

Human-Computer Interaction

Exercise 1

SS 2013

Prof. Dr. Max Mühlhäuser

Dr. Jochen Huber

Mohammadreza Khalilbeigi

Roman Lissermann

Technische Universität Darmstadt
Department of Computer Science
Telecooperation Lab

Part of this slide set is based on “Designing Interactive Systems 1”, by Prof. Dr. Jan Borchers, RWTH Aachen

Agenda

TECHNISCHE
UNIVERSITÄT
DARMSTADT

- **Recall Design Principles**
- Exercise

Recall Design Principles

TECHNISCHE
UNIVERSITÄT
DARMSTADT

- Conceptual Models
- Affordances
- Visibility and Feedback
- Mapping
- Constraints
- Metaphors

Conceptual Model

„A conceptual model is a high-level description of how a system is organized and operates.“

- Johnson and Henderson (2002)

- Allows to predict effects of our actions
- Allows to cope with problems
- Formed through experience, practice, instruction

Recall Design Principles

TECHNISCHE
UNIVERSITÄT
DARMSTADT

- Conceptual Models
- **Affordances**
- Visibility and Feedback
- Mapping
- Constraints
- Metaphors

Affordances

“[...] the term affordance refers to the perceived and actual properties of the thing, primarily those fundamental properties that determine just **how** the thing could **possibly** be **used**.”

- Norman (DoET p. 9 – 2002)

- Affordances are the actions that the design of an object suggests to the user
- Affordance can be substituted with “is for”
- Examples: knobs are for (“afford”) turning, slots are for inserting, chairs are for sitting

Recall Design Principles

TECHNISCHE
UNIVERSITÄT
DARMSTADT

- Conceptual Models
- Affordances
- **Visibility and Feedback**
- Mapping
- Constraints
- Metaphors

- How do you switch on the answering machine?

- No! Call 1999

Feedback

“Sending back to the user information about what action has actually been done, what result has been accomplished.”

- Norman (DoET p. 27 – 2002)

- Modern systems
- Many functions
- Little feedback

Recall Design Principles

TECHNISCHE
UNIVERSITÄT
DARMSTADT

- Conceptual Models
- Affordances
- Visibility and Feedback
- **Mapping**
- Constraints
- Metaphors

Natural Mapping?

- How are the controls mapped?

Source: <http://bit.ly/16e0m00>

Recall Design Principles

TECHNISCHE
UNIVERSITÄT
DARMSTADT

- Conceptual Models
- Affordances
- Visibility and Feedback
- Mapping
- **Constraints**
- Metaphors

Physical Constraints

- **Restricting the possible actions** that can be performed
- “Inverse” of affordances, possibly augmenting them
- Goals
 - Avoid usage errors
 - Minimize the information to be remembered

Source: baddesigns.com

Logical Constraints

- Use logical conclusions to exclude certain solutions
 - Example: all parts of jigsaw puzzle are to be used
- Natural mappings often use logical constraints

Semantic Constraints

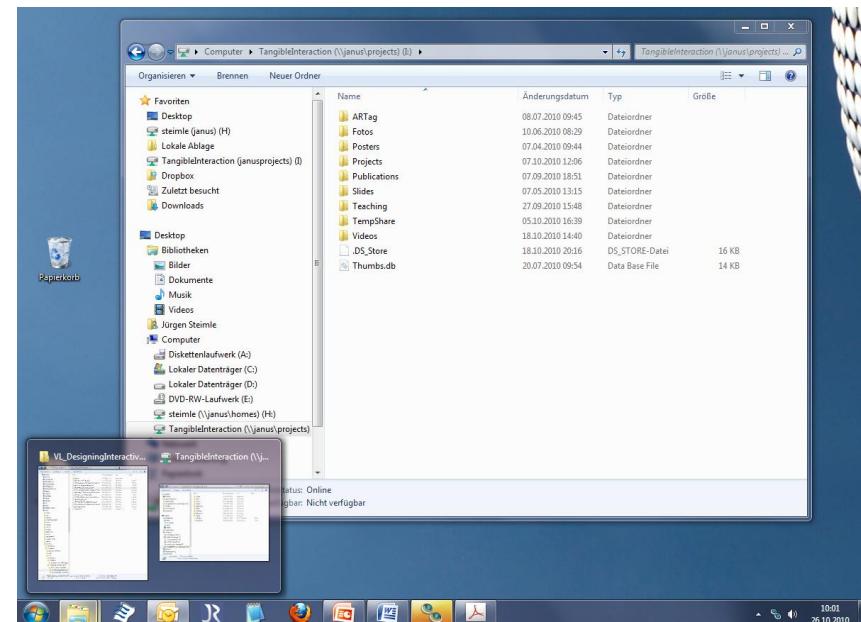
- Use our common knowledge about the world and particularly the meaning of the current situation
- Example: Driver 's figurine in a model plane construction kit has to sit facing forward to make sense
- Powerful means to improve intuitiveness
- But: Only rules that are valid throughout your user population!

Cultural Constraints

- Rely on generally accepted cultural conventions
- Example: red = stop/attention
- This applies only to a specific cultural group!
 - Hand gestures are not interpreted equally
 - Writing direction differs
 - ...

Source: http://commons.wikimedia.org/wiki/File:Ampel_3931.jpg

Recall Design Principles


TECHNISCHE
UNIVERSITÄT
DARMSTADT

- Conceptual Models
- Affordances
- Visibility and Feedback
- Mapping
- Constraints
- **Metaphors**

Interface Metaphors

- Designed to be similar to a physical entity
- Example: Desktop metaphor
 - Monitor is treated as if it is the user's desktop
 - Objects (documents, folder, ...) can be placed and moved on this desktop
 - Objects can be opened into a window (represents a paper copy)
 - Objects can be moved to the recycle bin, the printer, ...

Agenda

TECHNISCHE
UNIVERSITÄT
DARMSTADT

- Recall Design Principles
- **Exercise**

Task

- Design a user interface for an alarm clock
- Functions:
 - Shows the current time
 - Allows to set the current time
 - Possibility to independently set to two alarm times
 - Alarm on/off/snooze (independently for each time)
- Take context of use into account!

Find a design rationale

Justify why your solution provides a good **usability**

- Which **affordances** has the alarm clock?
- Are the functions **visible** to the user and is there an appropriate **feedback?**
- What **mappings** did you use? Are they natural?
- Which **constraints** (physical, logical, semantical) has your design to support usability?
- Did you use **metaphors**? If yes, which ones?

Setup

- Form groups of max. five students
- Schedule
 - 30 min for designing the alarm clock
 - 20 min presentation & discussion
 - 4 groups à 5 min