
Technische Grundlagen
der Informatik – Kapitel 4
Prof. Dr. Andreas Koch
Fachbereich Informatik
TU Darmstadt

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 2

Kapitel 4: Themen

Einleitung
Kombinatorische Logik
Strukturelle Beschreibung
Sequentielle Logik
Mehr kombinatorische Logik
Endliche Zustandsautomaten
Parametrisierte Modelle
Testumgebungen

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 3

Einleitung

Hardware-Beschreibungssprachen
Hardware Description Languages (HDL)

Erlauben textuelle Beschreibung von Schaltungen
Auf verschiedenen Abstraktionsebenen

Struktur (z.B. Verbindungen zwischen Gattern)
Verhalten (z.B. Boole‘sche Gleichungen)

Entwurfswerkzeuge erzeugen Schaltungsstruktur daraus automatisch
Computerprogramme
Computer-Aided Design (CAD) oder Electronic Design Automation (EDA)
Schaltungssynthese

Grob vergleichbar mit Übersetzung (Compilieren) von konventionellen
Programmiersprachen

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 4

Einleitung

Fast alle kommerziellen Hardware-Entwürfe mit HDLs realisiert

Zwei HDLs haben sich durchgesetzt

Sie werden beide lernen müssen!
Es gibt keinen klaren Gewinner

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 5

Verilog

1984 von der Fa. Gateway Design Automation entwickelt

Seit 1995 ein IEEE Standard (1364)
Überarbeitet 2001 und 2005
Neuer Dialekt SystemVerilog (Obermenge von Verilog-2005)

Weit verbreitet in zivilen US Firmen

In Darmstadt an den Informatik-Fachgebieten
Rechnerarchitektur (RA, Prof. Hoffmann)
Eingebettete Systeme und ihre Anwendungen (ESA, Prof. Koch)

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 6

VHDL

Very High-Speed Integrated Circuit Hardware Description Language
Entwickelt 1981 durch das US Verteidigungsministerium

Inspiriert durch konventionelle Programmiersprache Ada
Standardisiert in 1987 durch IEEE (1076)

Überarbeitet in 1993, 2000, 2002, 2006, 2008

Weit verbreitet in
US Rüstungsfirmen
Vielen europäischen Firmen

In Darmstadt am Informatik-Fachgebiet
Integrierte Schaltungen und Systeme (ISS, Prof. Huss)

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 7

In dieser Iteration der Vorlesung

In den Vorlesungen Verilog
Häufig kompakter zu schreiben
Eher auf Einzelfolien darstellbar

In den Übungen auch VHDL

Hier gezeigte Grundkonzepte sind in beiden Sprachen identisch

Nur andere Syntax
VHDL-Beschreibung ist aber in der Regel länger

Im Buch werden beide Sprachen nebeneinander gezeigt
Kapitel 4
Moderne Entwurfswerkzeuge können in der Regel beide Sprachen

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 8

Von einer HDL zu Logikgattern

Simulation
Eingangswerte werden in HDL-Beschreibung eingegeben

Beschriebene Schaltung wird stimuliert
Berechnete Ausgangswerte werden auf Korrektheit geprüft
Fehlersuche viel einfacher und billiger als in realer Hardware

Synthese
Übersetzt HDL-Beschreibungen in Netzlisten

Logikgatter (Schaltungselemente)
Verbindungen (Verbindungsknoten)

WICHTIG:
Beim Verfassen von HDL-Beschreibungen ist es essentiell wichtig,
immer die vom Programm beschriebene Hardware im Auge zu
behalten!

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 9

Verilog-Module

Zwei Arten von Beschreibungen in Modulen:
Verhalten: Was tut die Schaltung?
Struktur: Wie ist die Schaltung aus Untermodulen aufgebaut?

a
b y
c

Verilog
Modul

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 10

Beispiel für Verhaltensbeschreibung

module example (input a, b, c,
output y);

assign y = ~a & ~b & ~c | a & ~b & ~c | a & ~b & c;

endmodule

Verilog:

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 11

Simulation von Verhaltensbeschreibungen

module example (input a, b, c,
output y);

assign y = ~a & ~b & ~c | a & ~b & ~c | a & ~b & c;
endmodule

Verilog:

Signalverlaufsdiagramm (waves)

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 12

Synthese von Verhaltensbeschreibungen

module example (input a, b, c,
output y);

assign y = ~a & ~b & ~c | a & ~b & ~c | a & ~b & c;
endmodule

un5_y

un8_y

y

yc
b

a

Syntheseergebnis:

Verilog:

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 13

Verilog Syntax

Unterscheidet Groß- und Kleinschreibung
Beispiel: reset und Reset sind nicht das gleiche Signal

Namen dürfen nicht mit Ziffern anfangen
Beispiel: 2mux ist ein ungültiger Name

Anzahl von Leerzeichen, Leerzeilen und Tabulatoren irrelevant
Kommentare:

// bis zum Ende der Zeile
/* über mehrere

Zeilen */

Sehr ähnlich zu C und Java!

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 14

Strukturelle Beschreibung: Modulhierarchie

module and3 (input a, b, c,
output y);

assign y = a & b & c;
endmodule

module inv (input a,
output y);

assign y = ~a;
endmodule

module nand3 (input a, b, c
output y);

wire n1; // internes Signal(Verbindungsknoten)

and3 andgate (a, b, c, n1);// Instanz von and3 namens andgate
inv inverter (n1, y); // Instanz von inv namens inverter

endmodule

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 15

Bitweise Verknüpfungsoperatoren

module gates (input [3:0] a, b,
output [3:0] y1, y2, y3, y4, y5);

/* Fünf unterschiedliche Logikgatter
mit zwei Eingängen, jeweils 4b Busse */

assign y1 = a & b; // AND
assign y2 = a | b; // OR
assign y3 = a ^ b; // XOR
assign y4 = ~(a & b); // NAND
assign y5 = ~(a | b); // NOR

endmodule

// Kommentar bis zum Zeilenende
/*…*/ Mehrzeiliger Kommentar

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 16

Reduktionsoperatoren

module and8 (input [7:0] a,
output y);

assign y = &a;
// &a ist Abkürzung für
// assign y = a[7] & a[6] & a[5] & a[4] &
// a[3] & a[2] & a[1] & a[0];

endmodule

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 17

Bedingte Zuweisung

module mux2 (input [3:0] d0, d1,
input s,
output [3:0] y);

assign y = s ? d1 : d0;
endmodule

? : ist ein ternärer Operator, da er drei Operanden miteinander verknüpft:
s, d1, und d0.

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 18

Interne Verbindungsknoten oder Signale

module fulladder (input a, b, cin, output s, cout);
wire p, g; // interne Verbindungsknoten (“Drähte”)

assign p = a ^ b;
assign g = a & b;

assign s = p ^ cin;
assign cout = g | (p & cin);

endmodule

p

g s

un1_cout cout

cout

s

cin

b
a

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 19

Bindung von Operatoren (Präzedenz)

~ NOT

*, /, % Multiplikation, Division, Modulo

+, - Addition, Subtraktion

<<, >> Schieben (logisch)

<<<, >>> Schieben (arithmetisch)

<, <=, >, >= Vergleiche

==, != gleich, ungleich

&, ~& AND, NAND

^, ~^ XOR, XNOR

|, ~| OR, XOR

?: Ternärer Operator

Bestimmt Ausführungsreihenfolge

Höchste

Niedrigste

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 20

Zahlen

Zahl Bitbreite Basis entspricht
Dezimal

Darstellung im
Speicher

3’b101 3 binär 5 101

‘b11 Nicht vorgegeben binär 3 00…0011

8’b11 8 binär 3 00000011

8’b1010_1011 8 binär 171 10101011

3’d6 3 dezimal 6 110

6’o42 6 oktal 34 100010

8’hAB 8 hexadezimal 171 10101011

42 Nicht vorgegeben dezimal 42 00…0101010

Syntax: N'Bwert
N = Breite in Bits, B = Basis
N'B ist optional, sollte der Konsistenz halber aber immer geschrieben werden

wenn weggelassen: Dezimalsystem

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 21

Operationen auf Bit-Ebene: Beispiel 1

assign y = {a[2:1], {3{b[0]}}, a[0], 6’b100_010};

// wenn y ein 12-bit Signal ist, hat die Anweisung diesen Effekt:
y = a[2] a[1] b[0] b[0] b[0] a[0] 1 0 0 0 1 0

Unterstriche (_) in numerischen Konstanten dienen nur der besseren
Lesbarkeit, sie werden von Verilog ignoriert

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 22

Operationen auf Bit-Ebene: Beispiel 2

module mux2_8 (input [7:0] d0, d1,
input s,
output [7:0] y);

mux2 lsbmux(d0[3:0], d1[3:0], s, y[3:0]);
mux2 msbmux(d0[7:4], d1[7:4], s, y[7:4]);

endmodule

mux2

lsbmux

mux2

msbmux

y[7:0][7:0]
s

d1[7:0] [7:0]
d0[7:0] [7:0]

s
[3:0] d0[3:0]
[3:0] d1[3:0]

[3:0]y[3:0]

s
[7:4] d0[3:0]
[7:4] d1[3:0]

[7:4]y[3:0]

Synthese:Verilog:

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 23

Hochohmiger Ausgang: Z

module tristate (input [3:0] a,
input en,
output [3:0] y);

assign y = en ? a : 4'bz;
endmodule

Synthese:

Verilog:

y_1[3:0]

y[3:0][3:0]
en

a[3:0] [3:0] [3:0][3:0]

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 24

Verzögerungen: # Zeiteinheiten

module example (input a, b, c,
output y);

wire ab, bb, cb, n1, n2, n3;
assign #1 {ab, bb, cb} = ~{a, b, c};
assign #2 n1 = ab & bb & cb;
assign #2 n2 = a & bb & cb;
assign #2 n3 = a & bb & c;
assign #4 y = n1 | n2 | n3;

endmodule

Nur für die Simulation,
#n werden für die Synthese

ignoriert!

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 25

Verzögerungen

module example (input a, b, c,
output y);

wire ab, bb, cb, n1, n2, n3;
assign #1 {ab, bb, cb} =

~{a, b, c};
assign #2 n1 = ab & bb & cb;
assign #2 n2 = a & bb & cb;
assign #2 n3 = a & bb & c;
assign #4 y = n1 | n2 | n3;

endmodule

Nur für die Simulation,
#n werden für die Synthese

ignoriert!

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 26

Sequentielle Schaltungen

Beschreibung basiert auf Verwendung fester “Redewendungen”
Idiome

Feststehende Idiome für
Latches
Flip-Flops
Endliche Zustandsautomaten (FSM)

Vorsicht beim Abweichen von Idiomen
Wird möglicherweise noch richtig simuliert
Könnte aber fehlerhaft synthetisiert werden

Halten Sie sich an die Konventionen!

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 27

always-Anweisung

Allgemeiner Aufbau:

always @ (sensitivity list)
statement;

Interpretation:

Wenn sich die in der sensitivity list aufgezählten Werte ändern, wird die
Anweisung statement ausgeführt.

Werte: In der Regel Signale, manchmal noch erweitert

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 28

D Flip-Flop

module flop (input clk,
input [3:0] d,
output reg [3:0] q);

always @ (posedge clk)
q <= d; // gelesen als “q übernimmt d”

endmodule

Jedes Signal, an das innerhalb von einer always-Anweisung zugewiesen wird,
muss als reg deklariert sein

- Im Beispiel: q

Wichtig: So ein Signal wird bei der Synthese nicht zwangsläufig in ein
Hardware-Register abgebildet!

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 29

module flopr (input clk,
input reset,
input [3:0] d,
output reg [3:0] q);

// synchroner Reset
always @ (posedge clk)
if (reset) q <= 4'b0;
else q <= d;

endmodule

Rücksetzbares D Flip-Flop

q[3:0]

q[3:0][3:0]d[3:0] [3:0]

reset

clk
[3:0]Q[3:0][3:0] D[3:0]

R

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 30

module flopr (input clk,
input reset,
input [3:0] d,
output reg [3:0] q);

// asynchroner Reset
always @ (posedge clk, posedge reset)
if (reset) q <= 4'b0;
else q <= d;

endmodule

Rücksetzbares D Flip-Flop

q[3:0]

R
q[3:0][3:0]d[3:0] [3:0]

reset

clk
[3:0]Q[3:0][3:0] D[3:0]

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 31

module flopren (input clk,
input reset,
input en,
input [3:0] d,
output reg [3:0] q);

// asynchroner Reset mit Clock Enable
always @ (posedge clk, posedge reset)
if (reset) q <= 4'b0;
else if (en) q <= d;

endmodule

Rücksetzbares D Flip-Flop mit Taktfreigabe

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 32

module latch (input clk,
input [3:0] d,
output reg [3:0] q);

always @ (clk, d)
if (clk) q <= d;

endmodule

Achtung: In dieser Veranstaltung werden Latches nur selten (wenn überhaupt) gebraucht
werden.

Sollten sie dennoch in einem Syntheseergebnis auftauchen, ist das in der Regel auf Fehler in
Ihrer HDL-Beschreibung zurückzuführen (z.B. Abweichen von Idiomen)!

Latch

la t

q [3 :0]

q [3 :0][3: 0]d [3 :0] [3 :0]

c lk
[3 : 0] D[3 :0] [3 :0]Q[3:0]C

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 33

Weitere Anweisungen zur
Verhaltensbeschreibung

Dürfen nur innerhalb von always-Anweisungen benutzt werden
if / else
case, casez

Erinnerung:
Alle Zuweisungsziele innerhalb einer always-Anweisung müssen als reg
deklariert werden!
Selbst, wenn sie keine echten Hardware-Register beschreiben

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 34

Kombinatorische Logik als always-Block

module gates (input [3:0] a, b,
output reg [3:0] y1, y2, y3, y4, y5);

always @(*) // wann immer sich irgendein gelesenes Signal ändert
begin // bei mehr als einer Anweisung: begin/end
y1 = a & b; // AND
y2 = a | b; // OR
y3 = a ^ b; // XOR
y4 = ~(a & b); // NAND
y5 = ~(a | b); // NOR

end

endmodule

Hätte einfacher durch fünf assign-Anweisungen beschrieben werden können.

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 35

Kombinatorische Logik mit case

module sevenseg (input [3:0] data,
output reg [6:0] segments);

always @(*) // kombinatorische Logik …
case (data)
// abc_defg
0: segments = 7'b111_1110;
1: segments = 7'b011_0000;
2: segments = 7'b110_1101;
3: segments = 7'b111_1001;
4: segments = 7'b011_0011;
5: segments = 7'b101_1011;
6: segments = 7'b101_1111;
7: segments = 7'b111_0000;
8: segments = 7'b111_1111;
9: segments = 7'b111_1011;
default: segments = 7'b000_0000; // alle Fälle abgedeckt!

endcase
endmodule So einfach nicht als assign formulierbar

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 36

Kombinatorische Logik mit case

Um kombinatorische Logik zu beschreiben, muss ein case-Block alle
Möglichkeiten abdecken

Entweder explizit angeben
Oder einen default-Fall angeben

Tritt in Kraft, wenn sonst keine andere Alternative passt
Im Beispiel verwendet

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 37

Kombinatorische Logik mit casez

module priority_casez (input [3:0] a,
output reg [3:0] y);

always @(*) // kombinatorische Logik …
casez(a)
4'b1???: y = 4'b1000; // ? = don’t care
4'b01??: y = 4'b0100;
4'b001?: y = 4'b0010;
4'b0001: y = 4'b0001;
default: y = 4'b0000; // alle Fälle

// abgedeckt
endcase

endmodule

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 38

Nicht-blockende Zuweisung

<= steht für eine “nicht-blockende Zuweisung”
Wird parallel mit allen anderen nicht-blockenden Zuweisungen ausgeführt

1. Schritt: Alle „rechten Seiten“ werden berechnet
2. Schritt: Alle Berechnungsergebnisse werden an „linke Seiten“ zugewiesen

Am Ende des Blocks

// Synchronisierer mit nicht-blockenden
// Zuweisungen
module syncgood (input clk,

input d,
output reg q);

reg n1;
always @(posedge clk)
begin
n1 <= d; // nicht-blockend
q <= n1; // nicht-blockend

end
endmodule

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 39

Blockende Zuweisung

= steht für eine “blockende Zuweisung”
Wird hintereinander (seriell) in Reihenfolge im Programmtext ausgeführt

Solange eine blockende Zuweisung abläuft
… werden andere Anweisungen blockiert
Jede Anweisung für sich berechnet „rechte Seite“ und weist an „linke Seite“ zu

// Fehlerhafter Synchronisierer
// mit blockenden Zuweisungen
module syncbad (input clk,

input d,
output reg q);

reg n1;
always @(posedge clk)
begin
n1 = d; // blockend
q = n1; // blockend

end
endmodule

n1

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 40

Regeln für Zuweisungen von Signalen

Um synchrone sequentielle Logik zu beschreiben, benutzen Sie immer
always @(posedge clk)
Nicht-blockende Zuweisungen

always @ (posedge clk)
q <= d; // nicht-blockend

Um einfache kombinatorische Logik zu beschreiben, benutzen Sie immer
Ständige Zuweisung (continuous assignment)
assign y = a & b;

Um komplexere kombinatorische Logik zu beschreiben, benutzen Sie immer
always @ (*)
Blockende Zuweisungen

Weisen Sie nicht an ein Signal
… in mehreren always-Blöcken zu
… in einem always-Block gemischt mit = und <= zu

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 41

Endliche Zustandsautomaten (FSM)

Drei Blöcke:
Zustandsübergangslogik (next state logic)
Zustandsregister (state register)
Ausgangslogik (output logic)

CLK
M Nk knext

state
logic

output
logic

inputs outputsstate
next
state

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 42

Hier: alternative Schreibweise
für Startzustand (doppelter Kreis)

Beispiel-FSM: Dritteln der Taktfrequenz

Eingabe:
Explizit kein Signal
Implizit den Schaltungstakt

Mit Frequenz f

Ausgabe
Signal q mit Frequenz f/3 S0

S1

S2

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 43

FSM in Verilog

module divideby3FSM (input clk,
input reset,
output q);

reg [1:0] state, nextstate;

parameter S0 = 2'b00; // Kodierung der Zustände
parameter S1 = 2'b01;
parameter S2 = 2'b10;

always @ (posedge clk, posedge reset) // Zustandsregister
if (reset) state <= S0;
else state <= nextstate;

always @ (*) // Zustandsübergangslogik
case (state)

S0: nextstate = S1;
S1: nextstate = S2;
S2: nextstate = S0;
default: nextstate = S0;

endcase

assign q = (state == S0); // Ausgangslogik
endmodule

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 44

Parametrisierte Module

2:1 Multiplexer:
module mux2

#(parameter WIDTH = 8) // Parameter: Name und Standardwert
(input [WIDTH -1:0] d0, d1,
input s,
output [WIDTH -1:0] y);

assign y = s ? d1 : d0;
endmodule

Instanz mit 8-bit Busbreite (verwendet Standardwert):
mux2 mux1(d0, d1, s, out);

Instanz mit 12-bit Busbreite:
mux2 #(12) lowmux(d0, d1, s, out);

Aber besser (falls mehrere Parameter auftreten sollten):
mux2 #(.WIDTH(12)) lowmux(d0, d1, s, out);

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 45

Testrahmen

HDL-Programm zum Testen eines anderen HDL-Moduls
Im Hardware-Entwurf schon lange üblich
… seit einigen Jahren auch im Software-Bereich (JUnit etc.)

Getestetes Modul
Device under test (DUT), Unit under test (UUT)

Testrahmen wird nicht synthetisiert
Nur für Simulation benutzt

Arten von Testrahmen
Einfach: Legt nur feste Testdaten an und zeigt Ausgaben an
Selbstprüfend: Prüft auch noch, ob Ausgaben den Erwartungen
entsprechen
Selbstprüfend mit Testvektoren: Auch noch mit variablen Testdaten

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 46

Beispiel

Verfasse Verilog-Code um die folgende Funktion in Hardware zu berechnen:

y = bc + ab

Der Modulname sei sillyfunction

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 47

Beispiel

Verfasse Verilog-Code um die folgende Funktion in Hardware zu berechnen:

y = bc + ab

Der Modulname sei sillyfunction

Verilog
module sillyfunction (input a, b, c,

output y);

assign y = ~b & ~c | a & ~b;
endmodule

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 48

Einfacher Testrahmen für Beispiel

module testbench1 ();
reg a, b, c;
wire y;

// Instanz des zu testenden Moduls erzeugen
sillyfunction dut(a, b, c, y);

// Eingangswerte anlegen und warten
initial begin
a = 0; b = 0; c = 0; #10;
c = 1; #10;
b = 1; c = 0; #10;
c = 1; #10;
a = 1; b = 0; c = 0; #10;
c = 1; #10;
b = 1; c = 0; #10;
c = 1; #10;

end
endmodule

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 49

Selbstprüfender Testrahmen

module testbench2 ();
reg a, b, c;
wire y;

// Instanz des zu testenden Moduls erzeugen
sillyfunction dut(a, b, c, y);

// Eingangswerte anlegen, warten,
// Ausgang mit erwartetem Wert überprüfen
initial begin
a = 0; b = 0; c = 0; #10;
if (y !== 1) $display("000 fehlerhaft.");

c = 1; #10;
if (y !== 0) $display("001 fehlerhaft.");

b = 1; c = 0; #10;
if (y !== 0) $display("010 fehlerhaft.");

c = 1; #10;
if (y !== 0) $display("011 fehlerhaft.");

a = 1; b = 0; c = 0; #10;
if (y !== 1) $display("100 fehlerhaft.");

c = 1; #10;
if (y !== 1) $display("101 fehlerhaft.");

b = 1; c = 0; #10;
if (y !== 0) $display("110 fehlerhaft.");

c = 1; #10;
if (y !== 0) $display("111 fehlerhaft.");

end
endmodule

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 50

Selbstprüfender Testrahmen mit Testvektoren

Trennen von HDL-Programm und Testdaten
Eingaben
Erwartete Ausgaben
Organisiere beides als Vektoren von zusammenhängenden Signalen/Werten

Eigene Datei für Vektoren

Dann HDL-Programm für universellen Testrahmen
1. Erzeuge Takt zum Anlegen von Eingabedaten/Auswerten von Ausgabedaten
2. Lese Vektordatei in Verilog Array
3. Lege Eingangsdaten an
4. Warte auf Ausgabedaten, werte Ausgabedaten aus
5. Vergleiche aktuelle mit erwarteten Ausgabedaten, melde Fehler bei Differenz
6. Noch weitere Testvektoren abzuarbeiten?

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 51

Selbstprüfender Testrahmen mit Testvektoren

Im Testrahmen erzeugter Takt legt zeitlichen Ablauf fest
Steigende Flanke: Eingabewerte aus Testvektor an Eingänge anlegen
Fallende Flanke: Aktuelle Werte an Ausgängen lesen

Takt kann auch als Takt für sequentielle synchrone Schaltungen verwendet
werden

Eingangswerte
anlegen

Ausgangswerte
lesen

CLK

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 52

Einfaches Textformat für Testvektordateien

Datei: example.tv

000_1
001_0
010_0
011_0
100_1
101_1
110_0
111_0

Aufbau:

Eingangsdaten “_” erwartete Ausgangsdaten

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 53

Testrahmen: 1. Erzeuge Takt

module testbench3 ();
reg clk, reset;
reg a, b, c, yexpected;
wire y;
reg [31:0] vectornum, errors; // Verwaltungsdaten
reg [3:0] testvectors[10000:0]; // Array für Testvektoren

// Instanz der Testschaltung erzeugen
sillyfunction dut (a, b, c, y);

// Takterzeugung
always // Hängt von keinen anderen Signalen ab: Wird immer ausgeführt!
begin
clk = 1; #5; clk = 0; #5;

end

…

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 54

2. Lese Testvektordatei in Array ein

…
// Zu Beginn der Simulation:
// Testdaten einlesen und einen Reset-Impuls erzeugen

initial // Block wird genau einmal ausgeführt
begin
$readmemb("example.tv", testvectors);

vectornum = 0; errors = 0; // Verwaltungsdaten initialisieren

reset = 1; #27; reset = 0; // Reset-Impuls erzeugen

end
…

Hinweis: Falls hexadezimale Testvektoren verwendet werden sollen,
statt $readmemb den Aufruf $readmemh verwenden

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 55

3. Lege Testdaten an Eingänge an

…
// zur steigenden Taktflanke (genauer: kurz danach!)
always @(posedge clk)
begin
#1; {a, b, c, yexpected} = testvectors[vectornum];

end
…

a,b,c sind Eingänge der DUT

yexpected ist eine Hilfsvariable, die nun den erwarteten Ausgangswert
dieses Vektors enthält.

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 56

4. Warte auf Ausgabedaten, lese Ausgabedaten
5. Vergleiche aktuelle Ausgaben mit erwarteten Werten

…
// warte auf fallende Flanke zum Lesen der Ausgabedaten der DUT

always @(negedge clk)

if (~reset) begin // nur Prüfen, nachdem Schaltung schon initialisiert

if (y !== yexpected) begin // vergleiche aktuelle Ausgabe mit erwartetem Wert

$display(“Fehler: Eingänge = %b", {a, b, c}); // Fehlermeldung
$display(" Ausgänge = %b (%b erwartet)", y, yexpected);

errors = errors + 1; // zähle Fehler
end

…

Hinweis: Um Werte hexadezimal auszugeben, Formatkennung %h verwenden
Beispiel:

$display(“Error: Eingänge = %h”, {a, b, c});

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 57

6. Sind noch weitere Testvektoren abzuarbeiten?

…
// Array-Index zum Zugriff auf nächsten Testvektor erhöhen
vectornum = vectornum + 1;

// Ist der nächste schon ein ungültiger Testvektor?
if (testvectors[vectornum] === 4'bx) begin

$display("%d Tests bearbeitet mit %d Fehlern", // Endmeldung ausgeben
vectornum, errors);

$finish; // Simulation anhalten
end

end
endmodule

Hinweis: Zum Vergleichen auf X und Z müssen die Operatoren

=== und !==

benutzt werden

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 4 - Prof. Andreas Koch | 58

Verilog Sprachkonstrukte in TGDI

Vor Testrahmen alle für die Beschreibung von echter Hardware
relevanten eingeführt

Schaltungssynthese

Verilog kann viel mehr
Angedeutet beim Testrahmen (Dateioperationen, Ein/Ausgabe, …)
Aber in der Regel nicht mehr in Hardware synthetisierbar
Nicht Schwerpunkt dieser Veranstaltung

Mehr Details in Kanonik Computer Microsystems
Im Sommersemester

In TGDI soll dieser Kurzüberblick reichen
Bei akutem Bedarf werden noch weitere Konstrukte eingeführt

	Technische Grundlagen�der Informatik – Kapitel 4
	Kapitel 4: Themen
	Einleitung
	Einleitung
	Verilog
	VHDL
	In dieser Iteration der Vorlesung
	Von einer HDL zu Logikgattern
	Verilog-Module
	Beispiel für Verhaltensbeschreibung
	Simulation von Verhaltensbeschreibungen
	Synthese von Verhaltensbeschreibungen
	Verilog Syntax
	Strukturelle Beschreibung: Modulhierarchie
	Bitweise Verknüpfungsoperatoren
	Reduktionsoperatoren
	Bedingte Zuweisung
	Interne Verbindungsknoten oder Signale
	Bindung von Operatoren (Präzedenz)
	Zahlen
	Operationen auf Bit-Ebene: Beispiel 1
	Operationen auf Bit-Ebene: Beispiel 2
	Hochohmiger Ausgang: Z
	Verzögerungen: # Zeiteinheiten
	Verzögerungen
	Sequentielle Schaltungen
	always-Anweisung
	D Flip-Flop
	Rücksetzbares D Flip-Flop
	Rücksetzbares D Flip-Flop
	Rücksetzbares D Flip-Flop mit Taktfreigabe
	Latch
	Weitere Anweisungen zur Verhaltensbeschreibung
	Kombinatorische Logik als always-Block
	Kombinatorische Logik mit case
	Kombinatorische Logik mit case
	Kombinatorische Logik mit casez
	Nicht-blockende Zuweisung
	Blockende Zuweisung
	Regeln für Zuweisungen von Signalen
	Endliche Zustandsautomaten (FSM)
	Beispiel-FSM: Dritteln der Taktfrequenz
	FSM in Verilog
	Parametrisierte Module
	Testrahmen
	Beispiel
	Beispiel
	Einfacher Testrahmen für Beispiel
	Selbstprüfender Testrahmen
	Selbstprüfender Testrahmen mit Testvektoren
	Selbstprüfender Testrahmen mit Testvektoren
	Einfaches Textformat für Testvektordateien
	Testrahmen: 1. Erzeuge Takt
	 2. Lese Testvektordatei in Array ein
	3. Lege Testdaten an Eingänge an
	4. Warte auf Ausgabedaten, lese Ausgabedaten�5. Vergleiche aktuelle Ausgaben mit erwarteten Werten
	6. Sind noch weitere Testvektoren abzuarbeiten?
	Verilog Sprachkonstrukte in TGDI

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

