Technische Grundlagen

';f UNIVERSITAT
0 DARMSTADT

der Informatik — Kapitel 6

Prof. Dr. Andreas Koch
Fachbereich Informatik
TU Darmstadt

Kapitel 6: Themen

TECHNISCHE
UNIVERSITAT
DARMSTADT

&

i
A

» Einleitung

» Assembler-Sprache

» Maschinensprache

* Programmierung

= Adressierungsmodi

» Compilieren, Assemblieren und Linken
» Dies und Das

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 2

gystems +

Embedded
Elpplications

Einleitung

TECHNISCHE
UNIVERSITAT
DARMSTADT

= Nun Sprung auf héhere Abstraktionsebene
» Erstmal ...

= Architektur: Programmierersicht auf
Computer

= Definiert durch Instruktionen (Operationen) und
Operanden

= Mikroarchitektur: Hardware-
Implementierung der Architektur

= Kommt im Detail in Kapitel 7

Anwendungs-
Software

Betriebs-
systeme

Architektur

Mikro-
architektur

Logik

Digital-
schaltungen

Analog-
schaltungen

Bauelemente

Physik

Programme

Geréatetreiber

Instruktionen
Register

Datenpfade
Steuerwerke

Addierer
Speicher

AND Gatter
NOT Gatter

Verstarker
Filter

Transistoren
Dioden

Elektronen

gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 3

Smbedded
a

pplications

<74 TECHNISCHE
Assemblersprache P\ NVERSITAT
: DARMSTADT

* Programmieren in Sprache des Computers
= Instruktionen / Befehle: Einzelne Worte
= Befehlssatz: Gesamtes Vokabular

» Befehle geben Art der Operation und ihre Operanden an

= Zwei Darstellungen
= Assemblersprache: fir Menschen lesbare Schreibweise flr Instruktionen
= Maschinensprache: maschinenlesbares Format (1'en und O’en)

= MIPS Architektur:
= Von John Hennessy und Kollegen in Stanford in den 1980ern entwickelt
= In vielen Computern verwendet
= Silicon Graphics, Nintendo, Sony, Cisco, ...

» Gut zur Darstellung von allgemeinen Konzepten
= Vieles auch auf andere Architekturen tbertragbar

gystems +

Elpplications

gdmbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 4

John Hennessy

» Prasident der Universitat Stanford

= Professor in Elektrotechnik und
Informationstechnik in Stanford seit 1977

= Miterfinder des Reduced Instruction Set
Computers (RISC)

» Entwickelte MIPS-Architektur in Stanford in
1984 und war Mitgrinder von MIPS
Computer Systems

= Bis 2004: Uber 300 Millionen MIPS
Prozessoren verkauft

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 5

A TECHNISCHE

UNIVERSITAT
DARMSTADT

gystems +

Jmbedded
Elpplications

7 TECHNISCHE
&)=\ UNIVERSITAT
%9’ DARMSTADT

Entwurfsprinzipien fur Architekturen

John Hennessy (Stanford) und David Patterson (Berkeley):

Regqularitat vereinfacht Entwurf

Mach den haufigsten Fall schnell

Kleiner ist schneller

Ein guter Entwurf verlangt gute Kompromisse

N e

gystems +

mbedded

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 6 a pplications

TECHNISCHE
UNIVERSITAT
DARMSTADT

Befehle: Addition

Hochsprache MIPS Assemblersprache
a=>b+ c; add a, b, c

= add: Befehlsname (mnemonic) gibt die Art der auszuftihrenden
Operation an

= b, c: Quelloperanden auf denen die Operation ausgefuhrt wird

" a: Zieloperand in den das Ergebnis eingetragen wird

gystems +

Elpplications

Embedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 7

A TECHNISCHE
UNIVERSITAT
DARMSTADT

Befehl: Subtraktion

= Subtraktion ist ahnlich zur Addition. Nur der Befehlsname andert sich.

Hochsprache MIPS Assemblersprache
a=>b - c; sub a, b, c

= sub: Befehlsname gibt die Art der auszufihrenden Operation an
= b, c: Quelloperanden auf denen die Operation ausgefthrt wird

= a: Zieloperand in den das Ergebnis eingetragen wird

gystems +

Elpplications

Embedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 8

Entwurfsprinzip 1

TECHNISCHE
UNIVERSITAT
DARMSTADT

Reqularitat vereinfacht Entwurf

- Konsistentes Befehlsformat

- Gleiche Anzahl von Operanden
- Zwei Quellen, ein Ziel
- Leichter zu kodieren und in Hardware zu bearbeiten

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 9

gystems +

Jmbedded
Elpplications

TECHNISCHE
UNIVERSITAT
DARMSTADT

Befehle: Komplexere Ablaufe

= Komplexere Ablaufe werden durch Folgen von einfachen Befehlen

realisiert

Hochsprache MIPS Assemblersprache
a=b+c - d; add t, b, ¢ #t =Db + c
// Kommentare bis Zeilenende sub a, t, d #a=t -4d

/* mehrzeirliger Kommentar */

gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 10 a pplications

mbedded

Entwurfsprinzip 2

Mach den haufigen Fall schnell

- MIPS enthélt nur einfache, haufig verwendete Befehle

- Hardware zur Dekodierung und Ausfiihrung der Befehle kann einfach, klein und
schnell sein

- Komplexe Anweisungen (die nur seltener auftreten) konnen durch Folgen von
einfachen Befehlen realisiert werden

- MIPS ist ein Computer mit reduziertem Befehlssatz (reduced instruction set
computer, RISC)

- Alternative: Computer mit komplexem Befehlssatz (complex instruction set computer,
CISC)
- Beispiel: Intel IA-32 / x86 (weit verbreitet in PCs)
- Befehl: Kopiere Zeichenfolge im Speicher umher

gystems +

Elpplications

Embedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 11

TECHNISCHE
UNIVERSITAT
DARMSTADT

Operanden

= Ein Prozessor hat physikalische Speicherorte flr die Operanden von
Befehlen

= Mogliche Speicherorte

. Register
. Speicher
. Konstante Werte (immediates)
. Stehen haufig direkt im Befehl

ern?edded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 12 qystems +

Elpplications

TECHNISCHE

Operanden: Register /") UNIVERSITAT

=7\
16

DARMSTADT

= Speicher ist langsam
= Viele Architekturen haben deshalb kleine Anzahl von schnellen Registern

= MIPS hat 32 Register, jedes 32b breit
. Wird deshalb auch “32b Architektur’” genannt

= Es gibt auch eine 64b-Version von MIPS
= ... wird hier aber nicht weiter behandelt

gystems +

Elpplications

gdmbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 13

TECHNISCHE
UNIVERSITAT
DARMSTADT

Entwurfsprinzip 3

Kleiner ist schneller

- MIPS stellt nur eine kleine Anzahl von Registern bereit

- Kann in schnellerer Hardware realisiert werden als grof3eres Registerfeld

ern?edded
jystems +
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 14 Y

Elpplications

A TECHNISCHE
UNIVERSITAT
DARMSTADT

MIPS Registerfeld

$0 0 Konstante Null

$at 1 Temporare Variable fir Assembler
$v0-$v1 2-3 Riickgabe von Werten aus Prozedur
$a0-%a3 4-7 Aufrufparameter in Prozedur

$t0-$t7 8-15 Temporare Variablen

$s0-$s7 16-23 Gesicherte Variablen

$t8-$19 24-25 Mehr temporéare Variablen

$k0O-$k1 26-27 Temporare Variablen fiir Betriebssystem
$gp 28 Zeiger auf globale Variablen im Speicher
$sp 29 Stapelzeiger im Speicher

$fp 30 Zeiger auf aktuellen Aufruf-Frame im Speicher

$ra 31 Ricksprungadresse aus Prozedur Embedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 15 pplications

Operanden: Register

TECHNISCHE
UNIVERSITAT
DARMSTADT

=
=

= Register:
Kenntlich gemacht durch dem Namen vorangestelltes Dollar-Zeichen
Beispiel: Register 0 wird geschrieben als “$0”
Gelesen als: “Register Null” oder “Dollar Null”.

Bestimmte Register flr bestimmte Verwendungszwecke:
. Beispiele

$0 enthalt immer den konstanten Wert O.

Gesicherte Register ($s0-$s7) flr das Speichern von Variablen
Temporare Register ($t0 - $t9) fur das Speichern von
Zwischenergebnissen wéahrend einer komplizierteren Rechnung

Zunachst benutzen wir nur

Temporare Register ($t0 - $t9)
Gesicherte Register ($s0 - $s7)

= Spater mehr ...

gystems +

Smbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 16 a pplications

TECHNISCHE
UNIVERSITAT
DARMSTADT

Befehle mit Registerangaben

= Ruckblick auf add-Befehl

Hochsprache MIPS Assemblersprache

$sO0 = a, $s1 = b, $s2 = c
a=-Db+c add $s0, $s1, $s2

gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 17 a pplications

mbedded

Operanden: Speicher

A TECHNISCHE

UNIVERSITAT
DARMSTADT

Daten passen nicht alle in 32 Register

Lege Daten im Hauptspeicher ab

Hauptspeicher ist grof3 (GB...TB) und kann viele Daten halten
Ist aber auch langsam

Speichere haufig verwendete Daten in Registern

Kombiniere Register und Speicher zum Halten von Daten
Ziel: Greife schnell auf grof3e Mengen von Daten zu

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 18

gystems +

Embedded
Elpplications

Wort-Adressierung von Daten im Speicher

» Jedes 32-bit Datenwort hat eine eindeutige Adresse

Wortadresse Daten

00000003 4 0F 307 8 8| Wort3
00000002 O1 EE28 42| Wort2
00000001 F2F 1ACO7| Wortl
00000000 ABCDEF 7 8| Wort0

gystems +

Elpplications

Embedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 19

Lesen aus wort-adressiertem Speicher

TECHNISCHE
UNIVERSITAT
DARMSTADT

. Lesen geschieht durch Ladebefehle (load)
. Befehlsname: load word (Iw)

. Beispiel: Lese ein Datenwort von der Speicheradresse 1 into $s3

" Adressarithmetik: Adressen werden relativ zu einem Register angegeben
" Basisadresse ($0) plus Distanz (offset) (1)

. Adresse = ($0+1) =1

" Jedes Register darf als Basisadresse verwendet werden

. Nach Abarbeiten des Befehls hat $s3 den Wert OxF2F1ACO7

Assemblersprache
Iw $s3, 1($0) # lese Wort 1 aus Speicher in $s3

Wortadresse Daten

00000003 |40 F 307 8 8| Wort3
00000002 |01 EEZ2 8 4 2| Wort2
00000001 [F2 F1ACO 7 Wortl
00000000 AABCDEF 78| Wort0

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 20

gystems +

Embedded
Elpplications

Schreiben in wort-adressiertem Speicher

TECHNISCHE
UNIVERSITAT
DARMSTADT

. Schreiben geschieht durch Speicherbefehle (store)

. Befehlsname: store word (sw)

. Beispiel: Schreibe (speichere) den Wert aus $t4 in Speichertwort 7
. Offset kann dezimal (Standard) oder hexadezimal angegeben werden
" Adressarithmetik:

. Basisadresse ($0) plus Offset (0x7)
. Adresse: ($0 + Ox7) =7
. Jedes Register darf als Basisadresse verwendet werden

MIPS Assemblersprache
sw $t4, Ox7($0) # schreibe Wert aus $t4 in Speicherwort 7

Wortadresse Daten

00000003 |40 F 307 8 8| Wort3
00000002 |01 EEZ2 8 4 2| Wort2
00000001 [F2 F1ACO 7 Wortl
00000000 AABCDEF 78| Wort0

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 21

gystems +

Embedded
Elpplications

Byte-addressierbarer Speicher

» Jedes Byte hat eine individuelle Adresse

= Speicherbefehle kbnnen auf Worten oder Bytes arbeiten
. Worte: Iw/ sw Bytes: Ib/ sb

= Jedes Wort enthalt vier Bytes
= Adressen von Worten sind also vielfache von 4

Byte-Adresse Daten

0000000C |4 O/F 3|0 7|8 8| Wort3
00000008 |01 EE2 84 2 Wort2
00000004 |F2 F1/ACO 7 Wortl

00000000 |AB/CD|EF|7 8 Wort0
- >

gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 22 a pplications

Wortbreite = 4 Bytes mbedded

Lesen aus byte-addressiertem Speicher

TECHNISCHE

=\ UNIVERSITAT

DARMSTADT

. Byte-Addresse von Wort 10 is 10 x 4 = 40 (0x28)

MIPS Assemblersprache

Iw $s3, 4($0) # Lese Wort an Byte-Adresse 4 nach $s3

Byte-Adresse

0000000C
00000008
00000004
00000000

Daten

40

F 3

07

8 8

01

EE

2 8

4 2

F 2

F1

AC

07

AB

CD

EF

7 8

-

>

Adresse eines Speicherwortes muss nun mit 4 multipliziert werden
. Byte-Addresse von Wort 2 ist 2 x 4 =8

Beispiel: Lade Wort 1 aus Byte-Adresse 4 nach $s3
Nach dem Befehl enthélt $s3 den Wert OxF2F1ACO7

MIPS ist byte-adressiert, nicht wort-adressiert

Wort 3
Wort 2
Wort 1
Wort O

Wortbreite = 4 Bytes

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 23

gystems +

Jmbedded
Elpplications

Schreiben in byte-addressiertem Speicher

= Beispiel: Schreibe Wert aus $t7 in Speicheradresse 0x2C (44)

MIPS Assemblersprache
sw $t7, 44($0) # schreibe $t7 nach Byte-Adresse 44

Byte-Adresse Daten

0000000C |4 O|F 3|0 7|8 8| Wort3
00000008 |0 1/EE|2 8|4 2| Wort 2
00000004 |F 2|F1|AC|0 7| Wortl

00000000 |AB|CD|E F|7 8| Wort0
- >

gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 24 a pplications

Wortbreite = 4 Bytes mbedded

Speicherorganisation: Big-Endian und Little-
Endian

s TECHNISCHE
J=\ UNIVERSITAT
DARMSTADT

= Schemata fir Nummerierung von Bytes in einem Wort

. Wort-Adresse ist bei beiden gleich
= Little-endian: Bytes werden vom niederstwertigen Ende an gezahit
= Big-endian: Bytes werden vom hochstwertigen Ende an gezahlt

Big-Endian Little-Endian
Byte- Wort Byte-
Adresse Adresse Adresse

S S R SR S

C/D|E|F C FIE/D|IC

8/9/AB 8 BIA| 9|8

4,567 4 71654

0|1]2]3 0 31210

ystems +
Elpplications

MSB LSB MSB LSB mbedded
S

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 25

Speicherorganisation: Big-Endian und Little- TECHNISCHE
UNIVERSITAT
Endian DARMSTADT
» Aus Jonathan Swift’'s Gullivers Reisen
. Little-Endians schlagen Eier an der schmalen Seite auf
. Big-Endians schlagen Eier an der breiten Seite auf
= Welche Organisation benutzt wird ist im Prinzip egal ...
= ... aul3er wenn unterschiedliche Systeme Daten austauschen muissen
Big-Endian Little-Endian
Byte- Wort Byte-
Adresse Adresse Adresse
HE S S R S
CIDE|F C F EID|C
8/9|A|B 8 B|A|9 |8
415167 4 /716|514
0(1/2|3 0 3/2|1|0

ystems +
Elpplications

MSB LSB MSB LSB mbedded
S

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 26

A TECHNISCHE
UNIVERSITAT
DARMSTADT

Beispiel: Big-Endian und Little-Endian

= Annahme: $t0 enthalt den Wert 0x23456789

= Programm:
sw $t0, 0($0)
Ib $s0, 1($0)

= Fragen: Welchen Wert hat $s0 nach Ausfiuihrung auf einem ...

. ... Big-Endian Prozessor?
- ... Little-Endian Prozessor?

gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 27

m bedded

Elpplications

Beispiel: Big-Endian und Little-Endian

= Annahme: $t0 enthalt den Wert 0x23456789
= Programm:

sw $t0, 0($0)

Ib $s0, 1($0)

= Fragen: Welchen Wert hat $s0 nach Ausfiuihrung auf einem ...

. ... Big-Endian Prozessor? 0x00000045
. ... Little-Endian Prozessor? 0x00000067
Big-Endian Little-Endian
Wort-
Byte-Adresse 0,1 ,2,3 adresse 3/2|1|0 Byte-Adresse
Datenwert |23|45|67|89 0 23|45|67|89| Datenwert
MSB LSB MSB LSB

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 28

gystems +

Embedded
Elpplications

TECHNISCHE
UNIVERSITAT
DARMSTADT

Entwurfsprinzip 4

Ein guter Entwurf verlangt gute Kompromisse

- Mehrere Befehlsformat erlauben Flexibilitat ...
- add, sub: verwenden drei Register als Operanden
- 1w, sw: verwendet zwei Register und eine Konstante als Operanden

- ... aber Anzahl von Befehlsformaten sollte klein sein
- Entwurfsprinzip 1: Regularitat vereinfacht Entwurf
- Entwurfsprinzip 3: Kleiner ist schneller

gystems +

Elpplications

Embedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 29

Operanden: Konstante Werte in Befehl
(immediates)

= Iwund sw zeigen die Verwendung von konstanten Werten (immediates)

. Direkt im Befehl untergebracht
. Brauchen kein eigenes Register oder Speicherzugriff
» Befehl “add immediate” (addi) addiert Immediate-Wert auf Register

» |Immediate-Wert ist 16b Zweierkomplementzahl

Hochsprache MIPS Assemblersprache
$s0 = a, $s1 = b

a=a+ 4; addi $s0, $s0, 4

b =a-12; addi $s1, $s0, -12

gystems +
Elpplications

gdmbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 30

&

i
A

Maschinensprache

TECHNISCHE
UNIVERSITAT
DARMSTADT

= Computer verstehen nur O’en und 1’en

= Maschinensprache: Binardarstellung von Befehlen
= 32b Befehle

» Regularitat vereinfacht Entwurf: Daten und Befehle sind beides 32b Worte
= Drei Befehlsformate

» R-Typ: Operanden sind nur Register
= |-Typ: Register und ein Immediate-Wert
= J-Typ: fur Programmspringe (kommt noch)

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 31

gystems +

Embedded
Elpplications

Befehlsformat R-Typ

= Register Typ

» 3 Registeroperanden
rs, rt. Quellregister

. rd: Zielregister
= Andere Angaben in binarkodiertem Befehl:
. op: Operations-Code oder Opcode (ist O flir Befehle vom R-Typ)
. funct: Auswahl der genauen Funktion
Opcode und Funktion zusammen bestimmen die auszufiuihrende
Operation

shamt: Schiebeweite fur Shift-Befehle, sonst 0

R-Typ
op Is It rd |shamt| funct
6 bits 5bits 5 bits 5 bits 5 bits 6 bits

gystems +

Elpplications

gdmbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 32

s TECHNISCHE
J=\ UNIVERSITAT
DARMSTADT

Beispiele fur Befehle vom R-Typ

Assemblersprache Felder in Befehlswort
op rs rt rd shamt funct
add $s0, $sl, $s2 0 17 18 16 0 32
sub $t0, $t3, $t5 0 11 13 8 0 34
6 bits 5 bits 5 bits 5bits 5 bits 6 bits

Maschinensprache

op rs rt rd shamt funct

000000 (10001{10010{10000 00000 100000 (0x02328020)

000000{01011/0110101000{00000{100010| (0Ox016D4022)
6 bits 5bits 5bits 5bits 5bits 6 bits

Beachte andere Reihenfolge der Register in Assembler-Sprache:

ystems +
Elpplications

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 33

add rd, rs, rt mbedded
S

TECHNISCHE

Befehlsformat I-Typ) onversimaT

==
&

DARMSTADT

» Immediate-Typ
= 3 Operanden:

. rs: Quellregister
. rt. Zielreqister
n imm: 16b Immediate-Wert im Zweierkomplement
= Andere Angaben:
. op: Opcode
. Regularitat vereinfacht Entwurf: Alle Befehle haben einen Opcode
. Operation wird bei I-Typ nur durch Opcode bestimmt
. Keine Angabe Uber Funktion nétig (oder vorhanden!)

-Typ
op IS It Imm
6 bits 5bits 5 bits 16 bits

gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 34 a pplications

m bedded

i) g TECHNISCHE
- UNIVERSITAT
Beispiel fur Befehle vom I-Typ ULz
Assemblersprache Felder im Befehlswort
op rs rt imm
addi $s0, $si1, 5 8 17 16 5
addi $t0, $s3, -12 8 19 8 -12
Iw $t2, 32($0) 35 0 10 32
sw $sl, 4(stl) 43 9 17 4
6 bits 5bits 5 bits 16 bits
Maschinensprache
op rs rt imm
Beachte unterschiedliche Reihenfolge 001000 [10001/ 10000 0000 0000 0000 0101| (0x22300005)
von Registern in Assembler- und
Maschinensprache 001000 {10011/01000| 1111 1111 1111 0100| (0x2268FFF4)

addi rt, rs, imm
100011 |00000/01010, 0000 0000 0010 0000| (0x8COA0020)

lw rt, imm(rs)
101011 |01001/10001/ 0000 0000 0000 0100| (0OXxAD310004)

sw rt, imm(rs)

, . , gystems +
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 35 Y

6 bits 5 bits 5 bits 16 bits Smbedded
Elpplications

Befehlsformat J-Typ

= Jump-Typ
= 26b Adressoperand (addr)
= Verwendet fir Sprungbefehle (3)

J-Typ

op addr

6 bits 26 bits

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 36

gystems +

Jmbedded
Elpplications

Ubersicht iiber Befehlsformate

TECHNISCHE
UNIVERSITAT
DARMSTADT

R-Typ
op rs rt rd |shamt funct
6 bits 5bits 5bits 5hits 5 bits 6 bits

I-Typ

op IS It Imm

6 bits 5 bits 5 bits 16 bits

J-Typ

op addr

6 bits 26 bits

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 37

e
Yy
d

mbedded
stems +
pplications

Flexibilitat durch gespeicherte Programme <

>

——

7

N
©

TECHNISCHE
UNIVERSITAT
DARMSTADT

32b Befehle und Daten im Speicher
Folgen von Befehlen bestimmen Verhalten
Einziger Unterschied zwischen zwei Anwendungen
Ausfiihren von unterschiedlichen Programmen
Ohne Neuverdrahten oder Neuaufbau von Hardware
Nur neues Programm als Maschinensprache im Speicher ablegen
Die Hardware des Prozessors fuhrt Programm schrittweise aus:
Holt neue Befehle aus dem Speicher (fetch) in richtiger Reihenfolge
Fuhrt die im Befehl verlangte Operation aus
Programmzéhler (program counter, PC)
Zeigt Adresse des auszufiihrenden Befehls an
Bei MIPS: Programmausfuhrung beginnt auf Adresse 0x00400000

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 38

gystems +

Embedded
Elpplications

TECHNISCHE
UNIVERSITAT
DARMSTADT

Im Speicher abgelegtes Programm

Assemblersprache Maschinensprache
Iw $t2, 32($0) 0x8COA0020
add $s0, $sl1, $s2 0x02328020
addi $t0, $s3, -12 Ox2268FFF4
sub $t0, $t3, $t5 0x016D4022

Programm im Speicher

Befehle \

K Adresse

0040000C 016D40 22
00400008 226 8FFFA4
00400004 02328020
00400000 8CO0OAO0020<«—PC

N -

gystems +

Elpplications

Hauptspeicher imbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 39

_ TECHNISCHE
UNIVERSITAT
Maschinensprache verstehen eI
= Beginn mit Entschltisseln des Opcodes
= Opcode bestimmt Bedeutung der anderen Bits
= Wenn Opcode Null ist
. ... liegt ein Befehl im R-Format vor
. Die Operation wird durch das Funktionsfeld bestimmt
= Sonst
. Bestimmt Opcode alleine die Operation, siehe Anhang B im Buch
Maschinensprache Felder im Befehlswort Assemblersprache
op rs rt imm op rs rt imm
(0x2237FFF1) 001000 |10001/10111(1111 1111 1111 Q001 8 17 | 23 -15 addi $s7, $s1, -15
2 2 3 7 F F F 1
op rs rt rd shamt funct op rs rt rd shamt funct
(0x02F34022) | 000000|10111 10011 101000|00000 |100010 0 23 19 8 0 34 sub $t0, $s7, $s3

0 2 F 3 4 0 2 2

gystems +
Elpplications

mbedded

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 40

TECHNISCHE
UNIVERSITAT
DARMSTADT

Programmierung

» Hochsprachen:
z.B. C, Java, Python
Auf einer abstrakteren Ebene programmieren

= Haufige Konstrukte in Hochsprachen:

. if/felse-Anweisungen
. for-Schleifen

= while-Schleifen

. Feld (Array) zugriffe
. Prozeduraufrufe

= Andere nutzliche Anweisungen:
Arithmetische/logische Ausdriicke
. Verzweigungen

gystems +

Elpplications

gdmbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 41

) TECHNISCHE
UNIVERSITAT
DARMSTADT

Ada Lovelace, 1815 - 1852

» Schrieb das erste Computerprogramm

» Sollte die Bernoulli-Zahlen auf der
Analytischen Maschine von Charles
Babbage berechnen

» Einziges eheliches Kind des Dichters
Lord Byron

&m ?edded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 42 qystems +

Elpplications

A TECHNISCHE
UNIVERSITAT
DARMSTADT

Logische Befehle

n and, or, Xor, nor

. and: natzlich zum Maskieren von Bits
. Ausmaskieren aller Bits aul3er dem LSB:
0xF234012F AND 0x000000FF = 0x0000002F
. or = Nutzlich zum Vereinigen von Bitfeldern
. Vereinige 0xF2340000 mit 0x000012BC:
0xF2340000 OR 0x000012BC = 0xF23412BC
. nor : nutzlich zur Invertierung von Bits:
. A NOR $0 = NOT A
= andr, ori, xori
n 16-bit Direktwert wird erweitert mit fihrenden Nullbits (nicht vorzeichenerweitert)
. nori wird nicht bendtigt

gystems +

Elpplications

gdmbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 43

7 TECHNISCHE
&)=\ UNIVERSITAT
2 DARMSTADT

Beispiele: Logische Befehle

Quellreqister

$s11111/21111{12211/1112/0000 0000 0000 0000Q

$s2/0100/0110{1010(0001/ 1111 0000 1011 0111

Assemblersprache Ergebnisse
and $s3, $sl1, $s2 $s3
or $s4, $s1, $s2 $s4
xor $s5, $s1, $s2 $s5
nor $s6, $s1, $s2 $s6

gystems +

Elpplications

Embedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 44

Befehle: Logische Befehle A unveRsITAT

Quellregister

$s111111/1111/11111/11110000{0000{0000;0000

$s2 0100/0110/1010/00011111|0000{1011/0111

Assemblersprache Ergebnisse
and $s3, $s1, $s2 $s3|0100(0110/1010/00010000/0000/0000{0000

or %$s4, $s1, $s2 $s4(1111/1111/1111/211111111|0000/1011/0111
xor $s5, $s1, $s2 $s5|1011{1001/0101/11101111/0000/1011|0111
nor $s6, $sl1l, $s2 $s6 00000000,000000000000{1111/0100/1000

gystems +

Jmbedded
Elpplications

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 45

] . | . h f h| s TECHNISCHE
: UNIVERSITAT
Beispiele: Logische Befehle UNIVERSITAT
Operanden
$s1 |0000{0000(0000|0000 00000000 1111 11121
imm |{0000{0000/0000 0000 1111|1010 0011 0100
<— Null-erweitert ——»
Assemblersprache Ergebnisse

andi $s2, $s1, OxFA34 $s2

ori $s3, $s1, OxFA34 $s3

xori $s4, $s1, OxFA34 $s4

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 46

e
S 4
a

mbedded
stems +
pplications

7, TECHNISCHE
77\ UNIVERSITAT
2 DARMSTADT

Beispiel: Logische Befehle

Operanden

$s1 |0000 0000 000Q0000|00000000(1111 112112

Imm |0000; 0000 00000000/11111010/0011/0100
<— Null-erweitert ——»

Assemblersprache Ergebnisse
andi $s2, $sl1, O0xFA34 $s2 0000 0000 00000000/00000000/0011/0100

ort $s3, $sl, OxFA34 $s3 0000 0000 00000000/11111010(1111(1111
xori $s4, $sl1l, OxFA34 $s4 |0000 0000 00000000{11121010{1100{1011

gystems +

Jmbedded
Elpplications

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 47

A TECHNISCHE
UNIVERSITAT
DARMSTADT

Schiebebefehle

. sl 1: shift left logical

. Beispiel: sIl $t0, $t1, 5 # $t0 <= $tl1 << 5
. srl: shift right logical

. Beispiel : srl $t0, $t1, 5 # $t0 <= $t1 >> 5
. sra: shift right arithmetic

. Beispiel : sra $t0, $tl1, 5 # $t0 <= $t1 >>> 5

Schieben mit variabler Distanz:
. sl lv: shift left logical variable

. Beispiel : sllv $t0, $tl, $t2 # $t0 <= $t1 << $t2
. srilv: shift right logical variable

. Beispiel : sriv $t0, $tl, $t2 # $t0 <= $t1 >> $t2
. srav: shift right arithmetic variable

. Beispiel : srav $t0, $t1l, $t2 # $t0 <= $tl1 >>> $t2

gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 48 a pplications

m bedded

h_ b b f hI &7 TECHNISCHE
iG//=) UNIVERSITAT
Schiebebefenle -7 DARMSTADT
Assemblersprache Felder in Instruktion
op rs rt rd shamt funct
sl $t0, $s1, 2 0 0 17 8 2 0
srl $s2, $s1, 2 0 0 17 18| 2 2
sra $s3, $s1, 2 0 0 17 19| 2 3
6 bits 5 bits 5 bits 5bits 5bits 6 bits
Maschinensprache
op rs rt rd shamt funct
000000{00000/10001{01000,00010| 000000 (0x00114080)
000000/00000{10001|10010,00010| 000010, (0x00119082)
000000{00000/10001{10011;00010| 000011, (0x00119883)
6 bits Sbits 5bits 5bits 5bits 6 bits

gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 49

mbedded

Elpplications

TECHNISCHE
UNIVERSITAT
DARMSTADT

Handhabung von Konstanten

= 16-Bit Konstante mit addi:

Hochsprache MIPS Assemblersprache
// int is a 32-bit signed word # $sO0 = a
int a = 0x4f3c; addi $s0, $0, Ox4f3c

= 32-Bit Konstante mit Load Upper Immediate (lui) und orti:
(lui ladt den 16-Bit Direktwert in obere Registerhélfte und setzt untere Halfte auf 0.)

Hochsprache MIPS Assemblersprache
$sO0 = a
int a = OXFEDC8765; lui $s0, OXFEDC

ori $s0, $s0, 0x8765

gystems +

Elpplications

Embedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 50

A TECHNISCHE
UNIVERSITAT
DARMSTADT

Multiplikation und Division

Spezialregister: 1o, hi
32b x 32b Multiplikation, 64b Produkt
mult $s0, $sl
Ergebnis in {hi, 10}
= 32b Division, 32b Quotient, 32b Rest
. div $s0, $si
Quotientin 1o
. Restin hi
= Lesen von Daten aus Spezialregistern (,move from ...")
mFlo $s2
mfhi $s3

gystems +

Elpplications

gdmbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 51

Verzweigungen und Springe

= Andern der Ausfiihrungsreihenfolge von Befehlen
= Arten von Verzweigungen: Beispiele

= Bedingte
» pranch if equal (beq): Verzweige, wenn gleich
» pranch if not equal (bne): Verzweige, wenn ungleich

= Unbedingte Verzweigungen
= jJump (J): Springe
= jJump register (jr): Springe auf Adresse aus Register
= jump and link (jal): Springe und merke Adresse des nachsten Befehls

gystems +

Embedded
Elpplications

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 52

: : : - TECHNISCHE
Wiederholung: Programm im Speicher |) UNIVERSITAT

Assemblersprache Maschinensprache
Iw $t2, 32(%$0) 0x8C0OA0020
add $s0, $sl1, $s2 (0x02328020
addr $t0, $s3, -12 (0x2268FFF4
sub $t0, $t3, $t5 (0x016D4022

Abgespeichertes Programm
Befehle)

4 Adresse

0040000C (016 D40 22
00400008 |22 6 8FF F 4
00400004 |023 28020
00400000 |8 CO A0 O 20« PC

Main Memory
, , , qystems +
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 53 a gplications

’ \ \
- / m bedded

Bedingte Verzweigungen (beq)

MIPS Assemblersprache

addi $s0, $0, 4 # $sO0 = 0 + 4 = 4

addr $s1, $0, 1 #P$s1 =0+1=1

sl $s1, $s1, 2 # $s1 = 1 << 2 =4

beq $s0, $sl1l, target # Verzweigung wird genommen
addir $s1, $si1, 1 # nicht ausgefihrt

sub $sl1, $sl1, $sO # nicht ausgefihrt
target: # Positionsmarkierung (label)

add $s1, $s1, $sO # $s1 = 4 + 4 = 8

Label sind Namen fur Stellen (Adressen) im Programm. Sie missen
anders als Mnemonics heil3en und haben einen Doppelpunkt am
Ende.

gystems +

Elpplications

Embedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 54

Nicht genommene Springe (bne)

TECHNISCHE

=\ UNIVERSITAT

DARMSTADT

MIPS Assemblersprache

addi $s0,
addi $si,
sl $s1,
bne $s0,
addi $s1,
sub $s1,

target:
add $s1,

$0, 4

$0, 1

$s1, 2

$s1, target
$s1, 1

$s1l, $sO

$s1, $sO

$s0 =
$s1 =
$sl1 =

O+ 4
O+ 1

1 << 2

Verzweigung
$s1 =4 + 1
5 -4

$s1 =

$s1

1

+

nicht genommen

1

)
1

4

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 55

gystems +

Jmbedded
Elpplications

Unbedingte Verzweigungen / Springen (J)

MIPS Assemblersprache

addi $s0, $0, 4 # $sO0 = 4

addr $s1, $0, 1 # $s1 = 1

3 target # Sprunge zu target
sra $sl1, $s1, 2 # nicht ausgefihrt
addr $s1, $s1, 1 # nicht ausgefiuhrt
sub $s1, $sl, $sO # nicht ausgefihrt
target:

add $sl1l, $s1, $sO # $s1 =1+ 4 =5

gystems +

Elpplications

Embedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 56

7, TECHNISCHE
//=\ UNIVERSITAT
7 DARMSTADT

Unbedingte Verzweigungen (Jr)

MIPS Assemblersprache

0x00002000 addi $s0, $0, 0x2010
0x00002004 jr $s0

0x00002008 addi $s1, $0, 1
0x0000200C sra $s1, $s1, 2
0x00002010 v $s3, 44($sl)

gystems +

Jmbedded
Elpplications

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 57

Konstrukte in Hochsprachen

TECHNISCHE

=t
=27

{5//\ UNIVERSITAT
DARMSTADT

» 1 F-Anweisungen

» 1 f/else-Anweisungen
= whi le-Schleifen

» for-Schleifen

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 58

gystems +

Embedded
Elpplications

¢ i TECHNISCHE
- UNIVERSITAT
| Anwelsung DARMSTADT
Hochsprache MIPS Assemblersprache
$s0 = F, $s1 = g, $s2 = h
$s3 = i1, $s4 = j
it (1 == }))
f =9+ h;
f=Ff-i;

ely tged ded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 59 gaﬁ:rgtﬁo-las

TECHNISCHE
UNIVERSITAT
DARMSTADT

If-Anweisung

Hochsprache MIPS Assemblersprache
$s0 = F, $s1 = g, $s2 = h
$s3 = i1, $s4 = j

if (i == j) bne $s3, $s4, L1
f =g + h; add $s0, $sl1, $s2
f=Ff_—i: L1: sub $s0, $sO, $s3

Beachte: Im Assembler wird auf entgegengesetzte Bedingung
gepruft (1 = j) als in der Hochsprache (1 == j}).

gystems +

Elpplications

Embedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 60

TECHNISCHE
UNIVERSITAT
DARMSTADT

If / Else -Anweisung

Hochsprache MIPS Assemblersprache
$s0 = F, $s1 = g, $s2 = h
$s3 = i1, $s4 = j

it (0 ==])
f=9g+nh

else
f=Ff-—-1;

enﬁ?edded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 61 gaﬁ:rgtﬁo-las

TECHNISCHE
UNIVERSITAT
DARMSTADT

If / ElIse-Anweisung

Hochsprache MIPS Assemblersprache
$s0 = F, $s1 = g, $s2 = h
$s3 = i1, $s4 = j

if (i == j) bne $s3, $s4, L1
f=g9g+ h; add $s0, $sl1, $s2
else 3 done
f=Ff-1i; L1: sub $sO, $s0, $s3
done:

gystems +

Elpplications

Embedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 62

TECHNISCHE
UNIVERSITAT
DARMSTADT

While-Schleife

Hochsprache MIPS Assemblersprache
// berechnet x = Id 128 # $sO0 = pow, $s1l = x

int pow = 1;

int x = 0;

while (pow != 128) {
pow = pow * 2;
X =X + 1;

}

gystems +

pplications

Embedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 63 a

While-Schleif 5 TECHNISCHE
- UNIVERSITAT
le-scnileire DARMSTADT
Hochsprache MIPS Assemblersprache
// berechnet x = Id 128 # $sO0 = pow, $s1l = x
int pow = 1; addi $s0, $0, 1
int x = 0; add $s1, $0, $0
addi $t0, $0, 128
while (pow = 128) { while: beq $s0, $tO, done
pow = pow * 2; sl $s0, $s0O, 1
X = X + 1; addi $s1, $s1, 1
}] while

done:

Auch hier: Assemblersprache prft auf entgegengesetzte
Bedingung (pow == 128) als Hochsprache (pow = 128).

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 64

gystems +

Jmbedded
Elpplications

A TECHNISCHE
UNIVERSITAT
DARMSTADT

For-Schleife

Allgemeiner Aufbau:

for (Initialisierung; Bedingung; Schleifenanweisung)
Schleifenrumpf

Initialisierung : wird einmal vor Ausflihrung der Schleife ausgefihrt
Bedingung : wird vor Beginn jedes Schleifendurchlaufs geprift
Schleifenanweisung : wird am Ende jedes Schleifendurchlaufs ausgefthrt
Schleifenrumpf : wird einmal ausgeftihrt, wenn Bedingung wahr ist

gystems +
Elpplications

m bedded

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 65

TECHNISCHE
UNIVERSITAT
DARMSTADT

For-Schleifen

Hochsprache MIPS Assemblersprache
// addiere Zahlen von O to 9 auf # $sO0 = 1, $s1l = sum

int sum = 0O;

int i;

for (1=0; 11=10; 1 = 1+1) {
sum = sum + 1;

}

gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 66

Jmbedded
Elpplications

For-Schleifen

TECHNISCHE

=\ UNIVERSITAT

DARMSTADT

Hochsprache

// addiere Zahlen von 0 to 9 auf
int sum = 0O;
int i;

for (1=0; 1 1= 10; 1 = 1+1) {
sum = sum + 1;

}

MIPS Assemblersprache

$sO = 1, $s1 = sum

addi $s1,
add $s0,
addi $t0,
for: beq $s0,
add $s1,
addi $s0,

] for
done:

$0, O

$0, $0
$0, 10
$t0, done
$s1, $sO
$s0, 1

Assemblersprache (I ==

Auch hier: Prufen auf entgegengesetzte Bedingung in
10) als in Hochsprache (1 = 10).

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 67

gystems +

Jmbedded
Elpplications

TECHNISCHE
UNIVERSITAT
DARMSTADT

Kleiner-Als Vergleiche

Hochsprache MIPS Assemblersprache

// addiere Zweierpotenzen # $sO = 1, $s1 = sum
// kleiner als 100

int sum = 0;

int i;

for (i=1; i1 < 101; i = i*2) {

sum = sum + i;

}

gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 68

Jmbedded
Elpplications

Kleiner-als Vergleiche

TECHNISCHE
UNIVERSITAT
DARMSTADT

Hochsprache

// addiere Zweierpotenzen
// kleiner als 100

int sum = 0;

int i;

for (i=1; 1 < 101; 1 = 1i*2) {
sum = sum + i;

}

MIPS Assemblersprache

$s0 = 1, $sl = sum
addi $s1, $0, O
addi $s0, $0, 1
addi $t0, $0, 101

loop: slt $tl, $sO0, $tO
beq $tl1, $0, done
add $s1, $s1, $sO
sl $s0, $s0, 1
] loop

done:

$t1 =1ifi <101.

WS 09/10 | Technische Grundlagen der Informatik

- Kapitel 6 - Prof. Andreas Koch | 69

e
S 4
a

mbedded
stems +
pplications

TECHNISCHE
UNIVERSITAT
DARMSTADT

Datenfelder (arrays)

= Nitzlich um auf eine gro3e Zahl von Daten gleichen Typs zuzugreifen
= Zugriff auf einzelne Elemente Uber Index
= Grof3e eine Arrays: Anzahl von Elementen im Array

ern?edded
jystems +
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 70 Y

Elpplications

TECHNISCHE
UNIVERSITAT
DARMSTADT

Verwendung von Arrays

= Array mit 5 Elementen

= Basisadresse, hier 0x12348000

= Adresse des ersten Array-Elements
» Index 0, geschrieben als array[0]

= Erster Schritt fir Zugriff auf Element: Lade Basisadresse des Arrays in Register

0x12340010 array[4]
0x1234800C array[3]
0x12348008 array[2]
0x12348004 array[1]
0x12348000 array|[0]

gystems +

Elpplications

Embedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 71

TECHNISCHE
UNIVERSITAT
DARMSTADT

Verwendung von Arrays

// Hochsprache
int array[5];
array[0] = array[0] * 2;
array[1l] = array[1] * 2;

MIPS Assemblersprache
Basisadresse von array = $s0

gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 72

Jmbedded
Elpplications

Verwendung von Arrays

TECHNISCHE
UNIVERSITAT
DARMSTADT

// Hochsprache

H* OH*

int array[5];
array[0] = array[0] * 2;
array[1l] = array[1] * 2;

MIPS Assemblersprache
Basisadresse von array = $s0

lui $s0, 0x1234 # lade 0x1234 in obere Halfte von $SO
ori $s0, $s0O, 0x8000 # lade 0x8000

Iw $t1, 0($s0) # $tl1 = array[0]

sl $t1, $t1, 1 # $tl = $t1 * 2

sw $tl, 0($s0) # array[0] = $t1

Iw $t1, 4($s0) # $tl = array[1]

sl $t1, $t1, 1 # $tl = $t1 * 2

sw $tl, 4($s0) # array[1] = $t1

in untere Halfte von $s0O

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 73

e
S 4
a

mbedded
stems +
pplications

Bearbeite Array in for-Schleife

TECHNISCHE
UNIVERSITAT
DARMSTADT

// Hochsprache
int array[1000];
int 1;

for (1=0; 1 < 1000; 1 =1 + 1)
array[i1] = array[i] * 8;

MIPS Assemblersprache
$s0 = Basisadresse von array, $sl = i

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 74

=
Yy
d

mbedded
stems +
pplications

TECHNISCHE
UNIVERSITAT
DARMSTADT

Bearbeite Array in for-Schleife

MIPS Assemblersprache

/[Hochsprache

int array[1000]; # $s0 = Basisadresse von Array, $sl = i
inti;
o o # Initialisierung
for (1=0: 1< 1:32;,['“‘:' ;’rrlgy[i] . lui $s0, Ox23B8 # $s0 = 0x23B80000
ori $s0, $s0, OxFO000 # $s0 = 0x23B8F000
addi $s1, $0, O #1 =0
addi $t2, $0, 1000 # $t2 = 1000
loop:
sit $t0, $s1, $t2 # 1 < 10007
beq $tO, $0, done # 1T not then done
sl $t0, $s1, 2 # $t0 = 1 * 4 (byte offset)
add $t0, $t0, $sO # address of array[i]
Iw $t1, 0($t0) # $tl = array[i]
sl $tl1, $t1, 3 # $tl = array[i] * 8
sw $tl1, 0($t0) # array[i] = array[i] * 8
addi $s1, $s1, 1 #a1 =0+ 1
J loop # repeat
done:
Smbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 75 g%ﬁﬁ:@tﬁoﬁs

.
Zeichendarstellung im ASCII-Code

TECHNISCHE
UNIVERSITAT
DARMSTADT

= American Standard Code for Information Interchange
= Definiert flr gangige Textzeichen einen 7b breiten Code
= Einfach, aber schon alter

» Heute Unicode: breitere Darstellung fiir alle Textzeichen

» Beispiel: “S” =

0x53, “a” = 0x61, “A”

= 0x41

» Klein- und Grol3buchstaben liegen auseinander um 0x20 (32).

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 76

Embedded
gystems +
Elpplications

Zuordnung von Zeichen zu Codes

TECHNISCHE
UNIVERSITAT
DARMSTADT

Char # Char # Char # Char # Char # Char

20 space |30 0 40 @ 50 F & ! 70 P
21 L 31 1 41 A 51 a a1 a 71 q
22 " 32 2 42 B 52 R a2 b 72 r
23 ir 33 3 43 C 53 3 &3 c 73 s
24 b 34 4 44 b 54 T a4 d 74 t
25 4 35 = 45 E 55 L a5 £ 75 u
26 & 36 = 46 F 56 v a6 f 76 ¥
27 ’ 37 ! 47 = 57 W 67 q 77 0w
28 (38 g 48 H 58 b a8 h 78 X
29) 39 9 49 I 59 ¥ a9 1 79 ¥
1A * 3A A J 5A z BA] Az
2B + 3B - 4B K 5B [&b k 7B |
2C . ic = 4C L 5C) aC 1 7C |
2D - b = 4L M |5D] sl m 7D |
2E 3E = 4E N 5E sE n TE o~
2F ! 3F 1 4F O 5F &F o

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 77

e
S 4
a

mbedded
stems +
pplications

TECHNISCHE
UNIVERSITAT
DARMSTADT

Prozedur- und Funktionsaufruf

Definitionen
= Aufrufer: Ursprung des Prozeduraufrufs (hier main)

= Aufgerufener: aufgerufene Prozedur (hier sum)

Hochsprache

void main()

{
int y;
y = sum (42, 7);

, .

int sum (int a, int b)
{

return (a + b);
}

gystems +

Elpplications

Embedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 78

TECHNISCHE
UNIVERSITAT
DARMSTADT

Prozedur- und Funktionsaufruf

Aufrufkonventionen:

= Aufrufer:
= Ubergibt Argumente (aktuelle Parameter) an Aufgerufenen
= Springt Aufgerufenen an

= Aufgerufener:
» FiUhrt Prozedur/Funktion aus
» Gibt Ergebnis (Rickgabewert) an Aufrufer zurtick (fir Funktion)
= Springt hinter Aufrufstelle zuriick
» Darf keine Register oder Speicherstellen Gberschreiben, die im Aufrufer genutzt werden

Konventionen fur MIPS:

» Prozeduraufruf: “jump and link (yal)“
= RUcksprung: “jump register (jr)”

= Register fir Argumente: $a0 - $a3
= Register fiir Ergebnis: $v0

gystems +

Elpplications

Embedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 79

A TECHNISCHE
UNIVERSITAT
DARMSTADT

Prozedur- und Funktionsaufruf

Hochsprache MIPS Assemblersprache

int main() {
0x00400200 main: jal simple

simple O;

a=>b+ c; 0x00400204 add $s0, $sl1l, $s2
+
void simple O { 0x00401020 simple: jr $ra

return;
s

void bedeutet, dass simple keinen Ruckgabewert hat.

- Also eine Prozedur und keine Funktion ist

gystems +
Elpplications

mbedded

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 80

TECHNISCHE
UNIVERSITAT
DARMSTADT

Prozedur- und Funktionsaufruf

Hochsprache MIPS Assemblersprache

int main() {

simple(Q); 0x00400200 main: jal simple
a=D>b+ c; 0x00400204 add $s0, $s1, $s2
}
void simple() { 0x00401020 simple: jr $ra
return;
}
jal: springt zu simple

speichert PC+4 im Spezialregister $ra “return address register”
Hier: $ra = 0x00400204 nach Ausfiihrung von jal

jr $ra: springt zur Adresse in $ra, hier also 0x00400204.

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 81

Jmbedded
gystems +
Elpplications

A TECHNISCHE
UNIVERSITAT
DARMSTADT

Aufrufargumente und Ruckgabewert

MIPS Konventionen:
= Argumentwerte (aktuelle Parameter): $a0 - $a3
= Riickgabewert (Funktionswert, Ergebnis): $vO

ern?edded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 82 qystems +

Elpplications

TECHNISCHE
UNIVERSITAT
DARMSTADT

Aufrufargumente und Ruckgabewert

Hochsprache

int main()

{
int y;

y = diffofsums (2, 3, 4, 5); // 4 Argumente, aktuelle Parameter

}

int diffofsums (int ¥, int g, Iint h, Iint 1) // 4 formale Parameter
{

int result;
result = (F +g) - (h + 1);
return result; // Rickgabewert

gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 83 a pplications

m bedded

>

e
©

Aufrufargumente und Ruckgabewert g

TECHNISCHE
UNIVERSITAT
DARMSTADT

MIPS Assemblersprache
$s0 =

addi
addi
addi
addi
jal
add

$sO0 = Ruckgabewert

y

$a0, $0,
$al, $0,
$a2, $0,
$a3, $0,
diffofsums

$s0, $vO, $0

abrwiN

diffofsums:
add $t0, $a0, %al
add $tl1, $a2, $a3
sub $s0, $t0, $t1
add $v0, $s0, $0

Jjr

$ra

HHHFHHH

HHHFHH

Argument 0 = 2
Argument 1 = 3
Argument 2 = 4
Argument 3 = 5
Prozeduraufruf

y = Ruckgabewert

$t0
$tl
result = (F+g) - (h + 1)
Lege Rickgabewert in $vO ab
Ricksprung zum Aufrufer

f+g
h + 1

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 84

gystems +

Embedded
Elpplications

7, TECHNISCHE
//=\ UNIVERSITAT
7 DARMSTADT

Aufrufargumente und Ruckgabewert

MIPS Assemblersprache

$s0 = result

diffofsums:
add $t0, $a0, $al # $t0 = f + ¢
add $t1, $a2, $a3 # $t1 h + 1
sub $s0, $t0, $t1 # result = (F + g) - (h + 1)
add $v0, $sO, $0 # Lege Rickgabewert in $v0 ab
jr Sra # RUcksprung zum Aufrufer

o diffofsums Uberschreibt drei Register: $t0, $t1 und $s0
edi1ffofsums kann bendtigte Register temporar auf Stack sichern

gystems +

Jmbedded
Elpplications

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 85

] TECHNISCHE
- UNIVERSITAT
Stack (auch Stapel- oder Kellerspeicher) eI
= Speicher flr temporares Zwischenspeichern
von Werte Cl W 2
W\ mr—
i g L
X M —
= Agiert wie ein Stapel (Beispiel: Teller) _ e
. A) ——
= Zuletzt aufgelegter Teller wird zuerst Py Y VWS
heruntergenommen £ S——
. . -.E""f—""- i — 21
= “last in, first out” (LIFO) ”, N
jp' i i, S
S N\
-) N _,.-".5_-""1 "‘.Ei_‘__‘_'_--_ _,__."_ ="
» Dehnt sich aus: Belegt mehr Speicher, wenn R iy
mehr Daten unterzubringen sind \\)
S
E’:lhﬁtix
= Zieht sich zusammen: Belegt weniger 3 -._“i_-:
Speicher, wenn zwischengespeicherte Daten P S \Y
nicht mehr gebraucht werden & R

gystems +

Elpplications

Embedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 86

Stack

» Wachst bei MIPS nach unten (von hohen zu niedrigeren Speicheradressen)
= Ubliche Realisierung (deshalb auch Kellerspeicher genannt)

= Stapelzeiger (“stack pointer”): $sp

= zeigt auf zuletzt auf dem Stack abgelegtes Datenelement

Adresse

7FFFFFFC
7FFFFFF8
7FFFFFF4
7FFFFFFO

Daten

12345678

<«—3%sp

Adresse

7FFFFFFC
7FFFFFF8
7FFFFFF4
7FFFFFFO

Daten

12345678

AABBCCDD

11223344

<«—3sp

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 87

gystems +

Jmbedded
Elpplications

A TECHNISCHE
UNIVERSITAT
DARMSTADT

Verwendung des Stacks in Prozeduren

= Aufgerufene Prozeduren dirfen keine unbeabsichtigten Nebenwirkungen
(“Seiteneffekte”) haben

= Problem: difFfofsums Uberschreibt die drei Register $t0, $t1, $s0

MIPS Assemblersprache

$sO = result

diffofsums:
add $tO, $a0, $al # $t0 = F + ¢
add $t1, $a2, $a3 # $t1 = h + i
sub $s0, $t0, $t1 # result = (F + g) - (h + 1)
add $v0O, $s0, $0 # Lege Rickgabewert in $v0 ab
jr %$ra # RlUcksprung zum Aufrufer

gystems +

Elpplications

gdmbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 88

Register auf Stack zwischenspeichern A\ UNiversITAT
) DARMSTADT

$sO0 = result
diffofsums:

addr $sp, $sp, -12 # 3*4 Bytes auf Stack anfordern
um dreil 32b Register zu sichern
sw $s0, 8(%$sp) # speichere $s0 auf Stack
sw $t0, 4($sp) # speichere $t0 auf Stack
sw $tl, 0(S$sp) # speichere $tl1 auf Stack
add $tO, $a0, $al # $t0 = f + ¢
add $tl, $a2, $a3 # $t1l = h + 1
sub $s0, $t0, $t1 # result = (F + g) - (h + 1)
add $v0, $s0, $0 # Lege Riuckgabewert in $v0 ab
Iw $t1, 0($sp) # stelle $tl1 wieder vom Stack her
Iw $t0, 4($sp) # stelle $t0 wieder vom Stack her
Iw $s0, 8($sp) # stelle $sO wieder vom Stack her
addi $sp, $sp, 12 # Platz auf Stack wird nicht mehr bendtigt,
wieder freigeben
jr $ra # Rucksprung zum Aufrufer

gystems +

Elpplications

Embedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 89

. . - 2 TECHNISCHE
Veranderung des Stacks wahrend diffofsums /=) UNIVERSITAT
DARMSTADT
Adresse Daten Adresse Daten Adresse Daten
FC ? <«<—$sp FC ? FC ? <« $sp
F8 cF8 | $s0 F8
F4 5| Fa $t0 F4
FO F0 | $t1 |<—$sp FO
oo) | T : | T |
. . | .o . | o |
I I I I I I
(a) (b) (c)

Smbedded
gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 90 a pplications

—

(G)~\ UNIVERSITAT

b
i
]

Sicherungskonventionen fur Register

$s0 - $s7 $t0 - $t9
$ra $a0 - %a3
$sp $v0 - $vi
Stack oberhalb von $sp Stack unterhalb von $sp

gystems +
Elpplications

Jmbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 91

A TECHNISCHE
UNIVERSITAT
DARMSTADT

Mehrfache Prozeduraufrufe: Sichern von $ra

procl:
addi $sp, $sp, -4 # Platz auf Stack anlegen
sw $ra, 0($sp) # sichere $ra auf Stack
jal proc2

Ilw $ra, 0($sp) # stelle $ra vom Stack wieder her
addi $sp, $sp, 4 # Stapelspeicher wieder freigeben
jr $ra # Ruckkehr zum Aufrufer von procl

gystems +

Elpplications

Embedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 92

A TECHNISCHE
UNIVERSITAT
DARMSTADT

Erhalten von Registern mittels Stack

$sO = result
diffofsums:

addr $sp, $sp, -4 # Platz auf Stack fur 4 Bytes anlegen
reicht zum Sichern eines Registers
sw $s0, 0($sp) # sichere $s0 auf Stack
$t0 und $tl brauchen nicht erhalten zu werden!
add $t0, $a0, $al # $t0 = f + ¢
add $tl1, $a2, $a3 # $tl = h + 1
sub $s0, $t0, $t1 # result = (F+g) - (h + 1)
add $v0, $s0, $0 # Lege Riuckgabewert in $vO ab
Iw $s0, 0($sp) # stelle $sO vom Stack wieder her
addi $sp, $sp, 4 # Gebe nicht mehr benétigten Speicher auf Stack frei
jr $ra # Rucksprung zum Aufrufer

gystems +

Elpplications

Embedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 93

TECHNISCHE
UNIVERSITAT
DARMSTADT

Rekursive Prozeduraufrufe

Hochsprache

int fakultaet (int n) {

iIf (n<=1)
return 1;
else

return (n * fakultaet (n-1));

gystems +

pplications

Embedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 94 a

TECHNISCHE
UNIVERSITAT
DARMSTADT

Rekursive Prozeduraufrufe

MIPS Assemblersprache

gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 95 a pplications

mbedded

Rekursive Prozeduraufrufe

7

-,

7

9

TECHNISCHE
UNIVERSITAT
DARMSTADT

MIPS Assemblersprache

0x90 fakultaet: addi

0x94
0x98
0x9C
0xAO
OxA4
OxA8
OxAC
OxBO
OxB4
OxB8
OxBC
0xCO
0xC4
OxC8
OxCC

else:

sSw
Sw
addi
sit
beq
addi
addi
jr
addi
jal
Iw
Iw
addi
mul

jr

$sp, $sp, -8
$a0, 4($sp)
$ra, 0($sp)
$t0, $0, 2
$t0, $a0, $tO
$t0, $0, else
$v0, $0, 1
$sp, $sp, 8
$ra

$a0, $al0, -1
fakul taet
$ra, 0($sp)
$a0, 4($sp)
$sp, $sp, 8
$v0, $al, $VvO
$ra

H # HF

HFHEHFHFHFFHFHFHHFHH

Platz fir zweil Register
sichere %$a0
sichere %$ra

a<=17

nein: weiter beir else
ja: gebe 1 zurick

Platz wieder freigeben
Rucksprung

n=n-1

rekursiver Aufruf
wiederherstellen von $ra
wiederherstellen von $a0
Platz wieder freigeben

n * fakultaet(n-1)
Ricksprung

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 96

gystems +

Embedded
Elpplications

A TECHNISCHE
UNIVERSITAT
DARMSTADT

Veranderung des Stacks bei rekursivem Aufruf

Adresse Daten Adresse Daten Adresse Daten
FC <«—$sp FC FC <«—3$sp $v0= 6
F8 F8 | $a0 (0x3) F8 | $a0 (0x3)
F4 F4 | sra F4 | s «—3$sp 203,
FO FO | $a0 (0x2) FO | $a0 (0x2)
EC EC| $ra (0xBC) EC| s$ra (0xBC) o d
ES8 E8 | $a0 (0x1) E8 | $a0 (0x1)
E4 E4 | $ra (0xBC)| «<—S$sp E4 | $ra (0xBO) IR
EO EO EO
DC DC DC

gystems +

Embedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 97

Elpplications

TECHNISCHE
UNIVERSITAT
DARMSTADT

:5(66\-)

i
B

Zusammenfassung: Prozeduraufruf

= Aufrufer
» Lege Aufrufparameter (aktuelle Parameter) in $a0-%$a3 ab
= Sichere zusatzlich benotigte Register auf Stack ($ra, manchmal auch $t0-t9)
= Entsprechend Konvention tber Erhaltung von Registern
» jal aufgerufener
» Stelle gesicherte Register wieder her
» Hole evtl. Rickgabewert aus $vO (bei Funktionen)
= Aufgerufener

= Sichere zu erhaltende verwendete Register auf Stack (Ublicherweise $s0-$s7)
= Fihre Berechnungen der Prozedur aus
= Lege Ruckgabewert in ab $v0 (bei Funktionen)

» Stelle gesicherte Register wieder her
" jr $ra

gystems +

Elpplications

gdmbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 98

Adressierungsarten

Wo kommen Operanden fur Befehle her?

= Aus einem Register
= Direktwert aus Instruktion

= Relativ zu einer Basisadresse
» Sonderfall: Relativ zum Programmzahler

= Pseudodirekt

gystems +

Jmbedded
Elpplications

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 99

&7 TECHNISCHE
(5//\ UNIVERSITAT
%' DARMSTADT

Adressierungsarten

Aus Register (register operands)
= Beispiel: add $sO0, $t2, $t3
= Beispiel: sub $t8, $s1, $0

Direktwert aus Instruktion (immediate)
= 16b Direktwert als Operand verwenden

= Beispiel: addi $s4, $t5, -73

= Beispiel:: ori $t3, $t7, OxFF

Smbedded
gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 100 a pplications

: @ TECHNISCHE
AdreSS|erungsarten (G=) UNIVERSITAT
DARMSTADT
Relativ zu einer Basisadresse
= Adresse eines Operanden im Speicher ist:
Basisadresse + Vorzeichenerweirterter Direktwert
= Beispiel: lw $s4, 72($0)
= Adresse =$0 + 72
= Beispiel: sw $t2, -25($tl)
» Adresse = $tl1 - 25
Bmbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 101 g%ﬁﬁ:@tﬁoﬁs

A TECHNISCHE
UNIVERSITAT
DARMSTADT

Adressierungsarten

Relativ zur nachsten Adresse im Programmzahler

0x10 beq $t0, $0, else
0x14 addi $v0, $0, 1
0x18 addi $sp, $sp, 1
0x1C jr $ra
0x20 else: addi $a0, $al0, -1
Ox24 jal fakultaet
Assemblersprache Bitfelder in Instruktion
op rs rt imm
beqg $t0, $0, else 4 8 0 3
(beq $t0, $0, 3) 6 bits 5 bits 5 bits 5bits 5 bits 6 bits

gystems +

Embedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 102

Elpplications

TECHNISCHE
UNIVERSITAT
DARMSTADT

Adressierungsarten

Pseudodirekte Operanden
Auffullen von entfallenen Bits (mit Nullen und PC+4[31:28])

0x0040005C jal sum
Ox004000A0 sum: add $v0, $al, %al

32b Sprungzieladresse 0000 0000 0100 0000 0000 0000 1010 0000 (0x004000A0)

26b Feld in J-Instruktion 0000 0100 0000 0000 0000 1010 0000 (0x0100028)
0 1 0 0 0 2 8

Bitfelder in Instruktion Maschinencode
op imm op addr
3 0x0100028 00001100 0001 0000 0000 0000 0010 1000/ (0x0C100028)
6 hits 26 bits 6 hits 26 bits

Elpplications

el tged ded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 103 qystems +

A TECHNISCHE
UNIVERSITAT
DARMSTADT

Compilieren und Ausfihren einer Anwendung

Hochsprache

v

[Compiler J
\

Assemblersprache

v

[Assembler j

v

Objektdatei

Objektdateien
Bibliotheksdateien

[Linker

v

Ausfuhrbare Datel

v

[Loader j

v

, . , gystems +
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 104 Y

Speicher Smbedded
Elpplications

TECHNISCHE
UNIVERSITAT
DARMSTADT

Grace Hopper, 1906 - 1992

= Promovierte zum Dr. der Mathematik in Yale
» Entwickelte den ersten Compiler

» Half bei der Entwicklung von COBOL

» Hochdekorierte Marineoffizierin

gystems +

Elpplications

Embedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 105

A TECHNISCHE
UNIVERSITAT
DARMSTADT

Was muss im Speicher abgelegt werden?

» |nstruktionen (historisch auch genannt Text)

= Daten
= Globale und statische: angelegt vor Beginn der Programmausftihrung
» Dynamisch: wahrend der Programmausfiihrung angelegt

» Speicherobergrenze bei MIPS (-32)?
= Maximal 232 = 4 Gigabytes (4 GB)
= Von Adresse 0x00000000 bis OXFFFFFFFF

gystems +

Elpplications

gdmbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 106

TECHNISCHE
UNIVERSITAT
DARMSTADT

MIPS Speicherorganisation (memory map)

Adresse Segment
OXFFFFFFFC
Reserviert
0x80000000)
OX7FFFFFFC Stack

Dynamische Daten

0x10010000 Heap
0x1000FFFC
Statische Daten
0x10000000
OXOFFFFFFC
Text
0x00400000
OX003FFFFC
Reserviert

, . , gystems +
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 107 Y

0x00000000) gmbedded
Elpplications

TECHNISCHE
UNIVERSITAT
DARMSTADT

Beispielprogramm in “C”

int ¥, g, y; // globale Variablen

int main(void)

{
f=2;
g = 3;
y = sum(f, 9);
return y;
¥

int sum(int a, Int b) {
return (a + b);

}

gystems +

pplications

Embedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 108 a

Beispielprogramm: MIPS Assemblersprache UNIVERSITAT
DARMSTADT
int ¥, g, y; // globale Variablen
.data
f: .space 4 # Direktiven fur Assembler
g: .space 4 # jeweills ein Wort, initialisiert
y: .space 4 # auf den Wert O
= -text

int main(void) i
{ main:

addi $sp, $sp, -4 # Stack Frame anlegen
sw $ra, 0($sp) # sichere $ra
addi $a0, $0, 2 # $a0 = 2
f=2; sw $a0, f #Ff=2
g = 3; addi $al, $0, 3 # $al = 3
sw $al, g # g9 =3
y = sum(f, 9); jal sum # Aufruf von sum
return y; sw $v0, y #y = sumQ)
} Iw $ra, 0($sp) # stelle $ra wieder her
addi $sp, $sp, 4 # stelle $sp wieder her
int sum(int a, int b) { jr $ra # Ruckkehr ins Betriebssystem
return (a + b); sum-
add $v0, $a0, $al # $v0 = a + b
b jr $ra # return

gystems +

pplications

gdmbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 109 a

TECHNISCHE
UNIVERSITAT
DARMSTADT

Beispielprogramm: Symboltabelle

gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 110

Jmbedded
Elpplications

Beispielprogramm: Symboltabelle

“.v”; TECHNISCHE

UNIVERSITAT

%9/ DARMSTADT

Li 0x10000000
g 0x10000004
y 0x10000008
main 0x00400000
sum 0x0040002C

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 111

gystems +

Jmbedded
Elpplications

]] Ny] $773, TECHNISCHE
Beispielprogramm: Ausfihrbare Datel /F) UNIVERSITAT
DARMSTADT
Dateikopf Text Grole Daten Grol3e
0x34 (52 bytes) 0xC (12 bytes)
Textsegment Adresse Instruktion
0x00400000 0x23BDFFFC addi $sp, $sp, -4
0x00400004 OXAFBF0000 sw $ra, 0 ($sp)
0x00400008 0x20040002 addi $a0, $0, 2
0x0040000C O0xAF848000 sw $a0, 0x8000 ($gp)
0x00400010 0x20050003 addi $al, $0, 3
0x00400014 OXAF858004 sw $al, 0x8004 ($gp)
0x00400018 0x0C10000B jal 0x0040002C
0x0040001C OXAF828008 sw $v0, 0x8008 ($gp)
0x00400020 0x8FBF0000 lw $ra, 0 ($sp)
0x00400024 0x23BD0004 addi $sp, $sp, -4
0x00400028 0x03E00008 jr $ra
0x0040002C 0x00851020 add $vO0, $a0, $al
0x00400030 0x03E0008 jr $ra
Datensegment Adresse Datum
0x10000000 0 f
0x10000004 0 g
0x10000008 0 y
ern?edded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 112 qystems +

Elpplications

TECHNISCHE
UNIVERSITAT
DARMSTADT

Beispielprogramm im Speicher

Adresse Speicher

Reserviert

OX7FFFFFFC Stack <«— $sp = OX7FFFFFFC

0x10010000 Heap

<— $gp = 010008000

0x10000000 f

0x03E00008
0x00851020

0x03E00008
0x23BD0004
0x8FBF0000
0xAF828008
0x0C10000B
0xAF858004
0x20050003

O0xAF848000
0x20040002

OxAFBF0000

0x00400000 0x23BDFFFC <«— PC = 0x00400000

Reserviert Smbedded

, . , gystems +
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 113 a gplications

TECHNISCHE
UNIVERSITAT
DARMSTADT

Dies und Das

» Pseudobefehle

» Ausnahmebehandlung (exceptions)

= Befehle fiir vorzeichenbehaftete und vorzeichenlose Zahlen
» Gleitkommabefehle

gystems +

Elpplications

gdmbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 114

Beispiele flur Pseudobefehle

11 $s0, Ox1234AA77

lui $s0, 0x1234
ori $s0, OxAA77

mul $s0, $sl1l, $s2

mult $s1, $s2
mflo $sO

clear $tO

add $t0, $0, $0

move $sl1l, $s2

add $s2, $s1, $0

nop

sil $0, $0, O

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 115

Jmbedded
gystems +
Elpplications

Ausnahmebehandlung (exceptions)

TECHNISCHE
UNIVERSITAT
DARMSTADT

=
e

= Abweichen von der normalen Ausfiihrungsreihenfolge von Befehlen
= Beim Auftreten aul3ergewohnlicher Umstande (exception)

= Automatischer Aufruf spezieller Prozedur: Ausnahmebehandlung (exception handler)

= Auslosung der Ausnahmebehandlung z.B. durch

» Hardware, dann genannt Interrupt (z.B. Tippen einer Taste auf Tastatur)

» Software, dann genannt Trap (z.B. Versuch der Ausfuihrung einer unbekannten Instruktion)

= Beim Auftreten der Ausnahme
= Grund der Ausnahme wird gespeichert

= Sprung zur Ausnahmebehandlung auf Adresse 0x80000180
= Dann Wiederaufnahme der normalen Programmausfihrung

gystems +

Smbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 116 a pplications

Spezialregister fur Ausnahmebehandlung

= Aul3erhalb des regularen Registerfeldes
= Cause

= Enthalt den Grund fur Ausnahme
= EPC (Exception PC)

» Enthalt den regularen PC an dem die Aufnahme auftrat

» EPC und Cause: Nicht Bestandteil des “eigentlichen” MIPS-Prozessors

= Ausgelagert in Coprozessor (unterstitzt Hauptprozessor)
= Genauer: Coprozessor O

= Datenaustausch mit Coprozessor (hier nur lesen)

= “Move from Coprocessor 0”
= mfcO $t0, EPC

= LAdt Inhalt des Spezialregisters EPC in regulares Register $t0

gystems +

» Analog auch fur Cause mbedded
Elpplications

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 117

5% TECHNISCHE

Ausloser fur Ausnahmen E%; UNIVERSITAT

Hardware Interrupt 0x00000000
Systemaufruf 0x00000020
Breakpoint / Division durch O 0x00000024
Unbekannte Instruktion 0x00000028
Arithmetischer Uberlauf 0x00000030

gystems +

Jmbedded
Elpplications

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 118

Ausnahmen

TECHNISCHE
UNIVERSITAT
DARMSTADT

=
=

» Prozessor speichert Grund und Auftritts-PC in Cause und EPC
» Prozessor springt Ausnahmebehandlung an (0x80000180)

» Ausnahmebehandlung:

» Speichere Register auf Stack
» Lese Cause Spezialregister

mfcO $t0, Cause
= Bearbeite Ausnahme

» Stelle alle Register wieder her

» Springe zurlck ins eigentlich laufende Programm
mfcO $k0, EPC

Jjr $kO

gystems +

gdmbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 119 a pplications

A TECHNISCHE
UNIVERSITAT
DARMSTADT

Vorzeichenbehaftete und —lose Befehle

= Addition und Subtraktion
= Multiplikation und Division
= Set-less-than

gystems +
Elpplications

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 120

m bedded

A TECHNISCHE
UNIVERSITAT
DARMSTADT

Addition und Subtraktion

= \Vorzeichenbehaftet: add, addi, sub

» Gleiche Operation wie vorzeichenlose Versionen
= Aber: Prozessor l6st Ausnahme bei arithmetischem Uberlauf aus

= \Vorzeichenlos: addu, addiu, subu

= Priift nicht auf Uberlauf
= Hinweis: addiu vorzeichenerweitert den Direktwert

gystems +

Elpplications

Embedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 121

A TECHNISCHE
UNIVERSITAT
DARMSTADT

Multiplikation und Division

= \Vorzeichenbehaftet: mult, div

= \Vorzeichenlos: multu, divu

gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 122 a pplications

mbedded

A TECHNISCHE
UNIVERSITAT
DARMSTADT

Set Less Than

= \Vorzeichenbehaftet: slt, slti

= \Vorzeichenlos: sltu, sltiu

= Hinweis: sltiu vorzeichenerweitert den Direktwert vor dem Vergleich mit dem
Register

gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 123 a pplications

mbedded

s TECHNISCHE
J=\ UNIVERSITAT
DARMSTADT

Laden von 8b und 16b breiten Daten

= \/orzeichenbehaftet:

» Vorzeichenerweitere schmale Daten auf volle 32b Registerbreite
» Load halfword: Ih
» Load byte: Ib

= \/orzeichenlos:

» Fulle schmale Daten mit Nullen auf volle 32b Registerbreite auf
» Load halfword unsigned: Thu
» Load byte: Ibu

Smbedded
gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 124 a pplications

Gleitkommabefehle

» Nicht Bestandteil des “eigentlichen” MIPS-Prozessors
» Gleitkommakoprozessor (Coprocessor 1)

= 32 32-bit Gleitkommaregister ($f0 - $£31)
= Single precision

= Werte mit doppelter Genauigkeit bendétigen je zwei aufeinanderfolgende Register
= Z.B. $F0 und $f1, $F2 und $F3, etc.
= Double precision-Register sind also: $f0, $f2, $f4, etc.

gystems +

Embedded
Elpplications

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 125

Gleitkommabefehle

TECHNISCHE

=\ UNIVERSITAT

DARMSTADT

$fv0 - $fvl 0,2 Riickgabewerte
$ft0 - $ft3 4, 6, 8, 10 Temporare Variablen
$fa0 - $fal 12, 14 Prozedurargumente
$ft4 - $ft8 16, 18 Temporare Variablen
$fsO0 - $fs5 20, 22, 24, 26, 28, 30 Erhaltene Variablen

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 126

gystems +

Jmbedded
Elpplications

Format far F-Typ Instruktionen

s TECHNISCHE

UNIVERSITAT
DARMSTADT

= Opcode = 17 (010001,)

» Single-precision:

= cop = 16 (010000,)
» add.s, sub.s, div.s, neg.s, abs.s, etc.

» Double-precision:

= cop =17 (010001,)
» add.d, sub.d, div.d, neg.d, abs.d, etc.

» Drei Registeroperanden:

» fs, Tt: source operands
» fd: destination operands

F-Typ

op

cop

ft

fs

fd

funct

6 bits

5 bits

5 bits

5 bits

5 bits

6 bits

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 127

gystems +

Embedded
Elpplications

TECHNISCHE

Weitere Gleitkommabefehle) UNIVERSITAT

=7\
16

DARMSTADT

» Setzt boole’'sches Spezialregister bei Vergleichen : fpcond
= Gleichheit: c.seq.s, c.seq.d
= Kleiner-als: c.1t.s, c.lt.d
» Kleiner-als-oder-gleich: c.le.s, c.le.d
= Beispiel: c.lt.s $fsl, $fs2

» Bedingte Verzweigung abhéngig von Spezialregister
» bclf: springt falls fpcond = FALSE
» pclt: springt falls fpcond = TRUE
= Beispiel: bc1f toosmall

» L oads und Stores: jeweils Single precision
= fwcl: lwcl $ftl, 42($sl)
= swcl: swcl $fs2, 17($sp)
= Double precision braucht je zwei Anweisungen

gystems +

Elpplications

gdmbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 128

TECHNISCHE
UNIVERSITAT
DARMSTADT

Ausblick

= Bisher Architektur
» Programmierersicht

= Nun Mikroarchitektur
» Aufbau der zugrundeliegenden Hardware

gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 129 a pplications

mbedded

	Technische Grundlagen�der Informatik – Kapitel 6
	Kapitel 6: Themen
	Einleitung
	Assemblersprache
	John Hennessy
	Entwurfsprinzipien für Architekturen
	Befehle: Addition
	Befehl: Subtraktion
	Entwurfsprinzip 1
	Befehle: Komplexere Abläufe
	Entwurfsprinzip 2
	Operanden
	Operanden: Register
	Entwurfsprinzip 3
	MIPS Registerfeld
	Operanden: Register
	Befehle mit Registerangaben
	Operanden: Speicher
	Wort-Adressierung von Daten im Speicher
	Lesen aus wort-adressiertem Speicher
	Schreiben in wort-adressiertem Speicher
	Byte-addressierbarer Speicher
	Lesen aus byte-addressiertem Speicher
	Schreiben in byte-addressiertem Speicher
	Speicherorganisation: Big-Endian und Little-Endian
	Speicherorganisation: Big-Endian und Little-Endian
	Beispiel: Big-Endian und Little-Endian
	Beispiel: Big-Endian und Little-Endian
	Entwurfsprinzip 4
	Operanden: Konstante Werte in Befehl�(immediates)
	Maschinensprache
	Befehlsformat R-Typ
	Beispiele für Befehle vom R-Typ
	Befehlsformat I-Typ
	Beispiel für Befehle vom I-Typ
	Befehlsformat J-Typ
	Übersicht über Befehlsformate
	Flexibilität durch gespeicherte Programme
	Im Speicher abgelegtes Programm
	Maschinensprache verstehen
	Programmierung
	Ada Lovelace, 1815 - 1852
	Logische Befehle
	Beispiele: Logische Befehle
	Befehle: Logische Befehle
	Beispiele: Logische Befehle
	Beispiel: Logische Befehle
	Schiebebefehle
	Schiebebefehle
	Handhabung von Konstanten
	Multiplikation und Division
	Verzweigungen und Sprünge
	Wiederholung: Programm im Speicher
	Bedingte Verzweigungen (beq)
	Nicht genommene Sprünge (bne)
	Unbedingte Verzweigungen / Springen (j)
	Unbedingte Verzweigungen (jr)
	Konstrukte in Hochsprachen
	If-Anweisung
	If-Anweisung
	If / Else -Anweisung
	If / Else-Anweisung
	While-Schleife
	While-Schleife
	For-Schleife
	For-Schleifen
	For-Schleifen
	Kleiner-Als Vergleiche
	Kleiner-als Vergleiche
	Datenfelder (arrays)
	Verwendung von Arrays
	Verwendung von Arrays
	Verwendung von Arrays
	Bearbeite Array in for-Schleife
	Bearbeite Array in for-Schleife
	Zeichendarstellung im ASCII-Code
	Zuordnung von Zeichen zu Codes
	Prozedur- und Funktionsaufruf
	Prozedur- und Funktionsaufruf
	Prozedur- und Funktionsaufruf
	Prozedur- und Funktionsaufruf
	Aufrufargumente und Rückgabewert
	Aufrufargumente und Rückgabewert
	Aufrufargumente und Rückgabewert
	Aufrufargumente und Rückgabewert
	Stack (auch Stapel- oder Kellerspeicher)
	Stack
	Verwendung des Stacks in Prozeduren
	Register auf Stack zwischenspeichern
	Veränderung des Stacks während diffofsums
	Sicherungskonventionen für Register
	Mehrfache Prozeduraufrufe: Sichern von $ra
	Erhalten von Registern mittels Stack
	Rekursive Prozeduraufrufe
	Rekursive Prozeduraufrufe
	Rekursive Prozeduraufrufe
	Veränderung des Stacks bei rekursivem Aufruf
	Zusammenfassung: Prozeduraufruf
	Adressierungsarten
	Adressierungsarten
	Adressierungsarten
	Adressierungsarten
	Adressierungsarten
	Compilieren und Ausführen einer Anwendung
	Grace Hopper, 1906 - 1992
	Was muss im Speicher abgelegt werden?
	MIPS Speicherorganisation (memory map)
	Beispielprogramm in “C”
	Beispielprogramm: MIPS Assemblersprache
	Beispielprogramm: Symboltabelle
	Beispielprogramm: Symboltabelle
	Beispielprogramm: Ausführbare Datei
	Beispielprogramm im Speicher
	Dies und Das
	Beispiele für Pseudobefehle
	Ausnahmebehandlung (exceptions)
	Spezialregister für Ausnahmebehandlung
	Auslöser für Ausnahmen
	Ausnahmen
	Vorzeichenbehaftete und –lose Befehle
	Addition und Subtraktion
	Multiplikation und Division
	Set Less Than
	Laden von 8b und 16b breiten Daten
	Gleitkommabefehle
	Gleitkommabefehle
	Format für F-Typ Instruktionen
	Weitere Gleitkommabefehle
	Ausblick

