Compilation, DAC) und dann diesen ausfiihren

Von einer in Silizium gegossenen VM ausfiihren lassen

Im Folgenden gehen wir kurz auf die einzelnen Moglichkeiten ein.

1 Fir native Methodenaufrufe kann es zudem einen Native-Stack pro Thread geben.



Bytecode-Ausfiihrung 33

3.1.1 Interpreter

In Javas frithen Tagen wurde Java ausschliefSlich interpretiert. Heute werden reine
Interpreter fiir die Java 2 Standard Edition (J2SE) kaum noch verwendet. Der Grund
liegt in ihrer Langsamkeit. Dennoch konnen Interpreter sehr niitzlich sein, da sie bei
Ausnahmen in Stacktraces gewohnlich die Klasse, Methode und Zeilenzahl angeben.
Das macht sie zu einem wertvollen Werkzeug fiir die Fehlersuche.

Ein weiterer Vorteil von Java-Interpretern ist ihr geringer Speicherverbrauch. Daher
sind sie insbesondere fiir Kleingerate wie PDA (Personal Digital Assistent) und Mobil-
telefone interessant.

3.1.2 Just-in-Time-Compiler

Nachdem man merkte, dass mit interpretiertem Java nicht viel zu gewinnen war, kamen
JIT-Compiler in Mode. JIT-Compiler {ibersetzen Bytecode unmittelbar vor der Ausfiih-
rung in plattformspezifischen Bindrcode. VMs mit JIT sind in der Regel sehr viel schnel-
ler als VMs, die nur iiber einen Interpreter verfiigen. Jedoch fiihren JITs gegentiber
Interpretern auch zu einem hoéheren Speicherverbrauch. Zudem ist die Qualitdt des
erzeugten Bindrcodes nicht mit der Qualitdt von Bindrcode vergleichbar, der von einem
optimierenden, statischen Compiler erzeugt wird. Dies liegt daran, dass die Uberset-
zung zur Laufzeit und somit sehr schnell erfolgen muss. Viel Zeit fiir langwierige Analy-
sen und Optimierungen bleibt da nicht. Auerdem ist aufgrund der Ubersetzung die
Startzeit von VMs mit JITs in der Regel langer als die von VMs mit Interpretern.

Eine sehr erfolgreiche VM mit JIT-Technologie wird von IBM produziert.
IBM Java VM: http://www.ibm.com/java/

3.1.3 Dynamisch angepasste Ubersetzung

Suns aktuelle Java VMs werden mit HotSpot-Technologie ausgeliefert. Die Idee von
HotSpot beruht auf dem 80-20-Prinzip. Dieses besagt, dass wahrend 80% der Laufzeit
eines Programms gewohnlich 20% des Codes ausgefiihrt werden. Daraus folgt, dass es
sich lohnt, genau jene 20% besonders schnell auszufiihren, wahrend Optimierungen in
den restlichen 80% des Codes keinen grofien Effekt haben.

Dementsprechend interpretiert HotSpot zunédchst den Bytecode und analysiert zur
Laufzeit, welche Programmteile in Bindrcode iibersetzt und optimiert werden sollten.
Diese Teile werden dann iibersetzt und mehr oder minder aggressiv optimiert. Im Eng-
lischen heiflen die besonders kritischen Programmteile auch Hotspots — daher der
Name. Das gesamte Verfahren heifist Dynamic-Adaptive-Compilation, kurz DAC.

Verfechter von DAC behaupten gerne, dass durch die adaptive Kompilierung bessere
Resultate erzielt werden konnen als durch statisches Ubersetzen. In der Theorie ist das



34 3 Virtuelle Maschinen

auch durchaus richtig. In der Praxis zeigt sich jedoch, dass aufer der reinen Ausfithrung
von Code noch viele andere Faktoren auf die Geschwindigkeit einer Java VM Einfluss
haben. Insbesondere ist das die automatische Speicherbereinigung. Daher hinken Verglei-
che mit statisch kompilierten Programmen ohne automatische Speicherbereinigung meist.

Zudem ist die adaptive, optimierende Ubersetzung mit vorheriger Laufzeitanalyse ein
recht aufwiandiger Prozess, der sich nur fiir lang laufende Programme lohnt. Aus diesem
Grund unterscheidet Sun die Client HotSpot VM von der Server HotSpot VM. Die Client-
Version fithrt nur recht simple Optimierungen aus und iibersetzt daher relativ schnell. Die
Server-Version hingegen enthilt einen volloptimierenden Compiler (Tabelle 3.1). Gemes-
sen an JIT-Standards ist dieser Compiler langsam. Dies kann sich jedoch bei langer Lauf-

zeit durch den aus Optimierungen resultierenden Zeitgewinn bezahlt machen.

Optimierung

Beschreibung

JDK 1.3.1 Client JDK 1.3.1 Server

Range Check Unter bestimmten Bedingungen ent- nein ja
Elimination fallt der obligatorische Check, ob ein
Array-Index giiltig ist.
Siehe Kapitel 6.2.2 Teure Array-Zugriffe
Null Check Unter bestimmten Bedingungen ent- nein ja
Elimination fallt der obligatorische Check, ob eine
Array-Variable nul1 ist.
Siehe Kapitel 6.2.2 Teure Array-Zugriffe
Loop Unrolling Mehrfaches Ausfiihren eines Schleifen-  nein ja
korpers ohne Uberpriifung der
Abbruchbedingung.
Siehe Kapitel 6.2.3 Loop Unrolling
Instruction Neuordnung von Befehlen zur optima-  nein ja
Scheduling len Ausfiihrung auf einem bestimmten (fur UltraSPARC 1)
Prozessor
Optimierung fiir Schnellere Ausfiihrung von Methoden nein ja
Reflection API aus dem Reflection API
(java.lang.reflect)
Dynamische Umbkehroperation fiir eine Optimierung nein ja
Deoptimierung
Einfaches Inlining  Duplizieren und Einfiigen von Metho- ja nein
den an Stellen, an denen diese ausge-
fiihrt werden. Der Overhead eines
Methodenaufrufs entfillt somit. Ein-
faches Inlining trifft nur auf Klassen-
methoden bzw. final-Methoden zu.
Vollstandiges Siehe Einfaches Inlining. Jedoch werden  nein ja

Inlining

wesentlich mehr Methoden dupliziert
und eingefiigt.

Tabelle 3.1: Vergleich von Optimierungen der HotSpot Server und Client Compiler fiir Sun JDK 1.3.1



Bytecode-Ausfiihrung 35

Optimierung Beschreibung JDK 1.3.1 Client JDK 1.3.1 Server
Dead Code Code, der nicht ausgefiihrt werden nein ja

Elimination kann, wird entfernt.

Loop Invariant Variablen, die sich wihrend einer nein ja

Hoisting Schleife nicht andern, werden auBBer-

halb der Schleife berechnet. Siehe Ka-
pitel 6.2.1 Loop Invariant Code Motion

Common Die Ergebnisse einmal berechneter nein ja
Subexpression Ausdriicke werden wieder verwendet.

Elimination

Constant Konstanten werden durch ihre Werte  nein ja
Propagation ersetzt.

On Stack Wihrend der Ausfiihrung einer ja ja
Replacement Methode kann interpretierter Code

(OSR) durch kompilierten ersetzt werden.

Tabelle 3.1: Vergleich von Optimierungen der HotSpot Server und Client Compiler fiir Sun JDK 1.3.1 (Fortsetzung)

Besonders interessant im Zusammenhang mit Java sind die Fahigkeiten Inlining und
Dynamische Deoptimierung. Inlining ist eine Optimierung, bei der ein Methodenaufruf
durch den Code der aufzurufenden Methode ersetzt wird. Dadurch wird der Verwal-
tungsaufwand fiir den Methodenaufruf, sprich das Anlegen und Beseitigen eines
Frames, gespart. Wahrend statische Compiler fiir Sprachen wie C relativ einfach Inlining
anwenden konnen, ist das in Java nicht so einfach. Denn im Gegensatz zu C-Funk-
tionsaufrufen sind in Java die meisten Methodenaufrufe virtuell, das heifst potenziell
polymorph. Somit kann der Aufruf der Methode doIt() eines Objektes, das durch eine
Referenz vom Typ A referenziert wird, durchaus zur Ausfiihrung einer {iberschriebenen
Version der Methode doIt() eines Objekts von As Subtyp B fiihren. Listing 3.1 zeigt ein
einfaches Beispiel fiir diesen Fall.

class A {
public dolt() {
System.out.printin("doIt() von A");
}
}
class B extends A {
public doIt() {
System.out.printin("dolt() von B");
}
public static void main(Stringl] args) f{
A a = new BO);
a.dolt(); // fuhrt dolt() der Klasse B aus!

Listing 3.1: Beispiel fiir eine iiberschriebene Methode



36 3 Virtuelle Maschinen

Um die Sache noch ein wenig komplizierter zu machen, ist es in Java moglich, Klassen
dynamisch zur Laufzeit nachzuladen. Somit ist das gefahrlose Inlining einer Methode nur
moglich, wenn die einzureihende Methode entweder final oder static ist, da dann die
Methode nicht von einer Unterklasse iiberschrieben werden kann. Die Fahigkeit static
und final Methoden einzureihen wird in Tabelle 3.1 unter einfachem Inlining aufgefiihrt.

Mit vollstdindigem Inlining ist gemeint, dass auch Methoden, die nicht final oder
static sind, eingeschoben werden konnen. Dies ist dann moglich, wenn keine Klasse
geladen ist, die die fragliche Methode tiberschreibt. Da in Java aber auch zur Laufzeit
noch Klassen geladen werden kénnen, kann sich dieser Zustand dndern. Ist dies der
Fall, so muss eine bereits eingereihte Methode evtl. wieder durch einen reguldren
Methodenaufruf ersetzt werden. Dies ist ein Beispiel fiir dynamische Deoptimierung.
JIT-Compiler, die den Code in der Regel nur einmal {ibersetzen, sind zu solchen
(De-)Optimierungen meist nicht in der Lage.

Neben dem gesparten Verwaltungsaufwand fiir Methodenaufrufe bietet vollstandiges
Inlining noch einen weiteren Vorteil: Die entstehenden langeren Code-Blocke erlauben
weitere Optimierungen.

Suns HotSpot-Technologie wurde von Hewlett Packard und Apple lizenziert. Daneben
gibt es aufierdem noch andere DAC-VMs. Eine davon ist die freie VM JRockit von
Appeal Virtual Machines (BEA). Es handelt sich dabei um eine Java Laufzeitumgebung
mit Fokus auf serverseitige Applikationen. Sun bemdiiht sich zudem, HotSpot auch fiir
die J2ME-Plattform anzubieten.

Sun J2SE: http://java.sun.com/

Appeal Virtual Machines: http://www.jrockit.com/

3.1.4 Ahead-of-Time-Ubersetzung

Anstatt Code erst zur Laufzeit in Bindrcode zu tibersetzen, kann man auch bereits beim
Erstellen der Software Bindrcode fiir die Zielplattform erzeugen. Dieser Ansatz wird
auch als Ahead-of-Time-Ubersetzung (AOT) bezeichnet.

AOT erméglicht sehr gute Optimierungen und fiihrt in der Regel zu robustem, schnel-
lem Code. Dies liegt unter anderem daran, dass bereits vorhandene, ausgereifte Com-
piler zur Code-Generierung und -Optimierung genutzt werden konnen. So ist
beispielsweise der freie GNU Java Compiler GJC lediglich ein Frontend zu anderen
GNU Compilern. Dementsprechend wird Java von den GJC-Autoren auch nur als Teil-
menge von C++ betrachtet.

Ein weiter Grund fiir die gute Performance von AOT sind eine im Vergleich zu JIT und
DAC fast beliebig lange Code-Analyse-Phase, beinahe beliebiger Ressourcenverbrauch
wihrend der Ubersetzung und die daraus resultierenden Optimierungen. Der kom-



Bytecode-Ausfiihrung 37

merzielle Java Native Compiler Tower] beispielsweise kann wahrend des Kompilierens
so genannte ThreadLocal-Objekte erkennen. ThreadLocals sind Objekte, die garantiert
nur von einem Thread benutzt werden. Somit ist jegliche Synchronisation tiberfliissig,
die Objekte konnen im schnelleren, threadspezifischen Stack statt im Heap gespeichert
werden und unterliegen somit auch nicht der normalen Speicherbereinigung. Der
erzeugte Code ist entsprechend schneller.

Zudem kann Bindrcode nur schlecht dekompiliert werden und erschwert Reverse
Engineering? erheblich. Somit ist gegeniiber Bytecode ein besserer Schutz von geisti-
gem Eigentum gewdhrleistet.

Alle AOT-Compiler haben jedoch mit Javas Fahigkeit zu kaimpfen, Klassen dynamisch
nachzuladen. Dies ist beispielsweise notwendig fiir Remote Method Invocation (RMI),
Dynamische Proxies (java.lang.reflect.Proxy), Java Server Pages (JSP) etc. Tower] 19st
dieses Problem, indem wéahrend der ersten Ausfithrung aufgezeichnet wird, welche
Klassen nachgeladen und von einem eingebauten Interpreter ausgefiihrt werden
mussten. In einem folgenden Ubersetzungslauf werden diese Klassen dann ebenfalls
in Bindrcode iibersetzt und optimiert.

Einen etwas anderen Weg beschreitet Excelsiors JET. JET verfiigt iiber die Fahigkeit, zur
Laufzeit nachgeladene Klassen mit einem JIT-Compiler zu {ibersetzen und als DLLs
einzubinden. Dabei ist der JIT-Compiler selbst eine DLL und kann dementsprechend
nach getaner Arbeit wieder aus dem Speicher entfernt werden.

Zusammenfassend lasst sich sagen, das AOT eine legitime Strategie ist, um schnelle
und verldssliche Java-Programme fiir eine spezifische Zielplattform zu erzeugen. Die
erzeugten Programme sind natiirlich nicht portabel. Jedoch spricht nichts dagegen,
neben verschiedenen nativen Versionen auch eine portable Bytecode-Version Ihrer
Software auszuliefern.

Hier eine Auswahl von AOT-Compilern:
Tower]: http://www.towerj.com/
NaturalBridge BulletTrain: http://www.naturalbridge.com/
Excelsiors JET: http://www.excelsior-usa.com/jet.html
Instantiations JOVE: http://www.instantiations.com/jove/

G(J ist noch in den frithen Phasen der Entwicklung: http://gcc.gnu.org/java/

2 Vorgang, bei dem aus Bytecode ein (visuelles) Modell erzeugt wird.



38 3 Virtuelle Maschinen

3.1.5 Java in Silizium

Natiirlich ist man auch auf die Idee gekommen, aus der Java Virtuellen Maschine eine
reale Java Maschine zu machen; mit anderen Worten, die VM in Silizium zu gieflen.
Dies ist insbesondere fiir den Mobiltelefon- und PDA-Markt interessant, der J2ME ver-
wendet, und weniger fiir Geschiftsanwendungen auf Basis von J2SE oder J2EE. Der
Vollstandigkeit halber mdchte ich kurz auf das Thema eingehen — fiir das Buch wird es
im Weiteren nicht von Belang sein.

Schon 1996 hat Sun einen Prozessor-Kern namens picojava spezifiziert. Dieser wurde
auch von mehreren grofsen Firmen lizenziert, ein picoJava-Boom blieb jedoch aus. Kei-
ner der Lizenznehmer hat jemals picoJava-basierte Chips verkauft.

Bereits zum Erscheinen der Spezifikation wurde der Ansatz kritisch bedugt. Wissen-
schaftler hatten schon fiir andere Sprachen wie LISP und Smalltalk Spezial-Prozessoren
entwickelt, nur um zu entdecken, dass Software-Implementierungen auf RISC-Chips
bessere Performance boten. Man zweifelte daran, dass Suns picoJava besser performte.
Und tatsachlich stellte sich spéter heraus, dass picoJava weder schnell noch billig noch
sparsam genug war, um im Markt fiir Mobiltelefone und PDAs mithalten zu kénnen.

Stattdessen wurde in letzter Zeit ein etwas anderer Ansatz fiir Kleingerédte populér:
Java-Beschleuniger. Dabei handelt es sich um Bausteine, die dhnlich wie Koprozesso-
ren zusédtzlich zum Hauptprozessor verwendet werden kénnen. So lasst sich beispiels-
weise Nazomis Java-Koprozessor in bestehende Designs einbinden und erleichtert so
Kleingerate-Herstellern die Verwendung von Java unter Beibehaltung einer bereits
vorhandenen Architektur.

Einen anderen Weg ging die Firma ARM. ARM hat seinen Chips den Java-VM-Befehls-
satz schlicht als dritten Befehlssatz hinzugefiigt. Ein einfaches Umschalten macht so
aus dem herkdmmlichen ARM-Chip eine Java VM.

Suns picoJava: http://www.sun.com/microelectronics/picojava/
ARM: http://www.arm.com/

Nazomi: http:/fwww.nazomi.com/

3.2 Garbage Collection

Neben der Bytecode-Ausfithrung ist der andere entscheidende Aspekt fiir die Perfor-
mance einer VM die Garbage Collection. Weder in der Java Sprachspezifikation
[Gosling00] noch in der Java VM Spezifikation [Lindholm99] sind genaue Vorgaben fiir
die Garbage Collection zu finden. Es steht den VM-Herstellern somit grofitenteils frei,
wie sie die Speicherverwaltung implementieren.



Sandini Bib
Garbage Collection 39

3.2.1 Objekt-Lebenszyklus

Um besser zu verstehen, was die Aufgabe der Speicherverwaltung ist, wollen wir uns
den Lebenszyklus eines Objektes anschauen. Abbildung 3.2 gibt eine Ubersicht.

@

alloziert &
initialisiert dealloziert
Erzeugt ) ( Finalisiert )
stark referenziert finalize()

Benutzt

Eingesammelt

referenziert, unreferenziert

Unsichioar

unreferenziert

vom GC als un-
referenziert erkannt

Abbildung 3.2: Lebenszyklus eines Objekts

Erzeugt

Es wurde Speicher fiir das Objekt alloziert und alle Konstruktoren sind ausgefiihrt
worden. Das Objekt befindet sich also fertig initialisiert im Heap. Es wurde 'Erzeugt'.

Benutzt

Es existiert mindestens eine stark, vom Programm sichtbare Referenz auf das Objekt.
Schwache, weiche und Phantom-Referenzen aus dem Paket java.lang.ref konnen
zudem existieren, reichen aber nicht aus, um ein Objekt im Zustand 'Benutzt' zu halten.

Unsichtbar

Ein Objekt ist 'Unsichtbar', wenn keine starken Referenzen mehr existieren, die vom Pro-
gramm benutzt werden koénnten, trotzdem aber noch Referenzen vorhanden sind.

Nicht jedes Objekt durchlauft diesen Zustand. Er tritt aber zum Beispiel auf, wenn in
einem Stackframe noch eine Referenz auf ein Objekt vorhanden ist, obwohl diese Refe-
renz in einem abgeschlossenen Block deklariert und dieser Block bereits verlassen
wurde. Listing 3.2 zeigt ein Beispiel.

public void do() f{
try {
Integer i = new Integer(l);



40 3 Virtuelle Maschinen

catch (Exception e) {

}
while (true) f
// duBerst Tange Schleife
}
}

Listing 3.2: In der while-Schleife ist i unsichtbar.

Das Objekt i wird in einem geschlossenen try-catch-Block alloziert. Eine effiziente
VM-Implementierung wird die im Frame allozierte Referenz auf i jedoch nicht beim
Verlassen des Blocks beseitigen, sondern erst, wenn der entsprechende Frame vom
Stack genommen wird [Wilson00, S.196]. Daher ist i in der folgenden while-Schleife
sowohl unsichtbar als auch referenziert und kann somit nicht vom Garbage Collector
erfasst werden.

Unerreichbar

‘Unerreichbar' sind jene Objekte, die nicht mehr von einer Objektbaumwurzel {iber
Navigation zu erreichen sind. Zu den Objektbaumwurzeln gehoren:

Klassenvariablen (static)
Temporidre Variablen auf dem Stack (lokale Methoden-Variablen)
Besondere Referenzen von JNI-Code aus

Ist ein Objekt unerreichbar, so kann es vom Garbage Collector zu einem beliebigen spa-
teren Zeitpunkt eingesammelt werden.

Eingesammelt

Ein Objekt ist dann 'Eingesammelt’, wenn der Garbage Collector das Objekt als Garbage
erkannt hat und es in die Warteschlange des Finalizer-Threads eingestellt hat. Ist die
finalize()-Methode des Objekts nicht iiberschrieben, wird dieser Schritt tibersprungen
und das Objekt gelangt direkt in den Zustand 'Finalisiert'.

Finalisiert

'Finalisiert' ist ein Objekt, nachdem die finalize()-Methode aufgerufen wurde, sofern
diese vorhanden ist bzw. liberschrieben wurde. Beachten Sie, dass die finalize()-
Methode meist in einem Extra-Thread, dem so genannten Finalizer-Thread ausgefiihrt
wird. Falls die Threads Ihrer Applikation mit hoherer Prioritédt laufen als der Finalizer-
Thread und Sie die finalize()-Methode mit spezieller Aufraumlogik {iberschrieben
haben, kann es sein, dass Sie die Garbage Collection blockieren, da der Finalizer-
Thread nicht zum Zuge kommt und somit Objekte nicht dealloziert werden kénnen.



Garbage Collection 41

Daher ist es grundsétzlich besser, sich nicht auf den Finalizer zu verlassen, sondern
stattdessen eigene Lebenszyklus-Methoden zu implementieren und diese kontrolliert
aufzurufen. Beispielsweise sollten Sie immer die Methode dispose() eines java.awt.
Graphics-Objektes aufrufen, wenn Sie es nicht mehr benétigen, da sonst erst der Finali-
zer wichtige Ressourcen freigibt.

Dealloziert

Ein Objekt ist 'Dealloziert’, wenn es nach der Finalisierung immer noch unerreichbar war
und somit beseitigt werden konnte. Wann dies geschieht, liegt im Ermessen der VM.

3.2.2 Garbage Collection-Algorithmen

Sie haben gesehen, dass Objekte erst dealloziert werden kénnen, wenn sie finalisiert
und unerreichbar sind. Wie die Unerreichbarkeit bestimmt und der verfiigbare Spei-
cher verwaltet wird, hiangt vom verwendeten Gargabe Collector ab. Dieser ldsst sich
meist tiber VM-Parameter beeinflussen und optimieren. Deshalb wollen wir uns kurz
mit verschiedenen Garbage Collection-Algorithmen auseinander setzen.

Kopierender Kollektor

Ein einfacher Kopierender Kollektor unterteilt den Speicher in zwei Hélften. Er alloziert
so lange Objekte in der ersten Halfte, bis diese voll ist. Dann besucht er, von den
Objektbaumwurzeln ausgehend, alle lebendigen Objekte und kopiert sie in die zweite
Speicherhilfte.? Die nicht mehr referenzierten Objekte werden geldscht. Anschliefend
tauschen die Speicherhilften ihre Rollen. Im verbliebenen Speicher der zweiten Hilfte
werden nun neue Objekte alloziert, bis diese voll ist. Dann werden die lebendigen
Objekte wiederum in die erste Halfte kopiert usw.

Kopierende Kollektoren fithren zu sehr schnellen Allokationszeiten, da der Speicher
nicht fragmentiert wird. Tatsédchlich reicht es aus, einfach einen Zeiger auf die Speicher-
zelle nach dem zuletzt allozierten Objekt zu pflegen. Viel schneller kann man Speicher
nicht allozieren. Dieser Komfort hat jedoch seinen Preis, denn der Speicherverbrauch
einfacher kopierender Kollektoren ist doppelt so grof8 wie der anderer Kollektoren.*
Zudem fillt die Interaktion mit dem Speicherverwaltungssystem des Betriebssystems
eher ungiinstig aus. In jedem Kollektionszyklus muss jede Speicherseite einer Halfte
geladen und komplett beschrieben werden. Falls der gesamte Heap nicht in den realen

3 Wegen dieses Verhaltens werden kopierende Kollektoren auch Scavengers (Aasfresser) genannt —sie
nehmen, was noch zu gebrauchen ist.

4  Hier ist nur der simpelste Kopier-Algorithmus beschrieben. Natiirlich ist es moglich, den Speicher
in mehr als zwei Teile zu unterteilen, jedoch pro Kollektionszyklus nur zwei dieser Teile zu betrach-
ten [Jones96, S.127] und somit den Speicherverbrauch zu reduzieren.



42 3 Virtuelle Maschinen

Speicher des Rechners passt, fithrt dies unweigerlich zu teuren Seitenfehlern. Ein wei-
terer Nachteil ist, dass alle Objekte standig im Speicher umgruppiert werden, was wie-
derum zu schlechter Lokalitdt fithren kann.

Somit eignen sich kopierende Kollektoren insbesondere fiir kleine Speicherbereiche
mit kurzlebigen Objekten.

Mark & Sweep

Der Mark-Sweep-Algorithmus funktioniert folgendermafien: Ausgehend von den Objekit-
baumwurzeln werden alle erreichbaren Objekte besucht und mit einem Bit markiert.
Wurden so alle lebendigen Objekte markiert, werden alle nicht-markierten Objekte aus
dem Speicher gekehrt.

Mark-Sweep-Kollektoren haben gegentiber kopierenden Kollektoren einen geringeren
Speicherverbrauch. Dafiir neigen sie jedoch dazu, den Speicher zu fragmentieren. Das
bedeutet auch, das die Verwaltung des freien Speichers umstandlich ist, was wiederum
dazu fiithrt, dass die Allokation von Speicher linger dauert. Zudem kann bedingt
durch die Fragmentierung der Speicher nicht vollstindig genutzt werden und es kann
passieren, dass Objekte, die kurz nacheinander alloziert wurden, nicht nahe beieinan-
der im Heap liegen. Diese schlechte Lokalitdt fiihrt wiederum zu Seitenfehlern.

Der Mark-Sweep-Algorithmus selbst ist simpel und schnell, fiithrt aber zu Problemen
insbesondere bei Systemen mit virtuellem Speicher. Er ist die Grundlage fiir den Mark-
Compact-Algorithmus.

Mark & Compact

Genau wie beim Mark-Sweep-Algorithmus werden zunéchst alle lebendigen Objekte
markiert. Anschlielend werden die lebendigen Objekte so im Speicher verschoben,
dass es nur noch zwei Bereiche gibt: einen durchgéngig mit Objekten belegten Bereich
und einen freien Bereich. Der Heap wurde kompaktiert. Das heifst zur Verwaltung des
freien Speichers geniigt ein einziger Zeiger, der auf das Ende des belegten Bereichs
zeigt. Dies wiederum bedeutet schnelle Allokation, da nicht umsténdlich nach einem
freien Stiick Speicher der gewiinschten Grofie gefahndet werden muss.

Je nach verwendetem Algorithmus kann wihrend des Kompaktierens die Ordnung
der Objekte beibehalten werden. Dies fiihrt zu guter Lokalitdt und weniger Seitenfeh-
lern. Auch das hat jedoch seinen Preis. Wahrend Mark-Sweep-Kollektoren nach der
Markierungsphase nur einmal durch den Heap wandern, miissen Mark-Compact-
Algorithmen den Heap meist zwei- oder dreimal durchkdmmen. Die Kollektion dauert
also langer, fithrt aber anschlieffend zu einem besseren Laufzeitverhalten.



Garbage Collection 43

Inkrementelle und nebenldufige Speicherbereinigung

Alle bisher vorgestellten Verfahren gehen jeweils davon aus, exklusiv auf den Heap
zugreifen zu konnen. Das bedeutet, dass das Programm wéhrend der Kollektion
gestoppt wird. Dies fiihrt zu unangenehmen Pausen, in denen die Applikation nicht
auf Eingaben reagiert. Diese Pausen sind fiir Echtzeitanwendungen (z.B. Audio-/
Video-Anwendungen, Maschinen-Steuerungssoftware) nicht akzeptabel. Die Pausen
sind zudem umso langer, je groler der Heap ist.

Inkrementelle und nebenldufige Speicherbereinigung versuchen, die Pausen auf ein
Minimum zu reduzieren bzw. ganz zu beseitigen. Im Fall der inkrementellen Speicher-
bereinigung wird jeweils nur ein kleiner Teil des Heaps von unreferenzierten Objekten
gesdubert und dann die Ausfithrung des Programms fortgesetzt. Bei nebenldufiger
Speicherbereinigung wird parallel zur Programmausfithrung jeweils ein Teil des
Heaps gereinigt. Dabei treten gewohnlich Synchronisationsprobleme auf, die zu einem
gewissen Verwaltungsaufwand fiihren.

Inkrementelle oder nebenldufige Kollektoren reduzieren Pausen, fithren ansonsten
aber meist zu einer schlechteren Performance als andere Verfahren.

Generationen-Kollektoren

Generationen-Kollektoren gehen davon aus, dass einige Objekte langer leben als andere.
Weiterhin wird angenommen, dass die meisten Objekte jung sterben. Dementspre-
chend wird der Heap in mehrere Bereiche — Generationen — unterteilt. Neue Objekte
werden grundsétzlich in der jungen Generation alloziert. Ist kein Speicher mehr in die-
sem Bereich vorhanden, wird er mittels eines der oben geschilderten Algorithmen auf-
gerdumt. Objekte, die eine bestimmte Anzahl von Aufrdumphasen iiberleben, werden
in die dltere Generation verschoben. Dabei miissen alle Zeiger auf das Objekt entspre-
chend angepasst werden.

Die dltere Generation wird genau wie die jiingere bei Bedarf aufgerdaumt. Grundsitz-
lich sind mehr als zwei Generationen denkbar.

Generationen optimieren die Speicherbereinigung insofern, als dass nicht immer der
ganze Speicher aufgerdaumt wird, sondern nur der Teil, der gerade vollgelaufen ist.
Somit sind die Pausen, die auftreten, wenn das Programm zur Speicherbereinigung
gestoppt werden muss, relativ geringer als bei nur einem grofien zusammenhéangen-
den Speicherbereich, der immer komplett gesdubert werden muss. Dabei macht man
sich zunutze, dass ein kleiner Speicherteil gew&hnlich sehr schnell mit Objekten belegt
ist, die zu einem grofien Teil direkt wieder aus dem Speicher entfernt werden kénnen.



44 3 Virtuelle Maschinen

3.2.3 Performance-MaBe

Zum Beurteilen der Performance von Mechanismen zur automatischen Speicherberei-
nigung gibt es vier wichtige Mafe:

Durchsatz

Pausen
Speicherverbrauch
Promptheit

Durchsatz bezeichnet den prozentualen Anteil der Laufzeit eines Programms, der
nicht mit Speicherbereinigung oder Allokation verbracht wird. Dies ist eine wichtige
Grofse bei lang laufenden Programmen wie Servern.

Pausen sind Zeiten, in denen die Applikation nicht reagiert, da gerade der Speicher
aufgerdumt wird. Insbesondere bei interaktiven oder Echtzeit-Programmen ist hier der
Maximalwert eine interessante Grofse zur Beurteilung der Speicherverwaltung.

Speicherverbrauch ist fiir Systeme mit keinem oder begrenztem virtuellen Speicher
eine wichtige Grofe.

Promptheit bezeichnet die Zeit, die nach dem Tod eines Objekts vergeht, bis es tatsidch-
lich beseitigt ist.

Gewohnlich gilt, dass ein guter Wert in einer Kategorie zu Lasten des Wertes einer
anderen Kategorie geht. Es kann also keinen per se richtigen, sondern nur einen am
besten zu den Anforderungen passenden Garbage Collector geben.

3.2.4 HotSpots Garbage Collection

Suns VM ist ein gutes Beispiel fiir einen Generationen-Kollektor. Der Heap ist in fiinf
Generationen unterteilt (Abbildung 3.3).

Alte Generation Eden

/

Permanente Generation Uberlebensraume

Abbildung 3.3: Aufteilung des Heaps der Sun HotSpot-VM in verschiedene Generationen



Garbage Collection 45

Objekte werden zunéchst in Eden alloziert. Ist kein Platz mehr in Eden, greift ein kopie-
render Kollektor und verschiebt alle lebendigen Objekte aus Eden sowie einem der
Uberlebensriume in den anderen, leeren Uberlebensraum. Wenn Objekte eine gewisse
Zeit zwischen den beiden Uberlebensriaumen hin- und herkopiert wurden, werden sie
befordert. Das heifdt, sie werden in die alte Generation verschoben. In der Alten Genera-
tion wiederum greift ein Mark-Compact-Kollektor. Eine Besonderheit stellt die perma-
nente Generation dar. Sie enthdlt Klassen- und Methoden-Objekte, die sehr selten —
wenn iiberhaupt — dealloziert werden miissen.

Alternativ zum standardmaflig verwendeten Mark-Compact-Algorithmus fiir die alte
Generation kann man bei Bedarf mittels des VM-Parameters -Xincgc auch einen inkre-
mentellen Algorithmus verwenden. Dieser verursacht zwar weniger Pausen, hat
jedoch einen groBleren Verwaltungsaufwand.

Die Grofse des Heaps sowie der einzelnen Generationen ldsst sich {iber VM-Parameter
beeinflussen (Tabelle 3.2). Um festzustellen, welche Einstellung fiir Ihr Programm opti-
mal ist, experimentieren Sie mit verschiedenen Werten und vergleichen Sie die Gar-
bage Collection-Daten, die Sie durch den VM-Parameter -verbose:gc erhalten.

Der Durchsatz ist gewdhnlich am besten, wenn moglichst selten eine vollstandige
Speicherbereinigung inklusive der Alten Generation erforderlich ist. Dies ist der Fall,
wenn Eden und die beiden Uberlebensraume (junge Generationen) im Verhiltnis zum
Rest des Heaps sehr grof3 sind. Dies geht jedoch auf Kosten von Speicherverbrauch
und Promptheit. Pausen wiederum konnen minimiert werden, indem die Jungen
Generationen moglichst klein gehalten und inkrementelle Garbage Collection fiir die
alte Generation benutzt wird.

Parameter Beschreibung

-Xms<wert> Minimale HeapgroBe

-Xmx<wert> Maximale HeapgroBe

-Xminf<wert> Prozentualer Anteil des Heaps, der nach einer vollstindigen

Speicherbereinigung mindestens frei sein sollte. Standard: 40

-Xmaxf<wert> Prozentualer Anteil des Heaps, der nach einer vollstandigen
Speicherbereinigung héchstens frei sein sollte. Standard: 70

-XX:NewRatio=<wert> Verhiltnis der GroBe der Neuen Generationen zur Alten
Generation

-XX:NewSize=<wert> StartgroBe der Neuen Generationen

-XX:MaxNewsSize=<wert> Bestimmt die maximale GroBe der Neuen Generationen

-XX:SurvivorRatio=<wert> Verhiltnis der GréBe von Eden zu einem der Uberlebensriume

-XX:MaxPermSize=<wert> Maximale GroBe der Permanenten Generation

Tabelle 3.2: Parameter zum Optimieren der HotSpot-Speicherverwaltung



46 3 Virtuelle Maschinen

3.3 Industrie-Benchmarks

Zur Beurteilung von Java VMs lohnt es sich, Leistungstests oder Benchmarks zu benut-
zen. Ein Benchmark ist eine definierte Referenz, die zu Vergleichszwecken herange-
zogen werden kann. Hiermit ist meist ein definiertes Testverfahren gemeint, das
reproduzierbar die Leistung von Soft- oder Hardware misst. Oft wird das Ergebnis in
einer einzelnen Mafizahl zusammengefasst.

Diese Labor-Benchmarks beschreiben per Definition nur eine Abbildung der Wirklich-
keit. Aus diesem Grund definiert Eric Raymond einen Benchmark als »an inaccurate
measure of computer performance« und zitiert in seinem Buch die alte Hacker-Weisheit:

In the computer industry, there are three kinds of lies: lies, damn lies, and benchmarks.
[Raymond96].

Nun gibt es gliicklicherweise Benchmarks, die von Organisationen wie SPEC (Stan-
dard Performance Evaluation Corporation, http://www.spec.org/), einzelnen unpartei-
ischen Firmen und Verlagen bzw. Magazinen kreiert wurden und somit sicherlich
vertrauenswiirdiger sind als beispielsweise ein reiner Intel-Benchmark zum Vergleich
von Intel- und Motorola-Prozessoren.

Dennoch muss man sich bei jedem Benchmark fragen, was dieser misst, welche Aussage
sich aus dem Ergebnis ableiten ldsst und wie niitzlich diese Aussage in Bezug auf das
eigene Programm ist. Es niitzt Ihnen wenig, eine VM zu verwenden, die hervorragend
bzgl. gleichzeitiger TCP/IP-Verbindungen skaliert, wenn Sie tatsdchlich numerische
Berechnungen anstellen wollen und nie auch nur eine einzige TCP /IP-Verbindung auf-
bauen.

In diesem Abschnitt werden einige sehr verschiedene Benchmarks kurz vorgestellt.
Hier sind die entsprechenden URLs:

VolanoMark: http://www.volano.com/benchmarks.html
SPEC JVMO8: http:/fwww.spec.org/osg/jum98/
SPEC JBB2000: http://www.spec.org/osg/jbb2000/

jBYTEMark 0.9 (BYTE Magazine) scheint nicht mehr durch einen reguldren Link
erreichbar zu sein. Sie kénnen jedoch mit einer Suchmaschine nach jbyte.zip suchen.

ECperf: http://java.sun.com/j2ee/ecperf/index.html

3.3.1 VolanoMark

VolanoMark ist ein Benchmark, der entstand, um die Performance einer VM und ihrer
Skalierbarkeit in Bezug auf TCP/IP-Verbindungen zu messen. Die Motivation fiir den
letzteren Aspekt liegt in Javas Ein-Thread-pro-Verbindung-Modell begriindet (siehe



Industrie-Benchmarks 47

Kapitel 10.5 Skalierbare Server). Dieses besagt, dass fiir jede Verbindung ein dedizierter
Thread existieren muss. Wenn man also sehr viele Verbindungen gleichzeitig unterhal-
ten will (und genau das macht der Volano-Chat-Server), ist es wichtig, eine VM zu
benutzen, die sowohl viele Sockets als auch viele Threads performant unterstiitzt.

Wiéhrend des Tests wird gemessen, wie viele Nachrichten Clients iiber einen Server
verschicken kénnen. Beim Performance-Test laufen sowohl Server als auch Clients auf
demselben Rechner mit 200 gleichzeitigen Loopback-Verbindungen. Beim Skalierbar-
keitstest simulieren die Clients von einem anderen Rechner aus eine standig steigende
Zahl gleichzeitiger Verbindungen. Gemessen wird die maximal mogliche Anzahl
simultaner Verbindungen.

Seit JDK 1.4 bietet Java mit dem java.nio-Paket ein alternatives, asynchrones Ein-/Aus-
gabe-Modell, das nicht mehr zwingend einen Thread pro Verbindung vorschreibt.
VolanoMark in seiner jetzigen Form kénnte also entsprechend an Bedeutung verlieren.

Nichtsdestotrotz ist VolanoMark ein gerne zitierter Benchmark fiir Performance und
Netzwerk-Skalierbarkeit. Ergebnisse werden regelméfsig auf der Volano-Website publi-
ziert.

3.3.2 SPEC JVM98

SPEC JVMYS ist ein Client-Benchmark der SPEC zum Messen von Java-VM-Perfor-
mance. Er besteht aus acht verschiedenen Tests, von denen fiinf reale Anwendungen
sind. Sieben der Tests dienen zum Messen von Daten, der achte verifiziert die korrekte
Ausfiithrung des Bytecodes:

compress: Werkzeug zum (De-)Komprimieren von Dateien
jess: Java Expertensystem

db: ein kleines Datenmanagement-Programm

javac: Suns Java-Compiler

mpegaudio: ein MPEG-3-Dekoder

mtrt: ein multithreaded Raytracer

jack: ein Parser-Generator mit lexikalischer Analyse

check: Uberpriift Java VM und Java Features

JMVO98 testet nicht AWT-, Netzwerk-, Datenbank- und Grafik-Performance. Zudem
erschien JVM98 vor Java 2. Es werden also auch keine der neueren Java-Features wie
schwache Referenzen oder dynamische Proxies getestet.



48 3 Virtuelle Maschinen

3.3.3 SPEC |BB2000

SPEC JBB2000 ist ein serverseitiger SPEC-Benchmark, der eine 3-Tier-Applikation
simuliert. Die Hauptlast liegt dabei auf dem Mittel-Tier, der die Geschiftslogik enthalt.
Tier eins und drei enthalten die Benutzerschnittstelle und die Datenverwaltung. Der
Test lauft vollstindig in einer VM ab und benoétigt keine weiteren Komponenten wie
eine Datenbank oder einen Webbrowser. Im Test werden weder Enterprise Java Beans
(EJB), Servlets noch JSP verwendet.

JBB2000 misst ausschliefSlich VM-Performance und Skalierbarkeit. Nicht gemessen
werden AWT-, Netzwerk-, Ein-/ Ausgabe- und Grafik-Leistung.

3.3.4 jBYTEMark

JBYTEMark ist ein urspriinglich in C geschriebener Benchmark, der vom BYTE-Maga-
zin nach Java portiert wurde. Er enthélt ausschliefilich rechenintensive Algorithmen,
versucht also gar nicht erst eine reale Applikation nachzuempfinden. Dem Bench-
mark-Code ldsst sich zudem leicht ansehen, dass er aus der C-Welt stammt. OO-Per-
formance lasst sich mit diesem Benchmark nicht messen.

jBYTEMark scheint von BYTE schon lange aufgegeben worden zu sein, ist aber immer
noch fiir einen schnellen Numbercrunching-Vergleich zu gebrauchen. Wichtig ist zu
betonen, dass dieser Benchmark keinen Gebrauch von Threads macht und weder
AWT-, Netzwerk-, Ein-/ Ausgabe- noch Grafik-Leistung misst.

3.3.5 ECperf

Anders als die zuvor aufgefiihrten Benchmarks dient ECperf zum Messen der Skalierbar-
keit und Performance von J2EE-Servern (Java 2 Enterprise Edition) und nicht einer spezi-
ellen Java VM. Dabei werden hauptséchlich Speicherverwaltung, Verbindungs-Pooling,
Passivierung/Aktivierung von EJBs und Caching des EJB-Containers getestet. Die Leis-
tung der gewohnlich nétigen Datenbank fliefit angeblich kaum in den Benchmark ein.

ECperf simuliert eine reale Anwendung, die die Bereiche Herstellung, Supply-Chain-
Management und Verkauf abbildet. Dies fithrt zur Nutzung und somit indirekt zur
Bewertung der folgenden technischen Aspekte von J2EE-Anwendungen:

Transaktionale Komponenten

Verteilte Transaktionen

Messaging und asynchrones Aufgabenmanagement
Mehrere Service-Provider mit mehreren Websites

Schnittstellen von und zu Altsystemen



Die richtige VM auswdhlen 49

Sichere Dateniibertragung
Rollenbasierte Authentisierung
Persistente Objekte

ECPerf wurde von SPEC iibernommen und firmiert dort unter dem Namen
SPECjAppServer200X.

3.4 Die richtige VM auswihlen

Die VM zu wechseln ist eine der einfachsten und billigsten Methoden, die Performance
Ihrer Software zu verbessern. Wenn Sie nicht gerade auf die VM eines bestimmten
Herstellers angewiesen sind, sollte dies Ihr erster Schritt sein. Sie kénnen eine grobe
Vorauswahl anhand von publizierten Benchmarks vornehmen. Achten Sie dabei dar-
auf, dass die Benchmarks Leistungsaspekte messen, die fiir Ihre Anwendung wichtig
sind. Anders ausgedriickt: Die Endgeschwindigkeit eines Autos ist in den USA irrele-
vant. Wichtig ist die Beschleunigung bis zur erlaubten Hichstgeschwindigkeit.?

Viele publizierte Benchmarks messen die Leistung eines Ein-Prozessor-Systems. Wenn
Sie wollen, dass Ihre VM mit der Prozessorzahl Ihres Mehrprozessor-Systems skaliert,
verifizieren Sie, dass die VM dazu geeignet ist. VMs, die so genannte Green-Threads
benutzen, skalieren nicht mit der Prozessorzahl, sondern nutzen immer nur einen Pro-
zessor. Ist jedoch nur ein Prozessor vorhanden, brillieren Green-Threads, da sie in der
Regel leichtgewichtiger sind als Native-Threads. Ein Beispiel hierfiir ist das Linux Black-
down JDK.

Falls Thr Programm Echtzeit-Kriterien® standhalten muss, wéhlen Sie eine VM mit
inkrementellem oder nebenldufigem Garbage Collector. Inkrementelle Garbage Collec-
tion hélt die maximalen Pausenzeiten kurz, fithrt jedoch sonst meist zu schlechterer
Performance.

Wenn Thre Anwendung keine Massenware ist, sondern nur in einer definierten Umge-
bung lauffahig sein muss, ziehen Sie AOT-Compiler in Betracht. »Write once, run any-
where« spielt fiir Sie keine Rolle, insbesondere nicht, wenn Sie iiber den Quellcode
verfiigen und jederzeit reguldren Bytecode einsetzen konnen.

Nachdem Sie sich fiir eine VM entschiedenen haben, informieren Sie sich tiber Opti-
mierungsmoglichkeiten. Fast alle VMs haben Parameter, mit denen Sie entscheiden-
den Einfluss auf die Leistung der VM nehmen koénnen. Dazu gehoren die minimale

5 Inden meisten Staaten sind das 70 mph (etwa 113 km/h).
6 Kaum eine Java VM halt harten Echtzeitkriterien stand. Jedoch gibt es bzgl. des Echtzeitverhaltens
natiirlich bessere und schlechtere VMs.



50 3 Virtuelle Maschinen

und maximale Heapgrofe, die Stackgrofle, GC-Algorithmen und GC-Generationen-
Grofien, Thread-Modelle, JIT/DA-Compiler und vieles mehr. Insbesondere, wenn Sie
wenig Einfluss auf den Quellcode haben, ist dies Ihr bester Ansatzpunkt.

Die Wahl der richtigen VM kann leicht iiber Erfolg und Misserfolg Ihres Projekts ent-
scheiden. Es ist daher blaudugig, einfach die erstbeste VM zu benutzen. Zudem kon-
kurrieren alle VM-Hersteller darum, die schnellste VM herzustellen. Es lohnt sich also,
immer mal wieder eine neue oder andere VM auszuprobieren. Dank Javas Portabilitat
sollte dies keine allzu grofie Schwierigkeit darstellen.



4 Messwerkzeuge

Es gibt vielerlei Moglichkeiten Performance zu messen. Auf Windows-Systemen kon-
nen Sie beispielsweise einfach den Windows-Task-Manager (Abbildung 4.1) wahrend
der Programmausfiihrung beobachten. Das gibt Ihnen immerhin schon einmal groben
Aufschluss iiber Prozessor-Belastung und Speicherverbrauch. Genauere Daten erhal-
ten Sie tiber den Windows-Systemmonitor (Management Konsole), den Sie im Verwal-
tungsordner der Systemsteuerung finden. Zudem gibt es diverse freie Werkzeuge bzw.
Shareware-Programme (z.B. TaskInfo, http://www.iarsn.com/), die detaillierten Auf-

schluss iiber den System-Zustand geben.

Bl windows Task-Manager

Datei  Optionen  Ansicht  ?

=10l

Anwendungen Prozesse |Systemleistung|

Mame

|_pio | cPu-tutzung () | cPu-Zeit | speichernutzung |« |

lsass.exe
svchost,exe
IEXPLORE.EXE
svchost,exe
SPOOLSY.ERE
atizplab.exe
regsyc.exe
mstask, exe
stisve,exe

winmgrk, exe
MSPMSPSY . EXE
cmd.exe
explorer. exe
AOM.exe
atipkaco:, exe
lnadgm.exe
winampa.exe
MSMsgs, e
AcraTray, exe
ECTaskscheduler
ConnectState. ex
Elogerr.exe
Photoshp.exe
BROADC~1.EXE
Acrobat,exe

232
are
380
41z
460
492
536
552
554

700
7z
TZ5
796
G20
&a0
96
912
940
945
1005
1024
1045
1105
1204
1276

uli}
uli}
uli}
uli}
uli}
Jula]
uli}
uli}

0:00:00
0:00:00
00025
0:00:00
0:00:00
0:00:00
0:00:00
0:00:00
0:00:00

o011
0:00:00
0:00:00
o0zl
0:00:00
0:00:00
0:00:00
0:00:00
0:00:00
0:00:00
0:00:00
0:00:00
0:00:00
00007
0:00:00
0:00:15

1.088 KB
3.080 KB
4420 KB
2560 KB
2,760 KB

996 KB

12 KB
1.904 KB
1.496 KB

920 KB
164 KB
1.324 KB
944 KB
2912 KB
2,964 KB
1.196 KB
2525 KB
1.052 KB
1.536 KB
1.112KB
4.580 KB
3.024 KB
289 KE T
30,850 KB
2136 KB
21,368 KB LI

Prozess beenden |

|Prozesse: 35

|cPU-utzung: 42%

|Speichernut2ung: 256588 KB | 632376 KB

/

Abbildung 4.1: Prozessansicht des Windows-Taskmanagers. Der markierte Java-Prozess

belegt die CPU zu 42 Prozent und rund 78 Mbyte Speicher.




52 4  Messwerkzeuge

Unter Unix bzw. Linux stellen Werkzeuge wie top, ps, netstat, vmstat, iostat, sar (System
Accounting Reports), truss und strace niitzliche Daten {iber Prozesse, Kernelzugriffe,
Netzwerkbelastung und Speicherverbrauch zur Verfiigung. Genaueres iiber ihre
Benutzung ldsst sich den entsprechenden Man-Pages entnehmen.

4.1 Profiler

Nun konnen die genannten Systemwerkzeuge nicht in Ihr Java-Programm reingucken.
Sie kénnen Thnen nicht sagen, wie viele Objekte vom Typ X gerade existieren und wie
viel Speicher sie verbrauchen, wie viel Zeit Ihr Programm in Methode Y verbringt und
wie hdufig diese Methode bereits aufgerufen wurde. Genau dafiir gibt es so genannte
Profiler. Diese Programme erleichtern die Laufzeit-Analyse Ihrer Programme und hel-
fen Flaschenhélse und Speicherlcher zu finden.

Hier eine kleine Auswahl kommerzieller Profiler:
JProbe von Sitraka: http://www.jprobe.com/
Optimizeit von VMGear: http://www.optimizeit.com/
Quantify von Rational: http://www.rational.com/

DevPartner von Compuware: http://www.compuware.com/

4.2 Hprof

Gliicklicherweise miissen Sie jedoch nicht viel Geld fiir einen kommerziellen Profiler
ausgeben, um einen Einblick in Ihre Programme zu erhalten. Sowohl die Sun als auch
die IBM Java VM enthilt bereits einen einfachen Profiler namens Hprof.

Hprof bedient sich des Java Virtual Machine Profiler Interfaces (JVMPI), einer bislang expe-
rimentellen, nicht-standardisierten Schnittstelle (Stand Anfang 2002). Die zugehérige,
detaillierte Dokumentation der Schnittstelle befindet sich in der Dokumentation des Sun
JDKSs im Ordner docs/quide/jumpi/index.html oder online unter http://java.sun.com/j2se/1.4/
docs/guide/jumpi/index.html. C-Kenntnisse und einen entsprechenden Compiler voraus-
gesetzt, konnen Sie mit Hilfe dieser Dokumentation Ihren eigenen Profiler schreiben.
Nur mit Java ist dies leider nicht moglich.

Bevor Sie sich jedoch anschicken, das Rad neu zu erfinden, sollten Sie sich zunéchst ein
bisschen mit dem vorhandenen Hprof beschiftigen. Wenngleich dieser Minimal-Profi-
ler nicht unbedingt dem Vergleich mit kommerziellen Produkten standhilt, so ist er
doch durchaus niitzlich.



Hprof 53

Hprof wird durch den -Xrunhprof Kommandozeilenparameter der Sun Java-VM gestartet:
java -Xrunhprofl:helpll:<parameter>=<wert>, ..] MainClass

Eine Ubersicht iiber die moglichen Parameter finden Sie in Tabelle 4.1. Eine englische
Kurzfassung dessen erhalten Sie auch, wenn Sie die help-Option angeben.

Option Beschreibung Standardwert
I

heap=dump|sites|all Gibt den Inhalt des gesamten Heaps aus (dump), gene-  al
riert Stacktraces, die anzeigen, wo Speicher allokiert
wurde (sites) oder beides (all)

cpu=samples|times|old Zum Messen der Rechenzeit in Methoden werden off
Stichproben (samples), Laufzeiten und Ausfithrungshiu-
figkeit einzelner Methoden (times) oder das in fritheren
VMs verwendete Format (old) benutzt

monitor=y|n Gibt Informationen iiber Monitore fiir die Thread- n
Synchronisation aus

format=a|b Textuelle (a) oder binire (b) Ausgabe a

file=<file> Schreibt die Daten in die angegebene Datei java.hprof(.txt bei
textueller Ausgabe)

net=<host>:<port> Schreibt die Daten iiber die angegebene TCP- off
Verbindung

depth=<wert> Tiefe der auszugebenden Stacktraces 4

cutoff=<wert> Prozentwert fiir Ranglisten, nach dem diese abge- 0.0001

schnitten wird

lineno=y|n Angabe von Zeilennummern in Stacktraces y
thread=y|n Angabe des Threads im Stacktrace n
doe=y|n Ausgabe bei Beendigung der VM y
dooom=y|n Ausgabe bei OutOfMemoryError (nur IBM VM) y

Tabelle 4.1: Kommandozeilen-Parameter des in der Sun und IBM VM integrierten Profilers Hprof

4.2.1 Speicherabbild erstellen

Ruft man Hprof mit seinen Standardparametern auf, erhdlt man nach Beendigung der
VM eine Ubersicht iiber alle im Speicher befindlichen Objekte (Heap-Dump), eine nach
Speicherverbrauch sortierte Liste dieser Objekte (Sites) sowie Stacktraces, die Aus-
kunft dariiber geben, an welchen Stellen im Code Objekte alloziert wurden.

Aufler nach Beendigung der VM erhalten Sie diese Ausgabe auch, wenn Sie
in der Java-Konsole von Unix/Linux-Systemen bzw. bei Windows-Sys-
temen driicken. Alternativ kénnen Sie auf Unix/Linux-Systemen auch ein SIGQUIT an
den Java-Prozess senden: kill -QUIT <prozessid>



Sandini Bib
54 4  Messwerkzeuge

01 package com.tagtraum.perf.memory;
02

03 public class HprofHeapDemo f

04

05 private bytel] byteArray;

06 private String string;

07 private HprofHeapDemo internalDemolnstance;

08

09 public void setByteArray() f{

10 byteArray = new bytel[10247;

11 }

12

13 public void setString() f{

14 string = "1234567890"; // String der Lange 10
15 }

16

17 public void setHprofHeapDemo() f

18 internalDemoInstance = new HprofHeapDemo();
19 }

20

21 public static void main(Stringl] args) f{

22 HprofHeapDemo demoInstance = new HprofHeapDemo();
23 demolnstance.setByteArray();

24 demoInstance.setString();

25 demoInstance.setHprofHeapDemo();

26 }

27 '}

Listing 4.1: Beispiel-Programm, das einige Objekte alloziert

Wir wollen uns die Ausgabe von Hprof ein wenig genauer anschauen und fiihren das
Beispielprogramm HprofHeapDemo folgendermafien aus:

java -Xrunhprof com.tagtraum.perf.memory.HprofHeapDemo

Nach Beendigung des Programms befindet sich im aktuellen Verzeichnis die Datei
java.hprof.txt. Diese Datei wird beim ndchsten Lauf ohne Warnung iiberschrieben.
Kopieren Sie deshalb Ergebnisse, die Sie fiir spatere Vergleiche behalten wollen, oder
verwenden Sie den file-Parameter um eine andere Datei zu benutzen (Tabelle 4.1).

Wir erwarten, in der Datei die in HprofHeapDemo allozierten Objekte samt ihres Spei-
cherverbrauchs wiederzufinden. Am Anfang der Datei finden wir zunéchst einige
Hinweise darauf, dass das ausgegebene Format experimentell ist, und einen Text, der
grob erldutert, wie die Daten zu interpretieren sind. Danach beginnt der eigentliche
Datenteil mit einer Liste aller Threads:

THREAD START (0obj=838648, id = 1, name="Finalizer", group="system")
THREAD START (0bj=838688, id = 2, name="Reference Handler", group="system")
THREAD START (0bj=838708, id = 3, name="main", group="main")



Sandini Bib

Hprof 55
THREAD START (0bj=89d9588, id = 4, name="Signal Dispatcher", group="system")
THREAD START (obj=89da3c8, id = 5, name="CompileThread0", group="system")

THREAD END (id = 3)
THREAD START (0bj=89d81c8, id = 6, name="Thread-0", group="main")
THREAD END (id = 4)

Der Threadliste folgt eine Liste von nummerierten Stacktraces:

TRA

TRA

TRA
TRA

TRA

CE 594:

java.lang.ClassLoader.defineClassO(ClassLoader.java:Native method)
java.lang.ClassLoader.defineClass(ClassLoader.java:486)
java.security.SecureClasslLoader.defineClass(SecureClassloader.java:111)
java.net.URLClasslLoader.defineClass(URLClasslLoader.java:248)

CE 596:

HprofHeapDemo.main(HprofHeapDemo. java:22)

CE 597:

HprofHeapDemo.setByteArray (HprofHeapDemo. java:10)
HprofHeapDemo.main(HprofHeapDemo. java:23)

CE 598:

HprofHeapDemo.setString(HprofHeapDemo. java:14)
HprofHeapDemo.main(HprofHeapDemo. java:24)

CE 599:

HprofHeapDemo. setHprofHeapDemo (HprofHeapDemo. java:18)
HprofHeapDemo.main(HprofHeapDemo. java:25)

Die Stacktraces geben an, wo im Code etwas passierte, und werden anhand ihrer

Nummern in den beiden folgenden Teilen referenziert. So findet man im Heap-Dump

bei jedem Objekt einen Verweis auf einen Stacktrace. Dieser gibt den genauen Allo-

kation

HEA
0BJ
ARR
ARR
0BJ

0BJ
CLS

HEA

s-Ort an.

P DUMP BEGIN (5485 objects, 931896 bytes)

8aaf248 (sz=24, trace=596, class=HprofHeapDemo@8aaeec08)
internalDemoInstance 8aafb40

byteArray 8aaf318

string 8aaf458

8aaf318 (sz=1040, trace=597, nelems=1024, elem type=byte)
8aaf400 (sz=32, trace=598, nelems=10, elem type=char)
8aaf4bh8 (sz=24, trace=598, class=java.lang.String@838ea8)
value 8aaf400

8aaf540 (sz=24, trace=599, class=HprofHeapDemo@8aaeec08)

8aaee08 (name=HprofHeapDemo, trace=594)
super 838e48
loader 8b7b68
domain 8aabca8

P DUMP END



56 4  Messwerkzeuge

So entnehmen wir dem Heap-Dump, dass Objekt 8aaf248 vom Typ HprofHeapDemo in
Stacktrace 596 allokiert wird. Trace 596 wiederum verweist auf Zeile 22 der main()-
Methode unserer Testklasse (Listing 4.1). Et voila: In Zeile 22 wird ein HprofHeapDemo-
Objekt instanziiert.

Weiter entnehmen wir dem Dump, dass Objekt 8aaf248 genau 24 Byte belegt und drei
weitere Objekte mit den Namen internalDemoInstance, byteArray und string besitzt.
Anhand ihrer Ids kénnen wir auch diese Objekte nédher unter die Lupe nehmen.

Durch ein vorangestelltes ARR ist das Objekt 8aaf318 im Dump als Array gekennzeichnet.
Anhand der Id erkennen wir, dass es sich um den als byteArray bezeichneten byte-Array
handelt. Zuséatzlich zum Speicherverbrauch sz (1040 Byte fiir einen 1024 Byte groflen
Array) und Tracenummer erhalten wir Informationen dariiber, wie viele Elemente die-
ser Array enthalten und welcher Elementtyp in ihm gespeichert werden kann.

Weiter stellen wir fest, dass in Trace 598, also der setString()-Methode, zwei Objekte
instanziiert werden: ein char-Array mit zehn Elementen sowie ein String-Objekt, wel-
ches den char-Array als value-Objekt besitzt.

Gleich darunter finden wir das internalDemolnstance-Objekt, das jedoch im Gegensatz
zu dem vorher gefundenen HprofHeapDemo-Objekt keinerlei andere Objekte besitzt. Das
ist auch nicht weiter verwunderlich, da keiner seiner Instanzvariablen wihrend der
Ausfiihrung ein Wert zugewiesen worden ist. Und schliefilich ist da noch das durch ein
vorangestelltes CLS markiertes Klassenobjekt fiir unsere Testklasse.

Neben 0BJ, ARR und CLS gibt es noch den Typ R00T, jedoch keinen Typ fiir die primitiven
Datentypen wie int oder boolean. Diese sind implizit im Objekt enthalten und sofern es
sich um Instanzvariablen handelt, machen sie sich im Grofien-Attribut sz bemerkbar.

Das alles scheint schon iibersichtlich zu sein — ist es aber leider nicht. Der abgedruckte
Heap-Dump namlich ist nur ein sehr kleiner Auszug aus dem tatséchlich erzeugten,
iiber 10.000 Zeilen langen Dump. Ganz schon viel fiir solch ein kleines Programm.

Damit Sie nicht vollig im Datenwust versinken, folgt dem Dump noch ein wesentlich
kiirzerer Abschnitt namens Sites:

SITES BEGIN (ordered by live bytes)
percent live alloc'ed stack class
rank self accum bytes objs bytes objs trace name

1 64.18% 64.18% 598112 157 598112 157 I
2 9.23% 73.41% 86008 798 86008 798 1 [C

10

0.88% 90.23% 8208 1 8208 1 234 [B
11 0.27% 90.50% 2496 104 2496 104 236 java.lang.String
12 0.26% 90.76% 2464 35 2464 35 129 [C
13 0.24% 91.00% 2248 1 2248 1 85 [B



Hprof 57

14 0.18% 91.18% 1680 35 1680 35 131 java.util.HashMap
19 0.11% 91.90% 1040 1 1040 1 597 (B
SITES END
Die Sites-Sektion listet die Objekttypen auf, die am meisten Speicher belegen. Die
Spalte self gibt dabei an, wie viel Prozent des Heaps durch Objekte des in der Spalte
classname angegebenen Typs belegt sind (Tabelle 4.2) und im angegebenen Trace allo-

ziert wurden. Die Spalte accum enthélt die Summe aller Eintrdge aus der self-Spalte bis
zum aktuellen Rang.

Symbol Bedeutung

[z booTlean-Array

B byte-Array

[S short-Array

[C char-Array

[ int-Array

1] long-Array

[F float-Array

[D doubTe-Array
[L<Unknown> zweidimensionaler Array
<Klassenname> Klasse oder Array einer Klasse (z.B. java.lang.String)

Tabelle 4.2: Typen, wie sie in der Sites-Sektion angegeben werden

Die Spalten 1ive bytes und 1ive objs geben an, wie viel Speicher zum Zeitpunkt des
Dumps durch wie viele Objekte belegt wurde. Demgegeniiber geben die Spalten
alloc’ed bytes und alloc’ed objs an, wie viele Byte jemals durch wie viele Objekte des
angegebenen Typs belegt wurden. Das beinhaltet also auch all jene Objekte, die bereits
von der automatischen Speicherbereinigung eingesammelt wurden. In unserem Bei-
spiel sind die Werte jeweils gleich, da die Speicherbereinigung keines der instanziier-
ten Objekte beseitigen konnte.

Als einziges Objekt, das wir selbst erzeugt haben, finden wir unseren byte-Array auf
Rang 19 — erkennbar an der Trace-Nummer 597. Alle anderen Objekte waren zu klein,
um fiir die Auflistung im Sites-Abschnitt relevant zu sein, da die Liste automatisch bei
einem self-Wert kleiner als 0.0001% abgeschnitten wird. Sie kénnen diesen Wert {iber
den Parameter cutoff (Tabelle 4.1) manipulieren.

Beachten Sie, dass in der Sites-Ubersicht kein Unterschied zwischen Objekten und
Objekt-Arrays gemacht wird. So wird fiir einen Array von Strings genauso wie fiir ein
einzelnes String-Objekt der Typ java.lang.String aufgelistet. Der einzige Weg den



58 4  Messwerkzeuge

Unterschied sicher zu erkennen, ist es, der Trace-Referenz zu folgen und im Heap-
Dump nachzuschauen, ob vor der Objekt-Id ein 0BJ oder ein ARR steht. Primitive Daten-
typen werden iibrigens genau wie im Heap-Dump gar nicht erst aufgelistet.

Zudem gibt es noch eine weitere Merkwiirdigkeit. Die Summen der Spalten 1ive bytes
und Tive objects stimmen beim besten Willen nicht mit den Zahlen in der Heap-
Dump-Begin-Zeile iiberein.

Zusammenfassend ldsst sich sagen, dass den Heap zu inspizieren ein verldssliches Ver-
fahren zum Aufspiiren und zum Beseitigen von Speicherldchern (oder besser unbeab-
sichtigt referenzierten Objekten) ist. Leider ist die von Hprof generierte Textdatei nicht
besonders tibersichtlich und wird haufig sehr grof3. Um sich ein bisschen besser zurecht-
zufinden, kénnen Sie beispielsweise die freien Werkzeuge HPjmeter von HP oder HAT
(Heap-Analysis-Tool) benutzen. HAT ist ein von Sun nicht unterstiitztes, experimentel-
les Werkzeug, funktioniert nur mit der Bindr-Ausgabe von Hprof und ist etwas
umstdndlich zu bedienen. HPjmeter hingegen ist ein kleines, recht komfortables Swing-
Programm, das auch fiir andere Zwecke als nur die Heap-Analyse brauchbar ist. Eben-
falls gratis ist der Win32 HeapInspector von Paul Moeller. HeapInspector benutzt aller-
dings nicht den Hprof-Profiler, sondern klinkt sich per JVMPI direkt in die VM ein.

Zu finden sind die drei Werkzeuge unter folgenden URLs:
HPjmeter: http://www.hpjmeter.com/
HAT: http://java.sun.com/people/billf/heap/index.html
Win32 Heaplnspector: http://www.geocities.com/moellep/debug/HeapInspector.html

4.2.2 CPU-Profiling

Hprof kann nicht nur zum Inspizieren des Heaps, sondern auch zum Analysieren des
Laufzeitverhaltens Thres Programms benutzt werden. Dazu miissen Sie in der Kom-
mandozeile den Parameter cpu angeben. Sie haben die Wahl zwischen drei verschiede-
nen Profiling-Modi: samples, times und old.

Wir wollen uns die Ausgaben aller drei Optionen fiir die Testklasse HprofCPUDemo anse-
hen. Nach dem Start der Klasse werden 100.000 mal drei verschiedene Methoden auf-
gerufen, die jeweils leere Schleifen unterschiedlicher Lange enthalten. Wir erwarten,
dass der Laufzeitanteil der drei Methoden proportional zu ihrer Schleifenldnge ist. An
dieser Stelle sei erwdhnt, dass weder jikes 1.15, Sun javac 1.3.1, Sun javac 1.4 noch IBM
javac 1.3.0 die leeren Schleifen wegoptimieren. Uberhaupt optimieren Java-Compiler
so gut wie gar nicht, weshalb ihnen in diesem Buch auch kein Kapitel gewidmet ist.
Wihrend der Ausfithrung erkennt zumindest IBMs JIT, dass es sich um leere Schleifen
handelt, und entfernt sie. Die Sun VMs scheinen dies nur mit der HotSpot-Server-Ver-
sion zu erkennen. Die folgenden Beispiel-Ergebnisse wurden daher mit Suns HotSpot-
Client-Version produziert.



Sandini Bib
Hprof 59

01 package com.tagtraum.perf.cpu;

02

03 public class HprofCPUDemo f

04

05 public void sTowMethod() f

06 for (int i=0; 1<20000; i++);

07 }

08

09 public void mediumMethod() f{

10 for (int i=0; 1<10000; i++);

11 }

12

13 public void fastMethod() f{

14 for (int i=0; 1<5000; i++);

15 }

16

17 public static void main(Stringl] args) f{
18 HprofCPUDemo demoInstance = new HprofCPUDemo();
19 for (int i=0; 1<100000; i++) {
20 demoInstance.slowMethod();
21 demoInstance.mediumMethod();
22 demoInstance.fastMethod();
23 }

24 }

25}

Listing 4.2: Einfache Testklasse zur lllustration der verschiedenen CPU-Profiling-Modi

Stichproben

Das samples-Format unterscheidet sich von den beiden anderen Formaten insofern, als
es stichprobenbasiert ist. Das heifst, der Profiler schaut alle x Millisekunden nach, wel-
che Methode die VM gerade ausfiihrt. Da sich das Stichprobenintervall nicht 4ndern
lasst, bedeutet dies auch, dass dieser Modus ungeeignet ist, wenn Ihr Programm nur
eine sehr kurze Laufzeit hat.

Um einen Einblick in das Format zu gewinnen, starten wir unserer Testklasse folgen-
dermafien:

Jjava -Xrunhprof:cpu=samples com.tagtraum.perf.cpu.HprofCPUDemo

Die resultierende Ausgabe enthélt wiederum verschiedene Abschnitte. Neu ist die
Cpu-Samples-Sektion.

TRACE 8:
HprofCPUDemo. fastMethod (HprofCPUDemo. java:14)
HprofCPUDemo.main(HprofCPUDemo. java:22)

TRACE 7:



60 4  Messwerkzeuge

HprofCPUDemo.sTowMethod(HprofCPUDemo. java:6)
HprofCPUDemo.main(HprofCPUDemo. java:20)

TRACE 6:
HprofCPUDemo.mediumMethod (HprofCPUDemo. java:10)
HprofCPUDemo.main(HprofCPUDemo.java:21)

CPU SAMPLES BEGIN (total = 174)
rank self accum count trace method

1 54.02% 54.02% 94 7 HprofCPUDemo.s1owMethod

2 30.46% 84.48% 53 6 HprofCPUDemo.mediumMethod

3 13.22% 97.70% 23 8 HprofCPUDemo. fastMethod

6 0.57% 99.43% 1 3 Jjava.io.InputStreamReader.<init>
7 0.57% 100.00% 1 1 sun.misc.URLCTassPath$2.run

CPU SAMPLES END

Der Ausgabe unseres Beispiels entnehmen wir, dass insgesamt 174 Stichproben
genommen wurden. Die Ergebnisse dieser Proben sind in einer Art Hitliste dargestellt.
Auf Rang eins finden wir die Methode slowMethod(). Zudem koénnen wir der Spalte
count entnehmen, dass die VM wihrend 94 der 174 Stichproben gerade diese Methode
ausfiihrte. Das entspricht 54,02% aller genommenen Stichproben, einem Wert, der in
der Spalte self aufgelistet ist. In der accum-Spalte befindet sich die Summe aller gleich-
oder hoherrangigen self-Werte. trace wiederum verweist auf den entsprechenden
Stacktrace und somit auf eine Zeile. Auf Rang zwei und drei der Liste finden wir
gleichartige Eintrége fiir die Methoden mediumMethod() und fastMethod ().

Qualitativ stimmt unsere Messung also mit unseren Erwartungen iiberein. Quantitativ
ist das Ergebnis jedoch nicht so gut. Geméafl Quellcode miisste slowMethod() fiir jede
Ausfiihrung doppelt so lange bendtigen wie mediumMethod() und fastMethod() halb so
lange wie mediumMethod(). Wenn wir uns jedoch die count-Werte angucken, stellen wir
fest, dass diese nicht allzu genau zu unseren Erwartungen passen. Ausgehend von
fastMethod()s 23 Counts erhalten wir fiir mediumMethod() 53 statt erwarteter 46 Counts.
Das ist eine Abweichung von iiber 15%.

Das heifdt jedoch nicht, dass das Ergebnis unbrauchbar ist. Es illustriert lediglich, dass
es sich um Stichproben handelt, die gemiafl dem Gesetz der grofien Zahlen umso ver-
lasslicher werden, je mehr wir nehmen. Und 174 Stichproben sind nicht gerade {iber-
méflig viele. Denken Sie auflerdem daran, mit welchem Ziel Sie die Daten erheben. Es
geht hier nicht um Prézisionsmessungen, sondern in der Regel um Hinweise darauf,
welche Teile Thres Programms Sie optimieren sollten. Relevant sind ohnehin nur die
ersten paar Pldtze der Rangliste. Und hier sind wiederum die zugehdrigen Stacktraces
duflerst interessant. Sie sagen Thnen, welcher Code die besonders kritischen Methoden
aufruft. Das ist essentiell; denn eine Methode, die gar nicht erst ausgefiihrt werden
muss, ist wesentlich schneller als eine Methode, die optimiert wurde.



Sandini Bib
Hprof 61

Abbildung 4.2 verdeutlicht diesen Zusammenhang durch einen aus den Stacktraces
abgeleiteten Methodenaufruf-Graph. Er zeigt, dass die main()-Methode offensichtlich
mindestens so viel Rechenzeit in Anspruch nehmen muss wie die drei Arbeitsmetho-
den zusammen. Die main()-Methode ist jedoch in der Rangliste gar nicht aufgelistet.

slowMethod() Trace 7
main() > mediumMethod() Trace 6
fastMethod() Trace 8

Abbildung 4.2: Aus Stacktraces abgeleiteter Methodenaufruf-Graph

Zur einfacheren Analyse der Rangliste samt ihrer Trace-Verweise konnen Sie das freie
Werkzeug PerfAnal von Nathan Meyers benutzen. Das bereits im Heap-Abschnitt
erwdhnte HPjmeter erweist hier ebenfalls wertvolle Dienste.

PerfAnal:  http://developer.java.sun.com/developer/technical Articles/Programming/perfa-
nal/

HPjmeter: http://www.hpjmeter.com/

Absolute Zeiten

Die times-Ausgabe sagt Ihnen genau, wie viel Zeit die VM in welcher Methode ver-
bringt. Sie ist somit scheinbar viel praziser als das samples-Format. Scheinbar, da die
Zeiten durch das andauernde Messen natiirlich auch viel mehr verféalscht werden als
durch gelegentliche Stichproben. Jedoch gibt es hier kein eindeutiges Besser oder
Schlechter. Letztlich ist es eine Frage des Geschmacks, welches Format fiir Sie niitzli-
cher ist.

Wir wollen uns die Ausgabe fiir unsere Testklasse anschauen. Im times-Modus wird
die Klasse folgendermaflen gestartet:

java -Xrunhprof:cpu=times com.tagtraum.perf.cpu.HprofCPUDemo
Die Ergebnis-Ausgabe erfolgt wiederum durch Stacktraces und eine Rangliste.

TRACE 5:
HprofCPUDemo. sTowMethod(HprofCPUDemo. java:Unknown Tline)
HprofCPUDemo.main(HprofCPUDemo. java:Unknown line)
TRACE 2:
HprofCPUDemo. fastMethod (HprofCPUDemo. java:Unknown line)



Sandini Bib
62 4  Messwerkzeuge

HprofCPUDemo.main(HprofCPUDemo. java:Unknown line)
TRACE 19:
HprofCPUDemo.main(HprofCPUDemo. java:Unknown line)
TRACE 4:
HprofCPUDemo.mediumMethod (HprofCPUDemo. java:Unknown Tine)
HprofCPUDemo.main(HprofCPUDemo. java:Unknown line)

CPU TIME (ms) BEGIN (total = 17824)

rank self accum count trace method
1 51.86% 51.86% 100000 5 HprofCPUDemo.sTowMethod
2 27.42% 79.28% 100000 4 HprofCPUDemo.mediumMethod
3 15.22% 94.50% 100000 2 HprofCPUDemo. fastMethod

4 4.66% 99.16% 1 19 HprofCPUDemo.main
5 0.11% 99.27% 43 15 java.lang.String.tolLowerCase
18 0.06% 100.00% 2 7 java.io.Win32FileSystem.normalize

CPU TIME (ms) END

Die Rangliste ist geordnet nach der Zeit, die die VM in einer Methode verbringt, exklu-
sive aller Methodenaufrufe innerhalb dieser Methode. Dementsprechend ist die main()-
Methode auf Rang vier platziert und die Arbeitsmethoden (slowMethod(), mediumMe-
thod() und fastMethod()) nehmen die vorderen drei Platze ein.

Die Spalte self repréasentiert den prozentualen Anteil der Laufzeit des Programms in
der jeweiligen Methode, accum ist wiederum die Summe aller self-Werte bis zum aktu-
ellen Rang und count gibt die absolute Anzahl an Aufrufen an.

Alte Zeiten

Das o1d-Format stammt noch aus alten JDK-1.1-Zeiten. Um diese Ausgabe zu erzeu-
gen, miissen wir unsere Testklasse folgendermaflen starten:

Java -Xrunhprof:cpu=old com.tagtraum.perf.cpu.HprofCPUDemo

Aus Griinden der Riickwértskompatibilitdt konnen Sie alternativ auch -prof als Argu-
ment angeben. Die Ausgabe erfolgt dann jedoch in die Datei java.prof anstelle von
java.hprof.txt:

Java -prof com.tagtraum.perf.cpu.HprofCPUDemo

Das Format sieht vollig anders aus als die beiden anderen. Es gibt lediglich eine Sek-
tion, in der alle Methodenaufrufe nach Héufigkeit sortiert aufgelistet sind.

count callee
caller time

100000 HprofCPUDemo.slowMethod()V
HprofCPUDemo.main(LLjava/Tang/String;)V 8542

100000 HprofCPUDemo.mediumMethod()V
HprofCPUDemo.main([Ljava/Tang/String;)V 4105



Hprof

Sandini Bib
63

100000 HprofCPUDemo.fastMethod()V
HprofCPUDemo.main(LLjava/lang/String;)V 2473

750 java.util.jar.Attributes$Name.isValid(C)Z
java.util.jar.Attributes$Name.isValid(Ljava/lang/String;)Z 20

750 java.lang.String.charAt(I)C
Java.util.jar.Attributes$Name.isValid(Ljava/lang/String;)Z 0

750 java.util.jar.Attributes$Name.isATIpha(C)Z
java.util.jar.Attributes$Name.isValid(C)Z O

1 com.tagtraum.perf.cpu.HprofCPUDemo.main([Ljava/lang/String;)V
<unknown caller> 16053

Eine Zeile gibt jeweils an, wie hiufig (count) eine Methode (callee) von einer anderen
Methode (caller) aufgerufen und wie viel Zeit in ms (time) dafiir benotigt wurde.
Anders als im samples-Format versteht sich die Zeit hier inklusive aller Sub-Methoden-
aufrufe. Dementsprechend dauert der einzige Aufruf unserer main()-Methode
(16.053ms) etwas lianger als die Summe der Werte der in main() aufgerufenen Metho-

den (insgesamt 15.120ms).

Das old-Format ist in seiner Auflistung ein wenig geschwitziger als die anderen For-
mate. So wird nicht nur der Methodenname angegeben. Zusétzlich werden auch die
Argument- und Riickgabetypen (Tabelle 4.3) aufgelistet.

Symbol

Bedeutung

[<Typ>
L<Klassenname>
$<Klassenname>
<init>

<clinit>

Z

B

S

C

|

J

F

D

\

Eindimensionaler Array
Klasse (Ljava/lang/String steht beispielsweise fiir java.lang.String)
Innere Klasse
Konstruktor
Klassen-Initialisierer
booTlean

byte

short

char

int

Tong

float

double

void

Tabelle 4.3: Im old-Format verwendete Symbole und ihre Bedeutung



64 4  Messwerkzeuge

Natiirlich gibt es auch fiir das old-Format freie Anzeigeprogramme. Eines davon ist
ProfileViewer von Greg White und Ulf Dittmer.

ProfileViewer: http://www.capital.net/~dittmer/profileviewer/index.html

4.2.3 Monitor-Information

Die Java-Plattform bietet dem Entwickler volle Unterstiitzung zur Verwendung von
Threads. Fluch und Segen liegen hier nahe beieinander. Wenngleich Threads viele
Probleme 16sen, so schaffen sie auch einige. Das grofite ist wohl die mit Threads ein-
hergehende Komplexitit, die wiederum zu Wartungs- und Debug-Problemen fiihrt.

Fiir uns sind insbesondere als synchronized markierte Blocke von Interesse. Diese Blo-
cke werden von so genannten Monitoren vor der gleichzeitigen Ausfiihrung durch
mehreren Threads geschiitzt. Gleich einem Staffelstab wird der Monitor eines synchro-
nisierten Blocks von Thread zu Thread gereicht, und nur der Thread, der den Monitor
besitzt, darf den Block ausfiihren.

Ein Monitor ist immer mit einem Objekt assoziiert. Wenn Sie zum Beispiel eine Klassen-
methode synchronisieren, so wird der Monitor des Klassenobjekts benutzt. Synchroni-
sieren Sie eine normale Methode, so wird der Monitor der Instanz (also der von this)
benutzt. Aufierdem koénnen Sie das Objekt, dessen Monitor einen synchronisierten Block
schiitzen soll, auch in Klammern hinter dem synchronized-Schliisselwort angeben:

synchronized (monitorObject) |
// mache etwas
}

Ein Objekt, das zum Synchronisieren von Threads benutzt wird, heiflt auch Lock
(Schloss). Es ist quasi der Beschiitzer eines synchronisierten Blocks.

Jeder synchronisierte Block ist in einer multithreaded-Umgebung per Definition ein
Nadelohr. Unter bestimmten Bedingungen kann die Ausfithrung des Programms
sogar ganz gestoppt werden (z.B. durch ein Deadlock). Es ist daher wichtig, herausfin-
den zu koénnen, welcher Thread in einer bestimmten Situation gerade auf welchen
Monitor wartet.

01 package com.tagtraum.perf.monitor;

02

03 public class HprofMonitorDemo extends Thread f{
04

05 private static class Lock extends Object f{
06 b

07

08 private static Lock lTock = new Lock();

09

10 public HprofMonitorDemo(int i) |



Sandini Bib

Hprof 65
11 super("HprofMonitorThread-" + 1);
12 }
13
14 public void run() f{
15 for (int 1 = 0; 1 < 1000; i++) {
16 obtainLockAndSleep();
17 }
18 }
19
20 private void obtainlLockAndSleep() f
21 synchronized (lock) f
22 try |
23 Thread.sleep(100);
24 } catch (InterruptedException ie) f{
25 je.printStackTrace();
26 }
27 }
28 }
29
30 public static void main(Stringl] args) f{
31 HprofMonitorDemo demolnstance0 = new HprofMonitorDemo(0);
32 HprofMonitorDemo demolnstancel = new HprofMonitorDemo(1);
33 HprofMonitorDemo demolnstance? = new HprofMonitorDemo(2);
34 demoInstance0.start();
35 demoInstancel.start();
36 demoInstance2.start();
37 }
38}

Listing 4.3: Demo-Programm fiir den Monitor-Dump von Hprof

Genau dies konnen Sie erreichen, indem Sie die Hprof-Option monitor=y setzen. Zur
Ilustration starten wir die Klasse HprofMonitorDemo aus Listing 4.3. Alle Instanzen von
HprofMonitorDemo sind Threads, die um ein gemeinsames Lock-Objekt konkurrieren
(Zeile 21) und sobald sie es besitzen, 100 ms warten (Zeile 23). Gestartet wird das
Programm folgendermafien:

Jjava -Xrunhprof:monitor=y,doe=n
com.tagtraum.perf.monitor.HprofMonitorDemo

Um einen Schnappschuss der Konkurrenz-Situation einzufangen, erzeugen wir noch
zur Laufzeit einen Dump durch (Strg](Pause] bzw. [Strg](\]. Als Ergebnis erhalten
wir in der Datei java.hprof.txt folgende Ausgabe:

THREAD START (0bj=881960, id = 6, name="Thread-0", group="main")

THREAD START (0bj=8a039f0, id = 7, name="HprofMonitorThread-0",
group="main")

THREAD START (obj=8a03ael, id = 8, name="HprofMonitorThread-1",



66 4  Messwerkzeuge

group="main")
THREAD START (0bj=8a03c08, id = 9, name="HprofMonitorThread-2",
group="main")

MONITOR DUMP BEGIN
MONITOR HprofMonitorDemo$Lock(8a03be8)
owner: thread 8, entry count: 2
waiting to enter: thread 9, thread 7

MONITOR DUMP END

Der erzeugte Monitor-Dump zeigt die Situation, dass Thread acht gerade den Monitor
HprofMonitorDemo$Lock(8a03be8) besitzt und zwei andere Threads ihn gerne besifsen
(entry count: 2). Die beiden wartenden Threads sind die Threads neun und sieben.
Aus dem oberen Teil der Ausgabe konnen wir schlieflen, dass der Thread mit der Id
neun dem Thread namens HprofMonitorThread-2 entspricht, Thread sieben HprofMoni-
torThread-0 und Thread acht HprofMonitorThread-1.

Vereinfacht heifit das: Je hoher der Wert entry count, umso begehrter ist die synchroni-
sierte Ressource.

Léasst man die Testklasse ohne Unterbrechung durchlaufen, so erhélt man zudem noch
die Sektion Monitor-Time:

MONITOR TIME BEGIN (total = 10 ms)
rank self accum count trace
monitor
1 100.00% 100.00% 1499 3
HprofMonitorDemo$Lock(8a03be8) (Java)
MONITOR TIME END

Hierbei handelt es sich wiederum um eine Rangliste. Diesmal um eine mit den am hau-
figsten besetzten Monitoren. Wie nicht anders zu erwarten ist dies in unserem Beispiel
eine Instanz der Klasse HprofMonitorDemosLock. Die Spalte self gibt an, fiir wie viel Pro-
zent aller besetzter Monitore gerade der aufgelistete Monitor verantwortlich ist. accumist
wiederum die Summe aller gleich- oder hoherrangigen self-Werte. count gibt die Anzahl
der Stichproben an, wiahrend der dieser Monitor bereits besetzt war. trace verweist auf
die Methode, in der der Monitor aus der monitor-Spalte nicht erlangt werden konnte.

Wiéhrend die monitor-Option sehr niitzlich erscheint, so ist sie es tatsdchlich nur
begrenzt. Insbesondere im Zusammenhang mit Swing sind Komplettabstiirze héufig,
zusammen mit anderen Hprof-Optionen ist die monitor-Option fast gar nicht einsetzbar.

Verlasslicher hingegen ist der Thread-Dump, der auch ohne Hprof nach einem
(strg][Pause] bzw. [Strg][\] in die Standardausgabe geschrieben wird. Dieser enthélt
zwar keine statistischen, dafiir aber andere wertvolle Informationen.




Sandini Bib
Hprof

Full thread dump:

"Thread-0" prio=5 tid=0x2345a0 nid=0x5f0
waiting on monitor [0..0x6fb30]

"HprofMonitorThread-2" prio=5 tid=0x825a60 nid=0x498
waiting on monitor [0x8e0f000..0x8e0fdbc]
at java.lang.Thread.sleep(Native Method)
at HprofMonitorDemo.obtainLockAndSTeep
(HprofMonitorDemo. java:23)
at HprofMonitorDemo.run(HprofMonitorDemo.java:16)

"HprofMonitorThread-1" prio=5 tid=0x8258b0 nid=0x5f4
waiting for monitor entry [0x8dcf000..0x8dcfdbc]
at HprofMonitorDemo.obtainLockAndSTeep
(HprofMonitorDemo. java:23)
at HprofMonitorDemo.run(HprofMonitorDemo.java:16)

"HprofMonitorThread-0" prio=5 tid=0x824e98 nid=0x66¢c
waiting for monitor entry [0x8d8f000..0x8d8fdbc]
at HprofMonitorDemo.obtainLockAndSTeep
(HprofMonitorDemo. java:23)
at HprofMonitorDemo.run(HprofMonitorDemo.java:16)

"Signal Dispatcher" daemon prio=10 tid=0x800140 nid=0x588
waiting on monitor [0..0]

"Finalizer" daemon prio=9 tid=0x8990e40 nid=0x668
waiting on monitor [0x8c4f000..0x8c4fdbc]
at java.lang.0Object.wait(Native Method)
at java.lang.ref.ReferenceQueue.remove(Unknown Source)
at java.lang.ref.ReferenceQueue.remove(Unknown Source)
at java.lang.ref.Finalizer$FinalizerThread.run
(Unknown Source)

"Reference Handler" daemon prio=10 tid=0x89901e0 nid=0x34c
waiting on monitor [0x8c0f000..0x8c0fdbc]
at java.lang.0Object.wait(Native Method)
at java.lang.Object.wait(Unknown Source)
at java.lang.ref.Reference$ReferenceHandler.run
(Unknown Source)

"VM Thread" prio=5 tid=0x89fel28 nid=0x634 runnable

"VM Periodic Task Thread" prio=10 tid=0x7feeal nid=0x5a4d
waiting on monitor

"Suspend Checker Thread" prio=10 tid=0x7ff7b8 nid=0x638 runnable



68 4  Messwerkzeuge

Der abgedruckte Dump zeigt alle Threads der laufenden VM. Hervorgehoben ist
jeweils der Status der drei HprofMonitorThreads. Wahrend HprofMonitorThread-0 und
HprofMonitorThread-1 sich im so genannten Wait-Set befinden, d.h. darauf warten, den
Monitor [0x8dcf000..0x8dcfdbc] zu erlangen, besitzt HprofMonitorThread-2 zwar den
Monitor, wartet jedoch darauf, dass die 100 ms sleep()-Zeit verstreichen.

Hiétten wir Tock.wait(100) anstelle von Thread.sleep(100) aufgerufen, wére iibrigens die
Wahrscheinlichkeit sehr grofi gewesen, dass keiner der drei Threads zum Zeitpunkt
des Thread-Dumps im Besitz des Monitors ist und alle auf den Monitor warten. Zur
Erinnerung: Beim Aufruf von object.wait() gibt der ausfiihrende Thread alle Monitore
auf, beim Aufruf von Thread.sleep() hingegen behélt und blockiert er sie.

Neben den Status waiting on monitor und waiting for monitor entry erscheint im Dump
zudem die Bezeichnung runnable fiir Threads, die nicht aus dem ein oder anderen
Grund blockiert sind. Auflerdem finden wir allerlei niitzliche Informationen wie zum
Beispiel, ob der Thread ein Daemon-Thread ist, welche Prioritdt er hat, wie seine
Objekt-Id lautet (t1d) und von welchem Betriebssystemthread er ausgefiihrt wird (nid).

Threaddumps sind je nach VM und Betriebssystem leicht unterschiedlich. Der oben
abgebildete Dump stammt vom Sun JDK 1.3.1 und wurde unter Windows 2000 erzeugt.

Mehr zum Thema Threads finden Sie in Kapitel 9 Threads.

4.3 HotSpot-Profiling

Um Programme mit eingeschaltetem HotSpot zu messen, konnen Sie Suns Java-VM
mit der Option -Xprof starten. Der Aufruf unseres Beispielprogramms lautet folgender-
mafen:

java -Xprof com.tagtraum.perf.cpu.HprofCPUDemo

Beachten Sie, dass hierdurch nicht der Hprof-Profiler gestartet wird, sondern ein spezi-
eller HotSpot-Profiler. Die Ausgabe erfolgt auch nicht in eine Datei, sondern in den
Standard-Ausgabestrom und gliedert sich in mehrere Abschnitte. Jeder Thread hat
dabei seine eigene Sektion, eingeleitet jeweils durch die Zeile Flat profile of XX.XX
secs (YYYY total ticks): <Name des Threads>. Jede Thread-Sektion ist wiederum unter-
teilt in mehrere Subsektionen. Genau wie im samples-Modus von Hprof erfolgt das
Messen stichprobenbasiert. Eine Stichprobe entspricht hier jeweils einem tick.

Fiir unser Beispiel-Programm lautet die Ausgabe wie folgt:
Flat profile of 14.72 secs (1467 total ticks): main

Interpreted + native  Method
0.2% 2+ 1 HprofCPUDemo.main



HotSpot-Profiling 69

0.1% 2+ 0 HprofCPUDemo.mediumMethod

0.1% 0 + 1
java.security.AccessController.doPrivileged
0.1% 0 + 1 java.util.jar.JdarVerifier.<init>
0.1% 0 + 1 java.io.BufferedReader.readlLine
0.1% 0 + 1 sun.security.provider.Sun$l.run
0.1% 0 + 1 java.i0.Win32FileSystem.getlLength
0.7% 4+ 6 Total interpreted
Compiled + native  Method
54.1% 793 + 0 HprofCPUDemo.sTowMethod
30.9% 454 + 0 HprofCPUDemo.mediumMethod
14.1% 207 + 0 HprofCPUDemo. fastMethod
99.1% 1454 + 0 Total compiled

Thread-Tocal ticks:
0.2% 3 Class loader

Global summary of 14.82 seconds:

100.0% 1477 Received ticks
0.1% 2 Compilation
0.2% 3 Class loader

Da wir implizit nur einen, ndmlich den main-Thread starten, haben wir auch nur eine
threadspezifische Sektion, gefolgt von einer globalen Zusammenfassung aller genom-
menen Stichproben.

Der threadspezifische Abschnitt besteht aus mehreren Teilen: einem fiir Methoden, die
interpretiert wurden, einem fiir Ergebnisse von kompilierten Methoden sowie einem
threadspezifischen. Alle Teile bestehen aus vier Spalten. Die erste Spalte ist jeweils der
prozentuale Anteil einer Methode an der Gesamtlaufzeit des Threads, die zweite
Spalte enthilt die Anzahl an Ticks, die im Java-Teil der Methode verbracht wurden,
und die dritte Spalte ist die Anzahl an Ticks, die in einer nativen Subroutine verbracht
wurden. Spalte vier schliefllich beinhaltet den Namen der Methode.

Interessant fiir uns sind jeweils die Zeilen, die mit hohen Prozentzahlen beginnen. In
unserem Beispiel sind das insbesondere die ersten drei Zeilen des Compiled-Abschnitts.
Dort finden wir die drei Arbeitsmethoden unserer Beispielklasse wieder. Die Prozent-
zahlen entsprechen im Groben denen der self-Spalten im samples- und times-Format —
keine Uberraschungen also.

Eine Eigenheit der -Xprof-Ausgabe ist es, dass fiir jeden Thread nur jene Abschnitte
ausgegeben werden, in denen auch tatsdchlich etwas gemessen wurde. Wahrend
unsere Beispiel-Klasse Ausgaben fiir kompilierte und interpretierte Methoden erzeugt,
fehlen die beiden optionalen Abschnitte Stub und Runtime.

Im Stub-Abschnitt werden die Aufrufe von JNI-Methoden zusammengefasst. Runtime
enthélt die Stichproben, wahrend der die VM mit sich selbst beschéftigt war.



70

Sandini Bib

4  Messwerkzeuge

Flat profile of

Stub + native

9.7% 0 + 197
6.3% 1 + 127
2.7% 0 + 55
0.5% 0 + 11
19.8% 1 + 401

Runtime stub + native
0.0% 1+ 0
0.0% 1+ 0

21.43 secs

(2092 total ticks): main

Method
Java.util.zip.ZipFile.getEntry
Java.util.zip.ZipFile.read
Jjava.util.zip.ZipFile.getNextEntry
java.lang.Throwable.fillInStackTrace

Total stub
Method

interpreter_entries
Total runtime stubs

Aufgrund der fehlenden Stacktraces hat die Ausgabe des HotSpot-Profilers nur
begrenzten Wert. Es ist nicht ersichtlich, welche Methoden diejenigen Methoden auf-
rufen, in denen Ihr Programm die meiste Zeit verbringt. Es fehlen somit die Daten fiir
einen Methodenaufruf-Graph. Die Ausgabe kann daher lediglich als Startpunkt fiir
eine Analyse dienen, die auch die Daten aus Testldufen mit Hprof oder einem anderen
Profiler beriicksichtigt. Verzichten Sie auf diese Analyse, optimieren Sie unter Umstén-
den eine Methode, die offensichtlich sehr hdufig aufgerufen wird, ohne zu tiberpriifen,
ob diese Methode wirklich so hdufig aufgerufen werden muss.

F=3Histogram of objects [Workspace 1]

Opfions  Classes  Selecled Help  Object Appesrance
K1 1 1 1 ]

=101 %]

W 1000000+ Base Time

JawarublrTimeZone ¥
jawarutirTimeZone$1 +
jawarutivTimeZonebata 4
jawaiutiliector EY[[1]1]]

javatutilrectom 1 L

Oo0eR

jawaiutivjavattributes | ]l =10l x|
jawaiutilfjavattributessNal 4l
javatutilfjart) alEntry + —
jawatutiliaiaFile +IRNNENRRENNEND I~
. 5 1 [ —
J J |iavaMiIJjartJarFile.13‘ reported at 236192, hase time: 316, cumtime: 2913, # calls: 19, hytes: 40
3 LocalizedFrin 1 System
24 sinsight: Workspare 1 & B (1 eld)
. - = Dutputstre am 2 Loc
File Views Windows Help = (@ ol
end oftrace - 51565 events read (2257 |
o
3 FileDulputStr 2 BufferedDutpu 2 Lo
Laad 2 Finalizer 4 Fin
r .E ald) & @ ol
3 apiSamplez1T]| 1 Thiead 1 Thi
&Methnds [Workspace 1] E’ T oid) D. TS H ol
File Rows Columns Selected Help 2 FilelnputStre . 1 Finalizer n . 1 Fin|
=] 01 old) H 0 ol
class name | method + Butfersginut
uteredinpu é
- E‘. T ald) ’(1 al
javaflang/ThreadDeath ThreadDeath
javaiang/NullPointerException MullPointerExceptio E’élslr:;ﬁ D. ;«DDT;;M El. :1\,:
javafang/NullPointerException MullPointerExce ptia
javaflanginterruptedExcention InterruptedExc eptiol > \UEsiendeis el

javaflang/nterruptedException
javafanglllegalArgumentException
|avarlangfl\\egalArgumentExceptmn

Ll

InterruptedEsxceptiol | «
NegalfrgumentExe
HIega\ArgumemExcw

ol

_IJJI

| o]

Abbildung 4.3: Jinsight von IBM alphaworks



Jinsight 71

4.4 |insight

Neben Hprof gibt es fiir die IBM VM noch einen freien Profiler namens [insight. Jin-
sight funktioniert genau wie der oben beschriebene Hprof, ist jedoch dank einer grafi-
schen Benutzeroberflache einfacher zu bedienen. Wenn Sie ein IBM JDK verwenden,
lohnt es sich auf jeden Fall, einen Blick auf Jinsight zu werfen.

Jinsight von alphaworks IBM: http://www.alphaworks.ibm.com/tech/jinsight

4.5 Mikro-Benchmarks

Zum Messen der Ausfiihrungszeit einer bestimmten Methode koénnen Sie anstelle
eines Profilers auch die Methode java.lang.System.currentTimeMillis() benutzen. Sie
eignet sich insbesondere fiir Mikro-Benchmarks. Der wohl beliebteste Performance-
Test mittels System.currentTimeMi11is() sieht etwa so aus:

long start = System.currentTimeMillis();
int iterations = 10000;
for (int i=0; i<iterations; i++) |
objectToTest.methodToTest();
}
Tong time = System.currentTimeMillis()-start;
System.out.printin("Bendtigte Zeit fir "
+ iterations + " Iterationen: "
+ time + "ms");

Listing 4.4: Standard Mikro-Benchmark mit System.currentTimeMillis()

Wenn Sie solche Mikro-Benchmarks durchfiihren, behalten Sie folgende Punkte im
Hinterkopf:

Der Aufruf von System.currentTimeMi111s() benétigt selbst einige Millisekunden und
das Ergebnis ist nicht unbedingt auf die Millisekunde genau. Unter Windows NT/
2000 betragt die Genauigkeit 10 ms, unter Windows 95 sogar nur 50 ms. Wéhlen Sie
daher fiir die Variable iterations einen Wert, der zu einer Gesamtlaufzeit fithrt, die
um Grofsenordnungen langer ist als die Genauigkeit von System.currentTimeMil11is()
Ihrer Testplattform. Liegt die Laufzeit der Methode selbst im Milli- oder Hundertstel-
sekunden-Bereich, fiihrt eine Laufzeit ldnger als fiinf Sekunden in der Regel zu sinn-
vollen Ergebnissen. Bei langsameren Methoden sollten Sie die Laufzeit erhhen, so
dass Sie die Methode wenigstens einige hundert Mal aufrufen.

HotSpot ist unter Umstdnden nicht in der Lage, Code, der nicht in einer Extra-
Methode steht, beim ersten Lauf zu kompilieren. Rufen Sie daher Thre Benchmark-
Methode zweimal auf.



72 4  Messwerkzeuge

4.6 Makro-Benchmarks

Sie kdnnen System.currentTimeMi11is() natiirlich genauso gut fiir Makro-Benchmarks
verwenden. Bei grofleren Applikationen und insbesondere bei Webapplikation lohnt
es sich jedoch, auf vorhandene Werkzeuge zuriickzugreifen. So kénnen Sie beispiels-
weise die Performance einer Webanwendung mit Apache [Meter messen. JMeter ist ein
freies Werkzeug und eignet sich ferner fiir Stress-Tests von FIP-Servern sowie beliebi-
gen JDBC-Anfragen.

Apache Jmeter: http://jakarta.apache.org/jmeter/index.html

Auflerdem gibt es noch einige kommerzielle Werkzeuge zum Messen der Performance
eines Systems. Hier eine wertfreie Auswahl:

Mercury Interactive LoadRunner: http://www.mercuryinteractive.com/products/loa-
drunner/

Segue SilkPerformer: http://www.seque.com/html/s_solutions/s_performer/s_performer.
htm

Empirix e-Load: http://www.empirix.com/

4.7 Performance Metriken

Oft ist es auch sinnvoll, Performancedaten {iiber installierte Applikationen zu erheben
und zu analysieren. Dabei ist hdufig nicht interessant, wie schnell eine einzelne
Methode ausgefiihrt werden konnte, sondern wie lange es dauerte, beispielsweise eine
Bestellung aufzunehmen.

Indem man Messpunkte in eine Applikation kodiert, kann man diese Daten relativ ein-
fach erheben. Natiirlich ist dies auch tiber Logdateien moglich — die sind jedoch meist
sehr umstdndlich auszuwerten.

Unterstiitzung fiir Messpunkte wird vielleicht bald Bestandteil der Java-Plattform sein.
Es existiert bereits eine entsprechende Spezifikationsanforderung (http://www.jcp.org/
jst/detail/138.jsp).

4.8 Speicher-Schnittstellen

Die Java-Klassenbibliothek bietet einige wenige Schnittstellen, um Informationen {iber
den Speicherverbrauch zu erhalten sowie im begrenzten Mafie mit dem Garbage
Collector zu interagieren. Exakte Information iiber die Garbage Collection sind jedoch
nur iiber einen Kommandozeilen-Parameter der VM zu erhalten.



Speicher-Schnittstellen 73

4.8.1 Speicherverbrauch

Von Threm Programm aus koénnen Sie feststellen, wie viele Byte der Heap grofs ist und
wie viele davon noch frei sind. Die entsprechenden Methodenaufrufe lauten
Runtime.getRuntime().totalMemory() und Runtime.getRuntime().freeMemory(). Beide Gro-
Ben sind nicht-statisch und dndern sich mit der Zeit. Wenn Sie also den Speicherver-
brauch Ihrer Applikation protokollieren mochten, so kénnen Sie einfach einen Thread
starten und periodisch die beiden Speicherwerte in eine Datei oder die Standardaus-
gabe schreiben. Der entsprechende Code dafiir ist denkbar einfach (Listing 4.5). Seit
JDK 1.4 existiert zudem eine Methode Runtime.getRuntime().maxMemory(), die angibt, wie
viel Speicher die VM maximal beanspruchen wird.

package com.tagtraum.perf.memory;

public class MemoryWriter extends Thread f{

public MemoryWriter() f{
super("MemoryWriter");
// damit die VM sauber heruntergefahren werden kann:
setDaemon(true);
System.out.printin("Total\tFree");
start();

}

public synchronized void run() f{
try
while (true) {
System.out.printin(Runtime.getRuntime().totalMemory()
+ "\t" + Runtime.getRuntime().freeMemory());
wait(500);
}
} catch (InterruptedException ie) f{
ie.printStackTrace();
}

Listing 4.5: Einfacher MemoryWriter

Der MemoryWriter muss nur noch an geeigneter Stelle instanziiert werden — dazu bietet
sich beispielsweise die main()-Methode an. Alternativ kénnen Sie auch einen Applika-
tionsstarter schreiben, der zundchst einen Thread zum Schreiben des Speicherzustan-
des startet und dann die main()-Methode einer beliebigen Java-Applikation aufruft.
MemViewer (Listing 4.6, Abbildung 4.4) ist ein solcher Applikationsstarter. Zum besseren
Verstandnis des Quellcodes zeigt das Klassendiagramm in Abbildung 4.5 grob den sta-
tischen Aufbau von MemViewer.



Sandini Bib
74 4  Messwerkzeuge

MemViewer ldsst sich mit einer simplen grafischen Oberfldche, einer textuellen Ausgabe
oder einem beliebigen Visualizer starten. Welcher Visualizer gestartet wird, hingt vom
ersten Argument ab, das Sie MemViewer beim Start iibergeben. Da die Textausgabe sehr
viel einfacher ist als die GUI-Ausgabe, verfilscht sie das Messergebnis weniger. Dank
des simplen Formats (TSV) kann sie von einer handelsiiblichen Tabellenkalkulation
importiert und in einem Diagramm visualisiert werden. Die GUI-Ausgabe hat jedoch
den Vorteil, dass Sie Ihnen direkt zur Laufzeit ein visuelles Feedback gibt.

Hier sind die moglichen Startparameter:
java com.tagtraum.perf.memviewer.MemViewer
textl:file=<filename>]|gui|<visualizer classname>

<main classname>

<main classname>steht dabei fiir die Haupt-Klasse der Applikation, die Sie starten wollen.

[E3MemViewer - 1.245KB / 1.984 KB

Abbildung 4.4: Typisches Sdgezahnmuster des belegten Heap-Speichers

Applikation MemViewer Thread

|

<<interface>>
Visualizer

fUhrt
main(args)
aus

I I
r—— | |l —
| |
AWT Visualizer TextualVisualizer

Abbildung 4.5: Klassendiagramm des MemViewers



Sandini Bib

Speicher-Schnittstellen 75

package com.tagtraum.perf.memviewer;

import java.lang.reflect.Method;
import java.util.Properties;
import java.util.StringTokenizer;

//Hauptklasse des MemViewers.
public class MemViewer extends Thread f{

private Visualizer visualizer;
private long interval = 1000;

public MemViewer(String arg) throws Exception f
StringTokenizer st = new StringTokenizer(arg, ":");
Stringl] args = new Stringlst.countTokens() - 11;

String type = st.nextToken();
for (int i = 0; st.hasMoreTokens(); i++) {

argsCi] = st.nextToken();
}
Class visualizerClass = getVisualizerClass(type);
visualizer = (Visualizer) visualizerClass.newlnstance();
visualizer.init(getProperties(args));

public synchronized void run() f{
while (true) f{

visualizer.showMemory(new MemState());

try |
wait(interval);

I catch (InterruptedException ie) {
ie.printStackTrace();

}

public static void main(Stringl] args) throws Exception f
if (args.length < 2) usage();
MemViewer memViewer = new MemViewer(args[01);
memViewer.setDaemon(true);
memViewer.start();
Method mainMethod = Class.forName(args[11).getMethod("main",

new Class[1{Stringl].class});

Stringl] newArgs = new Stringlargs.length - 17;
System.arraycopy(args, 1, newArgs, 0, newArgs.length);
mainMethod.invoke(null, new Objectl[1{newArgs});

public static void usage() f
System.out.printin("MemViewer");
System.out.printin("java "

+ "com.tagtraum.perf.memviewer.MemViewer "



Sandini Bib

76 4  Messwerkzeuge

+ "text[:file=<filename>]|gui|<visualizer classname> "
+ "<main classname>");
System.exit(0);

private static Properties getProperties(Stringl] args) |
Properties properties = new Properties();
for (int i = 0; i < args.length; i++) {
int index = args[il.index0f('=");
if (index != -1 && index < args[il.length() - 1) {
properties.setProperty(argslil.substring(0,
index).tolLowerCase(), argslil.substring(index + 1));

}
return properties;

private static Class getVisualizerClass(String type)

throws ClassNotFoundException f{

Class visualizerClass;

if (type.equals("text")) {
visualizerClass = TextualVisualizer.class;

} else if (type.equals('"qui")) {
visualizerClass = AWTVisualizer.class;

b else |
visualizerClass = Class.forName(type);

}

return visualizerClass;

Listing 4.6: Klasse MemViewer

package com.tagtraum.perf.memviewer;
import java.util.Date;

//Schnappschuss des Speicherzustandes.
public class MemState {

private long totalMemory;

private long freeMemory;

private long time;

public MemState() {
this.totalMemory = Runtime.getRuntime().totalMemory();
this.freeMemory = Runtime.getRuntime().freeMemory();
this.time = System.currentTimeMillis();



Sandini Bib

Speicher-Schnittstellen 77

public Tong getTotalMemory() f{
return totalMemory;

}

public Tong getFreeMemory() f{
return freeMemory;

}

public Tong getUsedMemory() f{
return totalMemory - freeMemory;

J

public Tong getUsedMemoryPercent() f{
return getUsedMemory() * 100 / getTotalMemory();

}

public Tong getFreeMemoryPercent() f{
return getFreeMemory() * 100 / getTotalMemory();

}

public Tong getTime() f{
return time;

}

public String toString() {
return new Date(getTime()).toString()

+

+ o+ o+ o+

"

1

1

1

"

: Total: " + getTotalMemory()
, Free: " + getFreeMemory()

(" + getFreeMemoryPercent() + "%)"

(
, Used: " + getUsedMemory()
(

(" + getUsedMemoryPercent() + "%)";

Listing 4.7: Die Klasse MemState bildet den Speicherzustand zu einem gegebenen Zeitpunkt ab.

package com.tagtraum.perf.memviewer;

import java.util.Properties;

// Visualizer Interface.

public interface Visualizer
public void init(Properties properties) throws Exception;
pubTic void showMemory(MemState memState);

Listing 4.8: Interface Visualizer



Sandini Bib
78 4  Messwerkzeuge

package com.tagtraum.perf.memviewer;

import java.io.FilelWriter;
import java.io.PrintWriter;
import java.util.Date;
import java.util.Properties;

// TextualVizualizer schreibt den Speicherzustand in
// eine Datei oder die Standardausgabe.
public class TextualVisualizer implements Visualizer

private PrintWriter out;

public void init(Properties properties) throws Exception f{

if (properties.containsKey("file")) f

out = new PrintWriter(

new FileWriter(properties.getProperty("file")));

} else |

out = new PrintWriter(System.out);
}
out.printin("MemViewer - " + new Date());
// drucke Tabellenkopf
out.printin("Time\tTotal\tFree\tFree’\tUsed\tUsed%");

public void showMemory(MemState memState) f
out.print(memState.getTime());
out.print('\t");
out.print(memState.getTotalMemory());
out.print('\t");
out.print(memState.getFreeMemory());
out.print('\t');
out.print(memState.getFreeMemoryPercent());
out.print('\t");
out.print(memState.getUsedMemory());
out.print('\t");
out.printin(memState.getUsedMemoryPercent());

Listing 4.9: Klasse TextualVizualizer

package com.tagtraum.perf.memviewer;

import java.awt.*;

import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;
import java.text.NumberFormat;
import java.util.Properties;

// AWTVisualizer gibt den Speicherzustand in einem



Sandini Bib

Speicher-Schnittstellen

79

// AWT-Fenster aus. Es werden dabei jeweils die letzten 2048
// Eintrdge im Speicher gehalten.
public class AWTVisualizer extends Frame implements Visualizer

private MemStatesRingBuffer memStates;
private long maxTotal;

private double scaleFactor;

private Polygon totalPolygon;

private Polygon usedPolygon;

private int currentfFrameHeight;
private NumberFormat numberFormat;

public AWTVisualizer() f{
super("MemViewer");
addWindowlListener(new WindowAdapter() f{
public void windowClosing(WindowEvent e) f
hide();
dispose();

b)s
numberFormat = NumberFormat.getInstance();
memStates = new MemStatesRingBuffer();
totalPolygon = new Polygon();
usedPolygon = new Polygon();
setSize(450, 200);
show();
}

public void init(Properties properties) f
// wird nicht benutzt.
}

public void showMemory(MemState memState) f{
memStates.add(memState);
update(getGraphics());

}

public void update(Graphics g) |
if (memStates.getlast().getTotalMemory() > maxTotal
|| getHeight() != currentFrameHeight) {
maxTotal = memStates.getlast().getTotalMemory();
currentFrameHeight = getHeight();
scaleFactor = (double)maxTotal/(double)currentFrameHeight;
}
computePolygons();
super.update(g);

public void paint(Graphics g) f
super.paint(g);
g.setColor(Color.blue);



80

Sandini Bib

4  Messwerkzeuge

g.fillPolygon(totalPolygon);

g.setColor(Color.red);

g.fillPolygon(usedPolygon);

g.setColor(Color.black);

String Tine = (numberFormat.format(memStates.getlast().
getUsedMemory()/1024)) + "KB / " + (numberFormat.format(
memStates.getlast().getTotalMemory()/1024)) + "KB";

g.drawString(line, 10, currentfFrameHeight - 10);

setTitle("MemViewer - " + line);

private void computePolygons() f{
totalPolygon = new Polygon();
usedPolygon = new Polygon();
int x = 0;
totalPolygon.addPoint(x, currentFrameHeight);
usedPolygon.addPoint(x, currentFrameHeight);
for (int i = Math.max(memStates.size() - getWidth(), 0);
i < memStates.size(); i++, x++) {
MemState memState = (MemState) memStates.get(i);
totalPolygon.addPoint(
X, scale(memState.getTotalMemory())
)
usedPolygon.addPoint(x, scale(memState.getUsedMemory()));
}
totalPolygon.addPoint(x, currentFrameHeight);
usedPolygon.addPoint(x, currentFrameHeight);
}

private int scale(long memory) f{
return currentfFrameHeight-(int)((double)memory/scaleFactor);
}

// Private Datenstruktur, die jeweils die letzten 2048
// Elemente hdlt.

private static class MemStatesRingBuffer f{
private MemStatel[] buffer = new MemState[20487;
private int last;
private int first;

public void add(MemState memState) f
buffer[last] = memState;
last = ++last % buffer.length;
if (lTast == first) first = ++first % buffer.length;

public MemState get(int index) f{
if (index >= size() || index < 0)
throw new IndexOutOfBoundstException("Index: "



Speicher-Schnittstellen 81

+ index + ", Size: " + size());
return buffer[(first + index) % buffer.lengthl;
}

public MemState getlast() f{
return get(size() - 1);
}

public int size() {
if (first <= last) |
return last - first;
}
return last + (buffer.length - first);

J

Listing 4.10: Klassen AWTVisualizer und MemStatesRingBuffer

4.8.2 Geschwitzige Garbage Collection

Insbesondere zum Optimieren der VM-Parameter von Server-Programmen ist es sinn-
voll, sich genauer anzuschauen, wann der Heap vom Garbage Collector aufgerdumt
wird. Die besten Daten dazu erhalten Sie, wenn Sie den Parameter -verbose:gc beim
Start Ihres Programms angeben.

java -verbose:gc <main classname>

Die Ausgabe erfolgt in die Standardausgabe und sieht fiir Sun JDK 1.3.1 wie folgt aus:

[GC 511K->223K(1984K), 0.0100300 secs]

[GC 979K->565K(1984K), 0.0090931 secs]

[GC 1073K->805K(1984K), 0.0209879 secs]

[GC 1150K->960K(1984K), 0.0134366 secs]
LFull GC 960K->898K(2076K), 0.1322406 secs]
[Full GC 898K->898K(2076K), 0.1231679 secs]
[GC 2273K->1864K(2940K), 0.0062519 secs]

Jede Zeile enthdlt Angaben iiber die Art der Speicherbereinigung (z.B. in der ersten
Zeile: GC), den belegten Speicher (511K) vor und nach der Speicherbereinigung (223k),
die Grofle des Heaps (1984K) sowie die Dauer der Speicherbereinigung (0.0100300 secs).

In Suns JDK 1.4 gibt es zudem die Option -X1oggc:<file>, die dafiir sorgt, dass die Aus-
gabe in eine Datei geschrieben wird:

java -Xloggc:gc.txt <main classname>



Sandini Bib

82 4  Messwerkzeuge

Das Format gleicht dem oben beschriebenen Format, bis auf den Punkt, dass in der ers-
ten Spalte jeweils ein Zeitstempel steht.

2.23492e-006: [GC 1087K->462K(16320K), 0.0154134 secs]
3.42373: [GC 1550K->654K(16320K), 0.0122571 secs]
5.32063: [GC 1736K->957K(16320K), 0.0148594 secs]
7.01177: [GC 2044K->980K(16320K), 0.0083648 secs]
8.59185: [GC 2068K->1012K(16320K), 0.0066291 secs]
9.96373: [Full GC 1696K->1028K(16320K), 0.1462759 secs]
12.2401: [GC 2052K->1148K(16320K), 0.0122527 secs]
12.6752: [GC 2167K->1300K(16320K), 0.0085760 secs]

Die Sun-JDK-1.3.x und JDK-1.4 verfiigen jeweils iiber einen Generationen-Kollektor.
Daher gibt es kleine (6C) und vollstandige (Full GC) Speicherbereinigungen. Wahrend
der kleinen Speicherbereinigung wird nur der Teil des Heaps aufgerdumt, der fiir
junge Objekte reserviert ist. Dies erfolgt in der Regel sehr viel hdufiger und schneller
als eine vollstindige Bereinigung. Wenn Sie den eingebauten inkrementellen Garbage
Collector benutzen, werden Sie zudem viele Inc GC-Eintrédge finden.

Auch zum Anzeigen der Garbage-Collection-Daten existieren Werkzeuge. Eines ist der
von mir geschriebene GCViewer.

GCViewer: http://www.tagtraum.com/

GEViewer - C:Dokumente und Einstellungen Administratorgc.txt =8|
Datei | Ansicht | Hilfe
co.0004 2 ollstandige GC Linien (.00
[ Inkrementelle GC Linien
] ¥ GC Dauer Line
¥ GC Dauer Rechtecke
50.000k ¥ HeapgroRe
[T Belegter Heap

0.7s
40.0004

Daten

Gesamtpausenzelt 5,27s
Durchschn. Pause 0,0361s
—_— Kiirzeste Pause 0,0029s

0 Langste Pause 1,00783s

_ == Gesamtlaufzeit 137,61s
— Maximale Heapgroke 61.616K

oK 005 il U | P Y I . V. ., | Durchsatz 96,17%

Abbildung 4.6: GCViewer visualisiert die Garbage Collector-Aktivitdt.




Speicher-Schnittstellen 83

4.8.3 Manuelle Speicherbereinigung

Um aus Ihrem Programm heraus die Garbage Collection anzustofien, konnen Sie die
Methode System.gc() aufrufen. Dies garantiert jedoch nicht, dass tatsachlich der Speicher
aufgerdumt wird. Der Methodenaufruf wird vom Garbage Collector lediglich als Hin-
weis darauf verstanden, dass gerade ein giinstiger Moment zum Aufraumen ist.

Grundsatzlich ist vom Aufruf von System.gc() jedoch abzuraten, da er zu einer voll-
standigen Speicherbereinigung fiihren kann, die unter Umstinden unnétig ist und zu
einer verhaltnisméagig langen Pause der Ausfiihrung des Programms fithren kann.

Auf Sun JDK 1.3.1/1.4.0-Systemen ldsst sich die explizite Garbage Collection mit dem
nicht offiziell unterstiitzen VM-Parameter -XX:+DisableExplicitGC ausschalten. Dies
kann jedoch bei Systemen, die RMI und dessen verteilten Garbage Collector (DGC)
benutzen, zu Problemen fiihren, da dieser von expliziter Garbage Collection Gebrauch
macht. Siehe Kapitel 11.3 Verteilte Speicherbereinigung.



Sandini Bib



5 Zeichenketten

In Java werden Zeichenketten {iblicherweise als java.lang.String-Objekte reprasentiert
und String-Manipulationen scheinen denkbar einfach. Bietet doch die String-Klasse so
komfortable Methoden wie substring() zum Erstellen eines Teilstrings oder trim() zum
Beseitigen von unerwiinschten Leerzeichen (genauer: Whitespace). All diese Metho-
den - es sind noch einige mehr — geben jeweils ein String-Objekt zuriick. Nun ist
jedoch jedes Objekt der Klasse String unverinderbar (immutable). Bei jedem zuriickgege-
benen String-Objekt handelt es sich also um ein neues Objekt.

Das Erzeugen von Objekten ist nicht ganz billig. Speicher muss alloziert und samtliche
Konstruktoren miissen ausgefiihrt werden. Mit anderen Worten: Wenn wir nicht unbe-
dingt miissen, wiirden wir es gerne vermeiden. Aus diesem Grund verfiigt Java tiber
eine zweite Klasse, die explizit zur Manipulation von Zeichenketten gedacht ist:
java.lang.StringBuffer.

5.1 Strings einfligen

Die wichtigsten StringBuffer-Methoden heifSen append(), insert() und substring(). Sie
ermoglichen das Anfiigen und Einfiigen von Zeichen oder Zeichenketten sowie das
Erstellen von Teilstrings. Im Folgenden wollen wir den Code zum Einfiigen eines
Strings in einen anderen untersuchen. Zunéchst die reine String-Variante:

String halloWelt = "Hallo Welt ";

String weite = "weite ";

String hallo = halloWelt.substring(0, 7);

String welt = halloWelt.substring(7);

String halloWeiteWelt = hallo.concat(weite).concat(welt);

Das Einfiigen von Zeichenketten ist nicht nur vergleichsweise kompliziert, es kostet
auch Speicher und Rechenzeit. Jeder Aufruf von substring() fithrt zu einem neuen
Objekt, Gleiches gilt fiir concat(). Macht vier neue Objekte plus das halloWelt-Objekt
und das weite-Objekt, insgesamt also sechs Objekte.



86 5 Zeichenketten

Mit der StringBuffer-Klasse sieht das etwas anders aus:

String halloWelt = "Hallo Welt ";

String weite = "weite ";

StringBuffer stringBuffer = new StringBuffer(halloWelt);
stringBuffer.insert(7, weite);

String halloWeiteWelt = stringBuffer.toString();

Wir benétigen nur vier Objekte.

In der String-Version hétten wir auch den +-Operator anstelle von concat() benutzen
konnen. Der entsprechende Code sihe folgendermafien aus:

String halloWelt = "Hallo Welt ";

String weite = "weite ";

String hallo = halloWelt.substring(0, 7);
String welt = halloWelt.substring(7);

String halloWeiteWelt = hallo + weite +welt;

Um die drei Varianten zu vergleichen, habe ich sie viele Male in einer Schleife ausge-
fithrt, die Zeit gemessen und normalisiert. Wie Tabelle 5.1 zeigt, ist die StringBuffer-
Variante tatsdchlich die schnellste, gefolgt von der String-Variante mit concat(). Das
Schlusslicht ist die Variante mit dem +-Operator.

String-Variante StringBuffer-Variante String-Variante mit +

100% 75,6% 120,3%

Tabelle 5.1: Relative Geschwindigkeit verschiedener Varianten zum Einfligen von Strings in Strings

Warum, fragen Sie sich vielleicht, ist die +-Variante so langsam? Die Antwort steht im
Bytecode. Wenn Sie den Quellcode iibersetzen und anschliefend wieder dekompilie-
ren, konnen Sie herausfinden, wie der Compiler mit dem +-Operator verfahrt. Der
dekompilierte Code sieht so aus:

String halloWelt = "Hallo Welt ";
String weite = "weite ";
String hallo = halloWelt.substring(0, 7);
String welt = halloWelt.substring(7);
String halloWeiteWelt
= new StringBuffer(hallo).append(weite).append(welt).toString();

Der Compiler sorgt also dafiir, dass die StringBuffer-Klasse anstelle von concat () benutzt
wird. So ist es tibrigens auch in der Sprachspezifikation vorgesehen [Gosling00,
§15.18.1.2]. Dies scheint jedoch in unserem Beispiel zu noch grofierem Aufwand und
somit zu einer noch schlechteren Zeit zu fiihren.



Strings anfligen 87

Bleibt festzuhalten:

Das Einfiigen in Strings erfolgt am besten mit StringBuffer.

5.2 Strings anfligen

Nun ist Anfligen gegeniiber Einfligen etwas simpler. Wir wollen die oben vorgestellten
drei Varianten auf dieselbe Weise untersuchen. Hier die drei entsprechenden Code-
Stiicke:

// concat()

String s = "";

for (int i=0; 1<1000; i++) f{
s = s.concat("aString");

}

// StringBuffer

StringBuffer sb = new StringBuffer();

for (int i=0; i<1000; i++) {
sb.append("aString");

}

// +-Operator

String s = "";

for (int i=0; 1<1000; i++) {
s += "aString";

}

Zusatzlich wollen wir noch testen, wie sich der StringBuffer verhalt, wenn wir ihn mit
der erwarteten endgiiltigen Grofie vorinitialisieren. Hier die entsprechende Methode:

// initialisierter StringBuffer

StringBuffer sb = new StringBuffer(7000);

for (int i=0; 1<1000; i++) {
sb.append("aString");

}

concat() StringBuffer Passend initialisierter StringBuffer = +-Operator

100% 1,0% 0,7% 289,1%

Tabelle 5.2: Tausendfaches Anfiigen einer Zeichenkette

Das Ergebnis ist eindeutig:

Wenn Sie wiederholt Strings an einen anderen String anfiigen, macht sich der StringBuffer
bezahlt — insbesondere dann, wenn Sie thn mit der zu erwartenden GrdfSe vorinitialisieren.



Sandini Bib
88 5 Zeichenketten

Am schlechtesten schneidet der +-Operator ab. Zwischen dem passend initialisierten
StringBuffer und dem +-Operator liegt ein Faktor grofier 400.

Der Grund liegt wiederum in der Ubersetzung durch den Compiler. Er generiert fol-
genden Code:

// Dekompilat
String s = "";
for (int i=0; i1<1000; i++) {
s = new StringBuffer(s)
.append("aString").toString();
}

Dadurch wird in jedem Schleifendurchlauf je ein zusédtzliches StringBuffer-Objekt
erzeugt. Zudem ist der Aufruf von toString() offensichtlich nicht ganz billig.

Zugegeben, der hier dargestellte Mikro-Benchmark ist mafigeschneidert fiir den
StringBuffer. Er brilliert besonders, wenn haufig append() und selten toString() aufge-
rufen wird, wie es in obigem Test der Fall ist.

Etwas anders sieht es aus, wenn wir den Test ein wenig modifizieren. Anstatt immer
denselben String anzufiigen, fiigen wir die aktuelle Zeichenkette an sich selbst an.

// concat()

String s = "aString";

for (int i=0; i<10; i++) |
s = s.concat(s);

}

// initialisierter StringBuffer

StringBuffer sb = new StringBuffer(7168);

sb.append("aString");

for (int i=0; i<10; i++) {
sb.append(sb.toString());

}

sb.toString();

// StringBuffer

StringBuffer sb = new StringBuffer("aString");

for (int i=0; i<10; i++) {
sb.append(sb.toString());

}

sb.toString();

// +-Operator

String s = "aString";

for (int i=0; i<10; i++) |
S +=5;

J



Strings anfligen 89

In diesem Test ist die StringBuffer-Variante etwa genauso schnell wie die +-Operator-
Variante. Beide sind langsamer als die concat()-Version, die wiederum nur halb so
schnell ist wie der passend initialisierte StringBuffer.

concat() StringBuffer Passend initialisierter StringBuffer +-Operator

100% 160,9% 50,6% 154,3%

Tabelle 5.3: Wiederholtes Duplizieren und Anhdngen einer Zeichenkette

Der Grund fiir den Geschwindigkeitsvorteil des vorinitialisierten StringBuffers liegt
darin, dass dieser nie seine Kapazitit vergroflern muss. Der nicht initialisierte String-
Buffer hingegen muss intern stindig neue, grofiere char-Arrays anlegen und deren
Inhalt hin- und herkopieren. Das liegt daran, dass StringBuffer genau wie String
intern einen char-Array benutzt, um die einzelnen Zeichen zu speichern. Die Grofie
von Arrays lasst sich jedoch nicht im Nachhinein dndern. Wenn die Kapazitdtsgrenze
erreicht ist, muss ein neuer, groflerer Array angelegt und der Inhalt des alten Arrays
in den neuen kopiert werden. Der neue Array hat dabei iibrigens mindestens die
zweifache Lange des alten Arrays plus zwei.

Benutzen Sie also StringBuffer zum Anfiigen von Strings, wenn Sie mehrere Strings
anfiigen wollen und die entsprechende Methode haufig aufgerufen wird. Initialisieren
Sie auflerdem den StringBuffer mit einer angemessenen Kapazitit — voreingestellt ist
16. Wenn Sie den StringBuffer(String s)-Konstruktor verwenden, wird zur Lange des
Strings 16 addiert und dies als initiale Lénge des internen char-Arrays gesetzt.

Wenn Sie jedoch in einer einzelnen, nur einmal ausgefiihrten Zeile ein paar Strings
aneinander fiigen wollen, lohnt es sich nicht, explizit einen StringBuffer zu benutzen.
Dies erledigt in der Regel der Compiler fiir Sie. Zudem ist das Verwenden des +-Opera-
tors wesentlich einfacher und fiihrt zu besser lesbarem Code.

Insbesondere, wenn Sie String-Literale aneinander reihen wollen, sind StringBuffer
eher kontraproduktiv. Kommen Sie also nicht auf die Idee, Folgendes:

String s = new StringBuffer(19).append("zero ").append("one ")
.append("two ").append("three ").toString()

sei schneller als dies:

String s = "zero " + "one " + "two " + "three

Der Compiler ist in der Lage, zu erkennen, dass Sie String-Literale miteinander verket-
ten, und fiihrt die Verkettung bereits vor der Ubersetzung durch (Constant Folding). In
Bytecode tibersetzt wird also tatséchlich:

String s = "zero one two three ";



Sandini Bib
90 5 Zeichenketten

Und das ist kaum zu optimieren. Essentiell ist jedoch, dass die Verkettung in einer Zeile
bzw. genauer einem Ausdruck steht.

String s = "zero ";
s += "one ";

s += "two ";

s += "three ";

Obiger Code resultiert in folgender, offensichtlich ungiinstiger Ubersetzung:
String s = "zero ";

s = new StringBuffer(s).append("one ").toString();

s = new StringBuffer(s).append("two ").toString();

s = new StringBuffer(s).append("three ").toString();

Vermeiden Sie also auf mehrere Zeilen verteilte +=-Operationen.

5.3 Bedingtes Erstellen von Strings

Es liegt in der Natur von Strings, dass sie meist fiir Ausgaben benutzt werden. Eine
prominente Anwendung ist das Schreiben von Meldungen in eine Protokolldatei. Hau-
fig lasst sich die Anzahl oder Detailliertheit der Meldungen durch einen Parameter
verdndern. Dies ist das so genannte Loglevel. Hier ein Beispiel:

01 public class ConditionalStringManipulationDemo f{

02

03 private int Toglevel = 2;

04

05 public static void main(Stringl] args) f{

06 new ConditionalStringManipulationDemo().dolt();
07 }

08

09 public void dolt() f

10 // 1ogge das jetzige Datum mit Loglevel 1

11 Tog("Datum: " + new java.util.Date().toString(), 1);
12 }

13

14 public void log(String message, int ToglLevel) f

15 // sofern das Loglevel hoch genug ist,

16 // wird die Nachricht ausgegeben

17 if (loglevel > this.loglevel) f{

18 System.out.printin(message);

19 }

20 }

21}



Bedingtes Erstellen von Strings 91

Wenn Sie das Programm starten, werden Sie keine Ausgabe sehen. Das Loglevel steht
auf zwei (Zeile 2) und die Methode 10g() wird mit Loglevel eins aufgerufen (Zeile 11).
Die iibergebene Nachricht wird also nicht geloggt. Der entsprechende String "Datum: "
+ new Jjava.util.Date().toString() wird aber trotzdem erstellt, da sein Wert vor der
Ubergabe zur log()-Methode berechnet wird. Obwohl das Programm also die Mel-
dung nicht ausgibt, wird sie erstellt — und, nebenbei bemerkt, einen Datumsstring auf
diese Weise zu erstellen, ist nicht gerade billig.

Besser wire es also, wenn wir vor dem Erstellen {iberpriiften, ob wir die Nachricht
auch tatsédchlich ausgeben wollen. Dies konnte mittels einer Methode isLog() (Zeilen
14-16) geschehen. Der Code séhe folgendermafien aus:

01 public class ConditionalStringManipulationDemo?2 f

02

03 private int ToglLevel = 2;

04

05 public static void main(Stringl] args) f{

06 new ConditionalStringManipulationDemo2().dolt();

07 }

08

09 public void dolt() |

10 // Uberprife mit isLog(), ob Uberhaupt geloggt werden soll
11 if (isLog(1l)) Tog("Datum: " + new Jjava.util.Date());
12 }

13

14 public boolean islog(int loglLevel) f{

15 return loglLevel > this.loglLevel;

16 }

17

18 public void 1log(String message) |

19 System.out.printin(message);

20 }

21}

Tabelle 5.4 zeigt den enormen Geschwindigkeitsunterschied zwischen beiden Varian-
ten. Tatsdchlich war es schwierig, iberhaupt sinnvolle Messergebnisse zu erhalten, da
der Unterschied so grofs ist.

ohne isLog() mit isLog()
100% 0,2%

Tabelle 5.4: Die Variante mit isLog() ist um den Faktor 500 schneller.

Wenn Sie konnen, vermeiden Sie also das Erzeugen von Strings. Ausgerechnet Proto-
kollmeldungen zur Fehlersuche, die im Normalbetrieb noch nicht einmal ausgegeben
werden, sollten nicht der Grund sein, warum Ihre Applikation zu langsam lauft.



92 5 Zeichenketten

Géngige Logging-Frameworks wie das bewdhrte, freie Log4] und das java.util.
Togging-Paket (seit JDK 1.4) verfiigen itiber entsprechende Methoden, die testen, ob eine
Nachricht iiberhaupt geloggt wiirde. Im Falle des java.util.logging-APIs ist dies die
Methode java.util.logging.Logger.isLoggable(). Im Falle von Log4j heifit die Methode
org.apache.log4j.Logger.isEnabledFor(). Zusétzlich gibt es noch spezielle Methoden fiir
diverse Loglevel.

Jakarta Log4]: http://jakarta.apache.org/log4j/

5.4 Stringvergleiche

Sicherlich haben auch Sie am Anfang Ihrer Java-Karriere schmerzlich herausfinden
miissen, dass Stringvergleiche mit dem ==-Operator nicht immer zum gewiinschten
Ergebnis fithren. Strings selben Inhalts sind leider nicht immer auch dieselben Objekte,
sondern allenfalls gleich. Hier zwei Beispiele:

if (new StringBuffer("string").toString() == "string") {
System.out.printin("Diese Zeile wird nie ausgegeben werden.");
}

Die toString()-Methode des StringBuffers erstellt ein neues String-Objekt, das zwar
semantisch gleich, jedoch nicht identisch mit dem Literal "string" ist. Ebenso verhélt es
sich im folgenden Beispiel:

if (new String("string") == "string") {
System.out.printin("Diese Zeile wird nie ausgegeben werden.");
}

Der hier verwendete String-Konstruktor erzeugt ein neues String-Objekt, das wiederum
inhaltlich dem String-Literal gleicht, jedoch nicht mit ihm identisch ist. Ein solcher Kon-
struktor wird auch kopierender Konstruktor (Copy Constructor) genannt, da er eine Kopie
des Objekts anlegt. Im Fall von String-Objekten ist dies gew&hnlich reine Ressourcenver-
schwendung. Statt eines Objekts haben Sie auf einmal zwei, die sich zudem nur héchst
ineffizient miteinander vergleichen lassen; denn gewohnlich lauft der Vergleich von
Strings iiber die equals()-Methode. Sie tiberpriift zunédchst, ob es sich um dieselben
Instanzen handelt (Objekt-Identitét), dann, ob die Lange die gleiche ist, und schliefSlich,
ob alle Zeichen gleich sind (semantische Gleichheit). Offensichtlich ist der Vergleich am
schnellsten, wenn Sie identische Objekte miteinander vergleichen (konstante Laufzeit —
zur Klassifizierung von Algorithmen siehe auch Kapitel 8.1 Grof$-O-Notation), und am
langsamsten, wenn Sie inhaltlich gleiche, aber nicht identische Strings vergleichen (line-
are Laufzeit). Genau Letzteres trifft fiir Objekte zu, die mit dem kopierenden Konstruk-
tor erstellt wurden:

// Tun Sie dies nicht! Lineare Laufzeit!
new String("string").equals("string");



Sandini Bib
Stringvergleiche 93

Zeichenweise Stringvergleiche und somit lineare Laufzeit sind jedoch hédufig, wenn Sie
Strings erst zur Laufzeit konstruieren. Dieser aufwandige Vergleich lasst sich vermei-
den, da jede Java VM einen Stringkonstantenpool unterhilt, in dem jeweils eine ein-
deutige Instanz eines Strings gespeichert ist.

Es befinden sich garantiert alle String-Literale im Konstantenpool. Daher gilt immer:

String a = "string";
String b = "string";
if (a==b) |

// Wird garantiert ausgegeben:
System.out.printin("Die Objekte sind identisch.");
}

Praktisch ist diese Tatsache zum Beispiel in der Swing-Programmierung:

public SwingExample implements ActionListener {

public void setUpMenuBar() f

JMenultem item = new JMenultem("Open");

// setzt das eindeutige Literal "open" als Kommando
item.setActionCommand("open");
item.addActionListener(this);

// Wird aufgerufen, wenn der Menlieintrag "Open" angeklickt wird
public void actionPerformed(ActionEvent e) f{

// der Vergleich ist korrekt, da wir mit dem Literal

// und somit mit derselben Instanz vergleichen

if (e.getActionCommand() == "open") {

}

J

Wenn Sie nicht nur mit Literalen arbeiten, kénnen Sie die intern()-Methode des String-
Objekts verwenden, um eine Referenz auf die eindeutige String-Instanz aus dem Pool
zu erlangen. Beispiel:

String a = "string";
String b = new String("string");
if (a==b) |

System.out.printin("Diese Zeile wird nie ausgegeben.");
}
if (a==b.intern()) {

System.out.printin("a und b.intern() sind identisch.");



94 5 Zeichenketten

Nun werden Sie sich vermutlich fragen, warum man nicht immer mittels internO)auf
Objektidentitdt vergleicht, anstatt die equals()-Methode zu verwenden. Oder, warum
die equals()-Methode nicht intern() verwendet. Nun, intern() hat zwar konstante
Laufzeit!, diese ist aber meist hoher als die im schlechtesten Fall lineare Laufzeit von
equals(). Wir wollen verschiedene Fille vergleichen. Hier Fragmente des entsprechen-
den Testcodes:

private String a = "0123456789";

private String b = new String("0123456789");

private String c = "9012345678";

private String d "d";

// Alle Schleifen werden vielfach ausgefiihrt, dabei wird
// innerlterations von 1 bis 10 gesteigert

private int innerlterations;

// Gleiche, nicht-identische Strings
for (int i = 0; 1 < innerlterations; i++) a.equals(b);

// Verschiedene Strings gleicher Ldnge
for (int i = 0; i < innerlterations; i++) a.equals(c);

// Unterschiedliche Lénge
for (int i = 0; i < innerlterations; i++) a.equals(d);

// Gleiche Strings verglichen mit intern()
String e = b.intern();
for (int i = 0; i < innerlterations; i++) a.equals(e);

Abbildung 5.1 zeigt die relative Laufzeit der verschiedenen Stringvergleiche. Es wur-
den pro Reihe jeweils bis zu zehn Vergleiche durchgefiihrt. Bei dem Vergleich mit
intern() wurde jedoch pro Reihe nur einmal intern() aufgerufen. Wie nicht anders zu
erwarten steigen alle Werte nahezu linear mit der Anzahl der Vergleiche. Jedoch sind
die Steigungen (Tabelle 5.5) sehr unterschiedlich.

Unterschied- Verschiedene Gleiche Gleiche,
liche Liange Strings gleicher Strings mit nichtidentische
Linge intern() Strings
Steigung 2,3 6,7 1,6 28,4

Rechnerischer
Schnittpunkt mit der  134,8 18,7 - 3,6
intern()-Variante

Tabelle 5.5: Steigung der Ausfiihrungszeit in Abhdngigkeit von der Anzahl der Vergleiche sowie die Mindestanzahl
an Vergleichen, die zu einer Idngeren Laufzeit fiihren als die intern()-Variante.

1 Zumindest ist das fiir die Sun JDKs der Fall.



GroB- und Kleinschreibung 95

w
o
o

N
[6)]
o

N
o
o

—_
o
o

1

Normalisierte Ausflihrungszeit
@
o

.\.

o
1

1 2 3 4 5 6 7 8 9 10

Anzahl der Vergleiche

—o— Strings unterschiedlicher Lange

—m— Verschiedene Strings gleicher Lange
—a— Gleiche Strings mit intern(), Lange 10
—x— Gleiche Strings mit Lange 10

Abbildung 5.1: Kosten von Stringvergleichen verschiedener bzw. gleicher, aber nicht identischer Strings
mit und ohne intern()

Aus den Daten folgt, dass sich der relativ teure Aufruf von intern() lohnt, wenn Sie
Strings pro intern()-Aufruf haufig genug vergleichen und unter den verglichenen
Strings moglichst viele gleiche, nicht-identische Strings sind. Wenn Sie jedoch nicht
besonders hdufig vergleichen und die verglichenen Strings meist auch noch unter-
schiedliche Langen haben, lohnt sich intern() eher nicht.

Bedenken Sie zudem, dass die Ausfiihrungsgeschwindigkeit von intern() stark von der
Implementierung der VM abhingt, da es sich um eine native Methode handelt. Die oben
genannten Werte haben also lediglich Beispielcharakter.

5.5 GroB- und Kleinschreibung

Etwas aufwéndiger ist der Stringvergleich, wenn Sie Grof3- und Kleinschreibung igno-
rieren wollen. Grundsétzlich gibt es dazu drei Strategien:

Sie benutzen die String-Methode equalsIgnoreCase().

Sie konvertieren beide Strings mittels toLowerCase() oder toUpperCase() in Grofs-
bzw. Kleinbuchstaben und vergleichen mit equals().

Sie benutzen einen java.text.Collator bzw. java.text.CollationsKeys zum Vergleich.



96 5 Zeichenketten

5.5.1 Vergleich mittels equalsignoreCase()

Wir wollen zunichst equalsIgnoreCase() betrachten. In Suns JDK 1.3.1 und IBMs JDK
1.3.0 vergleicht die Methode zundchst mit nu11, tiberpriift dann, ob die Lange gleich ist,
und vergleicht anschlieflend, ob alle Buchstaben entweder auf Anhieb dieselben sind
oder aber zumindest ihre Groffbuchstaben sich gleichen.?

Seit JDK 1.4 wird vor den oben genannten Tests zundchst auf Objektidentitét gepriift.
Das hatte Sun offensichtlich vorher vergessen. Was also fiir IBM JDK 1.3.0 und Sun JDK
1.3.1 der schlechteste Fall war, ist fiir JDK 1.4 der beste (Tabelle 5.6).

Sun JDK 1.3.1 Client IBM JDK 1.3.0 Sun JDK 1.4.0 Client
100% 83% 7,7%

Tabelle 5.6: Vergleich zweier identischer Strings der Ldnge zehn mit equalsignoreCase()

Nun darf man nicht vergessen, dass der Fall zweier identischer Strings nicht unbedingt
der haufigste ist. Wenn Sie jedoch equalsIgnoreCase() hédufig verwenden, die Chance,
dass Sie identische Objekte vergleichen, hoch ist und Sie noch JDK 1.3.x benutzen,
lohnt es sich, evtl. folgenden Code zu benutzen:

// sl und s2 sind jeweils Stringobjekte

// sl ist zudem nicht null

if (sl == s2 || sl.equalsIgnoreCase(s2)) f
System.out.printin("sl und s2 sind gleich.");

}

Verwenden Sie diesen Code nicht, wenn die genannten Bedingungen nicht zutreffen.
Sie wiirden lediglich Thren eigenen Code verschmutzen.

5.5.2 toLowerCase() oder toUpperCase(), das ist hier die Frage

Das oben bereits erwédhnte zweite Verfahren, Strings unabhédngig von Grofs- und Klein-
schreibung zu vergleichen, ist nicht unbedingt zu empfehlen. Die beiden String-Metho-
den tolowerCase() und toUpperCase() erzeugen jeweils ein neues String-Objekt, es sei
denn der String enthélt nur Klein- bzw. Grobuchstaben.? Pro Vergleich miissen also
meist zwei neue Objekte erzeugt werden, was zu einem hohen Aufwand fiihrt. Vom fol-
genden Code ist somit unbedingt abzuraten — equalsIgnoreCase() leistet wesentlich bes-
sere Dienste.

2 Fiir den Fall, dass die Groflbuchstaben nicht dieselben sind, werden aufSerdem noch die Kleinbuch-
staben tiberpriift, da im georgischen Alphabet kleingeschriebene Buchstaben gleich sein kénnen,
obwohl ihre jeweiligen Grofbuchstaben dies nicht sind.

3 Um dies festzustellen, wird jedes Mal eine lineare Suche nach einen Grof- oder Kleinbuchstaben
durchgefiihrt. Das Ergebnis dieser Suche wird nicht gecached.



Sandini Bib
GroB- und Kleinschreibung 97

String a = "a und B";

String b "B und a";

// sehr teurer Vergleich!

if (a.toLowerCase().equals(b.tolLowerCase())) f{
System.out.printin("Die beiden Strings sind gleich.");

}

Die beiden Methoden kénnen dennoch niitzlich fiir Vergleiche sein. Beispielsweise
muss in HTTP (Hypertext Transfer Protokoll) die Grof3- und Kleinschreibung von Hea-
dernamen ignoriert werden. Zu diesem Zweck ist eine Hashtabelle niitzlich, die die
Grofs- und Kleinschreibung von Schliisseln ignoriert. Mit toLowerCase() bzw. toUpper-
Case() konnen Sie vor jedem Einfiigen oder Entnehmen den Schliissel in seine klein-
(oder grofi-)geschriebene Form bringen.

Map map = new HashMap();

public Object get(String key) f
return map.get(key.toLowercase());
}

public Object put(String key, Object object) {
return map.put(key.tolowerCase());
}

Nun unterliegt die Grofs- und Kleinschreibung gewissen Regeln. Es ist zum Beispiel sehr
viel wahrscheinlicher, dass Sie Java im Deutschen mit grofiem | und kleinem ava schrei-
ben und nicht jAVa. Genauso wird der HTTP Accept-Header meistens mit groSem A und
ansonsten klein geschrieben. Diese Tatsache kdnnen Sie sich zunutze machen, indem Sie
zwei statt einer Hashmap benutzen. In der ersten Hashmap legen Sie das Objekt unter
dem Original-Schliissel ab, in der zweiten unter dem kleingeschriebenen:

public class CaselnsensitiveMap |

Map map = new HashMap();
Map TowerCaseMap = new HashMap();

public Object get(String key) f
Object value = map.get(key);
return value != null ?
value : TowerCaseMap.get(key.tolLowerCase());
}

public Object put(String key, Object value) f{
// dies ist nicht ausreichend!
Object oldValue = map.put(key, value);
return key != null ?



Sandini Bib
98 5 Zeichenketten

lowerCaseMap.put(key.toLowerCase(), value) : oldValue;
}

Leider ist der Code nicht ganz so einfach, wie oben beschrieben. Betrachten Sie folgen-
den Fall:

CaselnsensitiveMap map = new CaselnsensitiveMap();
map.put("java", "erster Eintrag");
map.put("Java", "zweiter Eintrag");
System.out.printin(map.get("java"));

Dies fiihrt zu dieser unerwiinschten Ausgabe:
erster Eintrag

Der erste Eintrag ist lediglich aus der lowerCaseMap entfernt worden, nicht jedoch aus
der normalen map. Wir miissen uns also ein wenig mehr Miihe geben. Der folgende
Code 16st das Problem, wenngleich um den Preis von ein bisschen mehr Komplexitét
bei den Operationen Entfernen und Hinzufiigen sowie einer zuséatzlichen Datenstruk-
tur und somit groerem Speicherverbrauch.

// Abbildung von lowerCase-Schllisseln auf andere Schreibweisen
Map equivalentKeys = new HashMap();

public Object remove(String key) |
Object oldValue = null;
if (key !=null) {
String TowerCaseKey = key.tolLowerCase();
oldValue = TowerCaseMap.remove(lowerCaseKey);
Set s = (Set)equivalentKeys.get(lowerCaseKey);
if (s I=null) {
// Falls der Wert auch unter anderen Schliisseln
// hinterlegt war, missen wir die entsprechenden
// Eintrdge aus der map entfernen.
for (Iterator i = s.iterator(); i.hasNext(); ) {

map.remove(i.next());
}

}

else {
oldValue = TowerCaseMap.remove(null);
map.remove(null);

}

return oldValue;

public Object put(String key, Object value) f{



Sandini Bib
GroB- und Kleinschreibung 99

Object oldValue = null;
if (key !=null) {
String TowerCaseKey = key.tolLowerCase();
oldValue = TowerCaseMap.get(TowerCaseKey);
if (oldValue != value) f{
remove(key);
TowerCaseMap.put(lowerCaseKey, value);
}
map.put(key, value);
// Damit wir in konstanter Zeit entfernen
// kdnnen, merken wir uns alle verschiedenen
// Schreibweisen des Schlissels.
Set set = (Set)equivalentKeys.get(lowerCaseKey);
if (set == null) |
set = new HashSet();
equivalentKeys.put(TowerCaseKey, set);
}
set.add(key);
}
else {
oldValue = lowerCaseMap.put(null, value);
map.put(null, value);
}
return oldValue;

Um alle verschiedenen Schreibweisen eines Schliissels aus der map entfernen zu konnen,
merken wir uns diese in einem Set, das wir unter der kleingeschriebenen Version des
Schliissels in einer zusdtzlichen Map namens equivalentKeys hinterlegen. Auf diese
Weise konnen wir alle zu einem Eintrag in TowerCaseMap dquivalenten Eintrage zuverlas-
sig auch aus der map entfernen. Dies ist fiir die Integritdt der Datenstruktur unerlasslich.

In unserem Beispiel konvertieren wir die Schliissel der TowerCaseMap in ihre kleinge-
schriebene Form. Wenn Sie dies tun, miissen Sie sich bewusst sein, dass der Buchstabe 3
erhalten bleibt. Sie konnen also mit dem Schliissel gemiif§ nicht denselben Wert finden
wie mit dem Schliissel GEMASS. Anders verhilt es sich, wenn Sie statt der 1owerCaseMap
eine entsprechende upperCaseMap verwenden und alle Schliissel mittels toUpperCase()
konvertieren. Das Wort gemiiff wiirde von toUpperCase() zu GEMASS umgewandelt.
Somit kénnten Sie mit den Schliisseln gemiiff und GEMASS dieselben Eintrége finden.

Alternativ zu der beschriebenen Implementierung mittels toLowerCase() oder toUpper-
Case() koénnen Sie als Datenstruktur auch eine SortedMap mit einem Grofs-/Kleinschrei-
bung ignorierenden java.util.Comparator verwenden. String.CASE_INSENSITIVE_ORDER ist
ein solcher Comparator. Anstatt also eine eigene Klasse zu implementieren, kénnen Sie
einfach folgenden Code verwenden:

SortedMap map = new TreeMap(String.CASE_INSENSITIVE_ORDER);



100 5 Zeichenketten

Wie wir noch sehen werden, ist dieser Code jedoch sehr viel langsamer als die oben
beschriebene Implementierung.

5.5.3 Wenn A gleich a sein soll

Im letzten Abschnitt ist bereits angeklungen, dass String-Vergleiche nicht immer ganz
so einfach sind, wie sie scheinen. Im Deutschen sind insbesondere ff und Umlaute
etwas kompliziert zu handhaben, im Franzosischen hat man mit den Accents so seine
Schwierigkeiten.

Java versucht diese Schwierigkeiten mit der java.text.Collator-Klasse abzudecken. Ein
Kollator ist — frei iibersetzt — ein spezieller Text-Vergleicher.* Kollatoren gibt es fiir ver-
schiedene Sprachen und in unterschiedlicher Stirke. Gewohnlich erhalten Sie den
gewilinschten Kollator von der Fabrikmethode Collator.getInstance():

Collator collator = Collator.getInstance(Locale.GERMAN);
collator.setStrength(Collator.SECONDARY); // Unterscheidungsgrad
if (collator.equals("gross", "GroB")) f{

// Diese Zeile wird ausgegeben, da die beiden Strings nur

// Unterschiede dritter Ordnung haben.

System.out.printin("gross und GroB sind gleich.");

Alternative Schreibweisen Unterscheidungsgrad (Stirke)

Umlaute oder entsprechende Buchstaben ohne ™. primar
Beispiel: i und u

GroB-/Kleinschreibung. Beispiel: G und g sekundir
Doppel-S oder S-Zett. Beispiel: ss und sekundir
Verschiedene Buchstaben. Beispiel: g und z grundsitzlich nicht gleich

Umlaute oder entsprechende Buchstaben mit angehdngtem e.  grundsitzlich nicht gleich
Beispiel: ¢ und ae

Tabelle 5.7: Alternative Schreibweisen von Buchstaben im Deutschen und ihr Unterscheidungsgrad gemdB dem
deutschen Collator des Sun JDKs

Wenn Sie nur Grofs- und Kleinschreibung sowie Doppel-S und S-Zett ignorieren wol-
len, miissen Sie als Unterscheidungsgrad Collator.SECONDARY setzen (Tabelle 5.7). Wenn
Sie dartiber hinaus auch noch die Umlaut-Punkte ignorieren wollen, miissen Sie als
Unterscheidungsgrad Collator.PRIMARY setzen. Es gibt leider keinen Grad, der bei-
spielsweise i mit ae gleichsetzt.’

4 Kollation (lat.): Vergleich einer Abschrift mit der Urschrift zur Priifung der Richtigkeit.
5 Sie konnen jedoch einen entsprechenden eigenen Regelsatz fiir den java.text.RuleBasedCollator
schreiben.



Sandini Bib
GroB- und Kleinschreibung 101

Da die Collator-Klasse die Schnittstelle Comparator implementiert, kann man mittels
einer Collator-Instanz und einer SortedMap eine dhnliche Datenstruktur aufbauen wie
die oben beschriebene CaselInsensitiveMap. Als Comparator muss lediglich der entspre-
chende Collator gesetzt werden:

Collator collator = Collator.getInstance(Locale.GERMAN);
collator.setStrength(Collator.SECONDARY);
SortedMap map = new TreeMap(collator);

Performanter ist es jedoch, wenn Sie java.util.Collationkeys an Stelle von Strings als
Schliissel einsetzen. Collationkeys sind String-Wrapper, die sich effizient vergleichen
lassen — und zwar nach den Regeln des Kollators, der sie erzeugt hat. In der Praxis
sieht das wie folgt aus:

public class CollationKeyMap f
private Map map = new HashMap();
private Collator collator;

public CollationKeyMap(Locale locale, int collatorStrength) f{
collator = Collator.getInstance(
locale == null ? Locale.getDefault() : Tocale
)
collator.setStrength(collatorStrength);

public Object get(String key) f
if (key == null) return map.get(null);
return map.get(collator.getCollationKey(key));

public Object put(String key, Object value) f
if (key == null) return map.put(null, value);
return map.put(collator.getCollationKey(key), value);

J

Nachdem ich nun so viele alternative Implementierungen fiir eine Map vorgestellt
habe, die die Grof3-/Kleinschreibung der Schliissel ignoriert, mochte ich diese noch
kurz vergleichen. Als Test flige ich zundchst mittels put() 1804 aus einem deutschen
Text extrahierte Worter® in eine der Maps und lese sie danach mittels get () wieder aus.
Dabei wird eine Kopie des Schliissels benutzt und so der unwahrscheinliche Fall der
Objektidentitdt vermieden. Gemessen wird nur das Auslesen.

6 173 der verwendeten Worter unterschieden sich nur beziiglich Gro8-/Kleinschreibung.



102 5 Zeichenketten

Anschlieend wiederhole ich den Test, wobei ich diesmal groigeschriebene Schliissel
zum Einfiigen benutze und kleingeschriebene Schliissel zum Auslesen. Im dritten
Durchgang teste ich genau andersherum - kleingeschriebene Schliissel zum Einfiigen
und grofigeschriebene Schliissel zum Auslesen.

Um einen Vergleich zum Auslesen aus einer Hashtabelle zu haben, die Grof-/Klein-
schreibung nicht ignoriert, fithre ich den Test aulerdem mit einer normalen HashMap
durch und lese die Daten jeweils mit einer Kopie des Einfiigeschliissels aus.

3500
3000 —
2500 —
2000 —
1500 —
1000 —
500
0 - T

L]
1
b,

Normalisierte Ausfiihrungszeit

Einfligeschllssel
und Lese-
schlissel sind
gleich aber nicht
identisch

Kleine Einflige-
schlissel,
groBBe
Leseschliissel
GroBe Einflge-
schlissel, kleine
LeseschlUssel

B HashMap [E UpperCase HashMap
O Caselnsensitive TreeMap [ CollationsKeyHashMap
O CollatorTreeMap

Abbildung 5.2: Geschwindigkeit des lesenden Zugriffs auf verschiedenen Datenstrukturen mit natiirlichen, grof3-
oder kleingeschriebenen Schliisseln

Das Ergebnis (Abbildung 5.2) lasst keine Fragen offen. Die UpperCase-HashMap ist
allen anderen Tabellen {iberlegen und erreicht im giinstigsten Fall (Einftigeschliissel
gleich Leseschliissel) beinahe die Geschwindigkeit der normalen HashMap. Bei grof3-
geschriebenen Ausleseschliisseln verdoppelt sich die Ausfiithrungszeit der UpperCase-
HashMap, bei kleingeschriebenen Schliisseln verdoppelt sie sich nochmals. Das ist
darauf zuriickzufiihren, dass die Methode toUpperCase() eines bereits grofigeschriebe-
nen Strings wesentlich schneller ist als toUpperCase() eines kleingeschriebenen Strings,
da einfach this zuriickgegeben werden kann und kein neues Objekt erzeugt werden
muss.



Strings sortieren 103

Die nachstschnellste Datenstruktur ist die TreeMap mit String.CASE_INSENSITIVE_ORDER als
Vergleichsobjekt. Auf den Pldtzen drei und vier landen die HashMap mit CollationsKeys
und die TreeMap mit einem Collator als Vergleichsobjekt. In beiden Fillen wurde
Collator.SECONDARY als Unterscheidungsgrad gesetzt.

5.6 Strings sortieren

Ein verwandtes Thema zum Grof3-Klein-Vergleich ist das Sortieren. Auch hier miissen
Strings moglichst effizient miteinander verglichen werden. Zusétzlich zu der Informa-
tion gleich oder ungleich ist hier noch gefragt, ob ein String grofler oder kleiner als ein
anderer ist.

Ublicherweise werden zum Sortieren die Klassenmethoden java.util.Arrays.sort()
oder java.util.Collections.sort() benutzt. Intern wird dabei die Methode compareTo()
der Strings oder eines entsprechenden Comparators verwendet. Wenn Sie compareTo()
benutzen, wird die natiirliche Reihenfolge verwendet, wie sie im Unicode-Zeichensatz
definiert ist. Das bedeutet, dass die Worte Arbeit, Anderung, Zug und Andenken in die Rei-
henfolge Andenken, Arbeit, Zug und Anderung sortiert werden, da der Buchstabe A im
Unicode-Zeichensatz erst nach allen anderen lateinischen Buchstaben steht. Ebenso tau-
chen kleingeschriebene Worter erst nach sdmtlichen grof8geschriebenen Wortern auf.
Das letztere Problem lisst sich leicht 16sen, indem Sie String.CASE_INSENSITIVE_ORDER als
Vergleichsobjekt angeben. Fiir die korrekte Losung des Umlaut-Problems mdiissen Sie
einen Kollator als Comparator {ibergeben. Am schnellsten jedoch wird korrekt sortiert,
wenn Sie zundchst in der nattirlichen Reihenfolge und anschlieflend erst mit einem Kol-
lator sortieren lassen, da sich eine teilweise sortierte Liste in der Regel schneller sortieren
lasst als eine vollig ungeordnete Liste.

natiirliche = CASE_INSENSITIVE_ Kollator =~ CASE_INSENSITIVE_  natirlich +
Ordnung ORDER ORDER + Kollator Kollator

100% 222% 926% 499% 359%

Tabelle 5.8: Sortieren eines String-Arrays mit verschiedenen Methoden

Tabelle 5.8 belegt diesen Rat mit Zahlen. Das Vorsortieren eines String-Arrays gemaf
seiner natiirlichen Ordnung (natiirlich + Kollator: 359%) fiihrt im Beispiel zu einem
Geschwindigkeitsvorteil um den Faktor 2,5 gegeniiber dem ausschliellichen Sortieren
gemifl der Ordnung eines Kollators (Kollator: 926%) [vgl. Shirazi00, S5.156f]. Benutzt
wurden die gleichen Worter wie schon im Abschnitt zuvor.



104 5 Zeichenketten

5.7 Formatieren

Nicht selten miissen Objekte in eine String-Darstellung iiberfiihrt werden. Seien es
Zahlen, Daten oder Betrdge — immer wird ein String erstellt, der oft auch noch den 6rt-
lichen Gepflogenheiten entsprechen soll. Da das Erstellen selbst schon eine aufwén-
dige Angelegenheit ist, macht es die Internationalisierung nicht gerade besser. Wir
wollen an einem einfachen Beispiel illustrieren, wie hoch die Kosten der Stringerzeu-
gung sind, indem wir das Erstellen des Strings fiir eine einfache ganze Zahl messen.

In den Startblocken fiir den Testlauf stehen drei Kandidaten: Integer.toString(),
Long.toString() und NumberFormat.format().” Gemessen wurde jeweils folgende Schleife:

for (int i=0; i<1000; i++) Integer.toString(i);
// bzw. Long.toString(i) oder formatter.format(i)

Integer.toString() Long.toString() numberFormatter.format()
100% 609% 978%

Tabelle 5.9: Erzeugen eines Strings fiir einen int auf verschiedene Weisen

Wie Tabelle 5.9 zu entnehmen ist, schneidet Integer.toString() wesentlich besser ab als
die beiden anderen Kandidaten. Long.toString() ist sechsmal, NumberFormat sogar fast
zehnmal langsamer.

Einigermafien verwunderlich ist der Unterschied zwischen der Integer- und der Long-
Variante. Schliefllich handelt es sich nicht um fundamental verschiedene Aufgaben.
Ein Blick in den JDK-Quellcode offenbart jedoch, dass Integer.toString(int) besonders
optimiert wurde, wahrend Long.toString(long) lediglich die allgemeinere Variante mit
beliebiger Basis Long.toString(long, basis) aufruft. Kein Wunder also, dass die Integer-
Variante so viel schneller ist.

Der grofle Unterschied zwischen Integer.toString() und NumberFormat ist mindestens
ebenso eindrucksvoll, aber nicht weiter verwunderlich. Integer.toString() ist aus-
schliefilich fiir die gestellte Aufgabe geschrieben, wahrend NumberfFormat sehr viel fle-
xibler ist. So kann man beispielsweise die Anzahl der Nach- und Vorkomma-Stellen
spezifizieren, was mit Integer.toString() nicht moglich ist.

Grundsétzlich gilt: Flexibilitdt kostet. Keine der Formatierer-Klassen im java.text-
Paket ist in der Lage, eine spezialisierte Implementierung in Punkto Geschwindigkeit
zu schlagen. Stattdessen bieten sie Flexibilitdt, Unterstiitzung fiir Internationalisie-
rung, Wartbarkeit und die Fahigkeit ausgegebenen Text mittels der parseObject()-
Methode auch wieder einzulesen. Dessen sollten Sie sich unbedingt bewusst sein,

7  Es wurde eine Instanz der Klasse Numberformat erstellt, die wieder verwendet wurde.



Sandini Bib

Formatieren 105

bevor Sie beginnen, aus Geschwindigkeitsgriinden einen speziellen Formatierer zu
implementieren. Und wenn Sie es doch tun, versuchen Sie von java.text.Format oder
einer der Unterklassen zu erben. Auf diese Weise bewahren Sie wenigstens Schnittstel-
lenkompatibilitat.

5.7.1 Nachrichten erstellen

Um formatierte Nachrichten auszugeben, stellt das JDK die Klasse java.text.Message-
Format zur Verfiigung. MessageFormat ldsst sich iiber eine statische format()-Methode
oder als Instanz benutzen. Wir wollen beide Varianten mit einer simplen selbst
gestrickten Alternative vergleichen. Hier die getesteten Code-Stiicke:

// Variante mit statischer format()-Methode
public static void formattedMessage() f{
String message = MessageFormat.format("On {1,time, long}
+ "{1,date, long}, there was {2} on planet "
+ "{0,number,integer}.",
new Objectl] {new Integer(1l), new Date(),
"a disturbance in the Force"});

// Variante mit MessageFormat-Instanz
private static MessageFormat formatter = new MessageFormat(
"On {1,time, long! {1,date, long}, there was {2} on planet "
+ "{0,number,integer}.");
public static void preFormattedMessage() f{
String message = formatter.format(new Objectl]
{new Integer(1l), new Date(),
"a disturbance in the Force"});

// selbst gestrickte Variante
public static void plainMessage() f
String what = "a disturbance in the Force";
Date date = new Date();
int number = 1;
String message = "On " + date + ", there was " + what
+ " on planet " + number;
}

Und hier die beiden (leicht verschiedenen) Ausgaben:

(pre)formattedMessage():

On 18:21:33 EST 22. Februar 2002, there was a disturbance in the Force on planet
1.

plainMessage():

On Fri Feb 22 18:21:33 EST 2002, there was a disturbance in the Force on planet 1



106 5 Zeichenketten

plainMessage() formattedMessage() preFormattedMessage()
100% 521% 129%

Tabelle 5.10: Vergleich verschiedener Nachrichtenformate

Wie nicht anders zu erwarten, ist plainMessage() um einiges schneller als die beiden
Kontrahenten. Jedoch betrdagt der Unterschied zur preFormattedMessage()-Variante
lediglich 29%. Im Gegensatz dazu ist der Unterschied zur formattedMessage()-Version
groB8er als der Faktor fiinf. Dies riihrt daher, dass intern jeweils ein neues MessageFor-
mat-Objekt angelegt und der Muster-String jedes Mal neu analysiert wird. Diesen Auf-
wand haben wir uns durch Benutzen der Instanz erspart. Wenn Sie also MessageFormat
benutzen wollen, versuchen Sie das Formatierer-Objekt wiederzubenutzen. Ziehen Sie
dabei schwache Referenzen (java.lang.ref.SoftReference) zum Halten der Instanz in
Betracht, da zu viele langlebige Objekte die automatische Speicherbereinigung aus-
bremsen (siehe Kapitel 3.2 Garbage Collection).

5.7.2 Datum und Zeit

Datum- und Zeit-Strings gehoren sicherlich zu den am hdufigsten ausgegebenen.
Besonders prominent sind hier wiederum Protokolldateien, die iiblicherweise einen
Zeitstempel am Anfang der Zeile enthalten. Vor nicht allzu langer Zeit arbeitete ich in
einem Projekt, in dem dieser Zeitstempel folgendermafien erstellt wurde:

import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Calendar;

// Kopieren Sie diesen Code nicht!

Calendar calendar = Calendar.getInstance();

Date date = calendar.getTime();

SimpleDatefFormat dateFormat = new SimpleDateFormat(
"dd MMM yyyy HH:mm:ss,SSS"

)

String dateString = dateFormat.format(date);

Diese vier Zeilen wurden jedes Mal ausgefiihrt, wenn etwas zu protokollieren war. Der
Code ist korrekt, er konnte jedoch etwas performanter sein. Lassen Sie uns ein paar
Vergleiche anstellen. Hier drei alternative Implementierungen:

// Einfache Date-Variante
String dateString = new Date().toString();

// Vorinitialisierter SimpleDatefFormatter
private static DateFormat simpleDateFormat =



Formatieren 107

new SimpleDateFormat("dd MMM yyyy HH:mm:ss,SSS");
String dateString = simpleDateFormat.format(new Date());

// Vorinitialisierter Log4j DateTimeDateFormatter
private static DateFormat log4JddateTimeDateFormat =
new DateTimeDateFormat();
String dateString = log4JddateTimeDateFormat.format(new Date());

Die Klasse org.apache.log4j.helpers.DateTimeDateFormat ist ein speziell fiir das angege-

bene Format optimierter Formatierer aus dem oben bereits erwahnten freien Log-

Framework Log4]. Sie erbt von java.text.DateFormat und ldsst sich entsprechend benut-
8

zen.

Die Ausgabe der vier Varianten ist wiederum leicht unterschiedlich. Insbesondere wer-
den in der einfachen date.toString()-Variante der Wochentag und die Zeitzone ausge-
geben, wihrend die Millisekunden fehlen.

// Einfache Date-Variante
Sat Feb 23 10:29:30 EST 2002

// Alle anderen Varianten
23 Feb 2002 10:29:30,751

Zugegeben, das ist ein wenig wie Apfel mit Birnen vergleichen. Wir lassen die
Date.toString()-Variante daher aufler Konkurrenz antreten und benutzen sie lediglich
als Referenzwert, da sie so schon einfach zu programmieren ist. In Tabelle 5.11 sehen
Sie das Ergebnis.

date.toString() Log4) SimpleDateFormat Vierzeiler

100% 30% 97% 277%

Tabelle 5.11: Normalisierte Geschwindigkeit verschiedener Code-Varianten, die einen formatierten Datumsstring
erzeugen

Die Log4]-Variante ist um den Faktor drei schneller als SimpleDateFormat. Dieses wie-
derum ist beinahe um den Faktor drei schneller als der oben beschriebene Vierzeiler.

Eine Analyse der Hprof-Ausgabe ergibt, dass rund 60% der Ausfithrungszeit des Vier-
zeilers im Konstruktor von SimpleDateFormat verbracht wird. So lange dauert es, den
Format-String zu verarbeiten. Das eigentliche Formatieren schlagt lediglich mit 30% zu
Buche und der Calendar.getInstance()-Aufruf ist zwar nicht gerade schlau, aber im
Endeffekt mit etwa 10% Anteil an der Ausfiihrungszeit nicht so bedeutend.

8 ImJDK 1.4 java.util.logging-Paket scheint es (noch) keine entsprechend performanten Datums-
formatierer zu geben.



108 5 Zeichenketten

Dies bestétigt die bereits weiter oben gemachte Erfahrung, dass das Initialisieren von
Jjava.text.Format-Objekten recht teuer ist und es sich daher lohnt, diese Objekte wieder
zu verwenden.

Und was macht die Log4]-Klasse so schnell? Zum einen ist sie auf die Ausgabe von
Datumsstrings in dem verwendeten Format spezialisiert. Sie muss sich also nicht wie
SimpleDateFormat an Muster halten, sondern ist hart und somit effizient kodiert. Zum
anderen offenbart ein Blick in den Quellcode, dass die Log4]-Klasse Teilergebnisse zwi-
schenspeichert. Dabei macht sie sich die Tatsache zu nutze, dass sich nur die letzten
drei Zeichen (ndmlich die Millisekunden) des Strings &@ndern, wenn die format()-
Methode innerhalb einer Sekunde mehrmals aufgerufen wird. In der format()-Methode
wird also getestet, ob eine Sekundengrenze tiberschritten wurde. Ist dies nicht der Fall,
wird lediglich der neue Millisekunden-Wert an den zwischengespeicherten Anfang
gehdngt. So wird ein Grofsteil des Aufwands gespart, der zum Erstellen eines komplett
neuen Strings erforderlich wiére.

In unserem Test ist dieser Cache-Effekt natiirlich voll zum Tragen gekommen, da wir
immer wieder neue, aufeinander folgende Date-Objekte erzeugt haben. In einer echten
Applikation wire der Geschwindigkeitsvorteil sicherlich nicht so grofs.

Wir haben gesehen, dass der Log4]-Formatierer vergleichsweise schnell ist. Wir kon-
nen jedoch auch in einer echten Anwendung noch schneller einen Datumsstring erzeu-
gen als mit dem Log4]-Formatierer. Dies gelingt, indem wir beim ersten Datumsstring
einfach die Millisekunden seit 1970 und bei jedem folgenden Mal die Differenz zu die-
sem ersten Wert ausgeben. Die Differenz fillt meistens in den Wertebereich eines ints
und kann daher mit der schnelleren Methode Integer.toString() statt Long.toString()
ausgegeben werden. Zudem ergibt die Differenz in den meisten Fallen einen kiirzeren
String als der volle Wert. Und falls tatsdchlich einmal lesbare Datumswerte benotigt
werden, kann ein Werkzeug diese leicht erzeugen. Der Trick besteht darin, dies nur bei
Bedarf und nicht zur Laufzeit zu tun. Listing 5.1 zeigt die Beispiel-Implementierung
einer entsprechenden Klasse.

package com.tagtraum.perf.strings;

import java.text.DateFormat;

import java.text.FieldPosition;

import java.text.ParsePosition;

import java.util.Date;

public class DifferenceDateFormat extends DateFormat f{
private long baseTime;

public DifferenceDateFormat() {!

public synchronized StringBuffer format(Date date,



String-Analyse 109

StringBuffer toAppendTo, FieldPosition fieldPosition) f{
if (baseTime == 0) |
baseTime = date.getTime();
toAppendTo.append(Long.toString(baseTime));
} else |
long diff = date.getTime() - baseTime;
// wir benutzen Integer.toString(), falls mdglich
if (diff <= Integer.MAX_VALUE
&& diff >= Integer .MIN_VALUE) f{
toAppendTo.append((int)diff);
}
else {
toAppendTo.append(diff);
}
}
return toAppendTo;
}

public synchronized Date parse(String text, ParsePosition pos) f
}
}

Listing 5.1: Datumsformatierer, der jeweils die Differenz zu einem Startwert ausgibt

Wenn wir mit der Klasse DifferenceDateFormat den oben beschriebenen Test durchfiih-
ren, stellen wir fest, dass DifferenceDateFormat auf einen normalisierten Wert von 5,5%
kommt. Das heifdt sie ist 50-mal schneller als der Vierzeiler, 18-mal schneller als
date.toString() und immerhin fiinfmal schneller als die Log4]-Klasse.

5.8 String-Analyse

Die String-Analyse wird gewdhnlich in zwei Teilbereiche unterteilt:
Lexikalische Analyse mittels eines Scanners (linear)
Syntaktische Analyse mittels eines Parsers (hierarchisch)

In der lexikalischen Analyse wird eine Zeichenkette in Symbole (Tokens) unterteilt, in
der syntaktischen Analyse werden die Symbole in einer hierarchischen Struktur abge-
legt, die leicht interpretiert werden kann (beispielsweise als Objektbaum oder mathe-
matischer Ausdruck). Da die String-Analyse das Gegenstiick zum Formatieren
darstellt und in vielen Applikationen ein zeitkritischer Faktor ist, werden wir auf
einige zentrale Aspekte eingehen.



110 5 Zeichenketten

Genau wie beim Formatieren werden wir uns zunichst anschauen, wie schnell eine
einfache ganze Zahl geparsed wird. Auch diesmal wollen wir die Standardmethoden
aus den Klassen Integer und Long sowie NumberFormat gegeneinander antreten lassen.
Zusétzlich schicken wir einen selbst geschriebenen NumberParser (Listing 5.2) ins Ren-
nen, der ausschliefSlich Zahlen zur Basis zehn korrekt lesen kann. Im Gegensatz zur
Integer.toString()-Methode ist Integer.parselnt(string) ndmlich nicht optimiert. Sie
delegiert lediglich an die allgemeinere Integer.parselnt(string, basis)-Methode.
NumberParser.parselnt(string) ist im Wesentlichen eine vereinfachte Version der
Integer.parselnt(string, basis)-Methode.

Beachten Sie, dass NumberParser zudem eine Methode parselnt(string, offset, length)
anbietet, die es erlaubt, einen Teilbereich eines Strings zu parsen, ohne extra einen
neuen Teilstring mittels substring() erzeugen zu miissen.

Gemessen wurde jeweils folgende Schleife:

for (int i=0; i<1000; i++) Integer.parselnt("123456");
// bzw. Long.Parselong("123456"), formatter.parse("123456")
// oder NumberParser.parselnt("123456")

Integer.parselnt() Long. numberFormat- NumberParser.
parseLong() ter.parse() parselnt()
100% 172% 526% 32%

Tabelle 5.12: Vergleich verschiedener Analyse-Methoden fiir ints

Wie die Ergebnisse aus Tabelle 5.12 zeigen, entspricht das Bild in etwa den Erfahrun-
gen vom Formatieren. Je spezifischer eine Analyse-Methode fiir die Aufgabe geschrie-
ben wurde, desto besser das Ergebnis.

package com.tagtraum.perf.strings;
public class NumberParser {

public static final int MAX_NEGATIVE_INTEGER_CHARS
= Integer.toString(Integer.MIN_VALUE).length();
public static final int MAX_POSITIVE_INTEGER_CHARS
= Integer.toString(Integer .MAX_VALUE).Tlength();

public static int parselnt(String s)
throws NumberFormatException f{
return parselnt(s, 0, s.length());

public static int parselnt(String s, int offset, int Tength)
throws NumberFormatException f{



Sandini Bib
String-Analyse 1

if (s == null) throw new NumberFormatException("null");
int result = 0;

boolean negative = false;

int 1 = 0;

int Timit;

int digit;

if (Tength > 0) {
if (s.charAt(offset) == '-') {
if (Tength > MAX_NEGATIVE_INTEGER_CHARS)
throw new NumberFormatException(s);
negative = true;
Timit = Integer.MIN_VALUE;
1++;
I else |
if (Tength > MAX_POSITIVE_INTEGER_CHARS)
throw new NumberFormatException(s);
Timit = -Integer.MAX_VALUE;
}
while (i < Tlength) {
digit = s.charAt(offset + i++)-'0"';
if (digit < 0 || digit > 9)
throw new NumberFormatException(s);
result *= 10;
if (result < limit + digit)
throw new NumberFormatException(s);
result -= digit;
}
b else |
throw new NumberFormatException(s);
}
if (negative) f
if (1 >1) |
return result;
} else |
throw new NumberFormatException(s);
}
} else |
return -result;

Listing 5.2: Schneller Integer-Parser. In einer DK 1.4 Version lieBe sich der String-Parameter auch durch einen
Parameter vom Typ CharSequence ersetzen. Somit konnten java.nio.CharBuffer, String und StringBuffer gleich
behandelt werden.



Sandini Bib
112 5 Zeichenketten

5.8.1 Datum und Zeit

Natiirlich ist das Parsen von Integern ein Mikroaspekt. Etwas schwieriger ist es schon,
einen Datumsstring oder ganze Texte zu parsen. Wir wollen uns zunéchst einmal mit
dem Datum beschiftigen. Und zwar werden wir einen String folgenden Formats par-
sen: dd MMM yyyy HH:mm:ss,SSS. Dies entspricht beispielsweise: 01 Feb 2002 01:09:30,951.

Natiirlich ldsst sich das Datum mit einem SimpleDateFormat-Objekt einlesen. Wir wollen
zum Vergleich einen selbst geschriebenen Parser testen. Aufler Konkurrenz werden
wir zudem die parse()-Methode der java.util.Date-Klasse sowie den Parser der oben
bereits erwdhnten DifferenceDateFormat-Klasse ins Rennen schicken. Dieser benutzt
einen Algorithmus, der dem der Klasse NumberParser (Listing 5.2) gleicht. Daher wer-
den wir hier nicht ndher darauf eingehen.

Der selbst geschriebene Parser ist in zwei Klassen implementiert: AbsoluteTimeDateFormat
(Listing 5.3/ Abbildung 5.3) und DateTimeDateFormat (Listing 5.4). Dabei erbt Absolute-
TimeDateFormat von java.text.DateFormat und DateTimeDateFormat von AbsoluteTimeDate-
Format. Die Klassen korrespondieren zu entsprechenden Formatierern aus Log4].
AbsoluteTimeDateFormat unterstiitzt das Format HH:mm:ss,SSS, die Klasse DateTimeDate-
Format unterstiitzt dd MMM yyyy HH:mm:ss,SSS.

java.text.DateFormat

1

AbsoluteTimeDateFormat

I

DateTimeDateFormat

Abbildung 5.3: Klassendiagramm fiir AbsoluteTimeDateFormat und DateTimeDateFormat

package com.tagtraum.perf.strings;

import java.text.*;
import java.util.*;

public class AbsoluteTimeDateFormat extends DateFormat {

private String lastString;
private int TastOffset;
private int TastHour;
private int lastMinute;
private int lastSecond;



String-Analyse

Sandini Bib

113

public AbsoluteTimeDateFormat() f{
setCalendar(Calendar.getInstance());
lastString = "";

public StringBuffer format(Date date, StringBuffer toAppendTo,

FieldPosition fieldPosition) {

public Date parse(String s, ParsePosition p) f{
calendar.clear();

try f

subParse(s, p);

} catch (RuntimeException e) {
p.setErrorIndex(p.getIndex());
return null;

J

return calendar.getTime();

protected void subParse(String s, ParsePosition p) {

if (lgetCachedTime(s, p)) |
int offset = p.getIndex();
parseTime(s, p);
putCachedTime(s, offset);

}

private void parseTime(String s, ParsePosition p) {

calendar.set(Calendar.HOUR_OF_DAY,
NumberParser.parselnt(s, p.getlndex(), 2));
calendar.set(Calendar.MINUTE,

NumberParser.parselnt(s, p.getlindex() + 3, 2));

calendar.set(Calendar.SECOND,

NumberParser.parselnt(s, p.getlindex() + 6, 2));

calendar.set(Calendar.MILLISECOND,

NumberParser.parselnt(s, p.getIndex() + 9, 3));

p.setIndex(p.getIndex() + 12);

}

private boolean getCachedTime(String s, ParsePosition p) f{

if (s.regionMatches(p.getIndex(),
lastString, lastOffset, 9)) {

/] setze

calendar.
calendar.
calendar.

// parse

calendar.
NumberParser.parselnt(s, p.getlindex() + 9, 3));

gecachte Werte

set(Calendar.HOUR_OF_DAY, TastHour);

set(Calendar.MINUTE, TastMinute);
set(Calendar.SECOND, TastSecond);
und setze Millisekunden
set(Calendar.MILLISECOND,



114

Sandini Bib

5 Zeichenketten

p.setIndex(p.getIndex() + 12);
// gib true zuriick, da wir einen Cache-Hit hatten
return true;

}

return false;

}

private void putCachedTime(String s, int offset) {
lastString = s;
lastOffset = offset;
lastHour = calendar.get(Calendar.HOUR_OF_DAY);
lastMinute = calendar.get(Calendar .MINUTE);
lastSecond = calendar.get(Calendar.SECOND);

Listing 5.3: Die Klasse AbsoluteTimeDateFormat kann Zeitstrings des Formats HH:mm:ss,SSS parsen.

package com.tagtraum.perf.strings;

import java.text.*;
import java.util.*;

public class DateTimeDateFormat extends AbsoluteTimeDateFormat f

private
private
private
private
private
private

Map monthsMap;
String TastString;
int TastOffset;
int TastYear;

int TastDay;

int lastMonth;

public DateTimeDateFormat() f{
super();
lastString = "";
// konstruiere Mapping von Monatsnamen auf ints
Stringl] shortMonths

new DateFormatSymbols().getShortMonths();

monthsMap = new HashMap();
for (int i=0; i<shortMonths.length; i++)
monthsMap.put(shortMonthslil, new Integer(i));

public StringBuffer format(Date date, StringBuffer toAppendTo,

FieldPosition fieldPosition) f

protected void subParse(String s, ParsePosition p) f{
// parse zundchst den Datumsteil...



Sandini Bib
String-Analyse 115

if (!getCachedDate(s, p)) {
int offset = p.getIndex();
parseDate(s, p);
putCachedDate(s, offset);

}

// ... und dann den Zeitteil.

super.subParse(s, p);

private void parseDate(String s, ParsePosition p) {
calendar.set(Calendar.DAY_OF_MONTH,
NumberParser.parselnt(s, p.getlIndex(), 2));
calendar.set(Calendar.YEAR,
NumberParser.parselnt(s, p.getlindex() + 7, 4));
calendar.set(Calendar.MONTH,
((Integer)monthsMap.get(s.substring(p.getIndex()
+ 3, p.getlndex() + 6))).intValue());
p.setIndex(p.getIndex() + 12);

private boolean getCachedDate(String s, ParsePosition p) f{
if (s.regionMatches(p.getIndex(),
lastString, lastOffset, 11)) {

calendar.set(Calendar.DAY_OF_MONTH, TastDay);
calendar.set(Calendar.YEAR, TastYear);
calendar.set(Calendar.MONTH, TastMonth);
p.setIndex(p.getIndex() + 12);
return true;

}

return false;

private void putCachedDate(String s, int offset) {
lastDay = calendar.get(Calendar.DAY_OF_MONTH);
lastYear = calendar.get(Calendar.YEAR);
lTastMonth = calendar.get(Calendar.MONTH);
lastString = s;
lastOffset = offset;

Listing 5.4: Die Klasse DateTimeDateFormat kann Datumsstrings des Formats dd MMM yyyy HH:mm:ss,SSS
parsen.

Um die Performance fiir dhnliche Daten zu verbessern, speichern beide Klassen das
zuletzt geparste Datum. Im Fall von AbsoluteTimeDateFormat wird dabei der Millisekun-
denteil nicht mitgespeichert, in der Hoffnung, dadurch die Trefferwahrscheinlichkeit
zu erhdhen. Die Abfrage, ob ein Cache-Treffer vorliegt, erfolgt jeweils in der Methode



116 5 Zeichenketten

subParse() mit den Methoden getCachedDate() bzw. getCachedTime(). Die beiden Metho-
den geben true zuriick, wenn es Ihnen gelang, das calendar-Objekt mit zwischenge-
speicherten Werten zu manipulieren. Ist dies der Fall, werden die Methoden
parseTime() bzw. parseDate() nicht mehr ausgefiihrt und die parse()-Methode gibt das
Datum aus dem calendar-Objekt zuriick an den Aufrufer.

Zu Beginn des Tests werden jeweils 1.000 verschiedene Datumsstrings in den drei zu
testenden Formaten erstellt und in verschiedenen String-Arrays hinterlegt. Dabei
reprasentieren die Strings aufeinander folgende Daten, von denen der Cache des selbst
geschriebenen Parsers profitieren sollte. Im Test werden alle 1.000 Strings mehrmals
nacheinander geparsed. Die Reihenfolge bleibt bei jedem Durchlauf gleich. Um den
Effekt des Caches zu messen, wurde zudem eine Reihe mit gemischten, nicht-sequen-
ziellen Daten durchgefiihrt.

Reihen- Date.parse() SimpleDate DateTimeDate DifferenceDate
folge Format Format Format
sequenziell  100% 118% 24% 3%

zufillig 81% 112% 37% 3%

Tabelle 5.13: Parsen von sequenziellen und gemischten Daten mit verschiedenen Parsern

Das Ergebnis (Tabelle 5.1) zeigt, dass der selbst geschriebene Parser dem SimpleDateFor-
mat klar {iberlegen ist und dass der Cache erheblich zur Performancesteigerung bei
sequenziellen Daten beitrdgt. Selbst bei zufélligen Daten ist der selbst geschriebene
Parser DateTimeDateFormat mit 37% noch schneller als SimpleDateFormat. Unschlagbar,
genau wie beim Formatieren, ist DifferenceDateFormat.

5.8.2 Strings teilen

Die wohl einfachste Form der lexikalischen Analyse ist das Aufteilen eines Strings in
Teilstrings (Tokens), die jeweils durch Begrenzungszeichen (Delimiter) voneinander
getrennt sind. Ein Satz besteht beispielsweise aus einem oder mehreren Wortern, die
durch Leer- und Satzzeichen voneinander getrennt sind. Seit JDK 1.4 existiert die sehr
komfortable Methode string.split(), die es erlaubt, einen String gemaf eines regula-
ren Ausdrucks in mehrere Teilstrings zu unterteilen. string.split(regex) entspricht
dabei java.util.regex.Pattern.compile(regex).split(string), woraus sich schliefSen
lasst, dass es sich vermutlich lohnt, einmal kompilierte Patterns wiederzuverwenden.

Vor JDK 1.4 waren die einzigen standardméflig vorhandenen Klassen zum Aufteilen von
Strings bzw. Zeichenstrémen java.util.StringTokenizer und java.io.StreamTokenizer.



Sandini Bib

String-Analyse 117

Wir wollen die verschiedenen Klassen gegeneinander antreten lassen. Unser Testfall
sieht vor, einen langen String mit knapp zweitausend Wortern in ebendiese Worter zu
unterteilen und sie in einem String-Array zu speichern. Alle Worter im Quellstring
sind dabei durch genau ein Leerzeichen voneinander getrennt. Natiirlich ist dies ein
Spezialfall — jedoch kein untiblicher.

Alle oben erwahnten Klassen konnen unseren Testfall und auch andere mogliche Félle
abdecken. Keine ist wie gemacht fiir den Testfall. Wir wollen daher noch eine selbst
geschriebene Klasse testen, die genau den Testfall abdeckt. Eine Klasse also, die exakt
ein Zeichen als Begrenzer zwischen Tokens akzeptiert. Dies ist die Klasse SingleDeli-
miterStringTokenizer (Listing 5.5).

package com.tagtraum.perf.strings;
import java.util.*;

public class SingleDelimiterStringTokenizer
implements Enumeration f

private char delim;
private int pos;
private String string;
private int Tength;

public SingleDelimiterStringTokenizer(String string,
char delim) {
this.delim = delim;
this.string = string;
length = string.length();
if (length > 0 && string.charAt(0) == delim)

pos = 1;
else
pos = 0;

public boolean hasMoreElements() {
return hasMoreTokens();
}

public boolean hasMoreTokens() f{
return !(pos >= length);
}

public Object nextElement() {
return nextToken();
}

public String nextToken() {
if (pos >= length) throw new NoSuchElementException();



Sandini Bib
118

5 Zeichenketten

int start = pos;

while (pos < length && string.charAt(pos) != delim) {
pos++;

}

String token = string.substring(start, pos);

pos++; // Uberspringe ndchsten Delimiter

return token;

public int countTokens() f{
if (pos >= length) return 0;
int count = 0;
int countPos = pos;
while (true) {
if (countPos >= Tength) return count;
count++;
while (string.charAt(countPos) != delim) {
countPos++;
if (countPos >= Tength) return count;
}
countPos++;

Listing 5.5: Schneller StringTokenizer, der exakt ein Zeichen zwischen Tokens akzeptiert

Unsere Testmethoden sehen folgendermafien aus:

// normaler StringTokenizer
private Stringl] stringTokenizer(String s) f{
List Tist = new ArraylList();
StringTokenizer st = new StringTokenizer(s, " ");
while (st.hasMoreTokens()) f{
list.add(st.nextToken());
}
return (Stringll)list.toArray(new Stringl01);

// spezialisierter StringTokenizer
private Stringl] singleDelimiterStringTokenizer(String s) f
List Tist = new ArraylList();
SingleDelimiterStringTokenizer st
= new SingleDelimiterStringTokenizer(s, ' ');
while (st.hasMoreTokens()) f{
list.add(st.nextToken());
}
return (Stringl])1list.toArray(new Stringl0]);



Sandini Bib

String-Analyse 119

// StreamTokenizer
private Stringl] streamTokenizer(String s)
throws I0Exception f{
List Tist = new ArraylList();
StreamTokenizer st = new StreamTokenizer(
new ByteArrayInputStream(s.getBytes()));
st.eollsSignificant(false);
st.slashSlashComments(false);
st.slashStarComments(false);
// setze Leerzeichen als einzigen Delimiter
st.whitespaceChars(' ', ' ');
while (st.nextToken() != StreamTokenizer.TT_EOF) {
list.add(st.sval);
}
return (Stringl])list.toArray(new Stringl0]);

// string.split()

private Stringl] stringSplit(String s) throws IOException f
return s.split(" ");

}

// vorkompiliertes Pattern
private Pattern pattern = Pattern.compile(" ");private static Stringl]
regexSplit(String s) throws IO0Exception f{
return pattern.split(s);
}

Der Testaufbau ist am giinstigsten fiir die sp1it()-Methoden, da diese von vorneherein
einen String-Array zuriickgeben. Alle anderen Varianten miissen erst recht umstand-
lich einen Array erstellen. Dennoch sind die split()-Versionen nicht die schnellsten.
Wie Tabelle 5.14 zeigt, ist der SingleDelimiterStringTokenizer am schnellsten, gefolgt
vom StringTokenizer und dann erst den beiden split()-Varianten. Der StreamTokenizer
schneidet in unserem Test am schlechtesten ab.

StringTokenizer StreamTokenizer SingleDelimiter  string.split() pattern.split()
100% 300% 67% 152% 147%

Tabelle 5.14: Aufteilen eines Strings in Worter

Wenn Sie also sehr schnell einen String in seine Bestandteile zerlegen wollen und diese
immer durch das gleiche Zeichen getrennt sind, lohnt es sich evtl., einen eigenen Toke-
nizer zu schreiben oder den hier vorgestellten SingleDelimiterStringTokenizer zu ver-
wenden. Ansonsten sind StringTokenizer sowie — fiir komplexere Félle — die sp1it()-
Methoden zu empfehlen. Vom StreamTokenizer, der ja an sich auch einem anderen
Zweck dient, ist jedoch abzuraten.



120 5 Zeichenketten

5.8.3 Reguliare Ausdriicke und lexikalische Analyse mit Grammatiken

Seit JDK 1.4 enthélt Java das Reguldre-Ausdriicke-Paket java.util.regex. Wir haben es
gerade schon implizit mit der Methode sp1it() benutzt. Alternativ zum in JDK 1.4 ent-
haltenen Paket konnen Sie beispielsweise auch das Jakarta-Oromatcher- oder Regexp-
Paket sowie IBM Alphaworks Regex for Java benutzen. Es liegt auSerhalb des Fokus
dieses Buches, einen fairen Vergleich der vier Pakete durchzufiihren. Da es (noch)
keine Java Standardschnittstelle zu reguldren Ausdriicken gibt, die eine Service-Provi-
der-Architektur unterstiitzt, sei Ihnen daher empfohlen, Ihre Software so zu bauen,
dass Sie das Regulédre-Ausdriicke-Paket leicht gegen ein anderes austauschen kénnen.
Hierzu sind die Muster Fabrikmethode und Adapter [Gamma96, S. 115f./5.151f.] sehr
hilfreich. Dies macht jedoch nur Sinn, wenn regulédre Ausdriicke wirklich ein zeitkriti-
scher Faktor in Threr Applikation sind.

Ebenso liegt die lexikalische Analyse mit Grammatiken nicht im Fokus dieses Buches.
Geeignete Werkzeuge zum Erzeugen von entsprechenden Parsern sind beispielsweise
JLex, JFlex und JavaCC (Java Compiler Compiler).

Jakarta ORO: http://jakarta.apache.org/oro/

Jakarta Regexp: http://jakarta.apache.org/regexp/

IBM Alphaworks Regex for Java: http://www.alphaworks.ibm.com/tech/regex4j
JFlex von Gerwin Klein: http://wwuw.jflex.de/

JLex von Elliot Berk: http://wwuw.cs.princeton.edu/~appel/modern/java/[Lex/

JavaCC: http:/fwww.webgain.com/products/java_cc/



6 Bedingte Ausfiihrung, Schleifen und
Switches

if, for, while und switch sind essentielle Befehle fiir den Fluss jedes Java-Programmes.
Sie bestimmen, ob und wie oft etwas ausgefiihrt wird. Um diese Strukturen moglichst
effizient zu nutzen, bedarf es etwas Achtsamkeit.

6.1 Bedingte Ausfiihrung

Die bedingte Ausfithrung mit if ist trivial. Doch selbst if-Konstrukte kénnen durch
unachtsam dahingeschriebenen Code bei hdufiger Ausfiihrung zum Flaschenhals wer-
den. Daher lohnt es, sich einige Regeln anzueignen.

6.1.1 Logische Operatoren
Beginnen wir mit logischen Operatoren.
Bevorzugen Sie die bedingten Operatoren && und || an Stelle von & und |

Der einzige Unterschied zwischen && und & bzw. | | und | fiir logische (nicht arithmeti-
sche!) Operationen liegt darin, dass bei & und | immer beide Operanden evaluiert wer-
den, bei & und || jedoch der zweite Operand nur berechnet wird, wenn dies auch
notwendig ist [Gosling00, §15.23 /24]. Bei logischen Oder-Operationen ist dies der Fall,
wenn der erste Operand false, bei logischen Und-Operationen, wenn der erste Ope-
rand true ist. Das bedingte Evaluieren der Operanden wird auch Short-Circuiting
genannt.

Beispiel:

// Tun Sie dies nicht!
if (a==2 | a==aufwaendigeBerechnung()) f{

J



122 6  Bedingte Ausfiihrung, Schleifen und Switches

Die Methode aufwaendigeBerechnung() wird jedes Mal ausgefiihrt, selbst wenn a gleich
zwei und das Ergebnis von aufwaendigeBerechnung() somit irrelevant ist. Verwenden Sie
stattdessen den bedingten ||-Operator:

// aufwaendigeBerechnung() wird nur ausgefiihrt, wenn a!=2
if (a==2 || aufwaendigeBerechnung()) f

}
Gleiches gilt fiir Und-Operationen:

// Tun Sie dies nicht!
if (a==2 & aufwaendigeBerechnung()) f{

}

Auch hier wird die Methode aufwaendigeBerechnung() immer ausgefiihrt — egal ob a
gleich zwei ist oder nicht. Und das, obwohl das Ergebnis bereits feststeht, wenn a
ungleich zwei ist. Stattdessen sollten Sie daher folgenden Code verwenden:

// aufwaendigeBerechnung() wird nur ausgefiihrt, wenn a==2
if (a==2 && aufwaendigeBerechnung()) {

}

In den obigen Beispielen haben wir jeweils einen einfachen Ausdruck (a==2) als ersten
und einen aufwandigen Ausdruck (aufwaendigeBerechnung()) als zweiten Operand
benutzt. Dies macht nur Sinn, wenn wir wissen, dass a tatsdchlich einigermafien oft
gleich zwei ist. Wiissten wir, dass in den meisten Fallen a ungleich zwei ist, sollten wir
besser a==2 als zweiten Operand setzen. Allgemein gilt:

Ordnen Sie die Operanden in logischen Und/Oder-Operationen nach Berechnungsaufwand
und Wahrscheinlichkeit.

So konnen Sie sicherstellen, dass wahrend der Ausfiihrung der am wenigsten aufwén-
dige Entscheidungsweg gewéhlt wird.

6.1.2 String-Switches

Das ndchste Code-Beispiel zeigt die bedingte Ausfithrung verschiedener Methoden in
Abhangigkeit von einem String. Da in Java das switch/case-Konstrukt nur ints akzep-
tiert, miissen wir umstindlich etwas Ahnliches mit if/else kodieren.

// Tun Sie dies nicht!

if (s.equals("Actionl")) {
actionl();

}



Sandini Bib

Bedingte Ausflihrung 123

if (s.equals("Action2")) {
action2();

}

if (s.equals("Action3")) f
action3();

}

if (s.equals("Actiond")) f
actiond();

}

Ein solches Code-Stiick findet sich haufig in Swing-Anwendungen. So wie hier
gezeigt, werden immer alle if-Konstrukte und somit auch alle equals()-Methoden auf-
gerufen. Angenommen, s ist gleich "Actionl", und weiter angenommen, s wird in der
actionl()-Methode nicht verdndert, dann ist das Ausfithren der restlichen drei if-
Konstrukte samt ihrer equals()-Methoden iiberfliissig. Gilt fiir alle Ausdriicke in den
if-Konstrukten, dass nicht gleichzeitig zwei von ihnen wahr sein kénnen, so sollte
man besser folgenden Code schreiben:

if (s.equals("Actionl")) {
actionl();

}

else if (s.equals("Action2")) f
action2();

}
else if (s.equals("Action3")) f

action3();

}
else if (s.equals("Actiond")) f

actiond();
}

Wenn Sie jetzt zusatzlich noch wissen, dass fiir die Haufigkeit h der Aktionen gilt
h(Actiond4) > h(Action2) > h(Action3) > h(Actionl), dann sollten Sie die if-Konstrukte
auch entsprechend sortieren:

if (s.equals("Actiond")) {
actiond();

}

else if (s.equals("Action2")) f
action2();

}

else if (s.equals("Action3")) f

action3();

}

else if (s.equals("Actionl")) f
actionl();

}



124 6  Bedingte Ausfiihrung, Schleifen und Switches

Diese Version ist schon sehr viel schneller als die erste. Im schlechtesten Fall wird die
Ausfiihrungszeit jedoch immer noch linear mit der Anzahl der verschiedenen Aktio-
nen steigen. Mit anderen Worten, sie skaliert nicht. Wenn Sie in sehr viele verschiedene
Aktionen verzweigen miissen, kann es sich daher lohnen, einen anderen Weg zu
gehen.

6.1.3 Befehlsobjekte

Ersetzen Sie lange 1f/else-Konstrukte durch eine Tabelle mit Befehlsobjekten.

Listing 6.1 zeigt, wie Sie ein langes if/else-Konstrukt mit linearer Laufzeit elegant
durch eine Hashmap-Leseoperation (Zeile 41) mit nahezu konstanter Laufzeit ersetzen
konnen. Dazu wird zunéchst eine gemeinsame Schnittstelle Action fiir alle Aktionen
definiert (Zeilen 1-5). Im Konstruktor der ActionSwitchDemo-Klasse werden dann ano-
nyme Klassen, die Action implementieren, instanziiert und unter einem Schliissel in
der Hashmap actionMap hinterlegt (Zeilen 11-25). Da anonyme Klassen auf die Metho-
den der sie umgebenden Instanz zugreifen diirfen, kénnen wir die Methoden actionX()
von ActionSwitchDemo leicht aus den anonymen Klassen aufrufen.

Das beschriebene Vorgehen korrespondiert zu dem Verhaltensmuster Befehl, auch
bekannt als Command, Action oder Transaction [Gamma96, S. 245f.]. Das Muster wird
sehr gerne in Zusammenhang mit Benutzeroberflichen benutzt und findet javaseitig in
der Swing-Klasse javax.swing.Action seine Entsprechung.

01 package com.tagtraum.perf.ifsloopsandswitches;
02

03 public interface Action f{

04 public void action();

05}

01 package com.tagtraum.perf.ifsloopsandswitches;

02

03 import java.util.*;

04

05 public class ActionSwitchDemo f{

06

07 private Map actionMap;

08

09 public ActionSwitchDemo() f

10 actionMap = new HashMap();

11 actionMap.put("Actionl", new Action() {
12 public void action() f

13 actionl();

14 }

15 1)

16 actionMap.put("Action2", new Action() {

17 public void action() {



Sandini Bib

Bedingte Ausflihrung 125
18 action2();
19 }
20 1)
21 actionMap.put("Action3", new Action() {
22 public void action() f
23 action3();
24 }
25 1)
26 }
27
28 public void actionl() f{
29 System.out.printin("Actionl");
30 }
31
32 public void action2() f{
33 System.out.printin("Action2");
34 }
35
36 public void action3() f{
37 System.out.printin("Action3");
38 }
39
40 public void performAction(String s) f
41 Action action = (Action) actionMap.get(s);
42 if (action != null) action.action();
43 }
44
45 public static void main(Stringl] args) f{
46 ActionSwitchDemo asd = new ActionSwitchDemo();
47 asd.performAction("Action2");
48 }
49 }

Listing 6.1: Vermeiden von langen if/else-Konstrukten mit anonymen Action-Klassen

Die obige Losung ist einigermafien schnell, sie skaliert und ist typsicher. Der einzige
Nachteil ist die hohe Anzahl anonymer Klassen. Denn jede dieser unscheinbaren
Action-Klassen verbraucht knapp 9 Kbyte Speicher.! Das bedeutet, hundert Action-
Klassen belegen knapp ein Mbyte.

Wenn Sie sicher sind, dass der Speicherverbrauch von Action-Klassen tatsdchlich ein
Problem darstellt, konnen Sie Reflection (siehe Paket java.lang.reflect) als Implemen-
tierungs-Alternative in Erwagung ziehen.

01 package com.tagtraum.perf.ifsloopsandswitches;
02
03 import java.lang.reflect.InvocationTargetException;

1 Gemessen auf einem Windows-2000-System mit Sun JDK 1.4.0.



126

Sandini Bib
6  Bedingte Ausfiihrung, Schleifen und Switches

04 dimport java.lang.reflect.Method;
05 import java.util.*;

06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

public class ReflectiveActionSwitchDemo f

private static class ReflectiveAction implements Action f{
private Method method;
private Object targetObject;

public ReflectiveAction(Object targetObject,
String methodName) throws NoSuchMethodException f{
this.targetObject = targetObject;
method = targetObject.getClass()
.getMethod(methodName, null);
}

public void action() f

try |
method.invoke(targetObject, null);

} catch (InvocationTargetException ita) f{
Throwable t = ita.getTargetException();
if (t instanceof RuntimeException)

throw (RuntimeException) t;

if (£ !=null)
t.printStackTrace();
else

ita.printStackTrace();
} catch (I1legalAccessException iae) |
iae.printStackTrace();
}

private Map actionMap;

public ReflectiveActionSwitchDemo()

throws NoSuchMethodException {
actionMap = new HashMap();
actionMap.put("Actionl",

new ReflectiveAction(this, "actionl"));
actionMap.put("Action2",

new ReflectiveAction(this, "action2"));
actionMap.put("Action3",

new ReflectiveAction(this, "action3"));

public void actionl() f{
System.out.printin("Actionl");
}

public void action2() f{



Sandini Bib

Schleifen 127
55 System.out.printin("Action2");
56 }
57
58 public void action3() f{
59 System.out.printin("Action3");
60 }
61
62 public void performAction(String s) f
63 Action action = (Action) actionMap.get(s);
64 if (action != null) action.action();
65 }
66
67 pubTic static void main(Stringl] args)
68 throws NoSuchMethodException {
69 ReflectiveActionSwitchDemo asd
70 = new ReflectiveActionSwitchDemo();
71 asd.performAction("Action2");
72 }
73}

Listing 6.2: Vermeiden von langen if/else-Konstrukten durch Reflection

Statt einer anonymen Klasse fiir jede Aktion, benutzt ReflectiveActionSwitchDemo nur
eine Klasse — ndmlich ReflectiveAction — fiir alle Aktionen. ReflectiveAction besorgt
sich bereits im Konstruktor das Methoden-Objekt der Methode, die es spéater aufrufen
soll (Zeilen 16,17). Wird die action()-Methode aufgerufen, muss nur noch die invoke()-
Methode des Methodenobjektes ausgefiihrt werden (Zeile 22). Somit kann ein Reflec-
tiveAction-Objekt initialisiert werden, eine beliebige Methoden aufzurufen.? Fiir diese
Flexibilitét gilt es jedoch einen Preis zu zahlen:

Trotz erheblicher Verbesserungen seit Sun JDK 1.4.0% ist invoke() verglichen mit
einem direkten Methodenaufruf immer noch langsam.

Sie miissen sich zur Laufzeit mit allerlei unangenehmen Ausnahmen herumschla-
gen.

Grundsitzlich ist daher die Lésung mit anonymen Klassen vorzuziehen.

6.2 Schleifen

Genau wie if-Konstrukte sind Schleifen trivial. Doch auch hier gilt es fiir Hochge-
schwindigkeits-Code einige Regeln zu beachten.

2 Der Einfachheit halber habe ich Methoden-Argumente und Riickgabewerte hier nicht beriicksich-
tigt. Das Beispiel liefle sich aber entsprechend erweitern.
3 Methodenaufrufe tiber Reflection sind gegentiber Sun JDK 1.3.1 etwa dreimal schneller geworden.



128 6  Bedingte Ausfiihrung, Schleifen und Switches

6.2.1 Loop Invariant Code Motion

Die wichtigste Regel lautet:

Entfernen Sie alle unnotigen Operationen aus der Schieife.
Beispiel:

// aufwaendigeBerechnung(int) gebe fiir gleiche Parameter
// immer den gleichen Wert zuriick.
int a = 0;
int b = 5;
for (int i=0; 1<100; i++) |
// Tun Sie dies nicht!
b += aufwaendigeOperation(a) + 5 + 1i;
}

Die Operation aufwaendigeOperation(a)+5 ist eine Invarianz und sollte vor der Schleife
ausgefiihrt werden:

int a = 0;
int b = 5;
int ¢ = aufwaendigeOperation(a) + 5;
for (int i=0; i<100; i++) {
b +=1c¢+ 1;

}

Stellen Sie sicher, dass sich nichts in der Schleife befindet, was nicht auch wirklich
mehrfach ausgefiihrt werden muss. Teilweise wird diese Optimierung auch von VMs
durchgefiihrt. Das Verfahren heifst Loop Invariant Code Motion. VMs sind jedoch nicht
unbedingt in der Lage zu erkennen, dass aufwaendigeOperation(a) fiir gleiche a-Werte
auch immer den gleichen Wert zurtickgibt. Es bleibt Ihnen tiberlassen, ob Sie sich auf
die VM verlassen oder auf Nummer sicher gehen wollen.

Beachten Sie, dass die Abbruchbedingung ein Teil der Schleife ist. Sie ist quasi die erste
Zeile. Folgender Code ist somit ineffizient, da die Methode 1ist.size() bei jeder Itera-
tion aufgerufen wird, wéhrend ein Aufruf vor der Schleife reichen wiirde:

// 1ist sei vom Typ List

// Dies ist ineffizient!

for (int i=0; i<list.size(); i++) {
Object o = Tist.get(i);



Schleifen 129

Verfahren Sie also besser folgendermafSen:

for (int i=0, n=list.size(); i<n; i++) {
Object o = list.get(i);

J

Der Methodenaufruf 1ist.size() wird nur einmal ausgefiihrt und der Riickgabewert
der Variablen n zugewiesen. Dabei ist n eleganterweise nur in der for-Schleife sichtbar.

6.2.2 Teure Array-Zugriffe

Vermeiden Sie wiederholten Zugriff auf Arrays.

Diese Regel trifft auf folgenden Code zu:

private int arrayAccessInlLoop() {
intl] array = new intl1];
for (int i=0; 1<20000000; i++) {
// Wiederholter Array-Zugriff ist sehr aufwdndig!
array[0] += 1;
}
return array[0];

J

Gemadfs Java Sprachspezifikation muss die VM bei jedem Array-Zugriff {iberpriifen, dass
die Array-Referenz nicht auf null zeigt und dass der angegebene Index innerhalb der
Array-Grenzen liegt. Das heifst, bei obigem Code iiberpriifen die meisten VMs ohne Not
immer wieder, ob das Array-Element 0 tatsdchlich vorhanden ist. Neuere VMs wie der
HotSpot Server Compiler verfiigen iiber eine Optimierung namens Range Check Elimina-
tion, die es erlaubt, auf die Uberpriifung zu verzichten, wenn der Compiler aufgrund einer
Codeanalyse beweisen kann, dass das Element vorhanden sein muss. Ebenso kann unter
Umstdanden auf den wiederholten nul1-Test verzichtet werden (Null Check Elimination).

Tests mit verschiedenen JDKs ergeben, dass die folgende funktional gleiche Variante
des Codes wesentlich schneller ist als die obige Version (Tabelle 6.1).

private int arrayAccessBeforelLoop() f
intl] array = new intl[1];
// Array-Wert in temp kopieren
int temp = array[0];
for (int i=0; 1<20000000; i++) {
temp += 1;
}
// temp zurilick in den Array kopieren
array[0] = temp;
return array[0];



130 6  Bedingte Ausfiihrung, Schleifen und Switches

Sun JDK 1.3.1 Sun JDK I.3.1 Sun JDK 1.4 Client Sun DK 1.4 IBM JDK 1.3.0
Client Server Server
2 1,38 1,67 1,35 2,56

Tabelle 6.1: Faktor, um den die Methode arrayAccessBeforeLoop() in einer bestimmten VM schneller ist als die
Methode arrayAccessinLoop()

6.2.3 Loop Unrolling

Eine weitere klassische Optimierungstechnik ist das so genannte Loop Unrolling. Dabei
wird der Zahler einer Schleife in jeder Iteration statt um eins um beispielsweise zehn
erhoht. Zum Ausgleich wird der Korper der Schleife zehnmal kopiert. Auf diese Weise
muss nur jede zehnte Iteration getestet werden, ob die Abbruchbedingung erfiillt ist.

private int normalloop() f{
int a=0;
for (int i=0; i<20000000; i++) f{
a +=1;
}
return a;
}

Obiger Code liefSe sich also folgendermafien umschreiben:

private int unrolledLoop() f{
int a=0;
for (int i=0; 1<20000000; i+=10) {

+=1’;

a

a += i+1;
a += i+2;
a += 1+3;
a += i+4;
a += i+b;
a += i+6;
a += i+7;
a += 1+8;
a += 1+9;

}
return a;
}

Der Erfolg dieser Optimierung ist jedoch je nach VM sehr unterschiedlich (Tabelle 6.2).
In den HotSpot Server VMs fiihrt Loop Unrolling zu einer schlechteren und in den
HotSpot Client VMs sowie dem IBM JDK zu einer besseren Laufzeit. Absolut gesehen
ist die Performance in den HotSpot Server VMs am besten (28%) — und zwar ohne
manuelles Loop Unrolling.



Schleifen 131

Java VM normalLoop() unrolledLoop() Faktor
Sun JDK 1.3.1 Client 100% 60% 1,68
Sun JDK 1.3.1 Server 28% 32% 0,90
Sun JDK 1.4.0 Client 138% 61% 2,26
Sun JDK 1.4.0 Server 28% 32% 0,89
IBM JDK 1.3.0 50% 34% 1,48

Tabelle 6.2: Normalisierte Ausfiihrungszeit der beiden Methoden in verschiedenen Java VMs sowie der Faktor, den die
Methode unrolledLoop() in einer VM schneller (> 1) bzw. langsamer (<1) ist als die Methode normallLoop()

Fir die Praxis bedeutet dies:
Manuelles Loop Unrolling lohnt sich meist nicht.

Es macht den Code unlesbar und fiihrt bei HotSpot Server VMs sogar zu einer schlech-
teren Laufzeit.

6.2.4 Schleifen vorzeitig verlassen

Gelegentlich muss man eine Schleife vorzeitig verlassen. Haufig wird dazu eine boole-
sche Hilfsvariable benutzt. Der Code sieht etwa folgendermafien aus:

// Tun Sie dies nicht!
private int booleanTerminatedLoop() f
int a=0;
boolean done = false;
for (int i=0; i1<20000000 && !done; i++) {
a +=1i;
if (a == -1) done = true;
}
return a;
}

Wenn eine bestimmte Bedingung eintrifft (hier a==-1)*, wird die Variable done auf true
gesetzt und die Schleife terminiert. Die Alternative zur booleschen Variable ist der von
einigen Puristen verachtete break-Befehl:

private int breakTerminatedLoop() f
int a=0;
for (int i=0; 1<20000000; i++) {
a +=1;
if (a == -1) break;
}
return a;

4 Tatsdchlich wird a niemals -1, das ist jedoch fiir das Beispiel unerheblich.



132 6  Bedingte Ausfiihrung, Schleifen und Switches

Dieser Code ist jedoch unabhéngig von der VM wesentlich schneller als die Version
mit boolescher Variable (Tabelle 6.3). Daher gilt:

Benutzen Sie break anstelle boolescher Hilfsvariablen, um Schleifen vorzeitig zu verlassen.

Java VM booleanTerminatedLoop() breakTerminatedLoop() Faktor
Sun JDK 1.3.1 Client 100% 72% 1,39
Sun JDK 1.3.1 Server  122% 44% 2,77
Sun JDK 1.4.0 Client 152% 100% 1,52
Sun JDK 1.4.0 Server  102% 45% 2,29
IBM JDK 1.3.0 67% 45% 1,50

Tabelle 6.3: Normalisierte Ausfiihrungszeit der beiden Methoden in verschiedenen Java VMs sowie der Faktor, um
den die Methode breakTerminatedLoop() in einer VM schneller ist als die Methode booleanTerminatedLoop()

6.2.5 Ausnahmeterminierte Schleifen

Beim indizierten Zugriff auf eine Liste oder einen Array wird in Java immer eine Aus-
nahme ausgel6st, wenn ein Index auSerhalb der Listen- oder Array-Grenzen liegt. Man
kann also, anstatt bei jeder Iteration die Grenzen selbst zu testen, einfach auf die Aus-
nahme warten, die ausgelost wird, wenn die Grenze tiberschritten wird. Dies ist jedoch
sehr schlechter Stil!

Der Code sdhe folgendermafien aus:

ArraylList list;

// exceptionTerminatedlLoop
// 1ist sei initialisiert und mit Strings gefillt
// Sehr schlechter Stil!
try {
for (int i=0; true; i++) {
String s = (String)list.get(i);

}

} catch (IndexOutOfBoundsException e) {
// ignoriere Ausnahme

}

Normalerweise wiirde man diesen Code so schreiben:

// normalloop
// 1ist sei initialisiert und mit Strings geflllt
for (int i=0, n = Tist.size(); i<n; i++) |

String s = (String)list.get(i);



Schleifen 133

Nicht nur, dass die normale Variante viel leichter lesbar ist, ein kleiner Test mit 100.000
Elementen offenbart zudem, dass schlechter Stil sich nicht unbedingt auszahlt. Ledig-
lich mit dem IBM JDK ist die ausnahmebeendete Schleife um den Faktor 1,73 schneller.
Mit allen anderen getesteten Java VMs ist die sauber kodierte Version entweder leicht
schneller oder gleich schnell.

Java VM normalLoop() exceptionTerminatedLoop()  Faktor
Sun JDK 1.3.1 Client  100% 100% 1,00
Sun JDK 1.3.1 Server  57% 61% 0,93
Sun JDK 1.4.0 Client  101% 107% 0,94
Sun JDK 1.4.0 Server  29% 38% 0,77
IBM DK 1.3.0 306% 177% 1,73

Tabelle 6.4: Normalisierte Ausfiihrungszeit der beiden Methoden in verschiedenen Java VMs sowie der Faktor, den die
Methode normalLoop() in einer VM schneller (>1) bzw. langsamer (<I) ist als die Methode exceptionTerminated-

Loop()

\

lterationsléange

—o—JDK 1.4.0 client - normalLoop
—o—JDK 1.4.0 client - exceptionTerminatedLoop
——JDK 1.4.0 server - normalLoop
—x—JDK 1.4.0 server - exceptionTerminatedLoop

Abbildung 6.1: Dauer von normalen und ausnahmeterminierten Schleife in Abhdngigkeit von der Iterationsldnge
(500-5.000) fiir Sun |IDK 1.4.0



134 6  Bedingte Ausfiihrung, Schleifen und Switches

Natiirlich hangt das Ergebnis dieses Tests von der Anzahl der Elemente in der Liste ab.
Daher habe ich den Test noch einmal mit dem Sun JDK 1.4.0 und unterschiedlich vielen
Elementen durchgefiihrt (Abbildung 6.1 und Abbildung 6.2).

Zeit (logarithmisch)

100 1.000 10.000 100.000  1.000.000
lterationslénge

——JDK 1.4.0 client - normalLoop

—-0- —JDK 1.4.0 client - exceptionTerminatedLoop

—4A—JDK 1.4.0 server - normalLoop

— -x-—JDK 1.4.0 sener - exceptionTerminatedLoop

—-#-—JDK 1.4.0 server - exceptionTerminatedLoop (2. Durchlauf)

Abbildung 6.2: Dauer von normalen und ausnahmeterminierten Schleifen in Abhdngigkeit von der Iterationsldnge
(100-1.000.000) fiir Sun JDK 1.4.0

Unabhingig von der Anzahl der Elemente in der Liste schnitt die normale Schleife
mindestens genauso gut ab wie die ausnahmeterminierte. Bei der Server-Version ist
zudem der zweite Durchlauf der ausnahmeterminierten Schleife signifikant langsa-
mer, was darauf schliefSen ldsst, dass der HotSpot-Server-Compiler Probleme hat, aus-
nahmegesteuerten Code zu optimieren. Zusammenfassend ldsst sich sagen:

Ausnahmeterminierte Schleifen sind oft langsamer als normal terminierte Schleifen.

6.2.6 Iteratoren oder nicht?

Im letzten Beispiel haben wir iiber eine arraybasierte Liste iteriert. Dabei benutzten wir
nicht den von der Methode iterator() zuriickgegebenen java.util.Iterator, sondern
haben einfach mit der get ()-Methode iiber den Index zugegriffen.



Sandini Bib
Schleifen 135

Den Iterator zu benutzen ware sicherlich besserer Stil gewesen. Doch sind Iteratoren
performant? Wir wollen folgende vier verschiedene Methoden vergleichen:

ArraylList arraylist;
LinkedList TinkedList;

// arraylList und linkedlList seien initialisiert
// und mit 1.000 Strings gefillt

// ArraylList mit Iterator
private String arraylListlteratorLoop() f{
String s = null;
for (Iterator i = arraylList.iterator(); i.hasNext();) {
s = (String)i.next();
}
return s;

// LinkedList mit Iterator
private String linkedlListIteratorLoop() f
String s = null;
for (Iterator i = linkedlList.iterator(); i.hasNext();) {
s = (String)i.next();
}
return s;

// ArraylList-Iteration mit get(index)
private String arraylListLoop() {
String s = null;
for (int i=0, n = arraylList.size(); i<n; i++) {
s = (String)arraylList.get(i);
}
return s;

// LinkedList-Iteration mit get(index)
private String linkedListlLoop() {
String s = null;
for (int i=0, n = linkedList.size(); i<n; i++) |
s = (String)linkedList.get(i);
}

return s;



136 6  Bedingte Ausfiihrung, Schleifen und Switches

Java VM ArrayList mit ArrayList mit LinkedList mit LinkedList mit
get() Iterator get() Iterator

Sun DK 1.3.1 Client  100% 259% 3.267% 164%

Sun JDK 1.3.1 Server  54% 219% 2.338% 111%

Sun DK 1.4.0 Client  105% 216% 3.338% 142%

Sun JDK 1.4.0 Server  25% 90% 2.262% 73%

IBM DK 1.3.0 406% 590% 3.140% 322%

Tabelle 6.5: Normalisierte Ausfiihrungszeit des Iterierens liber eine Liste mit 1.000 Elementen

Wie Sie Tabelle 6.5 entnehmen konnen, ist das Iterieren iiber eine ArraylList mit einem
Iterator einiges langsamer als der direkte Zugriff mittels Index. Das Iterieren iiber eine
LinkedList mittels Iterator hingegen ist ein Vielfaches schneller als der Zugriff {iber den
Index.

Dabei ist der Strafzoll potenziell hoher, wenn Sie auf eine LinkedList mittels get()
zugreifen, als wenn Sie {liber eine ArraylList mit einem Iterator iterieren. Dies ist so,
weil der Zugriff iiber get() oder den Iterator auf eine ArrayList jeweils in konstanter
Zeit erfolgt. Bei einer LinkedList jedoch erfolgt der lesende Zugriff {iber einen Index in
linearer Zeit und ist somit direkt von der Lange der Liste abhédngig. Das Lesen aus
einer LinkedList mit einem Iterator bendtigt dagegen nur konstante Zeit, da der Itera-
tor sich seine Position merkt und nicht erst miihsam den aktuellen Index suchen muss.
Die Iteration iiber LinkedList skaliert also nur, wenn Sie den Iterator benutzen.

Fiir Objekte vom Typ LinkedList empfiehlt sich also der Iterator, fiir Listen vom Typ
ArrayList der Zugriff mittels get ().

Nun ist es guter Stil, fiir Referenzen anstelle der Implementierungklasse den Schnitt-
stellentyp zu verwenden. Also statt ArrayList oder LinkedList einfach List als Referenz-
typ zu benutzen:

List Tist = new ArrayList();

So kénnen Sie auch nachtraglich noch die implementierende Klasse (ArraylList) austau-
schen. Gleichzeitig wollen Sie aber auch performant iiber diese Liste iterieren kénnen.
Es bleiben Thnen drei Moglichkeiten:

Sie benutzen einfach immer einen Iterator, da der schlechteste Fall immer noch
wesentlich giinstiger ist (konstante Zugriffszeit) als der schlechteste Fall beim
Zugriff iiber get() (lineare Zugriffszeit).

Sie priifen mittels des instanceof-Operators oder iiber die getClass()-Methode, ob
es sich um eine ArrayList oder einen Vector handelt, und iterieren gegebenenfalls
mittels get(). Ist die Liste weder vom Typ ArraylList noch Vector, benutzen Sie den
Iterator.



Optimale Switches 137

Sie priifen, ob die Liste das Interface java.util.RandomAccess (ab JDK 1.4) implemen-
tiert. Ist dies der Fall, benutzen Sie get(), ansonsten den Iterator.

Welche der drei Moglichkeiten Sie wahlen sollten, hdngt davon ab, welches JDK Sie
verwenden und wie viel Aufwand Sie tatsdchlich treiben wollen, um optimal iiber eine
Liste zu iterieren.

6.3 Optimale Switches

Auch Switches lassen sich optimieren. Und zwar sieht die Java VM Spezifikation zwei
verschiedene Moglichkeiten der Ubersetzung eines switch/case-Ausdrucks in Byte-
code vor: Lookupswitch und Tableswitch.

Bei einem Lookupswitch werden alle case-Ausdriicke linear durchsucht und bei Uber-
einstimmung der entsprechende Code ausgefiihrt. Stimmt keiner der case-Werte mit
dem switch-Wert iiberein, wird der Code der default-Marke ausgefiihrt. Bei einem
Tableswitch hingegen wird ein Offset errechnet und direkt zum passenden case- oder
default-Ausdruck gesprungen. Entsprechend kann ein Tableswitch in konstanter Zeit
ausgefithrt werden, wahrend ein Lookupswitch lineare Ausfiihrungszeit benoétigt.
Dies gilt aber nur, wenn der Bytecode direkt interpretiert wird. Natiirlich ist jede VM
frei, beliebige Optimierungen anzuwenden, die das Laufzeitverhalten komplett
umkrempeln.

So viel zur Theorie. Wir wollen an einem Beispiel durchmessen, ob und welche Effekte
wir beobachten konnen.

Die folgenden zwei Methoden sind funktional identisch, werden aber vom Compiler
unterschiedlich iibersetzt — oneSwitch()mit einem Lookupswitch und twoSwitches() mit
zwei Tableswitches. Welcher Switch-Befehl benutzt wird, lasst sich leicht mit einem
Decompiler oder dem im bin-Verzeichnis des JDK enthaltenen Disassembler javap mit
der Option -c herausfinden.

Die Entscheidung, welcher der beiden Switch-Befehle benutzt wird, fallt der Compiler
in Abhéngigkeit davon, ob die Case-Werte direkt aufeinander folgen bzw. wie grofs die
Liicken zwischen aufeinander folgenden Werten sind. In der Methode oneSwitch()
besteht eine Liicke zwischen 9 und 100. Diese Liicke ist grofs genug, so dass der Com-
piler sich fiir den Lookupswitch entscheidet. In der Methode twoSwitches() folgen in
beiden Switches alle Case-Werte einander. Daher entscheidet der Compiler sich fiir den
Tableswitch.

// wird mit Lookupswitch Ubersetzt
private int oneSwitch() {

int defaultValue = 99;

int a =0;

for (int 1=0; i<500; i++) |



138

Sandini Bib

6  Bedingte Ausfiihrung, Schleifen und Switches

switch(i
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case

)

O N OO BN O

9.

100:
101:
102:
103:
104:
105:
106:
107:
108:
109:

a=0; break;

a=defaultValue; break;
a=defaultValue; break;

a=3; break;
a=4; break;

a=defaultValue; break;

a=6; break;

a=defaultValue; break;
a=defaultValue; break;

a=9; break;

a=0; break;
a=defaultValue;
a=defaultValue;
a=3; break;
a=4; break;
a=defaultValue;
a=6; break;
a=defaultValue;
a=defaultValue;
a=9; break;

default: a=defaultValue;

}
return a;

// wird mit Tableswitches {libersetzt
private int twoSwitches() f{

int defaultValue =

int a =0;

for (int i=

switch(i
case
case
case
case
case
case
case
case
case
case

}

switch(i
case
case
case
case
case
case

0;
)
0:

W O N O O & W N =

100:
101:
102:
103:
104:
105:

: a=defaultValue;

99;

i<500; i++) |

a=0; break;
a=defaultValue;

a=3; break;
a=4; break;
a=defaultValue;
a=6; break;

a=defaultValue; break;
a=defaultValue; break;

a=9; break;

a=0; break;

break;
break;

break;

break;
break;

break;
break;

break;

a=defaultValue; break;

a=defaultValue; break;
a=3; break;
a=4; break;

a=defaultValue; break;



Optimale Switches 139

case 106: a=6; break;

case 107: a=defaultValue; break;
case 108: a=defaultValue; break;
case 109: a=9; break;

default: a=defaultValue;

}

return a;
}

Java VM oneSwitch() twoSwitches() Faktor
Sun JDK 1.3.1 Client 100% 104% 0,96

Sun DK 1.3.1 Server 49% 45% 1,08

Sun JDK 1.4.0 Client 106% 104% 1,02

Sun JDK 1.4.0 Server 53% 7% (32%) 7,46 (1,63)
IBM DK 1.3.0 72% 48% 1,50

Tabelle 6.6: Normalisierte Ausfiihrungszeit der beiden Methoden sowie der Faktor, um den twoSwitches() schneller
war als oneSwitch()

Die Ergebnisse in Tabelle 6.6 zeigen, dass die Werte fiir die beiden Methoden nur beim
Sun JDK 1.4.0 Server und dem IBM JDK signifikant unterschiedlich waren. Wie erwar-
tet war dabei die Methode twoSwitches() schneller.

Fiir die Praxis bedeutet unser Ergebnis:

Switches aufzusplitten kann sich unter bestimmten Bedingungen lohnen, sollte jedoch nur an
besonders performancekritischen Stellen angewandt werden.

Das Splitten wirkt sich dabei umso positiver aus, je mehr case-Ausdriicke im Switch
enthalten sind und je 6fter der default-Ausdruck ausgefiihrt wird.

5 Merkwiirdigerweise war jedoch der erste Durchlauf von twoSwitches () beim Sun JDK 1.4.0 Server
reproduzierbar wesentlich schneller als der zweite Durchlauf. In Tabelle 6.6 stehen die Werte fiir
den zweiten Durchlauf in Klammern.



Sandini Bib



7/ Ausnahmen

Das Wichtigste vorweg: Wenige, wenn nicht keine Java VMs sind auf das Auslosen
und Verarbeiten von Ausnahmen optimiert. Daraus folgt:

Benutzen Sie Ausnahmen nur fiir Ausnahmesituationen.

Die in Kapitel 6.2.5 Ausnahmeterminierte Schleifen beschriebenen ausnahmeterminierten
Schleifen sind deshalb nicht schneller als konventionell kodierte Schleifen, weil das
Auslosen einer Ausnahme fiir die VM einen gewissen Kraftakt darstellt. Daraus folgt
insbesondere:

Benutzen Sie Ausnahmen niemals zum Steuern des Kontrollflusses.

Ihr Code wird sonst nicht nur unlesbar und schwer wartbar, sondern auch langsam.

7.1 Ausnahmen durch sinnvolle Schnittstellen vermeiden

Es kommt vor, dass bestimmte Methoden abhdngig von einem Zustand Ausnahmen
auslosen miissen. Wenn Sie selbst eine solche Klasse kodieren und der ausnahmeaus-
losende Zustand vor dem Aufruf der Methode bekannt ist, konnen Sie die Schnittstelle
so kodieren, dass die Ausnahme vom Aufrufer umgangen werden kann, indem er zuvor
den Zustand abfragt. Ein einfaches Beispiel hierfiir ist das Interface java.util.Iterator.

So lange es noch Elemente gibt, iiber die iteriert werden kann, liefert die Methode
next() ein neues Objekt zuriick. Gibt es keine Elemente mehr, wird eine NoSuchElement-
Exception ausgeldst. Dies ldsst sich jedoch vermeiden, indem man vor jedem next()-
Aufruf mit der Methode hasNext() iiberpriift, ob noch ein weiteres Element in der
Datenstruktur enthalten ist. Dementsprechend wird gewdhnlich folgendes Idiom fiir
eine Iteration benutzt:

for (Iterator i=collection.iterator(); i.hasNext();) f
Object o = i.next();
}



142 7 Ausnahmen

Ein anderes Beispiel ist folgende (fiktive) Schnittstelle zum Uberpriifen von Berechti-
gungen:

public interface Authorization f{

/**

* (berprift die Berechtigung einer Person, eine Aktion

* auszufihren.

*

* @exception SecurityException falls die Person zur Ausfihrung
*

der Aktion nicht berechtigt ist.
*/

public void checkPermission(Person person, Action action)
throws SecurityException;

/**

* Gibt an, ob eine Person eine gegebene Aktion ausfihren darf.
*

* @return true, falls die Person die Aktion ausflhren darf.
*/
public boolean hasPermission(Person person, Action action);

Die Methode checkPermission() kann sehr leicht in Code eingebettet werden — bei-
spielsweise in einem EJB oder einer Bibliothek. Insbesondere ist sie geeignet fiir Routi-
nechecks, dhnlich dem, ob ein Objekt null ist, bevor eine Methode ausgefiihrt wird
oder nicht. Sie ist am besten zu benutzen, wenn generell erwartet wird, dass die erfor-
derliche Berechtigung vorliegt.

Die Methode hasPermission() hingegen wird mit der Erwartung aufgerufen, dass ein
Benutzer durchaus nicht die erforderliche Berechtigung hat. Sie kann beispielsweise
dazu benutzt werden, in einer grafischen Benutzerschnittstelle nur jene Schaltflachen
anzuzeigen, die der Benutzer auch betdtigen darf. Es wire ungerechtfertigt, vor dem
Anzeigen einer Schaltflidche jeweils eine Ausnahme zu riskieren — zumal ja noch nicht
einmal eine Ausnahme vorliegt.

Wenn Sie eine Schnittstelle entwerfen, denken Sie an Methoden zum Abfragen von Zustinden
zum Vermeiden von unnétigen Ausnahmen.

Das heifst nicht, dass Sie keine Ausnahmen benutzen oder gar Ausnahmen maskieren
sollten. Ausnahmen und insbesondere Stacktraces sind wertvolle, unverzichtbare Hil-
fen bei der Fehlersuche.

Folgender wenig vorbildhafter Code maskiert die Ausnahme und ersetzt die Fehler-
behandlung durch das Setzen eines Zustandes (error!=null).



Kosten von Try-Catch-Blocken in Schleifen 143

InputStream in;
String error;

// in sei ein gedffneter InputStream

// Tun Sie dies nicht!
public int read() f{
int 1=0;
try {
i = 1in.read();
}
catch(IOException ioe) f
// hier geht der Stacktrace verloren
error = ioe.toString();
}
return i;
}

// wird evtl. nie aufgerufen

public String getError() f{
return error;

}

Dieses Vorgehen erschwert die Fehlersuche aus folgenden zwei Griinden enorm:

Der Stacktrace ist verloren. Alles, was Ihnen bleibt, ist eine textuelle Fehlermel-
dung.

Ein Klient dieser Klasse ruft eventuell nie die Methode getError() auf. Das heifdt, Sie
erfahren unter Umstdnden nie, dass eine Ausnahme vorlag.

Benutzen Sie also Ausnahmen mit Bedacht. Weitere niitzliche Anmerkungen tiber den
Einsatz konnen Sie in Joshua Blochs Buch Effektiv Java Programmieren [Bloch02, S.173ff]
finden.

7.2 Kosten von Try-Catch-Bl6cken in Schleifen

Eine weit verbreitete Ansicht lautet, dass zu viele try-catch-Blocke Programme lang-
sam machen. Tatsachlich ist dies nicht unbedingt der Fall. Betrachten Sie folgende zwei
Methoden und die normalisierten Ausfiihrungszeiten in Tabelle 7.1:

private int ToopWithoutTryCatch() f
int a = 0;
for (int i=0; 1<100000; i++) {
a += Integer.parseInt("1");
}
return a;



144 7 Ausnahmen

private int ToopWithTryCatch() {
inta=0;
for (int 1=0; i<100000; i++) |
try f
a += Integer.parselnt("1");
}
catch (NumberFormatException nfe) f
nfe.printStackTrace();
}
}

return a;
}
Java VM mit try-catch ohne try-catch Faktor
Sun JDK 1.3.1 Client 100% 97% 1,03
Sun JDK 1.3.1 Server 56% 58% 0,97
Sun JDK 1.4.0 Client 87% 86% 1,01
Sun JDK 1.4.0 Server 31% 31% 1,02
IBM DK 1.3.0 73% 64% 1,13

Tabelle 7.1: Normalisierte Ausfiihrungszeiten sowie der Faktor, den die Methode ohne try-catch-Block schneller ist
als die Methode mit try-catch-Block

Nur im IBM JDK 1.3.0 fiihrt der try-catch-Block zu einem signifikanten Performance-
Verlust.

Nun haben wir in den beiden Methoden auf etwas seltsame Weise a++ ausgefiihrt. Das
Benutzen von a += Integer.parselnt("1") garantierte, dass in der Schleife eine nicht-tri-
viale und somit schwer zu optimierende Methode ausgefiihrt wurde, die den grofiten
Teil der Rechenzeit schluckt. Wenn wir stattdessen das funktional gleiche, sehr viel
schnellere und wesentlich leichter zu optimierende a++ ausfithren, kommen wir zu
anderen Ergebnissen.

Java VM mit try-catch ohne try-catch Faktor

Sun JDK 1.3.1 Client 100% (entspricht 143's) 57% 1,75

Sun JDK 1.3.1 Server 1,8% 1,8% 1,00

Sun JDK 1.4.0 Client 86% 79% 1,08

Sun JDK 1.4.0 Server nicht messbar nicht messbar nicht messbar

IBM JDK 1.3.0 119% 29% (nicht messbar) 4,15 (nicht messbar)

Tabelle 7.2: Normalisierte Ausfiihrungszeiten der a++-Variante sowie der Faktor, den die Methode ohne try-catch-
Block schneller ist als die Methode mit try-catch-Block



Keine eigenen Ausnahme-Hierarchien 145

Tabelle 7.2 zeigt, dass die normalisierten Ausfithrungszeiten fiir Sun JDK 1.3.1 Client
und IBM JDK 1.3.0 ohne try-catch-Block wesentlich kiirzer sind. Bei Sun JDK 1.3.1
Server und Sun JDK 1.4.0 Client ist jedoch kaum ein nennenswerter Unterschied zu
beobachten. Interessant ist, dass Sun JDK 1.4.0 Server unsere triviale Methode so weit
optimiert, dass die Ausfithrungszeit nicht hinreichend lang ist (weitaus kleiner als
1%), um zu einem messbaren Ergebnis zu kommen. Gleiches gilt fiir den zweiten
Lauf der Variante ohne try-catch-Block im IBM JDK. Diese Optimierung gelang der
IBM VM jedoch nicht bei der Variante mit try-catch-Block.

try-catch-Blocke fithren bei aktuellen Sun VMs also kaum mehr zu Performance-Ver-
lusten, kénnen jedoch bei IBM JDK 1.3.0 zu Einbuflen fithren und insbesondere Opti-
mierungen verhindern, die andernfalls greifen wiirden.

Ein signifikanter Performance-Gewinn durch einen try-catch-Block auflerhalb von
Schleifen ist aber nur zu erwarten, wenn der Schleifenkorper hinreichend kurz ist und
entsprechend oft ausgefiihrt wird. Denn wie wir oben gesehen haben, ist der zu erwar-
tende Gewinn vernachldssigbar grofs, wenn eine ausreichend komplexe Methode wie
zum Beispiel Integer.parselnt() innerhalb des Blocks ausgefiihrt wird.

Mit anderen Worten:

Abhingig von der VM und dem Inhalt einer Schleife kann es sich lohnen, try-catch-Blocke
bevorzugt auflerhalb von Schleifen zu platzieren, wenn dadurch der Programmablauf nicht
beeintrichtigt wird.

In normalen Programmen scheinen die moéglichen Performance-Gewinne jedoch so
klein zu sein, dass es sich kaum lohnt, aus Geschwindigkeitsgriinden auf try-catch-
Blocke zu verzichten.

7.3 Keine eigenen Ausnahme-Hierarchien

In vielen Projekten wird als Erstes eine eigene Ausnahme-Hierarchie erstellt. Schliefs-
lich, so das Argument, miisse man einheitlich mit Ausnahmen umgehen kénnen und
Regelungen finden, bevor der eigentliche Anwendungscode geschrieben werde. Also
geht man daher und erstellt eine Ausnahme-Hierarchie wie in Abbildung 7.1.

Der Ansatz, sich Gedanken zu machen, bevor das Kind in den Brunnen gefallen ist, ist
sicherlich lobenswert — an dieser Stelle jedoch vollig fehl am Platze.

Im JDK 1.4.0 sind 270 Ausnahme-Klassen enthalten. Vermutlich kénnen Sie 95% aller
Ausnahmen, die je von Ihrem Code ausgelost werden, mit diesen Ausnahmen abbil-
den. Und die 5%, die nicht in den vorhandenen Ausnahmen enthalten sind, lassen sich
meist durch Erben von einer vorhandenen Ausnahme erstellen.



Sandini Bib

146 7 Ausnahmen
Exception RuntimeException
XYZException XYZRuntimeException
XYZIOException XYZlllegalArgumentException

Abbildung 7.1: Ausschnitt einer Parallel-Ausnahme-Hierarchie der Firma XYZ, die eine eigene XYZIOException
und eine eigene XYZlllegalArgumentException enthdilt

Was passiert, wenn Sie diese Regel nicht beherzigen, ist Folgendes: In Threm Code wer-
den stindig Ausnahmen aus dem JDK gefangen und verpackt in Ihren eigenen Aus-
nahmen wieder geworfen.

InputStream in;
// in sei ein initialisierter InputStream

public int read() throws XYZIOException f
// Tun Sie dies nicht!
try {
return in.read();
}
catch (I0Exception ioe) {
throw new XYZIOException(ioe);
}

Und dies sind die Konsequenzen:

Schwierigere Fehlersuche, da die urspriingliche Ausnahme nicht mehr so leicht
oder gar iiberhaupt nicht mehr zugéanglich ist.

Statt nur eine Ausnahme erzeugen Sie mindestens zwei. Da Ausnahmen eine
aufserordentliche Last fiir die Java VM darstellen, wird Ihr Programm langsamer.

Also:

Erstellen Sie keine eigene Parallel-Ausnahme-Hierarchie.



Automatisch loggende Ausnahmen 147

7.4 Automatisch loggende Ausnahmen

Oftmals wird als Argument fiir eine eigene Ausnahme-Hierarchie angefiihrt, dass man
das automatische Loggen von Ausnahmen in einer Basisklasse (XYZException) imple-
mentieren wolle. Gemeint ist, dass sich jede Ausnahme der Firma XYZ automatisch in
einer Logdatei verewigt, ohne dass der Entwickler Code zu genau diesem Zweck
schreiben miisste.

Wenn Sie auf eine solche Idee kommen und iiberzeugt davon sind, dass Sie unbedingt
automatisch loggende Ausnahmen benétigen, implementieren Sie den nétigen Code in
einer Hilfsklasse, an die Sie von Thren eigenen loggenden Ausnahmen delegieren. Aber
benutzen Sie auf jeden Fall die Ausnahme-Hierarchie des JDKs. Ihre Klasse
com.xyz.LoglOException sollte also von java.io.IOException erben und nicht von
com.xyz.LogException. Auf diese Weise ersparen Sie sich das lastige Fangen und Wieder-
auslosen von Ausnahmen.

Auf jeden Fall vorzuziehen ist es jedoch, dem Entwickler die Entscheidung zu tiberlas-
sen, welche Ausnahme geloggt werden muss und welche nicht. Im Zweifelsfall kann
ohnehin derjenige, der die Ausnahme fangt, besser beurteilen, ob sie geloggt werden
muss, als der, der sie ausldst. Sie miissen nur Ihren Entwicklern vertrauen! Nur so kon-
nen Sie wirklich performanten Ausnahme-Code schreiben.

Hierbei ist noch anzumerken, dass alle Ausnahmen, von denen man glaubt, dass sie
garantiert nicht ausgeldst werden, die aber behandelt werden miissen, unbedingt auch
geloggt werden miissen. Wenn sie namlich doch mal ausgeldst werden, haben Sie ein
riesiges Problem den Fehler zu finden.

String s;
// s sei so initialisiert, dass wir fest daran glauben,
// dass nichts schief gehen kann...
try f{
Class klass = Class.forName(s);

}

catch (ClassNotFoundException cnfe) {
// so unwahrscheinlich es auch scheint: Toggen!
cnfe.printStackTrace();

7.5 Ausnahmen wieder verwenden

Um die betrachtlichen Kosten beim Erstellen einer Ausnahme zu umgehen, kénnen Sie
Ausnahmen wiederverwenden. Wir wollen versuchen abzuschétzen, wie grof der Per-
formance-Gewinn ist. Betrachten wir folgende beiden Methoden:



148

7 Ausnahmen

private void normalException() f{
for (int i=0; 1<10000; i++) {

try f

throw new Exception();

}

catch (Exception e) f
// wir ignorieren diese Ausnahme bewusst

}

private final Exception REUSED_EXCEPTION

= new Exception("Stacktrace ist ungliltig.");

private void reusedException() {

for (int i=0;

try {

1<10000; i++) |

throw REUSED_EXCEPTION;

}

catch (Exception e) {
// wir ignorieren diese Ausnahme bewusst

)

Java VM normale Ausnahme wieder verwendete Faktor
Ausnahme

Sun JDK 1.3.1 Client 100% 5% 19,44

Sun DK 1.3.1 Server 75% nicht messbar nicht messbar

Sun JDK 1.4.0 Client 121% 7% 18,83

Sun JDK 1.4.0 Server 99% nicht messbar nicht messbar

IBM JDK 1.3.0 58% 9% 6,35

Tabelle 7.3: Normalisierte Ausflihrungszeit sowie der Faktor, den die Methode reusedException() schneller ist als

normalException()

Die Methode reusedException() ist in allen Féllen deutlich schneller als die Methode
normalException(). Bei den beiden Sun Server VMs lagen die Werte fiir reusedExcep-

tion() sogar deutlich unter einem Prozent.!

Rein unter Performance-Gesichtspunkten betrachtet, lohnt es sich also, Ausnahmen
wiederzuverwenden. Falls Sie sich fiir diese Technik entscheiden, bedenken Sie jedoch,
dass Sie samtliche Informationen aus dem Stacktrace verlieren, da der Stacktrace beim
Erzeugen der Ausnahme angelegt wird. Auch das Aufrufen von fi11InStackTrace()

1 Dies kann evtl. jedoch auch daran liegen, dass der Compiler erkennt, dass die Ausnahme unbedeu-
tend fiir die weitere Ausfiihrung und deshalb wegoptimierbar ist.



Ausnahmen wieder verwenden 149

fiihrt nicht aus diesem Dilemma, da es genauso lange dauert wie das Auslosen einer
neuen Ausnahme. Sie erschweren sich die Fehlersuche also ganz erheblich. Gew6hn-
lich sollte zudem in einer echten Ausnahmesituation Performance nicht mehr so wich-
tig sein.



Sandini Bib



8 Datenstrukturen und Algorithmen

Die Wahl der richtigen Datenstrukturen und Algorithmen kann leicht tiber Erfolg und
Misserfolg eines Projekts entscheiden. Deshalb ist es notwendig, zumindest iiber ein
Grundwissen in diesem Bereich zu verfiigen. Tatsachlich kommt es in den meisten Fal-
len gar nicht so sehr darauf an, selbst groflartige Datenstrukturen und Algorithmen zu
schreiben, sondern vielmehr darauf, qualifiziert entscheiden zu kénnen, welche Daten-
struktur zu welchem Zweck am besten geeignet ist; zu wissen, was die Vor- und Nach-
teile verschiedener Datenstrukturen sind und wie performant die dazugehorigen
Operationen ausgefiihrt werden kdnnen.

Daher wollen wir uns zunéachst kurz die Grof3-O-Notation anschauen, bevor die einzel-
nen Klassen und Schnittstellen des Collections-Framework beschrieben und mit Hilfe
der Grofs-O-Notation eingeordnet werden.

Anschlieffend mochte ich Ihnen noch zwei Beispiele fiir den intelligenten Einsatz von
Datenstrukturen zeigen sowie Caches zur Beschleunigung von Speicherzugriffen dis-
kutieren.

8.1 GroB-O-Notation

Die Grof3-O-Notation geht auf das 1894 vom deutschen Mathematiker Paul Bachmann
(1837-1920) publizierte Werk Analytische Zahlentheorie zuriick. Edmund Landau (1877-
1938), der eine Vielzahl mathematischer Schriften verfasste, sorgte fiir die Verbreitung
dieser Notation, weswegen frither auch vom Landau-Symbol anstatt vom grofien O die
Rede war.

Die Notation dient dazu, obere Schranken fiir die Komplexitdt von Algorithmen anzu-
geben. Sie ist folgendermafien definiert:!

f(n) € O(g(n)) fiir n—eo genau dann, wenn 7 Konstante ¢>0, n,e IN, so dass
(Vn2ny) 1fin)] <clg(n)!

1 Eigentlich werden noch andere Schranken und Symbole in der Grof-O-Notation definiert. Fiir
unsere Zwecke reicht jedoch ein Verstindnis dieser einen Definition.



152 8 Datenstrukturen und Algorithmen

f(n) € O(g(n)) bedeutet also auf gut Deutsch: die Laufzeit f(n) eines Algorithmus
wadchst bis auf einen konstanten Faktor nicht schneller als die Funktion g(n).

Ublicherweise bezieht man sich dabei nicht auf irgendwelche Funktionen g(n), son-
dern auf einfache, allgemein bekannte Funktionen (Tabelle 8.1).

Eine sequenzielle Suche hat beispielsweise ein Laufzeitverhalten von O(n). Eine bindre
Suche hingegen hat ein Laufzeitverhalten von O(log n). Das bedeutet, dass fiir grofie n
eine bindre Suche immer schneller ist als eine sequenzielle.

Funktion g(n) Name Beispiel

c Konstant Hashtabelle'

logn Logarithmisch Bindre Suche

n Linear Sequentielle Suche

n log n - Quicksort

n? Quadratisch Multiplikation von zwei n-stelligen Zahlen
n’ Kubisch Matrizenmultiplikation

VA Exponenziell Travelling Salesman Problem

Tabelle 8.1: Typische Funktionen g(n)

I Gilt nur niherungsweise, sofern die Hashfunktion die Elemente gleichmaBig verteilt und die Kollisionsrate
sehr gering ist.

Um zu verdeutlichen wie viel ein Algorithmus mit O(a()) schneller ist als ein Algorith-
mus mit O(b()), wollen wir annehmen, ein Algorithmus benétigt 10 Sekunden fiir
eine Operation. Dann ergeben sich in Abhiangigkeit von der Problemgrofie n und
O(g(n)) die Laufzeiten aus Tabelle 8.2.

n O(log,n) O(n) o(n?) o(2")

10 0,000003s 0,00001s 0,0001s 0,001s

100 0,000007s 0,0001s 0,01s 10'¢ Jahre
1.000 0,00001s 0,001s 1,0s astronomisch
10.000 0,000013s 0,0ls 1,7min astronomisch
100.000 0,000017s 0,ls 2,8h astronomisch

Tabelle 8.2: Ausfiihrungszeiten von Algorithmen in Abhdngigkeit von ihrer Komplexitdt und der ProblemgroBe

Offensichtlich lohnt es sich, Algorithmen einer geringen Komplexititsklasse zu ver-
wenden.

Nach diesem kurzen Ausflug in die Klassifizierung von Algorithmen haben wir nun
das Riistzeug uns mit den konkreten Datenstrukturen der Java 2 Plattform samt ihrer
Algorithmen auseinander zu setzen.



Sandini Bib

Collections-Framework 153

8.2 Collections-Framework

Das Collections-Framework ist seit JDK 1.2 Teil von Java. Zuvor musste man sich mit
Bibliotheken Dritter behelfen oder auf die Klassen Hashtable und Vector beschranken.
Da beide Klassen voll synchronisiert sind, fiihrte dies, vor allem bei dlteren Java VMs,
zu Performance-Einbuflen. Mit dem Collections-Framework verfiigt Java nun seit eini-
ger Zeit tiber sehr gute Basisdatenstrukturen mit akzeptabler Performance. Es beinhal-
tet Schnittstellen der abstrakten Datentypen Liste, Menge (Set) und Tabelle (Map),
verschiedene Implementierungen sowie eine niitzliche Hilfsklasse namens Collections.

8.2.1 Collections, Sets und Listen

Collection ist die Superschnittstelle fiir Sets und Listen. Abbildung 8.1 zeigt die Klas-
senhierarchie inklusive Implementierungen.

<<interface>>
T Collection 3
<<interface>> <<interface>>
List Set

A A A A%

_ ] ] <<interface>>
ArrayList Vector LinkedList HashSet SortedSet
T I
| | A
|
V V :
<<interface>> LinkedHashSet TreeSet
RandomAccess

Seit JDK 1.4

Abbildung 8.1: Klassenhierarchie von Collection

Hier eine kurze Beschreibung der Schnittstellen und der wichtigsten definierten Ope-
rationen:

Collection
Menge von Objekten.

Die wichtigsten definierten Operationen sind hinzufiigen (add()), entfernen
(remove()) und ist-enthalten (contains()). Dariiber hinaus gibt es eine Methode
iterator(), die einen Iterator zurilickgibt, mit dem man tiiber die Elemente der
Collection iterieren kann, sowie eine Methode toArray(), die eine Array-Repréasen-
tation der Collection zuriickgibt.



154 8 Datenstrukturen und Algorithmen

List
Geordnete? Menge von Objekten.

List definiert, zusatzlich zu den in Collection bereits definierten Methoden,
indexbasierte Operationen wie get(index), set(index, Object), remove(index),
index0f(Object) und lastIndexOf(Object). Zudem existiert eine Methode subList()
zum Erstellen einer Sicht (View) auf die urspriingliche Liste.

Set
Menge von Objekten, in der jedes Objekt nur einmal vorkommt.

Die Gleichheit von Objekten ist gegeben, wenn a.equals(b). Ein Set enthilt also nur
Objekte, fir die paarweise gilt: !a.equals(b) (bzw. !b.equals(a), falls a==nu11). Es
sind keine Operationen zusétzlich zu denen aus Collection definiert

SortedSet
Sortierte Menge von Objekten, in der jedes Objekt nur einmal vorkommt.

SortedSet definiert zusatzlich zu den Methoden aus Collection noch Methoden zum
Erstellen von Sichten auf den vorderen (headSet()) oder hinteren Teil (tailSet())
sowie einen beliebigen Ausschnitt der Menge (subSet()). Zudem gibt es Methoden
zum Zugriff auf das erste (first()) bzw. letzte Element (1ast()) sowie eine Methode
comparator(), die den benutzten Comparator zuriickgibt.

RandomAccess
Markierungs-Interface, das Listen kennzeichnet, die schnellen, direkten Zugriff
(gewohnlich O(c)) auf ein beliebiges Objekt erlauben. Ab JDK 1.4.

Tabelle 8.3 gibt einen Uberblick iiber das Laufzeitverhalten der Basisoperationen der
Standard-Implementierungen von List und Set.

Klasse add() remove(Object) contains()  get(int) Synchronisiert
ArraylList O(c) Omn) Owmn) O(c) nein

Vector O(c) O(n) O(n) O(c) ja

LinkedList O(c) O) O(n) Om) nein

HashSet O(c) O(c) O(c) - nein

TreeSet O(log n) O(log n) O(log n) - nein
LinkedHash- O(c) O(c) O(c) - nein

Set

Tabelle 8.3: Laufzeitverhalten verschiedener Implementierungen von List und Set

2 D.h. es gibt eine Ordnung, ndmlich genau die, in der Elemente angefiigt wurden. Geordnet bedeutet
also nicht unbedingt sortiert.



Collections-Framework 155

Natiirlich gibt es besonders giinstige und ungiinstige Szenarien fiir den Einsatz einer
Implementierung. Hier deshalb einige Tipps fiir den Gebrauch von Listen:

Falls Sie hdufig lesend iiber einen Index auf Elemente der Liste zugreifen, sollten
Sie auf keinen Fall LinkedList benutzen, sondern ArraylList oder Vector.

ArraylList ist grundsétzlich etwas schneller als Vector, da ArrayList nicht synchroni-
siert ist. Wie viel schneller hangt jedoch stark von der verwendeten VM ab. Ansons-
ten gleichen sich die Charakteristika der beiden Klassen. Im Ubrigen lasst sich
ArrayList (wie auch alle anderen Collection- und Map-Implementierungen) durch
einen Synchronisation-Wrapper synchronisieren. Eine entsprechende Fabrik-
methode befindet sich in der Hilfsklasse java.util.Collections.

Wollen Sie eine Liste als Kellerspeicher (Stack) benutzen, sei Ihnen ArraylList oder
java.util.Stack empfohlen. Stack erbt von Vector und weist dieselben Eigenschaften
auf. Falls Sie sich fiir ArrayList entscheiden, fiigen Sie Elemente immer am Ende der
Liste an, nie am Anfang. Gleiches gilt fiirs Entfernen. Der Grund dafiir ist, dass das
Einfiigen und Entfernen proportional zur Anzahl der folgenden Elemente dauert,
da diese im Array um eine Position verschoben werden miissen. Ein Element am
Anfang einer ArraylList oder eines Vectors einzufiigen oder zu entfernen, ist daher
eine Operation mit einer Laufzeit von O(n).

Das Einfiigen oder Entfernen am Anfang oder Ende einer LinkedList ist eine Opera-
tion der Klasse O(c). Es miissen lediglich ein paar Referenzen umgebogen oder aus-
genullt werden. Das macht LinkedList zu einer geeigneten Datenstruktur fiir
Warteschlangen (Queues).

Tipps fiir den Gebrauch von Sets:

HashSet ist wesentlich schneller als TreeSet. Falls die Elemente Thres Sets nicht sor-
tiert sein miissen, benutzen Sie lieber HashSet.

Benutzen Sie LinkedHashSet (ab JDK 1.4) nur, wenn die Reihenfolge, in der Sie Ele-
mente eingefiigt haben, von Bedeutung ist oder Sie schnell tiber die Elemente des
Sets iterieren miissen. Da die Elemente verlinkt sind, ist die Laufzeit der Iteration
proportional zur Anzahl der Elemente im Set und nicht zur Kapazitit der unterlie-
genden HashMap, wie dies bei HashSet der Fall ist. Das bedeutet, dass eine grofie
Kapazitit nicht die Performance der Iteration schmalert.

HashSet und LinkedHashSet lassen sich genau wie HashMap und Hashtable mit einer
Kapazitit und einem Ladefaktor (Loadfactor) initialisieren und optimieren. Mehr
dazu weiter unten.



Sandini Bib

156 8 Datenstrukturen und Algorithmen

8.2.2 Maps

Maps bilden die zweite Haupt-Klassenhierarchie des Collections-Frameworks. Abbil-
dung 8.2 gibt einen Uberblick iiber Klassen und Interfaces.

<<interface>> <F———————— -
Map <+ ————

A A |
| | |

|

|

|

|

| | | |

<<interface>> |
|

|

|

|

—|>

SortedMap Hashtable HashMap | | WeakHashMap

% A
|

TreeMap LinkedHashMap IdentityHashMap

Seit JDK 1.4

Abbildung 8.2: Klassenhierarchie von Map

Hier eine kurze Beschreibung der beiden Schnittstellen:

Map
Menge von Schliissel-/Wert-Paaren, in der jeder Schliissel nur einmal vorkommt.

Die wichtigsten definierten Operationen sind hinzufiigen (put()), entfernen
(remove()) und entnehmen (get()). Dariiber hinaus verfiligt Map noch {iber Methoden
zum Erzeugen von drei Sichten: entrySet() gibt ein Set von Map.Entry-Objekten
zurtick, keySet() ein Set der Schliissel und values() eine Collection der Werte.

SortedMap

Nach Schliisseln sortierte Menge von Schliissel-Wert-Paaren, in der jeder Schliissel
nur einmal vorkommt.

SortedMap definiert zuséatzlich zu den Methoden aus Map noch Methoden zum Erstel-
len von Sichten auf den vorderen (headMap()) oder hinteren Teil (tailMap()) sowie
einen beliebigen Ausschnitt der Tabelle (subMap()). Zudem gibt es Methoden zum
Zugriff auf den ersten (firstKey()) und letzten Schliissel (1astkey()) sowie eine
Methode comparator(), die den benutzten Comparator zuriickgibt.

Tabelle 8.4 gibt einen Uberblick iiber das Laufzeitverhalten der Basisoperationen von
Standard-Implementierungen des Interfaces Map.



Collections-Framework 157

Klasse put() remove() get() containsKey()  Synchronisiert
TreeMap O(log n) O(log n) O(log n) O(log n) nein

HashMap O(c) O(c) O(c) O(c) nein

Hashtable O(c) O(c) O(c) O(c) ja

WeakHashMap O(c) O(c) O(c) O(c) nein
LinkedHashMap O(c) O(c) O(c) O(c) nein
IdentityHashMap Of(c) O(c) O(c) O(c) nein

Tabelle 8.4: Laufzeitverhalten verschiedener Implementierungen von Map

Nattirlich gibt es auch fiir Maps Hinweise, wann welche Implementierung am geeig-
netsten ist:

Genau wie HashSet schneller als TreeSet ist, sind HashMap und Hashtable wesentlich
schneller als TreeMap. Wenn Thre Map nicht sortiert sein muss, benutzen Sie also lie-
ber HashMap oder Hashtable.

Da HashMap im Gegensatz zu Hashtable nicht synchronisiert ist, ist HashMap etwas
schneller.

Wenn Sie null als Schliissel oder Wert benutzen wollen, konnen Sie nicht Hashtable
benutzen, da nu11 nicht als Schliissel oder Wert unterstiitz wird.

LinkedHashMap (ab JDK 1.4) ist langsamer als HashMap. Benutzen Sie die Klasse also
nur, wenn die Reihenfolge, in der die Elemente eingefiigt wurden, wichtig ist oder
Sie schnell iiber die Elemente iterieren wollen. LinkedHashMap eignet sich auflerdem
dazu, Caches zu implementieren. Dazu muss die removeEldestEntry()-Methode
uberschrieben werden.

Es gibt sehr wenige Gelegenheiten, in denen die Klasse WeakHashMap von Nutzen ist.
Sie kann als Cache fiir Elemente dienen, die so lange im Speicher bleiben miissen,
wie ihr Schliissel-Objekt existiert. Beispielsweise konnen dies Metainformationen
von Klassen sein, fiir die das Klassenobjekt selbst als Schliissel fungiert. Im Sun
JDK 1.4 werden WeakHashMaps genau zu diesem Zweck in den Klassen
java.beans.Introspector und java.lang.reflect.Proxy verwendet.

Genau wie WeakHashMap ist auch IdentityHashMap (ab JDK 1.4) eher ein Exot. Im
Gegensatz zu allen anderen Map-Implementierungen, werden in einer Identity-
HashMap zwei Objekte ausschliefilich als gleich angesehen, wenn sie identisch sind,
d.h. es muss gelten ol==02. Anders ausgedriickt, 01.equals(02) reicht nicht. Ist Iden-
titdt als Vergleichsfunktion gewtinscht, ist IdentityHashMap potenziell schneller als
HashMap.



158 8 Datenstrukturen und Algorithmen

8.2.3 Hashbasierte Strukturen optimieren

Die Performance von hashbasierten Datenstrukturen wie HashMap und HashSet hangt im
Wesentlichen von fiinf Faktoren ab:

Giite und Geschwindigkeit der Hashfunktion hashCode()
Geschwindigkeit der Vergleichsmethode equals()
Kapazitat der Tabelle

Ladefaktor der Tabelle

Kollisionsauflosungs-Strategie

Bei jeder Basisoperation einer Hashtabelle muss der Hashcode eines Objektes berechnet
werden. Dies geschieht in der Regel durch Ausfithren der Methode hashCode().? Es ist
also essentiell fiir Hashtabellen, dass die hashCode()-Methode der verwendeten Schliissel
schnell ist. Fiir unverdnderbare (immutable) Objekte empfiehlt es sich daher, den Hash-
code einmal zu berechnen und dann zwischenzuspeichern, so dass er nicht immer wie-
der neu berechnet werden muss. Seit JDK 1.3 ist dies auch das Standardverhalten der
String-Klasse. Zuvor war der Hashcode immer wieder neu berechnet worden, so dass es
sich lohnte, spezielle String-Wrapper, die den Hashcode zwischenspeicherten, als
Schliissel zu benutzen.

Wenn Sie verdnderbare Objekte als Schliissel fiir eine Hashtabelle benutzen, sollten Sie
dartiber nachdenken, ob der Hashcode sich fiir die Zeiten cachen lasst, in denen das
Objekt unverédndert bleibt. Unabhéngig davon sollten Sie jedoch auf jeden Fall sicher-
stellen, dass die Schliissel nach dem Einfiigen nicht mehr verdndert werden, da sie
sonst unauffindbar werden, verloren gehen und unnétig Speicherplatz belegen. Nach-
tréglich von aufien verdnderte Schliissel eignen sich also hervorragend fiir ein schwer
zu l6sendes Speicherproblem.

Neben der Geschwindigkeit von hashCode() ist die gleichméaBige Verteilung der Werte
iiber den gesamten Wertebereich von int entscheidend. Nur dann ist tatsdchlich ein
Laufzeitverhalten von O(c) zu erwarten.

Hashtabellen basieren in der Regel auf einem Array bestimmter Lange, der so genann-
ten Kapazitit. Wenn ein Objekt in die Tabelle eingefiigt werden soll, wird aus dem
Hashcode und der Kapazitit ein Array-Index berechnet. Haben das einzufiigende
Objekt und ein bereits in der Datenstruktur vorhandenes Objekt denselben Index,
kommt es zu einer Kollision. Das bedeutet, das Objekt kann nicht einfach am berechne-
ten Index eingefiigt werden, sondern es muss ein anderer Platz gefunden werden. Dies
bedeutet Extra-Aufwand. Gut verteilte Hashfunktionen minimieren die Anzahl von

3 Einzige Ausnahme hierzu ist die IdentityHashMap, die die Methode System.identityHashCode()
benutzt.



Collections-Framework 159

Kollisionen und tragen daher erheblich zur Performance von Hashtabellen bei. Die
Klasse String beispielsweise berechnet ihren Hashcode mittlerweile mit einer aner-
kannt guten Hashfunktion, die auch in Bibliotheken anderer Sprachen benutzt wird:

s.length ()—1 )
ZS.charAt(s.length() —-i—1)-31

i=0

N

Integer benutzt einfach seinen eigenen Wert und Long berechnet (int)(value (value

>>> 32)).

Um eine Kollision festzustellen, muss das evtl. bereits in der Datenstruktur vorhan-
dene Objekt mit dem einzufiigenden Objekt verglichen werden. Eine Kollision liegt
dann vor, wenn es sich nicht um das gleiche Objekt handelt. Ist dies der Fall, muss das
Objekt an der nachsten geeigneten Position mit dem einzufiigenden Objekt verglichen
werden usw., bis ein Platz fiir das Objekt gefunden wird. Alle hashbasierten Daten-
strukturen aufler IdentityHashMap benutzen fiir diese Vergleiche die equals()-Methode.
Daher ist wichtig, dass auch diese moglichst effizient implementiert ist.

Ein weiterer Faktor fiir die Performance einer hashbasierten Datenstruktur ist die oben
bereits erwahnte Kapazitit sowie der Ladefaktor. Der Ladefaktor bezeichnet dabei
einen Schwellwert im Verhéltnis zwischen Kapazitit und enthaltenen Elementen.
Uberschreitet der Quotient von enthaltenen Elementen und Kapazitit diesen Schwell-
wert, so wird die Kapazitdt automatisch erh6ht und die Elemente werden neu verteilt
(Rehashing). Da das Neuverteilen eine sehr aufwéndige Operation ist, empfiehlt es
sich, die Datenstruktur mit einer angemessenen Kapazitét zu initialisieren, die einein-
halb- bis zweimal so grofs ist wie die erwartete Anzahl an Elementen. Es spielt dabei
keine Rolle, ob Sie eine gerade, ungerade oder Primzahl wahlen. Aufler bei Hashtable
wird die angegebene Kapazitdt ohnehin zur ndchsten Zweierpotenz aufgerundet, da
dadurch zur Indexberechnung an Stelle des Modulo-Operators % das viel schnellere
bitweise Und & benutzt werden kann.

Wichtig im Zusammenhang mit dem Ladefaktor ist, dass die Anzahl der Kollisionen
bei hoherem Ladefaktor zunimmt. HashMap, HashSet etc. haben mit 0,75 einen verniinfti-
gen Ladefaktor, der zugunsten besserer Geschwindigkeit der Basisoperationen verrin-
gert werden kann. Da ein geringer Ladefaktor implizit die Kapazitdt erhoht und die
Anzahl leerer Array-Positionen steigt, erhcht sich so der Speicherverbrauch und ver-
schlechtert sich die Geschwindigkeit der Iteration iiber die Elemente. Eine Ausnahme
von letzterem Effekt ist LinkedHashMap, da die Elemente untereinander verlinkt sind und
deshalb mit einer Laufzeit proportional zur Anzahl der Elemente iteriert werden kann.

Im Gegensatz zu HashMap & Co ist der initiale Ladefaktor der IdentityHashMap nur 0,5
statt 0,75. Dies liegt daran, dass IdentityHashMap statt dem in HashMap verwendeten direk-
ten Verketten (Separate Chaining) so genanntes lineares Sondieren (Linear Probing) als Kol-
lisionsauflosungs-Strategie benutzt. Lineares Sondieren ist schneller als direktes



160 8 Datenstrukturen und Algorithmen

Verketten, fiihrt jedoch bereits ab Ladefaktoren von 0,5 zu schlechterer Performance
wegen zu vieler Kollisionen. Weitere Details zu Kollisionsauflosungsstrategien finden
Sie beispielsweise in Mark Allen Weiss” Buch Data Structures & Algorithms in Java
[Weiss99, S.155ff].

8.2.4 Collections

Die Klasse java.util.Collections ist eine Hilfsklasse mit einer Vielzahl statischer
Methoden. Es lohnt sich, diese Methoden zu kennen, da sie performante Implementie-
rungen fiir Operationen sind, die in den Collection-Klassen selbst nicht realisiert sind.
Dazu gehoren insbesondere Sortier- und Suchmethoden. Wenn eine dieser Methoden
fiir Ihre Zwecke tatsdchlich nicht schnell genug sein sollte, konnen Sie immer noch ein
eigene Version schreiben. In den meisten Fillen lohnt sich dies jedoch nicht. Wenn Sie
diese Methoden verwenden, kénnen Sie auflerdem an Verbesserungen des JDK unmit-
telbar teilhaben. Ein gutes Beispiel dafiir ist die unten beschriebene binarySearch()-
Methode.

Hier eine Kurzbeschreibung der Methoden. Eine vollstindige Erlduterung finden Sie
in der JDK-Dokumentation.
binarySearch()

Bindre Suche in Listen nach einem Objekt. Falls nétig, kann ein beliebiger Compara-
tor benutzt werden. Trotz des Namens dieser Methode wurden in JDK 1.3.1 Erben
von AbstractSequentiallist (wie beispielsweise LinkedlList) aus Performancegriin-
den (s.0.) sequenziell statt bindr durchsucht. Seit JDK 1.4.0 werden alle Listen binér
durchsucht. Dabei wird bei kurzen oder RandomAccess-Listen tiber get() und bei
anderen Listen iiber einen ListIterator zugegriffen.

sort()

Sortiert eine Liste, falls notig mit einem beliebigen Comparator. Dabei wird auf die
Methode Arrays.sort(Object[1) zuriickgegriffen, die einen modifizierten Mergesort-
Algorithmus mit einer garantierten Laufzeit von O(n log n) verwendet. Die Lauf-
zeit geht gegen O(n) fiir teilsortierte Listen.

shuffle()

Mischt eine Liste — falls nétig mit einem beliebigen Random-Objekt.
reverse()

Kehrt die Reihenfolge einer Liste um.

rotate()

Rotiert eine Liste um einen Wert. Seit JDK 1.4.

swap()

Tauscht zwei Elemente einer Liste. Seit JDK 1.4.



Collections-Framework 161

replaceAl1()

Ersetzt ein Objekt in einer Liste durch ein anderes. Seit JDK 1.4.

copy ()

Kopiert eine Liste in einer andere.

fi110)

Fiillt eine Liste mit einem Objekt.

max()/min()

Gibt das grofste/kleinste Objekt einer Collection zuriick. Dazu kann ein beliebiger
Comparator benutzt werden.

nCopies()

Gibt eine unveranderbare Liste mit n Elementen zuriick, die alle das gleiche Objekt
referenzieren.

(Tast)indexOfSubList()

Gibt den Index an, an dem eine Liste in einer anderen Liste enthalten ist. Seit JDK
1.4.

enumeration()

Erstellt aus einer Collection eine Enumeration.

Tist()

Erstellt aus einer Enumeration eine ArrayList. Seit JDK 1.4.

reverseOrder()

Gibt einen Comparator zuriick, der genau entgegengesetzt zur natiirlichen Ordnung
sortiert.

singleton()

Gibt ein unverdnderbares Set zuriick, das nur das {ibergebene Objekt beinhaltet.

singletonList()/singletonMap()

Gibt eine unverdnderbare Liste/Map zuriick, die nur das iibergebene Objekt bzw.
Schliissel-/Wert-Paar enthilt.

unmodifiableXXX()

Gibt einen Wrapper zuriick, der die iibergebene Datenstruktur enthilt und nur
lesenden Zugriff zuldsst. Das heifst, es wird verhindert, dass die enthaltene Daten-
struktur modifiziert wird. Mogliche Datenstrukturen sind Collection, List, Map, Set,
SortedMap und SortedSet. Beispiel:

Map unmodifiableMap = Collections.unmodifiableMap(new HashMap());



162 8 Datenstrukturen und Algorithmen

synchronizedXXX()

Gibt einen Synchronisations-Wrapper zuriick, der die iibergebene Datenstruktur
enthdlt. Mogliche Datenstrukturen sind Collection, List, Map, Set, SortedMap und
SortedSet. Beispiel:

Map synchronizedMap = Collections.synchronizedMap(new HashMap());

Die Synchronisations-Wrapper synchronisieren die gesamte Datenstruktur mit nur
einem Objekt (Mutex). Das heifit, dass, wenn ein Thread eine Operation ausfiihrt,
kein anderer dies tun kann; selbst dann nicht, wenn die beiden Operationen sich
nicht behindern wiirden. Dies ist ein sehr grobes Sperrverhalten, das beispielsweise
fiir Datenbanken undenkbar wére. Es gibt jedoch Datenstrukturen speziell fiir den
Gebrauch mit mehreren Threads. Mehr dazu in Kapitel 9.1.3 Threadsichere Daten-
strukturen.

8.3 Jenseits des Collections-Frameworks

Das Collections-Framework ist ein sehr wertvoller Teil der Java-Klassenbibliothek.
Seine Existenz alleine verwandelt jedoch kein einziges Programm in ein Performance-
Wunder. Das Auswéhlen bzw. Finden der am besten passenden Datenstruktur ist das
Entscheidende. Im Folgenden werden wir fiir zwei Probleme verschiedene Losungen
ausprobieren und beurteilen.

8.3.1 Zahlen sortieren

Jon Bentley beschreibt in seinem grofiartigen Buch Programming Pearls [Bentley00,
S.3ff] ein interessantes Problem: Stellen Sie sich vor, Sie miissten Millionen von paar-
weise verschiedenen, siebenstelligen natiirlichen Zahlen aus einer Datei lesen und sor-
tiert wieder ausgeben. Wie wiirden Sie vorgehen?

Der naive Ansatz sihe sicherlich wie folgt aus:

public void sort(String filename) throws IOException f{
long start = System.currentTimeMillis();
DatalnputStream in = new DatalnputStream(
new BufferedInputStream(new FilelnputStream(filename))
)
SortedSet set = new TreeSet();
for (int i=0, 1=(int)new File(filename).length()/4; i<l; i++) {
set.add(new Integer(in.readInt()));
}
in.close();
DataOutputStream out = new DataOutputStream(
new BufferedOutputStream(
new FileOutputStream(filename + ".sorted")
)



Sandini Bib

Jenseits des Collections-Frameworks 163

)3

for (Iterator i=set.iterator(); i.hasNext();) f
out.writeInt(((Integer)i.next()).intValue());

}

out.close();

System.out.printin(System.currentTimeMillis()-start + "ms");

Alle Zahlen werden einfach der Reihe nach eingelesen, in Integer-Objekte umgewan-
delt und in ein TreeSet eingefiigt. Anschliefend werden alle Elemente des Sets mit
einem Iterator wieder ausgegeben.

Um knapp drei Millionen Nummern zu sortieren, benétigt mein Rechner mit diesem
Verfahren zwischen 35 und 45 Sekunden. Der Speicherverbrauch liegt bei rund 150
Mbyte.

Offensichtlich ist dieses Vorgehen suboptimal. Wir wollen daher ein paar Anderungen
vornehmen. Zunéchst einmal ersetzen wir das TreeSet durch einen Array. Da wir dadurch
keine Integer-Objekte mehr benétigen, kénnen wir einen int-Array an Stelle eines Inte-
ger-Arrays benutzen. Das bedeutet, wir ersparen uns das Erzeugen von Millionen von
Objekten. Zum Sortieren bedienen wir uns der Methode java.util.Arrays.sort(int(1).Es
handelt sich dabei um eine Adaption eines von Jon Bentley und M. Douglas Mcllroy opti-
mierten Quicksort-Algorithmus. Es ist anzunehmen, dass wir vermutlich keinen eben-
biirtigen oder besseren Sortier-Algorithmus implementieren kénnen, ohne sehr viel Zeit
zu investieren. Also belassen wir es dabei und wagen einen Testlauf.

public void sort(String filename) throws IOException f{
Tong start = System.currentTimeMillis();
DatalnputStream in = new DatalnputStream(
new BufferedInputStream(new FilelnputStream(filename))
)3
intl] array = new intL(int)new File(filename).length()/4];
for (int i=0; i<array.length; i++) {
array[il = in.readInt();
}
in.close();
java.util.Arrays.sort(array);
DataOutputStream out = new DataOutputStream(
new BufferedOutputStream(
new FileOutputStream(filename + ".sorted")
)
)s
for (int i=0; i<array.length; i++) {
out.writelnt(arrayl[il);
}
out.close();
System.out.printin(System.currentTimeMillis()-start + "ms");



164 8 Datenstrukturen und Algorithmen

Fiir die drei Millionen Nummern bendtigen wir jetzt nur noch knapp 10 Sekunden
sowie knapp 19 Mbyte. Nicht schlecht. Aber es geht noch besser.

Hier noch einmal die drei wesentlichen Fakten:
Zahlen von 1.000.000 bis 9.999.999 sollen sortiert werden
Keine Zahl kommt zweimal vor
Es gibt also 8.999.999 verschiedene Zahlen

8.999.999 verschiedene, aufeinander folgende Zahlen kénnen auch als 8.999.999 ver-
schiedene wahr/falsch-Zustdande oder Bits reprasentiert werden. Fiir jede Zahl, die wir
einlesen, setzen wir also einfach das entsprechende Bit. Auf diese Weise erhalten wir
eine sehr platzsparende Représentation der Zahlen. Wir wollen uns das mal fiir den
schlechtesten Fall von 8.999.999 Zahlen anschauen:

8.999.999 Bit entsprechen etwa 1.010 Kbyte. Da jedes int vier Bytes belegt, entsprechen
8.999.999 int etwa 35.000 Kbyte. Wir konnen den Speicherverbrauch fiir den Fall, dass
wir wirklich alle 8.999.999 Zahlen sortieren miissen, somit um den Faktor 32 verrin-
gern. Hinzu kommt, dass wir gar nicht mehr sortieren miissen, da wir ja quasi immer
sofort an der richtigen Stelle einfiigen. Anstelle des int-Arrays benutzen wir also einen
boolean-Array.

Der Code sdhe folgendermafSen aus:

public void sort(String filename) throws IOException f{
long start = System.currentTimeMillis();
DatalnputStream in = new DatalnputStream(
new BufferedInputStream(new FilelnputStream(filename))
)
boolean[] array = new boolean[899999971;
for (int i=0, b=(int)new File(filename).length()/4; i<b; i++) {
arraylin.readInt()-1000000] = true;
}
in.close();
DataOutputStream out = new DataOutputStream(
new BufferedOutputStream(
new FileOutputStream(filename + ".sorted")
)
)s
for (int i=0; i<array.length; i++) {
if (array[i]) out.writelnt(i+1000000);
}
out.close();
System.out.printin(System.currentTimeMillis()-start + "ms");



Sandini Bib

Jenseits des Collections-Frameworks 165

Das Sortieren dauert jetzt nur noch zwischen sechs und sieben Sekunden bei einem
Speicherverbrauch von etwa 16 Mbyte. Ohne Frage ist das ein besserer Wert als 19
Mbyte. Bei 3 Millionen Nummern sollte der Unterschied A jedoch weit hoher sein:

8.999.999 By

A =3.000.000-4Byte — te = 10Mbyte

Statt 3 Mbyte sollte der Unterschied etwa 10 Mbyte betragen. Wo stecken die fehlenden
7 Mbyte?

Ein Blick in die Ausgabe vom Profiler Hprof gibt den entscheidenden Hinweis:

SITES BEGIN (ordered by live bytes)
percent Tive alloc'ed stack class
rank  self accum bytes objs bytes objs trace name
1 95.61% 95.61% 9000016 1 9000016 1 305 [Z <=
2 0.78% 96.39% 73272 551 74696 576 1 [C
3 0.69% 97.07% 64528 220 64528 220 0[I

Offensichtlich belegt ein boolean-Array (in der Hprof-Ausgabe bezeichnet mit dem
Klassennamen [7) fiir jeden booleschen Wert nicht wie angenommen ein Bit, sondern
gleich ein ganzes Byte.

Die Losung liegt in java.util.BitSet. BitSet speichert einzelne Bits nicht in einem
boolean-Array, sondern wesentlich effizienter in einem long-Array. Der entsprechende
Code sdhe etwa so aus:

public void sort(String filename) throws IOException {
long start = System.currentTimeMillis();
DatalnputStream in = new DatalnputStream(
new BufferedInputStream(new FilelnputStream(filename))
)
BitSet set = new BitSet(8999999);
for (int i=0, b=(int) new File(filename).length()/4; i<b; i++)
set.set(in.readInt()-1000000);
}
in.close();
DataOutputStream out = new DataOutputStream(
new BufferedOutputStream(
new FileOutputStream(filename + ".sorted")
)
)3
for (int i=0; 1<8999999; i++) {
if (set.get(i)) out.writeInt(i+1000000);
}
out.close();
System.out.printin(System.currentTimeMillis()-start + "ms");



166 8 Datenstrukturen und Algorithmen

Mit dieser Losung steigt der Speicherverbrauch nur knapp iiber 8 Mbyte, wéahrend die
Ausfiihrungszeit weiterhin zwischen 6 und 7 Sekunden liegt. Bessere Ausfiithrungs-
zeiten lassen sich vermutlich nur noch mit Anderungen an der Ein- und Ausgabe
erreichen. Dies soll hier jedoch nicht das Thema sein.

8.3.2 GroBe Tabellen

Tabellenkalkulationen sind mittlerweile Standardsoftware und somit allgegenwiértig.
Und natiirlich benutzt jede Tabelle eine Datenstruktur. Wenn wir eine solche Tabelle in
Java implementieren wollten, miissten wir uns logischerweise auch einer entsprechen-
den Datenstruktur bedienen. Die naive Losung wiére ein zweidimensionaler Array.

Heutige Tabellenkalkulationen sind jedoch nicht nur allgegenwiértig, sie sind auch in
der Lage riesige Tabellen zu verarbeiten. Wir wollen einmal annehmen, die Tabelle
héatte 100.000 Reihen und ebenso viele Spalten. Ein zweidimensionaler Array wiirde
rund 10 Milliarden Felder enthalten und jedes dieser Felder wiirde vier Byte fiir eine
Objekt-Referenz belegen. Macht also 40 Milliarden Byte. Fiir einen handelsiiblichen
Rechner ist dies sicherlich ein wenig viel, daher miissen wir einen anderen Weg finden.
Als Erstes schauen wir, was das JDK zu bieten hat.

In Swing heifit die entsprechende Datenstruktur fiir ein javax.swing.JTable-Objekt
javax.swing.table.TableModel. Es handelt sich dabei um ein Interface, zu dem eine Stan-
dardimplementierung DefaultTableModel existiert. DefaultTableModel benutzt zwar kei-
nen zweidimensionalen Object-Array, aber einen java.util.Vector randvoll gefiillt mit
Vector-Objekten, also quasi einen zweidimensionalen Vector. Das wiére eigentlich auch
nicht so schlimm, wenn nicht wahrend der Initialisierung die Grofie aller Vektoren und
somit ihrer internen Object-Arrays explizit mit der Methode Vector.setSize() auf die
verlangte Grofle gesetzt wiirde. Mit anderen Worten: 40 Milliarden Byte fiir Object-
Arrays plus 100.001-Vector-Objekte. Das macht die Sache nicht gerade besser.

Tabellenmodell mit ArrayLists

Als ersten Ansatz konnten wir an Stelle der Vektoren Arraylists benutzen, deren Grofle
nicht von Anfang an gesetzt, sondern nur bei Bedarf vergrofiert wird. Als Basisklasse
dient uns hierbei javax.swing.table.AbstractTableModel. Die Implementierung sieht wie
folgt aus:

package com.tagtraum.perf.swing;

import javax.swing.table.AbstractTableModel;
import java.util.Arraylist;

public class ArraylListTableModel extends AbstractTableModel f{



Sandini Bib

Jenseits des Collections-Frameworks 167

private int cols;
private int rows;
private ArraylList TistOfRowlLists;

public ArraylListTableModel(int rows, int cols) f{
1istOfRowlLists = new ArraylList();
this.rows = rows;
this.cols = cols;

public int getRowCount() f{
return rows;
}

public int getColumnCount() f
return cols;
}

public Object getValueAt(int row, int col) {
// Hole die Liste flr eine Reihe aus 1istOfRowlLists
ArraylList rowlList = (ArraylList) get(listOfRowlLists, row);
// Falls die Reihe existiert, gib den Eintrag in der
// verlangten Spalte zurlick.
if (rowlList != null) {
return get(rowlList, col);
}
return null;

}

public void setValueAt(Object object, int row, int col) {
// Falls das Object null ist, 16sche den Eintrag
if (object == null) |
removeValueAt(col, row);
| else {
// Hole die Liste fiir eine Reihe aus 1istOfRowlLists
ArrayList rowlList = (ArraylList) get(1istOfRowlLists, row);
// Lege die Liste notfalls an, falls nicht vorhanden
if (rowlist == null) {
rowList = new ArraylList();
set(1istOfRowLists, row, rowlList);
}
// Setze den Wert an der entsprechenden Stelle
set(rowList, col, object);
}
// Benachrichtige evtl. vorhandene Listener
fireTableCellUpdated(row, col);

private void removeValueAt(int row, int col) f{
// Hole die Liste fiir eine Reihe aus TistOfRowlLists
ArraylList rowList = (ArraylList) get(1istOfRowlLists, row);
if (rowList != null) {



Sandini Bib

168 8 Datenstrukturen und Algorithmen

// Entferne das Element in col
remove(rowlList, col);

}

// VergroBert die Liste so, dass das zu setzende Element

// Platz hat.

private void set(ArraylList 1ist, int index, Object object) f
while (list.size() - 1 < index) list.add(null);
list.set(index, object);

// Gibt null flr Indizes zuriick, die auBerhalb des giltigen
// Bereichs liegen.
private Object get(ArrayList Tist, int index) {

if (list.size() <= index) return null;

return list.get(index);

}

private void remove(Arraylist 1ist, int index) |

// Setzt null, sofern der Index im gliltigen Bereich liegt.

if (list.size() > index) list.set(index, null);

// Falls moglich, reduziere Kapazitdt der Liste,

// um so Speicher zu sparen.

while (!list.isEmpty() && Tist.get(list.size()-1) == null) f{
Tist.remove(list.size() - 1);

}

if (list.isEmpty())
TistOfRowlLists.set(index, null);

else
Tist.trimToSize();

)

Listing 8.1: ArrayList-basiertes TableModel

Statt alle Listen auf die volle Grofle zu initialisieren, werden die Listen in der Methode
set() immer erst mittels Tist.add(nul1) vergroflert, wenn dies tatsachlich nétig ist. Auf
diese Weise wird sehr viel Speicher gespart.

ArrayListTableModel skaliert besser als DefaultTableModel, ist jedoch auch nicht optimal.
Wenn ein Wert in Reihe 0 und Spalte 100.000 gesetzt werden soll, muss 1ist.add(null)
99.999-mal aufgerufen werden, um die Liste zu vergrofiern. Dabei wird die Kapazitéat
der ArrayList fiir die entsprechende Reihe und somit der entsprechende Objekt-Array
vergroflert — und zwar automatisch in 50%-Schritten. Das bedeutet, dass ein einziges
Element im schlechtesten Fall rund 600.000 Byte verbraucht. Tatsdchlich wird der
Array bei einer Anfangskapazitdt von 10 Objekten auf eine Kapazitdt von 132.385
Objekten (529.540 Byte) vergrofert.



Sandini Bib

Jenseits des Collections-Frameworks 169

Die tiberschiissigen 129.540 Byte lielen sich durch einen Aufruf von Tist.trimToSize()
nachtraglich entfernen. Die Methode set () sdhe dann folgendermafien aus:

private void set(ArraylList list, int index, Object object) |
while (list.size() - 1 < index) list.add(null);
Tist.set(index, object);
Tist.trimToSize();

}

Bei 100.000 Reihen und ebenso vielen Spalten werden so potenziell 12 Milliarden Byte
gespart. Obwohl dies eindrucksvoll ist, stehen dem im schlechtesten Fall immer noch
rund 400.000 Byte fiir ein einzelnes Objekt gegeniiber. Zudem wird bei jedem trimTo-
Size()-Aufruf der gesamte Array kopiert.

Compressed Row Storage
Anscheinend ist unser ArrayListTableModel noch nicht der Weisheit letzter Schluss.

Wir wollen daher {iber mogliche Anwendungsfille nachdenken. Die Wahrscheinlich-
keit, dass ein Benutzer tatsachlich alle 10 Milliarden Felder unserer Tabelle benutzt, ist
eher gering. Moglicherweise benotigt der Nutzer im Schnitt lediglich ein paar hundert
Felder.

Unser Model entsprache somit einer diinn besetzten Matrize (Sparse Matrix). Ein Blick in
die einschldgige Literatur zeigt: Fiir diinn besetzte Matrizen existieren bekannte Daten-
strukturen. Eine davon ist die Compressed Row Storage-Matrize (CRS). Sie besteht aus drei
Arrays - einem Zeilen-, einem Spalten- und einem Werte-Array (Abbildung 8.3).

Matrize 1 0 5
3 0
10 0 8

Compressed 115213108

Werte-Array
Row Storage

0|2|0|1] 0|2 Spalten-Array

012|416 Zeilen-Array

Lange des Werte-Arrays

Abbildung 8.3: Abbildung einer Matrize im Compressed Row Storage-Format



170 8 Datenstrukturen und Algorithmen

Beim lesenden Zugriff wird dabei zundchst mit der Zeile als Index auf den Zeilen-
Array zugegriffen. Der Wert des Zeilen-Arrays dient als Zeiger in den Spalten-Array.
Ausgehend von dieser Position wird der Spalten-Array nach der verlangten Spalten-
zahl durchsucht. Wird der Spalten-Wert gefunden, steht der gesuchte Matrizen-Wert
an der gleichen Position im Werte-Array.

Im Grunde wiirden so die meisten unserer Probleme gelost. Das CRS-Format hat
jedoch zwei entscheidende Nachteile:

1. Wenn in der letzten Zeile ein Wert gesetzt ist, muss der Zeilen-Array zwangslaufig
genauso grof$ sein wie die Zeilenzahl. Da der Zeilen-Array die Werte- und Spalten-
Arrays referenziert, miissen auch diese mindestens so grof sein wie die Zeilenzahl.
Angenommen wir wiirden zwei int-Arrays und einen Object-Array verwenden,
dann hitten wir einen Mindest-Speicherverbrauch von 3 mal 4 Byte mal die Zeilen-
zahl. Bei 100.000 Zeilen wiren dies 1.200.000 Byte.

2. Es kann nur mit O(log n) auf das gesuchte Element zugegriffen werden, da das ver-
langte Element innerhalb einer Zeile bestenfalls bindr gesucht werden kann.

Mit ein wenig Aufwand liele sich um das erste Problem herumprogrammieren. Das
zweite Problem ist jedoch eine feste Eigenschaft der Datenstruktur.

Bessere Zugriffszeiten lieflen sich vermutlich mit einer hashbasierten Datenstruktur
erreichen.

Hashbasierte Matrize

Die Losung mit einer hashbasierten Datenstruktur ist erfreulich simpel [vgl. Wilson00,
S. 152f.]. Fiir eine effiziente Implementierung miissen wir lediglich eine Schliissel-
Klasse schreiben, die die Zeilen- und Spalten-Indizes enthilt. Alternativ liefie sich hier
auch einfach die java.awt.Point-Klasse benutzen.

package com.tagtraum.perf.swing;

import javax.swing.table.AbstractTableModel;
import java.util.HashMap;
import java.util.Map;

public class HashTableModel extends AbstractTableModel f{

private int cols;
private int rows;
private Map map;
private Key searchKey;

public HashTableModel(int rows, int cols) f
map = new HashMap();
this.rows = rows;



Sandini Bib

Jenseits des Collections-Frameworks 171

this.cols = cols;

public int getRowCount() {
return rows;
}

public int getColumnCount() f{
return cols;
}

public Object getValueAt(int row, int col) f
return map.get(new Key(row, col));
}

public void setValueAt(Object object, int row, int col) f{
if (object == null) {
if (map.remove(new Key(row, col)) != null) f
fireTableCellUpdated(row, col);
}
}
else |
if (map.put(new Key(row, col), object) != object) {
fireTableCellUpdated(row, col);
}

}

public boolean isCellEditable(int row, int col) |
return true;
}

private static class Key f{
int col;
int row;
int hashCode;
static final Class klass = Key.class;

public Key(int row, int col) {
this.row = row;
this.col = col;
this.hashCode = col * -row;

public int hashCode() f
return hashCode;
}

public boolean equals(Object obj) f
if (obj == this) return true;
if (obj == null || klass != obj.getClass()) return false;
Key other = (Key) obj;



172 8 Datenstrukturen und Algorithmen

return other.col == col && other.row == row;
}

public String toString() {
return col + ":" + row;
}

J

Listing 8.2: Hashbasierte TableModel-Klasse

Der minimale Speicherverbrauch ist gleich dem der HashMap. Die Zugriffszeit ist kon-
stant. Das Einzige, was wir noch tun kénnen, ist diese Zugriffszeit zu optimieren.

Der erste Schritt in diese Richtung ist die equals()-Methode von Key. Da wir die Schliis-
sel nirgendwo zwischenspeichern, ist die Chance, dass der Identitdtsvergleich in der
equals()-Methode erfolgreich ist, gleich null. Daher kénnen wir auf ihn verzichten.

Da Key eine private Klasse ist, die wir nicht nach drauSen geben, in der HashMap aus-
schliefflich Key-Objekte sind, wir die HashMap ebenfalls nicht nach draufien geben und
nu1l nicht als Schliissel benutzen, kénnen wir auch auf den nu11-Vergleich verzichten.

Somit sieht die neue equals()-Methode folgendermafien aus:

public boolean equals(Object obj) f

Key other = (Key) obj;

return other.col == col && other.row == row;
}

Tests ergeben, dass der Unterschied zwischen beiden Versionen vernachlédssigbar
gering ist. Diese Optimierung war also eher theoretischer Natur und somit {iberfliissig.

Unser néchster Optimierungskandidat ist die getValueAt()-Methode. Fiir jeden Aufruf
wird ein neues Key-Objekt instanziiert. Wir konnten jedoch fiir getvalueAt() immer das
gleiche Key-Objekt benutzen und nur die Zeilen- und Spaltenwerte neu setzen. Glei-
ches gilt fiir setvalueAt(), wenn das zu setzende Objekt null ist und wir eigentlich ein
Objekt entfernen wollen. Wichtig ist, dass wir den sich d&ndernden Suchschliissel nur
zum Suchen benutzen und niemals zum Einfiigen. Aufierdem diirfen nicht zwei oder
mehr Threads gleichzeitig auf die Methoden zugreifen. Da Swing jedoch nur einen
Thread benutzt, kénnen wir dies ruhigen Gewissens tun, sofern wir das Modell nicht
selbst von einem anderen Thread aus manipulieren wollen.

Die modifizierte Key-Klasse sdhe folgendermafien aus:

public Key(int row, int col) {
set(row, col);
}



Sandini Bib

Jenseits des Collections-Frameworks 173

public Key set(int row, int col) {
this.row = row;
this.col = col;
this.hashCode = col * -row;
return this;

Entsprechend miissen wir noch ein paar Anderungen in der HashTableMode1-Klasse vor-
nehmen:

private Key searchKey;

public HashTableModel(int rows, int cols) f{
map = new HashMap();
this.rows = rows;
this.cols = cols;
searchKey = new Key(0, 0);

public Object getValueAt(int row, int col) {
return map.get(searchKey.set(row, col));
}

public void setValueAt(Object object, int row, int col) f
if (object == null) {
if (map.remove(searchKey.set(row, col)) != null) {
fireTableCellUpdated(row, col);
}
}
else |
if (map.put(new Key(row, col), object) != object) |
fireTableCellUpdated(row, col);
}

Das Ergebnis {iberzeugt: Der lesende Zugriff ist nun etwa doppelt so schnell wie in der
Version zuvor.

Ein bisher nicht behandeltes Problem bleibt jedoch. JTable legt fiir jede Spalte automatisch
ein TableColumn-Objekt an — selbst fiir die Spalten, die nicht zu sehen sind. Das heif3t, ob wir
wollen oder nicht: zu einem Modell mit 100.000 Spalten werden automatisch auch 100.000
TableColumn-Objekte angelegt. Es lohnt sich also, Methoden zum Andern der ModellgroBe
zur Verfiigung zu stellen oder die Modellgrofie an die grofiten Indizes, mit denen
setValueAt () aufgerufen wurde, zu koppeln. Genau das haben wir im Folgenden getan:



Sandini Bib

174 8 Datenstrukturen und Algorithmen

public void setValueAt(Object object, int row, int col) f
if (object == null) {
if (map.remove(searchKey.set(row, col)) != null) f{
fireTableCellUpdated(row, col);
}
}
else |
if (map.put(new Key(row, col), object) != object) |
if (row >= rows && col < cols) |
rows = row;
if (col < cols) |
// nur die Zeilenanzahl hat sich gedndert, daher
// reicht das Data-Changed-Event
fireTableDataChanged();
}
else {
// auch die Spaltenanzahl hat sich gedndert, daher
// missen wir das Structure-Changed-Event auslodsen
cols = col;
fireTableStructureChanged();
}
}
else fireTableCellUpdated(row, col);

}

Somit haben wir den Speicherverbrauch des TableModels drastisch vermindert.

8.4 Caches

Caches* sind eine lange bewéhrte Strategie zum schnellen Zugriff auf Daten, die rdaum-
lich oder zeitlich nah beieinander gespeichert sind. Prinzipiell handelt es sich dabei um
eine schnelle Datenstruktur, die vor eine grofiere und langsamere Datenstruktur
geschaltet ist, um so die Mehrzahl der Zugriffe auf die langsamere Datenstruktur zu
beschleunigen. Zurzeit bietet Java von sich aus kaum Unterstiitzung fiir Caches. Dies
soll sich jedoch mit dem JCache-API dndern, das aus Java Specification Request 107°
hervorgehen wird.

Ein Beispiel fiir raumliche Lokalitét sind Festplattenzugriffe. Gewohnlich werden nicht
nur die Daten gelesen, die gerade verlangt wurden, sondern auch die folgenden Daten.
Da das Lesen sehr weniger Daten oft genauso lange dauert wie das Lesen eines ganzen
Blocks von Daten, macht es Sinn den Block zu lesen und darauf zu hoffen, dass die zu

4 Das Wort Cache stammt vom franzosischen cacher (verstecken), da Caches in der Regel fiir den
Benutzer unsichtbar sind.
5 JSR 107: http:/fwww.jcp.org/jsr/detail/107 .jsp.



Caches 175

viel gelesenen Daten kurze Zeit spéter benotigt werden. Da Programmcode meist und
Daten oft sequenziell organisiert sind, trifft diese Annahme auch haufig zu. In Java hat
dies seine Entsprechung in gepufferten Ein-/ Ausgabe-Strémen.

Ein Beispiel fiir zeitliche Lokalitét ist das so genannte Workingset von Programmen.
Gemeint sind jene Speicherseiten, auf die immer wieder zugegriffen wird, wéahrend
andere Speicherseiten kaum benétigt werden. Die nicht benotigten Seiten werden daher
aus dem Hauptspeicher auf einen langsameren Speicher ausgelagert (Swapping).

Gewdhnlich ist mit einem Cache ein gewisser Aufwand verbunden, da tiberpriift wer-
den muss, ob sein Inhalt noch korrekt ist. Damit sich dieser Aufwand lohnt, muss der
Datenzugriff im Schnitt schneller sein als ohne Cache. Um die Effektivitdt eines Caches
zu messen, betrachtet man daher seine Trefferrate, d.h. wie viele von x Datenzugriffen
vom Cache bedient werden konnten.

Da ein Cache per Definition nur eine begrenzte Speicherkapazitit hat, muss er {iber
eine Austauschstrategie verfiigen. Diese besagt, nach welchen Regeln alte Daten aus
dem Cache entfernt und durch neue ersetzt werden.

8.4.1 Austauschstrategien

Austauschstrategien versuchen Daten so im Cache zu speichern bzw. aus dem Cache
zu entfernen, dass die Trefferrate moglichst hoch ist.

Zufilliger Austausch

Die einfachste Strategie ist der zufdllige Austausch. Beim Lesen eines Datums, das
noch nicht im Cache enthalten ist, wird zuféllig ein anderes Element aus dem Cache
entfernt. Obwohl diese Strategie simpel und naiv klingt, muss sie keinesfalls schlecht
sein. Wenn ndmlich der Zugriff auf die Daten ebenfalls zuféllig erfolgt und keinerlei
Lokalitat aufweist, ist jede aufwandigere Austausch-Strategie vergebene Liebesmiih.

Am ldngsten nicht benutztes Element

Hierbei wird immer das Element aus der Datenstruktur iiberschrieben, das am langs-
ten nicht benutzt wurde. Der gingige Name dieses Verfahrens ist Least Recently Used
(LRU) Gewohnlich wird eine verkettete Liste benutzt, die die Elemente in Ihrer
Zugriffsordnung enthalt. Wird auf ein Element zugegriffen, so wird es aus der Liste
entfernt und am Anfang der Liste wieder eingefiligt. War das Element noch nicht in der
Liste enthalten, so wird es ebenfalls am Anfang eingefiigt und das letzte Element wird
entfernt, sofern die Kapazitdt des Caches bereits erreicht ist.

LRU ist die wohl am haufigsten benutzte Austauschstrategie, weil sie die Charakteris-
tika eines Workingsets am besten abbildet und gewdhnlich zu sehr guten Ergebnissen
fithrt, sofern die Datenzugriffe zeitliche Lokalitat aufweisen.



176 8 Datenstrukturen und Algorithmen

Altestes Element

Anstatt bei jedem Zugriff auf die Datenstruktur ein Element an den Anfang der Liste
verschieben zu miissen, kann man beim Einfiigen auch einfach das dlteste Element der
Liste entfernen, unabhingig davon, wie oft oder wann es benutzt wurde. Diese Strate-
gie fithrt in der Regel zu nicht so guten Resultaten wie LRU, hat jedoch weniger Ver-
waltungsaufwand.

8.4.2 Elementspezifische Invalidierung

Oft miissen Elemente eines Caches nicht nur aus dem Cache entfernt werden, weil kein
Platz mehr fiir neue Elemente vorhanden ist, sondern weil das Element nicht mehr den
korrekten Wert hat oder ein anderes Ereignis eingetreten ist.

So kann es vorkommen, dass der Benutzer explizit verlangt, dass ein Element aus
einem Cache entfernt wird. Ebenso ist es denkbar, dass in einer Foderation von Caches
ein Cache einen anderen anweist, ein bestimmtes Element zu entfernen, weil es ungtil-
tig ist. Weitere Ausloser fiir Invalidierung sind das Ablaufen der Lebensdauer eines
Elements (Time to Live) oder das Verstreichen einer Zeit ohne Zugriff auf das Element
(Idle Time).

8.4.3 Schreibverfahren

Um verdnderte Elemente von einem Cache in die darunter liegende Datenstruktur
zuriickzuschreiben, gibt es verschiedene Strategien. Zwei allgemein benutzte sind
Write-Through und Write-Back.

Beim Write-Through-Verfahren wird jeder schreibende Datenzugriff direkt auf der
darunter liegenden Datenstruktur ausgefiihrt, so dass Cache und Datenstruktur
immer kohdrent sind. Dieses Verfahren ist insbesondere sinnvoll bei systemkritischen
Daten. Write-Through hat seine Entsprechung in der Methode force() der Klasse
Jjava.nio.channels.FileChannel (seit JDK 1.4) . Sie sorgt dafiir, dass alle Daten, die in den
Channel geschrieben wurden, auch tatsdchlich auf den Datentriager geschrieben wer-
den und nicht nur in einen Cache.

Write-Through ist zudem sinnvoll, wenn die Anzahl der lesenden Zugriffe weitaus
grofSer ist als die der schreibenden Zugriffe.

Beim Write-Back-Verfahren werden Anderungen nur an die darunter liegende Daten-
struktur propagiert, wenn das gecachte Element aus dem Cache entfernt wird. Alle
anderen Anderungen erfolgen ausschlieflich im Cache.



Caches 177

8.4.4 Gecachte Map

Gewohnlich erfolgt der Zugriff auf einen Cache genauso wie auf eine Tabelle mit einem
Schliissel. Nun macht es wenig Sinn, eine HashMap zu cachen, da diese selbst gut als sehr
einfacher Cache benutzt werden kann. Stattdessen wollen wir versuchen eine TreeMap zu
cachen. Nattirlich konnten wir dies tun, indem wir einfach sowohl eine HashMap als auch
eine TreeMap pflegen und fiir jene Operationen, bei denen die Ordnung der Elemente
keine Rolle spielt, die schnellere HashMap benutzen. Die HashMap hitte jedoch unbegrenzte
Kapazitat. Wir wiirden somit den Speicherbedarf ungeféhr verdoppeln.

Stattdessen wollen wir eine eigene Klasse schreiben, die gecachten Zugriff auf eine Map
ermoglicht und dabei das Zufallsaustauschverfahren benutzt. Als Basis benutzen wir
dazu eine RandomCache-Klasse, die die gecachten Schliissel-/Wert-Paare jeweils in einem
CacheEntry-Objekt hélt und diese wiederum in einem Array speichern. Als Index in den
Array benutzen wir die letzten Bits des Hashcodes des Schliissels. Aus Geschwindig-
keitsgriinden sorgen wir dafiir, dass die Arraygrofie jeweils eine volle Zweierpotenz
ist. So konnen wir den schnelleren bitweisen Und-Operator & anstelle vom Modulo-
Operator % benutzen, um beliebige ganze Zahlen auf einen Array-Index abzubilden.
Fiir diese Abbildung ist der Hashcode wie geschaffen. Das ist auch nicht weiter ver-
wunderlich — denn im Endeffekt ist unser Cache nichts anderes als eine Hashtabelle
ohne Kollisionsstrategie. Listing 8.4 zeigt die Schnittstelle unserer Cache-Klasse, Lis-
ting 8.4 die Implementierung. Listing 8.5 stellt die Klasse dar, die eine RandomCache-
Instanz zum Cachen einer Map benutzt. Die Klasse konnte iibrigens leicht erweitert wer-
den, so dass auch sie das komplette java.util.Map-Interface implementiert.

package com.tagtraum.perf.datastructures;

// Interface fir Caches.
public interface Cache f{

// Gibt die Kapazitdt dieses Caches an. Die exakte Bedeutung
// dieses Wertes ist implementierungsabhdngig.
public int getCapacity();

// Gibt ein Objekt aus diesem Cache zuriick, sofern es enthalten
// ist, ansonsten null.
public Object get(Object key);

// Registriert ein Objekt unter einem Schliissel in diesem Cache.
public Object put(Object key, Object value);

// Gibt eine Zahl zwischen 0.0 und 1.0 zuriick. 1.0 entspricht
// einer 100-prozentigen Trefferquote.
public float getHitRatio();

}

Listing 8.3: Einfaches Cache-Interface



Sandini Bib

178 8 Datenstrukturen und Algorithmen

package com.tagtraum.perf.datastructures;

// Cache mit zufdlliger Austauschstrategie
public class RandomCache implements Cache f

private CachekEntryl[] entries;
private int bitMask;

private int hits;

private int misses;

public RandomCache(int initialCapacity) f
// Finde eine Zweierpotenz >= initialCapacity
int capacity = 1;
while (capacity < initialCapacity)

capacity <<= 1;
entries = new CacheEntrylcapacity];
// Initialisiere mit leeren Entries
for (int 1 = 0; i < capacity; i++) |
entries[i] = new Cachekntry();
}
bitMask = capacity - 1;

public int getCapacity() f
return entries.length;
}

public Object get(Object key) f
int index = key.hashCode() & bitMask;
CacheEntry entry = entrieslindex];
if (entry.sameKey(key)) f
// Treffer
hits++;
return entry.getValue();
}
// kein Treffer
misses++;
return null;

public Object put(Object key, Object value) f{
if (key !=null) |
return entrieslkey.hashCode() & bitMaskl.set(key, value);
}
return null;

public float getHitRatio() f{
return ((float) hits) / (float) (hits + misses);
}



Sandini Bib
Caches 179

private static class CacheEntry f{
private Object key;
private Object value;

public boolean sameKey(Object other) f{
return key != null && key.equals(other);
}

public Object getValue() f{
return value;
}

public Object set(Object key, Object value) |
Object oldValue = value;
this.key = key;
this.value = value;
return oldValue;

Listing 8.4: Simple Cache-Klasse, die das Zufallsaustauschverfahren benutzt

package com.tagtraum.perf.datastructures;

import java.util.Collections;
import java.util.Map;

public class RandomMapCache f

private Map map;
private Map unmodifiableMapView;
private RandomCache cache;

public RandomMapCache(Map map, int initialCapacity) f
this.map = map;
unmodifiableMapView = Collections.unmodifiableMap(map);
cache = new RandomCache(initialCapacity);

public int getCapacity() |
return cache.getCapacity();
J

public Map getMap() f{
return unmodifiableMapView;
}

public Object get(Object key) f{
Object value = cache.get(key);
if (value != null) {



180 8 Datenstrukturen und Algorithmen

return value;
}
value = map.get(key);
if (key != null) {
cache.put(key, value);
}
return value;

}

public Object put(Object key, Object value) {
Object oldValue = map.put(key, value);
if (key != null) {
cache.put(key, value);
}
return oldValue;

}

Listing 8.5: Cache-Klasse fiir Maps

Natiirlich wollen wir uns nicht mit der blofsen Existenz der oben beschriebenen Klasse
zufrieden geben, sondern auch einen kleinen Test durchfiihren. Gecached werden soll
eine TreeMap mit 1.280 Elementen, die Cache-Kapazitit soll 128 betragen und wir grei-
fen wiederholt auf eine begrenzte Anzahl der in der TreeMap enthaltenen Elemente zu.
Genauer gesagt, die ersten 32, 64, 128 und 256 Elemente.

16
[0]
53 T -
® = 4]
85 2
T 10 1—
85 8
c n
8 61
e i
e
g 2

0 , T o |

32 64 128 256

Anzahl der Elemente mit haufigem Zugriff

O JDK 1.3.1 client O JDK 1.3.1 server @ JDK 1.4.0 client
W JDK 1.4.0 serer @ 1BM JDK 1.3.0

Abbildung 8.4: Vergleich zwischen einer ungecachten und einer gecachten TreeMap mit einer Cachegrof3e von 128
und einer GréBe von 1.280 Elementen in Abhdngigkeit von der Anzahl der Elemente, auf die regelmdBig zugegrif-
fen wird



Sandini Bib
Caches 181

Abbildung 8.4 zeigt den Beschleunigungsfaktor fiir den Zugriff auf die TreeMap mit
Cache. Offensichtlich sorgt der Cache nur fiir eine spiirbare Beschleunigung, wenn die
Cache-Kapazitdt mindestens doppelt so grof3 ist wie die Menge der hiufig benutzten
Elemente.

Abbildung 8.5 zeigt, warum dies so ist. Bei einer Cache-Kapazitit von 128 und gleicher
Anzahl haufig zugegriffener Elemente liegt die Cache-Trefferrate nur bei 34%. In 66%
der Félle musste auf die TreeMap zugegriffen werden.

Da wir den Hashcode als Basis fiir den Array-Index benutzen, steht die Trefferrate
natiirlich in direkter Beziehung zur Hashfunktion. Tatsdchlich werden die Schliissel
der ersten 128 Elemente bei einer Cache-Kapazitidt von 128 durch die Hashfunktion
hashCode() auf lediglich 43 Arraypositionen abgebildet — die restlichen 85 Positionen
bleiben unbenutzt. Wesentlich besser sieht es dagegen bei 64 und 32 héufig zugegriffe-
nen Elementen aus, daher auch der bessere Beschleunigungsfaktor.

100%
80%
60%
40%
20% .
0% : : [ |
32 64

128 256

Anzahl der Elemente mit hdufigem Zugriff

Cache-Trefferrate

Abbildung 8.5: Trefferrate in Abhdngigkeit von der Anzahl der Elemente, auf die regelmdBig zugegriffen wird

Fiir obigen Test habe ich die Schliissel folgendermaflen erzeugt:

for (int i=0; i<keys.length; i++) {
keys[il = "key" + i;
}

Tests mit anderen Schliisseln ergaben wesentlich bessere bzw. wesentlich schlechtere
Resultate. Daher gilt:

Wenn Sie einen Cache einsetzen, messen Sie die Trefferrate und den Beschleunigungsfaktor.
Uberpriifen Sie zudem, ob die Methode hashCode ) fiir Ihre Schliissel ausreichend gut verteilt ist.



182 8 Datenstrukturen und Algorithmen

8.4.5 Caches mit LinkedHashMap

Seit JDK 1.4 gibt es die Klasse java.util.LinkedHashMap. Sie ist wie gemacht fiir LRU-
Caches. Jedes Mal, wenn die Methoden put() oder putAl1() benutzt werden, wird auto-
matisch die Methode removeEldestEntry() aufgerufen. removeEldestEntry() gibt true
zuriick, wenn tatsichlich der dlteste Eintrag der Map entfernt werden soll, was dann
auch direkt anschlieflend passiert. Abhingig von einem booleschen Konstruktorpara-
meter ist mit »altestem Eintrag« dabei entweder das am lidngsten nicht benutzte Ele-
mente oder das am ldngsten in der Map befindliche Element gemeint.

Um einen LRU-Cache zu schreiben miissen wir lediglich die Methode removeEldest-
Entry() iiberschreiben (Listing 8.6).

package com.tagtraum.perf.datastructures;

import java.util.LinkedHashMap;
import java.util.Map;

public class LRUCache extends LinkedHashMap f{
private int capacity;

public LRUCache(int capacity) f
// Propagiere Kapazitdt zur darunter Tiegenden HashMap,
// so dass wir mdglichst selten ein Rehashing bendtigen.
// AuBerdem setzen wir die Ordnung der Map mit
// true auf Zugriffs-Ordnung statt Einflige-Ordnung.
super((int)(capacity/0.75f), 0.75f, true);
this.capacity = capacity;

}

// Gibt true zurlick, wenn die Kapazitdt des Caches erreicht ist.
protected boolean removeEldestEntry(Map.Entry eldest) |

return size() > capacity;
}

public int getCapacity() f
return capacity;
}
}

Listing 8.6: LinkedHashMap basierter LRU-Cache

Abbildung 8.6 zeigt einen Vergleich zwischen dem oben vorgestellten Zufallscache
und LRUCache. Im Test wird der Reihe nach wiederholt auf 32-256 Elemente zugegriffen.

Bei 256 Elementen und einer Cache-Kapazitdt von 128 wird beim LRU-Cache nur der
zusdtzliche Verwaltungsaufwand gemessen, da die Trefferrate gleich null ist (Abbil-
dung 8.7). Bei 128 Elementen schneidet der LRU-Cache am besten ab. Die Trefferrate



Sandini Bib
Caches 183

liegt bei 100%. Damit ist aber auch die maximale Beschleunigung durch den LRUCache
erreicht, wahrend der Zufallscache fiir weniger Elemente schneller wird. Insbesondere
fiir nur 32 Elemente ist der Zufallscache wesentlich schneller als der LRU-Cache. Mit
anderen Worten:

Eine schlechte Austauschstrategie kann sich auszahlen, wenn sie sehr geringen Verwaltungs-
aufwand hat.

o 18

£ - 16

(&)

g2 14

o 9

0%12

@ £ 10

° 9 8

SE 6 —
53 4-

N 2. sl =
w 0 i i —-Il—i—__

Anzahl der Elemente mit haufigem Zugriff

OJDK 1.4.0 client LRU @O JDK 1.4.0 senver LRU
@ JDK 1.4.0 client Zufall mJDK 1.4.0 server Zufall

Abbildung 8.6: Vergleich zwischen einer LRU und einer mit Zufallsstrategie gecachten TreeMap mit einer Cache-
groBe von 128 und einer GroBe von 1.280 Elementen in Abhdngigkeit von der Anzahl der Elemente, auf die regel-
maBig zugegriffen wird

100%
80% +—
60% +—
40% +—

20% +— H
0% : : [ |

32 64 128 256

Anzahl der Elemente mit hdufigem Zugriff

Cache-Trefferrate

O LRU m Zufall

Abbildung 8.7: Trefferrate in Abhdngigkeit von der Anzahl der Elemente, auf die regelmdBig zugegriffen wird, und
der Austauschstrategie



184 8 Datenstrukturen und Algorithmen

8.4.6 Schwache Referenzen

Ein Objekt zu cachen heifit auch immer, Speicher dauerhaft zu belegen und so die
automatische Speicherbereinigung zu verlangsamen. Oft ist es daher sinnvoll, dass ein
Objekt, wenn es eine Weile nicht benutzt wurde, automatisch aus dem Speicher ent-
fernt wird. Besonders einfach geht dies mit schwachen Referenzen aus dem Paket
java.lang.ref.

Hier ein Beispiel fiir den entsprechenden Einsatz einer SoftReference:

private static SoftReference objectSoftReference = null;

public Object getObject() f{
Object object = null;
if (objectSoftReference != null) |
object = objectSoftReference.get();
}
if (object == null) {
// Cachen des Objektes in einer SoftReference
object = new Object();
objectSoftReference = new SoftReference(object);
}

return object;

Auf das Objekt wird immer {iber die getObject()-Methode zugegriffen. Beim ersten
Zugriff werden das Objekt und eine SoftReference auf dieses Objekt angelegt. Die Soft-
Reference ist eine Klassen- oder Instanzvariable. Beim nachsten Aufruf von getObject()
wird nun zunédchst der Inhalt der SoftReference iiberpriift. Ist dieser ungleich nu11, wird
das gecachte Objekt zuriickgegeben. Ist er jedoch gleich null, wurde das zuvor
erzeugte Objekt bereits von der Speicherbereinigung erfasst — das heifit wir miissen ein
neues Objekt erzeugen.

Objekte, die durch eine SoftReference referenziert werden, konnen genau dann von der
Speicherbereinigung erfasst werden, wenn sie nicht mehr durch eine normale Referenz
referenziert werden. Die JDK-Dokumentation verspricht zudem, dass alle SoftRefe-
rences geloscht werden, bevor die VM einen 0utOfMemoryError auslost. Das heifdt, Soft-
References sind ideal fiir speicherempfindliche Caches.

Leider sind viele VMs jedoch tibereifrig beim Loschen von SoftReferences und léschen
diese ohne Not. Dies ist insbesondere der Fall bei Sun JDK 1.3.0. Spétere Versionen
16schen SoftReferences erst einige Zeit nachdem die referenzierten Objekte nicht mehr
durch normale Referenzen referenziert werden und erreichen so ein LRU-dhnliches
Verhalten. Die Dauer dieser Gnadenfrist betrdgt eine Sekunde pro freies Mbyte auf
dem Heap. Die HotSpot-Server-Version benutzt fiir diese Berechnung die maximal



Caches 185

mogliche Heapgrofle (VM Option -xmx), wahrend die Client-Version die aktuelle Heap-
grofle verwendet. Unabhéngig davon, welche Version Sie benutzen, kénnen Sie diese
Frist manipulieren, indem Sie den VM-Parameter -Xx:SoftRefLRUPo1icyMSPerMB angeben:

Java -XX:SoftRefLRUPolicyMSPerMB=2500 <Hauptklasse>

Dieser Parameter reguliert, wie viele Millisekunden pro freies Mbyte die Speicherbe-
reinigung warten soll. Bitte beachten Sie, dass dies ein offiziell nicht unterstiitzter VM-
Parameter ist. Er wird von Sun JDK 1.3.1 und 1.4.0 erkannt.



Sandini Bib



9 Threads

Java verfiigt iiber eine sehr méchtige, einheitliche und vergleichsweise einfache Thread-
unterstiitzung. Richtig und mit Bedacht angewandt, kann sie zu sehr eleganten Designs
fithren. Gerade, wenn es um wahrgenommene Performance geht, ermoglichen Threads
einfache Losungen fiir ansonsten schwierige Probleme. Zudem sind Threads die Zutat,
die dafiir sorgt, dass Java Programme auf Mehrprozessormaschinen skalieren.

Doch Threads haben ihren Preis. Sie konnen die Komplexitit von Programmen erheb-
lich erhéhen. Die Programmausfithrung ist nicht mehr deterministisch und streng
sequenziell, sondern parallel. Verschiedene Threads verhalten sich asynchron zueinan-
der, es sei denn sie sind explizit synchronisiert. Und gerade korrekte Synchronisation
ist nicht-trivial. Dies ist auch einer der Griinde, warum EJB von ihrem Container
zwangssynchronisiert werden und keine weitergehende Synchronisierung erlaubt ist.
Viele Fehler kénnen so vermieden werden.

Zudem konnen Synchronisation und stindige Threadkontext-Wechsel zu schlechter
Performance fiihren. Dies ist insbesondere der Fall, wenn mehr Threads als Prozessoren
vorhanden sind. Dies, die erhthte Komplexitiat und Nicht-Determinismus, sind Griinde,
warum Swing nur einen Thread benutzt. Programme ohne Threads sind oft einfacher zu
warten, schneller und Synchronisationsfehler sind nicht moglich. Daher gilt:

Wenn es keinen gquten Grund fiir den Einsatz von Threads gibt, vermeiden Sie Threads lieber.

Wenn Sie jedoch glauben, dass Threads die Losung Ihrer Probleme bedeuten, hilft
Ihnen der Rest dieses Kapitels hoffentlich performanten Code zu schreiben.

9.1 Gefahrlich lebt sich’s schneller

Grundsétzlich gibt es im Zusammenhang mit Mehrthread-Programmen zwei wesent-
liche Zustdnde [vgl. Lea99, S. 38£.]:

Sicherheit

Der Zustand, in dem nichts Schlimmes passiert.

Lebendigkeit

Der Zustand, in dem {iberhaupt jemals etwas geschieht.



188 9 Threads

Die grofle Gefahr beim Programmieren mit mehreren Threads ist das gleichzeitige
Manipulieren desselben Speicherbereichs durch zwei oder mehr Threads. Dies fiihrt
meistens zu unvorhersehbaren Ergebnissen, deren Ursache sehr schwierig herauszu-
finden ist. Will man dies verhindern, so muss man einem Thread exklusiven Zugriff
auf eine Ressource zusichern. So erreichen Sie Sicherheit.

Meistens werden zu diesem Zweck jedoch andere Threads angehalten, die die Res-
source ebenfalls manipulieren wollen. Natiirlich sind Programme lebendiger, in denen
immer alle Threads laufen.

Es ist offensichtlich, dass die Abwesenheit von Lebendigkeit zu Sicherheit fiihrt. Oft,
aber nicht zwingend, fiihrt die Abwesenheit von Sicherheit auch zu Lebendigkeit.

Strategien fiir Sicherheit sind beispielsweise:

Unveranderbarkeit (Immutability)

Unveranderbare Objekte konnen ihren Zustand nicht dndern, daher kénnen sie
auch nicht manipuliert werden. Beispiel: java.lang.String

(Vollsténdige) Synchronisation

(Alle) Methoden, die den Objektzustand &ndern, sind synchronisiert. Beispiel:
java.lang.StringBuffer()

Behilter (Containment)

Auf das zu manipulierende Objekt kann nur durch ein anderes Objekt zugegriffen
werden, das die Synchronisation iibernimmt. Beispiel: java.util.Collections.
synchronizedMap(new HashMap())

Wenn Sie ausschliefilich diese drei Strategien verwenden, sind Sie auf der sicheren
Seite. Leider heifit dies nicht, dass Ihr Programm auch nur einen Hauch von Leben in
sich hat, von Performance ganz zu schweigen.

Die haufigsten Griinde hierfiir sind:

Verhungern (Starvation)
Ein Thread wird nie ausgefiihrt, weil ein anderer Thread oder ein anderer Prozess
samtliche Prozessoren voll und ganz fiir sich in Anspruch nimmt.

Dormancy
Ein Thread wartet auf ein resume() oder notify(), das aber nie aufgerufen wird.

Deadlock
Thread A wartet auf ein Synchronisationsschloss, das Thread B besitzt, wahrend
Thread B auf ein Schloss wartet, das Thread A besitzt.

Im Folgenden werden wir uns mit den Kosten verschiedener Strategien zum Erreichen
von Sicherheit befassen sowie einige andere Aspekte der Threadprogrammierung
unter Performancegesichtspunkten betrachten.



Gefdhrlich lebt sich’s schneller 189

9.1.1 Sicherheit durch Synchronisation

Um exklusiven Zugriff auf geteilten Ressourcen zu erlangen, konnen Sie in Java Pro-
grammteile mit einem synchronized-Block schiitzen. Dieser verhindert, dass derselbe
Code gleichzeitig von mehr als einem Thread ausgefiihrt wird. Beachten Sie, dass syn-
chronized keine Ressource schiitzt, sondern Code, der unter Umstanden auf schiitzens-
werte Ressourcen zugreift. Wollen Sie eine Ressource schiitzen, miissen Sie jeglichen
Code, der diese Ressource manipuliert, mit einem synchronized-Block schiitzen, der mit
demselben Objekt synchronisiert. Nicht mit synchronized geschiitzt werden miissen
atomare Manipulationen. Das sind Operationen, die nicht vom Thread-Scheduler
unterbrochen werden konnen. Dazu gehoren Referenzzuweisungen sowie alle Zuwei-
sungen von primitiven Datentypen aufier double und Tong, es sei denn double oder Tong
sind mit dem Schliisselwort volatile gekennzeichnet [vgl. Gosling00, §17.4].

Beispiel:

private long time;

// Nicht threadsicher!

public void setTime(long time) f{
this.time = time;

}

Dieser Code ist nicht threadsicher, da das Zuweisen eines longs keine atomare Opera-
tion ist, sondern aus zwei 32-Bit-Operationen besteht. Wenn also zwei Threads gleich-
zeitig die Methode setTime() aufrufen, kann es passieren, dass this.time nachher als
Wert die ersten 32 Bit vom einen Aufruf und die zweiten 32 Bit vom anderen Aufruf
hat. Dies lieSe sich durch synchronized verhindern:

private long time;

// Threadsicher!

public synchronized void setTime(long time) f{
this.time = time;

}

Bevor ein Thread die synchronisierte setTime()-Methode ausfiihren kann, muss er war-
ten, bis kein anderer Thread diese Methode ausfiihrt. this.time ist somit vor gleichzei-
tigem schreibenden Zugriff geschiitzt. Dieser Schutz ist jedoch nicht umsonst.

9.1.2 Synchronisationskosten

Bereits im Datenstrukturen-Kapitel (Kapitel 8 Datenstrukturen und Algorithmen) erwahnte
ich, dass java.util.Vector etwas langsamer als java.util.ArraylList ist, weil Vector im
Gegensatz zu ArraylList voll synchronisiert ist. Es stellt sich die Frage, wie viel ein
synchronized tatsdchlich kostet. Wir rufen daher die setTime ()-Methode von Objekten der
folgenden beiden Klassen wiederholt in einer Schleife auf und messen die Zeit.



190 9 Threads

// Klasse mit unsynchronisierter setTime()-Methode
class UnsynchronizedTime |
private long time;

public void setTime(long time) f{
this.time = time;
}

// Klasse mit synchronisierter setTime()-Methode
class SynchronizedTime {
private long time;

public synchronized void setTime(long time) f{
this.time = time;
}

Java VM Synchronisiert Unsynchronisiert Faktor
Sun JDK 1.3.1 Client 100% 56% 1,79
Sun JDK 1.3.1 Server 65% 1,6% 40,41
Sun JDK 1.4.0 Client 110% 23% 4,69
Sun JDK 1.4.0 Server 65% 1,1% 58,91
IBM JDK 1.3.0 88% 12% 726

Tabelle 9.1: Normalisierte Ausfiihrungszeiten der beiden setTime()-Methoden sowie der Faktor, den die unsynchro-
nisierte Variante schneller war als die synchronisierte

Wie Tabelle 9.1 zeigt, ist die unsynchronisierte Variante in allen gemessenen VMs
wesentlich schneller. Dies liegt jedoch nicht nur an den zusitzlichen Aufwanden der
VM, die durch synchronized verursacht werden, sondern auch daran, dass bestimmte
Optimierungen wegen des synchronized-Blocks nicht mehr durchfiihrbar sind. Anders
sind die riesigen Unterschiede zwischen der synchronisierten und der unsynchroni-
sierten Variante in den Ergebnissen der beiden Sun-Server-VMs nicht zu erkléren.

Daraus lasst sich schlieflen, dass es sich lohnen kann, dem Aufrufer die Synchronisa-
tion zu tliberlassen, anstatt selbst feingranular zu synchronisieren. Dieser Gedanke ist
auch der Grund dafiir, warum die Collection-Klassen alle unsynchronisiert sind. Selten
entspricht die Granularitdt der notwendigen Synchronisation gerade dem Aufruf einer
der Methoden der Collection-Klassen.

Zurtick zu unserem kleinen Test. Wenn wir die Schleife, in der die setTime()-Methode
des UnsynchronizedTime-Objektes aufgerufen wird, in einem synchronized-Block ausfiih-
ren, wird sie beinahe genauso schnell ausgefiihrt wie die unsynchronisierte Variante
und ist dennoch korrekt synchronisiert.



Sandini Bib
Gefdhrlich lebt sich’s schneller 191

private UnsynchronizedTime unsynchronizedTime
= new UnsynchronizedTime();

// Methode, in der setTime() in einer langen Schleife
// aufgerufen wird.
private void setUnsynchronizedTime() f{
for (int i = 0; i < 500000000; i++)
unsynchronizedTime.setTime(i);

public void test() |
// Aufuf der TestMethode und mit duBerer Synchronisation
synchronized (unsynchronizedTime) f
setUnsynchronizedTime();
}

Ein etwas allgemeineres Beispiel. Nehmen wir einmal an, Sie schreiben eine Klasse A,
die iiber zwei Methoden verfiigt: methodel() und methode2(). Beide Methoden miissen
synchronisiert sein, da sie eine von mehreren Threads geteilte Ressource manipulieren.
Die Implementierung sieht folgendermafsen aus.

package xyz;
public class A {
public synchronized void methodel() f
// mache etwas
}
public synchronized void methode2() f
// mache etwas anderes
}

Nach einiger Zeit stellen Sie fest, dass hédufig zunédchst methodel() und direkt anschlie-
end methode2() vom selben Thread ausgefiihrt wird. Daher schreiben Sie den Code ein
wenig um und bieten eine Methode methodelund2() an, die jeweils unsynchronisierte
Versionen von methodel () und methode2() aufruft. methodelund2() muss nur einmal statt
zweimal einen synchronized()-Block betreten. Dafiir muss bei jedem Methodenaufruf
noch eine Extra-Methode aufgerufen werden. Da wir aber eine moderne VM benutzen,
kénnen wir annehmen, dass dieser zusétzliche Methodenaufruf vom VM-Compiler
durch Inlining wegoptimiert wird. Ist dies der Fall, dann ist folgender Code schneller:

package xyz;
public class A |
public synchronized void methodel() f
unsyncMethodel();
}
private void unsyncMethodel() f
// mache etwas



192

Sandini Bib

9 Threads

}

}

public synchronized void methode2() {
unsyncMethode?();

}

private void unsyncMethode2() f{
// mache etwas anderes

}

// schneller als methodel() und methode2()

private synchronized void methodelund2() f{
unsyncMethodel();
unsyncMethode?2();

Als Néchstes stellen Sie fest, dass beide Methoden hiufig von Instanzen einer Klasse 8
aufgerufen werden, die sich auch im Paket xyz befindet. Da Sie volle Kontrolle tiber
beide Klassen haben und diese beiden Klassen sehr eng miteinander gekoppelt sind,
entscheiden Sie sich dazu, Klasse A etwas zu 6ffnen und die Methoden unsyncMethodel()
und unsyncMethode2() als package-privat zu deklarieren. Somit hat B unbeschrankten

Zugriff auf unsyncMethodel () und unsyncMethode2().

package xyz;
public class A |

}

// Klasse B Tiegt im selben Paket wie Klasse A

public synchronized void methodel() f
unsyncMethodel();

}

// Jetzt package-privat!

void unsyncMethodel() f{
// mache etwas

}

public synchronized void methode2() f
unsyncMethode?();

}

// Jetzt package-privat!

void unsyncMethode2() f{
// mache etwas anderes

}

// schneller als methodel() und methode2()

private synchronized void methodelund2() f{
unsyncMethodel();
unsyncMethode2();

package xyz;
class B {

private A a;

public void method3(int count) f{



Gefdhrlich lebt sich’s schneller 193

synchronized(a) f{
for (int i=0; a<count; i++) a.unsyncMethodel();
a.unsyncMethode2();
a.unsyncMethodel();
a.unsyncMethodel();

J

Sie erlauben so dem HotSpot-Server-Compiler grofiere Code-Blocke zu optimieren
und erreichen eventuell eine bessere Performance. Dabei miissen Sie jedoch zwei
Dinge bedenken:

1. Dies macht nur Sinn, wenn Sie absolute Kontrolle iiber alle beteiligten Klassen
haben. Ist dies nicht der Fall, und Sie wollen trotzdem unsynchronisierten Zugriff
auf die Klasse zulassen, verfahren Sie lieber nach dem Alles-Oder-Nichts-Prinzip.
Entweder die offentlichen Methoden der Klasse sind threadsicher oder sie sind es
nicht. Teilweise threadsichere Klassen, sofern es so etwas iiberhaupt geben kann,
fiihren zu Fehlern, die sehr schwierig zu finden sind.

2. Je grofier synchronized-Blocke sind, desto langer miissen andere Threads darauf
warten, selbst einen synchronized-Block auszufiihren, der mit demselben Objekt
synchronisiert ist. Dies kann die Lebendigkeit verringern statt vergrofiern.

9.1.3 Threadsichere Datenstrukturen

Bereits im Datenstrukturen-Kapitel klang an, dass das Synchronisieren mittels eines
Synchronisationswrappers ziemlich grob ist. Falls Sie beispielsweise eine verlinkte
Liste als Warteschlange benutzen, manipulieren Sie diese gewohnlich nur am Anfang
und am Ende. Sofern die Lange Threr Warteschlange grofier eins ist, konnen Sie sie
auch mit zwei verschiedenen Objekten synchronisieren — einem fiir den Anfang und
einem fiirs Ende. So erhéhen Sie auf einfachste Weise die Lebendigkeit.

Es gibt fiir viele Datenstrukturen mafigeschneiderte Synchronisationsstrategien. Eine
ganz ausgezeichnete Sammlung von threadsicheren und dennoch lebendigen Daten-
strukturen sowie anderen threadbezogenen Hilfsklassen bietet das freie uti1.concurrent-
Paket von Doug Lea (http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/
intro.html). Wenn Thre Software Lebendigkeitsprobleme im Zusammenhang mit grob
sperrenden Datenstrukturen hat, sei Ihnen dieses Paket samt Doug Leas Buch Concurrent
Programming in Java™ — Design Principles and Patterns [Lea99] warmstens empfohlen.
Alternativ gibt es noch ein kommerzielles Thread-Werkzeugklassen-Paket namens
JThreadKit (http://www.jthreadkit.com/). In einer der ndchsten Versionen des JDK wird es
zudem ein Paket namens java.util.concurrent geben, das entsprechende Klassen defi-
niert. Die dazugehorige Spezifikationsanforderung ist JSR 166 (http://www.jcp.org/jst/
detail/166.jsp).



194 9 Threads

9.1.4 Double-Check-ldiom

Wir kommen nun zu einem ganz anderen Thema. Namlich wie Sie nicht um Synchroni-
sation herumkommen. Gerade fiir Singletons [vgl. Gamma96, 5.139] wird gerne eine
besondere Form der spiiten Initialisierung (lazy Initialization) verwendet. Oft sieht der
Code dazu folgendermafSen aus:

01 private static Singleton instance;

02 private Singleton() |

03 }

04 // Tun Sie dies nicht! Es funktioniert nicht!
05 public static Singleton getlnstance() f{

06 if (instance == null) {

07 synchronized (Singleton.class) f{
08 if (instance == null) {

09 instance = new Singleton();
10 }

11 }

12 }

13 return instance;

14 }

Dies ist das so genannte Double-Check-Idiom. Man geht dabei davon aus, dass, sobald
die Variable instance ungleich nul1 ist, diese fiir alle Threads einen giiltigen Wert hat.
Daher wird der synchronized-Block in diesem Fall erst gar nicht betreten. Davon ver-
spricht man sich Performance-Vorteile. Leider hat instance, wenn es ungleich nul1 ist,
nicht immer fiir alle Threads einen giiltigen Wert ... [vgl. Pugh01]

Grundsatzlich arbeiten Threads in ihrem eigenen Speicher mit Kopien von Werten aus
dem Hauptspeicher. Diese Kopien diirfen nicht ohne Anlass wieder in den Hauptspei-
cher geschrieben werden [Gosling00, §17.3]. Der Beginn oder das Ende eines synchroni -
zed-Blocks ist beispielsweise ein solcher Anlass. So wird das instance-Objekt zwar
spétestens in Zeile 11 fiir andere Threads sichtbar, das garantiert aber nicht, dass auch
alle von instance referenzierten Objekte schon wieder in den Hauptspeicher zuriickko-
piert worden sind. Erst nach Zeile 11 ist dies garantiert. Es gibt also eine Zeitspanne, in
der instance zwar ungleich null, aber noch nicht komplett mit dem Hauptspeicher
bzw. den anderen Threads synchronisiert ist. Wenn instance in diesem Zustand benutzt
wird, kann dies zu sehr schwierig zu findenden Fehlern fiihren.

Folgender Code 16st das Problem, da nicht nur beim schreibenden, sondern auch beim
lesenden Zugriff auf instance synchronisiert wird:

private static Singleton instance;

private Singleton() {
}



Gefdhrlich lebt sich’s schneller 195

public static synchronized Singleton getInstance() f{
if (instance == null) {
instance = new Singleton();
}
return instance;

Grundsitzlich gilt, dass Sie Variablen, die von mehreren Threads benutzt werden, sowohl beim
Schreiben als auch beim Lesen durch synchronized schiitzen miissen.

Alternativ zur Synchronisierung konnen Sie auch das Initialize-on-Demand-Holder-
Class-Idiom [Bloch02, S.196] benutzen. Dabei macht man sich zunutze, dass eine Klasse
erst initialisiert wird, wenn sie das erste Mal benutzt wird:

private static Singleton instanceHolder;

private Singleton() {
}

public static Singleton getInstance() f{
return SingletonHolder.instance;
}

private static class SingletonHolder {
static final Singleton instance = new Singleton();
}

Java VM Synchronisiert Holderclass Faktor
Sun JDK 1.3.1 Client 100% 37% 2,68

Sun JDK I.3.1 Server 78% nicht messbar sehr hoch
Sun JDK 1.4.0 Client 110% 39% 2,86

Sun JDK 1.4.0 Server 77% nicht messbar sehr hoch
IBM JDK 1.3.0 104% 8% 12,64

Tabelle 9.2: Normalisierte Ausfiihrungszeiten der synchronisierten und Holderclass-Variante sowie der Faktor, um
den die Holderclass-Variante schneller ist

In den meisten Fillen ist die Holderclass-Variante sehr viel schneller als die synchroni-
sierte Version. Die Sun-Server-VMs profitieren zudem stark davon, dass in der Holder-
class-Variante kein synchronized-Block verwendet wird, und optimieren den Code so
weit, dass der Test ad absurdum gefiihrt wird. Es gilt:

Benutzen Sie auf keinen Fall das Double-Check-Idiom. Zudem sollten Sie der korrekt synchro-
nisierten Variante das Initialize-on-Demand-Holder-Class-Idiom vorziehen.



196 9 Threads

9.1.5 Sprunghafte Variablen

Anstatt Variablen zwischen Threads durch synchronized-Blocke zu synchronisieren,
konnen Sie diese auch als volatile deklarieren. Dadurch wird die VM dazu genétigt,
vor und nach jedem Benutzen dieser Variablen den Thread-Speicher mit dem Haupt-
speicher abzugleichen. Zudem sind Zuweisungsoperationen von longs und doubles,
die volatile sind, atomar. Es lohnt sich jedoch nur volatile zu benutzen, wenn Sie die
Variable relativ selten manipulieren, da sonst stindige, zeitraubende Abgleiche mit
dem Hauptspeicher erfolgen.

Vermutlich wird sich die genau Definition von volatile in Zukunft d&ndern, da §17 der
Java Sprachspezifikation [Gosling00] im Rahmen der Java Spezifikationsanforderung
133 iiberarbeitet wird. Details hierzu kdnnen Sie im Web finden.

Java Specification Request 133: http://jcp.org/jsr/detail/133.jsp

9.2 Allgemeine Threadprogrammierung

Ganz ohne Frage: Threads sind nicht wie alle anderen Java-Objekte. Dies soll fiir uns
Grund genug sein, einige spezielle Aspekte ein wenig genauer zu beleuchten.

9.2.1 Threads starten

Einen Thread zu starten dauert etwas lédnger als ein normales Objekt zu instanziieren,
da aufler dem Objekt noch ein Java Virtual Machine Stack angelegt werden muss. Wir
wollen testen, wie grofs der Unterschied ist. Zu diesem Zweck fiihren wir die folgen-
den drei Methoden jeweils mehrmals nacheinander aus:

// Thread instanziieren und starten

private Object startThread() throws InterruptedException f
Thread t = new Thread();
t.start();
return t;

}

// Thread instanziieren
private Object instantiateThread() f
return new Thread();

J

// Objekt instanziieren

private Object instantiateObject() f{
return new Object();

}



Aligemeine Threadprogrammierung 197

Java VM startThread() instantiateThread() instantiateObject()
Sun JDK 1.3.1 Client 100% 9% nicht messbar
Sun JDK 1.3.1 Server 97% 7% nicht messbar
Sun JDK 1.4.0 Client 112% 10% nicht messbar
Sun JDK 1.4.0 Server 122% 8% nicht messbar
IBM JDK 1.3.0 106% 7% nicht messbar

Tabelle 9.3: Normalisierte Ausfiihrungszeit der drei verschiedenen Methoden

Wie Tabelle 9.3 zeigt, dauert es rund zehnmal ldnger, einen Thread zu instanziieren
und zu starten als ein Thread-Objekt nur zu instanziieren. Ein einfaches Objekt zu
instanziieren fithrte beim 100.000fachen Aufruf lediglich zu Zeiten zwischen 10 und 50
Millisekunden. Zum Vergleich: Die Methode startThread() fiihrte auf der Testmaschine
beim 100.000fachen Aufruf zu Messzeiten von etwa 43 Sekunden.

Wihrend es bei anderen Objekten meist nicht lohnt, so ist das Vorhalten von Thread-
Objekten in einem Pool eine Ausnahme.

9.2.2 Threadpool

Objekt-Pools sind mittlerweile eher schédlich fiir die Performance eines lang laufenden
Programms. Sie fithren zu Objekten, die in der dlteren Generation des Heaps gehalten
werden. Da der Garbage Collection-Algorithmus fiir die dltere Generation meist auf
Speicherverbrauch und Lokalitat optimiert ist und nicht so sehr auf Geschwindigkeit
wie der der jungen Generation, fithren viele langlebige Objekte zu langen Speicherberei-
nigungszeiten. Es ist daher nicht unbedingt empfehlenswert, Objekt-Pools anzulegen.
Eine Ausnahme hiervon sind Objekte, deren Erstellen — aus welchen Griinden auch
immer —sehr aufwéndig ist. Dies konnen neben Threads auch Objekte sein, die sehr grof3
sind oder bei der Initialisierung aufwéndige Berechnungen erfordern (siehe Kapitel
11.1.1 Datenmenge verkleinern).

Die Klasse Runner (Listing 9.1) ist in der Lage, ein java.lang.Runnable-Objekt in einem
Thread auszufiihren und diesen Thread nach Beendigung der Runnable.run()-Methode
fiir das néchste Runnable-Objekt wiederzuverwenden. Anstelle von normalen Thread-
Objekten werden RunnerThread-Objekte (Listing 9.2) benutzt, die sich nach dem asynchro-
nen Ausfiihren der Runnable. run()-Methode beim Runner-Objekt zur Wiederverwendung
zuriickmelden. Das Sequenzdiagramm in Abbildung 9.1 zeigt das Zusammenspiel der
Objekte, wenn sich bereits RunnerThread-Objekte zuriickgemeldet haben.

Ein Klient des runner-Objektes ruft die run()-Methode auf und tibergibt das asynchron
auszufithrende Objekt Runnable. Aus dem Stack stack wird der oberste RunnerThread
namens rt genommen und mit setRunnable(runnable) initialisiert. Anschlieflend wird
die work()-Methode von rt aufgerufen, die mittels mutex.notify() den rt-eigenen Thread



198 9 Threads

benachrichtigt, der auf das mutex-Objekt wartet. mutex ist eine private Instanzvariable
von rt und wird ausschliefllich zum Synchronisieren der RunnerThread-Aktivitdt benutzt.
Der einzige Thread, der jemals ein mutex.wait() aufrufen kann, ist ebenfalls ein privates
Attribut von rt. Wenn mutex.notify() aufgerufen wird, kénnen wir sicher sein, dass der
Thread von rt gerade innerhalb der run()-Methode von rt genau darauf wartet. Dies
resultiert in der asynchronen Ausfiihrung der run()-Methode von rt und fiihrt somit
zur asynchronen Ausfithrung von runnable.run(). Anschlieflend registriert sich rt wie-
der bei runner, ruft mutex.wait() auf und wartet auf das ndchste mutex.notify().

Klient

runner : Runner

stack : LimitedStack

rt : RunnerThread

runnable : Runnable

mutex : Object

Runner(capacity)\

run(runnable)

getRunnerThread(ruTnabIe)

pop() |

Vs
I | ‘ I
Wird von einem RunnerThread
| ausgefihrt, wahrend alle anderen |
Methoden vom Klient-Thread
ausgefihrt werden.

P -
Holt einen bereits d- | | |
initialisierten .
RunnerThread setRunnaqu(runnable) | Asynchroner Aufruf |
vom Stack.Im /ITl von run().
weite_ren wird work( ) | |
gezeigt, was / notify()
passiert, wenn | /I_! / | v |
dies gelingt. Ll 7 T
: | : —t—
run() |
I I [T
retunRunngrThread(r) run() Der Aufruf von wait()
blockiert bis zum néchsten
push(rt) Aufruf von notify().
wait() /T
| |

=

Abbildung 9.1: Sequenzdiagramm des Zusammenspiels von Runner, RunnerThread und einem Runnable-Objekt

Die Methoden work() und run() sind beide iiber mutex synchronisiert. Dies stellt sicher,
dass mutex.notify() nicht aufgerufen wird, bevor mutex.wait() aufgerufen wurde. Dies
ist essentiell, da rt sich zundchst bei runner zuriickmeldet und dann erst mutex.wait()
aufruft. Ware dieser Block nicht mit work () synchronisiert, konnte sich ein RunnerThread-
Objekt bei runner zurtickmelden und runner kénnte work() und somit mutex.notify()
aufrufen, noch bevor mutex.wait() aufgerufen wurde. Dies wiirde dazu fiihren, dass
der Thread des RunnerThread-Objektes ewig auf ein mutex.notify() wartete (Dormancy).



Aligemeine Threadprogrammierung 199

Der Code in Listing 9.1 und Listing 9.2 ist wegen der nétigen Poolverwaltung noch ein
wenig komplizierter. Als Datenstruktur benutzen wir einen Stack, da dieser iiber die
FILO-Eigenschaft verfiigt. FILO steht fiir First in, last out und bedeutet, dass das zuletzt
hinzugefiigte Element als erstes wieder entnommen wird. Das heifit in unserem Fall,
dass der zuletzt benutzte RunnerThread als erster wiederverwendet wird. Dies erhoht
die Chance, dass er sich noch im Hauptspeicher befindet und noch nicht vom Betriebs-
system ausgelagert wurde.

Nattirlich wollen wir beliebig viele Runnable-Objekte ausfiihren kénnen?!, aber nur eine
begrenzte Anzahl im Pool halten. Unsere Stack-Implementierung, LimitedStack, hat
daher die spezielle Eigenschaft, dass sie nicht mehr als eine vorgegebene Anzahl an Ele-
menten halten kann. Dabei gibt die push()-Methode zurtick, ob das Element erfolgreich
auf den Stack gelegt werden konnte oder nicht. Dies ist wichtig fiir uns, da ein Runner-
Thread-Objekt, das nicht auf den Stack gelegt werden kann, beendet werden muss. Dies
geschieht durch einen quit()-Aufruf in der run()-Methode von RunnerThread. Wére dies
nicht der Fall, wiirde das RunnerThread-Objekt mutex.wait() aufrufen, endlos auf ein
mutex.notify() warten (Dormancy) und somit unnétig Ressourcen belegen.

Aus einem dhnlichen Grund benétigen wir die Runner.destroy()-Methode. Stellen Sie
sich vor, Sie benutzen in einem Teil Ihrer Anwendung einen Thread-Pool mit einer
Kapazitat von 200 Threads. Dieser Teil der Applikation wird einmal am Tag fiir eine
halbe Stunde ausgefiihrt. Die restlichen 23% Stunden wird der Pool nicht benétigt.
Wire keine destroy()-Methode vorhanden, wiirden potenziell 200 Threads fiir 98 Pro-
zent der Laufzeit sinnlos Ressourcen belegen.

package com.tagtraum.perf.threads;
public class Runner {

private LimitedStack stack;
private Class runnerThreadClass;
private boolean destroyed;

public Runner(int capacity) f
this.stack = new LimitedStack(capacity);
setRunnerThreadClass(RunnerThread.class);
}

// Fuhrt die run()-Methode des Runnables asynchron mit einem

// RunnerThread aus.

public void run(Runnable runnable) f
getRunnerThread(runnable).run();

}

1  Es gibt sicherlich auch Fille, in denen es sinnvoll ist, die Anzahl gleichzeitig ausgefiihrter Threads
zu begrenzen. Dies wiirde das Beispiel aber noch komplizierter machen, als es ohnehin schon ist.
Daher wollen wir darauf verzichten.



200

Sandini Bib

9 Threads

// Gibt einen initialisierten RunnerThread zurilick. Der
// RunnerThread stammt entweder vom Stack oder wurde
// neu instanziiert.
protected synchronized RunnerThread
getRunnerThread(Runnable runnable) f{
if (isDestroyed())
throw new I1legalStateException("Runner is destroyed.");
RunnerThread rt = (RunnerThread) stack.pop();
if (rt == null) {
rt = newRunnerThread();
// Registriert den RunnerThread bei diesem Runner
rt.setRunner(this);
}
rt.setRunnable(runnable);
return rt;

// Instanziiert einen neuen RunnerTread.
protected RunnerThread newRunnerThread() f{
try f
return (RunnerThread) getRunnerThreadClass()
.newlnstance();
} catch (Exception e) {
throw new InternalError(e.toString());
}

public Class getRunnerThreadClass() {
return runnerThreadClass;
}

protected void setRunnerThreadClass(Class runnerThreadClass) f{
this.runnerThreadClass = runnerThreadClass;
}

// Wird vom RunnerThread aufgerufen, sobald die run()-Methode
// des Runnables des RunnerThreads ausgefiihrt wurde.
synchronized boolean returnRunnerThread(RunnerThread rt) f{
// Nimmt den RunnerThread und Tegt ihn auf den Stack, sofern
// der Runner noch nicht zerstdért ist und der RunnerThread
// noch lebendig ist. Gibt true zurlick, wenn der RunnerThread
// erfolgreich auf den Stack gelegt wurde.
return rt.isAlive() && !destroyed && stack.push(rt);

public synchronized boolean isDestroyed() f{
return destroyed;
}

// Entfernt und stoppt alle RunnerThreads, die auf dem Stack
// 1iegen. Setzt anschlieBend das Flag destroyed. Dadurch wird
// verhindert, dass gerade laufende RunnerThreads sich wieder



Sandini Bib

Aligemeine Threadprogrammierung 201

// bei Runner registrieren und so lebendig gehalten werden.
public synchronized void destroy() f{
if (destroyed)
throw new I1legalStateException("Runner is already"
+ " destroyed.");
clear();
destroyed = true;

// Entfernt und stoppt alle RunnerThreads, die auf dem Stack
// Tiegen. Runner bleibt nach Aufruf dieser Methode weiterhin
// benutzbar. Eventuell noch Taufende RunnerThreads kdnnen sich
// nach Aufruf dieser Methode wieder bei Runner zurilickmelden.
// Das heiBt, dass der Stack nach Aufruf dieser Methode nicht
// unbedingt Teer sein muss, es sei denn es wurde mit this
// synchronisiert.
public synchronized void clear() f{

for (RunnerThread rt=stack.pop(); rt!=null; rt=stack.pop()) f{

rt.quit();
}

// Stack, der nur eine bestimmte Anzahl an Elemente halten kann.
private static class LimitedStack

private RunnerThreadl] values;

private int size;

public LimitedStack(int capacity) f
values = new RunnerThread [capacity];
}

public RunnerThread pop() f{
if (size == 0) return null;
RunnerThread rt = values[--sizel;
// Téten wir Folgendes nicht, wirde dies zu einem
// Speicherloch fiihren!
valueslsizel = null;
return rt;

// Legt ein Objekt auf den Stack, es sei denn er ist voll.
// Ist dies der Fall, wird false zuriickgegeben, sonst true.
public boolean push(RunnerThread rt) f{

if (size == values.length - 1) return false;

values[size++] = rt;

return true;

Listing 9.1: Runner- und LimitedStack-Klassen



Sandini Bib
202 9 Threads

package com.tagtraum.perf.threads;
class RunnerThread implements Runnable f{

private static int count;

private final Object mutex = new Object();
private Runner runner;

private Runnable runnable;

private boolean running;

private boolean working;

private Thread thread;

RunnerThread() f
thread = new Thread("Runner-" + count++);
// Sicherstellen, dass die VM terminieren kann, auch wenn
// runner.destroy() nicht aufgerufen wurde.
thread.setDaemon(true);

// Startet den Thread bzw. benachrichtigt ihn, dass er mit der
// Ausfihrung fortfahren soll.
public void work() f
synchronized (mutex) f{
if (thread.isAlive()) {
mutex.notify();
b else |
thread.start();

// Setzt running auf false und benachrichtigt den Thread, dass
// er mit der Ausfihrung fortfahren soll. Dadurch wird er
// beendet.
public void quit() {
synchronized (mutex) f{
running = false;
mutex.notify();

// Hauptschleife des RunnerThreads
public void run() f{
synchronized (mutex) f{
try |
running = true;
while (running) f{
working = true;
// Fuhrt run() von runnable aus.
runnable.run();



Sandini Bib

Aligemeine Threadprogrammierung 203

working = false;

// Stellt sicher, dass wir uns kein

// Speicherloch einfangen.

runnable = null;

if (runner.returnRunnerThread(this)) {
mutex.wait();

} else |
// Da wir this nicht wieder bei
// runner registrieren konnten, missen wir quit()
// aufrufen, um belegte Ressourcen wieder
// freizugeben
quit();

}

} catch (InterruptedException ie) f{
// Kann eigentlich nicht passieren, da
// thread privat ist.
ie.printStackTrace();
quit();

// Wird von Runner vor work() aufgerufen.
void setRunnable(Runnable runnable) {
this.runnable = runnable;

// Wird von Runner aufgerufen.
void setRunner(Runner runner) {
this.runner = runner;

public boolean isAlive() |
return thread.isAlive();
}

Listing 9.2: RunnerThread-Klasse

Um zu vergleichen, ob das Benutzen von Runner sich wirklich positiv auswirkt, fithren
wir einen Test durch, in dem wir die Methode runRunnable() mehrfach ausfiihren. Die
Methode ist so angelegt, dass sie mit der oben bereits beschriebenen startThread()-
Methode vergleichbar ist.

private Runner runner = new Runner(100);
private Object runRunnable() f{

runner.run(new DummyRunnable());
return null;



204

9 Threads

private static class DummyRunnable implements Runnable f{
public void run() {}
}

Wie Tabelle 9.4 zeigt, ist im beschriebenen Testfall die Methode runRunnable() mindes-

tens sechsmal schneller als startThread().

Java VM startThread() runRunnable() Faktor
Sun JDK 1.3.1 Client 100% 15% 6,54
Sun JDK 1.3.1 Server 97% 13% 7,75
Sun JDK 1.4.0 Client 112% 16% 7,09
Sun JDK 1.4.0 Server 122% 10% 12,50
IBM JDK 1.3.0 106% 1% 9,85

Tabelle 9.4: Normalisierte Ausfiihrungszeit der Methode startThread() und runRunnable() sowie der Faktor, um

den runRunnable() schneller ist als startThread()

9.2.3 Kommunikation zwischen Threads

Oft muss ein Thread darauf warten, dass ein bestimmter Zustand eintritt. Folgender,

naiver Code ist ein Negativ-Beispiel dafiir, wie man dies anstellen kann.

volatile boolean condition = false;

public void waitForCondition() f{
// Furchtbarer Code! Tun Sie dies nicht!
while (condition) {
// Busy Wait

}

Dieses Idiom wird auch Busy Wait genannt. Der aufrufende Thread verbleibt so lange
in der waitForCondition()-Methode, bis ein anderer Thread die Variable condition auf
true setzt. Abgesehen davon, dass Sie wahrend des Wartens jede Menge CPU-Zyklen
verbrauchen, kann es sein, dass nie ein anderer Thread zum Zuge kommt. Sie warten

also vergebens.

Korrekt wiirde der Code etwa so lauten:

boolean condition = true;

public synchronized void waitForCondition()
throws InterruptedException f
while (condition) {
wait();



Aligemeine Threadprogrammierung 205

public synchronized void setCondition(boolean condition) f{
if (this.condition != condition) f{
this.condition = condition;
// Alle wartenden Threads versténdigen.
if (lcondition) notifyAl1();

J

Anstatt also ohne Pause in einer Schleife eine Bedingung zu iiberpriifen, warten wir
auf eine Benachrichtigung, iiberpriifen die Bedingung und warten gegebenenfalls auf
die néchste Benachrichtigung oder fahren mit der Ausfiihrung fort.

In obigem Code verwenden wir notifyAl1(), um alle Threads zu benachrichtigen, die
auf dasselbe Objekt warten. Falls Sie nur einen der wartenden Threads verstindigen
wollen, konnen Sie statt notifyAl11() die notify()-Methode verwenden. Jedoch sollten
Sie dann auch nicht mehr {iber this, sondern iiber ein eigenes Objekt synchronisieren.
Schlieflich kénnen Sie nicht wissen, welche anderen Klassen Ihr Objekt ebenfalls zum
Synchronisieren benutzen. Am Ende benachrichtigen Sie irgendeinen Thread, jedoch
keinen, der wait() inwaitForCondition() aufgerufen hat.

boolean condition = true;
static final Object lock = new Object();

public void waitForCondition()
throws InterruptedException f{
synchronized (lock) f
while (condition) f
Tock.wait();
}

public void setCondition(boolean condition) f{
synchronized (lock) f{
if (this.condition != condition) f{
this.condition = condition;
// Einen wartenden Thread verstdndigen.
if (lcondition) Tlock.notify();

Die notify()-Methode ist gewdohnlich schneller als notifyAl1(), wenn mehr als ein
Thread benachrichtigt werden konnte. Das heifit aber auch, dass die Semantik eine
ganz andere ist. Seien Sie also vorsichtig, wenn Sie hier versuchen zu optimieren.
Gewohnlich ist man mit notifyAl1() auf der sicheren Seite. Noch einmal:



206 9 Threads

notify() benachrichtigt irgendeinen Thread, der die wait()-Methode desselben
Objekts aufgerufen hat. Die Laufzeit ist daher O(c).

notifyA11() benachrichtigt alle Threads, die die wait()-Methode desselben Objekts
aufgerufen haben. Die Laufzeit ist daher O(n).

9.2.4 Warten oder schlafen?

Es gibt keinen Performance-Unterschied zwischen object.wait(time) und Thread.
sleep(time). Jedoch gibt es einen semantischen Unterschied, der zu Laufzeit-Problemen
fiihren kann.

Wenn Sie Thread.sleep(time) ausfiihren, behilt der ausfithrende Thread alle Monitore.
Dagegen wird der Monitor von object freigegeben, wenn Sie object.wait(time) ausfiih-
ren. Falls Sie also Thread.sTeep(time) in einem synchronisierten Block aufrufen, kann kein
anderer Thread auf einen Block zugreifen, der {iber dasselbe Objekt synchronisiert ist.
Dies gilt fiir die gesamte Schlafzeit. Rufen Sie dagegen object.wait(time) auf, so konnen
andere Threads durchaus Code-Blocke ausfiihren, die mit object synchronisiert sind.

// Andere Threads kénnen wdhrend der Sekunde
// mit this synchronisierte Code-Bldcke ausfiihren.
public synchronized void waitASecond()
throws InterruptedException f
// Warte eine Sekunde.
wait(1000);
}

// Niemand kann wdhrend der Sekunde mit this synchronisierte
// Code-Bldcke ausfiihren.
public synchronized void sleepASecond()
throws InterruptedException f{
// Schlafe eine Sekunde.
Thread.sleep(1000);
}

Es gilt:

Benutzen Sie in synchronisierten Code-Blocken niemals Thread. sleep(), es sei denn, Sie wollen
wirklich alle mit denselben Objekten synchronisierten Blocke fiir die Dauer des Schlafes sperren.

9.2.5 Prioritaten setzen und Vorrang lassen

Die Methode setPriority() der Klasse Thread verspricht, dass Sie mit ihr die Prioritét
eines Threads beeinflussen konnen. Verlassen Sie sich nicht darauf. Das Setzen der Pri-
oritét ist eine der sehr schlecht portierbaren Fahigkeiten von Threads. Es gibt Plattfor-
men, auf denen die Prioritdt eines Threads massive Auswirkungen hat, und es gibt
Plattformen, auf denen die Prioritat iiberhaupt nicht beachtet wird.



Skalieren mit Threads 207

Gleiches gilt fiir Thread.yield(). Der Effekt von yield() ist von Plattform zu Plattform
verschieden. Auch hier kann der Aufruf keinerlei, positive oder negative Auswirkun-
gen haben. Es gilt:

Thread.yield() und thread.setPriority() sind nicht portabel. Zum Optimieren von Pro-
grammen sind sie daher nur eingeschriinkt geeignet.

9.3 Skalieren mit Threads

Wenn Sie Ihre Hardware auf ein Multiprozessor-System hochriisten, kénnen Sie davon
nur profitieren, wenn Sie die Rechenlast auf mehrere Threads verteilen. Benutzen Sie
nur einen Thread oder eine so genannten Green-Thread-Implementierung der Java VM
(Kapitel 3.4 Die richtige VM auswihlen), wird maximal ein Prozessor ausgelastet. Falls
Ihr Kunde sich einen teuren 16-Prozessor-Rechner angeschafft hat, wird er sich nicht
gerade freuen, wenn Sie Software liefern, die nur ein Sechzehntel der potenziellen
Rechenleistung nutzt.

Kandidaten fiir Multithreading sind Programme wie beispielsweise HTTP- oder FIP-
Server, die viele parallele Verbindungen zu Klienten unterhalten. Auch auf Algorith-
mus-Ebene kann sich Parallelisierung lohnen. Die Crux an der Sache ist, dass parallele
Algorithmen auf Einprozessormaschinen haufig langsamer sind als ihre sequenziellen
Gegenstiicke. Von daher macht es keinen Sinn, Algorithmen prinzipiell fiir mehrere
Prozessoren auszulegen. Seit JDK 1.4.0 gibt es jedoch eine Methode, mit der Sie zur
Laufzeit herausfinden konnen, tiber wie viele Prozessoren die Ausfithrungsumgebung
verfiigt. Die Methode heifst Runtime.getRuntime().availableProcessors(). Wir wollen an
einem einfachen Beispiel ausprobieren, wie sich das Multiplizieren von Matrizen auf
Mehrprozessormaschinen beschleunigen lésst.

Per Definition ist das Produkt zweier Matrizen A, und B, eine Matrix C,, deren Ele-
mente ¢, die Skalarprodukte des i-ten Zeilenvektors von A und des k-ten Spalten-
vektors von B sind.

a, a ¢, ¢
1 G 1 Cn
a, a, | i b =|lec,, ¢
21 Ay = ¢ Cn
b, b,
a3 4y Gy Gy

b
Cip = (ail ) )'(blk J: ayby; +a,b,,
2k

b b ayb, +a,b,  a,b,+a,by,
ITRRLY
=|ay; ay ( Jz ay by +ayby,  ayb, +ayby,

ayby, +a,b,,  ayby, +ay,by,



Sandini Bib
208 9 Threads

Daraus ergibt sich folgender trivialer Algorithmus:

public static intL1[] conventionalMultiply(int[1[] a, int[1CL1 b) {
intl]J[] ¢ = new intla.lengthllb.lengthl;
for (int i = 0; i < a.length; i++) |
// tempordre Variablen, um teure Array-Zugriffe zu sparen
intl] cTemp = clil;
for (int k = 0; k < b.length; k++) {
int temp = 0;
int[] aTemp = alil;
for (int n = 0; n < b.length; n++) {
temp += aTempln] * b[nlCk];
}
cTemplk] = temp; // cl[illk] = temp

}
return c;

Die temporédren Variablen dienen dazu, teure Array-Zugriffe zu sparen (Kapitel 6.2.2
Teure Array-Zugriffe). Da die Berechnung eines c, von allen anderen ¢, unabhingig ist,
lasst sich dieser Algorithmus leicht parallelisieren, indem wir zum Berechnen von c,
fiir verschiedene Wertebereiche von i jeweils einen eigenen Thread starten.

public static int[J[] multithreadedMultiply(int[1[] a, int[I[] b,
int threads) f
// Falls nur ein Thread gestartet werden soll, benutzen wir
// den aktuellen Thread und konventionelles Multiplizieren
if (threads <= 1) {
return conventionalMultiply(a, b);
}
intf]J[] ¢ = new intla.lengthllb.lengthl;
try |
Threadl] t = new Threadl[threads];
int Tength = (int) Math.ceil(a.length / (double) threads);
// Starten der Threads mit jeweils einem Teilproblem
for (int i = 0; i < threads; i++) {
tli] = new Thread(new MultiprocessorMultiplier(a, b, c,
length * 1, length));
tlil.start();
}
// Warten, bis alle Threads fertig sind
for (int i = 0; i < threads; i++) {
tlil.join();
}
} catch (InterruptedException ie) |
// dirfte nicht passieren
ie.printStackTrace();
}

return c;



Sandini Bib
Skalieren mit Threads 209

J

private static class MultiprocessorMultiplier implements Runnable f{
private int[1[] a;
private int[1[] b;
private intlI[] c;
private int startRow;
private int Tength;

public MultiprocessorMultiplier(int[1[] a, intCL1[] b, int[1[] c,
int startRow, int length) {

this.a = a;
this.b = b;
this.c = c;

this.startRow = startRow;
this.length = length;
}

// Genau wie conventionalMultiply - nur die Grenzen der
// i-Schleife (Zeile) sind anders.
public void run() {
for (int i = startRow, len = length + startRow; i < len
&& 1 < a.length; i++) {
intl] cTemp = cli];
for (int k = 0; k < b.length; k++) {
int temp = 0;
int[] aTemp = alil;
for (int n = 0; n < b.length; n++) {
temp += aTempln] * b[nllkJ;
}
cTemplk] = temp;

J

Das Ergebnis unserer Bemiithungen zeigt Abbildung 9.2. Auf einer Zweiprozessorma-
schine (450 Mhz Intel Xeon) lasst sich die Ausfiihrungszeit mit 32 Threads auf 55 Pro-
zent der Ausfiihrungszeit mit einem Thread senken.

Die optimalen 50 Prozent werden unter anderem deshalb nicht erreicht, weil Threads
natiirlich auch Verwaltungsaufwand mit sich bringen. Wie wir gesehen haben, ist ins-
besondere das Starten eines Threads keine billige Angelegenheit. Dies, sowie die
Berechnung, welches Teilproblem von welchem Thread gelost werden soll, muss
sequenziell erfolgen. Genau dieser Aufwand ist auch der begrenzende Faktor fiir die
Parallelisierung jedes Algorithmus. Geméafl Gene Amdahls Gesetz von 1967 sind es die
sequenziellen Anteile eines parallelen Algorithmus, der die Laufzeitreduzierung
durch mehr Prozessoren nach oben hin beschrankt.



210 9 Threads

100 /°—

normalisierte Ausfihrungszeit

0 1 1 1 1 1 1 1 1

256 288 320 352 384 416 448 480 512

Seitenlange einer n x n-Matrize

—0—1 Thread —a—2 Threads —A—4 Threads
—o0— 32 Threads —— 64 Threads

Abbildung 9.2: Ausflihrungszeit einer Matrizen-Multiplikation auf einer Zweiprozessormaschine in Abhdngigkeit
von der Anzahl verwendeter Threads und der GréBe der Matrize

Bemerkenswert ist auch, dass die Laufzeit in unserem Experiment nicht bei zwei
Threads, sondern bei 32 Threads optimal ist und bei weiter steigender Threadzahl wie-
der ansteigt. Es kann also durchaus Sinn machen, mehr Threads zu starten, als Prozes-
soren vorhanden sind —jedoch sollten es nicht zu viele sein. Letztlich héngt der Faktor
aber von VM, Betriebssystem und Hardware ab.

Fiir unsere Testplattform wére also folgender Code sinnvoll:

public static intLIL] multiply(intC1L] a, intLI[] b) {
int availableProcessors
= Runtime.getRuntime().availableProcessors();
if (availableProcessors == 1) {
return conventionalMultiply(a, b);
}
return multithreadedMultiply(a, b, availableProcessors*16);
}

Dies ist jedoch nicht allgemeingiiltig. Haufig fiihrt ein Faktor von 4 oder 8 zu ver-
gleichbaren Laufzeiten.



Sandini Bib

Threads in Benutzeroberfldchen 211

9.4 Threads in Benutzeroberflachen

Gerade in Benutzeroberflichen spielt die wahrgenommene Performance eine grofie
Rolle. In den folgenden beiden Abschnitten wollen wir uns damit beschiftigen, wie
man Threads sinnvoll zusammen mit dem AWT (Abstract Window Toolkit) und Swing
einsetzt.

9.4.1 Lebendige AWT-Oberflachen

Als Beispiel wollen wir ein kleines Programm anschauen, das den Benutzer eine URL
eingeben lasst, die entsprechende Datei lddt und in einer TextArea anzeigt.

Der Code fiir die Oberfldche unserer Applikation sieht folgendermafSen aus:

package com.tagtraum.perf.threads;

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.net.*;

public class URLLoaderDemo extends Frame f{

private TextField urlField;
private TextArea textArea;
private Label statusBar;

public static void main(Stringl] args) f{
new URLLoaderDemo();
}

public URLLoaderDemo() f
super("URLLoaderDemo");
Panel panel = new Panel();
Button ToadButton = new Button("Load");
urlField = new TextField("Enter URL here", 30);
textArea = new TextArea(20, 65);
statusBar = new Label();
URLLoader urllLoader = new URLLoader();
lToadButton.addActionListener(urlLoader);
urlField.addActionListener(urlLoader);
panel.add(urlField, BorderLayout.NORTH);
panel.add(loadButton, BorderLayout.NORTH);
add(panel, Borderlayout.NORTH);
add(textArea, BorderLayout.CENTER);
add(statusBar, BorderlLayout.SOUTH);
setSize(300, 300);
pack();



Sandini Bib
212 9 Threads

setVisible(true);

}

Was jetzt noch fehlt, ist die Klasse URLLoader, die als ActionListener fiir den LOAD-Button
und das Textfeld ur1Field dient.

Zunichst einmal die Version ohne Threads:

// Innere Klasse von URLLoaderDemo
// Version ohne Threads - Gehen Sie so nicht vor!
private class URLLoader implements ActionlListener

public void actionPerformed(ActionEvent e) f{

textArea.setText("");
statusBar.setText("Loading " + urlField.getText());
Reader in = null;
try |

in = new InputStreamReader(

new URL(urlField.getText()).openStream()
)
charl[] cbuf = new char[1024 * 81;

for (int count = 0; (count = in.read(cbhuf)) = -1;) {
textArea.append(new String(cbuf, 0, count));
repaint();

}
statusBar.setText("Done.");

} catch (IOException ioe) {
statusBar.setText(ioe.toString());

b finally {
if (in 1= null)
try { in.close(); } catch (IOException ioe) (!}
}
repaint();

)

Ein kleiner Test zeigt, dass die Applikation ganz ordentlich arbeitet. Sie hat jedoch ein
paar Nachteile:

Waihrend des Ladens reagiert die Applikation nicht auf Benutzereingaben.
Wihrend des Ladens ldsst sich die Grof3e des Fensters nicht verdndern.

Der Benutzer wird nicht iiber den Fortschritt des Ladens informiert. Er kann nicht
feststellen, wie lange es noch dauert.

Wihrend der letzte Punkt leicht auch ohne Threads zu beheben ist, erfordern die bei-
den ersten Punkte Threads. Dies ist deshalb der Fall, weil das Laden in der Methode



Sandini Bib

Threads in Benutzeroberfldchen 213

actionPerformed() geschieht. actionPerformed() wird ndmlich vom GUI-Thread ausge-
fiihrt. Und wenn der GUI-Thread mit dem Laden einer Datei beschiftigt ist, kann er
sich logischerweise nicht den Benutzereingaben widmen.

Hier die zweite Version von URLLoader, diesmal mit Threadunterstiitzung:

// Innere Klasse von URLLoaderDemo

// Version mit Threads

private class URLLoader implements ActionListener, Runnable f{
private Thread t;
private URL url;

public void actionPerformed(ActionEvent e) f{
try f
// Stoppe Thread, falls einer Tduft.
cancel();
url = new URL(urlField.getText());
// Starte neuen Thread
t = new Thread(this);
t.start();
} catch (MalformedURLException mfue) {
statusBar.setText(mfue.toString());
}

// Stoppt evtl. schon vorhandenen Thread.
public void cancel() f{
if (£ I=null && t.isAlive()) |
try
t.interrupt();
t.join();
t =null;
} catch (InterruptedException ie) |
statusBar.setText(ie.toString());
}

public void run() {

// Lboscht die TextArea

textArea.setText("");

statusBar.setText("Loading " + url);

repaint();

Reader in = null;

try f
URLConnection connection = url.openConnection();
in = new InputStreamReader(connection.getInputStream());
// Wir merken uns die Gesamtldnge.
int contentlLength = connection.getContentlLength();
charl] cbuf = new char[1024 * 87;
// Lese so lange, wie Daten da sind und der Thread nicht



Sandini Bib
214

9 Threads

// unterbrochen wurde.
for (int count = 0, sum = 0;
(count = in.read(cbuf)) != -1
&& It.isInterrupted();) f
textArea.append(new String(cbuf, 0, count));
// sum beinhaltet die Anzahl der bereits
// gelesenen Bytes.
sum += count;
// Zeige an, wie weit wir sind.
showProgress(contentLength, sum);
repaint();
}
if (t.isInterrupted())
statusBar.setText("Interrupted.");
else
statusBar.setText("Done.");
} catch (IOException ioe) f
statusBar.setText(ioe.toString());

b finally {
if (in != null)
try { in.close(); } catch (IOException ioe) {!}
}
repaint();

// Zeigt an, wie viel wir schon geladen haben.
private void showProgress(int contentlength, int sum) f{
if (contentlLength != -1) {
statusBar.setText((sum / 1024) + "K/"
+ (contentlength / 1024) + "K - "
+ (sum * 100 / (contentlLength)) + "%");
} else |
// Wenn contentlLength -1 ist, wissen wir nicht, wie viel
// wir insgesamt laden missen. Wir zeigen aber zumindest
// an, wie viel wir schon geladen haben.
statusBar.setText((sum / 1024) + "K");

}

Auch, wenn das Laden kein bisschen schneller erfolgt, so kann der Benutzer nach
Belieben mit dem Fenster rumspielen und er wird iiber den Fortschritt des Ladens mit
einer Prozentzahl und absoluten Werten informiert. Da beim erneuten Driicken des
LoAD-Buttons ein bereits laufender Thread mit der cancel()-Methode gestoppt wird,
kann der Benutzer sogar wahrend des Ladens einfach eine andere URL eingeben und
LOAD driicken. Der aktuelle Ladevorgang wird dann unterbrochen und ein neuer
begonnen. In der ersten Version musste der Nutzer warten, bis die Datei vollstindig

geladen war.



Threads in Benutzeroberfldchen 215

=loix]

|texte.fperf0rmancefkapite -0 kapitel-09. td

Wiahrend es hei anderen Ohjekten meist nicht lohint, so ist das Worhalten van Thres;l
eine Ausnahme.
Threadpool
Ohjekt-Pools sind mittlerseile eher schadlich fir die Performance eines langlaufer
Programms. Sie filhren zu alten Objekten, die in der dlteren Generation des Heaps
wird. Da der Garbage Collection Algorithrmus fir die dltere Generation meist auf
Speicherverbrauch und Lokalitat optimiert ist und nicht so sehr auf Geschwindigkei
junge Generation, filhren viele langlehige Objekte eherzu langen Speicherbereinig
Es ist daher nicht unbedingt empfehlenswert Objeki-Poaols anzulegen. Eine Ausnat
sind Objekte, deren Erstellen — aus welchen Grinden auch immer — sehr aufwend
kinnen neben Threads auch Objekie sein, die sehr grof2 sind oder bei der Initialisi
aufivendige Berechnungen erfardern.
Die Klasse Runneristin der Lage, ein java.lang.Runnable-Objekt in einem Thread
auszufithren, und diesen Thread nach Beendigung der Runnable.run{)-Methode fii
nachste Runnahle-Objekt wiederzuvenwenden. Anstelle von normalen Thread-Ohje
werden RunnerThread-Ohjekte benutet, die sich nach dem asynchronen Ausfithren
Runnable.rung-Methode beim Runner-Ohjekt zur Wiederverwendung zurlckmelder
Das Sequenzdiagramm in Abbildung 9.1 zeigt das Zusammenspiel der Ohjekte, w
hereits RunnerThread-Objekte zurickgemeldet haben
-
ol

i |

2410411 - 57%

Abbildung 9.3: Screenshot der zweiten Version mit Fortschrittsanzeige
Da wir nun iiber eine cancel()-Methode verfiigen, konnen wir dem Benutzer natiirlich
auch einen entsprechenden Knopf zur Verfiigung stellen.

Insgesamt ist das Arbeiten mit der zweiten Version wesentlich befriedigender. Der
Benutzer ist jederzeit informiert und hat die Kontrolle iiber die Applikation — und
nicht umgekehrt wie in der ersten Version.?

Daraus folgt:

Aufwiindige Operationen sollten, wenn es geht, in einem separaten Thread ausgefiihrt werden,
um die Benutzeroberfliche nicht zu blockieren.

Und:

Wenn irgendwie moglich, informieren Sie den Benutzer immer iiber den Stand der von ihm
angestofSenen Operationen.

9.4.2 Threads in Swing

Wihrend AWT threadsicher ist, gilt dies nicht fiir Swing. So gut wie alle Aktionen, die
die Benutzeroberfliche manipulieren, miissen im GUI-Thread ablaufen. Es gibt nur
wenige Methoden innerhalb Swings, die trotzdem threadsicher sind. Sie sind als Aus-
nahmen entsprechend in der Dokumentation gekennzeichnet.

2 InSun]DK1.4.0 fir Windows tauchen am Ende des Textes zufllige Textfetzen auf. Dies ist ein Feh-
ler im JDK.



216 9 Threads

Wenn Sie das GUI trotzdem von aufierhalb des GUI-Threads manipulieren wollen,
miissen Sie sich einer der beiden Methoden javax.swing.SwingUtilities.invokelater()
oder invokeAndWait() bedienen.

invokelater() fiihrt die run()-Methode eines java.lang.Runnable-Objektes asynchron zum
aufrufenden Thread auf. Das heifdst, die Methode kehrt unmittelbar zuriick und die
run()-Methode wird spéter vom GUI-Thread ausgefiihrt, nachdem alle Ereignisse in
der AWT-Ereignis-Warteschlange verarbeitet sind.

invokeAndWait() hingegen fiihrt die run()-Methode eines Runnable-Objektes synchron
zum aufrufenden Thread auf. Dies bedeutet, dass der aufrufende Thread warten muss,
bis alle Ereignisse in der AWT-Ereignis-Queue verarbeitet sind und anschlieffend die
run()-Methode des Runnable-Objektes vom GUI-Thread ausgefiihrt wurde. Der Vorteil
gegeniiber invokelater() liegt darin, dass evtl. ausgeloste Ausnahmen in einer Invoca-
tionTargetException gekapselt und an den Aufrufer weitergeleitet werden. Somit ist
eine robustere Ausnahmebehandlung méglich.

Es empfiehlt sich, fiir beide Methoden anonyme, innere Klassen zu verwenden. Bei-
spiel:

SwingUtilities.invokelater(new Runnable() f{
public void run() f{
// erledige, was auch immer erledigt werden muss.
}
D



|0 Effiziente Ein- und Ausgabe

Fiir eine effiziente Ein-/Ausgabe ist es wesentlich, zu verstehen, wie die einzelnen
Klassen der Pakete java.io und seit JDK 1.4 auch java.nio funktionieren. Wir wollen
zundchst an einem einfachen Beispiel illustrieren, wofiir einige Klassen gut sind und
wofir nicht.

10.1 Fallstudie Dateikopieren

Man kénnte annehmen, dass so eine einfache Operation wie das Kopieren einer Datei
schon von irgendeiner Klasse der Java-Klassenbibliothek implementiert wird. Dies ist
jedoch nicht so. Daher miissen wir dies selbst erledigen.

Die erste Version unseres Dateikopierers sieht folgendermafien aus:
package com.tagtraum.perf.io;
import java.io.*;

// Naiver Dateikopierer! Nicht nachmachen!
public class FileCopyDemol f{
public static void main(Stringl] args) throws IOException f{
Reader reader = new FileReader(args(01);
Writer writer = new FileWriter(args(1]);
int c;
while ((c = reader.read()) != -1) {
writer.write(c);

}
reader.close();
writer.close();

J

Quell- und Zieldatei miissen als Argumente angegeben werden. Anschlieffend werden
ein FileReader und ein FileWriter zum Lesen bzw. Schreiben eines Zeichens benutzt. So
wird die gesamte Datei kopiert. Mit anderen Worten: Fiir jedes Zeichen wird einmal
von der Festplatte gelesen und einmal auf sie geschrieben. Sie konnen sich ausmalen,
welche katastrophalen Folgen dieses Vorgehen bei einer mehrere Mbyte grofien Datei
hat — die Tastatur wiirde Staub fangen, bevor die Kopie erstellt ist.



Sandini Bib

218 10 Effiziente Ein- und Ausgabe

Die Losung ist puffern. Statt des einfachen FileReaders bzw. -Writers benutzen wir also
einen BufferedReader bzw. einen Bufferediriter. Diese beiden Klassen sorgen dafiir,
dass bei read()- bzw. write()-Aufrufen zunichst ein Pufferspeicher manipuliert wird

und erst wenn dieser voll bzw. leer ist die Festplatte in Aktion tritt.

package com.tagtraum.perf.io;
import java.io.*;

// Leicht verbessert, aber nicht zu empfehlen!
public class FileCopyDemo?2 f{
public static void main(Stringl] args) throws IOException {
Reader reader = new BufferedReader(new FileReader(args[0]));
Writer writer = new BufferedWriter(new FileWriter(argsl11));
int c;
while ((c = reader.read()) != -1) {
writer.write(c);
}
reader.close();
writer.close();

Ein kleiner Schonheitsfehler hieran ist, dass wir fiir eine Datei mit einer Million Zei-
chen jeweils eine Million Mal read() und eine Million Mal write() aufrufen. Obwohl
nicht jedes Mal auf die Festplatte durchgegriffen wird, ist dies nicht gerade effizient.

Besser ist es, jeweils einen char-Array zu lesen und dann zu schreiben.

package com.tagtraum.perf.io;
import java.io.*;

// Wieder leicht verbessert, aber immer noch nicht
// zu empfehlen!
public class FileCopyDemo3 f{
public static void main(Stringl] args) throws IOException {
Reader reader = new BufferedReader(new FileReader(args[0]));
Writer writer = new BufferedWriter(new FileWriter(args[11));

int Tength;
charl] cbuf = new char[1024 * 81;
while ((length = reader.read(cbhuf)) != -1) {

writer.write(cbuf, 0, length);
}
reader.close();
writer.close();



Sandini Bib
Fallstudie Dateikopieren 219

Im Grunde iibernehmen wir somit das Puffern selbst. BufferedReader und Buffered-
Writer — die, nebenbei bemerkt, auch noch voll synchronisiert sind — werden also tiber-
fliissig. Also weg damit!

package com.tagtraum.perf.io;
import java.io.*;

// Schon nicht schlecht. Aber etwas ist hier noch falsch!
public class FileCopyDemo4 f{
public static void main(Stringl] args) throws IOException f{
Reader reader = new FileReader(args(0]);
Writer writer = new FileWriter(args(1]);

int Tength;
charl] cbuf = new char[1024 * 81;
while ((length = reader.read(chuf)) != -1) {

writer.write(cbuf, 0, length);
}
reader.close();
writer.close();

J

Natiirlich kdnnen Sie die Grofse des char-Arrays variieren — je nachdem wie viel Spei-
cher Sie fiir das Kopieren belegen wollen.

Nun sind Reader und Writer Klassen, die speziell fiir Zeichen ausgelegt sind. Und zum
Kopieren von Zeichen ist unsere letzte Version schon ziemlich gut. Im Grunde wollen
wir aber gar keine Zeichen kopieren, sondern Bytes. Da wir jedoch Reader und Writer
benutzt haben, haben wir in allen bisherigen Versionen unseres Dateikopierers beim
Lesen Bytes in Zeichen umgewandelt und beim Schreiben Zeichen in Bytes.

Offensichtlich ist es giinstiger, auf dieses Hin- und Herwandeln zu verzichten. Statt
Reader und Writer sollten wir also InputStream und OutputStream verwenden.

package com.tagtraum.perf.io;
import java.io.*;

// Performanter Dateikopierer
public class FileCopyDemo5 f{
public static void main(Stringl] args) throws IOException f{
InputStream in = new FilelnputStream(args[01);
OutputStream out = new FileOutputStream(args[11);

int Tength;
bytel] buf = new bytel[1024 * 81;
while ((length = in.read(buf)) != -1) {

out.write(buf, 0, Tength);
}



Sandini Bib
220 10 Effiziente Ein- und Ausgabe

in.close();
out.close();

}

Seit JDK 1.4 gibt es noch eine weitere, potenziell effizientere Moglichkeit eine Datei zu
kopieren. Mit jedem Dateistrom ist ein java.nio.channels.FileChannel assoziiert. Dieser
verfiigt tiber die Methoden transferTo() und transferfrom(), die dazu optimiert sind,
Daten zu oder von einer Datei zu {ibertragen. Dabei, so die Dokumentation, werden
moglicherweise sehr effiziente Betriebssystemroutinen benutzt.

package com.tagtraum.perf.io;

import java.io.FilelnputStream;
import java.io.FileOutputStream;
import java.io.IOException;

import java.nio.channels.FileChannel;

// Dateikopierer fir JDK >= 1.4.0
public class FileCopyDemo6 f{
public static void main(Stringl] args) throws IOException {
FileInputStream in = new FilelnputStream(args(0]1);
FileOutputStream out = new FileQutputStream(argsl1]);
FileChannel inChannel = in.getChannel();
FileChannel outChannel = out.getChannel();
long position = 0;
long transferred;
long remaining = inChannel.size();
while (remaining > 0) {
transferred = inChannel.transferTo(position, remaining,
outChannel);
position += transferred;
remaining -= transferred;
}
in.close();
out.close();

}

Ein kleiner Test unter Windows 2000 mit Sun JDK 1.4.0 Client offenbart jedoch, dass in
dieser Umgebung die transferTo()/transferfrom()-Methoden eher langsamer sind als
die konventionelle Methode mit einem einfachen byte-Array. Dies wird sich jedoch
vermutlich in spéateren Versionen éndern.

Wir wollen noch einmal die wichtigsten Punkte dieser kleinen Fallstudie zusammen-
fassen:

Wenn méglich, puffern Sie alle Ein- und Ausgaben.

Eigene Puffer sind meist schneller als BufferedReader, Buffereduriter, BufferedInput-
Stream und BufferedOuputStream, da sie nicht synchronisiert werden miissen.



Texte ausgeben 221

Benutzen Sie Reader und Writer ausschliefilich, wenn Sie tatsdchlich an Zeichen und
nicht Bytes interessiert sind.

Das neue Ein-/Ausgabe-API java.nio kann Operationen beschleunigen, muss aber
nicht.

120%
= 100,0%
N 100%
2]
(o))
c
2 80% 1
S
@
2 60% 1
(]
t
:g 40% +—
g . 17,8%
5 20% 1 —=——10,3%" 102%—0
< |_| 1,0% 40%
Oo/o 1 1 '_I
S % > o ©
0@0 Q;(Qo Qo((\o Q‘((\O Qc((\o Q;((\o
3 $

Abbildung 10.1: Kopieren einer 633 Kbyte-Datei unter Windows 2000 mit Sun JDK [.4.0 Client auf verschiedene
Weisen

10.2 Texte ausgeben

Wie oben bereits festgestellt, ist der korrekte Weg einen Text auszugeben, einen Wiriter zu
verwenden. Wir wollen verschiedene Wiriter testen. Wir beginnen mit dem PrintWriter.

Unser Testprogramm schreibt die {ibergebenen Strings in eine Datei. Nach jedem
String soll zudem ein Zeilenseparator ausgegeben werden. Mit dem Printhriter ldsst
sich diese Aufgabe sehr leicht bewaltigen. Nattiirlich puffern wir die Ausgabe, da wir ja
wissen, welche fatalen Auswirkungen es hat, nicht zu puffern.

package com.tagtraum.perf.io;

import java.io.FileWriter;
import java.io.PrintWriter;
import java.io.IOException;



222 10 Effiziente Ein- und Ausgabe

// Nicht nachahmen!
public class CharWriterDemol {
public static void main(Stringl] args) throws IOException f{
PrintWriter out = new PrintWriter(
new BufferedWriter(new FileWriter("CharWriterDemo.tmp")),
true
)
for (int i = 0; i < args.length; i++) {
out.printinCargsCil);
}
out.close();

}

In ein paar Testldufen stellen wir fest, dass unser Programm nicht gerade sehr schnell
ist (Sie finden die Ergebnisse am Ende dieses Abschnittes in Tabelle 10.1). Dies liegt
daran, dass wir im Konstruktor des PrintWriters als zweiten Parameter ein true tiber-
geben. Dies bedeutet, dass nach jedem printin()-Aufruf die Methode flush() aufgeru-
fen wird (Autoflush) und somit der Inhalt des Pufferspeichers in den darunter
liegenden Writer geschrieben wird. In unserem Fall ist diese der Filelriter, der wie-
derum direkt auf die Festplatte schreibt. Kein Wunder also, dass das Programm ein
wenig langsam ist. Der Puffer ist ganzlich nutzlos.

Ubrigens erliegen Sie demselben Mechanismus, wenn Sie etwas in die Standard- oder
Fehlerausgabe schreiben. Daher ist es fiir die Performance eines Programms sehr schad-
lich, wenn Sie beispielsweise in die Standardausgabe Protokollinformationen schreiben.
Auf der anderen Seite wissen Sie nicht genau, wo das Programm steckt, wenn Sie die
Standardausgabe puffern. Der Mittelweg ist, die Standardausgabe zu puffern, die Feh-
lerausgabe jedoch nicht. Wirklich wichtige Dinge erfahren Sie so sofort.

Versuchen wir es anders. Diesmal ohne Autoflush und auch ohne Puffer.
package com.tagtraum.perf.io;

import java.io.FilelWriter;
import java.io.PrintWriter;
import java.io.IOException;

// Langsam, da ungepuffert
public class CharWriterDemo2 {
public static void main(Stringl] args) throws IOException {
PrintWriter out = new PrintWriter(
new FileWriter("CharWriterDemo.tmp"));
for (int i = 0; i < args.length; i++) {
out.printin(argsCil);
}
out.close();



Sandini Bib
Texte ausgeben 223

Das Ergebnis ist schon wesentlich besser, jedoch immer noch nicht zufrieden stellend.
PrintWriter muss anscheinend doch gepuffert werden.

package com.tagtraum.perf.io;

import java.io.FilelWriter;
import java.io.BufferedWriter;
import java.io.IlOException;

public class CharWriterDemo3 {
public static Tong main(Stringl] args) throws IOException f{

BufferedWriter out = new BufferedWriter(
new FileWriter("CharWriterDemo.tmp"));

for (int i = 0; i < args.length; i++) |
out.write(argslil);
out.newLine();

}

out.close();

}

Die gepufferte Version ist in der Tat etwas schneller. Wie viel, hdngt von der Lange der
ausgegebenen Zeilen ab.

Es ist nun tatsédchlich recht schwierig, die letzte Version noch zu beschleunigen. Daher
greifen wir zu einem Trick. Wir nehmen einfach mal an, dass alle Zeichen unseres
Strings sich mit einem Byte darstellen lassen. Davon ausgehend schreiben wir unseren
eigenen liriter, einen maskierten Writer, der nur jene Bits durchldsst, die zuvor in einer
Bitmaske gesetzt wurden (Listing 10.1). Wenn wir das gesamte niedrige Byte eines Zei-
chens durchlassen, entspricht dies ISO 8859-1, dem in Westeuropa tiblichen Zeichen-
satz. Unser Vorgehen ist dabei um einiges einfacher, als es normalerweise intern durch
einen entsprechenden OutputStreamiriter geschehen wiirde.

package com.tagtraum.perf.io;

import java.io.CharConversionException;
import java.io.IOException;

import java.io.OutputStream;

import java.io.Writer;

import java.util.ResourceBundle;

public class MaskedStreamWriter extends Writer f{
// Vordefinierte Masken flr ASCII und ISO 8859-1 (Latin 1)
public static final int ASCII_MASK = O0x7f;
public static final int ISO_8859_1_MASK = Oxff;

private QutputStream out;
private bytel] buf;



Sandini Bib
224 10 Effiziente Ein- und Ausgabe

private int mask;

private static ResourceBundle TocalStrings
= ResourceBundle.getBundle(
"com.tagtraum.perf.io.localStrings");

public MaskedStreamWriter(QutputStream out, int bufsize,
int mask) {
this.out = out;
buf = new bytelbufsizel;
// Masken, die mehr als die acht niedrigen Bits durchlassen,
// werden nicht unterstitzt.
if (mask > Oxff)
throw new ITlegalArgumentException(
localStrings.getString("illegal_mask"));
this.mask = mask;

public void write(int c¢) throws IOException f{
// Pruft zundchst, ob das zu schreibende Zeichen durch
// die Maske passt.
if ((c & ~mask) !=0)
throw new CharConversionException(
lTocalStrings.getString("unallowed_char") + " " + c);
out.write(c);

public void write(charl] cbuf, int offset, int Tength)
throws I0Exception f
// Schreibt alle Zeichen zundchst in einen byte-Array
int 1 = Math.min(buf.length, length);
while (1 > 0) {
int end = offset + 1;
for (int i = offset; 1 < end; i++) {
char ¢ = cbuflil;
// Prift, ob das zu schreibende Zeichen durch
// die Maske passt.
if ((c & ~mask) != 0)
throw new CharConversionException(
localStrings.getString("unallowed_char")
+ "N+ c);
else
bufli - offset]l = (byte) c;
}
out.write(buf, 0, 1);
offset += 1;
Tength -= 1;
1 = Math.min(buf.length, length);



Sandini Bib

Texte ausgeben 225

public void write(String str, int off, int len)
throws I0Exception f
if (len < 0)
throw new IndexOutOfBoundsException();
char cbufl[] = new charllenl;
str.getChars(off, off + len, cbuf, 0);
write(chuf, 0, len);

public void close() throws IOException f{
out.close();
}

public void flush() throws IOException f{
out.flush();
}

Listing 10.1: Maskierter Stream-Writer

Diesen MaskedStreamiriter bauen wir in unser Testprogramm ein und lassen den Test
laufen. Und siehe da! Die Ausgabegeschwindigkeit verdoppelt sich (Tabelle 10.1)
gegeniiber der letzten Version.

package com.tagtraum.perf.io;

import java.io.BufferedWriter;
import java.io.FileQutputStream;
import java.io.IOException;

public class CharWriterDemo4 {

public static void main(Stringl] args) throws IOException {
Tong start = System.currentTimeMillis();
BufferedWriter out = new BufferedWriter(
new MaskedStreamWriter(
new FileOutputStream("CharWriterDemo.tmp"),
MaskedStreamWriter.I1S0_8859_1_MASK));
for (int i = 0; i < args.length; i++) {
out.write(argslil);
out.newLine();
}
out.close();



226 10 Effiziente Ein- und Ausgabe

Java VM CharWriter CharWriter CharWriter CharWriter
Demol Demo2 Demo3 Demo4

Sun JDK [.3.1 Client 100% 46% 40% 13%

Sun JDK 1.3.1 Server 79% 30% 24% 13%

Sun JDK 1.4.0 Client 90% 33% 25% 14%

Sun JDK 1.4.0 Server 84% 25% 19% 12%

IBM DK 1.3.0 80% 32% 24% 12%

Tabelle 10.1: Normalisierte Ausflihrungszeiten der einzelnen CharWriterDemos

Aus unseren Experimenten folgt:

Wenn moglich, sollten PrintWriter und PrintStream nicht im Autoflush-Modus
benutzt werden.

Puffern nutzt nur etwas, wenn flush() selten aufgerufen wird.

Die Umwandlung von char in byte ist sehr teuer und kann gegebenenfalls schneller
durch einen eigenen Writer erledigt werden.

10.3 Texte einlesen

Im Grunde funktioniert das Einlesen eines Textes genauso wie das Schreiben. Nur
miissen diesmal Bytes in Zeichen umgewandelt werden und nicht umgekehrt. Unser
Beispielprogramm soll eine Datei zeilenweise einlesen. Natiirlich puffern wir das Ein-
lesen entsprechend. Und gliicklicherweise verfiigt BufferedReader sogar {iber eine read-
Line()-Methode.

package com.tagtraum.perf.io;

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;

public class CharReaderDemol f{
public static void main(Stringl] args) throws IOException {
long start = System.currentTimeMillis();
BufferedReader in = new BufferedReader(
new FileReader("CharWriterDemo.tmp"));
String Tine;
while ((Tine = in.readLine()) != null) {
}
in.close();



Dateicache 227

Das Ergebnis (Tabelle 10.2) ist nicht schlecht und viel besser ist es wohl auch nicht
moglich. Jedoch kénnen wir den gleichen Kniff anwenden wie beim Schreiben — nam-
lich das hohere Byte ignorieren. Und das sogar ganz ohne Aufwand, da Datalnput-
Stream iiber eine entsprechende Methode verfiigt.

package com.tagtraum.perf.io;

import java.io.BufferedInputStream;
import java.io.DatalnputStream;
import java.io.FilelnputStream;
import java.io.lOException;

public class CharReaderDemo?2 f
public static void main(Stringl] args) throws IOException f{
lTong start = System.currentTimeMillis();
DatalnputStream in = new DatalnputStream(
new BufferedInputStream(
new FilelnputStream("CharWriterDemo.tmp")));
String Tine;
while ((line = in.readlLine()) != null) {
}
in.close();

J

Die readlLine()-Methode ist als veraltet (deprecated) markiert, gerade weil sie nur fiir
wenige Zeichensitze geeignet ist. Fiir diese wenige Zeichensitze (ASCII, ISO 8859-1)
ist sie jedoch mit Sun Client-VMs ein wenig schneller als ihr Gegenstiick aus dem
BufferedReader. In anderen VMs ist sie jedoch langsamer.

Java VM CharReaderDemol CharReaderDemo2
Sun JDK 1.3.1 Client 100% 89%
Sun DK 1.3.1 Server 56% 78%
Sun JDK 1.4.0 Client 90% 82%
Sun JDK 1.4.0 Server 59% 87%
IBM DK 1.3.0 41% 97%

Tabelle 10.2: Normalisierte Ausfiihrungszeiten der beiden CharReaderDemos

10.4 Dateicache

Gerade weil das Lesen von Dateien nicht gerade zu den allerschnellsten Operationen
gehort, kann es sich manchmal lohnen, Dateien zu cachen. Anwendungen, die davon
profitieren, sind beispielsweise HTTP- oder FIP-Server, da hier die Festplatte zum
Nadelohr wird und daher so viele parallele Festplattenzugriffe wie moglich vermieden
werden miissen.



228 10 Effiziente Ein- und Ausgabe

Um einen effizienten Cache zu implementieren, ist nicht nur die Cacheaustauschstrate-
gie (LRU, Zufall etc. siehe Kapitel 8.4 Caches) wichtig, sondern auch, wie iiberpriift wird,
ob eine gecachte Datei nicht mittlerweile manipuliert wurde. Dazu miissen in der Regel
das Datum der letzten Veranderung und die Dateigrofie tiberpriift werden. Nur eines
von beiden zu iiberpriifen reicht meist nicht aus, da das Datum der letzten Veranderung
oft nur eine Auflésung von einer Sekunde hat und eine Manipulation ja nicht unbedingt
in einer Groenveranderung miinden muss. Beide Eigenschaften zu tiberpriifen ist also
angebracht. Leider ist dies jedoch nicht ganz umsonst. Abbildung 10.2 zeigt die Zeit, die
vergeht, wenn Sie eine Datei vollstandig lesen bzw. nur ihre Grofie und das Datum der
letzten Verdnderung in Erfahrung bringen. Auf dem getesteten System (Windows 2000,
Sun JDK 1.4.0 Server) musste die Datei mindestens eine Grofle von 24 Kbyte haben, um
den Zugriff auf die Metadaten zu rechtfertigen. Mit anderen Worten: Ein Cache, der bei
jedem Zugriff die Giiltigkeit einer Datei tiberpriift, ist auf diesem System dazu bestimmt,
ineffizient zu sein, wenn er Dateien kleiner 24 Kbyte aufnimmt.

Zeit

N WA OO N

8 16 24 32 40 48 56 64 72
DateigréBBe in Kbyte

—o— readFile —a— lastModified/length

Abbildung 10.2: Vergleich des Zeitaufwandes fiir das vollstdndige Lesen einer Datei und lediglich fiir das Erfragen
von Dateildnge sowie Datum der letzten Verdnderung

Es lohnt sich also, jeder gecachten Datei eine Mindest-Lebenszeit zu garantieren, wéh-
rend der nicht tiberpriift wird, ob die Datei verdndert wurde. Kleine Dateien sollten
evtl. gar nicht erst gecached werden.

Ebenso sollten sehr grofle Dateien vermutlich nicht gecached werden, da sie zu viel
Speicher belegen. Ein effizienter Dateicache muss also folgenden Kriterien geniigen:

Minimale und maximale DateigrofSe muss spezifizierbar sein

Caching-Strategie sollte austauschbar sein



Sandini Bib
Dateicache 229

Cache-Kapazitdt muss manipulierbar sein

Cache-Eintrdge miissen eine Lebensdauer haben, wiahrend der ihre Giiltigkeit nicht
iiberpriift wird

Ein einfacher, diesen Kriterien entsprechender Dateicache kénnte aussehen wie in Lis-
ting 10.2.

package com.tagtraum.perf.io;
import com.tagtraum.perf.datastructures.Cache;

import java.io.File;
import java.io.IOException;
import java.io.InputStream;

public class FileCache f

private Cache cache;

private Tong minFilesize;

private long maxFilesize = Long.MAX_VALUE;
private int timeTolive = -1;

public FileCache(Cache cache) f
this.cache = cache;
}

public Entry get(File file) throws IOException f{

// Hole Entry aus dem Cache

Entry entry = (Entry) cache.get(file);

if (entry != null && lentry.isStale()) |
// Entry ist nicht stale, also zurlick an den Klient
return entry;

}

// Falls es gecached werden soll, cache es

Tong length = file.length();

if (timeTolLive != 0 && length > minFilesize

&& length < maxFilesize) |

// Instanziiere ein FileCache.Entry-Objekt ...
entry = new ByteArrayFile(file);

// Alternativ koénnten wir auch eine andere Klasse
// instanziieren:
// entry = new MemoryMappedFile(file);

// ... setze seine Lebensdauer ...
entry.setTimeTolLive(timeToLive);
// ... und registriere es im Cache

cache.put(file, entry);
}
else {



230

Sandini Bib
10

Effiziente Ein- und Ausgabe

// Live-Objekte werden nicht gecached
entry = new LiveFile(file);

}

// Und ab zum Klienten!

return entry;

// Mindest-DateigroBe, um gecached zu werden.
public Tong getMinFilesize() f{

return minFilesize;
}

public void setMinFilesize(long minFilesize) |
this.minFilesize = minFilesize;

}

// Maximale DateigroBe, um gecached zu werden.
public Tong getMaxFilesize() {

return maxFilesize;
}

public void setMaxFilesize(long maxFilesize) |
this.maxFilesize = maxFilesize;
}

// Standardzeit, wdhrend der die Validtdt eines Eintrags
// nicht Oberprift wird.
public int getTimeTolive() f
return timeTolive;
}

public void setTimeTolive(int timeToLive) f
this.timeTolLive = timeTolive;

}

// Cache-Eintrag
public static interface Entry {

// Neuer InputStream

public InputStream getNewInputStream() throws I0Exception;

// File-Objekt der gecachten Datei
public File getFile();

// Ldnge des gecachten Inhalts
public Tong Tength();

// Letzte Modifikation des gecachten Inhalts
public Tong TastModified();



Sandini Bib
Dateicache 231

// Zeit, wdhrend der die Validitdt eines Eintrags
// nicht tberpriuft wird.

public void setTimeTolLive(int timeTolive);

public int getTimeTolLive();

// Zeigt an, ob dieser Cache-Eintrag bereits
// ‘'verdorben ' ist.
public boolean isStale();

Listing 10.2: Einfacher Dateicache

In FileCache haben wir die Cache-Eintrdge lediglich als Schnittstelle definiert. Wir
haben dies deshalb getan, da zum Cachen der Dateien grundsétzlich zwei Mechanis-
men in Frage kommen.

1. Das Speichern in einem byte-Array

2. Das Abbilden der Datei in den Speicher mittels fileChannel.map() (erst ab JDK 1.4.0
moglich)

Moglichkeit eins ist trivial. Entsprechender Code befindet sich in Listing 10.3. Moglich-
keit Nummer zwei stellt ebenfalls keine allzu grofle Schwierigkeit dar. Wir miissen
lediglich eine anonyme Hilfsklasse schreiben, die aus einem java.nio.MappedByteBuffer
einen InputStream macht. Der Code befindet sich in Listing 10.4.

package com.tagtraum.perf.io;
import java.io.*;
class ByteArrayFile implements FileCache.Entry {

private bytel] content;

private File file;

private long length;

private long lastModified;
private int timeTolive;

private long creationTime;
private long lastValidityCheck;

public ByteArrayFile(File file) throws IOException f
this.file = file;
lToad(file);
creationTime = System.currentTimeMillis();
TastValidityCheck = creationTime;

// Ladt die Datei in einen byte-Array
private void Toad(File file) throws IOException {



Sandini Bib
232 10 Effiziente Ein- und Ausgabe

this.length = file.length();
this.lastModified = file.lastModified();
content = new bytel(int)lengthl;
InputStream in = new FilelnputStream(file);
try {
int offset = 0;
while (offset < length) f{
offset += in.read(content, offset, (int)length-offset);
}
}
finally {
if (in != null) try { in.close(); | catch (IOException ioe) {}
}

// Gibt einen neuen BytelnputStream zuriick.

public InputStream getNewInputStream() throws IOException f
return new ByteArrayInputStream(content);

}

public File getFile() f{
return file;
}

public Tong Tength() {
return length;
}

public Tong TastModified() f{
return lastModified;
}

public void setTimeTolive(int timeTolLive) f
this.timeTolive = timeTolive;
}

public int getTimeTolLive() f
return timeTolive;
}

public boolean isStale() f
boolean stale = false;
lTong now = System.currentTimeMillis();
if (timeTolLive >= 0
&& lastValidityCheck + (lTong)timeTolLive < now) f
// Zeit ist abgelaufen, aber vielleicht ist der Inhalt
// noch nicht verdorben.
stale = length != file.length()
|| TastModified != file.lastModified();
if (lstale) TlastValidityCheck = now;



Sandini Bib
Dateicache 233

}
return stale;

Listing 10.3: byte-Array basierter Dateicache-Eintrag

package com.tagtraum.perf.io;

import java.io.*;
import java.nio.MappedByteBuffer;
import java.nio.channels.FileChannel;

class MemoryMappedFile implements FileCache.Entry f{

private MappedByteBuffer content;
private File file;

private long length;

private long lastModified;
private int timeTolive;

private long creationTime;
private long lastValidityCheck;

public MemoryMappedFile(File file) throws IOException f{
this.file = file;
map(file);
creationTime = System.currentTimeMillis();
TastValidityCheck = creationTime;

private void map(File file) throws IOException f{
this.length = file.length();
this.lastModified = file.lastModified();
FileInputStream in = new FilelnputStream(file);
try {
content = in.getChannel().map(
FileChannel.MapMode.READ_ONLY, 0, length);

b finally |
if (in != null) try {
in.close();

} catch (IOException foe) f
// ignorieren
}

public InputStream getNewInputStream() throws IOException {
// Anonyme innere Klasse, die den MappedByteBuffer in einem
// InputStream kapselt.
return new InputStream() f{
private int pos;



Sandini Bib
234 10 Effiziente Ein- und Ausgabe

public int read() throws IOException f{
if (pos == content.limit()) return -1;
return content.get(pos++);

public int read(byte b[1, int off, int Ten)
throws I0Exception f{
if (pos == content.limit()) return -1;
// Wir missen hier synchronisieren, da mehr als ein
// InputStream existieren, es aber nur einen
// MappedByteBuffer gibt und absolute Bulk-Operationen
// leider nicht unterstiitzt werden.
synchronized (content) {
content.position(pos);
int readBytes = Math.min(len, content.remaining());
content.get(b, off, readBytes);
pos += readBytes;
return readBytes;

// der Rest ist genau wie in ByteArrayFile (Listing 10.3)

}
Listing 10.4: Memory-Map basierter Dateicache-Eintrag
Zusiétzlich zu den beiden Cache-Eintrags-Klassen miissen wir noch eine Klasse defi-
nieren, die zwar die FileCache.Entry-Schnittstelle implementiert, aber eigentlich nur
einen diinnen Mantel um eine echte Datei darstellt (Listing 10.5). Es wére namlich

ziemlich ungiinstig, wenn eine zwei Gbyte-Datei zunéchst in einen byte-Array geladen
wiirde ...

Alle drei Dateien wiirden vermutlich von einer Superklasse profitieren, aus Griinden
der Ubersichtlichkeit wollen wir darauf jedoch verzichten.

package com.tagtraum.perf.io;
import java.io.*;

class LiveFile implements FileCache.Entry f{
private File file;

public LiveFile(File file) throws IOException f
this.file = file;
}



Sandini Bib
Dateicache 235

// Da wir von einer gecachten Datei erwarten, dass man sie nicht

// extra puffern muss, geben wir einen BufferedInputStream

// zurick.

public InputStream getNewInputStream() throws IOException f{
return new BufferedInputStream(new FilelnputStream(file));

}

public File getFile() f{
return file;
}

public Tong Tength() {
return file.length();
}

public Tong TastModified() f
return file.lastModified();
}

public void setTimeTolive(int timeTolLive) f
throw new UnsupportedOperationException();
}

public int getTimeTolive() f{
return -1;
}

public boolean isStale() f
return false;
}

Listing 10.5: Mantel um eine echte, ungecachte Datei

Nun haben wir einen Dateicache und fragen uns natiirlich, wie schnell er ist. Das Prob-
lem ist nur, dass die Mikro-Benchmarks, wie wir sie bisher verwendet haben, fiir einen
Dateicache relativ wenig Aussagekraft haben. Denn jeder Cache sollte grandiose Per-
formance-Zahlen liefern, wenn er innerhalb kurzer Zeit oft nach denselben Inhalten
gefragt wird. Was wirklich zahlt, ist, ob die Applikation, die den Cache benutzt, tat-
séchlich schneller wird.

Da wir jedoch keine Applikation zur Hand haben, messen wir die Performance den-
noch mit einem Mikro-Benchmark, indem wir Dateien verschiedener Grofie wieder-
holt vollstindig lesen. Im ersten Lauf benutzen wir dazu einen gepufferten
FileInputStream, im zweiten den Cache mit der Klasse ByteArrayFile und im dritten
Durchlauf den Cache mit der Klasse MemoryMappedFile.

Erste Testldufe ergeben, dass fiir wenige Wiederholungen kein aussagekraftiger Wert
messbar ist. Erst bei 1.000fachem Lesen liefert unser Testszenario einigermafien sinn-



236 10 Effiziente Ein- und Ausgabe

volle Werte. 1.000faches Lesen, das bedeutet, dass die Datei nur einmal in den Cache
und danach immer wieder aus dem Cache gelesen wird. Es ist zweifelhaft, ob dies in
einer echten Applikation der Fall wére.

Wie auch immer. Unser Test ist nicht ganz fruchtlos. Wie Abbildung 10.3 zeigt, ist Byte-
ArrayFile schneller als der ungecachte Zugriff und MemoryMappedFile wesentlich langsa-
mer als der ungecachte Zugriff. Das ist ein Ergebnis, mit dem ich so nicht gerechnet
hitte, da in den Speicher abgebildete Dateien den Zugriff normalerweise beschleuni-
gen sollten.

10000
1000
E) 100 &SVV
10 D//
1 T T T

1 10 100 1000
DateigréBe in Kbyte

—o—ohne Cache —a— ByteArrayFile —a— MemoryMappedFile

Abbildung 10.3: 1.000faches Lesen einer Datei mit und ohne Cache mit Sun JDK 1.4.0 Server und Windows 2000

Mit Hilfe des Profilers finden wir heraus, dass die MemoryMappedFile-Version die meiste
Zeit in den Methoden java.nio.ByteBuffer.get(bytel[], int, int) und java.nio.Direct-
ByteBuffer.get() verbringt.

Den Grund dafiir offenbart ein schneller Blick in den Quellcode:

// Aus Sun JDK 1.4.0, java.nio.ByteBuffer
public ByteBuffer get(bytel] dst, int offset, int length) {
checkBounds(offset, length, dst.length);
if (lTength > remaining())
throw new BufferUnderflowException();
int end = offset + length;
for (int i = offset; i < end; i++)



Skalierbare Server 237

dst[il = get();
return this;
}

// Aus Sun JDK 1.4.0, java.nio.DirectByteBuffer
public byte get() f{

return (unsafe.getByte(ix(nextGetIndex())));
}
private Tong ix(int i) {

return address + (i << 0);
}

// Aus Sun JDK 1.4.0, java.nio.Buffer
final int nextGetIndex() {
if (position >= 1limit)
throw new BufferUnderflowException();
return position++;
}

Wie unschwer zu erkennen ist, wird jedes Byte einzeln aus dem DirectByteBuffer gele-
sen und in den byte-Array geschrieben (siehe Kapitel 6.2.2 Teure Array-Zugriffe). Dabei
wird einmal vor der gesamten Operation getestet, ob es sich um giiltige Indizes han-
delt, und dann noch einmal bei jedem einzelnen Byte. Kein Wunder, dass die Memory-
MappedFile-Version so langsam ist. Dies kann sich jedoch in zukiinftigen Java Versionen
andern.

0.5 Skalierbare Server

Mit JDK 1.4 verfiigt Java endlich {iber ein besser skalierbares Ein-/Ausgabe-APIL
Nicht, dass das alte API ein absoluter Fehlschlag ist — gerade Javas eindrucksvoller
Erfolg bei Applikationsservern widerlegt dies —, doch einige Eigenschaften des alten
APIs fiithren zu drastischen Einschrankungen. Das grofte Ubel ist die blockierende
Ein-/ Ausgabe.

Um Daten iiber einen Socket zu schreiben, muss die write()-Methode eines assoziier-
ten OuputStreams aufgerufen werden. Dieser Aufruf kehrt erst zuriick, wenn alle zu
schreibenden Bytes auch tatsdchlich geschrieben sind. Bei vollen Puffern und langsa-
men Netzwerkverbindungen kann das schon seine Zeit dauern. Um dennoch perfor-
mante Server mit Java zu realisieren, muss daher mit jedem Socket ein Thread
assoziiert werden. So kann ein Thread arbeiten, wihrend ein anderer wegen Ein-/ Aus-
gaben blockiert ist.

Nun sind Threads nicht so schwergewichtig wie echte Prozesse. Abhingig von der
Plattform sind sie aber auch keine Ressourcenschoner. Unter anderem implizieren viele
Threads auch viele Thread-Kontext-Wechsel — und die sind auch nicht gerade billig.



238 10 Effiziente Ein- und Ausgabe

Um also mit Java skalierbare Server zu bauen, musste ein API her, das die Ehe von
Socket und Thread schied. Dies ist mit dem neuen Ein-/Ausgabe-API aus dem Paket
Jjava.nio nun geschehen.

Wir wollen beispielhaft zeigen, wie man mit dem alten und mit dem neuen API einen
simplen Webserver programmiert. Da HTTP kein triviales Protokoll mehr ist, werden
wir uns auf einige zentrale Features beschranken. Die vorgestellten Programme sind
also weder sicher noch protokollkonform.

10.5.1 Httpd der alten Schule

Schauen wir uns zunédchst den HTTP-Server mit dem alten API an (Listing 10.6). Da
wir nur eine Klasse zur Implementierung benétigen, ist der grundsitzliche Aufbau
schnell erkldrt: In der main()-Methode wird zunéchst ein ServerSocket instanziiert und
an Port 8080 gebunden. Der designierte WWW-Port 80 ist auf Unix-Systemen dem Sys-
temadministrator vorbehalten und fiihrt leicht zu Konflikten beim Ausprobieren des
Beispiels — daher also Port 8080.

Dann werden eine Reihe von Httpd-Objekten erzeugt und mit dem gemeinsamen
ServerSocket initialisiert. Im Httpd-Konstruktor sorgen wir dafiir, dass alle Instanzen
sinnvolle Namen erhalten, setzen das Standard-Protokoll und starten den Server, indem
wir die start()-Methode seiner Superklasse Thread aufrufen. Dies wiederum bewirkt,
dass die run()-Methode aufgerufen wird, in der sich eine Endlosschleife befindet.

package com.tagtraum.perf.httpd;

import java.io.*;
import java.net.*;
import java.util.*;

public class Httpd extends Thread f

private static int _no; // Instanz-Zdahler
private ServerSocket serverSocket;
private bytel] buf = new byte[1024 * 81;
private String protocol;;

private InputStream in;

private OQutputStream out;

private String uri;

// Startet einen Httpd-Thread.
public Httpd(ServerSocket serverSocket) throws I0Exception {
super("Httpd " + (_not++));
this.serverSocket = serverSocket;
// default Protokoll-Version
protocol = "HTTP/0.9";
start();



Sandini Bib
Skalierbare Server 239

// Wartet am ServerSocket auf eine Verbindung und
// ruft dann handleRequest() auf.
public void run() f{
Socket socket = null;
while (true) f
try |
socket = serverSocket.accept();
// Nagles Algorithmus flir bessere Performance
// ausschalten
socket.setTcpNoDelay(true);
in = socket.getInputStream();
out = socket.getOutputStream();
handleRequest();
} catch (Exception e) {
// irgendetwas ist wirklich schief gegangen ...
e.printStackTrace();
b finally |
// aufrdumen
if (socket != null) f{
try |
// dies schlieBt auch gleichzeitig den In- und
// Qutputstream.
socket.close();
} catch (IOException ioe) |
// ignorieren
}
}
socket = null;

// Liest den Request und schickt entweder die Datei
// oder eine Fehlermeldung zuriick.
private void handleRequest() throws IO0Exception f{
try f
// Nur 512 Byte lesen - ldnger sollte die Zeile ohnehin
// nicht sein.
int length = in.read(buf, 0, 512);
if (length == 512) {
sendError(414, "Request URI too long.");
return;

// Wir nehmen ASCII als Zeichensatz an, daher kdnnen wir

// den schnellen, aber veralteten String-Konstruktor

// benutzen.

String requestline = new String(buf, 0, 0, Tength);

StringTokenizer st = new StringTokenizer(requestline,
"A\r\n");

String method = st.nextToken();

uri = st.nextToken();



Sandini Bib
240 10 Effiziente Ein- und Ausgabe

if (st.hasMoreTokens()) f{
protocol = st.nextToken();
}
File file = new File(uri.substring(1));
if (!method.equals("GET")) f
sendError(405, "Method " + method
+ " is not supported.");
}oelse if (Ifile.exists() || file.isDirectory()) f{
sendError(404, "Resource " + uri + " was not found.");
} else if (Ifile.canRead()) {
sendError(403, "Forbidden: " + uri);
I else |
sendFile(file);
}
} catch (NoSuchElementException nsee) f{
// Wir haben nicht genug Tokens lesen konnen.
sendError(400, "Bad request.");
} catch (Exception e) f
try |
sendError(500, "Internal Server Error.");
} catch (IO0Exception ioe) f
// ignorieren

}

// Sendet eine Fehlermeldung an den Client.
private void sendError(int httpStatus, String httpMessage)
throws IOException f
StringBuffer errorMessage = new StringBuffer(128);
if (!protocol.equals("HTTP/0.9")) {
errorMessage.append("HTTP/1.0 " + httpStatus + " "
+ httpMessage + "\r\n\r\n");
}
errorMessage.append("<HTML><BODY><H1>" + httpMessage
+ "</H1></BODY></HTML>");
out.write(errorMessage.toString().getBytes("ASCII"));
out.flush();

// Sendet die verlangte Datei an den Client.
private void sendFile(File file) throws IOException f
InputStream filein = null;
try f
filein = new FilelnputStream(file);
if (!Iprotocol.equals("HTTP/0.9")) {
// Status code und Header schreiben
out.write(("HTTP/1.0 200 OK\r\nContent-Type: "
+ Httpd.guessContentType(uri)
+ "\r\n\r\n").getBytes("ASCII"));



Sandini Bib
Skalierbare Server 241

int lTength = 0;
while ((length = filein.read(buf)) != -1) |
out.write(buf, 0, Tength);
}
out.flush();
b finally {
if (filein != null)
try {
filein.close();
} catch (I0Exception ioe) {
// ignorieren
}

// Gibt den ContentType der Ressource zuriick.
public static String guessContentType(String uri) f{
// Behelfsldsung - sollte normalerweise
// Uber eine Konfigurationsdatei erledigt werden.
uri = uri.tolLowerCase();
if (uri.endsWith(".htm1") || uri.endsWith(".htm")) {
return "text/html";
| else if (uri.endsWith(".txt")) |
return "text/plain';
} else if (uri.endsWith(".jpg") || uri.endsWith(".jpeg")) f{
return "image/jpeg";
} else |
} else |
return "unknown";

public static void main(Stringl] args) throws IOException {
ServerSocket serverSocket = new ServerSocket(8080);
for (int i = 0; i < Integer.parselnt(argsf0]); i++) {
new Httpd(serverSocket);

Listing 10.6: HTTP-Server der alten Schule

In dieser Endlosschleife wird die blockierende accept ()-Methode des ServerSockets auf-
gerufen. Verbindet sich nun ein Client mit Port 8080 des Servers, gibt die accept()-
Methode ein Socket-Objekt zuriick. Mit jedem Socket sind ein Input- und ein Output-
Stream assoziiert. Beide werden in der anschliefend aufgerufenen handleRequest()-
Methode benutzt. In ihr wird zundchst der Client-Request gelesen, tiberpriift und
dann eine angemessene Antwort zuriickgeschickt. Handelt es sich um einen legitimen
Request, wird also die verlangte Datei zuriickgeschickt (sendFile()). Liegt hingegen



242 10 Effiziente Ein- und Ausgabe

kein legitimer Request vor, erhélt der Client eine entsprechende Fehlermeldung als
Antwort (sendError()). Auf weitere Protokolldetails wollen wir hier aus Platzgriinden
nicht ndher eingehen.

Es stellt sich die Frage, ob diese Art der Implementierung prinzipiell performant ist. Im
Groflen und Ganzen: Ja. Sicherlich kénnte man das Interpretieren des Requests optimie-
ren — die benutzten StringTokenizer lieflen sich durch selbst geschriebene Tokenizer
ersetzen (Kapitel 4.6 Makro-Benchmarks) und sicherlich kénnte man einen Dateicache
benutzen. Immerhin haben wir die fiir kurze Verbindungen ungeeignete TCP-Verzoge-
rung (Slow-Start-Algorithmus) ausgeschaltet und auch das Senden der Datei erfolgt
gepuffert. Doch viel wichtiger ist, dass alle Threads vdllig unabhingig voneinander arbei-
ten. Welcher Thread eine neue Verbindung akzeptiert, wird tiber die accept()-Methode
betriebssystemnah und somit schnell entschieden. Und {iiber das ServerSocket-Objekt
hinaus teilen die Threads keinerlei Ressourcen, die evtl. synchronisiert werden miissten.
Schnell ist diese Losung also —jedoch nicht beliebig skalierbar.

10.5.2 Nicht-blockierender Httpd

Schauen wir uns also die Losung zwei mit dem neuen Ein-/ Ausgabe-API an. Sie ist ein
wenig komplizierter und erfordert das Zusammenspiel verschiedener Threads.

NIOHittpd

NIOHttpd startet Acceptor
Acceptor und ConnectionSelector

connectionSelector

ConnectionSelector Connection
selector key
Selector SelectionKey
(aus java.nio.channels) n | (aus java.nio.channels)

Abbildung 10.4: Klassendiagramm fiir NIOHttpd

Losung zwei besteht aus vier Klassen (Abbildung 10.4):
NIOHttpd (Listing 10.7)
Acceptor (Listing 10.8)
ConnectionSelector (Listing 10.9)

Connection (Listing 10.10)



Sandini Bib
Skalierbare Server 243

NIOHttpd dient hauptsachlich zum Starten des Servers. Genau wie in Httpd wird in der
main()-Methode ein Server-Socket an Port 8080 gebunden (Listing 10.7, Zeile 25,26).
Der wichtige Unterschied: Es handelt sich hier um einen java.nio.channels.Server-
SocketChannel. Diesen 6ffnen wir zunéchst tiber eine Fabrikmethode und binden ihn
dann explizit per bind() an den Port. Anschliefend erzeugen wir jeweils einen Connec-
tionSelector und einen Acceptor. Dabei wird der ConnectionSelector beim Acceptor regis-
triert. Dem Acceptor wird auflerdem der ServerSocketChannel iibergeben (Listing 10.7,
Zeile 28-32).

01 package com.tagtraum.perf.httpd;

02

03 import java.io.IOException;

04 import java.net.InetSocketAddress;

05 import java.nio.channels.ServerSocketChannel;

06

07 public class NIOHttpd f

08

09 // Hilfsmethode zum Ermitteln des ContentTyps einer Ressource
10 public static String guessContentType(String uri) f{

11 uri = uri.tolLowerCase();

12 if (uri.endsWith(".htm1") || uri.endsWith(".htm")) {
13 return "text/html";

14 } else if (uri.endsWith(".txt")) {

15

16 } else |

17 return "unknown";

18 }

19 }

20

21 // Startet den Http-Daemon mit 2n Threads.
22 public static void main(Stringl] args) throws IOException f{

23 ServerSocketChannel serverSocketChannel

24 = ServerSocketChannel.open();

25 serverSocketChannel.socket().bind(

26 new InetSocketAddress(8080));

27 for (int i = 0; i < Integer.parselnt(args[01); i++) {
28 ConnectionSelector connectionSelector

29 = new ConnectionSelector();

30 Acceptor acceptor = new Acceptor(serverSocketChannel,
31 connectionSelector);

32 }

33 }

34}

Listing 10.7: Klasse NIOHttpd



244 10 Effiziente Ein- und Ausgabe

acceptor : serverSocketChannel : | | connection : selector : connectionSelector :
Acceptor ServerSocketChannel Connection Selector ConnectionSelector
I I I I I
| run() | coun0 st | | run()
= wakeup() lass 1
accept() | selgct() | () Z
<||_| zurlickkehren. —
>
. BN
Connection(SocketChannel) \
| gl N
enqueuetConnection) | |
| | | wakeup( )
| | U —1
=

Endlosschleifenﬁ/ + [
— — — | registerQuleuedConnections() Z

| | | readRequest( )

—

]
| Es wird immer g ==
nur eine der writeResponse( )
| beiden Methoden I
aufgerufen. |—|\ !
I S R R |

Wird vom Acceptor-Thread ausgefihrt Wird vom ConnectionSelector-Thread ausgefiihrt

Abbildung 10.5: Sequenzdiagramm fiir NIOHttpd

Abbildung 10.5 zeigt das Zusammenspiel der beiden Threads Acceptor und Connec-
tionSelector im Uberblick. Um es genau zu verstehen, wollen wir zunéchst den Accep-
tor (Listing 10.8) ndher betrachten. Seine Aufgabe ist es, eingehende Verbindungen
anzunehmen und sie beim ConnectionSelector zu registrieren. Noch im Konstruktor
wird daher die start()-Methode der Superklasse Thread aufgerufen (Listing 10.8, Zeile
18). In run() befindet sich die erforderliche Endlosschleife. In ihr wird genau wie in
Httpd eine blockierende accept()-Methode aufgerufen (Listing 10.8, Zeile 27), die
schliefflich ein SocketChannel-Objekt zuriickgibt. Nur ist es diesmal die accept()-
Methode eines ServerSocketChannels anstatt eines ServerSockets. Mit dem zuriickgege-
benen SocketChannel als Argument wird ein Connection-Objekt erzeugt und mittels der
enqueue()-Methode beim ConnectionSelector registriert (Listing 10.8, Zeile 28,29; Abbil-
dung 10.6).

Um es noch einmal zusammenzufassen: der Acceptor macht nichts anderes als in einer
Endlosschleife Verbindungen anzunehmen und diese beim ConnectionSelector zu regis-
trieren.



Sandini Bib

Skalierbare Server 245
01 package com.tagtraum.perf.httpd;
02
03 import java.net.Socket;
04 import java.nio.channels.ServerSocketChannel;
05 import java.nio.channels.SocketChannel;
06
07 class Acceptor extends Thread f{
08
09 private static int _no; // Instanz-Zéahler
10 private ServerSocketChannel serverSocketChannel;
11 private ConnectionSelector connectionSelector;
12
13 public Acceptor(ServerSocketChannel serverSocketChannel,
14 ConnectionSelector connectionSelector) f
15 super("Acceptor " + (_not++));
16 this.serverSocketChannel = serverSocketChannel;
17 this.connectionSelector = connectionSelector;
18 start();
19 }
20
21 // Akzeptiert Verbindungen und registriert diese mittels
22 // ConnectionSelector.enqueue(Connection).
23 public void run() {
24 while (true) f{
25 SocketChannel socketChannel = null;
26 try |
27 socketChannel = serverSocketChannel.accept();
28 connectionSelector.enqueue(
29 new Connection(socketChannel));
30 } catch (Exception e) {
31 e.printStackTrace();
32 // aufrdumen, falls notig
33 if (socketChannel != null) {
34 try f{
35 socketChannel.close();
36 } catch (Exception ee) f{
37 // ignorieren
38 }
39 }
40 }
41 }
42 }
43 '}

Listing 10.8: Klasse Acceptor

Genau wie der Acceptor ist der ConnectionSelector (Listing 10.9) ein Thread. Er dient

dazu,

Verbindungen auszuwéhlen, die gerade fiir Ein- bzw. Ausgaben bereit sind. In

seinem Konstruktor werden eine Queue erzeugt und ein java.nio.channels.Selector
mittels der Fabrikmethode Selector.open() geoffnet (Listing 10.9, Zeile 17,18). Dieser



246

Sandini Bib

10 Effiziente Ein- und Ausgabe

selector ist der Dreh- und Angelpunkt unseres Servers. Bei ihm konnen wir Verbin-
dungen registrieren und auf Anfrage eine Liste derjenigen Verbindungen zurtickbe-
kommen, die gerade zum Lesen oder Schreiben von Daten bereit sind. Der

ConnectionSelector benutzt das selector-Objekt entsprechend.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

package com.

import java.
import java.
import java.
import java.

tagtraum.perf.httpd;

i0.I0Exception;
nio.channels.SelectionKey;
nio.channels.Selector;
util.=;

class ConnectionSelector extends Thread f{

private static int _no; // Instanz-Zdhler
private Selector selector;
private List queue;

// Instanziiert und startet diesen ConnectionSelector.
public ConnectionSelector() throws IOException f{
super("ConnectionSelector " + (_not++));
selector = Selector.open();

queue

= new ArraylList();

start();

// Queuet eine Verbindung und ruft selector.wakeup() auf,
// damit ein SelectionKey flir sie erzeugt und registriert

// werden kann.
public void enqueue(Connection connection) {
synchronized (queue) f{
queue.add(connection);

J

// wakeup sorgt dafiir, dass select() aufwacht und sich um

// gequeuete Verbindungen klmmert.
selector.wakeup();

// Registriert alle gequeueten Verbindungen beim Selector.

private void registerQueuedConnections() throws IOException f
// der synchronized Block ist ein Nadelohr, daher sollte

/] er

wenn moglich vermieden werden.

if (lqueue.isEmpty()) |
synchronized (queue) f{

while (!queue.isEmpty()) {
Connection connection

= (Connection) queue.remove(queue.size() -

connection.register(selector);

1);



Sandini Bib

Skalierbare Server 247
46 }
47 }
48
49 // Ruft selector.select()in einer Endlosschleife auf.
50 // Kehrt der Aufruf von select() zurilick, werden zundchst
51 // gequeuete Verbindungen beim Selector registriert.
52 // AnschlieBend werden fiir bereite Kandle die entsprechenden

53 // Verbindungs-Arbeitsmethoden aufgerufen.
54 public void run() f{

55 while (true) {

56 try |

57 int 1 = selector.select();

58 registerQueuedConnections();

59 if (i >0) |

60 Set set = selector.selectedKeys();

61 Iterator connectionlterator = set.iterator();
62 while (connectionlterator.hasNext()) f{
63 SelectionKey key

64 = (SelectionKey) connectionlterator.next();
65 Connection connection

66 = (Connection) key.attachment();
67 try f{

68 if (key.interestOps()

69 ==SelectionKey.0P_READ) {
70 connection.readRequest();

71 } else |

72 connection.writeResponse();
73 }

74 } catch (IOException ioe) f{

75 connection.close();

76 } catch (Throwable t) |

77 connection.close();

78 t.printStackTrace();

79 }

80 }

81 }

82 } catch (Throwable t) {

83 t.printStackTrace();

84 }

85 }

86 }

87 !

Listing 10.9: Klasse ConnectionSelector

Nachdem im Konstruktor die start()-Methode aufgerufen wurde (Listing 10.9, Zeile 19),
wird die Endlosschleife in der run()-Methode ausgefiihrt. In ihr rufen wir die select()-
Methode des selectors auf (Listing 10.9, Zeile 57). Diese Methode blockiert so lange, bis
entweder mindestens eine der registrierten Verbindungen fiir Ein-/ Ausgabe-Operationen
bereitist oder ein Aufruf der wakeup()-Methode des selector-Objekts erfolgt.



248 10 Effiziente Ein- und Ausgabe

acceptor : connectionSelector :
Acceptor ConnectionSelector
enqueue(connection) HELH b
L L ArrayList
add(connection)
selector :
Selector

wakeyp( )

\ [
\
A

H Ldst blockierte ﬁ

Aufrufe von select().

1 I |

Abbildung 10.6: Sequenzdiagramm der enqueue()-Methode

Blockiert, bis
wakeup()
connectionSelector : aufgerufen wird. selector :
ConnectionSelector | Selector
select
I () ﬁlll
queue :
registerQueuedConnections( ) ArrayList
Es wird so AN B
lange das :I remove( )
letzte Element L L
der Queue -
entfemt und —
registriert, bis  [F}f<_ cgnne%
; - onnection
_d'e Queue leer register(selector) ————

I
I
I
I
I
ist. |
I
I
I
I

Abbildung 10.7: Sequenzdiagramm der registerQueuedConnections()-Methode



Skalierbare Server 249

Es ist wichtig zu verstehen, dass kein Acceptor-Thread Verbindungen beim selector
registrieren kann, wahrend der ConnectionSelector-Thread die Methode select() aus-
fiihrt, da die entsprechenden Methoden synchronisiert sind. Daher benutzen wir eine
Queue, in die der Acceptor-Thread angenommene Verbindungen mit der Methode
enqueue() einstellt (Listing 10.9, Zeile 25f.; Abbildung 10.6). Anschliefend ruft er die
wakeup()-Methode des selectors auf (Listing 10.9, Zeile 31). Dies wiederum lost den
ConnectionSelector-Thread aus seiner select()-Blockade und erlaubt ihm, die Verbin-
dungen aus der Queue beim nun nicht mehr blockierten selector zu registrieren.
Genau dies geschieht in der registerQueuedConnections()-Methode (Listing 10.9, Zeile
35f.; Abbildung 10.7).

Selektor-Registrierung iiber Schliissel

An dieser Stelle miissen wir ein wenig vorgreifen und einen kurzen Blick auf die regis-
ter()-Methode der Connection-Klasse werfen (Listing 10.10, Zeile 45f.). Bisher haben
wir vereinfachend davon gesprochen, dass eine Verbindung bei einem selector regis-
triert wird. Tatsdchlich wird jedoch ein java.nio.channels.SocketChannel-Objekt bei
einem selector registriert. Und zwar nur fiir ausgewéhlte Ein-/Ausgabe-Operationen.
Zuriick erhilt man einen java.nio.channels.SelectionKey. Diesem Schliissel wiederum
kann man mittels der attach()-Methode beliebige Objekte zuordnen. Um mit dem
Schliissel zur Verbindung zu gelangen, hdngen wir das Connection-Objekt selbst an den
Schliissel. Somit kénnen wir indirekt tiber den Schliissel tatsachlich das Verbindungs-
Objekt vom Selector erhalten.

Zuriick zum ConnectionSelector. Der Riickgabewert der select()-Methode gibt an, wie
viele Verbindungen fiir Ein-/ Ausgabe-Operationen bereit sind. Ist dies bei keiner Ver-
bindung der Fall, sparen wir uns den Rest und kehren zuriick in die select ()-Endlos-
schleife. Andernfalls iterieren wir iiber die Selektionsschliissel (Listing 10.9, Zeile 60f.).
Diese erhalten wir im Set von der Methode selectedKeys(). Uber die attachment()-
Methode des Schliissels gelangen wir an das zugehorige Connection-Objekt und rufen
dessen readRequest()- bzw. writeResponse()-Methode auf. Um welche Methode es sich
handelt, hdangt davon ab, ob sich die Verbindung fiir Lese- oder Schreib-Operationen
registriert hat (Listing 10.9, Zeile 68f.).

01 package com.tagtraum.perf.httpd;

02

03 import java.io.*;

04 import java.net.Socket;

05 import java.nio.ByteBuffer;

06 import java.nio.channels.*;

07 import java.util.*;

08

09 // Reprdsentiert die Verbindung, in deren Verlauf zundchst
10 // einmal der Request gelesen und dann ein Response



250

Sandini Bib
10 Effiziente Ein- und Ausgabe

11 // geschrieben wird.
12 class Connection f{

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

private SocketChannel socketChannel;
private ByteBuffer requestLineBuffer;
private ByteBuffer responselineBuffer;
private int endOfLinelndex;

private SelectionKey key;

private FileChannel fileChannel;
private long filePos;

private Tong filelength;

private int httpStatus;

private String httpMessage;

private String uri;

private String protocol;

// Initialisiert diese Verbindung mit einem SocketChannel.
pubTic Connection(SocketChannel socketChannel)
throws I0Exception {
// Nagles Algorithmus fiir bessere Performance
// ausschalten
socketChannel.socket().setTcpNoDelay(true);
// der Kanal soll nicht blockieren
socketChannel.configureBlocking(false);
requestlineBuffer = ByteBuffer.allocate(512);
// Default http status code: OK
httpStatus = 200;
// Default http status message
httpMessage = "OK";
// Default Protokoll-Version
protocol = "HTTP/0.9";

// Registriert diese Verbindung bei dem Uibergebenen Selector.
public void register(Selector selector) throws IOException f
key = socketChannel.register(selector,
SelectionKey.OP_READ);
// Hinterlege die Verbindung im Schlissel
key.attach(this);

// Liest den Request. Falls etwas schief geht, wird ein

// Fehlercode gesetzt. Ist der Request vollstandig gelesen,

// wird prepareForResponse() aufgerufen.

public void readRequest() throws IOException f{

try
if (!requestLineBuffer.hasRemaining()) {

setError(414, "Request URI too long.");
prepareForResponse();
return;



Sandini Bib

Skalierbare Server 251
62 socketChannel.read(requestlLineBuffer);
63 if (!isRequestLineRead()) f
64 return;
65 }
66 requestlLineBuffer.flip();
67 bytel]l b = new bytelendOfLinelndex];
68 requestlLineBuffer.get(b);
69 String requestline = new String(b, 0);
70 StringTokenizer st
71 = new StringTokenizer(requestline, " \r\n");
72 String method = st.nextToken();
73 uri = st.nextToken();
74 File file = new File(uri.substring(l));
75 if (st.hasMoreTokens()) f{
76 protocol = st.nextToken();
77 }
78 if (Imethod.equals("GET")) f
79 setError(405, "Method " + method
80 + " is not supported.");
81 I else if (Ifile.exists() || file.isDirectory()) {
82 setError(404, "Resource " + uri
83 + " was not found.");
84 } else if (!file.canRead()) f{
85 setError(403, "Forbidden: " + uri);
86 } else |
87 fileLength = file.length();
88 fileChannel
89 = new FilelnputStream(file).getChannel();
90 }
91 prepareForResponse();
92 I catch (NoSuchElementException nsee) f{
93 // Wir haben nicht genug Tokens Tlesen kodnnen.
94 setError(400, "Bad request.");
95 } catch (Exception e) {
96 // Es ist etwas auBerplanmdBig schief gegangen
97 setError(500, "Internal Server Error.");
98 prepareForResponse();
99 e.printStackTrace();
100 }
101 }
102
103 // Legt einen Buffer an, der die Response-Zeile, die Header
104 // und im Falle eines Fehlers eine HTML-Nachricht enthdlt.
105 private void prepareForResponse() throws I0Exception f{
106 StringBuffer responseline = new StringBuffer(128);
107 // Response-Zeile nur bei Http >= 1.0 schreiben
108 if (!protocol.equals("HTTP/0.9")) {
109 responselLine.append("HTTP/1.0 " + httpStatus + " "
110 + httpMessage + "\r\n");
111 // Im Fehlerfall benttigen wir keine Header

112 if (httpStatus != 200) {



Sandini Bib

252 10 Effiziente Ein- und Ausgabe
113 responselLine.append("\r\n");
114 | else |
115 // Header fiur die Datei
116 responseline.append("Content-Type: "
117 + NIOHttpd.guessContentType(uri) + "\r\n\rin");
118 }
119 }
120 if (httpStatus != 200) {
121 // Fehlernachricht fir den Nutzer
122 responselLine.append("<HTML><BODY><H1>" + httpMessage
123 + "</H1></BODY></HTML>");
124 }
125 responselineBuffer = ByteBuffer.wrap(responseline
126 .toString().getBytes("ASCII"));
127 key.interestOps(SelectionKey.OP_WRITE);
128 key.selector().wakeup();
129 }
130
131 // Gibt an, ob die Request-Zeile bereits vollstdndig gelesen
132 // wurde.
133 private boolean isRequestlLineRead() f
134 for (; endOfLinelndex < requestlLineBuffer.limit();
135 endOfLineIndex++) f{
136 if (requestlLineBuffer.get(endOfLinelndex) == '\r'")
137 return true;
138 }
139 return false;
140 }
141
142 // Schreibt zundchst den responselineBuffer und dann ggfs.
143 // die verlangte Datei zum Client. Nachdem alle Daten
144 // geschrieben wurden, wird der Selektions-Schlissel
145 // gecancelt und der Kanal geschlossen.
146 public void writeResponse() throws IOException f{
147 // Zundchst mal den response buffer schreiben
148 if (responselLineBuffer.hasRemaining()) {
149 socketChannel.write(responselineBuffer);
150 }
151 // Wenn der Buffer vollstdndig geschrieben wurde,
152 // sind wir entweder fertig (im Fehlerfall) oder
153 // miissen noch die Datei hinterherschicken
154 if (!responselineBuffer.hasRemaining()) f{
155 if (httpStatus != 200) {
156 close();
157 } else |
158 filePos += fileChannel.transferTo(filePos,
159 (int) Math.min(64 * 1024, filelLength - filePos),
160 socketChannel);
161 if (filePos == filelength) f{
162 close();

163

J



Sandini Bib
Skalierbare Server 253

164 }

165 }

166 }

167

168 // Setzt einen Fehler.

169 private void setError(int httpStatus, String httpMessage) {

170 this.httpStatus = httpStatus;
171 this.httpMessage = httpMessage;
172 }

173

174 // Cancelt den Selektions-Schlissel und schlieBt alle
175 //offenen Kandle.
176 public void close() {

177 try |

178 if (key != null) key.cancel();

179 } catch (Exception e) |

180 // ignorieren

181 }

182 try f{

183 if (socketChannel != null) socketChannel.close();
184 } catch (Exception e) {

185 // ignorieren

186 }

187 try |

188 if (fileChannel != null) fileChannel.close();
189 } catch (Exception e) {

190 // ignorieren

191 }

192 }

193 }

Listing 10.10: Klasse Connection

Und damit kommen wir nun endgiiltig zur Connection-Klasse (Listing 10.10). Sie repra-
sentiert die Verbindung und kapselt zudem alle Protokollspezifika. Im Konstruktor
wird zunéchst SocketChannel in den nicht-blockierenden Modus versetzt (Listing 10.10,
Zeile 34). Dies ist essentiell fiir diesen Server! Anschlielend werden noch ein paar Stan-
dardwerte gesetzt sowie der Puffer requestLineBuffer fiir den Request alloziert. Da das
Allozieren von systemnahen, direkten Puffern vergleichsweise teuer ist und wir fiir
jede Verbindung einen neuen Puffer erzeugen, benutzen wir java.nio.ByteBuffer.allo-
cate() anstelle von ByteBuffer.allocateDirect(). Wiirden wir die Puffer wieder verwen-
den, konnte sich jedoch ein direkter Puffer bezahlt machen.

Nachdem die Initialisierung erledigt und der SocketChannel zum Lesen bereit ist, wird
vom ConnectionSelector die readRequest()-Methode aufgerufen. Mit socketChannel.
read(requestLineBuffer) werden so viele Bytes in den Puffer gelesen, wie gerade ver-
fiigbar sind. Falls die gesamte Request-Zeile nicht gelesen werden kann, kehren wir
zum aufrufenden ConnectionSelector-Objekt zuriick und lassen so eine andere Verbin-



254 10 Effiziente Ein- und Ausgabe

dung zum Zuge kommen. Ist jedoch die gesamte Zeile gelesen, interpretieren wir sie
wie schon in Httpd. Handelt es sich um einen legitimen Request, erzeugen wir einen
Jjava.nio.Channels.FileChannel fiir die verlangte Datei und rufen die Methode prepare-
ForResponse() auf.

prepareForResponse() bastelt die Response-Zeile, evtl. benétigte Header sowie — falls notig
— eine Fehlermeldung zusammen und hinterlegt diese Daten in responselLineBuffer. Hier-
bei handelt es sich wiederum um einen ByteBuffer, der jedoch lediglich ein diinner Wrap-
per um einen byte-Array ist und mit der Fabrikmethode ByteBuffer.wrap(bytel]) erzeugt
wurde. Nachdem wir die zu schreibenden Daten erzeugt haben, miissen wir dem Connec-
tionSelector noch mitteilen, dass wir von nun an Daten schreiben anstatt lesen wollen.
Dies erreichen wir, indem wir die Methode interestOps(SelectionKey.0P_WRITE) des Selek-
tions-Schliissels aufrufen. Um sicherzugehen, dass der Selektor dies moglichst schnell
mitbekommt, rufen wir anschliefsend noch die wakeup()-Methode auf.

Nun ruft der ConnectionSelector die writeResponse()-Methode auf. Zuerst wird der
responseLineBuffer in den Socket-Kanal geschrieben. Gelingt dies vollstandig und mdis-
sen wir noch die verlangte Datei hinterherschicken, rufen wir die transferTo()-
Methode des zuvor gedffneten FileChannels auf. Ubertragen werden in jedem Fall nur
so viele Bytes, wie gerade in den Zielkanal geschrieben werden konnen. Dennoch
muss hier eine Grenze gesetzt werden, um fiir Fairness zwischen verschiedenen Ver-
bindungen zu sorgen.

Sind alle Daten {ibertragen, wird mit der close()-Methode aufgerdumt. Wichtig ist hier
das De-Registrieren der Verbindung beim ConnectionSelector. Dies geschieht durch
Aufruf der cancel ()-Methode des Selektions-Schliissels.

Wiederum stellt sich die Frage, ob die Implementierung grundsétzlich performant ist.
Und wiederum koénnen wir klar antworten: Ja.

Im Prinzip reichen je ein Acceptor- und ein ConnectionSelector-Thread, um gleichzeitig
beliebig viele Verbindungen aufrechtzuerhalten. Damit glanzt diese Implementierung
in der Kategorie Skalierbarkeit. Da jedoch die beiden Threads iiber die synchronisierte
Methode enqueue() miteinander kommunizieren, konnen sie sich gegeneinander aus-
bremsen. Es bieten sich zwei Auswege aus dieser Situation an:

1. Eine bessere Implementierung der Queue
2. Mehrere Acceptor/ConnectionSelector-Paare

Losung eins liele sich durch eine LinkedQueue nach Doug Lea [Lea99, S.130] verwirkli-
chen. Diese Datenstruktur zeichnet sich dadurch aus, dass sie Anfang und Ende der
Warteschlange mit verschiedenen Locks sichert und sich daher einfiigende und lee-
rende Threads nicht gegenseitig blockieren. Nur wenn die Schlange leer ist, besteht die
Moglichkeit der gegenseitigen Blockade. Die liefle sich jedoch durch eine Extra-
Abfrage umgehen.



Skalierbare Server 255

Im Vergleich zu diesem eleganten Ansatz fillt Lésung zwei schon fast in die Kategorie
»Rohe Gewalt«. Uber mehrere Acceptor/ConnectionSelector-Paare wird die Last verteilt
und das Synchronisierungsproblem zwar nicht beseitigt, jedoch gelindert. Leider ent-
stehen dabei auch zusitzliche Kosten fiir Kontext-Wechsel. Im Vergleich zu Httpd bend-
tigt man jedoch bei weitem nicht so viele Threads. Und wenn man NIOHttpd auf einem
Multiprozessor-System betreiben mochte, empfiehlt es sich sogar, mehrere Paare zu
starten.

Nachteilig wirkt sich aufSerdem fiir NIOHttpd aus, dass immer wieder neue Connection-
Objekte samt ihrer Puffer erzeugt werden. Dies fiihrt zu einer Mehrbelastung verur-
sacht durch die Speicherbereinigung.

10.5.3 Vergleichende Rechenspiele

Es stellt sich die Frage, wie viel besser NIOHttpd gegeniiber Httpd skaliert. Statt zu mes-
sen, wollen wir dazu ein paar Uberlegungen anstellen. Vorweggeschickt: Auch wenn
die Zahlen und Formeln einen prézisen Eindruck machen — dies wird bei weitem kein
exakter Vergleich. Es werden lediglich die zugrunde liegenden Konzepte gegeneinan-
der abgeschatzt. Dabei lassen wir einflussreiche Randbedingungen wie Thread-Syn-
chronisierung, Kontext-Switches, Paging, Festplattengeschwindigkeit und Caches
vollig aufler Acht.

Zunéchst schiatzen wir ab, wie lange es wohl dauert, r gleichzeitige Requests nach
Dateien der Grofle s Bytes bei einer Client-Anbindung mit einer Bandbreite von b
Byte/Sekunde zu verarbeiten. Es ist offensichtlich, dass dies bei Httpd unmittelbar von
der Anzahl der Threads t abhingt, da nur t Requests gleichzeitig behandelt werden
konnen. Uber den Daumen gepeilt, kdnnte die Rechnung aussehen wie in folgender
Formel: ¢ seien Fixkosten wie Parsen etc., die bei jedem Request bezahlt werden miis-
sen. Wir nehmen zudem an, dass wir die Daten schneller von der Platte lesen als iiber
den Socket schreiben kénnen und die CPU nicht voll ausgelastet wird. Daher fliefien
die Geschwindigkeiten von Festplatte/Cache und Prozessor nicht in die Rechung ein.

sXr
=——————+rXc

l
Mt b s min(t, r)

NIOHttpd ist hingegen nicht von t abhédngig. Die Zeit | hangt bei idealisierten Randbe-
dingungen also hauptsédchlich von der Anbindung des Clients b, der Grofie der Datei s
sowie von den bereits erwdhnten Fixkosten c ab. Daraus resultiert:

! _ N
NIOHupd — E +rXc



256 10 Effiziente Ein- und Ausgabe

/

J = NoHpd

l Hittpd
Interessant als Maf3zahl fiir uns ist nun der Quotient d. Er charakterisiert das Verhéltnis
zwischen NIOHttpd und Httpd.

Nach genauerem Hinsehen (... und ein paar Datenreihen) fallt auf, dass d bei konstan-
ten s, b, t und c fiir grofse r gegen einen Grenzwert wéchst. Dieser ldsst sich leicht nach
folgender Formel berechnen.

limd, =—<

r—yeo

N
c+—
bt

Hieraus folgt, dass — neben der Anzahl der Threads und den fixen Kosten — die Dauer
s/b der Verbindung erheblichen Einfluss auf d hat. Je langer die Verbindungen beste-
hen, desto kleiner ist d und umso grofer ist der Vorteil von NIOHttpd gegentiber Httpd.
So kann NIOHttpd rechnerisch unter bestimmten Bedingungen (c=10 ms, t=100, s=1
Mbyte) fiir einen einfachen ISDN-Kanal mit 8 Kbyte/s Bandbreite bis zu 126-mal
schneller sein als Httpd. Dies gilt insbesondere fiir groffe Dateien und damit lang
andauernde Verbindungen. Ist die Verbindung hingegen schnell, beispielsweise ein
lokales 100-Mbit-Netz, lassen sich bei grofien Dateien gerade mal 10% herausschlagen
und bei kleinen Dateien gibt es kaum einen Unterschied.

1,2

A

N T

N
™~
0 \:\"

1.000 10.000 100.000  1.000.000
DateigréBe s in Byte

1

<
<

o
©

o
~

d fur r gegen Unendlich
o
o

o
N

—o—b = 10.000.000 b/s —a—b = 8.000 b/s

Abbildung 10.8: d bei c=10ms und t=100



Skalierbare Server 257

Diese Berechnungen setzen voraus, dass die Fixkosten bei NIOHttpd und Httpd in etwa
gleich sind und keine neuen Kosten durch die Art und Weise der Implementierung
eingefiihrt wurden. Wie oben erwdhnt: Der angefiihrte Vergleich gilt nur unter stark
idealisierten Bedingungen.

Er reicht jedoch aus, ein Gefiihl dafiir zu vermitteln, unter welchen Bedingungen sich
eher das eine oder andere Konzept lohnt bzw. wie grofs die Unterschiede sein kénnen.
Hierbei sei noch angefiihrt, dass zwar die meisten Dateien im WWW eher klein sind,
dass HTTP-1.1-Clients jedoch standardmaéfig versuchen, eine Verbindung fiir mehr als
eine Datei zu benutzen und entsprechend ldnger offen zu halten (Keep-Alive bzw. per-
sistente Verbindungen). Nicht selten werden deshalb Verbindungen aufrechterhalten,
iiber die nie wieder Daten iibertragen werden. Hierdurch wiirden bei einem Server mit
einem Thread pro Verbindung massiv Threads und somit kostbare Ressourcen gebun-
den. Das heifst gerade fiir HTTP kann die Skalierbarkeit von Servern durch das neue
Ein-/ Ausgabe-API dramatisch erhoht werden kann.



Sandini Bib



|1 RMI und Serialisierung

RMI ist eine jener Technologien, die das Leben in einer verteilten Umgebung wesent-
lich leichter machen. Wie jede Erleichterung hat jedoch auch RMI seinen Preis. Gegen-
iiber einem eigenen, selbst geschriebenen Protokoll ist das mehr oder minder
generische RMI meist etwas schwerféllig. Dafiir bietet es einen gewissen Komfort. Es
stellt zudem den Standard dar, weswegen wir hier keine selbst geschriebenen Proto-
kolle diskutieren wollen.

Es gibt im Wesentlichen drei Aspekte in Zusammenhang mit RMI, die sich zu betrach-
ten lohnen, um die Performance zu steigern.

1. Serialisierung
2. Latenzzeiten
3. Verteilte Speicherbereinigung (Distributed Garbage Collection)

Auf alle drei Aspekte werden wir im Folgenden eingehen.

I'l.1 Effiziente Serialisierung

Wenn Sie eine Methode eines entfernten Objektes (RemoteObject) aufrufen, miissen die
Argumente und der Riickgabewert fiir die Ubertragung serialisiert und anschliefend
wieder deserialisiert werden. Dies ist zumindest immer dann noétig, wenn diese
Objekte nicht selbst entfernte Objekte sind. Zum Serialisieren und Deserialisieren ver-
fligt Java tiber einen eingebauten Mechanismus, der sich leicht benutzen lasst, indem
Sie einfach die Schnittstelle java.io.Serializable in Thren zu serialisierenden Klassen
implementieren. Bei Serializable handelt es sich {ibrigens um ein Markierungs-Inter-
face, das keine Methoden vorgibt. Allein die Tatsache, dass eine Klasse dieses Interface
implementiert, fithrt zu einer speziellen Behandlung.

Wenn ein Serializable-Objekte serialisiert wird, erstellt der Serialisierungsmechanis-
mus automatisch eine Darstellung des Objektes inklusive aller Attribute, die wie-
derum auch Serializable implementieren miissen. Es wird also die serielle Darstellung
eines ganzen Objektbaumes erzeugt.

Wir wollen das an zwei einfachen Beispielen genauer untersuchen.



Sandini Bib
260 I'l' RMI und Serialisierung

[1.1.1 Datenmenge verkleinern

InternationalDate sei ein unverdnderbares Objekt, das ein Datum in allen unterstiitzten
Sprachen formatiert und die String-Darstellung in einer Tabelle vorhalt (Listing 11.1).

package com.tagtraum.perf.serialization;

import java.io.Serializable;
import java.text.SimpleDateFormat;
import java.util.*;

public class InternationalDatel implements Serializable f{
private Date date;
private Map map;

public InternationalDatel() f{
this(System.currentTimeMillis());
}

public InternationalDatel(long time) f{
date = new Date(time);
buildInternationalStrings();

private void buildInternationalStrings() f{

map = new HashMap();

Locale locales[] = Locale.getAvailablelocales();

for (int i = 0; i < locales.length; i++) {
SimpleDateFormat format = new SimpleDateFormat(

"EEEE d MMM yyyy G HH:mm:ss,SSS zzzz", locales[il);

String formattedTime = format.format(date);
map.put(locales[il, formattedTime);

public Date getDate() |
return date;
}

public String get(Locale locale) f{

return (String) map.get(locale);
}

Listing I 1.1: Internationales Datum



Effiziente Serialisierung 261

Wenn wir dieses Objekt serialisieren, werden 13.907 Byte! geschrieben. Das ist ein biss-
chen viel fiir ein einfaches Datum. Offensichtlich liegt dies daran, dass sdmtliche
Datumsstrings mitserialisiert werden. Nattirlich ist das nicht nétig, da wir die Strings
leicht neu berechnen koénnen. Listing 11.2 zeigt eine verbesserte Version, in der die
Tabelle map mit dem Schliisselwort transient gekennzeichnet und die Methode readob-
ject() implementiert ist. Alle Attribute, die mit transient gekennzeichnet sind, werden
beim Serialisieren iibersprungen. In der Regel ist es Aufgabe der privaten readObject()-
Methode, transiente (fliichtige) Attribute aus den persistenten Attributen wiederher-
zustellen.

Das sorgfiiltige Kennzeichnen von Attributen als transient ist eine der wichtigsten Techniken,
um die GrofSe serialisierter Objekte zu verringern.

package com.tagtraum.perf.serialization;

import java.io.Serializable;
import java.io.ObjectInputStream;
import java.io.IOException;
import java.util.*;

import java.text.SimpleDateFormat;

public class InternationalDate2 implements Serializable {
private Date date;
private transient Map map;

// genau wie in InternationalDatel

private void readObject(ObjectInputStream in)
throws I0Exception, ClassNotFoundException {
// Liest die serialisierten Attribute
in.defaultReadObject();
// Erstellt die Strings
buildInternationalStrings();

Listing 1 1.2: Internationales Datum mit verbesserter serialisierter Darstellung

Das Ergebnis kann sich sehen lassen: Statt 13.907 Byte verbraucht die serialisierte Dar-
stellung von InternationalDate2 nur 139 Byte — ein Hundertstel des urspriinglichen
Werts. Und das lasst sich sogar noch verbessern. Anstelle des Date-Objekts konnen wir
ja auch einfach nur den Zeitwert als Tong schreiben (Listing 11.3).

1 Diese Grofie variiert von VM zu VM, da fast jede VM andere Locales unterstiitzt.



Sandini Bib
262

—_

I RMI und Serialisierung

package com.tagtraum.perf.serialization;

import java.io.*;
import java.text.SimpleDateFormat;
import java.util.*;

public class InternationalDate3 implements Serializable f{
private transient Date date;
private transient Map map;

// genau wie in InternationalDatel

private void writeObject(ObjectOutputStream out)
throws IOException {
// Schreibt den Zeitwert als long
out.writelong(date.getTime());
}

private void readObject(ObjectInputStream in)
throws I0Exception, ClassNotFoundException {
// Liest den Zeitwert als Tong..
date = new Date(in.readlLong());
// .und initialisiert die Strings
buildInternationalStrings();

Listing 1 1.3: Internationales Datum, das lediglich den Zeitwert als long serialisiert

Auch dies fithrt zu einer Verbesserung. Es ist zwar nicht mehr um den Faktor hundert,
aber 82 Byte statt 139 Byte ist immerhin auch schon eine Verbesserung um 41 Prozent.
Wir wollen sehen, ob sich das noch verbessern lasst, indem wir das java.io.Externaliz-
able anstelle von Serializable verwenden.

package com.tagtraum.perf.serialization;

import java.io.*;
import java.text.SimpleDateFormat;
import java.util.*;

public class InternationalDate4 implements Externalizable f{
// transient ist nicht mehr nétig!
private Date date;
private Map map;

// genau wie in InternationalDatel

public void writeExternal(ObjectOutput out)
throws I0Exception {



Effiziente Serialisierung 263

out.writelong(date.getTime());
}

public void readExternal(ObjectInput in)
throws I0Exception, ClassNotFoundException {
date = new Date(in.readlLong());
buildInternationalStrings();

Listing I |.4: Externalisierbares internationales Datum

Externalizable bedeutet, dass die gesamte Serialisierung vom Programmierer {ibernom-
men wird. Insbesondere werden nicht automatisch Attribute von Superklassen geschrie-
ben. Da die Superklasse von InternationalDate die Klasse Object ist, macht sich dies jedoch
in unserem Fall nicht im Ergebnis bemerkbar. Das Datum benétigt immer noch 82 Byte.

Natiirlich liefle sich jedes Datum auch mit einem selbst geschriebenen Protokoll in
8 Byte ausdriicken. Dies soll hier jedoch nicht zu Debatte stehen.

Stattdessen wollen wir untersuchen, wie hoch der Preis fiir die GrofSenreduktion der
serialisierten Form ist. Denn gratis waren unsere Optimierungen leider nicht. Tabelle
11.1 und Tabelle 11.2 zeigen die normalisierten Ausfithrungszeiten. Wie nicht anders
zu erwarten, ist die benétigte Zeit zum Schreiben drastisch gesunken. Jedoch ist die
Zeit fiirs Lesen auch stark gestiegen. Das Erstellen der formatierten Daten ist halt nicht
ganz umsonst. Insbesondere Sun JDK 1.3.1 Client hatte daran schwer zu schlucken.

Java VM Version | Version 2 Version 3 Version 4 Version 5
Sun JDK 1.3.1 Client  100% 1,13% 0,60% 0,41% 0,45%
Sun JDK 1.3.1 Server 77% 1,81% 1,36% 1,58% 0,99%
Sun JDK 1.4.0 Client  78% 1,44% 1,21% 1,13% 0,68%
Sun JDK 1.4.0 Server 72% 2,94% 1,89% 1,51% 0,60%
IBM DK 1.3.0 95% 0,75% 0,53% 0,30% 0,68%

Tabelle I 1.1: Normalisierte Ausfiihrungszeit fiirs Schreiben der serialisierten Form

Java VM Version | Version 2 Version 3 Version 4 Version 5
Sun JDK 1.3.1 Client  100% 7.284% 7.157% 14.293% 1,97%
Sun JDK 1.3.1 Server 88% 195% 170% 331% 3,56%
Sun DK 1.4.0 Client  89% 223% 214% 423% 2,36%
Sun JDK 1.4.0 Server  85% 196% 169% 334% 2,84%
IBM DK 1.3.0 128% 253% 224% 440% 1,64%

Tabelle I1.2: Normalisierte Ausfiihrungszeit fiirs Lesen der serialisierten Form



264 I'l' RMI und Serialisierung

In beiden Tabellen sehen Sie jedoch Werte einer Version 5 von InternationalDate, die mit
geradezu unglaublich guten Werten aufwarten kann. Zugegeben, hier habe ich etwas
geschummelt, da diese Version nur unter giinstigsten Umstdnden auf die angegebenen
Werte kommt. Nichtsdestoweniger ist das natiirlich besser, als diese Werte nie zu errei-
chen.

Die Idee fiir InternationalDate5 ist folgende: InternationalDate ist unverdnderbar. Das
bedeutet, dass wir einen Pool von Objekten anlegen konnen, die immer wieder ver-
wendet werden. Somit ersparen wir uns das stindige Neuerstellen gleicher Objekte.
Dies macht insbesondere Sinn fiir InternationalDate, da jede Instanz sehr aufwandig zu
erzeugen ist. Um sicherzustellen, dass nicht mehrere Instanzen eines Datums existie-
ren, deklarieren wir den Konstruktor als private und fiigen eine Fabrikmethode hinzu.
Dies entspricht dem Singleton-Muster [Gamma96 S.139]. Als Pool verwenden wir
einen Cache aus Kapitel 8.4 Caches. Und dank der readResolve()-Methode kénnen wir
wiahrend des Deserialisierens die getInstance()-Methode benutzen, um indirekt auf
den Cache zuzugreifen. Somit kontrollieren und limitieren wir die Anzahl an Interna-
tionalDate-Objekten und sorgen so dafiir, dass nicht zu viel Speicher verschwendet
wird. Der Cache wird an die Klasse gebunden und ist somit pro Klassenobjekt der
InternationalDate-Klasse? eindeutig.

Mit der Externalizable-Schnittstelle konnen wir diese Version iibrigens nicht verwirkli-
chen, da diese einen 6ffentlichen, argumentlosen Konstruktor voraussetzt. Aus diesem
Grund setzen wir die Losung mit Serializable um und serialisieren den Zeitwert.

Die Zeiten in Tabelle 11.1 und Tabelle 11.2 fiir Version 5 sind Testzeiten, die mit demsel-
ben Klassenobjekt gemessen wurden. Im Test lag die Cache-Trefferrate also bei 100 Pro-
zent. Dies ist der Grund dafiir, dass die Lese-Zeiten so kurz sind — das Objekt musste
nicht extra instanziiert werden, da es sich bereits im Cache befand. Dies ist natiirlich
nicht immer der Fall. Die Losung macht also nicht fiir alle Anwendungen Sinn. Die-
jenigen, fiir die sie geeignet ist, profitieren jedoch stark.

package com.tagtraum.perf.serialization;

import com.tagtraum.perf.datastructures.Cache;
import com.tagtraum.perf.datastructures.RandomCache;

import java.io.*;
import java.text.SimpleDateFormat;
import java.util.*;

2 Die Identitdt einer Klasse besteht aus dem Paar Klassenobjekt und ClassLoader-Objekt. Das heifit,
wenn eine Klasse von zwei verschiedenen ClasslLoader geladen wird, sind die resultierenden Class-
Objekte nicht identisch. Somit ist der verwendete Cache nicht pro VM, sondern pro C1ass-Objekt
eindeutig.



Sandini Bib

Effiziente Serialisierung 265

public class InternationalDate5 implements Serializable {
private transient Date date;
private transient Map map;
// Cache fiir InternationalDate5-Objekte
private static Cache cache = new RandomCache(512);

// Privater Konstruktor

private InternationalDate5(Date date) {
this.date = date;
buildInternationalStrings();

}

// Fabrikmethode
public static synchronized InternationalDateb
getInstance(Date date) {
InternationalDateb iDate
= (InternationalDateb5) cache.get(date);
if (iDate == null) {
iDate = new InternationalDate5(date);
cache.put(date, iDate);
}
return iDate;

}

public static InternationalDate5 getInstance() {
return getInstance(new Date());

}

// genau wie in InternationalDatel

// Aufldsen des date-Attributes zu einer Instanz
private Object readResolve()
throws ObjectStreamException {
return getlInstance(date);

}

private void writeObject(ObjectOutputStream out)
throws I0Exception f{
out.writelong(date.getTime());

private void readObject(ObjectInputStream in)
throws I0Exception, ClassNotFoundException f
date = new Date(in.readLong());

Listing I 1.5: Internationales Datum mit Cache



266

Sandini Bib
11

['1.1.2 Optimierte logische Darstellung

Im obigen Beispiel haben Sie gesehen, wie sich die Datenmenge effizient verkleinern
lasst. Wir wollen uns ein weiteres Beispiel anschauen. Listing 11.6 zeigt eine einfach-

verkniipfte Liste fiir Strings, die Serializable implementiert.

package com.tagtraum.perf.serialization;

import java.io.Serializable;

public class LinkedListl implements Serializable f

private Entry head;
private int size;

public LinkedListl() {

}

head = new Entry();

public void add(String value) f

Entry e = head;

while (e.getNext() != null) f{
e = e.getNext();

}

Entry newkEntry = new Entry();

newkntry.setValue(value);

e.setNext(newEntry);

Sizet+;

public String get(int index) f{

}

if (index >= size) throw new IndexOutOfBoundsException();
Entry e = head.getNext();
for (int i = 0; i < index; i++) |
e = e.getNext();
}
return e.getValue();

public String remove(int index) f{

if (index >= size) throw new IndexOutOfBoundsException();

Entry e = head.getNext();

for (int i = 0; i < index; i++) |
e = e.getNext();

}

e.getPrev().setNext(e.getNext());

if (e.getNext() != null)
e.getNext().setPrev(e.getPrev());

return e.getValue();

RMI und Serialisierung



Effiziente Serialisierung 267

private static class Entry implements Serializable {
private Entry next;
private Entry prev;
private String value;

public String getValue() f
return value;

J

public void setValue(String value) f{
this.value = value;
}

public Entry getNext() {
return next;
}

public void setNext(Entry next) f{
this.next = next;
}

public Entry getPrev() {
return prev;
}

public void setPrev(Entry prev) {
this.prev = prev;
}

Listing I 1.6: Simple Implementierung einer einfach verlinkten Liste

Naiv betrachtet, ist an dieser Implementierung wenig auszusetzen. Wenn Sie diese
Liste jedoch benutzen, werden Sie evtl. feststellen, dass das Serialisieren und Deseriali-
sieren ab einer bestimmten Lange zu einem StackOverflowError fithrt. Der Grund hier-
fir ist die simple Tatsache, dass der automatische Serialisierungsmechanismus den
Objektbaum rekursiv traversiert. Die Lange unserer Liste steht somit in direkter Bezie-
hung zur Rekursionstiefe — und die ist bei den meisten Systemen begrenzt. Auf einem
Windows-2000-System mit Sun JDK 1.4.0 lag die maximale Lénge der Liste bei 730.

Statt sich also auf den automatischen Mechanismus zu verlassen, miissen wir uns ein
wenig anstrengen. Die offensichtliche Losung ist es, zundchst die Lange der Liste zu
schreiben und dann ebenso viele Werte einzulesen. Entsprechend fiigen wir readOb-
jectO)- und writeObject()-Methoden hinzu und deklarieren head und size als transient
(Listing 11.7).



268

Sandini Bib

—_

|

RMI und Serialisierung

package com.tagtraum.perf.serialization;

import java.io.*;

public class LinkedlList2 implements Serializable {

/7

private transient Entry head;
private transient int size;

public LinkedList2() {
head = new Entry();
}

genau wie LinkedListl

private void writeObject(ObjectOutputStream out)
throws I0Exception {
out.writeInt(size);
Entry e = head;
while (e.getNext() != null) {
e = e.getNext();
out.writeObject(e.getValue());

}

private void readObject(ObjectInputStream in)

throws I0Exception, ClassNotFoundException {

size = in.readInt();

head = new Entry();

Entry e = head;

for (int i = 0; i < size; i++) {
Entry newEntry = new Entry();
newEntry.setValue((String) in.readObject());
e.setNext(newEntry);
e = newkntry;

}

private static class Entry f{

// genau wie LinkedListl

Listing I 1.7: Bessere Serialisierung einer verkniipften Liste



Sandini Bib

Effiziente Serialisierung 269

Nicht nur, dass wir jetzt beliebig lange Listen serialisieren kénnen, die Groéfe der seria-
lisierten Form sinkt auch leicht. Genauer gesagt, sie sinkt von 14.848 Byte auf 9.761
Byte bei identischem Inhalt (700 Strings der Lange 9-11). Dies ldsst sich leicht noch ein
wenig verbessern, indem wir etwas sorgféltiger serialisieren. Anstatt namlich Strings
mit writeUTF() und readUTF() zu schreiben und zu lesen, haben wir uns die Freiheit
genommen, die Methoden read0Object () und writeObject() zu benutzen. Diese Nachlds-
sigkeit racht sich in der resultierenden Grofie. Mit writeUTF() und readUTF() (Listing
11.8) lasst sich diese immerhin von 9.761 Byte auf 9.104 Byte verringern.

Es lohnt sich, genau passende Methoden aus Datalnput bzw. DataOutput zu benutzen.

package com.tagtraum.perf.serialization;
import java.io.*;
public class LinkedlList3 implements Serializable f{

private transient Entry head;
private transient int size;

// genau wie LinkedListl

private void writeObject(ObjectOutputStream out)
throws I0Exception f{
out.writelnt(size);
Entry e = head;
while (e.getNext() != null) {
e = e.getNext();
out.writeUTF(e.getValue());

private void readObject(ObjectInputStream in) throws IOException,
ClassNotFoundException f

size = in.readInt();

head = new Entry();

Entry e = head;

for (int i = 0; 1 < size; i++) |
Entry newEntry = new Entry();
newEntry.setValue(in.readUTF());
e.setNext(newEntry);
e = newkEntry;

private static class Entry {



270 I'l' RMI und Serialisierung

// genau wie LinkedListl

}

Listing 1 1.8: LinkedList mit readUTF() und writeUTF()

| 1.2 Latenzzeiten und Overhead

Fiir jeden entfernten Methodenaufruf gibt es fixe Kosten, die insbesondere mit dem
Netzwerk zu tun haben. Jeder Verbindungsaufbau dauert halt ein wenig. Die simple
Regel, die sich daraus fiir RMI ableiten ldsst, lautet:

Wenn Sie die Wahl haben, eine entfernte Methode oft mit wenigen Argumenten oder selten mit
vielen Argumenten bzw. grofien Objekten aufzurufen, rufen Sie sie selten auf.

Die Erkldarung dafiir ist sehr einfach. Jeder Methodenaufruf habe fixe Kosten ¢ und
jedes Objekt in einem dieser Aufrufe habe Kosten von o. Die Gesamtkosten fiir n Auf-
rufe mit m Objekten errechnen sich aus nc + mo. Es ist klar, dass die Kosten bei kon-
stantem m und steigendem n steigen.

Wir wollen dies durch ein kleines Experiment untermauern. Eine entfernte Methode
habe folgende Signatur:

public void send(Stringl] s) throws RemoteException;

In unserem Test rufen wir die Methode auf, um 1.000 Strings zu {ibertragen, und mes-
sen die Zeit. Dabei variieren wir die Anzahl der Strings, die pro Aufruf iibertragen
werden, wihrend die Gesamtanzahl der iibertragenen Strings gleich bleibt.

Methodenaufrufe 1.000 100 10 |
Zeit 100% 14,8% 45% 3,0%

Tabelle |1.3: Normalisierte Ausfiihrungszeit fiir das Ubertragen von 1.000 Strings

Das Ergebnis in Tabelle 11.3 zeigt deutlich, dass die Ubertragung umso schneller von-
statten geht, je weniger Methodenaufrufe wir verwenden.

Eine direkte Anwendung dieses Wissen ist das Value-Object-Muster, das besonders im
J2EE/EJB-Umfeld beliebt ist. Statt tiber die einzelnen get()-Methoden eines entfernten
Objektes einzelne Werte abzufragen, fragt man nach einem einzigen Objekt, das alle
Attribute eines Objekts beinhaltet.



Verteilte Speicherbereinigung 271

| 1.3 Verteilte Speicherbereinigung

In verteilten Systemen reicht die lokale Speicherverwaltung nicht aus. Daher verfiigt
RMI {iber eine verteilte Speicherverwaltung, die sicherstellt, dass Objekte, die von
anderen Java VM referenziert werden, nicht vorzeitig beseitigt werden. Sie stellt
zudem sicher, dass entfernte Objekte iiberhaupt beseitigt werden.

Wenn Sie also ein entferntes Objekt benutzen, wird dem Objekt-Server mitgeteilt, dass
Sie dieses Objekt referenzieren. Es wird zudem automatisch periodisch signalisiert,
dass Sie das Objekt noch fiir eine Weile langer benutzen wollen. Wenn Sie das entfernte
Objekt nicht mehr benutzen, wird dies ebenso signalisiert.

Natiirlich ist das Signalisieren nicht gratis, denn schliefSlich werden Nachrichten tiber
das Netzwerk tibermittelt. Dass diese Nachrichten tibermittelt werden, ist Teil des Sys-
tems und steht aufler Frage. Interessant ist jedoch, wie hiufig diese Nachrichten iiber-
mittelt werden. Und genau dieser Parameter ldsst sich konfigurieren.

Sie konnen beim Start der VM, die Ihr entferntes Objekt ausfiihrt, den Parameter
Jjava.rmi.dgc.leaseValue setzen. Dieser Parameter spezifiziert die Zeit in Millisekunden,
die ein entferntes Objekt seinen Klienten garantiert, dass es noch existiert. Gewohnlich
wird von Klienten nach Ablauf der Halfte dieser Zeit eine neue Garantie angefordert.
Der voreingestellte Wert liegt bei zehn Minuten. Wenn Sie diesen Wert erhShen, verrin-
gern Sie also die Netzbelastung. Die Kehrseite ist jedoch, dass entfernte Objekte ldnger
als nétig im Speicher verbleiben. Eventuell kann es sich also auch lohnen, genau umge-
kehrt zu verfahren und den Wert zu verringern.

Beispiel:
java -Djava.rmi.dgc.leaseValue=120000000 <mainclass>

Letztendlich miissen sowohl Referenzen auf entfernte Objekte als auch die entfernten
Objekte irgendwann von der Speicherbereinigung beseitigt werden. Um sicherzustel-
len, dass dies auch in endlicher Zeit passiert, ruft die Sun-Implementierung von RMI
die Speicherbereinigung periodisch mittels System.gc() auf. Dabei handelt es sich um
eine vollstindige Speicherbereinigung. Die Dauer dieser Periode ldsst sich mit den
Parametern sun.rmi.dgc.client.gcInterval bzw. sun.rmi.dgc.server.gcInterval beim
Start der VM setzen. Der Server-Parameter sollte fiir VMs gesetzt werden, die entfernte
Objekte ausfiihren, der Client-Parameter fiir VMs, die entfernte Objekte benutzen. Die
voreingestellten Werte fiir beide Parameter sind 60.000 Millisekunden, also eine
Minute. Diesen Wert zu erh6hen macht insbesondere Sinn bei Systemen, die iiber einen
grofien Heap verfiigen, da eine vollstindige Speicherbereinigung sehr viel Zeit kosten
kann. Dies ist vergeudete Zeit, wenn der Heap noch nicht voll ist. Es kann sich also
lohnen, die Speicherbereinigungsaktivitdt zu verfolgen und die Werte der beiden Para-
meter entsprechend zu verdndern.



Sandini Bib



12 XML

Seit JDK 1.4.0 ist Unterstiitzung fiir XML (Extensible Markup Language) Teil der Java-
Entwicklungsumgebung. Bereits vorher war XML-Unterstiitzung als optionales Paket
mit Namen JAXP (Java API for XML Processing) von Sun erhaltlich. JAXP ist im Wesent-
lichen eine Schnittstelle zu XML-Parsern sowie eine Schnittstelle zu XSLT (Extensible
Stylesheet Language Transformations). In diesem Kapitel werden wir uns mit Perfor-
mance-Aspekten von Parsern sowie einigen anderen XML-bezogenen Problemen aus-
einander setzen.

12.1 SAX, DOM & Co

JAXP unterstiitzt zwei verschiedene Parser-Modelle, deren Performance in Hinblick
auf Speicherverbrauch und Geschwindigkeit sehr unterschiedlich sein kann: SAX
(Simple API for XML) und DOM (Document Object Model). Zudem existiert noch eine
dritte, nennenswerte Parsergattung namens Pull-Parser, die jedoch nicht von JAXP
unterstiitzt wird. Wir werden kurz alle drei Gattungen erlautern.

12.1.1 SAX

SAX ist eine Schnittstelle, die von Mitgliedern der XML-DEV Mailingliste entwickelt
wurde. Sie ist einfach, leichtgewichtig und gehort zur Gattung der Push-Parser. Um
SAX zu benutzen, miissen Sie eine org.xml.sax.ContentHandler-Klasse implementieren,
eine Instanz dieser Klasse bei einem XMLReader registrieren und anschlieffend dessen
parse()-Methode aufrufen. Der Parser ruft dann fiir jedes Element die entsprechende
Methode ihres ContentHandlers auf (Abbildung 12.1). Und dies ist auch genau die
wesentliche Eigenschaft von SAX: Der Parser ruft die Methoden eines Handlers auf.
Das heifit der Parser hat die Kontrolle und der Handler reagiert. Solche Parser werden
auch als Push-Parser oder ereignisorientierte Parser bezeichnet.

Da der SAX-Parser fiir alle XML-Elemente der Reihe nach Methoden eines Handlers
aufruft, eignet sich SAX hervorragend fiir einen stromorientierten, sequenziellen
Zugriff auf XML-Dokumente. Es ist jedoch ungeeignet fiir wahlfreien Zugriff.



Sandini Bib
274 12 XML

—

e&eﬁ Content-Handler |
|
XML- I

Error-Handler ‘
Dokument SAX-Parser 1
| DTD-Handler |

| Entity-Resolver |

1

SAX-Parser-Fabrik

Abbildung 12.1: Verarbeitungskonzept von SAX

Um die Benutzung von SAX ein wenig zu vereinfachen, existiert eine Klasse
org.xml.sax.helpers.DefaultHandler, die bereits die Methoden von ContentHandler sowie
einigen anderen Schnittstellen implementiert. Falls Sie SAX benutzen wollen, bietet es
sich also an, von DefaultHandler zu erben und die benétigten Methoden zu tiberschrei-
ben. Zudem wird die XMLReader-Klasse von JAXP durch eine SAXParser-Klasse gekapselt,
die wiederum von einer SAXParserFactory erzeugt wird. Somit kommen Sie mit dem
XMLReader-Interface kaum in Berithrung.

package com.tagtraum.perf.xml;

import org.xml.sax.Attributes;

import org.xml.sax.SAXException;

import org.xml.sax.helpers.DefaultHandler;
import javax.xml.parsers.SAXParser;

import javax.xml.parsers.SAXParserFactory;
import java.io.File;

public class SimpleSAXDemo f{

// Gibt die Namen aller Elemente einer XML-Datei aus.
public static void main(Stringl] args) throws Exception f
SAXParserFactory parserFactory
= SAXParserFactory.newlnstance();
SAXParser parser = parserfFactory.newSAXParser();
parser.parse(new File(args[0]), new DefaultHandler() {

public void startElement(String namespaceURI,
String TocalName, String gName, Attributes atts)
throws SAXException f
System.out.printin(gName);

Listing 12.1: SAX-basierter Parser, der die Namen aller Tags einer XML-Datei ausgibt



SAX, DOM & Co 275

Listing 12.1 zeigt ein einfaches Programm, das die Namen aller Elemente einer XML-
Datei ausgibt. Um dies zu erreichen haben wir einfach die Methode startElement()
eines DefaultHandlers {iberschrieben und diesen als Argument an die parse()-Methode
eines SAXParser-Objektes iibergeben.

12.1.2 DOM

DOM ist ein Objekt-Modell des World Wide Web Konsortiums (W3C — http://www.w3c.org/).
Es dient zur hierarchischen Darstellung von Dokumenten in einer Baumstruktur. Zum
Erstellen dieser Darstellung wird meist das gesamte Dokument in einem Rutsch analy-
siert. Dabei werden fiir alle Knoten des Baums entsprechende Objekte instanziiert.
Anschlieffend wird die Wurzel des Baums in Form eines org.w3c.dom.Document-Objektes
an den Klienten zuriickgegeben (Abbildung 12.2). Das bedeutet, dass der Benutzer nach
dem Aufruf der parse()-Methode den vollstindig geparsten Baum zuriickbekommt.

DOM-Représentationen eines XML-Dokuments halten meist den gesamten Doku-
ment-Baum im Speicher. Sie ermoglichen so schnellen wahlfreien Zugriff auf einzelne
Dokument-Elemente sowie leichtes Traversieren des Baumes.

=

XML- DOM-Baum
Dokument DOM-Parser

| Error-Handler |
—
| Entity-Resolver |
—

1

DOM-Parser-Fabrik

Abbildung 12.2: Verarbeitungskonzept von DOM

Dadurch, dass die Représentation im Speicher liegt, haben DOM-Implementierungen
einen enormen Speicherverbrauch. Dies ist auch ihr grofiter Nachteil.

Zum Vergleich: Eine XML-Fassung von Goethes Faust II hat 9.755 Elemente und eine
GroBe von 551 KByte.! Wenn man sie mit dem in Sun JDK 1.4.0 enthaltenen Crimson-
SAX-Parser durchliest, steigt der Heapspeicherverbrauch nicht iiber 1 Mbyte. Liest
man dieselbe Datei dagegen mit dem Crimson-DOM-Parser, steigt der Heapspeicher-
verbrauch auf rund 5 Mbyte — beinahe das Zehnfache der Dokumentgrofe.

1 Die benutzte Fassung basiert auf der Version von http://www.kalliope.org/.



Sandini Bib
276 12 XML

Einige Implementierungen wie Apache Xerces-| (http://xml.apache.org/) versuchen dieses
Problem zu lindern, indem sie Teile des Baumes erst beim Benutzen vollstindig instan-
ziieren (Deferred Node Expansion). Dadurch wird das Document-Objekt schneller vom
Parser zuriickgegeben und der Speicherverbrauch leicht gesenkt — sofern nicht jedes
Element des Dokuments benutzt wird.

Listing 12.2 zeigt ein sehr einfaches Programm, das genau wie das SAX-Beispiel in Lis-
ting 12.1 ein XML-Dokument liest und jeweils die Namen der XML-Tags ausgibt.
Dabei wird JAXP als Schnittstelle zu einem DOM-Parser benutzt.

package com.tagtraum.perf.xml;

import org.w3c.dom.Document;

import org.w3c.dom.Nodelist;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;
import java.io.File;

public class SimpleDOMDemo f{

public static void main(Stringl] args) throws Exception f
DocumentBuilderFactory builderFactory
= DocumentBuilderFactory.newInstance();
DocumentBuilder documentBuilder
= builderFactory.newDocumentBuilder();
Document document = documentBuilder.parse(new File(args[01));
// Besorge Liste mit allen Elementen.
// Achtung! getETementeByTagName() ist in einigen Parsern
// sehr Tangsam!
NodeList Tist = document.getElementsByTagName("*");
for (int i = 0; i < list.getlength(); i++) {
System.out.printin(list.item(i).getNodeName());

Listing 12.2: DOM-basiertes Programm, das die Namen aller Elemente einer XML-Datei ausgibt

[2.1.3 Pull-Parser

Pull-Parser sind Parser, die nur aktiv sind, wenn der Benutzer dies wiinscht. Das heif3t
es wird nicht immer der komplette Dokument-Baum im Speicher aufgebaut oder ein
Handler iiber alles in Kenntnis gesetzt, sondern immer nur das gelesen, was der Klient
wiinscht. Es lassen sich sogar ganze Baum-Knoten iiberspringen.

Somit liegt die Kontrolle nicht beim Parser, sondern beim Klienten, was zu einer effiziente-
ren Benutzung des Parsers fithren kann. Ein Beispiel fiir einen Pull-Parser ist XPP (XML-



Sandini Bib
SAX, DOM & Co 277

Pull-Parser) des Extreme! Labs der Universitat von Indiana (http://www.extreme.indiana.edu/
xgws/xsoap/xpp/). XPP unterstiitzt keine Validierung, Entititen, Kommentare oder Verar-
beitungsanweisungen (Processing Instructions) und ist somit nicht universell einsetzbar.
Er kann jedoch Dokument-Teile parsen und ist fiir J2ME geeignet.

XPP bietet dem Benutzer sowohl eine Baum- als auch eine Ereignissicht (Abbildung
12.3). Listing 12.3 und Listing 12.4 zeigen Beispielprogramme fiir beide Sichten.

XML- %

Dokument —>{ XML-Pull-Parser XmlPullNode
¥/\ /\Baum-

sicht

/|\ Ereignis-
sicht

XPP-Parser-Fabrik

Klient

Abbildung 12.3: Verarbeitungskonzept von XPP

Fiir Faust Il liegt der Heapspeicherverbrauch der Ereignissicht relativ konstant bei 1%2
Mbyte. Bei der Baumsicht steigt der Speicherverbrauch wéhrend des Parsens auf
knapp 5 Mbyte an. Wiirden wir Teile des Baumes beim Parsen iiberspringen oder
bewusst nur einen Teil des Baumes parsen, wére der Speicherverbrauch entsprechend
geringer. Grundsétzlich konnen Sie wahrend des Parsens leicht zwischen Baum- und
Ereignissicht wechseln. Diese Wahl haben Sie bei anderen Parsern in der Regel nicht.

package com.tagtraum.perf.xml;

import org.gjt.xpp.XmlPullParser;
import org.gjt.xpp.XmlPullParserFactory;
import java.io.FileReader;

public class SimpleXPPEventDemo {
public static void main(Stringl] args) throws Exception f
XmlPullParserFactory parserFactory
= XmlPullParserFactory.newInstance();
XmlPullParser parser = parserfFactory.newPullParser();
parser.setInput(new FileReader(args(01));
// Lesen, bis das Ende des Dokumente erreicht ist.



Sandini Bib
278 12 XML

while (parser.next() != XmlPullParser.END_DOCUMENT) f{
if (parser.getEventType() == XmlPullParser.START_TAG) |
// Gib alle Namen von Start-Tags aus.
System.out.printin(parser.getRawName());

Listing 12.3: XPP-basiertes Programm, das die Namen aller Elemente einer XML-Datei ausgibt und dazu sequen-
ziellen Zugriff benutzt

package com.tagtraum.perf.xml;

import org.gjt.xpp.XmlPullNode;

import org.gjt.xpp.XmlPullParser;

import org.gjt.xpp.XmlPullParserFactory;
import java.io.FileReader;

public class SimpleXPPTreeDemo {

public static void main(Stringl] args) throws Exception f

XmlPullParserFactory parserFactory
= XmlPullParserFactory.newInstance();

Xm1PullParser parser = parserFactory.newPullParser();
parser.setInput(new FileReader(args[0]));
// Finde erstes Element.
while (parser.next() != XmlPullParser.START_TAG) {}
XmlPullNode node = parserFactory.newPullNode(parser);
printElementName(node);

// Tarversiert rekursiv durch den Baum und druckt alle
// Start-Element-Namen.
private static void printElementName(XmlPullNode node)
throws Exception f
System.out.printin(node.getRawName());
Object object;
while ((object = node.readNextChild()) != null) {
if (object instanceof XmlPullNode) f
printElementName((Xm1PullNode) object);
}

Listing 12.4: XPP-basiertes Programm, das die Namen aller Elemente einer XML-Datei ausgibt und dazu das
Baummodell benutzt



Sandini Bib
Kleiner Modellvergleich 279

12.2 Kleiner Modellvergleich

Es ist sehr schwierig, die verschiedenen Ansitze allgemeingiiltig und dennoch aus-
sagekraftig quantitativ zu vergleichen. Insbesondere spielt die Beschaffenheit der zu
verarbeitenden XML-Dokumente und die Art der Anwendung eine grofse Rolle.

Wir wollen dennoch einen kleinen Vergleich wagen, um uns eine grobe Vorstellung zu
verschaffen. Zu diesem Zweck werden die oben abgedruckten Demo-Programme mit
Faust II gefiittert und die Verarbeitungszeit gemessen. Um nicht die Ausgabege-
schwindigkeit der Konsole zu messen, werden die Elementnamen jedoch nicht ausge-
geben. Zudem stellt sich heraus, dass im Crimson-Parser des Sun JDK 1.4.0 die
Methode document.getETementsByTagName() mangelhaft implementiert ist. Daher benut-
zen wir fiir den DOM-Test folgenden funktional gleichwertigen und in unserem Test
etwa 600-mal schnelleren Code:

package com.tagtraum.perf.xml;

import org.w3c.dom.*;
import javax.xml.parsers.*;
import java.io.File;

public class DOMBenchDemo?2 f{
public static void main(Stringl] args) throws Exception {

DocumentBuilderFactory builderFactory

= DocumentBuilderFactory.newInstance();
builderFactory.setValidating(false);
builderFactory.setNamespaceAware(false);
DocumentBuilder documentBuilder

= builderFactory.newDocumentBuilder();
File file = new File(args[0]);
parse(documentBuilder, file);

private static void parse(DocumentBuilder documentBuilder,
File file) throws Exception f{

Tong start = System.currentTimeMillis();
Document document = documentBuilder.parse(file);
traverse(document.getDocumentElement());
System.out.printin(System.currentTimeMillis() - start);

}

private static void traverse(Element element) throws Exception f
// Greife auf den Namen zu, ohne ihn jedoch auszugeben.
element.getTagName();
NodeList 1ist = element.getChildNodes();
for (int i=0, length = list.getlength(); i<length; i++) {



Sandini Bib
280 12 XML

if (1ist.item(i).getNodeType() == Node.ELEMENT_NODE) f
traverse((Element)list.item(i));
}

}

Listing 12.5: Traversieren des DOM mittels rekursiver Aufrufe der Methode getChildNodes() kann um ein Vielfa-
ches schneller sein als mit getElementsByTagName()

Abbildung 12.4 zeigt das Ergebnis unseres Tests. SAX ist der klare Sieger, gefolgt von
XPP mit Ereignissicht. DOM und die XPP-Baumsicht sind in etwa gleichauf. Benutzt
wurden jeweils die Standard-SAX- und DOM-Implementierungen aus Sun JDK 1.4.0
(Crimson) sowie XPP 2.1.7. Beim Testen fiel auf, dass die Server-VM in den ersten Parse-
Durchgédngen die meiste Zeit mit Kompilieren und Speicherbereinigung verbrachte. Erst
in spateren Durchgédngen wurden bessere Zeiten als mit der Client-VM erreicht. Wenn
Sie realistische Tests durchfiihren wollen, parsen Sie also auf jeden Fall mehr als einmal.

= 120

(0]

N

% 100 —

c

2

£ 801

27

< 601

[0

& 40 4+

2

© 4 1

£ 20

]

c 0 T T T
DOM SAX XPP XPP Baum

Ereignis

O JDK 1.4.0 client mJDK 1.4.0 server

Abbildung 12.4: Dauer des Parsens und Besuchens jedes Elements in Faust Il ohne Validierung oder Namensrdume
in Abhdngigkeit von VM und Parse-Modell

Beim ersten Test waren weder Validierung noch Unterstiitzung fiir Namensraume ein-
geschaltet. Beide wirken sich jedoch auf die Verarbeitungsgeschwindigkeit aus. Daher
wollen wir den Test nochmals mit diesen Optionen durchfiihren.

Abbildung 12.5 zeigt, dass sowohl Validierung als auch die Unterstiitzung von
Namensrdumen das Parsen verlangsamen. Insbesondere auf SAX wirkt sich die Kom-
bination der beiden Optionen relativ gesehen sehr negativ aus.



Sandini Bib

Den richtigen Parser wdhlen 281

5 120
N
S 100
2
5 80 1+
s
< 601
(0]
& 40 +—
£
© J
£ 20
g o
DOM SAX
O Normal O Validiert
@ Namensraume | Validiert/Namensraume

Abbildung 12.5: Dauer des Parsens und Besuchens jedes Elements in Faust Il in Abhdngigkeit von Parse-Modell
sowie Validierung und Namensraumunterstiitzung

Als Ergebnis unseres kleinen Vergleichs ldsst sich festhalten, dass zum Ausgeben aller
Elementnamen in unserem Faust-II-Dokument von den getesteten Varianten der ver-
wendete SAX-Parser ohne Validierung und Namensraumunterstiitzung am besten
geeignet ist. Das ist jedoch auch schon alles. Lassen Sie sich nicht von Tests anderer
oder gar der Anbieter irrefithren. Letztlich zdhlen nur Thre Anforderungen und Ihre
Umgebung — und dazu gehort auch die VM. Xerces-] wird zu einem grofien Teil von
IBM-Mitarbeitern entwickelt, Crimson von Sun. Sie konnen sich vorstellen, fiir welche
VM die beiden Parser jeweils optimiert wurden.

12.3 Den richtigen Parser wihlen

Um den richtigen Parser zu finden, miissen Sie im Grunde zunéchst eine Entscheidung
fiir eine Parsergattung féllen. Die wichtigsten Fragen sind hierbei, wie Sie auf Doku-
mente zugreifen wollen und wie diese Dokumente beschaffen sind. Beispielsweise spielt
der Speicherverbrauch fiir kleine Dokumente nicht so eine grofle Rolle wie fiir grofie
Dokumente. Genauso ist wahlfreier Zugriff sehr aufwandig und fiir viele Anwendun-
gen unnotig. Vielleicht benétigen Sie auch nur einen Parser, der lediglich eine Unter-
menge vom XML beherrscht, dafiir aber sehr klein und schnell ist sowie auch unter
J2ME lauft. Es ist extrem wichtig, dass Sie sich dariiber klar werden, welche Dokumente
Sie unter welchen Rahmenbedingungen auf welche Art verarbeiten wollen.

Erst wenn Sie sich tiber Ihre Bedtirfnisse im Klaren sind, sollten Sie eine Parsergattung
wihlen. Nach der Entscheidung fiir die Gattung steht die Entscheidung fiir eine Imple-
mentierung an. Falls Sie sich fiir DOM oder SAX entscheiden, kénnen Sie sich gliicklich



282 12 XML

schitzen. JAXP ermdglicht es Ihnen, die Implementierung auszutauschen ohne eine Zeile
Code zu verdndern. Die XPP-Implementierung ldsst sich dank Abstrahierung durch
Schnittstellen dhnlich einfach austauschen. Neben XPP existiert noch eine zweite Imple-
mentierung speziell fiir die 2ME-Umgebung namens kXML2 (http://www.kxml.org/).

Ich kann Thnen leider keine Empfehlung fiir eine Implementierung geben. Was bleibt
ist der gut gemeinte Rat, dass nur Testen hilft — und zwar mit Dokumenten, die Sie spé-
ter auch verwenden werden. Einige Parser scheinen geeigneter fiir grofie als fiir kleine
Dokumente zu sein. Andere haben eine sehr schnelle SAX-Unterstiitzung oder eine
sehr sparsame DOM-Unterstiitzung.

Welche Implementierung Sie wihlen sollten, hdngt von folgenden Faktoren ab:
Parsergattung (DOM, SAX, XPP, ...)
Unterstiitzte Schnittstellen (beispielsweise DOM Level 3, SAX 2, ...)
Dokumentgrofie
Komplexitdt und Grofle der DTD bzw. des XML-Schemas
Zeit

Der Faktor Zeit ist daher so wichtig, weil wir uns noch immer in einem XML-Hype
befinden. Viele Firmen und Organisationen stehen in einem harten Wettbewerb zuei-
nander, so dass in einem halben Jahr einiges passieren kann. Wenn Sie sich also friih
auf die schnelle, aber proprietdre Parser-Technologie eines Nischenanbieters festlegen,
konnen Sie leicht den Anschluss an den Mainstream verlieren. Und der Mainstream ist
eventuell in einem halben Jahr viel schneller als der Nischenanbieter, der inzwischen
Konkurs angemeldet hat.

12.4 XML ausgeben

Nicht nur das Lesen, auch das Schreiben von XML ist eine zeitkritische Angelegenheit.
Grundsatzlich gilt:

Der schnellste Weg XML zu produzieren, ist einfach in einen gepufferten Strom zu schreiben.
Dies ist jedoch auch der fehleranfilligste.

Einer der sichersten Wege, XML zu produzieren, ist es, einen DOM-Baum aufzubauen
und diesen anschliefend in einen gepufferten Strom zu schreiben. Dies ist deshalb
wenig fehleranfillig, weil Sie nicht vergessen koénnen, ein Tag zu schliefien. Der Preis
dafiir ist ein hoher Speicherverbrauch, da Sie den gesamten Baum im Speicher halten
miissen, bevor Sie ihn ausgeben.



XML ausgeben 283

Falls Sie sich fiir diese Form der Ausgabe entscheiden sollten, ziehen Sie in Betracht
zur Ausgabe des DOM das Xerces-J-Paket org.apache.xml.serialize zu benutzen. Es ist
zwar Teil von Xerces-], jedoch unabhdngig von der Parser-Implementierung. Eine
Alternative zu diesem Paket sind die Lade- und Speicher-Features von DOM Level 3
(http://www.w3.0rg/TR/DOM-Level-3-ASLS/). Da DOM nur durch Schnittstellen spezifi-
ziert ist, kann es sein, dass die entsprechenden Klassen einer DOM-Implementierung
besonders aufeinander abgestimmt und daher optimiert sind. Daher macht es durch-
aus Sinn, diese Features zu verwenden, sobald DOM Level 3 dem Entwurfsstadium
entwachsen ist und allgemein unterstiitzt wird. Sun JDK 1.4.0 bietet zurzeit nur DOM
Level 2. Jedoch verfiigt Xerces-] 2.0.1 bereits iiber eine rudimentire DOM-Level-3-
Unterstiitzung.

Listing 12.6 zeigt beispielhaft, wie Sie ein Dokument mit einem org.w3c.dom.1s.DOMWr1 -
ter in die Standardausgabe drucken konnen.

Document document = ...

DOMImpTementation domImpl = DOMImplementationRegistry
.getDOMImplementation("Core 2.0 LS-Save 3.0");

if (domImpl != null) {
DOMImplementationlLS implls = (DOMImplementationlS) domImpl;
DOMWriter writer = implls.createDOMWriter();
writer.writeNode(System.out, document);

}

else f
System.out.printin("Konnte keinen DOM-Level-3-Parser finden,"

+ " der Speichern unterstitzt.");
}

Listing 12.6: Beispiel-Code fiir die Ausgabe eines DOM-Baums mit DOM Level 3?

Ein Kompromiss zwischen DOM und rohem Strom ist ein an den SAX-ContentHandler
angelehnter XMLWriter (Listing 12.7). Wéahrend Sie XML ausgeben, kontrolliert dieser,
ob die Tags in der richtigen Reihenfolge geschrieben werden. Dieses Vorgehen ist aller-
dings nur sinnvoll, wenn Sie das Dokument nicht anschlieend im selben Prozess mit
Stylesheets manipulieren wollen.

package com.tagtraum.perf.xml;

import org.xml.sax.*;

import org.xml.sax.helpers.DefaultHandler;
import java.io.*;

import java.util.*;

public class XMLWriter extends DefaultHandler f{

2 Gemif Entwurf vom 9. April 2002.



Sandini Bib
284 12 XML

private PrintWriter out;
private String encoding;
private List stack;
private boolean canonical;

public XMLWriter(OutputStream out, String encoding,
boolean canonical) throws UnsupportedEncodingException {
this.out = new PrintWriter(new BufferedWriter(
new QutputStreamWriter(out, encoding)));
stack = new ArraylList();

public void startElement(String uri, String local, String raw,

Attributes attrs) throws SAXException f{

stack.add(raw);

insert(stack.size());

out.print('<");

out.print(raw);

if (attrs != null) |
// schreibe Attribute

}
out.print('>");

public void endElement(String uri, String local, String raw)
throws SAXException f{
String expectedTag = (String) stack.remove(stack.size() - 1);
if (!raw.equals(expectedTag))
throw new SAXException("Expected </" + expectedTag
+ "> instead of </" + raw + ">.");
out.print("</");
out.print(raw);
out.print('>");

// SchlieBt alle Tags, die noch offen sind.
public void endAl1PendingElements() f
while (!stack.isEmpty()) f
out.print("</");
out.print(stack.remove(stack.size() - 1));
out.print('>");

J

Listing 12.7: Ausschnitt aus einem XMLWriter, der tiberpriift, ob Elemente in der richtigen Reihenfolge ausgegeben
werden



Sandini Bib

DOM-Bédume traversieren 285

2.5 DOM-Biume traversieren

Wie oben bereits erwidhnt, ist die Methode document.getElementsByTagName() des Crim-
son-Parsers aus Sun JDK 1.4.0 nicht gerade ein Ausbund an Spritzigkeit. Grundsétzlich
ist diese Methode jedoch bei grofien Objekt-Baumen ohnehin nicht zu empfehlen, da
sie eine neue Liste mit allen passenden Knoten erstellt. Dies ist sehr speicherintensiv.
Wesentlich eleganter ist der Zugriff {iber einen org.w3c.dom.traversal.Nodelterator der
W3C-Schnittstelle DOM Level 2 Traversal and Range (http://www.w3.0rg/TR/2000/REC-
DOM-Level-2-Traversal-Range-20001113/). Leider wird auch dieses API nicht von Sun
JDK 1.4.0 unterstiitzt. Zu den oben bereits vorgestellten zwei Methoden alle Tagnamen
auszugeben (getElementsByTagName("*") und rekursives Traversieren) gesellt sich also
noch eine dritte hinzu. Listing 12.8 zeigt ein Beispiel.

package com.tagtraum.perf.xml;

import org.w3c.dom.*;

import org.w3c.dom.traversal.*;
import javax.xml.parsers.*;
import java.io.File;

public class DOMNodelteratorDemo f{

public static void main(Stringl] args) throws Exception {
DocumentBuilderFactory builderFactory
= DocumentBuilderFactory.newInstance();
DocumentBuilder documentBuilder
= builderFactory.newDocumentBuilder();
Document document = documentBuilder.parse(new File(args[01));
// Folgendes funktioniert nur, wenn die DOM-Implementierung
// DOM Level 2 Traversal and Range unterstitzt.
DocumentTraversal traversable = (DocumentTraversal)document;
NodeIterator iterator = traversable
.createNodelterator(document, NodeFilter.SHOW_ELEMENT,
null, true);
Element element;
while ((element = (Element) iterator.nextNode()) != null) {
System.out.printin(element.getTagName());

}

Listing 12.8: NodeIterator, der die Namen aller Tags einer XML-Datei ausgibt

Um die drei Arten, alle Tags eines DOM-Baums zu besuchen, zu vergleichen, lesen wir
jeweils Faust II ein und messen anschlielend die Zeit, die zum Traversieren benétigt
wird, sowie den dadurch verursachten zusitzlichen Speicherverbrauch. Da Crimson in
der aktuellen Version keine Nodelteratoren unterstiitzt, fithren wir diesen Test mit
Apache Xerces-] 2.0.1 und der Sun JDK 1.4.0 Client-VM durch.



286 12 XML

Xerces-] 2.x verfiigt tiber die Fahigkeit, Knoten erst bei Bedarf endgiiltig zu initialisie-
ren (Deferred Node Expansion). Daher fithren wir je einen Lauf mit und einen ohne
dieses Feature durch. Beim Lauf mit Deferred Node Expansion erfolgt ein Teil des Par-
sens erst zur Zeit der Traversion, wahrend ohne Deferred Node Expansion das Doku-
ment vollstandig vor der Traversion geparsed wird. Deshalb erwarten wir beim Lauf
mit Deferred Node Expansion eine wesentlich ldngere Iterationszeit und einen grofie-
ren Zuwachs des Speicherverbrauchs. Dies trifft auch so ein.

Tabelle 12.1 zeigt, dass die selbst geschrieben traverse()-Methode am besten abschnei-
det, da sie zwar genauso schnell ist wie der Nodelterator, aber einen geringeren Spei-
cherverbrauch verursacht. Es fallt zudem auf, dass der Speicherverbrauchszuwachs
der Nodelterator-Variante mit Deferred Node Expansion nur halb so grof8 ist wie der
der anderen Varianten mit Deferred Node Expansion. Anscheinend kann der Xerces-
NodeIterator also vom Wissen iiber Implementierungsdetails des Xerces-Parsers profi-
tieren und so den Speicherverbrauch minimieren. Daher gilt:

Es kann sich lohnen, einen NodeIterator zu benutzen, sofern dieser vom Parser angeboten wird.

Traversionsart Normalisierte Zuwachs im
Ausfiihrungszeit Speicherverbrauch
Nodelterator 100% 16 Kbyte
getElementsByTagName("*") 220% 110 Kbyte
traverse() 100% 13 Kbyte
NodeIterator mit Deferred Node Expansion 1442% 917 Kbyte
getElementsByTagName("*") mit Deferred 1522% 1.994 Kbyte

Node Expansion

traverse() mit Deferred Node Expansion 1242% 1.841 Kbyte

Tabelle 12.1: Vergleich der Performance verschiedener Methoden zum Besuchen aller Tags

Tatsdchlich gibt es noch einen vierten Weg iiber alle Tags zu iterieren — ndmlich mit Hilfe
eines org.w3c.dom.traversal.TreeWalkers. Wahrend der Nodelterator eine sequenzielle
Sicht auf den Baum liefert, offeriert der TreelWlalker eine hierarchische Sicht. Das heif3t
man kann nicht nur vor und zuriick, sondern auch hoch und runter navigieren. Gegen-
iiber dem NodeIterator bietet ein TreeWalker fiir unser Beispiel jedoch keinerlei Vorteile.

12.6 XML komprimieren

XML ist mit jedem simplen Editor lesbar und performante Parser sind fiir fast alle
Plattformen zu haben — Fakten, die begeistern. Wenn es um Speicherverbrauch und
effiziente Netzwerk-Nutzung geht, ist XML jedoch nicht gerade fiir seine Sparsamkeit
bekannt. Da ldsst die Freude schon mal ein wenig nach.



XML komprimieren 287

Zum Gliick lassen sich Speicherhunger und Bandbreitenschwund mit Daten-Kompres-
sion bekdmpfen. Und gerade wegen seiner exorbitanten Redundanz kann man XML ganz
hervorragend komprimieren. Fiir die Lagerung in langsamen Speichern wie Festplatten
bieten sich System-Werkzeuge wie gzip, zip und bzip an. Zumindest gzip und zip werden
auch von Java exzellent unterstiitzt. Die entsprechenden Klassen befinden sich im Paket
Jjava.util.zip und sind sehr performant. Das Speicherproblem lasst sich also leicht 16sen.

Was bleibt, ist das Netzwerkproblem. Wenn Sie beide Enden der Kommunikation kon-
trollieren oder ein Protokoll verwenden, das verschiedene Kompressionsalgorithmen
unterstiitzt, konnen Sie auch hier gzip benutzen. Eines dieser Protokolle ist HTTP.

2.6.1 HTTP

Wenn Webbrowser eine Anforderung an einen Webserver schicken, signalisieren sie
meistens, dass sie in der Lage sind, gzip-kodierte Dokumente zu verarbeiten. Dies
geschieht mit dem Accept-Encoding-Header. Hier ein Beispiel fiir eine Anforderung von
Microsoft Internet Explorer 5.5:

GET /test.html HTTP/1.1

Connection: Keep-Alive

Accept-Language: de

Host: 127.0.0.1:8080

Accept-Encoding: gzip, deflate

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)

Und hier eine Anforderung von Netscape 6.2.1:

GET /test.html HTTP/1.1

Connection: keep-alive

Accept-Language: de-DE

Accept-Encoding: gzip, deflate, compress;q=0.9

Accept: text/xml, application/xml, application/xhtml+xml,
text/html;q=0.9, image/png, image/jpeg, image/gif;q=0.2,
text/plain;g=0.8, text/css, */*;q=0.1

Host: 127.0.0.1:8080

Accept-Charset: 1S0-8859-1, utf-8;g=0.66, *;q=0.66

Keep-ATive: 300

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.0; de-DE;
rv:0.9.4) Gecko/20011128 Netscape6/6.2.1

Cache-Control: max-age=0

Beide Browser akzeptieren Antworten, die mit gzip oder deflate komprimiert wurden.
Dariiber hinaus akzeptiert Netscape auch noch compress. Wenn Sie also ein Servlet schrei-
ben, das grofie XML-Dokumente produziert, konnen Sie vorgehen wie in Listing 12.9.



Sandini Bib
288 12

XML

package com.tagtraum.perf.servlet;

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.zip.GZIPOutputStream;

public abstract class CompressorServlet extends HttpServiet f{

public void doGet(HttpServietRequest request,

HttpServletResponse response) throws IOException,
ServletException f{

QutputStream out = getOutputStream(request, response);

try f
writeToStream(request, response, out);

}

finally {
// Sicherstellen, dass der GZIP-Stream korrekt beendet
// wird.
out.close();

// Gibt einen OutputStream zurilick. Wenn der Client gzip
// akzeptiert, handelt es sich um einen GZIPOutputStream.
// Im Header der Antwort wird zudem die verwendete Kodierung
// gesetzt.
private OutputStream getOutputStream(HttpServletRequest request,
HttpServletResponse response) throws IOException {
QutputStream out;
if (acceptsGzip(request)) f{
response.setHeader("Content-Encoding", "gzip");
out = new GZIPOutputStream(response.getOutputStream());

} else |

out = response.getOutputStream();
}
return out;

// Gibt an, ob der Client gzip akzeptiert.
private boolean acceptsGzip(HttpServietRequest request) f{
String acceptEncoding = request.getHeader("Accept-Encoding");
return acceptEncoding != null
&& acceptEncoding.index0f("gzip") != -1;

// Wird von Subklassen anstelle von doGet() implementiert.
// Da HttpServletResponse keine setOutputStream()-Methode hat,
// tbergeben wir den Strom als separates Argument.



Sandini Bib
XML komprimieren 289

public abstract void writeToStream(HttpServletRequest request,
HttpServletResponse response, OutputStream out)
throws IOException, ServletException;

Listing 12.9: Einfaches Servlet, das Kompression mit gzip unterstiitzt

Sie miissen lediglich noch die writeToStream()-Methode implementieren und in ihr das
XML-Dokument in den zur Verfiigung gestellten OutputStream schreiben. Alles Weitere
erledigen der Browser und HTTP.

Etwas komplizierter wird es, wenn Sie aus dem Servlet heraus eine andere Ressource
per include() einbinden wollen. Sie miissten unseren speziellen Ausgabestrom an die
andere Ressource {ibergeben. Dies ist mit Servlet API 2.2 jedoch nur schwierig méoglich.

Die Losung fiir dieses Problem bringt Servlet API 2.3. Sie heifst javax.servlet.Filter.

Listing 12.10 zeigt einen entsprechenden Filter fiir gzip. Zunédchst wird festgestellt, ob
der Client gzip akzeptiert. Ist dies der Fall, wird ein HttpServietResponselrapper instan-
ziiert, dessen getOutputStream()-Methode iiberschrieben ist. Statt des normalen Serviet
OutputStream wird ein ServletOutputStream zuriickgegeben, der in einen GZIPOutputStream
miindet, Gleiches gilt fiir den Writer. Nachdem das nédchste Element der Filterkette auf-
gerufen wurde, wird der Writer geflushed und der Strom geschlossen, um sicherzu-
stellen, dass der gzip-Strom korrekt beendet wird.

package com.tagtraum.perf.servlet;

import javax.servlet.*;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServietResponse;

import javax.servlet.http.HttpServletResponselrapper;
import java.io.IOException;

import java.io.OutputStream;

import java.io.PrintWriter;

import java.io.OutputStreamWriter;

import java.util.zip.GZIPOutputStream;

public class GZIPFilter implements Filter
public void doFilter(ServletRequest request,
final ServletResponse response, FilterChain chain)
throws IOException, ServletException {
HttpServietRequest req = (HttpServletRequest) request;
HttpServietResponse res = (HttpServletResponse) response;
if (acceptsGzip(req)) |
res = new HttpServletResponseWrapper(res) f
private ServletOutputStream wrappedOut;
private PrintWriter wrappedWriter;



Sandini Bib

290 12 XML

public ServletOutputStream getOutputStream()
throws I0Exception f
if (wrappedOut == null) f{
setHeader("Content-Encoding", "gzip");
final OutputStream out
= new GZIPQutputStream(
response.getOutputStream());
wrappedOut = new ServletOutputStream() {
public void write(int b) throws IOException f{
out.write(b);
}

public void write(byte bL], int off,
int len) throws I0Exception {
out.write(b, off, Ten);

public void close() throws IOException f{
out.close();
}

}
return wrappedOut;

public PrintWriter getWriter() throws IOException {
if (wrappedWriter == null) {
wrappedWriter = new PrintWriter(
new OutputStreamWriter(getOutputStream(),
getCharacterEncoding()));
}

return wrappedWriter;

b

try {
chain.doFilter(req, res);

} finally |
// Sicherstellen, dass der Strom korrekt geschlossen
// wird.

res.getWriter().flush();
res.getOutputStream().close();

}
else {
chain.doFilter(req, res);

}

private boolean acceptsGzip(HttpServletRequest request) {
String acceptEncoding = request.getHeader("Accept-Encoding");



XML komprimieren 291

return acceptEncoding != null
&& acceptEncoding.index0f("gzip") != -1;

public void init(FilterConfig config) throws ServletException f{
}

public void destroy() |
}

Listing 12.10: Gzip-Kompressionsfilter fiir Servlets

Wie oben bereits erwdhnt, unterstiitzen die meisten Browser automatisch gzip als Kom-
pressionsformat. java.net.HttpURLConnection bietet diese Unterstiitzung von Haus aus
nicht. Sie kénnen jedoch leicht nachhelfen:

URL url = ...
HttpURLConnection connection
= (HttpURLConnection)url.openConnection();
connection.addRequestProperty("Accept-Encoding", "gzip");
InputStream in = connection.getInputStream();
String contentEncoding
= connection.getHeaderField("Content-Encoding");
if (contentEncoding != null && contentEncoding.equals("gzip")) f
in = new GZIPInputStream(in);
}
// benutze 'in'

Somit steht groffen XML-Dokumenten nichts mehr im Wege.

12.6.2 Binarformate

Wie wir gesehen haben, 16st Kompression mit Standardalgorithmen das Bandbreiten-
Problem fiir den allgemeinen Fall recht effizient. Wir wollen uns noch einen Spezialfall
anschauen.

Angenommen, Sie haben eine Client-Server-Anwendung, bei der XML-Dokumente
vom Server an den Client gesendet werden miissen. Verhaltnismafsiig verfiige der Ser-
ver iiber sehr viel mehr Rechenleistung und Speicher als der Client. Zudem sei die
Bandbreite zum Client begrenzt und die XML-Dokumente miissen dynamisch auf dem
Server erstellt werden.

Das beschriebene Szenario trifft auf viele Anwendungen fiir Kleingerate wie PDA und
Handys zu, die mit einem Server kommunizieren. Das bindre XML-Format WBXML
des WAP-Forums (http://www.wapforum.org/) adressiert genau diese Problemstellung
und erreicht zwei Ziele:



292 12 XML

kompakte Darstellung von XML-Dokumenten

leichtes und schnelles Parsen

. XML-
XMLWriter J/\/\\ » SAX-Parser
Strom
T w T
| |

v v
<<interface>> <<interface>>
DefaultHandler XMLReader

| ,,

<<interface>>
DefaultHandler

Server Client

Abbildung 12.6: Typisches Szenario zum Ubertragen von XML von einem Rechner zum anderen

Leider gibt es jedoch kaum freie Software, die WBXML fiir gewthnliche J2SE-Anwen-
dungen verwendet. Insbesondere konnte ich keine Bibliothek finden, die WBXML mit
DOM- oder SAX-Schnittstelle umsetzt.

Wir wollen dennoch ausprobieren, welchen Nutzen wir aus einer Bindrdarstellung zie-
hen kénnen. Angenommen, der Server produziert XML, indem er den oben beschriebe-
nen XMLWriter benutzt. Er ruft also die Methoden der SAX-Schnittstelle ContentHandler
auf. XMLWriter konvertiert die Methodenaufrufe in Zeichen und schreibt diese in einen
Ausgabestrom. Der Client wiederum liest diesen Strom mit einem SAX-Parser.

Wenn es uns gelingt, statt des XMLWriters eine andere Klasse zu benutzen, die nicht
XML erzeugt, sondern eine Bindrdarstellung, konnen wir auf der Clientseite diese
Bindrdarstellung parsen und wiederum die Methoden eines SAX-ContentHandler aufru-
fen. Der Unterschied liegt lediglich in der Darstellung des Dokuments, wéhrend es
vom Server zum Client transportiert wird. Die Vorteile sind die gleichen wie bei
WBXML: kompaktere Darstellung und leichtes Parsen. Zudem kénnen wir Software,
die bereits auf die SAX-Schnittstellen zugeschnitten ist, wieder verwenden.

Das Binarformat ist schnell definiert. Jede Methode der ContentHandler-Schnittstelle
bekommt eine Zahl zugewiesen, Tag- und Attributnamen sowie Entititen und
Namensrdume werden in einer Tabelle hinterlegt und alle anderen Zeichen werden
einfach als UTF-Strings geschrieben. Zusatzlich definieren wir noch einige Steuerungs-
zeichen, die es uns erlauben, das Dokument in Blocke mit je einer eigenen Stringtabelle
zu unterteilen, das Ende einer Attributliste zu markieren sowie zwischen mehreren



XML komprimieren

Sandini Bib

293

Codeseiten der Stringtabelle zu wechseln. Eine Codeseite soll jeweils auf 14 verschie-
dene Eintrage (ein halbes Byte abziiglich zweier global eindeutiger Steuerungstokens)
der Stringtabelle verweisen konnen.

BSAXEncoder

o Binar-

VA

<<interface>>

DefaultHandler

T

Server

Erem”

BSAXDecoder

v

<<interface>>
XMLReader

A

<<interface>>
DefaultHandler

Client

Abbildung 12.7: XML-Dateniibertragung mit BSAX

Listing 12.11 zeigt die wichtigsten Methoden aus der Kodierklasse BSAXEncoder, die die
Klasse DefaultHandler erweitert. Um Platz zu sparen werden die Daten mit einem (hier
nicht weiter beschriebenen) XtendedDataOutputStream geschrieben, der in der Lage ist,
halbe Bytes zu schreiben.

package com.tagtraum.perf.xml;

import org.xml.sax.*;
import org.xml.sax.helpers.DefaultHandler;

import java.io.*;

import java.util.*;

import com.tagtraum.perf.io.XtendedDataOutputStream;
public class BSAXEncoder extends DefaultHandler f{

// Global eindeutige Tokens

static final int SWITCH_CODE_PAGE = 0;
static final int END = 1;

// Steuerungstoken
static final int NEW_BLOCK = 2;

// Methodentoken
static final int START_DOCUMENT
static final int END_DOCUMENT =
static final int START_ELEMENT = 5;

= 3;
4;



294

Sandini Bib
12

XML

static final int END_ELEMENT = 6;
static final int CHARACTERS = 7;

static final int IGNORABLE_WHITESPACE =
static final int PROCESSING_INSTRUCTION
static final int SKIPPED_ENTITY = 10;
static final int START_PREFIXMAPPING = 11;

static final int END_PREFIXMAPPING = 12;

static final int NOTATION_DECLARATION = 13;

static final int UNPARSED_ENTITY_DECLARATION = 14;

8;
=9;

static final int RESERVED_CODES = 2;

static final int CODES_PER_CODEPAGE = 16;

static final int DEFINABLE_CODES_PER_CODEPAGE =
CODES_PER_CODEPAGE-RESERVED_CODES;

private static int DEFAULT_BLOCKSIZE = 8*1024;
private static ResourceBundle TocalStrings
= ResourceBundle.getBundle(
"com.tagtraum.perf.xml.localStrings");

private XtendedDataOutputStream out;
private XtendedDataOutputStream bufferedDataStream;
private ByteArrayOutputStream buffer;
private int currentCodePage;

private Map symbolTable;

private List symbollList;

private Map oldSymbolTable;

private List oldSymbollist;

private int code = RESERVED_CODES;

private int codePage;

private int blockSize;

private boolean firstFlush;

private StringBuffer characters;

private boolean ignorelgnorablelhitespace;

public BSAXEncoder(OutputStream out, int blockSize) f

this.out = out instanceof BufferedOutputStream

? new XtendedDataOutputStream(out)

: new XtendedDataOutputStream(

new BufferedOutputStream(out));

this.blockSize = blockSize;
buffer = new ByteArrayOutputStream(blockSize + 256);
bufferedDataStream = new XtendedDataOutputStream(buffer);
symbolTable = new HashMap();
symbollList = new ArraylList();
01dSymbolTable = new HashMap();
oldSymbolList = new ArrayList();
firstFlush = true;
characters = new StringBuffer(1024);



Sandini Bib
XML komprimieren 295

public boolean isIgnorelgnorableWhitespace() {
return ignorelgnorableWhitespace;

}

public void setlgnorelgnorableWhitespace(
boolean ignorelgnorableWhitespace) |
this.ignorelgnorableWhitespace = ignorelgnorablelWhitespace;

private void writeVersion() throws IOException f{
// version 1.0
out.write(l); // major
out.write(0); // minor

}

private void checkBufferSize() throws IOException f{
if (buffer.size() > blockSize) f
flush();

private void flush() throws IOException f
if (firstFlush) {
writeVersion();
firstFlush = false;

bufferedDataStream.flush();
writeSymbolTable()
out.write(buffer.toByteArray());
out.flush();

buffer.reset();

public void startElement(String uri, String localName,
String gName, Attributes attributes)
throws SAXException f{
// Schreibe alle Zeichen, die sich zuvor angesammelt haben.
flushCharacters();
try f
// Schreibe Methodentoken
writeCode(START_ELEMENT);
// Schreibe vollstdndigen Namen des Elements
writeSymbol(getSymbol(gName));
// Schreibe Attribute, falls vorhanden
if (attributes != null) {
for (int i = 0, len =attributes.getlength(); i < len;
i++) |
// Schreibe Attributnamen und -typ
writeSymbol(getSymbol(attributes.getQName(i)));
writeSymbol(getSymbol(attributes.getType(i)));
// Schreibe Wert des Attributs als UTF-String



Sandini Bib
296 12

XML

bufferedDataStream.writeUTF(attributes.getValue(i));

}
// Markiere Ende der Attributliste
writeCode(END);
checkBufferSize();
} catch (I0Exception foe) f
throw new SAXException(localStrings.getString(
"exception_during_io"), ioe);
} catch (RuntimeException re) {
throw new SAXException(localStrings.getString(
"unexpected_exception_during_io"), re);

public void endElement(String uri, String localName,
String gName) throws SAXException {
flushCharacters();
try f
writeCode(END_ELEMENT);
checkBufferSize();
} catch (IOException ioe) {
throw new SAXException(localStrings.getString(
"exception_during_io"), ioe);
} catch (RuntimeException re) f{
throw new SAXException(localStrings.getString(
"unexpected_exception_during_io"), re);

// Aufeinander folgende characters()-Aufrufe werden zu einem
// Aufruf zusammengefasst.
public void characters(char chl]1, int start, int length)
throws SAXException f{
if (Tength > 0) {
characters.append(ch, start, length);
}

public void flushCharacters() throws SAXException f{
if (characters.length() > 0) {

try {
writeCode(CHARACTERS) ;
bufferedDataStream.writeUTF(characters.toString());
checkBufferSize();
// Sicherstellen, dass der StringBuffer nicht zu
// groB wird
if (characters.length() > 8*1024)

characters = new StringBuffer(1024);

else characters.setlength(0);

} catch (IOException ice) f



Sandini Bib
XML komprimieren 297

throw new SAXException(localStrings.getString(
"exception_during_io"), ioe);
b catch (RuntimeException re) f
throw new SAXException(localStrings.getString(
"unexpected_exception_during_io"), re);

public void ignorableWhitespace(char ch[], int start,
int length) throws SAXException f{
flushCharacters();
// ignorableWhitespace wird nur geschrieben, wenn dies auch
// erwiinscht ist.
if (lignorelgnorableWhitespace && length > 0) {
try |
writeCode(IGNORABLE_WHITESPACE);
bufferedDataStream.writeUTF(new String(ch,
start, length));
checkBufferSize();
I catch (IO0Exception ioe) f
throw new SAXException(localStrings.getString(
"exception_during_io"), ioe);
} catch (RuntimeException re) f{
throw new SAXException(localStrings.getString(
"unexpected_exception_during_io"), re);

// andere ContentHandler-Methoden nach demselben Schema

public void fatalError(SAXParseException e)
throws SAXException f
throw e;

// Gibt ein Symbol fir einen String zuriick.
private Symbol getSymbol(String string) f
Symbol s = (Symbol) symbolTable.get(string);
if (s == null) s = (Symbol) oldSymbolTable.get(string);
if (s == null) {
if (code == CODES_PER_CODEPAGE) f{
codePage++;
code = RESERVED_CODES;
}
s = new Symbol(string, code, codePage);
symbolTable.put(string, s);
symbollList.add(string);
code++;



298

Sandini Bib
12

XML

return s;

}

private void writeCode(int code) throws IOException f{
bufferedDataStream.writeHalfByte(code);
}

// Schreibt ein Symbol-Code und falls noétig zuvor das
// Switchcodepage-Token gefolgt von der Codepage-Nummer des
// zu schreibenden Codes.
private void writeSymbol(Symbol s) throws I0Exception f{
if (currentCodePage != s.getCodePage()) f{
bufferedDataStream.writeHal fByte(SWITCH_CODE_PAGE);
bufferedDataStream.write(s.getCodePage());
currentCodePage = s.getCodePage();
}
bufferedDataStream.writeHalfByte(s.getCode());

// Schreibt die Symboltabelle.
private void writeSymbolTable() throws IOException f
ByteArrayOutputStream bout = new ByteArrayOutputStream();
XtendedDataOutputStream symbolTableStream
= new XtendedDataOutputStream(bout);
symbolTableStream.writeHalfByte(NEW_BLOCK) ;
symbolTableStream.writeInt(symbolTable.size());
for (int i = 0, ¢ = symbolList.size(); i < c; i++) |
symbolTableStream.writeUTF((String) symbollist.get(i));
}
symbolTableStream.flush();
out.write(bout.toByteArray());

symbollList.clear();
oldSymbolTable.putAll1(symbolTable);
symbolTable.clear();

// Klasse zum schnellen Zugriff auf Code und Codepage eines
// Symbols.
private static class Symbol f{

private int code;

private int codePage;

private String value;

public Symbol(String value, int code, int codePage) f
this.value = value;
this.code = code;
this.codePage = codePage;



XML komprimieren 299

public int getCode() |
return code;
}

public int getCodePage() {
return codePage;
}

public String getValue() {
return value;
}

}

Listing 12.11: Ausschnitt aus der Klasse BSAXEncoder

Das Gegenstiick zum BSAXEncoder, der BSAXDecoder, implementiert das XMLReader-Inter-
face. Somit konnen die beiden Klassen zur Kommunikation verwendet werden, ohne
dass XML-Produzent oder Konsument etwas davon mitbekommen. Aus Platzgriinden
mochte ich darauf verzichten, hier den gesamten Quellcode wiederzugeben. Sie finden
ihn jedoch auf der zum Buch gehérenden CD-ROM bzw. auf der Website.

Wie Tabelle 12.2 zeigt, ist es sehr schwierig, gzip zu schlagen, wenn es um Kompression
geht. BSAX zeigt die besten Ergebnisse, wenn wenige Tags oft benutzt werden und viel
Whitespace aus dem Original-Dokument entfernt werden kann. Bei kurzen Nachrich-
ten, solchen mit sich kaum wiederholenden Tags oder Dokumenten mit einem hohen
Text-Anteil ist die Kompressionsrate eher méafig.

Zur effizienten Kompression ist gzip in der Regel einem Bindrformat vorzuziehen.

Eine Ausnahme hiervon kann lediglich sein, wenn beiden Parteien die Symboltabelle
bekannt ist. Dies ist bei BSAX jedoch nicht der Fall. Zudem konnen Sie nicht davon
ausgehen, dass gzip in einer 2ME-Umgebung unterstiitzt wird. Eventuell kdnnen Sie
sich jedoch mit zip behelfen.

Dokument BSAX BSAX ohne  gzip
Whitespace

Sehr kurze Soap-Nachricht (281 Byte) 83% 83% 68%

Soap-Nachricht (3,6 Kbyte) 92% 92% 49%

Web-Archiv-Deployment-Deskriptor (7,1 Kbyte) 57% 57% 17%

Faust Il (550 Kbyte) 81% 68% 24%

Adressliste ohne Whitespace (1,2 Mbyte) 39% 39% 24%

Tabelle 12.2: Prozentanteil der urspriinglichen GroBe, auf die die komprimierten Dateien reduziert wurden.
Kleiner ist also besser.



300 12 XML

Wenn es nur um Kompression geht, ist BSAX also keine Wunderwaffe. Anders sieht
das beim Parsen aus (Tabelle 12.3). Gegeniiber dem SAX-Parser aus dem Sun JDK 1.4.0
ist BSAX fiir fast alle getesteten Dokumente schneller. Lediglich fiir Faust II ist die
BSAX-Parsezeit ein wenig schlechter als mit SAX.

Dokument BSAX BSAXohne SAX gzip +
Whitespace SAX
Sehr kurze Soap-Nachricht (281 Byte) 100% 95% 1376%  1560%
Soap-Nachricht (3,6 Kbyte) 100% 100% 172%  209%
Web-Archiv-Deployment-Deskriptor (7,1 Kbyte) 100% 102% 164% 191%
Faust Il (550 Kbyte) 100% 72% 72% 90%
Adressliste ohne Whitespace (1,2 Mbyte) 100% 100% 156% 187%

Tabelle 12.3: Normalisierte Ausfiihrungszeit des Parsens verschiedener Dokumente. Kleiner ist schneller.

Zusammenfassend bedeutet dies:

Um ein effizientes Parsen auf der Clientseite zu garantieren, kann es sich lohnen, zur Daten-
iibertragung ein Bindrformat zu benutzen.



|3 Applikationen starten

Noch bevor eine einzige Zeile Ihrer Applikation ausgefiihrt wird, vergeht wahrend des
Starts der Java VM so einige Zeit. Die VM und unbedingt notwendige Klassen werden
in den Speicher geladen und initialisiert. Erst dann wird die Hauptklasse Threr Appli-
kation geladen und ausgefiihrt.

IBM JDK 1.3.0 Sun JDK 1.3.1 Sun JDK 1.4.0
345 209 273

Tabelle 13.1: Anzahl von Klassen, die geladen werden miissen, bevor die auszufiihrende Klasse geladen wird.
Gemessen mit Windows-Versionen der VM:s.

Je nach VM sind zwischen 200 und 350 Klassen das unbedingte Minimum (Tabelle
13.1). Hinzu kommen Thre eigenen Klassen und alle Klassen, die Thre Klassen benut-
zen, sowie jene, die von den bereits geladenen Klassen benutzt werden. Wenn Thre
Applikation schnell starten muss, lohnt es sich daher, sich ein wenig mehr mit dem
Laden und Initialisieren von Klassen auseinander zu setzen.

3.1 Klassen laden und initialisieren

Vor allem stellt sich hier die Frage nach dem Wann. Gewd&hnlich werden Klassen und
Schnittstellen in folgenden Situationen geladen:

Wenn der ClassLoader einer Klasse symbolische Referenzen auf andere Klassen oder
Schnittstellen auflost

Wenn eine Klasse benutzt wird und daher automatisch die Klasse sowie alle ihre
Superklassen und Schnittstellen geladen werden

Wenn eine Klasse explizit vom Nutzer durch die 1oadClass()-Methode eines Class-
Loaders oder die entsprechenden Class. forName()-Methoden geladen wird



302 13 Applikationen starten

Gewohnlich 16sen VMs symbolische Referenzen auf andere Klassen und Schnittstellen
erst spat auf (Lazy Resolution). Das heifst, wenn eine Klasse A eine Klasse B benutzt, sind
die Chancen gut, dass die symbolische Referenz von A auf B erst aufgelost wird, wenn B
tatsdchlich von A benutzt wird. Erst das Auflésen der symbolischen Referenz auf B
fithrt zum Laden von B.

Nur wenn B eine Superklasse von A ist, muss B frither geladen werden, da bereits beim
Laden von A alle symbolischen Referenzen auf Superklassen aufgeldst werden miissen.

Wenn eine Klasse geladen ist, existiert eine bindre Reprasentation der Klasse im Spei-
cher. Dessen Korrektheit wird verifiziert und statische Felder werden mit ihren Stan-
dardwerten bzw. solchen Werten initialisiert, die sich nach der Ubersetzung nicht mehr
dndern koénnen (Ubersetzungszeit-Konstanten). Solche Werte sind beispielsweise
Strings, die einer als final deklarierten Variable zugewiesen werden [vgl. Gosling00,
§15.28]. Das bedeutet nicht, dass die Klasse initialisiert ist. Es ist aufSerdem noch keine
Zeile Code ausgefiihrt worden. Eine Klasse ist erst dann initialisiert, wenn

alle statischen Initialisierungsblocke ausgefiihrt wurden
alle statischen Variablen initialisiert wurden

Gemaifs Java-Sprachspezifikation werden Klassen nur dann initialisiert, wenn eine der
folgenden Bedingungen zutrifft [vgl. Gosling00, §12.4]:

Eine Instanz der Klasse wird erzeugt.
Eine Klassenmethode der Klasse wird aufgerufen.
Es wird einem Klassenattribut der Klasse ein Wert zugewiesen.

Ein Klassenattribut der Klasse, dessen Referenz keine Ubersetzungszeit-Konstante
ist, wird benutzt.

Bestimmte Methoden aus dem java.lang.reflect-Paket werden aufgerufen.

So fiihrt beispielsweise folgender Code dazu, dass die Klasse java.util.HashMap gela-
den und initialisiert wird, da eine Klasse instanziiert wurde:

// HashMap wird instanziiert
HashMap map = new HashMap();

Folgender Code fiihrt jedoch nicht zum Laden der Klasse, da lediglich eine leere Refe-
renz angelegt wird:

// Die Klasse HashMap wird weder instanziiert noch werden
// irgendwelche statischen Methoden oder Attribute benutzt.
HashMap map =null;



Verzigertes Klassenladen 303

Ebenso fiihrt das Ausfiihren der Klasse One nicht dazu, dass Two geladen und der stati-
sche Initialisierungs-Block (Zeile 9-11) ausgefiihrt wird. Dies ist so, weil aMessage eine
Ubersetzungszeit-Konstante ist. Ihr Wert kann sich nach der Ubersetzung nicht mehr
andern.

01 public class One {
02 public static void main(Stringl] args) f{

03 // Gibt 'A Message' aus

04 System.out.printin(Two.aMessage);

05 }

06 1}

07

08 public class Two f{

09 static |

10 System.out.printin("Dieser Text wird nicht ausgegeben!");
11 }

12 public static final String aMessage = "Eine Nachricht";
13 }

Die einzige Ausgabe des obigen Codes ist also:

Eine Nachricht

13.2 Verzogertes Klassenladen

Um also eine Klasse erst zu laden und zu initialisieren, wenn sie benutzt wird, konnen
Sie beispielsweise folgenden Code benutzen:

private AClass aClass;
public AClass getInstance() f{
if (aClass == null) {
aClass = new AClass();
}
return aClass;
}

Sie diirfen jedoch vorher nicht auf Klassenmethoden oder statische, veranderbare
Attribute der Klasse zugreifen. Denken Sie zudem daran, die Methode getInstance()
ordnungsgemafS zu synchronisieren (Kapitel 9.1.4 Double-Check-Idiom), wenn sie von
mehreren Threads benutzt wird.

Besonders sinnvoll ist diese Technik fiir Applikationen, bei denen von vornherein klar
ist, dass bestimmte Teile erst spater oder eventuell gar nicht benutzt werden.



304 13 Applikationen starten

3.3 Fruhes Klassenladen

Unter Umstdanden macht es Ihnen wenig aus, wenn lhre Applikation beim Start ein
wenig mehr Zeit zum Klassenladen benétigt, solange danach alles reibungslos klappt.
Ist dies der Fall, konnen Sie das Laden von Klassen am besten kontrollieren, indem Sie
es selbst erledigen. Geeignet sind dazu die beiden java.lang.Class.forName()-Metho-
den.

So sorgt folgender Code dafiir, dass die Klasse AClass geladen und initialisiert wird,
wenn BClass ausgefiihrt wird.

public AClass |
static |
System.out.printin("AClass wurde initialisiert.");
}
}

public BClass f{
public static void main(Stringl] args)
throws ClassNotFoundExceptionf
Class.forName("AClass");

}
Die Ausgabe lautet entsprechend:
AClass wurde initialisiert.

Wenn Sie jedoch folgende, leicht modifizierte Version der Klasse BClass ausfiihren,
bleibt die Ausgabe leer.

public BClass f{
public static void main(Stringl] args) f{
Class.forName("ACTass",
false, BClass.class.getClassLoader());

}

Entscheidend hierfiir ist der zweite Parameter der forName()-Methode. Ist dieser false,
so wird die verlangte Klasse zwar geladen, nicht jedoch initialisiert. Die Initialisierung
erfolgt automatisch, sobald dies nétig ist.

Manchmal kann es sich lohnen, Teile einer Applikation von einem separaten Thread
im Hintergrund laden zu lassen, nachdem der Benutzer bereits angefangen hat, mit
der Applikation zu arbeiten. Dabei konnen diese Teile vollstdndig erzeugt oder ledig-
lich die benétigten Klassen geladen und initialisiert werden, um dann spéter ein
schnelles Erzeugen der Objekte zu begiinstigen. Dies ist insbesondere dann interes-



Sandini Bib
Friihes Klassenladen 305

sant, wenn die Klassen nicht in einem Jar- oder Zip-Archiv gespeichert sind und nur
iiber ein langsames Netzwerk geladen werden konnen, da die Klassen dann einzeln
geladen werden miissen. Grundsitzlich sollten Sie jedoch Ihre Klassen wenn moglich immer
in Jars verpacken!

Listing 13.1 zeigt einen solchen Hintergrund-Klassenlader, der sich nach dem Erzeu-
gen mit start() starten ldsst. Wenn Sie sich sicher sein wollen, dass die geladenen Klas-
sen nicht wieder von der Speicherbereinigung aus dem Speicher entfernt werden,
sollten Sie den VM Kommandozeilen-Parameter -Xnoclassgc verwenden. Dadurch
wird die Speicherbereinigung fiir Klassen-Objekte abgeschaltet. Dies kann jedoch zu
Speicherproblemen bei Programmen fiihren, die Klassen erzeugen, laden, benutzen
und wieder wegwerfen, wie dies beispielsweise JSP-Engines tun.

package com.tagtraum.perf.classloading;

public class BackgroundClassLoader extends Thread f{
private volatile static int count;
private Stringl] classnames;
private boolean initialize;
private ClassLoader classLoader;

public BackgroundClasslLoader(Stringl] classnames,

boolean initialize, ClasslLoader classlLoader) {
super("BackgroundClasslLoader - " + count++);
if (classnames == null) throw new NullPointerkException();
this.classnames = classnames;
// Wenn kein ClasslLoader {bergeben wurde, nehmen wir den
// eigenen, sonst den Ubergebenen.
this.classloader = classLoader == null

? this.getClass().getClassLoader() : classlLoader;
this.initialize = initialize;
// Wenn die Applikation nicht mehr lduft, sollten dieser
// Thread auch terminieren. Daher markieren wir ihn als
// Daemon.
setDaemon(true);
// Natlrlich wollen wir nur Klassen Taden, wenn wirklich
// nichts anderes zu tun ist. Der Effekt dieser Zeile ist
// jedoch stark vom Betriebssystem abhdngig! Evtl. muss
// die Prioritdt manuell hochgesetzt werden, damit der Thread
// Uberhaupt zum Zuge kommt.
setPriority(Thread.MIN_PRIORITY);

public void run() f{
for (int 1 = 0; 1 < classnames.length; i++) {
try {
Class.forName(classnames[il], initialize, classlLoader);
} catch (Exception e) f



Sandini Bib
306 13 Applikationen starten

System.err.printin(getName()
+ ": Failed to Toad class " + classnamesl[il);

Listing 13.1: BackgroundClassLoader lddt Klassen in einem Hintergrund-Thread.

3.4 Geschwitziges Klassenladen

Nattirlich macht das friihe Klassenladen nur Sinn, wenn Sie wissen, welche Klassen
von lhrer Applikation tiberhaupt benétigt werden. Um rauszubekommen, welche
Klassen von der VM geladen werden, konnen Sie die VM-Option -verbose:class set-
zen.

Beispiel:
java -verbose:class -classpath <classpath> <main class>

Dies fiihrt dazu, dass die VM ausgibt, welche Klasse geladen wurde. Leider wird dabei
kein Zeitstempel ausgegeben. Wenn Sie versuchen, das Klassenladen zu beeinflussen,
ist dies dennoch Ihr bestes Verifikations-Werkzeug.

Die Ausgabe von Sun JDK 1.4.0 sieht folgendermafien aus:

[Opened C:\j2sdkl.4.0\jre\lib\rt.jar]

[Opened C:\j2sdkl.4.0\jre\lib\sunrsasign.jar]

[Opened C:\j2sdkl.4.0\jre\1ib\jsse.jar]

[Opened C:\j2sdkl.4.0\jre\lib\jce.jar]

[Opened C:\j2sdkl.4.0\jre\lib\charsets.jar]

[Loaded java.lang.Object from C:\j2sdkl.4.0\jre\lib\rt.jar]
[Loaded java.io.Serializable from C:\j2sdkl.4.0\jre\lib\rt.jarl
[Loaded java.lang.Comparable from C:\j2sdkl.4.0\jre\Tib\rt.jarl
[Loaded java.lang.CharSequence from C:\j2sdkl.4.0\jre\lib\rt.jar]
[Loaded java.lang.String from C:\j2sdkl.4.0\jre\lib\rt.jar]
[Loaded java.lang.Class from C:\j2sdkl.4.0\jre\Tib\rt.jar]
[Loaded java.lang.Cloneable from C:\j2sdkl.4.0\jre\Tib\rt.jar]
[Loaded java.lang.ClasslLoader from C:\j2sdkl.4.0\jre\lib\rt.jar]
[Loaded java.lang.System from C:\j2sdkl.4.0\jre\lib\rt.jar]
[Loaded java.lang.Throwable from C:\j2sdkl.4.0\jre\lib\rt.jar]

Falls Sie nur daran interessiert sind, wann einige bestimmte Klassen initialisiert wer-
den, konnen Sie diesen Klassen auch einen Klasseninitialisierer spendieren, der kund-
tut, wann die Klasse initialisiert wurde:



Klassenarchive 307

public class AClass f{
static |
System.out.printin(new java.util.Date() + ":
+ AClass.class.getName());

"

3.5 Klassenarchive

Grundsétzlich konnen Sie Ihre Klassen entweder einfach in einem Verzeichnis oder in
Jar- bzw. Zip-Archiven speichern. Welche Option fiir Ihre Applikation besser ist, hangt
im Wesentlichen davon ab, wie schnell Ihre Applikation auf die Klassen zugreifen
kann.

Angenommen Ihre Klassen liegen auf der lokalen Festplatte, dann ist die Zugriffs-
geschwindigkeit sehr hoch. Liegen die Klassen jedoch auf einem schlecht angebundenen
Webserver, ist sie niedrig. Zudem spielt das Zugriffsprotokoll eine Rolle. Wird beispiels-
weise bei einem Applet als Codebasis ein Verzeichnis und nicht eine Jar-Datei gewahlt,
so muss im schlechtesten Fall' fiir jede Klassendatei eine neue TCP/IP-Verbindung
geoffnet und ein neuer HTTP-Request an den Webserver gesandt werden. Sie konnen
sich ausmalen, was dies bedeutet, wenn Sie nach allen Regeln der Kunst Hunderte von
iibersichtlichen, kleine Klassen programmiert haben.

Meist ist es daher giinstiger, Jar-Dateien zu verwenden. Hier stellt sich noch die Frage,
ob Sie komprimierte oder unkomprimierte Jars verwenden. Standardmafig erstellt das
jar-Programm komprimierte Dateien. Sie konnen dies jedoch mit dem Parameter -0
(Null) abstellen. Zwar wird dann das entstehende Archiv grofier, dafiir muss aber
wihrend des Klassenladens nicht mehr dekomprimiert werden, was zu geringen Zeit-
vorteilen fithren kann.

Im Grunde miissen Sie zwischen Geschwindigkeit der Dateniibertragung und
Geschwindigkeit der Dekompression abwégen. Bei langsamer Dateniibertragung loh-
nen sich komprimierte Jar-Dateien (Tabelle 13.2). Die meist lokal gespeicherten JDK-
Klassen befinden sich dagegen in einer unkomprimierten Jar-Datei namens rt.jar. Im
Zweifelsfall ist eine komprimierte Jar-Datei vorzuziehen, da das Netzwerk meist der
Flaschenhals ist und nicht die CPU.

1 Dies trifft ein, wenn entweder der HTTP-Server oder der -Client lediglich HTTP/1.0 ohne Keep-
Alive sprechen. Falls Server und Client Keep-Alive beherrschen, muss trotzdem immer noch fiir
jede Klasse ein separater Request gesandt werden.



308 13 Applikationen starten

Speicherort der Klassen Dateiformat

Lokale Festplatte Unkomprimierte Jar-Datei
Schnelles Netzlaufwerk Unkomprimierte Jar-Datei
Langsames Netzlaufwerk Komprimierte Jar-Datei
Schneller Intranet Webserver Unkomprimierte Jar-Datei
Langsamer Webserver Komprimierte Jar-Datei

Tabelle 13.2: Wie Sie Ihre Applikation in Abhdngigkeit vom Wo speichern sollten

Selbst fiir das lokale Dateisystem ist auf jeden Fall davon abzuraten, die Klassen unar-
chiviert abzulegen, da dann auf jede Klasse einzeln zugegriffen werden muss. Die
Ladezeit kann sich so leicht verdoppeln.

Abzuraten ist auch von Zip-Archiven. Griinde hierfiir sind:
Es gibt verschiedene Zip-Formate, aber nur ein Jar-Format.

Zip-Archive werden in Webapplikationen oft nicht erkannt, wenn sie unter /WEB-
INF/lib abgelegt werden.?

Zip-Dateien lassen sich nicht signieren und verfiigen in der Regel nicht iiber ein
Manifest.

Natiirlich gibt es auch zu diesen Regeln Ausnahmen. Wenn Sie beispielsweise eine sehr
grofie Applikation als Applet ausliefern wollen, kann es sein, dass es zu lange dauert,
erst darauf zu warten, dass das Jar-Archiv vollstindig geladen ist, bevor irgendetwas
passiert. In diesem Fall kann es giinstiger sein, wenn Sie Thre Klassen in einem Verzeich-
nis und nicht in einer Jar-Datei ablegen, da Sie dann, wahrend Ihr Programm schon
lauft, spéter benctigte Klassen nachladen kénnen. Bevor Sie sich zu solch einem Schritt
entschlieflen, sollten Sie jedoch auf jeden Fall Tests durchfiihren.

Bedenken Sie zudem, dass Browser und auch das Java-Plugin Jar-Archive und Klassen
cachen. Bei einer Jar-Datei muss nur einmal {iberpriift werden, ob die gecachte Version
noch aktuell ist, bei einzelnen Klassen muss jede einzelne Klasse tiberpriift werden.

13.6 Start-Fenster fiir gro3e Applikationen

Wenn Sie feststellen, dass Thre GUI-Applikation sehr lange zum Starten benétigt, kon-
nen Sie die Startzeit mit den oben beschriebenen Techniken zum spéten Klassenladen
vielleicht etwas verkiirzen. Es gibt jedoch einen Punkt, an dem nichts mehr hilft.

2 Dies fiihrt zu haarstraubenden Problemen insbesondere mit JDBC-Treibern von IBM und Oracle,
die teilweise immer noch in Zip-Archiven ausgeliefert werden.



Sandini Bib

Start-Fenster fiir groBe Applikationen

Spétestens, wenn Sie diesen Punkt erreicht haben und die Startzeit immer noch zu lang
ist, sollten Sie dariiber nachdenken, wie Sie dem Nutzer die Zeit verkiirzen konnen.
Eine sehr einfache Technik ist es, als Erstes einen separaten Thread zu starten, der kon-
tinuierlich etwas im Konsole-Fenster Ihrer Applikation ausgibt. Leider hat jedoch nicht
jede Java-Applikation solch ein Fenster, weshalb diese Option fiir viele Anwendungen
ausscheidet. Stattdessen konnen Sie ein Startbild (Splashscreen) anzeigen. Das ist ein

rahmenloses Fenster, in dem nur eine Grafik angezeigt wird.

Rahmenloses Start-Fenster

L Intellil IDEA 2.5.1 - [C#\repository)texte’,performance’perfip 18 =]
File Edit Search View Goto Code Fefacior Build Run Tools Wigdow Help
B,,?|¢3 ﬁ‘yma‘ﬁﬁ@“@&”@ Sp\ashSreenDemUV|bi‘E%§ ?
een.java | Splasr)écreenDemo.java bl
& E ) = =v| §
5o wtse e rieieren fotens P | :
3 ‘ 3
o = I?gtraum private boolean image]lsLoaded; =
2 Bl 'ad perf .
5 5 J ' 10ad private hoolean erro ilelLoadingInage;
= =4 classloading e
g Gt Backy publi L imageURL) { 5
C) % hulliAg sl 2
5 C) & Splasl ae =
= =] sy s =
@ = | datastructure ~| i Bti).createInage (imageTRL) i I

Classpath

. JJar;CivjzZsdel. 4.0%jeeh libhext) dnsns |+

| »

- SplashScreenDemo

0 Messages

% Find 5 Debug

[ | Process started

|[ 22211

||| msert

|| Popup Hints: (56m of gor T |

R start|

Abbildung |3.1: Rahmenloses Start-Fenster

Um moglichst schnell etwas auf den Bildschirm zu zaubern, beschriankt sich der Code
zu Abbildung 13.1 auf das absolute Minimum. Es wird lediglich festgestellt, wie grof3

e ABEOn e @ || 0001 & Exds WSETaMILAN ws

das darzustellende Bild ist und wo es platziert werden soll. Sonst nichts.

package com.tagtraum.perf.classloading;

import javax.swing.*;

import java.awt.*;

import java.awt.image.ImageObserver;

import java.net.URL;




Sandini Bib
310 13 Applikationen starten

public class SplashScreen extends Frame f{
private Image image;
private boolean imagelslLoaded;
private boolean errorWhileloadingImage;

public SplashScreen(String title, URL imageURL) f{
super(title);
setCursor(Cursor.WAIT_CURSOR);
setUndecorated(true);
image = Toolkit.getDefaultToolkit().createImage(imageURL)
// Zundchst missen wir diesen Frame als ImageObserver fir das
// Image registrieren.
image.getHeight(this);
// Dann warten wir, bis Breite und Hohe bekannt sind.
waitForWidthAndHeight();
// Falls wir das Image nicht korrekt Taden konnten, zeigen
// wir eine Fehlermeldung an.
if (errorWhilelLoadingImage) f{

JOptionPane.showMessageDialog(this,

"Failed to Toad image from " + imageURL, "Error",
JOptionPane.ERROR_MESSAGE) ;
} else |

// Hohe und Breite sind nun bekannt und wir kdnnen den

// Frame entsprechend skalieren und in der Mitte

// des Bildschirms positionieren.

int imageWidth = image.getWidth(this);

int imageHeight = image.getHeight(this);

DisplayMode dm = GraphicsEnvironment
.getLocalGraphicsEnvironment()
.getDefaultScreenDevice().getDisplayMode();

setBounds((dm.getWidth() - imageWidth) / 2,
(dm.getHeight() - imageHeight) / 2, imageWidth,
imageHeight);

setVisible(true);

public void update(Graphics g) f
// Vermeidet Flackern
paint(g);

public void paint(Graphics g) f
// Zeichnet das Bild
g.drawImage(image, 0, 0, this);

// Wird vom Image aufgerufen, wenn neue Informationen Uber das
// Bild bekannt werden.
public synchronized boolean imageUpdate(Image img,

int infoflags, int x, int y, int width, int height) f{



Sandini Bib

Start-Fenster fiir groBe Applikationen 311

// Falls Abort- oder Error-Flags gesetzt sind, setze den
// Fehlerzustand.
errorWhileloadingImage = errorWhilelLoadingImage
|| (infoflags & (ImageObserver.ABORT
| ImageObserver.ERROR)) != 0;
// Falls ein Fehler vorlag oder Hohe und Breite bekannt
// sind, setze imagelslLoaded auf true
imagelsLoaded = errorWhileloadingImage || imagelsloaded ||
((infoflags & ImageObserver.WIDTH) != 0
&& (infoflags & ImageObserver.HEIGHT) != 0);
// Benachrichtige wartende Threads, dass Hdhe und Breite nun
// bekannt sind.
if (imagelslLoaded) notifyAll1();
return super.imageUpdate(img, infoflags, x, y, width, height)
&& (imagelslLoaded);

// Wartet darauf, dass Hohe und Breite des Bildes bekannt sind.
public synchronized void waitForWidthAndHeight() f
try f
while (!imagelsLoaded) f{
wait();
}
} catch (InterruptedException ie) {
// Ignorieren
}

Listing 13.2: SplashScreen zeigt einen rahmenlosen Frame, der lediglich ein Bild enthailt.

Wenn Sie eine Klasse wie SplashScreen (Listing 13.2) benutzen wollen, stellen Sie sicher,
dass Sie als Erstes diese Klasse instanziieren und anzeigen. Und zwar sollte dies in der
main()-Methode Ihrer Hauptklasse passieren, bevor irgendetwas anderes passiert. Ist
das geschehen, ist der Benutzer erst mal beruhigt und harrt der Dinge, die da kommen.

public BigSlowApplicationStarter
public static void main(Stringl] args) f{
Frame splashScreen = new SplashScreen("BigSlowApplication",
SplashScreen.class.getResource("/splashscreen.jpg"));
BigSTowApplication bsa = new BigSlowApplication();
bsa.setVisible(true);
splashScreen.dispose();

Listing 13.3: Beispiel fiir die Benutzung der Klasse SplashScreen



Sandini Bib

312 13 Applikationen starten

13.7 Mehrere Applikationen in einer VM starten

Dank der Classloader-Technologie ist es recht einfach, in Java mehr als ein Programm
von einer VM ausfiihren zu lassen. Die Vorteile sind offensichtlich:

Weniger Speicherverbrauch
Kiirzere Startzeiten
Leider gibt es auch Nachteile:

Applikationen lassen sich nicht mehr individuell mit VM-Parametern optimieren
und parametrisieren (-D-Optionen)

Stiirzt die VM ab, stiirzen viele Applikationen ab und nicht nur eine

Da der Heap potenziell sehr grof$ wird, konnen Speicherbereinigungspausen lang
und lastig werden

Gerade auf Maschinen mit geringem Hauptspeicher und begrenzter Prozessorleistung
kann es sich jedoch lohnen, mehrere Applikationen in einer VM laufen zu lassen.

Abbildung 13.2 zeigt einen einfachen Applikations-Starter mit zwei laufenden Pro-
grammen. Zum Starten eines Programms muss man lediglich die Hauptklasse, den
Klassenpfad sowie optional Start-Argumente angeben und START driicken.

&Multmpplauncher ;IEIEI
Main Clags:  |rings.MessageFormatDemo  Classpath:  [vitextelperformanceiclasses | Argumnents: I

Thu Mar 28 16:55:46 EST 2002: java -classpath Clrepositorstexteyperformanceiclasses com tagiraum.per.strings. StingConcatDemo
Thu Mar 28 16:56:01 EST 2002: java -classpath Crepositorstexteyperformanceiclasses com tagiraum.perf.strings. MessageFormatDemo

Abbildung 13.2: Java-Applikations-Starter

Mit den angegebenen Daten wird ein neuer ClasslLoader instanziiert. Mit diesem Class-
Loader wird dann die Hauptklasse geladen und die main()-Methode mit den angegebe-
nen Argumenten aufgerufen. Das Aufrufen der main()-Methode geschieht dabei in
einem neuen AppRunner-Thread (Listing 13.4). Auf diese Weise konnen wir beliebig viele
Applikation starten, solange der Speicher reicht!

Denkbar ist anstelle eines grafischen Applikations-Starters natiirlich auch einer ohne
grafische Benutzeroberfldche [vgl. Wilson00, S.79].



Sandini Bib

Mehrere Applikationen in einer VM starten 313

package com.tagtraum.perf.classloading;

import java.awt.*;

import java.awt.event.*;

import java.io.File;

import java.lang.reflect.Method;
import java.net.*;

import java.util.Date;

import java.util.StringTokenizer;

public class MultiApplLauncher extends Frame implements ActionlListener

private Label statusBar;

private java.awt.List applist;
private TextField classPathField;
private TextField mainClassField;
private TextField argumentsField;

public MultiApplLauncher() f{
super("MultiApplLauncher");
// GUI aufbauen
addWindowlListener(new WindowAdapter() f{
public void windowClosing(WindowEvent e) f{
dispose();
// System.exit(0) ist nicht mehr nétig in JDK 1.4.0
}
D
classPathField = new TextField(20)
mainClassField = new TextField(20)
argumentsField = new TextField(20)
Label classPathlLabel = new Label("Classpath:");
Label mainClassLabel = new Label("Main Class:");
Label argumentslLabel = new Label("Arguments:");
Button startButton = new Button("Start");
startButton.addActionlListener(this);
applist = new List(10);
statusBar = new Label();

s

Panel dataPanel = new Panel();
((FlowLayout) dataPanel.getlayout())
.setAlignment(FlowlLayout.LEFT);
dataPanel.add(mainClasslabel);
dataPanel.add(mainClassField);
dataPanel.add(classPathlabel);
dataPanel.add(classPathField);
dataPanel.add(argumentslLabel);
dataPanel.add(argumentsField);

Panel startButtonPanel = new Panel();
((FlowLayout) dataPanel.getlayout())



314

Sandini Bib
13

Applikationen starten

.setAlignment (FlowlLayout.RIGHT);
startButtonPanel.add(startButton);

Panel northPanel = new Panel();
northPanel.add(dataPanel);
northPanel.add(startButtonPanel);

add(northPanel, BorderLayout.NORTH);
add(applList, BorderLayout.CENTER);
add(statusBar, BorderlLayout.SOUTH);
setSize(400, 400);
pack();
setVisible(true);

}

public void actionPerformed(ActionEvent e) f
try f{

AppRunner appRunner = new AppRunner(
classPathField.getText(), mainClassField.getText(),
argumentsField.getText());

// Zeige Thread in der Liste an.

applList.add(appRunner.getName());

// Starte Applikation im eignen Thread.

appRunner.start();

} catch (Exception exception) f{
statusBar.setText(exception.toString());

}

repaint();

public static void main(Stringl] args) f{
new MultiAppLauncher();
}

// Spezialisierter Thread, der eine Applikation ausfihrt.
private class AppRunner extends Thread f{

private final Class[] PARAMETERTYPES_FOR_MAIN
= new Class[1{StringlJ.class};

private Stringl] args;

private ClasslLoader classlLoader;
private Class mainClass;

private Method mainMethod;
private String classPath;

public AppRunner(String classPath, String mainClass,
String args) throws ClassNotFoundException,
MalformedURLException, NoSuchMethodException f{
super(new Date().toString() + ": java -classpath "



Sandini Bib

Mehrere Applikationen in einer VM starten 315

+ classPath + " " + mainClass + " " + args);
this.args = createArgsArray(args);
this.classPath = classPath;
this.classlLoader = createClassLoader(classPath);
this.mainClass = this.classloader.loadClass(mainClass);
this.mainMethod = this.mainClass.getMethod("main",
PARAMETERTYPES_FOR_MAIN);

// Fuhrt die main()-Methode der Hauptklasse in einem eigenen
// Thread auf.
public void run() f

try |
mainMethod.invoke(null, new Object[J{args});
statusBar.setText(toString() + " exited.");

} catch (Exception e) f
System.err.printin(this);
e.printStackTrace();
statusBar.setText(e.toString());

}

// Entferne diesen Thread aus der Liste, wenn er

// beendet wurde.

appList.remove(this.getName());

repaint();

// Erstellt einen neuen ClasslLoader flir den angegebenen
// Klassenpfad.
private ClassLoader createClassLoader(String classPath)
throws MalformedURLException {
StringTokenizer st = new StringTokenizer(classPath,
File.pathSeparator);
URLL] urls = new URL[st.countTokens()1];
for (int 1 = 0; st.hasMoreTokens(); i++) {
urlsfil = new File(st.nextToken()).toURL();
}
// Wir missen den Bootclassloader als Elter-Loader
// benutzen, damit sich verschiedene Applikationen nicht
// in die Quere kommen. String muss vom Bootclassloader
// geladen worden sein. Das nutzen wir aus!
return new URLClassLoader(
urls, String.class.getClassLoader());

// Erstellt einen String-Array als Argument fir die

// main()-Methode.

private Stringl] createArgsArray(String args) f{
StringTokenizer st = new StringTokenizer(args, " \t\n\r");
Stringl] argsArray = new Stringlst.countTokens()1;
for (int i = 0; st.hasMoreTokens(); i++) {



Sandini Bib
316 13 Applikationen starten

argsArrayli] = st.nextToken();
}
return argsArray;

Listing 13.4: Klasse MultiAppLauncher



Letzte Worte

Es hat mir sehr viel Freude bereitet, dieses Buch zu schreiben, und ich hoffe, auch Sie
mussten beim Lesen gelegentlich mal schmunzeln. Vor allem aber hoffe ich, dass die-
ses Buch fiir Sie niitzlich war, dass es Ihnen half und helfen wird, performanteren Code
zu schreiben und bessere Designs zu entwickeln.

Sowohl die verschiedenen Java VMs als auch die Java-Klassenbibliotheken werden in
den néchsten Jahren immer schneller werden. Das heifit jedoch nicht, dass es weniger
wichtig wird, guten, schnellen Code zu schreiben, da erfahrungsgemaif3 die Basistech-
nologien in gleichem Mafle anspruchsvoller werden. Heute arbeiten wir mit EJB — und
morgen? Das Performance-Problem bleibt bestehen. Daher wird es sich immer lohnen,
sich mit verschiedenen Virtuellen Maschinen sowie Performance verbessernden Pro-
grammiertechniken auseinander zusetzen.

Sie miissen sich nur Ihre Neugierde bewahren.



Sandini Bib



Literatur

[Beck00] Beck, Kent: Extreme programming explained: embrace change. Addison-Wes-
ley 2000.

[Bentley00] Bentley, Jon: Programming Pearls. 2. Auflage. Addison-Wesley 2000.

[Bloch02] Bloch, Joshua: Effektiv Java programmieren. Miinchen: Addison-Wesley
2002.

[BulkaOO] Bulka, Dov: Java Performance and Scalability Band 1. Server-Side Program-
ming Techniques. Addison-Wesley 2000.

[Gamma96] Gamma, Erich, Richard Helm, Ralph Johnson, John Vlissides: Entwurfs-
muster: Elemente wiederverwendbarer objektorientierter Software. Bonn: Addison-
Wesley 1996.

[Gosling00] Gosling, James, Bill Joy, Guy Steele, Gilad Bracha: The Java™ Language
Specification. 2. Auflage. Addison-Wesley 2000.

[Jones96] Jones, Richard, Rafael Lins: Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. New York: Wiley & Sons 1996.

[Lea99] Lea, Doug: Concurrent Programming in Java™: Design Principles and Patterns.
2. Auflage. Addison-Wesley 1999.

[Lindholm99] Lindholm, Tim, Frank Yellin: The Java™ Virtual Machine Specification.
2. Auflage. Addison-Wesley 1999.

[Prechelt00] Prechelt, Lutz: An empirical comparison of C, C++, Java, Perl, Python,
Rexx, and Tcl for a search/string-processing program.
http:/fwww.ipd.uka.de/ prechelt/Biblio/jccpprtTR.pdf

[PughO1] Pugh, William (Hrsg.): »The Double-Checked Locking is Broken«-Declara-
tion. University of Maryland. Marz 2001.
http:/fwww.cs.umd.edu/ pugh/java/memoryModel/DoubleCheckedLocking.html

[Raymond 96] Raymond, Eric S. (Hrsg.): The New Hacker's Dictionary. Cambridge:
MIT-Press 1996.



320 Literatur

[Shirazi00] Shirazi, Jack: Java Performance Tuning. Cambridge: O’Reilly 2000.

[Weiss99] Weiss, Mark Allen: Data Structures & Algorithms in Java™. Addison-Wes-
ley 1999.

[Wilson00] Wilson, Steve, Jeff Kesselman: Java™ Platform Performance: Strategies and
Tactics. Addison-Wesley 2000.



Index

!
80-20-Prinzip 33

A
Action siehe Befehl
Adapter 120
Ahead-of-Time-Ubersetzung siehe
Bytecode-Ausfiihrung
Amdahls Gesetz 209
Analyse siehe Entwicklungsprozess
Anforderung siehe Entwicklungsprozess
Anonyme Klasse 124
AQT siehe Bytecode-Ausfiihrung
Applikationen starten 301
Applikations-Starter siehe
MultiAppLauncher
ARM 38
Array 129, 163, 237
ArrayList siehe List
ASCII 227
Ausnahme 141
Klassenhierarchie 145
loggen 147
Try-Catch-Block 143
vermeiden durch Design 141
wieder verwenden 147

B

Beck, Kent 26

Bedingte Ausfiihrung siehe if

Befehl 124

Befehlsobjekt siehe Befehl

Benchmark siehe Leistungstest
Bentley, Jon 162

Bindrcode siehe Bytecode-Ausfiithrung

BitSet 165
Bloch, Joshua 143
Bordmittel 11, 20
Decompiler 21
Java-API-Dokumentation 20
Java-Quellcode 20
BSAX 293, 300
BufferedReader siehe Ein-/Ausgabe
BufferedWriter siehe Ein-/ Ausgabe
Busy Wait siehe Thread
Bytecode 32
Bytecode-Ausfiihrung 32
Ahead-of-Time Ubersetzung 36
GJC 36
JET 37
Tower] 37
Dynamisch angepasste
Ubersetzung 33
Interpreter 33
Just-in-Time-Compiler 33
Prozessor 38

C
Cache 108, 174, 229
Austauschstrategie 175, 228
Altestes Element 176
Least Recently Used 175, 182, 184
zufillig 175
Dateicache siehe Ein-/Ausgabe
Idle Time 176
Invalidierung 176
JCache 174
Kapazitat 177, 229
LinkedHashMap 182
Map 177



322

Index

Schreibverfahren 176
Schwache Referenz 184
Time to Live 176, 228
Trefferrate 175, 177

case siehe switch

ClassLoader siehe Klasse

Collection 153, 155, 160
Synchronisation 190
synchronizedXXX 162
unmodifiableXXX 161

Command siehe Befehl

Common Subexpression Elimination 35

compress 287

Constant Folding 89

Constant Propagation 35

Copy Constructor siehe String

Crimson 275, 285
getElementsByTagName 279

D
DAC siehe Bytecode-Ausfithrung
DatalnputStream siehe Ein-/ Ausgabe
Dateicache siehe Ein-/Ausgabe
Datenstrukturen und Algorithmen 151
Datum siehe String
Dead Code Elimination 35
Deadlock siehe Thread
Decompiler siehe Bordmittel
Deferred Node Expansion siehe Xerces-]
deflate 287
Deployment 307
Design siehe Entwicklungsprozess
DevPartner sieche Messwerkzeug
DGC siehe RMI
DirectByteBuffer siehe Ein-/Ausgabe
Direktes Verketten 159
Disassembler siehe javap
dispose 41
Document Object Model siehe DOM
DOM 273, 275
Ausgabe 282
Level 283
Traversal and Range 285
traversieren 285
Dormancy siehe Thread
Double-Check-Idiom siehe Thread

Dynamic-Adaptive-Compilation siehe
Bytecode-Ausfiihrung
Dynamische Deoptimierung 34

E
Echtzeitanwendung 43, 49
ECperf siehe Leistungstest
Ein-/Ausgabe 217
accept 242
blockierend 237
BufferedReader 226
Byte-orientiert 219
DatalnputStream 227
Dateicache 227
Dateigrofie 228
Dateikopieren 217
DirectByteBuffer 237
FileChannel 176, 220, 231, 254
flush 222,226
lastModified 228
length 228
MappedByteBuffer 231
MaskedStreamWriter 225
Memory Mapped File 231, 234
OutputStreamWriter 223
PrintWriter 221, 226
puffern 218, 223
ServerSocket 242
Socket 237
SocketChannel 253
Zeichen-orientiert 219, 221
EJB 48, 142, 187, 270
Empfundene Performance siehe
Performance
Entwicklungsprozess 23
Agile Software Development 24
Analyse und Design 25
Anforderung 25
Anwendungsfall 25
Prototyp 26
Randbedingung 25
Story 25
Bibel 24
Integrieren und Testen 27
Kodieren und Testen 26
Test First 26
Unit-Test 27



Index

323

Kosten 23
Releasezyklus 30
equals 158
Exception siehe Ausnahme
Extensible Markup Language siehe XML
Extensible Stylesheet Language
Transformations siehe XSLT
Externalizable siehe RMI

F

Fabrikmethode 100, 120, 243, 245, 254
FaustIl 275, 299

FileChannel siehe Ein-/Ausgabe

Filter 289

finalize 40

for siehe Schleife

freeMemory siehe Speicher-Schnittstelle
Frontend 36

FTP 72, 207, 227

G
Garbage Collection 38, 197, 271
Algorithmus 41
Durchsatz 44
GCViewer 82
Generationen-Kollektor 43
HotSpot 44
inkrementell 43, 49
Klasse 305
Kopierender Kollektor 41
Mark-Compact-Algorithmus 42
Mark-Sweep-Algorithmus 42
nebenlaufig 43
Objekt-Lebenszyklus siehe Objekt-
Lebenszyklus
OutOfMemoryError 19, 184
Pause 44
Performance 44
Permanente Generation 45
Promptheit 44
Speicherverbrauch 44
Uberlebensraum 45
verbose 81
Verteilte Speicherbereinigung 271
Generationen-Kollektor siehe
Garbage Collection
GJC siehe Bytecode-Ausfiithrung
GNU 36

Goethe 275

Grofse Tabellen 166
Grof3-O-Notation 151
gzip 287

H
hashCode 158
Hashfunktion 159
HashMap siehe Map
HashSet siehe Set
Hashtable siehe Map
HAT siehe Messwerkzeug
HotSpot siehe Java Virtuelle Maschine
HPjmeter sieche Messwerkzeug
Hprof sieche Messwerkzeug
HTTP 97, 207, 227, 238, 257, 307
Accept-Encoding 287
Keep-Alive 257
Kompression 287
Httpd 238
Vergleich mit NIOHttpd 255
HttpURLConnection 291
Hypertext Transfer Protokoll sieche HTTP

I
IBM 281
IdentityHashMap siehe Map
Idle Time siehe Cache
if 121
String-Switch 122
immutable siehe unverdnderbar
Initialize-on-Demand-Holder-Class 195
Inlining 34, 191
Instruction Scheduling 34
Integration siehe Entwicklungsprozess
Intelli] 21
InternationalDate 260
Interpreter
Bytecode-Ausfiithrung 33
ISO 8859-1 227

J
J2EE 11, 38, 48, 270

J2ME 36, 38, 277, 281, 282, 291, 299
J2SE 33, 38, 292

jad siehe Bordmittel

Jakarta 120

Jar siehe Klasse



324

Index

Java 2 Enterprise Edition siehe J2EE
Java 2 Standard Edition siehe J2SE
Java API for XML Processing siehe JAXP
Java API-Dokumentation siehe
Bordmittel
Java Quellcode siehe Bordmittel
Java Server Page siehe JSP
Java Virtual Machine Profiler
Interfaces 52, 58
Java Virtuelle Maschine 31
Ahead-of-Time Ubersetzung
BulletTrain 37
JOVE 37
Dynamisch angepasste Ubersetzung
HotSpot 33
JRockit 36
Frame 32, 35, 39
Garbage Collection siehe Garbage
Collection
Heap 32,73, 81, 184, 271, 312
Kellermaschine 31
Linux Blackdown 49
Method-Area 32
Programmzahler 32
Prozessor
picoJava 38
Stack 31, 40
JavaCC siehe Lexikalische Analyse
javap 137
Java-Plugin 308
JAXP 273, 274, 276, 282
JCache siehe Cache
JDBC 72, 308
JFlex siehe Lexikalische Analyse
Jinsight siehe Messwerkzeug
JIT siehe Bytecode-Ausfiihrung
JProbe siehe Messwerkzeug
JRockit siehe Java Virtuelle Maschine
JSP 37, 48, 305
JSR
107 174
133 196
138 72
166 193

Just-in-Time-Compiler siehe Bytecode-
Ausfiihrung

JVMPI siehe Java Virtual Machine
Profiler Interfaces

K
Klasse
ClassLoader 301, 312
forName 301, 304
frithes Laden 304
Garbage Collection 305
geschwitziges Laden 306
initialisieren 301, 302
Jar 305, 307
laden 301
Lazy Resolution 302
loadClass 301
Ubersetzungszeit-Konstante 302
verzogertes Laden 303
Zip 308
Komplexitatsklasse siehe
Grof3-O-Notation
Kopierender Kollektor siehe
Garbage Collection
Kosten siehe Entwicklungsprozess
kXML2 282

L
Landau, Edmund 151
Lazy Initialization siehe Spéte
Initialisierung
Lazy Resolution siehe Klasse
Lea, Doug 193
Least Recently Used siehe Cache
Leistungstest 46
Auswertung 29
ECperf 46, 48
Haufigkeit 30
jBYTEMark 46, 48
Makro-Benchmark 27, 72
e-Load 72
JMeter 72
LoadRunner 72
SilkPerformer 72
Mikro-Benchmark 27, 71, 235
currentTimeMillis 71



Index

325

Mikro-Benchmark siehe
currentTimeMillis
SPEC JBB2000 48
SPEC JVM98 47
Testlange 29
VolanoMark 46
Lexikalische Analyse 120
LimitedStack 201
Linear Probing siehe Lineares Sondieren
Lineares Sondieren 159
LinkedHashMap siehe Map
LinkedHashSet siehe Set
LinkedList siehe List
LinkedQueue 254
LISP 38
List 153, 154, 155
ArrayList 154, 189
trimToSize 169
LinkedList 154
RandomAccess 154
Vector 153, 154, 189
Log
Ausnahme 147
isLog 91
java.util.logging 92
Log4] 92,107, 112
Loglevel 90
Logische Verkniipfung 121
Bedingter Operator 121
Short-Circuiting 121
Lokalitat 42, 174, 175
Loop Invariant Code Motion siehe Loop
Invariant Hoisting
Loop Invariant Hoisting 35, 128
Loop Unrolling 34, 130
LRU siehe Cache

M
Map 99, 153, 156, 157
HashMap 157
Kapazitit 158
optimieren 158
Hashtable 153, 157
IdentityHashMap 157
LinkedHashMap 157, 182
TreeMap 157, 180
WeakHashMap 157

MappedByteBuffer siehe Ein-/ Ausgabe
Mark-Compact-Algorithmus siehe
Garbage Collection
Markierungs-Interface 154, 259
Mark-Sweep-Algorithmus siehe
Garbage Collection
MaskedStreamWriter siehe
Ein-/Ausgabe
Matrize
Compressed Row Storage 169
diinn besetzt 169
hashbasiert 170
Multiplikation 207
maxMemory siehe Speicher-Schnittstelle
Mehrprozessormaschine 49, 207
availableProcessors 207
Mergesort 160
Messwerkzeug 51
HotSpot-Profiling 68
Hprof 52, 165
CPU-Profiling 58
HAT 58
Heap-Dump 53
HPjmeter 58, 61
monitor 64
old 62
PerfAnal 61
ProfileViewer 64
samples 59
times 61
Jinsight 71
Profiler 52, 236
TaskInfo 51
Win32 HeapInspector 58
Windows-Systemmonitor 51
Metrik siehe Performance
Monitor siehe Thread
Moores Gesetz 19
MultiAppLauncher 312, 316

N

Nazomi 38

NIOHttpd 242
Acceptor 245
Connection 249, 253
ConnectionSelector 245
Klassendiagramm 242



326

Index

Sequenzdiagramm 244
Vergleich mit Httpd 255
Null Check Elimination 34, 129

(o)
Objekt-Lebenszyklus 39

benutzt 39

dealloziert 41

eingesammelt 40

erzeugt 39

finalisiert 40

unerreichbar 40

unsichtbar 19, 39
On Stack Replacement 35
Optimizeit sieche Messwerkzeug
OSR siehe On Stack Replacement
OutputStreamWriter siehe Ein-/ Ausgabe

P
Parser siehe String
PerfAnal siehe Messwerkzeug
Performance 16
empfunden 18, 214
Garbage Collection siehe
Garbage Collection
Metrik 72
picoJava siehe Java Virtuelle Maschine
Polymorphie 35
Portabilitat 37, 50, 207
PrintWriter siehe Ein-/ Ausgabe
Profiler siehe Messwerkzeug
ProfileViewer siehe Messwerkzeug
Pull-Parser 273, 276
Push-Parser 273

Q

Quantify siehe Messwerkzeug
Quicksort 163

R
Range Check Elimination 34, 129
Regulédrer Ausdruck 120
Oromatcher 120
Regex for Java 120
Regexp 120
Remote Method Invocation siehe RMI
removeEldestEntry siehe Cache

Reverse Engineering 37

RMI 37, 259
DGC-Lease 271
Externalizable 262, 264
GC-Intervall 271
Latenz 270
Overhead 270
readObject 261, 267
readResolve 264
Serializable 259
StackOverflowError 267
transient 261, 267
verkniipfte Liste 266
Verteilte Speicherbereinigung 271
writeObject 267, 269
writeUTF 269

S
SAX 273, 280
Scanner siehe String
Schleife 127
ausnahmeterminiert 132
break 131
iterieren 134
Loop Invariant Code Motion siehe
Loop Invariant Hoisting
Loop Unrolling siehe Loop Unrolling
vorzeitiges Verlassen 131
Separate Chaining siehe Direktes
Verketten
Serializable sieche RMI
Servlet 289
Set 99, 153, 154, 155
HashSet 154
Kapazitat 158
optimieren 158
LinkedHashSet 154
SortedSet 154
TreeSet 154, 163
Simple API for XML siehe SAX
Singleton 161, 194, 264
sleep siehe Thread
Smalltalk 38
SMP siehe Mehrprozessormaschine
Soap 299
Socket siehe Ein-/ Ausgabe
SocketChannel siehe Ein-/ Ausgabe



Index

327

SoftReference siehe Cache
sort 163
SortedMap 156
Spate Initialisierung 194
Sparse Matrix siehe Matrize
SPEC 15, 46
JBB2000 46
JVMO8 46
Speicher-Schnittstelle 72
freeMemory 73
maxMemory 73
totalMemory 73
Splashscreen siehe Start-Fenster
Stack-Frame siehe Java Virtuelle
Maschine
Stacktrace 33, 55, 61, 142, 143, 148
Standard Performance Evaluation
Corporation siehe SPEC
Start-Fenster 308
Starvation siehe Thread
StreamTokenizer 116
String 85
+=-Operation 90
+-Operator 88
Analyse 109
anfiigen 87
bedingtes Erstellen 90
CASE_INSENSITIVE_ORDER 99
Datum und Zeit 106, 112
einfiigen 85
equals 92
equalsignoreCase 95, 96
formatieren 104
intern 93
Konstantenpool 93
Kopierender Konstruktor 92
Literal 89, 93
Nachricht 105
Parser 109
Scanner 109
sortieren 103
split 116
teilen 116
Token 109, 116
toLowerCase 95, 96
toUpperCase 95, 96
Unicode 103

Vergleich 92
CollationKey 101
CollationsKey 95
Collator 95, 100

StringBuffer 85
Konstruktor 89
vorinitialisiert 87, 89

StringTokenizer 116, 242

Swapping 175

Swing

Action 124

invokeAndWait 216

invokeLater 216

TableColumn 173

TableModel 166

Thread 215

switch 137

Lookupswitch 137

Tableswitch 137

synchronized siehe Thread

T
Test First siehe Entwicklungsprozess
Thread 187

AWT 211

Benutzeroberflache 211

blockierende Ein-/Ausgabe 237

Busy Wait 204

Datenstruktur 193

JThreadKit 193
util.concurrent 193, 254

Deadlock 64, 188

Dormancy 188, 199

Double-Check-Idiom 194

Green-Threads 49

Kommunikation 204

Lebendigkeit 187

Lock 64

Monitor 64

notify 188, 198, 205

notifyAll 205

Pool 197

Programmierung 196

resume 188

Runnable 197, 216

Runner 197

RunnerThread 197



328

Index

setPriority 207

Sicherheit 187, 189

skalieren 207

sleep 68, 206

Stack 196

starten 196

Swing 215

synchronized 64, 189

verhungern 188

volatile 189, 196

wait 68, 198, 206

yield 207
Time to Live siehe Cache
totalMemory siehe Speicher-Schnittstelle
Tower] siehe Bytecode-Ausfiihrung
Transaction siehe Befehl
transient siehe RMI
TreeMap siehe Map
TreeSet siehe Set

U

Ubersetzungszeit-Konstante siehe Klasse
unverdanderbar 85, 158, 188
util.concurrent siehe Thread

\"

Value-Object 270

Vector siehe List

VM siehe Java Virtuelle Machine
VolanoMark siehe Leistungstest
volatile siehe Thread

w

W3C 275

wait siehe Thread
WAP 291

WBXML siehe XML

WeakHashMap siehe Map

while siehe Schleife

Win32 Heaplnspector siehe
Messwerkzeug

Workingset 175

World Wide Web Konsortium siehe W3C

Write-Back siehe Cache

Write-Through siehe Cache

X
Xerces-] 276, 281, 285
Deferred Node Expansion 276, 286
DOM Level 3 283
XML 273
Ausgabe 282
Binarformat 291, 300
DOM siehe DOM
DTD 282
Entitat 277
Hype 282
komprimieren 286
Modellvergleich 279
Namensraum 280
Parser wihlen 281
Processing Instruction 277
SAX siehe SAX
Schema 282
Validierung 277, 280
WBXML 291
XML-Pull-Parser sieche XPP
XPP 276, 280
XSLT 273

z

Zahlen sortieren 162
Zeichenkette siehe String
Zeit siehe String



Sandini Bib

PEARSON
e

Education

Copyright
Daten, Texte, Design und Grafiken dieses eBooks, sowie die eventuell angebotenen
eBook-Zusatzdaten sind urheberrechtlich geschutzt.
Dieses eBook stellen wir lediglich als Einzelplatz-Lizenz zur Verfligung!

Jede andere Verwendung dieses eBooks und zugehdriger Materialien und
Informationen, einschliesslich der Reproduktion, der Weitergabe, des Weitervertriebs,
der Plazierung auf anderen Websites, der Veranderung und der Veroffentlichung bedarf
der schriftlichen Genehmigung des Verlags.

Bei Fragen zu diesem Thema wenden Sie sich bitte an:
mailto:info@pearson.de

Zusatzdaten

Moglicherweise liegt dem gedruckten Buch eine CD-ROM mit Zusatzdaten bei. Die
Zurverfugungstellung dieser Daten auf der Website ist eine freiwillige Leistung des
Verlags. Der Rechtsweg ist ausgeschlossen.

Hinweis
Dieses und andere eBooks konnen Sie rund um die Uhr
und legal auf unserer Website

(http://www.informit.de)
herunterladen



mailto:info@pearson.de
http://www.informit.de/

	Performant Java programmieren
	Inhalt
	Vorwort
	Java ist zu langsam
	Entwicklungsprozess
	Virtuelle Maschinen
	Messwerkzeuge
	Zeichenketten
	Bedingte Ausführung, Schleifen und Switches
	Ausnahmen
	Datenstrukturen und Algorithmen
	Threads
	Effiziente Ein- und Ausgabe
	RMI und Serialisierung
	XML
	Applikationen starten
	Letzte Worte
	Literatur
	Index

	Vorwort
	Zum Buch
	Danksagungen

	Java ist zu langsam
	Was ist Performance?
	Empfundene Performance
	Gesunder Menschenverstand
	Wissen ist Performance

	Entwicklungsprozess
	Analyse und Design
	Kodieren und Testen
	Integrieren und Testen
	Mikro- und Makro-Benchmarks
	Testlänge
	Auswertung
	Wie häufig testen?


	Virtuelle Maschinen
	Bytecode-Ausführung
	Interpreter
	Just-in-Time-Compiler
	Dynamisch angepasste Übersetzung
	Ahead-of-Time-Übersetzung
	Java in Silizium

	Garbage Collection
	Objekt-Lebenszyklus
	Garbage Collection-Algorithmen
	Performance- Maße
	HotSpots Garbage Collection

	Industrie-Benchmarks
	VolanoMark
	SPEC JVM98
	SPEC JBB2000
	jBYTEMark
	ECperf

	Die richtige VM auswählen

	Messwerkzeuge
	Profiler
	Hprof
	Speicherabbild erstellen
	CPU-Profiling
	Monitor-Information

	HotSpot-Profiling
	Jinsight
	Mikro-Benchmarks
	Makro-Benchmarks
	Performance Metriken
	Speicher-Schnittstellen
	Speicherverbrauch
	Geschwätzige Garbage Collection
	Manuelle Speicherbereinigung


	Zeichenketten
	Strings einfügen
	Strings anfügen
	Bedingtes Erstellen von Strings
	Stringvergleiche
	Groß- und Kleinschreibung
	Vergleich mittels equalsIgnoreCase()
	toLowerCase() oder toUpperCase(), das ist hier die Frage
	Wenn Ä gleich a sein soll

	Strings sortieren
	Formatieren
	Nachrichten erstellen
	Datum und Zeit

	String-Analyse
	Datum und Zeit
	Strings teilen
	Reguläre Ausdrücke und lexikalische Analyse mit Grammatiken


	Bedingte Ausführung, Schleifen und Switches
	Bedingte Ausführung
	Logische Operatoren
	String-Switches
	Befehlsobjekte

	Schleifen
	Loop Invariant Code Motion
	Teure Array-Zugriffe
	Loop Unrolling
	Schleifen vorzeitig verlassen
	Ausnahmeterminierte Schleifen
	Iteratoren oder nicht?

	Optimale Switches

	Ausnahmen
	Ausnahmen durch sinnvolle Schnittstellen vermeiden
	Kosten von Try-Catch-Blöcken in Schleifen
	Keine eigenen Ausnahme-Hierarchien
	Automatisch loggende Ausnahmen
	Ausnahmen wieder verwenden

	Datenstrukturen und Algorithmen
	Groß-O-Notation
	Collections-Framework
	Collections, Sets und Listen
	Maps
	Hashbasierte Strukturen optimieren
	Collections

	Jenseits des Collections-Frameworks
	Zahlen sortieren
	Große Tabellen

	Caches
	Austauschstrategien
	Elementspezifische Invalidierung
	Schreibverfahren
	Gecachte Map
	Caches mit LinkedHashMap
	Schwache Referenzen


	Threads
	Gefährlich lebt sich’s schneller
	Sicherheit durch Synchronisation
	Synchronisationskosten
	Threadsichere Datenstrukturen
	Double-Check-Idiom
	Sprunghafte Variablen

	Allgemeine Threadprogrammierung
	Threads starten
	Threadpool
	Kommunikation zwischen Threads
	Warten oder schlafen?
	Prioritäten setzen und Vorrang lassen

	Skalieren mit Threads
	Threads in Benutzeroberflächen
	Lebendige AWT-Oberflächen
	Threads in Swing


	Effiziente Ein- und Ausgabe
	Fallstudie Dateikopieren
	Texte ausgeben
	Texte einlesen
	Dateicache
	Skalierbare Server
	Httpd der alten Schule
	Nicht-blockierender Httpd
	Vergleichende Rechenspiele


	RMI und Serialisierung
	Effiziente Serialisierung
	Datenmenge verkleinern
	Optimierte logische Darstellung

	Latenzzeiten und Overhead
	Verteilte Speicherbereinigung

	XML
	SAX, DOM & Co
	SAX
	DOM
	Pull-Parser

	Kleiner Modellvergleich
	Den richtigen Parser wählen
	XML ausgeben
	DOM-Bäume traversieren
	XML komprimieren
	HTTP
	Binärformate


	Applikationen starten
	Klassen laden und initialisieren
	Verzögertes Klassenladen
	Frühes Klassenladen
	Geschwätziges Klassenladen
	Klassenarchive
	Start-Fenster für große Applikationen
	Mehrere Applikationen in einer VM starten

	Letzte Worte
	Literatur
	Index
	!
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Ins Internet: Weitere Infos zum Buch, Downloads, etc.
	© Copyright-Hinweis



