

Leitféden der Informatik
Karsten Weicker

Evolutionare Algorithmen

Leitfédden der Informatik

Herausgegeben von

Prof. Dr. Bernd Becker
Prof. Dr. Friedemann Mattern
Prof. Dr. Heinrich Mller
Prof. Dr. Wilhelm Schafer
Prof. Dr. Dorothea Wagner
Prof. Dr. Ingo Wegener

Die Leitfaden der Informatik behandeln

B Themen aus der Theoretischen, Praktischen und Technischen Informatik entsprechend dem aktuel-
len Stand der Wissenschaft in einer systematischen und fundierten Darstellung des jeweiligen
Gebietes.

B Methoden und Ergebnisse der Informatik, aufgearbeitet und dargestellt aus Sicht der Anwen-
dungen in einer fir Anwender verstandlichen, exakten und prazisen Form.

Die Bande der Reihe wenden sich zum einen als Grundlage und Ergénzung zu Vorlesungen der Infor-
matik an Studierende und Lehrende in Informatik-Studiengangen an Hochschulen, zum anderen an
. Praktiker”, die sich einen Uberblick tiber die Anwendungen der Informatik (-Methoden) verschaffen
wollen; sie dienen aber auch in Wirtschaft, Industrie und Verwaltung tatigen Informatikern und Infor-
matikerinnen zur Fortbildung in praxisrelevanten Fragestellungen ihres Faches.

Karsten Weicker

Evolutionare
Algorithmen

2., Uberarbeitete und erweiterte Auflage

&

Teubner

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie;
detaillierte bibliografische Daten sind im Internet Uber <http://dnb.d-nb.de> abrufbar.

Prof. Dr. Karsten Weicker

lehrt seit 2004 als Professor fur Praktische Informatik an der Hochschule fur Technik, Wirtschaft und
Kultur Leipzig. Er hat Informatik an der University of Massachusetts in Amherst und an der Univer-
sitat Stuttgart studiert und dort auch seine Promotion zu Evolutiondren Algorithmen 2003 abge-
schlossen.

1. Auflage 2002
2., Uberarb. u. erw. Auflage 2007

Alle Rechte vorbehalten
© B.G.Teubner Verlag / GWV Fachverlage GmbH, Wiesbaden 2007

Lektorat: Ulrich Sandten / Kerstin Hoffmann

Der B.G. Teubner Verlag ist ein Unternehmen von Springer Science+Business Media.
www.teubner.de

Das Werk einschlieBlich aller seiner Teile ist urheberrechtlich geschitzt. Jede Verwertung
auBerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Ver-
lags unzulassig und strafbar. Das gilt insbesondere fiir Vervielfaltigungen, Ubersetzun-
gen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen
Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk
berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne
der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten waren und daher von
jedermann benutzt werden drften.

Umschlaggestaltung: Ulrike Weigel, www.CorporateDesignGroup.de
Druck und buchbinderische Verarbeitung: Strauss Offsetdruck, Mérlenbach
Gedruckt auf saurefreiem und chlorfrei gebleichtem Papier.

Printed in Germany

ISBN 978-3-8351-0219-4

Neulich in einem evolutioniiren Algorithmus...

Trifit ein Permutationsindividuum in einer Population bindrer Zeichenketten ein.

Permutationsindividuum: Tag, seid Ihr auch alle bijektiv?
Durchschnittliches Bindrindividuum: ~ Huch! Welchem Suchraum bist Du denn
entsprungen?

Mutationsoperator: Macht nichts — ich kann Euch alle invertie-
ren, flippen, Teile vertauschen, selbstanpas-
sen lassen . .. Exploitation rules!

Rekombinationsoperator: ~ Aber erst werdet Ihr zerschnitten, neu kom-
biniert, zusammengeklebt, abgebildet oder
gemittelt. Exploration rocks!

Gutes Binérindividuum: Jaaa! Ich will der néchste sein!
Elternselektion: Genau, lasst uns ein Turnier veranstalten.
Derjenige, der gewinnt, ist dran.
Durchschnittliches Bindrindividuum: Dafiir fithle ich mich aber nicht fit genug.

Durchschnittliches Bindrindividuum tritt ab. Die Elternselektion zeigt auf die Permutation.
Rekombinationsoperator: Und jetzt bist Du fillig!
Permutationsindividuum wird mit dem guten Bindrindividuum rekombiniert.

Gutes Binérindividuum: Haha! Du bist ja gar nicht mehr gltig!!!
Permutationsindividuum: Mir geht das alles zu sehr nach Schema
hier. ..

Umweltselektion: Pass nur auf. Gleich bist Du weg!
Permutationsindividuum verzieht sich wieder.
Gutes Binérindividuum: Das kann mir nicht passieren — bin ja elitér.
Sprach’s und wurde von einem neuen Superindividuum gestiirzt. . .

Optimierungsproblem: Elitismus wird ja total {iberbewertet heutzu-
tage. ..

Vorwort zur ersten Auflage

Evolutiondre Algorithmen sind Methoden zur Losung von Optimierungsproblemen. Thr Na-
me trégt der Inspiration aus der Biologie Rechnung — sie imitieren das von Darwin erkannte
Wechselspiel zwischen Variation von Individuen und Selektion, welches zu einem Evolutions-
prozess fiihrt. Bei der Ubertragung der Evolution in einen konkreten Algorithmus wird mit einer
vereinfachenden Modellvorstellung gearbeitet. Dennoch lehnt sich die Terminologie stark an
das biologische Vorbild an. Zu den evolutionidren Algorithmen gehdren genetische Algorithmen,
Evolutionsstrategien, evolutiondres Programmieren, genetisches Programmieren und im weite-
ren Sinn auch lokale Suchalgorithmen.

Dieses Buch vermittelt einen umfassenden Uberblick iiber evolutionire Algorithmen. Das
Kernstiick ist dabei ein allgemeines Grundgeriist fiir evolutionédre Algorithmen, anhand dessen
sowohl die Prinzipien und Funktionsweisen der Algorithmen als auch alle géngigen Standard-
verfahren erldutert werden. Mit den prisentierten Methoden kann der Leser neue evolutionire
Algorithmen zur Bewiltigung eigener spezieller Probleme entwerfen. In den letzten beiden Ka-
piteln geht das Buch auf praxisrelevante Aspekte und verwandte Forschungsgebiete ein. Jedes
Kapitel schlieBt mit einem historischen Uberblick, zahlreichen Literaturhinweisen und Ubungs-
und Programmieraufgaben zur weiteren Festigung und Vertiefung des Stoffs.

Das Buch basiert auf den Aufzeichnungen zur Vorlesung »Evolutionire Algorithmen«, die

von mir in den Sommersemestern 1999, 2000 und 2001 an der Informatikfakultit der Universitét
Stuttgart und von Nicole Weicker im Sommer 2001 im Rahmen der Informatica Feminale an
der Universitit Bremen gehalten wurde. Daher ist es besonders als Textbuch fiir Vorlesungen
geeignet. Es kann jedoch auch ohne Einschrankungen fiir ein Selbststudium von Studenten und
Praktikern aus Industrie und Wirtschaft genutzt werden. Benétigte mathematische Grundlagen
und Notationen sind vor dem ersten Kapitel zusammengefasst.
Danksagungen: Mein besonderer Dank gilt meiner Frau Nicole Weicker, die mich immer wie-
der ermutigt, mir den Riicken frei gehalten und als inhaltlicher »Sparring-Partner« die Evolution
des Buches begleitet hat. Ebenso gilt mein Dank Herrn Prof. Dr. Claus, der mich als Student
auf evolutiondre Algorithmen aufmerksam gemacht hat, die erste Vorlesung an der Universitit
Stuttgart zu diesem Thema unter dem Titel »Naturanaloge Verfahren« hielt und auch bei der Ent-
stehung des Buchs mit Rat und Tat zur Seite stand. Fiir die interessanten Diskussionen méchte
ich mich bei Wolfgang Schmid bedanken. Besonderer Dank wird auch den Studenten meiner
Vorlesungen zuteil, die mich immer wieder von Neuem dazu gedringt haben, Kapitel 3, die eher
theoretischen Grundlagen und Arbeitsprinzipien der evolutiondren Algorithmen, in dieser Form
zu lehren und hier aufzuschreiben. Thr Interesse und ihre Kritik haben maf3geblich zum vorliegen-
den Buch beigetragen. Abschlieend danke ich Riidiger Vaas, Klaus Kammerer und Christoph
Ruffuer, die Teile des Manuskripts sehr gewissenhaft gegengelesen haben.

Stuttgart, Februar 2002 Karsten Weicker

Vorwort zur zweiten Auflage

Nach vielen positiven Riickmeldungen zur ersten Auflage habe ich die zweite Auflage zum
Anlass genommen, grofe Teile des Buchs nochmals grundsatzlich zu iiberarbeiten und weiter
zu verbessern. Neben der Beseitigung erkannter Méangel wurde insbesondere Kapitel 3 um Bei-
spiele erweitert und an die Struktur angepasst, die ich seit mehreren Jahren in meiner Vorlesung
benutze. Auch Kapitel 4 habe ich um praxisrelevante Hinweise z. B. zu Parametereinstellungen
erweitert. In Kapitel 6 wurde das Sammelsurium an Randthemen aus der ersten Auflage durch
konkrete Hinweise zum Entwurf von evolutionédren Algorithmen ersetzt, die durch drei Fallstudi-
en abgerundet werden. Diesen Erweiterungen ist die Ubersicht der mathematischen Grundlagen
ebenso zum Opfer gefallen wie die knappen Losungshinweise zu den Ubungsaufgaben am Ende
des Buchs.

Erginzendes Material wie Vorlesungsfolien, Animationen der Algorithmen, eine Errata-Liste
und die Losungshinweise kénnen der begleitenden Webseite entnommen werden. Auf diese kann
entweder iiber die Verlagsseite www . teubner . de oder direkt iiber

www.evolutionary-algorithm.de
zugegriffen werden.

Falls Sie Fehler in diesem Buch finden, so melden Sie diese bitte direkt an meine Email-
Adresse weicker@evolutionary-algorithm.de.

Fiir die zweite Auflage gilt mein Dank vor allem all den Ko-Arbeitern in den Projekten, die
in Kapitel 6 vorgestellt werden, Herrn Tim Fischer fiir seine Diplomarbeit zum Thema »Entwurf
evolutionérer Algorithmen«, Herrn Marc Bufé fiir einige Hinweise und den ersten Vorschlag fiir
die Seite V und natiirlich meiner Frau, Nicole Weicker, die den Endsatz und grofie Teile des
Korrekturlesens iibernommen hat. Thre Unterstiitzung war maligeblich fiir das hohe Niveau bei
der Produktion der zweiten Auflage.

Leipzig, Juli 2007 Karsten Weicker

http://www.evolutionary-algorithm.de
mailto:weicker@evolutionary-algorithm.de

Hinweise fiir Leser und Dozenten

In den seltensten Fillen wird ein Lehrbuch linear gelesen oder »eins zu eins« als Vorlesung
umgesetzt. Daher ist die Struktur des vorliegenden Buchs auch nur ein méglicher, logisch konse-
quenter Pfad durch seinen Inhalt. Fiir individuelle Lesefliisse soll das folgende Bild als Orientie-
rung dienen: Die kleinen Pfeile kennzeichnen inhaltliche Abhéngigkeiten, wobei die gestrichel-
ten Pfeile nur schwach sind. Die grauen Pfeile entsprechen meiner Vorlesung, in der ich verschie-
dene Themen frither behandle, da sie fiir die studentischen,vorlesungsbegleitenden Projekte von
Belang sind. Wie man sieht blieb eine gestrichelte Abhingigkeit dabei nicht beriicksichtigt, was
natiirlich immer durch leichten Mehraufwand in der Vorlesung ausgeglichen werden kann,

1 Natiirliche 2 Von der
Evolution — |oco-oaoo- = Evolution zur
/ Optirﬂienmg
3 Prinzipien ok
evolutionérer 3.6 3.3.2-3.34
Algorithmen No Free Lunch Schematheorie
| "\
1 Y
! Al
[} Al
\
v by 5 Techniken fiir
4 Evolutionire \ spezifische
Standard- 4.6 P Problem-
algorithmen Weitere Standards 5 anforderungen
1
1

6.1 6.2-6.3
Vergleich von et Entwurf
6.4-6.6 Algorithmen evolutionirer
Fallstudien

Algorithmen

Alle Algorithmen werden in der zweiten Auflage mit einer sehr kompakten Notation beschrie-
ben, die knapp auf Seite 283 erldutert wird. Zugunsten eines besseren Leseflusses werden auch
die Referenzen auf die Originalarbeiten kompakt am Ende jedes Kapitels in einem Abschnitt

»Historische Anmerkungen« prisentiert — was die Wiirdigung der »Pioniere«, Forscher und An-
wender nicht schmilern soll.

Inhaltsverzeichnis

1 Natiirliche Evolution
1.1 Entwicklung der evolutiondren Mechanismen
1.2 Evolutionsfaktoren

121
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6

Herleitung der Evolutionsfaktoren
Mutation
Rekombination
Selektion
Genfluss L. e e
Gendrift e

1.3 Anpassung als Resultat der Evolution

1.3.1
1.3.2
1.3.3

Nischenbildung
Evolution 6kologischer Beziehungen
Baldwin-Effekt

1.4 Ubungsaufgaben
1.5 Historische Anmerkungen

2 Von der Evolution zur Optimierung
2.1 Optimierungsprobleme
2.2 Der simulierte evolutiondre Zyklus L.
2.3 Ein beispielhafter evolutionirer Algorithmus
2.4 Formale Einfithrung evolutionérer Algorithmen
2.5 Vergleich mit der natiirlichen Evolution
2.6 Vergleich mit anderen Optimierungsverfahren
2.7 Ubungsaufgaben
2.8 Historische Anmerkungen

3 Prinzipien evolutioniirer Algorithmen
3.1 Wechselspiel zwischen Variation und Selektion

3.1.1
3.1.2
3.1.3
3.14
3.1.5
3.1.6

Ein einfaches bindres Beispiel
Die Giitelandschaft
Modellierung als Markovprozess L.
Das Problem lokaler Optima
Der Einfluss der Kodierung
Rollender Mutation e

3.2 Populationskonzept

321
322
323
324

Die Vielfalt in einer Population
Ein vergleichendes Experiment
Folgerungen fuir die Selektion
Varianten der Umweltselektion

19
20
24
26
34
39
41
43
44

X Inhaltsverzeichnis

3.2.5 Selektionsstiarke 70
3.2.6 Probabilistische Elternselektion 71
3.2.7 Uberblick und Parametrierungo 76
3.2.8 Experimenteller Vergleich der Selektionsoperatoren 77
3.3 Verkniipfen mehrerer Individuen durch die Rekombination 80
3.3.1 Artender Rekombination. oo L. 80
332 Schema-Theorem 84
3.3.3 Formae als Verallgemeinerung der Schemata 93
334 Schema-Theorie und der Suchfortschritt 98
3.4 Selbstanpassende Algorithmen 106
3.4.1 FEinflussdes StandsderSuche 107
342 Anpassungsstrategien fiir evolutiondre Operatoren 111
3.5 Zusammenfassung der Arbeitsprinzipien 114
3.6 Der ultimative evolutiondre Algorithmus 115
3.7 Ubungsaufgaben 121
3.8 Historische Anmerkungen 124
4 Evolutioniire Standardalgorithmen 127
4.1 Genetischer Algorithmus o 128
4.2 Evolutionsstrategien e 134
4.3 Evolutiondres Programmieren 139
4.4 Genetisches Programmieren 146
4.5 Einfache Lokale Suchalgorithmen 155
4.6 Weitere Verfahren 158
4.6.1 Klassifizierende Systeme e 158
4.62 Tabu-Suche 163
4.6.3 Memetische Algorithmen 163
4.6.4 Populationsbasiertes inkrementelles Lernen 165
4.6.5 Differentialevolution 167
4.6.6 Scatter Search 168
4.6.7 Kulturelle Algorithmen o 170
4.6.8 Ameisenkolonien 172
4.6.9 Partikelschwérme L 174
4.7 Kurzzusammenfassung L L. 176
4.8 Ubungsaufgaben 176
4.9 Historische Anmerkungen Lo 180
5 Techniken fiir spezifische Problemanforderungen 183
5.1 Optimieren mit Randbedingungen 183
5.1.1 Ubersicht iiber die Methoden 185
5.1.2 Dekoder-Ansatz 186
5.1.3 Restriktive Methoden 188
5.1.4 Tolerante Methoden 189
5.1.5 Straffunktionen 191

5.2 Mehrzieloptimierung e 194

Inhaltsverzeichnis XI

5.2.1 Optimalititskriterium bei mehreren ZielgréBen 194
522 Uberblick 198
5.2.3 Modifikation der Bewertungsfunktion 199
5.2.4 Berechnung der Pareto-Front 201

5.3 Zeitabhingige Optimierungsprobleme L. L. 207
5.4 Approximative Bewertung 212
54.1 Verrauschte Bewertung 212
542 Stabile Losungen e e e 215
543 Zeitaufwindige Bewertungo 216
544 Bewertung durch Testfélle 219
5.4.5 Bewertung von Spielstrategien 221

5.5 Ubungsaufgaben 222
5.6 Historische Anmerkungen 223

6 Anwendung evolutionirer Algorithmen 227
6.1 Vergleich evolutiondrer Algorithmen 228
6.2 Entwurf evolutiondrer Algorithmen 231
6.2.1 Der wiederverwendungsbasierte Ansatz 232
6.2.2 Der Forma-basierte Ansatz, 233
6.2.3 Deranalysebasierte Ansatz 234

6.3 Nutzung von Problemwissen 241
6.4 Fallstudie: Platzierung von Mobilfunkantennen 243
6.4.1 Aufgabenstellung 244
6.4.2 Entwurf des evolutiondren Algorithmus 246
6.43 Ergebnisse 249

6.5 Fallstudie: Motorenkalibrierung 253
6.5.1 Aufgabenstellung 253
6.5.2 Entwurf des evolutiondren Algorithmus 255
6.5.3 Ergebnisse 257

6.6 Fallstudie: Stundenplanerstellung 261
6.6.1 Aufgabenstellung 261
6.6.2 Entwurf des evolutiondren Algorithmus 263
6.6.3 Ergebnisse 264

6.7 Ubungsaufgaben 266
6.8 Historische Anmerkungen 267
Anhang 269
A Benchmark-Funktionen 271
B Weitere Quellen 275
B.1 Kurzer Literaturiiberblick 275

B.2 Existierende Software 277

X1 Inhaltsverzeichnis

C Zufallszahlen

D Notation der Algorithmen
Literaturverzeichnis
Bildnachweis

Liste der Algorithmen
Glossar

Stichwortverzeichnis

279

283

285

304

305

307

309

1 Natiirliche Evolution

Einige Grundlagen der natiirlichen Evolution werden présentiert. Der Schwerpunkt liegt auf den
zugrundeliegenden Konzepten.

Lernziele in diesem Kapitel

&> Der Leser soll ein Grundverstindnis fiir die Zusammenhinge und die Komplexitit der
natiirlichen Evolution bekommen — mit dem Ziel deren Nachahmung durch die evolutio-
niiren Algorithmen zu verstehen.

&> Die Evolutionsfaktoren werden in ihrer grundsétzlichen Arbeitsweise verstanden.
4> In einem ersten Abstraktionsschritt kénnen Vorgiinge der natiirlichen Evolution simuliert

werden.
Gliederung
1.1 Entwicklung der evolutiondren Mechanismen 2
1.2 ByolutionSRIeHen womrmnw s i s 3 98 ¥ 8 8 8 0 P aaiwTe s 5 5 8 & 4 9
1.3 Anpassung als Resultat der Evolution 13
1.4 Ubungsaufgabenciiiiii.... 15
1.5 Historische Anmerkungen 16

Seit den 1950er Jahren dient die natiirliche Evolution als Vorbild fiir die Losung von Optimie-
rungsproblemen. Durch verschiedene Ansiitze bei der Imitation der Natur sind unterschiedliche
Modelle der evolutiondren Algorithmen entstanden. Gemeinsam ist ihnen, dass sie Vorginge und
Begriffe aus der Biologie entlehnen, um daraus in einem anderen Zusammenhang Verfahren zur
Losung von Optimierungsproblemen zu beschreiben. Im Vordergrund steht dabei der Begriff der
Population, bei der es sich um eine Ansammlung von Lésungskandidaten handelt, welche als
Individuen bezeichnet werden. Eine solche Population wird einer simulierten Evolution unter-
worfen, so dass sich durch ein Wechselspiel zwischen Modifikation und Auswahl bessere Indi-
viduen herausbilden. Die wesentlichen Begriffe, die in den ndchsten Kapiteln dabei eine Rolle
spielen werden, sind »Individuum«, »Population«, »Selektion«, »Mutation«, »Rekombination«,
»Genotyp« und »Fitness«. Diese Begriffe sind im Kontext der evolutiondren Algorithmen z. T.
mit anderen Bedeutungen belegt als bei der natiirlichen Evolution, weshalb eine genaue Differen-
zierung notwendig wird. Im Rahmen spezieller gegen Ende des Buches diskutierter Verfahren
werden auch Begriffe wie »Diploiditiit«, »Nischenbildung«, »Koevolution« und »Lamarcksche
Evolution« eine Rolle spielen.

2 1 Natiirliche Evolution

Um evolutiondre Algorithmen besser einordnen und von den Vorgingen in der Natur abgren-
zen zu kénnen, ist es sinnvoll, sich das Vorbild, die natiirliche Evolution, genauer anzusehen. Zu
diesem Zweck wird in diesem Kapitel ein kurzer Uberblick iiber die Prozesse der natiirlichen
Evolution gegeben. Dabei liegt der Fokus auf der Priisentation der evolutiondren Konzepte, die
mehr oder weniger von evolutiondren Algorithmen imitiert werden. Aus diesem Grunde wer-
den technische Details der biologischen Mechanismen ausgelassen, die nicht wesentlich fiir das
Verstindnis der generellen konzeptuellen Entwicklungen und der Entstehung von bestimmten Ei-
genschaften sind. Fiir eine umfassendere Darstellungen der vollstindigen evolutiondren Prozesse
in der Natur sei auf die entsprechende Fachliteratur verwiesen.

Bei der natiirlichen Evolution lassen sich die Evolution von lebenden und unbelebten Syste-
men unterscheiden. Fiir die evolutiondren Algorithmen dient in erster Linie die Evolution von
lebenden Organismen als Vorbild. Unter dem Begriff der biologischen Evolution (von lebenden
Systemen) wird der Prozess verstanden, welcher zur bestehenden Mannigfaltigkeit der Organis-
menwelt — der Einzeller, Pilze, Pflanzen und Tiere — gefiihrt hat. Diese Mannigfaltigkeit wird vor
allem durch die Anpassung unterschiedlicher Arten an unterschiedliche Umweltbedingungen ge-
wiihrleistet. Die Grundlagen fiir die Evolutionsmechanismen wurden durch die sog. chemische
Evolution geschaffen.

1.1 Entwicklung der evolutioniren Mechanismen

Anhand der fiiihen Evolution wird die Entstehung der in der Evolution wirksamen Mechanismen
erlédiutert.

Die natiirliche Evolution hat hochkomplexe Strategien fiir die Ausbildung, Bewahrung und wei-
tere Anpassung von Arten entwickelt. Der Ursprung dieser Strategien liegt in der chemischen
Evolution, womit sie selbst ein Resultat der frithen Evolution sind. Eine kurze Zusammenfas-
sung beschreibt die wichtigsten Schritte in dieser Phase der Evolution.

Eine charakteristische Eigenschaft eines Lebewesens ist der Stoffwechselprozess. Organis-
men sind offene Systeme, die mit ihrer Umwelt interagieren. Da sie weit von einem energe-
tischen Gleichgewicht entfernt sind, ist die Versorgung mit energiereichen Nahrungsmitteln fiir
die Selbsterhaltung des Systems notwendig. Diese Nahrungsmittel werden innerhalb des Systems
durch enzymkatalytische Prozesse umgeformt und fiir den Aufbau neuer koérpereigener Substan-
zen benutzt. Diese Umformung zielt auf die Bewahrung der Ordnung des Systems. Entstehende
energiearme Substanzen werden ausgeschieden.

Wem die folgenden Details zu tief in die Biochemie hineinreichen, der kann gerne bis zum Abschnitt 1.2
vorblittern. Dem grundsitzlichen Verstéindnis der evolutioniren Algorithmen tut dies keinen Abbruch.

Wie erste Stoffwechselprozesse entstanden sind, ist letztlich ungeklirt. Die Hypothesen reichen
vom Auftreten erster instabiler, organischer Substanzen in vulkanischen Umgebungen bis hin
zu langsamen chemischen Reaktionen in Eiskapillaren. Wahrscheinlich wurde der Stoffwechsel-
vorgang durch eine Membran bestehend aus gréBeren Makromolekiilen wie Proteinoiden und
Polynukleotiden umschlossen, womit eine frithe Form der Zelle entstanden ist. Im Stoffwechsel-
prozess haben sich bald diejenigen Polynukleotide mit D-Ribose als einzigem Zucker als vorteil-
haft herausgestellt, da sie nur unverzweigte Ketten ausbilden. Dies erlaubt ihnen, sich zu verviel-

1.1 Entwicklung der evolutiondren Mechanismen 3

erstes zweites Nukleotid drittes
Nukleotid | U C A G Nukleotid
U Phe Ser Tyr Cys U
Phe Ser Tyr Cys C
Leu Ser STOPP STOPP A
Leuw Ser STOPP Trp G
C Leu Pro His Arg U
Leu Pro His Arg C
Leu Pro Gln Arg A
Leu Pro Gln Arg G
A Ile Thr Asn Ser u
Ile Thr Asn Ser C
Ile Thr Lys Arg A
Met Thr Lys Arg G
G Val Ala Asp Gly u
Val Ala Asp Gly C
Val Ala Glu Gly A
Val Ala Glu Gly G

Tabelle 1.1 Genetischer Code: Abbildung der Nukleotid-Tripletts der sog. Messenger-RNA auf die Amino-
sduren im Protein.

faltigen, was einen enormen Vorteil gegeniiber anderen Formen darstellt. Diese Polynukleotide
werden RNA (engl. ribonucleic acid) genannt. Damit war der Grundstein fiir die wichtigste Errun-
genschaft der chemischen Evolution gelegt: die Ausbildung von Molekiilen, die sowohl »Baupli-
ne« fiir komplexere Lebewesen speichern als auch sich selbst samt der enthaltenen Information
duplizieren konnen.

Die im RNA-Molekiil gespeicherte Information wird im Stoffwechselprozess als Blaupause
fiir die Synthese von Polypeptiden bzw. Proteinen genutzt. Diese Proteinketten wiederum be-
stimmen dann Struktur und Verhalten der jeweiligen Zelle. Die RNA-Information ist in einer
Kette bestehend aus den vier Grundbausteinen, den Ribonukleotiden mit den Basen Cytosin (C),
Uracil (U), Adenin (A) und Guanin (G), abgelegt. Immer drei Nukleotide bestimmen gemaf des
so genannten genetischen Codes eine Aminosdure in der Aminoséduresequenz des Proteins. Ver-
mutlich wurden in ersten Formen nur sieben oder acht Aminosduren codiert, was spiter auf 20
Aminosduren erweitert wurde. Der heute giiltige Code ist in Tabelle 1.1 dargestellt. Jede Ami-
nosduresequenz beginnt im RNA-Code mit der Kombination AUG, also der Aminosdure Met,
und es gibt drei verschiedene Kombinationen, um die Sequenz zu beenden. Andere Zellparti-
kel, sog. Ribosomen iibersetzen jeweils drei Nukleotidbasen in eine der 20 Aminoséuren, aus
denen dann die gesamte Proteinkette zusammengestellt wird. Untersuchungen haben gezeigt,
dass dieser Code sehr stabil gegen Fehler ist. Vermutlich war die Ausbildung dieses Codes sehr
friih abgeschlossen, da er in nahezu allen Organismen identisch ist. Bis heute ist nicht geklért,
wie sich der genetische Code in der RNA entwickelt hat. Dennoch ist diese Informationsspei-
cherung und die Fahigkeit zur Vervielfiltigung die Basis fiir alle weiteren Entwicklungen in

4 1 Natiirliche Evolution

O Protein /' \
O Polynukleotid D D
Replikation \ /

Katalyse

o
.
O

Translation

Bild 1.1 Vereinfachtes Beispiel eines Hyperzyklus

der Evolution. Der Abschnitt der RNA, der eine Aminosduresequenz bestimmt, wird als Gen
bezeichnet.

Die Proteine {ibernehmen nun die spezifischen Zellenfunktionen, wie z.B. die Produktion
des Blutfarbstoffs Hamoglobin. Ebenso haben spezielle Proteine katalytische Wirkung auf die
Vervielfiltigung der RNA-Molekiile. Dadurch konnten sich in der frithen Evolution zyklische
Prozesse, die sog. Hyperzyklen, zwischen den Polynukleotiden und den Polypeptiden ausbilden.
Die Bildung von Polypeptiden wird durch die Information in den Polynukleotiden gesteuert.
Und die Polypeptide bzw. Proteine verbessern wiederum katalytisch die Vervielfiltigung der
Polynukleotide. Dies ist schematisch in Bild 1.1 dargestellt.

Diese Vervielfiltigung der RNA-Molekiile oder Polynukleotide arbeitet jedoch nicht fehler-
frei — die Ursache sind v.a. die natlirliche Radioaktivitit aber auch chemische Wechselwirkungen.
In der frithen Evolution wird mit einer Fehlerrate (Vervielfiltigungsfehler oder Mutationsrate)
von ungefihr 1072 gerechnet, d. h. auf 100 Nukleotide kommt etwa ein fehlerhaft eingebautes Nu-
kleotid. Je kleiner diese Fehlerrate ist, desto stabiler kann die Information weitergegeben werden.
Und indirekt beschrinkt sie die Lange der Polynukleotidketten und die Menge an speicherbarer
Information. Wie wir im Folgenden sehen werden, kann die Verringerung der Fehlerrate als ein
Leitkriterium fiir die Entstehung der weiteren Mechanismen der Evolution herangezogen werden.

Ein Ergebnis solcher Mutationen kénnen geringfiigig verdnderte Gene sein, die damit andere
Proteine erzeugen und als Konsequenz auch eine variierte katalytische Wirkung in den Hyperzy-
klen haben. Dadurch bildet sich ein Wettbewerb zwischen unterschiedlichen Hyperzyklen und
diejenigen, welche am effizientesten und schnellsten arbeiten und die meisten Molekularbaustei-
ne binden kénnen, setzen sich durch. Dies flihrte zu besseren Katalysatoren und konnte so bereits
die Fehlerrate auf weniger als 103 verringern.

So hat bereits die frithe chemische Evolution die drei Eigenschaften des Lebens geprigt, die
iiblicherweise fiir eine Definition von »Leben« herangezogen werden.

* Erhaltung des Lebens durch Stoffwechselprozesse und Selbstregulierung,

» Vermehrung des Lebens durch Wachstum und Zellteilung kombiniert mit der Vererbung
durch die Ubertragung von genetischem Material und

* Verdnderung des Lebens durch Variation des genetischen Materials. Dieser Verdnderungs-
prozess wird gewohnlich als Evolution bezeichnet.

1.1 Entwicklung der evolutiondren Mechanismen 5

neue

alter Strang Komplementér-

stringe
alter Strang &

Bild 1.2 Struktur der DNA (gewundene Strickleiter). Die Abbildung zeigt, wie sich die DNA aufspaltet
und sich so durch Ergénzung der einzelnen Stringe unter der Mitwirkung von Enzymen selbst
replizieren kann.

Zufallsereignisse und die Mitwirkung von Enzymen (Eiweillkorper, die als Biokatalysatoren
fiir den Stoffwechselprozess unentbehrlich sind) haben hochstwahrscheinlich die DNA-RNA-Pro-
tein-Welt hervorgebracht, indem sich DNA-Molekiile (engl. desoxyribonucleic acid) zur Infor-
mationsspeicherung an RNA-Molekiilen gebildet haben. Die DNA ist ein zweistrangiges Molekdil,
das sich aus den Nukleotiden mit den Basen Adenin (A), Guanin (G), Cytosin (C) und Thymin
(T) zusammensetzt. Damit sind drei von vier Basen der RNA auch in der DNA enthalten. Ledig-
lich das Uracil der RNA wird im Aufbau der DNA durch Thymin ersetzt. Diese Basen bilden
durch molekulare Wechselwirkungen (Wasserstoffbriicken) Paare aus, die sich als Querverbin-
dungen zwischen den beiden DNA-Einzelstrangen befinden. Es entsteht die Form einer gewun-
denen Strickleiter, wobei die Einzelstrange die Holme und die Querverbindungen die Sprossen
sind. Dabei stehen jeweils A und T gegentiber sowie C und G. Daher kann jeder einzelne Strang
vom anderen abgeleitet werden. Die Bindungen zwischen den einzelnen Paaren halt das Molekiil
zusammen. Die Struktur der DNA und die Selbstreplikation der DNA aus den Einzelstringen ist in
Bild 1.2 dargestellt. Die langfristigen Vorteile der DNA gegentiiber der RNA liegen darin, dass sie
stabiler ist und aufgrund ihrer doppelten Codierung gegebenenfalls genetische Defekte reparieren
kann. Durch den Doppelstrang kann die DNA jedoch nicht so gut mit den Enzymen interagieren
wie die RNA — daher ist keine direkte Umsetzung der DNA in die Proteine méoglich. Aus diesen
unterschiedlichen Stirken von DNA und RNA hat sich eine Aufteilung in verschiedene Funktio-
nalitdten ergeben. Die genetische Information der DNA wird zunéchst auf eine sog. Messenger-
RNA gemil der Regeln in Tabelle 1.2 {iibertragen, welche dann beziiglich der Enzyme aktiv
wird. Damit ist die Rolle der DNA die Informationsspeicherung und die Rolle der Messenger-
RNA die Informationsiibermittlung. Diese Mechanismen reduzieren die Fehlerrate auf etwa 106
und weitere Verbesserungen in der Fehlerkorrektur erreichen sogar eine Fehlerrate von 1078, Der
Ubersetzungsprozess ist ebenfalls schematisch in Bild 1.3 dargestellt.

Nun darf man sich einen DNA-Strang jedoch nicht als fest vorgeschriebene Sequenz von An-
weisungen vorstellen, die einem klaren Bauplan z. B. fiir den Aufbau eines komplexeren Orga-

6 1 Natiirliche Evolution

Basenpaar der DNA RNA

G-C G

T-A

C-G c Tabelle 1.2 i

A_T A Regeln zur Ubermittlung der Information von der DNA auf die Messenger-

RNA, wobei sich die RNA jeweils an der rechte Base der DNA bildet.

Zellplasma

i w Zellkern

RNA-
Polymerase

Messenger-RNA
eee

Aminosiure

Gly

(OHHD

Transfer-RNA

Messenger-RNA

Bild 1.3 Schematische Darstellung der Proteinbiosynthese mit Hilfe der in der Erbsubstanz DNA gespei-
cherten Information. Die Doppelhelix der DNA im Zellkern wird von der RNA-Polymerase aufge-
spalten. Dabei wird entlang des kodierten DNA-Strangs eine Messenger-RNA gebildet. Sie wandert
aus dem Zellkern heraus ins Zellplasma. Dort lagern sich Ribosomen an die Messenger-RNA. An
jedem Ribosom entsteht eine Peptidkette (Protein) aus der Verkniipfung einzelner Aminosiuren
gemiB der Zuordnungsvorschrift des genetischen Codes. Die Aminosiduren werden von spezifi-
schen Transfer-RNAs herangeschafft.

1.1 Entwicklung der evolutiondren Mechanismen 7

inaktives Gen (Protein 1) aktives Gen

Schalter Schalter ‘5

Messenger-RNA | |

{

Bild 1.4 Der linke Teil der Abbildung zeigt ein inaktiviertes Gen. Durch Anlagerung eines Proteins an dem
als »Schalter« bezeichneten Abschnitt der DNA wird rechts das Gen aktiviert und kann tiber die
Messenger-RNA in ein anderes Protein tibersetzt werden. So regulieren Proteine ihre Herstellung
auf der Basis der vorliegenden DNA.

nismus dient. Dies wird in erster Linie iiber Proteine gesteuert, die bestimmte Teile einer DNA-
Sequenz aktivieren koénnen (vgl. Bild 1.4). Nur dann werden die Informationen {iber die Messen-
ger-RNA in neue Proteine iibersetzt. D. h. es handelt sich um einen selbstorganisierten zyklischen
Prozess, wann welche Teile der DNA aktiv werden. Man spricht auch von genregulierenden Netz-
werken. In einem mehrzelligen Organismus kann in verschiedenen Bereichen eine unterschied-
liche »Protein«-Umwelt herrschen — verursacht durch Asymmetrien, die z. T. bis auf die ersten
Zellen zuriickgehen. Dies fithrt dazu, dass unterschiedliche Gene aktiv sind und andere Entwick-
lungsschritte veranlasst werden, wodurch sich einzelne Zellen spezialisieren und ein komplexes
Lebewesen entsteht.

Ein anderes einschneidendes Ereignis zur Ausbildung der heutigen tierischen und pflanzlichen
Zellen und damit der komplexen, mehrzelligen Organismen war die Entstehung der Zellatmung
durch endosymbiotische Vorgdnge. Endosymbiose heifit hierbei, dass andere selbststindige Le-
bewesen, in diesem Fall Bakterien mit einem effektiven Atmungssystem zur Bindung des Sauer-
stoffs, in eine Zelle eingeschlossen werden und dort symbiotisch mit der Zelle zusammenarbeiten.
So haben sich die Mitochondrien in der heutigen Zelle gebildet, die fiir die Zellatmung verant-
wortlich sind. Ein weiteres Beispiel fliir Endosymbiose in der Evolution sind die Chloroplasten
in den pflanzlichen Zellen. Sie entstanden vermutlich durch den Einschluss von Cyanobakterien
und haben die Photosynthese der Pflanzen erméglicht. Hierbei ist es wichtig festzuhalten, dass
die symbiotische Zusammenarbeit einen Evolutionsschritt vollbracht hat, der nicht durch blof3en
Wettbewerb zwischen unterschiedlichen Mutanten erreicht werden konnte.

Im Weiteren konnte die Evolution noch verschiedene Verbesserungen in den biologischen Me-
chanismen entwickeln, die eine Verringerung der Fehlerrate bei der Zellteilung mit sich gebracht
haben. Einerseits wird durch die Ausbildung eines Zellkerns das genetische Material besser vor
Schadigungen durch Sauerstoff geschiitzt. Andererseits kommt das genetische Material bei man-
chen Einzellern und den meisten Vielzellern doppelt in jeder Zelle vor. So besteht jedes Chromo-
som bei den hoheren Lebewesen aus zwei identischen DNA-Ketten, den sog. Chromatiden, auf
denen mehrere Gene gespeichert sind. Dies vereinfacht die Zellteilung wihrend des Wachstums
eines Lebewesens (die sog. Mitose).

Und schlieBlich wird die Sexualitét ausgebildet, bei der das Erbgut zweier Organismen ver-
mischt wird. Die entscheidende Technik, durch die dieser Mechanismus so effektiv wird, liegt in
der Verdoppelung der Chromosomen. Fiir die Vermehrung wird dieser sog. diploide Chromoso-

8 1 Natiirliche Evolution

% O Keimzellen
/\ der Eltern
.O . <> Kindorganismus
/N

Keimzellen
eoe des Kindes

Bild 1.5 Schematisches Beispiel fiir die Rekombination von Chromosomen bei diploiden Organismen.

] ® <> Kindorganismus
|
o A

Keimzellen
soe oo des Kindes

Bild 1.6 Effekt eines Crossing-Over in einem Chromosom bei der Bildung der Keimzellen.

O
AN

mensatz bei allen Tieren und damit auch beim Menschen in den Keimzellen auf einen einfachen
reduziert (die sog. Meiose). Bei der Entstehung eines neuen Nachkommens, d. h. der Verschmel-
zung zweier Keimzellen verschiedener Eltern, geht so ein kompletter Satz der Chromosomen von
jedem Elternteil ein. Da bei der Ausbildung der Keimzellen eines solchen Nachkommens nicht
bekannt ist, welches Chromosom von welchem Elternteil stammt, werden hierbei die verschie-
denen Chromosomen in jeder Keimzelle neu kombiniert. Dies erlaubt eine rasche fortgesetzte
Rekombination des Erbguts der Eltern und ist beispielhaft in Bild 1.5 dargestellt. Bei Pflanzen
findet die Rekombination in derselben Art und Weise statt, auch wenn die Aufspaltung der Chro-
mosomensitze teilweise anders organisiert ist. Da auf jedem Chromosom viele Gene gespeichert
sind, bleiben diese Informationen bei der Rekombination selbst immer zusammen erhalten. Le-
diglich bei den sog. Crossing-Over-Effekten ist eine weitergehende Vermischung moglich, indem
sich Chromosomen an bestimmten Bruchstellen aneinanderlagern und so Teilstiicke der Chro-
mosomen austauschen. Dadurch wird die Durchmischung des Erbguts der beiden Eltern noch
verstirkt, es kénnen aber auch Anomalien oder Krankheiten verursacht werden. Das Crossing-
Over ist schematisch in Bild 1.6 dargestellt.

Insgesamt ergibt sich damit die heutige Fehlerrate von 10719 bis 10~!!, welche auch der durch
Strahlenschiden vorgegebenen natiirlichen Grenze entspricht. Durch Reduktion der Fehlerrate

1.2 Evolutionsfaktoren 9

konnte zwar die Information sehr viel stabiler erhalten bleiben, dadurch finden gleichzeitig auch
weniger Verdnderungen und damit weniger Evolution statt. Aus diesem Grunde konnte sich die
Sexualitdt als neuer evolutionsbeschleunigender Mechanismus sehr rasch durch seinen Selek-
tionsvorteil durchsetzen.

1.2 Evolutionsfaktoren

Die Evolutionsfaktoren werden aus der Uberlegung abgeleitet, unter welchen Umstcinden sich
die Hdufigkeit von Genen in einer Population verdndert.

Wihrend der Abschnitt 1.1 die Evolution aus der molekulargenetischen Sicht beleuchtet und
die genetischen Mechanismen samt ihrer Entstehung darstellt, abstrahiert dieser Abschnitt nun
vom einzelnen Organismus und betrachtet eine Population von Organismen in ihrer Gesamtheit.
Dieses Teilgebiet wird auch als Populationsgenetik bezeichnet, bei dem insbesondere die statisti-
sche Verteilung von Eigenschaften in der Population, die so genannte Genfiequenz, von Interesse
1st.

Um mit Hilfe der Populationsgenetik die Evolutionsfaktoren vorzustellen, werden zunichst
die wichtigsten Begriffe der Evolutionstheorie eingefiihrt. Die Terminologie der evolutionédren
Algorithmen in den folgenden Kapiteln lehnt sich stark an die hier eingefiihrten Begriffe an.

Aus dem vorherigen Abschnitt ist bekannt, dass ein Chromosom mehrere Gene enthélt — die
Grundlage fiir die Vererbung sowie fiir die Veranderung des Erbguts in der Form einer Mutation.
Die Gesamtheit aller Gene eines Organismus wird Genom genannt und bestimmt im Wesent-
lichen das Erscheinungsbild dieses Organismus, die so genannte phédnotypische Auspriagung.
Das Genom wird gemeinsam mit dem Phénotyp auch als Individuum bezeichnet. Gerade sein
Erscheinungsbild und die Interaktion mit der Umwelt bilden die Grundlage fiir eine Selektion,
d. h. einen Auswahlprozess.

Ein einzelnes Gen im Genom kann meist verschiedene Werte annehmen. Jede dieser Auspri-
gungen wird als ein A//e/ bezeichnet. Ein Beispiel wire bei einem Gen fiir die Haarfarbe ein Allel
fiir blonde und ein Allel fiir schwarze Haare. Die Gesamtheit aller Allele in einer Population wird
auch als Genpool bezeichnet.

Einen weiteren wichtigen Begriff der Evolution stellt der Arthegriff dar. Eine Art wird durch
diejenigen Populationen definiert, deren Individuen zu einem gemeinsamen Genpool gehdren
und sich miteinander paaren kénnen. Dabei konnen jedoch einzelne Populationen rdumlich so
weit voneinander getrennt sein, dass aus diesem Grund keine Fortpflanzung zwischen ihnen statt-
findet. Da wir Evolution als den Entstehungsprozess der Mannigfaltigkeit im Tier- und Pflanzen-
reich definiert haben, stellt der Artbegriff die Grundlage fiir die Evolution dar.

1.2.1 Herleitung der Evolutionsfaktoren

Um die Frage nach den grundsitzlichen Evolutionsfaktoren zu beantworten, betrachten wir eine
Population von Individuen. Wir nehmen an, dass fiir ein bestimmtes Gen in der Population zwei
unterschiedliche Allele vorhanden sind. Dabei soll ein Allel mit der Haufigkeit p, das andere
mit der Haufigkeit 1 — p auftreten. Ferner sei die Population stabil, d.h. auch nach mehreren
Generationen ist das Verhéltnis der beiden Allele immer noch konstant.

10 1 Natiirliche Evolution

Eine Evolution findet nun genau dann statt, wenn sich die Haufigkeit der beiden Allele, die
sog. Genfrequenz verdndert. Dies kann genau in den folgenden Fillen geschehen.

1. Durch Vervielfiltigungsfehler bzw. Mutationen kann sich die Genfrequenz nachhaltig ver-
schieben, indem z. B. neue Allele eingefiithrt werden.

2. Die Haufigkeit der Allele kann nur stabil sein, wenn sie eine gleiche Fortpflanzungsrate
besitzen und die Nachkommen unabhingig von ihren Allelen gleiche Uberlebenschancen
haben. Ist eine von beiden Bedingungen nicht gegeben, tritt eine Veridnderung der Gen-
frequenz ein. Der Evolutionsfaktor wird als Selektion bezeichnet.

3. In groflen Populationen stort der zuféllige Tod einzelner Individuum das Verhiltnis der
Allelen kaum. In sehr kleinen Populationen kénnen die Auswirkungen jedoch grof} sein:
Man spricht vom Gendrift.

4. Eine Verdnderung der Genfrequenz kann auch durch die Zu- oder Abwanderung von Indivi-
duen, also einer Interaktion zwischen eigentlich getrennten Populationen, stattfinden. Dann
spricht man von Genfluss.

Im vorherigen Abschnitt hatten wir auch die Rekombination als Mechanismus der Evolution
eingefiihrt. In obiger Uberlegung der Populationsgenetik wire dies kein Evolutionsfaktor, da
Allele nur anders verteilt, ihre Hiufigkeit aber nicht verdndert wird.

Die einzelnen Evolutionsfaktoren und insbesondere die Frage, ob die Rekombination nicht
doch ein Evolutionsfaktor ist, werden in den folgenden Abschnitten ndher beleuchtet.

1.2.2 Mutation

Wie im Abschnitt 1.2.1 dargestellt entstehen Mutationen durch Fehler bei der Reproduktion der
DNA, beispielsweise Austausch, Einfligung oder Verlust von Basen. Beim Menschen betrigt die
Mutationsrate etwa 10~ 1%, Da der Mensch circa 103 Gene mit jeweils ungefihr 10* Bausteinen
besitzt, findet pro Zellteilung eine Verinderung mit einer Wahrscheinlichkeit von 107! statt.

Da nur sehr wenige Zellteilungen notwendig sind, um die Keimzellen fiir die Nachkommen
zu bilden, bleibt die Anzahl der Verdnderungen an der Geninformation verhéltnisméfig gering.
Zudem kénnen Mutationen auch in Teilen der DNA auftreten, in denen keine Information ge-
speichert ist — z. B. in den Introns, den inaktiven (evtl. veralteten) Abschnitten innerhalb eines
Gens, oder den nach heutigem Wissensstand funktionslosen Abschnitten auflerhalb der Gene,
die im Englischen auch als jurnk DNA (DNA-Miill) bezeichnet werden. Solche Mutationen haben
zundchst keine direkte Auswirkungen auf den Phinotyp und werden daher als neutrale Muta-
tionen bezeichnet. Auch durch die Redundanz des genetischen Codes kann beispielsweise ein
Basentausch ohne Auswirkungen, also neutral, bleiben. Andere Mutationen, die zunéchst keine
direkte Auswirkung haben, sind die sog. rezessiven Mutationen. Da in diploiden Organismen
fiir jedes Gen zwei Allele (von jedem Elternpaar eines) vorhanden sind, kann es sein, dass eine
Verdnderung eines Allels nicht direkt Auswirkungen zeigt, sondern nur wenn beide Gene die-
selbe Verdnderung aufweisen. Man spricht dann von einem rezessiven Allel. Ist gleichzeitig ein
entsprechendes dominantes Allel vorhanden ist, wirkt sich nur das dominante aus. So werden
z. B. bei der Hausmaus rote Augen durch ein rezessives Allel erzeugt, wihrend schwarze Augen
dominant sind. Rezessive Mutationen veréindern rezessive Allele und haben daher hiufig keine
direkte Auswirkung. Rezessive Allele konnen sehr lange unbemerkt in Populationen vorhanden
sein.

1.2 Evolutionsfaktoren 11

Mutationen sind die Grundlage fiir Verinderung in der Evolution. Grofle Verinderungen in
einer Population finden in der Regel graduell durch Addition von vielen kleinen, z. T. rezessiven
Mutationen statt. Grofle Verdnderungen, die in einem Schritt durch eine Mutation entstanden
sind, werden hiufig wieder schnell aus der Population verdringt, da durch die enge Verkniipfung
und Wechselwirkung der Gene elementare negative Eigenschaften bei Grofmutationen kaum
vermeidbar sind.

1.2.3 Rekombination

Rekombination findet bei der sexuellen Paarung statt, wodurch das genetische Material der El-
tern neu kombiniert wird. Aus der Sicht der klassischen Evolutionslehre handelt es sich dabei
um keinen Evolutionsfaktor, da keine Neuerungen eingefiihrt werden, sondern nur Vorhandenes
neu zusammengestellt wird. Dieser Argumentation liegt die Idee eines aus einzelnen, voneinan-
der unabhingigen Genen zusammengesetzten Bauplans zugrunde. Wird jedoch die Vorstellung
der genregulierenden Netzwerke herangezogen, sind die Gene hochgradig voneinander abhin-
gig. Es wird angenommen, dass nur die starke Vernetzung und Verkniipfung in den genotypi-
schen Strukturen viele phanotypische Merkmale hervorbringen kann. Damit verschiebt sich die
Funktion der Rekombination von der Kombination unabhingiger Gene hin zur Erzeugung neuer
Verkniipfungen im genregulierenden Netzwerk. Vor diesem Hintergrund kann man annehmen,
dass wahrscheinlich durch Mutationen neu erzeugte Allele fiir den Evolutionsprozess weit weni-
ger wichtig sind als die Verinderungen der Rekombination. Konsequenterweise zihlt man heute
die Rekombination auch zu den Evolutionsfaktoren.

Schon, dass die Natur sich nicht nach der Populationsgenetik richtet. Dies zeigt lediglich die Problematik
jeglicher Modellierung auf: Es kiinnen nur Teilaspekte vollstindig korrekt wiedergegeben werden.

1.2.4 Selektion

Bei der Selektion innerhalb einer Population handelt es sich um eine Verinderung der Allelenhéu-
figkeit durch unterschiedlich viele Nachkommen der einzelnen Allele. Die folgenden Ursachen
kénnen zu unterschiedlicher Tauglichkeit und Reproduktivitt fiihren:

« unterschiedliche Uberlebenschancen, z. B. in der Lebensfihigkeit oder dem Behauptungs-
vermogen gegen Rivalen oder natiirliche Feinde — hier spricht man auch von einer Umwelt-
selektion,

« unterschiedliche Fahigkeit, einen Geschlechtspartner zu finden — hier spricht man auch von
der sexuellen Selektion,

« unterschiedliche Fruchtbarkeit bzw. Fortpflanzungsraten oder
+ unterschiedliche Linge der Generationsdauer.

Die Selektion kann durch den Selektionswert bzw. Firnesswert gemessen werden. Die relative
Fitness eines Genotyps G ist iiber die Anzahl der tiberlebenden Nachkommen in einer Population
definiert als
__ #Nachkommen von G
- #Nachkommen von G’

Fitness(G)

wobei G’ der Genotyp mit den meisten Nachkommen in der Population ist.

12 1 Natiirliche Evolution

Implizit wird bei dem Fitnesswert angenommen, dass ein Genotyp, der besser an seine Um-
welt angepasst ist, mehr Nachkommen erzeugt. Damit ist der Fitnesswert ein abgeleitetes Maf}
fiir die Tauglichkeit eines Individuums.

Die Selektion ist der einzige gerichtete Vorgang in der Evolution. Statt eines ibergeordne-
ten Ziels wird jedoch die Angepasstheit im Moment angestrebt. Die Selektion arbeitet nicht
auf einzelnen Eigenschaften oder Genen eines Organismus, sondern statistisch auf dem dadurch
bestimmten Phénotyp, d. h. dem beobachtbaren AuBeren des Organismus. Alle Gene erbringen
zusammen eine gewisse Leistung, die durch die Selektion bewertet wird.

Beim reinen Auswahlprozess der Selektion wiirde sich langfristig lediglich die vorteilhafteste
Form einer Art durchsetzen. Dies ist jedoch nicht der Fall, da meist in einer Population viele ver-
schiedene Formen beobachtet werden konnen, z. B. braun- und weilhaarige Kaninchen. Diesen
Effekt nennt man Polymorphismus. Eine mogliche Ursache ist ein geringfiigiger Selektionsun-
terschied zwischen den verschiedenen Phénotypen oder sogar wechselseitige Selektionsvorteile
bei ungleichen Umweltbedingungen. Eine zweite Erkldrung sind Seiteneffekte von rezessiven
Allelen. Ist beispielsweise a ein rezessives Allel und 4 ein dominantes, dann stehen 4a und A4
fiir denselben Phinotyp. Da 4a keinen Nachteil hat, wird das rezessive Allel a in der Population
prisent bleiben und damit auch immer wieder die Kombination aa mit dem damit verbundenen
Phénotypen entstehen. Ein letzter Grund fiir Polymorphie ist in Selektionsvorteilen von Minder-
heitsphanotypen zu sehen, indem z. B. die natiirlichen Feinde sich auf den hauptsichlich auftre-
tenden Phinotyp einstellen. Insgesamt hat eine Population mit Polymorphie durch die gréBere
Vielfalt (Diversitit) den Nutzen einer groBeren Anpassungsfihigkeit und Uberlebenschance als
eine genetisch einheitliche Population.

Insgesamt bilden die Gene eines Genpools ein harmonisches System, bei dem die Allele der
verschiedenen Gene sorgfiltig aufeinander abgestimmt sind. Daher kénnen Mutationen zumeist
keine groBen Verdnderungen bewirken, da diese immer disharmonische Seiteneffekte mit sich
bringen. Dies ist beispielsweise auch die Ursache dafiir, dass viele Grundbaupline der Orga-
nismen nach ihrer Festlegung nicht mehr geéndert werden konnen. Je gréfler die Vernetzung
des Systems ist, umso stabiler ist der Grundbauplan und umso schwieriger ist ein neuer har-
monischer Zustand zu erreichen — insbesondere lédsst sich die Evolution dann auch nicht um-
kehren. Anpassung findet immer im Kontext der Situation des Moments statt und ist auch bei
einer Verdnderung der Situation nicht mehr riickgédngig zu machen. Daher erreicht die nattrliche
Evolution kein Optimum, sondern schleppt immer Ballast aus fritheren Anpassungen mit sich
mit.

Die Delphine sind ein Beispiel fiir diese Unumkehrbarkeit: Im Wasser kénnte ihnen eine Kie-
menatmung hilfreich sein und sie verfiigen auch iiber Ansitze von Kiemenspalten. Bei der An-
passung ihrer Vorfahren an das Leben an Land wurden die Kiemen riickgebildet. Sie kénnen
nun nicht wieder auf einfache Art und Weise durch die Evolution aktiviert werden, sondern die
Kiemenatmung miisste vermutlich wieder neu »erfunden« werden.

1.2.5 Genfluss

Bei der Evolution durch Genfluss werden die Genhdufigkeiten in der Population direkt durch
Zu- oder Abwanderung von Individuen einer anderen Population derselben Art verdndert. Man
kann in diesem Zusammenhang auch von verschiedenen Teilpopulationen einer Art sprechen.
Solche Teilpopulationen kénnen unterschiedlich stark voneinander isoliert sein, so dass es nur

1.3 Anpassung als Resultat der Evolution 13

durch Migration zum Genaustausch zwischen ihnen kommen kann. In stark getrennten Teilpo-
pulationen konnen sich Varianten derselben Art bilden. Bei langer Isolation kann sich eine Art
in verschiedene Arten aufspalten, falls etwa das Fortpflanzungsverhalten durch die Evolution
verdndert wird.

1.2.6 Gendrift

Evolution durch Gendrift ist eine Erscheinung, die insbesondere bei kleinen Populationsgréfien
beobachtet wird. Dabei sterben Allele einzelner Gene aufgrund von Zufallseffekten aus. Gen-
drift bewirkt somit eine deutliche Reduktion der Vielfalt in einer Population. Gerade in sehr
kleinen Populationen mit weniger als 100 Individuen ist Gendrift ein wesentlicher Evolutions-
faktor, wenn z.B. ein neu entstandener Lebensraum durch sehr wenige Individuen besiedelt
wird. In sehr groen Populationen mit mehr als 10000 Individuen ist Gendrift vernachlissig-
bar.

Gendrift kann sehr effektiv mit Selektion und Genfluss zusammen die Evolution beeinflussen.
In einer kleinen Population kann die Evolution durch Gendrift und Mutationen, die entstehende
Liicken fullt, andere Wege einschlagen als in einer groen Population. Dadurch werden leicht
Neuerungen eingefiihrt, die vielleicht zundchst gar nicht so positiv zu bewerten sind. Kommen so
entstandene Individuen durch Genfluss in eine andere Population, gehen sie dort wie alle anderen
Individuen in den Selektionsdruck der Evolution ein. Unter den verdnderten Bedingungen der
Evolution kénnen sie eventuell entscheidende Verbesserungen bewirken. So kann insgesamt eine
stark beschleunigte Evolution erreicht werden.

1.3 Anpassung als Resultat der Evolution

Die aus der Evolution resultierende Anpassung wird anhand der Besetzung von okologischen
Nischen, der Evolution okologischer Beziehungen und dem Baldwin-Effekt diskutiert.

Durch die in Abschnitt 1.2 vorgestellten Evolutionsfaktoren ist eine Population in bestimmten
Grenzen in der Lage, sich an Verdnderungen in der Umwelt anzupassen und den Lebensraum zu
behaupten. Ein Beispiel sind die Resistenzphinomene bei vielen Bakterien. Durch Mutationen
sind einzelne Bakterien gegen bestimmte Antibiotika resistent. Beim Einsatz eines Antibiotikums
werden nun die unangepassten ausselektiert, wihrend die wenigen bereits resistenten dafiir sor-
gen, dass die gesamte Population innerhalb kiirzester Zeit gegen das neue Antibiotikum resistent
ist. Diese Fahigkeit zur Anpassung hat zu verschiedenen interessanten Phanomenen in der Natur
gefiihrt, wovon drei im Folgenden knapp vorgestellt werden.

1.3.1 Nischenbildung

Meist wird in der Natur ein Lebensraum von sehr vielen verschiedenen Organismen geteilt. Dabei
nutzt jeder die vorhandenen Ressourcen auf eigene Art und Weise fiir Wachstum und Erndhrung.
Diese Aufteilung der Umwelt wird als Einnischung bezeichnet.

Die tkologische Nische einer Art wird durch zwei verschiedene Klassen von Faktoren de-
finiert: durch die abiotischen Faktoren wie Feuchtigkeit, Licht etc. und durch die biotischen

14 1 Natiirliche Evolution

Faktoren, die durch Konkurrenz oder Kooperation mit anderen Arten und Organismen im Le-
bensraum bestimmt werden. Wihrend sich die abiotischen Faktoren meist messen lassen, sind
die biotischen Faktoren kaum qualitativ und quantitativ zu fassen.

Die Selektionsmechanismen werden aktiv, wenn sich die Nischen von mehreren Populationen
iiberschneiden. Durch Anpassung wird die Uberschneidung verringert und die zwischenartliche
Konkurrenz nimmt ab.

Die Einnischung liefert auch eine wesentliche Erklarung fiir die Bildung verschiedener Arten
aus einer Spezies und damit fiir die Mannigfaltigkeit der Natur. Hierfiir ist weniger die Kon-
kurrenz zwischen den verschiedenen Arten sondern die innerartliche Konkurrenz verantwortlich.
Diesem Selektionsdruck innerhalb der Population begegnen Mutationen, die einen explorativen
oder innovativen Charakter haben und damit die Besetzung neuer 6kologischer Nischen durch
einzelne Individuen fordern. Falls z. B. durch Verdnderung der Umgebungsbedingungen eine
neue Nische entsteht, kann ein Teil der Population diese durch Anpassung besetzen. Dies kann
langfristig zur Entstehung von zwei getrennten Arten fithren.

Unterschiedliche Einnischungen kénnen rdumlich wie bei Feld- und Schneehasen oder Eichel-
und Tannenhdhern, zeitlich wie bei Greifvogeln und Eulen oder durch unterschiedliche Nahrung
wie bei Walfen und Fiichsen begriindet sein.

Einnischung ist die Erklidrung fiir die Koexistenz vieler Arten im gleichen Lebensraum und
auch fiir die Auspragung unterschiedlicher Merkmale innerhalb einer Art.

1.3.2 Evolution 6kologischer Beziehungen

Wie im vorherigen Abschnitt 1.3.1 bereits angesprochen, teilen sich meist mehrere Arten densel-
ben Lebensraum oder leben in aneinandergrenzenden Lebensraumen. Es herrscht eine 6kologi-
sche Beziehung zwischen den Populationen im selben Lebensraum, da sie dieselben Ressourcen
nutzen. Konsequenterweise miissen sich dann auch die Evolutionsprozesse der unterschiedlichen
Arten beeinflussen, da eine Art die Umwelt der anderen Art mitbestimmt: Fine Verdnderung in
einer Population hat auch einen Effekt auf die anderen Population. Diese gegenseitige Beein-
flussung wird auch Koevolution genannt. Hier kénnen im Wesentlichen drei grofle Gruppen von
Okologischen Zusammenhingen unterschieden werden: erstens die Konkurrenz zwischen zwet
Arten, bei der das Wachstum der einen Art durch die andere gestort wird, zweitens die Ausnut-
zung der einen Art durch die andere — hierzu zdhlen Wirt-Parasit- und Rauber-Beute-Verhaltnis-
se — und schlieSlich Symbiose, bei der die Anwesenheit einer Art das Wachstum der anderen
stimuliert. Gerade solchen koevolutiondren Vorgéngen wird heute ein sehr grofer Anteil an der
Entwicklung komplexer Lebewesen eingerdumt.

1.3.3 Baldwin-Effekt

Abschlieflend soll noch kurz auf den Einfluss des Lernens auf die Evolution eingegangen wer-
den. In der bisherigen Darstellung basiert die Evolution vollstindig auf Verinderungen, die am
Genotyp vorgenommen werden — sowohl durch Mutation als auch durch Rekombination bei der
sexuellen Fortpflanzung. Dabei bleibt ein in der Biologie lange kontrovers diskutierter Aspekt
unberiicksichtigt: nimlich die individuelle Weiterentwicklung durch Lernen und ihr Einfluss auf
die Evolution. Lernvorgénge finden immer auf der phénotypischen Ebene statt. In der inzwischen
widerlegten Theorie von Lamarck wurde davon ausgegangen, dass solche individuellen Anpas-

w

1.4 Ubungsaufgaben 1

Evolution
Genotyp 1 — | Genotyp 2

[\

Ba]dwin-Effekt

bestimmt bestimmt

 <aif—
e —

Genotyp 1 Genotyp 2 Phénotyp 1 Phénotyp 2

bestimmt bestimmt Lernen

~fp—
—|
etffp—

Lernen

Phénotyp 1 = Phinotyp 2 Phénotyp 1’ Phénotyp 2’

|~

o)

3

)

=
P

Lamarcksche Evolution Baldwin-Effekt

Bild 1.7 Unterschied zwischen der Lamarckschen Evolution, bei der durch Lernen der Genotyp verdndert
wird, und dem Baldwin-Effekt, bei dem sich spezifische Lernfahigkeiten durch Selektionsvorteile
vererben.

sungen die treibende Kraft fiir die Evolution sind, indem die Verdnderungen wieder auf den
Genotyp zuriickgeschrieben werden (siehe Bild 1.7 links). Eine solche direkte Riickkopplung
existiert jedoch bei der biologischen Evolution nicht.

Stattdessen hat die individuelle Entwicklung einen indirekten Einfluss auf die Evolution und
die dabei entstehenden neuen Genotypen. Die wesentliche Grundlage des Baldwin-Effekts (siche
Bild 1.7 rechts) ist eine gemeinsame Umgebung, in der sowohl die Evolution als auch das Ler-
nen stattfindet. So beeinflussen dann auch Phinotypen, die sich durch Lernen veridndert haben,
die gemeinsame Umgebung und damit auch das Fortschreiten der Evolution. Hierdurch kénnen
Selektionsvorteile bzw. -nachteile fiir einzelne Genotypen in der Population entstehen. Ebenso
konnen sich evtl. Genotypen, die eine bessere Grundlage fiir das Erlernen bestimmter Eigenschaf-
ten bieten, leichter in der Population durchsetzen als andere Individuen. Lernen ist ein integraler
Teil der Umwelt und damit auch ein wesentlicher Bestandteil der Anpassung einer Art an die Um-
welt. Gemil der Theorie des Baldwin-Effekts kann so erlerntes Verhalten {iber lange Zeitriume
zu instinktivem Verhalten werden, das dann quasi direkt vererbt wird.

14 Ubungsaufgaben

Aufgabe 1.1: Mutationswahrscheinlichkeit

Betrachten Sie Chromosomen der Linge 100 und der Lange 1000 sowie Mutationen mit der
Mutationsrate 10~2 und 10~*. Berechnen Sie, wie viele Verinderungen statistisch bei einer
Mutation auftreten. Was bedeuten diese Ergebnisse fiir den Vorgang der Evolution?

Aufgabe 1.2: Wirkung der Rekombination

Betrachten Sie ein Genom bestehend aus 4 Genen, die jeweils die Werte «, b und ¢ annehmen
konnen. In einer Population sind die folgenden Genotypen enthalten: aabe, baab, cabb, babc,
cacc und bace. Uberpriifen Sie, inwieweit durch eine Rekombination (bei der jedes der Gene
aus einem Elternanteil stammen kann) alle moglichen Genome erreicht werden konnen.

16 1 Natiirliche Evolution

Aufgabe 1.3: Fitnessbegriff

Betrachten Sie eine Population bestehend aus den Individuen 4, B und C. Berechnen Sie die
relative Fitness fiir die Individuen, wobei sich 4 dreimal, B fiinfmal und C zweimal erfolgreich
fortpflanzt.

Aufgabe 1.4: Simulation einer Evolution

Schreiben Sie ein Programm, welches ein Individuum bestehend aus einem Chromosom mit 10
Bits simuliert. Kreuzen Sie zwei zufillig ausgewihlte Individuen, indem jedes Bit zufillig von
einem Elternteil ausgewéhlt wird. Mutieren Sie jedes Bit mit der Mutationsrate 102 und er-
setzen Sie schliellich in der Population das schlechteste Individuum durch das neu entstandene
— dabei ist ein Individuum umso besser je mehr Einsen enthalten sind. Simulieren Sie mehrere
Evolutionsldufe mit verschiedenen Populationsgrofen fiir wenigstens 200 Generationen. Wel-
che Beobachtungen machen Sie?

Aufgabe 1.5: Koevolutionires Verhalten

Schreiben Sie ein Programm, welches eine Parasit-Wirt-Beziehung simuliert. Dabei werden le-
diglich die PopulationsgréBen der Parasit- und Wirtpopulation betrachtet. Die Parasitpopulation
vergrofert sich entsprechend der GroBe der Wirtspopulation, und die Wirtspopulation vergro-
Bert sich reziprok zur Parasitenpopulation. Simulieren Sie dieses Verhalten fiir verschiedene
Anfangsgrofien. Was ldsst sich beobachten?

1.5 Historische Anmerkungen

Im 18. Jahrhundert herrschte die Vorstellung der Artkonstanz, d.h. alle Organismen sind von
Gott geschaffen und bleiben stets gleich. Fossile Funde wurden nicht als Uberreste von Lebewe-
sen sondern als Naturgebilde erachtet. In der damaligen Zeit wurde der Artbegriff ebenso wie das
Dogma der Artkonstanz durch von Linné (1740) geprigt. Als erster zweifelte Lamarck (1809)
die Artkonstanz an und proklamierte in seiner »Philosophie Zoologique« die Abstammung der
Arten voneinander sowie den Wandel der Arten in verschiedenen kleinen Schritten. Er ist der Be-
griinder der Deszendenztheorie. Neben diesem ersten Baustein in der Evolutionstheorie wurde
auch die individuelle Erfahrung einzelner Individuen fiir diesen Wandel verantwortlich gemacht,
was heute als widerlegt gilt. Ein weiteres Indiz fiir einen kontinuierlichen Wandel lieferte die Ent-
deckung gleicher Grundbaupline fiir verschiedene Tiergruppen durch St. Hilaire (1822), welche
die Theorie der gemeinsamen Abstammung der Arten stiitzt. Diese ersten Theorien beziiglich
eines kontinuierlichen Wandels der Arten wurden von dem Begriinder der Paldantologie Cuvier
(1812, 1825) stark angezweifelt: Er entwickelte eine Katastrophentheorie, die das Vorhanden-
sein von Fossilien ausgestorbener Tiere durch Naturkatastrophen erklért. Diese Theorie passte
wesentlich besser in das damalige Weltbild und wurde daher favorisiert. Aufbauend auf die Ar-
beiten von Lamarck und anderen verdffentlichte Darwin (1859) schlieflich sein Werk »On the
Origin of Species«, welches den kontinuierlichen Wandel der Arten und die Deszendenztheorie
untermauerte und das Prinzip der natlirlichen Selektion (Selektionstheorie) eingefiihrt hat. Auch
diese Theorie wurde Ende des 19. Jahrhunderts eher abgelehnt — allerdings konnte die Idee einer
kontinuierlichen Evolution zur damaligen Zeit schon nicht mehr verneint werden, auch wenn die

1.5 Historische Anmerkungen 17

allumfassende wissenschaftliche Erkliarung fiir die Evolution noch fehlte. Erst mit der autkom-
menden Genetik erlebte der Darwinismus seinen Durchbruch: Die resultierende Kombination
aus Genetik und Darwinismus wird als Neo-Darwinismus bezeichnet. Allerdings ist auch die
Darwinistische Evolution bis in die heutige Zeit nicht unumstritten.

Die Beobachtungen von Mendel (1866) bei der Kreuzung von Gartenerbsen begriindeten die
Genetik, wurden allerdings 30 Jahre lang nicht beachtet bzw. gerieten in Vergessenheit. Nahezu
zeitgleich mit threr Wiederentdeckung begriindete de Vries (1901/03) die Mutationstheorie, die
besagt, dass die Evolution auf zufilligen, spontanen und erblichen Verdnderungen beruht. Erst
spéter entdeckten Watson & Crick (1953) die so genannte Doppelhelix, die DNA, sowie den ge-
netischen Code (Crick et al., 1961; Nirenberg & Leder, 1964). Damit wurde die exakte Erkldrung
fiir die Vorgénge in der Evolution auf der genetischen Ebene geliefert. Die Evolution des geneti-
schen Codes ist ausfiihrlich in dem Buch von Vaas (1994) beschrieben. Mehr Informationen zur
Molekulargenetik sind in dem Buch von Lewin (1998) enthalten.

Der Biophysiker Eigen hat durch seine Arbeit an der Theorie der Selbstorganisation der Ma-
terie, den Hyperzyklen, die exakte physikalisch-chemische Grundlage fiir die Evolutionstheorie
geliefert (Eigen, 1971, 1980; Eigen & Schuster, 1982).

So wie die Evolutionsfaktoren hier prasentiert werden, lassen sie sich konkret aus dem so ge-
nannten Hardy-Weinberg-Gesetz fiir diploide Populationen ableiten. Auf die genaue Herleitung
wurde im Rahmen dieser knappen Abhandlung verzichtet. Dieses gesetzméBige Gleichgewicht
wurde unabhingig voneinander von dem Mathematiker Hardy (1908) und dem Arzt Weinberg
(1908) hergeleitet.

Der Begriff der »Koevolution« stammt aus der Arbeit von Ehrlich & Raven (1964) zur Inter-
aktion zwischen Schmetterlingen und Pflanzen. Die Endosymbiontentheorie geht auf erste Hy-
pothesen Ende des 19. Jahrhunderts zuriick. Schwartz & Dayhoff (1978) haben durch einen Se-
quenzstammbaum der Lebenswelt die Hypothesen wissenschaftlich verifiziert (vergleiche auch
die Arbeit von Margulis, 1971). In der Folgezeit wurde die Endosymbiontentheorie verschiedent-
lich bestétigt und gilt seit Ende der 1980er Jahre auch als allgemein akzeptiert.

Der Baldwin-Effekt wurde unabhéngig voneinander von Baldwin (1896), Morgan (1896) und
Osborn (1896) festgestellt und in der Folgezeit bis heute stark diskutiert und kritisiert. Interessan-
terweise kann er gerade bei simulierten Evolutionsvorgidngen im Computer beobachtet werden
(vgl. die Arbeit von Hinton & Nowlan, 1987).

Wesentlich detailliertere Erlauterungen zur biologischen Evolution und den geschichtlichen
Hintergriinden kénnen biologischen Lehrbiichern und der Fachliteratur (wie z. B. Grant, 1991;
Kull, 1977; Smith, 1989; Wieser, 1994; Futuyma, 1998; Storch et al., 2001; Kutschera, 2001)
entnommen werden.

2 Von der Evolution zur Optimierung

Die Prinzipien der biologischen Evolution werden auf die Optimierung iibertragen. Am Beispiel
wird ein erster evolutiondrer Algorithmus zur Optimierung konstruiert. Gemeinsamkeiten mit
und Gegensdtze zur Natur werden herausgestellt.

Lernziele in diesem Kapitel

&> Optimierungsprobleme kénnen formal definiert werden.

¢> Das allgemeine Ablaufschema der einfachen evolutiondren Algorithmen wird verstanden
und als generisches Muster aufgefasst.

%> Die Unterscheidung zwischen Genotyp und Phénotyp wird verinnerlicht und kann effektiv
im konkreten Beispiel umgesetzt werden.

&> Die Anpassung eines evolutionidren Algorithmus an ein Optimierungsproblem kann zu-
mindest am Beispiel nachvollzogen werden.

¢ Die Ahnlichkeiten aber auch die Abgrenzung der evolutioniren Algorithmen zum natiir-
lichen Vorbild werden verstanden.

&> Evolutiondre Algorithmen werden als eine Optimierungstechnik von vielen verstanden
und auch entsprechend differenziert eingesetzt,

Gliederung
2.1 Optimierungsprobleme 20
2.2 Der simulierte evolutiondre Zyklus 24
2.3 Ein beispielhafter evolutiondrer Algorithmus 26
2.4 Formale Einfithrung evolutiondrer Algorithmen 34
2.5 Vergleich mit der natiirlichen Evolution 39
2.6 Vergleich mit anderen Optimierungsverfahren 41
27 UbUNGSaufEaben . .ocovierai s w5 o % 5 6 8 ¥ 8 8 e smEEeTe B A s S & 5 43
2.8 Historische Anmerkungeno ve oo i a i s 44

Biologen studieren die Evolution als Mechanismus, der in der Natur spezielle Lésungen fiir spezi-
elle Probleme erzeugt. Sie produziert etwa Antworten auf Fragen hinsichtlich der Aufnahme von
Energie aus der Umwelt, der Produktion von geniigend Nachkommen, um die Art zu erhalten,
der Partnerfindung bei sexueller Fortpflanzung, des optimalen Energieaufwands zur Erzeugung
von vielen oder wenigen Nachkommen, der optimale Tarnung etc. Diese Losungen sind unter

20 2 Von der Evolution zur Optimierung

anderem das Resultat von Mutation, Rekombination und natiirlicher Selektion, die im vorigen
Kapitel ausfiihrlich vorgestellt und diskutiert wurden.

Auf der anderen Seite dienen Computer seit ihrer Erfindung als Probleml&ser fiir verschie-
denste Aufgaben. Als ein Modell fir Rechenmaschinen hat Turing in den 1930er Jahren die
Turing-Maschine eingefiihrt und die Behauptung aufgestellt, dass sich jedes algorithmisch 16sba-
re Problem auf diesem Maschinenmodell 16sen lasst. Gleichzeitig hat er bewiesen, dass Probleme
existieren, die in allgemeiner Form algorithmisch nicht gelost werden kénnen. Ein Beispiel ist
das so genannte Halteproblem, bei dem fiir ein beliebiges Programm zu entscheiden ist, ob es fiir
eine gegebene Eingabe anhilt oder nicht. Fiir algorithmisch l6sbare Probleme gibt es jedoch kein
allgemeines Rezept, wie der Algorithmus fiir ein spezielles Problem auszusehen hat. Dies bleibt
der Kreativitit des Informatikers oder Programmierers tiberlassen. Dartiber hinaus kann fiir sehr
viele Probleme nicht gewihrleistet werden, dass es einen Algorithmus mit effizienter Laufzeit
gibt. (In diese Kategorie fallen auch die sog. NP-harten Probleme.)

Evolutionire Algorithmen kombinieren nun den Computer als universelle Rechenmaschine
mit dem allgemeinen Problemldsungspotential der natiirlichen Evolution. So wird im Computer
ein Evolutionsprozess kiinstlich simuliert, um fiir ein nahezu beliebig wihlbares Optimierungs-
problem moglichst gute Ndherungswerte an eine exakte Losung zu erzeugen. Dabei wird ein
beliebiges abstraktes Objekt, das eine mogliche Losung fiir ein Problem darstellt, wie ein Orga-
nismus behandelt. Dieses wird durch Anwendung von so genannten evolutiondren Operatoren
variiert, reproduziert und bewertet. Diese Operatoren nutzen in der Regel Zufallszahlen fur ihre
Verdnderungen an den Individuen. Folglich zdhlen evolutiondre Algorithmen zu den stochasti-
schen Optimierungsverfahren, die hiufig keine Garantie auf das Auffinden der exakten Lésung
(in einem vorgegebenen Zeitrahmen) geben kénnen.

Insbesondere bei Problemen, die nicht in akzeptabler Zeit exakt 16sbar sind, gewinnen Algo-
rithmen, die auf solchen biologischen Vorbildern beruhen, immer mehr an Bedeutung.

2.1 Optimierungsprobleme

Optimierungsprobleme werden allgemein definiert und am Beispiel des Handlungsreisenden-
problems erldutert.

Optimierungsprobleme treten in allen Bereichen von Industrie, Forschung und Wirtschaft auf.
Den Anwendungsgebieten sind dabei keine Grenzen gesetzt. Beispiele reichen von der reinen
Kalibrierung von Systemen, iiber die bessere Ausnutzung vorhandener Ressourcen bis hin zu Pro-
gnosen oder der Verbesserung von Konstruktionen. Jedes dieser Probleme bringt andere Voraus-
setzungen fiir die Bewertung von Losungskandidaten sowie unterschiedliche Anforderung an de-
ren Optimalitdt mit. Daher werden wir Optimierungsprobleme zundchst so einfach wie méglich
definieren. Im Kapitel 5 werden dann verschiedene Spezialfille diskutieren.

Fiir eine formale Definition werden die folgenden Forderungen an ein Problem gestellt: Die
Menge aller mdglichen Losungskandidaten hat klar definiert zu sein und fiir jeden Losungskandi-
daten muss auf irgendeine Art und Weise seine Gtlite oder Qualitdt als mogliche Losung eindeutig
berechenbar sein. Damit sind die verschiedenen Lsungskandidaten vergleichbar und die Menge
der angestrebten globalen Optima resultiert.

2.1 Optimierungsprobleme 21

Definition 2.1 (Optimierungsproblem):
Ein Optimierungsproblem (Q, f,) ist gegeben durch einen Suchraum €, eine Be-
wertungsfunktion f: € — R, die jedem Losungskandidaten einen Giitewert zuweist,
sowie eine Vergleichsrelation »¢ {<, >}.
Dann ist die Menge der globalen Optima 2~ C Q definiert als

Z={xcQ|vXcQ: flx)= f(x)}.

Ein Beispiel dafiir ist das Handlungsreisendenproblem (TSP, engl. traveling salesman problem),
bei dem eine kostenminimale Rundreise durch eine gegebene Menge von Stidten gesucht wird,
wobei jede Stadt nur einmal besucht werden darf.

Definition 2.2 (Handlungsreisendenproblem):

Die Grundlage fuir die Definition des Handlungsreisendenproblems ist ein Graph G =
(V, E, v) zur Berechnung der Kosten. Die Knotenmenge V = {v1, ..., v, } reprisentiert
n verschiedene Stadte, die paarweise durch Straflen in der Kantenmenge £ C V' x V ver-
bunden sind. Jeder dieser Straflen ist eine Fahrtzeit ¥ : E — R zugeordnet. Das Hand-
lungsreisendenproblem ist dann definiert als Tupel (.%,, frsp, <), wobei der Raum
aller Permutationen ., die unterschiedlichen Besuchsreihenfolgen reprisentiert. Die
zu minimierende Bewertungsfunktion frgp ist definiert fiir (7, ..., m,) € #, als

n

Srse (1, 7)) = ¥ (Vi v) + D, Y(va, s vay))-

j=2
Ein Handlungsreisendenproblem heif3t ferner symmetrisch, wenn fiir alle (v;,v;) € E

sowohl (v;,v;) € E als auch y((vi,v;)) = y((v;, v;)) erfiillt sind.

Beispiel 2.1:

Bild 2.1 zeigt ein kleines Handlungsreisendenproblem mit sechs Stddten. Der dazuge-
horige Suchraum mit allen moglichen Rundreisen ist in Bild 2.2 dargestellt. Jede der

(V],Vz) 5 (V27V3) 10 (V3,V5) 17

@ (vi,v3) 8 (va,wa) 4 (v3,vs) 8
(visva) 11 (va,vs) 9 (wva,v5) 6

N\ / (vi,vs) 3 (va,ve) 12 (va.ve) S
_@ (vi,ve) 7 (vs,va) 6 (vs,ve) 11

Bild 2.1 Schematische Darstellung eines beispielhaften Handlungsreisendenproblems, bei dem es zwi-
schen allen Paaren von Stidten eine Strae gibt. Die Tabelle gibt die Kosten bzw. Fahrtzeiten
der einzelnen Stralen wieder. In der Skizze sind jeweils zwei gerichtete Kanten als eine unge-
richtete Kante dargestellt und in der Tabelle der Kosten ist ebenfalls nur eine der Kanten aufge-
fithrt.

N

I

22 2 Von der Evolution zur Optimierung

SN AT
g0 e 0% e

N i Y 0

ISR

Y S A

L
S AR

2.1 Optimierungsprobleme 23

dargestellten Rundreisen steht dabei fiir zw6lf verschiedene Rundreisen, die an jeder
der 6 Stadte mit zwei unterschiedlichen Fahrtrichtungen beginnen kann. Wenn man
die Rundtouren weglisst, die sich nur durch die Fahrtrichtung oder die Startstadt un-
terscheiden, gibt es im vorliegenden Beispiel genau 60 verschiedene Lésungen. Bei
101 Stadten sind es bereits 4,663 1-10'%7, allgemein 1 - (n — 1)! fiir n Stadte.

Das Handlungsreisendenproblem zeichnet sich wie viele andere Probleme auch durch eine strikt
vorgegebene Struktur der Losungskandidaten aus: Es handelt sich immer um eine Permutation
tiber die Indizes der Stiidte. Dies ist allerdings beispielsweise nicht der Fall, wenn eine Briicken-
konstruktion gewichtsminimal so optimiert werden soll, dass sie dennoch eine vorgegebene
maximale Last tragen kann. Hier konnen verschiedene Losungskandidaten eine unterschiedli-
che Struktur aufweisen, die etwa angibt, wie aus Verstrebungen das Tragwerk zusammengesetzt
wird. Auch solche Probleme lassen sich mit Definition 2.1 beschreiben, indem der Suchraum €
entsprechend definiert wird.

Vorsicht wiederum ist bei vielen »Optimierungsproblemen« aus der Wirtschaft geboten: Ohne die Moglich-

% keit oder die Bereitschaft, das Problem mathematisch zu modellieren, sind einmalige Managemententschei-
dungen oder Verbesserungen im Workflow nicht optimierbar. Eine klare Definition des Bewertungskriteri-
ums ist die Voraussetzung fiir alle in diesem Buch vorgestellten Verfahren.

Das Optimierungsproblem muss nicht nur prizise definiert werden — eine gute Bewertungsfunk-
tion zeichnet sich zusitzlich durch die folgenden Eigenschaften aus.

* Eine graduelle Bewertung ist besser als eine absolute. So kinnte etwa in einem Handlungs-
reisendenproblem ausschlieBlich eine Rundtour mit maximal vorgegebenen Kosten gesucht
sein. Dies liefle sich leicht als Erfiillbarkeitsproblem formulieren, indem je nach Linge der
Rundtour auf die Werte » 1« (Erwartungen werden erfiillt) und »0« (Tour ist zu lang) ab-
gebildet wird. Aus Anwendersicht spiegelt eine solche Definition zwar die Anforderungen
genau wieder — eine Optimierung wird jedoch zur Suche nach der Nadel im Heuhaufen, da
wir keinen Anhaltspunkt dafiir haben, welche von zwei zu langen Touren eventuell ndher
zu einer optimal Tour ist. Folglich sollten Erfiillbarkeitsprobleme wenn méglich als Opti-
mierungsprobleme formuliert werden,

* Die Anforderungen an eine Losung des Problems spiegeln sich méglichst genau in der Be-
wertungsfunktion wider. Ist dies nicht der Fall, kann es einerseits passieren, dass bestimmte
Aspekte gar nicht beriicksichtigt werden und damit jede vom Optimierungsverfahren pri-
sentierte Losung beliebig weit von den Erwartungen entfernt ist. Andererseits konnen Lo-
sungskandidaten aus einem breiten Qualititsspektrum (aus Sicht des Anwenders) auf dhnli-
che Giitewerte abgebildet werden, sodass nur gelegentlich eine sinnvolle Losung gefunden
wird.

Die Bewertungsfunktion ist die wesentliche Grundlage eines Problems, aus der ein Optimie-
rungsalgorithmus die Richtung der Optimierung ableitet. Daher muss in vielen Anwendungen
diesem Aspekt ausreichend viel Aufmerksamkeit gewidmet werden. Und in einigen Fillen ist
tatséichlich die Hauptschwierigkeit, Kriterien zu finden, mit denen die Giite eines Lésungskandi-
daten erfasst werden kann.

24 2 Von der Evolution zur Optimierung

2.2 Der simulierte evolutionire Zyklus

Der evolutiondive Zyklus wird auf das Problemldsen iibertragen. Ebenso werden die verschie-
denen Grundbegriffe der Evolution in den neuen Kontext gestellt.

Nach der Einfithrung von Optimierungsproblemen sollen nun die Prinzipien der Evolution auf
deren Losung angewandt werden. Hierfiir sind zunichst die Ziele des Evolutionsprozesses und
der Optimierung zu diskutieren.

In der Natur ist die Erhaltung der eigenen Art das hochste Ziel der Evolution. Dabei stellt die
Umwelt die Organismen vor vielfiltige Herausforderungen. Es kdnnen viele unterschiedliche
Wege durch die Evolution eingeschlagen werden, wodurch verschiedene Detaillosungen aus der
jeweiligen Anpassung resultieren. Die natiirliche Evolution hat kein iibergeordnetes, klar {iber-
priifbares Ziel. Daher wird der Nutzen eines Allels auch nicht direkt gemessen, sondern indirekt
im Vergleich mit anderen Allelen durch die Anzahl der Nachkommen als Fitness angendhert.

Im Gegensatz dazu ist bei klassischen Optimierungsproblemen meist ein klares Bewertungs-
kriterium fiir die Qualitét eines Losungskandidaten vorhanden, das insbesondere keinen Zufalls-
einfliissen unterworfen ist. Die Qualitét eines Losungskandidaten kann durch eine so genannte
Ziel- oder Bewertungsfunktion berechnet werden und wird im Weiteren als »Wert« oder »Gii-
te« bezeichnet. Wir ersetzen also unsere schwer fassbare Umwelt durch eine klar definierte Be-
wertungsfunktion. Daneben finden sich in der Literatur auch Begriffe wie Objektfunktion und
Fitnessfunktion. Ebenso wird der Wert eines Losungskandidaten auch als Kosten oder Fitness
bezeichnet — letzteres hat in diesem Buch allerdings eine andere Bedeutung.

Um die natiirliche Evolution auf die Lésung von Optimierungsproblemen zu iibertragen, kon-
zentrieren wir uns zunichst auf die Evolutionsfaktoren Variation (Mutation und Rekombination)
und Selektion. Dieses Wechselspiel war von Darwin in seiner Evolutionslehre als primér trei-
bende Kraft identifiziert worden. Fasst man die Evolutionsfaktoren als Operationen auf einer
Population auf, bringt sie in einen sequentiellen Ablauf und fiigt einen definierten Start- und
Endpunkt hinzu, resultiert der in Bild 2.3 dargestellte evolutionire Zyklus.

Die Grundidee ist hierbei, dass zunichst eine Menge mit Losungskandidaten als Ausgangs-
punkt erzeugt und anschlieBend einer simulierten Evolution unterzogen wird. D. h. die Losungs-
kandidaten pflanzen sich fort und unterliegen dabei einem gewissen Selektionsdruck. In Anleh-
nung an die biologische Terminologie spricht man bei einem Losungskandidaten vom Individu-
um und bei einer Menge von Individuen von der Population. Im Weiteren werden Individuen
meist mit 4, B, ... bezeichnet und Populationen mit P = (40}, <;<;. Obwohl die Individuen
einer Population grundsétzlich nicht sortiert sind, werden sie als Tupel représentiert. Dadurch
lassen sich die Algorithmen einfacher formulieren. Zudem kénnen einzelne Individuen in der
Population mehrfach vorkommen, sodass bei einer Darstellung als Menge die Notation von Multi-
mengen mit der Angabe der Haufigkeit fir jedes Individuum zu benutzt wéren.

Die Initialisierung definiert den Startpunkt fiir die simulierte Evolution, indem eine Population
mit ersten Lésungskandidaten angelegt wird. Meist werden diese zufillig gewéhlt, allerdings kon-
nen auch durch das Optimierungsproblem Startkandidaten vorgegeben oder Ergebnisse anderer
Optimierungsverfahren genutzt werden.

Die Paarungs- oder Elternselektion zieht die Ergebnisse der Bewertung der einzelnen Indi-
viduen heran, um fiir jedes Individuum festzulegen, wie viele Kindindividuen erzeugt werden
sollen. Die Generierung der neuen Individuen geschieht im Idealfall durch eine Rekombination

2.2 Der simulierte evolutionire Zyklus 25

Initialisierung
Ausgabe
¢ : / nein
ja /-\
Bewertung Terminierungs- Paarungs-

bedingung selektion

Umwelt-

selektion Rekombination
Bewertung Mutation

Bild 2.3 Schematische Darstellung des Zyklus bei evolutionidren Algorithmen

der Merkmale mehrerer Elternindividuen und eine anschliefende Mutation der Kinder. Analog
zur Biologie dient die Rekombination der Durchmischung in der Population und die Mutation
nimmt in der Regel nur eine sehr kleine Verdnderung am Individuum vor, um die Vererbung der
elterlichen Eigenschaft auf das Kind nicht zu stark zu storen.

Nach einer Bewertung der neuen Individuen werden die Kinder durch die Umweltselektion in
die Population der Eltern integriert. Da die Populationsgrofle meist begrenzt ist, werden hierbei
entweder einzelne Individuen aus der Elternpopulation oder die gesamte Elternpopulation durch
die neuen Individuen ersetzt.

Im Gegensatz zur natiirlichen Evolution wird am Ende des evolutioniren Zyklus iiberpriift, ob
das Ziel bereits erreicht wurde. Als Terminierungsbedingung kann ein Schwellwert fiir den Wert
des besten Individuums gewéhlt werden. Um sehr lange Berechnungen zu vermeiden, wird auch
oft eine maximale Anzahl an Iterationen vorgegeben.

Um einen solchen Algorithmus anwenden zu kénnen, wird lediglich eine im Rechner speicher-
bare Darstellung des Suchraums und eine Funktion zur Bewertung von Losungskandidaten bend-
tigt. Beide Aspekte wurden im Rahmen der Definition der Optimierungsfunktion gefordert. Die
Tatsache, dass keine weiteren Voraussetzungen fiir die Anwendbarkeit des Algorithmus erfiillt
sein miissen, ist eine der attraktivsten Eigenschaften von evolutiondren Algorithmen.

Bisher wurden die evolutionéiren Algorithmen streng aus der Biologie heraus entwickelt — wie dies auch

% historisch geschehen ist. Interessanterweise gelangen wir jedoch auch intuitiv in einem Black-Box-Szenario
zu einem nahezu identischen Algorithmus. So lasse ich meine Studierenden in der Vorlesung an der Tafel ein
zweidimensionales Problem durch Platzieren von Stichproben lGsen, woraus dieselben Grundoperationen
abgeleitet werden. Ein Beispiel ist in Bild 2.4 gezeigt. Was dennoch vom natiirlichen Vorbild bleibt, ist der
einzigartige Reichtum der Natur als Inspirationsquelle fiir neue Techniken.

26 2 Von der Evolution zur Optimierung

Nr. 1: 154 Nr. 2: SRSI

Rekombination

Mutation

Nr. 5: 337
' Np 8: 348 @ AL ===~

-
-
-

!Nr. 4: 250 Nr. 3: 154 ¢f

Bild 2.4 Ein Beispiel dafiir, wie in einem Black-Box-Szenario das Maximum der rechten Funktion gesucht
wird. Durch Stichproben muss der Problemraum erkundet werden. Ohne Strukturinformation wer-
den zunichst die Eckpunkte und die Mitte betrachtet (Initialisierung). In Schritt 6 und 7 wird
jeweils eine Stichprobe zwischen den bestbewerteten Punkten betrachtet (Rekombination). Und
um den besten Punkt wird durch leichte Variation (Mutation) gepriift, ob Verbesserungen méglich
sind. Das lokale Optimum wird entdeckt, wihrend das globale nicht gefunden wird.

23 Ein beispielhafter evolutionirer Algorithmus

Dieser Abschnitt entwickelt einen einfachen evolutiondren Algorithmus am Beispiel des Hand-
lingsreisendenproblems.

Fiir das Handlungsreisendenproblem aus Beispiel 2.1 in Abschnitt 2.1 wird im Folgenden ein
evolutiondrer Algorithmus konstruiert, indem Schritt fiir Schritt die notwendigen Bestandtei-
le zusammengestellt werden. Das Ziel ist es, ein Handlungsreisendenproblem mit 101 Stidten
schnell und mit ausreichender Qualitit zu l6sen. Bild 2.5 zeigt die Koordinaten eines Beispiel-
problems. Wie wir bereits in Abschnitt 2.2 erldutert haben, miissten wir fiir eine vollstindige
Suche 4,663 1 - 10'37 Rundreisen untersuchen. In Anbetracht physikalischer Schitzungen, dass
das Universum etwa 107® Atome enthilt bzw. seit dem Urknall etwa 10'? Sekunden verstrichen
sind, liegt diese Zahl jenseits der menschlichen Vorstellungskraft. Jeglicher Versuch, durch syste-
matisches Aufzihlen aller Rundreisen eine Losung zu berechnen, ist unabhingig von der Schnel-
ligkeit und der Anzahl an Prozessoren zum Scheitern verurteilt.

Es gibt sehr viele Moglichkeiten, einen evolutioniiren Algorithmus fiir das Handlungsreisendenproblem zu
formulieren. Der hier beschriebene Ansatz ist nur ein einfaches einfihrendes Beispiel und weit vom derzeit
besten bekannten Algorithmus entfernt.

Am Anfang ist zu entscheiden, wie der konkrete Raum der Individuen aussehen soll, auf dem der
Algorithmus arbeitet. Da das Problem mit seiner Giitefunktion bereits auf Permutationen defi-
niert wurde, liegt es nahe, diese direkt als Darstellung fiir die Individuen zu wihlen: Also ist der
Raum aller Losungskandidaten © = .%},. Auf diesem Raum kénnen nun geeignete Operatoren

2.3 Ein beispielhatter evolutiondrer Algorithmus 27

<o <o
<
o © 5 ° o
< < <
< < < < <
< <
o o ° o
< o 0 < <
© o
© o o 3 ©
° © o © °
° o °
o 3 S
° o © © o
o 0 o ¢ o °
<o O
o 0% o o o °
. o LR o o o
Bild 2.5 ° ®o © o o,
Das Bild zeigt die Positionen der Stidte fiir eine Beispiel- ° o ° ° Soo o
instanz des Handlungsreisendenproblems mit 101 Stid- o o ° o o
<
ten.

Algorithmus 2.1

VERTAUSCHENDE-MUTATION(Permutation 4 = (41, ..., 4,))
1 B—4

u) < wihle Zufallszahl gemdB U({1,...,n})

up — wihle Zufallszahl gemaB U({1,...,n})

By, — Ay,

By, — Ay,

return B

AN B W N

zur Variation der Loésungskandidaten definiert werden. Dabei muss jeder Operator aus Permuta-
tionen wieder giltige Permutationen erzeugen (d. h. keine Zahl darf mehrfach in der Permutation
vorkommen).

Zunichst wird ein Mutationsoperator auf dem Raum der Permutationen gewéhlt. Eine Mog-
lichkeit fiir eine geringfugige Verdnderung ist die VERTAUSCHENDE-MUTATION (Algorith-
mus 2.1), die zwei Zahlen in der Permutation miteinander vertauscht. Da sich lediglich die Posi-
tion der Zahlen dndert, erzeugt der Operator fiir alle Permutationen und Zufallszahlen wieder
eine giiltige Permutation und stellt einen giiltigen Mutationsoperator dar. So wird z. B. aus dem
Individuum (1, 2, 3, 4, 5, 6, 7, 8) durch Anwendung des Operators mit den Zufallszahlen
u; =2 und uy = 6 das Individuum (1, 6, 3, 4, 5, 2, 7, 8). Wie in Bild 2.6 links deutlich wird,
werden bei der Anwendung des Operators aus der bestehenden Rundtour vier Kanten gestrichen
und vier neue Kanten eingefiigt. Das bedeutet, dass bei der Bewertung des neuen Individuums
vier Kantengewichte abgezogen und vier Kantengewichte hinzuaddiert werden (verglichen mit
der Bewertung des Ausgangsindividuums).

Ausgehend von der natlirlichen Evolution hatten wir im letzten Abschnitt die Mutation als
eine kleine Verdnderung charakterisiert. Daher kann man sich an dieser Stelle fragen, ob die
Mutation durch Tausch zweier Zahlen die kleinstmégliche Verdnderung hinsichtlich des Hand-
lungsreisendenproblems ist. Durch Ausprobieren an einem kleinen Beispiel findet man bald die
INVERTIERENDE-MUTATION (Algorithmus 2.2), die ein Teilstiick der Permutation invertiert (um-
kehrt). Auch hierbei werden mit der selben Begriindung wie oben nur giltige Individuen er-
zeugt. Bei diesem Operator wird mit den Zufallszahlen #; = 2 und #; = 6 aus dem Individuum

28 2 Von der Evolution zur Optimierung

Vertauschung

T

Ausgangsindividuum

Bild 2.6 Verdnderung bei der Anwendung von Mutationsoperatoren auf das in der Mitte dargestellte
Individuum (1, 2, 3. 4, 5, 6, 7, 8). Die VERTAUSCHENDE-MUTATION resultiert in dem
Individuum (1, 6, 3. 4, 5, 2, 7. 8), die INVERTIERENDE-MUTATION in dem Individuum
(1, 6,5,4,3,2,7,8).

Algorithmus 2.2

INVERTIERENDE-MUTATION(Permutation 4 = (41,...,4,))
1 B4

2 uy < wihle Zufallszahl gemdB U({1,...,n})

3 uy < wihle Zufallszahl gemdB U({1,...,n})

4 ifu; >uy

5 then [vertausche u; und u;

6 for eachje {u;,....un}

7 doL By, 1y —j 4

& return B

Resultat dieser Mutation: Es werden lediglich zwei Kanten durch zwei neue Kanten ersetzt. Be-
zuglich der Bewertungsfunktion nimmt dieser Operator offensichtlich eine kleinere Verdnderung
an einer Rundreise vor.

Auf der Basis dieser Uberlegung werden wir in unserem evolutioniren Algorithmus fiir das
Handlungsreisendenproblem dem Operator INVERTIERENDE-MUTATION den Vorzug geben.

Der zweite Operator ist die Rekombination, welche die Eigenheiten der Eltern mischen und
auf das Kindindividuum tbertragen soll. Diese Aufgabe erweist sich als nicht ganz so einfach,
wie man zunéchst annehmen konnte. Die Frage ist: Wie kann man moglichst gro3e Teile der in
den Elternindividuen vorliegenden Rundreisen in ein neues Individuum vererben, so dass keine
génzlich neue Rundtour entsteht.

In einem ersten Versuch, der ORDNUNGSREKOMBINATION (Algorithmus 2.3), ibernehmen wir
ein beliebig langes Préfix der einen Rundtour und fiigen die restlichen Stédte gemaf ihrer Rei-
henfolge in der anderen elterlichen Rundreise an. Durch die Abfrage in der zweiten for-Schleife
wird auch hier die ausschliefliche Erzeugung von giiltigen Permutationen garantiert. Ein Beispiel
fiir eine solche Berechnung ist in Bild 2.7 dargestellt. Wie man an diesem Beispiel sieht, kann
es durchaus vorkommen, dass das Ergebnis des Operators stark von den Eltern abweicht — hier
wurden zwei Kanten eingefiigt, die in keinem der beiden Elternindividuen vorkamen. Der Name
ORDNUNGSREKOMBINATION rithrt daher, dass die Ordnung bzw. Reihenfolge der Stadte erhalten
bleibt.

2.3 Ein beispielhatter evolutiondrer Algorithmus 29

Algorithmus 2.3

ORDNUNGSREKOMBINATION(Permutationen 4 = (41, ...,4,) und B = (By,...,By))
1 j < wihle zufillig gemdB U({1,...,n—1})

for eachic {l,..., }
dO[C,‘<—A,‘
fori—1,....n

dorifB,-¢{C1,...7Cj}
then™ j — j+1
L LCj B
return C

[o =B B e SRV N NS I

Ordnungs- I "\" 3
rekombination \
~

7 5
e
6
Elternindividuum 1 Elternindividuum 2

Bild 2.7 Die ORDNUNGSREKOMBINATION iibernimmt vom Elternindividuum (1, 4, 8, 6, 5, 7, 2, 3)
die ersten vier Stidte. Die noch fehlenden Stidte werden gemidf3 ihrer Reihenfolge im zwei-
ten Elternindividuum (1, 2, 3, 4, 8, 5, 6, 7) aufgefiillt. So ergibt sich das Individuum
(1, 4, 8,6,2,3,5 7).

Algorithmus 2.4
KANTENREKOMBINATION(Permutationen 4 = (4, ...,4,) und B= (B},...,B,))
1 for each Knotenve {1,...,n}
2 doLAdj(v)—0
3 for eachic {1,...,n}
4 do' Adj(4;) <_Adj(Ai)U{A(i modn)+l}
5 Adj(A(i mod n)+1) - Adj(A(i mod n)+l) U{4;}
6 Adj(B;) ‘_Adj(Bi)U{B(i mod n)+1}
7 ‘—Adj(B(i mod n)+1) HACIj(B(i mod n)+l) U{B;}
8 () — wihle zufillig gemiB U({41,8:})
9 fori—1,...,n—1
10 do™ K — {me 4Adj(C;) | #(4dj(m)\{C1,...,C;}) minimal }
11 ifK#0
12 then [C;; «— wihle gleichverteilt zufillig aus K

13 Lelse [Cpyy «— wihle gleichverteilt zufillig aus {1, ..., n}\ {C,.... G}
14 return C

Wenn man die obige Kritik an unserem ersten Versuch konsequent zu Ende denkt, brauchen
wir eine Rekombination, die ausschlielich Kanten aus den Eltern benutzt. Dieser Anforderung
kommt die KANTENREKOMBINATION (Algorithmus 2.4) sehr nahe, welche die gemeinsamen Ad-

30 2 Von der Evolution zur Optimierung

Ausgangssituation:

Adj(1)=1{2,3, 4,7} | 4dj(2)={1, 3, 7} | 4dj(3) ={1, 2, 4}
Adj(4) ={1, 3, 8} Adj(5) =16, 7, 8} | Adj(6)={5, 7, 8} | wihle zufilligC) =1
Adj(1)={1,2,5. 6} | 4dj(8)={4,5. 6} = (1,...)

1. Iteration:

Adj(2) = {3, 7} < | 4dj(3) = {2, 4} <
Adj(4)={3, 8}y = | 4dj(5)=1{6, 7, 8} | Adj(6)={5, 7, 8} | wihle C, =3
Adj(7) = {2, 5, 6} — | Adj(8) = {4, 5, 6} =(1,3,...)

2. Iteration:

4dj(2) = {7} <

Adj(4)={8} « Adj(5)={6,7, 8} | Adj(6)={5, 7. 8} | wihleC3=2
Adj(7) ={2, 5, 6} Adj(8) = {4, 5, 6} =(1,3,2,..)
3. Iteration:
Adj(4) = {8} Adj(5)={6,7, 8} | Adj(6)={5, 7. 8} | esfolgtCs =7
Adj(7) = {5, 6} « Adj(8) = {4, 5, 6} =(1,3,2,7,...)
4. lteration:
Adj(4) = {8} Adj(5) =16, 8} < | Adj(6)={5, 8} <« | wihleC5=6
Adj(8) = {4, 5, 6} =(1,3,2,7,6,...)
5. lteration:
Adj(4) = {8} Adj(5) = {8} = es folgt Cy =5
Adj(8) = {4, 5} « =(1,3,2,7,6,5...)

6. Iteration:
Adj(4) = {8} | 4dj®) = (4} = |

es folgt C7 =8
=(1,3,2,7,6,5.8..)

7. lteration:
| adji)={8} = | |

es folgt Cg =4
=(1,3,2,7,6,5, 8, 4)

Bild 2.8 Ein Ablaufprotokoll fiir eine Rekombination zwischen den Elternindividuen (1, 2, 3, 4,
8, 5, 6, 7)und (1, 4, 8 6, 5, 7, 2, 3) veranschaulicht die Arbeitsweise der KANTENRE-
KOMBINATION. Die Pfeile »<=« markieren die Knoten, die an der jeweiligen Stelle auswahlbar
sind. Die Pfeile »+—« kennzeichnen die Knoten, die zwar durch eine Kante erreichbar wiren, aber
vom Algorithmus zugunsten der anderen Knoten verworfen werden.

jazenzliste beider Eltern betrachtet und iterativ den nachsten Knoten mit den wenigsten weiteren
Wahlmoéglichkeiten aussucht. Allerdings ist auch bei diesem Ansatz nicht garantiert, dass tatséch-
lich nur Kanten der Elternindividuen genutzt werden. Zur Veranschaulichung der Kantenrekom-
bination ist in Bild 2.8 ein Ablaufprotokoll fiir ein Beispiel dargestellt und Bild 2.9 zeigt die
Rundreisen der Eltern und des Kindindividuums.

Da die KANTENREKOMBINATION wesentlich ndher an unseren Anforderungen zu liegen scheint
als die ORDNUNGSREKOMBINATION, werden wir sie in unserem Algorithmus benutzen.

Nun fehlt noch die Selektion, um der Optimierung eine Richtung zu geben. Dies soll ohne
groBere weiterfithrende Uberlegungen in einer Umweltselektion geschehen, die die besten Indi-
viduen aus den Eltern und den neu erzeugten Kindern tibernimmt. Wir wihlen eine Elternpopu-

2.3 Ein beispielhatter evolutiondrer Algorithmus 31

1 3 1 3 Kanten- 1 3
rekombination

Elternindividuum 1 Elternindividuum 2

Bild 2.9 Fiir das ausfiihrliche Beispiel aus Bild 2.8 werden hier die Elternindividuen und das durch die
KANTENREKOMBINATION entstandene Kindindividuum gezeigt.

Algorithmus 2.5

EA-HANDLUNGSREISENDENPROBLEM(Zielfunktion F', Anzahl der Stidte »)
1 t<0

2 P(t) « Liste mit 10 gleichverteilt zufélligen Permutationen aus U (%)
3 bewerte alle 4 € P(¢) mit Zielfunktion F
4 whiler <2000
5 do P —)
6 for eachic {1,...,40}
7 do " 4, B — wihle gleichverteilt zufillig Eltern aus P(¢)
8 if u < 0,3 fiir eine Zufallszahl » gewihlt gleichverteilt gemif U([0, 1))
9 then [4 — KANTENREKOMBINATION (4, B)
10 A « INVERTIERENDE-MUTATION (4)
11 LP — Plo(d)
12 bewerte alle 4 € P’ mit Zielfunktion F
13 t—1t+1

14 L P(t) « 10 beste Individuen aus P’ o P(t — 1)
15 return bestes Individuum aus P(¢)

lation der GroBe 10 und erzeugen pro Generation 40 neue Individuen. Damit besteht die nichste
Elternpopulation nur aus den 10 besten Individuen. Die Auswahl der Eltern in der Elternselektion
findet zufillig gleichverteilt statt.

Die Mutation nimmt eine sehr gezielte kleine Verinderung vor, die durch ihre hohe Anpas-
sung an das Problem zusammen mit der Selektion bereits einen guten iterativen Optimierungs-
fortschritt verspricht. Die Rekombination bemiiht sich zwar nach Moglichkeit einzelne Details
der Elternindividuen zu benutzen, kann aber dennoch sehr starke Eingriffe in die Struktur eines
Losungskandidaten mit sich bringen. Da zusitzlich der Berechnungsaufwand fiir die Rekombi-
nation sehr viel grofer ist als fiir die Mutation, erzeugen wir nur 30% der neuen Individuen mit
der Rekombination und einer anschlieenden Mutation. Die restlichen Individuen werden nur
mittels einer Mutation erzeugt. Somit ergibt sich Algorithmus 2.5 zur Losung des Handlungsrei-
sendenproblems. Als Abbruchkriterium wurde hier eine Grenze von maximal 2 000 Generationen
gesetzt.

Fiir das Handlungsreisendenproblem mit 101 Stadten wird das Ergebnis einer Optimierung
in Bild 2.10 gezeigt: Die besten Rundreisen der Generationen 0, 500, 1000 und 2 000 demonst-

32 2 Von der Evolution zur Optimierung

Generation 0 Generation 500

Generation 1000 Generation 2000

Bild 2.10 Fiir die Optimierung mit der Kantenrekombination und der invertierenden Mutation werden die
besten gefundenen Rundreisen in den Generationen 0, 500, 1 000 und 2 000 dargestellt.

rieren, wie die Linge der Tour durch Entfernung von Uberkreuzungen verringert wird. Das End-
ergebnis hat die Lange 670 und ist damit bereits sehr nahe an dem bekannten Optimum 629 —
die Abweichung betrdgt 6,1%. Tatsidchlich haben durch diesen Algorithmus insgesamt 80010
bewertete Individuen ausgereicht, um ein sehr gutes Ergebnis zu erlangen. Verglichen mit der
Anzahl aller Rundreisen 4,663 1 - 107 ist dies ein verschwindend geringer Teil des Suchraums,
was auch den letzten Skeptiker von der Arbeitsweise der evolutiondren Algorithmen {iberzeugen
sollte.

Um tatséchlich sicher zu gehen, dass beim Entwurf des evolutiondren Algorithmus und seiner
Operatoren die richtigen Entscheidungen getroffen wurden, haben wir Vergleichsexperimente
mit den drei anderen Varianten des Algorithmus durchgefiihrt:

* KANTENREKOMBINATION und VERTAUSCHENDE-MUTATION,
* ORDNUNGSREKOMBINATION und INVERTIERENDE-MUTATION sowie
* ORDNUNGSREKOMBINATION und VERTAUSCHENDE-MUTATION.

2.3 Ein beispielhatter evolutiondrer Algorithmus 33

Ordnungsrekombination Kantenrekombination Ordnungsrekombination
und Invertieren und Vertauschen und Vertauschen

Bild 2.11 Fiir die drei schlechteren Algorithmen wird jeweils die beste gefundene Rundreise aus Genera-
tion 2 000 dargestellt.

2000

1750

1500

1250 Ordnungsrekombination und Vertauschen

Giite

1000 [~
Kantenrekombination und Vertauschen

750 [~

| Ordnungsrekombination und Invertieren \
Kantenrekombinaltion und Invertieren

500

1 1

0 500 1000 1500 2000
Generation

Bild 2.12 Der Ablauf der Optimierung des Handlungsreisendenproblems mit 101 Stadten wird fiir die vier
unterschiedlichen Algorithmen gezeigt, die man aus der Kombination der Mutations- und Rekom-
binationsoperatoren erhélt. Es wird fiir jede Generation die beste gefundene Glite in der aktuellen
Population angezeigt.

Die jeweils besten gefundenen Rundreisen werden in Bild 2.11 dargestellt. Wahrend man das
Ergebnis der invertierenden Mutation mit der Ordnungsrekombination noch akzeptieren kann,
liefern die beiden anderen Algorithmen eindeutig suboptimale Resultate. Zusitzlich kann man
sich nun den Verlauf der vier Optimierungen iiber die Generationen beziiglich der Lange der
besten gefunden Rundreise in Bild 2.12 betrachten. Man sieht jeweils den typischen Verlauf
mit raschen Verbesserungen zu Beginn einer Optimierung und einer langsamen Konvergenz ge-
gen Ende. Zudem legen die Kurven den Schluss nahe, dass die Auswirkungen der Mutation in
diesem Beispiel gewichtiger sind, als die der Rekombination. Wider Erwarten gelingt es der Ord-
nungsrekombination bei der guten Zuarbeit der invertierenden Mutation ebenfalls ein sehr gutes

34 2 Von der Evolution zur Optimierung

Bild 2.13

Ergebnis des deterministischen Verfahrens zur Lésung des
Handlungsreisendenproblems durch die Berechnung eines
minimalspannenden Baums fiir die Probleminstanz mit 101
Stidten.

Ergebnis zu erreichen. Allerdings hat sie weit gréBere Probleme als die Kantenrekombination
mit den durch die vertauschende Mutation erzeugten Individuen.

% Sind die obigen Schlussfolgerungen aus den durchgefiihrten Experimenten berechtigt? Oder wiirden Sie

mit mir {ibereinstimmen, dass die Ergebnisse reiner Zufall und damit auch die Deduktion reine Prosa ist?
Der Abschnitt 6.1 im hinteren Teil des Buchs enthilt einige Hinweise dazu, wann wir berechtigt einen
Algorithmus als »besser« bezeichnen diirfen.

Abschlieflend vergleichen wir den hier hergeleiteten Optimierungsansatz noch mit einem alter-
nativen deterministischen Verfahren. Fiir das hier betrachtete Beispiel entsprechen die Kosten
einer Kante dem Abstand der Koordinaten und damit gilt die Dreiecksungleichung hinsichtlich
der Kosten. Unter dieser Voraussetzung lidsst sich durch einen Pre-Order-Durchlauf eines mini-
malspannenden Baums eine Rundreise berechnen, die hichstens doppelt so lang wie die optimale
Rundreise ist. Auf einen Beweis verzichten wir, halten aber fest, dass dies beispielsweise durch
den Primalgorithmus in ﬁ(nz) Berechnungsschritten fiir #» Stddte maéglich ist. Das Ergebnis fiir
unser Beispiel ist in Bild 2.13 dargestellt. Fiir diese noch relativ kleine Probleminstanz bleibt
die Losungsqualitédt hinter dem hier entwickelten Ansatz zuriick. Zudem hatten wir lediglich die
Symmetrie der Kosten vorausgesetzt, was eine wesentlich schwiichere Bedingung ist, als die
Giiltigkeit der Dreiecksungleichung.

24 Formale Einfiihrung evolutionéirer Algorithmen

Durch die genaue Definition der involvierten mathematischen Réaume und Abbildungen werden
evolutiondire Algorithmen formal eingefiihrt.

Fiir jedes beliebige Optimierungsproblem kénnen Losungskandidaten unterschiedlich dargestellt
werden und dadurch jeweils andere Operationen in effizienter Zeit ermoglichen. Daher trennen
wir die natiirliche Struktur des Suchraums €, den so genannten Phdnotyp, von der Darstellung
des Losungskandidaten in einem Individuum, den so genannten Genotyp ¢%. Die Bewertungs-
funktion ist gemdB Definition 2.1 auf dem Phinotyp definiert, die Mutation und die Rekombi-
nation werden auf dem Genotyp formuliert. Um die Bewertung eines im Genotyp vorliegenden

2.4 Formale Einfithrung evolutiondrer Algorithmen 35

Raum des konkreten Bewertungsfunktion
£
Problems 2 f - R
Phénotyp -
Dekodierung dec T -7 “7 induzierte
-7 F Bewertungsfunktion

Genotyp & -~

Bild 2.14 Kodierte Darstellung des Suchraums.

Individuums vornehmen zu kénnen, ist es notwendig, das Individuum zunéchst wieder in den
phénotypischen Suchraum mittels einer Dekodierungsfunktion abzubilden.

Definition 2.3 (Dekodierungsfunktion):

Eine Dekodierungsfunktion dec : ¢ — € ist eine Abbildung vom Genotyp ¢ auf den
Phinotyp Q.

Das Zusammenspiel zwischen dem Genotyp, dem Phénotyp und der Dekodierungsfunktion ist
in Bild 2.14 dargestellt. Da nicht alle evolutiondren Algorithmen eine Kodierung des Problems
wihlen, kann auch ¢4 = Q und dec = id gelten. Immer dann, wenn im Weiteren die Deko-
dierung nicht direkt thematisiert wird, werden wir statt der Bewertungsfunktion f die indu-
zierte Bewertungsfunktion F benutzen, die bereits einen eventuellen Dekodierungsschritt um-
fasst.

Um nun eine gemeinsame formale Basis fiir die Beschreibung der Algorithmen in den fol-
genden Kapiteln zu haben, fithren wir die folgende Dreiteilung eines Individuums A ein. Der
Genotyp wird mit 4.G € ¢ bezeichnet. Aufler der genotypischen Information, die sich direkt bei
der Dekodierung im Phanotyp niederschldgt, kann bei einzelnen evolutiondren Algorithmen das
Individuum noch weitere Informationen 4.5 € % beinhalten, wobei 2 der Raum aller mogli-
chen Zusatzinformationen ist. Die Zusatzinformationen kdnnen beispielsweise Parametereinstel-
lungen fiir Operatoren sein, wenn diese auf das jeweilige Individuum angewandt werden. Zusatz-
informationen werden auch als Strategieparameter bezeichnet und sind ebenso wie der Genotyp
A.G durch die Operatoren modifizierbar. Als drittes wesentliches Element eines Individuums
speichern wir seine Giite im Attribut 4.F € R ab. Diese formale Sicht eines Individuums ist in
Bild 2.15 skizziert.

Definition 2.4 (Individuum):

Ein Individuum A ist ein Tupel (4.G, 4.5, 4.F) bestehend aus dem eigentlichen Lo-
sungskandidaten, dem Genotyp 4.G € ¢, den optionalen Zusatzinformationen 4.5 €
Z und dem Giitewert A.F = f(dec(4.G)) € R.

36 2 Von der Evolution zur Optimierung

Phiinotyp

. Bewertung
dec

e K
T T T T 4FeR | pgigunn
GenotypA.Ge¥ ASeZ, }
Uevolutionﬁre _/Sc]cktion
Operatoren

Bild 2.15 Unterschiedliche Aspekte eines Individuums: Genotyp 4.G, Phinotyp dec(4.G), Zusatzinforma-
tionen 4.5 und Giite A.F.

Beispiel 2.2:
Fiir 4 = R? und 2" = R? ist beispielsweise

(4.G,A.5,AF)=((1,3: 42; 15), (1,0; 7,9), 1,536)
ein giiltiges Individuum.

Ein Hinweis zur Notation: Zur besseren Lesbarkeit werden die Kommata »; « speziell gekennzeichnet, wenn
sie reellwertige Zahlen in Tupeln, Aufzihlungen oder Mengen voneinander trennen.

Beispiel 2.3:
Zur Formalisierung des Algorithmuses fiir das Handlungsreisendenproblem aus dem
vorigen Abschnitt wihlen wir 4 = .%4 (bei vier Stidten) und 2° = {1}, da keine
Zusatzinformationen bendtigt werden. Ein giiltiges Individuum wiire

(4.G,A.5,AF)=((1, 3, 4, 2), 1, 3,1).

Wie jeder Formalismus bringt auch der hier gewiihlte Nachteile in der Darstellung mit sich. So sicht die
Definition des # im zweiten Beispiel etwas befremdlich aus. Sie ist allerdings notwendig, da mit 2° = 0
die Definition 2.5 nicht funktionieren wiirde, denn dort wiire dann & x 2° =% »x 0 = 0.

Spiitestens an dieser Stelle driingt sich die Frage auf, warum hier ein Formalismus eingefiihrt wird. Erstens

% wird dadurch eine exakte, unmissverstiindliche Grundlage gelegt. Zweitens erlaubt der allgemeine Forma-
lismus, die verschiedenen Standardalgorithmen in einen gemeinsamen Rahmen zu integrieren. Die Zusatz-
information 4.5 kann zunéchst ohne grofiere Verluste beim Verstéindnis verdringt werden. In Abschnitt 3.4
wird die Zusatzinformation dann ausfiihrlich behandelt.

Das Bild 2.15 verdeutlicht die Wirkung der unterschiedlichen Operationen auf die Bestandteile
eines Individuums: Die Bewertung benutzt lediglich den Genotyp 4.G und speichert den dabei
erhaltenen Wert im Giiteattribut 4.F, die evolutioniren Operatoren konnen den Genotyp 4.G und
die zusitzlichen Informationen 4.S nutzen und ggf. verindern und die Selektion leitet ausschlief3-

2.4 Formale Einfithrung evolutionirer Algorithmen 37

lich aus dem Giitewert 4.F die Uberlebenswahrscheinlichkeit oder die Reproduktionsrate eines
Individuums ab.

Bedingt durch die mannigfaltigen Optimierungsprobleme, die mit evolutionédren Algorithmen
bearbeitet werden, sind auch die genotypischen Riume & sehr vielfiltig. Da sich allerdings alle
gingigen Genotypen in einer linearen Form speichern lassen, gehen wir im Weiteren bei der Be-
schreibung der Algorithmen von & = M* aus. Dabei stellt M den Basiswertebereich der einzelnen
Komponenten dar. Fiir viele Optimierungsprobleme ist eine feste, vorgegebene Dimension / € N
des Genotypraums & = M' ausreichend. Bei Repriisentationen mit variabler Liinge (¥ = M")
konnen zusitzlich noch bestimmte Strukturvorgaben gelten, sodass nicht jedes Element aus M*
einen giiltigen Losungskandidaten darstellt. Die einzelnen Komponenten eines Individuums mit
dem Genotyp 4.G € M' werden mit A.G; (1 < i <) bezeichnet. Wenn keine weiteren Infor-
mationen 4.S € 2 vorhanden sind, kann auch 4 € 4 geschrieben werden. Die Speicherung
des Giitewerts in dem Attribut 4.F dient nicht nur der einfacheren Notation der Algorithmen,
sondern ist auch bei der Implementation der géingigen evolutiondren Algorithmen sinnvoll, ins-
besondere bei aufwiindig zu berechnenden Bewertungsfunktionen und mehrfachen Zugriffen auf
die Giitewerte.

Wie wir im vergangenen Abschnitt bei dem Algorithmus fiir das Handlungsreisendenproblem
gesehen haben, besitzen die Operatoren der evolutiondren Algorithmen meist einen probabilis-
tischen Charakter. Da bei den heute gingigen Computern die Erzeugung von Zufallszahlen nur
als Pseudo-Zufallszahlen méglich ist, werden wir in der folgenden Beschreibung der Operatoren
die ihnen zugeordneten Funktionen von einem Zustand & des Zufallszahlengenerators abhiingig
machen. = bezeichnet die Menge aller méglichen Zustéinde. Anhang C enthilt einige konkrete
Hinweise zur Implementation von Zufallszahlengeneratoren.

Die evolutiondren Operatoren Mutation und Rekombination werden auf dem Genotyp und
eventuell vorhandenen Zusatzinformationen definiert — die Giitewerte der Individuen haben in
der Regel keinen Einfluss auf die Funktionsweise der Operatoren.

Definition 2.5 (Operatoren):

Fiir ein durch den Genotyp ¢ kodiertes Optimierungsproblem und die Zusatzinforma-
tionen 2°, wird ein Mutationsoperator durch die Abbildung

Muts : Gx & -G x %

definiert, wobei £ € Z einen Zustand des Zufallszahlengenerators darstellt.

Analog wird ein Rekombinationsoperator mit » > 2 Eltern und s > 1 Kindern
(r,s € N) durch die Abbildung

RekS : (G x Z) — (4 xZ)
definiert.
Die obige Definition stellt hinsichtlich der Zufallszahlen eine gangbare Notldsung dar. Der Zustand des
Zufallszahlengenerators £ € = hat nicht nur einen Einfluss auf das Ergebnis der Operation: Er veriindert

sich zusiitzlich und realisiert so die pseudo-zufillige Zahlenfolge. Strenggenommen hitte man also die
Mutation als Abbildung Mur: & x 2 «xZ — & x 2 x = definieren miissen. Dies lenkt jedoch zu stark

38 2 Von der Evolution zur Optimierung

von der eigentlichen Funktion der Operatoren ab, sodass dieser Hinweis auf die implizite Veranderung von
& geniigen muss.

Die Selektion ist ungleich schwieriger formal zu definieren. Sie erhilt als Eingabe eine Populati-
on mit » Individuen und wihlt daraus s Individuen aus. Dies bewerkstelligt die im Folgenden be-
schriebene Funktion Sel. Da jedoch die Selektion keine neuen Individuen erfindet, sondern ledig-
lich auswihlen kann, fithren wir die Selektion auf eine Indexselektion zuriick, die ausschlieflich
auf der Basis der Giitewerte der Individuen die Indizes der auszuwéhlenden Individuen bestimmt.
So werden im Weiteren auch alle Selektionsmechanismen algorithmisch beschrieben.

Definition 2.6 (Selektionsoperator):
Ein Selektionsoperator wird auf eine Population P = (41 ... ,A(’)> angewandt:

Sel>: (4 x Z xR) — (4 x Z xR)*
ADY iy o (AUS 1)y O mit 4D = (g, by).
Die dabei zugrunde gelegte Indexselektion hat die Form
IS5 R {1,...,r}

Diese nicht ganz einfache Definition wird anschaulich durch ein Beispiel in Bild 2.16 illustriert.
Wichtig ist, dass es keine Einschrankungen hinsichtlich der Abbildung /S gibt. So kann sowohl
eine deterministische Auswahl der besten Individuen als auch eine probabilistische realisiert sein,
die Individuen zufillig auswihlt. Auch kann s > r gelten.

Dies erméglicht eine generische Definition der evolutiondren Algorithmen, aus der sich alle
wichtigen Standardalgorithmen ableiten lassen.

Elternpopulation selektierte
Individuen
40 AN F 2.5 \
A® ADF 1,9 4 AW
43 ANF | =] 37| = 3 4®
4@ A9 F 4.1 1 AW
415) A®F 2,4

IS5 RS — {1,...,50

Bild 2.16 Das Beispiel demonstriert fiir » = 5 und s = 3, wie die Selektion auf die Indexselektion zurtick-
geflihrt wird. In diesem Beispiel wiirden die drei besten Individuen ausgewéhlt werden. Es sind
jedoch auch andere Funktionen denkbar — z. B. kann auch ein Individuum mehrfach ausgewihlt
werden.

2.5 Vergleich mit der natiirlichen Evolution 39

Algorithmus 2.6
EA-SCHEMA(Optimierungsproblem (€2, 1, >))
1 1«0
P(t) « erzeuge Population der Grofie u
bewerte P(r)
while Terminierungsbedingung nicht erfiillt
do " P' — selektiere Eltern fiir A Nachkommen aus P(r)
P" « erzeuge Nachkommen durch Rekombination aus P’
P"" «— mutiere die Individuen in P
bewerte P
r—t+1
L P(1) « selektiere p Individuen aus P" o P(t — 1)
return bestes Individuum aus P(r)

= =R =B B = L, [S VR o]

Definition 2.7 (Generischer evolutioniirer Algorithmus):
Ein generischer evolutiondrer Algorithmus zu einem Optimierungsproblem (€, 1,
>) ist ein 8-Tupel (4, dec, Mut, Rek, ISgirerns 1SUmwelr- I, A). Dabei bezeichnet u die
Anzahl der Individuen in der Elternpopulation und A die Anzahl der erzeugten Kinder
pro Generation. Ferner gilt

Rek: (@ x 2 — (@ x Z)F
ISElern : RH —'(],p‘,)%l mit'fi'AEN
ISUmwelr RIHJ. —* (1-_ R +;L),ﬂ

Algorithmus 2.6 (EA-SCHEMA) zeigt den Ablauf in Pseudo-Code-Notation.

Dies ist eine sehr allgemeine Definition, gegen die die Experten unter den Lesern sofort mehrere Einwénde
haben werden. Die Wogen des Protests werden im folgenden Kapitel (hoffentlich) hinreichend geglittet.

2.5 Vergleich mit der natiirlichen Evolution

Die Parallelen zwischen der natiirlichen und der simulierten Evolution werden nochmals her-
ausgearbeitet. Ferner wird auf Ansdtze verwiesen, wie weitere Eigenschaften der natiirlichen
Evolution umgesetzt werden kinnen.

Hier am Ende des zweiten Kapitels soll nochmals ein Resiimee gezogen werden, inwieweit die
natiirliche Evolution den evolutiondren Algorithmen als direktes Vorbild dient.

Wesentliche Konzepte wie die Population, Reproduktion durch Vererbung und Variation, das
Prinzip der Selektion sowie die Kodierung von Information in einem Genotyp sind der Biologie
entlehnt. Wo allerdings in einer natiirlichen Umwelt viele Effekte nicht direkt kausal erkldrbar
sind, werden sie bei den evolutionidren Algorithmen durch — zwar randomisierte, aber dennoch
in ihrer Arbeitsweise eindeutig definierte — Funktionen ersetzt. So ist aus einer nur schwer fass-
baren natiirlichen Selektion ein klar definierter Selektionsoperator, aus der Rekombination und

40 2 Von der Evolution zur Optimierung

den Crossing-Over-Effekten ein Rekombinationsoperator und aus einem Fehler bei der Verviel-
faltigung ein Mutationsoperator geworden. Diese Operatoren kdnnen nahezu beliebig gewihlt
werden und bestimmen so den Erfolg oder Misserfolg der Optimierung. Analog kann die An-
gepasstheit und Glite von Arten in der Biologie nicht direkt gemessen und berechnet werden.
Stattdessen wird dort die Angepasstheit indirekt als Fitness durch die Anzahl der Nachkommen
gemessen. Dies wird bei den evolutiondren Algorithmen durch eine meist klar definierte Bewer-
tungsfunktion ersetzt. In evolutiondren Algorithmen wird grundsétzlich zwischen Geno- und Phi-
notyp unterschieden, wobei beide auch identisch sein kénnen. Die Kodierungsfunktion erreicht
jedoch bei Weitem nicht die Komplexitét der biologischen Kodierung in der DNA.

Neben diesen natiirlichen Konzepten ist es ferner notwendig, im Rahmen einer Optimierung
den evolutionédren Algorithmus um eine Initialisierung und ein Abbruchkriterium zu erweitern.
Im Gegensatz zur Natur wird in der Optimierung ein Anfangs- und ein Endpunkt benétigt.

Wie im ersten Kapitel ausflihrlich erldutert wurde, findet die Evolution auf der genetischen
Ebene, der DNA, statt. Diese bestimmt durch einen selbstregulierenden Prozess die Bildung
des Organismus, sowohl mit seinem Erscheinungsbild als auch dem Verhalten in Bezug auf
die Umwelt. Die in evolutiondren Algorithmen betrachteten Kodierungen sind sehr viel einfa-
cher — wenn lberhaupt eine Kodierung benutzt wird. Die gesamte Bildung eines mehrzelligen
Organismus durch die selbstorganisierte Spezialisierung der Zellen bleibt génzlich unberiick-
sichtigt.

Wenn wir ferner den gesamten Evolutionsprozess beginnend bei der chemischen Evolution be-
trachten, dann bietet sich ein interessantes Gesamtbild, in dem sich zunichst bestimmte Mecha-
nismen herausgebildet haben, die dann die Grundlage fiir die weitere Evolution darstellen. Ein
derartiges Vorgehen, bei dem die Mechanismen der Evolution selbst der Evolution unterliegen,
wird im Rahmen der evolutiondren Algorithmen nicht betrachtet. Stattdessen wird in der Regel
erst bei fest in ihrer Funktionsweise definierten evolutionidren Mechanismen aufgesetzt: Zunéchst
werden die Struktur und der Algorithmus bestimmt, dann findet die Optimierung statt. Selbstmo-
difizierende evolutionire Algorithmen mit allen Konsequenzen wurden bisher noch nicht betrach-
tet. Ausnahmen stellen hier einige Verfahren dar, bei denen einzelne Aspekte wihrend einer Opti-
mierung sich an das Problem anpassen. Hier kommen dann die eingefiihrten Zusatzinformationen
eines Individuums zum Tragen. Diese Technik wird in Abschnitt 3.4.2 detailliert vorgestellt.

Auch eher komplexe Mechanismen, wie die Herausbildung der Sexualitit und diploider Struk-
turen, werden meist nicht betrachtet. In Abschnitt 5.3 befindet sich ein Beispiel flir diploide Kon-
zepte im Rahmen von zeitabhingigen Bewertungsfunktionen.

Die Evolutionsfaktoren Genfluss und Gendrift bleiben bei den Standardalgorithmen meist
unberiicksichtigt. Genfluss ist bei parallelen evolutiondren Algorithmen von Interesse (vgl. Ab-
schnitt 5.4.3). Gendrift hingegen kann nur schwierig als wirkungsvoller Faktor zur Beschleu-
nigung einer Optimierung eingesetzt werden. Gendrift wird vielmehr in kleinen Populationen
beobachtet, in denen dieser Effekt zu einer frithzeitigen Konvergenz auf nicht-optimalen Werten
fithren kann.

Die am Ende von Kapitel 1 diskutierten Aspekte der Anpassung sind ebenfalls in den Stan-
dardansitzen nicht vertreten. Aspekte der Einnischung und der Suche nach getrennten Nischen
werden im Abschnitt 5.2 diskutiert. Koevolutiondre Algorithmen werden knapp in Abschnitt 5.4.4
behandelt. Der Baldwin-Effekt ist zwar in der Biologie umstritten, wird jedoch im Rahmen von
evolutiondren Algorithmen, die Heuristiken einbeziehen, hiufig zitiert. In den evolutiondren Al-
gorithmen wird allerdings hiufig eine Lamarcksche Evolution bevorzugt (siehe Abschnitt 4.6.3).

2.6 Vergleich mit anderen Optimierungsverfahren 41

2.6 Vergleich mit anderen Optimierungsverfahren

Die evolutiondren Algorithmen werden anderen »klassischen« Optimierungsverfahren gegen-
tibergestellt, um ein Gefiihl dafiir zu vermitteln, wann ihre Anwendung angemessen ist.

Die beispielhafte erfolgreiche Optimierung des Handlungsreisendenproblems in diesem Kapitel
konnte leicht den Eindruck vermitteln, dass evolutiondre Algorithmen ein adaquates Mittel fiir
alle Optimierungsprobleme sind. Daher werden hier sehr knapp die Grundideen mehrerer »klas-
sischer« Optimierungsverfahren vorgestellt, die hdufig wesentlich effizienter sind.

Das Simplex-Verfahren erwartet, dass ein Optimierungsproblem als lineares Programm be-
schrieben werden kann. Es wird ein Vektor x € R” mit x; > 0 (1 <i < n) gesucht, fiir den

erfiillt sind, wobei a;; € Rund b; € R™ fiir 1 < j <mund 1 <i < n gilt. Die Randbedingungen
beschreiben ein konvexes Gebllde im Suchraum. Fir die Losung werden obige Ungleichungen
durch Einfiihren neuer Variablen in Gleichungen umgeformt. Anschlieend wird ein Losungskan-
didat gesucht, der die Randbedingungen erfillt. Durch die so genannte Simplex-Iteration wird
der noch mogliche Suchraum immer weiter eingeschrinkt, bis das Optimum gefunden ist. Die
Laufzeit kann im Grundalgorithmus schlechtestenfalls exponentiell werden. Es gibt jedoch auch
Varianten, die eine polynomielle Laufzeit garantieren kénnen. In jedem Fall ist es wichtig, dass
ein Problem sowohl in den Randbedingungen als auch in der zu minimierenden Zielfunktion als
Linearkombination formuliert werden kann. Andernfalls kann der Simplex-Algorithmus nicht
angewandt werden.

Ein anderes Verfahren zur Suche des Minimums einer beliebigen, partiell differenzierbaren
Funktion

fRT—=R mit Vf = (8f ...,ﬁ>existent
oxy’ ox,
ist das Gradientenabstiegsverfahren. Dabei wird das Verfahren mit einem beliebigen Losungs-
kandidaten x® € R” initialisiert und anschlieBend iterativ verbessert. Der Nabla-Operator
V£ (x\") bezeichnet den Gradienten von f an der Stelle x(), d. h. den steilsten Abstieg der Funk-
tion, und wird zur Modifikation des Losungskandidaten genutzt
D x0 —oy V(xD).

Die Konstante o; entspricht einem Schrittweitenfaktor. Unter geeigneten Voraussetzungen kon-
vergiert das Gradientenabstiegsverfahren im gesuchten Minimum. Besitzt die Funktion f meh-
rere Minimalstellen, kann jedoch nicht garantiert werden, dass es sich um die kleinste Minimal-

42 2 Von der Evolution zur Optimierung

stelle handelt. Auch ist die Effizienz des Algorithmus nicht zwingend gegeben — insbesondere
bei sehr geringer Steigung oder Situationen, in denen das Minimum immer wieder libersprungen
wird. Wesentlich schneller kénnen in solchen Situationen Verfahren sein, die auch zweifache par-
tielle Ableitungen der Funktion f berticksichtigen, wie etwa das GauB3-Newton-Verfahren oder
der Levenberg-Marquardt-Algorithmus. In jedem Fall ist allen Varianten des Gradientenabstiegs
gemein, dass die Zielfunktion mindestens einmal ableitbar ist. Damit sind beispielsweise unsteti-
ge Funktionen so nicht 16sbar.

Eine weitere Klasse alternativer Optimierungsalgorithmen sind die Backtracking-Verfahren
fiir kombinatorische Probleme, die im Vergleich zu den obigen Methoden weniger Voraussetzun-
gen an das Optimierungsproblem stellen. Dabei wird der Suchraum geeignet strukturiert, so dass
iiber einen Entscheidungsbaum alle Losungskandidaten erzeugt werden kénnen. Am Beispiel
des Handlungsreisendenproblems wiirde das so aussehen, dass zunéchst die erste besuchte Stadt
festgelegt wird, dann die zweite etc. Die Losungskandidaten befinden sich in den Blittern des
Entscheidungsbaums; die inneren Knoten beschreiben eine Menge an Losungskandidaten mit
gleichen Eigenschaften. Traversiert man den Baum komplett, werden alle Losungskandidaten
aufgezéhlt. Ist man lediglich an einem durchflihrbaren Losungskandidaten interessiert, wiirde
man die Baumtraversion abbrechen, sobald ein solcher gefunden ist. Beim Handlungsreisenden-
problem konnte man etwa nach einer Rundreise mit einer vorgegebenen Maximalldnge suchen.
Falls nun an einem inneren Knoten der bereits festgelegte Teil der Rundreise linger als die zu-
gelassene Maximalldnge ist, braucht der darunter liegende Teil des Entscheidungsbaums nicht
weiter betrachtet zu werden. Er wird quasi abgeschnitten. Daher spricht man auch von Branch-
and-Bound-Verfahren. Wird die minimale Rundreise gesucht, kann die kiirzeste bisher gefunde-
ne Linge als Kriterium herangezogen werden. Da im ungtinstigsten Fall der komplette Suchraum
abgearbeitet wird, haben Backtracking-Algorithmen keine garantierte effiziente Laufzeit. Dies ist
ein Nachteil der Verfahren. Gut anwendbar ist das Verfahren nur dann, wenn das Problem geeig-
net strukturiert werden kann, damit grofe Teile des Suchraums ausgelassen werden. Ein weiterer
Vorteil ist die leichte Kombinierbarkeit mit anderen Verfahren. So kann etwa Branch-and-Bound
mit dem Simplex-Algorithmus zur Lésung ganzzahliger linearer Optimierungsprobleme kombi-
niert werden.

Und schlieBlich gibt es noch die grofie Klasse der problemspezifischen Algorithmen und Heu-
ristiken fiir die kombinatorische Optimierung. Darunter fallen exakte Algorithmen wie der Dijk-
stra-Algorithmus, um kiirzeste Wege in einem Graphen zu suchen, aber auch Approximationen
wie der in diesem Kapitel auf Seite 34 diskutierte Algorithmus fiir das Handlungsreisenden-
problem. Ist fur ein Problem ein solcher Algorithmus bekannt, der in akzeptabler Berechnungs-
zeit eine hinreichende Losungsqualitit garantiert, erlibrigt sich die Suche nach einem effektiven
evolutiondren Algorithmus.

Zusammenfassend ldsst sich sagen, dass alle hier vorgestellten Algorithmen entweder nur fiir
eine sehr beschrinkte Menge von Problemen eingesetzt werden konnen oder eine hohe Laufzeit
mit sich bringen. Evolutionédre Algorithmen sind potentiell genau dann geeignet, wenn kein ande-
res efhizientes Verfahren zur Verfiigung steht. Thr groBBer Vorteil ist, dass sie grundsétzlich univer-
sell anwendbar sind. Allerdings kann auch hier weder eine Erfolgs- noch eine Laufzeitgarantie
gegeben werden. Viele erfolgreiche Projekte belegen das Potential der evolutiondren Algorith-
men. Letztendlich sind jedoch Erfahrungen beim Entwurf und der Verbesserung der Algorithmen
entscheiden fiir den Erfolg. Das nachfolgende Kapitel soll ein wenig von den Zusammenhéngen
und dem Fingerspitzengefiihl vermitteln, das hierfiir notwendig ist.

2.7 Ubungsaufgaben

2.7 Ubungsaufgaben

Aufgabe 2.1: Definition eines Optimierungsproblems

Formulieren Sie formal entsprechend Definition 2.1 die folgende Variante des Handlungsreisen-
denproblems: Alle Stidte sollen durch zwei Handlungsreisende besucht werden. Die Gesamt-
kosten sollen wieder minimal und die Rundreisen der beiden Akteure anndhernd gleich lang
sein.

Aufgabe 2.2: Genotyp und Phiinotyp

Formulieren Sie eine Dekodierungsfunktion, die einen reellwertigen Genotyp auf den Raum
aller Permutationen .%, abbildet.

Aufgabe 2.3: Grundalgorithmus als generisches Muster

Skizzieren Sie einen evolutiondren Algorithmus gemif} des allgemeinen Ablaufschemas EA-
SCHEMA (Algorithmus 2.6), der ebenfalls das Handlungsreisendenproblem 15st, aber auf dem
Genotyp aus Aufgabe 2.2 arbeitet.

Aufgabe 2.4: Aufbau eines Individuums

Beschreiben Sie schematisch anhand weniger Individuen den Datenfluss in einem evolutionéren
Algorithmus und benutzen Sie dabei die Attribute eines Individuums in Bild 2.15.

Aufgabe 2.5: Nachvollziehen eines Algorithmus
Betrachten Sie das in Bild 2.1 gegebene Handlungsreisendenproblem sowie die Elternpopulati-
on mit den Individuen (1, 4, 2, 5, 6, 3) und (4, 5. 3, 2, 6, 1). Berechnen Sie zwei Genera-
tionen, indem Sie ein Individuum durch die KANTENREKOMBINATION auf beiden Eltern und
ein Individuum durch die INVERTIERENDE-MUTATION auf einem der beiden Eltern erzeugen.
Selektieren Sie aus den Eltern und den Kindern die beiden besten Individuen als neue Eltern.

Aufgabe 2.6: Asymmetrisches Handlungsreisendenproblem

In diesem Kapitel wurde beim Handlungsreisendenproblem immer davon ausgegangen, dass das
Problem symmetrisch ist, d. h. dass fiir die Kosten einer Kante zwischen 7 und ;j die Gleichung
y((i, 7)) = v({J, 1)) gilt. Falls diese Gleichung nicht mehr erfiillt ist, welcher Mutationsoperator
sollte dann bevorzugt werden?

Aufgabe 2.7: Mehrere Populationen

Uberlegen Sie, wie mehrere Populationen in einem evolutiondren Algorithmus zusammenwirken
konnen. Skizzieren Sie einen Algorithmus, der auch Genfluss als Evolutionsfaktor nutzt.

Aufgabe 2.8: Eignung evolutioniirer Algorithmen

Entscheiden Sie fiir die folgenden Probleme, ob sich der Einsatz eines evolutiondren Algorith-
mus lohnt.

43

44 2 Von der Evolution zur Optimierung

+ Planungsproblem: Zwei Produkte 4 und B konnen auf drei Maschinen gefertigt werden,
wobei sie jeweils unterschiedliche Laufzeiten bendtigen. Ferner ist die Laufzeit der Ma-
schinen pro Tag beschrénkt und jedes Produkt erzielt einen gegebenen Preis. Gesucht ist
ein Verfahren, das bestimmt, wieviele Exemplare der Produkte auf den jeweiligen Maschi-
nen zu produzieren sind, damit die Firma einen maximalen Gewinn erzielt.

+ Hamiltonkreis: In einem Graphen ist ein Weg gesucht, der jeden Knoten nur einmal be-
sucht — im Gegensatz zum Handlungsreisendenproblem interessiert hier nur die reine Exis-
tenz eines Weges.

* In einem Graphen ist der zweitkiirzeste Weg zwischen zwei gegebenen Knoten gesucht.

Aufgabe 2.9: Implementation des Beispielalgorithmuses

Implementieren Sie den beschriebenen Algorithmus EA-HANDLUNGSREISENDENPROBLEM
und wenden Sie ihn auf ein Problem mit 100 zufillig im zweidimensionalen Raum verteilten
Stadten an.

Aufgabe 2.10: Experimente mit dem asymmetrischen Problem

Testen Sie das Programm aus Aufgabe 2.9 ebenfalls auf einem zufilligen asymmetrischen Pro-
blem. Wie dndern sich die Ergebnisse, wenn Sie Ihre Erkenntnisse aus Aufgabe 2.6 bertiicksich-
tigen.

2.8 Historische Anmerkungen

Die ersten Ansiitze einer Ubertragung evolutionirer Prinzipien auf die Losung von Optimierungs-
aufgaben reichen bereits bis in die 1950er Jahre zuriick. Friedman (1956) hat die natiirliche Se-
lektion nachempfunden, um Schaltkreise zu evolvieren. Sein »Selective Feedback Computer«
hat so Schaltkreise entwickelt, die beispiclsweise aus Sensordaten Aktionen errechneten. Die
»Evolutionary Operation« von Box (1957) versuchte die Produktivitit von Fertigungsprozessen
zu optimieren. Und die »Learning Machine« von Friedberg (1958) bzw. Friedberg et al. (1959)
erzeugte tabellarische einfache Programme, die aus Eingaben bestimmte Ausgaben errechnen
sollten. Diese Ansdtze wurden meist nicht weiterverfolgt. In den 1960er Jahren wurden dann die
Grundsteine flir die Algorithmen gelegt, die bis heute das Forschungsfeld bestimmen. Bremer-
mann (1962) stellt mit der Optimierung von numerischen Problemen noch einen Vorldufer dar,
der schon wesentliche Grundziige heutiger evolutiondrer Algorithmen aufweist und sich durch
konkrete Analysen der Parametereinstellungen auszeichnet (Bremermann et al., 1966). Eine sehr
schone Ubersicht dieser Pionierleistungen anhand von Originalarbeiten und ihre Einordnung aus
heutiger Sicht kann man dem Buch »Evolutionary Computation: The Fossil Record« von Fogel
(1998a) entnehmen.

Ein erster Grundpfeiler des Gebiets, die Evolutionsstrategien (ES, engl. evolution strategies),
wurde von Bienert, Rechenberg (1964, 1973, 1994) und Schwefel (1975, 1995) mit der experi-
mentellen Optimierung eines Widerstandskorpers gelegt. Ein zweiter Grundpfeiler des Gebiets,
das evolutiondre Programmieren (EP, engl. evolutionary programming), wurde von Lawrence J.
Fogel et al. (1965) begriindet: Evolvierende endliche Automaten sollten Zeitreihen vorhersagen.
Ende der 1980er Jahre erneuerte und wiederbelebte David B. Fogel (1988, 1999) das evolutio-
nére Programmieren und ersetzte die endlichen Automaten durch das besser geeignete Modell

2.8 Historische Anmerkungen 45

1950

Friedman 1956 B
Box 1957 i

Friedberg 1958 3

Bremermann 1962 '

Rechenberg Fogel i Antike
Schwefel Owens i
Bienert 1964 Walsh 1965 Holland 1969 4
] 1) i
1 I : ;
! A 1 4
Evolutions- Evolutionires Genetische 4
strategien Programmieren Algorithmen ®,
]) 1 1.
: : 1 ' Mittelalter
' ' | ICGA (seit 1985) ;
L} L} 1 4
1 1 i Vg
] ! : !
, PPSN (seit 1990) H !
: ! EP (seit 1992) i Kooy 1992 \
1 . ¥ T
: : 1 Genetisches Programmieren h Rnausaice
: !
[Evolutionary Computing :] ’,‘
o
0 Evolutionary Computing i b\l
Journal (seit 1993) '
Neue '
Techniken !
. E Aufklidrung
l Handbook of EC 1997 IEEE Transactions (seit 1997) 1 ‘
[GECCO (seit 1999) ———— CEC (seit 1999) 1,
P

 21. Jahrhundert

Bild 2.17 Zeittafel der evolutioniren Algorithmen. Bei den wissenschaftlichen Konferenzen der Teilgebiete
handelt es sich um die /nternational Conference on Genetic Algorithms (ICGA), die Konferenz
Parallel Problem Solving from Nature (PPSN) und die Konferenz Evolutionary Programming
(EP). Die teilgebietiibergreifenden Konferenzen sind die Genetic and Evolutionary Computation
Conference (GECCO) und der Congress on Evolutionary Computation (CEC).

der kiinstlichen neuronalen Netze. Und schliefllich entwickelte Holland (1969, 1973, 1992) das
dritte Teilgebiet, die genetischen Algorithmen (GA, engl. genetic algorithms), durch eine ma-
thematische Analyse adaptiver, selbstanpassender Systeme. Die Popularitiit der genetischen Al-
gorithmen als Optimierungswerkzeug geht jedoch wesentlich auf das Lehrbuch von Goldberg
(1989) zuriick. Ein weiteres jlingeres Teilgebiet, das genetische Programmieren (GP, engl. gene-
tic programming), wurde im Kontext der genetischen Algorithmen von Koza (1989, 1992) be-
griindet. Bis Ende der 1980er Jahre existierten die drei groflen Teilgebiete unabhéingig voneinan-
der, ohne Notiz von den anderen zu nehmen. Mit dem Workshop »Parallel Problem Solving from
Nature (PPSN)« wurden 1990 die verschiedenen Forschungsgemeinschaften zusammengebracht.
In der Folgezeit hat sich auch als englischer Oberbegriff evolutionary computation (EC, evolu-
tiondres Berechnen) fiir das gesamte Forschungsgebiet und evolutionary algorithm (EA, evolu-

46 2 Von der Evolution zur Optimierung

tiondrer Algorithmus) als Sammelbegriff fiir die Algorithmen herausgebildet. Ebenso wurden
mit den Zeitschriften Evolutionary Computation und IEEE Transactions on Evolutionary Com-
putation gemeinsame Foren fiir den wissenschaftlichen Austausch geschaffen. Ein gemeinsames
Nachschlagewerk wurde mit dem »Handbook of Evolutionary Computation« (Béck et al., 1997)
initiiert. In den vergangenen Jahren hat das Gebiet sehr viele neue Impulse erfahren. Dennoch
blieben bis heute die verschiedenen Schulen der evolutiondren Algorithmen bestehen. Anstren-
gungen fiir eine gemeinsame integrierte Darstellung sowohl der zugrundeliegenden Theorien als
auch der verschiedenen Algorithmen sind immer noch die Ausnahme. In der jingeren Zeit hat
sich eine ganze Zahl neuerer Techniken im Zusammenhang mit evolutionidren Algorithmen her-
ausgebildet, von denen hier nur beispielhaft Ameisenkolonien (Dorigo et al., 1996), Differential-
evolution (Price & Storn, 1997), Partikelschwirme (Kennedy & Eberhart, 1999) und kulturelle
Algorithmen (Reynolds, 1999) genannt werden. Mehr Informationen zu der Entwicklung von
neueren Techniken finden sich in den historischen Anmerkungen zu Kapitel 4.

Das im zweiten Teil dieses Kapitels betrachtete Problem des Handlungsreisenden ist ein NP-
hartes kombinatorisches Optimierungsproblem (vgl. Garey & Johnson, 1979), von dem ein ers-
ter Vorldufer von dem Mathematiker Menger (1932) vorgestellt wurde. Eine der ersten Verof-
fentlichungen, die die Bezeichnung traveling salesman problem benutzte, stammt von Robinson
(1949). Als Anwendungsproblem fiir evolutionire Algorithmen wurde das Handlungsreisenden-
problem zunichst von Grefenstette et al. (1985), Fogel (1988) und Whitley et al. (1989) betrach-
tet. Die Anwendung von lokalen Suchalgorithmen datiert noch weiter zuriick (z. B. Lin & Ker-
nighan, 1973) und liefert meist bessere Resultate als die frithen Ergebnissen der evolutiondren
Algorithmen. Die im einfithrenden Beispiel dieses Kapitels benutzte INVERTIERENDE-MUTATION
beruht wesentlich auf dem Nachbarschaftsoperator des 2-opt-Algorithmus von Lin & Kernighan
(1973). Die KANTENREKOMBINATION wurde von Whitley et al. (1989) eingefiihrt. Varianten der
ORDNUNGSREKOMBINATION stammen von (Davis, 1985; Syswerda, 1991a). Letzterer hat auch
die VERTAUSCHENDE-MUTATION betrachtet. Der kurz angerissene deterministische Approxima-
tionsalgorithmus mit polynomieller Laufzeit und der Garantie, eine um héchstens den Faktor 2
zu lange Rundreise zu liefern, stammt von Rosenkrantz et al. (1977).

Auf die alternativen Verfahren wird hier nur sehr knapp eingegangen. Der Simplex-Algorith-
mus stammt von Dantzig (1951a,b, 1963). Der Gradientenabstieg ist eines der <esten Optimie-
rungsverfahren und kann beispielsweise dem Lehrbuch von Hanke-Burgeois (2006) entnommen
werden — ebenso wie die anderen numerischen Verfahren auch. Der Levenberg-Marquardt-Al-
gorithmus wurde von Levenberg (1944) und Marquardt (1963) publiziert. Backtracking bzw.
Branch-and-Bound wurde fiir das Handlungsreisendenproblem von Eastman (1958) entwickelt.
Dabei handelt es sich auch um eine der ersten Anwendungen des Branch-and-Bound-Prinzips.
Der Algorithmus zur Lésung ganzzahliger linearer Probleme stammt von Land & Doig (1960)
bzw. Dakin (1965). Eine frithe Zusammenfassung der Entwicklungen haben Lawler & Wood
(1966) erstellt.

3 Prinzipien evolutioniirer Algorithmen

Es werden die Grundprinzipien erldutert, wie evolutiondire Algorithmen eine erfolgreiche Opti-
mierung erreichen kénnen. Diese Prinzipien dienen gleichzeitig als Leitkriterien fiir den Entwurf
evolutiondirer Algorithmen. Abgerundet wird dieses Kapitel durch Uberlegungen zu den Grenzen
der Anwendbarkeit.

Lernziele in diesem Kapitel

> Prinzip des Hillclimbings ist verinnerlicht.

&> Mutation und Genotyp konnen hinsichtlich ihre Eignung fiir ein Problem untersucht
werden.

&> Vor- und Nachteile des Populationskonzepts kdnnen am konkreten Beispiel abgewogen
werden.

&> Die Suchdynamik der Selektion kann weitestgehend prognostiziert werden.

¢» Verschiedene Arbeitsweisen der Rekombination konnen am Beispiel unterschieden
werden.

&> Voraussetzungen fiir Schema-Wachstum sind aus der Theorie verstanden.
&> Notwendigkeit und Techniken der Selbstanpassung kénnen erlautert werden.
&> Die Idee eines universellen Optimierers kann widerlegt werden.

Gliederung
3.1 Wechselspiel zwischen Variation und Selektion 48
3.2, PopulationSKORZEPE . comrvin i o 5 % 5 5w % w0 w5 s 6 scetereEe T B N 62
3.3 Verkniipfen mehrerer Individuen durch die Rekombination 80
3.4 Selbstanpassende Algorithmen L. 106
3.5 Zusammenfassung der Arbeitsprinzipien 114
3.6 Der ultimative evolutiondre Algorithmus 115
3.7 Ubungsaufgaben 121

3.8 Historische Anmerkungen 124

48 3 Prinzipien evolutiondrer Algorithmen

3.1 Wechselspiel zwischen Variation und Selektion

Als erstes Grundprinzip der evolutiondiren Algorithmen wird der Wechsel zwischen Variation bzw.
Mutation und Selektion theoretisch und experimentell untersucht. Ein besonderer Schwerpunkt
liegt auf der Analyse des Einflusses der Kodierungsfunktion.

In dem Beispiel des Handlungsreisendenproblems in Kapitel 2 hatten wir uns zundchst auf die
Mutation als Hauptoperator konzentriert. Ausgehend von der Beobachtung von Mutationen als
kleine Verédnderungen in der Biologie war das Bestreben, den Operator so zu entwerfen, dass
moglichst wenig am Losungskandidaten hinsichtlich der Bewertungsfunktion gedndert wird. Die-
ser Grundsatz wird in seinem Zusammenspiel mit der Selektion genauer untersucht.

3.1.1 Ein einfaches biniires Beispiel

Zur Einfiihrung untersuchen wir, wie ein méglichst minimaler Optimierungsalgorithmus sich auf
einem sehr einfachen Optimierungsproblem, dem Abgleich mit einem vorgegebenen Bitmuster,
verhilt.

Definition 3.1 (Musterabgleich):
Das Problem des Musterabgleichs ist durch ein vorgegebenes Bitmuster b € B/ defi-
niert. Aus dem Suchraum aller Bitmuster Q = B wird dasjenige gesucht, welches die
groBte Ubereinstimmung mit b hat, d.h. die Funktion

f:BIHR
. , . 1 falls b; = b;
b,....b bi, b; tg(bi,by) = e
(by,..., I)HISZ@ g(bi, bi) mit g(bi, bi) { 0 sonst

wird maximiert.

Beispiel 3.1:
Der bekannteste Vertreter der Musterabgleichprobleme ist das so genannte Einsenzihl-

problem, das man durch b=111...1 € B erhalt. Der Wert der Bewertungsfunktion
entspricht dabei immer der Anzahl der Einsen im Losungskandidaten.

Die kleinstmdégliche Verdnderung, die wir auf einer bindren Zeichenkette durchfiihren konnen,
ist die Negation genau eines zufillig gewihlten Bits. Die entsprechende Mutation ist in Algorith-
mus 3.1 (EIN-BIT-BINARE-MUTATION) beschrieben.

Algorithmus 3.1

EIN-BIT-BINARE-MUTATION(Individuum 4 mit 4.G € B/)
1 B+—4

2
3 Bi—1—4;
4 return B

3.1 Wechselspiel zwischen Variation und Selektion 49

Algorithmus 3.2

BINARES-HILLCLIMBING(Zielfunktion F)
1 t<0
A(t) — erzeuge Losungskandidat
bewerte A(¢) durch F
while Terminierungsbedingung nicht erfiillt
do " B — EIN-BIT-BINARE-MUTATION(4(¢))
bewerte B durch F
t—t+1
ifBF~A(t—1)F
thenCA(¢) — B
Lelse CA(f) —A(t—1)
return 4(t)

— O O e NN AW

—_——

Die Mutation wird mun in den einfachsten denkbaren Ablauf BINARES-HILLCLIMBING (Algo-
rithmus 3.2) eingebettet: Die Population besteht aus lediglich einem Individuum, aus dem durch
die Mutation ein neues Individuum erzeugt wird. Der Bessere der beiden Losungskandidaten
wird als neues Elternindividuum in die ndchste Generation {ibernommen. Falls beide Individuen
gleiche Giite besitzen, ersetzt das Kindindividuum das Elternindividuum.

3.1.2 Die Giitelandschaft

Im Wechselspiel zwischen Selektion und Mutation bestimmt die Mutation die moéglichen Ver-
dnderungen, die von einer zur nichsten Generation auftreten kénnen, wihrend die Selektion
bestimmte Schritte ausschliefit oder akzeptiert. Gerade der erste Aspekt kann {iber die Notation
des Nachbarschaftsgraphen gut verdeutlicht werden.

Definition 3.2 (Nachbarschaftsgraph):
Sei Mut® : 4 x % — 4 x % ein Mutationsoperator und 2 = { L}, dann ist der Nach-
barschafitsgraph zu Mut definiert als gerichteter Graph G = (V, E)) mit Knotenmenge
V' =% und Kantenmenge

E={(4.G,B.G)cVxV|IECE: Mur>(4) =B}

Beispiel 3.2:
Bild 3.1 zeigt einen Nachbarschaftsgraphen flir die EIN-BIT-BINARE-MUTATION auf
einem Genotypen ¢ = B>. Da die Mutation in unserem Beispiel symmetrisch ist, exis-
tiert fiir jede gerichtete Kante im Nachbarschaftsgraphen auch eine Riickkante. Daher
wird in diesem und allen weiteren Bildern dieses Abschnitts der Graph ungerichtet
dargestellt.

Jede Kante entspricht einer Verdnderung an einem Individuum durch den Mutationsoperator.
Damit représentiert ein zufélliger Pfad im Graph den Ablauf, der durch mehrfaches, iteratives
Anwenden der zufdlligen Mutation entsteht. Im Englischen spricht man auch von einem sog. ran-
dom walk. Wird jetzt zusitzlich die Selektion nach jeder Mutation angewandt, bekommt der

50 3 Prinzipien evolutiondrer Algorithmen

010 110
011 111
001 10 Bild 3.1
Im Nachbarschaftsgraph fiir die EIN-BIT-BINARE-MUTATION auf
% =B entspricht jede Kante einer moglichen Mutation, bei der ge-
000 100 nau ein Bit verdndert wird.

Bild 3.2

Fur das Einsenzdhlproblem mit drei Bits und
die EIN-BIT-BINARE-MUTATION wird die tiber
dem Nachbarschaftsgraphen liegende Giiteland-
schaft gezeigt. Dick ist ein moglicher Weg des
bindren Hillclimbers vom Individuum 000 zum
000 100 Maximum 111 eingezeichnet.

Suchprozess seine Zielgerichtetheit, da keine Verschlechterung mehr méglich ist. Dies kann man
visualisieren, indem man tiber der Struktur des Nachbarschaftsgraphen eine Giitelandschaft er-
richtet.

Definition 3.3 (Giitelandschaft, Weg):
Eine Giitelandschaft (G, F) wird durch einen Nachbarschaftsgraphen G = (¢, E) und
eine induzierte Bewertungsfunktion £ : 4 — R definiert, die jedem Knoten seine Héhe
in der Landschaft zuordnet. Ferner sei w = wywy ... wy € 4T ein Weg in der Land-
schaft, falls fir alle i € {1, ...,k — 1} die Kante (w;, wi1) € E existiert.

Beispiel 3.3:
Wie sich aus dem Nachbarschaftsgraphen aus Beispiel 3.2 durch das Einsenzéhlproblem
eine Giitelandschaft ergibt, ist in Bild 3.2 dargestellt.

Bei einem Maximierungsproblem kann man nun die Optimierung des Algorithmus BINARES-
HILLCLIMBING mit einem Bergsteiger vergleichen, der im Gebirge immer nur nach oben steigt.
Daher stammt auch die Bezeichnung Hil/lclimbing. Im Bild 3.2 ist beispiclhaft ein Weg einge-
zeichnet, der immer nur dann zu einem neuen Punkt tibergeht, wenn dieser eine bessere Glite
hat.

3.1 Wechselspiel zwischen Variation und Selektion 51

3.1.3 Modellierung als Markovprozess

Da in jeder Generation ausschlieBlich das aktuelle Elternindividuum benutzt wird, um durch
Mutation und Selektion ein neues Elternindividuum zu erzeugen, handelt es sich bei der Opti-
mierung aus mathematischer Sicht um einen Markovprozess. Dies ist genau dann der Fall, wenn
der Zustand zur Zeit ¢ nur vom Zustand zur Zeit £ — 1 abhingt und damit unabhingig von den
Zustdnden zur Zeit £ — 2 und frither ist. Daher soll im Weiteren die Optimierung eines Muster-
abgleichs durch eine endliche Markovkette modelliert werden, um eine genauere Aussage tiber
die Laufzeit der Optimierung zu erhalten.

Definition 3.4 (Endliche Markovkette):
Eine endliche Markovkette ist definiert als Tupel (Zustdnde, Start, Ubergang), wobei
Zustéinde = {0, . .., k} die méglichen Zustinde des Markovprozesses sind, das Tupel
Start € [0, 111 mit o<« Start; = 1 die Wahrscheinlichkeit fiir jeden Zustand an-
gibt, dass sich der Prozess am Anfang in diesem Zustand befindet, und die Funktion

Ubergang : {0, ...k} x{0,...,k} — [0, 1]

bezeichnet die Wahrscheinlichkeit Ubergang(i, j) von Zustand i aus direkt nach Zu-
stand j iiberzugehen, wobei Yo ;¢ Ubergang(i, j) = 1 fiir alle 0 < i < k gilt.

Beispiel 3.4:

Wird BINARES-HILLCLIMBING (Algorithmus 3.2) fiir die Losung des Musterabgleichs
der Linge / eingesetzt, ist der Suchraum mit 2/ unterschiedlichen Losungskandida-
ten zu groB, um so vollstdndig als Zustandsmenge in ein Markovmodell eingehen zu
konnen. Das bedeutet, dass mehrere Losungskandidaten geschickt in jeweils einem Zu-
stand der Markovkette zusammengefasst werden. Hierflir bietet sich im betrachteten
Problem die Information an, wieviele Bits bereits mit dem gesuchten Optimum iiber-
einstimmen (was dem Giitewert der Bewertungsfunktion entspricht). Als Zustands-
menge wihlen wir also Zustinde = {0, . .., }. Wenn wir im Zustand / sind, haben wir
das Optimum gefunden. Da die EIN-BIT-BINARE-MUTATION (Algorithmus 3.1) immer
nur ein Bit pro Mutation verdndert, miissen von einem Anfangszustand j aus nach-
einander alle Zustédnde j + 1 bis / durchlaufen werden. Wird durch eine Mutation ein
bereits richtig gesetztes Bit verdndert, wird das Individuum aufgrund des schlechteren
Glitewertes wieder verworfen und wir bleiben im selben Zustand. Wird ein bisher
falsch gesetztes Bit invertiert, verbessert sich der Gilitewert, das neue Individuum er-
setzt das bisherige Individuum in der Population und wir kommen in den néichsten
Zustand der Markovkette. Die Ubergangswahrscheinlichkeiten zwischen den Zustin-
den ergeben sich direkt aus dem Mutationsoperator und dem aktuellen Zustand des
Suchprozesses wie folgt:

B falls0<i</undj=i+1
Ubergang(i,j)=< + falls0<i</undj=i
0 sonst

Die resultierende Markovkette ist in Bild 3.3 dargestellt.

52 3 Prinzipien evolutionidrer Algorithmen

B8 8..88

Bild 3.3 Markovmodell fiir die Optimierung des Musterabgleichs durch BINARES-HILLCLIMBING.

——

Satz 3.1:

BINARES-HILLCLIMBING erreicht das Optimum eines Musterabgleichs mit / Bits in
¢ (I -log) Schritten (als Erwartungswert).

Beweis 3.1:
Betrachtet man das Markovmodell aus Beispiel 3.4, ergibt sich aus den Ubergangs-
wahrscheinlichkeiten die erwartete Zeit, bis ein beliebiger Zustand 7/ verlassen wird,
als
1
Ubergang(i.i+1)

Damit ist die gesamte Zeit, bis das Optimum erreicht wird, in der Erwartung

: 2—: D l,g!-]og(i—k)‘

152 Ubergang(i,i+1) isier ! 1<i<i—k ¢

Also durchsucht BINARES-HILLCLIMBING mit durchschnittlich /-log / Individuen nur einen Bruch-
teil des Suchraums mit insgesamt 2/ Losungskandidaten. Damit ist das Hillclimbing deutlich ef-
fizienter als ein systematisches, aufzihlendes Durchsuchen des gesamten Suchraums (z. B. Back-
tracking). Ein dhnliches Ergebnis hatten wir bereits exemplarisch am Handlungsreisendenpro-
blem im Abschnitt 2.3 gesehen. Doch im Gegensatz dazu ist dies fiir den Musterabgleich und
den binidren Hillclimber nun tatsichlich im Mittel bewiesen. Das bedeutet allerdings nicht, dass
jede Optimierung so effizient ablduft.

Die obige Argumentation ist natiirlich eine Mogelpackung. Denn fiir das Problem des Musterabgleichs kann

% ein einfacher deterministischer Algorithmus angegeben werden, der linear die Bits beispielsweise von links
nach rechts betrachtet und priift, ob eine Mutation zu einer Verbesserung fithrt. Damit hat man das korrekte
Ergebnis bereits nach der Bewertung von genau / Losungskandidaten.

3.14 Das Problem lokaler Optima

Die bisherigen Betrachtungen sind allerdings in vielerlei Hinsicht nur ein Beispiel fiir den Ideal-
fall, wie das folgende Beispiel illustriert.

Beispiel 3.5:
Weist man die Giitewerte den Losungskandidaten aus Bild 3.2 in einer anderen Reihen-
folge zu, erhilt man beispielsweise die Giitelandschaften in Bild 3.4. Die zugehdrigen

3.1 Wechselspiel zwischen Variation und Selektion 53

000 100 000 100

Bild 3.4 In den beiden zufillig erzeugten Giitelandschaften iiber dem Nachbarschaftsgraphen mit drei Bits
gibt es keinen Weg vom Individuum 000 zum Maximum, der von dem Optimierungsalgorithmus
BINARES-HILLCLIMBING beschritten werden kann.

Optimierungsprobleme fallen nicht mehr in die Klasse des Musterabgleichs. Der bi-
nére Hillclimber kann nicht mehr von jedem Punkt aus das Maximum des Problems
erreichen.

Dieses Beispiel motiviert die folgende Definition, in der wir zwei spezielle Arten von Losungs-
kandidaten identifizieren, die die Optimierung erschweren oder gar verhindern kénnen.

Definition 3.5 (Lokales Optimum, Plateau):
Sei Mut® 1 4 x % — 4 x Z ein Mutationsoperator, G = (¢, E) der zugehorige Nach-
barschaftsgraph und (G, F) eine Giitelandschaft. Dann heifit ein Lésungskandidat 4
mit 4.G €% ein

* lokales Optimum, falls alle moglichen Mutanten B = Mut(4) nicht besser sind
(F(A4.G) = F(B.G)) und fiir alle Wege w| (=4.G)ws . .. wi mit F(wy) = F(4.G)
gilt, dass mindestens einer der Losungskandidaten w; (2 < i < k) eine schlechtere
Giite hat: F(4.G) = F(w;).

o Plateau-Punkt, falls alle moglichen Mutanten B = Mut(A) (mit (4.G,B.G) €
E) nicht besser sind (F(4.G) = F(B.G)) und wenigstens ein benachbarter Lo-
sungskandidat C (mit (4.G, C.G) € E) existiert, der gleiche Giite hat (F(4.G) =
F(C.G)).

Beispiel 3.6:
In der linken Giitelandschaft in Bild 3.4 sind die Punkte 000, 001 und 011 Plateau-
Punkte und lokale Optima, 110 ist gleichzeitig ein lokales und das globale Optimum.
In der rechten Giitelandschaft ist 110 ein Plateau-Punkt, 000 ein lokales Optimum und
011 das globale und lokale Optimum.

54 3 Prinzipien evolutiondrer Algorithmen

Lokale Optima stellen fiir einen Hillclimbing-Algorithmus ein uniiberwindbares Hindernis dar.
Ist eine Optimierung in ein lokales (und nicht globales) Optimum geraten, kann das globale nicht
mehr gefunden werden. Daher versagen reine Hillclimbing-Algorithmen auf vielen Problemen.
Plateaus bestehend aus vielen Punkten kénnen ebenfalls die Optimierung behindern, da keine
Richtungsinformation zur Verfiigung steht, welche Mutationen auf einen besseren Losungskan-
didaten zusteuern. Die Suche auf einem Plateau entspricht einem random walk, bei dem ziellos
beliebige Verdnderungen am Individuum vorgenommen werden.

3.1.5 Der Einfluss der Kodierung

Die Uberlegungen des obigen Abschnitts werden im Weiteren auf ein allgemeineres Problem
angewandt. Der binire Hillclimber soll benutzt werden, um ein ganzzahliges Problem

F:{0,...2~1} >R

zu optimieren. Da der Suchraum Q = {0,...,2% — 1} ungleich dem Genotyp ¢ = B/ ist, wird
eine Dekodierungsfunktion benétigt. Es bietet sich an, / = k zu wihlen und die bekannte stan-
dardbindre Kodierung zu verwenden.

Definition 3.6 (Standardbinire Kodierung):

Eine bindre Zeichenkette 4.G = A.G, ... 4.G; € B reprasentiert mit standardbindrer
Kodierung die folgende ganze Zahl

-1
decsapin(A.G) = Y, A.G_;-2/.
=0

Damit kann auch ein reellwertiges Intervall [ug, og] C R durch

08 —ug

ﬁ . decs,db,-,, (A . G)

decsrdbin,ugpg(A'G) = ug-+

%2 dargestellt werden.

mit der Genauigkeit

In der Praxis treten auch hiufig Probleme auf, bei denen ein reellwertiger Vektor (xi,...,x,)
mit x; € [ug, og] C R einen Losungskandidaten darstellt. Dieser ldsst sich ebenfalls durch die
Angeinanderreihung von x bindren Ketten der Léange / darstellen. Bei der Dekodierung ergibt sich

Xi= decstdbin.ug.og(A'Gi~/+1 e 'A~G(i+1)-/)-

Beispiel 3.7:
Die ganzen Zahlen von 0 bis 7 konnen durch 3 Bits kodiert werden. Dies ist in Tabel-
le 3.1 dargestellt. Soll die Funktion

x+3 fallsx<5
7—x sonst

it ={

maximiert werden, wird der enkodierte Wert als Argument in die Funktion eingesetzt.

3.1 Wechselspiel zwischen Variation und Selektion 55

Bitmuster 000 001 010 011 100 101 110 111
dekodiert 0 1 2 3 4 5 6 7
in Funktion f 3 4 5 6 7 2 1 0

Tabelle 3.1 Abbildung zwischen den bindren Zeichenketten mit 3 Bits und den Zahlen {0, ...,7} (bzw. der
Funktion f}) durch die standardbinire Kodierung

nur standardbinire Kodierung eingesetzt in f
0 3
« 000 e 000
7 1 0 4
111 001 111 001

6 \2 1 \5
110 \ 010 110 \ 010

101 011 101 011
'4 » 7
100 100

Bild 3.5 Mit der standardbiniren Kodierung auf & = B> (vgl. Tabelle 3.1) ergeben sich diese Giiteland-
schaften (in zweidimensionaler Darstellung mit textuell notierter Giite) fiir die EIN-BIT-BINARE-
MUTATION. Links ist die Landschaft bzgl. der reinen Kodierung angegeben, rechts bzgl. der Be-
wertungsfunktion f.

Mit der EIN-BIT-BINARE-MUTATION (Algorithmus 3.1) ergeben sich die Giiteland-
schaften in Bild 3.5 flir die reine Dekodierung und die Funktion f1. Werden nur die
dekodierten Werte betrachtet, ist der Genotyp 111 das einzige lokale (und globale)
Optimum. Von jedem anderen Genotyp kann ein Hillclimber das Optimum erreichen.
Wird jedoch die Funktion f] optimiert, existieren zwei lokale Optima: 100 mit dem
Funktionswert 7 und 011 mit dem Funktionswert 6. Bei einem Hillclimbing fithren
Genotypen 010 und 011 immer zum echten lokalen Optimum 6, alle anderen Wer-
te (ausgenommen 100) kdnnen bei einer Optimierung in beiden lokalen Optima en-
den.

Phénotypisch betrachtet besitzt die Funktion f; im obigen Beispiel genau ein lokales Optimum
und die Funktion ist monoton steigend bis zum Optimum bzw. monoton fallend ab dem Opti-
mum. Damit sollte sie sich grundsitzlich gut fiir ein Hillclimbing eignen. Stattdessen hat die
standardbinidre Kodierung ein suboptimales lokales Maximum eingefiihrt, das eine erfolgreiche
Optimierung verhindern kann. Der malgebliche Grund ist darin zu sehen, dass zwei phéno-
typisch aufeinanderfolgende Werte (6 und 7) durch die Bitmuster 011 und 100 dargestellt wer-

56 3 Prinzipien evolutiondrer Algorithmen

den, die nicht durch eine Anwendung des Mutationsoperators ineinander iiberfiihrt werden kon-
nen.

Definition 3.7 (Hamming-Abstand):
Zwei binire Zeichenketten A.G, B.G ¢ B/ besitzen den Hamming-Abstand

dyam(A.G,B.G) =#{ i €Ny |1 <i<I A A.G; #B.G; }.

Dieses Maf3 gibt die Anzahl der Einzelinformationen an, die zwingend verdndert werden miissen,
um die Bindrketten ineinander zu tberfithren. Die Zeichenketten 011 und 100, besitzen den ma-
ximal moglichen Hamming-Abstand 3: Es miissten folglich alle Bits invertiert werden, um vom
enkodierten Wert 6 zum Wert 7 zu gelangen. Sobald ein Hamming-Abstand gréfer als 1 vorliegt,
spricht man von einer Hamming-Klippe entsprechender Grofle. Zerschneiden grofe Hamming-
Klippen phénotypische Nachbarschaften, wird der Suchraum zerkliiftet und dadurch eine Opti-
mierung erschwert.

Eine Moglichkeit, Hamming-Klippen zu vermeiden, besteht in der Wahl einer anderen Kodie-
rung, der so genannten Gray-Kodierung. Sie besitzt die Eigenschaft, dass alle benachbarten Wer-
te einer diskreten Suchraumdimension auf bindre Zeichenketten mit dem Hamming-Abstand 1
abgebildet werden. Die Gray-Kodierung lésst sich einfach durch Konversionsregeln auf die stan-
dardbinire Kodierung zurtickfiihren.

Definition 3.8 (Gray-Kodierung):

Die Gray-Kodierung wird mittels der standardbindren Kodierung eingefiihrt. Eine stan-
dardbinar kodierte Zeichenkette b = b ... b; € B lasst sich durch die folgende Kon-
version in eine Gray-kodierte Zeichenkette 4.G = A4.G| .. . A.G; tberfiihren (1 <i</)

b; falls i =1
A.G;i= !
! { bi 1 @b, fallsi>1,

wobei das exklusive Oder & der Addition modulo 2 entspricht.
Ein Bit der standardbinér kodierten Zeichenkette ldsst sich mit der folgenden Regel
aus der Gray-kodierten Zeichenkette A.G ableiten.

i
bi=(PA4.G;=4.G & -®AG;
j=1

Mit dieser Transformation ergibt sich als Dekodierungsregel fiir eine Gray-kodierte
Zeichenkette A.G

1 /
decgmy(A'G) = decstdbin <@AGJ cet @AGJ> .
Jj=1

J=1

Mehrere Zahlen konnen erneut durch Konkatenation aneinander gefiigt werden.

3.1 Wechselspiel zwischen Variation und Selektion 57

Gray-kod. Bitmuster | 000 001 011 010 110 111 101 100
stdbin. Bitmuster 000 001 010 011 100 101 110 111
dekodiert 0 1 2 3 4 5 6 7
in Funktion f| 3 4 5 6 7 2 1 0

Tabelle 3.2 Abbildung zwischen den binéren Zeichenketten mit 3 Bits und den Zahlen {0, ...,7} (bzw. der
Funktion f}) durch die Gray-Kodierung

nur Gray-Kodierung eingesetzt in f)
0 3
000 000

110 110

Bild 3.6 Mit der Gray-Kodierung auf & = B> (vgl. Tabelle 3.2) ergeben sich diese Giitelandschaften (in
zweidimensionaler Darstellung mit textuell notierter Giite) fiir die EIN-BIT-BINARE-MUTATION.
Links ist die Landschaft bzgl. der reinen Kodierung angegeben, rechts bzgl. der Bewertungsfunk-
tion f].

Beispiel 3.8:
Wird die standardbinire Kodierung aus Beispiel 3.7 durch die Gray-Kodierung ersetzt,
erhilt man die Kodierung in Tabelle 3.2 und die Nachbarschaftsgraphen in Bild 3.6.

Zusammenfassend halten wir fest: Lokale Optima hingen ausschliellich von der gewihlten
Darstellung (einschlieBlich der Dekodierungsfunktion) und dem Mutationsoperator ab. Die An-
zahl der so eingefithrten lokalen Optima kann als eine Maf3zahl fiir die Angepasstheit eines
Operators an das Problem gesehen werden. Je weniger lokale Optima von einem Operator und
der Reprisentation induziert werden, desto bessere Ergebnisse konnen bei der Suche erwar-
tet werden. Insbesondere bei einem lokalen Suchalgorithmus, der lediglich durch einen Muta-
tions- und einen Selektionsoperator bestimmt wird, ist die Anzahl der lokalen Optima entschei-
dend.

Dennoch ist hier nochmals deutlich zu machen, dass bei der Gray-Kodierung lediglich die
Nachbarschaften im phénotypischen Raum in die Nachbarschaften im genotypischen Raum ein-
gebettet werden. Sie garantieren nicht, dass jede kleine Verdnderung im genotypischen Raum
auch einer kleinen Verdnderung im phénotypischen Raum entspricht. Dies gilt umso stérker,

58 3 Prinzipien evolutiondrer Algorithmen

standardbindre Kodierung Gray-Kodierung

0O Cewe ® L] 0o0e L] ® L]
| @0] ® ® |l @0 @ ® L]
2 e e L] L] 2 @ 0Ce L] o
3 @00 L] [] 3 e e0e L
4 0 coeoe® L] 4 e0 @ ® L]
5 L] ® 0 L] L] 5 e e O0oe ®
6 a8 ® oe ® 6 ® e 0@ L
7 L] ® 00 L] 7 @ L] e06e
§ @ ce e L] 8 e O0e [] L]
9 e o0 o o 9 e ©®O0 e []
10 [] L] Oe [] 10 L] [el []
11 L] ® 00 e Il] e eCoe
12 [] L] ce e 12 [] e 0e L]
13 ® ® ® O L] 13 [] [] e0e
14 [] [] L] OCe 14 L] @ e0e
15 L] L] ® 00 15 @ [] & ® 0

S =M N oo =N S = ooy — N

Bild 3.7 Phiinotypische Nachbarschaft der beiden bindren Kodierungen in einer Matrixdarstellung: In je-
der Zeile ist fiir einen Losungskandidaten des Suchraums die Nachbarschaft dargestellt. Dabei
entspricht O dem Ausgangspunkt und @ sind alle méglichen Kindindividuen.

wenn die Anzahl der kodierenden Bits / erhtht wird. Dann verschwindet der Vorteil der Gray-
Kodierung gegeniiber der standardbindren Kodierung schnell.

Bild 3.7 vergleicht die Nachbarschaften beider Kodierungen mit / = 4 anhand zweier Matri-
zen. Bei der standardbindren Kodierung erkennt man eine grofle Hamming-Klippe an Zeile 7/8
und Spalte 7/8. Kleinere Hamming-Klippen kommen in den kleineren Quadraten entlang der
Diagonale ebenfalls vor. Fiir die Gray-Kodierung sieht man die Einbettung der phénotypischen
Nachbarschaft durch die erste obere und die erste untere Nebendiagonale. Weiterhin erkennt
man, dass die standardbinire Kodierung einem festen an jedem Punkt im Suchraum gleichen
Schema bzgl. der Schrittweiten folgt, welches in der Gray-Kodierung fiir die Einbettung phéno-
typischer Nachbarn geopfert wurde: So gibt es Punkte (z. B. die Zeile 6), an denen die maximale
Entfernung 5 betrigt, wihrend andere Puntke (z. B. die Zeile 0) eine maximale Entfernung von
15 aufweisen. Neben dieser UnregelmaBigkeit als méglichem Problem der Gray-Kodierung wur-
de die folgende negative Eigenschaft der standardbindren Kodierung durch die Gray-Kodierung
nicht behoben: Es gibt immer nur eine Mutation, die in die jeweils andere Hiilfte des darstellba-
ren Wertebereichs fiihrt. Auch dies kénnte fiir viele Optimierungsprobleme mit Schwierigkeiten
verbunden sein.

Letztendlich sind die beiden vorgestellten (und meist verwendeten) Kodierungen nur zwei Beispiele, die
sich allerdings durch effiziente Berechnungen auszeichnen. Insgesamt gibt es (2')! mogliche Kodierungen
mit / Bits fiir die Zahlen {0..... 201},

3.1.6 Rollen der Mutation

Mutationsoperatoren kdnnen mit unterschiedlichen Zielsetzungen in evolutionidren Algorithmen
eingesetzt werden. In der bisherigen Diskussion in diesem Abschnitt hat die Mutation die Rolle

3.1 Wechselspiel zwischen Variation und Selektion 59

Algorithmus 3.3 (alle Bits werden mit einer Wahrscheinlichkeit invertiert)

BINARE-MUTATION(Individuum 4 mit 4.G € B)

1 B« A4

2 for eachic {l...., I}

3 do " u — wihle zufillig gemiB U([0. 1))

4 if u < p,, (Mutationswahrscheinlichkeit)
5 Lthen L B.G; — | —A.G;

6 return B

des wichtigsten (weil einzigen) Suchoperators. Unter dieser Primisse {ibernimmt sie zwei Funk-
tionen: einerseits die Feinabstimmung (engl. exploitation), um ausgehend von einem guten Lo-
sungskandidaten das Optimum zu finden, andererseits das stichprobenartige Erforschen (engl.
exploration) weiter entfernter Gebiete des Suchraums, um das Einzugsgebiet eines potentiell
besseren lokalen Optimums zu identifizieren. Fiir die Feinabstimmung ist wie oben ausfiihrlich
diskutiert die Einbettung der phénotypischen Nachbarschaft von grofler Bedeutung. Insgesamt
sollten erforschende und feinabstimmende Mutationen in einem guten Verhiltnis zueinander ste-
hen — dieser Aspekt wird nachfolgend noch etwas genauer beleuchtet. In anderen evolutioniren
Algorithmen iibernimmt die Mutation nur eine untergeordnete Rolle, da es einen anderen pri-
miren Suchoperator gibt. Dann kann der Aspekt der Feinabstimmung nahezu unberiicksichtigt
bleiben und die erforschende Funktion der Mutation wird als Hintergrundoperator benutzt, um
die Diversitit in der Population zu erhalten.

Inwieweit die Mutation als Hintergrundoperator tatsichlich nur dem Diversititserhalt dient, ist fraglich.
Einige empirische Ergebnisse stiitzen die These, dass auch hier das Wechselspiel zwischen Selektion und
Mutation einen entscheidenden Einfluss hat.

Beispiel 3.9:
Bei der EIN-BIT-BINARE-MUTATION (Algorithmus 3.1) mit standardbinérer Kodierung
erkennt man in Bild 3.7 (links) deutlich die beiden Aspekte der Erforschung und
der Feinabstimmung an jedem Punkt, d.h. in jeder Zeile. Die Schrittweite 8 ist er-
forschend, wihrend die Schrittweite 1 der Feinabstimmung dient.

Wie stark ein Mutationsoperator einen Lésungskandidaten verindert, wird anhand der Optimie-
rungsfunktion

ﬁ(\:):{ x fallsx € [0, 10] C R

e undef. sonst

untersucht. Es wird eine Mutation, die direkt auf der reellwertigen Darstellung arbeitet, mit einer
Mutation auf einer binidren Kodierung verglichen.

Als Mutationsoperator wird in dieser Untersuchung die iiblicherweise benutzte Variante Bi-
NARE-MUTATION (Algorithmus 3.3) betrachtet, bei der statt genau eines Bits jedes Bit mit der
Wahrscheinlichkeit p,, (der sog. Mutationsrate) verdndert wird. Wir benutzen den Wert p,, = %
der von der Individuenlinge / abhingt. Dieser hat auch in theoretischen Untersuchungen fiir das
Einsenziihlproblem und einen reinen Hillclimbing-Algorithmus die minimale Anzahl der Schrit-

60 3 Prinzipien evolutiondrer Algorithmen

Algorithmus 3.4 (mit fester Schrittweite &)

GAUSS-MUTATION(Individuum 4 mit 4.G € R)
1 for eachic {1,...,/}

2 do " u; — wihle zufillig gemif .4 (0, o (Standardabweichung]))
3 Bi — A;j+u;

4 B; — max{B;,ug; (untere Wertebereichsgrenze) }

5 L B; «— min{B;, og; (obere Wertebereichsgrenzel) }

6 return B

(9 (9

Bild 3.8 Dichtefunktion der Normalverteilung (gauBsche Verteilung)

te zum Optimum ergeben. Der Definitionsbereich von £, wird mit / = 32 Bits enkodiert. Wir
benutzen sowohl die standardbindre Kodierung als auch den Gray-Kode.

Als Alternative betrachten wir mit der GAUSS-MUTATION (Algorithmus 3.4) einen Operator,
der nicht auf einer bindren Kodierung, sondern direkt auf den reellwertigen Werten arbeitet. Die
GAUSS-MUTATION addiert zu jeder Komponente des bisherigen Losungskandidaten einen normal-
bzw. gaulverteilten Zufallswert u; ~ .4'(0, ¢). Die Dichtefunktion

1 1
o(x) = o -exp (m.xz)

mit der Varianz o2 ist fiir den eindimensionalen Fall in Bild 3.8 dargestellt.

Beispiel 3.10:
Fiir zwei unterschiedliche Elternindividuen wurden die drei Mutationsoperatoren je-
weils 10000 Mal angewandt, um ein Bild davon zu bekommen, wie sich die Opti-
mierung im reellwertigen Raum fortbewegen kann. In dieser Untersuchung wird die
GAUSS-MUTATION mit ¢ = 1 benutzt. Das Ergebnis sind Haufigkeitsverteilungen, die
in Bild 3.9 dargestellt sind.

Man erkennt deutlich die unterschiedliche Charakteristik der binédren und der reell-
wertigen Mutation. Die GAUSS-MUTATION eignet sich sehr gut fiir die Feinabstimmung
mit einem kleinen Wert ¢. Stattdessen kann auch mit einem groflen Wert ¢ eine sehr
breite Erforschung erreicht werden. Die BINARE-MUTATION hat mehrere tiber den ge-
samten Wertebereich verteilte Schwerpunkte, die sich an den Verdnderungen durch die
hoherwertigen Bits orientieren. Das Elternindividuum mit dem Wert 4,99 wurde genau
an einer Hamming-Klippe platziert. Daher weist die Haufigkeitsverteilung mit der stan-

3.1 Wechselspiel zwischen Variation und Selektion 61

T T T T T T T T T El3 T T T

BINARE-MUTATION mit

standardbindrer Kodierung

6 8 10 2
T T T T T T T T —— T T T T T T T T

BINARE-MUTATION mit
Gray-Kodierung

6 8 10 2 4 6 8 10

' ' L

GAUSS-MUTATION

Haufigkeit (logarithmisch skaliert)

2 4 6 8 10 2 4 6 8 10

Bild 3.9 Vergleich der drei Mutationsoperatoren hinsichtlich der Haufigkeit der einzelnen Mutationen. Das
Elternindividuum hat den Wert 1.0 (linke Spalte) bzw. 4,99 (rechte Spalte) und ist durch eine ge-
strichelte Linie gekennzeichnet. Es wurden jeweils 10 000 Mutationen mit jedem Operator durch-
gefiihrt.

dardbinédren Kodierung dort einen Bruch auf. Die Gray-Kodierung schafft es zwar, die
phénotypischen Nachbarn einzubinden, doch auch hier wird die grundsitzliche Ten-
denz zu einer Hilfte des Suchraums deutlich. Damit bestitigt dieses Experiment die
theoretischen Uberlegungen.

Statt einer klaren Empfehlung fiir einen der Mutationsoperatoren sollen die unterschiedlichen
Arbeitsweisen nochmals betont werden. Die reellwertige Mutation orientiert sich mit ihrer kla-
ren Struktur direkt an der phinotypischen Nachbarschaft und erscheint daher als weitaus besser
angepasster Operator. Die bindren Mutationen legen eine andersgeartete Suchstruktur {iber den
Suchraum. Bei vielen Problemen greifen das Raster der bindren Mutation und die Form des Such-
raums so gut ineinander, dass sie in ihrer Performanz der phanotypischen Mutation durchaus
(mindestens) ebenbiirtig ist. Ebenso kann die binéire Mutation durch weit gestreute Stichproben
oft schneller eine interessante Region im Suchraum detektieren.

62 3 Prinzipien evolutionidrer Algorithmen

3.2 Populationskonzept

Die Moglichkeiten und neuen Schwierigkeiten bei der Nutzung von Populationen sind das Thema
dieses Abschnitts. Dies fiihrt insbesondere auf die unterschiedlichen Techniken zur Selektion von
Individuen.

Im Abschnitt 3.1 wurden bereits die modglichen Probleme eines Hillclimbings (als Reinform des
Wechselspiels zwischen Mutation und Selektion) andiskutiert. Dort diskutierten wir bereits die
grofle Gefahr, in lokalen Optima gefangen zu werden.

Daher fiihren wir in diesem Abschnitt das Populationskonzept ein, das den Schwierigkeiten ei-
nes reinen Hillclimbers gegenwirken soll. Durch die gleichzeitige Betrachtung mehrerer Losungs-
kandidaten kann parallel an verschiedenen Stellen des Suchraums das Optimierungsproblem an-
gegangen werden. Dadurch kénnen sich auch schlechtere Individuen linger in der Population
halten, was die breite Erforschung des Suchraums wesentlich verbessern sollte. Letztendlich hat
man die Hoffnung, dass die lokalen Optima wihrend des Optimierungsprozesses an Bedeutung
verlieren.

Dariiberhinaus eriffnet der Populationsgedanke nattirlich auch die Betrachtung der Rekombination als wei-
teren Suchoperator, der eine Verkniipfung und Kombination verschiedener Individuen einfiihrt. Dieses Kon-
zept wird in Abschnitt 3.3 erdrtert.

3.2.1 Die Vielfalt in einer Population

Die reine Anwesenheit mehrerer Individuen bedeutet jedoch noch nicht, dass damit auch tatsich-
lich unterschiedliche Teile des Suchraums erkundet werden. Daher ist es fiir die weitere Diskus-
sion der Konsequenzen aus dem Populationskonzept sinnvoll, einen Begriff dafiir einzufiihren,
wie stark sich die Individuen der Population im Suchraum verteilen.

Definition 3.9 (Diversitiit):
Sei die Population P = (41}, <;<; zum Genotyp 4 = G’ gegeben —d.h. 4).G € ¥.
Dann werden die folgenden Mafe fiir die Diversitdt definiert. Der mittlere Abstand
der Individuen in der Population betrigt

1

Di : P)l=——
WersAbsland,d() = (S —])

; Z d(A‘”.G,A‘-”.G},

1<ij<s

wobei d : ¢4 x 4 — R ein beliebiges AbstandsmaB ist. Die Shannon-Entropie als posi-
tionsorientierte Diversitit fir & = B/ ist definiert als

M~

(= #o(P.k) - log(#o(P.k)) — #1(P. k) -log(#1 (P, k))),

. |
DW@-"SEmropic(P) = F :

k=1
<i< 0.6, =
mit#|(P.k):#{l_J—S|A G =1}
2
<i< .G, =
and el BR = T SIS |ARGE=0F

5

3.2 Populationskonzept 63

Die teilstringorientierte Diversitdt ist definiert als
, s #(Uy <icy Teil(AD)
Dlve”STeilstring(P): (_— . ())
Y <is #Teil(AW)
wobei Teil(d) = || {4.G;...A4.G}}.

1<i<j<l

Je grofer die gemessene Diversitit ist, desto grofer ist die Vielfalt in der Population.

Beispiel 3.11:
Fiir die Population P, = (0001, 0011, 1111) gilt:

1
DiverSAbstand,d(Pl) = G (2-142:242-3) = 2,0 (mitd = dygm)

_ 1 2. 2 1 1
Diversgmsopc(P1) = 7 ((—1 Jog1—0)+3- (— < -log$ — 5 -log g)) ~ 04774
. 312
Diversteiisiring (P1) = 71844 ~ 1,895
da 72il(0001) = {0, 1, 00, 01, 000, 001, 0001}
Teil(0011) = {0, 1, 00, 01, 11, 001, 011, 0011}

Teil(1111) = {1, 11, 111, 1111},

Fiir die Population P, = (0011, 0110, 1100) gilt:

1 .
Divers apstand o (P2) = e (8-2) ~ 2,667 (mitd = dpgp)

. 1 2 2 1 1
Diversgntropie(P2) = 1 (4- (— 3 log 373 -log §)> ~ 0,6365
. 3.13
DlV@l"STeilstring(Pz) = m ~ 17625

da Teil(0011) = {0, 1, 00, 01, 11, 001, 011, 0011}
T2il(0110) = {0, 1, 01, 11, 10, 011, 110, 0110}
Teil(1100) = {0, 1, 11, 10, 00, 110, 100, 1100}.

Wihrend die Population P eine héhere Diversitit hinsichtlich des Hamming-Abstands
und der bitweise berechneten Entropie aufweist, ist P; diverser beziiglich der Teil-

strings, da groBere Unterschiede zwischen den Teilstrings der einzelnen Individuen
bestehen.

Aus obigem Beispiel kénnen wir schlussfolgern, dass die Diversitdt keinesfalls eindeutig ist.
Vielmehr gilt wie auch schon bei den Mutationsoperatoren, dass das betrachtete Diversitdtsmaf
passend zum Optimierungsproblem gewéhlt werden muss. So kénnte etwa die Entropie fiir eine
Instanz des Musterabgleichs passend sein, da die einzelnen Bits im Genotyp vollig unabhingig
voneinander sind. Aber fliir das Handlungsreisendenproblem wére etwa die teilstringorientierte

64 3 Prinzipien evolutionidrer Algorithmen

Diversitit interessant, da damit einzelne Abschnitte der Rundtouren unabhéingig von ihrer Positi-
on beschrieben werden.

Bei der Vielfalt in einer Population interessiert uns insbesondere der Extremfall, dass ndmlich
die Population ihre méglichen Vorteile eingebiifit hat.

Definition 3.10 (Konvergierte Population):
Eine Population P = (4"}, ;< heiBt konvergiert, wenn alle Individuen identisch sind,
d.h. firalle 1 <i,j<sgilt4".G=4Y)G.

Beziiglich evolutioniirer Algorithmen wird der Begriff der Konvergenz mit zwei unterschiedlichen Bedeu-

% tungen gebraucht. Einerseits kann wie bei der mathematischen Definition die Anndherung der Giitewerte
an ein lokales oder globales Optimum gemeint sein — dann aber immer in endlicher Zeit. Andererseits kann
damit der Verlust der Vielfalt in der Population bezeichnet werden.

Beispiel 3.12:
Die Population 7 = (1111, 1111, 1111) ist konvergiert. Wie man leicht sieht, errei-
chen auch die DiversititsmaBe ihre minimalen Werte bei dieser Situation.

Dh’ersi\hsland.d(P}) =00 '[l'ﬂit d= dham)

DiversEntmpie(P_?) = % . (4(—1 ‘log1— 0)) = 0.0

3.4

a1y = b0 daTeil(1111) = {1, 11, 111, 1111},

Diversteilstring (P3) =

Eine konvergierte Population macht ihre oben diskutierten Vorteile zunichte und ist ein Anzei-
chen dafiir, dass die Optimierung beendet ist. Falls das globale Optimum nicht erreicht wurde,
spricht man auch von einer vorzeitigen Konvergenz.

3.2.2 Ein vergleichendes Experiment

Zunichst steht hier die Frage im Mittelpunkt, inwieweit die Population in der Lage ist, das
Problem der lokalen Optima zu verkleinern. Zu diesem Zweck betrachten wir BINARES-HILL-
CLIMBING (Algorithmus 3.2) sowie eine populationsbasierte Variante POPULATIONSBASIERTES-
BINARES-HILLCLIMBING (Algorithmus 3.5), bei der fiir jedes Elternindividuum in der Population
exakt ein Kindindividuum durch die Mutation erzeugt wird. Die anschliefende Umweltselektion
BESTEN-SELEKTION (Algorithmus 3.6) reduziert die Population auf die bessere Hilfte.

Als Optimierungsgegenstand wihlen wir die Rastrigin-Funktion, eine Benchmark-Funktion
die neben weiteren Funktionen hiufig zum Vergleich von Algorithmen herangezogen wird,

fX)=10-n+ i (X? —10-cos(2- - X)),
i=1

mit # =2 und —5,12 < X7, X7 < 5,12. Bild 3.10 zeigt die zu minimierende Funktion. Deutlich
ist eine groBe Anzahl lokaler Minima zu erkennen. Die beiden Suchraumvariablen werden im
Genotyp jeweils mit 16 Bits standardbinir kodiert.

3.2 Populationskonzept

65

Algorithmus 3.5

POPULATIONSBASIERTES-BINARES-HILLCLIMBING(Zielfunktion 7)

1

00 ~1 Oy L WD

11
12

t+—0

P(t) « erzeuge Population mit gt (Populationsgréfie) Individuen
bewerte P(¢) durch ¥
while Terminierungsbedingung nicht erfiillt
do™ P’ P(r)

for eachic {1,...,u}

do " B« EIN-BIT-BINARE-MUTATION(4()) wobei P(t) = (4¥))1 <,y

bewerte B durch /7
LP P o(B)
t—1t+1

L P(t) < Selektion aus P’ mittels BESTEN-SELEKTION
return bestes Individuum aus P(t)

Algorithmus 3.6 (Auswahl der Besten)

BESTEN-SELEKTION(Giitewerte (4.F®),_;)

1
2
3
4
5

L)

for j — 1,...,s (Anzahl der zu wihlenden Individuen)

do " index; « derjenige Index aus {1,...,#}\ I mit dem besten Gutewert
LI «—TIo (index;)

return /

Bild 3.10 Rastrigin-Funktion fiir Dimension n = 2.

.‘</'Q\' o
N \l /l’\»

o l'w””“ Q 0 ’,'
0T AR M.’ s ‘/.‘/.‘"\“ 0’, ,l‘ /'Q\‘/'Q"/O‘fs,
o ‘\/"\: “u"o‘ "0\’ .'Q"b 'H VN
4 ‘n ’ ,\ eI

20

BINARES-HILLCLIMBING und POPUL ATIONSBASIERTES-BINARES-HILLCLIMBING wurden jeweils
100 mal auf die Rastrigin-Funktion angesetzt. Ersterer wurde nach 10 000 Iteration abgebrochen
und zweiterer nach 200 Generationen mit einer Populationsgrofie von 50 Individuen. So haben
beide Algorithmen die gleiche Anzahl neuer Individuen bewertet. BINARES-HILLCLIMBING hat in
63% der Experimente das globale Optimum f{ (0, 0)) = 0 (im Rahmen der verfiigbaren Genau-
igkeit) gefunden. POPULATIONSBASIERTES-BINARES-HILLCLIMBING hat in 76% der Experimente
das Optimum gefunden. Bei Abbruch des Algorithmus hat die durchschnittliche Giite iiber alle
Experimente 0,479 beim Hillclimber und 0,297 bei dem populationsbasierten Hillclimber betra-

gen.

66 3 Prinzipien evolutionidrer Algorithmen

1,2 r : Y
Diversitiit der
1,0 B Kindindividuen =
W " 0.8F) ; o}
0.6 k" ; Nk dA M Dlvcrs_ltiii‘ d'er |
! e Elternindividuen
up e
0,41 i HE i
i
0.2F
0 : 1 1 1
0 50 100 1 150 200
1 L 1
50 100 150 200

Bild 3.11 Der Giiteverlauf und die Diversitit werden fiir eine Optimierung mit dem populationsbasierten
bindren Hillclimber aufgezeigt.

Wer schon vorgeblittert hat auf S. 228, wird vermutlich mit dieser Auswertung nicht ganz gliicklich sein. Ein

% genauerer Hypothesentest liefert das Ergebnis, dass der obige Unterschied mit einer Wahrscheinlichkeit von
etwa 0,128 zufillig ist. Dies konnen wir als ein schwaches Indiz dafiir werten, dass der Populationsansatz
tatsichlich fiir die besseren Werte verantwortlich ist.

Wenn wir eine einzelne Optimierung durch POPULATIONSBASIERTES-BINARES-HILLCLIMBING her-
ausgreifen, kann der Optimierungsverlauf in Bild 3.11 anhand der Giite und der abstandsbasier-
ten Diversitit nachvollzogen werden. Wie man leicht erkennt, erreicht der Ansatz bereits um die
35. Generation den finalen Giitewert und etwa 10 Generationen spiter ist die Population konver-
giert. Auch nach der Konvergenz erzeugt die Mutation einen gewissen Pegel an Grunddiversitit,
welche jedoch auch bei den meisten frithzeitig konvergierten Optimierungen nicht mehr zu einer
Verbesserung fiihrt, wenn alle Individuen an einem lokalen Optimum platziert sind.

3.23 Folgerungen fiir die Selektion

Aus der gleichzeitigen Betrachtung mehrerer Individuen ergeben sich verschiedene Anforderun-
gen an die Selektionsoperatoren. Bei einer Elternselektion sollten alle Individuen eine Chance
haben, ausgewihlt zu werden, da andernfalls der Aufwand fiir die Verwaltung einer grofien Po-

pulation nicht gerechtfertigt ist. Grundsitzlich gibt es zwei giingige Mdoglichkeiten, dies zu ge-
wihrleisten, namlich

* indem jedes Individuum Elter fiir genau m > 0 Kinder wird oder

* indem jedes Individuum mit einer individuellen Wahrscheinlichkeit als Elter gewéhlt wird.

3.2 Populationskonzept 67

Im ersten Fall entsteht kein Selektionsdruck, da alle Individuen gleich behandelt werden. Im zwei-
ten Fall kann durch die Vergabe der Auswahlwahrscheinlichkeiten der Selektion eine Richtung
gegeben werden.

Die Umweltselektion hat die Aufgabe, aus den vorhandenen Individuen die Population der
néchsten Elternindividuen zusammenzustellen. Dabei soll sowohl eine moglichst grof3e Vielfalt
erhalten bleiben, aber auch die tatséchlich besseren Individuen aufgenommen werden. Diese bei-
den Ziele konnen gegensétzlich wirken, sodass in einigen Fillen eine reine Auswahl der besten
Individuen wie beim Hillclimbing dem Erhalt der Vielfalt nicht gerecht wird. Dies gilt insbe-
sondere dann, wenn durch die Mutation und die Rekombination auch unverinderte Individuen
entstehen, was zu einer raschen Konvergenz der Population fithren kann. Auch hier gibt es zwei
Ansitze, mit diesen Anforderungen umzugehen:

+ die reine Auswahl der besten Individuen und
* die zufillige Auswahl, wobei bessere Individuen eine héhere Wahrscheinlichkeit haben und
jedes Individuum nur einmal gew#hlt werden kann.

Zusitzlich bestehen bei der Umweltpopulation die beiden Moglichkeiten, die neue Population
ausschliefllich aus den erzeugten Kindindividuen zu wihlen (falls wenigstens soviele Kinder wie
Eltern erzeugt wurden) oder zusétzlich auch die bisherigen Elternindividuen heranzuziehen. Den
zweiten Fall hatten wir in unseren bisherigen Beispielalgorithmen benutzt.

In der obigen Auflistung werden einige Eigenschaften von Selektionsoperatoren implizit an-
gesprochen, die nun formal gefasst werden.

Definition 3.11 (Eigenschaften der Selektion):
Ein durch die Indexselektion

ISS R {1,...,r)

definierter Selektionsoperator heifit

* deterministisch, falls Vx € R” V&, &' € 2 I8 (x) = IS% (x),
« probabilistisch genau dann, wenn er nicht deterministisch ist,
» duplikatfrei, falls Vx € R VE € EV1 <i < j <s: (IS*(x)); # (IS5 (x));.

Gerade die Duplikatfreiheit verlangt man hiufig von Operatoren der Umweltselektion, um die
Diversitdt moglichst hoch zu halten. Bei der Elternselektion ist dies nicht so bedeutend, da die
mehrfach gewdhlten Individuen direkt in die Erzeugung neuer Individuen eingehen. Die beiden
anderen Eigenschaften werden in den weiteren Abschnitten diskutiert.

3.24 Varianten der Umweltselektion

Bisher haben Sie lediglich Algorithmen in diesem Buch kennengelernt, die im Rahmen der Um-
weltselektion die besten Losungskandidaten aus den Eltern- und den Kindindividuen gewdhlt
haben. Obwohl dies im Regelfall zu einem sehr schnellen Voranschreiten der Optimierung fiihrt,
ist die extrem zielorientierte Herangehensweise nicht immer problemfrei. Wie man beispiclswei-
se in Bild 3.11 sieht, ist die Population sehr frith konvergiert und es wird bis zum Ende der
Optimierung immer dasselbe Elternindividuum benutzt. Wiirde es sich um ein echtes lokales

68 3 Prinzipien evolutiondrer Algorithmen

Optimum handeln, wire keine weitere Verbesserung mehr moglich. Daher gibt es verschiedene
Abstufungen der Umweltselektion, die in der folgenden Definiton eingefiihrt werden.

Definition 3.12 (Uberlappende Populationen):
Sei eine Umweltselektion S5 durch die Indexselektion /S5 : R — {1,...,7}" de-
finiert. Ferner enthalte P’ = <A(i)>1§i§ 2 die Kindindividuen, die aus den Elternindivi-
duen in P = (41}, ;< entstanden sind. Dann heiBt die Umweltselektion

« iiberlappend, falls $5 auf Po P angewandt wird, und /8% mit » = g + A und
s = p dergestalt ist, dass es wenigstens ein Tupel mit Glitewerten x € R” und ein
£ € E gibt, so dass /5% (x) einen Wert aus {1, ..., i} enthilt.

* diberlappend mit einem Uberlappungsgrad lap € {1,..., u — 1}, falls zusitz-
lich fiir alle x € R" und alle & € Z gilt, dass genau /lap Werte aus der Menge
{1,..., 1} in IS5 (x) sind.

» elitir, falls immer ein Wert ke {1,..., u} mit A® F =49 Ffiralle 1 <i< u
in 7S5 (x) enthalten ist.

Damit identifiziert obige Definition implizit zwei unterschiedliche Arten der iiberlappenden Um-
weltselektion: Die einfache Anwendung eines Selektionsoperators auf die Vereinigung von Eltern-
und Kindpopulation, bei der der {ibernommene Anteil der beiden Ausgangspopulationen von

Generation zu Generation variiert, und speziell definierte Operatoren mit einem immer gleichen

Uberlappungsgrad.

Beispiel 3.13:

Ein Beispiel fiir eine iiberlappende Umweltselektion mit einem Uberlappungsgrad
lap = 1 ist ein Operator, der bei einer ElternpopulationsgréBe ¢ und A = g — 1 Kin-
dern die neue Population aus allen Kindern und dem besten Elternindividuum aufbaut.
Diese Selektion wire auch elitir. Ein anderes elitires Beispiel mit Uberlappungsgrad
lap = u — 1 ersetzt in einer Elternpopulation mit ¢t Individuen das schlechteste Indivi-
duum durch ein neu erzeugtes Kind. Wiirde man stattdessen ein zufilliges Individuum
16schen, wire der Operator weder elitir noch erzeugt er Selektionsdruck.

Umweltselektionen mit Uberlappungsgrad werden meist durch die zusitzliche Information be-
stimmt, welche Individuen aus der bisherigen Elternpopulation ersetzt werden sollen. Mégliche
Strategien sind die Ersetzung der schlechtesten, der <esten oder auch zufdlliger Individuen.
Meist wird dabei genau eine passende Anzahl an Kindindividuen erzeugt, so dass hier keine
weitere Auswahl mehr stattfindet. Teilweise findet man allerdings auch Varianten, die ein Indi-
viduum nur dann ersetzen, wenn das neue Individuum eine bessere Giite hat — dann besitzt die
Umweltselektion nach obiger Definition keinen strengen Uberlappungsgrad mehr, sondern man
konnte von einem maximal méglichen Uberlappungsgrad sprechen.

AbschlieBend wird in diesem Abschnitt mit der g-stufigen zweifachen Turnierselektion in
Algorithmus 3.7 (Q-STUFIGE-TURNIER-SELEKTION) ein Operator vorgestellt, der einfach auf die
Vereinigung von Eltern- und Kindindividuen angewandt werden kann, aber nicht so zielorientiert
ist, wie die absolute Auswahl der besten Individuen. Es werden dabei fiir jedes Individuum in
der Population direkte Duelle mit ¢ gleichverteilt zufillig gezogenen Individuen abgehalten. Fiir

3.2 Populationskonzept 69
Algorithmus 3.7 (genaue Bezeichnung: g-stufige zweifache Turnierselektion)
Q-STUFIGE-TURNIER-SELEKTION(Giitewerte (4) F);—y)
1 Scores — ()
2 fori—1,...,r
3 do'" Siege —0
4 for each j € {2,...,¢ (Anzahl der direkten Turniere]) }
5 do " u «— wihle Zufallszahl gemdB U({1,...,r})
6 it 40 F = 40 F
7 L then [Siege — Siege+ 1
8 L Scores «— Scores o {Siege)
9 1)
10 for j — 1,...,s {Anzahl der zu wihlenden Individuen])
11 do " index — derjenige Index aus {1, ...,}\/ mit maximalem Wert Score("dex)
12 L1 «— I o (index)
13 return/
Individuum Turniere gegen Gegner | Siege Wahl
AV F=31 | 3 8 5 1 v
ADF=10 1 2 9 0
ARV F =45 | 10v 4/ T/ 3 v
AV F =24 | 6/ 9/ 10 2 v
A F=36 | Iv 8 I 3 v
A F=21 | 3 6 4 0
ANF=27 | 2v 5 8v 2 v
AV F=18 | 3 1 0
A F =22 | 6/ 7 4 1
AN F=35| 2/ 10 5 1

Tabelle 3.3 Fiir jedes Individuum werden die Gegner in der Q-STUFIGE-TURNIER-SELEKTION angezeigt
sowie durch das Symbol v/, ob ein Sieg verbucht wurde. Ebenso werden die gewéhlten Indivi-
duen markiert. Statt Individuum A hitten auch A oder 4(19) gewihlt werden konnen, die

alle jeweils einen Sieg aufweisen.

jedes Individuum wird die Anzahl der Siege vermerkt, woraus sich eine Rangfolge der Individuen
ergibt, gemil} der dann deterministisch die besten ausgew#hlt werden. Es sollte auf jeden Fall
g > 1 gewihlt werden, da ansonsten nahezu kein Selektionsdruck zur Geltung kommt. Dieser
steigt an, je groBer g gewihlt wird. Durch die Wahl der Turniergegner ist der Operator zwar
probabilistisch, aber trotzdem duplikatfrei.

Beispiel 3.14:

Aus einer Population mit 10 Individuen sollen 5 Individuen mit der Q-STUFIGE-TUR-
NIER-SELEKTION gewihlt werden. Tabelle 3.3 zeigt die Giitewerte der Individuen, die
zufillig gewihlten Gegner sowie die resultierende Auswahl anhand der Siege. Wie
man deutlich erkennt, haben auch schlechtere Individuen eine Chance gewihlt zu wer-

den, wobei die besseren sich meist durchsetzen.

70 3 Prinzipien evolutiondrer Algorithmen

Werden bei der BESTEN-SELEKTION (Algorithmus 3.6) die besten Individuen sowohl aus den El-
tern als auch aus den Kindindividuen gewahlt, spricht man auch von einer Plus-Selektion. Der
nichtiiberlappende Fall, der nur die Kindindividuen beriicksichtigt, wird auch als Komma-Selek-
tion bezeichnet.

3.25 Selektionsstirke

Als theoretische Grundlage fiir den Vergleich von Selektionsmechanismen und damit auch fiir die
Wahl eines geeigneten Selektionsmechanismus fiir einen Algorithmus existieren verschiedene
Mafe fiir den erzeugten Selektionsdruck. Ein MaB ist die Ubernahmezeit, d. h. die Anzahl der
Generationen bis die Population konvergiert ist. Ein zweites Mal, auf das im Weiteren noch nidher
eingegangen wird, ist die Selektionsintensitit, die durch das Selektionsdifferenzial zwischen der
durchschnittlichen Giite vor und nach der Selektion bestimmt wird.

Definition 3.13 (Selektionsintensitiit):
Sei (Q, f,>) das betrachtete Optimierungsproblem und werde ein Selektionsopera-
tor Sels : (4 x & xR) — (4 x Z x R)® auf eine Population P mit durchschnittli-
cher Giite F' und Standardabweichung ¢ der Gltewerte angewandt. Dann sei Fy; die
durchschnittliche Giite der Population Sel® (P) und der Selektionsoperator besitzt die

Selektionsintensitdit
o o E falls =
Intensitdit = _ %
FFe sonst
5 .

Durch die Beriicksichtigung der Standardabweichung wird ein normalisiertes MaB erreicht, wel-
ches von der Ausgangspopulation unabhingig ist. Je grofer der Wert der Selektionsintensitét
ist, desto groBer ist der erzeugt Selektionsdruck. Aus theoretischer Sicht mdchte man gerne
Mafzahlen fiir verschiedene Selektionsoperatoren haben, die unabhéngig von der betrachteten
Population sind. Dies ist jedoch oft nur eingeschrinkt flir eine vorgegebene Verteilung von Giite-
werten in einer Population méglich. Als Voraussetzung flir theoretische Analysen werden hiufig
standardnormalverteilte Giitewerte angenommen. Daher ist die Ubertragbarkeit auf allgemeine
Optimierungsprobleme oft nicht gewihrleistet.

Beispiel 3.15:
Fiir die Optimierung eines Minimierungsproblems werden aus 10 Individuen mit den
Giitewerten 2,0; 2,1: 3,0; 4,0; 4,3: 44; 4,5; 4,9: 5,5 und 6,0 die Individuen mit den
Giitewerten 2,0; 3,0. 4,0: 4,4 und 5,5 selektiert. Damit ist ¥ = 4,07, ¢ = 1,270 und
Fi,e1 = 3,78, Die Selektionsintensitit betrigt
4,07 3,78

Intensitdit = W =(,228.

Im folgenden Abschnitt wird flir einen speziellen Selektionsoperator die Selektionsintensitét als
allgemein giiltige Formel hergeleitet.

3.2 Populationskonzept 71

Algorithmus 3.8

FITNESSPROPORTIONALE-SELEKTION(Giitewerte (4').F) <,)
1 Summey «— 0
fori—1,.... r
do " Fitness — berechne Fitnesswert aus 4').F
L Summe; — Summe;_ + Fitness
1)
fori—1,..., s (|Anzahl der zu wiihlenden Individuen)
do" j« 1
u «— withle Zufallszahl gemiB U([0, Summe,))
9 while Summe; <u
10 dolj— j+1
1 oI —To(j)
12 return/

[==BE B R N S VN

3.2.6 Probabilistische Elternselektion

Die bisher vorgestellten Algorithmen haben alle keine Elternselektion verwendet, weswegen die
involvierten Selektionsoperatoren auch duplikatfrei waren. Wie wir bereits in Abschnitt 3.2.3
argumentiert haben, wird diese Eigenschaft bei der Elternselektion nicht benétigt.

Ein Standardoperator fiir die Elternselektion ist die probabilistische proportionale Selektion —
motiviert durch das biologische Vorbild. Dort wurde die Stirke eines Individuums indirekt durch
die Anzahl seiner Nachkommen gemessen und als Fitness bezeichnet. Bei der probabilistischen
Selektion kann wiederum nun fiir jedes Individuum ein Wert vorgegeben werden, der annihernd
bestimmt, wie grof die Fruchtbarkeit des Individuums und damit die Anzahl seiner Nachkommen
ist. In Anlehnung an die Biologie spricht man von Fitness.

Angenommen ein Maximierungsproblem liegt vor und die Fitnesswerte entsprechen den Giite-
werten. Dann kann bei einer fitnessproportionalen Selektion die Auswahlwahrscheinlichkeit aus
den Fitnesswerten wie folgt fiir die Individuen A (1 < i < r) festgelegt werden:

, (i)
Pr{AY] = —,A F

Yio AW F
Algorithmus 3.8 (FITNESSPROPORTIONALE-SELEKTION) zeigt den Ablauf in Pseudo-Code-Nota-
tion.

Im Vergleich zur Natur wurden hier Ursache und Wirkung vertauscht. In der Biologie ist die Fitness ein
Mal fiir die Anpassung, das auf der Anzahl der Kinder beruht. Stattdessen gibt nun die Fitness vor, wieviele
Kinder ein Individuum haben soll.

Beispiel 3.16:
Diese Auswahlwahrscheinlichkeiten betrachten wir niher anhand von drei kleinen Bei-
spielen. In Tabelle 3.4 sind jeweils drei Populationen mit fiinf Individuen durch ihre
Giitewerte und die resultierenden Selektionswahrscheinlichkeiten angegeben.
Wie man leicht sehen kann, erzeugt die fitnessproportionale Selektion bei Popula-
tion 1 eine sehr ausgewogene Verteilung der Wahrscheinlichkeiten und die besseren

72 3 Prinzipien evolutiondrer Algorithmen

Population 1 Population 2 Population 3
i | ADF PrlaW)] ADF Prlal) ADF Prlald)
1 1 £=~0067 101 1~0,196 1 s=~o0,111
2 2 A~0133 102 1% ~0,198 1 {=0111
3 3 &=~02 103 M ~o02 1 {=0111
4 4 L~0267 104 9 ~0202 1 §=0111
5 5 £~0333 105 {92 ~0204 5 50,555

Tabelle 3.4 Vergleich der Auswahlwahrscheinlichkeiten von drei unterschiedlichen Populationen der
Grofe 5 bei fitnessproportionaler Selektion

Individuen werden tatsichlich mit einer hoheren Wahrscheinlichkeit ausgewéhlt als
schlechtere. In Population 2 liegen die Giitewerte sehr eng beieinander (relativ zur
GroBenordnung der Giitewerte). Daher ergibt sich die Differenz 0,008 zwischen der
Auswahlwahrscheinlichkeit des schlechtesten Individuums und des besten Individu-
ums. Das bessere Individuum hat nahezu keinen Selektionsvorteil und das Verfahren
entspricht fast einer gleichverteilt zufilligen Auswahl der Eltern. Dieser Effekt tritt mit
fitnessproportionaler Selektion genau dann auf, wenn am Ende der Suche die Popu-
lation zu konvergieren beginnt und zu einer Feinabstimmung nur noch sehr geringe
Giitedifferenzen beachtet werden miissen. Population 3 wird hingegen von einem Su-
perindividuum dominiert. Dieses wird in mehr als der Hilfte aller Selektionen als
Elternteil herangezogen. Eine solche Auswahl ist sehr kritisch zu hinterfragen, da sie
schnell die Diversitét in der Population zerstort und das Superindividuum die Popula-
tion beherrscht: Sie konvergiert.

Falls ein Minimierungs- statt eines Maximierungsproblems betrachtet wird, gibt es zwei naive
Herangehensweisen. Erstens kann der Giitewert von einem hinreichend groflen Betrag Maximum
abgezogen werden (Fitness = Maximum — A.F). Dies ist jedoch schwierig, falls der schlechtest-
mdgliche Giitewert nicht bekannt ist, da die Fitness > 0 sein muss. Wird Maximum auf Verdacht
wesentlich zu grof3 gewahlt, verringert dies wie oben erldutert den Selektionsdruck. Zweitens
kann der Kehrwert des Giitewerts genommen werden (Fitness = #). Auch dies hat jedoch den
Effekt, dass die Auswahlwahrscheinlichkeiten stark verzerrt werden: Im schlechten Bereich lie-
gen sie sehr eng beieinander und im guten Bereich kann ein besseres Individuum leicht alle
anderen dominieren.

Der Einfluss der Giitewerte in der Population auf den Selektionsdruck kann auch anhand der
Selektionsintensitit untersucht werden, die im folgenden Satz fiir die probabilistische, proportio-
nale Selektion angegeben wird.

Satz 3.2 (Selektionsintensitiit bei fitnessproportionaler Selektion):

Bei reiner fitnessproportionaler Selektion betréigt die Selektionsintensitit in einer Popu-
lation mit durchschnittlicher Giite F () und Giitevarianz ¢

s o
Intensitiit = =——.
F(1)

3.2 Populationskonzept 73

Beweis 3.2:
PriAd] = %f) ist laut Definition die Wahrscheinlichkeit, dass Individuum 4 aus
der Population der Grifle » ausgewihlt wird. Dann kann die Selektionsintensitit wie

folgt berechnet werden.

Intensitéit = é : ((ﬁ;Pr[A(’)] AW F) —F(t))

roAD FY

L (E D))
i-1

:é <r-}_£(t) (,ﬁ;(A(I) F?)-F(0)

“arip (- Zu0r) o)

c o?
CF()

Die letzte Umformung entspricht dabei der GesetzmaBigkeit Var[X] = Erw[X?] —
Erw[X]? aus der Wahrscheinlichkeitsrechnung.

Beispiel 3.17:
Berechnen wir nun mittels Satz 3.2 die Selektionsintensitét fiir die drei in Tabelle 3.4
gegebenen Populationen, erhalten wir fir Population 1 Infensitdt = @ ~ 0,471. Popu-
lation 2 besitzt eine identische Glitevarianz zu Population 1 — allerdings fiihrt die
grofere durchschnittliche Giite zu einer erheblich verringerten Selektionsintensitdt
Intensitdt = % ~ 0,014. In Population 3 liegt sowohl eine groflere Varianz als auch
eine kleinere durchschnittliche Giite vor. Beides fiihrt zu einer héheren Selektions-
intensitit Intensitdit = % ~ 0,889.
Den Effekten bei Population 2 und Population 3 kann begegnet werden, indem die Abbildung
der Giitewerte auf die Fitnesswerte modifiziert wird. In einem ersten Verfahren soll in erster Li-
nie die starke Angleichung der Giitewerte berticksichtigt werden (vgl. Population 2), indem die
Giitewerte bei der Fitnessberechnung anders skaliert werden. Anstatt die Giitedifferenzen zur
absoluten Grofe der Giite in Bezug zu setzen, wird nur der Bereich der tatsdchlich im jiinge-
ren Optimierungsverlauf aufgetretenen Individuen als Bezugsrahmen genutzt. Hierflir betrachtet
man die Individuen aus den letzten W Generationen, d. h. die Menge

P(ty={A4eP{) Nt—W<{ <t}
und benutzt die beiden auftretenden extremalen Giitewerte

schlechtestng,) =A.F mit 4 € P'(t), wobei VB € P'(t): B.F = A.F und
besteF\) = A.F mit 4 € P/(t), wobei VB € P'(t): A.F = B.F,

74 3 Prinzipien evolutiondrer Algorithmen

um die Werte bei der Fitnessberechnung neu zu skalieren, z. B. durch eine lineare Skalierung:

A.F — schlechtesteF g,)
besteF g,) — schlechtesteF <Ht,> .

Fitness =

Die Anzahl der Generationen W wird auch als Skalierungsfenster bezeichnet. Als Extremfall
kann W = 0 betrachtet werden, womit nur die aktuelle Population den Bezugsrahmen vorgibt.
Dieses Verfahren hat den Vorteil, dass auch zum Ende der Suche immer noch ein wirksamer
Selektionsdruck erzeugt wird. Die Skalierung erlaubt auch gleichermallen die Optimierung von
sowohl Maximierungs- als auch Minimierungsproblemen. Einem Superindividuum wird dabei
jedoch nicht gegengewirkt.

Eine zweite Technik gegen die Probleme aus Tabelle 3.4 ist die rangbasierte Selektion. Hier
ist der tatséchliche Giitewert eines Individuums bedeutungslos, da nur das relative Verhéltnis
der Giitewerte zueinander beriicksichtigt wird. Es wird eine Rangliste der Individuen gemé&f der
Giite erstellt: Dabei soll 4(1) das beste Individuum und 4" das schlechteste Individuum sein:
AV F =A@ F = ... = 4" F. Die daraus abgeleitete Fitness kann beispielsweise direkt als
Wabhrscheinlichkeit linear durch

Pr[A(’)}:z-<1—i_l)

7 r—1

zugewiesen werden. Dieses Verfahren erzeugt eine dhnliche Verteilung wie die rein fitnesspro-
portionale Selektion bei Population 1. Da die Auswahlwahrscheinlichkeiten nur vom Rang und
nicht von der tatsdchlichen Giite abhingen, begegnet diese Selektionsart nicht nur der starken
Angleichung der Giitewerte sondern auch dem Problem des Superindividuums.

Nun sind noch zwei Eigenschaften der fitnessproportionalen Selektion (und ihrer Varianten)
von Interesse: Erstens betrdagt der Zeitaufwand, um s Individuen aus r Individuen zu selektie-
ren, bei geeigneter Implementierung & (r +s - logr) (falls das selektierte Individuum binir ge-
sucht werden kann). Die Implementation von FITNESSPROPORTIONALE-SELEKTION gemdl Algo-
rithmus 3.8 hat sogar eine Laufzeit von &(r - s), da linear gesucht wird. Zweitens ist die Varianz
beziiglich der so ausgewdhlten Eltern relativ hoch — so kann beispielsweise das beste Individuum
iiberhaupt nicht ausgewihlt werden, obwohl dies erwartungsgemil mehrfach passieren sollte.

Dem kann mit einer Variante der probabilistischen Selektion, dem Selektionsoperator STo-
CHASTISCHES-UNIVERSELLES-SAMPLING (Algorithmus 3.9), begegnet werden, bei der die Héu-
figkeit der gewdhlten Individuen tatsdchlich den Auswahlwahrscheinlichkeiten entsprechen. Man
kann sich die fitnessproportionale Selektion leicht so vorstellen, dass die Wahrscheinlichkeiten
am Umfang eines Roulette-Rads abgetragen werden, sodass jedem Individuum der entsprechen-
de Teil des Rads zugewiesen wird. s Individuen werden dann durch s-maliges Drehen des Rads
ermittelt. Das alternative Verfahren, das stochastische universelle Sampling, dreht stattdessen
das Rad nur einmal — allerdings mit s Kugeln, die immer &quidistant angeordnet sind. Dies ist
in Bild 3.12 verdeutlicht. Wie man leicht erkennt, entspricht die Auswahl der Individuen den
zugehorigen Wabhrscheinlichkeiten: Ein Individuum mit einer Wahrscheinlichkeit von mehr als
< erd mindestens einmal ausgew#hlt. Der Erwartungswert dafiir, wie oft ein Individuum ausge-
wahlt wird, ist identisch zur fitnessproportionalen Selektion, aber die Varianz ist wie gewiinscht
stark reduziert. Bei genauerer Untersuchung des Laufzeitverhaltens sieht man schnell, dass dieser
Algorithmus auch effizienter ist, da er in &'(» +s) l4uft. Falls identische Individuen nicht neben-

3.2 Populationskonzept 75

fitnessproportionale Selektion stochastisches universelles Sampling
1 1
12 12
L L
12 12
1 3 ! 3
12 8 12 8
1 1
8 8
1 1
4 4

Bild 3.12 Links wird der Auswahlvorgang fiir ein Individuum mit der fitnessproportionalen Selektion an-

hand eines Roulette-Rads verdeutlicht. Rechts wird das stochastische universelle Sampling mit
insgesamt s = 6 Kugeln dargestellt.

Algorithmus 3.9

STOCHASTISCHES-UNIVERSELLES-SAMPLING(Giitewerte (A7) F) <<,)

Summey — 0

fori—1..... r

do " Fitness — berechne Fitnesswert aus A .F
L Summe; «— Summe;_y + Fitness

u — wiihle Zufallszahl gemiB U([0, i”—":_"ﬁjl

J=1

I—()
fori—1,..., s
do " while Summe; < u
dolj—j+1
u—tu+ M
L1 —To(j)
return /

einander im Resultattupel liegen sollen — z. B. wenn spiter eine Rekombination auf benachbarte
Individuen angewandt wird —, miissen die Eintrige noch zufillig umsortiert werden, was jedoch
keinen Einfluss auf die asymptotische Laufzeit hat.

Abschlieflend soll noch auf die stark verwandte g-fache Turnierselektion TURNIER-SELEKTION

(Algorithmus 3.10) kurz eingegangen werden, die sehr einfach auf die proportionale Selektion
abgebildet werden kann.

i

Eine Turnierselektion ist uns bereits als Umweltselektion begegnet. Diese war jedoch wegen der geforderten
Duplikatfreiheit eher kompliziert angelegt. Fiir die Elternselektion kann die Information aus einem Turnier
direkt fiir die Auswahl genutzt werden.

Zur Selektion eines Individuums wird ein Turnier zwischen ¢ zufillig gleichverteilt ausgewiihl-
ten Individuen ausgetragen. Dasjenige Individuum mit dem besten Giitewert gewinnt das Turnier
und wird selektiert. Man kann fiir jedes Individuum die Auswahlwahrscheinlichkeit ausrechnen,

file:///_Summei

76 3 Prinzipien evolutiondrer Algorithmen

Algorithmus 3.10 (genaue Bezeichnung: g-fache Turnierselektion)

TURNIER-SELEKTION(Gitewerte (4) F)|<;c,)

1 T

2 fori<—1,...,s (Anzahl der zu wihlenden Individuen)
3 do ' index — wihle Zufallszahl gemidB U({1,...,r})
4 for each j € {2,..., g (Anzahl der Gegner) }

5 do " u — wihle Zufallszahl gemdB U ({1,...,r})
6 if AW F - glindes)

7 L then [index < u

8 L1 — I o (index)

9 return/

indem alle Kombinationen zur Auswahl von g Individuen mit gleicher Wahrscheinlichkeit be-
riicksichtigt werden. Wird eine proportionale Selektion mit diesen Wahrscheinlichkeitswerten
durchgefiihrt, erhdlt man im Mittel dasselbe Resultat wie bei einer reinen Turnierselektion. Die
Turnierselektion hat den Vorteil, dass sie dhnlich wie die rangbasierte Selektion nicht anfillig
fiir Anomalien bezliglich der Giitewerte ist, und aulerdem entfallt die relativ aufwéndige Berech-
nung der Wahrscheinlichkeiten ebenso wie die Auswahl auf der Basis dieser Wahrscheinlichkei-
ten.

3.2.7 Uberblick und Parametrierung

Die verschiedenen Selektionsoperatoren konnen auf vielfache Weise eingesetzt und miteinan-
der kombiniert werden. Da meist nur an einer Stelle, der Umwelt- oder der Elternselektion, ein
gezielter Selektionsdruck aufgebaut werden soll, bietet sich fiir die andere Selektion einer der
folgenden Selektionsoperatoren an.

Definition 3.14 (Selektionen ohne Selektionsdruck):
Fiir eine Population P = (4\)), <, ist die Identitir als Selektion durch

1Sa((AVF,. . AD F)) = (1,...r)
definiert. Und die uniforme Selektion ist definiert durch

IS5 (A F o ADE)) =)
mitu ~U{1,...,r}) firl <k <s.

Beide Selektionsoperatoren erzeugen im Mittel keinen Selektionsdruck und haben die Selektions-
intensitét Intensitit = 0.

Bei der Kombination zweier Selektionsoperatoren muss darauf geachtet werden, dass diese
mit einer konstanten Populationsgrofe realisiert werden kénnen. So ist beispielsweise eine deter-
ministische, tiberlappungsfreiec Umweltselektion (Komma-Selektion) nicht mit der Identitét als
Elternselektion kombinierbar, da hier die Komma-Selektion ebenfalls zur Identitit entartet.

3.2 Populationskonzept 77

Umweltselektion uniforme

l Elternsel. — Auswahl Identitit probabilistisch

Identitit kein Sel.druck kein Sel.druck GA

duplikatfrei prob. ? x ?
(liberlappend) ? EP (90er) ?

prob. tiberlappend ? SA steady state GA

deterministisch ES (Komma) kein Sel.druck ?
(liberlappend) ES (Plus) EP (60er) steady state GA

Tabelle 3.5 Uberblick iiber die Kombination zwischen Eltern- und Umweltselektion, die in den Standard-
algorithmen vorkommen. Das Zeichen » x « kennzeichnet eine unmdgliche Kombination. Das
Zeichen »?« identifiziert zwar mogliche, aber bisher vermutlich selten eingesetzte Kombinatio-
nen.

Tabelle 3.5 zeigt die Kombinationen, die in den Standardverfahren der evolutioniren Algorith-
men zum Einsatz kommen.

Unabhingig vom gewihlten Selektionsszenario ist das Verhiltnis zwischen Eltern und Kind-
individuen sehr sorgféltig zu bestimmen, da es bei allen Verfahren einen grofien Einfluss auf
Erfolg und/oder Geschwindigkeit der Optimierung hat. Besonders deutlich ist dies im Fall der
deterministischen Komma-Selektion, bei der der Selektionsdruck direkt von dem Zahlenverhilt-
nis abhingt. Die Populationsgréfien miissen mit den folgenden Faktoren abgestimmt werden:

* die Schwierigkeit und der Charakter des Optimierungsproblems,
« der involvierte Selektionsoperator und
« die Erforschung und die Feinabstimmung durch Mutation und Rekombination.

Leider gibt es keine Formel, die uns bei Eingabe der genannten Faktoren ein gutes Eltern-Kind-Verhilnis
liefert. Vielmehr geben die Faktoren die Aspekte an, die bei einer experimentellen Analyse eines guten
Eltern-Kind-Verhiltnisses zu berticksichtigen sind.

Die Art der Operatoren muss beriicksichtigt werden, wenn die Stirke des Selektionsdrucks
festgelegt wird. Das Optimierungsproblem hingegen bestimmt, inwieweit die Vorteile einer Po-
pulation genutzt werden kénnen. Aus diesen Rahmenbedingungen kann dann eine Empfehlung
fiir das jeweilige Selektionsszenario folgen. Grundsitzlich erlauben kleinere Populationsgréfien
eine schnellere Optimierung, da die neuen Kindindividuen nach weniger Evaluationen durch die
Bewertungsfunktion wieder in den Suchprozess eingehen. Allerdings muss dieser Vorteil gegen
die Vorteile grofierer Populationen abgewogen werden.

3.28 Experimenteller Vergleich der Selektionsoperatoren

Um ein besseres Bild davon zu vermitteln, wie sich die einzelnen Selektionsoperatoren nun tat-
séchlich auf eine Population und den Suchprozess auswirken, werden in diesem Abschnitt vier
Selektionsszenarien hinsichtlich der Diversitit und der Selektionsintensitit untersucht.

« Elternselektion: 3-fache Turnierselektion TURNIER-SELEKTION (Algorithmus 3.10), Umwelt-
selektion: Identitiit

78 3 Prinzipien evolutionidrer Algorithmen

« Elternselektion: FITNESSPROPORTIONALE-SELEKTION (Algorithmus 3.8) mit den Giitewer-
ten als Fitness, Umweltselektion: Identitit

+ Elternselektion: Identitit, Umweltselektion: Plus-Variante der BESTEN-SELEKTION (Algo-
rithmus 3.6)

» Elternselektion: Identitit, Umweltselektion: {iberlappende 5-stufige 2-fache Turnierselek-
tion Q-STUFIGE-TURNIER-SELEKTION (Algorithmus 3.7)

Die Elternpopulation umfasst dabei jeweils 20 Individuen und es werden 20 Kindindividuen er-
zeugt. Um einen besseren Einblick in die reine Suchdynamik zu bekommen, wird die sog. Sphi-
ren-Funktion

=38
i=1

mit # = 2 benutzt, da sie keine echten lokalen Minima aufweist. Als Mutationsoperator wird die
reellwertige GAUSS-MUTATION (Algorithmus 3.4) benutzt.

Bild 3.13 zeigt den Optimierungsverlauf der ersten 20 Generationen zusammen mit dem mitt-
leren Abstand als Diversititsmall und der tatsdchlich wirksamen Selektionsintensitit. Wenn man
ausschlieBlich die besten auftretenden Giitewerte pro Generation anschaut, kann man kaum Un-
terschiede zwischen den verschiedenen Selektionsverfahren ausmachen. Bei genauerer Betrach-
tung ist jedoch deutlich zu erkennen, dass die Selektionsintensitit bei den zufallsabhédngigen
Selektionsverfahren stirker schwankt als bei der Plus-Selektion. Letztere bleibt den kompletten
Zeitraum auf einem konstant hohen Niveau. Die 5-stufige 2-fache Turnierselektion kann durch
die Art des Turniers die Schwankungen ebenfalls stark einschriinken. Dagegen ist der Einfluss
des Zufalls auf die 3-fache Turnierselektion und in noch weitaus stéirkerem Mal} auf die fitness-
proportionale Selektion deutlich in der Selektionsintensitét erkennbar. Die Diversitidt wird am
schnellsten durch die Plus-Selektion reduziert, bei der die Giitewerte ab etwa der fiinften Ge-
neration sehr eng beieinanderliegen. Der Verlauf der Diversitét ist bei beiden Turnierselektion
durchaus sehr dhnlich zur Plus-Selektion — beide konnen durch die Zahl der Turniere leicht in ih-
rer Selektionsstirke variiert werden. Deutlich wird auch, dass die fitnessproportionale Selektion
iiber alle 20 Generationen die breiteste Streuung der Giitewerte zulésst.

Vermutlich der wichtigste Punkt, den es hier nochmals zu betonen gilt, ist die oben bereits an-
gesprochene Ahnlichkeit zwischen allen vier Suchverlidufen. Auch die zufallsbasierten Verfahren
erzeugen eine ganz dhnliche Dynamik wie die reine Wahl der besten Individuen. Wihrend der
Verlauf der besten, mittleren und schlechtesten Giite bei der Plus-Selektion jedoch immer mono-
ton fallend (bzw. bei einer Maximierung monoton steigend) ist, erlauben die anderen Selektionen
eine groflere Freiheit beim Verlauf der Optimierung — dies kann deutlich aus der jeweils oberen
Linie der schlechtesten Individuen abgeleitet werden. Gerade bei Problemen mit vielen lokalen
Optima kann eine stirkere Verteilung der Individuen im Suchraum ein zusitzlicher Vorteil der
zufallsbasierten Verfahren sein.

An dieser Stelle wurde bewusst auf einen Vergleich der Optimierungsqualitit der vier Experimente verzich-

% tet. Erste Begriindung: Die reine Betrachtung einer beispielhaften Optimierung kann nie eine grundsitzliche
Aussagekraft jenseits der [llustration haben. Zweite Begriindung: Die Wahl der Selektion sollte immer auf
die Charakteristik des Problems und der Operatoren abgestimmt sein, sodass hier keine allgemeingiiltigen
Ratschliige moglich sind.

3.2 Populationskonzept 79

1,2

0.5l W L /W\/__-
’ Selektionsintensitit Selektionsintensitit

120 1t J
80| . e 4 . J
a0l Diversitit 11 Diversitit |

4000 [Turnier-Elternselektion] . [Plus-Umweltselektion] 1

3000

5000 \ Giitewerte
1oool
0 ,
5 10 15 20 5 10 15 20

1,2

0’ 8t i \/»/\/\/\/\/\/;

0,41 L i

Selektionsintensitéit

120
80
401

Diversitit |

Diversitit

4000 Fitnesspropoﬂ%onale
Elternselektion
3000
2000
1000
O 1 1 1 1 1 1
5 10 15 20 5 10 15 20
Generation Generation

Bild 3.13 Optimierung der zweidimensionalen Sphire mit jeweils 20 Eltern- und 20 Kindindividuen: Es
werden fiir vier Selektionsszenarien die Verldufe der Giitewerte in der Population (mit bester,
schlechtester und durchschnittlicher Giite), die Diversitdt als mittlerer Abstand in der Population
und die tatséchlich wirksame Selektionsintensitit dargestellt.

80 3 Prinzipien evolutiondrer Algorithmen

Algorithmus 3.11
UNIFORMER-CROSSOVER(Individuum 4, Individuum B)
1 for eachic {1,...,/}

2 do" b — wihle zufillig gemafl U(B)

3 if b

4 then " C.G; + A4.G;

5 .D.G; — B.G;

6 else " C.G; — B.G;

7 L LD.G; — A.G;

8 return C,D

33 Verkniipfen mehrerer Individuen durch die Rekombination

Als drittes Grundprinzip wird die Suchdynamik der Rekombinationsoperatoren untersucht. Nach
allgemeinen Betrachtungen bildet die Theorie zur Verbreitung von Schemata einen Schwerpunkt.

Bereits im vorherigen Abschnitt wurde als ein Vorteil des Populationskonzepts die Moglichkeit
erwihnt, die Suche durch einen Operator zu erginzen, der Beziige zwischen verschiedenen Indi-
viduen in der Population herstellt und so eine zusitzliche Suchdynamik jenseits der reinen Varia-
tion erreichen kann.

3.3.1 Arten der Rekombination

Bei der Rekombination wird aus zwei (oder mehr) Elternindividuen wenigstens ein Kindindi-
viduum erzeugt. Dabei kdnnen die Eigenschaften der Eltern auf unterschiedliche Art und Weise
die Kindindividuen bestimmen. Im Weiteren werden wir drei verschiedene Arbeitsweisen der
Rekombination vorstellen. Da die Diversitéit der Population einen essentiellen Einfluss auf die
moglichen Ergebnisse der Rekombination hat, werden wir diese jeweils explizit diskutieren.

Die erste mogliche Arbeitsweise ist die sprichwortliche Rekombination des genetischen Ma-
terials, die sich stark an der Biologie orientiert und die verschiedenen Grundziige der Eltern neu
kombiniert. Diese kombinierenden Operatoren setzen die Details von unterschiedlichen Indivi-
duen neu zusammen und kénnen so, im Optimalfall, die vorteilhaften Bestandteile der Elternindi-
viduen zusammenfiihren. Diese Art der Rekombination héingt sehr von der Genvielfalt, der Diver-
sitdt, in der Population ab. Sie »erfindet« keine neuen Genbelegungen und kann somit auch nur
diejenigen Teilbereiche des Suchraums erreichen, die in den Individuen der aktuellen Population
enthalten sind. Bei einer groen Vielfalt in der Population haben die kombinierenden Rekombi-
nationsoperatoren einen groflen Anteil an der systematischen Erforschung des Suchraums.

Beispiel 3.18:
Algorithmus 3.11 (UNIFORMER-CROSSOVER) ist ein Beispiel fiir eine kombinierende
Rekombination, die auf allen Représentationen eingesetzt werden kann, bei der die
einzelnen Gene im Individuum véllig unabhéngig voneinander gesetzt werden kénnen.
Bild 3.14 zeigt die Arbeitsweise der Rekombination am Beispiel eines zweidimensio-
nalen reellwertigen Genotyps.

3.3 Verkniipfen mehrerer Individuen durch die Rekombination 81

| Sl 9
; i
Bild 3.14
Arbeitsweise der kombinierenden Rekombination: Die weillen Punkte stellen die : H
Positionen der moglichen Nachfolger bei einem uniformen Crossover der schwar- V i
zen Punkte fiir einen zweidimensionalen, reellwertigen Genotyp dar. D mim i s H

Wie ein solcher Operator systematisch den Raum absucht, wird in der linken Spalte von Bild 3.15
verdeutlicht. Auf eine Anfangspopulation bestehend aus 10 Individuen wird ausschlieBlich die
Rekombination angewandt. Die Individuen werden zu zufilligen Elternpaaren zusammengefasst,
aus denen dann geméf des uniformen Crossovers 10 neue Individuen gebildet werden, welche die
Elternindividuen ersetzen. Das ganze Vorgehen wird 9 Mal iteriert. Man erkennt deutlich, dass
sich ohne die Einwirkung einer zusitzlichen Mutation oder eines Selektionsdrucks ein Raster
aller moglichen Kombination der vorkommenden Werte herausbildet.

Das Ergebnis kann man so nur beobachten, wenn tatsichlich jedes Individuum in genau ein Elternpaar
eingeht, welches zwei Kinder erzeugt, Offensichtlich geht dann keine Information der Eltern verloren. An-
dernfalls konnten einzelne Gene verschwinden und es wiirde zum Gendrift kommen (vgl. S. 13).

Auch die KANTENREKOMBINATION (Algorithmus 2.4) aus dem einfiihrenden Beispiel des Handlungs-
reisendenproblems hat strenggenommen einen kombinierenden Charakter, da — jetzt allerdings auf der phi-
notypischen Ebene der Kanten in der Rundtour — vornehmlich vorhandene Information neu zusammenge-
stellt wird.

Die zweite mogliche Arbeitsweise liefern die interpolierenden Operatoren: Sie vermischen die
Charakteristika der Eltern so, dass ein neues Individuum mit neuen Eigenschafen entsteht, wel-
che sich jedoch zwischen den Eigenschaften der Eltern bewegen. Statt einer systematischen Er-
forschung des vollstindigen Suchraums steht hier die Stabilitit im Vordergrund. Wihrend die
kombinierende Rekombination die Diversitit erhilt, konzentriert die interpolierende Rekombi-
nation die Population auf einen gemeinsamen Nenner. Dies kann effektiv die Feinabstimmung
schon sehr guter Individuen im Suchprozess fordern. Ist die Diversitit der Population bereits
sehr gering, kann diese Rekombination indirekt gréfiere Ausreifler durch die Mutation abschwii-
chen — dies wird in diesem Kontext auch als genetisches Reparieren bezeichnet. Um eine hin-
reichende Erforschung gerade zu Beginn einer Optimierung zu erméglichen, sollte der raschen
Konvergenz der Population mit einer stark zufallsbasierten, diversititserhaltenden Mutation ge-
gengewirkt werden.

Beispiel 3.19:
Ein Beispiel fiir die interpolierende Rekombination ist Algorithmus 3.12 (ARITHME-
TISCHER-CROSSOVER), der auf reellwertige Genotypen angewandt werden kann. In
Bild 3.16 wird die Arbeitsweise der Rekombination gezeigt, die das neue Individu-
um genau auf der direkten Verbindungslinie der beiden Elternindividuen platziert.

Die Wirkung dieser Operatoren bei einer iterierten Anwendung ohne Mutation und Selektions-
druck ist wieder in Bild 3.15 — diesmal in der mittleren Spalte — veranschaulicht. Da Algorith-
mus 3.12 nur ein Kindindividuum erzeugt, werden insgesamt 20 Elternindividuen fiir 10 Kindin-

82

3 Prinzipien evolutionédrer Algorithmen

= * * - .
Ausgangspopulation Ausgangspopulation Ausgangspopulation
. . °
L . . B 3
. .
¢ * * *
. Optimum
* . .
L L . * i
e > L
L
L L * -
* * * . .
L 1 L 1 1 1 1 1 1 1 1 * L L L
T T T T T T T T T T T T T T T
L . + + L H
I Iteration 1 Heration 1 Treration %
+ . + * o
i . + + B =
¥ . + *
*
L * « 4 . PR Le . 2|
+
* *
. + o +
+ *
- * - + —
.t
+ * + *
+
+
L * - .
+ ¢ . * +
+ +
]] L 1 1 L L 1 1 1 1 1] L L
T T T T T T T T T T T T T 1 T :’l
L * o+ + 4+ + - * _
A i : .
5 Iterationen 5 Iterationen 5 Iterationen ¥
+ -+ + + +
+ * + L]
+ o+ + 4. + * i Ty ’
+ + o+ .+ + . & +
+’. +y & O
i * 4t AL T L5 + i
+
+% t: ++ *Q
+ + o+ + e <+ &%, * + +
+
¥ o+ % - el
B + 2 -
¢ +H +
+ . + + + +
5 +
= - + .
® oy + +4 ¥ * +
* +
L 1 L 1 1 L 1 1 1 1 1 1 1 L L
T T T T T T T T T T T T L} A‘- T -y
L + o+ + +e + + B * -
+
9 lterationen 9 Irerationen 9 lterationen % P 4
+ 4
+ . + 4+ o+ + + i 3 ° &
z . 4 + o+ + * . e oY
+ + ++ + * + +
+‘ ¥, + g
Ao ket iy + ¢
| + +¥ & ++ + + * . L+ + + =
+
% "] Y
+ 4+ + o+ e+ + ol + + + ¥ +
¥ o+ " + * 4 A
L + L .
o *
+ + o+ +e + +
+
+
- + o+ + + o i =
¥ t i ¥ +
+ 4+

Bild 3.15 Vergleich der drei unterschiedlichen Rekombinationsarten auf einem zweidimensionalen reell-

wertigen Suchraum. Dabei markiert jedes »4« ein Inidividuum von vorherigen lterationen und

jedes »#« ein aktuelles Individuum. Bei dem extrapolierenden Operator ist zusitzlich das Opti-

mum markiert.

3.3 Verkniipfen mehrerer Individuen durch die Rekombination 83

Algorithmus 3.12

ARITHMETISCHER-CROSSOVER(Individuen A, B mit 4.G. B.Ge R)
1w« wihle zufillig aus U([0. 1])

2 for eachic {l...., I}
3 dolC.Gj—u-A.Gi+ (1 —u)-B.G;
4 returnC

oA

\\c\

Bild 3.16 To,
Interpolierende Rekombination: Der arithmetische Crossover kann potentiell ‘o,
alle Punkte entlang der gestrichelten Linie zwischen den Eltern erzeugen. 2 ~.B

dividuen benétigt — in diesem Vergleich wurde zusitzlich gewihrleistet, dass jedes Elternindivi-
duum in genau zwei Rekombinationen eingeht. Deutlich ist erkennbar, wie sich die Population
in der Mitte konzentriert.

Um nochmal auf das Beispiel des Handlungsreisendenproblems zuriickzugreifen: Die KANTENREKOM-
BINATION kann leicht so modifiziert werden, dass das Kindindividuum gemeinsame Kanten der Eltern
immer iibernimmt. Dann hiitte dieser Operator einen deutlich interpolierenden Aspekt.

Die dritte mogliche Arbeitsweise der Rekombination sind die sog. extrapolierenden Operatoren,
die gezielt Informationen aus mehreren Individuen ableiten und eine Prognose dariiber anstellen,
wo Giiteverbesserungen zu erwarten sind. Dies basiert immer auf bestimmten Grundannahmen
beziiglich des Suchraums und der aktuellen Verteilung der Individuen. Im Gegensatz zur Defi-
nition 2.5 des Suchoperators werden hier also nicht nur die Werte des Genotyps benutzt. Das
Resultat der Rekombination hdngt mit von den Giitewerten der Individuen ab. Die entstehenden
Kindindividuen weisen im Regelfall neue Eigenschaften im Vergleich zu den Eltern auf und kén-
nen auch erforschend das bisher abgegrenzte Suchgebiet verlassen. Bei diesen Operatoren lésst
sich der Einfluss der Diversitét nicht eindeutig beschreiben.

Beispiel 3.20:
Ein Beispiel fiir einen extrapolierenen Operator erhalten wir, indem in Algorithmus 3.12
(ARITHMETISCHER-CROSSOVER) eine Zufallszahl # > | gewdhlt wird — z. B. aus der
Verteilung U([1, 2]). Wenn zusiitzlich gewihrleistet wird, dass A.F = B.F gilt, dann
verlangern wir die Verbindungslinie zwischen den Individuen 4 und B hinaus und
wiihlen einen Losungskandidaten jenseits des besseren Individuums A. Dies ist sche-
matisch in Bild 3.17 dargestellt.

Auch die Wirkung dieses Operators ist in Bild 3.15 (rechte Spalte) dargestellt. Um die Wirkung
der Extrapolation besser zeigen zu konnen, sind die Individuen in den Quadranten links unten
geschoben. Das Optimum ist in der Mitte des Quadranten rechts oben eingezeichnet — die Giite
ist die Distanz zum Optimum, welche im Algorithmus fiir die Elternindividuen betrachtet wird
und damit die Richtung der Rekombination bestimmt. Da hier Kindindividuen den Suchbereich

84 3 Prinzipien evolutiondrer Algorithmen

a Bild 3.17
Extrapolierende Rekombination: Beispiel eines arithmetischen Crossovers, der
anhand der Giitewerte in die Richtung des besseren Individuums extrapoliert.
Gilt A.F > B.F, sind alle Punkte entlang der gestrichelten Linie potentielle
B “e Kindindividuen.

Algorithmus 3.13
EIN-PUNKT-CROSSOVER(Individuen 4, B)
J < wihle zuféllig gemaB U({1,...,/1—1})
for eachic {l,.... }
do" C.G; — A.G;
LD.G; — B.G;
for eachic {j+1....,/}
do" C.G; — B.G;
LD.G; — A.G;
return C, D

0 ~1 N N bW N =

auch verlassen kénnen, wird flir jedes Elternpaar so lange rekombiniert, bis das Kindindividu-
um innerhalb des Suchbereichs liegt. Am Verlauf der iterierten Anwendung der Rekombination
erkennt man deutlich, dass durch die gezielte Richtungsvorgabe der Rekombination vermutlich
eine Optimierung beschleunigt werden kann (vgl. die erste Iteration). Allerdings ist jedoch auch
ersichtlich, dass dieser Mechanismus allein flir eine Optimierung nicht ausreicht: Am Ende pas-
sen die Annahmen zum Suchraum und der Verteilung der Population im Suchraum nicht mehr
mit der Arbeitsweise des Operators zusammen und die Individuen riicken an den Rand des Such-
bereichs. Dies ist immer die Gefahr bei extrapolierenden Operatoren, da sie relativ leicht in die
Irre geleitet werden konnen und die Suchdynamik nicht mehr kontrollierbar ist.

3.3.2 Schema-Theorem

In diesem Abschnitt soll die Suchdynamik genauer untersucht werden, die durch die kombinie-
rende Rekombination entsteht. Dabei gehen wir zunéchst von einem binir kodierten Problem
aus, d.h. 4 = B'. Ferner nehmen wir ohne Beschrinkung der Allgemeinheit an, dass das Opti-
mierungsproblem ein Maximierungsproblem ist.

Als konkreten Algorithmus fiir unsere Uberlegungen erweitern wir Algorithmus 3.5 (POPULA-
TIONSBASIERTES-BINARES-HILLCLIMBING) um einen Rekombinationsoperator. Wir wihlen hier-
fiir den EIN-PUNKT-CROSSOVER (Algorithmus 3.13), der im Gegensatz zum Algorithmus 3.11
(UNTFORMER-CROSSOVER) grofere zusammenhingende Abschnitte der Eltern zusammen ldsst.
Es wird eine Stelle im Individuum gewéihlt, an der die Eltern getrennt und neu zusammenge-
setzt werden. Die Arbeitsweise ist in Bild 3.18 veranschaulicht. Der resultierende Gesamtalgo-
rithmus wird auch als klassischer GENETISCHER-ALGORITHMUS (Algorithmus 3.14) bezeichnet.
Der Selektionsdruck in diesem Algorithmus wird durch eine fitnessproportionale Elternselektion
erzeugt.

Um die weiteren Betrachtungen zu motivieren, beschéiftigen wir uns an dieser Stelle kurz
mit dem moglichen Potential der Rekombination. Wenn man den populationsbasierten bindren

3.3 Verkniipfen mehrerer Individuen durch die Rekombination 85

Crossover-Punkt

y ¥
Lol i]iftfofo]i]of1i]o] Lol ifufafufe]ififofo]
DLl o]0 [T [olofo]o] 1 [o] [o]
)

Bild 3.18 Der 1-Punkt-Crossover trennt die Elternindividuen an einer zufalligen Position und rekombiniert
die entstehenden linken und rechten Teile.

Algorithmus 3.14

GENETISCHER-ALGORITHMUS(Zielfunktion)
1 1«0

2 P(t) « erzeuge Population mit u (gerade PopulationsgréBe) Individuen
3 bewerte P(¢) durch F
4 while Terminierungsbedingung nicht erfiillt
5 do" P’ « Selektion aus P(¢) mittels SELEKTION-FITNESSPROPORTIONAL
6 (Essei: P = (4D . 4W)y)
7 P
8 fori%l,...,%
9 do " u — wihle Zufallszahl gemaB U([0, 1))
10 if u < p, (Rekombinationswahrscheinlichkeit])
11 then [B,C « EIN-PUNKT-CROSSOVER(4(%1) 4(20))
12 else "B A1
13 LCe—ACD
14 B+ BINARE-MUTATION(B)
15 C — BINARE-MUTATION(C)
16 _P" — P"o(B,C)
17 bewerte P durch F
18 t—t+1

19 LP(t) — P"
20 return bestes Individuum aus P(z)

Hillclimber mit dem genetischen Algorithmus vergleichen mochte, ist ein mégliches Kriterium,
wie schnell im besten Fall das Optimum gefunden werden kann. Den Optimierungsprozess des
bindren Hillclimbers hatten wir an fritherer Stelle als Markovprozess modelliert. Wie Bild 3.3
verdeutlicht, werden bei einem ungiinstigen Ausgangsindividuum alle Zustdnde der Markovkette
durchlaufen, d. h. es sind wenigstens / Generationen notwendig. Dies dndert sich auch nicht beim
populationsbasierten binidren Hillclimber, da dort ebenfalls in der i-ten Generation bei jedem
Individuum héchstens 7 Bits auf den Wert 1 gesetzt wurden.

Wenn wir allerdings die Rekombination hinzunehmen, kann sich auch bei einer ungiinstigen
Anfangspopulation durch giinstige Mutationen und ein geschicktes Mischen der Individuen bei
der Rekombination sehr schnell ein optimales Individuum herausbilden. Dies ist in Bild 3.19
fiir ein kleines Beispiel am Einsenzihlproblem veranschaulicht. Insgesamt ist bereits nach log/

86 3 Prinzipien evolutiondrer Algorithmen

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

10000000 01000000 00109000 00010000 00001000 00000100 0000Q010 00000001
00000000 11000000 00000000 00110000 00000000 00001100 00000000 00000011

00000000 11110000 00000000 00001111
00000000 11111111

Bild 3.19 Fiir das Einsenzéhlproblem kann sich auch aus der schlechtestméglichen Population (nur mit Nul-
len belegte Individuen) durch geschickte Mutationen in der ersten Generation und logarithmisch
viele Iterationen mit passenden Rekombinationen das Optimum bilden.

Generationen das Optimum erreichbar. Dies zeigt, dass erst durch die Rekombination mit ih-
rer Vermischung verschiedener Individuen die Parallelitit des Populationskonzepts konstruktiv
genutzt werden kann.

Die tatséichliche Suchdynamik ist allerdings wesentlich komplizierter, da hier Wechselwirkun-
gen zwischen der Selektion, der Rekombination und der Mutation auftreten. Daher versuchen
wir auch nicht an dieser Stelle, erwartete Laufzeiten herzuleiten. Vielmehr riickt die Frage in den
Mittelpunkt, wie schnell etwa bei dem obigen Problem ein Muster — z. B. zwei Nullen am Beginn
des Individuums — aus der Population verdréngt wird bzw. sich das Muster bestehend aus zwet
(oder mehr) Einsen am Anfang vermehrt.

Zunichst werden die bendtigten Begriffe in der folgenden Definition eingefiihrt.

Definition 3.15 (Schema):
Fiir einen bindren Genotypen & = B/ ist jedes Element H € {0,1, x}' ein Schema, das
die Menge der folgenden Individuen beschreibt:

IH)={4.G - -AG G |VI<i<Il: (H#%)=(4.G;=H)}.
Die Ordnung eines Schemas o(H) ist die Anzahl der definierten Positionen (£ *)
oH)=#{i| (1 <i<) N (Hi#%)}.

Die definierende Lénge eines Schemas 0 (H) ist die maximale Entfernung zweier defi-
nierten Positionen im Schema.

S(H) =max {|i—jl | (1 <i,j<I) N (Hi %) N (H; #)}

Beispiel 3.21:
Fiir & = {0, 1}° beschreibt /] = %0010 die Menge

7 (Hy) = {000010,001010, 100010, 101010}

3.3 Verkniipfen mehrerer Individuen durch die Rekombination 87

X3 X3

o |

*] %

@
®
X
\

10

NG — ' 11
Il)@ @ A1 \1*0 "

Bild 3.20 Links werden die Elemente von % = B? in einen Wiirfel eingebettet. Rechts wird veranschaulicht,
welche Individuen jeweils durch ein Schema zusammengefasst werden.

H, hat die Ordnung o(H,) = 4 und die definierende Linge 6(H,) = 4. Das Schema
H> = 11 # %% 0 beschreibt die Menge

S (Hy) = {110000, 110010, 110100, 110110,
111000,111010,111100, 111110}

hat die Ordnung o(H>) = 3 und die definierende Linge 6(H>) = 5.

Welche Individuen jeweils durch ein Schema zusammengefasst werden, veranschaulicht Bild 3.20
an einem Wiirfel. Dabei entspricht jede Ecke des Wiirfels einem Individuum aus dem Genotyp
¢ =3 Durch ein Schema wird nun eine Ebene durch den Suchraum gelegt, die die entsprechen-
den Individuen des Schemas enthilt. Da die Ebenen nicht nur zweidimensional sind — dies hingt
direkt von der Ordnung des Schemas ab —, werden sie mathematisch korrekt als Hyperebenen
bezeichnet.

Konkret wird im Weiteren untersucht, wie sich der Anteil der Vertreter eines Schemas in der
Population durch die Berechnung einer neuen Generation (gemil des genetischen Algorithmus
aus Algorithmus 3.14) verindert — d. h. es wird die zu erwartende Anzahl der Vertreter einer
solchen Eigenschaft in der ndchsten Generation abgeschitzt. Diese Grundfragestellung ist in
Bild 3.21 dargestellt.

Wir werden dadurch herausfinden, welche Eigenschaflen (Schemata) sich besonders stark
vermehren. Die Hoffhung ist, dass dies als ein Indikator zu werten ist, wann eine so positive
laufzeitverkiirzende Kombination verschiedener Bausteine wie in Bild 3.19 vorkommt. »Gute«
Eigenschaften sollten sich schneller vermehren als schlechte, wodurch deren erwiinschte Kombi-
nation in einem Individuum rascher herbeigefiihrt wird.

Satz 3.3 (Schema-Theorem):
Wird GENETISCHER-ALGORITHMUS (Algorithmus 3.14) auf eine Funktion ' angewandt,
die auf & = I3/ definiert ist, dann gilt fiir ein beliebiges Schema H € {0,1,+} und die
Population P(¢) = (A"} <<y, zur Generation #, dass in der nichsten Generation die

88 3 Prinzipien evolutionidrer Algorithmen

Anteil der Vertreter
von Schema H

Elternselektion

Rekombination x x (1 1] x

Mutation
Anteil jetzt?

Bild 3.21 Untersuchungsgegenstand des Schematheorems: Wie verdndert die einmalige Anwendung von
Elternselektion, Rekombination und Mutation den Anteil der Instanzen eines Schematas in der
Population?

erwartete Anzahl der Instanzen von H in P(t + 1) wie folgt abgeschitzt werden kann:

-1

: <i<) Ge.

—{ =)
I F ; o(H F
Erw[pf™] > pif) - L (1=)™ (1 pi- o). (1-ri-=5))
a F

wobei F dle durchschnittliche Giite der Individuen in der Population P(t) bezeich-
net und FH die durchschnittliche Giite derjenigen Individuen in der Population P(r)
ist, die zusitzlich ein Vertreter des Schemas H sind.

Beweis 3.3:
Wenn wir uns im Beweis darauf beschrinken, wie viele Vertreter von / durch die El-
ternselektion ausgewiihlt werden und nicht durch die Rekombination oder Mutation
aus .# (H) herausfallen, dann haben wir sicher eine untere Schranke fiir der betrachte-
ten Erwartungswert berechnet. Unberiicksichtigt bleiben dabei neue Vertreter von H,
die durch die Kombination von zwei Nicht-Vertretern von H entstehen.
Die Auswahlwahrscheinlichkeit fiir ein Individuum mit der Eigenschaft H betrigt

A.F

AEP(t) und A.Ge.# (H) Z3(:'1"{-'] B.F

AF

p.\'ef(Hu 1) =

AEP(r) und 4.Ge.7 (H) I - F

1
= Z AF
W-F"" 4cp(r) und 4.G=.7 (H)

3.3 Verkniipfen mehrerer Individuen durch die Rekombination

Individuum Giite Individuum

10101... 3 00001...
01101... 3 10001. ..
Tabelle 3.6 01100... 2 01001...
Beispielhafte Population zur Illustration des Schema- 11101. . 4 11001. ..
Theorems: Die Individuen haben die Linge 20, wobei 11000, .. 5 01110, .

W W NN =

hier jeweils nur die ersten 5 Bits dargestellt werden.

I <i<p|A).Ge s(H)} FY

#‘f(f)
_p<r>F§?
= i
70

Ein Individuum mit 4.G € #(H) wird durch eine Mutation nicht zerstort, falls
an den definierenden Stellen des Schemas keine Mutation auftritt. Dies geschieht mit
Wabhrscheinlichkeit

pﬂmur(H) = (1 _an)O(H)-

Ein Individuum mit 4.G € .#(H) wird durch einen Crossover zerstdrt, falls der
Crossover angewandt wird (mit Wahrscheinlichkeit p,), der Crossoverpunkt innerhalb
der definierenden Positionen des Schemas liegt (mit Wahrscheinlichkeit %) und der
Partner bei der Rekombination nicht die zerstorten Teile des Schemas wiederherstellt
(mit Wahrscheinlichkeit < 1 — py(H,¢)). Damit ergibt sich die Gesamtwahrschein-
lichkeit, dass der Crossover die Eigenschaft H nicht beeinflusst, als

Pwek(H,f) >1 — Px @ : (1 _psel(Hal))'
Der Erwartungswert hinsichtlich des Anteils der Population in .# (H) entspricht genau
der Wahrscheinlichkeit, dass ein entstehendes Kindindividuum noch die Eigenschaft
H hat. Da Elternselektion, die Rekombination und die Mutation unabhidngige Zufalls-
ereignisse sind, ergibt sich die untere Schranke fiir den Erwartungswert als Multiplika-
tion der Faktoren pgo;(H, 1), p-ymu(H) und p_,ep(H, 1).

Beispiel 3.22:

Zur Tlustration des Schema-Theorems betrachten wir die Population P(¢) in Tabel-
le 3.6 bestehend aus zehn Individuen mit ¥ = B?°, wobei wir lediglich die ersten fiinf
Bits darstellen. Als Mutationsrate wurde p,,, = % und als Rekombinationswahrschein-
lichkeit p, = 0,8 gewdhlt. Die Fitness sei die Anzahl der Einsen in den dargestellten

Bits, d.h. F) =25,

90 3 Prinzipien evolutiondrer Algorithmen

Fiir H; = #11 %% ... mit 4 Vertretern gilt Fﬁ_’,f = 3,0 und

) =) 1o -) o

?

Es ist damit zu rechnen, dass sich dieses Schema leicht vermehrt.

Fiir H, = %00 ... mit 5 Vertretern gilt fg) =2,0und

Erw|pj] > 150'.22’?5 : (1 ~ %)2. (1 —0,8- % : (1 — 150'_22’?5)) ~0,2805.

Durch die schlechtere durchschnittliche Giite von H, ist zu erwarten, dass weniger
Vertreter in der Population enthalten sein werden.

Fiir H3 = 1% %% 1 ... mit 4 Vertretern gilt 175% =3,0 und

ey 430 (1)2(4 (4.3,0))
E > (-2 (108 (1 —0,3953.
wlpy] > 10-2,5 20 ® 19 10-2,5 ’

Durch die groBere definierende Linge von Hj ist zu erwarten, dass weniger Vertreter
in der Population enthalten sein werden.

Fir Hy = %110 .. mit 3 Vertretern gilt Fy[i =3,0 und

Erw[pji] = % . (1 _ %)3 . (1 ~08- % . (1 - 130'_32’,05)) —0,2920.

Auch hier ist durch die gréBere Ordnung von Hs zu erwarten, dass weniger Vertreter
in der Population enthalten sein werden.

Durch drei kleine Abschidtzungen wird das Schema-Theorem zu der folgenden bekannteren Fas-
sung vereinfacht.

Korollar 3.1 (Einfaches Schema-Theorem):

Unter den Voraussetzungen von Satz 3.3 gilt

=)

F S(H
Erw[pg“)] >pg) . F—(Ij) (1 —o(H) - pm px-#)
Beweis 3.4:

An der rechten Seite von Gleichung (3.1) aus Satz 3.3 werden die folgenden Abschiit-
Zungen vorgenommen.

Fiir 0 < p,, < 1 und o(H) > 0 gilt die Bernoullische Ungleichung

(1 _pm)O(H) >1—o(H) pm-

3.3 Verkniipfen mehrerer Individuen durch die Rekombination 91

Die Wahrscheinlichkeit fiir die Auswahl des Crossover-Partners kann vernachlis-
sigt werden, d. h.

=)
S0 (s, 300

_p (0T H
=p (1 PH =0

Und abschlieBend gilt die folgende Abschétzung

S(H)

(1 70(H)pm)(l *px@) >1 *O(H)Pm*pxl_—l-

Was bereits an obigem Beispiel deutlich wurde, kann jetzt auch leicht an dem Korollar abgelesen
werden: Schemata mit {iberdurchschnittlicher Giite, kleiner definierender Linge und geringer
Ordnung vermehren sich rasch. Solche Schemata werden auch Bausteine (engl. building block)
genannt. In der sog. Baustein-Hypothese (engl. building block hypotheses) wird angenommen,
dass sich durch die Kombination solcher sich stark vermehrender Bausteine iiberlegene Indivi-
duen bilden.

Beispiel 3.23:

Um abschlieend die Aussage des Schema-Theorems nochmals zu illustrieren, werden
mehrere Schemata wihrend einer Optimierung beobachtet. Ein GENETISCHER-ALGO-
RITHMUS mit Rekombinationswahrscheinlichkeit p, = 1,0 und Mutationsrate p,, = %
soll eine mit 16 Bits standardkodierte Zahl maximieren. Der Optimalwert ist also der
Bitstring 111... 111 und entspricht dem Giitewert 65 536. Die recht grof3e Population
mit 400 Individuen verringert statistische Effekte und sorgt fiir leichter interpretierba-
re Ergebnisse. Bild 3.22 zeigt die Ergebnisse der ersten 20 Generationen. Deutlich ist
im Bild zu erkennen, wie unterschiedlich die Verdnderung der Anteile an der Popu-
lation fiir die verschiedenen Schemata ausfillt. Dies spiegelt zumindest zu einem ge-
wissen Grad die Aussage des Schema-Theorems wider. Je gréBer die Ordnung eines
Schemas ist, desto kleiner ist auch der Anteil in einer (zufillig belegten) Population.
Vergleicht man die Schemata 11x...und 1111x..., sollte einerseits das Wachstum des
ersteren grofer sein, da Ordnung und definierende Linge kleiner sind, aber anderer-
seits hat das zweitere eine wesentlich bessere beobachtete Giite. Tatsdchlich wichst
das Schema 1111x...selbst in den ersten acht Generationen relativ stirker als 11x....
Das Schema 11111111x...zeigt jedoch kaum ein Wachstum, vermutlich da die defi-
nierende Linge und die Ordnung zu grofB sind. Auch das Schema ... 1111 zeigt kein
Wachstum bedingt durch seine mittelméBige durchschnittliche Giite. Ebenso kann sich
Schema 11x...%11 kaum durchsetzen, da aufgrund der maximalen definierenden Lén-
ge das Schema bei py = 1,0 aus keinem einzelnen Elternindividuum tibernommen
wird, sondern jede Generation neu zusammengefiigt werden muss.

Es wurden im Laufe der Zeit verschiedene Kritikpunkte an dem Schema-Theorem gedufert, die
sich grob in zwei Klassen einteilen lassen: erstens die Frage, inwieweit die Aussage tiberhaupt
fiir eine Optimierung relevant ist, und zweitens ein kritisches Hinterfragen der durch den evolu-
tiondren Algorithmus definierten Randbedingungen.

92 3 Prinzipien evolutiondrer Algorithmen

50000 4
Lo W . | Giite-
© durchschnittliche Giite in der Population .
= 40000 |- | entwicklung
O -
30000
T T T ~<
e - - N
- - SN -~ - = a
0.7 - 1 skttt stk seskok
-
0.6 . i 4
’ Schema-
/
£ 0,5 ; - entwicklung
2 0.4 ,) i
<) e e
e / 1111 soomompkoskoskokok PR -
5} 0.3, PN PRl -7 7]
s L .-
% /" . . 1 1 stestestestesteseseskokoskokok | 1
--- ~
= 021 R 7/ ~ /
g "":—_:::‘—:/’ TTTTTT \—_—\\/__) sokskkxrkkokror [111
< 0,1 ¢~ A//) ’
0 F— D111 1] stk
0 5 10 15 20

Bild 3.22 Beispielhafte Veranschaulichung, wie sich der Anteil der Individuen in einer Population hinsicht-
lich verschiedener Schemata verdndert. Es wurde eine standardbingr mit 16 Bits dargestellte Zahl
maximiert. Der evolutionire Algorithmus war ein genetischer Algorithmus mit Populationsgréfe
400.

Ein bedeutendes Problem hinsichtlich der Aussagekraft des Schema-Theorems stellt der Uber-
gang von der Berechnung einer neuen Generation zum Optimierungsprozess als Ganzes dar, wie
dies bei der Baustein-Hypothese geschieht. Angenommen die Aussage des Schema-Theorems
wirde fiir ein spezielles Schema identisch in jeder Generation gelten. Dann kénnte man daraus
ein exponentielles Wachstum des Schemas ableiten, da der neue Erwartungswert wieder direkt in
die Auswahlwahrscheinlichkeit der ndchsten Generation eingeht. Diese Annahme gilt allerdings
nicht allgemein, da sich die durchschnittliche Glite des betrachteten Schemas in jeder neuen ak-
tuellen Population verdndert. Gemél des Schema-Theorems vermehren sich gerade diejenigen
Schemata mit hoher Qualitét tiberproportional, so dass damit zu rechnen ist, dass auch die durch-
schnittliche Giite der gesamten Population sich verbessert und der durchschnittlichen Qualitat
des Schemas annéhert.

Ein weiterer Kritikpunkt an der Relevanz der Aussage befasst sich damit, inwieweit stark
vermehrende Schemata tatséchlich positiv zur Gliteentwicklung der Optimierung beitragen. Dies
wird meist implizit angenommen — ist allerdings nur dann der Fall, wenn die durch Schemata
beschriebenen Teile eines optimalen Losungskandidaten auch in suboptimalen Individuen einen
positiven Effekt auf deren Giite haben. Es lassen sich jedoch leicht Probleme konstruieren, bei
denen iiberdurchschnittlich bewertete Schemata zu suboptimalen Lésungskandidaten flihren bzw.
die Giite verschlechtern.

3.3 Verkniipfen mehrerer Individuen durch die Rekombination 93

Beispiel 3.24:
Die Funktion f: B> — R ist wie folgt definiert.

S(11) =5
S(110) = f(101) = f(011) = 0
f(100) = f(010) = f(001) =2
f(000) =4

Das globale Optimum liegt bei 111, aber alle Schemata des globalen Optimums fithren
in die entgegengesetzte Richtung. So gilt beispielsweise

f(l**):‘z‘<f(0>k*):2und
S(1x) = % < f(00%) = 3.
Analoge Aussagen gelten auch fiir f(x1x), f(x+1), f(1x1) und f(x11).

Existierende Zweifel, ob ein evolutiondrer Algorithmus {iberhaupt die technischen Randbedin-
gungen fiir das Schema-Theorem erfiillt, werden in den folgenden beiden Uberlegungen aus-
gedriickt. Erstens sind die Populationen in der Regel sehr klein verglichen mit der GréfBe des
Suchraums: Wahrscheinlichkeitsaussagen tiber so kleinen Mengen sind immer kritisch zu hinter-
fragen. Zweitens unterliegt die Aussage des Schema-Theorems der Annahme, dass die beobach-
tete Qualitit eines Schemas der tatséichlichen durchschnittlichen Qualitét aller Instanzen eines
Schemas entspricht. Dies gilt aber insbesondere dann nicht mehr, wenn einige Teile der Indivi-
duen in der Population bereits auf einem festen Wert konvergiert sind. Dadurch werden ganze
Teilbereiche oder Hyperebene aus der Schitzung der tatsdchlichen Schema-Qualitdt durch die
beobachtbare Qualitét ausgeschlossen. Vor allem wenn eine hohe Varianz innerhalb der vertrete-
nen Qualitdtswerte in einem Schema herrscht, sorgt dieses Ausblenden von Losungskandidaten
bei der beobachtbaren Giite fiir teilweise grobe Fehlschitzungen.

3.33 Formae als Verallgemeinerung der Schemata

Da das im vorigen Abschnitt vorgestellte Schema-Theorem ausschlieBlich fiir das Verfahren Ge-
NETISCHER-ALGORITHMUS (Algorithmus 3.14) formuliert wurde, kann man sich fragen, ob ei-
ne dhnliche Aussage auch flir andere evolutiondre Algorithmen mdglich ist. Hierfiir werden in
diesem Abschnitt die Schemata verallgemeinert, wobei uns insbesondere auch phénotypische
Eigenschaften statt der genotypisch definierten Schemata interessieren.

Beispiel 3.25:

Um die wesentliche Grundidee der Schemata herauszuarbeiten, wird nochmals H} =
x0 % 010 aus Beispiel 3.21 betrachtet. A fasst die Losungskandidaten

7 (Hy) = {000010,001010, 100010, 101010}

94 3 Prinzipien evolutiondrer Algorithmen

4 Y ' - ™ 7~ N
Merkmale Aquivalenz- Aquivalenzklassen
relationen Formae
Merky ———u______|
R NMerk] —> [Al}Mer/q: AZ]Mer/q s
Merk, _\H ~ Merk L [AI]MEI‘/Q‘, AZ]Me)"/(z~ cee
Merky —_—] 2 /"‘" [Al]Mer/(_;: AZ]Me)"/(3~
I ~ Merk % [Al]Mer/q‘, [AZ]Mer/(4~ fee
Merky ———uo | 3
I
NMerk4/
Masken Schemata
P |1 ~Pos| — |
051 [AI]POS“ [A2]P0517
Posy - "~ Pos; L [AI]POSQ': [A2]P0527 ces
AN J . ~ .

Bild 3.23 Schematische Beschreibung der Masken und Schemata innerhalb der Theorie der Formae.

zusammen. Diese zeichnen sich genau dadurch aus, dass sie an den Positionen Pos =
{2, 4, 5, 6} dieselben, ndmlich die vom Schema vorgegebenen, Werte haben. Mathe-

matisch ldsst sich das Vorgehen iiber die Aquivalenzrelation

A.G ~pys B.G:&ViePos: A.Gi =B.G;

beschreiben. Dadurch wird der komplette Suchraum in insgesamt 16 Aquivalenzklas-
sen geteilt — entsprechend der moglichen Werte an den Bits der Positionen in Pos. So

gilt:

S (H) = [100010]
bzw. [101110]

Po.

~ Po.

Allgemein definiert fir 4 = B/ jede Menge Pos C {1,...,I} eine Art Maske, welche die fiir
eine Eigenschaft irrelevanten Teile des Losungskandidaten ausblendet. Eine Maske mit #Pos = k

definierten Stellen erzeugt genau 2/ % Aquivalenzklassen.

Statt aus den Masken kdnnen wir auch aus beliebigen anderen Eigenschaften, z.B. der Zu-
gehorigkeit eines reellwertigen Werts zu einem Intervall oder das Vorkommen einer Kante in
einer Rundreise fiir das Handlungsreisendenproblem, eine Aquivalenzrelation ableiten. Die Fi-
genschaften bezeichnen wir dann als Merkmale. Die daraus resultierenden Aquivalenzklassen
werden als Formae (singular: Forma) bezeichnet. Bild 3.23 zeigt die Zusammenhéinge zwischen

den unterschiedlichen Begriffen.

Definition 3.16 (Formae):

_=1{000010, 001010, 100010, 101010}
={000110, 001110, 100110, 101110}.

Sei .# die Menge der zu berlicksichtigenden Merkmale. Ein Merkmal (oder Eigen-
schaft) Merk ¢ .# induziert eine Aquivalenzrelation ~ g, so dass fiir zwei beliebige
Individuen mit A.G, B.G € ¥4 entweder 4.G ~p, B.G gilt, falls das Merkmal iden-
tisch bei beiden Individuen ausgeprigt ist, oder sonst 4.G %z B.G. Damit ergibt

3.3 Verkniipfen mehrerer Individuen durch die Rekombination

sich zu jedem Individuum A4.G seine Aquivalenzklasse bzw. Forma

[4.G) —{B.G €% | A.G ~pp B.G}.

~Merk "
Die Anzahl der Formae, die durch die Aquivalenzrelation eines Merkmals eingefiihrt
wird, heiBt Genauigkeit des Merkmals. Ferner sollen zwei Formae A und A’ miteinan-
der vertriiglich (A<t A") heiflen, wenn es ein Individuum gibt, das beide Eigenschaften
miteinander vereinbaren kann, d. h.

ApaA e ANA #0

Beispiel 3.26:

Zwei unterschiedliche Merkmale werden fiir das Handlungsreisendenproblem am Bei-
spiel einer Probleminstanz mit vier Stiddten betrachtet. Zunichst {ibernehmen wir die
Masken der Schemata fiir Permutationen als Genotyp. D.h. aus Merk = {3} folgert,
dass zwei Rundreisen genau dann dquivalent (hinsichtlich der Maske) sind, wenn die-
selbe Stadt als dritte Stadt besucht wird. Damit ergibt sich eine beispielhafte Forma
wie folgt.
[(1’ 27 3’ 4)} {(17 25 37 4)7 (17 47 35 2)’ (4? 27 37 1)
(27]‘) 37 4)7 (4) 17 3) 2)’ (27 47 37 1)}

~Merk

Wie man sich leicht veranschaulichen kann, haben die Losungskandidaten der Forma
nur sehr wenig Gemeinsamkeiten beziiglich des zu l6senden Problems — insbesondere
war ja auch die KANTENREKOMBINATION (Algorithmus 2.4) so definiert, dass eine an-
dere Art der Information erhalten bleibt als die Position einer Stadt in der Tour. Daher
wollen wir in einem zweiten Merkmal die Kanten der Rundtour beriicksichtigen. Und
zwar sollen durch das Merkmal Merk’ = {3} diejenigen Losungskandidaten als gleich-
wertig betrachtet werden, die nach der Stadt 3 dieselbe Stadt besuchen, d. h. dieselbe
Kante benutzen. Formal ist die Aquivalenzrelation wie folgt definiert

AG oy BGedije{l,... 1} (4.Gi=3 AB.G;=3A
AG(l mod /)+1 = B~G(j mod /)+1)-
Damit wird dann beispielsweise die folgende Forma eingefiihrt

[(1, 2, 3, 4)] ={(1, 2,3,4), (2,1, 3,4), (2, 3,4, 1), (1, 3, 4, 2),

(3,4,1,2),(3,4,2, 1), (4,1, 2,3), 4,2, 1, 3)}

™ Merk!

Wie man leicht erkennen kann, besteht bei dieser Forma eine stirkere phénotypische
Ahnlichkeit zwischen den verschiedenen Elementen der Forma.

95

Notation: Fiir einen gegebenen Genotyp & = M’ kann also ein beliebiges Schema H € (MU

{x})! iiber ein Merkmal

Merk={i| (1 <i<I) N (Hi# %)}

96 3 Prinzipien evolutiondrer Algorithmen

und einen Vertreter aus der Menge der Instanzen A.G € .# (H) beschrieben werden. Wir schrei-
ben im Weiteren dann auch H = Hyy,(4.G). Entsprechend der obigen Definition gilt ebenso
I (H) = [4.Glwyp-

Auf dieser Grundlage lédsst sich das folgende Korollar formulieren, das die Grundidee des
Schema-Theorems extrahiert.

Korollar 3.2 (Allgemeines Schema-Theorem):
Sei P(t) = (A"} ;< eine Population zum Zeitpunkt ¢ und A ein Forma. Die Se-
lektion Sel entspricht der p-maligen Anwendung einer Selektion Sel, die durch die

Indexselektion [NS5 :R* — {1,...,u} definiert ist — d. h. die Wahl der einzelnen In-
dividuen ist voneinander unabhingig. Ferner sei Rek® : (¥ x 2)? — (¥4 x Z)? ein
Rekombinations- und Muf : 4 x & — 4 x % cin Mutationsoperator mit 2 = {1 }.
Dann gilt bei einer Anwendung in dieser Reihenfolge:

Erw [pylﬂ)] > psel(Aa t) 'pﬂmur(A7 t) Pk (A, l), (3.2)

wobel

pett)= Y PrecslSel (P(1)) = (4)]
AeP(t) mit A.GeA

Pomu(A,1) = Precz[Mut® (4).G € A| A € P(1) A A.G € A
Prek (A1) = Precz p ey RekS (4,B).G e A| A € P(t) A A.G € Al

Um den Effekt zu erreichen, dass qualitativ hochwertige Formae tiberproportional stark wachsen,
miissen die durch die Formae beschriebenen Eigenschaften der Losungskandidaten, das Optimie-
rungsproblem und die betrachteten Operatoren zusammenpassen. Im Folgenden werden einige
Regeln vorgestellt, die den gewlinschten Effekt nachhaltig unterstiitzen.

Zunichst miissen die Formae die Population so partitionieren, dass sich wihrend des Optimie-
rungsprozesses die beobachteten Glitewerte verschiedener Formae wesentlich unterscheiden und
auch tatséchlich reprisentativ flir die Formae sind. Dadurch wird der Term p,; in Korollar 3.2
aussagekriftiger. Zwei Regeln lassen sich hierfiir formulieren. Erstens soll die Dekodierungs-
funktion eine minimale Redundanz aufweisen; d. h. jede Komponente im Genotyp ¥ sollte auch
zusétzliche Information liefern. Idealerweise stellt daher die Dekodierungsfunktion eine Bijekti-
on dar. Ist dies nicht méglich, existieren mindestens zwei Individuen 4 und B mit 4.G,B.G € ¢
(4.G # B.G), die durch die Dekodierungsfunktion auf denselben Wert dec(A4.G) = dec(B.G)
abgebildet werden. Dann sollten die Individuen 4 und B in denselben Formae enthalten sein,
d.h. [4.G].,,, = [B-G]~,,,- Damit wird gewishrleistet, dass die den Formae zugrundeliegenden
Eigenschaften phéanotypisch relevant sind. Beispielsweise wiirden beim Handlungsreisendenpro-
blem die drei Rundreisen (1, 2, 3, 4, 5, 6), (6, 1, 2, 3, 4, 5)und (1, 6, 5, 4, 3, 2) in
denselben Formae (hinsichtlich der benutzten Kanten) liegen, da sie komplett dieselben Kanten
benutzen. Zweitens sollen dariiber hinaus vor allem Individuen mit dhnlicher Glite bzw. phéno-
typischer Ausprigung in einer Forma zusammengefasst werden — das Prinzip der Ahnlichkeit in
Formae. Dadurch wird der Kritik am Schema-Theorem hinsichtlich der hohen Giitevarianz bei

3.3 Verkniipfen mehrerer Individuen durch die Rekombination 97

kleinen Populationen gegengewirkt. Dies sollte insbesondere fiir Merkmale mit geringer Genau-
igkeit gelten, da fiir solche Formae leicht Informationen angesammelt werden kénnen — aller-
dings eben auch meist mit einer sehr hohen Varianz oder Fehlerrate.

Nach der Baustein-Hypothese sollen sich kleine positive Eigenschaften an Individuen zu
grofien (hoffentlich auch positiven) Eigenschaften verbinden. Dies ist bei den Formae nur dann
moglich, wenn die zugrundeliegende Eigenschaft eine mannigfaltige Granularitit aufweist und
es feingranulare Formae gibt, die Teil verschiedener grobgranularer Formae werden kénnen, wie
dies beispielsweise das Schema 011 # %= fiir die Schemata 011 % 0% und 01101 erfiillt. Mathema-
tisch kann man dies iiber einen geforderten Abschluss gegen den Schnitt von Formae formulieren,
d.h.

¥ Formae A, A’ 3 Forma A” : AnA =A".

Abschlieffiend muss die Rekombination die Kombination der verschiedenen Merkmale und
deren Wachstum in der Population entsprechend unterstiitzen. Diesbeziiglich werden drei unter-
schiedliche Aspekte im Weiteren vorgestellt. Erstens sollte der Rekombinationsoperator eine be-
trachtete Forma maglichst erhalten, d. h. die Wahrscheinlichkeit p_,.4(A.) in Lemma 3.2 sollte
moglichst grof3 sein. Dies wird unter anderem durch eine Vertrdglichkeit der Formae mit dem Re-
kombinationsoperator erreicht, die besagt, dass alle mdglichen Nachkommen zweier Instanzen
einer Forma ebenfalls eine Instanz der Forma sind.

VAVA,Bmit A.G.B.GE€AVE €E: Rek®(4,B).GEA

Neben der Forderung, dass gemeinsame Eigenschaften der Eltern auf die Kinder iibergehen, soll-
te sich zusitzlich jede im Kindindividuum auftretende Eingenschaft auf mindestens ein Elternin-
dividuum zuriickfithren lassen. Man spricht auch von der Ubertragung von Genen oder phino-
typischen Allelen. Dies wird vor allem fiir die Merkmale mit minimaler Genauigkeit formuliert,
die sich nicht weiter zerlegen lassen.

VA, BYE € Y minimales A : Rek®(4,B).GEA = (A.GEAV B.GEA)

Ist dieses Entwurfsprinzip erfiillt, handelt es sich um einen rein kombinierenden Operator. An-
dernfalls sagt man auch, dass der Rekombinationsoperator eine implizite Mutation durchfiihrt,

Und drittens mdchten wir noch garantieren, dass ein Rekombinationsoperator tatséchlich auch
alle moglichen Kombinationen von verschiedenen Merkmalen erzeugen kann. Dies ist die Ver-
schmelzungseigenschafft.

VA, A’ mit Aba A’ VA mit A.GEAVBmit B.Ge A 3E €Z: Rek®(4,B).G € AnA

Werden diese Forderungen an das Optimierungsproblem, die Formae und den Rekombinations-
operator erfiillt, sollte sich der positive Effekt des Schema-Theorems auch bei den evolutiondren
Algorithmen einstellen, die keine binire Kodierung benutzen.

Tatsichlich gibt es verschiedene Bestrebungen, die obige Forma-Theorie fiir einen konstruktiven Entwurf
neuer evolutioniirer Algorithmen zu benutzen. Hierauf wird noch knapp im Abschnitt 6.2.2 eingegangen.

98 3 Prinzipien evolutionidrer Algorithmen

3.34 Schema-Theorie und der Suchfortschritt

Im Laufe der Jahre wurde viel Kritik am Schema-Theorem geéduflert. Der vermutlich nachhaltigs-
te Kritikpunkt besagt, dass das Schema-Theorem keine Aussage zum eigentlichen Suchprozess
macht. Uberdurchschnittlich gute, kleine Bausteine sollen zwar ein starkes Wachstum in der Po-
pulation erfahren, ob dies jedoch eine positive oder negative Auswirkung auf den Fortschritt
einer Optimierung hat, bleibt offen. Aus dieser Kritik heraus hat der Wissenschaftler Lee Alten-
berg das Price-Theorem aus der Biologie auf die evolutionidren Algorithmen iibertragen, was ihn
letztendlich zu der Aussage gefiihrt hat, dass ein Schema-Theorem »fehle«, das tatsdchlich aus
den Schemata eine Aussage zur Giiteentwicklung ableitet. Altenberg hat spiéter die gewiinschte
Aussage hergeleitet, die dann den Namen »fehlendes« Schema-Theorem behalten hat.

Wer an dem Price-Theorem interessiert ist, sollte die Originalliteratur zu Rate ziehen. Hier wird lediglich
das »fehlende« Schema-Theorem vorgestellt, da es die interessanteren Uberlegungen erlaubt.

Das Untersuchungsobjekt ist weiterhin ein GENETISCHER-ALGORITHMUS (Algorithmus 3.14) mit
fitnessproportionaler Elternselektion — allerdings ohne Mutation. Dafiir kénnen wir den Rekom-
binationsoperator etwas allgemeiner fassen: Wir erlauben, dass prinzipiell die einzelnen Gene
von den beiden Elternteilen beliebig ibernommen werden kénnen. D. h. ganz analog zur Be-
schreibung der Schemata als Aquivalenzklassen kann auch hier iiber eine Indexmenge Merk C
{0....,/} der Teil des Kindindividuums beschrieben werden, der von einem Elternteil kommt.
Fiir ein Individuum A4 bezeichnet damit das Schema Hypq(A4.G) alle méglichen Individuen
I (Hyer(A.G)), die als erstes Elternteil in Frage kommen. Die komplementire Indexmenge
Merk = {L,..., 1} \ Merk beschreibt die Menge der méglichen zweiten Elternteile. Ein Merkmal
charakterisiert also immer eine konkrete Ausprigung der Rekombination. Ublicherweise setzt
sich ein Rekombinationsoperator aus vielen solcher Auspragungen zusammen, die mit evtl. un-
terschiedlichen Wahrscheinlichkeiten p ., auftreten kénnen.

Beispiel 3.27:
Der schon mehrfach betrachtete EIN-PUNKT-CROSSOVER (Algorithmus 3.13) auf ei-
nem Genotyp der Linge / = 4 entspricht der folgenden Menge von maglichen Merk-
malen

Merk € {{1}. {1, 2}, {1, 2, 3}},

die alle mit der Wahrscheinlichkeit pyps = % auftreten. Die Merkmale {1, 3} lassen
sich beispielsweise nicht in einem einzelnen Schritt von einem Elternindividuum tiber-
nehmen. Der uniforme Crossover UNIFORMER-CROSSOVER (Algorithmus 3.11) hat alle
Teilmengen als mogliche Merkmale

Merke 2({1,... 4} = {0, {1}, {2}, {3}, {4},
{1. 2}. {1, 3}, {1, 4}, {2. 3}, {2. 4}, {3. 4},
{1. 2,3}, {1, 2, 4}, {1. 3, 4}. {2, 3, 4}
{1, 2, 3, 4}},

die alle mit der Wahrscheinlichkeit pp,x = % auftreten.

3.3 Verkniipfen mehrerer Individuen durch die Rekombination 99

Sei nun ¥ = B* und Merk = {1} der Anteil eines Elternindividuums. Dann be-
schreibt Merk = {2, 3, 4} den Beitrag des anderen Elternteils. Fiir ein Kindindi-
viduum 4 mit 4.G = 1001 ergeben sich damit die folgenden durch die Schemata
Hpgerk(4.G) = 1x#x und Hi— (4.G) = %001 beschriebenen moglichen Elternindivi-
duen. Es gilt

I (Hpyerk (A.G)) = {1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111} und

S (Hi— (4.G)) = {0001, 1001}.

Der im Weiteren prisentierte Ansatz wird der Verkniipfung von Schemata mit dem Suchfort-
schritt auf zwei Ebenen gerecht. Einerseits stecht am Ende tatsichlich eine Aussage liber die
Differenz der durchschnittlichen Giitewerte nach einer Iteration in der Erwartung. Andererseits
geht darin der konkrete Zusammenhang zwischen den Giitewerten der Elternindividuen und
des Kindindividuums ein. Hierfiir betrachten wir zunéchst eine feste aber beliebige Indexmen-
ge Merk einer Rekombination. Hyz(4.G) und Hi-— (4.G) bezeichnen die moglichen Eltern
von 4. Dann misst die Kovarianz

PO

Hyor(4.G) T 1 (4.

Cov |A.F, ekl _>(t) e %)
(F)?

wie stark sich die Giite der Eltern auf das Kindindividuum fiir die festgew#hlte Rekombinati-
on {ibertrégt. Statt der Giite der Eltern wird die durchschnittliche Selektionswahrscheinlichkeit
betrachtet, die ja gerade proportional zur Gtite ist.

Lemma 3.1:
Fiir die Kovarianz der Eltern- und Kindgiitewerte gilt

=) =) =) =)

FH 4 (A.G 'FHN A.G _ FH 4 (A.G 'FHN A.G

COV AF. Muk(—)(t) Merk() _ 2 (AF _F(l)> . MCIk(_)(t) Mer/(()
(F)? 4.Gew (Fy2

"PAG

wobei py ¢ die Hiufigkeit ist, mit der das Individuum 4 in der Population vorkommt.

Beweis 3.5:

=) F0
Cov A.Fa HMUk(A.G_)(,) HM(A'G)
(F)?
— 3 F-Fy
A.Ge¥
() (1) =) =)
Ftent1.6) Tl (4.6) F tven8.6) T H— (8.G)
=) - Z =) "PB.G) PAG
(F)? B.Ge¥ (F*)2

100 3 Prinzipien evolutiondrer Algorithmen

=) =)
F F
_ ek 4.G) T H o (4.6)
= Y (aF-FY). e (Fm)zM‘* PAG
A.Ge¥
(1) (G)'F(t) 56)
Hytors (B. H—(B.
—(el —0 Merk 'pB.G)'(Y AF-psg)
B.Ge¥ (F*)? A.Ge¥
— ———

F .
o Hypern(B.G) ~ Hipr (B.G)
+F(t),(2 Z_ierk 'PB.G)'(Z PA.G)
A.Gew

N——

=1
Die letzten beiden Zeilen sind bis auf das Vorzeichen genau identisch und kiirzen sich
daher heraus.

Beispiel 3.28:

Zur Veranschaulichung des Kovarianzterms betrachten wir ein kleines Beispiel: Eine
bindre Zeichenkette der Lange / = 8 enkodiert standardbinir die Zahlen {0, ..., 255}.
Als Rekombination wird hier fest der Crossover betrachtet, der die beiden ersten
Bits aus einem Elternteil und den Rest aus einem anderen Elternteil ibernimmt (vgl.
Bild 3.24). Im Weiteren werden die Werte A.F und der Faktor mit den durchschnitt-
lichen Fitnesswerten der moglichen Eltern fiir eine Population betrachtet, die jedes
mogliche Individuum aus dem Suchraum genau einmal enthilt. Eine hohe Kovari-
anz ergibt sich, wenn die Werte der Elterngiite moglichst dhnlichen Werten bei den
Kindindividuen zugeordnet sind. Es werden zwei mégliche Bewertungsfunktionen
betrachtet. Die Ergebnisse fiir F(x) = x sind in Bild 3.25 dargestellt. Man erkennt
deutlich, dass die Fitnesswerte der Eltern in vier Abschnitten auftreten, die durch das
Elternteil mit den beiden hochstwertigen Bits als definierte Stellen im Schema be-
stimmt sind. Man erkennt ebenso deutlich, dass hier eine hohe Kovarianz zwischen
den beiden Termen herrscht. Demgegeniiber wird die Bewertungsfunktion F'(x) =
(x —100)? in Bild 3.26 gestellt. Auch hier bestimmt das Schema mit der Ordnung
2 vier Schichten der Elternfitness. Dabei erkennt man deutlich in dem kleinen Kas-
ten, dass die Kovarianz insbesondere im unteren Gilitebereich wesentlich schlechter
ist. Dies kann die Ubertragung der Giite von Eltern auf die Kinder schwieriger ge-
stalten.

Damit ldsst sich im folgenden Satz der zu erwartende Giiteunterschied zwischen
zwei aufeinanderfolgenden Populationen bestimmen.

Crossover-Punkt

[1]ofo]t]of1]1]0] Kindindividuum

Bild 3.24
1 0 % % % % % x mégliche Der Crossover-Punkt der Rekombination und das ent-
w0101 1 0/[EW stehende Kindindividuum bestimmen die moglichen
em Elternindividuen als Schemata.

3.3 Verkniipfen mehrerer Individuen durch die Rekombination 101

300 T T T T 5 T T 2,5
2%0F 2t / P

: , 12

b= I T il -~
%) E L, g
E 200fF 2 |] it 5
2 i 7 =
< — < 415 2
S oo .
2 . - , 5
E o osof Kindgiite - 2
2 i &
Y Kindgiite — _p, _~7.-" @
n 100 |- g A
Q d O
st - k=i
:E > durchschnittliche Elternfitness 405 B
] 50 | :

0 1 1 1 1 1 0
0 50 100 150 200 250 300

Genotyp des Kindindividuums

Bild 3.25 Die beiden Faktoren der Kovarianz werden fiir die Bewertungsfunktion F(x) = x fiir alle mogli-
chen Individuen aufgetragen. Der kleine Kasten trégt die Elternfitness iiber die Kindgiite auf und
sollte fiir eine hohe Kovarianz méglichst der Hauptdiagonalen entsprechen.

25000 T T 3,5
2 13
20000 - 2
%] E 125
= >
= =
= 15000 M
=z 12 g
S = —— g
5 Kindgiite o5
5 10000 198
°
A Kindgtite 2
< P _ 5]
Q Prd 1 g
2 -7 = Elternfitness i
B 5000 F----
"""" 10,5
0 o= 1 1 0
0 50 100 150 200 250 300

Genotyp des Kindindividuums

Bild 3.26 Die beiden Faktoren der Kovarianz werden fiir die Bewertungsfunktion F (x) = (x — 100)? fiir alle
moglichen Individuen aufgetragen. Im Vergleich der Elternfitness mit der Kindgiite im kleinen
Kasten erkennt man, dass die Kovarianz hier niedriger ausfillt als in Bild 3.25.

102 3 Prinzipien evolutiondrer Algorithmen

Satz 3.4 (»Fehlendes« Schema-Theorem):
Fiir einen genetischen Algorithmus nur mit Rekombination gilt:

AF,

)])]
Erw [V -FO =y | P (Cov 7

MerkC{1....,]

Ftyont4.G) Fi—(4.G)]

F F

(1) Hyer(4.G) Hm(AG)

- (Pa.G—PH ek (A.G) " PH—(4.G) (AF—F")
A.é% ek 4.G) MU"k() (F(t))z

mit Haufigkeiten py,, . (4.6) und PH—(4.) der erzeugenden Schemata von 4.G und
durchschnittlichen Schematagiitewerten Fy, (4 und me (4.G) -

Vor dem Beweis des Satzes wird zunichst auf seine Bedeutung und mdégliche Interpretationen
eingegangen. Die tatséichlich zu erwartende Verdnderung der durchschnittlichen Giite in einer
Iteration des Algorithmus wird exakt als eine Summe tber alle Méglichkeiten, wie die Rekombi-
nation stattfinden kann, auf der rechten Seite dargestellt. Die Summanden setzen sich dabei aus
dem oben bereits diskutierten Kovarianzterm und einer weiteren Summe zusammen. Die Kova-
rianz macht dabei eine Aussage dariiber, wie gut die Rekombination das Problem widerspiegelt
— d. h. ob die Glitewerte der Eltern einen Bezug zum entstehenden Kindindividuum haben. Die
innere Summe setzt sich fiir alle méglichen entstehenden Individuen aus einem Term bestehend
aus den folgenden Teilen zusammen:

+ cine HAufigkeitsinformation beziiglich der beteiligten Individuen
(Pac T PHypi(A.G) 'PH@(A.G)),

+ eine Qualititsinformation (4.F — f(f)) und

+ die Auswahlwahrscheinlichkeit der moglichen Eltern.

Damit bestimmen die ersten beiden Faktoren wesentlich, ob eine Entstehung des Individuums
bei einer Rekombination einen positiven oder einen negativen Einfluss auf die Giiteentwicklung
hat.

Ein iiberdurchschnittlich gutes Individuum (4.F > FO)) wird nur dann eine positiven Auswir-
kung nach sich ziehen, wenn ausreichend viele mégliche Elternindividuen zur Verfiigung stehen
und das Individuum selbst eher unterreprésentiert ist (p4.¢ < Pry,,,(4.G6) 'PHM(A_G)). Die bei-
den méglichen Extremsituationen sind die folgenden: A existiert noch nicht in der Population,
kann aber entstehen; dann wird die Giiteentwicklung positiv beeinflusst. Ist 4 allerdings bereits
in der Population vorhanden und die entsprechenden Elternschemata sind nur im Individuum 4
enthalten, dann wird trotz der tiberdurchschnittlichen Giite von 4 die Giliteentwicklung negativ
beeinflusst, da die Haufigkeit von 4 wahrscheinlicher abnimmt.

Dasselbe gilt mit umgekehrtem Vorzeichen fiir unterdurchschnittliche Individuen (4.F < fm).
Diese haben einen negativen Effekt, wenn die Schemata in den Elternindividuen relativ stark re-
présentiert sind (p4.6 < Pr,,.(4.6) " PH_—(4.G))- Im anderen Fall ist der Effekt auf die Giiteent-
wicklung positiv.

3.3 Verkniipfen mehrerer Individuen durch die Rekombination 103

Beweis 3.6 (von Satz 3.4):

Die Verdnderung von einer Generation zur nichsten ldsst sich mit den Merkmalen der
Rekombination wie folgt beschreiben.

Flna.6) FH- (4.6)

1
P;HG) 2 PMerk -

—= “PHpoi(4.G) * PH——(4.G) (3:3)
Merkg{l,”.J} (F(t))z M]\() Merk()

Die unterschiedlichen Verdnderungen der Rekombination verbergen sich in den ver-
schiedenen Merkmalen Merk, die mit den fiir jeden Operator unterschiedlichen Wahr-
scheinlichkeiten pjg,; auftreten konnen. Indem die Wirkung der Rekombination in
den beiden Schemata verborgen wird, reduziert sich die Verdnderung der Haufigkeit
auf das Produkt der Auswahlwahrscheinlichkeit der Eltern und der Wahrscheinlichkeit,
dass die zugehorige Rekombination auftritt.

Die in der Generation f 4 1 zu erwartende durchschnittliche Giite wird in der fol-
genden Formel berechnet, wobei in der zweiten Zeile die Gleichung 3.3 eingesetzt

wird.
B [FV] = 5 A pfT)
A4.Gew
Frpyon(4.6) Frr—(4.0)
= Y AF. (S Pk — My t(A.G) PH-—(A.G)
A.Ged MerkCA{1,...0} (F(t))2 ek 1 G)

FH’VIW'I{ 4.G)" Fy__ (4.G)
= ¥ P D G b = R >
MerkC{l,‘..J}< A.Gew (F¥y2 erk(A-G) " PHyzz (4.G)

=%

Da die Summanden in (x) sehr dhnlich zur Kovarianz in Lemma 3.1 sind, ldsst sich
die Formel () wie folgt umformen.

(x) = Cov |A.F, FHw(A.G_)(fHW(A.G)
(F)?
FHW)*(AAG) 'FH/V (4.G)
+ AF. — Merk) e ~
A‘GE’E% (F(t))Z (pH\icr'k(A-G) PH(4.6) PAG)
F Fhyn4.6) FH__(46)
+ F(t). Mer g 2“”“" pre
A4.Ge¥ (F)
= Cov |A.F, FHMer-k(A,G—)'FI{%(A.G)
(F(’))z
F F
=)y L B (4.G) T Hp (4.G)
-+ (A.F-F"). ik (Do (4.6 PH— (4.G) — PAG)
A.Gzé€¢ (F(t))z verk (4.G) " PH—(1.6)

F -F

()‘) Huperk (4.G) Hf;Z(AG)

. .A Ge9 (F(f))Z : "PHyen(4.6) " PHigz(4.6)
.Ge¥

104 3 Prinzipien evolutiondrer Algorithmen

Diese Darstellung entspricht schon fast dem im Theorem formulierten Resultat — wir
miissen lediglich die letzte Zeile nach F transformieren. Dies ist genau dann der
Fall, wenn die Summe in der letzten Zeile 1 ergibt. Um dies zu zeigen, {iberlegen
wir uns, dass jeder Genotyp genau durch zwei komplementére Schemata beschrieben
werden kann. Damit ladsst sich die Summe tber alle méglichen Genotypen auch als
Doppelsumme schreiben, die {iber die Schemata und komplementiren Schemata zur
Rekombinationsmaske Merk aufsummiert werden. Die Menge der Schemata sei

Hyterk = {Hyerk(4.G) | 4.G € 9}

und die Menge der komplementéren Schemata

Ho— = {H@(AG) (4.Ge g} :

Dann ergibt sich

SR>

(1)
XGHMG,,](yEHm (F)2

1 o —
=0 2 (Fepe X Fy-py)
(F) XEH pork ¥ EHM@I‘]{
=F
1 —
- . z Fx Py = 1
F XeHMerk
=F

Die Behauptung des Theorems folgt direkt.

Beispiel 3.29:
Die Relevanz des »fehlenden« Schema-Theorems wird abschlieend an einem kleinen
Beispiel verdeutlicht. Als Genotyp wurde eine bindre Zeichenkette mit 16 Bits benutzt,
die standardbinér eine ganze Zahl enkodiert. Diese Zahl soll maximiert werden. Da-
mit entspricht die ausschlie3lich aus Einsen bestehenden Zeichenkette dem Optimum
mit dem Giitewert 65 535. Gemil den Voraussetzungen des Theorems wurde keine
Mutation sondern nur eine Rekombination, hier der EXN-PUNKT-CROSSOVER (Algorith-
mus 3.13), benutzt. Die PopulationsgroBe betrigt 400, da so Zufallseffekte minimiert
werden. Der Algorithmus lief {iber 20 Generationen. Bild 3.27 zeigt die Ergebnisse.
Im oberen Teil des Bildes ist der Verlauf der durchschnittlichen Giite in der Popu-
lation dargestellt und die Verdnderung pro Generation wird mit der Prognose aus dem
»fehlenden« Schema-Theorem verglichen. Die Genauigkeit der Prognose unterstreicht
die Bedeutung des Theorems: Vorhersagen hinsichtlich des Erfolgs und Misserfolgs ei-
nes evolutiondren Algorithmus (mit einem gewichtigen Rekombinationsoperator) soll-
ten immer die Korrelation der Giite von Eltern und Kindindividuen beriicksichtigen,

3.3 Verkniipfen mehrerer Individuen durch die Rekombination 105

12000 T T T T T T T T T
L < durch das fehlende Schema-Theorem vorhergesagte _
Verinderung der durchschnittlichen Giite
8000 |
g
= - tatsidchliche Verdnderung —
= T
.g 4000 L der durchschnittlichen Giite |
:E | e i
S g)
0 - o T S =
0 2
60000 —
50000 durchschnittliche Giite =]
2
= —
@)
40000 -
30000

durchschnittlicher Wert der einzelnen Bits

0 2 4 6 8 14 16 18 20
215
2% '
20

. 25 Prozent Einsen . 50 Prozent Einsen D 75 Prozent Einsen D 100 Prozent Einsen

Bild 3.27 Der Optimierungsprozess aus Beispiel 3.29 (Maximierung einer binir kodierten Zahl mit 16 Bits)
wird iiber 20 Generationen veranschaulicht. Dies demonstriert zweierlei: Das obere Bild unter-
streicht die Genauigkeit des »fehlenden« Schema-Theorems durch einen Vergleich der Prognose
mit der tatséichlichen Veriinderung. Die Grauwerte unten zeigen, wie sich dies in den Bits der
Individuen widerspiegelt — die einzelnen Bits konvergieren unterschiedlich schnell.

106 3 Prinzipien evolutiondrer Algorithmen

o0

=}
5 2
N @ 10000 F
m'g E
£ 3 F
Lo L
N B

2
§3 1000 F
5 © i
S e c
5 8 C
~ 5
5 R
o B 16
on
s 2
£ @
L
m & 0 5

5 6 Crossover-
Generation 15 20 O Punkt

Bild 3.28 Dieses Bild erginzt die Prognose der Giiteverdnderung aus Bild 3.27 durch den Beitrag des Ko-
varianzterms fir die 15 unterschiedlichen Crossover-Punkte. Man erkennt deutlich, dass sich der
Crossover-Punkt mit dem maximalen Giitebeitrag langsam vom Crossover-Punkte zwischen dem
15-ten und dem 16-ten Bit in der ersten Generation zum Punkt zwischen dem 12-ten und 13-ten
Bit in Generation 20 verschiebt.

diirfen aber auch nicht die relevanten Aspekte der Vertreter komplementirer Schema-
ta in der aktuellen Population als mégliche Eltern unberiicksichtigt lassen.

Der untere Teil von Bild 3.27 verdeutlicht, wie sich die Gliteentwicklung auf die ein-
zelnen Bits des Genotyps auswirkt. Deutlich kann man in diesem Beispiel sehen, dass
zundchst die hochwertigen Bits konvergieren, da sie den groften Beitrag zur Maximie-
rung der Bewertungsfunktion liefern konnen. Dies verschiebt sich leicht wihrend den
ersten 20 Generationen, Fiir das »fehlende« Schema-Theorem bedeutet dies, dass sich
die Schemata, die einen positiven Einfluss auf die Giiteentwicklung haben, ebenfalls
verdndern. Dies ist in Bild 3.28 zumindest ansatzweise durch den Kovarianzwert flir
die verschiedenen méglichen Crossover-Punkte dargestellt. Zunichst hat ein Crosso-
ver zwischen den beiden héchstwertigsten Bits den gréBten Einfluss. Mit zunehmender
Konvergenz der hochwertigen Bits, nimmt dieser Einfluss ab und in Generation 20 hat
der Crossover-Punkt zwischen dem 12-ten und dem 13-ten Bit den maximalen Effekt.

34 Selbstanpassende Algorithmen

Auf einige grundscitzliche Uberlegungen zur Angepasstheit von Operatoren folgt die beispielhafte
Darstellung der drei bekannten Techniken zur Anpassung.

In den bisherigen Abschnitten wurden die zufilligen Operationen Mutation, Rekombination und
Selektion als wesentliche Bestandteile der evolutiondren Algorithmen vorgestellt und deren Wir-
kungsweise und Interaktion analysiert. Dieses Verstdndnis mochten wir in diesem Abschnitt um
einen Faktor erweitern, der eine Riickkopplung vom Verlauf der Optimierung zur Wirkungswei-

3.4 Selbstanpassende Algorithmen 107

Algorithmus 3.15

DREIERTAUSCH-MUTATION(Permutation 4 = (4q,...,4,))
B—4

uy «— wihle Zufallszahl gemaB U({1,...,n})

up «— wihle Zufallszahl gemdB U({1,...,n})

u3 < wihle Zufallszahl gemiB U({1,...,n})

qu ‘_Aug

By, — Ay,

Bu3 — Aul

return B

[e=TEN B e Y R R S

se der Operationen erlaubt. So entstehen Algorithmen, die in einem gewissen MaB »intelligent«
auf sich dndernde Rahmenbedingungen reagieren.

34.1 Einfluss des Stands der Suche

Um die Hypothese dieses Abschnitts hinreichend zu motivieren, greifen wir das Beispiel des
Handlungsreisendenproblems aus Abschnitt 2.3 wieder auf. Der Vergleich zweier Mutations-
operatoren hatte zu der Schlussfolgerung gefiihrt, dass der Operator INVERTIERENDE-MUTATION
(Algorithmus 2.2) aufgrund seiner kleineren Modifikationen besser flir das Problem geeignet ist.

Beispiel 3.30:
Nun mochten wir die INVERTIERENDE-MUTATION mit einem auf den ersten Blick noch
ungeeigneteren Operator DREIERTAUSCH-MUTATION (Algorithmus 3.15) vergleichen:
dem zyklischen Tausch von drei zufilligen Stidten auf der Tour. Zur Optimierung
wurde hier ein Problem mit 51 Stidten gewéhlt und der Algorithmus lief ohne Rekom-
bination.
Bild 3.29 zeigt rechts den Verlauf der Optimierung. Die vermeintlich ungeeignete
Operation DREIERTAUSCH-MUTATION ist in den ersten 50 Generationen besser als die
favorisierte INVERTIERENDE-MUTATION.

Dies ist ein typischer Effekt, den man hdufig beim Vergleich von verschiedenen Operatoren oder
Algorithmen erlebt. Um dies genauer zu untersuchen, wird die relative erwartete Verbesserung
als MaB} dafiir eingefithrt, welche Verbesserung ein Operator bringen kann. Dabei werden zwei
wichtige Faktoren erfasst: einerseits die Wahrscheinlichkeit, dass iiberhaupt eine Verbesserung
eintritt, und andererseits die Verbesserung, die im Erfolgsfall erwartet werden kann. Die mogli-
chen Verschlechterungen bleiben dabei unberticksichtigt, da sie in der Regel von der Selektion
verworfen werden.

Definition 3.17 (Relative erwartete Verbesserung):

Die Giiteverbesserung von einem Individuum 4 € ¢ zu Individuum B € ¢ wird defi-
niert als

|BF —AF| falls BF = AF

Verbesserung(4, B) = { 0 ¢
sons

108 3 Prinzipien evolutiondrer Algorithmen

T T T T 1 700 T T T
INVERTIERENDE-MUTATION-|

1600

15r ,”/ u 1500 ‘\
1400 [

1300

Giite

1200
1100

1000 bREIERTAUSCH-MUTATION

0 1 1 1 1 900 1 1 1
1250 1350 1450 1550 1650 0 50 100 150 200

Giite Generation

INVERTIERENDE-MUTATION

relative erwartete Verbesserung

Bild 3.29 In der Analyse links wurde mit Stichproben aus dem Suchraum die relative erwartete Verbes-
serung als LeistungsmaB fiir die Operatoren berechnet. Die Uberkreuzung zeigt, dass die Ope-
ratoren in unterschiedlichen Giitebereichen besser geeignet sind. Auf der rechten Seite wurden
Experimente eines rein mutationsbasierten Algorithmus durchgefiihrt. Wie man leicht erkennen
kann, spiegeln sich die Uberkreuzungen der Analysen in den experimentellen Ergebnissen mit
einer gewissen Verzégerung wider.

Dann lésst sich die relative erwartete Verbesserung eines Operators Mut beziiglich
Individuum 4 definieren als

relEV ypss = Erw|[Verbesserung(A4, Mut®(4))].

Beispiel 3.31:
Fiir das Handlungsreisendenproblem aus Beispiel 3.30 wurde anhand von Stichproben
aus dem Suchraum die relative erwartete Verbesserung fiir Individuen unterschiedli-
cher Giitebereiche ermittelt. Dies ist im linken Teil von Bild 3.29 dargestellt.

Die Analyse zeigt, dass die unterschiedlichen Giitebereiche flir den Effekt verantwortlich sind.
Daher ist es zunéchst interessant, sich zu tiberlegen, wie haufig die einzelnen Glitewerte im Such-
raum des Optimierungsproblems vorkommen. Dies wurde fiir den kompletten Suchraum eines
kleinen Handlungsreisendenproblems gemacht und ist in Bild 3.30 dargestellt. Idealisiert kann
die Verteilung als Glockenkurve im rechten Teil des Bilds dargestellt werden.

Wenn man nun die Giitewerte der Kindindividuen, die bei der Mutation eines gegebenen Indi-
viduums entstehen kénnen, ebenfalls entsprechend ihrer Héufigkeit auftrigt, ergeben sich ganz
ahnliche Verteilungskurven. Diese werden wir im Weiteren auch nur als idealisierte Kurven dar-
stellen. Wichtig ist dabei, wie lokal ein Mutationsoperator ist. Ist er sehr lokal, werden die Giite-
werte sehr eng bei der Giite des Ausgangsindividuums liegen. Ist er weniger lokal (oder auch
zufilliger), wird ein groBerer Bereich an Giitewerten abgedeckt. Entsprechend ergeben sich dann
auch schmalere oder breitere Verteilungen der Glitewerte.

3.4 Selbstanpassende Algorithmen 109

4

Giitebereich

—_—

schlechter

nahe dem Optimum Giitebereich

Hiufigkeit

15 20 25 30 35 40 45
Giite

Bild 3.30 Die Dichteverteilung eines Handlungsreisendenproblems mit 11 Stidte (links) und eine ideali-
sierte Dichteverteilung eines Minimierungsproblems (rechts).

70 T T T T
DREIERTAUSCH-MUTATION
60

50

Varianz der Nachfolgergiite

Bild 3.31 20 — L L L
Verhiltnis der Varianzen der verwendeten Permutations- 600 1000 1400 1800
operatoren im Handlungsreisendenproblem. Giite

Beispiel 3.32:

Bei den Operatoren aus Beispiel 3.30 ist dies auch tatsdchlich der Fall, wie das Bild 3.31
zeigt. Deutlich erkennt man, dass die INVERTIERENDE-MUTATION {iber den gesamten
relevanten Giitebereich lokaler ist als die DREIERTAUSCH-MUTATION.

Die Lokalitat eines Operators wird damit zur eindeutigen Erklarung, warum sich die relative er-
wartete Verbesserung der beiden Operatoren so stark verschiebt. Der Grund ist der folgende: Je
zufilliger ein Mutationsoperator ist, desto stiarker orientiert sich die Giiteverteilung des Mutati-
onsoperators in seiner Ausrichtung zum aktuellen Giitewert an der Gtliteverteilung des gesamten
Suchraums. Dies ist in Bild 3.32 schematisch dargestellt. Damit ist auch offensichtlich, dass sich
bei einer Anndherung an das Optimum die méglichen Verbesserungen zugunsten des lokalen
Operators verdndern.
Damit folgt die in Bild 3.33 dargestellte These:

1. Die Qualitédt eines Mutationsoperators kann nicht unabhingig vom aktuellen Giiteniveau
beurteilt werden.

110 3 Prinzipien evolutionirer Algorithmen

b cehleatner Verteilung der Giitewerte des

nhe dem Optivaum Giltebereich lokaleren Operators Verteilung der
Giitewerte des
zufilligeren
Operators

Giiteverbesserungen aktueller Giitewert
Erierseh schlechter Verteilung der Giitewerte des
nahe dem Optimum Giltebercich lokaleren Operators

Verteilung der
Giitewerte des
zufilligeren
Operators

/

aktueller Giitewert

_

Bild 3.32 Das obere Diagramm zeigt das Verhalten der Nachfolgergiiteverteilungen im mittleren Giitebe-
reich. Das untere Diagramm entsprechend das Verhalten der Nachfolgergiiteverteilungen nahe
dem Optimum.

Giiteverbesserungen

“— 4,
Giitebereich schlechter
nahe dem Optimum Giitebereich

zufilliger
Operator ist
besser

N lokaler Operator ist besser

Bild 3.33 Skizze der beiden Giiteintervalle, fiir die jeweils die Uberlegenheit des zufilligeren und des loka-
leren Mutationsoperators gilt.

3.4 Selbstanpassende Algorithmen 111

Algorithmus 3.16 (Anpassung des Parameters o am Ende jeder Generation)

VORDEFINIERTE-ANPASSUNG(Standardabweichung ¢)
1 o' « oo (Modifikationsfaktor])
2 return ¢’

2. Ein Operator ist niemals optimal tiber den gesamten Verlauf einer Optimierung — insbeson-
dere sollte er bei zunehmender Anndherung an das Optimum lokaler agieren.

Dies ldsst sich auch unter bestimmten technischen Voraussetzungen beweisen.

342 Anpassungsstrategien fiir evolutioniire Operatoren

Der im vorigen Abschnitt festgestellten Notwendigkeit, den Algorithmus an die aktuelle Situa-
tion des Optimierungsprozesses anzupassen, kann mit mehreren Strategien begegnet werden. In
diesem Abschnitt werden zunéchst die drei wichtigsten Techniken an einem Beispiel vorgestellt.
Wir wihlen hierfiir die reellwertige gauBsche Mutation aus Algorithmus 3.4, die wir auf die
10-dimensionale Spharen-Funktion (siehe S. 78) anwenden. Der Basisalgorithmus entspricht
dem Hillclimber in Algorithmus 3.2 mit den folgenden Modifikationen: Es werden immer 10
Kindindividuen aus einem Elternindividuum per Mutation gebildet und das beste Kindindivi-
duum ersetzt das Elternindividuum.

Die gauflsche Mutation eignet sich besonders gut flir eine Anpassung, da mit dem Parameter
o ein einfacher Regler zur Verfiigung steht, mit dem die Kindindividuen unterschiedlich stark
im genotypischen Raum gestreut werden kdnnen. Aus der obigen Beobachtung heraus, dass eine
Mutation im Verlauf der Optimierung »lokaler« hinsichtlich der Giite werden soll, wire ein erster
Ansatz, durch eine vorbestimmte Anpassung des o mehr Lokalitédt hinsichtlich des Genotyps zu
erzeugen — in der Hoffnung, dass Lokalitdt im Genotyp und in Bezug auf die Giite stark korreliert
sind. Eine derartige Anpassung kann dadurch erreicht werden, dass Algorithmus 3.16 mit einem
Modifikationsfaktor 0 < o < 1 am Ende jeder Generation ausgefiihrt wird.

Beispiel 3.33:
LAuft der so definierte Algorithmus mit o = 0,98 ab, ergibt sich ein exponentiell fal-
lender Verlauf des Parameters ¢, wie er im zweiten Graph von oben in Bild 3.34
dargestellt ist. Hinsichtlich der Optimierung der Sphéren-Funktion zeigt der Vergleich
mit einer Mutation mit konstantem ¢ = 1 in Bild 3.34 oben, dass in diesem Beispiel
der Wert von ¢ zu schnell verringert wird, so dass die Evolution nicht beschleunigt
sondern gebremst wird.

Wie man im obigen Beispiel deutlich sieht, kann die Verdnderung des Parameterwertes zwar
exakt vorgegeben werden, aber eine solche Vorgehensweise garantiert nicht, dass die Parameter-
verdnderung auch tatsdchlich zum aktuellen Stand der Suche passt, da keine Kopplung zwischen
dem Suchprozess und der Anpassung besteht. Im Einzelfall kann nattrlich diese Anpassung den-
noch einer konstanten Ldsung iiberlegen sein.

Aus den Problemen der vordefinierten Anpassung l4sst sich die Lehre ziehen, dass eine stérke-
re Ruckkopplung vom Optimierungsverlauf zur Anpassung des Operators hilfreich sein konnte.
Es wird also sowohl ein Kriterium ftir die Beurteilung des aktuellen Stands der Optimierung als

112 3 Prinzipien evolutiondrer Algorithmen

10000 T T T T T T T

e

100

Q B PN —
% konstante Schrittweite ~. ARV
0,01 [Y . "
“\ adaptive Anpassung
B \ -
\\-
1074 \ 4
B selbstadaptive Anpassung AN -
\\ N
10-6 1 1 1 1 1 A W
0 20 40 60 80 100 120 140
Generation
1 g
&
2
= 0,1 E
]
B3
3 X
[vorbestimmte Anpassung
Q adaptive Anpassung
‘D
g
£
B2
Q
95
0,01
10 ¢ T T 3
1E selbstadaptive Anpassung
o E 3
‘S 0,1 E -
g f]
R 0,01 E =
= ’ - -
% L 4
g 0,001 [3
104 E .
10-5 L : : : . : : N
0 20 40 60 80 100 120 140

Bild 3.34 Im oberen Graph werden die drei Techniken zur Anpassung des Schrittweitenparameters ¢ mit
einer Mutation mit konstantem ¢ verglichen. Die unteren Graphen zeigen jeweils den Verlauf
der Schrittweite ¢ (als logarithmisch skalierte Werte).

3.4 Selbstanpassende Algorithmen 113

Algorithmus 3.17 (Anpassung des Parameters ¢ am Ende jeder k-ten Generation mit der sog.
%-Erfolgsregel)

ADAPTIVE-ANPASSUNG(Standardabweichung o, Erfolgsrate p;)
1 (Sei © ein Schwellwert)

switch

case p; > 0: 0 — o-a (Modifikationsfaktor(a > 1))

case p; <©:0' — 2

case p, =0Q:0' — o0

return ¢’

SN LN

auch eine Regel bendtigt, die daraus die notwendigen Verdnderungen ableitet. Im vorliegenden
Beispiel konnte man argumentieren, dass im schlechteren Giitebereich wesentlich mehr durchge-
fithrte Mutationen eine Verbesserung mit sich bringen als im Glitebereich nahe dem Optimum.
Wird dies als Kriterium herangezogen und mit der zunehmenden Lokalitdt bei Annéherung an
das Optimum verbunden, erhilt man die Regel in Algorithmus 3.17. Sie wird jeweils nach k&
Generationen durchgefiihrt, wobei die Erfolgsrate p; dem Anteil der Mutationen entspricht, die
in den letzten & Generationen eine Verbesserung bewirkt haben. Solche Verfahren werden als
adaptiv bezeichnet.

Beispiel 3.34:
Angewandt auf die 10-dimensionale Spharenfunktion ergibt sich die Optimierung in
Bild 3.34. Der zweite Graph von unten zeigt die Entwicklung des Schrittweitenpara-
meters ¢: Er wird zunichst vergréBert und spiter verkleinert. Diese Riickkopplung
fithrt hier auch zu einer schnelleren Optimierung. Die Parameter des Algorithmus wur-
den entsprechend theoretischer und empirischer Ergebnisse wie folgt gewéhlt: © = %

und o = 1,224, Daher wird diese Anpassung auch als %—E}y“olgsregel bezeichnet.

Dieser Algorithmus ist ein schones Beispiel fiir das Prinzip der Adaptation. Fiir beliebige Para-
meter eines Algorithmus ist es dennoch eine schwierige Aufgabe, die Anpassungsregeln so zu
formulieren, dass alle moglichen Situationen im Verlauf einer Suche sinnvoll beriicksichtigt wer-
den. Auch der vorgestellte Algorithmus hat Méngel bei andersgearteten Problemen — bei vielen
lokalen Optima tendiert er zur vorzeitigen Konvergenz.

Konsequenterweise wiinscht man sich eine individuellere und flexiblere Anpassung der Para-
meter, was durch die dritte Technik, die Selbstadaptation, moglich ist. Die Grundidee ist, jedes
Individuum um Kontrollparameter zu ergénzen — das ist dann der Bestandteil 4.5 € 2 aus Ab-
schnitt 2.4. Vereinfacht dargestellt merken sich diese sog. Strategieparameter flir jedes Individu-
um, mit welchen Einstellungen es entstanden ist. Diese dienen als Grundlage fiir die Mutationen
der nichsten Generationen. Der einfachste Ansatz, die SELBSTADAPTIVE-GAUSS-MUTATION (Al-
gorithmus 3.18), benutzt einen Strategieparameter 4.5 = ¢ und unterwirft die Verdnderung der
Strategieparameter ebenfalls einer zufilligen Evolution. Da die Strategievariable hier nicht klei-
ner als 0 werden darf, wird die Verdnderung in Zeile (2) des Algorithmus durch Multiplikation
mit einem positiven Wert (als Ergebnis der Exponentialfunktion) realisiert — die Stédrke dieser
Verinderung berticksichtigt die Dimensionalitit des Suchraums. Wie bereits bei der Gauss-Mu-
TATION (Algorithmus 3.4) werden Werte jenseits der Bereichsgrenzen auf die Grenze gesetzt —
eine Alternative wire, solange zu mutieren, bis das Individuum innerhalb der Grenzen liegt.

114 3 Prinzipien evolutionidrer Algorithmen

Algorithmus 3.18

SELBSTADAPTIVE-GAUSS-MUTATION(Individuum 4 mit A.G € R)
1 ue—A(0.1)

2 B.S5; —A.S -exp(:%:r)

3 for eachic {l1..... 1}

4 do" u; +— wibhle zufillig gemil .47 (0. B.S)

5 Bi — Aj+uj

6 Bj; «— max{B;, ug; (juntere Wertebereichsgrenze)) }
7 L B; — min{B;, og; (obere Wertebereichsgrenze)) }
8 return B

Beispiel 3.35:
Im untersten Diagramm in Bild 3.34 sieht man deutlich, wie dynamisch der Schritt-
weitenparameter an die aktuelle Situation angepasst wird — haben sich Anderungen
als unvorteilhaft herausgestellt, kénnen sie so auch wieder schnell korrigiert werden.
Durch den groBen Zufallseinfluss ist die Kurve recht flatterhaft, doch die Tendenz ist
klar erkennbar und das positive Ergebnis der Optimierung kann hier iiberzeugen.

Nachdem die Adaptation bereits die Verinderung der Schrittweite aus dem Optimierungsverlauf ableitet,

% liegt der Wunsch nahe, auch bei einer Selbstanpassung einen effektiveren Lernmechanismus zu nutzen
als die rein zufillige Variation des Schrittweitenparameters. Wir werden darauf in Abschnitt 4.2 wieder
zuriickkommen.

Abschlieflend sei an dieser Stelle noch angemerkt, dass die Anpassung eines Operators nur einen
Ansatz darstellt. Es gibt in der Literatur auch zahlreiche Techniken fiir die Anpassung der Repri-
sentation der Individuen, der Giitefunktion, des Selektionsoperators oder der Populationsgrifle.

35 Zusammenfassung der Arbeitsprinzipien

Die Ergebnisse aus den bisherigen Abschnitten werden zusammengefasst und komprimiert dar-
gestellt.

In diesem Kapitel wurde immer wieder angedeutet, wie verschiedene Aspekte einer Optimierung
und die Parameter des dazugehdrigen evolutiondren Algorithmus sich beeinflussen. Daher wer-
den diese Abhingigkeiten in diesem Abschnitt nochmals systematisch aufbereitet: graphisch in
Bild 3.35 und in der folgenden Tabelle.

Bedingung ZielgroBe Erwarteter Effekt

Genotyp Mutation Nachbarschaft des Mutationsoperators wird beeinflusst (S. 49)

Mutation Erforschung zufilligere Mutationen unterstiitzen die Erforschung
(S. 58/107)

Mutation Feinabst. giitelokale Mutationen unterstiitzen die Feinabstimmung
(S. 58/107)

Mutation Diversitit die Mutation vergréBert die Diversitit (S. 58)

3.6 Der ultimative evolutiondre Algorithmus

Bedingung ZielgroBe Erwarteter Effekt

Mutation lokale Optima giitelokale Mutationen erhalten lokale Optima des Phéanotyps,
hiufig fithren Mutationsoperatoren sogar mehr lokale Optima
ein (8. 54)

Rekombination Erforschung extrapolierende Operatoren stirken die Erforschung (S. 83)

Rekombination Feinabst. interpolierende Operatoren stirken die Feinabstimmung (S. 81)

Div./Rekomb. Mutation geringe Diversitit und interpolierende Rekombination dampft
Ausreisser der Mutation (S. 81)

Diversitt Rekombination hohe Diversitéit unterstiitzt die Funktionsweise der Rekombina-
tion (S. 80)

Selektion Erforschung geringer Selektionsdruck stirkt die Erforschung (S. 71/77)

Selektion Feinabst. hoher Selektionsdruck stirkt die Feinabstimmung (S. 71/77)

Selektion Diversitit Selektion verringert meist die Diversitit (S. 71)

Div./Rekomb. Erforschung kombinierende Rekombination stirkt die Erforschung bei hoher
Diversitit (S. 80)

Div./Rekomb. Feinabst. kombinierende Rekombination stirkt die Feinabstimmung bei
geringer Diversitét (S. 80)

Erforschung Diversitit erforschende Operationen erhéhen die Diversitét (S. 83)

Feinabst. Diversitit feinabstimmende Operationen verringern die Diversitét (S. 81)

Diversitdt Selektion geringe Diversitit verringert den Selektionsdruck der fitnesspro-
portionalen Selektion (S. 72)

Rekombination Forma-Verarb. Rekombination geméfl den Forma-Regeln unterstiitzt das Sche-

ma-Theorem (S. 96)

115

Forma-Verarb. Suchfortschritt Erfolgreiche Forma-Verarbeitung unterstlitzt den Suchfort-
schritt (S. 98)
lokale Optima Suchfortschritt viele lokale Optima hemmen den Suchfortschritt (S. 52)
Erf./Fein./Sel. Suchfortschritt Ausbalancieren der drei Faktoren ist fiir den Suchfortschritt not-
wendig (S. 77)
3.6 Der ultimative evolutioniire Algorithmus

Uberlegungen, ob ein Algorithmus einem anderen grundsditzlich iiberlegen ist, werden in diesem
Abschnitt relativiert.

Noch in den 1980er Jahren hétten viele Forscher eine klare Antwort auf die Frage nach dem
ultimativen evolutioniren Algorithmus parat gehabt. So stammt auch das folgende Zitat aus dem
Jahr 1989 und bricht eine Lanze fiir das Standardverfahren GENETISCHER-ALGORITHMUS (Algo-
rithmus 3.14).

... Later, with newfound success under their belts, these same users confidently strike out
“to really make these algorithms fly,” oftentimes by introducing an odd array of program-
ming tricks and hacks. The usual result is disappointment in the “improved” GA. Although
it works better on some problems, it works worse on most.

David E. Goldberg, Zen and the Art of Genetic Algorithms

116 3 Prinzipien evolutiondrer Algorithmen

fitness-

prop.

OB
ey
interpolieren, 3 Feinabstimmung
kombinierend
lokale Optima
Formae/Schemata
Verarbeitung

—* vergroBernder Effekt
- -~ vager positiver Einfluss
—® hemmender Effekt

}>— Ausbalancieren ist notwendig
~O— alle Bedingungen erforderlich

Bild 3.35 Versuch einer graphischen Darstellung, wie sich die verschiedenen Faktoren sich gegenseitig
beeinflussen.

Hier wird zwar versucht, eine grundsitzliche Uberlegenheit des genetischen Algorithmus zu
suggerieren, aber der kurze Absatz enthilt auch bereits die heutige Antwort auf obige Frage: Es
hingt davon ab, welches Problem man 16sen méchte.

Die Idee eines universellen Optimierers ist auf den ersten Blick sehr verlockend, doch stellt
sich die Frage, was wir von einem universellen Optimierer erwarten diirfen, wenn wir nichts
iiber das betrachtete Optimierungsproblem wissen. Um eine Antwort formulieren und beweisen
zu konnen, betrachten wir die folgende Situation, bei der der Suchraum Q und der Raum aller
Optimierungsprobleme .% endlich sind. Diese Annahme ist giiltig, da aufgrund der diskreten
Speicherstrukturen in heutigen Computern und der beschriankten Ressourcen alle im Computer
unterscheidbaren Probleme endlich sind. Die Tatsache, dass wir nichts iiber das Optimierungs-
problem wissen, modellieren wir durch eine angenommene Gleichverteilung aller Optimierungs-
probleme, d. h. jedes Problem (bzw. Zielfunktion) F € .% tritt mit der Wahrscheinlichkeit ﬁ auf.
Zur weiteren Vereinfachung gehen wir davon aus, dass alle F € % die Form F: Q — R haben
und auf dem selben Suchraum € definiert sind. Sei <7 die Menge aller Optimierungsalgorithmen,
die auf dem Suchraum Q arbeiten. Einen Algorithmus charakterisieren wir nun dartiber, welche
Individuen er in welcher Reihenfolge auf einem Problem F € % betrachtet. Dem Algorithmus
stehen dabei nur » Auswertungen im Verlauf der Optimierung zur Verfiigung:

3.6 Der ultimative evolutiondre Algorithmus 117

Optimierungg.,, . </ — Q".

Vereinfachend nehmen wir an, dass bei jeder Optimierung der Algorithmus ein Individuum nur
einmal bewerten lisst, also Optimierungy,(A4lg) insgesamt » unterschiedliche Individuen ent-
halt. AuBerdem nehmen wir an, dass jeder Algorithmus A/g deterministisch und damit auch
Optimierungy. ,(Alg) eindeutig ist — dies gilt auch fiir evolutioniire Algorithmen, da Zufallszahlen
fiir gewohnlich mittels eines Pseudozufallszahlengenerators erzeugt werden. D. h. jeder evolutio-
nire Algorithmus ist durch die Wahl des Anfangszustands des Zufallszahlengenerators determi-
nistisch.

Nochmals zur Erlduterung: Fir ein Problem F € .%, ein Optimierungsproblem A/g € o und
eine natiirliche Zahl n € N ist

Optimierungr ,(Alg) = (v, ...,ys) € Q"

mit y; # y; flir i # j, wobei y; das Individuum ist, das der Algorithmus A/g mit der Zielfunktion
F' als k-tes Element untersucht.

Wenn wir nun zwei Algorithmen Alg,, Alg, € of bzgl. ihrer Anwendung auf ein Problem
F € F vergleichen wollen, bendtigen wir ein Leistungsmall Qudlg — dies steht als Abkiirzung
fiir »Qualitit eines Algorithmus«. Dieses Mal} wird mittels einer beliebigen, aber fest gewéhlten
Funktion ¢f, : R” — R definiert als

QuAZgF,n(Alg) - (]f,,(F()/l), s vF(yl’I))

mit Optimierungr,(Alg) = (¥1, - . ., ya). Ubliche Beispiele sind die durchschnittliche bzw. beste
erzielte Giite oder die Anzahl der benstigten Auswertungen, bis das Optimum gefunden wurde.
Man beachte im Weiteren die Terminologie: »Gilite« eines Individuums A bezeichnet den Funk-
tionswert F'(4) und »Leistung« bezieht sich auf Qudlgr ,(Alg) als Qualititskriterium fiir eine
komplette Optimierung.

Die zu erwartende Leistung der »n ersten Auswertungen eines Algorithmus 4/g auf einem
beliebigen unbekannten Problem entspricht damit dem Mittel iber alle méglichen Probleme:

1
Erw [QuAlgF_n(Alg) ‘F c 9} = Z QuAlgFTn(Alg).
#7 FeZ
Dann gilt der folgende Satz.

Satz 3.5 (No free lunch):

Fiir je zwei Algorithmen Alg,, Alg, € o/ und die Klasse aller Probleme &% gilt beziig-
lich eines LeistungsmaBes Qudlg:

Erw [QuAlgF‘n (Alg)) | F € F| =Erw [QuAZgF’n(Algz) | F e 7]

In der hier prisentierten Fassung ldsst sich diese Aussage sehr elementar beweisen. Sie gilt je-
doch auch fiir allgemeinere Voraussetzungen, wobei die Beweise dann entsprechend schwieriger
werden.

118 3 Prinzipien evolutionidrer Algorithmen

Beweis 3.7:

Ohne Beschriankung der Allgemeinheit seien Q = {x;....,x,} der Suchraum und
ri € R (1 <i< m) die vorkommenden Giitewerte. Jede mdgliche Funktion F € .%#
ist nun iiber eine Permutation & € .¥, definiert, die die Giitewerte den Punkten im
Suchraum zuweist: F(x;) = rg(;) fiir 1 < i< m. Es existieren also m! unterschiedliche
Funktionen in .%.

Bei einer Optimierung werden der Reihe nach die Punkte yy, y2, ... betrachtet. Der
erste Punkt y (= x;,) wird v&llig unabhéngig von der zu optimierenden Funktion ge-
wiihlt.

Wir unterscheiden hier in der Notation zwischen der Abfolge der Optimierung y; und den dabei
gewiihlten Punkten aus dem Suchraum x;, , da wir auf beiden Ebenen argumentieren. Natiirlich
bezeichnen beide Notationen denselben Punkt im Suchraum yg = x;, € €.

D.h. jeder der m Giitewerte r; steht bei genau (m — 1)! Funktionen an der Stelle x;, .
Dies ist an einem kleinen Beispiel in Bild 3.36 dargestellt.

Man kann sich nun vorstellen, dass der Algorithmus versucht, iiber Stichproben im Suchraum

% die Menge der moglichen Funktionen einzuschriinken, die vorliegen kénnten. Das ist vom
Ablauf her ganz dhnlich zu einem Mastermind-Spiel, bei dem man versucht, tiber Stichproben
Informationen zu einer Anzahl versteckt gesetzter Farbsticker zu sammeln.

Allgemein gilt in der i-ten Iteration (i > 1), dass die i — 1 bisher gewihlten Punkte
inm---(m—i+2)= ﬁ unterschiedlichen Giitefolgen resultieren kénnen. Nun
kann jede dieser Giitefolgen beim Betrachten des i-ten Punkts mit m — i+ 1 verschie-
denen Giitewerten als y; = x;, fortgesetzt werden — dies ist auch wieder in jeweils
(m —i)! Funktionen der Fall. Dies ist in Bild 3.37 fiir den zweiten gewiihlten Punkt
und in Bild 3.38 fiir den dritten gewihlten Punkt veranschaulicht.

Damit gilt fiir beliebiges i, dass jede Reihenfolge, in der die Giitewerte entdeckt
werden, bei genau gleich vielen Funktionen eintritt — vollig unabhingig davon, wie
der Algorithmus vorgeht. (Zur Veranschaulichung enthélt Bild 3.38 zwei Varianten,
wie mit dem dritten Punkt fortgesetzt wird.)

Es folgt sofort, dass Erw [QuAlgy. ,(4lg) | F € | fiir jeden Algorithmus A/g einen
identischen Wert ergibt.

Also ist im Mittel iiber alle méglichen Probleme — oder eben erwartungsgemaf fiir ein Problem,
iiber das nichts bekannt ist, — kein Algorithmus den anderen Algorithmen iiberlegen. Insbesonde-
re gilt das obige Theorem auch dann, wenn einer der Algorithmen ein aufzihlendes Verfahren ist,
bei dem alle Punkte des Suchraums gemif einer (zufillig) gegebenen Reihenfolge durchprobiert
werden.

Liegt nun jedoch ein Algorithmus vor, der auf der Teilmenge .%' C .% einem zweiten Algo-
rithmus {iberlegen ist, also

Erw [QuAlgr(Alg,) | F € F'] < Erw [QuAlgy(Alg,) | F € F'],

3.6 Der ultimative evolutionire Algorithmus 119

x1] x2] x3| x4 X1 X2) x3] x4 xp| xa] x3| x4 X1] x2] x3] x4
jeweils /1234 20 1] 3|4 3[1] 2] 4 41?3
eine magliche 1243 21 143 3| 1] 4] 2 4111 3] 2
Funktion \ 1] 3| 2f 4 2(3)1]4 3[2]1]4 42 1]3
1] 3] 4f2 2 3f 4]0 3| 2] 4] 1 4f 2 3] 1
1| 4]2]3 2(4]1]3 3[4 1] 2 43 1) 2
1 4f3f2 2 4f 3] 1 3| 4] 2] 1 4 3f 2| 1

Bild 3.36 Beispiel zum Beweis des »No Free Lunch«-Theorems: Jede Zeile in einer der Tabellen entspricht
einer moglichen Bewertungsfunktion. Als ersten Punkt betrachtet der Algorithmus x;.

x| xaf x3] x4 x| x2] x3] xq x| xa] x3f x4 x x2] x3] xy
1 2]3]4 20 1] 3] 4 31214 41 1] 2|3
1 2] 4]3 2111 4] 3 31 1] 4] 2 41 1]3]2
1|3]2]4 2013|1114 3121114 4121 1|3
1|3]4]2 21 314]1 31 2] 41 41 213]1
11 4] 2|3 201 4] 1] 3 31 411| 2 4131 1|2
1| 4] 3] 2 21 4] 3|1 31 4] 21 41 3] 2] 1

Bild 3.37 Beispiel zum Beweis des »No Free Lunch«-Theorems: Der zweite betrachtete Punkt hiingt von
der Giite des ersten Punkts ab.

Algorithmus 1: x| x2 \3 X4 x| x2| x3| x4 xpf xa] x3] xa x1] x2] x3] x4
1| 2]13] 4 2|3 4 3] 2] 4 401 2|3
1| 2]4]3 2| 1| 43 (i) 4] 2 40 1] 3] 2
1{3]2]4 2| 3] 1|4 32 1] 4 40211 3
1| 3] 4]2 2| 3| 4|1 3|21 4]1 4 2)3]1
1] 4)2]3 2| 4] 1|83 3104 1] 2 413 1|2
1| 4]3] 2 2|04 31 3l 4|/2] 1 403]2]1
Algorithmus 2: X1 x2] x3] x4 X1 x2] x3 x4 x| X2} x3] x4 X1 x2] x3] x4
1] 2] 3|4 2|00 3| 4 3l 1]12] 4 41f1) 2|8
1| 2f 43 211143 3|iL| 4] 2 41 1] 3|2
113]2]4 20 3 1|/4 32000 4 41 2] 1|3
1 3]4]2 2| 3[4t 3(l2] 4] 1 41 2] 3|1
1| 4] 2|3 2| 4] 1] 3 3[4 1] 2 40 3] 2
1|4f3]2 2| 4] 3|1 3l 4] 2] 1 4| 3]i2] 1

Bild 3.38 Beispiel zum Beweis des »No Free Lunch«-Theorems: Der dritte betrachtete Punkt hingt von
der Giite der ersten beiden Punkte ab. Es werden zwei unterschiedliche Algorithmen an dieser
Stelle betrachtet.

120 3 Prinzipien evolutiondrer Algorithmen

Raum aller Probleme

Raum aller

Algorithmen

Funktions-
SA it
ES approximation
GP GA
? ‘_,/
hybrider Alg.
TA EP Kombina-
torische

Probleme

Bild 3.39 Konsequenz aus dem »No Free Lunch«-Resultat fiir einen Anwender.

Raum aller Probleme

Raum aller
Algorithmen
Funktions-
4 approximation
ES AppEeAII
GP 24 —
hybrider Alg.
TA Ep Kolmblna—
torische
Probleme

Bild 3.40 Konsequenz aus dem »No Free Lunch«-Resultat fiir die Wissenschaft.

dann folgt aus dem obigen Theorem sofort ein umgekehrtes Verhalten fiir die Algorithmen auf
der komplementiren Menge der Probleme, also

Erw [QuAlgr(Alg)) | F € Z\ F'| > Erw [QuAlgr(Alg,) | F € F\ F'].

Das bedeutet: Fiir jeden Algorithmus gibt es eine Nische im Raum aller Probleme, fiir die er
besonders gut geeignet ist. Einerseits stellt sich damit fiir den Anwender die Frage, welches der
passende Algorithmus fiir sein Problem ist (vgl. Bild 3.39). Andererseits wird die Wissenschaft
vor die Aufgabe gestellt, ganze Problemklassen zu finden, fiir die ein bestimmter Algorithmus
beziiglich eines Leistungsmerkmals »optimal« ist (vgl. Bild 3.40).

3.7 Ubungsaufgaben 121

T T T T T T T
10 [H
8 r 1
36 H
<
=
[«
-
5 4T i
B
0 ||||||..,I| H .
10 20 30 40 50 60 70 80
Variable x

Bild 3.41 Gttelandschaft der in Aufgabe 3.1 betrachteten Funktion.

Allgemein kann man die folgenden praktischen Konsequenzen festhalten. Ist keinerlei Pro-
blemwissen vorhanden, gibt es keinen Grund von einem evolutioniren Algorithmus mehr zu
erwarten als von einem beliebigen anderen Verfahren. Ist Problemwissen vorhanden oder kon-
nen bestimmte Eigenschaften wie ein gewisses Wohlverhalten der Glitelandschaft angenommen
werden, wird dadurch eine generelle Anwendbarkeit von bestimmten Algorithmen nahegelegt.
Das Wissen tber die Struktur des Problems muss in die Auswahl oder den Entwurf des Optimie-
rungsalgorithmus einflieBen.

3.7 Ubungsaufgaben

Aufgabe 3.1: Hillclimbing
Betrachten Sie die Funktion f(x) = § +sin (%) fiir die Werte x € {1, 2, 80}, die auch in
Bild 3.41 dargestellt ist. Argumentieren Sie, wie ein Mutationsoperator fiir einen Hillclimber
parametriert werden muss, der zufillig einen Wert aus U({—g. +g}) addiert. Schétzen Sie ab,
wie lange ein solcher Optimierer brauchen wird, wenn er bei x = 1 startet.

Aufgabe 3.2: Genotyp und Mutation

Es soll der Produktionsplan fiir eine FlieSbandproduktion optimiert werden. Es gibt insgesamt
n Auftrige, die alle m Stationen am FlieBband in derselben Reihenfolge sy, .. ., s, durchlaufen.
An jeder Station wird immer nur ein Auftrag zur gleichen Zeit bearbeitet und verschiedene
Auftrige konnen sich nicht iiberholen. Der Auftrag a € {a1,. .., a,} bendtigt an der Station
s€{s1,...,5m} genau t, s € R (f5 > 0) Zeit. Gesucht ist ein Produktionsplan, der fiir jeden
Auftrag die Startzeiten an den m Stationen angibt und der die Auftrége in der kiirzesten Zeit
abarbeitet.

a) Bilden Sie zunichst das Problem direkt im Genotyp ab und formulieren Sie eine geeignete
Mutation auf dem Problem. Was verindert eine Mutation hinsichtlich des Phinotyps?

122 3 Prinzipien evolutiondrer Algorithmen

b) Fiithren Sie einen alternativen Genotyp ein, der die Reihenfolge der Auftrige festlegt.
Uberlegen Sie, wie daraus der Produktionsplan berechnet werden kann. Wie sieht jetzt
ein moglicher Mutationsoperator aus?

Aufgabe 3.3: Selektion

Entwerfen Sie einen Selektionsoperator, der dhnlich zur proportionalen Selektion jedes Indivi-
duum mit einer bestimmten Wahrscheinlichkeit auswihlt. Dabei sollen jedoch sowohl gute Indi-
viduen bevorzugt werden als auch die Diversitét erhalten bleiben bzw. sogar vergréBBert werden
(indem der gesamte Giitebereich bis zum Ende der Optimierung représentiert wird).

Aufgabe 3.4: Populationskonzept und Rekombination

Entwerfen Sie eine konkrete Bewertungsfunktion auf dem Genotyp ¢ = [0, 10] x [0, 10], fiir
die Sie der Meinung sind, dass ein populationsbasierter Algorithmus mit Mutation und Rekom-
bination bessere Ergebnisse liefert als ein lokaler Suchalgorithmus. Formulieren Sie die Such-
operatoren und begriinden Sie Thre Hypothese.

Aufgabe 3.5: Selektion

Bestimmen Sie die Wahrscheinlichkeit mit der das i-beste Individuum einer Population der Gro-
Be p durch eine g-fache Turnierselektion ausgewihlt wird. Berechnen Sie die Wahrscheinlich-
keiten fiir die Werte t =5, ¢ = 2 bzw. ¢ = 3 und beliebiges i. Vergleichen Sie die Werte mit der
rangbasierten Selektion.

Aufgabe 3.6: Rekombination

Es soll ein Regressionsproblem gelost werden, bei dem eine Funktion g(x) =a+b-x+c¢-x% +
d-x so angepasst wird, dass fiir eine Menge von Stiitzstellen (xy,v1),...,(Xp, ym) moglichst
gilt: g(x;) = ;. Eine solche Funktion wird bestimmt durch (a, b, ¢, d) € 4 = R*. Sie wird ferner
durch die quadratische Abweichung von den Sollfunktionswerten bewertet:

Fe =3 ())

Entwerfen Sie je einen kombinierenden, interpolierenden und extrapolierenden Operator fiir
dieses Problem und untersuchen Sie an einem kleinen Beispiel, wie die Operatoren die zwei
Eltern-Funktionen, d. h. den Phénotyp, verdndern.

Aufgabe 3.7: Schema und Kodierung

Betrachten Sie die Zahlen {0, ...,31}, die bindr kodiert werden. Welche Zahlen werden durch
die Schemata 11 s und ** x00 jeweils bei standardbindrer Kodierung und bei Gray-Kodierung
zusammengefasst?

3.7 Ubungsaufgaben

Aufgabe 3.8: Schema-Theorem
Die folgende Population

((110101), (011101), (101110), (111110), (000101)
(011000), (110111), (111011), (001000), (001110))

soll die Bewertungsfunktion maximieren, die jedes Individuum genau auf die Anzahl der fiih-
renden Einsen abbildet, d. h. die Giite ist die Anzahl der Einsen von links, bis eine Null im Indi-
viduum steht. Es wird ein GENETISCHER-ALGORITHMUS benutzt. Bestimmen Sie die Aussage
des Schema-Theorems fiir die Schemata 1% % #%, 11 s % %, 1115 %%, 0% %% %%, 00 %+ + und
000 # .

Aufgabe 3.9: Selbstanpassung

Ein GENETISCHER-ALGORITHMUS soll so veridndert werden, dass die Mutationsrate p,, sich
selbst anpasst. Ubertragen Sie die vorgestellten Techniken und entwickeln Sie eine adaptive und
eine selbstadaptive Variante.

Aufgabe 3.10: No Free Lunch

Rekapitulieren Sie nochmals die Voraussetzungen von Satz 3.5 (No Free Lunch). Diskutieren
Sie, inwieweit die Voraussetzungen realitétsnah sind.

Aufgabe 3.11: Hillclimbing

Implementieren Sie die verschiedenen Varianten, die Sie in Aufgabe 3.1 entworfen haben. De-
cken sich Ihre Experimente mit ihren Uberlegungen?

Aufgabe 3.12: Rekombination

Implementieren Sie Ihren Ansatz aus Aufgabe 3.6. Kénnen Sie Unterschiede im Verhalten zwi-
schen den verschiedenen Rekombinationsoperatoren feststellen?

Aufgabe 3.13: Schema-Theorem

Implementieren sie den Algorithmus GENETISCHER-ALGORITHMUS, wie er auf Seite 85 be-
schrieben wurde. Optimieren Sie damit die zweidimensionale Bewertungsfunktion

Fx1,x2) = 100(x] —x2)* + (1 —x1)?,

wobei sie die Wertebereiche [—5,12, 5,12] fiir x; jeweils mit 10 Bits standardbindr kodieren. Las-
sen Sie sich in Experimenten mit einer Populationsgréfie von 100 Individuen fiir ausgewihlte
Bausteine (engl. building blocks) die Vorhersage der Schema-Entwicklung geméf dem Schema-
Theorem und der tatséchliche Anteil der Population, der dem Schema angehort, protokollieren.
Welche Beobachtungen machen Sie?

123

124 3 Prinzipien evolutiondrer Algorithmen

3.8 Historische Anmerkungen

Die Charakterisierung der Mutation als Nachbarschaftsgraph basiert auf der Arbeit von Jones
(1995). Die EIN-BIT-BINARE-MUTATION (Algorithmus 3.1) wurde erstmals von Bremermann
(1962) eingefiithrt. Die Modellierung von evolutiondren Algorithmen mittels Markovketten geht
auf frithe Arbeiten zur lokalen Suche (z. B. Aarts & Korst, 1991) zuriick. Modelle von evolutio-
néren Algorithmen wurden in der Folgezeit auf sehr vielfiltige Art und Weise erstellt. Daher sei
hier auszugsweise auf die Arbeiten von Eiben et al. (1991), Nix & Vose (1992), De Jong et al.
(1995), Rudolph (1997) und den Uberblick von Rudolph (1998) verwiesen. Das hier vorgestell-
te Resultat stammt aus der Arbeit von Rudolph (1997). Wie wiederum die Wahl der Kodierung
die Anzahl der lokalen Optima verringern kann, wird anschaulich von Rana & Whitley (1999)
dargestellt. Die als Beispiel angefithrte Gray-Kodierung wurde als erstes in diesem Kontext von
Caruana & Schaffer (1988) betrachtet. Rowe et al. (2004) haben einen ausfiihrlichen Vergleich
der standardbindren Kodierung und der Gray-Kodierung vorgenommen. Im Hinblick auf die Re-
kombination wurden die Kodierungsarten von Rothlauf (2002) untersucht.

Die Aspekte der Feinabstimmung und der Erforschung sind ein Thema seit den Anfingen
der evolutiondren Algorithmen. So finden sie sich beispielsweise bereits in der Arbeit von Hol-
land (1975) wieder. Eine ausfiihrliche Ubersicht zum Thema ist in einem Artikel von Eiben
& Schippers (1998) enthalten. In diesem Zusammenhang wurden in diesem Kapitel die BI-
NARE-MUTATION (Algorithmus 3.3) von Holland (1975) und die GAUss-MUTATION (Algorith-
mus 3.4) von Rechenberg (1973) untersucht. Inwieweit die Mutation eines genetischen Algo-
rithmus nur als erforschender Hintergrundoperator dient, wurde von Mitchell et al. (1994) in
Frage gestellt.

Die Vielfalt, die Diversitit, einer Population wird in sehr vielen Arbeiten auch bereits in der
Anfangszeit der evolutiondren Algorithmen diskutiert. Konsequenterweise finden sich schon sehr
frith Techniken, die die Diversitit erhalten sollen (z. B. das Gtiteteilen bei Goldberg & Richard-
son, 1987). Einzelne Aspekte der Diversitit, insbesondere bezogen auf die Selektion, wurden
auch in unterschiedlichen theoretischen Arbeiten erdrtert (z. B. in der Arbeit von Blickle & Thie-
le, 1995, 1997; Motoki, 2002), wobei hiufig der Verlust der Diversitédt durch die Selektion un-
tersucht wird. Eine umfassende Diskussion der Diversitit enthdlt die Arbeit von Mattiussi et al.
(2004), die auch insbesondere die teilstringorientierte Diversitit einflihrt.

Die Unterscheidung in probabilistische und deterministische Selektion bzw. Eltern- und Um-
weltselektion reicht zuriick bis in die Urspriinge der unterschiedlichen Standardalgorithmen. So
wurde eine probabilistische Elternselektion, die FITNESSPROPORTIONALE-SELEKTION (Algorith-
mus 3.8) von Holland (1975), bei den genetischen Algorithmen genutzt, wahrend die Evoluti-
onsstrategien (Rechenberg, 1973; Schwefel, 1977) mit der Umweltselektion BESTEN-SELEKTION
(Algorithmus 3.6) arbeiten.

Das Konzept der tiberlappenden Populationen wurde mehrfach auf unterschiedliche Art und
Weise eingefiihrt: als Plus-Selektion bei den Evolutionsstrategien, und als steady state GA bei
den genetischen Algorithmen (Whitley, 1989; Syswerda, 1989, 1991b) und ohne spezielle Be-
nennung im evolutioniren Programmieren (Fogel et al., 1966). Eine Ubersicht zu iiberlappenden
Populationen und den méglichen Ersetzungsstrategien findet sich in den Arbeiten von Smith &
Vavak (1999) und Sarma & De Jong (1997).

Die Definition der Selektionsintensitét als MaB fiir den Selektionsdruck sowie deren Analyse
fiir die fitnessproportionale Selektion stammt von Miihlenbein & Schlierkamp-Voosen (1993).

3.8 Historische Anmerkungen 125

Bei den Varianten der fitnessproportionalen Selektion wurde die Technik der Skalierung von
Grefenstette (1986) eingefiihrt. Die rangbasierte Methode und STOCHASTISCHES-UNIVERSELLES-
SAMPLING (Algorithmus 3.9) stammen von Baker (1987). Die g-fache TURNIER-SELEKTION (Al-
gorithmus 3.10) wurde erstmals von Brindle (1981) benutzt, wihrend die Q-STUFIGE-TURNIER-
SELEKTION (Algorithmus 3.7) von Fogel (1995) eingefiihrt wurde.

GroBe Teile der Argumentation des Abschnitts iiber die Selektion einschlieBlich der Ubersicht
iiber die Kombinationsweisen der Eltern- und Umweltselektion wurden einer Arbeit des Autors
(Weicker & Weicker, 2003) entnommen.

Die Anlehnung des Rekombinationsoperators an die Genetik (als neue Kombination vorhande-
ner Gene) geht auf die frithen Arbeiten zu den genetischen Algorithmen zuriick, wobei konkret
der EIN-PUNKT-CROSSOVER (Algorithmus 3.13) von Holland (1975) stammt und der Operator
UNIFORMER-CROSSOVER (Algorithmus 3.11) zum ersten Mal von Ackley (1987a) und Syswerda
(1989) erwahnt wurde. Der erste interpolierende Operator war der ARITHMETISCHER-CROSSOVER
(Algorithmus 3.12) von Michalewicz (1992). Deren Arbeitsweise als Mittel zur stochastischen
Fehlerminimierung stammt aus der Arbeit von Beyer (1994, 1997). Das vorgestellte Beispiel fiir
den extrapolierenden Operatoren heifit auch heuristischer Crossover von Wright (1991).

Als Theorie fiir die klassische Rekombination wurde das Schema-Theorem von Holland (1975)
gezeigt, wihrend die Verallgemeinerung der Schemata als Formae sowie die daraus resultieren-
den Regeln von Radcliffe (1991a,b) und Radcliffe & Surry (1995) hergeleitet wurden. Die Bau-
stein-Hypothese stammt von Goldberg (1989) und ist eine mogliche Interpretation des Schema-
Theorems. Das Schema-Theorem wurde stark kritisiert und zu widerlegen versucht (z. B. Gre-
fenstette & Baker, 1989). Wie jedoch auch Levenick (1990) richtig ausfiihrt, sind die hier dar-
gestellten Ergebnisse richtig, allerdings sollte man sich nicht durch eine zu freie Interpretation
der Ergebnisse zu falschen Schliissen verleiten lassen. Die hier als Beispiel angefithrte in die
Irre fithrende Funktion ist eine Variation der Funktion von Deb & Goldberg (1993). Inzwischen
wurden auch bereits verschiedene Schema-Theoreme gezeigt, die statt Abschdtzungen exakte
Vorhersagen beziiglich der Schema-Entwicklung machen (z. B. Stephens & Waelbroeck, 1997;
Poli, 2000; Poli & McPhee, 2001). Diese Resultate eignen sich dann auch fiir eine exakte Mo-
dellierung einer kompletten Optimierung. Das fehlende Schema-Theorem ist ebenfalls aus der
Kritik am Schema-Theorem heraus entstanden (Altenberg, 1995).

Die Diskussion und die Beispiele zur Rolle des Grads der Zufilligkeit bei evolutionédren Ope-
ratoren abhéngig vom Stand der Suche beruhen auf den Ergebnissen von Weicker & Weicker
(1999), die diese Aussagen unter bestimmten Annahmen bewiesen haben (vgl. auch Weicker,
2001).

Die mit diesen Uberlegungen motivierte Anpassung von Operatoren wihrend des Optimie-
rungsvorgangs wurde bereits wesentlich frither erkannt. Vorbestimmte Anpassung findet sich
beispielsweise beim simulierten Abkiihlen (Kirkpatrick et al., 1983), eine globale Anpassung
wurde erstmals in Form der 1/5-Erfolgsregel (Rechenberg, 1973) bei den Evolutionsstrategien
genutzt. Selbstadaptive Techniken gehen auf die Arbeit von Schwefel (1977) zuriick.

Die »No free Lunch«-Resultate, die die Existenz eines universellen Optimierers in Frage stel-
len, wurden erstmals von Wolpert & Macready (1995, 1997) gezeigt. Verschiedene Erweiterun-
gen und Erginzungen dieser Resultate wurden in der Folgezeit veréffentlicht (Culberson, 1998;
English, 1996, 1999; Droste et al., 2001; Schumacher et al., 2001).

Die zusammenfassende graphische Darstellung der Abhdngigkeiten und Effekte in den evolu-
tiondren Algorithmen ist einer Arbeit des Autors entnommen (Weicker & Weicker, 2003).

4 Evolutionire Standardalgorithmen

Die gdngigen Standardalgorithmen, aus der Anfangszeit bis heute, werden in diesem Kapitel
vorgestellt.

Lernziele in diesem Kapitel

&> Die bekannten Standardalgorithmen konnen erldutert und beziiglich der Prinzipien aus
Kapitel 3 eingeordnet werden.

&> Die einzelnen Verfahren kdnnen auf neue Optimierungsprobleme angewandt werden.

&> Die Vielfalt verschiedener evolutionirer Algorithmen und ihrer Abldufe wird verstanden.
Dadurch kénnen die Standardalgorithmen voneinander und zu weniger erfolgversprechen-
den Varianten abgegrenzt werden.

Gliederung
4.1 Genetischer Algorithmus 128
42 Evolutionsstrategien 134
4.3 Evolutiondres Programmieren oottt 139
4.4 Genetisches Programmieren 146
4.5 Einfache Lokale Suchalgorithmen 155
4.6, Weitere Verfahren . couvwrae s o % % & & 5 @ & & o & o dessraie o6 w5 W 158
4.7 Kurzzusammenfassung e e 176
48 Ubunpsaufpaben’ . ouverass o 5 5 5 58 5 ¥ 5 6 B UeREEE G § W E K 176
4.9 Historische Anmerkungen 180

Wie in den historischen Anmerkungen zu Kapitel 2 dargelegt wurde, sind bereits sehr friith drei
grofle Teilgebiete der evolutioniren Algorithmen unabhiingig voneinander entstanden. Diese sind
durch unterschiedliche Philosophien und Eigenheiten charakterisiert. Auch wenn das Ziel dieses
Buches eine Vermittlung der iibergeordneten Prinzipien der evolutiondren Algorithmen ist, ist es
nicht nur von historischem Wert, sich die Standardalgorithmen anzuschauen. Nur mit diesem Hin-
tergrundwissen kénnen viele Anwendungen und Verdffentlichungen verstanden und richtig ein-
geordnet werden. Neben den bereits im historischen Anhang von Kapitel 2 vorgestellten grofien
Teilgebieten — genetische Algorithmen, Evolutionsstrategien, evolutiondres Programmieren und
genetisches Programmieren — werden in diesem Kapitel auch lokale Suchalgorithmen und eine

128 4 Evolutiondre Standardalgorithmen

Reihe neuerer oder weniger verbreiteter Verfahren prisentiert. Zu jedem Algorithmus sollen ty-
pische Parameterwerte eine gewisse Orientierung bei der eigenen Anwendung geben — dennoch
gibt es natiirlich viele sehr erfolgreiche Anwendungen, die erheblich von diesen Angaben abwei-
chen.

4.1 Genetischer Algorithmus

Genetische Algorithmen werden sowohl in ihrer klassischen Form mit der Kodierung durch bi-
ndren Zeichenketten als auch mit problemspezifischeren Reprdsentationen prdsentiert.

Genetische Algorithmen (GA, engl. genetic algorithms) sind im Wesentlichen durch eine probabi-
listische Elternselektion und die Rekombination als primiren Suchoperator gekennzeichnet. Die
Mutation ist meist nur ein Hintergrundoperator, der nur mit einer geringen Wahrscheinlichkeit
zur Anwendung kommt. Er garantiert die Erreichbarkeit aller Punkte im Suchraum und erhiilt
eine Grunddiversitit in der Population. Die Schema-Theorie ist die theoretische Grundlage fiir
die Wirkungsweise der genetischen Algorithmen.

Es gibt zwei grundsitzlich unterschiedliche Grundalgorithmen. Der sog. Standard-GA GENE-
TISCHER-ALGORITHMUS (Algorithmus 3.14 auf Seite 85) wurde bereits im vorherigen Kapitel
ausfiihrlich diskutiert. Er ist dadurch charakterisiert, dass am Ende jeder Generation die erzeug-
ten Kindindividuen die Elternpopulation komplett ersetzen. Als Gegenentwurf hierzu dient der
STEADY-STATE-GA (Algorithmus 4.1) mit {iberlappenden Populationen, der immer nur ein Indi-
viduum pro Generation erzeugt und dieses sofort in die Gesamtpopulation integriert, d. h. ein
Individuum der Elternpopulation auswihlt und dieses durch das neue Individuum ersetzt. Die
beiden Ablaufschemata sind beispielhaft in Bild 4.1 visualisiert. Als Elternselektion kommen
meist die FITNESSPROPORTIONALE-SELEKTION (Algorithmus 3.8) mit ihren Varianten, das sto-
chastische universelle Sampling (beim Standard-GA) oder die g-fache TURNIER-SELEKTION (Al-
gorithmus 3.10) zum Einsatz.

im Standard-GA GENETISCHER-ALGORITHMUS erzeugt zwei Kindindividuen, wihrend im STEA-
DY-STATE-GA jeweils nur ein Kindindividuum erzeugt wird.

ﬁ} Die beiden formulierten Algorithmen unterscheiden sich in der benutzten Rekombination: Jedes Elternpaar

Beim GA in seiner urspriinglichen Form besteht ein Individuum aus einer bindren Zeichenket-
te, d. h. der Suchraum hat die Form ¢ = B/ = {0, 1}'. Da nur wenige Optimierungsprobleme
einen bindren Suchraum besitzen, wie z. B. das Rucksackproblem, bei dem aus mehreren Gegen-
stinden eine maoglichst wertvolle Menge unter Beriicksichtigung der Kapazitiit des Rucksacks
ausgewihlt wird, oder das Erfiillungsproblem von aussagenlogischen Formeln, die durch Be-
legen der enthaltenen aussagenlogischen booleschen Variablen »wahr« werden soll, ist in den
anderen Fillen eine Kodierung des Losungsraums in den Raum B/ notwendig. Sowohl die stan-
dardbindre als auch die Gray-Kodierung sind hierbei iiblich, allerdings greift die Schema-Theorie
nicht mehr so gut bei einer Gray-Kodierung (vgl. Aufgabe 3.7). Als Operationen kommen die
BINARE-MUTATION (Algorithmus 3.3) sowie einer der Rekombinationsoperatoren EIN-PUNKT-
CROSSOVER (Algorithmus 3.13), UNIFORMER-CROSSOVER (Algorithmus 3.11) oder der in Algo-

4.1 Genetischer Algorithmus 129

Algorithmus 4.1 (Steady state genetischer Algorithmus)

STEADY-STATE-GA(Zielfunktion F')
1 t<0

2 P(t) < erzeuge Population mit ¢t (Populationsgréfe) Individuen
3 bewerte P(¢) durch F'
4 while Terminierungsbedingung nicht erfiillt
5 do" (4, B) «— Selektion aus P(f) mittels FITNESSPROPORTIONALE-SELEKTION
6 u «— wihle Zufallszahl gemaB U(]0, 1))
7 if u < py (Rekombinationswahrscheinlichkeit])
8 then [C — EIN-PUNKT-CROSSOVER(4, B)
9 else LC—B
10 D «— BINARE-MUTATION(C)
11 bewerte D durch F
12 P' — entferne das schlechteste Individuum aus P(¢)
13 t—1t+1

14 LP(t) — P o (D)
15 return bestes Individuum aus P(r)

Genetischer Algorithmus steady-state GA
~ N _ .
¢ ® | L obabilistische ® .\.{O\.
T Elternselektion 0 L
E =
2 o 3
g Rekombination 2
g L
8 ‘ 2
© Mutation 1]
> Identititals .)

(N 66‘666]Umweltselektion (‘N....{.]

Bild 4.1 Der unterschiedliche Ablauf des GA und des steady state GA wird jeweils mit einem beispielhaf-
ten Bild verdeutlicht.

rithmus 4.2 beschriebene K-PUNKT-CROSSOVER als Verallgemeinerung des 1-Punkt-Crossovers
zum Einsatz.

Beispiel 4.1:
Bei den bindren Zeichenketten 00101110 und 10111001 wiirden durch einen 2-Punkt-

Crossover an den Stellen j; = 3 und j» = 6 die Individuen 10101101 und 00111010
entstehen.

Meist wird nur ein gewisser Prozentsatz der neuen Individuen durch die Rekombination erzeugt
(ein haufiger Richtwert in der Literatur ist ca. 70%). Die restlichen Individuen entstehen nur
durch Mutation auf einem Elternindividuum. Ubliche Parametereinstellungen sind aus Tabel-
le 4.1 ersichtlich.

130 4 Evolutionire Standardalgorithmen

Algorithmus 4.2
K-PUNKT-CROSSOVER(Individuen 4, B)

1 for eachme{l,... k}
do C j, < wihle Zufallszahl gemaB U({1,...,/—1})
sortiere ji,..., jr so,dass j1 < jp <--- < j
Jo<0
Jkr1 =1
form—20,....k
do"foric{jm+1,...,jms1}

do"if m mod2=0

9 then ’_Ci <—A,’
10 LD; «— B;
11 else " C; — B;
12 CooL LD —A4;
13 returnC,D

00~ N L bW N

Parameter Wertebereich
Populationsgrofie: 30-100
Rekombinationswahrscheinlichkeit: 0,6-0,9
Mutationsrate: 0,001-0,01, %

Tabelle 4.1 Hiufig benutzte Parameterbereiche bei binér kodierten genetischen Algorithmen

Algorithmus 4.3

EFFIZIENTE-BINARE-MUTATION(Individuum 4 mit 4.G € B!, Mutationsabstand rext)
1 B—A
2 while next </
3 do" Buexy +— 1 — Apexy
4 u «— wihle zufillig gemiB U([0, 1))
5
6
7

In(u) J

L next < next + Ln(lfp)
g1

next — next — |
return B, next

Das bisher beschriebene Verfahren zur Mutation ist filir lange Zeichenketten sehr recheninten-
siv, da fiir jede Bindrinformation eine Zufallszahl benétigt wird. Die in Algorithmus 4.3 beschrie-
bene EFFIZIENTE-BINARE-MUTATION benutzt stattdessen die Eigenschaft, dass die Abstdnde zwi-
schen den auftretenden Mutationen in der Zeichenkette geometrisch verteilt sind: Mittels einer
Zufallszahl u ~ U([0, 1)) lasst sich der Abstand zur néchsten auftretenden Mutation bestimmen.
Falls der Abstand iiber das Ende des Individuums hinausgeht, wird der Uberhang auf das niichste
zu mutierende Individuum weitergereicht und bestimmt dort die erste verdnderte Position.

Beispiel 4.2:
Angenommen in dem Individuum 4.G = (1, 0, 1, 1, 1, 0, 0, 1, 0, 1) wurde soeben
die erste Stelle mutiert, dann gilt next = 1. Nun wird tiber die Zufallszahl # = 0,7 das

4.1 Genetischer Algorithmus 131

Algorithmus 4.4

GLEICHVERTEILTE-REELLWERTIGE-MUTATION(Individuum A4)
1 for eachic {1,...,/}

2 do" u — wihle Zufallszahl gemiB U([0, 1))

3 if u < p,, (Mutationswahrscheinlichkeit])

4 then " unten — max{ug;, A; — x (maximale Schrittweite]) }
5 oben — min{og;, 4; +x }

6 L L B; «— withle Zufallszahl gemif U ([unten, oben))

7 return B

néchste mutierte Bit ermittelt. Mit p,,, = 0.1 gilt:

| _
nextzl—f—{ n(0.7) J:l {M

In(1-0,1) —0,10536J +13,38528]

Daher wird auch das vierte Bit invertiert und es ergibt sich das folgende Individuum
(1,0, 1,0, 1,0, 0, 1, 0, 1). Wird als nichste Zufallszahl u = 0,3 gewihlt, folgt

et | 0| g | 1200

0°) | =4+ (1142717 = 15.
In(1—0,1) —0,10536J U]

Da dies groBer als die Lange des Individuums ist, wird next = 5 gesetzt und im néchs-
ten Individuum, wird das fiinfte Bit veridndert.

Mit der Zeit kamen neben der rein bindren Kodierung auch andere problemnahere Reprisenta-
tionen auf — insbesondere reellwertige Zeichenketten und Permutationen. Im Weiteren werden
kurz die speziellen genetischen Operatoren fiir diese Reprisentationen zusammengefasst.

Bei reellwertigen GAs hat der Suchraum die Form ¢ = R/. Fiir jede Suchraumdimension
i ist ein Intervall [ug;, og;] vorgegeben, also gilt 4 = [ug,0g(] X ... x [ug;, og;|. Durch diese
Reprisentation werden Probleme bei der Kodierung, wie z. B. die Hamming-Klippen, vermie-
den. Als Rekombinationsoperatoren bieten sich die selben Crossoveroperatoren wie im bindren
Fall an: EIN-PUNKT-CROSSOVER, UNIFORMER-CROSSOVER und K-PUNKT-CROSSOVER. Allerdings
decken diese Operatoren nicht den kompletten Suchraum ab, da keine Zwischenwerte angenom-
men werden. Daher wird hdufig der Operator ARITHMETISCHER-CROSSOVER (Algorithmus 3.12)
eingesetzt. Bei der Mutation kann nicht mehr einfach eine Informationseinheit invertiert werden,
stattdessen wird mit einer gewissen Wahrscheinlichkeit auf jede Komponente des Individuums
ein zufilliger gleichverteilter Wert addiert. Die GLEICHVERTEILTE-REELLWERTIGE-MUTATION (Al-
gorithmus 4.4) wird auch als Kriechmutation (engl. creep mutation) bezeichnet, da im Gegensatz
zur gaullschen Mutation (Algorithmus 3.4) die Schrittweite beschréinkt ist.

Fiir kombinatorische Probleme werden oft Permutationen, d. h. ¢4 = .7, als Genotyp benutzt.
Da bei Permutationen die Schema-Theorie nicht richtig greift, ist die Mutation in der Regel die
wichtigere Operation. In Kapitel 2 wurden die INVERTIERENDE-MUTATION (Algorithmus 2.2) und
die VERTAUSCHENDE-MUTATION (Algorithmus 2.1) bereits ausfithrlich vorgestellt. Eine Alterna-
tive ist die VERSCHIEBENDE-MUTATION (Algorithmus 4.5), die eine Zahl aus der Permutation
entfernt und an einer beliebigen Stelle wieder einfligt.

132 4 Evolutionire Standardalgorithmen

Algorithmus 4.5

VERSCHIEBENDE-MUTATION(Individuum 4 mit 4.G € .%})
1 B—4

uy — wihle zufillig gemdB U({1,...,/})

uy — wihle zufillig gemdB U({1,...,1})

By, Ay,

ifuy >u

then ™ for each j € {uy,....u; — 1}
tdol Bj+1 — Aj'

else "for each je {u;+1,...,u2}
LdolB; |« 4;

return B

O O 0NN B W N

—_

Algorithmus 4.6

MISCHENDE-MUTATION(Individuum 4 mit 4.G € .7)
B+—4

uy < wihle zufillig gemidB U({1,...,{})
uy «— wihle zufillig gemidB U({1,...,/})
ifu; > up

then [vertausche #; und u;

7« wihle zufillig aus U(7, —y +1)

for each je {1,...,up —u; +1}

doL By 4j1 < Au|+77:(j)71

return B

O 0~ N R W N —

Beispiel 4.3:
Beispielsweise produziert die VERSCHIEBENDE-MUTATION mit den Zufallszahlen
uy =3 und uy = 6 aus dem Individuum (1, 2, 3, 4, 5, 6, 7) das Individuum
(1,2,4,5,6,3,7).

Eine weitere Moglichkeit besteht in dem zufilligen Umsortieren eines Teils der Permutation wie
in Algorithmus 4.6 (MISCHENDE-MUTATION).

Beispiel 4.4:
Die MISCHENDE-MUTATION wird mit den Schnittpunkten #; = 3 und #; = 6 aus dem

oder jede andere beliebige Anordnung der markierten Ziffern.

Verglichen mit den anderen vorgestellten Mutationsoperatoren fiir Permutationen verandert die-
ser zuletzt vorgestellte Operator ein Individuum im Mittel relativ stark.

Wihrend Mutationsoperatoren relativ leicht auf Permutationen definiert werden, ist es sehr
viel schwieriger passende Rekombinationsoperatoren zu formulieren, da bei jeder Anwendung
eine giiltige Permutation entstehen muss. In Kapitel 2 werden die KANTENREKOMBINATION (Algo-
rithmus 2.4) und die ORDNUNGSREKOMBINATION (Algorithmus 2.3) eingeftuhrt. Eine dritte Mog-
lichkeit stellt die ABBILDUNGSREKOMBINATION (Algorithmus 4.7) dar, die einige Werte von einem

4.1 Genetischer Algorithmus 133

Algorithmus 4.7 (partially mapped crossover)

ABBILDUNGSREKOMBINATION(Individuen 4, B mit 4A.G,B.G € .%})
1 for eachic {1,...,/}
do L g(d4;) — B;
u; «— wihle Zufallszahl gemdB U ({2,...,/—1})
up <« withle Zufallszahl gemdB U({2,...,/—1})
if uy <uy
then [vertausche #q und up
benutzt — 0
for eachic {u,....ur}
9 do"C;— B;
10 L benutzt — benutzt\ J{B;}
11 fori—1,....,00—l,up+1,...,1
12 do"x—4;
13 while x € benutzt
14 do Cx — g(x)
15 Ci—x
16 L benutzt — benutzt U{x}
17 return C

R~ N bW

Elternindividuum tibernimmt und die restlichen geméf einer partiellen Abbildung zwischen den
beiden Elternindividuen ermittelt.

Beispiel 4.5:
In der ABBILDUNGSREKOMBINATION werden die Elternindividuen 4 = (1, 4, 6, 5, 7,
2,3)und B=(1, 2, 3, 4, 5, 6, 7) an den Schnittpunkten 2 und 4 miteinander rekom-
biniert, d. h. es werden vom zweiten Individuum (x, 2, 3, 4, x, x, x) iibernommen.
Nun definieren wir eine Abbildung g zwischen den Werten des ersten und des zweiten
Individuums:

i=|1
gli)=| 1
Fiir jedes Element des zweiten Elternteils iberpriifen wir nun, ob es an dieser Stelle
iibernommen werden kann, oder ob es gemif} dieser Abbildung durch einen anderen
Wert ersetzt wird. An der ersten noch freie Position des Nachkommens kann 1 aus
dem Individuum 4 iibernommen werden, da kein Konflikt dadurch entsteht, ebenso 7
an der funften Position. Sowohl 2 als auch 3 sind jedoch bereits vom Individuum B
kopiert worden. 2 kann gemil der Abbildung durch 6 ersetzt werden. Bei 3 wiirde die
Abbildung auf 7 verweisen, diese Zahl wurde jedoch bereits von A4 libernommen. In
diesem Falle iterieren wir die Abbildung erneut und erhalten die 5 fiir die fehlende
Stelle. Also resultiert insgesamt das Individuum (1, 2, 3, 4, 7, 6, 5).

2 3 4 5 6 17
6 7 2 4 3 5

Dieser Operator hat den Vorteil, dass er moglichst viele Werte an ihren urspriinglichen Stellen
beldsst und mogliche Konflikte durch eine schnelle Technik auflgst. Es 14sst sich auch leicht eine
Variante mit zwei Kindindividuen formulieren.

134 4 Evolutionire Standardalgorithmen

4.2 Evolutionsstrategien

Evolutionsstrategien werden vorgestellt. Einen Schwerpunkt bilden dabei die Adaptations- und
Selbstadaptationsstrategien zur Parameteranpassung.

Bei den Evolutionsstrategien (ES) ist der Genotyp der Individuen grundsétzlich immer reellwer-
tig, also gilt 4.G € 4 = R’ oder analog zu den reellwertigen genetischen Algorithmen & =
[ug),0g,] % ... x [ug;,0g,] C R’ In der Literatur wird meist davon ausgegangen, dass der Geno-
typ exakt einem reellwertigen Phianotyp entspricht — es gibt allerdings auch Beispiele, bei denen
die reellen Zahlen als Kodierung fiir einen anderen Raum aufgefasst werden (z. B. fiir Permuta-
tionen).

Die Evolutionsstrategie verzichtet auf Selektionsdruck bei der Auswahl der Eltern: Diese wer-
den gleichverteilt zufillig gewihlt. Stattdessen tiberleben in der Umweltselektion nur die besten
Individuen durch die BESTEN-SELEKTION (Algorithmus 3.6). Wird der Algorithmus nur auf die
erzeugten Kindindividuen angewandt, spricht man von der Komma-Selektion (i, A)-ES. Dabei
werden aus i Eltern A (>) Kinder erzeugt, die im Rahmen der Umweltselektion wieder auf die
1 besten Individuen reduziert werden. Alternativ kann auch mit tiberlappenden Populationen die
Plus-Selektion (i + A)-ES benutzt werden. Der Selektionsdruck kann durch die Wahl der Popu-
lationsgrofen p und A eingestellt werden. Bei der (i, A)-ES hat sich in der Praxis ein Verhéltnis
% zwischen % und % als vorteilhaft herausgestellt. Bei der Implementation der Selektionsalgorith-
men ist es nicht notwendig, die Individuen mit Aufwand & (A -log A) vollstindig zu sortieren (bei
der (g, A)-ES).Durch den Aufbau eines Heaps in A Schritten und iteratives Entfernen des besten
Elements mit einer anschlieBenden Reheap-Operation kann ein Aufwand von &(A + u -log A)
erreicht werden (vergleiche Standardliteratur zum Entwurf von effizienten Datenstrukturen und
Algorithmen).

Im Gegensatz zum genetischen Algorithmus ist bei der Evolutionsstrategie die Mutation der
primére Operator. In den ersten Implementationen wurde die Rekombination iiberhaupt nicht
benutzt. Daher muss der Mutationsoperator gleichzeitig sowohl die Feinabstimmung als auch
die Erforschung garantieren. Hierfiir ist die GAuss-MUTATION (Algorithmus 3.4) besonders gut
geeignet, da vornehmlich kleine Veridnderungen vorgenommen werden, aber auch beliebig grofie
Mutationen mit einer kleinen Wahrscheinlichkeit moglich sind.

Wie man sich leicht veranschaulichen kann, hiingt der Erfolg (z. B. das Uberwinden von loka-
len Optima) ebenso wie die Konvergenzgeschwindigkeit direkt von der erwarteten Schrittweite
der Mutation ab. Diese wird durch die Standardabweichung ¢ der Schrittweitenparameter be-
stimmt. Wird der Wert ¢ klein gewdhlt, werden kleine Schritte im Suchraum durchgefiihrt, bei
grolem ¢ groBe Schritte. Da sich eine solche Schrittweite a priori nur unzureichend einstellen
lasst, finden zwei der im Abschnitt 3.4.2 vorgestellten Anpassungsmechanismen Anwendung:

* Die %-Erfolgsregel (Algorithmus 3.17) ermittelt aufgrund von statistischen Erhebungen in
den letzten Generationen einen neuen Wert fiir o flir die gesamte Population. ES-ADAP-
TIv (Algorithmus 4.8) beschreibt die komplette Evolutionsstrategie mit Mutation und einer
Komma-Selektion. Fiir eine Plus-Selektion wird in Zeile 7 P’ mit P(¢) initialisiert.

* Die Selbstadaptation unterwirft die Schrittweite als Strategieparameter in jedem Individu-
um ebenfalls dem Evolutionsprozess. Hier unterscheidet man drei Varianten, die in den
Bildern 4.2—4.4 dargestellt sind:

4.2 Evolutionsstrategien 135

Algorithmus 4.8
ES-ADAPTIV(Zielfunktion F)

1 t<0
2 0 «— Wert fir Anfangsschrittweite
3 50
4 P(t) « erzeuge Population mit pt (PopulationsgroBe) Individuen
5 Dbewerte P(¢) durch F
6 while Terminierungsbedingung nicht erfiillt
7 do"P — ()
8 for eachic {l,.... A4 (Anzahl der Kinder) }
9 do ™ A — selektiere Elter uniform zufillig aus P(r)
10 C «— GAUSS-MUTATION(A) mit ¢
11 bewerte C durch
12 ifCF >~ AF
13 thenCs « s+1
14 LP — P ol{C)
15 t—t+1
16 P(t) + Selektion aus P’ mittels BESTEN-SELEKTION
17 if # mod k (Modifikationshdufigkeit) =0
18 then " 0 < ADAPTIVE-ANPASSUNG(0, 1’5)
19 L Ls<—0

20 return bestes Individuum aus P(¢)

Algorithmus 4.9
ES-SELBSTADAPTIV(Zielfunktion F)
1 t<0
2 P(t) « erzeuge Population mit & (PopulationsgroBe) Individuen
3 bewerte P(¢) durch F
4 while Terminierungsbedingung nicht erfullt
5 do™P ()
6 for eachie {1,..., 4 (Anzahl der Kinder) }
7 do " 4 — selektiere Elter uniform zufillig aus P(7)
8 B — SELBSTADAPTIVE-GAUSS-MUTATION(A4)
9 LP — P'o(B)
10 bewerte P durch FF
11 t—t+1
12 L P(t) < Selektion aus P’ mittels BESTEN-SELEKTION

13 return bestes Individuum aus P(¢)

— Die uniforme Schrittweitenanpassung mit 2 = R* nutzt den Wert 6 = 4.5 € &
fiir die Mutation aller Werte im Genotyp (vgl. SELBSTADAPTIVE-GAUSS-MUTATION in
Algorithmus 3.18). Der resultierende Gesamtalgorithmus ist als (¢, A)-ES in Algo-
rithmus 4.9 dargestellt. Fiir die Plus-Selektion wird P’ in Zeile 5 mit P(¢) initialisiert,
Bild 4.2 zeigt, dass jedes Individuum einen individuellen Wert als Schrittweitenpara-
meter ¢ besitzt — hier angedeutet durch die erwartete Schrittweite als Hyperkugel im
Suchraum. Wenn jedoch, wie in der Abbildung dargestellt, ein Individuum einen lan-

136

4 Evolutiondre Standardalgorithmen

Bild 4.2

Sicht von oben auf eine Giitelandschaft, dargestellt durch Héhen-
linien: bei der uniformen Schrittweitenanpassung ergeben sich
erwartete Schrittweiten der einzelnen Individuen wie es durch
Kreise angedeutet ist.

TN Bild 4.3
N

C IO Separate Schrittweitenanpassung: Die Mutation kann sich ent-

lang der Koordinatenachsen besser auf die Form der Giiteland-
schaft einstellen.

-
R

'ﬂ \\\\ Bild 4.4

Separate Schrittweitenadaptation mit zusitzlicher Beriicksichti-
gung der Winkel: Beliebige Ausrichtungen der Mutation wer-
den ermoglicht.

gen Grat entlangwandern sollte, muss die Schrittweite klein bleiben, um nicht vom
Grat »herunterzufallen«. Dies impliziert allerdings eine lange Laufzeit.

Mit separaten Schrittweiten flir jede Dimension des Genotyps kann ein Individuum
unterschiedlich grofle Schritte in die verschiedenen Richtungen machen. Dann gilt
% = (RT)". Den individuellen Schrittweiten wird auch durch eine eigene Anpassung
Rechnung getragen. Es gilt fiir jeden Strategieparameter

1 1
B.S~<—A.S~~exp(et u/)
’ ’ V2.1 V2

mit einer pro Individuum nur einmal gewihlten Zufallszahl u ~ .47(0.1) sowie indivi-
duellen Anteilen u} ~ .47(0,1). Die Objektvariablen werden durch die Formel

BG, «— AG, -I—,/V(O, BS,)

analog bestimmt. Bild 4.3 zeigt eine bessere unabhéngige Orientierung der Schritt-
weiten. Da sich die Ausrichtung der separaten Schrittweiten an den Dimensionen des
Suchraums orientiert, ist keine effektive Suche auf das Optimum hin gew#hrleistet.

4.2 Evolutionsstrategien 137

Komma-Evolutionsstrategie Plus-Evolutionsstrategie
s N\ e N
gleichverteilte
n Elternselektion n
= =
2 . . £
g (Rekombination) | §
o Q
5 . b
© Mutation O
\ / Deterministische \. / J
(o0 W Umweltselektion ('Y X X & W

Bild 4.5 Der unterschiedliche Ablauf der Komma-Evolutionsstrategie und der Plus-Evolutionsstrategie ist
in je einem beispielhaften Bild verdeutlicht.

Algorithmus 4.10

GLOBALER-UNIFORMER-CROSSOVER(Population P = <A(k)>1§/{§u)
1 fori—1,...,17

2 do " u «— wihle zufillig gemaB U({1,...,u})

3 LB.G; — AW .G;

4 return B

— Die beliebige Orientierung im Raum kann durch % -1- (I —1) zusitzliche Strategiepa-
rameter flir die Drehung im /-dimensionalen Raum erreicht werden. Dies erm&glicht
eine beliebige Ausrichtung der Individuen wie in Bild 4.4. Allerdings ist die bisher
diskutierte zufdllige Veréinderung mit indirekter Selektion hierfiir meist zu trige und
der Vorteil einer optimalen Ausrichtung wird durch die lange Zeit, diese zu finden,
wieder zunichte gemacht.

Die unterschiedlichen Ablaufschemata sind in Bild 4.5 fiir beide Varianten der Umweltse-
lektion dargestellt. Dabei wurde nur die Mutation als Operator beriicksichtigt. Hinsichtlich der
Selbstanpassungsmechanismen ist zu beachten, dass diese mit der Plus-Strategie nicht so effektiv
arbeiten wie mit der Komma-Strategie.

Mit steigender Rechnerleistung wurde die (1 T A)-Evolutionsstrategie der Anfangsjahre héu-
fig durch eine populationsbasierte (1 T A)-Evolutionsstrategie ersetzt, womit auch die Rekom-
bination interessant wurde. Hier kommen gleichermaBen UNIFORMER-CROSSOVER (Algorith-
mus 3.11) und ARITHMETISCHER-CROSSOVER (Algorithmus 3.12) zum Einsatz. Interessant sind
hierbei sog. globale Varianten, bei denen die gesamte Population als gemeinsame Eltern herange-
zogen wird. Die Rekombination GLOBALER-UNIFORMER-CROSSOVER (Algorithmus 4.10) wahlt
fiir jede Dimension des Genotyps den Wert aus einem gleichverteilt zufallig gewahltem Individu-
um der Elternpopulation. Die Rekombination GLOBALER-ARITHMETISCHER-CROSSOVER (Algo-
rithmus 4.11) mittelt fiir jede Dimension den Wert {iber alle Individuen in der Elternpopulation
und bestimmt damit den Schwerpunkt der Population. In der Notation der Evolutionsstrategi-
en schreibt man dann auch von einer (¢/r T A)-Evolutionsstrategie, wobei r die Anzahl der
Elternindividuen bei der Rekombination angibt. Die Rekombination kann auch auf die Strategie-
parameter angewandt werden. Eine géngige Vorgehensweise ist die Anwendung der Rekombina-

138 4 Evolutiondre Standardalgorithmen

Algorithmus 4.11

GLOBALER-ARITHMETISCHER-CROSSOVER(Population P = (40, o,y mit 40).G e RY)
1 fori—1,...,7

2 o[BG -3, 4%.G;

3 return B

Parameter Wertebereich
Populationsgrofie u: 1-30
Kindindividuen pro Generation: (5-u)—(7- 1) (Komma), sonst > 1

Rekombinationswahrscheinlichkeit: 0,0-1,0

Tabelle 4.2 Hiufig benutzte Parameterbereiche bei selbstadaptiven Evolutionsstrategien

(~
globale
Rekombination n
Mutation s
g
e S
Deterministische .
Umweltselektion \. Y Bild 4.6 N ‘ .
mit Anpassung (X K §] Der Ablauf der derandomisierten Evolutionsstrategie

von & ist beispielhaft veranschaulicht.

tion UNIFORMER-CROSSOVER auf den Genotyp und des Operators GLOBALER-ARITHMETISCHER-
CrossovER auf die Strategieparameter. Typische Parameterwerte fiir die selbstadaptive Evoluti-
onsstrategie sind in Tabelle 4.2 angegeben.

Die bisher betrachtete Selbstanpassung ist stark zufallsabhingig: Nur wenn die Strategievaria-
blen passend veridndert werden und damit ein tatsidchlich gutes Individuum erzeugt wird, passt
sich die Mutation entsprechend an. Daher wurde eine sog. derandomisierte Selbstadaptation
eingefiihrt, die lediglich den Genotyp zufillig veréndert und die Modifikation der Strategieva-
riablen daraus ableitet. Als einfaches Beispiel betrachten wir eine (¢ /i, A)-Evolutionsstrategie
mit globalem arithmetischem Crossover und einem global fiir die ganze Population gespeicher-
ten ¢. Durch die Rekombination sind alle A Kindindividuen Mutanten des Schwerpunktes der
Elternpopulation. Entsprechend der tatsdchlichen Schrittlinge bei den besten ¢ Individuen wird
durch ein Lernmechanismus das ¢ modifiziert. Die gesamte DERANDOMISIERTE-ES ist in Algo-
rithmus 4.12 dargestellt (vgl. auch Bild 4.6), dabei werden iiblicherweise die folgenden Parame-
terwerte abhingig von der Dimensionalitit des Genotyps ¥ — R gewihit:

s o= % als Lernrate, wie stark die jeweils aktuelle Verdnderung in die iiber alle Generatio-

nen erlernte Gesamtverinderung s) eingeht, und

« 7 =+/I als Dampfungsfaktor, der festlegt, wie stark die Lange der Gesamtverinderung s
den Schrittweitenparameter ¢*) modifiziert.

4.3 Evolutionires Programmieren 139

Algorithmus 4,12

DERANDOMISIERTE-ES(Zielfunktion F)
1 t—0

2 P(t) < erzeuge Population mit y (PopulationsgréBe) Individuen
3 s —(0,...0)eR

4 initialisiere ') (globaler Schrittweitenparameter)

5 bewerte P(f) durch F

6 while Terminierungsbedingung nicht erfiillt

7 do" B+ GLOBALER-ARITHMETISCHER-CROSSOVER(P(1))
8 P~

9 fori—1,..., A (Anzahl der Kinder))
10 do " C — GAUSS-MUTATION(B) mit)
11 P —Po(C)
12 vz —C.G-B.GeR!
13 bewerte P’ durch F
14 t—t+1
15 Indizes +— BESTEN-SELEKTION fiir Individuen in P/
16 P(t) « Selektion aus P’ gemiB Indizes
17 Z+ % o z__iEMdf':e.\' ZU)

18 s (1 — & (Lernfaktor))-sU~D 4 /oa-(2—a)-u-z
19 Lol — gl .exp (u%ul—rlf—f) (Imit Ddmpfungsfaktor)
20 return bestes Individuum aus P()

Der Ablauf der derandomisierten Evolutionsstrategie ist interessant, da letztendlich kein populationsba-

% sierter Ansatz mehr vorliegt. Es findet eine zweistufige Reduktion der Kindpopulation statt: Die in der
Umweltselektion ausgewihlten Individuen werden sofort wieder verworfen und auf ihren Schwerpunkt im
[-dimensionalen Raum reduziert. Dies ist auch deutlich aus Bild 4.6 ersichtlich.

4.3 Evolutioniires Programmieren

Die wesentlichen Merkmale des evolutiondren Programmierens, sowohl in seiner historischen
Form als auch in den modernen Weiterentwicklungen, werden aufgezeigt.

Das evolutiondre Programmieren (EP, engl. evolutionary programming) ist durch die Grundidee
gepriigt, die Evolution auf einer mehr verhaltensbestimmten Ebene nachzubilden, d. h. es wird
kein Wert darauf gelegt, die Genetik zu beriicksichtigen, sondern bei den Nachkommen ist ledig-
lich ihre phinotypisch beobachtbare Ahnlichkeit zu einem Elternteil von Interesse. Daher wird in
EP kein Rekombinationsoperator benutzt und die Reprisentation moglichst problemnah gewihlt.
Der Ausgangspunkt fiir die Entwicklung des evolutionéren Programmierens war das Problem der
Zeitreihenprognose. Es gibt zwei Standardverfahren des evolutionéren Programmierens, die je-
weils die Modellierungstechniken der kiinstlichen Intelligenz ihrer Zeit reflektieren: Der Ansatz
der 1960er Jahre benutzt endliche Automaten und der Ansatz der 1980er Jahre neuronale Netze.

140 4 Evolutionire Standardalgorithmen

Bild 4.7

Graphische Darstellung eines endlichen Automaten mit
drei Zustanden. An den Ubergiingen bezeichnet der ers-
te Wert das Eingabesymbol und der zweite Wert das
Ausgabesymbol.

Tabelle 4.3

Zustand o @ d @ @ P Der beispielhafter Ablauf fiir die Prognose mit dem Au-
tomaten aus Bild 4.7 zeigt, dass drei von fiinf Prognose-

Vorhersage P 2 2 1 2 werten richtig waren (unterstrichen).

Zeitreihe 1 0

In den ersten Algorithmen wurde eine Population von endlichen Automaten benutzt. Bei der
Zeitreithenprognose muss in diskreten Schritten jeweils der nachste Wert der Zeitreihe vorherge-
sagt werden, d. h. ein endlicher Automat bestimmt aus seinem internen Zustand und dem aktu-
ellen Wert der Zeitreihe sowohl die Prognose fiir den nichsten Wert der Zeitreihe als auch den
neuen internen Zustand des Automaten. Die simulierte Evolution soll die Prognosefihigkeiten
der Automaten verbessern.

Definition 4.1 (Endlicher Automat):
Formal ist ein endlicher Automat ein Tupel (Q, Start, X, Ubergang, Ausgabe). Dabei
ist O eine endliche Menge der mdéglichen Zustinde, Start € O der Startzustand,
das Eingabe- und Ausgabealphabet, Ubergang : O x ¥ — Q eine Ubergangsfunktion,
sowie Ausgabe : O x T — I eine Ausgabefunktion. Die Ubergangsfunktion berechnet
fiir jedes mogliche Eingabesymbol abhingig vom aktuellen Zustand des Automaten
den neuen Zustand, die Ausgabefunktion ein Ausgabesymbol.

Beispiel 4.6:
Bild 4.7 zeigt einen Beispielautomaten mit Q = {go,¢1,¢g2} und £ = {0, 1, 2, 3}. An-
genommen der Automat befindet sich im Zustand g¢ und der letzte Wert der Zeitreihe
war eine 1. Dann ergibt sich fiir die Zeitreihe 0, 2, 3, 1, 2 die Vorhersage in Tabel-
le 4.3.

Da fiir eine Zeitreihe das Alphabet X fest vorgegeben ist, besitzt jedes Individuum den Genotyp
A.G = (Q, Ubergang, Ausgabe, Start), wobei die Funktionen in Tabellenform abgelegt sind. Es
wird keine Zusatzinformation 4.5 benétigt, d.h. 2 = { L}.

Fiir die Variation von endlichen Automaten stehen verschiedene Moglichkeiten zur Verfii-

gung.
* AUTOMATENMUTATION-AUSGABE: Die Ausgabe wird an einer Stelle in der Ubergangstabelle
verdndert (Algorithmus 4.13 und Bild 4.8).

* AUTOMATENMUTATION-FOLGEZUSTAND: Ein Folgezustand wird in der Ubergangstabelle durch
einen zufilligen neuen ersetzt (Algorithmus 4.14 und Bild 4.9).

4.3 Evolutiondres Programmieren 141

Algorithmus 4.13

AUTOMATENMUTATION-AUSGABE(Individuum A mit A.G = (Q. Ubergang, Ausgabe. Start))
Ausgabe' — Ausgabe

Zustand +— wiihle zufillig gemil U(Q)

Zeichen «— wihle zufillig gemil U(Z)

Zeichen' «— wiihle zufillig gemiB U(X)

Ausgabe' (Zustand. Zeichen) — Zeichen'

return B mit B.G = (Q. Ubergang. Ausgabe’, Start)

= BV R S T R

1/1

3/0
1/2

2/1
0/2

3N

Bild 4.8 Beispiel fiir den Operator AUTOMATENMUTATION-AUSGABE

* AUTOMATENMUTATION-NEUER-ZUSTAND: Ein neuer Zustand wird zur Menge O hinzugefiigt
und ein Ubergang aus der alten Zustandsmenge in den neuen Zustand eingerichtet (Algo-
rithmus 4.15 und Bild 4.10).

* AUTOMATENMUTATION-ZUSTAND-LOSCHEN: Ein Zustand wird gel6scht und alle Ubergiinge,
die in diesen Zustand gefiihrt haben, werden umgesetzt (Algorithmus 4.16 und Bild 4.11).

* AUTOMATENMUTATION-STARTZUSTAND: Ein neuer Startzustand wird gewihlt (Algorith-
mus 4.17 und Bild 4.12).

Beim Hinzufiigen und Ldschen eines Zustands und bei der Mutation des Folgezustands kann es passieren,
dass nicht mehr alle Zustiinde vom Startzustand aus erreichbar sind. Falls dies nicht gewiinscht ist, miisste
durch eine Tiefensuche die Erreichbarkeit gepriift und iiberfliissige Zustinde gestrichen werden.

Die Erfinder von EP hatten konzeptionell auch einen Rekombinationsoperator vorgesehen, der im
wesentlich aus mehreren Automaten mittels einer Potenzmengenkonstruktion einen Automaten
durch die Vereinigung der Elternautomaten berechnet. Dieser Operator wurde jedoch nicht im-
plementiert — vermutlich aus Effizienzgriinden, da zur damaligen Zeit die Rechnerleistung noch
stark beschrinkt war.

Im Gesamtalgorithmus EVOLUTIONARES-PROGRAMMIEREN-1960ER (Algorithmus 4.18) des ur-
spriinglichen EP wird fiir jedes Individuum aus der aktuellen Population durch einen der Muta-
tionsoperatoren ein neues Kindindividuum erzeugt. Gemil der Plus-Selektion (u +) wird die
bessere Hilfte der Eltern und der Kindindividuen durch die Umweltselektion iibernommen. Der
Ablauf ist in Bild 4.13 beispielhaft veranschaulicht.

Im Gegensatz zur Darstellung in Algorithmus 4.18 werden teilweise mehrere Mutationen direkt hinterei-
nander ausgefiihrt. Meist sind die Ergebnisse jedoch mit nur einer Mutation tiberzeugender.

142 4 Evolutiondre Standardalgorithmen

Algorithmus 4.14

AUTOMATENMUTATION-FOLGEZUSTAND(Individuum 4 mit 4.G = (Q, Ubergang, Ausgabe, Start))
Ubergang/ «— Ubergang

Zustand — wihle zufillig gemdfl U(Q)

Zustand — wiihle zufillig gemiB U(Q)

Zeichen — wihle zufillig gemiB U(X)

Ubergang (Zustand, Zeichen) — Zustand

return B mit B.G = (Q, Ubergang , Ausgabe, Start)

AN AW —

Algorithmus 4.15

AUTOMATENMUTATION-NEUER-ZUSTAND(Individuum 4 mit 4.G = (Q, Ubergang, Ausgabe, Start))
1 Q' — QU{Zustand}

Ubergang/ — Ubergang

Ausgabe' — Ausgabe

for each Zeichen € T

do " Zustand +— wihle zufillig gemidB U(Q')
Ubergang (Zustand, Zeichen) — Zustand
Zeichen' +— wihle zufillig gemiB U (%)

L Ausgabe’ (Zustand, Zeichen) — Zeichen'

9 Zustand — wihle zufillig gemiB U(Q')

10 Zeichen — wiihle zufillig gemiB U(Z)

11 Ubergang' (Zustand' , Zeichen) — Zustand

12 return B mit B.G = (¢, Uberganglf Ausgabe’ | Start)

00 -1 N WL AW

Algorithmus 4.16

AUTOMATENMUTATION-ZUSTAND-LOSCHEN(Individuum 4 mit 4.G = (Q, Ubergang, Ausgabe, Start))
1 Zustand — wihle zufillig gemdB U(Q\ {Start})
2 @« O\{Zustand}

3 Ubergang/ — Ubergang‘
O'x%

Ausgabe’ — Ausgab ‘
usgabe usgabe ovs

for each (Zustand , Zeichen) € Q x X
do " if Ubergang(Zustand' , Zeichen) = Zustand
then ™ Zustand”’ — wiihle zufillig gemiB U(Q')
L _ Ubergang' (Zustand' , Zeichen) «— Zustand'
return B mit B.G = (', Ubergang , Ausgabe', Start)

Nelie SRR Bie N R N

Algorithmus 4.17

AUTOMATENMUTATION-STARTZUSTAND(Individuum 4 mit 4.G = (Q, Ubergang, Ausgabe, Start))
1 Start — wihle zufillig gemiB U(Q)
2 return B mit B.G = (Q, Ubergang, Ausgabe, Start’)

4.3 Evolutionires Programmieren 143

11
2/0
0/0

1/1
2/0
0/0

0/1

3/1

Bild 4.9 Beispiel fiir den Operator AUTOMATENMUTATION-FOLGEZUSTAND

3/1 3/1

Bild 4.10 Beispiel fiir den Operator AUTOMATENMUTATION-NEUER-ZUSTAND

111 \ 3/1 11
. 2/0 0/1 ‘@ . Q. 2/0
00 11 2/2 0/0

3/1 3/1

Bild 4.11 Beispiel fiir den Operator AUTOMATENMUTATION-ZUSTAND-LOSCHEN

3/1

Bild 4.12 Beispiel fiir den Operator AUTOMATENMUTATION-STARTZUSTAND

144 4 Evolutionire Standardalgorithmen

Algorithmus 4.18

EVOLUTIONARES-PROGRAMMIEREN-1960ER(Zielfunktion F')
1 10

2 P(t) < erzeuge Population mit ¢t (Populationsgrofie) Individuen

3 bewerte P(¢) durch FF

4 while Terminierungsbedingung nicht erfiillt

5 do" P —P(r)

6 for j—1,...,u

7 do ™ (sei P(1) = (4} i<y

8 u — wihle zufillig gemidB U({1,...,5})

9 switch
10 case u = 1 : B — AUTOMATENMUTATION-AUSGABE(4"/))
11 case u =2 : B — AUTOMATENMUTATION-FOLGEZUSTAND(4\/))
12 case ¥ =3 : B — AUTOMATENMUTATION-NEUER-ZUSTAND(A (f>)
13 case u =4 : B — AUTOMATENMUTATION-ZUSTAND-LOSCHEN(4())
14 case u = 5 : B — AUTOMATENMUTATION-STARTZUSTAND (4(/))
15 bewerte B durch F
16 LP — P o(B)
17 t—t+1
18 L P(t) < Selektion aus P’ mittels BESTEN-SELEKTION

19 return bestes Individuum aus P(¢)

s 2
Identitét als
Elternselektion n
=
2
E
5
. 5
Mutation O
Deterministische - ; J

Umweltselektion (N ‘ .{ ./ W

Bild 4.13 Der Ablauf des evolutiondren Programmierens ist beispielhaft veranschaulicht,

Parameter Wertebereich Tabelle 4.4
Héufig benutzter Parameterbereich beim evolutiondren Program-
Populationsgrofie: 10-100 mieren

Mit dem Wechsel von endlichen Automaten als Vorhersagemodell zu neuronalen Netzen wurde
ein vollstindig andersgearteter genotypischer Suchraum betrachtet. Kiinstliche neuronale Netze
gehen auf die Modellierung von natiirlichen Neuronen zuriick, wie sie z. B. im Gehirn vorliegen.
Ein einfaches Modell sind Perzeptronen mit mehreren Schichten (auch Feedforward-Netze ge-
nannt). Bild 4.14 zeigt ein beispielhaftes Netz. Die Neuronenschichten sind durch Verbindungen
miteinander verkniipft. Die Neuronen in der Eingabeschicht représentieren Eingabewerte fiir das
Netzwerk. Diese Werte werden mit Gewichten an den Kanten multipliziert und an die Neuro-

4.3 Evolutionires Programmieren 145

Ausgabeschicht 5o sigmoid(1,7-1,0+0,5-2,0—0,3)

= sigmoid(2.4) = 1oy = 0,125

Ws.6
w36 W46

verdeckte [/‘\ m m

Schicht

Eingabeschicht

Bild 4.14 Schematische Darstellung eines neuronalen Feedforward-Netzes mit mehreren Schichten. Jeder
Kante ist ein Gewicht w; ; und jedem Knoten ein Schwellwert ©; zugeordnet. Rechts wird bei-
spielhaft an einem Neuron gezeigt, wie aus den eingehenden Werten die Ausgabe des Neurons
berechnet wird.

nen der niachsten Schicht weitergereicht. Dort wird die Summe iiber die gewichteten Eingéinge
gebildet, ein Schwellwert abgezogen und auf das Resultat eine sigmoide Funktion — die sog. Ak-
tivierungsfunktion — angewandt, um den Ausgabewert des Neurons zu berechnen. Diese Werte
werden iterativ, wie beschrieben, weiter verarbeitet, bis sie in der Ausgabeschicht als Ergebnis
vorliegen. Mit ausreichender Anzahl an Neuronen kann jede mathematische Funktion durch ein
neuronales Netz angendhert werden. Fiir die Zeitreihenprognose werden beispielsweise die letz-
ten k Werte der Zeitreihe als Eingaben herangezogen und der Ausgabewert des neuronalen Netzes
wird als Prognose des nichsten Wertes interpretiert. Grundsitzlich steht ein Lernmechanismus
fiir neuronale Netze zur Verfiigung, der anhand von Beispieldaten durch eine Gradientensuche
die Gewichte und Schwellwerte anpasst. Die simulierte Evolution ist dort hiufig nur bedingt kon-
kurrenzfahig — sie ist insbesondere dann interessant, wenn keine Trainingsdaten zur Verfligung
stehen, da sich die neuronalen Netze in einer realen Umwelt oder im direkten Vergleich (etwa in
der Form von Spielstrategien) bewéhren miissen.

Dann besteht der Genotyp der Individuen aus den Gewichten w; ; € R und den Schwellwerten
©; € R und es wird ein Mutationsoperator auf reellwertigen Werten benétigt, der analog zur Mu-
tation der Evolutionsstrategie auf der GAUSS-MUTATION beruht. Zu einem Genotyp 4.G € 4 =R/
der Linge / werden ebenfalls / Strategieparameter 4.5 ¢ 2 = (R*)! eingefiihrt, die die Schritt-
weite der Mutation steuern. Der additive Anpassungsmechanismus flir die Strategieparameter
kann der Beschreibung des Operators SELBSTADAPTIVE-EP-MUTATION (Algorithmus 4.19) ent-
nommen werden. Dabei sind zwei Parameter von Bedeutung: Der Skalierungsfaktor o bestimmt
wie stark die Werte veridndert werden und die minimale Standardabweichung € > 0 verhindert,
dass die Werte der Strategieparameter negativ werden.

Ansonsten wurde als einzige Modifikation am Algorithmus der 1960er Jahre die Selektion der
Besten durch die g-stufige zweifache Turnierselektion (Q-STUFIGE-TURNIER-SELEKTION, Algo-

146 4 Evolutionire Standardalgorithmen

Algorithmus 4.19

SELBSTADAPTIVE-EP-MUTATION(Individuum 4 mit 4.G € R/ und 4.5 € R/)
1 for eachic {1,...,/}

2 do "« — wihle zufillig gemiB .4 (0, 4.S; o (Anpassungsparameter]))

3 B.S,‘HA.S,‘+LI/

4 B.S; — max{B.S;, € (kleinste Standardabweichung)) }

5 u «— wihle zufillig gemiB .47(0, 4.S;)

6 LB.Gi—A.Gi+u

7 return B

Algorithmus 4.20
EVOLUTIONARES-PROGRAMMIEREN-1980ER(Zielfunktion F')
1 +<0
2 P(t) < erzeuge Population mit i (PopulationsgrdBe) Individuen
3 bewerte P(z) durch F¥
4 while Terminierungsbedingung nicht erfiillt
5 do" P —P(z)
6 fori—1,.... 1
7 do ™ (sei P(t) = (A1 <<y
8 B — REELLWERTIGE-EP-MUTATION(4())
9 bewerte B durch F
10 LP — P o(B)
11 t—1t+1
12 L P(t) < Selektion aus P’ mittels Q-STUFIGE-TURNIER-SELEKTION

13 return bestes Individuum aus P(¢)

rithmus 3.7) ersetzt, die zwar immer noch duplikatfrei, aber nicht so starr wie die deterministische
Selektion der Besten ist. Der resultierende Ablauf EVOLUTIONARES-PROGRAMMIEREN-1980ER ist
in Algorithmus 4.20 dargestellt. Tabelle 4.5 enthélt gebriuchliche Parametereinstellungen.

4.4 Genetisches Programmieren

Da genetisches Programmieren eine grofie Algorithmenvielfalt hervorgebracht hat, wird in die-
sem Abschnitt nur die Kernidee vorgestellt. Der Schwerpunkt liegt auf den speziellen Operatoren
und Techniken, die durch Individuen mit variabler Grifie bendtigt werden.

Genetisches Programmieren (GP, engl. genetic programming) ist im Kontext der genetischen
Algorithmen entstanden. Daher sind auch die Merkmale des Verfahrens dhnlich: Die Rekom-
bination ist der Hauptoperator, wéhrend die Mutation nur als Hintergrundoperator wirkt. Ein
wesentliches Charakteristikum des genetischen Programmierens ist die variable Grofle der Re-
prisentation — sie wird sowohl im Umfang als auch in ihrer Struktur durch den Prozess der
simulierten Evolution bestimmt. Die Ausgangsidee war, Computerprogramme oder mathemati-
sche Funktionen zu evolvieren, die als Syntaxbdume dargestellt werden. Obwohl inzwischen sehr
viele unterschiedliche Représentationen betrachtet wurden, wie z. B. Graphen oder Assembler-
Programme, beschrinken wir uns in diesem Abschnitt auf die urspriingliche Darstellung.

4.4 Genetisches Programmieren 147

Parameter Wertebereich
PopulationsgroBe: 20-200, selten bis 500
Anpassungsstirke o: 0,1-0.4, 113

minimale Standardabweichung &1 10731073
Turniergréfle: 5-10

Tabelle 4.5 Haufig benutzte Parameterbereiche beim modernen evolutiondren Programmieren

@
’ @
OO R

Bild 4.15 @ @ @
Beispiel fiir einen Syntaxbaum.

Syntaxbdume konnen beliebige mathematische Ausdriicke (wie im Beispiel in Bild 4.15) oder
auch beliebige Programme beispielsweise durch die Verwendung von LISP-Ausdriicken darstel-
len. Jedem Blatt des Baums ist ein Wert zugeordnet und die internen Knoten enthalten Funk-
tionen oder Programmkonstrukte. Um die syntaktischen Randbedingungen fiir korrekte Baume
moglichst gering zu halten, werden die Funktionen meist so gewihlt, dass alle Knoten denselben
Datentyp zuriickliefern.

Beispiel 4.7:
Bild 4.15 zeigt einen moglichen Syntaxbaum fiir die Formel

0V (S<xy) fallsx) =tue
X sonst

glxo0,x1,%2) :{

Zur Beschreibung der Algorithmen wird eine lineare Darstellung der Bdume in Préifixnotation
benutzt: Zunidchst wird der Operator angefithrt, der von den Argumenten (einschliefllich ihrer
eventueller Unterbdume) gefolgt wird. Damit ist jeder Baum ein Element von ¢4 C X*, wobei X
die Menge aller Funktionssymbole und Konstanten ist — dabei ist jedoch zu beachten, dass nicht
jedes Element aus * einen giiltigen Baum beschreibt, sondern verschiedene Randbedingungen
eingehalten werden miissen. Die Individuen haben also den Genotyp 4.G € ¢ und besitzen keine
Zusatzinformationen 4.5, d.h. 2 = {1}. Hiufig wird diese Darstellung auch fiir die effiziente
Implementation von genetischem Programmieren benutzt. Alternativ kénnen die Baume jedoch
auch {iber mit Zeigern verkettete Objekte dargestellt werden.

Beispiel 4.8:
Der Baum aus Beispiel 4.7 wird in der Préfixnotation dargestellt als

or and not xp x; if not x; x; < 5 xp.

148 4 Evolutionire Standardalgorithmen

Operation Beschreibung

Entferne(Baum,i) entferne aus Baum Baum den Teil der Zeichenkette in der linearen Dar-
stellung, der dem Unterbaum mit der Wurzel an Position / entspricht —
an der Position 7 verbleibt ein Platzhalter

Teilbaum(Baum,i) liefert den Teil der Zeichenkette, welcher den Unterbaum beginnend an
der Position i in Baum darstellt

Erzeugebaum() erzeugt einen beliebigen zufilligen, aber konsistenten Teilbaum

Einfiigen(Baum,i,Baum') fiigt in Baum den Unterbaum Baum' anstelle des Knotens/Blatts an Po-
sition 7 ein

Enthalten(Baum,i,j) priift in Baum, ob der Knoten an Position j im Unterbaum mit der Wur-
zel an Position i enthalten ist.
GroBe(Baum) liefert die GroBe des Baums (Anzahl der Knoten)

Tabelle 4.6 Die Algorithmen des genetischen Programmierens sind mit diesen Basisoperationen formuliert.

Algorithmus 4.21

BAUMTAUSCH-REKOMBINATION(Individuen 4, B)
1 i« wihle zufillig gemdB U({1,...,GroBe(4.G)})
J < wihle zufillig gemiB U ({1, ..., GroBe(B.G)})
C—4
D—B
Baum « Teilbaum(C.G, i)
Baum’ — Teilbaum(D.G., j)
C.G — Entferne(C.G, j)
C.G « Einfligen(C.G, j, Baum')
D.G — Entferne(D.G. i)
D.G — Einfiigen(D.G, i, Baum)
return C, D

—_— O 0 X0 NN R W

—_—

Zur Bewertung werden die Programme auf einer virtuellen Maschine ausgefiihrt und es wird fiir
Testfélle gemessen, inwieweit das Programm die gestellte Aufgabe in einer simulierten oder der
realen Welt erfiillt. Ein mégliches Beispiel wére hier die Steuerung eines Roboters.

Die variable Grofle der Individuen bringt zwei Probleme mit sich: Einerseits kénnen die Syn-
taxbdume unbeschrankt grofl werden und andererseits ist die Kodierung hochgradig redundant,
da sehr viele unterschiedliche Baume dieselbe Funktionalitit darstellen kdnnen. Daher wird oft
die BaumgréBe durch eine maximale Tiefe im voraus beschrinkt. Dies stellt spezielle Anforde-
rungen an die genetischen Operatoren und birgt einige Schwierigkeiten bei der Anwendung. Die-
se Punkte werden im Weiteren noch ausfiihrlicher diskutiert. Zur Beschreibung der Operatoren
auf den Syntaxbdumen werden in diesem Abschnitt die Basisoperationen in Tabelle 4.6 benutzt.
Die Operationen lassen sich auf der linearen Darstellung effizient in linearer Zeit durchfiihren.

Der Hauptoperator beim genetischen Programmieren ist die BAUMTAUSCH-REKOMBINATION
(Algorithmus 4.21), die in zwei Syntaxbdumen jeweils einen Unterbaum vertauscht und so zwei
neue Kindindividuen erzeugt.

4.4 Genetisches Programmieren 149

Bild 4.16 Beispiel fiir die BAUMTAUSCH-REKOMBINATION

Beispiel 4.9:
Bild 4.16 zeigt, wie die BAUMTAUSCH-REKOMBINATION aus den Individuen

or not x; and xg x;

or or x| not xp and not xp not x;
die Kindindividuen

or and not xg not x; and xg x;

or or x| not xp not x;

erzeugt.

Problematisch kann hierbei eine obere Schranke fur die Gréf3e von Bidumen sein, da dann nicht
beliebige Teilbdume ausgetauscht werden kénnen. Im Falle einer solchen Verletzung werden
neue Kinder entweder aus denselben Elternindividuen oder aus neugewihlten Eltern erzeugt, bis
die obere Grenze fiir die GroBe der Baume eingehalten wird. Einen anderen kritischen Punkt
stellt die Typkonsistenz dar: Nur fiir den Fall, dass in der benutzten Programmiersprache nicht
zwischen verschiedenen Datentypen unterschieden wird, konnen Teilbdume beliebig vertauscht
werden. Andernfalls ist die Konsistenz der Typen bei der Vertauschung zu gewiéhrleisten.

Fiir die Mutation gibt es zwei weit verbreitete Operatoren. Die ZUFALLSBAUM-MUTATION (Al-
gorithmus 4.22) ersetzt einen zufillig gewadhlten Unterbaum durch einen neuen zufillig erzeug-
ten Teilbaum. Varianten schrinken die Auswahl der Knoten im Baum auf Terminale ein oder
erzeugen immer einen neuen Unterbaum der Tiefe 1 (d. h. ein Terminalsymbol).

150 4 Evolutionire Standardalgorithmen

Algorithmus 4.22

ZUFALLSBAUM-MUTATION(Individuum 4)

i «— wihle zufillig gemidB U({1, ..., GroBe(4.G)})
B—4

B.G — Entferne(B.G, i)

Baum «— Erzeugebaum()

B.G — Einfigen(B.G, i, Baum)

return B

N L W N —

Bild 4.17 Beispiel fiir die ZUFALLSBAUM-MUTATION.
Beispiel 4.10:
Bild 4.17 zeigt, wie die ZUFALLSBAUM-MUTATION aus dem Individuum
or and not x; x; if not x; x2 < 5 x¢
durch Einfiigen eines neuen zufilligen Teilbaums das Individuum
or not and x1 xg if not x; x2 < 5 xp

erzeugt.

Der zweite Mutationsoperator BAUMTAUSCH-MUTATION (Algorithmus 4.23) entspricht einer in-
ternen Rekombination, bei der zwei Teilbdume im selben Individuum umgehingt werden. Dabei
muss beachtet werden, dass die zu vertauschenden Teilbdume nicht ineinander geschachtelt sind.

Beispiel 4.11:
Bild 4.18 zeigt, wie die BAUMTAUSCH-MUTATION aus dem Individuum

or and not x; x; if not x| x; < 5 xp
das Individuum
or < 5 xg if not x; x» and not x x)

erzeugt.

4.4 Genetisches Programmieren 151

Algorithmus 4.23
BAUMTAUSCH-MUTATION(Individuum 4)
1 repeat” i «— wihle zufillig gemdB U({1,...,GroBe(4.G)})
L j «— wihle zufillig gemdB U ({1, ..., GroBe(4.G)})
until —Enthalten(4.G. i, j) A —Enthalten(4.G, j,i) A (j > i)
B4
Baum — Teilbaum(B.G, ;)
B.G «— Entferne(B.G, j)
Baum' « Teilbaum(B.G, i)
B.G — Entferne(B.G, i)
B.G — Einfiigen(B.G, i, Baum)
B.G « Einfiigen(B.G, j — GroBe(Baum') + GroBe(Baum), Baum')
return B

— O O e NN AW

—_——

Bild 4.18 Die BAUMTAUSCH-MUTATION wird auf das links dargestellte Individuum angewandt.

Da beim genetischen Programmieren keine feste Struktur fiir die Lésungskandidaten vorgegeben
ist, die dann lediglich variiert wird, ist es flir den Suchprozess wichtig, die Anfangspopulation
mit moglichst vielfiltig strukturierten Losungskandidaten zu initialisieren. Hierfir kénnen zwei
verschiedene Vorgehensweisen genutzt werden, einen zufilligen Baum vorgegebener maximaler
Tiefe mtief zu erzeugen:

* Alle Terminalknoten haben die Tiefe mtief und fiir die Knoten mit Tiefe 1, ... mtief wer-
den zufillige Funktionssymbole gew#hlt.

+ Der Baum wichst beginnend beim Wurzelknoten. Jeder neue Knoten ist mit der Wahrschein-
lichkeit o eine Funktion und mit (1 — ¢t) ein Terminal. Erst wenn die Tiefe mtief erreicht
wird, wird in jedem Fall ein Terminalsymbol gew#hlt.

Um nun eine moglichst grofle Vielfalt an unterschiedlichen Baumen in der Anfangspopulati-
on zu erhalten, ist eine gingige Strategie bei einer maximalen Tiefe mtief, die Population aus
2 - (mtief — 1) gleich groBen Fraktionen aufzubauen, wobei jeweils Baume der Tiefe mrief’ €
{2,...,mtief} mit einer der beiden Techniken erzeugt werden.

Wihrend bei einer manuellen Programmerstellung mit Unterprogrammen und Funktionen ge-
arbeitet wird, hat das bisher beschriebene genetische Programmieren keinerlei Methoden, um
dhnliche Techniken anzuwenden und mehrfach verwendbare Unterprogramme herauszubilden.

152 4 Evolutionire Standardalgorithmen

Parameter Wertebereich

- ; Tabelle 4.7
Populationsgrofie: 200-5000 Hiufig benutzte Parameterbereiche beim geneti-
Rekombination/Mutation/Klonen: ~ 80/10/10 schen Programmieren

Dieser Mangel wurde erkannt und zunichst versucht, durch die Technik der Einkapselung auf-
zulsen. Dabei wird ein Unterbaum mit seiner kompletten Funktionalitit zu einem neuen Termi-
nalsymbol zusammengefasst. Dies bewirkt einerseits, dass in diesem Unterbaum keine Verdnde-
rungen mehr vorgenommen werden kdnnen, und andererseits, dass die so definierte Funktion an
mehreren Stellen eingesetzt werden kann. In der Praxis zeigt die Einkapselung nur bedingt den
gewlinschten Effekt.

Eine erfolgreichere Technik sind die automatisch definierten Funktionen (ADF). Dabei wird
eine feste Anzahl an Unterprogrammen mit vorgegebener Anzahl der formalen Parameter in
separaten Biumen mitevolviert. Diese Unterfunktionen kénnen wie andere Funktionssymbole
im Hauptprogramm beliebig eingesetzt werden. Beziiglich der Rekombination wird meist vorge-
schrieben, dass nur Teilbdume zwischen den jeweiligen ADFs oder zwischen den Hauptprogram-
men ausgetauscht werden diirfen. Insgesamt erméglicht dieser Mechanismus ein sehr effektives
Kapseln von Funktionalititen, die das Ergebnis wesentlich verbessern kénnen.

Der Gesamtablauf des genetischen Programmierens orientiert sich meist am Ablauf der ge-
netischen Algorithmen. Oft wird fur die Selektion die ¢-fache Turnierselektion benutzt. Da die
einzelnen Operatoren in der Regel schon fiir sich allein betrachtet sehr destruktiv sind, findet
man auch sehr hiufig statt einer sequentiellen Anwendung von Rekombination und Mutation
eine Partitionierung der Population, so dass jeweils ein Teil der neuen Population nur mit der
Rekombination erzeugt wird, ein anderer nur mit der Mutation und der Rest unverédndert {iber-
nommen wird. Typische Parameterwerte sind in Tabelle 4.7 dargestellt.

Beispiel 4.12:

Als ein Beispiel fiir die Fahigkeit genetischen Programmierens, Probleme zu 16sen,
wird das Symbolic-Regression-Problem kurz betrachtet. Dabei sind verschiedene Wer-
te an Stiitzstellen gegeben, die durch eine mathematische Funktion angendhert werden
sollen. Die Individuen stellen jeweils eine solche Funktion dar, die bei der Bewertung
an den vorgegebenen Stiitzstellen berechnet und mit threm Sollwert verglichen wird.
Die Summe der quadratischen Fehler ist die zu minimierende Gtite. Konkret wird die
Funktion x* — 2 - x* — x> —x+ 100 - sin(3 - x) an den Stiitzstellen {0, 1, ..., 9} be-
trachtet. Relevant ist dabei in erster Linie der polynomielle Anteil in der Funktion
— der Sinus-Term stellt eine gewisse Form von Verrauschtheit dar. Zur Losung die-
ses Problems wurde nun fiir das genetische Programmieren die Terminalmenge {x}
und die Funktionsmenge {+, -+, —, %} gewihlt, wobei es sich bei % um eine Division
handelt, die beim Divisor 0 den Wert 0 ergibt. Bild 4.19 zeigt die vom genetischen Pro-
grammieren erzeugte beste Losung nach 200 Generationen mit einer Populationsgré-
Be 500. Beim benutzten Algorithmus wird immer die BAUMTAUSCH-REKOMBINATION
angewandt. Die ZUFALLSBAUM-MUTATION, die einen Teilbaum durch ein Terminal er-
setzt, und die BAUMTAUSCH-MUTATION werden jeweils zusétzlich mit der Wahrschein-
lichkeit 0,03 angewandt. Als beste Losung hat sich dabei die Funktion x* — 2 -x* —x?
herausgebildet, die die tatsdchliche Funktion recht genau annihert.

4.4 Genetisches Programmieren 153

6000 [T T T T T T T T T
PN so00 Zielfunktion
X - Datenpunkte <
/ \ 4000 Lésung von GP ==~~~
/ *\ ¥ 3000 S
X - 2000 7
/
_ X 1000 7
/ 0\
* X 0 |
/ \ 1 1 1 1 1 1 1 1 1 1
X X 0 1 2 3 4 5 6 7 8 9

Bild 4.19 Beispiel fiir die Losung des Symbolic-Regression-Problems mit genetischem Programmieren.
Links wird die gefundene Funktion als Syntaxbaum und rechts ihre Qualitit an den Stiitzstellen
dargestellt.

Beim Experimentieren mit genetischem Programmieren beobachtet man schnell, dass die Indi-
viduen mit dem Optimierungsverlauf immer gréer werden. Die Ursache hierflir sind sog. In-
trons (vgl. auch Introns in der Biologie in Abschnitt 1.2.2) — Teile im Individuum, die fiir die
verko6rperte Funktionalitit irrelevant sind. So kann beispielsweise eine arithmetischer Ausdruck
»a+ (1 — 1)« entstehen, der leicht vereinfacht werden konnte. Ein anderes Beispiel ist eine An-
weisung »if 2 < 1 then ... else...«, bei welcher der then-Zweig niemals ausgefiihrt wird.
Wihrend Verdnderungen durch die Operatoren in aktiven Teilen des Individuum in den meis-
ten Fillen eine negative Wirkung auf die Giite des Individuums haben, sind Anderungen an den
Introns gliteneutral. Dieser Vorteil der Intronrekombination und -mutation begtinstigt leider auch
ein kiinstliches Aufbldhen der Individuen, da dort beliebig viel (unsinniger) Programmcode ein-
gefugt werden kann. Dies fithrt im Regelfall dazu, dass der aktive Programmcode relativ immer
weniger wird und die Optimierung damit stagniert.

Um dieses Verhalten zu verhindern, gibt es eine Reihe unterschiedlicher Techniken. So wur-
den beispielsweise modifizierte Operatoren entwickelt — wie beispielsweise die Brutrekombina-
tion, bei der aus zwei Eltern durch unterschiedliche Parametrisierung der Rekombination sehr
viele Kindindividuen erzeugt werden, wovon nur das beste in die nichste Generation tibernom-
men wird. Auch intelligente Rekombinationsoperatoren werden benutzt, die gezielt Crossover-
Punkte auswihlen konnen. Hierfiir kénnen beispiclsweise die tatsichlichen Auswertungspfade
im Syntaxbaum herangezogen werden. Alternativ kénnen bei Programmen durch fortwéhrende
leichte Variationen in der Bewertungsfunktion auch die Randbedingungen so verdndert werden,
dass ehemals inaktive Programmteile (Introns) wieder aktiv werden — dies funktioniert allerdings
nur bei nicht-trivialen Introns, die durch immer dhnliche Eingabedaten definiert werden. Ein an-
derer Ansatz zur Einddmmung von Introns ist die Bestrafung grofler Individuen, um sie bei der
Selektion zu benachteiligen (vgl. Abschnitt 5.1).

Wie bereits schon zu Beginn dieses Abschnitts angedeutet wurde, ist die urspriingliche Repré-
sentation von Individuen als Bdume nur eine von mehreren Varianten, wie Programme dargestellt
werden konnen. Statt einer Baumstruktur wird oft mit linearen Strukturen gearbeitet, bei denen
es sich beispielsweise um Maschinencode handelt. Eine andere Art der Bildung von Programmen

154 4 Evolutionire Standardalgorithmen

(0,2,1,0,0,3,1,0,2)
~

werden hier nicht
benutzt

3mod2=1

Bild 4.20 Resultierender Syntaxbaum im Beispiel 4.13 fiir die Grammatikevolution.

aus linearen Zeichenketten ist die Grammatikevolution, bei der eine feste kontextfreie Grammatik
(z. B. einer stark vereinfachten Programmiersprache) betrachtet wird und das Individuum Schritt
fiir Schritt so interpretiert wird, dass ausgehend von einem Startsymbol ein Syntaxbaum durch
iterative Expansion der Nichtterminalsymbole aufgebaut wird. Dieser Prozess wird so lange fort-
gefiihrt, bis der Syntaxbaum vollsténdig ist.

Beispiel 4.13:
Als Beispiel fiir die Grammatikevolution betrachten wir die folgende Grammatik.

S—T%x!
T —85+S%1S—81|S+S2%|5%S?

Die kleinen Zahlen geben dabei die Nummer der jeweiligen Ableitung an. Nun soll
ein Syntaxbaum z. B. anhand des folgenden Individuums A bestimmt werden:

A.G=(0,2,1,0,0,3,1,0,2).

Dann startet die Ableitung mit dem Startsymbol §, welches aufgrund der ersten Ziffer
im Individuum aufgeldst werden soll. Dort steht eine 0, d. h. es wird die erste mogliche
Ableitung S — T ausgewihlt. Falls die Zahl im Individuum groBer ist als die Anzahl
der Ableitungen, wird sie modulo durch die Anzahl der Ableitungen geteilt. Nun wird
diese Vorgehensweise fiir alle Nichtterminalsymbole im Syntaxbaum iteriert, d. h. T
wird durch die Zahl 2 im Individuum nach S'* S abgeleitet. Der dadurch resultierende
Syntaxbaum ist in Bild 4.20 dargestellt.

In diesem Beispiel benutzt die Ableitung des Syntaxbaums nicht alle Zahlen im Individuum — die
letzten beiden Zahlen werden nicht beriicksichtigt. Andererseits kann eine Ableitung auch noch
nicht zu Ende sein, wenn das Ende des Individuums erreicht wird. Dann beginnt man meist noch-
mals von vorn. Wird nach einer vorgegebenen Anzahl von Iterationen kein giiltiger Syntaxbaum
erreicht, bricht die Bewertung ab und das Individuum wird verworfen.

4.5 Einfache Lokale Suchalgorithmen 155

In der Literatur finden sich viele verschiedene erfolgreiche Fallbeispiele fiir genetisches Pro-
grammieren. Typische Anwendungen sind die Kontrolle von Robotern, Schaltungsentwurf, Bild-
verarbeitung und Mustererkennung.

4.5 Einfache Lokale Suchalgorithmen

Anhand eines Basisalgorithmus fiir lokale Suche werden die unterschiedlichen Varianten erldu-
tert.

Die lokale Suche ist ein Sonderfall der evolutionidren Algorithmen: Die Population besteht nur
aus einem Losungskandidaten. Dies hat verschiedene Konsequenzen. Einerseits ist ein Rekombi-
nationsoperator, der laut Definition mehr als ein Elternindividuum benétigt, nicht sinnvoll, son-
dern die Verdnderung wird lediglich von einem Mutationsoperator (oder Variationsoperator) vor-
genommen. Andererseits beschrankt sich die Selektion auf die Frage, ob ein neu erzeugtes In-
dividuum statt des Elternindividuums als Ausgangspunkt in der nichsten Generation akzeptiert
werden soll. Daher ist der Basisalgorithmus LOKALE-SUCHE (Algorithmus 4.24) fiir alle einfa-
chen lokalen Suchalgorithmen identisch und die Beschreibung der Varianten beschriankt sich auf
die unterschiedlichen Akzeptanzkriterien. Der grundsitzliche Ablauf ist in Bild 4.21 beispielhaft
verdeutlicht. Die Individuen besitzen in der Regel keine Zusatzinformationen 2° = { L} und der
Genotyp ¢ ist problemabhiéngig.

Aus Abschnitt 3.1.1 ist bereits BINARES-HILLCLIMBING bekannt, das einen Losungskandidaten
genau dann fiir die néchste Iteration als Elternindividuum akzeptiert, wenn er besser als das

Algorithmus 4.24

LOKALE-SUCHE(Zielfunktion F')
1 t<0
A(t) « erzeuge Losungskandidat
bewerte A(¢) durch F
while Terminierungsbedingung nicht erfiillt
do " B « variiere A()
bewerte B durch F
t—t+1
if Akz(A(t —1).F, B.F,t) (Akzeptanzbedingung)
thenCA(f) — B
Lelse CA(f) —A(t—1)
return A(t)

— O D o NN R W

—_—

Identitit als
Elternselektion
und Mutation

=
2
=
£
3
£
5
Q

Akzeptanz-
Bild 4.21 kriterium

Der Ablauf der lokalen Suche ist beispielhaft veranschaulicht.

156 4 Evolutiondre Standardalgorithmen

Algorithmus 4.25

AKZEPTANZ-HC(Elterngiite A.F, Kindgiite B.F, Generation 7)
1 return B.F = A.F

Algorithmus 4.26
AKZEPTANZ-SA(Elterngiite 4.F, Kindgiite B.F, Generation ¢)
1 ifBF~AF
2 then [return wahr
3 else "u«— wiihle zufillig aus U([0, 1))

. dec(A.F.B.F)
4 ifs.'gexp(—;-emT)
5 then [return wahr
6 L else [return falsch

vorherige Individuum ist. Die Grundidee ist unabhingig von dem bindren Genotyp und kann mit
beliebigen anderen Mutationsoperatoren benutzt werden. Die Akzeptanzbedingung AKZEPTANZ-
HC ist in Algorithmus 4.25 dargestellt.

Das Hillelimbing ist natiirlich auch ein Spezialfall des Operators BESTEN-SELEKTION, niimlich eine
(14 1)-Strategie.

So bestechend einfach dieses Verfahren ist, optimiert es leider nur bis zum niichstgelegenen lo-
kalen Optimum und bleibt dort stecken. Die weiteren lokalen Suchverfahren versuchen diesen
Nachteil auf unterschiedliche Art und Weise zu vermeiden. Ein sehr verbreiteter Algorithmus ist
das simulierte Abkiihlen (SA, engl. simulated annealing), welches auf der physikalischen Model-
lierung eines Abkiihlungsprozesses beruht. Dabei ist die Wahrscheinlichkeit, dass sich ein ideales
System im Zustand 1" befindet, proportional zu exp (—Energie(Y') / Temp), wobei Energie(1") das
Energieniveau im Zustand 1" und Temp die absolute Temperatur ist. Weiter ist zu beobachten, dass
bei einem schnellen Abkiihlen, vornehmlich unregelméfige Strukturen auf einem hohen Energie-
niveau entstehen, wihrend durch langsameres Abkiihlen regelméBige Strukturen erreicht werden.
Im Rahmen der Optimierung wird nun diese Wahrscheinlichkeit fiir ein ideales System auf die
Akzeptanzwahrscheinlichkeit fiir einen schlechteren Losungskandidaten iibertragen. D. h. kon-
kret wird a priori vor der Optimierung ein Abkiihlungsplan (7emp ;) jen, erstellt mit Temp; € R,
wobei es sich um eine monoton sinkende Folge mit lim; ... 7emp; = 0 handelt. Die Energie
entspricht dabei dem Giiteunterschied bei einer Verschlechterung, d. h. die Akzeptanz eines L§-
sungskandidaten wird umso unwahrscheinlicher, je schlechter er ist. Aufgrund der abnehmenden
Folge im Abkiihlungsplan nimmt diese Akzeptanzwahrscheinlichkeit im Laufe der Optimierung
ab. Ein besserer Losungskandidat wird hingegen immer akzeptiert. Diese Akzeptanzbedingung
ist formal in AKZEPTANZ-SA (Algorithmus 4.26) beschrieben. Bei dem Abkiihlungsplan handelt
es sich um eine vorbestimmte Anpassung eines Parameters (vgl. auch Abschnitt 3.4.2). Dabei
besteht wihrend einer Optimierung immer die Moglichkeit, ein lokales Optimum mit einer ge-
wissen Wahrscheinlichkeit zu verlassen. Abhingig vom Abkiihlungsplan wird diese Wahrschein-
lichkeit jedoch stark eingeschrinkt. Eine solche Einschriankung sollte also keineswegs zu friith ge-
schehen, da dann édhnliche Effekte wie beim reinen Hillclimbing zu erwarten sind. Andererseits
ist ein zu langsames Abkiihlen auch kritisch, da dadurch oft wertvolle Zeit in einer ungerichteten
Zufallssuche verloren geht. Die Wahl eines solchen Abkiihlungsplans ist also essentiell fiir Er-

4.5 Einfache Lokale Suchalgorithmen 157

Algorithmus 4.27
AKZEPTANZ-TA(Elterngiite 4.F, Kindgiite B.F, Generation ¢)
1 if B.F = A.F oder dx(4.F,B.F) < Temp,
2 then [return wahr
3 else Lreturn falsch

folg oder Misserfolg einer Optimierung und damit ein kritischer Punkt bei der Anwendung. Eine
gingige Vorgehensweise in der Literatur ist die Wahl einer hohen Starttemperatur, die dann in
jeder Generation gemdf3 der Regel

Temp,, | = Temp, - & mit 0,8 < o0 < 0,99

verringert wird. Haufig wird auch ein iteratives Vorgehen gew#hlt, bei dem nach einem Abkiih-
lungsprozess die Temperatur wieder hochgesetzt — allerdings nicht mehr ganz so hoch wie beim
ersten Mal — und erneut abgekiihlt wird.

In der Praxis ist simuliertes Abkiihlen ein launisches Verfahren mit z. T. sehr guten aber auch
sehr schlechten Ergebnissen. Dies liegt unter anderem daran, dass ein guter Wert fiir ¢ stark vom
Optimierungsproblem abhéngt und die Intervalle mit guten Werten fiir unterschiedliche Proble-
me auch sehr unterschiedlich sind. Sehr gute Niherungslgsungen werden meist fiir Probleme
erreicht, deren globales Optimum einen groB3en Einzugsbereich hat.

Ein anderes Verfahren, mit dem insbesondere fiir das in Kapitel 2 diskutierte Handlungsreisen-
denproblem gute Ergebnisse erzielt wurden, ist die Schwellwertakzeptanz (TA, engl. threshold
accepting). Dabei wird analog zum simulierten Abkiihlen eine monoton sinkende Folge positi-
ver reeller Zahlen (Tempj)_jeNo mit lim; .., Temp; = 0 im Voraus bestimmt. Statt einer probabi-
listischen Akzeptanzbedingung fiir Verschlechterungen wird als hartes Kriterium eine maximale
Verschlechterung um Temp, zur Zeit ¢ akzeptiert (AKZEPTANZ-TA, Algorithmus 4.27). Ahnlich
zur Wahl des Abkiihlungsplans beim simulierten Abk{ihlen wird auch hier meist mit einer Ver-
ringerung der Toleranzschwelle gemaf3 der nahezu identischen Regel

Temp,, | = Temp, - @ mit 0,8 < o0 < 0,995

gearbeitet. Allerdings wird zur Initialisierung oft ein empirischer Startwert aus drei Zufallsstich-
proben C, C;, G5 € Q herangezogen.

Tempy = o - (F(C) + F(G2) 1 F(C3))

Die Akzeptanz von Verschlechterungen innerhalb eines gewissen Rahmens kann problematisch
sein: Ist Temp, noch nicht klein genug, kann eine bereits gefundene gute Losung durch iterative
Verschlechterungen wieder verloren gehen. Dennoch liefert dieser Algorithmus gute Ergebnisse
fiir Problem mit groBen Einzugsbereichen um die globalen Optima, da diese gegen Ende einer
Suche mit TA nicht so leicht wieder verlassen werden. Die iterative Verschlechterung wird in
den folgenden zwei Varianten der Schwellwertakzeptanz auf unterschiedliche Art und Weise
vermieden.

Beim so genannten Sintflutalgorithmus (GD, engl. great deluge) gibt es in jeder Iteration einen
festen vorbestimmten Gtitebereich, in dem neue Individuen akzeptiert werden. Der Name des

file:///iB.F

158 4 Evolutionire Standardalgorithmen

Algorithmus 4.28
AKZEPTANZ-GD(Elterngiite 4.F, Kindgiite B.F, Generation ¢)

1 if B.F > Anfang (Anfangswasserstand) +¢ - Anstieg (Regengeschwindigkeit)
2 then [return wahr

3 else Lreturn falsch

Algorithmus 4.29

AKZEPTANZ-RR(Elterngiite 4.F, Kindgiite B.F, Generation #, beste gefundene Giite besteF’)
1 if B.F > besteF

2 then " besteF — B.F

3 L return wahr, besteF

4 else "if dyy(B.F, besteF) < Temp,

5

6

L then [return wahr, besteF
return falsch, besteF

Verfahrens rithrt von der Vorstellung einer Giitelandschaft bei der Maximierung, in der durch be-
stindigen Regen der Wasserspiegel steigt — der Optimierer darf beliebige Schritte unternehmen,
ohne das steigende Wasser zu berithren. In der Akzeptanzbedingung AKZEPTANZ-GD (Algorith-
mus 4.28) geht daher eine Regengeschwindigkeit Anstieg als wichtiger Parameter ein. Fiir ein
Minimierungsproblem ist die Regengeschwindigkeit negativ und der anfiingliche Wasserstand
Anfang zu hoch zu wihlen. Dieses Verfahren ist sehr schnell, da kein wesentlicher Rechenauf-
wand notwendig ist; allerdings kann die harte Akzeptanzlinie das Steckenbleiben in lokalen Op-
tima beglinstigen.

Als abschlieBende Variante der Schwellwertakzeptanz wird noch das Verfahren des rekord-
orientierten Wanderns (RR, engl. Record-to-Record-Travel) vorgestellt, bei dem ebenfalls &hn-
lich zum Sintflutalgorithmus ein steigender Wasserpegel benutzt wird. Jedoch wird dieser an die
Giite des besten bisher vom Verfahren gefundenen Individuums gekoppelt. Eine mogliche Ver-
schlechterung ist also stets in Relation zum besten gefundenen Individuum zu sehen und nicht
zum aktuellen Individuum. Ahnlich zur Schwellwertakzeptanz regelt eine monoton fallende Fol-
ge reeller Zahlen (Temp j) />0 auch in AKZEPTANZ-RR (Algorithmus 4.29), ob ein schlechtes Indi-
viduum iibernommen wird.

Die unterschiedlichen Ansitze der lokalen Suchalgorithmen bei der Festlegung der Akzep-
tanzlinie sind in Bild 4.22 veranschaulicht.

4.6 Weitere Verfahren

Verhdltismdfig knapp wird in diesem Abschnitt eine Reihe weniger verbreiteter Standardalgo-
rithmen vorgestellt. Der Fokus liegt dabei immer auf den Unterschieden zu den bisher prdsentier-
ten Verfahren.

4.6.1 Klassifizierende Systeme

Klassifizierende Systeme (CS, engl. classifier systems) sind urspriinglich als Anwendung der
genetischen Algorithmen auf das Gebiet des maschinellen Lernens entstanden, wobei ein Re-

file:///iB.F

4.6 Weitere Verfahren 159

Hillelimbing Schwellwertakzeptanz Sintflut-Algorithmus Rekordorientiertes Wandern

Bild 4.22 Fiir die lokalen Suchalgorithmen mit einem hartem Akzeptanzkriterium sind die verschiedenen
Ideen auf einer einfachen Giitelandschaft verdeutlicht: Die aktuelle Giite gibt beim Hillclimbing
die Akzeptanzlinie vor. Bei der Schwellwertakzeptanz orientiert sich eine mégliche Verschlech-
terung ebenfalls am aktuellen Individuum. Wihrend beim Sintflutalgorithmus die steigende Ak-
zeptanzlinie vollig unabhiingig vom aktuellen Individuum ist, orientiert sie sich beim rekordori-
entierten Wandern am besten bisher gefundenen Individuum.

gelsatz zur Bewiiltigung einer vorgegebenen Aufgabe entwickelt werden soll. Da die Forschung
um die klassifizierenden Systeme eine Eigendynamik entwickelt hat, rechtfertigt die Vielzahl
an Techniken und Algorithmen die eigenstindige Betrachtung der klassifizierenden Systeme als
Standardverfahren. Thre Entwicklung zielte auf Regelungsprobleme, bei denen Aktionen nicht
sofort sondern erst indirekt nach mehreren Schritten beurteilt werden.

Vorsicht: Jetzt betrachten wir ganz andere Probleme als bisher. Beispielsweise soll ein mobiler Roboter eine

% spezielle Aufgabe bewiltigen — z. B, ein Ziel erreichen. Seine Wahrnehmung besteht aus Sensorinformatio-
nen (Licht, Beriihrung etc.), seine Aktionen aus Drehung um die eigene Achse und Bewegung vorwiirts. Der
Roboter soll aus der eingehenden Sensorinformationen eigene Aktionen ableitet. Hierfiir wird ein Regelsatz
entwickelt, der fiir alle unterschiedlichen auftretenden Situationen die moglichen Reaktionen des Roboters
beschreibt. Wie gut der Roboter sich verhiilt (also wie gut der Regelsatz ist), wird erst beim Erreichen des
Zielzustands bzw. bei einer unerwiinschten Kollision zuvor bekannt. Der GA soll einen guten Regelsatz
»finden«.

Bild 4.23 zeigt den Aufbau und den Einsatz von klassifizierenden Systemen. Detektoren beobach-
ten die Problemumgebung und reichen Statusmeldungen an das klassifizierende System. Diese
Meldungen werden mit den Regeln des Systems verglichen und die anwendbaren Regeln werden
weiterbetrachtet. Aufgrund der bisherigen Leistungen der anwendbaren Regeln (der sog. Stirke)
wird eine Aktion zur Manipulation der Problemumgebung mittels eines Effektors ausgewihlt.
Da man von der Umgebung nicht immer eine direkte Antwort erhélt, ob eine durchgefiihrte Ak-
tion gut oder schlecht war, ist die Bewertung der Regeln und damit die Modifikation der Stirke
schwierig. Daher wird mit einem indirekten Mechanismus gearbeitet, der Riickkopplungen vom
System bei zukiinftigen dhnlichen Situationen an verursachende Regeln zuriickpropagiert. Ein
solches System passt sich bereits dem Problem an, indem erfolgreiche Regeln zukiinftig hdufiger
genutzt werden. Allerdings bleibt dabei der Regelsatz statisch. Durch Einfiigen eines genetischen
Algorithmus, der in bestimmten Zeitabstinden neue Regeln erzeugt, ist eine bessere Anpassung
des Regelsatzes moglich.
Im Weiteren werden die klassifizierenden Systeme mit ihrer Arbeitsweise formal vorgestellt.

160 4 Evolutionire Standardalgorithmen

Black-Box-Umgebung
Status: 10011 N
1 1
'd A ~
Detektoren Effektoren Riickmeldung
\ anwendbare o1
Regeln i
Regelsatz \ g Aktionen
Bed. Aktion Starke 1#*11 01 43 Auswahl #5111 01 434
1#%11 @ 0l 43 *0*1* 11 14 gl [00** @ 01 27
FEEE D00 32 100%* : 01 27 S ———— interne
EQE]E 2] 14 *%01] - 11 18 : 1: : Riickmeldung
100%% : 01 27 :f* : '
w11 : 11 18 | —m—m— TTTTTTTmmmmmmos
011 @ 10 24 GA . .
etc. - klassifizierendes System

J

Bild 4.23 Architektur eines einfachen klassifizierenden Systems

Definition 4.2 (Regeln und Regelsatz):
Eine Regel reg ist ein Tupel

reg = (reg.b, reg.a, reg.s) € Bedingung x Aktion x R

bestehend aus einer Bedingung reg.h € Bedingung — {0,1, %}/, einer Aktion reg.a €
Aktion = {0, 1} und einer Stirke reg.s € R. Das Zeichen »*« ist wie in der Nota-

tion der Schemata ein Platzhalter fiir 0 und 1. Ein Regelsatz ist eine Menge regeln C
Bedingung x Aktion x R.

Definition 4.3 (Anwendbare Regeln):

Unter einer Statusmeldung v € Status = {0, 1}/ sind diejenigen Regeln aus einem
Regelsatz regeln anwendbar, deren Bedingung zu v passt, d. h.

!
aktiv(v) = {reg € regeln | /\(reg.b,- #x = reg.b; = v,-)}.
i-1

Beispiel 4.14:
Die beiden Regeln

reg = (0% 11%x,11100,17)
reg’ = (xxxx%10,00101,22)

sind unter der Nachricht v = 011110 aktiviert und damit anwendbar. Die erste Regel
reg wiirde eine Aktion 11100 ausfiihren und die zweite Regel reg’ eine Aktion 00101.
Die Nachricht v/ = 001100 wiirde nur die erste Regel reg aktivieren.

4.6 Weitere Verfahren 161

Falls die anwendbaren Regeln unterschiedliche Aktionen vorschlagen, wird fiir jede Aktion eine
Auswahlwahrscheinlichkeit berechnet, die sich aus der Summe der Stirkewerte der entsprechen-
den Regeln geteilt durch die Gesamtstérke aller aktivierten Regeln ergibt.

Definition 4.4 (Auswahlwahrscheinlichkeit):
Seien die Regeln aktiv(v) unter einer Nachricht v € Status anwendbar. Dann bezeich-
net aktion(v) = {reg.a | reg € aktiv(v)} die Menge der méglichen Reaktionen des Sys-
tems. Fiir jede mogliche Aktion x € aktion(v) gibt aktiv' (v, x) = {reg € aktiv | reg.a =
x} die Menge der anwendbaren Regeln an, die Aktion x verursachen kénnen. Dann
lasst sich die Auswahlwahrscheinlichkeit fiir eine Aktion x gemil des fitnesspropor-
tionalen Prinzips wie folgt definieren:

zregeaktiv’(v,x) reg.s
EVEgEHkﬁV(V) reg.s

Prix|v] =

Die Stirkewerte der unterschiedlichen Regeln werden durch die Riickkopplungswerte modifi-
ziert, d. h. Regeln mit positiven Wirkungen erhalten eine héhere Starke und Regeln mit negativer
Riickmeldung werden geschwicht. Da jedoch auch mehrere Aktionen hintereinander eine posi-
tive Riickmeldung bewirken konnen, diirfen nicht nur die Regeln der letzten Aktion »belohnt«
werden. Daher gibt immer jede Regel einen Teil ihrer Stirke an die direkt zuvor ausgefiihrten
Regeln ab. Vorausgesetzt, dass wirkungsvolle Aktionsfolgen mehrfach auftreten, werden so alle
beteiligten Regeln gestarkt.

Definition 4.5 (Modifikation der Stirke):
Seien ausgef'") die zur Zeit ¢ ausgefiihrten Regeln (ausgef") = aktiv' (v, x) C aktiv(v))
und riick € R die Riickmeldung vom System (bzw. riick = 0 falls keine Riickmeldung
vorliegt). Dann werden die Starkewerte der Regeln reg € ausgef Q) gemal der Lernrate
o € (0, 1) modifiziert:
riick

reg.s— (1 —Q)-regs+o- ——
& ()oreg #ausgef!!)

Dicjenigen Regeln reg € aktiv(v) \ ausgef”), die nicht gewihlt wurden, werden um
einen kleinen Straffaktor T € (0, 1) in ihrer Stirke verringert:
reg.s «— (1 —1) - reg.s

Sei ferner B € (0, 1) ein Ddmpfungsfaktor. Dann werden die Regeln der letzten Itera-
tion reg € ausgef '~ wie folgt modifiziert:

Zreg’ causgef\) reg’ S
#ausgef (=1

reg.s —reg.s+o.-f3-

Eine positive (oder negative) Riickkopplung wird damit zundchst nur den aktiven, ausgefithrten
Regeln zuteil. Erst wenn diese Regeln das nichste Mal wieder aktiviert werden, geben sie einen

162 4 Evolutiondre Standardalgorithmen

Parameter Wertebereich

Populationsgréfe: 400-5000

Lernrate o: 0.2
Dimpfungsfaktor f: 0,71 Ta}aelle 48 . R
Straffaktor 7 0.1 Hiufig benutzte Parametereinstellungen fiir die einfachen klas-

sifizierenden Systeme

Anteil der Riickkopplungen an die direkt vorhergehende(n) Regel(n) ab. Nach & Iterationen wird
die Riickkopplung iiber eine komplette Regelkette der Linge k verteilt.

Um neue Regeln zu erzeugen, wird ein genetischer Algorithmus eingesetzt. So wechseln sich
mehrere Schritte des obigen Lernverfahrens mit einer »Generation« des genetischen Algorithmus
ab. Dabei werden zwei Regeln zufillig proportional zu ihren Stiirkewerten gezogen, ein Cross-
over wird angewandt und die beiden Kindindividuen werden mutiert. Beide Kindindividuen wer-
den mit der durchschnittlichen Stirke ihrer beiden Eltern initialisiert und ersetzen zwei zufillig
(proportional zu ihrer inversen Stiirke) gezogene Individuen aus dem Regelsatz. Beispielhafte
Parameterbereiche aus der Literatur sind in Tabelle 4.8 dargestellt.

Die heute populidren klassifizierenden Systeme, wie beispielsweise XCS, benutzen noch we-
sentlich aufwindigere Mechanismen als die hier beschriebenen. So entspricht etwa die Stirke der
Regeln nicht mehr direkt der Giite der Individuen. Stattdessen wird eine Vorhersage beziiglich
des Effekts der Regeln beriicksichtigt. Ferner wird die hier prisentierte klassische Darstellung
der Regeln hédufig durch andere Reprisentationen ersetzt, z. B. durch Baumstrukturen wie im
genetischen Programmieren. Dann werden entsprechende Operatoren wie beim genetischen Pro-
grammieren verwendet. Zusitzlich kann der genetische Algorithmus modifiziert werden, um z.B.
breit gestreute Regeln in der Population zu erhalten. Dazu werden nur solche Regeln miteinander
rekombiniert, die auch gemeinsam aktiviert sind.

Bei dem hier prisentierten Ansatz fiir ein klassifizierendes System entspricht eine Population
dem Regelsystem. Er wird auch als Michigan-CS bezeichnet. Alternativ gibt es das Pittsburgh-
CS, bei dem jedes Individuum ein ganzes Regelsystem enthilt. Der Vorteil des Michigan-CS ist,
dass das Regelsystem immer nur leicht modifiziert wird und somit eine direkte Wechselwirkung
zwischen Regelmodifikation und Systemriickkopplung erlaubt. Allerdings tendieren genetische
Algorithmen zur Konvergenz, d. h. die Anzahl der unterschiedlichen Regeln in der Population
nimmt mit der Zeit ab. Daher sind zusiitzliche Techniken zum Erhalt der Vielfalt evtl. notwendig.

Einige Techniken zum Erhalt der Diversitit werden im nichsten Kapitel auf S. 203 im Kontext der Mehr-
zieloptimierung vorgestellt.

Beim Pittsburgh-CS befinden sich in einer Population eine ganze Reihe von Regelsitzen. Damit
gestaltet sich ein Lernen am laufenden System schwierig. Die Bewertung von einzelnen Indivi-
duen findet im Pittsburgh-CS meist tiber Simulationen des zu regelnden Systems statt. Hiufig
werden bei diesem Ansatz auch Operatoren benutzt, die die Anzahl der Regeln im Individuum
veriindern.

Ein beliebtes modernes Anwendungsgebiet ist Data-Mining. Gerade moderne Varianten der
klassifizierenden Systeme sind durch ihre Regeln in der Lage, sehr kompakt Zusammenhinge
in mehrdimensionalen Daten zu beschreiben. Andere mdgliche Anwendungen finden sich in der
Robotik ebenso wie in der Zeitreihenprognose.

4.6 Weitere Verfahren 163

4.6.2 Tabu-Suche

Tabu-Suche (TS, engl. tabu search) ist ein lokales Suchverfahren, das liber ausgefeilte Mechanis-
men verfiigt, den Verlauf der Optimierung zu steuern. Dieses Suchverfahren passt nicht in das
Schema des Basisalgorithmus LOKALE-SUCHE (Algorithmus 4.24), sondern &hnelt mehr einer
(1, A)-Evolutionsstrategie. Charakteristisch ist, dass bei der Erzeugung der neuen Kindindividu-
en die Geschichte der bisherigen Optimierung bertlicksichtigt wird. Hierfiir wird Information aus
den letzten Verdnderungen durch den Mutationsoperator extrahiert und in einer sog. Tabu-Liste
gespeichert, die das Zuriickkehren zu den zuletzt betrachteten Lésungskandidaten verhindert.

Beispiel 4.15:
Beim Problem der Graphenfirbung, ist ein Graph G = (V, E) und die Anzahl an Far-
ben k gegeben. Das Ziel ist, jedem Knoten v € V' = {v1,...,v,} eine Farbe farbe(v)
zuzuweisen, sodass keine Kante zwischen gleichgefirbten Knoten verlduft. Formal
muss durchx € Q = {1,...,k}" die Bewertungsfunktion

= 3 {(1) falls x; = x;

(viv)€E sonst

minimiert werden. Wird nun durch die Mutation die Farbe des Knotens v; von ¢ auf
d gesetzt, wird die Tabu-Liste um einen Eintrag (i, ¢) erweitert. Bei der ndchsten Mu-
tation wird damit verhindert, dass die Farbe von v; wieder von d auf ¢ zuriickgesetzt
wird.

Die Tabu-Liste ist eine FIFO-Warteschlange (first in first out-Warteschlange) fester Lange. Damit
fallt ein Tabu-Eintrag nach einer vordefinierten Anzahl von Iterationen wieder aus der Liste her-
aus und die Mutation kann den bisher verhinderten Wert wieder setzen. Dadurch werden weitaus
mehr mogliche Nachkommen ausgeschlossen als diejenigen, die bereits betrachtet wurden. Um
zu vermeiden, dass dadurch auch sinnvolle Losungen abgeschnitten werden, konnen spezielle
erstrebenswerte Eigenschaften das Tabu fiir eine spezielle Mutation {iberstimmen. Solche erstre-
benswerte Eigenschaften konnen in einer dhnlichen Weise wie die Tabu-Eigenschaften in einer
Liste verwaltet werden, hiufig sind dies jedoch feste Kriterien wie die, dass der Giitewert des neu-
en Individuums besser als der des besten bisher bekannten Losungskandidaten ist. TABU-SUCHE
(Algorithmus 4.30) formuliert diese Ideen formal.

Es gibt sehr viele unterschiedliche Varianten, wie die Tabu-Suche fiir konkrete Probleme um-
gesetzt wird. So kann auch in bestimmten Phasen einer Optimierung die Feinabstimmung der
vorhandenen L&sung bzw. die Erforschung neuer Regionen durch eine Modifikation der Bewer-
tungsfunktion begiinstigt werden. Gerade die mannigfaltigen Méglichkeiten zur Anpassung der
Tabu-Suche an neue Probleme machen sie zu einem sehr erfolgreichen Optimierungsverfahren.

4.6.3 Memetische Algorithmen

Populationsbasierte Algorithmen und lokale Suche zeichnen sich durch unterschiedliche Vor-
und Nachteile aus: Wihrend der populationsbasierte Ansatz langsam in der Breite den Suchraum
durchforscht, geht die lokale Suche schnell in die Tiefe und steuert das néchste lokale Optimum
an. Memetische Algorithmen verbinden beide Ansétze. Ihr Name geht auf den Begriff »Meme«

164 4 Evolutionire Standardalgorithmen

Algorithmus 4.30

TABU-SUCHE(Zielfunktion F)
1 10
2 A(t) < erzeuge zufilligen Losungskandidaten
3 bewerte A(¢) durch FF
4 bestind — A(t)

5 initialisiere Zabu-Liste

6

7

8

while Terminierungsbedingung nicht erfiillt

do™ P ()
while #P <
9 do " B — MUTATION(A(?))
10 bewerte B durch F
11 if (4(r), B) & Tabu-Liste oder B.F > bestInd .F
12 Lthen [P — Po (B)
13 t—1+1
14 A(t) — bestes Individuum aus P
15 if 4(1).F - bestlnd.F
16 then C bestind — A(t)

17 L Tabu-Liste — aktualisiere Tabu-Liste durch (4(¢ — 1), A(z))
18 return bestind

des Biologen Richard Dawkins zurlick, der damit Verhaltenselemente bezeichnet, die sich im
Gegensatz zu Genen individuell d&ndern konnen, indem sie beispielsweise durch Nachahmung
erworben werden.

Die Grundidee nahezu aller memetischer Algorithmen ist, alle durch einen evolutiondren Al-
gorithmus erzeugten Individuen zunéchst lokal zu optimieren und sie dann erst in die Population
aufzunehmen. Der entsprechende Ablauf ist in MEMETISCHER-ALGORITHMUS (Algorithmus 4.31)
dargestellt.

Beispiel 4.16:
So kann man beispielsweise als populationsbasierten Anteil einen genetischen Algo-
rithmus (GA) wihlen, dessen Individuen durch simuliertes Abkiihlen (SA) verbessert
werden. Das resultierende Verfahren wird auch als SAGA-Algorithmus bezeichnet.

Memetischen Algorithmen schrinken die Bereiche des Suchraums ein, in denen sich Losungs-
kandidaten befinden konnen. Im Extremfall entspricht tatséchlich jeder Lésungskandidat einem
lokalen Optimum (vgl. Bild 4.24). Dies ist hdufig vorteilhaft, weil so schnell unterschiedliche Ei-
genschaften aus verschiedenen Teilen des Suchraums in neuen Individuen kombiniert werden. Es
kann aber auch der Bewegungsspielraum der Losungskandidaten zu stark eingeschrinkt werden,
wenn Rekombinationsoperatoren aus den vorhandenen lokalen Optima keine neuen interessan-
ten Losungen kombinieren kénnen und der global optimale Bereich des Suchraums dadurch
unerreichbar wird.

Die Arbeitsweise der memetischen Algorithmen entspricht dabei der Evolutionstheorie von
Lamarck, der individuelles Lernen fiir die Verinderungen am Genotyp verantwortlich gemacht
hat (vgl. Abschnitt 1.3.3).

4.6 Weitere Verfahren 165

Algorithmus 4.31

MEMETISCHER-ALGORITHMUS(Bewertungsfunktion 7)
1 <0

P(t) « initialisiere Population der GrofBe u

P(t) «— LOKALE-SUCHE(F) fiir jedes Individuum in P(r)

bewerte P(r) durch F

while Terminierungsbedingung nicht erfiillt

do " E « selektiere Eltern fiir A Nachkommen aus P(r)
P' « erzeuge Nachkommen durch Rekombination aus £
P" — mutiere die Individuen in P’

9 P" « LOKALE-SUCHE(F) fiir jedes Individuum in P"

10 bewerte P durch F

11 te—t+1

12 L P(¢) «+ Umweltselektion auf P

13 return bestes Individuum aus P(r)

oo~ O bh B W

Giite

>

Suchraum

Bild 4.24 Beispielhaft wird fiir die Giitelandschaft eines Maximierungsproblems gezeigt, wie sich die neu
erzeugten Individuen (weille Punkte) durch lokale Suche den lokalen Optima (schwarze Punkte)
anndhern. Im Extremfall wird solange lokal optimiert, bis die lokalen Optima erreicht sind.

4.6.4 Populationsbasiertes inkrementelles Lernen

Das populationsbasierte inkrementelle Lernen (PBIL, engl. population based incremental lear-
ning) folgt der Grundidee, im genetischen Algorithmus mit binirer Kodierung ¢ = B/ die Po-
pulation nicht mehr explizit zu speichern, sondern nur noch eine Populationsstatistik der Gen-
frequenz zu fithren. Dort wird fiir jedes der / Bits protokolliert, wie hiufig der Wert » 1« in den
Individuen der Population vorhanden ist. Selbstverstindlich wird hierbei die relative Haufigkeit
betrachtet.

Eine Populationsstatistik allein reicht jedoch nicht aus, um ein Optimierungsproblem zu 16-
sen — daftir miissen konkrete Individuen bewertet werden. Die statistischen Werte werden als
Wahrscheinlichkeiten aufgefasst, entsprechend derer neue Individuen aus der virtuellen Popula-
tion »gezogen« werden. Da die einzelnen Bits vollig unabhiingig voneinander erzeugt werden,
entspricht diese Erzeugung eines neuen Individuums bereits der Rekombination UNIFORMER-
CRrOssSOVER (Algorithmus 3.11), sodass hier kein zusitzlicher Rekombinationsoperator mehr an-
gewandt wird. Als Selektionsmechanismus wird per BESTEN-SELEKTION (Algorithmus 3.6) das

166 4 Evolutionire Standardalgorithmen

Algorithmus 4.32
PBIL(Bewertungsfunktion F')
1 10
2 bestind — erzeuge ein zufilliges Individuum aus & = B/
3 Prob® —(05,....05) [0, 1)
4 while Terminierungsbedingung nicht erfiillt
5 do"P—{)
6 fori—1,....4
7 do " 4 — erzeuge Individuum aus B/ gemsh Prob™®)
8 LP—Po{d)
9 bewerte P durch F
10 (B) « Selektion aus P mittels BESTEN-SELEKTION
11 if F(B) > F(bestlnd)
12 then [bestInd — B
13 t—1+1
14 for each ke {1,...,/}
15 do [Prob!) « B, - a (Lernrate) + Prob{ V. (1 a)
16 for each ke {1,...,/}
17 do "« «— wihle Zufallszahl gemaB U((0, 1])
18 if # < py, (Mutationswahrscheinlichkeit)
19 then ™ 2/ «— withle Zufallszahl gemaf U ({0, 1})

20 LoL L Prob,((r) — - B (Mutationskonstante) +Pr0b/<€t) (1-B)
21 return bestind

beste erzeugte Individuum ausgewdhlt und zur Aktualisierung der Populationsstatistik herangezo-
gen — dies erinnert an die Ersetzung von Individuen in iberlappenden Populationen wie z. B. dem
steady state GA. Eine Mutation wird nicht direkt auf den erzeugten Individuen durchgefiihrt, son-
dern es wird stattdessen die Statistik fiir einige Bits zufillig leicht verschoben. Formal wird das
PBIL in Algorithmus 4.32 beschrieben.

Im Gegensatz zu den genetischen Algorithmen kdnnen beim populationsbasierten inkremen-
tellen Lernen keine internen Abhéngigkeiten zwischen den einzelnen Bits erlernt werden.

Beispiel 4.17:
Die beiden vierelementigen Populationen in Tabelle 4.9 demonstrieren, wie eine Popu-
lation mit einer paarweisen Bindung zwischen Bits und eine Population ohne jegliche
Struktur auf dieselbe Populationsstatistik abgebildet werden.

Dies ist der Preis flir die Projektion auf rein statistische Werte. In der Praxis wiirde sich jedoch
Population 1 aus dem Beispiel weder bei einem genetischen Algorithmus noch beim populations-
basierten inkrementellen Lernen lange halten, da sich durch Gendrift eine der beiden Bitvertei-
lungen durchsetzt. Dennoch ist bei PBIL mit einer eingeschriankten Losungsqualitit zu rechnen,
wenn Probleme mit starken Interaktionen zwischen mehreren Bits betrachtet werden.

Im Algorithmus bestimmt die Lernrate & den Grad, mit welchem Erforschung und Feinab-
stimmung betrieben werden. Ein niedriger Wert betont mehr die Erforschung, wihrend bei ei-
nem hohen Wert die Suche sich sehr schnell fokussiert. Oberflachliche Empfehlungen fiir die
Parameterwerte kénnen Tabelle 4.10 entnommen werden.

4.6 Weitere Verfahren 167

Tabelle 4.9: In der linken Population gibt es je eine Bindung zwischen dem 1. und dem 2. sowie zwischen
dem 3. und dem 4. Bit. Aber diese Abhéngigkeiten werden nicht in der Populationsstatistik
reprasentiert, die identisch zur Populationsstatistik der zufélligen Population 2 ist.

Population 1 Population 2
1 1 0 0 Individuum 1 1 0 1 0
1 1 0 0 Individuum 2 0 1 1 0
0 0 1 1 Individuum 3 0 1 0 1
0 0 1 1 Individuum 4 1 0 0 1

0,5 05 05 0,5 Populationsstatistik 0,5 0,5 0,5 0,5

Parameter Wertebereich

Populationsgrofie A : 20-100
Lernrate o: 0,05-0,2
Mutationsrate py: 0,001-0,02
Mutationskonstante 3: 0,05

Tabelle 4.10
Hiufig benutzte Parameterbereiche bei populationsbasiertem
inkrementellem Lernen

Algorithmus 4.33

DE-OPERATOR(Individuen 4, B,C, D)
1 index — wihle Zufallszahl gemadl U({1,...,/})

2 for eachiec {1,...,I}

3 do" u — wihle Zufallszahl gemaf U([0, 1))

4 if u < 7 (Wichtung der Rekombination)) oder i = index
5 then [4} — B; + (C; — D;) - o (Skalierungsfaktor)

6 Lelse [4] —4;

7 return 4’

Ausgehend vom populationsbasierten inkrementellen Lernen wurden verschiedene weitere
Verfahren entwickelt, die mit besseren Techniken die Verteilung der guten Losungen im Such-
raum schitzen. Analog zum hier prisentierten Algorithmus werden daraus zufillige neue Lo-
sungskandidaten erzeugt. Bei der internen Représentation wird dabei immer mehr Wert auf die
internen Abhéngigkeiten im Suchraum gelegt, z. B. im sog. Bayesian optimization algorithm
durch Nutzung von Bayes-Netzen als Modell fiir die Abhdngigkeiten.

4.6.5 Differentialevolution

Die Differentialevolution (DE, engl. differential evolution) arbeitet dhnlich wie die Evolutions-
strategie auf reellwertigen Individuen mit 4.G € R/, wobei keine Zusatzinformation 4.S be-
notigt wird. Die grundsitzliche Arbeitsweise lasst sich auf die Idee reduzieren, alle Vektoren
(bzw. Differenzen) zwischen beliebigen Individuenpaaren in der Population als Grundlage fiir
die moéglichen Modifikationen eines Individuums heranzuziehen. Der resultierende DE-OPERA-
TOR (Algorithmus 4.33) ist eine Mischung aus Rekombination und Mutation: Strenggenommen

168 4 Evolutionire Standardalgorithmen

C Bild 4.25
' Funktionsweise des DE-OPERATOR: Die Difterenz zwischen den
| 3 ISP Individuen C und D bestimmt die Mutationsrichtung fiir das Indi-
m D viduum B. Zufallsbedingt kénnen auch einzelne Suchraumdimen-
-== sionen unverdndert von B libernommen werden.
Algorithmus 4.34
DIFFERENTIALEVOLUTION(Bewertungsfunktion F')
1 10
2 P(t) < erzeuge Population der Grofie p
3 bewerte P(¢) durch F
4 while Terminierungsbedingung nicht erfiillt
5 do"P(r+1)— ()
6 fori—1,...,u
7 do "repeat [4, B, C. D «— selektiere Eltern uniform zufillig aus P(r)
8 until 4, B, C, D sind paarweise verschieden
9 A’ +— DE-OPERATOR(4, B,C. D)
10 bewerte 4’ durch F
11 if F(4') = F(A4)
12 then CP(r+1) — P(t+1) o (4')
13 Lelse CP(r+1)«— Pr+1)o(d)

14 Lte—t+1
15 return bestes Individuum aus P(r)

Parameter Wertebereich

Populationsgrofe u: 10-100, 10-n Tabelle 4.11

Wichtung der Rekombination z: 0,7-0,9 Empfohlene Parameterbereiche bei der Differential-
Skalierungsfaktor o: 0,5-1,0 evolution.

handelt es sich um eine gewichtete uniforme Rekombination zwischen einem Individuum A und
einem durch einen Differenzenvektor mutierten Individuum B. Interessanterweise skaliert sich
die Schrittweite selbst, je mehr sich die Population auf bestimmte Bereiche des Suchraums kon-
zentriert. Ein Beispiel fiir die Funktionsweise des Algorithmus ist in Bild 4.25 dargestellt.

Als Selektion findet jeweils ein Vergleich des neuen Individuums mit dem direkten Elternindi-
viduum statt und nur diejenigen Kindindividuen werden in die ndchste Generation iibernommen,
die eine Verbesserung darstellen. Damit ergibt sich der Gesamtablauf der DIFFERENTIALEVOLU-
TION in Algorithmus 4.34. Zugehorige Parametereinstellungen sind in Tabelle 4.11 aufgelistet.

4.6.6 Scatter Search

Obwohl Scatter Search eigentlich als deterministisches Optimierungsverfahren konzipiert wurde,
weist es viele Ahnlichkeiten zu den evolutioniren Algorithmen auf: Es arbeitet auf Populationen
von Losungskandidaten, benutzt Variationsoperatoren und erzeugt einen Selektionsdruck fiir die
neu erzeugten Individuen. Eine breite Initialisierung und eine umfassende systematische Erzeu-

4.6 Weitere Verfahren 169

Algorithmus 4.35
SCATTER-SEARCH(Bewertungsfunktion F')
1 bestP=)
2 P
3 fort—1,.... maxlter
4 do" while #P < u
5 do " 4 — erzeuge ein Individuum mit einem Diversitétsgenerator
6 A — LOKALE-SUCHE(F) angewandt auf A
7 bewerte 4 durch F
8 if 4 & PobestP
9 Lthen [P — Po{4)
10 ifr=1
11 then " bestP « selektiere o Individuen aus P mit BESTEN-SELEKTION
12 L P — streiche Individuen aus bestP in P
13 fork—1,....B
14 do " 4 — dasjenige Individuum aus P, das mingepessp d(4.G. B.G) maximiert
15 P streiche Individuum 4 in P
16 L bestP «— bestPo (A)
17 repeat” P' — ()
18 Mengen — erzeuge Teilmengen von bestP durch einen Teilmengengenerator
19 for each M € Mengen
20 do " 4 +— wende einen Kombinationsoperator auf M an
21 A — LOKALE-SUCHE(F) angewandt auf A
22 bewerte 4 durch F
23 if A & bestPU P
24 Lthen[P — P'o{4)
25 L bestP « selektiere ¢ + 3 Ind. aus bestP o P’ mit BESTEN-SELEKTION
26 until bestP hat sich nicht geandert
27 L bestP — selektiere ¢ Individuen aus P’ mit BESTEN-SELEKTION

28 return bestes Individuum aus bestP

gung neuer Individuen garantieren eine weitrdumige Erforschung des Suchraums. Die Feinab-
stimmung wird wie bei den memetischen Algorithmen durch eine lokale Suche fiir jedes Indi-
viduum erreicht. Die hier vorgestellte Variante von SCATTER-SEARCH (Algorithmus 4.35) ist so
zundchst fiir reellwertige Problemriume mit ¢ = Q = R” gedacht.

Der Algorithmus durchlduft in mehreren Iterationen zwei unterschiedliche Phasen. Zundchst
werden in der ersten Phase moglichst unterschiedliche Individuen mit einem Diversititsgenerator
erzeugt, die alle lokal optimiert werden.

Beispiel 4.18:
Konkret kann man fiir die reellwertigen Probleme den Diversititsgenerator wie folgt
implementieren: Fiir jede Suchraumdimension wird der giiltige Wertebereich in vier
Teile zerlegt und fiir jeden Teil wird gespeichert, wieviele Individuen in diesem Teil
bereits erzeugt wurden. Dann wird invers proportional zur bisherigen Haufigkeit fiir
jede Suchraumdimension der Wertebereich und ein zufilliger Wert aus diesem Bereich
gewihlt.

170 4 Evolutionire Standardalgorithmen

Parameter Wertebereich
Populationsgrofie u: 50-150
Anzahl der besten Individuen o: 5-20

Erweiterung der besten Individuen 8: 520

Tabelle 4.12 Empfohlene Parameterbereiche bei Scatter Search.

In der ersten Iteration wird eine Population der Besten mit den ¢ besten Individuen initialisiert.
Diese Population der Besten wird um B Individuen erweitert, die mdglichst unterschiedlich zu
den Individuen der Population der Besten sind.

In der zweiten Phase werden die besten Individuen systematisch durch einen Teilmengenge-
nerator zusammengestellt.

Beispiel 4.19:
Das kénnen in unserem Beispiel des reellwertigen Suchraums alle Teilmengen mit
genau zwei Individuen sein. Fiir andere Anwendungen findet man allerdings auch we-
sentliche kompliziertere Teilmengengeneratoren.

Aus den so zusammengestellten Individuen erzeugt der Kombinationsoperator jeweils ein neues
Individuum. Dieses wird wieder lokal optimiert und in die Population der Besten {ibernommen,
falls es noch nicht bekannt ist. Dieser Ablauf in der zweiten Phase wird solange wiederholt, bis
sich die Menge der besten Individuen nicht mehr dndert.

Beispiel 4.20:
Konkret kann dafiir im reellwertigen Suchraum die Rekombination ARITHMETISCHER-
CROSSOVER (Algorithmus 3.12) mit U ([—%, %}) (in Zeile 1) benutzt werden.

Auch von Scatter Search gibt sehr viele Varianten, die abhéngig vom Anwendungsproblem stark
von dem hier vorgestellten Algorithmus abweichen konnen.

4.6.7 Kulturelle Algorithmen

Kulturelle Algorithmen (CA, engl. cultural algorithms) beruhen auf der Beobachtung, dass die
genetische Ebene nicht die einzige Ebene ist, auf der Informationen von einer Generation zur
néchsten weitergegeben werden. Zusitzlich gibt es gerade bei den Menschen noch einen weiteren
Informationsspeicher, namlich die Kultur. So ist Verhalten, das sich auf religiose oder moralische
Vorstellungen stiitzt, vermutlich kaum genetisch sondern vielmehr durch kulturelle Vermittlung
bedingt. Die kulturellen Algorithmen ergédnzen die evolutiondren Algorithmen um diese Kompo-
nente.

Neben der genetischen Information, die in den Individuen der Population vorliegt, wird die Er-
zeugung neuer Individuen zusétzlich von einem kollektiven kulturellen Wissen beeinflusst. Die-
ses Wissen wird in einem sog. Uberzeugungsraum (engl. belief space) gespeichert. Die jeweils
besten Individuen einer Generation kdnnen das kulturelle Wissen modifizieren. Algorithmus 4.36
beschreibt das allgemeine Schema, das den kulturellen Algorithmen zugrunde liegt.

4.6 Weitere Verfahren 171

Algorithmus 4.36
CULTURAL-ALGORITHM(Bewertungsfunktion F')
1 t<0

P(t) < initialisiere die Population

B (t) — initialisiere den Uberzeugungsraum

bewerte P(f) durch F

while Terminierungsbedingung nicht erfiillt

do ™ P’ — bestimme wichtige Individuen aus P(¢)
BS (t+1) — BS(t) wird durch P’ angepasst
P" — erzeuge Nachkommen von P(¢) auf der Basis von 2.9 (¢ + 1)

9 bewerte P’ durch F

10 t—1t+1

11 L P(t) « Selektion aus P”(cP(— 1))

12 return bestes Individuum aus P(r)

R~ N bW

Welches konkrete Wissen im Uberzeugungsraum gesammelt wird und wie dieses in den evo-
lutiondren Operatoren genutzt wird, hingt von dem bearbeiteten Optimierungsproblem ab und
wird im Folgenden am Beispiel vorgefiihrt.

Beispiel 4.21:

Die hier vorgestellte Variante fiir Probleme auf einem Suchraum € = R” basiert auf
dem evolutioniren Programmieren. Im Uberzeugungsraum werden als situationsbe-
zogenes Wissen die letzten beiden besten gefundenen Individuen und als normatives
Wissen eine Einschrinkung des Suchraums auf einen interessanten Bereich gespei-
chert. Fiir letzteres werden pro Suchraumdimension eine Unter- und eine Obergrenze
berechnet. Dabei werden beispielsweise diejenigen 20% der Individuen in der Eltern-
population herangezogen, die bei der letzten Q-STUFIGE-TURNIER-SELEKTION (Algo-
rithmus 3.7) die meisten Gewinne aufweisen konnten. Aus diesen Individuen wird flir
jede Suchraumdimension der kleinste und der gréfite Wert ermittelt. Falls dieser Wert
das gespeicherte Intervall vergroBert, wird er in jedem Fall {ibernommen. Eine Ver-
kleinerung des Intervalls findet nur dann statt, wenn der Giitewert des entsprechenden
Individuums besser ist, als der bei der letzten Ubernahme gespeicherte Wert. In der
Mutation leitet man nun aus dem normativen Wissen ab, wie weit die Optimierung
bereits beziiglich der einzelnen Suchraumdimensionen fortgeschritten ist: Wurde der
interessante Bereich auf weniger als 1% des Suchraumintervalls eingeschriankt, kann
das situationsbezogene Wissen in Form des besten Individuums benutzt werden, um
die Suche in diese Richtung auszurichten. Eine weitere Voraussetzung hierflir ist, dass
die letzten beiden besten Individuen innerhalb des interessanten Intervalls fiir die je-
weilige Suchraumdimension lagen. Man sagt dann, dass der Uberzeugungsraum fiir
diese Suchraumdimension stabil ist. Der genaue Ablauf der CA-MUTATION kann Algo-
rithmus 4.37 entnommen werden und ist eine Variation der SELBSTADAPTIVE-GAUSS-
MUTATION mit separater Schrittweitenanpassung fiir jede Dimension (vgl. S. 136).
Bild 4.26 illustriert wie das Verhéltnis des zu mutierenden Individuums zum bes-
ten Individuum die Verdnderungswahrscheinlichkeit in horizontaler Richtung verin-
dert.

172 4 Evolutiondre Standardalgorithmen

Algorithmus 4.37

CA-MUTATION(Individuum A)
1 o «— wihle zufiillig gemiB .47 (0. 1)
2 for eachic {l...., 1}

3 do " u} — wihle zufiillig gemiB .4(0, 1)

4 B.S; — A.S;-exp (ﬁ ' + '\/';:-T""i -u;’)
5 u «— wiihle zufillig gemiB .47(0, B.S;)
6 if 2.9 ist stabil fiir Dimension i
T then " switch
8 case A.G; < Bestlnd.G; : B.G; — A.G;+ |u|
9 case A.G; > Bestlnd.G; : B.G; — A.G; — |u|
10 L case A.G; = Bestlnd.G; : B.G; — A.G;+ §
11 else [B.G;— A.Gi+u
12 L B.G; — max{ug;, min{og;, B.G;}}
13 return B
bestind bestind bestind bestind
a a o m]
L
>1% <% T <1% o <1%

Bild 4.26 Die verschiedenen Fille bei der reellwertigen CA-MUTATION (Algorithmus 4.37) werden an-
hand der horizontalen Richtung illustriert: Links die Wahrscheinlichkeiten fiir die horizontale
Richtung der Standardmutation, rechts die drei Varianten zur Feinabstimmung im Falle eines
stabilen Uberzeugungsraums. Das aktuelle Individuum kann dabei auch auBerhalb des stabilen
Bereichs liegen.

Damit bieten die kulturellen Algorithmen einen weiteren Mechanismus der Adaptation, der auf
die Details des jeweils zu bearbeitenden Problems zugeschnitten werden kann. Interessant ist
hier insbesondere das Zusammenspiel zwischen der Selbstadaptation und der Adaptation.

Im Abschnitt 5.1 gehen wir nochmal auf die kulturellen Algorithmen ein und verindern den Anpassungs-
mechanismus fiir die zusiitzliche Betrachtung von Randbedingungen.

4.6.8 Ameisenkolonien

Der Vorgang der Evolution ist nicht die einzige Inspirationsquelle aus der Natur fiir die Lésung
von Optimierungsaufgaben. Ein alternativer Ansatz ist die Betrachtung von Insektenkolonien,
in denen ohne eine zentrale Steuerung aus relativ einfacher Basiskommunikation sehr komplexe
Aufgabenstellungen bewiltigt werden. Als ein Beispiel wird hierfiir die Futtersuche von Ameisen

file:///-B.Gi

4.6 Weitere Verfahren 173

betrachtet. Dabei wurde in Experimenten festgestellt, dass die Ameisen {iber einen Dufistoff,
das sog. Pheromon, ihre Wege markieren und sich mit gréBerer Wahrscheinlichkeit an solchen
Wegen orientieren, auf denen sich mehr Duftstoff befindet. Dieses Verhalten wird zur Losung
von solchen Problemen imitiert, bei denen die Losung als ein Weg in einem Graphen dargestellt
werden kann.

Ein Beispiel hierfiir ist das Handlungsreisendenproblem aus Def. 2.2. Beim evolutionéren
Ansatz aus Kapitel 2 wurde durch Verdnderung der Permutation in den Individuen immer eine
komplette Rundreise betrachtet und variiert. Im Gegensatz dazu wird bei der Ameisenkolonieop-
timierung durch u virtuelle Ameisen immer wieder eine neue Rundreise schrittweise konstruiert.
Dabei hat jede Ameise nur ein sehr beschrénktes lokales Wissen iiber das Problem. Sie nutzt
einerseits ein Erinnerungsvermogen, welche Knoten sie bereits besucht hat, um im Beispiel des
Handlungsreisendenproblems nicht zu fritheren Knoten auf dem Rundweg zuriickzuspringen. An-
dererseits benutzt sie das Pheromon, das von anderen Ameisen auf den Kanten platziert wurde,
um hiufig benutzte Kanten mit einer gréfBeren Wahrscheinlichkeit auszuwéhlen. Hat eine Amei-
se einen vollstdndigen Losungskandidaten erstellt, wird der Losungskandidat bewertet und auf-
grund seiner Giite eine bestimmte Menge Pheromon auf den Kanten verteilt. Das Pheromon wird
zur Zeit ¢ in einer Matrix PM) gespeichert, bestehend aus den Werten (7; ;) 1<j j<n.

Konkret bestimmt sich die Wahrscheinlichkeit, dass von dem aktuellen Knoten v; der Knoten
v; € verfiighar aus der Menge der noch nicht besuchten Knoten gew#hlt wird, aus zwei Faktoren:

* der Pheromonmenge 7; ;, das auf der Kante liegt, — je mehr Pheromon desto hoher ist die
Wabhrscheinlichkeit — und

» der inversen Entfernung nah; ; = 1 3 zwischen den Knoten, wobei v das Gewicht der

Y(vi,v 7
Kante im Graphen darstellt.

Dann ist die Auswahlwahrscheinlichkeit

o \B
T, - (nahi ;) 5 falls v; € verfiighar
Privjlvi] = 2 Ti k- (nah k) @1
vy Everfiighar
0 sonst.

Durch einen Explorationsregler © wird im Algorithmus 4.38 (AMEISENKOLONIE-TSP) bestimmt,
wie hiufig die ndchste Stadt gemiB dieser Auswahlwahrscheinlichkeit bestimmt werden soll
oder ob einfach die Stadt mit der grofiten Wahrscheinlichkeit genommen wird. Ein kleiner Wert
© kann stabilere Ergebnisse produzieren.

Sind alle Ameisen die Stidte abgelaufen, wird die Pheromonmatrix PM durch die Lange ihrer
Reise modifiziert. Dabei »verdunstet« ein Teil o des Pheromons und auf den benutzten Kanten
wird die Pheromonmenge gemif der inverse Lénge der konstruierten Rundreise erhéht, wodurch
erreicht wird, dass kiirzere Rundreisen den Phermonwert auf ihreren Kanten stérker erhohen als
lange Rundreisen.

u
Tij o Q-Tjj+ 2 wert(A%) i, j) (4.2)
k=1
L P .
mit wert(4, i,) = { 47 falls (i, j) in 4 enthalten ist 4.3)
0 sonst.

174 4 Evolutionire Standardalgorithmen

Algorithmus 4.38
AMEISENKOLONIE-TSP(Bewertungsfunktion £ (TSP mit » Stédten))
1 10
PM") — initialisiere Pheromon
while Terminierungsbedingung nicht erfuillt
do"fori«< 1,...,u (Anzahl der Ameisen)
do™ 4 .G — (1) (initialisiere neue Ameise]

aktuell — 1

fork—2,....n

do " u — wihle Zufallszahl gemaB U([0, 1))

9 if # < 8 (Regler fiir Exploration)

10 then C ndichster « wihle Knoten gemal Pr(v;|aktuell] (Gleichung 4.1)
11 else [ncichster — Knoten j mit maximalem Pr|v;|aktuell]
12 AD.G — 4D G o (ndchster)
13 L aktuell — ndichster
14 L bewerte A1) durch ¥
15 t—t+1
16 L PMY — aktualisiere PMY~1) gemiB Gleichung 4.2
17 return beste gefundene Rundreise

00~ N L bW N

Parameter Wertebereich

Anzahl der Ameisen y: 10

Gewichtung der Entfernung : 2-6 Tabelle 4.13

Verdunstungsgrad o: 0,6-0,9 Empfohlene Parameterbereiche bei der Ameisenkolo-
Explorationsregler 6: 0,2-0,9 nieoptimierung.

Geeignete Parameterwerte sind in Tabelle 4.13 aufgefiihrt. Diese Werte und die hier benutz-
ten Formeln kdnnen allerdings nicht direkt auf andere Optimierungsprobleme {ibertragen werden.
Ebenso dndern sich die Parameter, wenn komplexere Mechanismen zur Modifikation und Aus-
wertung des Pheromons benutzt werden.

4.6.9 Partikelschwirme

Partikelschwirme (engl. particle swarms) sind eine Optimierungsmethode fiir reellwertige Opti-
mierungsprobleme, die auf der Modellierung sozialer Interaktionen beruht. Zunéchst waren die
Partikelschwérme reine Simulationsmodelle fiir Sozialverhalten. Daher unterscheiden sie sich
von evolutiondren Algorithmen in erster Linie darin, dass sie Verbesserungen nicht durch einen
Selektionsmechanismus erreichen sondern durch Nachahmung und Lernen von anderen benach-
barten Individuen. Damit wird das Schwarmverhalten von Végeln oder Fischen hinsichtlich op-
timaler Futterpldtze etc. auf die Lésung von reellwertigen Optimierungsproblemen {ibertragen
(PARTIKELSCHWARM in Algorithmus 4.39).

Die Individuen bestehen dabei aus dem Genotyp 4.G € R’ und den Zusatzinformationen
AS=(vi,...,v;,B1,...,B)) € & = R>*". Dabei stellt v = (v;,...,V;) einen Verinderungs-
vektor dar, der bei der Modifikation der Individuen benutzt wird und B = (By, .. ., B) reprisen-
tiert den besten bisher auf dem Weg des Individuums gefundenen Punkt im Suchraum. In jeder

4.6 Weitere Verfahren 175

Algorithmus 4.39

PARTIKELSCHWARM(Bewertungsfunktion F')
1 t<0

2 P(t) < initialisiere die Population der GroBe u

3 bewerte P(¢) durch F'

4 best — Genotyp des besten Individuums in P(¢)

5 while Terminierungsbedingung nicht erfiillt

6 do™ P — ()

7 fori—1,...,u

8 dor(seid®5— (v v B0 50

9 uy, uy — wihle Zufallszahlen gemiB U([0, 1])
10 for eachk e {1,...,/}
1 doC v, — B v\ +ay-u - (BY —4D.G) + o - uy - (besty, — 4D .Gy)
12 it [[(v],...,v))|| > MAX (maximale Verinderung)
13 then [(v],..., V) < skaliere den Verinderungsvektor auf die Linge MAX
14 for eachke {1,...,[}
15 doC A .Gy — A +v]
16 bewerte 4" durch F
17 if 4/.F =~ BU.F
18 then [P« Po((4),... .4 v]vi,B{ . B
19 Lelse CP —Po((d],....4,V],....v.4\....,4))
20 t—t+1
21 P(t) « P!
22 L best — Genotyp des besten Individuums in P(7)

23 return bestes Individuum aus P(r)

Generation wird der Verinderungsvektor der Individuen durch die soziale Interaktion mit benach-
barten Individuen modifiziert (von v zu v') und anschlieBend auf den Genotyp angewandt, d. h.
firallek € {1,...,1} gilt

A/.Gk =A.G,+ V/i.
In die Modifikation von v gehen zwei Komponenten ein:

+ das Bestreben eines Individuums, zu seinen Erfolgen zurtickzukehren, d. h. den Veréinde-
rungsvektor so zu modifizieren, dass er zum besten Losungkandidaten B zuriickfiihrt und

« eine Orientierung des Individuums an den besten Erfolgen seiner Nachbarn.

Sei also best der beste bisher gefundene Losungskandidat in einer Nachbarschaft, die oft fiir
ein Individuum 4" einfach aus den Individuen 40D, 49 und 40+ besteht. Dann wird der
Verdnderungsvektor mittels zweier Zufallszahlen u), u; ~ U([0, 1]) folgendermalien modifiziert.

V//c = Vlgi) +0oy-uy - (Bl(ci> —A(i).Gk) +op-uy - (beSl‘k —A@.Gk)

Dabei ist B ein Trigheitsfaktor, ¢ bestimmt, wie stark die gespeicherte beste Position eingeht,
und o ist ein sozialer Faktor, wie stark ein Individuum sich an den Nachbarn orientiert. Lésst
man den Verdnderungsvektor beliebig grof3 werden, wird sich sehr schnell ein vollig zufilliges

176 4 Evolutiondre Standardalgorithmen

Parameter Wertebereich
Tragheit 3: 0,8-1,0
kognitiver Faktor o : 1,5-2,0
sozialer Faktor ap: 1,5-2,0

Tabelle 4.14

_ Empfohlene Parameterbereiche bei der Optimierung
Populationsgrofie u: 20-60 mit Partikelschwirmen.

maximale Verdnderung MAX: og; —ug;

Verhalten der Individuen einstellen. Dies ldsst sich durcheine maximal mégliche Verdnderung
vermeiden. Geeignete Parameterwerte sind in Tabelle 4.14 aufgefiihrt.

4.7 Kurzzusammenfassung

Als kurze vergleichende Ubersicht iiber die Standardalgorithmen enthalten die Tabellen 4.15
und 4.16 auf der Doppelseite im AnschluB an die Ubungsaufgaben die wichtigsten Informatio-
nen.

4.8 Ubungsaufgaben

Aufgabe 4.1: Genetischer Algorithmus

Implementieren Sie die Verfahren GENETISCHER-ALGORITHMUS (Algorithmus 3.14) und
STEADY-STATE-GA (Algorithmus 4.1) mit bindrer Standardkodierung und Turnierselektion.
Wenden Sie die Algorithmen auf die Ackley-Funktion (vgl. Anhang A) an.

Aufgabe 4.2: Evolutionsstrategie

Implementieren Sie die Evolutionsstrategie mit der 1/5-Erfolgsregel (ES-ADAPTIV in Algorith-
mus 4.8) und mit Selbstanpassung (ES-SELBSTADAPTIV in Algorithmus 4.9). Wenden Sie die
Algorithmen auf die Ackley-Funktion (vgl. Anhang A) an und vergleichen Sie die Ergebnisse.

Aufgabe 4.3: Evolutionires Programmieren
Untersuchen Sie an einem kleinen Beispiel fiir die unterschiedlichen Mutationen des urspriing-
lichen evolutiondren Programmierens (Algorithmen 4.13 bis 4.17), inwieweit eine kleine Ver-
anderung am Genotyp einer kleinen Verdnderung am Phéinotyp (d. h. der Approximation einer
Zeitreihe) entspricht.

Aufgabe 4.4: Grammatikevolution

Fithren Sie die Grammatikevolution aus Beispiel 4.13 fiir das Individuum (2, 1, 1, 0, 0, 1, 0, 3)
durch.

Aufgabe 4.5: Hillclimbing

Uberlegen Sie, wie sich Hillclimbing (Algorithmus 4.25) auf einem Plateau mit konstanter Giite
verhalten wird. Welche alternative Akzeptanzbedingung ohne Giiteverschlechterung wire mog-
lich? Wie wird sich ein solches Verfahren auf einem Plateau verhalten?

4.8 Ubungsaufgaben

Aufgabe 4.6: Simuliertes Abkiihlen

Implementieren Sie simuliertes Abkiihlen (Algorithmus 4.26) und wenden es auf eine Instanz
des Handlungsreisendenproblems an. Vergleichen Sie das jeweilige Verhalten mit unterschiedli-
chen Abkiihlungsplanen.

Aufgabe 4.7: Schwellwertakzeptanz

Fiihren Sie Aufgabe 4.6 fiir Schwellwertakzeptanz (Algorithmus 4.27) durch. Vergleichen Sie
die benétigte Rechenzeit mit der Anzahl der ausgewerteten Individuen in beiden Aufgaben.

Aufgabe 4.8: Ablaufschemata

Vergleichen Sie die Ergebnisse der Aufgaben 4.1 und 4.2. Vertauschen Sie die Ablaufmuster der
beiden Algorithmen (vgl. Bilder 4.1 und 4.5) und belassen die Operatoren. Was kénnen Sie in
Ihren Experimenten beobachten? Wie erkléren Sie sich die Ergebnisse?

Aufgabe 4.9: Populationsbasiertes inkrementelles Lernen

Implementieren Sie das populationsbasierte inkrementelle Lernen PBIL (Algorithmus 4.32) und
testen Sie es auf der Royal-Road-Funktion (vgl. Anhang A). Lassen sich Unterschiede im Ver-
gleich zu GENETISCHER-ALGORITHMUS (Algorithmus 3.14) auf demselben Problem feststel-
len?

Aufgabe 4.10: Differentialevolution

Veranschaulichen Sie sich die Arbeitsweise des Operators DE-OPERATOR (Algorithmus 4.33)
aus der Differentialevolution nochmals bildlich. Diskutieren Sie, unter welchen Umstédnden eine
differenzbasierte Mutation wesentliche Vorteile gegeniiber der GAUSS-MUTATION (Algorith-
mus 3.4) hat. Betrachten Sie hierfiir ein geeignetes Problem mit vielen (natiirlichen) lokalen
Optima.

Aufgabe 4.11: Scatter Search

Diskutieren Sie, an welchen Stellen in SCATTER-SEARCH (Algorithmus 4.35) die Diversitit er-
halten wird und eine Erforschung (exploration) bzw. Feinabstimmung (exploitation) stattfindet.
Was sind Vor- bzw. Nachteile im Vergleich zu einem evolutiondren Algorithmus.

Aufgabe 4.12: Ameisenkolonieoptimierung

Betrachten Sie das Maschinenbelegungsproblem flir eine Maschine: fiir # verschiedene Auftra-
ge ist die Bearbeitungszeit ¢;, der fritheste Fertigstellungstermin o; und der letztmogliche Fertig-
stellungstermin b; (1 < i < n) gegeben. Ein Maschinenbelegungsplan mit minimalen Konven-
tionalstrafen ist gesucht. Geben Sie eine Kodierung fiir die Optimierung mit Ameisenkolonien
an.

177

4 Evolutionidre Standardalgorithmen

178

ZUSFISAUOY aYniJ

YL [UIYISIYRM
108s1M08 J1w udguny
-QIUIDYISIIA “Tow

NZ :Wo[qold SA[BNUdZ WNNPIAIPU] U1 -WUT USSUNIISSaqIan urey 81991129 31ga112q ayong s[eo]
SV UOA UOIN]0AT (019
‘unprouiap -uonuj ual swnwrerdoxdisjquias
InZ UspoyaA ‘dunt -01e12d Q) 9q121Z3ds -sy ‘uaydern my)
-aisiyenu] 9f[21zads SIUYILIOS| Y udYos yalojerad() ‘uswngqia] uoa 93ugT J9[qeniea usd
‘WNNPIAIPUJ UIo Jne uouonendod -11ouad wieq arm oppe1zads ‘uswingq UOIENYIPOJA J2po -un[[eIsie(] 9ieaul] | uaIdIuIueISold
10je12d(y UIe INU 330 OgoI3 Iyas ISIOWI ‘QUOPAIYISIAA -[I9] UOA Udsneisny udSupyurf) Sausjul yone Joqe ‘owngg SOYISNIUD)
1912weredard
yo1Sow -2Je1S Iop uoneINA
SpuE)sSNZ I3IBqUOIaLID UIOpUIy] pun woyyg 981119Z4219[3 ‘uor]
-un Funjpueyag 2421 sne uoI[a[osIatuIng -BIMIA-SSTIED) ‘U2) 1o}
-PAIYOSIUN {USJEWIO] vy =118 sq ayoe}-7 a8ynis-b -ewony ut a3ued -owesedarSojenguw
-Ny 199 2PAMNILIYOS ‘usuonendod 110yeds ‘uonyaag -10q() pun dpugisnz 3 ojeds Jewomny | ussowweISold
J1op uoneydepe;sqes agoIS[aniu -snd :s3uejue oulay Jap UonBYYIpON 12421[pud :s3uejue SOIBUOIIN]OAT
wiloweledaigarens
19821830096/ | Jne soreradQ Ja1
aandepe :yone ‘Suns -Opue ‘UdJUBLIBA
-sedueudyiomnuyds 1 < y BWwWoy] UOIR[9S 9[BQO[3 YONE “IDA0S Jojowesedard
aip my woneydepe 19q] =1 i[eW -SN|J ‘MZQ -BUIWWOY -SOID) JOULIOJUN pUN 1ajowreredaidajens -3Jeng dyoNziesnz
-1Q[9§ Jap udwssuLyd -louew ‘uduon H19puUry| IIeLsA PEIRNIEINIS RN I9p uoneIn|A 1812 ‘dfjouryd = dKjou 21391
- ayorparyosiun -e[ndod a1aura[y -[o19[3 [uIa)yg -eds ‘ouray] sSurjue ‘uonBINA-Ssnen) -eD B Isew | -exssuounjoay
USTOTBINULID
1y ualojeradosuo
uonAasISIuIN] -RUIqUIONY 2191 udiojerado
S[e 19pO }121seq -[oW “IOA0SSOI) -SUONBINULId] 9[]2 SuniaipoyaQg
uouon -Suel ‘UoIEYS yone JOYOSIAWYILIR -1zods ‘uoneniy o8 ‘L5’ pun i “yone
W2I03Y | ~ewdyog 93 -e[ndog ogo1d ‘UOTIO[ASUIANTY 9] ‘I9A0SSOI]) 1DULIOJ EIRETN | BEVESI | ETRET ‘7 93upT 19189 SIUUYILIOT Y

-B[pUNIC) YOSII2I0aY])

s1q 2goIF[enIw

-euorpodoadssauy

-1un pun -pjung-y

-yo12]3 ‘Surddigng

W g yOSISSe]

pElip kN ETS)

UANAYIIPUOSIY

uone[ndod

COBREIEN

UOHBUIQUION Y

uoneny

dfjouon

snuylLIog]y

Tabelle 4.15: Vergleich der Standardalgorithmen (Teil 1)

179

4.8 Ubungsaufgaben

SWINELYong sap uo

(103814 2uadiouo

UIRQYOBN Udp

-WRNYOIN(] SIUOIYIUAS goid -neindo) usseg ue SunIsnusLi() pun uI9joures ULIRMYDS
JIOUD ‘BWIOYDS-VE UIDY -[91MW SIq UId[y we Sunienusl) ouray 1noy3ei] jue 1aIseq -eda15a)ens nw i -[y1ed
11dd
Ul ynsners mz yoljuie
udjepipueysSunsQ]
uasanuasgidar uaf JLIYDSSUONIRID)] sfusuruowoayJ uajepipueysguns
-USWIUOWOIAYJ d[Bq oxd ussiowy 9eqo[3 21p Jne ssny -] ULUID LIdINNS d
-0[3 “ewyoS-vy U1y Iop [qezuy -UTH JUIUISaq N0 auray -uoy astomry apal QUAPIIYISIOA -OONUASTAUIY
UISSIAN SOU
-a80zaqsuonen)is pun Sswmes
SIAITRULIOU J1oyo1ads -sSunSnoziaq() sop wivpweledsigoreng snuyIog |y
wnels§ungnoziaq() goagionrw OIS oMU auray UONBULIOU] JZINU JIu (I9PUE pun) ¥ Iof[eImy
uo
UDIYBJIOA SOYOSIISIUIL uoy -1JeUIqUIOY] pun 10}
-I2}Op ‘UDJUBLIBA O[OIA goidoniu -s0g Iop UOIO[OS -esousduduswiog, Uy 210pUE pUn ¥ oIedg 1033808
UO1JBULIOJUISUOL) goid SunIassaqIoA 199 uonn|
-e[ndod jzinu 1ojerodQ -[o1IW SIq UISLY 19]]q 1Z)9519 pury 101e19dOYOSTA Jojeradoydsiy Al | -oas[enuazayId
uou
18n2z12 SifTRInZ YN 1719819 Y1ST it} -1 So[[IuwW
-S1R)G Jop sne uapiom -eyssuoyendod JyNsyeIS Ul Jyas wn uonpiAlpu] uoa us8 ynpsyeyssuonendod ;1 ‘ol -aDul $91101S

usnpIAIpy] AT1QUIq yoImp plm - -NPIAIPWPULY $9)59q -ndziyg widq nzijdu JIop ul Suruspuy yuspelssuonendod -eqsuonje[ndod

worwndo eyo] piim snwyyLo3 Y

WNBPIAIPUL A0 SIPIf giqarpeq 31921p9q Siqapeq Siqa1paq Siqaipoq 13YOSHIW N

11ayotadsad yorzies

-NZ PIIM WNNPIAIPU] Jopury 2121 uaIsII-nge],

souapunyof soysaq -yow ‘I3[uIa WINNPIAIPU] S91saq Uy yoump Jeqiysyuinun yeudKjougyd syong-nqe|.

Z1es[o39y 2qedny 19p
1s1 wnnpiaipu] :yging Jenxa(dwoy] uauone[ndod apuad A* 1“0} wyosis
-SHId ‘Z1BS[98y I1S1 InJ puLydIaIshe -depioqn yosissey -se]y ‘uja8ay ue woIsAg sap

uonendod :ueSyorA

“uBSIYOIA 19q

‘feuorpiodoadssauy

I9A0SSOI)-P{UN-Y

Fuiddigng

8ud Iopo [989y

-URIIZYISSL[]

U)1AY ISpUOSIT

uonendog

LB EN

UOTRUIqUION Y

UoTIBINI

d4iouany _

SnwILIod [y

Tabelle 4.16: Vergleich der Standardalgorithmen (Teil 2)

180 4 Evolutionire Standardalgorithmen

4.9 Historische Anmerkungen

Die genetischen Algorithmen gehen auf die Betrachtungen von Holland (1973, 1975, 1992) zu
adaptiven Systemen zuriick. Weitere Katalysatoren in der Entwicklung der genetischen Algo-
rithmen waren sowohl die Arbeit von De Jong (1975), die demonstriert hat, dass Optimierungs-
probleme mit einfachen genetischen Algorithmen geldst werden kénnen, als auch das Lehrbuch
von Goldberg (1989), das diesen Ideen eine gréBere Verbreitung erméglicht hat. Der Ubergang
zur Betrachtung von reellwertigen Darstellungen des Problemraums in genetischen Algorithmen
wurde als erstes von Davis (1989, 1991a), Janikow & Michalewicz (1991) und Wright (1991) ge-
leistet. Permutationen als Reprisentation wurden noch frither von Goldberg & Lingle, Jr. (1985),
Grefenstette et al. (1985) und Davis (1985) betrachtet. Die iiblichen Selektionsmechanismen und
Standardoperatoren fiir genetische Algorithmen wurden bereits in den Anmerkungen zum vori-
gen Kapitel diskutiert. Fiir die weiteren hier vorgestellten Operatoren gehért die Anerkennung
De Jong (1975) fiir den K-PUNKT-CROSSOVER (Algorithmus 4.2), Davis (1989) fir die GLEICH-
VERTEILTE-REELLWERTIGE-MUTATION (Algorithmus 4.4), Syswerda (1991a) fiir die VERSCHIE-
BENDE-MUTATION (Algorithmus 4.5), Davis (1991a) und Syswerda (1991a) fiir die MISCHENDE-
MUTATION (Algorithmus 4.6) sowie Goldberg & Lingle, Jr. (1985) fir die ABBILDUNGSREKOM-
BINATION (Algorithmus 4.7). Die »optimale« Mutationsrate fiir die BINARE-MUTATION (Algorith-
mus 3.3) wurde von Miihlenbein (1992) und Bick (1993) gezeigt.

Die ersten Ideen der Evolutionsstrategien wurden bei der Optimierung des Designs einer Diise
bzw. der Kriimmung eines Rohrs von Rechenberg (1964) gemeinsam mit Schwefel und Bienert
gefunden. Die grundsétzliche Idee war dabei die Entwicklung eines Forschungsroboters, der sol-
che Aufgaben im Ingenieursbereich selbststandig experimentell 16sen kann. Die ersten Experi-
mente wurden als (1 + 1)-Strategie manuell durchgefiihrt. Spiter folgte die Ubertragung auf den
Rechner. Die BESTEN-SELEKTION (Algorithmus 3.6), die Mutation mittels einer Normalvertei-
lung in Form der GAUSS-MUTATION (Algorithmus 3.4) ebenso wie die %—Erfolgsregel ADAPTIVE-
ANPASSUNG (Algorithmus 3.17) reichen bis in diese Anfangszeit zuriick (vergleiche Rechenberg,
1973). Die selbstanpassenden Mutationsoperatoren SELBSTADAPTIVE-GAUSS-MUTATION (Algo-
rithmus 3.18) finden sich bei Schwefel (1977). Die Arbeit von Herdy (1991) enthilt verschiede-
ne Beispiele wie die Evolutionsstrategie fiir nicht-reellwertige Phénotypen genutzt werden kann.
Die DERANDOMISIERTE-ES (Algorithmus 4.12) stammt von Ostermeier et al. (1995).

Das evolutiondre Programmieren wurde zunéchst in seiner klassischen Form fiir endliche Au-
tomaten von Fogel et al. (1965, 1966) eingefiihrt. Das Ziel war dabei, durch die endlichen Auto-
maten Vorhersagen fiir Zeitreihen machen zu konnen (siehe auch der Ubersichtsartikel von Fogel
& Chellapilla, 1998). Ende der 80er Jahre wurden die Ideen vom evolutiondren Programmieren
auf andere Représentationen verallgemeinert. Dabei wurde unter anderem die g-stufige zweifa-
che Turnierselektion und eine Mutation dhnlich zu den Evolutionsstrategien entwickelt (Fogel
& Atmar, 1990). Der Selbstanpassungsmechanismus von EP (SELBSTADAPTIVE-EP-MUTATION in
Algorithmus 4.19) wurde von Fogel et al. (1991) erfunden.

Genetisches Programmieren wurde von Koza (1989, 1992) eingefiihrt, wobei baumartige
Strukturen schon frither (z. B. von Cramer, 1985; Antonisse & Keller, 1987) als Reprisenta-
tion betrachtet wurden. Koza (1992) definierte die présentierten Operatoren auf den Biumen.
Die Implementation der Béume als Zeichenketten flexibler Linge beruht auf den Ausflihrun-
gen von Keith & Martin (1994). Das Verfahren der Einkapselung wurde ebenfalls von Koza
(1992) vorgestellt, wie auch die automatisch definierten Unterprogramme (Koza, 1994). Das Pro-

4.9 Historische Anmerkungen 181

blem der Introns wurde erstmals von Angeline (1994) erkannt und beschrieben. Unabhéngig
davon hat Tackett (1994) die Beobachtung gemacht, dass sich Individuen wihrend des Optimie-
rungsvorgangs immer mehr aufblihen. Von Tackett (1994) stammt ebenfalls der Lésungsansatz
der Brutrekombination. Als Beispiel fiir einen intelligenten Crossover-Operator kann die Arbeit
von Teller (1996) dienen. Andere Reprisentationen als die der Syntaxbdume sind beispielswei-
se Sequenzen von Maschineninstruktionen (z. B. bei Nordin & Banzhaf, 1995) oder Graphen
(z.B. bei Teller & Veloso, 1996). Grammatikevolution wurde erstmals von Ryan et al. (1998)
eingefiihrt.

Bei den lokalen Suchalgorithmen ldsst sich ein so simples Verfahren wie das Hillclimbing
(Algorithmus 4.25) historisch nur sehr schwer einordnen. Die erste dem Autor bekannte grof3
angelegte Untersuchung war die von Ackley (1987b). Von den anderen Verfahren wurde das
simulierte Abkiihlen (Algorithmus 4.26) von Kirkpatrick et al. (1983), Schwellwertakzeptanz
(Algorithmus 4.27) von Dueck & Scheuer (1990), der Sintflutalgorithmus (Algorithmus 4.28)
und das rekordorientierte Wandern (Algorithmus 4.29) von Dueck (1993) beschrieben.

Klassifizierende Systeme gehen auf die Arbeit von Holland (1976) zur Theorie der Adaptation
zuriick. Das erste programmierte (Michigan) Classifier System wurde von Holland & Reitman
(1978) prisentiert und die erste industrielle Anwendung stammt von Goldberg (1983). Die hier
vorgestellte Variante ZCS beruht im Wesentlichen auf der Arbeit von Wilson (1994). Die komple-
xere, moderne Variante XCS wurde ebenfalls von Wilson (1995) entwickelt. Die Pittsburgh-CS
hat Smith (1980) eingefiihrt. Mdgliche Anwendungen wie die hier angerissene Steuerung eines
mobilen Roboters konnen beispielsweise der Arbeit von Hurst et al. (2002) oder Studley (2006)
entnommen werden.

Die TABU-SUCHE (Algorithmus 4.30) wurde von Glover (1986, 1990) entwickelt. Das Beispiel
fiir die Graphenférbung stammt von Hertz & de Werra (1987).

Der Begriff der memetischen Algorithmen wurde von Moscato (1989) geprigt und hat sich zu-
néchst auf die Optimierung der Individuen durch lokale Suche oder Heuristiken bezogen, bevor
sie miteinander rekombiniert werden. In diesem strengen Sinn werden die memetischen Algo-
rithmen auch in diesem Kapitel beschrieben, wobei inzwischen zum Teil auch jegliche Inkorpo-
ration von Problemwissen in die Algorithmen als memetisch bezeichnet wird. Der prisentierte
Beispielalgorithmus MEMETISCHER-ALGORITHMUS (Algorithmus 4.31) stammt von Brown et al.
(1989).

Das prisentierte populationsbasierte inkrementelle Lernen (PBIL in Algorithmus 4.32) wurde
erstmals in der Arbeit von Baluja (1994) vorgestellt. Die Approximation einer Verteilung der gu-
ten Losungskandidaten im Suchraum wurde mafigeblich von Miihlenbein & Paaf3 (1996) weiter
entwickelt. Darauf aufbauend ist insbesondere die Arbeit von Pelikan et al. (1999) zu nennen,
der sog. Bayesian optimization algorithm (BOA).

In ihrem technischen Bericht haben Storn & Price (1995) erstmals die DIFFERENTIALEVOLU-
TION (Algorithmus 4.34) vorgestellt. Berichte tiber verschiedene erfolgreiche Anwendungen der
Technik folgten von Storn (1996, 1999) und Price (1996).

Die Grundidee von SCATTER-SEARCH (Algorithmus 4.35) wurde erstmals von Glover (1977)
fiir ganzzahlige lineare Optimierungsprobleme verdffentlicht. Scatter Search als generelles Mus-
ter zur Losung beliebiger Optimierungsprobleme hat Glover (1998) erst spéter gemeinsam mit
dem sog. path relinking als noch allgemeinerem Konzept vorgestellt. Eine aktuellere Ubersicht
einschliellich verschiedener Anwendungen stammt von Glover et al. (2000). Der hier dargestell-
te Artikel orientiert sich an der Arbeit fiir reellwertige Probleme von Herrera et al. (2006).

182 4 Evolutionire Standardalgorithmen

CULTURAL-ALGORITHM (Algorithmus 4.36) wurden von Reynolds (1994) eingefiihrt. Der hier
vorgestellte konkrete Algorithmus fiir reellwertige Suchrdume stammt von Chung & Reynolds
(1997). Ubersichten zu unterschiedlichen Anwendungen finden sich bei Reynolds (1999) und
Franklin & Bergerman (2000).

Die Optimierung durch Ameisenkolonien wurde von Dorigo et al. (1991, 1996) zunichst fiir
das Handlungsreisendenproblem (AMEISENKOLONIE-TSP in Algorithmus 4.38) entwickelt. Ein
Uberblick iiber weitere Anwendungen kann beispielsweise dem Artikel von Dorigo & Di Caro
(1999) entnommen werden. Eine Untersuchung der Parameter wurde von Gaertner & Clark
(2005) durchgefiihrt.

Der PARTIKELSCHWARM (Algorithmus 4.39) wurden von Kennedy & Eberhart (1995) einge-
fithrt. Eine Ubersicht stammt von Eberhart & Shi (1998). Konkrete Aussagen zu den giinstigen
Parameterbereichen findet man in den Arbeiten von Shi & Eberhart (1998, 1999) und Trelea
(2003).

5 Techniken fiir spezifische Problemanforderungen

Dieses Kapitel befasst sich mit Grundlagen und Methoden, um evolutiondire Algorithmen an
die Anforderungen besonderer Problemiklassen anzupassen. Dabei handelt es sich um zusdtzli-
che Randbedingungen, Mehrzieloptimierung, zeitabhdngige Bewertungsfunktionen und Proble-
me, bei denen nur ein angendherter Giitewert bestimmt werden kann.

Lernziele in diesem Kapitel

&> Die neuen zusitzlichen Anforderungen durch praxisrelevante Probleme werden erfasst
und kénnen in neuen Optimierungsproblemen erkannt werden.

2> Die vorgestellten Techniken werden als Erweiterung des Methodenrepertoires aufgefasst,
welches eigenstindig durch eigene Erfahrungen bewertet wird.

&> Die im vorigen Kapitel vorgestellten Standardverfahren kénnen durch die hier prasentier-
ten Techniken eigenstindig erweitert werden.

Gliederung
5.1 Optimieren mit Randbedingungen 183
5.2 Mehrzieloptimierung e e e 194
5.3 Zeitabhdngige Optimierungsprobleme 207
5.4 Approximative Bewertung 212
5.5 UbungsatfBaben ..ocoams s s 95 5 € 5 8 6 o CEEEAaE S B8 F 8 222
5.6 Historische Anmerkungen 223

5.1 Optimieren mit Randbedingungen

Es wird ein Uberblick iiber die unterschiedlichen Methoden fiir den Umgang mit Randbedin-
gungen gegeben. Dabei ist insbesondere die Behandlung innerhalb der Bewertungsfunktion von
Interesse.

Randbedingungen (engl. constraints) schrinken den Bereich der méglichen Losungen zusétzlich
zu eventuell vorgegebenen Bereichsgrenzen ein. Damit wird ein weiteres Kriterium neben der
Bewertungsfunktion F eingefiihrt, mit dem Losungskandidaten beurteilt werden.

184

5 Techniken fiir spezifische Problemanforderungen

Definition 5.1 (Randbedingung):

Fiir einen gegebenen Suchraum € ist eine Randbedingung eine Funktion
Rand : Q — {wabhr, falsch}.

Muss Rand zwingend erfiillt sein, spricht man von einer harten Randbedingung, ist
die Erfiillung nur erwiinscht von einer weichen Randbedingung. Bei harten Randbe-
dingungen Rand,, ..., Rand; werden die Individuen auch in giiltige bzw. ungiiltige
Individuen gemil der Erfiillung aller Randbedingungen eingeteilt.

Beispiel 5.1:

us

Im Weiteren werden in diesem Abschnitt unterschiedliche Verfahren vorgestellt, wie die evo-
lutionédren Algorithmen Randbedingungen beriicksichtigen kénnen. Die Wahl einer geeigneten

An einem Beispiel zur Erstellung von Maschinenbelegungsplinen lassen sich beide
Arten von Randbedingungen leicht illustrieren. Verschiedene Auftrdge miissen auf
mehreren Maschinen in einer jeweils vorgegebenen Reihenfolge bearbeitet werden.
Gesucht ist nun eine zeitliche Zuordnung der Aufirdge zu den Maschinen. Die Be-
wertungsfunktion ldsst sich nun {iber den Durchsatz oder die bendétigte Zeit fiir die
Abarbeitung aller Auftrige definieren. Triviale harte Randbedingungen sind beispiels-
weise die Tatsache, dass die Reihenfolge der Maschinen fiir jeden Auftrag eingehalten
wird oder dass zu jedem Zeitpunkt jede Maschine nur einen Auftrag bearbeitet. Eben-
so konnen Riistzeiten an den Maschinen als harte Randbedingungen definiert werden,
bei denen zwischen zwei Auftrigen mit unterschiedlichen technischen Anforderungen
ein »Umbau« notwendig ist. Als weiche Randbedingungen werden hiufig Obergren-
zen fiir Leerlaufzeiten einer Maschine zwischen zwei Auftrigen angegeben. Wiirden
diese als harte Randbedingung formuliert werden, wire das Problem evtl. nicht 16sbar.

Um bei einem ganz alltiglichen Beispiel zu bleiben: Wenn ich mit dem Auto von Leipzig nach Stuttgart
fahre, um dort einen Vortrag zu halten, ist die Ankunft vor Beginn des Vortrags eine harte Randbedingung,
eine Hochstgeschwindigkeit von 130 km/h eine weiche Randbedingung.

Technik hangt von den folgenden Charakteristika der Randbedingungen ab.

(a) Graduierbarkeit: Ist es ein boolesches Kriterium oder ldsst sich der Grad der Verletzung

(b)
(c)

(d)
(e)

Zwei Extremsituationen werden wir dabei im Weiteren nicht mehr betrachten. Das sind einer-
seits die Erflillungsprobleme, die durch eine hohe Schwierigkeit gekennzeichnet sind und deren
Randbedingungen in der Regel nicht graduierbar und reparierbar geschweige denn ihre Grenze

der Randbedingung feststellen?

Bewertbarkeit: Lisst sich die Bewertungsfunktion fiir ein ungiiltiges Individuum berech-

nen?

Schwierigkeit: Wie schwierig ist es {iberhaupt, ein giiltiges Individuum zu finden, d. h. wie

ist das quantitative Verhiltnis von giiltigen zu ungiiltigen Individuen?
Reparierbarkeit: Lisst sich ein ungiiltiges Individuum in ein giiltiges iiberfithren?

Bekanntheit: Ist die Grenze zwischen giiltigen und ungiiltigen Individuen (in) vorab be-

kannt?

5.1 Optimieren mit Randbedingungen 185

bekannt ist. Falls {iberhaupt eine regulire Bewertungsfunktion vorgegeben wird, ist diese hiufig
nachrangig, da das wesentliche Problem die Erfiillung der Randbedingungen ist. Andererseits
sind viele weiche Randbedingungen durch eine hohe Graduierbarkeit und geringe Schwierigkeit
gekennzeichnet. Diese Probleme bediirfen meist nicht der hier besprochenen Techniken, sondern
sind besser durch eine Erweiterung der Bewertungsfunktion(en) zu behandeln.

Die entsprechenden Techniken zur Erweiterung der Bewertungsfunktion werden dann im nachfolgenden
Abschnitt 5.2 zur Mehrzieloptimierung vorgestellt.

5.1.1 Ubersicht iiber die Methoden

Es gibt drei unterschiedliche Herangehensweisen, die Erfiillung zusitzlicher Randbedingungen
Zu erzwingen:

* Restriktive Methoden: Die Optimierung erfolgt auf dem unbeschriinkten Suchraum €, aber
zusitzliche Mallnahmen verhindern das Vorkommen von ungiiltigen Individuen.

« Tolerante Methoden: Ungiiltige Individuen werden in der Population zugelassen, sind aller-
dings in der simulierten Evolution benachteiligt.

* Dekoder-Ansatz: Die Optimierung erfolgt auf einem neuen Genotyp, aus dem immer giil-
tige Losungskandidaten erzeugt werden kénnen und der dennoch mit Standardverfahren
bearbeitet werden kann.

Die ersten beiden Herangehensweisen arbeiten auf dem urspriinglichen Suchraum und set-
zen an unterschiedlichen Stellen des evolutiondren Algorithmus an, was in Bild 5.1 skizziert ist.

Initialisierun
¢ w nur giiltige
ja//"cill—\ Individuen

Bewertung Terminierungs- Pasiings:
bedingung selektion
legale Eltern-
i . Umwelt- selektion
egales ;
Ersetzen geletion Rekombination

Krippentod

Straffunktionen

Mutation

legale / \
Dekodierung Anpassung

. ; der Mutation
genetisches Reparieren

Bild 5.1 Ebenen zum Umgang mit Randbedingungen

186 5 Techniken fiir spezifische Problemanforderungen

Dabei werden ungiiltige Individuen vollstindig bei den folgenden Techniken vermieden:

« der Krippentod,
+ das genetische Reparieren und

+ die Methode der giiltigen Individuen.

Lediglich in irgendeiner Form benachteiligt werden ungiiltige Individuen bei den folgenden An-
sdtzen:

* legale Elternselektion,

* legales Ersetzen,

+ Anpassung der Mutation,
* legale Dekodierung und

» Straffunktionen.

Die Techniken der drei Grundansitze werden im Weiteren in den Abschnitten 5.1.2 bis 5.1.4
kurz besprochen. Den Straffunktionen ist als populdrste Technik ein eigener Abschnitt (5.1.5)
gewidmet.

5.1.2 Dekoder-Ansatz

Zunichst behandeln wir knapp den dritten Ansatz, von dem wir zwei unterschiedliche Vertreter
vorstellen. Lassen sich die Randbedingungen im Raum Q durch eine (oder mehrere) mathemati-
sche Funktion(en) beschreiben, kann dies in der Dekodierung beriicksichtigt werden. Hierfiir ist
die Eigenschaft der Bekanntheit eine zwingende Grundvoraussetzung.

Beispiel 5.2:
Wird beispielsweise in einem Suchraum Q = [0, 6] x [0, 4] der grau gefirbte Bereich
in Bild 5.2 durch eine harte Randbedingung ausgeschlossen, dann kann durch die fol-
gende Dekodiervorschrift

falls y < 1
dec(r.y) = {) B 7
ec(x,y) { (%.(y_l)_}_%}-x’y) falls y > 1

aus einem unbeschrinkten genotypischen Suchraum ¢ = Q ausschlielich gltige In-
dividuen erzeugt werden. Diese Abbildung der beiden Bereiche ist ebenfalls durch
vier beispielhafte Individuen in Bild 5.2 verdeutlicht.

Dieselbe Technik kann eingesetzt werden, wenn ein Konstruktionsalgorithmus existiert, mit dem
aus einer Menge von Parametern ein vollstindiger Losungskandidat erzeugt wird. Dann kann
man den Genotyp als die Menge aller moglichen Parameterkombinationen ¢ # Q definieren. Der
Optimierungsalgorithmus verdndert die Parameter im Genotyp eines Losungskandidaten und die
Dekodierungsfunktion nutzt den Konstruktionsalgorithmus, um als Phénotyp ein Element aus €
Zu erzeugen.

5.1 Optimieren mit Randbedingungen 187

ungiiltige Region

4 4 /

A B B
3k [] [] 3 []
A C—>,

C D Dekodieren
I+ e ° I

1 | 1 1 1 1 1 1 1]
1 2 3 4 5 6 1 2 3 4 5 6
Bild 5.2 Behandlung von Randbedingungen mit einem Dekoder-Ansatz.
e Vgt TOTTh Y
2 1 v 2 ' 2
® femmt 1 e ® |
. ! S ‘; - —] y
o g 1 .
~» r =% e ~
1
‘o L e ; o |
] ' e ma-
g) i

Bild 5.3 Beispiel fiir das Wachsen von Rédumen aus ihren Mittelpunkten. Auf die Attribute, die das Wachs-
tum beeinflussen wird hier verzichtet.

Beispiel 5.3:

Betrachten wir das Problem der Erstellung eines Grundrisses fiir eine Wohnung gemél
spezieller Anforderungen an die Rdume und ihre Anordnung. Dann besteht eine L&-
sung des Problems aus verschiedenen Mauern und Tiiren, die als harte Randbedingung
die gewiinschten Riume definieren sollen. Falls nun in einem evolutiondren Algorith-
mus im Genotyp jeder Raum durch seine Koordinaten kodiert wire, entstiinden fast
ausschlieBlich ungiiltige Lésungskandidaten, da sich die Rdume iiberlappen wiirden.
Ahnliche Probleme ergeben sich, wenn die Koordinaten der Wiinde kodiert werden,
da dann nur selten richtige Ridume entstehen. Stattdessen kann als Reprisentation bei-
spielsweise ein Tupel gewihlt werden in dem jeder einzelne Raum durch einen »Mit-
telpunkt« kodiert wird und unterschiedliche Attribute geben an, in welche Richtungen
Tiiren vorgesehen werden sollen. Eine solche Liste kann sehr einfach durch Standard-
operatoren bearbeitet werden. Dann kénnen aus diesen Raummittelpunkten bei der
Anwendung einer geeigneten Dekodierungsvorschrift die Rdume langsam wachsen,
bis sie an andere Raumgrenzen stoflen. Attribute zu den Rdumen kénnen auch die Art
und Weise, wie jeder Raum wiéchst, beeinflussen. So entstehen aus jedem Individuum
immer vollstéindig baubare Rdume, die dann beziiglich ihrer ZweckmiBigkeit fiir die
gestellte Aufgabe und ihrer Kosten durch die Giitefunktion bewertet werden. Entwiirfe
mit toten Rdumen ohne Tiiren erhalten eine schlechte Giite und verschwinden schnell
aufgrund des Selektionsdrucks. Bild 5.3 zeigt ein Beispiel fiir die Erzeugung eines
Grundrisses.

188 5 Techniken fiir spezifische Problemanforderungen

@_—,-— Optimum

| ungiiltiger
Bereich

Bild 5.4 Schematische Darstellung eines Suchraums mit zwei zusammenhéngenden Gebieten giiltiger L&-
sungskandidaten.

Der Einsatz eines Konstruktionsalgorithmus birgt jedoch auch Nachteile: Meist werden nicht
mehr alle méglichen giiltigen Losungskandidaten erzeugt, sondern der Konstruktionsalgorithmus
beschriinkt sich auf eine Teilmenge des giiltigen Suchraums. Dadurch kénnen Schwierigkeiten
fiir den evolutioniren Algorithmus entstehen, wenn z.B. das gesuchte Optimum in dieser Teil-
menge nicht mehr enthalten ist oder gute Regionen nicht mehr iiber die verwendeten Operatoren
erreichbar sind. Ist dagegen das gesuchte Optimum in der Teilmenge enthalten und wirken sich
kleine Anderungen am Genotyp als kleine Anderungen im Phénotyp aus — d. h. gilt eine gewis-
se Stetigkeitseigenschaft hinsichtlich der Dekodierungsfunktion —, liefert dieser Ansatz oft sehr
gute Ergebnisse.

513 Restriktive Methoden

Der Krippentod ist der einfachste Umgang mit ungiiltigen Individuen: Sie werden sofort nach ih-
rer Erzeugung wieder geloscht. Dies hat den Vorteil, dass alle Individuen giiltig sind, und liefert
auch oft erstaunlich gute Ergebnisse bei Problemen mit einfach strukturierten Randbedingungen.
Ist hingegen der Raum der giiltigen Losungskandidaten sehr zerkliiftet, ist die beliebige Erreich-
barkeit aller Losungskandidaten fraglich. Bild 5.4 zeigt einen beispielhaften Lésungsraum, bei
dem das Loschen von ungiiltigen Individuen eventuell nie das Uberspringen der Kluft zwischen
den beiden giiltigen Teilgebieten ermdglicht. Zusitzlich konnte der Verbleib des Individuums B
eventuell schneller zum Optimum fiihren als der Weg von Individuum 4. Daher kann es durchaus
sinnvoll sein, ungiiltige Individuen als mogliche Eltern zuzulassen, da sonst vielleicht bestimm-
te giiltige Losungskandidaten nie gefunden werden. Grundsiitzlich sollten die Randbedingungen
beim Einsatz des Krippentods eine geringe Schwierigkeit aufweisen. Andernfalls sind sehr viele
Iterationen notwendig, bis die in einer Generation benétigte Anzahl an Kindindividuen erzeugt
werden, und der Algorithmus wird entsprechend langsam.

Gilt zusétzlich die Reparierbarkeit der Randbedingungen, kénnen ungiiltige Individuen beim
genetischen Reparieren mittels eines Reparaturalgorithmus solange modifiziert werden, bis sie
einen giiltigen Losungskandidaten darstellen. Verglichen mit dem Verfahren des Krippentods
miissen nicht mehr so viele Individuen erzeugt werden, da jedes neue Individuum auch in einem
giiltigen Individuum resultiert. Aber beziiglich der Diskussion um die unzusammenhéingende Be-
reiche giiltiger Losungskandidaten im Suchraum hat dieser Ansatz keinen entscheidenden Vorteil
gebracht. Zudem kann der Entwurf eines geeigneten Reparaturalgorithmus bei komplexen Pro-
blemen sehr schwierig sein.

5.1 Optimieren mit Randbedingungen 189

Die gesonderte Behandlung temporir auftretender ungiiltiger Individuen entfillt bei der Me-
thode der giiltigen Individuen, da sie gar nicht erst erzeugt werden. Dies wird durch zwei MaB-
nahmen gewihrleistet:

* Die Anfangspopulation wird ausschlieBlich mit giiltigen Individuen initialisiert und

* die Mutations- und Rekombinationsoperatoren werden so entworfen, dass aus jedem giilti-
gen Individuum auch wieder ein giiltiger Losungskandidat erzeugt wird.

Dieser Ansatz stellt sehr groie Anforderungen an den Entwickler von evolutiondren Algorith-
men, da die Operatoren sehr gut aufeinander abgestimmt werden miissen, um eine sinnvolle
Suchdynamik zu erzeugen.

Beispiel 5.4:
Bei den Maschinenbelegungspldnen kénnen beispielsweise durch einen einfachen Kon-
struktionsalgorithmus bei der Initialisierung giiltige Individuen erstellt werden. Die
Mutation kann dann die Startzeit eines Auftrags auf einer Maschine geméf der vorhan-
denen Liicken verschieben bzw. einzelne Auftrige in ihrer Reihenfolge vertauschen,
solange die weiteren Randbedingungen dadurch nicht verletzt werden.

Hiufig sind solche Operatoren fuir die Mutation einfach zu definieren, wihrend die Rekombina-
tion kritischer ist. Ein anderes Problem ist die Frage, ob die Operationen alle (giiltigen) Bereiche
des Losungsraums erreichen konnen. Falls dies gewiihrleistet wird, liefert auch dieser Ansatz
meist sehr gute Resultate.

von Lisungskandidaten durch den Konstruktionsalgorithmus in der Dekodierung und die Verdnderungen der
Mutation am Genotyp bestimmt wird, ldsst sich die Nachbarschaft bei der Methode der giiltigen Individuen
direkt in der Mutation auf dem Phinotyp definieren. Bei beiden Ansétzen kinnen ungiiltigen Individuen gar

% Diese Technik ist die konsequente Fortfiihrung der Dekodierungstechnik. Wihrend dort die Nachbarschaft

nicht entstehen.

5.14 Tolerante Methoden

Von den Verfahren, die ungiiltige Individuen in der Population zulassen, ist die legale Eltern-
selektion noch ein Kompromiss, der ungiiltige Individuen stark benachteiligt: Bei der Selektion
werden zunéchst nur Individuen als Eltern beriicksichtigt, die alle Randbedingungen erfiillen.
Falls es keine solchen Individuen gibt, werden bevorzugt Individuen mit wenigen Verletzungen
der Randbedingungen ausgewihlt. Damit ist die Methode geeignet, falls die Randbedingungen
eine hohe Schwierigkeit besitzen, wie es etwa bei Erfiillungsproblemen der Fall ist. Hilfreich
kann die Graduierbarkeit der Randbedingungen bei der Auswahl von ungiiltigen Individuen sein.
Bei Populationen, die nur sehr wenige giiltige Individuen aufweisen, konzentriert sich die legale
Elternselektion jedoch auf diese wenigen Individuen, was hinsichtlich der Suchdynamik kritisch
sein kann. Dann entspricht das Verfahren dem Krippentod mit einer stark reduzierten Populati-
onsgrofie.

Etwas weniger restriktiv ist das legale Ersetzen fiir Basisalgorithmen mit einem iiberlappen-
den Populationskonzept, d. h. neu erzeugte Individuen werden wieder in die Elternpopulation
eingefiigt. Die Auswahl, welches Individuum dafiir aus der Population geldscht wird, beriick-
sichtigt die Verletzung der Randbedingungen. So werden etwa zunichst diejenigen Individuen

190 5 Techniken fiir spezifische Problemanforderungen

Anzahl giiltige | Anzahl ungiiltige Individuen
Individuen =0 >0
=0 | unbekannt ungiiltig Tabelle 5.1
>0 giiltig halbgiiltig Einteilung der Parzellen bei der Anpassung der Mu-

tation

ersetzt, welche die meisten Randbedingungen verletzen. Falls alle Individuen bereits im giiltigen
Bereich sind, kann zufillig oder giiteorientiert ersetzt werden. Es sollte allerdings immer noch
eine zusitzliche Quelle des Selektionsdrucks geben (z. B. die Elternselektion), in der lediglich
die Gite als Kriterium benutzt wird. Dies ist ein recht universelles Verfahren, das insbesondere
dann eingesetzt werden kann, wenn wenig vorab iiber die Charakteristika der Randbedingungen
bekannt ist.

Wihrend bei die Methode der giiltigen Individuen die Operatoren so entworfen werden, dass
keine ungiiltigen Individuen entstehen konnen, bedient sich die Anpassung der Mutation der be-
kannten Adaptationsmechanismen, um wihrend der Optimierung die Arbeitsweise der Mutation
so zu veréndern, dass vornehmlich giltige Individuen entstehen. Hierfiir ist die Mutation der kul-
turellen Algorithmen geeignet, da sie auf global im Uberzeugungsraum gesammelten Informatio-
nen beruht. Vom urspriinglichen Ansatz (S. 170) wird das normative Wissen iibernommen, das
bereits fiir jede Suchraumdimension eine obere und eine untere Grenze speichert. Darliberhinaus
werden diese Intervalle jeweils in s gleiche Abschnitte eingeteilt, sodass insgesamt s” Parzellen
entstehen. Fiir jede Parzelle wird Wissen tber die Giiltigkeit des Suchraums in diesem Bereich
gesammelt. Ein neu erzeugtes Individuum wird in der zugehorigen Parzelle als giiltiges oder un-
giiltiges Individuum verbucht. Aufgrund der Anzahl der so registrierten Individuen wird der Typ
der Parzelle gemiB der Tabelle 5.1 bestimmt. Die Mutation ist nun identisch zu CA-MUTATION
(Algorithmus 4.37) auflerhalb der durch das normative Wissen beschriebenen Bereiche. Inner-
halb des normativen Bereichs wird die Mutationsschrittweite in unbekannten, giiltigen und halb-
giiltigen Parzellen entsprechend klein gew#hlt, um moglichst innerhalb der Parzelle zu bleiben.
Und in ungiiltigen Zellen wird zur niachstgelegenen halbgiiltigen Zelle gesprungen (falls existent
— andernfalls wird die nichstgelegene giiltige Parzelle oder gar ein beliebiger Punkt innerhalb
des Bereichs des normativen Wissens gewéhlt). Die Anpassung des normativen Wissens findet
in grofleren zeitlichen Abstinden statt und es werden nur giiltige Individuen zur Modifikation der
Bereichsgrenzen herangezogen. Der Ansatz ist geeignet flir Probleme mit geringer Schwierigkeit
— insbesondere wird dabei keine Bekanntheit oder Bewertbarkeit vorausgesetzt, was den Ansatz
fiir Probleme mit unwégbarer Form der giiltigen Bereiche interessant macht.

Die tolerante Variante des genetischen Reparierens ist die legale Dekodierung. Auch hier
kommt ein Reparaturalgorithmus zum Finsatz, der aus einem ungiiltigen Losungskandidaten
einen giiltigen erzeugt — nur dass dieser Algorithmus lediglich im Rahmen der Bewertung der
Individuen zum Einsatz kommt und nicht den Genotyp verdndert. D. h. es wird nicht der tatséch-
liche Genotyp bewertet, sondern ein giiltiger Lésungskandidat, der sich daraus erzeugen ldsst.
Im Gegensatz zum genetische Reparieren sollte ein solcher Dekoder immer deterministisch sein,
damit gut bewertete Individuen auch nach geringfiigigen Modifikationen in den nichsten Genera-
tionen auf dieselbe Art und Weise wieder repariert werden und zu denselben oder dhnlichen guten
Losungskandidaten fithren. Bei vielen Problemen kann es dabei von Vorteil sein, dass ungiiltige
Individuen dennoch in der Population bestehen bleiben und so unabhéngig von den gtiltigen

5.1 Optimieren mit Randbedingungen 191

Bereichen den Suchraum erforschen kénnen. Auch hier ist die Reparierbarkeit eine zwingende
Voraussetzung fiir die Anwendung dieser Technik.

5.1.5 Straffunktionen

Der populérste Ansatz fir die Behandlung von Randbedingungen belésst ebenfalls ungiiltige
Losungskandidaten in der Population und berticksichtigt die Verletzung der Randbedingungen
ausschlieBlich innerhalb der Bewertungsfunktion. Meist findet dies in der Form von zusitzlichen
Straftermen oder Straffunktionen statt.

Wir betrachten drei verschiedene Szenarios, die in der weiteren Diskussion des Kapitels wie-
der aufgegriffen werden.

+ Es ist nicht moglich bei verletzten Randbedingungen, die Bewertungsfunktion zu berech-
nen. Ein Beispiel hierfiir ist die Evaluation eines Individuums an einem technischen Sys-
tem oder einer Simulationssoftware, die aufgrund der fehlerhaften Eingabeinformationen
nicht durchfthrbar ist. Deswegen erhalten die ungiiltigen Individuen einen Giitewert, der
unabhéngig von der normalen Bewertung ist.

~ [flx) fallsx giiltig
S = { f'(x) falls x ungiiltig

Man spricht dann auch von einer Straffunktion f'.

+ Die Bewertungsfunktion f wird nicht durch verletzte Randbedingungen beeinflusst. Ein
Beispiel hierfiir wire die Einstellung eines Produktionsverfahrens, bei dem grundsitzlich
bezliglich der Kosten minimiert wird, aber eine Mindestqualitét als Randbedingung nicht
unterschritten werden darf — die Kosten lassen sich in der Regel unabhingig von der Pro-
duktqualitit berechnen. Damit 14sst sich als Alternative zu obigem Ansatz die Bewertungs-
funktion normal berechnen und durch einen zusitzlichen Strafterm Straf : Q — R (mit
0 > Straf (x) fur alle ungiiltigen x € Q) modifizieren.

7o) — { f(x) falls x giiltig
f(x)+Straf(x) falls x ungiiltig

+ Die Bewertungsfunktion f ldsst sich zwar berechnen, ist aber u.U. in ihrem Ergebnis durch
die verletzten Randbedingungen beeinflusst. Ein Beispiel wére etwa die Bewertung von
Losungskandidaten durch eine Computer-Simulation, die zwar ein Ergebnis liefert, aber so
nicht auf die Realitét iibertragen werden kann. Hier sind beide Ansitze einfach méoglich,
allerdings ist bei der Verwendung von Straftermen abzuwigen, inwieweit die resultierende
Kostenfunktion durch falsche Giitewerte verfilscht wird.

Unabhingig davon, welcher der beiden Ansétze gewihlt wird, stellt sich die Frage, wie sich die
Bewertungsfunktionen zueinander verhalten sollen. In jedem Fall muss

Vungiiltiges x € Q: f(x) < max _f(y)
giiltiges y€Q

192 5 Techniken fiir spezifische Problemanforderungen

Giitelandschaft ohne Strafterm
mit grolem Strafterm

mit moderatem Strafierm

Bild 5.5 Fiir die markierte ungiiltige Region wird die Verdnderung der Giitelandschaft durch verschiedene
Strafterme demonstriert.

gelten, da sonst das globale Maximum der modifizierten Giitelandschaft ein ungiiltiges Individu-
um ist. Manchmal findet man auch die Empfehlung

V ungiiltiges x € Q V giiltiges y € Q: f(») = f(x),
die alle ungiiltigen Individuen schlechter als die giiltigen bewertet.

Beispiel 5.5:

Werden Strafterme benutzt, kénnen die beiden Formeln leicht an der Giitelandschaft
in Bild 5.5 illustriert werden. Ohne Strafterm hat die Giitelandschaft links oben ein
ungiiltiges Maximum, das ohne weitere Mafinahmen vermutlich auch Ergebnis einer
Optimierung wire. Die erste Bedingung verlangt, dass der Strafterm so gewihlt wird,
dass das Maximum der veridnderten Giitelandschaft auf ein giiltiges Individuum fillt.
Dies ist der Fall in beiden anderen Darstellungen. Allerdings nur der rechte Teil des
Bildes erfiillt die zweite Bedingung. Soll nun ein von rechts kommendes Individuum
mit einem phénotypisch lokalen Mutationsoperator den Weg zum Optimum finden,
kann im rechten Fall der tiefe Graben als Barriere fungieren, wihrend mit einem mo-
deraten Strafterm die ungiiltige Region besser in die Giitelandschaft eingebettet ist. Es
kann jedoch auch der Fall sein, dass im Diagramm links unten, das ungiiltige Maxi-
mum immernoch zu gut bewertet wird, sodass die ungiiltige Region nicht verlassen
wird.

Allgemeine Kriterien fiir den genauen Entwurf von Straffunktionen koénnen daher kaum aufge-
stellt werden und miissen immer auf das betrachtete Problem abgestimmt werden. Falls ein Straf-
term Straf : Q — R benutzt wird und die Randbedingungen graduierbar sind, kann die Héhe des
Strafterms auch daran orientiert werden, wie viele Randbedingungen bzw. wie stark sie verletzt
werden. Falls die Anzahl der verletzten Randbedingungen nur ein unzureichendes Kriterium ist —
etwa beim Vorhandensein von nur wenigen giiltigen Losungen und wenigen Randbedingungen —,

5.1 Optimieren mit Randbedingungen 193

kann das Ausmal der Verletzung u.U. durch die erwarteten Kosten geschitzt werden, die fiir die
Reparatur des Individuums benétigt wiirden. Dies ist nur méglich, wenn die Reparierbarkeit gilt.

Beispiel 5.6:
Die Schwierigkeit, ungiiltige Individuen sinnvoll zu bewerten, soll kurz an der Pfad-
planung fiir einen mobilen Roboter demonstriert werden. Es werden unterschiedliche
Pfade zwischen zwei Punkten erzeugt. Die Kollision mit Hindernissen ist zu vermei-
den. Werden nun zum Beispiel die beiden in Bild 5.6 dargestellten Pfade erzeugt und
bewertet, so verletzen sie beide die Randbedingung der Kollisionsfreiheit. Der direkte
Pfad wird dabei besser bewertet, wenn

+ die Anzahl der Kollisionen,
* die Liinge des Pfads in den Hindernissen oder
* der prozentuale Anteil des Pfads in Hindernissen

als Kriterium herangezogen wird. Da jedoch der durchgezogene Pfad sehr viel leichter
in einen giiltigen Pfad verwandelt werden kann, sollte ein Weg gefunden werden, wie
dieser im Rahmen der Bewertung auch tatséichlich besser bewertet wird.

Start Ziel

N Z

Bild 5.6 Ein moglichst kurzer Pfad zwischen dem Start und dem Zielpunkt ist gesucht, wobei die Randbe-
dingung der Kollisionsfreiheit eingehalten werden soll.

Bisher sind wir implizit davon ausgegangen, dass jedes Individuum beziiglich seiner Randbedin-
gungen immer gleich bewertet wird. Da am Ende die Giiltigkeit der Individuen wichtiger als am
Anfang ist, liegt es nahe, den Strafterm wihrend der Optimierung zu variieren oder sich adaptiv
anpassen zu lassen. Die einfachere Moglichkeit stellt zundchst die Verdnderung der Straffunk-
tion in Abhingigkeit vom Generationenzihler dar: Wir erhthen beispielsweise den Strafterm
quadratisch proportional zur aktuellen Generation

Straf (x) = * Straf x),
(srxGen)

maxGen

wobei ¢ die aktuelle Generation und maxGen die maximale Generation ist. Alternativ kann der
Strafterm genau dann vergréfert werden, wenn sehr viele Indivdiuen ungiiltig sind, um die Suche

194 5 Techniken fiir spezifische Problemanforderungen

mehr zu fokussieren; bei vielen giiltigen Individuen wird er verringert, um eine Erforschung der
Randgebiete zu ermoglichen:

w(.‘() =n'". Straf (x), wobei

E]rT : n“}, falls beste Individuen der letzten & Generationen giiltig
=14 op-n', falls beste Individuen der letzten k Generationen ungiiltig
n', sonst

T,I{H'l}

mit o, 00 > 1.
Abschlieflend sei noch kurz angemerkt, dass im Falle mehrerer Randbedingungen Rand,, ...,
Rand), diese liblicherweise durch das gewichtete Aufsummieren der Strafterme

Straf (x) =Y 1;-Strafi(x)
i=1,...k

erfasst werden.

Im nachfolgenden Abschnitt zur Mehrzieloptimierung wird ausfithrlich dargelegt, warum das gewichtete
Aufsummieren nicht immer eine gute Idee ist.

5.2 Mehrzieloptimierung

Es werden Verfahren vorgestellt, die eine gleichzeitige Optimierung von mehreren Zielgrdfien
ermoglichen.

5.21 Optimalititskriterium bei mehreren Zielgrofien

Bei nahezu allen Problemen in der Industrie oder der Wirtschaft ist mehr als eine Eigenschaft
einer moglichen Lésung relevant fiir die Optimierung. So reicht es beispielsweise nicht, die Kos-
ten bei der Herstellung eines Produkts zu minimieren, gleichzeitig muss auch das Risiko fiir die
Firma (z.B. in Form von Garantieleistungen bei mangelhafter Qualitit) minimal gehalten werden.
Wie man sich leicht klar machen kann, widersprechen sich diese Ziele meist.

Beispiel 5.7:
Dies kennt man natiirlich auch aus dem téglichen Leben. Wenn ich mir ein Auto zule-
ge, mochte ich moglichst das qualitativ beste Produkt zum niedrigsten Preis. Dass der
attraktive Sportwagen allerdings nicht zum Preis eines Kleinwagens zu haben ist, ist
jedem klar — und so macht man sich beim Kauf eines Fahrzeugs auf die Suche nach
dem bestmdglichen Kompromiss. Wenn ich nun beispielhaft zwei Kriterien meinem
Kauf zugrundelegen méchte, dann soll sowohl der Preis als auch die Pannenstatistik
als Indikator fiir gute Qualitidt minimal sein. Beides habe ich fiir Mittelklassefahrzeu-
ge von elf Herstellern in Bild 5.7 eingetragen (Stand: 2006). Wie man sofort erkennt,
befinde sich mein Wunschfahrzeug in der linken unteren Ecke. Es kommen also ei-
gentlich die vier heller markierten Fahrzeuge in Betracht — je nachdem welche der

5.2 Mehrzieloptimierung 195

3IL00F e
@
29,000
fe) o
e
5 27,000
-9
@
o]
25,000
%
(]
23.000 F ®
L 1 L L 1 OI L 1 1 L
2 3 4 5 6 7 8 9 1

Pannen auf 1,000 Fahrzeuge

Bild 5.7 Bewertung der Mittelklassewagen von 11 PKW-Herstellern nach Preis (fiir &hnliche Leistungs-
merkmale ohne Beriicksichtigung der Ausstattungsqualitiit) und Pannenstatistik.

Preis/Risiko-Kombinationen mir am meisten zusagt. Alle anderen Fahrzeuge wiirde
ich nicht beriicksichtigen, da ich ein Fahrzeug gleicher Qualitit zum besseren Preis
oder ein gleich teures Fahrzeug mit besserer Qualitit bekommen kann,

Meine Fahrt von Leipzig nach Stuttgart aus dem vorigen Abschnitt lisst sich auch leicht als Mehrzielpro-
blem auffassen, indem ich mein Ziel schnell erreichen aber gleichzeitig moglichst viele Kilometer Panora-
mastrecke erleben mochte,

Die zusitzlichen Anforderungen, die sich durch mehrere einander widersprechende Ziele bei
der Optimierung ergeben, kénnen verdeutlicht werden, indem wir vom eigentlichen Suchraum
abstrahieren und stattdessen den Raum betrachten, der durch die unterschiedlichen Bewertungs-
funktionen fiir die Individuen aufgespannt wird. Die evolutioniren Operatoren arbeiten nach wie
vor auf dem Genotyp und es gelten die Aussagen zur Suchdynamik aus Kapitel 3. Allerdings
wird die Giite der Individuen mehrdimensional bestimmt.

Beispiel 5.8:

In Bild 5.8 sind im oberen Teil zwei gleichzeitig zu minimierende, eindimensionale
Zielfunktionen fi und f> iiber dem Suchraum Q = [0, 1] dargestellt. Der untere Teil
des Bildes zeigt, welche Giitewertkombinationen auftreten. Dabei fillt auf, dass in
diesem Fall nur eine Spur von auftretenden Kombinationen existiert. Bei mehrdimen-
sionalen Suchrdumen sind die Kombinationen meist wesentlich flachiger verteilt, aber
es werden bei weitem nicht alle Kombinationen abgedeckt. Da ein gemeinsames Mi-
nimum der Funktionen f} und f> gesucht wird, ist das Optimum méglichst weit in der
linken, unteren Ecke des unteren Teils von Bild 5.8 zu suchen.

Wir halten also fest:

« Es kann grofle Teile im Raum der Bewertungsfunktionswerte geben, die nicht durch Lo-
sungskandidaten abgedeckt sind.

196 5 Techniken fiir spezifische Problemanforderungen

0,7

Funktionswerte

0,4

36— T o2 T 04 0.6 0.8

Suchraum

1,05

095

OO0O0000ORK

N RAREENG
0,85 s #"0t-!tlt.l’ltlittitl-ﬂ-

F(x)

0,75

0,65

0,55 1 1 I
0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Bild 5.8 Der obere Teil der Abbildung zeigt den Verlauf der beiden eindimensionalen, zu minimierenden
Bewertungsfunktionen iiber dem Suchraum. Im unteren Teil sind die auftretenden Wertekombi-
nationen in den Raum der Bewertungsfunktionswerte eingetragen. Die optimalen, nicht weiter
verbesserbaren Individuen sind in beiden Bildern markiert.

+ Liegen Individuen im Raum der Bewertungsfunktionswerte nahe beieinander, so kénnen
sie im Suchraum weit voneinander entfernt sein.

* Die moglichen Kompromisslésungen nahe dem idealen »Optimumu« liegen meist sehr weit
im Suchraum auseinander.

* Die Wege im Suchraum verlaufen hinsichtlich der Funktionswerte nicht zwingend auf das
ideale »Optimum« zu.

Die Anforderungen an einen Optimierungsalgorithmus sind also noch komplexer als bei einer
einzelnen Zielfunktion.

Eine automatisierte Suche nach einer optimalen Gesamtldsung ist schwierig, da verschiedene
Losungskandidaten nicht mehr vergleichbar sind. Als Kompromiss kommen diejenigen Punkte

5.2 Mehrzieloptimierung 197

| nicht-dominierte Individuen

Kosten

Pareto-Front

b

b
Verbesserung ; l \
-~
-~

-

- -
- -

Risiko

Bild 5.9 Beispielhafter Verlauf einer Pareto-Front im Raum der Bewertungsfunktionswerte. Die Menge der
nicht-dominierten Losungkandidaten in der Population ndhern die Pareto-Front an.

im Suchraum in Frage, bei denen alle anderen Elemente des Suchraums nur dann beziiglich
einer Bewerungsfunktion besser sind, wenn dies eine Verschlechterung beziiglich wenigstens
einer anderen Bewertungsfunktion bedeutet. Die Menge dieser Losungskandidaten wird auch
Pareto-Front genannt. Die Elemente der Pareto-Front liegen an der Grenze zu den giinstigen
Kombinationen von Zielgroflen, die nicht auftreten; alle Losungskandidaten bleiben aus Sicht
des theoretischen Optimums hinter oder auf dieser Front (vgl. Bild 5.9). Die nichste Definition
fasst die Pareto-Front ebenso wie die Individuen, die diese Pareto-Front anniihern, formal:

Definition 5.2 (Pareto-Dominanz und Pareto-Front):
Fiir die Bewertungsfunktionen £; (1 < i < k) gilt, dass das Individuum B das Individu-
um A4 dominiert, wenn die folgende Bedingung gilt:

B>amA:=Y1<i<k: F(B.G) = F(A.G) A1 <i<k: F(B.G) > Fi(4.G)

Fiir eine Menge von Losungskandidaten P ist dann die Menge der nicht-dominierten
Losungskandidaten wie folgt definiert:

nichtdom(P) := {4 € P|¥BE€P: ~(B>dwmA) }
Die Pareto-Front als Menge der gleichwertigen globalen Optima ist die Menge
nichtdom(£2).
Die formale Definition von B >, 4 bedeutet, dass B wenigstens beziiglich einer Bewertungsfunktion
besser als 4 und sonst nicht schlechter ist. Diese Argumentation haben wir bereits beim Beispiel 5.7 implizit

benutzt.

Bild 5.10 veranschaulicht diese Definition. Damit der Losungskandidat im linken Teil der Ab-
bildung nicht-dominiert ist, darf kein anderer Losungskandidat in dem grau schraffierten Teil

198 5 Techniken fiir spezifische Problemanforderungen

Kosten
Kosten

Verbesserung ; l
18

'
|
]
!
'
L
i
ey

Risiko Risiko

Bild 5.10 Links wird der Bereich der Werte gezeigt, die ein Individuum annehmen kann, um das abge-
bildete Individuum zu dominieren — dabei ist die Position des abgebildeten Individuums ausge-
nommen. Rechts wird fiir das Beispiel aus Bild 5.9 die Dominanz bzw. Nicht-Dominanz aller
Individuen gezeigt.

liegen. Im rechten Teil der Abbildung wird demonstriert, welche Individuen aus Bild 5.9 nicht-
dominiert sind bzw. durch welches Individuum die anderen dominiert werden.

Beispiel 5.9:
Im bereits vorgestellten Beispiel in Bild 5.8 ist die Pareto-Front explizit sowohl im
Raum der Bewertungsfunktionswerte als auch im Suchraum markiert. Dabei wird ins-
besondere deutlich, dass sogar stetige Zielfunktionen zu einer stark unterbrochenen
Pareto-Front fithren kénnen.

5.2.2 Uberblick

Eine Optimierung soll ein Element aus der Pareto-Front liefern, das einen »verniinftigen« Kom-
promiss darstellt — d. h. alle ZielgroBen sollen gleichberechtigt (wenn auch evtl. mit unterschied-
lichen Gewichtungen) beriicksichtigt werden.

Intuitive Ansitze wie die, zundchst nach einem Kriterium und dann nach dem néchsten Kri-
terium zu optimieren, werden den Wiinschen einer gleichberechtigten Optimierung der unter-
schiedlichen Zielfunktionen meist nicht gerecht. Sucht man in der zweiten Phase nur lokal in der
direkten Nachbarschaft des Optimums hinsichtlich der ersten Bewertungsfunktion, wird sehr oft
kein richtiger Kompromiss gefunden, sondern die erste Bewertungsfunktion diktiert das Ergeb-
nis. Falls man andererseits erlaubt, sich sehr weit vom gefundenen Optimum weg zu bewegen,
verliert man die Kontrolle dariiber, ob tatsdchlich eine Losung aus oder nahe der Pareto-Front
gewihlt wird: Ein in allen Belangen suboptimaler Wert kann resultieren.

Auch die Idee, untergeordnete ZielgréBen als Randbedingungen zu formulieren, ist kritisch.
Es muss vorab fiir jede solche Zielgréfie ein Schwellwert angegeben werden, ab welchem Losun-
gen als akzeptabel angesehen werden. Die Optimierung ist damit weder gleichberechtigt noch
zielt sie auf einen Kompromiss ab.

5.2 Mehrzieloptimierung 199

Uberlegen Sie anhand Bild 5.8, wie sich eine Optimierung zunichst nach f5> und dann nach £ auswirkt.
Simulieren Sie auch, wie sich der Ersatz von f> durch eine Randbedingung auswirkt.

Es gibt im Wesentlichen drei verschiedene konzeptionelle Ansiitze, um eine gerechte Optimie-
rung der unterschiedlichen Zielgroflen zu gewihrleisten.

* In der ersten Klasse von Verfahren, muss zunichst eine klare Abwigung stattfinden, wel-
che ZielgroBe wie stark zu beriicksichtigen ist und ein Optimierungsverfahren hat dann
diesen Zielangaben so gut als moéglich zu folgen. Diese Ansitze werden im nachfolgenden
Abschnitt vorgestellt.

= Ein alternativer Ansatz besteht darin, einen evolutiondren Algorithmus grundséatzlich so zu
entwerfen, dass er ein moglichst breites Spektrum an Pareto-optimalen Individuen liefert.
Dann kann anschlieffiend vom Anwender eine genauere Analyse folgen und ein geeigneter
Losungskandidat ausgewihlt werden. Dies ist das Thema von Abschnitt 5.2.4.

* Und schlieilich der dritte Ansatz besteht aus einer iterativen Interaktion zwischen dem
evolutiondren Algorithmus und dem Anwender, in dem vom Algorithmus vorldufige Lo-
sungen prisentiert werden und der Anwender noch wihrend des Optimierungsvorgangs
Entscheidungen trifft, welche Losungskandidaten seinen Vorstellungen am néchsten kom-
men, sodass die Optimierung in dieser Richtung vertieft werden kann. Dieser Ansatz wird
in diesem Buch nicht weiter betrachtet.

5.2.3 Modifikation der Bewertungsfunktion

In diesem Absatz werden die Verfahren betrachtet, bei denen zunichst eine Entscheidung be-
ziiglich der Wichtigkeit der Kriterien gefillt wird und dann mit dieser Gewichtung eine Suche
stattfindet. Dazu gehort die Klasse der aggregierenden Verfahren, die die verschiedenen Zielfunk-
tionen auf eine einzelne Funktion projizieren. Der hdufigste Ansatz fiir eine derartige Projektion
besteht aus der Bildung einer Linearkombination

k
)= mfilx)

i=1

fiir x € Q mit den Gewichtungsfaktoren 17;. Wird 7; > 0 fiir zu minimierende f;(x) bzw. n; < 0 fiir
zu maximierende f;(x) gewihlt, muss f(x) minimiert werden. Bild 5.11 zeigt an zwei Beispie-
len, wie durch die Gewichtung unterschiedliche Kombinationen der Funktionswerte auf einen
identischen Giitewert abbildet werden. Dabei wird deutlich, dass gerade die Punkte im oberen
konkaven Teil der Pareto-Front bei einer erfolgreichen Optimierung nicht gefunden werden, da
immer andere Wertekombination als besser eingestuft werden. Unabhingig davon, welche Ge-
wichtung gewihlt wird, erhalten wir entweder Losungen, die zu teuer sind oder ein zu hohes
Risiko besitzen. Dies ist natiirlich eine kritische Eigenschaft, insbesondere wenn wir den Verlauf
der Pareto-Front nicht vorab kennen. Als Alternative kann bei zu maximierenden Bewertungs-
funktionen auch mit einem Produkt statt einer Summe gearbeitet werden, wodurch Ausreifler
starker geahndet werden. Einen dhnlichen Ansatz stellt die Vorgabe eines Zielvektors im Raum
der ZielgroBen dar, bei dem die Entfernung zum Zielvektor y* € RF

10 = \IAG) =22+ + i)~

200 5 Techniken fiir spezifische Problemanforderungen

Kosten
Kosten

Risiko Risiko

Bild 5.11 Fiir zwei unterschiedliche Gewichtungen veranschaulichen die dickeren Linien, diejenigen Line-
arkombinationen der beiden Funktionswerte, die auf den selben Giitewerte abgebildet werden.
In Richtung des Pfeils werden die Giitewerte besser. Die linke Gewichtung betont stirker die
Risikominimierung, wihrend die rechte die Kosten stérker einflieffen l4sst.

Kosten

Risiko

Bild 5.12 Projektion auf identische Giitewerte bei der Betrachtung der Distanz zu einem Zielvektor.

minimiert wird. Dadurch ergibt sich die Projektion identisch bewerteter Individuen in Bild 5.12.
Auch hier kénnen dhnliche Probleme wie bei der Linearkombination auftreten.

Eine weitere Moglichkeit, mehrere Bewertungsfunktionen auf eine Dimension zu reduzieren
stellt die Minimax-Methode dar. Wenn wir zunéchst annehmen, dass alle Bewertungsfunktionen
zu minimieren sind, kann einfach auf den maximalen Funktionswert projiziert werden. Bei der
Minimierung dieses maximalen Wertes werden alle Funktionswerte gleichermalfien klein gehal-
ten. Durch die Vorgabe von Zielwerten y* € R¥ und Gewichtungen 1; > 0 (1 < i < k) konnen
Bewertungsfunktionen mit stark unterschiedlichen Wertebereichen vergleichbar gemacht werden.

5.2 Mehrzieloptimierung 201

Kosten
o

Bild 5.13 D

Projektion auf identische Giitewerte bei der Mini- -
max-Methode mit y* = (0, 0). Risiko

Dadurch ist auch wieder die Betrachtung von zu maximierenden Funktionen maglich. Bild 5.13
zeigt, welche Punkte die resultierende Projektion

SO) = max 1;-|fi(x) ~y;

auf identische Giitewerte abbildet.

5.2.4 Berechnung der Pareto-Front

Die bisher vorgestellten Verfahren haben durchweg den Nachteil, dass ohne genaue Kenntnis
der Pareto-Front eine Einstellung der Methode nicht méglich ist. Damit sind jederzeit die bereits
beschriebenen unerwiinschten Effekte moglich. Daher ist in diesem Abschnitt das Ziel, ohne
jegliche vorab bestimmte Gewichtung die Population méoglichst breit entlang der Pareto-Front zu
verteilen, so dass am Ende viele verschiedene, gleichwertige Losungen vorliegen. Dafiir muss
allerdings mit speziellen Techniken die Konvergenz auf nur einer Lésung oder einem engen
Bereich verhindert werden.

Ein sehr einfacher Ansatz besteht darin, iterativ mehrere Optimierungen mit unterschiedlichen
Gewichtungen durchzufiihren, also z. B. bei zwei Zielfunktionen

Jx)=n-fAix)+(1-n) f2(x)

mit verschiedenen Werten 1 € [0, 1], um so eine ganze Reihe von Elementen aus der Pareto-
Front zu erhalten. Dieser Ansatz beruht allerdings implizit auf der Annahme einer konvexen Pa-
reto-Front, da — wie bereits oben beschrieben — Individuen in konkaven Teilbereichen der Pareto-
Front benachteiligt werden.

Damit ein mehrzieliger Optimierungsalgorithmus unabhéngig von der Form der Pareto-Front
ist, diirfen die unterschiedlichen Funktionswerte nicht zueinander in Bezug gesetzt werden. Dies
macht das VEGA-Verfahren, bei dem jede ZielgréBe isoliert in die Selektion eingeht. Bei & Be-
wertungsfunktionen wird im Rahmen einer Elternselektion jeweils der k-te Teil der Eltern durch
die Selektion beziiglich der k-ten Funktion bestimmt. Dies ist einfach zu implementieren und
der Selektionsdruck mit unterschiedlichen Kriterien soll zu einer guten Mittelung der Kriterien

202 5 Techniken fiir spezifische Problemanforderungen

Kosten

Bild 5.14

Wird bei der Mehrzieloptimierung jedes Individu-

um immer nur beziiglich eines Kriteriums selek-

_ tiert, tendiert das Verfahren oft zu Extremwerten,
- aber eine Mittelung entlang der Pareto-Front fin-

Risiko det nur bedingt statt.

wird
bevorzugt

fiihren. Allerdings hat man sich hierbei vor Augen zu fiihren, dass jedes Individuum in der Popu-
lation aufgrund einer Uberlegenheit in einem Attribut iibernommen wurde. Dies fiihrt nun hiiufig
dazu, dass vorrangig die Extremwerte in der Population vertreten sind (vgl. Bild 5.14) und die
erwiinschte Mittelung entlang der Pareto-Front ausbleibt.

Damit tatsdchlich jedes Individuum aus der Pareto-Front gleich behandelt wird, ist es not-
wendig, die eingangs vorgestellte Definition der Pareto-Dominanz direkt fiir die Bewertung der
Individuen zu benutzen. Hierfiir kdnnen sehr unterschiedliche Techniken angewandt werden. Ei-
ne Mdglichkeit besteht darin, allen nicht-dominierten Individuen die Giite 1 zuzuweisen und
sie fiir die weitere Berechnung der Giitewerte temporir zu entfernen. Von den verbleibenden,
dann nicht mehr dominierten Individuen bekommen alle die Giite 2 zugewiesen. Dieses Verfah-
ren wird iterativ fortgesetzt. Formal ist die Giiteberechnung wie folgt mittels der Partitionierung
Part; (1 <i<n)von P definiert.

Partj :={A€P|VYBEP: =(B>4mA)}
Part; = {AeP\ \J Part;|VBeP\ |J Part;: ~(B >,;,,,,,A)}

1<j<i 1<j<i

1 falls das zugehorige 4 € Part,
F(A.G) =« : :
n falls das zugehorige A € Part,

Die neue Giite ist zu minimieren. Durch dieses Verfahren werden die Individuen wie die Schich-
ten einer Zwiebel gruppiert — wie im Beispiel in Bild 5.15 dargestellt. Dies funktioniert vollig
unabhiéingig von der Form der Pareto-Front.

Allerdings bleibt dabei noch ein Problem unberiicksichtigt: Wenn sehr viele gleich gute In-
dividuen in einer Population enthalten sind, tendieren evolutionire Algorithmen zum Gendrift,
d. h. einzelne Individuen setzen sich durch Zufallseffekte stirker durch und andere gehen verlo-
ren. Gendrift wurde bereits im Kontext der Biologie in Kapitel 1 diskutiert. Man benétigt also
einen weiteren Mechanismus, der fiir eine méglichst gleichmifBige Verteilung der Individuen ent-
lang der Pareto-Front sorgt. Dies wird durch nischenbildende Techniken erreicht. Ein Beispiel
fiir eine solche Technik ist das Teilen der Giite in Nischen. Individuen, deren Kombination von

5.2 Mehrzieloptimierung 203

5
g
Bild 5.15
Durch Partitionieren werden die Individuen in
Schichten angeordnet. Alle Individuen einer -
Schicht erhalten prinzipiell dieselbe Giite. Risiko

Funktionswerten gehduft auftreten, sollen eine geringere Giite erhalten. Dadurch werden bei der
Selektion isoliert auftretende Kombinationen gleich wahrscheinlich ausgewihlt wie ein belie-
biger Vertreter der gehiuft vorkommenden Kombination. Konkret wird eine monoton fallende
Funktion 7eile : R — [0, 1] mit Teile(0) = 1 und lim,._... Teile(d) = 0 benutzt, die auf den Ab-
stand von Individuen angewandt wird. Damit ldsst sich die Anzahl der Individuen in der Nische
eines Individuums A durch my p = Y g p Teile(d(A, B)) annihern, wobei d die Entfernung im
Raum der Funktionswerte ist. Fiir ein isoliertes A ist m4 p nur wenig groBer als 1, k sehr eng
beieinanderliegende Individuen erhalten mindestens einen Wert um k. Diese Mafzahl kann nun

benutzt werden, um die Giite des Individuums entsprechend zu modifizieren als 4.F = £4G)

myp
Die Konvergenz auf einem Punkt des Suchraums wird dadurch kiinstlich verhindert.

Statt entlang der Pareto-Front breit zu streuen, kann man das Giiteteilen auch benutzen, um bei Problemen
mit nur einer Bewertungsfunktion aber mit sehr vielen gleichwertigen Optima die Konvergenz zu verhindern.
Dann muss allerdings der Abstand im genotypischen Raum % benutzt werden.

Da die Berechnung der Partitionen im gerade beschriebenen Algorithmus sehr zeitaufwindig ist,
sind Ansitze willkommen, die diesen Aufwand reduzieren. Ein Beispiel ist die NSGA-SELEKTION
in Algorithmus 5.1, die ebenfalls die Pareto-Optimalitit und eine Einnischungstechnik verwen-
det. Dabei wird im Rahmen einer Turnierselektion ein Individuum genau dann ausgewihlt, wenn
es auf einer Stichprobe nicht von einem anderen Individuum dominiert wird. Falls beide Indivi-
duen dominiert oder nicht dominiert werden, wird dasjenige Individuum akzeptiert, welches we-
niger Individuen in seiner Nische hat. Dabei wird im Gegensatz zu obigem giiteteilenden Ansatz
nicht die zunehmende Entfernung mit fallender Gewichtung benutzt, sondern die Nische ist strikt
durch einen Radius € definiert (vgl. Bild 5.16).

Trotz der diversititserhaltenden Mafinahmen haben diese Algorithmen teilweise Schwierig-
keiten, die Pareto-Front gleichmillig abzudecken. Dies liegt einerseits an Einstellungsschwierig-
keiten (z. B. das € beim zweiten Verfahren), andererseits aber auch daran, dass die Population fiir
zwei unterschiedliche Zwecke benutzt wird:

+ als Speicher fiir die nicht-dominierten Individuen zur Naherung der Pareto-Front und

« als lebendige Population, die insbesondere auch hinsichtlich der Erforschung des Such-
raums tatig ist.

204 5 Techniken fiir spezifische Problemanforderungen

Algorithmus 5.1

NSGA-SELEKTION(Giitewerte (4" Fj)) <i<1<j<k)

1 I ()
2 forie—1l,..«; s
3 do"indexA — U({l..... r})
4 indexB — U({1,.... r}
5 Q — Teilmenge von {1,....r} der GroBe Ny, (Stichprobengrifel])
6 dominatedd «— 3 index € Q . index >y, indexA
7 dominatedB « H index € O : index > 4, indexB
8 if dominateddA N —dominatedB
9 then [/ «— Jo (indexB)
10 else " if ~dominatedA / dominatedB
11 then [/ — [o (indexA)
12 else " nisched — #{1 < index <r | cﬂA“”""""].A”""":"’”} < & (NischengroBe]) }
13 nischeB — #{1 < index < r | d(A\dex) glindexB)y < ¢}
14 if nisched > nischeB
15 then [7 — [o {indexB)
16 i L celse [/« Jo{indexA)
17 return/
5
S o

Nischen

Bild 5.16
Verdeutlichung des Nischenbegriffs in Algorith-
Risiko mus 5.1

Konsequenterweise lassen sich die Individuenmengen trennen, was in modernen mehrzieligen
Optimierungsalgorithmen in der Regel geschieht. Das Archiv fiir die nicht-dominierten Individu-
en hat meist eine vorgegebene endliche Grofe. Dies ist aus Effizienzgriinden notwendig, da bei
jedem Individuum als Kandidaten fiir das Archiv gepriift werden muss,

= ob es nicht bereits von einem Individuum im Archiv dominiert wird und — falls dies nicht
der Fall ist —

» welche Individuen von dem neuen Element im Archiv dominiert werden und damit zu ent-
fernen sind.

Es gibt viele Vorschlige, wie dies erreicht werden kann. Zwei davon werden zum Abschluss
besprochen.

5.2 Mehrzieloptimierung 205

Algorithmus 5.2

SPEA2(Zielfunktionen f1,..., fin)
1 10

2 P(t) < erzeuge Population mit ¢t (Populationsgréfe) Individuen
3 R(t) — 0 (Archiv der GréBe i, (ArchivgroBe))
4 while Terminierungsbedingung nicht erfiillt
5 do " bewerte P(¢) durch f1,.... fm
6 for each 4 € P(t)UR(¢)
7 do C AnzDom(A4) « #{B € P(t)UR(t) | A > 4o B}
8 for each 4 € P(¢t) UR(r)
9 do " dlist — Distanz von 4 und seinem /it + t,-nichsten Individuum in P(¢) UR(r)
10 LAF — (Spep(iur() mit o ga An2Dom(B)) + T
11 R(t+1) — {4 € P(t)UR(r) | A ist nicht-dominiert}
12 while #R(t + 1) > i,
13 do Centferne dasjenige Individuum aus R(z + 1) mit dem kiirzesten/zweitkiirzesten Abstand
14 iEHR(E 1) < g
15 then [fiille R(7 + 1) mit den giitebesten dominierten Individuen aus P(z) UR(?)
16 if Terminierungsbedingung nicht erfiillt
17 then " Selektion aus P(7) mittels TURNIER-SELEKTION
18 P(t+ 1) — wende Rekombination und Mutation an
19 u «— withle Zufallszahl gemiB U(]0.1))

20 L Lt—t+1
21 return nicht-dominierte Individuen aus R(f + 1)

SPEA2 (Algorithmus 5.2) enthilt einen normalen evolutiondren Algorithmus mit TURNIER-
SELEKTION zur Erzeugung neuer Individuen. Lediglich der Glitewert setzt sich &hnlich zum vor-
letzten Beispielalgorithmus aus einer Dominanzinformation (hier: wieviele Individuen werden
von den dieses Individuum dominierenden Individuen dominiert) und einer Néherung dafiir, wie-
viele Individuen sich in der Nédhe aufhalten (hier: als Kehrwert der Distanz zum /gt + t,-néchs-
ten Individuum). Der als Summe entstehende Giitewert muss minimiert werden. Interessant ist,
dass in die Giiteberechnung auch die Individuen aus dem Archiv mit eingehen. Das Archiv ent-
hélt grundsétzlich die nicht-dominierten Individuen. Sind dies zu wenig, werden die restlichen
Plitze durch die giitebesten dominierten Individuen belegt. Gibt es zu viele nicht-dominierte
Individuen, wird iterativ dasjenige Individuum entfernt, das die kiirzeste (bzw. bei Gleichheit:
zweitklirzeste etc.) Entfernung zu einem anderen Individuum hat.

Im zweiten Beispielalgorithmus erméglicht die Abtrennung des Archivs von der Population
nun auch die Evolution mit einer kleinen Menge an aktiven Individuen. Ein Beispiel hierfiir ist
PAES (Algorithmus 5.3), bei welchem mit einer (1 + 1)-Evolutionsstrategie gearbeitet wird. Ein
neu erzeugtes Individuum wird genau dann als neues Elternindividuum {ibernommen, wenn es
nicht durch ein Element aus dem Archiv dominiert wird und eine der folgenden Bedingungen
erfullt:

* Es dominiert mindestens ein Individuum im Archiv oder

+ das Individuum dominiert kein anderes Individuum — ist aber in einem weniger frequentier-
ten Bereich der Funktionswertkombinationen.

206 5 Techniken fiir spezifische Problemanforderungen

Algorithmus 5.3

PAES(Zielfunktionen f1,..., fi)
1 10

2 A « erzeuge ein zufilliges Individuum
3 bewerte 4 durch f1,..., fim
4 R(t) < (4) als Gridfile organisiert
5 while Terminierungsbedingung nicht erfiillt
6 do" B — Mutation auf 4
7 bewerte B durch fi, ..., fi
8 ifYCeR(t)ol{d): =(C>g4om B)
9 then"if 3CeR(t): B>ypm C
10 then " R(¢) < entferne alle durch B Individuen aus R(¢)
11 R(t) < fuge B in R(r) ein
12 LA—B
13 else "if #R(¢) = py(ArchivgroBe)
14 then " g* — Grid-Zelle mit den meisten Eintragen
15 g « Grid-Zelle fur B
16 if Eintréige in g < Eintréige in g*
17 then ™ R(¢) «— entferne einen Eintrag aus g*
18 L L R(t) « fiige B in R(¢) ein
19 else CR(¢) < fiige Bin R() ein
20 g4 «— Grid-Zelle fiir 4
21 gp « Grid-Zelle fiir B
22 if Eintrédge in gp < Eintrége in g4
23 L Lthen [4 — B

24 Lte—t+1
25 return nicht-dominierte Individuen aus R(z + 1)

Dabei ergibt sich die Anzahl der Individuen in einem Bereich (oder einer Nische) aus der beson-
deren Organisation des Archivs als Gridfile (eine Hashtabelle, die das Eintragen von Objekten
mit mehrdimensionalen Schliisseln und die Suche nach jedem der Kriterien erlaubt). Damit ldsst
sich die Anzahl der Individuen in der Nische eines anderen Individuums durch die Anzahl der In-
dividuen in der betreffenden Zelle des Gridfiles anndhern. Auch beim Aktualisieren des Archivs
werden nur nicht-dominierte Individuen berticksichtigt. Dominiert das neue Individuum archi-
vierte Individuen, so werden diese entfernt und das neue Individuum aufgenommen. Ansonsten
wird eines der Individuen aus der vollsten Zelle des Gridfiles entfernt, um Platz fiir das neue
Individuum im Archiv zu machen.

Zusammenfassend gilt auch flir die modernen Verfahren, dass bei Problemen mit mehr als drei
Bewertungsfunktionen eine komplette Anndherung der Pareto-Front nur schwer zu realisieren
ist. Um die verfiigbare Rechenzeit in die Detektion von sinnvollen und gewiinschten Losungs-
vorschldgen zu investieren, bietet sich daher die iterative Herangehensweise an, bei der wihrend
der Optimierung vom Anwender Entscheidungen gefillt werden, die die Richtung der Suche
beeinflussen. Beispielsweise kann hierbei eine vorldufige Menge nicht-dominierter Lésungskan-
didaten berechnet werden, die dem Anwender als Entscheidungsgrundlage dient, um die Suche
auf einen begrenzten Teilbereich der moglichen Kombinationen der Funktionswerte zu konzen-
trieren.

5.3 Zeitabhiingige Optimierungsprobleme 207

5.3 Zeitabhingige Optimierungsprobleme

Falls das zu optimierende Problem nicht konstant ist, sondern sich wéihrend der Optimierung
verédndern kann, werden andere Anforderungen an den Optimierungsalgorithmus gestellt, die
gemeinsam mit Losungsansditzen in diesem Abschnitt diskutiert werden.

In der Praxis gibt es immer wieder Optimierungsprobleme, deren Bewertung von Losungskandi-
daten sich fortlaufend wandelt. Ein Beispiel ist eine Produktionsanlage, in der interne Prozesse
und Abnutzung das Produktionsverhalten verindern. Die Optimierung soll dann bestéindig den
optimalen Betriebspunkt ermitteln, mit dem die Anlage eingestellt wird. Ein anderes Beispiel ist
eine Erweiterung der Erstellung von Maschinenbelegungsplinen aus Beispiel 5.1: Sind die ein-
zelnen Aufirdge mit einem Lieferzeitpunkt ausgestattet, muss jeder Auftrag vor diesem Zeitpunkt
gefertigt sein. Das Problem kann nun so formuliert werden, dass die Planung ein fortlaufender
Optimierungsprozess ist, bei dem fertige Auftrige herausfallen und stindig neue Auftrige konti-
nuierlich eingetaktet werden.

Definition 5.3 (Zeitabhiingiges Optimierungsproblem):
Ein zeitabhdingiges Optimierungsproblem besteht aus einer Folge Opr(’) (t € N) von
statischen Optimierungsproblemen Opr'") = (Q, f), »-). Gesucht ist nun fiir jedes 7 €
N eine moglichst gute Approximation der globalen Optima 2" (*).

Inwieweit jeder Zeitpunkt 7 gleich wichtig in einer zeitabhiingigen Optimierung ist, hiingt von der jewei-

% ligen Anwendung ab. Angenommen wir steuern die Zusammensetzung unseres Aktiendepots. Dann kann
einerseits die Zielsetzung sicherheitsbetont sein, d. h. ich mdchte zu jedem Zeitpunkt in der Lage sein, mit
mdglichst maximalem Gewinn zu verkaufen — jedes ¢ hat dasselbe Gewicht. Andererseits kann ich evtl. nur
zum jeweiligen Monatsende einen Verkauf in Erwiigung ziechen, dann ist in der restlichen Zeit eine grifere
Schwankung méglich — Hauptsache zum richtigen Zeitpunkt stimmt der mogliche Ertrag.

Beispiel 5.10:
Zur besseren Veranschaulichung gehen wir im Weiteren von einer Giitelandschaft tiber
einer zweidimensionalen reellwertigen Fliche als Suchraum aus. Bild 5.17 zeigt zwei
beispielhafte zeitabhiingige Verdnderungen der Giitelandschaft.

Wie man aus diesem Beispiel leicht erkennt, gehen wir von einer gewissen Kontinuitét aus, da
chaotisches Verhalten nicht mehr durch einen Optimierungsalgorithmus handhabbar ist. Kon-
tinuitiit kann dabei durch ausschliefilich kleine Veriéinderungen gegeben sein oder durch lange
statische Phasen vor einer gréfleren Verdnderung. Ferner erkennt man in Bild 5.17 verschiedene
neue Anforderungen durch zeitabhingige Probleme.

+ Sich bewegende lokale Optima miissen verfolgt werden wie im linken Teil von Bild 5.17.
* Neu entstehende lokale Optima miissen entdeckt werden wie im rechten Teil von Bild 5.17.

* Bei zu starken Verdnderungen ist streng genommen eine komplett neue Optimierung not-
wendig.

Oft gentigen die in Kapitel 4 vorgestellten Standardalgorithmen diesen neuen Anforderungen
nicht, da ihre Konvergenz der benétigten stindigen Anpassungstfiahigkeit abtréglich ist.

208 5 Techniken fiir spezifische Problemanforderungen

Bild 5.17 Die linke Spalte zeigt den zeitlichen Verlauf einer Giitelandschaft mit nur einem lokalen Opti-
mum. In der rechten Spalte verringert sich zusitzlich die Hohe dieses lokalen Optimums, wih-
rend ein zweites lokales sich bewegendes Optimum gréBer und schlieBlich zum globalen Opti-
mum wird.

Die Autofahrt von Leipzig nach Stuttgart wird zum zeitabhiéingigen Optimierungsproblem, wenn ich wiih-
rend der Fahrt alle aktuellen Staumeldungen einflieBen lassen und so bestindig meine Wegeplanung anpas-

se.

Bevor wir einzelne Techniken vorstellen, mit denen die Anpassungsfihigkeit verbessert wer-
den kann, wird eine genauere Kategorisierung der zeitabhingigen Optimierungsprobleme (ein-
geschriinkt auf reellwertige Bewertungsfunktionen) vorgenommen. Hierfiir unterscheiden wir
zwei verschiedene Verdnderungen, die eine Giitelandschaft erfahren kann: Die reine Verschie-
bung eines lokalen Optimums (wie im linken Teil von Bild 5.17) und die Anderung der Giite an
einem Punkt (im rechten Teil von Bild 5.17 kombiniert mit einer Verschiebung). Hinsichtlich der
Verschiebung konnen die folgenden Fille unterschieden werden:

* keine Verinderung,

* eine langsam wandernde Bewegung,

+ eine drehende Bewegung,

« eine schnell wandernde Bewegung und
* eine abrupte, grofe Verdnderung.

Hinsichtlich der Verinderung der Giite konnen die folgenden Fille identifiziert werden:

* keine Verinderung oder
* meist in kleinen Schritten VergréBerung oder Verkleinerung.

Naturgemif sind noch weitere Fille mdglich, die hier jedoch nicht betrachtet werden, da sie nur
schwerlich mit evolutionéren Algorithmen zu lésen sind. Die im Weiteren priisentierten Techni-
ken werden diesen Kategorien zugeordnet. Eine Ubersicht ist in Bild 5.18 dargestellt.

5.3 Zeitabhingige Optimierungsprobleme 209

Verschiebung
keine | wandernd | rotierend : schnell wand. | abrupt
! - e ,. Ve ™
! (diversititserhohend) !
:(lokale Variation):
keine ' : ' :
,(beschrinkte Paarung), .
gb 1 T 1 1
g ' implizites ' '
= ! Merken ! !
S o ______l___________ e o _____ 'l Neustart
8 I~ I 1 I s
g expl. Merken :(Nischenbildung)' '
2 impl. Merken ! " ! !
= vergroBernd/ . B (beschrinkte Paarung) !
© verkleinernd div. erhdhend :] : :
Nischenbildung ! ! ! :
beschr. Paarung |, | | !
1 1 1 1\ J

Bild 5.18 Zuordnung der Charakteristika zeitabhéngiger Probleme zu den unterschiedlichen Spezialtechni-
ken (auf Basis der Erfolgsmeldungen aus der wissenschaftlichen Literatur).

Bei sehr abrupten Anderungen im Wechsel mit hinreichend langen, stabilen Phasen ist der
Neustart eine akzeptable Technik. Sobald andere Charakteristika greifen, konnen die folgenden
Methoden allerdings wesentlich besser sein.

Bei kontinuierlichen oder sich wiederholenden Anderungen kann die Konvergenz des Algo-
rithmus durch erhohte Diversitit vermieden werden. Dies soll die Reaktivitdt der Population
erhalten — ist also besonders bei Problemen mit neu entstehenden globalen Optima interessant.
Es kann allerdings auch die Verfolgung eines sich bewegenden Optimums verbessern. Diese
diversititserhaltenden Mafinahmen lassen sich in zwei Varianten unterscheiden: die diversititser-
hohende Technik, die neve Individuen einfiigt, und die Verfahren, die im Rahmen der Selektion
der Konvergenz gegenwirken — dazu gehoren Techniken zur Nischenbildung und die beschrinkte
Paarung.

Zur diversitdtserhéhenden Technik zéhlen die zufélligen Einwanderer, die in jeder Generation
einen bestimmten Prozentsatz der Individuen durch neue zufillig erzeugte Individuen ersetzt. In
der Literatur finden sich dabei ein Richtwert von 10-30% fiir den Grad der Ersetzung. Allerdings
ist dieses Verfahren oft nur sehr schwierig auszubalancieren: Werden zu viele Individuen zufillig
gesetzt, konnen sie eine erfolgreiche Optimierung manchmal ganz verhindern. Auch kann man
beobachten, dass die zufilligen Individuen sich meist nur sehr schwer in der Population etablie-
ren kdnnen. Bei einem starken Selektionsdruck beruht das Auffinden von neu entstandenen guten
Nischen im Suchraum also eher auf einer reinen Zufallssuche. Eine Variante ist die Hypermuta-
tion, deren biologisches Vorbild Zellen sind, die auf umweltbedingten Stress durch eine erhshte
Mutationsrate reagieren. Dies wird nahezu identisch auf die evolutionaren Algorithmen iibertra-
gen: Wenn eine Verdnderung in der Umwelt beobachtet wird, z. B. indem die durchschnittliche
Giite in der Population abfillt, wird kurzzeitig die Mutationsrate drastisch erhoht. Dieser Ansatz
hat jedoch einen entscheidenden Nachteil: Falls die Population vornehmlich in einem Optimum
konvergiert ist, findet nur dann eine Reaktion statt, wenn die Giite dieses Optimums abfillt. Die
Hypermutation reagiert nicht, wenn in einem anderen Bereich des Suchraums ein neues globa-

210 5 Techniken fiir spezifische Problemanforderungen

les Optimum entsteht, welches das bisherige globale Optimum zum lokalen werden ldsst. Daher
sind solche reaktiven Verfahren nur eingeschriankt bei Dynamik mit sich verindernder Struktur
des Suchraums anwendbar.

Die Einnischungstechniken wurden bereits bei der Mehrzieloptimierung in Abschnitt 5.2 auf
Seite 203 vorgestellt. Wihrend allerdings dort die Vielfalt beziiglich des Raums der Giitewerte
gesucht war, geht hier der Abstand im genotypischen oder phénotypischen Suchraum als Nach-
barschaftsbegriff in die Berechnung ein. So sollen sich die Individuen gleichméfiger verteilen.
Verwandt damit ist auch der thermodynamische genetische Algorithmus, der in der Selektion di-
rekt eine der Diversititsformeln (siehe Seite 62) benutzt, um Individuen in der Umweltselektion
zu wihlen. Konkret wird fur die Minimierung von F ein genetischer Algorithmus so abgeéndert,
dass fitnessproportionale Selektion, Mutation und Rekombination doppelt so viel Individuen (al-
so 2 - () als bendtigt erzeugen. In der Umweltselektion wird ¢ mal dasjenige Individuum A4
ausgewihlt, fiir das die damit entstehende zwischenzeitliche Population P’ < P' o (A4} den Wert
F(P') = F(P) — n - Divers(P') minimiert. Der Parameter 1 gibt an, wie stark die Diversitéit be-
riicksichtigt werden soll, und als Diversitdtsmal wird die Shannon-Entropie benutzt. Mit allen
im Abschnitt zu Mehrzieloptimierung diskutierten Nachteilen der aggregierenden Verfahren wer-
den beide Ziele, die Verbesserung der Giite und der Erhalt der Vielfalt, verfolgt. Bemerkenswert
ist dennoch, dass ilber eine quantifizierbare Formel die Diversitét direkt beriicksichtigt werden
kann und nicht {iber indirekte MaBnahmen beeinflusst wird.

Die Techniken der beschrdinkten Paarung versuchen ebenfalls, unterschiedliche Indivdiuen in
verschiedenen Teilen der Gesamtpopulation zu etablieren — allerdings bei weitem nicht so ge-
zielt wie die diversititserh6henden Mafinahmen. Durch spezielle Markierungen an Individuen
oder auch eine entfernungsbasierte Zuordnung werden Teilpopulationen gebildet, in denen die
Rekombination erlaubt ist. Durch die Einschrinkung der Rekombination sollen die Kindindividu-
en stirker in der Gegend ihrer Eltern bleiben — ebenfall mit dem Ziel, Konvergenz zu vermeiden.
Parallelisierte evolutionire Algorithmen beinhalten ebenfalls hiufig eine beschridnkte Paarung
(siehe S. 217).

Werden nur sich bewegende Optima verfolgt, ohne dass durch Giiteverschiebungen neue glo-
bale Optima entstehen kénnen, ist die Jokale Variation eine der effizientesten Techniken. Diesen
Zweck erfilllen direkt die Mutationsalgorithmen SELBSTADAPTIVE-GAUSS-MUTATION
(Algorithmus 3.18) der Evolutionsstrategie und die SELBSTADAPTIVE-EP-MUTATION (Algorith-
mus 4.19) des evolutionidren Programmierens. Wihrend diese beide auf einem reellwertigen Ge-
notyp arbeiten, existiert kein solcher Standardoperator auf einem bindren Genotyp, der phéno-
typisch lokal arbeitet. In diesem Fall kann die variable lokale Suche eingesetzt werden. Dieser
Operator wird ghnlich wie die Hypermutation genau dann aufgerufen, wenn die durchschnittli-
che Giite in der Population abfillt. Zunichst werden in einem lokalen Suchschritt die niederwer-
tigen Bits einer standardbindr kodierten reellwertigen Komponente gezielt verdndert, um lokal
benachbarte neu Individuen zu erzeugen. Durch inkrementelles VergroBiern (vgl. Bild 5.19) des
Suchbereichs kann dabei von einer zunéchst sehr lokalen Verdnderung zu einer globaleren Suche
variiert werden.

Falls durch die Verschiebung lokaler Optima bzw. das Auf- und Abschwellen einzelner lokaler
Optima Situationen entstehen, in denen das globale Optimum an einer Stelle steht, an der es sich
bereits zu einem fritheren Zeitpunkt befunden hat, sind Techniken geeignet, die sich alte Zustande
merken. Das explizite Merken speichert frithere Losungen in einem externen Speicher. Auf diese
kann im Verlauf der Evolution zuriickgegriffen werden — beispielsweise kann in jeder Generation

5.3 Zeitabhingige Optimierungsprobleme 211

Dimension 1 Dimension 2

individwm [| [[[[[[Jeee[[[[[][]]
VergroBerung +/— I:]:] +/— I:]:'

des

Bild 5.19 Bei der variable lokalen Suche werden Bits in einem Vektor zufillig gesetzt und zum Indivi-
duum hinzuaddiert. Dabei umfasst dieser Additionsvektor zunichst nur die niederwertigen Bits
(links). Falls diese lokale Suche nicht erfolgreich ist, wird inkrementell der Suchbereich durch
Erweiterung des Additionsvektors vergrofiert.

Genotyp 1 _Genotyp2
Lol ifolifoli]ilolili[o]1]

/ Dominanzregel:
lo i 1
Lot
0
i :

Phinotyp [1] 1[0 1]0] 1] !

1
1
1

— o O | o
—_ -

Bild 5.20 Diploiditdt mit einem rezessiven Allel i fiir die 1. Die Tabelle zeigt, wie die unterschiedlichen
Kombinationen im Genotyp phinotypisch bewertet werden.

eine Auswahl der gemerkten Individuen wieder in die Population integriert werden. Alternativ
wird dhnlich zum Einsatz der Hypermutation auf die gespeicherten fritheren Losungen nur bei
einem Gtiteabfall der Population zuriickgegriffen.

Das alternative implizite Merken ahmt das Konzepts der Diploiditit (vgl. natiirliche Evoluti-
on in Kapitel 1) nach. In der Natur werden durch den doppelten Chromosomensatz rezessive
Merkmale zwar weitervererbt, treten phanotypisch allerdings nur selten in Erscheinung. Sie er-
halten jedoch die Anpassungsféhigkeit und kommen eventuell bei einer Verdnderung der Umwelt
wieder positiv zum Tragen. Durch ein solches Konzept kdnnen einerseits Teile von Individuen
spéter wieder leichter in die Evolution eingehen und andererseits wird auf jeden Fall die geno-
typische Diversitit in der Population durch rezessive Allele erhéht. Die einfachste Variante als
Erweiterung der genetischen Algorithmen auf bindren Zeichenketten verdoppelt den Genotyp
und bestimmt jeweils aus zwei Bits ein phénotypisches Bit wie dies in Bild 5.20 dargestellt ist.
Ein zusitzliches Allel i wird als rezessive 1 eingefiihrt. Gemil3 der abgebildeten Dominanzregel
wird die phénotypisch wirksame bindre Zeichenkette berechnet. Das hiufigere Vorkommen der
1 in den Dominanzregeln wird durch verdnderte Wahrscheinlichkeiten bei der Mutation ausgegli-
chen. Dabei wird eine 0 mit der Wahrscheinlichkeit 0,5 erzeugt und i und 1 mit jeweils 0,25. Auf
verwandte Ansédtze mit zwei rezessiven Allelen gehen wir hier nicht ndher ein. Die Stirke der
diploiden evolutiondren Algorithmen liegt vermutlich in erster Linie in dem Erhalt der Vielfalt
in der Population. Der Einfluss von rezessiven Teillosungen bei einer Optimierung ldsst sich nur
schwer beurteilen.

212 5 Techniken fiir spezifische Problemanforderungen

In weitaus stirkerem MaB als bei den Randbedingungen und den Problemen mit mehreren
Zielfunktionen gilt allerdings bei den zeitabhingigen Problemen, dass die Techniken sehr genau
an die Eigenschaften des Problems angepasst werden miissen, um eine erfolgreiche Optimierung
zu ermdglichen.

5.4 Approximative Bewertung

In vielen Anwendungen konnen Losungskandidaten nicht exakt bewertet werden, da die Bewer-
tungsfunktion fehlerbehaftet oder rechenintensiv ist — im Extremfall existiert gar keine eindeutig
definierbare Bewertungsfunktion. Dieser Abschnitt prisentiert Methoden, die unter solchen Um-
stéinden eine hdhere Qualitcit der Optimierung erreichen.

In den bisherigen Kapiteln wurde davon ausgegangen, dass eine Bewertungsfunktion eindeutig
definiert ist, d. h. die Auswertung eines Losungskandidaten ergibt immer denselben Wert. Wie
bereits bei den zeitabhéngigen Problemen ist diese Annahme auch hier nicht erfiillt. Allerdings
gibt es jetzt keinen Ablauf, der den Verdnderungen in der Bewertungsfunktion zugrunde liegt,
sondern die Bewertungsfunktion kann unabhéngig von der Zeit verschiedene Giitewerte fiir das-
selbe Individuum liefern — sprich: Es kann nur mit angengherten Gilitewerten gearbeitet werden.

Eine mogliche Ursache hierfiir sind Toleranzen bei messungsbasierten Bewertungen (siche
Abschnitt 5.4.1) — dies ist insbesondere der Fall beim Einsatz von Sensoren fiir physikalische,
chemische oder biochemische Vorginge, aber auch bei stochastischen Simulationen (z. B. von
Verbrennungsvorgingen). Verwandt dazu sind Probleme, bei denen die Werte eines Losungs-
kandidatens etwa an einem technischen System nicht exakt eingestellt werden kénnen (siehe
Abschnitt 5.4.2) — beispielsweise aufgrund von Toleranzen in der Mechanik. Anders sieht die Si-
tuation bei sehr zeitaufwindigen Bewertungsfunktionen aus, bei denen man sich bewusst flir eine
Unschérfe entscheidet, um das Problem tiberhaupt optimieren zu konnen (siche Abschnitt 5.4.3).
Ahnlich gelagert sind Probleme, die statt iiber eine Bewertungsfunktion durch eine Vielzahl an
Testfillen definiert werden (siehe Abschnitt 5.4.4). Uberhaupt kein eindeutig berechenbares Be-
wertungskriterium steht bei der Entwicklung von Strategien, z. B. fiir Spiele wie Dame, zur Ver-
fligung (siehe Abschnitt 5.4.5) — auch dort muss die Giite durch Tests ermittelt werden.

54.1 Verrauschte Bewertung

Bei verrauschten Zielfunktionen ist die Zuverldssigkeit und Objektivitit der Bewertungsfunktion
nicht mehr gegeben. Das Standardbeispiel sind Messungen an technischen Systemen oder auch
von Software, die gewissen Messfehlern bzw. zufilligen Einfllissen unterliegen.

Beispiel 5.11:
Werden an einem Motorpriifstand die Parameter zur Steuerung des Motors eingestellt
(Ziindwinkel etc.), kann der Verbrauch des Motors durch die Messung des Kraftstoffge-
wichts vor und nach der Testzeit ermittelt werden. Die Analyse der Abgase ist aufwén-
diger, da dort beispielsweise zur Ermittelung des CO- und CO,-Gehalts die Absorption
von Infrarotstrahlen im Abgas gemessen wird.

Wann immer ein Losungskandidat gut bewertet wird, stellt sich die Frage, ob es sich tatsdch-
lich um ein gutes Individuum handelt, oder ob diese positive Bewertung nicht aufgrund des Rau-

http://Beispiel5.ll

5.4 Approximative Bewertung 213

schens zustande kam. Dieselbe Frage stellt sich bei schlecht bewerteten Individuen mit negativem
Vorzeichen. Einerseits kénnen dadurch gute Individuen nur sehr schwer identifiziert werden, da
ein Vergleich mehrerer Individuen nicht reprasentativ ist. Dies kann entweder das Auffinden einer
akzeptablen Losung komplett verhindern oder die Losungszeit wesentlich verlingern. Anderer-
seits konnen solche Fehlbewertungen auch dazu fiihren, dass leichter Wege aus lokalen Optima
heraus gefunden werden. Allerdings tiberwiegen in der Praxis meist die negativen Effekte des
Rauschens, die daher méglichst verringert werden sollen.

Beim Versuch den zeitlich kiirzesten Weg von Leipzig nach Stuttgart zu finden, stellen wir bereits nach dem
zweiten Versuch auf derselben Strecke fest, dass das Problem hochgradig verrauscht ist: Durch die jeweilige
Verkehrssituation ergeben sich erhebliche Abweichungen in der Fahrtzeit.

Bei der Standardvorgehensweise wird jedes Individuum mehrfach bewertet und die Giite ergibt
sich als Mittelwert dieser Bewertungen. Wenn die Anzahl der Bewertungen gegen Unendlich
strebt, ndhert sich der Mittelwert aufgrund des Gesetzes der groflen Zahlen aus der Wahrschein-
lichkeitsrechnung der objektiven Giite an. Genauer gilt bei K Auswertungen eines Individuums,
dass die Standardabweichung ¢ pro Auswertung auf eine Abweichung % verringert wird. Wenn
fiir jedes Individuum die Zielfunktion jedoch mehrmals berechnet werden muss, bedeutet dies
einen enormen zusitzlichen Aufwand und zusitzliche Kosten. Daher sollten zusitzliche Auswer-
tungen nur wohlbedacht eingesetzt werden, da sie sich nicht linear in einer Verbesserung der
resultierenden Abweichung niederschlagen. Im nichsten Absatz werden diese Kosten, unter de-
nen in der Regel die bendtigte Zeit verstanden wird, fiir die weitere Argumentation modelliert.

Sei u die Populationsgrofie und K die Anzahl der Evaluationen pro Individuum. Um nun
die Gesamtkosten solcher Mehrfachbewertungen aufzustellen, unterscheiden wir in zwei unter-
schiedliche Kostenfaktoren: die Kosten KostEval, die pro Giitebewertung anfallen, und die Kos-
ten KostVerw, die zur Verwaltung eines Individuums notwendig sind, aber nicht von der Anzahl
der Bewertungen abhingen. Dann kénnen die Kosten einer Generation als

Kosten = (KostVerw + KostEval - K) -
formuliert werden und die Gesamtkosten als
Kosten = (KostVerw+ KostEval - K) - L - MaxGen,

wobei MaxGen die Anzahl der Generationen ist. Falls nun feste Kosten, d.h. eine maximale
Zeitspanne, fiir eine Optimierung vorgegeben sind, muss man sich entscheiden, wie K und u
gewiihlt werden sollen, damit diese Kosten eingehalten werden. Werden mehr Auswertungen fiir
die Bewertung eines Individuums eingerdumt, stehen entweder weniger Generationen fiir die
Berechnung zur Verfligung oder die Populationsgréfie muss verringert werden. Da sehr oft die
Anzahl der Generationen als fest betrachtet wird, um eine bestimmte Losungsqualitdt zu errei-
chen, muss damit die Populationsgréfie kleiner gewihlt werden. Daher ist im niichsten Absatz
insbesondere das Verhiltnis von K zu u von Interesse.

Es gibt unterschiedliche, sich teilweise stark widersprechende Untersuchungen, wie dieses
Verhiltnis zu wihlen ist. Konsens ist, dass lokale Suchverfahren weit starker von Rauschen be-
eintrichtigt werden als populationsbasierte Verfahren, da sich hier zu gut bewertete Individuen
natiirlich sehr viel stirker auswirken. Daher hat ein gréfleres K meist auch sehr positive Aus-

214 5 Techniken fiir spezifische Problemanforderungen

wirkungen bei der lokalen Suche. Bei den evolutionidren Algorithmen kann, wie bereits gesagt,
die PopulationsgréBe zusdtzlich verdndert werden — und gute Einstellungen hidngen sehr stark
vom Optimierungsverfahren ab. Grundsitzlich scheint eine Vergréflerung von K meistens sinn-
voll zu sein — insbesondere wenn die Kosten fiir jede Evaluation nicht so sehr in’s Gewicht fal-
len (% > 1). Allerdings ist beispielsweise bei den genetischen Algorithmen, die stark auf
der Rekombination beruhen, fiir geringe evaluationsunabhingige Kosten (KostVerw < KostEval)
die Vergr6Berung der Populationsgréfle y eine sinnvolle Alternative. Dies lasst sich vermutlich
dadurch begriinden, dass bei den genetischen Algorithmen die in der Population gespeicherte
Information in der Form von Schemata in grolem Maf3 durch die Rekombination genutzt wird
— ist die Population groBer, ist die gespeicherte Information in ihrer Gesamtheit auch wesent-
lich robuster gegen einzelne falsch bewertete Individuen. Bei den Evolutionsstrategien kann ein
ganz dhnlicher Effekt (wenn auch nicht im selben Ausmal) durch eine VergréBerung der Eltern-
population y erreicht werden, da dann bei einer uniformen Auswahl der Eltern Ausreifler nicht
so stark die Erzeugung der weiteren Individuen beeinflussen oder gar durch die Rekombination
GLOBALER-ARITHMETISCHER-CROSSOVER (Algorithmus 4.11) echt gemittelt wird.

Offensichtlich zahlen sich Mehrfachauswertungen aus. Wenn wir nun allerdings annehmen,
dass die Bewertungsfunktion sehr zeitintensiv ist und durch ein relativ starkes Rauschen gestért
wird, kann die benétigte Anzahl an Mehrfachauswertungen u.U. nicht durchgefiihrt werden. Es
stellt sich die Frage, wie diese Kosten verringert werden koénnen, ohne die Qualitéit des Ergebnis-
ses zu beeintrachtigen. Falls nun beispielsweise die Umweltselektion deterministisch durch eine
(1, A)-Selektion stattfindet, ist es eigentlich nur von Interesse herauszufinden, welches die u
besseren Individuen sind. Dann kann folgendermafen vorgegangen werden. Es werden zunéchst
wenige Auswertungen fiir alle Individuen vorgenommen. Dann werden paarweise statistische
Tests durchgefiihrt, um festzustellen, bei welchen Individuen beziiglich ihrer Rangfolge bereits
eine Aussage dariiber, ob sie zu den u besten Individuen der Population gehdren konnen oder
nicht, mit hoher Sicherheit gemacht werden kann. Daraus ergibt sich eine (partielle) Ordnung der
Individuen. Bei denjenigen Individuen, fiir die die Einordnung in wahrscheinlich brauchbare und
nicht brauchbare Individuen noch nicht getroffen werden konnte, werden weitere Auswertungen
vorgenommen, bis die geforderte Sicherheit vorliegt oder der Vorgang abgebrochen wird, was
dann einer Entscheidung mit geringerer Konfidenz entspricht. Diese Herangehensweise kann die
Anzahl der notwendigen Auswertungen signifikant reduzieren, da zusétzliche Auswertungen nur
bei Bedarf vorgenommen werden.

Nun ist allerdings die Uberbewertung von schlechten Individuen bisher ausschlieBlich beziig-
lich der Frage diskutiert worden, inwieweit durch das Durchreichen schlechter Individuen eine
geringere Prizision des Algorithmus erreicht wird. Dariiberhinaus stellt sich jedoch in selbst-
adaptiven Algorithmen das Problem, inwieweit die verrauschten Losungskandidaten die Selbst-
anpassungsmechanismen beeinflussen: Schlimmstenfalls werden sie so drastisch gestort, dass ein
sinnvolles Optimieren nicht mehr méglich ist. Daher soll hier kurz auf die vorgestellte Technik
der Schrittweitenanpassung bei der reellwertigen Mutation mittels der GauBverteilung eingegan-
gen werden. Im Rahmen der Standardalgorithmen wurden zwei verschiedene Ablaufe fiir die
Modifikation der Strategievariablen vorgestellt. Bei den Evolutionsstrategien geschieht dies in
der Regel durch folgende Modifikation

1 1
B.S; —AS8;-exp| — -u+ ~u’~)
R p(ﬁz SN/

5.4 Approximative Bewertung 215

mit Zufallszahlen u, /), ... 1) ~ A7(0, 1) (vgl. Seite 136). Beim evolutionéren Programmieren
wird die Schrittweite durch

B.S; — A.Si+u;

mit Zufallszahlen u; ~ A4 (0, «-A.S;) fiir | <i<1Iangepasst(vgl. SELBSTADAPTIVE-EP-MUTATION
in Algorithmus 4.19). Zusétzlich findet die Anpassung bei den Evolutionsstrategien direkt vor
der Mutation des eigentlichen Individuums statt, wihrend beim evolutiondren Programmieren
die vom Elternteil geerbten Schrittweisen benutzt werden. Nun kann meist beobachtet werden,
dass die Anpassungsregel der Evolutionsstrategien eine schnellere Anpassung erlaubt und somit
schneller das Optimum findet. Mit zunehmendem Rauschen kann diese Anpassungsregel jedoch
leichter in die Irre gefiithrt werden. Dann erweist sich oft die beim evolutiondren Programmieren
iibliche Regel als stabiler.

Eine alternative Modifikation der bei den Evolutionsstrategien benutzten Regel stellt die Kap-
pa-Ka-Methode dar. Sie beruht im Wesentlichen auf der Idee, Verdnderungen an den Strategiepa-
rameter und den Objektvariablen nur geddmpft an die Kinder weiterzugegeben, um den Einfluss
von falsch bewerteten Individuen zu verringern. Konkret wird (bei der uniformen Schrittwei-
tenanpassung) mit Zufallszahlen u, uy, . .. ;4 € A(0, 1) und den Parametern &, k¥ > 1 (€ R) das
folgende Individuum

BS—AS- (exp (\%u))x

§l<—Al—|—§SkH,

erzeugt, welches bei der Bewertung herangezogen wird. Falls es sich im Rahmen der tiblichen
Selektion bewéhrt und {ibernommen wird, werden die Verdnderungen am Individuum nur abge-
schwicht weitergegeben, und zwar als

B.S—AS-exp (\% u)

Bi— A;+B.S-u;.

Diesem Verfahren liegt die Vorstellung einer iberwiegend glatten Glitelandschaft zugrunde: Falls
das Individuum tatsidchlich gut ist, bewegen wird uns leicht abgeschwicht in die richtige Rich-
tung — falls das Individuum tiberbewertet wurde, werden die eigentlichen Verschlechterungen
etwas abgemildert und kommen nicht im selben Ausmal} zum Tragen wie bei der normalen Vor-
gehensweise.

5.4.2 Stabile Losungen

Wird eine Optimierung erfolgreich durchgefiihrt, liegt am Ende ein als nahezu optimal erachteter
Losungskandidat 4* vor. Bei den meisten Optimierungsproblemen kann man diesen exakt so be-
nutzen und weiterverarbeiten. Jedoch haben Probleme mit zusitzlichen Stabilitdtsanforderungen
die Eigenheit, dass 4™ zwar genutzt werden kann, aber in der Realitit hiufig ein leicht von 4*

abweichender Wert zur Anwendung kommt.

216 5 Techniken fiir spezifische Problemanforderungen

=] — | =

3 2

":" — E

E —o|E| swem - Gite
- T

e e =

Stabilitit Rauschen

Bild 5.21 Die Stabilitit einer Losung wird durch die Bewertungsinvarianz gegentiber kleinen Abweichun-
gen an den Eingéingen bestimmt, wihrend das Rauschen eine kleine Abweichung bei der Bewer-
tung am Ausgang eines Systems ist.

Beispiel 5.12:
Werden Maschinenbelegungspline fiir einen stark manuell operierenden Betrieb wie
z.B. eine Stuhlfabrik erstellt, kann es aus aktuellen betriebsbedingten Problemen im-
mer wieder zu einer leichten Variation in der Reihenfolge an den einzelnen Arbeitssta-
tionen kommen. Sind die prisentierten Maschinenbelegungsplidne nicht stabil, kann
dies einen erheblichen Einfluss auf den Durchsatz haben. Daher sind Pline gesucht,
die eine gewisse Variation bei nur geringfiigig verlingerter Produktionszeit tolerieren.

Der Unterschied zwischen stabilen Lésungen und Losungen bei verrauschten Optimierungspro-
blemen ist in Bild 5.21 dargestellt. Beim Rauschen werden unterschiedliche Werte bei verschiede-
nen Bewertungen desselben Individuums beobachtet. Dies ist bei der Suche nach stabilen Lésun-
gen nicht der Fall, sondern man mochte die Abweichungen in der Bewertung bei leicht variierten
Individuen méglichst klein halten.

route von Leipzig nach Stuttgart auch ein Optimierungsproblem mit einer stabilen Anforderung: Fiir jeden
maglichen Autobahnabschnitt beriicksichtige ich, wieviel linger es bei einer Vollsperrung dauert.

% In meinem Bestreben, auf alle Eventualitiiten vorbereitet zu sein, ist die Suche nach einer geschickten Auto-

Als Grundtechnik kann hierbei das Repertoire der verrauschten Zielfunktionen benutzt werden,
wobei man bei der Bewertung eines Individuums mehrere Varianten — also quasi ein kiinstliches
Rauschen — erzeugt und ebenfalls den Mittelwert betrachtet. Dabei gelten alle Vor- und Nachteile
aus Abschnitt 5.4.1.

Insbesondere ist auch zu beachten, dass gemittelte Giitewerte nur eine bedingte Aussage zur
Stabilitdt machen, da grofle positive und negative Abweichungen zum selben Ergebnis fiihren
wie kleine positive und negative Abweichungen. Daher wurde in jiingerer Zeit vorgeschlagen als
zusitzliches Kriterium die Varianz der Giitewerte zu betrachten. Mit den Methoden der Mehr-
zieloptimierung konnen dann die verschiedenen Losungsmdéglichkeiten hinsichtlich der Giite der
Losung und der Stabilitdt aufgespannt werden.

54.3 Zeitaufwiindige Bewertung

Evolutiondre Algorithmen sind weniger gut fiir Optimierungsprobleme mit zeitaufwindigen Be-
wertungsfunktionen geeignet, da durch den populationsbasierten Ansatz weitaus mehr Bewertun-
gen bendtigt werden, als Zeit zur Verfiigung steht.

5.4 Approximative Bewertung 217

Beispiel 5.13:
Bei dem in Beispiel 5.11 vorgestellten Problem der Kalibrierung eines Motorsteuer-
gerits, muss der Motor zunéchst einen eingeschwungenen Zustand erreichen. Andern-
falls wiire der Einfluss zu grof3, ob beispielsweise der Ziindwinkel gerade vergréBert
oder verkleinert wurde. Anschlielend muss der Motor am Priifstand eine gewisse Zeit
laufen, um aussagekriiftige Messwerte hinsichtlich des Kraftstoffverbrauchs und der
Schadstoffemission zu bekommen.

Auch bei der Fahrt von Leipzig nach Stuttgart handelt es sich um ein zeitaufwiindiges Optimierungsproblem,
da nicht einfach 1 000 Fahrten zur Ermittlung des besten Wegs durchgefiihrt werden kénnen.

Da andere effizientere Verfahren fiir die meisten Probleme ebenfalls nicht zur Verfiigung ste-
hen, muss man sich des Tricks bedienen, nur einen sehr geringen Prozentsatz der Individuen am
»echten« Problem zu bewerten und den Rest zu schitzen. Hierfiir wird ein Modell des Problems
erstellt, das dann als kostengiinstige alternative Bewertungsfunktion bereitgestellt wird. In der
Literatur finden sich insbesondere neuronale Netze (vgl. Seite 145), RBF-Netze, polynomielle
Regressionsmodelle und Gaul}-Prozesse.

Ein erster einfacher Ansatz verschiebt die eigentliche Optimierung vollstindig auf die Mo-
dellebene. Die gefundenen Optima kénnen dann am echten System bewertet werden. Da jedoch
immer mit einem Fehler in den Modellen zu rechnen ist, muss meist das Verfahren iteriert wer-
den: Ein genaueres Modell im identifizierten Zielgebiet wird erstellt, eine erneute Optimierung
durchgefiihrt und wieder am echten System bewertet. Statt einer manuellen Iteration wird eine
stirkere Integration von Modell und echtem System angestrebt. Alle Individuen werden mit dem
Modell bewertet und der Algorithmus entscheidet, welcher Teil zusitzlich am echten System
evaluiert wird. Die direkte Riickkopplung System—Modell fithrt nicht nur zu besseren Ergebnis-
sen, sondern kann auch zur fortwihrenden Anpassung und Verbesserung des Modells genutzt
werden.

Ein Beispiel fiir die reine Optimierung auf einem Modell mit nachgeschalteter manueller Verifikation am
echten System wird detailliert in der Fallstudie im Abschnitt 6.5 vorgestellt.

Da die Integration eines Modells in einen evolutionidren Algorithmus oft ein schwieriges Vor-
haben ist, begegnet man den zeitaufwindigen Bewertungsfunktionen meist mit purer Rechen-
leistung durch Nutzen méglichst vieler Computerprozessoren. Hierfiir ist es notwendig, einen
evolutioniren Algorithmus zu parallelisieren.

Die einfachste Moglichkeit stellt die globalen Parallelisierung (engl. farming-model) dar, bei
der die Giiteberechnung der Individuen und z.T. die Anwendung der Mutationsoperatoren paral-
lelisiert wird. Die Verwaltung der Population, Selektion und Rekombination finden im Master-
Prozessor statt, jeder Slave-Prozessor bewertet ein Individuum. Der grundsitzliche Ablauf und
Aufbau eines evolutionidren Algorithmus wird dadurch nicht beschrinkt. Der Flaschenhals dieses
Modells liegt in der Selektion, die globale Informationen benétigt. Diese Art der Parallelisierung
ist einfach umzusetzen und lohnt sich, wenn die Giiteberechnung sehr aufwindig ist. Interessant
ist sie insbesondere auch fiir Mehrprozessorrechner mit gemeinsamem Speicher, da dann kein
Kommunikationskosten anfallen. Bild 5.22 skizziert die globale Parallelisierung.

Die grobkornige Parallelisierung (engl. coarse grained model) unterteilt die Population in
wenige, relativ grofle Unterpopulationen, die getrennt optimiert werden. Zusitzlich wird ein Mi-

218 5 Techniken fiir spezifische Problemanforderungen

Master /
/ .
: Slaves Bild 5.22
w\ . Bei der globalen Parallelisierung wird die Bewertung der Individu-
Ind en parallelisiert.
/—\

Pop 1 — Pop2 | Pop3 Pop 1 Pop 2 Pop 3
op | j——=| Pop2 j—= Pop op op op
Pop6 . [Pops L [P 4] [P 6 [P 5 P 4]
[Op J L op J L op op) op J N op

\—/

Bild 5.23 Zwei grobkornige Parallelisierungen mit loser (links) und enger Verbindung (rechts).

grationsoperator eingefuhrt, der einzelne Individuen zwischen den Unterpopulation austauscht.
Diese Parallelisierung wird auch Inselmodell genannt und ist auch fiir Cluster gewShnlicher PCs
oder Workstations geeignet. Entscheidende Einflussfaktoren bei dieser Art der Parallelisierung
sind

+ die Topologie (wie sind die Unterpopulationen miteinander verbunden),

+ die Migrationsrate (wieviele Individuen wanderm zwischen den Unterpopulationen),

» das Migrationsintervall (wie oft tritt eine Migration ein),

+ die Migrationsauswahl (welche Individuen einer Unterpopulation werden migriert) und
+ die Migrationsart (migriert ein Individuum selbst oder nur seine Kopie).

Die Topologie hat entscheidenden Einfluss darauf, wie schnell sich ein guter Losungskandidat in
den Unterpopulationen ausbreiten kann. Sind die Unterpopulationen eng miteinander verkniipft,
wird sich ein guter Losungskandidat schnell in den Unterpopulationen verteilen. Ist dagegen
die Verbindung lose, kénnen sich verschiedene Losungskandidaten parallel entwickeln und erst
durch einen spiteren Austausch zu eventuell besseren Losungskandidaten kombiniert werden.
Hier greifen die im Kapitel 1 beschriebenen biologischen Evolutionsfaktoren Gendrift und Gen-
fluss. Ubliche Topologien sind Hypercubes, uni- und bidirektionale Ringe und vollstandige Gra-
phen. Im linken Teil von Bild 5.23 ist ein unidirektionaler Ring dargestellt, im rechten Teil eine
vollstindige Verkniipfung. Ublicherweise werden die Migrationsintervalle fest gewihlt oder von
der Konvergenz in den Unterpopulation abhingig gemacht. Im zweiteren Fall kann in jeder Un-
terpopulation zunéchst isoliert optimiert werden. Im Falle einer Konvergenz der Unterpopulation
wird durch Migration frisches genetisches Material eingebracht. Interessant kann insbesondere
auch eine unterschiedliche Parametrisierung der Teilpopulationen sein.

Im Gegensatz zur groben Aufteilung in relativ isolierte Unterpopulationen teilt die feinkdrnige
FParallelisierung (engl. fine grained model) die Population in viele, kleine, sich iiberlappende Un-
terpopulationen. Rekombination und Selektion findet in den einzelnen Unterpopulation getrennt
statt. Durch die Uberlappung gibt es Individuen, die zu mehr als einer Unterpopulation geho-
ren. Der Informationsaustausch zwischen den Unterpopulationen findet iiber die gemeinsamen
Individuen statt. In diesem massiv parallelen Modell, auch Diffusionsmodell genannt, verwaltet

5.4 Approximative Bewertung 219

Bild 5.24 Zwei feinkdrnige Parallelisierungen mit groflerer (links) und kleinerer Nachbarschaft (rechts).

jeder Prozessor genau ein Individuum. Bild 5.24 zeigt zwei mogliche zweidimensionale Nachbar-
schaftsstrukturen. Dabei stellen die grauen Individuen die Nachbarn des Individuums in ihrem
Zentrum dar. Parallel fiir alle Individuen werden dann die folgenden Schritte ausgefiihrt: Mittels
eines Selektionsoperators wird jeweils ein Individuum aus der Nachbarschaft in die aktuelle Po-
sition {ibernommen, dieses wird mit einem (beispielsweise uniform ausgewihlten) Partner aus
der Nachbarschaft rekombiniert, das resultierende Individuum wird zusétzlich noch mutiert und
an der jeweiligen Position in der Populationsstruktur gespeichert.

In der jiingeren Zeit haben sich auch hierarchische Parallelisierungsformen herausgebildet, in
denen beispielsweise verschiedene gréfiere Populationen grobkérnig miteinander verkniipft sind,
jede dieser Populationen allerdings selbst feinkdrnig organisiert ist.

54.4 Bewertung durch Testfille

Bei vielen Problem in der Praxis ist es nahezu unmdglich, eine klar abgegrenzte Bewertungsfunk-
tion zu formulieren. Stattdessen stehen beispielsweise verschiedene Testszenarios zur Verfiigung,
in denen sich eine Losung bewihren muss.
Beispiel 5.14:
Fiir eine Stadt sollen die Intervalle der Ampelschaltungen so eingestellt werden, dass
in allen auftretenden Verkehrssituationen die Wartezeiten an den Ampeln moglichst
gering sind. Hierzu stehen Daten aus verschiedenen Verkehrssituationen an verschie-
denen Tagen zur Verfiigung, auf deren Basis mehrere Zyklen der Ampeln simuliert
werden.

Der intuitive Ansatz ist, alle Testfille heranzuziehen und mit dem Mittel- oder Maximalwert
entsprechend das jeweilige Individuum zu bewerten.

Falls ich (als Gewohnheitstier) fiir meine Fahrten nach Stuttgart eine Standardroute suche, die fiir alle un-
terschiedlichen Situationen geeignet ist, wiren verschiedene Testfille zu formulieren (Feierabendverkehr,
nachts, Wochenende etc.), fiir die eine Route im Mittel nahezu optimal sein soll.

Ahnlich zu den Problemen im vorigen Abschnitt ist die Bewertung aller Individuen bzgl. aller
Testfille meist zu kostspielig. Daher muss man sich auf wenige Testfille beschrianken. Dabei
konzentrieren sich die Individuen aber ausschlie3lich auf diese Testfille — die angestrebte Gene-
ralisierung auf die ausgelassenen Testfille geschieht nur in Ausnahmefillen.

Als Losung fiir dieses Dilemma bieten sich koevolutiondre Verfahren an, bei denen die sich
gegenseitig beeinflussende Entwicklung mehrerer Spezies in der Biologie (vgl. Abschnitt 1.3.2)
nachempfunden wird.

220 5 Techniken fiir spezifische Problemanforderungen

Algorithmus 5.4

KOEVOLUTIONARER-ALGORITHMUS(Zielfunktion F)
1 10

2 P)() — erzeuge Population mit Lésungskandidaten
3 PN (t) — erzeuge Population mit Testfillen
4 bewerte alle Individuen in P (1) v Mal (wie in Zeilen 7-12 mit A*) fest)
5 bewerte alle Individuen in PI7)(¢) v Mal (wie in Zeilen 7-12 mit A7) fest)
6 while Terminierungsbedingung nicht erfiillt
7 do"fori«<1,...,v (StichprobengrifBe])
8 do ™ 4" — selektiere ein Individuum aus P (¢)
9 AT) — selektiere einen Testfall aus P7) (r)
10 x — F(4®) 4Ty
11 beziche x in Giite von A(L) mit ein
12 L beziehe 1 —x in Giite von A7) mit ein
13 B() — erzeuge neues Individuum aus P2 (r)
14 bewerte B v Mal (wie in Zeilen 7-12 mit B statt 4L fest)
15 t—t+1
16 P (t) — ersetze schlechtestes Individuum in P2 (r — 1) durch B
17 (B'T) — erzeuge Individuum aus P7) (1 — 1))
18 (bewerte BU) v Mal (wie in Zeilen 7-12 mit B{7) statt A7) fest))
19 L (P'T) (1) « ersetze schlechtestes Individuum in P{7) (s — 1) durch B{T))

20 return bestes Individuum aus P (r)

Wihrend in einer Population PX) Individuen zur Losung des Problems evolviert werden, re-
prisentiert die Population P(7) die Testfille zur Bewertung der Individuen. Dabei nehmen wir
zunichst an, dass die Gesamtmenge der moglichen Testfdlle gegeben ist und die Evolution sich
auf die Population P\ konzentriert. Bei jedem Test wird ein Individuum bzgl. eines Testfalls
bewertet. Sei x € [0, 1] das Ergebnis dieses Tests, wobei das Individuum den Test umso besser
bewaltigt hat, je grofler x ist. Das Individuum wird mit x und der Testfall mit 1 —x bewertet,
sodass in beiden Population bei der Auswahl beispielsweise die fitnessproportionale Selektion
(eines moglichst grolen Wertes) angewandt werden kann, Da die Bewertung durch einen einzel-
nen Tests nur bedingt aussagekriftig ist, speichert jedes Individuum und jeder Testfall die letzten
v Bewertungen — die Gesamtglite ergibt sich als Mittelwert. Der Ablauf ist in Algorithmus 5.4
(KOEVOLUTIONARER-ALGORITHMUS) dargestellt.

Durch die Selektion in der eigentlichen Population P2} haben die besseren Individuen einer-
seits mehr Nachkommen in der Reproduktion und werden andererseits aber auch 6fter gegen die
gerade aktuellen Testfille gepriift. Die Selektion in der Testpopulation P{T) dient dem Zweck,
dass sich die Evolution auf die gerade als schwierig angesehenen Testfédlle konzentrieren kann.

Dieses gesamte Konzept kann noch durch eine weitere Evolution auf den Testfillen (wie in Al-
gorithmus 5.4 durch die eingeklammerten Kommandos angedeutet) erweitert werden. Dadurch
konnen auch die Testfille aktiv die Schwachstellen in den aktuell besten Individuen suchen. Die-
ses Vorgehen ist natiirlich nicht fiir alle méglichen Probleme geeignet.

Im Idealfall stellt sich bei den koevolutiondren Algorithmen ein Wettkampfverhalten ein —d. h.
in einem Wettrlisten werden immer neue Eigenschaften in den Individuen und neue schwierigere
Testfdlle entwickelt. Oft bewegen sich die evolutiondren Prozesse jedoch in Zyklen, ohne dass
eine Weiterentwicklung im Gesamten eintritt.

5.4 Approximative Bewertung 221

54.5 Bewertung von Spielstrategien

GroBe Ahnlichkeiten zur Bewertung mit Testfillen hat die Evolution von (Spiel-)Strategien.
Auch dort gibt es keine eindeutige Bewertung einer Spielstrategie. Vielmehr miissen sehr vie-
le unterschiedliche Spielsituationen beachtet werden.

Beispiel 5.15:
Fiir ein Brettspiel wie Schach, Dame oder Go soll ein intelligenter Computergegner
erzeugt werden.

Was die Fahrt von Leipzig nach Stuttgart mit Spielstrategien zu tun haben kann, méchte ich hier Threr
eigenen Fantasie tiberlassen. ..

Im Gegensatz zum vorherigen Abschnitt kénnen allerdings keine statischen Testfille vorgehalten
werden, da die Spieler sich schlieBlich immer intelligent verhalten und auf die Aktionen des
Gegners reagieren sollen. Daher beantworten wir im Weiteren zwei Fragen:

I. Wie kénnen iiberhaupt Spielstrategien als Individuen dargestellt werden?
2. Wie lassen sich die Spielstrategien bewerten?

Zur Beantwortung der ersten Frage eignen sich alle Darstellungen, die eine Aktion aus gewis-
sen Kennzahlen hinsichtlich der aktuellen Situation des Spiels, z.B. Positionen der Spielsteine
auf dem Brett, ableiten kdnnen. Das kénnen einerseits regelbasierte Darstellungen wie in den
klassifizierenden Systemen (Abschnitt 4.6.1) aber auch Funktionen als Syntaxbdume (vgl. gene-
tisches Programmieren in Abschnitt 4.4) oder neuronale Netze (vgl. Seite 145) sein. Meist wird
nicht direkt eine Aktion hergeleitet, sondern die Funktion wird nur zur Bewertung einer Stellung
im Rahmen einer klassischen Minimax-Suche aus der kiinstlichen Intelligenz benutzt.

Fiir die Bewertung einer Spielstrategie ist meist die erste Idee, die eigenen evolvierten Spieler
gegen eine gute bekannte Spielstrategie als Gegner antreten zu lassen und die Bewertung vom
Ergebnis dieses Spiels abhingig zu machen. Dieser Losungsansatz birgt jedoch einen entschei-
denden Nachteil: Der evolutionire Algorithmus wird sich bemiihen, die Schwachstellen der spe-
ziellen Teststrategie auszunutzen. Solche Strategien lassen sich dann durch leicht abweichendes
Spielverhalten schnell aus dem Konzept bringen und stellen keinen wettbewerbsfihigen Gegner
dar.

Daher nutzt man denselben Trick wie bei den Testfillen: Die simulierte Evolution selbst soll
die Schwachstellen der evolvierten Spielstrategien entdecken und so zu immer besserem und
komplexerem Spielverhalten fithren. Dies wird dadurch erreicht, dass die Individuen der Popula-
tion direkt im Spiel gegeneinander antreten. Dabei wird auch oft von einer Koevolution innerhalb
einer Population (engl. single population coevolution) gesprochen.

Zur Bewertung bietet sich die Q-STUFIGE-TURNIER-SELEKTION (Algorithmus 3.7) an, da sie
jeweils zwei Individuen direkt vergleicht und gleichzeitig mehrere solche Wettkdampfe in die
Selektion einflieen. Dabei gibt es Varianten, bei denen neue Individuen gegen alle anderen
aktuellen Individuen antreten — in anderen nur gegen eine zufillige Auswahl oder die Besten.
Teilweise werden auch echte K.O.-Turniere durchgefiihrt.

Insgesamt ldsst sich die Evolution von Spielstrategien in ihrer Entwicklung oder ihrem Ender-
gebnis nur schlecht bewerten: Es gibt kein objektives Mal}, wie gut eine Strategie ist. Daher ist

222 5 Techniken flir spezifische Problemanforderungen

auch aus Entwicklungskurven kein Trend abzulesen. Wegen der groflen Varianz bei der Bewer-
tung ist ein zuséitzlicher Speicher sinnvoll, in dem die besten gefundenen Individuen gesichert
werden und der auch zur Bewertung neuer Individuen mit herangezogen wird. Eine Aussage
zum Evolutionsprozess kann man dann daraus ablesen, wie lange einzelne Individuen in diesem
Speicher verbleiben bzw. wie schnell sie von »besseren« Individuen verdringt werden.

5.5 Ubungsaufgaben

Aufgabe 5.1: Bewertung bei Randbedingungen

Betrachten Sie nochmals das Pfadplanungsproblem aus Abbildung 5.6. Diskutieren Sie, welche
Eigenschaften eine gute Bewertungsfunktion haben sollte. Geben Sie eine solche Bewertungs-
funktion an und finden positive wie negative Beispielinstanzen flir das Problem.

Aufgabe 5.2: Pareto-Dominanz bei Randbedingungen

Konnen die Uberlegungen zur Pareto-Dominanz und den aggregierenden Verfahren bei der
Mehrzieloptimierung auf Straffunktionen bei Randbedingungen tibertragen werden? Argumen-
tieren Sie mit einem Beispiel.

Aufgabe 5.3: Mehrzieloptimierung

Bei der Diskussion der Mehrzieloptimierung bleibt die Nachbarschaft der Punkte im Suchraum
unberiicksichtigt. Diskutieren Sie, welche Effekte bei den unterschiedlichen Verfahren auftreten
koénnen, wenn benachbarte Giitekombinationen im Suchraum nicht benachbart sind.

Aufgabe 5.4: Mehrzieloptimierung

Im Rahmen der aggregierenden Verfahren wurde kurz angerissen, dass auch eine Multiplikation
der verschiedenen Giitewerte benutzt werden kann. Skizzieren Sie die Giitewertkombinationen,
die dadurch auf denselben Wert abgebildet werden.

Aufgabe 5.5: Diploide Repriisentationen

Der vorgestellte diploide evolutiondre Algorithmus hat lediglich fiir den Wert » 1« ein rezessives
Allel. Entwerfen Sie einen Dominanzmechanismus mit einem zusé#tzlichen rezessiven Allel fiir

die »0«.

Aufgabe 5.6: Zeitabhingige Funktion

Diskutieren Sie, wann der thermodynamische genetische Algorithmus mit der Shannon-Entro-
pie (vgl. Seite 62) sinnvoll ist. Eignen sich hier auch andere DiversitdtsmaBe? Kann ein solches
Verfahren auch zum Erhalt der Diversitit in der Mehrzieloptimierung genutzt werden?

Aufgabe 5.7: n-Damen-Problem

Programmieren Sie eine Bewertungsfunktion fiir das n-Damen-Problem, bei dem # Damen auf
einem # x n-Schachbrett so platziert werden miissen, dass sich keine Damen schlagen kénnen.

5.6 Historische Anmerkungen 223

Wihlen Sie als Reprisentation ¢ = {1, ..., n}", wobel in einem Individuum 4 die i-te Kompo-
nente eine Dame an der Position (i, 4;) erzeugt. Welche Methoden zum Umgang mit Randbe-
dingungen sind fiir dieses Problem geeignet? Programmieren Sie die Verfahren und vergleichen
Sie diese.

Aufgabe 5.8: Verrauschte Funktionen

Wenden Sie einen Standardalgorithmus auf die Rastrigin-Funktion und die Sphére an. Verwan-
deln Sie beide Probleme in verrauschte Probleme, indem Sie einen normalverteilten Rauschterm
hinzuaddieren und wenden Sie den Standardalgorithmus erneut auf die verrauschten Probleme
an. Vergleichen Sie die Resultate.

Aufgabe 5.9: Tic Tac Toe

Betrachten Sie das einfach Spiel »Tic Tac Toe« und tiberlegen sich, wie Sie eine Spielstrategie
darstellen kénnen. Entwerfen Sie einen evolutiondren Algorithmus, der durch Turniere ein gute
Spielstrategie evolviert.

5.6 Historische Anmerkungen

Randbedingungen werden seit jeher bei Optimierungsproblemen betrachtet (vgl. z. B. lineare Pro-
grammierung). Fiir die Behandlung von Randbedingungen durch Konstruktionsalgorithmen und
Evolvieren von passenden Parametereinstellungen findet sich ein Beispiel in der Arbeit von Ge-
ro & Kazakov (1998). Die hier prisentierte Evolution von Grundrissen beruht auf einem bisher
unverdffentlichten Projekt des Buchautors. Die Methode der giiltigen Individuen ist ein relativ
weitverbreiteter Ansatz und findet sich beispielsweise auch bei den im vorigen Kapitel diskutier-
ten Operatoren auf Permutationen oder auf Syntax-Baumen in einer linearen Darstellung wieder.
Die Beschrinkung der Elternselektion auf gliltige Individuen wurde erstmals von Hinterding &
Michalewicz (1998) verwendet. Der Krippentod als Mittel um Randbedingungen einzuhalten,
wurde von Michalewicz (1995) vorgeschlagen, ist aber z. B. bei der Evolutionsstrategie auf be-
schrankten Suchraumen schon lidnger tiblich. Reparaturalgorithmen und legale Dekodierung ge-
horen zu den populdreren Methoden fiir Randbedingungen. Sie lassen sich daher nicht so leicht
historisch einordnen — eine Ubersicht findet man in der Arbeit von Michalewicz (1997). Das
legale Ersetzen ist eine gingige Technik im Rahmen von iiberlappenden Populationen. Straffunk-
tionen wurden bereits ausfiihrlich von Goldberg (1989) sowie Richardson et al. (1989) diskutiert
und zéhlen auch zu den populdren Techniken. Eine vordefinierte nicht konstante Straffunktionen
fiir ungiiltige Individuen wurde von Kazarlis & Petridis (1998) betrachtet. Bean & Hadj-Alouane
(1992) haben die hier prisentierte adaptive Anpassung der Gewichtung eines Strafterms vorge-
stellt. Eine Ubersicht zu Methoden fiir Randbedingungen ist in dem Artikel von Michalewicz
& Schoenauer (1996) enthalten. Die Einteilung der Methoden in diesem Buch wurde von der
Ver6ffentlichung von Yu & Bentley (1998) beeinflusst.

Bei der Mehrzieloptimierung geht die Definition der Pareto-Dominanz und der Pareto-Front
auf die Arbeit von Pareto (1896) zuriick. Die Technik, die Mehrzieloptimierung auf eine Zielfunk-
tion zu beschrinken und die anderen Zielfunktionen in Randbedingungen umzuwandeln, wurde
beispielsweise in der Arbeit von Simpson et al. (1994) benutzt. Fiir die lineare Aggregation, d. h.

224 5 Techniken fiir spezifische Problemanforderungen

die gewichtete Aufsummierung der verschiedenen Zielfunktionen, kann die Arbeit von Syswerda
& Palmucci (1991) als eine der ersten Arbeiten angesehen werden. Wienke et al. (1993) wihlen
statt einer Aufsummierung die Distanz zu einem Zielvektor im Raum der Zielfunktionen. Die
Minimax-Methode wurde beispielsweise von Srinivas & Deb (1995) verwendet. Bei den Verfah-
ren, die eine komplette Pareto-Front berechnen sollen, hat Chieniawski (1993) in einer aggregie-
renden Funktion die Gewichtung variiert, um den Verlauf der Front zu berechnen. Der VEGA-
Ansatz, d. h. die Aufteilung der Population unter den Zielfunktionen zur Bewertung und Selek-
tion durch nur eine Funktion, wurde von Schaffer (1985) eingefiihrt. Der Ansatz, die Definition
der Pareto-Dominanz direkt fiir die Bewertung der Individuen zu benutzen, geht auf Goldberg
(1989) zuriick. Der hier prasentierte Ansatz stammt jedoch von Fonseca & Fleming (1993). Die
Technik des Teilens der Giite innerhalb einer Nische, um eine moglichst breitgestreute Vertei-
lung der Individuen zu erreichen, stammt von Goldberg & Richardson (1987). Die présentierte
Turnierselektion fiir die Mehrzieloptimierung stammt von Horn & Nafpliotis (1993). Ubersich-
ten zur Thematik der Mehrzieloptimierung konnen den Publikationen von Fonseca & Fleming
(1997), Horn (1997) und Coello (1999) oder dem Buch von Deb (2001) entnommen werden.
Bei den modernen Verfahren wurde SPEA2 von Zitzler et al. (2001) und PAES von Knowles &
Corne (1999) eingefiihrt. Beim letzteren kann die Beschreibung des zur Implementation ben6tig-
ten Gridfiles der Standardliteratur zu Algorithmen und Datenstrukturen (Ottmann & Widmayer,
2002) entnommen werden.

Die Betrachtung von zeitabhingigen Problemen und evolutiondren Algorithmen reicht bis zur
Arbeit von Goldberg & Smith (1987) zurtick. Seit dieser Zeit wurden sehr viele unterschiedliche
Arten von Dynamik betrachtet. Eine Klassifizierung kann beispielsweise dem Artikel von De
Jong (2000) oder der Versffentlichung von Weicker (2000) entnommen werden. Die Hypermu-
tation wurde von Cobb (1990) eingefiihrt und in der Folgezeit mit unterschiedlichen Varianten
betrachtet (Cobb & Grefenstette, 1993; Grefenstette, 1999). Die Methode der zufilligen Einwan-
derer stammt ebenfalls von Cobb & Grefenstette (1993). Die oben bereits angefiihrte Technik
des Gtiteteilens von Goldberg & Richardson (1987) wird auch fiir zeitabhingige Probleme be-
nutzt — ebenso wie andere Techniken zur Nischenbildung (z. B. bei Cedefio & Vemuri, 1997),
auf die hier jedoch nicht niher eingegangen wird. Der thermodynamische GA wurde von Mori
et al. (1996) entwickelt. Verfahren mit einer beschrankten Paarung wurden beispielsweise mit
Markierungen von Liles & De Jong (1999) bzw. abstandsbasiert von Ursem (1999) betrachtet.
Diploide evolutiondre Algorithmen wurden als erstes von Goldberg & Smith (1987) betrachtet
und in der Folgezeit auf unterschiedliche Art und Weise modifiziert (vgl. die Arbeiten von Ng &
Wong, 1995; Lewis et al., 1998). Zur Verwendung von lokalen Mutationsoperatoren gibt es eine
ganze Reihe an Arbeiten (Angeline, 1997; Béck, 1998; Arnold & Beyer, 2002, 2006, Weicker,
2005). Die variable lokale Suche fiir genetische Algorithmen geht auf die Arbeit von Vavak et al.
(1996) zuriick. Eine Ubersicht zu den unterschiedlichen Techniken, mit dynamischen Problemen
umzugehen, kann auch dem Bericht von Branke (1999) entnommen werden. Die Zuordnung der
Techniken zur den Problemcharakteristika stammt vom Autoren (Weicker, 2003).

Die erste Arbeit, die sich mit verrauschten Zielfunktionen beschiftigt stammt von Fitzpa-
trick & Grefenstette (1988). Dort findet sich auch bereits der Losungsansatz der Mehrfachbe-
wertungen im Kontext von genetischen Algorithmen wieder. Die Verdnderung der Standardab-
weichung durch Mehrfachbewertungen ist ein Resultat der statistischen Stichprobentheorie. In
der Arbeit von Hammel & Béck (1994) wurden Mehrfachbewertungen fiir Evolutionsstrategi-
en untersucht, was zu wesentlich anderen Resultaten als bei genetischen Algorithmen geftihrt

5.6 Historische Anmerkungen 225

hat. Einen Vergleich zwischen lokaler Suche und populationsbasierten Verfahren kann dem Ar-
tikel von Nissen & Propach (1998) entnommen werden. Weitere Arbeiten, die sich mit der Po-
pulationsgréBe bei genetischen Algorithmen (und der Bedeutung von Schemata) beschiftigen,
sind von Goldberg et al. (1992) und von Miller (1997). Der Ansatz zur Reduktion der Auswer-
tungen durch statistische Tests stammt von Stagge (1998). Ganz dhnliche Techniken werden
auch in Aizawa & Wah (1994) beschrieben. Der Vergleich der unterschiedlichen Selbstanpas-
sungsregeln geht auf Angeline (1996) zuriick. Die prasentierte Kappa-Ka-Methode wurde erst-
mals in dem Buch von Rechenberg (1994) publiziert und theoretisch von Beyer (1998) unter-
sucht.

Eine kurze Ubersicht zu stabilen Losungen kann dem Artikel von Branke (1998) entnommen
werden. Die Nutzung der Mehrzieloptimierung zur Erzeugung stabiler Losungen stammt von Jin
& Sendhoff (2003). Einen Uberblick zu Rauschen und Stabilitit findet der Leser auch in dem
Artikel von Jin & Branke (2005).

Zur Optimierung zeitaufwéndiger Bewertungsfunktionen wurden erste Ideen von Ratle (1998)
prasentiert. Eine der frithen Anwendungen mit neuronalen Netzen wurde von Weicker et al.
(2000) durchgefiihrt. Eine Ubersicht iiber das Gebiet kann dem Artikel von Jin (2002) entnom-
men werden. Regis & Shoemaker (2004) haben einen Ansatz mit den k-nichsten Nachbarn zur
Aktualisierung der Modelle vogestellt. Die ersten Ansétze flir die Parallelisierung evolutiondrer
Algorithmen sind in der Arbeit von Grefenstette (1981) enthalten, in der sich schon wesentli-
che Charakteristika der spiteren Implementierungen wiederfinden. Frithe Beispiele fiir die glo-
bale Parallelisierungsstrategie stellen die Arbeiten von Fogarty & Huang (1991) und Punch et al.
(1993) dar. Die grobkérige Parallelisierung wurde u.a. zunéichst von Tanese (1987) implemen-
tiert. Andere wichtige Arbeiten zu dieser Technik stammen von Starkweather et al. (1991) und
Miihlenbein (1989). Die ersten Arbeiten zu feinkérnigen parallelen evolutionéren Algorithmen
gehen auf Robertson (1987) und Gorges-Schleuter (1989) zuriick. Mehr zu diesem Thema kann
beispielsweise den Ubersichtsartikeln von Canta-Paz (1999), Tomassini (1999) und Alba & Tro-
va (1999) entnommen werden.

Die Diskussion der Behandlung von Testféllen findet sich so in der Arbeit von Paredis (1994,
1997) wieder. Generell wurden koevolutiondre Algorithmen mit mehreren Populationen ohne
direkten genetischen Austausch erstmals von Hillis (1992) betrachtet. Koevolutionire Ideen wur-
den dabei auch in anderen Zusammenhingen immer wieder benutzt. Besonders interessant sind
dabei kooperative/symbiotische koevolutiondre Algorithmen (Potter & De Jong, 1994, 2000; Wat-
son & Pollack, 2000). Die entstehende Suchdynamik wurde beispielsweise von Wiegand et al.
(2003) untersucht.

Die koevolutiondre Erzeugung von Spielstrategien wurde erstmals von Axelrod (1987) an-
hand des iterierten Gefangenendilemmas thematisiert. Mit einem K.O.-Turnier haben Angeline
& Pollack (1993) zu Tic Tac Toe experimentiert. Mit Varianten der Turnierselektion wurde fiir
eine Vielzahl von Spielen gearbeitet: Dame (Chellapilla & Fogel, 2000), Backgammon (Pollack
& Blair, 1998) und Go (Lubberts & Miikkulainen, 2001).

6 Anwendung evolutioniirer Algorithmen

Nach der Kldrung, wie evolutiondire Algorithmen untereinander verglichen werden kénnen, wer-
den einige Vorgehensweisen hinsichtlich der Entwurfsmethodik bei evolutiondren Algorithmen
preasentiert. Mehrere Fallstudien runden dieses Kapitel ab.

Lernziele in diesem Kapitel

&> Empirische Methoden kénnen zur Beurteilung von evolutionéiren Algorithmen eingesetzt
werden.

&> Die Moglichkeiten, Problemwissen zu integrieren, sind bekannt und ihr Einsatz kann ab-
gewogen werden.

&» Die grundsitzlichen Arbeitsschritte bei der eigenen Anwendung und Entwicklung von
evolutioniren Algorithmen sind verinnerlicht.

2> Durch die Fallstudien kdnnen eigene Probleme bei der Gestaltung von evolutioniiren Al-
gorithmen leichter eingeordnet werden, was zu einer verbesserten Handlungskompetenz
hinsichtlich der Verbesserung der Algorithmen fiihren soll.

Gliederung
6.1 Vergleich evolutionérer Algorithmen 228
6.2 Entwurf evolutionédrer Algorithmen 231
6.3 Nutzung von Problemwissen 241
6.4 Fallstudie: Platzierung von Mobilfunkantennen 243
6.5 Fallstudie: Motorenkalibrierung 253
6.6 Fallstudie: Stundenplanerstellung 261
6.7 Ubungsauffaben .ot s n i s 08 e aennni sy b33 266
6.8 Historische Anmerkungen 267

Bei jeder Anwendung evolutiondrer Algorithmen auf ein neues Optimierungsproblem stellt man
fest, dass die bisherigen Vorgehensweisen und Algorithmen nicht uneingeschrinkt iibernommen
werden konnen. Daher présentiert dieses Kapitel ein gewisses Minimum an allgemeingiiltigen
Regeln zum Vergleich und der Anpassung evolutiondrer Algorithmen ebenso wie den Versuch
einer Entwurfsmethodik. Verschiedene Fallbeispiele runden das Bild der Anwendung ab.

228 6 Anwendung evolutiondrer Algorithmen

durchschnittliche Giite

32
30
28
26
24
0,065

0,05
64 0,035

]) > 05 Mutationsrate
Populationsgrofie 2

Bild 6.1 Abhingigkeiten zwischen der Populationsgréfle und der Mutationsrate: Die Abbildung zeigt die
durchschnittlich erzielte Giite bzgl. des Einsenzdhlproblems.

6.1 Vergleich evolutioniirer Algorithmen

Aussagen zum Vergleich von Algorithmen sind essentiell fiir die Anwendung evolutiondirer Algo-
rithmen. Dies wird hier anhand der Frage der Parametereinstellung und Hypothesentests disku-
tiert.

Die Vielzahl der unterschiedlichen evolutiondren Algorithmen und der speziellen Techniken
macht das Grunddilemma der Anwendung evolutiondrer Algorithmen deutlich, welches auch
aus dem theoretischen »No Free Lunch«-Theorem (siehe Seite 117) folgt: Welcher Algorithmus
ist am besten fiir ein Problem geeignet? In diesem Abschnitt reduzieren wir die Frage zunéchst
darauf, wie ein Algorithmus optimal eingestellt werden kann. Und anschlieBend betrachten wir
Methoden, mit denen der Vergleich von Algorithmen tiberhaupt auf eine objektive Basis gestellt
werden soll.

Wie wir bereits erwdhnt haben, zeichnen sich evolutionidre Algorithmen durch eine Vielzahl
an einstellbaren Parametern aus. Hierzu zdhlen die Wahl einer geeigneten Darstellung flir das
Problem, die Wahl der verschiedenen evolutiondren Operatoren mitsamt ihren Parametern, der
Selektionsmechanismus, die richtige Populationsgréfie, aber auch die Bewertungsfunktion selbst.
Die Parameter erlauben einerseits eine hohe Anpassbarkeit des Algorithmus an das vorliegende
Problem, kénnen den Algorithmus allerdings auch sehr empfindlich gegeniiber veridnderten Ei-
genschaften des zu optimierenden Problems gestalten.

Diese Parameter kénnen meist nicht als einzelne, voneinander unabhingige Regler aufgefasst
werden, sondern bilden ein verwobenes Netzwerk. Die Abhédngigkeiten zwischen Parametern
sind in Bild 6.1 beispielhaft fiir das Einsenzéhlproblem auf einer binédren Zeichenkette bestehend
aus 32 Bits dargestellt. Das gesuchte Optimum ist dabei die Zeichenkette mit 32 Einsen. Die
Abbildung zeigt die Anzahl der Einsen in dem besten gefundenen Individuum gemittelt {iber
200 unabhingige Experimente flir jede Parameterkombination. Ein GENETISCHER-ALGORITHMUS
(Algorithmus 3.14) mit K-PUNKT-CROSSOVER (Algorithmus 4.2 mit £ = 2), BINARE-MUTATION
(Algorithmus 3.3) und TURNIER-SELEKTION (Algorithmus 3.10) wurde dabei benutzt. Die Cross-
overwahrscheinlichkeit wurde fest als 0,9 gewéhlt. Die Mutationsrate wurde variabel zwischen

6.1 Vergleich evolutiondirer Algorithmen 229

28 items 20 items, half mut. rate
. 2 . . ;
24800 [I S A— 129 - 1]
12000 |
24600 i
o 11800
=
24400
g 11600
g 24200 I
= L |
stdGA w/out rec. H4%0 diploid
24000 decoder (best) w/out rec. 11200 diploid w/out rec.
0 250 500 750 1000 0 250 500 750 1000
Generation Generation

Bild 6.2 Zwei Beispiele fiir den Vergleich zweier Algorithmen anhand der Giite iiber die Zeit — gemittelt
iiber jeweils 50 unabhidngige Experimente. (Mit freundlicher Genehmigung von ©Elsevier.)

0,005 und 0,065 (in 0,005-Schritten) gehalten. Jedem Experiment stehen 512 Auswertungen der
Zielfunktion zu. Da Populationsgréfien die Werte 2, 4, 8, 16, 32 und 64 annehmen kénnen, nimmt
die Anzahl der Generationen jeweils die Werte 256, 128, 64, 32, 16 und 8 an. Wenn man nun
fiir alle Kombinationen der Mutationsrate und der Populationsgréfie Experimente durchfiihrt und
das durchschnittliche Ergebnis auftrigt, erhélt man Bild 6.1.

Diese Abbildung verdeutlicht die Schwierigkeit der Parametereinstellung: Geht man nicht so
systematisch wie in diesem Experiment vor, sondern stellt die verschiedenen Parameter nachein-
ander ein, hingt das Ergebnis von der Ausgangseinstellung ab und ist in der Regel suboptimal.

Das bedeutet, die Verinderung jedes Parameters hat eine wesentliche Auswirkung auf die
Wirkungsweise der anderen Parameter. Gute Parametereinstellung sind ferner fiir jedes Problem
unterschiedlich und kénnen auch nicht auf andere Algorithmen mit anderen evolutionidren Ope-
ratoren iibertragen werden.

Theoretische Untersuchungen sind in erster Linie fiir einzelne Parameter vorhanden, wie z. B.
die optimale Mutationsrate fiir einen speziellen Algorithmus und ein spezielles Problem. Diese
Resultate sind nicht allgemeingiiltig. Dariiberhinaus ist alles weitere Wissen von heuristischer
Natur und das Ergebnis von empirischen Untersuchungen.

Da keine absoluten grundlegenden Aussagen moglich sind, bleibt nur ein direkter Vergleich
zweier Algorithmen (oder auch eines Algorithmus mit verschiedener Parametrisierung) zur Ein-
stellung oder Auswahl eines evolutiondren Algorithmus. Allerdings bekommt man so klare Trends
wie in Bild 6.1 nur, wenn man eine Vielzahl an Experimenten heranzieht. Wire dort jede Ein-
stellung nur fiir eine Optimierung genutzt worden, hétte man ein sehr uneinheitliches und eher
zufillig aussehendes Bild bekommen. Als Kriterien fiir den Vergleich von Algorithmen werden
iiblicherweise die beste gefundene Giite, die durchschnittliche Giite iiber alle Generationen, die
Anzahl der Generationen bis das bekannte Optimum gefunden wurde oder eines der vielen ande-
ren Merkmale herangezogen.

Doch wann kann man nun sicher sein, dass ein Algorithmus tatsdchlich besser als ein anderer
ist? Betrachten wir beispielhaft die beiden Vergleichskurven in Bild 6.2.

Lesen Sie an dieser Stelle bitte nicht weiter. Sondern versuchen Sie selbst zu beurteilen, welchem der beiden
Vergleiche Sie mehr trauen wiirden. Wo ist der Unterschied zwischen den Algorithmen deutlicher?

230 6 Anwendung evolutiondrer Algorithmen

Algl | 37 14 52 38 44 35 29 42 65 30
Alg2 | 42 39 47 51 41 48 38 49 40 53

Tabelle 6.1 Diese Daten von jeweils 10 Experimenten mit zwei Algorithmen werden in Beispiel 6.1 be-
trachtet.

Der GroBteil der Leser wird vermutlich auf den ersten Blick sagen, dass kein wesentlicher Unter-
schied zwischen den beiden Vergleichskurven zu sehen ist. Doch die genauen Beobachter werden
schnell feststellen, dass die Kurven im linken Diagramm ab Generation 250 quasi zusammenfal-
len, wihrend im rechten Diagramm immer wieder gro3ere Liicken zu beobachten sind. Dies kann
Grund zu der Annahme sein, dass sich die beiden Algorithmen rechts stirker unterscheiden.

Um jedoch tatsdchlich festzustellen, ob zwei Algorithmen sich unterschiedlich verhalten, reicht
die reine Betrachtung von Durchschnittswerten mehrerer Experimente nicht aus. Stattdessen soll-
te immer ein statistischer Hypothesentest durchgefiihrt werden. Dazu wird eine Hypothese formu-
liert, die wir widerlegen méchten — ndmlich dass es keinen Unterschied zwischen dem Verhalten
der beiden Algorithmen gibt, d. h. die beobachteten Differenzen wiren rein zufillig und kdnnten
bei neuen Experimenten wieder ganz anders ausfallen.

Der t-Test ist hierfiir eine mdgliche mathematische Technik. Er benétigt die Anzahl v der fiir
Jjeden der beiden Algorithmen durchgefiihrten Experimente Xyg7,1, ..., Xagr» und Xgpo21, ...,
Xyig2,v, sowie den Erwartungswert und die Varianz der Experimente:

1
—1
1

ErwA/g1 =

<

Y Xugri Var gy = Y (Xaggri — Erwa)?

Erw g2 =

A

SN Xygri Varyjgr =

<
|
—_

Dann ergibt sich der sog. t-Wert wie folgt:

_ EI‘WA]g] — EI'WA]g2

[Var y+Var
v

Je groBer der Betrag des t-Wertes ist, desto sicherer kann man sein, dass die Hypothese abzuleh-
nen ist, d.h. dass die beiden Algorithmen tatsichlich unterschiedlich sind. Uber kompliziertere
Formeln kann man sich ferner ausrechnen oder in Tabellen nachschlagen, wie grof3 die Fehler-
wahrscheinlichkeit ist. Dabei bezeichnet man eine Aussage als signifikant, wenn sie héchstens
eine Fehlerwahrscheinlichkeit von 0,05 aufweist, und als sehr signifikant bei einer Fehlerwahr-
scheinlichkeit kleiner 0,01. Bei jeweils 50 Experimenten fiir jeden Algorithmus hat man bei-
spielsweise eine signifikante Aussage mit einem t-Wert |¢| > 1,984. Bei jeweils 10 Experimenten
miisste |f| > 2,101 sein.

Beispiel 6.1:
Betrachten wir ein kleines fiktives Beispiel in Tabelle 6.1. Damit ergibt sich fiir den
ersten Algorithmus Erw 4;,; = 3,86 und Var 4, = 1,893 8. Der zweite Algorithmus hat
die Kennzahlen Erw 415> = 4,48 und Var 45> = 0,292 9. Dann errechnet sich der t-Wert
als t = —1,3258, d. h. es gibt keinen signifikanten Beleg dafiir, dass ein Algorithmus

6.2 Entwurf evolutionidrer Algorithmen 231

7 WSS, - 1 | significance for rec.
o 0 L | significance for no rec.
p=}) 2 1
& Al " i
B g
g |
O -6 0
E 8
5 -10
2 2 significance for stdGA ——— | -2
- 14 significance for decoder .
0 250 500 750 1000 0 250 500 750 1000
Generation Generation

Bild 6.3 Ergebnis des generationsweise angewandten t-Test auf die zwei Beispiele aus Bild 6.2. (Mit freund-
licher Genehmigung von ©Elsevier.)

besser als der andere ist. Tatsdchlich entspricht der Wert einer Fehlerwahrscheinlich-
keit von etwa 0,2.

Dieses Beispiel muss mit Vorsicht genossen werden, da der t-Test eigentlich von gleichen Varianzen in den

% Verteilungen ausgeht, was hier nicht der Fall ist. Tests, die unterschiedliche Varianzen erlauben, kommen
bei diesem Beispiel zu einem ganz dhnlichen Ergebnis — diese Tests kiénnen der Fachliteratur entnommen
werden. Insgesamt gilt der t-Test auch bei unterschiedlichen Varianzen als recht robust — das Ergebnis sollte
allerdings dann nicht unreflektiert akzeptiert werden.

Wird diese Technik auf die Beispieldaten aus Bild 6.2 angewandt, erhilt man fiir jede Generation
der Optimierung einen t-Wert. Die Ergebnisse sind in Bild 6.3 dargestellt. Wie man nun {iber-
raschend feststellt, ist der Unterschied im linken Vergleich bis etwa Generation 750 signifikant,
wihrend der rechte Vergleich nur in den ersten wenigen Generationen eine Signifikanz zeigt.
Unser erster Versuch der Interpretation von Bild 6.2 war also fehlerhaft und hitte zu falschen
Schlussfolgerungen gefiihrt.

Daher sollte hier als Grundregel festgehalten werden, dass jeder Vergleich zweier Algorith-
men nicht nur auf einer hinreichend grofien Anzahl an Experimenten sondern auch auf einem
entsprechenden Hypothesentest beruhen sollte. Dariiberhinaus muss man beachten, dass man
nicht einen gutparametrierten Algorithmus mit einem schlechtparametrierten vergleicht. Bevor al-
so zwei unterschiedliche Algorithmen verglichen werden, sollten alle Anstrengungen unternom-
men werden, eine gute Parametereinstellung fiir beide Algorithmen zu wihlen. Fiir den Vergleich
zweier Parametereinstellungen eines Algorithmus gilt natiirlich ebenfalls, dass die Anzahl der Ex-
perimente angemessen sein und der Vergleich iiber einen Hypothesentest gestiitzt werden sollte.

6.2 Entwurf evolutionéirer Algorithmen

Es wird eine generische, prototypische Vorgehensweise fiir die Entwicklung evolutiondrer Algo-
rithmen vorgestellt.

Wann immer man mit Anwendern von evolutioniren Algorithmen diskutiert, erfihrt man entwe-
der den Frust, dass der benutzte Standardalgorithmus nicht das gewiinschte Ergebnis produziert,

232 6 Anwendung evolutiondrer Algorithmen

. (Wahl eines
evolutionidren Algorithmus
A

!

p
Dekodier- und Bewertungs-
funktion implementieren

p
Auswahl der
L Standardoperatoren

P
- Parameter des]

Algorithmus setzen

{

Algorithmus
ausprobieren

A\
[unzufrieden, * [unzufrieden,
Variante 1] Variante 2]

[zufrieden mit Ergebnis Bild 6.4
oder Abbruch] & Der Ablauf des wiederverwendungsbasierten Ansatzes

zum Entwurf evolutiondrer Algorithmen.

oder der Anwender ist bereits einen Schritt weiter und fordert eine klare ingenieurméfige Anlei-
tung, wie ein »guter« evolutiondrer Algorithmus fir das eigene Problem konstruiert werden kann.
Trotz des vielversprechenden Titels dieses Abschnitts kann ich dies nicht in dieser allgemeinen
Form anbieten — ebensowenig wie die Autoren entsprechender Kapitel in anderen Lehrbiichern.
Im Weiteren wird neben den gebriuchlichen Vorgehensweisen eine generische Methode prisen-
tiert, die eventuell durch zukiinftige Uberarbeitungen zu einem hilfreichen Verfahren werden
kann.

6.2.1 Der wiederverwendungsbasierte Ansatz

Dieser Ansatz ist weitverbreitet und insbesondere fiir Anfinger der einzig gangbare Weg. Auf-
grund einer Empfehlung oder der Kenntnis nur eines Grundalgorithmus wird dieser als Kern fiir
die eigene Anwendung gewihlt. Bild 6.4 zeigt den Ablauf dieser Vorgehensweise. Die Anpas-
sung an das Optimierungsproblem findet vor allem bei der Wahl der Parameter und gelegentlich
auch der evolutiondren Operatoren statt. Die Wahl der Bewertungsfunktion wird i. d. R. nicht in
Frage gestellt, sondern zu Beginn einmal durchgefiihrt — sie spielt damit keine aktive Rolle im
Entwurfsprozess.

Es gibt zwei Auspragungen der Wiederverwendung, die sich im ersten und dritten Schritt des
Ablaufes aus Bild 6.4 duflert:

1. Es wird auf einen Standardalgorithmus aus einer der vielen bekannten EA-Bibliotheken
zurlickgegriffen.

2. Ein der Literatur entnommenes Entwurfsmuster bietet eine Empfehlung, welche Art von
Algorithmus fiir ein Problem mit den vorliegenden Charakteristika besonders geeignet ist.

6.2 Entwurf evolutionirer Algorithmen 233

In der ersten Variante findet die Wahl des Algorithmus meist unreflektiert statt. Dabei wird
die universelle Anwendbarkeit mit der Idee des universellen Optimierers verwechselt, welcher
beliebige Probleme effizient 16sen kann. Obwohl dies im Einzelfall erfolgreich sein kann, be-
legt das in Abschnitt 3.6 diskutierte »No Free Lunch«-Theorem, dass es sich dabei um keinen
generell wirksames Vorgehen handelt. Kreative Arbeit ist nur bei der Gestaltung der Bewertungs-
funktion méglich — wobei auch hierfiir hiufig ein Standardansatz gewiihlt wird. Die Anpassung
an das zu losende Optimierungsproblem findet i. d. R. nur in Form der Parametereinstellung statt.
Das Ergebnis dieser Entwurfsmethode sind meist Algorithmen, die entweder mangelhafte Lo-
sungskandidaten liefern oder hohe Rechenzeiten benétigen (dank der Notwendigkeit mehrfacher
Iterationen bei der Optimierung mit vorzeitiger Konvergenz).

Wieviel Vertrauen hiitten Sie in eine Briicke, deren Architektur eigentlich fiir einen Turm gedacht war, dann
aber solange manipuliert wurde, bis die Briicke stabil aussah?

Die zweite Variante kommt den Wiinschen der Ingenieure nach klaren Regeln entgegen. Der Vor-
teil ist wie bei der ersten Variante eine schnelle Umsetzbarkeit, wobei die meiste Zeit mit der Pa-
rametrisierung eines hédufig nicht ganz passenden Algorithmus verbracht wird. Die Schwierigkeit
dieser Methode liegt in der Charakterisierung der Problemklassen. Die existierenden Klassifika-
tionen sind zu grob gefasst (z. B. »globale Optimierung fiir reellwertige Parameter technischer
Systeme«), ohne die darin verborgene Vielfalt mit allen erdenklichen Schwierigkeitsgraden zu
beriicksichtigen. Alle Versuche, feinere Klassifikationen zu entwickeln, sind bisher gescheitert,
da es keine funktionierende Menge an Metriken gibt, welche die Eigenarten und Schwierigkeiten
eines Optimierungsproblems hinreichend beschreiben.

6.2.2 Der Forma-basierte Ansatz

Bei dem Forma-basierten Ansatz (bzw. Radcliffe-Surry-Methode) handelt es sich um einen mehr
formalen Ansatz zur Beurteilung verschiedener Reprisentationen und der darauf definierten Ope-
ratoren fiir ein vorgegebenes Optimierungsproblem. Er beruht auf der Forma-Theorie, die in Ab-
schnitt 3.3.3 vorgestellt wurde.

Als Grundidee sollen die so entworfenen Algorithmen das Schema-/Forma-Wachstum im Sin-
ne des Schema-Theorems unterstiitzen. Hierfiir ist es notwendig, dass die Reprisentation des
Genotyps eine sinnvolle Clusterung der Individuen erlaubt. In Abschnitt 3.3.3 wurden bereits
die folgenden Regeln aufgestellt, die wir nun in diesem Kontext als Entwurfsregeln bezeichnen
konnen:

* minimale Redundanz der Kodierung,
« Ahnlichkeit der Formae hinsichtlich der Giite und
* Abschluss gegen den Schnitt von Formae.

Fiir ein gutes Zusammenspiel des Rekombinationsoperators mit den Formae werden weiterhin
die folgenden Entwurfsregeln gefordert:

= Vertraglichkeit der Formae mit dem Rekombinationsoperator,
» Ubertragung von Genen und
+ die Verschmelzungseigenschaft.

234 6 Anwendung evolutiondrer Algorithmen

Da es nun an dieser Stelle nicht um eine theoretische Uberlegung geht, sondern der Entwurf
geleitet werden soll, fordern wir noch zusétzlich die Erreichbarkeit aller Punkte im Suchraum
durch den Mutationsoperator. Dies ist wichtig, um iberhaupt eine Konvergenz im gesuchten
Optimum unabhingig von der Anfangspopulation zu erméglichen.

Zur Beurteilung der »Ahnlichkeit der Formae hinsichtlich der Giite« soll hier noch kurz eine
Metrik, die Forma-Giite-Varianz, erwihnt werden, die anhand einer Stichprobe fiir eine Forma A
erhebt, wie hnlich die Giitewerte der Individuen in dieser Forma sind. Fiir P = (4D, ... 4()
mit AD.G € #(A) firalle i € {1,...,n} sei die Forma-Giite-Varianz definiert als

FGV(A,P):%- 3 (F(A(i).G)—;- 3 F(A(k).G)>. (6.1)

Besonders fiir Formae kleiner Ordnung sollte die Forma-Giite- Varianz méglichst klein sein. Dann
werden die richtigen Individuen zusammengefasst und es kann eine sinnvolle Rekombination dar-
auf gesucht werden.

Dieser Ansatz wurde fiir verschiedene Optimierungsprobleme bereits erfolgreich durchge-
fiihrt, allerdings ist er nicht fiir jedes beliebige Problem gut geeignet. Nachteilig ist die Tatsa-
che, dass der Ansatz wenig anleitend-konstruktiv ist — die Eingebung des Entwicklers ist von
wesentlicher Bedeutung fiir eine erfolgreiche Anwendung. Auch muss man beachten, dass der
Forma-basierte Ansatz von einer festen Aufgabenverteilung der Operatoren im Geflige der evolu-
tiondren Algorithmen ausgeht. Folglich kann auch nur eine entsprechend eingeschrinkte Vielfalt
an Algorithmen das Ergebnis eines solchen Vorgehens sein.

6.2.3 Der analysebasierte Ansatz

Die analysebasierte Ansatz (bzw. modifizierte Fischer-Methode) ist der erste Versuch, einen gene-
rischen Ablauf fiir den Entwurf evolutiondrer Algorithmen zu beschreiben. Sie beinhaltet sowohl
Aspekte des tiblichen Wiederverwendungsansatzes als auch Techniken der Radcliffe-Surry-Me-
thode und ist von den Vorgehensmodellen der Softwaretechnik inspiriert. Ein Uberblick iiber
den groben Ablauf ist in Bild 6.5 dargestellt. Die einzelnen Schritte werden im Weiteren genauer
beschrieben.

Die erste Phase der Entwurfsmethodik befasst sich mit der Anforderungsanalyse, in der die
wichtigsten Aspekte der Optimierungsaufgabe erarbeitet und dokumentiert werden. Die verschie-
denen Titigkeiten dieser Phase sind in Bild 6.6 dargestellt. Bei der Erstellung des Problemmo-
dells steht zunichst eine mathematische exakte Beschreibung des phénotypischen Suchraums €2
im Mittelpunkt — d. h. die Fragestellung, welche GréBen ein spiterer Optimierungsalgorithmus
iiberhaupt verédndern kann. Ferner miissen die harten Randbedingungen beschrieben werden, die
den Raum Q weiter beschridnken. Beim anschlieBenden Festlegen der Optimierungsziele werden
alle Kriterien identifiziert, die fiir eine Bewertung der Giite eines Losungskandidaten wichtig
sind. Diese miissen jeweils als Funktion f: Q — R einschlieBlich einer Richtungsvorgabe (maxi-
mieren oder minimieren) formuliert werden (sofern dies moglich ist). Bei mehreren ZielgréBen
muss ferner gekldrt werden, ob Prioritdten vorliegen und ob die Optimierung einen Losungskan-
didaten oder eine Menge von alternativen Lésungskandidaten ermitteln soll. Bei der Ermittlung
weiterer Anforderungen an die Optimierung werden alle Aspekte erfasst, die nicht direkt mit dem
eigentlichen Optimierungsvorgang zu tun haben:

6.2 Entwurf evolutiondrer Algorithmen 235

.—»(Anforderungsanalyse j

(Problemanalyse und Risikobewertung)

I
[Risiko zu hoch] —O
~@

[Risiko akzeptabel]?

(Représentationsalternativen erarbeiten)
Entwurf und Entwurf und
Implementierung Implementierung
Y XX Y

[Parametrisierung J (Parametrisierung]

[unzufrieden]

[unzufrieden]

[ok] [ok]

(Vergleich der alternativen Algorithmen)_,@

Bild 6.5 Der Ablauf des analysebasierten Ansatzes zum Entwurf evolutionérer Algorithmen.

.—»(Erstellung eines Problemmodells)

[Festlegen der Optimierungsziele)

{

(Anforderungen an die Optimierung)

Bild 6.6
Der Teilablauf des analysebasierten Ansatzes fiir die
Anforderungsanalyse. @‘_(

Problemwissen beschreiben)

+ Wie hiufig soll der Algorithmus angewendet werden? (genau einmal oder mehrfach)

* Gibt es Qualitdtserwartungen? (nur globales Optimum, Mindestgiite etc.)

+ Gibt es Zeit- oder Speicherbeschrankungen?

+ Wann werden Ergebnisse ben6tigt? (erst am Ende oder bereits wihrend der Optimierung)

Die erste Phase wird durch die Beschreibung des Problemwissens abgeschlossen. Hierbei ist alles
interessant, was die Eigenschaften des Problems oder dessen Losung betrifft. So ist eine genaue
Charakterisierung von einfachen und schwierigen Probleminstanzen, die Betrachtung von exis-
tierenden Losungskandidaten oder existierende Benchmarks ebenso relevant wie existierende
Heuristiken.

236 6 Anwendung evolutiondrer Algorithmen

Literaturrecherche)

{

Ermittlung von Problemcharakteristika j
* Bild 6.7

Der Teilablauf des analysebasierten Ansatzes fiir die
) Problemanalyse und Risikobewertung.

Bewertung des Risikos

Reprisentationsalternativen erarbeiten)

Bild 6.8
Der Teilablauf des analysebasierten Ansatzes fiir die
Erarbeitung von Reprisentationsalternativen.

r1e 1

Forma-Giite- Varianz vergleichen)

Die zweite Phase behandelt die Problemanalyse und Risikobewertung, deren Ziel es ist, so-
wohl einen umfassenden Einblick in die Optimierungsmdéglichkeiten zu bekommen als auch
bereits hier den méglichen Erfolg des Unternehmens abzuschétzen. Der Ablauf ist in Bild 6.7
illustriert. Dazu zahlt neben einer Literaturrecherche bzgl. des »State-of-the-art« auch eine Er-
mittlung von Problemcharakteristika. Interessant sind insbesondere Aussagen, ob das Problem
bereits mit einem evolutiondren Algorithmus geldst wurde und, falls ja, welche unterschiedli-
chen Ansitze es gab. Aber auch die Voraussetzungen fiir alternative Optimierungsverfahren (z. B.
Differenzierbarkeit, lineares Programm etc. — vgl. Abschnitt 2.6) sind genau zu priifen. Und
schlieBlich sollten grundsitzliche Aussagen zur Schwierigkeit des Problems gesucht werden —
wie die Suchraumgréfle, NP-Vollstidndigkeit, Anzahl der lokalen Optima bzgl. eines natiirlichen
Nachbarschaftsbegriffs, Verteilung der Punkte im Suchraum (Ist es ein Nadel-im-Heuhaufen-
Problem?) und spezielle Problemanforderungen (z. B. verrauscht, kostspielige Bewertung oder
zeitabhdngig). Dies alles ist die Basis fiir die abschlieBende Bewertung des Risikos, die einen
frithen Abbruchpunkt anbietet. Griinde hierfiir konnen u. a. die folgenden sein:

* Nadel-im-Heuhaufen-Problem mit groffem Suchraum,

* hinreichende Schwierigkeit und Problemgréfe verbunden mit der Forderung nach der Lie-
ferung des globalen Optimums als Ergebnis,

*» ungiinstige Relation der Zeit fiir die Bewertung eines Losungskandidaten zur insgesamt
erlaubten Optimierungszeit oder

+ das Vorhandensein eines klassischen Optimierungsalgorithmus.

In der dritten Phase, der Erarbeitung von Reprdsentationsalternativen, steht die logische Dar-
stellung eines Losungskandidaten im Zentrum der Uberlegungen. Diese logische Darstellung
sollte relativ nahe am Phénotyp des Problems formuliert sein, wobei er héufig schon eine geno-
typische Darstellung impliziert. Die Tatigkeiten dieser Phase sind in Bild 6.8 dargestellt.

Beispiel 6.2:
Zwei Beispiele fur die logische Reprisentation von Lésungskandidaten sind beim
Handlungsreisendenproblem die Darstellung als Reihenfolge der besuchten Stadte und
alternativ die Menge der benutzten Kanten im Graphen. Die erste logische Idee fithrt
im Weiteren direkt zum Tausch zweier Stadte als Mutationsoperator (VERTAUSCH-
ENDE-MUTATION in Algorithmus 2.1), wihrend die zweite auf der logischen Ebene

6.2 Entwurf evolutionirer Algorithmen 237

Entwurfsmuster auswiihlen

i

_.(Operatoren definieren

£

/S S

(Implementation
(Operatoranalyse

[unzufrieden]

Bild 6.9 [ok]
Der Teilablauf des analysebasierten Ansatzes fiir den

Entwurf und die Implementierung. ©_(

Testrahmen aufsetzen]

den Tausch zweier Kanten (INVERTIERENDE-MUTATION in Algorithmus 2.2) impliziert.
Diese logische Ebene kann vollig von der spéteren Darstellung im Genotyp getrennt
sein, die in Abschnitt 2.3 fiir beide Moglichkeiten als Permutation gewihlt wurde.

So manche Entwurfsentscheidung im einfiihrenden Abschnitt 2.3 wurde vor dem Leser verborgen, sollte
aber spitestens vor dem Hintergrund dieser spiiten Aufldsung klarer nachvollzichbar sein.

Da spiter zu formulierende Operatoren auf der logischen Ebene der Reprisentation agieren,
macht der nichste Teilschritt als Vergleich der Forma-Giite-Varianz (vgl. Gleichung (6.1), Sei-
te 234) eine essentielle Aussage dariiber, ob iiberhaupt die fiir die Bewertung der Lésungskandi-
daten wichtigen Aspekte durch die Reprisentation explizit gemacht werden. Dafiir ist es notwen-
dig die Repriisentation als Formae zu formulieren. Ublicherweise wird diese Metrik fiir Stich-
proben von Formae unterschiedlicher Ordnung durchgefiihrt. Je kleiner die Werte der FGV sind,
desto dhnlichere Losungskandidaten werden durch eine Forma beschrieben. Diese Ergebnisse
werden dann fiir eine Entscheidung herangezogen, mit welchen Reprisentationen weitergemacht
werden soll. Da diese Metrik eine grofle Anzahl an Stichproben fiir verldssliche Werte benétigt,
muss mit einem hohen zeitlichen Aufwand gerechnet werden.

Die nun folgenden zwei Phasen (Entwurf und Implementierung sowie Parametrisierung) miis-
sen fiir alle verschiedenen Reprisentationen durchgefiihrt werden — tatséchlich kénnen sie auch
in mehreren Varianten fiir eine Reprisentation umgesetzt werden. Zunichst steht in der Phase
Entwurf und Implementierung (vgl. den Ablauf in Bild 6.9) als Grundsatzentscheidung die Wah!
eines Entwurfsmusters an. Hierbei handelt es sich um einen Grobentwurf, der vorschreibt, wel-
cher Operator welche »Rolle« in der Optimierung iibernehmen soll. Giinstigstenfalls wurde der
Grobentwurf erfolgreich auf andere Probleme mit dhnlichen Eigenschaften bereits angewandt
und gewisse Merkmale hinsichtlich der Suchdynamik werden mit dem Entwurfsmuster verbun-
den. Diese konnen im letzten Teilschritt der Phase iiberpriift werden. Die verschiedenen Stan-
dardalgorithmen aus Kapitel 4 geben beispielsweise jeweils verschiedene Grobentwiirfe vor, aus
den speziellen Techniken im letzten Kapitel folgen weitere. Leider gelten fiir die Zuordnung
zu Problemeigenschaften dieselben Beschrinkungen, die bereits in Abschnitt 6.2.1 diskutiert
wurden. Daher ist dieses Wissen derzeit nur in sehr »schwammiger Form« in den Kopfen der
Experten vorhanden. Visionir sollten die Informationen in Tabelle 6.2 zu jedem Entwurfsmuster

238 6 Anwendung evolutiondrer Algorithmen

Aspekt Beschreibung

Name des Muster eindeutiger Bezeichner

Kontext Problemstellungen, die eine Anwendbarkeit des Musters nahe
legen

Mutationsrolle Vorgaben zur Wahl oder zum Entwurf des Mutationsoperators

(oder der Mutationsoperatoren)
Rekombinationsrolle | Vorgaben zur Wahl oder zum Entwurf des Rekombinationsope-
rators (oder der Rekombinationsoperatoren)

Selektionsrolle Vorgaben zur Wahl oder zum Entwurf des Selektionsoperators
(oder der Selektionsoperatoren)
Erfolgstaktoren Konkrete Eigenschaften des Optimierungsproblems oder sons-

tiger Anforderungen, die nach bisherigen Erfahrungen das Ent-
wurfsmuster positiv beeinflussen

Metriken zum Test konkrete Angaben zu Messungen, die dieses Muster aufweisen
sollte, wenn die Operatoranalyse durchgefiihrt wird

Tabelle 6.2 Aspekte in der Beschreibung eines Entwurfsmusters.

aufgezeichnet werden. AnschlieBend folgt die Definition der Operatoren, wozu hier Mutation,
Rekombination und Selektion gehdren. Diese Arbeit ist insbesondere bei komplexen Problemen
der kreative Teil des Entwurfsprozesses, flir den lediglich die Vorgaben des Entwurfsmusters
sowie der Anforderungen an die Optimierung als Leitkriterien dienen. Anschlieend folgt die
Implementation der physischen Reprisentation im Genotyp, der Operatoren und der Bewertungs-
funktion. Danach kann die Operatoranalyse durchgefiihrt werden, um festzustellen, ob die Ope-
ratoren auf der Bewertungsfunktion Entwurfsmuster-konform arbeiten. Tabelle 6.3 zeigt einige
Kriterien und Metriken, die bei dieser Analyse hilfreich sein konnen. Mangelhafte Ergebnis-
se konnen zu einer I[teration der Arbeitsschritte fiihren, die im Regelfall bei der Definition der
Operatoren ansetzt. Im Einzelfall kann auch das komplette Entwurfsmuster ausgetauscht wer-
den. Wenn die Ergebnisse der Operatorenanalyse zufriedenstellen sind, folgt noch das Aufsetzen
des Testrahmens. Dieser sollte die Kalibrierung der Parameter in der nidchsten Phase ebenso un-
terstiitzen wie auch den spéteren Vergleich. Stehen geeignete Werkzeuge zur Analyse und zur
statistischen Auswertung zur Verfligung, ist dieser Arbeitsschritt schnell erledigt. Den meisten
Bibliotheken und Programmen zu evolutiondren Algorithmen mangelt es jedoch an einer derarti-
gen Werkzeugunterstiitzung.

Die Phase der Parametrisierung wird ebenfalls fiir jede gewéhlte Reprisentation durchgefiihrt.
Bild 6.10 zeigt die involvierten Teilschritte. Zundchst erfolgt die Definition der Leistungsmetrik,
die bestimmt, wie aus den Giitewerten eines Experiments eine Bewertung in Form einer meist
reellwertigen Zahl berechnet wird. Einige gingige Leistungsmetriken sind in Tabelle 6.4 auf-
gelistet. Danach folgt das Erstellen eines Versuchsplans, wofiir zunéchst den freien Parametern
Wertebereiche und Faktorstufen zugewiesen werden. Anschliefend wird ein statistischer Ver-
suchsplan erstellt und die zugehérigen Experimente durchgefiihrt. Fir die Identifikation guter
Wertebereiche muss die statistische Versuchsplanung zunéchst durch eine Varianzanalyse ein in-
ternes Modell der Parameterabhingigkeiten anpassen. Details der statistischen Versuchsplanung
konnen der Fachliteratur entnommen werden. Wird dadurch ein qualitativ hochwertiges Modell
gewonnen, kénnen die Ergebnisse geeignet dreidimensional oder als zweidimensionale Projekti-

6.2 Entwurf evolutiondrer Algorithmen 239

Metrik Kurzbeschreibung

induzierte Optima Es wird geschitzt, wieviele lokalen Optima der Mutations-
operator induziert. Dies kann durch eine hinreichend grofle
Zahl an Hillclimbing-Léufen mit breit verteilten Startpunk-
ten angendhert werden.

Isoliertheit lokaler Optima Es wird geschétzt, wie stark die lokalen Optima im Durch-
schnitt getrennt sind. Durch ein umgekehrtes Hillclimbing
(sozusagen ein Valleydescending) wird das schlechteste In-
dividuum im Einzugsbereich jedes lokalen Optimums ge-
sucht.

Verbesserungswahrscheinlichkeit | Es wird durch Stichproben die Verbesserungswahrschein-
lichkeit (der Kinder iiber die Eltern) in Abhéingigkeit eines
Parameterwertes oder der Elterngiite erhoben.

erwartete Verbesserung Der durchschnittliche Giiteunterschied, falls das Kind eine
Verbesserung darstellt.
Korrelation der Elter-/Kindgiite Die Korrelation kann fiir Mutationen iiber Eltern-Kind-Paa-

re — evtl. auch unter Beriicksichtigung mehrer Mutations-
schritte — als Autokorrelation erhoben werden. Fiir die Re-
kombination entspricht dies dem Kovarianzterm im »fehlen-
den« Schema-Theorem aus Abschnitt 3.3.4.

Tabelle 6.3 Metriken flir die Operatoranalyse.

‘—»(Definition der Leistungsmetrik)

[Erstellen eines Versuchsplans)

(Experimente durchfithren)

(Identifikation guter Wertebereiche)

» [zufrieden]
Bild 6.10 @

Der Teilablauf des analysebasierten Ansatzes fiir die
Parametrisierung des Algorithmus. @{

[unzufrieden]

Analyse der Suchdynamik)

on (vgl. Bild 6.1) visualisiert werden. Die guten Wertebereiche kénnen entsprechend extrahiert
werden. Zusétzlich gewinnen wir aus der umfassenden Menge an Experimenten einen ersten ver-
lasslichen Einblick in das Leistungsvermégen des entworfenen Ansatzes. Falls dieses bereits an
dieser Stelle weit hinter den Erwartungen zuriickbleibt, ist ggf. eine genauvere Analyse der Such-
dynamik notwendig, um die Ursachen zu ergriinden und damit Hinweise fiir eine Uberarbeitung
der Entwurfsaspekte in einer weiteren Iteration zu erhalten.

Abschliefend erfolgt der Vergleich der alternativen Algorithmen, um den Sieger zu bestim-
men. Im Falle, dass nur ein Algorithmus entwickelt wurde, bietet sich ebenfalls ein Vergleich

240 6 Anwendung evolutiondrer Algorithmen

Leistungsmetrik Beschreibung
beste Glite Der beste Giitewert in allen betrachteten Generationen.
mittlere beste Giite In jeder Generation wird der beste Gilitewert bestimmt, aus

denen dann der Mittelwert berechnet wird. Dies betont die
Konvergenzgeschwindigkeit, falls evtl. nur wenig Zeit fiir
eine Optimierung zur Verfligung steht.

durchschnittliche Giite Der Durchschnitt iiber die Giite aller evaluierten Individuen
wird berechnet. Zusitzlich zur Konvergenzgeschwindigkeit
wird noch die Anzahl der evaluierten Individuen mitberiick-
sichtigt.

Erfolgswahrscheinlichkeit | Es wird in mehreren Experimenten gemessen, wieviel Pro-
zent davon einen vorgegebenen Gilitewert erreichen konn-
ten.

bendtigte Bewertungen Es wird gemessen, wieviele Individuen bewertet werden
mussten, bis ein vorgegebener Giitewert erreicht wurde.

Tabelle 6.4 Metriken fiir die Bewertung der Leistung eines evolutionédren Algorithmus.

=
[
Z
=)
2 g £ z
= g5 o E
< = .8 @ o0 =
S 93 25 2 Eg< s
w =3 S g s £ 3E =
E NN 5 5
s € E3 & p &= %
E 55 £S5 _& EXE 52
) g D S “— = e R
T 5% ZE 55 g2% 2a
S .7 58 B2 5.8 3 I
E g HE £EO0 Era (I
< A1 &M ="\ AT P
Antennenoptimierung (Weicker et al., 2003) | X X X XX X X XX
Handlungsreisendenproblem (Fischer, 2004) | X X X X X XX X X X

Tabelle 6.5 Zwei Beispiele fiir die umfangreiche Umsetzung der Entwurfsmethodik.

mit verschiedenen Varianten der identifizierten sinnvollen Parametern an. Diese Vergleiche soll-
ten immer iiber Hypothesentests abgewickelt werden, wie es in Abschnitt 6.1 beschrieben wur-
de.

Diese Vorgehensweise berticksichtigt alle bisher in diesem Buch vorgestellten Aspekte. Thr
grofler Nachteil ist der Zeitfaktor: In den wenigsten Anwendungen ist die Zeit vorhanden, um al-
le Schritte einzubeziechen. Allerdings kann die Entwurfsmethodik leicht an andere Rahmenbedin-
gungen angepasst werden — es konnen Teilabldufe weggelassen werden, wenn man sich der damit
verbundenen Konsequenzen bewusst ist. Als Spezialfille sind der wiederverwendungsbasierte
Ansatz (Abschnitt 6.2.1) und der Forma-basierte Ansatz (Abschnitt 6.2.2) in dem analysebasier-
ten Ansatz enthalten. In zwei gréBeren Studien wurde dieser Prozess ansatzweise umgesetzt, was
in Tabelle 6.5 dargestellt ist. Das Beispiel der Antennenoptimierung wird im Abschnitt 6.4 de-
tailliert vorgestellt.

6.3 Nutzung von Problemwissen 241

6.3 Nutzung von Problemwissen

Es wird ein kurzer Uberblick dariiber gegeben, wie Problemwissen und heuristische Methoden
in einen evolutiondren Algorithmus integriert werden kénnen.

Eines der wichtigsten Ergebnisse des »No Free Lunch«-Theorems aus Abschnitt 3.6 ist die Folge-
rung, dass fiir ein neues Problem die Standardverfahren nur bedingt als gute Optimierungsverfah-
ren herangezogen werden konnen. Fiir besser angepasste Algorithmen ist daher ein Vorgehens-
modell wie in Abschnitt 6.2.3 notwendig. Dabei bleibt allerdings immer noch die Frage offen,
wie man tatsichlich das Wissen iiber ein Optimierungsproblem in den Algorithmus einflieBen
lassen kann.

Das Problemwissen kann sehr unterschiedliche Formen besitzen. Neben den bisher besten be-
kannten Losungen in Form von Lésungskandidaten ist auch Hintergrundwissen tiber Zusammen-
hiange innerhalb des Problems moglich, z. B. als physikalische/chemische GesetzméBigkeiten
oder als Erfahrungsschatz der Experten. Ebenso werden die Optimierungsprobleme oft bereits
ansatzweise manuell von Menschen gel6st oder angegangen — daraus lassen sich hdufig Heuristi-
ken ableiten.

Eine der ersten Entscheidungen beim Entwurf eines evolutiondren Algorithmus betrifft die
Wahl der Reprisentation fiir das Problem. Bei vielen praxisnahen Problemen bietet sich der
wiederverwendungsbasierte Ansatz (Abschnitt 6.2.1) meist nicht an, da die Standardreprésenta-
tionen nur bedingt geeignet sind. Stattdessen konnen komplexere Strukturen benétigt werden.
Ein Beispiel ist die Stundenplanung fiir eine Schule. Je nach Blickwinkel auf das Problem werden
andere Représentationen erreicht. Beim Beispiel der Stundenplanung ist es einerseits moglich,
die Stundenpline direkt als Tabellen abzulegen. Andererseits kann mit einer guten Heuristik im
Hinterkopf, welche aus einer Liste von Veranstaltungen einen Stundenplan soweit wie mdglich
erstellt, die Représentation auf die Liste der Veranstaltung reduziert werden. Jede der Reprisen-
tationen hat unterschiedliche Vor- und Nachteile: Bei der Tabellendarstellung koénnen direkt Ma-
nipulationen am Stundenplan vorgenommen werden, was in der Listendarstellung nicht méglich
ist. Allerdings konnen dort leicht Standardrekombinations- und -mutationsoperatoren benutzt
werden, wihrend die Tabellendarstellung den Entwurf neuer Operatoren bendtigt. Dieses Bei-
spiel verdeutlicht, wie eng die Wahl der Représentation mit der Wahl der Operatoren verkniipft
ist. Falls bekannte Heuristiken im Rahmen der evolutioniren Algorithmen genutzt werden sollen,
bietet es sich an, eine Darstellung zu wihlen, auf der diese Heuristiken einfach durchftihrbar sind.
Gerade in Projekten in der Industrie oder Wirtschaft fordert die Nutzung einer bereits etablierten
Reprisentation die Akzeptanz der evolutiondren Algorithmen bei Entscheidungstragern. Ebenso
kann dann in der Représentation enthaltenes Expertenwissen leichter genutzt werden. Nachteilig
an solchen angepassten Reprisentationen sind die bereits angesprochenen fehlenden Standard-
operatoren — sehr viel Aufwand ist in die Entwicklung von speziellen, angepassten Operatoren
zu investieren.

Falls wie oben angedeutet Heuristiken zur Optimierung einzelner Individuen genutzt werden,
sollte dies bei der Wahl der Reprisentation zwingend berticksichtigt werden. Heuristiken arbeiten
meist auf dem Phanotyp. Falls ein andersgearteter Genotyp gewihlt wurde, kann durch eine
bijektive Kodierungsfunktion gewahrleistet werden, dass Verdnderungen durch die Heuristik sich
im Genotyp wiederfinden. Eine derartige Heuristik kann als lokale Suche verstanden werden, die
wie in den memetischen Algorithmen (Abschnitt 4.6.3) eingesetzt wird.

242 6 Anwendung evolutiondrer Algorithmen

Algorithmus 6.1

STUNDENPLAN-HEURISTIK(Priifungsmenge A)

1 for Zeitschienei=1,... .,k

2 do " repeat " wihle eine konfliktfreie Menge von Priifungen

3 L suche Raume mit passender Grofie fiir Zeitschiene i

4 L until ausgewihlte Priifungen konnen komplett verplant werden

Algorithmus 6.2

PRUFUNGS-REKOMBINATION(Individuen 4, B wobei 4.G und B.G Stunden pro Zeitschiene enthalten)
1 verschoben — 0
verplant —
for Zeitschiene i < 1,...,k
do " C.G; — A.G;NB.G;
verplant — verplantUC.G;
verschoben «— (verschoben\UA.G;UB.G;) \ verplant
dazu — strat (Auswahlstrategie]) wihlt zu C.G; konfliktfreie Menge aus verschoben
C.G; — C.G;Udazu
verplant «— verplant\J dazu
L verschoben — veschoben\ dazu
return C

—_— O 00 1Nk W

—_—

Heuristiken kdnnen jedoch nicht nur bei der parameterbasierten Erzeugung oder Optimierung
von einzelnen Individuen benutzt werden. Oftmals gibt es technische Details in den Heuristiken,
die in einen anderen Ablauf eingebettet einen neuartigen Rekombinations- oder Mutationsopera-
tor ergeben. Innerhalb von Rekombinationsoperatoren kann das Ziel die Kombination von Eigen-
schaften der Elternindividuen sein, wihrend es im Mutationsoperator eine kleine aber beziiglich
des Problems sinnvolle Verdnderung am Individuum ist. Ein Beispiel fiir einen solchen Rekombi-
nationsoperator ist die Erstellung von Priifungsstundenpléanen Hochschulbereich: Innerhalb eines
begrenzten Zeitraums ist zu jeder Vorlesung eine Priifung durchzufithren. Abhéngig davon, wel-
che Vorlesungskombinationen von Studenten belegt wurden, diirfen bestimmte Priifungen nicht
gleichzeitig stattfinden bzw. sollten moglichst auch nicht direkt nacheinander abgehalten werden.
Zur Erstellung solcher Prifungsstundenplinen gibt es die einfache STUNDENPLAN-HEURISTIK
(Algorithmus 6.1).

Diese Heuristik liefert immer einen korrekten Stundenplan — allerdings ist offen, ob alle Prii-
fungen in die vorhandenen & Zeitschienen gepackt werden kénnen bzw. ob die Konflikte zwi-
schen angrenzenden Priifungen tatséichlich minimal sind. Daher bietet sich die Kombination evo-
lutiondrer Algorithmen mit der bewéhrten Heuristik an. Die PRUFUNGS-REKOMBINATION (Algo-
rithmus 6.2) tibertridgt die Grundidee der STUNDENPLAN-HEURISTIK in einen Rekombinations-
operator, der die Stundenpline der Elternindividuen fiir die Wahl der konfliktfreien Priifungen
benutzt.

Der Rekombinationsoperator verfdhrt nahezu identisch zur Heuristik — nur werden Priifun-
gen, die bei beiden Eltern in gemeinsamen Schienen liegen, sicher in das Kindindividuum {iber-
nommen (vgl. Abb. 6.11). Weitere Priifungen fiir Schiene i werden aus den bisher unverplanten
Priifungen der Schienen 1, ..., der Eltern ausgewihlt. Dabei gibt es die folgenden Strategien,
welche Priifungen bevorzugt werden:

6.4 Fallstudie: Platzierung von Mobilfunkantennen 243

Veranstaltungen der Zeitschiene

semeinsames wird

L=

Auswahlstrategie strat

CHLYS 0° %%

unverplant aus 1..... i—1 unverplant aus 1,...,7

Bild 6.11 Skizze, wie der Rekombinationsoperator gleich verplante Veranstaltungen aus den Eltern in das
Kindindividuum iibernimmt. Die grauen Veranstaltungen stehen in beiden Eltern in derselben
Zeitschiene, die schwarzen Veranstaltungen werden zusitzlich fiir die Zeitschiene / ausgewihlt
und die weillen Veranstaltungen kénnen nicht beriicksichtigt werden. Daher enthilt die Menge
der unverplanten Veranstaltungen immer diejenigen Veranstaltungen, die in einem der beiden
Elternteile bereits verplant waren, aber im Kindindividuum noch zu verplanen sind.

+ Priifungen mit der gréfiten Anzahl an Konflikten insgesamt,
* Priifungen mit dhnlichen Konflikten wie die der bereits verplanten Priifungen,
* Priifungen, die im anderen Elternteil sehr spiit verplant sind, oder

 diejenigen Priifungen mit einer moglichst minimalen Anzahl von Konflikten zur vorherigen
Zeitschiene.

Auch in diesen Auswahlstrategien schlagen sich Erfahrungswerte aus der Praxis nieder, die in
dem evolutioniren Algorithmus genutzt werden sollten.

Eine weitere Moglichkeit zur Nutzung von Heuristiken ist die Erstellung der Anfangspopu-
lation (Initialisierung). So kann der evolutiondre Algorithmus bereits auf einer Population mit
sehr guten Individuen aufsetzen. Wird dann ein elitirer Selektionsmechanismus genutzt, bleibt
die beste Losung — also auch das beste Ergebnis der Heuristik — immer in der Population erhal-
ten. Gerade in industriellen Projekten kann eine Garantie, dass immer wenigstens das gleiche
oder ein besseres Ergebnis wie mit der Heuristik gefunden wird, die Akzeptanz wesentlich erhé-
hen. Hinsichtlich der Suchdynamik des evolutionidren Algorithmus muss jedoch darauf geachtet
werden, dass die Anfangspopulation nicht zu speziell ist und dadurch die simulierte Evolution
einschriinkt.

6.4 Fallstudie: Platzierung von Mobilfunkantennen

Die hier vorgestellte Anwendung evolutiondirer Algorithmen hatte das Ziel, fiir ein vorgegebenes
Gebiet, Mobilfunkantennen so zu platzieren, zu dimensionieren und mit Frequenzen zu versehen,
dass der Bedarf gedeckt werden kann.

Die Arbeit in dieser Fallstudie wurde gemeinsam mit Nicole Weicker (Universitiit Stuttgart), Ga-
bor Szabo und Prof. Peter Widmayer (beide ETH Ziirich) durchgefiihrt. Dabei handelt es sich

244 6 Anwendung evolutiondrer Algorithmen

um eine »real world«-Anwendung, deren Losungsalgorithmus zumindest in einigen Aspekten
entlang des analysebasierten Ansatzes gestaltet wurde. Sie sollten daher besonders auf die fol-
genden Details achten:

* Wie die verschiedenen Aspekte des Problems in Bewertungsfunktionen und Randbedin-
gung formuliert wurden,

* wie die einzelnen Operatoren speziell auf das Problem zugeschnitten wurden,

» nach welchen Kriterien die Operatoren in ihrer Gesamtheit zusammengestellt wurden,

» wo eine Reparaturfunktion fiir die Randbedingung zum Einsatz kommt,

+ wie Effizienziiberlegungen zu einem eigenen Selektionsmechanismus gefiihrt haben und
 welches Vergleichkriterium im Rahmen der Mehrzieloptimierung genutzt wurde.

6.4.1 Aufgabenstellung

Die Architektur von groflen Mobilfunknetzen ist eine hochkomplizierte Aufgabe, die sich direkt
in der Netzverfiigbarkeit beim Endnutzer, den Kosten beim Provider und der Umweltbelastung
durch Elektrosmog niederschlagt. Daher muss eine Losung mindestens durch die beiden Kriteri-
en Kosten und Netzverfiigbarkeit bewertet werden.

Die Gestaltung der Architektur findet tiblicherweise in zwei Schritten statt:

1. Die Basisantennen werden platziert und in ihrer GréBe und Reichweite so konfiguriert, dass
sie den anfallenden Bedarf grundsitzlich abdecken kdnnen.

2. Entsprechend der Antennenkapazitidt miissen ausreichende Frequenzen den einzelnen An-
tennen zugewiesen werden, wobei Interferenzen zwischen den Antennen auftreten kénnen.
Diese sind durch geeignete Auswahl der Frequenzen minimal zu halten, um Probleme beim
spateren Betrieb zu vermeiden.

Beide Aufgaben sind NP-hart und es gibt fiir beide sowohl Heuristiken als auch evolutionire
Ansitze. Ublicherweise werden die beiden Optimierungen hintereinander ausgefiihrt, was je-
doch kritisch ist, da eine ungeschickte Platzierung und Dimensionierung der Antennen im ersten
Schritt die Losbarkeit des zweiten Problems stark einschranken kann. Auch Iterationen durch bei-
de Phasen sind schwierig zu gestalten, weil die Ergebnisse der zweiten Phase nur bedingt in eine
erneute Optimierung der ersten Phase einfliefen. Daher war von Anfang an eine Anforderung,
beide Optimierungsaufgaben gleichzeitig zu bearbeiten.

Die Anwendung betrachtet ein vorgegebenes, rechteckiges Gebiet definiert durch zwei gegen-
tiberliegende Ecken (xpyin, Vmin) UNd (Xmax, Ymax). Die Punkte des Gebiets werden nur in einer
Rasterung res betrachtet. Damit ergibt sich die Menge der Positionen als

Xmax — Xmin

Pos :{(xmm+i-res,ymin+j~res) |o<i< und 0 < j < Ymax = Vmin }

res res

Ein Teil dieser Positionen bezeichnet die Zellen zelle € Pos, fiir die ein statistisch ermitteltes Ge-
sprachsaufkommen bedarf (zelle) € N (Gespriche pro Zeiteinheit) bekannt ist. Das Gespriichsauf-
kommen fiir die betrachtete Beispielanwendung in Ziirich ist in Bild 6.12 dargestellt. Die Posi-
tionen in Pos stellen ferner die moéglichen Positionen fiir die Basisantennen dar.

6.4 Fallstudie: Platzierung von Mobilfunkantennen 245

it o AT

..... . »
-------- []]

e L R [] T N B
Bide.12 b eiesawas e ..
Zellen der Region Ziirich mit ihrem Gesprichsbedarf. Je ~ p = = = = = - L L iy
grdBer ein Punkt im Raster der Zellen ist, desto groBer ist : ks :

der Bedarf. (Mit freundlicher Genehmigung von ©IEEE.)

Die Aufgabe besteht darin, Antennen ¢ = (pow, cap, pos, frq) zu platzieren, wobei die Sende-/
Empfangsstirke pow € [MinPow, MaxPow] C N, die Gespriichskapazitiit cap € [0, MaxCap] C N,
die Position pos € Pos und eine Menge an Frequenzen/Kanilen fig C Frequ mit |frg| < cap
zugewiesen wird. Konkret steht fiir alle Antennen nur eine beschrinkte Menge an Frequenzen
Frequ={fi...., . fi } zur Verfiigung. Die Menge aller Antennenkonfigurationen ergibt sich als

T = [MinPow, MaxPow] x [0, MaxCap| x Pos x Frequ.

Es folgt mit der Entscheidung fiir einen sehr problemnahen Genotypen die folgende Darstel-
lung des Losungsraums als moégliche Individuen:

Q=9={{n,...t} | keNundV1 <i<k:t,€T}.

Dabei handelt es sich um einen Genotypen mit variabler Lénge.

Da die Netzverfiigbarkeit oberste Prioritdt hat, wird die vollstindige Abdeckung des Ge-
sprichsaufkommens als harte Randbedingung formuliert. Dabei wurde im Rahmen dieser Fallstu-
die zuniichst mit einem sehr einfachen Wellenverbreitungsmodell wp : Pos x [MinPow, MaxPow|
— (Pos) gearbeitet, das zu jeder Basisantenne 1 = (pow, cap, pos, frq) die erreichbaren Posi-
tionen wp(t) C Pos liefert. Dieses Modell hiingt hier nur von der Position der Antenne pos
und deren Stirke pow ab. Ein Losungskandidat 4 mit 4.G = (1y,..., f;) heiit giiltig, wenn
fiir jede Antenne #; und jede Position zelle € Pos eine Zuordnung der bedienten Gespriche
bedient(t;, zelle) € N bekannt ist, sodass die folgenden Bedingungen erfiillt sind:

* Die Basisantenne bedient nur erreichbare Zellen, d. h. fiir alle Antennen #; (1 <i < k) und
fiir alle Zellen zelle € Pos gilt

bedient(t;, zelle) > 0 = zelle € wp(t;).
« fiir jede Zelle zelle € Pos wird der Bedarf vollstindig abgedeckt

Y bedient(t;. zelle) > bedarf(zelle) und
ie{l....k}

246 6 Anwendung evolutiondrer Algorithmen

+ jede Antenne t; = (pow, cap, pos, frq) (1 < i < k) bleibt innerhalb ihrer Kapazitit

Y. bedient(t;, pos) < cap.

zellec Pos

Die eigentlichen Bewertungsfunktionen ergeben sich dann einerseits aus der Minimierung
moglicher Storungen durch zu eng gewihlte Frequenzen und andererseits aus den Kosten fiir die
bendtigten Antennen.

* Die moglichen Stérungen werden als Interferenzen bezeichnet. Sie treten auf, wenn An-
tennen dieselben Zellen bedienen und gleiche oder eng beieinander liegende Frequenzen
benutzen. Fiir einen Lésungskandidaten 4 mit Antennen ¢y, . . . , # wird dabei der Anteil der
potentiell gestérten Gespriche ermittelt

Yie(l,..k) fgestorteGesprache(t;)

ZZCHEEPOS bedarf(zelle)

finterferenz (A) =

» Die Kosten kosten(pow;, cap;) bestimmen sich fiir jede Antenne #; = (pow;, cap;, pos;, frq;)
aus der Stirke und der Kapazitdt. Womit sich die Gesamtkosten fiir einen Losungskandida-
ten 4 mit Antennen ¢y, . .., #; wie folgt ergeben:

Jrosten(4) = Z kosten(pow;, cap,) mit 4; = (pow,, cap;, pos;, frq;).
ie{l,... k}

Beide Bewertungsfunktionen miissen minimiert werde.

6.4.2 Entwurf des evolutioniren Algorithmus

Der Entwurf des evolutiondren Algorithmus orientierte sich an einem »Entwurfsmuster«, das
durch die folgenden Prinzipien umrissen werden kann.

» Da die Randbedingung hart ist, soll die Population immer nur giiltige Individuen enthalten.
Daher sollen die Operatoren nach Méglichkeit nur giiltige Individuen produzieren. Falls
dies nicht moglich ist, muss eine Reparaturfunktion zur Verfiigung stehen.

+» Jede Antennenkonfiguration des Suchraums muss zu jeder Zeit der Optimierung durch die
evolutiondren Operatoren erreichbar sein.

* Da es sich um Genotypen variabler Lange handelt, miissen sich verldngernde und verkiir-
zende Operatoren die Waage halten. Oder allgemeiner ausgedriickt: Jeder Operator kann
durch einen anderen wieder riickgingig gemacht werden.

* Feinabstimmung und Erforschung des Suchraums miissen ausgeglichen sein, d.h. neben
sehr speziellen problemspezifischen Operatoren miissen auch zufillige Operatoren vorhan-
den sein.

Da die Definition rein legaler Operatoren in einer so komplexen Anwendung nahezu aus-
sichtslos ist, wurde eine Reparaturfunktion definiert. Um festzustellen, ob ein Individuum gliltig
ist oder nicht, muss zunéchst iiberpriift werden, welche Frequenzen der einzelnen Antennen wel-
chen Zellen zugeordnet werden. Die Reparaturfunktion erledigt diese Zuordnung und fithrt auf

6.4 Fallstudie: Platzierung von Mobilfunkantennen 247

einem ungiiltigen Individuum fiir alle Zellen mit ungedecktem Bedarf (in einer zufdlligen Rei-
henfolge) die folgenden Verdnderungen durch:

1. Falls es eine Basisantenne mit freier Kapazitét gibt, wird diejenige mit dem stéirksten Signal
gewihlt und soviele Frequenzen wie moglich/notig zugewiesen.

2. Falls der Bedarf noch nicht (komplett) gedeckt ist, wird gepriift, ob es eine Basisanten-
ne gibt, die freie Kapazitit hat und durch Erhohung der Stirke die Zelle bedienen kann.
Konnen mehrere Antennen so erweitert werden, wird diejenige gewdhlt, fiir die die entste-
henden Mehrkosten minimal sind. Die Anderung der Stirke und der Kapazitit wird jedoch
nur durchgefiihrt, wenn es eine billigere Losung darstellt als die Einfithrung einer komplett
neuen Antenne im letzten Schritt.

3. Falls keine der oberen Mdglichkeiten den Bedarf decken konnte, wird eine neue Basisan-
tenne mit minimaler Konfiguration an oder in unmittelbarer Ndhe der Zelle hinzugefligt.

Die Reparaturfunktion wird nicht nur wihrend der simulierten Evolution benutzt, sondern dient
auch der Initialisierung der Anfangspopulation, indem sie auf ein vollstindig leeres Individuum
angewandt wird. Damit ist die Anzahl der unterschiedlichen Individuen in der Anfangspopulation
allerdings auf 217! durch die méglichen zufilligen Reihenfolgen der Bedarfszellen beschrénkt.

Es wurden insgesamt sechs Mutationsoperatoren gefunden, die gezielt Problemwissen benut-
zen. Dadurch sind sie nur unter bestimmten Bedingungen anwendbar, um den Lésungskandida-
ten aktiv zu verbessern.

DMI: Gibt es eine Antenne mit unbenutzten Frequenzen, dann wird die Kapazitit entsprechend
reduziert. Dadurch werden die Kosten reduziert.

DM2: Gibt es eine Antenne mit vollstandiger Kapazitit, die auch komplett benutzt wird, dann
wird eine weitere Antenne mit Standardeinstellungen in der Néhe platziert. Dadurch sollen
Regionen mit sehr hohem Gesprichsaufkommen bedient werden.

DM3: Gibt es Antennen mit groflen tiberlappenden Regionen, wird eine Antenne entfernt. Da-
durch soll die Gefahr der Interferenz reduziert werden.

DM4: Gibt es Antennen mit groflen iiberlappenden Regionen, wird die Stirke einer Antenne
so reduziert, dass dennoch alle Anrufe bedient werden. Dies reduziert sowohl Interferenzen
als auch Kosten.

DM35: Falls Interferenzen vorkommen, werden involvierte Frequenzen verdndert. Dadurch soll
die Interferenzen reduziert werden.

DM6: Gibt es Antennen, die nur eine kleine Anzahl an Anrufen bedienen, wird eine solche
Antenne geloscht. Das Ziel ist dabei, die Kosten zu verringern.

Da die Verénderungen dieser Mutationen nur von speziellen Gedankengéngen gestiitzt wer-
den, wie eine Losung verbessert werden kann, ist der Einsatz von zufilligeren Verédnderungen
notwendig, die ohne Vorbedingungen angewandt werden.

RM]I: Die Position einer Antenne wird verdndert — ihre Stirke und Kapazitit wird beibehalten.
Die Zuordnung der Frequenzen zu einzelnen Zellen muss durch die Reparaturfunktion neu
vorgenommen werden.

RM?2: Es wird ein zufilliges Individuum (wie in der Initialisierung) eingefiigt, um die Diversitit
in der Population zu erhéhen.

248 6 Anwendung evolutionirer Algorithmen

N Vs Y Y o
C % ‘>/ %)\ \J{
(NS :'\.‘5'.—. \ ;/)Cjﬁ.\;\\
T N @ DA

= \
Qﬂll p:]n:nl/
N L
N A
ll.’//-._':\' .o:) crossover . . ‘H.:_.‘- -
[~ &S \\
R l\: /

Bild 6.13

Arbeitsweise der Rekombination am Beispiel einer
vertikalen Teilung des betrachteten Gebiets. (Mit
repair freundlicher Genehmigung von ©IEEE.)

RM3: Die Stirke einer Antenne wird zufillig verdndert. Diese Operation ist notwendig, um DM4
auszugleichen.

RM4: Die Kapazitit einer Antenne wird zufillig veréndert. Diese Operation ist notwendig, um
DM auszugleichen.

RMS5: Die zugeordneten Frequenzen einer Antenne werden verindert. Diese Operation ist not-
wendig, um DMS5 auszugleichen.

Mit einem Rekombinationsoperator sollen die Antennenkonfigurationen und Platzierungen
fiir verschiedene Regionen aus unterschiedlichen Lésungskandidaten zusammengefiigt werden.
Hierfiir wird das Gesamtgebiet in zwei Hélften (horizontal oder vertikal) unterteilt. Von zwei
Individuen werden jeweils die Antennen einer Hilfte iibernommen, wobei Antennen nahe der
teilenden Grenze ausgelassen werden. Die dann noch bestehenden Liicken werden durch den
Reparaturalgorithmus gefiillt. Dies ist in Bild 6.13 veranschaulicht.

Fiir die Selektion wurden verschiedene Selektionsoperatoren fiir mehrere Zielfunktionen ge-
testet — darunter auch SPEA2 (Algorithmus 5.2). Dieser Operator ist jedoch mit einem relativ
grofen Zeitaufwand verbunden: &(fi*) um ein neues Individuum in das Archiv der GroBe [i zu
integrieren. Da jedoch in Anbetracht anderer wesentlich zeitaufwéndigerer Wellenverbreitungs-
modelle die Grundsatzentscheidung getroffen wurde, jedes neu erzeugte Individuum sofort in
den Genpool der Population (und evtl. auch in das Archiv) zu tibernehmen, wurde eine eigene
schnellere Selektion entwickelt.

6.4 Fallstudie: Platzierung von Mobilfunkantennen 249

Dafiir wird jedem Individuum A ein Rang zugewiesen, der auf den folgenden Mengen beruht:

* Dominiert(A4), der Menge der von A dominierten Individuen in der Population, und
» WirdDominiert(A4), der Menge der Individuen in der Population, die 4 dominieren.

Wird fiir zwei Zielfunktionen ein zweidimensionaler Bereichsbaum als Datenstruktur fiir die
Population benutzt, kénnen Individuen in ¢(log?) Zeit gesucht, eingefiigt und geldscht wer-
den. Bereichsanfragen, die alle Individuen in einem zweidimensionalen Bereich liefern, sind mit
Ok+ log® () moglich, wobei k die Anzahl der zuriickgegebenen Individuen ist. Der Rang be-
rechnet sich dann als

Rang(A) = #WirdDominiert(A) - 1L +#Dominiert(4).

Der erste Anteil sorgt fir das Anndhern an die Pareto-Front und der zweite Anteil bevorzugt,
weniger beliebte Regionen. Einzig, wenn alle Individuen gleichwertig sind, setzt ein zufilliger
Gendrift ein, der einzelne Teile der Pareto-Front in der Population aussterben l4sst.

Nun wird die Elternselektion als Turnierselektion auf Basis dieses Rangs durchgefiihrt. Die
Operatoren werden angewandt und es stellt sich die entscheidende Frage, ob das neue Individuum
B in die Population iibernommen werden soll und welches Individuum dafiir geldscht wird. Dafiir
werden die Mengen Dominiert(B) und WirdDominiert(B) berechnet und die folgenden vier Fille
unterschieden (vgl. auch Bild 6.14).

Fall 1: Beide Mengen sind leer, d. h. B ist ein neues nicht-dominiertes Individuum, und es gibt
ein Individuum mit schlechterem Rang. B wird ibernommen und verdringt das Individuum
C mit dem schlechtesten Rang. B hat Rang 0 und alle Individuen in WirdDominiert(C)
erhalten einen um 1 geringeren Rang.

Fall 2: Die Menge Dominiert(B) ist nicht leer. Dann wird B ebenfalls in die Population iiber-
nommen und verdringt das schlechteste Individuum C aus der Menge Dominiert(B). B
bekommt seinen neu errechneten Rang zugewiesen und alle Individuen aus der Menge
WirdDominiert(C) \ WirdDominiert(B) erhalten einen um | geringeren Rang.

Fall 3: Ist die Menge Dominiert(B) ist leer und WirdDominiert(B) nicht leer, bleibt das neue
Individuum unberticksichtigt, da es keine Verbesserung darstellt.

Fall 4: Sind beide Mengen leer und es wird kein Individuum von einem anderen dominiert, dann
wird das zu 16schende Individuum gemiB eines Malles flir die Nischenbildung ausgewihlt.
Bei ausreichend groBer Population ist dieser Fall sehr unwahrscheinlich.

Der resultierende Ablauf der ANTENNEN-OPTIMIERUNG ist in Algorithmus 6.3 dargestellt. Da-
bei ist zu beachten, dass ghnlich zum genetischen Programmieren immer nur ein Operator benutzt
wird, um ein neues Individuum zu erzeugen. Die Hiufigkeit kann iiber die Wahrscheinlichkeiten
oy > 0, prar > 0und prer > 0 mit ppas+ prac+ Prek = 1 eingestellt werden.

6.4.3 Ergebnisse

Die hier vorgestellten Ergebnisse beruhen auf dem in Bild 6.12 vorgestellten Gesprichsbedarf
eines 9 x 9km? Gebiets. Dabei betriigt die Rasterung fiir den Bedarf 500m und fiir die Platzie-
rung von Antennen 100m. Es wird von einem Gesprachsaufkommen von insgesamt 505 Anrufen

250 6 Anwendung evolutionirer Algorithmen

N wird Dominiert(B) N ' Dominiert(B)
2 ersetat 8
3 3 o
5 s |0 o
= = L
b o
(o]
O 9 wird
® (o] B ® o ersett
0
8]
° o (o]
o
(o]
Cran1) e Craiz) ®
WirdDominiert(B) ® WirdDominiert(B) L]
Kosten Kosten
| Dominiert(B) 8 l Dominiert{B)
3 o 3
5 O © Fall 3 E Fall 4
= L E °
® []
(o]
o wird nicht
] B fbernommen ® B
o []
°® O [e) ein Individuum
Y o] lo] ® mit vielen Nachbarn
® wird ersetzt
o o °
[] ®
[]
: 7 2 L
WirdDominiert(B) L] WirdDominiert(B) L
Kosten Kosten

Bild 6.14 Die vier verschiedenen Fille in der Ersetzungsstrategie fiir das Antennenproblem werden darge-
stellt.

Algorithmus 6.3
ANTENNEN-OPTIMIERUNG(Antennenproblem)
1 10

P(t) — initialisiere tt Individuen mit der Reparaturfunktion

berechne den Rang fiir die Individuen in P(r)

while 1 < G (maximale Generationenzahl))

do " A. B — selektiere aus P(t) gemif Rang und TURNIER-SELEKTION
C «+ wende einen Operator auf 4 (und bei der Rekombination auf B) an
berechne die Mengen Dominert(C) und WirdDominiert(C)
P(t +1) «— integriere C in P(¢) und aktualisiere die Ringe

Li—i+1
return nicht-dominierte Individuen aus P(r)

=B = I - L IS B W N S S]

ausgegangen. Ferner wurden #Frequ = 128 Frequenzen, die maximale Kapazitit MaxCap = 64,
Werte fiir die Stirke zwischen MinPow = 10dBmW und MaxPow = 130dBmW sowie Kosten
einer Antenne als kosten(pow;, cap;) = 10 pow; + cap; angenommen.

6.4 Fallstudie: Platzierung von Mobilfunkantennen 251

Hinsichtlich der Einstellung des Algorithmus wurden umfangreiche Experimente mit verschie-
denen Werten durchgefiihrt. Dies hat letztendlich zu einer Populationsgrofle p = 80, einer Tur-
niergréfe ¢ = 5 und einem Terminationskriterium bei 64 000 Bewertungen gefiihrt. Fiir den Al-
gorithmus SPEA2 wurde zusitzlich eine Archiv fiir 80 Individuen benutzt. Sowohl die Wahl der
Technik zur Mehrzieloptimierung als auch die Wahrscheinlichkeiten zur Anwendung der ver-
schiedenen Rekombinations- und Mutationsoperatoren waren dann Gegenstand noch ausfithrli-
cherer Untersuchungen.

Wie man sich leicht vorstellen kann, sind die gerichtete Mutationsoperatoren und die Rekom-
bination zu einseitig, so dass Algorithmen ohne zufillige Mutationsoperatoren zu oft in lokalen
Optima stecken bleiben. Wihrend die ausschlieBliche Nutzung der zufélligen Operatoren bereits
fiir bessere Ergebnisse sorgt, werden diese von der Kombination mit gerichteten Mutationsope-
ratoren noch weiter in den Schatten gestellt. Die Werte fiir die Zielfunktionen sind fiir jeweils
16 Experimente und die beiden betrachteten Mehrzieltechniken in Bild 6.15 und Bild 6.16 dar-
gestellt — dabei wurde zwischen gerichteten und zufilligen Mutationsoperatoren mit gleicher
Wabhrscheinlichkeit gewahlt.

Da der rein visuelle Vergleich dieser Bilder nahezu unméglich ist, wurde nach einer Mog-
lichkeit gesucht, eine statistische Aussage iiber die Qualitét der Ergebnisse zu machen. Hierfiir
ist es sinnvoll, jedes einzelne Experiment auf eine Vergleichszahl abzubilden. Basierend auf der
Beobachtung, dass die Pareto-Fronten eine anndhernd konvexe Form haben, wurde dafiir die
gewichtete Summe auf wie folgt normierten Werten benutzt.

T fimzrférenz (A)
: (A = L
f;nterfe) enz () 0 7
i Jrosten (A) — 7500
fkosten() 4500

I

Qual(P) = min (@ fiuergerenz(4) + (1~ @) Frosien(4))

Um einen Algorithmus als besser einzustufen musste der t-Test auf den Zahlenreihen mit je-
weils 16 Werten — fiir jedes Experiment einen Wert — eine Signifikanz ergeben, egal welcher
Wert o € {0,1; 0,2; 0,3: 0,4; 0,5; 0,6; 0,7; 0,8; 0,9} benutzt wird. Wihrend ein signifikanter
Unterschied zwischen der rein zufilligen Mutationsvariante und den beiden Kombinationsein-
stellungen zu beobachten ist, kann keine Differenz zwischen Bild 6.15 und Bild 6.16 gezeigt
werden.

Obiges Kriterium zum Vergleich zweier Algorithmen hat sich als ausgesprochen niitzlich her-
ausgestellt. Konkret konnte als bestes Verfahren die Variante mit der Technik SPEA2 und den
Anwendungswahrscheinlichkeiten pras = ppar = 0.3 und pre = 0,4 gefunden werden. Damit
wurden nicht nur die besten Ergebnisse in Bild 6.17 berechnet; es zeigt sich auch, dass sich mit
diesen Einstellungen das zeitintensivere Verfahren SPEA2 statt der vorgeschlagenen Mehrziel-
technik in ANTENNEN-OPTIMIERUNG lohnt.

Dieses Ergebnis scheint nicht mit einem visuellen Vergleich von Bild 6.16 und Bild 6.17
konform zu sein. Aber die meist breitere Verteilung der Individuen bei SPEA2 sind fiir dieses
Resultat verantwortlich. Das insgesamt beste Individuum wurde {ibrigens mit der effizienteren
Technik gefunden (vgl. Bild 6.16). Dies kann jedoch nur als einmaliger Gliicksfall und nicht als
Aussage bei der Bewertung der Algorithmen herangezogen werden.

252 6 Anwendung evolutiondrer Algorithmen

07

05 -
A
05 u =3
- T -
’§<X * . o=, N
h Fy
* * ‘A‘AA
o 04 > 4 r
H . A
é XX++ - - ..
8 X sd L
& o4 -l .
X +F
»x 3‘ 3
= =
Fx *
02 X
A
|
01 .6’.
rn
0 s

7500 8500 9500 10500 11500
Cost

Bild 6.15 Nichtdominierte Individuen aus den Experimenten mit SPEA2, prays = ppar = 0,5 und prer = 0.
(Mit freundlicher Genehmigung von ©IEEE.)

07

06
.
*
05 hd -
A g7
A‘ + .
= +
A +j<- F3
8 04 =+ -'
o A
- 3 L
3 * Soey [P
8 g, X X,
%]
< -
[
02 L] 3
Lo | -
el]
01 3 x_}(b4
=
+ L ?‘1
0

7500 8500 9500 10500 11500

Cost

Bild 6.16 Nichtdominierte Individuen aus den Experimenten mit der eigenen Selektion, prys = ppyr = 0.5
und pprer = 0. (Mit freundlicher Genehmigung von ©IEEE.)

6.5 Fallstudie: Motorenkalibrierung 253

07

06
‘ --
4
05 A =
) =
Aa,
X L
© 04 * +=
8 S A -
g .‘ ™ .#._)_ -
E
g o, = 'Q. X
. 7
X +4 X
x| ¥ %9 3
[
0z S O A
Py * g
* Y
X i -
01 X x 4
+ "
- ™ |] 4
- i
B .

7500 8300 9500 10300 11500

Cost

Bild 6.17 Nichtdominierte Individuen aus den Experimenten mit SPEA2, pras = ppyr = 0,3 und prer = 0,4.
(Mit freundlicher Genehmigung von ©IEEE.)

6.5 Fallstudie: Motorenkalibrierung

Diese Anwendung hatte das Ziel, durch den Einsatz von evolutiondren Algorithmen, den Kali-
brierungsprozess elektronischer Steuergerdte in Verbrennungsmotoren zu unterstiitzen und nach-
haltig zu verbessern.

Die Arbeit in dieser Fallstudie wurde gemeinsam mit Prof. Andreas Zell (Universitidt Tibin-
gen), Thomas Fleischhauer, Dr. Alexander Mitterer und Dr. Frank Zuber-Goos (alle BMW AG)
durchgefuhrt. Dabei handelt es sich um eine industrielle Anwendung, die direkt in der Motoren-
entwicklung umgesetzt wurde. Im Rahmen dieses Buchs sind die folgenden Details interessant:

* Wie die approximativen Aspekte, insbesondere die zeitaufwéndige Bewertung und die un-
scharfen Giitewerte, umgesetzt wurden,

+ wie technische vorab nicht bekannte Randbedingungen beriicksichtigt werden,
» wie verschiedene Verfahren zur Losung der Aufgabe miteinander verkniipft werden und

+ wie durch geschicktes Einpassen eines Standardalgorithmus in einen Prozess ebenfalls die
Anpassung an ein Problem erreicht werden kann.

6.5.1 Aufgabenstellung

In einem elektronischen Motorsteuergerit werden in Kennfeldern Werte abgelegt, die die tech-
nischen Stellgroflen des Motors abhingig von Betriebsbedingungen einstellen. Typischerweise

254 6 Anwendung evolutionirer Algorithmen

technische
Randbedingungen Stérgrofen

t % z

Stell- l Ausgangs-
grélen gréfiien
Steuer- y System X, X,
gerat Verbrennungs- ————*
(ECU) mator

Bild 6.18 Der Verbrennungsmotor als Blackbox-System. (Mit freundlicher Genehmigung des Oldenbourg
Verlags.)

sind die Kennfelder von der aktuellen Motordrehzahl und der relativen Luftmasse (d. h. dem Hub-
volumen des Zylinders) abhingig. Der zweite Faktor widerspiegelt den Wunsch des Fahrers und
hingt direkt vom Gaspedal ab. Die technischen StellgréBien steuern direkt den Verbrennungsvor-
gang — beispielsweise durch die genaue Angabe, wann Luft/Krafistoff in den Zylinder einflief3t
und wann die Ziindung erfolgt. Die Wahl dieser Grdfien bestimmt nicht nur die Leistung des
Motors, sondern auch den Kraftstoffverbrauch und die Menge der Schadstoffemission.

Formal kann man einen Motor als Blackbox-System in Bild 6.18 auffassen, das die Stellgro-
Ben in gewisse interessante Zielgrofien abbildet. Grundsiitzlich muss neben den externen Einfliis-
sen auch ein interner Systemzustand beriicksichtigt werden. Im Rahmen der stationdren Opti-
mierung an einem Motorenpriifstand wird jedoch vereinfachend angenommen, dass das System
nicht von einem inneren Zustand abhingt bzw. zu jedem Zeitpunkt ein eingeschwungener Sys-
temzustand vorliegt. Die einzelnen Bestandteile des Systems sind:

+ StellgréBen y € R™, wie z. B. der Ziindzeitpunkt (Ziindwinkel) und die Verstellung der
Steuerzeiten fiir das Einlass- bzw. Auslassventil (Einlass- bzw. Auslassspreizung),

« Storgrofen z € R, z. B. Umgebungsbedingungen wie Luftfeuchtigkeit, -temperatur, -druck
und Kraftstofftemperatur sowie

» AusgangsgroBien x, € R" und x, € R". Mit x, werden die direkten ZielgréBen der Op-
timierung bezeichnet, wihrend die Ausgangsgréfien x, in Form von Randbedingungen bei
der Optimierung einfliefen. Direkte ZielgréBen sind beispielsweise der Kraftstoffverbrauch
und die Schadstoffemissionen. Die unkontrollierte Verbrennung (Klopfen) oder die Abgas-
temperatur sind entsprechende Randbedingungen.

Der Suchraum ist ergibt sich damit als = R™ "=,
Dabei unterliegen dem komplexen System »unbekannte« Funktionen, welche die verschiede-
nen Eingangsgréfien auf die beobachtbaren Ausgangsgrifien abbilden.
Xg = f(y,z) mit f: R - R"
x,=g(y,z) mit g: R - R™

Im Rahmen der Optimierung sind nur jene Lsungskandidaten von Interesse, die den folgen-
den zwei Arten von Randbedingungen geniigen:

6.5 Fallstudie: Motorenkalibrierung 255

+ Technische Randbedingungen stellen feste Beschrankungen beziiglich des Suchraums R™
dar. Diese werden einerseits durch die vorgegebenen physikalischen Grenzen der Stellgro-
Ben und andererseits durch experimentell ermittelte unerlaubte Stellgr6Benkombinationen
definiert. Die n, Bedingungen werden in der Funktion ¢ mit

() <0

zusammengefasst.
+ Randbedingungen, die sich aus der Systemreaktion ergeben, werden ausschlieBlich aus den

Messgrofen am Priifstand abgelesen. Vereinfachend wird hierbei angenommen, dass sie der
folgenden Ungleichung geniigen.

x, =g z) <0

Die Storgréfien z werden bei der Optimierung meist vernachlissigt bzw. als konstanter Vektor 2/
angenommen. Die Menge aller Individuen, die den Randbedingungen geniigen, wird dann mit

Qlegal = {y €Q |g(y,z') S 0 und l(y) S 0}

bezeichnet.

Das Ziel der Optimierung ist, eine Einstellung y* € R zu finden, die sowohl Pareto-optimal
ist, als auch alle Randbedingungen erfiillt.

Auftretende Messfehler bei der Bestimmung der Werte fiir x,, x, und z bzw. bei der Vorgabe
der StellgréBen y bleiben in dieser formalen Beschreibung unberiicksichtigt.

Bei der Applikation von Motorsteuergerdten entspricht ein gefundener Stellgréfienvektor y*
genau den Einstellungen fiir einen Betriebspunkt bestehend aus der aktuellen Drehzahl und der
spezifischen Luftmasse. Um die Steuerung im gesamten Betriebsbereich zu optimieren, ist der
Vektor y* fiir ein komplettes Raster von Betriebspunkten zu optimieren und in Kennfeldern abzu-
legen.

Die Ermittlung der Kennfelder wird konventionell durch eine manuelle Optimierung am Mo-
torenpriifstand vorgenommen. Allerdings wichst die Anzahl der Stellgroflen bei modernen Mo-
toren auf n, > 5. Der mit der Einstellung der Kennfelder verbundene exponentielle Aufwand
ist daher selbst bei grofler Automatisierung am Priifstand nicht mehr zu bewerkstelligen. Die
vorhandenen Alternativen zur Ermittlung der Kennfelder sind in Bild 6.19 dargestellt. Simula-
tiosmodelle wie die Software PROMO (Bild 6.19 Mitte) beruhen auf physikalischen Gleichun-
gen. Allerdings werden dabei keine Schadstoffemissionen betrachtet und die Modelle konnen
nur bedingt an spezielle Fragestellungen angepasst werden. Auch die automatisierte Online-Op-
timierung wie in den damals verfugbaren Produkten CAMEO und VEGA ist nur bedingt geeignet.
Schwachpunkte sind Restriktionen hinsichtlich der Anzahl der Stellgréfen und des zugrunde-
liegenden Modells, aber auch in der mangelhaften Méglichkeit zur Anpassung an spezifische
Firmenprozesse.

6.5.2 Entwurf des evolutioniiren Algorithmus

In Anbetracht der sehr kostspieligen und verrauschten Bewertungsfunktion wurde ein Ansatz
gewihlt, der zunéchst ein Modell des Motorverhaltens erstellt, um damit schnell mit einer Evolu-

256 6 Anwendung evoluliondrer Algorithmen

Motor am
Prifstand

'

/ ™\

manuelle Vermessung
Applikation von einzelnen automatisierte
Uber einzelne Betriebspunkten online-
vermessene Optimierung
Betriebspunkte Modell-
abgleich

Simulationsmo-
dell fir den Kratft-
stoffverbrauch

Bild 6.19
Bestehende Optimierungsansitze zur Steuergerateapplika-
tion. (Mit [reundlicher Genehmigung des Oldenbourg Ver-

Abstlmmung des

Motorsteuergerates))
ags.
Erstellung des . P Berechnung der
{ Versuchsplans] [Modellbildung J [Optimierung J Kennfaldar
A\\

opfimizrte venf zierte
Staligroken- StellgroRen-
Kombmahon Kombinationen

Abgleich durch Veri-
fikationsmessungen

Bild 6.20 Ablauf der Steucrgerateapplikation. (Mit freundlicher Genchmigung des Oldenbourg-Verlags.)

/_\-\\
isti neuronale
Q%iféﬁ:;:;) (Mal&daten) und statistische
Modelle

— —

8

Vermessung von
Betriebspunkten

Kennfeldar)

~—

*——| Motor |«

tionsstrategie die interessanten Motoreinstellungen zu entdecken. Das Vorgehen ist in Bild 6.20
dargestellt und umfasst die folgenden Schritte.

1. Zur Modellerstellung sollen am Motorenpriifstand moglichst wenig Messungen durchge-
fiihrt werden. Daher wird cin statistischer Versuchsplan crstellt, der dic bendtigten Stichpro-
ben vorgibt. Dabei gehen die Vorgaben des jeweiligen StellgréBenbereiches, das an Vorgén-
germotoren gewonnene Wissen sowie die Ergebnisse aus Voruntersuchungen ein.

2. Entsprechend dem statistischen Versuchsplan wird der Motor auf dem Priifstand vermes-
sen. Aufgrund der kurzen kompakten Messphase wird der Einfluss systematischer Fehler-
quellen, wie der Alterungsprozess des Motors oder die wechselnden Umweltbedingungen,
gering gehaltlen. Die resullierenden Messdaten bilden die Grundlage [lir die nachflolgende
Modellierung und Optimierung.

3. Im Rahmen der Modellbildung werden die Daten zunéchst analysiert und vorverarbeitet.
Die vorverarbeiteten Messdaten bilden die Grundlage fiir die Modellierung des System-
verhaltens mit kiinstlichen neuronalen Netzen und anderen Modellierungsmethoden wie
der multivariaten Regression an Polynommodellen. Durch eine mehrfache Abbildung des

6.5 Fallstudie: Motorenkalibrierung 257

x
Suchraum X% %
X e ® X

|étei[gr6[3.en _v.] [EinfluRgréRen z (konstant)|

“ “) ""‘“‘ \J i"“-—F ~ \l'
u O 2O

. 9 Randbe-
Bllq 6'.'1 I ZielgroBen X, dingungen X
Optimierung unter Beriicksichtigung der Such- : N L
raumbeschriinkungen in Form einer Straffunktion. . . @
(Mit freundlicher Genehmigung des Oldenbourg- funossiunidion
Verlags.) l Fitnesswert

Systemverhaltens (konkurrierende Modellierung) werden auftretende Modellungenauigkei-
ten kompensiert. Konkret werden die Eingangsdaten um 0 zentriert und mittels der Stan-
dardabweichung skaliert. Die Ausgangsdaten werden auf den Bereich [—0,9, 0.9] skaliert.
Als Lernverfahren werden Gradientenabstieg (Resilent Propagation und Scaled Conjugate
Gradient) sowie zwei Varianten des Gaull-Newton-Verfahrens (Rekursiv und Levenberg-
Marquardt) eingesetzt. Um sicherzustellen, dass das Modell gut zwischen den Messwerten
vom Priifstand interpoliert, sind Ubertrainingseffekte zu vermeiden. Hierfiir wurden mit der
n-Segment-Kreuzvalidierung sehr gute Ergebnisse erzielt.

4. Anschlieend werden die konkurrierenden Modellsysteme, bestehend aus Ziel- und Rand-
wertfunktionen, zur Optimierung der Stellgréfien an den untersuchten Betriebspunkten ver-
wendet. Als Ergebnis werden verschiedene Kandidaten fiir optimale Stellgréenkombinatio-
nen vorgeschlagen. Konkret werden Evolutionsstrategien mit separater Schrittweitenanpas-
sung sowie Sequential Quadratic Programming benutzt. Dabei gehen die Randbedingungen
wie in Bild 6.21 dargestellt als Strafterme in die Bewertungsfunktion ein. Meist wurde mit
einer mittleren Population (z. B. (10, 50)-Evolutionsstrategie) gearbeitet.

5. Die Resultate der Optimierung sind am Motorpriifstand zu verifizieren. So werden friih-
zeitig Modellungenauigkeiten erkannt. Ferner ist so eine Auswahl aus den verschiedenen
Stellgrofenkombinationen unter realen Bedingungen méglich.

6. Abschliefend werden die jeweiligen Kennfelder aus den ausgewiihlten Optimakandidaten
berechnet.

In den im Rahmen dieser Arbeit durchgefiihrten Studien wurde immer lediglich der Kraft-
stoffverbrauch als alleiniges Bewertungskriterium benutzt. Durch die vorgestellten Mehrzieltech-
niken aus Abschnitt 5.2 ist dies jedoch keine Einschrankung.

6.5.3 Ergebnisse

Als Ergebnisse betrachten wir hier einen Motor, fiir den bereits alle Kennfelder vorliegen, der
aber aufgrund baulicher Verdnderungen neu ausgelegt werden muss.

258 6 Anwendung evolutiondrer Algorithmen

Fiir die Erstellung des Versuchsplans in Phase I wird das zu untersuchende Gebiet in der
Drehzahl-Last-Ebene auf die Teillast von 1500-5000 U/min und der relativen Luftmasse von
20-70 % festgelegt. Der Versuchsraum fiir die Ventilsteuerzeiten der Ein- und Auslassventile
ist in einem +10° Kurbelwinkel-Band um den jeweiligen Referenzwert definiert. Der maximale
Verstellbereich fiir den Ziindzeitpunkt ergibt sich aus der unteren Grenze »maximale Abgastem-
peratur« und der oberen Grenze »Klopfen«. Der Bereich kann vorab nicht absolut festgelegt
werden, wodurch diese Gréfe nicht explizit in die Versuchsplanung einflieBt. Der resultierende
statistische Versuchsplan umfasst 35 Punkte mit unterschiedlichen Sollwerten fiir Drehzahl, Last
und die Ventilsteuerzeiten.

In Phase 2, der ersten Priifstandsphase, wird der Versuchsplan am Priifstand abgearbeitet, wo-
bei an jedem der Punkte der Ztindzeitpunkt-Bereich mit 3 Punkten abzutasten ist. Damit ergeben
sich 3 - 35 = 105 Einzelmessungen. Ferner werden 30 weitere Betriebspunkte vermessen, um
in der nachfolgenden Modellbildung die Modelle hinsichtlich ihrere Generalisierungsfihigkeit
beurteilen zu kénnen.

In der Modellbildung (Phase 3) werden die 105 Punkte zur Approximation der Zielfunktio-
nen verwendet (Trainingsdaten). Bild 6.22 zeigt die Giite der Modellprognosen fiir ein Kraftstoft-
modell. Neben den Trainingsdaten sind auch die 30 zusédtzlichen Punkte als Validierungsdaten
eingetragen. Mit einem mittleren relativen Fehler (MEAN) von knapp 1% auf die Trainingsdaten
und 1,2% auf die Validierungsdaten ist die Modellgiite sehr hoch.

Weiterhin erfordert die modellbasierte Optimierung in Phase 4 noch verschiedene Randbedin-
gungen, um den sinnvollen und erlaubten Bereich fiir die Optimierung einzuschrianken. Daher
werden anhand der Messdaten noch weitere Groflen wie die Klopfgrenze, Laufruhe, Abgastem-
peratur sowie die Emissionswerte approximiert. Bild 6.23 stellt in einem einfachen Modellsystem
das Verhalten des obigen Kraftstoffmodells gemeinsam mit der Ausgabe des Klopfmodells dar.

Als Ergebnis der modellbasierten Optimierung wird an den 30 Betriebspunkten die optima-
le StellgroBenkombination in Bezug auf die wesentliche ZielgréBe »spezifischer Kraftstoffver-
brauch« unter Berticksichtigung der modellierten Randbedingungen bestimmt. Um ggf. auftre-
tende Modellungenauigkeiten basierend auf der geringen Datenbasis und ein damit verbunde-
nes iteratives Vorgehen (viele Messblocke) zu vermeiden, werden drei verschiedene miteinander
konkurrierende Modelle ausgewertet. Damit ergeben sich fiir den zweiten Messblock 3-30 = 90
Sollwertvorgaben, die in Phase 5 zu verifizieren sind.

Fiir die abschlieBende Berechnung der Kennfelder (Phase 6) liegen nun pro Betriebspunkt
mindestens 4 Messungen vor. Zusétzlich zu den 3 Verifikationsmessungen und dem Referenz-
wert konnen ggf. Versuchsplan-Messungen als Alternativen fiir die Auslegung dienen. Diese
Alternativen sind in Fillen nétig, in denen zusitzlich zur Berlicksichtigung der Zielgr6Ben Kom-
promisse im Hinblick auf eine dynamische Fahrbarkeit gemacht werden miissen. Dies bedeutet,
dass bei mechanischen Stellgrofien die Verstellgeschwindigkeit beachtet und damit hohe Gradi-
enten in den Kennfeldern zu vermeiden sind. Somit wird in bestimmten Punkten das suboptimale
Ergebnis mit einem glatten Kennfeldverlauf bevorzugt. Die modifizierten Stellwerte fiir die Ven-
tilspreizungen sind in Bild 6.24 dargestellt. Die linken Kennfelder zeigen den Ausgangsstand, die
rechten Kennfelder das Ergebnis der Optimierung. Deutlich zu erkennen ist, dass die Kennfelder
dem urspriinglichen Verlauf dhneln, jedoch einen deutlich glatteren Verlauf im mittleren Bereich
aufweisen.

Bild 6.25 zeigt die relativen Differenzen in Bezug zum Referenz-Datenstand fiir den spezifi-
schen Kraftstoffverbrauch. Hohe Kraftstoffeinsparungen kénnen im untersuchten Teillastgebiet

g

B
o
(=]

g

predicted (Modellprognosen: spez. Kraftstoffverbrauch [g/kWh]
w n
S =)
o o

6.5 Fallstudie: Motorenkalibrierung

259

TRAININGERRORS [%] for: Train35 (#102) e ’ @
MEAN MAX relStd AbsEP MaxEP AbsStd P e R
| 0.83464 3.3503 1.1188 1.1331 58057 4.6317 P T S
R Rs ’ - £
99.8392 37.2195 NPALTS 7
- 4 7 2 - = -
7 - T o - -
s % s -
=) * -
s 0
L e 27 « training |
i - o test
p=d # - - tr-range
. L oW 1 TESTERR. [%] for:
P e Test_BP30 (#60)
L s ", R Rs .
L aclly 996335 -2.4229
7 - MEAN MAX relStd AbsEP MaxEP AbsStd
o = 1.2199 77203 1.8855 1.588 12.3376 7.8465
300 350 400 450 500

true (Messungen: spez. Kraftstoffverbrauch [g/kWh]

Bild 6.22: Vergleich der tatsiichlichen Messwerte fiir den spezifischen Krafistoffverbrauch mit den Ausga-
ben des Neuronalen-Netz-Modells. (Mit freundlicher Genehmigung des Oldenbourg-Verlags.)

spezifischer Verbrauch [g/kWh]

Einlai-
spreizung

['KW]

Messungen
(Zundhaken)

75

70

20

Klopfgrenze aus
Klopfmodell

50

Zundwinkel [*KW]

Bild 6.23: Modellprognosen fiir Kraftstoffmodell mit Suchraumbeschriinkung durch Klopfmodell. (Mit
freundlicher Genehmigung des Oldenbourg-Verlags.)

260 6 Anwendung evolutionirer Algorithmen

Einlalspreizungs—KF (alt) ["KW] Einlalspreizungs—KF (neu) ["KW]

100 SN\ 100

60 :
Drafant [U’%"“’&, 20 40 (ol Luftm. [%] Drehast! “”23}]0 20 40 rel. Luftm. [%]
AuslaRspreizungs-KF (alt) ["KW] AuslaBspreizungs—-KF (neu) ["KW]

100 100

80
Drehzahl (U/min] a0 60
6000 20 rel. Luftm. (%)

60

Drehzahl [U/min]
6000 20 40 rel. Luftm. [%]

Bild 6.24: Vergleich der Kennfelder: links alter und rechts optimierter Stand. (Mit freundlicher Genehmi-
gung des Oldenbourg-Verlags.)

relative Differenzen im spezifischen Verbrauch [%)]
70 : ; 1

£ [4)] =]
o o o

relative Luftmasse [%)]

(%]
o

20

2000 3000 4000 5000
Drehzahl [U/min]

Bild 6.25: Vergleich der Datenstinde: Kraftstoffeinsparungen in der Drehzahl-Last-Betriebsebene. (Mit
freundlicher Genehmigung des Oldenbourg-Verlags.)

6.6 Fallstudie: Stundenplanerstellung 261

vor allem im mittleren Drehzahlbereich und in den Randgebieten realisiert werden. Der neue
Datenstand fiihrt in dem optimierten Bereich zu einer ungewichteten mittleren Reduktion um
2,8%. Dies wird unter Einhaltung der Randbedingungen (Emissionen, Abgastemperatur, Laufru-
he, Klopfen) erreicht.

Neben der Qualitit der Ergebnisse ist fiir den Motorentwicklungsprozess vor allem die Ef-
fizienz und damit die Dauer der Optimierung maBgebend. In weiteren Iterationsschleifen und
langwierigen statistischen Untersuchungen kann zwar die Giite der Ergebnisse noch marginal
verbessert werden, jedoch steht dies nicht in Relation zum Mehraufwand.

Diese Vorgehensweise spart im Vergleich zur Vollrasterung als »konventionelle Strategie« et-
wa zwel Drittel der Messungen ein. Diese Ergebnisse gewinnen eine hohe Bedeutung vor dem
Hintergrund, dass pro Messung (mit Ziindzeitpunkt-Optimierung) durchschnittlich ca. 10 Minu-
ten effektive Priifstandszeit benétigt werden.

6.6 Fallstudie: Stundenplanerstellung

Stundenplanungsprobleme beschdiftigen weltweit Planer an Hochschulen und Schulen. In dieser
Arbeit wurde ein evolutiondrer Algorithmus speziell fiir typische Schulstundenpline entwickelt
und anhand realer Daten getestet.

Die Arbeit in dieser Fallstudie wurde von den Softwaretechnikstudenten Marc Bufé, Tim Fi-
scher, Holger Gubbels, Claudius Hécker, Oliver Hasprich, Christian Scheibel, Michael Wenig
und Christian Wolfangel im Rahmen eines einjéhrigen Studienprojekts durchgefiihrt. Das Pro-
jekt selbst war produktorientiert, sodass fiir den »Forschungsanteil« nicht ausreichend Zeit zur
Verfugung stand. Die Studenten wurden von Nicole Weicker und dem Autoren betreut. Im Rah-
men dieses Buchs sind die folgenden Details interessant:

* Genotyp und Phénotyp agieren auf unterschiedlichen Ebenen mit einer »intelligenten« De-
kodierungsfunktion dazwischen,

+ wie mit einem hochgradig durch Randbedingungen beschriankten Problem umgegangen
werden kann und

+ welche kleinen Fehlentscheidungen in einem Projekt zu unzureichender Ergebnisqualitit
fithren kdnnen.

6.6.1 Aufgabenstellung

Einfache Stundenplanungsprobleme werden mittels der folgenden Mengen formuliert: Lehrer
Le, Klassen KI, Raume Rm, Zeitschienen Zt und Unterrichtsficher Uf. Jedes Fach u € Uf be-
ndtigt eine Klasse k(u) € K/, einen Lehrer /(#) € Le und die Anzahl der Stunden pro Woche
stunden(u) € N. Fir die Lésung des Problems muss eine Abbildung

Plan: Uf — 27(Zt x Rm)

gefunden werden, wobei #Plan(u) = stunden(u). Beispielsweise weist Plan(u) = {(Mo-1, 101),
(Mi-3, 102)} einem Fach die erste Montagsstunde im Raum 101 und die dritte Mittwochsstunde
im Raum 102 zu.

262 6 Anwendung evolutiondrer Algorithmen

Ferner miissen die folgenden harten Randbedingungen erfiillt sein. Zur Vereinfachung gelte
fiir s = (z,r) € Zt x Rm die Notation z(s) = z und r(s) = r.

» Jede Klasse hat nur eine Unterrichtsstunde zur selben Zeit.

Vu,od € Uf (u# o) (k(u) = k(') = (Vs € Plan(u) Vs’ € Plan(v') : z(s) # z(s")))
» Jeder Lehrer unterrichtet nur eine Stunde zur selben Zeit.

Vu, € Uf (usu'): (1(u) =1(u) = (Vs € Plan(u) Vs' € Plan(y) : z(s) # z(s")))
* In jedem Raum findet nur eine Unterrichtsstunde zur selben Zeit statt.

Vu,u' € Uf (u#u') Vs € Plan(u) Vs' € Plan(u/) : (r(s) = r(s') = 2(5') # 2(5'))

Dies reicht allerdings nicht aus, um echte Instanzen von Stundenplanungsproblemen zu be-
schreiben. Das Problem sind vor allem klasseniibergreifende Unterrichtsstunden wie im Sportun-
terricht oder die konfessionsorientierte Verteilung der Schiiler einer Klassenstufe im Religions-/
Ethikunterricht. Zu diesem Zweck werden mehrere Klassen pro Fach erlaubt (k(u) C K/). Zu-
sammen mit mehreren Lehrern pro Fach (/(u) C Le) kann dann der Sportunterricht mit mehreren
Gruppen in einer Halle abgebildet werden. Fiir separat geplante Raume fithren wir hingegen
gruppierte Unterrichtsficher ein, die gemeinsam zur selben Zeit geplant werden miissen. Dabet
bezeichne [¢] C Uf fiir ein Unterrichtsfach # € Uf die gleichzeitig zu planenden Unterrichtsfé-
cher. Im Falle einer normalen Unterrichtsstunde gilt [#] = {u}. Die ersten beiden harten Randbe-
dingungen lassen sich damit wie folgt umformulieren.

» Jede Klasse hat nur eine Unterrichtsstunde zur selben Zeit.

Vu,ol e Uf (' & [u]): ((k(u) Nk(u') #0) = (Vs € Plan(u) Vs' € Plan(') : z(s) # z(s")))
» Jeder Lehrer unterrichtet nur eine Stunde zur selben Zeit.

Vu, o € Uf (u' & [u]): (((Hu)NI(u") # 0) = (Vs € Plan(u) Vs' € Plan(u') : z(s) # z(s')))

Dartiiber hinaus kénnen noch Zeiten der Unverfiigbarkeit fiir Klassen, Lehrer und Raume ange-
geben werden. Auch ist es mdglich fiir Riume bestimmte Ausstattungsmerkmale (z. B. Chemie-
Horsaal) anzugeben, um durch Angabe derselben Merkmale als Forderungen bei Féachern die
passende Planung zu erzwingen. Diese Randbedingungen sind ebenfalls hart.

Die Erfiillung der folgenden weichen Randbedingungen ist nicht zwingend notwendig, ob-
wohl sie aus organisatorischen und didaktischen Gesichtspunkten wichtig sind.

(S-1) Der Unterricht soll vornehmlich am Vormittag stattfinden.

(8-2) Lehrer mit mit Teilzeitvertrigen haben meist eine gewisse Anzahl an garantierten freien
Tagen pro Woche.

(8-3) Fiir einige Veranstaltungen werden Doppelstunden eingefordert (oder verboten) — ebenso
vierzehntigige Platzierung oder die Nutzung von Randstunden.

6.6 Fallstudie: Stundenplanerstellung 263

............

Phénotyp-
Mutationen

Population
mit
Permutationen

[Abbildungsrekombination vertauschende Mutation J

Bild 6.26 Fiir die Optimierung der Stundenpldne werden Operatoren sowohl auf den Genotyp als auch auf
den Phénotyp angewandt.

(S-4) Eine gleichmiBige Verteilung der Stunden eines Fachs iiber die Woche ist gewiinscht.
Ebenso kann fiir mehrere Fécher gewlinscht werden, dass sie nicht am selben Tag stattfin-
den.

(S-5) Hohlstunden sind insbesondere fiir Klassen unerwiinscht.

(S-6) Fir jede Zeitschiene muss ein Lehrer verfiigbar sein, der eine Klasse bei Krankheit des
eigentlichen Lehrers beaufsichtigt.

6.6.2 Entwurf des evolutionédren Algorithmus

Zur Optimierung von Stundenplédnen mit evolutiondren Algorithmen gibt es zwei grundsitzlich
verschiedene Ansitze: Entweder die evolutiondren Operatoren arbeiten direkt auf den Stunden-
planen oder es wird auf einem einfacheren Genotypen gearbeitet, aus dem dann eine Erstellungs-
heuristik jeweils einen Stundenplan konstruieren kann. Wahrend die erste Technik eine sehr hohe
Korrelation zwischen Elternindividuen und Kindindividuen aufweisen kann, liegt der Vorteil der
zweiten in der Nutzung bekannter Heuristiken. Um beide Vorteile zu verbinden, wurde ein evolu-
tiondrer Algorithmus entworfen, der auf beiden Ebenen, Genotyp und Phénotyp, mit Operatoren
arbeitet. Das resultierende Grundkonzept ist in Bild 6.26 veranschaulicht.

Als Genotyp wird eine Permutation der einzelnen zu planenden Facher (pro Klasse) verwen-
det, die im Wesentlichen die Reihenfolge angibt, mit der die Stunden verplant werden. Als Muta-
tion wird hier der Tausch zweier Facher in der Planungsreihenfolge betrachtet: VERTAUSCHENDE-
MuUTATION in Algorithmus 2.1. Die Rekombination ist die ABBILDUNGSREKOMBINATION (Algo-
rithmus 4.7) auf der Basis eines EIN-PUNKT-CROSSOVER (Algorithmus 3.13). Dadurch wird der
erste Teil der Planung von einem Elternteil tibernommen und der zweite Teil durch Facher auf-
gefullt, die im anderen Individuum zu einer dhnlichen Zeit verplant wurden. Diese Operatoren
sollen auf dieser Ebene sowohl kleine Verdnderungen als auch das Erforschen neuer Bereiche
unterstiitzen.

Jedes solches Individuum wird durch eine Heuristik in einen Stundenplan verwandelt. In ei-
ner ersten Phase werden auf Basis der Veranstaltungsreihenfolge die freien Tage der Teilzeitkraf-
te gleichméfig tber die Woche verteilt. In einer zweiten Phase wird fiir alle Veranstaltungen

264 6 Anwendung evolutiondrer Algorithmen

Algorithmus 6.4

STUNDENPLAN-HEURISTIK (Veranstaltung)

1 for each Zeit € {Morgen, Nachmittag}

2 do' for each Randbedingungen € {alle, nurHarte}

3 do " for each Tug € {Mo. Mi,Do,Di. Fr}

4 do " suche Raum und Uhrzeit an Tag/Zeit, dass

5 alle Randbedingungen fir die Veranstaltung erfullt sind
6 if Suche erfolgreich
7
8

L L vthen [verplane nichste unverplante Stunde in Veranstaltung entsprechend
unverplante Stunden werden in einer Extraliste gefuhrt

entschieden, wieviele Doppel- und Einfachstunden eingeplant werden. Schlielich werden alle
Veranstaltungen in der dritten Phase geméf des Setzalgorithmus STUNDENPLAN-HEURISTIK (Al-
gorithmus 6.4) in der Reihenfolge der Permutation gesetzt.

Durch sein Vorgehen versucht der Algorithmus die Randbedingungen zur Tageszeit (S-1) und
zur gleichmaBigen Verteilung (S-4) zu berticksichtigen. Dartiberhinaus erfillt jede gesetzte Stun-
de alle harten Randbedingungen und falls méglich die weichen Randbedingungen (S-2) und
(S-3). Aufgrund der harten Randbedingungen kénnen einzelne Stunden unverplant bleiben. Da
diese Heuristik nicht alle moglichen Stundenpléne erzeugen kann, sind die phénotypischen Muta-
tionen flir eine theoretische Erreichbarkeit aller Stundenplédne notwendig — insbesondere fiir die
Verplanung bisher ungesetzter Veranstaltungen.

Auf der Ebene des Phinotyps gibt es die folgenden Mutationen:

* eine verplante Stunde aus dem Plan entfernen bzw.
+ cine verplante Stunde an eine passende freie Stelle verschieben.

Anschliefliend wird gepriift, ob nun eine unverplante Stunde geplant werden kann. Dabei werden
ausschlieBlich die harten Randbedingungen beachtet.

In der zu minimierenden Bewertungsfunktion f werden alle weichen Randbedingungen be-
riicksichtigt:

Stundenplan) = unverplant® + verletzt* + schief?,
p yZ

wobei unverplant der gewichteten Anzahl unverplanter Stunden, verletzt der mittleren Verletzung
der weichen Randbedingungen (mit einer geeigneten Gewichtung) und schief der Standardabwei-
chung tiber die Verletzung der verschiedenen weichen Randbedingungen entspricht. Der dritte
Faktor soll dafiir sorgen, dass alle Randbedingungen gleichermaflen minimiert werden.

Als Selektionsschema wird eine gleichverteilte Selektion der Eltern benutzt und es werden
durch die besten Kindindividuen die schlechtesten 40% der Elternindividuen ersetzt. Dies er-
laubt den guten Individuen in der Population, dass sie tiber einen langen Zeitraum durch die
phénotypischen Mutationen verbessert werden.

6.6.3 Ergebnisse

Fir die Experimente wurden die Stundenplanungsdaten eines Gymnasiums mit 61 Lehrern, 23
Klassen, 49 Raumen und 351 Fichern benutzt. Die Klassenstufen 5-11 wurden in drei Parallel-

6.6 Fallstudie: Stundenplanerstellung 265

T \ 110 T T T
110 | A o : AT
B 100 B .
C ,,,,,,,,,,, =~ i C
100 N t R
E 90 I - 1
. | 3}
£ 2 1
= | s L
% g0
e L § ol
70 |~ s 60 A
=
60 = 50 L
50 L L : 40 . L L
0 1000 2000 3000 4000 0 1000 2000 3000 4000
generation generation
400

A: nur genotypische Mutationen
B: erst genotypisch, dann phéanotypisch

350 1 C: nur phénotypische Mutationen

=

E

Q

g

£ la |B |cC
& 300

) Beste Giite 61,0 | 58,6 | 69,0
g unplatziertes Fach 1 0 0
£ 250 teilplatziertes Fach 0 1 1
=]

=

Lucken in Klassenpldnen || 52 45 63
Liicken in Lehrerplanen 238 | 219 | 272

0 1000 2000 3000 4000 Freie Tage der Lehrer 22 25 28

Doppelstunden 26 28 33

200

generation

Bild 6.27 Ergebnisse der Experimente mit dem Stundenplanungsalgorithmus. (Mit freundlicher Genehmi-
gung des ©Springer Verlags.)

klassen berticksichtigt, die Klassen 12 und 13 wurden jeweils als eine Klasse verbucht, da in den
Daten bereits enthalten war, welche Veranstaltungen im Kurssystem gleichzeitig stattfinden.
Bedingt durch die aufwindige Stundenplanerstellung und die Berechnung der vielen Randbe-
dingungen ist der Algorithmus sehr langsam, sodass fiir 4 000 Generation mit einer Populations-
gréfe u = 20 etwa 12 Stunden Rechenzeit auf der damaligen Hardware benétigt wurde. Daher
ist die Einstellung der Parameter im Wesentlichen entgefallen.
Es wurden drei verschiedene Experimentreihen durchgefiihrt:

A: nur genotypische Operationen
B: zunéchst nur genotypische Operationen, ab Generation 1 200 nur phénotypische Mutationen
C: nur phinotypische Mutationen

Die besten gefundenen Ergebnisse sind in Bild 6.27 dargestellt.

266 6 Anwendung evolutiondrer Algorithmen

Wie man deutlich erkennt, konnten die phénotypischen Mutationen zwar das Ergebnis verbes-
sern, was die grundsétzliche Richtigkeit des Ansatzes unterstreicht, aber die Ergebnisse sind bet
Weitem noch nicht qualitativ ausreichend. Folgende Griinde fiir die eher schlechten Resultate
konnen identifiziert werden.

1. Die Zuweisung der freien Tage fuir die Teilzeitlehrer in Phase 1 sorgt fur Probleme bei
der weiteren Optimierung, da nicht berticksichtigt wird, welche Lehrer zeitgleiche Stunden
abhalten — dies gilt in unseren Beispieldaten fiir die Religionslehrer, die Sportlehrer und
alle Lehrer des Kurssystems.

2. Der Algorithmus zur Stundenplanerstellung sollte bereits mehr Gewicht auf die liickenfreie
Planung fur die Klassen legen. Aktuell wird beginnend ab der ersten Schulstunde ein freier
Platz gesucht — dies schrinkt die entstehenden Stundenpléne etwa dahingehend ein, dass
das erste verplante Fach jeden Tag in der ersten Stunde liegt.

3. Weiterhin wird verschiedenes bekanntes heuristisches Wissen von erfahrenen Stundenpla-
nern nicht genutzt.

+ Kombinierte Veranstaltungen mit mehreren Lehrern miissen so frith wie moglich ver-
plant werden. Im vorliegenden Algorithmus miissen diese erst durch die zufélligen
Operatoren an den Anfang der Permutationen geschoben werden — eine Zeitverschwen-
dung, die angesichts der Laufzeit nicht akzeptiert werden kann.

* Unverplante Veranstaltungen werden von Planern am Ende hdufig mit einem Verdrin-
gungsverfahren verplant: Es wird ein geschickter, bereits belegter Platz fiir die Stunde
ermittelt und die verplante Stunde durch die bisher unverplante ersetzt. Das Verfahren
wird solange iteriert bis die unverplante Stunde einen freien Platz findet. Warum ist ein
solches Vorgehen sinnvoll? Weil es im Gegensatz zu den umgesetzten phénotypischen
Operationen zielgerichteter an der Verbesserung des Stundenplans arbeitet.

Die weitere Verbesserung des Verfahrens unterblieb jedoch, da die Projektzeit der Studenten
abgeschlossen war und sich kein studentisches Folgeprojekt ergeben hat.

6.7 Ubungsaufgaben

Aufgabe 6.1: Vergleich von Algorithmen

Greifen Sie den Handlungsreisendenalgorithmus aus Kapitel 2 auf und experimentieren Sie,
wieviele Optimierungen bendtigt werden, um zu zeigen, dass die INVERTIERENDE-MUTATION
(Algorithmus 2.2) bessere Ergebnisse liefert als die VERTAUSCHENDE-MUTATION (Algorith-
mus 2.1). Reichen 2, 5, 10 oder 507

Aufgabe 6.2: Problemwissen

Analysieren Sie die Fallstudie zur Stundenplanerstellung. Welches Problemwissen wurde nicht
benutzt? Entwickeln Sie ein Konzept, das dieses Wissen vollstindig in den Algorithmus inte-
griert.

6.8 Historische Anmerkungen 267

Aufgabe 6.3: Algorithmenentwurf

Betrachten Sie das Problem des zweidimensionalen Binpacking: Eine vorgegebene Menge an
Quadraten verschiedener Grofie soll iiberschneidungsfrei in eine ebenfalls vorgegebene Flache
platziert werden. Versuchen Sie alle Schritte der Entwurfsmethodik fiir dieses Problem durchzu-
fithren.

Aufgabe 6.4: Antennenoptimierung

Betrachten Sie den Rekombinationsoperator nochmals genauer. Wie konnte der Operator ver-
allgemeinert werden? Und warum ist er in der vorliegenden Form gerade fiir das Modell von
Ziirich besonders gut geeignet?

Aufgabe 6.5: Randbedingungen

Sowohl in der Motorenoptimierung als auch der Stundenplanerstellung wurden Randbedingun-
gen u.a. durch Strafterme umgesetzt. Uberlegen Sie jeweils, was andere sinnvolle Mechanismen
sein konnten.

6.8 Historische Anmerkungen

Die vorgestellten Abhingigkeiten zwischen den Parametern eines evolutiondren Algorithmus,
die im Rahmen des Vergleichs von Algorithmen diskutiert wurden, sind nur selten expliziter
Inhalt wissenschaftliche Literatur. Indirekt wird von solchen Abhingigkeiten allerdings bereits
in den Arbeiten von De Jong (1975) und Grefenstette (1986) ausgegangen, die sich mit sinn-
vollen Parameterkombinationen fiir unterschiedliche Probleme beschiftigen. Die ausfiihrlichste
Arbeit zu diesem Thema stellt vermutlich der Beitrag von Deb & Agrawal (1999) dar, der auch
das Beispiel in diesem Kapitel inspiriert hat. Hypothesentests finden sich in der gingigen ma-
thematischen Literatur (Lehn & Wegmann, 2006; Press et al., 1988-92) — die Tabellen fiir die
Fehlerwahrscheinlichkeit sind in jedem Tabellenwerk enthalten.

Bei den Vorgehensmodellen sind grobe Entwurfsmuster beispielsweise in Kapitel 7 des Lehr-
buchs von Pohlheim (2000) enthalten. Dort wird auch in Kapitel 8 eine Variante des wieder-
verwendungsbasierten Ansatzes vorgestellt. Die Schwierigkeit der Problemklassifikation wird
beispielsweise von Naudts & Kallel (2000) und Merz (2000) thematisiert.

Der Forma-basierte Ansatz wurde durch Radcliffe (1991a,b) und Surry (1998) begriindet. Rad-
cliffe & Surry (1995) veréffentlichten auch gemeinsam die Forma-Giite-Varianz. Diese Metho-
de hat durchaus eine gewisse Verbreitung gefunden, wie die Anwendungen von Cotta & Troya
(1998, 2001) zeigen.

Der analysebasierte Ansatz basiert in groBen Teilen auf der Diplomarbeit von Fischer (2004).
Bei den vorgestellten Metriken fiir die Operatoranalyse stammen die Begriffe induzierte Opti-
ma und deren Isoliertheit von Jones (1995). Die Verbesserungswahrscheinlichkeit von Rechen-
berg (1973) wurde zusammen mit der erwartete Verbesserung von Fogel & Ghozeil (1996) und
Weicker & Weicker (1999) wieder aufgenommen. Hinter der Korrelation der Elter-/Kindglite
verbergen sich die Arbeiten von Weinberger (1990), Hordijk (1997) und Altenberg (1995). Bei
den Leistungsmetriken sind insbesondere die durchschnittliche und die mittlere beste Gilite zu
erwihnen, die als online bzw. offline performance von De Jong (1975) vorgestellt wurden. Der

268 6 Anwendung evolutiondrer Algorithmen

erste Bericht {iber die Verwendung statistischer Versuchsplanung zur Einstellung der Parameter-
werte stammt von Sugihara (1997). Eine wesentlich <ere, hier nicht behandelte Alternative zur
Parameterkalibrierung ist der Meta-EA von Grefenstette (1986). Die Umsetzung des Ansatzes fiir
das Handlungsreisendenproblem findet sich in der Diplomarbeit von Fischer (2004). Zu Hypothe-
sentests und statistischer Versuchsplanung kénnen weitere Details der Fachliteratur entnommen
werden (Cohen, 1995; Cobb, 2002).

Der Vollstiandigkeit halber sei hier noch die Arbeit von Sharpe (2000) erwihnt, der ebenfalls
die Wahl der Reprisentation in den Mittelpunkt stellt, um anschlieend Informationen iiber das
Problem zu sammeln und gemiB Entwurfsmustern einen passenden Algorithmus zu wiahlen. Er
steht dabei jedoch den Mbglichkeiten kritisch gegeniiber, die Ahnlichkeit von Problemen zu
bestimmen.

Einbettung von Problemwissen in einen evolutiondren Algorithmus in der Form von Heuristi-
ken oder lokaler Suche wurde stark durch die Arbeit von Davis (1991b) geprégt. In der Folgezeit
wurden sehr viele Arbeiten mit hybriden Anséitzen verGffentlicht (siehe z. B. bei Michalewicz,
1992). Das Beispiel des hybriden Operators flir das Stundenplanproblem stammt aus der Arbeit
von Burke et al. (1995). Die Initialisierung der Anfangspopulation durch Heuristiken hat bereits
Grefenstette (1987b) eingefiihrt.

Die Fallstudie zur Platzierung von Antennen basiert auf der Arbeit von Szabo et al. (2002).
Der Aspekt der Mehrzieloptimierung wurde dann spéter genauer herausgearbeitet (Weicker et al.,
2003). Das reine Platzierungsproblem wird beispielsweise auch durch die Heuristik von Galota
et al. (2000) oder die Tabu-Suche (Vasquez & Hao, 2001) gelost. Fur die Frequenzzuweisung
gibt es noch mehr Literaturstellen, z. B. die heuristische Losung von Zhou & Nishizeki (2001)
oder GA-Varianten (Crisan & Miihlenbein, 1998). Zu den wenigen Ansétzen, beide Probleme
gleichzeitig zu 16sen, zdhlen die Arbeiten von Gupta & Kalvenes (1999) und Mathar & Schmeink
(2002). Fiir die vorgestellten Datenstrukturen wurde im Projekt die LEDA-Bibliothek (Mehlhorn
& Niher, 1999) herangezogen. Das Modell fiir Ziirich wurde gemil der Vorgehensweise von
Tutschku et al. (1997) erstellt.

Die Kennfeldoptimierung wurde im Detail in der zugehorigen Verétfentlichung (Weicker
et al., 2003) beschrieben. Andere Aspekte der Arbeit wurden von Mitterer et al. (1999), Mitterer
& Zuber-Goos (2000) und der Dissertation von Mitterer (2000) beschrieben. Bei den Lernver-
fahren fur die neuronalen Netze sei hier insbesondere auf Resilent Propagation (Riedmiller &
Braun, 1993) und Scaled Conjugate Gradient (Moller, 1993) verwiesen. Die Variante des Gaul3-
Newton-Verfahrens stammt von Levenberg (1944) und Marquardt (1963).

Der vorgestellte Ansatz zur Stundenplanoptimierung wurde von Bufé et al. (2001) verdffent-
licht. Einen Uberblick iiber die verschiedenen géingigen Techniken kann man sich in der Arbeit
von Schaerf (1999) und (am Rande) Qu et al. (2006) verschaffen. Mit einer direkten Darstel-
lung der Stundenpléne haben beispielsweise Colorni et al. (1998) und Fernandes et al. (1999)
gearbeitet. In der universitidren Stundenplanung wurden auch indirekte Reprisentationen mit
Platzierungsalgorithmen erfolgreich eingesetzt (Paechter et al., 1998).

Anhang

A Benchmark-Funktionen

Dieser Anhang fasst einige wenige Benchmark-Funktionen zusammen, die auch im Hauptteil des
Buches benutzt wurden.

In der Literatur findet sich eine Vielzahl von so genannten Benchmark-Funktionen. Dabei
handelt es sich um standardisierte Probleme, die fiir einen Leistungsvergleich verschiedener Op-
timierungsverfahren herangezogen werden.

Bei den Benchmark-Funktionen der Funktionsoptimierung wird eine mathematische Funktion
auf einem mehrdimensionalen Wertebereich definiert und der minimale oder maximale Funk-
tionswert gesucht. Diese Funktionen lassen sich beziiglich ihrer Separierbarkeit unterscheiden.
Dabei heiflt eine Funktion separierbar, wenn sie sich als Summe von Termen darstellen ldsst,
die jeweils nur von dem Wert einer Dimension des Suchraums abhédngen. Eine weitere Unter-
scheidung kann mittels der Anzahl der lokalen und globalen Optima im Suchraum getroffen wer-
den, wobei ein lokales Optimum als Extremum im mathematischen Sinn aufgefasst wird (d. h.
beziiglich der nattirlichen Nachbarschaft im Suchraum und nicht beziiglich einer durch Operato-
ren induzierte Nachbarschaftsstruktur). Existiert nur ein lokales (und gleichzeitig auch globales)
Optimum, spricht man von einem unimodalen Problem — andernfalls von einem multimodalen.
Insgesamt geht man davon aus, dass der Schwierigkeitsgrad von nicht separierbaren bzw. multi-
modalen Problemen grofer ist als bei separierbaren bzw. unimodalen Problemen.

Ein Beispiel fiir ein separierbares, unimodales Minimierungsproblem ist die Sphdre

n
= Z)(f’
=1

die von Rechenberg (1973) und De Jong (1975) eingefiihrt wurde. Meist wird sie mit n = 30
und den Wertebereichen —5,12 < X; < 5,12 fur 1 < i < n benutzt. Der minimale Giitewert ist

f(0,...,0)=0.
Ein weiteres Beispiel ist die gewichtete Sphdre (vgl. Schwefel, 1995)

n

JX) =3, X7,

i=1

die meist ebenfalls mit » =30 und —5,12 < X; < 5,12 fiir 1 <7 < n optimiert wird. Thr minimaler
Giitewert ist ebenfalls £(0,...,0) =0.

Ein Beispiel fiir ein separierbares, multimodales Minimierungsproblem ist die Rastrigin-Funk-
tion

f(X)=10- n+2 2 —10-cos(2-m- X)),

die von Torm & Zilinskas (1989) eingefithrt wurde. Analog zu den obigen Funktionen gilt auch
hier meist » =30 und —5,12 < .X; < 5,12 fiir | </ < n, und die minimale Giite ist 1(0,...,0) =0.

272 A Benchmark-Funktionen

Auch die Sinus-Summe von Schwefel (1995)

f(X)=418,98289-n+ ixf~sin (\/|X_,|)
=1

i=

ist ein separierbares, multimodales Minimierungsproblem — meist mit #» = 30 und —512,03 <
X; < 511,97 fir 1 <i < n. Der optimale Giitewert ist (420,968 7463, ...,420,968 746 3) ~ 0.

Ein Beispiel fiir ein nicht separierbares, unimodales Minimierungsproblem ist die Doppelsum-
me von Schwefel (1977)

2
X))
1
Auch diese Funktion wird meistens fiir » = 30 und die Wertebereiche —65,536 < X; < 65,536

fiir 1 <i < n optimiert. Die minimale Giite ist £(0,...,0) =0.
Die Rosenbrock-Funktion

n i

=3 (;

i=1 " j=

0 ="S (100- (2~ X1 (1 %))
i=1

von De Jong (1975) ist ebenfalls eine nicht separierbare, unimodale Funktion mit # = 30 und
—2,048 < X; < 2,048 fiir | <i< n. Das gesuchte Minimum ist f(1,...,1) =0.
Ein Beispiel fiir ein nicht separierbares, multimodales Problem ist die Ackley-Funktion

J(X) =20 +exp(1) ~20-exp (—,/ﬁi){?) —eoxp (5 3 cos(2- 7)),
=1 i=1

die von Ackley (1987a) eingefiihrt wurde und meist mit » =30 und —20 < X; <30 (1 <i<n)
benutzt wird. Die minimale Giite betrdgt £(0,...,0) =0.

Ein weiteres nicht separierbares, multimodales Beispiel ist die Griewank-Funktion (vgl. Térn
& Zilinskas, 1989)

n XZ n A/l
fX)=1+ — — cos(—.>7
l; 400-n II;II Vi
mit 7 =30, =512 < X; < 511 (1 <i < n) und einem Minimum von f(0,...,0) =0.
Neben den reellwertigen Testfunktionen ist das Einsenzdhlproblem ein Benchmark fur den
genetischen Algorithmus, das die bindre Entsprechung zur reellwertigen Sphére darstellt. Es han-
delt sich dabei um die folgende zu maximierende Funktion

mit X € B”. Die Dimension » kann beliebig gew#hlt werden.
Ein zweites bindres Benchmark-Problem ist die einfache Royal-Road-Funktion, die von Mit-
chell et al. (1992) eingefiihrt wurde. Sie fasst die Bits der Losungskandidaten in Blocken der

273

Stadt | Koord. Stadt | Koord. Stadt | Koord. Stadt | Koord. Stadt | Koord.

1 41 49 22 45 10 43 23 3 64 15 77 85 16 22
2 35 17 23 55 5 44 11 14 65 62 77 86 4 18
3 55 45 24 65 35 45 6 38 66 49 73 87 28 18
4 55 20 25 65 20 46 2 48 67 67 5 88 26 52
5 15 30 26 45 30 47 8 56 68 56 39 89 26 35
6 25 30 27 35 40 48 13 52 69 37 47 90 31 67
7 20 50 28 41 37 49 6 68 70 37 56 91 15 19
8 10 43 29 64 42 50 47 47 71 57 68 92 22 22
9 55 60 30 40 60 51 49 58 72 47 16 93 18 24
10 30 60 31 31 52 52 27 43 73 44 17 94 26 27
11 20 65 32 35 69 53 37 31 74 46 13 95 25 24
12 50 35 33 53 52 54 57 29 75 49 11 96 22 27
13 30 25 34 65 55 55 63 23 76 49 42 97 25 21
14 15 10 35 63 65 56 53 12 77 53 43 98 19 21
15 30 5 36 2 60 57 32 12 78 61 52 99 20 26
16 10 20 37 20 20 58 36 26 79 57 48 100 | 18 18
17 5 30 38 5 5 59 21 24 80 56 37 101 |35 35
18 20 40 39 60 12 60 17 34 81 55 54 T

19 15 60 40 40 25 61 12 24 82 15 47

20 45 65 41 42 7 62 24 58 83 14 37

21 45 20 42 24 12 63 27 69 84 11 31

Tabelle A.1 Koordinaten des Handlungsreisendenproblems ei1101.

Linge & zusammen. Pro Block miissen alle Bits den Wert 1 haben, damit sie einen positiven
Beitrag zur Giite des Individuums liefern. Fiir einen Genotyp ¢ = B! mit / = k- m ist die Bewer-

tungsfunktion dann wie folgt definiert.
m—1

X)= &X)-k wobei
i=0

6,()():{ 1, fallsVje{i-k+1,... (i+1)-k}: X;=1

0, sonst.

Diese Funktion kann auch leicht tiber Schemata der Ordnung k definiert werden.

Zusitzlich sind auch kombinatorische Probleme sehr beliebt als Benchmarks, um unterschied-
liche Algorithmen zu vergleichen. Das klassische Problem ist hierbei das Handlungsreisenden-
problem, das im Beispiel 2.1 ausfiihrlich eingefiihrt wurde. Das in diesem Buch verwendete
Problem ei1101 enthélt die Stadte in Tabelle A.1 und die Kosten einer Kante ergeben sich aus
dem euklidischen Abstand der verbundenen Stidte. Die optimale Tour hat die Linge 629.

Eine andere auf Permutationen definierte Funktion ist die so genannte C-Funktion, die von

Claus (1991) eingeftihrt wurde. Es handelt sich dabei um ein Komplexititsmaf}

x-2% 3 W¥

i=1 j=i+l J—

274

A Benchmark-Funktionen

2120 n="7 68,433 n=12 | 253,066
=3 170 n=_§ 95,886 n=13 | 305,180
=4 | 16,667 n= 126,938 n=14 | 363,514
=51 29,167 n=10 | 163,937

6 | 47,4 n=11 | 205,463

Tabelle A.2 Beste Funktionswerte fiir die C-Funktion.

mit dem die Permutation X € .%, mit maximaler Komplexitit gesucht wird. Bekannte Optima
sind in Tabelle A.2 dargestellt.

Eine Ubersicht zu Benchmark-Funktionen mit Randbedingungen kann der Arbeit von Micha-
lewicz & Schoenauer (1996) entnommen werden. Ein einfaches Beispiel ist die folgende zu
minimierende Funktion von Floudas & Pardalos (1990):

JX) =

mit den Randbedingungen

(X1 — 10)° + (X3 —20)°,

(X1 =52+ (X, —5)> =100 >0
—(X; —6)? — (X, — 5)* +82,81 > 0,

wobei 13 < X; < 100 und 0 < X; < 100. Das gesuchte Optimum ist X* =
mit dem Funktionswert f(X*) = —6961,814.

Eine schwierigere, zu maximierende Funktion, bei welcher der giiltige Bereich auf eine Hy-
perkugel reduziert wird, stammt von Michalewicz et al. (1996):

(X = (ﬁ)”f[lX,-

wobei 0 < X; <1 fiir 1 <i < n. Das gesuchte Optimum ist X*

onswert f(X*) = 1.

Auch fiir die Techniken der Mehrzieloptimierung steht eine ganze Reihe an Benchmark-Funk-
tionen zur Verfiigung. Eine Ubersicht kann der Arbeit von Zitzler et al. (2000) entnommen wer-
den, aus der auch die folgenden zwei Funktionen stammen.

NiX) =X

(14,095, 0,84296)

n
mit der Randbedingung 2 Xiz =1,

i=1

(\[, cees \[) mit dem Funkti-

mit g(X

Xi . B
m) =1+9: %n

Die vorstehende Funktion hat eine konvexe Pareto-Front, wihrend die folgende Funktion konkav
ist.

(X)) =g(X)- (1

mit g(X

—1+92

n—l

B Weitere Quellen

B.1 Kurzer Literaturiiberblick

Biick (1996): Evolutionary Algorithms in Theory and Practice.
Die Dissertation des Autors liefert eine umfassende Darstellung und Einordnung der Stan-
dardverfahren. Sehr detailliert werden die Selbstanpassungsmechanismen bei Evolutions-
strategien und bei genetischen Algorithmen behandelt.

Bdck, Fogel & Michalewicz (1997): Handbook of Evolutionary Computation.
Das Standardnachschlagewerk zu evolutiondren Algorithmen behandelt nahezu alle Berei-
che der evolutiondren Algorithmen und ihrer Anwendung. Leider wurde die Blattsammlung
nach Erscheinen nicht weiter aktualisiert. Die wichtigsten Artikel sind als Auszlige eben-
falls in der Buchreihe »Evolutionary Computation« beim Institute of Physics Publishing
erschienen.

Banzhaf, Nordin, Keller & Francone (1998): Genetic Programming — An Introduction.
Sehr empfehlenswerte, gut strukturierte und umfassende Einfihrung zum genetischen Pro-
grammieren.

Bentley (1999): Evolutionary Design by Computers.
Sammlung verschiedener Artikel zum Thema »Design mit evolutiondren Algorithmen«. Ne-
ben einem ausfiihrlichen einfiihrenden Beitrag vom Herausgeber werden unterschiedliche
Themen von weiteren Autoren behandelt.

Beyer (2001): The Theory of Evolution Strategies.
Das Buch beschreibt umfassend die theoretischen Resultate zu den Evolutionsstrategien und
ist fiir mathematisch versierte Interessenten gut zur Vertiefung geeignet.

Corne, Dorigo & Glover (1999): New Ideas in Optimization.
Verschiedene Autoren stellen neue Optimierungstechniken im Umfeld der evolutiondren
Algorithmen vor. Dabei werden u. a. Themen wie memetische Algorithmen, Immunsysteme,
Differentialevolution, Partikelschwirme und kulturelle Algorithmen behandelt.

Davis (1991b): Handbook of Genetic Algorithms.
Der Klassiker hinsichtlich der Anwendung genetischer Algorithmen stellt verschiedene er-
folgreich optimierte industrielle Probleme vor. Ein Schwerpunkt liegt dabei auf der Frage,
wie Problemwissen in den Algorithmus integriert werden kann.

Eiben & Smith (2003): Introduction to Evolutionary Computing.
Das Buch bietet einen profunden Uberblick iiber die wesentlichen Teilgebiete der evolutio-
ndren Algorithmen mit einem Schwerpunkt auf den Standardverfahren, Parametrisierungs-
fragen und Randbedingungen. Theoretische Hintergriinde werden nur angerissen.

276 B Weitere Quellen

Fogel (1998a): Evolutionary Computation: the Fossil Record.
Die lesenswerte Sammlung von Artikeln bereitet die Entstehung des Gebiets der evolutio-
ndren Algorithmen historisch auf. Viele Arbeiten stammen aus der Zeit noch vor Aufkom-
men der Standardalgorithmen und haben grundlegende Impulse gegeben — darunter auch
einige der auf S. 44 vorgestellten Verdffentlichungen. Die Artikel werden vom Herausgeber
aus heutiger Sicht diskutiert und eingeordnet.

Fogel, Owens & Walsh (1966): Artificial Intelligence Through Simulated Evolution.
Das Buch stellt die ersten Ansétze des evolutiondren Programmierens mit endlichen Auto-
maten vor.

Gerdes, Klawonn & Kruse (2004): Evolutiondre Algorithmen.
Das Lehrbuch geht im Wesentlichen von den genetischen Algorithmen aus und stellt die
weiteren Paradigmen als spezifische Techniken dar. Abgesehen von einem informativen Ka-
pitel mit Beziigen zu Fuzzy-Techniken reicht der Inhalt nicht iiber das vorliegende Buch
hinaus.

Goldberg (1989): Genetic Algorithms In Search, Optimization, and Machine Learning.
Standardlehrbuch, das sich ausschlieBlich mit genetischen Algorithmen befasst. Dieses Buch
hat maBigeblich zur heutigen Verbreitung der genetischen Algorithmen beigetragen.

Kallel, Naudts & Rogers (2001): Theoretical Aspects of Evolutionary Computing.
Das Buch ist das Ergebnis einer Summer School zur Theorie evolutiondrer Algorithmen.
Insbesondere die Tutorials auf den ersten 200 Seiten geben einen guten Einblick in die
Techniken zur Analyse evolutiondrer Algorithmen.

Koza (1992): Genetic Programming: On the Programming of Computers by Means of Natu-
ral Selection.
In dem Klassiker der GP-Literatur wurde das genetische Programmieren erstmals in Buch-
form vorgestellt. Das Buch deckt viele der neueren Entwicklungen nicht ab.

Langdon & Poli (2002): Foundations of Genetic Programming.
Das Buch vertieft die theoretischen Grundlagen des genetischen Programmierens und fasst
die wesentlichen wissenschaftlichen Arbeiten der beiden Autoren zusammen. Schwerpunk-
te sind dabei die Schema-Theorie sowie die Analyse des Suchraums.

Michalewicz (1992): Genetic Algorithims + Data Structures = Evolution Programs.
Ebenfalls ein Standardlehrbuch das sich primér mit genetischen Algorithmen im weiteren
Sinn befasst. Ein Schwerpunkt liegt dabei auf der Behandlung von Randbedingungen.

Michalewicz & Fogel (2000): How to Solve It: Modern Heuristics.
Evolutionire Algorithmen werden umfassend im gréfleren Kontext von Heuristiken darge-
stellt. Das Buch ist kurzweilig und lesenswert, spart jedoch theoretische Grundlagen aus.

Mitchell (1996): An Introduction to Genetic Algorithms.
Das Lehrbuch beschiftigt sich schwerpunktmafig mit genetischen Algorithmen. Es bietet
hier sowohl theoretische Grundlagen als auch unorthodoxe Sichtweisen.

B.2 Existierende Software 277

Nissen (1997): Einfiihrung in Evolutiondire Algorithmen.
Die Dissertation des Autors gibt einen Uberblick iiber den gesamten Bereich der evolutio-
niren Algorithmen, wobei keine weiter vertieften Schwerpunkte gelegt werden. Sie besticht
in erster Linie durch umfassenden Literaturverweise.

Pohlheim (2000): Evolutiondire Algorithmen: Verfahren, Operatoren und Hinweise.
Umfassende Darstellung evolutionérer Algorithmen, die speziell fiir Praktiker und Ingenieu-
re geschrieben wurde und nicht wesentlich tiber den Inhalt des vorliegenden Buchs hinaus-
geht. Theoretische Grundlagen werden dabei ausgespart. Schwerpunkte bilden die Visuali-
sierung evolutiondrer Algorithmen und eine Matlab-Toolbox.

Rechenberg (1994): Evolutionsstrategie ’94.
Ausfiithrliche und anschauliche Darstellung der Evolutionsstrategien, die im Wesentlichen
auf den frithen Arbeiten des Autors beruht.

Schwefel (1995): Evolution and Optimum Seeking.
Dieses Buch stellt unterschiedliche mathematische Hillclimbing-Strategien und die Evoluti-
onsstrategien vor und vergleicht diese. Es ist gut geeignet fiir die Vertiefung im Bereich der
Evolutionsstrategien.

B.2 Existierende Software

Grob geschétzt gibt es mindestens 200 unterschiedliche, kommerzielle bzw. frei verfiigbare Soft-
ware-Produkte zu evolutiondren Algorithmen. Da sich dieser Markt stindig weiterentwickelt,
mochten wir an dieser Stelle nur auf einige freie Produkte verweisen, die bereits ldnger existie-
ren, in einer aktuellen Version vorliegen und an denen noch aktiv weiterentwickelt wird. Natur-
gemdil ist diese Auswahl eine sehr subjektive, die in keiner Weise die Arbeit anderer Entwickler
herabsetzen soll.

EO: Evolvable Objects: Evolutionary Computation Framework.

Eine Template-basierte C++-Klassen-Bibliothek. Sie umfasst derzeit bereits sehr viele Repra-
sentationen und Operatoren und kann auch einfach erweitert werden. Es handelt sich vermutlich
um die konzeptionell allgemeinste Software. EO ist plattformunabhéngig und wurde unter Linux,
Irix, Solaris und Windows95/NT getestet.

http://ecdev.sourceforge.net

GAlib: A C++ Library of Genetic Algorithm Components.

Auf genetische Algorithmen zugeschnittene C++-Klassen-Bibliothek. GAlib 14duft unter DOS,
Windows95/NT, Unix, MacOS.

http://lancet.mit.edu/ga/

JGap: Java Genetic Algorithms Package.

Eine Java-Komponente, die vor allem genetische Algorithmen und genetisches Programmieren
abdeckt.

http://jgap.sourceforge.net/

http://eodev.sourceforge.net
http://lancet.mit.edu/ga/
http://jgap.sourceforge.net/

278 B Weitere Quellen

ECJ: A Java-based Evolutionary Computation Research System.

Das Java-Programm wurde urspriinglich fiir genetisches Programmieren entwickelt, deckt inzwi-
schen allerdings die komplette Bandbreite der Standardalgorithmen ab — einschlieBlich koevolu-
tiondrer und multiobjektiver Algorithmen.
http://www.cs.gmu.edu/~eclab/projects/ecj/

EASEA: EAsy Specification of Evolutionary Algorithms.

In einer Hochsprache werden evolutionire Algorithmen spezifiziert. Ein Ubersetzer erzeugt dar-
aus Quellcode fiir EO oder fiir GAlib. Dies ist der »einfache« Weg, neue evolutiondre Algo-
rithmen zu entwerfen. Die Software ist fir Linux/Unix und Windows DOS erhéltlich — wurde
allerdings zuletzt 2003 aktualisiert.

http://sourceforge.net/projects/easea

JavaEvA: A Java based framework for Evolutionary Algorithms.

Das Java-Programm enthélt die wichtigsten Algorithmen — insbesondere Evolutionsstrategien,
genetische Algorithmen, lokale Suche und populationsbasiertes inkrementelles Lernen.
http://www-ra.informatik.uni-tuebingen.de/software/JavaEva/

http://sourceforge.net/proj
http://www-ra.informatik.uni-tuebingen.de/software/JavaEvA/

C Zufallszahlen

Wie im Hauptteil dieses Lehrbuchs gezeigt wurde, beruht die Arbeitsweise der evolutiondren Al-
gorithmen wesentlich auf zufilligen Verdnderungen von bestehenden Lésungskandidaten verbun-
den mit einem Selektionsprozess. Auf den heute gebrauchlichen Computern lassen sich jedoch
»echte« Zufallszahlen nicht erzeugen, wie sie beispielsweise bei physikalischen Zerfallsprozes-
sen vorkommen. Daher wird mit so genannten Pseudozufallszahlen gearbeitet.

Die meisten Pseudozufallszahlengeneratoren zur Erzeugung gleichmiBig verteilter Zufalls-
zahlen (z.B. im Intervall [0, 1] oder {0,...,m — 1}) arbeiten mit der gemischt kongruenten
Methode. Dabei gibt es einen Startwert zg € N, welcher iterativ mit einem Faktor g € N multipli-
ziert, mit einem Inkrement ¢ € Ny zusammenaddiert und durch eine Zahl m € N modulo geteilt
wird.

uj=(a-ui—1 +c) modm fiiri >0

Dabei muss 0 < wug, a,c < m gelten. Abhéngig von den gewdhlten Einstellungen werden nach-
einander verschiedene Zahlen zwischen 0 und m — 1 angenommen. Das Ziel ist, eine mdglichst
grofle Periode zu haben, bis sich die Zahlen wiederholen, so dass méglichst viele Zahlen zwi-
schen 0 und m — 1 tatséichlich vorkommen. Sehr viele Zufallszahlengeneratoren, die bereits von
Programmiersprachen oder Bibliotheken angeboten werden, sind hier jedoch mit Vorsicht zu ge-
nieBen, da entweder der Wert m relativ klein gewéahlt wird oder die Periode sehr klein ist. Fiir
viele Anwendungen sind die Zufallszahlen aus einem Generator mit den Einstellungen

m =232
a=1664525
¢c=1013904223

ausreichend. Durch die Programmiersprache und die Hardware muss dabei gewdhrleistet sein,
dass entweder das exakte Produkt u; - @ oder die 32 niederwertigen Bits des Produkts richtig be-
rechnet werden — die 32 niederwertigen Bits reichen aus, da die restlichen Bits durch die Modulo-
Rechnung sowieso entfernt werden. Zufallszahlen aus dem Intervall [0, 1] (bzw. [ug, og]) erhilt
man als —“ (bzw. ug + (0g — ug) - -5

Ein systemunabhingiger Zufallszahlengenerator mit ¢ = 0 kann mittels einer angenédherten
Faktorisierung von m = a-q+r mit ¢ = [m/a] und » = m mod a erreicht werden. Falls r < ¢

ist, kann fiir ein 0 < z < m — 1 gezeigt werden, dass

(a-z) modm=a-(z modgq) —r- EJ

gilt, falls dieser Term positiv ist. Andernfalls gilt

(a-z)mod m=a-(z mod q) —r- EJ +m

280 C Zufallszahlen

Algorithmus C.1

INITIALISIERE-ZUFALLSZAHLEN(Zustand u(> 0))

1 fori—40,...,1

2 do"u—16807-(u mod 127773) —2836- | oz |

127773
3 ifu<O
4 then Lo« u+23 —1
5 ifi<32
6 LthenC#; — u
7 ye1n

8 return neuer Zustand u, Tabelle (1);<;<32, Index y

Algorithmus C.2 liefert gleichverteilte Zahl aus [0,1]

UNIFORME-ZUFALLSZAHL(Zustand u, Tabelle (#;)1<;<32, Index y)
u— 16807 (u mod 127773) — 2836 - | 157 |

if u<0

then [y —u+231—1

I — grrogsss T !

yei

ti—u

return Zufallszahl 231y—_1, neuer Zustand u, Tabelle (#;);<;<32, Index y

~N AN R W —

Auf den Beweis wird hier verzichtet. Da die beiden Terme a- (z mod g) und rLéJ zwischen 0
und m — 1 liegen, sind sie problemlos auf nahezu allen Rechnern berechenbar. Konkret werden
im hier beschriebenen Verfahren (vgl. fur die Initialisierung Algorithmus C.1 und fiir die iterative
Berechnung Algorithmus C.2) die Werte

m=23_1
a = 16807
g = 127773
r=2836

benutzt. Um Korrelationen geringer Ordnung zwischen den Zufallszahlen zu entfernen, werden
die erzeugten Zufallszahlen noch umsortiert. Hierfir werden 32 Zufallszahlen in einer Tabelle
(#;)1<i<32 abgelegt. Wenn eine neue Zufallszahl benétigt wird, wird aus der zuletzt gelieferten
Zufallszahl der nichste Index der Tabelle berechnet und die dortige Zahl zuriickgegeben. Der
Tabelleneintrag wird durch eine neue Zufallszahl ersetzt.

Um zufillige bindre Zahlen (oder Zahlen einer anderen diskreten Menge) zu erzeugen, kann
ein oben beschriebener Zufallszahlengenerator benutzt werden. Es ist lediglich darauf zu achten,
dass die héherwertigen Bits der Zufallszahl fiir die Berechnung herangezogen werden. Also fiir
bindre Zufallszahlen sollte man eine Zufallszahl aus dem Intervall [0, 1] erzeugen und auf >
0.5 abpriifen. Wiirde man stattdessen modulo 2 rechnen und dadurch die niederwertigen Bits
benutzen, wire die Folge der Zufallszahl nur bedingt zufillig.

Auch fur die Erzeugung von normalverteilten Zufallszahlen kann obiger Zufallszahlengenera-
tor benutzt werden. Dabei werden zwei uniform verteilte Zufallszahlen erzeugt und mittels der

281

Algorithmus C.3

STANDARDNORMALVERTEILTE-ZUFALLSZAHL(Zustand u, Tabelle (#;)1<;<32, Index y)
1 repeat” x|, u, (t;)1<j<32,¥ < —1 +2- UNIFORME-ZUFALLSZAHL (u, (f;)
X2, 4, () 1<i<32,y < —1 +2- UNIFORME-ZUFALLSZAHL (u, (t;)
Lrad «— x% +x§
until rad < 1,0 und rad # 0

_ 2-lograd
rad

1<i<32,¥)
1 gigssz/)

rad —
v xy-rad
vV —xy -rad
return Zufallszahlen v und v, neuer Zustand u, Tabelle (#;)1<;<32, Index y

O~ N Wt W N

Box-Muller-Transformation in zwei standardnormalverteilte Zufallszahlen transformiert. Auf die
genaueren theoretischen Details der Transformation wird hier verzichtet. Algorithmus C.3 be-
schreibt den Ablauf des Verfahrens.

Wesentlich mehr Hintergrundinformationen und Algorithmen zur Erzeugung von Zufallszah-
len kénnen den Biichern von Knuth (1998) und Press et al. (1988-92) entnommen werden.

Bezliglich des Einsatzes von Zufallszahlen in evolutiondren Algorithmen bleibt anzumerken,
dass in einem Optimierungsverfahren genau ein Zufallszahlengenerator existieren sollte. Es mag
zwar bei einem objektorientierten Entwurf sinnvoll erscheinen, jedes Individuum mit einem eige-
nen Zufallszahlengenerator auszustatten, die Folgen beziiglich der Zufilligkeit sind jedoch nicht
abschétzbar. Ebenfalls wird geraten, mit einem klar definierten Anfangszustand fiir den Zufalls-
zahlengenerator zu starten, da nur so einzelne Experimente spéter reproduzierbar sind. Dies ist
nicht der Fall, wenn beispielsweise die Systemzeit fiir eine Initialisierung verwendet wird.

D Notation der Algorithmen

Die Notation der Algorithmen orientiert sich an der Darstellung im Standardwerk zu Algorith-
men und Datenstrukturen von Cormen et al. (2004), da sie extrem kompakt ist und dadurch Uber-
sichtlichkeit mit leichter Lesbarkeit verbindet. Zur Strukturierung stehen die folgenden Elemente
mit der tiblichen Semantik zur Verfiigung:

* bedingte Verzweigung: »if. . . then. ..« und »if. .. then. . .else. .. «,
» mehrfach bedingte Verzweigung: »switch case... ... «

< abweisende Schleife: »while. .. do. .. «,

+ nichtabweisende Schleife: »repeat. .. until. .. « und

+ vorgegebene Anzahl an Iterationen: »for. .. do... «

Die Anzahl der Anweisungen, die nach einem then, else, do oder repeat ausgefiihrt werden,
wird durch die Einriickung kenntlich gemacht. Alle Anweisungen, die gleich tief oder tiefer
eingeriickt sind, zdhlen zum selben Block mit Anweisungen. Diese Blocke werden zusitzlich
durch die Markierungen " und . verdeutlicht, wie Bild D.1 am Beispiel zeigt.

Fiir Zuweisungen wird die Schreibweise 4 «— Ausdruck benutzt, wobei der Wert von Ausdruck
der Variablen 4 zugewiesen wird. Bei der for-Schleife werden zwei Varianten unterschieden: Ist
die Reihenfolge der Iterationen grunsétzlich beliebig, wird mit for each x € M fiir eine Menge M
angezeigt, welche Berechnungen vorgenommen werden. Ansonsten soll durch for x — 1,...,10
die Reihenfolge der Abarbeitung verdeutlicht werden.

Da unterschiedliche Arten von Pseudozufallszahlen eine grofie Rolle in den evolutionéren
Algorithmen spielen, wird bei jeder Pseudozufallszahl die zugrundeliegende Verteilung der Zu-
fallszahlen angegeben: U (M) steht fiir die gleichverteilte Wahl einer Zahl aus der Menge M, die
sowohl ein reellwertiges Intervall als auch eine diskrete Menge sein kann. Ferner sind die normal-
verteilten Zahlen .4 (0, o) mit Standardabweichung ¢ um den Erwartungswert 0 von Interesse.

Viele der Algorithmen koénnen iiber Parameter eingestellt werden. Diese Parameter werden in
den Algorithmen nach ihrem ersten Vorkommen in geschlossenen Klammern genauer beschrie-
ben — Beispiel: s (Anzahl der zu wihlenden Individuen) .

Algorithmus D.1 (»Sortieren durch Auswahlen«). Die Einrlickungstiefe gibt an, welche Anweisun-
gen innerhalb einer Schleife oder einer if-Verzweigung ausgefiihrt werden. Der dabei entstehende
Block ist jeweils zusitzlich durch eine Klammerung von ™ bis . markiert.

AUSWAHLSORT(4]])

1 fori=Alength,...2

2 do" pos<—i

3 forj=1,....i—1

4 do " if A[j] > A[pos]

5 L then [pos «—

6 if pos £ i

7 L then [VERTAUSCHE(A4, pos, i)

284 D Notation der Algorithmen

Die Algorithmen in diesem Buch sind auf eine méglichst einfache Darstellung der wesentli-
chen Vorginge ausgelegt. Fiir die Implementation sind gegebenenfalls Verdnderungen beziiglich
der Effizienz vorzunehmen — so kann durch andere Handhabung von Zwischenergebnissen der
Algorithmus effizienter hinsichtlich Platz oder Zeit werden, wére dann allerdings l4nger in der
Pseudo-Code-Notation.

An einigen Stellen werden Angaben zur asymptotischen Laufzeit von Algorithmen gemacht,
d.h. es wird nur das grundsitzliche Verhalten fiir eine gréfBer werdende Fingabe ohne Beriick-
sichtigung von Konstanten betrachtet. Dies geschieht in der {iblichen Landau-Notation.

In Abschnitt 6.2 werden Vorgehensweisen zum Entwurf von Algorithmen diskutiert. Diese
werden als Aktivierungsdiagramm aus der Unified Modeling Language (UML) notiert.

Literaturverzeichnis

Aarts EHL & Korst J (1991). Simulated Annealing and Boltzmann Machines: A Stochastic Ap-
proach to Combinatorial Optimization and Neural Computing, Wiley & Sons, Chichester,
UK.

Ackley DH (1987a). 4 Connectionist Machine for Genetic Hillclimbing, Kluwer, Boston, MA.

— (1987b). Stochastic Iterated Genetic Hillclimbing, PhD thesis, Carnegie Mellon University,
Pittsburgh, PA.

Aizawa AN & Wah BW (1994). Scheduling of genetic algorithms in a noisy environment, Evo-
lutionary Computation, 2(2), S. 97-122.

Alba E & Troya JM (1999). A survey of parallel distributed genetic algorithms, Complexity, 4(4),
S. 31-52.

Altenberg L (1995). The schema theorem and Price’s theorem, in: (Whitley & Vose, 1995), S. 23—
49.

Angeline PJ (1994). Genetic programming and emergent intelligence, in: (Kinnear, 1994), S. 75—
98.

— (1996). The effects of noise on self-adaptive evolutionary optimization, in: (Fogel et al., 1996),
S. 433-439.

— (1997). Tracking extrema in dynamic environments, in: PJ Angeline, RG Reynolds, JR Mc-
Donnell & R Eberhart (Hrsg.), Evolutionary Programming VI, S. 335-345, Springer, Berlin.

Angeline PJ (Hrsg.) (1999). 1999 Congress on Evolutionary Computation, IEEE Press, Piscata-
way, NJ.

Angeline PJ & Pollack JB (1993). Competitive environments evolve better solutions for complex
tasks, in: (Forrest, 1993), S. 264-270.

Antonisse HJ & Keller KS (1987). Genetic operators for high-level knowledge representations,
in: (Grefenstette, 1987a), S. 69-76.

Arnold DV & Beyer HG (2002). Random dynamics optimum tracking with evolution strategies,
in: (Merelo Guervos et al., 2002), S. 3-12.

— (2006). Optimum tracking with evolution strategies, Evolutionary Computation, 14, S. 291—
308.

Axelrod R (1987). The evolution of strategies in the iterated prisoner’s dilemma, in: (Davis,
1987), S. 32-41.

Béck T (1993). Optimal mutation rates in genetic search, in: (Forrest, 1993), S. 2-8.

— (1996). Evolutionary Algorithms in Theory and Practice, Oxford University Press, New York,
NY.

Béck T (Hrsg.) (1997). Proc. of the Seventh Int. Conf. on Genetic Algorithms, Morgan Kaufmann,
San Francisco, CA.

286 Literaturverzeichnis

Béck T (1998). On the behavior of evolutionary algorithms in dynamic environments, in: (Fogel,
1998b), S. 446-451.

Béck T, Fogel DB & Michalewicz Z (Hrsg.) (1997). Handbook of Evolutionary Computation,
Institute of Physics Publishing and Oxford University Press, Bristol, UK — New York, NY.

Baker JE (1987). Reducing bias and inefficiency in the selection algorithm, in: (Grefenstette,
1987a), S. 14-21.

Baldwin JM (1896). A new factor in evolution, The American Naturalist, 30, S. 441-451.
Baluja S (1994). Population-based incremental learning: A method for integrating genetic search

based function optimization and competitive learning, Technischer Bericht CMU-CS-94-
163, Carnegie Mellon University, Pittsburgh, PA.

Banzhaf W, Nordin P, Keller R & Francone F (Hrsg.) (1998). Genetic Programming — An Intro-
duction, Morgan Kaufmann, San Francisco, CA.

Banzhaf W & Reeves C (Hrsg.) (1999). Foundations of Genetic Algorithms 5, Morgan Kaufmann,
San Francisco, CA.

Bean JC & Hadj-Alouane AB (1992). A dual genetic algorithm for bounded integer programs,
Technischer Bericht 92-53, Department of Industrial and Operations Engineering, Universi-
ty of Michigan, Ann Arbor, MI.

Belew RK & Booker LB (Hrsg.) (1991). Proc. of the Fourth Int. Conf. on Genetic Algorithms,
Morgan Kaufmann, San Mateo, CA.

Bentley PJ (Hrsg.) (1999). Evolutionary Design by Computers, Morgan Kaufmann, San Francis-
co, CA.

Beyer HG (1994). Towards a theory of evolution strategies: Results from the n-dependent (u, A)
and the multi-recombinant (¢t/u, A) theory, Technischer Bericht SYS-5/94, Systems Ana-
lysis Research Group, University of Dortmund, Dortmund, Germany.

— (1997). An alternative explanation for the manner in which genetic algorithms operate, Bio-
Systems, 41, S. 1-15.

— (1998). Mutate large, but inherit small! On the analysis of rescaled mutations in (1, 1)-ES
with noisy fitness data, in: (Eiben et al., 1998), S. 109-118.

— (2001). The Theory of Evolution Strategies, Springer, Berlin.

Blickle T & Thiele L (1995). A mathematical analysis of tournament selection, in: (Eshelman,
1995), S. 9-16.

— (1997). A comparison of selection schemes used in evolutionary algorithms, Evolutionary
Computation, 4(4), S. 361-394.

Box GEP (1957). Evolutionary operation: A method for increasing industrial productivity, App-
lied Statistics, 6(2), S. 81-101.

Branke J (1998). Creating robust solutions by means of evolutionary algorithms, in: (Eiben et al.,
1998), S. 119-128.

— (1999). Evolutionary algorithms for dynamic optimization problems: A survey, Technischer
Bericht 387, Institute AIFB, University of Karlsruhe, Karlsruhe, Germany.

Bremermann HJ (1962). Optimization through evolution and recombination, in: MC Yovitis &

Literaturverzeichnis 287

GT Jacobi (Hrsg.), Self-Organizing Systems, S. 93—106, Spartan, Washington, D.C.

Bremermann HJ, Rogson M & Salaff S (1966). Global properties of evolution processes, in:
HH Pattee, EA Edlsack, L Fein & AB Callahan (Hrsg.), Natural Automata and Useful Si-
mulations, S. 3—41, Spartan Books, Washington, D.C.

Brindle A (1981). Genetic algorithms for function optimization, PhD thesis, University of Alber-
ta, Department of Computer Science, Edmonton, Kanada.

Brown DE, Huntley CL & Spillane AR (1989). A parallel genetic heuristic for the quadratic
assignment problem, in: (Schaffer, 1989), S. 406-415.

Bufé M, Fischer T, Gubbels H, Hicker C, Hasprich O, Scheibel C, Weicker K, Weicker N, Wenig
M & Wolfangel C (2001). Automated solution of a highly constrained school timetabling
problem — preliminary results, in: EJW Boers, S Cagnoni, J Gottlieb, E Hart, PL Lanzi,
GR Raidl, RE Smith & H Tijink (Hrsg.), Applications of Evolutionary Computing: Proc.
EvoWorkshops 2001, S. 431-440, Springer, Berlin.

Burke EK, Elliman DG & Weare RF (1995). A hybrid genetic algorithm for highly constrained
timetabling problems, in: (Eshelman, 1995), S. 605-610.

Cantu-Paz E (1999). A summary of research on parallel genetic algorithms, Technischer Bericht
95007, Department of General Engineering, University of Illinois at Urbana-Champaign,
Urbana, IL.

Caruvana RA & Schaffer JD (1988). Representation and hidden bias: Gray versus binary coding
in genetic algorithms, in: J Leard (Hrsg.), Proc. of the 5th Int. Conf. on Machine Learning,
S. 153-161, Morgan Kaufmann, San Mateo, CA.

Cedefio W & Vemuri VR (1997). On the use of niching for dynamic landscapes, in: Int. Conf. on
Evolutionary Computation, S. 361-366, IEEE Press, Piscataway, NJ.

Chellapilla K & Fogel DB (2000). Anaconda defeats hoyle 6-0: A case study competing an evol-
ved checkers program against commercially available software, in: (Zalzala, 2000), S. 857—
863.

Chieniawski SE (1993). An Investigation of the Ability of Genetic Algorithms to Generate the
Tradeoff Curve of a Multi-objective Groundwater Monitoring Problem, Masterarbeit, Uni-
versity of Illinois, Urbana, IL.

Chung C & Reynolds RG (1997). Function optimization using evolutionary programming with
self-adaptive cultural algorithms, in: X Yao, JH Kim & T Furuhashi (Hrsg.), Simulated
Evolution and Learning: First Asia-Pacific Conf. (SEAL96), S. 17-26, Springer, Berlin.

Claus V (1991). Complexity measures on permutations, in: J Buchmann, H Ganzinger & W Paul
(Hrsg.), Informatik: Festschrift zum 60. Geburtstag von Giinter Hotz, S. 81-94, Teubner
Verlag, Stuttgart.

Cobb GW (2002). Introduction to Design and Analysis of Experiments, Key College, Emeryville,
CA.

Cobb HG (1990). An investigation into the use of hypermutation as an adaptive operator in gene-
tic algorithms having continuous, time-dependent nonstationary environments, Technischer

Bericht 6760 (NLR Memorandum), Navy Center for Applied Research in Artificial Intelli-
gence, Washington, D.C.

288 Literaturverzeichnis

Cobb HG & Grefenstette JJ (1993). Genetic algorithms for tracking changing environments, in:
(Forrest, 1993), S. 523-530.

Coello CAC (1999). An updated survey of evolutionary multiobjective optimization techniques:
State of the art and future trends, in: (Angeline, 1999), S. 3—-13.

Cohen PR (1995). Empirical Methods for Artificial Intelligence, MIT Press, Cambridge, MA.

Colorni A, Dorigo M & Maniezzo V (1998). Metaheuristics for high-school timetabling, Compu-
tational Optimization and Applications, 9(3), S. 277-298.

Cormen TH, Leiserson CE, Rivest RL & Stein C (2004). Algorithmen — Eine Einfiihrung, Olden-
bourg, Miinchen.

Corne D, Dorigo M & Glover F (Hrsg.) (1999). New Ideas in Optimization, McGraw-Hill, Lon-
don.

Cotta C & Troya JM (1998). Genetic forma recombination in permutation flowshop problems,
Evolutionary Computation, 6(1), S. 25-44.

— (2001). Analyzing directed acyclic graph recombination, in: B Reusch (Hrsg.), Computational
Intelligence: Theory and Applications, S. 739-748, Springer, Berlin.

Cramer NL (1985). A representation for the adaptive generation of simple sequential programs,
in: (Grefenstette, 1985), S. 183-187.

Crick FHC, Barnett L, Brenner S & Watts-Tobin RJ (1961). General nature of the genetic code
for proteins, Nature, 192, S. 1227-1232,

Crisan C & Miihlenbein H (1998). The breeder genetic algorithm for frequency assignment, in:
(Eiben et al., 1998), S. 897-906.

Culberson JC (1998). On the futility of blind search: An algorithmic view of “No free lunch”,
Evolutionary Computation, 6(2), S. 109-127.

Cuvier G (1812). Recherches sur les Ossements Fossiles des Quadrupédes, Detreville, Paris.

— (1825). Essay on the Theory of the Earth, Blackwood, Edinburgh, 3. Auflage.

Dakin RJ (1965). A tree-search algorithm for mixed integer programming problems, Computer
Journal, 8(3), S. 250-255.

Dantzig G (1951a). Application of the simplex method to a transportation problem, in: (Koop-
mans, 1951), S. 359-373.

— (1951b). Maximization of a linear function of variables subject to linear inequalities, in: (Ko-
opmans, 1951), S. 339-347.

— (1963). Linear Programming and Extensions, Princeton University Press, Princeton, NJ.

Darwin C (1859). On the Origin of Species, John Murray, London.

Davidor Y, Schwefel HP & Ménner R (Hrsg.) (1994). Parallel Problem Solving from Nature —
PPSN II, Springer, Berlin.

Davis L (1985). Applying adaptive algorithms to epistatic domains, in: A Joshi (Hrsg.), Proc.
of the 9th Int. Joint Conf. on Artificial Intelligence, S. 162-164, Morgan Kaufmann, Los
Angeles, CA.

Davis L (Hrsg.) (1987). Genetic Algorithms in Simulated Annealing, Morgan Kaufmann, Los
Altos, CA.

Literaturverzeichnis 289

Davis L (1989). Adapting operator probabilities in genetic algorithms, in: (Schaffer, 1989), S. 61—
69.

— (1991a). A genetic algorithms tutorial, in: (Davis, 1991b), S. 1-101.

Davis L (Hrsg.) (1991b). Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York,
NY.

Davis LD, De Jong K, Vose MD & Whitley LD (Hrsg.) (1999). Evolutionary Algorithms, Sprin-
ger, New York, NY.

De Jong KA (1975). An Analysis of the Behavior of a Class of Genetic Adaptive Systems, PhD
thesis, University of Michigan, Ann Arbor, M1.

— (2000). Evolving in a changing world, in: Z Ras & A Skowron (Hrsg.), Foundation of Intelli-
gent Systems, S. 513519, Springer, Berlin.

De Jong KA, Spears WM & Gordon DF (1995). Using Markov chains to analyze GAFOs, in:
(Whitley & Vose, 1995), S. 115-137.

de Vries H (1901/03). Die Mutationstheorie: Versuche und Beobachtungen tiber die Entstehung
von Arten im Pflanzenveich, Veit, Leipzig.

Deb K (2001). Multi-Objective Optimization Using Evolutionary Algorithms, Wiley & Sons, Chi-
chester, UK.

Deb K & Agrawal S (1999). Understanding interactions among genetic algorithm parameters, in:
(Banzhaf & Reeves, 1999), S. 265-286.
Deb K & Goldberg DE (1993). Analyzing deception in trap functions, in: LD Whitley (Hrsg.),
Foundations of Genetic Algorithms 2, S. 93—108, Morgan Kaufmann, San Mateo, CA.
Dorigo M & Di Caro G (1999). The ant colony optimization meta-heuristic, in: (Corne et al.,
1999), S. 11-32.

Dorigo M, Maniezzo V & Colorni A (1991). The ant system: An autocatalytic optimizing process,
Technischer Bericht 91-016 Revised, Politecnico di Milano, Milano, Italy.

— (1996). Ant system: Optimization by a colony of cooperating agents, IEEE Trans. on Systems,
Man, and Cybernetics — Part B, 26(1), S. 29—41.

Droste S, Jansen T & Wegener 1 (2001). Optimization with randomized search heuristics — the
(A)NFL theorem, realistic scenarios, and difficult functions, Journal of Theoretical Compu-
ter Science, 287(1), S. 131-144.

Dueck G (1993). New optimization heuristics: The great deluge algorithm and the record-to-
record travel, Journal of Computational Physics, 104, S. 86-92.

Dueck G & Scheuer T (1990). Threshold accepting: A general purpose optimization algorithm
appearing superior to simulated annealing, Journal of Computational Physics, 90, S. 161—
175.

Eastman WL (1958). Linear Programming with Pattern Constraints, PhD thesis, Harvard Uni-
versity, Cambridge, MA.

Eberhart RC & Shi Y (1998). Comparison between genetic algorithms and particle swarm opti-
mization, in: (Porto et al., 1998), S. 611-616.

Ehrlich PR & Raven PH (1964). Butterflies and plants: A study in coevolution, Evolution, 18,

290 Literaturverzeichnis

S. 586-608.

Eiben AE, Aarts EHL & Van Hee KM (1991). Global convergence of genetic algorithms: A
Markov chain analysis, in: (Schwefel & Minner, 1991), S. 4-12.

Eiben AE, Béck T, Schoenauer M & Schwefel HP (Hrsg.) (1998). Parallel Problem Solving from
Nature — PPSN V, Springer, Berlin.

Eiben AE & Schippers CA (1998). On evolutionary exploration and exploitation, Fundamenta
Informaticae, 35, S. 35-50.

Eiben AE & Smith JE (2003). Infroduction to Evolutionary Computing, Springer, Berlin,

Eigen M (1971). Selforganization of matter and the evolution of biological macromolecules, Die
Naturwissenschaften, 58(10), S. 465-523.

— (1980). Das Urgen, Nova Acta Leopoldina, 52(243), S. 1-40.

Eigen M & Schuster P (1982). Stages of emerging life — five principles of early organization,
Journal of Molecular Evolution, 19, S. 47-61.

English TM (1996). Evaluation of evolutionary and genetic optimizers: No free lunch, in: (Fogel
etal., 1996), S. 163-169.

— (1999). Some information theoretic results on evolutionary optimization, in: (Angeline, 1999),
S. 788-795.

Eshelman LJ (Hrsg.) (1995). Proc. of the Sixth Int. Conf. on Genetic Algorithms, Morgan Kauf-
mann, San Francisco, CA.

Fernandes C, Caldeira JP, Melicio F & Rosa A (1999). High school weekly timetabling by evolu-
tionary algorithms, in: ACM Symposium on Applied Computing 99, S. 344-350, ACM, New
York, NY.

Fischer TF (2004). Entwicklung einer Entwurfsmethodik fiir Evolutiondre Algorithmen, Diplom-
arbeit, Universitdt Stuttgart, Fakultdt Informatik, Elektrotechnik und Informationstechnik,
Stuttgart.

Fitzpatrick JM & Grefenstette JJ (1988). Genetic algorithms in noisy environments, Machine
Learning, 3, S. 101-120.

Floudas CA & Pardalos PM (1990). A Collection of Test Problems for Constrained Global Opti-
mization Algorithms, Springer, Berlin.

Fogarty TC & Huang R (1991). Implementing the genetic algorithm on transputer based parallel
processing systems, in: (Schwefel & Manner, 1991), S. 145-149.

Fogel DB (1988). An evolutionary approach to travelling salesman problem, Biological Cyber-
netics, 6(2), S. 139-144,

— (1995). Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, IEEE
Press, New York, NY.

Fogel DB (Hrsg.) (1998a). Evolutionary Computation: The Fossil Record, JEEE Press, Piscata-
way, NJ.

— (1998b). IEEE Int. Conf. on Evolutionary Computation, IEEE Press, Piscataway, NJ.
Fogel DB (1999). An overview of evolutionary programming, in: (Davis et al., 1999), S. 89-109.
Fogel DB & Atmar JW (1990). Comparing genetic operators with Gaussian mutations in simula-

Literaturverzeichnis 291

ted evolutionary processes using linear systems, Biological Cybernetics, 63(2), S. 111-114,

Fogel DB & Chellapilla K (1998). Revisiting evolutionary programming, in: SK Rogers, DB Fo-
gel, JC Bezdek & B Bosacchi (Hrsg.), Applications and Science of Computational Intelli-
gence, S. 2-11, SPIE, Bellingham, WA.

Fogel DB, Fogel LJ & Atmar JW (1991). Meta-evolutionary programming, in: RR Chen (Hrsg.),
Proc. of the 25th Asilomar Conf. on Signals, Systems, and Computers, S. 540-545, Maple
Press, Pacific Grove, CA.

Fogel DB & Ghozeil A (1996). Using fitness distributions to design more efficient evolutionary
computations, in: Proc. of 1996 IEEE Conf. on Evolutionary Computation, S. 11-19, IEEE
Press, New York, NY.

Fogel L], Angeline PJ & Back T (Hrsg.) (1996). Evolutionary Programming V: Proc. of the Fifth
Annual Conf’ on Evolutionary Programming, MIT Press, Cambridge, MA.

Fogel LJ, Owens AJ & Walsh MJ (1965). Artificial intelligence through a simulation of evolution,
in: M Maxfield, A Callahan & LJ Fogel (Hrsg.), Biophysics and Cybernetic Systems: Proc.
of the 2nd Cybernetic Sciences Symposium, S. 131-155, Spartan Books, Washington, D.C.

— (1966). Artificial Intelligence Through Simulated Evolution, Wiley & Sons, New York, NY.

Fonseca CM & Fleming PJ (1993). Genetic algorithms for multiobjective optimization: Formu-
lation, discussion and generalization, in: (Forrest, 1993), S. 416-423.

— (1997). Multiobjective optimization, in: (Béack et al., 1997), S. C4.5:1-9.

Forrest S (Hrsg.) (1993). Proc. of the Fifth Int. Conf. on Genetic Algorithms, Morgan Kaufmann,
San Mateo, CA.

Franklin B & Bergerman M (2000). Cultural algorithms: Concepts and experiments, in: (Zalzala,
2000), S. 1245-1251.

Friedberg RM (1958). A learning machine: Part I, IBM Journal of Research and Development,
2(1), S. 2-13.

Friedberg RM, Dunham B & North JH (1959). A learning machine: Part 1, IBM Journal of
Research and Development, 3(3), S. 282-287.

Friedman GJ (1956). Selective Feedback Computers for Engineering Synthesis and Nervous Sys-
tem Analogy, Masterarbeit, University of California, Los Angeles, CA.

Futuyma D (1998). Evolutionary Biology, Sinauer Associates, Sunderland, MA.

Gaertner D & Clark KL (2005). On optimal parameters for ant colony optimization algorithms,
in: HR Arabnia & R Joshua (Hrsg.), Proc. of the 2005 Int. Conf- on Artificial Intelligence,
S. 83—89, CSREA Press, Las Vegas, NV.

Galota M, Glasser C, Reith S & Vollmer H (2000). A polynomial-time approximation scheme for
base station positioning in UMTS networks, in: E Amaldi, A Capone & F Malucelli (Hrsg.),
Proc. 5th Discrete Algorithms and Methods for Mobile Computing and Communications,
S. 52-59, ACM Press, New York, NY.

Garey MR & Johnson DS (1979). Computers and Intractability: A Guide to the Theory of NP-
Completeness, Freeman, San Mateo, CA.

Gerdes I, Klawonn F & Kruse R (2004). Evolutiondre Algorithmen, Vieweg, Wiesbaden.

292 Literaturverzeichnis

Gero JS & Kazakov VA (1998). Evolving design genes in space layout planning problems, Arti-
ficial Intelligence in Engineering, 12(3), S. 163-176.

Glover F (1977). Heuristics for integer programming using surrogate constraints, Decision
Sciences, 8(1), S. 156-166.

— (1986). Future paths for integer programming and links to artificial intelligence, Computers
and Operations Research, 13, S. 533-549.

— (1990). Tabu search: A tutorial, Interfaces, 20(4), S. 74-94.

— (1998). A template for scatter search and path relinking, in: JK Hao, E Lutton, E Ronald,
M Schoenauer & D Snyers (Hrsg.), Artificial Evolution, S. 13-54, Springer, Berlin.

Glover F, Laguna M & Marti R (2000). Fundamentals of scatter search and path relinking, Con-
trol and Cybernetics, 29(3), S. 653-684.

Goldberg DE (1983). Computer-Aided Gas Pipeline Operation using Genetic Algorithm and
Rule Learning, PhD thesis, University of Michigan, Ann Arbor, MI.

— (1989). Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley,
Reading, MA.

Goldberg DE, Deb K & Clark JH (1992). Genetic algorithms, noise, and the sizing of populations,
Complex Systems, 6, S. 333-362.

Goldberg DE & Lingle, Jr R (1985). Alleles, loci, and the traveling salesman problem, in: (Gre-
fenstette, 1985), S. 154-159.

Goldberg DE & Richardson J (1987). Genetic algorithms with sharing for multimodal function
optimization, in: (Grefenstette, 1987a), S. 41-49.

Goldberg DE & Smith RE (1987). Nonstationary function optimization using genetic algorithms
with dominance and diploidy, in: (Grefenstette, 1987a), S. 59-68.

Gorges-Schleuter M (1989). ASPARAGOS an asynchronous parallel genetic optimization strat-
egy, in: (Schaffer, 1989), S. 422-427.

Grant V (1991). The Evolutionary Process: A Critical Study of Evolutionary Theory, Columbia
University Press, New York, NY.

Grefenstette J (1981). Parallel adaptive algorithms for function optimization, Technischer Bericht
CS-81-19, Vanderbilt University, Nashville, TN.

— (1986). Optimization of control parameters for genetic algorithms, IEEE Trans. on Systems,
Man, and Cybernetics, SMC-16(1), S. 122-128.

Grefenstette JJ (Hrsg.) (1985). Proc. of the First Int. Conf. on Genetic Algorithms and their
Applications, Lawrence Erlbaum Associates, Hillsdale, NJ.

— (1987a). Genetic Algorithms and Their Applications: Proc. of the Second Int. Conf. on Genetic
Algorithms, Lawrence Erlbaum Associates, Hillsdale, NJ.

Grefenstette JJ (1987b). Incorporating problem specific knowledge into genetic algorithms, in:
(Davis, 1987), S. 42—60.

— (1999). Evolvability in dynamic fitness landscapes: A genetic algorithm approach, in: (Ange-
line, 1999), S. 2031-2038.

Grefenstette JJ & Baker JE (1989). How genetic algorithms work: A critical look at implicit

Literaturverzeichnis 293

parallelism, in: (Schaffer, 1989), S. 20-27.

Grefenstette JJ, Gopal R, Rosmaita B & Van Gucht D (1985). Genetic algorithms for the traveling
salesman problem, in: (Grefenstette, 1985), S. 160-168.

Gupta R & Kalvenes J (1999). Hierarchical cellular network design with channel allocation, in:
S Sarkar & S Narasimhan (Hrsg.), Proc. of the Ninth Annual Workshop on Information
Technologies & Systems, S. 155160, Charlotte, NC.

Hammel U & Bick T (1994). Evolution strategies on noisy functions: How to improve conver-
gence, in: (Davidor et al., 1994), S. 159-168.

Hanke-Burgeois M (2006). Grundlagen der Numerischen Mathematik und des wissenschaftli-
chen Rechnens, Teubner, Wiesbaden, 2. Auflage.

Hardy GH (1908). Mendelian proportions in a mixed population, Science, 28, S. 49-50.

Herdy M (1991). Application of the evolutionsstrategie to discrete optimization problems, in:
(Schwefel & Ménner, 1991), S. 188-192.

Herrera F, Lozano M & Molina D (2006). Continuous scatter search: An analysis of the inte-
gration of some combination methods and improvement strategies, European Journal of
Operational Research, 169(2), S. 450-476.

Hertz A & de Werra D (1987). Using tabu search techniques for graph coloring, Computing, 39,
S. 345-351.

Hillis WD (1992). Co-evolving parasites improve simulated evolution as an optimization pro-
cedure, in: CG Langton, C Taylor, JD Farmer & S Rasmussen (Hrsg.), Artificial Life 11,
S. 313-324, Addison-Wesley, Redwood City, CA.

Hinterding R & Michalewicz Z (1998). Your brains and my beauty: Parent matching for constrai-
ned optimisation, in: (Fogel, 1998b), S. 810-815.

Hinton GE & Nowlan SJ (1987). How learning can guide evolution, Complex Systems, 1, S. 495—
502.

Holland JH (1969). A new kind of turnpike theorem, Bulletin of the American Mathematical
Society, 75(6), S. 1311-1317.

— (1973). Genetic algorithms and the optimal allocation of trials, SIAM Journal on Computing,
2(2), S. 88-105.

— (1975). Adaptation in Natural and Artifical Systems, University of Michigan Press, Ann Arbor,
MI.

— (1976). Adaptation, in: RF Rosen (Hrsg.), Progress in Theoretical Biology IV, S. 263-293,
Academic Press, New York, NY.

— (1992). Adaptation in Natural and Artifical Systems, MIT Press, Cambridge, MA.

Holland JH & Reitman JS (1978). Cognitive systems based on adaptive algorithms, in: DA Water-
man & F Hayes-Roth (Hrsg.), Pattern-Directed Inference Systems, S. 313-329, Academic
Press, New York, NY.

Hordijk W (1997). A measure of landscapes, Evolutionary Computation, 4(4), S. 335-360.
Horn J (1997). Multicriterion decision making, in: (Béck et al., 1997), S. F1.9:1-15.
Horn J & Nafpliotis N (1993). Multiobjective optimization using the niched pareto genetic algo-

294 Literaturverzeichnis

rithm, Technischer Bericht IIliGAL 93005, Illinois Genetic Algorithms Laboratory, Univer-
sity of Illinois at Urbana-Champaign, Urbana, IL.

Hurst J, Bull L & Melhuish C (2002). TCS learning classifier system controller on a real robot,
in: (Merelo Guervés et al., 2002), S. 588-597.

Janikow CZ & Michalewicz Z (1991). An experimental comparison of binary and floating point
representations in genetic algorithms, in: (Belew & Booker, 1991), S. 31-36.

Jin Y (2002). Fitness approximation in evolutionary computation — a survey, in: WB Langdon,
E Cantt-Paz, KE Mathias, R Roy, D Davis, R Poli, K Balakrishnan, V Honavar, G Rudolph,
J Wegener, L Bull, MA Potter, AC Schultz, JF Miller, EK Burke & N Jonoska (Hrsg.),
Proc. Genetic Evolutionary Computation Conf. (GECCO), S. 11801187, Morgan Kauf-
mann, San Mateo, CA.

Jin Y & Branke J (2005). Evolutionary optimization in uncertain environments — a survey, /EEFE
Trans. on Evolutionary Computation, 9(3), S. 303-317.

Jin Y & Sendhoft B (2003). Trade-off between performance and robustness: An evolutionary mul-
tiobjective approach, in: CM Fonseca, PJ Fleming, E Zitzler, K Deb & L Thiele (Hrsg.), Evo-
lutionary Multi-Criterion Optimization, Second Int. Conf. EMO 2003, S. 237-251, Springer,
Berlin.

Jones T (1995). Evolutionary Algorithms, Fitness Landscapes and Search, PhD thesis, The Uni-
versity of New Mexico, Albuquerque, NM.

Kallel L, Naudts B & Rogers A (Hrsg.) (2001). Theoretical Aspects of Evolutionary Computing,
Springer, Berlin.

Kazarlis S & Petridis V (1998). Varying fitness functions in genetic algorithms: Studying the rate
of increase of the dynamic penalty terms, in: (Eiben et al., 1998), S. 211-220.

Keith MJ & Martin MC (1994). Genetic programming in C++: Implementation issues, in: (Kin-
near, 1994), S. 285-310.

Kennedy J & Eberhart RC (1995). Particle swarm optimization, in: Proc. of the IEEE Int. Conf.
on Neural Networks, S. 1942—1948, IEEE Press, Piscataway, NJ.

— (1999). The particle swarm: Social adaptation in information-processing systems, in: (Corne
et al., 1999), S. 379-387.

Kinnear KE (Hrsg.) (1994). Advances in Genetic Programming, MIT Press, Cambridge, MA.

Kirkpatrick S, Gelatt Jr CD & Vecchi MP (1983). Optimization by simulated annealing, Science,
220(4598), S. 671-680.

Knowles J & Corne D (1999). The Pareto archived evolution strategy: A new baseline algorithm
for pareto multiobjective optimisation, in: (Angeline, 1999), S. 98-105.

Knuth DE (1998). The Art of Computer Programming, volume 2, Addison-Wesley, Reading, MA,
3. Auflage.

Koopmans T (Hrsg.) (1951). Activity Analysis of Production and Allocation, Wiley & Sons, New
York, NY.

Koza JR (1989). Hierarchical genetic algorithms operating on populations of computer programs,
in: NS Sridharan (Hrsg.), Proc. of the 11th Joint Conf. on Genetic Algorithms, S. 786=774,
Morgan Kaufmann, San Francisco, CA.

Literaturverzeichnis 295

— (1992). Genetic Programming: On the Programming of Computers by Means of Natural Se-
lection, MIT Press, Cambridge, MA.

— (1994). Genetic Programming II: Automatic Discovery of Reusable Programms, MIT Press,
Cambridge, MA.

Kull U (Hrsg.) (1977). Evolution, J. B. Metzlersche Verlagsbuchhandlung, Stuttgart.
Kutschera U (2001). Evolutionsbiologie. Eine allgemeine Einfiihrung, Parey, Berlin.
Lamarck JB (1809). Philosophie Zoologique, Dentu, Paris.

Land AH & Doig AG (1960). An automated method for solving discrete programming problems,
Econometrica, 28, S. 497-520.

Langdon WB & Poli R (2002). Foundations of Genetic Programming, Springer, Berlin.

Lawler EL & Wood DE (1966). Branch-and-bound methods: A survey, Operations Research,
14(4), S. 699-719.

Lehn J & Wegmann H (2006). Einfiihrung in die Statistik, Teubner, 5. Auflage.

Levenberg K (1944). A method for the solution of certain problems in least squares, Quarterly
Applied Mathematics, 2, S. 164—-168.

Levenick JR (1990). Holland’s schema theorem disproved?, Journal of Experimental & Theore-
tical Artificial Intelligence, 2(2), S. 179-183.

Lewin B (1998). Molekularbiologie der Gene, Spektrum Akademischer Verlag, Heidelberg.

Lewis J, Hart E & Ritchie G (1998). A comparison of dominance mechanisms and simple muta-
tion on non-stationary problems, in: (Eiben et al., 1998), S. 139-148.

Liles W & De Jong KA (1999). The usefulness of tag bits in changing environments, in: (Ange-
line, 1999), S. 2054-2060.

Lin S & Kernighan BW (1973). An effective heuristic algorithm for the traveling salesman pro-
blem, Operations Research, 21, S. 498-516.

Lubberts A & Miikkulainen R (2001). Co-evolving a Go-playing neural network, in: Coevoluti-
on: Turning Adaptive Algorithms upon Themselves. Birds-of-a-Feather Workshop, S. 14-19,
Gecco 2001, San Francisco, CA.

Margulis L. (1971). Symbiosis and evolution, Scientific American, 225, S. 48-57.

Marquardt DW (1963). An algorithm for least-squares estimation of nonlinear parameters, SIAM
Journal of Applied Mathematics, 11, S. 431-441.

Mathar R & Schmeink M (2002). Integrated optimal cell site selection and frequency allocation
for cellular radio networks, Telecommunication Systems, 21(2-4), S. 339-347.

Mattiussi C, Waibel M & Floreano D (2004). Measures of diversity for populations and distances
between individuals with highly reorganizable genomes, Evolutionary Computation, 12(4),
S. 495-515.

Mehlhorn K & Naher S (1999). The LEDA Platform of Combinatorial and Geometric Computing,
Cambridge University Press, Cambridge, MA.

Mendel G (1866). Versuche iiber Pflanzen-Hybriden, Verhandlungen des naturforschenden Ver-
eines in Briinn, Abhandlungen, 4, S. 3-47.

296 Literaturverzeichnis

Menger K (1932). Das Botenproblem, in: K Menger (Hrsg.), Ergebnisse eines mathematischen
Kolloguiums 2, S. 11-12, Teubner, Leipzig.

Merelo Guervos JJ, Adamidis P, Beyer HG, Fernandez-Villacafias JL & Schwefel HP (Hrsg.)
(2002). Parallel Problem Solving from Nature — PPSN VII, Springer, Berlin.

Merz P (2000). Memetic Algorithms for Combinatorial Optimization Problems: Fitness Lands-
capes and Effective Search Strategies, Doktorarbeit, Universitit Siegen, Siegen.

Michalewicz Z (1992). Genetic Algorithms + Data Structures = Evolution Programs, Springer,
Berlin.

— (1995). A survey of constraint handling techniques in evolutionary computation methods, in:
JR McDonnell, RG Reynolds & DB Fogel (Hrsg.), Evolutionary Programming IV, S. 135—
155, MIT Press, Cambridge, MA.

— (1997). Repair algorithms, in: (Béck et al., 1997), S. C5.4:1-5.

Michalewicz Z & Fogel DB (2000). How to Solve It: Modern Heuristics, Springer, Berlin.

Michalewicz Z, Nazhiyath G & Michalewicz M (1996). A note on usefulness of geometrical
crossover for numerical optimization problems, in: (Fogel et al., 1996), S. 305-311.

Michalewicz Z & Schoenauer M (1996). Evolutionary algorithms for constrained parameter op-
timization problems, Evolutionary Computation, 4(1), S. 1-32.

Miller BL (1997). Noise, Sampling, and Efficient Genetic Algorithms, PhD thesis, University of
Illinois at Urbana-Champaign, Urbana, IL, [IliGAL Report No. 97001.

Mitchell M (1996). An Introduction to Genetic Algorithms, MIT Press, Cambridge, MA.

Mitchell M, Forrest S & Holland JH (1992). The royal road for genetic algorithms: Fitness lands-

capes and GA performance, in: FJ Varela & P Bourgine (Hrsg.), Proc. of the First European
Conf. on Artificial Life, S. 245-254, MIT Press, Cambridge, MA.

Mitchell M, Holland JH & Forrest S (1994). When will a genetic algorithm outperform hill
climbing?, in: J Cowa, G Tesauro & J Alspector (Hrsg.), Advances in Neural Information
Processing Systems, Morgan Kauffman, San Francisco, CA.

Mitterer A (2000). Optimierung vielparametriger Systeme in der Antriebsentwicklung, Statisti-
sche Versuchsplanung und Kiinstliche Neuronale Netze in der Steuergerdteauslegung zur
Motorabstimmung, Doktorarbeit, Technische Universitdt Miinchen, Miinchen.

Mitterer A, Fleischhauer T, Zuber-Goos F & Weicker K (1999). Modellgestiitzte Kennfeldopti-
mierung an Verbrennungsmotoren, in: Mefs- und Versuchstechnik im Automobilbau, S. 21—
36, VDI Verlag, Diisseldorf.

Mitterer A & Zuber-Goos F (2000). Modellgestiitzte Kennfeldoptimierung — ein neuer Ansatz
zur Steigerung der Effizienz in der Steuergeriteapplikation, Automobiltechnische Zeitschrift,
102(3).

Moller AF (1993). A scaled conjugate gradient algorithm for fast supervised learning, Neural
Networks, 6, S. 525-533.

Morgan CL (1896). On modification and variation, Science, 4, S. 733-740.

Mori N, Kita H & Nishikawa Y (1996). Adaptation to a changing environment by means of the
thermodynamical genetic algorithm, in: (Voigt et al., 1996), S. 513-522.

Literaturverzeichnis 297

Moscato P (1989). On evolution, search, optimization, genetic algorithms and martial arts: To-
wards memetic algorithms, Technischer Bericht C3P 826, Caltech Concurrent Computation
Program, California Institute of Technology, Pasadena, CA.

Motoki T (2002). Calculating the expected loss of diversity of selection schemes, Evolutionary
Computation, 10(4), S. 397-422.

Miihlenbein H (1989). Parallel genetic algorithms, population genetics and combinatorial optimi-
zation, in: (Schaffer, 1989), S. 416-421.

— (1992). How genetic algorithms really work: 1. Mutation and hillclimbing, in: R Ménner &
B Manderick (Hrsg.), Parallel Problem Solving from Nature 2, S. 15-25, Elsevier Science,
Amsterdam.

Miihlenbein H & Paall G (1996). From recombination of genes to the estimation of distributions:
I. Binary parameters, in: (Voigt et al., 1996), S. 178—187.

Miihlenbein H & Schlierkamp-Voosen D (1993). Predictive models for the breeder genetic algo-
rithm: 1. Continuous parameter optimization, Evolutionary Computation, 1(1), S. 25-49.

Naudts B & Kallel L (2000). A comparison of predictive measures of problem difficulty in evo-
lutionary algorithms, IEEE Trans. on Evolutionary Computation, 4(1), S. 1-15.

Ng K & Wong KC (1995). A new diploid scheme and dominance change mechanism for non-
stationary function optimization, in: (Eshelman, 1995), S. 159-166.

Nirenberg M & Leder P (1964). RNA codewords and protein synthesis: The effect of trinucleoti-
des upon the binding of sSRNA to ribosomes, Science, 145, S. 1399-1407.

Nissen V (1997). Einfiihrung in Evolutiondre Algorithmen, Vieweg, Wiesbaden.

Nissen V & Propach J (1998). On the robustness of population-based versus point-based opti-

mization in the presence of noise, IEEE Transactions on Evolutionary Computation, 2(3),
S. 107-119.

Nix AE & Vose MD (1992). Modeling genetic algorithms with Markov chains, Annals of Mathe-
matics and Artificial Intelligence, 5, S. 79-88.

Nordin P & Banzhaf W (1995). Evolving turing-complete programs for a register machine with
self-modifying code, in: (Eshelman, 1995), S. 318-325.

Osborn HF (1896). Ontogenic and phylogenic variation, Science, 4, S. 786-789.

Ostermeier A, Gawelczyk A & Hansen N (1995). A derandomized approach to self-adaptation
of evolution strategies, Evolutionary Computation, 2(4), S. 369-380.

Ottmann T & Widmayer P (2002). Algorithmen und Datenstrukturen, Spektrum Akademischer
Verlag, Heidelberg, 4. Auflage.

Paechter B, Rankin RC, Cumming A & Fogarty TC (1998). Timetabling the classes of an entire
university with an evolutionary algorithm, in: (Eiben et al., 1998), S. 865-874.

Paredis J (1994). Co-evolutionary constraint satisfaction, in: (Davidor et al., 1994), S. 46-55.

— (1997). Coevolving cellular automata: Be aware of the red queen!, in: (Béck, 1997), S. 393—
400.

Pareto V (1896). Cours D ’Economie Politique, F. Rouge, Lausanne.

Pelikan M, Goldberg DE & Canti-Paz E (1999). BOA: The Bayesian optimization algorithm, in:

298 Literaturverzeichnis

W Banzhaf, J Daida, AE Eiben, MH Garzon, V Honavar, M Jakiela & RE Smith (Hrsg.),
Proc. of the Genetic and Evolutionary Computation Conf. GECCO-99, S. 525-532, Morgan
Kaufmann, San Francisco, CA.

Pohlheim H (2000). Evolutiondre Algorithmen: Verfahren, Operatoren und Hinweise, Springet,
Berlin.

Poli R (2000). A macroscopic exact schema theorem and a redefinition of effective fitness for
GP with one-point crossover, Technischer Bericht CSRP-00-1, University of Birmingham,
Birmingham, UK.

Poli R & McPhee NF (2001). Exact schema theorems for GP with one-point and standard cross-
over operating on linear structures and their application to the study of the evolution of size,
in: J Miller, M Tomassini, PL Lanzi, C Ryan, AGB Tettamanzi & WB Langdon (Hrsg.),
Genetic Programming: 4th European Conf., S. 126-142, Springer, Berlin.

Pollack JB & Blair AD (1998). Co-evolution in the successful learning of backgammon strategy,
Machine Learning, 32(3), S. 225-240.

Porto VW, Saravanan N, Waagen D & Eiben AE (Hrsg.) (1998). Evolutionary Programming VII,
Springer, Berlin.

Potter MA & De Jong KA (1994). A cooperative coevolutionary approach to function optimiza-
tion, in: (Davidor et al., 1994), S. 249-257.

— (2000). Cooperative coevolution: An architecture for evolving coadapted subcomponents, Evo-
lutionary Computation, 8(1), S. 1-29.

Press WH, Teukolsky SA, Vetterling WT & Flannery BP (1988-92). Numerical Recipes in C,
Cambridge University Press, Cambridge, MA.

Price K (1996). Differential evolution: A fast and simple numerical optimizer, in: (Smith et al.,
1996), S. 524-527.

Price K & Storn R (1997). Differential evolution, Dr. Dobb’s Journal, April 1997, S. 18-24.

Punch WF, Goodman ED, Pei M, Chia-Shun L, Hovland P & Enbody R (1993). Further research
on feature selection and classification using genetic algorithms, in: (Forrest, 1993), S. 557—
564.

Qu R, Burke E, McCollum B, Merlot LTG & Lee SY (2006). A survey of search methodologies
and automated approaches for examination timetabling, Technischer Bericht NOTTCS-TR-
2006-4, University of Nottingham, Nottingham, UK.

Radcliffe NJ (1991a). Equivalence class analysis of genetic algorithms, Complex Systems, 5,
S. 183-205.

— (1991b). Forma analysis and random respectful recombination, in: (Belew & Booker, 1991),
S. 222-229,

Radcliffe NJ & Surry PD (1995). Fitness variance of formae and performance prediction, in:
(Whitley & Vose, 1995), S. 51-72.

Rana S & Whitley LD (1999). Search, binary representations and counting optima, in: (Davis
et al., 1999), S. 177-189.

Ratle A (1998). Accelerating the convergence of evolutionary algorithms by fitness landscape
approximation, in: (Eiben et al., 1998), S. 87-96.

Literaturverzeichnis 299

Rawlins GJ (Hrsg.) (1991). Foundations of Genetic Algorithms, Morgan Kaufmann, San Mateo,
CA.

Rechenberg I (1964). Kybernetische Losungsansteuerung einer experimentellen Forschungsauf-
gabe, presented at the Annual Conference of the WGLR at Berlin in September 1964.

— (1973). Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologi-
schen Evolution, frommann-holzbog, Stuttgart.

— (1994). Evolutionsstrategie "94, frommann-holzbog, Stuttgart.
Regis RG & Shoemaker CA (2004). Local function aproximation in evolutionary algorithms

for the optimization of costly functions, /EEE Trans. on Evolutionary Computation, 8(5),
S. 490-504.

Reynolds RG (1994). An introduction to cultural algorithms, in: AV Sebald & LJ Fogel (Hrsg.),
Proc. of the Third Annual Conf. on Evolutionary Programming, S. 131-139, World Scienti-
fic Press, Singapore.

— (1999). Cultural algorithms: Theory and applications, in: (Corne et al., 1999), S. 367-377.
Richardson JT, Palmer MR, Liepins GE & Hilliard M (1989). Some guidelines for genetic algo-
rithms with penalty functions, in: (Schaffer, 1989), S. 191-197.

Riedmiller M & Braun H (1993). A direct adaptive method for faster backpropagation learning:
The RPROP algorithm, in: JEEE Int. Conf. on Neural Networks, S. 586-591, IEEE Press,
Piscataway, NJ.

Robertson GG (1987). Parallel implementation of genetic algorithms in a classifier system, in:
(Grefenstette, 1987a), S. 140-147.

Robinson JB (1949). On the Hamiltonian game (a traveling-salesman problem), Technischer
Bericht RM-303, RAND Corporation, Santa Monica, CA.

Rosenkrantz DJ, Stearns RE & Lewis PM (1977). An analysis of several heuristics for the trave-
ling salesman problem, SIAM Journal on Computing, 6, S. 563-581.

Rothlauf F (2002). Binary representations of integers and the performance of selectorecombina-
tive genetic algorithms, in: (Merelo Guervos et al., 2002), S. 99-108.

Rowe J, Whitley D, Barbulescu L & Watson JP (2004). Properties of gray and binary representa-
tions, Evolutionary Computation, 12(1), S. 47-76.

Rudolph G (1997). Convergence Properties of Evolutionary Algorithms, Kova¢, Hamburg.

— (1998). Finite Markov chain results in evolutionary computation: A tour d’horizon, Funda-
menta Informaticae, 35, S. 67-89.

Ryan C, Collins JJ & O’Neill M (1998). Grammatical evolution: Evolving programs for an arbi-
trary language, in: W Banzhaf, R Poli, M Schoenauer & TC Fogarty (Hrsg.), First European
Workshop on Genetic Programming 1998, S. 83-95, Springer, Berlin.

Sarma J & De Jong K (1997). Generation gap methods, in: (Bick et al., 1997), S. C2.7:1-5.

Schaerf A (1999). A survey of automated timetabling, Artificial Intelligence Review, 13(2), S. 87—
127.

Schaffer JD (1985). Multiple objective optimization with vector evaluated genetic algorithms, in:
(Grefenstette, 1985), S. 93-100.

300 Literaturverzeichnis

Schaffer JD (Hrsg.) (1989). Proc. of the Third Int. Conf. on Genetic Algorithms, Morgan Kauf-
mann, San Mateo, CA.

Schoenauer M, Deb K, Rudolph G, Yao X, Lutton E, Merelo JJ & Schwefel HP (Hrsg.) (2000).
Farallel Problem Solving from Nature — PPSN VI, Springer, Berlin.

Schumacher C, Vose MD & Whitley LD (2001). The no free lunch and problem description
length, in: L Spector & ED Goodman (Hrsg.), GECCO 2001: Proc. of the Genetic and
Evolutionary Computation Conf., S. 565-570, Morgan Kaufmann, San Francisco, CA.

Schwartz RM & Dayhoff MO (1978). Origins of prokaryotes, eukariotes, mitochondria, and
chloroplasts, Science, 199, S. 395-403.

Schwefel HP (1975). Evolutionsstrategie und numerische Optimierung, Doktorarbeit, Techni-
sche Universitit Berlin, Berlin.

— (1977). Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie,
Birkhiuser, Basel, Stuttgart.

— (1995). Evolution and Optimum Seeking, Wiley & Sons, New York, NY.

Schwefel HP & Ménner R (Hrsg.) (1991). Parallel Problem Solving from Nature — Proc. st
Workshop PPSN I, Springer, Berlin.

Sharpe OJ (2000). Towards a Rational Methodology for Using Evolutionary Search Algorithms,
PhD thesis, University of Sussex, Sussex, UK.

Shi Y & Eberhart RC (1998). Parameter selection in particle swarm optimization, in: (Porto et al.,
1998), S. 591-600.

— (1999). Empirical study of particle swarm optimization, in: (Angeline, 1999), S. 1945-1950.

Simpson AR, Dandy GC & Murphy LJ (1994). Genetic algorithms compared to other techni-
ques for pipe optimization, Journal of Water Resources Planning and Management, 120(4),
S. 423443,

Smith JE & Vavak F (1999). Replacement strategies in steady state genetic algorithms: Static
environments, in: (Banzhaf & Reeves, 1999), S. 219-233.

Smith JM (1989). Evolutionary Genetics, Oxford University Press, New York, NY.

Smith M, Lee M, Keller J & Yen J (Hrsg.) (1996). 1996 Biennial Conf. of the North American
Fuzzy Information Processing Society, IEEE Press, Piscataway, NJ.

Smith SF (1980). 4 Learning System Based on Genetic Adaptive Algorithms, PhD thesis, Univer-
sity of Pittsburgh, Pittsburgh, PA.

Srinivas N & Deb K (1995). Multiobjective optimization using nondominated sorting in genetic
algorithms, Evolutionary Computation, 2(3), S. 221-248.

St Hilaire G (1822). Philosophie Anatomique des Monstruosité, des Varietes et des Vices de
Conformation; ou Traite de Teratologie, Bailliere, Paris.

Stagge P (1998). Averaging efficiently in the presence of noise, in: (Eiben et al., 1998), S. 188—
197.

Starkweather T, Whitley D & Mathias K (1991). Optimization using distributed genetic algo-
rithms, in: (Schwefel & Ménner, 1991), S. 176-185.

Stephens CR & Waelbroeck H (1997). Effective degrees of freedom in genetic algorithms and

Literaturverzeichnis 301

the block hypothesis, in: (Back, 1997), S. 34—40.
Storch V, Welsch U & Wink M (2001). Evolutionsbiologie, Springer, Berlin.

Storn R (1996). On the usage of differential evolution for function optimization, in: (Smith et al.,
1996), S. 519-523.

— (1999). System design by constraint adaptation and differential evolution, IEEE Trans. on
Evolutionary Computation, 3(1), S. 22-34.

Storn R & Price K (1995). Differential evolution — a simple and efficient adaptive scheme for
global optimization over continuous spaces, Technischer Bericht TR-95-012, International
Computer Science Institute, Berkeley, CA.

Studley M (2006). Learning classifier systems for multi-objective robot control, Technischer
Bericht UWELCSGO06-005, University of the West of England, Bristol, UK.

Sugihara K (1997). A case study on tuning of genetic algorithms by using performance evaluation
based on experimental design, Technischer Bericht ICS-TR-97-01, University of Hawaii at
Manoa, Department of Information and Computer Sciences, Honolulu, HI.

Surry PD (1998). 4 Prescriptive Formalism for Constructing Domain-specific Evolutionary Al-
gorithms, PhD thesis, University of Edinburgh, Edinburgh, UK.

Syswerda G (1989). Uniform crossover in genetic algorithms, in: (Schaffer, 1989), S. 2-9.
— (1991a). Schedule optimization using genetic algorithms, in: (Davis, 1991b), S. 332-349.

—(1991b). A study of reproduction in generational and steady-state genetic algorithms, in: (Raw-
lins, 1991), S. 94-101.

Syswerda G & Palmucci J (1991). The application of genetic algorithms to resource scheduling,
in: (Belew & Booker, 1991), S. 502-508.

Szabo G, Weicker N & Widmayer P (2002). Base station transmitter placement with frequency
assignment: An evolutionary approach (extended abstract), in: D Corne, G Fogel, W Hart,
J Knowles, N Krasnogor, R Roy, J Smith & A Tiwari (Hrsg.), Addvances in Nature-Inspired
Computation: The PPSN VII Workshops, S. 47-48, PEDAL (Parallel, Emergent & Distribu-
ted Architectures Lab), University of Reading, Reading, UK.

Tackett WA (1994). Recombination, Selection, and the Genetic Construction of Computer Pro-
grams, PhD thesis, University of Southern California, Los Angeles, CA.

Tanese R (1987). Parallel genetic algorithm for a hypercube, in: (Grefenstette, 1987a), S. 177-
183.

Teller A (1996). Evolving programmers: The co-evolution of intelligent recombination operators,
in: PJ Angeline & KE Kinnear (Hrsg.), Advances in Genetic Programming 11, S. 45—68, MIT
Press, Cambridge, MA.

Teller A & Veloso M (1996). PADO: A new learning architecture for object recognition, in:
K Ikeuchi & M Veloso (Hrsg.), Symbolic Visual Learning, S. 81-116, Oxford University
Press, Oxford, UK.

Tomassini M (1999). Parallel and distributed evolutionary algorithms: A review, in: K Miettinen,

M Mikeld, P Neittaanméki & J Periaux (Hrsg.), Evolutionary Algorithms in Engineering
and Computer Science, S. 113-133, Wiley & Sons, Chichester, UK.

302 Literaturverzeichnis

Torn A & Zilinskas A (1989). Global Optimization, Springer, Berlin,

Trelea IC (2003). The particle swarm optimization algorithm: Convergence analysis and parame-
ter selection, Information Processing Letters, 85(6), S. 317-325.

Tutschku K, Leskien T & Tran-Gia P (1997). Traffic estimation and characterization for the de-
sign of mobile communication networks, Technischer Bericht 171, University of Wiirzburg
Institute of Computer Science Research Report Series, Wiirzburg.

Ursem RK (1999). Multinational evolutionary algorithms, in: (Angeline, 1999), S. 1633-1640.

Vaas R (1994). Der genetische Code, Wissenschaftliche Verlagsgesellschaft, Hirzel, Stuttgart,

auch als Supplement 4 in der Naturwissenschaftlichen Rundschau Bd. 47, Nr. 11 (1994)
erschienen.

Vasquez M & Hao JK (2001). A heuristic approach for antenna positioning in cellular networks,
Journal of Heuristics, 7, S. 443-472.

Vavak F, Fogarty TC & Jukes K (1996). A genetic algorithm with variable range of local search
for tracking changing environments, in: (Voigt et al., 1996), S. 376-385.

Voigt HM, Ebeling W & Rechenberg 1 (Hrsg.) (1996). Parallel Problem Solving from Nature —
PPSN IV, Springer, Berlin.

von Linné C (1740). Systema Naturae: Sive Regna Tria Naturae Systematice Proposita per Clas-
ses, Ordines, Genera et Species, Gebauer, Halle.

Watson J & Crick F (1953). Molecular structure of nucleic acids, Nature, 171, S. 737-738.

Watson RA & Pollack JB (2000). Symbiotic combination as an alternative to sexual recombina-
tion in genetic algorithms, in: (Schoenauer et al., 2000), S. 425-434.

Weicker K (2000). An analysis of dynamic severity and population size, in: (Schoenauer et al.,
2000), S. 159-168.

— (2003). Evolutionary Algorithms and Dynamic Optimization Problems, Der andere Verlag,
Osnabriick, Germany.

— (2005). Analysis of local operators applied to discrete tracking problems, Soft Computing,
9(11), S. 778-792.

Weicker K, Mitterer A, Fleischhauer T, Zuber-Goos F & Zell A (2000). Einsatz von
Softcomputing-Techniken zur Kennfeldoptimierung elektronischer Motorsteuergerite, at —
Automatisierungstechnik, 48(11), S. 529-538.

Weicker K & Weicker N (1999). Locality vs. randomness — dependence of operator quality on
the search state, in: (Banzhaf & Reeves, 1999), S. 147-163.

— (2003). Basic principles for understanding evolutionary algorithms, Fundamenta Informati-
cae, 55(3-4), S. 387-403.

Weicker N (2001). Qualitative No Free Lunch Aussagen fiir Evolutiondre Algorithmen, Cuvillier,
Gottingen.

Weicker N, Szabo G, Weicker K & Widmayer P (2003). Evolutionary multiobjective optimi-
zation for base station transmitter placement with frequency assignment, /EEE Trans. on
Evolutionary Computation, 7(2), S. 189-203.

Weinberg W (1908). Uber den Nachweis der Vererbung beim Menschen, Jahreshefie des Vereins

Literaturverzeichnis 303

fiir vateridndische Naturkunde in Wiirttemberg, 64, S. 368-382.

Weinberger E (1990). Correlated and uncorrelated fitness landscapes and how to tell the diffe-
rence, Biological Cybernetics, 63(5), S. 325-336.

Whitley D (1989). The GENITOR algorithm and selection pressure: Why rank-based allocation,
in: (Schaffer, 1989), S. 116-121.

Whitley DL, Starkweather T & Fuquay D (1989). Scheduling problems and travelling salesman:
The genetic edge recombination operator, in: (Schaffer, 1989), S. 133-140.

Whitley LD & Vose MD (Hrsg.) (1995). Foundations of Genetic Algorithms 3, Morgan Kauf-
mann, San Francisco, CA.

Wiegand RP, Liles WC & De Jong KA (2003). Modeling variation in cooperative coevolution
using evolutionary game theory, in: KA De Jong, R Poli & JE Rowe (Hrsg.), Foundations
of Genetic Algorithms 7, S. 203-220, Morgan Kaufmann, San Francisco, CA.

Wienke D, Lucasius, Jr CB, Ehrlich M & Kateman G (1993). Multicriteria target vector opti-
mization of analytical procedures using a genetic algorithm. Part 2. Polyoptimization of
the photometric calibration graph of dry glucose sensors for quantitative clinical analysis,
Analytica Chimica Acta, 271, S. 253-268.

Wieser W (Hrsg.) (1994). Die Evolution der Evolutionstheorie, Spektrum Akademischer Verlag,
Heidelberg.

Wilson SW (1994). ZCS: A zeroth level classifier system, Evolutionary Computation, 2(1), S. 1-
18.

— (1995). Classifier fitness based on accuracy, Evolutionary Computation, 3(2), S. 149-175.

Wolpert DH & Macready WG (1995). No free lunch theorems for search, Technischer Bericht
SFI-TR-95-02-010, Santa Fe Institute, Santa Fe, NM.

— (1997). No free lunch theorems for optimization, /EEE Trans. on Evolutionary Computation,
1(1), S. 67-82.

Wright AH (1991). Genetic algorithms for real parameter optimization, in: (Rawlins, 1991),
S.205-218.

Yu T & Bentley P (1998). Methods to evolve legal phenotypes, in: (Eiben et al., 1998), S. 280—
291.

Zalzala A (Hrsg.) (2000). Proc. of the 2000 Congress on Evolutionary Computation, IEEE Press,
Piscataway, NJ.

Zhou X & Nishizeki T (2001). Efficient algorithms for weighted colorings of series-parallel
graphs, in: P Eades & T Takaoka (Hrsg.), Algorithms and Computation, 12th International
Symposium, ISAAC 2001, S. 514-524, Springer, Berlin.

Zitzler E, Deb K & Thiele L (2000). Comparison of multiobjective evolutionary algorithms:
Empirical results, Evolutionary Computation, 8(2), S. 173—195.

Zitzler E, Laumanns M & Thiele L (2001). SPEA2: Improving the strength Pareto evolutiona-
ry algorithm for multiobjective optimization, in: KC Giannakoglou, DT Tsahalis, J Périaux,
KD Papailiou & T Fogarty (Hrsg.), Evolutionary Methods for Design Optimisation and Con-
trol with Applications to Industrial Problems, S. 95-100, International Center for Numerical
Methods in Engineering (CMINE), Barcelona, Spain.

Bildnachweis

Bilder 6.2 und 6.3
Reprinted from »Foundations of Genetic Algorithms 6«, Karsten Weicker, Nicole Weicker,
»Burden and Benefits of Redundancy«, pp. 313-333, ©2001, with permission from Else-
vier.

Bilder 6.12, 6.13, 6.15, 6.16 und 6.17
Reprinted from »IEEE Transactions on Evolutionary Computing«, Vol. 7(2), Nicole Wei-
cker, Gabor Szabo, Karsten Weicker, Peter Widmayer, »Evolutionary Multiobjective Opti-
mization for Base Station Transmitter Placement with Frequency Assignment«, pp. 189—
203, ©2003 IEEE.

Bilder 6.18, 6.19, 6.20, 6.21
Urspriinglich erschienen in »at — Automatisierungstechnik«, Vol. 48(11), Karsten Weicker,
Alexander Mitterer, Thomas Fleischhauer, Frank Zuber-Goos, Andreas Zell, »Einsatz von
Softcomputing-Techniken zur Kennfeldoptimierung elektronischer Motorsteuergerite«, pp.
529-538, 2000.

Bild 6.27
Reprinted from »Applications of Evolutionary Computing: Proc. EvoWorkshops 2001«
(LNCS 2037), Marc Bufé, Tim Fischer, Holger Gubbels, Claudius Hécker, Oliver Hasprich,
Christian Scheibel, Karsten Weicker, Nicole Weicker, Michael Wenig, Christian Wolfan-
gel, » Automated solution of a highly constrained school timetabling problem — preliminary
results«, pp. 431-440, ©2001, Heidelberg Berlin, Springer.

Liste der Algorithmen

2.1 VERTAUSCHENDE-MUTATION o v ot e e e e e e e 27
22 INVERTIERENDE-MUTATION v it it i e e e e e e e e e e 28
2.3 ORDNUNGSREKOMBINATION o o v ettt e e e e e e e e e e 29
2.4 KANTENREKOMBINATION o v i ot ettt e e e e e e e e s 29
2.5 EA-HANDLUNGSREISENDENPROBLEM i i i ittt i e e et 31
2.6 EA-SCHEMA o e e e e e e e 39
3.1 EIN-BIT-BINARE-MUTATION oottt st e e e e e e e e e 48
32 BINARES-HILLCLIMBING v i vttt et e e e e e e e e e e e e e e 49
33 BINARE-MUTATION ot e e e e e e e e e e e e e s e e e 59
34 GAUSS-MUTATION it e e e e e e e e e e e e e s e e s e e 60
35 POPULATIONSBASIERTES-BINARES-HILLCLIMBING v v v i i i e 65
3.6 BESTEN-SELEKTION i ittt e e e e e e e e e s e e e 65
3.7 Q-STUFIGE-TURNIER-SELEKTION v vttt ettt e e et e e 69
38 FITNESSPROPORTIONALE-SELEKTION vttt et e e e e e 71
39 STOCHASTISCHES-UNIVERSELLES-SAMPLING v v i it et e i e 75
3,10 TURNIER-SELEKTION« vttt it e e e e e e e e e s e e e s e e 76
3.11 UNIFORMER-CROSSOVER ittt e e e e e e e e e e e s e e 80
3.12 ARITHMETISCHER-CROSSOVER v ittt et e e e e e e e e e 83
3,13 EIN-PUNKT-CROSSOVER v ittt e e e e e e e e e e e s e e 84
3.14 GENETISCHER-ALGORITHMUS« v ittt et e e e e e e e s e e 85
3.15 DREIERTAUSCH-MUTATION o i it e e et e e e e e e e e e e e e 107
3.16 VORDEFINIERTE-ANPASSUNG v vt i e it e e e e e e e e s e e 111
3.17 ADAPTIVE-ANPASSUNG v i it it e e e e e e e e e e s e e e s e 113
3.18 SELBSTADAPTIVE-GAUSS-MUTATION v vttt et e e e e e 114
4.1 STEADY-STATE-GA e e et e e e e e e e e 129
42 K-PUNKT-CROSSOVER v i i ittt e e e e e e e s e e e e e 130
4.3 EFFIZIENTE-BINARE-MUTATION o i vt it e e e e e e e e e e e e e 130
4.4 GLEICHVERTEILTE-REELLWERTIGE-MUTATION v v i it i 131
4.5 VERSCHIEBENDE-MUTATION o vttt it et e e e e e e e e 132
4.6 MISCHENDE-MUTATION v it i e e e e e e e e e e e e e e e e 132
4.7 ABBILDUNGSREKOMBINATION o vt ittt e e e e e e e e e e e e 133
4.8 ES-ADAPTIV o e e e e e 135
49 ES-SELBSTADAPTIV o o v e i e e e e e e e e 135
4.10 GLOBALER-UNIFORMER-CROSSOVER v v i i ittt e e e e 137
4.11 GLOBALER-ARITHMETISCHER-CROSSOVER v v it ittt 138
412 DERANDOMISIERTE-ES o o e e e e s e e e 139
4.13 AUTOMATENMUTATION-AUSGABE v i ot e e e e e e 141
4.14 AUTOMATENMUTATION-FOLGEZUSTAND« o v vttt e e e e e 142
4.15 AUTOMATENMUTATION-NEUER-ZUSTAND o vt ittt et e 142

4.16 AUTOMATENMUTATION-ZUSTAND-LOSCHEN 142

306

4.17
4.18
4.19
4.20
4.21
422
4.23
4.24
4.25
4.26
4.27
4.28
4.29
430
431
432
4.33
4.34
4.35
436
437
438
4.39

5.1
5.2
53
54

6.1
6.2
6.3
6.4

C.1
C2
C3

D.1

Liste der Algorithmen

AUTOMATENMUTATION-STARTZUSTAND o it i e e e e 142
EVOLUTIONARES-PROGRAMMIEREN-1960ER 144
SELBSTADAPTIVE-EP-MUTATION o . i ittt i e i et et e e e e e 146
EVOLUTIONARES-PROGRAMMIEREN-1980ER 146
BAUMTAUSCH-REKOMBINATION ot ittt et e e e e e 148
ZUFALLSBAUM-MUTATION o v it e e e e e e e e e e e s e e 150
BAUMTAUSCH-MUTATION o ottt i e e e e e e e e e e e e e e e 151
LOKALE-SUCHEt it e e e e e s e s e 155
AKZEPTANZ-HC e e e e e e 156
AKZEPTANZ-SA e e e 156
AKZEPTANZ-TA o 157
AKZEPTANZ-GD o o it e e e e 158
AKZEPTANZ-RR oo e e 158
TABU-SUCHE o v i e e e e e e s e 164
MEMETISCHER-ALGORITHMUS o i i i i e e e e e e e e e e e e e e 165
PBIL . . . o e e e e e e 166
DE-OPERATOR o v vt it e e e e e 167
DIFFERENTIALEVOLUTION i it it e e e e e e e e e e e e 168
SCATTER-SEARCH it e e e e e e s e e 169
CULTURAL-ALGORITHM v o it e e e e s e e s e s e 171
CA-MUTATION ot e e e s e s s e e 172
AMEISENKOLONTE-TSP e e e e e e e 174
PARTIKELSCHWARM 0 ittt e e s e s e s 175
NSGA-SELEKTION . . . o o ottt e e e e e e e e s e 204
SPEA2 . . . e 205
PAES . . e e e e 206
KOEVOLUTIONARER-ALGORITHMUS o i ittt e e e e e 220
STUNDENPLAN-HEURISTIK o ottt i e e e e e e e e e e e e e e e 242
PRUFUNGS-REKOMBINATION o ittt e e e e e e e e 242
ANTENNEN-OPTIMIERUNG v o i it e e e e e e e e e e e e e e e e e 250
STUNDENPLAN-HEURISTIK o ottt i e e e e e e e e e e e e e e e 264
INITIALISIERE-ZUFALLSZAHLEN o v i i e e e e e e e e e e e e 280
UNIFORME-ZUFALLSZAHL i ottt e e e e e e e e e 280
STANDARDNORMALVERTEILTE-ZUFALLSZAHL« v v i v it e i e e e 281

Beispiel zur Notation e e e e e e 283

Glossar

dom

MD>EVIYY ©S O qu <

®

Q=

Aquivalenzklasse definiert durch Individuum 4
und Aquivalenzrelation ~ (S. 95)

Norny/Lénge eines Vektors

Betrag

Tupel zur Darstellung von Populationen (S. 24)
Platzhalter in Schemata

fest definiertes »Nicht«-Element fiir die Zusatz-
informationen (S. 36)

Allquantor aus der Pradikatenlogik
Existenzquantor aus der Priadikatenlogik
Nabla-Operator (mehrdimensionale Ableitung)
partielle Ableitung

leere Menge

Nullvektor

Vergleichsrelation bzgl. der Glitewerte (S. 21)
besser oder gleich bzgl. der Giitewerte
Pareto-Dominanz zweier Individuen (S. 197)
Anzahl der Elemente in einer Menge

eine Forma (S. 95)

Alphabet eines endlichen Automaten, sprich:
Sigma (S. 140)

Menge der beliebig langen Worte iiber dem
Alphabet %

Schwellwerte in der Beschreibung von Algo-
rithmen

Zustand in Abkiihlungsvorgéngen (S. 156)
Faktor zur Einstellung eines Optimierungsver-
fahrens, sprich: alpha

Parameter in der Beschreibung der Algorith-
men, sprich: beta

Ubergangsfunktion eines endlichen Automaten,
sprich: delta (S. 140)

definierende Linge eines Schemas H (8. 86)
kleiner positiver Wert als Parameter zur Be-
schreibung von Algorithmen, sprich: epsilon
Parameter in Algorithmen, sprich: eta
Ausgabefunktion eines endlichen Automaten,
sprich: gamma (S. 140)

Gewichtsfunktion in einem Graphen, sprich:
gamma (S. 21)

Anzahl der erzeugten Kinder pro Generation,
sprich: lambda (S. 39)

Anzahl der Individuen in der Elternpopulation,
sprich: mu (S. 39)

Statusmeldung in einem klassifizierenden Sys-
tem

Dichtefunktion der Normalverteilung, sprich:
phi (S. 60)

Q38

[l

®

~ Merk

~Pos

als Konstante: Kreiskonstante, sprich: pi

als bijektive Funktion: Permutation aus .%,
Standardabweichung, sprich: sigma

Faktor zur Einstellung eines Optimierungsver-
fahrens, sprich: tau

ein Zustand des Pseudozufallszahlengenerators,
sprich: Xi (S. 37)

ein Zustand des Pseudozufallszahlengenerators,
sprich: xi (S. 37)

exklusives Oder

phénotypischer Suchraum, sprich: Omega
(S.21)

Komma zur Trennung reellwertiger Zahlen

(S. 36)

Vertriglichkeit von Formae
Aquivalenzrelation von Formae (S. 94)
Aquivalenzrelation der Schemata (S. 94)

ein Individuum (S. 24)

Menge aller Optimierungsalgorithmen (S. 116)
Menge der benachbarten (adjazenten) Punkte
(S.29)

Giitewert eines Individuums A4 (S. 36)
Genotyp eines Individuums 4 (S. 36)

i-tes Individuum einer Population (S. 24)
Zusatzinformationen bzw. Strategieparameter
eines Individuums A4 (S. 36)

ein Individuum (S. 24)

Menge mit Binérinformation {0,1}
Uberzeugungsraum in den kulturellen Algorith-
men

ein Individuum (8. 24)

Kovarianz zweier Zufallsvariablen

ein Abstandsmaf}

ein Individuum

eine Dekodierungsfunktion (S. 35)
Gray-Kodierung (S. 56)

standardbinire Kodierung (S. 54)
Hamming-Abstand (S. 56)

ein Diversitdtsmal (S. 62)

Kantenmenge eines Graphen

Erwartungswert einer ZufallsgroBe
Exponentialfunktion

Bewertungsfunktion (S. 21)

induzierte Bewertungsfunktion (S. 35)

Menge aller Bewertungsfunktionen (S. 116)
durchschnittliche Giite einer Population
durchschnittliche Giite einer Population nach
der Selektion (S. 70)

308

Glossar

durchschnittliche Giite der Vertreter von Sche-
ma H in einer Population (S. 88)
Bezeichnung fiir einen Graphen
genotypischer Suchraum (S. 34)

Menge der beliebig langen Tupel tiber der
Grundmenge eines Genotyps ¢ (S. 50)

ein Schema (S. 86)

Hyters (A.G) Durch ein Merkmal und ein Individuum

id
J(H)

IS
!

lap
lim

definiertes Schema (S. 96)

identische Funktion

durch ein Schema H beschriebene Menge von
Individuen (S. 86)

eine Indexselektion zur Definition des Selekti-
onsoperators (S. 38)

Dimensionalitit des genotypischen Suchraums
(S.37)

Uberlappungsgrad einer Selektion
mathematischer Grenzwert

Wertebereich einer Komponente des Genotyps
(S.37)

Menge an Merkmalen zur Definition von For-
mae (S. 94)

Maximum einer Menge

Minimum einer Menge

genotypischer Raum fester Lange
Modulo-Operator (Rest der Division)
genotypischer Raum variabler Lénge

ein Mutationsoperator (S. 37)

Menge der natiirlichen Zahlen
Normalverteilung

Menge der natiirlichen Zahlen einschlieBlich 0
obere asymptotische Schranke fiir das Wachs-
tum einer Funktion

obere Bereichsgrenze

Ordnung eines Schemas H (S. 86)

eine Population (S. 24)

2()
PaG
PH
Pm
Pri]
P(1)
Px

qi
QuAlg(-)

R+
Rek

Sel
Fn

Temp;

Potenzmenge, d.h. Menge aller Teilmengen
Héufigkeit eines Individuums 4 in einer Popu-
lation (S. 99)

Héufigkeit von Vertretern des Schemas H in
einer Population (S. 88)
Mutationswahrscheinlichkeit
Auswahlwahrscheinlichkeit

Population in der ¢-ten Generation
Rekombinationswahrscheinlichkeit

Anzahl der Turniere in der Turnierselektion
Zustandsmenge eines endlichen Automaten
(S. 140)

Zustand eines endlichen Automaten (S. 140)
MaB zur Beurteilung eines Algorithmuses
Anzahl der Eingabeindividuen flir Rekombina-
tion und Selektion

Menge der reellwertigen Zahlen

Menge der positiven reellwertigen Zahlen

ein Rekombinationsoperator (S. 37)

Anzahl der Ausgabeindividuen fiir Rekombina-
tion und Selektion

ein Selektionsoperator (S. 38)

Raum aller Permutationen der Zahlen 1,»
Nummer der Generation

Temperaturwert zur Steuerung der Ubernah-
me von schlechteren Individuen in lokalen
Suchalgorithmen

gewiahlte Zufallszahl

Gleichverteilung (fiir Zufallszahlen)

untere Bereichsgrenze

Knotenmenge eines Graphen

Varianz einer Zufallsgrofe

ein Knoten aus einer Knotenmenge V'

Menge der globalen Optima (S. 21)

Raum der Belegungen fiir die Strategieparame-
ter (S. 36)

Stichwortverzeichnis

Symbole
1/5-Erfolgsregel, 113, 125, 134, 176, 180

A
Adaptation, siehe Anpassung
aggregierende Verfahren, 199, 223, 224
Allel, 9, 10-13,24,97,211
— Haufigkeit, siehe Genfrequenz
—rezessiv, 10, 12, 211
Altenberg, Lee, 98, 125, 267
Ameisenkolonien, 46, 172-173, 174, 177, 179, 182
Angeline, Peter J., 181, 224, 225
Anpassung, 40, 111-114, 125, 134-137, 190, 193,
214-215,223
— Adaptation, 113, 114, 123, 134-135, 172, 180, 194,
223
— derandomisierte Selbstadaptation, 138, 139, 180
— eines Algorithmus, siehe Entwurf evolutionérer
Algorithmen
— fiir Randbedingungen, 186, 190, 193-194, 223
— in der Biologie, 2, 12-15, 24, 40, 71
— Selbstadaptation, 113-114, 123, 125, 134-138,
145-146, 171-172, 176, 180, 210, 214-215, 225
— Strategieparameter 2, 35, 113, 134-138, 145, 174,
215
— vorbestimmte, 111, 156, 193
Anpassungsfihigkeit, siehe Diversitat
Art, 2,9, 12-16, 19, 24, 40
Automat
— endlicher, 44, 140, 141-144, 180

B
Béck, Thomas, 46, 180, 224, 275
Backtracking, 42, 46, 52
Baldwin-Effekt, 40
— in der Biologie, 14-15, 17
Banzhaf, Wolfgang, 181, 275
Baustein, 87, 91, 98, 123
Baustein-Hypothese, 91, 92, 97, 125
Bayesian optimization algorithm, 167, 181
Benchmark-Funktionen, 271, 272-274
— Ackley-Funktion, 176, 272
— C-Funktion, 273, 274
— Doppelsumme, 272
— Einsenzihlproblem, 48, 50, 59, 85-86, 228, 272
— gewichtete Sphiére, 271
— Griewank-Funktion, 272

— Handlungsreisendenproblem, siese Handlungsrei-
sendenproblem
— Mehrzieloptimierung, 274
— Randbedingungen, 274
— Rastrigin-Funktion, 64-65, 271
— Regression, 122, 152-153, 256
— Rosenbrock-Funktion, 272
— Royal-Road-Funktion, 177, 272
— Sinus-Summe, 272
— Sphére, 78-79, 111, 113, 271,272
beschrinkte Paarung, siehe Selektion
Bewertungsfunktion, 21, 23-24, 34-35, 37, 40, 119, 123,
153,183, 185, 191, 199, 212, 219, 228, 232-233,
238
— approximative, 212-222
— Beispiele, 21, 48, 57, 163, 184, 246, 257, 264
— fiir Spielstrategien, 145, 212, 221-222, 225
— induzierte, 35
— mehrere, siehe Mehrzieloptimierung
— verrauschte, 212-215, 224, 255
— zeitabhingige, 40, 207-212, 224
— zeitaufwindige, 212, 216-219, 225, 253
Beyer, Hans-Georg, 125, 224-225, 275
BOS, siehe Bayesian optimization algorithm
Branch-and-Bound, siese Backtracking
building block, siehe Baustein
building block hypotheses, siehe Baustein-Hypothese

C

Chellapilla, Kumar, 180, 225

Chromosom, 7, 8, 9

classifier systems, sieke klassifizierende Systeme

coarse grained model, siehe Parallelisierung, grobkérni-
ge

constraints, siefie Randbedingungen

Corne, David W., 224, 275

Crossing-Over, in der Biologie, 8

Crossover, siehe Rekombination

cultural algorithms, siefe kulturelle Algorithmen

D

Davis, Lawrence, 46, 180, 268, 275

De Jong, Kenneth, 124, 180, 224-225, 267, 271-272
Deb, Kalyanmoy, 125, 224, 267

definierende Linge, siehe Schema

Dekodierung, 35, 54, 56, 178, 189

310 Stichwortverzeichnis

— Dekodierungsfunktion, 35, 54, 57, 96, 186, 188,
261
— Gray-Kodierung, 56, 57-58, 61, 124, 128
— legale, 185-186, 190, 223
— Randbedingungen, 186-187, 190
— standardbindre Kodierung, 54, 55-56, 58, 61, 128,
210
derandomisierte Selbstadaptation, siehe Anpassung
differential evolution, sieke Differentialevolution
Differentialevolution, 46, 167, 168, 179, 181, 275
Diffusionsmodell, sieke Parallelisierung, massiv parallel
Diploiditat, 40, 211, 224
—in der Biologie, 8, 10
Diversitit, 59, 62, 63-64, 6667, 72, 77-81, 83,
114-116, 124, 128, 210-211
— Diversitétsgenerator, 169
— Erhalt der, 162, 203
— in der Biologie, 12
— mittlerer Abstand, 62
— Shannon-Entropie, 62, 210
DNA, 5, 6-7, 10, 17, 40
Dorigo, Marco, 46, 182, 275
Dynamik, siehe Bewertungsfunktion, zeitabhingige

E
Eiben, Agoston E., 124, 275
Einsenzihlproblem, siehe Benchmark-Funktionen
Einwanderer
— zufillige, 209, 224
Elitismus, 68, 243
endlicher Automat, siehe Automat
Endosymbiose, siehe Koevolution
Entwurf evolutiondrer Algorithmen, 42, 97, 121, 188,
192, 199, 231-241
— Anpassung, 31, 163, 227-228, 232-233, 253
— Beispiele, 246-249, 255-257, 263-264
Entwurfsmuster, 232, 237-238, 246, 267-268
Erfolgsregel, siehe 1/5-Erfolgsregel
Erforschung, 59-60, 62, 77, 80-81, 83, 114-116, 124,
134, 163, 166, 169, 191, 194, 203, 246, 263
Ersetzen
— in der Umweltselektion, 68, 124, 128, 166, 190
— legales, 186, 189, 223
evolutiondres Programmieren, 4445, 77, 124, 139,
140143, 144, 145, 146, 171, 176, 178, 180, 210,
215,276
evolutionary programming, siehe evolutionires
Programmieren
Evolutionsfaktoren, 9-13, 17, 24, 40, 218
Evolutionsstrategie, 44-45, 77, 124-125, 135, 134-139,
145, 163, 167, 180, 205, 210, 214-215, 224, 275,
277-278
— Anpassungsstrategien, 134-139
— Beispiel, 256257
— Mutation, 60, 134-137, 214-215
— Rekombination, 137-138

exploitation, siehe Feinabstimmung
exploration, siehe Erforschung
extrapolierende Operatoren, 82

F
farming-model, siehe Parallelisierung, globale
fehlendes Schema-Theorem, 98—101, 102, 103-106,
125,239
Feinabstimmung, 59-60, 72, 77, 81, 114-116, 124, 134,
163, 166, 169, 246
fine grained model, siehe Parallelisierung, feinkdrmige
Fitness, 24, 71, 72-75, 78, 89, 100-101
— -funktion, siehe Bewertungsfunktion
— -proportionale Selektion, siehe Selektion
— in der Biologie, 11, 12, 24, 40, 71
Fogel, David B., 44, 46, 125, 180, 275-276
Fogel, Lawrence J., 44-45, 124, 180, 276
Forma, siese Formae
Forma-Giite-Varianz, 234, 237, 240, 267
Formae, 93, 94, 95-97, 115-116, 125, 233-234, 237,
240, 267

G
Gen, 4,7, 9-13
Gendrift, 40, 81, 166, 202, 218, 249
— in der Biologie, 10, 13
generischer evolutiondrer Algorithmus, 39
genetic algorithms, siehe genetische Algorithmen
genetic programming, siefe genetisches Programmieren
genetische Algorithmen, 45, 77, 84, 85, 87, 91-93, 98,
102, 115-116, 123-125, 128-133, 158-159, 162,
164-166, 178, 180, 211, 214, 224-225, 228,272,
275-278
— Permutationen, 131-133, 180
— reellwertige, 131, 180
— thermodynamisch, 210, 224
genetischer Code, 3, 6, 10, 17
genetisches Programmieren, 45, 77, 146, 147-155, 162,
178, 180181, 221, 275-276
Genfluss, 40, 218
— in der Biologie, 10, 12-13
Genfrequenz, 9, 10, 165
Genotyp, 34, 34, 35-37, 54,57, 62,96, 104, 111, 114,
178-179, 185, 233, 237, 241
— Assembler-Programm, 146
— Baum, 147, 221
— binir, 49-50, 54-56, 62, 64, 84, 87, 89, 92-93,
99-100, 104, 128, 210-211
— endlicher Automat, 140
— ganzzahlig, 163
— Graph, 146
— in der Biologie, 11-12, 1415
— komplexes Beispiel, 187, 242, 245
— Permutation, 26, 95, 107, 131, 263
— reellwertig, 60, 78, 81-82, 111, 131, 134, 145, 167,
169, 171, 174, 186, 190, 210, 221, 257

— Regel, 160, 221
— Regelsystem, 162
— variable Lénge, 146, 154
genregulierendes Netzwerk, 7, 11
globales Optimum, siese Optimum
Glover, Fred, 181, 275
Goldberg, David E., 45, 115, 124, 180-181, 223-225,
276
Gradientenabstieg, 41, 42, 46, 145, 257
Grammatikevolution, 154, 181
Gray-Kodierung, siehe Dekodierung
great deluge, siehe Sintflutalgorithmus
Grefenstette, John J., 46, 125, 180, 224-225, 267
giiltige Individuen, 184-186, 188-194, 223, 247
— Methode der, 185-186, 189, 190, 223
Giite, 20-21, 23, 24, 35-38, 53, 68, 70, 7274, 83-84,
88, 91-93, 96, 98-102, 107-110, 117-119, 153,
191, 203, 208, 210, 217, 229, 234, 238, 240, 267
— -landschaft, 49, 50, 52-53, 55, 57, 121, 136,
158-159, 165, 192, 207-208, 215
— ~teilen, 124, 202, 203, 224
— -wert, siehe Giite

H

Hamming-Abstand, 56, 63

Hamming-Klippe, 56, 58, 60, 131

Handlungsreisendenproblem, 21, 22-23, 26-34, 36, 42,
46, 63, 81, 94-96, 107-109, 157, 173, 182, 236,
240, 268,273

Heuristiken, 40, 42, 181, 235, 241-243, 268, 276

— Handlungsreisendenproblem, 34, 46

Hillclimbing, 49, 50, 51-54, 59, 62, 64, 111, 155, 156,
159, 181, 239, 277

Holland, John H., 45, 124-125, 180-181

Hypermutation, siehe Mutation

Hyperzyklus, 4, 17

1
Indexselektion, sieke Selektion
Individuum, 24, 35, 36-37, 40
— giiltiges, siehe giiltige Individuen
— in der Biologie, 9
— Super-, 72, 74
Initialisierung, 24, 26, 40, 243, 268
— Beispiel, 151, 168, 189, 247
Intron, 153, 178, 181
— in der Biologie, 10

K
Kappa-Ka-Methode, 215, 225
klassifizierende Systeme, 158-162, 179, 181, 221
Kodierung, siehe Dekodierung
Koevolution
— in der Biologie, 7, 14, 17
— in einer Population, 221
— koevolutiondrer Algorithmus, 219, 220, 225

Stichwortverzeichnis 311

— Symbiose, 7, 14, 17, 225

Komma-Selektion, sieke Selektion, siehe Selektion

Konvergenz, 33, 4041, 64, 66-67, 81, 113, 162, 178,
201, 203, 207, 209-210, 218, 233-234

Korrelation, 104, 239, 263, 267

Kovarianz, 99-102, 106, 239

Koza, John R., 45, 180, 276

Krippentod, 185-186, 188, 189, 223

kulturelle Algorithmen, 46, 170, 171, 172, 179, 182,
190, 275

L
Lamarcksche Evolution, 14-16, 40, 164
Landschaft, siehe Giitelandschaft
Leben, 4
Lernrate, 138, 161-162, 166-167
Levenberg-Marquardt-Algorithmus, 42, 46, 257, 268
lineare Programmierung, 41, 223, 236
lokale Suche, 46, 57, 124, 155, 156158, 163, 165, 169,
178, 181, 211, 213-214, 225, 241, 268
— variable, 210, 211, 224
lokaler Operator, 108, 109-111, 113-114, 192, 224
— kleine Verdnderung, 25, 27, 48, 57, 107, 134, 188,
242
lokales Optimum, siehe Optimum

M
Markovkette, 51, 52, 124
Maschinenbelegungsproblem, 189, 207, 216
Maschinenbelegunsproblem, 184
Maske, 94-95, 104
Mehrzieloptimierung, 194-206, 210, 216, 223-225
— Beispiele, 196, 244, 251, 268, 274
memetische Algorithmen, 163-164, 165, 169, 179, 181,
241,275
Merken
— explizites, 209, 210
— implizit, 209, 211
Merkmal, 94-95, 97, 98, 103, 308
Michalewicz, Zbigniew, 46, 125, 180, 223, 268,
274-276
Migration, siehe Genfluss
Minimax
— -Methode (Mehrzieloptimierung), 200, 201, 224
— -Suche (Spiele), 221
Mitchell, Melanie, 124, 272, 276
Miihlenbein, Heinz, 124, 180-181, 225, 268
multimodale Probleme, 271-272
Musterabgleich, 48
Mutation, 25-27, 34, 37, 48-49, 53-54, 57-59, 77, 81,
88, 109-110, 114-116, 124, 155, 163, 178-179,
186, 189, 234, 238-239, 242
— -srate, 4, 10, 59, 91, 130, 167, 180, 209, 228-229
— auf endlichen Automaten, 140-143
— Baumtausch-, 150, 151, 152
— binire, 59, 6061, 124, 128, 130, 180, 228

312 Stichwortverzeichnis

— bindre (1 Bit), 48, 49-51, 55, 57, 59, 124

— fiir Randbedingungen, 190

— formale Definition, 37

— Hyper-, 209-211, 224

— implizite, 97

— in der Biologie, 4, 9-14, 17

— invertierende (Permutation), 27, 28, 32, 46, 107,
109, 131, 237

— laufzeiteffiziente binire, 130

— lokale, siehe lokaler Operator

— mischende (Permutation), 132, 180

— problemspezifische, 247, 251, 264

— reellwertige (CA), 171, 172, 190

— reellwertige (EP), 145, 146, 180, 210, 215

— reellwertige (ES), 113, 114, 134-137, 180, 210, 214

— reellwertige (GauB), 60, 61, 78, 111, 124, 131, 134,
145, 180

— reellwertige (gleichverteilt), 131, 180

— rezessive, siehe Allel

— verschiebende (Permutation), 131, 132, 180

— vertauschende (Permutation), 27, 28, 32, 46, 107,
109, 131, 236, 263

— Zufallsbaum-, 149, 150, 152

N

Nachbarschaftsgraph, 49, 50, 53, 57, 124

neuronale Netze, 45, 139, 144-145,217, 221, 225, 256,

268

Neustart, 209

Nischenbildung, 40, 202, 203-204, 209, 210, 224, 249
— in der Biologie, 13—14

Nissen, Volker, 225,277

(0]
Objektfunktion, siehe Bewertungsfunktion
Optimierungsproblem, 20, 21, 22-24, 46, 77, 116, 207,
215-216, 223, 233-234, 238, 241
— Beispiele, siehe Benchmark-Funktionen
Optimum
— globales, 20, 21, 53, 64, 157, 207-210, 271
— lokales, 52, 53, 54-55, 57, 59, 62, 64, 66-67, 78,
113, 115116, 124, 134, 156, 158, 163-165,
207-208, 213, 236, 239, 271
Ordnung, siehe Schema

P
Parallelisierung, 40, 210, 217-219, 225
— feinkdrmnige, 218, 219, 225
— globale, 217, 225
— grobkorige, 217, 218, 225
— massiv parallel, 218
Pareto
— -Dominanz, 197, 198, 202, 223-224, 249
— -Front, 197, 198-206, 223-224, 249, 251
Pareto-Front, 197
particle swarms, siehe Partikelschwirme

Partikelschwirme, 46, 174, 175, 176, 179, 182, 275
path relinking, 181
PBIL, 165, 166, 167, 179, 181
Phanotyp, 34, 35-36, 55-59, 61, 81, 93, 95-97, 115,
134, 176, 178, 186, 189, 211, 234, 236, 241
— in der Biologie, 9-10, 12, 14-15
Plateau, 53, 54
Plus-Selektion, siehe Selektion
Pohlheim, Hartmut, 267, 277
Poli, Riccardo, 125,276
Polymorphismus, 12
Population, 24, 25, 38-40, 49, 62-64, 66—67, 80-81, 86,
88, 124, 151, 165, 178-179, 203, 205, 217-219,
243
— -sgrofe, 25, 39, 68, 76-77, 114, 130, 134, 138, 144,
147,152, 162, 167-168, 170, 176, 213-214, 225,
228
— in der Biologie, 9—15
— konvergierte, 64, 67, 70, 72,93, 218
— iiberlappende, 68, 77, 124, 128, 134, 166, 179, 189,
223
population based incremental learning, siese PBIL
populationsbasiertes inkrementelles Lernen, siehe PBIL
Price-Theorem, 98
Problemwissen, 121, 181, 235, 241, 242-243

R
Radcliffe, Nicholas J., 125, 233-234, 267
Randbedingungen, 41, 147, 183, 184, 185-194, 198,
223,234
— Beispiele, 245, 254-255, 262, 274
random walk, 49, 54
Rechenberg, Ingo, 44-45, 124, 180, 225, 271, 277
Record-to-Record-Travel, siese rekordorientiertes
Wandern
Redundanz, 148
— minimale, 96, 233
Rekombination, 24-26, 34, 37, 40, 77, 80-86, 88, 97-98,
102, 115-116, 124125, 128, 146, 164, 178179,
189, 210, 233-234, 238-239, 242
— -swahrscheinlichkeit, 89, 91, 130, 138
— 1-Punkt-Crossover, 84, 85, 104, 125, 128, 131, 263
— Abbildungs- (Permutation), 132, 133, 180, 263
— arithmetischer Crossover, 83, 84, 131, 137, 170
— extrapolierende, 82, 83, 84, 115, 125
— formale Definition, 37
— globaler arithmetischer Crossover, 137, 138, 214
— globaler uniformer Crossover, 137
— heuristischer Crossover, 125
— in der Biologie, 8, 10-11, 14
— interpolierende, 81, 82-83, 115, 125
— k-Punkt-Crossover, 131
— k-Punkt-Crossover, 129, 130
— Kanten- (Permutation), 29, 30-32, 46, 95, 132
— kombinierende, 80, 81-82, 84, 97, 115
— Ordnungs- (Permutation), 28, 29, 32, 46, 132

— problemspezifische, 242-243, 248
— uniformer Crossover, 80, 81, 125, 128, 131,
137-138, 165, 168
— Vertauschen (GP), 148, 149
rekordorientiertes Wandern, 158, 159, 181
Reparieren
— genetisches (interpolieren), 81
— genetisches (Randbedingung), 185-186, 188, 190,
223
— Reparierbarkeit, 184, 188, 191, 193
Représentation, siehe Genotyp
RNA, 3, 47
Robotik, 148, 155, 159, 162, 180-181, 193

S
Scatter Search, 168, 169, 170, 179, 181
Schaffer, J. David, 124, 224
Schema, 86, 87-89, 91-94, 97-100, 102-104, 116, 123,
125, 128, 214, 225,273
— -Theorem, 87, 89-93, 96, 97-98, 115, 125, 131,
178, 233
— definierende Linge, 86-87, 91
— Ordnung, 86-87, 91
Schwefel, Hans-Paul, 4445, 124125, 180, 271-272,
277
Schwellwertakzeptanz, 157, 158-159, 181
Selbstadaptation, siehe Anpassung
Selektion, 25, 36, 38-39, 49, 69, 78, 115-116, 124-125,
155, 178-180, 217, 238
— -sdruck, 67, 70, 72, 74, 76-77, 115, 124, 187, 190,
209
— -sintensitat, 70, 7273, 77-79, 124
— beschriankte Paarung, 209, 210, 224
— der Besten, 64, 65, 124, 134, 145, 156, 165, 179,
180
— deterministische, 67, 76-77, 124
— duplikatfreie, 67, 69, 71, 77
— elitére, siehe Elitismus
— Eltern-, 24-25, 66, 71, 76-77, 88, 124-125,
189-190, 201
— fitnessproportionale, 71, 72, 74-75, 78, 84, 98, 115,
124-125, 128,178
— formale Definition, 38
— in der Biologie, 9-16
— Index-~, 38, 67-68
— Komma-, 70, 76-77, 134, 137, 178
— legale, 185-186, 189, 223
— Mehrzieloptimierung, 201-203, 204, 224
— parallelisierte, 219
— Plus-, 70, 78, 124, 134-135, 137, 141, 178
— probabilistische, 67, 71-72, 74, 124
— g-fache Turnier-, 75, 76, 77-78, 122, 125, 128, 152,
178, 203, 228
— g-stufige zweifache Turnier-, 68, 69, 78, 125, 145,
171, 178, 180, 221
— rangbasierte, 74, 76, 122, 125, 178

Stichwortverzeichnis 313

— stochastisches universelles Sampling, 74, 75, 125,
128

— Umwelt-, 25, 30, 67, 76-77, 124-125, 134, 214
separierbare Probleme, 271-272
Simplex-Verfahren, 41, 42
simulated annealing, siefe simuliertes Abkiihlen
simuliertes Abkiihlen, 125, 156, 157, 164, 181
Sintflutalgorithmus, 157, 158, 159, 181
Skalierung, lineare, 74, 125
Smith, Jim, 124, 275
steady state GA, 77, 124, 128-129, 166
stochastisches universelles Sampling, siehe Selektion
Straffunktion, 185-186, 191, 192-194, 223
Strategieparameter, siehe Anpassung
Stundenplanung, 241-242, 261-266, 268
Suchfortschritt, 98-99, 115-116
Surry, Patrick D., 125, 233-234, 267
Syntaxbiume, 147, 148-155, 181, 221
Syswerda, Gilbert, 46, 124-125, 180, 224

T

tabu search, siehe Tabu-Suche

Tabu-Suche, 163, 164, 179, 181, 268

threshold accepting, siehe Schwellwertakzeptanz
TSP, siehe Handlungsreisendenproblem

)

iiberlappende Populationen, sieke Populationen
Ubernahmezeit, 70

unimodale Probleme, 271-272

A%
Variation, siehe Mutation

— lokale, 209, 210
Vavak, Frank, 124, 224
VEGA-Verfahren, 201, 224

w
Whitley, Darrell L., 46, 124, 225

z
Zeitreihenprognose, 44, 139-140, 145, 162, 180
Zielfunktion, siehe Bewertungsfunktion
Zufallszahlen, 20, 37, 117, 281, 283

— Erzeugung von, 279-281

	cover-image-large.jpg
	front-matter.pdf
	fulltext.pdf
	fulltext_001.pdf
	fulltext_002.pdf
	fulltext_003.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	back-matter.pdf

