

Introduction Net Centric Systems

Summer Term 2011

<http://www.p2p.tu-darmstadt.de/teaching/summer-term-2011/ncs-net-centric-systems/>

TECHNISCHE
UNIVERSITÄT
DARMSTADT

Prof. Dr. Thorsten Strufe

Dipl.-Inf. Andreas Höfer

Peer-to-Peer Networks Group (P2P)

<http://www.p2p.tu-darmstadt.de/>

Prof. Dr. Max Mühlhäuser

Dipl.-Inform. Sebastian Döweling

Telecooperation Group (TK)

<http://www.tk.informatik.tu-darmstadt.de>

Exercise 1 – Graph Theory

Submission:

From 2/5/2011 to 6/5/2011 in your exercise group
or until 6/5/2011, 18:00 in moodle (as pdf file).

Please note, that by submitting your solution to this exercise, you confirm that you
are the exclusive author(s) of the respective material. For additional information, we
would like to refer you to:
<http://www.informatik.tu-darmstadt.de/de/studierende/studium-alt/plagiarismus/>

Task 1.1: Dijkstra's Shortest Path Algorithm (14 P.)

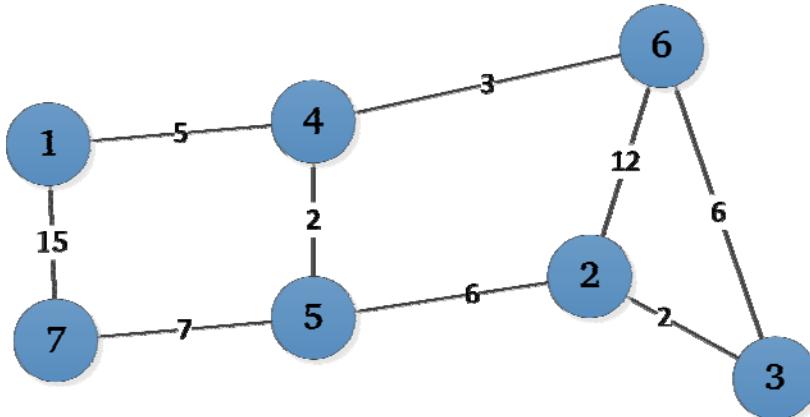


Figure 1: Example of an undirected graph used for the tasks 1.1 and 1.2

Using the undirected graph from Figure 1, please:

- Calculate the shortest paths from vertex 7 to the other vertices. Please use "Dijkstra's Shortest Path Algorithm". Your calculations have to be comprehensible (use a table). (7 P.)
- Write down all shortest paths from vertex 7 to the other vertices. (7 P.)

Task 1.2: Kruskal's Algorithm (10 P.)

Using the undirected graph from Figure 1, please:

- Calculate the shortest spanning tree of the graph depicted in Figure 1 using "Kruskal's Algorithm". Your calculations have to be comprehensible (use a table). (7 P.)

Introduction Net Centric Systems

Summer Term 2011

<http://www.p2p.tu-darmstadt.de/teaching/summer-term-2011/ncs-net-centric-systems/>

b) Draw the resulting shortest spanning tree calculate the length of this spanning tree. (3 P.)

Task 1.3: Prim's Algorithm (14 P.)

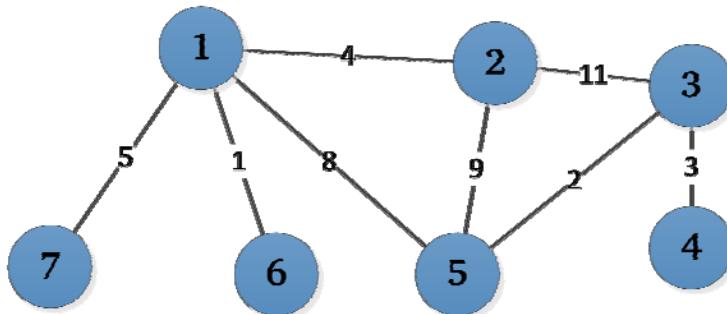


Figure 2: Example for an undirected graph, used for task 1.3

Using the graph from Figure 2, please:

a) Create the shortest spanning tree using “Prim’s Algorithm”. Draw the graphs and tables for every intermediate step. (12 P.)

b) Compare “Prim’s Algorithm” with “Kruskal’s Algorithm”:

- What is the main difference between these two algorithms? (1 P.)
- How are cycles avoided in the “Prim’s Algorithm”? (1 P.)