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Neulich in einem evolutionaren Algorithmus... 

Trifft ein Permutationsindividuum in einer Population bindrer Zeichenketten ein. 

Permutationsindividuum: Tag, seid Ihr auch alle bijektiv? 
Durchschnittliches Binarindividuum: Huch! Welchem Suchraum bist Du denn 

entsprungen? 
Mutationsoperator: Macht nichts - ich kann Euch alle invertie-

ren, flippen, Telle vertauschen, selbstanpas-
sen lassen ... Exploitation rules! 

Rekombinationsoperator: Aber erst werdet Ihr zerschnitten, neu kom-
biniert, zusammengeklebt, abgebildet oder 
gemittelt. Exploration rocks! 

Gutes Binarindividuum: Jaaa! Ich will der nachste sein! 
Eltemselektion: Genau, lasst uns ein Tumier veranstalten. 

Derjenige, der gewinnt, ist dran. 
Durchschnittliches Binarindividuum: Dafur flihle ich mich aber nicht fit genug. 

Durchschnittliches Binarindividuum tritt ab. Die Eltemselektion zeigt aufdie Permutation. 

Rekombinationsoperator: Und j etzt bist Du fallig! 

Permutationsindividuum wird mit dem guten Binarindividuum rekombiniert. 

Gutes Binarindividuum: Haha! Du bist j a gar nicht mehr gtiltig!!! 
Permutationsindividuum: Mir geht das alles zu sehr nach Schema 

hier... 
Umweltselektion: Pass nur auf. Gleich bist Du weg! 

Permutationsindividuum verzieht sich wieder 

Gutes Binarindividuum: Das kann mir nicht passieren - bin j a elitar. 

Sprach 's und wurde von einem neuen Superindividuum gestiirzt... 

Optimierungsproblem: Elitismus wird j a total tiberbewertet heutzu-
tage... 



Vorwort zur ersten Auflage 

Evolutionare Algorithmen sind Methoden zur Losung von Optimierungsproblemen. Ihr Na­
me tragt der Inspiration aus der Biologic Rechnung - sie imitieren das von Darwin erkannte 
Wechselspiel zwischen Variation von Individuen und Selektion, welches zu einem Evolutions-
prozess fiihrt. Bei der tJbertragung der Evolution in einen konkreten Algorithmus wird mit einer 
vereinfachenden Modellvorstellung gearbeitet. Dennoch lehnt sich die Terminologie stark an 
das biologische Vorbild an. Zu den evolutionaren Algorithmen gehoren genetische Algorithmen, 
Evolutionsstrategien, evolutionares Programmieren, genetisches Programmieren und im weite-
ren Sinn auch lokale Suchalgorithmen. 

Dieses Buch vermittelt einen umfassenden Uberblick iiber evolutionare Algorithmen. Das 
Kemsttick ist dabei ein allgemeines Grundgertist fiir evolutionare Algorithmen, anhand dessen 
sowohl die Prinzipien und Funktionsweisen der Algorithmen als auch alle gangigen Standard-
verfahren erlautert werden. Mit den prasentierten Methoden kann der Leser neue evolutionare 
Algorithmen zur Bewaltigung eigener spezieller Probleme entwerfen. In den letzten beiden Ka-
piteln geht das Buch auf praxisrelevante Aspekte und verwandte Forschungsgebiete ein. Jedes 
Kapitel schlieBt mit einem historischen Uberblick, zahlreichen Literaturhinweisen und Ubungs-
und Programmieraufgaben zur weiteren Festigung und Vertiefung des Stoffs. 

Das Buch basiert auf den Aufzeichnungen zur Vorlesung »Evolutionare Algorithmen«, die 
von mir in den Sommersemestem 1999, 2000 und 2001 an der Informatikfakultat der Universitat 
Stuttgart und von Nicole Weicker im Sommer 2001 im Rahmen der Informatica Feminale an 
der Universitat Bremen gehalten wurde. Daher ist es besonders als Textbuch fiir Vorlesungen 
geeignet. Es kann jedoch auch ohne Einschrankungen fiir ein Selbststudium von Studenten und 
Praktikem aus Industrie und Wirtschaft genutzt werden. Benotigte mathematische Grundlagen 
und Notationen sind vor dem ersten Kapitel zusammengefasst. 
Danksagungen: Mein besonderer Dank gilt meiner Frau Nicole Weicker, die mich immer wie-
der ermutigt, mir den Rticken frei gehalten und als inhaltlicher »Sparring-Partner« die Evolution 
des Buches begleitet hat. Ebenso gilt mein Dank Herm Prof. Dr. Claus, der mich als Student 
auf evolutionare Algorithmen aufmerksam gemacht hat, die erste Vorlesung an der Universitat 
Stuttgart zu diesem Thema unter dem Titel »Naturanaloge Verfahren« hielt und auch bei der Ent-
stehung des Buchs mit Rat und Tat zur Seite stand. Fiir die interessanten Diskussionen mochte 
ich mich bei Wolfgang Schmid bedanken. Besonderer Dank wird auch den Studenten meiner 
Vorlesungen zuteil, die mich immer wieder von Neuem dazu gedrangt haben, Kapitel 3, die eher 
theoretischen Grundlagen und Arbeitsprinzipien der evolutionaren Algorithmen, in dieser Form 
zu lehren und hier aufzuschreiben. Ihr Interesse und ihre Kritik haben maBgeblich zum vorliegen-
den Buch beigetragen. AbschlieBend danke ich Riidiger Vaas, Klaus Kammerer und Christoph 
Ruffner, die Telle des Manuskripts sehr gewissenhaft gegengelesen haben. 

Stuttgart, Februar 2002 Karsten Weicker 



Vorwort zur zweiten Auflage 

Nach vielen positiven Ruckmeldungen zur ersten Auflage habe ich die zweite Auflage zum 
Anlass genommen, groBe Telle des Buchs nochmals grundsatzllch zu iiberarbelten und welter 
zu verbessem. Neben der Beseltlgung erkannter Mangel wurde Insbesondere Kapltel 3 um Bel-
splele erweltert und an die Struktur angepasst, die Ich selt mehreren Jahren In melner Vorlesung 
benutze. Auch Kapltel 4 habe Ich um praxlsrelevante Hlnwelse z. B. zu Parameterelnstellungen 
erweltert. In Kapltel 6 wurde das Sammelsurlum an Randthemen aus der ersten Auflage durch 
konkrete Hlnwelse zum Entwurf von evolutlonaren Algorlthmen ersetzt, die durch drel Fallstudl-
en abgerundet werden. Dlesen Erwelterungen 1st die Uberslcht der mathematlschen Grundlagen 
ebenso zum Opfer gefallen wle die knappen Losungshlnwelse zu den Ubungsaufgaben am Ende 
des Buchs. 

Erganzendes Material wle Vorlesungsfollen, Anlmatlonen der Algorlthmen, elne Errata-Llste 
und die Losungshlnwelse konnen der begleltenden Webselte entnommen werden. Auf dlese kann 
entweder iiber die Verlagsselte www. teubner . de oder dlrekt iiber 

www.evolutionary-algorithm.de 
zugegrlffen werden. 

Falls Sle Fehler In dlesem Buch finden, so melden Sle dlese bltte dlrekt an melne Emall-
Adresse weicker@evolutionary-algori thm.de. 

Flir die zweite Auflage gilt meln Dank vor allem all den Ko-Arbeltem In den Projekten, die 
In Kapltel 6 vorgestellt werden, Herm Tim Fischer fiir seine Dlplomarbelt zum Thema »Entwurf 
evolutlonarer Algorlthmen«, Herm Marc Bufe fiir elnlge Hlnwelse und den ersten Vorschlag fiir 
die Selte V und natiirllch melner Frau, Nicole Welcker, die den Endsatz und groBe Telle des 
Korrekturlesens iibemommen hat. Ihre Unterstiitzung war maBgebllch fiir das hohe Niveau bel 
der Produktlon der zweiten Auflage. 

Leipzig, Jull 2007 Karsten Weicker 

http://www.evolutionary-algorithm.de
mailto:weicker@evolutionary-algorithm.de


Hinweise fiir Leser und Dozenten 

In den seltensten Fallen wird ein Lehrbuch linear gelesen oder »eins zu eins« als Vorlesung 
umgesetzt. Daher ist die Struktur des vorliegenden Buchs auch nur ein moglicher, logisch konse-
quenter Pfad durch seinen Inhalt. Fiir individuelle Leseflusse soil das folgende Bild als Orientie-
rung dienen: Die kleinen Pfeile kennzeichnen inhaltliche Abhangigkeiten, wobei die gestrichel-
ten Pfeile nur schwach sind. Die grauen Pfeile entsprechen meiner Vorlesung, in der ich verschie-
dene Themen friiher behandle, da sie fiir die studentischen,vorlesungsbegleitenden Projekte von 
Belang sind. Wie man sieht blieb eine gestrichelte Abhangigkeit dabei nicht beriicksichtigt, was 
natiirlich immer durch leichten Mehraufwand in der Vorlesung ausgeglichen werden kann. 

J Natiirliche 
Evolution 

Prinzipien 
evolutionarer 
Algorithmen 

1 
4 Evolutionare 

Standard-
algorithmen 

6.4-6.6 
Fallstudien 

2 Von der 
Evolution zur 
Optimierung 

5 Techniken fiir 
spezifische 
Problem-
anforderungen 

6.1 
Vergleich von 
Algorithmen 

6.2-6.3 
Entwurf 
evolutionarer 
Algorithmen 

Alle Algorithmen werden in der zweiten Auflage mit einer sehr kompakten Notation beschrie-
ben, die knapp auf Seite 283 erlautert wird. Zugunsten eines besseren Leseflusses werden auch 
die Referenzen auf die Originalarbeiten kompakt am Ende jedes Kapitels in einem Abschnitt 
»Historische Anmerkungen« prasentiert - was die Wiirdigung der »Pioniere«, Forscher und An-
wender nicht schmalem soil. 
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1 Natiirliche Evolution 

Einige Grundlagen der natiirlichen Evolution werden prdsentiert. Der Schwerpunkt liegt aufden 
zugrundeliegenden Konzepten. 

Lernziele in diesem Kapitel 

c|> Der Leser soil ein Grundverstandnis fiir die Zusammenhange und die Komplexitat der 
natiirlichen Evolution bekommen - mit dem Ziel deren Nachahmung durch die evolutio-
naren Algorithmen zu verstehen. 

^ Die Evolutionsfaktoren werden in ihrer grundsatzlichen Arbeitsweise verstanden. 

c|> In einem ersten Abstraktionsschritt konnen Vorgange der natiirlichen Evolution simuliert 
werden. 

Gliederung 

1.1 Entwicklung der evolutionaren Mechanismen 2 

1.2 Evolutionsfaktoren 9 

1.3 Anpassung als Resultat der Evolution 13 

1.4 Ubungsaufgaben 15 

1.5 Historische Anmerkungen 16 

Seit den 1950er Jahren dient die natiirliche Evolution als Vorbild fiir die Losung von Optimie-
rungsproblemen. Durch verschiedene Ansatze bei der Imitation der Natur sind unterschiedliche 
Modelle der evolutionaren Algorithmen entstanden. Gemeinsam ist ihnen, dass sie Vorgange und 
Begriffe aus der Biologic entlehnen, um daraus in einem anderen Zusammenhang Verfahren zur 
Losung von Optimierungsproblemen zu beschreiben. Im Vordergrund steht dabei der Begriff der 
Population, bei der es sich um cine Ansammlung von Losungskandidaten handelt, welche als 
Individuen bezeichnet werden. Eine solche Population wird einer simulierten Evolution unter-
worfen, so dass sich durch ein Wechselspiel zwischen Modifikation und Auswahl bessere Indi­
viduen herausbilden. Die wesentlichen Begriffe, die in den nachsten Kapiteln dabei eine Rolle 
spielen werden, sind »Individuum«, »Population«, »Selektion«, »Mutation«, »Rekombination«, 
»Genotyp« und »Fitness«. Diese Begriffe sind im Kontext der evolutionaren Algorithmen z. T. 
mit anderen Bedeutungen belegt als bei der natiirlichen Evolution, weshalb eine genaue Differen-
zierung notwendig wird. Im Rahmen spezieller gegen Ende des Buches diskutierter Verfahren 
werden auch Begriffe wie »Diploiditat«, »Nischenbildung«, »Koevolution« und »Lamarcksche 
Evolution« eine Rolle spielen. 



1 Naturliche Evolution 

Um evolutionare Algorithmen besser einordnen und von den Vorgangen in der Natur abgren-
zen zu konnen, ist es sinnvoll, sich das Vorbild, die naturliche Evolution, genauer anzusehen. Zu 
diesem Zvv̂ eck vŝ ird in diesem Kapitel ein kurzer tJberblick iiber die Prozesse der natiirlichen 
Evolution gegeben. Dabei liegt der Fokus auf der Presentation der evolutionaren Konzepte, die 
mehr oder vŝ eniger von evolutionaren Algorithmen imitiert vŝ erden. Aus diesem Grunde vŝ er-
den technische Details der biologischen Mechanismen ausgelassen, die nicht vv^esentlich fiir das 
Verstandnis der generellen konzeptuellen Entwicklungen und der Entstehung von bestimmten Ei-
genschaften sind. Fiir eine umfassendere Darstellungen der vollstandigen evolutionaren Prozesse 
in der Natur sei auf die entsprechende Fachliteratur verwiesen. 

Bei der natiirlichen Evolution lassen sich die Evolution von lebenden und unbelebten Syste-
men unterscheiden. Fiir die evolutionaren Algorithmen dient in erster Linie die Evolution von 
lebenden Organismen als Vorbild. Unter dem Begriff der biologischen Evolution (von lebenden 
Systemen) v îrd der Prozess verstanden, v^elcher zur bestehenden Mannigfaltigkeit der Organis-
menwelt - der Einzeller, Pilze, Pflanzen und Tiere - gefuhrt hat. Diese Mannigfaltigkeit wird vor 
allem durch die Anpassung unterschiedlicher Arten an unterschiedliche Umweltbedingungen ge-
v^ahrleistet. Die Grundlagen fiir die Evolutionsmechanismen wurden durch die sog. chemische 
Evolution geschaffen. 

1.1 Entwicklung der evolutionaren Mechanismen 

Anhand der friihen Evolution wird die Entstehung der in der Evolution wirksamen Mechanismen 
erldutert. 

Die natiirliche Evolution hat hochkomplexe Strategien fiir die Ausbildung, Bev^ahrung und wei-
tere Anpassung von Arten entwickelt. Der Ursprung dieser Strategien liegt in der chemischen 
Evolution, vŝ omit sie selbst ein Resultat der friihen Evolution sind. Eine kurze Zusammenfas-
sung beschreibt die v^ichtigsten Schritte in dieser Phase der Evolution. 

Eine charakteristische Eigenschaft eines Lebewesens ist der Stoffwechselprozess. Organis­
men sind offene Systeme, die mit ihrer Umwelt interagieren. Da sie vŝ eit von einem energe-
tischen Gleichgev^icht entfemt sind, ist die Versorgung mit energiereichen Nahrungsmitteln fiir 
die Selbsterhaltung des Systems notwendig. Diese Nahrungsmittel werden innerhalb des Systems 
durch enzymkatalytische Prozesse umgeformt und fiir den Aufbau neuer korpereigener Substan-
zen benutzt. Diese Umformung zielt auf die Bewahrung der Ordnung des Systems. Entstehende 
energiearme Substanzen vŝ erden ausgeschieden. 

/ j \ Wem die folgenden Details zu tief in die Biochemie hineinreichen, der kann geme bis zum Abschnitt 1.2 
II vorblattem. Dem gmndsatzlichen Verstandnis der evolutionaren Algorithmen tut dies keinen Abbruch. 

Wie erste Stoffvs^echselprozesse entstanden sind, ist letztlich ungeklart. Die Hypothesen reichen 
vom Auftreten erster instabiler, organischer Substanzen in vulkanischen Umgebungen bis hin 
zu langsamen chemischen Reaktionen in Eiskapillaren. Wahrscheinlich vmrde der Stoffwechsel-
vorgang durch eine Membran bestehend aus groBeren Makromolekiilen wie Proteinoiden und 
Polynukleotiden umschlossen, womit eine friihe Form der Zelle entstanden ist. Im Stoffwechsel­
prozess haben sich bald diejenigen Polynukleotide mit D-Ribose als einzigem Zucker als vorteil-
haft herausgestellt, da sie nur unverzvs^eigte Ketten ausbilden. Dies erlaubt ihnen, sich zu verviel-



1.1 Entwicklung der evolutionaren Mechanismen 
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Tabelle 1.1 Genetischer Code: Abbildung der Nukleotid-Tripletts der sog. Messenger-RNA auf die Amino-
sauren im Protein. 

faltigen, was einen enormen Vorteil gegeniiber anderen Formen darstellt. Diese Polynukleotide 
werden RNA (engl. ribonucleic acid) genannt. Damit war der Grundstein fiir die wichtigste Errun-
genschaft der chemischen Evolution gelegt: die Ausbildung von Molektilen, die sowohl »Baupla-
ne« fiir komplexere Lebewesen speichem als auch sich selbst samt der enthaltenen Information 
duplizieren konnen. 

Die im RNA-Molekiil gespeicherte Information wird im Stoffwechselprozess als Blaupause 
fiir die Synthese von Polypeptiden bzw. Proteinen genutzt. Diese Proteinketten wiederum be-
stimmen dann Struktur und Verhalten der jeweiligen Zelle. Die RNA-Information ist in einer 
Kette bestehend aus den vier Grundbausteinen, den Ribonukleotiden mit den Basen Cytosin (C), 
Uracil (U), Adenin (A) und Guanin (G), abgelegt. Immer drei Nukleotide bestimmen gemaB des 
so genannten genetischen Codes eine Aminosaure in der Aminosauresequenz des Proteins. Ver-
mutlich wurden in ersten Formen nur sieben oder acht Aminosauren codiert, was spater auf 20 
Aminosauren erweitert wurde. Der heute giiltige Code ist in Tabelle LI dargestellt. Jede Ami­
nosauresequenz beginnt im RNA-Code mit der Kombination AUG, also der Aminosaure Met, 
und es gibt drei verschiedene Kombinationen, um die Sequenz zu beenden. Andere Zellparti-
kel, sog. Ribosomen iibersetzen jeweils drei Nukleotidbasen in eine der 20 Aminosauren, aus 
denen dann die gesamte Proteinkette zusammengestellt wird. Untersuchungen haben gezeigt, 
dass dieser Code sehr stabil gegen Fehler ist. Vermutlich war die Ausbildung dieses Codes sehr 
frlih abgeschlossen, da er in nahezu alien Organismen identisch ist. Bis heute ist nicht geklart, 
wie sich der genetische Code in der RNA entwickelt hat. Dennoch ist diese Informationsspei-
cherung und die Fahigkeit zur Vervielfaltigung die Basis fiir alle weiteren Entwicklungen in 
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Bild 1.1 Vereinfachtes Beispiel eines Hyperzyklus 

der Evolution. Der Abschnitt der RNA, der eine Aminosauresequenz bestimmt, w îrd als Gen 
bezeichnet. 

Die Proteine ubemehmen nun die spezifischen Zellenfunktionen, wie z. B. die Produktion 
des Blutfarbstoffs Hamoglobin. Ebenso haben spezielle Proteine katalytische Wirkung auf die 
Vervielfaltigung der RNA-Molekiile. Dadurch konnten sich in der friihen Evolution zyklische 
Prozesse, die sog. Hyperzyklen, zvŝ ischen den Polynukleotiden und den Polypeptiden ausbilden. 
Die Bildung von Polypeptiden wird durch die Information in den Polynukleotiden gesteuert. 
Und die Polypeptide bzw. Proteine verbessem v^iederum katalytisch die Vervielfaltigung der 
Polynukleotide. Dies ist schematisch in Bild 1.1 dargestellt. 

Diese Vervielfaltigung der RNA-Molekiile oder Polynukleotide arbeitet jedoch nicht fehler-
frei - die Ursache sind u.a. die naturliche Radioaktivitat aber auch chemische Wechselvs^irkungen. 
In der friihen Evolution wird mit einer Fehlerrate (Vervielfaltigungsfehler oder Mutationsrate) 
von ungefahr 10~^ gerechnet, d. h. auf 100 Nukleotide kommt etwa ein fehlerhaft eingebautes Nu-
kleotid. Je kleiner diese Fehlerrate ist, desto stabiler kann die Information vs^eitergegeben vŝ erden. 
Und indirekt beschrankt sie die Lange der Polynukleotidketten und die Menge an speicherbarer 
Information. Wie wir im Folgenden sehen vŝ erden, kann die Verringerung der Fehlerrate als ein 
Leitkriterium fiir die Entstehung der weiteren Mechanismen der Evolution herangezogen werden. 

Ein Ergebnis solcher Mutationen konnen geringfiigig veranderte Gene sein, die damit andere 
Proteine erzeugen und als Konsequenz auch eine variierte katalytische Wirkung in den Hyperzy­
klen haben. Dadurch bildet sich ein Wettbewerb zwischen unterschiedlichen Hyperzyklen und 
diejenigen, welche am efiizientesten und schnellsten arbeiten und die meisten Molekularbaustei-
ne binden konnen, setzen sich durch. Dies fiihrte zu besseren Katalysatoren und konnte so bereits 
die Fehlerrate auf weniger als 10~^ verringem. 

So hat bereits die friihe chemische Evolution die drei Eigenschaften des Lebens gepragt, die 
iiblicherweise fur eine Definition von »Leben« herangezogen werden. 

• Erhaltung des Lebens durch Stoffwechselprozesse und Selbstregulierung, 

• Vermehrung des Lebens durch Wachstum und Zellteilung kombiniert mit der Vererbung 
durch die tJbertragung von genetischem Material und 

• Veranderung des Lebens durch Variation des genetischen Materials. Dieser Veranderungs-
prozess wird gewohnlich als Evolution bezeichnet. 
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Bild 1.2 Struktur der DNA (gewundene Strickleiter). Die Abbildung zeigt, wie sich die DNA aufspaltet 
und sich so durch Erganzung der einzelnen Strange unter der Mitwirkung von Enzymen selbst 
replizieren kann. 

Zufallsereignisse und die Mitwirkung von Enzymen (Eiv^eiBkorper, die als Biokatalysatoren 
fur den Stoffwechselprozess unentbehrlich sind) haben hochstv^ahrscheinlich die DNA-RNA-Pro-
tein-Welt hervorgebracht, indem sich DNA-Molekiile (engl. desoxyribonudeic acid) zur Infor-
mationsspeicherung an RNA-Molekiilen gebildet haben. Die DNA ist ein zv^eistrangiges Molekiil, 
das sich aus den Nukleotiden mit den Basen Adenin (A), Guanin (G), Cytosin (C) und Thymin 
(T) zusammensetzt. Damit sind drei von vier Basen der RNA auch in der DNA enthalten. Ledig-
lich das Uracil der RNA wird im Aufbau der DNA durch Thymin ersetzt. Diese Basen bilden 
durch molekulare Wechselwirkungen (Wasserstoffbrticken) Paare aus, die sich als Querverbin-
dungen zv^ischen den beiden DNA-Einzelstrangen befinden. Es entsteht die Form einer gewun-
denen Strickleiter, wobei die Einzelstrange die Holme und die Querverbindungen die Sprossen 
sind. Dabei stehen jeweils A und T gegentiber sowie C und G. Daher kann jeder einzelne Strang 
vom anderen abgeleitet v^erden. Die Bindungen zv^ischen den einzelnen Paaren halt das Molekiil 
zusammen. Die Struktur der DNA und die Selbstreplikation der DNA aus den Einzelstrangen ist in 
Bild 1.2 dargestellt. Die langfristigen Vorteile der DNA gegentiber der RNA liegen darin, dass sie 
stabiler ist und aufgrund ihrer doppelten Codierung gegebenenfalls genetische Defekte reparieren 
kann. Durch den Doppelstrang kann die DNA jedoch nicht so gut mit den Enzymen interagieren 
v îe die RNA - daher ist keine direkte Umsetzung der DNA in die Proteine moglich. Aus diesen 
unterschiedlichen Starken von DNA und RNA hat sich eine Aufteilung in verschiedene Funktio-
nalitaten ergeben. Die genetische Information der DNA wird zunachst auf eine sog. Messenger-
RNA gemaB der Regeln in Tabelle 1.2 iibertragen, welche dann beziiglich der Enzyme aktiv 
wird. Damit ist die Rolle der DNA die Informationsspeicherung und die Rolle der Messenger-
RNA die Informationsiibermittlung. Diese Mechanismen reduzieren die Fehlerrate auf etwa 10~^ 
und weitere Verbesserungen in der Fehlerkorrektur erreichen sogar eine Fehlerrate von 10~^. Der 
tjbersetzungsprozess ist ebenfalls schematisch in Bild 1.3 dargestellt. 

Nun darf man sich einen DNA-Strang jedoch nicht als fest vorgeschriebene Sequenz von An-
weisungen vorstellen, die einem klaren Bauplan z. B. fiir den Aufbau eines komplexeren Orga-
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Tabelle 1.2 
Regeln zur Ubermittlung der Information von der DNA auf die Messenger-
RNA, wobei sich die RNA jeweils an der rechte Base der DNA bildet. 

Zellkem ^ X Zellplasma 

Ribosom 

0 0 0 

Messenger-RNA 

Bild 1.3 Schematische Darstellung der Proteinbiosynthese mit Hilfe der in der Erbsubstanz DNA gespei-
cherten Information. Die Doppelhelix der DNA im Zellkem wird von der RNA-Polymerase aufge-
spalten. Dabei wird entlang des kodierten DNA-Strangs eine Messenger-RNA gebildet. Sie wandert 
aus dem Zellkem heraus ins Zellplasma. Dort lagem sich Ribosomen an die Messenger-RNA. An 
jedem Ribosom entsteht eine Peptidkette (Protein) aus der Verkntipfung einzelner Aminosauren 
gemaB der Zuordnungsvorschrift des genetischen Codes. Die Aminosauren werden von spezifi-
schen Transfer-RNAs herangeschafft. 
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Bild 1.4 Der linke Teil der Abbildung zeigt ein inaktiviertes Gen. Durch Anlagemng eines Proteins an dem 
als »Schalter« bezeichneten Abschnitt der DNA wird rechts das Gen aktiviert und kann liber die 
Messenger-RNA in ein anderes Protein tibersetzt werden. So regulieren Proteine ihre Herstellung 
auf der Basis der vorliegenden DNA. 

nismus dient. Dies wird in erster Linie iiber Proteine gesteuert, die bestimmte Teile einer DNA-
Sequenz aktivieren konnen (vgl. Bild 1.4). Nur dann werden die Informationen iiber die Messen­
ger-RNA in neue Proteine tibersetzt. D. h. es handelt sich um einen selbstorganisierten zyklischen 
Prozess, wann welche Teile der DNA aktiv werden. Man spricht auch von genregulierenden Netz-
werken. In einem mehrzelligen Organismus kann in verschiedenen Bereichen eine unterschied-
liche »Protein«-Umwelt herrschen - verursacht durch Asymmetrien, die z. T. bis auf die ersten 
Zellen zurlickgehen. Dies fiihrt dazu, dass unterschiedliche Gene aktiv sind und andere Entwick-
lungsschritte veranlasst werden, wodurch sich einzelne Zellen spezialisieren und ein komplexes 
Lebewesen entsteht. 

Ein anderes einschneidendes Ereignis zur Ausbildung der heutigen tierischen und pflanzlichen 
Zellen und damit der komplexen, mehrzelligen Organismen war die Entstehung der Zellatmung 
durch endosymbiotische Vorgdnge. Endosymbiose heiBt hierbei, dass andere selbststandige Le­
bewesen, in diesem Fall Bakterien mit einem effektiven Atmungssystem zur Bindung des Sauer-
stoffs, in eine Zelle eingeschlossen werden und dort symbiotisch mit der Zelle zusammenarbeiten. 
So haben sich die Mitochondrien in der heutigen Zelle gebildet, die ftir die Zellatmung verant-
wortlich sind. Ein weiteres Beispiel fiir Endosymbiose in der Evolution sind die Chloroplasten 
in den pflanzlichen Zellen. Sie entstanden vermutlich durch den Einschluss von Cyanobakterien 
und haben die Photosynthese der Pflanzen ermoglicht. Hierbei ist es wichtig festzuhalten, dass 
die symbiotische Zusammenarbeit einen Evolutionsschritt vollbracht hat, der nicht durch bloBen 
Wettbewerb zwischen unterschiedlichen Mutanten erreicht werden konnte. 

Im Weiteren konnte die Evolution noch verschiedene Verbesserungen in den biologischen Me­
chanismen entwickeln, die eine Verringerung der Fehlerrate bei der Zellteilung mit sich gebracht 
haben. Einerseits wird durch die Ausbildung eines Zellkems das genetische Material besser vor 
Schadigungen durch Sauerstoff geschtitzt. Andererseits kommt das genetische Material bei man-
chen Einzellem und den meisten Vielzellem doppelt in jeder Zelle vor. So besteht jedes Chromo-
som bei den hoheren Lebewesen aus zwei identischen DNA-Ketten, den sog. Chromatiden, auf 
denen mehrere Gene gespeichert sind. Dies vereinfacht die Zellteilung wahrend des Wachstums 
eines Lebewesens (die sog. Mitose). 

Und schlieBlich wird die Sexualitat ausgebildet, bei der das Erbgut zweier Organismen ver-
mischt wird. Die entscheidende Technik, durch die dieser Mechanismus so effektiv wird, liegt in 
der Verdoppelung der Chromosomen. Ftir die Vermehrung wird dieser sog. diploide Chromoso-
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Bild 1.5 Schematisches Beispiel fiir die Rekombination von Chromosomen bei diploiden Organismen. 
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Bild 1.6 Effekt eines Crossing-Over in einem Chromosom bei der Bildung der Keimzellen. 

mensatz bei alien Tieren und damit auch beim Menschen in den Keimzellen auf einen einfachen 
reduziert (die sog. Meiose). Bei der Entstehung eines neuen Nachkommens, d. h. der Verschmel-
zung zweier Keimzellen verschiedener Eltem, geht so ein kompletter Satz der Chromosomen von 
jedem Eltemteil ein. Da bei der Ausbildung der Keimzellen eines solchen Nachkommens nicht 
bekannt ist, welches Chromosom von welchem Eltemteil stammt, werden hierbei die verschie-
denen Chromosomen in jeder Keimzelle neu kombiniert. Dies erlaubt eine rasche fortgesetzte 
Rekombination des Erbguts der Eltern und ist beispielhafl in Bild 1.5 dargestellt. Bei Pflanzen 
findet die Rekombination in derselben Art und Weise statt, auch wenn die Aufspaltung der Chro-
mosomensatze teilv^eise anders organisiert ist. Da auf jedem Chromosom viele Gene gespeichert 
sind, bleiben diese Informationen bei der Rekombination selbst immer zusammen erhalten. Le-
diglich bei den sog. Crossing-Over-Effekten ist eine weitergehende Vermischung moglich, indem 
sich Chromosomen an bestimmten Bmchstellen aneinanderlagem und so Teilstiicke der Chro­
mosomen austauschen. Dadurch wird die Durchmischung des Erbguts der beiden Eltem noch 
verstarkt, es konnen aber auch Anomalien oder Krankheiten vemrsacht werden. Das Crossing-
Over ist schematisch in Bild 1.6 dargestellt. 

Insgesamt ergibt sich damit die heutige Fehlerrate von 10~^^ bis 10~^ ̂  welche auch der durch 
Strahlenschaden vorgegebenen nattirlichen Grenze entspricht. Durch Reduktion der Fehlerrate 
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konnte zwar die Information sehr viel stabiler erhalten bleiben, dadurch finden gleichzeitig auch 
weniger Veranderungen und damit weniger Evolution statt. Aus diesem Grunde konnte sich die 
Sexualitat als neuer evolutionsbeschleunigender Mechanismus sehr rasch durch seinen Selek-
tionsvorteil durchsetzen. 

1.2 Evolutionsfaktoren 

Die Evolutionsfaktoren werden aus der Uberlegung abgeleitet, unter welchen Umstdnden sich 
die Hdufigkeit von Genen in einer Population verdndert. 

Wahrend der Abschnitt 1.1 die Evolution aus der molekulargenetischen Sicht beleuchtet und 
die genetischen Mechanismen samt ihrer Entstehung darstellt, abstrahiert dieser Abschnitt nun 
vom einzelnen Organismus und betrachtet eine Population von Organismen in ihrer Gesamtheit. 
Dieses Teilgebiet wird auch als Populationsgenetik bezeichnet, bei dem insbesondere die statisti-
sche Verteilung von Eigenschaften in der Population, die so genannte Genfrequenz, von Interesse 
ist. 

Um mit Hilfe der Populationsgenetik die Evolutionsfaktoren vorzustellen, werden zunachst 
die wichtigsten Begriffe der Evolutionstheorie eingefiihrt. Die Terminologie der evolutionaren 
Algorithmen in den folgenden Kapiteln lehnt sich stark an die hier eingefiihrten Begriffe an. 

Aus dem vorherigen Abschnitt ist bekannt, dass ein Chromosom mehrere Gene enthalt - die 
Grundlage fiir die Vererbung sowie fiir die Veranderung des Erbguts in der Form einer Mutation. 
Die Gesamtheit aller Gene eines Organismus wird Genom genannt und bestimmt im Wesent-
lichen das Erscheinungsbild dieses Organismus, die so genannte phanotypische Auspragung. 
Das Genom wird gemeinsam mit dem Phanotyp auch als Individuum bezeichnet. Gerade sein 
Erscheinungsbild und die Interaktion mit der Umwelt bilden die Grundlage fiir eine Selektion, 
d. h. einen Auswahlprozess. 

Ein einzelnes Gen im Genom kann meist verschiedene Werte annehmen. Jede dieser Auspra-
gungen wird als QinAllel bezeichnet. Ein Beispiel ware bei einem Gen fiir die Haarfarbe ein Allel 
fiir blonde und ein Allel fiir schwarze Haare. Die Gesamtheit aller Allele in einer Population wird 
auch als Genpool bezeichnet. 

Einen weiteren wichtigen Begriff der Evolution stellt der Artbegriff dar. Eine Art wird durch 
diejenigen Populationen definiert, deren Individuen zu einem gemeinsamen Genpool gehoren 
und sich miteinander paaren konnen. Dabei konnen jedoch einzelne Populationen raumlich so 
weit voneinander getrennt sein, dass aus diesem Grund keine Fortpflanzung zwischen ihnen statt-
findet. Da wir Evolution als den Entstehungsprozess der Mannigfaltigkeit im Tier- und Pflanzen-
reich definiert haben, stellt der Artbegriff die Grundlage fiir die Evolution dar. 

1.2.1 Herleitung der Evolutionsfaktoren 

Um die Frage nach den grundsatzlichen Evolutionsfaktoren zu beantworten, betrachten wir eine 
Population von Individuen. Wir nehmen an, dass fiir ein bestimmtes Gen in der Population zwei 
unterschiedliche Allele vorhanden sind. Dabei soil ein Allel mit der Haufigkeit /?, das andere 
mit der Haufigkeit \ — p auftreten. Femer sei die Population stabil, d. h. auch nach mehreren 
Generationen ist das Verhaltnis der beiden Allele immer noch konstant. 
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Eine Evolution findet nun genau dann statt, wenn sich die Haufigkeit der beiden Allele, die 
sog. Genfrequenz verandert. Dies kann genau in den folgenden Fallen geschehen. 

1. Durch Vervielfaltigungsfehler bzw. Mutationen kann sich die Genfrequenz nachhaltig ver-
schieben, indem z. B. neue Allele eingeftihrt werden. 

2. Die Haufigkeit der Allele kann nur stabil sein, wenn sie eine gleiche Fortpflanzungsrate 
besitzen und die Nachkommen unabhangig von ihren Allelen gleiche Uberlebenschancen 
haben. 1st eine von beiden Bedingungen nicht gegeben, tritt eine Veranderung der Gen­
frequenz ein. Der Evolutionsfaktor wird als Selektion bezeichnet. 

3. In groBen Populationen stort der zufallige Tod einzelner Individuum das Verhaltnis der 
Allelen kaum. In sehr kleinen Populationen konnen die Auswirkungen jedoch groB sein: 
Man spricht vom Gendrift. 

4. Eine Veranderung der Genfrequenz kann auch durch die Zu- oder Abwanderung von Indivi-
duen, also einer Interaktion zwischen eigentlich getrennten Populationen, stattfinden. Dann 
spricht man von Genfluss. 

Im vorherigen Abschnitt hatten wir auch die Rekombination als Mechanismus der Evolution 
eingeftihrt. In obiger Uberlegung der Populationsgenetik ware dies kein Evolutionsfaktor, da 
Allele nur anders verteilt, ihre Haufigkeit aber nicht verandert wird. 

Die einzelnen Evolutionsfaktoren und insbesondere die Frage, ob die Rekombination nicht 
doch ein Evolutionsfaktor ist, werden in den folgenden Abschnitten naher beleuchtet. 

1.2.2 Mutation 

Wie im Abschnitt 1.2.1 dargestellt entstehen Mutationen durch Fehler bei der Reproduktion der 
DNA, beispielsweise Austausch, Einfiigung oder Verlust von Basen. Beim Menschen betragt die 
Mutationsrate etwa 10~^^. Da der Mensch circa 10^ Gene mit jeweils ungefahr 10^ Bausteinen 
besitzt, findet pro Zellteilung eine Veranderung mit einer Wahrscheinlichkeit von 10~^ statt. 

Da nur sehr wenige Zellteilungen notwendig sind, um die Keimzellen ftir die Nachkommen 
zu bilden, bleibt die Anzahl der Veranderungen an der Geninformation verhaltnismaBig gering. 
Zudem konnen Mutationen auch in Teilen der DNA auftreten, in denen keine Information ge-
speichert ist - z. B. in den Introns, den inaktiven (evtl. veralteten) Abschnitten innerhalb eines 
Gens, oder den nach heutigem Wissensstand fiinktionslosen Abschnitten auBerhalb der Gene, 
die im Englischen auch dih junk DNA (DNA-Miill) bezeichnet werden. Solche Mutationen haben 
zunachst keine direkte Auswirkungen auf den Phanotyp und werden daher als neutrale Muta­
tionen bezeichnet. Auch durch die Redundanz des genetischen Codes kann beispielsweise ein 
Basentausch ohne Auswirkungen, also neutral, bleiben. Andere Mutationen, die zunachst keine 
direkte Auswirkung haben, sind die sog. rezessiven Mutationen. Da in diploiden Organismen 
fiir jedes Gen zwei Allele (von jedem Eltempaar eines) vorhanden sind, kann es sein, dass eine 
Veranderung eines Allels nicht direkt Auswirkungen zeigt, sondem nur wenn beide Gene die-
selbe Veranderung aufweisen. Man spricht dann von einem rezessiven Allel. Ist gleichzeitig ein 
entsprechendes dominantes Allel vorhanden ist, wirkt sich nur das dominante aus. So werden 
z. B. bei der Hausmaus rote Augen durch ein rezessives Allel erzeugt, wahrend schwarze Augen 
dominant sind. Rezessive Mutationen verandern rezessive Allele und haben daher haufig keine 
direkte Auswirkung. Rezessive Allele konnen sehr lange unbemerkt in Populationen vorhanden 
sein. 
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Mutationen sind die Grundlage ftir Veranderung in der Evolution. GroBe Veranderungen in 
einer Population finden in der Regel graduell durch Addition von vielen kleinen, z. T. rezessiven 
Mutationen statt. GroBe Veranderungen, die in einem Schritt durch eine Mutation entstanden 
sind, werden haufig wieder schnell aus der Population verdrangt, da durch die enge Verkniipfung 
und Wechselwirkung der Gene elementare negative Eigenschaften bei GroBmutationen kaum 
vermeidbar sind. 

1.2.3 Rekombination 

Rekombination findet bei der sexuellen Paarung statt, wodurch das genetische Material der El-
tern neu kombiniert wird. Aus der Sicht der klassischen Evolutionslehre handelt es sich dabei 
um keinen Evolutionsfaktor, da keine Neuerungen eingefuhrt werden, sondem nur Vorhandenes 
neu zusammengestellt wird. Dieser Argumentation liegt die Idee eines aus einzelnen, voneinan-
der unabhangigen Genen zusammengesetzten Bauplans zugrunde. Wird jedoch die Vorstellung 
der genregulierenden Netzwerke herangezogen, sind die Gene hochgradig voneinander abhan-
gig. Es wird angenommen, dass nur die starke Vemetzung und Verkniipfung in den genotypi-
schen Strukturen viele phanotypische Merkmale hervorbringen kann. Damit verschiebt sich die 
Funktion der Rekombination von der Kombination unabhangiger Gene hin zur Erzeugung neuer 
Verkntipfungen im genregulierenden Netzwerk. Vor diesem Hintergrund kann man annehmen, 
dass wahrscheinlich durch Mutationen neu erzeugte Allele fiir den Evolutionsprozess weit weni-
ger wichtig sind als die Veranderungen der Rekombination. Konsequenterweise zahlt man heute 
die Rekombination auch zu den Evolutionsfaktoren. 

^ \ Schon, dass die Natur sich nicht nach der Populationsgenetik richtet. Dies zeigt lediglich die Problematik 

II jeglicher Modellierung auf: Es konnen nur Teilaspekte vollstandig korrekt wiedergegeben werden. 

1.2.4 Selektion 

Bei der Selektion innerhalb einer Population handelt es sich um eine Veranderung der Allelenhau-
figkeit durch unterschiedlich viele Nachkommen der einzelnen Allele. Die folgenden Ursachen 
konnen zu unterschiedlicher Tauglichkeit und Reproduktivitat fiihren: 

• unterschiedliche Uberlebenschancen, z. B. in der Lebensfahigkeit oder dem Behauptungs-
vermogen gegen Rivalen oder nattirliche Feinde - hier spricht man auch von einer Umwelt-
selektion, 

• unterschiedliche Fahigkeit, einen Geschlechtspartner zu finden - hier spricht man auch von 
der sexuellen Selektion, 

• unterschiedliche Fruchtbarkeit bzw. Fortpflanzungsraten oder 
• unterschiedliche Lange der Generationsdauer. 

Die Selektion kann durch den Selektionswert bzw. Fitnesswert gemessen werden. Die relative 
Fitness eines Genotyps G ist tiber die Anzahl der iiberlebenden Nachkommen in einer Population 
definiert als 

/ ̂ \ #Nachkommen von G 
Fitness iG) = -——— —-, 

#Nachkommen von G' 

wobei G' der Genotyp mit den meisten Nachkommen in der Population ist. 
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Implizit wird bei dem Fitnesswert angenommen, dass ein Genotyp, der besser an seine Um-
welt angepasst ist, mehr Nachkommen erzeugt. Damit ist der Fitnesswert ein abgeleitetes MaB 
fiir die Tauglichkeit eines Individuums. 

Die Selektion ist der einzige gerichtete Vorgang in der Evolution. Statt eines tibergeordne-
ten Ziels v îrd jedoch die Angepasstheit im Moment angestrebt. Die Selektion arbeitet nicht 
auf einzelnen Eigenschaften oder Genen eines Organismus, sondern statistisch auf dem dadurch 
bestimmten Phanotyp, d. h. dem beobachtbaren AuBeren des Organismus. Alle Gene erbringen 
zusammen eine gev^isse Leistung, die durch die Selektion bewertet wird. 

Beim reinen Auswahlprozess der Selektion wiirde sich langfristig lediglich die vorteilhafteste 
Form einer Art durchsetzen. Dies ist jedoch nicht der Fall, da meist in einer Population viele ver-
schiedene Formen beobachtet werden konnen, z. B. braun- und weiBhaarige Kaninchen. Diesen 
Effekt nennt man Polymorphismus. Eine mogliche Ursache ist ein geringfiigiger Selektionsun-
terschied zwischen den verschiedenen Phanotypen oder sogar wechselseitige Selektionsvorteile 
bei ungleichen Umweltbedingungen. Eine zweite Erklarung sind Seiteneffekte von rezessiven 
Allelen. Ist beispielsweise a ein rezessives Allel und A ein dominantes, dann stehen Aa und AA 
fiir denselben Phanotyp. Da Aa keinen Nachteil hat, wird das rezessive Allel a in der Population 
prasent bleiben und damit auch immer wieder die Kombination aa mit dem damit verbundenen 
Phanotypen entstehen. Ein letzter Grund fiir Polymorphic ist in Selektionsvorteilen von Minder-
heitsphanotypen zu sehen, indem z. B. die natiirlichen Feinde sich auf den hauptsachlich auftre-
tenden Phanotyp einstellen. Insgesamt hat eine Population mit Polymorphic durch die groBcre 
Vielfalt (Diversitat) den Nutzen einer groBeren Anpassungsfahigkeit und Uberlebenschance als 
eine genetisch einheitliche Population. 

Insgesamt bilden die Gene eines Genpools ein harmonisches System, bei dem die Allele der 
verschiedenen Gene sorgfaltig aufeinander abgestimmt sind. Daher konnen Mutationen zumeist 
keine groBcn Veranderungen bewirken, da diese immer disharmonische Seiteneffekte mit sich 
bringen. Dies ist beispielsweise auch die Ursache dafiir, dass viele Grundbauplane der Orga-
nismen nach ihrer Festlegung nicht mehr geandert werden konnen. Je groBer die Vemetzung 
des Systems ist, umso stabiler ist der Grundbauplan und umso schwieriger ist ein neuer har-
monischer Zustand zu erreichen - insbesondere lasst sich die Evolution dann auch nicht um-
kehren. Anpassung findet immer im Kontext der Situation des Moments statt und ist auch bei 
einer Veranderung der Situation nicht mehr riickgangig zu machen. Daher erreicht die naturliche 
Evolution kein Optimum, sondern schleppt immer Ballast aus frtiheren Anpassungen mit sich 
mit. 

Die Delphine sind ein Beispiel fiir diese Unumkehrbarkeit: Im Wasser konnte ihnen eine Kie-
menatmung hilfreich sein und sie verfiigen auch iiber Ansatze von Kiemenspalten. Bei der An­
passung ihrer Vorfahren an das Leben an Land vsoirden die Kiemen rtickgebildet. Sie konnen 
nun nicht wieder auf einfache Art und Weise durch die Evolution aktiviert werden, sondern die 
Kiemenatmung miisste vermutlich wieder neu »erfunden« werden. 

1.2.5 Genfluss 

Bei der Evolution durch Genfluss werden die Genhaufigkeiten in der Population direkt durch 
Zu- oder Abwanderung von Individuen einer anderen Population derselben Art verandert. Man 
kann in diesem Zusammenhang auch von verschiedenen Teilpopulationen einer Art sprechen. 
Solche Teilpopulationen konnen unterschiedlich stark voneinander isoliert sein, so dass es nur 
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durch Migration zum Genaustausch zwischen ihnen kommen kann. In stark getrennten Teilpo-
pulationen konnen sich Varianten derselben Art bilden. Bei langer Isolation kann sich eine Art 
in verschiedene Arten aufspalten, falls etwa das Fortpflanzungsverhalten durch die Evolution 
verandert v îrd. 

1.2.6 Gendrift 

Evolution durch Gendrift ist eine Erscheinung, die insbesondere bei kleinen PopulationsgroBen 
beobachtet wird. Dabei sterben Allele einzelner Gene aufgrund von Zufallseffekten aus. Gen­
drift bewirkt somit eine deutliche Reduktion der Vielfalt in einer Population. Gerade in sehr 
kleinen Populationen mit weniger als 100 Individuen ist Gendrift ein wesentlicher Evolutions-
faktor, v^enn z. B. ein neu entstandener Lebensraum durch sehr v^enige Individuen besiedelt 
wird. In sehr groBen Populationen mit mehr als 10000 Individuen ist Gendrift vemachlassig-
bar. 

Gendrift kann sehr effektiv mit Selektion und Genfluss zusammen die Evolution beeinflussen. 
In einer kleinen Population kann die Evolution durch Gendrift und Mutationen, die entstehende 
Liicken fiillt, andere Wege einschlagen als in einer groBen Population. Dadurch werden leicht 
Neuerungen eingefiihrt, die vielleicht zunachst gar nicht so positiv zu bewerten sind. Kommen so 
entstandene Individuen durch Genfluss in eine andere Population, gehen sie dort wie alle anderen 
Individuen in den Selektionsdruck der Evolution ein. Unter den veranderten Bedingungen der 
Evolution konnen sie eventuell entscheidende Verbesserungen bewirken. So kann insgesamt eine 
stark beschleunigte Evolution erreicht werden. 

1.3 Anpassung als Resultat der Evolution 

Die aus der Evolution resultierende Anpassung wird anhand der Besetzung von okologischen 
Nischen, der Evolution okologischer Beziehungen und dem Baldwin-Effekt diskutiert. 

Durch die in Abschnitt 1.2 vorgestellten Evolutionsfaktoren ist eine Population in bestimmten 
Grenzen in der Lage, sich an Veranderungen in der Umwelt anzupassen und den Lebensraum zu 
behaupten. Ein Beispiel sind die Resistenzphanomene bei vielen Bakterien. Durch Mutationen 
sind einzelne Bakterien gegen bestimmte Antibiotika resistent. Beim Einsatz eines Antibiotikums 
werden nun die unangepassten ausselektiert, wahrend die wenigen bereits resistenten dafiir sor-
gen, dass die gesamte Population innerhalb kiirzester Zeit gegen das neue Antibiotikum resistent 
ist. Diese Fahigkeit zur Anpassung hat zu verschiedenen interessanten Phanomenen in der Natur 
gefiihrt, wovon drei im Folgenden knapp vorgestellt werden. 

1.3.1 Nischenbildung 

Meist wird in der Natur ein Lebensraum von sehr vielen verschiedenen Organismen geteilt. Dabei 
nutzt jeder die vorhandenen Ressourcen auf eigene Art und Weise fiir Wachstum und Emahrung. 
Diese Aufteilung der Umwelt wird als Einnischung bezeichnet. 

Die okologische Nische einer Art wird durch zwei verschiedene Klassen von Faktoren de-
finiert: durch die abiotischen Faktoren wie Feuchtigkeit, Licht etc. und durch die biotischen 
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Faktoren, die durch Konkurrenz oder Kooperation mit anderen Arten und Organismen im Le-
bensraum bestimmt werden. Wahrend sich die abiotischen Faktoren meist messen lassen, sind 
die biotischen Faktoren kaum qualitativ und quantitativ zu fassen. 

Die Selektionsmechanismen werden aktiv, wenn sich die Nischen von mehreren Populationen 
uberschneiden. Durch Anpassung v îrd die tJberschneidung verringert und die zv^ischenartliche 
Konkurrenz nimmt ab. 

Die Einnischung liefert auch eine w^esentliche Erklarung fiir die Bildung verschiedener Arten 
aus einer Spezies und damit fiir die Mannigfaltigkeit der Natur. Hierfur ist v^eniger die Kon­
kurrenz zw îschen den verschiedenen Arten sondem die innerartliche Konkurrenz verantw^ortlich. 
Diesem Selektionsdruck innerhalb der Population begegnen Mutationen, die einen explorativen 
oder innovativen Charakter haben und damit die Besetzung neuer okologischer Nischen durch 
einzelne Individuen fordern. Falls z. B. durch Veranderung der Umgebungsbedingungen eine 
neue Nische entsteht, kann ein Teil der Population diese durch Anpassung besetzen. Dies kann 
langfristig zur Entstehung von zvŝ ei getrennten Arten fiihren. 

Unterschiedliche Einnischungen konnen raumlich WIQ bei Feld- und Schneehasen oder Eichel-
und Tannenhahem, zeitlich wie bei Greifvogeln und Eulen oder durch unterschiedliche Nahrung 
v îe bei Wolfen und Fiichsen begrlindet sein. 

Einnischung ist die Erklarung fiir die Koexistenz vieler Arten im gleichen Lebensraum und 
auch fiir die Auspragung unterschiedlicher Merkmale innerhalb einer Art. 

1.3.2 Evolution okologischer Beziehungen 

Wie im vorherigen Abschnitt 1.3.1 bereits angesprochen, teilen sich meist mehrere Arten densel-
ben Lebensraum oder leben in aneinandergrenzenden Lebensraumen. Es herrscht eine okologi-
sche Beziehung zv^ischen den Populationen im selben Lebensraum, da sie dieselben Ressourcen 
nutzen. Konsequenterweise miissen sich dann auch die Evolutionsprozesse der unterschiedlichen 
Arten beeinflussen, da eine Art die Umwelt der anderen Art mitbestimmt: Eine Veranderung in 
einer Population hat auch einen Effekt auf die anderen Population. Diese gegenseitige Beein-
flussung wird auch Koevolution genannt. Hier konnen im Wesentlichen drei groBe Gruppen von 
okologischen Zusammenhangen unterschieden v^erden: erstens die Konkurrenz zv^ischen zv^ei 
Arten, bei der das Wachstum der einen Art durch die andere gestort vv̂ ird, zvv̂ eitens die Ausnut-
zung der einen Art durch die andere - hierzu zahlen Wirt-Parasit- und Rauber-Beute-Verhaltnis-
se - und schlieBlich Symbiose, bei der die Anwesenheit einer Art das Wachstum der anderen 
stimuliert. Gerade solchen koevolutionaren Vorgangen Wixd heute ein sehr groBer Anteil an der 
Entwicklung komplexer Lebewesen eingeraumt. 

1.3.3 Baldwin-Effekt 

AbschlieBend soil noch kurz auf den Einfluss des Lernens auf die Evolution eingegangen wer­
den. In der bisherigen Darstellung basiert die Evolution vollstandig auf Veranderungen, die am 
Genotyp vorgenommen werden - sowohl durch Mutation als auch durch Rekombination bei der 
sexuellen Fortpflanzung. Dabei bleibt ein in der Biologic lange kontrovers diskutierter Aspekt 
unberiicksichtigt: namlich die individuelle Weiterentwicklung durch Lernen und ihr Einfluss auf 
die Evolution. Lernvorgange finden immer auf der phanotypischen Ebene statt. In der inzwischen 
widerlegten Theorie von Lamarck vsoirde davon ausgegangen, dass solche individuellen Anpas-
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Bild 1.7 Unterschied zwischen der Lamarckschen Evolution, bei der durch Lemen der Genotyp verandert 
wird, und dem Baldwin-Effekt, bei dem sich spezifische Lemfahigkeiten durch Selektionsvorteile 
vererben. 

sungen die treibende Kraft fiir die Evolution sind, indem die Veranderungen wieder auf den 
Genotyp zuruckgeschrieben werden (siehe Bild 1.7 links). Eine solche direkte Riickkopplung 
existiert jedoch bei der biologischen Evolution nicht. 

Stattdessen hat die individuelle Entwicklung einen indirekten Einfluss auf die Evolution und 
die dabei entstehenden neuen Genotypen. Die wesentliche Grundlage des Baldwin-Effekts (siehe 
Bild 1.7 rechts) ist eine gemeinsame Umgebung, in der sov^ohl die Evolution als auch das Ler-
nen stattfindet. So beeinflussen dann auch Phanotypen, die sich durch Lernen verandert haben, 
die gemeinsame Umgebung und damit auch das Fortschreiten der Evolution. Hierdurch konnen 
Selektionsvorteile bzw. -nachteile fiir einzelne Genotypen in der Population entstehen. Ebenso 
konnen sich evtl. Genotypen, die eine bessere Grundlage fiir das Erlemen bestimmter Eigenschaf-
ten bieten, leichter in der Population durchsetzen als andere Individuen. Lemen ist ein integraler 
Teil der Umwelt und damit auch ein v^esentlicher Bestandteil der Anpassung einer Art an die Um-
welt. GemaB der Theorie des Baldwin-Effekts kann so erlemtes Verhalten iiber lange Zeitraume 
zu instinktivem Verhalten werden, das dann quasi direkt vererbt wird. 

1.4 Ubungsaufgaben 

Aufgabe 1.1: Mutationswahrscheinlichkeit 

Betrachten Sie Chromosomen der Lange 100 und der Lange 1 000 sowie Mutationen mit der 
Mutationsrate 10~^ und 10""*. Berechnen Sie, wie viele Veranderungen statistisch bei einer 
Mutation auftreten. Was bedeuten diese Ergebnisse fiir den Vorgang der Evolution? 

Aufgabe 1.2: Wirkung der Rekombination 

Betrachten Sie ein Genom bestehend aus 4 Genen, die jeweils die Werte a, b und c annehmen 
konnen. In einer Population sind die folgenden Genotypen enthalten: aabc, baab, cabb, babe, 
cacc und bacc. Uberprufen Sie, inwieweit durch eine Rekombination (bei der jedes der Gene 
aus einem Eltemanteil stammen kann) alle moglichen Genome erreicht werden konnen. 
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Aufgabe 1.3: Fitnessbegriff 

Betrachten Sie eine Population bestehend aus den Individuen A, B und C Berechnen Sie die 
relative Fitness far die Individuen, wobei sich A dreimal, B fiinfmal und C zweimal erfolgreich 
fortpflanzt. 

Aufgabe 1.4: Simulation einer Evolution 

Schreiben Sie ein Programm, welches ein Individuum bestehend aus einem Chromosom mit 10 
Bits simuliert. Kreuzen Sie zwei zufallig ausgewahlte Individuen, indem jedes Bit zufallig von 
einem Eltemteil ausgewahlt wird. Mutieren Sie jedes Bit mit der Mutationsrate 10~^ und er-
setzen Sie schlieBlich in der Population das schlechteste Individuum durch das neu entstandene 
- dabei ist ein Individuum umso besser je mehr Einsen enthalten sind. Simulieren Sie mehrere 
Evolutionslaufe mit verschiedenen PopulationsgroBen fur wenigstens 200 Generationen. Wel-
che Beobachtungen machen Sie? 

Aufgabe 1.5: Koevolutionares Verhalten 

Schreiben Sie ein Programm, welches eine Parasit-Wirt-Beziehung simuliert. Dabei werden le-
diglich die PopulationsgroBen der Parasit- und Wirtpopulation betrachtet. Die Parasitpopulation 
vergroBert sich entsprechend der GroBe der Wirtspopulation, und die Wirtspopulation vergro-
Bert sich reziprok zur Parasitenpopulation. Simulieren Sie dieses Verhalten fiir verschiedene 
AnfangsgroBen. Was lasst sich beobachten? 

1.5 Historische Anmerkungen 

Im 18. Jahrhundert herrschte die Vorstellung der Artkonstanz, d. h. alle Organismen sind von 
Gott geschaffen und bleiben stets gleich. Fossile Funde wurden nicht als tJberreste von Lebewe-
sen sondem als Naturgebilde erachtet. In der damaligen Zeit wurde der Artbegriff ebenso wie das 
Dogma der Artkonstanz durch von Linne (1740) gepragt. Als erster zweifelte Lamarck (1809) 
die Artkonstanz an und proklamierte in seiner »Philosophie Zoologique« die Abstammung der 
Arten voneinander sowie den Wandel der Arten in verschiedenen kleinen Schritten. Er ist der Be-
griinder der Deszendenztheorie. Neben diesem ersten Baustein in der Evolutionstheorie wurde 
auch die individuelle Erfahrung einzelner Individuen fur diesen Wandel verantwortlich gemacht, 
was heute als widerlegt gilt. Ein weiteres Indiz fiir einen kontinuierlichen Wandel lieferte die Ent-
deckung gleicher Grundbauplane fiir verschiedene Tiergruppen durch St. Hilaire (1822), welche 
die Theorie der gemeinsamen Abstammung der Arten stiitzt. Diese ersten Theorien beztiglich 
eines kontinuierlichen Wandels der Arten wurden von dem Begriinder der Palaantologie Cuvier 
(1812, 1825) stark angezweifelt: Er entwickelte eine Katastrophentheorie, die das Vorhanden-
sein von Fossilien ausgestorbener Tiere durch Naturkatastrophen erklart. Diese Theorie passte 
wesentlich besser in das damalige Weltbild und wurde daher favorisiert. Aufbauend auf die Ar-
beiten von Lamarck und anderen veroffentlichte Darwin (1859) schlieBlich sein Werk »0n the 
Origin of Species«, welches den kontinuierlichen Wandel der Arten und die Deszendenztheorie 
untermauerte und das Prinzip der natlirlichen Selektion (Selektionstheorie) eingefiihrt hat. Auch 
diese Theorie wurde Ende des 19. Jahrhunderts eher abgelehnt - allerdings konnte die Idee einer 
kontinuierlichen Evolution zur damaligen Zeit schon nicht mehr vemeint werden, auch wenn die 
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allumfassende wissenschaftliche Erklarung fiir die Evolution noch fehlte. Erst mit der aufkom-
menden Genetik erlebte der Darwinismus seinen Durchbruch: Die resultierende Kombination 
aus Genetik und Darwinismus wird als Neo-Darwinismus bezeichnet. Allerdings ist auch die 
Darwinistische Evolution bis in die heutige Zeit nicht unumstritten. 

Die Beobachtungen von Mendel (1866) bei der Kreuzung von Gartenerbsen begrtindeten die 
Genetik, wurden allerdings 30 Jahre lang nicht beachtet bzw. gerieten in Vergessenheit. Nahezu 
zeitgleich mit ihrer Wiederentdeckung begrlindete de Vries (1901/03) die Mutationstheorie, die 
besagt, dass die Evolution auf zufalligen, spontanen und erblichen Veranderungen beruht. Erst 
spater entdeckten Watson & Crick (1953) die so genannte Doppelhelix, die DNA, sowie den ge-
netischen Code (Crick et al., 1961; Nirenberg & Leder, 1964). Damit wurde die exakte Erklarung 
fiir die Vorgange in der Evolution auf der genetischen Ebene geliefert. Die Evolution des geneti-
schen Codes ist ausfiihrlich in dem Buch von Vaas (1994) beschrieben. Mehr Informationen zur 
Molekulargenetik sind in dem Buch von Lewin (1998) enthalten. 

Der Biophysiker Eigen hat durch seine Arbeit an der Theorie der Selbstorganisation der Ma-
terie, den Hyperzyklen, die exakte physikalisch-chemische Grundlage fiir die Evolutionstheorie 
geliefert (Eigen, 1971, 1980; Eigen & Schuster, 1982). 

So wie die Evolutionsfaktoren hier prasentiert werden, lassen sie sich konkret aus dem so ge-
nannten Hardy-Weinberg-Gesetz fiir diploide Populationen ableiten. Auf die genaue Herleitung 
wurde im Rahmen dieser knappen Abhandlung verzichtet. Dieses gesetzmaBige Gleichgewicht 
wurde unabhangig voneinander von dem Mathematiker Hardy (1908) und dem Arzt Weinberg 
(1908)hergeleitet. 

Der Begriff der »Koevolution« stammt aus der Arbeit von Ehrlich & Raven (1964) zur Inter-
aktion zwischen Schmetterlingen und Pflanzen. Die Endosymbiontentheorie geht auf erste Hy-
pothesen Ende des 19. Jahrhunderts zuriick. Schwartz & Dayhoff (1978) haben durch einen Se-
quenzstammbaum der Lebenswelt die Hypothesen wissenschaftlich verifiziert (vergleiche auch 
die Arbeit von Margulis, 1971). In der Folgezeit wurde die Endosymbiontentheorie verschiedent-
lich bestatigt und gilt seit Ende der 1980er Jahre auch als allgemein akzeptiert. 

Der Baldwin-Effekt wurde unabhangig voneinander von Baldwin (1896), Morgan (1896) und 
Osbom (1896) festgestellt und in der Folgezeit bis heute stark diskutiert und kritisiert. Interessan-
terweise kann er gerade bei simulierten Evolutionsvorgangen im Computer beobachtet werden 
(vgl. die Arbeit von Hinton & Nowlan, 1987). 

Wesentlich detailliertere Erlauterungen zur biologischen Evolution und den geschichtlichen 
Hintergriinden konnen biologischen Lehrbiichem und der Fachliteratur (wie z. B. Grant, 1991; 
Kull, 1977; Smith, 1989; Wieser, 1994; Futuyma, 1998; Storch et al., 2001; Kutschera, 2001) 
entnommen werden. 



2 Von der Evolution zur Optimierung 

Die Prinzipien der biologischen Evolution werden aufdie Optimierung ubertragen. Am Beispiel 
wird ein erster evolutiondrer Algorithmus zur Optimierung konstruiert. Gemeinsamkeiten mit 
und Gegensdtze zur Natur werden herausgestellt. 

Lernziele in diesem Kapitel 

c|> Optimierungsprobleme konnen formal definiert werden. 

c|> Das allgemeine Ablaufschema der einfachen evolutionaren Algorithmen wird verstanden 
und als generisches Muster aufgefasst. 

c|> Die Unterscheidung zwischen Genotyp und Phanotyp wird verinnerlicht und kann effektiv 
im konkreten Beispiel umgesetzt werden. 

c|> Die Anpassung eines evolutionaren Algorithmus an ein Optimierungsproblem kann zu-
mindest am Beispiel nachvollzogen werden. 

c|> Die Ahnlichkeiten aber auch die Abgrenzung der evolutionaren Algorithmen zum natiir-
lichen Vorbild werden verstanden. 

c|> Evolutionare Algorithmen werden als eine Optimierungstechnik von vielen verstanden 
und auch entsprechend differenziert eingesetzt. 
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Biologen studieren die Evolution als Mechanismus, der in der Natur spezielle Losungen fiir spezi-
elle Probleme erzeugt. Sie produziert etwa Antworten auf Fragen hinsichtlich der Aufnahme von 
Energie aus der Umwelt, der Produktion von gentigend Nachkommen, um die Art zu erhalten, 
der Partnerfindung bei sexueller Fortpflanzung, des optimalen Energieaufwands zur Erzeugung 
von vielen oder wenigen Nachkommen, der optimale Tamung etc. Diese Losungen sind unter 
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anderem das Resultat von Mutation, Rekombination und natlirlicher Selektion, die im vorigen 
Kapitel ausfuhrlich vorgestellt und diskutiert v^urden. 

Auf der anderen Seite dienen Computer seit ihrer Erfindung als Problemloser flir verschie-
denste Aufgaben. Als ein Modell fur Rechenmaschinen hat Turing in den 1930er Jahren die 
Turing-Maschine eingefiihrt und die Behauptung aufgestellt, dass sich jedes algorithmisch losba-
re Problem auf diesem Maschinenmodell losen lasst. Gleichzeitig hat er bewiesen, dass Probleme 
existieren, die in allgemeiner Form algorithmisch nicht gelost werden konnen. Ein Beispiel ist 
das so genannte Halteproblem, bei dem fiir ein beliebiges Programm zu entscheiden ist, ob es fiir 
eine gegebene Eingabe anhalt oder nicht. Fiir algorithmisch losbare Probleme gibt es jedoch kein 
allgemeines Rezept, wie der Algorithmus fiir ein spezielles Problem auszusehen hat. Dies bleibt 
der Kreativitat des Informatikers oder Programmierers iiberlassen. Dartiber hinaus kann fiir sehr 
viele Probleme nicht gewahrleistet werden, dass es einen Algorithmus mit effizienter Laufzeit 
gibt. (In diese Kategorie fallen auch die sog. NP-harten Probleme.) 

Evolutionare Algorithmen kombinieren nun den Computer als universelle Rechenmaschine 
mit dem allgemeinen Problemlosungspotential der natiirlichen Evolution. So wird im Computer 
ein Evolutionsprozess kiinstlich simuliert, um fiir ein nahezu beliebig v^ahlbares Optimierungs-
problem moglichst gute Naherungswerte an eine exakte Losung zu erzeugen. Dabei v îrd ein 
beliebiges abstraktes Objekt, das eine mogliche Losung fiir ein Problem darstellt, wie ein Orga-
nismus behandelt. Dieses wird durch Anwendung von so genannten evolutionaren Operatoren 
variiert, reproduziert und bewertet. Diese Operatoren nutzen in der Regel Zufallszahlen fiir ihre 
Veranderungen an den Individuen. Folglich zahlen evolutionare Algorithmen zu den stochasti-
schen Optimierungsverfahren, die haufig keine Garantie auf das Auffinden der exakten Losung 
(in einem vorgegebenen Zeitrahmen) geben konnen. 

Insbesondere bei Problemen, die nicht in akzeptabler Zeit exakt losbar sind, gewinnen Algo­
rithmen, die auf solchen biologischen Vorbildem beruhen, immer mehr an Bedeutung. 

2.1 Optimierungsprobleme 

Optimierungsprobleme werden allgemein definiert und am Beispiel des Handlungsreisenden-
problems erldutert. 

Optimierungsprobleme treten in alien Bereichen von Industrie, Forschung und Wirtschaft auf. 
Den Anwendungsgebieten sind dabei keine Grenzen gesetzt. Beispiele reichen von der reinen 
Kalibrierung von Systemen, iiber die bessere Ausnutzung vorhandener Ressourcen bis hin zu Pro-
gnosen oder der Verbesserung von Konstruktionen. Jedes dieser Probleme bringt andere Voraus-
setzungen fiir die Bewertung von Losungskandidaten sowie unterschiedliche Anforderung an de-
ren Optimalitat mit. Daher werden wir Optimierungsprobleme zunachst so einfach wie moglich 
definieren. Im Kapitel 5 werden dann verschiedene Spezialfalle diskutieren. 

Fiir eine formale Definition werden die folgenden Forderungen an ein Problem gestellt: Die 
Menge aller moglichen Losungskandidaten hat klar definiert zu sein und fur jeden Losungskandi­
daten muss auf irgendeine Art und Weise seine Giite oder Qualitat als mogliche Losung eindeutig 
berechenbar sein. Damit sind die verschiedenen Losungskandidaten vergleichbar und die Menge 
der angestrebten globalen Optima resultiert. 
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Definition 2.1 (Optimierungsproblem): 
Ein Optimierungsproblem (Q , / , >-) ist gegeben durch einen Suchraum Q, eine Be-
wertungsfunktion / : Q ̂  R, die jedem Losungskandidaten einen Giitewert zuweist, 
sowie eine Vergleichsrelation >-G {<, >} . 
Dann ist die Menge der globalen Optima ^ C Q definiert als 

^ = {x G Q I Vy G Q : /(x) ̂  fix')] . 

Ein Beispiel dafur ist das Handlungsreisendenproblem (TSP, engl. traveling salesman problem), 
bei dem eine kostenminimale Rundreise durch eine gegebene Menge von Stadten gesucht wird, 
wobei jede Stadt nur einmal besucht werden darf. 

Definition 2.2 (Handlungsreisendenproblem): 
Die Grundlage fiir die Definition des Handlungsreisendenproblems ist ein Graph G = 
[V^E^y] zur Berechnung der Kosten. Die Knotenmenge V = {v\^... ^Vn} reprasentiert 
n verschiedene Stadte, die paarweise durch StraBen in der Kantenmenge E <ZV xV ver-
bunden sind. Jeder dieser StraBen ist eine Fahrtzeit y.E^^ zugeordnet. Das Hand­
lungsreisendenproblem ist dann definiert als Tupel (.5^^,/TSP, <)? wobei der Raum 
aller Permutationen S^n die unterschiedlichen Besuchsreihenfolgen reprasentiert. Die 
zu minimierende Bewertungsfiinktion /xsp ist definiert fiir (;ri , . . . , ;r;̂ ) G ^« als 

/ T S P ( ( ^ I , - . . , ^ « ) ) ^7(K,V;ri))+Xr(K-_i,V;,.)). 
7=2 

Ein Handlungsreisendenproblem heiBt femer symmetrisch, wenn fiir alle (v/, Vj) e E 
sowohl (vy, Vi) eE als auch 7((v/, vj)) = 7((vy, Vj)) erfiillt sind. 

Beispiel 2.1: 
Bild 2.1 zeigt ein kleines Handlungsreisendenproblem mit sechs Stadten. Der dazuge-
horige Suchraum mit alien moglichen Rundreisen ist in Bild 2.2 dargestellt. Jede der 
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Bild 2.1 Schematische Darstellung eines beispielhaften Handlungsreisendenproblems, bei dem es zwi-
schen alien Paaren von Stadten eine StraBe gibt. Die Tabelle gibt die Kosten bzw. Fahrtzeiten 
der einzelnen StraBen wieder. In der Skizze sind jeweils zwei gerichtete Kanten als eine unge-
richtete Kante dargestellt und in der Tabelle der Kosten ist ebenfalls nur eine der Kanten aufge-
ftihrt. 
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Bild 2.2 Problemraum des Handlungsreisendenproblems. 



2.1 Optimiemngsprobleme 23 

dargestellten Rundreisen steht dabei fiir zwolf verschiedene Rundreisen, die an jeder 
der 6 Stadte mit zwei unterschiedlichen Fahrtrichtungen beginnen kann. Wenn man 
die Rundtouren weglasst, die sich nur durch die Fahrtrichtung oder die Startstadt un-
terscheiden, gibt es im vorliegenden Beispiel genau 60 verschiedene Losungen. Bei 
101 Stadten sind es bereits 4,663 1 • 10^^ ,̂ allgemein \-{n-l)\fiXvn Stadte. 

Das Handlungsreisendenproblem zeichnet sich wie viele andere Probleme auch durch eine strikt 
vorgegebene Struktur der Losungskandidaten aus: Es handelt sich immer um eine Permutation 
iiber die Indizes der Stadte. Dies ist allerdings beispielsweise nicht der Fall, wenn eine Briicken-
konstruktion gewichtsminimal so optimiert werden soil, dass sie dennoch eine vorgegebene 
maximale Last tragen kann. Hier konnen verschiedene Losungskandidaten eine unterschiedli-
che Struktur aufweisen, die etwa angibt, wie aus Verstrebungen das Tragwerk zusammengesetzt 
wird. Auch solche Probleme lassen sich mit Definition 2.1 beschreiben, indem der Suchraum Q 
entsprechend definiert wird. 

^ \ Vorsicht wiederum ist bei vielen »Optimierungsproblemen« aus der Wirtschaft geboten: Ohne die Moglich-
II keit oder die Bereitschaft, das Problem mathematisch zu modellieren, sind einmalige Managemententschei-

dungen oder Verbesserungen im Workflow nicht optimierbar. Eine klare Definition des Bewertungskriteri-
ums ist die Voraussetzung fiir alle in diesem Buch vorgestellten Verfahren. 

Das Optimierungsproblem muss nicht nur prazise definiert werden - eine gute Bewertungsfiink-
tion zeichnet sich zusatzlich durch die folgenden Eigenschaften aus. 

• Eine graduelle Bewertung ist besser als eine absolute. So konnte etwa in einem Handlungs­
reisendenproblem ausschlieBlich eine Rundtour mit maximal vorgegebenen Kosten gesucht 
sein. Dies lieBe sich leicht als Erftillbarkeitsproblem formulieren, indem je nach Lange der 
Rundtour auf die Werte »1« (Erwartungen werden erfiillt) und »0« (Tour ist zu lang) ab-
gebildet wird. Aus Anwendersicht spiegelt eine solche Definition zwar die Anforderungen 
genau wieder - eine Optimierung wird jedoch zur Suche nach der Nadel im Heuhaufen, da 
wir keinen Anhaltspunkt daflir haben, welche von zwei zu langen Touren eventuell naher 
zu einer optimal Tour ist. Folglich sollten Erfiillbarkeitsprobleme wenn moglich als Opti­
miemngsprobleme formuliert werden. 

• Die Anforderungen an eine Losung des Problems spiegeln sich moglichst genau in der Be-
wertungsfiinktion wider. Ist dies nicht der Fall, kann es einerseits passieren, dass bestimmte 
Aspekte gar nicht beriicksichtigt werden und damit jede vom Optimierungsverfahren pra-
sentierte Losung beliebig weit von den Erwartungen entfemt ist. Andererseits konnen Lo­
sungskandidaten aus einem breiten Qualitatsspektrum (aus Sicht des Anwenders) auf ahnli-
che Gtitewerte abgebildet werden, sodass nur gelegentlich eine sinnvolle Losung gefunden 
wird. 

Die Bewertungsfiinktion ist die wesentliche Grundlage eines Problems, aus der ein Optimie-
rungsalgorithmus die Richtung der Optimierung ableitet. Daher muss in vielen Anwendungen 
diesem Aspekt ausreichend viel Aufmerksamkeit gewidmet werden. Und in einigen Fallen ist 
tatsachlich die Hauptschwierigkeit, Kriterien zu finden, mit denen die Gute eines Losungskandi­
daten erfasst werden kann. 
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2.2 Der simulierte evolutionare Zyklus 

Der evolutionare Zyklus wird auf das Problemlosen ubertragen. Ebenso werden die verschie-
denen Grundbegrijfe der Evolution in den neuen Kontext gestellt. 

Nach der Einfiihrung von Optimierungsproblemen sollen nun die Prinzipien der Evolution auf 
deren Losung angewandt werden. Hierfiir sind zunachst die Ziele des Evolutionsprozesses und 
der Optimiemng zu diskutieren. 

In der Natur ist die Erhaltung der eigenen Art das hochste Ziel der Evolution. Dabei stellt die 
Umwelt die Organismen vor vielfaltige Herausforderungen. Es konnen viele unterschiedliche 
Wege durch die Evolution eingeschlagen werden, wodurch verschiedene Detaillosungen aus der 
jeweiligen Anpassung resultieren. Die natiirliclie Evolution hat kein iibergeordnetes, klar iiber-
priifbares Ziel. Daher wird der Nutzen eines Allels auch nicht direkt gemessen, sondem indirekt 
im Vergleich mit anderen Allelen durch die Anzahl der Nachkommen als Fitness angenahert. 

Im Gegensatz dazu ist bei klassischen Optimierungsproblemen meist ein klares Bewertungs-
kriterium fur die Qualitat eines Losungskandidaten vorhanden, das insbesondere keinen Zufalls-
einfliissen unterworfen ist. Die Qualitat eines Losungskandidaten kann durch eine so genannte 
Ziel- oder Bewertungsfunktion berechnet werden und wird im Weiteren als »Wert« oder »Gu-
te« bezeichnet. Wir ersetzen also unsere schwer fassbare Umwelt durch eine klar definierte Be­
wertungsfunktion. Daneben finden sich in der Literatur auch Begriffe wie Objektfunktion und 
Fitnessfunktion. Ebenso wird der Wert eines Losungskandidaten auch als Kosten oder Fitness 
bezeichnet - letzteres hat in diesem Buch allerdings eine andere Bedeutung. 

Um die natiirliche Evolution auf die Losung von Optimierungsproblemen zu ubertragen, kon-
zentrieren wir uns zunachst auf die Evolutionsfaktoren Variation (Mutation und Rekombination) 
und Selektion. Dieses Wechselspiel war von Darwin in seiner Evolutionslehre als primar trei-
bende Kraft identifiziert worden. Fasst man die Evolutionsfaktoren als Operationen auf einer 
Population auf, bringt sie in einen sequentiellen Ablauf und fugt einen definierten Start- und 
Endpunkt hinzu, resultiert der in Bild 2.3 dargestellte evolutionare Zyklus. 

Die Grundidee ist hierbei, dass zunachst eine Menge mit Losungskandidaten als Ausgangs-
punkt erzeugt und anschlieBend einer simulierten Evolution unterzogen wird. D. h. die Losungs­
kandidaten pflanzen sich fort und unterliegen dabei einem gewissen Selektionsdruck. In Anleh-
nung an die biologische Terminologie spricht man bei einem Losungskandidaten vom Individu-
um und bei einer Menge von Individuen von der Population. Im Weiteren werden Individuen 
meist mit A, B, . . . bezeichnet und Populationen mit P = (̂ *̂ ^̂ )i<z<5- Obwohl die Individuen 
einer Population grundsatzlich nicht sortiert sind, werden sie als Tupel reprasentiert. Dadurch 
lassen sich die Algorithmen einfacher formulieren. Zudem konnen einzelne Individuen in der 
Population mehrfach vorkommen, sodass bei einer Darstellung als Menge die Notation von Multi-
mengen mit der Angabe der Haufigkeit fur jedes Individuum zu benutzt waren. 

Die Initialisierung definiert den Startpunkt fur die simulierte Evolution, indem eine Population 
mit ersten Losungskandidaten angelegt wird. Meist werden diese zufallig gewahlt, allerdings kon­
nen auch durch das Optimierungsproblem Startkandidaten vorgegeben oder Ergebnisse anderer 
Optimierungsverfahren genutzt werden. 

Die Paarungs- oder Eltemselektion zieht die Ergebnisse der Bewertung der einzelnen Indi­
viduen heran, um fiir jedes Individuum festzulegen, wie viele Kindindividuen erzeugt werden 
sollen. Die Generierung der neuen Individuen geschieht im Idealfall durch eine Rekombination 
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Bild 2.3 Schematische Darstellung des Zyklus bei evolutionaren Algorithmen 

der Merkmale mehrerer Eltemindividuen und eine anschlieBende Mutation der Kinder. Analog 
zur Biologie dient die Rekombination der Durchmischung in der Population und die Mutation 
nimmt in der Regel nur eine sehr kleine Veranderung am Individuum vor, um die Vererbung der 
elterlichen Eigenschaft auf das Kind nicht zu stark zu storen. 

Nach einer Bewertung der neuen Individuen werden die Kinder durch die Umweltselektion in 
die Population der Eltern integriert. Da die PopulationsgroBe meist begrenzt ist, werden hierbei 
entweder einzelne Individuen aus der Eltempopulation oder die gesamte Eltempopulation durch 
die neuen Individuen ersetzt. 

Im Gegensatz zur natiirlichen Evolution wird am Ende des evolutionaren Zyklus iiberpriift, ob 
das Ziel bereits erreicht wurde. Als Terminierungsbedingung kann ein Schwellwert fur den Wert 
des besten Individuums gewahlt werden. Um sehr lange Berechnungen zu vermeiden, wird auch 
oft eine maximale Anzahl an Iterationen vorgegeben. 

Um einen solchen Algorithmus anwenden zu konnen, wird lediglich eine im Rechner speicher-
bare Darstellung des Suchraums und eine Funktion zur Bewertung von Losungskandidaten beno-
tigt. Beide Aspekte wurden im Rahmen der Definition der Optimierungsfianktion gefordert. Die 
Tatsache, dass keine weiteren Voraussetzungen fiir die Anwendbarkeit des Algorithmus erfiillt 
sein miissen, ist eine der attraktivsten Eigenschaften von evolutionaren Algorithmen. 

i Bisher wurden die evolutionaren Algorithmen streng aus der Biologie heraus entwickelt - wie dies auch 

historisch geschehen ist. Interessanterweise gelangen wir jedoch auch intuitiv in einem Black-Box-Szenario 
zu einem nahezu identischen Algorithmus. So lasse ich meine Studierenden in der Vorlesung an der Tafel ein 
zweidimensionales Problem durch Platzieren von Stichproben losen, woraus dieselben Grundoperationen 

abgeleitet werden. Ein Beispiel ist in Bild 2.4 gezeigt. Was dennoch vom natiirlichen Vorbild bleibt, ist der 
einzigartige Reichtum der Natur als Inspirationsquelle fur neue Techniken. 
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Bild 2.4 Ein Beispiel dafiir, wie in einem Black-Box-Szenario das Maximum der rechten Funktion gesucht 
wird. Durch Stichproben muss der Problemraum erkundet werden. Ohne Strukturinformation wer-
den zunachst die Eckpunkte und die Mitte betrachtet (Initialisierung). In Schritt 6 und 7 wird 
jeweils eine Stichprobe zwischen den bestbewerteten Punkten betrachtet (Rekombination). Und 
um den besten Punkt wird durch leichte Variation (Mutation) gepruft, ob Verbesserungen mogUch 
sind. Das lokale Optimum wird entdeckt, wahrend das globale nicht gefunden wird. 

2.3 Ein beispielhafter evolutionarer Algorithmus 

Dieser Abschnitt entwickelt einen einfachen evolutiondren Algorithmus am Beispiel des Hand-
lungsreisendenproblems. 

Fiir das Handlungsreisendenproblem aus Beispiel 2.1 in Abschnitt 2.1 wird im Folgenden ein 
evolutionarer Algorithmus konstruiert, indem Schritt fiir Schritt die notwendigen Bestandtei-
le zusammengestellt werden. Das Ziel ist es, ein Handlungsreisendenproblem mit 101 Stadten 
schnell und mit ausreichender Qualitat zu losen. Bild 2.5 zeigt die Koordinaten eines Beispiel-
problems. Wie wir bereits in Abschnitt 2.2 erlautert haben, mtissten wir fiir eine vollstandige 
Suche 4,663 1 • 10^̂ ^ Rundreisen untersuchen. In Anbetracht physikalischer Schatzungen, dass 
das Universum etwa 10^̂  Atome enthalt bzw. seit dem Urknall etwa 10^^ Sekunden verstrichen 
sind, liegt diese Zahl jenseits der menschlichen Vorstellungskraft. Jeglicher Versuch, durch syste-
matisches Aufzahlen aller Rundreisen eine Losung zu berechnen, ist unabhangig von der Schnel-
ligkeit und der Anzahl an Prozessoren zum Scheitem verurteilt. 

/ j \ Es gibt sehr viele Moglichkeiten, einen evolutionaren Algorithmus fur das Handlungsreisendenproblem zu 

II formulieren. Der hier beschriebene Ansatz ist nur ein einfaches einfiihrendes Beispiel und weit vom derzeit 
besten bekannten Algorithmus entfemt. 

Am Anfang ist zu entscheiden, wie der konkrete Raum der Individuen aussehen soil, auf dem der 
Algorithmus arbeitet. Da das Problem mit seiner Giitefunktion bereits auf Permutationen defi-
niert wurde, liegt es nahe, diese direkt als Darstellung fiir die Individuen zu wahlen: Also ist der 
Raum aller Losungskandidaten Q = .5^ .̂ Auf diesem Raum konnen nun geeignete Operatoren 
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Bild 2.5 
Das Bild zeigt die Positionen der Stadte fiir eine Beispiel-
instanz des Handlungsreisendenproblems mit 101 Stad-
ten. 
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Algorithmus 2.1 
VERTAUSCHENDE-MUTATION( Permutation^ = (^i,... ,^„)) 
1 B^A 

u\ ^- wahle Zufallszahl gemaB t/({l,...,w}) 
U2 ^- wahle Zufallszahl gemaB t/({l,...,w}) 

return B 

zur Variation der Losungskandidaten definiert werden. Dabei muss jeder Operator aus Permuta-
tionen wieder giiltige Permutationen erzeugen (d. h. keine Zahl darf mehrfach in der Permutation 
vorkommen). 

Zunachst wird ein Mutationsoperator auf dem Raum der Permutationen gewahlt. Eine Mog-
lichkeit fiir eine geringfiigige Veranderung ist die VERTAUSCHENDE-MUTATION (Algorith­
mus 2.1), die zwei Zahlen in der Permutation miteinander vertauscht. Da sich lediglich die Posi­
tion der Zahlen andert, erzeugt der Operator fiir alle Permutationen und Zufallszahlen wieder 
eine giiltige Permutation und stellt einen gtiltigen Mutationsoperator dar. So wird z. B. aus dem 
Individuum (1, 2, 3, 4, 5, 6, 7, 8) durch Anwendung des Operators mit den Zufallszahlen 
u\=2 und U2 = 6 das Individuum (1, 6, 3, 4, 5, 2, 7, 8). Wie in Bild 2.6 links deutlich wird, 
werden bei der Anwendung des Operators aus der bestehenden Rundtour vier Kanten gestrichen 
und vier neue Kanten eingefiigt. Das bedeutet, dass bei der Bewertung des neuen Individuums 
vier Kantengewichte abgezogen und vier Kantengewichte hinzuaddiert werden (verglichen mit 
der Bewertung des Ausgangsindividuums). 

Ausgehend von der nattirlichen Evolution hatten wir im letzten Abschnitt die Mutation als 
eine kleine Veranderung charakterisiert. Daher kann man sich an dieser Stelle fragen, ob die 
Mutation durch Tausch zweier Zahlen die kleinstmogliche Veranderung hinsichtlich des Hand­
lungsreisendenproblems ist. Durch Ausprobieren an einem kleinen Beispiel findet man bald die 
INVERTIERENDE-MUTATION (Algorithmus 2.2), die ein Teilstiick der Permutation invertiert (um-
kehrt). Auch hierbei werden mit der selben Begriindung wie oben nur giiltige Individuen er­
zeugt. Bei diesem Operator wird mit den Zufallszahlen u\ =2 und U2 = 6 aus dem Individuum 
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Ô*̂  
Ausgangsindividuum 

Bild 2.6 Veranderung bei der Anwendung von Mutationsoperatoren auf das in der Mitte dargestellte 
Individuum (1, 2, 3, 4, 5, 6, 7, 8). Die VERTAUSCHENDE-MUTATION resultiert in dem 
Individuum (1, 6, 3, 4, 5, 2, 7, 8), die INVERTIERENDE-MUTATION in dem Individuum 
(1, 6, 5, 4, 3, 2, 7, 8). 

Algorithmus 2.2 

INVERTIERENDE-MUTATION( Permutation^ = {Ai 
1 B^A 
2 ui ^ wahle Zufallszahl gemaB ^({1, . . . ,«}) 
3 W2 ̂  wahle Zufallszahl gemaB ^({1, . . . ,«}) 
4 if wi > U2 
5 then E vertausche wi und W2 
6 for each 7 G {wi, . . . , W2} 

7 doE5^2+«i-7 ^ ^ 7 
8 return 5 

,^«)) 

(1, 2, 3, 4, 5, 6, 7, 8) das Individuum (1, 6, 5, 4, 3, 2, 7, 8) erzeugt. Bild2.6zeigtrechtsdas 
Resultat dieser Mutation: Es werden lediglich zv^ei Kanten durch zwei neue Kanten ersetzt. Be-
ztiglich der Bewertungsfunktion nimmt dieser Operator offensichtlich eine kleinere Veranderung 
an einer Rundreise vor. 

Auf der Basis dieser Uberlegung werden v^ir in unserem evolutionaren Algorithmus fiir das 
Handlungsreisendenproblem dem Operator INVERTIERENDE-MUTATION den Vorzug geben. 

Der zweite Operator ist die Rekombination, welche die Eigenheiten der Eltem mischen und 
auf das Kindindividuum iibertragen soil. Diese Aufgabe erweist sich als nicht ganz so einfach, 
wiQ man zunachst annehmen konnte. Die Frage ist: Wie kann man moglichst groBe Telle der in 
den Elternindividuen vorliegenden Rundreisen in ein neues Individuum vererben, so dass keine 
ganzlich neue Rundtour entsteht. 

In einem ersten Versuch, der ORDNUNGSREKOMBINATION (Algorithmus 2.3), tibemehmen wir 
ein beliebig langes Prafix der einen Rundtour und fugen die restlichen Stadte gemaB ihrer Rei-
henfolge in der anderen elterlichen Rundreise an. Durch die Abfrage in der zv^eiten for-Schleife 
wird auch hier die ausschlieBliche Erzeugung von giiltigen Permutationen garantiert. Ein Beispiel 
fiir eine solche Berechnung ist in Bild 2.7 dargestellt. Wie man an diesem Beispiel sieht, kann 
es durchaus vorkommen, dass das Ergebnis des Operators stark von den Eltern abv^eicht - hier 
wurden zwei Kanten eingefiigt, die in keinem der beiden Elternindividuen vorkamen. Der Name 
ORDNUNGSREKOMBINATION rlihrt daher, dass die Ordnung bzw. Reihenfolge der Stadte erhalten 
bleibt. 
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Algorithmus 2.3 

ORDNUNGSREKOMBINATION( Permutationen V4 = (^i, 

1 7 ̂  wahle zufallig gemaB U{{\,... ,n — \}) 
2 for each/G { l , . . . , y } 
3 d o E Q ^ ^ / 
4 for z ^ 1 , . . . , w 
5 d0^ i f5 / ^{Ci , . . . ,Cy} 
6 then ^7 ̂ 7 + 1 

L C / ^/ 
8 return C 

,An)undB = {Bi .Bn)) 

3 Ordnungs- 1, 

rekombination 

Eltemindividuum 1 Eltemindividuum 2 

Bild2.7 Die ORDNUNGSREKOMBINATION iibemimmt vom Eltemindividuum (1, 4, 8, 6, 5, 7, 2, 3) 
die ersten vier Stadte. Die noch fehlenden Stadte werden gemaB ihrer Reihenfolge im zwei-
ten Eltemindividuum (1, 2, 3, 4, 8, 5, 6, 7) aufgefuUt. So ergibt sich das Individuum 
(1, 4, 8, 6, 2, 3, 5, 7). 

Algorithmus 2.4 

KANTENREKOMBINATION( Permutationenv4 = (Ax,... ,An) und5 = (^ i , . . . ,5«) ) 
1 for each Knoten v G { 1 , . . . , w} 
2 d o : ^ ^ » ^ 0 
3 for each z G { 1 , . . . ,w} 
4 do ^Adj[Ai) ^Adj[Ai)lJ{A^i mod«)+l} 

mod f7)+l modf7)+ l 

6 ^J7(^/) ^ ^^7(^/) U {̂ (,- mod .)+l} 
7 ^Adj{B(^i mod«)+l) ^^dj{B(^i mod«)+l)U{^/} 
8 Ci ̂  wahle zufallig gemaB ^({.4i, ̂ i}) 
9 for z ^ 1 , . . . , z7 — 1 

10 do ^ i : ^ {w G ̂ ^'(Q) I #{AdjXm) \ { Q , . . . , Q}) minimal } 
11 ifK^id 
12 then E Q+i ^ wahle gleichverteilt zufallig aus K 
13 L else E Q+i ^ wahle gleichverteilt zufallig aus {1 , . . . ,«} \ {Q, 
14 return C 

. ,Q} 

Wenn man die obige Kritik an unserem ersten Versuch konsequent zu Ende denkt, brauchen 
wir eine Rekombination, die ausschlieBlich Kanten aus den Eltem benutzt. Dieser Anforderung 
kommt die KANTENREKOMBINATION (Algorithmus 2.4) sehr nahe, welche die gemeinsamen Ad-
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Ausgangssituation: 

Adji\) = {2,2,4,7} 
Adj{4) = {l, 3, 8} 
Adji7) = {l,2, 5,6} 

1. Iteration: 

Adji4) = {3, 8} ^ 
Adjil) = {2, 5, 6} ^ 

2. Iteration: 

Adj(4) = {8} ^ 
Adj{7) = {2, 5, 6} 

3. Iteration: 

Adj(4) = {8} 
f̂i?y(7) = {5, 6} ^ 

4. Iteration: 

Adj(4) = {8} 

5. Iteration: 

Adj(4) = {8} 

6. Iteration: 

Adj(4) = {8} 

7. Iteration: 

Adj(4) = {8} ^ 

^rf7(2) = {l, 3,7} 
Adj(5) = {6, 7, 8} 
Adm = {4, 5, 6} 

Adj(2) = { 3 , 7 } ^ 
Adj(5) = {6, 7, 8} 
AdjiS) = {4, 5, 6} 

Adj(2) = {7} <= 
AdJiS) = {6, 7, 8} 
^rfy(8) = {4, 5, 6} 

Adj(5) = {6, 7, 8} 
^rfy(8) = {4, 5, 6} 

Adj(5) = {6, 8} <= 
Adjii) = {4, 5, 6} 

^^7(5) = {8} <= 
Adm = {4, 5} ^ 

^^7(8) = {4} ^ 

^rfy(3) = { l ,2 , 4} 
Adj{6) = {5,7, 8} 

^^y(3) = {2, 4} <= 
Adj{6) = {5,7, 8} 

Adj(6) = {5,7, 8} 

Adj(6) = {5,7, 8} 

^rfy(6) = {5, 8} ^ 

wahle zufallig C\ 

^ ( 1 , . . . ) 

wahle C2 = 3 
^ ( 1 , 3 , . . . ) 

wahle C3 = 2 
^ ( 1 , 3 , 2 , . . . ) 

es folgt €4 = 1 
^ ( 1 , 3 , 2 , 7 , . , . ) 

wahle C5 = 6 
^ ( 1 , 3 , 2 , 7 , 6 , . . . ) 

es folgt C6 = 5 
^ ( 1 , 3 , 2 , 7 , 6 , 5,...) 

es folgt C7 = 8 
^ ( 1 , 3, 2, 7, 6, 5, 8...) 

es folgt Cs = 4 
^ ( 1 , 3, 2, 7, 6, 5, 8, 4) 

Bild2.8 Ein AblaufprotokoU ftir eine Rekombination zwischen den Eltemindividuen (1, 2, 3, 4, 
8, 5, 6, 7) und (1, 4, 8, 6, 5, 7, 2, 3) veranschaulicht die Arbeitsweise der KANTENRE-
KOMBINATION. Die Pfeile »<^« markieren die Knoten, die an der jeweiligen Stelle auswahlbar 
sind. Die Pfeile » ^ « kennzeichnen die Knoten, die zwar durch eine Kante erreichbar waren, aber 
vom Algorithmus zugunsten der anderen Knoten verworfen werden. 

jazenzliste beider Eltem betrachtet und iterativ den nachsten Knoten mit den wenigsten weiteren 
Wahlmoglichkeiten aussucht. Allerdings ist auch bei diesem Ansatz nicht garantiert, dass tatsach-
lich nur Kanten der Eltemindividuen genutzt werden. Zur Veranschaulichung der Kantenrekom-
bination ist in Bild 2.8 ein AblaufprotokoU ftir ein Beispiel dargestellt und Bild 2.9 zeigt die 
Rundreisen der Eltem und des Kindindividuums. 

Da die KANTENREKOMBINATION wesentlich naher an unseren Anfordemngen zu liegen scheint 
als die ORDNUNGSREKOMBINATION, v^erden v^ir sie in unserem Algorithmus benutzen. 

Nun fehlt noch die Selektion, um der Optimiemng eine Richtung zu geben. Dies soil ohne 
groBere weiterfiihrende Uberlegungen in einer Umweltselektion geschehen, die die besten Indi-
viduen aus den Eltern und den neu erzeugten Kindem iibemimmt. Wir wahlen eine Eltempopu-
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3 Kanten- 1 

rekombination 

^ 

Eltemindividuum 1 Eltemindividuum 2 

Bild 2.9 Fiir das ausfiihrliche Beispiel aus Bild 2.8 werden hier die Eltemindividuen und das durch die 
KANTENREKOMBINATION entstandene Kindindividuum gezeigt. 

Algorithmus 2.5 
EA-HANDLUNGSREISENDENPROBLEM( Zielfunktion F , Anzahl der Stadte n ) 

1 t^O 
2 P(t) ^- Liste mit 10 gleichverteilt zufalligen Permutationen aus U{S^n) 
3 bewerte alle A eP{t) mit Zielfunktion F 
4 while / < 2 000 
5 do^P'^Q 
6 for eachzG{l,...,40} 
7 do^ A,B ^ wahle gleichverteilt zufallig Eltem aus P{t) 
8 if w < 0,3 ftir eine Zufallszahl u gewahlt gleichverteilt gemaB t/([0, 1)) 
9 then LA^ KANTENREKOMBINATION {A, B) 

10 A^ INVERTIERENDE-MUTATION (A) 
11 ^P'^P'o{A) 
12 bewerte alle A eP' mit Zielfunktion F 
13 t^t^l 
14 ^P{t) ^ 10 beste Individuen aus P'oP{t-l) 
15 return bestes Individuum aus P{t) 

lation der GroBe 10 und erzeugen pro Generation 40 neue Individuen. Damit besteht die nachste 
Eltempopulation nur aus den 10 besten Individuen. Die Auswahl der Eltem in der Eltemselektion 
findet zufallig gleichverteilt statt. 

Die Mutation nimmt eine sehr gezielte kleine Veranderung vor, die durch ihre hohe Anpas-
sung an das Problem zusammen mit der Selektion bereits einen guten iterativen Optimierungs-
fortschritt verspricht. Die Rekombination bemiiht sich zwar nach Moglichkeit einzelne Details 
der Eltemindividuen zu benutzen, kann aber dennoch sehr starke Eingriffe in die Stmktur eines 
Losungskandidaten mit sich bringen. Da zusatzlich der Berechnungsaufwand fiir die Rekombi­
nation sehr viel groBer ist als fiir die Mutation, erzeugen wir nur 30% der neuen Individuen mit 
der Rekombination und einer anschlieBenden Mutation. Die restlichen Individuen werden nur 
mittels einer Mutation erzeugt. Somit ergibt sich Algorithmus 2.5 zur Losung des Handlungsrei-
sendenproblems. Als Abbmchkriterium wurde hier eine Grenze von maximal 2 000 Generationen 
gesetzt. 

Fiir das Handlungsreisendenproblem mit 101 Stadten wird das Ergebnis einer Optimiemng 
in Bild 2.10 gezeigt: Die besten Rundreisen der Generationen 0, 500, 1 000 und 2 000 demonst-
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Generation 0 Generation 500 

Generation 1000 Generation 2 000 

Bild 2.10 Fiir die Optimiemng mit der Kantenrekombination und der invertierenden Mutation werden die 
besten gefundenen Rundreisen in den Generationen 0, 500, 1 000 und 2 000 dargestellt. 

rieren, wie die Lange der Tour durch Entfemung von Uberkreuzungen verringert wird. Das End-
ergebnis hat die Lange 670 und ist damit bereits sehr nahe an dem bekannten Optimum 629 -
die Abweichung betragt 6,1%. Tatsachlich haben durch diesen Algorithmus insgesamt 80010 
bewertete Individuen ausgereicht, um ein sehr gutes Ergebnis zu erlangen. Verglichen mit der 
Anzahl aller Rundreisen 4,663 1 • 10^̂ ^ ist dies ein verschv^indend geringer Teil des Suchraums, 
was auch den letzten Skeptiker von der Arbeitsweise der evolutionaren Algorithmen tiberzeugen 
sollte. 

Um tatsachlich sicher zu gehen, dass beim Entwurf des evolutionaren Algorithmus und seiner 
Operatoren die richtigen Entscheidungen getroffen wurden, haben v îr Vergleichsexperimente 
mit den drei anderen Varianten des Algorithmus durchgeftihrt: 

• KANTENREKOMBINATION und VERTAUSCHENDE-MUTATION, 

• ORDNUNGSREKOMBINATION und INVERTIERENDE-MUTATION sov îe 

• ORDNUNGSREKOMBINATION und VERTAUSCHENDE-MUTATION. 
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Ordnungsrekombination 
und Invertieren 

Kantenrekombination 
und Vertauschen 

Ordnungsrekombination 
und Vertauschen 

Bild 2.11 Fiir die drei schlechteren Algorithmen wird jeweils die beste gefundene Rundreise aus Genera­
tion 2 000 dargestellt. 

Ordnungsrekombination und Vertauschen 

Kantenrekombination und Vertauschen 

Kantenrekombination und Invertieren 
I 

1500 2000 

Bild 2.12 Der Ablauf der Optimierung des Handlungsreisendenproblems mit 101 Stadten wird fur die vier 
unterschiedlichen Algorithmen gezeigt, die man aus der Kombination der Mutations- und Rekom-
binationsoperatoren erhalt. Es wird ftir jede Generation die beste gefundene Giite in der aktuellen 
Population angezeigt. 

Die jeweils besten gefundenen Rundreisen werden in Bild 2.11 dargestellt. Wahrend man das 
Ergebnis der invertierenden Mutation mit der Ordnungsrekombination noch akzeptieren kann, 
liefem die beiden anderen Algorithmen eindeutig suboptimale Resultate. Zusatzlich kann man 
sich nun den Verlauf der vier Optimierungen iiber die Generationen beziiglich der Lange der 
besten gefunden Rundreise in Bild 2.12 betrachten. Man sieht jeweils den typischen Verlauf 
mit raschen Verbesserungen zu Beginn einer Optimierung und einer langsamen Konvergenz ge-
gen Ende. Zudem legen die Kurven den Schluss nahe, dass die Auswirkungen der Mutation in 
diesem Beispiel gewichtiger sind, als die der Rekombination. Wider Erwarten gelingt es der Ord­
nungsrekombination bei der guten Zuarbeit der invertierenden Mutation ebenfalls ein sehr gutes 
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Bild2.13 
Ergebnis des deterministischen Verfahrens zur Losung des 
Handlungsreisendenproblems durch die Berechnung eines 
minimalspannenden Baums fur die Probleminstanz mit 101 
Stadten. 

Ergebnis zu erreichen. Allerdings hat sie weit groBere Probleme als die Kantenrekombination 
mit den durch die vertauschende Mutation erzeugten Individuen. 

± Sind die obigen Schlussfolgerungen aus den durchgefiihrten Experimenten berechtigt? Oder wtirden Sie 

mit mir iibereinstimmen, dass die Ergebnisse reiner Zufall und damit auch die Deduktion reine Prosa ist? 

Der Abschnitt 6.1 im hinteren Teil des Buchs enthalt einige Hinweise dazu, warm wir berechtigt einen 

Algorithmus als »besser« bezeichnen diirfen. 

AbschlieBend vergleichen wir den hier hergeleiteten Optimierungsansatz noch mit einem alter-
nativen deterministischen Verfahren. Fiir das hier betrachtete Beispiel entsprechen die Kosten 
einer Kante dem Abstand der Koordinaten und damit gilt die Dreiecksungleichung hinsichtlich 
der Kosten. Unter dieser Voraussetzung lasst sich durch einen Pre-Order-Durchlauf eines mini­
malspannenden Baums eine Rundreise berechnen, die hochstens doppelt so lang wie die optimale 
Rundreise ist. Auf einen Beweis verzichten wir, halten aber fest, dass dies beispielsweise durch 
den Primalgorithmus in 0'{n^) Berechnungsschritten fiir n Stadte moglich ist. Das Ergebnis fiir 
unser Beispiel ist in Bild 2.13 dargestellt. Fiir diese noch relativ kleine Probleminstanz bleibt 
die Losungsqualitat hinter dem hier entwickelten Ansatz zuriick. Zudem batten wir lediglich die 
Symmetric der Kosten vorausgesetzt, was eine wesentlich schwachere Bedingung ist, als die 
Giiltigkeit der Dreiecksungleichung. 

2.4 Formale Einfiihrung evolutionarer Algorithmen 

Durch die genaue Definition der involvierten mathematischen Rdume und Abbildungen werden 
evolutiondre Algorithmen formal eingefiihrt. 

Fiir jedes beliebige Optimierungsproblem konnen Losungskandidaten unterschiedlich dargestellt 
werden und dadurch jeweils andere Operationen in effizienter Zeit ermoglichen. Daher trennen 
wir die natiirliche Struktur des Suchraums Q, den so genannten Phdnotyp, von der Darstellung 
des Losungskandidaten in einem Individuum, den so genannten Genotyp ^. Die Bewertungs-
funktion ist gemaB Definition 2.1 auf dem Phanotyp definiert, die Mutation und die Rekombi-
nation werden auf dem Genotyp formuliert. Um die Bewertung eines im Genotyp vorliegenden 
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Phanotyp 

Dekodierung dec 

Genotyp 

Bild 2.14 Kodierte Darstellung des Suchraums. 

B ewertungsfunktion 

/ 

induzierte 
B ewertungsfunktion 

Individuums vomehmen zu konnen, ist es notwendig, das Individuum zunachst wieder in den 
phanotypischen Suchraum mittels einer Dekodierungsfunktion abzubilden. 

Definition 2.3 (Dekodierungsfunktion): 
Eine Dekodierungsfunktion dec : ^ 
Phanotyp Q. 

Q ist eine Abbildung vom Genotyp ^ auf den 

Das Zusammenspiel zwischen dem Genotyp, dem Phanotyp und der Dekodierungsfunktion ist 
in Bild 2.14 dargestellt. Da nicht alle evolutionaren Algorithmen eine Kodierung des Problems 
wahlen, kann auch ^ = Q und dec = id gelten. Immer dann, wenn im Weiteren die Deko­
dierung nicht direkt thematisiert wird, werden wir statt der Bewertungsfunktion / die indu­
zierte Bewertungsfunktion F benutzen, die bereits einen eventuellen Dekodierungsschritt um-
fasst. 

Um nun eine gemeinsame formale Basis fur die Beschreibung der Algorithmen in den fol-
genden Kapiteln zu haben, fiihren wir die folgende Dreiteilung eines Individuums A ein. Der 
Genotyp wird mit ̂ .G G ^ bezeichnet. AuBer der genotypischen Information, die sich direkt bei 
der Dekodierung im Phanotyp niederschlagt, kann bei einzelnen evolutionaren Algorithmen das 
Individuum noch weitere Informationen A.S ^ 3^ beinhalten, wobei 3^ der Raum aller mogli-
chen Zusatzinformationen ist. Die Zusatzinformationen konnen beispielsweise Parametereinstel-
lungen fiir Operatoren sein, wenn diese auf das jeweilige Individuum angewandt werden. Zusatz­
informationen werden auch als Strategieparameter bezeichnet und sind ebenso wie der Genotyp 
A.G durch die Operatoren modifizierbar. Als drittes wesentliches Element eines Individuums 
speichem wir seine Giite im Attribut ^ .F G M ab. Diese formale Sicht eines Individuums ist in 
Bild 2.15 skizziert. 

Definition 2.4 (Individuum): 
Ein Individuum A ist ein Tupel {A.G,A.S,A.F) bestehend aus dem eigentlichen Lo-
sungskandidaten, dem Genotyp A.G e^, den optionalen Zusatzinformationen A.S e 
^ und dem Gutewert ^ .F = f{dec{A.G)) G M. 
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Bild 2.15 Unterschiedliche Aspekte eines Individuums: Genotyp ̂ .G, Phanotyp dec(A.G), Zusatzinforma-
tionen A S und Giite A .F. 

Beispiel 2.2: 

Fiir ^ = M̂  und ^ = M̂  ist beispielsweise 

(A.G,A.S,A.F) = ((1,3; 4,2; 1,5), (1,0; 7,9), 1,536) 

ein gtiltiges Individuum. 

/ | \ Ein Hinweis zur Notation: Zur besseren Lesbarkeit werden die Kommata »; « speziell gekennzeichnet, wenn 

II sie reellwertige Zahlen in Tupeln, Aufzahlungen oder Mengen voneinander trennen. 

Beispiel 2.3: 
Zur Formalisierung des Algorithmuses fur das Handlungsreisendenproblem aus dem 
vorigen Abschnitt wahlen wir ^ = .5̂ 4 (bei vier Stadten) und ^ = {_L}, da keine 
Zusatzinformationen benotigt werden. Ein giiltiges Individuum v^are 

{A.G,A.S,A.F) = ((1, 3, 4, 2), _L, 3,1) 

± Wie jeder Formalismus bringt auch der hier gewahlte Nachteile in der Darstellung mit sich. So sieht die 
Definition des J^ im zweiten Beispiel etwas befi'emdlich aus. Sie ist allerdings notwendig, da mit S ' = 0 
die Definition 2.5 nicht fianktionieren wurde, denn dort ware dann ^ x j ^ = ^ x 0 = 0. 

/ | \ Spatestens an dieser Stelle drangt sich die Frage auf, warum hier ein Formalismus eingefuhrt wird. Erstens 

II wird dadurch eine exakte, unmissverstandliche Grundlage gelegt. Zweitens erlaubt der allgemeine Forma­
lismus, die verschiedenen Standardalgorithmen in einen gemeinsamen Rahmen zu integrieren. Die Zusatz-

information y4.*S kann zunachst ohne groBere Verluste beim Verstandnis verdrangt werden. In Abschnitt 3.4 
wird die Zusatzinformation dann ausfiihrlich behandelt. 

Das Bild 2.15 verdeutlicht die Wirkung der unterschiedlichen Operationen auf die Bestandteile 
eines Individuums: Die Bewertung benutzt lediglich den Genotyp A.G und speichert den dabei 
erhaltenen Wert im Giiteattribut^.F, die evolutionaren Operatoren konnen den Genotyp^.G und 
die zusatzlichen Informationen^.^Snutzen und ggf. verandem und die Selektion leitet ausschlieB-
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lich aus dem Giitewert^.F die Uberlebenswahrscheinlichkeit oder die Reproduktionsrate eines 
Individuums ab. 

Bedingt durch die mannigfaltigen Optimierungsprobleme, die mit evolutionaren Algorithmen 
bearbeitet werden, sind auch die genotypischen Raume ^ sehr vielfaltig. Da sich allerdings alle 
gangigen Genotypen in einer linearen Form speichem lassen, gehen wir im Weiteren bei der Be-
schreibung der Algorithmen von ̂  = M* aus. Dabei stellt Mden Basiswertebereich der einzelnen 
Komponenten dar. Fiir viele Optimierungsprobleme ist eine feste, vorgegebene Dimension / G N 
des Genotypraums ^ = M^ ausreichend. Bei Reprasentationen mit variabler Lange (^ = M*) 
konnen zusatzlich noch bestimmte Strukturvorgaben gelten, sodass nicht jedes Element aus M* 
einen gtiltigen Losungskandidaten darstellt. Die einzelnen Komponenten eines Individuums mit 
dem Genotyp A.G e M^ werden mit A.Gj (I < i < I) bezeichnet. Wenn keine weiteren Infor-
mationen A.S e ^ vorhanden sind, kann auch A e W geschrieben werden. Die Speicherung 
des Glitewerts in dem Attribut A.F dient nicht nur der einfacheren Notation der Algorithmen, 
sondem ist auch bei der Implementation der gangigen evolutionaren Algorithmen sinnvoll, ins-
besondere bei aufwandig zu berechnenden Bewertungsfunktionen und mehrfachen Zugriffen auf 
die Giitewerte. 

Wie wir im vergangenen Abschnitt bei dem Algorithmus fiir das Handlungsreisendenproblem 
gesehen haben, besitzen die Operatoren der evolutionaren Algorithmen meist einen probabilis-
tischen Charakter. Da bei den heute gangigen Computem die Erzeugung von Zufallszahlen nur 
als Pseudo-Zufallszahlen moglich ist, werden wir in der folgenden Beschreibung der Operatoren 
die ihnen zugeordneten Funktionen von einem Zustand ^ des Zufallszahlengenerators abhangig 
machen. S bezeichnet die Menge aller moglichen Zustande. Anhang C enthalt einige konkrete 
Hinweise zur Implementation von Zufallszahlengeneratoren. 

Die evolutionaren Operatoren Mutation und Rekombination werden auf dem Genotyp und 
eventuell vorhandenen Zusatzinformationen definiert - die Giitewerte der Individuen haben in 
der Regel keinen Einfluss auf die Funktionsweise der Operatoren. 

Definition 2.5 (Operatoren): 

Fiir ein durch den Genotyp ^ kodiertes Optimierungsproblem und die Zusatzinforma­
tionen 3f, wird ein Mutationsoperator durch die Abbildung 

Mut^ : ^x3f^^x^ 

definiert, wobei <̂  G 5 einen Zustand des Zufallszahlengenerators darstellt. 
Analog wird ein Rekombinationsoperator mit r > 2 Eltem und ^ > 1 Kindem 

(r, 5" G N) durch die Abbildung 

Rek^ : (^ X ^y ^ (^ X 3^y 

definiert. 

^ \ Die obige Definition stellt hinsichtlich der Zufallszahlen eine gangbare Notlosung dar. Der Zustand des 

II Zufallszahlengenerators (̂  G S hat nicht nur einen Einfluss auf das Ergebnis der Operation: Er verandert 

sich zusatzlich und realisiert so die pseudo-zufallige Zahlenfolge. Strenggenommen hatte man also die 
Mutation als Abbildung Mut: ^ x J ^ x S -^ ^ x J ^ x S definieren mussen. Dies lenkt jedoch zu stark 
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von der eigentlichen Funktion der Operatoren ab, sodass dieser Hinweis auf die implizite Veranderung von 

^ gentigen muss. 

Die Selektion ist ungleich schwieriger formal zu definieren. Sie erhalt als Eingabe eine Populati­
on mit r Individuen und wahlt daraus s Individuen aus. Dies bewerkstelligt die im Folgenden be-
schriebene Funktion Sel. Da jedoch die Selektion keine neuen Individuen erfindet, sondern ledig-
lich auswahlen kann, fiihren wir die Selektion auf eine Indexselektion zurtick, die ausschlieBlich 
auf der Basis der Giitewerte der Individuen die Indizes der auszuwahlenden Individuen bestimmt. 
So werden im Weiteren auch alle Selektionsmechanismen algorithmisch beschrieben. 

Definition 2.6 (Selektionsoperator): 
Ein Selektionsoperator wird auf eine Population P = {A^^\ ... ^A^^'^) angewandt: 

Sel^ : ( ^ X ^ X R ) " ^ ( ^ X ^ X R ) " 

Die dabei zugrunde gelegte Indexselektion hat die Form 

IS^: R ^ ^ { l , . . . , r } ^ 

Diese nicht ganz einfache Definition wird anschaulich durch ein Beispiel in Bild 2.16 illustriert. 
Wichtig ist, dass es keine Einschrankungen hinsichtlich der Abbildung IS gibt. So kann sowohl 
eine deterministische Auswahl der besten Individuen als auch eine probabilistische realisiert sein, 
die Individuen zufallig auswahlt. Auch kann s > r gelten. 

Dies ermoglicht eine generische Definition der evolutionaren Algorithmen, aus der sich alle 
wichtigen Standardalgorithmen ableiten lassen. 
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Bild 2.16 Das Beispiel demonstriert far r = 5 und 5 = 3, wie die Selektion auf die Indexselektion zuriick-
gefiihrt wird. In diesem Beispiel wiirden die drei besten Individuen ausgewahlt werden. Es sind 
jedoch auch andere Funktionen denkbar - z. B. kann auch ein Individuum mehrfach ausgewahlt 
werden. 
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Algorithmus 2.6 

EA-SCHEMA( Optimiemngsproblem (1^, / , >-) ) 
1 t^O 
2 P{t) ^ erzeuge Population der GroBe fi 
3 bewerte P{t) 
4 while Terminiemngsbedingung nicht erfiillt 
5 do^ P' ^ selektiere Eltem fur A Nachkommen aus P{t) 
6 P^^ ^- erzeuge Nachkommen durch Rekombination aus P' 
7 P^^^ ^- mutiere die Individuen in P" 
8 bewerte P''' 
9 t ^ t + l 

10 ^P(t) ^ selektiere ii Individuen aus P^^^ oP{t-l) 
11 return bestes Individuum aus P{t) 

Definition 2.7 (Generischer evolutionarer Algorithmus): 

Ein generischer evolutionarer Algorithmus zu einem Optimiemngsproblem ( Q , / , 
>-) ist ein 8-Tupel (^ , dec,Mut,Rek,ISEitern^ I^Umweit-, l^^^)- Dabei bezeichnet ji die 
Anzahl der Individuen in der Eltempopulation und A die Anzahl der erzeugten Kinder 
pro Generation. Femer gilt 

Rek: (^ X 2^f ^ (^ x 3^Y 

ISEltern I M ^ ^ ( 1 , • • • , M ) ^ - ^ m i t ^ • A G N 

ISumwelt' M ^ + ^ ^ ( l , . . . , i U + A ) ^ -

Algorithmus 2.6 (EA-SCHEMA) zeigt den Ablauf in Pseudo-Code-Notation. 

/ | \ Dies ist eine sehr allgemeine Definition, gegen die die Experten unter den Lesern sofort mehrere Einwande 
II haben werden. Die Wogen des Protests werden im folgenden Kapitel (hoffentlich) hinreichend geglattet. 

2.5 Vergleich mit der naturlichen Evolution 

Die Parallelen zwischen der naturlichen und der simulierten Evolution werden nochmals her-
ausgearbeitet. Ferner wird auf Ansdtze verwiesen, wie weitere Eigenschaften der naturlichen 
Evolution umgesetzt werden konnen. 

Hier am Ende des zv^eiten Kapitels soil nochmals ein Resiimee gezogen v^erden, inv^ieweit die 
natlirliche Evolution den evolutionaren Algorithmen als direktes Vorbild dient. 

Wesentliche Konzepte v^ie die Population, Reproduktion durch Vererbung und Variation, das 
Prinzip der Selektion sov^ie die Kodierung von Information in einem Genotyp sind der Biologic 
entlehnt. Wo allerdings in einer natiirlichen Umwelt viele Effekte nicht direkt kausal erklarbar 
sind, werden sic bei den evolutionaren Algorithmen durch - zwar randomisierte, aber dennoch 
in ihrer Arbeitsweise eindeutig definierte - Funktionen ersetzt. So ist aus einer nur schwer fass-
baren naturlichen Selektion ein klar definierter Selektionsoperator, aus der Rekombination und 
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den Crossing-Over-Effekten ein Rekombinationsoperator und aus einem Fehler bei der Verviel-
faltigung ein Mutationsoperator geworden. Diese Operatoren konnen nahezu beliebig gewahlt 
werden und bestimmen so den Erfolg oder Misserfolg der Optimiemng. Analog kann die An-
gepasstheit und Giite von Arten in der Biologie nicht direkt gemessen und berechnet werden. 
Stattdessen wird dort die Angepasstheit indirekt als Fitness durch die Anzahl der Nachkommen 
gemessen. Dies wird bei den evolutionaren Algorithmen durch eine meist klar definierte Bewer-
tungsfunktion ersetzt. In evolutionaren Algorithmen wird grundsatzlich zwischen Geno- und Pha-
notyp unterschieden, wobei beide auch identisch sein konnen. Die Kodierungsfunktion erreicht 
jedoch bei Weitem nicht die Komplexitat der biologischen Kodierung in der DNA. 

Neben diesen natiirlichen Konzepten ist es femer notwendig, im Rahmen einer Optimiemng 
den evolutionaren Algorithmus um eine Initialisiemng und ein Abbmchkriterium zu erweitem. 
Im Gegensatz zur Natur wird in der Optimiemng ein Anfangs- und ein Endpunkt benotigt. 

Wie im ersten Kapitel ausfuhrlich erlautert wairde, findet die Evolution auf der genetischen 
Ebene, der DNA, statt. Diese bestimmt durch einen selbstregulierenden Prozess die Bildung 
des Organismus, sowohl mit seinem Erscheinungsbild als auch dem Verhalten in Bezug auf 
die Umwelt. Die in evolutionaren Algorithmen betrachteten Kodiemngen sind sehr viel einfa-
cher - wenn iiberhaupt eine Kodiemng benutzt wird. Die gesamte Bildung eines mehrzelligen 
Organismus durch die selbstorganisierte Spezialisiemng der Zellen bleibt ganzlich unbertick-
sichtigt. 

Wenn wir femer den gesamten Evolutionsprozess beginnend bei der chemischen Evolution be-
trachten, dann bietet sich ein interessantes Gesamtbild, in dem sich zunachst bestimmte Mecha-
nismen herausgebildet haben, die dann die Gmndlage fiir die weitere Evolution darstellen. Ein 
derartiges Vorgehen, bei dem die Mechanismen der Evolution selbst der Evolution unterliegen, 
wird im Rahmen der evolutionaren Algorithmen nicht betrachtet. Stattdessen wird in der Regel 
erst bei fest in ihrer Funktionsweise definierten evolutionaren Mechanismen aufgesetzt: Zunachst 
werden die Stmktur und der Algorithmus bestimmt, dann findet die Optimiemng statt. Selbstmo-
difizierende evolutionare Algorithmen mit alien Konsequenzen wurden bisher noch nicht betrach­
tet. Ausnahmen stellen hier einige Verfahren dar, bei denen einzelne Aspekte wahrend einer Opti­
miemng sich an das Problem anpassen. Hier kommen dann die eingefiihrten Zusatzinformationen 
eines Individuums zum Tragen. Diese Technik wird in Abschnitt 3.4.2 detailliert vorgestellt. 

Auch eher komplexe Mechanismen, wie die Herausbildung der Sexualitat und diploider Stmk-
turen, werden meist nicht betrachtet. In Abschnitt 5.3 befindet sich ein Beispiel fur diploide Kon-
zepte im Rahmen von zeitabhangigen Bewertungsfunktionen. 

Die Evolutionsfaktoren Genfluss und Gendrift bleiben bei den Standardalgorithmen meist 
unberucksichtigt. Genfluss ist bei parallelen evolutionaren Algorithmen von Interesse (vgl. Ab­
schnitt 5.4.3). Gendrift hingegen kann nur schwierig als wirkungsvoller Faktor zur Beschleu-
nigung einer Optimiemng eingesetzt werden. Gendrift wird vielmehr in kleinen Populationen 
beobachtet, in denen dieser Effekt zu einer fruhzeitigen Konvergenz auf nicht-optimalen Werten 
fiihren kann. 

Die am Ende von Kapitel 1 diskutierten Aspekte der Anpassung sind ebenfalls in den Stan-
dardansatzen nicht vertreten. Aspekte der Einnischung und der Suche nach getrennten Nischen 
werden im Abschnitt 5.2 diskutiert. Koevolutionare Algorithmen werden knapp in Abschnitt 5.4.4 
behandelt. Der Baldwin-Effekt ist zwar in der Biologie umstritten, wird jedoch im Rahmen von 
evolutionaren Algorithmen, die Heuristiken einbeziehen, haufig zitiert. In den evolutionaren Al­
gorithmen wird allerdings haufig eine Lamarcksche Evolution bevorzugt (siehe Abschnitt 4.6.3). 
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2.6 Vergleich mit anderen Optimiemngsverfahren 

Die evolutiondren Algorithmen werden anderen »klassischen« Optimierungsverfahren gegen-
iibergestellt, um ein Gefuhl dafur zu vermitteln, wann ihre Anwendung angemessen ist. 

Die beispielhafte erfolgreiche Optimierung des Handlungsreisendenproblems in diesem Kapitel 
konnte leicht den Eindruck vermitteln, dass evolutionare Algorithmen ein adaquates Mittel fiir 
alle Optimierungsprobleme sind. Daher werden hier sehr knapp die Grundideen mehrerer »klas-
sischer« Optimierungsverfahren vorgestellt, die haufig wesentlich effizienter sind. 

Das Simplex-Verfahren erwartet, dass ein Optimierungsproblem als lineares Programm be-
schrieben werden kann. Es wird ein Vektor x G M" mit x/ > 0 (1 <i<n) gesucht, fur den 

minimal wird und gleichzeitig die m Randbedingungen 

z = 1,. . . ,« 

erfiillt sind, wobei aj^ G M und bj G M^ fiir 1 < y < m und I <i <n gilt. Die Randbedingungen 
beschreiben ein konvexes Gebilde im Suchraum. Fiir die Losung werden obige Ungleichungen 
durch Einfiihren neuer Variablen in Gleichungen umgeformt. AnschlieBend wird ein Losungskan-
didat gesucht, der die Randbedingungen erfiillt. Durch die so genannte Simplex-Iteration wird 
der noch mogliche Suchraum immer weiter eingeschrankt, bis das Optimum gefunden ist. Die 
Laufzeit kann im Grundalgorithmus schlechtestenfalls exponentiell werden. Es gibt jedoch auch 
Varianten, die eine polynomielle Laufzeit garantieren konnen. In jedem Fall ist es wichtig, dass 
ein Problem sowohl in den Randbedingungen als auch in der zu minimierenden Zielfunktion als 
Linearkombination formuliert werden kann. Andemfalls kann der Simplex-Algorithmus nicht 
angewandt werden. 

Ein anderes Verfahren zur Suche des Minimums einer beliebigen, partiell differenzierbaren 
Funktion 

f:W^R mit V / = ( ^ , . . . , .:-^ | existent 
\ OX\ OXn J 

ist das Gradientenabstiegsverfahren. Dabei wird das Verfahren mit einem beliebigen Losungs-
kandidaten x̂ ^̂  G M" initialisiert und anschlieBend iterativ verbessert. Der Nabla-Operator 
V/(x(^)) bezeichnet den Gradienten von / an der Stelle x(̂ ), d. h. den steilsten Abstieg der Funk­
tion, und wird zur Modifikation des Losungskandidaten genutzt 

;,(̂ -+i) ^ x « - a r V / ( x « ) . 

Die Konstante at entspricht einem Schrittweitenfaktor. Unter geeigneten Voraussetzungen kon-
vergiert das Gradientenabstiegsverfahren im gesuchten Minimum. Besitzt die Funktion / meh-
rere Minimalstellen, kann jedoch nicht garantiert werden, dass es sich um die kleinste Minimal-
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stelle handelt. Auch ist die Effizienz des Algorithmus nicht zwingend gegeben - insbesondere 
bei sehr geringer Steigung oder Situationen, in denen das Minimum immer wieder iibersprungen 
wird. Wesentlich schneller konnen in solchen Situationen Verfahren sein, die auch zweifache par-
tielle Ableitungen der Funktion / berucksichtigen, wie etwa das GauB-Newton-Verfahren oder 
der Levenberg-Marquardt-Algorithmus. In jedem Fall ist alien Varianten des Gradientenabstiegs 
gemein, dass die Zielfunktion mindestens einmal ableitbar ist. Damit sind beispielsweise unsteti-
ge Funktionen so nicht losbar. 

Eine weitere Klasse altemativer Optimierungsalgorithmen sind die Backtracking-Verfahren 
fiir kombinatorische Probleme, die im Vergleich zu den obigen Methoden weniger Voraussetzun-
gen an das Optimierungsproblem stellen. Dabei wird der Suchraum geeignet strukturiert, so dass 
iiber einen Entscheidungsbaum alle Losungskandidaten erzeugt werden konnen. Am Beispiel 
des Handlungsreisendenproblems wiirde das so aussehen, dass zunachst die erste besuchte Stadt 
festgelegt wird, dann die zweite etc. Die Losungskandidaten befinden sich in den Blattern des 
Entscheidungsbaums; die inneren Knoten beschreiben eine Menge an Losungskandidaten mit 
gleichen Eigenschaften. Traversiert man den Baum komplett, werden alle Losungskandidaten 
aufgezahlt. Ist man lediglich an einem durchfiihrbaren Losungskandidaten interessiert, wiirde 
man die Baumtraversion abbrechen, sobald ein solcher gefunden ist. Beim Handlungsreisenden-
problem konnte man etwa nach einer Rundreise mit einer vorgegebenen Maximallange suchen. 
Falls nun an einem inneren Knoten der bereits festgelegte Teil der Rundreise langer als die zu-
gelassene Maximallange ist, braucht der darunter liegende Teil des Entscheidungsbaums nicht 
weiter betrachtet zu werden. Er wird quasi abgeschnitten. Daher spricht man auch von Branch-
and-Bound-YQrfahrQn. Wird die minimale Rundreise gesucht, kann die kiirzeste bisher gefunde-
ne Lange als Kriterium herangezogen werden. Da im ungtinstigsten Fall der komplette Suchraum 
abgearbeitet wird, haben Backtracking-Algorithmen keine garantierte effiziente Laufzeit. Dies ist 
ein Nachteil der Verfahren. Gut anwendbar ist das Verfahren nur dann, wenn das Problem geeig­
net strukturiert werden kann, damit groBe Teile des Suchraums ausgelassen werden. Ein weiterer 
Vorteil ist die leichte Kombinierbarkeit mit anderen Verfahren. So kann etwa Branch-and-Bound 
mit dem Simplex-Algorithmus zur Losung ganzzahliger linearer Optimierungsprobleme kombi-
niert werden. 

Und schlieBlich gibt es noch die groBe Klasse der problemspezifischen Algorithmen und Heu-
ristiken fiir die kombinatorische Optimiemng. Darunter fallen exakte Algorithmen wie der Dijk-
stra-Algorithmus, um kiirzeste Wege in einem Graphen zu suchen, aber auch Approximationen 
wie der in diesem Kapitel auf Seite 34 diskutierte Algorithmus fiir das Handlungsreisenden-
problem. Ist fiir ein Problem ein solcher Algorithmus bekannt, der in akzeptabler Berechnungs-
zeit eine hinreichende Losungsqualitat garantiert, eriibrigt sich die Suche nach einem effektiven 
evolutionaren Algorithmus. 

Zusammenfassend lasst sich sagen, dass alle hier vorgestellten Algorithmen entweder nur fiir 
eine sehr beschrankte Menge von Problemen eingesetzt werden konnen oder eine hohe Laufzeit 
mit sich bringen. Evolutionare Algorithmen sind potentiell genau dann geeignet, wenn kein ande-
res effizientes Verfahren zur Verfiigung steht. Ihr groBer Vorteil ist, dass sie grundsatzlich univer-
sell anwendbar sind. Allerdings kann auch hier weder eine Erfolgs- noch eine Laufzeitgarantie 
gegeben werden. Viele erfolgreiche Projekte belegen das Potential der evolutionaren Algorith­
men. Letztendlich sind jedoch Erfahrungen beim Entwurf und der Verbesserung der Algorithmen 
entscheiden fiir den Erfolg. Das nachfolgende Kapitel soil ein wenig von den Zusammenhangen 
und dem Fingerspitzengefiihl vermitteln, das hierfiir notwendig ist. 



2.7 Ubungsaufgaben 43 

2.7 Ubungsaufgaben 

Aufgabe 2.1: Definition eines Optimierungsproblems 

Formulieren Sie formal entsprechend Definition 2.1 die folgende Variante des Handlungsreisen-
denproblems: Alle Stadte sollen durch zwei Handlungsreisende besucht werden. Die Gesamt-
kosten sollen wieder minimal und die Rundreisen der beiden Akteure annahemd gleich lang 
sein. 

Aufgabe 2.2: Genotyp und Phanotyp 

Formulieren Sie eine Dekodierungsfimktion, die einen reellwertigen Genotyp auf den Raum 
aller Permutationen S^n abbildet. 

Aufgabe 2.3: Grundalgorithmus als generisches Muster 

Skizzieren Sie einen evolutionaren Algorithmus gemaB des allgemeinen Ablaufschemas EA-
SCHEMA (Algorithmus 2.6), der ebenfalls das Handlungsreisendenproblem lost, aber auf dem 
Genotyp aus Aufgabe 2.2 arbeitet. 

Aufgabe 2.4: Aufbau eines Individuums 

Beschreiben Sie schematisch anhand weniger Individuen den Datenfluss in einem evolutionaren 
Algorithmus und benutzen Sie dabei die Attribute eines Individuums in Bild 2.15. 

Aufgabe 2.5: NachvoUziehen eines Algorithmus 

Betrachten Sie das in Bild 2.1 gegebene Handlungsreisendenproblem sowie die Eltempopulati-
on mit den Individuen (1, 4, 2, 5, 6, 3) und (4, 5, 3, 2, 6, 1). Berechnen Sie zwei Genera-
tionen, indem Sie ein Individuum durch die KANTENREKOMBINATION auf beiden Eltem und 
ein Individuum durch die INVERTIERENDE-MUTATION auf einem der beiden Eltem erzeugen. 
Selektieren Sie aus den Eltem und den Kindem die beiden besten Individuen als neue Eltem. 

Aufgabe 2.6: Asymmetrisches Handlungsreisendenproblem 

In diesem Kapitel wurde beim Handlungsreisendenproblem immer davon ausgegangen, dass das 
Problem symmetrisch ist, d. h. dass fiir die Kosten einer Kante zwischen i und j die Gleichung 
7((/, y)) = 7((y, /)) gilt. Falls diese Gleichung nicht mehr erfiillt ist, welcher Mutationsoperator 
sollte dann bevorzugt werden? 

Aufgabe 2.7: Mehrere Populationen 

Uberlegen Sie, wie mehrere Populationen in einem evolutionaren Algorithmus zusammenwirken 
konnen. Skizzieren Sie einen Algorithmus, der auch Genfluss als Evolutionsfaktor nutzt. 

Aufgabe 2.8: Eignung evolutionarer Algorithmen 

Entscheiden Sie fiir die folgenden Probleme, ob sich der Einsatz eines evolutionaren Algorith­
mus lohnt. 
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• Planungsproblem: Zwei Produkte A und B konnen auf drei Maschinen gefertigt werden, 
wobei sie jeweils unterschiedliche Laufzeiten benotigen. Femer ist die Laufzeit der Ma­
schinen pro Tag beschrankt und jedes Produkt erzielt einen gegebenen Preis. Gesucht ist 
ein Verfahren, das bestimmt, wieviele Exemplare der Produkte auf den jeweiligen Maschi­
nen zu produzieren sind, damit die Firma einen maximalen Gewinn erzieh. 

• Hamiltonkreis: In einem Graphen ist ein Weg gesucht, der jeden Knoten nur einmal be-
sucht - im Gegensatz zum Handlungsreisendenproblem interessiert hier nur die reine Exis-
tenz eines Weges. 

• In einem Graphen ist der zweitkurzeste Weg zwischen zwei gegebenen Knoten gesucht. 

Aufgabe 2.9: Implementation des Beispielalgorithmuses 

Implementieren Sie den beschriebenen Algorithmus EA-HANDLUNGSREISENDENPROBLEM 
und wenden Sie ihn auf ein Problem mit 100 zufallig im zweidimensionalen Raum verteilten 
Stadten an. 

Aufgabe 2.10: Experimente mit dem asymmetrischen Problem 

Testen Sie das Programm aus Aufgabe 2.9 ebenfalls auf einem zufalligen asymmetrischen Pro­
blem. Wie andem sich die Ergebnisse, wenn Sie Ihre Erkenntnisse aus Aufgabe 2.6 berucksich-
tigen. 

2.8 Historische Anmerkungen 

Die ersten Ansatze einer Ubertragung evolutionarer Prinzipien auf die Losung von Optimierungs-
aufgaben reichen bereits bis in die 1950er Jahre zurlick. Friedman (1956) hat die natlirliche Se-
lektion nachempfunden, um Schaltkreise zu evolvieren. Sein »Selective Feedback Computer« 
hat so Schaltkreise entwickelt, die beispielsweise aus Sensordaten Aktionen errechneten. Die 
»Evolutionary Operation« von Box (1957) versuchte die Produktivitat von Fertigungsprozessen 
zu optimieren. Und die »Leaming Machine« von Friedberg (1958) bzw. Friedberg et al. (1959) 
erzeugte tabellarische einfache Programme, die aus Eingaben bestimmte Ausgaben errechnen 
sollten. Diese Ansatze wurden meist nicht weiterverfolgt. In den 1960er Jahren wurden dann die 
Grundsteine fiir die Algorithmen gelegt, die bis heute das Forschungsfeld bestimmen. Bremer-
mann (1962) stellt mit der Optimiemng von numerischen Problemen noch einen Vorlaufer dar, 
der schon wesentliche Grundziige heutiger evolutionarer Algorithmen aufweist und sich durch 
konkrete Analysen der Parametereinstellungen auszeichnet (Bremermann et al., 1966). Eine sehr 
schone tJbersicht dieser Pionierleistungen anhand von Originalarbeiten und ihre Einordnung aus 
heutiger Sicht kann man dem Buch »Evolutionary Computation: The Fossil Record« von Fogel 
(1998a) entnehmen. 

Ein erster Grundpfeiler des Gebiets, die Evolutionsstrategien (ES, engl. evolution strategies), 
wurde von Bienert, Rechenberg (1964, 1973, 1994) und Schwefel (1975, 1995) mit der experi-
mentellen Optimiemng eines Widerstandskorpers gelegt. Ein zweiter Gmndpfeiler des Gebiets, 
das evolutionare Programmieren (EP, engl. evolutionary programming), wurde von Lawrence J. 
Fogel et al. (1965) begriindet: Evolvierende endliche Automaten sollten Zeitreihen vorhersagen. 
Ende der 1980er Jahre emeuerte und wiederbelebte David B. Fogel (1988, 1999) das evolutio­
nare Programmieren und ersetzte die endlichen Automaten durch das besser geeignete Modell 
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Bild 2.17 Zeittafel der evolutionaren Algorithmen. Bei den wissenschaftlichen Konferenzen der Teilgebiete 
handelt es sich um die International Conference on Genetic Algorithms (ICGA), die Konferenz 
Parallel Problem Solving from Nature (PPSN) und die Konferenz Evolutionary Programming 
(EP). Die teilgebiettibergreifenden Konferenzen sind die Genetic and Evolutionary Computation 
Conference (GECCO) und der Congress on Evolutionary Computation (CEC). 

der ktinstlichen neuronalen Netze. Und schlieBlich entwickelte Holland (1969, 1973, 1992) das 
dritte Teilgebiet, die genetischen Algorithmen (GA, engl. genetic algorithms), durch eine ma-
thematische Analyse adaptiver, selbstanpassender Systeme. Die Popularitat der genetischen Al­
gorithmen als Optimierungswerkzeug geht jedoch wesentlich auf das Lehrbuch von Goldberg 
(1989) zuriick. Ein weiteres jtingeres Teilgebiet, das genetische Programmieren (GP, engl. gene­
tic programming), wurde im Kontext der genetischen Algorithmen von Koza (1989, 1992) be-
griindet. Bis Ende der 1980er Jahre existierten die drei groBen Teilgebiete unabhangig voneinan-
der, ohne Notiz von den anderen zu nehmen. Mit dem Workshop »Parallel Problem Solving from 
Nature (PPSN)« wurden 1990 die verschiedenen Forschungsgemeinschaften zusammengebracht. 
In der Folgezeit hat sich auch als englischer Oberbegriff evolutionary computation (EC, evolu­
tionares Berechnen) ftir das gesamte Forschungsgebiet und evolutionary algorithm (EA, evolu-
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tionarer Algorithmus) als Sammelbegriff ftir die Algorithmen herausgebildet. Ebenso wurden 
mit den Zeitschriften Evolutionary Computation und IEEE Transactions on Evolutionary Com­
putation gemeinsame Foren fiir den wissenschaftlichen Austausch geschaffen. Bin gemeinsames 
Nachschlagewerk wurde mit dem »Handbook of Evolutionary Computation« (Back et al., 1997) 
initiiert. In den vergangenen Jahren hat das Gebiet sehr viele neue Impulse erfahren. Dennoch 
blieben bis heute die verschiedenen Schulen der evolutionaren Algorithmen bestehen. Anstren-
gungen fiir eine gemeinsame integrierte Darstellung sowohl der zugrundeliegenden Theorien als 
auch der verschiedenen Algorithmen sind immer noch die Ausnahme. In der jiingeren Zeit hat 
sich eine ganze Zahl neuerer Techniken im Zusammenhang mit evolutionaren Algorithmen her­
ausgebildet, von denen hier nur beispielhaft Ameisenkolonien (Dorigo et al., 1996), Differential-
evolution (Price & Stom, 1997), Partikelschwarme (Kennedy & Eberhart, 1999) und kulturelle 
Algorithmen (Reynolds, 1999) genannt v^erden. Mehr Informationen zu der Entv^icklung von 
neueren Techniken linden sich in den historischen Anmerkungen zu Kapitel 4. 

Das im zweiten Teil dieses Kapitels betrachtete Problem des Handlungsreisenden ist ein NP-
hartes kombinatorisches Optimierungsproblem (vgl. Garey & Johnson, 1979), von dem ein ers-
ter Vorlaufer von dem Mathematiker Menger (1932) vorgestellt wurde. Eine der ersten Verof-
fentlichungen, die die Bezeichnung traveling salesman problem benutzte, stammt von Robinson 
(1949). Als Anwendungsproblem fiir evolutionare Algorithmen v^urde das Handlungsreisenden-
problem zunachst von Grefenstette et al. (1985), Fogel (1988) und Whitley et al. (1989) betrach-
tet. Die Anwendung von lokalen Suchalgorithmen datiert noch v^eiter zuriick (z. B. Lin & Ker-
nighan, 1973) und liefert meist bessere Resultate als die friihen Ergebnissen der evolutionaren 
Algorithmen. Die im einfiihrenden Beispiel dieses Kapitels benutzte INVERTIERENDE-MUTATION 
beruht v^esentlich auf dem Nachbarschaftsoperator des 2-opt-Algorithmus von Lin & Kemighan 
(1973). Die KANTENREKOMBINATION wurde von Whitley et al. (1989) eingefiihrt. Varianten der 
ORDNUNGSREKOMBINATION stammen von (Davis, 1985; Syswerda, 1991a). Letzterer hat auch 
die VERTAUSCHENDE-MUTATION betrachtet. Der kurz angerissene deterministische Approxima-
tionsalgorithmus mit polynomieller Laufzeit und der Garantie, eine um hochstens den Faktor 2 
zu lange Rundreise zu liefem, stammt von Rosenkrantz et al. (1977). 

Auf die altemativen Verfahren wird hier nur sehr knapp eingegangen. Der Simplex-Algorith­
mus stammt von Dantzig (1951a,b, 1963). Der Gradientenabstieg ist eines der altesten Optimie-
rungsverfahren und kann beispielsweise dem Lehrbuch von Hanke-Burgeois (2006) entnommen 
werden - ebenso wie die anderen numerischen Verfahren auch. Der Levenberg-Marquardt-Al-
gorithmus wurde von Levenberg (1944) und Marquardt (1963) publiziert. Backtracking bzw. 
Branch-and-Bound wurde fiir das Handlungsreisendenproblem von Eastman (1958) entwickelt. 
Dabei handelt es sich auch um eine der ersten Anwendungen des Branch-and-Bound-Prinzips. 
Der Algorithmus zur Losung ganzzahliger linearer Probleme stammt von Land & Doig (1960) 
bzw. Dakin (1965). Eine friihe Zusammenfassung der Entwicklungen haben Lawler & Wood 
(1966) ersteUt. 



Prinzipien evolutionarer Algorithmen 

Es werden die Grundprinzipien erldutert, wie evolutiondre Algorithmen eine erfolgreiche Opti-
mierung erreichen konnen. Diese Prinzipien dienen gleichzeitig als Leitkriterienfiir den Entwurf 
evolutionarer Algorithmen. Abgerundet wird dieses Kapitel durch Uberlegungen zu den Grenzen 
der Anwendbarkeit. 

Lernziele in diesem Kapitel 

c|> Prinzip des Hillclimbings ist verinnerlicht. 

cj> Mutation und Genotyp konnen hinsichtlich ihre Eignung fiir ein Problem untersucht 
werden. 

cj> Vor- und Nachteile des Populationskonzepts konnen am konkreten Beispiel abgewogen 
werden. 

cj> Die Suchdynamik der Selektion kann weitestgehend prognostiziert werden. 

c|> Verschiedene Arbeitsweisen der Rekombination konnen am Beispiel unterschieden 
werden. 

cj> Voraussetzungen fiir Schema-Wachstum sind aus der Theorie verstanden. 

c|> Notwendigkeit und Techniken der Selbstanpassung konnen erlautert werden. 

cj> Die Idee eines universellen Optimierers kann widerlegt werden. 
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3.1 Wechselspiel zwischen Variation und Selektion 

Als erstes Grundprinzip der evolutiondren Algorithmen wirdder Weeks el zwischen Variation bzw. 
Mutation und Selektion theoretisch und experimentell untersucht. Ein besonderer Schwerpunkt 
liegt aufder Analyse des Einflusses der Kodierungsfunktion. 

In dem Beispiel des Handlungsreisendenproblems in Kapitel 2 batten wir uns zunachst auf die 
Mutation als Hauptoperator konzentriert. Ausgehend von der Beobachtung von Mutationen als 
kleine Veranderungen in der Biologie war das Bestreben, den Operator so zu entwerfen, dass 
moglichst wenig am Losungskandidaten hinsichtlich der Bewertungsfunktion geandert wird. Die-
ser Grundsatz wird in seinem Zusammenspiel mit der Selektion genauer untersucht. 

3.1.1 Ein einfaches binares Beispiel 

Zur Einfuhrung untersuchen wir, wie ein moglichst minimaler Optimierungsalgorithmus sich auf 
einem sehr einfachen Optimierungsproblem, dem Abgleich mit einem vorgegebenen Bitmuster, 
verhalt. 

Definition 3.1 (Musterabgleich): 

Das Problem des Musterabgleichs ist durch ein vorgegebenes Bitmuster b ^W defi-
niert. Aus dem Suchraum aller Bitmuster Q = B^ wird dasjenige gesucht, welches die 
groBte tJbereinstimmung mit b hat, d. h. die Funktion 

/ : B^ ^ M 

( Z ? I , . . . , Z ) / ) H ^ ^ g{bi,bi) mitg{bi,bi) = I 

wird maximiert. 

falls bi = bi 

0 sonst 

Beispiel 3.1: 

Der bekannteste Vertreter der Musterabgleichprobleme ist das so genannte Einsenzahl-
problem, das man durch ^ = 1 1 1 . . . I G B ^ erhalt. Der Wert der Bewertungsfunktion 
entspricht dabei immer der Anzahl der Einsen im Losungskandidaten. 

Die kleinstmogliche Veranderung, die wir auf einer binaren Zeichenkette durchfiihren konnen, 
ist die Negation genau eines zufallig gewahlten Bits. Die entsprechende Mutation ist in Algorith-
mus 3.1 (EIN-BIT-BINARE-MUTATION) beschrieben. 

Algorithmus 3.1 

EIN-BIT-BINARE-MUTATION( Individuum V4 mit^.G G B^) 
1 B^A 
2 i ̂ - wahle zufallig gemaB U{{ 1 , . . . , /}) 
3 Bi^\-Ai 
4 return B 
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Algorithmus 3.2 
BINARES-HILLCLIMBING( Zielfunktion F ) 

1 t^O 
2 A{t) ^ erzeuge Losungskandidat 
3 bewerte A (t) durch F 
4 while Terminiemngsbedingung nicht erfiillt 
5 do^B ^ EIN-BIT-BINARE-MUTATION(^(/)) 
6 bewerte B durch F 
1 t^t + \ 
8 \iB.F'^A(t-\).F 
9 t h e n E ^ ( 0 ^ ^ 

10 Lclse \:A{t)^A{t-\) 
11 return ^(0 

Die Mutation wird nun in den einfachsten denkbaren Ablauf BINARES-HILLCLIMBING (Algo­
rithmus 3.2) eingebettet: Die Population besteht aus lediglich einem Individuum, aus dem durch 
die Mutation ein neues Individuum erzeugt wird. Der Bessere der beiden Losungskandidaten 
wird als neues Eltemindividuum in die nachste Generation iibemommen. Falls beide Individuen 
gleiche Gtite besitzen, ersetzt das Kindindividuum das Eltemindividuum. 

3.1.2 Die Giitelandschaft 

Im Wechselspiel zwischen Selektion und Mutation bestimmt die Mutation die moglichen Ver-
anderungen, die von einer zur nachsten Generation auftreten konnen, wahrend die Selektion 
bestimmte Schritte ausschlieBt oder akzeptiert. Gerade der erste Aspekt kann iiber die Notation 
des Nachbarschaftsgraphen gut verdeutlicht werden. 

Definition 3.2 (Nachbarschaftsgraph): 
Sei Mut^ : ^ x ^ ^ ^ x ^ ein Mutationsoperator und ^ = {1.}, dann ist der Nach­
barschaftsgraph zu Mut definiert als gerichteter Graph G= {V,E) mit Knotenmenge 
V — ^ und Kantenmenge 

E = {{A.G,B.G) G F X F I 3^ G 5 : Mufi{A)=B} 

Beispiel 3.2: 
Bild 3.1 zeigt einen Nachbarschaftsgraphen fur die EIN-BIT-BINARE-MUTATION auf 
einem Genotypen ^ = B^. Da die Mutation in unserem Beispiel symmetrisch ist, exis-
tiert fiir jede gerichtete Kante im Nachbarschaftsgraphen auch eine Riickkante. Daher 
wird in diesem und alien weiteren Bildem dieses Abschnitts der Graph ungerichtet 
dargestellt. 

Jede Kante entspricht einer Veranderung an einem Individuum durch den Mutationsoperator. 
Damit reprasentiert ein zufalliger Pfad im Graph den Ablauf, der durch mehrfaches, iteratives 
Anwenden der zufalligen Mutation entsteht. Im Englischen spricht man auch von einem sog. ran­
dom walk. Wird jetzt zusatzlich die Selektion nach jeder Mutation angewandt, bekommt der 
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Oil 111 

001 101 

000 

BildS.l 
Im Nachbarschaftsgraph fur die EIN-BIT-BINARE-MUTATION auf 
^ = B^ entspricht jede Kante einer moglichen Mutation, bei der ge-
nau ein Bit verandert wird. 

Bild3.2 
Fiir das Einsenzahlproblem mit drei Bits und 
die EIN-BIT-BINARE-MUTATION wird die iiber 
dem Nachbarschaftsgraphen liegende Giiteland-
schaft gezeigt. Dick ist ein moglicher Weg des 
binaren Hillclimbers vom Individuum 000 zum 
Maximum 111 eingezeichnet. 

Suchprozess seine Zielgerichtetheit, da keine Verschlechterung mehr moglich ist. Dies kann man 
visualisieren, indem man iiber der Struktur des Nachbarschaftsgraphen eine Giitelandschaft er-
richtet. 

Definition 3.3 (Giitelandschaft, Weg): 
Eine Giitelandschaft (G, F) wird durch einen Nachbarschaftsgraphen G= (W^E) und 
eine induzierte Bewertungsfunktion F : ^ ^ M definiert, die jedem Knoten seine Hohe 
in der Landschaft zuordnet. Femer sei w = wiW2 . . . Wŷ  G ̂ ^ ein Weg in der Land-
schaft, falls fiir alle / G { 1 , . . . , A: — 1} die Kante (w/, w/+i) G E existiert. 

Beispiel 3.3: 
Wie sich aus dem Nachbarschaftsgraphen aus Beispiel 3.2 durch das Einsenzahlproblem 
eine Giitelandschaft ergibt, ist in Bild 3.2 dargestellt. 

Bei einem Maximierungsproblem kann man nun die Optimierung des Algorithmus BINARES-

HiLLCLiMBiNG mit cincm Bergsteiger vergleichen, der im Gebirge immer nur nach oben steigt. 
Daher stammt auch die Bezeichnung Hillclimbing. Im Bild 3.2 ist beispielhaft ein Weg einge­
zeichnet, der immer nur dann zu einem neuen Punkt iibergeht, wenn dieser eine bessere Giite 
hat. 
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3.1.3 Modellierung als Markovprozess 

Da in jeder Generation ausschlieBlich das aktuelle Eltemindividuum benutzt wird, um durch 
Mutation und Selektion ein neues Eltemindividuum zu erzeugen, handelt es sich bei der Opti-
mierung aus mathematischer Sicht um einen Markovprozess. Dies ist genau dann der Fall, wenn 
der Zustand zur Zeit t nur vom Zustand zur Zeit t —\ abhangt und damit unabhangig von den 
Zustanden zur Zeit t — 2 und frtiher ist. Daher soil im Weiteren die Optimierung eines Muster-
abgleichs durch eine endliche Markovkette modelliert werden, um eine genauere Aussage iiber 
die Laufzeit der Optimierung zu erhalten. 

Definition 3.4 (Endliche Markovkette): 
Eine endliche Markovkette ist definiert als Tupel (Zustdnde^ Starts Ubergang), wobei 
Zustdnde = {0 , . . . , A:} die moglichen Zustande des Markovprozesses sind, das Tupel 
Start G [0, 1]̂ +̂  mit Y,o<i<k Starti = 1 die Wahrscheinlichkeit fiir jeden Zustand an-
gibt, dass sich der Prozess am Anfang in diesem Zustand befindet, und die Funktion 

Ubergang : {0 , . . . , ĉ} x {0 , . . . , A:} ^ [0, 1] 

bezeichnet die Wahrscheinlichkeit Ubergang{i^ J) von Zustand / aus direkt nach Zu­
stand J tiberzugehen, wobei llo<j<k Ubergang{i, j) = 1 fiir alle 0<i<k gilt. 

Beispiel 3.4: 
Wird BiNARES-HiLLCLiMBiNG (Algorithmus 3.2) fur die Losung des Musterabgleichs 
der Lange / eingesetzt, ist der Suchraum mit 2̂  unterschiedlichen Losungskandida-
ten zu groB, um so vollstandig als Zustandsmenge in ein Markovmodell eingehen zu 
konnen. Das bedeutet, dass mehrere Losungskandidaten geschickt in jeweils einem Zu­
stand der Markovkette zusammengefasst werden. Hierfiir bietet sich im betrachteten 
Problem die Information an, wieviele Bits bereits mit dem gesuchten Optimum iiber-
einstimmen (was dem Giitewert der Bewertungsfunktion entspricht). Als Zustands­
menge wahlen wir also Zustdnde = {0 , . . . , / } . Wenn wir im Zustand / sind, haben wir 
das Optimum gefunden. Da die EIN-BIT-BINARE-MUTATION (Algorithmus 3.1) immer 
nur ein Bit pro Mutation verandert, mtissen von einem Anfangszustand j aus nach-
einander alle Zustande 7 + 1 bis / durchlaufen werden. Wird durch eine Mutation ein 
bereits richtig gesetztes Bit verandert, wird das Individuum aufgrund des schlechteren 
Gtitewertes wieder verworfen und wir bleiben im selben Zustand. Wird ein bisher 
falsch gesetztes Bit invertiert, verbessert sich der Giitewert, das neue Individuum er-
setzt das bisherige Individuum in der Population und wir kommen in den nachsten 
Zustand der Markovkette. Die tJbergangswahrscheinlichkeiten zwischen den Zustan­
den ergeben sich direkt aus dem Mutationsoperator und dem aktuellen Zustand des 
Suchprozesses wie folgt: 

{ ^-f falls 0 < /• < / undy = / + 1 
I falls 0 <i <l und j = / 
0 sonst 

Die resultierende Markovkette ist in Bild 3.3 dargestellt. 



52 3 Prinzipien evolutionarer Algorithmen 

/ = 1 ^ 

Bild 3.3 Markovmodell ftir die Optimierung des Musterabgleichs durch BINARES-HILLCLIMBING. 

Satz3.1: 
BINARES-HILLCLIMBING erreicht das Optimum eines Musterabgleichs mit / Bits in 
^ ( / • log /) Schritten (als Erwartungswert). 

Beweis3.1: 
Betrachtet man das Markovmodell aus Beispiel 3.4, ergibt sich aus den tJbergangs-
wahrscheinlichkeiten die erwartete Zeit, bis ein beliebiger Zustand / verlassen wird, 
als 

1 

Ubergang{i,i-\-1) 

Damit ist die gesamte Zeit, bis das Optimum erreicht wird, in der Erwartung 

X -. ^=^ E 7 ^ = ^ E -</-log(/-^). 
tjtci Ubergang{i, / + 1) ^ | j ^ ^ / - / i<g_^ / k< 

Also durchsucht BINARES-HILLCLIMBING mit durchschnittlich / • log / Individuen nur einen Bruch-
teil des Suchraums mit insgesamt 2̂  Losungskandidaten. Damit ist das Hillclimbing deutlich ef-
fizienter als ein systematisches, aufzahlendes Durchsuchen des gesamten Suchraums (z. B. Back­
tracking). Ein ahnliches Ergebnis hatten wir bereits exemplarisch am Handlungsreisendenpro-
blem im Abschnitt 2.3 gesehen. Doch im Gegensatz dazu ist dies fiir den Musterabgleich und 
den binaren Hillclimber nun tatsachlich im Mittel bewiesen. Das bedeutet allerdings nicht, dass 
jede Optimierung so effizient ablauft. 

i Die obige Argumentation ist nattirlich eine Mogelpackung. Denn fiir das Problem des Musterabgleichs kann 

ein einfacher deterministischer Algorithmus angegeben werden, der linear die Bits beispielsweise von links 

nach rechts betrachtet und priift, ob eine Mutation zu einer Verbesserung flihrt. Damit hat man das korrekte 

Ergebnis bereits nach der Bewertung von genau / Losungskandidaten. 

3.1.4 Das Problem lokaler Optima 

Die bisherigen Betrachtungen sind allerdings in vielerlei Hinsicht nur ein Beispiel fiir den Ideal-
fall, wie das folgende Beispiel illustriert. 

Beispiel 3.5: 
Weist man die Gtitewerte den Losungskandidaten aus Bild 3.2 in einer anderen Reihen-
folge zu, erhalt man beispielsweise die Gtitelandschaften in Bild 3.4. Die zugehorigen 
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Bild 3.4 In den beiden zufallig erzeugten Gtitelandschaften iiber dem Nachbarschaftsgraphen mit drei Bits 
gibt es keinen Weg vom Individuum 000 zum Maximum, der von dem Optimiemngsalgorithmus 
BiNARES-HlLLCLlMBiNG beschritten werden kann. 

Optimierungsprobleme fallen nicht mehr in die Klasse des Musterabgleichs. Der bi-
nare Hillclimber kann nicht mehr von jedem Punkt aus das Maximum des Problems 
erreichen. 

Dieses Beispiel motiviert die folgende Definition, in der wir zwei spezielle Arten von Losungs-
kandidaten identifizieren, die die Optimierung erschweren oder gar verhindem konnen. 

Definition 3.5 (Lokales Optimum, Plateau): 
Sei Mut^ : ^ x ^ ^ ^ x ^ ein Mutationsoperator, G = (^, E) der zugehorige Nach-
barschaftsgraph und (G^F) eine Gtitelandschaft. Dann heiBt ein Losungskandidat A 
mi t^ .GG^e in 

• lokales Optimum, falls alle moglichen Mutanten B = Mut{A) nicht besser sind 
(F(^.G) ^F(^.G))undfuralle Wege wi(=^.G)w2 . . . Wy^mitF(wy )̂ )^F{A.G) 
gilt, dass mindestens einer der Losungskandidaten w/ (2 < / < k) eine schlechtere 
Gutehat:F(^.G))^F(w/). 

• Plateau-Punkt, falls alle mogUchen Mutanten B = Mut{A) (mit {A.G.B.G) G 
E) nicht besser sind (F{A.G) y F{B.G)) und wenigstens ein benachbarter Lo­
sungskandidat C (mit {A.G, C.G) e E) existiert, der gleiche Giite hat (F{A.G) = 
F{C.G)). 

Beispiel 3.6: 
In der linken Gtitelandschaft in Bild 3.4 sind die Punkte 000, 001 und Oil Plateau-
Punkte und lokale Optima, 110 ist gleichzeitig ein lokales und das globale Optimum. 
In der rechten Gtitelandschaft ist 110 ein Plateau-Punkt, 000 ein lokales Optimum und 
Oil das globale und lokale Optimum. 



54 3 Prinzipien evolutionarer Algorithmen 

Lokale Optima stellen fiir einen Hillclimbing-Algorithmus ein uniiberwindbares Hindemis dar. 
1st eine Optimierung in ein lokales (und nicht globales) Optimum geraten, kann das globale nicht 
mehr gefunden werden. Daher versagen reine Hillclimbing-Algorithmen auf vielen Problemen. 
Plateaus bestehend aus vielen Punkten konnen ebenfalls die Optimierung behindem, da keine 
Richtungsinformation zur Verfiigung steht, welche Mutationen auf einen besseren Losungskan-
didaten zusteuem. Die Suche auf einem Plateau entspricht einem random walk, bei dem ziellos 
beliebige Veranderungen am Individuum vorgenommen werden. 

3.1.5 Der Einfluss der Kodierung 

Die tJberlegungen des obigen Abschnitts werden im Weiteren auf ein allgemeineres Problem 
angewandt. Der binare Hillclimber soil benutzt werden, um ein ganzzahliges Problem 

/ : { 0 , . . . , 2 * - l } ^ K 

zu optimieren. Da der Suchraum Q = {0, . . . ,2^ — 1} ungleich dem Genotyp ^ = W ist, wird 
eine Dekodierungsfunktion benotigt. Es bietet sich an, / = A: zu wahlen und die bekannte stan-
dardbinare Kodierung zu verwenden. 

Definition 3.6 (Standardbinare Kodierung): 
Eine binare Zeichenkette A.G = A.G\ .. .A.Gj G B^ reprasentiert mit standardbindrer 
Kodierung die folgende ganze Zahl 

/-I 
deCstdbin{A-G) = ^A.Gi_j'2J. 

7=0 

Damit kann auch ein reellwertiges Intervall [ug, og] C M durch 

deCstdbin,ug,og{A'G) =m+ -i^f—r-'deCstdbin{A'G) 

mit der Genauigkeit ^ 3 ^ dargestellt werden. 

In der Praxis treten auch haufig Probleme auf, bei denen ein reellwertiger Vektor (xi , . . . ,x„) 
mit Xi G [ug, og] C R einen Losungskandidaten darstellt. Dieser lasst sich ebenfalls durch die 
Aneinanderreihung von n binaren Ketten der Lange / darstellen. Bei der Dekodierung ergibt sich 

Xi = deCstdbin,ug,og{A-Gi.l+\ • • 'A.Gi^i^iyi). 

Beispiel 3.7: 
Die ganzen Zahlen von 0 bis 7 konnen durch 3 Bits kodiert werden. Dies ist in Tabel-
le 3.1 dargestellt. Soil die Funktion 

^ . . f X + 3 falls X < 5 
^'^'^ = [l-x sonst 

maximiert werden, wird der enkodierte Wert als Argument in die Funktion eingesetzt. 
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Bitmuster 
dekodiert 
in Funktion / i 

000 
0 
3 

001 
1 
4 

010 
2 
5 

Oil 
3 
6 

100 
4 
7 

101 
5 
2 

110 
6 
1 

111 
7 
0 

Tabelle 3.1 Abbildung zwischen den binaren Zeichenketten mit 3 Bits und den Zahlen {0, . . . ,7} (bzw. der 
Funktion f\) durch die standardbinare Kodierung 

nur standardbinare Kodierung 
0 
000 

6 
110 

7 
111 1 

5 < 
101 

1̂  u u u 

^ A 

1 
p O O l 

is 
Oil 

eingesetzt in f\ 
3 
000 

2 1 
010 110 

100 

Bild3.5 Mit der standardbinaren Kodierung auf ^ = B^ (vgl. Tabelle 3.1) ergeben sich diese Giiteland-
schaften (in zweidimensionaler Darstellung mit textuell notierter Giite) far die ElN-BlT-BlNARE-
MUTATION. Links ist die Landschaft bzgl. der reinen Kodierung angegeben, rechts bzgl. der Be-
wertungsfunktion f\. 

Mit der EIN-BIT-BINARE-MUTATION (Algorithmus 3.1) ergeben sich die Giiteland-
schaften in Bild 3.5 ftir die reine Dekodierung und die Funktion f\. Werden nur die 
dekodierten Werte betrachtet, ist der Genotyp 111 das einzige lokale (und globale) 
Optimum. Von jedem anderen Genotyp kann ein Hillclimber das Optimum erreichen. 
Wird jedoch die Funktion f\ optimiert, existieren zwei lokale Optima: 100 mit dem 
Funktionswert 7 und Oil mit dem Funktionswert 6. Bei einem Hillclimbing fiihren 
Genotypen 010 und Oil immer zum echten lokalen Optimum 6, alle anderen Wer­
te (ausgenommen 100) konnen bei einer Optimierung in beiden lokalen Optima en-
den. 

Phanotypisch betrachtet besitzt die Funktion f\ im obigen Beispiel genau ein lokales Optimum 
und die Funktion ist monoton steigend bis zum Optimum bzw. monoton fallend ab dem Opti­
mum. Damit sollte sie sich grundsatzlich gut fiir ein Hillclimbing eignen. Stattdessen hat die 
standardbinare Kodierung ein suboptimales lokales Maximum eingefuhrt, das eine erfolgreiche 
Optimierung verhindem kann. Der maBgebliche Grund ist darin zu sehen, dass zwei phano­
typisch aufeinanderfolgende Werte (6 und 7) durch die Bitmuster Oil und 100 dargestellt wer-
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den, die nicht durch eine Anwendung des Mutationsoperators ineinander iiberfuhrt werden kon-
nen. 

Definition 3.7 (Hamming-Abstand): 
Zwei binare Zeichenketten^.G, B.G ^W besitzen den Hamming-Abstand 

dham{A.G,B.G)=#{ie No | 1 < / < / A A.Gjy^B.Gi}. 

Dieses MaB gibt die Anzahl der Einzelinformationen an, die zwingend verandert werden miissen, 
um die Binarketten ineinander zu uberftihren. Die Zeichenketten Oil und 100, besitzen den ma­
ximal moglichen Hamming-Abstand 3: Es miissten folglich alle Bits invertiert werden, um vom 
enkodierten Wert 6 zum Wert 7 zu gelangen. Sobald ein Hamming-Abstand groBer als 1 vorliegt, 
spricht man von einer Hamming-Klippe entsprechender GroBe. Zerschneiden groBe Hamming-
Klippen phanotypische Nachbarschaften, wird der Suchraum zerkliiftet und dadurch eine Opti-
mierung erschwert. 

Eine Moglichkeit, Hamming-Klippen zu vermeiden, besteht in der Wahl einer anderen Kodie-
rung, der so genannten Gray-Kodierung. Sie besitzt die Eigenschaft, dass alle benachbarten Wer-
te einer diskreten Suchraumdimension auf binare Zeichenketten mit dem Hamming-Abstand 1 
abgebildet werden. Die Gray-Kodierung lasst sich einfach durch Konversionsregeln auf die stan-
dardbinare Kodierung zurlickfiihren. 

Definition 3.8 (Gray-Kodierung): 
Die Gray-Kodierung wird mittels der standardbinaren Kodierung eingefuhrt. Eine stan-
dardbinar kodierte Zeichenkette b = b\ .. .bj eM^ lasst sich durch die folgende Kon-
version in eine Gray-kodierte Zeichenkette ^.G = ^.Gi .. .A.Gi iiberfiihren (1 <i<l) 

_ J bi falls / = 1 
" ' ~ \ bi-\®bi falls/> 1, 

wobei das exklusive Oder 0 der Addition modulo 2 entspricht. 
Ein Bit der standardbinar kodierten Zeichenkette lasst sich mit der folgenden Regel 
aus der Gray-kodierten Zeichenkette ^.G ableiten. 

i 
bi = ^A.Gj = A.Gi 0 • • • 0^.G,. 

7=1 

Mit dieser Transformation ergibt sich als Dekodierungsregel fiir eine Gray-kodierte 
Zeichenkette ^.G 

deCgray{A.G) = deCstdbin 0^-<^7 • • • 0^-<^7 • 
\y=i 7=1 / 

Mehrere Zahlen konnen emeut durch Konkatenation aneinander gefiigt werden. 
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Gray-kod. Bitmuster 
stdbin. Bitmuster 
dekodiert 
in Funktion f\ 

000 
000 

0 
3 

001 
001 

1 
4 

Oil 
010 
2 
5 

010 
Oil 

3 
6 

110 
100 
4 
7 

111 
101 
5 
2 

101 
110 
6 
1 

100 
111 
7 
0 

Tabelle 3.2 Abbildung zwischen den binaren Zeichenketten mit 3 Bits und den Zahlen {0,... ,7} (bzw. der 
Funktion /i) durch die Gray-Kodierung 

nur Gray-Kodieruni 
0 
000 

eingesetzt in f\ 
3 
000 

Bild 3.6 Mit der Gray-Kodierung auf ^ = B^ (vgl. Tabelle 3.2) ergeben sich diese Giitelandschaften (in 
zweidimensionaler Darstellung mit textuell notierter Giite) fur die EiN-BlT-BlNARE-MUTATlON. 
Links ist die Landschaft bzgl. der reinen Kodierung angegeben, rechts bzgl. der Bewertungsfunk-
tion/i. 

Beispiel 3.8: 
Wird die standardbinare Kodierung aus Beispiel 3.7 durch die Gray-Kodierung ersetzt, 
erhalt man die Kodierung in Tabelle 3.2 und die Nachbarschaftsgraphen in Bild 3.6. 

Zusammenfassend halten wir fest: Lokale Optima hangen ausschlieBlich von der gewahlten 
Darstellung (einschlieBlich der Dekodierungsfunktion) und dem Mutationsoperator ab. Die An-
zahl der so eingefiihrten lokalen Optima kann als eine MaBzahl fiir die Angepasstheit eines 
Operators an das Problem gesehen werden. Je weniger lokale Optima von einem Operator und 
der Representation induziert werden, desto bessere Ergebnisse konnen bei der Suche erwar-
tet werden. Insbesondere bei einem lokalen Suchalgorithmus, der lediglich durch einen Muta­
tions- und einen Selektionsoperator bestimmt wird, ist die Anzahl der lokalen Optima entschei-
dend. 

Dennoch ist hier nochmals deutlich zu machen, dass bei der Gray-Kodierung lediglich die 
Nachbarschaften im phanotypischen Raum in die Nachbarschaften im genotypischen Raum ein-
gebettet werden. Sie garantieren nicht, dass jede kleine Veranderung im genotypischen Raum 
auch einer kleinen Veranderung im phanotypischen Raum entspricht. Dies gilt umso starker. 
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Bild 3.7 Phanotypische Nachbarschaft der beiden binaren Kodiemngen in einer Matrixdarstellung: In je-
der Zeile ist fur einen Losungskandidaten des Suchraums die Nachbarschaft dargestellt. Dabei 
entspricht o dem Ausgangspunkt und • sind alle moglichen Kindindividuen. 

wenn die Anzahl der kodierenden Bits / erhoht wird. Dann verschwindet der Vorteil der Gray-
Kodierung gegeniiber der standardbinaren Kodiemng schnell. 

Bild 3.7 vergleicht die Nachbarschaften beider Kodiemngen mit / = 4 anhand zweier Matri-
zen. Bei der standardbinaren Kodiemng erkennt man eine groBe Hamming-Klippe an Zeile 7/8 
und Spalte 7/8. Kleinere Hamming-Klippen kommen in den kleineren Quadraten entlang der 
Diagonale ebenfalls vor. Ftir die Gray-Kodiemng sieht man die Einbettung der phanotypischen 
Nachbarschaft durch die erste obere und die erste untere Nebendiagonale. Weiterhin erkennt 
man, dass die standardbinare Kodiemng einem festen an jedem Punkt im Suchraum gleichen 
Schema bzgl. der Schrittweiten folgt, welches in der Gray-Kodiemng fiir die Einbettung phano-
typischer Nachbam geopfert wurde: So gibt es Punkte (z. B. die Zeile 6), an denen die maximale 
Entfemung 5 betragt, wahrend andere Puntke (z. B. die Zeile 0) eine maximale Entfemung von 
15 aufweisen. Neben dieser UnregelmaBigkeit als moglichem Problem der Gray-Kodiemng wur­
de die folgende negative Eigenschaft der standardbinaren Kodiemng durch die Gray-Kodiemng 
nicht behoben: Es gibt immer nur eine Mutation, die in die jeweils andere Halfte des darstellba-
ren Wertebereichs flihrt. Auch dies konnte fur viele Optimiemngsprobleme mit Schwierigkeiten 
verbunden sein. 

^^ Letztendlich sind die beiden vorgestellten (und meist verwendeten) Kodiemngen nur zwei Beispiele, die 
II sich allerdings durch eflfiziente Berechnungen auszeichnen. Insgesamt gibt es (2̂ )! mogliche Kodiemngen 

mit / Bits ftir die Zahlen {0,... ,2̂  - 1}. 

3.1.6 RoUen der Mutation 

Mutationsoperatoren konnen mit unterschiedlichen Zielsetzungen in evolutionaren Algorithmen 
eingesetzt werden. In der bisherigen Diskussion in diesem Abschnitt hat die Mutation die Rolle 
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Algorithmus 3.3 (alle Bits werden mit einer Wahrscheinlichkeit invertiert) 
BINARE-MUTATION( Individuumv4 mit^.G e M^) 
1 B^A 
2 for each / G {1 , . . . , /} 
3 do '~ w ^ wahle zufallig gemaB ^([0, 1)) 
4 ifu<pm dMutationswahrscheinlichkeitD 
5 ^thenLB.Gi^l-A.Gi 
6 return B 

des wichtigsten (well einzigen) Suchoperators. Unter dieser Pramisse ubemimmt sie zwei Funk-
tionen: einerseits die Feinabstimmung (engl. exploitation), um ausgehend von einem guten Lo-
sungskandidaten das Optimum zu finden, andererseits das stichprobenartige Erforschen (engl. 
exploration) weiter entfemter Gebiete des Suchraums, um das Einzugsgebiet eines potentiell 
besseren lokalen Optimums zu identifizieren. Fiir die Feinabstimmung ist wie oben ausfiihrlich 
diskutiert die Einbettung der phanotypischen Nachbarschaft von groBer Bedeutung. Insgesamt 
sollten erforschende und feinabstimmende Mutationen in einem guten Verhaltnis zueinander ste-
hen - dieser Aspekt wird nachfolgend noch etwas genauer beleuchtet. In anderen evolutionaren 
Algorithmen iibernimmt die Mutation nur eine untergeordnete Rolle, da es einen anderen pri-
maren Suchoperator gibt. Dann kann der Aspekt der Feinabstimmung nahezu unberucksichtigt 
bleiben und die erforschende Funktion der Mutation wird als Hintergrundoperator benutzt, um 
die Diversitat in der Population zu erhalten. 

± Inwieweit die Mutation als Hintergrundoperator tatsachlich nur dem Diversitatserhalt dient, ist fraglich. 

Einige empirische Ergebnisse stiitzen die These, dass auch hier das Wechselspiel zwischen Selektion und 
Mutation einen entscheidenden Einfluss hat. 

Beispiel 3.9: 
Bei der EIN-BIT-BINARE-MUTATION (Algorithmus 3.1) mit standardbinarer Kodierung 
erkennt man in Bild 3.7 (links) deutlich die beiden Aspekte der Erforschung und 
der Feinabstimmung an jedem Punkt, d. h. in jeder Zeile. Die Schrittweite 8 ist er-
forschend, wahrend die Schrittweite 1 der Feinabstimmung dient. 

Wie stark ein Mutationsoperator einen Losungskandidaten verandert, wird anhand der Optimie-
rungsfunktion 

^ , , ( X fallsxG [0, 101 CM 
I under, sonst 

untersucht. Es wird eine Mutation, die direkt auf der reellwertigen Darstellung arbeitet, mit einer 
Mutation auf einer binaren Kodierung verglichen. 

Als Mutationsoperator wird in dieser Untersuchung die iiblicherweise benutzte Variante Bi-
NARE-MUTATION (Algorithmus 3.3) betrachtet, bei der statt genau eines Bits jedes Bit mit der 
Wahrscheinlichkeit p^ (der sog. Mutationsrate) verandert wird. Wir benutzen den Wert Pm = j , 
der von der Individuenlange / abhangt. Dieser hat auch in theoretischen Untersuchungen fiir das 
Einsenzahlproblem und einen reinen Hillclimbing-Algorithmus die minimale Anzahl der Schrit-
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Algorithmus 3.4 (mit fester Schrittweite O") 

GAUSS-MUTATION( Individuumv4 mit A.G G M^) 
1 for each i e {1 , . . . , / } 
2 do ̂  Uj ^- wahle zufallig gemaB ^ ( 0 , c (|StandardabweichungD) 
3 Bj ^- Aj + Ui 
4 Bi ̂  max{5/, ug^ (|untere WertebereichsgrenzeD} 
5 ^Bi ^ mm{Bi, ogj (|obere WertebereichsgrenzeD} 
6 return B 

G G 

Bild 3.8 Dichtefunktion der Normalverteilung (gauBsche Verteilung) 

te zum Optimum ergeben. Der Definitionsbereich von /2 wird mit / = 32 Bits enkodiert. Wir 
benutzen sowohl die standardbinare Kodierung als auch den Gray-Kode. 

Als Alternative betrachten wir mit der GAUSS-MUTATION (Algorithmus 3.4) einen Operator, 
der nicht auf einer binaren Kodierung, sondem direkt auf den reellwertigen Werten arbeitet. Die 
GAUSS-MUTATION addiert zu jeder Komponente des bisherigen Losungskandidaten einen normal-
bzw. gauBverteilten Zufallswert ŵ  ^ ./K(0, a ) . Die Dichtefunktion 

(/)(X): 
1 

•exp 
1 

2 a 2 

mit der Varianz G^ ist fiir den eindimensionalen Fall in Bild 3.8 dargestellt. 

Beispiel 3.10: 
Fiir zwei unterschiedliche Eltemindividuen wurden die drei Mutationsoperatoren Je­
wells 10000 Mai angewandt, um ein Bild davon zu bekommen, wie sich die Opti-
mierung im reellwertigen Raum fortbewegen kann. In dieser Untersuchung wird die 
GAUSS-MUTATION mit ( 7 = 1 benutzt. Das Ergebnis sind Haufigkeitsverteilungen, die 
in Bild 3.9 dargestellt sind. 

Man erkennt deutlich die unterschiedliche Charakteristik der binaren und der reell­
wertigen Mutation. Die GAUSS-MUTATION eignet sich sehr gut fiir die Feinabstimmung 
mit einem kleinen Wert G. Stattdessen kann auch mit einem groBen Wert G eine sehr 
breite Erforschung erreicht werden. Die BINARE-MUTATION hat mehrere iiber den ge-
samten Wertebereich verteilte Schwerpunkte, die sich an den Veranderungen durch die 
hoherwertigen Bits orientieren. Das Eltemindividuum mit dem Wert 4,99 wurde genau 
an einer Hamming-Klippe platziert. Daher weist die Haufigkeitsverteilung mit der stan-
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Bild 3.9 Vergleich der drei Mutationsoperatoren hinsichtlich der Haufigkeit der einzelnen Mutationen. Das 
Eltemindividuum hat den Wert 1,0 (linke Spalte) bzw. 4,99 (rechte Spalte) und ist durch eine ge-
strichelte Linie gekennzeichnet. Es wurden jeweils 10000 Mutationen mit jedem Operator durch-
gefiihrt. 

dardbinaren Kodierung dort einen Bruch auf. Die Gray-Kodierung schafft es zwar, die 
phanotypischen Nachbam einzubinden, doch auch hier wird die grundsatzliche Ten-
denz zu einer Halfte des Suchraums deutlich. Damit bestatigt dieses Experiment die 
theoretischen tJberlegungen. 

Statt einer klaren Empfehlung fiir einen der Mutationsoperatoren sollen die unterschiedlichen 
Arbeitsweisen nochmals betont werden. Die reellwertige Mutation orientiert sich mit ihrer kla­
ren Struktur direkt an der phanotypischen Nachbarschaft und erscheint daher als weitaus besser 
angepasster Operator. Die binaren Mutationen legen eine andersgeartete Suchstruktur tiber den 
Suchraum. Bei vielen Problemen greifen das Raster der binaren Mutation und die Form des Such­
raums so gut ineinander, dass sie in ihrer Performanz der phanotypischen Mutation durchaus 
(mindestens) ebenbiirtig ist. Ebenso kann die binare Mutation durch weit gestreute Stichproben 
oft schneller eine interessante Region im Suchraum detektieren. 
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3.2 Populationskonzept 

Die Moglichkeiten undneuen Schwierigkeiten bei derNutzung von Populationen sinddas Thema 
dieses Abschnitts. Diesfiihrt insbesondere aufdie unterschiedlichen Techniken zur Selektion von 
Individuen. 

Im Abschnitt 3.1 wurden bereits die moglichen Probleme eines Hillclimbings (als Reinform des 
Wechselspiels zwischen Mutation und Selektion) andiskutiert. Dort diskutierten wir bereits die 
groBe Gefahr, in lokalen Optima gefangen zu werden. 

Daher fuhren wir in diesem Abschnitt das Populationskonzept ein, das den Schwierigkeiten ei­
nes reinen Hillclimbers gegenwirken soil. Durch die gleichzeitige Betrachtung mehrerer Losungs-
kandidaten kann parallel an verschiedenen Stellen des Suchraums das Optimierungsproblem an-
gegangen werden. Dadurch konnen sich auch schlechtere Individuen langer in der Population 
halten, was die breite Erforschung des Suchraums wesentlich verbessem sollte. Letztendlich hat 
man die Hoffnung, dass die lokalen Optima wahrend des Optimierungsprozesses an Bedeutung 
verlieren. 

/^ Daruberhinaus eroffnet der Populationsgedanke naturlich auch die Betrachtung der Rekombination als wei-
II teren Suchoperator, der eine Verknupfiing und Kombination verschiedener Individuen einfuhrt. Dieses Kon-

zept wird in Abschnitt 3.3 erortert. 

3.2.1 Die Vielfalt in einer Population 

Die reine Anwesenheit mehrerer Individuen bedeutet jedoch noch nicht, dass damit auch tatsach-
lich unterschiedliche Telle des Suchraums erkundet werden. Daher ist es fiir die weitere Diskus-
sion der Konsequenzen aus dem Populationskonzept sinnvoll, einen Begriff dafur einzufuhren, 
wie stark sich die Individuen der Population im Suchraum verteilen. 

Definition 3.9 (Diversitat): 
Sei die Population P = (^( ' ) ) I<K^ zum Genotyp W = G^ gegeben - d.h. A^'\G G ^ . 
Dann werden die folgenden Mafie fUr die Diversitat definiert. Der mittlere Abstand 
der Individuen in der Population betragt 

^/Ver^Abstand,j(^) = / , , • S J ( ^ » . G , ^ W .G), 
l<zj<^ 

wobei J : ^ X ^ ^ R ein beliebiges AbstandsmaB ist. Die Shannon-Entropie als posi-
tionsorientierte Diversitat fiir ^ = W ist definiert als 

1 ^ 
^/ver^Entropie(i^) = T * S ( " ^^^ ^) * log(^o(i^, k)) - #i (P, k) • log(#i (P, k))), 

s 

und#o{P,k) = ^ ~ ~ ' -. 
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Die teilstringorientierte Diversitdt ist definiert als 

Diversj^iUvmg{P) = ^ = ~ UT -u Aii)\ ^ 

wobei Teil{A) = [j {A.Gi.. .A.Gj). 

Je groBer die gemessene Diversitat ist, desto groBer ist die Vielfalt in der Population. 

Beispiel3.11: 
Ftir die Population Pi = (0001, 0011, 1111) gilt: 

Z)/veraAbstand,j(^l) = " ' (2 • 1 + 2 • 2 + 2 • 3) = 2,0 (mit d = dham) 

/̂Ver̂ Entropie(î i) = ^ - ( ( - l - l o g l - 0 ) + 3 - ( - ^ 4 o g ^ - ^ - l o g ^ ^ ^ 0,4774 

3-12 
DiversjQiX^xvmg{P\) = ir—^--. ^1,895 

/ + 6+4 
dare/7(0001) = {0, 1, 00, 01, 000, 001, 0001} 

r^/7(ooii) = {o, 1, 00, 01, 11, 001, oil, 0011} 
re/7(iiii) = {i, 11, 111, n i l } . 

Ftir die Population P2 = (0011, 0110, 1100) gilt: 

Z)/veraAbstand,j(^2) = - ' (8 • 2) ^ 2 ,667 (mit d = dham) 

DiversEntvopUPi) = 4 * (^ * ( " 3 * l^g 3 " 3 " l^g 3 ) ) ^ ^'^^^ ^ 

3-13 
Z)/vgr^Teilstring(^2) = 0 , 0 , 0 ^ 1^625 

dare/7(0011) = {0, 1, 00, 01, 11, 001, Oil, 0011} 
r^/7(oiio) = {o, 1, 01, 11, 10, on , no, 0110} 
re/7(iioo) = {0, 1, 11, 10, 00, no, 100, iioo}. 

Wahrend die Population P2 eine hohere Diversitat hinsichtlich des Hamming-Abstands 
und der bitweise berechneten Entropie aufweist, ist Pi diverser beziiglich der Teil-
strings, da groBere Unterschiede zwischen den Teilstrings der einzelnen Individuen 
bestehen. 

Aus obigem Beispiel konnen wir schlussfolgem, dass die Diversitat keinesfalls eindeutig ist. 
Vielmehr gilt wie auch schon bei den Mutationsoperatoren, dass das betrachtete DiversitatsmaB 
passend zum Optimierungsproblem gewahlt werden muss. So konnte etwa die Entropie ftir eine 
Instanz des Musterabgleichs passend sein, da die einzelnen Bits im Genotyp vollig unabhangig 
voneinander sind. Aber fiir das Handlungsreisendenproblem ware etwa die teilstringorientierte 
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Diversitat interessant, da damit einzelne Abschnitte der Rundtouren unabhangig von ihrer Positi­
on beschrieben werden. 

Bei der Vielfalt in einer Population interessiert uns insbesondere der Extremfall, dass namlich 
die Population ihre moglichen Vorteile eingebtlBt hat. 

Definition 3.10 (Konvergierte Population): 
Eine PopulationP = {A^^^)\<i<s heiBt konvergiert, wenn alle Individuen identisch sind, 
d. h. fiir alle 1 < /,7 < ^ gilt ̂ (').G = A^J\G. 

± Bezuglich evolutionarer Algorithmen wird der Begriff der Konvergenz mit zwei unterschiedlichen Bedeu-

tungen gebraucht. Einerseits kann wie bei der mathematischen Definition die Annahemng der Gtitewerte 

an ein lokales oder globales Optimum gemeint sein - dann aber immer in endlicher Zeit. Andererseits kann 

damit der Verlust der Vielfalt in der Population bezeichnet werden. 

Beispiel 3.12: 
Die Population P3 = ( l l l l , 1111, 1111) ist konvergiert. Wie man leicht sieht, errei-
chen auch die DiversitatsmaBe ihre minimalen Werte bei dieser Situation. 

£)/VeraAbstand,j(^3) = 0,0 (mit d = dham) 

DiversEntvopUPs) = - • (4 • ( -1 • log 1 - 0)) = 0,0 

/̂ver̂ Teiistring(/̂ 3) = ^ ^ ^ ^ ^ = 1,0, da 7^/7(1111) = {1, 11, 111, n i l } . 

Eine konvergierte Population macht ihre oben diskutierten Vorteile zunichte und ist ein Anzei-
chen dafiir, dass die Optimierung beendet ist. Falls das globale Optimum nicht erreicht wurde, 
spricht man auch von einer vorzeitigen Konvergenz. 

3.2.2 Ein vergleichendes Experiment 

Zunachst steht hier die Frage im Mittelpunkt, inwieweit die Population in der Lage ist, das 
Problem der lokalen Optima zu verkleinem. Zu diesem Zweck betrachten wir BINARES-HILL-

CLiMBiNG (Algorithmus 3.2) sowie eine populationsbasierte Variante POPULATIONSBASIERTES-

BINARES-HILLCLIMBING (Algorithmus 3.5), bei der fiir jedes Eltemindividuum in der Population 
exakt ein Kindindividuum durch die Mutation erzeugt wird. Die anschlieBende Umweltselektion 
BESTEN-SELEKTION (Algorithmus 3.6) reduziert die Population auf die bessere Halfte. 

Als Optimierungsgegenstand wahlen wir die Rastrigin-Funktion, eine Benchmark-Funktion 
die neben weiteren Funktionen haufig zum Vergleich von Algorithmen herangezogen wird, 

n 

f{X) = 10-^ + ^ ( ^ 2 - 10-cos(2.:^-^-)). 
i=\ 

mit n = 2 und —5,12<Xi,X2 <5,12. Bild 3.10 zeigt die zu minimierende Funktion. Deutlich 
ist eine groBe Anzahl lokaler Minima zu erkennen. Die beiden Suchraumvariablen werden im 
Genotyp jeweils mit 16 Bits standardbinar kodiert. 
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Algorithmus 3.5 

POPULATIONSBASIERTES-BINARES-HILLCLIMBING( Zielfunktion F ) 
1 t^O 
2 P{t) ^- erzeuge Population mit jx ^Populationsgr6Be[) Individuen 
3 bewerteP(;) durchF 
4 while Terminierungsbedingung nicht erfiillt 
5 Ao^P'^P{t) 
6 for each / e { 1 , . . . , /i} 
7 do r_B ^ EIN-BIT-BINARE-MUTATION(^( ' )) wobei P{t) = ( ^ (* ) ) I<K^ 
8 bewerte B durch F 
9 L P ' ^ P ' O ( B ) 

10 t ^ t + l 
11 L P ( ; ) ^ Selektion ausP' mittels BESTEN-SELEKTION 
12 return bestes Individuum aus P{t) 

Algorithmus 3.6 (Auswahl der Besten) 

) BESTEN-SELEKTION( Giitewerte {A.F^''>)i=i 
1 / ^ 0 
2 for j ^ 1,... ,s ^Anzahl der zu wahlenden Individuen[) 
3 do ^ indexj ^- derjenige Index aus { 1 , . . . , r } \ / m i t dem besten Giitewert 
4 L/ ^ / o {indexj) 
5 return / 

Bild 3.10 Rastrigin-Funktion fiir Dimension « = 2 

BiNARES-HlLLCLIMBING u n d POPULATIONSBASIERTES-BINARES-HlLLCLIMBING W U r d c n j e w e i l s 

100 mal auf die Rastrigin-Funktion angesetzt. Ersterer wurde nach 10 000 Iteration abgebrochen 
und zweiterer nach 200 Generationen mit einer PopulationsgroBe von 50 Individuen. So haben 
beide Algorithmen die gleiche Anzahl neuer Individuen bewertet. BINARES-HILLCLIMBING hat in 
63% der Experimente das globale Optimum / ( (0, 0) ) = 0 (im Rahmen der verfugbaren Genau-
igkeit) gefunden. POPULATIONSBASIERTES-BINARES-HILLCLIMBING hat in 76% der Experimente 
das Optimum gefunden. Bei Abbruch des Algorithmus hat die durchschnittliche Gtite tiber alle 
Experimente 0,479 beim Hillclimber und 0,297 bei dem populationsbasierten Hillclimber betra-
gen. 
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Bild 3.11 Der Giiteverlauf und die Diversitat werden fiir eine Optimierung mit dem populationsbasierten 
binaren Hillclimber aufgezeigt. 

± Wer schon vorgeblattert hat auf S. 228, wird vermutlich mit dieser Auswertung nicht ganz glticklich sein. Ein 
genauerer Hypothesentest liefert das Ergebnis, dass der obige Unterschied mit einer Wahrscheinlichkeit von 
etwa 0,128 zufallig ist. Dies konnen wir als ein schwaches Indiz dafiir werten, dass der Populationsansatz 
tatsachlich fiir die besseren Werte verantwortlich ist. 

Wenn wir eine einzelne Optimierung durch POPULATIONSBASIERTES-BINARES-HILLCLIMBING her-
ausgreifen, kann der Optimierungsverlauf in Bild 3.11 anhand der Giite und der abstandsbasier-
ten Diversitat nachvollzogen werden. Wie man leicht erkennt, erreicht der Ansatz bereits um die 
35. Generation den finalen Giitewert und etwa 10 Generationen spater ist die Population konver-
giert. Auch nach der Konvergenz erzeugt die Mutation einen gewissen Pegel an Grunddiversitat, 
welche jedoch auch bei den meisten fruhzeitig konvergierten Optimierungen nicht mehr zu einer 
Verbesserung fiihrt, wenn alle Individuen an einem lokalen Optimum platziert sind. 

3.2.3 Folgerungen fiir die Selelition 

Aus der gleichzeitigen Betrachtung mehrerer Individuen ergeben sich verschiedene Anforderun-
gen an die Selektionsoperatoren. Bei einer Eltemselektion sollten alle Individuen eine Chance 
haben, ausgewahlt zu werden, da andemfalls der Aufwand fiir die Verwaltung einer groBen Po­
pulation nicht gerechtfertigt ist. Grundsatzlich gibt es zwei gangige Moglichkeiten, dies zu ge-
wahrleisten, namlich 

• indem jedes Individuum Elter fur genau m> 0 Kinder wird oder 

• indem jedes Individuum mit einer individuellen Wahrscheinlichkeit als Elter gewahlt wird. 
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Im ersten Fall entsteht kein Selektionsdruck, da alle Individuen gleich behandelt werden. Im zwei-
ten Fall kann durch die Vergabe der Auswahlwahrscheinlichkeiten der Selektion eine Richtung 
gegeben werden. 

Die Umweltselektion hat die Aufgabe, aus den vorhandenen Individuen die Population der 
nachsten Eltemindividuen zusammenzustellen. Dabei soil sowohl eine moglichst groBe Vielfalt 
erhalten bleiben, aber auch die tatsachlich besseren Individuen aufgenommen werden. Diese bei-
den Ziele konnen gegensatzlich wirken, sodass in einigen Fallen eine reine Auswahl der besten 
Individuen wie beim Hillclimbing dem Erhalt der Vielfalt nicht gerecht wird. Dies gilt insbe-
sondere dann, wenn durch die Mutation und die Rekombination auch unveranderte Individuen 
entstehen, was zu einer raschen Konvergenz der Population fiihren kann. Auch hier gibt es zwei 
Ansatze, mit diesen Anforderungen umzugehen: 

• die reine Auswahl der besten Individuen und 
• die zufallige Auswahl, wobei bessere Individuen eine hohere Wahrscheinlichkeit haben und 

jedes Individuum nur einmal gewahlt werden kann. 

Zusatzlich bestehen bei der Umweltpopulation die beiden Moglichkeiten, die neue Population 
ausschlieBlich aus den erzeugten Kindindividuen zu wahlen (falls wenigstens soviele Kinder wie 
Eltem erzeugt wurden) oder zusatzlich auch die bisherigen Eltemindividuen heranzuziehen. Den 
zweiten Fall hatten wir in unseren bisherigen Beispielalgorithmen benutzt. 

In der obigen Auflistung werden einige Eigenschaften von Selektionsoperatoren implizit an-
gesprochen, die nun formal gefasst werden. 

Definition 3.11 (Eigenschaften der Selektion): 
Ein durch die Indexselektion 

definierter Selektionsoperator heiBt 

• deterministisch, falls Vx G R^ V^, ^' G S : IS^ (x) = IS^' (x), 
• probabilistisch genau dann, wenn er nicht deterministisch ist, 
• duplikatfreU falls Vx G M̂  V(̂  G S VI < / < 7 < ^ : {IS^ (x))i + {IS^ (x))y. 

Gerade die Duplikatfreiheit verlangt man haufig von Operatoren der Umweltselektion, um die 
Diversitat moglichst hoch zu halten. Bei der Eltemselektion ist dies nicht so bedeutend, da die 
mehrfach gewahlten Individuen direkt in die Erzeugung neuer Individuen eingehen. Die beiden 
anderen Eigenschaften werden in den weiteren Abschnitten diskutiert. 

3.2.4 Varianten der Umweltselektion 

Bisher haben Sie lediglich Algorithmen in diesem Buch kennengelemt, die im Rahmen der Um­
weltselektion die besten Losungskandidaten aus den Eltem- und den Kindindividuen gewahlt 
haben. Obwohl dies im Regelfall zu einem sehr schnellen Voranschreiten der Optimiemng fiihrt, 
ist die extrem zielorientierte Herangehensweise nicht immer problemfrei. Wie man beispielswei-
se in Bild 3.11 sieht, ist die Population sehr friih konvergiert und es wird bis zum Ende der 
Optimiemng immer dasselbe Eltemindividuum benutzt. Wtirde es sich um ein echtes lokales 
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Optimum handeln, ware keine weitere Verbesserung mehr moglich. Daher gibt es verschiedene 
Abstufungen der Umweltselektion, die in der folgenden Definiton eingefiihrt werden. 

Definition 3.12 (Uberlappende Populationen): 
Sei eine Umweltselektion S^ durch die Indexselektion IS^ : W -^ { 1 , . . . , r}^ de-
finiert. Femer enthalte P' = (^^''')I<Z<A die Kindindividuen, die aus den Eltemindivi-
duen inP= (^W) i<z</i entstanden sind. Dann heiBt die Umweltselektion 

• uberlappend, falls S^ auf PoP' angewandt wird, und IS^ mit r = jU + A und 
s = 11 dergestalt ist, dass es wenigstens ein Tupel mit Giitewerten x G M̂  und ein 
(̂  G 5 gibt, so dass IS^ (x) einen Wert aus { 1 , . . . , jU} enthalt. 

• idberlappend mit einem Uberlappungsgrad lap G { l , . . . , / i — 1}, falls zusatz-
lich fiir alle x G R'̂  und alle ^ G S gilt, dass genau lap Werte aus der Menge 
{ 1 , . . . ,/i} 'mIS^{x) sind. 

• elitdr, falls immer ein Wert A: G { 1 , . . . , jU} mit^W.F ^ A^"^ .F fiir alle 1 < / < jU 
in IS^ (x) enthalten ist. 

Damit identifiziert obige Definition implizit zwei unterschiedliche Arten der uberlappenden Um­
weltselektion: Die einfache Anwendung eines Selektionsoperators auf die Vereinigung von Eltem-
und Kindpopulation, bei der der iibemommene Anteil der beiden Ausgangspopulationen von 
Generation zu Generation variiert, und speziell definierte Operatoren mit einem immer gleichen 
tjberlappungsgrad. 

Beispiel 3.13: 
Ein Beispiel fiir eine iiberlappende Umweltselektion mit einem tjberlappungsgrad 
lap = 1 ist ein Operator, der bei einer EltempopulationsgroBe ji und A = /i — 1 Kin-
dem die neue Population aus alien Kindem und dem besten Eltemindividuum aufbaut. 
Diese Selektion ware auch elitar. Ein anderes elitares Beispiel mit tjberlappungsgrad 
lap = 11 — 1 ersetzt in einer Eltempopulation mit fi Individuen das schlechteste Indivi-
duum durch ein neu erzeugtes Kind. Wiirde man stattdessen ein zufalliges Individuum 
loschen, ware der Operator weder elitar noch erzeugt er Selektionsdruck. 

Umweltselektionen mit tjberlappungsgrad werden meist durch die zusatzliche Information be-
stimmt, welche Individuen aus der bisherigen Eltempopulation ersetzt werden sollen. Mogliche 
Strategien sind die Ersetzung der schlechtesten, der altesten oder auch zufalliger Individuen. 
Meist wird dabei genau eine passende Anzahl an Kindindividuen erzeugt, so dass hier keine 
weitere Auswahl mehr stattfindet. Teilweise findet man allerdings auch Varianten, die ein Indi­
viduum nur dann ersetzen, wenn das neue Individuum eine bessere Giite hat - dann besitzt die 
Umweltselektion nach obiger Definition keinen strengen tjberlappungsgrad mehr, sondem man 
konnte von einem maximal moglichen tjberlappungsgrad sprechen. 

AbschlieBend wird in diesem Abschnitt mit der ^-stufigen zweifachen Turnierselektion in 
Algorithmus 3.7 (Q-STUFIGE-TURNIER-SELEKTION) ein Operator vorgestellt, der einfach auf die 
Vereinigung von Eltem- und Kindindividuen angewandt werden kann, aber nicht so zielorientiert 
ist, wie die absolute Auswahl der besten Individuen. Es werden dabei fiir jedes Individuum in 
der Population direkte Duelle mit q gleichverteilt zufallig gezogenen Individuen abgehalten. Fiir 
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Algorithmus 3.7 (genaue Bezeichnung: g-stufige zweifache Tumierselektion) 

Q-STUFIGE-TURNIER-SELEKTION( Giitewerte (^'^'XF)/=I^...^^ ) 

1 Scores ^- () 
2 for z ^ 1 , . . . , r 
3 do^5/ege^0 
4 for each y G {2 , . . . , g (|Anzahl der direkten TumiereD} 
5 do ^ w ^ wahle Zufallszahl gemaB ^({ 1 , . . . , r}) 
6 if^(').F)-^(").F 
7 L then E *Szege ^ *Szege + 1 
8 L Scores ^- Scores o {Siege) 
9 / ^ O 

10 for y ^ 1 , . . . , 5 dAnzahl der zu wahlenden IndividuenD 
11 do '~ index ^- derjenige Index aus { 1 , . . . , r} \ / mit maximalem Wert Score^^^^^^^ 
12 \_ I ^ I o {index) 
13 return/ 

Individuum Tumiere gegen Gegner Siege Wahl 

^(i).F = 3,l 

A^^\F=\fi 
^(3).i7 = 4,5 

A^'^IF = 2,4 

A(^\F = 3,6 
A^^\F = 2,\ 

A^^\F = 2,1 

^(^).F=1,8 

A^^).F = 2,2 
A('^\F = 3,5 

3 
1 
10/ 
6/ 
1/ 
3 
2/ 
3 
6/ 
2/ 

8/ 
2 
4/ 
9/ 
8/ 
6 
5 
9 
7 
10 

5 
9 
7/ 
10 
7/ 
4 
8/ 
1 
4 
5 

1 
0 
3 
2 
3 
0 
2 
0 
1 
1 

/ 

/ 
/ 
/ 

/ 

Tabelle 3.3 Ftir jedes Individuum werden die Gegner in der Q-STUFIGE-TURNIER-SELEKTION angezeigt 
sowie durch das Symbol / , ob ein Sieg verbucht wurde. Ebenso werden die gewahlten Indivi-
duen markiert. Statt Individuum 4̂*̂ ^̂  batten auchy4^^^ oder ^̂ ^̂ ^ gewahlt werden konnen, die 
alle jeweils einen Sieg aufweisen. 

jedes Individuum wird die Anzahl der Siege vermerkt, woraus sich eine Rangfolge der Individuen 
ergibt, gemaB der dann deterministisch die besten ausgewahlt werden. Es sollte auf jeden Fall 
q > I gewahlt werden, da ansonsten nahezu kein Selektionsdruck zur Geltung kommt. Dieser 
steigt an, je groBer q gewahlt wird. Durch die Wahl der Tumiergegner ist der Operator zwar 
probabilistisch, aber trotzdem duplikatfrei. 

Beispiel 3.14: 

Aus einer Population mit 10 Individuen sollen 5 Individuen mit der Q-STUFIGE-TUR-
NIER-SELEKTION gewahlt werden. Tabelle 3.3 zeigt die Giitewerte der Individuen, die 
zufallig gewahlten Gegner sowie die resultierende Auswahl anhand der Siege. Wie 
man deutlich erkennt, haben auch schlechtere Individuen eine Chance gewahlt zu wer­
den, wobei die besseren sich meist durchsetzen. 
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Werden bei der BESTEN-SELEKTION (Algorithmus 3.6) die besten Individuen sowohl aus den El-
tem als auch aus den Kindindividuen gewahlt, spricht man auch von einer Plus-Selektion. Der 
nichtiiberlappende Fall, der nur die Kindindividuen berucksichtigt, wird auch als Komma-Selek-
tion bezeichnet. 

3.2.5 Selektionsstarke 

Als theoretische Grundlage fiir den Vergleich von Selektionsmechanismen und damit auch fiir die 
Wahl eines geeigneten Selektionsmechanismus fur einen Algorithmus existieren verschiedene 
MaBe fiir den erzeugten Selektionsdruck. Ein MaB ist die Ubemahmezeit, d. h. die Anzahl der 
Generationen bis die Population konvergiert ist. Ein zweites MaB, auf das im Weiteren noch naher 
eingegangen wird, ist die Selektionsintensitat, die durch das Selektionsdifferenzial zwischen der 
durchschnittlichen Giite vor und nach der Selektion bestimmt wird. 

Definition 3.13 (Selektionsintensitat): 
Sei (Q, / , >-) das betrachtete Optimierungsproblem und werde ein Selektionsopera-
tor Sefi : (^ x ^ x R)^ ^ (^ x ^ x R)^ auf eine Population P mit durchschnittli-
cher Giite F und Standardabweichung a der Giitewerte angewandt. Dann sei Fsei die 
durchschnittliche Giite der Population Ser (P) und der Selektionsoperator besitzt die 
Selektionsintensitat 

( Fse^ f a l l s >^ = > 

Intensitdt = < _ _ 
[ ^-^§^ sonst. 

Durch die Beriicksichtigung der Standardabweichung wird ein normalisiertes MaB erreicht, wel­
ches von der Ausgangspopulation unabhangig ist. Je groBer der Wert der Selektionsintensitat 
ist, desto groBer ist der erzeugt Selektionsdruck. Aus theoretischer Sicht mochte man geme 
MaBzahlen fiir verschiedene Selektionsoperatoren haben, die unabhangig von der betrachteten 
Population sind. Dies ist jedoch oft nur eingeschrankt fiir eine vorgegebene Verteilung von Giite-
werten in einer Population moglich. Als Voraussetzung fur theoretische Analysen werden haufig 
standardnormalverteilte Giitewerte angenommen. Daher ist die tJbertragbarkeit auf allgemeine 
Optimierungsprobleme oft nicht gewahrleistet. 

Beispiel 3.15: 
Fiir die Optimierung eines Minimierungsproblems werden aus 10 Individuen mit den 
Gutewerten2,0; 2,1; 3,0; 4,0; 4,3; 4,4; 4,5; 4,9; 5,5 und 6,0 die Individuen mit den 
Gutewerten 2,0; 3,0; 4,0; 4,4 und 5,5 selektiert. Damit ist F = 4,07, a = 1,270 und 
F^^i = 3,IS. Die Selektionsintensitat betragt 

4,07-3,78 ^^^^ 
Intensitdt = — , ^ ^— = 0,228. 

1,270 

Im folgenden Abschnitt wird fiir einen speziellen Selektionsoperator die Selektionsintensitat als 
allgemein giiltige Formel hergeleitet. 
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Algorithmus 3.8 

FITNESSPROPORTIONALE-SELEKTION( Gtitewerte {A'^^.F)\< 

1 Summeo ^- 0 
2 for i ^ 1 , . . . , r 
3 do •" Fitness ^- berechne Fitnesswert aus A^^^ .F 
4 L Summei ^- Summef-1 + Fitness 
5 I^{) 
6 for i ^ 1 , . . . , 5 dAnzahl der zu wahlenden IndividuenD 
7 do ^ 7 ^ 1 
8 u ^ wahle Zufallszahl gemaB ^([0, Summer)) 
9 while Summej < u 

10 doEy^y + l 
11 L /^ /o (y ) 
12 return/ 

3.2.6 Probabilistische Elternselektion 

Die bisher vorgestellten Algorithmen haben alle keine Elternselektion verwendet, weswegen die 
involvierten Selektionsoperatoren auch duplikatfrei waren. Wie wir bereits in Abschnitt 3.2.3 
argumentiert haben, wird diese Eigenschaft bei der Elternselektion nicht benotigt. 

Ein Standardoperator fiir die Elternselektion ist die probabilistische proportionale Selektion -
motiviert durch das biologische Vorbild. Dort wurde die Starke eines Individuums indirekt durch 
die Anzahl seiner Nachkommen gemessen und als Fitness bezeichnet. Bei der probabilistischen 
Selektion kann wiederum nun fur jedes Individuum ein Wert vorgegeben werden, der annahemd 
bestimmt, wie groB die Fruchtbarkeit des Individuums und damit die Anzahl seiner Nachkommen 
ist. In Anlehnung an die Biologic spricht man von Fitness. 

Angenommen ein Maximierungsproblem liegt vor und die Fitnesswerte entsprechen den Gtite-
werten. Dann kann bei QIUQX fitnessproportionalen Selektion die Auswahlwahrscheinlichkeit aus 
den Fitnesswerten wie folgt fur die IndividuenD ('̂  (1 <i<r) festgelegt werden: 

PM^] ^''•' 
n=iA^'^-F 

Algorithmus 3.8 (FITNESSPROPORTIONALE-SELEKTION) zeigt den Ablauf in Pseudo-Code-Nota­
tion. 

± Im Vergleich zur Natur wurden hier Ursache und Wirkung vertauscht. In der Biologie ist die Fitness ein 

MaB fur die Anpassung, das auf der Anzahl der Kinder beruht. Stattdessen gibt nun die Fitness vor, wieviele 

Kinder ein Individuum haben soil. 

Beispiel 3.16: 
Diese Auswahlwahrscheinlichkeiten betrachten wir naher anhand von drei kleinen Bei-
spielen. In Tabelle 3.4 sind jeweils drei Populationen mit fiinf Individuen durch ihre 
Gtitewerte und die resultierenden Selektionswahrscheinlichkeiten angegeben. 

Wie man leicht sehen kann, erzeugt die fitnessproportionale Selektion bei Popula­
tion 1 cine sehr ausgewogene Verteilung der Wahrscheinlichkeiten und die besseren 
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i 

1 

2 

3 

4 

5 

Population 1 

1 

2 

3 

4 

5 

1 r 
15 " 
2 . 
15 " 
3 . 
15 " 
4 , 
15 " 
5 . 
15 " 

::̂  0,067 

^0,133 

^0,2 

^ 0,267 

::i 0,333 

Population 2 

101 

102 

103 

104 

105 

101 ^ 
515 " 
102 ^ 
515 " 
103 ^ 
515 " 
104 ^ 
515 " 
105 ^ 
515 " 

::; 0,196 

:i 0,198 

:^0,2 

::; 0,202 

^ 0,204 

Population 3 

1 

1 

1 

1 

5 

^ - 0 , 1 1 1 

i ^ O , l l l 

i ^ O , l l l 

ip^O, l l l 

1^0,555 

Tabelle 3.4 Vergleich der Auswahlwahrscheinlichkeiten von drei unterschiedlichen Populationen der 
GroBe 5 bei fitnessproportionaler Selektion 

Individuen werden tatsachlich mit einer hoheren Wahrscheinlichkeit ausgewahlt als 
schlechtere. In Population 2 liegen die Gtitewerte sehr eng beieinander (relativ zur 
GroBenordnung der Giitewerte). Daher ergibt sich die Differenz 0,008 zwischen der 
Auswahlwahrscheinlichkeit des schlechtesten Individuums und des besten Individu-
ums. Das bessere Individuum hat nahezu keinen Selektionsvorteil und das Verfahren 
entspricht fast einer gleichverteilt zufalligen Auswahl der Eltem. Dieser Effekt tritt mit 
fitnessproportionaler Selektion genau dann auf, wenn am Ende der Suche die Popu­
lation zu konvergieren beginnt und zu einer Feinabstimmung nur noch sehr geringe 
Giitedifferenzen beachtet werden miissen. Population 3 wird hingegen von einem Su-
perindividuum dominiert. Dieses vv̂ ird in mehr als der Halfte aller Selektionen als 
Eltemteil herangezogen. Eine solche Auswahl ist sehr kritisch zu hinterfi-agen, da sie 
schnell die Diversitat in der Population zerstort und das Superindividuum die Popula­
tion beherrscht: Sie konvergiert. 

Falls ein Minimierungs- statt eines Maximierungsproblems betrachtet wird, gibt es zwei naive 
Herangehensweisen. Erstens kann der Giitewert von einem hinreichend groBen Betrag Maximum 
abgezogen werden (Fitness = Maximum —A.F). Dies ist jedoch schwierig, falls der schlechtest-
mogliche Giitewert nicht bekannt ist, da die Fitness > 0 sein muss. Wird Maximum auf Verdacht 
wesentlich zu groB gewahlt, verringert dies wie oben erlautert den Selektionsdruck. Zweitens 
kann der Kehrwert des Giitewerts genommen werden (Fitness = -^). Auch dies hat jedoch den 
Effekt, dass die Auswahlwahrscheinlichkeiten stark verzerrt werden: Im schlechten Bereich lie­
gen sie sehr eng beieinander und im guten Bereich kann ein besseres Individuum leicht alle 
anderen dominieren. 

Der Einfluss der Giitewerte in der Population auf den Selektionsdruck kann auch anhand der 
Selektionsintensitat untersucht werden, die im folgenden Satz fiir die probabilistische, proportio-
nale Selektion angegeben wird. 

Satz 3.2 (Selektionsintensitat bei fitnessproportionaler Selektion): 
Bei reiner fitnessproportionaler Selektion betragt die Selektionsintensitat in einer Popu­
lation mit durchschnittlicher Giite F{t) und Giitevarianz o^ 

Intensitdt = = 
Fit) 
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Beweis 3.2: 
Pr[v4(̂ )] = ^^yp: ist laut Definition die Wahrscheinlichkeit, dass Individuum v4(̂ ) aus 
der Population der GroBe r ausgewahlt wird. Dann kann die Selektionsintensitat wie 
folgt berechnet werden. 

Intensitdt=- • ( ( X P r [ ^ « ] -A^^.F^ -F{t)) 

4((t^)-^")) 

m 
Die letzte Umformung entspricht dabei der GesetzmaBigkeit Var[X] = Erw[X^] — 
Erw[X]^ aus der Wahrscheinlichkeitsrechnung. 

Beispiel 3.17: 

Berechnen wir nun mittels Satz 3.2 die Selektionsintensitat fiir die drei in Tabelle 3.4 
gegebenen Populationen, erhalten wir fiir Population 1 Intensitdt = ^ ?̂  0,471. Popu­
lation 2 besitzt eine identische Giitevarianz zu Population 1 - allerdings fiihrt die 
groBere durchschnittliclie Giite zu einer erheblich verringerten Selektionsintensitat 
Intensitdt = f̂  ~ 0,014. In Population 3 liegt sowohl eine groBere Varianz als auch 
eine kleinere durchschnittliclie Giite vor. Beides fiihrt zu einer hoheren Selektions­
intensitat/î ^e/2 /̂YaY = Ŷ  ~ 0,889. 

Den Effekten bei Population 2 und Population 3 kann begegnet werden, indem die Abbildung 
der Giitewerte auf die Fitnesswerte modifiziert wird. In einem ersten Verfahren soil in erster Li-
nie die starke Angleichung der Giitewerte beriicksichtigt werden (vgl. Population 2), indem die 
Giitewerte bei der Fitnessberechnung anders skaliert werden. Anstatt die Giitedifferenzen zur 
absoluten GroBe der Giite in Bezug zu setzen, wird nur der Bereich der tatsachlich im jiinge-
ren Optimierungsverlauf aufgetretenen Individuen als Bezugsrahmen genutzt. Hierfiir betrachtet 
man die Individuen aus den letzten W Generationen, d. h. die Menge 

P'{t) = {Ae P{t') At-W<t'<t}, 

und benutzt die beiden auftretenden extremalen Giitewerte 

schlechtesteF^^ = A.F mii A eP'{t), wobei \/B eP'{t) \B.F )^A.F und 

besteF^^ = A.F mii A eP'{t), wobei \/B eP\t) :A.F h B.F, 
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um die Werte bei der Fitnessberechnung neu zu skalieren, z. B. durch eine lineare Skalierung: 

Fitness • 
A.F — schlechtesteF. 

besteFjJ — schlechtesteFjJ 

Die Anzahl der Generationen W wird auch als Skalierungsfenster bezeichnet. Als Extremfall 
kann W = 0 betrachtet werden, womit nur die aktuelle Population den Bezugsrahmen vorgibt. 
Dieses Verfahren hat den Vorteil, dass auch zum Ende der Suche immer noch ein wirksamer 
Selektionsdruck erzeugt wird. Die Skaherung erlaubt auch gleichermaBen die Optimierung von 
sowohl Maximierungs- als auch Minimierungsproblemen. Einem Superindividuum wird dabei 
jedoch nicht gegengewirkt. 

Eine zweite Technik gegen die Probleme aus Tabelle 3.4 ist die rangbasierte Selektion. Hier 
ist der tatsachliche Giitewert eines Individuums bedeutungslos, da nur das relative Verhaltnis 
der Giitewerte zueinander berticksichtigt wird. Es wird eine Rangliste der Individuen gemaB der 
Giite erstellt: Dabei soil A^^^ das beste Individuum und A^^^ das schlechteste Individuum sein: 
A^^\F yA^^\F y • • • yA^^\F, Die daraus abgeleitete Fitness kann beispielsweise direkt als 
Wahrscheinlichkeit linear durch 

/ - I 
^^^">l-;('-^) 

zugewiesen werden. Dieses Verfahren erzeugt eine ahnliche Verteilung wie die rein fitnesspro-
portionale Selektion bei Population 1. Da die Auswahlwahrscheinlichkeiten nur vom Rang und 
nicht von der tatsachlichen Giite abhangen, begegnet diese Selektionsart nicht nur der starken 
Angleichung der Giitewerte sondem auch dem Problem des Superindividuums. 

Nun sind noch zwei Eigenschaften der fitnessproportionalen Selektion (und ihrer Varianten) 
von Interesse: Erstens betragt der Zeitaufwand, um s Individuen aus r Individuen zu selektie-
ren, bei geeigneter Implementierung ^{r-\-s • logr) (falls das selektierte Individuum binar ge-
sucht werden kann). Die Implementation von FITNESSPROPORTIONALE-SELEKTION gemaB Algo-
rithmus 3.8 hat sogar eine Laufzeit von 0'{r-s), da. linear gesucht wird. Zweitens ist die Varianz 
beziiglich der so ausgewahlten Eltem relativ hoch - so kann beispielsweise das beste Individuum 
iiberhaupt nicht ausgewahlt werden, obwohl dies erwartungsgemaB mehrfach passieren sollte. 

Dem kann mit einer Variante der probabilistischen Selektion, dem Selektionsoperator STO-
CHASTISCHES-UNIVERSELLES-SAMPLING (Algorithmus 3.9), begegnet werden, bei der die Hau-
figkeit der gewahlten Individuen tatsachlich den Auswahlwahrscheinlichkeiten entsprechen. Man 
kann sich die fitnessproportionale Selektion leicht so vorstellen, dass die Wahrscheinlichkeiten 
am Umfang eines Roulette-Rads abgetragen werden, sodass jedem Individuum der entsprechen-
de Teil des Rads zugewiesen wird. s Individuen werden dann durch ^-maliges Drehen des Rads 
ermittelt. Das alternative Verfahren, das stochastische universelle Sampling, dreht stattdessen 
das Rad nur einmal - allerdings mit s Kugeln, die immer aquidistant angeordnet sind. Dies ist 
in Bild 3.12 verdeutlicht. Wie man leicht erkennt, entspricht die Auswahl der Individuen den 
zugehorigen Wahrscheinlichkeiten: Ein Individuum mit einer Wahrscheinlichkeit von mehr als 
^ wird mindestens einmal ausgewahlt. Der Erwartungswert dafiir, wie oft ein Individuum ausge­
wahlt wird, ist identisch zur fitnessproportionalen Selektion, aber die Varianz ist wie gewiinscht 
stark reduziert. Bei genauerer Untersuchung des Laufzeitverhaltens sieht man schnell, dass dieser 
Algorithmus auch efiizienter ist, da er in ^{r-\-s) lauft. Falls identische Individuen nicht neben-
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fitnessproportionale Selektion 
J_ 
12 

stochastisches universelles Sampling 
J_ 

1 

Bild 3.12 Links wird der Auswahlvorgang fur ein Individuum mit der fitnessproportionalen Selektion an-
hand eines Roulette-Rads verdeutlicht. Rechts wird das stochastische universelle Sampling mit 
insgesamt s = 6 Kugeln dargestellt. 

Algorithmus 3.9 

STOCHASTISCHES-UNIVERSELLES-SAMPLING( Giitewerte (^^'XF)I</<^ 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

Summeo ^- 0 
for i ^ 1 , . . . , r 
do •" Fitness ^- berechne Fitnesswert aus A^^^ .F 

\_Summei ^- Summef-i -\-Fitness 
u ^ wahle Zufallszahl gemaB ^([0, ^mnp,)) 

y - 1 
/ - ( > 
for z ^ 1 , . . . , ^ 
do •" while Summej < u 

doEy^y + l 
^^^j^Sump, 

L / ^ / o ( y > 
return / 

einander im Resultattupel liegen sollen - z. B. wenn spater eine Rekombination auf benachbarte 
Individuen angewandt wird -, miissen die Eintrage noch zufallig umsortiert werden, was jedoch 
keinen Einfluss auf die asymptotische Laufzeit hat. 

AbschlieBend soil noch auf die stark verwandte q-fache Turnierselektion TURNIER-SELEKTION 

(Algorithmus 3.10) kurz eingegangen werden, die sehr einfach auf die proportionale Selektion 
abgebildet werden kann. 

/ j \ Eine Turnierselektion ist uns bereits als Umweltselektion begegnet. Diese war jedoch wegen der geforderten 

II Duplikatfreiheit eher kompliziert angelegt. Fiir die Eltemselektion kann die Information aus einem Turnier 
direkt fiir die Auswahl genutzt werden. 

Zur Selektion eines Individuums wird ein Turnier zwischen q zufallig gleichverteilt ausgewahl-
ten Individuen ausgetragen. Dasjenige Individuum mit dem besten Giitewert gewinnt das Turnier 
und wird selektiert. Man kann fiir jedes Individuum die Auswahlwahrscheinlichkeit ausrechnen, 

file:///_Summei
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Algorithmus 3.10 (genaue Bezeichnung: ^-fache Tumierselektion) 

TURNIER-SELEKTION( Giitewerte {A^^.F)x<i<r) 
1 / - ( ) 
2 for / ̂  1,... , 5 dAnzahl der zu wahlenden IndividuenD 
3 do ^ index ^ wahle Zufallszahl gemaB ̂ ({ 1,..., r}) 
4 for each y G {2,... , ^ (|Anzahl der GegnerD } 
5 do •" w ^ wahle Zufallszahl gemaB t/({ 1,..., r}) 
6 if A^^\F >^^Me-̂ ).i7 
7 L then E zwJex ^ u 
8 \_I^Io {index) 
9 return / 

indem alle Kombinationen zur Auswahl von q Individuen mit gleicher Wahrscheinlichkeit be-
rticksichtigt werden. Wird eine proportionale Selektion mit diesen Wahrscheinlichkeitswerten 
durchgefiihrt, erhalt man im Mittel dasselbe Resultat wie bei einer reinen Tumierselektion. Die 
Tumierselektion hat den Vorteil, dass sie ahnlich wie die rangbasierte Selektion nicht anfallig 
fiir Anomalien beziiglich der Giitewerte ist, und auBerdem entfallt die relativ aufwandige Berech-
nung der Wahrscheinlichkeiten ebenso wie die Auswahl auf der Basis dieser Wahrscheinlichkei-
ten. 

3.2.7 Uberblick und Parametrierung 

Die verschiedenen Selektionsoperatoren konnen auf vielfache Weise eingesetzt und miteinan-
der kombiniert werden. Da meist nur an einer Stelle, der Umwelt- oder der Eltemselektion, ein 
gezielter Selektionsdmck aufgebaut werden soil, bietet sich fiir die andere Selektion einer der 
folgenden Selektionsoperatoren an. 

Definition 3.14 (Selektionen ohne Selektionsdmck): 
Fiir eine Population P = (̂ ^̂ )̂ i<z<r ist die Identitdt als Selektion durch 

ISij{{A('\F,...J'-\F)) = {\,...,r) 

definiert. Und die uniforme Selektion ist definiert durch 

mit % ^ ^({ 1 , . . . , r}) fiir 1 <k<s. 

Beide Selektionsoperatoren erzeugen im Mittel keinen Selektionsdmck und haben die Selektions-
intensitat Intensitdt = 0. 

Bei der Kombination zweier Selektionsoperatoren muss darauf geachtet werden, dass diese 
mit einer konstanten PopulationsgroBe realisiert werden konnen. So ist beispielsweise eine deter-
ministische, iiberlappungsfreie Umweltselektion (Komma-Selektion) nicht mit der Identitat als 
Eltemselektion kombinierbar, da hier die Komma-Selektion ebenfalls zur Identitat entartet. 
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Umweltselektion 
I Eltemsel. -^ 

uniforme 
Auswahl Identitat probabilistisch 

Identitat 
duplikatfrei prob. 

(liberlappend) 
prob. liberlappend 
deterministisch 

(liberlappend) 

kein Sel.druck 
? 

? 
7 

ES (Komma) 
ES (Plus) 

kein Sel.druck 
X 

EP (90er) 
SA 

kein Sel.druck 
EP (60er) 

GA 
? 

? 
steady state GA 

? 
steady state GA 

Tabelle 3.5 Uberblick tiber die Kombination zwischen Eltem- und Umweltselektion, die in den Standard-
algorithmen vorkommen. Das Zeichen » x « kennzeichnet eine unmogliche Kombination. Das 
Zeichen »?« identifiziert zwar mogliche, aber bisher vermutlich selten eingesetzte Kombinatio-
nen. 

Tabelle 3.5 zeigt die Kombinationen, die in den Standardverfahren der evolutionaren Algorith-
men zum Einsatz kommen. 

Unabhangig vom gewahlten Selektionsszenario ist das Verhaltnis zwischen Eltem und Kind-
individuen sehr sorgfaltig zu bestimmen, da es bei alien Verfahren einen groBen Einfluss auf 
Erfolg und/oder Geschwindigkeit der Optimierung hat. Besonders deutlich ist dies im Fall der 
deterministischen Komma-Selektion, bei der der Selektionsdruck direkt von dem Zahlenverhalt-
nis abhangt. Die PopulationsgroBen miissen mit den folgenden Faktoren abgestimmt werden: 

• die Schwierigkeit und der Charakter des Optimierungsproblems, 

• der involvierte Selektionsoperator und 

• die Erforschung und die Feinabstimmung durch Mutation und Rekombination. 

/ | \ Leider gibt es keine Formel, die uns bei Eingabe der genannten Faktoren ein gutes Eltem-Kind-Verhalnis 
II liefert. Vielmehr geben die Faktoren die Aspekte an, die bei einer experimentellen Analyse eines guten 

Eltem-Kind-Verhaltnisses zu beriicksichtigen sind. 

Die Art der Operatoren muss berticksichtigt werden, wenn die Starke des Selektionsdrucks 
festgelegt wird. Das Optimierungsproblem hingegen bestimmt, inwieweit die Vorteile einer Po­
pulation genutzt werden konnen. Aus diesen Rahmenbedingungen kann dann eine Empfehlung 
fiir das jeweilige Selektionsszenario folgen. Grundsatzlich erlauben kleinere PopulationsgroBen 
eine schnellere Optimierung, da die neuen Kindindividuen nach weniger Evaluationen durch die 
Bewertungsfunktion wieder in den Suchprozess eingehen. Allerdings muss dieser Vorteil gegen 
die Vorteile groBerer Populationen abgewogen werden. 

3.2.8 Experimenteller Vergleich der Selektionsoperatoren 

Um ein besseres Bild davon zu vermitteln, wie sich die einzelnen Selektionsoperatoren nun tat-
sachlich auf eine Population und den Suchprozess auswirken, werden in diesem Abschnitt vier 
Selektionsszenarien hinsichtlich der Diversitat und der Selektionsintensitat untersucht. 

• Eltemselektion: 3-fache Tumierselektion TURNIER-SELEKTION (Algorithmus 3.10), Umwelt­
selektion: Identitat 



78 3 Prinzipien evolutionarer Algorithmen 

• Eltemselektion: FITNESSPROPORTIONALE-SELEKTION (Algorithmus 3.8) mit den Giitewer-
ten als Fitness, Umweltselektion: Identitat 

• Eltemselektion: Identitat, Umweltselektion: Plus-Variante der BESTEN-SELEKTION (Algo­
rithmus 3.6) 

• Eltemselektion: Identitat, Umweltselektion: iiberlappende 5-stufige 2-fache Tumierselek-
tion Q-STUFIGE-TURNIER-SELEKTION (Algorithmus 3.7) 

Die Eltempopulation umfasst dabei jeweils 20 Individuen und es werden 20 Kindindividuen er-
zeugt. Um einen besseren Einblick in die reine Suchdynamik zu bekommen, wird die sog. Spha-
ren-Funktion 

i=\ 

mit n = 2 benutzt, da sie keine echten lokalen Minima aufweist. Als Mutationsoperator wird die 
reellwertige GAUSS-MUTATION (Algorithmus 3.4) benutzt. 

Bild 3.13 zeigt den Optimiemngsverlauf der ersten 20 Generationen zusammen mit dem mitt-
leren Abstand als DiversitatsmaB und der tatsachlich wirksamen Selektionsintensitat. Wenn man 
ausschlieBlich die besten auftretenden Giitewerte pro Generation anschaut, kann man kaum Un-
terschiede zwischen den verschiedenen Selektionsverfahren ausmachen. Bei genauerer Betrach-
tung ist jedoch deutlich zu erkennen, dass die Selektionsintensitat bei den zufallsabhangigen 
Selektionsverfahren starker schwankt als bei der Plus-Selektion. Letztere bleibt den kompletten 
Zeitraum auf einem konstant hohen Niveau. Die 5-stufige 2-fache Tumierselektion kann durch 
die Art des Turniers die Schwankungen ebenfalls stark einschranken. Dagegen ist der Einfluss 
des Zufalls auf die 3-fache Tumierselektion und in noch weitaus starkerem MaB auf die fitness-
proportionale Selektion deutlich in der Selektionsintensitat erkennbar. Die Diversitat wird am 
schnellsten durch die Plus-Selektion reduziert, bei der die Giitewerte ab etwa der ftinften Ge­
neration sehr eng beieinanderliegen. Der Verlauf der Diversitat ist bei beiden Tumierselektion 
durchaus sehr ahnlich zur Plus-Selektion - beide konnen durch die Zahl der Tumiere leicht in ih-
rer Selektionsstarke variiert werden. Deutlich wird auch, dass die fitnessproportionale Selektion 
iiber alle 20 Generationen die breiteste Streuung der Giitewerte zulasst. 

Vermutlich der wichtigste Punkt, den es hier nochmals zu betonen gilt, ist die oben bereits an-
gesprochene Ahnlichkeit zwischen alien vier Suchverlaufen. Auch die zufallsbasierten Verfahren 
erzeugen eine ganz ahnliche Dynamik wie die reine Wahl der besten Individuen. Wahrend der 
Verlauf der besten, mittleren und schlechtesten Giite bei der Plus-Selektion jedoch immer mono-
ton fallend (bzw. bei einer Maximiemng monoton steigend) ist, erlauben die anderen Selektionen 
eine groBere Freiheit beim Verlauf der Optimiemng - dies kann deutlich aus der jeweils oberen 
Linie der schlechtesten Individuen abgeleitet werden. Gerade bei Problemen mit vielen lokalen 
Optima kann eine starkere Verteilung der Individuen im Suchraum ein zusatzlicher Vorteil der 
zufallsbasierten Verfahren sein. 

± An dieser Stelle wurde bewusst auf einen Vergleich der Optimierungsqualitat der vier Experimente verzich-
tet. Erste Begrundung: Die reine Betrachtung einer beispielhaften Optimiemng kann nie eine grundsatzliche 
Aussagekraft jenseits der Illustration haben. Zweite Begrundung: Die Wahl der Selektion sollte immer auf 

die Charakteristik des Problems und der Operatoren abgestimmt sein, sodass hier keine allgemeingiiltigen 
Ratschlage moglich sind. 
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Bild 3.13 Optimiemng der zweidimensionalen Sphare mit jeweils 20 Eltem- und 20 Kindindividuen: Es 
werden fiir vier Selektionsszenarien die Verlaufe der Giitewerte in der Population (mit bester, 
schlechtester und durchschnittlicher Gtite), die Diversitat als mittlerer Abstand in der Population 
und die tatsachlich wirksame Selektionsintensitat dargestellt. 
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Algorithmus 3.11 

UNIFORMER-CROSSOVER( Individuum^, Individuum 5 

1 
2 
3 
4 
5 
6 
7 
8 

for each i e {1, . . . , /} 
do^ b ̂  wahle zufallig gemaB 

ifb 
then ^C.Gi 

^D.Gi 
else ^C.Gi 

L ^D.Gi 

return C, D 

^A.Gi 
^B.Gi 
^B.Gi 
^A.Gi 

U{M) 

3.3 Verkniipfen mehrerer Individuen durch die Rekombination 

Als drittes Grundprinzip wird die Suchdynamik der Rekombinationsoperatoren untersucht. Nach 
allgemeinen Betrachtungen bildet die Theorie zur Verbreitung von Schemata einen Schwerpunkt. 

Bereits im vorherigen Abschnitt wurde als ein Vorteil des Populationskonzepts die Moglichkeit 
erwahnt, die Suche durch einen Operator zu erganzen, der Beziige zwischen verschiedenen Indi­
viduen in der Population herstellt und so eine zusatzliche Suchdynamik jenseits der reinen Varia­
tion erreichen kann. 

3.3.1 Arten der Rekombination 

Bei der Rekombination wird aus zwei (oder mehr) Eltemindividuen wenigstens ein Kindindi-
viduum erzeugt. Dabei konnen die Eigenschaften der Eltem auf unterschiedliche Art und Weise 
die Kindindividuen bestimmen. Im Weiteren werden wir drei verschiedene Arbeitsweisen der 
Rekombination vorstellen. Da die Diversitat der Population einen essentiellen Einfluss auf die 
moglichen Ergebnisse der Rekombination hat, werden wir diese jeweils explizit diskutieren. 

Die erste mogliche Arbeitsweise ist die sprichwortliche Rekombination des genetischen Ma­
terials, die sich stark an der Biologic orientiert und die verschiedenen Grundziige der Eltem neu 
kombiniert. Diese kombinierenden Operatoren setzen die Details von unterschiedlichen Indivi­
duen neu zusammen und konnen so, im Optimalfall, die vorteilhaften Bestandteile der Eltemindi­
viduen zusammenfiihren. Diese Art der Rekombination hangt sehr von der Genvielfalt, der Diver­
sitat, in der Population ab. Sie »erfindet« keine neuen Genbelegungen und kann somit auch nur 
diejenigen Teilbereiche des Suchraums erreichen, die in den Individuen der aktuellen Population 
enthalten sind. Bei einer groBen Vielfalt in der Population haben die kombinierenden Rekombi­
nationsoperatoren einen groBen Anteil an der systematischen Erforschung des Suchraums. 

Beispiel 3.18: 
Algorithmus 3.11 (UNIFORMER-CROSSOVER) ist ein Beispiel fiir eine kombinierende 
Rekombination, die auf alien Reprasentationen eingesetzt werden kann, bei der die 
einzelnen Gene im Individuum vollig unabhangig voneinander gesetzt werden konnen. 
Bild 3.14 zeigt die Arbeitsweise der Rekombination am Beispiel eines zweidimensio-
nalen reellwertigen Genotyps. 



3.3 Verkniipfen mehrerer Individuen durch die Rekombination 81 

Bild3.14 
Arbeitsweise der kombinierenden Rekombination: Die weiBen Punkte stellen die 
Positionen der moglichen Nachfolger bei einem uniformen Crossover der schwar-
zen Punkte far einen zweidimensionalen, reellwertigen Genotyp dar. 

Wie ein solcher Operator systematisch den Raum absucht, wird in der linken Spalte von Bild 3.15 
verdeutlicht. Auf eine Anfangspopulation bestehend aus 10 Individuen v îrd ausschlieBlich die 
Rekombination angewandt. Die Individuen werden zu zufalligen Eltempaaren zusammengefasst, 
aus denen dann gemaB des uniformen Crossovers 10 neue Individuen gebildet werden, welche die 
Eltemindividuen ersetzen. Das ganze Vorgehen v îrd 9 Mai iteriert. Man erkennt deutlich, dass 
sich ohne die Einwirkung einer zusatzlichen Mutation oder eines Selektionsdrucks ein Raster 
aller moglichen Kombination der vorkommenden Werte herausbildet. 

^ \ Das Ergebnis kann man so nur beobachten, wenn tatsachlich jedes Individuum in genau ein Eltempaar 

II eingeht, welches zwei Kinder erzeugt. Offensichtlich geht dann keine Information der Eltem verloren. An-

demfalls konnten einzelne Gene verschwinden und es wtirde zum Gendrift kommen (vgl. S. 13). 

y \ Auch die K A N T E N R E K O M B I N A T I O N (Algorithmus 2.4) aus dem einfuhrenden Beispiel des Handlungs-

II reisendenproblems hat strenggenommen einen kombinierenden Charakter, da - jetzt allerdings auf der pha-

notypischen Ebene der Kanten in der Rundtour - vomehmlich vorhandene Information neu zusammenge-

stellt wird. 

Die zweite mogliche Arbeitsweise liefem die interpolierenden Operatoren: Sie vermischen die 
Charakteristika der Eltern so, dass ein neues Individuum mit neuen Eigenschafen entsteht, wel­
che sich jedoch zwischen den Eigenschaften der Eltem bewegen. Statt einer systematischen Er-
forschung des vollstandigen Suchraums steht hier die Stabilitat im Vordergrund. Wahrend die 
kombinierende Rekombination die Diversitat erhalt, konzentriert die interpolierende Rekombi­
nation die Population auf einen gemeinsamen Nenner. Dies kann effektiv die Feinabstimmung 
schon sehr guter Individuen im Suchprozess fordem. 1st die Diversitat der Population bereits 
sehr gering, kann diese Rekombination indirekt groBere AusreiBer durch die Mutation abschwa-
chen - dies wird in diesem Kontext auch als genetisches Reparieren bezeichnet. Um eine hin-
reichende Erforschung gerade zu Beginn einer Optimierung zu ermoglichen, sollte der raschen 
Konvergenz der Population mit einer stark zufallsbasierten, diversitatserhaltenden Mutation ge-
gengewirkt werden. 

Beispiel 3.19: 
Ein Beispiel fiir die interpolierende Rekombination ist Algorithmus 3.12 (ARITHME-

TISCHER-CROSSOVER), der auf reellwertige Genotypen angewandt werden kann. In 
Bild 3.16 wird die Arbeitsweise der Rekombination gezeigt, die das neue Individu­
um genau auf der direkten Verbindungslinie der beiden Eltemindividuen platziert. 

Die Wirkung dieser Operatoren bei einer iterierten Anwendung ohne Mutation und Selektions-
dmck ist wieder in Bild 3.15 - diesmal in der mittleren Spalte - veranschaulicht. Da Algorith­
mus 3.12 nur ein Kindindividuum erzeugt, werden insgesamt 20 Eltemindividuen fiir 10 Kindin-
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Bild 3.15 Vergleich der drei unterschiedlichen Rekombinationsarten auf einem zweidimensionalen reell-
wertigen Suchraum. Dabei markiert jedes »+« ein Inidividuum von vorherigen Iterationen und 
jedes »•« ein aktuelles Individuum. Bei dem extrapolierenden Operator ist zusatzlich das Opti­
mum markiert. 
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Algorithmus 3.12 
ARITHMETISCHER-CROSSOVER( Individuen^, B rmt A.G.B.G e M )̂ 
1 w ^ wahle zufallig aus ^([0, 1]) 
2 for each / G {1 , . . . , /} 
3 AoLC.Gi^U'A.Gi + {\-u)B.Gi 
4 return C 

Bild3.16 >3ŝ  
Interpolierende Rekombination: Der arithmetische Crossover kann potentiell ô̂  
alle Punkte entlang der gestrichelten Linie zwischen den Eltem erzeugen. ^̂ « 

dividuen benotigt - in diesem Vergleich wurde zusatzlich gewahrleistet, dass jedes Eltemindivi-
duum in genau zwei Rekombinationen eingeht. Deutlich ist erkennbar, wie sich die Population 
in der Mitte konzentriert. 

^ \ Um nochmal auf das Beispiel des Handlungsreisendenproblems zuriickzugreifen: Die K A N T E N R E K O M -

II BINATION kann leicht so modifiziert werden, dass das Kindindividuum gemeinsame Kanten der Eltem 

immer tibemimmt. Dann hatte dieser Operator einen deutlich interpolierenden Aspekt. 

Die dritte mogliche Arbeitsweise der Rekombination sind die sog. extrapolierenden Operatoren, 
die gezielt Informationen aus mehreren Individuen ableiten und eine Prognose dariiber anstellen, 
vv̂o Giiteverbesserungen zu erwarten sind. Dies basiert immer auf bestimmten Grundannahmen 
bezuglich des Suchraums und der aktuellen Verteilung der Individuen. Im Gegensatz zur Defi­
nition 2.5 des Suchoperators v^erden hier also nicht nur die Werte des Genotyps benutzt. Das 
Resultat der Rekombination hangt mit von den Giitevŝ erten der Individuen ab. Die entstehenden 
Kindindividuen weisen im Regelfall neue Eigenschaften im Vergleich zu den Eltem auf und kon-
nen auch erforschend das bisher abgegrenzte Suchgebiet verlassen. Bei diesen Operatoren lasst 
sich der Einfluss der Diversitat nicht eindeutig beschreiben. 

Beispiel 3.20: 
Ein Beispiel fiir einen extrapolierenen Operator erhalten wir, indem in Algorithmus 3.12 
(ARITHMETISCHER-CROSSOVER) eine Zufallszahl u > 1 gevv̂ ahlt vŝ ird - z. B. aus der 
Verteilung t/([l, 2]). Wenn zusatzlich gewahrleistet v îrd, dass A.F "^ B.F gilt, dann 
verlangem wir die Verbindungslinie zwischen den Individuen A und B hinaus und 
wahlen einen Losungskandidaten jenseits des besseren Individuums A. Dies ist sche-
matisch in Bild 3.17 dargestellt. 

Auch die Wirkung dieses Operators ist in Bild 3.15 (rechte Spalte) dargestellt. Um die Wirkung 
der Extrapolation besser zeigen zu konnen, sind die Individuen in den Quadranten links unten 
geschoben. Das Optimum ist in der Mitte des Quadranten rechts oben eingezeichnet - die Giite 
ist die Distanz zum Optimum, welche im Algorithmus fiir die Eltemindividuen betrachtet wird 
und damit die Richtung der Rekombination bestimmt. Da hier Kindindividuen den Suchbereich 



84 3 Prinzipien evolutionarer Algorithmen 

Bild3.17 
Extrapolierende Rekombination: Beispiel eines arithmetischen Crossovers, der 
anhand der Giitewerte in die Richtung des besseren Individuums extrapoliert. 
Gilt A.F y B.F, sind alle Punkte entlang der gestrichelten Linie potentielle 
Kindindividuen. 

Algorithmus 3.13 
EIN-PUNKT-CROSSOVER( Individuenv4, B) 
1 
2 
3 
4 
5 
6 
7 
8 

j ^- wahle zufallig gemaB ^({1 
for each i e { 1 , . . . , y} 
do ^C.Gi^A.Gi 

^D.Gi^B.Gi 
for each / G {y + 1 , . . . , /} 
do^C.Gi^B.Gi 

^D.Gi^A.Gi 
return C, D 

auch verlassen konnen, wird fiir jedes Eltempaar so lange rekombiniert, bis das Kindindividu-
um innerhalb des Suchbereichs liegt. Am Verlauf der iterierten Anwendung der Rekombination 
erkennt man deutlich, dass durch die gezielte Richtungsvorgabe der Rekombination vermutlich 
eine Optimierung beschleunigt werden kann (vgl. die erste Iteration). Allerdings ist jedoch auch 
ersichtlich, dass dieser Mechanismus allein fiir eine Optimierung nicht ausreicht: Am Ende pas-
sen die Annahmen zum Suchraum und der Verteilung der Population im Suchraum nicht mehr 
mit der Arbeitsweise des Operators zusammen und die Individuen rticken an den Rand des Such­
bereichs. Dies ist immer die Gefahr bei extrapolierenden Operatoren, da sie relativ leicht in die 
Irre geleitet werden konnen und die Suchdynamik nicht mehr kontrollierbar ist. 

3.3.2 Schema-Theorem 

In diesem Abschnitt soil die Suchdynamik genauer untersucht werden, die durch die kombinie-
rende Rekombination entsteht. Dabei gehen wir zunachst von einem binar kodierten Problem 
aus, d. h. ^ = B^ Femer nehmen wir ohne Beschrankung der Allgemeinheit an, dass das Opti-
mierungsproblem ein Maximierungsproblem ist. 

Als konkreten Algorithmus fur unsere tJberlegungen erweitem wir Algorithmus 3.5 (POPULA-

TIONSBASIERTES-BINARES-HILLCLIMBING) um einen Rekombinationsoperator. Wir wahlen hier-
fiir den EIN-PUNKT-CROSSOVER (Algorithmus 3.13), der im Gegensatz zum Algorithmus 3.11 
(UNIFORMER-CROSSOVER) groBere zusammenhangende Abschnitte der Eltem zusammen lasst. 
Es wird eine Stelle im Individuum gewahlt, an der die Eltern getrennt und neu zusammenge-
setzt werden. Die Arbeitsweise ist in Bild 3.18 veranschaulicht. Der resultierende Gesamtalgo-
rithmus wird auch als klassischer GENETISCHER-ALGORITHMUS (Algorithmus 3.14) bezeichnet. 
Der Selektionsdruck in diesem Algorithmus wird durch eine fitnessproportionale Eltemselektion 
erzeugt. 

Um die weiteren Betrachtungen zu motivieren, beschaftigen wir uns an dieser Stelle kurz 
mit dem moglichen Potential der Rekombination. Wenn man den populationsbasierten binaren 
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X •=> 

Bild 3.18 Der 1-Punkt-Crossover trennt die Eltemindividuen an einer zufalligen Position und rekombiniert 
die entstehenden linken und rechten Teile. 

Algorithmus 3.14 
GENETISCHER-ALGORITHMUS( Zielfunktion F ) 

1 t^O 
2 P(t) ^- erzeuge Population mit ji dgerade PopulationsgroBeD Individuen 
3 bewerte P{t) durch F 
4 while Terminierungsbedingung nicht erfuUt 
5 &o^P' ^ Selektion aus P{t) mittels SELEKTION-FITNESSPROPORTIONAL 
6 dEssei:P' = (^(i) , . . . ,^(^))^ 
7 P" ^ 0 
8 f o r z ^ l , . . . , f 
9 do ^ w ^ wahle Zufallszahl gemaB t/([0, 1)) 

10 ifn<Px dRekombinationswahrscheinlichkeitD 
11 then E 5 , C ^ EIN-PUNKT-CROSSOVER(.4(2^-I),^(2')) 

12 else ^B^A^^'-^^ 
13 L C ^ ^ ( 2 / ) 

14 B ^ BINARE-MUTATION(5) 

15 C ^ BiNARE-MUTATION (C) 

16 ^P" ^P"o{B,C) 
17 bewerte P" durch F 
18 t ^ t + \ 
19 ^P{t)^P" 

Hillclimber mit dem genetischen Algorithmus vergleichen mochte, ist ein mogliches Kriterium, 
wie schnell im besten Fall das Optimum gefunden werden kann. Den Optimierungsprozess des 
binaren Hillclimbers hatten wir an friiherer Stelle als Markovprozess modelliert. Wie Bild 3.3 
verdeutlicht, werden bei einem ungiinstigen Ausgangsindividuum alle Zustande der Markovkette 
durchlaufen, d. h. es sind wenigstens / Generationen notwendig. Dies andert sich auch nicht beim 
populationsbasierten binaren Hillclimber, da dort ebenfalls in der /-ten Generation bei jedem 
Individuum hochstens / Bits auf den Wert 1 gesetzt wurden. 

Wenn wir allerdings die Rekombination hinzunehmen, kann sich auch bei einer ungiinstigen 
Anfangspopulation durch giinstige Mutationen und ein geschicktes Mischen der Individuen bei 
der Rekombination sehr schnell ein optimales Individuum herausbilden. Dies ist in Bild 3.19 
fiir ein kleines Beispiel am Einsenzahlproblem veranschaulicht. Insgesamt ist bereits nach log / 
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Bild 3.19 Ftir das Einsenzahlproblem kann sich auch aus der schlechtestmoglichen Population (nur mit Nul-
len belegte Individuen) durch geschickte Mutationen in der ersten Generation und logarithmisch 
viele Iterationen mit passenden Rekombinationen das Optimum bilden. 

Generationen das Optimum erreichbar. Dies zeigt, dass erst durch die Rekombination mit ih-
rer Vermischung verschiedener Individuen die Parallelitat des Populationskonzepts konstruktiv 
genutzt werden kann. 

Die tatsachliche Suchdynamik ist allerdings wesentlich komplizierter, da hier Wechselwirkun-
gen zwischen der Selektion, der Rekombination und der Mutation auftreten. Daher versuchen 
wir auch nicht an dieser Stelle, erwartete Laufzeiten herzuleiten. Vielmehr rtickt die Frage in den 
Mittelpunkt, wie schnell etwa bei dem obigen Problem ein Muster - z. B. zwei Nullen am Beginn 
des Individuums - aus der Population verdrangt wird bzw. sich das Muster bestehend aus zwei 
(oder mehr) Einsen am Anfang vermehrt. 

Zunachst werden die benotigten Begriffe in der folgenden Definition eingefuhrt. 

Definition 3.15 (Schema): 
Fiir einen binaren Genotypen ^ = B̂  ist jedes Element / / G {0,1, *}^ ein Schema, das 
die Menge der folgenden Individuen beschreibt: 

^{H) = {A.Gi • • A.Gi G ^ I VI < / < / : {Hf ^ ^) ^ ( .̂G,- =/ / / )} . 

Die Ordnung eines Schemas o{H) ist die Anzahl der definierten Positionen (7^ *) 

o{H) = # {/ I (1 < / < /) A {Hi 7̂  *)} . 

Die deftnierende Ldnge eines Schemas 5 (H) ist die maximale Entfemung zweier defi­
nierten Positionen im Schema. 

5 ( / / ) = m a x { | / - 7 | | ( l < / , 7 < / ) A (//,• 7̂  *) A {Hj ^ ^)} 

Beispiel3.21: 
Fiir ^ = {0, 1 }^ beschreibt //i = *0 * 010 die Menge 

j^{Hi) = {000010,001010,100010,101010}. 
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Bild 3.20 Links werden die Elemente von^ = B^ in einen Wtirfel eingebettet. Rechts wird veranschaulicht, 
welche Individuen jeweils durch ein Schema zusammengefasst werden. 

H\ hat die Ordnung o(H\) = 4 und die definierende Lange 5( / / i ) = 4. Das Schema 
//2 = 1 1 * * * 0 beschreibt die Menge 

j^{H2) = {110000,110010,110100,110110, 

111000,111010,111100,111110} 

hat die Ordnung 0(7/2) = 3 und die definierende Lange 5 (7/2) = 5. 

Welche Individuen jeweils durch ein Schema zusammengefasst werden, veranschaulicht Bild 3.20 
an einem Wiirfel. Dabei entspricht jede Ecke des Wtirfels einem Individuum aus dem Genotyp 
^ = B^. Durch ein Schema wird nun eine Ebene durch den Suchraum gelegt, die die entsprechen-
den Individuen des Schemas enthalt. Da die Ebenen nicht nur zweidimensional sind - dies hangt 
direkt von der Ordnung des Schemas ab - , werden sic mathematisch korrekt als Hyperebenen 
bezeichnet. 

Konkret wird im Weiteren untersucht, wie sich der Anteil der Vertreter eines Schemas in der 
Population durch die Berechnung einer neuen Generation (gemaB des genetischen Algorithmus 
aus Algorithmus 3.14) verandert - d. h. es wird die zu erwartende Anzahl der Vertreter einer 
solchen Eigenschaft in der nachsten Generation abgeschatzt. Diese Grundfi-agestellung ist in 
Bild 3.21 dargestellt. 

Wir werden dadurch herausfinden, welche Eigenschaften (Schemata) sich besonders stark 
vermehren. Die Hoffnung ist, dass dies als ein Indikator zu werten ist, wann eine so positive 
laufzeitverkiirzende Kombination verschiedener Bausteine wie in Bild 3.19 vorkommt. »Gute« 
Eigenschaften sollten sich schneller vermehren als schlechte, wodurch deren erwiinschte Kombi­
nation in einem Individuum rascher herbeigefiihrt wird. 

Satz 3.3 (Schema-Theorem): 

Wird GENETISCHER-ALGORITHMUS (Algorithmus 3.14) auf eine FunktionF angewandt, 
die auf ^ = B^ definiert ist, dann gilt fur ein beliebiges Schema He {0,1, *} und die 
Population P{t) = (^*^^''^)I<K^ zur Generation t, dass in der nachsten Generation die 
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Bild 3.21 Untersuchungsgegenstand des Schematheorems: Wie verandert die einmalige Anwendung von 
Eltemselektion, Rekombination und Mutation den Anteil der Instanzen eines Schematas in der 
Population? 

erwartete Anzahl der Instanzen von H in P{t + 1) wie folgt abgeschatzt werden kann: 

wobei F ' die durchschnittliche Giite der Individuen in der Population P(t) bezeich-
net und F\J die durchschnittliche Giite derjenigen Individuen in der Population P{t) 
ist, die zusatzlich ein Vertreter des Schemas H sind. 

Beweis 3.3: 

Wenn wir uns im Beweis darauf beschranken, wie viele Vertreter von H durch die El­
temselektion ausgewahlt werden und nicht durch die Rekombination oder Mutation 
aus ^{H) herausfallen, dann haben wir sicher eine untere Schranke fur der betrachte-
ten Erwartungswert berechnet. Unberticksichtigt bleiben dabei neue Vertreter von H, 
die durch die Kombination von zwei Nicht-Vertretem von H entstehen. 

Die Auswahlwahrscheinlichkeit fiir ein Individuum mit der Eigenschaft H betragt 

Psel{H,t) 
AeP{t) und A.GeJ^iH) ^BeP{t)^-^ 

AeP{t) undA.GeJ^iH) jl ' F' ' 

11 F AeP{t) und A.Gey{H) 
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Tabelle 3.6 
Beispielhafte Population zur Illustration des Schema-
Theorems: Die Individuen haben die Lange 20, wobei 
hier jeweils nur die ersten 5 Bits dargestellt werden. 

Individuum 

10101... 
01101... 
01100... 
11101... 
11000... 

Giite 

3 
3 
2 
4 
2 

Individuum 

00001... 
10001... 
01001... 
11001... 
OHIO... 

Gtite 

1 
2 
2 
3 
3 

#{1 < / < Al I A^'''\G e J{H)}-Fy it) 

H-F it) 

Ein Individuum mit A.G G -^{H) v^ird durch eine Mutation nicht zerstort, falls 
an den definierenden Stellen des Schemas keine Mutation auftritt. Dies geschieht mit 
Wahrscheinlichkeit 

o(H) P^mut{H) = {\-p^) 

Ein Individuum mit A.G £ ^{H) vŝ ird durch einen Crossover zerstort, falls der 
Crossover angev^andt v^ird (mit Wahrscheinlichkeit px), der Crossoverpunkt innerhalb 
der definierenden Positionen des Schemas liegt (mit Wahrscheinlichkeit -jz\) tind der 
Partner bei der Rekombination nicht die zerstorten Teile des Schemas wiederherstellt 
(mit Wahrscheinlichkeit < 1 — psei{H^t)). Damit ergibt sich die Gesamtvs^ahrschein-
lichkeit, dass der Crossover die Eigenschaft H nicht beeinflusst, als 

P^rek{H,t) >\-px 
/ - I 

{l-psel{H,t)). 

Der Envartungsvs^ert hinsichtlich des Anteils der Population in ^{H) entspricht genau 
der Wahrscheinlichkeit, dass ein entstehendes Kindindividuum noch die Eigenschaft 
H hat. Da Eltemselektion, die Rekombination und die Mutation unabhangige Zufalls-
ereignisse sind, ergibt sich die untere Schranke ftir den Erwartungsvv^ert als Multiplika-
tion der FaktorenPsei{H, t), p-.mut{H) undp-.rek{H, t). 

Beispiel 3.22: 

Zur Illustration des Schema-Theorems betrachten W\x die Population P{t) in Tabel­
le 3.6 bestehend aus zehn Individuen mit ^ = B^^, v^obei v^ir lediglich die ersten fiinf 
Bits darstellen. Als Mutationsrate vv^urde Pm = ^ tind als Rekombinationsvs^ahrschein-
lichkeit px = 0,^ gev^ahlt. Die Fitness sei die Anzahl der Einsen in den dargestellten 

:2,5. Bits,d.h. F^'^ 
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Fur //i = *11 * * . . . mit 4 Vertretem gilt FJ^| =3,0 und 

Env[;.r)]> 4^-f l -4: )^ 0-0,8.1.0 
L^^ J - 10-2,5 V 20/ V ' 19 V 10-2,5/7 

Es ist damit zu rechnen, dass sich dieses Schema leicht vermehrt. 

Fiir //2 = * * 00 * . . . mit 5 Vertretem gilt FĴ ^ =2,0 und 

Env[;.r^]> 1 1 ^ - ( 1 - 1 ) ^ ( 1 - 0 , 8 . 1 . 0 
V^H J - jQ.2^5 V 20/ V ' 19 V 10 .2 ,5 / / 

Durch die schlechtere durchschnittliclie Giite von H2 ist zu erwarten, dass weniger 
Vertreter in der Population enthalten sein werden. 

Fiir //s = 1 * * * 1 . . . mit 4 Vertretem gilt F^j^ =3,0 und 

V^H J - 10-2,5 V 20/ V ' 19 V 10 .2 ,5 / / 

Durch die groBere definierende Lange von 7/3 ist zu erwarten, dass weniger Vertreter 
in der Population enthalten sein werden. 

Fiir 7/4 = *110 * . . . mit 3 Vertretem gilt FĴ ^ =3,0 und 

Env[;.r)]> 1 1 ^ - ( 1 - 1 ) ^ ( 1 - 0 , 8 . 1 . ( 1 - - ^ \.^H J - jQ.2^5 V 20/ V ' 19 V 10 .2 ,5 / / 

Auch hier ist durch die groBere Ordnung von 7/4 zu erwarten, dass weniger Vertreter 
in der Population enthalten sein werden. 

Durch drei kleine Abschatzungen wird das Schema-Theorem zu der folgenden bekannteren Fas-
sung vereinfacht. 

KoroUar 3.1 (Einfaches Schema-Theorem): 

Unter den Voraussetzungen von Satz 3.3 gilt 

Env[;.r)]>;.«.^.(1-0(7/).;..-;...f(^). 

Beweis 3.4: 

An der rechten Seite von Gleichung (3.1) aus Satz 3.3 werden die folgenden Abschat­
zungen vorgenommen. 

Fiir 0 < />. < 1 und o(77) > 0 gilt die Bemoullische Ungleichung 

{\-p,„r^"^>\-o{H)-p„. 
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Die Wahrscheinlichkeit fiir die Auswahl des Crossover-Partners kann vemachlas-
sigt werden, d. h. 

Und abschlieBend gilt die folgende Abschatzung 

{\-o{H)p,„)(l-p,^)>\-o(H)p„-p,^. 

Was bereits an obigem Beispiel deutlich wurde, kann jetzt auch leicht an dem Korollar abgelesen 
werden: Schemata mit iiberdurchschnittlicher Giite, kleiner definierender Lange und geringer 
Ordnung vermehren sich rasch. Solche Schemata werden auch Bausteine (engl. building block) 
genannt. In der sog. Baustein-Hypothese (engl. building block hypotheses) wird angenommen, 
dass sich durch die Kombination solcher sich stark vermehrender Bausteine iiberlegene Indivi­
duen bilden. 

Beispiel 3.23: 
Um abschlieBend die Aussage des Schema-Theorems nochmals zu illustrieren, werden 
mehrere Schemata wahrend einer Optimierung beobachtet. Ein GENETISCHER-ALGO-

RiTHMUS mit Rekombinationswahrscheinlichkeit/?x = 1,0 und Mutationsrate Pm = j ^ 
soil eine mit 16 Bits standardkodierte Zahl maximieren. Der Optimalwert ist also der 
Bitstring 111 . . . 111 und entspricht dem Giitewert 65 536. Die recht groBe Population 
mit 400 Individuen verringert statistische Effekte und sorgt fiir leichter interpretierba-
re Ergebnisse. Bild 3.22 zeigt die Ergebnisse der ersten 20 Generationen. Deutlich ist 
im Bild zu erkennen, wie unterschiedlich die Veranderung der Anteile an der Popu­
lation fiir die verschiedenen Schemata ausfallt. Dies spiegelt zumindest zu einem ge-
wissen Grad die Aussage des Schema-Theorems wider. Je groBer die Ordnung eines 
Schemas ist, desto kleiner ist auch der Anteil in einer (zufallig belegten) Population. 
Vergleicht man die Schemata 11*... und 1111*..., sollte einerseits das Wachstum des 
ersteren groBer sein, da Ordnung und definierende Lange kleiner sind, aber anderer-
seits hat das zweitere eine wesentlich bessere beobachtete Giite. Tatsachlich wachst 
das Schema 1111*... selbst in den ersten acht Generationen relativ starker als 11* 
Das Schema 11111111*... zeigt jedoch kaum ein Wachstum, vermutlich da die defi­
nierende Lange und die Ordnung zu groB sind. Auch das Schema ... * 1111 zeigt kein 
Wachstum bedingt durch seine mittelmaBige durchschnittliche Giite. Ebenso kann sich 
Schema 11*.. . *11 kaum durchsetzen, da aufgrund der maximalen definierenden Lan­
ge das Schema hci px = 1,0 aus keinem einzelnen Eltemindividuum iibemommen 
wird, sondem jede Generation neu zusammengefiigt werden muss. 

Es wurden im Laufe der Zeit verschiedene Kritikpunkte an dem Schema-Theorem geauBert, die 
sich grob in zwei Klassen einteilen lassen: erstens die Frage, inwieweit die Aussage iiberhaupt 
fiir eine Optimierung relevant ist, und zweitens ein kritisches Hinterfragen der durch den evolu-
tionaren Algorithmus definierten Randbedingungen. 
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Bild 3.22 Beispielhafte Veranschaulichung, wie sich der Anteil der Individuen in einer Population hinsicht-
lich verschiedener Schemata verandert. Es wurde eine standardbinar mit 16 Bits dargestellte Zahl 
maximiert. Der evolutionare Algorithmus war ein genetischer Algorithmus mit PopulationsgroBe 
400. 

Ein bedeutendes Problem hinsichtlich der Aussagekraft des Schema-Theorems stellt der tJber-
gang von der Berechnung einer neuen Generation zum Optimierungsprozess als Ganzes dar, wie 
dies bei der Baustein-Hypothese geschieht. Angenommen die Aussage des Schema-Theorems 
wiirde fiir ein spezielles Schema identisch in jeder Generation gelten. Dann konnte man daraus 
ein exponentielles Wachstum des Schemas ableiten, da der neue Erwartungswert wieder direkt in 
die Auswahlwahrscheinlichkeit der nachsten Generation eingeht. Diese Annahme gilt allerdings 
nicht allgemein, da sich die durchschnittliche Giite des betrachteten Schemas in jeder neuen ak-
tuellen Population verandert. GemaB des Schema-Theorems vermehren sich gerade diejenigen 
Schemata mit hoher Qualitat tiberproportional, so dass damit zu rechnen ist, dass auch die durch­
schnittliche Giite der gesamten Population sich verbessert und der durchschnittlichen Qualitat 
des Schemas annahert. 

Ein weiterer Kritikpunkt an der Relevanz der Aussage befasst sich damit, inwieweit stark 
vermehrende Schemata tatsachlich positiv zur Giiteentwicklung der Optimierung beitragen. Dies 
wird meist implizit angenommen - ist allerdings nur dann der Fall, wenn die durch Schemata 
beschriebenen Telle eines optimalen Losungskandidaten auch in suboptimalen Individuen einen 
positiven Effekt auf deren Giite haben. Es lassen sich jedoch leicht Probleme konstruieren, bei 
denen iiberdurchschnittlich bewertete Schemata zu suboptimalen Losungskandidaten fiihren bzw. 
die Giite verschlechtem. 
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Beispiel 3.24: 

Die Funktion / : B^ ^ R ist wie folgt definiert. 

/ ( 1 1 1 ) = 5 

/ ( 1 1 0 ) = / ( 1 0 1 ) = / ( 0 1 1 ) = 0 

/ ( 1 0 0 ) = / ( 0 1 0 ) = / ( 0 0 1 ) = 2 

/ ( 0 0 0 ) = 4 

Das globale Optimum liegt bei 111, aber alle Schemata des globalen Optimums fiihren 
in die entgegengesetzte Richtung. So gilt beispielsweise 

/ ( ! * * ) = - < / ( 0 * * ) = 2 u n d 

/ ( l l * ) = ^ < / ( 0 0 * ) = 3 . 

Analoge Aussagen gelten auch fiir / ( * 1 *), / ( * * 1), / ( 1 * 1) und / ( * 11). 

Existierende Zweifel, ob ein evolutionarer Algorithmus tiberhaupt die technischen Randbedin-
gungen fiir das Schema-Theorem erfiiUt, werden in den folgenden beiden Uberlegungen aus-
gedrtickt. Erstens sind die Populationen in der Regel sehr klein vergHchen mit der GroBe des 
Suchraums: WahrscheinHchkeitsaussagen iiber so kleinen Mengen sind immer kritisch zu hinter-
fragen. Zweitens unterHegt die Aussage des Schema-Theorems der Annahme, dass die beobach-
tete QuaUtat eines Schemas der tatsachhchen durchschnitthchen Qualitat aller Instanzen eines 
Schemas entspricht. Dies gih aber insbesondere dann nicht mehr, wenn einige Teile der Indivi­
duen in der Population bereits auf einem festen Wert konvergiert sind. Dadurch werden ganze 
Teilbereiche oder Hyperebene aus der Schatzung der tatsachhchen Schema-Qualitat durch die 
beobachtbare Qualitat ausgeschlossen. Vor allem wenn eine hohe Varianz innerhalb der vertrete-
nen Qualitatswerte in einem Schema herrscht, sorgt dieses Ausblenden von Losungskandidaten 
bei der beobachtbaren Giite fiir teilweise grobe Fehlschatzungen. 

3.3.3 Formae als Verallgemeinerung der Schemata 

Da das im vorigen Abschnitt vorgestellte Schema-Theorem ausschlieBlich fiir das Verfahren GE-
NETiscHER-ALGORITHMUS (Algorithmus 3.14) formuliert wurde, kann man sich fragen, ob ei­
ne ahnliche Aussage auch fiir andere evolutionare Algorithmen moglich ist. Hierfiir werden in 
diesem Abschnitt die Schemata verallgemeinert, wobei uns insbesondere auch phanotypische 
Eigenschaften statt der genotypisch definierten Schemata interessieren. 

Beispiel 3.25: 
Um die wesentliche Grundidee der Schemata herauszuarbeiten, wird nochmals H\ = 
*0 * 010 aus Beispiel 3.21 betrachtet. H\ fasst die Losungskandidaten 

^{Hx) = {000010,001010,100010,101010} 
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Bild 3.23 Schematische Beschreibung der Masken und Schemata innerhalb der Theorie der Formae. 

zusammen. Diese zeichnen sich genau dadurch aus, dass sie an den Positionen Pos = 
{2, 4, 5, 6} dieselben, namlich die vom Schema vorgegebenen, Werte haben. Mathe-
matisch lasst sich das Vorgehen iiber die Aquivalenzrelation 

A.G -^Pos B.G : ^ V/ e Pos : A.Gt = B.Gj 

beschreiben. Dadurch wird der komplette Suchraum in insgesamt 16 Aquivalenzklas­
sen geteilt - entsprechend der moglichen Werte an den Bits der Positionen in Pos. So 
gih: 

^ ( / / i ) = [100010]^^^^ = {000010, 001010, 100010, 101010} 

bzw. [101110]^^^^ = {000110, 001110, 100110, 101110}. 

Allgemein definiert fur ^ = B^ jede Menge Pos C { 1 , . . . , /} eine Art Maske, welche die fiir 
eine Eigenschaft irrelevanten Telle des Losungskandidaten ausblendet. Eine Maske mit #Pos = k 
definierten Stellen erzeugt genau 2^~^ Aquivalenzklassen. 

Statt aus den Masken konnen wir auch aus beliebigen anderen Eigenschaften, z.B. der Zu-
gehorigkeit eines reellwertigen Werts zu einem Intervall oder das Vorkommen einer Kante in 
einer Rundreise fiir das Handlungsreisendenproblem, eine Aquivalenzrelation ableiten. Die Ei­
genschaften bezeichnen wir dann als Merkmale. Die daraus resultierenden Aquivalenzklassen 
werden als Formae (singular: Forma) bezeichnet. Bild 3.23 zeigt die Zusammenhange zwischen 
den unterschiedlichen Begriffen. 

Definition 3.16 (Formae): 

Sei ^ die Menge der zu berticksichtigenden Merkmale. Ein Merkmal (oder Eigen­
schaft) Merk G ̂  induziert eine Aquivalenzrelation ^uerk, so dass fiir zwei beliebige 
Individuen mit A.G^B.G e^ entweder A.G ^Merk B.G gilt, falls das Merkmal iden-
tisch bei beiden Individuen ausgepragt ist, oder sonst A.G i^uerk B.G. Damit ergibt 
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sich zu jedem Individuum^.G seine Aquivalenzklasse bzw. Forma 

[^'G\^Merk •= {BG e^\A.G ^Merk B.G}. 

Die Anzahl der Formae, die durch die Aquivalenzrelation eines Merkmals eingefiihrt 
wird, heiBt Genauigkeit des Merkmals. Femer sollen zwei Formae A und A' miteinan-
der vertrdglich (A ixi A') heiBen, wenn es ein Individuum gibt, das beide Eigenschaften 
miteinander vereinbaren kann, d. h. 

AixiA':^AnAV<2) 

Beispiel 3.26: 
Zwei unterschiedliche Merkmale werden fiir das Handlungsreisendenproblem am Bei­
spiel einer Probleminstanz mit vier Stadten betrachtet. Zunachst iibemelimen wir die 
Masken der Schemata fiir Permutationen als Genotyp. D. h. aus Merk = {3} folgert, 
dass zwei Rundreisen genau dann aquivalent (hinsichtlich der Maske) sind, wenn die-
selbe Stadt als dritte Stadt besucht wird. Damit ergibt sich eine beispielhafte Forma 
wie folgt. 

[(1, 2, 3, 4)].^^^, = {(1, 2, 3, 4), (1, 4, 3, 2), (4, 2, 3, 1), 

(2, 1, 3, 4), (4, 1, 3, 2), (2, 4, 3, 1)} 

Wie man sich leicht veranschaulichen kann, haben die Losungskandidaten der Forma 
nur sehr wenig Gemeinsamkeiten beziiglich des zu losenden Problems - insbesondere 
war ja auch die KANTENREKOMBINATION (Algorithmus 2.4) so definiert, dass eine an-
dere Art der Information erhalten bleibt als die Position einer Stadt in der Tour. Daher 
wollen wir in einem zweiten Merkmal die Kanten der Rundtour berticksichtigen. Und 
zwar sollen durch das Merkmal Merk' = {3} diejenigen Losungskandidaten als gleich-
wertig betrachtet werden, die nach der Stadt 3 dieselbe Stadt besuchen, d. h. dieselbe 
Kante benutzen. Formal ist die Aquivalenzrelation wie folgt definiert 

A.G r^Merk' B'G ^3iJ e {\,... J} \ {A.Gi = ?> A B.Gj = 3 A 

^•^ (z mod/) + l = ^ - ^ ( 7 mod/)+l)-

Damit wird dann beispielsweise die folgende Forma eingefiihrt 

[(1, 2, 3, 4)].^^^^, = { ( 1 , 2, 3, 4), (2, 1, 3, 4), (2, 3, 4, 1), (1, 3, 4, 2), 

(3, 4, 1, 2), (3, 4, 2, 1), (4, 1, 2, 3), (4, 2, 1, 3)} 

Wie man leicht erkennen kann, besteht bei dieser Forma eine starkere phanotypische 
Ahnlichkeit zwischen den verschiedenen Elementen der Forma. 

Notation: Fiir einen gegebenen Genotyp ^ = M^ kann also ein beliebiges Schema H G (MU 
{*})̂  iiber ein Merkmal 

Merk = {i | (1 < / < /) A {Hf ^ *)} 
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und einen Vertreter aus der Menge der Instanzen A.G e ^{H) beschrieben werden. Wir schrei-
ben im Weiteren dann auch H = HMerki^-G). Entsprechend der obigen Definition gilt ebenso 

Auf dieser Grundlage lasst sich das folgende Korollar formulieren, das die Grundidee des 
Schema-Theorems extrahiert. 

Korollar 3.2 (AUgemeines Schema-Theorem): 
SeiP(0 = (^('''•)) \<i<H eine Population zum Zeitpunkt t und A ein Forma. Die Se-
lektion Sel entspricht der /i-maligen Anwendung einer Selektion Sel, die durch die 

Indexselektion IS : R^ ^ { 1 , . . . , ju} definiert ist - d. h. die Wahl der einzelnen In-
dividuen ist voneinander unabhangig. Ferner sei Rek^ : (^ x ^)^ -^ (W x ^)^ ein 
Rekombinations- und Mut^ : ^ x J^ ^ ^ x ^ ein Mutationsoperator mit ^ = {_L}. 
Dann gilt bei einer Anwendung in dieser Reihenfolge: 

Erw[pp^^] >Psel{A,t) -p^rnut{A,t) -p^reki^^t), (3.2) 

wobei 

PseiiA^ t)= X ^HeE0 (^(0) = (̂ )] 
AePit)mitA.GeA 

p^mut{A, t) = Vx^^^[Mut^ {A).GeA\Ae P{t) A A.G G A] 

p^reM.t) = Vx^^^^B.Ge^[Rek^{^.B).G G A 1.4 G P{t) A A.G G A]. 

Um den Effekt zu erreichen, dass qualitativ hochwertige Formae iiberproportional stark wachsen, 
mtissen die durch die Formae beschriebenen Eigenschaften der Losungskandidaten, das Optimie-
rungsproblem und die betrachteten Operatoren zusammenpassen. Im Folgenden werden einige 
Regeln vorgestellt, die den gewtinschten Effekt nachhaltig untersttitzen. 

Zunachst miissen die Formae die Population so partitionieren, dass sich wahrend des Optimie-
rungsprozesses die beobachteten Gtitewerte verschiedener Formae wesentlich unterscheiden und 
auch tatsachlich reprasentativ fiir die Formae sind. Dadurch wird der Term psei in Korollar 3.2 
aussagekraftiger. Zwei Regeln lassen sich hierfiir formulieren. Erstens soil die Dekodierungs-
funktion eine minimale Redundanz aufweisen; d. h. jede Komponente im Genotyp ^ sollte auch 
zusatzliche Information liefem. Idealerweise stellt daher die Dekodierungsfunktion eine Bijekti-
on dar. Ist dies nicht moglich, existieren mindestens zwei Individuen A und B mit ^.G, B.G ^^ 
{A.G ^ B.G), die durch die Dekodierungsfunktion auf denselben Wert dec (A.G) = dec{B.G) 
abgebildet werden. Dann sollten die Individuen A und B in denselben Formae enthalten sein, 
d. h. [A.G]r^j^^^j^ = [B.G]r^j^^^j^. Damit wird gewahrleistet, dass die den Formae zugrundeliegenden 
Eigenschaften phanotypisch relevant sind. Beispielsweise wiirden beim Handlungsreisendenpro-
blem die drei Rundreisen (1, 2, 3, 4, 5, 6), (6, 1, 2, 3, 4, 5) und (1, 6, 5, 4, 3, 2) in 
denselben Formae (hinsichtlich der benutzten Kanten) liegen, da sie komplett dieselben Kanten 
benutzen. Zweitens sollen darliber hinaus vor allem Individuen mit ahnlicher Giite bzw. phano-
typischer Auspragung in einer Forma zusammengefasst werden - das Prinzip der Ahnlichkeit in 
Formae. Dadurch wird der Kritik am Schema-Theorem hinsichtlich der hohen Giitevarianz bei 
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kleinen Populationen gegengewirkt. Dies sollte insbesondere fiir Merkmale mit geringer Genau-
igkeit gelten, da fur solche Formae leicht Informationen angesammelt werden konnen - aller-
dings eben auch meist mit einer sehr hohen Varianz oder Fehlerrate. 

Nach der Baustein-Hypothese sollen sich kleine positive Eigenschaften an Individuen zu 
groBen (hoffentlich auch positiven) Eigenschaften verbinden. Dies ist bei den Formae nur dann 
moghch, wenn die zugrundeliegende Eigenschaft eine mannigfahige Granularitat aufweist und 
es feingranulare Formae gibt, die Teil verschiedener grobgranularer Formae werden konnen, wie 
dies beispielsweise das Schema 011 * ** fiir die Schemata 011*0* und 01101* erfiillt. Mathema-
tisch kann man dies iiber einen geforderten Abschluss gegen den Schnitt von Formae formulieren, 
d.h. 

V Formae A, A' 3 Forma A'': A n A' = A''. 

AbschlieBend muss die Rekombination die Kombination der verschiedenen Merkmale und 
deren Wachstum in der Population entsprechend untersttitzen. Diesbeziiglich werden drei unter-
schiedliche Aspekte im Weiteren vorgestellt. Erstens sollte der Rekombinationsoperator eine be-
trachtete Forma moglichst erhalten, d. h. die Wahrscheinlichkeit p^reki^-, 0 i^ Lemma 3.2 sollte 
moglichst groB sein. Dies wird unter anderem durch eine Vertrdglichkeit der Formae mit dem Re­
kombinationsoperator erreicht, die besagt, dass alle moglichen Nachkommen zweier Instanzen 
einer Forma ebenfalls eine Instanz der Forma sind. 

\/^^A,BmitA.G,B.Ge^\/t, eE: Rek^A,B).GeA 

Neben der Forderung, dass gemeinsame Eigenschaften der Eltem auf die Kinder iibergehen, soll­
te sich zusatzlich jede im Kindindividuum auftretende Eingenschaft auf mindestens ein Eltemin-
dividuum zuruckfiihren lassen. Man spricht auch von der Ubertragung von Genen oder phano-
typischen Allelen. Dies wird vor allem fiir die Merkmale mit minimaler Genauigkeit formuliert, 
die sich nicht weiter zerlegen lassen. 

Vv4,5V(̂  GSVminimalesA:i?eyl^(^,^).GGA ^ (^.G G A V ^.G G A) 

Ist dieses Entwurfsprinzip erfiillt, handelt es sich um einen rein kombinierenden Operator. An-
demfalls sagt man auch, dass der Rekombinationsoperator eine implizite Mutation durchfiihrt. 

Und drittens mochten wir noch garantieren, dass ein Rekombinationsoperator tatsachlich auch 
alle moglichen Kombinationen von verschiedenen Merkmalen erzeugen kann. Dies ist die Ver-
schmelzungseigenschaft. 

VA, A' mit A cx] A' Vv4 mitv4.G G A V5 rniiB.G G A' 3(̂  G 5 : Rek^ {A,B).G G An A' 

Werden diese Forderungen an das Optimierungsproblem, die Formae und den Rekombinations­
operator erfiillt, sollte sich der positive Effekt des Schema-Theorems auch bei den evolutionaren 
Algorithmen einstellen, die keine binare Kodierung benutzen. 

/ j \ Tatsachlich gibt es verschiedene Bestrebungen, die obige Forma-Theorie fur einen konstruktiven Entwurf 
II neuer evolutionarer Algorithmen zu benutzen. Hierauf wird noch knapp im Abschnitt 6.2.2 eingegangen. 
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3.3.4 Schema-Theorie und der Suchfortschritt 

Im Laufe der Jahre wurde viel Kritik am Schema-Theorem geauBert. Der vermutHch nachhaltigs-
te Kritikpunkt besagt, dass das Schema-Theorem keine Aussage zum eigentUchen Suchprozess 
macht. UberdurchschnittHch gute, kleine Bausteine sollen zwar ein starkes Wachstum in der Po­
pulation erfahren, ob dies jedoch eine positive oder negative Auswirkung auf den Fortschritt 
einer Optimierung hat, bleibt offen. Aus dieser Kritik heraus hat der Wissenschaftler Lee Ahen-
berg das Price-Theorem aus der Biologic auf die evolutionaren Algorithmen iibertragen, was ihn 
letztendlich zu der Aussage gefiihrt hat, dass ein Schema-Theorem »fehle«, das tatsachlich aus 
den Schemata eine Aussage zur Gtiteentwicklung ableitet. Altenberg hat spater die gewtinschte 
Aussage hergeleitet, die dann den Namen »fehlendes« Schema-Theorem behalten hat. 

^ \ Wer an dem Price-Theorem interessiert ist, sollte die Originalliteratur zu Rate ziehen. Hier wird lediglich 

II das »fehlende« Schema-Theorem vorgesteUt, da es die interessanteren Uberlegungen erlaubt. 

Das Untersuchungsobjekt ist weiterhin ein GENETISCHER-ALGORITHMUS (Algorithmus 3.14) mit 
fitnessproportionaler Elternselektion - allerdings ohne Mutation. Dafur konnen wir den Rekom-
binationsoperator etwas allgemeiner fassen: Wir erlauben, dass prinzipiell die einzelnen Gene 
von den beiden Eltemteilen beliebig iibemommen werden konnen. D. h. ganz analog zur Be-
schreibung der Schemata als Aquivalenzklassen kann auch hier iiber eine Indexmenge Merk C 
{0 , . . . , /} der Teil des Kindindividuums beschrieben werden, der von einem Eltemteil kommt. 
Fiir ein Individuum A bezeichnet damit das Schema HMerki^-G) alle moglichen Individuen 
^{HMerk{^-G)), die als erstes Eltemteil in Frage kommen. Die komplementare Indexmenge 
Merk = { 1,...,/} \ Merk beschreibt die Menge der moglichen zweiten Eltemteile. Ein Merkmal 
charakterisiert also immer eine konkrete Auspragung der Rekombination. Ublicherweise setzt 
sich ein Rekombinationsoperator aus vielen solcher Auspragungen zusammen, die mit evtl. un-
terschiedlichen Wahrscheinlichkeiten pMerk auftreten konnen. 

Beispiel 3.27: 
Der schon mehrfach betrachtete EIN-PUNKT-CROSSOVER (Algorithmus 3.13) auf ei­
nem Genotyp der Lange / = 4 entspricht der folgenden Menge von moglichen Merk-
malen 

Merke{{\}, {1,2}, {1,2, 3}}, 

die alle mit der Wahrscheinlichkeit pMerk = \ auftreten. Die Merkmale {1,3} lassen 
sich beispielsweise nicht in einem einzelnen Schritt von einem Eltemindividuum tiber-
nehmen. Der uniforme Crossover UNIFORMER-CROSSOVER (Algorithmus 3.11) hat alle 
Teilmengen als mogliche Merkmale 

MerA:e^({ l , . . . ,4} = {0,{l}, {2}, {3}, {4}, 

{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, 

{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, 

{ 1 , 2 , 3 , 4 } } , 

die alle mit der Wahrscheinlichkeit pMerk = î  auftreten. 
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Sei nun ^ = B^ und Merk = {1} der Anteil eines Eltemindividuums. Dann be-
schreibt Merk = {2, 3, 4} den Beitrag des anderen Eltemteils. Fiir ein Kindindi-
viduum A mit A.G = 1001 ergeben sich damit die folgenden durch die Schemata 
HMerk{^'G) = 1 * ** und Hj^{A.G) = *001 beschriebenen moglichen Eltemindivi-
duen. Es gilt 

^{HMerk{A.G)) : {1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111} und 

{0001, 1001}. 

Der im Weiteren prasentierte Ansatz wird der Verkniipfung von Schemata mit dem Suchfort-
schritt auf zwei Ebenen gerecht. Einerseits steht am Ende tatsachlich eine Aussage iiber die 
Differenz der durchschnittlichen Giitewerte nach einer Iteration in der Erwartung. Andererseits 
geht darin der konkrete Zusammenhang zwischen den Giitewerten der Eltemindividuen und 
des Kindindividuums ein. Hierfiir betrachten wir zunachst eine feste aber beliebige Indexmen-
ge Merk einer Rekombination. HMerki^-G) und Hj^AA.G) bezeichnen die moglichen Eltem 
vonv4. Dann misst die Kovarianz 

Gov A.F, 
t{A.G) 

pit) 
•M-G) 

(F«) 

wie stark sich die Gute der Eltem auf das Kindindividuum fflr die festgewahlte Rekombinati­
on tibertragt. Statt der Giite der Eltem wird die durchschnittliche Selektionswahrscheinlichkeit 
betrachtet, die ja gerade proportional zur Giite ist. 

Lemma 3.1: 
Ftir die Kovarianz der Eltem- und Kindgiitewerte gilt 

Gov A.F, 

pit) pit) 
^HMerkiA.G)-^H~^{A.G) 

(0> (F-) 

pit) .F« 
^ , , P pit). HMerkJA.G) H~(A.G) 

= 2 . {A.F-F") ^̂ (̂ ) , PA.G 
A.Ge^ {F">f 

wobei PA.G die Haufigkeit ist, mit der das Individuum A in der Population vorkommt. 

Beweis 3.5: 

Gov 

,(0 ?(0 
HMerkiA.G) H~^(A.G) 

( F W ) 2 

HMerkiA.G)'^ H~^{A.G) HMerk(B.G) H—^jB.G) 

1^ =77n^ PB.G 'PA.G 
B.GG'^ 
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pit) ,p(t) 

2 , {A.F-F") PA.G 
ATe^ {F"') (0x2 

f(0 _pit) 
HMerk(B-G) H--~:(B.G) _ ^ . „ . . . , _^ ^ ^̂ _̂̂ ^ 

S.Geg" (F*'')2 / '^.Geg' 
'•G 

pit) ,pi') 

Die letzten beiden Zeilen sind bis auf das Vorzeichen genau identisch und kiirzen sich 
daher heraus. 

Beispiel 3.28: 
Zur Veranschaulichung des Kovarianzterms betrachten wir ein kleines Beispiel: Eine 
binare Zeichenkette der Lange / = 8 enkodiert standardbinar die Zahlen {0 , . . . , 255}. 
Als Rekombination wird hier fest der Crossover betrachtet, der die beiden ersten 
Bits aus einem Eltemteil und den Rest aus einem anderen Eltemteil tibemimmt (vgl. 
Bild 3.24). Im Weiteren werden die Werte A.F und der Faktor mit den durchschnitt-
lichen Fitnesswerten der moglichen Eltem fiir eine Population betrachtet, die jedes 
mogliche Individuum aus dem Suchraum genau einmal enthalt. Eine hohe Kovari-
anz ergibt sich, wenn die Werte der Eltemgiite moglichst ahnlichen Werten bei den 
Kindindividuen zugeordnet sind. Es werden zwei mogliche Bewertungsfunktionen 
betrachtet. Die Ergebnisse fiir F{x) = x sind in Bild 3.25 dargestellt. Man erkennt 
deutlich, dass die Fitnesswerte der Eltem in vier Abschnitten auftreten, die durch das 
Eltemteil mit den beiden hochstwertigen Bits als definierte Stellen im Schema be-
stimmt sind. Man erkennt ebenso deutlich, dass hier eine hohe Kovarianz zwischen 
den beiden Termen herrscht. Demgegeniiber wird die Bewertungsfunktion F{x) = 
(x— 100)^ in Bild 3.26 gestellt. Auch hier bestimmt das Schema mit der Ordnung 
2 vier Schichten der Elternfitness. Dabei erkennt man deutlich in dem kleinen Kas-
ten, dass die Kovarianz insbesondere im unteren Gtitebereich wesentlich schlechter 
ist. Dies kann die Ubertragung der Giite von Eltem auf die Kinder schwieriger ge-
stalten. 

Damit lasst sich im folgenden Satz der zu erwartende Giiteunterschied zwischen 
zwei aufeinanderfolgenden Populationen bestimmen. 

Bild 3.24 
Der Crossover-Punkt der Rekombination und das ent-
stehende Kindindividuum bestimmen die moglichen 
Eltemindividuen als Schemata. 
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Bild 3.25 Die beiden Faktoren der Kovarianz werden ftir die Bewertungsfunktion F(x) —x ftir alle mogli-
chen Individuen aufgetragen. Der kleine Kasten tragt die Elternfitness iiber die Kindgiite auf und 
sollte fiir eine hohe Kovarianz moglichst der Hauptdiagonalen entsprechen. 
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Bild 3.26 Die beiden Faktoren der Kovarianz werden fiir die Bewertungsfiinktion F(x) = (x — 100)^ fiir alle 
moglichen Individuen aufgetragen. Im Vergleich der Elternfitness mit der Kindgiite im kleinen 
Kasten erkennt man, dass die Kovarianz hier niedriger ausfallt als in Bild 3.25. 
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Satz 3.4 (»Fehlendes« Schema-Theorem): 
Fiir einen genetischen Algorithmus nur mit Rekombination gilt: 

Erw F^^+i) - ^ = X PMerk-[COY 
MerkC{\,...J} \ 

-ljPA.G-PH^^^,iA.G) -PH-iA.G)) ' [A.F-F ) ^ ^ j 

mit Haufigkeiten PHMerki^.G) ^^^ PH {A.G) der erzeugenden Schemata von A.G und 

durchschnittlichen Schematagtitewerten ^//^^^^(^.G) ^^^ Ffj (̂  (̂ ) . 

Vor dem Beweis des Satzes wird zunachst auf seine Bedeutung und mogliche Interpretationen 
eingegangen. Die tatsachlich zu erwartende Veranderung der durchschnittlichen Gtite in einer 
Iteration des Algorithmus wird exakt als eine Summe tiber alle Moglichkeiten, wie die Rekombi­
nation stattfinden kann, auf der rechten Seite dargestellt. Die Summanden setzen sich dabei aus 
dem oben bereits diskutierten Kovarianzterm und einer weiteren Summe zusammen. Die Kova-
rianz macht dabei eine Aussage darliber, wie gut die Rekombination das Problem widerspiegelt 
- d. h. ob die Giitewerte der Eltem einen Bezug zum entstehenden Kindindividuum haben. Die 
innere Summe setzt sich fiir alle moglichen entstehenden Individuen aus einem Term bestehend 
aus den folgenden Teilen zusammen: 

• eine Haufigkeitsinformation beziiglich der beteiligten Individuen 

{PA.G-PHMerk{A.G) 'PH~^{A.G)), 

• eine Qualitatsinformation (A.F — F^ ̂ ) und 

• die Auswahlwahrscheinlichkeit der moglichen Eltem. 

Damit bestimmen die ersten beiden Faktoren wesentlich, ob eine Entstehung des Individuums 
bei einer Rekombination einen positiven oder einen negativen Einfluss auf die Giiteentwicklung 
hat. 

Ein iiberdurchschnittlich gutes Individuum (A.F > F^ ^) wird nur dann eine positiven Auswir-
kung nach sich ziehen, wenn ausreichend viele mogliche Elternindividuen zur Verfiigung stehen 
und das Individuum selbst eher unterreprasentiert ist (PA.G < PHMerM-G) ' PH--^(A.G))- ^^^ Lei­
den moglichen Extremsituationen sind die folgenden: A existiert noch nicht in der Population, 
kann aber entstehen; dann wird die Guteentwicklung positiv beeinflusst. Ist A allerdings bereits 
in der Population vorhanden und die entsprechenden Eltemschemata sind nur im Individuum A 
enthalten, dann wird trotz der iiberdurchschnittlichen Giite von A die Giiteentwicklung negativ 
beeinflusst, da die Haufigkeit von A wahrscheinlicher abnimmt. 

Dasselbe gilt mit umgekehrtem Vorzeichen fiir unterdurchschnittliche Individuen (A.F <F ) , 
Diese haben einen negativen Effekt, wenn die Schemata in den Elternindividuen relativ stark re-
prasentiert sind (PA.G < PHMerk(A-G)' PH---{A.G))- I^^ anderen Fall ist der Effekt auf die Giiteent­
wicklung positiv. 
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Beweis 3.6 (von Satz 3.4): 
Die Veranderung von einer Generation zur nachsten lasst sich mit den Merkmalen der 
Rekombination wie folgt beschreiben. 

(/+1) V ^HMerk{A.G)'FH~iA.G) 
PA.G - L PMerk - ^ ^ PHMerk{A.G) 'PH~(A.G) (3.3) 

Die unterschiedlichen Veranderungen der Rekombination verbergen sich in den ver-
schiedenen Merkmalen Merk, die mit den fiir jeden Operator unterschiedlichen Wahr-
scheinlichkeiten pMerk auftreten konnen. Indem die Wirkung der Rekombination in 
den beiden Schemata verborgen wird, reduziert sich die Veranderung der Haufigkeit 
auf das Produkt der Auswahlwahrscheinlichkeit der Eltem und der Wahrscheinlichkeit, 
dass die zugehorige Rekombination auftritt. 

Die in der Generation / + 1 zu erwartende durchschnittliche Giite wird in der fol-
genden Formel berechnet, wobei in der zweiten Zeile die Gleichung 3.3 eingesetzt 
wird. 

^ ^ A.Ge'^ 

'pHMerk[A.G)-FH^^{A.G) 

A.'GE'^ ^MerkC{l^...J} ( F ' 

2 , A.F-[ 2 . ^ PMerk ^ ( ^ y - ^ PHMerM.G) 'PH^^{A.G) 

yr f V ,j,^HMerk{A.G)-FH^^{A.G) 
2 . [PMerk- 2 . ^'^ -^ny-: PHMerk{A.G)'PH^^{A.G) 

^ V ' 

= (*) 

Da die Summanden in (*) sehr ahnlich zur Kovarianz in Lemma 3.1 sind, lasst sich 
die Formel (*) wie folgt umformen. 

(*) = COY 

COY A.K 

^^^pHMerk{A.G)-FH^^{A.G) 

, V ,j,^HMerk{A.G)-FH^^{A.G) 

^^f^/'^ ^ ( O j ^ ^PHMer,{A.G) -PH^^iA.G) -PA.G) 

, -p(0 V ^HMerk{A.G)'FH^^{A.G) 

+ ^ ' 2 ^ =7?r; PAG 

FHMerk{A.G)'PH^^{A.G) 

-=[t). ^HMerk{A.G)'PH^^{A.G) 
+ X [A.F-F'^) (,) [PHMerk{A.G)-PH^^{A.G)-PA.G) 

, ^ ( 0 V ^HMerk{A.G)-FH^^{A.G) 
+ ^ ' l a —(A ^ PHMerk{A.G)'PHr^AA.G) 

= (**) 
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Diese Darstellung entspricht schon fast dem im Theorem formulierten Resultat - wir 
mussen lediglich die letzte Zeile nach F^ transformieren. Dies ist genau dann der 
Fall, wenn die Summe in der letzten Zeile 1 ergibt. Um dies zu zeigen, iiberlegen 
wir uns, dass jeder Genotyp genau durch zwei komplementare Schemata beschrieben 
werden kann. Damit lasst sich die Summe iiber alle moglichen Genotypen auch als 
Doppelsumme schreiben, die iiber die Schemata und komplementaren Schemata zur 
Rekombinationsmaske Merk aufsummiert werden. Die Menge der Schemata sei 

HMerk = {HMerk{A.G) \ A.G G ^ } 

und die Menge der komplementaren Schemata 

Dann ergibt sich 

F' 'Y xeHuerk V y^H~^ 

= = • X p^-p^ = 1 

xeHMerk 

=F 

Die Behauptung des Theorems folgt direkt. 

Beispiel 3.29: 
Die Relevanz des »fehlenden« Schema-Theorems wird abschlieBend an einem kleinen 
Beispiel verdeutlicht. Als Genotyp wurde eine binare Zeichenkette mit 16 Bits benutzt, 
die standardbinar eine ganze Zahl enkodiert. Diese Zahl soil maximiert werden. Da­
mit entspricht die ausschlieBlich aus Einsen bestehenden Zeichenkette dem Optimum 
mit dem Giitewert 65 535. GemaB den Voraussetzungen des Theorems wurde keine 
Mutation sondern nur eine Rekombination, hier der EIN-PUNKT-CROSSOVER (Algorith-
mus 3.13), benutzt. Die PopulationsgroBe betragt 400, da so Zufallseffekte minimiert 
werden. Der Algorithmus lief iiber 20 Generationen. Bild 3.27 zeigt die Ergebnisse. 

Im oberen Teil des Bildes ist der Verlauf der durchschnittlichen Giite in der Popu­
lation dargestellt und die Veranderung pro Generation wird mit der Prognose aus dem 
»fehlenden« Schema-Theorem verglichen. Die Genauigkeit der Prognose unterstreicht 
die Bedeutung des Theorems: Vorhersagen hinsichtlich des Erfolgs und Misserfolgs ei-
nes evolutionaren Algorithmus (mit einem gewichtigen Rekombinationsoperator) soil-
ten immer die Korrelation der Giite von Eltern und Kindindividuen beriicksichtigen. 
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Bild 3.27 Der Optimiemngsprozess aus Beispiel 3.29 (Maximierung einer binar kodierten Zahl mit 16 Bits) 
wird iiber 20 Generationen veranschaulicht. Dies demonstriert zweierlei: Das obere Bild unter-
streicht die Genauigkeit des »fehlenden« Schema-Theorems durch einen Vergleich der Prognose 
mit der tatsachlichen Veranderung. Die Grauwerte unten zeigen, wie sich dies in den Bits der 
Individuen widerspiegelt - die einzelnen Bits konvergieren unterschiedlich schnell. 
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Bild 3.28 Dieses Bild erganzt die Prognose der Gtiteveranderung aus Bild 3.27 durch den Beitrag des Ko-
varianzterms fur die 15 unterschiedlichen Crossover-Punkte. Man erkennt deutlich, dass sich der 
Crossover-Punkt mit dem maximalen Giitebeitrag langsam vom Crossover-Punkte zwischen dem 
15-ten und dem 16-ten Bit in der ersten Generation zum Punkt zwischen dem 12-ten und 13-ten 
Bit in Generation 20 verschiebt. 

dtirfen aber auch nicht die relevanten Aspekte der Vertreter komplementarer Schema­
ta in der aktuellen Population als mogliche Eltem unberiicksichtigt lassen. 

Der untere Teil von Bild 3.27 verdeutlicht, v îe sich die Giiteentv^icklung auf die ein-
zelnen Bits des Genotyps ausv^irkt. Deutlich kann man in diesem Beispiel sehen, dass 
zunachst die hochvv^ertigen Bits konvergieren, da sie den groBten Beitrag zur Maximie-
rung der Bev^ertungsfunktion liefem konnen. Dies verschiebt sich leicht v^ahrend den 
ersten 20 Generationen. Ftir das »fehlende« Schema-Theorem bedeutet dies, dass sich 
die Schemata, die einen positiven Einfluss auf die Guteentwicklung haben, ebenfalls 
verandem. Dies ist in Bild 3.28 zumindest ansatzweise durch den Kovarianzv^ert ftir 
die verschiedenen moglichen Crossover-Punkte dargestellt. Zunachst hat ein Crosso­
ver zwischen den beiden hochstwertigsten Bits den groBten Einfluss. Mit zunehmender 
Konvergenz der hochwertigen Bits, nimmt dieser Einfluss ab und in Generation 20 hat 
der Crossover-Punkt zwischen dem 12-ten und dem 13-ten Bit den maximalen Effekt. 

3.4 Selbstanpassende Algorithmen 

Aufeinigegrundsdtzliche Uberlegungen zur Angepasstheit von Operatorenfolgt die beispielhafte 
Darstellung der drei bekannten Techniken zur Anpassung. 

In den bisherigen Abschnitten wurden die zufalligen Operationen Mutation, Rekombination und 
Selektion als wesentliche Bestandteile der evolutionaren Algorithmen vorgestellt und deren Wir-
kungsweise und Interaktion analysiert. Dieses Verstandnis mochten wir in diesem Abschnitt um 
einen Faktor erweitem, der eine Rtickkopplung vom Verlauf der Optimierung zur Wirkungswei-
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Algorithmus 3.15 
DREIERTAUSCH-MUTATION( Permutation^ = {Ai, 
1 
2 
3 
4 
5 
6 
7 
8 

B^A 
u\ ^- wahle Zufallszahl gemaB t/({ 1,.. 
W2 ̂  wahle Zufallszahl gemaB ^({ 1,.. 
W3 ̂  wahle Zufallszahl gemaB ^({ 1,.. 

^U\ ^ ^ M 2 

^ W 2 ^ ^ « 3 

^ M 3 ^ ^ M i 

return B 

.,«}) 

.,«}) 

.,«}) 

se der Operationen erlaubt. So entstehen Algorithmen, die in einem gewissen MaB »intelligent« 
auf sich andemde Rahmenbedingungen reagieren. 

3.4.1 Einfluss des Stands der Suche 

Um die Hypothese dieses Abschnitts hinreichend zu motivieren, greifen wir das Beispiel des 
Handlungsreisendenproblems aus Abschnitt 2.3 wieder auf. Der Vergleich zweier Mutations-
operatoren hatte zu der Schlussfolgerung gefiihrt, dass der Operator INVERTIERENDE-MUTATION 

(Algorithmus 2.2) aufgrund seiner kleineren Modifikationen besser fur das Problem geeignet ist. 

Beispiel 3.30: 
Nun mochten wir die INVERTIERENDE-MUTATION mit einem auf den ersten Blick noch 
ungeeigneteren Operator DREIERTAUSCH-MUTATION (Algorithmus 3.15) vergleichen: 
dem zyklischen Tausch von drei zufalligen Stadten auf der Tour. Zur Optimierung 
wurde hier ein Problem mit 51 Stadten gewahlt und der Algorithmus lief ohne Rekom-
bination. 

Bild 3.29 zeigt rechts den Verlauf der Optimierung. Die vermeintlich ungeeignete 
Operation DREIERTAUSCH-MUTATION ist in den ersten 50 Generationen besser als die 
favorisierte INVERTIERENDE-MUTATION. 

Dies ist ein typischer Effekt, den man haufig beim Vergleich von verschiedenen Operatoren oder 
Algorithmen erlebt. Um dies genauer zu untersuchen, wird die relative erwartete Verbesserung 
als MaB daftir eingeftihrt, welche Verbesserung ein Operator bringen kann. Dabei werden zwei 
wichtige Faktoren erfasst: einerseits die Wahrscheinlichkeit, dass iiberhaupt eine Verbesserung 
eintritt, und andererseits die Verbesserung, die im Erfolgsfall erwartet werden kann. Die mogli-
chen Verschlechterungen bleiben dabei unberlicksichtigt, da sie in der Kegel von der Selektion 
verworfen werden. 

Definition 3.17 (Relative erwartete Verbesserung): 
Die Guteverbesserung von einem Individuum v4 G ̂  zu Individuum B ^^ wird defi-
niert als 

Verbesserung{A^B) = ^ L 
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Bild 3.29 In der Analyse links wurde mit Stichproben aus dem Suchraum die relative erwartete Verbes-
semng als LeistungsmaB fiir die Operatoren berechnet. Die Uberkreuzung zeigt, dass die Ope-
ratoren in unterschiedlichen Giitebereichen besser geeignet sind. Auf der rechten Seite wurden 
Experimente eines rein mutationsbasierten Algorithmus durchgeftihrt. Wie man leicht erkennen 
kann, spiegeln sich die Uberkreuzungen der Analysen in den experimentellen Ergebnissen mit 
einer gewissen Verzogerung wider. 

Dann lasst sich die relative erwartete Verbesserung eines Operators Mut beziiglich 
Individuum A definieren als 

relE VMut,A = Erw [ Verbesserung{A, Mut^ iA))]-

Beispiel3.31: 
Fiir das Handlungsreisendenproblem aus Beispiel 3.30 wurde anhand von Stichproben 
aus dem Suchraum die relative erwartete Verbesserung fiir Individuen unterschiedli-
cher Giitebereiche ermittelt. Dies ist im linken Teil von Bild 3.29 dargestellt. 

Die Analyse zeigt, dass die unterschiedlichen Giitebereiche fiir den Effekt verantwortlich sind. 
Daher ist es zunachst interessant, sich zu iiberlegen, wie haufig die einzelnen Giitewerte im Such­
raum des Optimierungsproblems vorkommen. Dies wurde fiir den kompletten Suchraum eines 
kleinen Handlungsreisendenproblems gemacht und ist in Bild 3.30 dargestellt. Idealisiert kann 
die Verteilung als Glockenkurve im rechten Teil des Bilds dargestellt werden. 

Wenn man nun die Giitewerte der Kindindividuen, die bei der Mutation eines gegebenen Indi-
viduums entstehen konnen, ebenfalls entsprechend ihrer Haufigkeit auflragt, ergeben sich ganz 
ahnliche Verteilungskurven. Diese werden wir im Weiteren auch nur als idealisierte Kurven dar-
stellen. Wichtig ist dabei, wie lokal ein Mutationsoperator ist. Ist er sehr lokal, werden die Giite­
werte sehr eng bei der Giite des Ausgangsindividuums liegen. Ist er weniger lokal (oder auch 
zufalliger), wird ein groBerer Bereich an Giitewerten abgedeckt. Entsprechend ergeben sich dann 
auch schmalere oder breitere Verteilungen der Giitewerte. 
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Bild3.30 Die Dichteverteilung eines Handlungsreisendenproblems mit 11 Stadte (links) und eine ideali-
sierte Dichteverteilung eines Minimierungsproblems (rechts). 

Bild3.31 
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operatoren im Handlungsreisendenproblem. 
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Beispiel 3.32: 
Bei den Operatoren aus Beispiel 3.30 ist dies auch tatsachlich der Fall, wie das Bild 3.31 
zeigt. Deutlich erkennt man, dass die INVERTIERENDE-MUTATION iiber den gesamten 
relevanten Giitebereicli lokaler ist als die DREIERTAUSCH-MUTATION. 

Die Lokalitat eines Operators wird damit zur eindeutigen Erklarung, warum sich die relative er-
wartete Verbesserung der beiden Operatoren so stark verschiebt. Der Grund ist der folgende: Je 
zufalliger ein Mutationsoperator ist, desto starker orientiert sich die Giiteverteilung des Mutati-
onsoperators in seiner Ausrichtung zum aktuellen Gtitewert an der Giiteverteilung des gesamten 
Suchraums. Dies ist in Bild 3.32 schematisch dargestellt. Damit ist auch offensichtlich, dass sich 
bei einer Annaherung an das Optimum die moglichen Verbesserungen zugunsten des lokalen 
Operators verandem. 

Damit folgt die in Bild 3.33 dargestellte These: 

1. Die Qualitat eines Mutationsoperators kann nicht unabhangig vom aktuellen Gtiteniveau 
beurteilt werden. 



110 3 Prinzipien evolutionarer Algorithmen 

Verteilung der Giitewerte des 
lokaleren Operators Verteilung der 

Giitewerte des 
zufalligeren 
Operators 

Giiteverbesserungen aktueller Giitewert 

Verteilung der Giitewerte des 
lokaleren Operators Verteilung der 

Giitewerte des 
zufalligeren 
Operators 

Giiteverbesserungen aktueller Giitewert 

Bild 3.32 Das obere Diagramm zeigt das Verhalten der Nachfolgergtiteverteilungen im mittleren Gtitebe-
reich. Das untere Diagramm entsprechend das Verhalten der Nachfolgergtiteverteilungen nahe 
dem Optimum. 

Giitebereich 
nahe dem Optimum 

schlechter 
Giitebereich 

zufalliger 
Operator ist 
besser 

lokaler Operator ist besser 

Bild 3.33 Skizze der beiden Gtiteintervalle, far die jeweils die Uberlegenheit des zufalligeren und des loka­
leren Mutationsoperators gilt. 
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Algorithmus 3.16 (Anpassung des Parameters <7 am Ende jeder Generation) 
VORDEFINIERTE-ANPASSUNG( Standardabweichung a ] 
1 a' ^ G-a dModifikationsfaktorD 
2 return a' 

2. Ein Operator ist niemals optimal iiber den gesamten Verlauf einer Optimierung - insbeson-
dere sollte er bei zunehmender Annaherung an das Optimum lokaler agieren. 

Dies lasst sich auch unter bestimmten technischen Voraussetzungen beweisen. 

3.4.2 Anpassungsstrategien fiir evolutionare Operatoren 

Der im vorigen Abschnitt festgestellten Notwendigkeit, den Algorithmus an die aktuelle Situa­
tion des Optimierungsprozesses anzupassen, kann mit mehreren Strategien begegnet werden. In 
diesem Abschnitt werden zunachst die drei wichtigsten Techniken an einem Beispiel vorgestellt. 
Wir wahlen hierfur die reellwertige gauBsche Mutation aus Algorithmus 3.4, die wir auf die 
10-dimensionale Spharen-Funktion (siehe S. 78) anwenden. Der Basisalgorithmus entspricht 
dem Hillclimber in Algorithmus 3.2 mit den folgenden Modifikationen: Es werden immer 10 
Kindindividuen aus einem Eltemindividuum per Mutation gebildet und das beste Kindindivi-
duum ersetzt das Eltemindividuum. 

Die gauBsche Mutation eignet sich besonders gut fiir eine Anpassung, da mit dem Parameter 
(7 ein einfacher Regler zur Verfiigung steht, mit dem die Kindindividuen unterschiedlich stark 
im genotypischen Raum gestreut werden konnen. Aus der obigen Beobachtung heraus, dass eine 
Mutation im Verlauf der Optimierung »lokaler« hinsichtlich der Giite werden soil, ware ein erster 
Ansatz, durch eine vorbestimmte Anpassung des a mehr Lokalitat hinsichtlich des Genotyps zu 
erzeugen - in der Hoffnung, dass Lokalitat im Genotyp und in Bezug auf die Giite stark korreliert 
sind. Eine derartige Anpassung kann dadurch erreicht werden, dass Algorithmus 3.16 mit einem 
Modifikationsfaktor 0 < a < 1 am Ende jeder Generation ausgefiihrt wird. 

Beispiel 3.33: 
Lauft der so definierte Algorithmus mit a = 0,98 ab, ergibt sich ein exponentiell fal-
lender Verlauf des Parameters a, wie er im zweiten Graph von oben in Bild 3.34 
dargestellt ist. Hinsichtlich der Optimierung der Spharen-Funktion zeigt der Vergleich 
mit einer Mutation mit konstantem a = 1 in Bild 3.34 oben, dass in diesem Beispiel 
der Wert von a zu schnell verringert wird, so dass die Evolution nicht beschleunigt 
sondern gebremst wird. 

Wie man im obigen Beispiel deutlich sieht, kann die Veranderung des Parameterwertes zwar 
exakt vorgegeben werden, aber eine solche Vorgehensweise garantiert nicht, dass die Parameter-
veranderung auch tatsachlich zum aktuellen Stand der Suche passt, da keine Kopplung zwischen 
dem Suchprozess und der Anpassung besteht. Im Einzelfall kann natiirlich diese Anpassung den-
noch einer konstanten Losung iiberlegen sein. 

Aus den Problemen der vordefinierten Anpassung lasst sich die Lehre ziehen, dass eine starke-
re Rtickkopplung vom Optimierungsverlauf zur Anpassung des Operators hilfreich sein konnte. 
Es wird also sowohl ein Kriterium fiir die Beurteilung des aktuellen Stands der Optimierung als 
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Bild 3.34 Im oberen Graph werden die drei Techniken zur Anpassung des Schrittweitenparameters a mit 
einer Mutation mit konstantem <7 verglichen. Die unteren Graphen zeigen jeweils den Verlauf 
der Schrittweite <7 (als logarithmisch skalierte Werte). 
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Algorithmus 3.17 (Anpassung des Parameters a am Ende jeder k-tQn Generation mit der sog. 
^-Erfolgsregel) 
ADAPTIVE-ANPASSUNG( Standardabweichung a, Erfolgsrate/>5 ) 
1 flSei 0 ein Schwellwert̂  
2 switch 
3 case ps > S : a' ^ a • a (|Modifikationsfaktor(a > 1)D 
4 caseps <S:a' ^ ^ 
5 case ps = Q : G' ^ a 
6 return a' 

auch eine Regel benotigt, die daraus die notwendigen Veranderungen ableitet. Im vorliegenden 
Beispiel konnte man argumentieren, dass im schlechteren Giitebereich wesentlich mehr durchge-
fiihrte Mutationen eine Verbesserung mit sich bringen als im Giitebereich nahe dem Optimum. 
Wird dies als Kriterium herangezogen und mit der zunehmenden Lokalitat bei Annaherung an 
das Optimum verbunden, erhalt man die Regel in Algorithmus 3.17. Sie wird jeweils nach k 
Generationen durchgefiihrt, wobei die Erfolgsrate ps dem Anteil der Mutationen entspricht, die 
in den letzten k Generationen eine Verbesserung bewirkt haben. Solche Verfahren werden als 
adaptiv bezeichnet. 

Beispiel 3.34: 
Angewandt auf die 10-dimensionale Spharenfunktion ergibt sich die Optimierung in 
Bild 3.34. Der zweite Graph von unten zeigt die Entwicklung des Schrittweitenpara-
meters a: Er wird zunachst vergroBert und spater verkleinert. Diese Riickkopplung 
fiihrt hier auch zu einer schnelleren Optimierung. Die Parameter des Algorithmus wur-
den entsprechend theoretischer und empirischer Ergebnisse wie folgt gewahlt: O = ^ 
und a = 1,224. Daher wird diese Anpassung auch als ^-Erfolgsregel bezeichnet. 

Dieser Algorithmus ist ein schones Beispiel fiir das Prinzip der Adaptation. Fiir beliebige Para­
meter eines Algorithmus ist es dennoch eine schwierige Aufgabe, die Anpassungsregeln so zu 
formulieren, dass alle moglichen Situationen im Verlauf einer Suche sinnvoll beriicksichtigt wer­
den. Auch der vorgestellte Algorithmus hat Mangel bei andersgearteten Problemen - bei vielen 
lokalen Optima tendiert er zur vorzeitigen Konvergenz. 

Konsequenterweise wUnscht man sich eine individuellere und flexiblere Anpassung der Para­
meter, was durch die dritte Technik, die Selbstadaptation, moglich ist. Die Grundidee ist, jedes 
Individuum um Kontrollparameter zu erganzen - das ist dann der Bestandteil A.S ^ ^ aus Ab-
schnitt 2.4. Vereinfacht dargestellt merken sich diese sog. Strategieparameter fiir jedes Individu­
um, mit welchen Einstellungen es entstanden ist. Diese dienen als Grundlage fiir die Mutationen 
der nachsten Generationen. Der einfachste Ansatz, die SELBSTADAPTIVE-GAUSS-MUTATION (Al­
gorithmus 3.18), benutzt einen Strategieparameter .̂5*1 = o und unterwirft die Veranderung der 
Strategieparameter ebenfalls einer zufalligen Evolution. Da die Strategievariable hier nicht klei-
ner als 0 werden darf, wird die Veranderung in Zeile (2) des Algorithmus durch Multiplikation 
mit einem positiven Wert (als Ergebnis der Exponentialfunktion) realisiert - die Starke dieser 
Veranderung beriicksichtigt die Dimensionalitat des Suchraums. Wie bereits bei der GAUSS-MU­

TATION (Algorithmus 3.4) werden Werte jenseits der Bereichsgrenzen auf die Grenze gesetzt -
eine Alternative ware, solange zu mutieren, bis das Individuum innerhalb der Grenzen liegt. 



114 3 Prinzipien evolutionarer Algorithmen 

Algorithmus 3.18 
SELBSTADAPTIVE-GAUSS-MUTATION( Individuum^ mitv4.G G M )̂ 
1 
2 
3 
4 
5 
6 
7 
8 

u^yK{0, 1) 
B.Si ^A.Si'Qxp{^^u) 

for each i e {1 , . . . , / } 
do ^ Ui ^- wahle zufallig gemaB c/K(0, 5.*Si) 

5/ ^ Aj + w/ 
5/ ^ max{5/, wĝ- duntere WertebereichsgrenzeD} 

L 5 / ^- rmn{Bi, ogf (|obere WertebereichsgrenzeD} 
return B 

Beispiel 3.35: 
Im untersten Diagramm in Bild 3.34 sieht man deutlich, wie dynamisch der Schritt-
weitenparameter an die aktuelle Situation angepasst wird - haben sich Anderungen 
als unvorteilhaft herausgestellt, konnen sie so auch wieder schnell korrigiert werden. 
Durch den groBen Zufallseinfluss ist die Kurve recht flatterhaft, doch die Tendenz ist 
klar erkennbar und das positive Ergebnis der Optimierung kann hier iiberzeugen. 

± Nachdem die Adaptation bereits die Veranderung der Schrittweite aus dem Optimierungsverlauf ableitet, 
liegt der Wunsch nahe, auch bei einer Selbstanpassung einen effektiveren Lemmechanismus zu nutzen 
als die rein zufallige Variation des Schrittweitenparameters. Wir werden darauf in Abschnitt 4.2 wieder 
zuruckkommen. 

AbschlieBend sei an dieser Stelle noch angemerkt, dass die Anpassung eines Operators nur einen 
Ansatz darstellt. Es gibt in der Literatur auch zahlreiche Techniken fiir die Anpassung der Repra-
sentation der Individuen, der Giitefunktion, des Selektionsoperators oder der PopulationsgroBe. 

3.5 Zusammenfassung der Arbeitsprinzipien 

Die Ergebnisse aus den bisherigen Abschnitten werden zusammengefasst und komprimiert dar-
gestellt. 

In diesem Kapitel wurde immer wieder angedeutet, wie verschiedene Aspekte einer Optimierung 
und die Parameter des dazugehorigen evolutionaren Algorithmus sich beeinflussen. Daher wer­
den diese Abhangigkeiten in diesem Abschnitt nochmals systematisch aufbereitet: graphisch in 
Bild 3.35 und in der folgenden Tabelle. 

Bedingung ZielgroBe Erwarteter Effekt 

Genotyp Mutation Nachbarschaft des Mutationsoperators wird beeinflusst (S. 49) 
Mutation Erforschung zufalligere Mutationen unterstiitzen die Erforschung 

(S. 58/107) 
Mutation Feinabst. giitelokale Mutationen unterstiitzen die Feinabstimmung 

(S. 58/107) 
Mutation Diversitat die Mutation vergroBert die Diversitat (S. 58) 
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Bedingung ZielgroBe Erwarteter Effekt 

Mutation 

Rekombination 
Rekombination 
Div./Rekomb. 

Diversitat 

Selektion 
Selektion 
Selektion 
Div./Rekomb. 

Div./Rekomb. 

Erforschung 
Feinabst. 
Diversitat 

Rekombination 

Forma-Verarb. 

lokale Optima 
Erf./Fein./Sel. 

lokale Optima 

Erforschung 
Feinabst. 
Mutation 

Rekombination 

Erforschung 
Feinabst. 
Diversitat 
Erforschung 

Feinabst. 

Diversitat 
Diversitat 
Selektion 

Forma-Verarb. 

Suchfortschritt 

Suchfortschritt 
Suchfortschritt 

giitelokale Mutationen erhalten lokale Optima des Phanotyps, 
haufig fuhren Mutationsoperatoren sogar mehr lokale Optima 
ein (S. 54) 
extrapolierende Operatoren starken die Erforschung (S. 83) 
interpolierende Operatoren starken die Feinabstimmung (S. 81) 
geringe Diversitat und interpolierende Rekombination dampft 
Ausreisser der Mutation (S. 81) 
hohe Diversitat unterstutzt die Funktionsweise der Rekombina­
tion (S. 80) 
geringer Selektionsdmck starkt die Erforschung (S. 71/77) 
hoher Selektionsdmck starkt die Feinabstimmung (S. 71/77) 
Selektion verringert meist die Diversitat (S. 71) 
kombinierende Rekombination starkt die Erforschung bei hoher 
Diversitat (S. 80) 
kombinierende Rekombination starkt die Feinabstimmung bei 
geringer Diversitat (S. 80) 
erforschende Operationen erhohen die Diversitat (S. 83) 
feinabstimmende Operationen verringem die Diversitat (S. 81) 
geringe Diversitat verringert den Selektionsdmck der fitnesspro-
portionalen Selektion (S. 72) 
Rekombination gemaB den Forma-Regeln unterstutzt das Sche­
ma-Theorem (S. 96) 
Erfolgreiche Forma-Verarbeitung unterstutzt den Suchfort­
schritt (S. 98) 
viele lokale Optima hemmen den Suchfortschritt (S. 52) 
Ausbalancieren der drei Faktoren ist ftir den Suchfortschritt not-
wendig (S. 77) 

3.6 Der ultimative evolutionare Algorithmus 

Uberlegungen, ob ein Algorithmus einem anderen grundsdtzlich liter legen ist, werden in dies em 
Abschnitt relativiert. 

Noch in den 1980er Jahren hatten viele Forscher eine klare Antwort auf die Frage nach dem 
ultimativen evolutionaren Algorithmus parat gehabt. So stammt auch das folgende Zitat aus dem 
Jahr 1989 und bricht eine Lanze fiir das Standardverfahren GENETISCHER-ALGORITHMUS (Algo­
rithmus 3.14). 

. . . Later, with newfound success under their belts, these same users confidently strike out 
"to really make these algorithms fly," oftentimes by introducing an odd array of program­
ming tricks and hacks. The usual result is disappointment in the "improved" GA. Although 
it works better on some problems, it works worse on most. 

David E. Goldberg, Zen and the Art of Genetic Algorithms 
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Bild3.35 Versuch einer graphischen Darstellung, wie sich die verschiedenen Faktoren sich gegenseitig 
beeinflussen. 

Hier wird zwar versucht, eine grundsatzliche Uberlegenheit des genetischen Algorithmus zu 
suggerieren, aber der kurze Absatz enthalt auch bereits die heutige Antwort auf obige Frage: Es 
hangt davon ab, welches Problem man losen mochte. 

Die Idee eines universellen Optimierers ist auf den ersten Blick sehr verlockend, doch stellt 
sich die Frage, was wir von einem universellen Optimierer erwarten diirfen, wenn wir nichts 
iiber das betrachtete Optimierungsproblem wissen. Um eine Antwort formulieren und beweisen 
zu konnen, betrachten wir die folgende Situation, bei der der Suchraum Q und der Raum aller 
Optimierungsprobleme ^ endlich sind. Diese Annahme ist giiltig, da aufgrund der diskreten 
Speicherstrukturen in heutigen Computem und der beschrankten Ressourcen alle im Computer 
unterscheidbaren Probleme endlich sind. Die Tatsache, dass wir nichts iiber das Optimierungs­
problem wissen, modellieren wir durch eine angenommene Gleichverteilung aller Optimierungs­
probleme, d. h. jedes Problem (bzw. Zielfunktion) F e^ tritt mit der Wahrscheinlichkeit i auf. 
Zur weiteren Vereinfachung gehen wir davon aus, dass alle F G . ^ die Form F : Q ^ M haben 
und auf dem selben Suchraum Q definiert sind. Sei ^ die Menge aller Optimierungsalgorithmen, 
die auf dem Suchraum Q arbeiten. Einen Algorithmus charakterisieren wir nun darliber, welche 
Individuen er in welcher Reihenfolge auf einem Problem F G ^ betrachtet. Dem Algorithmus 
stehen dabei nur n Auswertungen im Verlauf der Optimierung zur Verfiigung: 
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Optimierungp y^ : sz/ ^QP. 

Vereinfachend nehmen wir an, dass bei jeder Optimierung der Algorithmus ein Individuum nur 
einmal bewerten lasst, also Optimierungp^{Alg) insgesamt n unterschiedliche Individuen ent-
halt. AuBerdem nehmen wir an, dass jeder Algorithmus Alg deterministisch und damit auch 
Optimierungpy^{Alg) eindeutig ist - dies gilt auch fiir evolutionare Algorithmen, da Zufallszahlen 
fiir gewohnlich mittels eines Pseudozufallszahlengenerators erzeugt werden. D. h. jeder evolutio­
nare Algorithmus ist durch die Wahl des Anfangszustands des Zufallszahlengenerators determi­
nistisch. 

Nochmals zur Erlauterung: Fiir ein Problem F G .^, ein Optimierungsproblem Alg e ^ und 
eine nattirliche Zahl w G N ist 

Optimierungp^{Alg) = (j;i,... ,y„) G OP 

mity/ ^yj fur / ^ 7, wobeijy^ das Individuum ist, das der Algorithmus Alg mit der Zielfunktion 
F als A:-tes Element untersucht. 

Wenn wir nun zwei Algorithmen Alg^, Alg2 G s^ bzgl. ihrer Anwendung auf ein Problem 
F G ^ vergleichen wollen, benotigen wir ein LeistungsmaB QuAlg - dies steht als Abktirzung 
fur »Qualitat eines Algorithmus«. Dieses MaB wird mittels einer beliebigen, aber fest gewahlten 
Funktion qf^ : R" ^ R definiert als 

QuAlgp^„{Alg) = qf„{F{y,),... ,F{y„)) 

mit Optimierungpj^{Alg) = ( j i , . . . , j„). Ubliche Beispiele sind die durchschnittliche bzw. beste 
erzielte Giite oder die Anzahl der benotigten Auswertungen, bis das Optimum gefunden wurde. 
Man beachte im Weiteren die Terminologie: »Giite« eines Individuums A bezeichnet den Funk-
tionswert F{A) und »Leistung« bezieht sich auf QuAlgp^n{Alg) als Qualitatskriterium fiir eine 
komplette Optimierung. 

Die zu erwartende Leistung der n ersten Auswertungen eines Algorithmus Alg auf einem 
beliebigen unbekannten Problem entspricht damit dem Mittel iiber alle moglichen Probleme: 

Erw [QuAlgp^,{Alg) | F G ^ ] = - ^ X Qi^Alg^^ni^lg). 

Dann gilt der folgende Satz. 

Satz 3.5 (No free lunch): 
Fiir je zwei Algorithmen Algi,Alg2 G ^ und die Klasse aller Probleme ^ gilt beziig-
lich eines LeistungsmaBes QuAlg: 

Erw [QuAlgp^^{Alg,) \Fe^]= Erw [QuAlgp^^^Alg^] \ F e ^] 

In der hier prasentierten Fassung lasst sich diese Aussage sehr elementar beweisen. Sie gilt je-
doch auch fiir allgemeinere Voraussetzungen, wobei die Beweise dann entsprechend schwieriger 
werden. 
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Beweis 3.7: 

Ohne Beschrankung der Allgemeinheit seien Q = {xi , . . . ,x^} der Suchraum und 
r/ G M (1 < i < m) die vorkommenden Giitewerte. Jede mogliche Funktion F e ^ 
ist nun iiber eine Permutation TT G ̂ ^ definiert, die die Giitewerte den Punkten im 
Suchraum zuweist: F(x/) = r̂ ^̂ )̂ fiir 1 < / < m. Es existieren also ml unterschiedliche 
Funktionen in ^ . 

Bei einer Optimierung werden der Reihe nach die Punkteyi ,72, • • • betrachtet. Der 
erste Punkt j i (= Xj^) wird vollig unabhangig von der zu optimierenden Funktion ge-
wahlt. 

± Wir unterscheiden hier in der Notation zwischen der Abfolge der Optimierung ĵ yt und den dabei 
gewahlten Punkten aus dem Suchraum xy ,̂ da wir auf beiden Ebenen argumentieren. Natiirlich 

D.h. jeder der m Giitewerte r/ steht bei genau {m—l)\ Funktionen an der Stelle Xj^. 
Dies ist an einem kleinen Beispiel in Bild 3.36 dargestellt. 

/ j \ Man kann sich nun vorstellen, dass der Algorithmus versucht, tiber Stichproben im Suchraum 

II die Menge der moglichen Funktionen einzuschranken, die vorliegen konnten. Das ist vom 

Ablauf her ganz ahnlich zu einem Mastermind-Spiel, bei dem man versucht, tiber Stichproben 

Informationen zu einer Anzahl versteckt gesetzter Farbsticker zu sammeln. 

Allgemein gilt in der /-ten Iteration (/ > 1), dass die / — 1 bisher gewahlten Punkte 
inm- •' {m — i-\-2) = / ^ , N̂, unterschiedlichen Gtitefolgen resultieren konnen. Nun 
kann jede dieser Gtitefolgen beim Betrachten des /-ten Punkts mit m — i-\-l verschie-
denen Giitewerten als yt = Xj. fortgesetzt werden - dies ist auch wieder in jeweils 
{m — /•)! Funktionen der Fall. Dies ist in Bild 3.37 fiir den zweiten gewahlten Punkt 
und in Bild 3.38 fiir den dritten gewahlten Punkt veranschaulicht. 

Damit gilt fiir beliebiges /, dass jede Reihenfolge, in der die Giitewerte entdeckt 
werden, bei genau gleich vielen Funktionen eintritt - vollig unabhangig davon, wie 
der Algorithmus vorgeht. (Zur Veranschaulichung enthalt Bild 3.38 zwei Varianten, 
wie mit dem dritten Punkt fortgesetzt wird.) 

Es folgt sofort, dassErw [QuAlgp^^{Alg) \ F e ^] fiirjeden Algorithmus^/geinen 
identischen Wert ergibt. 

Also ist im Mittel iiber alle moglichen Probleme - oder eben erwartungsgemaB fiir ein Problem, 
iiber das nichts bekannt ist, - kein Algorithmus den anderen Algorithmen iiberlegen. Insbesonde-
re gilt das obige Theorem auch dann, wenn einer der Algorithmen ein aufzahlendes Verfahren ist, 
bei dem alle Punkte des Suchraums gemaB einer (zufallig) gegebenen Reihenfolge durchprobiert 
werden. 

Liegt nun jedoch ein Algorithmus vor, der auf der Teilmenge ^' d ^ einem zweiten Algo­
rithmus iiberlegen ist, also 

Erw {QuAlgp{Alg{) | F G ^ ' ] < Erw {QuAlgp[Algj) | F G ^ ' ] , 
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Bild 3.36 Beispiel zum Beweis des »No Free Lunch«-Theorems: Jede Zeile in einer der Tabellen entspricht 
einer moglichen Bewertungsfunktion. Als ersten Punkt betrachtet der Algorithmus xi. 
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Bild 3.37 Beispiel zum Beweis des »No Free Lunch«-Theorems: Der zweite betrachtete Punkt hangt von 
der Giite des ersten Punkts ab. 
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Bild 3.38 Beispiel zum Beweis des »No Free Lunch«-Theorems: Der dritte betrachtete Punkt hangt von 
der Giite der ersten beiden Punkte ab. Es werden zwei unterschiedliche Algorithmen an dieser 
Stelle betrachtet. 
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Bild 3.39 Konsequenz aus dem »No Free Lunch«-Resultat fiir einen Anwender. 
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Bild 3.40 Konsequenz aus dem »No Free Lunch«-Resultat ftir die Wissenschaft. 

dann folgt aus dem obigen Theorem sofort ein umgekehrtes Verhalten fiir die Algorithmen auf 
der komplementaren Menge der Probleme, also 

Erw [QuAlgj,{Alg^) | F G ^ \ ^ ' ] > Erw [QuAlgj,{Alg2) \F e^\^']. 

Das bedeutet: Fiir jeden Algorithmus gibt es eine Nische im Raum aller Probleme, fiir die er 
besonders gut geeignet ist. Einerseits stellt sich damit fiir den Anwender die Frage, welches der 
passende Algorithmus fiir sein Problem ist (vgl. Bild 3.39). Andererseits wird die Wissenschaft 
vor die Aufgabe gestellt, ganze Problemklassen zu linden, fur die ein bestimmter Algorithmus 
beziiglich eines Leistungsmerkmals »optimal« ist (vgl. Bild 3.40). 
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Bild 3.41 Giitelandschaft der in Aufgabe 3.1 betrachteten Funktion. 

Allgemein kann man die folgenden praktischen Konsequenzen festhalten. 1st keinerlei Pro-
blemwissen vorhanden, gibt es keinen Grund von einem evolutionaren Algorithmus mehr zu 
erwarten als von einem beliebigen anderen Verfahren. 1st Problemwissen vorhanden oder kon-
nen bestimmte Eigenschaften wie ein gewisses Wohlverhalten der Giitelandschaft angenommen 
werden, wird dadurch eine generelle Anwendbarkeit von bestimmten Algorithmen nahegelegt. 
Das Wissen iiber die Struktur des Problems muss in die Auswahl oder den Entwurf des Optimie-
rungsalgorithmus einflieBen. 

3.7 Ubungsaufgaben 

Aufgabe 3.1: Hillclimbing 

Betrachten Sie die Funktion f{x) = | + sin ( | ) fur die Werte x G {1, 2, . . . , 80}, die auch in 
Bild 3.41 dargestellt ist. Argumentieren Sie, wie ein Mutationsoperator fur einen Hillclimber 
parametriert werden muss, der zufallig einen Wert aus U{{—g, -\-g}) addiert. Schatzen Sie ab, 
wie lange ein solcher Optimierer brauchen wird, wenn er bei x = 1 startet. 

Aufgabe 3.2: Genotyp und Mutation 

Es soil der Produktionsplan ftir eine FlieBbandproduktion optimiert werden. Es gibt insgesamt 
n Auftrage, die alle m Stationen am FlieBband in derselben Reihenfolge ^- i , . . . , ^„ durchlaufen. 
An jeder Station wird immer nur ein Auftrag zur gleichen Zeit bearbeitet und verschiedene 
Auftrage konnen sich nicht tiberholen. Der Auftrag a G {^i,... ,a„} benotigt an der Station 
s e {si,... ,Sm} genau ta^s ^ ^ {ta,s > 0) Zeit. Gesucht ist ein Produktionsplan, der fur jeden 
Auftrag die Startzeiten an den m Stationen angibt und der die Auftrage in der kiirzesten Zeit 
abarbeitet. 

a) Bilden Sie zunachst das Problem direkt im Genotyp ab und formulieren Sie eine geeignete 
Mutation auf dem Problem. Was verandert eine Mutation hinsichtlich des Phanotyps? 
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b) Fiihren Sie einen altemativen Genotyp ein, der die Reihenfolge der Auftrage festlegt. 
Uberlegen Sie, wie daraus der Produktionsplan berechnet werden kann. Wie sieht jetzt 
ein moglicher Mutationsoperator aus? 

Aufgabe 3.3: Selektion 

Entwerfen Sie einen Selektionsoperator, der ahnlich zur proportionalen Selektion jedes Indivi-
duum mit einer bestimmten Wahrscheinlichkeit auswahlt. Dabei sollen jedoch sowohl gute Indi-
viduen bevorzugt werden als auch die Diversitat erhalten bleiben bzw. sogar vergroBert werden 
(indem der gesamte Giitebereich bis zum Ende der Optimierung reprasentiert wird). 

Aufgabe 3.4: Populationskonzept und Rekombination 

Entwerfen Sie eine konkrete Bewertungsfunktion auf dem Genotyp ^ = [0, 10] x [0, 10], fur 
die Sie der Meinung sind, dass ein populationsbasierter Algorithmus mit Mutation und Rekom­
bination bessere Ergebnisse liefert als ein lokaler Suchalgorithmus. Formulieren Sie die Such-
operatoren und begninden Sie Ihre Hypothese. 

Aufgabe 3.5: Selektion 

Bestimmen Sie die Wahrscheinlichkeit mit der das z-beste Individuum einer Population der Gro-
Be fi durch eine g-fache Tumierselektion ausgewahlt wird. Berechnen Sie die Wahrscheinlich-
keiten ftir die Werte fi = 5,q = 2 bzw. q = 3 und beliebiges /. Vergleichen Sie die Werte mit der 
rangbasierten Selektion. 

Aufgabe 3.6: Rekombination 

Es soil ein Regressionsproblem gelost werden, bei dem eine Funktion g(x) =a-\-b-x-\-c-x^-\-
d'X^ so angepasst wird, dass fur eine Menge von Sttitzstellen {x\^y\),.. .,{xm,ym) moglichst 
gilt: g{xi) =yi. Eine solche Funktion wird bestimmt durch (a, b,c,ci) G ^ = M"*. Sie wird femer 
durch die quadratische Abweichung von den Sollfunktionswerten bewertet: 

/fe(-)) = I {g{xi)-yi v2 

Entwerfen Sie je einen kombinierenden, interpolierenden und extrapolierenden Operator fur 
dieses Problem und untersuchen Sie an einem kleinen Beispiel, wie die Operatoren die zwei 
Eltem-Funktionen, d. h. den Phanotyp, verandem. 

Aufgabe 3.7: Schema und Kodierung 

Betrachten Sie die Zahlen {0, . . . ,31}, die binar kodiert werden. Welche Zahlen werden durch 
die Schemata 11*** und * * *00 jeweils bei standardbinarer Kodierung und bei Gray-Kodierung 
zusammengefasst? 
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Aufgabe 3.8: Schema-Theorem 

Die folgende Population 

((110101), (011101), (101110), (111110), (000101) 

(011000), (110111), (111011), (001000), (001110)) 

soil die Bewertungsfunktion maximieren, die jedes Individuum genau auf die Anzahl der fiXh-
renden Einsen abbildet, d. h. die Giite ist die Anzahl der Einsen von links, bis eine Null im Indi­
viduum steht. Es wird ein GENETISCHER-ALGORITHMUS benutzt. Bestimmen Sie die Aussage 
des Schema-Theorems fur die Schemata 1 * * * **, 1 1 * * * * , 111 * **, 0 *****, 00 * * * * und 
000* **. 

Aufgabe 3.9: Selbstanpassung 

Ein GENETISCHER-ALGORITHMUS soil so verandert werden, dass die Mutationsrate pm sich 
selbst anpasst. Ubertragen Sie die vorgestellten Techniken und entwickeln Sie eine adaptive und 
eine selbstadaptive Variante. 

Aufgabe 3.10: No Free Lunch 

Rekapitulieren Sie nochmals die Voraussetzungen von Satz 3.5 (No Free Lunch). Diskutieren 
Sie, inwieweit die Voraussetzungen realitatsnah sind. 

Aufgabe 3.11: Hillclimbing 

Implementieren Sie die verschiedenen Varianten, die Sie in Aufgabe 3.1 entworfen haben. De-
cken sich Ihre Experimente mit ihren Uberlegungen? 

Aufgabe 3.12: Rekombination 

Implementieren Sie Ihren Ansatz aus Aufgabe 3.6. Konnen Sie Unterschiede im Verhalten zwi-
schen den verschiedenen Rekombinationsoperatoren feststellen? 

Aufgabe 3.13: Schema-Theorem 

Implementieren sie den Algorithmus GENETISCHER-ALGORITHMUS, wie er auf Seite 85 be-
schrieben wurde. Optimieren Sie damit die zweidimensionale Bewertungsfunktion 

f{xuX2) = m{xj-X2f + {\-Xi)\ 

wobei sie die Wertebereiche [—5,12, 5,12] ftirx/jeweils mit 10 Bits standardbinar kodieren. Las­
sen Sie sich in Experimenten mit einer PopulationsgroBe von 100 Individuen fiir ausgewahlte 
Bausteine (engl. building blocks) die Vorhersage der Schema-Entwicklung gemaB dem Schema-
Theorem und der tatsachliche Anteil der Population, der dem Schema angehort, protokollieren. 
Welche Beobachtungen machen Sie? 
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3.8 Historische Anmerkungen 

Die Charakterisierung der Mutation als Nachbarschaftsgraph basiert auf der Arbeit von Jones 
(1995). Die EIN-BIT-BINARE-MUTATION (Algorithmus 3.1) wurde erstmals von Bremermann 
(1962) eingefiihrt. Die Modellierung von evolutionaren Algorithmen mittels Markovketten geht 
auf frlihe Arbeiten zur lokalen Suche (z. B. Aarts & Korst, 1991) zuriick. Modelle von evolutio­
naren Algorithmen wurden in der Folgezeit auf sehr vielfaltige Art und Weise erstellt. Daher sei 
hier auszugsweise auf die Arbeiten von Eiben et al. (1991), Nix & Vose (1992), De Jong et al. 
(1995), Rudolph (1997) und den UberbHck von Rudolph (1998) verwiesen. Das hier vorgestell-
te Resultat stammt aus der Arbeit von Rudolph (1997). Wie wiederum die Wahl der Kodierung 
die Anzahl der lokalen Optima verringem kann, wird anschaulich von Rana & Whitley (1999) 
dargestellt. Die als Beispiel angefiihrte Gray-Kodierung wurde als erstes in diesem Kontext von 
Caruana & Schaffer (1988) betrachtet. Rowe et al. (2004) haben einen ausfiihrlichen Vergleich 
der standardbinaren Kodierung und der Gray-Kodierung vorgenommen. Im Hinblick auf die Re-
kombination wurden die Kodierungsarten von Rothlauf (2002) untersucht. 

Die Aspekte der Feinabstimmung und der Erforschung sind ein Thema seit den Anfangen 
der evolutionaren Algorithmen. So finden sie sich beispielsweise bereits in der Arbeit von Hol­
land (1975) wieder. Eine ausfiihrliche tJbersicht zum Thema ist in einem Artikel von Eiben 
& Schippers (1998) enthalten. In diesem Zusammenhang wurden in diesem Kapitel die Bi-
NARE-MUTATION (Algorithmus 3.3) von Holland (1975) und die GAUSS-MUTATION (Algorith­
mus 3.4) von Rechenberg (1973) untersucht. Inwieweit die Mutation eines genetischen Algo­
rithmus nur als erforschender Hintergrundoperator dient, wurde von Mitchell et al. (1994) in 
Frage gestellt. 

Die Vielfalt, die Diversitat, einer Population wird in sehr vielen Arbeiten auch bereits in der 
Anfangszeit der evolutionaren Algorithmen diskutiert. Konsequenterweise finden sich schon sehr 
frtih Techniken, die die Diversitat erhalten sollen (z. B. das Gtiteteilen bei Goldberg & Richard­
son, 1987). Einzelne Aspekte der Diversitat, insbesondere bezogen auf die Selektion, wurden 
auch in unterschiedlichen theoretischen Arbeiten erortert (z. B. in der Arbeit von Blickle & Thie-
le, 1995, 1997; Motoki, 2002), wobei haufig der Verlust der Diversitat durch die Selektion un­
tersucht wird. Eine umfassende Diskussion der Diversitat enthalt die Arbeit von Mattiussi et al. 
(2004), die auch insbesondere die teilstringorientierte Diversitat einfiihrt. 

Die Unterscheidung in probabilistische und deterministische Selektion bzw. Eltem- und Um-
weltselektion reicht zuriick bis in die Ursprlinge der unterschiedlichen Standardalgorithmen. So 
wurde eine probabilistische Eltemselektion, die FITNESSPROPORTIONALE-SELEKTION (Algorith­
mus 3.8) von Holland (1975), bei den genetischen Algorithmen genutzt, wahrend die Evoluti-
onsstrategien (Rechenberg, 1973; Schwefel, 1977) mit der Umweltselektion BESTEN-SELEKTION 
(Algorithmus 3.6) arbeiten. 

Das Konzept der iiberlappenden Populationen wurde mehrfach auf unterschiedliche Art und 
Weise eingefiihrt: als Plus-Selektion bei den Evolutionsstrategien, und als steady state GA bei 
den genetischen Algorithmen (Whitley, 1989; Syswerda, 1989, 1991b) und ohne spezielle Be-
nennung im evolutionaren Programmieren (Fogel et al., 1966). Eine Ubersicht zu iiberlappenden 
Populationen und den moglichen Ersetzungsstrategien findet sich in den Arbeiten von Smith & 
Vavak (1999) und Sarma & De Jong (1997). 

Die Definition der Selektionsintensitat als MaB fur den Selektionsdruck sowie deren Analyse 
fur die fitnessproportionale Selektion stammt von Muhlenbein & Schlierkamp-Voosen (1993). 
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Bei den Varianten der fitnessproportionalen Selektion wurde die Technik der Skalierung von 
Grefenstette (1986) eingefuhrt. Die rangbasierte Methode und STOCHASTISCHES-UNIVERSELLES-

SAMPLING (Algorithmus 3.9) stammen von Baker (1987). Die g-fache TURNIER-SELEKTION (A1-

gorithmus 3.10) wurde erstmals von Brindle (1981) benutzt, wahrend die Q-STUFIGE-TURNIER-

SELEKTION (Algorithmus 3.7) von Fogel (1995) eingefuhrt wurde. 
GroBe Telle der Argumentation des Abschnitts iiber die Selektion einschlieBlich der tJbersicht 

iiber die Kombinationsweisen der Eltem- und Umweltselektion wurden einer Arbeit des Autors 
(Weicker & Weicker, 2003) entnommen. 

Die Anlehnung des Rekombinationsoperators an die Genetik (als neue Kombination vorhande-
ner Gene) geht auf die friihen Arbeiten zu den genetischen Algorithmen zuriick, wobei konkret 
der EIN-PUNKT-CROSSOVER (Algorithmus 3.13) von Holland (1975) stammt und der Operator 
UNIFORMER-CROSSOVER (Algorithmus 3.11) zum ersten Mai von Ackley (1987a) und Syswerda 
(1989) erwahnt wurde. Der erste interpolierende Operator war der ARITHMETISCHER-CROSSOVER 

(Algorithmus 3.12) von Michalewicz (1992). Deren Arbeitsweise als Mittel zur stochastischen 
Fehlerminimierung stammt aus der Arbeit von Beyer (1994, 1997). Das vorgestellte Beispiel fiir 
den extrapolierenden Operatoren heiBt auch heuristischer Crossover von Wright (1991). 

Als Theorie fiir die klassische Rekombination wurde das Schema-Theorem von Holland (1975) 
gezeigt, wahrend die Verallgemeinerung der Schemata als Formae sowie die daraus resultieren-
den Regeln von Radcliffe (1991a,b) und Radcliffe & Surry (1995) hergeleitet wurden. Die Bau-
stein-Hypothese stammt von Goldberg (1989) und ist eine mogliche Interpretation des Schema-
Theorems. Das Schema-Theorem wurde stark kritisiert und zu widerlegen versucht (z. B. Gre­
fenstette & Baker, 1989). Wie jedoch auch Levenick (1990) richtig ausfiihrt, sind die hier dar-
gestellten Ergebnisse richtig, allerdings sollte man sich nicht durch eine zu freie Interpretation 
der Ergebnisse zu falschen Schltissen verleiten lassen. Die hier als Beispiel angefiihrte in die 
Irre fiihrende Funktion ist eine Variation der Funktion von Deb & Goldberg (1993). Inzwischen 
wurden auch bereits verschiedene Schema-Theoreme gezeigt, die statt Abschatzungen exakte 
Vorhersagen beziiglich der Schema-Entwicklung machen (z. B. Stephens & Waelbroeck, 1997; 
Poli, 2000; Poli & McPhee, 2001). Diese Resultate eignen sich dann auch fiir eine exakte Mo-
dellierung einer kompletten Optimierung. Das fehlende Schema-Theorem ist ebenfalls aus der 
Kritik am Schema-Theorem heraus entstanden (Altenberg, 1995). 

Die Diskussion und die Beispiele zur Rolle des Grads der Zufalligkeit bei evolutionaren Ope­
ratoren abhangig vom Stand der Suche beruhen auf den Ergebnissen von Weicker & Weicker 
(1999), die diese Aussagen unter bestimmten Annahmen bewiesen haben (vgl. auch Weicker, 
2001). 

Die mit diesen Uberlegungen motivierte Anpassung von Operatoren wahrend des Optimie-
rungsvorgangs wurde bereits wesentlich friiher erkannt. Vorbestimmte Anpassung findet sich 
beispielsweise beim simulierten Abktihlen (Kirkpatrick et al., 1983), eine globale Anpassung 
wurde erstmals in Form der 1/5-Erfolgsregel (Rechenberg, 1973) bei den Evolutionsstrategien 
genutzt. Selbstadaptive Techniken gehen auf die Arbeit von Schwefel (1977) zuriick. 

Die »No free Lunch«-Resultate, die die Existenz eines universellen Optimierers in Frage stel-
len, wurden erstmals von Wolpert & Macready (1995, 1997) gezeigt. Verschiedene Erweiterun-
gen und Erganzungen dieser Resultate wurden in der Folgezeit veroffentlicht (Culberson, 1998; 
EngUsh, 1996, 1999; Droste et al., 2001; Schumacher et al., 2001). 

Die zusammenfassende graphische Darstellung der Abhangigkeiten und Effekte in den evolu­
tionaren Algorithmen ist einer Arbeit des Autors entnommen (Weicker & Weicker, 2003). 



4 Evolutionare Standardalgorithmen 

Die gdngigen Standardalgorithmen, aus der Anfangszeit bis heute, werden in diesem Kapitel 
vorgestellt. 

Lernziele in diesem Kapitel 

cj> Die bekannten Standardalgorithmen konnen erlautert und beziiglich der Prinzipien aus 
Kapitel 3 eingeordnet werden. 

cj> Die einzelnen Verfahren konnen auf neue Optimierungsprobleme angewandt werden. 

c|> Die Vielfalt verschiedener evolutionarer Algorithmen und ihrer Ablaufe wird verstanden. 
Dadurch konnen die Standardalgorithmen voneinander und zu weniger erfolgversprechen-
den Varianten abgegrenzt werden. 
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Wie in den historischen Anmerkungen zu Kapitel 2 dargelegt wurde, sind bereits sehr friih drei 
groBe Teilgebiete der evolutionaren Algorithmen unabhangig voneinander entstanden. Diese sind 
durch unterschiedliche Philosophien und Eigenheiten charakterisiert. Auch wenn das Ziel dieses 
Buches eine Vermittlung der iibergeordneten Prinzipien der evolutionaren Algorithmen ist, ist es 
nicht nur von historischem Wert, sich die Standardalgorithmen anzuschauen. Nur mit diesem Hin-
tergrundwissen konnen viele Anwendungen und Veroffentlichungen verstanden und richtig ein­
geordnet werden. Neben den bereits im historischen Anhang von Kapitel 2 vorgestellten groBen 
Teilgebieten - genetische Algorithmen, Evolutionsstrategien, evolutionares Programmieren und 
genetisches Programmieren - werden in diesem Kapitel auch lokale Suchalgorithmen und eine 
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Reihe neuerer oder weniger verbreiteter Verfahren prasentiert. Zu jedem Algorithmus sollen ty-
pische Parameterwerte eine gewisse Orientierung bei der eigenen Anwendung geben - dennoch 
gibt es nattirlich viele sehr erfolgreiche Anwendungen, die erheblich von diesen Angaben abwei-
chen. 

4.1 Genetischer Algorithmus 

Genetische Algorithmen werden sowohl in ihrer klassischen Form mit der Kodierung durch bi-
ndren Zeichenketten als auch mitproblemspezifischeren Reprdsentationen prasentiert. 

Genetische Algorithmen (GA, engl. genetic algorithms) sind im Wesentlichen durch eine probabi-
listische Eltemselektion und die Rekombination als primaren Suchoperator gekennzeichnet. Die 
Mutation ist meist nur ein Hintergrundoperator, der nur mit einer geringen Wahrscheinlichkeit 
zur Anwendung kommt. Er garantiert die Erreichbarkeit aller Punkte im Suchraum und erhalt 
eine Grunddiversitat in der Population. Die Schema-Theorie ist die theoretische Grundlage fiir 
die Wirkungsweise der genetischen Algorithmen. 

Es gibt zwei grundsatzlich unterschiedliche Grundalgorithmen. Der sog. Standard-GA GENE-

TISCHER-ALGORITHMUS (Algorithmus 3.14 auf Seite 85) wurde bereits im vorherigen Kapitel 
ausftihrlich diskutiert. Er ist dadurch charakterisiert, dass am Ende jeder Generation die erzeug-
ten Kindindividuen die Eltempopulation komplett ersetzen. Als Gegenentwurf hierzu dient der 
STEADY-STATE-GA (Algorithmus 4.1) mit iiberlappenden Populationen, der immer nur ein Indi-
viduum pro Generation erzeugt und dieses sofort in die Gesamtpopulation integriert, d. h. ein 
Individuum der Eltempopulation auswahlt und dieses durch das neue Individuum ersetzt. Die 
beiden Ablaufschemata sind beispielhaft in Bild 4.1 visualisiert. Als Eltemselektion kommen 
meist die FITNESSPROPORTIONALE-SELEKTION (Algorithmus 3.8) mit ihren Varianten, das sto-
chastische universelle Sampling (beim Standard-GA) oder die ^-fache TURNIER-SELEKTION (Al­
gorithmus 3.10) zum Einsatz. 

± Die beiden formulierten Algorithmen unterscheiden sich in der benutzten Rekombination: Jedes Elternpaar 

im Standard-GA GENETISCHER-ALGORITHMUS erzeugt zwei Kindindividuen, wahrend im S T E A -
D Y - S T A T E - G A jeweils nur ein Kindindividuum erzeugt wird. 

Beim GA in seiner urspriinglichen Form besteht ein Individuum aus einer binaren Zeichenket-
te, d. h. der Suchraum hat die Form ^ = B^ = {0, 1}^ Da nur wenige Optimiemngsprobleme 
einen binaren Suchraum besitzen, wie z. B. das Rucksackproblem, bei dem aus mehreren Gegen-
standen eine moglichst wertvolle Menge unter Beriicksichtigung der Kapazitat des Rucksacks 
ausgewahlt wird, oder das Erfiillungsproblem von aussagenlogischen Formeln, die durch Be-
legen der enthaltenen aussagenlogischen booleschen Variablen »wahr« werden soil, ist in den 
anderen Fallen eine Kodiemng des Losungsraums in den Raum W notwendig. Sowohl die stan-
dardbinare als auch die Gray-Kodiemng sind hierbei tiblich, allerdings greift die Schema-Theorie 
nicht mehr so gut bei einer Gray-Kodiemng (vgl. Aufgabe 3.7). Als Operationen kommen die 
BINARE-MUTATION (Algorithmus 3.3) sowie einer der Rekombinationsoperatoren EIN-PUNKT-

CROSSOVER (Algorithmus 3.13), UNIFORMER-CROSSOVER (Algorithmus 3.11) oder der in Algo-
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Algorithmus 4.1 (Steady state genetischer Algorithmus) 
STEADY-STATE-GA( Zielfunktion F ) 

1 t^O 
2 P(t) ^- erzeuge Population mit ji (|PopulationsgroBeD Individuen 
3 bewerte P{t) durch F 
4 while Terminiemngsbedingung nicht erfiillt 
5 do •" (^, 5) ^ Selektion aus P(t) mittels FITNESSPROPORTIONALE-SELEKTION 
6 u^ wahle Zufallszahl gemaB ^([0, 1)) 
7 ifti<Px dRekombinationswahrscheinlichkeitD 
8 then E C ^ EIN-PUNKT-CROSSOVER(^ ,5) 
9 else LC^B 

10 D ^ BINARE-MUTATION(C) 

11 bewerte D durch F 
12 P' ^ entfeme das schlechteste Individuum aus P{t) 
13 t ^ t ^ l 
14 ^P(t)^P'o{D) 
15 return bestes Individuum aus P{t) 

steady-state GA 

probabilistische 
Eltemselektion 

Rekombination 

Mutation 

Identitat als 
I Umweltselektion 

Bild 4.1 Der unterschiedliche Ablauf des GA und des steady state GA wird jeweils mit einem beispielhaf-
ten Bild verdeutlicht. 

rithmus 4.2 beschriebene K-PUNKT-CROSSOVER als Verallgemeinerung des 1-Punkt-Crossovers 
zum Einsatz. 

Beispiel4.1: 

Bei den binaren Zeichenketten 00101110 und 10111001 wiirden durch einen 2-Punkt-
Crossover an den Stellen j \ = 3 und 72 = 6 die Individuen 10101101 und 00111010 
entstehen. 

Meist wird nur ein gewisser Prozentsatz der neuen Individuen durch die Rekombination erzeugt 
(ein haufiger Richtwert in der Literatur ist ca. 70%). Die restlichen Individuen entstehen nur 
durch Mutation auf einem Eltemindividuum. Ubliche Parametereinstellungen sind aus Tabel-
le4.1 ersichtlich. 



130 4 Evolutionare Standardalgorithmen 

Algorithmus 4.2 

K-PUNKT-CROSSOVER( Individuenv4, B) 

1 for each w G { 1 , . . . , A:} 
2 do E jm ^- wahle Zufallszahl gemaB t / ({l , . . . , /—1}) 
3 sortiereyi,... Jk so, dassyi <J2<'--<Jk 
4 7 0 ^ 0 

6 for w ^ 0 , . . . , A: 
7 do^forzG {7m + l , . . . ,7m+l} 
8 do^ifm mod2 = 0 
9 t h e n ^ Q ^ ^ 

10 ^Di^Bi 
11 else ^Ci^Bi 
12 L L ^Di^Ai 

13 return C,Z) 

Parameter Wertebereich 

PopulationsgroBe: 30-100 
Rekombinationswahrscheinlichkeit: 0,6-0,9 
Mutationsrate: 0,001-0,01, | 

Tabelle 4.1 Haufig benutzte Parameterbereiche bei binar kodierten genetischen Algorithmen 

Algorithmus 4.3 

EFFIZIENTE-BINARE-MUTATION( Individuumv4 mit^.G G B^ Mutationsabstand next ] 
1 B^A 
2 while next < I 
3 do ^Bnext^'^-^next 
4 u ̂  wahle zufallig gemaB U{[0, 1)) 

5 L next ^- next + in(]^- ) 
6 wex/' ^ wex/ — / 
7 return 5, next 

Das bisher beschriebene Verfahren zur Mutation ist ftir lange Zeichenketten sehr recheninten-
siv, da fiir jede Binarinformation eine Zufallszahl benotigt wird. Die in Algorithmus 4.3 beschrie­
bene EFFIZIENTE-BINARE-MUTATION benutzt stattdessen die Eigenschaft, dass die Abstande zwi-
schen den auftretenden Mutationen in der Zeichenkette geometrisch verteilt sind: Mittels einer 
Zufallszahl u r^U{[0, 1)) lasst sich der Abstand zur nachsten auftretenden Mutation bestimmen. 
Falls der Abstand iiber das Ende des Individuums hinausgeht, wird der tJberhang auf das nachste 
zu mutierende Individuum weitergereicht und bestimmt dort die erste veranderte Position. 

Beispiel 4.2: 

Angenommen in dem Individuum^.G = (1, 0, 1, 1, 1, 0, 0, 1, 0, 1) wurde soeben 
die erste Stelle mutiert, dann gilt next = 1. Nun wird iiber die Zufallszahl u = OJ das 
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Algorithmus 4.4 
GLEICHVERTEILTE-REELLWERTIGE-MUTATION( Individuum V4 ) 
1 for each z G {1,...,/} 
2 do^u^ wahle Zufallszahl gemaB t/([0, 1)) 
3 ifu<pm dMutationswahrscheinlichkeitD 
4 then ^ unten ^- max{wĝ -,̂ 4/ — x (|maximale SchrittweiteD} 
5 oben ^- rmn{ogi ,Ai-\-x } 
6 L ^Bi ^ wahle Zufallszahl gemaB U{[unten, oben]) 
7 return B 

nachste mutierte Bit ermittelt. Mitpm = 0.1 gilt: 

next = 1 + 
ln(0,7) 

Lln(l-0,1)J 1 + 
-0,356 67 
-0,105 36 

1 +[3,385 28J = 4 . 

Daher wird auch das vierte Bit invertiert und es ergibt sich das folgende Individuum 
(1, 0, 1, 0, 1, 0, 0, 1, 0, 1). Wird als nachste Zufallszahl w = 0,3 gewahlt,folgt 

next = 4 -
ln(0,3) 

l n ( l - 0 , l ) 
:4 + 

-1,203 97 
-0,105 36 

: 4+[11,427 17J = 15. 

Da dies groBer als die Lange des Individuums ist, wird next = 5 gesetzt und im nachs-
ten Individuum, wird das fiinfte Bit verandert. 

Mit der Zeit kamen neben der rein binaren Kodierung auch andere problemnahere Reprasenta-
tionen auf - insbesondere reellwertige Zeichenketten und Permutationen. Im Weiteren werden 
kurz die speziellen genetischen Operatoren fiir diese Reprasentationen zusammengefasst. 

Bei reellwertigen GAs hat der Suchraum die Form ^ = R^ Fiir jede Suchraumdimension 
/ ist ein Intervall [ugj, ogi] vorgegeben, also gilt ^ = [ug^, og^] x . . . x [ugi, ogi]. Durch diese 
Reprasentation werden Probleme bei der Kodierung, wie z. B. die Hamming-Klippen, vermie-
den. Als Rekombinationsoperatoren bieten sich die selben Crossoveroperatoren wie im binaren 
Fall an: EIN-PUNKT-CROSSOVER, UNiFORMER-CROSSOVERund K-PUNKT-CROSSOVER. Allerdings 
decken diese Operatoren nicht den kompletten Suchraum ab, da keine Zwischenwerte angenom-
men werden. Daher wird haufig der Operator ARITHMETISCHER-CROSSOVER (Algorithmus 3.12) 
eingesetzt. Bei der Mutation kann nicht mehr einfach eine Informationseinheit invertiert werden, 
stattdessen wird mit einer gewissen Wahrscheinlichkeit auf jede Komponente des Individuums 
ein zufalliger gleichverteilter Wert addiert. Die GLEICHVERTEILTE-REELLWERTIGE-MUTATION (Al­
gorithmus 4.4) wird auch als Kriechmutation (engl. creep mutation) bezeichnet, da im Gegensatz 
zur gauBschen Mutation (Algorithmus 3.4) die Schrittweite beschrankt ist. 

Fiir kombinatorische Probleme werden oft Permutationen, d. h. ^ = S^i, als Genotyp benutzt. 
Da bei Permutationen die Schema-Theorie nicht richtig greift, ist die Mutation in der Regel die 
wichtigere Operation. In Kapitel 2 wurden die INVERTIERENDE-MUTATION (Algorithmus 2.2) und 
die VERTAUSCHENDE-MUTATION (Algorithmus 2.1) bereits ausfiihrlich vorgestellt. Eine Alterna­
tive ist die VERSCHIEBENDE-MUTATION (Algorithmus 4.5), die eine Zahl aus der Permutation 
entfemt und an einer beliebigen Stelle wieder einfiigt. 
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Algorithmus 4.5 
VERSCHIEBENDE-MUTATION( Individuum V4 mitA.G e S^i 

1 
2 
3 
4 
5 
6 
7 
8 
9 
0 

B^A 
u\ ^- wahle zufallig gemaB t/({ 1, . . . 
W2 ^ wahle zufallig gemaB ^({ 1, . . . 
^U2 ^ A-m 

\iu\ > U2 
then •"for each j ^ {u2, • •. ,u\ — \} 

Ldo ^Bj^i ^Aj 
else •" for each y G {wi + 1 , . . . , ^2} 

Ldo ^Bj_i ^Aj 
return B 

J}) 
,/}) 

Algorithmus 4.6 
MISCHENDE-MUTATION( Individuumv4 mitA.G e ^i 
1 
2 
3 
4 
5 
6 
7 
8 
9 

5 ^ ^ 
wi ^ wahle zufallig gemaB t / ({ l , . . . 
W2 ^ wahle zufallig gemaB ^ ( { 1 , . . . 
\iu\ > U2 
then E vertausche ui und W2 
;r ^ wahle zufallig aus ^(.5^^2-MI+I) 
for each j e {\,... ,U2 — u\-\-\} 

return B 

,/}) 
,/}) 

Beispiel 4.3: 
Beispielsweise produziert die VERSCHIEBENDE-MUTATION mit den Zufallszahlen 
wi = 3 und U2 = 6 aus dem Individuum (1, 2, 3, 4, 5, 6, 7) das Individuum 
(1, 2, 4, 5, 6, 3, 7). 

Eine weitere Moglichkeit besteht in dem zufalligen Umsortieren eines Teils der Permutation wie 
in Algorithmus 4.6 (MISCHENDE-MUTATION). 

Beispiel 4.4: 
Die MISCHENDE-MUTATION wird mit den Schnittpunkten u\ =3 und U2 = 6 aus dem 
Individuum (1, 2, 3, 4, 5, 6, 7) beispielsweise das Individuum (1, 2, 5, 3, 6, 4, 7) 
oder jede andere beliebige Anordnung der markierten Ziffem. 

Verglichen mit den anderen vorgestellten Mutationsoperatoren fiir Permutationen verandert die-
ser zuletzt vorgestellte Operator ein Individuum im Mittel relativ stark. 

Wahrend Mutationsoperatoren relativ leicht auf Permutationen definiert werden, ist es sehr 
viel schwieriger passende Rekombinationsoperatoren zu formulieren, da bei jeder Anwendung 
eine giiltige Permutation entstehen muss. In Kapitel 2 werden die KANTENREKOMBINATION (Algo­
rithmus 2.4) und die ORDNUNGSREKOMBINATION (Algorithmus 2.3) eingefiihrt. Eine dritte Mog­
lichkeit stellt die ABBILDUNGSREKOMBINATION (Algorithmus 4.7) dar, die einige Werte von einem 
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Algorithmus 4.7 {partially mapped crossover) 

\BE 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

JILDUNGSREKOMBINATION( Individuen A 
for each z G {1 , . . . , / } 

do:g(^-)^^/ 
wi ^ wahle Zufallszahl gemaB ^ ( { 2 , . . . 
U2 ^- wahle Zufallszahl gemaB ^ ( { 2 , . . . 

if W2 < ^1 
then E vertausche u\ und W2 
benutzt ^- 0 
for each / G {wi, . . . , W2} 
do^Q ^Bi 

L benutzt ^- benutzt [j{Bi} 

for / ^ 1 , . . . , wi — 1, W2 + 17 • • • 7 ^ 
do •" X ^ ^z 

while X G benutzt 
do E X ^ g(x) 
Q ^ x 

L benutzt ^- benutzt U {x} 
return C 

, 5 mit . 4 . G , 5 . G G ^ / 

, / - ! } ) 
, / - ! } ) 

Eltemindividuum ubemimmt und die restlichen gemaB einer partiellen Abbildung zwischen den 
beiden Eltemindividuen ermittelt. 

Beispiel 4.5: 
In derABBiLDUNGSREKOMBiNATiONwerden die Eltemindividuen^ = (1, 4, 6, 5, 7, 
2, 3) und^ = (1, 2, 3, 4, 5, 6, 7) an den Schnittpunkten 2 und 4 miteinander rekom-
biniert, d. h. es werden vom zweiten Individuum (x, 2, 3, 4, x, x, x) ubemommen. 
Nun definieren wir eine Abbildung g zwischen den Werten des ersten und des zweiten 
Individuums: 

/ = 

^(0 = 
1 2 3 4 5 6 7 
1 6 7 2 4 3 5 

Flir jedes Element des zweiten Eltemteils iiberpriifen wir nun, ob es an dieser Stelle 
tibemommen werden kann, oder ob es gemaB dieser Abbildung durch einen anderen 
Wert ersetzt wird. An der ersten noch freie Position des Nachkommens kann 1 aus 
dem Individuum A iibernommen werden, da kein Konflikt dadurch entsteht, ebenso 7 
an der fiinften Position. Sowohl 2 als auch 3 sind jedoch bereits vom Individuum B 
kopiert worden. 2 kann gemaB der Abbildung durch 6 ersetzt werden. Bei 3 wiirde die 
Abbildung auf 7 verweisen, diese Zahl wurde jedoch bereits von A tibemommen. In 
diesem Falle iterieren wir die Abbildung emeut und erhalten die 5 fur die fehlende 
Stelle. Also resultiert insgesamt das Individuum (1, 2, 3, 4, 7, 6, 5). 

Dieser Operator hat den Vorteil, dass er moglichst viele Werte an ihren ursprlinglichen Stellen 
belasst und mogliche Konflikte durch eine schnelle Technik auflost. Es lasst sich auch leicht eine 
Variante mit zwei Kindindividuen formulieren. 
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4.2 Evolutionsstrategien 

Evolutionsstrategien werden vorgestellt. Einen Schwerpunkt bilden dabei die Adaptations- und 
Selbstadaptationsstrategien zur Parameteranpassung. 

Bei den Evolutionsstrategien (ES) ist der Genotyp der Individuen grundsatzlich immer reellwer-
tig, also gilt A.G £^ = M} oder analog zu den reellwertigen genetischen Algorithmen ^ = 
[ugi, ogi] X . . . X [ugi^ ogi] c M^ In der Literatur wird meist davon ausgegangen, dass der Geno­
typ exakt einem reellwertigen Phanotyp entspricht - es gibt allerdings auch Beispiele, bei denen 
die reellen Zahlen als Kodierung fiir einen anderen Raum aufgefasst werden (z. B. ftir Permuta-
tionen). 

Die Evolutionsstrategie verzichtet auf Selektionsdruck bei der Auswahl der Eltem: Diese wer­
den gleichverteilt zufallig gewahlt. Stattdessen iiberleben in der Umweltselektion nur die besten 
Individuen durch die BESTEN-SELEKTION (Algorithmus 3.6). Wird der Algorithmus nur auf die 
erzeugten Kindindividuen angewandt, spricht man von der Komma-Selektion (/i, A)-ES. Dabei 
werden aus ji Eltem X{> ji) Kinder erzeugt, die im Rahmen der Umweltselektion wieder auf die 
ji besten Individuen reduziert werden. Altemativ kann auch mit iiberlappenden Populationen die 
Plus-Selektion {ji + A)-ES benutzt werden. Der Selektionsdruck kann durch die Wahl der Popu-
lationsgroBen /i und X eingestellt werden. Bei der (/i, A)-ES hat sich in der Praxis ein Verhaltnis 
J zwischen ^ und ^ als vorteilhaft herausgestellt. Bei der Implementation der Selektionsalgorith-
men ist es nicht notwendig, die Individuen mit Aufwand ^(A • log A) vollstandig zu sortieren (bei 
der (jU, A)-ES).Durch den Aufbau eines Heaps in X Schritten und iteratives Entfernen des besten 
Elements mit einer anschlieBenden Reheap-Operation kann ein Aufwand von ^{X-\- ji- log A) 
erreicht werden (vergleiche Standardliteratur zum Entwurf von effizienten Datenstrukturen und 
Algorithmen). 

Im Gegensatz zum genetischen Algorithmus ist bei der Evolutionsstrategie die Mutation der 
primare Operator. In den ersten Implementationen wurde die Rekombination iiberhaupt nicht 
benutzt. Daher muss der Mutationsoperator gleichzeitig sowohl die Feinabstimmung als auch 
die Erforschung garantieren. Hierfiir ist die GAUSS-MUTATION (Algorithmus 3.4) besonders gut 
geeignet, da vomehmlich kleine Veranderungen vorgenommen werden, aber auch beliebig groBe 
Mutationen mit einer kleinen Wahrscheinlichkeit moglich sind. 

Wie man sich leicht veranschaulichen kann, hangt der Erfolg (z. B. das Uberwinden von loka-
len Optima) ebenso wie die Konvergenzgeschwindigkeit direkt von der erwarteten Schrittweite 
der Mutation ab. Diese wird durch die Standardabweichung a der Schrittweitenparameter be-
stimmt. Wird der Wert o klein gewahlt, werden kleine Schritte im Suchraum durchgeftihrt, bei 
groBem o groBe Schritte. Da sich eine solche Schrittweite a priori nur unzureichend einstellen 
lasst, finden zwei der im Abschnitt 3.4.2 vorgestellten Anpassungsmechanismen Anwendung: 

• Die ^-Erfolgsregel (Algorithmus 3.17) ermittelt aufgrund von statistischen Erhebungen in 
den letzten Generationen einen neuen Wert fiir o fiir die gesamte Population. ES-ADAP-

Tiv (Algorithmus 4.8) beschreibt die komplette Evolutionsstrategie mit Mutation und einer 
Komma-Selektion. Fiir eine Plus-Selektion wird in Zeile 7 P' mit P(t) initialisiert. 

• Die Selbstadaptation unterwirft die Schrittweite als Strategieparameter in jedem Individu-
um ebenfalls dem Evolutionsprozess. Hier unterscheidet man drei Varianten, die in den 
Bildem A2-AA dargestellt sind: 
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Algorithmus 4.8 

ES-ADAPTIV( Zielfiinktion F ) 
1 t^O 
2 <7 ̂  Wert ftir Anfangsschrittweite 
3 ^ ^ 0 
4 P{t) ̂ - erzeuge Population mit fi (|PopulationsgroBeD Individuen 
5 bewerte P{t) durch F 
6 while Terminiemngsbedingung nicht erfiillt 
7 do^P'^O 
8 for each ie { 1 , . . . , A (|Anzahl der KinderD } 
9 do ̂ ^ ^ selektiere Elter uniform zufallig aus P(t) 

10 C ^ GAUSS-MUTATION(^) mit G 

11 bewerte C durch F 
12 ifC.FyA.F 
13 t h e n E ^ ^ ^ + 1 
14 ^P'^P'o{C) 
15 t ^ t + \ 
16 P{t) ̂  Selektion aus P' mittels BESTEN-SELEKTION 
17 lit mod A: dModifikationshaufigkeitD = 0 
18 then •" <7 ^ ADAPTIVE-ANPASSUNG(<7, ^ ) 
19 L L ^ ^ O 
20 return bestes Individuum aus P(t) 

Algorithmus 4.9 

ES-SELBSTADAPTIV( Zielfunktion F ) 
1 / ^ O 
2 P(t) ^- erzeuge Population mit ji (|PopulationsgroBeD Individuen 
3 bewerte P{t) durch F 
4 while Terminierungsbedingung nicht erfiillt 
5 do^P'^{) 
6 for each / G { 1 , . . . , A (|Anzahl der KinderD } 
7 do ̂ ^ ^ selektiere Elter uniform zufallig aus P(t) 
8 B ^ SELBSTADAPTIVE-GAUSS-MUTATION(^) 

9 ^P'^P'o{B) 
10 bewerte P' durch F 
11 ^ ^ ^ + 1 
12 L P{t) ^ Selektion aus P' mittels BESTEN-SELEKTION 
13 return bestes Individuum aus P(t) 

- Die uniforme Schrittweitenanpassung mit 3^ = R+ nutzt den Wert o = A.S £ 2f 
ftir die Mutation aller Werte im Genotyp (vgl. SELBSTADAPTIVE-GAUSS-MUTATION in 
Algorithmus 3.18). Der resultierende Gesamtalgorithmus ist als (jU, A)-ES in Algo­
rithmus 4.9 dargestellt. Ftir die Plus-Selektion wird P' in Zeile 5 mit P{t) initialisiert. 
Bild 4.2 zeigt, dass jedes Individuum einen individuellen Wert als Schrittv^eitenpara-
meter o besitzt - hier angedeutet durch die erwartete Schrittweite als Hyperkugel im 
Suchraum. Wenn jedoch, wie in der Abbildung dargestellt, ein Individuum einen Ian-
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Bild 4.2 
Sicht von oben auf eine Giitelandschaft, dargestellt durch Hohen-
linien: bei der uniformen Schrittweitenanpassung ergeben sich 
erwartete Schrittweiten der einzelnen Individuen wie es durch 
Kreise angedeutet ist. 

Bild 4.3 
Separate Schrittweitenanpassung: Die Mutation kann sich ent-
lang der Koordinatenachsen besser auf die Form der Giiteland­
schaft einstellen. 

Bild 4.4 
Separate Schrittweitenadaptation mit zusatzlicher Berucksichti-
gung der Winkel: Beliebige Ausrichtungen der Mutation wer-
den ermoglicht. 

gen Grat entlangwandem sollte, muss die Schrittweite klein bleiben, um nicht vom 
Grat »herunterzufallen«. Dies impliziert allerdings eine lange Laufzeit. 
Mit separaten Schrittweiten fur jede Dimension des Genotyps kann ein Individuum 
unterschiedlich groBe Schritte in die verschiedenen Richtungen machen. Dann gilt 
^ = (R+)^ Den individuellen Schrittweiten wird auch durch eine eigene Anpassung 
Rechnung getragen. Es gilt fiir jeden Strategieparameter 

B.Si^A.Si'ti^^ 
yfl^l 

mit einer pro Individuum nur einmal gewahlten Zufallszahl w ~ ^ ( 0 , 1 ) sowie indivi­
duellen Anteilen w- ~ ^ ( 0 , 1 ) . Die Objektvariablen werden durch die Formel 

analog bestimmt. Bild 4.3 zeigt eine bessere unabhangige Orientierung der Schritt­
weiten. Da sich die Ausrichtung der separaten Schrittweiten an den Dimensionen des 
Suchraums orientiert, ist keine effektive Suche auf das Optimum hin gewahrleistet. 
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Komma-Evolutionsstrategie Plus-Evolutionsstrategie 

gleichverteilte 
Eltemselektion 

(Rekombination) '̂  

Mutation 

Deterministische 
^ Umweltselektion ( 

Bild 4.5 Der unterschiedliche Ablauf der Komma-Evolutionsstrategie und der Plus-Evolutionsstrategie ist 
in je einem beispielhaften Bild verdeutlicht. 

Algorithmus4.10 

GLOBALER-UNIFORMER-CROSSOVER( PopulationP= (^^^^)I<A:<^ 

1 for z ^ 1 , . . . , / 
2 do •" w ^ wahle zufallig gemaB U{{ 1 , . . . , ;U}) 
3 L 5 . G / ^ ^ ( " ) . G / 

4 return B 

- Die beliebige Orientierung im Raum kann durch ^ • / • ( /— 1) zusatzliche Strategiepa-
rameter ftir die Drehung im /-dimensionalen Raum erreicht werden. Dies ermoglicht 
eine beliebige Ausrichtung der Individuen wie in Bild 4.4. Allerdings ist die bisher 
diskutierte zufallige Veranderung mit indirekter Selektion hierfiir meist zu trage und 
der Vorteil einer optimalen Ausrichtung wird durch die lange Zeit, diese zu finden, 
wieder zunichte gemacht. 

Die unterschiedlichen Ablaufschemata sind in Bild 4.5 fiir beide Varianten der Umweltse­
lektion dargestellt. Dabei wurde nur die Mutation als Operator beriicksichtigt. Hinsichtlich der 
Selbstanpassungsmechanismen ist zu beachten, dass diese mit der Plus-Strategic nicht so effektiv 
arbeiten wie mit der Komma-Strategic. 

Mit steigender Rechnerleistung wurde die (1 + A)-Evolutionsstrategie der Anfangsjahre hau-
fig durch eine populationsbasierte (jU + A)-Evolutionsstrategie ersetzt, womit auch die Rekom­
bination interessant wurde. Hier kommen glcichcrmaBcn UNIFORMER-CROSSOVER (Algorith-
mus 3.11) und ARITHMETISCHER-CROSSOVER (Algorithmus 3.12) zum Einsatz. Interessant sind 
hierbei sog. globale Varianten, bei denen die gesamte Population als gemeinsame Eltem herange-
zogen wird. Die Rekombination GLOBALER-UNIFORMER-CROSSOVER (Algorithmus 4.10) wahlt 
fiir jede Dimension des Genotyps den Wert aus einem gleichverteilt zufallig gewahltem Individu-
um der Eltempopulation. Die Rekombination GLOBALER-ARITHMETISCHER-CROSSOVER (Algo­
rithmus 4.11) mittelt fur jede Dimension den Wert iiber alle Individuen in der Eltempopulation 
und bestimmt damit den Schwerpunkt der Population. In der Notation der Evolutionsstrategi­
en schreibt man dann auch von einer {fi/r + A)-Evolutionsstrategie, wobei r die Anzahl der 
Eltemindividuen bei der Rekombination angibt. Die Rekombination kann auch auf die Strategic-
parameter angewandt werden. Eine gangige Vorgehensweise ist die Anwendung der Rekombina-
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Algorithmus 4.11 

GLOBALER-ARITHMETISCHER-CROSSOVER( PopulationP= (^(^)) 
1 for z ^ 1 , . . . , / 

3 return B 
•lL,A(').G, 

Parameter Wertebereich 

PopulationsgroBe jj.: 1-30 
Kindindividuen pro Generation: (5 • jU)-(7 • /i) (Komma), sonst > 1 
Rekombinationswahrscheinlichkeit: 0,0-1,0 

Tabelle 4.2 Haufig benutzte Parameterbereiche bei selbstadaptiven Evolutionsstrategien 

globale 
Rekombination 

Mutation 

Deterministische 
Umweltselektion 
mit Anpassung 

von <7 

Bild 4.6 
Der Ablauf der derandomisierten Evolutionsstrategie 
ist beispielhaft veranschaulicht. 

tion UNIFORMER-CROSSOVER auf den Genotyp und des Operators GLOBALER-ARITHMETISCHER-
CROSSOVER auf die Strategieparameter. Typische Parameterwerte fiir die selbstadaptive Evoluti­
onsstrategie sind in Tabelle 4.2 angegeben. 

Die bisher betrachtete Selbstanpassung ist stark zufallsabhangig: Nur wenn die Strategievaria-
blen passend verandert werden und damit ein tatsachlich gutes Individuum erzeugt wird, passt 
sich die Mutation entsprechend an. Daher wurde eine sog. derandomisierte Selbstadaptation 
eingefuhrt, die lediglich den Genotyp zufallig verandert und die Modifikation der Strategieva-
riablen daraus ableitet. Als einfaches Beispiel betrachten wir eine (/i/jU, A)-Evolutionsstrategie 
mit globalem arithmetischem Crossover und einem global fiir die ganze Population gespeicher-
ten G. Durch die Rekombination sind alle A Kindindividuen Mutanten des Schwerpunktes der 
Eltempopulation. Entsprechend der tatsachlichen Schrittlange bei den besten /i Individuen wird 
durch ein Lernmechanismus das o modifiziert. Die gesamte DERANDOMISIERTE-ES ist in Algo­
rithmus 4.12 dargestellt (vgl. auch Bild 4.6), dabei werden iiblicherweise die folgenden Parame­
terwerte abhangig von der Dimensionalitat des Genotyps ^ = R^ gewahlt: 

a ^ als Lemrate, wie stark die jeweils aktuelle Veranderung in die iiber alle Generatio-
Vi 

nen erlemte Gesamtveranderung s^^^ eingeht, und 

T = A/7 als Dampfungsfaktor, der festlegt, wie stark die Lange der Gesamtveranderung s^^^ 
den Schrittweitenparameter o^^^ modifiziert. 
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Algorithmus 4.12 

DERANDOMISIERTE-ES( Zielfiinktion F ) 

1 t^O 
2 P(t) ̂ - erzeuge Population mit ji (|PopulationsgroBeD Individuen 
3 (̂̂ ) ^ (0 , . . . ,0) G Ml 
4 initialisiere G^^^ dglobaler SchrittweitenparameterD 
5 bewerte P{t) durch F 
6 while Terminierungsbedingung nicht erfuUt 
7 do ""5 ^ GLOBALER-ARITHMETISCHER-CROSSOVER(P(/)) 

8 P'^{) 
9 for z ^ 1 , . . . , A dAnzahl der KinderD 

10 do ^ C ^ GAUSS-MUTATION(5) mit cr̂ )̂ 

11 P'^P'o{C) 
12 Lz( ' " )^C.G-5 .GGtf 
13 bewerte P' durch F 
14 t ^ t + \ 
15 Indizes ^ BESTEN-SELEKTION far Individuen in P' 

16 P{t) ^- Selektion aus P' gemaB Indizes 

^ ' -̂  ̂  Ji ' l^jelndizes ^ 

18 5̂ )̂ ^ (1 - a dLemfaktor^ ) -s^^'^^ + ^ a - ( 2 - a ) • ^ -z 

19 L CT(̂ ) ^ CT(^-I) • exp ( ^ 5 ^ ) dmit Dampfungsfaktor T̂  

20 return bestes Individuum aus P{t) 

A\ Der Ablauf der derandomisierten Evolutionsstrategie ist interessant, da letztendlich kein populationsba-

II sierter Ansatz mehr vorliegt. Es findet eine zweistufige Reduktion der Kindpopulation statt: Die in der 

Umweltselektion ausgewahlten Individuen werden sofort wieder verworfen und auf ihren Schwerpunkt im 

/-dimensionalen Raum reduziert. Dies ist auch deutlich aus Bild 4.6 ersichtlich. 

4.3 Evolutionares Programmieren 

Die wesentlichen Merkmale des evolutiondren Programmierens, sowohl in seiner historischen 
Form als auch in den modernen Weiterentwicklungen, werden aufgezeigt. 

Das evolutionare Programmieren (EP, engl. evolutionary programming) ist durch die Grundidee 
gepragt, die Evolution auf einer mehr verhaltensbestimmten Ebene nachzubilden, d. h. es v^ird 
kein Wert darauf gelegt, die Genetik zu beriicksichtigen, sondem bei den Nachkommen ist ledig-
lich ihre phanotypisch beobachtbare Ahnlichkeit zu einem Eltemteil von Interesse. Daher wird in 
EP kein Rekombinationsoperator benutzt und die Reprasentation moglichst problemnah gev^ahlt. 
Der Ausgangspunkt ftir die Entwicklung des evolutionaren Programmierens war das Problem der 
Zeitreihenprognose. Es gibt zv^ei Standardverfahren des evolutionaren Programmierens, die Je­
wells die Modellierungstechniken der kunstlichen Intelligenz ihrer Zeit reflektieren: Der Ansatz 
der 1960er Jahre benutzt endliche Automaten und der Ansatz der 1980er Jahre neuronale Netze. 
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Bild 4.7 
Graphische Darstellung eines endlichen Automaten mit 
drei Zustanden. An den Ubergangen bezeichnet der ers-
te Wert das Eingabesymbol und der zweite Wert das 
Ausgabesymbol. 

Zeitreihe 
Zustand 
Vorhersage 

1 

qo 

0 

qi 
1 

2 

go 
2 

3 

qi 
2 

1 

qi 

1 

2 

qi 
2 

Tabelle 4.3 
Der beispielhafter Ablauf fiir die Prognose mit dem Au­
tomaten aus Bild 4.7 zeigt, dass drei von fiinf Prognose-
werten richtig waren (unterstrichen). 

In den ersten Algorithmen wurde eine Population von endlichen Automaten benutzt. Bei der 
Zeitreihenprognose muss in diskreten Schritten jeweils der nachste Wert der Zeitreihe vorherge-
sagt werden, d. h. ein endlicher Automat bestimmt aus seinem intemen Zustand und dem aktu-
ellen Wert der Zeitreihe sowohl die Prognose fiir den nachsten Wert der Zeitreihe als auch den 
neuen intemen Zustand des Automaten. Die simulierte Evolution soil die Prognosefahigkeiten 
der Automaten verbessem. 

Definition 4.1 (Endlicher Automat): 
Formal ist ein endlicher Automat ein Tupel {Q, Start, IL, Ubergang, Ausgabe). Dabei 
ist Q eine endliche Menge der moglichen Zustande, Start G Q der Startzustand, X 
das Eingabe- und Ausgabealphabet, Ubergang : QxH^ Q eine tJbergangsfunktion, 
sowie Ausgabe : g x S ^ X eine Ausgabefunktion. Die tJbergangsfunktion berechnet 
fiir jedes mogliche Eingabesymbol abhangig vom aktuellen Zustand des Automaten 
den neuen Zustand, die Ausgabefunktion ein Ausgabesymbol. 

Beispiel 4.6: 
Bild4.7 zeigt einenBeispielautomatenmit Q = {qo, qi^qi} undS = {0, 1, 2, 3}. An-
genommen der Automat befindet sich im Zustand qo und der letzte Wert der Zeitreihe 
war eine 1. Dann ergibt sich fiir die Zeitreihe 0, 2, 3, 1, 2 die Vorhersage in Tabel­
le 4.3. 

Da fiir eine Zeitreihe das Alphabet X fest vorgegeben ist, besitzt jedes Individuum den Genotyp 
A,G = {Q, Ubergang, Ausgabe, Start), wobei die Funktionen in Tabellenform abgelegt sind. Es 
wird keine Zusatzinformationv4.iSbenotigt, d.h. ^ = {±}. 

Fiir die Variation von endlichen Automaten stehen verschiedene Moglichkeiten zur Verfii-
gung. 

• AuTOMATENMUTATiON-AUSGABE: Die Ausgabe wird an einer Stelle in der tJbergangstabelle 
verandert (Algorithmus 4.13 und Bild 4.8). 

• AUTOMATENMUTATION-FOLGEZUSTAND: Ein Folgezustand wird in der tJbergangstabelle durch 
einen zufalligen neuen ersetzt (Algorithmus 4.14 und Bild 4.9). 
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Algorithmus 4.13 

A U T 0 M A T E N M U T A T I 0 N - A U S G A B E ( Individuum^ m i t ^ . G = (g , Ubergang.Ausgabe, Start) 
1 Ausgabe' ^- Ausgabe 
2 Zustand ^ wahle zufallig gemaB U{Q) 
3 Zeichen ^- wahle zufallig gemaB U{L) 

4 Zeichen' ^- wahle zufallig gemaB U{1^) 
5 Ausgabe'{Zustand,Zeichen) ^Zeichen' 
6 return B mit B.G= (g , Ubergang, Ausgabe', 5/ar/) 

Bild 4.8 Beispiel fur den Operator AUTOMATENMUTATION-AUSGABE 

• AUTOMATENMUTATION-NEUER-ZUSTAND: Ein neuer Zustand wird zur Menge Q hinzugefiigt 
und ein Ubergang aus der alten Zustandsmenge in den neuen Zustand eingerichtet (Algo­
rithmus 4.15 und Bild 4.10). 

• AUTOMATENMUTATION-ZUSTAND-LOSCHEN: Ein Zustand wird geloscht und alle tJbergange, 
die in diesen Zustand gefiihrt haben, werden umgesetzt (Algorithmus 4.16 und Bild 4.11). 

• AUTOMATENMUTATION-STARTZUSTAND: Ein neuer Startzustand wird gewahlt (Algorith­
mus 4.17 und Bild 4.12). 

^ \ Beim Hinzufligen und Loschen eines Zustands und bei der Mutation des Folgezustands kann es passieren, 
II dass nicht mehr alle Zustande vom Startzustand aus erreichbar sind. Falls dies nicht gewtinscht ist, miisste 

durch eine Tiefensuche die Erreichbarkeit gepriift und tiberfltissige Zustande gestrichen werden. 

Die Erfinder von EP hatten konzeptionell auch einen Rekombinationsoperator vorgesehen, der im 
wesentlich aus mehreren Automaten mittels einer Potenzmengenkonstruktion einen Automaten 
durch die Vereinigung der Eltemautomaten berechnet. Dieser Operator wurde jedoch nicht im-
plementiert - vermutlich aus Effizienzgrunden, da zur damaligen Zeit die Rechnerleistung noch 
stark beschrankt war. 

Im Gesamtalgorithmus EVOLUTIONARES-PROGRAMMIEREN-1960ER (Algorithmus 4.18) des ur-
sprlinglichen EP wird fur jedes Individuum aus der aktuellen Population durch einen der Muta-
tionsoperatoren ein neues Kindindividuum erzeugt. GemaB der Plus-Selektion (jU + /i) wird die 
bessere Halfte der Eltem und der Kindindividuen durch die Umweltselektion iibemommen. Der 
Ablauf ist in Bild 4.13 beispielhaft veranschaulicht. 

± Im Gegensatz zur Darstellung in Algorithmus 4.18 werden teilweise mehrere Mutationen direkt hinterei-
nander ausgeflihrt. Meist sind die Ergebnisse jedoch mit nur einer Mutation tiberzeugender. 
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Algorithmus4.14 

AUT0MATENMUTATI0N-F0LGEZUSTAND( Individuum^ mit^.G = (g, Ubergang.Ausgabe, Start) 
1 Ubergang ^- Ubergang 
2 Zustand ^- wahle zufallig gemaB U{Q) 
3 Zustand ^- wahle zufallig gemaB t/(g) 
4 Zeichen ^- wahle zufallig gemaB t/(X) 
5 Ubergang {Zustand^ Zeichen) ^- Zustand' 
6 return B mit B.G= (g, Ubergang , Ausgabe, Start) 

Algorithmus 4.15 

AUT0MATENMUTATI0N-NEUER-ZUSTAND( Individuum^ mitv4.G = (g, Ubergang, Ausgabe, Start) 
1 g ' ^ gU{Zw5/aW(i} 
2 Ubergang ^- Ubergang 
3 Ausgabe' ^- Ausgabe 
4 for each Zeichen G X 
5 do •" Zustand' ^- wahle zufallig gemaB t/(g') 
6 Ubergang {Zustand, Zeichen) ^- Zustand' 
7 Zeichen' ^- wahle zufallig gemaB t/(X) 
8 L Ausgabe' {Zustand, Zeichen) ^- Zeichen' 
9 Zustand' ^ wahle zufallig gemaB U{Q') 

10 Zeichen ^- wahle zufallig gemaB t/(X) 
11 Ubergang {Zustand', Zeichen) ^- Zustand 
12 return 5 mit B.G= {Q', Ubergang , Ausgabe', Start) 

Algorithmus 4.16 

AUT0MATENMUTATI0N-ZUSTAND-L0SCHEN( Individuum^ mit^.G = (g, Ubergang,Ausgabe,Start) ) 
1 Zustand ^- wahle zufallig gemaB ^ ( g \ {Start}) 
2 g'^g\{Zw5/aw(i} 

3 Ubergang ^- Ubergang] 

5 for each {Zustand', Zeichen) G g x E 
6 do ^ if Ubergang{Zustand', Zeichen) = Zustand 
1 then ^ Zustand" ^- wahle zufallig gemaB t/(g') 
8 L ^ Ubergang {Zustand', Zeichen) ^ Zustand" 
9 return B mit B.G= {Q', Ubergang , Ausgabe', Start) 

Algorithmus 4.17 

AUT0MATENMUTATI0N-STARTZUSTAND( Individuumv4 mit^.G = (g, Ubergang,Ausgabe,Start) 
1 Star/ ^ wahle zufallig gemaB U{Q) 
2 return B mit B.G= (g, Ubergang, Ausgabe, Star/) 
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Bild 4.9 Beispiel far den Operator AUTOMATENMUTATION-FOLGEZUSTAND 

3/1 3/1 

Bild 4.10 Beispiel fiir den Operator AUTOMATENMUTATION-NEUER-ZUSTAND 

Bild 4.11 Beispiel fiir den Operator AUTOMATENMUTATION-ZUSTAND-LOSCHEN 

Bild 4.12 Beispiel fiir den Operator AUTOMATENMUTATION-STARTZUSTAND 
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Algorithmus4.18 

EVOLUTIONARES-PROGRAMMIEREN-1960ER( Zielfunktion F ) 
1 t^O 
2 P(t) ^- erzeuge Population mit ji (|PopulationsgroBeD Individuen 
3 bewerte P{t) durch F 
4 while Terminiemngsbedingung nicht erfiillt 
5 ao^P'^P{t) 
6 f o r y ^ l , . . . , ^ ! 
7 do^^seiP(0 = (^^'"))i</<^^ 
8 u^ wahle zufallig gemaB t/({ 1 , . . . ,5}) 
9 switch 

10 case u=\:B ^ AUTOMATENMUTATION-AUSGABE(V4(^')) 

11 case u = 2:B ^ AUTOMATENMUTATION-FOLGEZUSTAND(^(-^')) 

12 case u = 3 :B ^ AUTOMATENMUTATION-NEUER-ZUSTAND(V4(^)) 

13 case u = 4:B ^ AUTOMATENMUTATION-ZUSTAND-LOSCHEN(V4^-^')) 

14 case u = 5:B ^ AUTOMATENMUTATION-STARTZUSTAND(^'^^)) 
15 bewerte B durch F 
16 ^P'^P'o{B) 
17 t ^ t + \ 
18 ^P{t) ^ Selektion aus P' mittels BESTEN-SELEKTION 
19 return bestes Individuum aus P{t) 

Identitat als 
Eltemselektion 

Mutation 

Deterministische 
Umweltselektion 

Bild 4.13 Der Ablauf des evolutionaren Programmierens ist beispielhaft veranschaulicht. 

Parameter Wertebereich 

PopulationsgroBe: 10-100 

Tabelle 4.4 
Haufig benutzter Parameterbereich beim evolutionaren Program-
mieren 

Mit dem Wechsel von endlichen Automaten als Vorhersagemodell zu neuronalen Netzen wurde 
ein vollstandig andersgearteter genotypischer Suchraum betrachtet. Kiinstliche neuronale Netze 
gehen auf die Modellierung von natiirlichen Neuronen zuriick, wie sie z. B. im Gehim vorliegen. 
Ein einfaches Modell sind Perzeptronen mit mehreren Schichten (auch Feedforward-Netze ge-
nannt). Bild 4.14 zeigt ein beispielhaftes Netz. Die Neuronenschichten sind durch Verbindungen 
miteinander verkniipft. Die Neuronen in der Eingabeschicht reprasentieren Eingabewerte fiir das 
Netzwerk. Diese Werte werden mit Gewichten an den Kanten multipliziert und an die Neuro-
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Ausgabeschicht 

verdeckte 

Schicht 

Eingabeschicht 

sigmoid(l,7-1,0 + 0,5-2,0-0,3) 
sigmoid(2,4): 1 

l+exp(-2,4) :0,125 

wi^4 = 1,7 

Bild 4.14 Schematische Darstellung eines neuronalen Feedforward-Netzes mit mehreren Schichten. Jeder 
Kante ist ein Gewicht w/y und jedem Knoten ein Schwellwert 0/ zugeordnet. Rechts wird bei-
spielhaft an einem Neuron gezeigt, wie aus den eingehenden Werten die Ausgabe des Neurons 
berechnet wird. 

nen der nachsten Schicht weitergereicht. Dort wird die Summe iiber die gewichteten Eingange 
gebildet, ein Schwellwert abgezogen und auf das Resultat eine sigmoide Funktion - die sog. Ak-
tivierungsfunktion - angewandt, um den Ausgabewert des Neurons zu berechnen. Diese Werte 
werden iterativ, wie beschrieben, weiter verarbeitet, bis sie in der Ausgabeschicht als Ergebnis 
vorliegen. Mit ausreichender Anzahl an Neuronen kann jede mathematische Funktion durch ein 
neuronales Netz angenahert werden. Fiir die Zeitreihenprognose werden beispielsweise die letz-
ten k Werte der Zeitreihe als Eingaben herangezogen und der Ausgabewert des neuronalen Netzes 
wird als Prognose des nachsten Wertes interpretiert. Grundsatzlich steht ein Lemmechanismus 
fur neuronale Netze zur Verfugung, der anhand von Beispieldaten durch eine Gradientensuche 
die Gewichte und Schwellwerte anpasst. Die simulierte Evolution ist dort haufig nur bedingt kon-
kurrenzfahig - sie ist insbesondere dann interessant, wenn keine Trainingsdaten zur Verftigung 
stehen, da sich die neuronalen Netze in einer realen Umwelt oder im direkten Vergleich (etwa in 
der Form von Spielstrategien) bewahren mtissen. 

Dann besteht der Genotyp der Individuen aus den Gewichten Wij G R und den Schwellwerten 
0/ G R und es wird ein Mutationsoperator auf reellwertigen Werten benotigt, der analog zur Mu­
tation der Evolutionsstrategie auf der GAUSS-MUTATION beruht. Zu einem Genotyp ̂ .G ^^ = W 
der Lange / werden ebenfalls / Strategieparameter ^.5* G ^ = (M+)̂  eingefiihrt, die die Schritt-
weite der Mutation steuem. Der additive Anpassungsmechanismus fiir die Strategieparameter 
kann der Beschreibung des Operators SELBSTADAPTIVE-EP-MUTATION (Algorithmus 4.19) ent-
nommen werden. Dabei sind zwei Parameter von Bedeutung: Der Skalierungsfaktor a bestimmt 
wie stark die Werte verandert werden und die minimale Standardabweichung £ > 0 verhindert, 
dass die Werte der Strategieparameter negativ werden. 

Ansonsten wurde als einzige Modifikation am Algorithmus der 1960er Jahre die Selektion der 
Besten durch die g-stufige zweifache Tumierselektion (Q-STUFIGE-TURNIER-SELEKTION, Algo-
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Algorithmus4.19 

SELBSTADAPTIVE-EP-MUTATION( Individuum^ mit A.G e R^ und A.S e R^ 
1 for each i e {1 , . . . , / } 
2 do ̂  w' ^ wahle zufallig gemaB ^[O^A.St • a (|AnpassungsparameterD) 
3 B.Si^A.Si + u' 
4 B.Si ^- max{5.*S/, e (|kleinste StandardabweichungD } 
5 u ̂  wahle zufallig gemaB ^(O^A.St) 
6 ^B.Gi^A.Gi + u 
7 return B 

Algorithmus 4.20 

EVOLUTIONARES-PROGRAMMIEREN-1980ER( Zielfunktion F ) 
1 t^O 
2 P{t) ̂  erzeuge Population mit ji (|PopulationsgroBeD Individuen 
3 bewerte P{t) durch F 
4 while Terminiemngsbedingung nicht erfiillt 

6 for / ̂  1 , . . . , ;U 
7 do^^seiP(0 = (^^'"))i</<^^ 
8 B ^ REELLWERTIGE-EP-MUTATION(^^')) 

9 bewerte B durch F 
10 ^P'^P'o{B) 
11 t ^ t + \ 
12 ^P{t) ^ Selektion aus P' mittels Q-STUFIGE-TURNIER-SELEKTION 
13 return bestes Individuum aus P{t) 

rithmus 3.7) ersetzt, die zwar immer noch duplikatfrei, aber nicht so starr wie die deterministische 
Selektion der Besten ist. Der resultierende Ablauf EVOLUTIONARES-PROGRAMMIEREN-1980ER ist 
in Algorithmus 4.20 dargestellt. Tabelle 4.5 enthalt gebrauchliche Parametereinstellungen. 

4.4 Genetisches Programmieren 

Da genetisches Programmieren eine grofie Algorithmenvielfalt hervorgebracht hat, wird in die-
sem Abschnitt nur die Kernidee vorgestellt. Der Schwerpunkt liegt aufden speziellen Operatoren 
und Techniken, die durch Individuen mit variabler Grofie benotigt werden. 

Genetisches Programmieren (GP, engl. genetic programming ) ist im Kontext der genetischen 
Algorithmen entstanden. Daher sind auch die Merkmale des Verfahrens ahnlich: Die Rekom-
bination ist der Hauptoperator, wahrend die Mutation nur als Hintergrundoperator wirkt. Ein 
wesentliches Charakteristikum des genetischen Programmierens ist die variable GroBe der Re­
presentation - sie wird sowohl im Umfang als auch in ihrer Struktur durch den Prozess der 
simulierten Evolution bestimmt. Die Ausgangsidee war, Computerprogramme oder mathemati-
sche Funktionen zu evolvieren, die als Syntaxbaume dargestellt werden. Obwohl inzwischen sehr 
viele unterschiedliche Reprasentationen betrachtet wurden, wie z. B. Graphen oder Assembler-
Programme, beschranken wir uns in diesem Abschnitt auf die urspriingliche Darstellung. 
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Parameter Wertebereich 

PopulationsgroBe: 
Anpassungsstarke a: 
minimale Standardabweichung e: 
TumiergroBe: 

20-200, selten bis 500 
0,1-0,4, ^ 
10-^-10-3 
5-10 

Tabelle 4.5 Haufig benutzte Parameterbereiche beim modernen evolutionaren Programmieren 

^ 

Bild4.15 
Beispiel fur einen Syntaxbaum. 

(not) [ ^ 

(^ (^ (f) 
Syntaxbdume konnen beliebige mathematische Ausdriicke (wie im Beispiel in Bild 4.15) oder 

auch beliebige Programme beispielsweise durch die Verwendung von LISP-Ausdrticken darstel-
len. Jedem Blatt des Baums ist ein Wert zugeordnet und die intemen Knoten enthalten Funk-
tionen oder Programmkonstrukte. Um die syntaktischen Randbedingungen fiir korrekte Baume 
moglichst gering zu halten, werden die Funktionen meist so gewahlt, dass alle Knoten denselben 
Datentyp zuruckliefem. 

Beispiel 4.7: 
Bild 4.15 zeigt einen moglichen Syntaxbaum fiir die Formel 

{ 
/ \ I ~"-̂ 2 V (5 < xo) falls xi = true 

g(xo,Xi,X2) = <̂  
' X2 sonst 

Zur Beschreibung der Algorithmen wird eine lineare Darstellung der Baume in Prafixnotation 
benutzt: Zunachst wird der Operator angefiihrt, der von den Argumenten (einschlieBlich ihrer 
eventueller Unterbaume) gefolgt wird. Damit ist jeder Baum ein Element von ^ C X*, wobei S 
die Menge aller Funktionssymbole und Konstanten ist - dabei ist jedoch zu beachten, dass nicht 
jedes Element aus X* einen giiltigen Baum beschreibt, sondern verschiedene Randbedingungen 
eingehalten werden miissen. Die Individuen haben also den Genotyp^.G G ^ und besitzen keine 
Zusatzinformationen A.S.d.h. 3^ = {!.}. Haufig wird diese Darstellung auch fur die efiiziente 
Implementation von genetischem Programmieren benutzt. Altemativ konnen die Baume jedoch 
auch liber mit Zeigem verkettete Objekte dargestellt werden. 

Beispiel 4.8: 
Der Baum aus Beispiel 4.7 wird in der Prafixnotation dargestellt als 

or and not X2 xi if not xi X2 < 5 XQ. 
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Operation Beschreibung 

Entfeme(5awm,/) entfeme aus Baum Baum den Teil der Zeichenkette in der linearen Dar-
stellung, der dem Unterbaum mit der Wurzel an Position i entspricht -
an der Position i verbleibt ein Platzhalter 

TQ\]bdi\xm{Baum,i) liefert den Teil der Zeichenkette, welcher den Unterbaum beginnend an 
der Position i in Baum darstellt 

ErzeugebaumQ erzeugt einen beliebigen zufalligen, aber konsistenten Teilbaum 
Einfugen(5awm,/,5awmO fiigt in Baum den Unterbaum Baum' anstelle des Knotens/Blatts an Po­

sition i ein 
Enthalten(5aww,/j) priift in Baum, ob der Knoten an Position j im Unterbaum mit der Wur­

zel an Position / enthalten ist. 
Gv6{SQ{Baum) liefert die GroBe des Baums (Anzahl der Knoten) 

Tabelle 4.6 Die Algorithmen des genetischen Programmierens sind mit diesen Basisoperationen formuliert. 

Algorithmus4.21 

BAUMTAUSCH-REKOMBINATION( Individuen^, B) 
1 / ̂  wahle zufallig gemaB t / ( { l , . . . , GroBe(^.G)}) 
2 j ^ wahle zufallig gemaB ^ ( { 1 , . . . , GroBe(5.G)}) 
3 C^A 
4 D^B 
5 Baum ^- Teilbaum(C.G, z) 
6 Baum' ^- Teilbaum(Z).G, j) 
7 C . G ^ Entfeme (C.G,y) 
8 C.G^ Einfiigen(C.G, j , Baum') 
9 Z).G^Entfeme(Z).G,z) 

10 D.G ^ Einfiigen(Z).G, /, Baum) 
11 return C,Z) 

Zur Bewertung werden die Programme auf einer virtuellen Maschine ausgefiihrt und es wird fiir 
Testfalle gemessen, inwieweit das Programm die gestellte Aufgabe in einer simulierten oder der 
realen Welt erfiillt. Ein mogliches Beispiel ware hier die Steuerung eines Roboters. 

Die variable GroBe der Individuen bringt zwei Probleme mit sich: Einerseits konnen die Syn-
taxbaume unbeschrankt groB werden und andererseits ist die Kodierung hochgradig redundant, 
da sehr viele unterschiedliche Baume dieselbe Funktionalitat darstellen konnen. Daher wird oft 
die BaumgroBe durch eine maximale Tiefe im voraus beschrankt. Dies stellt spezielle Anforde-
rungen an die genetischen Operatoren und birgt einige Schwierigkeiten bei der Anwendung. Die-
se Punkte werden im Weiteren noch ausfiihrlicher diskutiert. Zur Beschreibung der Operatoren 
auf den Syntaxbaumen werden in diesem Abschnitt die Basisoperationen in Tabelle 4.6 benutzt. 
Die Operationen lassen sich auf der linearen Darstellung effizient in linearer Zeit durchflihren. 

Der Hauptoperator beim genetischen Programmieren ist die BAUMTAUSCH-REKOMBINATION 
(Algorithmus 4.21), die in zwei Syntaxbaumen jeweils einen Unterbaum vertauscht und so zwei 
neue Kindindividuen erzeugt. 
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© ' (̂ "') ' 

fnotj (not J ( xo ) (-^1 ) 

Bild 4.16 Beispiel ftir die BAUMTAUSCH-REKOMBINATION 

Beispiel 4.9: 

Bild 4.16 zeigt, wie die BAUMTAUSCH-REKOMBINATION aus den Individuen 

or notxi and XQ xi 

or or xi not XQ and not XQ not xi 

die Kindindividuen 

or and not XQ not xi and XQ xi 

or or xi not XQ notxi 

erzeugt. 

Problematisch kann hierbei eine obere Schranke ftir die GroBe von Baumen sein, da dann nicht 
beliebige Teilbaume ausgetauscht werden konnen. Im Falle einer solchen Verletzung werden 
neue Kinder entweder aus denselben Eltemindividuen oder aus neugewahlten Eltem erzeugt, bis 
die obere Grenze ftir die GroBe der Baume eingehalten wird. Einen anderen kritischen Punkt 
stellt die Typkonsistenz dar: Nur ftir den Fall, dass in der benutzten Programmiersprache nicht 
zwischen verschiedenen Datentypen unterschieden wird, konnen Teilbaume beliebig vertauscht 
werden. Andemfalls ist die Konsistenz der Typen bei der Vertauschung zu gewahrleisten. 

Ftir die Mutation gibt es zwei weit verbreitete Operatoren. Die ZUFALLSBAUM-MUTATION ( A 1 -
gorithmus 4.22) ersetzt einen zufallig gewahlten Unterbaum durch einen neuen zufallig erzeug-
ten Teilbaum. Varianten schranken die Auswahl der Knoten im Baum auf Terminale ein oder 
erzeugen immer einen neuen Unterbaum der Tiefe 1 (d. h. ein Terminalsymbol). 
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Algorithmus 4.22 

ZUFALLSBAUM-MUTATION( Individuum ^ ) 
1 i ^ wahle zufallig gemaB ^ ( { 1 , . . . , GroBe(^.G)}) 
2 B^A 
3 5.G^Entfeme(5.G,z) 
4 Baum ^- Erzeugebaum() 
5 B.G^ Einfugen(5.G, /, Baum) 
6 return B 

0 (̂  0 ® 
Bild 4.17 Beispiel ftir die ZUFALLSBAUM-MUTATION. 

Beispiel 4.10: 

Bild 4.17 zeigt, wie die ZUFALLSBAUM-MUTATION aus dem Individuum 

or and not X2 x\ if not xi X2 < 5 XQ 

durch Einfiigen eines neuen zufalligen Teilbaums das Individuum 

or not and xi XQ if not xi X2 < 5 XQ 

erzeugt. 

Der zweite Mutationsoperator BAUMTAUSCH-MUTATION (Algorithmus 4.23) entspricht einer in-
temen Rekombination, bei der zwei Teilbaume im selben Individuum umgehangt werden. Dabei 
muss beachtet werden, dass die zu vertauschenden Teilbaume nicht ineinander geschachtelt sind. 

Beispiel 4.11: 

Bild 4.18 zeigt, wie die BAUMTAUSCH-MUTATION aus dem Individuum 

or and not X2 xi if not xi X2 < Sxp 

das Individuum 

or < 5 XQ if not xi X2 and not X2 xi 

erzeugt. 
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Algorithmus 4.23 
BAUMTAUSCH-MUTATION( Individuum V4 ) 

1 repeat'~ i ̂ - wahle zufallig gemaB ^({ 1,..., GroBe( .̂G)}) 
2 Ly ^ wahle zufallig gemaB t/({ 1,..., GroBe( .̂G)}) 
3 until ^Enthalten(^.G,z,7) A ^Enthalten(^.G,7, z) A (y > z) 
4 B^A 
5 Baum ^- Teilbaum(5.G, j) 
6 5.G^Entfeme(5.G,7) 
7 Baum' ^ Teilbaum(5.G, z) 
8 5.G^Entfeme(5.G,z) 
9 B.G ^ Einfugen(5.G, z, Baum) 

10 5.G ^ Einfugen(5.G, y - GroBe(5(3W) + GroBe(5(3wm), Baum') 
11 return B 

/ (and) \ 

i(̂ not j V "̂1 y ' (not) 1̂  X2 

\[X2 / \Xx 

Bild 4.18 Die BAUMTAUSCH-MUTATION wird auf das links dargestellte Individuum angewandt. 

Da beim genetischen Programmieren keine feste Struktur fiir die Losungskandidaten vorgegeben 
ist, die dann lediglich variiert wird, ist es fur den Suchprozess wichtig, die Anfangspopulation 
mit moglichst vielfaltig strukturierten Losungskandidaten zu initialisieren. Hierfiir konnen zwei 
verschiedene Vorgehensweisen genutzt werden, einen zufalligen Baum vorgegebener maximaler 
Tiefe mtief zu erzeugen: 

• Alle Terminalknoten haben die Tiefe mtief und fiir die Knoten mit Tiefe 1 , . . . , mtief wer­
den zufallige Funktionssymbole gewahlt. 

• Der Baum wachst beginnend beim Wurzelknoten. Jeder neue Knoten ist mit der Wahrschein-
lichkeit a eine Funktion und mit (\ — a) ein Terminal. Erst wenn die Tiefe mtief erreicht 
wird, wird in jedem Fall ein Terminalsymbol gewahlt. 

Um nun eine moglichst groBe Vielfalt an unterschiedlichen Baumen in der Anfangspopulati­
on zu erhalten, ist eine gangige Strategic bei einer maximalen Tiefe mtief, die Population aus 
2 • {mtief — 1) gleich groBen Fraktionen aufzubauen, wobei jeweils Baume der Tiefe mtief G 
{2 , . . . , mtief ^ mit einer der beiden Techniken erzeugt werden. 

Wahrend bei einer manuellen Programmerstellung mit Unterprogrammen und Funktionen ge-
arbeitet wird, hat das bisher beschriebene genetische Programmieren keinerlei Methoden, um 
ahnliche Techniken anzuwenden und mehrfach verwendbare Unterprogramme herauszubilden. 
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Parameter Wertebereich 
Tabelle 4.7 

PopulationsgroBe: 200-5 000 ^aufig benutzte Parameterbereiche beim geneti-
Rekombination/Mutation/Klonen: 80/10/10 schen Programmieren 

Dieser Mangel wurde erkannt und zunachst versucht, durch die Technik der Einkapselung auf-
zulosen. Dabei wird ein Unterbaum mit seiner kompletten Funktionalitat zu einem neuen Termi-
nalsymbol zusammengefasst. Dies bewirkt einerseits, dass in diesem Unterbaum keine Verande-
rungen mehr vorgenommen werden konnen, und andererseits, dass die so definierte Funktion an 
mehreren Stellen eingesetzt werden kann. In der Praxis zeigt die Einkapselung nur bedingt den 
gewiinschten Effekt. 

Eine erfolgreichere Technik sind die automatisch definierten Funktionen (ADF). Dabei wird 
eine feste Anzahl an Unterprogrammen mit vorgegebener Anzahl der formalen Parameter in 
separaten Baumen mitevolviert. Diese Unterfunktionen konnen wie andere Funktionssymbole 
im Hauptprogramm beliebig eingesetzt werden. Beztiglich der Rekombination wird meist vorge-
schrieben, dass nur Teilbaume zwischen den jeweiligen ADFs oder zwischen den Hauptprogram-
men ausgetauscht werden diirfen. Insgesamt ermoglicht dieser Mechanismus ein sehr effektives 
Kapseln von Funktionalitaten, die das Ergebnis wesentlich verbessem konnen. 

Der Gesamtablauf des genetischen Programmierens orientiert sich meist am Ablauf der ge-
netischen Algorithmen. Oft wird fiir die Selektion die ^-fache Tumierselektion benutzt. Da die 
einzelnen Operatoren in der Kegel schon fur sich allein betrachtet sehr destruktiv sind, findet 
man auch sehr haufig statt einer sequentiellen Anwendung von Rekombination und Mutation 
eine Partitionierung der Population, so dass jeweils ein Teil der neuen Population nur mit der 
Rekombination erzeugt wird, ein anderer nur mit der Mutation und der Rest unverandert tiber-
nommen wird. Typische Parameterwerte sind in Tabelle 4.7 dargestellt. 

Beispiel 4.12: 
Als ein Beispiel fiir die Fahigkeit genetischen Programmierens, Probleme zu losen, 
wird das Symbolic-Regression-Problem kurz betrachtet. Dabei sind verschiedene Wer-
te an Stiitzstellen gegeben, die durch eine mathematische Funktion angenahert werden 
sollen. Die Individuen stellen jeweils eine solche Funktion dar, die bei der Bewertung 
an den vorgegebenen Stiitzstellen berechnet und mit ihrem Sollwert verglichen wird. 
Die Summe der quadratischen Fehler ist die zu minimierende Giite. Konkret wird die 
Funktion x^ — 2 • x̂  — x^ — x + 100 • sin(3 • x) an den Stiitzstellen {0, 1, . . . , 9} be­
trachtet. Relevant ist dabei in erster Linie der polynomielle Anteil in der Funktion 
- der Sinus-Term stellt eine gewisse Form von Verrauschtheit dar. Zur Losung die­
ses Problems wurde nun fiir das genetische Programmieren die Terminalmenge {x} 
und die Funktionsmenge {*,+,—,%} gewahlt, wobei es sich bei % um eine Division 
handelt, die beim Divisor 0 den Wert 0 ergibt. Bild 4.19 zeigt die vom genetischen Pro­
grammieren erzeugte beste Losung nach 200 Generationen mit einer Populationsgro­
Be 500. Beim benutzten Algorithmus wird immer die BAUMTAUSCH-REKOMBINATION 

angewandt. Die ZUFALLSBAUM-MUTATION, die einen Teilbaum durch ein Terminal er-
setzt, und die BAUMTAUSCH-MUTATION werden jeweils zusatzlich mit der Wahrschein-
lichkeit 0,03 angewandt. Als beste Losung hat sich dabei die Funktion x^ — 2 x̂  — x^ 
herausgebildet, die die tatsachliche Funktion recht genau annahert. 
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Bild4.19 Beispiel far die Losung des Symbolic-Regression-Problems mit genetischem Programmieren. 
Links wird die gefundene Funktion als Syntaxbaum und rechts ihre Qualitat an den Stutzstellen 
dargestellt. 

Beim Experimentieren mit genetischem Programmieren beobachtet man schnell, dass die Indi-
viduen mit dem Optimierungsverlauf immer groBer werden. Die Ursache hierfiir sind sog. In-
trons (vgl. auch Introns in der Biologie in Abschnitt 1.2.2) - Telle im Individuum, die fiir die 
verkorperte Funktionalitat irrelevant sind. So kann beispielsweise eine arithmetischer Ausdruck 
»a+ (1 — 1)« entstehen, der leicht vereinfacht werden konnte. Ein anderes Beispiel ist eine An-
weisung »/ / 2 < 1 then . . . else...«, bei welcher der then-Zweig niemals ausgefuhrt wird. 
Wahrend Veranderungen durch die Operatoren in aktiven Teilen des Individuum in den meis-
ten Fallen eine negative Wirkung auf die Giite des Individuums haben, sind Anderungen an den 
Introns gtiteneutral. Dieser Vorteil der Intronrekombination und -mutation begtinstigt leider auch 
ein kiinstliches Aufblahen der Individuen, da dort beliebig viel (unsinniger) Programmcode ein-
gefiigt werden kann. Dies fiihrt im Regelfall dazu, dass der aktive Programmcode relativ immer 
weniger wird und die Optimierung damit stagniert. 

Um dieses Verhalten zu verhindem, gibt es eine Reihe unterschiedlicher Techniken. So wur-
den beispielsweise modifizierte Operatoren entwickelt - wie beispielsweise die Brutrekombina-
tion, bei der aus zwei Eltem durch unterschiedliche Parametrisierung der Rekombination sehr 
viele Kindindividuen erzeugt werden, wovon nur das beste in die nachste Generation iibemom-
men wird. Auch intelligente Rekombinationsoperatoren werden benutzt, die gezielt Crossover-
Punkte auswahlen konnen. Hierfiir konnen beispielsweise die tatsachlichen Auswertungspfade 
im Syntaxbaum herangezogen werden. Altemativ konnen bei Programmen durch fortwahrende 
leichte Variationen in der Bewertungsfunktion auch die Randbedingungen so verandert werden, 
dass ehemals inaktive Programmteile (Introns) wieder aktiv werden - dies funktioniert allerdings 
nur bei nicht-trivialen Introns, die durch immer ahnliche Eingabedaten definiert werden. Ein an-
derer Ansatz zur Eindammung von Introns ist die Bestrafung groBer Individuen, um sie bei der 
Selektion zu benachteiligen (vgl. Abschnitt 5.1). 

Wie bereits schon zu Beginn dieses Abschnitts angedeutet wurde, ist die ursprtingliche Repre­
sentation von Individuen als Baume nur eine von mehreren Varianten, wie Programme dargestellt 
werden konnen. Statt einer Baumstruktur wird oft mit linearen Strukturen gearbeitet, bei denen 
es sich beispielsweise um Maschinencode handelt. Eine andere Art der Bildung von Programmen 
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(0,2,1,0,0,3,1,0,2) 

werden hier nicht 
benutzt 

3 mod 2 = 1 

Bild 4.20 Resultierender Syntaxbaum im Beispiel 4.13 fiir die Grammatikevolution. 

aus linearen Zeichenketten ist die Grammatikevolution, bei der eine feste kontextfreie Grammatik 
(z. B. einer stark vereinfachten Programmiersprache) betrachtet wird und das Individuum Schritt 
fiir Schritt so interpretiert wird, dass ausgehend von einem Startsymbol ein Syntaxbaum durch 
iterative Expansion der Nichtterminalsymbole aufgebaut wird. Dieser Prozess wird so lange fort-
gefiihrt, bis der Syntaxbaum vollstandig ist. 

Beispiel 4.13: 
Als Beispiel fur die Grammatikevolution betrachten wir die folgende Grammatik. 

Die kleinen Zahlen geben dabei die Nummer der jeweiligen Ableitung an. Nun soil 
ein Syntaxbaum z. B. anhand des folgenden Individuums A bestimmt werden: 

v4.G=(0, 2, 1, 0, 0, 3, 1, 0, 2). 

Dann startet die Ableitung mit dem Startsymbol S, welches aufgrund der ersten Ziffer 
im Individuum aufgelost werden soil. Dort steht eine 0, d. h. es wird die erste mogliche 
Ableitung S ^ T ausgewahlt. Falls die Zahl im Individuum groBer ist als die Anzahl 
der Ableitungen, wird sie modulo durch die Anzahl der Ableitungen geteilt. Nun wird 
diese Vorgehensweise fiir alle Nichtterminalsymbole im Syntaxbaum iteriert, d. h. T 
wird durch die Zahl 2 im Individuum nach S^S abgeleitet. Der dadurch resultierende 
Syntaxbaum ist in Bild 4.20 dargestellt. 

In diesem Beispiel benutzt die Ableitung des Syntaxbaums nicht alle Zahlen im Individuum - die 
letzten beiden Zahlen werden nicht beriicksichtigt. Andererseits kann eine Ableitung auch noch 
nicht zu Ende sein, wenn das Ende des Individuums erreicht wird. Dann beginnt man meist noch-
mals von vom. Wird nach einer vorgegebenen Anzahl von Iterationen kein gtiltiger Syntaxbaum 
erreicht, bricht die Bewertung ab und das Individuum wird verworfen. 
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In der Literatur finden sich viele verschiedene erfolgreiche Fallbeispiele fur genetisches Pro-
grammieren. Typische Anwendungen sind die Kontrolle von Robotem, Schaltungsentwurf, Bild-
verarbeitung und Mustererkennung. 

4.5 Einfache Lokale Suchalgorithmen 

Anhand eines Basisalgorithmus fur lokale Suche werden die unterschiedlichen Varianten erldu-
tert. 

Die lokale Suche ist ein Sonderfall der evolutionaren Algorithmen: Die Population besteht nur 
aus einem Losungskandidaten. Dies hat verschiedene Konsequenzen. Einerseits ist ein Rekombi-
nationsoperator, der laut Definition mehr als ein Elternindividuum benotigt, nicht sinnvoll, son-
dem die Veranderung wird lediglich von einem Mutationsoperator (oder Variationsoperator) vor-
genommen. Andererseits beschrankt sich die Selektion auf die Frage, ob ein neu erzeugtes In-
dividuum statt des Eltemindividuums als Ausgangspunkt in der nachsten Generation akzeptiert 
werden soil. Daher ist der Basisalgorithmus LOKALE-SUCHE (Algorithmus 4.24) fiir alle einfa-
chen lokalen Suchalgorithmen identisch und die Beschreibung der Varianten beschrankt sich auf 
die unterschiedlichen Akzeptanzkriterien. Der grundsatzliche Ablauf ist in Bild 4.21 beispielhaft 
verdeutlicht. Die Individuen besitzen in der Regel keine Zusatzinformationen 2f = {!.} und der 
Genotyp ^ ist problemabhangig. 

Aus Abschnitt 3.1.1 ist bereits BINARES-HILLCLIMBING bekannt, das einen Losungskandidaten 
genau dann fiir die nachste Iteration als Elternindividuum akzeptiert, wenn er besser als das 

Algorithmus 4.24 

LOKALE-SUCHE( Zielfunktion F ) 

1 t^O 
2 A(t) ^ erzeuge Losungskandidat 
3 bewerte A (t) durch F 
4 while Terminierungsbedingung nicht erfiillt 
5 do '~ 5 ^ variiere A (t) 
6 bewerte B durch F 
7 t ^ t + \ 
8 ifAkz{A(t-l).F,B.F,t) (\Akzeptanzbedingung\) 
9 then\:A{t)^B 

10 Lelse \:A{t)^A{t-l) 
11 return A{t) 

Identitat als 
Eltemselektion 
und Mutation 

Akzeptanz-
B i l d 4 . 2 1 kriterium 

Der Ablauf der lokalen Suche ist beispielhaft veranschaulicht. 
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Algorithmus 4.25 
AKZEPTANZ-HC( Eltemgiite ^ . F , Kindgiite B.F, Generation t 
1 return 5.F>-.4 .F 

Algorithmus 4.26 
AKZEPTANZ-SA( Eltemgtite A.F, Kindgiite B.F, Generation / 
1 if B.FyA.F 
2 then E return wahr 
3 else ^ u ^ wahle zufallig aus t/([0, 1)) 
4 if„<exp(-^Hy|^) 
5 then E return wahr 
6 Lelse E returnŷ /̂ -c/z 

vorherige Individuum ist. Die Grundidee ist unabhangig von dem binaren Genotyp und kann mit 
beliebigen anderen Mutationsoperatoren benutzt werden. Die Akzeptanzbedingung AKZEPTANZ-

HC ist in Algorithmus 4.25 dargestellt. 

± Das Hillclimbing ist nattirlich auch ein Spezialfall des Operators B E S T E N - S E L E K T I O N , namhch eine 
(1 + 1)-Strategie. 

So bestechend einfach dieses Verfahren ist, optimiert es leider nur bis zum nachstgelegenen lo-
kalen Optimum und bleibt dort stecken. Die weiteren lokalen Suchverfahren versuchen diesen 
Nachteil auf unterschiedliche Art und Weise zu vermeiden. Ein sehr verbreiteter Algorithmus ist 
das simulierte Abkidhlen (SA, engl. simulated annealing), welches auf der physikalischen Model-
lierung eines Abkiihlungsprozesses beruht. Dabei ist die Wahrscheinlichkeit, dass sich ein ideales 
System im Zustand T befindet, proportional zu exp {—Energie{T)/Temp), wobei Energie{T) das 
Energieniveau im Zustand T und Temp die absolute Temperatur ist. Weiter ist zu beobachten, dass 
bei einem schnellen Abkiihlen, vomehmlich unregelmaBige Strukturen auf einem hohen Energie­
niveau entstehen, wahrend durch langsameres Abkiihlen regelmaBige Strukturen erreicht werden. 
Im Rahmen der Optimierung wird nun diese Wahrscheinlichkeit fiir ein ideales System auf die 
Akzeptanzwahrscheinlichkeit fiir einen schlechteren Losungskandidaten iibertragen. D. h. kon-
kret wird a priori vor der Optimierung ein Abkiihlungsplan {Tempj)j^f^Q erstellt mit Tempj e M, 
wobei es sich um eine monoton sinkende Folge mit limy^oo Tempj = 0 handelt. Die Energie 
entspricht dabei dem Giiteunterschied bei einer Verschlechterung, d. h. die Akzeptanz eines Lo­
sungskandidaten wird umso unwahrscheinlicher, je schlechter er ist. Aufgrund der abnehmenden 
Folge im Abkiihlungsplan nimmt diese Akzeptanzwahrscheinlichkeit im Laufe der Optimierung 
ab. Ein besserer Losungskandidat wird hingegen immer akzeptiert. Diese Akzeptanzbedingung 
ist formal in AKZEPTANZ-sA (Algorithmus 4.26) beschrieben. Bei dem Abkiihlungsplan handelt 
es sich um eine vorbestimmte Anpassung eines Parameters (vgl. auch Abschnitt 3.4.2). Dabei 
besteht wahrend einer Optimierung immer die Moglichkeit, ein lokales Optimum mit einer ge-
wissen Wahrscheinlichkeit zu verlassen. Abhangig vom Abkiihlungsplan wird diese Wahrschein­
lichkeit jedoch stark eingeschrankt. Eine solche Einschrankung sollte also keineswegs zu friih ge-
schehen, da dann ahnliche Effekte wie beim reinen Hillclimbing zu erwarten sind. Andererseits 
ist ein zu langsames Abkiihlen auch kritisch, da dadurch oft wertvolle Zeit in einer ungerichteten 
Zufallssuche verloren geht. Die Wahl eines solchen Abkiihlungsplans ist also essentiell fiir Er-
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Algorithmus 4.27 
AKZEPTANZ-TA( Eltemgiite ^ . F , Kindgiite B.F, Generation t 
1 \iB.F yA.F Oder deuki^.F,B.F) < Temp^ 
2 then E return wahr 
3 else LrtivLYnfalsch 

folg oder Misserfolg einer Optimierung und damit ein kritischer Punkt bei der Anwendung. Eine 
gangige Vorgehensweise in der Literatur ist die Wahl einer hohen Starttemperatur, die dann in 
jeder Generation gemaB der Regel 

Tempf^i = Tempf • a mit 0,8 < a < 0,99 

verringert wird. Haufig wird auch ein iteratives Vorgehen gewahlt, bei dem nach einem Abkiih-
lungsprozess die Temperatur wieder hochgesetzt - allerdings nicht mehr ganz so hoch wie beim 
ersten Mai - und emeut abgekiihlt wird. 

In der Praxis ist simuliertes Abktihlen ein launisches Verfahren mit z. T. sehr guten aber auch 
sehr schlechten Ergebnissen. Dies liegt unter anderem daran, dass ein guter Wert fur a stark vom 
Optimierungsproblem abhangt und die Intervalle mit guten Werten fiir unterschiedliche Proble-
me auch sehr unterschiedlich sind. Sehr gute Naherungslosungen werden meist fiir Probleme 
erreicht, deren globales Optimum einen groBen Einzugsbereich hat. 

Ein anderes Verfahren, mit dem insbesondere fiir das in Kapitel 2 diskutierte Handlungsreisen-
denproblem gute Ergebnisse erzielt wurden, ist die Schwellwertakzeptanz (TA, engl. threshold 
accepting). Dabei wird analog zum simulierten Abkiihlen eine monoton sinkende Folge positi-
ver reeller Zahlen {Tempj)j^^^ mit limy^oo Tempj = 0 im Voraus bestimmt. Statt einer probabi-
listischen Akzeptanzbedingung fiir Verschlechterungen wird als hartes Kriterium eine maximale 
Verschlechterung um Tempf zur Zeit / akzeptiert (AKZEPTANZ-TA, Algorithmus 4.27). Ahnlich 
zur Wahl des Abkiihlungsplans beim simulierten Abkiihlen wird auch hier meist mit einer Ver-
ringerung der Toleranzschwelle gemaB der nahezu identischen Regel 

Tempf^i = Tempf • a mit 0,8 < a < 0,995 

gearbeitet. Allerdings wird zur Initialisierung oft ein empirischer Startwert aus drei Zufallsstich-
proben Ci, C2, C3 G Q herangezogen. 

Temp, = ^ • {F{Ci)+F{C2) +F{C3)) 

Die Akzeptanz von Verschlechterungen innerhalb eines gewissen Rahmens kann problematisch 
sein: Ist Temp^ noch nicht klein genug, kann eine bereits gefundene gute Losung durch iterative 
Verschlechterungen wieder verloren gehen. Dennoch liefert dieser Algorithmus gute Ergebnisse 
fiir Problem mit groBen Einzugsbereichen um die globalen Optima, da diese gegen Ende einer 
Suche mit TA nicht so leicht wieder verlassen werden. Die iterative Verschlechterung wird in 
den folgenden zwei Varianten der Schwellwertakzeptanz auf unterschiedliche Art und Weise 
vermieden. 

Beim so genannten Sintflutalgorithmus (GD, engl. great deluge) gibt es in jeder Iteration einen 
festen vorbestimmten Giitebereich, in dem neue Individuen akzeptiert werden. Der Name des 
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Algorithmus 4.28 
AKZEPTANZ-GD( Eltemgiite A.F, Kindgiite B.F, Generation t) 
1 if B.F y Anfang (|AnfangswasserstandD +t -Anstieg (|RegengeschwindigkeitD 
2 then E return wahr 
3 else E return/a/̂ c/z 

Algorithmus 4.29 
AKZEPTANZ-RR( Eltemgiite ^ . F , Kindgiite B.F, Generation t, beste gefundene Giite besteF ) 
1 \iB.F y besteF 
2 then ^ besteF ^ B.F 
3 L return wahr^ besteF 
4 else ^ if deuk{B.F, besteF) < Temp^ 
5 L then E return wahr^ besteF 
6 YtivLYnfalsch^ besteF 

Verfahrens riihrt von der Vorstellung einer Giitelandschaft bei der Maximierung, in der durch be-
standigen Regen der Wasserspiegel steigt - der Optimierer darf beliebige Schritte unternehmen, 
ohne das steigende Wasser zu beriihren. In der Akzeptanzbedingung AKZEPTANZ-GD (Algorith­
mus 4.28) geht daher eine Regengeschwindigkeit Anstieg als wichtiger Parameter ein. Fiir ein 
Minimierungsproblem ist die Regengeschwindigkeit negativ und der anfangliche Wasserstand 
Anfang zu hoch zu wahlen. Dieses Verfahren ist sehr schnell, da kein wesentlicher Rechenauf-
wand notwendig ist; allerdings kann die harte Akzeptanzlinie das Steckenbleiben in lokalen Op­
tima begiinstigen. 

Als abschlieBende Variante der Schwellwertakzeptanz wird noch das Verfahren des rekord-
orientierten Wanderns (RR, engl. Record-to-Record-Travel) vorgestellt, bei dem ebenfalls ahn-
lich zum Sintflutalgorithmus ein steigender Wasserpegel benutzt wird. Jedoch wird dieser an die 
Giite des besten bisher vom Verfahren gefundenen Individuums gekoppelt. Eine mogliche Ver-
schlechterung ist also stets in Relation zum besten gefundenen Individuum zu sehen und nicht 
zum aktuellen Individuum. Ahnlich zur Schwellwertakzeptanz regelt eine monoton fallende Fol-
ge reeller Zahlen {Tempj)j>o auch in AKZEPTANZ-RR (Algorithmus 4.29), ob ein schlechtes Indi­
viduum iibemommen wird. 

Die unterschiedlichen Ansatze der lokalen Suchalgorithmen bei der Festlegung der Akzep­
tanzlinie sind in Bild 4.22 veranschaulicht. 

4.6 Weitere Verfahren 

Verhdltnismdfiig knapp wird in diesem Abschnitt eine Reihe weniger verbreiteter Standardalgo­
rithmen vorgestellt. Der Fokus liegt dabei immer aufden Unterschieden zu den bisherprdsentier-
ten Verfahren. 

4.6.1 Klassifizierende Systeme 

Klassifizierende Systeme (CS, engl. classifier systems) sind urspriinglich als Anwendung der 
genetischen Algorithmen auf das Gebiet des maschinellen Lernens entstanden, wobei ein Re-
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Hillclimbing Schwellwertakzeptanz Sintflut-Algorithmus Rekordorientiertes Wandern 

Bild 4.22 Ftir die lokalen Suchalgorithmen mit einem hartem Akzeptanzkriterium sind die verschiedenen 
Ideen auf einer einfachen Giitelandschaft verdeutlicht: Die aktuelle Giite gibt beim Hillclimbing 
die Akzeptanzlinie vor. Bei der Schwellwertakzeptanz orientiert sich eine mogliche Verschlech-
terung ebenfalls am aktuellen Individuum. Wahrend beim Sintflutalgorithmus die steigende Ak­
zeptanzlinie vollig unabhangig vom aktuellen Individuum ist, orientiert sie sich beim rekordori-
entierten Wandern am besten bisher gefundenen Individuum. 

gelsatz zur Bewaltigung einer vorgegebenen Aufgabe entwickelt werden soil. Da die Forschung 
um die klassifizierenden Systeme eine Eigendynamik entwickelt hat, rechtfertigt die Vielzahl 
an Techniken und Algorithmen die eigenstandige Betrachtung der klassifizierenden Systeme als 
Standardverfahren. Ihre Entwicklung zielte auf Regelungsprobleme, bei denen Aktionen nicht 
sofort sondern erst indirekt nach mehreren Schritten beurteilt werden. 

± Vorsicht: Jetzt betrachten wir ganz andere Probleme als bisher. Beispielsweise soil ein mobiler Roboter eine 
spezielle Aufgabe bewaltigen - z. B. ein Ziel erreichen. Seine Wahmehmung besteht aus Sensorinformatio-
nen (Licht, Beriihrung etc.), seine Aktionen aus Drehung um die eigene Achse und Bewegung vorwarts. Der 
Roboter soil aus der eingehenden Sensorinformationen eigene Aktionen ableitet. Hierfur wird ein Regelsatz 
entwickelt, der fur alle unterschiedlichen auftretenden Situationen die moglichen Reaktionen des Roboters 
beschreibt. Wie gut der Roboter sich verhalt (also wie gut der Regelsatz ist), wird erst beim Erreichen des 
Zielzustands bzw. bei einer unerwiinschten KoUision zuvor bekannt. Der GA soil einen guten Regelsatz 
»finden«. 

Bild 4.23 zeigt den Aufbau und den Einsatz von klassifizierenden Systemen. Detektoren beobach-
ten die Problemumgebung und reichen Statusmeldungen an das klassifizierende System. Diese 
Meldungen werden mit den Regeln des Systems verglichen und die anwendbaren Regeln werden 
weiterbetrachtet. Aufgrund der bisherigen Leistungen der anwendbaren Regeln (der sog. Starke) 
wird eine Aktion zur Manipulation der Problemumgebung mittels eines Effektors ausgewahlt. 
Da man von der Umgebung nicht immer eine direkte Antwort erhalt, ob eine durchgefiihrte Ak­
tion gut Oder schlecht war, ist die Bewertung der Regeln und damit die Modifikation der Starke 
schwierig. Daher wird mit einem indirekten Mechanismus gearbeitet, der Rtickkopplungen vom 
System bei zukiinftigen ahnlichen Situationen an verursachende Regeln zuriickpropagiert. Ein 
solches System passt sich bereits dem Problem an, indem erfolgreiche Regeln zukiinftig haufiger 
genutzt werden. Allerdings bleibt dabei der Regelsatz statisch. Durch Einfiigen eines genetischen 
Algorithmus, der in bestimmten Zeitabstanden neue Regeln erzeugt, ist eine bessere Anpassung 
des Regelsatzes moglich. 

Im Weiteren werden die klassifizierenden Systeme mit ihrer Arbeitsweise formal vorgestellt. 
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Regelsatz 

Bed. Aktion 
1**11 
* * ] ^ * * 

*0*1* 
100** 
**011 
*011* 

01 
00 
11 
01 
11 
10 

etc. 

^ 

Starke 
43 
32 
14 
27 
18 
24 

Bild 4.23 Architektur eines einfachen klassifizierenden Systems 

Definition 4.2 (Regeln und Regelsatz): 
Eine Kegel reg ist ein Tupel 

reg = (reg.b, reg.a, reg.s) G Bedingung x Aktion x R 

bestehend aus einer Bedingung reg.b G Bedingung = {0,1, *}^, einer Aktion reg.a G 
Aktion = {0, \}^ und einer Starke reg.s G M. Das Zeichen »*« ist wie in der Nota­
tion der Schemata ein Platzhalter fiir 0 und 1. Ein Regelsatz ist eine Menge regeln C 
Bedingung x Aktion x M. 

Definition 4.3 (Anwendbare Regeln): 
Unter einer Statusmeldung v G Status = {0, 1}^ sind diejenigen Regeln aus einem 
Regelsatz regeln anwendbar, deren Bedingung zu v passt, d. h. 

aktiv{v) = \ reg G regeln | /\{reg.bi ^ * ^ ^eg.bj = Vi) >. 

Beispiel 4.14: 
Die beiden Regeln 

reg= (0*11**, 11100,17) 

reg'= (**** 10,00101,22) 

sind unter der Nachriclit v = 011110 aktiviert und damit anwendbar. Die erste Regel 
reg wiirde eine Aktion 11100 ausfuhren und die zweite Regel reg' eine Aktion 00101. 
Die Nachricht v' = 001100 wiirde nur die erste Regel reg aktivieren. 
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Falls die anwendbaren Regeln unterschiedliche Aktionen vorschlagen, wird fiir jede Aktion eine 
Auswahlwahrscheinlichkeit berechnet, die sich aus der Summe der Starkewerte der entsprechen-
den Regeln geteilt durch die Gesamtstarke aller aktivierten Regeln ergibt. 

Definition 4.4 (Auswahlwahrscheinlichkeit): 
Seien die Regeln aktiv{v) unter einer Nachricht v G Status anwendbar. Dann bezeich-
net aktion{v) = {reg.a \ reg G aktiv{v)} die Menge der moglichen Reaktionen des Sys­
tems. Fiir jede mogliche Aktion x G aktion (v) gibt aktiV{v^x) = {reg G aktiv \ reg.a = 
x} die Menge der anwendbaren Regeln an, die Aktion x verursachen konnen. Dann 
lasst sich die Auswahlwahrscheinlichkeit fur eine Aktion x gemaB des fitnesspropor-
tionalen Prinzips wie folgt definieren: 

Pr[x\y] = —^ ^-^ 
l^regeaktiv{y) ^^S'^ 

Die Starkewerte der unterschiedlichen Regeln werden durch die Riickkopplungswerte modifi-
ziert, d. h. Regeln mit positiven Wirkungen erhalten eine hohere Starke und Regeln mit negativer 
Riickmeldung werden geschwacht. Da jedoch auch mehrere Aktionen hintereinander eine posi­
tive Riickmeldung bewirken konnen, diirfen nicht nur die Regeln der letzten Aktion »belohnt« 
werden. Daher gibt immer jede Regel einen Teil ihrer Starke an die direkt zuvor ausgefiihrten 
Regeln ab. Vorausgesetzt, dass wirkungsvolle Aktionsfolgen mehrfach auftreten, werden so alle 
beteiligten Regeln gestarkt. 

Definition 4.5 (Modifikation der Starke): 
Seien ausgep^' die zur Zeit t ausgefiihrten Regeln {ausgef^^' = aktiv'{y^x) C aktiv(y)) 
und riick G M die Riickmeldung vom System (bzw. riick = 0 falls keine Riickmeldung 
vorliegt). Dann werden die Starkewerte der Regeln reg G ausgep^^ gemaB der Lemrate 
a G (0, 1) modifiziert: 

, ̂  . riick 
reg.s ^ (1 — a) • reg.s + a • #ausgef^^^ 

Diejenigen Regeln reg G aktiv{v) \ausgef^^\ die nicht gewahlt wurden, werden um 
einen kleinen Straffaktor T G (0, 1) in ihrer Starke verringert: 

reg.s ^ (1 — T) • reg.s 

Sei ferner j8 G (0, 1) ein Dampfungsfaktor. Dann werden die Regeln der letzten Itera­
tion reg G ausgef^^~^^ wie folgt modifiziert: 

reg.s ^ reg.s^a • /3 • — \ At-W 
#ausgep ^ 

Eine positive (oder negative) Riickkopplung wird damit zunachst nur den aktiven, ausgefiihrten 
Regeln zuteil. Erst wenn diese Regeln das nachste Mai wieder aktiviert werden, geben sie einen 
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Parameter Wertebereich 

PopulationsgroBe: 400-5 000 
Lemrate a: 0,2 
DampfungsfaktorjS: 0,71 Tabelle4.8 
,̂ rv. 1 . r. . Haufig benutzte Parametereinstellungen fur die einfachen klas-

'. '. sifizierenden Systeme 

Anteil der Riickkopplungen an die direkt vorhergehende(n) Regel(n) ab. Nach k Iterationen wird 
die Riickkopplung iiber eine komplette Regelkette der Lange k verteilt. 

Um neue Regeln zu erzeugen, wird ein genetischer Algorithmus eingesetzt. So wechseln sich 
mehrere Schritte des obigen Lemverfahrens mit einer »Generation« des genetischen Algorithmus 
ab. Dabei werden zwei Regeln zufallig proportional zu ihren Starkewerten gezogen, ein Cross­
over wird angewandt und die beiden Kindindividuen werden mutiert. Beide Kindindividuen wer­
den mit der durchschnittlichen Starke ihrer beiden Eltem initialisiert und ersetzen zwei zufallig 
(proportional zu ihrer inversen Starke) gezogene Individuen aus dem Regelsatz. Beispielhafte 
Parameterbereiche aus der Literatur sind in Tabelle 4.8 dargestellt. 

Die heute popularen klassifizierenden Systeme, wie beispielsweise XCS, benutzen noch we-
sentlich aufwandigere Mechanismen als die hier beschriebenen. So entspricht etwa die Starke der 
Regeln nicht mehr direkt der Giite der Individuen. Stattdessen wird eine Vorhersage beziiglich 
des Effekts der Regeln beriicksichtigt. Femer wird die hier prasentierte klassische Darstellung 
der Regeln haufig durch andere Reprasentationen ersetzt, z.B. durch Baumstrukturen wie im 
genetischen Programmieren. Dann werden entsprechende Operatoren wie beim genetischen Pro-
grammieren verwendet. Zusatzlich kann der genetische Algorithmus modifiziert werden, um z.B. 
breit gestreute Regeln in der Population zu erhalten. Dazu werden nur solche Regeln miteinander 
rekombiniert, die auch gemeinsam aktiviert sind. 

Bei dem hier prasentierten Ansatz fur ein klassifizierendes System entspricht eine Population 
dem Regelsystem. Er wird auch als Michigan-CS bezeichnet. Altemativ gibt es das Pittsburgh-
CS, bei dem jedes Individuum ein ganzes Regelsystem enthalt. Der Vorteil des Michigan-CS ist, 
dass das Regelsystem immer nur leicht modifiziert wird und somit eine direkte Wechselwirkung 
zwischen Regelmodifikation und Systemriickkopplung erlaubt. Allerdings tendieren genetische 
Algorithmen zur Konvergenz, d. h. die Anzahl der unterschiedlichen Regeln in der Population 
nimmt mit der Zeit ab. Daher sind zusatzliche Techniken zum Erhalt der Vielfalt evtl. notwendig. 

^ ^ Einige Techniken zum Erhalt der Diversitat werden im nachsten Kapitel auf S. 203 im Kontext der Mehr-
II zieloptimierung vorgestellt. 

Beim Pittsburgh-CS befinden sich in einer Population eine ganze Reihe von Regelsatzen. Damit 
gestaltet sich ein Lemen am laufenden System schwierig. Die Bewertung von einzelnen Indivi­
duen findet im Pittsburgh-CS meist iiber Simulationen des zu regelnden Systems statt. Haufig 
werden bei diesem Ansatz auch Operatoren benutzt, die die Anzahl der Regeln im Individuum 
verandem. 

Ein beliebtes modemes Anwendungsgebiet ist Data-Mining. Gerade modeme Varianten der 
klassifizierenden Systeme sind durch ihre Regeln in der Lage, sehr kompakt Zusammenhange 
in mehrdimensionalen Daten zu beschreiben. Andere mogliche Anwendungen finden sich in der 
Robotik ebenso wie in der Zeitreihenprognose. 
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4.6.2 Tabu-Suche 

Tabu-Suche (TS, engl. tabu search) ist ein lokales Suchverfahren, das iiber ausgefeilte Mechanis-
men verfiigt, den Verlauf der Optimierung zu steuern. Dieses Suchverfahren passt nicht in das 
Schema des Basisalgorithmus LOKALE-SUCHE (Algorithmus 4.24), sondem ahneh mehr einer 
(1, A)-Evolutionsstrategie. Charakteristisch ist, dass bei der Erzeugung der neuen Kindindividu-
en die Geschichte der bisherigen Optimierung berticksichtigt wird. Hierfiir wird Information aus 
den letzten Veranderungen durch den Mutationsoperator extrahiert und in einer sog. Tabu-Liste 
gespeichert, die das Zuriickkehren zu den zuletzt betrachteten Losungskandidaten verhindert. 

Beispiel 4.15: 
Beim Problem der Graphenfarbung, ist ein Graph G = {V,E) und die Anzahl an Far-
ben k gegeben. Das Ziel ist, jedem Knoten v G K = {vi , . . . , v„} eine FarbeyarZ)e(v) 
zuzuweisen, sodass keine Kante zwischen gleichgefarbten Knoten verlauft. Formal 
muss durch x G Q = { 1 , . . . , kY die Bewertungsfunktion 

{vi,vj)eE ^ ^ 

falls Xi = Xj 

sonst 

minimiert werden. Wird nun durch die Mutation die Farbe des Knotens Vj von c auf 
d gesetzt, wird die Tabu-Liste um einen Eintrag (/, c) erweitert. Bei der nachsten Mu­
tation wird damit verhindert, dass die Farbe von v/ wieder von d auf c zuriickgesetzt 
wird. 

Die Tabu-Liste ist eine FIFO-Warteschlange (first in first oi/^Warteschlange) fester Lange. Damit 
fallt ein Tabu-Eintrag nach einer vordefinierten Anzahl von Iterationen wieder aus der Liste her-
aus und die Mutation kann den bisher verhinderten Wert wieder setzen. Dadurch werden weitaus 
mehr mogliche Nachkommen ausgeschlossen als diejenigen, die bereits betrachtet wurden. Um 
zu vermeiden, dass dadurch auch sinnvolle Losungen abgeschnitten werden, konnen spezielle 
erstrebenswerte Eigenschaften das Tabu fiir eine spezielle Mutation iiberstimmen. Solche erstre-
benswerte Eigenschaften konnen in einer ahnlichen Weise wie die Tabu-Eigenschaften in einer 
Liste verwaltet werden, haufig sind dies jedoch feste Kriterien wie die, dass der Giitewert des neu­
en Individuums besser als der des besten bisher bekannten Losungskandidaten ist. TABU-SUCHE 
(Algorithmus 4.30) formuliert diese Ideen formal. 

Es gibt sehr viele unterschiedliche Varianten, wie die Tabu-Suche fiir konkrete Probleme um-
gesetzt wird. So kann auch in bestimmten Phasen einer Optimierung die Feinabstimmung der 
vorhandenen Losung bzw. die Erforschung neuer Regionen durch eine Modifikation der Bewer­
tungsfunktion begiinstigt werden. Gerade die mannigfaltigen Moglichkeiten zur Anpassung der 
Tabu-Suche an neue Probleme machen sie zu einem sehr erfolgreichen Optimierungsverfahren. 

4.6.3 Memetische Algorithmen 

Populationsbasierte Algorithmen und lokale Suche zeichnen sich durch unterschiedliche Vor-
und Nachteile aus: Wahrend der populationsbasierte Ansatz langsam in der Breite den Suchraum 
durchforscht, geht die lokale Suche schnell in die Tiefe und steuert das nachste lokale Optimum 
an. Memetische Algorithmen verbinden beide Ansatze. Ihr Name geht auf den Begriff »Meme« 
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Algorithmus 4.30 
TABU-SUCHE( Zielfunktion F ) 

1 t^O 
2 A{t) ̂  erzeuge zufalligen Losungskandidaten 
3 bewerte A{t) durch F 
4 bestInd^A{t) 
5 initialisiere Tabu-Liste 
6 while Terminiemngsbedingung nicht erfiillt 
7 d o ^ P ^ O 
8 while #P<X 
9 do^B ^ MUTATION(^(^)) 

10 bewerte B durch F 
11 if (^ (0, B) ^ Tabu-Liste oder B,F y bestlnd.F 
12 LthenE/^^Po(5) 
13 t^t + \ 
14 ^(/) ̂  bestes Individuum aus P 
15 if A{t).Fy bestlnd.F 
16 then E bestind ^A{t) 
17 L Tabu-Liste ^- aktualisiere Tabu-Liste durch (^ (̂  — 1), ^ (̂ )) 
18 return bestind 

des Biologen Richard Dawkins zurtick, der damit Verhaltenselemente bezeichnet, die sich im 
Gegensatz zu Genen individuell andem konnen, indem sie beispielsweise durch Nachahmung 
erworben werden. 

Die Grundidee nahezu aller memetischer Algorithmen ist, alle durch einen evolutionaren Al­
gorithmus erzeugten Individuen zunachst lokal zu optimieren und sie dann erst in die Population 
aufzunehmen. Der entsprechende Ablauf ist in MEMETISCHER-ALGORITHMUS (Algorithmus 4.31) 
dargestellt. 

Beispiel 4.16: 
So kann man beispielsweise als populationsbasierten Anteil einen genetischen Algo­
rithmus (GA) wahlen, dessen Individuen durch simuliertes Abkiihlen (SA) verbessert 
werden. Das resultierende Verfahren wird auch als SAGA-Algorithmus bezeichnet. 

Memetischen Algorithmen schranken die Bereiche des Suchraums ein, in denen sich Losungs­
kandidaten befinden konnen. Im Extremfall entspricht tatsachlich jeder Losungskandidat einem 
lokalen Optimum (vgl. Bild 4.24). Dies ist haufig vorteilhaft, weil so schnell unterschiedliche Ei-
genschaften aus verschiedenen Teilen des Suchraums in neuen Individuen kombiniert werden. Es 
kann aber auch der Bewegungsspielraum der Losungskandidaten zu stark eingeschrankt werden, 
wenn Rekombinationsoperatoren aus den vorhandenen lokalen Optima keine neuen interessan-
ten Losungen kombinieren konnen und der global optimale Bereich des Suchraums dadurch 
unerreichbar wird. 

Die Arbeitsweise der memetischen Algorithmen entspricht dabei der Evolutionstheorie von 
Lamarck, der individuelles Lemen ftir die Veranderungen am Genotyp verantwortlich gemacht 
hat(vgl.Abschnitt 1.3.3). 
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Algorithmus 4.31 

MEMETISCHER-ALGORITHMUS( Bewertungsfunktion F ) 
1 t^O 
2 P{t) ̂  initialisiere Population der GroBe fi 
3 P(t) ^ LOKALE-SUCHE(F) fiir jedes Individuum in P{t) 
4 bewerte P{t) durch F 
5 while Terminierungsbedingung nicht erfuUt 
6 do^ E ^ selektiere Eltem fiir X Nachkommen aus P{t) 
1 P' ^ erzeuge Nachkommen durch Rekombination aus E 
8 P" ^- mutiere die Individuen in P' 
9 P'" ̂  LOKALE-SUCHE(F) fur jedes Individuum in P" 

10 bewerte P'''durch F 
11 t^t + \ 
12 ^P(t)^ Umweltselektion auf P'" 
13 return bestes Individuum aus P{t) 

a 

Suchraum 

Bild 4.24 Beispielhaft wird far die Giitelandschaft eines Maximiemngsproblems gezeigt, wie sich die neu 
erzeugten Individuen (weiBe Punkte) durch lokale Suche den lokalen Optima (schwarze Punkte) 
annahem. Im Extremfall wird solange lokal optimiert, bis die lokalen Optima erreicht sind. 

4.6.4 Populationsbasiertes inkrementelles Lernen 

Das populationsbasierte inkrementelle Lernen (PBIL, engl. population based incremental lear­
ning) folgt der Grundidee, im genetischen Algorithmus mit binarer Kodierung ^ = W die Po­
pulation nicht mehr explizit zu speichem, sondern nur noch eine Populationsstatistik der Gen-
frequenz zu fiihren. Dort wird fiir jedes der / Bits protokolliert, wie haufig der Wert »1« in den 
Individuen der Population vorhanden ist. Selbstverstandlich wird hierbei die relative Haufigkeit 
betrachtet. 

Eine Populationsstatistik allein reicht jedoch nicht aus, um ein Optimierungsproblem zu lo-
sen - dafiir miissen konkrete Individuen bewertet werden. Die statistischen Werte werden als 
Wahrscheinlichkeiten aufgefasst, entsprechend derer neue Individuen aus der virtuellen Popula­
tion »gezogen« werden. Da die einzelnen Bits vollig unabhangig voneinander erzeugt werden, 
entspricht diese Erzeugung eines neuen Individuums bereits der Rekombination UNIFORMER-
CROSSOVER (Algorithmus 3.11), sodass hier kein zusatzlicher Rekombinationsoperator mehr an-
gewandt wird. Als Selektionsmechanismus wird per BESTEN-SELEKTION (Algorithmus 3.6) das 



166 4 Evolutionare Standardalgorithmen 

Algorithmus 4.32 
PBIL( Bewertungsfunktion F ) 

1 t^O 
2 bestind ̂ - erzeuge ein zufalliges Individuum aus ̂  = B̂  
3 Prob^^^ ^ (0.5,... ,0.5) G [0, 1]̂  
4 while Terminiemngsbedingung nicht erfiillt 
5 do^P^Q 
6 for z ^ 1,..., A 
7 do ^^ ^ erzeuge Individuum aus B̂  gemaB Prob^^^ 
8 ^P^Po{A) 
9 bewerte P durch F 

10 (B) ^ Selektion aus P mittels BESTEN-SELEKTION 
11 if F{B)yF {bestind) 
12 thenLbestlnd^B 
13 t^t + \ 
14 for eachA:G{l,...,/} 
15 do LProb^^ ^B^a ^Lemratê  +Probl~^^ • (1 - Of) 
16 for eachA:G{l,...,/} 
17 do ^ w ^ wahle Zufallszahl gemaB ^((0, 1]) 
18 \iu < pm dMutationswahrscheinlichkeitD 
19 then ^ u' ̂  wahle Zufallszahl gemaB t/({0, 1}) 
20 L L L Probf ^u' -fi ^Mutationskonstante^ + Probf • (1 - /3) 
21 return bestind 

beste erzeugte Individuum ausgev^ahlt und zur Aktualisierung der Populationsstatistik herangezo-
gen - dies erinnert an die Ersetzung von Individuen in iiberlappenden Populationen v îe z. B. dem 
steady state GA. Eine Mutation wird nicht direkt auf den erzeugten Individuen durchgeftihrt, son-
dem es v îrd stattdessen die Statistik fiir einige Bits zufallig leicht verschoben. Formal wird das 
PBIL in Algorithmus 4.32 beschrieben. 

Im Gegensatz zu den genetischen Algorithmen konnen beim populationsbasierten inkremen-
tellen Lemen keine intemen Abhangigkeiten zv^ischen den einzelnen Bits erlemt v^erden. 

Beispiel 4.17: 
Die beiden vierelementigen Populationen in Tabelle 4.9 demonstrieren, wie eine Popu­
lation mit einer paarweisen Bindung zv^ischen Bits und eine Population ohne jegliche 
Struktur auf dieselbe Populationsstatistik abgebildet werden. 

Dies ist der Preis fiir die Projektion auf rein statistische Werte. In der Praxis wiirde sich jedoch 
Population 1 aus dem Beispiel v^eder bei einem genetischen Algorithmus noch beim populations­
basierten inkrementellen Lemen lange halten, da sich durch Gendrift eine der beiden Bitvertei-
lungen durchsetzt. Dennoch ist bei PBIL mit einer eingeschrankten Losungsqualitat zu rechnen, 
v^enn Probleme mit starken Interaktionen zv^ischen mehreren Bits betrachtet v^erden. 

Im Algorithmus bestimmt die Lemrate a den Grad, mit welchem Erforschung und Feinab-
stimmung betrieben v^erden. Ein niedriger Wert betont mehr die Erforschung, v^ahrend bei ei­
nem hohen Wert die Suche sich sehr schnell fokussiert. Oberflachliche Empfehlungen fur die 
Parameterwerte konnen Tabelle 4.10 entnommen werden. 
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Tabelle 4.9: In der linken Population gibt es je eine Bindung zwischen dem 1. und dem 2. sowie zwischen 
dem 3. und dem 4. Bit. Aber diese Abhangigkeiten werden nicht in der Populationsstatistik 
reprasentiert, die identisch zur Populationsstatistik der zufalligen Population 2 ist. 

1 
1 
0 
0 

0,5 

Population 1 

1 
1 
0 
0 

0,5 

0 
0 
1 
1 

0,5 

0 
0 
1 
1 

0,5 

Individuum 1 
Individuum 2 
Individuum 3 
Individuum 4 

Populationsstatistik 

1 
0 
0 
1 

0,5 

Populat 

0 
1 
1 
0 

0,5 

ion 2 

1 
1 
0 
0 

0,5 

0 
0 
1 
1 

0,5 

Tabelle 4.10 
Haufig benutzte Parameterbereiche bei populationsbasiertem 
inkrementellem Lemen 

Parameter Wertebereich 

PopulationsgroBe A : 
Lemrate a: 
Mutationsrate pm: 
Mutationskonstante j8: 

20-100 
0,05-0,2 
0,001-0,02 
0,05 

Algorithmus 4.33 

DE-OPERATOR( Individuen^, B,C,D] 
, / } ) 1 index ^- wahle Zufallszahl gemaB ^({ 1, 

2 for each z G {1 , . . . , / } 
3 do^u^ wahle Zufallszahl gemaB t/([0, 1)) 
4 if w < T dWichtung der RekombinationD oder / = index 
5 then E A^. ^ Bj + (Q - A ) • oc ̂ Skaliemngsfaktor^ 
6 Lclse LA'i ^Ai 
1 return A' 

Ausgehend vom populationsbasierten inkrementellen Lemen wurden verschiedene weitere 
Verfahren entwickelt, die mit besseren Techniken die Verteilung der guten Losungen im Such-
raum schatzen. Analog zum hier prasentierten Algorithmus werden daraus zufallige neue Lo-
sungskandidaten erzeugt. Bei der intemen Representation wird dabei immer mehr Wert auf die 
intemen Abhangigkeiten im Suchraum gelegt, z. B. im sog. Bayesian optimization algorithm 
durch Nutzung von Bayes-Netzen als Modell fiir die Abhangigkeiten. 

4.6.5 Differentialevolution 

Die Differentialevolution (DE, engl. differential evolution) arbeitet ahnlich wie die Evolutions-
strategie auf reellwertigen Individuen mit A.G G M^ wobei keine Zusatzinformation AS be-
notigt wird. Die grundsatzliche Arbeitsweise lasst sich auf die Idee reduzieren, alle Vektoren 
(bzw. Differenzen) zwischen beliebigen Individuenpaaren in der Population als Grundlage fiir 
die moglichen Modifikationen eines Individuums heranzuziehen. Der resultierende DE-OPERA­
TOR (Algorithmus 4.33) ist eine Mischung aus Rekombination und Mutation: Strenggenommen 
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Bild 4.25 
Funktionsweise des DE-OPERATOR: Die Differenz zwischen den 

3 T ^"^^ Individuen C und D bestimmt die Mutationsrichtung fur das Indi-
"^ viduum B. Zufallsbedingt konnen auch einzelne Suchraumdimen-

sionen unverandert von B ubemommen werden. 

rs 
Algorithmus 4.34 
DIFFERENTIALEVOLUTION( Bewertungsfunktion F ) 

1 t^O 
2 P{t) ̂  erzeuge Population der GroBe /i 
3 bewerte P{t) durch F 
4 while Terminiemngsbedingung nicht erfiillt 
5 do^P(/ + l ) ^ ( ) 
6 for / ̂  1 , . . . , ;U 
7 do ̂  repeat \1A^B,C,D ^ selektiere Eltem uniform zufallig aus P{t) 
8 until A,B,C,D sind paarweise verschieden 
9 ^ ' ^ D E - O P E R A T O R ( ^ , 5 , C , D ) 

10 bewerte A^ durch F 
11 ifF{A')yF{A) 
12 then \:P{t + l)^P{t-\-l)o {A') 
13 Lelse \:P{t + \)^P{t + l)o{A) 
14 L ^ ^ ^ + 1 
15 return bestes Individuum aus P{t) 

Parameter Wertebereich 

PopulationsgroBe/i: 10-100, lOn Tabelle4 11 

Wichtung der Rekombination T: 0,7-0,9 Empfohlene Parameterbereiche bei der Differential-
Skaliemngsfaktor a: 0,5-1,0 evolution. 

handelt es sich um eine gewichtete uniforme Rekombination zwischen einem Individuum A und 
einem durch einen Differenzenvektor mutierten Individuum B, Interessanterweise skaliert sich 
die Schrittv^eite selbst, je mehr sich die Population auf bestimmte Bereiche des Suchraums kon-
zentriert. Ein Beispiel fiir die Funktionsv^eise des Algorithmus ist in Bild 4.25 dargestellt. 

Als Selektion findet jeweils ein Vergleich des neuen Individuums mit dem direkten Eltemindi-
viduum statt und nur diejenigen Kindindividuen vs^erden in die nachste Generation Ubemommen, 
die eine Verbesserung darstellen. Damit ergibt sich der Gesamtablauf der DIFFERENTIALEVOLU-
TiON in Algorithmus 4.34. Zugehorige Parametereinstellungen sind in Tabelle 4.11 aufgelistet. 

4.6.6 Scatter Search 

Obvs^ohl Scatter Search eigentlich als deterministisches Optimierungsverfahren konzipiert w^urde, 
v^eist es viele Ahnlichkeiten zu den evolutionaren Algorithmen auf: Es arbeitet auf Populationen 
von Losungskandidaten, benutzt Variationsoperatoren und erzeugt einen Selektionsdruck fiir die 
neu erzeugten Individuen. Eine breite Initialisierung und eine umfassende systematische Erzeu-
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Algorithmus 4.35 

SCATTER-SEARCH( Bewertungsfunktion F ) 
1 bestP = 0 
2 P^{) 
3 for ^ ^ 1 , . . . , maxlter 
4 do ̂  while #P < ji 
5 do ^ ̂  ^ erzeuge ein Individuum mit einem Diversitatsgenerator 
6 A^ LOKALE-SUCHE(F) angewandt auf ^ 
7 bewerte A durch F 
8 ifA^PobestP 
9 ^then\:P^Po{A) 

10 ift = \ 
11 then •" bestP ^ selektiere a Individuen aus P mit BESTEN-SELEKTION 
12 \_P ^- streiche Individuen aus bestP in P 
13 f o r ^ ^ l , . . . , j 8 
14 do ̂ A ^- dasjenige Individuum aus P, das min^^^^^^p d(A.G^B.G) maximiert 
15 P ^ streiche Individuum AmP 
16 ^ bestP ^ bestP o (A) 
17 repeat ̂ P ' ^ O 
18 Mengen ^- erzeuge Teilmengen von bestP durch einen Teilmengengenerator 
19 for each Me Mengen 
20 do •" ̂  ^ wende einen Kombinationsoperator auf M an 
21 A^ LOKALE-SUCHE(F) angewandt auf ^ 
22 bewerte A durch F 
23 if A ^bestP UP' 
24 ^thenLP' ^P'o{A) 
25 L Ẑ ê -̂ P ^ selektiere a + j8 Ind. aus bestPoP' mit BESTEN-SELEKTION 
26 until bestP hat sich nicht geandert 
27 L bestP ^ selektiere a Individuen aus P' mit BESTEN-SELEKTION 
28 return bestes Individuum aus bestP 

gung neuer Individuen garantieren eine weitraumige Erforschung des Suchraums. Die Feinab-
stimmung wird wie bei den memetischen Algorithmen durch eine lokale Suche fiir jedes Indi­
viduum erreicht. Die hier vorgestellte Variante von SCATTER-SEARCH (Algorithmus 4.35) ist so 
zunachst fiir reellwertige Problemraume mit ̂  = Q = R" gedacht. 

Der Algorithmus durchlauft in mehreren Iterationen zwei unterschiedliche Phasen. Zunachst 
werden in der ersten Phase moglichst unterschiedliche Individuen mit einem Diversitatsgenerator 
erzeugt, die alle lokal optimiert werden. 

Beispiel 4.18: 

Konkret kann man fiir die reellwertigen Probleme den Diversitatsgenerator wie folgt 
implementieren: Fiir jede Suchraumdimension wird der giiltige Wertebereich in vier 
Teile zerlegt und fiir jeden Teil wird gespeichert, wieviele Individuen in diesem Teil 
bereits erzeugt wurden. Dann wird invers proportional zur bisherigen Haufigkeit fiir 
jede Suchraumdimension der Wertebereich und ein zufalliger Wert aus diesem Bereich 
gewahlt. 
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Parameter Wertebereich 

PopulationsgroBe^u: 50-150 
Anzahl der besten Individuen a: 5-20 
Erweiterung der besten Individuen j8: 5-20 

Tabelle 4.12 Empfohlene Parameterbereiche bei Scatter Search. 

In der ersten Iteration wird eine Population der Besten mit den a besten Individuen initialisiert. 
Diese Population der Besten v îrd um j8 Individuen erweitert, die moglichst unterschiedlich zu 
den Individuen der Population der Besten sind. 

In der zvŝ eiten Phase vŝ erden die besten Individuen systematisch durch einen Teilmengenge-
nerator zusammengestellt. 

Beispiel 4.19: 
Das konnen in unserem Beispiel des reellvv^ertigen Suchraums alle Teilmengen mit 
genau zwei Individuen sein. Fiir andere Anwendungen findet man allerdings auch we-
sentliche kompliziertere Teilmengengeneratoren. 

Aus den so zusammengestellten Individuen erzeugt der Kombinationsoperator jev^eils ein neues 
Individuum. Dieses vv̂ ird vv̂ ieder lokal optimiert und in die Population der Besten tibemommen, 
falls es noch nicht bekannt ist. Dieser Ablauf in der zvv̂ eiten Phase vŝ ird solange vs îederholt, bis 
sich die Menge der besten Individuen nicht mehr andert. 

Beispiel 4.20: 
Konkret kann dafiir im reellvv^ertigen Suchraum die Rekombination ARITHMETISCHER-

1 • CROSSOVER (Algorithmus 3.12) mit U(\—\, |]) (in Zeile 1) benutzt werden. 

Auch von Scatter Search gibt sehr viele Varianten, die abhangig vom Anvs^endungsproblem stark 
von dem hier vorgestellten Algorithmus abv^eichen konnen. 

4.6.7 Kulturelle Algorithmen 

Kulturelle Algorithmen (CA, engl. cultural algorithms) beruhen auf der Beobachtung, dass die 
genetische Ebene nicht die einzige Ebene ist, auf der Informationen von einer Generation zur 
nachsten vv^eitergegeben vŝ erden. Zusatzlich gibt es gerade bei den Menschen noch einen vv̂ eiteren 
Informationsspeicher, namlich die Kultur. So ist Verhalten, das sich auf religiose oder moralische 
Vorstellungen stlitzt, vermutlich kaum genetisch sondem vielmehr durch kulturelle Vermittlung 
bedingt. Die kulturellen Algorithmen erganzen die evolutionaren Algorithmen um diese Kompo-
nente. 

Neben der genetischen Information, die in den Individuen der Population vorliegt, v îrd die Er-
zeugung neuer Individuen zusatzlich von einem kollektiven kulturellen Wissen beeinflusst. Die­
ses Wissen v îrd in einem sog. Uberzeugungsraum (engl. belief space) gespeichert. Die jeweils 
besten Individuen einer Generation konnen das kulturelle Wissen modifizieren. Algorithmus 4.36 
beschreibt das allgemeine Schema, das den kulturellen Algorithmen zugrunde liegt. 
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Algorithmus 4.36 
CULTURAL-ALGORITHM ( Bewertungsfunktion F ) 

1 t^O 
2 P{t) ̂  initialisiere die Population 
3 ^y{t) ^ initialisiere den Uberzeugungsraum 
4 bewerte P{t) durch F 
5 while Terminierungsbedingung nicht erftillt 
6 do '~ P' ^ bestimme wichtige Individuen aus P{t) 
1 ^y(t + 1) ^ ^y(t) wird durch P angepasst 
8 P" ̂ - erzeuge Nachkommen von P{t) auf der Basis von ̂ y{t + 1) 
9 bewerte P'' durch F 

10 t^t + l 
11 L P{t) ^ Selektion aus P'' {oP{t - 1)) 
12 return bestes Individuum aus P{t) 

Welches konkrete Wissen im tJberzeugungsraum gesammelt wird und wie dieses in den evo-
lutionaren Operatoren genutzt wird, hangt von dem bearbeiteten Optimierungsproblem ab und 
wird im Folgenden am Beispiel vorgefiihrt. 

Beispiel4.21: 
Die hier vorgestellte Variante fiir Probleme auf einem Suchraum Q = M" basiert auf 
dem evolutionaren Programmieren. Im Uberzeugungsraum werden als situationsbe-
zogenes Wissen die letzten beiden besten gefundenen Individuen und als normatives 
Wissen eine Einschrankung des Suchraums auf einen interessanten Bereich gespei-
chert. Fiir letzteres werden pro Suchraumdimension eine Unter- und eine Obergrenze 
berechnet. Dabei werden beispielsweise diejenigen 20% der Individuen in der Eltem-
population herangezogen, die bei der letzten Q-STUFIGE-TURNIER-SELEKTION (Algo­
rithmus 3.7) die meisten Gewinne aufweisen konnten. Aus diesen Individuen wird fiir 
jede Suchraumdimension der kleinste und der groBte Wert ermittelt. Falls dieser Wert 
das gespeicherte Intervall vergroBert, wird er in jedem Fall tibernommen. Eine Ver-
kleinerung des Intervalls findet nur dann statt, wenn der Giitewert des entsprechenden 
Individuums besser ist, als der bei der letzten Ubemahme gespeicherte Wert. In der 
Mutation leitet man nun aus dem normativen Wissen ab, wie weit die Optimierung 
bereits beziiglich der einzelnen Suchraumdimensionen fortgeschritten ist: Wurde der 
interessante Bereich auf weniger als 1% des Suchraumintervalls eingeschrankt, kann 
das situationsbezogene Wissen in Form des besten Individuums benutzt werden, um 
die Suche in diese Richtung auszurichten. Eine weitere Voraussetzung hierfiir ist, dass 
die letzten beiden besten Individuen innerhalb des interessanten Intervalls fiir die je-
weilige Suchraumdimension lagen. Man sagt dann, dass der tJberzeugungsraum fiir 
diese Suchraumdimension stabil ist. Der genaue Ablauf der CA-MUTATION kann Algo­
rithmus 4.37 entnommen werden und ist eine Variation der SELBSTADAPTIVE-GAUSS-

MuTATiON mit separater Schrittweitenanpassung fiir jede Dimension (vgl. S. 136). 
Bild 4.26 illustriert wie das Verhaltnis des zu mutierenden Individuums zum bes­
ten Individuum die Veranderungswahrscheinlichkeit in horizontaler Richtung veran-
dert. 
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Algorithmus 4.37 

CA-MUTATION( Individuum V4 

9 
10 
11 
12 
13 

1) 

1) 

u ^- wahle zufallig gemaB c/K(0, 
for each / G { 1 , . . . , /} 
do '~ wf ^ wahle zufallig gemaB ^{0, 

u ^- wahle zufallig gemaB c/K(0, B.Si 
if ^y ist stabil fiir Dimension i 
then ^ switch 

case^.G/ < Bestlnd.Gi: 5.G, 
case^.G/ > Bestlnd.Gi: 5.G, 

L case^.G/ = Bestlnd.Gi: 5.G, 
else LB.Gi^A.Gi + u 

\-B.Gi ^- max{ugi, min{og^-,5.G/}} 
return B 

-A.Gi^\u\ 
-A.Gi-\u\ 
-A.Gi+^ 

>1% <1% <1% <1% 

Bild 4.26 Die verschiedenen Falle bei der reellwertigen CA-MUTATION (Algorithmus 4.37) werden an-
hand der horizontalen Richtung illustriert: Links die Wahrscheinlichkeiten far die horizontale 
Richtung der Standardmutation, rechts die drei Varianten zur Feinabstimmung im Falle eines 
stabilen Uberzeugungsraums. Das aktuelle Individuum kann dabei auch auBerhalb des stabilen 
Bereichs liegen. 

Damit bieten die kulturellen Algorithmen einen weiteren Mechanismus der Adaptation, der auf 
die Details des jeweils zu bearbeitenden Problems zugeschnitten werden kann. Interessant ist 
hier insbesondere das Zusammenspiel zwischen der Selbstadaptation und der Adaptation. 

/ ^ Im Abschnitt 5.1 gehen wir nochmal auf die kulturellen Algorithmen ein und verandem den Anpassungs-

II mechanismus fur die zusatzliche Betrachtung von Randbedingungen. 

4.6.8 Ameisenkolonien 

Der Vorgang der Evolution ist nicht die einzige Inspirationsquelle aus der Natur fiir die Losung 
von Optimierungsaufgaben. Ein altemativer Ansatz ist die Betrachtung von Insektenkolonien, 
in denen ohne eine zentrale Steuerung aus relativ einfacher Basiskommunikation sehr komplexe 
Aufgabenstellungen bewaltigt werden. Als ein Beispiel wird hierfiir die Futtersuche von Ameisen 
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betrachtet. Dabei wurde in Experimenten festgestellt, dass die Ameisen iiber einen Duftstoff, 
das sog. Pheromon, ihre Wege markieren und sich mit groBerer Wahrscheinlichkeit an solchen 
Wegen orientieren, auf denen sich mehr Duftstoff befindet. Dieses Verhalten wird zur Losung 
von solchen Problemen imitiert, bei denen die Losung als ein Weg in einem Graphen dargestellt 
werden kann. 

Ein Beispiel hierfiir ist das Handlungsreisendenproblem aus Def. 2.2. Beim evolutionaren 
Ansatz aus Kapitel 2 wurde durch Veranderung der Permutation in den Individuen immer eine 
komplette Rundreise betrachtet und variiert. Im Gegensatz dazu wird bei der Ameisenkolonieop-
timierung durch ji virtuelle Ameisen immer wieder eine neue Rundreise schrittweise konstruiert. 
Dabei hat jede Ameise nur ein sehr beschranktes lokales Wissen iiber das Problem. Sie nutzt 
einerseits ein Erinnerungsvermogen, welche Knoten sie bereits besucht hat, um im Beispiel des 
Handlungsreisendenproblems nicht zu fruheren Knoten auf dem Rundweg zuriickzuspringen. An-
dererseits benutzt sie das Pheromon, das von anderen Ameisen auf den Kanten platziert wurde, 
um haufig benutzte Kanten mit einer groBeren Wahrscheinlichkeit auszuwahlen. Hat eine Amei­
se einen vollstandigen Losungskandidaten erstellt, wird der Losungskandidat bewertet und auf-
grund seiner Gtite eine bestimmte Menge Pheromon auf den Kanten verteilt. Das Pheromon wird 
zur Zeit t in einer Matrix PM^^'^ gespeichert, bestehend aus den Werten (T/J ) I</J<„ . 

Konkret bestimmt sich die Wahrscheinlichkeit, dass von dem aktuellen Knoten v/ der Knoten 
Vj e verfugbar aus der Menge der noch nicht besuchten Knoten gewahlt wird, aus zwei Faktoren: 

• der Pheromonmenge T/j, das auf der Kante hegt, - je mehr Pheromon desto hoher ist die 
Wahrscheinlichkeit - und 

• der inversen Entfemung nahij = . ^̂  x zwischen den Knoten, wobei y das Gewicht der 

Kante im Graphen darstellt. 

Dann ist die Auswahlwahrscheinlichkeit 

Pr[vj\vi\ = 
,^ '̂-̂  — n- falls Vj G verfugbar 
2 , %k'{nahi^kY ^^Y) 

vj^^verfiigbar 

0 sonst. 

Durch einen Explorationsregler 0 wird im Algorithmus 4.38 (AMEISENKOLONIE-TSP) bestimmt, 
wie haufig die nachste Stadt gemaB dieser Auswahlwahrscheinlichkeit bestimmt werden soil 
oder ob einfach die Stadt mit der groBten Wahrscheinlichkeit genommen wird. Ein kleiner Wert 
0 kann stabilere Ergebnisse produzieren. 

Sind alle Ameisen die Stadte abgelaufen, wird die Pheromonmatrix PM durch die Lange ihrer 
Reise modifiziert. Dabei »verdunstet« ein Teil a des Pheromons und auf den benutzten Kanten 
wird die Pheromonmenge gemaB der inverse Lange der konstruierten Rundreise erhoht, wodurch 
erreicht wird, dass kiirzere Rundreisen den Phermonwert auf ihreren Kanten starker erhohen als 
lange Rundreisen. 

Tij ^ a . Tij + X wert{A^^^, /, j) (4.2) 

-Tp falls (/, j) in A enthalten ist mit wert(A, I, j) = { ^.F \^JI (43) 
[ 0 sonst. 
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Algorithmus 4.38 

AMEISENKOLONIE-TSP( Bewertungsfunktion F (TSP mit n Stadten)) 
1 t^O 
2 PA/T' ^- initialisiere Pheromon 
3 while Terminiemngsbedingung nicht erfiillt 
4 do '~ for z ^ 1 , . . . , /i dAnzahl der AmeisenD 
5 do ^ ̂  ('̂ . G ^ (1) dinitialisiere neue AmeiseD 
6 aktuell ^- 1 
7 for A:^ 2 , . . . , « 
8 do ^ w ^ wahle Zufallszahl gemaB t/([0, 1)) 
9 iiu <0 dRegler fur Exploration!) 

10 then E ndchster ^- wahle Knoten gemaB Pr[vj\aktuell] (Gleichung 4.1) 
11 else E ndchster ^- Knoten j mit maximalem Pr[vj\aktuell] 
12 A^^\G^A^^\GO (ndchster) 

13 L aktuell ^- ndchster 
14 L bewerte A (̂ ) durch F 
15 t ^ t + l 
16 LPM̂ '̂> ^ aktualisiere PM^^~^^ gemaB Gleichung 4.2 
17 return beste gefiindene Rundreise 

Parameter Wertebereich 

Anzahl der Ameisen ji: 10 

Gewichtung der Entfemung /3: 2-6 Tabelle 4 1 ^ 

Verdunstungsgrad a: 0,6-0,9 Empfohlene Parameterbereiche bei der Ameisenkolo-
ExplorationsreglerO: 0,2-0,9 nieoptimiemng. 

Geeignete Parameterwerte sind in Tabelle 4.13 aufgefiihrt. Diese Werte und die hier benutz-
ten Formeln konnen allerdings nicht direkt auf andere Optimierungsprobleme iibertragen werden. 
Ebenso andern sich die Parameter, wenn komplexere Mechanismen zur Modifikation und Aus-
wertung des Pheromons benutzt werden. 

4.6.9 Partikelschwarme 

Partikelschwarme (engl. particle swarms) sind eine Optimierungsmethode fiir reellwertige Opti­
mierungsprobleme, die auf der Modellierung sozialer Interaktionen beruht. Zunachst waren die 
Partikelschwarme reine Simulationsmodelle fiir Sozialverhalten. Daher unterscheiden sie sich 
von evolutionaren Algorithmen in erster Linie darin, dass sie Verbesserungen nicht durch einen 
Selektionsmechanismus erreichen sondem durch Nachahmung und Lemen von anderen benach-
barten Individuen. Damit wird das Schwarmverhalten von Vogeln oder Fischen hinsichtlich op-
timaler Futterplatze etc. auf die Losung von reellwertigen Optimierungsproblemen iibertragen 
(PARTIKELSCHWARM in Algorithmus 4.39). 

Die Individuen bestehen dabei aus dem Genotyp A.G G R^ und den Zusatzinformationen 
AS = ( v i , . . . , V / , ^ 1 , . . . ,5/) G ^ = M^^ Dabei stellt v = ( v i , . . . , V/) einen Veranderungs-
vektor dar, der bei der Modifikation der Individuen benutzt wird und B = {B\,... ,Bi) reprasen-
tiert den besten bisher auf dem Weg des Individuums gefiindenen Punkt im Suchraum. In jeder 
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Algorithmus 4.39 

PARTIKELSCHWARM( Bewertungsfunktion F) 
1 t^O 
2 P{t) ̂  initialisiere die Population der GroBe fi 
3 bewerte P{t) durch F 
4 best ^- Genotyp des besten Individuums in P{t) 
5 while Terminierungsbedingung nicht erfuUt 
6 d o ^ P ' ^ O 
7 for z ^ 1 , . . . , ;U 

8 do ̂  (\sdA(^)s = (vf\ . . . , v f U f \ . . . ,5f))^ 
9 u\,U2 ^ wahle Zufallszahlen gemaB t/([0, 1]) 

10 for eachytG{l , . . . , /} 

11 do : v^ ^ /3 • v f + ai • wi • (4'^ -^('•) .Gyt) + 0̂2 • W2 • {bestj, -A^^lOk) 
12 if II ( v j , . . . , v/) II > MAX ^maximale Verandemng^ 
13 tlien E ( v j , . . . , v̂ )̂ ^ skaliere den Verandemngsvektor auf die Lange MAX 
14 for eachytG {1 , . . . , / } 

15 doLA'.Gk^A^Kvj^ 
16 bewerte ̂ ' durch F 
17 i f ^ ^ F ^ 5 W . F 
18 tlien LP' ^P'o{{A[,... ,^'^, v | , . . . , v ; , ^ ' ^ . . . ,Bf^)) 
19 Ldse E/^'^p'o((^;,...,^'^,vj,...,v;,^;,...,^'^)) 
20 ^ ^ ^ + 1 
21 P(t)^P' 
22 L Z)̂ /̂ ^ Genotyp des besten Individuums in P(/) 
23 return bestes Individuum aus P{t) 

Generation wird der Verandemngsvektor der Individuen durch die soziale Interaktion mit benach-
barten Individuen modifiziert (von v zu v ^ und anschlieBend auf den Genotyp angewandt, d. h. 
fu r a l l eA:G{ l , . . . , / }g i l t 

A'.Gk=A.Gk + vl 

In die Modifikation von v gehen zv^ei Komponenten ein: 

• das Bestreben eines Individuums, zu seinen Erfolgen zurtickzukehren, d. h. den Verande­
mngsvektor so zu modifizieren, dass er zum besten Losungkandidaten B zuruckfiihrt und 

• eine Orientiemng des Individuums an den besten Erfolgen seiner Nachbam. 

Sei also best der beste bisher gefundene Losungskandidat in einer Nachbarschaft, die oft fiir 
ein Individuum A^^^ einfach aus den Individuen A^^~^\ A^'^ und A^'^^^ besteht. Dann vŝ ird der 
VerandemngsvektormittelszweierZufallszahlenu\,U2^ ^ ( [0 , 1]) folgendermaBenmodifiziert. 

v^ = jS • vf^ + a i • ^/i. {Sf -A^^.Gk) + a2'U2- {bestk-A^^.Gk) 

Dabei ist j8 ein Tragheitsfaktor, a\ bestimmt, v^ie stark die gespeicherte beste Position eingeht, 
und a2 ist ein sozialer Faktor, vŝ ie stark ein Individuum sich an den Nachbarn orientiert. Lasst 
man den Verandemngsvektor beliebig groB vs^erden, vv̂ ird sich sehr schnell ein vollig zufalliges 
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Parameter 

Tragheit j8: 
kognitiver Faktor a\: 
sozialer Faktor a2: 
maximale Veranderung MAX: 
PopulationsgroBe ji: 

Wertebereich 

0,8-1,0 
1,5-2,0 
1,5-2,0 

ogi - ugi 

20-60 

Tabelle4.14 
Empfohlene Parameterbereiche bei der Optimierung 
mit Partikelschwarmen. 

Verhalten der Individuen einstellen. Dies lasst sich durcheine maximal mogliche Veranderung 
vermeiden. Geeignete Parameterwerte sind in Tabelle 4.14 aufgefiihrt. 

4.7 Kurzzusammenfassung 

Als kurze vergleichende Ubersicht iiber die Standardalgorithmen enthalten die Tabellen 4.15 
und 4.16 auf der Doppelseite im AnschluB an die Ubungsaufgaben die wichtigsten Informatio-
nen. 

4.8 Ubungsaufgaben 

Aufgabe 4.1: Genetischer Algorithmus 

Implementieren Sie die Verfahren GENETISCHER-ALGORITHMUS (Algorithmus 3.14) und 
STEADY-STATE-GA (Algorithmus 4.1) mit binarer Standardkodierung und Tumierselektion. 
Wenden Sie die Algorithmen auf die Ackley-Funktion (vgl. Anhang A) an. 

Aufgabe 4.2: Evolutionsstrategie 

Implementieren Sie die Evolutionsstrategie mit der 1/5-Erfolgsregel (ES-ADAPTIV in Algorith­
mus 4.8) und mit Selbstanpassung (ES-SELBSTADAPTIV in Algorithmus 4.9). Wenden Sie die 
Algorithmen auf die Ackley-Funktion (vgl. Anhang A) an und vergleichen Sie die Ergebnisse. 

Aufgabe 4.3: Evolutionares Programmieren 

Untersuchen Sie an einem kleinen Beispiel ftir die unterschiedlichen Mutationen des ursprung-
lichen evolutionaren Programmierens (Algorithmen 4.13 bis 4.17), inwieweit eine kleine Ver­
anderung am Genotyp einer kleinen Veranderung am Phanotyp (d. h. der Approximation einer 
Zeitreihe) entspricht. 

Aufgabe 4.4: Grammatikevolution 

FiihrenSiedieGrammatikevolutionausBeispiel4.13 fiirdaslndividuum (2, 1, 1, 0, 0, 1, 0, 3) 
durch. 

Aufgabe 4.5: Hillclimbing 

Uberlegen Sie, wie sich Hillclimbing (Algorithmus 4.25) auf einem Plateau mit konstanter Giite 
verhalten wird. Welche alternative Akzeptanzbedingung ohne Giiteverschlechterung ware mog-
lich? Wie wird sich ein solches Verfahren auf einem Plateau verhalten? 
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Aufgabe 4.6: Simuliertes Abkiihlen 

Implementieren Sie simuliertes Abkiihlen (Algorithmus 4.26 ) und wenden es auf eine Instanz 
des Handlungsreisendenproblems an. Vergleichen Sie das jeweilige Verhalten mit unterschiedli-
chen Abkiihlungsplanen. 

Aufgabe 4.7: Schwellwertakzeptanz 

Fiihren Sie Aufgabe 4.6 far Schwellwertakzeptanz (Algorithmus 4.27) durch. Vergleichen Sie 
die benotigte Rechenzeit mit der Anzahl der ausgewerteten Individuen in beiden Aufgaben. 

Aufgabe 4.8: Ablaufschemata 

Vergleichen Sie die Ergebnisse der Aufgaben 4.1 und 4.2. Vertauschen Sie die Ablaufmuster der 
beiden Algorithmen (vgl. Bilder 4.1 und 4.5) und belassen die Operatoren. Was konnen Sie in 
Ihren Experimenten beobachten? Wie erklaren Sie sich die Ergebnisse? 

Aufgabe 4.9: Populationsbasiertes inkrementelles Lernen 

Implementieren Sie das populationsbasierte inkrementelle Lernen PBIL (Algorithmus 4.32) und 
testen Sie es auf der Royal-Road-Funktion (vgl. Anhang A). Lassen sich Unterschiede im Ver-
gleich zu GENETISCHER-ALGORITHMUS (Algorithmus 3.14) auf demselben Problem feststel-
len? 

Aufgabe 4.10: Differentialevolution 

Veranschaulichen Sie sich die Arbeitsweise des Operators DE-OPERATOR (Algorithmus 4.33) 
aus der Differentialevolution nochmals bildlich. Diskutieren Sie, unter welchen Umstanden eine 
differenzbasierte Mutation wesentliche Vorteile gegeniiber der GAUSS-MUTATION (Algorith­
mus 3.4) hat. Betrachten Sie hierfiir ein geeignetes Problem mit vielen (naturlichen) lokalen 
Optima. 

Aufgabe 4.11: Scatter Search 

Diskutieren Sie, an welchen Stellen in SCATTER-SEARCH (Algorithmus 4.35) die Diversitat er-
halten wird und eine Erforschung {exploration) bzw. Feinabstimmung {exploitation) stattfindet. 
Was sind Vor- bzw. Nachteile im Vergleich zu einem evolutionaren Algorithmus. 

Aufgabe 4.12: Ameisenkolonieoptimierung 

Betrachten Sie das Maschinenbelegungsproblem fiir eine Maschine: fiir n verschiedene Auftra-
ge ist die Bearbeitungszeit //, der fruheste Fertigstellungstermin ai und der letztmogliche Fertig-
stellungstermin bi {\ <i < n) gegeben. Ein Maschinenbelegungsplan mit minimalen Konven-
tionalstrafen ist gesucht. Geben Sie eine Kodierung fiir die Optimierung mit Ameisenkolonien 
an. 
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4.9 Historische Anmerkungen 

Die genetischen Algorithmen gehen auf die Betrachtungen von Holland (1973, 1975, 1992) zu 
adaptiven Systemen zuriick. Weitere Katalysatoren in der Entwicklung der genetischen Algo­
rithmen waren sowohl die Arbeit von De Jong (1975), die demonstriert hat, dass Optimierungs-
probleme mit einfachen genetischen Algorithmen gelost werden konnen, als auch das Lehrbuch 
von Goldberg (1989), das diesen Ideen eine groBere Verbreitung ermoglicht hat. Der tJbergang 
zur Betrachtung von reellwertigen Darstellungen des Problemraums in genetischen Algorithmen 
wurde als erstes von Davis (1989, 1991a), Janikow & Michalewicz (1991) und Wright (1991) ge-
leistet. Permutationen als Representation wurden noch frliher von Goldberg & Lingle, Jr. (1985), 
Grefenstette et al. (1985) und Davis (1985) betrachtet. Die iiblichen Selektionsmechanismen und 
Standardoperatoren fiir genetische Algorithmen wurden bereits in den Anmerkungen zum vori-
gen Kapitel diskutiert. Fiir die weiteren hier vorgestellten Operatoren gehort die Anerkennung 
De Jong (1975) fiir den K-PUNKT-CROSSOVER (Algorithmus 4.2), Davis (1989) fiir die GLEICH-

VERTEILTE-REELLWERTIGE-MUTATION (Algorithmus 4.4), Syswerda (1991a) fiir die VERSCHIE-

BENDE-MUTATION (Algorithmus 4.5), Davis (1991a) und Syswerda (1991a) fiir die MISCHENDE-

MuTATiON (Algorithmus 4.6) sowie Goldberg & Lingle, Jr. (1985) fiir die ABBILDUNGSREKOM-

BiNATiON (Algorithmus 4.7). Die »optimale« Mutationsrate fiir die BINARE-MUTATION (Algorith­
mus 3.3) wurde von Miihlenbein (1992) und Back (1993) gezeigt. 

Die ersten Ideen der Evolutionsstrategien wurden bei der Optimierung des Designs einer Diise 
bzw. der Kriimmung eines Rohrs von Rechenberg (1964) gemeinsam mit Schwefel und Bienert 
gefunden. Die grundsatzliche Idee war dabei die Entwicklung eines Forschungsroboters, der sol-
che Aufgaben im Ingenieursbereich selbststandig experimentell losen kann. Die ersten Experi-
mente wurden als (1 + 1)-Strategie manuell durchgefiihrt. Spater folgte die Ubertragung auf den 
Rechner. Die BESTEN-SELEKTION (Algorithmus 3.6), die Mutation mittels einer Normalvertei-
lung in Form der GAUSS-MUTATION (Algorithmus 3.4) ebenso wie die ^-Erfolgsregel ADAPTIVE-

ANPASSUNG (Algorithmus 3.17) reichen bis in diese Anfangszeit zuriick (vergleiche Rechenberg, 
1973). Die selbstanpassenden Mutationsoperatoren SELBSTADAPTIVE-GAUSS-MUTATION (Algo­
rithmus 3.18) finden sich bei Schwefel (1977). Die Arbeit von Herdy (1991) enthalt verschiede-
ne Beispiele wie die Evolutionsstrategie fiir nicht-reellwertige Phanotypen genutzt werden kann. 
Die DERANDOMISIERTE-ES (Algorithmus 4.12) stammt von Ostermeier et al. (1995). 

Das evolutionare Programmieren wurde zunachst in seiner klassischen Form fiir endliche Au-
tomaten von Fogel et al. (1965, 1966) eingefiihrt. Das Ziel war dabei, durch die endlichen Auto-
maten Vorhersagen fiir Zeitreihen machen zu konnen (siehe auch der tJbersichtsartikel von Fogel 
& Chellapilla, 1998). Ende der 80er Jahre wurden die Ideen vom evolutionaren Programmieren 
auf andere Reprasentationen verallgemeinert. Dabei wurde unter anderem die g-stufige zweifa-
che Tumierselektion und eine Mutation ahnlich zu den Evolutionsstrategien entwickelt (Fogel 
& Atmar, 1990). Der Selbstanpassungsmechanismus von EP (SELBSTADAPTIVE-EP-MUTATION in 
Algorithmus 4.19) wurde von Fogel et al. (1991) erfunden. 

Genetisches Programmieren wurde von Koza (1989, 1992) eingefiihrt, wobei baumartige 
Strukturen schon friiher (z. B. von Cramer, 1985; Antonisse & Keller, 1987) als Representa­
tion betrachtet wurden. Koza (1992) definierte die prasentierten Operatoren auf den Baumen. 
Die Implementation der Baume als Zeichenketten flexibler Lange beruht auf den Ausflihrun-
gen von Keith & Martin (1994). Das Verfahren der Einkapselung wurde ebenfalls von Koza 
(1992) vorgestellt, wie auch die automatisch definierten Unterprogramme (Koza, 1994). Das Pro-



4.9 Historische Anmerkungen 181 

blem der Introns wurde erstmals von Angeline (1994) erkannt und beschrieben. Unabhangig 
davon hat Tackett (1994) die Beobachtung gemacht, dass sich Individuen wahrend des Optimie-
rungsvorgangs immer mehr aufblahen. Von Tackett (1994) stammt ebenfalls der Losungsansatz 
der Brutrekombination. Als Beispiel fiir einen intelligenten Crossover-Operator kann die Arbeit 
von Teller (1996) dienen. Andere Reprasentationen als die der Syntaxbaume sind beispielswei-
se Sequenzen von Maschineninstruktionen (z. B. bei Nordin & Banzhaf, 1995) oder Graphen 
(z. B. bei Teller & Veloso, 1996). Grammatikevolution wurde erstmals von Ryan et al. (1998) 
eingefuhrt. 

Bei den lokalen Suchalgorithmen lasst sich ein so simples Verfahren wie das Hillclimbing 
(Algorithmus 4.25) historisch nur sehr schwer einordnen. Die erste dem Autor bekannte groB 
angelegte Untersuchung war die von Ackley (1987b). Von den anderen Verfahren wurde das 
simulierte Abktihlen (Algorithmus 4.26) von Kirkpatrick et al. (1983), Schwellwertakzeptanz 
(Algorithmus 4.27) von Dueck & Scheuer (1990), der Sintflutalgorithmus (Algorithmus 4.28) 
und das rekordorientierte Wandem (Algorithmus 4.29) von Dueck (1993) beschrieben. 

Klassifizierende Systeme gehen auf die Arbeit von Holland (1976) zur Theorie der Adaptation 
zuruck. Das erste programmierte (Michigan) Classifier System wurde von Holland & Reitman 
(1978) prasentiert und die erste industrielle Anwendung stammt von Goldberg (1983). Die hier 
vorgestellte Variante ZCS beruht im Wesentlichen auf der Arbeit von Wilson (1994). Die komple-
xere, modeme Variante XCS wurde ebenfalls von Wilson (1995) entwickelt. Die Pittsburgh-CS 
hat Smith (1980) eingefuhrt. Mogliche Anwendungen wie die hier angerissene Steuerung eines 
mobilen Roboters konnen beispielsweise der Arbeit von Hurst et al. (2002) oder Studley (2006) 
entnommen werden. 

Die TABU-SUCHE (Algorithmus 4.30) wurde von Glover (1986,1990) entwickelt. Das Beispiel 
fiir die Graphenfarbung stammt von Hertz & de Werra (1987). 

Der Begriff der memetischen Algorithmen wurde von Moscato (1989) gepragt und hat sich zu-
nachst auf die Optimierung der Individuen durch lokale Suche oder Heuristiken bezogen, bevor 
sie miteinander rekombiniert werden. In diesem strengen Sinn werden die memetischen Algo­
rithmen auch in diesem Kapitel beschrieben, wobei inzwischen zum Teil auch jegliche Inkorpo-
ration von Problemwissen in die Algorithmen als memetisch bezeichnet wird. Der prasentierte 
Beispielalgorithmus MEMETISCHER-ALGORITHMUS (Algorithmus 4.31) stammt von Brown et al. 
(1989). 

Das prasentierte populationsbasierte inkrementelle Lemen (PBIL in Algorithmus 4.32) wurde 
erstmals in der Arbeit von Baluja (1994) vorgestellt. Die Approximation einer Verteilung der gu-
ten Losungskandidaten im Suchraum wurde maBgeblich von Mtihlenbein & PaaB (1996) weiter 
entwickelt. Darauf aufbauend ist insbesondere die Arbeit von Pelikan et al. (1999) zu nennen, 
der sog. Bayesian optimization algorithm (BOA). 

In ihrem technischen Bericht haben Stom & Price (1995) erstmals die DIFFERENTIALEVOLU-

TiON (Algorithmus 4.34) vorgestellt. Berichte iiber verschiedene erfolgreiche Anwendungen der 
Technik folgten von Stom (1996, 1999) und Price (1996). 

Die Grundidee von SCATTER-SEARCH (Algorithmus 4.35) wurde erstmals von Glover (1977) 
fiir ganzzahlige lineare Optimierungsprobleme veroffentlicht. Scatter Search als generelles Mus­
ter zur Losung beliebiger Optimierungsprobleme hat Glover (1998) erst spater gemeinsam mit 
dem sog. path relinking als noch allgemeinerem Konzept vorgestellt. Eine aktuellere Ubersicht 
einschlieBlich verschiedener Anwendungen stammt von Glover et al. (2000). Der hier dargestell-
te Artikel orientiert sich an der Arbeit fiir reellwertige Probleme von Herrera et al. (2006). 
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CULTURAL-ALGORITHM (Algorithmus 4.36) wurden von Reynolds (1994) eingefuhrt. Der hier 
vorgestellte konkrete Algorithmus ftir reellwertige Suchraume stammt von Chung & Reynolds 
(1997). tJbersichten zu unterschiedlichen Anwendungen finden sich bei Reynolds (1999) und 
Franklin & Bergerman (2000). 

Die Optimierung durch Ameisenkolonien wurde von Dorigo et al. (1991, 1996) zunachst fiir 
das Handlungsreisendenproblem (AMEISENKOLONIE-TSP in Algorithmus 4.38) entwickelt. Bin 
tjberblick iiber weitere Anwendungen kann beispielsweise dem Artikel von Dorigo & Di Caro 
(1999) entnommen werden. Eine Untersuchung der Parameter wurde von Gaertner & Clark 
(2005) durchgefuhrt. 

Der PARTIKELSCHWARM (Algorithmus 4.39) wurden von Kennedy & Eberhart (1995) einge­
fuhrt. Eine tJbersicht stammt von Eberhart & Shi (1998). Konkrete Aussagen zu den gtinstigen 
Parameterbereichen findet man in den Arbeiten von Shi & Eberhart (1998, 1999) und Trelea 
(2003). 



5 Techniken fiir spezifische Problemanforderungen 

Dieses Kapitel befasst sich mit Grundlagen und Methoden, um evolutiondre Algorithmen an 
die Anforderungen besonderer Problemklassen anzupassen. Dabei handelt es sich um zusdtzli-
che Randbedingungen, Mehrzieloptimierung, zeitabhdngige Bewertungsfunktionen und Proble-
me, bei denen nur ein angendherter Gutewert bestimmt werden kann. 

Lernziele in diesem Kapitel 

c|> Die neuen zusatzlichen Anforderungen durch praxisrelevante Probleme werden erfasst 
und konnen in neuen Optimierungsproblemen erkannt werden. 

c|> Die vorgestellten Techniken werden als Erweiterung des Methodenrepertoires aufgefasst, 
welches eigenstandig durch eigene Erfahrungen bewertet wird. 

c|> Die im vorigen Kapitel vorgestellten Standardverfahren konnen durch die hier prasentier-
ten Techniken eigenstandig erweitert werden. 
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5.1 Optimieren mit Randbedingungen 

Es wird ein Oberblick uber die unterschiedlichen Methoden fur den Umgang mit Randbedin­
gungen gegeben. Dabei ist insbesondere die Behandlung innerhalb der Bewertungsfunktion von 
Interesse. 

Randbedingungen (engl. constraints) schranken den Bereich der moglichen Losungen zusatzlich 
zu eventuell vorgegebenen Bereichsgrenzen ein. Damit wird ein weiteres Kriterium neben der 
Bewertungsfunktion F eingefiihrt, mit dem Losungskandidaten beurteilt werden. 
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Definition 5.1 (Randbedingung): 
Fiir einen gegebenen Suchraum Q ist eine Randbedingung eine Funktion 

Rand: Q -^ {wahr, falsch}. 

Muss Rand zwingend erfiillt sein, spricht man von einer harten Randbedingung, ist 
die Erfiillung nur erwiinscht von einer weichen Randbedingung. Bei harten Randbe-
dingungen Rand\, . . . , Randk werden die Individuen auch in giiltige bzw. ungiiltige 
Individuen gemaB der Erfiillung aller Randbedingungen eingeteilt. 

BeispielS.l: 
An einem Beispiel zur Erstellung von Maschinenbelegungsplanen lassen sich beide 
Arten von Randbedingungen leicht illustrieren. Verschiedene Auftrage miissen auf 
mehreren Maschinen in einer jeweils vorgegebenen Reihenfolge bearbeitet werden. 
Gesucht ist nun eine zeitliche Zuordnung der Auftrage zu den Maschinen. Die Be-
wertungsfunktion lasst sich nun iiber den Durchsatz oder die benotigte Zeit fiir die 
Abarbeitung aller Auftrage definieren. Triviale harte Randbedingungen sind beispiels-
weise die Tatsache, dass die Reihenfolge der Maschinen fiir jeden Auftrag eingehalten 
wird oder dass zu jedem Zeitpunkt jede Maschine nur einen Auftrag bearbeitet. Eben-
so konnen Riistzeiten an den Maschinen als harte Randbedingungen definiert werden, 
bei denen zwischen zwei Auftragen mit unterschiedlichen technischen Anforderungen 
ein »Umbau« notwendig ist. Als weiche Randbedingungen werden haufig Obergren-
zen fiir Leerlaufzeiten einer Maschine zwischen zwei Auftragen angegeben. Wiirden 
diese als harte Randbedingung formuliert werden, ware das Problem evtl. nicht losbar. 

/ j \ Um bei einem ganz alltaglichen Beispiel zu bleiben: Wenn ich mit dem Auto von Leipzig nach Stuttgart 

_ II fahre, um dort einen Vortrag zu halten, ist die Ankunft vor Beginn des Vortrags eine harte Randbedingung, 

eine Hochstgeschwindigkeit von 130 km/h eine weiche Randbedingung. 

Im Weiteren werden in diesem Abschnitt unterschiedliche Verfahren vorgestellt, wie die evo-
lutionaren Algorithmen Randbedingungen beriicksichtigen konnen. Die Wahl einer geeigneten 
Technik hangt von den folgenden Charakteristika der Randbedingungen ab. 

(a) Graduierbarkeit: Ist es ein boolesches Kriterium oder lasst sich der Grad der Verletzung 
der Randbedingung feststellen? 

(b) Bewertbarkeit: Lasst sich die Bewertungsfunktion fiir ein ungiiltiges Individuum berech-
nen? 

(c) Schwierigkeit: Wie schwierig ist es iiberhaupt, ein giiltiges Individuum zu finden, d. h. wie 
ist das quantitative Verhaltnis von giiltigen zu ungiiltigen Individuen? 

(d) Reparierbarkeit: Lasst sich ein ungiiltiges Individuum in ein giiltiges iiberfiihren? 
(e) Bekanntheit: Ist die Grenze zwischen giiltigen und ungiiltigen Individuen (in Q) vorab be-

kannt? 

Zwei Extremsituationen werden wir dabei im Weiteren nicht mehr betrachten. Das sind einer-
seits die Erfiillungsprobleme, die durch eine hohe Schwierigkeit gekennzeichnet sind und deren 
Randbedingungen in der Regel nicht graduierbar und reparierbar geschweige denn ihre Grenze 
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bekannt ist. Falls iiberhaupt eine regulare Bewertungsfunktion vorgegeben wird, ist diese haufig 
nachrangig, da das wesentliche Problem die Erfullung der Randbedingungen ist. Andererseits 
sind viele weiche Randbedingungen durch eine hohe Graduierbarkeit und geringe Schwierigkeit 
gekennzeichnet. Diese Probleme bediirfen meist nicht der hier besprochenen Techniken, sondem 
sind besser durch eine Erweiterung der Bewertungsfunktion(en) zu behandeln. 

± Die entsprechenden Techniken zur Erweiterung der Bewertungsfunktion werden dann im nachfolgenden 

Abschnitt 5.2 zur Mehrzieloptimierung vorgestellt. 

Ubersicht iiber die Methoden 5.1.1 

Es gibt drei unterschiedliche Herangehensweisen, die Erfullung zusatzlicher Randbedingungen 
zu erzwingen: 

• Restriktive Methoden: Die Optimierung erfolgt auf dem unbeschrankten Suchraum Q, aber 
zusatzliche MaBnahmen verhindem das Vorkommen von ungiiltigen Individuen. 

• Tolerante Methoden: Ungiiltige Individuen werden in der Population zugelassen, sind aller-
dings in der simulierten Evolution benachteiligt. 

• Dekoder-Ansatz: Die Optimierung erfolgt auf einem neuen Genotyp, aus dem immer giil-
tige Losungskandidaten erzeugt werden konnen und der dennoch mit Standardverfahren 
bearbeitet werden kann. 

Die ersten beiden Herangehensweisen arbeiten auf dem ursprlinglichen Suchraum und set-
zen an unterschiedlichen Stellen des evolutionaren Algorithmus an, was in Bild 5.1 skizziert ist. 
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Dabei werden ungiiltige Individuen vollstandig bei den folgenden Techniken vermieden: 

• der Krippentod, 

• das genetische Reparieren und 

• die Methode der gtiltigen Individuen. 

Lediglich in irgendeiner Form benachteiligt werden ungiiltige Individuen bei den folgenden An-
satzen: 

• legale Eltemselektion, 

• legales Ersetzen, 

• Anpassung der Mutation, 

• legale Dekodierung und 

• Straffunktionen. 

Die Techniken der drei Grundansatze werden im Weiteren in den Abschnitten 5.1.2 bis 5.1.4 
kurz besprochen. Den Straffunktionen ist als popularste Technik ein eigener Abschnitt (5.1.5) 
gewidmet. 

5.1.2 Dekoder-Ansatz 

Zunachst behandeln wir knapp den dritten Ansatz, von dem wir zwei unterschiedliche Vertreter 
vorstellen. Lassen sich die Randbedingungen im Raum Q durch eine (oder mehrere) mathemati-
sche Funktion(en) beschreiben, kann dies in der Dekodierung berlicksichtigt werden. Hierfiir ist 
die Eigenschaft der Bekanntheit eine zwingende Grundvoraussetzung. 

Beispiel 5.2: 
Wird beispielsweise in einem Suchraum Q = [0, 6] x [0, 4] der grau gefarbte Bereich 
in Bild 5.2 durch eine harte Randbedingung ausgeschlossen, dann kann durch die fol-
gende Dekodiervorschrift 

d.r(Tv\-[ "̂"'̂ ^ fallsj;<l 
dec{.^y)-^ ( t . ( y - l ) + V - ^ 3 ^ ) falls;. > 1 

aus einem unbeschrankten genotypischen Suchraum ^ = Q ausschlieBlich giiltige In­
dividuen erzeugt werden. Diese Abbildung der beiden Bereiche ist ebenfalls durch 
vier beispielhafte Individuen in Bild 5.2 verdeutlicht. 

Dieselbe Technik kann eingesetzt werden, wenn ein Konstruktionsalgorithmus existiert, mit dem 
aus einer Menge von Parametem ein vollstandiger Losungskandidat erzeugt wird. Dann kann 
man den Genotyp als die Menge aller moglichen Parameterkombinationen ^ 7̂  Q definieren. Der 
Optimierungsalgorithmus verandert die Parameter im Genotyp eines Losungskandidaten und die 
Dekodierungsfunktion nutzt den Konstruktionsalgorithmus, um als Phanotyp ein Element aus Q 
zu erzeugen. 
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Bild 5.3 Beispiel fiir das Wachsen von Raumen aus ihren Mittelpunkten. Auf die Attribute, die das Wachs-
tum beeinflussen wird hier verzichtet. 

Beispiel 5.3: 
Betrachten wir das Problem der Erstellung eines Grundrisses fiir eine Wohnung gemaB 
spezieller Anforderungen an die Raume und ihre Anordnung. Dann besteht eine Lo-
sung des Problems aus verschiedenen Mauem und Tiiren, die als harte Randbedingung 
die gewunschten Raume definieren sollen. Falls nun in einem evolutionaren Algorith-
mus im Genotyp jeder Raum durch seine Koordinaten kodiert ware, entstiinden fast 
ausschlieBlich ungiiltige Losungskandidaten, da sich die Raume tiberlappen wtirden. 
Ahnliche Probleme ergeben sich, wenn die Koordinaten der Wande kodiert werden, 
da dann nur selten richtige Raume entstehen. Stattdessen kann als Reprasentation bei-
spielsweise ein Tupel gewahlt werden in dem jeder einzelne Raum durch einen »Mit-
telpunkt« kodiert wird und unterschiedliche Attribute geben an, in welche Richtungen 
Tiiren vorgesehen werden sollen. Eine solche Liste kann sehr einfach durch Standard-
operatoren bearbeitet werden. Dann konnen aus diesen Raummittelpunkten bei der 
Anwendung einer geeigneten Dekodierungsvorschrift die Raume langsam wachsen, 
bis sie an andere Raumgrenzen stoBen. Attribute zu den Raumen konnen auch die Art 
und Weise, wie jeder Raum wachst, beeinflussen. So entstehen aus jedem Individuum 
immer vollstandig baubare Raume, die dann beziiglich ihrer ZweckmaBigkeit fiir die 
gestellte Aufgabe und ihrer Kosten durch die Giitefunktion bewertet werden. Entwiirfe 
mit toten Raumen ohne Tiiren erhalten eine schlechte Giite und verschwinden schnell 
aufgrund des Selektionsdrucks. Bild 5.3 zeigt ein Beispiel fiir die Erzeugung eines 
Grundrisses. 
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Optimum 

ungiiltiger 
Bereich 

Bild 5.4 Schematische Darstellung eines Suchraums mit zwei zusammenhangenden Gebieten gtiltiger Lo-
sungskandidaten. 

Der Einsatz eines Konstruktionsalgorithmus birgt jedoch auch Nachteile: Meist werden nicht 
mehr alle moglichen giiltigen Losungskandidaten erzeugt, sondem der Konstruktionsalgorithmus 
beschrankt sich auf eine Teilmenge des giiltigen Suchraums. Dadurch konnen Schwierigkeiten 
fur den evolutionaren Algorithmus entstehen, wenn z.B. das gesuchte Optimum in dieser Teil­
menge nicht mehr enthalten ist oder gute Regionen nicht mehr iiber die verwendeten Operatoren 
erreichbar sind. Ist dagegen das gesuchte Optimum in der Teilmenge enthalten und wirken sich 
kleine Anderungen am Genotyp als kleine Anderungen im Phanotyp aus - d. h. gilt eine gewis-
se Stetigkeitseigenschaft hinsichtlich der Dekodierungsfunktion -, liefert dieser Ansatz oft sehr 
gute Ergebnisse. 

5.1.3 Restriktive Methoden 

Der Krippentod ist der einfachste Umgang mit ungtiltigen Individuen: Sie werden sofort nach ih-
rer Erzeugung wieder geloscht. Dies hat den Vorteil, dass alle Individuen giiltig sind, und liefert 
auch oft erstaunlich gute Ergebnisse bei Problemen mit einfach strukturierten Randbedingungen. 
Ist hingegen der Raum der giiltigen Losungskandidaten sehr zerkliiftet, ist die beliebige Erreich-
barkeit aller Losungskandidaten fraglich. Bild 5.4 zeigt einen beispielhaften Losungsraum, bei 
dem das Loschen von ungiiltigen Individuen eventuell nie das tJberspringen der Kluft zwischen 
den beiden giiltigen Teilgebieten ermoglicht. Zusatzlich konnte der Verbleib des Individuums B 
eventuell schneller zum Optimum fiihren als der Weg von Individuum^. Daher kann es durchaus 
sinnvoll sein, ungiiltige Individuen als mogliche Eltem zuzulassen, da sonst vielleicht bestimm-
te giiltige Losungskandidaten nie gefunden werden. Grundsatzlich sollten die Randbedingungen 
beim Einsatz des Krippentods eine geringe Schwierigkeit aufweisen. Andemfalls sind sehr viele 
Iterationen notwendig, bis die in einer Generation benotigte Anzahl an Kindindividuen erzeugt 
werden, und der Algorithmus wird entsprechend langsam. 

Gilt zusatzlich die Reparierbarkeit der Randbedingungen, konnen ungiiltige Individuen beim 
genetischen Reparieren mittels eines Reparaturalgorithmus solange modifiziert werden, bis sie 
einen giiltigen Losungskandidaten darstellen. Verglichen mit dem Verfahren des Krippentods 
miissen nicht mehr so viele Individuen erzeugt werden, da jedes neue Individuum auch in einem 
giiltigen Individuum resultiert. Aber beziiglich der Diskussion um die unzusammenhangende Be-
reiche giiltiger Losungskandidaten im Suchraum hat dieser Ansatz keinen entscheidenden Vorteil 
gebracht. Zudem kann der Entwurf eines geeigneten Reparaturalgorithmus bei komplexen Pro­
blemen sehr schwierig sein. 
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Die gesonderte Behandlung temporar auftretender ungiiltiger Individuen entfallt bei der Me-
thode der giiltigen Individuen, da sie gar nicht erst erzeugt werden. Dies wird durch zwei MaB-
nahmen gewahrleistet: 

• Die Anfangspopulation wird ausschlieBlich mit giiltigen Individuen initialisiert und 
• die Mutations- und Rekombinationsoperatoren werden so entworfen, dass aus jedem giilti­

gen Individuum auch wieder ein giiltiger Losungskandidat erzeugt wird. 

Dieser Ansatz stellt sehr groBe Anforderungen an den Entwickler von evolutionaren Algorith-
men, da die Operatoren sehr gut aufeinander abgestimmt werden miissen, um eine sinnvolle 
Suchdynamik zu erzeugen. 

Beispiel 5.4: 
Bei den Maschinenbelegungsplanen konnen beispielsweise durch einen einfachen Kon-
struktionsalgorithmus bei der Initialisierung giiltige Individuen erstellt werden. Die 
Mutation kann dann die Startzeit eines Auftrags auf einer Maschine gemaB der vorhan-
denen Liicken verschieben bzw. einzelne Auftrage in ihrer Reihenfolge vertauschen, 
solange die weiteren Randbedingungen dadurch nicht verletzt werden. 

Haufig sind solche Operatoren fiir die Mutation einfach zu definieren, wahrend die Rekombina-
tion kritischer ist. Ein anderes Problem ist die Frage, ob die Operationen alle (giiltigen) Bereiche 
des Losungsraums erreichen konnen. Falls dies gewahrleistet wird, liefert auch dieser Ansatz 
meist sehr gute Resultate. 

/^ Diese Technik ist die konsequente Fortfiihrung der Dekodierungstechnik. Wahrend dort die Nachbarschaft 

II von Losungskandidaten durch den Konstruktionsalgorithmus in der Dekodierung und die Veranderungen der 
Mutation am Genotyp bestimmt wird, lasst sich die Nachbarschaft bei der Methode der gtihigen Individuen 

direkt in der Mutation auf dem Phanotyp definieren. Bei beiden Ansatzen konnen unguhigen Individuen gar 

nicht entstehen. 

5.1.4 Tolerante Methoden 

Von den Verfahren, die ungiiltige Individuen in der Population zulassen, ist die legale Eltern-
selektion noch ein Kompromiss, der ungiiltige Individuen stark benachteiligt: Bei der Selektion 
werden zunachst nur Individuen als Eltem beriicksichtigt, die alle Randbedingungen erfiillen. 
Falls es keine solchen Individuen gibt, werden bevorzugt Individuen mit wenigen Verletzungen 
der Randbedingungen ausgewahlt. Damit ist die Methode geeignet, falls die Randbedingungen 
eine hohe Schwierigkeit besitzen, wie es etwa bei Erfiillungsproblemen der Fall ist. Hilfreich 
kann die Graduierbarkeit der Randbedingungen bei der Auswahl von ungiiltigen Individuen sein. 
Bei Populationen, die nur sehr wenige giiltige Individuen aufweisen, konzentriert sich die legale 
Eltemselektion jedoch auf diese wenigen Individuen, was hinsichtlich der Suchdynamik kritisch 
sein kann. Dann entspricht das Verfahren dem Krippentod mit einer stark reduzierten Populati-
onsgroBe. 

Etwas weniger restriktiv ist das legale Ersetzen fiir Basisalgorithmen mit einem iiberlappen-
den Populationskonzept, d. h. neu erzeugte Individuen werden wieder in die Eltempopulation 
eingefiigt. Die Auswahl, welches Individuum dafiir aus der Population geloscht wird, beriick­
sichtigt die Verletzung der Randbedingungen. So werden etwa zunachst diejenigen Individuen 
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Anzahl giiltige Anzahl ungtiltige Individuen 
Individuen :0 > 0 

= 0 
> 0 

unbekannt ungiiltig Tabelle5.1 
eiiltie halbaiiltia Einteilung der Parzellen bei der Anpassung der Mu­

tation 

ersetzt, welche die meisten Randbedingungen verletzen. Falls alle Individuen bereits im gtiltigen 
Bereich sind, kann zufallig oder giiteorientiert ersetzt werden. Es sollte allerdings immer noch 
eine zusatzliche Quelle des Selektionsdrucks geben (z. B. die Eltemselektion), in der lediglich 
die Giite als Kriterium benutzt wird. Dies ist ein recht universelles Verfahren, das insbesondere 
dann eingesetzt werden kann, wenn wenig vorab iiber die Charakteristika der Randbedingungen 
bekannt ist. 

Wahrend bei die Methode der gtiltigen Individuen die Operatoren so entworfen werden, dass 
keine ungtiltigen Individuen entstehen konnen, bedient sich die Anpassung der Mutation der be-
kannten Adaptationsmechanismen, um wahrend der Optimierung die Arbeitsweise der Mutation 
so zu verandem, dass vornehmlich giiltige Individuen entstehen. Hierfiir ist die Mutation der kul-
turellen Algorithmen geeignet, da sie auf global im LFberzeugungsraum gesammelten Informatio-
nen beruht. Vom ursprlinglichen Ansatz (S. 170) wird das normative Wissen iibemommen, das 
bereits fiir jede Suchraumdimension eine obere und eine untere Grenze speichert. Dartiberhinaus 
werden diese Intervalle jeweils in s gleiche Abschnitte eingeteilt, sodass insgesamt s^ Parzellen 
entstehen. Fiir jede Parzelle wird Wissen iiber die Giiltigkeit des Suchraums in diesem Bereich 
gesammelt. Ein neu erzeugtes Individuum wird in der zugehorigen Parzelle als giiltiges oder un-
giiltiges Individuum verbucht. Aufgrund der Anzahl der so registrierten Individuen wird der Typ 
der Parzelle gemaB der Tabelle 5.1 bestimmt. Die Mutation ist nun identisch zu CA-MUTATION 

(Algorithmus 4.37) auBerhalb der durch das normative Wissen beschriebenen Bereiche. Inner-
halb des normativen Bereichs wird die Mutationsschrittweite in unbekannten, giiltigen und halb-
giiltigen Parzellen entsprechend klein gewahlt, um moglichst innerhalb der Parzelle zu bleiben. 
Und in ungiiltigen Zellen wird zur nachstgelegenen halbgiiltigen Zelle gesprungen (falls existent 
- andemfalls wird die nachstgelegene giiltige Parzelle oder gar ein beliebiger Punkt innerhalb 
des Bereichs des normativen Wissens gewahlt). Die Anpassung des normativen Wissens findet 
in groBeren zeitlichen Abstanden statt und es werden nur giiltige Individuen zur Modifikation der 
Bereichsgrenzen herangezogen. Der Ansatz ist geeignet fiir Probleme mit geringer Schwierigkeit 
- insbesondere wird dabei keine Bekanntheit oder Bewertbarkeit vorausgesetzt, was den Ansatz 
fiir Probleme mit unwagbarer Form der giiltigen Bereiche interessant macht. 

Die tolerante Variante des genetischen Reparierens ist die legale Dekodierung. Auch hier 
kommt ein Reparaturalgorithmus zum Einsatz, der aus einem ungiiltigen Losungskandidaten 
einen giiltigen erzeugt - nur dass dieser Algorithmus lediglich im Rahmen der Bewertung der 
Individuen zum Einsatz kommt und nicht den Genotyp verandert. D. h. es wird nicht der tatsach-
liche Genotyp bewertet, sondem ein giiltiger Losungskandidat, der sich daraus erzeugen lasst. 
Im Gegensatz zum genetische Reparieren sollte ein solcher Dekoder immer deterministisch sein, 
damit gut bewertete Individuen auch nach geringfligigen Modifikationen in den nachsten Genera-
tionen auf dieselbe Art und Weise wieder repariert werden und zu denselben oder ahnlichen guten 
Losungskandidaten fiihren. Bei vielen Problemen kann es dabei von Vorteil sein, dass ungiiltige 
Individuen dennoch in der Population bestehen bleiben und so unabhangig von den giiltigen 
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Bereichen den Suchraum erforschen konnen. Auch hier ist die Reparierbarkeit eine zwingende 
Voraussetzung fiir die Anwendung dieser Technik. 

5.1.5 Straffunktionen 

Der popularste Ansatz fur die Behandlung von Randbedingungen belasst ebenfalls ungiiltige 
Losungskandidaten in der Population und berticksichtigt die Verletzung der Randbedingungen 
ausschlieBlich innerhalb der Bewertungsfunktion. Meist findet dies in der Form von zusatzlichen 
Straftermen oder Straffunktionen statt. 

Wir betrachten drei verschiedene Szenarios, die in der weiteren Diskussion des Kapitels wie-
der aufgegriffen werden. 

• Es ist nicht moglich bei verletzten Randbedingungen, die Bewertungsfunktion zu berech-
nen. Ein Beispiel hierfiir ist die Evaluation eines Individuums an einem technischen Sys­
tem oder einer Simulationssoftware, die aufgrund der fehlerhaften Eingabeinformationen 
nicht durchfiihrbar ist. Deswegen erhalten die ungtiltigen Individuen einen Giitewert, der 
unabhangig von der normalen Bewertung ist. 

7(r\ = [ / W falls xgtiltig 
-^^ ^ \ f{x) falls xungtiltig 

Man spricht dann auch von einer Straffunktion f. 

• Die Bewertungsfunktion / wird nicht durch verletzte Randbedingungen beeinflusst. Ein 
Beispiel hierfiir ware die Einstellung eines Produktionsverfahrens, bei dem grundsatzlich 
beziiglich der Kosten minimiert wird, aber eine Mindestqualitat als Randbedingung nicht 
unterschritten werden darf - die Kosten lassen sich in der Regel unabhangig von der Pro-
duktqualitat berechnen. Damit lasst sich als Alternative zu obigem Ansatz die Bewertungs­
funktion normal berechnen und durch einen zusatzlichen Strafterm Straf : Q ^ M (mit 
0 >- Straf {x) fiir alle ungtiltigen x G Q) modifizieren. 

f{x) = [ ^^^^ falls xgtiltig 
I f {^)-\-Straf (x) falls X ungtiltig 

• Die Bewertungsfunktion / lasst sich zwar berechnen, ist aber u.U. in ihrem Ergebnis durch 
die verletzten Randbedingungen beeinflusst. Ein Beispiel ware etwa die Bewertung von 
Losungskandidaten durch eine Computer-Simulation, die zwar ein Ergebnis liefert, aber so 
nicht auf die Realitat iibertragen werden kann. Hier sind beide Ansatze einfach moglich, 
allerdings ist bei der Verwendung von Straftermen abzuwagen, inwieweit die resultierende 
Kostenfunktion durch falsche Giitewerte verfalscht wird. 

Unabhangig davon, welcher der beiden Ansatze gewahlt wird, stellt sich die Frage, wie sich die 
Bewertungsfunktionen zueinander verhalten sollen. In jedem Fall muss 

V ungiiltiges x G Q : /(x) ^ max f{y) 
giiltiges yeQ 
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mit groBem Strafterm 

mit moderatem Strafterm 

Bild 5.5 Fiir die markierte ungiiltige Region wird die Verandemng der Giitelandschaft durch verschiedene 
Strafterme demonstriert. 

gelten, da sonst das globale Maximum der modifizierten Giitelandschaft ein ungiiltiges Individu-
um ist. Manchmal findet man auch die Empfehlung 

V ungiiltiges x G Q V giiltiges y G Q : f{y) y / (x), 

die alle ungiiltigen Individuen schlechter als die giiltigen bewertet. 

Beispiel 5.5: 
Werden Strafterme benutzt, konnen die beiden Formeln leicht an der Giitelandschaft 
in Bild 5.5 illustriert werden. Ohne Strafterm hat die Giitelandschaft links oben ein 
ungiiltiges Maximum, das ohne weitere MaBnahmen vermutlich auch Ergebnis einer 
Optimierung ware. Die erste Bedingung verlangt, dass der Strafterm so gewahlt wird, 
dass das Maximum der veranderten Giitelandschaft auf ein giiltiges Individuum fallt. 
Dies ist der Fall in beiden anderen Darstellungen. Allerdings nur der rechte Teil des 
Bildes erfiillt die zweite Bedingung. Soil nun ein von rechts kommendes Individuum 
mit einem phanotypisch lokalen Mutationsoperator den Weg zum Optimum finden, 
kann im rechten Fall der tiefe Graben als Barriere fungieren, wahrend mit einem mo-
deraten Strafterm die ungiiltige Region besser in die Giitelandschaft eingebettet ist. Es 
kann jedoch auch der Fall sein, dass im Diagramm links unten, das ungiiltige Maxi­
mum immemoch zu gut bewertet wird, sodass die ungiiltige Region nicht verlassen 
wird. 

Allgemeine Kriterien fiir den genauen Entwurf von Straffunktionen konnen daher kaum aufge-
stellt werden und miissen immer auf das betrachtete Problem abgestimmt werden. Falls ein Straf­
term Straf: Q ^ R benutzt wird und die Randbedingungen graduierbar sind, kann die Hohe des 
Strafterms auch daran orientiert werden, wie viele Randbedingungen bzw. wie stark sie verletzt 
werden. Falls die Anzahl der verletzten Randbedingungen nur ein unzureichendes Kriterium ist -
etwa beim Vorhandensein von nur wenigen giiltigen Losungen und wenigen Randbedingungen -, 
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kann das AusmaB der Verletzung u.U. durch die erwarteten Kosten geschatzt werden, die fiir die 
Reparatur des Individuums benotigt wiirden. Dies ist nur moglich, wenn die Reparierbarkeit gilt. 

Beispiel 5.6: 

Die Schwierigkeit, ungiiltige Individuen sinnvoll zu bewerten, soil kurz an der Pfad-
planung fiir einen mobilen Roboter demonstriert werden. Es werden unterschiedliche 
Pfade zwischen zwei Punkten erzeugt. Die Kollision mit Hindemissen ist zu vermei-
den. Werden nun zum Beispiel die beiden in Bild 5.6 dargestellten Pfade erzeugt und 
bewertet, so verletzen sie beide die Randbedingung der Kollisionsfreiheit. Der direkte 
Pfad wird dabei besser bewertet, wenn 

• die Anzahl der Kollisionen, 
• die Lange des Pfads in den Hindemissen oder 
• der prozentuale Anteil des Pfads in Hindemissen 

als Kriterium herangezogen wird. Da jedoch der durchgezogene Pfad sehr viel leichter 
in einen giiltigen Pfad verwandelt werden kann, sollte ein Weg gefunden werden, wie 
dieser im Rahmen der Bewertung auch tatsachlich besser bewertet wird. 

Start 

/ 
/ 

Ziel 

Bild 5.6 Ein moglichst kurzer Pfad zwischen dem Start und dem Zielpunkt ist gesucht, wobei die Randbe­
dingung der Kollisionsfreiheit eingehalten werden soil. 

Bisher sind wir implizit davon ausgegangen, dass jedes Individuum beztiglich seiner Randbedin­
gungen immer gleich bewertet wird. Da am Ende die Giiltigkeit der Individuen wichtiger als am 
Anfang ist, liegt es nahe, den Strafterm wahrend der Optimiemng zu variieren oder sich adaptiv 
anpassen zu lassen. Die einfachere Moglichkeit stellt zunachst die Verandemng der Straffunk-
tion in Abhangigkeit vom Generationenzahler dar: Wir erhohen beispielsweise den Strafterm 
quadratisch proportional zur aktuellen Generation 

Straf{x) = ( / 
maxGen 

• Straf{x), 

wobei t die aktuelle Generation und maxGen die maximale Generation ist. Altemativ kann der 
Strafterm genau dann vergroBert werden, wenn sehr viele Indivdiuen ungiiltig sind, um die Suche 
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mehr zu fokussieren; bei vielen giiltigen Individuen wird er verringert, um eine Erforschung der 
Randgebiete zu ermoglichen: 

Straf(x) = T]̂ )̂ -Strafix), wobei 

^(^+1) 
I ^ '^^^^•> ^^^^^ beste Individuen der letzten k Generationen giiltig 

0̂2 • T/ ( \̂ falls beste Individuen der letzten k Generationen ungiiltig 
r\ ̂ ^^, sonst 

mit a i ,a2 > 1. 
AbschlieBend sei noch kurz angemerkt, dass im Falle mehrerer Randbedingungen Rand\, . . . , 

Randk diese iiblicherweise durch das gewichtete Aufsummieren der Strafterme 

Straf{x) = ^ T7r Strafj{x) 

erfasst werden. 

/ | \ Im nachfolgenden Abschnitt zur Mehrzieloptimierung wird ausflihrlich dargelegt, warum das gewichtete 

II Aufsummieren nicht immer eine gute Idee ist. 

5.2 Mehrzieloptimierung 

Es werden Verfahren vorgestellt, die eine gleichzeitige Optimierung von mehreren Zielgrofien 
ermoglichen. 

5.2.1 Optimalitatskriterium bei mehreren Zielgrofien 

Bei nahezu alien Problemen in der Industrie oder der Wirtschaft ist mehr als eine Eigenschaft 
einer moglichen Losung relevant fiir die Optimierung. So reicht es beispielsweise nicht, die Kos-
ten bei der Herstellung eines Produkts zu minimieren, gleichzeitig muss auch das Risiko fiir die 
Firma (z.B. in Form von Garantieleistungen bei mangelhafter Qualitat) minimal gehalten werden. 
Wie man sich leicht klar machen kann, widersprechen sich diese Ziele meist. 

Beispiel 5.7: 
Dies kennt man nattirlich auch aus dem taglichen Leben. Wenn ich mir ein Auto zule-
ge, mochte ich moglichst das qualitativ beste Produkt zum niedrigsten Preis. Dass der 
attraktive Sportwagen allerdings nicht zum Preis eines Kleinwagens zu haben ist, ist 
jedem klar - und so macht man sich beim Kauf eines Fahrzeugs auf die Suche nach 
dem bestmoglichen Kompromiss. Wenn ich nun beispielhaft zwei Kriterien meinem 
Kauf zugrundelegen mochte, dann soil sowohl der Preis als auch die Pannenstatistik 
als Indikator fiir gute Qualitat minimal sein. Beides habe ich fiir Mittelklassefahrzeu-
ge von elf Herstellem in Bild 5.7 eingetragen (Stand: 2006). Wie man sofort erkennt, 
befande sich mein Wunschfahrzeug in der linken unteren Ecke. Es kommen also ei-
gentlich die vier heller markierten Fahrzeuge in Betracht - je nachdem welche der 
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Bild5.7 Bewertung der Mittelklassewagen von 11 PKW-Herstellem nach Preis (fiir ahnliche Leistungs-
merkmale ohne Berucksichtigung der Ausstattungsqualitat) und Pannenstatistik. 

Preis/Risiko-Kombinationen mir am meisten zusagt. Alle anderen Fahrzeuge wtirde 
ich nicht beriicksichtigen, da ich ein Fahrzeug gleicher Qualitat zum besseren Preis 
Oder ein gleich teures Fahrzeug mit besserer Qualitat bekommen kann. 

/ | \ Meine Fahrt von Leipzig nach Stuttgart aus dem vorigen Abschnitt lasst sich auch leicht als Mehrzielpro-

II blem auffassen, indem ich mein Ziel schnell erreichen aber gleichzeitig moglichst viele Kilometer Panora-
mastrecke erleben mochte. 

Die zusatzlichen Anforderungen, die sich durch mehrere einander widersprechende Ziele bei 
der Optimierung ergeben, konnen verdeutlicht werden, indem wir vom eigentlichen Suchraum 
abstrahieren und stattdessen den Raum betrachten, der durch die unterschiedlichen Bewertungs-
funktionen fiir die Individuen aufgespannt wird. Die evolutionaren Operatoren arbeiten nach wie 
vor auf dem Genotyp und es gelten die Aussagen zur Suchdynamik aus Kapitel 3. Allerdings 
wird die Giite der Individuen mehrdimensional bestimmt. 

Beispiel 5.8: 
In Bild 5.8 sind im oberen Teil zwei gleichzeitig zu minimierende, eindimensionale 
Zielfunktionen f\ und f^ iiber dem Suchraum Q = [0, 1] dargestellt. Der untere Teil 
des Bildes zeigt, welche Giitewertkombinationen auftreten. Dabei fallt auf, dass in 
diesem Fall nur eine Spur von auftretenden Kombinationen existiert. Bei mehrdimen-
sionalen Suchraumen sind die Kombinationen meist wesentlich flachiger verteilt, aber 
es werden bei weitem nicht alle Kombinationen abgedeckt. Da ein gemeinsames Mi­
nimum der Funktionen f\ und f^ gesucht wird, ist das Optimum moglichst weit in der 
linken, unteren Ecke des unteren Teils von Bild 5.8 zu suchen. 

Wir halten also fest: 

• Es kann groBe Telle im Raum der Bewertungsfunktionswerte geben, die nicht durch Lo-
sungskandidaten abgedeckt sind. 
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Bild 5.8 Der obere Teil der Abbildung zeigt den Verlauf der beiden eindimensionalen, zu minimierenden 
Bewertungsfunktionen liber dem Suchraum. Im unteren Teil sind die auftretenden Wertekombi-
nationen in den Raum der Bewertungsfunktionswerte eingetragen. Die optimalen, nicht weiter 
verbesserbaren Individuen sind in beiden Bildem markiert. 

• Liegen Individuen im Raum der Bewertungsfunktionswerte nahe beieinander, so konnen 

sie im Suchraum weit voneinander entfemt sein. 

• Die moglichen Kompromisslosungen nahe dem idealen »Optimum« liegen meist sehr weit 

im Suchraum auseinander. 

• Die Wege im Suchraum verlaufen hinsichtlich der Funktionswerte nicht zwingend auf das 

ideale »Optimum« zu. 

Die Anfordemngen an einen Optimierungsalgorithmus sind also noch komplexer als bei einer 
einzelnen Zielfunktion. 

Eine automatisierte Suche nach einer optimalen Gesamtlosung ist schwierig, da verschiedene 
Losungskandidaten nicht mehr vergleichbar sind. Als Kompromiss kommen diejenigen Punkte 
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Bild 5.9 Beispielhafter Verlauf einer Pareto-Front im Raum der Bewertungsfunktionswerte. Die Menge der 
nicht-dominierten Losungkandidaten in der Population nahem die Pareto-Front an. 

im Suchraum in Frage, bei denen alle anderen Elemente des Suchraums nur dann beztiglich 
einer Bewerungsfunktion besser sind, wenn dies eine Verschlechterung beziiglich wenigstens 
einer anderen Bewertungsfunktion bedeutet. Die Menge dieser Losungskandidaten wird auch 
Pareto-Front genannt. Die Elemente der Pareto-Front liegen an der Grenze zu den gtinstigen 
Kombinationen von ZielgroBen, die nicht auftreten; alle Losungskandidaten bleiben aus Sicht 
des theoretischen Optimums hinter oder auf dieser Front (vgl. Bild 5.9). Die nachste Definition 
fasst die Pareto-Front ebenso wie die Individuen, die diese Pareto-Front annahem, formal: 

Definition 5.2 (Pareto-Dominanz und Pareto-Front): 
Fiir die Bewertungsfimktionen 7̂  (1 <i<k) gilt, dass das Individuum B das Individu-
um A dominiert, wenn die folgende Bedingung gilt: 

B >dom A:=yi<i<k: Fi{B.G) h Fi{A.G) ^3\<i<k\ Fi{B.G) )- Fi{A.G) 

Fiir eine Menge von Losungskandidaten P ist dann die Menge der nicht-dominierten 
Losungskandidaten wie folgt definiert: 

nichtdom{P) '= [A eP \y B eP \ ^{B >dom A) } 

± 

Die Pareto-Front als Menge der gleichwertigen globalen Optima ist die Menge 
nichtdom(0), 

Die formale Definition von B >dom ^ bedeutet, dass B wenigstens beztiglich einer Bewertungsfunktion 
besser als A und sonst nicht schlechter ist. Diese Argumentation haben wir bereits beim Beispiel 5.7 implizit 
benutzt. 

Bild 5.10 veranschaulicht diese Definition. Damit der Losungskandidat im linken Teil der Ab-
bildung nicht-dominiert ist, darf kein anderer Losungskandidat in dem grau schrafiierten Teil 
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Bild 5.10 Links wird der Bereich der Werte gezeigt, die ein Individuum annehmen kann, um das abge-
bildete Individuum zu dominieren - dabei ist die Position des abgebildeten Individuums ausge-
nommen. Rechts wird ftir das Beispiel aus Bild 5.9 die Dominanz bzw. Nicht-Dominanz aller 
Individuen gezeigt. 

liegen. Im rechten Teil der Abbildung wird demonstriert, welche Individuen aus Bild 5.9 nicht-
dominiert sind bzv .̂ durch v^elches Individuum die anderen dominiert werden. 

Beispiel 5.9: 
Im bereits vorgestellten Beispiel in Bild 5.8 ist die Pareto-Front explizit sowohl im 
Raum der Bewertungsfunktionswerte als auch im Suchraum markiert. Dabei wird ins-
besondere deutlich, dass sogar stetige Zielfunktionen zu einer stark unterbrochenen 
Pareto-Front fiihren konnen. 

5.2.2 Uberblick 

Eine Optimierung soil ein Element aus der Pareto-Front liefem, das einen »vemunftigen« Kom-
promiss darstellt - d. h. alle ZielgroBen sollen gleichberechtigt (wenn auch evtl. mit unterschied-
lichen Gewichtungen) berucksichtigt werden. 

Intuitive Ansatze wie die, zunachst nach einem Kriterium und dann nach dem nachsten Kri-
terium zu optimieren, werden den Wiinsclien einer gleichberechtigten Optimierung der unter-
schiedlichen Zielfunktionen meist nicht gerecht. Sucht man in der zweiten Phase nur lokal in der 
direkten Nachbarschaft des Optimums hinsichtlich der ersten Bewertungsfunktion, wird sehr oft 
kein richtiger Kompromiss gefunden, sondem die erste Bewertungsfunktion diktiert das Ergeb-
nis. Falls man andererseits erlaubt, sich sehr weit vom gefundenen Optimum weg zu bewegen, 
verliert man die Kontrolle dariiber, ob tatsachlich eine Losung aus oder nahe der Pareto-Front 
gewahlt wird: Ein in alien Belangen suboptimaler Wert kann resultieren. 

Auch die Idee, untergeordnete ZielgroBen als Randbedingungen zu formulieren, ist kritisch. 
Es muss vorab fiir jede solche ZielgroBe ein Schwellwert angegeben werden, ab welchem Losun-
gen als akzeptabel angesehen werden. Die Optimierung ist damit weder gleichberechtigt noch 
zielt sie auf einen Kompromiss ab. 
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Uberlegen Sie anhand Bild 5.8, wie sich eine Optimierung zunachst nach fz und dann nach / i auswirkt. 
Simulieren Sie auch, wie sich der Ersatz von fz durch eine Randbedingung auswirkt. 

Es gibt im Wesentlichen drei verschiedene konzeptionelle Ansatze, um eine gerechte Optimie­
rung der unterschiedlichen ZielgroBen zu gewahrleisten. 

• In der ersten Klasse von Verfahren, muss zunachst eine klare Abwagung stattfinden, wel-
che ZielgroBe wie stark zu berucksichtigen ist und ein Optimierungsverfahren hat dann 
diesen Zielangaben so gut als moghch zu folgen. Diese Ansatze werden im nachfolgenden 
Abschnitt vorgesteUt. 

• Ein altemativer Ansatz besteht darin, einen evolutionaren Algorithmus grundsatzhch so zu 
entwerfen, dass er ein moghchst breites Spektrum an Pareto-optimalen Individuen Hefert. 
Dann kann anschheBend vom Anwender eine genauere Analyse folgen und ein geeigneter 
Losungskandidat ausgewahlt werden. Dies ist das Thema von Abschnitt 5.2.4. 

• Und schlieBlich der dritte Ansatz besteht aus einer iterativen Interaktion zwischen dem 
evolutionaren Algorithmus und dem Anwender, in dem vom Algorithmus vorlaufige Lo-
sungen prasentiert werden und der Anwender noch wahrend des Optimierungsvorgangs 
Entscheidungen trifft, welche Losungskandidaten seinen Vorstellungen am nachsten kom-
men, sodass die Optimierung in dieser Richtung vertieft werden kann. Dieser Ansatz wird 
in diesem Buch nicht weiter betrachtet. 

5.2.3 Modifikation der Bewertungsfunktion 

In diesem Absatz werden die Verfahren betrachtet, bei denen zunachst eine Entscheidung be-
ziiglich der Wichtigkeit der Kriterien gefallt wird und dann mit dieser Gewichtung eine Suche 
stattfindet. Dazu gehort die Klasse der aggregierenden Verfahren, die die verschiedenen Zielfunk-
tionen auf eine einzelne Funktion projizieren. Der haufigste Ansatz fur eine derartige Projektion 
besteht aus der Bildung einer Linearkombination 

i=\ 

fiir X G Q mit den Gewichtungsfaktoren T]/. Wird T]/ > 0 fiir zu minimierende fi{x) bzw. T]/ < 0 fiir 
zu maximierende fi{x) gewahlt, muss f(x) minimiert werden. Bild 5.11 zeigt an zwei Beispie-
len, wie durch die Gewichtung unterschiedliche Kombinationen der Funktionswerte auf einen 
identischen Giitewert abbildet werden. Dabei wird deutlich, dass gerade die Punkte im oberen 
konkaven Teil der Pareto-Front bei einer erfolgreichen Optimierung nicht gefunden werden, da 
immer andere Wertekombination als besser eingestuft werden. Unabhangig davon, welche Ge­
wichtung gewahlt wird, erhalten wir entweder Losungen, die zu teuer sind oder ein zu hohes 
Risiko besitzen. Dies ist nattirlich eine kritische Eigenschaft, insbesondere wenn wir den Verlauf 
der Pareto-Front nicht vorab kennen. Als Alternative kann bei zu maximierenden Bewertungs-
funktionen auch mit einem Produkt statt einer Summe gearbeitet werden, wodurch AusreiBer 
starker geahndet werden. Einen ahnlichen Ansatz stellt die Vorgabe eines Zielvektors im Raum 
der ZielgroBen dar, bei dem die Entfemung zum Zielvektor 7* G M̂  

fix) = ^ | / l (x) - j t |2 + .. . + |/,(x) -y%? 
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Bild 5.11 Fiir zwei unterschiedliche Gewichtungen veranschaulichen die dickeren Linien, diejenigen Line-
arkombinationen der beiden Funktionswerte, die auf den selben Giitewerte abgebildet werden. 
In Richtung des Pfeils werden die Giitewerte besser. Die linke Gewichtung betont starker die 
Risikominimierung, wahrend die rechte die Kosten starker einflieBen lasst. 

Risiko 

Bild 5.12 Projektion auf identische Giitewerte bei der Betrachtung der Distanz zu einem Zielvektor. 

minimiert wird. Dadurch ergibt sich die Projektion identisch bewerteter Individuen in Bild 5.12. 
Auch hier konnen ahnliche Probleme wie bei der Linearkombination auftreten. 

Eine weitere Moglichkeit, mehrere Bewertungsfunktionen auf eine Dimension zu reduzieren 
stellt die Minimax-Methode dar. Wenn wir zunachst annehmen, dass alle Bewertungsfunktionen 
zu minimieren sind, kann einfach auf den maximalen Funktionswert projiziert werden. Bei der 
Minimierung dieses maximalen Wertes werden alle Funktionswerte gleichermaBen klein gehal-
ten. Durch die Vorgabe von Zielwerten j * G M^ und Gewichtungen T]/ > 0 (1 < / < A:) konnen 
Bewertungsfunktionen mit stark unterschiedlichen Wertebereichen vergleichbar gemacht werden. 
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Bild5.13 
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Dadurch ist auch wieder die Betrachtung von zu maximierenden Funktionen moglich. Bild 5.13 
zeigt, welche Punkte die resultierende Projektion 

/ ( x ) = max rii'\fi{x)-y^\ 

auf identische Giitewerte abbildet. 

5.2.4 Berechnung der Pareto-Front 

Die bisher vorgestellten Verfahren haben durchweg den Nachteil, dass ohne genaue Kenntnis 
der Pareto-Front eine Einstellung der Methode nicht moglich ist. Damit sind jederzeit die bereits 
beschriebenen unerwiinschten Effekte moglich. Daher ist in diesem Abschnitt das Ziel, ohne 
jegliche vorab bestimmte Gewichtung die Population moglichst breit entlang der Pareto-Front zu 
verteilen, so dass am Ende viele verschiedene, gleichwertige Losungen vorliegen. Dafur muss 
allerdings mit speziellen Techniken die Konvergenz auf nur einer Losung oder einem engen 
Bereich verhindert werden. 

Ein sehr einfacher Ansatz besteht darin, iterativ mehrere Optimierungen mit unterschiedlichen 
Gewichtungen durchzufiihren, also z. B. bei zwei Zielfunktionen 

/(x) = i7-/i(x) + ( l - i7)- /2(x) 

mit verschiedenen Werten r/ G [0, 1], um so eine ganze Reihe von Elementen aus der Pareto-
Front zu erhalten. Dieser Ansatz beruht allerdings implizit auf der Annahme einer konvexen Pa­
reto-Front, da - wie bereits oben beschrieben - Individuen in konkaven Teilbereichen der Pareto-
Front benachteiligt werden. 

Damit ein mehrzieliger Optimierungsalgorithmus unabhangig von der Form der Pareto-Front 
ist, diirfen die unterschiedlichen Funktionswerte nicht zueinander in Bezug gesetzt werden. Dies 
macht das VEGA-Verfahren, bei dem jede ZielgroBe isoliert in die Selektion eingeht. Bei k Be-
wertungsfunktionen wird im Rahmen einer Eltemselektion jeweils der ^-te Teil der Eltem durch 
die Selektion beztiglich der A:-ten Funktion bestimmt. Dies ist einfach zu implementieren und 
der Selektionsdruck mit unterschiedlichen Kriterien soil zu einer guten Mittelung der Kriterien 
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Bild5.14 
Wird bei der Mehrzieloptimiemng jedes Individu-
um immer nur beziiglich eines Kriteriums selek-
tiert, tendiert das Verfahren oft zu Extremwerten, 
aber eine Mittelung entlang der Pareto-Front fin-
det nur bedingt statt. 

fiihren. Allerdings hat man sich hierbei vor Augen zu fiihren, dass jedes Individuum in der Popu­
lation aufgrund einer tJberlegenheit in einem Attribut iibernommen wurde. Dies fuhrt nun haufig 
dazu, dass vorrangig die Extremwerte in der Population vertreten sind (vgl. Bild 5.14) und die 
erwiinschte Mittelung entlang der Pareto-Front ausbleibt. 

Damit tatsachlich jedes Individuum aus der Pareto-Front gleich behandelt wird, ist es not-
wendig, die eingangs vorgestellte Definition der Pareto-Dominanz direkt fur die Bewertung der 
Individuen zu benutzen. Hierfiir konnen sehr unterschiedliche Techniken angewandt werden. Ei­
ne Moglichkeit besteht darin, alien nicht-dominierten Individuen die Giite 1 zuzuweisen und 
sie fiir die weitere Berechnung der Giitewerte temporar zu entfemen. Von den verbleibenden, 
dann nicht mehr dominierten Individuen bekommen alle die Giite 2 zugewiesen. Dieses Verfah­
ren wird iterativ fortgesetzt. Formal ist die Giiteberechnung wie folgt mittels der Partitionierung 
Partj (1 <i<n) von P definiert. 

Parti:={AeP\yBeP: ^(^>jom^)} 

Parti := UeP\ \J Parti \yBeP\ | J Parti: ^{B >ciomA)\ 

1 falls das zugehorige A G Part\ 

F{A.G) := 

n falls das zugehorige A e Partn 

Die neue Giite ist zu minimieren. Durch dieses Verfahren werden die Individuen wie die Schich-
ten einer Zwiebel gruppiert - wie im Beispiel in Bild 5.15 dargestellt. Dies funktioniert vollig 
unabhangig von der Form der Pareto-Front. 

Allerdings bleibt dabei noch ein Problem unberiicksichtigt: Wenn sehr viele gleich gute In­
dividuen in einer Population enthalten sind, tendieren evolutionare Algorithmen zum Gendrift, 
d. h. einzelne Individuen setzen sich durch Zufallseffekte starker durch und andere gehen verlo-
ren. Gendrift wurde bereits im Kontext der Biologic in Kapitel 1 diskutiert. Man benotigt also 
einen weiteren Mechanismus, der fiir eine moglichst gleichmaBige Verteilung der Individuen ent­
lang der Pareto-Front sorgt. Dies wird durch nischenbildende Techniken erreicht. Ein Beispiel 
fiir eine solche Technik ist das Teilen der Giite in Nischen. Individuen, deren Kombination von 
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Bild5.15 
Durch Partitionieren werden die Individuen in 
Schichten angeordnet. AUe Individuen einer 
Schicht erhalten prinzipiell dieselbe Giite. 
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Funktionswerten gehauft auftreten, sollen eine geringere Giite erhalten. Dadurch werden bei der 
Selektion isoliert auftretende Kombinationen gleich wahrscheinlich ausgewahlt wie ein belie-
biger Vertreter der gehauft vorkommenden Kombination. Konkret wird eine monoton fallende 
Funktion Teile : M ^ [0, 1] mit Teile{0) = 1 und Hmĵ oo Teile{d) = 0 benutzt, die auf den Ab-
stand von Individuen angewandt wird. Damit lasst sich die Anzahl der Individuen in der Nische 
eines Individuums A durch niA^p = S5GP^^^^^(^ (^5^ ) ) annahem, wobei d die Entfernung im 
Raum der Funktionswerte ist. Fiir ein isoliertes A ist niA^p nur wenig groBer als \,k sehr eng 
beieinanderhegende Individuen erhalten mindestens einen Wert um k. Diese MaBzahl kann nun 
benutzt werden, um die Giite des Individuums entsprechend zu modifizieren als A.F = j^ -
Die Konvergenz auf einem Punkt des Suchraums wird dadurch kiinstlich verhindert. 

/ j \ Statt entlang der Pareto-Front breit zu streuen, kann man das Gtiteteilen auch benutzen, um bei Problemen 
II mit nur einer Bewertungsfunktion aber mit sehr vielen gleichwertigen Optima die Konvergenz zu verhindem. 

Dann muss allerdings der Abstand im genotypischen Raum ̂  benutzt werden. 

Da die Berechnung der Partitionen im gerade beschriebenen Algorithmus sehr zeitaufwandig ist, 
sind Ansatze willkommen, die diesen Aufwand reduzieren. Ein Beispiel ist die NSGA-SELEKTION 
in Algorithmus 5.1, die ebenfalls die Pareto-Optimalitat und eine Einnischungstechnik verwen-
det. Dabei wird im Rahmen einer Turnierselektion ein Individuum genau dann ausgewahlt, wenn 
es auf einer Stichprobe nicht von einem anderen Individuum dominiert wird. Falls beide Indivi­
duen dominiert oder nicht dominiert werden, wird dasjenige Individuum akzeptiert, welches we-
niger Individuen in seiner Nische hat. Dabei wird im Gegensatz zu obigem giiteteilenden Ansatz 
nicht die zunehmende Entfernung mit fallender Gewichtung benutzt, sondem die Nische ist strikt 
durch einen Radius £ definiert (vgl. Bild 5.16). 

Trotz der diversitatserhaltenden MaBnahmen haben diese Algorithmen teilweise Schwierig-
keiten, die Pareto-Front gleichmaBig abzudecken. Dies liegt einerseits an Einstellungsschwierig-
keiten (z. B. das £ beim zweiten Verfahren), andererseits aber auch daran, dass die Population fiir 
zwei unterschiedliche Zwecke benutzt wird: 

• als Speicher fiir die nicht-dominierten Individuen zur Naherung der Pareto-Front und 

• als lebendige Population, die insbesondere auch hinsichtlich der Erforschung des Such­
raums tatig ist. 
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Algorithmus 5.1 

NSGA-SELEKTION( Giitewerte {A^^.Fj)i^i^r\<j<k ) 
1 7 ^ 0 
2 for z ^ 1 , . . . , ^ 
3 do •" indexA ^- U{{ 1,..., r}) 
4 indexB^u({\,...,r}) 
5 Q^ Teilmenge von { 1 , . . . , r} der GroBe N^om dStichprobengroBeD 
6 dominatedA ^- 3 index G Q : index >dom index A 
1 dominatedB ^- 3 index e Q : index >dom indexB 
8 if dominatedA A -^dominatedB 
9 then\:i^Io{indexB) 

10 else ^ if-^dominatedA A dominatedB 
11 thenE/^ /o (zWex^) 
12 else ^ «/5c/ze^ ^ #{1 < index < r \ d{A^index) ^^{indexA)^ ^ ^ ^NischengroBeH 
13 nischeB ^ #{1 < index < r \ d{A^index) ^^{indexB)^ ^ ^ | 
14 if nischeA > nischeB 
15 then LI ^ lo (indexB) 
16 L L Lelse LI ^ Io (indexA) 
17 return/ 

Nischen 

Bild5.16 
Verdeutlichung des Nischenbegriffs in Algorith-

Risiko mus5.1 

Konsequenterweise lassen sich die Individuenmengen trennen, was in modemen mehrzieligen 
Optimierungsalgorithmen in der Regel geschieht. Das Archiv fiir die nicht-dominierten Individu-
en hat meist eine vorgegebene endliche GroBe. Dies ist aus Effizienzgriinden notwendig, da bei 
jedem Individuum als Kandidaten fiir das Archiv gepriift werden muss, 

• ob es nicht bereits von einem Individuum im Archiv dominiert wird und - falls dies nicht 
der Fall ist -

• v^elche Individuen von dem neuen Element im Archiv dominiert werden und damit zu ent-
femen sind. 

Es gibt viele Vorschlage, wie dies erreicht werden kann. Zwei davon werden zum Abschluss 
besprochen. 
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Algorithmus 5.2 

SPEA2 (Zielfunktionen f\,...Jm) 
1 t^O 
2 P(t) ^- erzeuge Population mit ji (|PopulationsgroBeD Individuen 
3 R{t)^(b (Archiv der GroBe û̂ ^ ArchivgroBe \)) 
4 while Terminiemngsbedingung nicht erfiillt 
5 do •" bewerte P{t) durch f\,... ,fm 
6 for each^GP(Oui?(0 
7 do LAnzDom{A) ^ #{B e P(t) UR{t) \ A y^^m B} 
8 for each^GP(Oui?(0 
9 do ^ dist ^- Distanz von A und seinem y^fi + ;U«-nachsten Individuum in P(t) UR{t) 

1^ ^^-^ ^ G5GP(0ui?(0 mit5>,,^^^«^^^'^(^)) + M 
11 i?(^ + 1) ^ {^ G P(0 U i?(0 M ist nicht-dominiert} 
12 while #i?(^ + 1) >;U^ 
13 do E entfeme dasjenige Individuum aus R{t-\-\) mit dem kiirzesten/zweitkiirzesten Abstand 
14 if #R{t^ I) <jia 
15 then E fiille R{t-\-l) mit den giitebesten dominierten Individuen aus P{t) UR{t) 
16 if Terminiemngsbedingung nicht erfuUt 
17 then •" Selektion aus P{t) mittels TURNIER-SELEKTION 
18 P{t-\-l) ^ wende Rekombination und Mutation an 
19 u^ wahle Zufallszahl gemaB t/([0,1)) 
20 L L ^ ^ / + l 

21 return nicht-dominierte Individuen aus i? (/ + 1) 

SPEA2 (Algorithmus 5.2) enthalt einen normalen evolutionaren Algorithmus mit TURNIER-
SELEKTiON zur Erzcuguug neuer Individuen. Lediglich der Gtitewert setzt sich ahnlich zum vor-
letzten Beispielalgorithmus aus einer Dominanzinformation (hier: wieviele Individuen werden 
von den dieses Individuum dominierenden Individuen dominiert) und einer Naherung dafur, wie­
viele Individuen sich in der Nahe aufhalten (hier: als Kehrwert der Distanz zum ^ / i + jU^-nachs-
ten Individuum). Der als Summe entstehende Giitewert muss minimiert werden. Interessant ist, 
dass in die Giiteberechnung auch die Individuen aus dem Archiv mit eingehen. Das Archiv ent­
halt grundsatzlich die nicht-dominierten Individuen. Sind dies zu wenig, werden die restlichen 
Platze durch die giitebesten dominierten Individuen belegt. Gibt es zu viele nicht-dominierte 
Individuen, wird iterativ dasjenige Individuum entfemt, das die ktirzeste (bzw. bei Gleichheit: 
zweitktirzeste etc.) Entfemung zu einem anderen Individuum hat. 

Im zweiten Beispielalgorithmus ermoglicht die Abtrennung des Archivs von der Population 
nun auch die Evolution mit einer kleinen Menge an aktiven Individuen. Ein Beispiel hierfiir ist 
PAES (Algorithmus 5.3), bei welchem mit einer (1 + l)-Evolutionsstrategie gearbeitet wird. Ein 
neu erzeugtes Individuum wird genau dann als neues Eltemindividuum iibemommen, wenn es 
nicht durch ein Element aus dem Archiv dominiert wird und eine der folgenden Bedingungen 
erfullt: 

• Es dominiert mindestens ein Individuum im Archiv oder 

• das Individuum dominiert kein anderes Individuum - ist aber in einem weniger frequentier-
ten Bereich der Funktionswertkombinationen. 
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Algorithmus 5.3 
PAES( Zielfiinktionen / i , . . . , /̂ ^ ) 

1 t^O 
2 A ^ erzeuge ein zufalliges Individuum 
3 bewerteA durch fi,... .fm 
4 R(t) '^ {A) 2i\s> Gridfile organisiert 
5 while Terminierungsbedingung nicht erfuUt 
6 do '~ 5 ^ Mutation auf ^ 
7 bewerte B durch / j , . . . , /^ 
8 if V C G R(t) o (A) : -(C >dom B) 
9 then ^if 3 C G R[t) : B >^om C 

10 then ^R{t) ^- entfeme alle durch B Individuen aus R{t) 
11 R{t) ̂  fiXgQ B in R{t) ein 
12 L ^ ^ 5 
13 else ^ if M(0 = ;U«̂ ArchivgroBê  
14 then "̂  g* ̂  Grid-Zelle mit den meisten Eintragen 
15 g ^ Grid-Zelle fur 5 
16 if Eintrage in g < Eintrage in g* 
17 then ^ R{t) ̂ - entfeme einen Eintrag aus g* 
18 L ^R{t)^mgQBmR{t)Qm 
19 else \:R{t) ^ fiXge B inR{t) ein 
20 gA ^ Grid-Zelle fiir^ 
21 g 5 ^ Grid-Zelle fiir 5 
22 if Eintrage in gs < Eintrage in g^ 
23 L L t h e n E ^ ^ ^ 
24 L ^ ^ ^ + 1 
25 return nicht-dominierte Individuen aus R{t-\-l) 

Dabei ergibt sich die Anzahl der Individuen in einem Bereich (oder einer Nische) aus der beson-
deren Organisation des Archivs als Gridfile (eine Hashtabelle, die das Eintragen von Objekten 
mit mehrdimensionalen Schliisseln und die Suche nach jedem der Kriterien erlaubt). Damit lasst 
sich die Anzahl der Individuen in der Nische eines anderen Individuums durch die Anzahl der In­
dividuen in der betreffenden Zelle des Gridfiles annahem. Auch beim Aktualisieren des Archivs 
vv̂ erden nur nicht-dominierte Individuen beriicksichtigt. Dominiert das neue Individuum archi-
vierte Individuen, so vv̂ erden diese entfemt und das neue Individuum aufgenommen. Ansonsten 
wird eines der Individuen aus der vollsten Zelle des Gridfiles entfemt, um Platz fur das neue 
Individuum im Archiv zu machen. 

Zusammenfassend gilt auch fiir die modemen Verfahren, dass bei Problemen mit mehr als drei 
Bev^ertungsfiinktionen eine komplette Annaherung der Pareto-Front nur schwer zu realisieren 
ist. Um die verfiigbare Rechenzeit in die Detektion von sinnvollen und gevv îinschten Losungs-
vorschlagen zu investieren, bietet sich daher die iterative Herangehensweise an, bei der wahrend 
der Optimierung vom Anwender Entscheidungen gefallt werden, die die Richtung der Suche 
beeinflussen. Beispielsweise kann hierbei eine vorlaufige Menge nicht-dominierter Losungskan-
didaten berechnet werden, die dem Anwender als Entscheidungsgrundlage dient, um die Suche 
auf einen begrenzten Teilbereich der moglichen Kombinationen der Funktionswerte zu konzen-
trieren. 
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5.3 Zeitabhangige Optimierungsprobleme 

Falls das zu optimierende Problem nicht konstant ist, sondern sich wdhrend der Optimierung 
verdndern kann, werden andere Anforderungen an den Optimierungsalgorithmus gestellt, die 
gemeinsam mit Losungsansdtzen in diesem Abschnitt diskutiert werden. 

In der Praxis gibt es immer wieder Optimierungsprobleme, deren Bewertung von Losungskandi-
daten sich fortlaufend wandelt. Ein Beispiel ist eine Produktionsanlage, in der interne Prozesse 
und Abnutzung das Produktionsverhalten verandem. Die Optimierung soil dann bestandig den 
optimalen Betriebspunkt ermitteln, mit dem die Anlage eingestellt wird. Ein anderes Beispiel ist 
eine Erweiterung der Erstellung von Maschinenbelegungsplanen aus Beispiel 5.1: Sind die ein-
zelnen Auftrage mit einem Lieferzeitpunkt ausgestattet, muss jeder Auftrag vor diesem Zeitpunkt 
gefertigt sein. Das Problem kann nun so formuliert werden, dass die Planung ein fortlaufender 
Optimierungsprozess ist, bei dem fertige Auftrage herausfallen und standig neue Auftrage konti-
nuierlich eingetaktet werden. 

Definition 5.3 (Zeitabhangiges Optimierungsproblem): 
Ein zeitabhangiges Optimierungsproblem besteht aus einer Folge Opt^^^ (t G N) von 
statischen Optimierungsproblemen Opt^^^ = (Q, /(^),)-). Gesucht ist nun fiir jedes t e 
N eine moglichst gute Approximation der globalen Optima ^^^\ 

± Inwieweit jeder Zeitpunkt t gleich wichtig in einer zeitabhangigen Optimierung ist, hangt von der jewei-

ligen Anwendung ab. Angenommen wir steuem die Zusammensetzung unseres Aktiendepots. Dann kann 

einerseits die Zielsetzung sicherheitsbetont sein, d. h. ich mochte zu jedem Zeitpunkt in der Lage sein, mit 

moglichst maximalem Gewinn zu verkaufen -jedes t hat dasselbe Gewicht. Andererseits kann ich evtl. nur 

zum jeweiHgen Monatsende einen Verkauf in Erwagung ziehen, dann ist in der resthchen Zeit eine groBere 

Schwankung moglich - Hauptsache zum richtigen Zeitpunkt stimmt der mogliche Ertrag. 

Beispiel 5.10: 
Zur besseren Veranschaulichung gehen wir im Weiteren von einer Giitelandschaft tiber 
einer zweidimensionalen reellwertigen Flache als Suchraum aus. Bild 5.17 zeigt zwei 
beispielhafte zeitabhangige Veranderungen der Giitelandschaft. 

Wie man aus diesem Beispiel leicht erkennt, gehen wir von einer gewissen Kontinuitat aus, da 
chaotisches Verhalten nicht mehr durch einen Optimierungsalgorithmus handhabbar ist. Kon­
tinuitat kann dabei durch ausschlieBlich kleine Veranderungen gegeben sein oder durch lange 
statische Phasen vor einer groBeren Veranderung. Femer erkennt man in Bild 5.17 verschiedene 
neue Anforderungen durch zeitabhangige Probleme. 

• Sich bewegende lokale Optima miissen verfolgt werden wie im linken Teil von Bild 5.17. 
• Neu entstehende lokale Optima miissen entdeckt werden wie im rechten Teil von Bild 5.17. 
• Bei zu starken Veranderungen ist streng genommen eine komplett neue Optimierung not-

wendig. 

Oft geniigen die in Kapitel 4 vorgestellten Standardalgorithmen diesen neuen Anforderungen 
nicht, da ihre Konvergenz der benotigten standigen Anpassungsfahigkeit abtraglich ist. 
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Bild 5.17 Die linke Spalte zeigt den zeitlichen Verlauf einer Giitelandschaft mit nur einem lokalen Opti­
mum. In der rechten Spalte verringert sich zusatzlich die Hohe dieses lokalen Optimums, wah-
rend ein zweites lokales sich bewegendes Optimum groBer und schlieBlich zum globalen Opti­
mum wird. 

± Die Autofahrt von Leipzig nach Stuttgart wird zum zeitabhangigen Optimierungsproblem, wenn ich wah-
rend der Fahrt alle aktuellen Staumeldungen einflieBen lassen und so bestandig meine Wegeplanung anpas-
se. 

Bevor wir einzelne Techniken vorstellen, mit denen die Anpassungsfahigkeit verbessert wer-
den kann, wird eine genauere Kategorisierung der zeitabhangigen Optimierungsprobleme (ein-
geschrankt auf reellwertige Bewertungsfunktionen) vorgenommen. Hierfiir unterscheiden wir 
zwei verschiedene Veranderungen, die eine Giitelandschaft erfahren kann: Die reine Verschie-
bung eines lokalen Optimums (wie im linken Teil von Bild 5.17) und die Anderung der Giite an 
einem Punkt (im rechten Teil von Bild 5.17 kombiniert mit einer Verschiebung). Hinsichtlich der 
Verschiebung konnen die folgenden Falle unterschieden werden: 

• keine Veranderung, 

• eine langsam wandemde Bewegung, 
• eine drehende Bewegung, 

• eine schnell wandemde Bewegung und 
• eine abrupte, groBe Veranderung. 

Hinsichtlich der Veranderung der Giite konnen die folgenden Falle identifiziert werden: 

• keine Veranderung oder 
• meist in kleinen Schritten VergroBerung oder Verkleinerung. 

NaturgemaB sind noch weitere Falle moglich, die hier jedoch nicht betrachtet werden, da sie nur 
schwerlich mit evolutionaren Algorithmen zu losen sind. Die im Weiteren prasentierten Techni­
ken werden diesen Kategorien zugeordnet. Eine Ubersicht ist in Bild 5.18 dargestellt. 
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Bild 5.18 Zuordnung der Charakteristika zeitabhangiger Probleme zu den unterschiedlichen Spezialtechni-
ken (auf Basis der Erfolgsmeldungen aus der wissenschaftlichen Literatur). 

Bei sehr abrupten Anderungen im Wechsel mit hinreichend langen, stabilen Phasen ist der 
Neustart eine akzeptable Technik. Sobald andere Charakteristika greifen, konnen die folgenden 
Methoden allerdings wesentlich besser sein. 

Bei kontinuierlichen oder sich wiederholenden Anderungen kann die Konvergenz des Algo-
rithmus durch erhohte Diversitat vermieden werden. Dies soil die Reaktivitat der Population 
erhalten - ist also besonders bei Problemen mit neu entstehenden globalen Optima interessant. 
Es kann allerdings auch die Verfolgung eines sich bewegenden Optimums verbessem. Diese 
diversitatserhaltenden MaBnahmen lassen sich in zwei Varianten unterscheiden: die diversitatser-
hohende Technik, die neue Individuen einfiigt, und die Verfahren, die im Rahmen der Selektion 
der Konvergenz gegenwirken - dazu gehoren Techniken zur Nischenbildung und die beschrankte 
Paarung. 

Zur diversitdtserhohenden Technik zahlen die zufalligen Einwanderer, die in jeder Generation 
einen bestimmten Prozentsatz der Individuen durch neue zufallig erzeugte Individuen ersetzt. In 
der Literatur finden sich dabei ein Richtwert von 10-30% fiir den Grad der Ersetzung. Allerdings 
ist dieses Verfahren oft nur sehr schwierig auszubalancieren: Werden zu viele Individuen zufallig 
gesetzt, konnen sie eine erfolgreiche Optimierung manchmal ganz verhindem. Auch kann man 
beobachten, dass die zufalligen Individuen sich meist nur sehr schwer in der Population etablie-
ren konnen. Bei einem starken Selektionsdruck beruht das Auffinden von neu entstandenen guten 
Nischen im Suchraum also eher auf einer reinen Zufallssuche. Eine Variante ist die Hypermuta-
tion, deren biologisches Vorbild Zellen sind, die auf umweltbedingten Stress durch eine erhohte 
Mutationsrate reagieren. Dies wird nahezu identisch auf die evolutionaren Algorithmen iibertra-
gen: Wenn eine Veranderung in der Umwelt beobachtet wird, z. B. indem die durchschnittliche 
Giite in der Population abfallt, wird kurzzeitig die Mutationsrate drastisch erhoht. Dieser Ansatz 
hat jedoch einen entscheidenden Nachteil: Falls die Population vomehmlich in einem Optimum 
konvergiert ist, findet nur dann eine Reaktion statt, wenn die Giite dieses Optimums abfallt. Die 
Hypermutation reagiert nicht, wenn in einem anderen Bereich des Suchraums ein neues globa-
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les Optimum entsteht, welches das bisherige globale Optimum zum lokalen werden lasst. Daher 
sind solche reaktiven Verfahren nur eingeschrankt bei Dynamik mit sich verandemder Struktur 
des Suchraums anwendbar. 

Die Einnischungstechniken wurden bereits bei der Mehrzieloptimierung in Abschnitt 5.2 auf 
Seite 203 vorgestellt. Wahrend allerdings dort die Vielfalt bezuglich des Raums der Giitewerte 
gesucht war, geht hier der Abstand im genotypischen oder phanotypischen Suchraum als Nach-
barschaftsbegriff in die Berechnung ein. So sollen sich die Individuen gleichmaBiger verteilen. 
Verwandt damit ist auch der thermodynamische genetische Algorithmus, der in der Selektion di-
rekt eine der Diversitatsformeln (siehe Seite 62) benutzt, um Individuen in der Umweltselektion 
zu wahlen. Konkret wird fiir die Minimierung von F ein genetischer Algorithmus so abgeandert, 
dass fitnessproportionale Selektion, Mutation und Rekombination doppelt so viel Individuen (al­
so 2 • jU) als benotigt erzeugen. In der Umweltselektion wird jU mal dasjenige Individuum A 
ausgewahlt, fiir das die damit entstehende zwischenzeitliche Population P' ^ P' o [A) den Wert 
F{P') =F{P') — r\ • Divers{P') minimiert. Der Parameter T] gibt an, wie stark die Diversitat be-
rlicksichtigt werden soil, und als DiversitatsmaB wird die Shannon-Entropie benutzt. Mit alien 
im Abschnitt zu Mehrzieloptimierung diskutierten Nachteilen der aggregierenden Verfahren wer­
den beide Ziele, die Verbesserung der Gtite und der Erhalt der Vielfalt, verfolgt. Bemerkenswert 
ist dennoch, dass iiber eine quantifizierbare Formel die Diversitat direkt beriicksichtigt werden 
kann und nicht iiber indirekte MaBnahmen beeinflusst wird. 

Die Techniken der beschrdnkten Paarung versuchen ebenfalls, unterschiedliche Indivdiuen in 
verschiedenen Teilen der Gesamtpopulation zu etablieren - allerdings bei weitem nicht so ge-
zielt wie die diversitatserhohenden MaBnahmen. Durch spezielle Markierungen an Individuen 
oder auch eine entfemungsbasierte Zuordnung werden Teilpopulationen gebildet, in denen die 
Rekombination erlaubt ist. Durch die Einschrankung der Rekombination sollen die Kindindividu-
en starker in der Gegend ihrer Eltem bleiben - ebenfall mit dem Ziel, Konvergenz zu vermeiden. 
Parallelisierte evolutionare Algorithmen beinhalten ebenfalls haufig eine beschrankte Paarung 
(siehe S. 217). 

Werden nur sich bewegende Optima verfolgt, ohne dass durch Giiteverschiebungen neue glo­
bale Optima entstehen konnen, ist die lokale Variation eine der efiizientesten Techniken. Diesen 
Zweck erfiillen direkt die Mutationsalgorithmen SELBSTADAPTIVE-GAUSS-MUTATION 

(Algorithmus 3.18) der Evolutionsstrategie und die SELBSTADAPTIVE-EP-MUTATION (Algorith­
mus 4.19) des evolutionaren Programmierens. Wahrend diese beide auf einem reellwertigen Ge-
notyp arbeiten, existiert kein solcher Standardoperator auf einem binaren Genotyp, der phano-
typisch lokal arbeitet. In diesem Fall kann die variable lokale Suche eingesetzt werden. Dieser 
Operator wird ahnlich wie die Hypermutation genau dann aufgerufen, wenn die durchschnittli-
che Giite in der Population abfallt. Zunachst werden in einem lokalen Suchschritt die niederwer-
tigen Bits einer standardbinar kodierten reellwertigen Komponente gezielt verandert, um lokal 
benachbarte neu Individuen zu erzeugen. Durch inkrementelles VergroBem (vgl. Bild 5.19) des 
Suchbereichs kann dabei von einer zunachst sehr lokalen Veranderung zu einer globaleren Suche 
variiert werden. 

Falls durch die Verschiebung lokaler Optima bzw. das Auf- und Abschwellen einzelner lokaler 
Optima Situationen entstehen, in denen das globale Optimum an einer Stelle steht, an der es sich 
bereits zu einem friiheren Zeitpunkt befunden hat, sind Techniken geeignet, die sich alte Zustande 
merken. Das explizite Merken speichert friihere Losungen in einem extemen Speicher. Auf diese 
kann im Verlauf der Evolution zuriickgegriffen werden - beispielsweise kann in jeder Generation 
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idividuum 

Dimension 1 
- - • 

VergroBerung 
des 
Suchbereichs 

+/- [ 

+/- 1 1 

Dimension 2 

~̂  -"^ 
\ k** 

1 1 

+/- r 
+/- _Li 

^̂  1 1 
1 1 

_U 
Bild 5.19 Bei der variable lokalen Suche werden Bits in einem Vektor zufallig gesetzt und zum Indivi-

duum hinzuaddiert. Dabei umfasst dieser Additionsvektor zunachst nur die niedenvertigen Bits 
(links). Falls diese lokale Suche nicht erfolgreich ist, wird inkrementell der Suchbereich durch 
Erweiterung des Additionsvektors vergroBert. 

Genotyp 1 Genotyp 2 
I 0| l | ql i I 0| i l | 0| i I i I 0| l | 

Dominanz 

Phanotyp | 11 11 0 | 11 o| 11 

Dominanzregel: 
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Bild 5.20 Diploiditat mit einem rezessiven Allel i ftir die 1. Die Tabelle zeigt, wie die unterschiedlichen 
Kombinationen im Genotyp phanotypisch bewertet werden. 

eine Auswahl der gemerkten Individuen wieder in die Population integriert werden. Altemativ 
wird ahnlich zum Einsatz der Hypermutation auf die gespeicherten friiheren Losungen nur bei 
einem Giiteabfall der Population zurlickgegriffen. 

Das alternative implizite Merken ahmt das Konzepts der Diploiditat (vgl. natiirliche Evoluti­
on in Kapitel 1) nach. In der Natur werden durch den doppelten Chromosomensatz rezessive 
Merkmale zwar weitervererbt, treten phanotypisch allerdings nur selten in Erscheinung. Sie er-
halten jedoch die Anpassungsfahigkeit und kommen eventuell bei einer Veranderung der Umwelt 
wieder positiv zum Tragen. Durch ein solches Konzept konnen einerseits Telle von Individuen 
spater wieder leichter in die Evolution eingehen und andererseits wird auf jeden Fall die geno-
typische Diversitat in der Population durch rezessive Allele erhoht. Die einfachste Variante als 
Erweiterung der genetischen Algorithmen auf binaren Zeichenketten verdoppelt den Genotyp 
und bestimmt jeweils aus zwei Bits ein phanotypisches Bit wie dies in Bild 5.20 dargestellt ist. 
Ein zusatzliches Allel i wird als rezessive 1 eingefiihrt. GemaB der abgebildeten Dominanzregel 
wird die phanotypisch wirksame binare Zeichenkette berechnet. Das haufigere Vorkommen der 
1 in den Dominanzregeln wird durch veranderte Wahrscheinlichkeiten bei der Mutation ausgegli-
chen. Dabei wird eine 0 mit der Wahrscheinlichkeit 0,5 erzeugt und / und 1 mit jeweils 0,25. Auf 
verwandte Ansatze mit zwei rezessiven Allelen gehen wir hier nicht naher ein. Die Starke der 
diploiden evolutionaren Algorithmen liegt vermutlich in erster Linie in dem Erhalt der Vielfalt 
in der Population. Der Einfluss von rezessiven Teillosungen bei einer Optimierung lasst sich nur 
schwer beurteilen. 
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In weitaus starkerem MaB als bei den Randbedingungen und den Problemen mit mehreren 
Zielfunktionen gilt allerdings bei den zeitabhangigen Problemen, dass die Techniken sehr genau 
an die Eigenschaften des Problems angepasst werden mtissen, um eine erfolgreiche Optimierung 
zu ermoglichen. 

5.4 Approximative Bewertung 

In vielen Anwendungen konnen Losungskandidaten nicht exakt bewertet werden, da die Bewer-
tungsfunktion fehlerbehaftet oder rechenintensiv ist- im Extremfall existiert gar keine eindeutig 
definierbare Bewertungsfunktion. Dieser Abschnittprdsentiert Methoden, die unter solchen Um-
stdnden eine hohere Qualitdt der Optimierung erreichen. 

In den bisherigen Kapiteln wurde davon ausgegangen, dass eine Bewertungsfunktion eindeutig 
definiert ist, d. h. die Auswertung eines Losungskandidaten ergibt immer denselben Wert. Wie 
bereits bei den zeitabhangigen Problemen ist diese Annahme auch hier nicht erfiillt. Allerdings 
gibt es jetzt keinen Ablauf, der den Veranderungen in der Bewertungsfunktion zugrunde hegt, 
sondem die Bewertungsfunktion kann unabhangig von der Zeit verschiedene Gtitewerte fiir das-
selbe Individuum liefem - sprich: Es kann nur mit angenaherten Giitewerten gearbeitet werden. 

Eine mogliche Ursache hierfiir sind Toleranzen bei messungsbasierten Bewertungen (siehe 
Abschnitt 5.4.1) - dies ist insbesondere der Fall beim Einsatz von Sensoren fiir physikalische, 
chemische oder biochemische Vorgange, aber auch bei stochastischen Simulationen (z. B. von 
Verbrennungsvorgangen). Verwandt dazu sind Probleme, bei denen die Werte eines Losungs-
kandidatens etwa an einem technischen System nicht exakt eingestellt werden konnen (siehe 
Abschnitt 5.4.2) - beispielsweise aufgrund von Toleranzen in der Mechanik. Anders sieht die Si­
tuation bei sehr zeitaufwandigen Bewertungsfunktionen aus, bei denen man sich bewusst fiir eine 
Unscharfe entscheidet, um das Problem iiberhaupt optimieren zu konnen (siehe Abschnitt 5.4.3). 
Ahnlich gelagert sind Probleme, die statt iiber eine Bewertungsfunktion durch eine Vielzahl an 
Testfallen definiert werden (siehe Abschnitt 5.4.4). tJberhaupt kein eindeutig berechenbares Be-
wertungskriterium steht bei der Entwicklung von Strategien, z. B. fiir Spiele wie Dame, zur Ver-
fiigung (siehe Abschnitt 5.4.5) - auch dort muss die Giite durch Tests ermittelt werden. 

5.4.1 Verrauschte Bewertung 

Bei verrauschten Zielfunktionen ist die Zuverlassigkeit und Objektivitat der Bewertungsfunktion 
nicht mehr gegeben. Das Standardbeispiel sind Messungen an technischen Systemen oder auch 
von Software, die gewissen Messfehlem bzw. zufalligen Einfliissen unterliegen. 

Beispiel5.ll: 
Werden an einem Motorpriifstand die Parameter zur Steuerung des Motors eingestellt 
(Ziindwinkel etc.), kann der Verbrauch des Motors durch die Messung des Kraftstoffge-
wichts vor und nach der Testzeit ermittelt werden. Die Analyse der Abgase ist aufwan-
diger, da dort beispielsweise zur Ermittelung des CO- und C02-Gehalts die Absorption 
von Infrarotstrahlen im Abgas gemessen wird. 

Wann immer ein Losungskandidat gut bewertet wird, stellt sich die Frage, ob es sich tatsach-
lich um ein gutes Individuum handelt, oder ob diese positive Bewertung nicht aufgrund des Rau-

http://Beispiel5.ll
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schens zustande kam. Dieselbe Frage stellt sich bei schlecht bewerteten Individuen mit negativem 
Vorzeichen. Einerseits konnen dadurch gute Individuen nur sehr schwer identifiziert werden, da 
ein Vergleich mehrerer Individuen nicht reprasentativ ist. Dies kann entweder das Auffinden einer 
akzeptablen Losung komplett verhindem oder die Losungszeit wesentlich verlangem. Anderer-
seits konnen solche Fehlbewertungen auch dazu fiihren, dass leichter Wege aus lokalen Optima 
heraus gefunden werden. Allerdings iiberwiegen in der Praxis meist die negativen Effekte des 
Rauschens, die daher moglichst verringert werden sollen. 

± Beim Versuch den zeitlich ktirzesten Weg von Leipzig nach Stuttgart zu finden, stellen wir bereits nach dem 

zweiten Versuch auf derselben Strecke fest, dass das Problem hochgradig verrauscht ist: Durch die jeweilige 

Verkehrssituation ergeben sich erhebUche Abweichungen in der Fahrtzeit. 

Bei der Standardvorgehensweise wird jedes Individuum mehrfach bewertet und die Giite ergibt 
sich als Mittelwert dieser Bewertungen. Wenn die Anzahl der Bewertungen gegen Unendlich 
strebt, nahert sich der Mittelwert aufgrund des Gesetzes der groBen Zahlen aus der Wahrschein-
lichkeitsrechnung der objektiven Giite an. Genauer gilt bei K Auswertungen eines Individuums, 
dass die Standardabweichung a pro Auswertung auf eine Abweichung -j= verringert wird. Wenn 
fur jedes Individuum die Zielfunktion jedoch mehrmals berechnet werden muss, bedeutet dies 
einen enormen zusatzlichen Aufwand und zusatzliche Kosten. Daher sollten zusatzliche Auswer­
tungen nur wohlbedacht eingesetzt werden, da sie sich nicht linear in einer Verbesserung der 
resultierenden Abweichung niederschlagen. Im nachsten Absatz werden diese Kosten, unter de-
nen in der Regel die benotigte Zeit verstanden wird, fiir die weitere Argumentation modelliert. 

Sei jU die PopulationsgroBe und K die Anzahl der Evaluationen pro Individuum. Um nun 
die Gesamtkosten solcher Mehrfachbewertungen aufzustellen, unterscheiden wir in zwei unter-
schiedliche Kostenfaktoren: die Kosten KostEval, die pro Giitebewertung anfallen, und die Kos­
ten KostVerw, die zur Verwaltung eines Individuums notwendig sind, aber nicht von der Anzahl 
der Bewertungen abhangen. Dann konnen die Kosten einer Generation als 

Kosten = {KostVerw + KostEval K)- ji 

formuliert werden und die Gesamtkosten als 

Kosten = {KostVerw + KostEval K)ii- MaxGen, 

wobei MaxGen die Anzahl der Generationen ist. Falls nun feste Kosten, d. h. eine maximale 
Zeitspanne, fiir eine Optimierung vorgegeben sind, muss man sich entscheiden, wie K und /i 
gewahlt werden sollen, damit diese Kosten eingehalten werden. Werden mehr Auswertungen fiir 
die Bewertung eines Individuums eingeraumt, stehen entweder weniger Generationen fiir die 
Berechnung zur Verfiigung oder die PopulationsgroBe muss verringert werden. Da sehr oft die 
Anzahl der Generationen als fest betrachtet wird, um eine bestimmte Losungsqualitat zu errei-
chen, muss damit die PopulationsgroBe kleiner gewahlt werden. Daher ist im nachsten Absatz 
insbesondere das Verhaltnis von K zu fi von Interesse. 

Es gibt unterschiedliche, sich teilweise stark widersprechende Untersuchungen, wie dieses 
Verhaltnis zu wahlen ist. Konsens ist, dass lokale Suchverfahren weit starker von Rauschen be-
eintrachtigt werden als populationsbasierte Verfahren, da sich hier zu gut bewertete Individuen 
natiirlich sehr viel starker auswirken. Daher hat ein groBeres K meist auch sehr positive Aus-
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wirkungen bei der lokalen Suche. Bei den evolutionaren Algorithmen kann, wie bereits gesagt, 
die PopulationsgroBe zusatzlich verandert werden - und gute Einstellungen hangen sehr stark 
vom Optimierungsverfahren ab. Grundsatzlich scheint eine VergroBerung von K meistens sinn-
voll zu sein - insbesondere wenn die Kosten ftir jede Evaluation nicht so sehr in's Gewicht fal­
len (^^^ > !)• Allerdings ist beispielsweise bei den genetischen Algorithmen, die stark auf 
der Rekombination beruhen, fiir geringe evaluationsunabhangige Kosten (KostVerw <C KostEval) 
die VergroBerung der PopulationsgroBe /i eine sinnvolle Alternative. Dies lasst sich vermutlich 
dadurch begriinden, dass bei den genetischen Algorithmen die in der Population gespeicherte 
Information in der Form von Schemata in groBem MaB durch die Rekombination genutzt wird 
- ist die Population groBer, ist die gespeicherte Information in ihrer Gesamtheit auch wesent-
lich robuster gegen einzelne falsch bewertete Individuen. Bei den Evolutionsstrategien kann ein 
ganz ahnlicher Effekt (wenn auch nicht im selben AusmaB) durch eine VergroBerung der Eltem-
population ji erreicht werden, da dann bei einer uniformen Auswahl der Eltem AusreiBer nicht 
so stark die Erzeugung der weiteren Individuen beeinflussen oder gar durch die Rekombination 
GLOBALER-ARITHMETISCHER-CROSSOVER (Algorithmus 4.11) echt gemittelt wird. 

Offensichtlich zahlen sich Mehrfachauswertungen aus. Wenn wir nun allerdings annehmen, 
dass die Bewertungsfunktion sehr zeitintensiv ist und durch ein relativ starkes Rauschen gestort 
wird, kann die benotigte Anzahl an Mehrfachauswertungen u.U. nicht durchgefiihrt werden. Es 
stellt sich die Frage, wie diese Kosten verringert werden konnen, ohne die Qualitat des Ergebnis-
ses zu beeintrachtigen. Falls nun beispielsweise die Umweltselektion deterministisch durch eine 
(jU, A)-Selektion stattfindet, ist es eigentlich nur von Interesse herauszufinden, welches die jU 
besseren Individuen sind. Dann kann folgendermaBen vorgegangen werden. Es werden zunachst 
wenige Auswertungen fiir alle Individuen vorgenommen. Dann werden paarweise statistische 
Tests durchgefiihrt, um festzustellen, bei welchen Individuen beziiglich ihrer Rangfolge bereits 
eine Aussage dariiber, ob sie zu den ji besten Individuen der Population gehoren konnen oder 
nicht, mit hoher Sicherheit gemacht werden kann. Daraus ergibt sich eine (partielle) Ordnung der 
Individuen. Bei denjenigen Individuen, fiir die die Einordnung in wahrscheinlich brauchbare und 
nicht brauchbare Individuen noch nicht getroffen werden konnte, werden weitere Auswertungen 
vorgenommen, bis die geforderte Sicherheit vorliegt oder der Vorgang abgebrochen wird, was 
dann einer Entscheidung mit geringerer Konfidenz entspricht. Diese Herangehensweise kann die 
Anzahl der notwendigen Auswertungen signifikant reduzieren, da zusatzliche Auswertungen nur 
bei Bedarf vorgenommen werden. 

Nun ist allerdings die tJberbewertung von schlechten Individuen bisher ausschlieBlich beziig­
lich der Frage diskutiert worden, inwieweit durch das Durchreichen schlechter Individuen eine 
geringere Prazision des Algorithmus erreicht wird. Dariiberhinaus stellt sich jedoch in selbst-
adaptiven Algorithmen das Problem, inwieweit die verrauschten Losungskandidaten die Selbst-
anpassungsmechanismen beeinflussen: Schlimmstenfalls werden sie so drastisch gestort, dass ein 
sinnvolles Optimieren nicht mehr moglich ist. Daher soil hier kurz auf die vorgestellte Technik 
der Schrittweitenanpassung bei der reellwertigen Mutation mittels der GauBverteilung eingegan-
gen werden. Im Rahmen der Standardalgorithmen wurden zwei verschiedene Ablaufe fiir die 
Modifikation der Strategievariablen vorgestellt. Bei den Evolutionsstrategien geschieht dies in 
der Regel durch folgende Modifikation 

Vv2/ 
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mit Zufallszahlen u,u\,... .u'^r^ - ^ (0 , 1) (vgl. Seite 136). Beim evolutionarenProgrammieren 
wird die Schrittweite durch 

B.Si^A.Si^Ui 

mit Zufallszahlen ut ^ ^ ( 0 , a -A.Si) ftir 1 < / < / angepasst (vgl. SELBSTADAPTIVE-EP-MUTATION 

in Algorithmus 4.19). Zusatzlich findet die Anpassung bei den Evolutionsstrategien direkt vor 
der Mutation des eigentlichen Individuums statt, vv̂ ahrend beim evolutionaren Programmieren 
die vom Eltemteil geerbten Schrittv^eisen benutzt werden. Nun kann meist beobachtet werden, 
dass die Anpassungsregel der Evolutionsstrategien eine schnellere Anpassung erlaubt und somit 
schneller das Optimum findet. Mit zunehmendem Rauschen kann diese Anpassungsregel jedoch 
leichter in die Irre gefiihrt v^erden. Dann erweist sich oft die beim evolutionaren Programmieren 
ubliche Regel als stabiler. 

Eine alternative Modifikation der bei den Evolutionsstrategien benutzten Regel stellt die Kap-
pa-Ka-Methode dar. Sie beruht im Wesentlichen auf der Idee, Veranderungen an den Strategiepa-
rameter und den Objektvariablen nur gedampft an die Kinder weiterzugegeben, um den Einfluss 
von falsch bev^erteten Individuen zu verringem. Konkret v îrd (bei der uniformen Schrittwei-
tenanpassung) mit Zufallszahlen i/, wi , . . . , i// G o/K(0, 1) und den Parametern A:, K* > 1 (G R) das 
folgende Individuum 

^.^^^.^.(exp(-L..))^ 

Bi^Ai+B.S'k-Ui 

erzeugt, vŝ elches bei der Bevŝ ertung herangezogen wird. Falls es sich im Rahmen der iiblichen 
Selektion bev^ahrt und iibemommen v îrd, werden die Veranderungen am Individuum nur abge-
schwacht weitergegeben, und zwar als 

Bi^Ai^B.S'Ui. 

Diesem Verfahren liegt die Vorstellung einer tiberwiegend glatten Giitelandschaft zugrunde: Falls 
das Individuum tatsachlich gut ist, bewegen wird uns leicht abgeschwacht in die richtige Rich-
tung - falls das Individuum iiberbewertet wurde, werden die eigentlichen Verschlechterungen 
etwas abgemildert und kommen nicht im selben AusmaB zum Tragen wie bei der normalen Vor-
gehensweise. 

5.4.2 Stabile Losungen 

Wird eine Optimierung erfolgreich durchgefiihrt, liegt am Ende ein als nahezu optimal erachteter 
Losungskandidat^* vor. Bei den meisten Optimierungsproblemen kann man diesen exakt so be-
nutzen und weiterverarbeiten. Jedoch haben Probleme mit zusatzlichen Stabilitatsanforderungen 
die Eigenheit, dass A^ zwar genutzt werden kann, aber in der Realitat haufig ein leicht von v4* 
abweichender Wert zur Anwendung kommt. 
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Giite 

Rauschen 

Bild 5.21 Die Stabilitat einer Losung wird durch die Bewertungsinvarianz gegeniiber kleinen Abweichun-
gen an den Eingangen bestimmt, wahrend das Rauschen eine kleine Abweichung bei der Bewer-
tung am Ausgang eines Systems ist. 

Beispiel 5.12: 
Werden Maschinenbelegungsplane ftir einen stark manuell operierenden Betrieb wie 
z. B. eine Stuhlfabrik erstellt, kann es aus aktuellen betriebsbedingten Problemen im-
mer wieder zu einer leichten Variation in der Reihenfolge an den einzelnen Arbeitssta-
tionen kommen. Sind die prasentierten Maschinenbelegungsplane nicht stabil, kann 
dies einen erheblichen Einfluss auf den Durchsatz haben. Daher sind Plane gesucht, 
die eine gewisse Variation bei nur geringfiigig verlangerter Produktionszeit tolerieren. 

Der Unterschied zwischen stabilen Losungen und Losungen bei verrauschten Optimierungspro-
blemen ist in Bild 5.21 dargestellt. Beim Rauschen werden unterschiedliche Werte bei verschiede-
nen Bewertungen desselben Individuums beobachtet. Dies ist bei der Suche nach stabilen Losun­
gen nicht der Fall, sondem man mochte die Abweichungen in der Bewertung bei leicht variierten 
Individuen moglichst klein halten. 

/ j \ In meinem Bestreben, auf alle Eventualitaten vorbereitet zu sein, ist die Suche nach einer geschickten Auto-

II route von Leipzig nach Stuttgart auch ein Optimierungsproblem mit einer stabilen Anforderung: Ftir jeden 
moghchen Autobahnabschnitt beriicksichtige ich, wieviel langer es bei einer VoUsperrung dauert. 

Als Grundtechnik kann hierbei das Repertoire der verrauschten Zielfunktionen benutzt werden, 
wobei man bei der Bewertung eines Individuums mehrere Varianten - also quasi ein kiinstliches 
Rauschen - erzeugt und ebenfalls den Mittelwert betrachtet. Dabei gelten alle Vor- und Nachteile 
aus Abschnitt 5.4.1. 

Insbesondere ist auch zu beachten, dass gemittelte Gtitewerte nur eine bedingte Aussage zur 
Stabilitat machen, da groBe positive und negative Abweichungen zum selben Ergebnis fiihren 
wie kleine positive und negative Abweichungen. Daher wurde in jiingerer Zeit vorgeschlagen als 
zusatzliches Kriterium die Varianz der Gtitewerte zu betrachten. Mit den Methoden der Mehr-
zieloptimierung konnen dann die verschiedenen Losungsmoglichkeiten hinsichtlich der Giite der 
Losung und der Stabilitat aufgespannt werden. 

5.4.3 Zeitaufwandige Bewertung 

Evolutionare Algorithmen sind weniger gut ftir Optimierungsprobleme mit zeitaufwandigen Be-
wertungsfunktionen geeignet, da durch den populationsbasierten Ansatz weitaus mehr Bewertun­
gen benotigt werden, als Zeit zur Verfiigung steht. 
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Beispiel 5.13: 
Bei dem in Beispiel 5.11 vorgestellten Problem der Kalibrierung eines Motorsteuer-
gerats, muss der Motor zunachst einen eingeschwungenen Zustand erreichen. Andem-
falls ware der Einfluss zu groB, ob beispielsweise der Ziindwinkel gerade vergroBert 
Oder verkleinert wurde. AnschlieBend muss der Motor am Prtifstand eine gewisse Zeit 
laufen, um aussagekraftige Messwerte hinsichtlich des Kraftstoffverbrauchs und der 
Schadstoffemission zu bekommen. 

/ j \ Auch bei der Fahrt von Leipzig nach Stuttgart handelt es sich um ein zeitaufwandiges Optimierungsproblem, 
II da nicht einfach 1 000 Fahrten zur Ermittlung des besten Wegs durchgefiihrt werden konnen. 

Da andere effizientere Verfahren fur die meisten Probleme ebenfalls nicht zur Verfiigung ste-
hen, muss man sich des Tricks bedienen, nur einen sehr geringen Prozentsatz der Individuen am 
»echten« Problem zu bewerten und den Rest zu schatzen. Hierfiir wird ein Modell des Problems 
erstellt, das dann als kostengtinstige alternative Bew^ertungsfunktion bereitgestellt vŝ ird. In der 
Literatur linden sich insbesondere neuronale Netze (vgl. Seite 145), RBF-Netze, polynomielle 
Regressionsmodelle und GauB-Prozesse. 

Ein erster einfacher Ansatz verschiebt die eigentliche Optimierung vollstandig auf die Mo-
dellebene. Die gefundenen Optima konnen dann am echten System bevŝ ertet vŝ erden. Da jedoch 
immer mit einem Fehler in den Modellen zu rechnen ist, muss meist das Verfahren iteriert wer­
den: Ein genaueres Modell im identifizierten Zielgebiet wird erstellt, eine emeute Optimierung 
durchgefiihrt und wieder am echten System bewertet. Statt einer manuellen Iteration wird eine 
starkere Integration von Modell und echtem System angestrebt. Alle Individuen werden mit dem 
Modell bewertet und der Algorithmus entscheidet, welcher Teil zusatzlich am echten System 
evaluiert wird. Die direkte Rtickkopplung System-Modell fiihrt nicht nur zu besseren Ergebnis-
sen, sondem kann auch zur fortwahrenden Anpassung und Verbesserung des Modells genutzt 
werden. 

/ | \ Ein Beispiel fur die reine Optimierung auf einem Modell mit nachgeschalteter manueller Verifikation am 
_ II echten System wird detailliert in der Fallstudie im Abschnitt 6.5 vorgestellt. 

Da die Integration eines Modells in einen evolutionaren Algorithmus oft ein schwieriges Vor-
haben ist, begegnet man den zeitaufwandigen Bewertungsfunktionen meist mit purer Rechen-
leistung durch Nutzen moglichst vieler Computerprozessoren. Hierfiir ist es notwendig, einen 
evolutionaren Algorithmus zu parallelisieren. 

Die einfachste Moglichkeit stellt die globalen Parallelisierung {QngX. farming-model) dar, bei 
der die Gtiteberechnung der Individuen und z.T. die Anwendung der Mutationsoperatoren paral-
lelisiert wird. Die Verwaltung der Population, Selektion und Rekombination linden im Master-
Prozessor statt, jeder Slave-Prozessor bewertet ein Individuum. Der grundsatzliche Ablauf und 
Aufbau eines evolutionaren Algorithmus wird dadurch nicht beschrankt. Der Flaschenhals dieses 
Modells liegt in der Selektion, die globale Informationen benotigt. Diese Art der Parallelisierung 
ist einfach umzusetzen und lohnt sich, wenn die Gtiteberechnung sehr aufwandig ist. Interessant 
ist sie insbesondere auch fiir Mehrprozessorrechner mit gemeinsamem Speicher, da dann kein 
Kommunikationskosten anfallen. Bild 5.22 skizziert die globale Parallelisierung. 

Die grobkornige Parallelisierung (engl. coarse grained model) unterteilt die Population in 
wenige, relativ groBe Unterpopulationen, die getrennt optimiert werden. Zusatzlich wird ein Mi-
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Master 

Slaves Bild 5.22 
Bei der globalen Parallelisiemng wird die Bewertung der Individu-
en parallelisiert. 
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Bild 5.23 Zwei grobkomige Parallelisiemngen mit loser (links) und enger Verbindung (rechts). 

grationsoperator eingefiihrt, der einzelne Individuen zwischen den Unterpopulation austauscht. 
Diese Parallelisiemng wird auch Inselmodell genannt und ist auch fiir Cluster gewohnlicher PCs 
Oder Workstations geeignet. Entscheidende Einflussfaktoren bei dieser Art der Parallelisiemng 
sind 

• die Topologie (wie sind die Unterpopulationen miteinander verbunden), 

• die Migrationsrate (wieviele Individuen wandem zwischen den Unterpopulationen), 

• das Migrationsintervall (wie oft tritt eine Migration ein), 

• die Migrationsauswahl (welche Individuen einer Unterpopulation werden migriert) und 

• die Migrationsart (migriert ein Individuum selbst oder nur seine Kopie). 

Die Topologie hat entscheidenden Einfluss darauf, wie schnell sich ein guter Losungskandidat in 
den Unterpopulationen ausbreiten kann. Sind die Unterpopulationen eng miteinander verkniipft, 
wird sich ein guter Losungskandidat schnell in den Unterpopulationen verteilen. Ist dagegen 
die Verbindung lose, konnen sich verschiedene Losungskandidaten parallel entwickeln und erst 
durch einen spateren Austausch zu eventuell besseren Losungskandidaten kombiniert werden. 
Hier greifen die im Kapitel 1 beschriebenen biologischen Evolutionsfaktoren Gendrift und Gen-
fluss. Ubliche Topologien sind Hypercubes, uni- und bidirektionale Ringe und vollstandige Gra-
phen. Im linken Teil von Bild 5.23 ist ein unidirektionaler Ring dargestellt, im rechten Teil eine 
vollstandige Verkniipfung. tJblicherweise werden die Migrationsintervalle fest gewahlt oder von 
der Konvergenz in den Unterpopulation abhangig gemacht. Im zweiteren Fall kann in jeder Un­
terpopulation zunachst isoliert optimiert werden. Im Falle einer Konvergenz der Unterpopulation 
wird durch Migration frisches genetisches Material eingebracht. Interessant kann insbesondere 
auch eine unterschiedliche Parametrisiemng der Teilpopulationen sein. 

Im Gegensatz zur groben Aufteilung in relativ isolierte Unterpopulationen teilt diQfemkdmige 
Parallel is ierung (Qngl.fine grained model) die Population in viele, kleine, sich iiberlappende Un­
terpopulationen. Rekombination und Selektion findet in den einzelnen Unterpopulation getrennt 
statt. Durch die Uberlappung gibt es Individuen, die zu mehr als einer Unterpopulation geho-
ren. Der Informationsaustausch zwischen den Unterpopulationen findet uber die gemeinsamen 
Individuen statt. In diesem massiv parallelen Modell, auch Diffiisionsmodell genannt, verwaltet 
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Bild 5.24 Zwei feinkomige Parallelisierungen mit groBerer (links) und kleinerer Nachbarschaft (rechts). 

jeder Prozessor genau ein Individuum. Bild 5.24 zeigt zwei mogliche zweidimensionale Nachbar-
schaftsstrukturen. Dabei stellen die grauen Individuen die Nachbam des Individuums in ihrem 
Zentrum dar. Parallel fiir alle Individuen w êrden dann die folgenden Schritte ausgefiihrt: Mittels 
eines Selektionsoperators wird jeweils ein Individuum aus der Nachbarschaft in die aktuelle Po­
sition ubemommen, dieses vv̂ ird mit einem (beispielsvs^eise uniform ausgevv^ahlten) Partner aus 
der Nachbarschaft rekombiniert, das resultierende Individuum vv̂ ird zusatzlich noch mutiert und 
an der jev^eiligen Position in der Populationsstruktur gespeichert. 

In der jiingeren Zeit haben sich auch hierarchische Parallelisierungsformen herausgebildet, in 
denen beispielsv^eise verschiedene groBere Populationen grobkomig miteinander verkniipft sind, 
jede dieser Populationen allerdings selbst feinkomig organisiert ist. 

5.4.4 Bewertung durch Testfalle 

Bei vielen Problem in der Praxis ist es nahezu unmoglich, eine klar abgegrenzte Bewertungsfunk-
tion zu formulieren. Stattdessen stehen beispielsvs^eise verschiedene Testszenarios zur Verfiigung, 
in denen sich eine Losung bevv̂ ahren muss. 

Beispiel 5.14: 
Fiir eine Stadt sollen die Intervalle der Ampelschaltungen so eingestellt vv̂ erden, dass 
in alien auftretenden Verkehrssituationen die Wartezeiten an den Ampeln moglichst 
gering sind. Hierzu stehen Daten aus verschiedenen Verkehrssituationen an verschie-
denen Tagen zur Verfiigung, auf deren Basis mehrere Zyklen der Ampeln simuliert 
werden. 

Der intuitive Ansatz ist, alle Testfalle heranzuziehen und mit dem Mittel- oder Maximalvs^ert 
entsprechend das jev^eilige Individuum zu bev^erten. 

/ | \ Falls ich (als Gewohnheitstier) fur meine Fahrten nach Stuttgart eine Standardroute suche, die fur alle un-

II terschiedlichen Situationen geeignet ist, waren verschiedene Testfalle zu formulieren (Feierabendverkehr, 
nachts, Wochenende etc.), fiir die eine Route im Mittel nahezu optimal sein soil. 

Ahnlich zu den Problemen im vorigen Abschnitt ist die Bevv êrtung aller Individuen bzgl. aller 
Testfalle meist zu kostspielig. Daher muss man sich auf wenige Testfalle beschranken. Dabei 
konzentrieren sich die Individuen aber ausschlieBlich auf diese Testfalle - die angestrebte Gene-
ralisierung auf die ausgelassenen Testfalle geschieht nur in Ausnahmefallen. 

Als Losung fur dieses Dilemma bieten sich koevolutionare Verfahren an, bei denen die sich 
gegenseitig beeinflussende Entwicklung mehrerer Spezies in der Biologic (vgl. Abschnitt 1.3.2) 
nachempfunden wird. 
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Algorithmus 5.4 
KOEVOLUTIONARER-ALGORITHMUS( Zielfiinktion F ) 

1 t^O 
^- erzeuge Population mit Losungskandidaten 

3 p(^) (t) ^ erzeuge Population mit Testfallen 
4 bewerte alle Individuen in P^^^ (t) v Mai (wie in Zeilen 7-12 mit 4̂̂ ^̂  fest) 
5 bewerte alle Individuen in P^^'^ {t) V Mai (wie in Zeilen 7-12 mit *̂̂ ^̂  fest) 
6 while Terminiemngsbedingung nicht erfallt 
7 do '~ for z ^ 1,..., V dStichprobengroBeD 
8 do ^^(^^ ^ selektiere ein Individuum aus 
9 A^-^^ ^ selektiere einen Testfall aus P^-^^ (t) 

10 x^F(^(^),^(^)) 
11 beziehe x in Giite von ^̂ ^̂  mit ein 
12 L beziehe 1 — x in Gtite von *̂̂ )̂ mit ein 
13 B^^^ ^- erzeuge neues Individuum aus P^^^ (t) 
14 bewerte B^^^ v Mai (wie in Zeilen 7-12 mit 5̂ )̂ statt ̂ (^) fest) 
15 t^t + l 
16 P^^"^ (t) ^ ersetze schlechtestes Individuum in P̂ ^̂  (̂  — 1) durch 5̂ ^̂  
17 {B^^^ ^- erzeuge Individuum aus P^'^^ (̂  — 1)) 
18 (bewerte 5^̂ ) v Mai (wie in Zeilen 7-12 mit^^^) statt^(^) fest)) 
19 ^{P^^\t) ^ ersetze schlechtestes Individuum in p(^) (̂  - 1) durch 5^^)) 
20 return bestes Individuum aus 

Wahrend in einer Population P̂ ^̂  Individuen zur Losung des Problems evolviert werden, re-
prasentiert die Population p(^) die Testfalle zur Bewertung der Individuen. Dabei nehmen wir 
zunachst an, dass die Gesamtmenge der moglichen Testfalle gegeben ist und die Evolution sich 
auf die Population P̂ ^̂  konzentriert. Bei jedem Test wird ein Individuum bzgl. eines Testfalls 
bewertet. Sei x G [0, 1] das Ergebnis dieses Tests, wobei das Individuum den Test umso besser 
bevŝ altigt hat, je groBer x ist. Das Individuum vv̂ ird mit x und der Testfall mit 1 — x bevv êrtet, 
sodass in beiden Population bei der Auswahl beispielsweise die fitnessproportionale Selektion 
(eines moglichst groBen Wertes) angewandt v^erden kann. Da die Bewertung durch einen einzel-
nen Tests nur bedingt aussagekraftig ist, speichert jedes Individuum und jeder Testfall die letzten 
V Bevv^ertungen - die Gesamtgtite ergibt sich als Mittelvs^ert. Der Ablauf ist in Algorithmus 5.4 
(KOEVOLUTIONARER-ALGORITHMUS) dargestellt. 

Durch die Selektion in der eigentlichen Population P̂ ^̂  haben die besseren Individuen einer-
seits mehr Nachkommen in der Reproduktion und v^erden andererseits aber auch ofter gegen die 
gerade aktuellen Testfalle geprtift. Die Selektion in der Testpopulation P^^^ dient dem Zvv̂ eck, 
dass sich die Evolution auf die gerade als schvŝ ierig angesehenen Testfalle konzentrieren kann. 

Dieses gesamte Konzept kann noch durch eine weitere Evolution auf den Testfallen (wie in Al­
gorithmus 5.4 durch die eingeklammerten Kommandos angedeutet) erweitert werden. Dadurch 
konnen auch die Testfalle aktiv die Schwachstellen in den aktuell besten Individuen suchen. Die­
ses Vorgehen ist natiirlich nicht fur alle moglichen Probleme geeignet. 

Im Idealfall stellt sich bei den koevolutionaren Algorithmen ein Wettkampfverhalten ein - d. h. 
in einem Wettriisten werden immer neue Eigenschaften in den Individuen und neue schwierigere 
Testfalle entwickelt. Oft bewegen sich die evolutionaren Prozesse jedoch in Zyklen, ohne dass 
eine Weiterentwicklung im Gesamten eintritt. 
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5.4.5 Bewertung von Spielstrategien 

GroBe Ahnlichkeiten zur Bewertung mit Testfallen hat die Evolution von (Spiel-)Strategien. 
Auch dort gibt es keine eindeutige Bewertung einer Spielstrategie. Vielmehr miissen sehr vie-
le unterschiedliche Spielsituationen beachtet werden. 

Beispiel 5.15: 
Ftir ein Brettspiel wie Schach, Dame oder Go soil ein intelligenter Computergegner 
erzeugt werden. 

/ j \ Was die Fahrt von Leipzig nach Stuttgart mit Spielstrategien zu tun haben kann, mochte ich hier Ihrer 

II eigenen Fantasie tiberlassen... 

Im Gegensatz zum vorherigen Abschnitt konnen allerdings keine statischen Testfalle vorgehalten 
werden, da die Spieler sich schlieBlich immer intelligent verhalten und auf die Aktionen des 
Gegners reagieren sollen. Daher beantworten wir im Weiteren zwei Fragen: 

1. Wie konnen tiberhaupt Spielstrategien als Individuen dargestellt werden? 

2. Wie lassen sich die Spielstrategien bewerten? 

Zur Beantwortung der ersten Frage eignen sich alle Darstellungen, die eine Aktion aus gewis-
sen Kennzahlen hinsichtlich der aktuellen Situation des Spiels, z.B. Positionen der Spielsteine 
auf dem Brett, ableiten konnen. Das konnen einerseits regelbasierte Darstellungen wie in den 
klassifizierenden Systemen (Abschnitt 4.6.1) aber auch Funktionen als Syntaxbaume (vgl. gene-
tisches Programmieren in Abschnitt 4.4) oder neuronale Netze (vgl. Seite 145) sein. Meist wird 
nicht direkt eine Aktion hergeleitet, sondern die Funktion wird nur zur Bewertung einer Stellung 
im Rahmen einer klassischen Minimax-Suche aus der kiinstlichen Intelligenz benutzt. 

Ftir die Bewertung einer Spielstrategie ist meist die erste Idee, die eigenen evolvierten Spieler 
gegen eine gute bekannte Spielstrategie als Gegner antreten zu lassen und die Bewertung vom 
Ergebnis dieses Spiels abhangig zu machen. Dieser Losungsansatz birgt jedoch einen entschei-
denden Nachteil: Der evolutionare Algorithmus wird sich bemiihen, die Schwachstellen der spe-
ziellen Teststrategie auszunutzen. Solche Strategien lassen sich dann durch leicht abweichendes 
Spielverhalten schnell aus dem Konzept bringen und stellen keinen wettbewerbsfahigen Gegner 
dar. 

Daher nutzt man denselben Trick wie bei den Testfallen: Die simulierte Evolution selbst soil 
die Schwachstellen der evolvierten Spielstrategien entdecken und so zu immer besserem und 
komplexerem Spielverhalten fiihren. Dies wird dadurch erreicht, dass die Individuen der Popula­
tion direkt im Spiel gegeneinander antreten. Dabei wird auch oft von einer Koevolution innerhalb 
einer Population (engl. single population coevolution) gesprochen. 

Zur Bewertung bietet sich die Q-STUFIGE-TURNIER-SELEKTION (Algorithmus 3.7) an, da sie 
jeweils zwei Individuen direkt vergleicht und gleichzeitig mehrere solche Wettkampfe in die 
Selektion einflieBen. Dabei gibt es Varianten, bei denen neue Individuen gegen alle anderen 
aktuellen Individuen antreten - in anderen nur gegen eine zufallige Auswahl oder die Besten. 
Teilweise werden auch echte K.O.-Tumiere durchgefuhrt. 

Insgesamt lasst sich die Evolution von Spielstrategien in ihrer Entwicklung oder ihrem Ender-
gebnis nur schlecht bewerten: Es gibt kein objektives MaB, wie gut eine Strategic ist. Daher ist 
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auch aus Entwicklungskurven kein Trend abzulesen. Wegen der groBen Varianz bei der Bewer-
tung ist ein zusatzlicher Speicher sinnvoll, in dem die besten gefundenen Individuen gesichert 
werden und der auch zur Bewertung neuer Individuen mit herangezogen wird. Eine Aussage 
zum Evolutionsprozess kann man dann daraus ablesen, wie lange einzelne Individuen in diesem 
Speicher verbleiben bzw. wie schnell sie von »besseren« Individuen verdrangt werden. 

5.5 Ubungsaufgaben 

Aufgabe 5.1: Bewertung bei Randbedingungen 

Betrachten Sie nochmals das Pfadplanungsproblem aus Abbildung 5.6. Diskutieren Sie, welche 
Eigenschaften eine gute Bewertungsfunktion haben sollte. Geben Sie eine solche Bewertungs-
funktion an und finden positive wie negative Beispielinstanzen fur das Problem. 

Aufgabe 5.2: Pareto-Dominanz bei Randbedingungen 

Konnen die Uberlegungen zur Pareto-Dominanz und den aggregierenden Verfahren bei der 
Mehrzieloptimiemng auf Straffunktionen bei Randbedingungen libertragen werden? Argumen-
tieren Sie mit einem Beispiel. 

Aufgabe 5.3: Mehrzieloptimierung 

Bei der Diskussion der Mehrzieloptimiemng bleibt die Nachbarschaft der Punkte im Suchraum 
unberucksichtigt. Diskutieren Sie, welche Effekte bei den unterschiedlichen Verfahren auftreten 
konnen, wenn benachbarte Giitekombinationen im Suchraum nicht benachbart sind. 

Aufgabe 5.4: Mehrzieloptimierung 

Im Rahmen der aggregierenden Verfahren wurde kurz angerissen, dass auch eine Multiplikation 
der verschiedenen Gtitewerte benutzt werden kann. Skizzieren Sie die Gtitewertkombinationen, 
die dadurch auf denselben Wert abgebildet werden. 

Aufgabe 5.5: Diploide Reprasentationen 

Der vorgestellte diploide evolutionare Algorithmus hat lediglich fur den Wert »1« ein rezessives 
Allel. Entwerfen Sie einen Dominanzmechanismus mit einem zusatzlichen rezessiven Allel fiir 
die »0«. 

Aufgabe 5.6: Zeitabhangige Funktion 

Diskutieren Sie, wann der thermodynamische genetische Algorithmus mit der Shannon-Entro-
pie (vgl. Seite 62) sinnvoll ist. Eignen sich hier auch andere DiversitatsmaBe? Kann ein solches 
Verfahren auch zum Erhalt der Diversitat in der Mehrzieloptimiemng genutzt werden? 

Aufgabe 5.7: w-Damen-Problem 

Programmieren Sie eine Bewertungsfunktion ftir das «-Damen-Problem, bei dem n Damen auf 
einem n x «-Schachbrett so platziert werden miissen, dass sich keine Damen schlagen konnen. 
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Wahlen Sie als Reprasentation ^ = {1,...,«}", wobei in einem Individuum A die z-te Kompo-
nente eine Dame an der Position (Z,̂ /) erzeugt. Welche Methoden zum Umgang mit Randbe-
dingungen sind far dieses Problem geeignet? Programmieren Sie die Verfahren und vergleichen 
Sie diese. 

Aufgabe 5.8: Verrauschte Funktionen 

Wenden Sie einen Standardalgorithmus auf die Rastrigin-Funktion und die Sphare an. Verwan-
deln Sie beide Probleme in verrauschte Probleme, indem Sie einen normalverteilten Rauschterm 
hinzuaddieren und wenden Sie den Standardalgorithmus emeut auf die verrauschten Probleme 
an. Vergleichen Sie die Resultate. 

Aufgabe 5.9: Tic Tac Toe 

Betrachten Sie das einfach Spiel »Tic Tac Toe« und iiberlegen sich, wie Sie eine Spielstrategie 
darstellen konnen. Entwerfen Sie einen evolutionaren Algorithmus, der durch Tumiere ein gute 
Spielstrategie evolviert. 

5.6 Historische Anmerkungen 

Randbedingungen werden seit jeher bei Optimierungsproblemen betrachtet (vgl. z. B. lineare Pro-
grammierung). Ftir die Behandlung von Randbedingungen durch Konstruktionsalgorithmen und 
Evolvieren von passenden Parametereinstellungen findet sich ein Beispiel in der Arbeit von Ge-
ro & Kazakov (1998). Die hier prasentierte Evolution von Grundrissen beruht auf einem bisher 
unveroffentlichten Projekt des Buchautors. Die Methode der giiltigen Individuen ist ein relativ 
weitverbreiteter Ansatz und findet sich beispielsweise auch bei den im vorigen Kapitel diskutier-
ten Operatoren auf Permutationen oder auf Syntax-Baumen in einer linearen Darstellung wieder. 
Die Beschrankung der Eltemselektion auf giiltige Individuen wurde erstmals von Hinterding & 
Michalev^icz (1998) verwendet. Der Krippentod als Mittel um Randbedingungen einzuhalten, 
wurde von Michalewicz (1995) vorgeschlagen, ist aber z. B. bei der Evolutionsstrategie auf be-
schrankten Suchraumen schon langer iiblich. Reparaturalgorithmen und legale Dekodierung ge-
horen zu den populareren Methoden fiir Randbedingungen. Sie lassen sich daher nicht so leicht 
historisch einordnen - eine tJbersicht findet man in der Arbeit von Michalewicz (1997). Das 
legale Ersetzen ist eine gangige Technik im Rahmen von iiberlappenden Populationen. Straffiink-
tionen wurden bereits ausfuhrlich von Goldberg (1989) sowie Richardson et al. (1989) diskutiert 
und zahlen auch zu den popularen Techniken. Eine vordefinierte nicht konstante Straffunktionen 
fur ungiiltige Individuen wurde von Kazarlis & Petridis (1998) betrachtet. Bean & Hadj-Alouane 
(1992) haben die hier prasentierte adaptive Anpassung der Gewichtung eines Strafterms vorge-
stellt. Eine tJbersicht zu Methoden fiir Randbedingungen ist in dem Artikel von Michalewicz 
& Schoenauer (1996) enthalten. Die Einteilung der Methoden in diesem Buch wurde von der 
Veroffentlichung von Yu & Bentley (1998) beeinflusst. 

Bei der Mehrzieloptimierung geht die Definition der Pareto-Dominanz und der Pareto-Front 
auf die Arbeit von Pareto (1896) zurlick. Die Technik, die Mehrzieloptimierung auf eine Zielfiink-
tion zu beschranken und die anderen Zielfiinktionen in Randbedingungen umzuwandeln, wurde 
beispielsweise in der Arbeit von Simpson et al. (1994) benutzt. Fiir die lineare Aggregation, d. h. 
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die gewichtete Aufsummierung der verschiedenen Zielfunktionen, kann die Arbeit von Syswerda 
& Palmucci (1991) als eine der ersten Arbeiten angesehen werden. Wienke et al. (1993) wahlen 
statt einer Aufsummierung die Distanz zu einem Zielvektor im Raum der Zielfunktionen. Die 
Minimax-Methode wurde beispielsweise von Srinivas & Deb (1995) verwendet. Bei den Verfah-
ren, die eine komplette Pareto-Front berechnen sollen, hat Chieniawski (1993) in einer aggregie-
renden Funktion die Gewichtung variiert, um den Verlauf der Front zu berechnen. Der VEGA-
Ansatz, d. h. die Aufteilung der Population unter den Zielfunktionen zur Bewertung und Selek-
tion durch nur eine Funktion, wurde von Schaffer (1985) eingefuhrt. Der Ansatz, die Definition 
der Pareto-Dominanz direkt fiir die Bewertung der Individuen zu benutzen, geht auf Goldberg 
(1989) zuriick. Der hier prasentierte Ansatz stammt jedoch von Fonseca & Fleming (1993). Die 
Technik des Teilens der Giite innerhalb einer Nische, um eine moglichst breitgestreute Vertei-
lung der Individuen zu erreichen, stammt von Goldberg & Richardson (1987). Die prasentierte 
Tumierselektion fiir die Mehrzieloptimierung stammt von Horn & Nafpliotis (1993). Ubersich-
ten zur Thematik der Mehrzieloptimierung konnen den Publikationen von Fonseca & Fleming 
(1997), Horn (1997) und Coello (1999) oder dem Buch von Deb (2001) entnommen werden. 
Bei den modemen Verfahren wurde SPEA2 von Zitzler et al. (2001) und PAES von Knowles & 
Come (1999) eingefiihrt. Beim letzteren kann die Beschreibung des zur Implementation benotig-
ten Gridfiles der Standardliteratur zu Algorithmen und Datenstrukturen (Ottmann & Widmayer, 
2002) entnommen werden. 

Die Betrachtung von zeitabhangigen Problemen und evolutionaren Algorithmen reicht bis zur 
Arbeit von Goldberg & Smith (1987) zuriick. Seit dieser Zeit wurden sehr viele unterschiedliche 
Arten von Dynamik betrachtet. Eine Klassifizierung kann beispielsweise dem Artikel von De 
Jong (2000) oder der Veroffentlichung von Weicker (2000) entnommen werden. Die Hypermu-
tation wurde von Cobb (1990) eingefiihrt und in der Folgezeit mit unterschiedlichen Varianten 
betrachtet (Cobb & Grefenstette, 1993; Grefenstette, 1999). Die Methode der zufalligen Einwan-
derer stammt ebenfalls von Cobb & Grefenstette (1993). Die oben bereits angefiihrte Technik 
des Giiteteilens von Goldberg & Richardson (1987) wird auch fiir zeitabhangige Probleme be-
nutzt - ebenso wie andere Techniken zur Nischenbildung (z. B. bei Cedeno & Vemuri, 1997), 
auf die hier jedoch nicht naher eingegangen wird. Der thermodynamische GA wurde von Mori 
et al. (1996) entwickelt. Verfahren mit einer beschrankten Paarung wurden beispielsweise mit 
Markierungen von Liles & De Jong (1999) bzw. abstandsbasiert von Ursem (1999) betrachtet. 
Diploide evolutionare Algorithmen wurden als erstes von Goldberg & Smith (1987) betrachtet 
und in der Folgezeit auf unterschiedliche Art und Weise modifiziert (vgl. die Arbeiten von Ng & 
Wong, 1995; Lewis et al., 1998). Zur Verwendung von lokalen Mutationsoperatoren gibt es eine 
ganze Reihe an Arbeiten (Angeline, 1997; Back, 1998; Arnold & Beyer, 2002, 2006; Weicker, 
2005). Die variable lokale Suche fiir genetische Algorithmen geht auf die Arbeit von Vavak et al. 
(1996) zuriick. Eine tJbersicht zu den unterschiedlichen Techniken, mit dynamischen Problemen 
umzugehen, kann auch dem Bericht von Branke (1999) entnommen werden. Die Zuordnung der 
Techniken zur den Problemcharakteristika stammt vom Autoren (Weicker, 2003). 

Die erste Arbeit, die sich mit verrauschten Zielfunktionen beschaftigt stammt von Fitzpa-
trick & Grefenstette (1988). Dort findet sich auch bereits der Losungsansatz der Mehrfachbe-
wertungen im Kontext von genetischen Algorithmen wieder. Die Veranderung der Standardab-
weichung durch Mehrfachbewertungen ist ein Resultat der statistischen Stichprobentheorie. In 
der Arbeit von Hammel & Back (1994) wurden Mehrfachbewertungen fiir Evolutionsstrategi-
en untersucht, was zu wesentlich anderen Resultaten als bei genetischen Algorithmen gefiihrt 
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hat. Einen Vergleich zwischen lokaler Suche und populationsbasierten Verfahren kann dem Ar-
tikel von Nissen & Propach (1998) entnommen werden. Weitere Arbeiten, die sich mit der Po-
pulationsgroBe bei genetischen Algorithmen (und der Bedeutung von Schemata) beschaftigen, 
sind von Goldberg et al. (1992) und von Miller (1997). Der Ansatz zur Reduktion der Auswer-
tungen durch statistische Tests stammt von Stagge (1998). Ganz ahnliche Techniken werden 
auch in Aizawa & Wah (1994) beschrieben. Der Vergleich der unterschiedlichen Selbstanpas-
sungsregeln geht auf Angeline (1996) zuriick. Die prasentierte Kappa-Ka-Methode wurde erst-
mals in dem Buch von Rechenberg (1994) publiziert und theoretisch von Beyer (1998) unter-
sucht. 

Eine kurze tJbersicht zu stabilen Losungen kann dem Artikel von Branke (1998) entnommen 
werden. Die Nutzung der Mehrzieloptimierung zur Erzeugung stabiler Losungen stammt von Jin 
& Sendhoff (2003). Einen tJberblick zu Rauschen und Stabilitat findet der Leser auch in dem 
Artikel von Jin & Branke (2005). 

Zur Optimierung zeitaufwandiger Bewertungsfunktionen wurden erste Ideen von Ratle (1998) 
prasentiert. Eine der friihen Anwendungen mit neuronalen Netzen wurde von Weicker et al. 
(2000) durchgefiihrt. Eine tJbersicht iiber das Gebiet kann dem Artikel von Jin (2002) entnom­
men werden. Regis & Shoemaker (2004) haben einen Ansatz mit den A:-nachsten Nachbam zur 
Aktualisierung der Modelle vogestellt. Die ersten Ansatze fiir die Parallelisierung evolutionarer 
Algorithmen sind in der Arbeit von Grefenstette (1981) enthalten, in der sich schon wesentli-
che Charakteristika der spateren Implementierungen wiederfinden. Friihe Beispiele fiir die glo-
bale Parallelisierungsstrategie stellen die Arbeiten von Fogarty & Huang (1991) und Punch et al. 
(1993) dar. Die grobkomige Parallelisierung wurde u.a. zunachst von Tanese (1987) implemen-
tiert. Andere wichtige Arbeiten zu dieser Technik stammen von Starkweather et al. (1991) und 
Miihlenbein (1989). Die ersten Arbeiten zu feinkomigen parallelen evolutionaren Algorithmen 
gehen auf Robertson (1987) und Gorges-Schleuter (1989) zuriick. Mehr zu diesem Thema kann 
beispielsweise den tJbersichtsartikeln von Cantii-Paz (1999), Tomassini (1999) und Alba & Tro-
ya (1999) entnommen werden. 

Die Diskussion der Behandlung von Testfallen findet sich so in der Arbeit von Paredis (1994, 
1997) wieder. Generell wurden koevolutionare Algorithmen mit mehreren Populationen ohne 
direkten genetischen Austausch erstmals von Hillis (1992) betrachtet. Koevolutionare Ideen wur­
den dabei auch in anderen Zusammenhangen immer wieder benutzt. Besonders interessant sind 
dabei kooperative/symbiotische koevolutionare Algorithmen (Potter & De Jong, 1994,2000; Wat­
son & Pollack, 2000). Die entstehende Suchdynamik wurde beispielsweise von Wiegand et al. 
(2003) untersucht. 

Die koevolutionare Erzeugung von Spielstrategien wurde erstmals von Axelrod (1987) an-
hand des iterierten Gefangenendilemmas thematisiert. Mit einem K.O.-Tumier haben Angeline 
& Pollack (1993) zu Tic Tac Toe experimentiert. Mit Varianten der Tumierselektion wurde fiir 
eine Vielzahl von Spielen gearbeitet: Dame (Chellapilla & Fogel, 2000), Backgammon (Pollack 
& Blair, 1998) und Go (Lubberts & Miikkulainen, 2001). 
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Nach der Kldrung, wie evolutiondre Algorithmen untereinander verglichen werden konnen, wer-
den einige Vorgehensweisen hinsichtlich der Entwurfsmethodik bei evolutiondren Algorithmen 
prdsentiert. Mehrere Fallstudien runden dieses Kapitel ab. 

Lernziele in diesem Kapitel 

c|> Empirische Methoden konnen zur Beurteilung von evolutionaren Algorithmen eingesetzt 
werden. 

c|> Die Moglichkeiten, Problemwissen zu integrieren, sind bekannt und ihr Einsatz kann ab-
gewogen werden. 

c|> Die grundsatzlichen Arbeitsschritte bei der eigenen Anwendung und Entwicklung von 
evolutionaren Algorithmen sind verinnerlicht. 

c|> Durch die Fallstudien konnen eigene Probleme bei der Gestaltung von evolutionaren Al­
gorithmen leichter eingeordnet werden, was zu einer verbesserten Handlungskompetenz 
hinsichtlich der Verbesserung der Algorithmen fiihren soil. 

Gliederung 

6.1 Vergleich evolutionarer Algorithmen 228 

6.2 Entwurf evolutionarer Algorithmen 231 
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6.4 Fallstudie: Platzierung von Mobilfunkantennen 243 
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Bei jeder Anwendung evolutionarer Algorithmen auf ein neues Optimierungsproblem stellt man 
fest, dass die bisherigen Vorgehensweisen und Algorithmen nicht uneingeschrankt iibemommen 
werden konnen. Daher prasentiert dieses Kapitel ein gewisses Minimum an allgemeingtiltigen 
Regeln zum Vergleich und der Anpassung evolutionarer Algorithmen ebenso wie den Versuch 
einer Entwurfsmethodik. Verschiedene Fallbeispiele runden das Bild der Anwendung ab. 
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durchschnittliche Giite 

" ^^^ Q QQr Mutationsrate 
PopulationsgroBe 

Bild 6.1 Abhangigkeiten zwischen der PopulationsgroBe und der Mutationsrate: Die Abbildung zeigt die 
durchschnittlich erzielte Giite bzgl. des Einsenzahlproblems. 

6.1 Vergleich evolutionarer Algorithmen 

Aussagen zum Vergleich von Algorithmen sind essentiell fur die Anwendung evolutionarer Algo­
rithmen. Dies wird hier anhand der Frage der Parametereinstellung und Hypothesentests disku-
tiert. 

Die Vielzahl der unterschiedlichen evolutionaren Algorithmen und der speziellen Techniken 
macht das Grunddilemma der Anwendung evolutionarer Algorithmen deutlich, welches auch 
aus dem theoretischen »No Free Lunch«-Theorem (siehe Seite 117) folgt: Welcher Algorithmus 
ist am besten fur ein Problem geeignet? In diesem Abschnitt reduzieren wir die Frage zunachst 
darauf, wie ein Algorithmus optimal eingestellt werden kann. Und anschlieBend betrachten wir 
Methoden, mit denen der Vergleich von Algorithmen tiberhaupt auf eine objektive Basis gestellt 
werden soil. 

Wie wir bereits erwahnt haben, zeichnen sich evolutionare Algorithmen durch eine Vielzahl 
an einstellbaren Parametem aus. Hierzu zahlen die Wahl einer geeigneten Darstellung fiir das 
Problem, die Wahl der verschiedenen evolutionaren Operatoren mitsamt ihren Parametem, der 
Selektionsmechanismus, die richtige PopulationsgroBe, aber auch die Bewertungsfunktion selbst. 
Die Parameter erlauben einerseits eine hohe Anpassbarkeit des Algorithmus an das vorliegende 
Problem, konnen den Algorithmus allerdings auch sehr empfindlich gegeniiber veranderten Ei-
genschaften des zu optimierenden Problems gestalten. 

Diese Parameter konnen meist nicht als einzelne, voneinander unabhangige Regler aufgefasst 
werden, sondem bilden ein verwobenes Netzwerk. Die Abhangigkeiten zwischen Parametem 
sind in Bild 6.1 beispielhaft fiir das Einsenzahlproblem auf einer binaren Zeichenkette bestehend 
aus 32 Bits dargestellt. Das gesuchte Optimum ist dabei die Zeichenkette mit 32 Einsen. Die 
Abbildung zeigt die Anzahl der Einsen in dem besten gefundenen Individuum gemittelt iiber 
200 unabhangige Experimente fiir jede Parameterkombination. Ein GENETISCHER-ALGORITHMUS 
(Algorithmus 3.14) mit K-PUNKT-CROSSOVER (Algorithmus 4.2 mit k = 2), BINARE-MUTATION 

(Algorithmus 3.3) und TURNIER-SELEKTION (Algorithmus 3.10) wurde dabei benutzt. Die Cross-
overwahrscheinlichkeit wurde fest als 0,9 gewahlt. Die Mutationsrate wurde variabel zwischen 
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Bild 6.2 Zwei Beispiele fur den Vergleich zweier Algorithmen anhand der Giite tiber die Zeit - gemittelt 
iiber jeweils 50 unabhangige Experimente. (Mit freundlicher Genehmigung von ©Elsevier.) 

0,005 und 0,065 (in 0,005-Scliritten) gehalten. Jedem Experiment stehen 512 Auswertungen der 
Zielfunktion zu. Da PopulationsgroBen die Werte 2,4, 8,16, 32 und 64 annehmen konnen, nimmt 
die Anzahl der Generationen jeweils die Werte 256, 128, 64, 32, 16 und 8 an. Wenn man nun 
fiir alle Kombinationen der Mutationsrate und der PopulationsgroBe Experimente durchfuhrt und 
das durchschnittliche Ergebnis auftragt, erhalt man Bild 6.1. 

Diese Abbildung verdeutlicht die Schwierigkeit der Parametereinstellung: Geht man nicht so 
systematisch wie in diesem Experiment vor, sondern stellt die verschiedenen Parameter nachein-
ander ein, hangt das Ergebnis von der Ausgangseinstellung ab und ist in der Regel suboptimal. 

Das bedeutet, die Veranderung jedes Parameters hat eine vv^esentliche Ausvv îrkung auf die 
Wirkungsvv^eise der anderen Parameter. Gute Parametereinstellung sind femer fiir jedes Problem 
unterschiedlich und konnen auch nicht auf andere Algorithmen mit anderen evolutionaren Ope-
ratoren iibertragen vŝ erden. 

Theoretische Untersuchungen sind in erster Linie fiir einzelne Parameter vorhanden, vŝ ie z. B. 
die optimale Mutationsrate fiir einen speziellen Algorithmus und ein spezielles Problem. Diese 
Resultate sind nicht allgemeingiiltig. Dariiberhinaus ist alles vv̂ eitere Wissen von heuristischer 
Natur und das Ergebnis von empirischen Untersuchungen. 

Da keine absoluten grundlegenden Aussagen moglich sind, bleibt nur ein direkter Vergleich 
zwQiQV Algorithmen (oder auch eines Algorithmus mit verschiedener Parametrisierung) zur Ein-
stellung oder Ausv^ahl eines evolutionaren Algorithmus. Allerdings bekommt man so klare Trends 
wiQ in Bild 6.1 nur, vv̂ enn man eine Vielzahl an Experimenten heranzieht. Ware dort jede Ein-
stellung nur fiir eine Optimierung genutzt vŝ orden, hatte man ein sehr uneinheitliches und eher 
zufallig aussehendes Bild bekommen. Als Kriterien fiir den Vergleich von Algorithmen v^erden 
iiblicherweise die beste gefundene Giite, die durchschnittliche Giite iiber alle Generationen, die 
Anzahl der Generationen bis das bekannte Optimum gefunden vsoirde oder eines der vielen ande­
ren Merkmale herangezogen. 

Doch vŝ ann kann man nun sicher sein, dass ein Algorithmus tatsachlich besser als ein anderer 
ist? Betrachten wir beispielhaft die beiden Vergleichskurven in Bild 6.2. 

± Lesen Sie an dieser Stelle bitte nicht weiter. Sondern versuchen Sie selbst zu beurteilen, welchem der beiden 
Vergleiche Sie mehr trauen wtirden. Wo ist der Unterschied zwischen den Algorithmen deutlicher? 
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Algl 
Alg2 

3,7 
4,2 

1,4 
3,9 

5,2 
4,7 

3,8 
5,1 

4,4 
4,1 

3,5 
4,8 

2,9 
3,8 

4,2 
4,9 

6,5 
4,0 

3,0 
5,3 

Tabelle 6.1 Diese Daten von jeweils 10 Experimenten mit zwei Algorithmen werden in Beispiel 6.1 be-
trachtet. 

Der GroBteil der Leser wird vermutlich auf den ersten Blick sagen, dass kein wesentlicher Unter-
schied zwischen den beiden Vergleichskurven zu sehen ist. Doch die genauen Beobachter werden 
schnell feststellen, dass die Kurven im linken Diagramm ab Generation 250 quasi zusammenfal-
len, wahrend im rechten Diagramm immer wieder groBere Liicken zu beobachten sind. Dies kann 
Grund zu der Annahme sein, dass sich die beiden Algorithmen rechts starker unterscheiden. 

Um jedoch tatsachlich festzustellen, ob zwei Algorithmen sich unterschiedlich verhalten, reicht 
die reine Betrachtung von Durchschnittswerten mehrerer Experimente nicht aus. Stattdessen soll-
te immer ein statistischer Hypothesentest durchgefiihrt werden. Dazu wird eine Hypothese formu-
liert, die wir widerlegen mochten - namlich dass es keinen Unterschied zwischen dem Verhalten 
der beiden Algorithmen gibt, d. h. die beobachteten Differenzen waren rein zufallig und konnten 
bei neuen Experimenten wieder ganz anders ausfallen. 

Der t-Test ist hierfur eine mogliche mathematische Technik. Er benotigt die Anzahl v der fiir 
jeden der beiden Algorithmen durchgefiihrten Experimente ^/g7,i, • •., -^/g7,v und ^/g2,i, . . . , 
XAig2,v'> sowie den Erwartungswert und die Varianz der Experimente: 

Erw /̂g7 = - • X ^A^i^i Var̂ /g7 = ——- • ^ (̂ /̂g7,z - Erw^/g/)^ 
^ z = l , . . , v ^ ^ z= l , . . . , v 

Erw /̂g2 = - • X ^Aig^^i ^^Ulg2 = ——r • X (^Alg2,i - Erw^/g2)^ 

^ z= l , . . . , v ^ ^ z= l , . . . , v 

Dann ergibt sich der sog. t-Wert wie folgt: 

Erw /̂g7 - Erw /̂g2 

/ 
Var̂ /g;+Var̂ /g2 

Je groBer der Betrag des t-Wertes ist, desto sicherer kann man sein, dass die Hypothese abzuleh-
nen ist, d.h. dass die beiden Algorithmen tatsachlich unterschiedlich sind. tJber kompliziertere 
Formeln kann man sich femer ausrechnen oder in Tabellen nachschlagen, wie groB die Fehler-
wahrscheinlichkeit ist. Dabei bezeichnet man eine Aussage als signifikant, wenn sie hochstens 
eine Fehlerwahrscheinlichkeit von 0,05 aufweist, und als sehr signifikant bei einer Fehlerwahr-
scheinlichkeit kleiner 0,01. Bei jeweils 50 Experimenten fiir jeden Algorithmus hat man bei-
spielsweise eine signifikante Aussage mit einem t-Wert |/| > 1,984. Bei jeweils 10 Experimenten 
miisste |/| > 2,101 sein. 

Beispiel 6.1: 
Betrachten wir ein kleines fiktives Beispiel in Tabelle 6.1. Damit ergibt sich fur den 
ersten Algorithmus ErwAigi = 3,86 und Var̂ /gy = 1,893 8. Der zweite Algorithmus hat 
die Kennzahlen Erw /̂g2 = 4,48 und Var̂ /g2 = 0,292 9. Dann errechnet sich der t-Wert 
als t = —1,325 8, d. h. es gibt keinen signifikanten Beleg dafur, dass ein Algorithmus 
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Bild 6.3 Ergebnis des generationsweise angewandten t-Test auf die zwei Beispiele aus Bild 6.2. (Mit freund-
licher Genehmigung von ©Elsevier.) 

besser als der andere ist. Tatsachlich entspricht der Wert einer Fehlerwahrscheinlich-
keit von etwa 0,2. 

/ | \ Dieses Beispiel muss mit Vorsicht genossen werden, da der t-Test eigentlich von gleichen Varianzen in den 

II Verteilungen ausgeht, was hier nicht der Fall ist. Tests, die unterschiedliche Varianzen erlauben, kommen 

bei diesem Beispiel zu einem ganz ahnlichen Ergebnis - diese Tests konnen der Fachliteratur entnommen 

werden. Insgesamt gilt der t-Test auch bei unterschiedlichen Varianzen als recht robust - das Ergebnis soUte 

allerdings dann nicht unreflektiert akzeptiert werden. 

Wird diese Technik auf die Beispieldaten aus Bild 6.2 angewandt, erhalt man fiir jede Generation 
der Optimierung einen t-Wert. Die Ergebnisse sind in Bild 6.3 dargestellt. Wie man nun iiber-
raschend feststellt, ist der Unterschied im linken Vergleich bis etwa Generation 750 signifikant, 
wahrend der rechte Vergleich nur in den ersten wenigen Generationen eine Signifikanz zeigt. 
Unser erster Versuch der Interpretation von Bild 6.2 v âr also fehlerhaft und hatte zu falschen 
Schlussfolgerungen gefiihrt. 

Daher sollte hier als Grundregel festgehalten werden, dass jeder Vergleich zweier Algorith­
men nicht nur auf einer hinreichend groBen Anzahl an Experimenten sondem auch auf einem 
entsprechenden Hypothesentest beruhen sollte. Dariiberhinaus muss man beachten, dass man 
nicht einen gutparametrierten Algorithmus mit einem schlechtparametrierten vergleicht. Bevor al­
so zwei unterschiedliche Algorithmen verglichen werden, sollten alle Anstrengungen untemom-
men werden, eine gute Parametereinstellung fiir beide Algorithmen zu wahlen. Fiir den Vergleich 
zweier Parametereinstellungen eines Algorithmus gilt nattirlich ebenfalls, dass die Anzahl der Ex-
perimente angemessen sein und der Vergleich tiber einen Hypothesentest gestiitzt werden sollte. 

6.2 Entwurf evolutionarer Algorithmen 

Es wird eine generische, prototypische Vorgehensweise fur die Entwicklung evolutionarer Algo­
rithmen vorgestellt. 

Wann immer man mit Anwendem von evolutionaren Algorithmen diskutiert, erfahrt man entwe-
der den Frust, dass der benutzte Standardalgorithmus nicht das gewtinschte Ergebnis produziert. 
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Bild 6.4 
Der Ablauf des wiederverwendungsbasierten Ansatzes 
zum Entwurf evolutionarer Algorithmen. 

Oder der Anwender ist bereits einen Schritt weiter und fordert eine klare ingenieurmaBige Anlei-
tung, wie ein »guter« evolutionarer Algorithmus fur das eigene Problem konstruiert werden kann. 
Trotz des vielversprechenden Titels dieses Abschnitts kann ich dies nicht in dieser allgemeinen 
Form anbieten - ebensov^enig wie die Autoren entsprechender Kapitel in anderen Lehrbuchem. 
Im Weiteren wird neben den gebrauchlichen Vorgehensv^eisen eine generische Methode prasen-
tiert, die eventuell durch zukiinftige tJberarbeitungen zu einem hilfreichen Verfahren vŝ erden 
kann. 

6.2.1 Der wiederverwendungsbasierte Ansatz 

Dieser Ansatz ist v^eitverbreitet und insbesondere fiir Anfanger der einzig gangbare Weg. Auf-
grund einer Empfehlung oder der Kenntnis nur eines Grundalgorithmus w îrd dieser als Kern fiir 
die eigene Anw^endung gew^ahlt. Bild 6.4 zeigt den Ablauf dieser Vorgehensw^eise. Die Anpas-
sung an das Optimierungsproblem findet vor allem bei der Wahl der Parameter und gelegentlich 
auch der evolutionaren Operatoren statt. Die Wahl der Bevs^ertungsfunktion w îrd i. d. R. nicht in 
Frage gestellt, sondem zu Beginn einmal durchgefiihrt - sie spielt damit keine aktive Rolle im 
Entwurfsprozess. 

Es gibt zvŝ ei Auspragungen der Wiedervenvendung, die sich im ersten und dritten Schritt des 
Ablaufes aus Bild 6.4 auBert: 

1. Es vv̂ ird auf einen Standardalgorithmus aus einer der vielen bekannten EA-Bibliotheken 
zuriickgegriffen. 

2. Ein der Literatur entnommenes Entwoirfsmuster bietet eine Empfehlung, w êlche Art von 
Algorithmus fiir ein Problem mit den vorliegenden Charakteristika besonders geeignet ist. 
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In der ersten Variante findet die Wahl des Algorithmus meist unreflektiert statt. Dabei wird 
die universelle Anwendbarkeit mit der Idee des universellen Optimierers verwechselt, welcher 
beliebige Probleme effizient losen kann. Obwohl dies im Einzelfall erfolgreich sein kann, be-
legt das in Abschnitt 3.6 diskutierte »No Free Lunch«-Theorem, dass es sich dabei um keinen 
generell wirksames Vorgehen handelt. Kreative Arbeit ist nur bei der Gestaltung der Bewertungs-
fUnktion moglich - wobei auch hierfur haufig ein Standardansatz gewahlt wird. Die Anpassung 
an das zu losende Optimierungsproblem findet i. d. R. nur in Form der Parametereinstellung statt. 
Das Ergebnis dieser Entwurfsmethode sind meist Algorithmen, die entweder mangelhafte Lo-
sungskandidaten liefem oder hohe Rechenzeiten benotigen (dank der Notwendigkeit mehrfacher 
Iterationen bei der Optimierung mit vorzeitiger Konvergenz). 

/ j \ Wieviel Vertrauen hatten Sie in eine Brticke, deren Architektur eigentlich fiir einen Turm gedacht war, dann 

II aber solange manipuliert wurde, bis die Brticke stabil aussah? 

Die zweite Variante kommt den Wiinschen der Ingenieure nach klaren Regeln entgegen. Der Vor-
teil ist wie bei der ersten Variante eine schnelle Umsetzbarkeit, wobei die meiste Zeit mit der Pa-
rametrisierung eines haufig nicht ganz passenden Algorithmus verbracht wird. Die Schwierigkeit 
dieser Methode liegt in der Charakterisierung der Problemklassen. Die existierenden Klassifika-
tionen sind zu grob gefasst (z. B. »globale Optimierung fiir reellwertige Parameter technischer 
Systeme«), ohne die darin verborgene Vielfalt mit alien erdenklichen Schwierigkeitsgraden zu 
berucksichtigen. Alle Versuche, feinere Klassifikationen zu entwickeln, sind bisher gescheitert, 
da es keine fimktionierende Menge an Metriken gibt, welche die Eigenarten und Schwierigkeiten 
eines Optimierungsproblems hinreichend beschreiben. 

6.2.2 Der Forma-basierte Ansatz 

Bei dem Forma-basierten Ansatz (bzw. Radcliffe-Surry-Methode) handelt es sich um einen mehr 
formalen Ansatz zur Beurteilung verschiedener Reprasentationen und der darauf definierten Ope-
ratoren fiir ein vorgegebenes Optimierungsproblem. Er beruht auf der Forma-Theorie, die in Ab­
schnitt 3.3.3 vorgestellt wurde. 

Als Grundidee sollen die so entworfenen Algorithmen das Schema-ZForma-Wachstum im Sin-
ne des Schema-Theorems untersttitzen. Hierfiir ist es notwendig, dass die Reprasentation des 
Genotyps eine sinnvolle Clusterung der Individuen erlaubt. In Abschnitt 3.3.3 wurden bereits 
die folgenden Regeln aufgestellt, die wir nun in diesem Kontext als Entwurfsregeln bezeichnen 
konnen: 

• minimale Redundanz der Kodierung, 

• Ahnlichkeit der Formae hinsichtlich der Gtite und 

• Abschluss gegen den Schnitt von Formae. 

Fiir ein gutes Zusammenspiel des Rekombinationsoperators mit den Formae werden weiterhin 
die folgenden Entwurfsregeln gefordert: 

• Vertraglichkeit der Formae mit dem Rekombinationsoperator, 

• Ubertragung von Genen und 

• die Verschmelzungseigenschaft. 
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Da es nun an dieser Stelle nicht um eine theoretische tJberlegung geht, sondem der Entwurf 
geleitet werden soil, fordem wir noch zusatzlich die Erreichbarkeit aller Punkte im Suchraum 
durch den Mutationsoperator. Dies ist wichtig, um iiberhaupt eine Konvergenz im gesuchten 
Optimum unabhangig von der Anfangspopulation zu ermoglichen. 

Zur Beurteilung der »Ahnlichkeit der Formae hinsichtlich der Gute« soil hier noch kurz eine 
Metrik, die Forma-Gute-Varianz, erwahnt werden, die anhand einer Stichprobe fiir eine Forma A 
erhebt, wie ahnlich die Gtitewerte der Individuen in dieser Forma sind. Fiir P = {A^^\ ..., A^^^) 
mitv4(^).G G -^(A) fur alle / G { 1 , . . . , 2̂} sei die Forma-Giite-Varianz definiert als 

FGK(A,P) = - . Y. (F{A^^.G)--- X F{A^^\G)\ . (6.1) 

Besonders fiir Formae kleiner Ordnung sollte die Forma-Giite-Varianz moglichst klein sein. Dann 
werden die richtigen Individuen zusammengefasst und es kann eine sinnvolle Rekombination dar-
auf gesucht werden. 

Dieser Ansatz wurde fiir verschiedene Optimierungsprobleme bereits erfolgreich durchge-
fiihrt, allerdings ist er nicht fiir jedes beliebige Problem gut geeignet. Nachteilig ist die Tatsa-
che, dass der Ansatz wenig anleitend-konstruktiv ist - die Eingebung des Entwicklers ist von 
wesentlicher Bedeutung fiir eine erfolgreiche Anwendung. Auch muss man beachten, dass der 
Forma-basierte Ansatz von einer festen Aufgabenverteilung der Operatoren im Gefiige der evolu-
tionaren Algorithmen ausgeht. Folglich kann auch nur eine entsprechend eingeschrankte Vielfalt 
an Algorithmen das Ergebnis eines solchen Vorgehens sein. 

6.2.3 Der analysebasierte Ansatz 

Die analysebasierte Ansatz (bzw. modifizierte Fischer-Methode) ist der erste Versuch, einen gene-
rischen Ablauf fiir den Entwurf evolutionarer Algorithmen zu beschreiben. Sie beinhaltet sowohl 
Aspekte des iiblichen Wiederverwendungsansatzes als auch Techniken der Radcliffe-Surry-Me-
thode und ist von den Vorgehensmodellen der Softwaretechnik inspiriert. Ein tJberblick iiber 
den groben Ablauf ist in Bild 6.5 dargestellt. Die einzelnen Schritte werden im Weiteren genauer 
beschrieben. 

Die erste Phase der Entwurfsmethodik befasst sich mit der Anforderungsanalyse, in der die 
wichtigsten Aspekte der Optimierungsaufgabe erarbeitet und dokumentiert werden. Die verschie-
denen Tatigkeiten dieser Phase sind in Bild 6.6 dargestellt. Bei der Erstellung des Problemmo-
dells steht zunachst eine mathematische exakte Beschreibung des phanotypischen Suchraums Q 
im Mittelpunkt - d. h. die Fragestellung, welche GroBen ein spaterer Optimierungsalgorithmus 
iiberhaupt verandem kann. Femer miissen die harten Randbedingungen beschrieben werden, die 
den Raum Q weiter beschranken. Beim anschlieBenden Festlegen der Optimierungsziele werden 
alle Kriterien identifiziert, die fur eine Bewertung der Gute eines Losungskandidaten wichtig 
sind. Diese miissen jeweils als Funktion / : Q ^ M einschlieBlich einer Richtungsvorgabe (maxi-
mieren oder minimieren) formuliert werden (sofem dies moglich ist). Bei mehreren ZielgroBen 
muss femer geklart werden, ob Prioritaten vorliegen und ob die Optimierung einen Losungskan­
didaten oder eine Menge von altemativen Losungskandidaten ermitteln soil. Bei der Ermittlung 
wQitQYQT Anforderungen an die Optimierung werden alle Aspekte erfasst, die nicht direkt mit dem 
eigentlichen Optimierungsvorgang zu tun haben: 
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Bild 6.5 Der Ablauf des analysebasierten Ansatzes zum Entwurf evolutionarer Algorithmen. 
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Bild 6.6 
Der Teilablauf des analysebasierten Ansatzes fiir die 
Anforderungsanalyse. 

• Wie haufig soil der Algorithmus angewendet werden? (genau einmal oder mehrfach) 

• Gibt es Qualitatserwartungen? (nur globales Optimum, Mindestgiite etc.) 

• Gibt es Zeit- oder Speicherbeschrankungen? 

• Wann werden Ergebnisse benotigt? (erst am Ende oder bereits wahrend der Optimierung) 

Die erste Phase wird durch die Beschreibung des Problemwissens abgeschlossen. Hierbei ist alles 
interessant, was die Eigenschaften des Problems oder dessen Losung betrifft. So ist eine genaue 
Charakterisierung von einfachen und schwierigen Probleminstanzen, die Betrachtung von exis-
tierenden Losungskandidaten oder existierende Benchmarks ebenso relevant wie existierende 
Heuristiken. 
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Bild 6.7 
Der Teilablauf des analysebasierten Ansatzes ftir die 
Problemanalyse und Risikobewertung. 

Bild 6.8 
Der Teilablauf des analysebasierten Ansatzes ftir die 
Erarbeitung von Reprasentationsaltemativen. 

Die zweite Phase behandelt die Problemanalyse und Risikobewertung, deren Ziel es ist, so-
wohl einen umfassenden Einblick in die Optimierungsmoglichkeiten zu bekommen als auch 
bereits hier den moglichen Erfolg des Untemehmens abzuschatzen. Der Ablauf ist in Bild 6.7 
illustriert. Dazu zahlt neben einer Literaturrecherche bzgl. des »State-of-the-art« auch eine Er­
mittlung von Problemcharakteristika. Interessant sind insbesondere Aussagen, ob das Problem 
bereits mit einem evolutionaren Algorithmus gelost wurde und, falls ja, welche unterschiedli-
chen Ansatze es gab. Aber auch die Voraussetzungen ftir alternative Optimierungsverfahren (z. B. 
Differenzierbarkeit, lineares Programm etc. - vgl. Abschnitt 2.6) sind genau zu priifen. Und 
schlieBlich sollten grundsatzliche Aussagen zur Schv^ierigkeit des Problems gesucht v^erden -
W\Q die SuchraumgroBe, NP-Vollstandigkeit, Anzahl der lokalen Optima bzgl. eines natiirlichen 
Nachbarschaftsbegriffs, Verteilung der Punkte im Suchraum (Ist es ein Nadel-im-Heuhaufen-
Problem?) und spezielle Problemanforderungen (z. B. verrauscht, kostspielige Bevŝ ertung oder 
zeitabhangig). Dies alles ist die Basis ftir die abschlieBende Bewertung des Risikos, die einen 
frlihen Abbruchpunkt anbietet. Grlinde hierfur konnen u. a. die folgenden sein: 

• Nadel-im-Heuhaufen-Problem mit groBem Suchraum, 
• hinreichende Schvv îerigkeit und ProblemgroBe verbunden mit der Forderung nach der Lie-

ferung des globalen Optimums als Ergebnis, 
• ungtinstige Relation der Zeit ftir die Bevv êrtung eines Losungskandidaten zur insgesamt 

erlaubten Optimierungszeit oder 
• das Vorhandensein eines klassischen Optimierungsalgorithmus. 

In der dritten Phase, der Erarbeitung von Reprasentationsaltemativen, steht die logische Dar-
stellung eines Losungskandidaten im Zentrum der tJberlegungen. Diese logische Darstellung 
sollte relativ nahe am Phanotyp des Problems formuliert sein, wobei er haufig schon eine geno-
typische Darstellung impliziert. Die Tatigkeiten dieser Phase sind in Bild 6.8 dargestellt. 

Beispiel 6.2: 
Zwei Beispiele ftir die logische Representation von Losungskandidaten sind beim 
Handlungsreisendenproblem die Darstellung als Reihenfolge der besuchten Stadte und 
altemativ die Menge der benutzten Kanten im Graphen. Die erste logische Idee fiihrt 
im Weiteren direkt zum Tausch zw êier Stadte als Mutationsoperator (VERTAUSCH-
ENDE-MuTATiON in Algorithmus 2.1), vŝ ahrend die zvŝ eite auf der logischen Ebene 
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Bild 6.9 
Der Teilablauf des analysebasierten Ansatzes fiir den 
Entwurf und die Implementierung. 

den Tausch zweier Kanten (INVERTIERENDE-MUTATION in Algorithmus 2.2) impliziert. 
Diese logische Ebene kann vollig von der spateren Darstellung im Genotyp getrennt 
sein, die in Abschnitt 2.3 fiir beide Moglichkeiten als Permutation gewahlt wurde. 

/ { \ So manche Entwurfsentscheidung im einflihrenden Abschnitt 2.3 wurde vor dem Leser verborgen, sollte 
_ II aber spatestens vor dem Hintergrund dieser spaten Auflosung klarer nachvoUziehbar sein. 

Da spater zu formulierende Operatoren auf der logischen Ebene der Representation agieren, 
macht der nachste Teilschritt als Vergleich der Forma-Gute-Varianz (vgl. Gleichung (6.1), Sei-
te 234) eine essentielle Aussage daruber, ob tiberhaupt die fiir die Bewertung der Losungskandi-
daten wichtigen Aspekte durch die Representation explizit gemacht werden. Dafiir ist es notwen-
dig die Representation als Formae zu formulieren. tJblicherweise wird diese Metrik fiir Stich-
proben von Formae unterschiedlicher Ordnung durchgefiihrt. Je kleiner die Werte der FGV sind, 
desto ahnlichere Losungskandidaten werden durch eine Forma beschrieben. Diese Ergebnisse 
werden dann fiir eine Entscheidung herangezogen, mit welchen Reprasentationen weitergemacht 
werden soil. Da diese Metrik eine groBe Anzahl an Stichproben fiir verlassliche Werte benotigt, 
muss mit einem hohen zeitlichen Aufwand gerechnet werden. 

Die nun folgenden zwei Phasen {Entwurf und Implementierung sowie Parametrisierung) miis-
sen fiir alle verschiedenen Reprasentationen durchgefiihrt werden - tatsachlich konnen sie auch 
in mehreren Varianten fiir eine Representation umgesetzt werden. Zunechst steht in der Phase 
Entwurf und Implementierung (vgl. den Ablauf in Bild 6.9) als Grundsatzentscheidung die Wahl 
eines Entwurfsmusters an. Hierbei handelt es sich um einen Grobentwurf, der vorschreibt, wel-
cher Operator welche »Rolle« in der Optimierung iibemehmen soil. Giinstigstenfalls wurde der 
Grobentwurf erfolgreich auf andere Probleme mit ehnlichen Eigenschaften bereits angewandt 
und gewisse Merkmale hinsichtlich der Suchdynamik werden mit dem Entwurfsmuster verbun-
den. Diese konnen im letzten Teilschritt der Phase iiberpriift werden. Die verschiedenen Stan-
dardalgorithmen aus Kapitel 4 geben beispielsweise jeweils verschiedene Grobentwiirfe vor, aus 
den speziellen Techniken im letzten Kapitel folgen weitere. Leider gelten fiir die Zuordnung 
zu Problemeigenschaften dieselben Beschrenkungen, die bereits in Abschnitt 6.2.1 diskutiert 
wurden. Daher ist dieses Wissen derzeit nur in sehr »schwammiger Form« in den Kopfen der 
Experten vorhanden. Visioner sollten die Informationen in Tabelle 6.2 zu jedem Entwurfsmuster 
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Aspekt Beschreibung 

Name des Muster 
Kontext 

Mutationsrolle 

Rekombinationsrolle 

Selektionsrolle 

Erfolgsfaktoren 

Metriken zum Test 

eindeutiger Bezeichner 
Problemstellungen, die eine Anwendbarkeit des Musters nahe 
legen 
Vorgaben zur Wahl oder zum Entwurf des Mutationsoperators 
(oder der Mutationsoperatoren) 
Vorgaben zur Wahl oder zum Entwurf des Rekombinationsope-
rators (oder der Rekombinationsoperatoren) 
Vorgaben zur Wahl oder zum Entwurf des Selektionsoperators 
(oder der Selektionsoperatoren) 
Konkrete Eigenschaften des Optimiemngsproblems oder sons-
tiger Anforderungen, die nach bisherigen Erfahrungen das Ent-
wurfsmuster positiv beeinflussen 
konkrete Angaben zu Messungen, die dieses Muster aufweisen 
sollte, wenn die Operatoranalyse durchgeftihrt wird 

Tabelle 6.2 Aspekte in der Beschreibung eines Entwurfsmusters. 

aufgezeichnet werden. AnschlieBend folgt die Definition der Operatoren, wozu hier Mutation, 
Rekombination und Selektion gehoren. Diese Arbeit ist insbesondere bei komplexen Problemen 
der kreative Teil des Entwurfsprozesses, fiir den lediglich die Vorgaben des Entwurfsmusters 
sowie der Anforderungen an die Optimierung als Leitkriterien dienen. AnschlieBend folgt die 
Implementation der physischen Representation im Genotyp, der Operatoren und der Bewertungs-
funktion. Danach kann die Operatoranalyse durchgefuhrt werden, um festzustellen, ob die Ope­
ratoren auf der Bewertungsfunktion Entwurfsmuster-konform arbeiten. Tabelle 6.3 zeigt einige 
Kriterien und Metriken, die bei dieser Analyse hilfreich sein konnen. Mangelhafte Ergebnis-
se konnen zu einer Iteration der Arbeitsschritte flihren, die im Regelfall bei der Definition der 
Operatoren ansetzt. Im Einzelfall kann auch das komplette Entwurfsmuster ausgetauscht wer­
den. Wenn die Ergebnisse der Operatorenanalyse zufriedenstellen sind, folgt noch das Aufsetzen 
des Testrahmens. Dieser sollte die Kalibrierung der Parameter in der nachsten Phase ebenso un-
terstiitzen wie auch den spateren Vergleich. Stehen geeignete Werkzeuge zur Analyse und zur 
statistischen Auswertung zur Verfiigung, ist dieser Arbeitsschritt schnell erledigt. Den meisten 
Bibliotheken und Programmen zu evolutionaren Algorithmen mangelt es jedoch an einer derarti-
gen Werkzeugunterstiitzung. 

Die Phase dQV Parametrisierung wird ebenfalls fur jede gewahlte Representation durchgeftihrt. 
Bild 6.10 zeigt die involvierten Teilschritte. Zunachst erfolgt die Definition der Leistungsmetrik, 
die bestimmt, wie aus den Gtitewerten eines Experiments eine Bewertung in Form einer meist 
reellwertigen Zahl berechnet wird. Einige gangige Leistungsmetriken sind in Tabelle 6.4 auf-
gelistet. Danach folgt das Erstellen eines Versuchsplans, wofiir zunachst den freien Parametem 
Wertebereiche und Faktorstufen zugewiesen werden. AnschlieBend wird ein statistischer Ver-
suchsplan erstellt und die zugehorigen Experimente durchgefilhrt. Fiir die Identifikation guter 
Wertebereiche muss die statistische Versuchsplanung zunachst durch eine Varianzanalyse ein in­
ternes Modell der Parameterabhangigkeiten anpassen. Details der statistischen Versuchsplanung 
konnen der Fachliteratur entnommen werden. Wird dadurch ein qualitativ hochwertiges Modell 
gewonnen, konnen die Ergebnisse geeignet dreidimensional oder als zweidimensionale Projekti-
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Metrik Kurzbeschreibung 

induzierte Optima 

Isoliertheit lokaler Optima 

Verbesserungswahrscheinlichkeit 

erwartete Verbesserung 

Korrelation der Elter-ZKindgiite 

Es wird geschatzt, wieviele lokalen Optima der Mutations-
operator induziert. Dies kann durch eine hinreichend groBe 
Zahl an Hillclimbing-Laufen mit breit verteilten Startpunk-
ten angenahert werden. 
Es wird geschatzt, wie stark die lokalen Optima im Durch-
schnitt getrennt sind. Durch ein umgekehrtes Hillclimbing 
(sozusagen ein Valleydescending) wird das schlechteste In-
dividuum im Einzugsbereich jedes lokalen Optimums ge-
sucht. 
Es wird durch Stichproben die Verbesserungswahrschein-
lichkeit (der Kinder tiber die Eltem) in Abhangigkeit eines 
Parameterwertes oder der Eltemgiite erhoben. 
Der durchschnittliche Gtiteunterschied, falls das Kind eine 
Verbesserung darstellt. 
Die Korrelation kann ftir Mutationen tiber Eltem-Kind-Paa-
re - evtl. auch unter Benicksichtigung mehrer Mutations-
schritte - als Autokorrelation erhoben werden. Fiir die Re-
kombination entspricht dies dem Kovarianzterm im »fehlen-
den« Schema-Theorem aus Abschnitt 3.3.4. 

Tabelle 6.3 Metriken fiir die Operatoranalyse. 
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Bild6.10 
Der Teilablauf des analysebasierten Ansatzes fiir die 
Parametrisierung des Algorithmus. 

on (vgl. Bild 6.1) visualisiert werden. Die guten Wertebereiche konnen entsprechend extrahiert 
werden. Zusatzlich gewinnen wir aus der umfassenden Menge an Experimenten einen ersten ver-
lasslichen Einblick in das Leistungsvermogen des entworfenen Ansatzes. Falls dieses bereits an 
dieser Stelle weit hinter den Erwartungen zuriickbleibt, ist ggf. eine genauere Analyse der Such­
dynamik notwendig, um die Ursachen zu ergrlinden und damit Hinweise fiir eine tJberarbeitung 
der Entwurfsaspekte in einer weiteren Iteration zu erhalten. 

AbschlieBend erfolgt der Vergleich der alternativen Algorithmen, um den Sieger zu bestim-
men. Im Falle, dass nur ein Algorithmus entwickelt wurde, bietet sich ebenfalls ein Vergleich 
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Leistungsmetrik Beschreibung 

beste Giite 
mittlere beste Giite 

durchschnittliche Giite 

Erfolgswahrscheinlichkeit 

benotigte Bewertungen 

Der beste Giitewert in alien betrachteten Generationen. 
In jeder Generation wird der beste Giitewert bestimmt, aus 
denen dann der Mittelwert berechnet wird. Dies betont die 
Konvergenzgeschwindigkeit, falls evtl. nur wenig Zeit fiir 
eine Optimiemng zur Verfiigung steht. 
Der Durchschnitt iiber die Giite aller evaluierten Individuen 
wird berechnet. Zusatzlich zur Konvergenzgeschwindigkeit 
wird noch die Anzahl der evaluierten Individuen mitberiick-
sichtigt. 
Es wird in mehreren Experimenten gemessen, wieviel Pro-
zent davon einen vorgegebenen Giitewert erreichen konn-
ten. 
Es wird gemessen, wieviele Individuen bewertet werden 
mussten, bis ein vorgegebener Giitewert erreicht wurde. 

Tabelle 6.4 Metriken fiir die Bewertung der Leistung eines evolutionaren Algorithmus. 
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Tabelle 6.5 Zwei Beispiele fiir die umfangreiche Umsetzung der Entwurfsmethodik. 

mit verschiedenen Varianten der identifizierten sinnvollen Parametern an. Diese Vergleiche soil-
ten immer iiber Hypothesentests abgewickelt werden, wie es in Abschnitt 6.1 beschrieben wur­
de. 

Diese Vorgehensweise beriicksichtigt alle bisher in diesem Buch vorgestellten Aspekte. Ihr 
groBer Nachteil ist der Zeitfaktor: In den wenigsten Anwendungen ist die Zeit vorhanden, um al­
le Schritte einzubeziehen. Allerdings kann die Entwurfsmethodik leicht an andere Rahmenbedin-
gungen angepasst werden - es konnen Teilablaufe weggelassen werden, wenn man sich der damit 
verbundenen Konsequenzen bewusst ist. Als Spezialfalle sind der wiederverwendungsbasierte 
Ansatz (Abschnitt 6.2.1) und der Forma-basierte Ansatz (Abschnitt 6.2.2) in dem analysebasier-
ten Ansatz enthalten. In zwei groBeren Studien wurde dieser Prozess ansatzweise umgesetzt, was 
in Tabelle 6.5 dargestellt ist. Das Beispiel der Antennenoptimierung wird im Abschnitt 6.4 de-
tailliert vorgestellt. 
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6.3 Nutzung von Problemwissen 

Es wird ein kurzer Uberblick dariiber gegeben, wie Problemwissen und heuristische Methoden 
in einen evolutiondren Algorithmus integriert werden konnen. 

Eines der wichtigsten Ergebnisse des »No Free Lunch«-Theorems aus Abschnitt 3.6 ist die Folge-
rung, dass ftir ein neues Problem die Standardverfahren nur bedingt als gute Optimierungsverfah-
ren herangezogen werden konnen. Fiir besser angepasste Algorithmen ist daher ein Vorgehens-
modell wie in Abschnitt 6.2.3 notwendig. Dabei bleibt allerdings immer noch die Frage offen, 
wie man tatsachlich das Wissen uber ein Optimierungsproblem in den Algorithmus einflieBen 
lassen kann. 

Das Problemwissen kann sehr unterschiedliche Formen besitzen. Neben den bisher besten be-
kannten Losungen in Form von Losungskandidaten ist auch Hintergrundwissen iiber Zusammen-
hange innerhalb des Problems moglich, z. B. als physikalische/chemische GesetzmaBigkeiten 
Oder als Erfahrungsschatz der Experten. Ebenso werden die Optimierungsprobleme oft bereits 
ansatzweise manuell von Menschen gelost oder angegangen - daraus lassen sich haufig Heuristi-
ken ableiten. 

Eine der ersten Entscheidungen beim Entwurf eines evolutionaren Algorithmus betrifft die 
Wahl der Representation fiir das Problem. Bei vielen praxisnahen Problemen bietet sich der 
wiederverwendungsbasierte Ansatz (Abschnitt 6.2.1) meist nicht an, da die Standardreprasenta-
tionen nur bedingt geeignet sind. Stattdessen konnen komplexere Strukturen benotigt werden. 
Ein Beispiel ist die Stundenplanung fiir eine Schule. Je nach Blickwinkel auf das Problem werden 
andere Reprasentationen erreicht. Beim Beispiel der Stundenplanung ist es einerseits moglich, 
die Stundenplane direkt als Tabellen abzulegen. Andererseits kann mit einer guten Heuristik im 
Hinterkopf, welche aus einer Liste von Veranstaltungen einen Stundenplan soweit wie moglich 
erstellt, die Reprasentation auf die Liste der Veranstaltung reduziert werden. Jede der Reprasen­
tationen hat unterschiedliche Vor- und Nachteile: Bei der Tabellendarstellung konnen direkt Ma-
nipulationen am Stundenplan vorgenommen werden, was in der Listendarstellung nicht moglich 
ist. Allerdings konnen dort leicht Standardrekombinations- und -mutationsoperatoren benutzt 
werden, wahrend die Tabellendarstellung den Entwurf neuer Operatoren benotigt. Dieses Bei­
spiel verdeutlicht, wie eng die Wahl der Reprasentation mit der Wahl der Operatoren verkntipft 
ist. Falls bekannte Heuristiken im Rahmen der evolutionaren Algorithmen genutzt werden sollen, 
bietet es sich an, eine Darstellung zu wahlen, auf der diese Heuristiken einfach durchfiihrbar sind. 
Gerade in Projekten in der Industrie oder Wirtschaft fordert die Nutzung einer bereits etablierten 
Reprasentation die Akzeptanz der evolutionaren Algorithmen bei Entscheidungstragem. Ebenso 
kann dann in der Reprasentation enthaltenes Expertenwissen leichter genutzt werden. Nachteilig 
an solchen angepassten Reprasentationen sind die bereits angesprochenen fehlenden Standard-
operatoren - sehr viel Aufwand ist in die Entwicklung von speziellen, angepassten Operatoren 
zu investieren. 

Falls wie oben angedeutet Heuristiken zur Optimierung einzelner Individuen genutzt werden, 
sollte dies bei der Wahl der Reprasentation zwingend beriicksichtigt werden. Heuristiken arbeiten 
meist auf dem Phanotyp. Falls ein andersgearteter Genotyp gewahlt wurde, kann durch eine 
bijektive Kodierungsfunktion gewahrleistet werden, dass Veranderungen durch die Heuristik sich 
im Genotyp wiederfinden. Eine derartige Heuristik kann als lokale Suche verstanden werden, die 
wie in den memetischen Algorithmen (Abschnitt 4.6.3) eingesetzt wird. 
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Algorithmus 6.1 

STUNDENPLAN-HEURISTIK( Pmfiingsmenge M ) 
1 for Zeitschiene z = 1 , . . . , A: 
2 do ̂  repeat •" wahle eine konfliktfreie Menge von Priiflingen 
3 L suche Raume mit passender GroBe far Zeitschiene i 
4 L until ausgewahlte Pnifungen konnen komplett verplant werden 

Algorithmus 6.2 

PRUFUNGS-REKOMBINATION( Individuen^, 5 wobei v4.G und B.G Stunden pro Zeitschiene enthalten ] 
1 verschoben ^- 0 
2 verplant ^- 0 
3 for Zeitschiene z ^ 1 , . . . , A: 
4 Ao^C.Gi^A.GinB.Gi 
5 verplant'^ verplantUC.Gj 
6 verschoben ^- (verschoben U^.G/ U 5.G/) \ verplant 
1 dazu ^- strat (|AuswahlstrategieD wahlt zu C.Gi konfliktfreie Menge aus verschoben 
8 C.Gi ^C.GfU dazu 
9 verplant ^- verplant U dazu 
10 L verschoben ^- veschoben \ dazu 
11 return C 

Heuristiken konnen jedoch nicht nur bei der parameterbasierten Erzeugung oder Optimierung 
von einzelnen Individuen benutzt werden. Oftmals gibt es technische Details in den Heuristiken, 
die in einen anderen Ablauf eingebettet einen neuartigen Rekombinations- oder Mutationsopera-
tor ergeben. Innerhalb von Rekombinationsoperatoren kann das Ziel die Kombination von Eigen-
schaften der Eltemindividuen sein, wahrend es im Mutationsoperator eine kleine aber beztiglich 
des Problems sinnvolle Veranderung am Individuum ist. Ein Beispiel fiir einen solchen Rekombi-
nationsoperator ist die Erstellung von Prtifungsstundenplanen Hochschulbereich: Innerhalb eines 
begrenzten Zeitraums ist zu jeder Vorlesung eine Prtifung durchzufiihren. Abhangig davon, wel-
che Vorlesungskombinationen von Studenten belegt wurden, diirfen bestimmte Pnifungen nicht 
gleichzeitig stattfinden bzw. sollten moglichst auch nicht direkt nacheinander abgehalten werden. 
Zur Erstellung solcher Prtifungsstundenplanen gibt es die einfache STUNDENPLAN-HEURISTIK 
(Algorithmus 6.1). 

Diese Heuristik liefert immer einen korrekten Stundenplan - allerdings ist offen, ob alle Pni­
fungen in die vorhandenen k Zeitschienen gepackt werden konnen bzw. ob die Konflikte zwi-
schen angrenzenden Pnifungen tatsachlich minimal sind. Daher bietet sich die Kombination evo­
lutionarer Algorithmen mit der bewahrten Heuristik an. Die PRLIFUNGS-REKOMBINATION (Algo­
rithmus 6.2) libertragt die Grundidee der STUNDENPLAN-HEURISTIK in einen Rekombinations-
operator, der die Stundenplane der Eltemindividuen fiir die Wahl der konfliktfreien Prufungen 
benutzt. 

Der Rekombinationsoperator verfahrt nahezu identisch zur Heuristik - nur werden Priifun-
gen, die bei beiden Eltern in gemeinsamen Schienen liegen, sicher in das Kindindividuum tiber-
nommen (vgl. Abb. 6.11). Weitere Prufungen fiir Schiene / werden aus den bisher unverplanten 
Prufungen der Schienen 1 , . . . , / der Eltern ausgewahlt. Dabei gibt es die folgenden Strategien, 
welche Prufungen bevorzugt werden: 
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Veranstaltungen der Zeitschiene / 

Elter 1 

unverplant aus 1,..., z — 1 unverplant aus 1, 

Bild 6.11 Skizze, wie der Rekombinationsoperator gleich verplante Veranstaltungen aus den Eltem in das 
Kindindividuum libemimmt. Die grauen Veranstaltungen stehen in beiden Eltem in derselben 
Zeitschiene, die schwarzen Veranstaltungen werden zusatzlich ftir die Zeitschiene / ausgewahlt 
und die weiBen Veranstaltungen konnen nicht beriicksichtigt werden. Daher enthalt die Menge 
der unverplanten Veranstaltungen immer diejenigen Veranstaltungen, die in einem der beiden 
Eltemteile bereits verplant waren, aber im Kindindividuum noch zu verplanen sind. 

• PriifUngen mit der groBten Anzahl an Konflikten insgesamt, 
• PriifUngen mit ahnlichen Konflikten wie die der bereits verplanten Priifungen, 
• Priifungen, die im anderen Eltemteil sehr spat verplant sind, oder 
• diejenigen Priifungen mit einer moglichst minimalen Anzahl von Konflikten zur vorherigen 

Zeitschiene. 

Auch in diesen Ausv^ahlstrategien schlagen sich Erfahrungswerte aus der Praxis nieder, die in 
dem evolutionaren Algorithmus genutzt werden sollten. 

Eine weitere Moglichkeit zur Nutzung von Heuristiken ist die Erstellung der Anfangspopu-
lation (Initialisierung). So kann der evolutionare Algorithmus bereits auf einer Population mit 
sehr guten Individuen aufsetzen. Wird dann ein elitarer Selektionsmechanismus genutzt, bleibt 
die beste Losung - also auch das beste Ergebnis der Heuristik - immer in der Population erhal-
ten. Gerade in industriellen Projekten kann eine Garantie, dass immer wenigstens das gleiche 
oder ein besseres Ergebnis wie mit der Heuristik gefunden wird, die Akzeptanz wesentlich erho-
hen. Hinsichtlich der Suchdynamik des evolutionaren Algorithmus muss jedoch darauf geachtet 
werden, dass die Anfangspopulation nicht zu speziell ist und dadurch die simulierte Evolution 
einschrankt. 

6.4 Fallstudie: Platzierung von Mobilfunkantennen 

Die hier vorgestellte Anwendung evolutiondrer Algorithmen hatte das Ziel,fur ein vorgegebenes 
Gebiet, Mobilfunkantennen so zu platzieren, zu dimensionieren und mit Frequenzen zu versehen, 
dass der Bedarf gedeckt werden kann. 

Die Arbeit in dieser Fallstudie wurde gemeinsam mit Nicole Weicker (Universitat Stuttgart), Ga-
bor Szabo und Prof. Peter Widmayer (beide ETH Ziirich) durchgefiihrt. Dabei handelt es sich 
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um eine »real w6>r/(i«-Anwendung, deren Losungsalgorithmus zumindest in einigen Aspekten 
entlang des analysebasierten Ansatzes gestaltet wurde. Sie sollten daher besonders auf die fol-
genden Details achten: 

• Wie die verschiedenen Aspekte des Problems in Bewertungsfunktionen und Randbedin-

gung formuliert wurden, 

• wie die einzelnen Operatoren speziell auf das Problem zugeschnitten wurden, 

• nach welchen Kriterien die Operatoren in ihrer Gesamtheit zusammengestellt wurden, 

• wo eine Reparaturfunktion fur die Randbedingung zum Einsatz kommt, 

• wie Effizienziiberlegungen zu einem eigenen Selektionsmechanismus gefuhrt haben und 

• welches Vergleichkriterium im Rahmen der Mehrzieloptimierung genutzt wurde. 

6.4.1 Aufgabenstellung 

Die Architektur von groBen Mobilfunknetzen ist eine hochkomplizierte Aufgabe, die sich direkt 
in der Netzverftigbarkeit beim Endnutzer, den Kosten beim Provider und der Umweltbelastung 
durch Elektrosmog niederschlagt. Daher muss eine Losung mindestens durch die beiden Kriteri­
en Kosten und Netzverftigbarkeit bewertet werden. 

Die Gestaltung der Architektur findet iiblicherweise in zwei Schritten statt: 

1. Die Basisantennen werden platziert und in ihrer GroBe und Reichweite so konfiguriert, dass 
sie den anfallenden Bedarf grundsatzlich abdecken konnen. 

2. Entsprechend der Antennenkapazitat mtissen ausreichende Frequenzen den einzelnen An-
tennen zugewiesen werden, wobei Interferenzen zwischen den Antennen auftreten konnen. 
Diese sind durch geeignete Auswahl der Frequenzen minimal zu halten, um Probleme beim 
spateren Betrieb zu vermeiden. 

Beide Aufgaben sind NP-hart und es gibt fiir beide sowohl Heuristiken als auch evolutionare 
Ansatze. tJblicherweise werden die beiden Optimierungen hintereinander ausgefiihrt, was je-
doch kritisch ist, da eine ungeschickte Platzierung und Dimensionierung der Antennen im ersten 
Schritt die Losbarkeit des zweiten Problems stark einschranken kann. Auch Iterationen durch bei­
de Phasen sind schwierig zu gestalten, well die Ergebnisse der zweiten Phase nur bedingt in eine 
emeute Optimierung der ersten Phase einflieBen. Daher war von Anfang an eine Anforderung, 
beide Optimierungsaufgaben gleichzeitig zu bearbeiten. 

Die Anwendung betrachtet ein vorgegebenes, rechteckiges Gebiet definiert durch zwei gegen-
iiberliegende Ecken (xniin,7min) und (xmax Ĵmax)- Die Punkte des Gebiets werden nur in einer 
Rasterung res betrachtet. Damit ergibt sich die Menge der Positionen als 

r> 1 / I - I - \ \ f\ ^ • ^ -^max ~ ^vmn A f\ ^ • ^ J^max ~J^min 
POS = < (Xmin + I' ^ "̂̂ ^ Jmin + 7 * ^^S) 0 < / < Und 0 < J < 

[ ' res res 

Ein Teil dieser Positionen bezeichnet die Zellen zelle e Pos, fiir die ein statistisch ermitteltes Ge-
sprachsaufkommen bedarf {zelle) G N (Gesprache pro Zeiteinheit) bekannt ist. Das Gesprachsauf-
kommen fiir die betrachtete Beispielanwendung in Ziirich ist in Bild 6.12 dargestellt. Die Posi­
tionen in Pos stellen femer die moglichen Positionen fiir die Basisantennen dar. 
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Bild6.12 
Zellen der Region Zurich mit ihrem Gesprachsbedarf. Je 
groBer ein Punkt im Raster der Zellen ist, desto groBer ist 
der Bedarf. (Mit freundlicher Genehmigung von ©IEEE.) 
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Die Aufgabe besteht darin, Antennen t = {pow, cap^pos^frq) zu platzieren, wobei die Sende-/ 
Empfangsstarke/?6>w G [MinPow^ MaxPow] C N, die Gesprachskapazitat cap G [0, MaxCap] C N, 
die Position pos G Pos und eine Menge an Frequenzen/Kanalen ^r^ C Frequ mit \frq\ < cap 
zugewiesen wird. Konkret steht fiir alle Antennen nur eine beschrankte Menge an Frequenzen 
Frequ = {/i,..., fk] zur Verfugung. Die Menge aller Antennenkonfigurationen ergibt sich als 

T = [MinPow, MaxPow] x [0, MaxCap] x Pos x Frequ. 

Es folgt mit der Entscheidung fur einen sehr problemnahen Genotypen die folgende Darstel-
lung des Losungsraums als mogliche Individuen: 

Q = ^ = { {^1,...,^^} I^^GNundVl < / < y c : / / G r } . 

Dabei handelt es sich um einen Genotypen mit variabler Lange. 
Da die Netzverfiigbarkeit oberste Prioritat hat, wird die vollstandige Abdeckung des Ge-

sprachsaufkommens als harte Randbedingung formuliert. Dabei wurde im Rahmen dieser Fallstu­
die zunachst mit einem sehr einfachen Wellenverbreitungsmodell wp : Pos x [MinPow, MaxPow] 
-^ ^{Pos) gearbeitet, das zu jeder Basisantenne / = (pow^cap.pos^frq) die erreichbaren Posi-
tionen wp{t) C Pos liefert. Dieses Modell hangt hier nur von der Position der Antenne pos 
und deren Starke pow ab. Ein Losungskandidat A mit A.G = {t\,... ^tk) heiBt giiltig, v^enn 
fiir jede Antenne // und jede Position zelle G Pos eine Zuordnung der bedienten Gesprache 
bedient{ti,zelle) G N bekannt ist, sodass die folgenden Bedingungen erfiillt sind: 

• Die Basisantenne bedient nur erreichbare Zellen, d. h. fiir alle Antennen /̂ (1 < / < k) und 
fiir alle Zellen zelle G Pos gilt 

bedient{ti^ zelle) > 0 ^ zelle G wp(ti)^ 

fiir jede Zelle zelle G Pos wird der Bedarf vollstandig abgedeckt 

^ bedient {ti, zelle) > bedarf (zelle) und 
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• jede Antenne ti = {pow, cap.posjrq) (1 <i<k) bleibt innerhalb ihrer Kapazitat 

^ bedient{ti^pos) < cap. 
zelleGPos 

Die eigentlichen Bewertungsfunktionen ergeben sich dann einerseits aus der Minimierung 
moglicher Storungen durch zu eng gewahlte Frequenzen und andererseits aus den Kosten fiir die 
benotigten Antennen. 

• Die moglichen Storungen werden als Interferenzen bezeichnet. Sie treten auf, wenn An­
tennen dieselben Zellen bedienen und gleiche oder eng beieinander liegende Frequenzen 
benutzen. Fiir einenLosungskandidatenA mit Antennent\,... ,tk wirddabei der Anteil der 
potentiell gestorten Gesprache ermittelt 

[A\ _ ^^•^{1,-,^ ^gestorteGesprache(//) 

Y^zelleePos bedarfizelle) 

• Die Kosten kosten{powi, capi) bestimmen sich fiir jede Antenne ti = {powi^ capi^poSj^frqj) 
aus der Starke und der Kapazitat. Womit sich die Gesamtkosten fiir einen Losungskandida­
ten A mit Antennen t\^... Jk wie folgt ergeben: 

fkosten (^) = X kostenipowi, capi) mit // = (powi, capi.poSjJrqj). 
iG{l,...,k} 

Beide Bewertungsfunktionen miissen minimiert werde. 

6.4.2 Entwurf des evolutionaren Algorithmus 

Der Entwurf des evolutionaren Algorithmus orientierte sich an einem »Entwurfsmuster«, das 
durch die folgenden Prinzipien umrissen werden kann. 

• Da die Randbedingung hart ist, soil die Population immer nur giiltige Individuen enthalten. 
Daher sollen die Operatoren nach Moglichkeit nur giiltige Individuen produzieren. Falls 
dies nicht moglich ist, muss eine Reparaturfunktion zur Verfiigung stehen. 

• Jede Antennenkonfiguration des Suchraums muss zu jeder Zeit der Optimierung durch die 
evolutionaren Operatoren erreichbar sein. 

• Da es sich um Genotypen variabler Lange handelt, miissen sich verlangemde und verkiir-
zende Operatoren die Waage halten. Oder allgemeiner ausgedriickt: Jeder Operator kann 
durch einen anderen wieder riickgangig gemacht werden. 

• Feinabstimmung und Erforschung des Suchraums miissen ausgeglichen sein, d. h. neben 
sehr speziellen problemspezifischen Operatoren miissen auch zufallige Operatoren vorhan-
den sein. 

Da die Definition rein legaler Operatoren in einer so komplexen Anwendung nahezu aus-
sichtslos ist, wurde eine Reparaturfunktion definiert. Um festzustellen, ob ein Individuum giiltig 
ist oder nicht, muss zunachst iiberpriift werden, welche Frequenzen der einzelnen Antennen wel-
chen Zellen zugeordnet werden. Die Reparaturfiinktion erledigt diese Zuordnung und fiihrt auf 
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einem ungiiltigen Individuum ftir alle Zellen mit ungedecktem Bedarf (in einer zufalligen Rei-
henfolge) die folgenden Veranderungen durch: 

1. Falls es eine Basisantenne mit freier Kapazitat gibt, wird diejenige mit dem starksten Signal 
gewahlt und soviele Frequenzen wie moglich/notig zugewiesen. 

2. Falls der Bedarf noch nicht (komplett) gedeckt ist, wird geprtift, ob es eine Basisanten­
ne gibt, die freie Kapazitat hat und durch Erhohung der Starke die Zelle bedienen kann. 
Konnen mehrere Antennen so erweitert werden, wird diejenige gewahlt, fiir die die entste-
henden Mehrkosten minimal sind. Die Anderung der Starke und der Kapazitat wird jedoch 
nur durchgefuhrt, wenn es eine billigere Losung darstellt als die Einfiihrung einer komplett 
neuen Antenne im letzten Schritt. 

3. Falls keine der oberen Moglichkeiten den Bedarf decken konnte, wird eine neue Basisan­
tenne mit minimaler Konfiguration an oder in unmittelbarer Nahe der Zelle hinzugefugt. 

Die Reparaturfunktion wird nicht nur wahrend der simulierten Evolution benutzt, sondem dient 
auch der Initialisierung der Anfangspopulation, indem sie auf ein vollstandig leeres Individuum 
angewandt wird. Damit ist die Anzahl der unterschiedlichen Individuen in der Anfangspopulation 
allerdings auf 2l̂ '̂ l̂ durch die moglichen zufalligen Reihenfolgen der Bedarfszellen beschrankt. 

Es wurden insgesamt sechs Mutationsoperatoren gefunden, die gezielt Problemwissen benut-
zen. Dadurch sind sie nur unter bestimmten Bedingungen anwendbar, um den Losungskandida-
ten aktiv zu verbessem. 

DM1: Gibt es eine Antenne mit unbenutzten Frequenzen, dann wird die Kapazitat entsprechend 
reduziert. Dadurch werden die Kosten reduziert. 

DM2: Gibt es eine Antenne mit vollstandiger Kapazitat, die auch komplett benutzt wird, dann 
wird eine weitere Antenne mit Standardeinstellungen in der Nahe platziert. Dadurch sollen 
Regionen mit sehr hohem Gesprachsaufkommen bedient werden. 

DM3: Gibt es Antennen mit groBen iiberlappenden Regionen, wird eine Antenne entfemt. Da­
durch soil die Gefahr der Interferenz reduziert werden. 

DM4: Gibt es Antennen mit groBen iiberlappenden Regionen, wird die Starke einer Antenne 
so reduziert, dass dennoch alle Anrufe bedient werden. Dies reduziert sowohl Interferenzen 
als auch Kosten. 

DM5: Falls Interferenzen vorkommen, werden involvierte Frequenzen verandert. Dadurch soil 
die Interferenzen reduziert werden. 

DM6: Gibt es Antennen, die nur eine kleine Anzahl an Anrufen bedienen, wird eine solche 
Antenne geloscht. Das Ziel ist dabei, die Kosten zu verringem. 

Da die Veranderungen dieser Mutationen nur von speziellen Gedankengangen gestiitzt wer­
den, wie eine Losung verbessert werden kann, ist der Einsatz von zufalligeren Veranderungen 
notwendig, die ohne Vorbedingungen angewandt werden. 

RMl: Die Position einer Antenne wird verandert - ihre Starke und Kapazitat wird beibehalten. 
Die Zuordnung der Frequenzen zu einzelnen Zellen muss durch die Reparaturfunktion neu 
vorgenommen werden. 

RM2: Es wird ein zufalliges Individuum (wie in der Initialisierung) eingefiigt, um die Diversitat 
in der Population zu erhohen. 
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crossover 

repair 

Bild6.13 
Arbeitsweise der Rekombination am Beispiel einer 
vertikalen Teilung des betrachteten Gebiets. (Mit 
freundlicher Genehmigung von ©IEEE.) 

RMS: Die Starke einer Antenne wird zufallig verandert. Diese Operation ist notwendig, umDM4 
auszugleichen. 

RM4: Die Kapazitat einer Antenne wird zufallig verandert. Diese Operation ist notv^endig, um 
DM1 auszugleichen. 

RM5: Die zugeordneten Frequenzen einer Antenne werden verandert. Diese Operation ist not­
wendig, um DM5 auszugleichen. 

Mit einem Rekombinationsoperator sollen die Antennenkonfigurationen und Platzierungen 
fiir verschiedene Regionen aus unterschiedlichen Losungskandidaten zusammengefiigt werden. 
Hierfiir wird das Gesamtgebiet in zwei Halften (horizontal oder vertikal) unterteilt. Von zwei 
Individuen werden jeweils die Antennen einer Halfte tibemommen, wobei Antennen nahe der 
teilenden Grenze ausgelassen werden. Die dann noch bestehenden Lticken werden durch den 
Reparaturalgorithmus gefiillt. Dies ist in Bild 6.13 veranschaulicht. 

Fiir die Selektion wurden verschiedene Selektionsoperatoren fiir mehrere Zielfunktionen ge-
testet - darunter auch SPEA2 (Algorithmus 5.2). Dieser Operator ist jedoch mit einem relativ 
groBen Zeitaufwand verbunden: ^{Jp-) um ein neues Individuum in das Archiv der GroBe Jx zu 
integrieren. Da jedoch in Anbetracht anderer wesentlich zeitaufwandigerer Wellenverbreitungs-
modelle die Grundsatzentscheidung getroffen wurde, jedes neu erzeugte Individuum sofort in 
den Genpool der Population (und evtl. auch in das Archiv) zu iibemehmen, wurde eine eigene 
schnellere Selektion entwickelt. 
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Dafiir wird jedem Individuum^ ein Rang zugewiesen, der auf den folgenden Mengen beruht: 

• Domimert{A), der Menge der von A dominierten Individuen in der Population, und 

• WirdDominiert{A), der Menge der Individuen in der Population, die A dominieren. 

Wird fur zwei Zielfunktionen ein zweidimensionaler Bereichsbaum als Datenstruktur fur die 
Population benutzt, konnen Individuen in ^(log^ ji) Zeit gesucht, eingefiigt und geloscht wer-
den. Bereichsanfragen, die alle Individuen in einem zv^eidimensionalen Bereich liefem, sind mit 
^(A: + log^ jU) moglich, wobei k die Anzahl der zurlickgegebenen Individuen ist. Der Rang be-
rechnet sich dann als 

Rang{A) = #JVirdDomimert{A) • ji + #Domimert{A). 

Der erste Anteil sorgt fiir das Annahem an die Pareto-Front und der zweite Anteil bevorzugt, 
weniger beliebte Regionen. Einzig, wenn alle Individuen gleichwertig sind, setzt ein zufalliger 
Gendrift ein, der einzelne Telle der Pareto-Front in der Population aussterben lasst. 

Nun wird die Eltemselektion als Tumierselektion auf Basis dieses Rangs durchgeftihrt. Die 
Operatoren werden angewandt und es stellt sich die entscheidende Frage, ob das neue Individuum 
B in die Population ubemommen v^erden soil und welches Individuum dafiir geloscht wird. Dafiir 
werden die MQngQnDommiert{B) und WirdDominiert{B) berechnet und die folgenden vier Falle 
unterschieden (vgl. auch Bild 6.14). 

Fall 1: Beide Mengen sind leer, d. h. B ist ein neues nicht-dominiertes Individuum, und es gibt 
ein Individuum mit schlechterem Rang. B wird ubemommen und verdrangt das Individuum 
C mit dem schlechtesten Rang. B hat Rang 0 und alle Individuen in WirdDommiert{C) 
erhalten einen um 1 geringeren Rang. 

Fall 2: Die Menge Dommiert{B) ist nicht leer. Dann wird B ebenfalls in die Population iiber-
nommen und verdrangt das schlechteste Individuum C aus der Menge Dominiert{B). B 
bekommt seinen neu errechneten Rang zugewiesen und alle Individuen aus der Menge 
WirdDominiert{C) \ WirdDominiert{B) erhalten einen um 1 geringeren Rang. 

Fall 3: Ist die Menge Dominiert{B) ist leer und WirdDominiert{B) nicht leer, bleibt das neue 
Individuum unberlicksichtigt, da es keine Verbesserung darstellt. 

Fall 4: Sind beide Mengen leer und es wird kein Individuum von einem anderen dominiert, dann 
wird das zu loschende Individuum gemaB eines MaBes fiir die Nischenbildung ausgewahlt. 
Bei ausreichend groBer Population ist dieser Fall sehr unwahrscheinlich. 

Der resultierende Ablauf der ANTENNEN-OPTIMIERUNG ist in Algorithmus 6.3 dargestellt. Da-
bei ist zu beachten, dass ahnlich zum genetischen Programmieren immer nur ein Operator benutzt 
wird, um ein neues Individuum zu erzeugen. Die Haufigkeit kann uber die Wahrscheinlichkeiten 
PDM > 0, PRM > 0 und pRek > 0 mit pDM+PRM-\-PRek = 1 cingestcllt werden. 

6.4.3 Ergebnisse 

Die hier vorgestellten Ergebnisse beruhen auf dem in Bild 6.12 vorgestellten Gesprachsbedarf 
eines 9 x 9km^ Gebiets. Dabei betragt die Rasterung fiir den Bedarf 500m und fiir die Platzie­
mng von Antennen 100m. Es wird von einem Gesprachsaufkommen von insgesamt 505 Anmfen 
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Bild 6.14 Die vier verschiedenen Falle in der Ersetzungsstrategie fiir das Antennenproblem werden darge-
stellt. 

Algorithmus 6.3 
ANTENNEN-OPTIMIERUNG( Antennenproblem) 

1 t^O 
2 P(t) ^- initialisiere ji Individuen mit der Reparaturfunktion 
3 berechne den Rang far die Individuen 'mP{t) 
4 while t <G (|maximale GenerationenzahlD 
5 do^ A,B ^ selektiere aus P{t) gemaB Rang und TURNIER-SELEKTION 
6 C ̂  wende einen Operator auf ̂  (und bei der Rekombination auf 5) an 
7 berechne die Mengen Dominert(C) und WirdDominiert{C) 
8 P{t + 1) ^ integriere C in P(t) und aktualisiere die Range 
9 L ^ ^ ^ + 1 

10 return nicht-dominierte Individuen aus P{t) 

ausgegangen. Femer wurden Wrequ = 1 2 8 Frequenzen, die maximale Kapazitat MaxCap = 64, 
Werte fiir die Starke zwischen MinPow = lOdBmW und MaxPow = 130dBmW sowie Kosten 
einer Antenne als kosten{powi, capi) = 10 -powi -\- capi angenommen. 
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Hinsichtlich der Einstellung des Algorithmus wurden umfangreiche Experimente mit verschie-
denen Werten durchgefiihrt. Dies hat letztendlich zu einer PopulationsgroBe fi = 80, einer Tur-
niergroBe q = 5 und einem Terminationskriterium bei 64 000 Bewertungen gefiihrt. Fiir den Al­
gorithmus SPEA2 wurde zusatzlich eine Archiv fiir 80 Individuen benutzt. Sowohl die Wahl der 
Technik zur Mehrzieloptimierung als auch die Wahrscheinlichkeiten zur Anwendung der ver-
schiedenen Rekombinations- und Mutationsoperatoren waren dann Gegenstand noch ausfiihrli-
cherer Untersuchungen. 

Wie man sich leicht vorstellen kann, sind die gerichtete Mutationsoperatoren und die Rekom-
bination zu einseitig, so dass Algorithmen ohne zufallige Mutationsoperatoren zu oft in lokalen 
Optima stecken bleiben. Wahrend die ausschlieBliche Nutzung der zufalligen Operatoren bereits 
fiir bessere Ergebnisse sorgt, werden diese von der Kombination mit gerichteten Mutationsope­
ratoren noch weiter in den Schatten gestellt. Die Werte fiir die Zielfunktionen sind fiir jeweils 
16 Experimente und die beiden betrachteten Mehrzieltechniken in Bild 6.15 und Bild 6.16 dar-
gestellt - dabei wurde zwischen gerichteten und zufalligen Mutationsoperatoren mit gleicher 
Wahrscheinlichkeit gev^ahlt. 

Da der rein visuelle Vergleich dieser Bilder nahezu unmoglich ist, wurde nach einer Mog-
lichkeit gesucht, eine statistische Aussage iiber die Qualitat der Ergebnisse zu machen. Hierfiir 
ist es sinnvoll, jedes einzelne Experiment auf eine Vergleichszahl abzubilden. Basierend auf der 
Beobachtung, dass die Pareto-Fronten eine annahemd konvexe Form haben, wurde dafiir die 
gewichtete Summe auf wie folgt normierten Werten benutzt. 

/ > ' • " / j \ Jinterferenzy^) 
Jinterferenzy^) — 

Jkosten\A) ~ 

0,7 

fkosten{A)-15m 

4 500 

Qual(P) = nun {a - finterferenz{A) + (1 - Of) ' fkosten{A)) 

Um einen Algorithmus als besser einzustufen musste der t-Test auf den Zahlenreihen mit je­
weils 16 Werten - fur jedes Experiment einen Wert - eine Signifikanz ergeben, egal welcher 
Wert a G {0,1; 0,2; 0,3; 0,4; 0,5; 0,6; 0,7; 0,8; 0,9} benutzt wird. Wahrend ein signifikanter 
Unterschied zwischen der rein zufalligen Mutationsvariante und den beiden Kombinationsein-
stellungen zu beobachten ist, kann keine Differenz zwischen Bild 6.15 und Bild 6.16 gezeigt 
werden. 

Obiges Kriterium zum Vergleich zweier Algorithmen hat sich als ausgesprochen ntitzlich her-
ausgestellt. Konkret konnte als bestes Verfahren die Variante mit der Technik SPEA2 und den 
Anwendungswahrscheinlichkeiten PRM = PDM = 0,3 und pRek = 0,4 gefunden werden. Damit 
wurden nicht nur die besten Ergebnisse in Bild 6.17 berechnet; es zeigt sich auch, dass sich mit 
diesen Einstellungen das zeitintensivere Verfahren SPEA2 statt der vorgeschlagenen Mehrziel-
technik in ANTENNEN-OPTIMIERUNG lohnt. 

Dieses Ergebnis scheint nicht mit einem visuellen Vergleich von Bild 6.16 und Bild 6.17 
konform zu sein. Aber die meist breitere Verteilung der Individuen bei SPEA2 sind fiir dieses 
Resultat verantwortlich. Das insgesamt beste Individuum wairde iibrigens mit der efiizienteren 
Technik gefunden (vgl. Bild 6.16). Dies kann jedoch nur als einmaliger Gliicksfall und nicht als 
Aussage bei der Bewertung der Algorithmen herangezogen werden. 
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Bild 6.15 Nichtdominierte Individuen aus den Experimenten mit SPEA2, PRM = PDM = 0,5 und pR^j^ = 0. 
(Mit freundlicher Genehmigung von ©IEEE.) 
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Bild 6.17 Nichtdominierte Individuen aus den Experimenten mit SPEA2, PRM = PDM = 0,3 undpjiek = 0,4. 
(Mit freundlicher Genehmigung von ©IEEE.) 

6.5 Fallstudie: Motorenkalibrierung 

Diese Anwendung hatte das Ziel, durch den Einsatz von evolutiondren Algorithmen, den Kali-
hrierungsprozess elektronischer Steuergerdte in Verhrennungsmotoren zu unterstiitzen und nach-
haltig zu verbessern. 

Die Arbeit in dieser Fallstudie wurde gemeinsam mit Prof. Andreas Zell (Universitat Tiibin-
gen), Thomas Fleischhauer, Dr. Alexander Mitterer und Dr. Frank Zuber-Goos (alle BMW AG) 
durchgefuhrt. Dabei handelt es sich um eine industrielle Anwendung, die direkt in der Motoren-
entwicklung umgesetzt wurde. Im Rahmen dieses Buchs sind die folgenden Details interessant: 

• Wie die approximativen Aspekte, insbesondere die zeitaufwandige Bewertung und die un-
scharfen Giitewerte, umgesetzt wurden, 

• wie technische vorab nicht bekannte Randbedingungen berlicksichtigt werden, 

• wie verschiedene Verfahren zur Losung der Aufgabe miteinander verkntipft werden und 

• wie durch geschicktes Einpassen eines Standardalgorithmus in einen Prozess ebenfalls die 
Anpassung an ein Problem erreicht werden kann. 

6.5.1 Aufgabenstellung 

In einem elektronischen Motorsteuergerat werden in Kennfeldem Werte abgelegt, die die tech-
nischen StellgroBen des Motors abhangig von Betriebsbedingungen einstellen. Typischerweise 
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Bild 6.18 Der Verbrennungsmotor als Blackbox-System. (Mit freundlicher Genehmigung des Oldenbourg 
Verlags.) 

sind die Kennfelder von der aktuellen Motordrehzahl und der relativen Luftmasse (d. h. dem Hub-
volumen des Zylinders) abhangig. Der zweite Faktor widerspiegelt den Wunsch des Fahrers und 
hangt direkt vom Gaspedal ab. Die technischen StellgroBen steuem direkt den Verbrennungsvor-
gang - beispielsweise durch die genaue Angabe, wann Luft/Kraftstoff in den Zylinder einflieBt 
und wann die Ziindung erfolgt. Die Wahl dieser GroBen bestimmt nicht nur die Leistung des 
Motors, sondem auch den Kraftstoffverbrauch und die Menge der Schadstoffemission. 

Formal kann man einen Motor als Blackbox-System in Bild 6.18 auffassen, das die Stellgro­
Ben in gewisse interessante ZielgroBen abbildet. Grundsatzlich muss neben den extemen Einfliis-
sen auch ein intemer Systemzustand beriicksichtigt werden. Im Rahmen der stationaren Opti-
mierung an einem Motorenpriifstand wird jedoch vereinfachend angenommen, dass das System 
nicht von einem inneren Zustand abhangt bzw. zu jedem Zeitpunkt ein eingeschwungener Sys­
temzustand vorliegt. Die einzelnen Bestandteile des Systems sind: 

• StellgroBen y e Wy, wie z. B. der Ziindzeitpunkt (Ztindwinkel) und die Verstellung der 
Steuerzeiten fiir das Einlass- bzw. Auslassventil (Einlass- bzw. Auslassspreizung), 

• StorgroBen z G M"̂ , z. B. Umgebungsbedingungen wie Luftfeuchtigkeit, -temperatur, -druck 
und Kraftstofftemperatur sowie 

• AusgangsgroBen Xa G W^'' und Xr G M"'̂ . Mit Xa werden die direkten ZielgroBen der Op-
timierung bezeichnet, wahrend die AusgangsgroBen Xr in Form von Randbedingungen bei 
der Optimierung einflieBen. Direkte ZielgroBen sind beispielsweise der KraflstoffVerbrauch 
und die Schadstoffemissionen. Die unkontrollierte Verbrennung (Klopfen) oder die Abgas-
temperatur sind entsprechende Randbedingungen. 

Der Suchraum ist ergibt sich damit als Q = W^y^^^ 
Dabei unterliegen dem komplexen System »unbekannte« Funktionen, welche die verschiede-

nen EingangsgroBen auf die beobachtbaren AusgangsgroBen abbilden. 

x^ = f(y^ z) mit / : M">'+"- -^ MP-

X, = g(y, z) mit g: W'y^''' -^ M"'̂  

Im Rahmen der Optimierung sind nur jene Losungskandidaten von Interesse, die den folgen-
den zwei Arten von Randbedingungen gentigen: 
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• Technische Randbedingungen stellen feste Beschrankungen beziiglich des Suchraums Wy 
dar. Diese werden einerseits durch die vorgegebenen physikalischen Grenzen der Stellgro-
Ben und andererseits durch experimentell ermittelte unerlaubte StellgroBenkombinationen 
definiert. Die rtt Bedingungen werden in der Funktion t mit 

tiy) < 0 

zusammengefasst. 
• Randbedingungen, die sich aus der Systemreaktion ergeben, werden ausschlieBlich aus den 

MessgroBen am Priifstand abgelesen. Vereinfachend wird hierbei angenommen, dass sie der 
folgenden Ungleichung geniigen. 

Xr=giy,z) <0 

Die StorgroBen z werden bei der Optimierung meist vemachlassigt bzw. als konstanter Vektor z' 
angenommen. Die Menge aller Individuen, die den Randbedingungen geniigen, wird dann mit 

^legal ={ye^\ g(y,z) < 0 und t(y) < 0} 

bezeichnet. 
Das Ziel der Optimierung ist, eine Einstellung y* e W^y zu finden, die sowohl Pareto-optimal 

ist, als auch alle Randbedingungen erfiillt. 
Auftretende Messfehler bei der Bestimmung der Werte fiir x^, Xr und z bzw. bei der Vorgabe 

der StellgroBen y bleiben in dieser formalen Beschreibung unberucksichtigt. 
Bei der Applikation von Motorsteuergeraten entspricht ein gefundener StellgroBenvektor y* 

genau den Einstellungen fur einen Betriebspunkt bestehend aus der aktuellen Drehzahl und der 
spezifischen Luftmasse. Um die Steuerung im gesamten Betriebsbereich zu optimieren, ist der 
Vektor J* fiir ein komplettes Raster von Betriebspunkten zu optimieren und in Kennfeldem abzu-
legen. 

Die Ermittlung der Kennfelder wird konventionell durch eine manuelle Optimierung am Mo-
torenpriifstand vorgenommen. Allerdings wachst die Anzahl der StellgroBen bei modemen Mo-
toren auf rty > 5. Der mit der Einstellung der Kennfelder verbundene exponentielle Aufwand 
ist daher selbst bei groBer Automatisierung am Priifstand nicht mehr zu bewerkstelligen. Die 
vorhandenen Altemativen zur Ermittlung der Kennfelder sind in Bild 6.19 dargestellt. Simula-
tiosmodelle wie die Software PROMO (Bild 6.19 Mitte) beruhen auf physikalischen Gleichun-
gen. Allerdings werden dabei keine Schadstoffemissionen betrachtet und die Modelle konnen 
nur bedingt an spezielle Fragestellungen angepasst werden. Auch die automatisierte Online-Op-
timierung wie in den damals verfiigbaren Produkten CAMEO und VEGA ist nur bedingt geeignet. 
Schwachpunkte sind Restriktionen hinsichtlich der Anzahl der StellgroBen und des zugrunde-
liegenden Modells, aber auch in der mangelhaften Moglichkeit zur Anpassung an spezifische 
Firmenprozesse. 

6.5.2 Entwurf des evolutionaren Algorithmus 

In Anbetracht der sehr kostspieligen und verrauschten Bewertungsfunktion wurde ein Ansatz 
gewahlt, der zunachst ein Modell des Motorverhaltens erstellt, um damit schnell mit einer Evolu-
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Bestehende Optimierungsansatze zur Steuergerateapplika-
tion. (Mit freundlicher Genehmigung des Oldenbourg Ver-
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Bild 6.20 Ablauf der Steuergerateapplikation. (Mit freundlicher Genehmigung des Oldenbourg-Verlags.) 

tionsstrategie die interessanten Motoreinstellungen zu entdecken. Das Vorgehen ist in Bild 6.20 
dargestellt und umfasst die folgenden Schritte. 

1. Zur Modellerstellung sollen am Motorenpriifstand moglichst wenig Messungen durchge-
fiihrt werden. Daher wird ein statistischer Versuchsplan erstellt, der die benotigten Stichpro-
ben vorgibt. Dabei gehen die Vorgaben des jeweiligen StellgroBenbereiches, das an Vorgan-
germotoren gewonnene Wissen sowie die Ergebnisse aus Voruntersuchungen ein. 

2. Entsprechend dem statistischen Versuchsplan wird der Motor auf dem Priifstand vermes-
sen. Aufgrund der kurzen kompakten Messphase wird der Einfluss systematischer Fehler-
quellen, wie der Alterungsprozess des Motors oder die wechselnden Umweltbedingungen, 
gering gehalten. Die resultierenden Messdaten bilden die Grundlage fur die nachfolgende 
Modellierung und Optimierung. 

3. Im Rahmen der Modellbildung werden die Daten zunachst analysiert und vorverarbeitet. 
Die vorverarbeiteten Messdaten bilden die Grundlage fur die Modellierung des System-
verhaltens mit kiinstlichen neuronalen Netzen imd anderen Modellierungsmethoden wie 
der multivariaten Regression an Polynommodellen. Durch eine mehrfache Abbildung des 
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Optimierung unter Berucksichtigung der Such-
raumbeschrankungen in Form einer Straffunktion. 
(Mit freundlicher Genehmigung des Oldenbourg-
Verlags.) 
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Systemverhaltens (konkurrierende Modellierung) werden auftretende Modellungenauigkei-
ten kompensiert. Konkret werden die Eingangsdaten um 0 zentriert und mittels der Stan-
dardabweichung skaliert. Die Ausgangsdaten werden auf den Bereich [—0,9, 0,9] skaliert. 
Als Lemverfahren werden Gradientenabstieg {Resilent Propagation und Scaled Conjugate 
Gradient) sowie zwei Varianten des GauB-Newton-Verfahrens (Rekursiv und Levenberg-
Marquardt) eingesetzt. Um sicherzustellen, dass das Modell gut zwischen den Messwerten 
vom Prlifstand interpoliert, sind Ubertrainingseffekte zu vermeiden. Hierfiir wurden mit der 
w-Segment-Kreuzvalidierung sehr gute Ergebnisse erzielt. 

4. AnschlieBend werden die konkurrierenden Modellsysteme, bestehend aus Ziel- und Rand-
wertfunktionen, zur Optimierung der StellgroBen an den untersuchten Betriebspunkten ver-
wendet. Als Ergebnis werden verschiedene Kandidaten fur optimale StellgroBenkombinatio-
nen vorgeschlagen. Konkret werden Evolutionsstrategien mit separater Schrittweitenanpas-
sung sowie Sequential Quadratic Programming benutzt. Dabei gehen die Randbedingungen 
wie in Bild 6.21 dargestellt als Strafterme in die Bewertungsfunktion ein. Meist wurde mit 
einer mittleren Population (z. B. (10, 50)-Evolutionsstrategie) gearbeitet. 

5. Die Resultate der Optimierung sind am Motorpriifstand zu verifizieren. So werden friih-
zeitig Modellungenauigkeiten erkannt. Femer ist so eine Auswahl aus den verschiedenen 
StellgroBenkombinationen unter realen Bedingungen moglich. 

6. AbschlieBend werden die jeweiligen Kennfelder aus den ausgewahlten Optimakandidaten 
berechnet. 

In den im Rahmen dieser Arbeit durchgefiihrten Studien wurde immer lediglich der Kraft-
stoffverbrauch als alleiniges Bewertungskriterium benutzt. Durch die vorgestellten Mehrzieltech-
niken aus Abschnitt 5.2 ist dies jedoch keine Einschrankung. 

6.5.3 Ergebnisse 

Als Ergebnisse betrachten wir hier einen Motor, fiir den bereits alle Kennfelder vorliegen, der 
aber aufgrund baulicher Veranderungen neu ausgelegt werden muss. 
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Fiir die Erstellung des Versuchsplans in Phase 1 wird das zu untersuchende Gebiet in der 
Drehzahl-Last-Ebene auf die Teillast von 1 500-5 000 U/min und der relativen Luftmasse von 
20-70 % festgelegt. Der Versuchsraum fiir die Ventilsteuerzeiten der Ein- und Auslassventile 
ist in einem ±10^ Kurbelwinkel-Band um den jeweiligen Referenzwert definiert. Der maximale 
Verstellbereich fiir den Ztindzeitpunkt ergibt sich aus der unteren Grenze »maximale Abgastem-
peratur« und der oberen Grenze »Klopfen«. Der Bereich kann vorab nicht absolut festgelegt 
werden, wodurch diese GroBe nicht explizit in die Versuchsplanung einflieBt. Der resultierende 
statistische Versuchsplan umfasst 35 Punkte mit unterschiedlichen Sollwerten fiir Drehzahl, Last 
und die Ventilsteuerzeiten. 

In Phase 2, der ersten Priifstandsphase, wird der Versuchsplan am Priifstand abgearbeitet, wo-
bei an jedem der Punkte der Ziindzeitpunkt-Bereich mit 3 Punkten abzutasten ist. Damit ergeben 
sich 3-35 = 105 Einzelmessungen. Femer werden 30 weitere Betriebspunkte vermessen, um 
in der nachfolgenden Modellbildung die Modelle hinsichtlich ihrere Generalisierungsfahigkeit 
beurteilen zu konnen. 

In der Modellbildung {Phase 3) werden die 105 Punkte zur Approximation der Zielfunktio-
nen verwendet (Trainingsdaten). Bild 6.22 zeigt die Giite der Modellprognosen fiir ein Kraftstoff-
modell. Neben den Trainingsdaten sind auch die 30 zusatzlichen Punkte als Validierungsdaten 
eingetragen. Mit einem mittleren relativen Fehler (MEAN) von knapp 1% auf die Trainingsdaten 
und 1,2% auf die Validierungsdaten ist die Modellgiite sehr hoch. 

Weiterhin erfordert die modellbasierte Optimierung in Phase 4 noch verschiedene Randbedin-
gungen, um den sinnvollen und erlaubten Bereich fiir die Optimierung einzuschranken. Daher 
werden anhand der Messdaten noch weitere GroBen wie die Klopfgrenze, Laufruhe, Abgastem-
peratur sowie die Emissionswerte approximiert. Bild 6.23 stellt in einem einfachen Modellsystem 
das Verhalten des obigen Kraftstoffmodells gemeinsam mit der Ausgabe des Klopfmodells dar. 

Als Ergebnis der modellbasierten Optimierung wird an den 30 Betriebspunkten die optima-
le StellgroBenkombination in Bezug auf die wesentliche ZielgroBe »spezifischer KraftstoffVer-
brauch« unter Beriicksichtigung der modellierten Randbedingungen bestimmt. Um ggf auftre-
tende Modellungenauigkeiten basierend auf der geringen Datenbasis und ein damit verbunde-
nes iteratives Vorgehen (viele Messblocke) zu vermeiden, werden drei verschiedene miteinander 
konkurrierende Modelle ausgewertet. Damit ergeben sich fiir den zweiten Messblock 3 • 30 = 90 
Sollwertvorgaben, die in Phase 5 zu verifizieren sind. 

Fiir die abschlieBende Berechnung der Kennfelder {Phase 6) liegen nun pro Betriebspunkt 
mindestens 4 Messungen vor. Zusatzlich zu den 3 Verifikationsmessungen und dem Referenz­
wert konnen ggf Versuchsplan-Messungen als Alternativen fiir die Auslegung dienen. Diese 
Altemativen sind in Fallen notig, in denen zusatzlich zur Beriicksichtigung der ZielgroBen Kom-
promisse im Hinblick auf eine dynamische Fahrbarkeit gemacht werden miissen. Dies bedeutet, 
dass bei mechanischen StellgroBen die Verstellgeschwindigkeit beachtet und damit hohe Gradi-
enten in den Kennfeldem zu vermeiden sind. Somit wird in bestimmten Punkten das suboptimale 
Ergebnis mit einem glatten Kennfeldverlauf bevorzugt. Die modifizierten Stellwerte fiir die Ven-
tilspreizungen sind in Bild 6.24 dargestellt. Die linken Kennfelder zeigen den Ausgangsstand, die 
rechten Kennfelder das Ergebnis der Optimierung. Deutlich zu erkennen ist, dass die Kennfelder 
dem urspriinglichen Verlauf ahneln, jedoch einen deutlich glatteren Verlauf im mittleren Bereich 
aufweisen. 

Bild 6.25 zeigt die relativen Differenzen in Bezug zum Referenz-Datenstand fur den spezifi-
schen Kraftstoffverbrauch. Hohe Kraftstoffeinsparungen konnen im untersuchten Teillastgebiet 
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Bild 6.22: Vergleich der tatsachlichen Messwerte fur den spezifischen Kraftstoffverbrauch mit den Ausga-
ben des Neuronalen-Netz-Modells. (Mit freundlicher Genehmigung des Oldenbourg-Verlags.) 
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Bild 6.23: Modellprognosen fiir Kraftstoffmodell mit Suchraumbeschrankung durch Klopfmodell. (Mit 
freundlicher Genehmigung des Oldenbourg-Verlags.) 
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Bild 6.24: Vergleich der Kennfelder: links alter und rechts optimierter Stand. (Mit freundlicher Genehmi-
gung des Oldenbourg-Verlags.) 
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Bild 6.25: Vergleich der Datenstande: Kraftstoffeinspamngen in der Drehzahl-Last-Betriebsebene. (Mit 
freundlicher Genehmigung des Oldenbourg-Verlags.) 
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vor allem im mittleren Drehzahlbereich und in den Randgebieten realisiert werden. Der neue 
Datenstand fiihrt in dem optimierten Bereich zu einer ungewichteten mittleren Reduktion um 
2,8%. Dies wird unter Einhaltung der Randbedingungen (Emissionen, Abgastemperatur, Laufru-
he, Klopfen) erreicht. 

Neben der Qualitat der Ergebnisse ist fiir den Motorentwicklungsprozess vor allem die Ef-
fizienz und damit die Dauer der Optimierung maBgebend. In weiteren Iterationsschleifen und 
langwierigen statistischen Untersuchungen kann zwar die Giite der Ergebnisse noch marginal 
verbessert werden, jedoch steht dies nicht in Relation zum Mehraufwand. 

Diese Vorgehensweise spart im Vergleich zur Vollrasterung als »konventionelle Strategie« et-
wa zwei Drittel der Messungen ein. Diese Ergebnisse gewinnen eine hohe Bedeutung vor dem 
Hintergrund, dass pro Messung (mit Ziindzeitpunkt-Optimierung) durchschnittlicli ca. 10 Minu-
ten effektive Prtifstandszeit benotigt werden. 

6.6 Fallstudie: Stundenplanerstellung 

Stundenplanungsprobleme beschaftigen weltweit Planer an Hochschulen und Schulen. In dieser 
Arbeit wurde ein evolutiondrer Algorithmus speziell fiir typische Schulstundenpldne entwickelt 
und anhand realer Daten getestet. 

Die Arbeit in dieser Fallstudie wurde von den Softwaretechnikstudenten Marc Bufe, Tim Fi­
scher, Holger Gubbels, Claudius Hacker, Oliver Hasprich, Christian Scheibel, Michael Wenig 
und Christian Wolfangel im Rahmen eines einjahrigen Studienprojekts durchgefuhrt. Das Pro-
jekt selbst war produktorientiert, sodass fur den »Forschungsanteil« nicht ausreichend Zeit zur 
Verfiigung stand. Die Studenten wurden von Nicole Weicker und dem Autoren betreut. Im Rah­
men dieses Buchs sind die folgenden Details interessant: 

• Genotyp und Phanotyp agieren auf unterschiedlichen Ebenen mit einer »intelligenten« De-
kodierungsfunktion dazwischen, 

• wie mit einem hochgradig durch Randbedingungen beschrankten Problem umgegangen 
werden kann und 

• welche kleinen Fehlentscheidungen in einem Projekt zu unzureichender Ergebnisqualitat 
fiihren konnen. 

6.6.1 Aufgabenstellung 

Einfache Stundenplanungsprobleme werden mittels der folgenden Mengen formuliert: Lehrer 
Le, Klassen Kl, Raume Rm, Zeitschienen Zt und Unterrichtsfacher Uf. Jedes Each u ^Uf be­
notigt eine Klasse k{u) e Kl, einen Lehrer l{u) e Le und die Anzahl der Stunden pro Woche 
stunden{u) G N. Fiir die Losung des Problems muss eine Abbildung 

PlaniUf -^ ^{ZtxRm) 

gefunden werden, wobei #Plan {u) = stunden (u). Beispielsweise weist Plan {u) = {(Mo-1, 101), 
(Mi-3, 102)} einem Fach die erste Montagsstunde im Raum 101 und die dritte Mittwochsstunde 
imRaum 102 zu. 
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Femer mussen die folgenden harten Randbedingungen erfiillt sein. Zur Vereinfachung gelte 
ftir 5" = (z, r) ^Ztx Rm die Notation z{s) = z und r{s) = r. 

• Jede Klasse hat nur eine Unterrichtsstunde zur selben Zeit. 

V /̂, u' eUf{u^ u') : {k{u) = k{u') => (V^ G Plan{u) V/ G P/a^(^/0 : z(^) ^ z( / ))) 

• Jeder Lehrer unterrichtet nur eine Stunde zur selben Zeit. 

V /̂, u' eUf{u^u')\ (l{u) = l{u') => {ys G Plan{u) V^ G P/a^(^/0 : z{s) 7̂  z(y))) 

• In jedem Raum findet nur eine Unterrichtsstunde zur selben Zeit statt. 

\fu, u' eUf{u^ u') Ws G Plan{u) W G Plan{u') : {r{s) = r{s') => z{s') ^ z{s')) 

Dies reicht allerdings nicht aus, um echte Instanzen von Stundenplanungsproblemen zu be-
schreiben. Das Problem sind vor allem klasseniibergreifende Unterrichtsstunden wie im Sportun-
terricht oder die konfessionsorientierte Verteilung der Schiller einer Klassenstufe im Religions-/ 
Ethikunterricht. Zu diesem Zweck werden mehrere Klassen pro Fach erlaubt (k{u) C Kl). Zu-
sammen mit mehreren Lehrem pro Fach (l{u) C Le) kann dann der Sportunterricht mit mehreren 
Gruppen in einer Halle abgebildet werden. Fiir separat geplante Raume fiihren wir hingegen 
gruppierte Unterrichtsfacher ein, die gemeinsam zur selben Zeit geplant werden mussen. Dabei 
bezeichne [u] C Uf fixv ein Unterrichtsfach u e Uf diQ gleichzeitig zu planenden Unterrichtsfa­
cher. Im Falle einer normalen Unterrichtsstunde gilt [u] = {u}. Die ersten beiden harten Randbe­
dingungen lassen sich damit wie folgt umformulieren. 

• Jede Klasse hat nur eine Unterrichtsstunde zur selben Zeit. 

Vw,u'eUf {yl i \u\): [{k{u)r\k{ijl) 7̂  0) ^ (V^ GPlan{u) V/ GPlan{il) : z{s) ^z{s'))) 

• Jeder Lehrer unterrichtet nur eine Stunde zur selben Zeit. 

Vw, u' eUf {u' ^[u\)\ ( {l{u)rM{u') 7̂  0) ^ (V^ G Plan{u) \Is' G Plan{u') : z{s) ^ z{s'))) 

Dariiber hinaus konnen noch Zeiten der Unverfiigbarkeit fiir Klassen, Lehrer und Raume ange-
geben werden. Auch ist es moglich fur Raume bestimmte Ausstattungsmerkmale (z. B. Chemie-
Horsaal) anzugeben, um durch Angabe derselben Merkmale als Forderungen bei Fachem die 
passende Planung zu erzwingen. Diese Randbedingungen sind ebenfalls hart. 

Die Erfullung der folgenden weichen Randbedingungen ist nicht zwingend notwendig, ob-
wohl sie aus organisatorischen und didaktischen Gesichtspunkten wichtig sind. 

(S-1) Der Unterricht soil vornehmlich am Vormittag stattfinden. 
(S-2) Lehrer mit mit Teilzeitvertragen haben meist eine gewisse Anzahl an garantierten freien 

Tagen pro Woche. 
(S-3) Fiir einige Veranstaltungen werden Doppelstunden eingefordert (oder verboten) - ebenso 

vierzehntagige Platzierung oder die Nutzung von Randstunden. 
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Bild 6.26 Fiir die Optimierung der Stundenplane werden Operatoren sowohl auf den Genotyp als auch auf 
den Phanotyp angewandt. 

(S-4) Eine gleichmaBige Verteilung der Stunden eines Fachs iiber die Woche ist gewiinscht. 
Ebenso kann fur mehrere Facher gewunscht werden, dass sie nicht am selben Tag stattfin-
den. 

(S-5) Hohlstunden sind insbesondere fiir Klassen unerwiinscht. 
(S-6) Fiir jede Zeitschiene muss ein Lehrer verfiigbar sein, der eine Klasse bei Krankheit des 

eigentlichen Lehrers beaufsichtigt. 

6.6.2 Entwurf des evolutionaren Algorithmus 

Zur Optimierung von Stundenplanen mit evolutionaren Algorithmen gibt es zwei grundsatzlich 
verschiedene Ansatze: Entweder die evolutionaren Operatoren arbeiten direkt auf den Stunden­
planen Oder es wird auf einem einfacheren Genotypen gearbeitet, aus dem dann eine Erstellungs-
heuristik jeweils einen Stundenplan konstruieren kann. Wahrend die erste Technik eine sehr hohe 
Korrelation zwischen Eltemindividuen und Kindindividuen aufweisen kann, liegt der Vorteil der 
zweiten in der Nutzung bekannter Heuristiken. Um beide Vorteile zu verbinden, wurde ein evolu-
tionarer Algorithmus entworfen, der auf beiden Ebenen, Genotyp und Phanotyp, mit Operatoren 
arbeitet. Das resultierende Grundkonzept ist in Bild 6.26 veranschaulicht. 

Als Genotyp wird eine Permutation der einzelnen zu planenden Facher (pro Klasse) verwen-
det, die im Wesentlichen die Reihenfolge angibt, mit der die Stunden verplant werden. Als Muta­
tion wird hier der Tausch zweier Facher in der Planungsreihenfolge betrachtet: VERTAUSCHENDE-

MuTATiON in Algorithmus 2.1. Die Rekombination ist die ABBILDUNGSREKOMBINATION (Algo­
rithmus 4.7) auf der Basis eines EIN-PUNKT-CROSSOVER (Algorithmus 3.13). Dadurch wird der 
erste Teil der Planung von einem Eltemteil iibernommen und der zweite Teil durch Facher auf-
gefiillt, die im anderen Individuum zu einer ahnlichen Zeit verplant wurden. Diese Operatoren 
sollen auf dieser Ebene sowohl kleine Veranderungen als auch das Erforschen neuer Bereiche 
unterstiitzen. 

Jedes solches Individuum wird durch eine Heuristik in einen Stundenplan verwandelt. In ei­
ner ersten Phase werden auf Basis der Veranstaltungsreihenfolge die freien Tage der Teilzeitkraf-
te gleichmaBig iiber die Woche verteilt. In einer zweiten Phase wird fiir alle Veranstaltungen 
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Algorithmus 6.4 
STUNDENPLAN-HEURISTIK(^ra«5'/<3f/^WWg) 

1 for each Zeit e {Morgen,Nachmittag} 
2 do ̂  for each Randbedingungen G {alle^ nurHarte} 
3 do ̂  for each Tag G {Mo, Mi, Do, Di, Fr} 
4 do ̂  suche Raum und Uhrzeit an TaglZeit, dass 
5 alle Randbedingungen ftir die Veranstaltung erfullt sind 
6 if Suche erfolgreich 
7 L L L then E verplane nachste unverplante Stunde in Veranstaltung entsprechend 
8 unverplante Stunden werden in einer Extraliste gefuhrt 

entschieden, wieviele Doppel- und Einfachstunden eingeplant werden. SchlieBlich werden alle 
Veranstaltungen in der dritten Phase gemaB des Setzalgorithmus STUNDENPLAN-HEURISTIK (Al­
gorithmus 6.4) in der Reihenfolge der Permutation gesetzt. 

Durch sein Vorgehen versucht der Algorithmus die Randbedingungen zur Tageszeit (S-1) und 
zur gleichmaBigen Verteilung (S-4) zu berticksichtigen. Dartiberhinaus erfullt jede gesetzte Stun­
de alle harten Randbedingungen und falls moglich die weichen Randbedingungen (S-2) und 
(S-3). Aufgrund der harten Randbedingungen konnen einzelne Stunden unverplant bleiben. Da 
diese Heuristik nicht alle moglichen Stundenplane erzeugen kann, sind die phanotypischen Muta-
tionen ftir eine theoretische Erreichbarkeit aller Stundenplane notwendig - insbesondere fiir die 
Verplanung bisher ungesetzter Veranstaltungen. 

Auf der Ebene des Phanotyps gibt es die folgenden Mutationen: 

• eine verplante Stunde aus dem Plan entfemen bzw. 

• eine verplante Stunde an eine passende freie Stelle verschieben. 

AnschlieBend wird gepriift, ob nun eine unverplante Stunde geplant werden kann. Dabei werden 
ausschlieBlich die harten Randbedingungen beachtet. 

In der zu minimierenden Bewertungsfunktion / werden alle weichen Randbedingungen be-
rticksichtigt: 

/{Stundenplan) = unverplant + verletzt + schief , 

wobei unverplant der gewichteten Anzahl unverplanter Stunden, verletzt der mittleren Verletzung 
der weichen Randbedingungen (mit einer geeigneten Gewichtung) und schief der Standardabwei-
chung iiber die Verletzung der verschiedenen weichen Randbedingungen entspricht. Der dritte 
Faktor soil dafiir sorgen, dass alle Randbedingungen gleichermaBen minimiert werden. 

Als Selektionsschema wird eine gleichverteilte Selektion der Eltem benutzt und es werden 
durch die besten Kindindividuen die schlechtesten 40% der Eltemindividuen ersetzt. Dies er-
laubt den guten Individuen in der Population, dass sie iiber einen langen Zeitraum durch die 
phanotypischen Mutationen verbessert werden. 

6.6.3 Ergebnisse 

Fiir die Experimente wurden die Stundenplanungsdaten eines Gymnasiums mit 61 Lehrem, 23 
Klassen, 49 Raumen und 351 Fachem benutzt. Die Klassenstufen 5-11 wurden in drei Parallel-
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Bild 6.27 Ergebnisse der Experimente mit dem Stundenplanungsalgorithmus. (Mit freundlicher Genehmi-
gung des ©Springer Verlags.) 

klassen beriicksichtigt, die Klassen 12 und 13 wurden jeweils als eine Klasse verbucht, da in den 
Daten bereits enthalten war, welche Veranstaltungen im Kurssystem gleichzeitig stattfinden. 

Bedingt durch die aufwandige Stundenplanerstellung und die Berechnung der vielen Randbe-
dingungen ist der Algorithmus sehr langsam, sodass fiir 4 000 Generation mit einer Populations-
groBe fi = 20 etwa 12 Stunden Rechenzeit auf der damaligen Hardware benotigt wurde. Daher 
ist die Einstellung der Parameter im Wesentlichen entgefallen. 

Es wurden drei verschiedene Experimentreihen durchgefuhrt: 

nur genotypische Operationen 

zunachst nur genotypische Operationen, ab Generation 1 200 nur phanotypische Mutationen 

nur phanotypische Mutationen 

Die besten gefundenen Ergebnisse sind in Bild 6.27 dargestellt. 
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Wie man deutlich erkennt, konnten die phanotypischen Mutationen zwar das Ergebnis verbes-
sem, was die grundsatzliche Richtigkeit des Ansatzes unterstreicht, aber die Ergebnisse sind bei 
Weitem noch nicht qualitativ ausreichend. Folgende Griinde fiir die eher schlechten Resultate 
konnen identifiziert werden. 

1. Die Zuweisung der freien Tage fiir die Teilzeitlehrer in Phase 1 sorgt fiir Probleme bei 
der weiteren Optimierung, da nicht beriicksichtigt wird, welche Lehrer zeitgleiche Stunden 
abhahen - dies gilt in unseren Beispieldaten fiir die Rehgionslehrer, die Sportlehrer und 
alle Lehrer des Kurssystems. 

2. Der Algorithmus zur Stundenplanerstellung sollte bereits mehr Gewicht auf die liickenfreie 
Planung fiir die Klassen legen. Aktuell wird beginnend ab der ersten Schulstunde ein freier 
Platz gesucht - dies schrankt die entstehenden Stundenplane etwa dahingehend ein, dass 
das erste verplante Fach jeden Tag in der ersten Stunde Hegt. 

3. Weiterhin wird verschiedenes bekanntes heuristisches Wissen von erfahrenen Stundenpla-
nem nicht genutzt. 

• Kombinierte Veranstaltungen mit mehreren Lehrem miissen so friih wie mogUch ver-
plant werden. Im vorhegenden Algorithmus miissen diese erst durch die zufalligen 
Operatoren an den Anfang der Permutationen geschoben werden - eine Zeitverschwen-
dung, die angesichts der Laufzeit nicht akzeptiert werden kann. 

• Unverplante Veranstaltungen werden von Planern am Ende haufig mit einem Verdran-
gungsverfahren verplant: Es wird ein geschickter, bereits belegter Platz fiir die Stunde 
ermittelt und die verplante Stunde durch die bisher unverplante ersetzt. Das Verfahren 
wird solange iteriert bis die unverplante Stunde einen freien Platz findet. Warum ist ein 
solches Vorgehen sinnvoll? Weil es im Gegensatz zu den umgesetzten phanotypischen 
Operationen zielgerichteter an der Verbesserung des Stundenplans arbeitet. 

Die weitere Verbesserung des Verfahrens unterblieb jedoch, da die Projektzeit der Studenten 
abgeschlossen war und sich kein studentisches Folgeprojekt ergeben hat. 

6.7 Ubungsaufgaben 

Aufgabe 6.1: Vergleich von Algorithmen 

Greifen Sie den Handlungsreisendenalgorithmus aus Kapitel 2 auf und experimentieren Sie, 
wieviele Optimierungen benotigt werden, um zu zeigen, dass die INVERTIERENDE-MUTATION 
(Algorithmus 2.2) bessere Ergebnisse Hefert als die VERTAUSCHENDE-MUTATION (Algorith­
mus 2.1). Reichen 2, 5, 10 oder 50? 

Aufgabe 6.2: Problemwissen 

Analysieren Sie die Fallstudie zur Stundenplanerstellung. Welches Problemwissen wurde nicht 
benutzt? Entwickeln Sie ein Konzept, das dieses Wissen vollstandig in den Algorithmus inte-
griert. 
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Aufgabe 6.3: Algorithmenentwurf 

Betrachten Sie das Problem des zweidimensionalen Binpacking: Eine vorgegebene Menge an 
Quadraten verschiedener GroBe soil tiberschneidungsfrei in eine ebenfalls vorgegebene Flache 
platziert werden. Versuchen Sie alle Schritte der Entwurfsmethodik fur dieses Problem durchzu-
fiihren. 

Aufgabe 6.4: Antennenoptimierung 

Betrachten Sie den Rekombinationsoperator nochmals genauer. Wie konnte der Operator ver-
allgemeinert werden? Und warum ist er in der vorliegenden Form gerade far das Modell von 
Ziirich besonders gut geeignet? 

Aufgabe 6.5: Randbedingungen 

Sowohl in der Motorenoptimierung als auch der Stundenplanerstellung wurden Randbedingun­
gen u.a. durch Strafterme umgesetzt. Uberlegen Sie jeweils, was andere sinnvolle Mechanismen 
sein konnten. 

6.8 Historische Anmerkungen 

Die vorgestellten Abhangigkeiten zwischen den Parametem eines evolutionaren Algorithmus, 
die im Rahmen des Vergleichs von Algorithmen diskutiert wurden, sind nur selten expliziter 
Inhalt wissenschaftliche Literatur. Indirekt wird von solchen Abhangigkeiten allerdings bereits 
in den Arbeiten von De Jong (1975) und Grefenstette (1986) ausgegangen, die sich mit sinn-
vollen Parameterkombinationen fiir unterschiedliche Probleme beschaftigen. Die ausfuhrlichste 
Arbeit zu diesem Thema stellt vermutlich der Beitrag von Deb & Agrawal (1999) dar, der auch 
das Beispiel in diesem Kapitel inspiriert hat. Hypothesentests linden sich in der gangigen ma-
thematischen Literatur (Lehn & Wegmann, 2006; Press et al., 1988-92) - die Tabellen fur die 
Fehlerwahrscheinlichkeit sind in jedem Tabellenwerk enthalten. 

Bei den Vorgehensmodellen sind grobe Entwurfsmuster beispielsweise in Kapitel 7 des Lehr-
buchs von Pohlheim (2000) enthalten. Dort wird auch in Kapitel 8 eine Variante des wieder-
verwendungsbasierten Ansatzes vorgestellt. Die Schwierigkeit der Problemklassifikation wird 
beispielsweise von Naudts & Kallel (2000) und Merz (2000) thematisiert. 

Der Forma-basierte Ansatz wurde durch Radcliffe (1991a,b) und Surry (1998) begrtindet. Rad-
cliffe & Surry (1995) veroffentlichten auch gemeinsam die Forma-Gute-Varianz. Diese Metho-
de hat durchaus eine gewisse Verbreitung gefunden, wie die Anwendungen von Cotta & Troya 
(1998, 2001) zeigen. 

Der analysebasierte Ansatz basiert in groBen Teilen auf der Diplomarbeit von Fischer (2004). 
Bei den vorgestellten Metriken fiir die Operatoranalyse stammen die Begriffe induzierte Opti­
ma und deren Isoliertheit von Jones (1995). Die Verbesserungswahrscheinlichkeit von Rechen-
berg (1973) wurde zusammen mit der erwartete Verbesserung von Fogel & Ghozeil (1996) und 
Weicker & Weicker (1999) wieder aufgenommen. Hinter der Korrelation der Elter-ZKindgtite 
verbergen sich die Arbeiten von Weinberger (1990), Hordijk (1997) und Altenberg (1995). Bei 
den Leistungsmetriken sind insbesondere die durchschnittliche und die mittlere beste Gtite zu 
erwahnen, die als online bzw. offline performance von De Jong (1975) vorgestellt wurden. Der 
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erste Bericht iiber die Verwendung statistischer Versuchsplanung zur Einstellung der Parameter-
werte stammt von Sugihara (1997). Eine wesentlich altere, hier nicht behandelte Alternative zur 
Parameterkalibrierung ist der Meta-EA von Grefenstette (1986). Die Umsetzung des Ansatzes fiir 
das Handlungsreisendenproblem findet sich in der Diplomarbeit von Fischer (2004). Zu Hypothe-
sentests und statistischer Versuchsplanung konnen weitere Details der Fachliteratur entnommen 
werden (Cohen, 1995; Cobb, 2002). 

Der Vollstandigkeit halber sei hier noch die Arbeit von Sharpe (2000) erwahnt, der ebenfalls 
die Wahl der Reprasentation in den Mittelpunkt stellt, um anschlieBend Informationen iiber das 
Problem zu sammeln und gemaB Entwurfsmustem einen passenden Algorithmus zu wahlen. Er 
steht dabei jedoch den Moglichkeiten kritisch gegeniiber, die Ahnlichkeit von Problemen zu 
bestimmen. 

Einbettung von Problemwissen in einen evolutionaren Algorithmus in der Form von Heuristi-
ken Oder lokaler Suche wurde stark durch die Arbeit von Davis (1991b) gepragt. In der Folgezeit 
wurden sehr viele Arbeiten mit hybriden Ansatzen veroffentlicht (siehe z. B. bei Michalewicz, 
1992). Das Beispiel des hybriden Operators fur das Stundenplanproblem stammt aus der Arbeit 
von Burke et al. (1995). Die Initialisierung der Anfangspopulation durch Heuristiken hat bereits 
Grefenstette (1987b) eingefuhrt. 

Die Fallstudie zur Platzierung von Antennen basiert auf der Arbeit von Szabo et al. (2002). 
Der Aspekt der Mehrzieloptimierung wurde dann spater genauer herausgearbeitet (Weicker et al., 
2003). Das reine Platzierungsproblem wird beispielsweise auch durch die Heuristik von Galota 
et al. (2000) oder die Tabu-Suche (Vasquez & Hao, 2001) gelost. Fiir die Frequenzzuweisung 
gibt es noch mehr Literaturstellen, z. B. die heuristische Losung von Zhou & Nishizeki (2001) 
oder GA-Varianten (Crisan & Miihlenbein, 1998). Zu den wenigen Ansatzen, beide Probleme 
gleichzeitig zu losen, zahlen die Arbeiten von Gupta & Kalvenes (1999) und Mathar & Schmeink 
(2002). Fiir die vorgestellten Datenstrukturen wurde im Projekt die LEDA-Bibliothek (Mehlhom 
& Naher, 1999) herangezogen. Das Modell fiir Ziirich wurde gemaB der Vorgehensweise von 
Tutschku et al. (1997) ersteUt. 

Die Kennfeldoptimierung wurde im Detail in der zugehorigen Veroffentlichung (Weicker 
et al., 2003) beschrieben. Andere Aspekte der Arbeit wurden von Mitterer et al. (1999), Mitterer 
& Zuber-Goos (2000) und der Dissertation von Mitterer (2000) beschrieben. Bei den Lemver-
fahren fiir die neuronalen Netze sei hier insbesondere auf Resilent Propagation (Riedmiller & 
Braun, 1993) und Scaled Conjugate Gradient (Moller, 1993) verwiesen. Die Variante des GauB-
Newton-Verfahrens stammt von Levenberg (1944) und Marquardt (1963). 

Der vorgestellte Ansatz zur Stundenplanoptimierung wurde von Bufe et al. (2001) veroffent­
licht. Einen tJberblick iiber die verschiedenen gangigen Techniken kann man sich in der Arbeit 
von Schaerf (1999) und (am Rande) Qu et al. (2006) verschaffen. Mit einer direkten Darstel-
lung der Stundenplane haben beispielsweise Colomi et al. (1998) und Femandes et al. (1999) 
gearbeitet. In der universitaren Stundenplanung wurden auch indirekte Reprasentationen mit 
Platzierungsalgorithmen erfolgreich eingesetzt (Paechter et al., 1998). 



Anhang 



A Benchmark-Funktionen 

Dieser Anhangfasst einige wenige Benchmark-Funktionen zusammen, die auch im Hauptteil des 
Buches benutzt wurden. 

In der Literatur findet sich eine Vielzahl von so genannten Benchmark-Funktionen. Dabei 
handelt es sich um standardisierte Probleme, die fiir einen Leistungsvergleich verschiedener Op-
timierungsverfahren herangezogen werden. 

Bei den Benchmark-Funktionen der Funktionsoptimierung wird eine mathematische Funktion 
auf einem mehrdimensionalen Wertebereich definiert und der minimale oder maximale Funk-
tionswert gesucht. Diese Funktionen lassen sich beziighch ihrer Separierbarkeit unterscheiden. 
Dabei heiBt eine Funktion separierbar, wenn sie sich als Summe von Termen darstellen lasst, 
die jeweils nur von dem Wert einer Dimension des Suchraums abhangen. Eine weitere Unter-
scheidung kann mittels der Anzahl der lokalen und globalen Optima im Suchraum getroffen wer­
den, wobei ein lokales Optimum als Extremum im mathematischen Sinn aufgefasst wird (d. h. 
beziighch der natlirhchen Nachbarschaft im Suchraum und nicht beziighch einer durch Operato-
ren induzierte Nachbarschaftsstruktur). Existiert nur ein lokales (und gleichzeitig auch globales) 
Optimum, spricht man von einem unimodalen Problem - andemfalls von einem multimodalen. 
Insgesamt geht man davon aus, dass der Schwierigkeitsgrad von nicht separierbaren bzw. multi­
modalen Problemen groBer ist als bei separierbaren bzw. unimodalen Problemen. 

Ein Beispiel fiir ein separierbares, unimodales Minimierungsproblem ist die Sphdre 

f{X) = ±Xf, 

die von Rechenberg (1973) und De Jong (1975) eingefiihrt wurde. Meist wird sie mit /2 = 30 
und den Wertebereichen —5,12<J[^<5,12fiir 1 < i <n benutzt. Der minimale Giitewert ist 
/ (O , . . . ,0) = 0. 

Ein weiteres Beispiel ist die gewichtete Sphdre (vgl. Schwefel, 1995) 

die meist ebenfalls mit n = 30 und —5,12<JL/<5,12fiirl <i<n optimiert wird. Ihr minimaler 
Giitewert ist ebenfalls / (O , . . . ,0) = 0. 

Ein Beispiel fiir ein separierbares, multimodales Minimierungsproblem ist die Rastrigin-Funk-
tion 

n 

/(X) = 10 • w + ^ ( ^ 2 - 10 • cos(2. :7r •^•)). 
i=\ 

die von Tom & Zilinskas (1989) eingefiihrt wurde. Analog zu den obigen Funktionen gilt auch 
hier meist ^ = 30 und —5,12 < JQ < 5,12 fiir 1 < / < ^, und die minimale Giite ist / (O , . . . ,0) = 0. 
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Auch die Sinus-Summe von Schwefel (1995) 

f{X) = 418,98289•^ + X-^z'sin ( v | ^ ) 
i=\ 

ist ein separierbares, multimodales Minimierungsproblem - meist mit n = 30 und —512,03 < 
^ < 511,97 fiir l<i<n. Der optimale Giitewert ist /(420,968 746 3 , . . . , 420,968 7463)^ 0. 

Ein Beispiel fiir ein nicht separierbares, unimodales Minimierungsproblem ist die Doppelsum-
me von Schwefel (1977) 

f{x) = t[tx)\ 
i=\ 7=1 

Auch diese Funktion wird meistens fiir w = 30 und die Wertebereiche — 65^536 <Xi < 65,536 
fiir 1 < /• < /2 optimiert. Die minimale Giite ist / (O , . . . ,0) = 0. 

Die Rosenbrock-Funktion 

fix) = I (100• {xf -Xi+,f + (1 -Xif) 

von De Jong (1975) ist ebenfalls eine nicht separierbare, unimodale Funktion mit ^ = 30 und 
-2,048 <Xi< 2,048 fiXrl<i<n. Das gesuchte Minimum i s t / ( I , . . . ,1) = 0. 

Ein Beispiel fiir ein nicht separierbares, multimodales Problem ist die Ackley-Funktion 

/ ( X ) = 2 0 + e x p ( l ) - 2 0 . e x p | - J ^ . X j [ ; M _ ^ ^ ^ 

die von Ackley (1987a) eingefiihrt wurde und meist mit ^ = 30 und —20 < ^ < 30 (1 < / < n) 
benutzt wird. Die minimale Giite betragt / (O , . . . ,0) = 0. 

Ein weiteres nicht separierbares, multimodales Beispiel ist die Griewank-Funktion (vgl. Tom 
&Zilinskas, 1989) 

n Y'^ « / Y.\ 

mit /2 = 30, — 5 1 2 < J L ^ < 5 1 1 (1 <i<n) und einem Minimum von / (O , . . . ,0) = 0. 
Neben den reellwertigen Testfunktionen ist das Einsenzdhlproblem ein Benchmark fiir den 

genetischen Algorithmus, das die binare Entsprechung zur reellwertigen Sphare darstellt. Es han-
delt sich dabei um die folgende zu maximierende Funktion 

fix) = t^i 
i=\ 

mitX G B'̂ . Die Dimension n kann beliebig gewahlt werden. 
Ein zweites binares Benchmark-Problem ist die einfache Royal-Road-Funktion, die von Mit­

chell et al. (1992) eingefiihrt wurde. Sie fasst die Bits der Losungskandidaten in Blocken der 
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60 
60 
65 
35 
25 
10 
5 
20 
30 
40 
60 
65 
20 

Stadt 

22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

Koord. 

45 
55 
65 
65 
45 
35 
41 
64 
40 
31 
35 
53 
65 
63 
2 
20 
5 
60 
40 
42 
24 

10 
5 
35 
20 
30 
40 
37 
42 
60 
52 
69 
52 
55 
65 
60 
20 
5 
12 
25 
7 
12 

Stadt 

43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 

Koord. 

23 
11 
6 
2 
8 
13 
6 
47 
49 
27 
37 
57 
63 
53 
32 
36 
21 
17 
12 
24 
27 

3 
14 
38 
48 
56 
52 
68 
47 
58 
43 
31 
29 
23 
12 
12 
26 
24 
34 
24 
58 
69 

Stadt 

64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 

Koord. 

15 
62 
49 
61 
56 
37 
37 
57 
47 
44 
46 
49 
49 
53 
61 
57 
56 
55 
15 
14 
11 

77 
77 
73 
5 
39 
47 
56 
68 
16 
17 
13 
11 
42 
43 
52 
48 
37 
54 
47 
37 
31 

Stadt 

85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 

Koord. 

16 
4 
28 
26 
26 
31 
15 
22 
18 
26 
25 
22 
25 
19 
20 
18 
35 

22 
18 
18 
52 
35 
67 
19 
22 
24 
27 
24 
27 
21 
21 
26 
18 
35 

Tabelle A. 1 Koordinaten des Handlungsreisendenproblems e i 1101. 

Lange k zusammen. Pro Block miissen alle Bits den Wert 1 haben, damit sie einen positiven 
Beitrag zur Giite des Individuums liefem. Fiir einen Genotyp ^ = B^ mit / = A: • w ist die Bewer-
tungsfUnktion dann wie folgt definiert. 

m—\ 

f{X)=^5i{X)-k wobei 

m) 
i=0 

[l: 
fallsV7G{/-^+l, 
sonst. 

. ( / + 1 ) . ^ } : Xj = l 

Diese Funktion kann auch leicht iiber Schemata der Ordnung k definiert werden. 
Zusatzlich sind auch kombinatorische Probleme sehr beliebt als Benchmarks, um unterschied-

liche Algorithmen zu vergleichen. Das klassische Problem ist hierbei das Handlungsreisenden-
problem, das im Beispiel 2.1 ausfiihrlich eingefiihrt wurde. Das in diesem Buch verwendete 
Problem e i 1101 enthalt die Stadte in Tabelle A. 1 und die Kosten einer Kante ergeben sich aus 
dem euklidischen Abstand der verbundenen Stadte. Die optimale Tour hat die Lange 629. 

Eine andere auf Permutationen definierte Funktion ist die so genannte C-Funktion, die von 
Claus (1991) eingefiihrt wurde. Es handelt sich dabei um ein KomplexitatsmaB 

l ^ y - ^ l 
n—\ n 



274 A Benchmark-Funktionen 

n = 2 
n = 3 
n = 4 
n = 5 
n = 6 

2,0 
7,0 
16,667 

29,167 
47,4 

n = l 
n = S 
n = 9 
n=lO 

n = n 

68,433 

95,886 

126,938 

163,937 

205,463 

n = \2 
n = l3 
n = U 

253,066 

305,180 

363,514 

Tabelle A.2 Beste Funktionswerte fiir die C-Funktion. 

mit dem die Permutation X ^ S^n mit maximaler Komplexitat gesucht wird. Bekannte Optima 
sind in Tabelle A.2 dargestellt. 

Eine Ubersicht zu Benchmark-Funktionen mit Randbedingungen kann der Arbeit von Micha-
lewicz & Schoenauer (1996) entnommen werden. Ein einfaches Beispiel ist die folgende zu 
minimierende Funktion von Floudas & Pardalos (1990): 

/(X) = (Xl-10)3 + (X2-20)^ 

mit den Randbedingungen 

(Xi - 5f + (X2 - 5)^ - 100 > 0 

-{Xx - 6f - (X2 - 5f + 82,81 > 0, 

wobei 13 <Xi < 100 und 0 <X2 < 100. Das gesuchte Optimum istX* = (14,095, 0,842 96) 
mitdemFunktionswert/(X*) = -6961,814. 

Eine schwierigere, zu maximierende Funktion, bei welcher der giiltige Bereich auf eine Hy-
perkugel reduziert wird, stammt von Michalewicz et al. (1996): 

f{X) = {Vnr-ll^i 
i=\ 

mit der Randbedingung ^ X̂ ^ = 1, 
z=l 

wobei 0 < X; < 1 fiir 1 < / < ^. Das gesuchte Optimum ist X* = ( ^ , . . . , ^ ) mit dem Funkti-

onswert/(X*) = 1. 
Auch fiir die Techniken der Mehrzieloptimierung steht eine ganze Reihe an Benchmark-Funk­

tionen zur Verfiigung. Eine Ubersicht kann der Arbeit von Zitzler et al. (2000) entnommen wer­
den, aus der auch die folgenden zwei Funktionen stammen. 

/ ! « = « 

/^m=^m-(•-/!?) mit itg(X) = l + 9 . X - ^ . 
i=2 ^ ^ 

Die vorstehende Funktion hat eine konvexe Pareto-Front, wahrend die folgende Funktion konkav 
ist. 

/ i (X)=Xi 

mit 
Xi itg(X) = 1 + 9 . 1 ^ . 

i=2 ^ ^ 
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B.l Kurzer Liter aturiiberblick 

Back (1996): Evolutionary Algorithms in Theory and Practice, 
Die Dissertation des Autors liefert eine umfassende Darstellung und Einordnung der Stan-
dardverfahren. Sehr detailliert werden die Selbstanpassungsmechanismen bei Evolutions-
strategien und bei genetischen Algorithmen behandelt. 

Back, Fogel & Michalewicz (1997): Handbook of Evolutionary Computation, 
Das Standardnachschlagewerk zu evolutionaren Algorithmen behandelt nahezu alle Berei-
che der evolutionaren Algorithmen und ihrer Anwendung. Leider wurde die Blattsammlung 
nach Erscheinen nicht weiter aktualisiert. Die wichtigsten Artikel sind als Ausztige eben-
falls in der Buchreihe »Evolutionary Computation« beim Institute of Physics Publishing 
erschienen. 

Banzhaf, Nor din, Keller & Francone (1998): Genetic Programming - An Introduction. 
Sehr empfehlenswerte, gut strukturierte und umfassende Einfiihrung zum genetischen Pro-
grammieren. 

Bentley (1999): Evolutionary Design by Computers. 
Sammlung verschiedener Artikel zum Thema »Design mit evolutionaren Algorithmen«. Ne-
ben einem ausfiihrlichen einfiihrenden Beitrag vom Herausgeber werden unterschiedliche 
Themen von weiteren Autoren behandelt. 

Beyer (2001): The Theory of Evolution Strategies. 
Das Buch beschreibt umfassend die theoretischen Resultate zu den Evolutionsstrategien und 
ist fiir mathematisch versierte Interessenten gut zur Vertiefung geeignet. 

Come, Dorigo & Glover (1999): New Ideas in Optimization. 
Verschiedene Autoren stellen neue Optimierungstechniken im Umfeld der evolutionaren 
Algorithmen vor. Dabei werden u. a. Themen wie memetische Algorithmen, Immunsysteme, 
Differentialevolution, Partikelschwarme und kulturelle Algorithmen behandelt. 

Davis (1991b): Handbook of Genetic Algorithms. 
Der Klassiker hinsichtlich der Anwendung genetischer Algorithmen stellt verschiedene er-
folgreich optimierte industrielle Probleme vor. Ein Schwerpunkt liegt dabei auf der Frage, 
wie Problemwissen in den Algorithmus integriert werden kann. 

Eiben & Smith (2003): Introduction to Evolutionary Computing. 
Das Buch bietet einen profunden tJberblick iiber die wesentlichen Teilgebiete der evolutio­
naren Algorithmen mit einem Schwerpunkt auf den Standardverfahren, Parametrisierungs-
fragen und Randbedingungen. Theoretische Hintergrtinde werden nur angerissen. 
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Fogel (1998a): Evolutionary Computation: the Fossil Record. 
Die lesenswerte Sammlung von Artikeln bereitet die Entstehung des Gebiets der evolutio-
naren Algorithmen historisch auf. Viele Arbeiten stammen aus der Zeit noch vor Aufkom-
men der Standardalgorithmen und haben grundlegende Impulse gegeben - darunter auch 
einige der auf S. 44 vorgestellten Veroffentlichungen. Die Artikel werden vom Herausgeber 
aus heutiger Sicht diskutiert und eingeordnet. 

Fogel, Owens & Walsh (1966): Artificiallntelligence Through Simulated Evolution, 
Das Buch stellt die ersten Ansatze des evolutionaren Programmierens mit endlichen Auto-
maten vor. 

GerdeSy Klawonn & Kruse (2004): Evolutiondre Algorithmen, 
Das Lehrbuch geht im Wesentlichen von den genetischen Algorithmen aus und stellt die 
weiteren Paradigmen als spezifische Techniken dar. Abgesehen von einem informativen Ka-
pitel mit Beziigen zu Fuzzy-Techniken reicht der Inhalt nicht iiber das vorliegende Buch 
hinaus. 

Goldberg (1989): Genetic Algorithms In Search, Optimization, and Machine Learning. 
Standardlehrbuch, das sich ausschlieBlich mit genetischen Algorithmen befasst. Dieses Buch 
hat maBgeblich zur heutigen Verbreitung der genetischen Algorithmen beigetragen. 

Kallel, Naudts & Rogers (2001): Theoretical Aspects of Evolutionary Computing. 
Das Buch ist das Ergebnis einer Summer School zur Theorie evolutionarer Algorithmen. 
Insbesondere die Tutorials auf den ersten 200 Seiten geben einen guten Einblick in die 
Techniken zur Analyse evolutionarer Algorithmen. 

Koza (1992): Genetic Programming: On the Programming of Computers by Means of Natu­
ral Selection, 
In dem Klassiker der GP-Literatur wurde das genetische Programmieren erstmals in Buch-
form vorgestellt. Das Buch deckt viele der neueren Entwicklungen nicht ab. 

Langdon & Poll (2002): Foundations of Genetic Programming. 
Das Buch vertieft die theoretischen Grundlagen des genetischen Programmierens und fasst 
die wesentlichen wissenschaftlichen Arbeiten der beiden Autoren zusammen. Schwerpunk-
te sind dabei die Schema-Theorie sowie die Analyse des Suchraums. 

Michalewicz (1992): Genetic Algorithms -\- Data Structures = Evolution Programs, 
Ebenfalls ein Standardlehrbuch das sich primar mit genetischen Algorithmen im weiteren 
Sinn befasst. Ein Schwerpunkt liegt dabei auf der Behandlung von Randbedingungen. 

Michalewicz & Fogel (2000): How to Solve It: Modern Heuristics. 
Evolutionare Algorithmen werden umfassend im groBeren Kontext von Heuristiken darge-
stellt. Das Buch ist kurzweilig und lesenswert, spart jedoch theoretische Grundlagen aus. 

Mitchell (1996): An Introduction to Genetic Algorithms. 
Das Lehrbuch beschaftigt sich schwerpunktmaBig mit genetischen Algorithmen. Es bietet 
hier sowohl theoretische Grundlagen als auch unorthodoxe Sichtweisen. 
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Nissen (1997): Einfuhrung in Evolutiondre Algorithmen. 
Die Dissertation des Autors gibt einen tJberblick iiber den gesamten Bereich der evolutio-
naren Algorithmen, wobei keine weiter vertieften Schwerpunkte gelegt werden. Sie besticht 
in erster Linie durch umfassenden Literaturverweise. 

Pohlheim (2000): Evolutiondre Algorithmen: Verfahren, Operatoren undHinweise. 
Umfassende Darstellung evolutionarer Algorithmen, die speziell fiir Praktiker und Ingenieu-
re geschrieben wurde und nicht wesentlich iiber den Inhalt des vorliegenden Buchs hinaus-
geht. Theoretische Grundlagen werden dabei ausgespart. Schwerpunkte bilden die Visuali-
sierung evolutionarer Algorithmen und eine Matlab-Toolbox. 

Rechenberg (1994): Evolutionsstrategie '94. 
Ausfiihrliche und anschauliche Darstellung der Evolutionsstrategien, die im Wesentlichen 
auf den friihen Arbeiten des Autors beruht. 

Schwefel (1995): Evolution and Optimum Seeking. 
Dieses Buch stellt unterschiedliche mathematische Hillclimbing-Strategien und die Evoluti­
onsstrategien vor und vergleicht diese. Es ist gut geeignet fiir die Vertiefung im Bereich der 
Evolutionsstrategien. 

B.2 Existierende Software 

Grob geschatzt gibt es mindestens 200 unterschiedliche, kommerzielle bzw. frei verfiigbare Soft-
ware-Produkte zu evolutionaren Algorithmen. Da sich dieser Markt standig weiterentwickelt, 
mochten wir an dieser Stelle nur auf einige freie Produkte verweisen, die bereits langer existie-
ren, in einer aktuellen Version vorliegen und an denen noch aktiv weiterentwickelt wird. Natur-
gemaB ist diese Auswahl eine sehr subjektive, die in keiner Weise die Arbeit anderer Entwickler 
herabsetzen soil. 

EO: Evolvable Objects: Evolutionary Computation Framework. 
Eine Template-basierte C++-Klassen-Bibliothek. Sie umfasst derzeit bereits sehr viele Repra-
sentationen und Operatoren und kann auch einfach erweitert werden. Es handelt sich vermutlich 
um die konzeptionell allgemeinste Software. EO ist plattformunabhangig und wurde unter Linux, 
Irix, Solaris und Windows95/NT getestet. 
http://eodev.sourceforge.net 

GAlib: A C++ Library of Genetic Algorithm Components. 
Auf genetische Algorithmen zugeschnittene C++-Klassen-Bibliothek. GAlib lauft unter DOS, 
Windows95/NT, Unix, MacOS. 
h t t p : / / l a n c e t . m i t . e d u / g a / 

JGap: Java Genetic Algorithms Package. 
Eine Java-Komponente, die vor allem genetische Algorithmen und genetisches Programmieren 
abdeckt. 
http://jgap.sourceforge.net/ 

http://eodev.sourceforge.net
http://lancet.mit.edu/ga/
http://jgap.sourceforge.net/
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ECJ: A Java-based Evolutionary Computation Research System. 
Das Java-Programm wurde urspninglich fur genetisches Programmieren entwickelt, deckt inzwi-
schen allerdings die komplette Bandbreite der Standardalgorithmen ab - einschlieBlich koevolu-
tionarer und multiobjektiver Algorithmen. 
http: //www. cs .gmu.edu/^eclab/projects/ecj/ 

EASEA: EAsy Specification of Evolutionary Algorithms. 
In einer Hochsprache werden evolutionare Algorithmen spezifiziert. Ein tJbersetzer erzeugt dar-
aus Quellcode fiir EO oder fiir GAlib. Dies ist der »einfache« Weg, neue evolutionare Algo­
rithmen zu entwerfen. Die Software ist fiir Linux/Unix und Windows DOS erhaltlich - wurde 
allerdings zuletzt 2003 aktualisiert. 
h t t p : / / s o u r c e f o r g e . n e t / p r o j e c t s / e a s e a 

JavaEvA: A Java based framework for Evolutionary Algorithms. 
Das Java-Programm enthalt die wichtigsten Algorithmen - insbesondere Evolutionsstrategien, 
genetische Algorithmen, lokale Suche und populationsbasiertes inkrementelles Lemen. 
http://www-ra.informatik.uni-tuebingen.de/software/JavaEvA/ 

http://sourceforge.net/proj
http://www-ra.informatik.uni-tuebingen.de/software/JavaEvA/


C Zufallszahlen 

Wie im Hauptteil dieses Lehrbuchs gezeigt wurde, beruht die Arbeitsweise der evolutionaren Al-
gorithmen wesentlich auf zufalligen Veranderungen von bestehenden Losungskandidaten verbun-
den mit einem Selektionsprozess. Auf den heute gebrauchlichen Computem lassen sich jedoch 
»echte« Zufallszahlen nicht erzeugen, wie sie beispielsweise bei physikalischen Zerfallsprozes-
sen vorkommen. Daher wird mit so genannten Pseudozufallszahlen gearbeitet. 

Die meisten Pseudozufallszahlengeneratoren zur Erzeugung gleichmaBig verteilter Zufalls­
zahlen (z.B. im Intervall [0, 1] oder {0,. . . ,w— 1}) arbeiten mit der gemischt kongruenten 
Methode. Dabei gibt es einen Startwert UQ G N , welcher iterativ mit einem Faktor a eN multipli-
ziert, mit einem Inkrement c G No zusammenaddiert und durch eine Zahl m G N modulo geteilt 
wird. 

Ui = {a • Ui-i + c) mod m fiir / > 0 

Dabei muss 0 <uo,a,c < m gelten. Abhangig von den gewahlten Einstellungen werden nach-
einander verschiedene Zahlen zwischen 0 und m— I angenommen. Das Ziel ist, eine moglichst 
groBe Periode zu haben, bis sich die Zahlen wiederholen, so dass moglichst viele Zahlen zwi­
schen 0 und m—l tatsachlich vorkommen. Sehr viele Zufallszahlengeneratoren, die bereits von 
Programmiersprachen oder Bibliotheken angeboten werden, sind hier jedoch mit Vorsicht zu ge-
nieBen, da entweder der Wert m relativ klein gewahlt wird oder die Periode sehr klein ist. Fiir 
viele Anwendungen sind die Zufallszahlen aus einem Generator mit den Einstellungen 

a= 1664 525 

c = 1013 904223 

ausreichend. Durch die Programmiersprache und die Hardware muss dabei gewahrleistet sein, 
dass entweder das exakte Produkt Uf • a oder die 32 niederwertigen Bits des Produkts richtig be-
rechnet werden - die 32 niederwertigen Bits reichen aus, da die restlichen Bits durch die Modulo-
Rechnung sowieso entfemt werden. Zufallszahlen aus dem Intervall [0, 1] (bzw. [wg, og]) erhalt 
man als ^ (bzw. ug-\- (og-ug) • ^ ) . 

Ein systemunabhangiger Zufallszahlengenerator mit c = 0 kann mittels einer angenaherten 
Faktorisierung von m = a-q-\-r mit q = \m/a\ und r = m mod a erreicht werden. Falls r <q 
ist, kann fiir ein 0 < z < m — 1 gezeigt werden, dass 

{a• z) mod m = a-{z mod q) —r-

gilt, falls dieser Term positiv ist. Andemfalls gilt 

z 
{a • z) mod m = a-{z mod q)—r- -
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Algorithmus C.l 
INITIALISIERE-ZUFALLSZAHLEN( Zustand u{> 0)) 
1 for z ^ 40,.. . , 1 
2 do ^ w ̂  16 807 • (w mod 127 773) - 2 836 • LTITTTS J 
3 ifw<0 
4 thenEw^w + 2^1-1 
5 if/<32 
6 L then Lti^u 
1 y^h 
8 return neuer Zustand w, Tabelle (̂ /)i</<32, Index j^ 

Algorithmus C.2 liefert gleichverteilte Zahl aus [0,1] 

UNIFORME-ZUFALLSZAHL( Zustand u, Tabelle (^Z)I<K32, IndexĴ  ) 
1 w ̂  16 807 • (w mod 127 773) - 2 836 • LTITTTS J 
2 ifu<0 
3 thenEw^w + 2^^-1 

^ ' 67108 864 ^ ^ 

5 y^ti 
6 tj ^ u 

1 return Zufallszahl przr? neuer Zustand w, Tabelle (//)i</<32, Index j^ 

Auf den Beweis wird hier verzichtet. Da die beiden Terme a • (z mod q) und r [-J zwischen 0 
und m — \ liegen, sind sie problemlos auf nahezu alien Rechnem berechenbar. Konkret werden 
im hier beschriebenen Verfahren (vgl. fiir die Initialisierung Algorithmus C. 1 und fiir die iterative 
Berechnung Algorithmus C.2) die Werte 

w = 2^^ - l 

a =16807 

q = 127773 

r = 2836 

benutzt. Um Korrelationen geringer Ordnung zwischen den Zufallszahlen zu entfemen, werden 
die erzeugten Zufallszahlen noch umsortiert. Hierfiir werden 32 Zufallszahlen in einer Tabelle 
(//)i</<32 abgelegt. Wenn eine neue Zufallszahl benotigt wird, wird aus der zuletzt gelieferten 
Zufallszahl der nachste Index der Tabelle berechnet und die dortige Zahl zuriickgegeben. Der 
Tabelleneintrag wird durch eine neue Zufallszahl ersetzt. 

Um zufallige binare Zahlen (oder Zahlen einer anderen diskreten Menge) zu erzeugen, kann 
ein oben beschriebener Zufallszahlengenerator benutzt werden. Es ist lediglich darauf zu achten, 
dass die hoherwertigen Bits der Zufallszahl fiir die Berechnung herangezogen werden. Also fiir 
binare Zufallszahlen sollte man eine Zufallszahl aus dem Intervall [0, 1] erzeugen und auf > 
0.5 abpriifen. Wtirde man stattdessen modulo 2 rechnen und dadurch die niederwertigen Bits 
benutzen, ware die Folge der Zufallszahl nur bedingt zufallig. 

Auch fiir die Erzeugung von normalverteilten Zufallszahlen kann obiger Zufallszahlengenera­
tor benutzt werden. Dabei werden zwei uniform verteilte Zufallszahlen erzeugt und mittels der 
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Algorithmus C.3 
STANDARDNORMALVERTEILTE-ZUFALLSZAHL( Zustand w, Tabelle (//)I<K32, Index J ) 
1 repeat ""xi,?/, (̂ /)i<z<32,3̂  ^ 1+2-UNIFORME-ZUFALLSZAHL(W, (^/)I</<32,3^) 
2 JC2,W, (̂ /)l<z<32,Ĵ ^ 1+2-UNIFORME-ZUFALLSZAHL(W, (^/)I<K32,J^) 
3 \_ rad ^ x^-\-X2 
4 until rad < 1,0 und rad ^ 0 

6 V ^ xi • rad 
1 v' ^X2- rad 
8 return Zufallszahlen Vund V, neuerZustand w, Tabelle (̂ /)i</<32, Indexj 

Box-Muller-Transformation in zwei standardnormalverteilte Zufallszahlen transformiert. Auf die 
genaueren theoretischen Details der Transformation wird hier verzichtet. Algorithmus C.3 be-
schreibt den Ablauf des Verfahrens. 

Wesentlich mehr Hintergrundinformationen und Algorithmen zur Erzeugung von Zufallszah­
len konnen den Buchem von Knuth (1998) und Press et al. (1988-92) entnommen werden. 

Beztiglich des Einsatzes von Zufallszahlen in evolutionaren Algorithmen bleibt anzumerken, 
dass in einem Optimierungsverfahren genau ein Zufallszahlengenerator existieren sollte. Es mag 
zwar bei einem objektorientierten Entwurf sinnvoll erscheinen, jedes Individuum mit einem eige-
nen Zufallszahlengenerator auszustatten, die Folgen beztiglich der Zufalligkeit sind jedoch nicht 
abschatzbar. Ebenfalls wird geraten, mit einem klar definierten Anfangszustand fur den Zufalls­
zahlengenerator zu starten, da nur so einzelne Experimente spater reproduzierbar sind. Dies ist 
nicht der Fall, wenn beispielsweise die Systemzeit fiir eine Initialisierung verwendet wird. 



D Notation der Algorithmen 

Die Notation der Algorithmen orientiert sich an der Darstellung im Standardwerk zu Algorith­
men und Datenstrukturen von Gormen et al. (2004), da sie extrem kompakt ist und dadurch tJber-
sichtlichkeit mit leichter Lesbarkeit verbindet. Zur Strukturierung stehen die folgenden Elemente 
mit der iiblichen Semantik zur Verfiigung: 

• bedingte Verzweigung: »if... then...« und »if... then... else...«, 
• mehrfach bedingte Verzweigung: »switch case «, 
• abweisende Schleife: »while... do...«, 
• nichtabweisende Schleife: »repeat... until...« und 
• vorgegebene Anzahl an Iterationen: »for... do...« 

Die Anzahl der Anweisungen, die nach einem then, else, do oder repeat ausgefiihrt werden, 
wird durch die Einrlickung kenntlich gemacht. Alle Anweisungen, die gleich tief oder tiefer 
eingerlickt sind, zahlen zum selben Block mit Anweisungen. Diese Blocke werden zusatzlich 
durch die Markierungen "" und L verdeutlicht, wie Bild D.l am Beispiel zeigt. 

Fiir Zuweisungen wird die Schreibweise A ^- Ausdruck benutzt, wobei der Wert von Ausdruck 
der Variablen A zugewiesen wird. Bei der for-Schleife werden zwei Varianten unterschieden: Ist 
die Reihenfolge der Iterationen grunsatzlich beliebig, wird mit for each x G Mfiir eine Menge M 
angezeigt, welche Berechnungen vorgenommen werden. Ansonsten soil durch for x ^ 1 , . . . , 10 
die Reihenfolge der Abarbeitung verdeutlicht werden. 

Da unterschiedliche Arten von Pseudozufallszahlen eine groBe Rolle in den evolutionaren 
Algorithmen spielen, wird bei jeder Pseudozufallszahl die zugrundeliegende Verteilung der Zu-
fallszahlen angegeben: U{M) steht fiir die gleichverteilte Wahl einer Zahl aus der Menge M, die 
sowohl ein reellwertiges Intervall als auch eine diskrete Menge sein kann. Femer sind die normal-
verteilten Zahlen ^ ( 0 , cr) mit Standardabweichung o um den Erwartungswert 0 von Interesse. 

Viele der Algorithmen konnen iiber Parameter eingestellt werden. Diese Parameter werden in 
den Algorithmen nach ihrem ersten Vorkommen in geschlossenen Klammem genauer beschrie-
ben - Beispiel: s (|Anzahl der zu wahlenden IndividuenD . 

Algorithmus D.l (»Sortieren durch Auswahlen«). Die Einriickungstiefe gibt an, welche Anweisun­
gen innerhalb einer Schleife oder einer if-Verzweigung ausgefiihrt werden. Der dabei entstehende 
Block ist jeweils zusatzlich durch eine Klammerung von •" bis L markiert. 
AUSWAHLSORT(^[]) 

1 
2 
3 
4 
5 
6 
7 

for i=A.length,... ,2 
do ^ pos ^- i 

for y = 1 , . . . , / - 1 
do^if.4[7] >A\pos] 

L then Lpos ^- j 
ifpos ^ i 

L then E VERTAUSCHE(V4,/>O5', ( 



284 D Notation der Algorithmen 

Die Algorithmen in diesem Buch sind auf eine moglichst einfache Darstellung der wesentli-
chen Vorgange ausgelegt. Fiir die Implementation sind gegebenenfalls Veranderungen beziiglicli 
der Effizienz vorzunehmen - so kann durch andere Handhabung von Zwischenergebnissen der 
Algorithmus effizienter hinsichtlich Platz oder Zeit werden, ware dann allerdings langer in der 
Pseudo-Code-Notation. 

An einigen Stellen werden Angaben zur asymptotischen Laufzeit von Algorithmen gemacht, 
d.h. es wird nur das grundsatzliche Verhalten fiir eine groBer werdende Eingabe ohne Benick-
sichtigung von Konstanten betrachtet. Dies geschieht in der tiblichen Landau-Notation. 

In Abschnitt 6.2 werden Vorgehensweisen zum Entwurf von Algorithmen diskutiert. Diese 
werden als Aktivierungsdiagramm aus der Unified Modeling Language (UML) notiert. 



Literaturverzeichnis 

Aarts EHL & Korst J (1991). Simulated Annealing and Boltzmann Machines: A Stochastic Ap­
proach to Combinatorial Optimization and Neural Computing, Wiley & Sons, Chichester, 
UK. 

Ackley DH (1987a). A Connectionist Machine for Genetic Hillclimbing, Kluwer, Boston, MA. 

— (1987b). Stochastic Iterated Genetic Hillclimbing, PhD thesis, Carnegie Mellon University, 
Pittsburgh, PA. 

Aizawa AN & Wah BW (1994). Scheduling of genetic algorithms in a noisy environment. Evo­
lutionary Computation, 2(2), S. 97-122. 

Alba E & Troya JM (1999). A survey of parallel distributed genetic algorithms. Complexity, 4(4), 
S. 31-52. 

Altenberg L (1995). The schema theorem and Price's theorem, in: (Whitley & Vose, 1995), S. 23-
49. 

Angeline PJ (1994). Genetic programming and emergent intelligence, in: (Kinnear, 1994), S. 75-
98. 

— (1996). The effects of noise on self-adaptive evolutionary optimization, in: (Fogel et al., 1996), 
S. 433^39. 

— (1997). Tracking extrema in dynamic environments, in: PJ Angeline, RG Reynolds, JR Mc­
Donnell & REberhart (Hrsg.), Evolutionary Programming VI, S. 335-345, Springer, Berlin. 

Angeline PJ (Hrsg.) (1999). 1999 Congress on Evolutionary Computation, IEEE Press, Piscata-
way, NJ. 

Angeline PJ & Pollack JB (1993). Competitive environments evolve better solutions for complex 
tasks, in: (Forrest, 1993), S. 264-270. 

Antonisse HJ & Keller KS (1987). Genetic operators for high-level knowledge representations, 
in: (Grefenstette, 1987a), S. 69-76. 

Arnold DV & Beyer HG (2002). Random dynamics optimum tracking with evolution strategies, 
in: (Merelo Guervos et al., 2002), S. 3-12. 

— (2006). Optimum tracking with evolution strategies. Evolutionary Computation, 14, S. 291-
308. 

Axelrod R (1987). The evolution of strategies in the iterated prisoner's dilemma, in: (Davis, 
1987), S. 3 2 ^ 1 . 

Back T (1993). Optimal mutation rates in genetic search, in: (Forrest, 1993), S. 2-8. 

— (1996). Evolutionary Algorithms in Theory and Practice, Oxford University Press, New York, 
NY. 

Back T (Hrsg.) (1997). Proc. of the Seventh Int. Conf on Genetic Algorithms, Morgan Kaufmann, 
San Francisco, CA. 



286 Literaturverzeichnis 

Back T (1998). On the behavior of evolutionary algorithms in dynamic environments, in: (Fogel, 
1998b), S. 446-451. 

Back T, Fogel DB & Michalewicz Z (Hrsg.) (1997). Handbook of Evolutionary Computation, 
Institute of Physics Publishing and Oxford University Press, Bristol, UK - New York, NY. 

Baker JE (1987). Reducing bias and inefficiency in the selection algorithm, in: (Grefenstette, 
1987a), S. 14-21. 

Baldwin JM (1896). A new factor in evolution. The American Naturalist, 30, S. 441-451. 

Baluja S (1994). Population-based incremental learning: A method for integrating genetic search 
based function optimization and competitive learning, Technischer Bericht CMU-CS-94-
163, Carnegie Mellon University, Pittsburgh, PA. 

Banzhaf W, Nordin P, Keller R & Francone F (Hrsg.) (1998). Genetic Programming - An Intro­
duction, Morgan Kaufmann, San Francisco, CA. 

Banzhaf W & Reeves C (Hrsg.) (1999). Foundations of Genetic Algorithms 5, Morgan Kaufmann, 
San Francisco, CA. 

Bean JC & Hadj-Alouane AB (1992). A dual genetic algorithm for bounded integer programs, 
Technischer Bericht 92-53, Department of Industrial and Operations Engineering, Universi­
ty of Michigan, Ann Arbor, MI. 

Belew RK & Booker LB (Hrsg.) (1991). Proc. of the Fourth Int. Conf on Genetic Algorithms, 
Morgan Kaufmann, San Mateo, CA. 

Bentley PJ (Hrsg.) (1999). Evolutionary Design by Computers, Morgan Kaufmann, San Francis­
co, CA. 

Beyer HG (1994). Towards a theory of evolution strategies: Results from the ^-dependent (jU, A) 
and the multi-recombinant (jU//i, A) theory, Technischer Bericht SYS-5/94, Systems Ana­
lysis Research Group, University of Dortmund, Dortmund, Germany. 

— (1997). An alternative explanation for the manner in which genetic algorithms operate, Bio-
Systems, 41, S. 1-15. 

— (1998). Mutate large, but inherit small! On the analysis of rescaled mutations in (1, A)-ES 
with noisy fitness data, in: (Eiben et al., 1998), S. 109-118. 

— (2001). The Theory of Evolution Strategies, Springer, Berlin. 

Blickle T & Thiele L (1995). A mathematical analysis of tournament selection, in: (Eshelman, 
1995), S. 9-16. 

— (1997). A comparison of selection schemes used in evolutionary algorithms. Evolutionary 
Computation, 4(4), S. 361-394. 

Box GEP (1957). Evolutionary operation: A method for increasing industrial productivity, App­
lied Statistics, 6(2), S. 81-101. 

Branke J (1998). Creating robust solutions by means of evolutionary algorithms, in: (Eiben et al., 
1998), S. 119-128. 

— (1999). Evolutionary algorithms for dynamic optimization problems: A survey, Technischer 
Bericht 387, Institute AIFB, University of Karlsruhe, Karlsruhe, Germany. 

Bremermann HJ (1962). Optimization through evolution and recombination, in: MC Yovitis & 



Literaturverzeichnis 287 

GT Jacobi (Hrsg.), Self-Organizing Systems, S. 93-106, Spartan, Washington, D.C. 

Bremermann HJ, Rogson M & Salaff S (1966). Global properties of evolution processes, in: 
HH Pattee, EA Edlsack, L Fein & AB Callahan (Hrsg.), Natural Automata and Useful Si­
mulations, S. 3 ^ 1 , Spartan Books, Washington, D.C. 

Brindle A (1981). Genetic algorithms for function optimization, PhD thesis. University of Alber­
ta, Department of Computer Science, Edmonton, Kanada. 

Brown DE, Huntley CL & Spillane AR (1989). A parallel genetic heuristic for the quadratic 
assignment problem, in: (Schaffer, 1989), S. 406-415. 

Bufe M, Fischer T, Gubbels H, Hacker C, Hasprich O, Scheibel C, Weicker K, Weicker N, Wenig 
M & Wolfangel C (2001). Automated solution of a highly constrained school timetabling 
problem - preliminary results, in: EJW Boers, S Cagnoni, J Gottlieb, E Hart, PL Lanzi, 
GR Raidl, RE Smith & H Tijink (Hrsg.), Applications of Evolutionary Computing: Proc. 
EvoWorkshops 2001, S. 431-440, Springer, Berlin. 

Burke EK, Elliman DG & Weare RF (1995). A hybrid genetic algorithm for highly constrained 
timetabling problems, in: (Eshelman, 1995), S. 605-610. 

Cantu-Paz E (1999). A summary of research on parallel genetic algorithms, Technischer Bericht 
95007, Department of General Engineering, University of Illinois at Urbana-Champaign, 
Urbana, IL. 

Caruana RA & Schaffer JD (1988). Representation and hidden bias: Gray versus binary coding 
in genetic algorithms, in: J Leard (Hrsg.), Proc. of the 5th Int. Conf. on Machine Learning, 
S. 153-161, Morgan Kaufmann, San Mateo, CA. 

Cedeno W & Vemuri VR (1997). On the use of niching for dynamic landscapes, in: Int. Conf. on 
Evolutionary Computation, S. 361-366, IEEE Press, Piscataway, NJ. 

Chellapilla K & Fogel DB (2000). Anaconda defeats hoyle 6-0: A case study competing an evol­
ved checkers program against commercially available software, in: (Zalzala, 2000), S. 857-
863. 

Chieniawski SE (1993). An Investigation of the Ability of Genetic Algorithms to Generate the 
Tradeoff Curve of a Multi-objective Groundwater Monitoring Problem, Masterarbeit, Uni­
versity of Illinois, Urbana, IL. 

Chung C & Reynolds RG (1997). Function optimization using evolutionary programming with 
self-adaptive cultural algorithms, in: X Yao, JH Kim & T Furuhashi (Hrsg.), Simulated 
Evolution and Learning: First Asia-Pacific Conf (SEAL'96), S. 17-26, Springer, Berlin. 

Claus V (1991). Complexity measures on permutations, in: J Buchmann, H Ganzinger & W Paul 
(Hrsg.), Informatik: Festschrift zum 60. Geburtstag von Giinter Hotz, S. 81-94, Teubner 
Verlag, Stuttgart. 

Cobb GW (2002). Introduction to Design and Analysis of Experiments, Key College, Emeryville, 
CA. 

Cobb HG (1990). An investigation into the use of hypermutation as an adaptive operator in gene­
tic algorithms having continuous, time-dependent nonstationary environments, Technischer 
Bericht 6760 (NLR Memorandum), Navy Center for Applied Research in Artificial Intelli­
gence, Washington, D.C. 



288 Literaturverzeichnis 

Cobb HG & Grefenstette JJ (1993). Genetic algorithms for tracking changing environments, in: 
(Forrest, 1993), S. 523-530. 

Coello CAC (1999). An updated survey of evolutionary multiobjective optimization techniques: 
State of the art and future trends, in: (Angeline, 1999), S. 3-13. 

Cohen PR (1995). Empirical Methods for Artificial Intelligence, MIT Press, Cambridge, MA. 

Colomi A, Dorigo M & Maniezzo V (1998). Metaheuristics for high-school timetabling. Compu­
tational Optimization and Applications, 9(3), S. 277-298. 

Cormen TH, Leiserson CE, Rivest RL & Stein C (2004). Algorithmen - Eine Einfiihrung, Olden-
bourg, Mtinchen. 

Come D, Dorigo M & Glover F (Hrsg.) (1999). New Ideas in Optimization, McGraw-Hill, Lon­
don. 

Cotta C & Troya JM (1998). Genetic forma recombination in permutation flowshop problems. 
Evolutionary Computation, 6(1), S. 25-44. 

— (2001). Analyzing directed acyclic graph recombination, in: B Reusch (Hrsg.), Computational 
Intelligence: Theory and Applications, S. 739-748, Springer, Berlin. 

Cramer NL (1985). A representation for the adaptive generation of simple sequential programs, 
in: (Grefenstette, 1985), S. 183-187. 

Crick FHC, Barnett L, Brenner S & Watts-Tobin RJ (1961). General nature of the genetic code 
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