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Kapitel 5 : Themenübersicht

Einleitung
Arithmetische Schaltungen
Zahlendarstellungen
Sequentielle Grundelemente
Speicherblöcke
Programmierbare Logikfelder und -schaltungen



WS 09/10 |  Technische Grundlagen der Informatik - Kapitel 5 - Prof. Andreas Koch |  3

Einleitung

Grundelemente digitaler Schaltungen:
Gatter, Multiplexer, Decoder, Register, Arithmetische Schaltungen, Zähler, Speicher, 
programmierbare Logikfelder

Grundelemente veranschaulichen
Hierarchie: Zusammensetzen aus einfacheren Elementen
Modularität: Wohldefinierte Schnittstellen und Funktionen
Regularität: Strukturen leicht auf verschiedene Größen anpassbar

Grundelemente werden verwendet zum Aufbau eines eigenen Mikroprozessors
Kapitel 7
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Mehrbit-Addierer mit Weitergabe von 
Überträgen

A B

S

C out C in+
N

NN

Carry-propagate adder (CPA)
Verschiedene Typen

Ripple-carry-Addierer (langsam)
Carry-Lookahead Addierer (schnell)
Prefix-Addierer (noch schneller)

Carry-Lookahead und Prefix-Addierer sind schneller bei breiteren Datenworten
Benötigen aber auch mehr Fläche

Schaltsymbol
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Kette von 1-bit Addierern
Überträge werden von niedrigen zu hohen Bits weitergegeben

Rippeln sich durch die Schaltung
Nachteil: Langsam

Ripple-Carry-Addierer

S31

A30 B30

S30

A1 B1

S1

A0 B0

S0

C30 C29 C1 C0

Cout ++++

A31 B31

Cin
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Verzögerung durch einen N-bit Ripple-Carry-Addierer ist

tripple = N tFA

tFA ist die Verzögerung durch einen Volladdierer

Verzögerung durch Ripple-Carry-Addierer
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Überträge nicht mehr von Bit-zu-Bit

Stattdessen: Berechne Übertrag Cout aus Block von k Bits 
Nun zwei Signale
Generate (erzeuge neuen Übertrag)
Propagate (leite eventuellen Übertrag weiter)

Bits werden in Spalten organisiert
Haben wir eben beim Ripple-Carry-Addierer auch schon gemacht
War aber nicht spannend: Es gab nur eine Zeile
… ändert sich jetzt

Carry-Lookahead-Addierer (CLA)



WS 09/10 |  Technische Grundlagen der Informatik - Kapitel 5 - Prof. Andreas Koch |  11

Eine Spalte (Bit i) produziert einen Übertrag an ihrem Ausgang Ci
Wenn sie den Übertrag selbst erzeugt (Generate, Gi)
Wenn sie einen von Ci-1 eingehenden Übertrag weiterleitet (Propagate, Pi)

Eine Spalte i erzeugt einen Übertrag falls Ai und Bi beide 1 sind. 

Gi = Ai Bi

Eine Spalte leitet einen eingehenden Übertrag weiter falls Ai oder Bi 1 ist

Pi = Ai + Bi

Damit ist der Übertrag Ci aus der Spalte i heraus

Ci = Ai Bi + (Ai + Bi )Ci-1 = Gi + Pi Ci-1

Carry-Lookahead-Addierer: Definitionen
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Schritt 1: Berechne G und P-Signale für einzelne Spalten (Einzelbits)

Schritt 2: Berechne G und P Signale für Gruppen von k Spalten (k Bits)

Schritt 3: Leite Cin nun nicht einzelbitweise, sondern in k-Bit Sprüngen weiter
Jeweils durch einen k-bit Propagate/Generate-Block

Addition im Carry-Lookahead-Verfahren
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Bestimme P3:0 und G3:0 Signale für einen 4b Block

Überlegung: 4b Block erzeugt Übertrag wenn
… Spalte 3 einen Übertrag erzeugt (G3=1)  oder

… Spalte 3 eine Übertrag weiterleitet (P3=1), der vorher erzeugt wurde

G3:0 = G3 + P3 (G2 + P2 (G1 + P1G0 )

Überlegung: Der 4b Block leitet einen Übertrag direkt weiter
… wenn alle Spalten den Übertrag weiterleiten

P3:0 = P3P2 P1P0

Damit ist der Übertrag durch einen j-i Bit breiten Block Ci

Ci = Gi:j + Pi:j Ci-1

Beispiel: Carry-Lookahead Addierer
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32-bit CLA mit 4b Blöcken
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32-bit CLA mit 4b Blöcken
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Verzögerung durch N-bit carry-lookahead Addierer mit k-Bit Blöcken

tCLA = tpg + tpg_block + (N / k – 1) tAND_OR + k tFA

wobei
tpg : Verzögerung P, G Berechnung für eine Spalte (ganz rechts)
tpg_block: Verzögerung P, G Berechnung für einen Block (rechts)
tAND_OR: Verzögerung durch AND/OR je k-Bit CLA Block (“Weiche”)
k tFA : Verzögerung zur Berechnung der k höchstwertigen Summenbits

Für N > 16 ist ein CLA oftmals schneller als ein Ripple-Carry-Addierer

Aber: Verzögerung hängt immer noch von N ab
Im wesentlichen linear

Carry-Lookahead Addierer
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Präfix-Addierer

Führt Ideen des CLA weiter
Berechnet den Übertrag Ci-1 in jede Spalte i so schnell wie möglich
Bestimmt damit die Summe jeder Spalte

Si = (Ai ⊕ Bi) ⊕ Ci-1

Vorgehen zur schnellen Berechnung aller Ci
Berechne P und G für größer werdende Blöcke

1b, 2b, 4b, 8b, …
Bis die Eingangsüberträge für alle Spalten bereitstehen

Nun nicht mehr N / k Stufen
Sondern log2 N Stufen

Breite der Operanden geht also nur noch logarithmisch in Verzögerung ein

Allerdings: Sehr viel Hardware erforderlich!
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Präfix-Addierer

Ein Übertrag wird entweder
… in  einer Spalte i generiert
… oder aus einer Vorgängerspalte i-1 propagiert

Definition: Eingangsübertrag Cin in den ganzen Addierer kommt aus Spalte -1

G-1 = Cin, P-1 = 0

Eingangsübertrag in eine Spalte i ist Ausgangsübertrag Ci-1 der Spalte i-1

Ci-1 = Gi-1:-1

Gi-1:-1 ist das Generate-Signal von Spalte -1 bis Spalte i-1
Interpretation: Ein Ausgangsübertrag aus Spalte i-1 entsteht

… wenn der Block i-1:-1 einen Übertrag generiert
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Präfix-Addierer

Damit Summenformel für Spalte i umschreibbar zu

Si = (Ai ⊕ Bi) ⊕ Gi-1:-1

Deshalb nun Ziel der Hardware-Realisierung:
Bestimme so schnell wie möglich G0:-1, G1:-1, G2:-1, G3:-1, G4:-1, G5:-1,  …
Sogenannte Präfixe
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Präfix-Addierer

Berechnung von P und G für variabel großen Block
Höchstwertiges Bit: i
Niederwertiges Bit: j
Unterteilt in zwei Teilblöcke (i:k) und (k-1:j)

Für einen Block i:j

Gi:j = Gi:k + Pi:k Gk-1:j

Pi:j = Pi:kPk-1:j

Bedeutung
Ein Block erzeugt einen Ausgabeübertrag, falls

… in seinem oberen Teil (i:k) ein Übertrag erzeugt wird oder
… der obere Teil einen Übertrag weiterleitet, der im unteren Teil (k-1:j) erzeugt wurde

Ein Block leitet einen Eingabeübertrag als Ausgabeübertrag weiter, falls
Sowohl der untere als auch der obere Teil den Übertrag weiterleiten
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Aufbau eines Präfix-Addierers
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Verzögerung durch einen N-bit Präfix-Addierer

tPA = tpg + (log2 N) tpg_prefix + tXOR

wobei
tpg: Verzögerung durch P, G-Berechnung für Spalte i (ein AND bzw. OR-Gatter)
tpg_prefix: Verzögerung durch eine Präfix-Stufe (AND-OR Gatter)
tXOR : Verzögerung durch letztes XOR der Summenberechnung

Verzögerung durch Präfix-Addierer
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Szenario: 32b Addition mit Ripple-Carry, Carry-Lookahead (4-bit Blöcke), 
Präfix-Addierer
Verzögerungen von Komponenten

Volladdierer tFA = 300ps
Zwei-Eingangs Gatter tAND = tOR = tXOR = 100ps

tripple = N tFA

=

tCLA = tpg + tpg_block + (N / k – 1) tAND_OR + k tFA

=

=

tPA = tpg + (log2 N) tpg_prefix + tXOR

=

=

Vergleich von Addiererverzögerungen
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Szenario: 32b Addition mit, Ripple-Carry, Carry-Lookahead (4-bit Blöcke), 
Präfix-Addierer
Verzögerungen von Komponenten

Volladdierer tFA = 300ps
Zwei-Eingangs Gatter tAND = tOR = tXOR = 100ps

tripple = N tFA = 32 (300 ps) 
= 9,6 ns

tCLA = tpg + tpg_block + (N / k – 1) tAND_OR + k tFA

= [100 + 600 + (7) 200 + 4 (300)] ps
= 3,3 ns

tPA = tpg + (log2 N) tpg_prefix + tXOR

= [100 + (log2 32) 200 + 100] ps
= 1,2 ns

Vergleich von Addiererverzögerungen
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Subtrahierer

Symbol Implementierung

+

A B

-

Y
Y

A B

NN

N

N N

N

N
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Vergleicher: Gleichheit

Symbol Implementierung
A3
B3

A2
B2

A1
B1

A0
B0

Gleich=

A B

Gleich

44
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Vergleicher: Kleiner-Als

A <  B

-

BA

[N -1]

N

N N

Für vorzeichenlose Zahlen
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Arithmetisch-logische Einheit
(arithmetic logic unit, ALU)

ALU

N N

N
3

A B

Y

F

F2:0 Funktion

000 A & B

001 A | B

010 A + B

011 Nicht verwendet

100 A & ~B

101 A | ~B

110 A - B

111 SLT
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Entwurf einer ALU
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2 01

A B
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N

N NNN
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Beispiel: Set Less Than (SLT)

Konfiguriere 32b ALU für SLT-Berechnung
Annahme: A = 25, B = 32

+

2 01

A B

Cout

Y

3

01

F2

F1:0

[N-1] S

NN

N

N

N NNN

N

2

Zero
Extend
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Beispiel: Set Less Than (SLT)

Konfiguriere 32b ALU für SLT-Berechnung
Annahme: A = 25, B = 32

Erwartete Ausgabe
A < B, also Y = 32’b1

Steuereingang für SLT: F2:0 = 3’b111 
F2 = 1’b1 konfiguriert Addierer als 
Subtrahierer

S = 25 – 32 = -7
Im Zweierkomplement
-7 = 32’h0xfffffff9 msb S31 = 1

F1:0 = 2’b11 wählt Y = S31 als Ausgabe
Y = S31 (zero extended) = 32’h00000001. 

+

2 01

A B

Cout

Y

3

01

F2

F1:0

[N-1] S

NN

N

N

N NNN

N

2

Zero
Extend
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Schiebeoperationen (shifter)

Logisches Schieben: Wert wird eine Bitposition verschoben, leere Stellen mit 0 aufgefüllt
Beispiel: 11001 >> 2 =

Beispiel: 11001 << 2 =

Arithmetisches Schieben: wie logisches Schieben. Verwende aber beim Rechtsschieben 
alten Wert des msb zum Auffüllen leerer Stellen

Beispiel: 11001 >>> 2 =

Beispiel: 11001 <<< 2 =

Rotierer: rotiert Bits im Kreis, herausgeschobene Bits tauchen am anderen Ende wieder 
auf

Beispiel : 11001 ROR 2 =

Beispiel : 11001 ROL 2 =
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Schiebeoperationen (shifter)

Logisches Schieben: Wert wird eine Bitposition verschoben, leere Stellen mit 0 aufgefüllt
Beispiel: 11001 >> 2 = 00110

Beispiel: 11001 << 2 = 00100

Arithmetisches Schieben: wie logisches Schieben. Verwende aber beim Rechtsschieben 
alten Wert des msb zum Auffüllen leerer Stellen

Beispiel: 11001 >>> 2 = 11110

Beispiel: 11001 <<< 2 = 00100

Rotierer: rotiert Bits im Kreis, herausgeschobene Bits tauchen am anderen Ende wieder 
auf

Beispiel : 11001 ROR 2 = 01110

Beispiel : 11001 ROL 2 = 00111
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Aufbau von Shiftern
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ShiftWeite1:0
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4 4
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Shifter als Multiplizierer und Dividierer

Logisches Schieben um N Stellen nach links multipliziert den Zahlenwert mit 2N

Beispiel : 00001 << 2  = 00100  (1 × 22 = 4)
Beispiel : 11101 << 2  = 10100  (-3 × 22 = -12)

Arithmetisches Schieben um N Stellen nach rechts dividiert den Zahlenwert durch 2N

Beispiel : 01000 >>> 2 = 00010  (8 ÷ 22 = 2)
Beispiel : 10000 >>> 2 = 11100  (-16 ÷ 22 = -4)
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Multiplizierer

Schrittweise Multiplikation in Dezimal- und Binärdarstellung:
Multiplizieren des Multiplikanden mit einzelner Stelle des Multiplikators

Berechnet ein Teilprodukt (auch partielles Produkt genannt)
Entsprechend der Wertigkeit der aktuellen Multiplikatorstelle nach links verschobene 
partielle Produkte werden aufaddiert

Dezimal Binär
230

42x
0101
0111

5 x 7 = 35

460
920+
9660

0101
0101

0101
0000

x

+
0100011

230 x 42 = 9660

Multiplikator
Multiplikand

partielle
Produkte

Ergebnis
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4 x 4 Multiplizierer

x

x

A B

P

B3       B2        B1        B0

A3B0  A2B0  A1B0   A0B0

A3       A2        A1        A0

   A3B1  A2B1  A1B1  A0B1

A3B2  A2B2  A1B2  A0B2

A3B3  A2B3  A1B3  A0B3+
P7         P6        P5        P4       P3       P2        P1        P0

0

P2

0

0

0

P1 P0P5 P4 P3P7 P6

A3 A2 A1 A0

B0B1

B2

B3

44

8
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Zahlensysteme

Bisher kennengelernt
Positive Zahlen

Vorzeichenlose Binärdarstellung
Negative Zahlen

Zweierkomplement
Darstellung als Vorzeichen/Betrag

Wo bleiben Brüche?
Rationale Zahlen?

Reelle Zahlen?
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Zahlen mit Bruchanteilen

Zwei gängige Darstellungen:
Festkomma (fixed-point): 

Position des Kommas bleibt konstant

Beispiel: Dezimalsystem, 2 Vorkomma-, 3 Nachkommastellen
2,000  99,999  0,000 -2,718 nicht: 3,1415  365,250

Gleitkomma (floating-point)
Position des Kommas kann wandern, ist stets rechts der höchstwertigen
Stelle <> 0. Angabe der Position des Kommas in Exponentenschreibweise

Beispiel: Dezimalsystem, insgesamt 5 Stellen
2*100 9,9999*101 0*100 -2,718*100 3,1415*100 3,6525*102 5*106

nicht: 3,14159*100

Auch: Obergrenze für Exponenten, keine beliebig großen Zahlen darstellbar
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Binäre Festkommazahlen

Darstellung von 6,75 mit 4b für ganzen Anteil und 4b für Binärbruch:

Binärkomma wird nicht explizit dargestellt
Position wird durch Format impliziert (hier: 4,4)

Alle Leser und Schreiber von Festkommadaten müssen dasselbe Format 
verwenden

01101100
0110 ,1100
22 + 2 1 + 2 -1 + 2 -2 = 6,75
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Binäre Festkommazahlen

Beispiel: Stelle 7.510 in 8b im 4,4-Festkommaformat dar
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Binäre Festkommazahlen

Beispiel: Stelle 7.510 in 8b im 4,4-Festkommaformat dar

01111000
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Vorzeichenbehaftete Festkommazahlen

Wie bei ganzen Zahlen: Zwei Darstellungen möglich
Vorzeichen/Betrag
Zweierkomplement

Stelle -7.510 in 8b als 4,4-Festkommazahl dar

Vorzeichen/Betrag:

Zweierkomplement:
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Vorzeichenbehaftete Festkommazahlen

Wie bei ganzen Zahlen: Zwei Darstellungen möglich
Vorzeichen/Betrag
Zweierkomplement

Stelle -7.510 in 8b als 4,4-Festkommazahl dar

Vorzeichen/Betrag:
11111000

Zweierkomplement:
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Vorzeichenbehaftete Festkommazahlen

Wie bei ganzen Zahlen: Zwei Darstellungen möglich
Vorzeichen/Betrag
Zweierkomplement

Stelle -7.510 in 8b als 4,4-Festkommazahl dar

Vorzeichen/Betrag:
11111000

Zweierkomplement:
1. +7.5: 01111000
2. Invertieren: 10000111
3. Addiere 1 zu lsb: +            1

10001000
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Division

Leidlich einfach, dann aber sehr langsam
Sehr kompliziert, dann wenigstens etwas schneller

Aber immer noch deutlich langsamer als z.B. Multiplikation

Für Einführungsveranstaltung eher ungeeignet
Beschreibung im Buch auch ziemlich schlecht …

Hier nur aus dem Orbit gestreift
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Ein Algorithmus für vorzeichenlose Division 

Q = A / B : Quotient
R = A mod B : Rest
D : aktuelle Differenz

R = A // partieller Rest
for i = N-1 to 0 // über alle Stellen der Binärzahl

D = R - B
if D < 0 then Qi = 0, R’ = R // R < B
else Qi = 1, R’ = D // R ≥ B
if i <> 0 then R = 2 R’

Vorsicht: Dieser Algorithmus funktioniert nur für Zahlenbereich [2N-1,2N-1]
liefert Ergebnisse als 1,N-1 Festkommazahl
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4 x 4 Dividierer

Legende

P3

P2

P1

P0

P=1 wenn Differenz negativ ist

Verzögerung proportional zu N2

Sign-extension von B

Right-shift von R
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Binäre Gleitkommazahlen

Binärkomma liegt immer genau rechts von höchstwertiger 1
Ähnlich zur wissenschaftlichen Darstellung von Dezimalbrüchen
Beispiel: 4.387.263 in wissenschaftlicher Darstellung

4,387263 × 106

Allgemeine Schreibweise:
± M × BE

wobei 
M = Mantisse
B = Basis
E = Exponent
Im Beispiel: M = 4,387263 , B = 10, and E = 6
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Binäre Gleitkommazahlen

Beispiel: Stelle den Wert 22810 als 32b-Gleitkommazahl dar

Im folgenden drei Versionen, nur die letzte davon ist eine Standarddarstellung!
IEEE 754, single precision format

Vorzeichen Exponent Mantisse

1 Bit 8 Bits 23 Bits
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Binäre Gleitkommadarstellung: 1. Versuch

Wandele Dezimalzahl in Binärdarstellung um: 

22810 = 111001002 = 1,11001 × 27

Trage nun Daten in die Felder des 32b Wortes ein:

Vorzeichenbit ist positiv (0)

Die 8b des Exponenten stellen den Wert 7 dar

Die verbliebenen 23 Bit stellen die Mantisse dar

0 00000111 11 1001 0000 0000 0000 0000
Vor-

zeichen
Exponent Mantisse

1 Bit 8 Bits 23 Bits
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Binäre Gleitkommadarstellung: 2. Versuch

Beobachtung: Das erste Bit der Mantisse ist so immer 1

22810 = 111001002 = 1,11001 × 27

Man kann sich das explizit Abspeichern der führenden 1 sparen

Die führende eine wird implizit immer als präsent angenommen

Stattdessen: Speichere nur den Bruchanteil (die “Nachkommastellen”) 
explizit ab

0 00000111 110 0100 0000 0000 0000 0000
Vor-

zeichen
Exponent Bruchanteil

1 Bit 8 Bits 23 Bits
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Binäre Gleitkommadarstellung: 3. Versuch

Exponent kann auch negativ sein

Idee: Zweierkomplement. Wäre möglich, hat aber praktische Nachteile

Besser: Exponent relativ zu konstantem Grundwert (Exzess, Biaswert) angeben

Hier: Biaswert = 127 (011111112)  

Exponent mit Bias = Biaswert + Exponent

Exponent 7 wird also gespeichert als:

127 + 7 = 134 = 0x100001102

Damit IEEE 754 32-bit Gleitkommadarstellung von 22810

0 10000110
Vorz. Exponent

mit Bias 
Bruchanteil

1 Bit 8 Bits 23 Bits
110 0100 0000 0000 0000 0000
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Beispiel IEEE 754 Gleitkommadarstellung

Stelle -58.2510 gemäß dem IEEE 754 32-bit Gleitkommastandard dar
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Beispiel IEEE 754 Gleitkommadarstellung

Stelle -58.2510 gemäß dem IEEE 754 32-bit Gleitkommastandard dar
1. Wandele in Binärdarstellung um: 

58,2510 =

2. Trage Felder des 32b Gleitkommawortes ein:

Vorzeichen:

8 Bits für Exponent:

23 Bits für Bruchanteil:

In Hexadezimalschreibweise:

Vorz. Exponent Bruchanteil

1 Bit 8 Bits 23 Bits
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Beispiel IEEE 754 Gleitkommadarstellung

Stelle -58.2510 gemäß dem IEEE 754 32-bit Gleitkommastandard dar
1. Wandele in Binärdarstellung um: 

58,2510 = 111010,012 = 1.1101001 × 25

2. Trage Felder des 32b Gleitkommawortes ein:

Vorzeichen: 1 (negativ)

8 Bits für Exponent: (127 + 5) = 132 = 100001002

23 Bits für Bruchanteil: 110 1001 0000 0000 0000 0000

In Hexadezimalschreibweise: 0xC2690000

1 100 0010 0 110 1001 0000 0000 0000 0000
Vorz. Exponent Bruchanteil

1 Bit 8 Bits 23 Bits
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IEEE 754 Gleitkommadarstellung: Sonderfälle

Nicht alle benötigten Werte nach dem Schema darstellbar
Beispiel: 0, hat keine führende 1

NaN steht für “Not a Number” und stellt häufig Rechenfehler dar        
Beispiele: √-1 oder log(-5).

Wert Vorz. Exponent Bruchanteil

0

∞

- ∞

NaN

00000000 00000000000000000000000X

0

1

X

11111111 00000000000000000000000

11111111 00000000000000000000000

11111111 Ein Wert <> 0
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Genauigkeit der Gleitkommadarstellungen

Einfache Genauigkeit (single-precision):
32-bit Darstellung
1 Vorzeichenbit, 8 Exponentenbits, 23 Bits für Bruchanteil
Exponentenbias = 127

Doppelte Genauigkeit (double-precision):
64-bit Darstellung
1 Vorzeichenbit, 11 Exponentenbits, 52 Bits für Bruchanteil
Exponentenbias = 1023
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Rundungsmodi für Gleitkommazahlen

Overflow: Betrag der Zahl ist zu groß, um korrekt dargestellt zu werden
Underflow: Zahl ist zu nah bei 0, um korrekt dargestellt zu werden

Rundungsmodi: 
Abrunden zu minus Unendlich
Aufrunden zu plus Unendlich
Hin zu Null
Hin zu nächster darstellbarer Zahl

Beispiel: Runde 1,100101 (1,57812510) auf 3 Bits Bruchanteil
Ab: 1,100
Auf: 1,101
Zu Null: 1,100
Zu nächster: 1,101 (1,625 liegt näher an 1,578125 als an 1,5)
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Addition von Gleitkommazahlen
mit gleichem Vorzeichen

1. Exponenten- und Bruchanteilfelder aus Gleitkommawort extrahieren

2. Bruchanteil um führende 1 erweitern, um Mantisse zu bilden

3. Vergleiche Exponenten
4. Schiebe Mantisse von Zahl mit kleinerem Exponenten nach rechts

(bis Exponenten gleich sind)

5. Addiere Mantissen

6. Normalisiere Mantisse und passe Exponent an, falls nötig

7. Runde Ergebnis entsprechend dem gewählten Rundungsmodus
8. Baue Gleitkommawort aus Exponenten und Bruchanteil des 

Ergebnisses
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Beispiel: Addition von Gleitkommazahlen

Addiere die beiden Gleitkommazahlen

0x3FC00000
0x40500000
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Beispiel: Addition von Gleitkommazahlen

1. Extrahiere Exponenten und Bruchanteile aus 32b Worten

1. Zahl (N1): S1 = 0, E1 = 127, F1 = ,1
2. Zahl (N2): S2 = 0, E2 = 128, F2 = ,101

2. Erweitere Bruchanteile um führende 1, um Mantissen zu bilden
M1: 1,1
M2: 1,101

0 01111111 100 0000 0000 0000 0000 0000
Vorz. Exponent Bruchanteil

1 Bit 8 Bits 23 Bits

0 10000000 101 0000 0000 0000 0000 0000
1 Bit 8 Bits 23 Bits

Vorz. Exponent Bruchanteil
S E F



WS 09/10 |  Technische Grundlagen der Informatik - Kapitel 5 - Prof. Andreas Koch |  63

Beispiel: Addition von Gleitkommazahlen

3. Vergleiche Exponenten
128 – 127 = 1, N1 muss also um ein Bit geschoben werden

4. Mantisse von Zahl mit kleinerem Exponenten um entsprechend nach 
rechts schieben
schiebe M1: 1,1 >> 1 = 0,11  (× 21)

5. Mantissen addieren (haben jetzt den gleichen Exponenten)
0,11   × 21

+ 1,101 × 21

10,011 × 21
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Beispiel: Addition von Gleitkommazahlen

6. Normalisiere Mantisse und passe Exponenten an, falls nötig
10,011 × 21 = 1,0011 × 22

7. Runde Ergebnis entsprechend Rundungsmodus
Hier nicht nötig (pass in 23b)

8. Baue neues Gleitkommawort für Ergebnis aus Exponent und Mantisse
S = 0, E = 2 + 127 = 129 = 100000012, F = 001100..

In Hexadezimalschreibweise: 0x40980000

0 10000001 001 1000 0000 0000 0000 0000
Vorz. Exponent Bruchanteil

1 Bit 8 Bits 23 Bits
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Zähler

Einfachster Fall: Inkrementieren zu jeder positiven Taktflanke
Zählen durch einen Zyklus von Werten, Beispiel für 3b Breite 

000, 001, 010, 011, 100, 101, 110, 111, 000, 001…
Beispielanwendungen

Digitaluhren
Programmzähler: Zeigt auf nächste auszuführende Instruktion

Q

CLK

Reset
N

+ N

1

CLK

Reset

N

N
QN

r

Symbol Aufbau
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Schieberegister

NQ

S in S out

Symbol: Aufbau:
CLK

Sin Sout

Q0 Q1 QN-1Q2

Auch: FIFO (first-in first-out)
Schiebe einen neuen Wert jeden Takt ein
Schiebe einen alten Wert jeden Takt aus
Kann auch agieren als Seriell-nach-Parallel-Konverter

Konvertiert serielle Eingabe (Sin) in parallele Ausgabe (Q0:N-1)
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Schieberegister mit parallelem Laden

Clk
0
1

0
1

0
1

0
1

D 0 D 1 D N -1D 2

Q 0 Q 1 Q N -1Q 2

S in S out

Load

Bei Load = 1: Agiert als normales N-bit Register
Bei Load = 0: Agiert als Schieberegister
Verwendbar als

Seriell-nach-Parallelkonverter (Sin nach Q0:N-1)
Parallel-nach-Seriellkonverter (D0:N-1 nach Sout)
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Speicherfelder

Können effizient größere Datenmengen speichern
Drei weitverbreitete Typen:

Dynamischer Speicher mit wahlfreiem Zugriff
(Dynamic random access memory, DRAM)

Statischer Speicher mit wahlfreiem Zugriff
(Static random access memory, SRAM)

Nur-Lesespeicher (Read only memory, ROM)
An jede N-bit Adresse kann ein M-bit breites Datum geschrieben werden

Adresse

Daten

FeldN

M
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Zweidimensionales Feld von Bit-Zellen 
Jede Bit-Zelle speichert ein Bit
Feld mit N Adressbits und M Datenbits:

2N Zeilen und M Spalten
Tiefe: Anzahl von Zeilen (Anzahl von Worten)
Breite: Anzahl von Spalten (Bitbreite eines Wortes)
Feldgröße: Tiefe × Breite = 2N × M

Speicherfelder

Adresse

Daten

FeldN

M

Adresse Daten
11
10
01
00

Tiefe

0 1 0
1 0 0
1 1 0
0 1 1

Breite

Adresse

Daten

Feld2

3
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22 × 3-Bit Feld
Anzahl Worte: 4
Wortbreite: 3-Bit
Beispiel: 3-Bit gespeichert an Adresse 2’b10 ist 3’b100

Beispiel: Speicherfeld

Beispiel: Adresse Daten
11

10

01
00

Tiefe

0 1 0

1 0 0

1 1 0
0 1 1

Breite

Adresse

Daten

Feld2

3
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Speicherfelder

Adresse

Daten

1024-Wort x
32-bit
Feld

10

32
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Bit-Zellen für Speicherfelder

Beispiel:
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Aufbau von Speicherfeldern aus Bit-Zellen

Beispiel:

0

1

Z

Z
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Wordline: 
Vergleichbar mit Enable-Signal
Erlaubt Zugriff auf eine Zeile des Speichers zum Lesen oder Schreiben
Entspricht genau einer eindeutigen Adresse
Maximal eine Wordline ist zu jedem Zeitpunkt HIGH

Aufbau von Speicherfeldern

wordline 311

10

2:4
Decoder

Adresse

01

00

stored
bit = 0wordline 2

wordline 1

wordline 0

stored
bit = 1

stored
bit = 0

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

bitline 2 bitline 1 bitline 0

Data 2 Data 1 Data 0

2
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Arten von Speicher: Historische Sicht

Speicher mit wahlfreiem Zugriff (RAM)
Nur-Lese Speicher (ROM)
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RAM: Random-Access Memory

Flüchtig: Speicherinhalte gehen bei Verlust der Betriebsspannung 
verloren
Kann i.d.R. gleich schnell gelesen und geschrieben werden
Zugriff auf beliebige Adressen mit ähnlicher Verzögerung möglich
Hauptspeicher moderner Computer ist dynamisches RAM (DRAM)

Aktuell & genauer: DDR3-SDRAM
Double Data Rate 3 - Synchronous Dynamic Random Access Memory

Name „RAM“ ist historisch gewachsen
Früher unterschiedliche Zugriffszeiten auf unterschiedliche Adressen

Bandspeicher, Trommelspeicher, Ultraschall-Laufzeitspeicher, …



WS 09/10 |  Technische Grundlagen der Informatik - Kapitel 5 - Prof. Andreas Koch |  77

ROM: Read-Only Memory

Nicht-flüchtig: Erhält Speicherinhalt auch ohne Betriebsspannung
Schnell lesbar
Schreibbar nur sehr langsam (wenn überhaupt)
Flash-Speicher ist in diesem Sinne ein ROM 

Kameras
Handys
MP3-Player

Auch hier Nomenklatur „ROM“ historisch
Auch aus ROMs kann von beliebigen Adressen gelesen werden 
Es gibt auch schreibbare Arten von ROMs

PROMs, EPROMs, EEPROMs, Flash
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Arten von RAM

Zwei wesentliche Typen:
Dynamisches RAM (DRAM)
Statisches RAM (SRAM)

Verwenden unterschiedliche Speichertechniken in den Bit-Zellen:
DRAM: Kondensator
SRAM: Kreuzgekoppelte Inverter
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Robert Dennard, 1932 -

Erfand 1966 bei IBM das DRAM
Anfangs große Skepsis, ob 
Technik praktikabel
Seit Mitte der 1970er Jahre ist 
DRAM die am weitesten 
verbreitete Speichertechnik in 
Computern
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Datenbit wird als Ladezustand eines Kondensators gespeichert
Dynamisch: Der Speicherwert muss periodisch neu geschrieben werden

Auffrischung alle paar Millisekunden erforderlich
Kondensator verliert Ladung durch Leckströme
… und beim Auslesen

DRAM Bit-Zelle

wordline

bitline

stored
bit
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DRAM Bit-Zelle

wordline

bitline

wordline

bitline

+ +gespeicherter
Wert = 1

gespeicherter
Wert = 0
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SRAM Bit-Zelle

Datenbit wird als Zustand von 
rückgekoppelten Invertern gespeichert
Statisch: Keine Auffrischung 
erforderlich

Inverter treiben Werte auf gültige 
Logikpegel

wordline
bitline bitline
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Speicherfelder

wordline
bitline bitlinewordline

bitline
DRAM Bit-Zelle: SRAM Bit-Zelle:

wordline311

10

2:4
Decoder

Adresse

01

00

stored
bit = 0wordline2

wordline1

wordline0

stored
bit = 1

stored
bit = 0

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

bitline2 bitline1 bitline0

Data2 Data1 Data0

2
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ROMs: Aufbau der Bit-Zellen

=

=

wordline

bitline

wordline

bitline

Bit-Zelle
speichert 0

Bit-Zelle
speichert 1

Bitlines sind schwach auf HIGH getrieben

11

10

2:4 
Decoder

Adresse

Data0Data1Data2

01

00

2
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Fujio Masuoka, 1944-

Entwickelte Speicher und schnelle Schaltungen 
bei Toshiba von 1971-1994
Erfand Flash-Speicher als eigenes 
ungenehmigtes Projekt in den späten 1970ern

An Wochenenden und abends
Löschvorgang erinnerte ihn an Kamerablitz

Deshalb Flash-Speicher
Toshiba kommerzialisierte Technik nur 
zögerlich
Erste kommerzielle Chips von Intel in 1988 
Flash-Produkte haben großen Erfolg

Derzeit USD 25 Milliarden Umsatz / Jahr
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Flash-Speicher: Bit-Zelle

Quelle:Wikipedia
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ROMs als Datenspeicher

11

10

2:4 
Decoder

Adresse

Data 0Data 1Data 2

01

00

2

Adresse Daten
11

10

01
00

Tiefe

0 1 0

1 0 0

1 1 0
0 1 1

Breite



WS 09/10 |  Technische Grundlagen der Informatik - Kapitel 5 - Prof. Andreas Koch |  88

ROMs als Wertetabellen für boolesche Logik

Data2 = A1 ⊕ A0

Data1 = A1 + A0

Data0 = A1A0

11

10

2:4 
Decoder

Adresse

Data 0Data 1Data 2

01

00

2
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Beispiel: Logik aus ROMs

Implementierung der folgenden logischen Funktionen durch 22 × 3-bit ROM:
X = AB
Y = A + B
Z = AB

11

10

2:4 
Decoder

Adresse

Data 0Data 1Data 2

01

00

2
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Beispiel: Logik aus ROMs

Implementierung der folgenden logischen Funktionen durch 22 × 3-bit ROM:
X = AB
Y = A + B
Z = AB

11

10

2:4
Decoder

A , B

ZYX

01

00

2
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Logik aus beliebigem Speicherfeld

Data2 = A1 ⊕ A0

Data1 = A1 + A0

Data0 = A1A0

wordline 311

10

2:4
Decoder

Adresse

01

00

stored
bit = 0wordline 2

wordline 1

wordline 0

stored
bit = 1

stored
bit = 0

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

bitline 2 bitline 1 bitline 0

Data 2 Data 1 Data 0

2
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Logik aus beliebigem Speicherfeld

wordline311

10

2:4
Decoder

A, B

01

00

stored
bit = 1wordline2

wordline1

wordline0

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

stored
bit = 0

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 0

stored
bit = 0

bitline2 bitline1 bitline0

X Y Z

2

Implementierung der folgenden logischen Funktionen durch 22 × 3-bit ROM:
X = AB
Y = A + B
Z = AB

Andere Funktion nur durch Ändern der Speicherinhalte
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Logik aus beliebigen Speicherfeldern

Speicherfelder speichern Wertetabellen
Lookup-Tables (LUTs)

Wort der Eingangsvariablen bildet Adresse
Für jede Kombination von Eingangsvariablen
ist Funktionsergebnis abgespeichert

stored
bit = 1

stored
bit = 0

00

01

2:4
Decoder

A

stored
bit = 0

bitline

stored
bit = 0

Y

B

10

11

4-Wort x 1-bit Speicherfeld

A B Y
0 0
0 1
1 0
1 1

0
0
0
1

Werte-
tabelle

A1

A0
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Multi-Port-Speicher

A1

A3
W D 3

W E3

A2

C LK

Array

R D 2
R D 1 M

M
N
N

N
M

Port: Zusammengehörige Anschlüsse für Adresse und Datum
Drei-Port Speicher

2 Lese-Ports (A1/RD1, A2/RD2)
1 Schreib-Port (A3/WD3, Signal WE3 löst Schreiben aus)

Kleine Multi-Port-Speicher werden als Registerfelder bezeichnet
Werden z.B. in Prozessoren eingesetzt
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// 256 x 3b Speicher mit einem Schreib/Lese-Port

module dmem( input clk, we,
input [7:0]    a
input [2:0]    wd,
output [2:0]    rd);

reg  [2:0] RAM[255:0];

assign rd = RAM[a];

always @(posedge clk)
if (we)

RAM[a] <= wd;
endmodule

Speicherfeld in Verilog
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Logikfelder (logic arrays)

Programmable Logic Arrays (PLAs)
AND Feld gefolgt von OR Feld
Kann nur kombinatorische Logik realisieren
Feste interne Verbindungen, spezialisiert für DNF (SoP-Form)

Field Programmable Gate Arrays (FPGAs)
Feld von konfigurierbaren Logikblöcken (CLBs)
Können kombinatorische und sequentielle Logik realisieren
Programmierbare Verbindungsknoten zwischen Schaltungselementen
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Boole‘sche Funktionen mit PLAs: Idee

X = ABC + ABC
Y = AB

AND
Feld

OR
Feld

Eingänge

Ausgänge

Implikanten
N

M

P

X Y

A B C

AND-Feld

OR-Feld

ABC

AB

ABC
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PLAs: Vereinfachte Schreibweise

AND
Feld

OR
Feld

Eingänge

Ausgänge

Implikanten
N

M

P

X Y

ABC

AB

ABC

A B C

AND-Feld

OR-Feld
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FPGAs: Field Programmable Gate Arrays

Bestehen grundsätzlich aus:
CLBs (Configurable Logic Blocks): Realisieren kombinatorische und sequentielle Logik

Konfigurierbare Logikblöcke
IOBs (Input/Output Blocks): Schnittstelle vom Chip zur Außenwelt

Ein-/Ausgabeblöcke
Programmierbares Verbindungsnetz: verbindet CLBs und IOBs

Kann flexibel Verbindungen je nach Bedarf der aktuellen Schaltung herstellen

Reale FPGAs enthalten oftmals noch weitere Arten von Blöcken
RAM
Multiplizierer
Manipulation von Taktsignalen (DCM)
Sehr schnelle serielle Verbindungen (11 Gb/s)
Komplette Mikroprozessoren
…
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Xilinx Spartan 3 FPGA Schematic
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Konfigurierbare Logikblöcke (CLBs)

Bestehen im wesentlichen aus:
LUTs (lookup tables): realisieren kombinatorische Funktionen
Flip-Flops: realisieren sequentielle Funktionen
Multiplexern: Verbinden LUTs und Flip-Flops
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Xilinx Spartan 3 CLB
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Xilinx Spartan CLB
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Xilinx Spartan 3 CLB

Ein Spartan 3 CLB enthält:
2 LUTs: 

F-LUT (24 x 1-bit LUT)
G-LUT (24 x 1-bit LUT)

2 sequentielle Ausgänge: 
XQ
YQ

2 kombinatorische Ausgänge: 
X
Y
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Beispiel: Kombinatorische Logik mit CLBs

Berechnung der folgenden Funktionen mit dem Spartan 3 CLB
X = ABC + ABC
Y = AB
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Beispiel: Kombinatorische Logik mit CLBs

F4
F3
F2
F1

F

F2 F1 F
0 0
0 1
1 0
1 1

0
1
0
0

F3
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
1
0

X
X
X
X
X
X
X
x

F4
(A) (B) (C) (X)

G2 G1 G
0 0
0 1
1 0
1 1

0
0
1
0

G3
X
X
X
X

X
X
X
X

G4
(A) (B) (Y) G4

G3
G2
G1

G0
A
B

0

A
B
C

0

Y

X

Berechnung der folgenden Funktionen mit dem Spartan 3 CLB
X = ABC + ABC
Y = AB



WS 09/10 |  Technische Grundlagen der Informatik - Kapitel 5 - Prof. Andreas Koch |  107

Entwurfsfluß für FPGAs

Wird in der Regel durch Entwurfswerkzeuge unterstützt
Beispiel: Xilinx ISE

Ist in der Regel ein iterativer Prozess
Planen
Implementieren
Testen
Wiederhole …

Entwickler denkt nach
Entwickler gibt Entwurf als Schaltplan oder HDL-Beschreibung ein
Entwickler wertet Simulationergebnisse aus
Wenn Simulation zufriedenstellend: Synthetisiere Entwurf in Netzliste
Bilde Netzliste auf FPGA-Konfiguration ab (CLBs, IOBs, Verbindungsnetz)
Lade Konfigurationsdaten (bit stream) auf FPGA
Teste Schaltung nun in realer Hardware
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