
Technische Grundlagen
der Informatik – Kapitel 6
Prof. Dr. Andreas Koch
Fachbereich Informatik
TU Darmstadt

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 2

Kapitel 6: Themen

Einleitung
Assembler-Sprache
Maschinensprache
Programmierung
Adressierungsmodi
Compilieren, Assemblieren und Linken
Dies und Das

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 3

Einleitung

Nun Sprung auf höhere Abstraktionsebene
Erstmal …

Architektur: Programmierersicht auf
Computer

Definiert durch Instruktionen (Operationen) und
Operanden

Mikroarchitektur: Hardware-
Implementierung der Architektur

Kommt im Detail in Kapitel 7

Physik

Bauelemente

Analog-
schaltungen

Digital-
schaltungen

Logik

Mikro-
architektur

Architektur

Betriebs-
systeme

Anwendungs-
Software

Elektronen

Transistoren
Dioden

Verstärker
Filter

AND Gatter
NOT Gatter

Addierer
Speicher

Datenpfade
Steuerwerke

Instruktionen
Register

Gerätetreiber

Programme

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 4

Assemblersprache

Programmieren in Sprache des Computers
Instruktionen / Befehle: Einzelne Worte
Befehlssatz: Gesamtes Vokabular

Befehle geben Art der Operation und ihre Operanden an

Zwei Darstellungen
Assemblersprache: für Menschen lesbare Schreibweise für Instruktionen
Maschinensprache: maschinenlesbares Format (1’en und 0’en)

MIPS Architektur:
Von John Hennessy und Kollegen in Stanford in den 1980ern entwickelt
In vielen Computern verwendet

Silicon Graphics, Nintendo, Sony, Cisco, …

Gut zur Darstellung von allgemeinen Konzepten
Vieles auch auf andere Architekturen übertragbar

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 5

John Hennessy

Präsident der Universität Stanford

Professor in Elektrotechnik und
Informationstechnik in Stanford seit 1977

Miterfinder des Reduced Instruction Set
Computers (RISC)

Entwickelte MIPS-Architektur in Stanford in
1984 und war Mitgründer von MIPS
Computer Systems

Bis 2004: Über 300 Millionen MIPS
Prozessoren verkauft

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 6

Entwurfsprinzipien für Architekturen

John Hennessy (Stanford) und David Patterson (Berkeley):

1. Regularität vereinfacht Entwurf
2. Mach den häufigsten Fall schnell
3. Kleiner ist schneller
4. Ein guter Entwurf verlangt gute Kompromisse

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 7

Befehle: Addition

add: Befehlsname (mnemonic) gibt die Art der auszuführenden
Operation an

b, c: Quelloperanden auf denen die Operation ausgeführt wird

a: Zieloperand in den das Ergebnis eingetragen wird

Hochsprache
a = b + c;

MIPS Assemblersprache
add a, b, c

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 8

Befehl: Subtraktion

Subtraktion ist ähnlich zur Addition. Nur der Befehlsname ändert sich.

sub: Befehlsname gibt die Art der auszuführenden Operation an

b, c: Quelloperanden auf denen die Operation ausgeführt wird

a: Zieloperand in den das Ergebnis eingetragen wird

Hochsprache
a = b - c;

MIPS Assemblersprache
sub a, b, c

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 9

Entwurfsprinzip 1

Regularität vereinfacht Entwurf

- Konsistentes Befehlsformat
- Gleiche Anzahl von Operanden

- Zwei Quellen, ein Ziel
- Leichter zu kodieren und in Hardware zu bearbeiten

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 10

Befehle: Komplexere Abläufe

Komplexere Abläufe werden durch Folgen von einfachen Befehlen
realisiert

Hochsprache

a = b + c - d;
// Kommentare bis Zeilenende
/* mehrzeiliger Kommentar */

MIPS Assemblersprache

add t, b, c # t = b + c
sub a, t, d # a = t - d

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 11

Entwurfsprinzip 2

Mach den häufigen Fall schnell

- MIPS enthält nur einfache, häufig verwendete Befehle
- Hardware zur Dekodierung und Ausführung der Befehle kann einfach, klein und

schnell sein
- Komplexe Anweisungen (die nur seltener auftreten) können durch Folgen von

einfachen Befehlen realisiert werden
- MIPS ist ein Computer mit reduziertem Befehlssatz (reduced instruction set

computer, RISC)
- Alternative: Computer mit komplexem Befehlssatz (complex instruction set computer,

CISC)
- Beispiel: Intel IA-32 / x86 (weit verbreitet in PCs)
- Befehl: Kopiere Zeichenfolge im Speicher umher

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 12

Operanden

Ein Prozessor hat physikalische Speicherorte für die Operanden von
Befehlen

Mögliche Speicherorte
Register
Speicher
Konstante Werte (immediates)

Stehen häufig direkt im Befehl

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 13

Operanden: Register

Speicher ist langsam

Viele Architekturen haben deshalb kleine Anzahl von schnellen Registern

MIPS hat 32 Register, jedes 32b breit
Wird deshalb auch “32b Architektur” genannt

Es gibt auch eine 64b-Version von MIPS
… wird hier aber nicht weiter behandelt

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 14

Entwurfsprinzip 3

Kleiner ist schneller

- MIPS stellt nur eine kleine Anzahl von Registern bereit

- Kann in schnellerer Hardware realisiert werden als größeres Registerfeld

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 15

MIPS Registerfeld

Name Registernummer Verwendungszweck

$0 0 Konstante Null

$at 1 Temporäre Variable für Assembler

$k0-$k1 26-27 Temporäre Variablen für Betriebssystem

$v0-$v1 2-3 Rückgabe von Werten aus Prozedur

$a0-$a3 4-7 Aufrufparameter in Prozedur

$t0-$t7 8-15 Temporäre Variablen

$s0-$s7 16-23 Gesicherte Variablen

$t8-$t9 24-25 Mehr temporäre Variablen

$gp 28 Zeiger auf globale Variablen im Speicher

$sp 29 Stapelzeiger im Speicher

$fp 30 Zeiger auf aktuellen Aufruf-Frame im Speicher

$ra 31 Rücksprungadresse aus Prozedur

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 16

Operanden: Register

Register:
Kenntlich gemacht durch dem Namen vorangestelltes Dollar-Zeichen
Beispiel: Register 0 wird geschrieben als “$0”

Gelesen als: “Register Null” oder “Dollar Null”.

Bestimmte Register für bestimmte Verwendungszwecke:
Beispiele

$0 enthält immer den konstanten Wert 0.
Gesicherte Register ($s0-$s7) für das Speichern von Variablen
Temporäre Register ($t0 - $t9) für das Speichern von
Zwischenergebnissen während einer komplizierteren Rechnung

Zunächst benutzen wir nur
Temporäre Register ($t0 - $t9)
Gesicherte Register ($s0 - $s7)

Später mehr …

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 17

Befehle mit Registerangaben

Rückblick auf add-Befehl

Hochsprache

a = b + c

MIPS Assemblersprache

$s0 = a, $s1 = b, $s2 = c
add $s0, $s1, $s2

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 18

Operanden: Speicher

Daten passen nicht alle in 32 Register

Lege Daten im Hauptspeicher ab

Hauptspeicher ist groß (GB…TB) und kann viele Daten halten

Ist aber auch langsam

Speichere häufig verwendete Daten in Registern

Kombiniere Register und Speicher zum Halten von Daten
Ziel: Greife schnell auf große Mengen von Daten zu

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 19

Wort-Adressierung von Daten im Speicher

Jedes 32-bit Datenwort hat eine eindeutige Adresse

Daten

00000003 4 0 F 3 0 7 8 8
0 1 E E 2 8 4 2
F 2 F 1 A C 0 7
A B C D E F 7 8

00000002
00000001
00000000

Wortadresse

Wort 3
Wort 2
Wort 1
Wort 0

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 20

Lesen aus wort-adressiertem Speicher

Lesen geschieht durch Ladebefehle (load)
Befehlsname: load word (lw)
Beispiel: Lese ein Datenwort von der Speicheradresse 1 into $s3

Adressarithmetik: Adressen werden relativ zu einem Register angegeben
Basisadresse ($0) plus Distanz (offset) (1)
Adresse = ($0 + 1) = 1
Jedes Register darf als Basisadresse verwendet werden
Nach Abarbeiten des Befehls hat $s3 den Wert 0xF2F1AC07

Assemblersprache
lw $s3, 1($0) # lese Wort 1 aus Speicher in $s3

Daten

00000003 4 0 F 3 0 7 8 8

0 1 E E 2 8 4 2
F 2 F 1 A C 0 7

A B C D E F 7 8

00000002

00000001

00000000

Wortadresse

Wort 3
Wort 2

Wort 1

Wort 0

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 21

Schreiben in wort-adressiertem Speicher

Schreiben geschieht durch Speicherbefehle (store)
Befehlsname: store word (sw)
Beispiel: Schreibe (speichere) den Wert aus $t4 in Speichertwort 7
Offset kann dezimal (Standard) oder hexadezimal angegeben werden
Adressarithmetik:

Basisadresse ($0) plus Offset (0x7)
Adresse: ($0 + 0x7) = 7
Jedes Register darf als Basisadresse verwendet werden

MIPS Assemblersprache
sw $t4, 0x7($0) # schreibe Wert aus $t4 in Speicherwort 7

Daten

00000003 4 0 F 3 0 7 8 8

0 1 E E 2 8 4 2
F 2 F 1 A C 0 7

A B C D E F 7 8

00000002

00000001

00000000

Wortadresse

Wort 3
Wort 2

Wort 1

Wort 0

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 22

Byte-addressierbarer Speicher

Jedes Byte hat eine individuelle Adresse

Speicherbefehle können auf Worten oder Bytes arbeiten
Worte: lw / sw Bytes: lb / sb

Jedes Wort enthält vier Bytes
Adressen von Worten sind also vielfache von 4

Byte-Adresse Daten

0000000C

00000008

00000004

00000000

Wortbreite = 4 Bytes

4 0 F 3 0 7 8 8

0 1 E E 2 8 4 2

F 2 F 1 A C 0 7

A B C D E F 7 8

Wort 3

Wort 2

Wort 1

Wort 0

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 23

Lesen aus byte-addressiertem Speicher

Adresse eines Speicherwortes muss nun mit 4 multipliziert werden
Byte-Addresse von Wort 2 ist 2 × 4 = 8
Byte-Addresse von Wort 10 is 10 × 4 = 40 (0x28)

Beispiel: Lade Wort 1 aus Byte-Adresse 4 nach $s3
Nach dem Befehl enthält $s3 den Wert 0xF2F1AC07
MIPS ist byte-adressiert, nicht wort-adressiert

MIPS Assemblersprache
lw $s3, 4($0) # Lese Wort an Byte-Adresse 4 nach $s3

Byte-Adresse Daten

0000000C
00000008
00000004
00000000

Wortbreite = 4 Bytes

4 0 F 3 0 7 8 8
0 1 E E 2 8 4 2
F 2 F 1 A C 0 7
A B C D E F 7 8

Wort 3
Wort 2
Wort 1
Wort 0

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 24

Schreiben in byte-addressiertem Speicher

Beispiel: Schreibe Wert aus $t7 in Speicheradresse 0x2C (44)

MIPS Assemblersprache
sw $t7, 44($0) # schreibe $t7 nach Byte-Adresse 44

Byte-Adresse Daten

0000000C
00000008
00000004
00000000

Wortbreite = 4 Bytes

4 0 F 3 0 7 8 8
0 1 E E 2 8 4 2
F 2 F 1 A C 0 7
A B C D E F 7 8

Wort 3
Wort 2
Wort 1
Wort 0

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 25

Speicherorganisation: Big-Endian und Little-
Endian

Schemata für Nummerierung von Bytes in einem Wort
Wort-Adresse ist bei beiden gleich

Little-endian: Bytes werden vom niederstwertigen Ende an gezählt
Big-endian: Bytes werden vom höchstwertigen Ende an gezählt

0 1 2 3
MSB LSB

4 5 6 7
8 9 A B
C D E F

Byte-
Adresse

3 2 1 00
7 6 5 44
B A 9 88
F E D CC

Byte-
Adresse

Wort
Adresse

Big-Endian Little-Endian

MSB LSB

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 26

Speicherorganisation: Big-Endian und Little-
Endian

Aus Jonathan Swift’s Gullivers Reisen
Little-Endians schlagen Eier an der schmalen Seite auf
Big-Endians schlagen Eier an der breiten Seite auf

Welche Organisation benutzt wird ist im Prinzip egal …
… außer wenn unterschiedliche Systeme Daten austauschen müssen

0 1 2 3
MSB LSB

4 5 6 7
8 9 A B
C D E F

Byte-
Adresse

3 2 1 00
7 6 5 44
B A 9 88
F E D CC

Byte-
Adresse

Wort
Adresse

Big-Endian Little-Endian

MSB LSB

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 27

Beispiel: Big-Endian und Little-Endian

Annahme: $t0 enthält den Wert 0x23456789

Programm:
sw $t0, 0($0)
lb $s0, 1($0)

Fragen: Welchen Wert hat $s0 nach Ausführung auf einem …
… Big-Endian Prozessor?
… Little-Endian Prozessor?

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 28

Beispiel: Big-Endian und Little-Endian

Annahme: $t0 enthält den Wert 0x23456789

Programm:
sw $t0, 0($0)
lb $s0, 1($0)

Fragen: Welchen Wert hat $s0 nach Ausführung auf einem …
… Big-Endian Prozessor? 0x00000045
… Little-Endian Prozessor? 0x00000067

23 45 67 89
0 1 2 3

23 45 67 890
3 2 1 0

Wort-
adresse

Big-Endian Little-Endian

Byte-Adresse
Datenwert

Byte-Adresse
Datenwert

MSB LSB MSB LSB

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 29

Entwurfsprinzip 4

Ein guter Entwurf verlangt gute Kompromisse

- Mehrere Befehlsformat erlauben Flexibilität …
- add, sub: verwenden drei Register als Operanden
- lw, sw: verwendet zwei Register und eine Konstante als Operanden

- … aber Anzahl von Befehlsformaten sollte klein sein
- Entwurfsprinzip 1: Regularität vereinfacht Entwurf
- Entwurfsprinzip 3: Kleiner ist schneller

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 30

Operanden: Konstante Werte in Befehl
(immediates)

lw und sw zeigen die Verwendung von konstanten Werten (immediates)
Direkt im Befehl untergebracht
Brauchen kein eigenes Register oder Speicherzugriff

Befehl “add immediate” (addi) addiert Immediate-Wert auf Register
Immediate-Wert ist 16b Zweierkomplementzahl

Hochsprache

a = a + 4;
b = a – 12;

MIPS Assemblersprache
$s0 = a, $s1 = b
addi $s0, $s0, 4
addi $s1, $s0, -12

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 31

Maschinensprache

Computer verstehen nur 0’en und 1’en
Maschinensprache: Binärdarstellung von Befehlen
32b Befehle

Regularität vereinfacht Entwurf: Daten und Befehle sind beides 32b Worte
Drei Befehlsformate

R-Typ: Operanden sind nur Register
I-Typ: Register und ein Immediate-Wert
J-Typ: für Programmsprünge (kommt noch)

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 32

Register Typ
3 Registeroperanden

rs, rt: Quellregister
rd: Zielregister

Andere Angaben in binärkodiertem Befehl:
op: Operations-Code oder Opcode (ist 0 für Befehle vom R-Typ)
funct: Auswahl der genauen Funktion

Opcode und Funktion zusammen bestimmen die auszuführende
Operation

shamt: Schiebeweite für Shift-Befehle, sonst 0

op

Befehlsformat R-Typ

rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-Typ

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 33

Beispiele für Befehle vom R-Typ

Beachte andere Reihenfolge der Register in Assembler-Sprache:

add rd, rs, rt

add $s0, $s1, $s2

sub $t0, $t3, $t5

Assemblersprache

0 17 18 16 0 32

Felder in Befehlswort

0 11 13 8 0 34

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

000000 10001 10010 10000 00000 100000

op rs rt rd shamt funct

000000 01011 0110101000 00000 100010

Maschinensprache

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

(0x02328020)

(0x016D4022)

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 34

Befehlsformat I-Typ

Immediate-Typ
3 Operanden:

rs: Quellregister
rt: Zielregister
imm: 16b Immediate-Wert im Zweierkomplement

Andere Angaben:
op: Opcode
Regularität vereinfacht Entwurf: Alle Befehle haben einen Opcode
Operation wird bei I-Typ nur durch Opcode bestimmt

Keine Angabe über Funktion nötig (oder vorhanden!)

op rs rt imm
6 bits 5 bits 5 bits 16 bits

I-Typ

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 35

Beispiel für Befehle vom I-Typ

Beachte unterschiedliche Reihenfolge
von Registern in Assembler- und
Maschinensprache

addi rt, rs, imm

lw rt, imm(rs)

sw rt, imm(rs)

Assemblersprache

8 17 16 5

Felder im Befehlswort
op rs rt imm

6 bits 5 bits 5 bits 16 bits

addi $s0, $s1, 5

addi $t0, $s3, -12

lw $t2, 32($0)

sw $s1, 4($t1)

8 19 8 -12

35 0 10 32

43 9 17 4

(0x22300005)

(0x2268FFF4)

(0x8C0A0020)

(0xAD310004)

001000 10001 10000 0000 0000 0000 0101

op rs rt imm

Maschinensprache

6 bits 5 bits 5 bits 16 bits

001000 10011 01000 1111 1111 1111 0100

100011 00000 01010 0000 0000 0010 0000

101011 01001 10001 0000 0000 0000 0100

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 36

Befehlsformat J-Typ

Jump-Typ
26b Adressoperand (addr)
Verwendet für Sprungbefehle (j)

op addr
6 bits 26 bits

J-Typ

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 37

Übersicht über Befehlsformate

op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-Typ

op rs rt imm
6 bits 5 bits 5 bits 16 bits

I-Typ

op addr
6 bits 26 bits

J-Typ

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 38

Flexibilität durch gespeicherte Programme

32b Befehle und Daten im Speicher
Folgen von Befehlen bestimmen Verhalten

Einziger Unterschied zwischen zwei Anwendungen
Ausführen von unterschiedlichen Programmen

Ohne Neuverdrahten oder Neuaufbau von Hardware
Nur neues Programm als Maschinensprache im Speicher ablegen

Die Hardware des Prozessors führt Programm schrittweise aus:
Holt neue Befehle aus dem Speicher (fetch) in richtiger Reihenfolge
Führt die im Befehl verlangte Operation aus

Programmzähler (program counter, PC)
Zeigt Adresse des auszuführenden Befehls an

Bei MIPS: Programmausführung beginnt auf Adresse 0x00400000

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 39

Im Speicher abgelegtes Programm

addi $t0, $s3, -12

MaschinenspracheAssemblersprache

lw $t2, 32($0)

add $s0, $s1, $s2

sub $t0, $t3, $t5

0x8C0A0020

0x02328020

0x2268FFF4

0x016D4022

Adresse Befehle

0040000C 0 1 6 D 4 0 2 2

2 2 6 8 F F F 4

0 2 3 2 8 0 2 0

8 C 0 A 0 0 2 0

00400008

00400004

00400000

Programm im Speicher

Hauptspeicher

PC

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 40

Maschinensprache verstehen

Beginn mit Entschlüsseln des Opcodes
Opcode bestimmt Bedeutung der anderen Bits
Wenn Opcode Null ist

… liegt ein Befehl im R-Format vor
Die Operation wird durch das Funktionsfeld bestimmt

Sonst
Bestimmt Opcode alleine die Operation, siehe Anhang B im Buch

001000 10001 10111 1111 1111 1111 0001

op rs rt imm

addi $s7, $s1,

Maschinensprache Assemblersprache

8 17 23 -15

Felder im Befehlswort

FF1) -15(0x2237F
op rs rt imm

2 2 3 7 F F F 1

000000 10111 10011 01000 00000 100010

op rs rt rd shamt funct

sub $t0, $s7, $s30 23 19 8 0 342)(0x02F3402

op rs rt rd shamt funct

0 2 F 3 4 0 2 2

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 41

Programmierung

Hochsprachen:
z.B. C, Java, Python
Auf einer abstrakteren Ebene programmieren

Häufige Konstrukte in Hochsprachen:
if/else-Anweisungen
for-Schleifen
while-Schleifen
Feld (Array) zugriffe
Prozeduraufrufe

Andere nützliche Anweisungen:
Arithmetische/logische Ausdrücke
Verzweigungen

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 42

Ada Lovelace, 1815 - 1852

Schrieb das erste Computerprogramm

Sollte die Bernoulli-Zahlen auf der
Analytischen Maschine von Charles
Babbage berechnen

Einziges eheliches Kind des Dichters
Lord Byron

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 43

Logische Befehle

and, or, xor, nor
and: nützlich zum Maskieren von Bits

Ausmaskieren aller Bits außer dem LSB:
0xF234012F AND 0x000000FF = 0x0000002F

or: Nützlich zum Vereinigen von Bitfeldern
Vereinige 0xF2340000 mit 0x000012BC:

0xF2340000 OR 0x000012BC = 0xF23412BC
nor: nützlich zur Invertierung von Bits:

A NOR $0 = NOT A
andi, ori, xori

16-bit Direktwert wird erweitert mit führenden Nullbits (nicht vorzeichenerweitert)
nori wird nicht benötigt

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 44

Beispiele: Logische Befehle

1111 1111 1111 1111 0000 0000 0000 0000$s1

0100 0110 1010 0001 1111 0000 1011 0111$s2

$s3
$s4
$s5
$s6

Quellregister

ErgebnisseAssemblersprache
and $s3, $s1, $s2

or $s4, $s1, $s2

xor $s5, $s1, $s2

nor $s6, $s1, $s2

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 45

Befehle: Logische Befehle

1111 1111 1111 11110000 0000 0000 0000$s1

0100 0110 1010 00011111 0000 1011 0111$s2

0100 0110 1010 00010000 0000 0000 0000$s3
1111 1111 1111 11111111 0000 1011 0111$s4
1011 1001 0101 11101111 0000 1011 0111$s5
0000 0000 0000 00000000 1111 0100 1000$s6

Quellregister

ErgebnisseAssemblersprache
and $s3, $s1, $s2

or $s4, $s1, $s2

xor $s5, $s1, $s2

nor $s6, $s1, $s2

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 46

Beispiele: Logische Befehle

0000 0000 0000 0000 0000 0000 1111 1111$s1

Assemblersprache

0000 0000 0000 0000 1111 1010 0011 0100imm

$s2

$s3

$s4

andi $s2, $s1, 0xFA34

Operanden

Ergebnisse

ori $s3, $s1, 0xFA34

xori $s4, $s1, 0xFA34

Null-erweitert

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 47

Beispiel: Logische Befehle

0000 0000 00000000 00000000 1111 1111$s1

Assemblersprache

0000 0000 00000000 11111010 0011 0100imm

0000 0000 00000000 00000000 0011 0100$s2
0000 0000 00000000 11111010 1111 1111$s3
0000 0000 00000000 11111010 1100 1011$s4

andi $s2, $s1, 0xFA34

Operanden

Ergebnisse

ori $s3, $s1, 0xFA34

xori $s4, $s1, 0xFA34

Null-erweitert

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 48

Schiebebefehle

sll: shift left logical
Beispiel: sll $t0, $t1, 5 # $t0 <= $t1 << 5

srl: shift right logical
Beispiel : srl $t0, $t1, 5 # $t0 <= $t1 >> 5

sra: shift right arithmetic
Beispiel : sra $t0, $t1, 5 # $t0 <= $t1 >>> 5

Schieben mit variabler Distanz:
sllv: shift left logical variable

Beispiel : sllv $t0, $t1, $t2 # $t0 <= $t1 << $t2
srlv: shift right logical variable

Beispiel : srlv $t0, $t1, $t2 # $t0 <= $t1 >> $t2
srav: shift right arithmetic variable

Beispiel : srav $t0, $t1, $t2 # $t0 <= $t1 >>> $t2

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 49

Schiebebefehle

sll $t0, $s1, 2

srl $s2, $s1, 2

sra $s3, $s1, 2

Assemblersprache

0 0 17 8 2 0

Felder in Instruktion
op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

0 0 17 18 2 2

0 0 17 19 2 3

000000 00000 10001 01000 00010 000000

op rs rt rd shamt funct

Maschinensprache

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

000000 00000 10001 10010 00010 000010

000000 00000 10001 10011 00010 000011

(0x00114080)

(0x00119082)

(0x00119883)

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 50

Handhabung von Konstanten

16-Bit Konstante mit addi:

32-Bit Konstante mit Load Upper Immediate (lui) und ori:
(lui lädt den 16-Bit Direktwert in obere Registerhälfte und setzt untere Hälfte auf 0.)

Hochsprache

int a = 0xFEDC8765;

MIPS Assemblersprache
$s0 = a
lui $s0, 0xFEDC
ori $s0, $s0, 0x8765

Hochsprache
// int is a 32-bit signed word
int a = 0x4f3c;

MIPS Assemblersprache
$s0 = a
addi $s0, $0, 0x4f3c

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 51

Multiplikation und Division

Spezialregister: lo, hi
32b × 32b Multiplikation, 64b Produkt

mult $s0, $s1
Ergebnis in {hi, lo}

32b Division, 32b Quotient, 32b Rest
div $s0, $s1
Quotient in lo
Rest in hi

Lesen von Daten aus Spezialregistern („move from …“)
mflo $s2
mfhi $s3

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 52

Verzweigungen und Sprünge

Ändern der Ausführungsreihenfolge von Befehlen
Arten von Verzweigungen: Beispiele

Bedingte
branch if equal (beq): Verzweige, wenn gleich
branch if not equal (bne): Verzweige, wenn ungleich

Unbedingte Verzweigungen
jump (j): Springe
jump register (jr): Springe auf Adresse aus Register
jump and link (jal): Springe und merke Adresse des nächsten Befehls

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 53

Wiederholung: Programm im Speicher

addi $t0, $s3, -12

MaschinenspracheAssemblersprache
lw $t2, 32($0)

add $s0, $s1, $s2

sub $t0, $t3, $t5

0x8C0A0020

0x02328020

0x2268FFF4

0x016D4022

Adresse Befehle

0040000C 0 1 6 D 4 0 2 2
2 2 6 8 F F F 4
0 2 3 2 8 0 2 0
8 C 0 A 0 0 2 0

00400008
00400004
00400000

Abgespeichertes Programm

Main Memory

PC

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 54

Bedingte Verzweigungen (beq)

MIPS Assemblersprache
addi $s0, $0, 4 # $s0 = 0 + 4 = 4
addi $s1, $0, 1 # $s1 = 0 + 1 = 1

sll $s1, $s1, 2 # $s1 = 1 << 2 = 4
beq $s0, $s1, target # Verzweigung wird genommen

addi $s1, $s1, 1 # nicht ausgeführt
sub $s1, $s1, $s0 # nicht ausgeführt

target: # Positionsmarkierung (label)
add $s1, $s1, $s0 # $s1 = 4 + 4 = 8

Label sind Namen für Stellen (Adressen) im Programm. Sie müssen
anders als Mnemonics heißen und haben einen Doppelpunkt am
Ende.

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 55

Nicht genommene Sprünge (bne)

MIPS Assemblersprache
addi $s0, $0, 4 # $s0 = 0 + 4 = 4
addi $s1, $0, 1 # $s1 = 0 + 1 = 1

sll $s1, $s1, 2 # $s1 = 1 << 2 = 4
bne $s0, $s1, target # Verzweigung nicht genommen

addi $s1, $s1, 1 # $s1 = 4 + 1 = 5
sub $s1, $s1, $s0 # $s1 = 5 – 4 = 1

target:
add $s1, $s1, $s0 # $s1 = 1 + 4 = 5

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 56

Unbedingte Verzweigungen / Springen (j)

MIPS Assemblersprache
addi $s0, $0, 4 # $s0 = 4
addi $s1, $0, 1 # $s1 = 1

j target # Sprunge zu target
sra $s1, $s1, 2 # nicht ausgeführt

addi $s1, $s1, 1 # nicht ausgeführt
sub $s1, $s1, $s0 # nicht ausgeführt

target:
add $s1, $s1, $s0 # $s1 = 1 + 4 = 5

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 57

Unbedingte Verzweigungen (jr)

MIPS Assemblersprache
0x00002000 addi $s0, $0, 0x2010
0x00002004 jr $s0
0x00002008 addi $s1, $0, 1

0x0000200C sra $s1, $s1, 2
0x00002010 lw $s3, 44($s1)

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 58

Konstrukte in Hochsprachen

if-Anweisungen
if/else-Anweisungen
while-Schleifen
for-Schleifen

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 59

If-Anweisung

Hochsprache

if (i == j)
f = g + h;

f = f – i;

MIPS Assemblersprache
$s0 = f, $s1 = g, $s2 = h
$s3 = i, $s4 = j

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 60

If-Anweisung

Hochsprache

if (i == j)
f = g + h;

f = f – i;

MIPS Assemblersprache
$s0 = f, $s1 = g, $s2 = h
$s3 = i, $s4 = j

bne $s3, $s4, L1
add $s0, $s1, $s2

L1: sub $s0, $s0, $s3

Beachte: Im Assembler wird auf entgegengesetzte Bedingung
geprüft (i != j) als in der Hochsprache (i == j).

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 61

If / Else -Anweisung

Hochsprache

if (i == j)
f = g + h;

else
f = f – i;

MIPS Assemblersprache
$s0 = f, $s1 = g, $s2 = h
$s3 = i, $s4 = j

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 62

If / Else-Anweisung

Hochsprache

if (i == j)
f = g + h;

else
f = f – i;

MIPS Assemblersprache
$s0 = f, $s1 = g, $s2 = h
$s3 = i, $s4 = j

bne $s3, $s4, L1
add $s0, $s1, $s2
j done

L1: sub $s0, $s0, $s3
done:

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 63

While-Schleife

Hochsprache

// berechnet x = ld 128
int pow = 1;
int x = 0;

while (pow != 128) {
pow = pow * 2;
x = x + 1;

}

MIPS Assemblersprache

$s0 = pow, $s1 = x

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 64

While-Schleife

Hochsprache

// berechnet x = ld 128

int pow = 1;
int x = 0;

while (pow != 128) {
pow = pow * 2;
x = x + 1;

}

MIPS Assemblersprache

$s0 = pow, $s1 = x

addi $s0, $0, 1
add $s1, $0, $0
addi $t0, $0, 128

while: beq $s0, $t0, done
sll $s0, $s0, 1
addi $s1, $s1, 1
j while

done:

Auch hier: Assemblersprache prüft auf entgegengesetzte
Bedingung (pow == 128) als Hochsprache (pow != 128).

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 65

For-Schleife

Allgemeiner Aufbau:

for (Initialisierung; Bedingung; Schleifenanweisung)
Schleifenrumpf

Initialisierung : wird einmal vor Ausführung der Schleife ausgeführt
Bedingung : wird vor Beginn jedes Schleifendurchlaufs geprüft
Schleifenanweisung : wird am Ende jedes Schleifendurchlaufs ausgeführt
Schleifenrumpf : wird einmal ausgeführt, wenn Bedingung wahr ist

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 66

For-Schleifen

Hochsprache

// addiere Zahlen von 0 to 9 auf
int sum = 0;
int i;

for (i=0; i!=10; i = i+1) {
sum = sum + i;

}

MIPS Assemblersprache

$s0 = i, $s1 = sum

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 67

For-Schleifen

Hochsprache

// addiere Zahlen von 0 to 9 auf
int sum = 0;
int i;

for (i=0; i != 10; i = i+1) {
sum = sum + i;

}

MIPS Assemblersprache

$s0 = i, $s1 = sum
addi $s1, $0, 0
add $s0, $0, $0
addi $t0, $0, 10

for: beq $s0, $t0, done
add $s1, $s1, $s0
addi $s0, $s0, 1
j for

done:

Auch hier: Prüfen auf entgegengesetzte Bedingung in
Assemblersprache (i == 10) als in Hochsprache (i != 10).

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 68

Kleiner-Als Vergleiche

Hochsprache

// addiere Zweierpotenzen
// kleiner als 100
int sum = 0;
int i;

for (i=1; i < 101; i = i*2) {
sum = sum + i;

}

MIPS Assemblersprache

$s0 = i, $s1 = sum

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 69

Kleiner-als Vergleiche

Hochsprache

// addiere Zweierpotenzen
// kleiner als 100
int sum = 0;
int i;

for (i=1; i < 101; i = i*2) {
sum = sum + i;

}

MIPS Assemblersprache

$s0 = i, $s1 = sum
addi $s1, $0, 0
addi $s0, $0, 1
addi $t0, $0, 101

loop: slt $t1, $s0, $t0
beq $t1, $0, done
add $s1, $s1, $s0
sll $s0, $s0, 1
j loop

done:

$t1 = 1 if i < 101.

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 70

Datenfelder (arrays)

Nützlich um auf eine große Zahl von Daten gleichen Typs zuzugreifen
Zugriff auf einzelne Elemente über Index
Größe eine Arrays: Anzahl von Elementen im Array

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 71

Verwendung von Arrays

array[4]
array[3]
array[2]
array[1]
array[0]0x12348000

0x12348004
0x12348008
0x1234800C
0x12340010

Array mit 5 Elementen
Basisadresse, hier 0x12348000

Adresse des ersten Array-Elements
Index 0, geschrieben als array[0]

Erster Schritt für Zugriff auf Element: Lade Basisadresse des Arrays in Register

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 72

Verwendung von Arrays

// Hochsprache
int array[5];
array[0] = array[0] * 2;
array[1] = array[1] * 2;

MIPS Assemblersprache
Basisadresse von array = $s0

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 73

Verwendung von Arrays

// Hochsprache
int array[5];
array[0] = array[0] * 2;
array[1] = array[1] * 2;

MIPS Assemblersprache
Basisadresse von array = $s0

lui $s0, 0x1234 # lade 0x1234 in obere Hälfte von $S0
ori $s0, $s0, 0x8000 # lade 0x8000 in untere Hälfte von $s0

lw $t1, 0($s0) # $t1 = array[0]
sll $t1, $t1, 1 # $t1 = $t1 * 2
sw $t1, 0($s0) # array[0] = $t1

lw $t1, 4($s0) # $t1 = array[1]
sll $t1, $t1, 1 # $t1 = $t1 * 2
sw $t1, 4($s0) # array[1] = $t1

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 74

Bearbeite Array in for-Schleife

// Hochsprache
int array[1000];
int i;

for (i=0; i < 1000; i = i + 1)
array[i] = array[i] * 8;

MIPS Assemblersprache
$s0 = Basisadresse von array, $s1 = i

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 75

Bearbeite Array in for-Schleife

MIPS Assemblersprache
$s0 = Basisadresse von Array, $s1 = i

Initialisierung
lui $s0, 0x23B8 # $s0 = 0x23B80000
ori $s0, $s0, 0xF000 # $s0 = 0x23B8F000
addi $s1, $0, 0 # i = 0
addi $t2, $0, 1000 # $t2 = 1000

loop:
slt $t0, $s1, $t2 # i < 1000?
beq $t0, $0, done # if not then done
sll $t0, $s1, 2 # $t0 = i * 4 (byte offset)
add $t0, $t0, $s0 # address of array[i]
lw $t1, 0($t0) # $t1 = array[i]
sll $t1, $t1, 3 # $t1 = array[i] * 8
sw $t1, 0($t0) # array[i] = array[i] * 8
addi $s1, $s1, 1 # i = i + 1
j loop # repeat

done:

// Hochsprache
int array[1000];
int i;

for (i=0; i < 1000; i = i + 1)
array[i] = array[i] * 8;

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 76

Zeichendarstellung im ASCII-Code

American Standard Code for Information Interchange
Definiert für gängige Textzeichen einen 7b breiten Code
Einfach, aber schon älter
Heute Unicode: breitere Darstellung für alle Textzeichen

Beispiel: “S” = 0x53, “a” = 0x61, “A” = 0x41

Klein- und Großbuchstaben liegen auseinander um 0x20 (32).

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 77

Zuordnung von Zeichen zu Codes

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 78

Prozedur- und Funktionsaufruf

Definitionen
Aufrufer: Ursprung des Prozeduraufrufs (hier main)
Aufgerufener: aufgerufene Prozedur (hier sum)

Hochsprache

void main()
{

int y;
y = sum (42, 7);
...

}

int sum (int a, int b)
{

return (a + b);
}

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 79

Prozedur- und Funktionsaufruf

Aufrufkonventionen:
Aufrufer:

Übergibt Argumente (aktuelle Parameter) an Aufgerufenen
Springt Aufgerufenen an

Aufgerufener:
Führt Prozedur/Funktion aus
Gibt Ergebnis (Rückgabewert) an Aufrufer zurück (für Funktion)
Springt hinter Aufrufstelle zurück
Darf keine Register oder Speicherstellen überschreiben, die im Aufrufer genutzt werden

Konventionen für MIPS:
Prozeduraufruf: “jump and link (jal)“
Rücksprung: “jump register (jr)”
Register für Argumente: $a0 - $a3

Register für Ergebnis: $v0

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 80

Prozedur- und Funktionsaufruf

Hochsprache

int main() {
simple ();
a = b + c;

}

void simple () {
return;

}

MIPS Assemblersprache

0x00400200 main: jal simple
0x00400204 add $s0, $s1, $s2
...

0x00401020 simple: jr $ra

void bedeutet, dass simple keinen Rückgabewert hat.

- Also eine Prozedur und keine Funktion ist

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 81

Prozedur- und Funktionsaufruf

Hochsprache

int main() {
simple();
a = b + c;

}

void simple() {
return;

}

MIPS Assemblersprache

0x00400200 main: jal simple
0x00400204 add $s0, $s1, $s2
...

0x00401020 simple: jr $ra

jal: springt zu simple
speichert PC+4 im Spezialregister $ra “return address register”
Hier: $ra = 0x00400204 nach Ausführung von jal

jr $ra: springt zur Adresse in $ra, hier also 0x00400204.

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 82

Aufrufargumente und Rückgabewert

MIPS Konventionen:
Argumentwerte (aktuelle Parameter): $a0 - $a3
Rückgabewert (Funktionswert, Ergebnis): $v0

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 83

Aufrufargumente und Rückgabewert

Hochsprache

int main()
{

int y;
...
y = diffofsums (2, 3, 4, 5); // 4 Argumente, aktuelle Parameter
...

}

int diffofsums (int f, int g, int h, int i) // 4 formale Parameter
{

int result;
result = (f + g) - (h + i);
return result; // Rückgabewert

}

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 84

Aufrufargumente und Rückgabewert

MIPS Assemblersprache
$s0 = y

main:
...
addi $a0, $0, 2 # Argument 0 = 2
addi $a1, $0, 3 # Argument 1 = 3
addi $a2, $0, 4 # Argument 2 = 4
addi $a3, $0, 5 # Argument 3 = 5
jal diffofsums # Prozeduraufruf
add $s0, $v0, $0 # y = Rückgabewert
...

$s0 = Rückgabewert
diffofsums:
add $t0, $a0, $a1 # $t0 = f + g
add $t1, $a2, $a3 # $t1 = h + i
sub $s0, $t0, $t1 # result = (f + g) - (h + i)
add $v0, $s0, $0 # Lege Rückgabewert in $v0 ab
jr $ra # Rücksprung zum Aufrufer

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 85

Aufrufargumente und Rückgabewert

MIPS Assemblersprache

$s0 = result
diffofsums:

add $t0, $a0, $a1 # $t0 = f + g
add $t1, $a2, $a3 # $t1 = h + i
sub $s0, $t0, $t1 # result = (f + g) - (h + i)
add $v0, $s0, $0 # Lege Rückgabewert in $v0 ab
jr $ra # Rücksprung zum Aufrufer

• diffofsums überschreibt drei Register: $t0, $t1 und $s0
•diffofsums kann benötigte Register temporär auf Stack sichern

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 86

Stack (auch Stapel- oder Kellerspeicher)

Speicher für temporäres Zwischenspeichern
von Werte

Agiert wie ein Stapel (Beispiel: Teller)
Zuletzt aufgelegter Teller wird zuerst
heruntergenommen
“last in, first out” (LIFO)

Dehnt sich aus: Belegt mehr Speicher, wenn
mehr Daten unterzubringen sind

Zieht sich zusammen: Belegt weniger
Speicher, wenn zwischengespeicherte Daten
nicht mehr gebraucht werden

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 87

Stack

Wächst bei MIPS nach unten (von hohen zu niedrigeren Speicheradressen)
Übliche Realisierung (deshalb auch Kellerspeicher genannt)

Stapelzeiger (“stack pointer”): $sp
zeigt auf zuletzt auf dem Stack abgelegtes Datenelement

Daten

7FFFFFFC 12345678
7FFFFFF8
7FFFFFF4
7FFFFFF0

Adresse

$sp 7FFFFFFC
7FFFFFF8
7FFFFFF4
7FFFFFF0

Adresse Daten

12345678

$sp
AABBCCDD
11223344

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 88

Verwendung des Stacks in Prozeduren

MIPS Assemblersprache
$s0 = result

diffofsums:
add $t0, $a0, $a1 # $t0 = f + g
add $t1, $a2, $a3 # $t1 = h + i

sub $s0, $t0, $t1 # result = (f + g) - (h + i)
add $v0, $s0, $0 # Lege Rückgabewert in $v0 ab

jr $ra # Rücksprung zum Aufrufer

Aufgerufene Prozeduren dürfen keine unbeabsichtigten Nebenwirkungen
(“Seiteneffekte”) haben

Problem: diffofsums überschreibt die drei Register $t0, $t1, $s0

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 89

Register auf Stack zwischenspeichern

$s0 = result
diffofsums:

addi $sp, $sp, -12 # 3*4 Bytes auf Stack anfordern
um drei 32b Register zu sichern

sw $s0, 8($sp) # speichere $s0 auf Stack
sw $t0, 4($sp) # speichere $t0 auf Stack
sw $t1, 0($sp) # speichere $t1 auf Stack
add $t0, $a0, $a1 # $t0 = f + g
add $t1, $a2, $a3 # $t1 = h + i
sub $s0, $t0, $t1 # result = (f + g) - (h + i)

add $v0, $s0, $0 # Lege Rückgabewert in $v0 ab
lw $t1, 0($sp) # stelle $t1 wieder vom Stack her
lw $t0, 4($sp) # stelle $t0 wieder vom Stack her
lw $s0, 8($sp) # stelle $s0 wieder vom Stack her
addi $sp, $sp, 12 # Platz auf Stack wird nicht mehr benötigt,

wieder freigeben

jr $ra # Rücksprung zum Aufrufer

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 90

Veränderung des Stacks während diffofsums

Daten

FC
F8
F4
F0

Adresse

$sp

(a)

Daten

FC
F8
F4
F0

Adresse

$sp

(b)

$s0

Daten

$sp

(c)

$t0

FC
F8
F4
F0

Adresse

? ??
S

ta
ck

Fr
am

e

$t1

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 91

Sicherungskonventionen für Register

Erhalten
Gesichert vom Aufgerufenen

Nicht erhalten
Gesichert vom Aufrufer

$s0 - $s7 $t0 - $t9

$ra $a0 - $a3

$sp $v0 - $v1

Stack oberhalb von $sp Stack unterhalb von $sp

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 92

Mehrfache Prozeduraufrufe: Sichern von $ra

proc1:
addi $sp, $sp, -4 # Platz auf Stack anlegen
sw $ra, 0($sp) # sichere $ra auf Stack
jal proc2

...
lw $ra, 0($sp) # stelle $ra vom Stack wieder her
addi $sp, $sp, 4 # Stapelspeicher wieder freigeben
jr $ra # Rückkehr zum Aufrufer von proc1

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 93

Erhalten von Registern mittels Stack

$s0 = result

diffofsums:
addi $sp, $sp, -4 # Platz auf Stack für 4 Bytes anlegen

reicht zum Sichern eines Registers
sw $s0, 0($sp) # sichere $s0 auf Stack

$t0 und $t1 brauchen nicht erhalten zu werden!
add $t0, $a0, $a1 # $t0 = f + g
add $t1, $a2, $a3 # $t1 = h + i

sub $s0, $t0, $t1 # result = (f + g) - (h + i)
add $v0, $s0, $0 # Lege Rückgabewert in $v0 ab
lw $s0, 0($sp) # stelle $s0 vom Stack wieder her
addi $sp, $sp, 4 # Gebe nicht mehr benötigten Speicher auf Stack frei
jr $ra # Rücksprung zum Aufrufer

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 94

Rekursive Prozeduraufrufe

Hochsprache

int fakultaet (int n) {
if (n <= 1)
return 1;

else
return (n * fakultaet (n-1));

}

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 95

Rekursive Prozeduraufrufe

MIPS Assemblersprache

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 96

Rekursive Prozeduraufrufe

MIPS Assemblersprache
0x90 fakultaet: addi $sp, $sp, -8 # Platz für zwei Register
0x94 sw $a0, 4($sp) # sichere $a0
0x98 sw $ra, 0($sp) # sichere $ra
0x9C addi $t0, $0, 2
0xA0 slt $t0, $a0, $t0 # a <= 1 ?
0xA4 beq $t0, $0, else # nein: weiter bei else
0xA8 addi $v0, $0, 1 # ja: gebe 1 zurück
0xAC addi $sp, $sp, 8 # Platz wieder freigeben
0xB0 jr $ra # Rücksprung
0xB4 else: addi $a0, $a0, -1 # n = n - 1
0xB8 jal fakultaet # rekursiver Aufruf
0xBC lw $ra, 0($sp) # wiederherstellen von $ra
0xC0 lw $a0, 4($sp) # wiederherstellen von $a0
0xC4 addi $sp, $sp, 8 # Platz wieder freigeben
0xC8 mul $v0, $a0, $v0 # n * fakultaet(n-1)
0xCC jr $ra # Rücksprung

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 97

Veränderung des Stacks bei rekursivem Aufruf

$sp FC

F8

F4
F0

$ra

EC

E8
E4
E0

DC

FC

F8

F4
F0

EC

E8
E4
E0

DC

FC

F8

F4
F0

EC

E8
E4
E0

DC

$sp

$sp

$sp

$sp

$a0 = 1
$v0 = 1 x 1

$a0 = 2
$v0 = 2 x 1

$a0 = 3
$v0 = 3 x 2

$v0 = 6

$sp

$sp

$sp

$sp

DatenAdresse DatenAdresse DatenAdresse

$a0 (0x3)

$ra (0xBC)

$a0 (0x2)

$ra (0xBC)

$a0 (0x1)

$ra

$a0 (0x3)

$ra (0xBC)

$a0 (0x2)

$ra (0xBC)

$a0 (0x1)

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 98

Zusammenfassung: Prozeduraufruf

Aufrufer
Lege Aufrufparameter (aktuelle Parameter) in $a0-$a3 ab
Sichere zusätzlich benötigte Register auf Stack ($ra, manchmal auch $t0-t9)

Entsprechend Konvention über Erhaltung von Registern
jal aufgerufener

Stelle gesicherte Register wieder her
Hole evtl. Rückgabewert aus $v0 (bei Funktionen)

Aufgerufener
Sichere zu erhaltende verwendete Register auf Stack (üblicherweise $s0-$s7)
Führe Berechnungen der Prozedur aus
Lege Rückgabewert in ab $v0 (bei Funktionen)
Stelle gesicherte Register wieder her
jr $ra

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 99

Adressierungsarten

Wo kommen Operanden für Befehle her?

Aus einem Register
Direktwert aus Instruktion
Relativ zu einer Basisadresse

Sonderfall: Relativ zum Programmzähler
Pseudodirekt

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 100

Adressierungsarten

Aus Register (register operands)
Beispiel: add $s0, $t2, $t3
Beispiel: sub $t8, $s1, $0

Direktwert aus Instruktion (immediate)
16b Direktwert als Operand verwenden

Beispiel: addi $s4, $t5, -73
Beispiel:: ori $t3, $t7, 0xFF

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 101

Adressierungsarten

Relativ zu einer Basisadresse

Adresse eines Operanden im Speicher ist:
Basisadresse + Vorzeichenerweiterter Direktwert

Beispiel: lw $s4, 72($0)

Adresse = $0 + 72

Beispiel: sw $t2, -25($t1)

Adresse = $t1 - 25

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 102

Adressierungsarten

Relativ zur nächsten Adresse im Programmzähler
0x10 beq $t0, $0, else

0x14 addi $v0, $0, 1
0x18 addi $sp, $sp, i
0x1C jr $ra

0x20 else: addi $a0, $a0, -1
0x24 jal fakultaet

beq $t0, $0, else

Assemblersprache Bitfelder in Instruktion

4 8 0 3

op rs rt imm

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits(beq $t0, $0, 3)

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 103

Adressierungsarten

Pseudodirekte Operanden
Auffüllen von entfallenen Bits (mit Nullen und PC+4[31:28])

0x0040005C jal sum

...
0x004000A0 sum: add $v0, $a0, $a1

000011 00 0001 0000 0000 0000 0010 1000

op addr

Machine CodeField Values

 3 0x0100028
6 bits 26 bits

(0x0C100028)

op imm

6 bits 26 bits

0000 0000 0100 0000 0000 0000 1010 0000JTA

26-bit addr (0x0100028)

(0x004000A0)

0000 0000 0100 0000 0000 0000 1010 0000
0 1 0 0 0 2 8

32b Sprungzieladresse

26b Feld in J-Instruktion

Bitfelder in Instruktion Maschinencode

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 104

Compilieren und Ausführen einer Anwendung

Assemblersprache

Hochsprache

Compiler

Objektdatei

Assembler

Ausführbare Datei

Linker

Speicher

Loader

Objektdateien
Bibliotheksdateien

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 105

Grace Hopper, 1906 - 1992

Promovierte zum Dr. der Mathematik in Yale
Entwickelte den ersten Compiler
Half bei der Entwicklung von COBOL
Hochdekorierte Marineoffizierin

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 106

Was muss im Speicher abgelegt werden?

Instruktionen (historisch auch genannt Text)
Daten

Globale und statische: angelegt vor Beginn der Programmausführung
Dynamisch: während der Programmausführung angelegt

Speicherobergrenze bei MIPS (-32)?
Maximal 232 = 4 Gigabytes (4 GB)
Von Adresse 0x00000000 bis 0xFFFFFFFF

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 107

MIPS Speicherorganisation (memory map)

SegmentAdresse
0xFFFFFFFC

0x80000000
0x7FFFFFFC

0x10010000
0x1000FFFC

0x10000000
0x0FFFFFFC

0x00400000
0x003FFFFC

0x00000000

Reserviert

Stack

Heap

Statische Daten

Text

Reserviert

Dynamische Daten

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 108

Beispielprogramm in “C”

int f, g, y; // globale Variablen

int main(void)
{

f = 2;
g = 3;
y = sum(f, g);

return y;
}

int sum(int a, int b) {
return (a + b);

}

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 109

Beispielprogramm: MIPS Assemblersprache

int f, g, y; // globale Variablen

int main(void)
{

f = 2;
g = 3;

y = sum(f, g);
return y;

}

int sum(int a, int b) {
return (a + b);

}

.data

f: .space 4 # Direktiven für Assembler
g: .space 4 # jeweils ein Wort, initialisiert

y: .space 4 # auf den Wert 0

.text
main:

addi $sp, $sp, -4 # Stack Frame anlegen
sw $ra, 0($sp) # sichere $ra

addi $a0, $0, 2 # $a0 = 2

sw $a0, f # f = 2
addi $a1, $0, 3 # $a1 = 3

sw $a1, g # g = 3
jal sum # Aufruf von sum

sw $v0, y # y = sum()
lw $ra, 0($sp) # stelle $ra wieder her

addi $sp, $sp, 4 # stelle $sp wieder her

jr $ra # Rückkehr ins Betriebssystem
sum:

add $v0, $a0, $a1 # $v0 = a + b
jr $ra # return

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 110

Beispielprogramm: Symboltabelle

Symbol Adresse

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 111

Beispielprogramm: Symboltabelle

Symbol Adresse

f 0x10000000

g 0x10000004

y 0x10000008

main 0x00400000

sum 0x0040002C

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 112

Beispielprogramm: Ausführbare Datei

Dateikopf Text Größe Daten Größe

Textsegment

Datensegment

Adresse Instruktion

Adresse Datum

0x00400000
0x00400004
0x00400008
0x0040000C
0x00400010
0x00400014
0x00400018
0x0040001C
0x00400020
0x00400024
0x00400028
0x0040002C
0x00400030

addi $sp, $sp, -4
sw $ra, 0 ($sp)
addi $a0, $0, 2
sw $a0, 0x8000 ($gp)
addi $a1, $0, 3
sw $a1, 0x8004 ($gp)
jal 0x0040002C
sw $v0, 0x8008 ($gp)
lw $ra, 0 ($sp)
addi $sp, $sp, -4
jr $ra
add $v0, $a0, $a1
jr $ra

0x10000000
0x10000004
0x10000008

0
0
0

0xC (12 bytes)0x34 (52 bytes)

0x23BDFFFC
0xAFBF0000
0x20040002
0xAF848000
0x20050003
0xAF858004
0x0C10000B
0xAF828008
0x8FBF0000
0x23BD0004
0x03E00008
0x00851020
0x03E0008

f
g
y

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 113

Beispielprogramm im Speicher

y
g
f

0x03E00008
0x00851020
0x03E00008
0x23BD0004
0x8FBF0000
0xAF828008
0x0C10000B
0xAF858004
0x20050003
0xAF848000
0x20040002
0xAFBF0000
0x23BDFFFC

SpeicherAdresse

$sp = 0x7FFFFFFC0x7FFFFFFC

0x10010000

0x00400000

Stack

Heap

$gp = 0x10008000

PC = 0x00400000

0x10000000

Reserviert

Reserviert

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 114

Dies und Das

Pseudobefehle
Ausnahmebehandlung (exceptions)
Befehle für vorzeichenbehaftete und vorzeichenlose Zahlen
Gleitkommabefehle

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 115

Beispiele für Pseudobefehle

Pseudobefehle MIPS Befehle

li $s0, 0x1234AA77 lui $s0, 0x1234
ori $s0, 0xAA77

mul $s0, $s1, $s2 mult $s1, $s2

mflo $s0

clear $t0 add $t0, $0, $0

move $s1, $s2 add $s2, $s1, $0

nop sll $0, $0, 0

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 116

Ausnahmebehandlung (exceptions)

Abweichen von der normalen Ausführungsreihenfolge von Befehlen
Beim Auftreten außergewöhnlicher Umstände (exception)
Automatischer Aufruf spezieller Prozedur: Ausnahmebehandlung (exception handler)

Auslösung der Ausnahmebehandlung z.B. durch
Hardware, dann genannt Interrupt (z.B. Tippen einer Taste auf Tastatur)
Software, dann genannt Trap (z.B. Versuch der Ausführung einer unbekannten Instruktion)

Beim Auftreten der Ausnahme
Grund der Ausnahme wird gespeichert
Sprung zur Ausnahmebehandlung auf Adresse 0x80000180
Dann Wiederaufnahme der normalen Programmausführung

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 117

Spezialregister für Ausnahmebehandlung

Außerhalb des regulären Registerfeldes
Cause

Enthält den Grund für Ausnahme
EPC (Exception PC)

Enthält den regulären PC an dem die Aufnahme auftrat

EPC und Cause: Nicht Bestandteil des “eigentlichen” MIPS-Prozessors
Ausgelagert in Coprozessor (unterstützt Hauptprozessor)
Genauer: Coprozessor 0

Datenaustausch mit Coprozessor (hier nur lesen)
“Move from Coprocessor 0”
mfc0 $t0, EPC

Lädt Inhalt des Spezialregisters EPC in reguläres Register $t0
Analog auch für Cause

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 118

Auslöser für Ausnahmen

Ausnahme Cause

Hardware Interrupt 0x00000000

Systemaufruf 0x00000020

Breakpoint / Division durch 0 0x00000024

Unbekannte Instruktion 0x00000028

Arithmetischer Überlauf 0x00000030

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 119

Ausnahmen

Prozessor speichert Grund und Auftritts-PC in Cause und EPC
Prozessor springt Ausnahmebehandlung an (0x80000180)

Ausnahmebehandlung:
Speichere Register auf Stack
Lese Cause Spezialregister

mfc0 $t0, Cause

Bearbeite Ausnahme
Stelle alle Register wieder her
Springe zurück ins eigentlich laufende Programm
mfc0 $k0, EPC
jr $k0

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 120

Vorzeichenbehaftete und –lose Befehle

Addition und Subtraktion
Multiplikation und Division
Set-less-than

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 121

Addition und Subtraktion

Vorzeichenbehaftet: add, addi, sub
Gleiche Operation wie vorzeichenlose Versionen
Aber: Prozessor löst Ausnahme bei arithmetischem Überlauf aus

Vorzeichenlos: addu, addiu, subu
Prüft nicht auf Überlauf
Hinweis: addiu vorzeichenerweitert den Direktwert

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 122

Multiplikation und Division

Vorzeichenbehaftet: mult, div

Vorzeichenlos: multu, divu

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 123

Set Less Than

Vorzeichenbehaftet: slt, slti

Vorzeichenlos: sltu, sltiu
Hinweis: sltiu vorzeichenerweitert den Direktwert vor dem Vergleich mit dem
Register

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 124

Laden von 8b und 16b breiten Daten

Vorzeichenbehaftet:
Vorzeichenerweitere schmale Daten auf volle 32b Registerbreite
Load halfword: lh
Load byte: lb

Vorzeichenlos:
Fülle schmale Daten mit Nullen auf volle 32b Registerbreite auf
Load halfword unsigned: lhu
Load byte: lbu

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 125

Gleitkommabefehle

Nicht Bestandteil des “eigentlichen” MIPS-Prozessors
Gleitkommakoprozessor (Coprocessor 1)

32 32-bit Gleitkommaregister ($f0 - $f31)
Single precision

Werte mit doppelter Genauigkeit benötigen je zwei aufeinanderfolgende Register
Z.B. $f0 und $f1, $f2 und $f3, etc.
Double precision-Register sind also: $f0, $f2, $f4, etc.

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 126

Gleitkommabefehle

Namen Registernummern Zweck

$fv0 - $fv1 0, 2 Rückgabewerte

$ft0 - $ft3 4, 6, 8, 10 Temporäre Variablen

$fa0 - $fa1 12, 14 Prozedurargumente

$ft4 - $ft8 16, 18 Temporäre Variablen

$fs0 - $fs5 20, 22, 24, 26, 28, 30 Erhaltene Variablen

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 127

Format für F-Typ Instruktionen

Opcode = 17 (0100012)
Single-precision:
cop = 16 (0100002)
add.s, sub.s, div.s, neg.s, abs.s, etc.

Double-precision:
cop = 17 (0100012)
add.d, sub.d, div.d, neg.d, abs.d, etc.

Drei Registeroperanden:
fs, ft: source operands
fd: destination operands

op cop ft fs fd funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

F-Typ

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 128

Weitere Gleitkommabefehle

Setzt boole’sches Spezialregister bei Vergleichen : fpcond
Gleichheit: c.seq.s, c.seq.d
Kleiner-als: c.lt.s, c.lt.d
Kleiner-als-oder-gleich: c.le.s, c.le.d
Beispiel: c.lt.s $fs1, $fs2

Bedingte Verzweigung abhängig von Spezialregister
bc1f: springt falls fpcond = FALSE
bc1t: springt falls fpcond = TRUE
Beispiel: bc1f toosmall

Loads und Stores: jeweils Single precision
lwc1: lwc1 $ft1, 42($s1)
swc1: swc1 $fs2, 17($sp)
Double precision braucht je zwei Anweisungen

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 6 - Prof. Andreas Koch | 129

Ausblick

Bisher Architektur
Programmierersicht

Nun Mikroarchitektur
Aufbau der zugrundeliegenden Hardware

	Technische Grundlagen�der Informatik – Kapitel 6
	Kapitel 6: Themen
	Einleitung
	Assemblersprache
	John Hennessy
	Entwurfsprinzipien für Architekturen
	Befehle: Addition
	Befehl: Subtraktion
	Entwurfsprinzip 1
	Befehle: Komplexere Abläufe
	Entwurfsprinzip 2
	Operanden
	Operanden: Register
	Entwurfsprinzip 3
	MIPS Registerfeld
	Operanden: Register
	Befehle mit Registerangaben
	Operanden: Speicher
	Wort-Adressierung von Daten im Speicher
	Lesen aus wort-adressiertem Speicher
	Schreiben in wort-adressiertem Speicher
	Byte-addressierbarer Speicher
	Lesen aus byte-addressiertem Speicher
	Schreiben in byte-addressiertem Speicher
	Speicherorganisation: Big-Endian und Little-Endian
	Speicherorganisation: Big-Endian und Little-Endian
	Beispiel: Big-Endian und Little-Endian
	Beispiel: Big-Endian und Little-Endian
	Entwurfsprinzip 4
	Operanden: Konstante Werte in Befehl�(immediates)
	Maschinensprache
	Befehlsformat R-Typ
	Beispiele für Befehle vom R-Typ
	Befehlsformat I-Typ
	Beispiel für Befehle vom I-Typ
	Befehlsformat J-Typ
	Übersicht über Befehlsformate
	Flexibilität durch gespeicherte Programme
	Im Speicher abgelegtes Programm
	Maschinensprache verstehen
	Programmierung
	Ada Lovelace, 1815 - 1852
	Logische Befehle
	Beispiele: Logische Befehle
	Befehle: Logische Befehle
	Beispiele: Logische Befehle
	Beispiel: Logische Befehle
	Schiebebefehle
	Schiebebefehle
	Handhabung von Konstanten
	Multiplikation und Division
	Verzweigungen und Sprünge
	Wiederholung: Programm im Speicher
	Bedingte Verzweigungen (beq)
	Nicht genommene Sprünge (bne)
	Unbedingte Verzweigungen / Springen (j)
	Unbedingte Verzweigungen (jr)
	Konstrukte in Hochsprachen
	If-Anweisung
	If-Anweisung
	If / Else -Anweisung
	If / Else-Anweisung
	While-Schleife
	While-Schleife
	For-Schleife
	For-Schleifen
	For-Schleifen
	Kleiner-Als Vergleiche
	Kleiner-als Vergleiche
	Datenfelder (arrays)
	Verwendung von Arrays
	Verwendung von Arrays
	Verwendung von Arrays
	Bearbeite Array in for-Schleife
	Bearbeite Array in for-Schleife
	Zeichendarstellung im ASCII-Code
	Zuordnung von Zeichen zu Codes
	Prozedur- und Funktionsaufruf
	Prozedur- und Funktionsaufruf
	Prozedur- und Funktionsaufruf
	Prozedur- und Funktionsaufruf
	Aufrufargumente und Rückgabewert
	Aufrufargumente und Rückgabewert
	Aufrufargumente und Rückgabewert
	Aufrufargumente und Rückgabewert
	Stack (auch Stapel- oder Kellerspeicher)
	Stack
	Verwendung des Stacks in Prozeduren
	Register auf Stack zwischenspeichern
	Veränderung des Stacks während diffofsums
	Sicherungskonventionen für Register
	Mehrfache Prozeduraufrufe: Sichern von $ra
	Erhalten von Registern mittels Stack
	Rekursive Prozeduraufrufe
	Rekursive Prozeduraufrufe
	Rekursive Prozeduraufrufe
	Veränderung des Stacks bei rekursivem Aufruf
	Zusammenfassung: Prozeduraufruf
	Adressierungsarten
	Adressierungsarten
	Adressierungsarten
	Adressierungsarten
	Adressierungsarten
	Compilieren und Ausführen einer Anwendung
	Grace Hopper, 1906 - 1992
	Was muss im Speicher abgelegt werden?
	MIPS Speicherorganisation (memory map)
	Beispielprogramm in “C”
	Beispielprogramm: MIPS Assemblersprache
	Beispielprogramm: Symboltabelle
	Beispielprogramm: Symboltabelle
	Beispielprogramm: Ausführbare Datei
	Beispielprogramm im Speicher
	Dies und Das
	Beispiele für Pseudobefehle
	Ausnahmebehandlung (exceptions)
	Spezialregister für Ausnahmebehandlung
	Auslöser für Ausnahmen
	Ausnahmen
	Vorzeichenbehaftete und –lose Befehle
	Addition und Subtraktion
	Multiplikation und Division
	Set Less Than
	Laden von 8b und 16b breiten Daten
	Gleitkommabefehle
	Gleitkommabefehle
	Format für F-Typ Instruktionen
	Weitere Gleitkommabefehle
	Ausblick

