
Sandini Bib

Performant Java programmieren

Sandini Bib

Die Reihe Programmer’s Choice

Von Profis für Profis
Folgende Titel sind bereits erschienen:

Bjarne Stroustrup
Die C++-Programmiersprache
1072 Seiten, ISBN 3-8273-1660-X

Elmar Warken
Kylix – Delphi für Linux
1018 Seiten, ISBN 3-8273-1686-3

Don Box, Aaron Skonnard, John Lam
Essential XML
320 Seiten, ISBN 3-8273-1769-X

Elmar Warken
Delphi 6
1334 Seiten, ISBN 3-8273-1773-8

Bruno Schienmann
Kontinuierliches Anforderungsmanagement
392 Seiten, ISBN 3-8273-1787-8

Damian Conway
Objektorientiertes Programmieren mit Perl
632 Seiten, ISBN 3-8273-1812-2

Ken Arnold, James Gosling, David Holmes
Die Programmiersprache Java
628 Seiten, ISBN 3-8273-1821-1

Kent Beck, Martin Fowler
Extreme Programming planen
152 Seiten, ISBN 3-8273-1832-7

Jens Hartwig
PostgreSQL – professionell und praxisnah
456 Seiten, ISBN 3-8273-1860-2

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides
Entwurfsmuster
480 Seiten, ISBN 3-8273-1862-9

Heinz-Gerd Raymans
MySQL im Einsatz
618 Seiten, ISBN 3-8273-1887-4

Dusan Petkovic, Markus Brüderl
Java in Datenbanksystemen
424 Seiten, ISBN 3-8273-1889-0

Joshua Bloch
Effektiv Java programmieren
250 Seiten, ISBN 3-8273-1933-1

Sandini Bib

Hendrik Schreiber

Performant Java
programmieren

An imprint of Pearson Education

München • Boston • San Francisco • Harlow, England
Don Mills, Ontario • Sydney • Mexico City
Madrid • Amsterdam

http://www.pearsoned.de
http://www.awl.de/main/main.asp?page=bookdetails&ISBN=3827320038
http://www.awl.de/main/main.asp?page=bookdetails&ISBN=3827320038

Sandini Bib

Die Deutsche Bibliothek – CIP-Einheitsaufnahme

Ein Titeldatensatz für diese Publikation ist bei
Der Deutschen Bibliothek erhältlich.

Die Informationen in diesem Produkt werden ohne Rücksicht auf einen
eventuellen Patentschutz veröffentlicht.
Warennamen werden ohne Gewährleistung der freien Verwendbarkeit benutzt.
Bei der Zusammenstellung von Abbildungen und Texten wurde mit größter
Sorgfalt vorgegangen.
Trotzdem können Fehler nicht vollständig ausgeschlossen werden.
Verlag, Herausgeber und Autoren können für fehlerhafte Angaben
und deren Folgen weder eine juristische Verantwortung noch
irgendeine Haftung übernehmen.
Für Verbesserungsvorschläge und Hinweise auf Fehler sind Verlag und
Herausgeber dankbar.

Alle Rechte vorbehalten, auch die der fotomechanischen Wiedergabe und der
Speicherung in elektronischen Medien.
Die gewerbliche Nutzung der in diesem Produkt gezeigten Modelle und Arbeiten
ist nicht zulässig.

Fast alle Hardware- und Softwarebezeichnungen, die in diesem Buch erwähnt werden,
sind gleichzeitig eingetragene Warenzeichen oder sollten als solche betrachtet werden.

Umwelthinweis:
Dieses Produkt wurde auf chlorfrei gebleichtem Papier gedruckt.
Die Einschrumpffolie – zum Schutz vor Verschmutzung – ist aus umweltverträglichem
und recyclingfähigem PE-Material.

5 4 3 2 1

05 04 03 02

ISBN 3-8273-2003-8

© 2002 by Addison-Wesley Verlag,
ein Imprint der Pearson Education Deutschland GmbH,
Martin-Kollar-Straße 10–12, D-81829 München/Germany
Alle Rechte vorbehalten
Einbandgestaltung: Christine Rechl, München
Titelbild: Cirsium oleraceum, Kohldistel. © Karl Blossfeldt Archiv
Ann und Jürgen Wilde, Zülpich/ VG Bild-Kunst Bonn, 2002
Lektorat: Christiane Auf, cauf@pearson.de; Tobias Draxler, tdraxler@pearson.de
Herstellung: Monika Weiher, mweiher@pearson.de
CD-Mastering: Gregor Kopietz, gkopietz@pearson.de
Satz: reemers publishing services gmbh, Krefeld, www.reemers.de
Druck und Verarbeitung: Bercker Graphischer Betrieb, Kevelaer
Printed in Germany

Sandini Bib

���������	
������
	�������	������

��������	��������

Sandini Bib

Sandini Bib

Inhalt

Vorwort 11
Zum Buch 11
Danksagungen 12

1 Java ist zu langsam 15
1.1 Was ist Performance? 16
1.2 Empfundene Performance 18
1.3 Gesunder Menschenverstand 18
1.4 Wissen ist Performance 20

2 Entwicklungsprozess 23
2.1 Analyse und Design 25
2.2 Kodieren und Testen 26
2.3 Integrieren und Testen 27
2.3.1 Mikro- und Makro-Benchmarks 27
2.3.2 Testlänge 29
2.3.3 Auswertung 29
2.3.4 Wie häufig testen? 30

3 Virtuelle Maschinen 31
3.1 Bytecode-Ausführung 32
3.1.1 Interpreter 33
3.1.2 Just-in-Time-Compiler 33
3.1.3 Dynamisch angepasste Übersetzung 33
3.1.4 Ahead-of-Time-Übersetzung 36
3.1.5 Java in Silizium 38
3.2 Garbage Collection 38
3.2.1 Objekt-Lebenszyklus 39
3.2.2 Garbage Collection-Algorithmen 41
3.2.3 Performance-Maße 44
3.2.4 HotSpots Garbage Collection 44
3.3 Industrie-Benchmarks 46
3.3.1 VolanoMark 46
3.3.2 SPEC JVM98 47

Sandini Bib

8 Inhalt

3.3.3 SPEC JBB2000 48
3.3.4 jBYTEMark 48
3.3.5 ECperf 48
3.4 Die richtige VM auswählen 49

4 Messwerkzeuge 51
4.1 Profiler 52
4.2 Hprof 52
4.2.1 Speicherabbild erstellen 53
4.2.2 CPU-Profiling 58
4.2.3 Monitor-Information 64
4.3 HotSpot-Profiling 68
4.4 Jinsight 71
4.5 Mikro-Benchmarks 71
4.6 Makro-Benchmarks 72
4.7 Performance Metriken 72
4.8 Speicher-Schnittstellen 72
4.8.1 Speicherverbrauch 73
4.8.2 Geschwätzige Garbage Collection 81
4.8.3 Manuelle Speicherbereinigung 83

5 Zeichenketten 85
5.1 Strings einfügen 85
5.2 Strings anfügen 87
5.3 Bedingtes Erstellen von Strings 90
5.4 Stringvergleiche 92
5.5 Groß- und Kleinschreibung 95
5.5.1 Vergleich mittels equalsIgnoreCase() 96
5.5.2 toLowerCase() oder toUpperCase(), das ist hier die Frage 96
5.5.3 Wenn Ä gleich a sein soll 100
5.6 Strings sortieren 103
5.7 Formatieren 104
5.7.1 Nachrichten erstellen 105
5.7.2 Datum und Zeit 106
5.8 String-Analyse 109
5.8.1 Datum und Zeit 112
5.8.2 Strings teilen 116
5.8.3 Reguläre Ausdrücke und lexikalische Analyse mit Grammatiken 120

6 Bedingte Ausführung, Schleifen und Switches 121
6.1 Bedingte Ausführung 121
6.1.1 Logische Operatoren 121
6.1.2 String-Switches 122
6.1.3 Befehlsobjekte 124
6.2 Schleifen 127
6.2.1 Loop Invariant Code Motion 128

Sandini Bib

Inhalt 9

6.2.2 Teure Array-Zugriffe 129
6.2.3 Loop Unrolling 130
6.2.4 Schleifen vorzeitig verlassen 131
6.2.5 Ausnahmeterminierte Schleifen 132
6.2.6 Iteratoren oder nicht? 134
6.3 Optimale Switches 137

7 Ausnahmen 141
7.1 Ausnahmen durch sinnvolle Schnittstellen vermeiden 141
7.2 Kosten von Try-Catch-Blöcken in Schleifen 143
7.3 Keine eigenen Ausnahme-Hierarchien 145
7.4 Automatisch loggende Ausnahmen 147
7.5 Ausnahmen wieder verwenden 147

8 Datenstrukturen und Algorithmen 151
8.1 Groß-O-Notation 151
8.2 Collections-Framework 153
8.2.1 Collections, Sets und Listen 153
8.2.2 Maps 156
8.2.3 Hashbasierte Strukturen optimieren 158
8.2.4 Collections 160
8.3 Jenseits des Collections-Frameworks 162
8.3.1 Zahlen sortieren 162
8.3.2 Große Tabellen 166
8.4 Caches 174
8.4.1 Austauschstrategien 175
8.4.2 Elementspezifische Invalidierung 176
8.4.3 Schreibverfahren 176
8.4.4 Gecachte Map 177
8.4.5 Caches mit LinkedHashMap 182
8.4.6 Schwache Referenzen 184

9 Threads 187
9.1 Gefährlich lebt sich’s schneller 187
9.1.1 Sicherheit durch Synchronisation 189
9.1.2 Synchronisationskosten 189
9.1.3 Threadsichere Datenstrukturen 193
9.1.4 Double-Check-Idiom 194
9.1.5 Sprunghafte Variablen 196
9.2 Allgemeine Threadprogrammierung 196
9.2.1 Threads starten 196
9.2.2 Threadpool 197
9.2.3 Kommunikation zwischen Threads 204
9.2.4 Warten oder schlafen? 206
9.2.5 Prioritäten setzen und Vorrang lassen 206
9.3 Skalieren mit Threads 207

Sandini Bib

10 Inhalt

9.4 Threads in Benutzeroberflächen 211
9.4.1 Lebendige AWT-Oberflächen 211
9.4.2 Threads in Swing 215

10 Effiziente Ein- und Ausgabe 217
10.1 Fallstudie Dateikopieren 217
10.2 Texte ausgeben 221
10.3 Texte einlesen 226
10.4 Dateicache 227
10.5 Skalierbare Server 237
10.5.1 Httpd der alten Schule 238
10.5.2 Nicht-blockierender Httpd 242
10.5.3 Vergleichende Rechenspiele 255

11 RMI und Serialisierung 259
11.1 Effiziente Serialisierung 259
11.1.1 Datenmenge verkleinern 260
11.1.2 Optimierte logische Darstellung 266
11.2 Latenzzeiten und Overhead 270
11.3 Verteilte Speicherbereinigung 271

12 XML 273
12.1 SAX, DOM & Co 273
12.1.1 SAX 273
12.1.2 DOM 275
12.1.3 Pull-Parser 276
12.2 Kleiner Modellvergleich 279
12.3 Den richtigen Parser wählen 281
12.4 XML ausgeben 282
12.5 DOM-Bäume traversieren 285
12.6 XML komprimieren 286
12.6.1 HTTP 287
12.6.2 Binärformate 291

13 Applikationen starten 301
13.1 Klassen laden und initialisieren 301
13.2 Verzögertes Klassenladen 303
13.3 Frühes Klassenladen 304
13.4 Geschwätziges Klassenladen 306
13.5 Klassenarchive 307
13.6 Start-Fenster für große Applikationen 308
13.7 Mehrere Applikationen in einer VM starten 312

Letzte Worte 317

Literatur 319

Index 321

Sandini Bib

Vorwort

Seit ich 1996 mit Java in Berührung kam, war Performance in der ein oder anderen
Form immer ein wichtiges Thema. Zunächst war es essentiell, die Größe von Applets
zu verringern, dann eine in Java verfasste Skriptsprache zu optimieren und schließlich
musste kleinen sowie großen Anwendungen der CPU-Hunger abgewöhnt werden.

Währenddessen wurden die Virtuellen Maschinen immer schneller, Just-in-Time-Com-
piler lösten Interpreter ab und Ahead-of-Time-Compiler sowie HotSpot betraten das
Spielfeld. Mit den unterschiedlichen VMs änderten sich auch die Tricks und Kniffe, die
mit der letzten VM noch zu großen Performance-Gewinnen geführt hatten. Schließlich
entwickelte Sun mit großer Unterstützung der Industrie Enterprise-APIs, die zu J2EE
(Java 2 Enterprise Edition) gebündelt wurden. Die daraus resultierenden Produkte, die
Applikationsserver, sind der bisher größte Erfolg, den Java erzielt hat. Mittlerweile ist
Java jenseits des Hypes. Java ist etabliert.

Doch natürlich hat Java auch Kritiker, hat sie immer gehabt. Und gerade die sehen in
der Performance Javas größten Schwachpunkt. Dass diese Kritik nicht ganz unberech-
tigt ist, zeigen die Probleme, die auch Java-Jünger gelegentlich haben. Oftmals ist es
dabei Unwissenheit, die zu Schwierigkeiten führt, und nicht Java an sich.

Doch trotz Javas Erfolg und akuter Performance-Probleme gab es bis dato kaum deut-
sche Bücher über Java-Performance, darüber, wie man Programme schreibt, so dass sie
performant werden. Dies hat mich dazu motiviert, dieses Buch zu schreiben.

Zum Buch

Das Buch ist grob in zwei Teile geteilt. In den ersten vier Kapiteln gehe ich auf Grund-
lagen ein, die meiner Ansicht nach als Hintergrundwissen unentbehrlich sind. Hier
werden Fragen beantwortet wie: Was ist Performance? Welche Bordmittel brauche ich,
um effizient programmieren zu können? Wie sieht ein Entwicklungsprozess aus, der
zu leistungsfähiger Software führen kann? Wie funktionieren Java VMs und welche
Werkzeuge stehen zum Testen, Messen und Optimieren zur Verfügung?

Sandini Bib

12 Vorwort

Im zweiten Teil fokussiert jedes Kapitel einen Themenbereich aus dem Programmie-
reralltag. Dies sind allgemeine Entwicklungstechniken, aber auch Spezialthemen wie
beispielsweise Thread-Programmierung oder XML. Dabei wird anhand von Beispielen
plastisch vorgeführt, was zu einer Performance-Verbesserung führen kann und was
eher nicht. Dabei lege ich Wert darauf, guten Stil nicht auf dem Geschwindigkeitsaltar
zu opfern. Einige der Beispiele sind zum besseren Verständnis zudem mit UML-Dia-
grammen illustriert.

Es wäre vermessen zu behaupten, dass die Ideen zu allen Tipps und Hinweisen zwi-
schen meinen eigenen Ohren entstanden. Tatsächlich fußen viele der beschriebenen
Optimierungstechniken auf Ideen anderer Entwickler, Autoren und Kollegen. Es han-
delt sich also um Best Practices, wie es so schön auf Neudeutsch heißt.

Viele der Beispiele sind Listings, die Sie auch in elektronischer Form auf der beiliegen-
den CD-ROM bzw. im WWW unter der Adresse http://www.tagtraum.com/performance/
finden und so besser nachvollziehen können. Soweit nicht anders angegeben, habe ich
übrigens für alle Messungen ein Dell Inspiron 7500 Notebook mit Intel Pentium III
500 Mhz und Microsoft Windows 2000 Professional benutzt.

Selbstverständlich habe ich mir die allergrößte Mühe gegeben, Fehler zu vermeiden.
Doch bekanntlich steckt der Teufel im Detail und genau wie jedes größere Programm
hat jedes Buch Fehler. Zudem werden sicher einige der angegebenen URLs mit der Zeit
ungültig. Wenn Sie einen Fehler finden, schreiben Sie mir (hs@tagtraum.com) oder dem
Verlag, so dass ich ihn auf der Errata-Seite der Website richtig stellen kann.

Danksagungen

Zuallererst möchte ich mich bei Ihnen bedanken. Es gibt so viele gute Bücher, daher
betrachte ich es als Kompliment, dass Sie ausgerechnet mein Buch erworben haben.
Danke! Ich hoffe dieses Buch erweist sich für Sie als nützlich und endet nicht als Staub-
fänger im Regal der ungelesenen Bücher.

Ganz abgesehen davon ist es eine Ehre, sich über rund 300 Seiten verbreiten zu dürfen
und dafür auch noch bezahlt zu werden. Diese Ehre wurde mir zuteil durch das Ver-
trauen von Addison-Wesley und die Tatsache, dass mich die innoQ Deutschland
GmbH großzügigerweise für vier Monate freistellte. Genau aus diesem Grund muss
ich mich an dieser Stelle nicht für unzählige durchgearbeitete Nächte und Wochenen-
den bei meinen Nächsten entschuldigen, wie das in anderen Büchern so häufig der Fall
ist. Stattdessen möchte ich mich für die Unterstützung bei der innoQ im Allgemeinen
und Stefan Tilkov im Besonderen herzlich bedanken.

Sandini Bib

Danksagungen 13

Dank auch an Christiane Auf, Tobias Draxler und Philipp Burkart von Addison-Wesley
für die unkomplizierte Zusammenarbeit und an Michael Neumann von Line Informa-
tion GmbH für detailliertes Feedback und einen charmanten Hang zum Perfektionis-
mus. Und schließlich gilt mein Dank all jenen, die mich während des Schreibens
ermutigten und mit Rat, Zuneigung und anderen wichtigen Dingen unterstützten.
Danke Jennifer Fuller, Barbara, Rolf und Marc Schreiber, Phillip Ghadir, Enke Eisen-
berg und Jason Sullivan.

Hendrik Schreiber

Raleigh, North Carolina, Mai 2002

Sandini Bib

Sandini Bib

1 Java ist zu langsam

Seit es Java gibt, gibt es Kritiker, die behaupten, Java sei zu langsam für dieses und
jenes. Die automatische Speicherbereinigung (Garbage Collection) fresse die gesamte
Rechenzeit auf und überhaupt, interpretierte Sprachen seien die Wurzel allen Übels.

Zu leugnen, dass Java in den ersten Versionen ein Performance-Problem hatte, hieße
zu behaupten, dass Sanduhr-Mauszeiger ein Symbol für Produktivität sind und ein
Repaint auch an schnellen Rechnern noch mit bloßem Auge nachvollziehbar sein
muss. Denn so viel steht fest: Java überzeugte bestimmt nicht durch Geschwindigkeit.
Es waren andere Eigenschaften wie Sicherheit, Netzwerkfähigkeit und Portabilität, die
die Massen verführten.

Nun sind seit der ersten Java-Version einige Jahre vergangen und die Hersteller von
Java Ausführungsumgebungen, den Java Virtuellen Maschinen (Java VM), hatten Zeit
diese zu optimieren und die ein oder andere Finesse einzubauen. In der Zwischenzeit
sind zudem die Rechner sehr viel schneller geworden (Abbildung 1.1).

Abbildung 1.1: Von Mitte 1995 bis Anfang 2000 hat sich die Leistung bei Integer-Operationen von Intel-Desktop-
Prozessoren mehr als verzehnfacht. Quelle: http://www.spec.org.

0

5

10

15

20

25

30

35

40

45

50

1995 1996 1997 1998 1999 2000

C
IN

T
95

Sandini Bib

16 1 Java ist zu langsam

Und trotzdem hat Java immer noch den Ruf langsam zu sein. Gerade Programmierer,
die aus anderen Sprachen zu Java wechseln (müssen!), stimmen gerne in den Chor der
Nörgler ein. Java sei nicht performant, und das würde mit C/C++/Delphi/Perl/Assembler/
etc. viel schneller laufen. Zugegeben, dies mag in einigen Fällen stimmen. Aber abgese-
hen davon, dass solch unreflektierte Pauschal-Kritik ganz erheblich nerven kann, ist
sie unproduktiv und bringt den Kritisierenden in Verruf. Denn wenn der Bauer nicht
schwimmen kann, liegt’s bekanntlich an der Badehose.

Studien belegen, dass Performance-Unterschiede von Programmen, die in der gleichen
Sprache, aber von verschiedenen Entwicklern verfasst wurden, mindestens so groß
sind wie die Performance-Unterschiede von Programmen, die in unterschiedlichen
Sprachen geschrieben wurden [Prechelt00, S.29].

1.1 Was ist Performance?

Bevor wir uns damit beschäftigen, wie wir die Performance unserer Programme ver-
bessern, wollen wir zunächst einmal klären, was unter Performance zu verstehen ist.
Leider ist Performance einer jener Anglizismen, die ihre volle Bedeutung nicht auf den
ersten Blick entfalten.

Performance ist nicht nur reine Rechengeschwindigkeit. Zur Performance eines Pro-
gramms gehören außerdem die Geschwindigkeit von Ein-/Ausgabe-Operationen
sowie der Speicherverbrauch. So kann, wenn nur wenig schneller Speicher zur Verfü-
gung steht, ein schnelles Programm mit hohem Speicherbedarf offensichtlich weniger
performant sein als ein langsames Programm mit geringem Speicherbedarf. An diesem
Beispiel wird schon klar, dass das Inanspruchnehmen von Rechenleistung, Speicher
und Ein-/Ausgabe-Operationen oft in einem gespannten Verhältnis zueinander ste-
hen. Verbraucht ein Programm wenig Speicher, so benötigt es oft eine hohe Rechenleis-
tung. Ist die benötigte Rechenleistung gering, so ist häufig eine hohe Ein-/Ausgabe-
Geschwindigkeit vonnöten. Wenn jedoch die Ein-/Ausgabe-Geschwindigkeit irrele-
vant ist, erweist sich unter Umständen der Speicherverbrauch als sehr hoch.

Überspitzt gesehen drängt sich der Eindruck auf, dass das Produkt der benötigten
Ein-/Ausgabe- (EA) und Rechenleistung (R) sowie des Speicherverbrauchs (M) von n
verschiedenen Problemlösungen konstant ist:

Nun ist dies leider keine erwiesene Tatsache, sondern allenfalls eine interessante
Hypothese. Jedoch eine, die uns weiterbringt. Einmal angenommen, die Formel wäre
eine anerkannte Tatsache und gültig für alle Programme dieser Welt. Dann müssten

��������	 ��� =��

Sandini Bib

Was ist Performance? 17

wir nur noch die genauen technischen Daten der Zielplattform beim Hersteller erfra-
gen und könnten für eben diese Zielplattform die optimale Version des Programms
schreiben. Ein fähiges Team vorausgesetzt, wäre der schwierigste Teil der Aufgabe ver-
mutlich, die korrekten Daten vom Hersteller zu bekommen.

Nun ist die obige Formel aber leider keine Tatsache. Rechenleistung und Ein-/Aus-
gabe-Geschwindigkeit gleichberechtigt in einer Formel zu verewigen erscheint höchst
riskant, und auch nur einen der drei Werte verlässlich zu messen, ist ein mehr als heik-
les Unterfangen. Wir erkennen jedoch, dass ein Programm an sich nicht performant ist.
Es kann lediglich in einer bestimmten Umgebung performant sein. Daraus folgt:

Performant sind solche Programme, die die vorhandenen Ressourcen effizient nutzen.

Nehmen wir zum Beispiel einen Webserver. Vereinfacht betrachtet ist es seine Aufgabe,
Dateien von der Festplatte zu einem Netzwerkadapter zu kopieren. Auf den ersten
Blick sind also ein möglichst schneller Netzwerkadapter, eine möglichst schnelle Fest-
platte und eine möglichst schnelle Verbindung zwischen beiden Geräten nötig. Mit
anderen Worten: Ein schneller Webserver zeichnet sich durch besonders effiziente
Ein-/Ausgabe-Operationen aus.

Nun ist eine Festplatte verglichen mit dem Hauptspeicher in der Regel nicht besonders
schnell. Es macht also Sinn, die Dateien im Hauptspeicher zu halten statt jedes Mal von
der langsamen Festplatte zu lesen (siehe auch Kapitel 10.4 Dateicache). Leider ist jedoch
der Hauptspeicher meist nicht groß genug für alle Dateien. Es ist also erstrebenswert,
nur solche Dateien im Speicher zu halten, die besonders häufig nachgefragt werden.

Anstatt nur die offensichtlich notwendigen Ressourcen zu nutzen, bedient sich der
Webserver aller ihm zur Verfügung stehenden Ressourcen, die der Leistungssteige-
rung dienen: des Netzwerkadapters, der Festplatte und des Hauptspeichers. Und zwar
mit Betonung auf ihm zur Verfügung stehenden. Keinesfalls mehr!

Versucht der Webserver mehr Dateien im Hauptspeicher zu halten als realer und somit
schneller Speicher vorhanden ist, macht das keinen Sinn. Im Gegenteil, Dateien wür-
den in den Hauptspeicher geladen, um anschließend vom Betriebssystem wieder auf
die Festplatte ausgelagert zu werden. Dateien wären also unnötigerweise doppelt auf
der Festplatte vorhanden und belegten wertvollen Speicherplatz. Hinzu käme der
erhebliche Aufwand, den das Betriebssystem betreiben muss, um Speicherseiten ein-
und auszulagern. Hierfür gibt es einen Namen: Ressourcenverschwendung.

Nun liegt es in der Natur der Sache, dass optimale Ressourcennutzung und Ver-
schwendung nahe beieinander liegen. Geschickt haushalten ist daher die halbe Miete.

Sandini Bib

18 1 Java ist zu langsam

1.2 Empfundene Performance

Es gibt jedoch Programme, die nach allen Regeln der Kunst optimiert wurden, gemäß
obiger Definition performant sind und dennoch von Benutzern als langsam bezeichnet
werden. Und leider lassen sich Nutzer nur selten durch technische Argumente von der
Performance eines Programms überzeugen.

Empfundene Performance ist letztlich, was zählt.

Die gilt insbesondere, wenn der Nutzer direkt mit dem Programm interagiert. So macht
es einen großen Unterschied, ob ein Programm Benutzeraktionen einfach ignoriert oder
ob es mittels eines Sanduhrzeigers signalisiert, dass es gerade beschäftigt ist. Ein Positiv-
Beispiel sind die gängigen Webbrowser. Während sie Daten über das Netz laden, zeigen
sie dem Nutzer durch eine Animation an, dass sie beschäftigt sind. Üblicherweise befin-
det sich in der Statusleiste zudem eine Fortschrittsanzeige, die dem Benutzer ein Gefühl
dafür vermittelt, wie lange er noch zu warten hat. Meist werden sogar Teilergebnisse
unmittelbar dargestellt. Darüber hinaus versetzt ein Abbruch-Knopf den Nutzer in eine
psychologisch wichtige Machtposition. Er kann selbst entscheiden, ob er noch länger
warten möchte oder nicht, d.h. er muss sich nicht dem Programm unterordnen. Und
Nutzer hassen nichts mehr, als sich einem Programm unterzuordnen.

Grundsätzlich gilt: Wenn Wartepausen unvermeidbar sind, muss der Nutzer möglichst
über den Fortschritt des Prozesses informiert werden. Ist dies nicht möglich, sollte ihm
beispielsweise durch eine Animation signalisiert werden, dass der Prozess noch im
Gange ist. Kommt auch das nicht in Frage, so muss dem Nutzer zumindest vermittelt
werden, dass das Programm gerade beschäftigt ist.

Ende 2001 lief im deutschen Fernsehen ein Werbespot der Deutschen Bundesbahn, in
dem sie auf ihre Pünktlichkeit im Vergleich zu anderen Verkehrsmitteln hinwies. Im
Spot wurden wartende Passagiere per Anzeigetafel und Durchsage über die dreiminü-
tige Verspätung eines Zuges unterrichtet, was zu einer Großdemonstration führte. Ein-
mal abgesehen davon, dass viele sich über jede nur dreiminütige Verspätung eines
Bundesbahnzuges freuen würden, illustriert der Spot, wie wichtig es ist, den Nutzer
auf dem Laufenden zu halten. Stellen Sie sich nur einmal vor, die Bahn hätte ihre Kun-
den nach zweiminütigem Warten noch immer nicht über die Verspätung informiert.
Was wären dann wohl die Folgen gewesen ...

1.3 Gesunder Menschenverstand

Wir wissen nun, worauf es ankommt: Effizient mit den vorhandenen Ressourcen haus-
halten und Rücksicht auf die nicht-funktionalen Bedürfnisse der Benutzer nehmen.

Bloß – wie erreichen wir das?

Sandini Bib

Gesunder Menschenverstand 19

Ich behaupte, die lösbaren Performance-Probleme bekommen Sie mit Wissen, Neu-
gierde und ein wenig gesundem Menschenverstand in den Griff. Für die unlösbaren
müssen Sie vermutlich etwas Zeit investieren, denn dank Moores Gesetz1 hat Zeit bis-
lang noch die meisten Performance-Probleme gelöst. Nun ist Zeit jedoch knapp, wes-
halb wir uns lieber mit den lösbaren Problemen auseinander setzen.

Rufen Sie sich ins Gedächtnis zurück, dass Java eine Hochsprache ist. Java bietet exzellente
Abstraktionen für Betriebssystemspezialitäten und die darunter liegende Hardware. So
müssen Sie sich beispielsweise nie mit den Eigenheiten einer Prozessorarchitektur herum-
schlagen. Die Besonderheiten des ausführenden Systems werden so weit es geht weg-
abstrahiert. An seine Stelle treten die VM und die Klassenbibliotheken der Java-Plattform.

Nun ist eine Hochsprache wie Java weit mehr als die Abstraktion von Betriebssystem
und Hardware. Java ist objektorientiert, besitzt eine automatische Speicherbereini-
gung, bietet ein Sicherheitskonzept, verfügt über ausgereifte Netzwerkunterstützung
etc. All dies hat einen Preis. Und manchmal besteht dieser Preis darin, dass etwas ein-
fach aussieht, es in Wirklichkeit aber nicht ist. Oder anders gesagt, dass der Schein
trügt. Ihre Neugierde und Ihr Verstand helfen Ihnen die Wahrheit herauszufinden.

Betrachten wir ein Beispiel:

public void allocate() {
 {
 byte[] a = new byte[1000000];
 }
 {
 byte[] a = new byte[1000000];
 }
 {
 byte[] a = new byte[1000000];
 }
 ...
}

Listing 1.1: Hoffen auf die Müllabfuhr

Man würde erwarten, dass die Methode allocate() problemlos ausführbar ist – wird
doch der Array a jeweils in einem eigenen Block deklariert und dann dieser Block
sofort verlassen. Nach dem Verlassen ist a somit nicht mehr sichtbar; jetzt sollte die
Speicherbereinigung zum Zuge kommen. Doch weit gefehlt. Mit den meisten VMs
resultiert das Ausführen der Methode nach einigen byte-Array-Allokationen in einem
OutOfMemoryError. Der Grund dafür ist einfach: die byte-Arrays sind außerhalb ihres

1 Gemäß Moores Gesetz verdoppelt sich die Transistordichte integrierter Schaltkreise alle 18 Monate.
Entsprechend erhöht sich auch die Leistungsfähigkeit von Mikroprozessoren. Das Gesetz wurde
Mitte der 60er Jahre vom späteren Intel-Gründer Gordon Moore aufgestellt und bezog sich zunächst
auf einen Zeitraum von je 12 Monaten. Seit 1970 hat es sich alle 18 Monate bewahrheitet.

Sandini Bib

20 1 Java ist zu langsam

Blocks zwar nicht mehr sichtbar, d.h. man kann auf a nicht mehr zugreifen, aus Grün-
den der Effizienz werden die auf dem Stack allozierten Referenzen jedoch erst beim
Verlassen der Methode vom Garbage Collector eingesammelt. Denkt man kurz darü-
ber nach, leuchtet dieses Verhalten sofort ein. Würde der Garbage Collector nach jedem
Block oder gar Statement aufgerufen, wäre die VM vollauf mit sich selbst beschäftigt.
Der auszuführende Code verkäme zur Nebensache.

1.4 Wissen ist Performance

Zugegeben, obiges Beispiel hat viel mit Wissen über die Interna von VMs und Garbage
Collectoren zu tun. Aber gerade das macht es so geeignet. Wissen ist eines Ihrer wich-
tigsten Werkzeuge zum Optimieren von Programmen.

Nun kann man Wissen erwerben, nur leider nicht im Supermarkt um die Ecke. Man
muss es sich aneignen. Beispielsweise indem man ein Buch liest, mal eine Stunde in
der Java-Sprachspezifikation stöbert oder sich mit Kollegen austauscht. Wichtige Res-
sourcen müssen zudem unmittelbar für alle Entwickler verfügbar sein.

Entsprechendes gilt für viele Berufe, in denen Menschen hauptsächlich fürs Denken
bezahlt werden. So gibt es im Journalismus die so genannten Bordmittel, die jeder gute
Journalist an seinem Arbeitsplatz haben sollte. Für einen Politikredakteur gehören
dazu beispielsweise der so genannte Oeckl, ein Buch mit Telefonnummern und Adres-
sen aller wichtigen Personen und Organisationen der Bundesrepublik Deutschland,
sowie das Munzinger Archiv, eine Sammlung von Lebensläufen aller wichtigen Perso-
nen des öffentlichen Lebens. Ohne diese beiden Nachschlagewerke ist es quasi unmög-
lich, guten politischen Journalismus zu betreiben. Ein Telefon und ein Computer mit
einem Redaktionssystem allein reichen einfach nicht.

Das Gleiche gilt für Java-Entwickler.

Man kann keine guten Java-Programme schreiben, wenn man nicht direkten, lokalen Zugriff
auf die Java-API-Dokumentation und den Java-Quellcode hat.

Das bedeutet, dass Sie nach dem Herunterladen des Java Development Kits (JDK) auch
noch die zugehörige Dokumentation herunterladen müssen. Entpacken Sie die Doku-
mentation und setzen Sie in Ihrem Browser ein Lesezeichen auf den API-Teil. Anschlie-
ßend – und dies ist der Schritt, den die meisten leider vergessen – entpacken Sie die
Datei src.jar bzw. im Fall von JDK 1.4 die Datei src.zip, die sich üblicherweise im Basis-
verzeichnis des JDKs befindet.

C:\>cd jdk1.3.1
C:\jdk1.3.1>bin\jar xf src.jar

Listing 1.2: Entpacken des Sun JDK 1.3.1 Java-Quellcodes auf einem Windows-System

Sandini Bib

Wissen ist Performance 21

C:\>cd j2sdk1.4.0
C:\j2sdk1.4.0>mkdir src
C:\j2sdk1.4.0>cd src
C:\j2sdk1.4.0\src>..\bin\jar -xf ..\src.zip

Listing 1.3: Entpacken des Sun JDK 1.4.0 Java-Quellcodes auf einem Windows-System

Der Java-Quellcode befindet sich nun im Verzeichnis C:\jdk1.3.1\src bzw.
C:\j2sdk1.4.0\src. Konfigurieren Sie Ihre Entwicklungsumgebung so, dass Sie problem-
los auf den Code zugreifen können. Denn obgleich die API-Dokumentation von Java
vorbildlich ist, gilt die alte Programmiererweisheit:

Die Wahrheit steht im Code.

Und kein ernst zu nehmender Entwickler kann es sich leisten, die Wahrheit zu ignorie-
ren.

Leider liegen oft nicht alle verwendeten Bibliotheken im Quellcode vor. Sofern es die
Lizenzbedingungen zulassen, erweisen hier Decompiler wie jad (http://kpdus.tripod.com/
jad.html) wertvolle Dienste.

Einige Entwicklungsumgebungen2 erlauben es dem Entwickler, per Mausklick zum
Quellcode einer Methode oder einer Klasse zu navigieren. Kaufen Sie Ihren Entwick-
lern eine solche IDE oder überzeugen Sie Ihren Projektleiter davon, Ihnen und Ihren
Kollegen eine solche IDE zu kaufen. Ihre Produktivität wird sich steigern und dank
Ihrer Neugierde werden Sie sich langfristig mehr Wissen aneignen. Wissen darüber,
was tatsächlich passiert, wenn Sie diese oder jene unscheinbare Methode aufrufen.

Dieses Wissen über die verwendeten Klassenbibliotheken wird Ihnen letztendlich
helfen, performanten Code zu schreiben.

Natürlich müssen Sie nicht den Quellcode jeder Klasse vor Gebrauch studieren. Es
reicht vollkommen, sich bei Bedarf die kritischen Stellen anzuschauen. Darüber hinaus
gibt es jedoch Dinge, die Sie auf jeden Fall wissen sollten. Diese will dieses Buch ver-
mitteln.

2 Z.B. IntelliJIDEA, http://www.intellij.com/.

Sandini Bib

Sandini Bib

2 Entwicklungsprozess

Wenn Sie kurz vor der Übergabe Ihres zweijährigen, performancekritischen Projektes
zum ersten Mal die Leistungsfähigkeit Ihrer Software messen und feststellen, dass Sie
Ihr Ziel um einige Größenordnungen verfehlt haben, werden Sie schnell merken, dass
Sie etwas falsch gemacht haben. Und zwar von Anfang an. Denn jetzt, kurz vor der
Übergabe, sind die Kosten, die Performance noch zu erhöhen, gewöhnlich exorbitant.
Im Allgemeinen wird davon ausgegangen, dass, wenn Sie Software nach dem oben
beschriebenen Modell entwickeln, die Kosten für Änderungen mit dem Projektfort-
schritt exponentiell steigen (Abbildung 2.1).

Es ist wichtig festzustellen, dass nicht die Entwickler einen lausigen Job abgeliefert
haben, sondern diejenigen, die für den Entwicklungsprozess verantwortlich waren.

Performante Software lässt sich nur mit einem auf dieses Ziel abgestimmten Prozess
entwickeln. Es reicht nicht, ein Programm kurz vor der Abgabe zum ersten Mal durch-
zumessen. Das ist so, als würden Sie ein Auto bauen, in das Sie am Auslieferungstag
einsteigen, um zu sehen, wie schnell es denn fährt und ob die Geschwindigkeit der in
der Werbebroschüre abgedruckten entspricht.

Abbildung 2.1: In traditionellen Wasserfall-Projekten steigen die Kosten von Änderungen exponentiell mit dem
Projektfortschritt [vgl. Beck00, S. 21].

Projektfortschritt

Ä
nd

er
un

gs
ko

st
en

Sandini Bib

24 2 Entwicklungsprozess

Es hat sich die Einsicht durchgesetzt, dass vielleicht Kleinstprogramme auf einen Schlag
fertig gestellt werden können. Alle anderen müssen modularisiert sowie schrittweise
verbessert und ausgebaut werden. Daher beruhen die meisten modernen Software-Ent-
wicklungs-Methoden auf iterativer Verfeinerung und inkrementeller Erweiterung. So
werden funktionierende Teilergebnisse geschaffen, die bereits einen Wert für den Kun-
den darstellen. Zudem können Probleme frühzeitig und somit rechtzeitig erkannt wer-
den. Denn kurz vor der Abgabe ist es meistens zu spät und zu teuer, um das Projekt noch
zu retten. Daraus folgt, dass die Performance eines Programms genau wie seine Funk-
tion rechtzeitig und kontinuierlich getestet werden muss. Dies widerspricht gleich meh-
reren populären Weisheiten:

Rules of Optimization:
Rule 1: Don't do it.
Rule 2: (for experts only): Don't do it yet.

(M.A. Jackson)

More computing sins are committed in the name of efficiency (without necessarily
achieving it) than for any other single reason – including blind stupidity.

(W.A. Wulf)

We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil.

(Donald Knuth)

In allen drei Zitaten steckt ein Körnchen Wahrheit. Wir sollten jedoch nicht vergessen,
dass die Performance eines Programms Teil der Anforderungen ist und daher nicht
einfach unter den Tisch fallen darf oder morgen erledigt werden kann. Denn nachträg-
lich optimierte Programme lehren einem häufig das Fürchten ...

Im Folgenden wird als Beispiel ein prototypischer Prozess umrissen. Halten Sie sich
nicht sklavisch an diesen Prozess! Kein Prozess ist so gut, dass man ihn zur Bibel erklä-
ren sollte. Nutzen Sie ihn als Anregung und gebrauchen Sie ihn mit Verstand.1

Seine Essenz ist es, das Messen der Performance als Teil des funktionalen Testens und
das Testen als Teil des Entwickelns zu begreifen sowie iterativ-inkrementell vorzugehen.

Messen ist Testen und Testen ist Entwickeln.

Bauen Sie in jeder Iteration kleine funktionierende Einheiten, die Sie in der nächsten
Iteration erweitern oder verbessern. Beginnen Sie dabei mit den Einheiten, die für den
Kunden den größten Wert darstellen.

1 Siehe auch Manifesto for Agile Software Development – http://www.agilealliance.org/.

Sandini Bib

Analyse und Design 25

Sie werden feststellen, dass im Folgenden keine Rollen oder Verantwortlichkeiten defi-
niert werden, sondern nur Tätigkeiten bzw. Ziele. Das ist durchaus so gewollt. Gewöhn-
lich findet sich jemand für eine gegebene Aufgabe. Und vielleicht muss nicht jeder
immer dasselbe machen. Wenn Sie das Know-how Ihrer Mitarbeiter als schützenswerte
Investition betrachten, ist das sogar angebracht. Kommen Sie auf keinen Fall auf die
Idee, Analysieren, Entwerfen und Kodieren strikt zu trennen und die Aufgaben ver-
schiedenen Personen zuzuordnen, die sich evtl. nicht mögen oder gar räumlich und zeit-
lich voneinander getrennt arbeiten. Alle Projektphasen greifen ineinander und gehen
ineinander über. Obwohl hier mehrere Schritte der Reihe nach vorgestellt werden, ist es
eher hinderlich, sich immer genau an diese Reihenfolge zu halten. Stattdessen kann es
durchaus Sinn machen, von Phase zwei direkt in Phase eins oder drei zu springen.

Folgendes sind die drei Hauptphasen des Prozesses:

� Analyse und Design

� Kodieren und Testen

� Integrieren und Testen

Könnte man Analysen und Designs verlässlich und mit vertretbarem Aufwand formal
testen, ohne zuvor den Code schreiben zu müssen, so hieße die erste Phase Analyse,
Design und Testen. Nun ist dem nicht so, was das Testen in den anderen beiden Phasen
umso wichtiger macht. Daher gehe ich nach der Beschreibung der drei Prozess-Phasen
noch einmal auf verschiedene Aspekte des Testens und Messens ein. Doch hier sind
zunächst einmal die drei Phasen.

2.1 Analyse und Design

Je besser Sie Ihre Aufgabe verstehen, desto passender wird Ihr Design ausfallen. Fin-
den Sie gemeinsam mit dem Kunden heraus, wie die Rahmenbedingungen aussehen
(Betriebssystem, Leistung und Anzahl der Prozessoren, Bandbreite der Netzwerk-
anbindung, Bildschirmauflösung etc.). Fragen Sie nach allem, was irgendwie Einfluss
auf die Leistungsfähigkeit der zu erstellenden Software haben könnte. Nur, wenn Sie
die Laufzeitumgebung gut kennen, können Sie passende Software schreiben.

Versuchen Sie außer den regulären funktionalen Anforderungen möglichst genaue
Performance-Anforderungen zu vereinbaren, beispielsweise indem Sie die Anwen-
dungsfälle (Use-Cases) oder Stories2 der regulären Analyse mit Laufzeit-Toleranzen
für performancekritische Transaktionen versehen. Vergessen Sie diesen Schritt auf kei-
nen Fall! Wenn Sie nicht wissen, was der Kunde wünscht, wissen Sie nicht, wann Sie

2 Stories sind das Extreme-Programming-Äquivalent zu Anwendungsfällen. Es handelt sich hierbei
um die kurze Beschreibung eines Features, zu Papier gebracht auf einer Karteikarte.

Sandini Bib

26 2 Entwicklungsprozess

fertig sind, somit ist Ärger vorprogrammiert. Betrachten Sie jedoch weder die funktio-
nalen noch die Performance-Anforderungen als endgültig. Es liegt in der Natur der
Anforderungen, dass sie sich ändern und Sie darauf reagieren müssen.

Das Wissen über die Laufzeitumgebung und die Anforderungen des Kunden versetzt
Sie und Ihr Team in die Lage, ein Design zu erstellen, von dem Sie annehmen, dass es
der Aufgabe gerecht wird. Dank Ihrer und der Qualifikation Ihrer Mitarbeiter haben
Sie berechtigten Grund an das Design zu glauben. Verfallen Sie jedoch nicht dem Irr-
tum, dass Sie zu diesem Zeitpunkt wissen, dass Ihr Design die gesetzten Erwartungen
erfüllt. Sie sollten daher erwägen, die kritischsten Teile Ihres Designs zu verifizieren,
indem Sie zunächst einen Prototypen entwerfen und diesen für eine Machbarkeitsstu-
die verwenden. Vergessen Sie nicht, dass das Wichtigste am Prototypen ist, ihn nach
Gebrauch wegzuschmeißen. Fangen Sie noch einmal von vorne an und Sie werden
langfristig Zeit gewinnen.

Analyse und Design sind in einem iterativ-inkrementellen Prozess niemals eine einma-
lige Angelegenheit. Daher ist es selbstverständlich, dass Erkenntnisse aus allen ande-
ren Phasen in der nächsten Iteration in die Analyse-und-Design-Phase einfließen. Dies
gilt genauso für alle folgenden Phasen.

2.2 Kodieren und Testen

Während der Kodierungsphase wird das Design in Code gegossen. Hierzu gehört
auch der entsprechende Testcode. Während dieser für einzelne Klassen und für die
Komponenten-Integration von den Entwicklern selbst geschrieben wird, sollten die
System-Tests vom Kunden erstellt werden, und zwar mit Unterstützung aus Ihrem
Team.

Kent Beck und andere Verfechter agiler Methoden propagieren das Schreiben von Tests
vor dem Schreiben des zu testenden Codes (Test First). Auf diese Weise müssen die
Entwickler sich zunächst mit einer Außensicht auf ihre Software beschäftigen, sie
machen sich zunächst Gedanken über das Benutzen und dann erst über das Imple-
mentieren. Dies führt in der Regel zu besseren Tests und somit zu besserem Code.
Zudem wissen die Entwickler genau, wann sie fertig sind – nämlich wenn alle Tests
laufen, insbesondere auch die älterer Programmteile.

Spätestens, wenn Sie über ein System verfügen, zu dem Sie Performance-Anforderun-
gen haben, sollten Sie entsprechende Testtreiber für das System fertig gestellt haben. Je
früher Sie Ihre Software testen, desto besser. Blicken Sie der Wahrheit ins Auge: Nicht
zu wissen, ob man einen Speicherfresser oder CPU-Zyklen-Verbrenner erstellt hat, ist
weitaus schlimmer, als es zu wissen.

Sandini Bib

Integrieren und Testen 27

Wenn Sie dank der präzisen Anforderungen Ihres Kunden oder Ihrer eigenen Messda-
ten genau wissen, dass Klasse A die Methode B auf System C in D Sekunden ausführen
können muss, schätzen Sie sich glücklich. Sie können auf unterster Ebene neben dem
funktionalen Unit-Test auch einen Performance-Unit-Test schreiben. Noch früher kön-
nen Sie nicht testen.

Vermischen Sie dabei auf keinen Fall funktionale Tests mit Performance-Tests. Sie wol-
len in der Lage sein, sehr schnell das korrekte Funktionieren Ihrer Klassen nachzuwei-
sen. Performance-Tests benötigen aber gewöhnlich etwas länger als funktionale Tests.
Ungeduldige Entwickler (also fast alle) würden daher entsprechend seltener testen.
Das Vermischen der beiden Testarten ist also kontraproduktiv.

2.3 Integrieren und Testen

In der Integrations- und Testphase wird der bereits von den Entwicklern während des
Kodierens getestete Code zusammengeführt und einem Integrationstest unterzogen.
Hier kommen die bereits erstellten funktionalen und leistungsorientierten Testtreiber
zum Einsatz. Beachten Sie, dass Sie immer funktionale Tests benötigen und diese auch
bei jeder Integration ausführen sollten.

Leistungstests sind nur etwas wert, wenn sichergestellt ist, dass die erbrachten Leistungen
auch den funktionalen Anforderungen genügen.

Die gemessenen Resultate fließen natürlich in folgende Analyse-und-Design- und
Kodierungsphasen ein. Wichtig ist dies insbesondere, wenn die Resultate nicht akzep-
tabel sind. Evtl. müssen Sie die gesamte Architektur überdenken. Wenn Sie frühzeitig
mit dem Testen begonnen haben, sollte dies jedoch kein Problem sein.

2.3.1 Mikro- und Makro-Benchmarks

Wie schon angedeutet, sollten Sie Ihre Software Performance-Tests auf verschiedenen
Ebenen unterziehen (Abbildung 2.2). Auf unterster Ebene stehen Performance-Unit-Tests
(Mikro-Benchmarks), auf oberster Ebene stehen System-Performance-Tests (Makro-
Benchmarks).

Angenommen, Sie erstellen eine Applikation, die unter anderem große Datenmengen
in eine Protokoll-Datei schreiben muss. Daher entschließen Sie sich einen dedizierten
Protokoll-Dienst zu schreiben. Ein sinnvoller Performance-Unit-Test wäre beispiels-
weise zu messen, wie schnell der Protokoll-Writer Ihres Dienstes 10.000 Einträge aus-
geben kann. Mit Hilfe des Tests können Sie entsprechende Daten sammeln und die
Protokoll-Writer-Klasse kontinuierlich verbessern.

Sandini Bib

28 2 Entwicklungsprozess

Auf Systemebene jedoch ist das Schreiben von Protokollen nur ein Teilaspekt der
Gesamtperformance. Ihre Testtreiber sollten daher nicht nur isolierte Eigenschaften
Ihres Programms testen, sondern möglichst reale Szenarien nachempfinden. Diese Art
des Testens wird auch als Makro-Benchmarking bezeichnet.

Eine gute Ausgangsbasis für Testszenarien sind die in der Analyse erstellten Anwen-
dungsfälle oder Stories. Fragen Sie Ihren Kunden nach realistischen Testdaten und der
relativen Häufigkeit der verschiedenen Abläufe. Besser noch, nehmen Sie Testdaten an
einem bestehenden System auf. Entsprechende Werkzeuge können dabei sehr hilfreich
sein (siehe Kapitel 4.6 Makro-Benchmarks). Verfüttern Sie dann diese Daten an Ihren Test-
treiber. So können Sie realistische Tests durchführen und aussagekräftige Ergebnisse
erhalten.

Abbildung 2.2: Verschiedene Testebenen in einem System. Die Paket-Ebene wurde ausgelassen, da ein Paket in Java
nicht unbedingt eine semantische, sondern eher eine strukturelle Einheit ist und daher nicht direkt mit einem Funk-
tions- oder Performance-Test assoziiert ist. In der Regel reicht es, alle Klassentests eines Pakets auszuführen, um
das Paket zu testen.

Komponente

System

SystemTest

KomponentenTest

Komponente

Kommunikation

IntegrationsTest

Klasse
Klasse

Klasse

KlassenTest
KlassenTest

KlassenTest

Mikro-Benchmarks

Makro-Benchmarks

Sandini Bib

Integrieren und Testen 29

Unter Umständen werden Sie beim Testen feststellen, dass Sie zwar verhältnismäßig
schnell Protokolldaten schreiben können, dies aber leider immer in Momenten pas-
siert, in denen der Benutzer gerade etwas eingeben muss, jedoch nicht kann, da das
System mit den Protokolldaten beschäftigt ist.

Oder Sie stellen fest, dass Sie zwar in der Lage sind, sehr schnell sehr viele Protokoll-
Ereignisse zu verarbeiten, diese jedoch über eine sehr langsame Schnittstelle angelie-
fert werden. Somit nützt es Ihnen wenig, die Daten schnell schreiben zu können. Der
Flaschenhals sitzt an anderer Stelle.

Mikro-Benchmarks sind sehr nützlich zum Optimieren kleiner, isolierter Programm-
teile. Sie zeigen Ihnen aber immer nur einen Ausschnitt des Gesamtbildes. Makro-
Benchmarks hingegen sind zum Optimieren Ihres Codes oft nutzlos, liefern Ihnen
jedoch wichtige Daten, wenn es um das Optimieren des Systems inklusive VM und
Hardware geht. Beide Testarten ergänzen sich also.

2.3.2 Testlänge

Sowohl für Mikro- als auch für Makro-Benchmarks gilt, dass Testläufe nicht zu kurz
sein dürfen, um aussagekräftige Ergebnisse zu produzieren. Mikro-Benchmarks soll-
ten mindestens fünf Sekunden laufen, Makro-Benchmarks einiges länger. Beachten Sie,
dass Teile Ihrer Laufzeitumgebung wie Caches oder die Java VM erst nach einer gewis-
sen Laufzeit ihre volle Leistung entfalten. Beispielsweise konnten frühe HotSpot-Versi-
onen Methoden, die nur einmal ausgeführt werden, nur interpretieren. Immer noch
gilt, dass der adaptive Compiler erst nach einer gewissen Laufzeit zum Zuge kommt.

2.3.3 Auswertung

Führen Sie außerdem immer mehrere Testläufe durch. So können Sie sich ein Bild von
der Streuung der Messergebnisse machen. Statistische Werte, die Sie auf jeden Fall
erheben sollten, sind:

� Bestes Ergebnis

� Schlechtestes Ergebnis

� Durchschnittliches Ergebnis

Darüber hinaus können Maßzahlen wie Standardabweichung, Median, geometrisches
Mittel etc. das Vergleichen der Ergebnisse mehrerer Testsessions erheblich erleichtern.
Ein handelsübliches Tabellenkalkulations-Programm kann bei der Analyse der gemes-
senen Werte nützliche Dienste erweisen.

Sandini Bib

30 2 Entwicklungsprozess

2.3.4 Wie häufig testen?

Leistungstests sollten dem Aufwand angemessen häufig durchgeführt werden. Handelt
es sich beispielsweise um ein verteiltes System und der Kunde kann oder will Ihnen kein
geeignetes Testsystem zur Verfügung stellen, müssen Sie vielleicht die Entwickler-
maschinen zu Testzwecken missbrauchen. Gewöhnlich sind Entwickler nicht besonders
begeistert, wenn sie auf einer Maschine arbeiten müssen, die gerade an einem verteilten
Lasttest teilnimmt. Also müssen Mittagspausen, Abende und Wochenenden herhalten.
Niemand arbeitet gerne zu diesen Zeiten. Wenn Sie die Stimmung in Ihrem Team nicht
allzu sehr strapazieren wollen, testen Sie nicht zu häufig und versuchen Sie stattdessen
gemeinsam mit dem Kunden die Testbedingungen zu verbessern.

Anders sieht es aus, wenn Sie erkennen, dass Sie ein echtes Performance-Problem
haben. Es kann sich durchaus lohnen, mehrere komplette Releasezyklen nur an der
Performance zu arbeiten. Je besser Sie messen, desto größer sind die Chancen, dass Sie
das Problem verstehen und eine gute Lösungs-Strategie entwickeln.

Es gilt also Augenmaß zu bewahren. Nochmals: Leistungstests machen nur bei funk-
tionierenden Softwareeinheiten Sinn. Zu viele Leistungstests führen leicht dazu, dass
die funktionale Qualität leidet, zu wenig Leistungstest führen zum späten Erkennen
von Problemen. Es ist also der goldene Mittelweg gefragt.

Sandini Bib

3 Virtuelle Maschinen

Um zu wissen, wie man einen Motor frisiert, sollte man wissen, wie er funktioniert.
Daher wollen wir uns in diesem Kapitel ein wenig mit Javas Virtueller Maschine
beschäftigen.

Die Java VM ist eine abstrakte Maschine. Doch genau wie ein echter Prozessor hat sie
einen Befehlssatz und manipuliert zur Laufzeit verschiedene Speicherbereiche. Sie
setzt jedoch keinerlei spezifische Hardware voraus, sondern wird emuliert. Der emu-
lierte Prozessortyp ist eine Kellermaschine mit mehreren Stacks.

Abbildung 3.1: Schematischer Überblick über die Java VM

Heap
Method

Area

Java Virtual
Machine

Stack
Programm-

zähler

Frame

Frame

Frame

Java Virtual
Machine

Stack

Java Virtual
Machine

Stack

Lokale Variablen

Operanden Stack

Referenz auf Laufzeit-
Konstanten-Pool

Klasse/Interface

Klasse/Interface

K/I: Laufzeit-Konstanten-
Pool, Methoden, Felder

Sandini Bib

32 3 Virtuelle Maschinen

Die Grundbestandteile der VM sind jeweils ein Java Virtual Machine Stack pro Thread1

sowie der von allen Threads geteilte Heap-Speicher (Abbildung 3.1). Im Heap werden
sämtliche Objekt-Instanzen sowie Klassen und Interfaces gehalten. Letztere befinden
sich dabei in einem speziellen Bereich namens Method-Area. Der Heap wird automa-
tisch durch die Speicherbereinigung verwaltet.

Jeder Stack enthält eine Reihe von so genannten Frames. Während der Ausführung
eines Java-Programms wird für jeden Methodenaufruf ein Frame angelegt, auf den
Stack gelegt und nach Ausführung der Methode wieder heruntergenommen. Ein
Frame enthält bzw. verweist auf alle wichtigen Daten, die zur Ausführung der
Methode nötig sind. Zu jedem Stack existiert zudem ein Programmzähler, der auf die
Adresse des gerade ausgeführten Codes zeigt.

Vereinfacht dargestellt wird beim Start der VM die zu startende Klasse geladen, ein
Thread initialisiert und dessen Programmzähler auf den Beginn der statischen main()-
Methode der Klasse gesetzt. Dann werden nacheinander die im Bytecode der main()-
Methode enthaltenen VM-Befehle und somit das Programm ausgeführt.

Absichtlich beschreibt die Java-VM-Spezifikation kaum Implementierungsdetails und
lässt VM-Herstellern viele Freiheiten. Die Hauptunterscheidungsmerkmale zwischen
heute erhältlichen VMs liegen in der Art und Weise, wie der Java-Bytecode ausgeführt
und wie der Heap verwaltet wird. Im Folgenden werden verschiedene Strategien für
beides erläutert. Darüber hinaus werden wir kurz auf verschiedene Leistungstests ein-
gehen, die bei der Entscheidung für oder gegen eine VM hilfreich sein können.

3.1 Bytecode-Ausführung

Java-Bytecode lässt sich auf verschiedene Weisen ausführen. Dazu gehören:

� Interpretieren

� Unmittelbar vor der Ausführung in Binärcode übersetzen (Just-in-Time, JIT) und
dann den Binärcode ausführen

� Sofort nach dem Erstellen in Binärcode übersetzen und diesen später ausführen
(Ahead-of-Time, AOT)

� Teilweise interpretieren und erst wenn notwendig dynamisch in Binärcode überset-
zen (Dynamic-Adaptive-Compilation, DAC) und dann diesen ausführen

� Von einer in Silizium gegossenen VM ausführen lassen

Im Folgenden gehen wir kurz auf die einzelnen Möglichkeiten ein.

1 Für native Methodenaufrufe kann es zudem einen Native-Stack pro Thread geben.

Sandini Bib

Bytecode-Ausführung 33

3.1.1 Interpreter

In Javas frühen Tagen wurde Java ausschließlich interpretiert. Heute werden reine
Interpreter für die Java 2 Standard Edition (J2SE) kaum noch verwendet. Der Grund
liegt in ihrer Langsamkeit. Dennoch können Interpreter sehr nützlich sein, da sie bei
Ausnahmen in Stacktraces gewöhnlich die Klasse, Methode und Zeilenzahl angeben.
Das macht sie zu einem wertvollen Werkzeug für die Fehlersuche.

Ein weiterer Vorteil von Java-Interpretern ist ihr geringer Speicherverbrauch. Daher
sind sie insbesondere für Kleingeräte wie PDA (Personal Digital Assistent) und Mobil-
telefone interessant.

3.1.2 Just-in-Time-Compiler

Nachdem man merkte, dass mit interpretiertem Java nicht viel zu gewinnen war, kamen
JIT-Compiler in Mode. JIT-Compiler übersetzen Bytecode unmittelbar vor der Ausfüh-
rung in plattformspezifischen Binärcode. VMs mit JIT sind in der Regel sehr viel schnel-
ler als VMs, die nur über einen Interpreter verfügen. Jedoch führen JITs gegenüber
Interpretern auch zu einem höheren Speicherverbrauch. Zudem ist die Qualität des
erzeugten Binärcodes nicht mit der Qualität von Binärcode vergleichbar, der von einem
optimierenden, statischen Compiler erzeugt wird. Dies liegt daran, dass die Überset-
zung zur Laufzeit und somit sehr schnell erfolgen muss. Viel Zeit für langwierige Analy-
sen und Optimierungen bleibt da nicht. Außerdem ist aufgrund der Übersetzung die
Startzeit von VMs mit JITs in der Regel länger als die von VMs mit Interpretern.

Eine sehr erfolgreiche VM mit JIT-Technologie wird von IBM produziert.

� IBM Java VM: http://www.ibm.com/java/

3.1.3 Dynamisch angepasste Übersetzung

Suns aktuelle Java VMs werden mit HotSpot-Technologie ausgeliefert. Die Idee von
HotSpot beruht auf dem 80-20-Prinzip. Dieses besagt, dass während 80% der Laufzeit
eines Programms gewöhnlich 20% des Codes ausgeführt werden. Daraus folgt, dass es
sich lohnt, genau jene 20% besonders schnell auszuführen, während Optimierungen in
den restlichen 80% des Codes keinen großen Effekt haben.

Dementsprechend interpretiert HotSpot zunächst den Bytecode und analysiert zur
Laufzeit, welche Programmteile in Binärcode übersetzt und optimiert werden sollten.
Diese Teile werden dann übersetzt und mehr oder minder aggressiv optimiert. Im Eng-
lischen heißen die besonders kritischen Programmteile auch Hotspots – daher der
Name. Das gesamte Verfahren heißt Dynamic-Adaptive-Compilation, kurz DAC.

Verfechter von DAC behaupten gerne, dass durch die adaptive Kompilierung bessere
Resultate erzielt werden können als durch statisches Übersetzen. In der Theorie ist das

Sandini Bib

34 3 Virtuelle Maschinen

auch durchaus richtig. In der Praxis zeigt sich jedoch, dass außer der reinen Ausführung
von Code noch viele andere Faktoren auf die Geschwindigkeit einer Java VM Einfluss
haben. Insbesondere ist das die automatische Speicherbereinigung. Daher hinken Verglei-
che mit statisch kompilierten Programmen ohne automatische Speicherbereinigung meist.

Zudem ist die adaptive, optimierende Übersetzung mit vorheriger Laufzeitanalyse ein
recht aufwändiger Prozess, der sich nur für lang laufende Programme lohnt. Aus diesem
Grund unterscheidet Sun die Client HotSpot VM von der Server HotSpot VM. Die Client-
Version führt nur recht simple Optimierungen aus und übersetzt daher relativ schnell. Die
Server-Version hingegen enthält einen volloptimierenden Compiler (Tabelle 3.1). Gemes-
sen an JIT-Standards ist dieser Compiler langsam. Dies kann sich jedoch bei langer Lauf-
zeit durch den aus Optimierungen resultierenden Zeitgewinn bezahlt machen.

Optimierung Beschreibung JDK 1.3.1 Client JDK 1.3.1 Server

Range Check
Elimination

Unter bestimmten Bedingungen ent-
fällt der obligatorische Check, ob ein
Array-Index gültig ist.
Siehe Kapitel 6.2.2 Teure Array-Zugriffe

nein ja

Null Check
Elimination

Unter bestimmten Bedingungen ent-
fällt der obligatorische Check, ob eine
Array-Variable null ist.
Siehe Kapitel 6.2.2 Teure Array-Zugriffe

nein ja

Loop Unrolling Mehrfaches Ausführen eines Schleifen-
körpers ohne Überprüfung der
Abbruchbedingung.
Siehe Kapitel 6.2.3 Loop Unrolling

nein ja

Instruction
Scheduling

Neuordnung von Befehlen zur optima-
len Ausführung auf einem bestimmten
Prozessor

nein ja
(für UltraSPARC III)

Optimierung für
Reflection API

Schnellere Ausführung von Methoden
aus dem Reflection API
(java.lang.reflect)

nein ja

Dynamische
Deoptimierung

Umkehroperation für eine Optimierung nein ja

Einfaches Inlining Duplizieren und Einfügen von Metho-
den an Stellen, an denen diese ausge-
führt werden. Der Overhead eines
Methodenaufrufs entfällt somit. Ein-
faches Inlining trifft nur auf Klassen-
methoden bzw. final-Methoden zu.

ja nein

Vollständiges
Inlining

Siehe Einfaches Inlining. Jedoch werden
wesentlich mehr Methoden dupliziert
und eingefügt.

nein ja

Tabelle 3.1: Vergleich von Optimierungen der HotSpot Server und Client Compiler für Sun JDK 1.3.1

Sandini Bib

Bytecode-Ausführung 35

Besonders interessant im Zusammenhang mit Java sind die Fähigkeiten Inlining und
Dynamische Deoptimierung. Inlining ist eine Optimierung, bei der ein Methodenaufruf
durch den Code der aufzurufenden Methode ersetzt wird. Dadurch wird der Verwal-
tungsaufwand für den Methodenaufruf, sprich das Anlegen und Beseitigen eines
Frames, gespart. Während statische Compiler für Sprachen wie C relativ einfach Inlining
anwenden können, ist das in Java nicht so einfach. Denn im Gegensatz zu C-Funk-
tionsaufrufen sind in Java die meisten Methodenaufrufe virtuell, das heißt potenziell
polymorph. Somit kann der Aufruf der Methode doIt() eines Objektes, das durch eine
Referenz vom Typ A referenziert wird, durchaus zur Ausführung einer überschriebenen
Version der Methode doIt() eines Objekts von As Subtyp B führen. Listing 3.1 zeigt ein
einfaches Beispiel für diesen Fall.

class A {
 public doIt() {
 System.out.println("doIt() von A");
 }
}
class B extends A {
 public doIt() {
 System.out.println("doIt() von B");
 }
 public static void main(String[] args) {
 A a = new B();
 a.doIt(); // führt doIt() der Klasse B aus!
 }
}

Listing 3.1: Beispiel für eine überschriebene Methode

Dead Code
Elimination

Code, der nicht ausgeführt werden
kann, wird entfernt.

nein ja

Loop Invariant
Hoisting

Variablen, die sich während einer
Schleife nicht ändern, werden außer-
halb der Schleife berechnet. Siehe Ka-
pitel 6.2.1 Loop Invariant Code Motion

nein ja

Common
Subexpression
Elimination

Die Ergebnisse einmal berechneter
Ausdrücke werden wieder verwendet.

nein ja

Constant
Propagation

Konstanten werden durch ihre Werte
ersetzt.

nein ja

On Stack
Replacement
(OSR)

Während der Ausführung einer
Methode kann interpretierter Code
durch kompilierten ersetzt werden.

ja ja

Optimierung Beschreibung JDK 1.3.1 Client JDK 1.3.1 Server

Tabelle 3.1: Vergleich von Optimierungen der HotSpot Server und Client Compiler für Sun JDK 1.3.1 (Fortsetzung)

Sandini Bib

36 3 Virtuelle Maschinen

Um die Sache noch ein wenig komplizierter zu machen, ist es in Java möglich, Klassen
dynamisch zur Laufzeit nachzuladen. Somit ist das gefahrlose Inlining einer Methode nur
möglich, wenn die einzureihende Methode entweder final oder static ist, da dann die
Methode nicht von einer Unterklasse überschrieben werden kann. Die Fähigkeit static
und final Methoden einzureihen wird in Tabelle 3.1 unter einfachem Inlining aufgeführt.

Mit vollständigem Inlining ist gemeint, dass auch Methoden, die nicht final oder
static sind, eingeschoben werden können. Dies ist dann möglich, wenn keine Klasse
geladen ist, die die fragliche Methode überschreibt. Da in Java aber auch zur Laufzeit
noch Klassen geladen werden können, kann sich dieser Zustand ändern. Ist dies der
Fall, so muss eine bereits eingereihte Methode evtl. wieder durch einen regulären
Methodenaufruf ersetzt werden. Dies ist ein Beispiel für dynamische Deoptimierung.
JIT-Compiler, die den Code in der Regel nur einmal übersetzen, sind zu solchen
(De-)Optimierungen meist nicht in der Lage.

Neben dem gesparten Verwaltungsaufwand für Methodenaufrufe bietet vollständiges
Inlining noch einen weiteren Vorteil: Die entstehenden längeren Code-Blöcke erlauben
weitere Optimierungen.

Suns HotSpot-Technologie wurde von Hewlett Packard und Apple lizenziert. Daneben
gibt es außerdem noch andere DAC-VMs. Eine davon ist die freie VM JRockit von
Appeal Virtual Machines (BEA). Es handelt sich dabei um eine Java Laufzeitumgebung
mit Fokus auf serverseitige Applikationen. Sun bemüht sich zudem, HotSpot auch für
die J2ME-Plattform anzubieten.

� Sun J2SE: http://java.sun.com/

� Appeal Virtual Machines: http://www.jrockit.com/

3.1.4 Ahead-of-Time-Übersetzung

Anstatt Code erst zur Laufzeit in Binärcode zu übersetzen, kann man auch bereits beim
Erstellen der Software Binärcode für die Zielplattform erzeugen. Dieser Ansatz wird
auch als Ahead-of-Time-Übersetzung (AOT) bezeichnet.

AOT ermöglicht sehr gute Optimierungen und führt in der Regel zu robustem, schnel-
lem Code. Dies liegt unter anderem daran, dass bereits vorhandene, ausgereifte Com-
piler zur Code-Generierung und -Optimierung genutzt werden können. So ist
beispielsweise der freie GNU Java Compiler GJC lediglich ein Frontend zu anderen
GNU Compilern. Dementsprechend wird Java von den GJC-Autoren auch nur als Teil-
menge von C++ betrachtet.

Ein weiter Grund für die gute Performance von AOT sind eine im Vergleich zu JIT und
DAC fast beliebig lange Code-Analyse-Phase, beinahe beliebiger Ressourcenverbrauch
während der Übersetzung und die daraus resultierenden Optimierungen. Der kom-

Sandini Bib

Bytecode-Ausführung 37

merzielle Java Native Compiler TowerJ beispielsweise kann während des Kompilierens
so genannte ThreadLocal-Objekte erkennen. ThreadLocals sind Objekte, die garantiert
nur von einem Thread benutzt werden. Somit ist jegliche Synchronisation überflüssig,
die Objekte können im schnelleren, threadspezifischen Stack statt im Heap gespeichert
werden und unterliegen somit auch nicht der normalen Speicherbereinigung. Der
erzeugte Code ist entsprechend schneller.

Zudem kann Binärcode nur schlecht dekompiliert werden und erschwert Reverse
Engineering2 erheblich. Somit ist gegenüber Bytecode ein besserer Schutz von geisti-
gem Eigentum gewährleistet.

Alle AOT-Compiler haben jedoch mit Javas Fähigkeit zu kämpfen, Klassen dynamisch
nachzuladen. Dies ist beispielsweise notwendig für Remote Method Invocation (RMI),
Dynamische Proxies (java.lang.reflect.Proxy), Java Server Pages (JSP) etc. TowerJ löst
dieses Problem, indem während der ersten Ausführung aufgezeichnet wird, welche
Klassen nachgeladen und von einem eingebauten Interpreter ausgeführt werden
mussten. In einem folgenden Übersetzungslauf werden diese Klassen dann ebenfalls
in Binärcode übersetzt und optimiert.

Einen etwas anderen Weg beschreitet Excelsiors JET. JET verfügt über die Fähigkeit, zur
Laufzeit nachgeladene Klassen mit einem JIT-Compiler zu übersetzen und als DLLs
einzubinden. Dabei ist der JIT-Compiler selbst eine DLL und kann dementsprechend
nach getaner Arbeit wieder aus dem Speicher entfernt werden.

Zusammenfassend lässt sich sagen, das AOT eine legitime Strategie ist, um schnelle
und verlässliche Java-Programme für eine spezifische Zielplattform zu erzeugen. Die
erzeugten Programme sind natürlich nicht portabel. Jedoch spricht nichts dagegen,
neben verschiedenen nativen Versionen auch eine portable Bytecode-Version Ihrer
Software auszuliefern.

Hier eine Auswahl von AOT-Compilern:

� TowerJ: http://www.towerj.com/

� NaturalBridge BulletTrain: http://www.naturalbridge.com/

� Excelsiors JET: http://www.excelsior-usa.com/jet.html

� Instantiations JOVE: http://www.instantiations.com/jove/

� GCJ ist noch in den frühen Phasen der Entwicklung: http://gcc.gnu.org/java/

2 Vorgang, bei dem aus Bytecode ein (visuelles) Modell erzeugt wird.

Sandini Bib

38 3 Virtuelle Maschinen

3.1.5 Java in Silizium

Natürlich ist man auch auf die Idee gekommen, aus der Java Virtuellen Maschine eine
reale Java Maschine zu machen; mit anderen Worten, die VM in Silizium zu gießen.
Dies ist insbesondere für den Mobiltelefon- und PDA-Markt interessant, der J2ME ver-
wendet, und weniger für Geschäftsanwendungen auf Basis von J2SE oder J2EE. Der
Vollständigkeit halber möchte ich kurz auf das Thema eingehen – für das Buch wird es
im Weiteren nicht von Belang sein.

Schon 1996 hat Sun einen Prozessor-Kern namens picoJava spezifiziert. Dieser wurde
auch von mehreren großen Firmen lizenziert, ein picoJava-Boom blieb jedoch aus. Kei-
ner der Lizenznehmer hat jemals picoJava-basierte Chips verkauft.

Bereits zum Erscheinen der Spezifikation wurde der Ansatz kritisch beäugt. Wissen-
schaftler hatten schon für andere Sprachen wie LISP und Smalltalk Spezial-Prozessoren
entwickelt, nur um zu entdecken, dass Software-Implementierungen auf RISC-Chips
bessere Performance boten. Man zweifelte daran, dass Suns picoJava besser performte.
Und tatsächlich stellte sich später heraus, dass picoJava weder schnell noch billig noch
sparsam genug war, um im Markt für Mobiltelefone und PDAs mithalten zu können.

Stattdessen wurde in letzter Zeit ein etwas anderer Ansatz für Kleingeräte populär:
Java-Beschleuniger. Dabei handelt es sich um Bausteine, die ähnlich wie Koprozesso-
ren zusätzlich zum Hauptprozessor verwendet werden können. So lässt sich beispiels-
weise Nazomis Java-Koprozessor in bestehende Designs einbinden und erleichtert so
Kleingeräte-Herstellern die Verwendung von Java unter Beibehaltung einer bereits
vorhandenen Architektur.

Einen anderen Weg ging die Firma ARM. ARM hat seinen Chips den Java-VM-Befehls-
satz schlicht als dritten Befehlssatz hinzugefügt. Ein einfaches Umschalten macht so
aus dem herkömmlichen ARM-Chip eine Java VM.

� Suns picoJava: http://www.sun.com/microelectronics/picoJava/

� ARM: http://www.arm.com/

� Nazomi: http://www.nazomi.com/

3.2 Garbage Collection

Neben der Bytecode-Ausführung ist der andere entscheidende Aspekt für die Perfor-
mance einer VM die Garbage Collection. Weder in der Java Sprachspezifikation
[Gosling00] noch in der Java VM Spezifikation [Lindholm99] sind genaue Vorgaben für
die Garbage Collection zu finden. Es steht den VM-Herstellern somit größtenteils frei,
wie sie die Speicherverwaltung implementieren.

Sandini Bib

Garbage Collection 39

3.2.1 Objekt-Lebenszyklus

Um besser zu verstehen, was die Aufgabe der Speicherverwaltung ist, wollen wir uns
den Lebenszyklus eines Objektes anschauen. Abbildung 3.2 gibt eine Übersicht.

Erzeugt

Es wurde Speicher für das Objekt alloziert und alle Konstruktoren sind ausgeführt
worden. Das Objekt befindet sich also fertig initialisiert im Heap. Es wurde 'Erzeugt'.

Benutzt

Es existiert mindestens eine stark, vom Programm sichtbare Referenz auf das Objekt.
Schwache, weiche und Phantom-Referenzen aus dem Paket java.lang.ref können
zudem existieren, reichen aber nicht aus, um ein Objekt im Zustand 'Benutzt' zu halten.

Unsichtbar

Ein Objekt ist 'Unsichtbar', wenn keine starken Referenzen mehr existieren, die vom Pro-
gramm benutzt werden könnten, trotzdem aber noch Referenzen vorhanden sind.

Nicht jedes Objekt durchläuft diesen Zustand. Er tritt aber zum Beispiel auf, wenn in
einem Stackframe noch eine Referenz auf ein Objekt vorhanden ist, obwohl diese Refe-
renz in einem abgeschlossenen Block deklariert und dieser Block bereits verlassen
wurde. Listing 3.2 zeigt ein Beispiel.

public void do() {
 try {
 Integer i = new Integer(1);
 ...
 }

Abbildung 3.2: Lebenszyklus eines Objekts

Erzeugt

Benutzt

Unsichtbar Unerreichbar

Eingesammelt

Finalisiert

alloziert &
initialisiert

stark referenziert

referenziert unreferenziert

unreferenziert

vom GC als un-
referenziert erkannt

finalize()

dealloziert

Sandini Bib

40 3 Virtuelle Maschinen

 catch (Exception e) {
 ...
 }
 while (true) {
 // äußerst lange Schleife
 }
}

Listing 3.2: In der while-Schleife ist i unsichtbar.

Das Objekt i wird in einem geschlossenen try-catch-Block alloziert. Eine effiziente
VM-Implementierung wird die im Frame allozierte Referenz auf i jedoch nicht beim
Verlassen des Blocks beseitigen, sondern erst, wenn der entsprechende Frame vom
Stack genommen wird [Wilson00, S.196]. Daher ist i in der folgenden while-Schleife
sowohl unsichtbar als auch referenziert und kann somit nicht vom Garbage Collector
erfasst werden.

Unerreichbar

'Unerreichbar' sind jene Objekte, die nicht mehr von einer Objektbaumwurzel über
Navigation zu erreichen sind. Zu den Objektbaumwurzeln gehören:

� Klassenvariablen (static)

� Temporäre Variablen auf dem Stack (lokale Methoden-Variablen)

� Besondere Referenzen von JNI-Code aus

Ist ein Objekt unerreichbar, so kann es vom Garbage Collector zu einem beliebigen spä-
teren Zeitpunkt eingesammelt werden.

Eingesammelt

Ein Objekt ist dann 'Eingesammelt', wenn der Garbage Collector das Objekt als Garbage
erkannt hat und es in die Warteschlange des Finalizer-Threads eingestellt hat. Ist die
finalize()-Methode des Objekts nicht überschrieben, wird dieser Schritt übersprungen
und das Objekt gelangt direkt in den Zustand 'Finalisiert'.

Finalisiert

'Finalisiert' ist ein Objekt, nachdem die finalize()-Methode aufgerufen wurde, sofern
diese vorhanden ist bzw. überschrieben wurde. Beachten Sie, dass die finalize()-
Methode meist in einem Extra-Thread, dem so genannten Finalizer-Thread ausgeführt
wird. Falls die Threads Ihrer Applikation mit höherer Priorität laufen als der Finalizer-
Thread und Sie die finalize()-Methode mit spezieller Aufräumlogik überschrieben
haben, kann es sein, dass Sie die Garbage Collection blockieren, da der Finalizer-
Thread nicht zum Zuge kommt und somit Objekte nicht dealloziert werden können.

Sandini Bib

Garbage Collection 41

Daher ist es grundsätzlich besser, sich nicht auf den Finalizer zu verlassen, sondern
stattdessen eigene Lebenszyklus-Methoden zu implementieren und diese kontrolliert
aufzurufen. Beispielsweise sollten Sie immer die Methode dispose() eines java.awt.
Graphics-Objektes aufrufen, wenn Sie es nicht mehr benötigen, da sonst erst der Finali-
zer wichtige Ressourcen freigibt.

Dealloziert

Ein Objekt ist 'Dealloziert', wenn es nach der Finalisierung immer noch unerreichbar war
und somit beseitigt werden konnte. Wann dies geschieht, liegt im Ermessen der VM.

3.2.2 Garbage Collection-Algorithmen

Sie haben gesehen, dass Objekte erst dealloziert werden können, wenn sie finalisiert
und unerreichbar sind. Wie die Unerreichbarkeit bestimmt und der verfügbare Spei-
cher verwaltet wird, hängt vom verwendeten Gargabe Collector ab. Dieser lässt sich
meist über VM-Parameter beeinflussen und optimieren. Deshalb wollen wir uns kurz
mit verschiedenen Garbage Collection-Algorithmen auseinander setzen.

Kopierender Kollektor

Ein einfacher Kopierender Kollektor unterteilt den Speicher in zwei Hälften. Er alloziert
so lange Objekte in der ersten Hälfte, bis diese voll ist. Dann besucht er, von den
Objektbaumwurzeln ausgehend, alle lebendigen Objekte und kopiert sie in die zweite
Speicherhälfte.3 Die nicht mehr referenzierten Objekte werden gelöscht. Anschließend
tauschen die Speicherhälften ihre Rollen. Im verbliebenen Speicher der zweiten Hälfte
werden nun neue Objekte alloziert, bis diese voll ist. Dann werden die lebendigen
Objekte wiederum in die erste Hälfte kopiert usw.

Kopierende Kollektoren führen zu sehr schnellen Allokationszeiten, da der Speicher
nicht fragmentiert wird. Tatsächlich reicht es aus, einfach einen Zeiger auf die Speicher-
zelle nach dem zuletzt allozierten Objekt zu pflegen. Viel schneller kann man Speicher
nicht allozieren. Dieser Komfort hat jedoch seinen Preis, denn der Speicherverbrauch
einfacher kopierender Kollektoren ist doppelt so groß wie der anderer Kollektoren.4

Zudem fällt die Interaktion mit dem Speicherverwaltungssystem des Betriebssystems
eher ungünstig aus. In jedem Kollektionszyklus muss jede Speicherseite einer Hälfte
geladen und komplett beschrieben werden. Falls der gesamte Heap nicht in den realen

3 Wegen dieses Verhaltens werden kopierende Kollektoren auch Scavengers (Aasfresser) genannt – sie
nehmen, was noch zu gebrauchen ist.

4 Hier ist nur der simpelste Kopier-Algorithmus beschrieben. Natürlich ist es möglich, den Speicher
in mehr als zwei Teile zu unterteilen, jedoch pro Kollektionszyklus nur zwei dieser Teile zu betrach-
ten [Jones96, S.127] und somit den Speicherverbrauch zu reduzieren.

Sandini Bib

42 3 Virtuelle Maschinen

Speicher des Rechners passt, führt dies unweigerlich zu teuren Seitenfehlern. Ein wei-
terer Nachteil ist, dass alle Objekte ständig im Speicher umgruppiert werden, was wie-
derum zu schlechter Lokalität führen kann.

Somit eignen sich kopierende Kollektoren insbesondere für kleine Speicherbereiche
mit kurzlebigen Objekten.

Mark & Sweep

Der Mark-Sweep-Algorithmus funktioniert folgendermaßen: Ausgehend von den Objekt-
baumwurzeln werden alle erreichbaren Objekte besucht und mit einem Bit markiert.
Wurden so alle lebendigen Objekte markiert, werden alle nicht-markierten Objekte aus
dem Speicher gekehrt.

Mark-Sweep-Kollektoren haben gegenüber kopierenden Kollektoren einen geringeren
Speicherverbrauch. Dafür neigen sie jedoch dazu, den Speicher zu fragmentieren. Das
bedeutet auch, das die Verwaltung des freien Speichers umständlich ist, was wiederum
dazu führt, dass die Allokation von Speicher länger dauert. Zudem kann bedingt
durch die Fragmentierung der Speicher nicht vollständig genutzt werden und es kann
passieren, dass Objekte, die kurz nacheinander alloziert wurden, nicht nahe beieinan-
der im Heap liegen. Diese schlechte Lokalität führt wiederum zu Seitenfehlern.

Der Mark-Sweep-Algorithmus selbst ist simpel und schnell, führt aber zu Problemen
insbesondere bei Systemen mit virtuellem Speicher. Er ist die Grundlage für den Mark-
Compact-Algorithmus.

Mark & Compact

Genau wie beim Mark-Sweep-Algorithmus werden zunächst alle lebendigen Objekte
markiert. Anschließend werden die lebendigen Objekte so im Speicher verschoben,
dass es nur noch zwei Bereiche gibt: einen durchgängig mit Objekten belegten Bereich
und einen freien Bereich. Der Heap wurde kompaktiert. Das heißt zur Verwaltung des
freien Speichers genügt ein einziger Zeiger, der auf das Ende des belegten Bereichs
zeigt. Dies wiederum bedeutet schnelle Allokation, da nicht umständlich nach einem
freien Stück Speicher der gewünschten Größe gefahndet werden muss.

Je nach verwendetem Algorithmus kann während des Kompaktierens die Ordnung
der Objekte beibehalten werden. Dies führt zu guter Lokalität und weniger Seitenfeh-
lern. Auch das hat jedoch seinen Preis. Während Mark-Sweep-Kollektoren nach der
Markierungsphase nur einmal durch den Heap wandern, müssen Mark-Compact-
Algorithmen den Heap meist zwei- oder dreimal durchkämmen. Die Kollektion dauert
also länger, führt aber anschließend zu einem besseren Laufzeitverhalten.

Sandini Bib

Garbage Collection 43

Inkrementelle und nebenläufige Speicherbereinigung

Alle bisher vorgestellten Verfahren gehen jeweils davon aus, exklusiv auf den Heap
zugreifen zu können. Das bedeutet, dass das Programm während der Kollektion
gestoppt wird. Dies führt zu unangenehmen Pausen, in denen die Applikation nicht
auf Eingaben reagiert. Diese Pausen sind für Echtzeitanwendungen (z.B. Audio-/
Video-Anwendungen, Maschinen-Steuerungssoftware) nicht akzeptabel. Die Pausen
sind zudem umso länger, je größer der Heap ist.

Inkrementelle und nebenläufige Speicherbereinigung versuchen, die Pausen auf ein
Minimum zu reduzieren bzw. ganz zu beseitigen. Im Fall der inkrementellen Speicher-
bereinigung wird jeweils nur ein kleiner Teil des Heaps von unreferenzierten Objekten
gesäubert und dann die Ausführung des Programms fortgesetzt. Bei nebenläufiger
Speicherbereinigung wird parallel zur Programmausführung jeweils ein Teil des
Heaps gereinigt. Dabei treten gewöhnlich Synchronisationsprobleme auf, die zu einem
gewissen Verwaltungsaufwand führen.

Inkrementelle oder nebenläufige Kollektoren reduzieren Pausen, führen ansonsten
aber meist zu einer schlechteren Performance als andere Verfahren.

Generationen-Kollektoren

Generationen-Kollektoren gehen davon aus, dass einige Objekte länger leben als andere.
Weiterhin wird angenommen, dass die meisten Objekte jung sterben. Dementspre-
chend wird der Heap in mehrere Bereiche – Generationen – unterteilt. Neue Objekte
werden grundsätzlich in der jungen Generation alloziert. Ist kein Speicher mehr in die-
sem Bereich vorhanden, wird er mittels eines der oben geschilderten Algorithmen auf-
geräumt. Objekte, die eine bestimmte Anzahl von Aufräumphasen überleben, werden
in die ältere Generation verschoben. Dabei müssen alle Zeiger auf das Objekt entspre-
chend angepasst werden.

Die ältere Generation wird genau wie die jüngere bei Bedarf aufgeräumt. Grundsätz-
lich sind mehr als zwei Generationen denkbar.

Generationen optimieren die Speicherbereinigung insofern, als dass nicht immer der
ganze Speicher aufgeräumt wird, sondern nur der Teil, der gerade vollgelaufen ist.
Somit sind die Pausen, die auftreten, wenn das Programm zur Speicherbereinigung
gestoppt werden muss, relativ geringer als bei nur einem großen zusammenhängen-
den Speicherbereich, der immer komplett gesäubert werden muss. Dabei macht man
sich zunutze, dass ein kleiner Speicherteil gewöhnlich sehr schnell mit Objekten belegt
ist, die zu einem großen Teil direkt wieder aus dem Speicher entfernt werden können.

Sandini Bib

44 3 Virtuelle Maschinen

3.2.3 Performance-Maße

Zum Beurteilen der Performance von Mechanismen zur automatischen Speicherberei-
nigung gibt es vier wichtige Maße:

� Durchsatz

� Pausen

� Speicherverbrauch

� Promptheit

Durchsatz bezeichnet den prozentualen Anteil der Laufzeit eines Programms, der
nicht mit Speicherbereinigung oder Allokation verbracht wird. Dies ist eine wichtige
Größe bei lang laufenden Programmen wie Servern.

Pausen sind Zeiten, in denen die Applikation nicht reagiert, da gerade der Speicher
aufgeräumt wird. Insbesondere bei interaktiven oder Echtzeit-Programmen ist hier der
Maximalwert eine interessante Größe zur Beurteilung der Speicherverwaltung.

Speicherverbrauch ist für Systeme mit keinem oder begrenztem virtuellen Speicher
eine wichtige Größe.

Promptheit bezeichnet die Zeit, die nach dem Tod eines Objekts vergeht, bis es tatsäch-
lich beseitigt ist.

Gewöhnlich gilt, dass ein guter Wert in einer Kategorie zu Lasten des Wertes einer
anderen Kategorie geht. Es kann also keinen per se richtigen, sondern nur einen am
besten zu den Anforderungen passenden Garbage Collector geben.

3.2.4 HotSpots Garbage Collection

Suns VM ist ein gutes Beispiel für einen Generationen-Kollektor. Der Heap ist in fünf
Generationen unterteilt (Abbildung 3.3).

Abbildung 3.3: Aufteilung des Heaps der Sun HotSpot-VM in verschiedene Generationen

Alte Generation Eden

Permanente Generation Überlebensräume

Sandini Bib

Garbage Collection 45

Objekte werden zunächst in Eden alloziert. Ist kein Platz mehr in Eden, greift ein kopie-
render Kollektor und verschiebt alle lebendigen Objekte aus Eden sowie einem der
Überlebensräume in den anderen, leeren Überlebensraum. Wenn Objekte eine gewisse
Zeit zwischen den beiden Überlebensräumen hin- und herkopiert wurden, werden sie
befördert. Das heißt, sie werden in die alte Generation verschoben. In der Alten Genera-
tion wiederum greift ein Mark-Compact-Kollektor. Eine Besonderheit stellt die perma-
nente Generation dar. Sie enthält Klassen- und Methoden-Objekte, die sehr selten –
wenn überhaupt – dealloziert werden müssen.

Alternativ zum standardmäßig verwendeten Mark-Compact-Algorithmus für die alte
Generation kann man bei Bedarf mittels des VM-Parameters –Xincgc auch einen inkre-
mentellen Algorithmus verwenden. Dieser verursacht zwar weniger Pausen, hat
jedoch einen größeren Verwaltungsaufwand.

Die Größe des Heaps sowie der einzelnen Generationen lässt sich über VM-Parameter
beeinflussen (Tabelle 3.2). Um festzustellen, welche Einstellung für Ihr Programm opti-
mal ist, experimentieren Sie mit verschiedenen Werten und vergleichen Sie die Gar-
bage Collection-Daten, die Sie durch den VM-Parameter –verbose:gc erhalten.

Der Durchsatz ist gewöhnlich am besten, wenn möglichst selten eine vollständige
Speicherbereinigung inklusive der Alten Generation erforderlich ist. Dies ist der Fall,
wenn Eden und die beiden Überlebensräume (junge Generationen) im Verhältnis zum
Rest des Heaps sehr groß sind. Dies geht jedoch auf Kosten von Speicherverbrauch
und Promptheit. Pausen wiederum können minimiert werden, indem die Jungen
Generationen möglichst klein gehalten und inkrementelle Garbage Collection für die
alte Generation benutzt wird.

Parameter Beschreibung

-Xms<wert> Minimale Heapgröße

-Xmx<wert> Maximale Heapgröße

-Xminf<wert> Prozentualer Anteil des Heaps, der nach einer vollständigen
Speicherbereinigung mindestens frei sein sollte. Standard: 40

-Xmaxf<wert> Prozentualer Anteil des Heaps, der nach einer vollständigen
Speicherbereinigung höchstens frei sein sollte. Standard: 70

-XX:NewRatio=<wert> Verhältnis der Größe der Neuen Generationen zur Alten
Generation

-XX:NewSize=<wert> Startgröße der Neuen Generationen

-XX:MaxNewSize=<wert> Bestimmt die maximale Größe der Neuen Generationen

-XX:SurvivorRatio=<wert> Verhältnis der Größe von Eden zu einem der Überlebensräume

-XX:MaxPermSize=<wert> Maximale Größe der Permanenten Generation

Tabelle 3.2: Parameter zum Optimieren der HotSpot-Speicherverwaltung

Sandini Bib

46 3 Virtuelle Maschinen

3.3 Industrie-Benchmarks

Zur Beurteilung von Java VMs lohnt es sich, Leistungstests oder Benchmarks zu benut-
zen. Ein Benchmark ist eine definierte Referenz, die zu Vergleichszwecken herange-
zogen werden kann. Hiermit ist meist ein definiertes Testverfahren gemeint, das
reproduzierbar die Leistung von Soft- oder Hardware misst. Oft wird das Ergebnis in
einer einzelnen Maßzahl zusammengefasst.

Diese Labor-Benchmarks beschreiben per Definition nur eine Abbildung der Wirklich-
keit. Aus diesem Grund definiert Eric Raymond einen Benchmark als »an inaccurate
measure of computer performance« und zitiert in seinem Buch die alte Hacker-Weisheit:

In the computer industry, there are three kinds of lies: lies, damn lies, and benchmarks.
[Raymond96].

Nun gibt es glücklicherweise Benchmarks, die von Organisationen wie SPEC (Stan-
dard Performance Evaluation Corporation, http://www.spec.org/), einzelnen unpartei-
ischen Firmen und Verlagen bzw. Magazinen kreiert wurden und somit sicherlich
vertrauenswürdiger sind als beispielsweise ein reiner Intel-Benchmark zum Vergleich
von Intel- und Motorola-Prozessoren.

Dennoch muss man sich bei jedem Benchmark fragen, was dieser misst, welche Aussage
sich aus dem Ergebnis ableiten lässt und wie nützlich diese Aussage in Bezug auf das
eigene Programm ist. Es nützt Ihnen wenig, eine VM zu verwenden, die hervorragend
bzgl. gleichzeitiger TCP/IP-Verbindungen skaliert, wenn Sie tatsächlich numerische
Berechnungen anstellen wollen und nie auch nur eine einzige TCP/IP-Verbindung auf-
bauen.

In diesem Abschnitt werden einige sehr verschiedene Benchmarks kurz vorgestellt.
Hier sind die entsprechenden URLs:

� VolanoMark: http://www.volano.com/benchmarks.html

� SPEC JVM98: http://www.spec.org/osg/jvm98/

� SPEC JBB2000: http://www.spec.org/osg/jbb2000/

� jBYTEMark 0.9 (BYTE Magazine) scheint nicht mehr durch einen regulären Link
erreichbar zu sein. Sie können jedoch mit einer Suchmaschine nach jbyte.zip suchen.

� ECperf: http://java.sun.com/j2ee/ecperf/index.html

3.3.1 VolanoMark

VolanoMark ist ein Benchmark, der entstand, um die Performance einer VM und ihrer
Skalierbarkeit in Bezug auf TCP/IP-Verbindungen zu messen. Die Motivation für den
letzteren Aspekt liegt in Javas Ein-Thread-pro-Verbindung-Modell begründet (siehe

Sandini Bib

Industrie-Benchmarks 47

Kapitel 10.5 Skalierbare Server). Dieses besagt, dass für jede Verbindung ein dedizierter
Thread existieren muss. Wenn man also sehr viele Verbindungen gleichzeitig unterhal-
ten will (und genau das macht der Volano-Chat-Server), ist es wichtig, eine VM zu
benutzen, die sowohl viele Sockets als auch viele Threads performant unterstützt.

Während des Tests wird gemessen, wie viele Nachrichten Clients über einen Server
verschicken können. Beim Performance-Test laufen sowohl Server als auch Clients auf
demselben Rechner mit 200 gleichzeitigen Loopback-Verbindungen. Beim Skalierbar-
keitstest simulieren die Clients von einem anderen Rechner aus eine ständig steigende
Zahl gleichzeitiger Verbindungen. Gemessen wird die maximal mögliche Anzahl
simultaner Verbindungen.

Seit JDK 1.4 bietet Java mit dem java.nio-Paket ein alternatives, asynchrones Ein-/Aus-
gabe-Modell, das nicht mehr zwingend einen Thread pro Verbindung vorschreibt.
VolanoMark in seiner jetzigen Form könnte also entsprechend an Bedeutung verlieren.

Nichtsdestotrotz ist VolanoMark ein gerne zitierter Benchmark für Performance und
Netzwerk-Skalierbarkeit. Ergebnisse werden regelmäßig auf der Volano-Website publi-
ziert.

3.3.2 SPEC JVM98

SPEC JVM98 ist ein Client-Benchmark der SPEC zum Messen von Java-VM-Perfor-
mance. Er besteht aus acht verschiedenen Tests, von denen fünf reale Anwendungen
sind. Sieben der Tests dienen zum Messen von Daten, der achte verifiziert die korrekte
Ausführung des Bytecodes:

� compress: Werkzeug zum (De-)Komprimieren von Dateien

� jess: Java Expertensystem

� db: ein kleines Datenmanagement-Programm

� javac: Suns Java-Compiler

� mpegaudio: ein MPEG-3-Dekoder

� mtrt: ein multithreaded Raytracer

� jack: ein Parser-Generator mit lexikalischer Analyse

� check: Überprüft Java VM und Java Features

JMV98 testet nicht AWT-, Netzwerk-, Datenbank- und Grafik-Performance. Zudem
erschien JVM98 vor Java 2. Es werden also auch keine der neueren Java-Features wie
schwache Referenzen oder dynamische Proxies getestet.

Sandini Bib

48 3 Virtuelle Maschinen

3.3.3 SPEC JBB2000

SPEC JBB2000 ist ein serverseitiger SPEC-Benchmark, der eine 3-Tier-Applikation
simuliert. Die Hauptlast liegt dabei auf dem Mittel-Tier, der die Geschäftslogik enthält.
Tier eins und drei enthalten die Benutzerschnittstelle und die Datenverwaltung. Der
Test läuft vollständig in einer VM ab und benötigt keine weiteren Komponenten wie
eine Datenbank oder einen Webbrowser. Im Test werden weder Enterprise Java Beans
(EJB), Servlets noch JSP verwendet.

JBB2000 misst ausschließlich VM-Performance und Skalierbarkeit. Nicht gemessen
werden AWT-, Netzwerk-, Ein-/Ausgabe- und Grafik-Leistung.

3.3.4 jBYTEMark

jBYTEMark ist ein ursprünglich in C geschriebener Benchmark, der vom BYTE-Maga-
zin nach Java portiert wurde. Er enthält ausschließlich rechenintensive Algorithmen,
versucht also gar nicht erst eine reale Applikation nachzuempfinden. Dem Bench-
mark-Code lässt sich zudem leicht ansehen, dass er aus der C-Welt stammt. OO-Per-
formance lässt sich mit diesem Benchmark nicht messen.

jBYTEMark scheint von BYTE schon lange aufgegeben worden zu sein, ist aber immer
noch für einen schnellen Numbercrunching-Vergleich zu gebrauchen. Wichtig ist zu
betonen, dass dieser Benchmark keinen Gebrauch von Threads macht und weder
AWT-, Netzwerk-, Ein-/Ausgabe- noch Grafik-Leistung misst.

3.3.5 ECperf

Anders als die zuvor aufgeführten Benchmarks dient ECperf zum Messen der Skalierbar-
keit und Performance von J2EE-Servern (Java 2 Enterprise Edition) und nicht einer spezi-
ellen Java VM. Dabei werden hauptsächlich Speicherverwaltung, Verbindungs-Pooling,
Passivierung/Aktivierung von EJBs und Caching des EJB-Containers getestet. Die Leis-
tung der gewöhnlich nötigen Datenbank fließt angeblich kaum in den Benchmark ein.

ECperf simuliert eine reale Anwendung, die die Bereiche Herstellung, Supply-Chain-
Management und Verkauf abbildet. Dies führt zur Nutzung und somit indirekt zur
Bewertung der folgenden technischen Aspekte von J2EE-Anwendungen:

� Transaktionale Komponenten

� Verteilte Transaktionen

� Messaging und asynchrones Aufgabenmanagement

� Mehrere Service-Provider mit mehreren Websites

� Schnittstellen von und zu Altsystemen

Sandini Bib

Die richtige VM auswählen 49

� Sichere Datenübertragung

� Rollenbasierte Authentisierung

� Persistente Objekte

ECPerf wurde von SPEC übernommen und firmiert dort unter dem Namen
SPECjAppServer200X.

3.4 Die richtige VM auswählen

Die VM zu wechseln ist eine der einfachsten und billigsten Methoden, die Performance
Ihrer Software zu verbessern. Wenn Sie nicht gerade auf die VM eines bestimmten
Herstellers angewiesen sind, sollte dies Ihr erster Schritt sein. Sie können eine grobe
Vorauswahl anhand von publizierten Benchmarks vornehmen. Achten Sie dabei dar-
auf, dass die Benchmarks Leistungsaspekte messen, die für Ihre Anwendung wichtig
sind. Anders ausgedrückt: Die Endgeschwindigkeit eines Autos ist in den USA irrele-
vant. Wichtig ist die Beschleunigung bis zur erlaubten Höchstgeschwindigkeit.5

Viele publizierte Benchmarks messen die Leistung eines Ein-Prozessor-Systems. Wenn
Sie wollen, dass Ihre VM mit der Prozessorzahl Ihres Mehrprozessor-Systems skaliert,
verifizieren Sie, dass die VM dazu geeignet ist. VMs, die so genannte Green-Threads
benutzen, skalieren nicht mit der Prozessorzahl, sondern nutzen immer nur einen Pro-
zessor. Ist jedoch nur ein Prozessor vorhanden, brillieren Green-Threads, da sie in der
Regel leichtgewichtiger sind als Native-Threads. Ein Beispiel hierfür ist das Linux Black-
down JDK.

Falls Ihr Programm Echtzeit-Kriterien6 standhalten muss, wählen Sie eine VM mit
inkrementellem oder nebenläufigem Garbage Collector. Inkrementelle Garbage Collec-
tion hält die maximalen Pausenzeiten kurz, führt jedoch sonst meist zu schlechterer
Performance.

Wenn Ihre Anwendung keine Massenware ist, sondern nur in einer definierten Umge-
bung lauffähig sein muss, ziehen Sie AOT-Compiler in Betracht. »Write once, run any-
where« spielt für Sie keine Rolle, insbesondere nicht, wenn Sie über den Quellcode
verfügen und jederzeit regulären Bytecode einsetzen können.

Nachdem Sie sich für eine VM entschiedenen haben, informieren Sie sich über Opti-
mierungsmöglichkeiten. Fast alle VMs haben Parameter, mit denen Sie entscheiden-
den Einfluss auf die Leistung der VM nehmen können. Dazu gehören die minimale

5 In den meisten Staaten sind das 70 mph (etwa 113 km/h).
6 Kaum eine Java VM hält harten Echtzeitkriterien stand. Jedoch gibt es bzgl. des Echtzeitverhaltens

natürlich bessere und schlechtere VMs.

Sandini Bib

50 3 Virtuelle Maschinen

und maximale Heapgröße, die Stackgröße, GC-Algorithmen und GC-Generationen-
Größen, Thread-Modelle, JIT/DA-Compiler und vieles mehr. Insbesondere, wenn Sie
wenig Einfluss auf den Quellcode haben, ist dies Ihr bester Ansatzpunkt.

Die Wahl der richtigen VM kann leicht über Erfolg und Misserfolg Ihres Projekts ent-
scheiden. Es ist daher blauäugig, einfach die erstbeste VM zu benutzen. Zudem kon-
kurrieren alle VM-Hersteller darum, die schnellste VM herzustellen. Es lohnt sich also,
immer mal wieder eine neue oder andere VM auszuprobieren. Dank Javas Portabilität
sollte dies keine allzu große Schwierigkeit darstellen.

Sandini Bib

4 Messwerkzeuge

Es gibt vielerlei Möglichkeiten Performance zu messen. Auf Windows-Systemen kön-
nen Sie beispielsweise einfach den Windows-Task-Manager (Abbildung 4.1) während
der Programmausführung beobachten. Das gibt Ihnen immerhin schon einmal groben
Aufschluss über Prozessor-Belastung und Speicherverbrauch. Genauere Daten erhal-
ten Sie über den Windows-Systemmonitor (Management Konsole), den Sie im Verwal-
tungsordner der Systemsteuerung finden. Zudem gibt es diverse freie Werkzeuge bzw.
Shareware-Programme (z.B. TaskInfo, http://www.iarsn.com/), die detaillierten Auf-
schluss über den System-Zustand geben.

Abbildung 4.1: Prozessansicht des Windows-Taskmanagers. Der markierte Java-Prozess
belegt die CPU zu 42 Prozent und rund 78 Mbyte Speicher.

Sandini Bib

52 4 Messwerkzeuge

Unter Unix bzw. Linux stellen Werkzeuge wie top, ps, netstat, vmstat, iostat, sar (System
Accounting Reports), truss und strace nützliche Daten über Prozesse, Kernelzugriffe,
Netzwerkbelastung und Speicherverbrauch zur Verfügung. Genaueres über ihre
Benutzung lässt sich den entsprechenden Man-Pages entnehmen.

4.1 Profiler

Nun können die genannten Systemwerkzeuge nicht in Ihr Java-Programm reingucken.
Sie können Ihnen nicht sagen, wie viele Objekte vom Typ X gerade existieren und wie
viel Speicher sie verbrauchen, wie viel Zeit Ihr Programm in Methode Y verbringt und
wie häufig diese Methode bereits aufgerufen wurde. Genau dafür gibt es so genannte
Profiler. Diese Programme erleichtern die Laufzeit-Analyse Ihrer Programme und hel-
fen Flaschenhälse und Speicherlöcher zu finden.

Hier eine kleine Auswahl kommerzieller Profiler:

� JProbe von Sitraka: http://www.jprobe.com/

� Optimizeit von VMGear: http://www.optimizeit.com/

� Quantify von Rational: http://www.rational.com/

� DevPartner von Compuware: http://www.compuware.com/

4.2 Hprof

Glücklicherweise müssen Sie jedoch nicht viel Geld für einen kommerziellen Profiler
ausgeben, um einen Einblick in Ihre Programme zu erhalten. Sowohl die Sun als auch
die IBM Java VM enthält bereits einen einfachen Profiler namens Hprof.

Hprof bedient sich des Java Virtual Machine Profiler Interfaces (JVMPI), einer bislang expe-
rimentellen, nicht-standardisierten Schnittstelle (Stand Anfang 2002). Die zugehörige,
detaillierte Dokumentation der Schnittstelle befindet sich in der Dokumentation des Sun
JDKs im Ordner docs/guide/jvmpi/index.html oder online unter http://java.sun.com/j2se/1.4/
docs/guide/jvmpi/index.html. C-Kenntnisse und einen entsprechenden Compiler voraus-
gesetzt, können Sie mit Hilfe dieser Dokumentation Ihren eigenen Profiler schreiben.
Nur mit Java ist dies leider nicht möglich.

Bevor Sie sich jedoch anschicken, das Rad neu zu erfinden, sollten Sie sich zunächst ein
bisschen mit dem vorhandenen Hprof beschäftigen. Wenngleich dieser Minimal-Profi-
ler nicht unbedingt dem Vergleich mit kommerziellen Produkten standhält, so ist er
doch durchaus nützlich.

Sandini Bib

Hprof 53

Hprof wird durch den –Xrunhprof Kommandozeilenparameter der Sun Java-VM gestartet:

java –Xrunhprof[:help][:<parameter>=<wert>, …] MainClass

Eine Übersicht über die möglichen Parameter finden Sie in Tabelle 4.1. Eine englische
Kurzfassung dessen erhalten Sie auch, wenn Sie die help-Option angeben.

4.2.1 Speicherabbild erstellen

Ruft man Hprof mit seinen Standardparametern auf, erhält man nach Beendigung der
VM eine Übersicht über alle im Speicher befindlichen Objekte (Heap-Dump), eine nach
Speicherverbrauch sortierte Liste dieser Objekte (Sites) sowie Stacktraces, die Aus-
kunft darüber geben, an welchen Stellen im Code Objekte alloziert wurden.

Außer nach Beendigung der VM erhalten Sie diese Ausgabe auch, wenn Sie (Strg)(\)
in der Java-Konsole von Unix/Linux-Systemen bzw. (Strg)(Pause) bei Windows-Sys-
temen drücken. Alternativ können Sie auf Unix/Linux-Systemen auch ein SIGQUIT an
den Java-Prozess senden: kill -QUIT <prozessid>

Option Beschreibung Standardwert

heap=dump|sites|all Gibt den Inhalt des gesamten Heaps aus (dump), gene-
riert Stacktraces, die anzeigen, wo Speicher allokiert
wurde (sites) oder beides (all)

all

cpu=samples|times|old Zum Messen der Rechenzeit in Methoden werden
Stichproben (samples), Laufzeiten und Ausführungshäu-
figkeit einzelner Methoden (times) oder das in früheren
VMs verwendete Format (old) benutzt

off

monitor=y|n Gibt Informationen über Monitore für die Thread-
Synchronisation aus

n

format=a|b Textuelle (a) oder binäre (b) Ausgabe a

file=<file> Schreibt die Daten in die angegebene Datei java.hprof(.txt bei
textueller Ausgabe)

net=<host>:<port> Schreibt die Daten über die angegebene TCP-
Verbindung

off

depth=<wert> Tiefe der auszugebenden Stacktraces 4

cutoff=<wert> Prozentwert für Ranglisten, nach dem diese abge-
schnitten wird

0.0001

lineno=y|n Angabe von Zeilennummern in Stacktraces y

thread=y|n Angabe des Threads im Stacktrace n

doe=y|n Ausgabe bei Beendigung der VM y

dooom=y|n Ausgabe bei OutOfMemoryError (nur IBM VM) y

Tabelle 4.1: Kommandozeilen-Parameter des in der Sun und IBM VM integrierten Profilers Hprof

Sandini Bib

54 4 Messwerkzeuge

01 package com.tagtraum.perf.memory;
02
03 public class HprofHeapDemo {
04
05 private byte[] byteArray;
06 private String string;
07 private HprofHeapDemo internalDemoInstance;
08
09 public void setByteArray() {
10 byteArray = new byte[1024];
11 }
12
13 public void setString() {
14 string = "1234567890"; // String der Länge 10
15 }
16
17 public void setHprofHeapDemo() {
18 internalDemoInstance = new HprofHeapDemo();
19 }
20
21 public static void main(String[] args) {
22 HprofHeapDemo demoInstance = new HprofHeapDemo();
23 demoInstance.setByteArray();
24 demoInstance.setString();
25 demoInstance.setHprofHeapDemo();
26 }
27 }

Listing 4.1: Beispiel-Programm, das einige Objekte alloziert

Wir wollen uns die Ausgabe von Hprof ein wenig genauer anschauen und führen das
Beispielprogramm HprofHeapDemo folgendermaßen aus:

java –Xrunhprof com.tagtraum.perf.memory.HprofHeapDemo

Nach Beendigung des Programms befindet sich im aktuellen Verzeichnis die Datei
java.hprof.txt. Diese Datei wird beim nächsten Lauf ohne Warnung überschrieben.
Kopieren Sie deshalb Ergebnisse, die Sie für spätere Vergleiche behalten wollen, oder
verwenden Sie den file-Parameter um eine andere Datei zu benutzen (Tabelle 4.1).

Wir erwarten, in der Datei die in HprofHeapDemo allozierten Objekte samt ihres Spei-
cherverbrauchs wiederzufinden. Am Anfang der Datei finden wir zunächst einige
Hinweise darauf, dass das ausgegebene Format experimentell ist, und einen Text, der
grob erläutert, wie die Daten zu interpretieren sind. Danach beginnt der eigentliche
Datenteil mit einer Liste aller Threads:

THREAD START (obj=838648, id = 1, name="Finalizer", group="system")
THREAD START (obj=838688, id = 2, name="Reference Handler", group="system")
THREAD START (obj=838708, id = 3, name="main", group="main")

Sandini Bib

Hprof 55

THREAD START (obj=89d9588, id = 4, name="Signal Dispatcher", group="system")
THREAD START (obj=89da3c8, id = 5, name="CompileThread0", group="system")
THREAD END (id = 3)
THREAD START (obj=89d81c8, id = 6, name="Thread-0", group="main")
THREAD END (id = 4)

Der Threadliste folgt eine Liste von nummerierten Stacktraces:

...
TRACE 594:
...java.lang.ClassLoader.defineClass0(ClassLoader.java:Native method)
...java.lang.ClassLoader.defineClass(ClassLoader.java:486)
...java.security.SecureClassLoader.defineClass(SecureClassLoader.java:111)
...java.net.URLClassLoader.defineClass(URLClassLoader.java:248)
TRACE 596:
 HprofHeapDemo.main(HprofHeapDemo.java:22)
TRACE 597:
 HprofHeapDemo.setByteArray(HprofHeapDemo.java:10)
 HprofHeapDemo.main(HprofHeapDemo.java:23)
TRACE 598:
 HprofHeapDemo.setString(HprofHeapDemo.java:14)
 HprofHeapDemo.main(HprofHeapDemo.java:24)
TRACE 599:
 HprofHeapDemo.setHprofHeapDemo(HprofHeapDemo.java:18)
 HprofHeapDemo.main(HprofHeapDemo.java:25)
...

Die Stacktraces geben an, wo im Code etwas passierte, und werden anhand ihrer
Nummern in den beiden folgenden Teilen referenziert. So findet man im Heap-Dump
bei jedem Objekt einen Verweis auf einen Stacktrace. Dieser gibt den genauen Allo-
kations-Ort an.

HEAP DUMP BEGIN (5485 objects, 931896 bytes)
...
OBJ 8aaf248 (sz=24, trace=596, class=HprofHeapDemo@8aaee08)
 internalDemoInstance 8aaf540
 byteArray 8aaf318
 string 8aaf458
ARR 8aaf318 (sz=1040, trace=597, nelems=1024, elem type=byte)
ARR 8aaf400 (sz=32, trace=598, nelems=10, elem type=char)
OBJ 8aaf458 (sz=24, trace=598, class=java.lang.String@838ea8)
 value 8aaf400
OBJ 8aaf540 (sz=24, trace=599, class=HprofHeapDemo@8aaee08)
CLS 8aaee08 (name=HprofHeapDemo, trace=594)
 super 838e48
 loader 8b7b68
 domain 8aabca8
...
HEAP DUMP END

Sandini Bib

56 4 Messwerkzeuge

So entnehmen wir dem Heap-Dump, dass Objekt 8aaf248 vom Typ HprofHeapDemo in
Stacktrace 596 allokiert wird. Trace 596 wiederum verweist auf Zeile 22 der main()-
Methode unserer Testklasse (Listing 4.1). Et voilà: In Zeile 22 wird ein HprofHeapDemo-
Objekt instanziiert.

Weiter entnehmen wir dem Dump, dass Objekt 8aaf248 genau 24 Byte belegt und drei
weitere Objekte mit den Namen internalDemoInstance, byteArray und string besitzt.
Anhand ihrer Ids können wir auch diese Objekte näher unter die Lupe nehmen.

Durch ein vorangestelltes ARR ist das Objekt 8aaf318 im Dump als Array gekennzeichnet.
Anhand der Id erkennen wir, dass es sich um den als byteArray bezeichneten byte-Array
handelt. Zusätzlich zum Speicherverbrauch sz (1040 Byte für einen 1024 Byte großen
Array) und Tracenummer erhalten wir Informationen darüber, wie viele Elemente die-
ser Array enthalten und welcher Elementtyp in ihm gespeichert werden kann.

Weiter stellen wir fest, dass in Trace 598, also der setString()-Methode, zwei Objekte
instanziiert werden: ein char-Array mit zehn Elementen sowie ein String-Objekt, wel-
ches den char-Array als value-Objekt besitzt.

Gleich darunter finden wir das internalDemoInstance-Objekt, das jedoch im Gegensatz
zu dem vorher gefundenen HprofHeapDemo-Objekt keinerlei andere Objekte besitzt. Das
ist auch nicht weiter verwunderlich, da keiner seiner Instanzvariablen während der
Ausführung ein Wert zugewiesen worden ist. Und schließlich ist da noch das durch ein
vorangestelltes CLS markiertes Klassenobjekt für unsere Testklasse.

Neben OBJ, ARR und CLS gibt es noch den Typ ROOT, jedoch keinen Typ für die primitiven
Datentypen wie int oder boolean. Diese sind implizit im Objekt enthalten und sofern es
sich um Instanzvariablen handelt, machen sie sich im Größen-Attribut sz bemerkbar.

Das alles scheint schön übersichtlich zu sein – ist es aber leider nicht. Der abgedruckte
Heap-Dump nämlich ist nur ein sehr kleiner Auszug aus dem tatsächlich erzeugten,
über 10.000 Zeilen langen Dump. Ganz schön viel für solch ein kleines Programm.

Damit Sie nicht völlig im Datenwust versinken, folgt dem Dump noch ein wesentlich
kürzerer Abschnitt namens Sites:

SITES BEGIN (ordered by live bytes)
 percent live alloc'ed stack class
 rank self accum bytes objs bytes objs trace name
...
 1 64.18% 64.18% 598112 157 598112 157 1 [I
 2 9.23% 73.41% 86008 798 86008 798 1 [C
...
 10 0.88% 90.23% 8208 1 8208 1 234 [B
 11 0.27% 90.50% 2496 104 2496 104 236 java.lang.String
 12 0.26% 90.76% 2464 35 2464 35 129 [C
 13 0.24% 91.00% 2248 1 2248 1 85 [B

Sandini Bib

Hprof 57

 14 0.18% 91.18% 1680 35 1680 35 131 java.util.HashMap
...
 19 0.11% 91.90% 1040 1 1040 1 597 [B
...
SITES END

Die Sites-Sektion listet die Objekttypen auf, die am meisten Speicher belegen. Die
Spalte self gibt dabei an, wie viel Prozent des Heaps durch Objekte des in der Spalte
classname angegebenen Typs belegt sind (Tabelle 4.2) und im angegebenen Trace allo-
ziert wurden. Die Spalte accum enthält die Summe aller Einträge aus der self-Spalte bis
zum aktuellen Rang.

Die Spalten live bytes und live objs geben an, wie viel Speicher zum Zeitpunkt des
Dumps durch wie viele Objekte belegt wurde. Demgegenüber geben die Spalten
alloc’ed bytes und alloc’ed objs an, wie viele Byte jemals durch wie viele Objekte des
angegebenen Typs belegt wurden. Das beinhaltet also auch all jene Objekte, die bereits
von der automatischen Speicherbereinigung eingesammelt wurden. In unserem Bei-
spiel sind die Werte jeweils gleich, da die Speicherbereinigung keines der instanziier-
ten Objekte beseitigen konnte.

Als einziges Objekt, das wir selbst erzeugt haben, finden wir unseren byte-Array auf
Rang 19 – erkennbar an der Trace-Nummer 597. Alle anderen Objekte waren zu klein,
um für die Auflistung im Sites-Abschnitt relevant zu sein, da die Liste automatisch bei
einem self-Wert kleiner als 0.0001% abgeschnitten wird. Sie können diesen Wert über
den Parameter cutoff (Tabelle 4.1) manipulieren.

Beachten Sie, dass in der Sites-Übersicht kein Unterschied zwischen Objekten und
Objekt-Arrays gemacht wird. So wird für einen Array von Strings genauso wie für ein
einzelnes String-Objekt der Typ java.lang.String aufgelistet. Der einzige Weg den

Symbol Bedeutung

[Z boolean-Array

[B byte-Array

[S short-Array

[C char-Array

[I int-Array

[J long-Array

[F float-Array

[D double-Array

[L<Unknown> zweidimensionaler Array

<Klassenname> Klasse oder Array einer Klasse (z.B. java.lang.String)

Tabelle 4.2: Typen, wie sie in der Sites-Sektion angegeben werden

Sandini Bib

58 4 Messwerkzeuge

Unterschied sicher zu erkennen, ist es, der Trace-Referenz zu folgen und im Heap-
Dump nachzuschauen, ob vor der Objekt-Id ein OBJ oder ein ARR steht. Primitive Daten-
typen werden übrigens genau wie im Heap-Dump gar nicht erst aufgelistet.

Zudem gibt es noch eine weitere Merkwürdigkeit. Die Summen der Spalten live bytes
und live objects stimmen beim besten Willen nicht mit den Zahlen in der Heap-
Dump-Begin-Zeile überein.

Zusammenfassend lässt sich sagen, dass den Heap zu inspizieren ein verlässliches Ver-
fahren zum Aufspüren und zum Beseitigen von Speicherlöchern (oder besser unbeab-
sichtigt referenzierten Objekten) ist. Leider ist die von Hprof generierte Textdatei nicht
besonders übersichtlich und wird häufig sehr groß. Um sich ein bisschen besser zurecht-
zufinden, können Sie beispielsweise die freien Werkzeuge HPjmeter von HP oder HAT
(Heap-Analysis-Tool) benutzen. HAT ist ein von Sun nicht unterstütztes, experimentel-
les Werkzeug, funktioniert nur mit der Binär-Ausgabe von Hprof und ist etwas
umständlich zu bedienen. HPjmeter hingegen ist ein kleines, recht komfortables Swing-
Programm, das auch für andere Zwecke als nur die Heap-Analyse brauchbar ist. Eben-
falls gratis ist der Win32 HeapInspector von Paul Moeller. HeapInspector benutzt aller-
dings nicht den Hprof-Profiler, sondern klinkt sich per JVMPI direkt in die VM ein.

Zu finden sind die drei Werkzeuge unter folgenden URLs:

� HPjmeter: http://www.hpjmeter.com/

� HAT: http://java.sun.com/people/billf/heap/index.html

� Win32 HeapInspector: http://www.geocities.com/moellep/debug/HeapInspector.html

4.2.2 CPU-Profiling

Hprof kann nicht nur zum Inspizieren des Heaps, sondern auch zum Analysieren des
Laufzeitverhaltens Ihres Programms benutzt werden. Dazu müssen Sie in der Kom-
mandozeile den Parameter cpu angeben. Sie haben die Wahl zwischen drei verschiede-
nen Profiling-Modi: samples, times und old.

Wir wollen uns die Ausgaben aller drei Optionen für die Testklasse HprofCPUDemo anse-
hen. Nach dem Start der Klasse werden 100.000 mal drei verschiedene Methoden auf-
gerufen, die jeweils leere Schleifen unterschiedlicher Länge enthalten. Wir erwarten,
dass der Laufzeitanteil der drei Methoden proportional zu ihrer Schleifenlänge ist. An
dieser Stelle sei erwähnt, dass weder jikes 1.15, Sun javac 1.3.1, Sun javac 1.4 noch IBM
javac 1.3.0 die leeren Schleifen wegoptimieren. Überhaupt optimieren Java-Compiler
so gut wie gar nicht, weshalb ihnen in diesem Buch auch kein Kapitel gewidmet ist.
Während der Ausführung erkennt zumindest IBMs JIT, dass es sich um leere Schleifen
handelt, und entfernt sie. Die Sun VMs scheinen dies nur mit der HotSpot-Server-Ver-
sion zu erkennen. Die folgenden Beispiel-Ergebnisse wurden daher mit Suns HotSpot-
Client-Version produziert.

Sandini Bib

Hprof 59

01 package com.tagtraum.perf.cpu;
02
03 public class HprofCPUDemo {
04
05 public void slowMethod() {
06 for (int i=0; i<20000; i++);
07 }
08
09 public void mediumMethod() {
10 for (int i=0; i<10000; i++);
11 }
12
13 public void fastMethod() {
14 for (int i=0; i<5000; i++);
15 }
16
17 public static void main(String[] args) {
18 HprofCPUDemo demoInstance = new HprofCPUDemo();
19 for (int i=0; i<100000; i++) {
20 demoInstance.slowMethod();
21 demoInstance.mediumMethod();
22 demoInstance.fastMethod();
23 }
24 }
25 }

Listing 4.2: Einfache Testklasse zur Illustration der verschiedenen CPU-Profiling-Modi

Stichproben

Das samples-Format unterscheidet sich von den beiden anderen Formaten insofern, als
es stichprobenbasiert ist. Das heißt, der Profiler schaut alle x Millisekunden nach, wel-
che Methode die VM gerade ausführt. Da sich das Stichprobenintervall nicht ändern
lässt, bedeutet dies auch, dass dieser Modus ungeeignet ist, wenn Ihr Programm nur
eine sehr kurze Laufzeit hat.

Um einen Einblick in das Format zu gewinnen, starten wir unserer Testklasse folgen-
dermaßen:

java –Xrunhprof:cpu=samples com.tagtraum.perf.cpu.HprofCPUDemo

Die resultierende Ausgabe enthält wiederum verschiedene Abschnitte. Neu ist die
Cpu-Samples-Sektion.

...
TRACE 8:
 HprofCPUDemo.fastMethod(HprofCPUDemo.java:14)
 HprofCPUDemo.main(HprofCPUDemo.java:22)
TRACE 7:

Sandini Bib

60 4 Messwerkzeuge

 HprofCPUDemo.slowMethod(HprofCPUDemo.java:6)
 HprofCPUDemo.main(HprofCPUDemo.java:20)
TRACE 6:
 HprofCPUDemo.mediumMethod(HprofCPUDemo.java:10)
 HprofCPUDemo.main(HprofCPUDemo.java:21)
...
CPU SAMPLES BEGIN (total = 174)
rank self accum count trace method
 1 54.02% 54.02% 94 7 HprofCPUDemo.slowMethod
 2 30.46% 84.48% 53 6 HprofCPUDemo.mediumMethod
 3 13.22% 97.70% 23 8 HprofCPUDemo.fastMethod
...
 6 0.57% 99.43% 1 3 java.io.InputStreamReader.<init>
 7 0.57% 100.00% 1 1 sun.misc.URLClassPath$2.run
CPU SAMPLES END

Der Ausgabe unseres Beispiels entnehmen wir, dass insgesamt 174 Stichproben
genommen wurden. Die Ergebnisse dieser Proben sind in einer Art Hitliste dargestellt.
Auf Rang eins finden wir die Methode slowMethod(). Zudem können wir der Spalte
count entnehmen, dass die VM während 94 der 174 Stichproben gerade diese Methode
ausführte. Das entspricht 54,02% aller genommenen Stichproben, einem Wert, der in
der Spalte self aufgelistet ist. In der accum-Spalte befindet sich die Summe aller gleich-
oder höherrangigen self-Werte. trace wiederum verweist auf den entsprechenden
Stacktrace und somit auf eine Zeile. Auf Rang zwei und drei der Liste finden wir
gleichartige Einträge für die Methoden mediumMethod() und fastMethod().

Qualitativ stimmt unsere Messung also mit unseren Erwartungen überein. Quantitativ
ist das Ergebnis jedoch nicht so gut. Gemäß Quellcode müsste slowMethod() für jede
Ausführung doppelt so lange benötigen wie mediumMethod() und fastMethod() halb so
lange wie mediumMethod(). Wenn wir uns jedoch die count-Werte angucken, stellen wir
fest, dass diese nicht allzu genau zu unseren Erwartungen passen. Ausgehend von
fastMethod()s 23 Counts erhalten wir für mediumMethod() 53 statt erwarteter 46 Counts.
Das ist eine Abweichung von über 15%.

Das heißt jedoch nicht, dass das Ergebnis unbrauchbar ist. Es illustriert lediglich, dass
es sich um Stichproben handelt, die gemäß dem Gesetz der großen Zahlen umso ver-
lässlicher werden, je mehr wir nehmen. Und 174 Stichproben sind nicht gerade über-
mäßig viele. Denken Sie außerdem daran, mit welchem Ziel Sie die Daten erheben. Es
geht hier nicht um Präzisionsmessungen, sondern in der Regel um Hinweise darauf,
welche Teile Ihres Programms Sie optimieren sollten. Relevant sind ohnehin nur die
ersten paar Plätze der Rangliste. Und hier sind wiederum die zugehörigen Stacktraces
äußerst interessant. Sie sagen Ihnen, welcher Code die besonders kritischen Methoden
aufruft. Das ist essentiell; denn eine Methode, die gar nicht erst ausgeführt werden
muss, ist wesentlich schneller als eine Methode, die optimiert wurde.

Sandini Bib

Hprof 61

Abbildung 4.2 verdeutlicht diesen Zusammenhang durch einen aus den Stacktraces
abgeleiteten Methodenaufruf-Graph. Er zeigt, dass die main()-Methode offensichtlich
mindestens so viel Rechenzeit in Anspruch nehmen muss wie die drei Arbeitsmetho-
den zusammen. Die main()-Methode ist jedoch in der Rangliste gar nicht aufgelistet.

Zur einfacheren Analyse der Rangliste samt ihrer Trace-Verweise können Sie das freie
Werkzeug PerfAnal von Nathan Meyers benutzen. Das bereits im Heap-Abschnitt
erwähnte HPjmeter erweist hier ebenfalls wertvolle Dienste.

� PerfAnal: http://developer.java.sun.com/developer/technicalArticles/Programming/perfa-
nal/

� HPjmeter: http://www.hpjmeter.com/

Absolute Zeiten

Die times-Ausgabe sagt Ihnen genau, wie viel Zeit die VM in welcher Methode ver-
bringt. Sie ist somit scheinbar viel präziser als das samples-Format. Scheinbar, da die
Zeiten durch das andauernde Messen natürlich auch viel mehr verfälscht werden als
durch gelegentliche Stichproben. Jedoch gibt es hier kein eindeutiges Besser oder
Schlechter. Letztlich ist es eine Frage des Geschmacks, welches Format für Sie nützli-
cher ist.

Wir wollen uns die Ausgabe für unsere Testklasse anschauen. Im times-Modus wird
die Klasse folgendermaßen gestartet:

java –Xrunhprof:cpu=times com.tagtraum.perf.cpu.HprofCPUDemo

Die Ergebnis-Ausgabe erfolgt wiederum durch Stacktraces und eine Rangliste.

TRACE 5:
 HprofCPUDemo.slowMethod(HprofCPUDemo.java:Unknown line)
 HprofCPUDemo.main(HprofCPUDemo.java:Unknown line)
TRACE 2:
 HprofCPUDemo.fastMethod(HprofCPUDemo.java:Unknown line)

Abbildung 4.2: Aus Stacktraces abgeleiteter Methodenaufruf-Graph

main()

slowMethod()

mediumMethod()

fastMethod()

Trace 7

Trace 6

Trace 8

Sandini Bib

62 4 Messwerkzeuge

 HprofCPUDemo.main(HprofCPUDemo.java:Unknown line)
TRACE 19:
 HprofCPUDemo.main(HprofCPUDemo.java:Unknown line)
TRACE 4:
 HprofCPUDemo.mediumMethod(HprofCPUDemo.java:Unknown line)
 HprofCPUDemo.main(HprofCPUDemo.java:Unknown line)
...
CPU TIME (ms) BEGIN (total = 17824)
rank self accum count trace method
 1 51.86% 51.86% 100000 5 HprofCPUDemo.slowMethod
 2 27.42% 79.28% 100000 4 HprofCPUDemo.mediumMethod
 3 15.22% 94.50% 100000 2 HprofCPUDemo.fastMethod
 4 4.66% 99.16% 1 19 HprofCPUDemo.main
 5 0.11% 99.27% 43 15 java.lang.String.toLowerCase
...
 18 0.06% 100.00% 2 7 java.io.Win32FileSystem.normalize
CPU TIME (ms) END

Die Rangliste ist geordnet nach der Zeit, die die VM in einer Methode verbringt, exklu-
sive aller Methodenaufrufe innerhalb dieser Methode. Dementsprechend ist die main()-
Methode auf Rang vier platziert und die Arbeitsmethoden (slowMethod(), mediumMe-
thod() und fastMethod()) nehmen die vorderen drei Plätze ein.

Die Spalte self repräsentiert den prozentualen Anteil der Laufzeit des Programms in
der jeweiligen Methode, accum ist wiederum die Summe aller self-Werte bis zum aktu-
ellen Rang und count gibt die absolute Anzahl an Aufrufen an.

Alte Zeiten

Das old-Format stammt noch aus alten JDK-1.1-Zeiten. Um diese Ausgabe zu erzeu-
gen, müssen wir unsere Testklasse folgendermaßen starten:

java –Xrunhprof:cpu=old com.tagtraum.perf.cpu.HprofCPUDemo

Aus Gründen der Rückwärtskompatibilität können Sie alternativ auch –prof als Argu-
ment angeben. Die Ausgabe erfolgt dann jedoch in die Datei java.prof anstelle von
java.hprof.txt:

java –prof com.tagtraum.perf.cpu.HprofCPUDemo

Das Format sieht völlig anders aus als die beiden anderen. Es gibt lediglich eine Sek-
tion, in der alle Methodenaufrufe nach Häufigkeit sortiert aufgelistet sind.

count callee
 caller time
100000 HprofCPUDemo.slowMethod()V
 HprofCPUDemo.main([Ljava/lang/String;)V 8542
100000 HprofCPUDemo.mediumMethod()V
 HprofCPUDemo.main([Ljava/lang/String;)V 4105

Sandini Bib

Hprof 63

100000 HprofCPUDemo.fastMethod()V
 HprofCPUDemo.main([Ljava/lang/String;)V 2473
750 java.util.jar.Attributes$Name.isValid(C)Z
 java.util.jar.Attributes$Name.isValid(Ljava/lang/String;)Z 20
750 java.lang.String.charAt(I)C
 java.util.jar.Attributes$Name.isValid(Ljava/lang/String;)Z 0
750 java.util.jar.Attributes$Name.isAlpha(C)Z
 java.util.jar.Attributes$Name.isValid(C)Z 0
...
1 com.tagtraum.perf.cpu.HprofCPUDemo.main([Ljava/lang/String;)V
 <unknown caller> 16053
...

Eine Zeile gibt jeweils an, wie häufig (count) eine Methode (callee) von einer anderen
Methode (caller) aufgerufen und wie viel Zeit in ms (time) dafür benötigt wurde.
Anders als im samples-Format versteht sich die Zeit hier inklusive aller Sub-Methoden-
aufrufe. Dementsprechend dauert der einzige Aufruf unserer main()-Methode
(16.053ms) etwas länger als die Summe der Werte der in main() aufgerufenen Metho-
den (insgesamt 15.120ms).

Das old-Format ist in seiner Auflistung ein wenig geschwätziger als die anderen For-
mate. So wird nicht nur der Methodenname angegeben. Zusätzlich werden auch die
Argument- und Rückgabetypen (Tabelle 4.3) aufgelistet.

Symbol Bedeutung

[<Typ> Eindimensionaler Array

L<Klassenname> Klasse (Ljava/lang/String steht beispielsweise für java.lang.String)

$<Klassenname> Innere Klasse

<init> Konstruktor

<clinit> Klassen-Initialisierer

Z boolean

B byte

S short

C char

I int

J long

F float

D double

V void

Tabelle 4.3: Im old-Format verwendete Symbole und ihre Bedeutung

Sandini Bib

64 4 Messwerkzeuge

Natürlich gibt es auch für das old-Format freie Anzeigeprogramme. Eines davon ist
ProfileViewer von Greg White und Ulf Dittmer.

� ProfileViewer: http://www.capital.net/~dittmer/profileviewer/index.html

4.2.3 Monitor-Information

Die Java-Plattform bietet dem Entwickler volle Unterstützung zur Verwendung von
Threads. Fluch und Segen liegen hier nahe beieinander. Wenngleich Threads viele
Probleme lösen, so schaffen sie auch einige. Das größte ist wohl die mit Threads ein-
hergehende Komplexität, die wiederum zu Wartungs- und Debug-Problemen führt.

Für uns sind insbesondere als synchronized markierte Blöcke von Interesse. Diese Blö-
cke werden von so genannten Monitoren vor der gleichzeitigen Ausführung durch
mehreren Threads geschützt. Gleich einem Staffelstab wird der Monitor eines synchro-
nisierten Blocks von Thread zu Thread gereicht, und nur der Thread, der den Monitor
besitzt, darf den Block ausführen.

Ein Monitor ist immer mit einem Objekt assoziiert. Wenn Sie zum Beispiel eine Klassen-
methode synchronisieren, so wird der Monitor des Klassenobjekts benutzt. Synchroni-
sieren Sie eine normale Methode, so wird der Monitor der Instanz (also der von this)
benutzt. Außerdem können Sie das Objekt, dessen Monitor einen synchronisierten Block
schützen soll, auch in Klammern hinter dem synchronized-Schlüsselwort angeben:

synchronized (monitorObject) {
 // mache etwas
}

Ein Objekt, das zum Synchronisieren von Threads benutzt wird, heißt auch Lock
(Schloss). Es ist quasi der Beschützer eines synchronisierten Blocks.

Jeder synchronisierte Block ist in einer multithreaded-Umgebung per Definition ein
Nadelöhr. Unter bestimmten Bedingungen kann die Ausführung des Programms
sogar ganz gestoppt werden (z.B. durch ein Deadlock). Es ist daher wichtig, herausfin-
den zu können, welcher Thread in einer bestimmten Situation gerade auf welchen
Monitor wartet.

01 package com.tagtraum.perf.monitor;
02
03 public class HprofMonitorDemo extends Thread {
04
05 private static class Lock extends Object {
06 };
07
08 private static Lock lock = new Lock();
09
10 public HprofMonitorDemo(int i) {

Sandini Bib

Hprof 65

11 super("HprofMonitorThread-" + i);
12 }
13
14 public void run() {
15 for (int i = 0; i < 1000; i++) {
16 obtainLockAndSleep();
17 }
18 }
19
20 private void obtainLockAndSleep() {
21 synchronized (lock) {
22 try {
23 Thread.sleep(100);
24 } catch (InterruptedException ie) {
25 ie.printStackTrace();
26 }
27 }
28 }
29
30 public static void main(String[] args) {
31 HprofMonitorDemo demoInstance0 = new HprofMonitorDemo(0);
32 HprofMonitorDemo demoInstance1 = new HprofMonitorDemo(1);
33 HprofMonitorDemo demoInstance2 = new HprofMonitorDemo(2);
34 demoInstance0.start();
35 demoInstance1.start();
36 demoInstance2.start();
37 }
38 }

Listing 4.3: Demo-Programm für den Monitor-Dump von Hprof

Genau dies können Sie erreichen, indem Sie die Hprof-Option monitor=y setzen. Zur
Illustration starten wir die Klasse HprofMonitorDemo aus Listing 4.3. Alle Instanzen von
HprofMonitorDemo sind Threads, die um ein gemeinsames Lock-Objekt konkurrieren
(Zeile 21) und sobald sie es besitzen, 100 ms warten (Zeile 23). Gestartet wird das
Programm folgendermaßen:

java –Xrunhprof:monitor=y,doe=n
 com.tagtraum.perf.monitor.HprofMonitorDemo

Um einen Schnappschuss der Konkurrenz-Situation einzufangen, erzeugen wir noch
zur Laufzeit einen Dump durch (Strg)(Pause) bzw. (Strg)(\). Als Ergebnis erhalten
wir in der Datei java.hprof.txt folgende Ausgabe:

...
THREAD START (obj=881960, id = 6, name="Thread-0", group="main")
THREAD START (obj=8a039f0, id = 7, name="HprofMonitorThread-0",
 group="main")
THREAD START (obj=8a03ae0, id = 8, name="HprofMonitorThread-1",

Sandini Bib

66 4 Messwerkzeuge

 group="main")
THREAD START (obj=8a03c08, id = 9, name="HprofMonitorThread-2",
 group="main")
...
MONITOR DUMP BEGIN
 MONITOR HprofMonitorDemo$Lock(8a03be8)
 owner: thread 8, entry count: 2
 waiting to enter: thread 9, thread 7
...
MONITOR DUMP END
...

Der erzeugte Monitor-Dump zeigt die Situation, dass Thread acht gerade den Monitor
HprofMonitorDemo$Lock(8a03be8) besitzt und zwei andere Threads ihn gerne besäßen
(entry count: 2). Die beiden wartenden Threads sind die Threads neun und sieben.
Aus dem oberen Teil der Ausgabe können wir schließen, dass der Thread mit der Id
neun dem Thread namens HprofMonitorThread-2 entspricht, Thread sieben HprofMoni-
torThread-0 und Thread acht HprofMonitorThread-1.

Vereinfacht heißt das: Je höher der Wert entry count, umso begehrter ist die synchroni-
sierte Ressource.

Lässt man die Testklasse ohne Unterbrechung durchlaufen, so erhält man zudem noch
die Sektion Monitor-Time:

MONITOR TIME BEGIN (total = 10 ms)
rank self accum count trace
 monitor
 1 100.00% 100.00% 1499 3
 HprofMonitorDemo$Lock(8a03be8) (Java)
MONITOR TIME END

Hierbei handelt es sich wiederum um eine Rangliste. Diesmal um eine mit den am häu-
figsten besetzten Monitoren. Wie nicht anders zu erwarten ist dies in unserem Beispiel
eine Instanz der Klasse HprofMonitorDemo$Lock. Die Spalte self gibt an, für wie viel Pro-
zent aller besetzter Monitore gerade der aufgelistete Monitor verantwortlich ist. accum ist
wiederum die Summe aller gleich- oder höherrangigen self-Werte. count gibt die Anzahl
der Stichproben an, während der dieser Monitor bereits besetzt war. trace verweist auf
die Methode, in der der Monitor aus der monitor-Spalte nicht erlangt werden konnte.

Während die monitor-Option sehr nützlich erscheint, so ist sie es tatsächlich nur
begrenzt. Insbesondere im Zusammenhang mit Swing sind Komplettabstürze häufig,
zusammen mit anderen Hprof-Optionen ist die monitor-Option fast gar nicht einsetzbar.

Verlässlicher hingegen ist der Thread-Dump, der auch ohne Hprof nach einem
(Strg)(Pause) bzw. (Strg)(\) in die Standardausgabe geschrieben wird. Dieser enthält
zwar keine statistischen, dafür aber andere wertvolle Informationen.

Sandini Bib

Hprof 67

Full thread dump:

"Thread-0" prio=5 tid=0x2345a0 nid=0x5f0
 waiting on monitor [0..0x6fb30]

"HprofMonitorThread-2" prio=5 tid=0x825a60 nid=0x498
 waiting on monitor [0x8e0f000..0x8e0fdbc]
 at java.lang.Thread.sleep(Native Method)
 at HprofMonitorDemo.obtainLockAndSleep
 (HprofMonitorDemo.java:23)
 at HprofMonitorDemo.run(HprofMonitorDemo.java:16)

"HprofMonitorThread-1" prio=5 tid=0x8258b0 nid=0x5f4
 waiting for monitor entry [0x8dcf000..0x8dcfdbc]
 at HprofMonitorDemo.obtainLockAndSleep
 (HprofMonitorDemo.java:23)
 at HprofMonitorDemo.run(HprofMonitorDemo.java:16)

"HprofMonitorThread-0" prio=5 tid=0x824e98 nid=0x66c
 waiting for monitor entry [0x8d8f000..0x8d8fdbc]
 at HprofMonitorDemo.obtainLockAndSleep
 (HprofMonitorDemo.java:23)
 at HprofMonitorDemo.run(HprofMonitorDemo.java:16)

"Signal Dispatcher" daemon prio=10 tid=0x800140 nid=0x588
 waiting on monitor [0..0]

"Finalizer" daemon prio=9 tid=0x8990e40 nid=0x668
 waiting on monitor [0x8c4f000..0x8c4fdbc]
 at java.lang.Object.wait(Native Method)
 at java.lang.ref.ReferenceQueue.remove(Unknown Source)
 at java.lang.ref.ReferenceQueue.remove(Unknown Source)
 at java.lang.ref.Finalizer$FinalizerThread.run
 (Unknown Source)

"Reference Handler" daemon prio=10 tid=0x89901e0 nid=0x34c
 waiting on monitor [0x8c0f000..0x8c0fdbc]
 at java.lang.Object.wait(Native Method)
 at java.lang.Object.wait(Unknown Source)
 at java.lang.ref.Reference$ReferenceHandler.run
 (Unknown Source)

"VM Thread" prio=5 tid=0x89fe128 nid=0x634 runnable

"VM Periodic Task Thread" prio=10 tid=0x7feea0 nid=0x5a4
 waiting on monitor

"Suspend Checker Thread" prio=10 tid=0x7ff7b8 nid=0x638 runnable

Sandini Bib

68 4 Messwerkzeuge

Der abgedruckte Dump zeigt alle Threads der laufenden VM. Hervorgehoben ist
jeweils der Status der drei HprofMonitorThreads. Während HprofMonitorThread-0 und
HprofMonitorThread-1 sich im so genannten Wait-Set befinden, d.h. darauf warten, den
Monitor [0x8dcf000..0x8dcfdbc] zu erlangen, besitzt HprofMonitorThread-2 zwar den
Monitor, wartet jedoch darauf, dass die 100 ms sleep()-Zeit verstreichen.

Hätten wir lock.wait(100) anstelle von Thread.sleep(100) aufgerufen, wäre übrigens die
Wahrscheinlichkeit sehr groß gewesen, dass keiner der drei Threads zum Zeitpunkt
des Thread-Dumps im Besitz des Monitors ist und alle auf den Monitor warten. Zur
Erinnerung: Beim Aufruf von object.wait() gibt der ausführende Thread alle Monitore
auf, beim Aufruf von Thread.sleep() hingegen behält und blockiert er sie.

Neben den Status waiting on monitor und waiting for monitor entry erscheint im Dump
zudem die Bezeichnung runnable für Threads, die nicht aus dem ein oder anderen
Grund blockiert sind. Außerdem finden wir allerlei nützliche Informationen wie zum
Beispiel, ob der Thread ein Daemon-Thread ist, welche Priorität er hat, wie seine
Objekt-Id lautet (tid) und von welchem Betriebssystemthread er ausgeführt wird (nid).

Threaddumps sind je nach VM und Betriebssystem leicht unterschiedlich. Der oben
abgebildete Dump stammt vom Sun JDK 1.3.1 und wurde unter Windows 2000 erzeugt.

Mehr zum Thema Threads finden Sie in Kapitel 9 Threads.

4.3 HotSpot-Profiling

Um Programme mit eingeschaltetem HotSpot zu messen, können Sie Suns Java-VM
mit der Option -Xprof starten. Der Aufruf unseres Beispielprogramms lautet folgender-
maßen:

java –Xprof com.tagtraum.perf.cpu.HprofCPUDemo

Beachten Sie, dass hierdurch nicht der Hprof-Profiler gestartet wird, sondern ein spezi-
eller HotSpot-Profiler. Die Ausgabe erfolgt auch nicht in eine Datei, sondern in den
Standard-Ausgabestrom und gliedert sich in mehrere Abschnitte. Jeder Thread hat
dabei seine eigene Sektion, eingeleitet jeweils durch die Zeile Flat profile of XX.XX
secs (YYYY total ticks): <Name des Threads>. Jede Thread-Sektion ist wiederum unter-
teilt in mehrere Subsektionen. Genau wie im samples-Modus von Hprof erfolgt das
Messen stichprobenbasiert. Eine Stichprobe entspricht hier jeweils einem tick.

Für unser Beispiel-Programm lautet die Ausgabe wie folgt:

Flat profile of 14.72 secs (1467 total ticks): main

 Interpreted + native Method
 0.2% 2 + 1 HprofCPUDemo.main

Sandini Bib

HotSpot-Profiling 69

 0.1% 2 + 0 HprofCPUDemo.mediumMethod
 0.1% 0 + 1
 java.security.AccessController.doPrivileged
 0.1% 0 + 1 java.util.jar.JarVerifier.<init>
 0.1% 0 + 1 java.io.BufferedReader.readLine
 0.1% 0 + 1 sun.security.provider.Sun$1.run
 0.1% 0 + 1 java.io.Win32FileSystem.getLength
 0.7% 4 + 6 Total interpreted

 Compiled + native Method
 54.1% 793 + 0 HprofCPUDemo.slowMethod
 30.9% 454 + 0 HprofCPUDemo.mediumMethod
 14.1% 207 + 0 HprofCPUDemo.fastMethod
 99.1% 1454 + 0 Total compiled

 Thread-local ticks:
 0.2% 3 Class loader

Global summary of 14.82 seconds:
100.0% 1477 Received ticks
 0.1% 2 Compilation
 0.2% 3 Class loader

Da wir implizit nur einen, nämlich den main-Thread starten, haben wir auch nur eine
threadspezifische Sektion, gefolgt von einer globalen Zusammenfassung aller genom-
menen Stichproben.

Der threadspezifische Abschnitt besteht aus mehreren Teilen: einem für Methoden, die
interpretiert wurden, einem für Ergebnisse von kompilierten Methoden sowie einem
threadspezifischen. Alle Teile bestehen aus vier Spalten. Die erste Spalte ist jeweils der
prozentuale Anteil einer Methode an der Gesamtlaufzeit des Threads, die zweite
Spalte enthält die Anzahl an Ticks, die im Java-Teil der Methode verbracht wurden,
und die dritte Spalte ist die Anzahl an Ticks, die in einer nativen Subroutine verbracht
wurden. Spalte vier schließlich beinhaltet den Namen der Methode.

Interessant für uns sind jeweils die Zeilen, die mit hohen Prozentzahlen beginnen. In
unserem Beispiel sind das insbesondere die ersten drei Zeilen des Compiled-Abschnitts.
Dort finden wir die drei Arbeitsmethoden unserer Beispielklasse wieder. Die Prozent-
zahlen entsprechen im Groben denen der self-Spalten im samples- und times-Format –
keine Überraschungen also.

Eine Eigenheit der -Xprof-Ausgabe ist es, dass für jeden Thread nur jene Abschnitte
ausgegeben werden, in denen auch tatsächlich etwas gemessen wurde. Während
unsere Beispiel-Klasse Ausgaben für kompilierte und interpretierte Methoden erzeugt,
fehlen die beiden optionalen Abschnitte Stub und Runtime.

Im Stub-Abschnitt werden die Aufrufe von JNI-Methoden zusammengefasst. Runtime
enthält die Stichproben, während der die VM mit sich selbst beschäftigt war.

Sandini Bib

70 4 Messwerkzeuge

Flat profile of 21.43 secs (2092 total ticks): main
...
 Stub + native Method
 9.7% 0 + 197 java.util.zip.ZipFile.getEntry
 6.3% 1 + 127 java.util.zip.ZipFile.read
 2.7% 0 + 55 java.util.zip.ZipFile.getNextEntry
 0.5% 0 + 11 java.lang.Throwable.fillInStackTrace
...
 19.8% 1 + 401 Total stub

 Runtime stub + native Method
 0.0% 1 + 0 interpreter_entries
 0.0% 1 + 0 Total runtime stubs
...

Aufgrund der fehlenden Stacktraces hat die Ausgabe des HotSpot-Profilers nur
begrenzten Wert. Es ist nicht ersichtlich, welche Methoden diejenigen Methoden auf-
rufen, in denen Ihr Programm die meiste Zeit verbringt. Es fehlen somit die Daten für
einen Methodenaufruf-Graph. Die Ausgabe kann daher lediglich als Startpunkt für
eine Analyse dienen, die auch die Daten aus Testläufen mit Hprof oder einem anderen
Profiler berücksichtigt. Verzichten Sie auf diese Analyse, optimieren Sie unter Umstän-
den eine Methode, die offensichtlich sehr häufig aufgerufen wird, ohne zu überprüfen,
ob diese Methode wirklich so häufig aufgerufen werden muss.

Abbildung 4.3: Jinsight von IBM alphaworks

Sandini Bib

Jinsight 71

4.4 Jinsight

Neben Hprof gibt es für die IBM VM noch einen freien Profiler namens Jinsight. Jin-
sight funktioniert genau wie der oben beschriebene Hprof, ist jedoch dank einer grafi-
schen Benutzeroberfläche einfacher zu bedienen. Wenn Sie ein IBM JDK verwenden,
lohnt es sich auf jeden Fall, einen Blick auf Jinsight zu werfen.

� Jinsight von alphaworks IBM: http://www.alphaworks.ibm.com/tech/jinsight

4.5 Mikro-Benchmarks

Zum Messen der Ausführungszeit einer bestimmten Methode können Sie anstelle
eines Profilers auch die Methode java.lang.System.currentTimeMillis() benutzen. Sie
eignet sich insbesondere für Mikro-Benchmarks. Der wohl beliebteste Performance-
Test mittels System.currentTimeMillis() sieht etwa so aus:

...
long start = System.currentTimeMillis();
int iterations = 10000;
for (int i=0; i<iterations; i++) {
 objectToTest.methodToTest();
}
long time = System.currentTimeMillis()-start;
System.out.println("Benötigte Zeit für "
 + iterations + " Iterationen: "
 + time + "ms");

Listing 4.4: Standard Mikro-Benchmark mit System.currentTimeMillis()

Wenn Sie solche Mikro-Benchmarks durchführen, behalten Sie folgende Punkte im
Hinterkopf:

� Der Aufruf von System.currentTimeMillis() benötigt selbst einige Millisekunden und
das Ergebnis ist nicht unbedingt auf die Millisekunde genau. Unter Windows NT/
2000 beträgt die Genauigkeit 10 ms, unter Windows 95 sogar nur 50 ms. Wählen Sie
daher für die Variable iterations einen Wert, der zu einer Gesamtlaufzeit führt, die
um Größenordnungen länger ist als die Genauigkeit von System.currentTimeMillis()
Ihrer Testplattform. Liegt die Laufzeit der Methode selbst im Milli- oder Hundertstel-
sekunden-Bereich, führt eine Laufzeit länger als fünf Sekunden in der Regel zu sinn-
vollen Ergebnissen. Bei langsameren Methoden sollten Sie die Laufzeit erhöhen, so
dass Sie die Methode wenigstens einige hundert Mal aufrufen.

� HotSpot ist unter Umständen nicht in der Lage, Code, der nicht in einer Extra-
Methode steht, beim ersten Lauf zu kompilieren. Rufen Sie daher Ihre Benchmark-
Methode zweimal auf.

Sandini Bib

72 4 Messwerkzeuge

4.6 Makro-Benchmarks

Sie können System.currentTimeMillis() natürlich genauso gut für Makro-Benchmarks
verwenden. Bei größeren Applikationen und insbesondere bei Webapplikation lohnt
es sich jedoch, auf vorhandene Werkzeuge zurückzugreifen. So können Sie beispiels-
weise die Performance einer Webanwendung mit Apache JMeter messen. JMeter ist ein
freies Werkzeug und eignet sich ferner für Stress-Tests von FTP-Servern sowie beliebi-
gen JDBC-Anfragen.

� Apache Jmeter: http://jakarta.apache.org/jmeter/index.html

Außerdem gibt es noch einige kommerzielle Werkzeuge zum Messen der Performance
eines Systems. Hier eine wertfreie Auswahl:

� Mercury Interactive LoadRunner: http://www.mercuryinteractive.com/products/loa-
drunner/

� Segue SilkPerformer: http://www.segue.com/html/s_solutions/s_performer/s_performer.
htm

� Empirix e-Load: http://www.empirix.com/

4.7 Performance Metriken

Oft ist es auch sinnvoll, Performancedaten über installierte Applikationen zu erheben
und zu analysieren. Dabei ist häufig nicht interessant, wie schnell eine einzelne
Methode ausgeführt werden konnte, sondern wie lange es dauerte, beispielsweise eine
Bestellung aufzunehmen.

Indem man Messpunkte in eine Applikation kodiert, kann man diese Daten relativ ein-
fach erheben. Natürlich ist dies auch über Logdateien möglich – die sind jedoch meist
sehr umständlich auszuwerten.

Unterstützung für Messpunkte wird vielleicht bald Bestandteil der Java-Plattform sein.
Es existiert bereits eine entsprechende Spezifikationsanforderung (http://www.jcp.org/
jsr/detail/138.jsp).

4.8 Speicher-Schnittstellen

Die Java-Klassenbibliothek bietet einige wenige Schnittstellen, um Informationen über
den Speicherverbrauch zu erhalten sowie im begrenzten Maße mit dem Garbage
Collector zu interagieren. Exakte Information über die Garbage Collection sind jedoch
nur über einen Kommandozeilen-Parameter der VM zu erhalten.

Sandini Bib

Speicher-Schnittstellen 73

4.8.1 Speicherverbrauch

Von Ihrem Programm aus können Sie feststellen, wie viele Byte der Heap groß ist und
wie viele davon noch frei sind. Die entsprechenden Methodenaufrufe lauten
Runtime.getRuntime().totalMemory() und Runtime.getRuntime().freeMemory(). Beide Grö-
ßen sind nicht-statisch und ändern sich mit der Zeit. Wenn Sie also den Speicherver-
brauch Ihrer Applikation protokollieren möchten, so können Sie einfach einen Thread
starten und periodisch die beiden Speicherwerte in eine Datei oder die Standardaus-
gabe schreiben. Der entsprechende Code dafür ist denkbar einfach (Listing 4.5). Seit
JDK 1.4 existiert zudem eine Methode Runtime.getRuntime().maxMemory(), die angibt, wie
viel Speicher die VM maximal beanspruchen wird.

package com.tagtraum.perf.memory;

public class MemoryWriter extends Thread {
 public MemoryWriter() {
 super("MemoryWriter");
 // damit die VM sauber heruntergefahren werden kann:
 setDaemon(true);
 System.out.println("Total\tFree");
 start();
 }

 public synchronized void run() {
 try {
 while (true) {
 System.out.println(Runtime.getRuntime().totalMemory()
 + "\t" + Runtime.getRuntime().freeMemory());
 wait(500);
 }
 } catch (InterruptedException ie) {
 ie.printStackTrace();
 }
 }
}

Listing 4.5: Einfacher MemoryWriter

Der MemoryWriter muss nur noch an geeigneter Stelle instanziiert werden – dazu bietet
sich beispielsweise die main()-Methode an. Alternativ können Sie auch einen Applika-
tionsstarter schreiben, der zunächst einen Thread zum Schreiben des Speicherzustan-
des startet und dann die main()-Methode einer beliebigen Java-Applikation aufruft.
MemViewer (Listing 4.6, Abbildung 4.4) ist ein solcher Applikationsstarter. Zum besseren
Verständnis des Quellcodes zeigt das Klassendiagramm in Abbildung 4.5 grob den sta-
tischen Aufbau von MemViewer.

Sandini Bib

74 4 Messwerkzeuge

MemViewer lässt sich mit einer simplen grafischen Oberfläche, einer textuellen Ausgabe
oder einem beliebigen Visualizer starten. Welcher Visualizer gestartet wird, hängt vom
ersten Argument ab, das Sie MemViewer beim Start übergeben. Da die Textausgabe sehr
viel einfacher ist als die GUI-Ausgabe, verfälscht sie das Messergebnis weniger. Dank
des simplen Formats (TSV) kann sie von einer handelsüblichen Tabellenkalkulation
importiert und in einem Diagramm visualisiert werden. Die GUI-Ausgabe hat jedoch
den Vorteil, dass Sie Ihnen direkt zur Laufzeit ein visuelles Feedback gibt.

Hier sind die möglichen Startparameter:

java com.tagtraum.perf.memviewer.MemViewer
 text[:file=<filename>]|gui|<visualizer classname>
 <main classname>

<main classname> steht dabei für die Haupt-Klasse der Applikation, die Sie starten wollen.

Abbildung 4.4: Typisches Sägezahnmuster des belegten Heap-Speichers

Abbildung 4.5: Klassendiagramm des MemViewers

MemViewer

AWTVisualizer

<<interface>>
Visualizer

TextualVisualizer

ThreadApplikation

führt
main(args)

aus

Sandini Bib

Speicher-Schnittstellen 75

package com.tagtraum.perf.memviewer;

import java.lang.reflect.Method;
import java.util.Properties;
import java.util.StringTokenizer;

//Hauptklasse des MemViewers.
public class MemViewer extends Thread {

 private Visualizer visualizer;
 private long interval = 1000;

 public MemViewer(String arg) throws Exception {
 StringTokenizer st = new StringTokenizer(arg, ":");
 String[] args = new String[st.countTokens() - 1];
 String type = st.nextToken();
 for (int i = 0; st.hasMoreTokens(); i++) {
 args[i] = st.nextToken();
 }
 Class visualizerClass = getVisualizerClass(type);
 visualizer = (Visualizer) visualizerClass.newInstance();
 visualizer.init(getProperties(args));
 }

 public synchronized void run() {
 while (true) {
 visualizer.showMemory(new MemState());
 try {
 wait(interval);
 } catch (InterruptedException ie) {
 ie.printStackTrace();
 }
 }
 }

 public static void main(String[] args) throws Exception {
 if (args.length < 2) usage();
 MemViewer memViewer = new MemViewer(args[0]);
 memViewer.setDaemon(true);
 memViewer.start();
 Method mainMethod = Class.forName(args[1]).getMethod("main",
 new Class[]{String[].class});
 String[] newArgs = new String[args.length - 1];
 System.arraycopy(args, 1, newArgs, 0, newArgs.length);
 mainMethod.invoke(null, new Object[]{newArgs});
 }

 public static void usage() {
 System.out.println("MemViewer");
 System.out.println("java "
 + "com.tagtraum.perf.memviewer.MemViewer "

Sandini Bib

76 4 Messwerkzeuge

 + "text[:file=<filename>]|gui|<visualizer classname> "
 + "<main classname>");
 System.exit(0);
 }

 private static Properties getProperties(String[] args) {
 Properties properties = new Properties();
 for (int i = 0; i < args.length; i++) {
 int index = args[i].indexOf('=');
 if (index != -1 && index < args[i].length() - 1) {
 properties.setProperty(args[i].substring(0,
 index).toLowerCase(), args[i].substring(index + 1));
 }
 }
 return properties;
 }

 private static Class getVisualizerClass(String type)
 throws ClassNotFoundException {
 Class visualizerClass;
 if (type.equals("text")) {
 visualizerClass = TextualVisualizer.class;
 } else if (type.equals("gui")) {
 visualizerClass = AWTVisualizer.class;
 } else {
 visualizerClass = Class.forName(type);
 }
 return visualizerClass;
 }

}

Listing 4.6: Klasse MemViewer

package com.tagtraum.perf.memviewer;

import java.util.Date;

//Schnappschuss des Speicherzustandes.
public class MemState {
 private long totalMemory;
 private long freeMemory;
 private long time;

 public MemState() {
 this.totalMemory = Runtime.getRuntime().totalMemory();
 this.freeMemory = Runtime.getRuntime().freeMemory();
 this.time = System.currentTimeMillis();
 }

Sandini Bib

Speicher-Schnittstellen 77

 public long getTotalMemory() {
 return totalMemory;
 }

 public long getFreeMemory() {
 return freeMemory;
 }

 public long getUsedMemory() {
 return totalMemory - freeMemory;
 }

 public long getUsedMemoryPercent() {
 return getUsedMemory() * 100 / getTotalMemory();
 }

 public long getFreeMemoryPercent() {
 return getFreeMemory() * 100 / getTotalMemory();
 }

 public long getTime() {
 return time;
 }

 public String toString() {
 return new Date(getTime()).toString()
 + ": Total: " + getTotalMemory()
 + ", Free: " + getFreeMemory()
 + " (" + getFreeMemoryPercent() + "%)"
 + ", Used: " + getUsedMemory()
 + " (" + getUsedMemoryPercent() + "%)";
 }
}

Listing 4.7: Die Klasse MemState bildet den Speicherzustand zu einem gegebenen Zeitpunkt ab.

package com.tagtraum.perf.memviewer;

import java.util.Properties;

// Visualizer Interface.
public interface Visualizer {
 public void init(Properties properties) throws Exception;
 public void showMemory(MemState memState);
}

Listing 4.8: Interface Visualizer

Sandini Bib

78 4 Messwerkzeuge

package com.tagtraum.perf.memviewer;

import java.io.FileWriter;
import java.io.PrintWriter;
import java.util.Date;
import java.util.Properties;

// TextualVizualizer schreibt den Speicherzustand in
// eine Datei oder die Standardausgabe.
public class TextualVisualizer implements Visualizer {

 private PrintWriter out;

 public void init(Properties properties) throws Exception {
 if (properties.containsKey("file")) {
 out = new PrintWriter(
 new FileWriter(properties.getProperty("file")));
 } else {
 out = new PrintWriter(System.out);
 }
 out.println("MemViewer - " + new Date());
 // drucke Tabellenkopf
 out.println("Time\tTotal\tFree\tFree%\tUsed\tUsed%");
 }

 public void showMemory(MemState memState) {
 out.print(memState.getTime());
 out.print('\t');
 out.print(memState.getTotalMemory());
 out.print('\t');
 out.print(memState.getFreeMemory());
 out.print('\t');
 out.print(memState.getFreeMemoryPercent());
 out.print('\t');
 out.print(memState.getUsedMemory());
 out.print('\t');
 out.println(memState.getUsedMemoryPercent());
 }
}

Listing 4.9: Klasse TextualVizualizer

package com.tagtraum.perf.memviewer;

import java.awt.*;
import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;
import java.text.NumberFormat;
import java.util.Properties;

// AWTVisualizer gibt den Speicherzustand in einem

Sandini Bib

Speicher-Schnittstellen 79

// AWT-Fenster aus. Es werden dabei jeweils die letzten 2048
// Einträge im Speicher gehalten.
public class AWTVisualizer extends Frame implements Visualizer {

 private MemStatesRingBuffer memStates;
 private long maxTotal;
 private double scaleFactor;
 private Polygon totalPolygon;
 private Polygon usedPolygon;
 private int currentFrameHeight;
 private NumberFormat numberFormat;

 public AWTVisualizer() {
 super("MemViewer");
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 hide();
 dispose();
 }
 });
 numberFormat = NumberFormat.getInstance();
 memStates = new MemStatesRingBuffer();
 totalPolygon = new Polygon();
 usedPolygon = new Polygon();
 setSize(450, 200);
 show();
 }

 public void init(Properties properties) {
 // wird nicht benutzt.
 }

 public void showMemory(MemState memState) {
 memStates.add(memState);
 update(getGraphics());
 }

 public void update(Graphics g) {
 if (memStates.getLast().getTotalMemory() > maxTotal
 || getHeight() != currentFrameHeight) {
 maxTotal = memStates.getLast().getTotalMemory();
 currentFrameHeight = getHeight();
 scaleFactor = (double)maxTotal/(double)currentFrameHeight;
 }
 computePolygons();
 super.update(g);
 }

 public void paint(Graphics g) {
 super.paint(g);
 g.setColor(Color.blue);

Sandini Bib

80 4 Messwerkzeuge

 g.fillPolygon(totalPolygon);
 g.setColor(Color.red);
 g.fillPolygon(usedPolygon);
 g.setColor(Color.black);
 String line = (numberFormat.format(memStates.getLast().
 getUsedMemory()/1024)) + "KB / " + (numberFormat.format(
 memStates.getLast().getTotalMemory()/1024)) + "KB";
 g.drawString(line, 10, currentFrameHeight - 10);
 setTitle("MemViewer - " + line);
 }

 private void computePolygons() {
 totalPolygon = new Polygon();
 usedPolygon = new Polygon();
 int x = 0;
 totalPolygon.addPoint(x, currentFrameHeight);
 usedPolygon.addPoint(x, currentFrameHeight);
 for (int i = Math.max(memStates.size() - getWidth(), 0);
 i < memStates.size(); i++, x++) {
 MemState memState = (MemState) memStates.get(i);
 totalPolygon.addPoint(
 x, scale(memState.getTotalMemory())
);
 usedPolygon.addPoint(x, scale(memState.getUsedMemory()));
 }
 totalPolygon.addPoint(x, currentFrameHeight);
 usedPolygon.addPoint(x, currentFrameHeight);
 }

 private int scale(long memory) {
 return currentFrameHeight-(int)((double)memory/scaleFactor);
 }

 // Private Datenstruktur, die jeweils die letzten 2048
 // Elemente hält.

 private static class MemStatesRingBuffer {
 private MemState[] buffer = new MemState[2048];
 private int last;
 private int first;

 public void add(MemState memState) {
 buffer[last] = memState;
 last = ++last % buffer.length;
 if (last == first) first = ++first % buffer.length;
 }

 public MemState get(int index) {
 if (index >= size() || index < 0)
 throw new IndexOutOfBoundsException("Index: "

Sandini Bib

Speicher-Schnittstellen 81

 + index + ", Size: " + size());
 return buffer[(first + index) % buffer.length];
 }

 public MemState getLast() {
 return get(size() - 1);
 }

 public int size() {
 if (first <= last) {
 return last - first;
 }
 return last + (buffer.length - first);
 }

 }
}

Listing 4.10: Klassen AWTVisualizer und MemStatesRingBuffer

4.8.2 Geschwätzige Garbage Collection

Insbesondere zum Optimieren der VM-Parameter von Server-Programmen ist es sinn-
voll, sich genauer anzuschauen, wann der Heap vom Garbage Collector aufgeräumt
wird. Die besten Daten dazu erhalten Sie, wenn Sie den Parameter –verbose:gc beim
Start Ihres Programms angeben.

java –verbose:gc <main classname>

Die Ausgabe erfolgt in die Standardausgabe und sieht für Sun JDK 1.3.1 wie folgt aus:

[GC 511K->223K(1984K), 0.0100300 secs]
[GC 979K->565K(1984K), 0.0090931 secs]
[GC 1073K->805K(1984K), 0.0209879 secs]
[GC 1150K->960K(1984K), 0.0134366 secs]
[Full GC 960K->898K(2076K), 0.1322406 secs]
[Full GC 898K->898K(2076K), 0.1231679 secs]
[GC 2273K->1864K(2940K), 0.0062519 secs]
...

Jede Zeile enthält Angaben über die Art der Speicherbereinigung (z.B. in der ersten
Zeile: GC), den belegten Speicher (511K) vor und nach der Speicherbereinigung (223K),
die Größe des Heaps (1984K) sowie die Dauer der Speicherbereinigung (0.0100300 secs).

In Suns JDK 1.4 gibt es zudem die Option –Xloggc:<file>, die dafür sorgt, dass die Aus-
gabe in eine Datei geschrieben wird:

java –Xloggc:gc.txt <main classname>

Sandini Bib

82 4 Messwerkzeuge

Das Format gleicht dem oben beschriebenen Format, bis auf den Punkt, dass in der ers-
ten Spalte jeweils ein Zeitstempel steht.

2.23492e-006: [GC 1087K->462K(16320K), 0.0154134 secs]
3.42373: [GC 1550K->654K(16320K), 0.0122571 secs]
5.32063: [GC 1736K->957K(16320K), 0.0148594 secs]
7.01177: [GC 2044K->980K(16320K), 0.0083648 secs]
8.59185: [GC 2068K->1012K(16320K), 0.0066291 secs]
9.96373: [Full GC 1696K->1028K(16320K), 0.1462759 secs]
12.2401: [GC 2052K->1148K(16320K), 0.0122527 secs]
12.6752: [GC 2167K->1300K(16320K), 0.0085760 secs]
...

Die Sun-JDK-1.3.x und JDK-1.4 verfügen jeweils über einen Generationen-Kollektor.
Daher gibt es kleine (GC) und vollständige (Full GC) Speicherbereinigungen. Während
der kleinen Speicherbereinigung wird nur der Teil des Heaps aufgeräumt, der für
junge Objekte reserviert ist. Dies erfolgt in der Regel sehr viel häufiger und schneller
als eine vollständige Bereinigung. Wenn Sie den eingebauten inkrementellen Garbage
Collector benutzen, werden Sie zudem viele Inc GC-Einträge finden.

Auch zum Anzeigen der Garbage-Collection-Daten existieren Werkzeuge. Eines ist der
von mir geschriebene GCViewer.

� GCViewer: http://www.tagtraum.com/

Abbildung 4.6: GCViewer visualisiert die Garbage Collector-Aktivität.

Sandini Bib

Speicher-Schnittstellen 83

4.8.3 Manuelle Speicherbereinigung

Um aus Ihrem Programm heraus die Garbage Collection anzustoßen, können Sie die
Methode System.gc() aufrufen. Dies garantiert jedoch nicht, dass tatsächlich der Speicher
aufgeräumt wird. Der Methodenaufruf wird vom Garbage Collector lediglich als Hin-
weis darauf verstanden, dass gerade ein günstiger Moment zum Aufräumen ist.

Grundsätzlich ist vom Aufruf von System.gc() jedoch abzuraten, da er zu einer voll-
ständigen Speicherbereinigung führen kann, die unter Umständen unnötig ist und zu
einer verhältnismäßig langen Pause der Ausführung des Programms führen kann.

Auf Sun JDK 1.3.1/1.4.0-Systemen lässt sich die explizite Garbage Collection mit dem
nicht offiziell unterstützen VM-Parameter -XX:+DisableExplicitGC ausschalten. Dies
kann jedoch bei Systemen, die RMI und dessen verteilten Garbage Collector (DGC)
benutzen, zu Problemen führen, da dieser von expliziter Garbage Collection Gebrauch
macht. Siehe Kapitel 11.3 Verteilte Speicherbereinigung.

Sandini Bib

Sandini Bib

5 Zeichenketten

In Java werden Zeichenketten üblicherweise als java.lang.String-Objekte repräsentiert
und String-Manipulationen scheinen denkbar einfach. Bietet doch die String-Klasse so
komfortable Methoden wie substring() zum Erstellen eines Teilstrings oder trim() zum
Beseitigen von unerwünschten Leerzeichen (genauer: Whitespace). All diese Metho-
den – es sind noch einige mehr – geben jeweils ein String-Objekt zurück. Nun ist
jedoch jedes Objekt der Klasse String unveränderbar (immutable). Bei jedem zurückgege-
benen String-Objekt handelt es sich also um ein neues Objekt.

Das Erzeugen von Objekten ist nicht ganz billig. Speicher muss alloziert und sämtliche
Konstruktoren müssen ausgeführt werden. Mit anderen Worten: Wenn wir nicht unbe-
dingt müssen, würden wir es gerne vermeiden. Aus diesem Grund verfügt Java über
eine zweite Klasse, die explizit zur Manipulation von Zeichenketten gedacht ist:
java.lang.StringBuffer.

5.1 Strings einfügen

Die wichtigsten StringBuffer-Methoden heißen append(), insert() und substring(). Sie
ermöglichen das Anfügen und Einfügen von Zeichen oder Zeichenketten sowie das
Erstellen von Teilstrings. Im Folgenden wollen wir den Code zum Einfügen eines
Strings in einen anderen untersuchen. Zunächst die reine String-Variante:

String halloWelt = "Hallo Welt ";
String weite = "weite ";
String hallo = halloWelt.substring(0, 7);
String welt = halloWelt.substring(7);
String halloWeiteWelt = hallo.concat(weite).concat(welt);

Das Einfügen von Zeichenketten ist nicht nur vergleichsweise kompliziert, es kostet
auch Speicher und Rechenzeit. Jeder Aufruf von substring() führt zu einem neuen
Objekt, Gleiches gilt für concat(). Macht vier neue Objekte plus das halloWelt-Objekt
und das weite-Objekt, insgesamt also sechs Objekte.

Sandini Bib

86 5 Zeichenketten

Mit der StringBuffer-Klasse sieht das etwas anders aus:

String halloWelt = "Hallo Welt ";
String weite = "weite ";
StringBuffer stringBuffer = new StringBuffer(halloWelt);
stringBuffer.insert(7, weite);
String halloWeiteWelt = stringBuffer.toString();

Wir benötigen nur vier Objekte.

In der String-Version hätten wir auch den +-Operator anstelle von concat() benutzen
können. Der entsprechende Code sähe folgendermaßen aus:

String halloWelt = "Hallo Welt ";
String weite = "weite ";
String hallo = halloWelt.substring(0, 7);
String welt = halloWelt.substring(7);
String halloWeiteWelt = hallo + weite +welt;

Um die drei Varianten zu vergleichen, habe ich sie viele Male in einer Schleife ausge-
führt, die Zeit gemessen und normalisiert. Wie Tabelle 5.1 zeigt, ist die StringBuffer-
Variante tatsächlich die schnellste, gefolgt von der String-Variante mit concat(). Das
Schlusslicht ist die Variante mit dem +-Operator.

Warum, fragen Sie sich vielleicht, ist die +-Variante so langsam? Die Antwort steht im
Bytecode. Wenn Sie den Quellcode übersetzen und anschließend wieder dekompilie-
ren, können Sie herausfinden, wie der Compiler mit dem +-Operator verfährt. Der
dekompilierte Code sieht so aus:

String halloWelt = "Hallo Welt ";
String weite = "weite ";
String hallo = halloWelt.substring(0, 7);
String welt = halloWelt.substring(7);
String halloWeiteWelt
 = new StringBuffer(hallo).append(weite).append(welt).toString();

Der Compiler sorgt also dafür, dass die StringBuffer-Klasse anstelle von concat() benutzt
wird. So ist es übrigens auch in der Sprachspezifikation vorgesehen [Gosling00,
§15.18.1.2]. Dies scheint jedoch in unserem Beispiel zu noch größerem Aufwand und
somit zu einer noch schlechteren Zeit zu führen.

String-Variante StringBuffer-Variante String-Variante mit +

100% 75,6% 120,3%

Tabelle 5.1: Relative Geschwindigkeit verschiedener Varianten zum Einfügen von Strings in Strings

Sandini Bib

Strings anfügen 87

Bleibt festzuhalten:

Das Einfügen in Strings erfolgt am besten mit StringBuffer.

5.2 Strings anfügen

Nun ist Anfügen gegenüber Einfügen etwas simpler. Wir wollen die oben vorgestellten
drei Varianten auf dieselbe Weise untersuchen. Hier die drei entsprechenden Code-
Stücke:

// concat()
String s = "";
for (int i=0; i<1000; i++) {
 s = s.concat("aString");
}

// StringBuffer
StringBuffer sb = new StringBuffer();
for (int i=0; i<1000; i++) {
 sb.append("aString");
}

// +-Operator
String s = "";
for (int i=0; i<1000; i++) {
 s += "aString";
}

Zusätzlich wollen wir noch testen, wie sich der StringBuffer verhält, wenn wir ihn mit
der erwarteten endgültigen Größe vorinitialisieren. Hier die entsprechende Methode:

// initialisierter StringBuffer
StringBuffer sb = new StringBuffer(7000);
for (int i=0; i<1000; i++) {
 sb.append("aString");
}

Das Ergebnis ist eindeutig:

Wenn Sie wiederholt Strings an einen anderen String anfügen, macht sich der StringBuffer
bezahlt – insbesondere dann, wenn Sie ihn mit der zu erwartenden Größe vorinitialisieren.

concat() StringBuffer Passend initialisierter StringBuffer +-Operator

100% 1,0% 0,7% 289,1%

Tabelle 5.2: Tausendfaches Anfügen einer Zeichenkette

Sandini Bib

88 5 Zeichenketten

Am schlechtesten schneidet der +-Operator ab. Zwischen dem passend initialisierten
StringBuffer und dem +-Operator liegt ein Faktor größer 400.

Der Grund liegt wiederum in der Übersetzung durch den Compiler. Er generiert fol-
genden Code:

// Dekompilat
String s = "";
for (int i=0; i<1000; i++) {
 s = new StringBuffer(s)
 .append("aString").toString();
}

Dadurch wird in jedem Schleifendurchlauf je ein zusätzliches StringBuffer-Objekt
erzeugt. Zudem ist der Aufruf von toString() offensichtlich nicht ganz billig.

Zugegeben, der hier dargestellte Mikro-Benchmark ist maßgeschneidert für den
StringBuffer. Er brilliert besonders, wenn häufig append() und selten toString() aufge-
rufen wird, wie es in obigem Test der Fall ist.

Etwas anders sieht es aus, wenn wir den Test ein wenig modifizieren. Anstatt immer
denselben String anzufügen, fügen wir die aktuelle Zeichenkette an sich selbst an.

// concat()
String s = "aString";
for (int i=0; i<10; i++) {
 s = s.concat(s);
}

// initialisierter StringBuffer
StringBuffer sb = new StringBuffer(7168);
sb.append("aString");
for (int i=0; i<10; i++) {
 sb.append(sb.toString());
}
sb.toString();

// StringBuffer
StringBuffer sb = new StringBuffer("aString");
for (int i=0; i<10; i++) {
 sb.append(sb.toString());
}
sb.toString();

// +-Operator
String s = "aString";
for (int i=0; i<10; i++) {
 s += s;
}

Sandini Bib

Strings anfügen 89

In diesem Test ist die StringBuffer-Variante etwa genauso schnell wie die +-Operator-
Variante. Beide sind langsamer als die concat()-Version, die wiederum nur halb so
schnell ist wie der passend initialisierte StringBuffer.

Der Grund für den Geschwindigkeitsvorteil des vorinitialisierten StringBuffers liegt
darin, dass dieser nie seine Kapazität vergrößern muss. Der nicht initialisierte String-
Buffer hingegen muss intern ständig neue, größere char-Arrays anlegen und deren
Inhalt hin- und herkopieren. Das liegt daran, dass StringBuffer genau wie String
intern einen char-Array benutzt, um die einzelnen Zeichen zu speichern. Die Größe
von Arrays lässt sich jedoch nicht im Nachhinein ändern. Wenn die Kapazitätsgrenze
erreicht ist, muss ein neuer, größerer Array angelegt und der Inhalt des alten Arrays
in den neuen kopiert werden. Der neue Array hat dabei übrigens mindestens die
zweifache Länge des alten Arrays plus zwei.

Benutzen Sie also StringBuffer zum Anfügen von Strings, wenn Sie mehrere Strings
anfügen wollen und die entsprechende Methode häufig aufgerufen wird. Initialisieren
Sie außerdem den StringBuffer mit einer angemessenen Kapazität – voreingestellt ist
16. Wenn Sie den StringBuffer(String s)-Konstruktor verwenden, wird zur Länge des
Strings 16 addiert und dies als initiale Länge des internen char-Arrays gesetzt.

Wenn Sie jedoch in einer einzelnen, nur einmal ausgeführten Zeile ein paar Strings
aneinander fügen wollen, lohnt es sich nicht, explizit einen StringBuffer zu benutzen.
Dies erledigt in der Regel der Compiler für Sie. Zudem ist das Verwenden des +-Opera-
tors wesentlich einfacher und führt zu besser lesbarem Code.

Insbesondere, wenn Sie String-Literale aneinander reihen wollen, sind StringBuffer
eher kontraproduktiv. Kommen Sie also nicht auf die Idee, Folgendes:

String s = new StringBuffer(19).append("zero ").append("one ")
 .append("two ").append("three ").toString()

sei schneller als dies:

String s = "zero " + "one " + "two " + "three ";

Der Compiler ist in der Lage, zu erkennen, dass Sie String-Literale miteinander verket-
ten, und führt die Verkettung bereits vor der Übersetzung durch (Constant Folding). In
Bytecode übersetzt wird also tatsächlich:

String s = "zero one two three ";

concat() StringBuffer Passend initialisierter StringBuffer +-Operator

100% 160,9% 50,6% 154,3%

Tabelle 5.3: Wiederholtes Duplizieren und Anhängen einer Zeichenkette

Sandini Bib

90 5 Zeichenketten

Und das ist kaum zu optimieren. Essentiell ist jedoch, dass die Verkettung in einer Zeile
bzw. genauer einem Ausdruck steht.

String s = "zero ";
s += "one ";
s += "two ";
s += "three ";

Obiger Code resultiert in folgender, offensichtlich ungünstiger Übersetzung:

String s = "zero ";
s = new StringBuffer(s).append("one ").toString();
s = new StringBuffer(s).append("two ").toString();
s = new StringBuffer(s).append("three ").toString();

Vermeiden Sie also auf mehrere Zeilen verteilte +=-Operationen.

5.3 Bedingtes Erstellen von Strings

Es liegt in der Natur von Strings, dass sie meist für Ausgaben benutzt werden. Eine
prominente Anwendung ist das Schreiben von Meldungen in eine Protokolldatei. Häu-
fig lässt sich die Anzahl oder Detailliertheit der Meldungen durch einen Parameter
verändern. Dies ist das so genannte Loglevel. Hier ein Beispiel:

01 public class ConditionalStringManipulationDemo {
02
03 private int logLevel = 2;
04
05 public static void main(String[] args) {
06 new ConditionalStringManipulationDemo().doIt();
07 }
08
09 public void doIt() {
10 // logge das jetzige Datum mit Loglevel 1
11 log("Datum: " + new java.util.Date().toString(), 1);
12 }
13
14 public void log(String message, int logLevel) {
15 // sofern das Loglevel hoch genug ist,
16 // wird die Nachricht ausgegeben
17 if (logLevel > this.logLevel) {
18 System.out.println(message);
19 }
20 }
21 }

Sandini Bib

Bedingtes Erstellen von Strings 91

Wenn Sie das Programm starten, werden Sie keine Ausgabe sehen. Das Loglevel steht
auf zwei (Zeile 2) und die Methode log() wird mit Loglevel eins aufgerufen (Zeile 11).
Die übergebene Nachricht wird also nicht geloggt. Der entsprechende String "Datum: "
+ new java.util.Date().toString() wird aber trotzdem erstellt, da sein Wert vor der
Übergabe zur log()-Methode berechnet wird. Obwohl das Programm also die Mel-
dung nicht ausgibt, wird sie erstellt – und, nebenbei bemerkt, einen Datumsstring auf
diese Weise zu erstellen, ist nicht gerade billig.

Besser wäre es also, wenn wir vor dem Erstellen überprüften, ob wir die Nachricht
auch tatsächlich ausgeben wollen. Dies könnte mittels einer Methode isLog() (Zeilen
14-16) geschehen. Der Code sähe folgendermaßen aus:

01 public class ConditionalStringManipulationDemo2 {
02
03 private int logLevel = 2;
04
05 public static void main(String[] args) {
06 new ConditionalStringManipulationDemo2().doIt();
07 }
08
09 public void doIt() {
10 // überprüfe mit isLog(), ob überhaupt geloggt werden soll
11 if (isLog(1)) log("Datum: " + new java.util.Date());
12 }
13
14 public boolean isLog(int logLevel) {
15 return logLevel > this.logLevel;
16 }
17
18 public void log(String message) {
19 System.out.println(message);
20 }
21 }

Tabelle 5.4 zeigt den enormen Geschwindigkeitsunterschied zwischen beiden Varian-
ten. Tatsächlich war es schwierig, überhaupt sinnvolle Messergebnisse zu erhalten, da
der Unterschied so groß ist.

Wenn Sie können, vermeiden Sie also das Erzeugen von Strings. Ausgerechnet Proto-
kollmeldungen zur Fehlersuche, die im Normalbetrieb noch nicht einmal ausgegeben
werden, sollten nicht der Grund sein, warum Ihre Applikation zu langsam läuft.

ohne isLog() mit isLog()

100% 0,2%

Tabelle 5.4: Die Variante mit isLog() ist um den Faktor 500 schneller.

Sandini Bib

92 5 Zeichenketten

Gängige Logging-Frameworks wie das bewährte, freie Log4J und das java.util.
logging-Paket (seit JDK 1.4) verfügen über entsprechende Methoden, die testen, ob eine
Nachricht überhaupt geloggt würde. Im Falle des java.util.logging-APIs ist dies die
Methode java.util.logging.Logger.isLoggable(). Im Falle von Log4j heißt die Methode
org.apache.log4j.Logger.isEnabledFor(). Zusätzlich gibt es noch spezielle Methoden für
diverse Loglevel.

� Jakarta Log4J: http://jakarta.apache.org/log4j/

5.4 Stringvergleiche

Sicherlich haben auch Sie am Anfang Ihrer Java-Karriere schmerzlich herausfinden
müssen, dass Stringvergleiche mit dem ==-Operator nicht immer zum gewünschten
Ergebnis führen. Strings selben Inhalts sind leider nicht immer auch dieselben Objekte,
sondern allenfalls gleich. Hier zwei Beispiele:

if (new StringBuffer("string").toString() == "string") {
 System.out.println("Diese Zeile wird nie ausgegeben werden.");
}

Die toString()-Methode des StringBuffers erstellt ein neues String-Objekt, das zwar
semantisch gleich, jedoch nicht identisch mit dem Literal "string" ist. Ebenso verhält es
sich im folgenden Beispiel:

if (new String("string") == "string") {
 System.out.println("Diese Zeile wird nie ausgegeben werden.");
}

Der hier verwendete String-Konstruktor erzeugt ein neues String-Objekt, das wiederum
inhaltlich dem String-Literal gleicht, jedoch nicht mit ihm identisch ist. Ein solcher Kon-
struktor wird auch kopierender Konstruktor (Copy Constructor) genannt, da er eine Kopie
des Objekts anlegt. Im Fall von String-Objekten ist dies gewöhnlich reine Ressourcenver-
schwendung. Statt eines Objekts haben Sie auf einmal zwei, die sich zudem nur höchst
ineffizient miteinander vergleichen lassen; denn gewöhnlich läuft der Vergleich von
Strings über die equals()-Methode. Sie überprüft zunächst, ob es sich um dieselben
Instanzen handelt (Objekt-Identität), dann, ob die Länge die gleiche ist, und schließlich,
ob alle Zeichen gleich sind (semantische Gleichheit). Offensichtlich ist der Vergleich am
schnellsten, wenn Sie identische Objekte miteinander vergleichen (konstante Laufzeit –
zur Klassifizierung von Algorithmen siehe auch Kapitel 8.1 Groß-O-Notation), und am
langsamsten, wenn Sie inhaltlich gleiche, aber nicht identische Strings vergleichen (line-
are Laufzeit). Genau Letzteres trifft für Objekte zu, die mit dem kopierenden Konstruk-
tor erstellt wurden:

// Tun Sie dies nicht! Lineare Laufzeit!
new String("string").equals("string");

Sandini Bib

Stringvergleiche 93

Zeichenweise Stringvergleiche und somit lineare Laufzeit sind jedoch häufig, wenn Sie
Strings erst zur Laufzeit konstruieren. Dieser aufwändige Vergleich lässt sich vermei-
den, da jede Java VM einen Stringkonstantenpool unterhält, in dem jeweils eine ein-
deutige Instanz eines Strings gespeichert ist.

Es befinden sich garantiert alle String-Literale im Konstantenpool. Daher gilt immer:

String a = "string";
String b = "string";
if (a==b) {
 // Wird garantiert ausgegeben:
 System.out.println("Die Objekte sind identisch.");
}

Praktisch ist diese Tatsache zum Beispiel in der Swing-Programmierung:

public SwingExample implements ActionListener {

...

 public void setUpMenuBar() {
 ...
 JMenuItem item = new JMenuItem("Open");
 // setzt das eindeutige Literal "open" als Kommando
 item.setActionCommand("open");
 item.addActionListener(this);
 ...
 }

 // Wird aufgerufen, wenn der Menüeintrag "Open" angeklickt wird
 public void actionPerformed(ActionEvent e) {
 // der Vergleich ist korrekt, da wir mit dem Literal
 // und somit mit derselben Instanz vergleichen
 if (e.getActionCommand() == "open") {
 ...
 }
 }
}

Wenn Sie nicht nur mit Literalen arbeiten, können Sie die intern()-Methode des String-
Objekts verwenden, um eine Referenz auf die eindeutige String-Instanz aus dem Pool
zu erlangen. Beispiel:

String a = "string";
String b = new String("string");
if (a==b) {
 System.out.println("Diese Zeile wird nie ausgegeben.");
}
if (a==b.intern()) {
 System.out.println("a und b.intern() sind identisch.");
}

Sandini Bib

94 5 Zeichenketten

Nun werden Sie sich vermutlich fragen, warum man nicht immer mittels intern()auf
Objektidentität vergleicht, anstatt die equals()-Methode zu verwenden. Oder, warum
die equals()-Methode nicht intern() verwendet. Nun, intern() hat zwar konstante
Laufzeit1, diese ist aber meist höher als die im schlechtesten Fall lineare Laufzeit von
equals(). Wir wollen verschiedene Fälle vergleichen. Hier Fragmente des entsprechen-
den Testcodes:

private String a = "0123456789";
private String b = new String("0123456789");
private String c = "9012345678";
private String d = "d";
// Alle Schleifen werden vielfach ausgeführt, dabei wird
// innerIterations von 1 bis 10 gesteigert
private int innerIterations;
...
// Gleiche, nicht-identische Strings
for (int i = 0; i < innerIterations; i++) a.equals(b);

// Verschiedene Strings gleicher Länge
for (int i = 0; i < innerIterations; i++) a.equals(c);

// Unterschiedliche Länge
for (int i = 0; i < innerIterations; i++) a.equals(d);

// Gleiche Strings verglichen mit intern()
String e = b.intern();
for (int i = 0; i < innerIterations; i++) a.equals(e);

Abbildung 5.1 zeigt die relative Laufzeit der verschiedenen Stringvergleiche. Es wur-
den pro Reihe jeweils bis zu zehn Vergleiche durchgeführt. Bei dem Vergleich mit
intern() wurde jedoch pro Reihe nur einmal intern() aufgerufen. Wie nicht anders zu
erwarten steigen alle Werte nahezu linear mit der Anzahl der Vergleiche. Jedoch sind
die Steigungen (Tabelle 5.5) sehr unterschiedlich.

1 Zumindest ist das für die Sun JDKs der Fall.

Unterschied-
liche Länge

Verschiedene
Strings gleicher
Länge

Gleiche
Strings mit
intern()

Gleiche,
nichtidentische
Strings

Steigung 2,3 6,7 1,6 28,4

Rechnerischer
Schnittpunkt mit der
intern()-Variante

134,8 18,7 - 3,6

Tabelle 5.5: Steigung der Ausführungszeit in Abhängigkeit von der Anzahl der Vergleiche sowie die Mindestanzahl
an Vergleichen, die zu einer längeren Laufzeit führen als die intern()-Variante.

Sandini Bib

Groß- und Kleinschreibung 95

Aus den Daten folgt, dass sich der relativ teure Aufruf von intern() lohnt, wenn Sie
Strings pro intern()-Aufruf häufig genug vergleichen und unter den verglichenen
Strings möglichst viele gleiche, nicht-identische Strings sind. Wenn Sie jedoch nicht
besonders häufig vergleichen und die verglichenen Strings meist auch noch unter-
schiedliche Längen haben, lohnt sich intern() eher nicht.

Bedenken Sie zudem, dass die Ausführungsgeschwindigkeit von intern() stark von der
Implementierung der VM abhängt, da es sich um eine native Methode handelt. Die oben
genannten Werte haben also lediglich Beispielcharakter.

5.5 Groß- und Kleinschreibung

Etwas aufwändiger ist der Stringvergleich, wenn Sie Groß- und Kleinschreibung igno-
rieren wollen. Grundsätzlich gibt es dazu drei Strategien:

� Sie benutzen die String-Methode equalsIgnoreCase().

� Sie konvertieren beide Strings mittels toLowerCase() oder toUpperCase() in Groß-
bzw. Kleinbuchstaben und vergleichen mit equals().

� Sie benutzen einen java.text.Collator bzw. java.text.CollationsKeys zum Vergleich.

Abbildung 5.1: Kosten von Stringvergleichen verschiedener bzw. gleicher, aber nicht identischer Strings
mit und ohne intern()

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

Anzahl der Vergleiche

N
or

m
al

is
ie

rt
e

A
us

fü
hr

un
gs

ze
it

Strings unterschiedlicher Länge

Verschiedene Strings gleicher Länge

Gleiche Strings mit intern(), Länge 10

Gleiche Strings mit Länge 10

Sandini Bib

96 5 Zeichenketten

5.5.1 Vergleich mittels equalsIgnoreCase()

Wir wollen zunächst equalsIgnoreCase() betrachten. In Suns JDK 1.3.1 und IBMs JDK
1.3.0 vergleicht die Methode zunächst mit null, überprüft dann, ob die Länge gleich ist,
und vergleicht anschließend, ob alle Buchstaben entweder auf Anhieb dieselben sind
oder aber zumindest ihre Großbuchstaben sich gleichen.2

Seit JDK 1.4 wird vor den oben genannten Tests zunächst auf Objektidentität geprüft.
Das hatte Sun offensichtlich vorher vergessen. Was also für IBM JDK 1.3.0 und Sun JDK
1.3.1 der schlechteste Fall war, ist für JDK 1.4 der beste (Tabelle 5.6).

Nun darf man nicht vergessen, dass der Fall zweier identischer Strings nicht unbedingt
der häufigste ist. Wenn Sie jedoch equalsIgnoreCase() häufig verwenden, die Chance,
dass Sie identische Objekte vergleichen, hoch ist und Sie noch JDK 1.3.x benutzen,
lohnt es sich, evtl. folgenden Code zu benutzen:

// s1 und s2 sind jeweils Stringobjekte
// s1 ist zudem nicht null
if (s1 == s2 || s1.equalsIgnoreCase(s2)) {
 System.out.println("s1 und s2 sind gleich.");
}

Verwenden Sie diesen Code nicht, wenn die genannten Bedingungen nicht zutreffen.
Sie würden lediglich Ihren eigenen Code verschmutzen.

5.5.2 toLowerCase() oder toUpperCase(), das ist hier die Frage

Das oben bereits erwähnte zweite Verfahren, Strings unabhängig von Groß- und Klein-
schreibung zu vergleichen, ist nicht unbedingt zu empfehlen. Die beiden String-Metho-
den toLowerCase() und toUpperCase() erzeugen jeweils ein neues String-Objekt, es sei
denn der String enthält nur Klein- bzw. Großbuchstaben.3 Pro Vergleich müssen also
meist zwei neue Objekte erzeugt werden, was zu einem hohen Aufwand führt. Vom fol-
genden Code ist somit unbedingt abzuraten – equalsIgnoreCase() leistet wesentlich bes-
sere Dienste.

2 Für den Fall, dass die Großbuchstaben nicht dieselben sind, werden außerdem noch die Kleinbuch-
staben überprüft, da im georgischen Alphabet kleingeschriebene Buchstaben gleich sein können,
obwohl ihre jeweiligen Großbuchstaben dies nicht sind.

Sun JDK 1.3.1 Client IBM JDK 1.3.0 Sun JDK 1.4.0 Client

100% 83% 7,7%

Tabelle 5.6: Vergleich zweier identischer Strings der Länge zehn mit equalsIgnoreCase()

3 Um dies festzustellen, wird jedes Mal eine lineare Suche nach einen Groß- oder Kleinbuchstaben
durchgeführt. Das Ergebnis dieser Suche wird nicht gecached.

Sandini Bib

Groß- und Kleinschreibung 97

String a = "a und B";
String b = "B und a";
// sehr teurer Vergleich!
if (a.toLowerCase().equals(b.toLowerCase())) {
 System.out.println("Die beiden Strings sind gleich.");
}

Die beiden Methoden können dennoch nützlich für Vergleiche sein. Beispielsweise
muss in HTTP (Hypertext Transfer Protokoll) die Groß- und Kleinschreibung von Hea-
dernamen ignoriert werden. Zu diesem Zweck ist eine Hashtabelle nützlich, die die
Groß- und Kleinschreibung von Schlüsseln ignoriert. Mit toLowerCase() bzw. toUpper-
Case() können Sie vor jedem Einfügen oder Entnehmen den Schlüssel in seine klein-
(oder groß-)geschriebene Form bringen.

Map map = new HashMap();

public Object get(String key) {
 return map.get(key.toLowercase());
}

public Object put(String key, Object object) {
 return map.put(key.toLowerCase());
}
...

Nun unterliegt die Groß- und Kleinschreibung gewissen Regeln. Es ist zum Beispiel sehr
viel wahrscheinlicher, dass Sie Java im Deutschen mit großem J und kleinem ava schrei-
ben und nicht jAVa. Genauso wird der HTTP Accept-Header meistens mit großem A und
ansonsten klein geschrieben. Diese Tatsache können Sie sich zunutze machen, indem Sie
zwei statt einer Hashmap benutzen. In der ersten Hashmap legen Sie das Objekt unter
dem Original-Schlüssel ab, in der zweiten unter dem kleingeschriebenen:

public class CaseInsensitiveMap {

 Map map = new HashMap();
 Map lowerCaseMap = new HashMap();

 public Object get(String key) {
 Object value = map.get(key);
 return value != null ?
 value : lowerCaseMap.get(key.toLowerCase());
 }

 public Object put(String key, Object value) {
 // dies ist nicht ausreichend!
 Object oldValue = map.put(key, value);
 return key != null ?

Sandini Bib

98 5 Zeichenketten

 lowerCaseMap.put(key.toLowerCase(), value) : oldValue;
 }
...
}

Leider ist der Code nicht ganz so einfach, wie oben beschrieben. Betrachten Sie folgen-
den Fall:

CaseInsensitiveMap map = new CaseInsensitiveMap();
map.put("java", "erster Eintrag");
map.put("Java", "zweiter Eintrag");
System.out.println(map.get("java"));

Dies führt zu dieser unerwünschten Ausgabe:

erster Eintrag

Der erste Eintrag ist lediglich aus der lowerCaseMap entfernt worden, nicht jedoch aus
der normalen map. Wir müssen uns also ein wenig mehr Mühe geben. Der folgende
Code löst das Problem, wenngleich um den Preis von ein bisschen mehr Komplexität
bei den Operationen Entfernen und Hinzufügen sowie einer zusätzlichen Datenstruk-
tur und somit größerem Speicherverbrauch.

...
// Abbildung von lowerCase-Schlüsseln auf andere Schreibweisen
Map equivalentKeys = new HashMap();

public Object remove(String key) {
 Object oldValue = null;
 if (key != null) {
 String lowerCaseKey = key.toLowerCase();
 oldValue = lowerCaseMap.remove(lowerCaseKey);
 Set s = (Set)equivalentKeys.get(lowerCaseKey);
 if (s != null) {
 // Falls der Wert auch unter anderen Schlüsseln
 // hinterlegt war, müssen wir die entsprechenden
 // Einträge aus der map entfernen.
 for (Iterator i = s.iterator(); i.hasNext();) {
 map.remove(i.next());
 }
 }
 }
 else {
 oldValue = lowerCaseMap.remove(null);
 map.remove(null);
 }
 return oldValue;
}

public Object put(String key, Object value) {

Sandini Bib

Groß- und Kleinschreibung 99

 Object oldValue = null;
 if (key != null) {
 String lowerCaseKey = key.toLowerCase();
 oldValue = lowerCaseMap.get(lowerCaseKey);
 if (oldValue != value) {
 remove(key);
 lowerCaseMap.put(lowerCaseKey, value);
 }
 map.put(key, value);
 // Damit wir in konstanter Zeit entfernen
 // können, merken wir uns alle verschiedenen
 // Schreibweisen des Schlüssels.
 Set set = (Set)equivalentKeys.get(lowerCaseKey);
 if (set == null) {
 set = new HashSet();
 equivalentKeys.put(lowerCaseKey, set);
 }
 set.add(key);
 }
 else {
 oldValue = lowerCaseMap.put(null, value);
 map.put(null, value);
 }
 return oldValue;
}
...

Um alle verschiedenen Schreibweisen eines Schlüssels aus der map entfernen zu können,
merken wir uns diese in einem Set, das wir unter der kleingeschriebenen Version des
Schlüssels in einer zusätzlichen Map namens equivalentKeys hinterlegen. Auf diese
Weise können wir alle zu einem Eintrag in lowerCaseMap äquivalenten Einträge zuverläs-
sig auch aus der map entfernen. Dies ist für die Integrität der Datenstruktur unerlässlich.

In unserem Beispiel konvertieren wir die Schlüssel der lowerCaseMap in ihre kleinge-
schriebene Form. Wenn Sie dies tun, müssen Sie sich bewusst sein, dass der Buchstabe ß
erhalten bleibt. Sie können also mit dem Schlüssel gemäß nicht denselben Wert finden
wie mit dem Schlüssel GEMÄSS. Anders verhält es sich, wenn Sie statt der lowerCaseMap
eine entsprechende upperCaseMap verwenden und alle Schlüssel mittels toUpperCase()
konvertieren. Das Wort gemäß würde von toUpperCase() zu GEMÄSS umgewandelt.
Somit könnten Sie mit den Schlüsseln gemäß und GEMÄSS dieselben Einträge finden.

Alternativ zu der beschriebenen Implementierung mittels toLowerCase() oder toUpper-
Case() können Sie als Datenstruktur auch eine SortedMap mit einem Groß-/Kleinschrei-
bung ignorierenden java.util.Comparator verwenden. String.CASE_INSENSITIVE_ORDER ist
ein solcher Comparator. Anstatt also eine eigene Klasse zu implementieren, können Sie
einfach folgenden Code verwenden:

SortedMap map = new TreeMap(String.CASE_INSENSITIVE_ORDER);

Sandini Bib

100 5 Zeichenketten

Wie wir noch sehen werden, ist dieser Code jedoch sehr viel langsamer als die oben
beschriebene Implementierung.

5.5.3 Wenn Ä gleich a sein soll

Im letzten Abschnitt ist bereits angeklungen, dass String-Vergleiche nicht immer ganz
so einfach sind, wie sie scheinen. Im Deutschen sind insbesondere ß und Umlaute
etwas kompliziert zu handhaben, im Französischen hat man mit den Accents so seine
Schwierigkeiten.

Java versucht diese Schwierigkeiten mit der java.text.Collator-Klasse abzudecken. Ein
Kollator ist – frei übersetzt – ein spezieller Text-Vergleicher.4 Kollatoren gibt es für ver-
schiedene Sprachen und in unterschiedlicher Stärke. Gewöhnlich erhalten Sie den
gewünschten Kollator von der Fabrikmethode Collator.getInstance():

Collator collator = Collator.getInstance(Locale.GERMAN);
collator.setStrength(Collator.SECONDARY); // Unterscheidungsgrad
if (collator.equals("gross", "Groß")) {
 // Diese Zeile wird ausgegeben, da die beiden Strings nur
 // Unterschiede dritter Ordnung haben.
 System.out.println("gross und Groß sind gleich.");
}

Wenn Sie nur Groß- und Kleinschreibung sowie Doppel-S und S-Zett ignorieren wol-
len, müssen Sie als Unterscheidungsgrad Collator.SECONDARY setzen (Tabelle 5.7). Wenn
Sie darüber hinaus auch noch die Umlaut-Punkte ignorieren wollen, müssen Sie als
Unterscheidungsgrad Collator.PRIMARY setzen. Es gibt leider keinen Grad, der bei-
spielsweise ä mit ae gleichsetzt.5

4 Kollation (lat.): Vergleich einer Abschrift mit der Urschrift zur Prüfung der Richtigkeit.

Alternative Schreibweisen Unterscheidungsgrad (Stärke)

Umlaute oder entsprechende Buchstaben ohne ¨.
Beispiel: ü und u

primär

Groß-/Kleinschreibung. Beispiel: G und g sekundär

Doppel-S oder S-Zett. Beispiel: ss und ß sekundär

Verschiedene Buchstaben. Beispiel: q und z grundsätzlich nicht gleich

Umlaute oder entsprechende Buchstaben mit angehängtem e.
Beispiel: ä und ae

grundsätzlich nicht gleich

Tabelle 5.7: Alternative Schreibweisen von Buchstaben im Deutschen und ihr Unterscheidungsgrad gemäß dem
deutschen Collator des Sun JDKs

5 Sie können jedoch einen entsprechenden eigenen Regelsatz für den java.text.RuleBasedCollator
schreiben.

Sandini Bib

Groß- und Kleinschreibung 101

Da die Collator-Klasse die Schnittstelle Comparator implementiert, kann man mittels
einer Collator-Instanz und einer SortedMap eine ähnliche Datenstruktur aufbauen wie
die oben beschriebene CaseInsensitiveMap. Als Comparator muss lediglich der entspre-
chende Collator gesetzt werden:

Collator collator = Collator.getInstance(Locale.GERMAN);
collator.setStrength(Collator.SECONDARY);
SortedMap map = new TreeMap(collator);

Performanter ist es jedoch, wenn Sie java.util.CollationKeys an Stelle von Strings als
Schlüssel einsetzen. CollationKeys sind String-Wrapper, die sich effizient vergleichen
lassen – und zwar nach den Regeln des Kollators, der sie erzeugt hat. In der Praxis
sieht das wie folgt aus:

public class CollationKeyMap {
 private Map map = new HashMap();
 private Collator collator;

 public CollationKeyMap(Locale locale, int collatorStrength) {
 collator = Collator.getInstance(
 locale == null ? Locale.getDefault() : locale
);
 collator.setStrength(collatorStrength);
 }

 public Object get(String key) {
 if (key == null) return map.get(null);
 return map.get(collator.getCollationKey(key));
 }

 public Object put(String key, Object value) {
 if (key == null) return map.put(null, value);
 return map.put(collator.getCollationKey(key), value);
 }
 ...
}

Nachdem ich nun so viele alternative Implementierungen für eine Map vorgestellt
habe, die die Groß-/Kleinschreibung der Schlüssel ignoriert, möchte ich diese noch
kurz vergleichen. Als Test füge ich zunächst mittels put() 1804 aus einem deutschen
Text extrahierte Wörter6 in eine der Maps und lese sie danach mittels get() wieder aus.
Dabei wird eine Kopie des Schlüssels benutzt und so der unwahrscheinliche Fall der
Objektidentität vermieden. Gemessen wird nur das Auslesen.

6 173 der verwendeten Wörter unterschieden sich nur bezüglich Groß-/Kleinschreibung.

Sandini Bib

102 5 Zeichenketten

Anschließend wiederhole ich den Test, wobei ich diesmal großgeschriebene Schlüssel
zum Einfügen benutze und kleingeschriebene Schlüssel zum Auslesen. Im dritten
Durchgang teste ich genau andersherum – kleingeschriebene Schlüssel zum Einfügen
und großgeschriebene Schlüssel zum Auslesen.

Um einen Vergleich zum Auslesen aus einer Hashtabelle zu haben, die Groß-/Klein-
schreibung nicht ignoriert, führe ich den Test außerdem mit einer normalen HashMap
durch und lese die Daten jeweils mit einer Kopie des Einfügeschlüssels aus.

Das Ergebnis (Abbildung 5.2) lässt keine Fragen offen. Die UpperCase-HashMap ist
allen anderen Tabellen überlegen und erreicht im günstigsten Fall (Einfügeschlüssel
gleich Leseschlüssel) beinahe die Geschwindigkeit der normalen HashMap. Bei groß-
geschriebenen Ausleseschlüsseln verdoppelt sich die Ausführungszeit der UpperCase-
HashMap, bei kleingeschriebenen Schlüsseln verdoppelt sie sich nochmals. Das ist
darauf zurückzuführen, dass die Methode toUpperCase() eines bereits großgeschriebe-
nen Strings wesentlich schneller ist als toUpperCase() eines kleingeschriebenen Strings,
da einfach this zurückgegeben werden kann und kein neues Objekt erzeugt werden
muss.

Abbildung 5.2: Geschwindigkeit des lesenden Zugriffs auf verschiedenen Datenstrukturen mit natürlichen, groß-
oder kleingeschriebenen Schlüsseln

0

500

1000

1500

2000

2500

3000

3500

E
in

fü
ge

sc
hl

üs
se

l
un

d
Le

se
-

sc
hl

üs
se

l s
in

d
gl

ei
ch

 a
be

r
ni

ch
t

id
en

tis
ch

K
le

in
e

E
in

fü
ge

-
sc

hl
üs

se
l,

gr
oß

e
Le

se
sc

hl
üs

se
l

G
ro

ß
e

E
in

fü
ge

-
sc

hl
üs

se
l,

kl
ei

ne
Le

se
sc

hl
üs

se
l

N
or

m
al

is
ie

rt
e

A
us

fü
hr

un
gs

ze
it

HashMap UpperCase HashMap

CaseInsensitive TreeMap CollationsKeyHashMap

CollatorTreeMap

Sandini Bib

Strings sortieren 103

Die nächstschnellste Datenstruktur ist die TreeMap mit String.CASE_INSENSITIVE_ORDER als
Vergleichsobjekt. Auf den Plätzen drei und vier landen die HashMap mit CollationsKeys
und die TreeMap mit einem Collator als Vergleichsobjekt. In beiden Fällen wurde
Collator.SECONDARY als Unterscheidungsgrad gesetzt.

5.6 Strings sortieren

Ein verwandtes Thema zum Groß-Klein-Vergleich ist das Sortieren. Auch hier müssen
Strings möglichst effizient miteinander verglichen werden. Zusätzlich zu der Informa-
tion gleich oder ungleich ist hier noch gefragt, ob ein String größer oder kleiner als ein
anderer ist.

Üblicherweise werden zum Sortieren die Klassenmethoden java.util.Arrays.sort()
oder java.util.Collections.sort() benutzt. Intern wird dabei die Methode compareTo()
der Strings oder eines entsprechenden Comparators verwendet. Wenn Sie compareTo()
benutzen, wird die natürliche Reihenfolge verwendet, wie sie im Unicode-Zeichensatz
definiert ist. Das bedeutet, dass die Worte Arbeit, Änderung, Zug und Andenken in die Rei-
henfolge Andenken, Arbeit, Zug und Änderung sortiert werden, da der Buchstabe Ä im
Unicode-Zeichensatz erst nach allen anderen lateinischen Buchstaben steht. Ebenso tau-
chen kleingeschriebene Wörter erst nach sämtlichen großgeschriebenen Wörtern auf.
Das letztere Problem lässt sich leicht lösen, indem Sie String.CASE_INSENSITIVE_ORDER als
Vergleichsobjekt angeben. Für die korrekte Lösung des Umlaut-Problems müssen Sie
einen Kollator als Comparator übergeben. Am schnellsten jedoch wird korrekt sortiert,
wenn Sie zunächst in der natürlichen Reihenfolge und anschließend erst mit einem Kol-
lator sortieren lassen, da sich eine teilweise sortierte Liste in der Regel schneller sortieren
lässt als eine völlig ungeordnete Liste.

Tabelle 5.8 belegt diesen Rat mit Zahlen. Das Vorsortieren eines String-Arrays gemäß
seiner natürlichen Ordnung (natürlich + Kollator: 359%) führt im Beispiel zu einem
Geschwindigkeitsvorteil um den Faktor 2,5 gegenüber dem ausschließlichen Sortieren
gemäß der Ordnung eines Kollators (Kollator: 926%) [vgl. Shirazi00, S.156f]. Benutzt
wurden die gleichen Wörter wie schon im Abschnitt zuvor.

natürliche
Ordnung

CASE_INSENSITIVE_
ORDER

Kollator CASE_INSENSITIVE_
ORDER + Kollator

natürlich +
Kollator

100% 222% 926% 499% 359%

Tabelle 5.8: Sortieren eines String-Arrays mit verschiedenen Methoden

Sandini Bib

104 5 Zeichenketten

5.7 Formatieren

Nicht selten müssen Objekte in eine String-Darstellung überführt werden. Seien es
Zahlen, Daten oder Beträge – immer wird ein String erstellt, der oft auch noch den ört-
lichen Gepflogenheiten entsprechen soll. Da das Erstellen selbst schon eine aufwän-
dige Angelegenheit ist, macht es die Internationalisierung nicht gerade besser. Wir
wollen an einem einfachen Beispiel illustrieren, wie hoch die Kosten der Stringerzeu-
gung sind, indem wir das Erstellen des Strings für eine einfache ganze Zahl messen.

In den Startblöcken für den Testlauf stehen drei Kandidaten: Integer.toString(),
Long.toString() und NumberFormat.format().7 Gemessen wurde jeweils folgende Schleife:

for (int i=0; i<1000; i++) Integer.toString(i);
// bzw. Long.toString(i) oder formatter.format(i)

Wie Tabelle 5.9 zu entnehmen ist, schneidet Integer.toString() wesentlich besser ab als
die beiden anderen Kandidaten. Long.toString() ist sechsmal, NumberFormat sogar fast
zehnmal langsamer.

Einigermaßen verwunderlich ist der Unterschied zwischen der Integer- und der Long-
Variante. Schließlich handelt es sich nicht um fundamental verschiedene Aufgaben.
Ein Blick in den JDK-Quellcode offenbart jedoch, dass Integer.toString(int) besonders
optimiert wurde, während Long.toString(long) lediglich die allgemeinere Variante mit
beliebiger Basis Long.toString(long, basis) aufruft. Kein Wunder also, dass die Integer-
Variante so viel schneller ist.

Der große Unterschied zwischen Integer.toString() und NumberFormat ist mindestens
ebenso eindrucksvoll, aber nicht weiter verwunderlich. Integer.toString() ist aus-
schließlich für die gestellte Aufgabe geschrieben, während NumberFormat sehr viel fle-
xibler ist. So kann man beispielsweise die Anzahl der Nach- und Vorkomma-Stellen
spezifizieren, was mit Integer.toString() nicht möglich ist.

Grundsätzlich gilt: Flexibilität kostet. Keine der Formatierer-Klassen im java.text-
Paket ist in der Lage, eine spezialisierte Implementierung in Punkto Geschwindigkeit
zu schlagen. Stattdessen bieten sie Flexibilität, Unterstützung für Internationalisie-
rung, Wartbarkeit und die Fähigkeit ausgegebenen Text mittels der parseObject()-
Methode auch wieder einzulesen. Dessen sollten Sie sich unbedingt bewusst sein,

7 Es wurde eine Instanz der Klasse NumberFormat erstellt, die wieder verwendet wurde.

Integer.toString() Long.toString() numberFormatter.format()

100% 609% 978%

Tabelle 5.9: Erzeugen eines Strings für einen int auf verschiedene Weisen

Sandini Bib

Formatieren 105

bevor Sie beginnen, aus Geschwindigkeitsgründen einen speziellen Formatierer zu
implementieren. Und wenn Sie es doch tun, versuchen Sie von java.text.Format oder
einer der Unterklassen zu erben. Auf diese Weise bewahren Sie wenigstens Schnittstel-
lenkompatibilität.

5.7.1 Nachrichten erstellen

Um formatierte Nachrichten auszugeben, stellt das JDK die Klasse java.text.Message-
Format zur Verfügung. MessageFormat lässt sich über eine statische format()-Methode
oder als Instanz benutzen. Wir wollen beide Varianten mit einer simplen selbst
gestrickten Alternative vergleichen. Hier die getesteten Code-Stücke:

// Variante mit statischer format()-Methode
public static void formattedMessage() {
 String message = MessageFormat.format("On {1,time, long} "
 + "{1,date, long}, there was {2} on planet "
 + "{0,number,integer}.",
 new Object[] {new Integer(1), new Date(),
 "a disturbance in the Force"});
}

// Variante mit MessageFormat-Instanz
private static MessageFormat formatter = new MessageFormat(
 "On {1,time, long} {1,date, long}, there was {2} on planet "
 + "{0,number,integer}.");
public static void preFormattedMessage() {
 String message = formatter.format(new Object[]
 {new Integer(1), new Date(),
 "a disturbance in the Force"});
}

// selbst gestrickte Variante
public static void plainMessage() {
 String what = "a disturbance in the Force";
 Date date = new Date();
 int number = 1;
 String message = "On " + date + ", there was " + what
 + " on planet " + number;
}

Und hier die beiden (leicht verschiedenen) Ausgaben:

(pre)formattedMessage():
On 18:21:33 EST 22. Februar 2002, there was a disturbance in the Force on planet
1.
plainMessage():
On Fri Feb 22 18:21:33 EST 2002, there was a disturbance in the Force on planet 1

Sandini Bib

106 5 Zeichenketten

Wie nicht anders zu erwarten, ist plainMessage() um einiges schneller als die beiden
Kontrahenten. Jedoch beträgt der Unterschied zur preFormattedMessage()-Variante
lediglich 29%. Im Gegensatz dazu ist der Unterschied zur formattedMessage()-Version
größer als der Faktor fünf. Dies rührt daher, dass intern jeweils ein neues MessageFor-
mat-Objekt angelegt und der Muster-String jedes Mal neu analysiert wird. Diesen Auf-
wand haben wir uns durch Benutzen der Instanz erspart. Wenn Sie also MessageFormat
benutzen wollen, versuchen Sie das Formatierer-Objekt wiederzubenutzen. Ziehen Sie
dabei schwache Referenzen (java.lang.ref.SoftReference) zum Halten der Instanz in
Betracht, da zu viele langlebige Objekte die automatische Speicherbereinigung aus-
bremsen (siehe Kapitel 3.2 Garbage Collection).

5.7.2 Datum und Zeit

Datum- und Zeit-Strings gehören sicherlich zu den am häufigsten ausgegebenen.
Besonders prominent sind hier wiederum Protokolldateien, die üblicherweise einen
Zeitstempel am Anfang der Zeile enthalten. Vor nicht allzu langer Zeit arbeitete ich in
einem Projekt, in dem dieser Zeitstempel folgendermaßen erstellt wurde:

import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Calendar;

...

// Kopieren Sie diesen Code nicht!
Calendar calendar = Calendar.getInstance();
Date date = calendar.getTime();
SimpleDateFormat dateFormat = new SimpleDateFormat(
 "dd MMM yyyy HH:mm:ss,SSS"
);
String dateString = dateFormat.format(date);

Diese vier Zeilen wurden jedes Mal ausgeführt, wenn etwas zu protokollieren war. Der
Code ist korrekt, er könnte jedoch etwas performanter sein. Lassen Sie uns ein paar
Vergleiche anstellen. Hier drei alternative Implementierungen:

// Einfache Date-Variante
String dateString = new Date().toString();

// Vorinitialisierter SimpleDateFormatter
private static DateFormat simpleDateFormat =

plainMessage() formattedMessage() preFormattedMessage()

100% 521% 129%

Tabelle 5.10: Vergleich verschiedener Nachrichtenformate

Sandini Bib

Formatieren 107

 new SimpleDateFormat("dd MMM yyyy HH:mm:ss,SSS");
String dateString = simpleDateFormat.format(new Date());

// Vorinitialisierter Log4j DateTimeDateFormatter
private static DateFormat log4JdateTimeDateFormat =
 new DateTimeDateFormat();
String dateString = log4JdateTimeDateFormat.format(new Date());

Die Klasse org.apache.log4j.helpers.DateTimeDateFormat ist ein speziell für das angege-
bene Format optimierter Formatierer aus dem oben bereits erwähnten freien Log-
Framework Log4J. Sie erbt von java.text.DateFormat und lässt sich entsprechend benut-
zen.8

Die Ausgabe der vier Varianten ist wiederum leicht unterschiedlich. Insbesondere wer-
den in der einfachen date.toString()-Variante der Wochentag und die Zeitzone ausge-
geben, während die Millisekunden fehlen.

// Einfache Date-Variante
Sat Feb 23 10:29:30 EST 2002

// Alle anderen Varianten
23 Feb 2002 10:29:30,751

Zugegeben, das ist ein wenig wie Äpfel mit Birnen vergleichen. Wir lassen die
Date.toString()-Variante daher außer Konkurrenz antreten und benutzen sie lediglich
als Referenzwert, da sie so schön einfach zu programmieren ist. In Tabelle 5.11 sehen
Sie das Ergebnis.

Die Log4J-Variante ist um den Faktor drei schneller als SimpleDateFormat. Dieses wie-
derum ist beinahe um den Faktor drei schneller als der oben beschriebene Vierzeiler.

Eine Analyse der Hprof-Ausgabe ergibt, dass rund 60% der Ausführungszeit des Vier-
zeilers im Konstruktor von SimpleDateFormat verbracht wird. So lange dauert es, den
Format-String zu verarbeiten. Das eigentliche Formatieren schlägt lediglich mit 30% zu
Buche und der Calendar.getInstance()-Aufruf ist zwar nicht gerade schlau, aber im
Endeffekt mit etwa 10% Anteil an der Ausführungszeit nicht so bedeutend.

8 Im JDK 1.4 java.util.logging�Paket scheint es (noch) keine entsprechend performanten Datums-
formatierer zu geben.

date.toString() Log4J SimpleDateFormat Vierzeiler

100% 30% 97% 277%

Tabelle 5.11: Normalisierte Geschwindigkeit verschiedener Code-Varianten, die einen formatierten Datumsstring
erzeugen

Sandini Bib

108 5 Zeichenketten

Dies bestätigt die bereits weiter oben gemachte Erfahrung, dass das Initialisieren von
java.text.Format-Objekten recht teuer ist und es sich daher lohnt, diese Objekte wieder
zu verwenden.

Und was macht die Log4J-Klasse so schnell? Zum einen ist sie auf die Ausgabe von
Datumsstrings in dem verwendeten Format spezialisiert. Sie muss sich also nicht wie
SimpleDateFormat an Muster halten, sondern ist hart und somit effizient kodiert. Zum
anderen offenbart ein Blick in den Quellcode, dass die Log4J-Klasse Teilergebnisse zwi-
schenspeichert. Dabei macht sie sich die Tatsache zu nutze, dass sich nur die letzten
drei Zeichen (nämlich die Millisekunden) des Strings ändern, wenn die format()-
Methode innerhalb einer Sekunde mehrmals aufgerufen wird. In der format()-Methode
wird also getestet, ob eine Sekundengrenze überschritten wurde. Ist dies nicht der Fall,
wird lediglich der neue Millisekunden-Wert an den zwischengespeicherten Anfang
gehängt. So wird ein Großteil des Aufwands gespart, der zum Erstellen eines komplett
neuen Strings erforderlich wäre.

In unserem Test ist dieser Cache-Effekt natürlich voll zum Tragen gekommen, da wir
immer wieder neue, aufeinander folgende Date-Objekte erzeugt haben. In einer echten
Applikation wäre der Geschwindigkeitsvorteil sicherlich nicht so groß.

Wir haben gesehen, dass der Log4J-Formatierer vergleichsweise schnell ist. Wir kön-
nen jedoch auch in einer echten Anwendung noch schneller einen Datumsstring erzeu-
gen als mit dem Log4J-Formatierer. Dies gelingt, indem wir beim ersten Datumsstring
einfach die Millisekunden seit 1970 und bei jedem folgenden Mal die Differenz zu die-
sem ersten Wert ausgeben. Die Differenz fällt meistens in den Wertebereich eines ints
und kann daher mit der schnelleren Methode Integer.toString() statt Long.toString()
ausgegeben werden. Zudem ergibt die Differenz in den meisten Fällen einen kürzeren
String als der volle Wert. Und falls tatsächlich einmal lesbare Datumswerte benötigt
werden, kann ein Werkzeug diese leicht erzeugen. Der Trick besteht darin, dies nur bei
Bedarf und nicht zur Laufzeit zu tun. Listing 5.1 zeigt die Beispiel-Implementierung
einer entsprechenden Klasse.

package com.tagtraum.perf.strings;

import java.text.DateFormat;
import java.text.FieldPosition;
import java.text.ParsePosition;
import java.util.Date;

public class DifferenceDateFormat extends DateFormat {

 private long baseTime;

 public DifferenceDateFormat() {}

 public synchronized StringBuffer format(Date date,

Sandini Bib

String-Analyse 109

 StringBuffer toAppendTo, FieldPosition fieldPosition) {
 if (baseTime == 0) {
 baseTime = date.getTime();
 toAppendTo.append(Long.toString(baseTime));
 } else {
 long diff = date.getTime() - baseTime;
 // wir benutzen Integer.toString(), falls möglich
 if (diff <= Integer.MAX_VALUE
 && diff >= Integer.MIN_VALUE) {
 toAppendTo.append((int)diff);
 }
 else {
 toAppendTo.append(diff);
 }
 }
 return toAppendTo;
 }

 public synchronized Date parse(String text, ParsePosition pos) {
 ...
 }

}

Listing 5.1: Datumsformatierer, der jeweils die Differenz zu einem Startwert ausgibt

Wenn wir mit der Klasse DifferenceDateFormat den oben beschriebenen Test durchfüh-
ren, stellen wir fest, dass DifferenceDateFormat auf einen normalisierten Wert von 5,5%
kommt. Das heißt sie ist 50-mal schneller als der Vierzeiler, 18-mal schneller als
date.toString() und immerhin fünfmal schneller als die Log4J-Klasse.

5.8 String-Analyse

Die String-Analyse wird gewöhnlich in zwei Teilbereiche unterteilt:

� Lexikalische Analyse mittels eines Scanners (linear)

� Syntaktische Analyse mittels eines Parsers (hierarchisch)

In der lexikalischen Analyse wird eine Zeichenkette in Symbole (Tokens) unterteilt, in
der syntaktischen Analyse werden die Symbole in einer hierarchischen Struktur abge-
legt, die leicht interpretiert werden kann (beispielsweise als Objektbaum oder mathe-
matischer Ausdruck). Da die String-Analyse das Gegenstück zum Formatieren
darstellt und in vielen Applikationen ein zeitkritischer Faktor ist, werden wir auf
einige zentrale Aspekte eingehen.

Sandini Bib

110 5 Zeichenketten

Genau wie beim Formatieren werden wir uns zunächst anschauen, wie schnell eine
einfache ganze Zahl geparsed wird. Auch diesmal wollen wir die Standardmethoden
aus den Klassen Integer und Long sowie NumberFormat gegeneinander antreten lassen.
Zusätzlich schicken wir einen selbst geschriebenen NumberParser (Listing 5.2) ins Ren-
nen, der ausschließlich Zahlen zur Basis zehn korrekt lesen kann. Im Gegensatz zur
Integer.toString()-Methode ist Integer.parseInt(string) nämlich nicht optimiert. Sie
delegiert lediglich an die allgemeinere Integer.parseInt(string, basis)-Methode.
NumberParser.parseInt(string) ist im Wesentlichen eine vereinfachte Version der
Integer.parseInt(string, basis)-Methode.

Beachten Sie, dass NumberParser zudem eine Methode parseInt(string, offset, length)
anbietet, die es erlaubt, einen Teilbereich eines Strings zu parsen, ohne extra einen
neuen Teilstring mittels substring() erzeugen zu müssen.

Gemessen wurde jeweils folgende Schleife:

for (int i=0; i<1000; i++) Integer.parseInt("123456");
// bzw. Long.ParseLong("123456"), formatter.parse("123456")
// oder NumberParser.parseInt("123456")

Wie die Ergebnisse aus Tabelle 5.12 zeigen, entspricht das Bild in etwa den Erfahrun-
gen vom Formatieren. Je spezifischer eine Analyse-Methode für die Aufgabe geschrie-
ben wurde, desto besser das Ergebnis.

package com.tagtraum.perf.strings;

public class NumberParser {

 public static final int MAX_NEGATIVE_INTEGER_CHARS
 = Integer.toString(Integer.MIN_VALUE).length();
 public static final int MAX_POSITIVE_INTEGER_CHARS
 = Integer.toString(Integer.MAX_VALUE).length();

 public static int parseInt(String s)
 throws NumberFormatException {
 return parseInt(s, 0, s.length());
 }

 public static int parseInt(String s, int offset, int length)
 throws NumberFormatException {

Integer.parseInt() Long.
parseLong()

numberFormat-
ter.parse()

NumberParser.
parseInt()

100% 172% 526% 32%

Tabelle 5.12: Vergleich verschiedener Analyse-Methoden für ints

Sandini Bib

String-Analyse 111

 if (s == null) throw new NumberFormatException("null");
 int result = 0;
 boolean negative = false;
 int i = 0;
 int limit;
 int digit;

 if (length > 0) {
 if (s.charAt(offset) == '-') {
 if (length > MAX_NEGATIVE_INTEGER_CHARS)
 throw new NumberFormatException(s);
 negative = true;
 limit = Integer.MIN_VALUE;
 i++;
 } else {
 if (length > MAX_POSITIVE_INTEGER_CHARS)
 throw new NumberFormatException(s);
 limit = -Integer.MAX_VALUE;
 }
 while (i < length) {
 digit = s.charAt(offset + i++)-'0';
 if (digit < 0 || digit > 9)
 throw new NumberFormatException(s);
 result *= 10;
 if (result < limit + digit)
 throw new NumberFormatException(s);
 result -= digit;
 }
 } else {
 throw new NumberFormatException(s);
 }
 if (negative) {
 if (i > 1) {
 return result;
 } else {
 throw new NumberFormatException(s);
 }
 } else {
 return -result;
 }
 }
}

Listing 5.2: Schneller Integer-Parser. In einer JDK 1.4 Version ließe sich der String-Parameter auch durch einen
Parameter vom Typ CharSequence ersetzen. Somit könnten java.nio.CharBuffer, String und StringBuffer gleich
behandelt werden.

Sandini Bib

112 5 Zeichenketten

5.8.1 Datum und Zeit

Natürlich ist das Parsen von Integern ein Mikroaspekt. Etwas schwieriger ist es schon,
einen Datumsstring oder ganze Texte zu parsen. Wir wollen uns zunächst einmal mit
dem Datum beschäftigen. Und zwar werden wir einen String folgenden Formats par-
sen: dd MMM yyyy HH:mm:ss,SSS. Dies entspricht beispielsweise: 01 Feb 2002 01:09:30,951.

Natürlich lässt sich das Datum mit einem SimpleDateFormat-Objekt einlesen. Wir wollen
zum Vergleich einen selbst geschriebenen Parser testen. Außer Konkurrenz werden
wir zudem die parse()-Methode der java.util.Date-Klasse sowie den Parser der oben
bereits erwähnten DifferenceDateFormat-Klasse ins Rennen schicken. Dieser benutzt
einen Algorithmus, der dem der Klasse NumberParser (Listing 5.2) gleicht. Daher wer-
den wir hier nicht näher darauf eingehen.

Der selbst geschriebene Parser ist in zwei Klassen implementiert: AbsoluteTimeDateFormat
(Listing 5.3/Abbildung 5.3) und DateTimeDateFormat (Listing 5.4). Dabei erbt Absolute-
TimeDateFormat von java.text.DateFormat und DateTimeDateFormat von AbsoluteTimeDate-
Format. Die Klassen korrespondieren zu entsprechenden Formatierern aus Log4J.
AbsoluteTimeDateFormat unterstützt das Format HH:mm:ss,SSS, die Klasse DateTimeDate-
Format unterstützt dd MMM yyyy HH:mm:ss,SSS.

package com.tagtraum.perf.strings;

import java.text.*;
import java.util.*;

public class AbsoluteTimeDateFormat extends DateFormat {

 private String lastString;
 private int lastOffset;
 private int lastHour;
 private int lastMinute;
 private int lastSecond;

Abbildung 5.3: Klassendiagramm für AbsoluteTimeDateFormat und DateTimeDateFormat

java.text.DateFormat

AbsoluteTimeDateFormat

DateTimeDateFormat

Sandini Bib

String-Analyse 113

 public AbsoluteTimeDateFormat() {
 setCalendar(Calendar.getInstance());
 lastString = "";
 }

 public StringBuffer format(Date date, StringBuffer toAppendTo,
 FieldPosition fieldPosition) {
 ...
 }

 public Date parse(String s, ParsePosition p) {
 calendar.clear();
 try {
 subParse(s, p);
 } catch (RuntimeException e) {
 p.setErrorIndex(p.getIndex());
 return null;
 }
 return calendar.getTime();
 }

 protected void subParse(String s, ParsePosition p) {
 if (!getCachedTime(s, p)) {
 int offset = p.getIndex();
 parseTime(s, p);
 putCachedTime(s, offset);
 }
 }

 private void parseTime(String s, ParsePosition p) {
 calendar.set(Calendar.HOUR_OF_DAY,
 NumberParser.parseInt(s, p.getIndex(), 2));
 calendar.set(Calendar.MINUTE,
 NumberParser.parseInt(s, p.getIndex() + 3, 2));
 calendar.set(Calendar.SECOND,
 NumberParser.parseInt(s, p.getIndex() + 6, 2));
 calendar.set(Calendar.MILLISECOND,
 NumberParser.parseInt(s, p.getIndex() + 9, 3));
 p.setIndex(p.getIndex() + 12);
 }

 private boolean getCachedTime(String s, ParsePosition p) {
 if (s.regionMatches(p.getIndex(),
 lastString, lastOffset, 9)) {
 // setze gecachte Werte
 calendar.set(Calendar.HOUR_OF_DAY, lastHour);
 calendar.set(Calendar.MINUTE, lastMinute);
 calendar.set(Calendar.SECOND, lastSecond);
 // parse und setze Millisekunden
 calendar.set(Calendar.MILLISECOND,
 NumberParser.parseInt(s, p.getIndex() + 9, 3));

Sandini Bib

114 5 Zeichenketten

 p.setIndex(p.getIndex() + 12);
 // gib true zurück, da wir einen Cache-Hit hatten
 return true;
 }
 return false;
 }

 private void putCachedTime(String s, int offset) {
 lastString = s;
 lastOffset = offset;
 lastHour = calendar.get(Calendar.HOUR_OF_DAY);
 lastMinute = calendar.get(Calendar.MINUTE);
 lastSecond = calendar.get(Calendar.SECOND);
 }

}

Listing 5.3: Die Klasse AbsoluteTimeDateFormat kann Zeitstrings des Formats HH:mm:ss,SSS parsen.

package com.tagtraum.perf.strings;

import java.text.*;
import java.util.*;

public class DateTimeDateFormat extends AbsoluteTimeDateFormat {

 private Map monthsMap;
 private String lastString;
 private int lastOffset;
 private int lastYear;
 private int lastDay;
 private int lastMonth;

 public DateTimeDateFormat() {
 super();
 lastString = "";
 // konstruiere Mapping von Monatsnamen auf ints
 String[] shortMonths
 = new DateFormatSymbols().getShortMonths();
 monthsMap = new HashMap();
 for (int i=0; i<shortMonths.length; i++)
 monthsMap.put(shortMonths[i], new Integer(i));
 }

 public StringBuffer format(Date date, StringBuffer toAppendTo,
 FieldPosition fieldPosition) {
 ...
 }

 protected void subParse(String s, ParsePosition p) {
 // parse zunächst den Datumsteil...

Sandini Bib

String-Analyse 115

 if (!getCachedDate(s, p)) {
 int offset = p.getIndex();
 parseDate(s, p);
 putCachedDate(s, offset);
 }
 // ... und dann den Zeitteil.
 super.subParse(s, p);
 }

 private void parseDate(String s, ParsePosition p) {
 calendar.set(Calendar.DAY_OF_MONTH,
 NumberParser.parseInt(s, p.getIndex(), 2));
 calendar.set(Calendar.YEAR,
 NumberParser.parseInt(s, p.getIndex() + 7, 4));
 calendar.set(Calendar.MONTH,
 ((Integer)monthsMap.get(s.substring(p.getIndex()
 + 3, p.getIndex() + 6))).intValue());
 p.setIndex(p.getIndex() + 12);
 }

 private boolean getCachedDate(String s, ParsePosition p) {
 if (s.regionMatches(p.getIndex(),
 lastString, lastOffset, 11)) {
 calendar.set(Calendar.DAY_OF_MONTH, lastDay);
 calendar.set(Calendar.YEAR, lastYear);
 calendar.set(Calendar.MONTH, lastMonth);
 p.setIndex(p.getIndex() + 12);
 return true;
 }
 return false;
 }

 private void putCachedDate(String s, int offset) {
 lastDay = calendar.get(Calendar.DAY_OF_MONTH);
 lastYear = calendar.get(Calendar.YEAR);
 lastMonth = calendar.get(Calendar.MONTH);
 lastString = s;
 lastOffset = offset;
 }

}

Listing 5.4: Die Klasse DateTimeDateFormat kann Datumsstrings des Formats dd MMM yyyy HH:mm:ss,SSS
parsen.

Um die Performance für ähnliche Daten zu verbessern, speichern beide Klassen das
zuletzt geparste Datum. Im Fall von AbsoluteTimeDateFormat wird dabei der Millisekun-
denteil nicht mitgespeichert, in der Hoffnung, dadurch die Trefferwahrscheinlichkeit
zu erhöhen. Die Abfrage, ob ein Cache-Treffer vorliegt, erfolgt jeweils in der Methode

Sandini Bib

116 5 Zeichenketten

subParse() mit den Methoden getCachedDate() bzw. getCachedTime(). Die beiden Metho-
den geben true zurück, wenn es Ihnen gelang, das calendar-Objekt mit zwischenge-
speicherten Werten zu manipulieren. Ist dies der Fall, werden die Methoden
parseTime() bzw. parseDate() nicht mehr ausgeführt und die parse()-Methode gibt das
Datum aus dem calendar-Objekt zurück an den Aufrufer.

Zu Beginn des Tests werden jeweils 1.000 verschiedene Datumsstrings in den drei zu
testenden Formaten erstellt und in verschiedenen String-Arrays hinterlegt. Dabei
repräsentieren die Strings aufeinander folgende Daten, von denen der Cache des selbst
geschriebenen Parsers profitieren sollte. Im Test werden alle 1.000 Strings mehrmals
nacheinander geparsed. Die Reihenfolge bleibt bei jedem Durchlauf gleich. Um den
Effekt des Caches zu messen, wurde zudem eine Reihe mit gemischten, nicht-sequen-
ziellen Daten durchgeführt.

Das Ergebnis (Tabelle 5.1) zeigt, dass der selbst geschriebene Parser dem SimpleDateFor-
mat klar überlegen ist und dass der Cache erheblich zur Performancesteigerung bei
sequenziellen Daten beiträgt. Selbst bei zufälligen Daten ist der selbst geschriebene
Parser DateTimeDateFormat mit 37% noch schneller als SimpleDateFormat. Unschlagbar,
genau wie beim Formatieren, ist DifferenceDateFormat.

5.8.2 Strings teilen

Die wohl einfachste Form der lexikalischen Analyse ist das Aufteilen eines Strings in
Teilstrings (Tokens), die jeweils durch Begrenzungszeichen (Delimiter) voneinander
getrennt sind. Ein Satz besteht beispielsweise aus einem oder mehreren Wörtern, die
durch Leer- und Satzzeichen voneinander getrennt sind. Seit JDK 1.4 existiert die sehr
komfortable Methode string.split(), die es erlaubt, einen String gemäß eines regulä-
ren Ausdrucks in mehrere Teilstrings zu unterteilen. string.split(regex) entspricht
dabei java.util.regex.Pattern.compile(regex).split(string), woraus sich schließen
lässt, dass es sich vermutlich lohnt, einmal kompilierte Patterns wiederzuverwenden.

Vor JDK 1.4 waren die einzigen standardmäßig vorhandenen Klassen zum Aufteilen von
Strings bzw. Zeichenströmen java.util.StringTokenizer und java.io.StreamTokenizer.

Reihen-
folge

Date.parse() SimpleDate
Format

DateTimeDate
Format

DifferenceDate
Format

sequenziell 100% 118% 24% 3%

zufällig 81% 112% 37% 3%

Tabelle 5.13: Parsen von sequenziellen und gemischten Daten mit verschiedenen Parsern

Sandini Bib

String-Analyse 117

Wir wollen die verschiedenen Klassen gegeneinander antreten lassen. Unser Testfall
sieht vor, einen langen String mit knapp zweitausend Wörtern in ebendiese Wörter zu
unterteilen und sie in einem String-Array zu speichern. Alle Wörter im Quellstring
sind dabei durch genau ein Leerzeichen voneinander getrennt. Natürlich ist dies ein
Spezialfall – jedoch kein unüblicher.

Alle oben erwähnten Klassen können unseren Testfall und auch andere mögliche Fälle
abdecken. Keine ist wie gemacht für den Testfall. Wir wollen daher noch eine selbst
geschriebene Klasse testen, die genau den Testfall abdeckt. Eine Klasse also, die exakt
ein Zeichen als Begrenzer zwischen Tokens akzeptiert. Dies ist die Klasse SingleDeli-
miterStringTokenizer (Listing 5.5).

package com.tagtraum.perf.strings;

import java.util.*;

public class SingleDelimiterStringTokenizer
 implements Enumeration {

 private char delim;
 private int pos;
 private String string;
 private int length;

 public SingleDelimiterStringTokenizer(String string,
 char delim) {
 this.delim = delim;
 this.string = string;
 length = string.length();
 if (length > 0 && string.charAt(0) == delim)
 pos = 1;
 else
 pos = 0;
 }

 public boolean hasMoreElements() {
 return hasMoreTokens();
 }

 public boolean hasMoreTokens() {
 return !(pos >= length);
 }

 public Object nextElement() {
 return nextToken();
 }

 public String nextToken() {
 if (pos >= length) throw new NoSuchElementException();

Sandini Bib

118 5 Zeichenketten

 int start = pos;
 while (pos < length && string.charAt(pos) != delim) {
 pos++;
 }
 String token = string.substring(start, pos);
 pos++; // überspringe nächsten Delimiter
 return token;
 }

 public int countTokens() {
 if (pos >= length) return 0;
 int count = 0;
 int countPos = pos;
 while (true) {
 if (countPos >= length) return count;
 count++;
 while (string.charAt(countPos) != delim) {
 countPos++;
 if (countPos >= length) return count;
 }
 countPos++;
 }
 }
}

Listing 5.5: Schneller StringTokenizer, der exakt ein Zeichen zwischen Tokens akzeptiert

Unsere Testmethoden sehen folgendermaßen aus:

// normaler StringTokenizer
private String[] stringTokenizer(String s) {
 List list = new ArrayList();
 StringTokenizer st = new StringTokenizer(s, " ");
 while (st.hasMoreTokens()) {
 list.add(st.nextToken());
 }
 return (String[])list.toArray(new String[0]);
}

// spezialisierter StringTokenizer
private String[] singleDelimiterStringTokenizer(String s) {
 List list = new ArrayList();
 SingleDelimiterStringTokenizer st
 = new SingleDelimiterStringTokenizer(s, ' ');
 while (st.hasMoreTokens()) {
 list.add(st.nextToken());
 }
 return (String[])list.toArray(new String[0]);
}

Sandini Bib

String-Analyse 119

// StreamTokenizer
private String[] streamTokenizer(String s)
 throws IOException {
 List list = new ArrayList();
 StreamTokenizer st = new StreamTokenizer(
 new ByteArrayInputStream(s.getBytes()));
 st.eolIsSignificant(false);
 st.slashSlashComments(false);
 st.slashStarComments(false);
 // setze Leerzeichen als einzigen Delimiter
 st.whitespaceChars(' ', ' ');
 while (st.nextToken() != StreamTokenizer.TT_EOF) {
 list.add(st.sval);
 }
 return (String[])list.toArray(new String[0]);
}

// string.split()
private String[] stringSplit(String s) throws IOException {
 return s.split(" ");
}

// vorkompiliertes Pattern
private Pattern pattern = Pattern.compile(" ");private static String[]
regexSplit(String s) throws IOException {
 return pattern.split(s);
}

Der Testaufbau ist am günstigsten für die split()-Methoden, da diese von vorneherein
einen String-Array zurückgeben. Alle anderen Varianten müssen erst recht umständ-
lich einen Array erstellen. Dennoch sind die split()-Versionen nicht die schnellsten.
Wie Tabelle 5.14 zeigt, ist der SingleDelimiterStringTokenizer am schnellsten, gefolgt
vom StringTokenizer und dann erst den beiden split()-Varianten. Der StreamTokenizer
schneidet in unserem Test am schlechtesten ab.

Wenn Sie also sehr schnell einen String in seine Bestandteile zerlegen wollen und diese
immer durch das gleiche Zeichen getrennt sind, lohnt es sich evtl., einen eigenen Toke-
nizer zu schreiben oder den hier vorgestellten SingleDelimiterStringTokenizer zu ver-
wenden. Ansonsten sind StringTokenizer sowie – für komplexere Fälle – die split()-
Methoden zu empfehlen. Vom StreamTokenizer, der ja an sich auch einem anderen
Zweck dient, ist jedoch abzuraten.

StringTokenizer StreamTokenizer SingleDelimiter string.split() pattern.split()

100% 300% 67% 152% 147%

Tabelle 5.14: Aufteilen eines Strings in Wörter

Sandini Bib

120 5 Zeichenketten

5.8.3 Reguläre Ausdrücke und lexikalische Analyse mit Grammatiken

Seit JDK 1.4 enthält Java das Reguläre-Ausdrücke-Paket java.util.regex. Wir haben es
gerade schon implizit mit der Methode split() benutzt. Alternativ zum in JDK 1.4 ent-
haltenen Paket können Sie beispielsweise auch das Jakarta-Oromatcher- oder Regexp-
Paket sowie IBM Alphaworks Regex for Java benutzen. Es liegt außerhalb des Fokus
dieses Buches, einen fairen Vergleich der vier Pakete durchzuführen. Da es (noch)
keine Java Standardschnittstelle zu regulären Ausdrücken gibt, die eine Service-Provi-
der-Architektur unterstützt, sei Ihnen daher empfohlen, Ihre Software so zu bauen,
dass Sie das Reguläre-Ausdrücke-Paket leicht gegen ein anderes austauschen können.
Hierzu sind die Muster Fabrikmethode und Adapter [Gamma96, S. 115f./S.151f.] sehr
hilfreich. Dies macht jedoch nur Sinn, wenn reguläre Ausdrücke wirklich ein zeitkriti-
scher Faktor in Ihrer Applikation sind.

Ebenso liegt die lexikalische Analyse mit Grammatiken nicht im Fokus dieses Buches.
Geeignete Werkzeuge zum Erzeugen von entsprechenden Parsern sind beispielsweise
JLex, JFlex und JavaCC (Java Compiler Compiler).

� Jakarta ORO: http://jakarta.apache.org/oro/

� Jakarta Regexp: http://jakarta.apache.org/regexp/

� IBM Alphaworks Regex for Java: http://www.alphaworks.ibm.com/tech/regex4j

� JFlex von Gerwin Klein: http://www.jflex.de/

� JLex von Elliot Berk: http://www.cs.princeton.edu/~appel/modern/java/JLex/

� JavaCC: http://www.webgain.com/products/java_cc/

Sandini Bib

6 Bedingte Ausführung, Schleifen und
Switches

if, for, while und switch sind essentielle Befehle für den Fluss jedes Java-Programms.
Sie bestimmen, ob und wie oft etwas ausgeführt wird. Um diese Strukturen möglichst
effizient zu nutzen, bedarf es etwas Achtsamkeit.

6.1 Bedingte Ausführung

Die bedingte Ausführung mit if ist trivial. Doch selbst if-Konstrukte können durch
unachtsam dahingeschriebenen Code bei häufiger Ausführung zum Flaschenhals wer-
den. Daher lohnt es, sich einige Regeln anzueignen.

6.1.1 Logische Operatoren

Beginnen wir mit logischen Operatoren.

Bevorzugen Sie die bedingten Operatoren && und || an Stelle von & und |

Der einzige Unterschied zwischen && und & bzw. || und | für logische (nicht arithmeti-
sche!) Operationen liegt darin, dass bei & und | immer beide Operanden evaluiert wer-
den, bei && und || jedoch der zweite Operand nur berechnet wird, wenn dies auch
notwendig ist [Gosling00, §15.23/24]. Bei logischen Oder-Operationen ist dies der Fall,
wenn der erste Operand false, bei logischen Und-Operationen, wenn der erste Ope-
rand true ist. Das bedingte Evaluieren der Operanden wird auch Short-Circuiting
genannt.

Beispiel:

// Tun Sie dies nicht!
if (a==2 | a==aufwaendigeBerechnung()) {
 ...
}

Sandini Bib

122 6 Bedingte Ausführung, Schleifen und Switches

Die Methode aufwaendigeBerechnung() wird jedes Mal ausgeführt, selbst wenn a gleich
zwei und das Ergebnis von aufwaendigeBerechnung() somit irrelevant ist. Verwenden Sie
stattdessen den bedingten ||-Operator:

// aufwaendigeBerechnung() wird nur ausgeführt, wenn a!=2
if (a==2 || aufwaendigeBerechnung()) {
 ...
}

Gleiches gilt für Und-Operationen:

// Tun Sie dies nicht!
if (a==2 & aufwaendigeBerechnung()) {
 ...
}

Auch hier wird die Methode aufwaendigeBerechnung() immer ausgeführt – egal ob a
gleich zwei ist oder nicht. Und das, obwohl das Ergebnis bereits feststeht, wenn a
ungleich zwei ist. Stattdessen sollten Sie daher folgenden Code verwenden:

// aufwaendigeBerechnung() wird nur ausgeführt, wenn a==2
if (a==2 && aufwaendigeBerechnung()) {
 ...
}

In den obigen Beispielen haben wir jeweils einen einfachen Ausdruck (a==2) als ersten
und einen aufwändigen Ausdruck (aufwaendigeBerechnung()) als zweiten Operand
benutzt. Dies macht nur Sinn, wenn wir wissen, dass a tatsächlich einigermaßen oft
gleich zwei ist. Wüssten wir, dass in den meisten Fällen a ungleich zwei ist, sollten wir
besser a==2 als zweiten Operand setzen. Allgemein gilt:

Ordnen Sie die Operanden in logischen Und/Oder-Operationen nach Berechnungsaufwand
und Wahrscheinlichkeit.

So können Sie sicherstellen, dass während der Ausführung der am wenigsten aufwän-
dige Entscheidungsweg gewählt wird.

6.1.2 String-Switches

Das nächste Code-Beispiel zeigt die bedingte Ausführung verschiedener Methoden in
Abhängigkeit von einem String. Da in Java das switch/case-Konstrukt nur ints akzep-
tiert, müssen wir umständlich etwas Ähnliches mit if/else kodieren.

// Tun Sie dies nicht!
if (s.equals("Action1")) {
 action1();
}

Sandini Bib

Bedingte Ausführung 123

if (s.equals("Action2")) {
 action2();
}
if (s.equals("Action3")) {
 action3();
}
if (s.equals("Action4")) {
 action4();
}

Ein solches Code-Stück findet sich häufig in Swing-Anwendungen. So wie hier
gezeigt, werden immer alle if-Konstrukte und somit auch alle equals()-Methoden auf-
gerufen. Angenommen, s ist gleich "Action1", und weiter angenommen, s wird in der
action1()-Methode nicht verändert, dann ist das Ausführen der restlichen drei if-
Konstrukte samt ihrer equals()-Methoden überflüssig. Gilt für alle Ausdrücke in den
if-Konstrukten, dass nicht gleichzeitig zwei von ihnen wahr sein können, so sollte
man besser folgenden Code schreiben:

if (s.equals("Action1")) {
 action1();
}
else if (s.equals("Action2")) {
 action2();
}
else if (s.equals("Action3")) {
 action3();
}
else if (s.equals("Action4")) {
 action4();
}

Wenn Sie jetzt zusätzlich noch wissen, dass für die Häufigkeit h der Aktionen gilt
h(Action4) > h(Action2) > h(Action3) > h(Action1), dann sollten Sie die if-Konstrukte
auch entsprechend sortieren:

if (s.equals("Action4")) {
 action4();
}
else if (s.equals("Action2")) {
 action2();
}
else if (s.equals("Action3")) {
 action3();
}
else if (s.equals("Action1")) {
 action1();
}

Sandini Bib

124 6 Bedingte Ausführung, Schleifen und Switches

Diese Version ist schon sehr viel schneller als die erste. Im schlechtesten Fall wird die
Ausführungszeit jedoch immer noch linear mit der Anzahl der verschiedenen Aktio-
nen steigen. Mit anderen Worten, sie skaliert nicht. Wenn Sie in sehr viele verschiedene
Aktionen verzweigen müssen, kann es sich daher lohnen, einen anderen Weg zu
gehen.

6.1.3 Befehlsobjekte

Ersetzen Sie lange if/else-Konstrukte durch eine Tabelle mit Befehlsobjekten.

Listing 6.1 zeigt, wie Sie ein langes if/else-Konstrukt mit linearer Laufzeit elegant
durch eine Hashmap-Leseoperation (Zeile 41) mit nahezu konstanter Laufzeit ersetzen
können. Dazu wird zunächst eine gemeinsame Schnittstelle Action für alle Aktionen
definiert (Zeilen 1-5). Im Konstruktor der ActionSwitchDemo-Klasse werden dann ano-
nyme Klassen, die Action implementieren, instanziiert und unter einem Schlüssel in
der Hashmap actionMap hinterlegt (Zeilen 11-25). Da anonyme Klassen auf die Metho-
den der sie umgebenden Instanz zugreifen dürfen, können wir die Methoden actionX()
von ActionSwitchDemo leicht aus den anonymen Klassen aufrufen.

Das beschriebene Vorgehen korrespondiert zu dem Verhaltensmuster Befehl, auch
bekannt als Command, Action oder Transaction [Gamma96, S. 245f.]. Das Muster wird
sehr gerne in Zusammenhang mit Benutzeroberflächen benutzt und findet javaseitig in
der Swing-Klasse javax.swing.Action seine Entsprechung.

01 package com.tagtraum.perf.ifsloopsandswitches;
02
03 public interface Action {
04 public void action();
05 }

01 package com.tagtraum.perf.ifsloopsandswitches;
02
03 import java.util.*;
04
05 public class ActionSwitchDemo {
06
07 private Map actionMap;
08
09 public ActionSwitchDemo() {
10 actionMap = new HashMap();
11 actionMap.put("Action1", new Action() {
12 public void action() {
13 action1();
14 }
15 });
16 actionMap.put("Action2", new Action() {
17 public void action() {

Sandini Bib

Bedingte Ausführung 125

18 action2();
19 }
20 });
21 actionMap.put("Action3", new Action() {
22 public void action() {
23 action3();
24 }
25 });
26 }
27
28 public void action1() {
29 System.out.println("Action1");
30 }
31
32 public void action2() {
33 System.out.println("Action2");
34 }
35
36 public void action3() {
37 System.out.println("Action3");
38 }
39
40 public void performAction(String s) {
41 Action action = (Action) actionMap.get(s);
42 if (action != null) action.action();
43 }
44
45 public static void main(String[] args) {
46 ActionSwitchDemo asd = new ActionSwitchDemo();
47 asd.performAction("Action2");
48 }
49 }

Listing 6.1: Vermeiden von langen if /else-Konstrukten mit anonymen Action-Klassen

Die obige Lösung ist einigermaßen schnell, sie skaliert und ist typsicher. Der einzige
Nachteil ist die hohe Anzahl anonymer Klassen. Denn jede dieser unscheinbaren
Action-Klassen verbraucht knapp 9 Kbyte Speicher.1 Das bedeutet, hundert Action-
Klassen belegen knapp ein Mbyte.

Wenn Sie sicher sind, dass der Speicherverbrauch von Action-Klassen tatsächlich ein
Problem darstellt, können Sie Reflection (siehe Paket java.lang.reflect) als Implemen-
tierungs-Alternative in Erwägung ziehen.

01 package com.tagtraum.perf.ifsloopsandswitches;
02
03 import java.lang.reflect.InvocationTargetException;

1 Gemessen auf einem Windows-2000-System mit Sun JDK 1.4.0.

Sandini Bib

126 6 Bedingte Ausführung, Schleifen und Switches

04 import java.lang.reflect.Method;
05 import java.util.*;
06
07 public class ReflectiveActionSwitchDemo {
08
09 private static class ReflectiveAction implements Action {
10 private Method method;
11 private Object targetObject;
12
13 public ReflectiveAction(Object targetObject,
14 String methodName) throws NoSuchMethodException {
15 this.targetObject = targetObject;
16 method = targetObject.getClass()
17 .getMethod(methodName, null);
18 }
19
20 public void action() {
21 try {
22 method.invoke(targetObject, null);
23 } catch (InvocationTargetException ita) {
24 Throwable t = ita.getTargetException();
25 if (t instanceof RuntimeException)
26 throw (RuntimeException) t;
27 if (t != null)
28 t.printStackTrace();
29 else
30 ita.printStackTrace();
31 } catch (IllegalAccessException iae) {
32 iae.printStackTrace();
33 }
34 }
35 }
36
37 private Map actionMap;
38
39 public ReflectiveActionSwitchDemo()
40 throws NoSuchMethodException {
41 actionMap = new HashMap();
42 actionMap.put("Action1",
43 new ReflectiveAction(this, "action1"));
44 actionMap.put("Action2",
45 new ReflectiveAction(this, "action2"));
46 actionMap.put("Action3",
47 new ReflectiveAction(this, "action3"));
48 }
49
50 public void action1() {
51 System.out.println("Action1");
52 }
53
54 public void action2() {

Sandini Bib

Schleifen 127

55 System.out.println("Action2");
56 }
57
58 public void action3() {
59 System.out.println("Action3");
60 }
61
62 public void performAction(String s) {
63 Action action = (Action) actionMap.get(s);
64 if (action != null) action.action();
65 }
66
67 public static void main(String[] args)
68 throws NoSuchMethodException {
69 ReflectiveActionSwitchDemo asd
70 = new ReflectiveActionSwitchDemo();
71 asd.performAction("Action2");
72 }
73 }

Listing 6.2: Vermeiden von langen if /else-Konstrukten durch Reflection

Statt einer anonymen Klasse für jede Aktion, benutzt ReflectiveActionSwitchDemo nur
eine Klasse – nämlich ReflectiveAction – für alle Aktionen. ReflectiveAction besorgt
sich bereits im Konstruktor das Methoden-Objekt der Methode, die es später aufrufen
soll (Zeilen 16,17). Wird die action()-Methode aufgerufen, muss nur noch die invoke()-
Methode des Methodenobjektes ausgeführt werden (Zeile 22). Somit kann ein Reflec-
tiveAction-Objekt initialisiert werden, eine beliebige Methoden aufzurufen.2 Für diese
Flexibilität gilt es jedoch einen Preis zu zahlen:

� Trotz erheblicher Verbesserungen seit Sun JDK 1.4.03 ist invoke() verglichen mit
einem direkten Methodenaufruf immer noch langsam.

� Sie müssen sich zur Laufzeit mit allerlei unangenehmen Ausnahmen herumschla-
gen.

Grundsätzlich ist daher die Lösung mit anonymen Klassen vorzuziehen.

6.2 Schleifen

Genau wie if-Konstrukte sind Schleifen trivial. Doch auch hier gilt es für Hochge-
schwindigkeits-Code einige Regeln zu beachten.

2 Der Einfachheit halber habe ich Methoden-Argumente und Rückgabewerte hier nicht berücksich-
tigt. Das Beispiel ließe sich aber entsprechend erweitern.

3 Methodenaufrufe über Reflection sind gegenüber Sun JDK 1.3.1 etwa dreimal schneller geworden.

Sandini Bib

128 6 Bedingte Ausführung, Schleifen und Switches

6.2.1 Loop Invariant Code Motion

Die wichtigste Regel lautet:

Entfernen Sie alle unnötigen Operationen aus der Schleife.

Beispiel:

// aufwaendigeBerechnung(int) gebe für gleiche Parameter
// immer den gleichen Wert zurück.
int a = 0;
int b = 5;
for (int i=0; i<100; i++) {
 // Tun Sie dies nicht!
 b += aufwaendigeOperation(a) + 5 + i;
}

Die Operation aufwaendigeOperation(a)+5 ist eine Invarianz und sollte vor der Schleife
ausgeführt werden:

int a = 0;
int b = 5;
int c = aufwaendigeOperation(a) + 5;
for (int i=0; i<100; i++) {
 b += c + i;
}

Stellen Sie sicher, dass sich nichts in der Schleife befindet, was nicht auch wirklich
mehrfach ausgeführt werden muss. Teilweise wird diese Optimierung auch von VMs
durchgeführt. Das Verfahren heißt Loop Invariant Code Motion. VMs sind jedoch nicht
unbedingt in der Lage zu erkennen, dass aufwaendigeOperation(a) für gleiche a-Werte
auch immer den gleichen Wert zurückgibt. Es bleibt Ihnen überlassen, ob Sie sich auf
die VM verlassen oder auf Nummer sicher gehen wollen.

Beachten Sie, dass die Abbruchbedingung ein Teil der Schleife ist. Sie ist quasi die erste
Zeile. Folgender Code ist somit ineffizient, da die Methode list.size() bei jeder Itera-
tion aufgerufen wird, während ein Aufruf vor der Schleife reichen würde:

// list sei vom Typ List
// Dies ist ineffizient!
for (int i=0; i<list.size(); i++) {
 Object o = list.get(i);
 ...
}

Sandini Bib

Schleifen 129

Verfahren Sie also besser folgendermaßen:

for (int i=0, n=list.size(); i<n; i++) {
 Object o = list.get(i);
 ...
}

Der Methodenaufruf list.size() wird nur einmal ausgeführt und der Rückgabewert
der Variablen n zugewiesen. Dabei ist n eleganterweise nur in der for-Schleife sichtbar.

6.2.2 Teure Array-Zugriffe

Vermeiden Sie wiederholten Zugriff auf Arrays.

Diese Regel trifft auf folgenden Code zu:

private int arrayAccessInLoop() {
 int[] array = new int[1];
 for (int i=0; i<20000000; i++) {
 // Wiederholter Array-Zugriff ist sehr aufwändig!
 array[0] += i;
 }
 return array[0];
}

Gemäß Java Sprachspezifikation muss die VM bei jedem Array-Zugriff überprüfen, dass
die Array-Referenz nicht auf null zeigt und dass der angegebene Index innerhalb der
Array-Grenzen liegt. Das heißt, bei obigem Code überprüfen die meisten VMs ohne Not
immer wieder, ob das Array-Element 0 tatsächlich vorhanden ist. Neuere VMs wie der
HotSpot Server Compiler verfügen über eine Optimierung namens Range Check Elimina-
tion, die es erlaubt, auf die Überprüfung zu verzichten, wenn der Compiler aufgrund einer
Codeanalyse beweisen kann, dass das Element vorhanden sein muss. Ebenso kann unter
Umständen auf den wiederholten null-Test verzichtet werden (Null Check Elimination).

Tests mit verschiedenen JDKs ergeben, dass die folgende funktional gleiche Variante
des Codes wesentlich schneller ist als die obige Version (Tabelle 6.1).

private int arrayAccessBeforeLoop() {
 int[] array = new int[1];
 // Array-Wert in temp kopieren
 int temp = array[0];
 for (int i=0; i<20000000; i++) {
 temp += i;
 }
 // temp zurück in den Array kopieren
 array[0] = temp;
 return array[0];
}

Sandini Bib

130 6 Bedingte Ausführung, Schleifen und Switches

6.2.3 Loop Unrolling

Eine weitere klassische Optimierungstechnik ist das so genannte Loop Unrolling. Dabei
wird der Zähler einer Schleife in jeder Iteration statt um eins um beispielsweise zehn
erhöht. Zum Ausgleich wird der Körper der Schleife zehnmal kopiert. Auf diese Weise
muss nur jede zehnte Iteration getestet werden, ob die Abbruchbedingung erfüllt ist.

private int normalLoop() {
 int a=0;
 for (int i=0; i<20000000; i++) {
 a += i;
 }
 return a;
}

Obiger Code ließe sich also folgendermaßen umschreiben:

private int unrolledLoop() {
 int a=0;
 for (int i=0; i<20000000; i+=10) {
 a += i;
 a += i+1;
 a += i+2;
 a += i+3;
 a += i+4;
 a += i+5;
 a += i+6;
 a += i+7;
 a += i+8;
 a += i+9;
 }
 return a;
}

Der Erfolg dieser Optimierung ist jedoch je nach VM sehr unterschiedlich (Tabelle 6.2).
In den HotSpot Server VMs führt Loop Unrolling zu einer schlechteren und in den
HotSpot Client VMs sowie dem IBM JDK zu einer besseren Laufzeit. Absolut gesehen
ist die Performance in den HotSpot Server VMs am besten (28%) – und zwar ohne
manuelles Loop Unrolling.

Sun JDK 1.3.1
Client

Sun JDK 1.3.1
Server

Sun JDK 1.4 Client Sun JDK 1.4
Server

IBM JDK 1.3.0

2 1,38 1,67 1,35 2,56

Tabelle 6.1: Faktor, um den die Methode arrayAccessBeforeLoop() in einer bestimmten VM schneller ist als die
Methode arrayAccessInLoop()

Sandini Bib

Schleifen 131

Für die Praxis bedeutet dies:

Manuelles Loop Unrolling lohnt sich meist nicht.

Es macht den Code unlesbar und führt bei HotSpot Server VMs sogar zu einer schlech-
teren Laufzeit.

6.2.4 Schleifen vorzeitig verlassen

Gelegentlich muss man eine Schleife vorzeitig verlassen. Häufig wird dazu eine boole-
sche Hilfsvariable benutzt. Der Code sieht etwa folgendermaßen aus:

// Tun Sie dies nicht!
private int booleanTerminatedLoop() {
 int a=0;
 boolean done = false;
 for (int i=0; i<20000000 && !done; i++) {
 a += i;
 if (a == -1) done = true;
 }
 return a;
}

Wenn eine bestimmte Bedingung eintrifft (hier a==-1)4, wird die Variable done auf true
gesetzt und die Schleife terminiert. Die Alternative zur booleschen Variable ist der von
einigen Puristen verachtete break-Befehl:

private int breakTerminatedLoop() {
 int a=0;
 for (int i=0; i<20000000; i++) {
 a += i;
 if (a == -1) break;
 }
 return a;
}

Java VM normalLoop() unrolledLoop() Faktor

Sun JDK 1.3.1 Client 100% 60% 1,68

Sun JDK 1.3.1 Server 28% 32% 0,90

Sun JDK 1.4.0 Client 138% 61% 2,26

Sun JDK 1.4.0 Server 28% 32% 0,89

IBM JDK 1.3.0 50% 34% 1,48

Tabelle 6.2: Normalisierte Ausführungszeit der beiden Methoden in verschiedenen Java VMs sowie der Faktor, den die
Methode unrolledLoop() in einer VM schneller (>1) bzw. langsamer (<1) ist als die Methode normalLoop()

4 Tatsächlich wird a niemals �1, das ist jedoch für das Beispiel unerheblich.

Sandini Bib

132 6 Bedingte Ausführung, Schleifen und Switches

Dieser Code ist jedoch unabhängig von der VM wesentlich schneller als die Version
mit boolescher Variable (Tabelle 6.3). Daher gilt:

Benutzen Sie break anstelle boolescher Hilfsvariablen, um Schleifen vorzeitig zu verlassen.

6.2.5 Ausnahmeterminierte Schleifen

Beim indizierten Zugriff auf eine Liste oder einen Array wird in Java immer eine Aus-
nahme ausgelöst, wenn ein Index außerhalb der Listen- oder Array-Grenzen liegt. Man
kann also, anstatt bei jeder Iteration die Grenzen selbst zu testen, einfach auf die Aus-
nahme warten, die ausgelöst wird, wenn die Grenze überschritten wird. Dies ist jedoch
sehr schlechter Stil!

Der Code sähe folgendermaßen aus:

ArrayList list;

// exceptionTerminatedLoop
// list sei initialisiert und mit Strings gefüllt
// Sehr schlechter Stil!
try {
 for (int i=0; true; i++) {
 String s = (String)list.get(i);
 ...
 }
} catch (IndexOutOfBoundsException e) {
 // ignoriere Ausnahme
}

Normalerweise würde man diesen Code so schreiben:

// normalLoop
// list sei initialisiert und mit Strings gefüllt
for (int i=0, n = list.size(); i<n; i++) {
 String s = (String)list.get(i);
 ...
}

Java VM booleanTerminatedLoop() breakTerminatedLoop() Faktor

Sun JDK 1.3.1 Client 100% 72% 1,39

Sun JDK 1.3.1 Server 122% 44% 2,77

Sun JDK 1.4.0 Client 152% 100% 1,52

Sun JDK 1.4.0 Server 102% 45% 2,29

IBM JDK 1.3.0 67% 45% 1,50

Tabelle 6.3: Normalisierte Ausführungszeit der beiden Methoden in verschiedenen Java VMs sowie der Faktor, um
den die Methode breakTerminatedLoop() in einer VM schneller ist als die Methode booleanTerminatedLoop()

Sandini Bib

Schleifen 133

Nicht nur, dass die normale Variante viel leichter lesbar ist, ein kleiner Test mit 100.000
Elementen offenbart zudem, dass schlechter Stil sich nicht unbedingt auszahlt. Ledig-
lich mit dem IBM JDK ist die ausnahmebeendete Schleife um den Faktor 1,73 schneller.
Mit allen anderen getesteten Java VMs ist die sauber kodierte Version entweder leicht
schneller oder gleich schnell.

Java VM normalLoop() exceptionTerminatedLoop() Faktor

Sun JDK 1.3.1 Client 100% 100% 1,00

Sun JDK 1.3.1 Server 57% 61% 0,93

Sun JDK 1.4.0 Client 101% 107% 0,94

Sun JDK 1.4.0 Server 29% 38% 0,77

IBM JDK 1.3.0 306% 177% 1,73

Tabelle 6.4: Normalisierte Ausführungszeit der beiden Methoden in verschiedenen Java VMs sowie der Faktor, den die
Methode normalLoop() in einer VM schneller (>1) bzw. langsamer (<1) ist als die Methode exceptionTerminated-
Loop()

Abbildung 6.1: Dauer von normalen und ausnahmeterminierten Schleife in Abhängigkeit von der Iterationslänge
(500-5.000) für Sun JDK 1.4.0

 50
0

1.
000

1.
500

2.
000

2.
500

3.
000

3.
500

4.
000

4.
500

5.
000

Iterationslänge

Z
ei

t

JDK 1.4.0 client - normalLoop

JDK 1.4.0 client - exceptionTerminatedLoop

JDK 1.4.0 server - normalLoop

JDK 1.4.0 server - exceptionTerminatedLoop

Sandini Bib

134 6 Bedingte Ausführung, Schleifen und Switches

Natürlich hängt das Ergebnis dieses Tests von der Anzahl der Elemente in der Liste ab.
Daher habe ich den Test noch einmal mit dem Sun JDK 1.4.0 und unterschiedlich vielen
Elementen durchgeführt (Abbildung 6.1 und Abbildung 6.2).

Unabhängig von der Anzahl der Elemente in der Liste schnitt die normale Schleife
mindestens genauso gut ab wie die ausnahmeterminierte. Bei der Server-Version ist
zudem der zweite Durchlauf der ausnahmeterminierten Schleife signifikant langsa-
mer, was darauf schließen lässt, dass der HotSpot-Server-Compiler Probleme hat, aus-
nahmegesteuerten Code zu optimieren. Zusammenfassend lässt sich sagen:

Ausnahmeterminierte Schleifen sind oft langsamer als normal terminierte Schleifen.

6.2.6 Iteratoren oder nicht?

Im letzten Beispiel haben wir über eine arraybasierte Liste iteriert. Dabei benutzten wir
nicht den von der Methode iterator() zurückgegebenen java.util.Iterator, sondern
haben einfach mit der get()-Methode über den Index zugegriffen.

Abbildung 6.2: Dauer von normalen und ausnahmeterminierten Schleifen in Abhängigkeit von der Iterationslänge
(100-1.000.000) für Sun JDK 1.4.0

100 1.000 10.000 100.000 1.000.000

Iterationslänge

Z
ei

t
(lo

ga
rit

hm
is

ch
)

JDK 1.4.0 client - normalLoop

JDK 1.4.0 client - exceptionTerminatedLoop

JDK 1.4.0 server - normalLoop

JDK 1.4.0 server - exceptionTerminatedLoop

JDK 1.4.0 server - exceptionTerminatedLoop (2. Durchlauf)

Sandini Bib

Schleifen 135

Den Iterator zu benutzen wäre sicherlich besserer Stil gewesen. Doch sind Iteratoren
performant? Wir wollen folgende vier verschiedene Methoden vergleichen:

ArrayList arrayList;
LinkedList linkedList;
...
// arrayList und linkedList seien initialisiert
// und mit 1.000 Strings gefüllt

// ArrayList mit Iterator
private String arrayListIteratorLoop() {
 String s = null;
 for (Iterator i = arrayList.iterator(); i.hasNext();) {
 s = (String)i.next();
 }
 return s;
}

// LinkedList mit Iterator
private String linkedListIteratorLoop() {
 String s = null;
 for (Iterator i = linkedList.iterator(); i.hasNext();) {
 s = (String)i.next();
 }
 return s;
}

// ArrayList-Iteration mit get(index)
private String arrayListLoop() {
 String s = null;
 for (int i=0, n = arrayList.size(); i<n; i++) {
 s = (String)arrayList.get(i);
 }
 return s;
}

// LinkedList-Iteration mit get(index)
private String linkedListLoop() {
 String s = null;
 for (int i=0, n = linkedList.size(); i<n; i++) {
 s = (String)linkedList.get(i);
 }
 return s;
}

Sandini Bib

136 6 Bedingte Ausführung, Schleifen und Switches

Wie Sie Tabelle 6.5 entnehmen können, ist das Iterieren über eine ArrayList mit einem
Iterator einiges langsamer als der direkte Zugriff mittels Index. Das Iterieren über eine
LinkedList mittels Iterator hingegen ist ein Vielfaches schneller als der Zugriff über den
Index.

Dabei ist der Strafzoll potenziell höher, wenn Sie auf eine LinkedList mittels get()
zugreifen, als wenn Sie über eine ArrayList mit einem Iterator iterieren. Dies ist so,
weil der Zugriff über get() oder den Iterator auf eine ArrayList jeweils in konstanter
Zeit erfolgt. Bei einer LinkedList jedoch erfolgt der lesende Zugriff über einen Index in
linearer Zeit und ist somit direkt von der Länge der Liste abhängig. Das Lesen aus
einer LinkedList mit einem Iterator benötigt dagegen nur konstante Zeit, da der Itera-
tor sich seine Position merkt und nicht erst mühsam den aktuellen Index suchen muss.
Die Iteration über LinkedList skaliert also nur, wenn Sie den Iterator benutzen.

Für Objekte vom Typ LinkedList empfiehlt sich also der Iterator, für Listen vom Typ
ArrayList der Zugriff mittels get().

Nun ist es guter Stil, für Referenzen anstelle der Implementierungklasse den Schnitt-
stellentyp zu verwenden. Also statt ArrayList oder LinkedList einfach List als Referenz-
typ zu benutzen:

List list = new ArrayList();

So können Sie auch nachträglich noch die implementierende Klasse (ArrayList) austau-
schen. Gleichzeitig wollen Sie aber auch performant über diese Liste iterieren können.
Es bleiben Ihnen drei Möglichkeiten:

� Sie benutzen einfach immer einen Iterator, da der schlechteste Fall immer noch
wesentlich günstiger ist (konstante Zugriffszeit) als der schlechteste Fall beim
Zugriff über get() (lineare Zugriffszeit).

� Sie prüfen mittels des instanceof-Operators oder über die getClass()-Methode, ob
es sich um eine ArrayList oder einen Vector handelt, und iterieren gegebenenfalls
mittels get(). Ist die Liste weder vom Typ ArrayList noch Vector, benutzen Sie den
Iterator.

Java VM ArrayList mit
get()

ArrayList mit
Iterator

LinkedList mit
get()

LinkedList mit
Iterator

Sun JDK 1.3.1 Client 100% 259% 3.267% 164%

Sun JDK 1.3.1 Server 54% 219% 2.338% 111%

Sun JDK 1.4.0 Client 105% 216% 3.338% 142%

Sun JDK 1.4.0 Server 25% 90% 2.262% 73%

IBM JDK 1.3.0 406% 590% 3.140% 322%

Tabelle 6.5: Normalisierte Ausführungszeit des Iterierens über eine Liste mit 1.000 Elementen

Sandini Bib

Optimale Switches 137

� Sie prüfen, ob die Liste das Interface java.util.RandomAccess (ab JDK 1.4) implemen-
tiert. Ist dies der Fall, benutzen Sie get(), ansonsten den Iterator.

Welche der drei Möglichkeiten Sie wählen sollten, hängt davon ab, welches JDK Sie
verwenden und wie viel Aufwand Sie tatsächlich treiben wollen, um optimal über eine
Liste zu iterieren.

6.3 Optimale Switches

Auch Switches lassen sich optimieren. Und zwar sieht die Java VM Spezifikation zwei
verschiedene Möglichkeiten der Übersetzung eines switch/case-Ausdrucks in Byte-
code vor: Lookupswitch und Tableswitch.

Bei einem Lookupswitch werden alle case-Ausdrücke linear durchsucht und bei Über-
einstimmung der entsprechende Code ausgeführt. Stimmt keiner der case-Werte mit
dem switch-Wert überein, wird der Code der default-Marke ausgeführt. Bei einem
Tableswitch hingegen wird ein Offset errechnet und direkt zum passenden case- oder
default-Ausdruck gesprungen. Entsprechend kann ein Tableswitch in konstanter Zeit
ausgeführt werden, während ein Lookupswitch lineare Ausführungszeit benötigt.
Dies gilt aber nur, wenn der Bytecode direkt interpretiert wird. Natürlich ist jede VM
frei, beliebige Optimierungen anzuwenden, die das Laufzeitverhalten komplett
umkrempeln.

So viel zur Theorie. Wir wollen an einem Beispiel durchmessen, ob und welche Effekte
wir beobachten können.

Die folgenden zwei Methoden sind funktional identisch, werden aber vom Compiler
unterschiedlich übersetzt – oneSwitch()mit einem Lookupswitch und twoSwitches() mit
zwei Tableswitches. Welcher Switch-Befehl benutzt wird, lässt sich leicht mit einem
Decompiler oder dem im bin-Verzeichnis des JDK enthaltenen Disassembler javap mit
der Option –c herausfinden.

Die Entscheidung, welcher der beiden Switch-Befehle benutzt wird, fällt der Compiler
in Abhängigkeit davon, ob die Case-Werte direkt aufeinander folgen bzw. wie groß die
Lücken zwischen aufeinander folgenden Werten sind. In der Methode oneSwitch()
besteht eine Lücke zwischen 9 und 100. Diese Lücke ist groß genug, so dass der Com-
piler sich für den Lookupswitch entscheidet. In der Methode twoSwitches() folgen in
beiden Switches alle Case-Werte einander. Daher entscheidet der Compiler sich für den
Tableswitch.

// wird mit Lookupswitch übersetzt
private int oneSwitch() {
 int defaultValue = 99;
 int a = 0;
 for (int i=0; i<500; i++) {

Sandini Bib

138 6 Bedingte Ausführung, Schleifen und Switches

 switch(i) {
 case 0: a=0; break;
 case 1: a=defaultValue; break;
 case 2: a=defaultValue; break;
 case 3: a=3; break;
 case 4: a=4; break;
 case 5: a=defaultValue; break;
 case 6: a=6; break;
 case 7: a=defaultValue; break;
 case 8: a=defaultValue; break;
 case 9: a=9; break;
 case 100: a=0; break;
 case 101: a=defaultValue; break;
 case 102: a=defaultValue; break;
 case 103: a=3; break;
 case 104: a=4; break;
 case 105: a=defaultValue; break;
 case 106: a=6; break;
 case 107: a=defaultValue; break;
 case 108: a=defaultValue; break;
 case 109: a=9; break;
 default: a=defaultValue;
 }
 }
 return a;
}

// wird mit Tableswitches übersetzt
private int twoSwitches() {
 int defaultValue = 99;
 int a = 0;
 for (int i=0; i<500; i++) {
 switch(i) {
 case 0: a=0; break;
 case 1: a=defaultValue; break;
 case 2: a=defaultValue; break;
 case 3: a=3; break;
 case 4: a=4; break;
 case 5: a=defaultValue; break;
 case 6: a=6; break;
 case 7: a=defaultValue; break;
 case 8: a=defaultValue; break;
 case 9: a=9; break;
 }
 switch(i) {
 case 100: a=0; break;
 case 101: a=defaultValue; break;
 case 102: a=defaultValue; break;
 case 103: a=3; break;
 case 104: a=4; break;
 case 105: a=defaultValue; break;

Sandini Bib

Optimale Switches 139

 case 106: a=6; break;
 case 107: a=defaultValue; break;
 case 108: a=defaultValue; break;
 case 109: a=9; break;
 default: a=defaultValue;
 }
 }
 return a;
}

Die Ergebnisse in Tabelle 6.6 zeigen, dass die Werte für die beiden Methoden nur beim
Sun JDK 1.4.0 Server und dem IBM JDK signifikant unterschiedlich waren. Wie erwar-
tet war dabei die Methode twoSwitches() schneller.5

Für die Praxis bedeutet unser Ergebnis:

Switches aufzusplitten kann sich unter bestimmten Bedingungen lohnen, sollte jedoch nur an
besonders performancekritischen Stellen angewandt werden.

Das Splitten wirkt sich dabei umso positiver aus, je mehr case-Ausdrücke im Switch
enthalten sind und je öfter der default-Ausdruck ausgeführt wird.

Java VM oneSwitch() twoSwitches() Faktor

Sun JDK 1.3.1 Client 100% 104% 0,96

Sun JDK 1.3.1 Server 49% 45% 1,08

Sun JDK 1.4.0 Client 106% 104% 1,02

Sun JDK 1.4.0 Server 53% 7% (32%) 7,46 (1,63)

IBM JDK 1.3.0 72% 48% 1,50

Tabelle 6.6: Normalisierte Ausführungszeit der beiden Methoden sowie der Faktor, um den twoSwitches() schneller
war als oneSwitch()

5 Merkwürdigerweise war jedoch der erste Durchlauf von twoSwitches() beim Sun JDK 1.4.0 Server
reproduzierbar wesentlich schneller als der zweite Durchlauf. In Tabelle 6.6 stehen die Werte für
den zweiten Durchlauf in Klammern.

Sandini Bib

Sandini Bib

7 Ausnahmen

Das Wichtigste vorweg: Wenige, wenn nicht keine Java VMs sind auf das Auslösen
und Verarbeiten von Ausnahmen optimiert. Daraus folgt:

Benutzen Sie Ausnahmen nur für Ausnahmesituationen.

Die in Kapitel 6.2.5 Ausnahmeterminierte Schleifen beschriebenen ausnahmeterminierten
Schleifen sind deshalb nicht schneller als konventionell kodierte Schleifen, weil das
Auslösen einer Ausnahme für die VM einen gewissen Kraftakt darstellt. Daraus folgt
insbesondere:

Benutzen Sie Ausnahmen niemals zum Steuern des Kontrollflusses.

Ihr Code wird sonst nicht nur unlesbar und schwer wartbar, sondern auch langsam.

7.1 Ausnahmen durch sinnvolle Schnittstellen vermeiden

Es kommt vor, dass bestimmte Methoden abhängig von einem Zustand Ausnahmen
auslösen müssen. Wenn Sie selbst eine solche Klasse kodieren und der ausnahmeaus-
lösende Zustand vor dem Aufruf der Methode bekannt ist, können Sie die Schnittstelle
so kodieren, dass die Ausnahme vom Aufrufer umgangen werden kann, indem er zuvor
den Zustand abfragt. Ein einfaches Beispiel hierfür ist das Interface java.util.Iterator.

So lange es noch Elemente gibt, über die iteriert werden kann, liefert die Methode
next() ein neues Objekt zurück. Gibt es keine Elemente mehr, wird eine NoSuchElement-
Exception ausgelöst. Dies lässt sich jedoch vermeiden, indem man vor jedem next()-
Aufruf mit der Methode hasNext() überprüft, ob noch ein weiteres Element in der
Datenstruktur enthalten ist. Dementsprechend wird gewöhnlich folgendes Idiom für
eine Iteration benutzt:

for (Iterator i=collection.iterator(); i.hasNext();) {
 Object o = i.next();
}

Sandini Bib

142 7 Ausnahmen

Ein anderes Beispiel ist folgende (fiktive) Schnittstelle zum Überprüfen von Berechti-
gungen:

public interface Authorization {

 /**
 * Überprüft die Berechtigung einer Person, eine Aktion
 * auszuführen.
 *
 * @exception SecurityException falls die Person zur Ausführung
 * der Aktion nicht berechtigt ist.
 */
 public void checkPermission(Person person, Action action)
 throws SecurityException;

 /**
 * Gibt an, ob eine Person eine gegebene Aktion ausführen darf.
 *
 * @return true, falls die Person die Aktion ausführen darf.
 */
 public boolean hasPermission(Person person, Action action);
}

Die Methode checkPermission() kann sehr leicht in Code eingebettet werden – bei-
spielsweise in einem EJB oder einer Bibliothek. Insbesondere ist sie geeignet für Routi-
nechecks, ähnlich dem, ob ein Objekt null ist, bevor eine Methode ausgeführt wird
oder nicht. Sie ist am besten zu benutzen, wenn generell erwartet wird, dass die erfor-
derliche Berechtigung vorliegt.

Die Methode hasPermission() hingegen wird mit der Erwartung aufgerufen, dass ein
Benutzer durchaus nicht die erforderliche Berechtigung hat. Sie kann beispielsweise
dazu benutzt werden, in einer grafischen Benutzerschnittstelle nur jene Schaltflächen
anzuzeigen, die der Benutzer auch betätigen darf. Es wäre ungerechtfertigt, vor dem
Anzeigen einer Schaltfläche jeweils eine Ausnahme zu riskieren – zumal ja noch nicht
einmal eine Ausnahme vorliegt.

Wenn Sie eine Schnittstelle entwerfen, denken Sie an Methoden zum Abfragen von Zuständen
zum Vermeiden von unnötigen Ausnahmen.

Das heißt nicht, dass Sie keine Ausnahmen benutzen oder gar Ausnahmen maskieren
sollten. Ausnahmen und insbesondere Stacktraces sind wertvolle, unverzichtbare Hil-
fen bei der Fehlersuche.

Folgender wenig vorbildhafter Code maskiert die Ausnahme und ersetzt die Fehler-
behandlung durch das Setzen eines Zustandes (error!=null).

Sandini Bib

Kosten von Try-Catch-Blöcken in Schleifen 143

InputStream in;
String error;

// in sei ein geöffneter InputStream

// Tun Sie dies nicht!
public int read() {
 int i=0;
 try {
 i = in.read();
 }
 catch(IOException ioe) {
 // hier geht der Stacktrace verloren
 error = ioe.toString();
 }
 return i;
}

// wird evtl. nie aufgerufen
public String getError() {
 return error;
}

Dieses Vorgehen erschwert die Fehlersuche aus folgenden zwei Gründen enorm:

� Der Stacktrace ist verloren. Alles, was Ihnen bleibt, ist eine textuelle Fehlermel-
dung.

� Ein Klient dieser Klasse ruft eventuell nie die Methode getError() auf. Das heißt, Sie
erfahren unter Umständen nie, dass eine Ausnahme vorlag.

Benutzen Sie also Ausnahmen mit Bedacht. Weitere nützliche Anmerkungen über den
Einsatz können Sie in Joshua Blochs Buch Effektiv Java Programmieren [Bloch02, S.173ff]
finden.

7.2 Kosten von Try-Catch-Blöcken in Schleifen

Eine weit verbreitete Ansicht lautet, dass zu viele try-catch-Blöcke Programme lang-
sam machen. Tatsächlich ist dies nicht unbedingt der Fall. Betrachten Sie folgende zwei
Methoden und die normalisierten Ausführungszeiten in Tabelle 7.1:

private int loopWithoutTryCatch() {
 int a = 0;
 for (int i=0; i<100000; i++) {
 a += Integer.parseInt("1");
 }
 return a;
}

Sandini Bib

144 7 Ausnahmen

private int loopWithTryCatch() {
 int a = 0;
 for (int i=0; i<100000; i++) {
 try {
 a += Integer.parseInt("1");
 }
 catch (NumberFormatException nfe) {
 nfe.printStackTrace();
 }
 }
 return a;
}

Nur im IBM JDK 1.3.0 führt der try-catch-Block zu einem signifikanten Performance-
Verlust.

Nun haben wir in den beiden Methoden auf etwas seltsame Weise a++ ausgeführt. Das
Benutzen von a += Integer.parseInt("1") garantierte, dass in der Schleife eine nicht-tri-
viale und somit schwer zu optimierende Methode ausgeführt wurde, die den größten
Teil der Rechenzeit schluckt. Wenn wir stattdessen das funktional gleiche, sehr viel
schnellere und wesentlich leichter zu optimierende a++ ausführen, kommen wir zu
anderen Ergebnissen.

Java VM mit try-catch ohne try-catch Faktor

Sun JDK 1.3.1 Client 100% 97% 1,03

Sun JDK 1.3.1 Server 56% 58% 0,97

Sun JDK 1.4.0 Client 87% 86% 1,01

Sun JDK 1.4.0 Server 31% 31% 1,02

IBM JDK 1.3.0 73% 64% 1,13

Tabelle 7.1: Normalisierte Ausführungszeiten sowie der Faktor, den die Methode ohne try-catch-Block schneller ist
als die Methode mit try-catch-Block

Java VM mit try-catch ohne try-catch Faktor

Sun JDK 1.3.1 Client 100% (entspricht 143 s) 57% 1,75

Sun JDK 1.3.1 Server 1,8% 1,8% 1,00

Sun JDK 1.4.0 Client 86% 79% 1,08

Sun JDK 1.4.0 Server nicht messbar nicht messbar nicht messbar

IBM JDK 1.3.0 119% 29% (nicht messbar) 4,15 (nicht messbar)

Tabelle 7.2: Normalisierte Ausführungszeiten der a++-Variante sowie der Faktor, den die Methode ohne try-catch-
Block schneller ist als die Methode mit try-catch-Block

Sandini Bib

Keine eigenen Ausnahme-Hierarchien 145

Tabelle 7.2 zeigt, dass die normalisierten Ausführungszeiten für Sun JDK 1.3.1 Client
und IBM JDK 1.3.0 ohne try-catch-Block wesentlich kürzer sind. Bei Sun JDK 1.3.1
Server und Sun JDK 1.4.0 Client ist jedoch kaum ein nennenswerter Unterschied zu
beobachten. Interessant ist, dass Sun JDK 1.4.0 Server unsere triviale Methode so weit
optimiert, dass die Ausführungszeit nicht hinreichend lang ist (weitaus kleiner als
1%), um zu einem messbaren Ergebnis zu kommen. Gleiches gilt für den zweiten
Lauf der Variante ohne try-catch-Block im IBM JDK. Diese Optimierung gelang der
IBM VM jedoch nicht bei der Variante mit try-catch-Block.

try-catch-Blöcke führen bei aktuellen Sun VMs also kaum mehr zu Performance-Ver-
lusten, können jedoch bei IBM JDK 1.3.0 zu Einbußen führen und insbesondere Opti-
mierungen verhindern, die andernfalls greifen würden.

Ein signifikanter Performance-Gewinn durch einen try-catch-Block außerhalb von
Schleifen ist aber nur zu erwarten, wenn der Schleifenkörper hinreichend kurz ist und
entsprechend oft ausgeführt wird. Denn wie wir oben gesehen haben, ist der zu erwar-
tende Gewinn vernachlässigbar groß, wenn eine ausreichend komplexe Methode wie
zum Beispiel Integer.parseInt() innerhalb des Blocks ausgeführt wird.

Mit anderen Worten:

Abhängig von der VM und dem Inhalt einer Schleife kann es sich lohnen, try-catch-Blöcke
bevorzugt außerhalb von Schleifen zu platzieren, wenn dadurch der Programmablauf nicht
beeinträchtigt wird.

In normalen Programmen scheinen die möglichen Performance-Gewinne jedoch so
klein zu sein, dass es sich kaum lohnt, aus Geschwindigkeitsgründen auf try-catch-
Blöcke zu verzichten.

7.3 Keine eigenen Ausnahme-Hierarchien

In vielen Projekten wird als Erstes eine eigene Ausnahme-Hierarchie erstellt. Schließ-
lich, so das Argument, müsse man einheitlich mit Ausnahmen umgehen können und
Regelungen finden, bevor der eigentliche Anwendungscode geschrieben werde. Also
geht man daher und erstellt eine Ausnahme-Hierarchie wie in Abbildung 7.1.

Der Ansatz, sich Gedanken zu machen, bevor das Kind in den Brunnen gefallen ist, ist
sicherlich lobenswert – an dieser Stelle jedoch völlig fehl am Platze.

Im JDK 1.4.0 sind 270 Ausnahme-Klassen enthalten. Vermutlich können Sie 95% aller
Ausnahmen, die je von Ihrem Code ausgelöst werden, mit diesen Ausnahmen abbil-
den. Und die 5%, die nicht in den vorhandenen Ausnahmen enthalten sind, lassen sich
meist durch Erben von einer vorhandenen Ausnahme erstellen.

Sandini Bib

146 7 Ausnahmen

Was passiert, wenn Sie diese Regel nicht beherzigen, ist Folgendes: In Ihrem Code wer-
den ständig Ausnahmen aus dem JDK gefangen und verpackt in Ihren eigenen Aus-
nahmen wieder geworfen.

InputStream in;

// in sei ein initialisierter InputStream

public int read() throws XYZIOException {
 // Tun Sie dies nicht!
 try {
 return in.read();
 }
 catch (IOException ioe) {
 throw new XYZIOException(ioe);
 }
}

Und dies sind die Konsequenzen:

� Schwierigere Fehlersuche, da die ursprüngliche Ausnahme nicht mehr so leicht
oder gar überhaupt nicht mehr zugänglich ist.

� Statt nur eine Ausnahme erzeugen Sie mindestens zwei. Da Ausnahmen eine
außerordentliche Last für die Java VM darstellen, wird Ihr Programm langsamer.

Also:

Erstellen Sie keine eigene Parallel-Ausnahme-Hierarchie.

Abbildung 7.1: Ausschnitt einer Parallel-Ausnahme-Hierarchie der Firma XYZ, die eine eigene XYZIOException
und eine eigene XYZIllegalArgumentException enthält

Exception RuntimeException

XYZException XYZRuntimeException

XYZIOException XYZIllegalArgumentException

Sandini Bib

Automatisch loggende Ausnahmen 147

7.4 Automatisch loggende Ausnahmen

Oftmals wird als Argument für eine eigene Ausnahme-Hierarchie angeführt, dass man
das automatische Loggen von Ausnahmen in einer Basisklasse (XYZException) imple-
mentieren wolle. Gemeint ist, dass sich jede Ausnahme der Firma XYZ automatisch in
einer Logdatei verewigt, ohne dass der Entwickler Code zu genau diesem Zweck
schreiben müsste.

Wenn Sie auf eine solche Idee kommen und überzeugt davon sind, dass Sie unbedingt
automatisch loggende Ausnahmen benötigen, implementieren Sie den nötigen Code in
einer Hilfsklasse, an die Sie von Ihren eigenen loggenden Ausnahmen delegieren. Aber
benutzen Sie auf jeden Fall die Ausnahme-Hierarchie des JDKs. Ihre Klasse
com.xyz.LogIOException sollte also von java.io.IOException erben und nicht von
com.xyz.LogException. Auf diese Weise ersparen Sie sich das lästige Fangen und Wieder-
auslösen von Ausnahmen.

Auf jeden Fall vorzuziehen ist es jedoch, dem Entwickler die Entscheidung zu überlas-
sen, welche Ausnahme geloggt werden muss und welche nicht. Im Zweifelsfall kann
ohnehin derjenige, der die Ausnahme fängt, besser beurteilen, ob sie geloggt werden
muss, als der, der sie auslöst. Sie müssen nur Ihren Entwicklern vertrauen! Nur so kön-
nen Sie wirklich performanten Ausnahme-Code schreiben.

Hierbei ist noch anzumerken, dass alle Ausnahmen, von denen man glaubt, dass sie
garantiert nicht ausgelöst werden, die aber behandelt werden müssen, unbedingt auch
geloggt werden müssen. Wenn sie nämlich doch mal ausgelöst werden, haben Sie ein
riesiges Problem den Fehler zu finden.

String s;
// s sei so initialisiert, dass wir fest daran glauben,
// dass nichts schief gehen kann...
try {
 Class klass = Class.forName(s);
 ...
}
catch (ClassNotFoundException cnfe) {
 // so unwahrscheinlich es auch scheint: loggen!
 cnfe.printStackTrace();
}

7.5 Ausnahmen wieder verwenden

Um die beträchtlichen Kosten beim Erstellen einer Ausnahme zu umgehen, können Sie
Ausnahmen wiederverwenden. Wir wollen versuchen abzuschätzen, wie groß der Per-
formance-Gewinn ist. Betrachten wir folgende beiden Methoden:

Sandini Bib

148 7 Ausnahmen

private void normalException() {
 for (int i=0; i<10000; i++) {
 try {
 throw new Exception();
 }
 catch (Exception e) {
 // wir ignorieren diese Ausnahme bewusst
 }
 }
}

private final Exception REUSED_EXCEPTION
 = new Exception("Stacktrace ist ungültig.");

private void reusedException() {
 for (int i=0; i<10000; i++) {
 try {
 throw REUSED_EXCEPTION;
 }
 catch (Exception e) {
 // wir ignorieren diese Ausnahme bewusst
 }
 }
}

Die Methode reusedException() ist in allen Fällen deutlich schneller als die Methode
normalException(). Bei den beiden Sun Server VMs lagen die Werte für reusedExcep-
tion() sogar deutlich unter einem Prozent.1

Rein unter Performance-Gesichtspunkten betrachtet, lohnt es sich also, Ausnahmen
wiederzuverwenden. Falls Sie sich für diese Technik entscheiden, bedenken Sie jedoch,
dass Sie sämtliche Informationen aus dem Stacktrace verlieren, da der Stacktrace beim
Erzeugen der Ausnahme angelegt wird. Auch das Aufrufen von fillInStackTrace()

Java VM normale Ausnahme wieder verwendete
Ausnahme

Faktor

Sun JDK 1.3.1 Client 100% 5% 19,44

Sun JDK 1.3.1 Server 75% nicht messbar nicht messbar

Sun JDK 1.4.0 Client 121% 7% 18,83

Sun JDK 1.4.0 Server 99% nicht messbar nicht messbar

IBM JDK 1.3.0 58% 9% 6,35

Tabelle 7.3: Normalisierte Ausführungszeit sowie der Faktor, den die Methode reusedException() schneller ist als
normalException()

1 Dies kann evtl. jedoch auch daran liegen, dass der Compiler erkennt, dass die Ausnahme unbedeu-
tend für die weitere Ausführung und deshalb wegoptimierbar ist.

Sandini Bib

Ausnahmen wieder verwenden 149

führt nicht aus diesem Dilemma, da es genauso lange dauert wie das Auslösen einer
neuen Ausnahme. Sie erschweren sich die Fehlersuche also ganz erheblich. Gewöhn-
lich sollte zudem in einer echten Ausnahmesituation Performance nicht mehr so wich-
tig sein.

Sandini Bib

Sandini Bib

8 Datenstrukturen und Algorithmen

Die Wahl der richtigen Datenstrukturen und Algorithmen kann leicht über Erfolg und
Misserfolg eines Projekts entscheiden. Deshalb ist es notwendig, zumindest über ein
Grundwissen in diesem Bereich zu verfügen. Tatsächlich kommt es in den meisten Fäl-
len gar nicht so sehr darauf an, selbst großartige Datenstrukturen und Algorithmen zu
schreiben, sondern vielmehr darauf, qualifiziert entscheiden zu können, welche Daten-
struktur zu welchem Zweck am besten geeignet ist; zu wissen, was die Vor- und Nach-
teile verschiedener Datenstrukturen sind und wie performant die dazugehörigen
Operationen ausgeführt werden können.

Daher wollen wir uns zunächst kurz die Groß-O-Notation anschauen, bevor die einzel-
nen Klassen und Schnittstellen des Collections-Framework beschrieben und mit Hilfe
der Groß-O-Notation eingeordnet werden.

Anschließend möchte ich Ihnen noch zwei Beispiele für den intelligenten Einsatz von
Datenstrukturen zeigen sowie Caches zur Beschleunigung von Speicherzugriffen dis-
kutieren.

8.1 Groß-O-Notation

Die Groß-O-Notation geht auf das 1894 vom deutschen Mathematiker Paul Bachmann
(1837–1920) publizierte Werk Analytische Zahlentheorie zurück. Edmund Landau (1877–
1938), der eine Vielzahl mathematischer Schriften verfasste, sorgte für die Verbreitung
dieser Notation, weswegen früher auch vom Landau-Symbol anstatt vom großen O die
Rede war.

Die Notation dient dazu, obere Schranken für die Komplexität von Algorithmen anzu-
geben. Sie ist folgendermaßen definiert:1

f(n) ∈ O(g(n)) für n→∞ genau dann, wenn ∃ Konstante c>0, n0∈ IN, so dass
(∀n≥n0) |f(n)| ≤ c|g(n)|

1 Eigentlich werden noch andere Schranken und Symbole in der Groß-O-Notation definiert. Für
unsere Zwecke reicht jedoch ein Verständnis dieser einen Definition.

Sandini Bib

152 8 Datenstrukturen und Algorithmen

f(n) ∈ O(g(n)) bedeutet also auf gut Deutsch: die Laufzeit f(n) eines Algorithmus
wächst bis auf einen konstanten Faktor nicht schneller als die Funktion g(n).

Üblicherweise bezieht man sich dabei nicht auf irgendwelche Funktionen g(n), son-
dern auf einfache, allgemein bekannte Funktionen (Tabelle 8.1).

Eine sequenzielle Suche hat beispielsweise ein Laufzeitverhalten von O(n). Eine binäre
Suche hingegen hat ein Laufzeitverhalten von O(log n). Das bedeutet, dass für große n
eine binäre Suche immer schneller ist als eine sequenzielle.

Um zu verdeutlichen wie viel ein Algorithmus mit O(a()) schneller ist als ein Algorith-
mus mit O(b()), wollen wir annehmen, ein Algorithmus benötigt 10-6 Sekunden für
eine Operation. Dann ergeben sich in Abhängigkeit von der Problemgröße n und
O(g(n)) die Laufzeiten aus Tabelle 8.2.

Offensichtlich lohnt es sich, Algorithmen einer geringen Komplexitätsklasse zu ver-
wenden.

Nach diesem kurzen Ausflug in die Klassifizierung von Algorithmen haben wir nun
das Rüstzeug uns mit den konkreten Datenstrukturen der Java 2 Plattform samt ihrer
Algorithmen auseinander zu setzen.

Funktion g(n) Name Beispiel

c Konstant Hashtabelle1

1 Gilt nur näherungsweise, sofern die Hashfunktion die Elemente gleichmäßig verteilt und die Kollisionsrate
sehr gering ist.

log n Logarithmisch Binäre Suche

n Linear Sequentielle Suche

n log n - Quicksort

n2 Quadratisch Multiplikation von zwei n-stelligen Zahlen

n3 Kubisch Matrizenmultiplikation

2n Exponenziell Travelling Salesman Problem

Tabelle 8.1: Typische Funktionen g(n)

n O(log2n) O(n) O(n2) O(2n)

10 0,000003s 0,00001s 0,0001s 0,001s

100 0,000007s 0,0001s 0,01s 1016 Jahre

1.000 0,00001s 0,001s 1,0s astronomisch

10.000 0,000013s 0,01s 1,7min astronomisch

100.000 0,000017s 0,1s 2,8h astronomisch

Tabelle 8.2: Ausführungszeiten von Algorithmen in Abhängigkeit von ihrer Komplexität und der Problemgröße

Sandini Bib

Collections-Framework 153

8.2 Collections-Framework

Das Collections-Framework ist seit JDK 1.2 Teil von Java. Zuvor musste man sich mit
Bibliotheken Dritter behelfen oder auf die Klassen Hashtable und Vector beschränken.
Da beide Klassen voll synchronisiert sind, führte dies, vor allem bei älteren Java VMs,
zu Performance-Einbußen. Mit dem Collections-Framework verfügt Java nun seit eini-
ger Zeit über sehr gute Basisdatenstrukturen mit akzeptabler Performance. Es beinhal-
tet Schnittstellen der abstrakten Datentypen Liste, Menge (Set) und Tabelle (Map),
verschiedene Implementierungen sowie eine nützliche Hilfsklasse namens Collections.

8.2.1 Collections, Sets und Listen

Collection ist die Superschnittstelle für Sets und Listen. Abbildung 8.1 zeigt die Klas-
senhierarchie inklusive Implementierungen.

Hier eine kurze Beschreibung der Schnittstellen und der wichtigsten definierten Ope-
rationen:

� Collection

Menge von Objekten.

Die wichtigsten definierten Operationen sind hinzufügen (add()), entfernen
(remove()) und ist-enthalten (contains()). Darüber hinaus gibt es eine Methode
iterator(), die einen Iterator zurückgibt, mit dem man über die Elemente der
Collection iterieren kann, sowie eine Methode toArray(), die eine Array-Repräsen-
tation der Collection zurückgibt.

Abbildung 8.1: Klassenhierarchie von Collection

Seit JDK 1.4

<<interface>>
Collection

<<interface>>
List

<<interface>>
Set

<<interface>>
SortedSet

ArrayList LinkedListVector

<<interface>>
RandomAccess

HashSet

TreeSetLinkedHashSet

Sandini Bib

154 8 Datenstrukturen und Algorithmen

� List

Geordnete2 Menge von Objekten.

List definiert, zusätzlich zu den in Collection bereits definierten Methoden,
indexbasierte Operationen wie get(index), set(index, Object), remove(index),
indexOf(Object) und lastIndexOf(Object). Zudem existiert eine Methode subList()
zum Erstellen einer Sicht (View) auf die ursprüngliche Liste.

� Set

Menge von Objekten, in der jedes Objekt nur einmal vorkommt.

Die Gleichheit von Objekten ist gegeben, wenn a.equals(b). Ein Set enthält also nur
Objekte, für die paarweise gilt: !a.equals(b) (bzw. !b.equals(a), falls a==null). Es
sind keine Operationen zusätzlich zu denen aus Collection definiert

� SortedSet

Sortierte Menge von Objekten, in der jedes Objekt nur einmal vorkommt.

SortedSet definiert zusätzlich zu den Methoden aus Collection noch Methoden zum
Erstellen von Sichten auf den vorderen (headSet()) oder hinteren Teil (tailSet())
sowie einen beliebigen Ausschnitt der Menge (subSet()). Zudem gibt es Methoden
zum Zugriff auf das erste (first()) bzw. letzte Element (last()) sowie eine Methode
comparator(), die den benutzten Comparator zurückgibt.

� RandomAccess

Markierungs-Interface, das Listen kennzeichnet, die schnellen, direkten Zugriff
(gewöhnlich O(c)) auf ein beliebiges Objekt erlauben. Ab JDK 1.4.

Tabelle 8.3 gibt einen Überblick über das Laufzeitverhalten der Basisoperationen der
Standard-Implementierungen von List und Set.

2 D.h. es gibt eine Ordnung, nämlich genau die, in der Elemente angefügt wurden. Geordnet bedeutet
also nicht unbedingt sortiert.

Klasse add() remove(Object) contains() get(int) Synchronisiert

ArrayList O(c) O(n) O(n) O(c) nein

Vector O(c) O(n) O(n) O(c) ja

LinkedList O(c) O(n) O(n) O(n) nein

HashSet O(c) O(c) O(c) - nein

TreeSet O(log n) O(log n) O(log n) - nein

LinkedHash-
Set

O(c) O(c) O(c) - nein

Tabelle 8.3: Laufzeitverhalten verschiedener Implementierungen von List und Set

Sandini Bib

Collections-Framework 155

Natürlich gibt es besonders günstige und ungünstige Szenarien für den Einsatz einer
Implementierung. Hier deshalb einige Tipps für den Gebrauch von Listen:

� Falls Sie häufig lesend über einen Index auf Elemente der Liste zugreifen, sollten
Sie auf keinen Fall LinkedList benutzen, sondern ArrayList oder Vector.

� ArrayList ist grundsätzlich etwas schneller als Vector, da ArrayList nicht synchroni-
siert ist. Wie viel schneller hängt jedoch stark von der verwendeten VM ab. Ansons-
ten gleichen sich die Charakteristika der beiden Klassen. Im Übrigen lässt sich
ArrayList (wie auch alle anderen Collection- und Map-Implementierungen) durch
einen Synchronisation-Wrapper synchronisieren. Eine entsprechende Fabrik-
methode befindet sich in der Hilfsklasse java.util.Collections.

� Wollen Sie eine Liste als Kellerspeicher (Stack) benutzen, sei Ihnen ArrayList oder
java.util.Stack empfohlen. Stack erbt von Vector und weist dieselben Eigenschaften
auf. Falls Sie sich für ArrayList entscheiden, fügen Sie Elemente immer am Ende der
Liste an, nie am Anfang. Gleiches gilt fürs Entfernen. Der Grund dafür ist, dass das
Einfügen und Entfernen proportional zur Anzahl der folgenden Elemente dauert,
da diese im Array um eine Position verschoben werden müssen. Ein Element am
Anfang einer ArrayList oder eines Vectors einzufügen oder zu entfernen, ist daher
eine Operation mit einer Laufzeit von O(n).

� Das Einfügen oder Entfernen am Anfang oder Ende einer LinkedList ist eine Opera-
tion der Klasse O(c). Es müssen lediglich ein paar Referenzen umgebogen oder aus-
genullt werden. Das macht LinkedList zu einer geeigneten Datenstruktur für
Warteschlangen (Queues).

Tipps für den Gebrauch von Sets:

� HashSet ist wesentlich schneller als TreeSet. Falls die Elemente Ihres Sets nicht sor-
tiert sein müssen, benutzen Sie lieber HashSet.

� Benutzen Sie LinkedHashSet (ab JDK 1.4) nur, wenn die Reihenfolge, in der Sie Ele-
mente eingefügt haben, von Bedeutung ist oder Sie schnell über die Elemente des
Sets iterieren müssen. Da die Elemente verlinkt sind, ist die Laufzeit der Iteration
proportional zur Anzahl der Elemente im Set und nicht zur Kapazität der unterlie-
genden HashMap, wie dies bei HashSet der Fall ist. Das bedeutet, dass eine große
Kapazität nicht die Performance der Iteration schmälert.

� HashSet und LinkedHashSet lassen sich genau wie HashMap und Hashtable mit einer
Kapazität und einem Ladefaktor (Loadfactor) initialisieren und optimieren. Mehr
dazu weiter unten.

Sandini Bib

156 8 Datenstrukturen und Algorithmen

8.2.2 Maps

Maps bilden die zweite Haupt-Klassenhierarchie des Collections-Frameworks. Abbil-
dung 8.2 gibt einen Überblick über Klassen und Interfaces.

Hier eine kurze Beschreibung der beiden Schnittstellen:

� Map

Menge von Schlüssel-/Wert-Paaren, in der jeder Schlüssel nur einmal vorkommt.

Die wichtigsten definierten Operationen sind hinzufügen (put()), entfernen
(remove()) und entnehmen (get()). Darüber hinaus verfügt Map noch über Methoden
zum Erzeugen von drei Sichten: entrySet() gibt ein Set von Map.Entry-Objekten
zurück, keySet() ein Set der Schlüssel und values() eine Collection der Werte.

� SortedMap

Nach Schlüsseln sortierte Menge von Schlüssel-Wert-Paaren, in der jeder Schlüssel
nur einmal vorkommt.

SortedMap definiert zusätzlich zu den Methoden aus Map noch Methoden zum Erstel-
len von Sichten auf den vorderen (headMap()) oder hinteren Teil (tailMap()) sowie
einen beliebigen Ausschnitt der Tabelle (subMap()). Zudem gibt es Methoden zum
Zugriff auf den ersten (firstKey()) und letzten Schlüssel (lastKey()) sowie eine
Methode comparator(), die den benutzten Comparator zurückgibt.

Tabelle 8.4 gibt einen Überblick über das Laufzeitverhalten der Basisoperationen von
Standard-Implementierungen des Interfaces Map.

Abbildung 8.2: Klassenhierarchie von Map

Seit JDK 1.4

<<interface>>
Map

<<interface>>
SortedMap

HashMap

TreeMap

Hashtable

IdentityHashMapLinkedHashMap

WeakHashMap

Sandini Bib

Collections-Framework 157

Natürlich gibt es auch für Maps Hinweise, wann welche Implementierung am geeig-
netsten ist:

� Genau wie HashSet schneller als TreeSet ist, sind HashMap und Hashtable wesentlich
schneller als TreeMap. Wenn Ihre Map nicht sortiert sein muss, benutzen Sie also lie-
ber HashMap oder Hashtable.

� Da HashMap im Gegensatz zu Hashtable nicht synchronisiert ist, ist HashMap etwas
schneller.

� Wenn Sie null als Schlüssel oder Wert benutzen wollen, können Sie nicht Hashtable
benutzen, da null nicht als Schlüssel oder Wert unterstütz wird.

� LinkedHashMap (ab JDK 1.4) ist langsamer als HashMap. Benutzen Sie die Klasse also
nur, wenn die Reihenfolge, in der die Elemente eingefügt wurden, wichtig ist oder
Sie schnell über die Elemente iterieren wollen. LinkedHashMap eignet sich außerdem
dazu, Caches zu implementieren. Dazu muss die removeEldestEntry()-Methode
überschrieben werden.

� Es gibt sehr wenige Gelegenheiten, in denen die Klasse WeakHashMap von Nutzen ist.
Sie kann als Cache für Elemente dienen, die so lange im Speicher bleiben müssen,
wie ihr Schlüssel-Objekt existiert. Beispielsweise können dies Metainformationen
von Klassen sein, für die das Klassenobjekt selbst als Schlüssel fungiert. Im Sun
JDK 1.4 werden WeakHashMaps genau zu diesem Zweck in den Klassen
java.beans.Introspector und java.lang.reflect.Proxy verwendet.

� Genau wie WeakHashMap ist auch IdentityHashMap (ab JDK 1.4) eher ein Exot. Im
Gegensatz zu allen anderen Map-Implementierungen, werden in einer Identity-
HashMap zwei Objekte ausschließlich als gleich angesehen, wenn sie identisch sind,
d.h. es muss gelten o1==o2. Anders ausgedrückt, o1.equals(o2) reicht nicht. Ist Iden-
tität als Vergleichsfunktion gewünscht, ist IdentityHashMap potenziell schneller als
HashMap.

Klasse put() remove() get() containsKey() Synchronisiert

TreeMap O(log n) O(log n) O(log n) O(log n) nein

HashMap O(c) O(c) O(c) O(c) nein

Hashtable O(c) O(c) O(c) O(c) ja

WeakHashMap O(c) O(c) O(c) O(c) nein

LinkedHashMap O(c) O(c) O(c) O(c) nein

IdentityHashMap O(c) O(c) O(c) O(c) nein

Tabelle 8.4: Laufzeitverhalten verschiedener Implementierungen von Map

Sandini Bib

158 8 Datenstrukturen und Algorithmen

8.2.3 Hashbasierte Strukturen optimieren

Die Performance von hashbasierten Datenstrukturen wie HashMap und HashSet hängt im
Wesentlichen von fünf Faktoren ab:

� Güte und Geschwindigkeit der Hashfunktion hashCode()

� Geschwindigkeit der Vergleichsmethode equals()

� Kapazität der Tabelle

� Ladefaktor der Tabelle

� Kollisionsauflösungs-Strategie

Bei jeder Basisoperation einer Hashtabelle muss der Hashcode eines Objektes berechnet
werden. Dies geschieht in der Regel durch Ausführen der Methode hashCode().3 Es ist
also essentiell für Hashtabellen, dass die hashCode()-Methode der verwendeten Schlüssel
schnell ist. Für unveränderbare (immutable) Objekte empfiehlt es sich daher, den Hash-
code einmal zu berechnen und dann zwischenzuspeichern, so dass er nicht immer wie-
der neu berechnet werden muss. Seit JDK 1.3 ist dies auch das Standardverhalten der
String-Klasse. Zuvor war der Hashcode immer wieder neu berechnet worden, so dass es
sich lohnte, spezielle String-Wrapper, die den Hashcode zwischenspeicherten, als
Schlüssel zu benutzen.

Wenn Sie veränderbare Objekte als Schlüssel für eine Hashtabelle benutzen, sollten Sie
darüber nachdenken, ob der Hashcode sich für die Zeiten cachen lässt, in denen das
Objekt unverändert bleibt. Unabhängig davon sollten Sie jedoch auf jeden Fall sicher-
stellen, dass die Schlüssel nach dem Einfügen nicht mehr verändert werden, da sie
sonst unauffindbar werden, verloren gehen und unnötig Speicherplatz belegen. Nach-
träglich von außen veränderte Schlüssel eignen sich also hervorragend für ein schwer
zu lösendes Speicherproblem.

Neben der Geschwindigkeit von hashCode() ist die gleichmäßige Verteilung der Werte
über den gesamten Wertebereich von int entscheidend. Nur dann ist tatsächlich ein
Laufzeitverhalten von O(c) zu erwarten.

Hashtabellen basieren in der Regel auf einem Array bestimmter Länge, der so genann-
ten Kapazität. Wenn ein Objekt in die Tabelle eingefügt werden soll, wird aus dem
Hashcode und der Kapazität ein Array-Index berechnet. Haben das einzufügende
Objekt und ein bereits in der Datenstruktur vorhandenes Objekt denselben Index,
kommt es zu einer Kollision. Das bedeutet, das Objekt kann nicht einfach am berechne-
ten Index eingefügt werden, sondern es muss ein anderer Platz gefunden werden. Dies
bedeutet Extra-Aufwand. Gut verteilte Hashfunktionen minimieren die Anzahl von

3 Einzige Ausnahme hierzu ist die IdentityHashMap� die die Methode System.identityHashCode()
benutzt.

Sandini Bib

Collections-Framework 159

Kollisionen und tragen daher erheblich zur Performance von Hashtabellen bei. Die
Klasse String beispielsweise berechnet ihren Hashcode mittlerweile mit einer aner-
kannt guten Hashfunktion, die auch in Bibliotheken anderer Sprachen benutzt wird:

Integer benutzt einfach seinen eigenen Wert und Long berechnet (int)(value ^ (value
>>> 32)).

Um eine Kollision festzustellen, muss das evtl. bereits in der Datenstruktur vorhan-
dene Objekt mit dem einzufügenden Objekt verglichen werden. Eine Kollision liegt
dann vor, wenn es sich nicht um das gleiche Objekt handelt. Ist dies der Fall, muss das
Objekt an der nächsten geeigneten Position mit dem einzufügenden Objekt verglichen
werden usw., bis ein Platz für das Objekt gefunden wird. Alle hashbasierten Daten-
strukturen außer IdentityHashMap benutzen für diese Vergleiche die equals()-Methode.
Daher ist wichtig, dass auch diese möglichst effizient implementiert ist.

Ein weiterer Faktor für die Performance einer hashbasierten Datenstruktur ist die oben
bereits erwähnte Kapazität sowie der Ladefaktor. Der Ladefaktor bezeichnet dabei
einen Schwellwert im Verhältnis zwischen Kapazität und enthaltenen Elementen.
Überschreitet der Quotient von enthaltenen Elementen und Kapazität diesen Schwell-
wert, so wird die Kapazität automatisch erhöht und die Elemente werden neu verteilt
(Rehashing). Da das Neuverteilen eine sehr aufwändige Operation ist, empfiehlt es
sich, die Datenstruktur mit einer angemessenen Kapazität zu initialisieren, die einein-
halb- bis zweimal so groß ist wie die erwartete Anzahl an Elementen. Es spielt dabei
keine Rolle, ob Sie eine gerade, ungerade oder Primzahl wählen. Außer bei Hashtable
wird die angegebene Kapazität ohnehin zur nächsten Zweierpotenz aufgerundet, da
dadurch zur Indexberechnung an Stelle des Modulo-Operators % das viel schnellere
bitweise Und & benutzt werden kann.

Wichtig im Zusammenhang mit dem Ladefaktor ist, dass die Anzahl der Kollisionen
bei höherem Ladefaktor zunimmt. HashMap, HashSet etc. haben mit 0,75 einen vernünfti-
gen Ladefaktor, der zugunsten besserer Geschwindigkeit der Basisoperationen verrin-
gert werden kann. Da ein geringer Ladefaktor implizit die Kapazität erhöht und die
Anzahl leerer Array-Positionen steigt, erhöht sich so der Speicherverbrauch und ver-
schlechtert sich die Geschwindigkeit der Iteration über die Elemente. Eine Ausnahme
von letzterem Effekt ist LinkedHashMap, da die Elemente untereinander verlinkt sind und
deshalb mit einer Laufzeit proportional zur Anzahl der Elemente iteriert werden kann.

Im Gegensatz zu HashMap & Co ist der initiale Ladefaktor der IdentityHashMap nur 0,5
statt 0,75. Dies liegt daran, dass IdentityHashMap statt dem in HashMap verwendeten direk-
ten Verketten (Separate Chaining) so genanntes lineares Sondieren (Linear Probing) als Kol-
lisionsauflösungs-Strategie benutzt. Lineares Sondieren ist schneller als direktes

∑
−

=

⋅−−
����

�

���������
�������

�

���������	�
����

Sandini Bib

160 8 Datenstrukturen und Algorithmen

Verketten, führt jedoch bereits ab Ladefaktoren von 0,5 zu schlechterer Performance
wegen zu vieler Kollisionen. Weitere Details zu Kollisionsauflösungsstrategien finden
Sie beispielsweise in Mark Allen Weiss’ Buch Data Structures & Algorithms in Java
[Weiss99, S.155ff].

8.2.4 Collections

Die Klasse java.util.Collections ist eine Hilfsklasse mit einer Vielzahl statischer
Methoden. Es lohnt sich, diese Methoden zu kennen, da sie performante Implementie-
rungen für Operationen sind, die in den Collection-Klassen selbst nicht realisiert sind.
Dazu gehören insbesondere Sortier- und Suchmethoden. Wenn eine dieser Methoden
für Ihre Zwecke tatsächlich nicht schnell genug sein sollte, können Sie immer noch ein
eigene Version schreiben. In den meisten Fällen lohnt sich dies jedoch nicht. Wenn Sie
diese Methoden verwenden, können Sie außerdem an Verbesserungen des JDK unmit-
telbar teilhaben. Ein gutes Beispiel dafür ist die unten beschriebene binarySearch()-
Methode.

Hier eine Kurzbeschreibung der Methoden. Eine vollständige Erläuterung finden Sie
in der JDK-Dokumentation.

� binarySearch()

Binäre Suche in Listen nach einem Objekt. Falls nötig, kann ein beliebiger Compara-
tor benutzt werden. Trotz des Namens dieser Methode wurden in JDK 1.3.1 Erben
von AbstractSequentialList (wie beispielsweise LinkedList) aus Performancegrün-
den (s.o.) sequenziell statt binär durchsucht. Seit JDK 1.4.0 werden alle Listen binär
durchsucht. Dabei wird bei kurzen oder RandomAccess-Listen über get() und bei
anderen Listen über einen ListIterator zugegriffen.

� sort()

Sortiert eine Liste, falls nötig mit einem beliebigen Comparator. Dabei wird auf die
Methode Arrays.sort(Object[]) zurückgegriffen, die einen modifizierten Mergesort-
Algorithmus mit einer garantierten Laufzeit von O(n log n) verwendet. Die Lauf-
zeit geht gegen O(n) für teilsortierte Listen.

� shuffle()

Mischt eine Liste – falls nötig mit einem beliebigen Random-Objekt.

� reverse()

Kehrt die Reihenfolge einer Liste um.

� rotate()

Rotiert eine Liste um einen Wert. Seit JDK 1.4.

� swap()

Tauscht zwei Elemente einer Liste. Seit JDK 1.4.

Sandini Bib

Collections-Framework 161

� replaceAll()

Ersetzt ein Objekt in einer Liste durch ein anderes. Seit JDK 1.4.

� copy()

Kopiert eine Liste in einer andere.

� fill()

Füllt eine Liste mit einem Objekt.

� max()/min()

Gibt das größte/kleinste Objekt einer Collection zurück. Dazu kann ein beliebiger
Comparator benutzt werden.

� nCopies()

Gibt eine unveränderbare Liste mit n Elementen zurück, die alle das gleiche Objekt
referenzieren.

� (last)indexOfSubList()

Gibt den Index an, an dem eine Liste in einer anderen Liste enthalten ist. Seit JDK
1.4.

� enumeration()

Erstellt aus einer Collection eine Enumeration.

� list()

Erstellt aus einer Enumeration eine ArrayList. Seit JDK 1.4.

� reverseOrder()

Gibt einen Comparator zurück, der genau entgegengesetzt zur natürlichen Ordnung
sortiert.

� singleton()

Gibt ein unveränderbares Set zurück, das nur das übergebene Objekt beinhaltet.

� singletonList()/singletonMap()

Gibt eine unveränderbare Liste/Map zurück, die nur das übergebene Objekt bzw.
Schlüssel-/Wert-Paar enthält.

� unmodifiableXXX()

Gibt einen Wrapper zurück, der die übergebene Datenstruktur enthält und nur
lesenden Zugriff zulässt. Das heißt, es wird verhindert, dass die enthaltene Daten-
struktur modifiziert wird. Mögliche Datenstrukturen sind Collection, List, Map, Set,
SortedMap und SortedSet. Beispiel:

Map unmodifiableMap = Collections.unmodifiableMap(new HashMap());

Sandini Bib

162 8 Datenstrukturen und Algorithmen

� synchronizedXXX()

Gibt einen Synchronisations-Wrapper zurück, der die übergebene Datenstruktur
enthält. Mögliche Datenstrukturen sind Collection, List, Map, Set, SortedMap und
SortedSet. Beispiel:

Map synchronizedMap = Collections.synchronizedMap(new HashMap());

Die Synchronisations-Wrapper synchronisieren die gesamte Datenstruktur mit nur
einem Objekt (Mutex). Das heißt, dass, wenn ein Thread eine Operation ausführt,
kein anderer dies tun kann; selbst dann nicht, wenn die beiden Operationen sich
nicht behindern würden. Dies ist ein sehr grobes Sperrverhalten, das beispielsweise
für Datenbanken undenkbar wäre. Es gibt jedoch Datenstrukturen speziell für den
Gebrauch mit mehreren Threads. Mehr dazu in Kapitel 9.1.3 Threadsichere Daten-
strukturen.

8.3 Jenseits des Collections-Frameworks

Das Collections-Framework ist ein sehr wertvoller Teil der Java-Klassenbibliothek.
Seine Existenz alleine verwandelt jedoch kein einziges Programm in ein Performance-
Wunder. Das Auswählen bzw. Finden der am besten passenden Datenstruktur ist das
Entscheidende. Im Folgenden werden wir für zwei Probleme verschiedene Lösungen
ausprobieren und beurteilen.

8.3.1 Zahlen sortieren

Jon Bentley beschreibt in seinem großartigen Buch Programming Pearls [Bentley00,
S.3ff] ein interessantes Problem: Stellen Sie sich vor, Sie müssten Millionen von paar-
weise verschiedenen, siebenstelligen natürlichen Zahlen aus einer Datei lesen und sor-
tiert wieder ausgeben. Wie würden Sie vorgehen?

Der naive Ansatz sähe sicherlich wie folgt aus:

public void sort(String filename) throws IOException {
 long start = System.currentTimeMillis();
 DataInputStream in = new DataInputStream(
 new BufferedInputStream(new FileInputStream(filename))
);
 SortedSet set = new TreeSet();
 for (int i=0, l=(int)new File(filename).length()/4; i<l; i++) {
 set.add(new Integer(in.readInt()));
 }
 in.close();
 DataOutputStream out = new DataOutputStream(
 new BufferedOutputStream(
 new FileOutputStream(filename + ".sorted")
)

Sandini Bib

Jenseits des Collections-Frameworks 163

);
 for (Iterator i=set.iterator(); i.hasNext();) {
 out.writeInt(((Integer)i.next()).intValue());
 }
 out.close();
 System.out.println(System.currentTimeMillis()-start + "ms");
}

Alle Zahlen werden einfach der Reihe nach eingelesen, in Integer-Objekte umgewan-
delt und in ein TreeSet eingefügt. Anschließend werden alle Elemente des Sets mit
einem Iterator wieder ausgegeben.

Um knapp drei Millionen Nummern zu sortieren, benötigt mein Rechner mit diesem
Verfahren zwischen 35 und 45 Sekunden. Der Speicherverbrauch liegt bei rund 150
Mbyte.

Offensichtlich ist dieses Vorgehen suboptimal. Wir wollen daher ein paar Änderungen
vornehmen. Zunächst einmal ersetzen wir das TreeSet durch einen Array. Da wir dadurch
keine Integer-Objekte mehr benötigen, können wir einen int-Array an Stelle eines Inte-
ger-Arrays benutzen. Das bedeutet, wir ersparen uns das Erzeugen von Millionen von
Objekten. Zum Sortieren bedienen wir uns der Methode java.util.Arrays.sort(int[]). Es
handelt sich dabei um eine Adaption eines von Jon Bentley und M. Douglas McIlroy opti-
mierten Quicksort-Algorithmus. Es ist anzunehmen, dass wir vermutlich keinen eben-
bürtigen oder besseren Sortier-Algorithmus implementieren können, ohne sehr viel Zeit
zu investieren. Also belassen wir es dabei und wagen einen Testlauf.

public void sort(String filename) throws IOException {
 long start = System.currentTimeMillis();
 DataInputStream in = new DataInputStream(
 new BufferedInputStream(new FileInputStream(filename))
);
 int[] array = new int[(int)new File(filename).length()/4];
 for (int i=0; i<array.length; i++) {
 array[i] = in.readInt();
 }
 in.close();
 java.util.Arrays.sort(array);
 DataOutputStream out = new DataOutputStream(
 new BufferedOutputStream(
 new FileOutputStream(filename + ".sorted")
)
);
 for (int i=0; i<array.length; i++) {
 out.writeInt(array[i]);
 }
 out.close();
 System.out.println(System.currentTimeMillis()-start + "ms");
}

Sandini Bib

164 8 Datenstrukturen und Algorithmen

Für die drei Millionen Nummern benötigen wir jetzt nur noch knapp 10 Sekunden
sowie knapp 19 Mbyte. Nicht schlecht. Aber es geht noch besser.

Hier noch einmal die drei wesentlichen Fakten:

� Zahlen von 1.000.000 bis 9.999.999 sollen sortiert werden

� Keine Zahl kommt zweimal vor

� Es gibt also 8.999.999 verschiedene Zahlen

8.999.999 verschiedene, aufeinander folgende Zahlen können auch als 8.999.999 ver-
schiedene wahr/falsch-Zustände oder Bits repräsentiert werden. Für jede Zahl, die wir
einlesen, setzen wir also einfach das entsprechende Bit. Auf diese Weise erhalten wir
eine sehr platzsparende Repräsentation der Zahlen. Wir wollen uns das mal für den
schlechtesten Fall von 8.999.999 Zahlen anschauen:

8.999.999 Bit entsprechen etwa 1.010 Kbyte. Da jedes int vier Bytes belegt, entsprechen
8.999.999 int etwa 35.000 Kbyte. Wir können den Speicherverbrauch für den Fall, dass
wir wirklich alle 8.999.999 Zahlen sortieren müssen, somit um den Faktor 32 verrin-
gern. Hinzu kommt, dass wir gar nicht mehr sortieren müssen, da wir ja quasi immer
sofort an der richtigen Stelle einfügen. Anstelle des int-Arrays benutzen wir also einen
boolean-Array.

Der Code sähe folgendermaßen aus:

public void sort(String filename) throws IOException {
 long start = System.currentTimeMillis();
 DataInputStream in = new DataInputStream(
 new BufferedInputStream(new FileInputStream(filename))
);
 boolean[] array = new boolean[8999999];
 for (int i=0, b=(int)new File(filename).length()/4; i<b; i++) {
 array[in.readInt()-1000000] = true;
 }
 in.close();
 DataOutputStream out = new DataOutputStream(
 new BufferedOutputStream(
 new FileOutputStream(filename + ".sorted")
)
);
 for (int i=0; i<array.length; i++) {
 if (array[i]) out.writeInt(i+1000000);
 }
 out.close();
 System.out.println(System.currentTimeMillis()-start + "ms");
}

Sandini Bib

Jenseits des Collections-Frameworks 165

Das Sortieren dauert jetzt nur noch zwischen sechs und sieben Sekunden bei einem
Speicherverbrauch von etwa 16 Mbyte. Ohne Frage ist das ein besserer Wert als 19
Mbyte. Bei 3 Millionen Nummern sollte der Unterschied ∆ jedoch weit höher sein:

Statt 3 Mbyte sollte der Unterschied etwa 10 Mbyte betragen. Wo stecken die fehlenden
7 Mbyte?

Ein Blick in die Ausgabe vom Profiler Hprof gibt den entscheidenden Hinweis:

SITES BEGIN (ordered by live bytes)
 percent live alloc'ed stack class
 rank self accum bytes objs bytes objs trace name
 1 95.61% 95.61% 9000016 1 9000016 1 305 [Z <=
 2 0.78% 96.39% 73272 551 74696 576 1 [C
 3 0.69% 97.07% 64528 220 64528 220 0 [I
...

Offensichtlich belegt ein boolean-Array (in der Hprof-Ausgabe bezeichnet mit dem
Klassennamen [Z) für jeden booleschen Wert nicht wie angenommen ein Bit, sondern
gleich ein ganzes Byte.

Die Lösung liegt in java.util.BitSet. BitSet speichert einzelne Bits nicht in einem
boolean-Array, sondern wesentlich effizienter in einem long-Array. Der entsprechende
Code sähe etwa so aus:

public void sort(String filename) throws IOException {
 long start = System.currentTimeMillis();
 DataInputStream in = new DataInputStream(
 new BufferedInputStream(new FileInputStream(filename))
);
 BitSet set = new BitSet(8999999);
 for (int i=0, b=(int) new File(filename).length()/4; i<b; i++) {
 set.set(in.readInt()-1000000);
 }
 in.close();
 DataOutputStream out = new DataOutputStream(
 new BufferedOutputStream(
 new FileOutputStream(filename + ".sorted")
)
);
 for (int i=0; i<8999999; i++) {
 if (set.get(i)) out.writeInt(i+1000000);
 }
 out.close();
 System.out.println(System.currentTimeMillis()-start + "ms");
}

������������� ��
�

���������
���������� ≈−⋅=∆

Sandini Bib

166 8 Datenstrukturen und Algorithmen

Mit dieser Lösung steigt der Speicherverbrauch nur knapp über 8 Mbyte, während die
Ausführungszeit weiterhin zwischen 6 und 7 Sekunden liegt. Bessere Ausführungs-
zeiten lassen sich vermutlich nur noch mit Änderungen an der Ein- und Ausgabe
erreichen. Dies soll hier jedoch nicht das Thema sein.

8.3.2 Große Tabellen

Tabellenkalkulationen sind mittlerweile Standardsoftware und somit allgegenwärtig.
Und natürlich benutzt jede Tabelle eine Datenstruktur. Wenn wir eine solche Tabelle in
Java implementieren wollten, müssten wir uns logischerweise auch einer entsprechen-
den Datenstruktur bedienen. Die naive Lösung wäre ein zweidimensionaler Array.

Heutige Tabellenkalkulationen sind jedoch nicht nur allgegenwärtig, sie sind auch in
der Lage riesige Tabellen zu verarbeiten. Wir wollen einmal annehmen, die Tabelle
hätte 100.000 Reihen und ebenso viele Spalten. Ein zweidimensionaler Array würde
rund 10 Milliarden Felder enthalten und jedes dieser Felder würde vier Byte für eine
Objekt-Referenz belegen. Macht also 40 Milliarden Byte. Für einen handelsüblichen
Rechner ist dies sicherlich ein wenig viel, daher müssen wir einen anderen Weg finden.
Als Erstes schauen wir, was das JDK zu bieten hat.

In Swing heißt die entsprechende Datenstruktur für ein javax.swing.JTable-Objekt
javax.swing.table.TableModel. Es handelt sich dabei um ein Interface, zu dem eine Stan-
dardimplementierung DefaultTableModel existiert. DefaultTableModel benutzt zwar kei-
nen zweidimensionalen Object-Array, aber einen java.util.Vector randvoll gefüllt mit
Vector-Objekten, also quasi einen zweidimensionalen Vector. Das wäre eigentlich auch
nicht so schlimm, wenn nicht während der Initialisierung die Größe aller Vektoren und
somit ihrer internen Object-Arrays explizit mit der Methode Vector.setSize() auf die
verlangte Größe gesetzt würde. Mit anderen Worten: 40 Milliarden Byte für Object-
Arrays plus 100.001-Vector-Objekte. Das macht die Sache nicht gerade besser.

Tabellenmodell mit ArrayLists

Als ersten Ansatz könnten wir an Stelle der Vektoren ArrayLists benutzen, deren Größe
nicht von Anfang an gesetzt, sondern nur bei Bedarf vergrößert wird. Als Basisklasse
dient uns hierbei javax.swing.table.AbstractTableModel. Die Implementierung sieht wie
folgt aus:

package com.tagtraum.perf.swing;

import javax.swing.table.AbstractTableModel;
import java.util.ArrayList;

public class ArrayListTableModel extends AbstractTableModel {

Sandini Bib

Jenseits des Collections-Frameworks 167

 private int cols;
 private int rows;
 private ArrayList listOfRowLists;

 public ArrayListTableModel(int rows, int cols) {
 listOfRowLists = new ArrayList();
 this.rows = rows;
 this.cols = cols;
 }

 public int getRowCount() {
 return rows;
 }

 public int getColumnCount() {
 return cols;
 }

 public Object getValueAt(int row, int col) {
 // Hole die Liste für eine Reihe aus listOfRowLists
 ArrayList rowList = (ArrayList) get(listOfRowLists, row);
 // Falls die Reihe existiert, gib den Eintrag in der
 // verlangten Spalte zurück.
 if (rowList != null) {
 return get(rowList, col);
 }
 return null;
 }

 public void setValueAt(Object object, int row, int col) {
 // Falls das Object null ist, lösche den Eintrag
 if (object == null) {
 removeValueAt(col, row);
 } else {
 // Hole die Liste für eine Reihe aus listOfRowLists
 ArrayList rowList = (ArrayList) get(listOfRowLists, row);
 // Lege die Liste notfalls an, falls nicht vorhanden
 if (rowList == null) {
 rowList = new ArrayList();
 set(listOfRowLists, row, rowList);
 }
 // Setze den Wert an der entsprechenden Stelle
 set(rowList, col, object);
 }
 // Benachrichtige evtl. vorhandene Listener
 fireTableCellUpdated(row, col);
 }

 private void removeValueAt(int row, int col) {
 // Hole die Liste für eine Reihe aus listOfRowLists
 ArrayList rowList = (ArrayList) get(listOfRowLists, row);
 if (rowList != null) {

Sandini Bib

168 8 Datenstrukturen und Algorithmen

 // Entferne das Element in col
 remove(rowList, col);
 }
 }

 // Vergrößert die Liste so, dass das zu setzende Element
 // Platz hat.
 private void set(ArrayList list, int index, Object object) {
 while (list.size() - 1 < index) list.add(null);
 list.set(index, object);
 }

 // Gibt null für Indizes zurück, die außerhalb des gültigen
 // Bereichs liegen.
 private Object get(ArrayList list, int index) {
 if (list.size() <= index) return null;
 return list.get(index);
 }

 private void remove(ArrayList list, int index) {
 // Setzt null, sofern der Index im gültigen Bereich liegt.
 if (list.size() > index) list.set(index, null);
 // Falls möglich, reduziere Kapazität der Liste,
 // um so Speicher zu sparen.
 while (!list.isEmpty() && list.get(list.size()-1) == null) {
 list.remove(list.size() - 1);
 }
 if (list.isEmpty())
 listOfRowLists.set(index, null);
 else
 list.trimToSize();
 }

}

Listing 8.1: ArrayList-basiertes TableModel

Statt alle Listen auf die volle Größe zu initialisieren, werden die Listen in der Methode
set() immer erst mittels list.add(null) vergrößert, wenn dies tatsächlich nötig ist. Auf
diese Weise wird sehr viel Speicher gespart.

ArrayListTableModel skaliert besser als DefaultTableModel, ist jedoch auch nicht optimal.
Wenn ein Wert in Reihe 0 und Spalte 100.000 gesetzt werden soll, muss list.add(null)
99.999-mal aufgerufen werden, um die Liste zu vergrößern. Dabei wird die Kapazität
der ArrayList für die entsprechende Reihe und somit der entsprechende Objekt-Array
vergrößert – und zwar automatisch in 50%-Schritten. Das bedeutet, dass ein einziges
Element im schlechtesten Fall rund 600.000 Byte verbraucht. Tatsächlich wird der
Array bei einer Anfangskapazität von 10 Objekten auf eine Kapazität von 132.385
Objekten (529.540 Byte) vergrößert.

Sandini Bib

Jenseits des Collections-Frameworks 169

Die überschüssigen 129.540 Byte ließen sich durch einen Aufruf von list.trimToSize()
nachträglich entfernen. Die Methode set() sähe dann folgendermaßen aus:

private void set(ArrayList list, int index, Object object) {
 while (list.size() - 1 < index) list.add(null);
 list.set(index, object);
 list.trimToSize();
}

Bei 100.000 Reihen und ebenso vielen Spalten werden so potenziell 12 Milliarden Byte
gespart. Obwohl dies eindrucksvoll ist, stehen dem im schlechtesten Fall immer noch
rund 400.000 Byte für ein einzelnes Objekt gegenüber. Zudem wird bei jedem trimTo-
Size()-Aufruf der gesamte Array kopiert.

Compressed Row Storage

Anscheinend ist unser ArrayListTableModel noch nicht der Weisheit letzter Schluss.

Wir wollen daher über mögliche Anwendungsfälle nachdenken. Die Wahrscheinlich-
keit, dass ein Benutzer tatsächlich alle 10 Milliarden Felder unserer Tabelle benutzt, ist
eher gering. Möglicherweise benötigt der Nutzer im Schnitt lediglich ein paar hundert
Felder.

Unser Model entspräche somit einer dünn besetzten Matrize (Sparse Matrix). Ein Blick in
die einschlägige Literatur zeigt: Für dünn besetzte Matrizen existieren bekannte Daten-
strukturen. Eine davon ist die Compressed Row Storage-Matrize (CRS). Sie besteht aus drei
Arrays – einem Zeilen-, einem Spalten- und einem Werte-Array (Abbildung 8.3).

Abbildung 8.3: Abbildung einer Matrize im Compressed Row Storage-Format

1 0 5
2 3 0
10 0 8

Matrize

Compressed
Row Storage

1 810325
0 20102

Werte-Array
Spalten-Array

0 42 Zeilen-Array6

Länge des Werte-Arrays

Sandini Bib

170 8 Datenstrukturen und Algorithmen

Beim lesenden Zugriff wird dabei zunächst mit der Zeile als Index auf den Zeilen-
Array zugegriffen. Der Wert des Zeilen-Arrays dient als Zeiger in den Spalten-Array.
Ausgehend von dieser Position wird der Spalten-Array nach der verlangten Spalten-
zahl durchsucht. Wird der Spalten-Wert gefunden, steht der gesuchte Matrizen-Wert
an der gleichen Position im Werte-Array.

Im Grunde würden so die meisten unserer Probleme gelöst. Das CRS-Format hat
jedoch zwei entscheidende Nachteile:

1. Wenn in der letzten Zeile ein Wert gesetzt ist, muss der Zeilen-Array zwangsläufig
genauso groß sein wie die Zeilenzahl. Da der Zeilen-Array die Werte- und Spalten-
Arrays referenziert, müssen auch diese mindestens so groß sein wie die Zeilenzahl.
Angenommen wir würden zwei int-Arrays und einen Object-Array verwenden,
dann hätten wir einen Mindest-Speicherverbrauch von 3 mal 4 Byte mal die Zeilen-
zahl. Bei 100.000 Zeilen wären dies 1.200.000 Byte.

2. Es kann nur mit O(log n) auf das gesuchte Element zugegriffen werden, da das ver-
langte Element innerhalb einer Zeile bestenfalls binär gesucht werden kann.

Mit ein wenig Aufwand ließe sich um das erste Problem herumprogrammieren. Das
zweite Problem ist jedoch eine feste Eigenschaft der Datenstruktur.

Bessere Zugriffszeiten ließen sich vermutlich mit einer hashbasierten Datenstruktur
erreichen.

Hashbasierte Matrize

Die Lösung mit einer hashbasierten Datenstruktur ist erfreulich simpel [vgl. Wilson00,
S. 152f.]. Für eine effiziente Implementierung müssen wir lediglich eine Schlüssel-
Klasse schreiben, die die Zeilen- und Spalten-Indizes enthält. Alternativ ließe sich hier
auch einfach die java.awt.Point-Klasse benutzen.

package com.tagtraum.perf.swing;

import javax.swing.table.AbstractTableModel;
import java.util.HashMap;
import java.util.Map;

public class HashTableModel extends AbstractTableModel {

 private int cols;
 private int rows;
 private Map map;
 private Key searchKey;

 public HashTableModel(int rows, int cols) {
 map = new HashMap();
 this.rows = rows;

Sandini Bib

Jenseits des Collections-Frameworks 171

 this.cols = cols;
 }

 public int getRowCount() {
 return rows;
 }

 public int getColumnCount() {
 return cols;
 }

 public Object getValueAt(int row, int col) {
 return map.get(new Key(row, col));
 }

 public void setValueAt(Object object, int row, int col) {
 if (object == null) {
 if (map.remove(new Key(row, col)) != null) {
 fireTableCellUpdated(row, col);
 }
 }
 else {
 if (map.put(new Key(row, col), object) != object) {
 fireTableCellUpdated(row, col);
 }
 }
 }

 public boolean isCellEditable(int row, int col) {
 return true;
 }

 private static class Key {
 int col;
 int row;
 int hashCode;
 static final Class klass = Key.class;

 public Key(int row, int col) {
 this.row = row;
 this.col = col;
 this.hashCode = col ^ -row;
 }

 public int hashCode() {
 return hashCode;
 }

 public boolean equals(Object obj) {
 if (obj == this) return true;
 if (obj == null || klass != obj.getClass()) return false;
 Key other = (Key) obj;

Sandini Bib

172 8 Datenstrukturen und Algorithmen

 return other.col == col && other.row == row;
 }

 public String toString() {
 return col + ":" + row;
 }
 }
}

Listing 8.2: Hashbasierte TableModel-Klasse

Der minimale Speicherverbrauch ist gleich dem der HashMap. Die Zugriffszeit ist kon-
stant. Das Einzige, was wir noch tun können, ist diese Zugriffszeit zu optimieren.

Der erste Schritt in diese Richtung ist die equals()-Methode von Key. Da wir die Schlüs-
sel nirgendwo zwischenspeichern, ist die Chance, dass der Identitätsvergleich in der
equals()-Methode erfolgreich ist, gleich null. Daher können wir auf ihn verzichten.

Da Key eine private Klasse ist, die wir nicht nach draußen geben, in der HashMap aus-
schließlich Key-Objekte sind, wir die HashMap ebenfalls nicht nach draußen geben und
null nicht als Schlüssel benutzen, können wir auch auf den null-Vergleich verzichten.

Somit sieht die neue equals()-Methode folgendermaßen aus:

public boolean equals(Object obj) {
 Key other = (Key) obj;
 return other.col == col && other.row == row;
}

Tests ergeben, dass der Unterschied zwischen beiden Versionen vernachlässigbar
gering ist. Diese Optimierung war also eher theoretischer Natur und somit überflüssig.

Unser nächster Optimierungskandidat ist die getValueAt()-Methode. Für jeden Aufruf
wird ein neues Key-Objekt instanziiert. Wir könnten jedoch für getValueAt() immer das
gleiche Key-Objekt benutzen und nur die Zeilen- und Spaltenwerte neu setzen. Glei-
ches gilt für setValueAt(), wenn das zu setzende Objekt null ist und wir eigentlich ein
Objekt entfernen wollen. Wichtig ist, dass wir den sich ändernden Suchschlüssel nur
zum Suchen benutzen und niemals zum Einfügen. Außerdem dürfen nicht zwei oder
mehr Threads gleichzeitig auf die Methoden zugreifen. Da Swing jedoch nur einen
Thread benutzt, können wir dies ruhigen Gewissens tun, sofern wir das Modell nicht
selbst von einem anderen Thread aus manipulieren wollen.

Die modifizierte Key-Klasse sähe folgendermaßen aus:

...
public Key(int row, int col) {
 set(row, col);
}

Sandini Bib

Jenseits des Collections-Frameworks 173

public Key set(int row, int col) {
 this.row = row;
 this.col = col;
 this.hashCode = col ^ -row;
 return this;
}
...

Entsprechend müssen wir noch ein paar Änderungen in der HashTableModel-Klasse vor-
nehmen:

private Key searchKey;

public HashTableModel(int rows, int cols) {
 map = new HashMap();
 this.rows = rows;
 this.cols = cols;
 searchKey = new Key(0, 0);
}

...

public Object getValueAt(int row, int col) {
 return map.get(searchKey.set(row, col));
}

public void setValueAt(Object object, int row, int col) {
 if (object == null) {
 if (map.remove(searchKey.set(row, col)) != null) {
 fireTableCellUpdated(row, col);
 }
 }
 else {
 if (map.put(new Key(row, col), object) != object) {
 fireTableCellUpdated(row, col);
 }
 }
}
...

Das Ergebnis überzeugt: Der lesende Zugriff ist nun etwa doppelt so schnell wie in der
Version zuvor.

Ein bisher nicht behandeltes Problem bleibt jedoch. JTable legt für jede Spalte automatisch
ein TableColumn-Objekt an – selbst für die Spalten, die nicht zu sehen sind. Das heißt, ob wir
wollen oder nicht: zu einem Modell mit 100.000 Spalten werden automatisch auch 100.000
TableColumn-Objekte angelegt. Es lohnt sich also, Methoden zum Ändern der Modellgröße
zur Verfügung zu stellen oder die Modellgröße an die größten Indizes, mit denen
setValueAt() aufgerufen wurde, zu koppeln. Genau das haben wir im Folgenden getan:

Sandini Bib

174 8 Datenstrukturen und Algorithmen

public void setValueAt(Object object, int row, int col) {
 if (object == null) {
 if (map.remove(searchKey.set(row, col)) != null) {
 fireTableCellUpdated(row, col);
 }
 }
 else {
 if (map.put(new Key(row, col), object) != object) {
 if (row >= rows && col < cols) {
 rows = row;
 if (col < cols) {
 // nur die Zeilenanzahl hat sich geändert, daher
 // reicht das Data-Changed-Event
 fireTableDataChanged();
 }
 else {
 // auch die Spaltenanzahl hat sich geändert, daher
 // müssen wir das Structure-Changed-Event auslösen
 cols = col;
 fireTableStructureChanged();
 }
 }
 else fireTableCellUpdated(row, col);
 }
 }
}

Somit haben wir den Speicherverbrauch des TableModels drastisch vermindert.

8.4 Caches

Caches4 sind eine lange bewährte Strategie zum schnellen Zugriff auf Daten, die räum-
lich oder zeitlich nah beieinander gespeichert sind. Prinzipiell handelt es sich dabei um
eine schnelle Datenstruktur, die vor eine größere und langsamere Datenstruktur
geschaltet ist, um so die Mehrzahl der Zugriffe auf die langsamere Datenstruktur zu
beschleunigen. Zurzeit bietet Java von sich aus kaum Unterstützung für Caches. Dies
soll sich jedoch mit dem JCache-API ändern, das aus Java Specification Request 1075

hervorgehen wird.

Ein Beispiel für räumliche Lokalität sind Festplattenzugriffe. Gewöhnlich werden nicht
nur die Daten gelesen, die gerade verlangt wurden, sondern auch die folgenden Daten.
Da das Lesen sehr weniger Daten oft genauso lange dauert wie das Lesen eines ganzen
Blocks von Daten, macht es Sinn den Block zu lesen und darauf zu hoffen, dass die zu

4 Das Wort Cache stammt vom französischen cacher (verstecken), da Caches in der Regel für den
Benutzer unsichtbar sind.

5 JSR 107: http://www.jcp.org/jsr/detail/107.jsp.

Sandini Bib

Caches 175

viel gelesenen Daten kurze Zeit später benötigt werden. Da Programmcode meist und
Daten oft sequenziell organisiert sind, trifft diese Annahme auch häufig zu. In Java hat
dies seine Entsprechung in gepufferten Ein-/Ausgabe-Strömen.

Ein Beispiel für zeitliche Lokalität ist das so genannte Workingset von Programmen.
Gemeint sind jene Speicherseiten, auf die immer wieder zugegriffen wird, während
andere Speicherseiten kaum benötigt werden. Die nicht benötigten Seiten werden daher
aus dem Hauptspeicher auf einen langsameren Speicher ausgelagert (Swapping).

Gewöhnlich ist mit einem Cache ein gewisser Aufwand verbunden, da überprüft wer-
den muss, ob sein Inhalt noch korrekt ist. Damit sich dieser Aufwand lohnt, muss der
Datenzugriff im Schnitt schneller sein als ohne Cache. Um die Effektivität eines Caches
zu messen, betrachtet man daher seine Trefferrate, d.h. wie viele von x Datenzugriffen
vom Cache bedient werden konnten.

Da ein Cache per Definition nur eine begrenzte Speicherkapazität hat, muss er über
eine Austauschstrategie verfügen. Diese besagt, nach welchen Regeln alte Daten aus
dem Cache entfernt und durch neue ersetzt werden.

8.4.1 Austauschstrategien

Austauschstrategien versuchen Daten so im Cache zu speichern bzw. aus dem Cache
zu entfernen, dass die Trefferrate möglichst hoch ist.

Zufälliger Austausch

Die einfachste Strategie ist der zufällige Austausch. Beim Lesen eines Datums, das
noch nicht im Cache enthalten ist, wird zufällig ein anderes Element aus dem Cache
entfernt. Obwohl diese Strategie simpel und naiv klingt, muss sie keinesfalls schlecht
sein. Wenn nämlich der Zugriff auf die Daten ebenfalls zufällig erfolgt und keinerlei
Lokalität aufweist, ist jede aufwändigere Austausch-Strategie vergebene Liebesmüh.

Am längsten nicht benutztes Element

Hierbei wird immer das Element aus der Datenstruktur überschrieben, das am längs-
ten nicht benutzt wurde. Der gängige Name dieses Verfahrens ist Least Recently Used
(LRU) Gewöhnlich wird eine verkettete Liste benutzt, die die Elemente in Ihrer
Zugriffsordnung enthält. Wird auf ein Element zugegriffen, so wird es aus der Liste
entfernt und am Anfang der Liste wieder eingefügt. War das Element noch nicht in der
Liste enthalten, so wird es ebenfalls am Anfang eingefügt und das letzte Element wird
entfernt, sofern die Kapazität des Caches bereits erreicht ist.

LRU ist die wohl am häufigsten benutzte Austauschstrategie, weil sie die Charakteris-
tika eines Workingsets am besten abbildet und gewöhnlich zu sehr guten Ergebnissen
führt, sofern die Datenzugriffe zeitliche Lokalität aufweisen.

Sandini Bib

176 8 Datenstrukturen und Algorithmen

Ältestes Element

Anstatt bei jedem Zugriff auf die Datenstruktur ein Element an den Anfang der Liste
verschieben zu müssen, kann man beim Einfügen auch einfach das älteste Element der
Liste entfernen, unabhängig davon, wie oft oder wann es benutzt wurde. Diese Strate-
gie führt in der Regel zu nicht so guten Resultaten wie LRU, hat jedoch weniger Ver-
waltungsaufwand.

8.4.2 Elementspezifische Invalidierung

Oft müssen Elemente eines Caches nicht nur aus dem Cache entfernt werden, weil kein
Platz mehr für neue Elemente vorhanden ist, sondern weil das Element nicht mehr den
korrekten Wert hat oder ein anderes Ereignis eingetreten ist.

So kann es vorkommen, dass der Benutzer explizit verlangt, dass ein Element aus
einem Cache entfernt wird. Ebenso ist es denkbar, dass in einer Föderation von Caches
ein Cache einen anderen anweist, ein bestimmtes Element zu entfernen, weil es ungül-
tig ist. Weitere Auslöser für Invalidierung sind das Ablaufen der Lebensdauer eines
Elements (Time to Live) oder das Verstreichen einer Zeit ohne Zugriff auf das Element
(Idle Time).

8.4.3 Schreibverfahren

Um veränderte Elemente von einem Cache in die darunter liegende Datenstruktur
zurückzuschreiben, gibt es verschiedene Strategien. Zwei allgemein benutzte sind
Write-Through und Write-Back.

Beim Write-Through-Verfahren wird jeder schreibende Datenzugriff direkt auf der
darunter liegenden Datenstruktur ausgeführt, so dass Cache und Datenstruktur
immer kohärent sind. Dieses Verfahren ist insbesondere sinnvoll bei systemkritischen
Daten. Write-Through hat seine Entsprechung in der Methode force() der Klasse
java.nio.channels.FileChannel (seit JDK 1.4) . Sie sorgt dafür, dass alle Daten, die in den
Channel geschrieben wurden, auch tatsächlich auf den Datenträger geschrieben wer-
den und nicht nur in einen Cache.

Write-Through ist zudem sinnvoll, wenn die Anzahl der lesenden Zugriffe weitaus
größer ist als die der schreibenden Zugriffe.

Beim Write-Back-Verfahren werden Änderungen nur an die darunter liegende Daten-
struktur propagiert, wenn das gecachte Element aus dem Cache entfernt wird. Alle
anderen Änderungen erfolgen ausschließlich im Cache.

Sandini Bib

Caches 177

8.4.4 Gecachte Map

Gewöhnlich erfolgt der Zugriff auf einen Cache genauso wie auf eine Tabelle mit einem
Schlüssel. Nun macht es wenig Sinn, eine HashMap zu cachen, da diese selbst gut als sehr
einfacher Cache benutzt werden kann. Stattdessen wollen wir versuchen eine TreeMap zu
cachen. Natürlich könnten wir dies tun, indem wir einfach sowohl eine HashMap als auch
eine TreeMap pflegen und für jene Operationen, bei denen die Ordnung der Elemente
keine Rolle spielt, die schnellere HashMap benutzen. Die HashMap hätte jedoch unbegrenzte
Kapazität. Wir würden somit den Speicherbedarf ungefähr verdoppeln.

Stattdessen wollen wir eine eigene Klasse schreiben, die gecachten Zugriff auf eine Map
ermöglicht und dabei das Zufallsaustauschverfahren benutzt. Als Basis benutzen wir
dazu eine RandomCache-Klasse, die die gecachten Schlüssel-/Wert-Paare jeweils in einem
CacheEntry-Objekt hält und diese wiederum in einem Array speichern. Als Index in den
Array benutzen wir die letzten Bits des Hashcodes des Schlüssels. Aus Geschwindig-
keitsgründen sorgen wir dafür, dass die Arraygröße jeweils eine volle Zweierpotenz
ist. So können wir den schnelleren bitweisen Und-Operator & anstelle vom Modulo-
Operator % benutzen, um beliebige ganze Zahlen auf einen Array-Index abzubilden.
Für diese Abbildung ist der Hashcode wie geschaffen. Das ist auch nicht weiter ver-
wunderlich – denn im Endeffekt ist unser Cache nichts anderes als eine Hashtabelle
ohne Kollisionsstrategie. Listing 8.4 zeigt die Schnittstelle unserer Cache-Klasse, Lis-
ting 8.4 die Implementierung. Listing 8.5 stellt die Klasse dar, die eine RandomCache-
Instanz zum Cachen einer Map benutzt. Die Klasse könnte übrigens leicht erweitert wer-
den, so dass auch sie das komplette java.util.Map-Interface implementiert.

package com.tagtraum.perf.datastructures;

// Interface für Caches.
public interface Cache {

 // Gibt die Kapazität dieses Caches an. Die exakte Bedeutung
 // dieses Wertes ist implementierungsabhängig.
 public int getCapacity();

 // Gibt ein Objekt aus diesem Cache zurück, sofern es enthalten
 // ist, ansonsten null.
 public Object get(Object key);

 // Registriert ein Objekt unter einem Schlüssel in diesem Cache.
 public Object put(Object key, Object value);

 // Gibt eine Zahl zwischen 0.0 und 1.0 zurück. 1.0 entspricht
 // einer 100-prozentigen Trefferquote.
 public float getHitRatio();
}

Listing 8.3: Einfaches Cache-Interface

Sandini Bib

178 8 Datenstrukturen und Algorithmen

package com.tagtraum.perf.datastructures;

// Cache mit zufälliger Austauschstrategie
public class RandomCache implements Cache {

 private CacheEntry[] entries;
 private int bitMask;
 private int hits;
 private int misses;

 public RandomCache(int initialCapacity) {
 // Finde eine Zweierpotenz >= initialCapacity
 int capacity = 1;
 while (capacity < initialCapacity)
 capacity <<= 1;
 entries = new CacheEntry[capacity];
 // Initialisiere mit leeren Entries
 for (int i = 0; i < capacity; i++) {
 entries[i] = new CacheEntry();
 }
 bitMask = capacity - 1;
 }

 public int getCapacity() {
 return entries.length;
 }

 public Object get(Object key) {
 int index = key.hashCode() & bitMask;
 CacheEntry entry = entries[index];
 if (entry.sameKey(key)) {
 // Treffer
 hits++;
 return entry.getValue();
 }
 // kein Treffer
 misses++;
 return null;
 }

 public Object put(Object key, Object value) {
 if (key != null) {
 return entries[key.hashCode() & bitMask].set(key, value);
 }
 return null;
 }

 public float getHitRatio() {
 return ((float) hits) / (float) (hits + misses);
 }

Sandini Bib

Caches 179

 private static class CacheEntry {
 private Object key;
 private Object value;

 public boolean sameKey(Object other) {
 return key != null && key.equals(other);
 }

 public Object getValue() {
 return value;
 }

 public Object set(Object key, Object value) {
 Object oldValue = value;
 this.key = key;
 this.value = value;
 return oldValue;
 }
 }
}

Listing 8.4: Simple Cache-Klasse, die das Zufallsaustauschverfahren benutzt

package com.tagtraum.perf.datastructures;

import java.util.Collections;
import java.util.Map;

public class RandomMapCache {

 private Map map;
 private Map unmodifiableMapView;
 private RandomCache cache;

 public RandomMapCache(Map map, int initialCapacity) {
 this.map = map;
 unmodifiableMapView = Collections.unmodifiableMap(map);
 cache = new RandomCache(initialCapacity);
 }

 public int getCapacity() {
 return cache.getCapacity();
 }

 public Map getMap() {
 return unmodifiableMapView;
 }

 public Object get(Object key) {
 Object value = cache.get(key);
 if (value != null) {

Sandini Bib

180 8 Datenstrukturen und Algorithmen

 return value;
 }
 value = map.get(key);
 if (key != null) {
 cache.put(key, value);
 }
 return value;
 }

 public Object put(Object key, Object value) {
 Object oldValue = map.put(key, value);
 if (key != null) {
 cache.put(key, value);
 }
 return oldValue;
 }
}

Listing 8.5: Cache-Klasse für Maps

Natürlich wollen wir uns nicht mit der bloßen Existenz der oben beschriebenen Klasse
zufrieden geben, sondern auch einen kleinen Test durchführen. Gecached werden soll
eine TreeMap mit 1.280 Elementen, die Cache-Kapazität soll 128 betragen und wir grei-
fen wiederholt auf eine begrenzte Anzahl der in der TreeMap enthaltenen Elemente zu.
Genauer gesagt, die ersten 32, 64, 128 und 256 Elemente.

Abbildung 8.4: Vergleich zwischen einer ungecachten und einer gecachten TreeMap mit einer Cachegröße von 128
und einer Größe von 1.280 Elementen in Abhängigkeit von der Anzahl der Elemente, auf die regelmäßig zugegrif-
fen wird

0

2

4

6

8

10

12

14

16

32 64 128 256

Anzahl der Elemente mit häufigem Zugriff

F
ak

to
r,

 d
en

 d
er

 g
ec

ac
ht

e
Z

ug
rif

f
sc

hn
el

le
r

is
t

JDK 1.3.1 client JDK 1.3.1 server JDK 1.4.0 client

JDK 1.4.0 server IBM JDK 1.3.0

Sandini Bib

Caches 181

Abbildung 8.4 zeigt den Beschleunigungsfaktor für den Zugriff auf die TreeMap mit
Cache. Offensichtlich sorgt der Cache nur für eine spürbare Beschleunigung, wenn die
Cache-Kapazität mindestens doppelt so groß ist wie die Menge der häufig benutzten
Elemente.

Abbildung 8.5 zeigt, warum dies so ist. Bei einer Cache-Kapazität von 128 und gleicher
Anzahl häufig zugegriffener Elemente liegt die Cache-Trefferrate nur bei 34%. In 66%
der Fälle musste auf die TreeMap zugegriffen werden.

Da wir den Hashcode als Basis für den Array-Index benutzen, steht die Trefferrate
natürlich in direkter Beziehung zur Hashfunktion. Tatsächlich werden die Schlüssel
der ersten 128 Elemente bei einer Cache-Kapazität von 128 durch die Hashfunktion
hashCode() auf lediglich 43 Arraypositionen abgebildet – die restlichen 85 Positionen
bleiben unbenutzt. Wesentlich besser sieht es dagegen bei 64 und 32 häufig zugegriffe-
nen Elementen aus, daher auch der bessere Beschleunigungsfaktor.

Für obigen Test habe ich die Schlüssel folgendermaßen erzeugt:

for (int i=0; i<keys.length; i++) {
 keys[i] = "key" + i;
}

Tests mit anderen Schlüsseln ergaben wesentlich bessere bzw. wesentlich schlechtere
Resultate. Daher gilt:

Wenn Sie einen Cache einsetzen, messen Sie die Trefferrate und den Beschleunigungsfaktor.
Überprüfen Sie zudem, ob die Methode hashCode() für Ihre Schlüssel ausreichend gut verteilt ist.

Abbildung 8.5: Trefferrate in Abhängigkeit von der Anzahl der Elemente, auf die regelmäßig zugegriffen wird

0%

20%

40%

60%

80%

100%

32 64 128 256

Anzahl der Elemente mit häufigem Zugriff

C
ac

he
-T

re
ff

er
ra

te

Sandini Bib

182 8 Datenstrukturen und Algorithmen

8.4.5 Caches mit LinkedHashMap

Seit JDK 1.4 gibt es die Klasse java.util.LinkedHashMap. Sie ist wie gemacht für LRU-
Caches. Jedes Mal, wenn die Methoden put() oder putAll() benutzt werden, wird auto-
matisch die Methode removeEldestEntry() aufgerufen. removeEldestEntry() gibt true
zurück, wenn tatsächlich der älteste Eintrag der Map entfernt werden soll, was dann
auch direkt anschließend passiert. Abhängig von einem booleschen Konstruktorpara-
meter ist mit »ältestem Eintrag« dabei entweder das am längsten nicht benutzte Ele-
mente oder das am längsten in der Map befindliche Element gemeint.

Um einen LRU-Cache zu schreiben müssen wir lediglich die Methode removeEldest-
Entry() überschreiben (Listing 8.6).

package com.tagtraum.perf.datastructures;

import java.util.LinkedHashMap;
import java.util.Map;

public class LRUCache extends LinkedHashMap {
 private int capacity;

 public LRUCache(int capacity) {
 // Propagiere Kapazität zur darunter liegenden HashMap,
 // so dass wir möglichst selten ein Rehashing benötigen.
 // Außerdem setzen wir die Ordnung der Map mit
 // true auf Zugriffs-Ordnung statt Einfüge-Ordnung.
 super((int)(capacity/0.75f), 0.75f, true);
 this.capacity = capacity;
 }

 // Gibt true zurück, wenn die Kapazität des Caches erreicht ist.
 protected boolean removeEldestEntry(Map.Entry eldest) {
 return size() > capacity;
 }

 public int getCapacity() {
 return capacity;
 }
}

Listing 8.6: LinkedHashMap basierter LRU-Cache

Abbildung 8.6 zeigt einen Vergleich zwischen dem oben vorgestellten Zufallscache
und LRUCache. Im Test wird der Reihe nach wiederholt auf 32-256 Elemente zugegriffen.

Bei 256 Elementen und einer Cache-Kapazität von 128 wird beim LRU-Cache nur der
zusätzliche Verwaltungsaufwand gemessen, da die Trefferrate gleich null ist (Abbil-
dung 8.7). Bei 128 Elementen schneidet der LRU-Cache am besten ab. Die Trefferrate

Sandini Bib

Caches 183

liegt bei 100%. Damit ist aber auch die maximale Beschleunigung durch den LRUCache
erreicht, während der Zufallscache für weniger Elemente schneller wird. Insbesondere
für nur 32 Elemente ist der Zufallscache wesentlich schneller als der LRU-Cache. Mit
anderen Worten:

Eine schlechte Austauschstrategie kann sich auszahlen, wenn sie sehr geringen Verwaltungs-
aufwand hat.

Abbildung 8.6: Vergleich zwischen einer LRU und einer mit Zufallsstrategie gecachten TreeMap mit einer Cache-
größe von 128 und einer Größe von 1.280 Elementen in Abhängigkeit von der Anzahl der Elemente, auf die regel-
mäßig zugegriffen wird

Abbildung 8.7: Trefferrate in Abhängigkeit von der Anzahl der Elemente, auf die regelmäßig zugegriffen wird, und
der Austauschstrategie

0
2
4
6
8

10
12
14
16
18

Anzahl der Elemente mit häufigem Zugriff

F
ak

to
r,

 d
en

 d
er

 g
ec

ac
ht

e
Z

ug
rif

f
sc

hn
el

le
r

is
t

JDK 1.4.0 client LRU JDK 1.4.0 server LRU

JDK 1.4.0 client Zufall JDK 1.4.0 server Zufall

0%

20%

40%

60%

80%

100%

32 64 128 256

Anzahl der Elemente mit häufigem Zugriff

C
ac

he
-T

re
ff

er
ra

te

LRU Zufall

Sandini Bib

184 8 Datenstrukturen und Algorithmen

8.4.6 Schwache Referenzen

Ein Objekt zu cachen heißt auch immer, Speicher dauerhaft zu belegen und so die
automatische Speicherbereinigung zu verlangsamen. Oft ist es daher sinnvoll, dass ein
Objekt, wenn es eine Weile nicht benutzt wurde, automatisch aus dem Speicher ent-
fernt wird. Besonders einfach geht dies mit schwachen Referenzen aus dem Paket
java.lang.ref.

Hier ein Beispiel für den entsprechenden Einsatz einer SoftReference:

private static SoftReference objectSoftReference = null;

public Object getObject() {
 Object object = null;
 if (objectSoftReference != null) {
 object = objectSoftReference.get();
 }
 if (object == null) {
 // Cachen des Objektes in einer SoftReference
 object = new Object();
 objectSoftReference = new SoftReference(object);
 }
 return object;
}

...

Auf das Objekt wird immer über die getObject()-Methode zugegriffen. Beim ersten
Zugriff werden das Objekt und eine SoftReference auf dieses Objekt angelegt. Die Soft-
Reference ist eine Klassen- oder Instanzvariable. Beim nächsten Aufruf von getObject()
wird nun zunächst der Inhalt der SoftReference überprüft. Ist dieser ungleich null, wird
das gecachte Objekt zurückgegeben. Ist er jedoch gleich null, wurde das zuvor
erzeugte Objekt bereits von der Speicherbereinigung erfasst – das heißt wir müssen ein
neues Objekt erzeugen.

Objekte, die durch eine SoftReference referenziert werden, können genau dann von der
Speicherbereinigung erfasst werden, wenn sie nicht mehr durch eine normale Referenz
referenziert werden. Die JDK-Dokumentation verspricht zudem, dass alle SoftRefe-
rences gelöscht werden, bevor die VM einen OutOfMemoryError auslöst. Das heißt, Soft-
References sind ideal für speicherempfindliche Caches.

Leider sind viele VMs jedoch übereifrig beim Löschen von SoftReferences und löschen
diese ohne Not. Dies ist insbesondere der Fall bei Sun JDK 1.3.0. Spätere Versionen
löschen SoftReferences erst einige Zeit nachdem die referenzierten Objekte nicht mehr
durch normale Referenzen referenziert werden und erreichen so ein LRU-ähnliches
Verhalten. Die Dauer dieser Gnadenfrist beträgt eine Sekunde pro freies Mbyte auf
dem Heap. Die HotSpot-Server-Version benutzt für diese Berechnung die maximal

Sandini Bib

Caches 185

mögliche Heapgröße (VM Option -Xmx), während die Client-Version die aktuelle Heap-
größe verwendet. Unabhängig davon, welche Version Sie benutzen, können Sie diese
Frist manipulieren, indem Sie den VM-Parameter -XX:SoftRefLRUPolicyMSPerMB angeben:

java -XX:SoftRefLRUPolicyMSPerMB=2500 <Hauptklasse>

Dieser Parameter reguliert, wie viele Millisekunden pro freies Mbyte die Speicherbe-
reinigung warten soll. Bitte beachten Sie, dass dies ein offiziell nicht unterstützter VM-
Parameter ist. Er wird von Sun JDK 1.3.1 und 1.4.0 erkannt.

Sandini Bib

Sandini Bib

9 Threads

Java verfügt über eine sehr mächtige, einheitliche und vergleichsweise einfache Thread-
unterstützung. Richtig und mit Bedacht angewandt, kann sie zu sehr eleganten Designs
führen. Gerade, wenn es um wahrgenommene Performance geht, ermöglichen Threads
einfache Lösungen für ansonsten schwierige Probleme. Zudem sind Threads die Zutat,
die dafür sorgt, dass Java Programme auf Mehrprozessormaschinen skalieren.

Doch Threads haben ihren Preis. Sie können die Komplexität von Programmen erheb-
lich erhöhen. Die Programmausführung ist nicht mehr deterministisch und streng
sequenziell, sondern parallel. Verschiedene Threads verhalten sich asynchron zueinan-
der, es sei denn sie sind explizit synchronisiert. Und gerade korrekte Synchronisation
ist nicht-trivial. Dies ist auch einer der Gründe, warum EJB von ihrem Container
zwangssynchronisiert werden und keine weitergehende Synchronisierung erlaubt ist.
Viele Fehler können so vermieden werden.

Zudem können Synchronisation und ständige Threadkontext-Wechsel zu schlechter
Performance führen. Dies ist insbesondere der Fall, wenn mehr Threads als Prozessoren
vorhanden sind. Dies, die erhöhte Komplexität und Nicht-Determinismus, sind Gründe,
warum Swing nur einen Thread benutzt. Programme ohne Threads sind oft einfacher zu
warten, schneller und Synchronisationsfehler sind nicht möglich. Daher gilt:

Wenn es keinen guten Grund für den Einsatz von Threads gibt, vermeiden Sie Threads lieber.

Wenn Sie jedoch glauben, dass Threads die Lösung Ihrer Probleme bedeuten, hilft
Ihnen der Rest dieses Kapitels hoffentlich performanten Code zu schreiben.

9.1 Gefährlich lebt sich’s schneller

Grundsätzlich gibt es im Zusammenhang mit Mehrthread-Programmen zwei wesent-
liche Zustände [vgl. Lea99, S. 38f.]:

� Sicherheit

Der Zustand, in dem nichts Schlimmes passiert.

� Lebendigkeit

Der Zustand, in dem überhaupt jemals etwas geschieht.

Sandini Bib

188 9 Threads

Die große Gefahr beim Programmieren mit mehreren Threads ist das gleichzeitige
Manipulieren desselben Speicherbereichs durch zwei oder mehr Threads. Dies führt
meistens zu unvorhersehbaren Ergebnissen, deren Ursache sehr schwierig herauszu-
finden ist. Will man dies verhindern, so muss man einem Thread exklusiven Zugriff
auf eine Ressource zusichern. So erreichen Sie Sicherheit.

Meistens werden zu diesem Zweck jedoch andere Threads angehalten, die die Res-
source ebenfalls manipulieren wollen. Natürlich sind Programme lebendiger, in denen
immer alle Threads laufen.

Es ist offensichtlich, dass die Abwesenheit von Lebendigkeit zu Sicherheit führt. Oft,
aber nicht zwingend, führt die Abwesenheit von Sicherheit auch zu Lebendigkeit.

Strategien für Sicherheit sind beispielsweise:

� Unveränderbarkeit (Immutability)

Unveränderbare Objekte können ihren Zustand nicht ändern, daher können sie
auch nicht manipuliert werden. Beispiel: java.lang.String

� (Vollständige) Synchronisation

(Alle) Methoden, die den Objektzustand ändern, sind synchronisiert. Beispiel:
java.lang.StringBuffer()

� Behälter (Containment)
Auf das zu manipulierende Objekt kann nur durch ein anderes Objekt zugegriffen
werden, das die Synchronisation übernimmt. Beispiel: java.util.Collections.

synchronizedMap(new HashMap())

Wenn Sie ausschließlich diese drei Strategien verwenden, sind Sie auf der sicheren
Seite. Leider heißt dies nicht, dass Ihr Programm auch nur einen Hauch von Leben in
sich hat, von Performance ganz zu schweigen.

Die häufigsten Gründe hierfür sind:

� Verhungern (Starvation)
Ein Thread wird nie ausgeführt, weil ein anderer Thread oder ein anderer Prozess
sämtliche Prozessoren voll und ganz für sich in Anspruch nimmt.

� Dormancy
Ein Thread wartet auf ein resume() oder notify(), das aber nie aufgerufen wird.

� Deadlock
Thread A wartet auf ein Synchronisationsschloss, das Thread B besitzt, während
Thread B auf ein Schloss wartet, das Thread A besitzt.

Im Folgenden werden wir uns mit den Kosten verschiedener Strategien zum Erreichen
von Sicherheit befassen sowie einige andere Aspekte der Threadprogrammierung
unter Performancegesichtspunkten betrachten.

Sandini Bib

Gefährlich lebt sich’s schneller 189

9.1.1 Sicherheit durch Synchronisation

Um exklusiven Zugriff auf geteilten Ressourcen zu erlangen, können Sie in Java Pro-
grammteile mit einem synchronized-Block schützen. Dieser verhindert, dass derselbe
Code gleichzeitig von mehr als einem Thread ausgeführt wird. Beachten Sie, dass syn-
chronized keine Ressource schützt, sondern Code, der unter Umständen auf schützens-
werte Ressourcen zugreift. Wollen Sie eine Ressource schützen, müssen Sie jeglichen
Code, der diese Ressource manipuliert, mit einem synchronized-Block schützen, der mit
demselben Objekt synchronisiert. Nicht mit synchronized geschützt werden müssen
atomare Manipulationen. Das sind Operationen, die nicht vom Thread-Scheduler
unterbrochen werden können. Dazu gehören Referenzzuweisungen sowie alle Zuwei-
sungen von primitiven Datentypen außer double und long, es sei denn double oder long
sind mit dem Schlüsselwort volatile gekennzeichnet [vgl. Gosling00, §17.4].

Beispiel:

private long time;
// Nicht threadsicher!
public void setTime(long time) {
 this.time = time;
}

Dieser Code ist nicht threadsicher, da das Zuweisen eines longs keine atomare Opera-
tion ist, sondern aus zwei 32-Bit-Operationen besteht. Wenn also zwei Threads gleich-
zeitig die Methode setTime() aufrufen, kann es passieren, dass this.time nachher als
Wert die ersten 32 Bit vom einen Aufruf und die zweiten 32 Bit vom anderen Aufruf
hat. Dies ließe sich durch synchronized verhindern:

private long time;
// Threadsicher!
public synchronized void setTime(long time) {
 this.time = time;
}

Bevor ein Thread die synchronisierte setTime()-Methode ausführen kann, muss er war-
ten, bis kein anderer Thread diese Methode ausführt. this.time ist somit vor gleichzei-
tigem schreibenden Zugriff geschützt. Dieser Schutz ist jedoch nicht umsonst.

9.1.2 Synchronisationskosten

Bereits im Datenstrukturen-Kapitel (Kapitel 8 Datenstrukturen und Algorithmen) erwähnte
ich, dass java.util.Vector etwas langsamer als java.util.ArrayList ist, weil Vector im
Gegensatz zu ArrayList voll synchronisiert ist. Es stellt sich die Frage, wie viel ein
synchronized tatsächlich kostet. Wir rufen daher die setTime()-Methode von Objekten der
folgenden beiden Klassen wiederholt in einer Schleife auf und messen die Zeit.

Sandini Bib

190 9 Threads

// Klasse mit unsynchronisierter setTime()-Methode
class UnsynchronizedTime {
 private long time;

 public void setTime(long time) {
 this.time = time;
 }
}

// Klasse mit synchronisierter setTime()-Methode
class SynchronizedTime {
 private long time;

 public synchronized void setTime(long time) {
 this.time = time;
 }
}

Wie Tabelle 9.1 zeigt, ist die unsynchronisierte Variante in allen gemessenen VMs
wesentlich schneller. Dies liegt jedoch nicht nur an den zusätzlichen Aufwänden der
VM, die durch synchronized verursacht werden, sondern auch daran, dass bestimmte
Optimierungen wegen des synchronized-Blocks nicht mehr durchführbar sind. Anders
sind die riesigen Unterschiede zwischen der synchronisierten und der unsynchroni-
sierten Variante in den Ergebnissen der beiden Sun-Server-VMs nicht zu erklären.

Daraus lässt sich schließen, dass es sich lohnen kann, dem Aufrufer die Synchronisa-
tion zu überlassen, anstatt selbst feingranular zu synchronisieren. Dieser Gedanke ist
auch der Grund dafür, warum die Collection-Klassen alle unsynchronisiert sind. Selten
entspricht die Granularität der notwendigen Synchronisation gerade dem Aufruf einer
der Methoden der Collection-Klassen.

Zurück zu unserem kleinen Test. Wenn wir die Schleife, in der die setTime()-Methode
des UnsynchronizedTime-Objektes aufgerufen wird, in einem synchronized-Block ausfüh-
ren, wird sie beinahe genauso schnell ausgeführt wie die unsynchronisierte Variante
und ist dennoch korrekt synchronisiert.

Java VM Synchronisiert Unsynchronisiert Faktor

Sun JDK 1.3.1 Client 100% 56% 1,79

Sun JDK 1.3.1 Server 65% 1,6% 40,41

Sun JDK 1.4.0 Client 110% 23% 4,69

Sun JDK 1.4.0 Server 65% 1,1% 58,91

IBM JDK 1.3.0 88% 12% 7,26

Tabelle 9.1: Normalisierte Ausführungszeiten der beiden setTime()-Methoden sowie der Faktor, den die unsynchro-
nisierte Variante schneller war als die synchronisierte

Sandini Bib

Gefährlich lebt sich’s schneller 191

private UnsynchronizedTime unsynchronizedTime
 = new UnsynchronizedTime();

// Methode, in der setTime() in einer langen Schleife
// aufgerufen wird.
private void setUnsynchronizedTime() {
 for (int i = 0; i < 500000000; i++)
 unsynchronizedTime.setTime(i);
}

public void test() {
 // Aufuf der TestMethode und mit äußerer Synchronisation
 synchronized (unsynchronizedTime) {
 setUnsynchronizedTime();
 }
}

Ein etwas allgemeineres Beispiel. Nehmen wir einmal an, Sie schreiben eine Klasse A,
die über zwei Methoden verfügt: methode1() und methode2(). Beide Methoden müssen
synchronisiert sein, da sie eine von mehreren Threads geteilte Ressource manipulieren.
Die Implementierung sieht folgendermaßen aus.

package xyz;
public class A {
 public synchronized void methode1() {
 // mache etwas
 }
 public synchronized void methode2() {
 // mache etwas anderes
 }
}

Nach einiger Zeit stellen Sie fest, dass häufig zunächst methode1() und direkt anschlie-
ßend methode2() vom selben Thread ausgeführt wird. Daher schreiben Sie den Code ein
wenig um und bieten eine Methode methode1und2() an, die jeweils unsynchronisierte
Versionen von methode1() und methode2() aufruft. methode1und2() muss nur einmal statt
zweimal einen synchronized()-Block betreten. Dafür muss bei jedem Methodenaufruf
noch eine Extra-Methode aufgerufen werden. Da wir aber eine moderne VM benutzen,
können wir annehmen, dass dieser zusätzliche Methodenaufruf vom VM-Compiler
durch Inlining wegoptimiert wird. Ist dies der Fall, dann ist folgender Code schneller:

package xyz;
public class A {
 public synchronized void methode1() {
 unsyncMethode1();
 }
 private void unsyncMethode1() {
 // mache etwas

Sandini Bib

192 9 Threads

 }
 public synchronized void methode2() {
 unsyncMethode2();
 }
 private void unsyncMethode2() {
 // mache etwas anderes
 }
 // schneller als methode1() und methode2()
 private synchronized void methode1und2() {
 unsyncMethode1();
 unsyncMethode2();
 }
}

Als Nächstes stellen Sie fest, dass beide Methoden häufig von Instanzen einer Klasse B
aufgerufen werden, die sich auch im Paket xyz befindet. Da Sie volle Kontrolle über
beide Klassen haben und diese beiden Klassen sehr eng miteinander gekoppelt sind,
entscheiden Sie sich dazu, Klasse A etwas zu öffnen und die Methoden unsyncMethode1()
und unsyncMethode2() als package-privat zu deklarieren. Somit hat B unbeschränkten
Zugriff auf unsyncMethode1() und unsyncMethode2().

package xyz;
public class A {
 public synchronized void methode1() {
 unsyncMethode1();
 }
 // Jetzt package-privat!
 void unsyncMethode1() {
 // mache etwas
 }
 public synchronized void methode2() {
 unsyncMethode2();
 }
 // Jetzt package-privat!
 void unsyncMethode2() {
 // mache etwas anderes
 }
 // schneller als methode1() und methode2()
 private synchronized void methode1und2() {
 unsyncMethode1();
 unsyncMethode2();
 }
}

// Klasse B liegt im selben Paket wie Klasse A
package xyz;
class B {
 private A a;
 ...
 public void method3(int count) {

Sandini Bib

Gefährlich lebt sich’s schneller 193

 synchronized(a) {
 for (int i=0; a<count; i++) a.unsyncMethode1();
 a.unsyncMethode2();
 a.unsyncMethode1();
 a.unsyncMethode1();
 }
 }
}

Sie erlauben so dem HotSpot-Server-Compiler größere Code-Blöcke zu optimieren
und erreichen eventuell eine bessere Performance. Dabei müssen Sie jedoch zwei
Dinge bedenken:

1. Dies macht nur Sinn, wenn Sie absolute Kontrolle über alle beteiligten Klassen
haben. Ist dies nicht der Fall, und Sie wollen trotzdem unsynchronisierten Zugriff
auf die Klasse zulassen, verfahren Sie lieber nach dem Alles-Oder-Nichts-Prinzip.
Entweder die öffentlichen Methoden der Klasse sind threadsicher oder sie sind es
nicht. Teilweise threadsichere Klassen, sofern es so etwas überhaupt geben kann,
führen zu Fehlern, die sehr schwierig zu finden sind.

2. Je größer synchronized-Blöcke sind, desto länger müssen andere Threads darauf
warten, selbst einen synchronized-Block auszuführen, der mit demselben Objekt
synchronisiert ist. Dies kann die Lebendigkeit verringern statt vergrößern.

9.1.3 Threadsichere Datenstrukturen

Bereits im Datenstrukturen-Kapitel klang an, dass das Synchronisieren mittels eines
Synchronisationswrappers ziemlich grob ist. Falls Sie beispielsweise eine verlinkte
Liste als Warteschlange benutzen, manipulieren Sie diese gewöhnlich nur am Anfang
und am Ende. Sofern die Länge Ihrer Warteschlange größer eins ist, können Sie sie
auch mit zwei verschiedenen Objekten synchronisieren – einem für den Anfang und
einem fürs Ende. So erhöhen Sie auf einfachste Weise die Lebendigkeit.

Es gibt für viele Datenstrukturen maßgeschneiderte Synchronisationsstrategien. Eine
ganz ausgezeichnete Sammlung von threadsicheren und dennoch lebendigen Daten-
strukturen sowie anderen threadbezogenen Hilfsklassen bietet das freie util.concurrent-
Paket von Doug Lea (http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/
intro.html). Wenn Ihre Software Lebendigkeitsprobleme im Zusammenhang mit grob
sperrenden Datenstrukturen hat, sei Ihnen dieses Paket samt Doug Leas Buch Concurrent
Programming in Java™ – Design Principles and Patterns [Lea99] wärmstens empfohlen.
Alternativ gibt es noch ein kommerzielles Thread-Werkzeugklassen-Paket namens
JThreadKit (http://www.jthreadkit.com/). In einer der nächsten Versionen des JDK wird es
zudem ein Paket namens java.util.concurrent geben, das entsprechende Klassen defi-
niert. Die dazugehörige Spezifikationsanforderung ist JSR 166 (http://www.jcp.org/jsr/
detail/166.jsp).

Sandini Bib

194 9 Threads

9.1.4 Double-Check-Idiom

Wir kommen nun zu einem ganz anderen Thema. Nämlich wie Sie nicht um Synchroni-
sation herumkommen. Gerade für Singletons [vgl. Gamma96, S.139] wird gerne eine
besondere Form der späten Initialisierung (lazy Initialization) verwendet. Oft sieht der
Code dazu folgendermaßen aus:

01 private static Singleton instance;
02 private Singleton() {
03 }
04 // Tun Sie dies nicht! Es funktioniert nicht!
05 public static Singleton getInstance() {
06 if (instance == null) {
07 synchronized (Singleton.class) {
08 if (instance == null) {
09 instance = new Singleton();
10 }
11 }
12 }
13 return instance;
14 }

Dies ist das so genannte Double-Check-Idiom. Man geht dabei davon aus, dass, sobald
die Variable instance ungleich null ist, diese für alle Threads einen gültigen Wert hat.
Daher wird der synchronized-Block in diesem Fall erst gar nicht betreten. Davon ver-
spricht man sich Performance-Vorteile. Leider hat instance, wenn es ungleich null ist,
nicht immer für alle Threads einen gültigen Wert ... [vgl. Pugh01]

Grundsätzlich arbeiten Threads in ihrem eigenen Speicher mit Kopien von Werten aus
dem Hauptspeicher. Diese Kopien dürfen nicht ohne Anlass wieder in den Hauptspei-
cher geschrieben werden [Gosling00, §17.3]. Der Beginn oder das Ende eines synchroni-
zed-Blocks ist beispielsweise ein solcher Anlass. So wird das instance-Objekt zwar
spätestens in Zeile 11 für andere Threads sichtbar, das garantiert aber nicht, dass auch
alle von instance referenzierten Objekte schon wieder in den Hauptspeicher zurückko-
piert worden sind. Erst nach Zeile 11 ist dies garantiert. Es gibt also eine Zeitspanne, in
der instance zwar ungleich null, aber noch nicht komplett mit dem Hauptspeicher
bzw. den anderen Threads synchronisiert ist. Wenn instance in diesem Zustand benutzt
wird, kann dies zu sehr schwierig zu findenden Fehlern führen.

Folgender Code löst das Problem, da nicht nur beim schreibenden, sondern auch beim
lesenden Zugriff auf instance synchronisiert wird:

private static Singleton instance;

private Singleton() {
}

Sandini Bib

Gefährlich lebt sich’s schneller 195

public static synchronized Singleton getInstance() {
 if (instance == null) {
 instance = new Singleton();
 }
 return instance;
}

Grundsätzlich gilt, dass Sie Variablen, die von mehreren Threads benutzt werden, sowohl beim
Schreiben als auch beim Lesen durch synchronized schützen müssen.

Alternativ zur Synchronisierung können Sie auch das Initialize-on-Demand-Holder-
Class-Idiom [Bloch02, S.196] benutzen. Dabei macht man sich zunutze, dass eine Klasse
erst initialisiert wird, wenn sie das erste Mal benutzt wird:

private static Singleton instanceHolder;

private Singleton() {
}

public static Singleton getInstance() {
 return SingletonHolder.instance;
}

private static class SingletonHolder {
 static final Singleton instance = new Singleton();
}

In den meisten Fällen ist die Holderclass-Variante sehr viel schneller als die synchroni-
sierte Version. Die Sun-Server-VMs profitieren zudem stark davon, dass in der Holder-
class-Variante kein synchronized-Block verwendet wird, und optimieren den Code so
weit, dass der Test ad absurdum geführt wird. Es gilt:

Benutzen Sie auf keinen Fall das Double-Check-Idiom. Zudem sollten Sie der korrekt synchro-
nisierten Variante das Initialize-on-Demand-Holder-Class-Idiom vorziehen.

Java VM Synchronisiert Holderclass Faktor

Sun JDK 1.3.1 Client 100% 37% 2,68

Sun JDK 1.3.1 Server 78% nicht messbar sehr hoch

Sun JDK 1.4.0 Client 110% 39% 2,86

Sun JDK 1.4.0 Server 77% nicht messbar sehr hoch

IBM JDK 1.3.0 104% 8% 12,64

Tabelle 9.2: Normalisierte Ausführungszeiten der synchronisierten und Holderclass-Variante sowie der Faktor, um
den die Holderclass-Variante schneller ist

Sandini Bib

196 9 Threads

9.1.5 Sprunghafte Variablen

Anstatt Variablen zwischen Threads durch synchronized-Blöcke zu synchronisieren,
können Sie diese auch als volatile deklarieren. Dadurch wird die VM dazu genötigt,
vor und nach jedem Benutzen dieser Variablen den Thread-Speicher mit dem Haupt-
speicher abzugleichen. Zudem sind Zuweisungsoperationen von longs und doubles,
die volatile sind, atomar. Es lohnt sich jedoch nur volatile zu benutzen, wenn Sie die
Variable relativ selten manipulieren, da sonst ständige, zeitraubende Abgleiche mit
dem Hauptspeicher erfolgen.

Vermutlich wird sich die genau Definition von volatile in Zukunft ändern, da §17 der
Java Sprachspezifikation [Gosling00] im Rahmen der Java Spezifikationsanforderung
133 überarbeitet wird. Details hierzu können Sie im Web finden.

� Java Specification Request 133: http://jcp.org/jsr/detail/133.jsp

9.2 Allgemeine Threadprogrammierung

Ganz ohne Frage: Threads sind nicht wie alle anderen Java-Objekte. Dies soll für uns
Grund genug sein, einige spezielle Aspekte ein wenig genauer zu beleuchten.

9.2.1 Threads starten

Einen Thread zu starten dauert etwas länger als ein normales Objekt zu instanziieren,
da außer dem Objekt noch ein Java Virtual Machine Stack angelegt werden muss. Wir
wollen testen, wie groß der Unterschied ist. Zu diesem Zweck führen wir die folgen-
den drei Methoden jeweils mehrmals nacheinander aus:

// Thread instanziieren und starten
private Object startThread() throws InterruptedException {
 Thread t = new Thread();
 t.start();
 return t;
}

// Thread instanziieren
private Object instantiateThread() {
 return new Thread();
}

// Objekt instanziieren
private Object instantiateObject() {
 return new Object();
}

Sandini Bib

Allgemeine Threadprogrammierung 197

Wie Tabelle 9.3 zeigt, dauert es rund zehnmal länger, einen Thread zu instanziieren
und zu starten als ein Thread-Objekt nur zu instanziieren. Ein einfaches Objekt zu
instanziieren führte beim 100.000fachen Aufruf lediglich zu Zeiten zwischen 10 und 50
Millisekunden. Zum Vergleich: Die Methode startThread() führte auf der Testmaschine
beim 100.000fachen Aufruf zu Messzeiten von etwa 43 Sekunden.

Während es bei anderen Objekten meist nicht lohnt, so ist das Vorhalten von Thread-
Objekten in einem Pool eine Ausnahme.

9.2.2 Threadpool

Objekt-Pools sind mittlerweile eher schädlich für die Performance eines lang laufenden
Programms. Sie führen zu Objekten, die in der älteren Generation des Heaps gehalten
werden. Da der Garbage Collection-Algorithmus für die ältere Generation meist auf
Speicherverbrauch und Lokalität optimiert ist und nicht so sehr auf Geschwindigkeit
wie der der jungen Generation, führen viele langlebige Objekte zu langen Speicherberei-
nigungszeiten. Es ist daher nicht unbedingt empfehlenswert, Objekt-Pools anzulegen.
Eine Ausnahme hiervon sind Objekte, deren Erstellen – aus welchen Gründen auch
immer – sehr aufwändig ist. Dies können neben Threads auch Objekte sein, die sehr groß
sind oder bei der Initialisierung aufwändige Berechnungen erfordern (siehe Kapitel
11.1.1 Datenmenge verkleinern).

Die Klasse Runner (Listing 9.1) ist in der Lage, ein java.lang.Runnable-Objekt in einem
Thread auszuführen und diesen Thread nach Beendigung der Runnable.run()-Methode
für das nächste Runnable-Objekt wiederzuverwenden. Anstelle von normalen Thread-
Objekten werden RunnerThread-Objekte (Listing 9.2) benutzt, die sich nach dem asynchro-
nen Ausführen der Runnable.run()-Methode beim Runner-Objekt zur Wiederverwendung
zurückmelden. Das Sequenzdiagramm in Abbildung 9.1 zeigt das Zusammenspiel der
Objekte, wenn sich bereits RunnerThread-Objekte zurückgemeldet haben.

Ein Klient des runner-Objektes ruft die run()-Methode auf und übergibt das asynchron
auszuführende Objekt Runnable. Aus dem Stack stack wird der oberste RunnerThread
namens rt genommen und mit setRunnable(runnable) initialisiert. Anschließend wird
die work()-Methode von rt aufgerufen, die mittels mutex.notify() den rt-eigenen Thread

Java VM startThread() instantiateThread() instantiateObject()

Sun JDK 1.3.1 Client 100% 9% nicht messbar

Sun JDK 1.3.1 Server 97% 7% nicht messbar

Sun JDK 1.4.0 Client 112% 10% nicht messbar

Sun JDK 1.4.0 Server 122% 8% nicht messbar

IBM JDK 1.3.0 106% 7% nicht messbar

Tabelle 9.3: Normalisierte Ausführungszeit der drei verschiedenen Methoden

Sandini Bib

198 9 Threads

benachrichtigt, der auf das mutex-Objekt wartet. mutex ist eine private Instanzvariable
von rt und wird ausschließlich zum Synchronisieren der RunnerThread-Aktivität benutzt.
Der einzige Thread, der jemals ein mutex.wait() aufrufen kann, ist ebenfalls ein privates
Attribut von rt. Wenn mutex.notify() aufgerufen wird, können wir sicher sein, dass der
Thread von rt gerade innerhalb der run()-Methode von rt genau darauf wartet. Dies
resultiert in der asynchronen Ausführung der run()-Methode von rt und führt somit
zur asynchronen Ausführung von runnable.run(). Anschließend registriert sich rt wie-
der bei runner, ruft mutex.wait() auf und wartet auf das nächste mutex.notify().

Die Methoden work() und run() sind beide über mutex synchronisiert. Dies stellt sicher,
dass mutex.notify() nicht aufgerufen wird, bevor mutex.wait() aufgerufen wurde. Dies
ist essentiell, da rt sich zunächst bei runner zurückmeldet und dann erst mutex.wait()
aufruft. Wäre dieser Block nicht mit work() synchronisiert, könnte sich ein RunnerThread-
Objekt bei runner zurückmelden und runner könnte work() und somit mutex.notify()
aufrufen, noch bevor mutex.wait() aufgerufen wurde. Dies würde dazu führen, dass
der Thread des RunnerThread-Objektes ewig auf ein mutex.notify() wartete (Dormancy).

Abbildung 9.1: Sequenzdiagramm des Zusammenspiels von Runner, RunnerThread und einem Runnable-Objekt

Klient runner : Runner stack : LimitedStack rt : RunnerThread runnable : Runnable mutex : Object

run(runnable)

getRunnerThread(runnable)

pop()

work()

run()

setRunnable(runnable)

Runner(capacity)

returnRunnerThread(rt)

Asynchroner Aufruf
von run().

notify()

run()

wait()

Der Aufruf von wait()
blockiert bis zum nächsten
Aufruf von notify().

Holt einen bereits
initialisierten
RunnerThread
vom Stack.Im
weiteren wird
gezeigt, was
passiert, wenn
dies gelingt.

push(rt)

Wird von einem RunnerThread
ausgeführt, während alle anderen
Methoden vom Klient-Thread
ausgeführt werden.

Sandini Bib

Allgemeine Threadprogrammierung 199

Der Code in Listing 9.1 und Listing 9.2 ist wegen der nötigen Poolverwaltung noch ein
wenig komplizierter. Als Datenstruktur benutzen wir einen Stack, da dieser über die
FILO-Eigenschaft verfügt. FILO steht für First in, last out und bedeutet, dass das zuletzt
hinzugefügte Element als erstes wieder entnommen wird. Das heißt in unserem Fall,
dass der zuletzt benutzte RunnerThread als erster wiederverwendet wird. Dies erhöht
die Chance, dass er sich noch im Hauptspeicher befindet und noch nicht vom Betriebs-
system ausgelagert wurde.

Natürlich wollen wir beliebig viele Runnable-Objekte ausführen können1, aber nur eine
begrenzte Anzahl im Pool halten. Unsere Stack-Implementierung, LimitedStack, hat
daher die spezielle Eigenschaft, dass sie nicht mehr als eine vorgegebene Anzahl an Ele-
menten halten kann. Dabei gibt die push()-Methode zurück, ob das Element erfolgreich
auf den Stack gelegt werden konnte oder nicht. Dies ist wichtig für uns, da ein Runner-
Thread-Objekt, das nicht auf den Stack gelegt werden kann, beendet werden muss. Dies
geschieht durch einen quit()-Aufruf in der run()-Methode von RunnerThread. Wäre dies
nicht der Fall, würde das RunnerThread-Objekt mutex.wait() aufrufen, endlos auf ein
mutex.notify() warten (Dormancy) und somit unnötig Ressourcen belegen.

Aus einem ähnlichen Grund benötigen wir die Runner.destroy()-Methode. Stellen Sie
sich vor, Sie benutzen in einem Teil Ihrer Anwendung einen Thread-Pool mit einer
Kapazität von 200 Threads. Dieser Teil der Applikation wird einmal am Tag für eine
halbe Stunde ausgeführt. Die restlichen 23½ Stunden wird der Pool nicht benötigt.
Wäre keine destroy()-Methode vorhanden, würden potenziell 200 Threads für 98 Pro-
zent der Laufzeit sinnlos Ressourcen belegen.

package com.tagtraum.perf.threads;

public class Runner {

 private LimitedStack stack;
 private Class runnerThreadClass;
 private boolean destroyed;

 public Runner(int capacity) {
 this.stack = new LimitedStack(capacity);
 setRunnerThreadClass(RunnerThread.class);
 }

 // Führt die run()-Methode des Runnables asynchron mit einem
 // RunnerThread aus.
 public void run(Runnable runnable) {
 getRunnerThread(runnable).run();
 }

1 Es gibt sicherlich auch Fälle, in denen es sinnvoll ist, die Anzahl gleichzeitig ausgeführter Threads
zu begrenzen. Dies würde das Beispiel aber noch komplizierter machen, als es ohnehin schon ist.
Daher wollen wir darauf verzichten.

Sandini Bib

200 9 Threads

 // Gibt einen initialisierten RunnerThread zurück. Der
 // RunnerThread stammt entweder vom Stack oder wurde
 // neu instanziiert.
 protected synchronized RunnerThread
 getRunnerThread(Runnable runnable) {
 if (isDestroyed())
 throw new IllegalStateException("Runner is destroyed.");
 RunnerThread rt = (RunnerThread) stack.pop();
 if (rt == null) {
 rt = newRunnerThread();
 // Registriert den RunnerThread bei diesem Runner
 rt.setRunner(this);
 }
 rt.setRunnable(runnable);
 return rt;
 }

 // Instanziiert einen neuen RunnerTread.
 protected RunnerThread newRunnerThread() {
 try {
 return (RunnerThread) getRunnerThreadClass()
 .newInstance();
 } catch (Exception e) {
 throw new InternalError(e.toString());
 }
 }

 public Class getRunnerThreadClass() {
 return runnerThreadClass;
 }

 protected void setRunnerThreadClass(Class runnerThreadClass) {
 this.runnerThreadClass = runnerThreadClass;
 }

 // Wird vom RunnerThread aufgerufen, sobald die run()-Methode
 // des Runnables des RunnerThreads ausgeführt wurde.
 synchronized boolean returnRunnerThread(RunnerThread rt) {
 // Nimmt den RunnerThread und legt ihn auf den Stack, sofern
 // der Runner noch nicht zerstört ist und der RunnerThread
 // noch lebendig ist. Gibt true zurück, wenn der RunnerThread
 // erfolgreich auf den Stack gelegt wurde.
 return rt.isAlive() && !destroyed && stack.push(rt);
 }

 public synchronized boolean isDestroyed() {
 return destroyed;
 }

 // Entfernt und stoppt alle RunnerThreads, die auf dem Stack
 // liegen. Setzt anschließend das Flag destroyed. Dadurch wird
 // verhindert, dass gerade laufende RunnerThreads sich wieder

Sandini Bib

Allgemeine Threadprogrammierung 201

 // bei Runner registrieren und so lebendig gehalten werden.
 public synchronized void destroy() {
 if (destroyed)
 throw new IllegalStateException("Runner is already"
 + " destroyed.");
 clear();
 destroyed = true;
 }

 // Entfernt und stoppt alle RunnerThreads, die auf dem Stack
 // liegen. Runner bleibt nach Aufruf dieser Methode weiterhin
 // benutzbar. Eventuell noch laufende RunnerThreads können sich
 // nach Aufruf dieser Methode wieder bei Runner zurückmelden.
 // Das heißt, dass der Stack nach Aufruf dieser Methode nicht
 // unbedingt leer sein muss, es sei denn es wurde mit this
 // synchronisiert.
 public synchronized void clear() {
 for (RunnerThread rt=stack.pop(); rt!=null; rt=stack.pop()) {
 rt.quit();
 }
 }

 // Stack, der nur eine bestimmte Anzahl an Elemente halten kann.
 private static class LimitedStack {
 private RunnerThread[] values;
 private int size;

 public LimitedStack(int capacity) {
 values = new RunnerThread [capacity];
 }

 public RunnerThread pop() {
 if (size == 0) return null;
 RunnerThread rt = values[--size];
 // Täten wir Folgendes nicht, würde dies zu einem
 // Speicherloch führen!
 values[size] = null;
 return rt;
 }

 // Legt ein Objekt auf den Stack, es sei denn er ist voll.
 // Ist dies der Fall, wird false zurückgegeben, sonst true.
 public boolean push(RunnerThread rt) {
 if (size == values.length - 1) return false;
 values[size++] = rt;
 return true;
 }
 }
}

Listing 9.1: Runner- und LimitedStack-Klassen

Sandini Bib

202 9 Threads

package com.tagtraum.perf.threads;

class RunnerThread implements Runnable {

 private static int count;
 private final Object mutex = new Object();
 private Runner runner;
 private Runnable runnable;
 private boolean running;
 private boolean working;
 private Thread thread;

 RunnerThread() {
 thread = new Thread("Runner-" + count++);
 // Sicherstellen, dass die VM terminieren kann, auch wenn
 // runner.destroy() nicht aufgerufen wurde.
 thread.setDaemon(true);
 }

 // Startet den Thread bzw. benachrichtigt ihn, dass er mit der
 // Ausführung fortfahren soll.
 public void work() {
 synchronized (mutex) {
 if (thread.isAlive()) {
 mutex.notify();
 } else {
 thread.start();
 }
 }
 }

 // Setzt running auf false und benachrichtigt den Thread, dass
 // er mit der Ausführung fortfahren soll. Dadurch wird er
 // beendet.
 public void quit() {
 synchronized (mutex) {
 running = false;
 mutex.notify();
 }
 }

 // Hauptschleife des RunnerThreads
 public void run() {
 synchronized (mutex) {
 try {
 running = true;
 while (running) {
 working = true;
 // Führt run() von runnable aus.
 runnable.run();

Sandini Bib

Allgemeine Threadprogrammierung 203

 working = false;
 // Stellt sicher, dass wir uns kein
 // Speicherloch einfangen.
 runnable = null;
 if (runner.returnRunnerThread(this)) {
 mutex.wait();
 } else {
 // Da wir this nicht wieder bei
 // runner registrieren konnten, müssen wir quit()
 // aufrufen, um belegte Ressourcen wieder
 // freizugeben
 quit();
 }
 }
 } catch (InterruptedException ie) {
 // Kann eigentlich nicht passieren, da
 // thread privat ist.
 ie.printStackTrace();
 quit();
 }
 }
 }

 // Wird von Runner vor work() aufgerufen.
 void setRunnable(Runnable runnable) {
 this.runnable = runnable;
 }

 // Wird von Runner aufgerufen.
 void setRunner(Runner runner) {
 this.runner = runner;
 }

 public boolean isAlive() {
 return thread.isAlive();
 }
}

Listing 9.2: RunnerThread-Klasse

Um zu vergleichen, ob das Benutzen von Runner sich wirklich positiv auswirkt, führen
wir einen Test durch, in dem wir die Methode runRunnable() mehrfach ausführen. Die
Methode ist so angelegt, dass sie mit der oben bereits beschriebenen startThread()-
Methode vergleichbar ist.

private Runner runner = new Runner(100);

private Object runRunnable() {
 runner.run(new DummyRunnable());
 return null;

Sandini Bib

204 9 Threads

}

private static class DummyRunnable implements Runnable {
 public void run() {}
}

Wie Tabelle 9.4 zeigt, ist im beschriebenen Testfall die Methode runRunnable() mindes-
tens sechsmal schneller als startThread().

9.2.3 Kommunikation zwischen Threads

Oft muss ein Thread darauf warten, dass ein bestimmter Zustand eintritt. Folgender,
naiver Code ist ein Negativ-Beispiel dafür, wie man dies anstellen kann.

volatile boolean condition = false;

public void waitForCondition() {
 // Furchtbarer Code! Tun Sie dies nicht!
 while (condition) {
 // Busy Wait
 }
}

Dieses Idiom wird auch Busy Wait genannt. Der aufrufende Thread verbleibt so lange
in der waitForCondition()-Methode, bis ein anderer Thread die Variable condition auf
true setzt. Abgesehen davon, dass Sie während des Wartens jede Menge CPU-Zyklen
verbrauchen, kann es sein, dass nie ein anderer Thread zum Zuge kommt. Sie warten
also vergebens.

Korrekt würde der Code etwa so lauten:

boolean condition = true;

public synchronized void waitForCondition()
 throws InterruptedException {
 while (condition) {
 wait();

Java VM startThread() runRunnable() Faktor

Sun JDK 1.3.1 Client 100% 15% 6,54

Sun JDK 1.3.1 Server 97% 13% 7,75

Sun JDK 1.4.0 Client 112% 16% 7,09

Sun JDK 1.4.0 Server 122% 10% 12,50

IBM JDK 1.3.0 106% 11% 9,85

Tabelle 9.4: Normalisierte Ausführungszeit der Methode startThread() und runRunnable() sowie der Faktor, um
den runRunnable() schneller ist als startThread()

Sandini Bib

Allgemeine Threadprogrammierung 205

 }
}

public synchronized void setCondition(boolean condition) {
 if (this.condition != condition) {
 this.condition = condition;
 // Alle wartenden Threads verständigen.
 if (!condition) notifyAll();
 }
}

Anstatt also ohne Pause in einer Schleife eine Bedingung zu überprüfen, warten wir
auf eine Benachrichtigung, überprüfen die Bedingung und warten gegebenenfalls auf
die nächste Benachrichtigung oder fahren mit der Ausführung fort.

In obigem Code verwenden wir notifyAll(), um alle Threads zu benachrichtigen, die
auf dasselbe Objekt warten. Falls Sie nur einen der wartenden Threads verständigen
wollen, können Sie statt notifyAll() die notify()-Methode verwenden. Jedoch sollten
Sie dann auch nicht mehr über this, sondern über ein eigenes Objekt synchronisieren.
Schließlich können Sie nicht wissen, welche anderen Klassen Ihr Objekt ebenfalls zum
Synchronisieren benutzen. Am Ende benachrichtigen Sie irgendeinen Thread, jedoch
keinen, der wait() in waitForCondition() aufgerufen hat.

boolean condition = true;
static final Object lock = new Object();

public void waitForCondition()
 throws InterruptedException {
 synchronized (lock) {
 while (condition) {
 lock.wait();
 }
 }
}

public void setCondition(boolean condition) {
 synchronized (lock) {
 if (this.condition != condition) {
 this.condition = condition;
 // Einen wartenden Thread verständigen.
 if (!condition) lock.notify();
 }
 }
}

Die notify()-Methode ist gewöhnlich schneller als notifyAll(), wenn mehr als ein
Thread benachrichtigt werden könnte. Das heißt aber auch, dass die Semantik eine
ganz andere ist. Seien Sie also vorsichtig, wenn Sie hier versuchen zu optimieren.
Gewöhnlich ist man mit notifyAll() auf der sicheren Seite. Noch einmal:

Sandini Bib

206 9 Threads

� notify() benachrichtigt irgendeinen Thread, der die wait()-Methode desselben
Objekts aufgerufen hat. Die Laufzeit ist daher O(c).

� notifyAll() benachrichtigt alle Threads, die die wait()-Methode desselben Objekts
aufgerufen haben. Die Laufzeit ist daher O(n).

9.2.4 Warten oder schlafen?

Es gibt keinen Performance-Unterschied zwischen object.wait(time) und Thread.

sleep(time). Jedoch gibt es einen semantischen Unterschied, der zu Laufzeit-Problemen
führen kann.

Wenn Sie Thread.sleep(time) ausführen, behält der ausführende Thread alle Monitore.
Dagegen wird der Monitor von object freigegeben, wenn Sie object.wait(time) ausfüh-
ren. Falls Sie also Thread.sleep(time) in einem synchronisierten Block aufrufen, kann kein
anderer Thread auf einen Block zugreifen, der über dasselbe Objekt synchronisiert ist.
Dies gilt für die gesamte Schlafzeit. Rufen Sie dagegen object.wait(time) auf, so können
andere Threads durchaus Code-Blöcke ausführen, die mit object synchronisiert sind.

// Andere Threads können während der Sekunde
// mit this synchronisierte Code-Blöcke ausführen.
public synchronized void waitASecond()
 throws InterruptedException {
 // Warte eine Sekunde.
 wait(1000);
}

// Niemand kann während der Sekunde mit this synchronisierte
// Code-Blöcke ausführen.
public synchronized void sleepASecond()
 throws InterruptedException {
 // Schlafe eine Sekunde.
 Thread.sleep(1000);
}

Es gilt:

Benutzen Sie in synchronisierten Code-Blöcken niemals Thread.sleep(), es sei denn, Sie wollen
wirklich alle mit denselben Objekten synchronisierten Blöcke für die Dauer des Schlafes sperren.

9.2.5 Prioritäten setzen und Vorrang lassen

Die Methode setPriority() der Klasse Thread verspricht, dass Sie mit ihr die Priorität
eines Threads beeinflussen können. Verlassen Sie sich nicht darauf. Das Setzen der Pri-
orität ist eine der sehr schlecht portierbaren Fähigkeiten von Threads. Es gibt Plattfor-
men, auf denen die Priorität eines Threads massive Auswirkungen hat, und es gibt
Plattformen, auf denen die Priorität überhaupt nicht beachtet wird.

Sandini Bib

Skalieren mit Threads 207

Gleiches gilt für Thread.yield(). Der Effekt von yield() ist von Plattform zu Plattform
verschieden. Auch hier kann der Aufruf keinerlei, positive oder negative Auswirkun-
gen haben. Es gilt:

Thread.yield() und thread.setPriority() sind nicht portabel. Zum Optimieren von Pro-
grammen sind sie daher nur eingeschränkt geeignet.

9.3 Skalieren mit Threads

Wenn Sie Ihre Hardware auf ein Multiprozessor-System hochrüsten, können Sie davon
nur profitieren, wenn Sie die Rechenlast auf mehrere Threads verteilen. Benutzen Sie
nur einen Thread oder eine so genannten Green-Thread-Implementierung der Java VM
(Kapitel 3.4 Die richtige VM auswählen), wird maximal ein Prozessor ausgelastet. Falls
Ihr Kunde sich einen teuren 16-Prozessor-Rechner angeschafft hat, wird er sich nicht
gerade freuen, wenn Sie Software liefern, die nur ein Sechzehntel der potenziellen
Rechenleistung nutzt.

Kandidaten für Multithreading sind Programme wie beispielsweise HTTP- oder FTP-
Server, die viele parallele Verbindungen zu Klienten unterhalten. Auch auf Algorith-
mus-Ebene kann sich Parallelisierung lohnen. Die Crux an der Sache ist, dass parallele
Algorithmen auf Einprozessormaschinen häufig langsamer sind als ihre sequenziellen
Gegenstücke. Von daher macht es keinen Sinn, Algorithmen prinzipiell für mehrere
Prozessoren auszulegen. Seit JDK 1.4.0 gibt es jedoch eine Methode, mit der Sie zur
Laufzeit herausfinden können, über wie viele Prozessoren die Ausführungsumgebung
verfügt. Die Methode heißt Runtime.getRuntime().availableProcessors(). Wir wollen an
einem einfachen Beispiel ausprobieren, wie sich das Multiplizieren von Matrizen auf
Mehrprozessormaschinen beschleunigen lässt.

Per Definition ist das Produkt zweier Matrizen Aik und Bik eine Matrix Cik, deren Ele-
mente cik die Skalarprodukte des i-ten Zeilenvektors von A und des k-ten Spalten-
vektors von B sind.

()

















++
++
++

=





⋅
















⇒

+=





⋅=
















=





⋅

















����������������

����������������

����������������

����

����

����

����

����

����

�

�

��

����

����

����

����

����

����

����

����

�
�
�
�

�
�
�
�

�
�
�
�

��

��

��

�
�

���

��

��

��

��

��

��

����

�

�

����

Sandini Bib

208 9 Threads

Daraus ergibt sich folgender trivialer Algorithmus:

public static int[][] conventionalMultiply(int[][] a, int[][] b) {
 int[][] c = new int[a.length][b.length];
 for (int i = 0; i < a.length; i++) {
 // temporäre Variablen, um teure Array-Zugriffe zu sparen
 int[] cTemp = c[i];
 for (int k = 0; k < b.length; k++) {
 int temp = 0;
 int[] aTemp = a[i];
 for (int n = 0; n < b.length; n++) {
 temp += aTemp[n] * b[n][k];
 }
 cTemp[k] = temp; // c[i][k] = temp
 }
 }
 return c;
}

Die temporären Variablen dienen dazu, teure Array-Zugriffe zu sparen (Kapitel 6.2.2
Teure Array-Zugriffe). Da die Berechnung eines cik von allen anderen cik unabhängig ist,
lässt sich dieser Algorithmus leicht parallelisieren, indem wir zum Berechnen von cik

für verschiedene Wertebereiche von i jeweils einen eigenen Thread starten.

public static int[][] multithreadedMultiply(int[][] a, int[][] b,
 int threads) {
 // Falls nur ein Thread gestartet werden soll, benutzen wir
 // den aktuellen Thread und konventionelles Multiplizieren
 if (threads <= 1) {
 return conventionalMultiply(a, b);
 }
 int[][] c = new int[a.length][b.length];
 try {
 Thread[] t = new Thread[threads];
 int length = (int) Math.ceil(a.length / (double) threads);
 // Starten der Threads mit jeweils einem Teilproblem
 for (int i = 0; i < threads; i++) {
 t[i] = new Thread(new MultiprocessorMultiplier(a, b, c,
 length * i, length));
 t[i].start();
 }
 // Warten, bis alle Threads fertig sind
 for (int i = 0; i < threads; i++) {
 t[i].join();
 }
 } catch (InterruptedException ie) {
 // dürfte nicht passieren
 ie.printStackTrace();
 }
 return c;

Sandini Bib

Skalieren mit Threads 209

}

private static class MultiprocessorMultiplier implements Runnable {
 private int[][] a;
 private int[][] b;
 private int[][] c;
 private int startRow;
 private int length;

 public MultiprocessorMultiplier(int[][] a, int[][] b, int[][] c,
 int startRow, int length) {
 this.a = a;
 this.b = b;
 this.c = c;
 this.startRow = startRow;
 this.length = length;
 }

 // Genau wie conventionalMultiply – nur die Grenzen der
 // i-Schleife (Zeile) sind anders.
 public void run() {
 for (int i = startRow, len = length + startRow; i < len
 && i < a.length; i++) {
 int[] cTemp = c[i];
 for (int k = 0; k < b.length; k++) {
 int temp = 0;
 int[] aTemp = a[i];
 for (int n = 0; n < b.length; n++) {
 temp += aTemp[n] * b[n][k];
 }
 cTemp[k] = temp;
 }
 }
 }
}

Das Ergebnis unserer Bemühungen zeigt Abbildung 9.2. Auf einer Zweiprozessorma-
schine (450 Mhz Intel Xeon) lässt sich die Ausführungszeit mit 32 Threads auf 55 Pro-
zent der Ausführungszeit mit einem Thread senken.

Die optimalen 50 Prozent werden unter anderem deshalb nicht erreicht, weil Threads
natürlich auch Verwaltungsaufwand mit sich bringen. Wie wir gesehen haben, ist ins-
besondere das Starten eines Threads keine billige Angelegenheit. Dies, sowie die
Berechnung, welches Teilproblem von welchem Thread gelöst werden soll, muss
sequenziell erfolgen. Genau dieser Aufwand ist auch der begrenzende Faktor für die
Parallelisierung jedes Algorithmus. Gemäß Gene Amdahls Gesetz von 1967 sind es die
sequenziellen Anteile eines parallelen Algorithmus, der die Laufzeitreduzierung
durch mehr Prozessoren nach oben hin beschränkt.

Sandini Bib

210 9 Threads

Bemerkenswert ist auch, dass die Laufzeit in unserem Experiment nicht bei zwei
Threads, sondern bei 32 Threads optimal ist und bei weiter steigender Threadzahl wie-
der ansteigt. Es kann also durchaus Sinn machen, mehr Threads zu starten, als Prozes-
soren vorhanden sind – jedoch sollten es nicht zu viele sein. Letztlich hängt der Faktor
aber von VM, Betriebssystem und Hardware ab.

Für unsere Testplattform wäre also folgender Code sinnvoll:

public static int[][] multiply(int[][] a, int[][] b) {
 int availableProcessors
 = Runtime.getRuntime().availableProcessors();
 if (availableProcessors == 1) {
 return conventionalMultiply(a, b);
 }
 return multithreadedMultiply(a, b, availableProcessors*16);
}

Dies ist jedoch nicht allgemeingültig. Häufig führt ein Faktor von 4 oder 8 zu ver-
gleichbaren Laufzeiten.

Abbildung 9.2: Ausführungszeit einer Matrizen-Multiplikation auf einer Zweiprozessormaschine in Abhängigkeit
von der Anzahl verwendeter Threads und der Größe der Matrize

0

10

20

30

40

50

60

70

80

90

100

256 288 320 352 384 416 448 480 512

Seitenlänge einer n x n-Matrize

no
rm

al
is

ie
rt

e
A

us
fü

hr
un

gs
ze

it

1 Thread 2 Threads 4 Threads

32 Threads 64 Threads

Sandini Bib

Threads in Benutzeroberflächen 211

9.4 Threads in Benutzeroberflächen

Gerade in Benutzeroberflächen spielt die wahrgenommene Performance eine große
Rolle. In den folgenden beiden Abschnitten wollen wir uns damit beschäftigen, wie
man Threads sinnvoll zusammen mit dem AWT (Abstract Window Toolkit) und Swing
einsetzt.

9.4.1 Lebendige AWT-Oberflächen

Als Beispiel wollen wir ein kleines Programm anschauen, das den Benutzer eine URL
eingeben lässt, die entsprechende Datei lädt und in einer TextArea anzeigt.

Der Code für die Oberfläche unserer Applikation sieht folgendermaßen aus:

package com.tagtraum.perf.threads;

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.net.*;

public class URLLoaderDemo extends Frame {

 private TextField urlField;
 private TextArea textArea;
 private Label statusBar;

 public static void main(String[] args) {
 new URLLoaderDemo();
 }

 public URLLoaderDemo() {
 super("URLLoaderDemo");
 Panel panel = new Panel();
 Button loadButton = new Button("Load");
 urlField = new TextField("Enter URL here", 30);
 textArea = new TextArea(20, 65);
 statusBar = new Label();
 URLLoader urlLoader = new URLLoader();
 loadButton.addActionListener(urlLoader);
 urlField.addActionListener(urlLoader);
 panel.add(urlField, BorderLayout.NORTH);
 panel.add(loadButton, BorderLayout.NORTH);
 add(panel, BorderLayout.NORTH);
 add(textArea, BorderLayout.CENTER);
 add(statusBar, BorderLayout.SOUTH);
 setSize(300, 300);
 pack();

Sandini Bib

212 9 Threads

 setVisible(true);
 }
 ...
}

Was jetzt noch fehlt, ist die Klasse URLLoader, die als ActionListener für den LOAD-Button
und das Textfeld urlField dient.

Zunächst einmal die Version ohne Threads:

// Innere Klasse von URLLoaderDemo
// Version ohne Threads – Gehen Sie so nicht vor!
private class URLLoader implements ActionListener {

 public void actionPerformed(ActionEvent e) {
 textArea.setText("");
 statusBar.setText("Loading " + urlField.getText());
 Reader in = null;
 try {
 in = new InputStreamReader(
 new URL(urlField.getText()).openStream()
);
 char[] cbuf = new char[1024 * 8];
 for (int count = 0; (count = in.read(cbuf)) != -1;) {
 textArea.append(new String(cbuf, 0, count));
 repaint();
 }
 statusBar.setText("Done.");
 } catch (IOException ioe) {
 statusBar.setText(ioe.toString());
 } finally {
 if (in != null)
 try { in.close(); } catch (IOException ioe) {}
 }
 repaint();
 }
}

Ein kleiner Test zeigt, dass die Applikation ganz ordentlich arbeitet. Sie hat jedoch ein
paar Nachteile:

� Während des Ladens reagiert die Applikation nicht auf Benutzereingaben.

� Während des Ladens lässt sich die Größe des Fensters nicht verändern.

� Der Benutzer wird nicht über den Fortschritt des Ladens informiert. Er kann nicht
feststellen, wie lange es noch dauert.

Während der letzte Punkt leicht auch ohne Threads zu beheben ist, erfordern die bei-
den ersten Punkte Threads. Dies ist deshalb der Fall, weil das Laden in der Methode

Sandini Bib

Threads in Benutzeroberflächen 213

actionPerformed() geschieht. actionPerformed() wird nämlich vom GUI-Thread ausge-
führt. Und wenn der GUI-Thread mit dem Laden einer Datei beschäftigt ist, kann er
sich logischerweise nicht den Benutzereingaben widmen.

Hier die zweite Version von URLLoader, diesmal mit Threadunterstützung:

// Innere Klasse von URLLoaderDemo
// Version mit Threads
private class URLLoader implements ActionListener, Runnable {
 private Thread t;
 private URL url;

 public void actionPerformed(ActionEvent e) {
 try {
 // Stoppe Thread, falls einer läuft.
 cancel();
 url = new URL(urlField.getText());
 // Starte neuen Thread
 t = new Thread(this);
 t.start();
 } catch (MalformedURLException mfue) {
 statusBar.setText(mfue.toString());
 }
 }

 // Stoppt evtl. schon vorhandenen Thread.
 public void cancel() {
 if (t != null && t.isAlive()) {
 try {
 t.interrupt();
 t.join();
 t = null;
 } catch (InterruptedException ie) {
 statusBar.setText(ie.toString());
 }
 }
 }

 public void run() {
 // Löscht die TextArea
 textArea.setText("");
 statusBar.setText("Loading " + url);
 repaint();
 Reader in = null;
 try {
 URLConnection connection = url.openConnection();
 in = new InputStreamReader(connection.getInputStream());
 // Wir merken uns die Gesamtlänge.
 int contentLength = connection.getContentLength();
 char[] cbuf = new char[1024 * 8];
 // Lese so lange, wie Daten da sind und der Thread nicht

Sandini Bib

214 9 Threads

 // unterbrochen wurde.
 for (int count = 0, sum = 0;
 (count = in.read(cbuf)) != -1
 && !t.isInterrupted();) {
 textArea.append(new String(cbuf, 0, count));
 // sum beinhaltet die Anzahl der bereits
 // gelesenen Bytes.
 sum += count;
 // Zeige an, wie weit wir sind.
 showProgress(contentLength, sum);
 repaint();
 }
 if (t.isInterrupted())
 statusBar.setText("Interrupted.");
 else
 statusBar.setText("Done.");
 } catch (IOException ioe) {
 statusBar.setText(ioe.toString());
 } finally {
 if (in != null)
 try { in.close(); } catch (IOException ioe) {}
 }
 repaint();
 }

 // Zeigt an, wie viel wir schon geladen haben.
 private void showProgress(int contentLength, int sum) {
 if (contentLength != -1) {
 statusBar.setText((sum / 1024) + "K/"
 + (contentLength / 1024) + "K - "
 + (sum * 100 / (contentLength)) + "%");
 } else {
 // Wenn contentLength –1 ist, wissen wir nicht, wie viel
 // wir insgesamt laden müssen. Wir zeigen aber zumindest
 // an, wie viel wir schon geladen haben.
 statusBar.setText((sum / 1024) + "K");
 }
 }
}

Auch, wenn das Laden kein bisschen schneller erfolgt, so kann der Benutzer nach
Belieben mit dem Fenster rumspielen und er wird über den Fortschritt des Ladens mit
einer Prozentzahl und absoluten Werten informiert. Da beim erneuten Drücken des
LOAD-Buttons ein bereits laufender Thread mit der cancel()-Methode gestoppt wird,
kann der Benutzer sogar während des Ladens einfach eine andere URL eingeben und
LOAD drücken. Der aktuelle Ladevorgang wird dann unterbrochen und ein neuer
begonnen. In der ersten Version musste der Nutzer warten, bis die Datei vollständig
geladen war.

Sandini Bib

Threads in Benutzeroberflächen 215

Da wir nun über eine cancel()-Methode verfügen, können wir dem Benutzer natürlich
auch einen entsprechenden Knopf zur Verfügung stellen.

Insgesamt ist das Arbeiten mit der zweiten Version wesentlich befriedigender. Der
Benutzer ist jederzeit informiert und hat die Kontrolle über die Applikation – und
nicht umgekehrt wie in der ersten Version.2

Daraus folgt:

Aufwändige Operationen sollten, wenn es geht, in einem separaten Thread ausgeführt werden,
um die Benutzeroberfläche nicht zu blockieren.

Und:

Wenn irgendwie möglich, informieren Sie den Benutzer immer über den Stand der von ihm
angestoßenen Operationen.

9.4.2 Threads in Swing

Während AWT threadsicher ist, gilt dies nicht für Swing. So gut wie alle Aktionen, die
die Benutzeroberfläche manipulieren, müssen im GUI-Thread ablaufen. Es gibt nur
wenige Methoden innerhalb Swings, die trotzdem threadsicher sind. Sie sind als Aus-
nahmen entsprechend in der Dokumentation gekennzeichnet.

Abbildung 9.3: Screenshot der zweiten Version mit Fortschrittsanzeige

2 In Sun JDK 1.4.0 für Windows tauchen am Ende des Textes zufällige Textfetzen auf. Dies ist ein Feh-
ler im JDK.

Sandini Bib

216 9 Threads

Wenn Sie das GUI trotzdem von außerhalb des GUI-Threads manipulieren wollen,
müssen Sie sich einer der beiden Methoden javax.swing.SwingUtilities.invokeLater()
oder invokeAndWait() bedienen.

invokeLater() führt die run()-Methode eines java.lang.Runnable-Objektes asynchron zum
aufrufenden Thread auf. Das heißt, die Methode kehrt unmittelbar zurück und die
run()-Methode wird später vom GUI-Thread ausgeführt, nachdem alle Ereignisse in
der AWT-Ereignis-Warteschlange verarbeitet sind.

invokeAndWait() hingegen führt die run()-Methode eines Runnable-Objektes synchron
zum aufrufenden Thread auf. Dies bedeutet, dass der aufrufende Thread warten muss,
bis alle Ereignisse in der AWT-Ereignis-Queue verarbeitet sind und anschließend die
run()-Methode des Runnable-Objektes vom GUI-Thread ausgeführt wurde. Der Vorteil
gegenüber invokeLater() liegt darin, dass evtl. ausgelöste Ausnahmen in einer Invoca-
tionTargetException gekapselt und an den Aufrufer weitergeleitet werden. Somit ist
eine robustere Ausnahmebehandlung möglich.

Es empfiehlt sich, für beide Methoden anonyme, innere Klassen zu verwenden. Bei-
spiel:

SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 // erledige, was auch immer erledigt werden muss.
 }
});

Sandini Bib

10 Effiziente Ein- und Ausgabe

Für eine effiziente Ein-/Ausgabe ist es wesentlich, zu verstehen, wie die einzelnen
Klassen der Pakete java.io und seit JDK 1.4 auch java.nio funktionieren. Wir wollen
zunächst an einem einfachen Beispiel illustrieren, wofür einige Klassen gut sind und
wofür nicht.

10.1 Fallstudie Dateikopieren

Man könnte annehmen, dass so eine einfache Operation wie das Kopieren einer Datei
schon von irgendeiner Klasse der Java-Klassenbibliothek implementiert wird. Dies ist
jedoch nicht so. Daher müssen wir dies selbst erledigen.

Die erste Version unseres Dateikopierers sieht folgendermaßen aus:

package com.tagtraum.perf.io;

import java.io.*;

// Naiver Dateikopierer! Nicht nachmachen!
public class FileCopyDemo1 {
 public static void main(String[] args) throws IOException {
 Reader reader = new FileReader(args[0]);
 Writer writer = new FileWriter(args[1]);
 int c;
 while ((c = reader.read()) != -1) {
 writer.write(c);
 }
 reader.close();
 writer.close();
 }
}

Quell- und Zieldatei müssen als Argumente angegeben werden. Anschließend werden
ein FileReader und ein FileWriter zum Lesen bzw. Schreiben eines Zeichens benutzt. So
wird die gesamte Datei kopiert. Mit anderen Worten: Für jedes Zeichen wird einmal
von der Festplatte gelesen und einmal auf sie geschrieben. Sie können sich ausmalen,
welche katastrophalen Folgen dieses Vorgehen bei einer mehrere Mbyte großen Datei
hat – die Tastatur würde Staub fangen, bevor die Kopie erstellt ist.

Sandini Bib

218 10 Effiziente Ein- und Ausgabe

Die Lösung ist puffern. Statt des einfachen FileReaders bzw. -Writers benutzen wir also
einen BufferedReader bzw. einen BufferedWriter. Diese beiden Klassen sorgen dafür,
dass bei read()- bzw. write()-Aufrufen zunächst ein Pufferspeicher manipuliert wird
und erst wenn dieser voll bzw. leer ist die Festplatte in Aktion tritt.

package com.tagtraum.perf.io;

import java.io.*;

// Leicht verbessert, aber nicht zu empfehlen!
public class FileCopyDemo2 {
 public static void main(String[] args) throws IOException {
 Reader reader = new BufferedReader(new FileReader(args[0]));
 Writer writer = new BufferedWriter(new FileWriter(args[1]));
 int c;
 while ((c = reader.read()) != -1) {
 writer.write(c);
 }
 reader.close();
 writer.close();
 }
}

Ein kleiner Schönheitsfehler hieran ist, dass wir für eine Datei mit einer Million Zei-
chen jeweils eine Million Mal read() und eine Million Mal write() aufrufen. Obwohl
nicht jedes Mal auf die Festplatte durchgegriffen wird, ist dies nicht gerade effizient.
Besser ist es, jeweils einen char-Array zu lesen und dann zu schreiben.

package com.tagtraum.perf.io;

import java.io.*;

// Wieder leicht verbessert, aber immer noch nicht
// zu empfehlen!
public class FileCopyDemo3 {
 public static void main(String[] args) throws IOException {
 Reader reader = new BufferedReader(new FileReader(args[0]));
 Writer writer = new BufferedWriter(new FileWriter(args[1]));
 int length;
 char[] cbuf = new char[1024 * 8];
 while ((length = reader.read(cbuf)) != -1) {
 writer.write(cbuf, 0, length);
 }
 reader.close();
 writer.close();
 }
}

Sandini Bib

Fallstudie Dateikopieren 219

Im Grunde übernehmen wir somit das Puffern selbst. BufferedReader und Buffered-
Writer – die, nebenbei bemerkt, auch noch voll synchronisiert sind – werden also über-
flüssig. Also weg damit!

package com.tagtraum.perf.io;

import java.io.*;

// Schon nicht schlecht. Aber etwas ist hier noch falsch!
public class FileCopyDemo4 {
 public static void main(String[] args) throws IOException {
 Reader reader = new FileReader(args[0]);
 Writer writer = new FileWriter(args[1]);
 int length;
 char[] cbuf = new char[1024 * 8];
 while ((length = reader.read(cbuf)) != -1) {
 writer.write(cbuf, 0, length);
 }
 reader.close();
 writer.close();
 }
}

Natürlich können Sie die Größe des char-Arrays variieren – je nachdem wie viel Spei-
cher Sie für das Kopieren belegen wollen.

Nun sind Reader und Writer Klassen, die speziell für Zeichen ausgelegt sind. Und zum
Kopieren von Zeichen ist unsere letzte Version schon ziemlich gut. Im Grunde wollen
wir aber gar keine Zeichen kopieren, sondern Bytes. Da wir jedoch Reader und Writer
benutzt haben, haben wir in allen bisherigen Versionen unseres Dateikopierers beim
Lesen Bytes in Zeichen umgewandelt und beim Schreiben Zeichen in Bytes.

Offensichtlich ist es günstiger, auf dieses Hin- und Herwandeln zu verzichten. Statt
Reader und Writer sollten wir also InputStream und OutputStream verwenden.

package com.tagtraum.perf.io;

import java.io.*;

// Performanter Dateikopierer
public class FileCopyDemo5 {
 public static void main(String[] args) throws IOException {
 InputStream in = new FileInputStream(args[0]);
 OutputStream out = new FileOutputStream(args[1]);
 int length;
 byte[] buf = new byte[1024 * 8];
 while ((length = in.read(buf)) != -1) {
 out.write(buf, 0, length);
 }

Sandini Bib

220 10 Effiziente Ein- und Ausgabe

 in.close();
 out.close();
 }
}

Seit JDK 1.4 gibt es noch eine weitere, potenziell effizientere Möglichkeit eine Datei zu
kopieren. Mit jedem Dateistrom ist ein java.nio.channels.FileChannel assoziiert. Dieser
verfügt über die Methoden transferTo() und transferFrom(), die dazu optimiert sind,
Daten zu oder von einer Datei zu übertragen. Dabei, so die Dokumentation, werden
möglicherweise sehr effiziente Betriebssystemroutinen benutzt.

package com.tagtraum.perf.io;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.nio.channels.FileChannel;

// Dateikopierer für JDK >= 1.4.0
public class FileCopyDemo6 {
 public static void main(String[] args) throws IOException {
 FileInputStream in = new FileInputStream(args[0]);
 FileOutputStream out = new FileOutputStream(args[1]);
 FileChannel inChannel = in.getChannel();
 FileChannel outChannel = out.getChannel();
 long position = 0;
 long transferred;
 long remaining = inChannel.size();
 while (remaining > 0) {
 transferred = inChannel.transferTo(position, remaining,
 outChannel);
 position += transferred;
 remaining -= transferred;
 }
 in.close();
 out.close();
 }
}

Ein kleiner Test unter Windows 2000 mit Sun JDK 1.4.0 Client offenbart jedoch, dass in
dieser Umgebung die transferTo()/transferFrom()-Methoden eher langsamer sind als
die konventionelle Methode mit einem einfachen byte-Array. Dies wird sich jedoch
vermutlich in späteren Versionen ändern.

Wir wollen noch einmal die wichtigsten Punkte dieser kleinen Fallstudie zusammen-
fassen:

� Wenn möglich, puffern Sie alle Ein- und Ausgaben.

� Eigene Puffer sind meist schneller als BufferedReader, BufferedWriter, BufferedInput-
Stream und BufferedOuputStream, da sie nicht synchronisiert werden müssen.

Sandini Bib

Texte ausgeben 221

� Benutzen Sie Reader und Writer ausschließlich, wenn Sie tatsächlich an Zeichen und
nicht Bytes interessiert sind.

� Das neue Ein-/Ausgabe-API java.nio kann Operationen beschleunigen, muss aber
nicht.

10.2 Texte ausgeben

Wie oben bereits festgestellt, ist der korrekte Weg einen Text auszugeben, einen Writer zu
verwenden. Wir wollen verschiedene Writer testen. Wir beginnen mit dem PrintWriter.

Unser Testprogramm schreibt die übergebenen Strings in eine Datei. Nach jedem
String soll zudem ein Zeilenseparator ausgegeben werden. Mit dem PrintWriter lässt
sich diese Aufgabe sehr leicht bewältigen. Natürlich puffern wir die Ausgabe, da wir ja
wissen, welche fatalen Auswirkungen es hat, nicht zu puffern.

package com.tagtraum.perf.io;

import java.io.FileWriter;
import java.io.PrintWriter;
import java.io.IOException;

Abbildung 10.1: Kopieren einer 633 Kbyte-Datei unter Windows 2000 mit Sun JDK 1.4.0 Client auf verschiedene
Weisen

100,0%

17,8%

1,0% 4,0%

0%

20%

40%

60%

80%

100%

120%

File
Copy

Dem
o1

File
Copy

Dem
o2

File
Copy

Dem
o3

File
Copy

Dem
o4

File
Copy

Dem
o5

File
Copy

Dem
o6

no
rm

al
is

ie
rt

e
A

us
fü

hr
un

gs
ze

it

10,3% 10,2%

Sandini Bib

222 10 Effiziente Ein- und Ausgabe

// Nicht nachahmen!
public class CharWriterDemo1 {
 public static void main(String[] args) throws IOException {
 PrintWriter out = new PrintWriter(
 new BufferedWriter(new FileWriter("CharWriterDemo.tmp")),
 true
);
 for (int i = 0; i < args.length; i++) {
 out.println(args[i]);
 }
 out.close();
 }
}

In ein paar Testläufen stellen wir fest, dass unser Programm nicht gerade sehr schnell
ist (Sie finden die Ergebnisse am Ende dieses Abschnittes in Tabelle 10.1). Dies liegt
daran, dass wir im Konstruktor des PrintWriters als zweiten Parameter ein true über-
geben. Dies bedeutet, dass nach jedem println()-Aufruf die Methode flush() aufgeru-
fen wird (Autoflush) und somit der Inhalt des Pufferspeichers in den darunter
liegenden Writer geschrieben wird. In unserem Fall ist diese der FileWriter, der wie-
derum direkt auf die Festplatte schreibt. Kein Wunder also, dass das Programm ein
wenig langsam ist. Der Puffer ist gänzlich nutzlos.

Übrigens erliegen Sie demselben Mechanismus, wenn Sie etwas in die Standard- oder
Fehlerausgabe schreiben. Daher ist es für die Performance eines Programms sehr schäd-
lich, wenn Sie beispielsweise in die Standardausgabe Protokollinformationen schreiben.
Auf der anderen Seite wissen Sie nicht genau, wo das Programm steckt, wenn Sie die
Standardausgabe puffern. Der Mittelweg ist, die Standardausgabe zu puffern, die Feh-
lerausgabe jedoch nicht. Wirklich wichtige Dinge erfahren Sie so sofort.

Versuchen wir es anders. Diesmal ohne Autoflush und auch ohne Puffer.

package com.tagtraum.perf.io;

import java.io.FileWriter;
import java.io.PrintWriter;
import java.io.IOException;

// Langsam, da ungepuffert
public class CharWriterDemo2 {
 public static void main(String[] args) throws IOException {
 PrintWriter out = new PrintWriter(
 new FileWriter("CharWriterDemo.tmp"));
 for (int i = 0; i < args.length; i++) {
 out.println(args[i]);
 }
 out.close();
 }
}

Sandini Bib

Texte ausgeben 223

Das Ergebnis ist schon wesentlich besser, jedoch immer noch nicht zufrieden stellend.
PrintWriter muss anscheinend doch gepuffert werden.

package com.tagtraum.perf.io;

import java.io.FileWriter;
import java.io.BufferedWriter;
import java.io.IOException;

public class CharWriterDemo3 {
 public static long main(String[] args) throws IOException {
 BufferedWriter out = new BufferedWriter(
 new FileWriter("CharWriterDemo.tmp"));
 for (int i = 0; i < args.length; i++) {
 out.write(args[i]);
 out.newLine();
 }
 out.close();
 }
}

Die gepufferte Version ist in der Tat etwas schneller. Wie viel, hängt von der Länge der
ausgegebenen Zeilen ab.

Es ist nun tatsächlich recht schwierig, die letzte Version noch zu beschleunigen. Daher
greifen wir zu einem Trick. Wir nehmen einfach mal an, dass alle Zeichen unseres
Strings sich mit einem Byte darstellen lassen. Davon ausgehend schreiben wir unseren
eigenen Writer, einen maskierten Writer, der nur jene Bits durchlässt, die zuvor in einer
Bitmaske gesetzt wurden (Listing 10.1). Wenn wir das gesamte niedrige Byte eines Zei-
chens durchlassen, entspricht dies ISO 8859-1, dem in Westeuropa üblichen Zeichen-
satz. Unser Vorgehen ist dabei um einiges einfacher, als es normalerweise intern durch
einen entsprechenden OutputStreamWriter geschehen würde.

package com.tagtraum.perf.io;

import java.io.CharConversionException;
import java.io.IOException;
import java.io.OutputStream;
import java.io.Writer;
import java.util.ResourceBundle;

public class MaskedStreamWriter extends Writer {

 // Vordefinierte Masken für ASCII und ISO 8859-1 (Latin 1)
 public static final int ASCII_MASK = 0x7f;
 public static final int ISO_8859_1_MASK = 0xff;

 private OutputStream out;
 private byte[] buf;

Sandini Bib

224 10 Effiziente Ein- und Ausgabe

 private int mask;
 private static ResourceBundle localStrings
 = ResourceBundle.getBundle(
 "com.tagtraum.perf.io.localStrings");

 public MaskedStreamWriter(OutputStream out, int bufsize,
 int mask) {
 this.out = out;
 buf = new byte[bufsize];
 // Masken, die mehr als die acht niedrigen Bits durchlassen,
 // werden nicht unterstützt.
 if (mask > 0xff)
 throw new IllegalArgumentException(
 localStrings.getString("illegal_mask"));
 this.mask = mask;
 }

 public void write(int c) throws IOException {
 // Prüft zunächst, ob das zu schreibende Zeichen durch
 // die Maske passt.
 if ((c & ~mask) != 0)
 throw new CharConversionException(
 localStrings.getString("unallowed_char") + " " + c);
 out.write(c);
 }

 public void write(char[] cbuf, int offset, int length)
 throws IOException {
 // Schreibt alle Zeichen zunächst in einen byte-Array
 int l = Math.min(buf.length, length);
 while (l > 0) {
 int end = offset + l;
 for (int i = offset; i < end; i++) {
 char c = cbuf[i];
 // Prüft, ob das zu schreibende Zeichen durch
 // die Maske passt.
 if ((c & ~mask) != 0)
 throw new CharConversionException(
 localStrings.getString("unallowed_char")
 + " " + c);
 else
 buf[i - offset] = (byte) c;
 }
 out.write(buf, 0, l);
 offset += l;
 length -= l;
 l = Math.min(buf.length, length);
 }
 }

Sandini Bib

Texte ausgeben 225

 public void write(String str, int off, int len)
 throws IOException {
 if (len < 0)
 throw new IndexOutOfBoundsException();
 char cbuf[] = new char[len];
 str.getChars(off, off + len, cbuf, 0);
 write(cbuf, 0, len);
 }

 public void close() throws IOException {
 out.close();
 }

 public void flush() throws IOException {
 out.flush();
 }

}

Listing 10.1: Maskierter Stream-Writer

Diesen MaskedStreamWriter bauen wir in unser Testprogramm ein und lassen den Test
laufen. Und siehe da! Die Ausgabegeschwindigkeit verdoppelt sich (Tabelle 10.1)
gegenüber der letzten Version.

package com.tagtraum.perf.io;

import java.io.BufferedWriter;
import java.io.FileOutputStream;
import java.io.IOException;

public class CharWriterDemo4 {

 public static void main(String[] args) throws IOException {
 long start = System.currentTimeMillis();
 BufferedWriter out = new BufferedWriter(
 new MaskedStreamWriter(
 new FileOutputStream("CharWriterDemo.tmp"),
 MaskedStreamWriter.ISO_8859_1_MASK));
 for (int i = 0; i < args.length; i++) {
 out.write(args[i]);
 out.newLine();
 }
 out.close();
 }
}

Sandini Bib

226 10 Effiziente Ein- und Ausgabe

Aus unseren Experimenten folgt:

� Wenn möglich, sollten PrintWriter und PrintStream nicht im Autoflush-Modus
benutzt werden.

� Puffern nutzt nur etwas, wenn flush() selten aufgerufen wird.

� Die Umwandlung von char in byte ist sehr teuer und kann gegebenenfalls schneller
durch einen eigenen Writer erledigt werden.

10.3 Texte einlesen

Im Grunde funktioniert das Einlesen eines Textes genauso wie das Schreiben. Nur
müssen diesmal Bytes in Zeichen umgewandelt werden und nicht umgekehrt. Unser
Beispielprogramm soll eine Datei zeilenweise einlesen. Natürlich puffern wir das Ein-
lesen entsprechend. Und glücklicherweise verfügt BufferedReader sogar über eine read-
Line()-Methode.

package com.tagtraum.perf.io;

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;

public class CharReaderDemo1 {
 public static void main(String[] args) throws IOException {
 long start = System.currentTimeMillis();
 BufferedReader in = new BufferedReader(
 new FileReader("CharWriterDemo.tmp"));
 String line;
 while ((line = in.readLine()) != null) {
 }
 in.close();
 }
}

Java VM CharWriter
Demo1

CharWriter
Demo2

CharWriter
Demo3

CharWriter
Demo4

Sun JDK 1.3.1 Client 100% 46% 40% 13%

Sun JDK 1.3.1 Server 79% 30% 24% 13%

Sun JDK 1.4.0 Client 90% 33% 25% 14%

Sun JDK 1.4.0 Server 84% 25% 19% 12%

IBM JDK 1.3.0 80% 32% 24% 12%

Tabelle 10.1: Normalisierte Ausführungszeiten der einzelnen CharWriterDemos

Sandini Bib

Dateicache 227

Das Ergebnis (Tabelle 10.2) ist nicht schlecht und viel besser ist es wohl auch nicht
möglich. Jedoch können wir den gleichen Kniff anwenden wie beim Schreiben – näm-
lich das höhere Byte ignorieren. Und das sogar ganz ohne Aufwand, da DataInput-
Stream über eine entsprechende Methode verfügt.

package com.tagtraum.perf.io;

import java.io.BufferedInputStream;
import java.io.DataInputStream;
import java.io.FileInputStream;
import java.io.IOException;

public class CharReaderDemo2 {
 public static void main(String[] args) throws IOException {
 long start = System.currentTimeMillis();
 DataInputStream in = new DataInputStream(
 new BufferedInputStream(
 new FileInputStream("CharWriterDemo.tmp")));
 String line;
 while ((line = in.readLine()) != null) {
 }
 in.close();
 }
}

Die readLine()-Methode ist als veraltet (deprecated) markiert, gerade weil sie nur für
wenige Zeichensätze geeignet ist. Für diese wenige Zeichensätze (ASCII, ISO 8859-1)
ist sie jedoch mit Sun Client-VMs ein wenig schneller als ihr Gegenstück aus dem
BufferedReader. In anderen VMs ist sie jedoch langsamer.

10.4 Dateicache

Gerade weil das Lesen von Dateien nicht gerade zu den allerschnellsten Operationen
gehört, kann es sich manchmal lohnen, Dateien zu cachen. Anwendungen, die davon
profitieren, sind beispielsweise HTTP- oder FTP-Server, da hier die Festplatte zum
Nadelöhr wird und daher so viele parallele Festplattenzugriffe wie möglich vermieden
werden müssen.

Java VM CharReaderDemo1 CharReaderDemo2

Sun JDK 1.3.1 Client 100% 89%

Sun JDK 1.3.1 Server 56% 78%

Sun JDK 1.4.0 Client 90% 82%

Sun JDK 1.4.0 Server 59% 87%

IBM JDK 1.3.0 41% 97%

Tabelle 10.2: Normalisierte Ausführungszeiten der beiden CharReaderDemos

Sandini Bib

228 10 Effiziente Ein- und Ausgabe

Um einen effizienten Cache zu implementieren, ist nicht nur die Cacheaustauschstrate-
gie (LRU, Zufall etc. siehe Kapitel 8.4 Caches) wichtig, sondern auch, wie überprüft wird,
ob eine gecachte Datei nicht mittlerweile manipuliert wurde. Dazu müssen in der Regel
das Datum der letzten Veränderung und die Dateigröße überprüft werden. Nur eines
von beiden zu überprüfen reicht meist nicht aus, da das Datum der letzten Veränderung
oft nur eine Auflösung von einer Sekunde hat und eine Manipulation ja nicht unbedingt
in einer Größenveränderung münden muss. Beide Eigenschaften zu überprüfen ist also
angebracht. Leider ist dies jedoch nicht ganz umsonst. Abbildung 10.2 zeigt die Zeit, die
vergeht, wenn Sie eine Datei vollständig lesen bzw. nur ihre Größe und das Datum der
letzten Veränderung in Erfahrung bringen. Auf dem getesteten System (Windows 2000,
Sun JDK 1.4.0 Server) musste die Datei mindestens eine Größe von 24 Kbyte haben, um
den Zugriff auf die Metadaten zu rechtfertigen. Mit anderen Worten: Ein Cache, der bei
jedem Zugriff die Gültigkeit einer Datei überprüft, ist auf diesem System dazu bestimmt,
ineffizient zu sein, wenn er Dateien kleiner 24 Kbyte aufnimmt.

Es lohnt sich also, jeder gecachten Datei eine Mindest-Lebenszeit zu garantieren, wäh-
rend der nicht überprüft wird, ob die Datei verändert wurde. Kleine Dateien sollten
evtl. gar nicht erst gecached werden.

Ebenso sollten sehr große Dateien vermutlich nicht gecached werden, da sie zu viel
Speicher belegen. Ein effizienter Dateicache muss also folgenden Kriterien genügen:

� Minimale und maximale Dateigröße muss spezifizierbar sein

� Caching-Strategie sollte austauschbar sein

Abbildung 10.2: Vergleich des Zeitaufwandes für das vollständige Lesen einer Datei und lediglich für das Erfragen
von Dateilänge sowie Datum der letzten Veränderung

0

1

2

3

4

5

6

7

8 16 24 32 40 48 56 64 72

Dateigröße in Kbyte

Z
ei

t

readFile lastModified/length

Sandini Bib

Dateicache 229

� Cache-Kapazität muss manipulierbar sein

� Cache-Einträge müssen eine Lebensdauer haben, während der ihre Gültigkeit nicht
überprüft wird

Ein einfacher, diesen Kriterien entsprechender Dateicache könnte aussehen wie in Lis-
ting 10.2.

package com.tagtraum.perf.io;

import com.tagtraum.perf.datastructures.Cache;

import java.io.File;
import java.io.IOException;
import java.io.InputStream;

public class FileCache {

 private Cache cache;
 private long minFilesize;
 private long maxFilesize = Long.MAX_VALUE;
 private int timeToLive = -1;

 public FileCache(Cache cache) {
 this.cache = cache;
 }

 public Entry get(File file) throws IOException {
 // Hole Entry aus dem Cache
 Entry entry = (Entry) cache.get(file);
 if (entry != null && !entry.isStale()) {
 // Entry ist nicht stale, also zurück an den Klient
 return entry;
 }
 // Falls es gecached werden soll, cache es
 long length = file.length();
 if (timeToLive != 0 && length > minFilesize
 && length < maxFilesize) {
 // Instanziiere ein FileCache.Entry-Objekt ...
 entry = new ByteArrayFile(file);

 // Alternativ könnten wir auch eine andere Klasse
 // instanziieren:
 // entry = new MemoryMappedFile(file);

 // ... setze seine Lebensdauer ...
 entry.setTimeToLive(timeToLive);
 // ... und registriere es im Cache
 cache.put(file, entry);
 }
 else {

Sandini Bib

230 10 Effiziente Ein- und Ausgabe

 // Live-Objekte werden nicht gecached
 entry = new LiveFile(file);
 }
 // Und ab zum Klienten!
 return entry;
 }

 // Mindest-Dateigröße, um gecached zu werden.
 public long getMinFilesize() {
 return minFilesize;
 }

 public void setMinFilesize(long minFilesize) {
 this.minFilesize = minFilesize;
 }

 // Maximale Dateigröße, um gecached zu werden.
 public long getMaxFilesize() {
 return maxFilesize;
 }

 public void setMaxFilesize(long maxFilesize) {
 this.maxFilesize = maxFilesize;
 }

 // Standardzeit, während der die Validtät eines Eintrags
 // nicht überprüft wird.
 public int getTimeToLive() {
 return timeToLive;
 }

 public void setTimeToLive(int timeToLive) {
 this.timeToLive = timeToLive;
 }

 // Cache-Eintrag
 public static interface Entry {

 // Neuer InputStream
 public InputStream getNewInputStream() throws IOException;

 // File-Objekt der gecachten Datei
 public File getFile();

 // Länge des gecachten Inhalts
 public long length();

 // Letzte Modifikation des gecachten Inhalts
 public long lastModified();

Sandini Bib

Dateicache 231

 // Zeit, während der die Validität eines Eintrags
 // nicht überprüft wird.
 public void setTimeToLive(int timeToLive);
 public int getTimeToLive();

 // Zeigt an, ob dieser Cache-Eintrag bereits
 // 'verdorben ' ist.
 public boolean isStale();
 }
}

Listing 10.2: Einfacher Dateicache

In FileCache haben wir die Cache-Einträge lediglich als Schnittstelle definiert. Wir
haben dies deshalb getan, da zum Cachen der Dateien grundsätzlich zwei Mechanis-
men in Frage kommen.

1. Das Speichern in einem byte-Array

2. Das Abbilden der Datei in den Speicher mittels fileChannel.map() (erst ab JDK 1.4.0
möglich)

Möglichkeit eins ist trivial. Entsprechender Code befindet sich in Listing 10.3. Möglich-
keit Nummer zwei stellt ebenfalls keine allzu große Schwierigkeit dar. Wir müssen
lediglich eine anonyme Hilfsklasse schreiben, die aus einem java.nio.MappedByteBuffer
einen InputStream macht. Der Code befindet sich in Listing 10.4.

package com.tagtraum.perf.io;

import java.io.*;

class ByteArrayFile implements FileCache.Entry {

 private byte[] content;
 private File file;
 private long length;
 private long lastModified;
 private int timeToLive;
 private long creationTime;
 private long lastValidityCheck;

 public ByteArrayFile(File file) throws IOException {
 this.file = file;
 load(file);
 creationTime = System.currentTimeMillis();
 lastValidityCheck = creationTime;
 }

 // Lädt die Datei in einen byte-Array
 private void load(File file) throws IOException {

Sandini Bib

232 10 Effiziente Ein- und Ausgabe

 this.length = file.length();
 this.lastModified = file.lastModified();
 content = new byte[(int)length];
 InputStream in = new FileInputStream(file);
 try {
 int offset = 0;
 while (offset < length) {
 offset += in.read(content, offset, (int)length-offset);
 }
 }
 finally {
 if (in != null) try { in.close(); } catch (IOException ioe) {}
 }
 }

 // Gibt einen neuen ByteInputStream zurück.
 public InputStream getNewInputStream() throws IOException {
 return new ByteArrayInputStream(content);
 }

 public File getFile() {
 return file;
 }

 public long length() {
 return length;
 }

 public long lastModified() {
 return lastModified;
 }

 public void setTimeToLive(int timeToLive) {
 this.timeToLive = timeToLive;
 }

 public int getTimeToLive() {
 return timeToLive;
 }

 public boolean isStale() {
 boolean stale = false;
 long now = System.currentTimeMillis();
 if (timeToLive >= 0
 && lastValidityCheck + (long)timeToLive < now) {
 // Zeit ist abgelaufen, aber vielleicht ist der Inhalt
 // noch nicht verdorben.
 stale = length != file.length()
 || lastModified != file.lastModified();
 if (!stale) lastValidityCheck = now;

Sandini Bib

Dateicache 233

 }
 return stale;
 }
}

Listing 10.3: byte-Array basierter Dateicache-Eintrag

package com.tagtraum.perf.io;

import java.io.*;
import java.nio.MappedByteBuffer;
import java.nio.channels.FileChannel;

class MemoryMappedFile implements FileCache.Entry {

 private MappedByteBuffer content;
 private File file;
 private long length;
 private long lastModified;
 private int timeToLive;
 private long creationTime;
 private long lastValidityCheck;

 public MemoryMappedFile(File file) throws IOException {
 this.file = file;
 map(file);
 creationTime = System.currentTimeMillis();
 lastValidityCheck = creationTime;
 }

 private void map(File file) throws IOException {
 this.length = file.length();
 this.lastModified = file.lastModified();
 FileInputStream in = new FileInputStream(file);
 try {
 content = in.getChannel().map(
 FileChannel.MapMode.READ_ONLY, 0, length);
 } finally {
 if (in != null) try {
 in.close();
 } catch (IOException ioe) {
 // ignorieren
 }
 }
 }

 public InputStream getNewInputStream() throws IOException {
 // Anonyme innere Klasse, die den MappedByteBuffer in einem
 // InputStream kapselt.
 return new InputStream() {
 private int pos;

Sandini Bib

234 10 Effiziente Ein- und Ausgabe

 public int read() throws IOException {
 if (pos == content.limit()) return -1;
 return content.get(pos++);
 }

 public int read(byte b[], int off, int len)
 throws IOException {
 if (pos == content.limit()) return -1;
 // Wir müssen hier synchronisieren, da mehr als ein
 // InputStream existieren, es aber nur einen
 // MappedByteBuffer gibt und absolute Bulk-Operationen
 // leider nicht unterstützt werden.
 synchronized (content) {
 content.position(pos);
 int readBytes = Math.min(len, content.remaining());
 content.get(b, off, readBytes);
 pos += readBytes;
 return readBytes;
 }
 }
 };
 }

// der Rest ist genau wie in ByteArrayFile (Listing 10.3)
...
}

Listing 10.4: Memory-Map basierter Dateicache-Eintrag

Zusätzlich zu den beiden Cache-Eintrags-Klassen müssen wir noch eine Klasse defi-
nieren, die zwar die FileCache.Entry-Schnittstelle implementiert, aber eigentlich nur
einen dünnen Mantel um eine echte Datei darstellt (Listing 10.5). Es wäre nämlich
ziemlich ungünstig, wenn eine zwei Gbyte-Datei zunächst in einen byte-Array geladen
würde ...

Alle drei Dateien würden vermutlich von einer Superklasse profitieren, aus Gründen
der Übersichtlichkeit wollen wir darauf jedoch verzichten.

package com.tagtraum.perf.io;

import java.io.*;

class LiveFile implements FileCache.Entry {
 private File file;

 public LiveFile(File file) throws IOException {
 this.file = file;
 }

Sandini Bib

Dateicache 235

 // Da wir von einer gecachten Datei erwarten, dass man sie nicht
 // extra puffern muss, geben wir einen BufferedInputStream
 // zurück.
 public InputStream getNewInputStream() throws IOException {
 return new BufferedInputStream(new FileInputStream(file));
 }

 public File getFile() {
 return file;
 }

 public long length() {
 return file.length();
 }

 public long lastModified() {
 return file.lastModified();
 }

 public void setTimeToLive(int timeToLive) {
 throw new UnsupportedOperationException();
 }

 public int getTimeToLive() {
 return -1;
 }

 public boolean isStale() {
 return false;
 }
}

Listing 10.5: Mantel um eine echte, ungecachte Datei

Nun haben wir einen Dateicache und fragen uns natürlich, wie schnell er ist. Das Prob-
lem ist nur, dass die Mikro-Benchmarks, wie wir sie bisher verwendet haben, für einen
Dateicache relativ wenig Aussagekraft haben. Denn jeder Cache sollte grandiose Per-
formance-Zahlen liefern, wenn er innerhalb kurzer Zeit oft nach denselben Inhalten
gefragt wird. Was wirklich zählt, ist, ob die Applikation, die den Cache benutzt, tat-
sächlich schneller wird.

Da wir jedoch keine Applikation zur Hand haben, messen wir die Performance den-
noch mit einem Mikro-Benchmark, indem wir Dateien verschiedener Größe wieder-
holt vollständig lesen. Im ersten Lauf benutzen wir dazu einen gepufferten
FileInputStream, im zweiten den Cache mit der Klasse ByteArrayFile und im dritten
Durchlauf den Cache mit der Klasse MemoryMappedFile.

Erste Testläufe ergeben, dass für wenige Wiederholungen kein aussagekräftiger Wert
messbar ist. Erst bei 1.000fachem Lesen liefert unser Testszenario einigermaßen sinn-

Sandini Bib

236 10 Effiziente Ein- und Ausgabe

volle Werte. 1.000faches Lesen, das bedeutet, dass die Datei nur einmal in den Cache
und danach immer wieder aus dem Cache gelesen wird. Es ist zweifelhaft, ob dies in
einer echten Applikation der Fall wäre.

Wie auch immer. Unser Test ist nicht ganz fruchtlos. Wie Abbildung 10.3 zeigt, ist Byte-
ArrayFile schneller als der ungecachte Zugriff und MemoryMappedFile wesentlich langsa-
mer als der ungecachte Zugriff. Das ist ein Ergebnis, mit dem ich so nicht gerechnet
hätte, da in den Speicher abgebildete Dateien den Zugriff normalerweise beschleuni-
gen sollten.

Mit Hilfe des Profilers finden wir heraus, dass die MemoryMappedFile-Version die meiste
Zeit in den Methoden java.nio.ByteBuffer.get(byte[], int, int) und java.nio.Direct-
ByteBuffer.get() verbringt.

Den Grund dafür offenbart ein schneller Blick in den Quellcode:

// Aus Sun JDK 1.4.0, java.nio.ByteBuffer
public ByteBuffer get(byte[] dst, int offset, int length) {
 checkBounds(offset, length, dst.length);
 if (length > remaining())
 throw new BufferUnderflowException();
 int end = offset + length;
 for (int i = offset; i < end; i++)

Abbildung 10.3: 1.000faches Lesen einer Datei mit und ohne Cache mit Sun JDK 1.4.0 Server und Windows 2000

1

10

100

1000

10000

1 10 100 1000

Dateigröße in Kbyte

Z
ei

t

ohne Cache ByteArrayFile MemoryMappedFile

Sandini Bib

Skalierbare Server 237

 dst[i] = get();
 return this;
}

// Aus Sun JDK 1.4.0, java.nio.DirectByteBuffer
public byte get() {
 return (unsafe.getByte(ix(nextGetIndex())));
}
private long ix(int i) {
 return address + (i << 0);
}

// Aus Sun JDK 1.4.0, java.nio.Buffer
final int nextGetIndex() {
 if (position >= limit)
 throw new BufferUnderflowException();
 return position++;
}

Wie unschwer zu erkennen ist, wird jedes Byte einzeln aus dem DirectByteBuffer gele-
sen und in den byte-Array geschrieben (siehe Kapitel 6.2.2 Teure Array-Zugriffe). Dabei
wird einmal vor der gesamten Operation getestet, ob es sich um gültige Indizes han-
delt, und dann noch einmal bei jedem einzelnen Byte. Kein Wunder, dass die Memory-
MappedFile-Version so langsam ist. Dies kann sich jedoch in zukünftigen Java Versionen
ändern.

10.5 Skalierbare Server

Mit JDK 1.4 verfügt Java endlich über ein besser skalierbares Ein-/Ausgabe-API.
Nicht, dass das alte API ein absoluter Fehlschlag ist – gerade Javas eindrucksvoller
Erfolg bei Applikationsservern widerlegt dies –, doch einige Eigenschaften des alten
APIs führen zu drastischen Einschränkungen. Das größte Übel ist die blockierende
Ein-/Ausgabe.

Um Daten über einen Socket zu schreiben, muss die write()-Methode eines assoziier-
ten OuputStreams aufgerufen werden. Dieser Aufruf kehrt erst zurück, wenn alle zu
schreibenden Bytes auch tatsächlich geschrieben sind. Bei vollen Puffern und langsa-
men Netzwerkverbindungen kann das schon seine Zeit dauern. Um dennoch perfor-
mante Server mit Java zu realisieren, muss daher mit jedem Socket ein Thread
assoziiert werden. So kann ein Thread arbeiten, während ein anderer wegen Ein-/Aus-
gaben blockiert ist.

Nun sind Threads nicht so schwergewichtig wie echte Prozesse. Abhängig von der
Plattform sind sie aber auch keine Ressourcenschoner. Unter anderem implizieren viele
Threads auch viele Thread-Kontext-Wechsel – und die sind auch nicht gerade billig.

Sandini Bib

238 10 Effiziente Ein- und Ausgabe

Um also mit Java skalierbare Server zu bauen, musste ein API her, das die Ehe von
Socket und Thread schied. Dies ist mit dem neuen Ein-/Ausgabe-API aus dem Paket
java.nio nun geschehen.

Wir wollen beispielhaft zeigen, wie man mit dem alten und mit dem neuen API einen
simplen Webserver programmiert. Da HTTP kein triviales Protokoll mehr ist, werden
wir uns auf einige zentrale Features beschränken. Die vorgestellten Programme sind
also weder sicher noch protokollkonform.

10.5.1 Httpd der alten Schule

Schauen wir uns zunächst den HTTP-Server mit dem alten API an (Listing 10.6). Da
wir nur eine Klasse zur Implementierung benötigen, ist der grundsätzliche Aufbau
schnell erklärt: In der main()-Methode wird zunächst ein ServerSocket instanziiert und
an Port 8080 gebunden. Der designierte WWW-Port 80 ist auf Unix-Systemen dem Sys-
temadministrator vorbehalten und führt leicht zu Konflikten beim Ausprobieren des
Beispiels – daher also Port 8080.

Dann werden eine Reihe von Httpd-Objekten erzeugt und mit dem gemeinsamen
ServerSocket initialisiert. Im Httpd-Konstruktor sorgen wir dafür, dass alle Instanzen
sinnvolle Namen erhalten, setzen das Standard-Protokoll und starten den Server, indem
wir die start()-Methode seiner Superklasse Thread aufrufen. Dies wiederum bewirkt,
dass die run()-Methode aufgerufen wird, in der sich eine Endlosschleife befindet.

package com.tagtraum.perf.httpd;

import java.io.*;
import java.net.*;
import java.util.*;

public class Httpd extends Thread {

 private static int _no; // Instanz-Zähler
 private ServerSocket serverSocket;
 private byte[] buf = new byte[1024 * 8];
 private String protocol;;
 private InputStream in;
 private OutputStream out;
 private String uri;

 // Startet einen Httpd-Thread.
 public Httpd(ServerSocket serverSocket) throws IOException {
 super("Httpd " + (_no++));
 this.serverSocket = serverSocket;
 // default Protokoll-Version
 protocol = "HTTP/0.9";
 start();
 }

Sandini Bib

Skalierbare Server 239

 // Wartet am ServerSocket auf eine Verbindung und
 // ruft dann handleRequest() auf.
 public void run() {
 Socket socket = null;
 while (true) {
 try {
 socket = serverSocket.accept();
 // Nagles Algorithmus für bessere Performance
 // ausschalten
 socket.setTcpNoDelay(true);
 in = socket.getInputStream();
 out = socket.getOutputStream();
 handleRequest();
 } catch (Exception e) {
 // irgendetwas ist wirklich schief gegangen ...
 e.printStackTrace();
 } finally {
 // aufräumen
 if (socket != null) {
 try {
 // dies schließt auch gleichzeitig den In- und
 // Outputstream.
 socket.close();
 } catch (IOException ioe) {
 // ignorieren
 }
 }
 socket = null;
 }
 }
 }

 // Liest den Request und schickt entweder die Datei
 // oder eine Fehlermeldung zurück.
 private void handleRequest() throws IOException {
 try {
 // Nur 512 Byte lesen - länger sollte die Zeile ohnehin
 // nicht sein.
 int length = in.read(buf, 0, 512);
 if (length == 512) {
 sendError(414, "Request URI too long.");
 return;
 }

 // Wir nehmen ASCII als Zeichensatz an, daher können wir
 // den schnellen, aber veralteten String-Konstruktor
 // benutzen.
 String requestline = new String(buf, 0, 0, length);
 StringTokenizer st = new StringTokenizer(requestline,
 " \r\n");
 String method = st.nextToken();
 uri = st.nextToken();

Sandini Bib

240 10 Effiziente Ein- und Ausgabe

 if (st.hasMoreTokens()) {
 protocol = st.nextToken();
 }
 File file = new File(uri.substring(1));
 if (!method.equals("GET")) {
 sendError(405, "Method " + method
 + " is not supported.");
 } else if (!file.exists() || file.isDirectory()) {
 sendError(404, "Resource " + uri + " was not found.");
 } else if (!file.canRead()) {
 sendError(403, "Forbidden: " + uri);
 } else {
 sendFile(file);
 }
 } catch (NoSuchElementException nsee) {
 // Wir haben nicht genug Tokens lesen können.
 sendError(400, "Bad request.");
 } catch (Exception e) {
 try {
 sendError(500, "Internal Server Error.");
 } catch (IOException ioe) {
 // ignorieren
 }
 }
 }

 // Sendet eine Fehlermeldung an den Client.
 private void sendError(int httpStatus, String httpMessage)
 throws IOException {
 StringBuffer errorMessage = new StringBuffer(128);
 if (!protocol.equals("HTTP/0.9")) {
 errorMessage.append("HTTP/1.0 " + httpStatus + " "
 + httpMessage + "\r\n\r\n");
 }
 errorMessage.append("<HTML><BODY><H1>" + httpMessage
 + "</H1></BODY></HTML>");
 out.write(errorMessage.toString().getBytes("ASCII"));
 out.flush();
 }

 // Sendet die verlangte Datei an den Client.
 private void sendFile(File file) throws IOException {
 InputStream filein = null;
 try {
 filein = new FileInputStream(file);
 if (!protocol.equals("HTTP/0.9")) {
 // Status code und Header schreiben
 out.write(("HTTP/1.0 200 OK\r\nContent-Type: "
 + Httpd.guessContentType(uri)
 + "\r\n\r\n").getBytes("ASCII"));
 }

Sandini Bib

Skalierbare Server 241

 int length = 0;
 while ((length = filein.read(buf)) != -1) {
 out.write(buf, 0, length);
 }
 out.flush();
 } finally {
 if (filein != null)
 try {
 filein.close();
 } catch (IOException ioe) {
 // ignorieren
 }
 }
 }

 // Gibt den ContentType der Ressource zurück.
 public static String guessContentType(String uri) {
 // Behelfslösung - sollte normalerweise
 // über eine Konfigurationsdatei erledigt werden.
 uri = uri.toLowerCase();
 if (uri.endsWith(".html") || uri.endsWith(".htm")) {
 return "text/html";
 } else if (uri.endsWith(".txt")) {
 return "text/plain";
 } else if (uri.endsWith(".jpg") || uri.endsWith(".jpeg")) {
 return "image/jpeg";
 } else {
 ...
 } else {
 return "unknown";
 }
 }

 public static void main(String[] args) throws IOException {
 ServerSocket serverSocket = new ServerSocket(8080);
 for (int i = 0; i < Integer.parseInt(args[0]); i++) {
 new Httpd(serverSocket);
 }
 }
}

Listing 10.6: HTTP-Server der alten Schule

In dieser Endlosschleife wird die blockierende accept()-Methode des ServerSockets auf-
gerufen. Verbindet sich nun ein Client mit Port 8080 des Servers, gibt die accept()-
Methode ein Socket-Objekt zurück. Mit jedem Socket sind ein Input- und ein Output-
Stream assoziiert. Beide werden in der anschließend aufgerufenen handleRequest()-
Methode benutzt. In ihr wird zunächst der Client-Request gelesen, überprüft und
dann eine angemessene Antwort zurückgeschickt. Handelt es sich um einen legitimen
Request, wird also die verlangte Datei zurückgeschickt (sendFile()). Liegt hingegen

Sandini Bib

242 10 Effiziente Ein- und Ausgabe

kein legitimer Request vor, erhält der Client eine entsprechende Fehlermeldung als
Antwort (sendError()). Auf weitere Protokolldetails wollen wir hier aus Platzgründen
nicht näher eingehen.

Es stellt sich die Frage, ob diese Art der Implementierung prinzipiell performant ist. Im
Großen und Ganzen: Ja. Sicherlich könnte man das Interpretieren des Requests optimie-
ren – die benutzten StringTokenizer ließen sich durch selbst geschriebene Tokenizer
ersetzen (Kapitel 4.6 Makro-Benchmarks) und sicherlich könnte man einen Dateicache
benutzen. Immerhin haben wir die für kurze Verbindungen ungeeignete TCP-Verzöge-
rung (Slow-Start-Algorithmus) ausgeschaltet und auch das Senden der Datei erfolgt
gepuffert. Doch viel wichtiger ist, dass alle Threads völlig unabhängig voneinander arbei-
ten. Welcher Thread eine neue Verbindung akzeptiert, wird über die accept()-Methode
betriebssystemnah und somit schnell entschieden. Und über das ServerSocket-Objekt
hinaus teilen die Threads keinerlei Ressourcen, die evtl. synchronisiert werden müssten.
Schnell ist diese Lösung also – jedoch nicht beliebig skalierbar.

10.5.2 Nicht-blockierender Httpd

Schauen wir uns also die Lösung zwei mit dem neuen Ein-/Ausgabe-API an. Sie ist ein
wenig komplizierter und erfordert das Zusammenspiel verschiedener Threads.

Lösung zwei besteht aus vier Klassen (Abbildung 10.4):

� NIOHttpd (Listing 10.7)

� Acceptor (Listing 10.8)

� ConnectionSelector (Listing 10.9)

� Connection (Listing 10.10)

Abbildung 10.4: Klassendiagramm für NIOHttpd

NIOHttpd

Acceptor

ConnectionSelector

Selector
(aus java.nio.channels)

SelectionKey
(aus java.nio.channels)

Connection

n

selector

connectionSelector

key

NIOHttpd startet Acceptor
und ConnectionSelector

Sandini Bib

Skalierbare Server 243

NIOHttpd dient hauptsächlich zum Starten des Servers. Genau wie in Httpd wird in der
main()-Methode ein Server-Socket an Port 8080 gebunden (Listing 10.7, Zeile 25,26).
Der wichtige Unterschied: Es handelt sich hier um einen java.nio.channels.Server-
SocketChannel. Diesen öffnen wir zunächst über eine Fabrikmethode und binden ihn
dann explizit per bind() an den Port. Anschließend erzeugen wir jeweils einen Connec-
tionSelector und einen Acceptor. Dabei wird der ConnectionSelector beim Acceptor regis-
triert. Dem Acceptor wird außerdem der ServerSocketChannel übergeben (Listing 10.7,
Zeile 28-32).

01 package com.tagtraum.perf.httpd;
02
03 import java.io.IOException;
04 import java.net.InetSocketAddress;
05 import java.nio.channels.ServerSocketChannel;
06
07 public class NIOHttpd {
08
09 // Hilfsmethode zum Ermitteln des ContentTyps einer Ressource
10 public static String guessContentType(String uri) {
11 uri = uri.toLowerCase();
12 if (uri.endsWith(".html") || uri.endsWith(".htm")) {
13 return "text/html";
14 } else if (uri.endsWith(".txt")) {
15 ...
16 } else {
17 return "unknown";
18 }
19 }
20
21 // Startet den Http-Daemon mit 2n Threads.
22 public static void main(String[] args) throws IOException {
23 ServerSocketChannel serverSocketChannel
24 = ServerSocketChannel.open();
25 serverSocketChannel.socket().bind(
26 new InetSocketAddress(8080));
27 for (int i = 0; i < Integer.parseInt(args[0]); i++) {
28 ConnectionSelector connectionSelector
29 = new ConnectionSelector();
30 Acceptor acceptor = new Acceptor(serverSocketChannel,
31 connectionSelector);
32 }
33 }
34 }

Listing 10.7: Klasse NIOHttpd

Sandini Bib

244 10 Effiziente Ein- und Ausgabe

Abbildung 10.5 zeigt das Zusammenspiel der beiden Threads Acceptor und Connec-
tionSelector im Überblick. Um es genau zu verstehen, wollen wir zunächst den Accep-
tor (Listing 10.8) näher betrachten. Seine Aufgabe ist es, eingehende Verbindungen
anzunehmen und sie beim ConnectionSelector zu registrieren. Noch im Konstruktor
wird daher die start()-Methode der Superklasse Thread aufgerufen (Listing 10.8, Zeile
18). In run() befindet sich die erforderliche Endlosschleife. In ihr wird genau wie in
Httpd eine blockierende accept()-Methode aufgerufen (Listing 10.8, Zeile 27), die
schließlich ein SocketChannel-Objekt zurückgibt. Nur ist es diesmal die accept()-
Methode eines ServerSocketChannels anstatt eines ServerSockets. Mit dem zurückgege-
benen SocketChannel als Argument wird ein Connection-Objekt erzeugt und mittels der
enqueue()-Methode beim ConnectionSelector registriert (Listing 10.8, Zeile 28,29; Abbil-
dung 10.6).

Um es noch einmal zusammenzufassen: der Acceptor macht nichts anderes als in einer
Endlosschleife Verbindungen anzunehmen und diese beim ConnectionSelector zu regis-
trieren.

Abbildung 10.5: Sequenzdiagramm für NIOHttpd

Wird vom ConnectionSelector-Thread ausgeführtWird vom Acceptor-Thread ausgeführt

connectionSelector :
ConnectionSelector

acceptor :
Acceptor

connection :
Connection

run()

serverSocketChannel :
ServerSocketChannel

selector :
Selector

run()

accept() select()

Connection(

enqueue(Connection)

readRequest()

writeResponse()

wakeup()

registerQueuedConnections()
Endlosschleifen

wakeup() lässt
select()
zurückkehren.

Es wird immer
nur eine der
beiden Methoden
aufgerufen.

tChannel)Socke

Sandini Bib

Skalierbare Server 245

01 package com.tagtraum.perf.httpd;
02
03 import java.net.Socket;
04 import java.nio.channels.ServerSocketChannel;
05 import java.nio.channels.SocketChannel;
06
07 class Acceptor extends Thread {
08
09 private static int _no; // Instanz-Zähler
10 private ServerSocketChannel serverSocketChannel;
11 private ConnectionSelector connectionSelector;
12
13 public Acceptor(ServerSocketChannel serverSocketChannel,
14 ConnectionSelector connectionSelector) {
15 super("Acceptor " + (_no++));
16 this.serverSocketChannel = serverSocketChannel;
17 this.connectionSelector = connectionSelector;
18 start();
19 }
20
21 // Akzeptiert Verbindungen und registriert diese mittels
22 // ConnectionSelector.enqueue(Connection).
23 public void run() {
24 while (true) {
25 SocketChannel socketChannel = null;
26 try {
27 socketChannel = serverSocketChannel.accept();
28 connectionSelector.enqueue(
29 new Connection(socketChannel));
30 } catch (Exception e) {
31 e.printStackTrace();
32 // aufräumen, falls nötig
33 if (socketChannel != null) {
34 try {
35 socketChannel.close();
36 } catch (Exception ee) {
37 // ignorieren
38 }
39 }
40 }
41 }
42 }
43 }

Listing 10.8: Klasse Acceptor

Genau wie der Acceptor ist der ConnectionSelector (Listing 10.9) ein Thread. Er dient
dazu, Verbindungen auszuwählen, die gerade für Ein- bzw. Ausgaben bereit sind. In
seinem Konstruktor werden eine Queue erzeugt und ein java.nio.channels.Selector
mittels der Fabrikmethode Selector.open() geöffnet (Listing 10.9, Zeile 17,18). Dieser

Sandini Bib

246 10 Effiziente Ein- und Ausgabe

selector ist der Dreh- und Angelpunkt unseres Servers. Bei ihm können wir Verbin-
dungen registrieren und auf Anfrage eine Liste derjenigen Verbindungen zurückbe-
kommen, die gerade zum Lesen oder Schreiben von Daten bereit sind. Der
ConnectionSelector benutzt das selector-Objekt entsprechend.

01 package com.tagtraum.perf.httpd;
02
03 import java.io.IOException;
04 import java.nio.channels.SelectionKey;
05 import java.nio.channels.Selector;
06 import java.util.*;
07
08 class ConnectionSelector extends Thread {
09
10 private static int _no; // Instanz-Zähler
11 private Selector selector;
12 private List queue;
13
14 // Instanziiert und startet diesen ConnectionSelector.
15 public ConnectionSelector() throws IOException {
16 super("ConnectionSelector " + (_no++));
17 selector = Selector.open();
18 queue = new ArrayList();
19 start();
20 }
21
22 // Queuet eine Verbindung und ruft selector.wakeup() auf,
23 // damit ein SelectionKey für sie erzeugt und registriert
24 // werden kann.
25 public void enqueue(Connection connection) {
26 synchronized (queue) {
27 queue.add(connection);
28 }
29 // wakeup sorgt dafür, dass select() aufwacht und sich um
30 // gequeuete Verbindungen kümmert.
31 selector.wakeup();
32 }
33
34 // Registriert alle gequeueten Verbindungen beim Selector.
35 private void registerQueuedConnections() throws IOException {
36 // der synchronized Block ist ein Nadelöhr, daher sollte
37 // er wenn möglich vermieden werden.
38 if (!queue.isEmpty()) {
39 synchronized (queue) {
40 while (!queue.isEmpty()) {
41 Connection connection
42 = (Connection) queue.remove(queue.size() - 1);
43 connection.register(selector);
44 }
45 }

Sandini Bib

Skalierbare Server 247

46 }
47 }
48
49 // Ruft selector.select()in einer Endlosschleife auf.
50 // Kehrt der Aufruf von select() zurück, werden zunächst
51 // gequeuete Verbindungen beim Selector registriert.
52 // Anschließend werden für bereite Kanäle die entsprechenden
53 // Verbindungs-Arbeitsmethoden aufgerufen.
54 public void run() {
55 while (true) {
56 try {
57 int i = selector.select();
58 registerQueuedConnections();
59 if (i > 0) {
60 Set set = selector.selectedKeys();
61 Iterator connectionIterator = set.iterator();
62 while (connectionIterator.hasNext()) {
63 SelectionKey key
64 = (SelectionKey) connectionIterator.next();
65 Connection connection
66 = (Connection) key.attachment();
67 try {
68 if (key.interestOps()
69 ==SelectionKey.OP_READ) {
70 connection.readRequest();
71 } else {
72 connection.writeResponse();
73 }
74 } catch (IOException ioe) {
75 connection.close();
76 } catch (Throwable t) {
77 connection.close();
78 t.printStackTrace();
79 }
80 }
81 }
82 } catch (Throwable t) {
83 t.printStackTrace();
84 }
85 }
86 }
87 }

Listing 10.9: Klasse ConnectionSelector

Nachdem im Konstruktor die start()-Methode aufgerufen wurde (Listing 10.9, Zeile 19),
wird die Endlosschleife in der run()-Methode ausgeführt. In ihr rufen wir die select()-
Methode des selectors auf (Listing 10.9, Zeile 57). Diese Methode blockiert so lange, bis
entweder mindestens eine der registrierten Verbindungen für Ein-/Ausgabe-Operationen
bereit ist oder ein Aufruf der wakeup()-Methode des selector-Objekts erfolgt.

Sandini Bib

248 10 Effiziente Ein- und Ausgabe

Abbildung 10.6: Sequenzdiagramm der enqueue()-Methode

Abbildung 10.7: Sequenzdiagramm der registerQueuedConnections()-Methode

acceptor :
Acceptor

connectionSelector :
ConnectionSelector

queue :
ArrayList

selector :
Selector

enqueue(connection)

add(connection)

wakeup()

Löst blockierte
Aufrufe von select().

connectionSelector :
ConnectionSelector

connection :
Connection

queue :
ArrayList

selector :
Selector

remove()

register(selector)

Es wird so
lange das
letzte Element
der Queue
entfernt und
registriert, bis
die Queue leer
ist.

registerQueuedConnections()

select()

Blockiert, bis
wakeup()
aufgerufen wird.

Sandini Bib

Skalierbare Server 249

Es ist wichtig zu verstehen, dass kein Acceptor-Thread Verbindungen beim selector
registrieren kann, während der ConnectionSelector-Thread die Methode select() aus-
führt, da die entsprechenden Methoden synchronisiert sind. Daher benutzen wir eine
Queue, in die der Acceptor-Thread angenommene Verbindungen mit der Methode
enqueue() einstellt (Listing 10.9, Zeile 25f.; Abbildung 10.6). Anschließend ruft er die
wakeup()-Methode des selectors auf (Listing 10.9, Zeile 31). Dies wiederum löst den
ConnectionSelector-Thread aus seiner select()-Blockade und erlaubt ihm, die Verbin-
dungen aus der Queue beim nun nicht mehr blockierten selector zu registrieren.
Genau dies geschieht in der registerQueuedConnections()-Methode (Listing 10.9, Zeile
35f.; Abbildung 10.7).

Selektor-Registrierung über Schlüssel

An dieser Stelle müssen wir ein wenig vorgreifen und einen kurzen Blick auf die regis-
ter()-Methode der Connection-Klasse werfen (Listing 10.10, Zeile 45f.). Bisher haben
wir vereinfachend davon gesprochen, dass eine Verbindung bei einem selector regis-
triert wird. Tatsächlich wird jedoch ein java.nio.channels.SocketChannel-Objekt bei
einem selector registriert. Und zwar nur für ausgewählte Ein-/Ausgabe-Operationen.
Zurück erhält man einen java.nio.channels.SelectionKey. Diesem Schlüssel wiederum
kann man mittels der attach()-Methode beliebige Objekte zuordnen. Um mit dem
Schlüssel zur Verbindung zu gelangen, hängen wir das Connection-Objekt selbst an den
Schlüssel. Somit können wir indirekt über den Schlüssel tatsächlich das Verbindungs-
Objekt vom Selector erhalten.

Zurück zum ConnectionSelector. Der Rückgabewert der select()-Methode gibt an, wie
viele Verbindungen für Ein-/Ausgabe-Operationen bereit sind. Ist dies bei keiner Ver-
bindung der Fall, sparen wir uns den Rest und kehren zurück in die select()-Endlos-
schleife. Andernfalls iterieren wir über die Selektionsschlüssel (Listing 10.9, Zeile 60f.).
Diese erhalten wir im Set von der Methode selectedKeys(). Über die attachment()-
Methode des Schlüssels gelangen wir an das zugehörige Connection-Objekt und rufen
dessen readRequest()- bzw. writeResponse()-Methode auf. Um welche Methode es sich
handelt, hängt davon ab, ob sich die Verbindung für Lese- oder Schreib-Operationen
registriert hat (Listing 10.9, Zeile 68f.).

01 package com.tagtraum.perf.httpd;
02
03 import java.io.*;
04 import java.net.Socket;
05 import java.nio.ByteBuffer;
06 import java.nio.channels.*;
07 import java.util.*;
08
09 // Repräsentiert die Verbindung, in deren Verlauf zunächst
10 // einmal der Request gelesen und dann ein Response

Sandini Bib

250 10 Effiziente Ein- und Ausgabe

11 // geschrieben wird.
12 class Connection {
13
14 private SocketChannel socketChannel;
15 private ByteBuffer requestLineBuffer;
16 private ByteBuffer responseLineBuffer;
17 private int endOfLineIndex;
18 private SelectionKey key;
19 private FileChannel fileChannel;
20 private long filePos;
21 private long fileLength;
22 private int httpStatus;
23 private String httpMessage;
24 private String uri;
25 private String protocol;
26
27 // Initialisiert diese Verbindung mit einem SocketChannel.
28 public Connection(SocketChannel socketChannel)
29 throws IOException {
30 // Nagles Algorithmus für bessere Performance
31 // ausschalten
32 socketChannel.socket().setTcpNoDelay(true);
33 // der Kanal soll nicht blockieren
34 socketChannel.configureBlocking(false);
35 requestLineBuffer = ByteBuffer.allocate(512);
36 // Default http status code: OK
37 httpStatus = 200;
38 // Default http status message
39 httpMessage = "OK";
40 // Default Protokoll-Version
41 protocol = "HTTP/0.9";
42 }
43
44 // Registriert diese Verbindung bei dem übergebenen Selector.
45 public void register(Selector selector) throws IOException {
46 key = socketChannel.register(selector,
47 SelectionKey.OP_READ);
48 // Hinterlege die Verbindung im Schlüssel
49 key.attach(this);
50 }
51
52 // Liest den Request. Falls etwas schief geht, wird ein
53 // Fehlercode gesetzt. Ist der Request vollstandig gelesen,
54 // wird prepareForResponse() aufgerufen.
55 public void readRequest() throws IOException {
56 try {
57 if (!requestLineBuffer.hasRemaining()) {
58 setError(414, "Request URI too long.");
59 prepareForResponse();
60 return;
61 }

Sandini Bib

Skalierbare Server 251

62 socketChannel.read(requestLineBuffer);
63 if (!isRequestLineRead()) {
64 return;
65 }
66 requestLineBuffer.flip();
67 byte[] b = new byte[endOfLineIndex];
68 requestLineBuffer.get(b);
69 String requestline = new String(b, 0);
70 StringTokenizer st
71 = new StringTokenizer(requestline, " \r\n");
72 String method = st.nextToken();
73 uri = st.nextToken();
74 File file = new File(uri.substring(1));
75 if (st.hasMoreTokens()) {
76 protocol = st.nextToken();
77 }
78 if (!method.equals("GET")) {
79 setError(405, "Method " + method
80 + " is not supported.");
81 } else if (!file.exists() || file.isDirectory()) {
82 setError(404, "Resource " + uri
83 + " was not found.");
84 } else if (!file.canRead()) {
85 setError(403, "Forbidden: " + uri);
86 } else {
87 fileLength = file.length();
88 fileChannel
89 = new FileInputStream(file).getChannel();
90 }
91 prepareForResponse();
92 } catch (NoSuchElementException nsee) {
93 // Wir haben nicht genug Tokens lesen können.
94 setError(400, "Bad request.");
95 } catch (Exception e) {
96 // Es ist etwas außerplanmäßig schief gegangen
97 setError(500, "Internal Server Error.");
98 prepareForResponse();
99 e.printStackTrace();
100 }
101 }
102
103 // Legt einen Buffer an, der die Response-Zeile, die Header
104 // und im Falle eines Fehlers eine HTML-Nachricht enthält.
105 private void prepareForResponse() throws IOException {
106 StringBuffer responseLine = new StringBuffer(128);
107 // Response-Zeile nur bei Http >= 1.0 schreiben
108 if (!protocol.equals("HTTP/0.9")) {
109 responseLine.append("HTTP/1.0 " + httpStatus + " "
110 + httpMessage + "\r\n");
111 // Im Fehlerfall benötigen wir keine Header
112 if (httpStatus != 200) {

Sandini Bib

252 10 Effiziente Ein- und Ausgabe

113 responseLine.append("\r\n");
114 } else {
115 // Header für die Datei
116 responseLine.append("Content-Type: "
117 + NIOHttpd.guessContentType(uri) + "\r\n\r\n");
118 }
119 }
120 if (httpStatus != 200) {
121 // Fehlernachricht für den Nutzer
122 responseLine.append("<HTML><BODY><H1>" + httpMessage
123 + "</H1></BODY></HTML>");
124 }
125 responseLineBuffer = ByteBuffer.wrap(responseLine
126 .toString().getBytes("ASCII"));
127 key.interestOps(SelectionKey.OP_WRITE);
128 key.selector().wakeup();
129 }
130
131 // Gibt an, ob die Request-Zeile bereits vollständig gelesen
132 // wurde.
133 private boolean isRequestLineRead() {
134 for (; endOfLineIndex < requestLineBuffer.limit();
135 endOfLineIndex++) {
136 if (requestLineBuffer.get(endOfLineIndex) == '\r')
137 return true;
138 }
139 return false;
140 }
141
142 // Schreibt zunächst den responseLineBuffer und dann ggfs.
143 // die verlangte Datei zum Client. Nachdem alle Daten
144 // geschrieben wurden, wird der Selektions-Schlüssel
145 // gecancelt und der Kanal geschlossen.
146 public void writeResponse() throws IOException {
147 // Zunächst mal den response buffer schreiben
148 if (responseLineBuffer.hasRemaining()) {
149 socketChannel.write(responseLineBuffer);
150 }
151 // Wenn der Buffer vollständig geschrieben wurde,
152 // sind wir entweder fertig (im Fehlerfall) oder
153 // müssen noch die Datei hinterherschicken
154 if (!responseLineBuffer.hasRemaining()) {
155 if (httpStatus != 200) {
156 close();
157 } else {
158 filePos += fileChannel.transferTo(filePos,
159 (int) Math.min(64 * 1024, fileLength - filePos),
160 socketChannel);
161 if (filePos == fileLength) {
162 close();
163 }

Sandini Bib

Skalierbare Server 253

164 }
165 }
166 }
167
168 // Setzt einen Fehler.
169 private void setError(int httpStatus, String httpMessage) {
170 this.httpStatus = httpStatus;
171 this.httpMessage = httpMessage;
172 }
173
174 // Cancelt den Selektions-Schlüssel und schließt alle
175 //offenen Kanäle.
176 public void close() {
177 try {
178 if (key != null) key.cancel();
179 } catch (Exception e) {
180 // ignorieren
181 }
182 try {
183 if (socketChannel != null) socketChannel.close();
184 } catch (Exception e) {
185 // ignorieren
186 }
187 try {
188 if (fileChannel != null) fileChannel.close();
189 } catch (Exception e) {
190 // ignorieren
191 }
192 }
193 }

Listing 10.10: Klasse Connection

Und damit kommen wir nun endgültig zur Connection-Klasse (Listing 10.10). Sie reprä-
sentiert die Verbindung und kapselt zudem alle Protokollspezifika. Im Konstruktor
wird zunächst SocketChannel in den nicht-blockierenden Modus versetzt (Listing 10.10,
Zeile 34). Dies ist essentiell für diesen Server! Anschließend werden noch ein paar Stan-
dardwerte gesetzt sowie der Puffer requestLineBuffer für den Request alloziert. Da das
Allozieren von systemnahen, direkten Puffern vergleichsweise teuer ist und wir für
jede Verbindung einen neuen Puffer erzeugen, benutzen wir java.nio.ByteBuffer.allo-
cate() anstelle von ByteBuffer.allocateDirect(). Würden wir die Puffer wieder verwen-
den, könnte sich jedoch ein direkter Puffer bezahlt machen.

Nachdem die Initialisierung erledigt und der SocketChannel zum Lesen bereit ist, wird
vom ConnectionSelector die readRequest()-Methode aufgerufen. Mit socketChannel.

read(requestLineBuffer) werden so viele Bytes in den Puffer gelesen, wie gerade ver-
fügbar sind. Falls die gesamte Request-Zeile nicht gelesen werden kann, kehren wir
zum aufrufenden ConnectionSelector-Objekt zurück und lassen so eine andere Verbin-

Sandini Bib

254 10 Effiziente Ein- und Ausgabe

dung zum Zuge kommen. Ist jedoch die gesamte Zeile gelesen, interpretieren wir sie
wie schon in Httpd. Handelt es sich um einen legitimen Request, erzeugen wir einen
java.nio.Channels.FileChannel für die verlangte Datei und rufen die Methode prepare-
ForResponse() auf.

prepareForResponse() bastelt die Response-Zeile, evtl. benötigte Header sowie – falls nötig
– eine Fehlermeldung zusammen und hinterlegt diese Daten in responseLineBuffer. Hier-
bei handelt es sich wiederum um einen ByteBuffer, der jedoch lediglich ein dünner Wrap-
per um einen byte-Array ist und mit der Fabrikmethode ByteBuffer.wrap(byte[]) erzeugt
wurde. Nachdem wir die zu schreibenden Daten erzeugt haben, müssen wir dem Connec-
tionSelector noch mitteilen, dass wir von nun an Daten schreiben anstatt lesen wollen.
Dies erreichen wir, indem wir die Methode interestOps(SelectionKey.OP_WRITE) des Selek-
tions-Schlüssels aufrufen. Um sicherzugehen, dass der Selektor dies möglichst schnell
mitbekommt, rufen wir anschließend noch die wakeup()-Methode auf.

Nun ruft der ConnectionSelector die writeResponse()-Methode auf. Zuerst wird der
responseLineBuffer in den Socket-Kanal geschrieben. Gelingt dies vollständig und müs-
sen wir noch die verlangte Datei hinterherschicken, rufen wir die transferTo()-
Methode des zuvor geöffneten FileChannels auf. Übertragen werden in jedem Fall nur
so viele Bytes, wie gerade in den Zielkanal geschrieben werden können. Dennoch
muss hier eine Grenze gesetzt werden, um für Fairness zwischen verschiedenen Ver-
bindungen zu sorgen.

Sind alle Daten übertragen, wird mit der close()-Methode aufgeräumt. Wichtig ist hier
das De-Registrieren der Verbindung beim ConnectionSelector. Dies geschieht durch
Aufruf der cancel()-Methode des Selektions-Schlüssels.

Wiederum stellt sich die Frage, ob die Implementierung grundsätzlich performant ist.
Und wiederum können wir klar antworten: Ja.

Im Prinzip reichen je ein Acceptor- und ein ConnectionSelector-Thread, um gleichzeitig
beliebig viele Verbindungen aufrechtzuerhalten. Damit glänzt diese Implementierung
in der Kategorie Skalierbarkeit. Da jedoch die beiden Threads über die synchronisierte
Methode enqueue() miteinander kommunizieren, können sie sich gegeneinander aus-
bremsen. Es bieten sich zwei Auswege aus dieser Situation an:

1. Eine bessere Implementierung der Queue

2. Mehrere Acceptor/ConnectionSelector-Paare

Lösung eins ließe sich durch eine LinkedQueue nach Doug Lea [Lea99, S.130] verwirkli-
chen. Diese Datenstruktur zeichnet sich dadurch aus, dass sie Anfang und Ende der
Warteschlange mit verschiedenen Locks sichert und sich daher einfügende und lee-
rende Threads nicht gegenseitig blockieren. Nur wenn die Schlange leer ist, besteht die
Möglichkeit der gegenseitigen Blockade. Die ließe sich jedoch durch eine Extra-
Abfrage umgehen.

Sandini Bib

Skalierbare Server 255

Im Vergleich zu diesem eleganten Ansatz fällt Lösung zwei schon fast in die Kategorie
»Rohe Gewalt«. Über mehrere Acceptor/ConnectionSelector-Paare wird die Last verteilt
und das Synchronisierungsproblem zwar nicht beseitigt, jedoch gelindert. Leider ent-
stehen dabei auch zusätzliche Kosten für Kontext-Wechsel. Im Vergleich zu Httpd benö-
tigt man jedoch bei weitem nicht so viele Threads. Und wenn man NIOHttpd auf einem
Multiprozessor-System betreiben möchte, empfiehlt es sich sogar, mehrere Paare zu
starten.

Nachteilig wirkt sich außerdem für NIOHttpd aus, dass immer wieder neue Connection-
Objekte samt ihrer Puffer erzeugt werden. Dies führt zu einer Mehrbelastung verur-
sacht durch die Speicherbereinigung.

10.5.3 Vergleichende Rechenspiele

Es stellt sich die Frage, wie viel besser NIOHttpd gegenüber Httpd skaliert. Statt zu mes-
sen, wollen wir dazu ein paar Überlegungen anstellen. Vorweggeschickt: Auch wenn
die Zahlen und Formeln einen präzisen Eindruck machen – dies wird bei weitem kein
exakter Vergleich. Es werden lediglich die zugrunde liegenden Konzepte gegeneinan-
der abgeschätzt. Dabei lassen wir einflussreiche Randbedingungen wie Thread-Syn-
chronisierung, Kontext-Switches, Paging, Festplattengeschwindigkeit und Caches
völlig außer Acht.

Zunächst schätzen wir ab, wie lange es wohl dauert, r gleichzeitige Requests nach
Dateien der Größe s Bytes bei einer Client-Anbindung mit einer Bandbreite von b
Byte/Sekunde zu verarbeiten. Es ist offensichtlich, dass dies bei Httpd unmittelbar von
der Anzahl der Threads t abhängt, da nur t Requests gleichzeitig behandelt werden
können. Über den Daumen gepeilt, könnte die Rechnung aussehen wie in folgender
Formel: c seien Fixkosten wie Parsen etc., die bei jedem Request bezahlt werden müs-
sen. Wir nehmen zudem an, dass wir die Daten schneller von der Platte lesen als über
den Socket schreiben können und die CPU nicht voll ausgelastet wird. Daher fließen
die Geschwindigkeiten von Festplatte/Cache und Prozessor nicht in die Rechung ein.

NIOHttpd ist hingegen nicht von t abhängig. Die Zeit l hängt bei idealisierten Randbe-
dingungen also hauptsächlich von der Anbindung des Clients b, der Größe der Datei s
sowie von den bereits erwähnten Fixkosten c ab. Daraus resultiert:

	�
��

��
�	��
� ×+

×
×=

����	�

�

�
�������	
 ×+=

Sandini Bib

256 10 Effiziente Ein- und Ausgabe

Interessant als Maßzahl für uns ist nun der Quotient d. Er charakterisiert das Verhältnis
zwischen NIOHttpd und Httpd.

Nach genauerem Hinsehen (... und ein paar Datenreihen) fällt auf, dass d bei konstan-
ten s, b, t und c für große r gegen einen Grenzwert wächst. Dieser lässt sich leicht nach
folgender Formel berechnen.

Hieraus folgt, dass – neben der Anzahl der Threads und den fixen Kosten – die Dauer
s/b der Verbindung erheblichen Einfluss auf d hat. Je länger die Verbindungen beste-
hen, desto kleiner ist d und umso größer ist der Vorteil von NIOHttpd gegenüber Httpd.
So kann NIOHttpd rechnerisch unter bestimmten Bedingungen (c=10 ms, t=100, s=1
Mbyte) für einen einfachen ISDN-Kanal mit 8 Kbyte/s Bandbreite bis zu 126-mal
schneller sein als Httpd. Dies gilt insbesondere für große Dateien und damit lang
andauernde Verbindungen. Ist die Verbindung hingegen schnell, beispielsweise ein
lokales 100-Mbit-Netz, lassen sich bei großen Dateien gerade mal 10% herausschlagen
und bei kleinen Dateien gibt es kaum einen Unterschied.

Abbildung 10.8: d bei c=10ms und t=100

���	

������	

�

�
� =

��

�
�

�
�

�
�

+
=

∞→
���

0

0,2

0,4

0,6

0,8

1

1,2

1.000 10.000 100.000 1.000.000

Dateigröße s in Byte

d
fü

r
r

ge
ge

n
U

ne
nd

lic
h

b = 10.000.000 b/s b = 8.000 b/s

Sandini Bib

Skalierbare Server 257

Diese Berechnungen setzen voraus, dass die Fixkosten bei NIOHttpd und Httpd in etwa
gleich sind und keine neuen Kosten durch die Art und Weise der Implementierung
eingeführt wurden. Wie oben erwähnt: Der angeführte Vergleich gilt nur unter stark
idealisierten Bedingungen.

Er reicht jedoch aus, ein Gefühl dafür zu vermitteln, unter welchen Bedingungen sich
eher das eine oder andere Konzept lohnt bzw. wie groß die Unterschiede sein können.
Hierbei sei noch angeführt, dass zwar die meisten Dateien im WWW eher klein sind,
dass HTTP-1.1-Clients jedoch standardmäßig versuchen, eine Verbindung für mehr als
eine Datei zu benutzen und entsprechend länger offen zu halten (Keep-Alive bzw. per-
sistente Verbindungen). Nicht selten werden deshalb Verbindungen aufrechterhalten,
über die nie wieder Daten übertragen werden. Hierdurch würden bei einem Server mit
einem Thread pro Verbindung massiv Threads und somit kostbare Ressourcen gebun-
den. Das heißt gerade für HTTP kann die Skalierbarkeit von Servern durch das neue
Ein-/Ausgabe-API dramatisch erhöht werden kann.

Sandini Bib

Sandini Bib

11 RMI und Serialisierung

RMI ist eine jener Technologien, die das Leben in einer verteilten Umgebung wesent-
lich leichter machen. Wie jede Erleichterung hat jedoch auch RMI seinen Preis. Gegen-
über einem eigenen, selbst geschriebenen Protokoll ist das mehr oder minder
generische RMI meist etwas schwerfällig. Dafür bietet es einen gewissen Komfort. Es
stellt zudem den Standard dar, weswegen wir hier keine selbst geschriebenen Proto-
kolle diskutieren wollen.

Es gibt im Wesentlichen drei Aspekte in Zusammenhang mit RMI, die sich zu betrach-
ten lohnen, um die Performance zu steigern.

1. Serialisierung

2. Latenzzeiten

3. Verteilte Speicherbereinigung (Distributed Garbage Collection)

Auf alle drei Aspekte werden wir im Folgenden eingehen.

11.1 Effiziente Serialisierung

Wenn Sie eine Methode eines entfernten Objektes (RemoteObject) aufrufen, müssen die
Argumente und der Rückgabewert für die Übertragung serialisiert und anschließend
wieder deserialisiert werden. Dies ist zumindest immer dann nötig, wenn diese
Objekte nicht selbst entfernte Objekte sind. Zum Serialisieren und Deserialisieren ver-
fügt Java über einen eingebauten Mechanismus, der sich leicht benutzen lässt, indem
Sie einfach die Schnittstelle java.io.Serializable in Ihren zu serialisierenden Klassen
implementieren. Bei Serializable handelt es sich übrigens um ein Markierungs-Inter-
face, das keine Methoden vorgibt. Allein die Tatsache, dass eine Klasse dieses Interface
implementiert, führt zu einer speziellen Behandlung.

Wenn ein Serializable-Objekte serialisiert wird, erstellt der Serialisierungsmechanis-
mus automatisch eine Darstellung des Objektes inklusive aller Attribute, die wie-
derum auch Serializable implementieren müssen. Es wird also die serielle Darstellung
eines ganzen Objektbaumes erzeugt.

Wir wollen das an zwei einfachen Beispielen genauer untersuchen.

Sandini Bib

260 11 RMI und Serialisierung

11.1.1 Datenmenge verkleinern

InternationalDate sei ein unveränderbares Objekt, das ein Datum in allen unterstützten
Sprachen formatiert und die String-Darstellung in einer Tabelle vorhält (Listing 11.1).

package com.tagtraum.perf.serialization;

import java.io.Serializable;
import java.text.SimpleDateFormat;
import java.util.*;

public class InternationalDate1 implements Serializable {
 private Date date;
 private Map map;

 public InternationalDate1() {
 this(System.currentTimeMillis());
 }

 public InternationalDate1(long time) {
 date = new Date(time);
 buildInternationalStrings();
 }

 private void buildInternationalStrings() {
 map = new HashMap();
 Locale locales[] = Locale.getAvailableLocales();
 for (int i = 0; i < locales.length; i++) {
 SimpleDateFormat format = new SimpleDateFormat(
 "EEEE d MMM yyyy G HH:mm:ss,SSS zzzz", locales[i]);
 String formattedTime = format.format(date);
 map.put(locales[i], formattedTime);
 }
 }

 public Date getDate() {
 return date;
 }

 public String get(Locale locale) {
 return (String) map.get(locale);
 }
}

Listing 11.1: Internationales Datum

Sandini Bib

Effiziente Serialisierung 261

Wenn wir dieses Objekt serialisieren, werden 13.907 Byte1 geschrieben. Das ist ein biss-
chen viel für ein einfaches Datum. Offensichtlich liegt dies daran, dass sämtliche
Datumsstrings mitserialisiert werden. Natürlich ist das nicht nötig, da wir die Strings
leicht neu berechnen können. Listing 11.2 zeigt eine verbesserte Version, in der die
Tabelle map mit dem Schlüsselwort transient gekennzeichnet und die Methode readOb-
ject() implementiert ist. Alle Attribute, die mit transient gekennzeichnet sind, werden
beim Serialisieren übersprungen. In der Regel ist es Aufgabe der privaten readObject()-
Methode, transiente (flüchtige) Attribute aus den persistenten Attributen wiederher-
zustellen.

Das sorgfältige Kennzeichnen von Attributen als transient ist eine der wichtigsten Techniken,
um die Größe serialisierter Objekte zu verringern.

package com.tagtraum.perf.serialization;

import java.io.Serializable;
import java.io.ObjectInputStream;
import java.io.IOException;
import java.util.*;
import java.text.SimpleDateFormat;

public class InternationalDate2 implements Serializable {
 private Date date;
 private transient Map map;

// genau wie in InternationalDate1
...

 private void readObject(ObjectInputStream in)
 throws IOException, ClassNotFoundException {
 // Liest die serialisierten Attribute
 in.defaultReadObject();
 // Erstellt die Strings
 buildInternationalStrings();
 }
}

Listing 11.2: Internationales Datum mit verbesserter serialisierter Darstellung

Das Ergebnis kann sich sehen lassen: Statt 13.907 Byte verbraucht die serialisierte Dar-
stellung von InternationalDate2 nur 139 Byte – ein Hundertstel des ursprünglichen
Werts. Und das lässt sich sogar noch verbessern. Anstelle des Date-Objekts können wir
ja auch einfach nur den Zeitwert als long schreiben (Listing 11.3).

1 Diese Größe variiert von VM zu VM, da fast jede VM andere Locales unterstützt.

Sandini Bib

262 11 RMI und Serialisierung

package com.tagtraum.perf.serialization;

import java.io.*;
import java.text.SimpleDateFormat;
import java.util.*;

public class InternationalDate3 implements Serializable {
 private transient Date date;
 private transient Map map;

// genau wie in InternationalDate1
...

 private void writeObject(ObjectOutputStream out)
 throws IOException {
 // Schreibt den Zeitwert als long
 out.writeLong(date.getTime());
 }

 private void readObject(ObjectInputStream in)
 throws IOException, ClassNotFoundException {
 // Liest den Zeitwert als long…
 date = new Date(in.readLong());
 // …und initialisiert die Strings
 buildInternationalStrings();
 }
}

Listing 11.3: Internationales Datum, das lediglich den Zeitwert als long serialisiert

Auch dies führt zu einer Verbesserung. Es ist zwar nicht mehr um den Faktor hundert,
aber 82 Byte statt 139 Byte ist immerhin auch schon eine Verbesserung um 41 Prozent.
Wir wollen sehen, ob sich das noch verbessern lässt, indem wir das java.io.Externaliz-
able anstelle von Serializable verwenden.

package com.tagtraum.perf.serialization;

import java.io.*;
import java.text.SimpleDateFormat;
import java.util.*;

public class InternationalDate4 implements Externalizable {
 // transient ist nicht mehr nötig!
 private Date date;
 private Map map;

// genau wie in InternationalDate1
...

 public void writeExternal(ObjectOutput out)
 throws IOException {

Sandini Bib

Effiziente Serialisierung 263

 out.writeLong(date.getTime());
 }

 public void readExternal(ObjectInput in)
 throws IOException, ClassNotFoundException {
 date = new Date(in.readLong());
 buildInternationalStrings();
 }
}

Listing 11.4: Externalisierbares internationales Datum

Externalizable bedeutet, dass die gesamte Serialisierung vom Programmierer übernom-
men wird. Insbesondere werden nicht automatisch Attribute von Superklassen geschrie-
ben. Da die Superklasse von InternationalDate die Klasse Object ist, macht sich dies jedoch
in unserem Fall nicht im Ergebnis bemerkbar. Das Datum benötigt immer noch 82 Byte.

Natürlich ließe sich jedes Datum auch mit einem selbst geschriebenen Protokoll in
8 Byte ausdrücken. Dies soll hier jedoch nicht zu Debatte stehen.

Stattdessen wollen wir untersuchen, wie hoch der Preis für die Größenreduktion der
serialisierten Form ist. Denn gratis waren unsere Optimierungen leider nicht. Tabelle
11.1 und Tabelle 11.2 zeigen die normalisierten Ausführungszeiten. Wie nicht anders
zu erwarten, ist die benötigte Zeit zum Schreiben drastisch gesunken. Jedoch ist die
Zeit fürs Lesen auch stark gestiegen. Das Erstellen der formatierten Daten ist halt nicht
ganz umsonst. Insbesondere Sun JDK 1.3.1 Client hatte daran schwer zu schlucken.

Java VM Version 1 Version 2 Version 3 Version 4 Version 5

Sun JDK 1.3.1 Client 100% 1,13% 0,60% 0,41% 0,45%

Sun JDK 1.3.1 Server 77% 1,81% 1,36% 1,58% 0,99%

Sun JDK 1.4.0 Client 78% 1,44% 1,21% 1,13% 0,68%

Sun JDK 1.4.0 Server 72% 2,94% 1,89% 1,51% 0,60%

IBM JDK 1.3.0 95% 0,75% 0,53% 0,30% 0,68%

Tabelle 11.1: Normalisierte Ausführungszeit fürs Schreiben der serialisierten Form

Java VM Version 1 Version 2 Version 3 Version 4 Version 5

Sun JDK 1.3.1 Client 100% 7.284% 7.157% 14.293% 1,97%

Sun JDK 1.3.1 Server 88% 195% 170% 331% 3,56%

Sun JDK 1.4.0 Client 89% 223% 214% 423% 2,36%

Sun JDK 1.4.0 Server 85% 196% 169% 334% 2,84%

IBM JDK 1.3.0 128% 253% 224% 440% 1,64%

Tabelle 11.2: Normalisierte Ausführungszeit fürs Lesen der serialisierten Form

Sandini Bib

264 11 RMI und Serialisierung

In beiden Tabellen sehen Sie jedoch Werte einer Version 5 von InternationalDate, die mit
geradezu unglaublich guten Werten aufwarten kann. Zugegeben, hier habe ich etwas
geschummelt, da diese Version nur unter günstigsten Umständen auf die angegebenen
Werte kommt. Nichtsdestoweniger ist das natürlich besser, als diese Werte nie zu errei-
chen.

Die Idee für InternationalDate5 ist folgende: InternationalDate ist unveränderbar. Das
bedeutet, dass wir einen Pool von Objekten anlegen können, die immer wieder ver-
wendet werden. Somit ersparen wir uns das ständige Neuerstellen gleicher Objekte.
Dies macht insbesondere Sinn für InternationalDate, da jede Instanz sehr aufwändig zu
erzeugen ist. Um sicherzustellen, dass nicht mehrere Instanzen eines Datums existie-
ren, deklarieren wir den Konstruktor als private und fügen eine Fabrikmethode hinzu.
Dies entspricht dem Singleton-Muster [Gamma96 S.139]. Als Pool verwenden wir
einen Cache aus Kapitel 8.4 Caches. Und dank der readResolve()-Methode können wir
während des Deserialisierens die getInstance()-Methode benutzen, um indirekt auf
den Cache zuzugreifen. Somit kontrollieren und limitieren wir die Anzahl an Interna-
tionalDate-Objekten und sorgen so dafür, dass nicht zu viel Speicher verschwendet
wird. Der Cache wird an die Klasse gebunden und ist somit pro Klassenobjekt der
InternationalDate-Klasse2 eindeutig.

Mit der Externalizable-Schnittstelle können wir diese Version übrigens nicht verwirkli-
chen, da diese einen öffentlichen, argumentlosen Konstruktor voraussetzt. Aus diesem
Grund setzen wir die Lösung mit Serializable um und serialisieren den Zeitwert.

Die Zeiten in Tabelle 11.1 und Tabelle 11.2 für Version 5 sind Testzeiten, die mit demsel-
ben Klassenobjekt gemessen wurden. Im Test lag die Cache-Trefferrate also bei 100 Pro-
zent. Dies ist der Grund dafür, dass die Lese-Zeiten so kurz sind – das Objekt musste
nicht extra instanziiert werden, da es sich bereits im Cache befand. Dies ist natürlich
nicht immer der Fall. Die Lösung macht also nicht für alle Anwendungen Sinn. Die-
jenigen, für die sie geeignet ist, profitieren jedoch stark.

package com.tagtraum.perf.serialization;

import com.tagtraum.perf.datastructures.Cache;
import com.tagtraum.perf.datastructures.RandomCache;

import java.io.*;
import java.text.SimpleDateFormat;
import java.util.*;

2 Die Identität einer Klasse besteht aus dem Paar Klassenobjekt und ClassLoader�Objekt. Das heißt,
wenn eine Klasse von zwei verschiedenen ClassLoader geladen wird, sind die resultierenden�Class�
Objekte nicht identisch. Somit ist der verwendete Cache nicht pro VM, sondern pro Class�Objekt
eindeutig.

Sandini Bib

Effiziente Serialisierung 265

public class InternationalDate5 implements Serializable {
 private transient Date date;
 private transient Map map;
 // Cache für InternationalDate5-Objekte
 private static Cache cache = new RandomCache(512);

 // Privater Konstruktor
 private InternationalDate5(Date date) {
 this.date = date;
 buildInternationalStrings();
 }

 // Fabrikmethode
 public static synchronized InternationalDate5
 getInstance(Date date) {
 InternationalDate5 iDate
 = (InternationalDate5) cache.get(date);
 if (iDate == null) {
 iDate = new InternationalDate5(date);
 cache.put(date, iDate);
 }
 return iDate;
 }

 public static InternationalDate5 getInstance() {
 return getInstance(new Date());
 }

// genau wie in InternationalDate1
...

 // Auflösen des date-Attributes zu einer Instanz
 private Object readResolve()
 throws ObjectStreamException {
 return getInstance(date);
 }

 private void writeObject(ObjectOutputStream out)
 throws IOException {
 out.writeLong(date.getTime());
 }

 private void readObject(ObjectInputStream in)
 throws IOException, ClassNotFoundException {
 date = new Date(in.readLong());
 }
}

Listing 11.5: Internationales Datum mit Cache

Sandini Bib

266 11 RMI und Serialisierung

11.1.2 Optimierte logische Darstellung

Im obigen Beispiel haben Sie gesehen, wie sich die Datenmenge effizient verkleinern
lässt. Wir wollen uns ein weiteres Beispiel anschauen. Listing 11.6 zeigt eine einfach-
verknüpfte Liste für Strings, die Serializable implementiert.

package com.tagtraum.perf.serialization;

import java.io.Serializable;

public class LinkedList1 implements Serializable {

 private Entry head;
 private int size;

 public LinkedList1() {
 head = new Entry();
 }

 public void add(String value) {
 Entry e = head;
 while (e.getNext() != null) {
 e = e.getNext();
 }
 Entry newEntry = new Entry();
 newEntry.setValue(value);
 e.setNext(newEntry);
 size++;
 }

 public String get(int index) {
 if (index >= size) throw new IndexOutOfBoundsException();
 Entry e = head.getNext();
 for (int i = 0; i < index; i++) {
 e = e.getNext();
 }
 return e.getValue();
 }

 public String remove(int index) {
 if (index >= size) throw new IndexOutOfBoundsException();
 Entry e = head.getNext();
 for (int i = 0; i < index; i++) {
 e = e.getNext();
 }
 e.getPrev().setNext(e.getNext());
 if (e.getNext() != null)
 e.getNext().setPrev(e.getPrev());
 return e.getValue();
 }

Sandini Bib

Effiziente Serialisierung 267

 private static class Entry implements Serializable {
 private Entry next;
 private Entry prev;
 private String value;

 public String getValue() {
 return value;
 }

 public void setValue(String value) {
 this.value = value;
 }

 public Entry getNext() {
 return next;
 }

 public void setNext(Entry next) {
 this.next = next;
 }

 public Entry getPrev() {
 return prev;
 }

 public void setPrev(Entry prev) {
 this.prev = prev;
 }
 }
}

Listing 11.6: Simple Implementierung einer einfach verlinkten Liste

Naiv betrachtet, ist an dieser Implementierung wenig auszusetzen. Wenn Sie diese
Liste jedoch benutzen, werden Sie evtl. feststellen, dass das Serialisieren und Deseriali-
sieren ab einer bestimmten Länge zu einem StackOverflowError führt. Der Grund hier-
für ist die simple Tatsache, dass der automatische Serialisierungsmechanismus den
Objektbaum rekursiv traversiert. Die Länge unserer Liste steht somit in direkter Bezie-
hung zur Rekursionstiefe – und die ist bei den meisten Systemen begrenzt. Auf einem
Windows-2000-System mit Sun JDK 1.4.0 lag die maximale Länge der Liste bei 730.

Statt sich also auf den automatischen Mechanismus zu verlassen, müssen wir uns ein
wenig anstrengen. Die offensichtliche Lösung ist es, zunächst die Länge der Liste zu
schreiben und dann ebenso viele Werte einzulesen. Entsprechend fügen wir readOb-
ject()- und writeObject()-Methoden hinzu und deklarieren head und size als transient
(Listing 11.7).

Sandini Bib

268 11 RMI und Serialisierung

package com.tagtraum.perf.serialization;

import java.io.*;

public class LinkedList2 implements Serializable {

 private transient Entry head;
 private transient int size;

 public LinkedList2() {
 head = new Entry();
 }

// genau wie LinkedList1
...

 private void writeObject(ObjectOutputStream out)
 throws IOException {
 out.writeInt(size);
 Entry e = head;
 while (e.getNext() != null) {
 e = e.getNext();
 out.writeObject(e.getValue());
 }
 }

 private void readObject(ObjectInputStream in)
 throws IOException, ClassNotFoundException {
 size = in.readInt();
 head = new Entry();
 Entry e = head;
 for (int i = 0; i < size; i++) {
 Entry newEntry = new Entry();
 newEntry.setValue((String) in.readObject());
 e.setNext(newEntry);
 e = newEntry;
 }
 }

 private static class Entry {

 // genau wie LinkedList1
 ...

 }
}

Listing 11.7: Bessere Serialisierung einer verknüpften Liste

Sandini Bib

Effiziente Serialisierung 269

Nicht nur, dass wir jetzt beliebig lange Listen serialisieren können, die Größe der seria-
lisierten Form sinkt auch leicht. Genauer gesagt, sie sinkt von 14.848 Byte auf 9.761
Byte bei identischem Inhalt (700 Strings der Länge 9-11). Dies lässt sich leicht noch ein
wenig verbessern, indem wir etwas sorgfältiger serialisieren. Anstatt nämlich Strings
mit writeUTF() und readUTF() zu schreiben und zu lesen, haben wir uns die Freiheit
genommen, die Methoden readObject() und writeObject() zu benutzen. Diese Nachläs-
sigkeit rächt sich in der resultierenden Größe. Mit writeUTF() und readUTF() (Listing
11.8) lässt sich diese immerhin von 9.761 Byte auf 9.104 Byte verringern.

Es lohnt sich, genau passende Methoden aus DataInput bzw. DataOutput zu benutzen.

package com.tagtraum.perf.serialization;

import java.io.*;

public class LinkedList3 implements Serializable {

 private transient Entry head;
 private transient int size;

// genau wie LinkedList1
...

 private void writeObject(ObjectOutputStream out)
 throws IOException {
 out.writeInt(size);
 Entry e = head;
 while (e.getNext() != null) {
 e = e.getNext();
 out.writeUTF(e.getValue());
 }
 }

 private void readObject(ObjectInputStream in) throws IOException,
ClassNotFoundException {
 size = in.readInt();
 head = new Entry();
 Entry e = head;
 for (int i = 0; i < size; i++) {
 Entry newEntry = new Entry();
 newEntry.setValue(in.readUTF());
 e.setNext(newEntry);
 e = newEntry;
 }
 }

 private static class Entry {

Sandini Bib

270 11 RMI und Serialisierung

 // genau wie LinkedList1
 ...

 }
}

Listing 11.8: LinkedList mit readUTF() und writeUTF()

11.2 Latenzzeiten und Overhead

Für jeden entfernten Methodenaufruf gibt es fixe Kosten, die insbesondere mit dem
Netzwerk zu tun haben. Jeder Verbindungsaufbau dauert halt ein wenig. Die simple
Regel, die sich daraus für RMI ableiten lässt, lautet:

Wenn Sie die Wahl haben, eine entfernte Methode oft mit wenigen Argumenten oder selten mit
vielen Argumenten bzw. großen Objekten aufzurufen, rufen Sie sie selten auf.

Die Erklärung dafür ist sehr einfach. Jeder Methodenaufruf habe fixe Kosten c und
jedes Objekt in einem dieser Aufrufe habe Kosten von o. Die Gesamtkosten für n Auf-
rufe mit m Objekten errechnen sich aus nc + mo. Es ist klar, dass die Kosten bei kon-
stantem m und steigendem n steigen.

Wir wollen dies durch ein kleines Experiment untermauern. Eine entfernte Methode
habe folgende Signatur:

public void send(String[] s) throws RemoteException;

In unserem Test rufen wir die Methode auf, um 1.000 Strings zu übertragen, und mes-
sen die Zeit. Dabei variieren wir die Anzahl der Strings, die pro Aufruf übertragen
werden, während die Gesamtanzahl der übertragenen Strings gleich bleibt.

Das Ergebnis in Tabelle 11.3 zeigt deutlich, dass die Übertragung umso schneller von-
statten geht, je weniger Methodenaufrufe wir verwenden.

Eine direkte Anwendung dieses Wissen ist das Value-Object-Muster, das besonders im
J2EE/EJB-Umfeld beliebt ist. Statt über die einzelnen get()-Methoden eines entfernten
Objektes einzelne Werte abzufragen, fragt man nach einem einzigen Objekt, das alle
Attribute eines Objekts beinhaltet.

Methodenaufrufe 1.000 100 10 1

Zeit 100% 14,8% 4,5% 3,0%

Tabelle 11.3: Normalisierte Ausführungszeit für das Übertragen von 1.000 Strings

Sandini Bib

Verteilte Speicherbereinigung 271

11.3 Verteilte Speicherbereinigung

In verteilten Systemen reicht die lokale Speicherverwaltung nicht aus. Daher verfügt
RMI über eine verteilte Speicherverwaltung, die sicherstellt, dass Objekte, die von
anderen Java VM referenziert werden, nicht vorzeitig beseitigt werden. Sie stellt
zudem sicher, dass entfernte Objekte überhaupt beseitigt werden.

Wenn Sie also ein entferntes Objekt benutzen, wird dem Objekt-Server mitgeteilt, dass
Sie dieses Objekt referenzieren. Es wird zudem automatisch periodisch signalisiert,
dass Sie das Objekt noch für eine Weile länger benutzen wollen. Wenn Sie das entfernte
Objekt nicht mehr benutzen, wird dies ebenso signalisiert.

Natürlich ist das Signalisieren nicht gratis, denn schließlich werden Nachrichten über
das Netzwerk übermittelt. Dass diese Nachrichten übermittelt werden, ist Teil des Sys-
tems und steht außer Frage. Interessant ist jedoch, wie häufig diese Nachrichten über-
mittelt werden. Und genau dieser Parameter lässt sich konfigurieren.

Sie können beim Start der VM, die Ihr entferntes Objekt ausführt, den Parameter
java.rmi.dgc.leaseValue setzen. Dieser Parameter spezifiziert die Zeit in Millisekunden,
die ein entferntes Objekt seinen Klienten garantiert, dass es noch existiert. Gewöhnlich
wird von Klienten nach Ablauf der Hälfte dieser Zeit eine neue Garantie angefordert.
Der voreingestellte Wert liegt bei zehn Minuten. Wenn Sie diesen Wert erhöhen, verrin-
gern Sie also die Netzbelastung. Die Kehrseite ist jedoch, dass entfernte Objekte länger
als nötig im Speicher verbleiben. Eventuell kann es sich also auch lohnen, genau umge-
kehrt zu verfahren und den Wert zu verringern.

Beispiel:

java –Djava.rmi.dgc.leaseValue=120000000 <mainclass>

Letztendlich müssen sowohl Referenzen auf entfernte Objekte als auch die entfernten
Objekte irgendwann von der Speicherbereinigung beseitigt werden. Um sicherzustel-
len, dass dies auch in endlicher Zeit passiert, ruft die Sun-Implementierung von RMI
die Speicherbereinigung periodisch mittels System.gc() auf. Dabei handelt es sich um
eine vollständige Speicherbereinigung. Die Dauer dieser Periode lässt sich mit den
Parametern sun.rmi.dgc.client.gcInterval bzw. sun.rmi.dgc.server.gcInterval beim
Start der VM setzen. Der Server-Parameter sollte für VMs gesetzt werden, die entfernte
Objekte ausführen, der Client-Parameter für VMs, die entfernte Objekte benutzen. Die
voreingestellten Werte für beide Parameter sind 60.000 Millisekunden, also eine
Minute. Diesen Wert zu erhöhen macht insbesondere Sinn bei Systemen, die über einen
großen Heap verfügen, da eine vollständige Speicherbereinigung sehr viel Zeit kosten
kann. Dies ist vergeudete Zeit, wenn der Heap noch nicht voll ist. Es kann sich also
lohnen, die Speicherbereinigungsaktivität zu verfolgen und die Werte der beiden Para-
meter entsprechend zu verändern.

Sandini Bib

Sandini Bib

12 XML

Seit JDK 1.4.0 ist Unterstützung für XML (Extensible Markup Language) Teil der Java-
Entwicklungsumgebung. Bereits vorher war XML-Unterstützung als optionales Paket
mit Namen JAXP (Java API for XML Processing) von Sun erhältlich. JAXP ist im Wesent-
lichen eine Schnittstelle zu XML-Parsern sowie eine Schnittstelle zu XSLT (Extensible
Stylesheet Language Transformations). In diesem Kapitel werden wir uns mit Perfor-
mance-Aspekten von Parsern sowie einigen anderen XML-bezogenen Problemen aus-
einander setzen.

12.1 SAX, DOM & Co

JAXP unterstützt zwei verschiedene Parser-Modelle, deren Performance in Hinblick
auf Speicherverbrauch und Geschwindigkeit sehr unterschiedlich sein kann: SAX
(Simple API for XML) und DOM (Document Object Model). Zudem existiert noch eine
dritte, nennenswerte Parsergattung namens Pull-Parser, die jedoch nicht von JAXP
unterstützt wird. Wir werden kurz alle drei Gattungen erläutern.

12.1.1 SAX

SAX ist eine Schnittstelle, die von Mitgliedern der XML-DEV Mailingliste entwickelt
wurde. Sie ist einfach, leichtgewichtig und gehört zur Gattung der Push-Parser. Um
SAX zu benutzen, müssen Sie eine org.xml.sax.ContentHandler-Klasse implementieren,
eine Instanz dieser Klasse bei einem XMLReader registrieren und anschließend dessen
parse()-Methode aufrufen. Der Parser ruft dann für jedes Element die entsprechende
Methode ihres ContentHandlers auf (Abbildung 12.1). Und dies ist auch genau die
wesentliche Eigenschaft von SAX: Der Parser ruft die Methoden eines Handlers auf.
Das heißt der Parser hat die Kontrolle und der Handler reagiert. Solche Parser werden
auch als Push-Parser oder ereignisorientierte Parser bezeichnet.

Da der SAX-Parser für alle XML-Elemente der Reihe nach Methoden eines Handlers
aufruft, eignet sich SAX hervorragend für einen stromorientierten, sequenziellen
Zugriff auf XML-Dokumente. Es ist jedoch ungeeignet für wahlfreien Zugriff.

Sandini Bib

274 12 XML

Um die Benutzung von SAX ein wenig zu vereinfachen, existiert eine Klasse
org.xml.sax.helpers.DefaultHandler, die bereits die Methoden von ContentHandler sowie
einigen anderen Schnittstellen implementiert. Falls Sie SAX benutzen wollen, bietet es
sich also an, von DefaultHandler zu erben und die benötigten Methoden zu überschrei-
ben. Zudem wird die XMLReader-Klasse von JAXP durch eine SAXParser-Klasse gekapselt,
die wiederum von einer SAXParserFactory erzeugt wird. Somit kommen Sie mit dem
XMLReader-Interface kaum in Berührung.

package com.tagtraum.perf.xml;

import org.xml.sax.Attributes;
import org.xml.sax.SAXException;
import org.xml.sax.helpers.DefaultHandler;
import javax.xml.parsers.SAXParser;
import javax.xml.parsers.SAXParserFactory;
import java.io.File;

public class SimpleSAXDemo {

 // Gibt die Namen aller Elemente einer XML-Datei aus.
 public static void main(String[] args) throws Exception {
 SAXParserFactory parserFactory
 = SAXParserFactory.newInstance();
 SAXParser parser = parserFactory.newSAXParser();
 parser.parse(new File(args[0]), new DefaultHandler() {

 public void startElement(String namespaceURI,
 String localName, String qName, Attributes atts)
 throws SAXException {
 System.out.println(qName);
 }

 });
 }
}

Listing 12.1: SAX-basierter Parser, der die Namen aller Tags einer XML-Datei ausgibt

Abbildung 12.1: Verarbeitungskonzept von SAX

XML-
Dokument SAX-Parser

SAX-Parser-Fabrik

Content-Handler

Error-Handler

DTD-Handler

Entity-Resolver

Ereignisse

Sandini Bib

SAX, DOM & Co 275

Listing 12.1 zeigt ein einfaches Programm, das die Namen aller Elemente einer XML-
Datei ausgibt. Um dies zu erreichen haben wir einfach die Methode startElement()
eines DefaultHandlers überschrieben und diesen als Argument an die parse()-Methode
eines SAXParser-Objektes übergeben.

12.1.2 DOM

DOM ist ein Objekt-Modell des World Wide Web Konsortiums (W3C – http://www.w3c.org/).
Es dient zur hierarchischen Darstellung von Dokumenten in einer Baumstruktur. Zum
Erstellen dieser Darstellung wird meist das gesamte Dokument in einem Rutsch analy-
siert. Dabei werden für alle Knoten des Baums entsprechende Objekte instanziiert.
Anschließend wird die Wurzel des Baums in Form eines org.w3c.dom.Document-Objektes
an den Klienten zurückgegeben (Abbildung 12.2). Das bedeutet, dass der Benutzer nach
dem Aufruf der parse()-Methode den vollständig geparsten Baum zurückbekommt.

DOM-Repräsentationen eines XML-Dokuments halten meist den gesamten Doku-
ment-Baum im Speicher. Sie ermöglichen so schnellen wahlfreien Zugriff auf einzelne
Dokument-Elemente sowie leichtes Traversieren des Baumes.

Dadurch, dass die Repräsentation im Speicher liegt, haben DOM-Implementierungen
einen enormen Speicherverbrauch. Dies ist auch ihr größter Nachteil.

Zum Vergleich: Eine XML-Fassung von Goethes Faust II hat 9.755 Elemente und eine
Größe von 551 KByte.1 Wenn man sie mit dem in Sun JDK 1.4.0 enthaltenen Crimson-
SAX-Parser durchliest, steigt der Heapspeicherverbrauch nicht über 1 Mbyte. Liest
man dieselbe Datei dagegen mit dem Crimson-DOM-Parser, steigt der Heapspeicher-
verbrauch auf rund 5 Mbyte – beinahe das Zehnfache der Dokumentgröße.

Abbildung 12.2: Verarbeitungskonzept von DOM

1 Die benutzte Fassung basiert auf der Version von http://www.kalliope.org/.

XML-
Dokument DOM-Parser

DOM-Parser-Fabrik

Error-Handler

Entity-Resolver

DOM-Baum

Sandini Bib

276 12 XML

Einige Implementierungen wie Apache Xerces-J (http://xml.apache.org/) versuchen dieses
Problem zu lindern, indem sie Teile des Baumes erst beim Benutzen vollständig instan-
ziieren (Deferred Node Expansion). Dadurch wird das Document-Objekt schneller vom
Parser zurückgegeben und der Speicherverbrauch leicht gesenkt – sofern nicht jedes
Element des Dokuments benutzt wird.

Listing 12.2 zeigt ein sehr einfaches Programm, das genau wie das SAX-Beispiel in Lis-
ting 12.1 ein XML-Dokument liest und jeweils die Namen der XML-Tags ausgibt.
Dabei wird JAXP als Schnittstelle zu einem DOM-Parser benutzt.

package com.tagtraum.perf.xml;

import org.w3c.dom.Document;
import org.w3c.dom.NodeList;
import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import java.io.File;

public class SimpleDOMDemo {

 public static void main(String[] args) throws Exception {
 DocumentBuilderFactory builderFactory
 = DocumentBuilderFactory.newInstance();
 DocumentBuilder documentBuilder
 = builderFactory.newDocumentBuilder();
 Document document = documentBuilder.parse(new File(args[0]));
 // Besorge Liste mit allen Elementen.
 // Achtung! getElementeByTagName() ist in einigen Parsern
 // sehr langsam!
 NodeList list = document.getElementsByTagName("*");
 for (int i = 0; i < list.getLength(); i++) {
 System.out.println(list.item(i).getNodeName());
 }
 }
}

Listing 12.2: DOM-basiertes Programm, das die Namen aller Elemente einer XML-Datei ausgibt

12.1.3 Pull-Parser

Pull-Parser sind Parser, die nur aktiv sind, wenn der Benutzer dies wünscht. Das heißt
es wird nicht immer der komplette Dokument-Baum im Speicher aufgebaut oder ein
Handler über alles in Kenntnis gesetzt, sondern immer nur das gelesen, was der Klient
wünscht. Es lassen sich sogar ganze Baum-Knoten überspringen.

Somit liegt die Kontrolle nicht beim Parser, sondern beim Klienten, was zu einer effiziente-
ren Benutzung des Parsers führen kann. Ein Beispiel für einen Pull-Parser ist XPP (XML-

Sandini Bib

SAX, DOM & Co 277

Pull-Parser) des Extreme! Labs der Universität von Indiana (http://www.extreme.indiana.edu/
xgws/xsoap/xpp/). XPP unterstützt keine Validierung, Entitäten, Kommentare oder Verar-
beitungsanweisungen (Processing Instructions) und ist somit nicht universell einsetzbar.
Er kann jedoch Dokument-Teile parsen und ist für J2ME geeignet.

XPP bietet dem Benutzer sowohl eine Baum- als auch eine Ereignissicht (Abbildung
12.3). Listing 12.3 und Listing 12.4 zeigen Beispielprogramme für beide Sichten.

Für Faust II liegt der Heapspeicherverbrauch der Ereignissicht relativ konstant bei 1½
Mbyte. Bei der Baumsicht steigt der Speicherverbrauch während des Parsens auf
knapp 5 Mbyte an. Würden wir Teile des Baumes beim Parsen überspringen oder
bewusst nur einen Teil des Baumes parsen, wäre der Speicherverbrauch entsprechend
geringer. Grundsätzlich können Sie während des Parsens leicht zwischen Baum- und
Ereignissicht wechseln. Diese Wahl haben Sie bei anderen Parsern in der Regel nicht.

package com.tagtraum.perf.xml;

import org.gjt.xpp.XmlPullParser;
import org.gjt.xpp.XmlPullParserFactory;
import java.io.FileReader;

public class SimpleXPPEventDemo {
 public static void main(String[] args) throws Exception {
 XmlPullParserFactory parserFactory
 = XmlPullParserFactory.newInstance();
 XmlPullParser parser = parserFactory.newPullParser();
 parser.setInput(new FileReader(args[0]));
 // Lesen, bis das Ende des Dokumente erreicht ist.

Abbildung 12.3: Verarbeitungskonzept von XPP

XML-
Dokument XML-Pull-Parser

XPP-Parser-Fabrik

XmlPullNode

Klient

Ereignis-
sicht

Baum-
sicht

Sandini Bib

278 12 XML

 while (parser.next() != XmlPullParser.END_DOCUMENT) {
 if (parser.getEventType() == XmlPullParser.START_TAG) {
 // Gib alle Namen von Start-Tags aus.
 System.out.println(parser.getRawName());
 }
 }
 }
}

Listing 12.3: XPP-basiertes Programm, das die Namen aller Elemente einer XML-Datei ausgibt und dazu sequen-
ziellen Zugriff benutzt

package com.tagtraum.perf.xml;

import org.gjt.xpp.XmlPullNode;
import org.gjt.xpp.XmlPullParser;
import org.gjt.xpp.XmlPullParserFactory;
import java.io.FileReader;

public class SimpleXPPTreeDemo {
 public static void main(String[] args) throws Exception {
 XmlPullParserFactory parserFactory
 = XmlPullParserFactory.newInstance();
 XmlPullParser parser = parserFactory.newPullParser();
 parser.setInput(new FileReader(args[0]));
 // Finde erstes Element.
 while (parser.next() != XmlPullParser.START_TAG) {}
 XmlPullNode node = parserFactory.newPullNode(parser);
 printElementName(node);
 }

 // Tarversiert rekursiv durch den Baum und druckt alle
 // Start-Element-Namen.
 private static void printElementName(XmlPullNode node)
 throws Exception {
 System.out.println(node.getRawName());
 Object object;
 while ((object = node.readNextChild()) != null) {
 if (object instanceof XmlPullNode) {
 printElementName((XmlPullNode) object);
 }
 }
 }
}

Listing 12.4: XPP-basiertes Programm, das die Namen aller Elemente einer XML-Datei ausgibt und dazu das
Baummodell benutzt

Sandini Bib

Kleiner Modellvergleich 279

12.2 Kleiner Modellvergleich

Es ist sehr schwierig, die verschiedenen Ansätze allgemeingültig und dennoch aus-
sagekräftig quantitativ zu vergleichen. Insbesondere spielt die Beschaffenheit der zu
verarbeitenden XML-Dokumente und die Art der Anwendung eine große Rolle.

Wir wollen dennoch einen kleinen Vergleich wagen, um uns eine grobe Vorstellung zu
verschaffen. Zu diesem Zweck werden die oben abgedruckten Demo-Programme mit
Faust II gefüttert und die Verarbeitungszeit gemessen. Um nicht die Ausgabege-
schwindigkeit der Konsole zu messen, werden die Elementnamen jedoch nicht ausge-
geben. Zudem stellt sich heraus, dass im Crimson-Parser des Sun JDK 1.4.0 die
Methode document.getElementsByTagName() mangelhaft implementiert ist. Daher benut-
zen wir für den DOM-Test folgenden funktional gleichwertigen und in unserem Test
etwa 600-mal schnelleren Code:

package com.tagtraum.perf.xml;

import org.w3c.dom.*;
import javax.xml.parsers.*;
import java.io.File;

public class DOMBenchDemo2 {
 public static void main(String[] args) throws Exception {
 DocumentBuilderFactory builderFactory
 = DocumentBuilderFactory.newInstance();
 builderFactory.setValidating(false);
 builderFactory.setNamespaceAware(false);
 DocumentBuilder documentBuilder
 = builderFactory.newDocumentBuilder();
 File file = new File(args[0]);
 parse(documentBuilder, file);
 }

 private static void parse(DocumentBuilder documentBuilder,
 File file) throws Exception {
 long start = System.currentTimeMillis();
 Document document = documentBuilder.parse(file);
 traverse(document.getDocumentElement());
 System.out.println(System.currentTimeMillis() - start);
 }
 private static void traverse(Element element) throws Exception {
 // Greife auf den Namen zu, ohne ihn jedoch auszugeben.
 element.getTagName();
 NodeList list = element.getChildNodes();
 for (int i=0, length = list.getLength(); i<length; i++) {

Sandini Bib

280 12 XML

 if (list.item(i).getNodeType() == Node.ELEMENT_NODE) {
 traverse((Element)list.item(i));
 }
 }
 }
}

Listing 12.5: Traversieren des DOM mittels rekursiver Aufrufe der Methode getChildNodes() kann um ein Vielfa-
ches schneller sein als mit getElementsByTagName()

Abbildung 12.4 zeigt das Ergebnis unseres Tests. SAX ist der klare Sieger, gefolgt von
XPP mit Ereignissicht. DOM und die XPP-Baumsicht sind in etwa gleichauf. Benutzt
wurden jeweils die Standard-SAX- und DOM-Implementierungen aus Sun JDK 1.4.0
(Crimson) sowie XPP 2.1.7. Beim Testen fiel auf, dass die Server-VM in den ersten Parse-
Durchgängen die meiste Zeit mit Kompilieren und Speicherbereinigung verbrachte. Erst
in späteren Durchgängen wurden bessere Zeiten als mit der Client-VM erreicht. Wenn
Sie realistische Tests durchführen wollen, parsen Sie also auf jeden Fall mehr als einmal.

Beim ersten Test waren weder Validierung noch Unterstützung für Namensräume ein-
geschaltet. Beide wirken sich jedoch auf die Verarbeitungsgeschwindigkeit aus. Daher
wollen wir den Test nochmals mit diesen Optionen durchführen.

Abbildung 12.5 zeigt, dass sowohl Validierung als auch die Unterstützung von
Namensräumen das Parsen verlangsamen. Insbesondere auf SAX wirkt sich die Kom-
bination der beiden Optionen relativ gesehen sehr negativ aus.

Abbildung 12.4: Dauer des Parsens und Besuchens jedes Elements in Faust II ohne Validierung oder Namensräume
in Abhängigkeit von VM und Parse-Modell

0

20

40

60

80

100

120

DOM SAX XPP
Ereignis

XPP Baum

no
rm

al
is

ie
rt

e
A

us
fü

hr
un

gs
ze

it

JDK 1.4.0 client JDK 1.4.0 server

Sandini Bib

Den richtigen Parser wählen 281

Als Ergebnis unseres kleinen Vergleichs lässt sich festhalten, dass zum Ausgeben aller
Elementnamen in unserem Faust-II-Dokument von den getesteten Varianten der ver-
wendete SAX-Parser ohne Validierung und Namensraumunterstützung am besten
geeignet ist. Das ist jedoch auch schon alles. Lassen Sie sich nicht von Tests anderer
oder gar der Anbieter irreführen. Letztlich zählen nur Ihre Anforderungen und Ihre
Umgebung – und dazu gehört auch die VM. Xerces-J wird zu einem großen Teil von
IBM-Mitarbeitern entwickelt, Crimson von Sun. Sie können sich vorstellen, für welche
VM die beiden Parser jeweils optimiert wurden.

12.3 Den richtigen Parser wählen

Um den richtigen Parser zu finden, müssen Sie im Grunde zunächst eine Entscheidung
für eine Parsergattung fällen. Die wichtigsten Fragen sind hierbei, wie Sie auf Doku-
mente zugreifen wollen und wie diese Dokumente beschaffen sind. Beispielsweise spielt
der Speicherverbrauch für kleine Dokumente nicht so eine große Rolle wie für große
Dokumente. Genauso ist wahlfreier Zugriff sehr aufwändig und für viele Anwendun-
gen unnötig. Vielleicht benötigen Sie auch nur einen Parser, der lediglich eine Unter-
menge vom XML beherrscht, dafür aber sehr klein und schnell ist sowie auch unter
J2ME läuft. Es ist extrem wichtig, dass Sie sich darüber klar werden, welche Dokumente
Sie unter welchen Rahmenbedingungen auf welche Art verarbeiten wollen.

Erst wenn Sie sich über Ihre Bedürfnisse im Klaren sind, sollten Sie eine Parsergattung
wählen. Nach der Entscheidung für die Gattung steht die Entscheidung für eine Imple-
mentierung an. Falls Sie sich für DOM oder SAX entscheiden, können Sie sich glücklich

Abbildung 12.5: Dauer des Parsens und Besuchens jedes Elements in Faust II in Abhängigkeit von Parse-Modell
sowie Validierung und Namensraumunterstützung

0

20

40

60

80

100

120

DOM SAX

no
rm

al
is

ie
rt

e
A

us
fü

hr
un

gs
ze

it

Normal Validiert

Namensräume Validiert/Namensräume

Sandini Bib

282 12 XML

schätzen. JAXP ermöglicht es Ihnen, die Implementierung auszutauschen ohne eine Zeile
Code zu verändern. Die XPP-Implementierung lässt sich dank Abstrahierung durch
Schnittstellen ähnlich einfach austauschen. Neben XPP existiert noch eine zweite Imple-
mentierung speziell für die J2ME-Umgebung namens kXML2 (http://www.kxml.org/).

Ich kann Ihnen leider keine Empfehlung für eine Implementierung geben. Was bleibt
ist der gut gemeinte Rat, dass nur Testen hilft – und zwar mit Dokumenten, die Sie spä-
ter auch verwenden werden. Einige Parser scheinen geeigneter für große als für kleine
Dokumente zu sein. Andere haben eine sehr schnelle SAX-Unterstützung oder eine
sehr sparsame DOM-Unterstützung.

Welche Implementierung Sie wählen sollten, hängt von folgenden Faktoren ab:

� Parsergattung (DOM, SAX, XPP, ...)

� Unterstützte Schnittstellen (beispielsweise DOM Level 3, SAX 2, ...)

� Dokumentgröße

� Komplexität und Größe der DTD bzw. des XML-Schemas

� Zeit

Der Faktor Zeit ist daher so wichtig, weil wir uns noch immer in einem XML-Hype
befinden. Viele Firmen und Organisationen stehen in einem harten Wettbewerb zuei-
nander, so dass in einem halben Jahr einiges passieren kann. Wenn Sie sich also früh
auf die schnelle, aber proprietäre Parser-Technologie eines Nischenanbieters festlegen,
können Sie leicht den Anschluss an den Mainstream verlieren. Und der Mainstream ist
eventuell in einem halben Jahr viel schneller als der Nischenanbieter, der inzwischen
Konkurs angemeldet hat.

12.4 XML ausgeben

Nicht nur das Lesen, auch das Schreiben von XML ist eine zeitkritische Angelegenheit.
Grundsätzlich gilt:

Der schnellste Weg XML zu produzieren, ist einfach in einen gepufferten Strom zu schreiben.
Dies ist jedoch auch der fehleranfälligste.

Einer der sichersten Wege, XML zu produzieren, ist es, einen DOM-Baum aufzubauen
und diesen anschließend in einen gepufferten Strom zu schreiben. Dies ist deshalb
wenig fehleranfällig, weil Sie nicht vergessen können, ein Tag zu schließen. Der Preis
dafür ist ein hoher Speicherverbrauch, da Sie den gesamten Baum im Speicher halten
müssen, bevor Sie ihn ausgeben.

Sandini Bib

XML ausgeben 283

Falls Sie sich für diese Form der Ausgabe entscheiden sollten, ziehen Sie in Betracht
zur Ausgabe des DOM das Xerces-J-Paket org.apache.xml.serialize zu benutzen. Es ist
zwar Teil von Xerces-J, jedoch unabhängig von der Parser-Implementierung. Eine
Alternative zu diesem Paket sind die Lade- und Speicher-Features von DOM Level 3
(http://www.w3.org/TR/DOM-Level-3-ASLS/). Da DOM nur durch Schnittstellen spezifi-
ziert ist, kann es sein, dass die entsprechenden Klassen einer DOM-Implementierung
besonders aufeinander abgestimmt und daher optimiert sind. Daher macht es durch-
aus Sinn, diese Features zu verwenden, sobald DOM Level 3 dem Entwurfsstadium
entwachsen ist und allgemein unterstützt wird. Sun JDK 1.4.0 bietet zurzeit nur DOM
Level 2. Jedoch verfügt Xerces-J 2.0.1 bereits über eine rudimentäre DOM-Level-3-
Unterstützung.

Listing 12.6 zeigt beispielhaft, wie Sie ein Dokument mit einem org.w3c.dom.ls.DOMWri-
ter in die Standardausgabe drucken können.

Document document = ...
DOMImplementation domImpl = DOMImplementationRegistry
 .getDOMImplementation("Core 2.0 LS-Save 3.0");
if (domImpl != null) {
 DOMImplementationLS implls = (DOMImplementationLS) domImpl;
 DOMWriter writer = implls.createDOMWriter();
 writer.writeNode(System.out, document);
}
else {
 System.out.println("Konnte keinen DOM-Level-3-Parser finden,"
 + " der Speichern unterstützt.");
}

Listing 12.6: Beispiel-Code für die Ausgabe eines DOM-Baums mit DOM Level 32

Ein Kompromiss zwischen DOM und rohem Strom ist ein an den SAX-ContentHandler
angelehnter XMLWriter (Listing 12.7). Während Sie XML ausgeben, kontrolliert dieser,
ob die Tags in der richtigen Reihenfolge geschrieben werden. Dieses Vorgehen ist aller-
dings nur sinnvoll, wenn Sie das Dokument nicht anschließend im selben Prozess mit
Stylesheets manipulieren wollen.

package com.tagtraum.perf.xml;

import org.xml.sax.*;
import org.xml.sax.helpers.DefaultHandler;
import java.io.*;
import java.util.*;

public class XMLWriter extends DefaultHandler {

2 Gemäß Entwurf vom 9. April 2002.

Sandini Bib

284 12 XML

 private PrintWriter out;
 private String encoding;
 private List stack;
 private boolean canonical;

 public XMLWriter(OutputStream out, String encoding,
 boolean canonical) throws UnsupportedEncodingException {
 this.out = new PrintWriter(new BufferedWriter(
 new OutputStreamWriter(out, encoding)));
 stack = new ArrayList();
 ...
 }

 ...

 public void startElement(String uri, String local, String raw,
 Attributes attrs) throws SAXException {
 stack.add(raw);
 insert(stack.size());
 out.print('<');
 out.print(raw);
 if (attrs != null) {
 // schreibe Attribute
 ...
 }
 out.print('>');
 }

 public void endElement(String uri, String local, String raw)
 throws SAXException {
 String expectedTag = (String) stack.remove(stack.size() - 1);
 if (!raw.equals(expectedTag))
 throw new SAXException("Expected </" + expectedTag
 + "> instead of </" + raw + ">.");
 out.print("</");
 out.print(raw);
 out.print('>');
 }

 // Schließt alle Tags, die noch offen sind.
 public void endAllPendingElements() {
 while (!stack.isEmpty()) {
 out.print("</");
 out.print(stack.remove(stack.size() - 1));
 out.print('>');
 }
 }
 ...

}

Listing 12.7: Ausschnitt aus einem XMLWriter, der überprüft, ob Elemente in der richtigen Reihenfolge ausgegeben
werden

Sandini Bib

DOM-Bäume traversieren 285

12.5 DOM-Bäume traversieren

Wie oben bereits erwähnt, ist die Methode document.getElementsByTagName() des Crim-
son-Parsers aus Sun JDK 1.4.0 nicht gerade ein Ausbund an Spritzigkeit. Grundsätzlich
ist diese Methode jedoch bei großen Objekt-Bäumen ohnehin nicht zu empfehlen, da
sie eine neue Liste mit allen passenden Knoten erstellt. Dies ist sehr speicherintensiv.
Wesentlich eleganter ist der Zugriff über einen org.w3c.dom.traversal.NodeIterator der
W3C-Schnittstelle DOM Level 2 Traversal and Range (http://www.w3.org/TR/2000/REC-
DOM-Level-2-Traversal-Range-20001113/). Leider wird auch dieses API nicht von Sun
JDK 1.4.0 unterstützt. Zu den oben bereits vorgestellten zwei Methoden alle Tagnamen
auszugeben (getElementsByTagName("*") und rekursives Traversieren) gesellt sich also
noch eine dritte hinzu. Listing 12.8 zeigt ein Beispiel.

package com.tagtraum.perf.xml;

import org.w3c.dom.*;
import org.w3c.dom.traversal.*;
import javax.xml.parsers.*;
import java.io.File;

public class DOMNodeIteratorDemo {

 public static void main(String[] args) throws Exception {
 DocumentBuilderFactory builderFactory
 = DocumentBuilderFactory.newInstance();
 DocumentBuilder documentBuilder
 = builderFactory.newDocumentBuilder();
 Document document = documentBuilder.parse(new File(args[0]));
 // Folgendes funktioniert nur, wenn die DOM-Implementierung
 // DOM Level 2 Traversal and Range unterstützt.
 DocumentTraversal traversable = (DocumentTraversal)document;
 NodeIterator iterator = traversable
 .createNodeIterator(document, NodeFilter.SHOW_ELEMENT,
 null, true);
 Element element;
 while ((element = (Element) iterator.nextNode()) != null) {
 System.out.println(element.getTagName());
 }
 }
}

Listing 12.8: NodeIterator, der die Namen aller Tags einer XML-Datei ausgibt

Um die drei Arten, alle Tags eines DOM-Baums zu besuchen, zu vergleichen, lesen wir
jeweils Faust II ein und messen anschließend die Zeit, die zum Traversieren benötigt
wird, sowie den dadurch verursachten zusätzlichen Speicherverbrauch. Da Crimson in
der aktuellen Version keine NodeIteratoren unterstützt, führen wir diesen Test mit
Apache Xerces-J 2.0.1 und der Sun JDK 1.4.0 Client-VM durch.

Sandini Bib

286 12 XML

Xerces-J 2.x verfügt über die Fähigkeit, Knoten erst bei Bedarf endgültig zu initialisie-
ren (Deferred Node Expansion). Daher führen wir je einen Lauf mit und einen ohne
dieses Feature durch. Beim Lauf mit Deferred Node Expansion erfolgt ein Teil des Par-
sens erst zur Zeit der Traversion, während ohne Deferred Node Expansion das Doku-
ment vollständig vor der Traversion geparsed wird. Deshalb erwarten wir beim Lauf
mit Deferred Node Expansion eine wesentlich längere Iterationszeit und einen größe-
ren Zuwachs des Speicherverbrauchs. Dies trifft auch so ein.

Tabelle 12.1 zeigt, dass die selbst geschrieben traverse()-Methode am besten abschnei-
det, da sie zwar genauso schnell ist wie der NodeIterator, aber einen geringeren Spei-
cherverbrauch verursacht. Es fällt zudem auf, dass der Speicherverbrauchszuwachs
der NodeIterator-Variante mit Deferred Node Expansion nur halb so groß ist wie der
der anderen Varianten mit Deferred Node Expansion. Anscheinend kann der Xerces-
NodeIterator also vom Wissen über Implementierungsdetails des Xerces-Parsers profi-
tieren und so den Speicherverbrauch minimieren. Daher gilt:

Es kann sich lohnen, einen NodeIterator zu benutzen, sofern dieser vom Parser angeboten wird.

Tatsächlich gibt es noch einen vierten Weg über alle Tags zu iterieren – nämlich mit Hilfe
eines org.w3c.dom.traversal.TreeWalkers. Während der NodeIterator eine sequenzielle
Sicht auf den Baum liefert, offeriert der TreeWalker eine hierarchische Sicht. Das heißt
man kann nicht nur vor und zurück, sondern auch hoch und runter navigieren. Gegen-
über dem NodeIterator bietet ein TreeWalker für unser Beispiel jedoch keinerlei Vorteile.

12.6 XML komprimieren

XML ist mit jedem simplen Editor lesbar und performante Parser sind für fast alle
Plattformen zu haben – Fakten, die begeistern. Wenn es um Speicherverbrauch und
effiziente Netzwerk-Nutzung geht, ist XML jedoch nicht gerade für seine Sparsamkeit
bekannt. Da lässt die Freude schon mal ein wenig nach.

Traversionsart Normalisierte
Ausführungszeit

Zuwachs im
Speicherverbrauch

NodeIterator 100% 16 Kbyte

getElementsByTagName("*") 220% 110 Kbyte

traverse() 100% 13 Kbyte

NodeIterator mit Deferred Node Expansion 1442% 917 Kbyte

getElementsByTagName("*") mit Deferred
Node Expansion

1522% 1.994 Kbyte

traverse() mit Deferred Node Expansion 1242% 1.841 Kbyte

Tabelle 12.1: Vergleich der Performance verschiedener Methoden zum Besuchen aller Tags

Sandini Bib

XML komprimieren 287

Zum Glück lassen sich Speicherhunger und Bandbreitenschwund mit Daten-Kompres-
sion bekämpfen. Und gerade wegen seiner exorbitanten Redundanz kann man XML ganz
hervorragend komprimieren. Für die Lagerung in langsamen Speichern wie Festplatten
bieten sich System-Werkzeuge wie gzip, zip und bzip an. Zumindest gzip und zip werden
auch von Java exzellent unterstützt. Die entsprechenden Klassen befinden sich im Paket
java.util.zip und sind sehr performant. Das Speicherproblem lässt sich also leicht lösen.

Was bleibt, ist das Netzwerkproblem. Wenn Sie beide Enden der Kommunikation kon-
trollieren oder ein Protokoll verwenden, das verschiedene Kompressionsalgorithmen
unterstützt, können Sie auch hier gzip benutzen. Eines dieser Protokolle ist HTTP.

12.6.1 HTTP

Wenn Webbrowser eine Anforderung an einen Webserver schicken, signalisieren sie
meistens, dass sie in der Lage sind, gzip-kodierte Dokumente zu verarbeiten. Dies
geschieht mit dem Accept-Encoding-Header. Hier ein Beispiel für eine Anforderung von
Microsoft Internet Explorer 5.5:

GET /test.html HTTP/1.1
Connection: Keep-Alive
Accept-Language: de
Host: 127.0.0.1:8080
Accept-Encoding: gzip, deflate
Accept: */*
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)

Und hier eine Anforderung von Netscape 6.2.1:

GET /test.html HTTP/1.1
Connection: keep-alive
Accept-Language: de-DE
Accept-Encoding: gzip, deflate, compress;q=0.9
Accept: text/xml, application/xml, application/xhtml+xml,
 text/html;q=0.9, image/png, image/jpeg, image/gif;q=0.2,
 text/plain;q=0.8, text/css, */*;q=0.1
Host: 127.0.0.1:8080
Accept-Charset: ISO-8859-1, utf-8;q=0.66, *;q=0.66
Keep-Alive: 300
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.0; de-DE;
 rv:0.9.4) Gecko/20011128 Netscape6/6.2.1
Cache-Control: max-age=0

Beide Browser akzeptieren Antworten, die mit gzip oder deflate komprimiert wurden.
Darüber hinaus akzeptiert Netscape auch noch compress. Wenn Sie also ein Servlet schrei-
ben, das große XML-Dokumente produziert, können Sie vorgehen wie in Listing 12.9.

Sandini Bib

288 12 XML

package com.tagtraum.perf.servlet;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.zip.GZIPOutputStream;

public abstract class CompressorServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws IOException,
 ServletException {
 OutputStream out = getOutputStream(request, response);
 try {
 writeToStream(request, response, out);
 }
 finally {
 // Sicherstellen, dass der GZIP-Stream korrekt beendet
 // wird.
 out.close();
 }
 }

 // Gibt einen OutputStream zurück. Wenn der Client gzip
 // akzeptiert, handelt es sich um einen GZIPOutputStream.
 // Im Header der Antwort wird zudem die verwendete Kodierung
 // gesetzt.
 private OutputStream getOutputStream(HttpServletRequest request,
 HttpServletResponse response) throws IOException {
 OutputStream out;
 if (acceptsGzip(request)) {
 response.setHeader("Content-Encoding", "gzip");
 out = new GZIPOutputStream(response.getOutputStream());
 } else {
 out = response.getOutputStream();
 }
 return out;
 }

 // Gibt an, ob der Client gzip akzeptiert.
 private boolean acceptsGzip(HttpServletRequest request) {
 String acceptEncoding = request.getHeader("Accept-Encoding");
 return acceptEncoding != null
 && acceptEncoding.indexOf("gzip") != -1;
 }

 // Wird von Subklassen anstelle von doGet() implementiert.
 // Da HttpServletResponse keine setOutputStream()-Methode hat,
 // übergeben wir den Strom als separates Argument.

Sandini Bib

XML komprimieren 289

 public abstract void writeToStream(HttpServletRequest request,
 HttpServletResponse response, OutputStream out)
 throws IOException, ServletException;
}

Listing 12.9: Einfaches Servlet, das Kompression mit gzip unterstützt

Sie müssen lediglich noch die writeToStream()-Methode implementieren und in ihr das
XML-Dokument in den zur Verfügung gestellten OutputStream schreiben. Alles Weitere
erledigen der Browser und HTTP.

Etwas komplizierter wird es, wenn Sie aus dem Servlet heraus eine andere Ressource
per include() einbinden wollen. Sie müssten unseren speziellen Ausgabestrom an die
andere Ressource übergeben. Dies ist mit Servlet API 2.2 jedoch nur schwierig möglich.

Die Lösung für dieses Problem bringt Servlet API 2.3. Sie heißt javax.servlet.Filter.

Listing 12.10 zeigt einen entsprechenden Filter für gzip. Zunächst wird festgestellt, ob
der Client gzip akzeptiert. Ist dies der Fall, wird ein HttpServletResponseWrapper instan-
ziiert, dessen getOutputStream()-Methode überschrieben ist. Statt des normalen Servlet
OutputStream wird ein ServletOutputStream zurückgegeben, der in einen GZIPOutputStream
mündet, Gleiches gilt für den Writer. Nachdem das nächste Element der Filterkette auf-
gerufen wurde, wird der Writer geflushed und der Strom geschlossen, um sicherzu-
stellen, dass der gzip-Strom korrekt beendet wird.

package com.tagtraum.perf.servlet;

import javax.servlet.*;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpServletResponseWrapper;
import java.io.IOException;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.OutputStreamWriter;
import java.util.zip.GZIPOutputStream;

public class GZIPFilter implements Filter {
 public void doFilter(ServletRequest request,
 final ServletResponse response, FilterChain chain)
 throws IOException, ServletException {
 HttpServletRequest req = (HttpServletRequest) request;
 HttpServletResponse res = (HttpServletResponse) response;
 if (acceptsGzip(req)) {
 res = new HttpServletResponseWrapper(res) {
 private ServletOutputStream wrappedOut;
 private PrintWriter wrappedWriter;

Sandini Bib

290 12 XML

 public ServletOutputStream getOutputStream()
 throws IOException {
 if (wrappedOut == null) {
 setHeader("Content-Encoding", "gzip");
 final OutputStream out
 = new GZIPOutputStream(
 response.getOutputStream());
 wrappedOut = new ServletOutputStream() {
 public void write(int b) throws IOException {
 out.write(b);
 }

 public void write(byte b[], int off,
 int len) throws IOException {
 out.write(b, off, len);
 }

 public void close() throws IOException {
 out.close();
 }
 };
 }
 return wrappedOut;
 }

 public PrintWriter getWriter() throws IOException {
 if (wrappedWriter == null) {
 wrappedWriter = new PrintWriter(
 new OutputStreamWriter(getOutputStream(),
 getCharacterEncoding()));
 }
 return wrappedWriter;
 }

 };
 try {
 chain.doFilter(req, res);
 } finally {
 // Sicherstellen, dass der Strom korrekt geschlossen
 // wird.
 res.getWriter().flush();
 res.getOutputStream().close();
 }
 }
 else {
 chain.doFilter(req, res);
 }
 }

 private boolean acceptsGzip(HttpServletRequest request) {
 String acceptEncoding = request.getHeader("Accept-Encoding");

Sandini Bib

XML komprimieren 291

 return acceptEncoding != null
 && acceptEncoding.indexOf("gzip") != -1;
 }

 public void init(FilterConfig config) throws ServletException {
 }

 public void destroy() {
 }
}

Listing 12.10: Gzip-Kompressionsfilter für Servlets

Wie oben bereits erwähnt, unterstützen die meisten Browser automatisch gzip als Kom-
pressionsformat. java.net.HttpURLConnection bietet diese Unterstützung von Haus aus
nicht. Sie können jedoch leicht nachhelfen:

URL url = ...
HttpURLConnection connection
 = (HttpURLConnection)url.openConnection();
connection.addRequestProperty("Accept-Encoding", "gzip");
InputStream in = connection.getInputStream();
String contentEncoding
 = connection.getHeaderField("Content-Encoding");
if (contentEncoding != null && contentEncoding.equals("gzip")) {
 in = new GZIPInputStream(in);
}
// benutze 'in'
...

Somit steht großen XML-Dokumenten nichts mehr im Wege.

12.6.2 Binärformate

Wie wir gesehen haben, löst Kompression mit Standardalgorithmen das Bandbreiten-
Problem für den allgemeinen Fall recht effizient. Wir wollen uns noch einen Spezialfall
anschauen.

Angenommen, Sie haben eine Client-Server-Anwendung, bei der XML-Dokumente
vom Server an den Client gesendet werden müssen. Verhältnismäßig verfüge der Ser-
ver über sehr viel mehr Rechenleistung und Speicher als der Client. Zudem sei die
Bandbreite zum Client begrenzt und die XML-Dokumente müssen dynamisch auf dem
Server erstellt werden.

Das beschriebene Szenario trifft auf viele Anwendungen für Kleingeräte wie PDA und
Handys zu, die mit einem Server kommunizieren. Das binäre XML-Format WBXML
des WAP-Forums (http://www.wapforum.org/) adressiert genau diese Problemstellung
und erreicht zwei Ziele:

Sandini Bib

292 12 XML

� kompakte Darstellung von XML-Dokumenten

� leichtes und schnelles Parsen

Leider gibt es jedoch kaum freie Software, die WBXML für gewöhnliche J2SE-Anwen-
dungen verwendet. Insbesondere konnte ich keine Bibliothek finden, die WBXML mit
DOM- oder SAX-Schnittstelle umsetzt.

Wir wollen dennoch ausprobieren, welchen Nutzen wir aus einer Binärdarstellung zie-
hen können. Angenommen, der Server produziert XML, indem er den oben beschriebe-
nen XMLWriter benutzt. Er ruft also die Methoden der SAX-Schnittstelle ContentHandler
auf. XMLWriter konvertiert die Methodenaufrufe in Zeichen und schreibt diese in einen
Ausgabestrom. Der Client wiederum liest diesen Strom mit einem SAX-Parser.

Wenn es uns gelingt, statt des XMLWriters eine andere Klasse zu benutzen, die nicht
XML erzeugt, sondern eine Binärdarstellung, können wir auf der Clientseite diese
Binärdarstellung parsen und wiederum die Methoden eines SAX-ContentHandler aufru-
fen. Der Unterschied liegt lediglich in der Darstellung des Dokuments, während es
vom Server zum Client transportiert wird. Die Vorteile sind die gleichen wie bei
WBXML: kompaktere Darstellung und leichtes Parsen. Zudem können wir Software,
die bereits auf die SAX-Schnittstellen zugeschnitten ist, wieder verwenden.

Das Binärformat ist schnell definiert. Jede Methode der ContentHandler-Schnittstelle
bekommt eine Zahl zugewiesen, Tag- und Attributnamen sowie Entitäten und
Namensräume werden in einer Tabelle hinterlegt und alle anderen Zeichen werden
einfach als UTF-Strings geschrieben. Zusätzlich definieren wir noch einige Steuerungs-
zeichen, die es uns erlauben, das Dokument in Blöcke mit je einer eigenen Stringtabelle
zu unterteilen, das Ende einer Attributliste zu markieren sowie zwischen mehreren

Abbildung 12.6: Typisches Szenario zum Übertragen von XML von einem Rechner zum anderen

ClientServer

XMLWriter SAX-Parser

<<interface>>
DefaultHandler

<<interface>>
XMLReader

XML-
Strom

<<interface>>
DefaultHandler

Sandini Bib

XML komprimieren 293

Codeseiten der Stringtabelle zu wechseln. Eine Codeseite soll jeweils auf 14 verschie-
dene Einträge (ein halbes Byte abzüglich zweier global eindeutiger Steuerungstokens)
der Stringtabelle verweisen können.

Listing 12.11 zeigt die wichtigsten Methoden aus der Kodierklasse BSAXEncoder, die die
Klasse DefaultHandler erweitert. Um Platz zu sparen werden die Daten mit einem (hier
nicht weiter beschriebenen) XtendedDataOutputStream geschrieben, der in der Lage ist,
halbe Bytes zu schreiben.

package com.tagtraum.perf.xml;

import org.xml.sax.*;
import org.xml.sax.helpers.DefaultHandler;
import java.io.*;
import java.util.*;
import com.tagtraum.perf.io.XtendedDataOutputStream;

public class BSAXEncoder extends DefaultHandler {

 // Global eindeutige Tokens
 static final int SWITCH_CODE_PAGE = 0;
 static final int END = 1;

 // Steuerungstoken
 static final int NEW_BLOCK = 2;

 // Methodentoken
 static final int START_DOCUMENT = 3;
 static final int END_DOCUMENT = 4;
 static final int START_ELEMENT = 5;

Abbildung 12.7: XML-Datenübertragung mit BSAX

ClientServer

BSAXEncoder BSAXDecoder

<<interface>>
DefaultHandler

<<interface>>
XMLReader

Binär-
Strom

<<interface>>
DefaultHandler

Sandini Bib

294 12 XML

 static final int END_ELEMENT = 6;
 static final int CHARACTERS = 7;
 static final int IGNORABLE_WHITESPACE = 8;
 static final int PROCESSING_INSTRUCTION = 9;
 static final int SKIPPED_ENTITY = 10;
 static final int START_PREFIXMAPPING = 11;
 static final int END_PREFIXMAPPING = 12;
 static final int NOTATION_DECLARATION = 13;
 static final int UNPARSED_ENTITY_DECLARATION = 14;

 static final int RESERVED_CODES = 2;
 static final int CODES_PER_CODEPAGE = 16;
 static final int DEFINABLE_CODES_PER_CODEPAGE =
 CODES_PER_CODEPAGE-RESERVED_CODES;

 private static int DEFAULT_BLOCKSIZE = 8*1024;
 private static ResourceBundle localStrings
 = ResourceBundle.getBundle(
 "com.tagtraum.perf.xml.localStrings");

 private XtendedDataOutputStream out;
 private XtendedDataOutputStream bufferedDataStream;
 private ByteArrayOutputStream buffer;
 private int currentCodePage;
 private Map symbolTable;
 private List symbolList;
 private Map oldSymbolTable;
 private List oldSymbolList;
 private int code = RESERVED_CODES;
 private int codePage;
 private int blockSize;
 private boolean firstFlush;
 private StringBuffer characters;
 private boolean ignoreIgnorableWhitespace;

 public BSAXEncoder(OutputStream out, int blockSize) {
 this.out = out instanceof BufferedOutputStream
 ? new XtendedDataOutputStream(out)
 : new XtendedDataOutputStream(
 new BufferedOutputStream(out));
 this.blockSize = blockSize;
 buffer = new ByteArrayOutputStream(blockSize + 256);
 bufferedDataStream = new XtendedDataOutputStream(buffer);
 symbolTable = new HashMap();
 symbolList = new ArrayList();
 oldSymbolTable = new HashMap();
 oldSymbolList = new ArrayList();
 firstFlush = true;
 characters = new StringBuffer(1024);
 }

Sandini Bib

XML komprimieren 295

 public boolean isIgnoreIgnorableWhitespace() {
 return ignoreIgnorableWhitespace;
 }

 public void setIgnoreIgnorableWhitespace(
 boolean ignoreIgnorableWhitespace) {
 this.ignoreIgnorableWhitespace = ignoreIgnorableWhitespace;
 }

 private void writeVersion() throws IOException {
 // version 1.0
 out.write(1); // major
 out.write(0); // minor
 }

 private void checkBufferSize() throws IOException {
 if (buffer.size() > blockSize) {
 flush();
 }
 }

 private void flush() throws IOException {
 if (firstFlush) {
 writeVersion();
 firstFlush = false;
 }

 bufferedDataStream.flush();
 writeSymbolTable();
 out.write(buffer.toByteArray());
 out.flush();
 buffer.reset();
 }

 public void startElement(String uri, String localName,
 String qName, Attributes attributes)
 throws SAXException {
 // Schreibe alle Zeichen, die sich zuvor angesammelt haben.
 flushCharacters();
 try {
 // Schreibe Methodentoken
 writeCode(START_ELEMENT);
 // Schreibe vollständigen Namen des Elements
 writeSymbol(getSymbol(qName));
 // Schreibe Attribute, falls vorhanden
 if (attributes != null) {
 for (int i = 0, len =attributes.getLength(); i < len;
 i++) {
 // Schreibe Attributnamen und –typ
 writeSymbol(getSymbol(attributes.getQName(i)));
 writeSymbol(getSymbol(attributes.getType(i)));
 // Schreibe Wert des Attributs als UTF-String

Sandini Bib

296 12 XML

 bufferedDataStream.writeUTF(attributes.getValue(i));
 }
 }
 // Markiere Ende der Attributliste
 writeCode(END);
 checkBufferSize();
 } catch (IOException ioe) {
 throw new SAXException(localStrings.getString(
 "exception_during_io"), ioe);
 } catch (RuntimeException re) {
 throw new SAXException(localStrings.getString(
 "unexpected_exception_during_io"), re);
 }
 }

 public void endElement(String uri, String localName,
 String qName) throws SAXException {
 flushCharacters();
 try {
 writeCode(END_ELEMENT);
 checkBufferSize();
 } catch (IOException ioe) {
 throw new SAXException(localStrings.getString(
 "exception_during_io"), ioe);
 } catch (RuntimeException re) {
 throw new SAXException(localStrings.getString(
 "unexpected_exception_during_io"), re);
 }
 }

 // Aufeinander folgende characters()-Aufrufe werden zu einem
 // Aufruf zusammengefasst.
 public void characters(char ch[], int start, int length)
 throws SAXException {
 if (length > 0) {
 characters.append(ch, start, length);
 }
 }

 public void flushCharacters() throws SAXException {
 if (characters.length() > 0) {
 try {
 writeCode(CHARACTERS);
 bufferedDataStream.writeUTF(characters.toString());
 checkBufferSize();
 // Sicherstellen, dass der StringBuffer nicht zu
 // groß wird
 if (characters.length() > 8*1024)
 characters = new StringBuffer(1024);
 else characters.setLength(0);
 } catch (IOException ioe) {

Sandini Bib

XML komprimieren 297

 throw new SAXException(localStrings.getString(
 "exception_during_io"), ioe);
 } catch (RuntimeException re) {
 throw new SAXException(localStrings.getString(
 "unexpected_exception_during_io"), re);
 }
 }
 }

 public void ignorableWhitespace(char ch[], int start,
 int length) throws SAXException {
 flushCharacters();
 // ignorableWhitespace wird nur geschrieben, wenn dies auch
 // erwünscht ist.
 if (!ignoreIgnorableWhitespace && length > 0) {
 try {
 writeCode(IGNORABLE_WHITESPACE);
 bufferedDataStream.writeUTF(new String(ch,
 start, length));
 checkBufferSize();
 } catch (IOException ioe) {
 throw new SAXException(localStrings.getString(
 "exception_during_io"), ioe);
 } catch (RuntimeException re) {
 throw new SAXException(localStrings.getString(
 "unexpected_exception_during_io"), re);
 }
 }
 }

 // andere ContentHandler-Methoden nach demselben Schema
 …

 public void fatalError(SAXParseException e)
 throws SAXException {
 throw e;
 }

 // Gibt ein Symbol für einen String zurück.
 private Symbol getSymbol(String string) {
 Symbol s = (Symbol) symbolTable.get(string);
 if (s == null) s = (Symbol) oldSymbolTable.get(string);
 if (s == null) {
 if (code == CODES_PER_CODEPAGE) {
 codePage++;
 code = RESERVED_CODES;
 }
 s = new Symbol(string, code, codePage);
 symbolTable.put(string, s);
 symbolList.add(string);
 code++;
 }

Sandini Bib

298 12 XML

 return s;
 }

 private void writeCode(int code) throws IOException {
 bufferedDataStream.writeHalfByte(code);
 }

 // Schreibt ein Symbol-Code und falls nötig zuvor das
 // Switchcodepage-Token gefolgt von der Codepage-Nummer des
 // zu schreibenden Codes.
 private void writeSymbol(Symbol s) throws IOException {
 if (currentCodePage != s.getCodePage()) {
 bufferedDataStream.writeHalfByte(SWITCH_CODE_PAGE);
 bufferedDataStream.write(s.getCodePage());
 currentCodePage = s.getCodePage();
 }
 bufferedDataStream.writeHalfByte(s.getCode());
 }

 // Schreibt die Symboltabelle.
 private void writeSymbolTable() throws IOException {
 ByteArrayOutputStream bout = new ByteArrayOutputStream();
 XtendedDataOutputStream symbolTableStream
 = new XtendedDataOutputStream(bout);
 symbolTableStream.writeHalfByte(NEW_BLOCK);
 symbolTableStream.writeInt(symbolTable.size());
 for (int i = 0, c = symbolList.size(); i < c; i++) {
 symbolTableStream.writeUTF((String) symbolList.get(i));
 }
 symbolTableStream.flush();
 out.write(bout.toByteArray());

 symbolList.clear();
 oldSymbolTable.putAll(symbolTable);
 symbolTable.clear();
 }

 // Klasse zum schnellen Zugriff auf Code und Codepage eines
 // Symbols.
 private static class Symbol {
 private int code;
 private int codePage;
 private String value;

 public Symbol(String value, int code, int codePage) {
 this.value = value;
 this.code = code;
 this.codePage = codePage;
 }

Sandini Bib

XML komprimieren 299

 public int getCode() {
 return code;
 }

 public int getCodePage() {
 return codePage;
 }

 public String getValue() {
 return value;
 }
 }
}

Listing 12.11: Ausschnitt aus der Klasse BSAXEncoder

Das Gegenstück zum BSAXEncoder, der BSAXDecoder, implementiert das XMLReader-Inter-
face. Somit können die beiden Klassen zur Kommunikation verwendet werden, ohne
dass XML-Produzent oder Konsument etwas davon mitbekommen. Aus Platzgründen
möchte ich darauf verzichten, hier den gesamten Quellcode wiederzugeben. Sie finden
ihn jedoch auf der zum Buch gehörenden CD-ROM bzw. auf der Website.

Wie Tabelle 12.2 zeigt, ist es sehr schwierig, gzip zu schlagen, wenn es um Kompression
geht. BSAX zeigt die besten Ergebnisse, wenn wenige Tags oft benutzt werden und viel
Whitespace aus dem Original-Dokument entfernt werden kann. Bei kurzen Nachrich-
ten, solchen mit sich kaum wiederholenden Tags oder Dokumenten mit einem hohen
Text-Anteil ist die Kompressionsrate eher mäßig.

Zur effizienten Kompression ist gzip in der Regel einem Binärformat vorzuziehen.

Eine Ausnahme hiervon kann lediglich sein, wenn beiden Parteien die Symboltabelle
bekannt ist. Dies ist bei BSAX jedoch nicht der Fall. Zudem können Sie nicht davon
ausgehen, dass gzip in einer J2ME-Umgebung unterstützt wird. Eventuell können Sie
sich jedoch mit zip behelfen.

Dokument BSAX BSAX ohne
Whitespace

gzip

Sehr kurze Soap-Nachricht (281 Byte) 83% 83% 68%

Soap-Nachricht (3,6 Kbyte) 92% 92% 49%

Web-Archiv-Deployment-Deskriptor (7,1 Kbyte) 57% 57% 17%

Faust II (550 Kbyte) 81% 68% 24%

Adressliste ohne Whitespace (1,2 Mbyte) 39% 39% 24%

Tabelle 12.2: Prozentanteil der ursprünglichen Größe, auf die die komprimierten Dateien reduziert wurden.
Kleiner ist also besser.

Sandini Bib

300 12 XML

Wenn es nur um Kompression geht, ist BSAX also keine Wunderwaffe. Anders sieht
das beim Parsen aus (Tabelle 12.3). Gegenüber dem SAX-Parser aus dem Sun JDK 1.4.0
ist BSAX für fast alle getesteten Dokumente schneller. Lediglich für Faust II ist die
BSAX-Parsezeit ein wenig schlechter als mit SAX.

Zusammenfassend bedeutet dies:

Um ein effizientes Parsen auf der Clientseite zu garantieren, kann es sich lohnen, zur Daten-
übertragung ein Binärformat zu benutzen.

Dokument BSAX BSAX ohne
Whitespace

SAX gzip +
SAX

Sehr kurze Soap-Nachricht (281 Byte) 100% 95% 1376% 1560%

Soap-Nachricht (3,6 Kbyte) 100% 100% 172% 209%

Web-Archiv-Deployment-Deskriptor (7,1 Kbyte) 100% 102% 164% 191%

Faust II (550 Kbyte) 100% 72% 72% 90%

Adressliste ohne Whitespace (1,2 Mbyte) 100% 100% 156% 187%

Tabelle 12.3: Normalisierte Ausführungszeit des Parsens verschiedener Dokumente. Kleiner ist schneller.

Sandini Bib

13 Applikationen starten

Noch bevor eine einzige Zeile Ihrer Applikation ausgeführt wird, vergeht während des
Starts der Java VM so einige Zeit. Die VM und unbedingt notwendige Klassen werden
in den Speicher geladen und initialisiert. Erst dann wird die Hauptklasse Ihrer Appli-
kation geladen und ausgeführt.

Je nach VM sind zwischen 200 und 350 Klassen das unbedingte Minimum (Tabelle
13.1). Hinzu kommen Ihre eigenen Klassen und alle Klassen, die Ihre Klassen benut-
zen, sowie jene, die von den bereits geladenen Klassen benutzt werden. Wenn Ihre
Applikation schnell starten muss, lohnt es sich daher, sich ein wenig mehr mit dem
Laden und Initialisieren von Klassen auseinander zu setzen.

13.1 Klassen laden und initialisieren

Vor allem stellt sich hier die Frage nach dem Wann. Gewöhnlich werden Klassen und
Schnittstellen in folgenden Situationen geladen:

� Wenn der ClassLoader einer Klasse symbolische Referenzen auf andere Klassen oder
Schnittstellen auflöst

� Wenn eine Klasse benutzt wird und daher automatisch die Klasse sowie alle ihre
Superklassen und Schnittstellen geladen werden

� Wenn eine Klasse explizit vom Nutzer durch die loadClass()-Methode eines Class-
Loaders oder die entsprechenden Class.forName()-Methoden geladen wird

IBM JDK 1.3.0 Sun JDK 1.3.1 Sun JDK 1.4.0

345 209 273

Tabelle 13.1: Anzahl von Klassen, die geladen werden müssen, bevor die auszuführende Klasse geladen wird.
Gemessen mit Windows-Versionen der VMs.

Sandini Bib

302 13 Applikationen starten

Gewöhnlich lösen VMs symbolische Referenzen auf andere Klassen und Schnittstellen
erst spät auf (Lazy Resolution). Das heißt, wenn eine Klasse A eine Klasse B benutzt, sind
die Chancen gut, dass die symbolische Referenz von A auf B erst aufgelöst wird, wenn B
tatsächlich von A benutzt wird. Erst das Auflösen der symbolischen Referenz auf B
führt zum Laden von B.

Nur wenn B eine Superklasse von A ist, muss B früher geladen werden, da bereits beim
Laden von A alle symbolischen Referenzen auf Superklassen aufgelöst werden müssen.

Wenn eine Klasse geladen ist, existiert eine binäre Repräsentation der Klasse im Spei-
cher. Dessen Korrektheit wird verifiziert und statische Felder werden mit ihren Stan-
dardwerten bzw. solchen Werten initialisiert, die sich nach der Übersetzung nicht mehr
ändern können (Übersetzungszeit-Konstanten). Solche Werte sind beispielsweise
Strings, die einer als final deklarierten Variable zugewiesen werden [vgl. Gosling00,
§15.28]. Das bedeutet nicht, dass die Klasse initialisiert ist. Es ist außerdem noch keine
Zeile Code ausgeführt worden. Eine Klasse ist erst dann initialisiert, wenn

� alle statischen Initialisierungsblöcke ausgeführt wurden

� alle statischen Variablen initialisiert wurden

Gemäß Java-Sprachspezifikation werden Klassen nur dann initialisiert, wenn eine der
folgenden Bedingungen zutrifft [vgl. Gosling00, §12.4]:

� Eine Instanz der Klasse wird erzeugt.

� Eine Klassenmethode der Klasse wird aufgerufen.

� Es wird einem Klassenattribut der Klasse ein Wert zugewiesen.

� Ein Klassenattribut der Klasse, dessen Referenz keine Übersetzungszeit-Konstante
ist, wird benutzt.

� Bestimmte Methoden aus dem java.lang.reflect-Paket werden aufgerufen.

So führt beispielsweise folgender Code dazu, dass die Klasse java.util.HashMap gela-
den und initialisiert wird, da eine Klasse instanziiert wurde:

// HashMap wird instanziiert
HashMap map = new HashMap();

Folgender Code führt jedoch nicht zum Laden der Klasse, da lediglich eine leere Refe-
renz angelegt wird:

// Die Klasse HashMap wird weder instanziiert noch werden
// irgendwelche statischen Methoden oder Attribute benutzt.
HashMap map =null;

Sandini Bib

Verzögertes Klassenladen 303

Ebenso führt das Ausführen der Klasse One nicht dazu, dass Two geladen und der stati-
sche Initialisierungs-Block (Zeile 9-11) ausgeführt wird. Dies ist so, weil aMessage eine
Übersetzungszeit-Konstante ist. Ihr Wert kann sich nach der Übersetzung nicht mehr
ändern.

01 public class One {
02 public static void main(String[] args) {
03 // Gibt 'A Message' aus
04 System.out.println(Two.aMessage);
05 }
06 }
07
08 public class Two {
09 static {
10 System.out.println("Dieser Text wird nicht ausgegeben!");
11 }
12 public static final String aMessage = "Eine Nachricht";
13 }

Die einzige Ausgabe des obigen Codes ist also:

Eine Nachricht

13.2 Verzögertes Klassenladen

Um also eine Klasse erst zu laden und zu initialisieren, wenn sie benutzt wird, können
Sie beispielsweise folgenden Code benutzen:

private AClass aClass;
public AClass getInstance() {
 if (aClass == null) {
 aClass = new AClass();
 }
 return aClass;
}

Sie dürfen jedoch vorher nicht auf Klassenmethoden oder statische, veränderbare
Attribute der Klasse zugreifen. Denken Sie zudem daran, die Methode getInstance()
ordnungsgemäß zu synchronisieren (Kapitel 9.1.4 Double-Check-Idiom), wenn sie von
mehreren Threads benutzt wird.

Besonders sinnvoll ist diese Technik für Applikationen, bei denen von vornherein klar
ist, dass bestimmte Teile erst später oder eventuell gar nicht benutzt werden.

Sandini Bib

304 13 Applikationen starten

13.3 Frühes Klassenladen

Unter Umständen macht es Ihnen wenig aus, wenn Ihre Applikation beim Start ein
wenig mehr Zeit zum Klassenladen benötigt, solange danach alles reibungslos klappt.
Ist dies der Fall, können Sie das Laden von Klassen am besten kontrollieren, indem Sie
es selbst erledigen. Geeignet sind dazu die beiden java.lang.Class.forName()-Metho-
den.

So sorgt folgender Code dafür, dass die Klasse AClass geladen und initialisiert wird,
wenn BClass ausgeführt wird.

public AClass {
 static {
 System.out.println("AClass wurde initialisiert.");
 }
}

public BClass {
 public static void main(String[] args)
 throws ClassNotFoundException{
 Class.forName("AClass");
 }
}

Die Ausgabe lautet entsprechend:

AClass wurde initialisiert.

Wenn Sie jedoch folgende, leicht modifizierte Version der Klasse BClass ausführen,
bleibt die Ausgabe leer.

public BClass {
 public static void main(String[] args) {
 Class.forName("AClass",
 false, BClass.class.getClassLoader());
 }
}

Entscheidend hierfür ist der zweite Parameter der forName()-Methode. Ist dieser false,
so wird die verlangte Klasse zwar geladen, nicht jedoch initialisiert. Die Initialisierung
erfolgt automatisch, sobald dies nötig ist.

Manchmal kann es sich lohnen, Teile einer Applikation von einem separaten Thread
im Hintergrund laden zu lassen, nachdem der Benutzer bereits angefangen hat, mit
der Applikation zu arbeiten. Dabei können diese Teile vollständig erzeugt oder ledig-
lich die benötigten Klassen geladen und initialisiert werden, um dann später ein
schnelles Erzeugen der Objekte zu begünstigen. Dies ist insbesondere dann interes-

Sandini Bib

Frühes Klassenladen 305

sant, wenn die Klassen nicht in einem Jar- oder Zip-Archiv gespeichert sind und nur
über ein langsames Netzwerk geladen werden können, da die Klassen dann einzeln
geladen werden müssen. Grundsätzlich sollten Sie jedoch Ihre Klassen wenn möglich immer
in Jars verpacken!

Listing 13.1 zeigt einen solchen Hintergrund-Klassenlader, der sich nach dem Erzeu-
gen mit start() starten lässt. Wenn Sie sich sicher sein wollen, dass die geladenen Klas-
sen nicht wieder von der Speicherbereinigung aus dem Speicher entfernt werden,
sollten Sie den VM Kommandozeilen-Parameter –Xnoclassgc verwenden. Dadurch
wird die Speicherbereinigung für Klassen-Objekte abgeschaltet. Dies kann jedoch zu
Speicherproblemen bei Programmen führen, die Klassen erzeugen, laden, benutzen
und wieder wegwerfen, wie dies beispielsweise JSP-Engines tun.

package com.tagtraum.perf.classloading;

public class BackgroundClassLoader extends Thread {
 private volatile static int count;
 private String[] classnames;
 private boolean initialize;
 private ClassLoader classLoader;

 public BackgroundClassLoader(String[] classnames,
 boolean initialize, ClassLoader classLoader) {
 super("BackgroundClassLoader - " + count++);
 if (classnames == null) throw new NullPointerException();
 this.classnames = classnames;
 // Wenn kein ClassLoader übergeben wurde, nehmen wir den
 // eigenen, sonst den übergebenen.
 this.classLoader = classLoader == null
 ? this.getClass().getClassLoader() : classLoader;
 this.initialize = initialize;
 // Wenn die Applikation nicht mehr läuft, sollten dieser
 // Thread auch terminieren. Daher markieren wir ihn als
 // Daemon.
 setDaemon(true);
 // Natürlich wollen wir nur Klassen laden, wenn wirklich
 // nichts anderes zu tun ist. Der Effekt dieser Zeile ist
 // jedoch stark vom Betriebssystem abhängig! Evtl. muss
 // die Priorität manuell hochgesetzt werden, damit der Thread
 // überhaupt zum Zuge kommt.
 setPriority(Thread.MIN_PRIORITY);
 }

 public void run() {
 for (int i = 0; i < classnames.length; i++) {
 try {
 Class.forName(classnames[i], initialize, classLoader);
 } catch (Exception e) {

Sandini Bib

306 13 Applikationen starten

 System.err.println(getName()
 + ": Failed to load class " + classnames[i]);
 }
 }
 }
}

Listing 13.1: BackgroundClassLoader lädt Klassen in einem Hintergrund-Thread.

13.4 Geschwätziges Klassenladen

Natürlich macht das frühe Klassenladen nur Sinn, wenn Sie wissen, welche Klassen
von Ihrer Applikation überhaupt benötigt werden. Um rauszubekommen, welche
Klassen von der VM geladen werden, können Sie die VM-Option –verbose:class set-
zen.

Beispiel:

java –verbose:class –classpath <classpath> <main class>

Dies führt dazu, dass die VM ausgibt, welche Klasse geladen wurde. Leider wird dabei
kein Zeitstempel ausgegeben. Wenn Sie versuchen, das Klassenladen zu beeinflussen,
ist dies dennoch Ihr bestes Verifikations-Werkzeug.

Die Ausgabe von Sun JDK 1.4.0 sieht folgendermaßen aus:

[Opened C:\j2sdk1.4.0\jre\lib\rt.jar]
[Opened C:\j2sdk1.4.0\jre\lib\sunrsasign.jar]
[Opened C:\j2sdk1.4.0\jre\lib\jsse.jar]
[Opened C:\j2sdk1.4.0\jre\lib\jce.jar]
[Opened C:\j2sdk1.4.0\jre\lib\charsets.jar]
[Loaded java.lang.Object from C:\j2sdk1.4.0\jre\lib\rt.jar]
[Loaded java.io.Serializable from C:\j2sdk1.4.0\jre\lib\rt.jar]
[Loaded java.lang.Comparable from C:\j2sdk1.4.0\jre\lib\rt.jar]
[Loaded java.lang.CharSequence from C:\j2sdk1.4.0\jre\lib\rt.jar]
[Loaded java.lang.String from C:\j2sdk1.4.0\jre\lib\rt.jar]
[Loaded java.lang.Class from C:\j2sdk1.4.0\jre\lib\rt.jar]
[Loaded java.lang.Cloneable from C:\j2sdk1.4.0\jre\lib\rt.jar]
[Loaded java.lang.ClassLoader from C:\j2sdk1.4.0\jre\lib\rt.jar]
[Loaded java.lang.System from C:\j2sdk1.4.0\jre\lib\rt.jar]
[Loaded java.lang.Throwable from C:\j2sdk1.4.0\jre\lib\rt.jar]
...

Falls Sie nur daran interessiert sind, wann einige bestimmte Klassen initialisiert wer-
den, können Sie diesen Klassen auch einen Klasseninitialisierer spendieren, der kund-
tut, wann die Klasse initialisiert wurde:

Sandini Bib

Klassenarchive 307

public class AClass {
 static {
 System.out.println(new java.util.Date() + ": "
 + AClass.class.getName());
 }
 ...
}

13.5 Klassenarchive

Grundsätzlich können Sie Ihre Klassen entweder einfach in einem Verzeichnis oder in
Jar- bzw. Zip-Archiven speichern. Welche Option für Ihre Applikation besser ist, hängt
im Wesentlichen davon ab, wie schnell Ihre Applikation auf die Klassen zugreifen
kann.

Angenommen Ihre Klassen liegen auf der lokalen Festplatte, dann ist die Zugriffs-
geschwindigkeit sehr hoch. Liegen die Klassen jedoch auf einem schlecht angebundenen
Webserver, ist sie niedrig. Zudem spielt das Zugriffsprotokoll eine Rolle. Wird beispiels-
weise bei einem Applet als Codebasis ein Verzeichnis und nicht eine Jar-Datei gewählt,
so muss im schlechtesten Fall1 für jede Klassendatei eine neue TCP/IP-Verbindung
geöffnet und ein neuer HTTP-Request an den Webserver gesandt werden. Sie können
sich ausmalen, was dies bedeutet, wenn Sie nach allen Regeln der Kunst Hunderte von
übersichtlichen, kleine Klassen programmiert haben.

Meist ist es daher günstiger, Jar-Dateien zu verwenden. Hier stellt sich noch die Frage,
ob Sie komprimierte oder unkomprimierte Jars verwenden. Standardmäßig erstellt das
jar-Programm komprimierte Dateien. Sie können dies jedoch mit dem Parameter –0
(Null) abstellen. Zwar wird dann das entstehende Archiv größer, dafür muss aber
während des Klassenladens nicht mehr dekomprimiert werden, was zu geringen Zeit-
vorteilen führen kann.

Im Grunde müssen Sie zwischen Geschwindigkeit der Datenübertragung und
Geschwindigkeit der Dekompression abwägen. Bei langsamer Datenübertragung loh-
nen sich komprimierte Jar-Dateien (Tabelle 13.2). Die meist lokal gespeicherten JDK-
Klassen befinden sich dagegen in einer unkomprimierten Jar-Datei namens rt.jar. Im
Zweifelsfall ist eine komprimierte Jar-Datei vorzuziehen, da das Netzwerk meist der
Flaschenhals ist und nicht die CPU.

1 Dies trifft ein, wenn entweder der HTTP-Server oder der -Client lediglich HTTP/1.0 ohne Keep-
Alive sprechen. Falls Server und Client Keep-Alive beherrschen, muss trotzdem immer noch für
jede Klasse ein separater Request gesandt werden.

Sandini Bib

308 13 Applikationen starten

Selbst für das lokale Dateisystem ist auf jeden Fall davon abzuraten, die Klassen unar-
chiviert abzulegen, da dann auf jede Klasse einzeln zugegriffen werden muss. Die
Ladezeit kann sich so leicht verdoppeln.

Abzuraten ist auch von Zip-Archiven. Gründe hierfür sind:

� Es gibt verschiedene Zip-Formate, aber nur ein Jar-Format.

� Zip-Archive werden in Webapplikationen oft nicht erkannt, wenn sie unter /WEB-
INF/lib abgelegt werden.2

� Zip-Dateien lassen sich nicht signieren und verfügen in der Regel nicht über ein
Manifest.

Natürlich gibt es auch zu diesen Regeln Ausnahmen. Wenn Sie beispielsweise eine sehr
große Applikation als Applet ausliefern wollen, kann es sein, dass es zu lange dauert,
erst darauf zu warten, dass das Jar-Archiv vollständig geladen ist, bevor irgendetwas
passiert. In diesem Fall kann es günstiger sein, wenn Sie Ihre Klassen in einem Verzeich-
nis und nicht in einer Jar-Datei ablegen, da Sie dann, während Ihr Programm schon
läuft, später benötigte Klassen nachladen können. Bevor Sie sich zu solch einem Schritt
entschließen, sollten Sie jedoch auf jeden Fall Tests durchführen.

Bedenken Sie zudem, dass Browser und auch das Java-Plugin Jar-Archive und Klassen
cachen. Bei einer Jar-Datei muss nur einmal überprüft werden, ob die gecachte Version
noch aktuell ist, bei einzelnen Klassen muss jede einzelne Klasse überprüft werden.

13.6 Start-Fenster für große Applikationen

Wenn Sie feststellen, dass Ihre GUI-Applikation sehr lange zum Starten benötigt, kön-
nen Sie die Startzeit mit den oben beschriebenen Techniken zum späten Klassenladen
vielleicht etwas verkürzen. Es gibt jedoch einen Punkt, an dem nichts mehr hilft.

Speicherort der Klassen Dateiformat

Lokale Festplatte Unkomprimierte Jar-Datei

Schnelles Netzlaufwerk Unkomprimierte Jar-Datei

Langsames Netzlaufwerk Komprimierte Jar-Datei

Schneller Intranet Webserver Unkomprimierte Jar-Datei

Langsamer Webserver Komprimierte Jar-Datei

Tabelle 13.2: Wie Sie Ihre Applikation in Abhängigkeit vom Wo speichern sollten

2 Dies führt zu haarsträubenden Problemen insbesondere mit JDBC-Treibern von IBM und Oracle,
die teilweise immer noch in Zip-Archiven ausgeliefert werden.

Sandini Bib

Start-Fenster für große Applikationen 309

Spätestens, wenn Sie diesen Punkt erreicht haben und die Startzeit immer noch zu lang
ist, sollten Sie darüber nachdenken, wie Sie dem Nutzer die Zeit verkürzen können.
Eine sehr einfache Technik ist es, als Erstes einen separaten Thread zu starten, der kon-
tinuierlich etwas im Konsole-Fenster Ihrer Applikation ausgibt. Leider hat jedoch nicht
jede Java-Applikation solch ein Fenster, weshalb diese Option für viele Anwendungen
ausscheidet. Stattdessen können Sie ein Startbild (Splashscreen) anzeigen. Das ist ein
rahmenloses Fenster, in dem nur eine Grafik angezeigt wird.

Um möglichst schnell etwas auf den Bildschirm zu zaubern, beschränkt sich der Code
zu Abbildung 13.1 auf das absolute Minimum. Es wird lediglich festgestellt, wie groß
das darzustellende Bild ist und wo es platziert werden soll. Sonst nichts.

package com.tagtraum.perf.classloading;

import javax.swing.*;
import java.awt.*;
import java.awt.image.ImageObserver;
import java.net.URL;

Abbildung 13.1: Rahmenloses Start-Fenster

Rahmenloses Start-Fenster

Sandini Bib

310 13 Applikationen starten

public class SplashScreen extends Frame {
 private Image image;
 private boolean imageIsLoaded;
 private boolean errorWhileLoadingImage;

 public SplashScreen(String title, URL imageURL) {
 super(title);
 setCursor(Cursor.WAIT_CURSOR);
 setUndecorated(true);
 image = Toolkit.getDefaultToolkit().createImage(imageURL);
 // Zunächst müssen wir diesen Frame als ImageObserver für das
 // Image registrieren.
 image.getHeight(this);
 // Dann warten wir, bis Breite und Höhe bekannt sind.
 waitForWidthAndHeight();
 // Falls wir das Image nicht korrekt laden konnten, zeigen
 // wir eine Fehlermeldung an.
 if (errorWhileLoadingImage) {
 JOptionPane.showMessageDialog(this,
 "Failed to load image from " + imageURL, "Error",
 JOptionPane.ERROR_MESSAGE);
 } else {
 // Höhe und Breite sind nun bekannt und wir können den
 // Frame entsprechend skalieren und in der Mitte
 // des Bildschirms positionieren.
 int imageWidth = image.getWidth(this);
 int imageHeight = image.getHeight(this);
 DisplayMode dm = GraphicsEnvironment
 .getLocalGraphicsEnvironment()
 .getDefaultScreenDevice().getDisplayMode();
 setBounds((dm.getWidth() - imageWidth) / 2,
 (dm.getHeight() - imageHeight) / 2, imageWidth,
 imageHeight);
 setVisible(true);
 }
 }

 public void update(Graphics g) {
 // Vermeidet Flackern
 paint(g);
 }

 public void paint(Graphics g) {
 // Zeichnet das Bild
 g.drawImage(image, 0, 0, this);
 }

 // Wird vom Image aufgerufen, wenn neue Informationen über das
 // Bild bekannt werden.
 public synchronized boolean imageUpdate(Image img,
 int infoflags, int x, int y, int width, int height) {

Sandini Bib

Start-Fenster für große Applikationen 311

 // Falls Abort- oder Error-Flags gesetzt sind, setze den
 // Fehlerzustand.
 errorWhileLoadingImage = errorWhileLoadingImage
 || (infoflags & (ImageObserver.ABORT
 | ImageObserver.ERROR)) != 0;
 // Falls ein Fehler vorlag oder Höhe und Breite bekannt
 // sind, setze imageIsLoaded auf true
 imageIsLoaded = errorWhileLoadingImage || imageIsLoaded ||
 ((infoflags & ImageObserver.WIDTH) != 0
 && (infoflags & ImageObserver.HEIGHT) != 0);
 // Benachrichtige wartende Threads, dass Höhe und Breite nun
 // bekannt sind.
 if (imageIsLoaded) notifyAll();
 return super.imageUpdate(img, infoflags, x, y, width, height)
 && (imageIsLoaded);
 }

 // Wartet darauf, dass Höhe und Breite des Bildes bekannt sind.
 public synchronized void waitForWidthAndHeight() {
 try {
 while (!imageIsLoaded) {
 wait();
 }
 } catch (InterruptedException ie) {
 // Ignorieren
 }
 }
}

Listing 13.2: SplashScreen zeigt einen rahmenlosen Frame, der lediglich ein Bild enthält.

Wenn Sie eine Klasse wie SplashScreen (Listing 13.2) benutzen wollen, stellen Sie sicher,
dass Sie als Erstes diese Klasse instanziieren und anzeigen. Und zwar sollte dies in der
main()-Methode Ihrer Hauptklasse passieren, bevor irgendetwas anderes passiert. Ist
das geschehen, ist der Benutzer erst mal beruhigt und harrt der Dinge, die da kommen.

public BigSlowApplicationStarter {
 public static void main(String[] args) {
 Frame splashScreen = new SplashScreen("BigSlowApplication",
 SplashScreen.class.getResource("/splashscreen.jpg"));
 BigSlowApplication bsa = new BigSlowApplication();
 bsa.setVisible(true);
 splashScreen.dispose();
 }
}

Listing 13.3: Beispiel für die Benutzung der Klasse SplashScreen

Sandini Bib

312 13 Applikationen starten

13.7 Mehrere Applikationen in einer VM starten

Dank der Classloader-Technologie ist es recht einfach, in Java mehr als ein Programm
von einer VM ausführen zu lassen. Die Vorteile sind offensichtlich:

� Weniger Speicherverbrauch

� Kürzere Startzeiten

Leider gibt es auch Nachteile:

� Applikationen lassen sich nicht mehr individuell mit VM-Parametern optimieren
und parametrisieren (-D-Optionen)

� Stürzt die VM ab, stürzen viele Applikationen ab und nicht nur eine

� Da der Heap potenziell sehr groß wird, können Speicherbereinigungspausen lang
und lästig werden

Gerade auf Maschinen mit geringem Hauptspeicher und begrenzter Prozessorleistung
kann es sich jedoch lohnen, mehrere Applikationen in einer VM laufen zu lassen.

Abbildung 13.2 zeigt einen einfachen Applikations-Starter mit zwei laufenden Pro-
grammen. Zum Starten eines Programms muss man lediglich die Hauptklasse, den
Klassenpfad sowie optional Start-Argumente angeben und START drücken.

Mit den angegebenen Daten wird ein neuer ClassLoader instanziiert. Mit diesem Class-
Loader wird dann die Hauptklasse geladen und die main()-Methode mit den angegebe-
nen Argumenten aufgerufen. Das Aufrufen der main()-Methode geschieht dabei in
einem neuen AppRunner-Thread (Listing 13.4). Auf diese Weise können wir beliebig viele
Applikation starten, solange der Speicher reicht!

Denkbar ist anstelle eines grafischen Applikations-Starters natürlich auch einer ohne
grafische Benutzeroberfläche [vgl. Wilson00, S.79].

Abbildung 13.2: Java-Applikations-Starter

Sandini Bib

Mehrere Applikationen in einer VM starten 313

package com.tagtraum.perf.classloading;

import java.awt.*;
import java.awt.event.*;
import java.io.File;
import java.lang.reflect.Method;
import java.net.*;
import java.util.Date;
import java.util.StringTokenizer;

public class MultiAppLauncher extends Frame implements ActionListener {

 private Label statusBar;
 private java.awt.List appList;
 private TextField classPathField;
 private TextField mainClassField;
 private TextField argumentsField;

 public MultiAppLauncher() {
 super("MultiAppLauncher");
 // GUI aufbauen
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 dispose();
 // System.exit(0) ist nicht mehr nötig in JDK 1.4.0
 }
 });
 classPathField = new TextField(20);
 mainClassField = new TextField(20);
 argumentsField = new TextField(20);
 Label classPathLabel = new Label("Classpath:");
 Label mainClassLabel = new Label("Main Class:");
 Label argumentsLabel = new Label("Arguments:");
 Button startButton = new Button("Start");
 startButton.addActionListener(this);
 appList = new List(10);
 statusBar = new Label();

 Panel dataPanel = new Panel();
 ((FlowLayout) dataPanel.getLayout())
 .setAlignment(FlowLayout.LEFT);
 dataPanel.add(mainClassLabel);
 dataPanel.add(mainClassField);
 dataPanel.add(classPathLabel);
 dataPanel.add(classPathField);
 dataPanel.add(argumentsLabel);
 dataPanel.add(argumentsField);

 Panel startButtonPanel = new Panel();
 ((FlowLayout) dataPanel.getLayout())

Sandini Bib

314 13 Applikationen starten

 .setAlignment(FlowLayout.RIGHT);
 startButtonPanel.add(startButton);

 Panel northPanel = new Panel();
 northPanel.add(dataPanel);
 northPanel.add(startButtonPanel);

 add(northPanel, BorderLayout.NORTH);
 add(appList, BorderLayout.CENTER);
 add(statusBar, BorderLayout.SOUTH);
 setSize(400, 400);
 pack();
 setVisible(true);
 }

 public void actionPerformed(ActionEvent e) {
 try {
 AppRunner appRunner = new AppRunner(
 classPathField.getText(), mainClassField.getText(),
 argumentsField.getText());
 // Zeige Thread in der Liste an.
 appList.add(appRunner.getName());
 // Starte Applikation im eignen Thread.
 appRunner.start();
 } catch (Exception exception) {
 statusBar.setText(exception.toString());
 }
 repaint();
 }

 public static void main(String[] args) {
 new MultiAppLauncher();
 }

 // Spezialisierter Thread, der eine Applikation ausführt.
 private class AppRunner extends Thread {

 private final Class[] PARAMETERTYPES_FOR_MAIN
 = new Class[]{String[].class};

 private String[] args;
 private ClassLoader classLoader;
 private Class mainClass;
 private Method mainMethod;
 private String classPath;

 public AppRunner(String classPath, String mainClass,
 String args) throws ClassNotFoundException,
 MalformedURLException, NoSuchMethodException {
 super(new Date().toString() + ": java -classpath "

Sandini Bib

Mehrere Applikationen in einer VM starten 315

 + classPath + " " + mainClass + " " + args);
 this.args = createArgsArray(args);
 this.classPath = classPath;
 this.classLoader = createClassLoader(classPath);
 this.mainClass = this.classLoader.loadClass(mainClass);
 this.mainMethod = this.mainClass.getMethod("main",
 PARAMETERTYPES_FOR_MAIN);
 }

 // Führt die main()-Methode der Hauptklasse in einem eigenen
 // Thread auf.
 public void run() {
 try {
 mainMethod.invoke(null, new Object[]{args});
 statusBar.setText(toString() + " exited.");
 } catch (Exception e) {
 System.err.println(this);
 e.printStackTrace();
 statusBar.setText(e.toString());
 }
 // Entferne diesen Thread aus der Liste, wenn er
 // beendet wurde.
 appList.remove(this.getName());
 repaint();
 }

 // Erstellt einen neuen ClassLoader für den angegebenen
 // Klassenpfad.
 private ClassLoader createClassLoader(String classPath)
 throws MalformedURLException {
 StringTokenizer st = new StringTokenizer(classPath,
 File.pathSeparator);
 URL[] urls = new URL[st.countTokens()];
 for (int i = 0; st.hasMoreTokens(); i++) {
 urls[i] = new File(st.nextToken()).toURL();
 }
 // Wir müssen den Bootclassloader als Elter-Loader
 // benutzen, damit sich verschiedene Applikationen nicht
 // in die Quere kommen. String muss vom Bootclassloader
 // geladen worden sein. Das nutzen wir aus!
 return new URLClassLoader(
 urls, String.class.getClassLoader());
 }

 // Erstellt einen String-Array als Argument für die
 // main()-Methode.
 private String[] createArgsArray(String args) {
 StringTokenizer st = new StringTokenizer(args, " \t\n\r");
 String[] argsArray = new String[st.countTokens()];
 for (int i = 0; st.hasMoreTokens(); i++) {

Sandini Bib

316 13 Applikationen starten

 argsArray[i] = st.nextToken();
 }
 return argsArray;
 }
 }
}

Listing 13.4: Klasse MultiAppLauncher

Sandini Bib

Letzte Worte

Es hat mir sehr viel Freude bereitet, dieses Buch zu schreiben, und ich hoffe, auch Sie
mussten beim Lesen gelegentlich mal schmunzeln. Vor allem aber hoffe ich, dass die-
ses Buch für Sie nützlich war, dass es Ihnen half und helfen wird, performanteren Code
zu schreiben und bessere Designs zu entwickeln.

Sowohl die verschiedenen Java VMs als auch die Java-Klassenbibliotheken werden in
den nächsten Jahren immer schneller werden. Das heißt jedoch nicht, dass es weniger
wichtig wird, guten, schnellen Code zu schreiben, da erfahrungsgemäß die Basistech-
nologien in gleichem Maße anspruchsvoller werden. Heute arbeiten wir mit EJB – und
morgen? Das Performance-Problem bleibt bestehen. Daher wird es sich immer lohnen,
sich mit verschiedenen Virtuellen Maschinen sowie Performance verbessernden Pro-
grammiertechniken auseinander zusetzen.

Sie müssen sich nur Ihre Neugierde bewahren.

Sandini Bib

Sandini Bib

Literatur

[Beck00] Beck, Kent: Extreme programming explained: embrace change. Addison-Wes-
ley 2000.

[Bentley00] Bentley, Jon: Programming Pearls. 2. Auflage. Addison-Wesley 2000.

[Bloch02] Bloch, Joshua: Effektiv Java programmieren. München: Addison-Wesley
2002.

[Bulka00] Bulka, Dov: Java Performance and Scalability Band 1. Server-Side Program-
ming Techniques. Addison-Wesley 2000.

[Gamma96] Gamma, Erich, Richard Helm, Ralph Johnson, John Vlissides: Entwurfs-
muster: Elemente wiederverwendbarer objektorientierter Software. Bonn: Addison-
Wesley 1996.

[Gosling00] Gosling, James, Bill Joy, Guy Steele, Gilad Bracha: The Java™ Language
Specification. 2. Auflage. Addison-Wesley 2000.

[Jones96] Jones, Richard, Rafael Lins: Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. New York: Wiley & Sons 1996.

[Lea99] Lea, Doug: Concurrent Programming in Java™: Design Principles and Patterns.
2. Auflage. Addison-Wesley 1999.

[Lindholm99] Lindholm, Tim, Frank Yellin: The Java™ Virtual Machine Specification.
2. Auflage. Addison-Wesley 1999.

[Prechelt00] Prechelt, Lutz: An empirical comparison of C, C++, Java, Perl, Python,
Rexx, and Tcl for a search/string-processing program.
http://www.ipd.uka.de/~prechelt/Biblio/jccpprtTR.pdf

[Pugh01] Pugh, William (Hrsg.): »The Double-Checked Locking is Broken«-Declara-
tion. University of Maryland. März 2001.
http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

[Raymond 96] Raymond, Eric S. (Hrsg.): The New Hacker's Dictionary. Cambridge:
MIT-Press 1996.

Sandini Bib

320 Literatur

[Shirazi00] Shirazi, Jack: Java Performance Tuning. Cambridge: O’Reilly 2000.

[Weiss99] Weiss, Mark Allen: Data Structures & Algorithms in Java™. Addison-Wes-
ley 1999.

[Wilson00] Wilson, Steve, Jeff Kesselman: Java™ Platform Performance: Strategies and
Tactics. Addison-Wesley 2000.

Sandini Bib

Index

!
80-20-Prinzip 33

A
Action siehe Befehl
Adapter 120
Ahead-of-Time-Übersetzung siehe

Bytecode-Ausführung
Amdahls Gesetz 209
Analyse siehe Entwicklungsprozess
Anforderung siehe Entwicklungsprozess
Anonyme Klasse 124
AOT siehe Bytecode-Ausführung
Applikationen starten 301
Applikations-Starter siehe

MultiAppLauncher
ARM 38
Array 129, 163, 237
ArrayList siehe List
ASCII 227
Ausnahme 141

Klassenhierarchie 145
loggen 147
Try-Catch-Block 143
vermeiden durch Design 141
wieder verwenden 147

B
Beck, Kent 26
Bedingte Ausführung siehe if
Befehl 124
Befehlsobjekt siehe Befehl
Benchmark siehe Leistungstest
Bentley, Jon 162
Binärcode siehe Bytecode-Ausführung

BitSet 165
Bloch, Joshua 143
Bordmittel 11, 20

Decompiler 21
Java-API-Dokumentation 20
Java-Quellcode 20

BSAX 293, 300
BufferedReader siehe Ein-/Ausgabe
BufferedWriter siehe Ein-/Ausgabe
Busy Wait siehe Thread
Bytecode 32
Bytecode-Ausführung 32

Ahead-of-Time Übersetzung 36
GJC 36
JET 37
TowerJ 37

Dynamisch angepasste
Übersetzung 33
Interpreter 33
Just-in-Time-Compiler 33
Prozessor 38

C
Cache 108, 174, 229

Austauschstrategie 175, 228
Ältestes Element 176
Least Recently Used 175, 182, 184
zufällig 175

Dateicache siehe Ein-/Ausgabe
Idle Time 176
Invalidierung 176
JCache 174
Kapazität 177, 229
LinkedHashMap 182
Map 177

Sandini Bib

322 Index

Schreibverfahren 176
Schwache Referenz 184
Time to Live 176, 228
Trefferrate 175, 177

case siehe switch
ClassLoader siehe Klasse
Collection 153, 155, 160

Synchronisation 190
synchronizedXXX 162
unmodifiableXXX 161

Command siehe Befehl
Common Subexpression Elimination 35
compress 287
Constant Folding 89
Constant Propagation 35
Copy Constructor siehe String
Crimson 275, 285

getElementsByTagName 279

D
DAC siehe Bytecode-Ausführung
DataInputStream siehe Ein-/Ausgabe
Dateicache siehe Ein-/Ausgabe
Datenstrukturen und Algorithmen 151
Datum siehe String
Dead Code Elimination 35
Deadlock siehe Thread
Decompiler siehe Bordmittel
Deferred Node Expansion siehe Xerces-J
deflate 287
Deployment 307
Design siehe Entwicklungsprozess
DevPartner siehe Messwerkzeug
DGC siehe RMI
DirectByteBuffer siehe Ein-/Ausgabe
Direktes Verketten 159
Disassembler siehe javap
dispose 41
Document Object Model siehe DOM
DOM 273, 275

Ausgabe 282
Level 283
Traversal and Range 285
traversieren 285

Dormancy siehe Thread
Double-Check-Idiom siehe Thread

Dynamic-Adaptive-Compilation siehe
Bytecode-Ausführung

Dynamische Deoptimierung 34

E
Echtzeitanwendung 43, 49
ECperf siehe Leistungstest
Ein-/Ausgabe 217

accept 242
blockierend 237
BufferedReader 226
Byte-orientiert 219
DataInputStream 227
Dateicache 227

Dateigröße 228
Dateikopieren 217
DirectByteBuffer 237
FileChannel 176, 220, 231, 254
flush 222, 226
lastModified 228
length 228
MappedByteBuffer 231
MaskedStreamWriter 225
Memory Mapped File 231, 234
OutputStreamWriter 223
PrintWriter 221, 226
puffern 218, 223
ServerSocket 242
Socket 237
SocketChannel 253
Zeichen-orientiert 219, 221

EJB 48, 142, 187, 270
Empfundene Performance siehe

Performance
Entwicklungsprozess 23

Agile Software Development 24
Analyse und Design 25

Anforderung 25
Anwendungsfall 25
Prototyp 26
Randbedingung 25
Story 25

Bibel 24
Integrieren und Testen 27
Kodieren und Testen 26

Test First 26
Unit-Test 27

Sandini Bib

Index 323

Kosten 23
Releasezyklus 30

equals 158
Exception siehe Ausnahme
Extensible Markup Language siehe XML
Extensible Stylesheet Language

Transformations siehe XSLT
Externalizable siehe RMI

F
Fabrikmethode 100, 120, 243, 245, 254
Faust II 275, 299
FileChannel siehe Ein-/Ausgabe
Filter 289
finalize 40
for siehe Schleife
freeMemory siehe Speicher-Schnittstelle
Frontend 36
FTP 72, 207, 227

G
Garbage Collection 38, 197, 271

Algorithmus 41
Durchsatz 44
GCViewer 82
Generationen-Kollektor 43
HotSpot 44
inkrementell 43, 49
Klasse 305
Kopierender Kollektor 41
Mark-Compact-Algorithmus 42
Mark-Sweep-Algorithmus 42
nebenläufig 43
Objekt-Lebenszyklus siehe Objekt-
Lebenszyklus
OutOfMemoryError 19, 184
Pause 44
Performance 44
Permanente Generation 45
Promptheit 44
Speicherverbrauch 44
Überlebensraum 45
verbose 81
Verteilte Speicherbereinigung 271

Generationen-Kollektor siehe
Garbage Collection

GJC siehe Bytecode-Ausführung
GNU 36

Goethe 275
Große Tabellen 166
Groß-O-Notation 151
gzip 287

H
hashCode 158
Hashfunktion 159
HashMap siehe Map
HashSet siehe Set
Hashtable siehe Map
HAT siehe Messwerkzeug
HotSpot siehe Java Virtuelle Maschine
HPjmeter siehe Messwerkzeug
Hprof siehe Messwerkzeug
HTTP 97, 207, 227, 238, 257, 307

Accept-Encoding 287
Keep-Alive 257
Kompression 287

Httpd 238
Vergleich mit NIOHttpd 255

HttpURLConnection 291
Hypertext Transfer Protokoll siehe HTTP

I
IBM 281
IdentityHashMap siehe Map
Idle Time siehe Cache
if 121

String-Switch 122
immutable siehe unveränderbar
Initialize-on-Demand-Holder-Class 195
Inlining 34, 191
Instruction Scheduling 34
Integration siehe Entwicklungsprozess
IntelliJ 21
InternationalDate 260
Interpreter

Bytecode-Ausführung 33
ISO 8859-1 227

J
J2EE 11, 38, 48, 270
J2ME 36, 38, 277, 281, 282, 291, 299
J2SE 33, 38, 292
jad siehe Bordmittel
Jakarta 120
Jar siehe Klasse

Sandini Bib

324 Index

Java 2 Enterprise Edition siehe J2EE
Java 2 Standard Edition siehe J2SE
Java API for XML Processing siehe JAXP
Java API-Dokumentation siehe

Bordmittel
Java Quellcode siehe Bordmittel
Java Server Page siehe JSP
Java Virtual Machine Profiler

Interfaces 52, 58
Java Virtuelle Maschine 31

Ahead-of-Time Übersetzung
BulletTrain 37
JOVE 37

Dynamisch angepasste Übersetzung
HotSpot 33
JRockit 36

Frame 32, 35, 39
Garbage Collection siehe Garbage
Collection
Heap 32, 73, 81, 184, 271, 312
Kellermaschine 31
Linux Blackdown 49
Method-Area 32
Programmzähler 32
Prozessor

picoJava 38
Stack 31, 40

JavaCC siehe Lexikalische Analyse
javap 137
Java-Plugin 308
JAXP 273, 274, 276, 282
JCache siehe Cache
JDBC 72, 308
JFlex siehe Lexikalische Analyse
Jinsight siehe Messwerkzeug
JIT siehe Bytecode-Ausführung
JProbe siehe Messwerkzeug
JRockit siehe Java Virtuelle Maschine
JSP 37, 48, 305
JSR

107 174
133 196
138 72
166 193

Just-in-Time-Compiler siehe Bytecode-
Ausführung

JVMPI siehe Java Virtual Machine
Profiler Interfaces

K
Klasse

ClassLoader 301, 312
forName 301, 304
frühes Laden 304
Garbage Collection 305
geschwätziges Laden 306
initialisieren 301, 302
Jar 305, 307
laden 301
Lazy Resolution 302
loadClass 301
Übersetzungszeit-Konstante 302
verzögertes Laden 303
Zip 308

Komplexitätsklasse siehe
Groß-O-Notation

Kopierender Kollektor siehe
 Garbage Collection

Kosten siehe Entwicklungsprozess
kXML2 282

L
Landau, Edmund 151
Lazy Initialization siehe Späte

Initialisierung
Lazy Resolution siehe Klasse
Lea, Doug 193
Least Recently Used siehe Cache
Leistungstest 46

Auswertung 29
ECperf 46, 48
Häufigkeit 30
jBYTEMark 46, 48
Makro-Benchmark 27, 72

e-Load 72
JMeter 72
LoadRunner 72
SilkPerformer 72

Mikro-Benchmark 27, 71, 235
currentTimeMillis 71

Sandini Bib

Index 325

Mikro-Benchmark siehe
currentTimeMillis
SPEC JBB2000 48
SPEC JVM98 47
Testlänge 29
VolanoMark 46

Lexikalische Analyse 120
LimitedStack 201
Linear Probing siehe Lineares Sondieren
Lineares Sondieren 159
LinkedHashMap siehe Map
LinkedHashSet siehe Set
LinkedList siehe List
LinkedQueue 254
LISP 38
List 153, 154, 155

ArrayList 154, 189
trimToSize 169

LinkedList 154
RandomAccess 154
Vector 153, 154, 189

Log
Ausnahme 147
isLog 91
java.util.logging 92
Log4J 92, 107, 112
Loglevel 90

Logische Verknüpfung 121
Bedingter Operator 121
Short-Circuiting 121

Lokalität 42, 174, 175
Loop Invariant Code Motion siehe Loop

Invariant Hoisting
Loop Invariant Hoisting 35, 128
Loop Unrolling 34, 130
LRU siehe Cache

M
Map 99, 153, 156, 157

HashMap 157
Kapazität 158
optimieren 158

Hashtable 153, 157
IdentityHashMap 157
LinkedHashMap 157, 182
TreeMap 157, 180
WeakHashMap 157

MappedByteBuffer siehe Ein-/Ausgabe
Mark-Compact-Algorithmus siehe

Garbage Collection
Markierungs-Interface 154, 259
Mark-Sweep-Algorithmus siehe

Garbage Collection
MaskedStreamWriter siehe

Ein-/Ausgabe
Matrize

Compressed Row Storage 169
dünn besetzt 169
hashbasiert 170
Multiplikation 207

maxMemory siehe Speicher-Schnittstelle
Mehrprozessormaschine 49, 207

availableProcessors 207
Mergesort 160
Messwerkzeug 51

HotSpot-Profiling 68
Hprof 52, 165

CPU-Profiling 58
HAT 58
Heap-Dump 53
HPjmeter 58, 61
monitor 64
old 62
PerfAnal 61
ProfileViewer 64
samples 59
times 61

Jinsight 71
Profiler 52, 236
TaskInfo 51
Win32 HeapInspector 58
Windows-Systemmonitor 51

Metrik siehe Performance
Monitor siehe Thread
Moores Gesetz 19
MultiAppLauncher 312, 316

N
Nazomi 38
NIOHttpd 242

Acceptor 245
Connection 249, 253
ConnectionSelector 245
Klassendiagramm 242

Sandini Bib

326 Index

Sequenzdiagramm 244
Vergleich mit Httpd 255

Null Check Elimination 34, 129

O
Objekt-Lebenszyklus 39

benutzt 39
dealloziert 41
eingesammelt 40
erzeugt 39
finalisiert 40
unerreichbar 40
unsichtbar 19, 39

On Stack Replacement 35
Optimizeit siehe Messwerkzeug
OSR siehe On Stack Replacement
OutputStreamWriter siehe Ein-/Ausgabe

P
Parser siehe String
PerfAnal siehe Messwerkzeug
Performance 16

empfunden 18, 214
Garbage Collection siehe
Garbage Collection
Metrik 72

picoJava siehe Java Virtuelle Maschine
Polymorphie 35
Portabilität 37, 50, 207
PrintWriter siehe Ein-/Ausgabe
Profiler siehe Messwerkzeug
ProfileViewer siehe Messwerkzeug
Pull-Parser 273, 276
Push-Parser 273

Q
Quantify siehe Messwerkzeug
Quicksort 163

R
Range Check Elimination 34, 129
Regulärer Ausdruck 120

Oromatcher 120
Regex for Java 120
Regexp 120

Remote Method Invocation siehe RMI
removeEldestEntry siehe Cache

Reverse Engineering 37
RMI 37, 259

DGC-Lease 271
Externalizable 262, 264
GC-Intervall 271
Latenz 270
Overhead 270
readObject 261, 267
readResolve 264
Serializable 259
StackOverflowError 267
transient 261, 267
verknüpfte Liste 266
Verteilte Speicherbereinigung 271
writeObject 267, 269
writeUTF 269

S
SAX 273, 280
Scanner siehe String
Schleife 127

ausnahmeterminiert 132
break 131
iterieren 134
Loop Invariant Code Motion siehe
Loop Invariant Hoisting
Loop Unrolling siehe Loop Unrolling
vorzeitiges Verlassen 131

Separate Chaining siehe Direktes
Verketten

Serializable siehe RMI
Servlet 289
Set 99, 153, 154, 155

HashSet 154
Kapazität 158
optimieren 158

LinkedHashSet 154
SortedSet 154
TreeSet 154, 163

Simple API for XML siehe SAX
Singleton 161, 194, 264
sleep siehe Thread
Smalltalk 38
SMP siehe Mehrprozessormaschine
Soap 299
Socket siehe Ein-/Ausgabe
SocketChannel siehe Ein-/Ausgabe

Sandini Bib

Index 327

SoftReference siehe Cache
sort 163
SortedMap 156
Späte Initialisierung 194
Sparse Matrix siehe Matrize
SPEC 15, 46

JBB2000 46
JVM98 46

Speicher-Schnittstelle 72
freeMemory 73
maxMemory 73
totalMemory 73

Splashscreen siehe Start-Fenster
Stack-Frame siehe Java Virtuelle

Maschine
Stacktrace 33, 55, 61, 142, 143, 148
Standard Performance Evaluation

Corporation siehe SPEC
Start-Fenster 308
Starvation siehe Thread
StreamTokenizer 116
String 85

+=-Operation 90
+-Operator 88
Analyse 109
anfügen 87
bedingtes Erstellen 90
CASE_INSENSITIVE_ORDER 99
Datum und Zeit 106, 112
einfügen 85
equals 92
equalsIgnoreCase 95, 96
formatieren 104
intern 93
Konstantenpool 93
Kopierender Konstruktor 92
Literal 89, 93
Nachricht 105
Parser 109
Scanner 109
sortieren 103
split 116
teilen 116
Token 109, 116
toLowerCase 95, 96
toUpperCase 95, 96
Unicode 103

Vergleich 92
CollationKey 101
CollationsKey 95
Collator 95, 100

StringBuffer 85
Konstruktor 89
vorinitialisiert 87, 89

StringTokenizer 116, 242
Swapping 175
Swing

Action 124
invokeAndWait 216
invokeLater 216
TableColumn 173
TableModel 166
Thread 215

switch 137
Lookupswitch 137
Tableswitch 137

synchronized siehe Thread

T
Test First siehe Entwicklungsprozess
Thread 187

AWT 211
Benutzeroberfläche 211
blockierende Ein-/Ausgabe 237
Busy Wait 204
Datenstruktur 193

JThreadKit 193
util.concurrent 193, 254

Deadlock 64, 188
Dormancy 188, 199
Double-Check-Idiom 194
Green-Threads 49
Kommunikation 204
Lebendigkeit 187
Lock 64
Monitor 64
notify 188, 198, 205
notifyAll 205
Pool 197
Programmierung 196
resume 188
Runnable 197, 216
Runner 197
RunnerThread 197

Sandini Bib

328 Index

setPriority 207
Sicherheit 187, 189
skalieren 207
sleep 68, 206
Stack 196
starten 196
Swing 215
synchronized 64, 189
verhungern 188
volatile 189, 196
wait 68, 198, 206
yield 207

Time to Live siehe Cache
totalMemory siehe Speicher-Schnittstelle
TowerJ siehe Bytecode-Ausführung
Transaction siehe Befehl
transient siehe RMI
TreeMap siehe Map
TreeSet siehe Set

U
Übersetzungszeit-Konstante siehe Klasse
unveränderbar 85, 158, 188
util.concurrent siehe Thread

V
Value-Object 270
Vector siehe List
VM siehe Java Virtuelle Machine
VolanoMark siehe Leistungstest
volatile siehe Thread

W
W3C 275
wait siehe Thread
WAP 291
WBXML siehe XML

WeakHashMap siehe Map
while siehe Schleife
Win32 HeapInspector siehe

Messwerkzeug
Workingset 175
World Wide Web Konsortium siehe W3C
Write-Back siehe Cache
Write-Through siehe Cache

X
Xerces-J 276, 281, 285

Deferred Node Expansion 276, 286
DOM Level 3 283

XML 273
Ausgabe 282
Binärformat 291, 300
DOM siehe DOM
DTD 282
Entität 277
Hype 282
komprimieren 286
Modellvergleich 279
Namensraum 280
Parser wählen 281
Processing Instruction 277
SAX siehe SAX
Schema 282
Validierung 277, 280
WBXML 291

XML-Pull-Parser siehe XPP
XPP 276, 280
XSLT 273

Z
Zahlen sortieren 162
Zeichenkette siehe String
Zeit siehe String

Sandini Bib

Copyright

Daten, Texte, Design und Grafiken dieses eBooks, sowie die eventuell angebotenen
eBook-Zusatzdaten sind urheberrechtlich geschützt.

Dieses eBook stellen wir lediglich als Einzelplatz-Lizenz zur Verfügung!
Jede andere Verwendung dieses eBooks und zugehöriger Materialien und

Informationen, einschliesslich der Reproduktion, der Weitergabe, des Weitervertriebs,
der Plazierung auf anderen Websites, der Veränderung und der Veröffentlichung bedarf

der schriftlichen Genehmigung des Verlags.

Bei Fragen zu diesem Thema wenden Sie sich bitte an:
mailto:info@pearson.de

Zusatzdaten
Möglicherweise liegt dem gedruckten Buch eine CD-ROM mit Zusatzdaten bei. Die
Zurverfügungstellung dieser Daten auf der Website ist eine freiwillige Leistung des

Verlags. Der Rechtsweg ist ausgeschlossen.

Hinweis
Dieses und andere eBooks können Sie rund um die Uhr

und legal auf unserer Website

(http://www.informit.de)

herunterladen

mailto:info@pearson.de
http://www.informit.de/

	Performant Java programmieren
	Inhalt
	Vorwort
	Java ist zu langsam
	Entwicklungsprozess
	Virtuelle Maschinen
	Messwerkzeuge
	Zeichenketten
	Bedingte Ausführung, Schleifen und Switches
	Ausnahmen
	Datenstrukturen und Algorithmen
	Threads
	Effiziente Ein- und Ausgabe
	RMI und Serialisierung
	XML
	Applikationen starten
	Letzte Worte
	Literatur
	Index

	Vorwort
	Zum Buch
	Danksagungen

	Java ist zu langsam
	Was ist Performance?
	Empfundene Performance
	Gesunder Menschenverstand
	Wissen ist Performance

	Entwicklungsprozess
	Analyse und Design
	Kodieren und Testen
	Integrieren und Testen
	Mikro- und Makro-Benchmarks
	Testlänge
	Auswertung
	Wie häufig testen?

	Virtuelle Maschinen
	Bytecode-Ausführung
	Interpreter
	Just-in-Time-Compiler
	Dynamisch angepasste Übersetzung
	Ahead-of-Time-Übersetzung
	Java in Silizium

	Garbage Collection
	Objekt-Lebenszyklus
	Garbage Collection-Algorithmen
	Performance- Maße
	HotSpots Garbage Collection

	Industrie-Benchmarks
	VolanoMark
	SPEC JVM98
	SPEC JBB2000
	jBYTEMark
	ECperf

	Die richtige VM auswählen

	Messwerkzeuge
	Profiler
	Hprof
	Speicherabbild erstellen
	CPU-Profiling
	Monitor-Information

	HotSpot-Profiling
	Jinsight
	Mikro-Benchmarks
	Makro-Benchmarks
	Performance Metriken
	Speicher-Schnittstellen
	Speicherverbrauch
	Geschwätzige Garbage Collection
	Manuelle Speicherbereinigung

	Zeichenketten
	Strings einfügen
	Strings anfügen
	Bedingtes Erstellen von Strings
	Stringvergleiche
	Groß- und Kleinschreibung
	Vergleich mittels equalsIgnoreCase()
	toLowerCase() oder toUpperCase(), das ist hier die Frage
	Wenn Ä gleich a sein soll

	Strings sortieren
	Formatieren
	Nachrichten erstellen
	Datum und Zeit

	String-Analyse
	Datum und Zeit
	Strings teilen
	Reguläre Ausdrücke und lexikalische Analyse mit Grammatiken

	Bedingte Ausführung, Schleifen und Switches
	Bedingte Ausführung
	Logische Operatoren
	String-Switches
	Befehlsobjekte

	Schleifen
	Loop Invariant Code Motion
	Teure Array-Zugriffe
	Loop Unrolling
	Schleifen vorzeitig verlassen
	Ausnahmeterminierte Schleifen
	Iteratoren oder nicht?

	Optimale Switches

	Ausnahmen
	Ausnahmen durch sinnvolle Schnittstellen vermeiden
	Kosten von Try-Catch-Blöcken in Schleifen
	Keine eigenen Ausnahme-Hierarchien
	Automatisch loggende Ausnahmen
	Ausnahmen wieder verwenden

	Datenstrukturen und Algorithmen
	Groß-O-Notation
	Collections-Framework
	Collections, Sets und Listen
	Maps
	Hashbasierte Strukturen optimieren
	Collections

	Jenseits des Collections-Frameworks
	Zahlen sortieren
	Große Tabellen

	Caches
	Austauschstrategien
	Elementspezifische Invalidierung
	Schreibverfahren
	Gecachte Map
	Caches mit LinkedHashMap
	Schwache Referenzen

	Threads
	Gefährlich lebt sich’s schneller
	Sicherheit durch Synchronisation
	Synchronisationskosten
	Threadsichere Datenstrukturen
	Double-Check-Idiom
	Sprunghafte Variablen

	Allgemeine Threadprogrammierung
	Threads starten
	Threadpool
	Kommunikation zwischen Threads
	Warten oder schlafen?
	Prioritäten setzen und Vorrang lassen

	Skalieren mit Threads
	Threads in Benutzeroberflächen
	Lebendige AWT-Oberflächen
	Threads in Swing

	Effiziente Ein- und Ausgabe
	Fallstudie Dateikopieren
	Texte ausgeben
	Texte einlesen
	Dateicache
	Skalierbare Server
	Httpd der alten Schule
	Nicht-blockierender Httpd
	Vergleichende Rechenspiele

	RMI und Serialisierung
	Effiziente Serialisierung
	Datenmenge verkleinern
	Optimierte logische Darstellung

	Latenzzeiten und Overhead
	Verteilte Speicherbereinigung

	XML
	SAX, DOM & Co
	SAX
	DOM
	Pull-Parser

	Kleiner Modellvergleich
	Den richtigen Parser wählen
	XML ausgeben
	DOM-Bäume traversieren
	XML komprimieren
	HTTP
	Binärformate

	Applikationen starten
	Klassen laden und initialisieren
	Verzögertes Klassenladen
	Frühes Klassenladen
	Geschwätziges Klassenladen
	Klassenarchive
	Start-Fenster für große Applikationen
	Mehrere Applikationen in einer VM starten

	Letzte Worte
	Literatur
	Index
	!
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Ins Internet: Weitere Infos zum Buch, Downloads, etc.
	© Copyright-Hinweis

