
Technische Grundlagen
der Informatik – Kapitel 7
Prof. Dr. Andreas Koch
Fachbereich Informatik
TU Darmstadt

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 2

Kapitel 7: Themen

Einführung in die Mikroarchitektur
Analyse der Rechenleistung
Ein-Takt-Prozessor
Mehrtakt-Prozessor
Pipeline-Prozessor
Ausnahmebehandlung
Weiterführende Themen

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 3

Einleitung

Mikroarchitektur
Hardware-Implementierung einer Architektur

Prozessor:
Datenpfad: funktionale Blöcke
Steuerwerk: Steuersignale

Physik

Bauelemente

Analog-
schaltungen

Digital-
schaltungen

Logik

Mikro-
architektur

Architektur

Betriebs-
systeme

Anwendungs-
Software

Elektronen

Transistoren
Dioden

Verstärker
Filter

AND Gatter
NOT Gatter

Addierer
Speicher

Datenpfade
Steuerwerke

Instruktionen
Register

Gerätetreiber

Programme

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 4

Mikroarchitektur

Mehrere Implementierungen für eine Architektur
Ein-Takt

Jede Instruktion wird in einem Takt ausgeführt
Mehrtakt

Jede Instruktion wird in Teilschritte zerlegt
Pipelined

Jede Instruktion wird in Teilschritte zerlegt
Mehrere Instruktionen werden gleichzeitig ausgeführt

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 5

Rechenleistung eines Prozessors

Ausführungszeit eines Programms

Ausführungszeit = (# Instruktionen)(Takte/Instruktion)(Sekunden/Takt)

Definitionen:
Takte/Instruktion = CPI (cycles per instruction)
Sekunden/Takt = Taktperiode
1/CPI = Instruktionen/Takt = IPC (instructions per cycle)

Herausforderung: Einhalten zusätzlicher Anforderungen
Kosten
Energiebedarf
Rechenleistung

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 6

Unser erster MIPS Prozessor

Zunächst Untermenge des MIPS Befehlssatzes:
R-Typ Befehle: and, or, add, sub, slt
Speicherbefehle: lw, sw
Bedingte Verzweigungen: beq

Später hinzunehmen: addi und j

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 7

Architekturzustand

Auf Ebene der Architektur sichtbare Daten
Für den Programmierer zugänglich

Bestimmen vollständigen Zustand der Architektur
PC
32 Register
Speicher

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 8

Elemente des MIPS Architekturzustands

CLK

A RD
Befehls-

speicher

A1

A3
WD3

RD2
RD1

WE3

A2

CLK

Register-
feld

A RD
Daten-

speicher
WD

WEPCPC'

CLK

32 32
32 32

32

32

32 32

32

32

5

5

5

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 9

Ein-Takt MIPS Prozessor

Datenpfad
Steuerwerk

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 10

Ein-Takt Datenpfad: Holen eines lw Befehls

Ein load word Befehl (lw) soll ausgeführt werden
Schritt 1: Hole Instruktion

CLK

A RD
Befehls-

speicher

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register-
feld

A RD
Daten-

speicher
WD

WEPCPC' Instr

CLK

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 11

Ein-Takt Datenpfad: Lesen des Registers für lw

Schritt 2: Lese Quelloperand aus Registerfeld

Instr

CLK

A RD
Befehls-

speicher

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register-
feld

A RD
Daten-

speicher
WD

WE
PCPC'

25:21

CLK

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 12

Ein-Takt Datenpfad: Behandle lw Direktwert

Schritt 3: Vorzeichenerweitere den 16b Direktwert auf 32b Signal SignImm

SignImm

CLK

A RD
Befehls-

speicher

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Vorzeichenerw.

Register-
feld

A RD
Daten-

speicher
WD

WE
PCPC' Instr

25:21

15:0

CLK

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 13

Ein-Takt Datenpfad: Berechne lw Zieladdresse

Schritt 4: Berechne die effektive Speicheradresse

SignImm

CLK

A RD
Befehls-

speicher

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Vorzeichenerw.

Register-
feld

A RD
Daten-

speicher
WD

WE
PCPC' Instr

25:21

15:0

SrcB

ALUResult

SrcA Zero

CLK

ALUControl2:0

A
LU

010

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 14

Ein-Takt Datenpfad: Lese Speicher mit lw

Schritt 5: Lese Daten aus Speicher und schreibe sie ins passende Register

A1

A3
WD3

RD2

RD1
WE3

A2

SignImm

CLK

A RD
Befehls-

speicher

CLK

Vorzeichenerw.

Register-
feld

A RD
Daten-

speicher
WD

WE
PCPC' Instr

25:21

15:0

SrcB20:16

ALUResult ReadData
SrcA

RegWrite

Zero

CLK

ALUControl2:0

A
LU

0101

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 15

Ein-Takt Datenpfad : Erhöhe PC nach lw

Schritt 6: Bestimme Adresse des nächsten Befehls

SignImm

CLK

A RD

Befehls-
speicher

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Vorzeichenerw.

Register-
feld

A RD
Daten-

speicher
WD

WE
PCPC' Instr 25:21

15:0

SrcB
20:16

ALUResult ReadData

SrcA

PCPlus4

Result

RegWrite

Zero

CLK

ALUControl 2:0

A
LU

0101

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 16

Ein-Takt Datenpfad: sw

Schreiben Daten aus rt in den Speicher

SignImm

CLK

A RD
Befehls-

speicher

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Vorzeichenerw.

Register-
feld

A RD
Daten-

speicher
WD

WE
PCPC' Instr

25:21

20:16

15:0

SrcB
20:16

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

MemWriteRegWrite

Zero

CLK

ALUControl2:0

A
LU

10100

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 17

Ein-Takt Datenpfad: Instruktionen vom R-Typ

Lese aus rs und rt
Schreibe ALUResult ins Registerfeld
Schreibe nach rd (statt nach rt wie bei sw)

SignImm

CLK

A RD
Befehls-

speicher

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Vorzeichenerw.

Register-
feld

0
1

0
1

A RD
Daten-

speicher
WD

WE
0
1

PCPC' Instr
25:21

20:16

15:0

SrcB

20:16

15:11

ALUResult ReadData

WriteData

SrcA

PCPlus4
WriteReg4:0

Result

RegDst MemWrite MemtoRegALUSrcRegWrite

Zero

CLK

ALUControl2:0

A
LU

0
varies1 001

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 18

Ein-Takt Datenpfad: beq

Prüfe ob Werte in rs und rt gleich sind
Bestimme Adresse von Sprungziel (branch target adress, BTA):

BTA = (vorzeichenerweiterter Direktwert << 2) + (PC+4)

SignImm

CLK

A RD
Befehls-

speicher

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Vorzeichenerw.

Register-
feld

0
1

0
1

A RD
Daten-

speicher
WD

WE
0
1

PC0
1

PC' Instr 25:21

20:16

15:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg4:0

Result

RegDst Branch MemWrite MemtoRegALUSrcRegWrite

Zero

PCSrc

CLK

ALUControl2:0

AL
U

0
1100 x0x 1

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 19

Vollständiger Ein-Takt-Prozessor

SignImm

CLK

A RD
Befehls-

speicher

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Vorzeichenerw.

Register-
feld

0
1

0
1

A RD
Daten-

speicher
WD

WE
0
1

PC0
1

PC' Instr 25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg4:0

Result

31:26

RegDst

Branch
MemWrite
MemtoReg

ALUSrc

RegWrite

Op
Funct

Steuer-
werk

Zero

PCSrc

CLK

ALUControl2:0

A
LU

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 20

Steuerwerk

RegDst

Branch
MemWrite
MemtoReg

ALUSrc
Opcode5:0

Steuer-
werk

ALUControl2:0Funct5:0

Haupt-
decoder

ALUOp1:0

ALU-
Decoder

RegWrite

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 21

Zur Erinnerung: ALU

ALU

N N

N
3

A B

Y

F

F2:0 Funktion

000 A & B

001 A | B

010 A + B

011 unbenutzt

100 A & ~B

101 A | ~B

110 A - B

111 SLT

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 22

Zur Erinnerung: ALU

+

2 01

A B

Cout

Y
3

01

F2

F1:0

[N-1] S

NN

N

N

N NNN

N

2
Zero

Extend

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 23

Steuerwerk: ALU-Decoder

ALUOp1:0 Bedeutung
00 Addiere

01 Subtrahiere

10 Werte Funct-Feld aus

11 unbenutzt

ALUOp1:0 Funct ALUControl2:0

00 X 010 (Add)

X1 X 110 (Subtract)

1X 100000 (add) 010 (Add)

1X 100010 (sub) 110 (Subtract)

1X 100100 (and) 000 (And)

1X 100101 (or) 001 (Or)

1X 101010 (slt) 111 (SLT)

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 24

Steuerwerk: Hauptdecoder

Instruktion Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0

R-Typ 000000

lw 100011

sw 101011

beq 000100

SignImm

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PC0
1

PC' Instr 25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg4:0

Result

31:26

RegDst

Branch
MemWrite
MemtoReg

ALUSrc

RegWrite

Op
Funct

Control
Unit

Zero

PCSrc

CLK

ALUControl2:0

A
LU

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 25

Steuerwerk: Hauptdecoder

Instruction Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0

R-type 000000 1 1 0 0 0 0 10

lw 100011 1 0 1 0 0 0 00

sw 101011 0 X 1 0 1 X 00

beq 000100 0 X 0 1 0 X 01

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 26

Beispiel im Ein-Takt Datenpfad: or

SignImm

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PC0
1

PC' Instr 25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg4:0

Result

31:26

RegDst

Branch
MemWrite
MemtoReg

ALUSrc

RegWrite

Op
Funct

Control
Unit

Zero

PCSrc

CLK

ALUControl2:0

A
LU

001
0

0
1

0

0

1

0

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 27

Erweitere Funktionalität: addi

Keine Änderung am Datenpfad nötig

SignImm

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PC0
1

PC' Instr 25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg4:0

Result

31:26

RegDst

Branch
MemWrite
MemtoReg

ALUSrc

RegWrite

Op
Funct

Control
Unit

Zero

PCSrc

CLK

ALUControl2:0

A
LU

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 28

Erweitere Steuerwerk: addi

Instruktion Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0

R-Typ 000000 1 1 0 0 0 0 10
lw 100011 1 0 1 0 0 1 00
sw 101011 0 X 1 0 1 X 00
beq 000100 0 X 0 1 0 X 01
addi 001000

SignImm

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PC0
1

PC' Instr 25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg4:0

Result

31:26

RegDst

Branch
MemWrite
MemtoReg

ALUSrc

RegWrite

Op
Funct

Control
Unit

Zero

PCSrc

CLK

ALUControl2:0

A
LU

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 29

Erweitere Steuerwerk: addi

Instruktion Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0

R-Typ 000000 1 1 0 0 0 0 10

lw 100011 1 0 1 0 0 1 00

sw 101011 0 X 1 0 1 X 00

beq 000100 0 X 0 1 0 X 01

addi 001000 1 0 1 0 0 0 00

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 30

Erweitere Funktionalität: j

SignImm

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PC
0
1

PC' Instr 25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg4:0

Result

31:26

RegDst

Branch
MemWrite
MemtoReg

ALUSrc

RegWrite

Op
Funct

Control
Unit

Zero

PCSrc

CLK

ALUControl2:0

A
LU

0
1

25:0 <<2

27:0 31:28

PCJump

Jump

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 31

Steuerwerk: Hauptdecode

Instruktion Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0 Jump

R-Typ 000000 1 1 0 0 0 0 10 0
0
0
0

j 000100

lw 100011 1 0 1 0 0 1 00
sw 101011 0 X 1 0 1 X 00
beq 000100 0 X 0 1 0 X 01

SignImm

CLK

A RD

Instruction
Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PC
0
1

PC' Instr 25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg4:0

Result

31:26

RegDst

Branch
MemWrite
MemtoReg

ALUSrc

RegWrite

Op
Funct

Control
Unit

Zero

PCSrc

CLK

ALUControl2:0

A
LU

0
1

25:0 <<2

27:0 31:28

PCJump

Jump

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 32

Control Unit: Main Decoder

Instruction Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0 Jump

R-type 000000 1 1 0 0 0 0 10 0

0

0

0

j 000100 0 X X X 0 X XX 1

lw 100011 1 0 1 0 0 1 00

sw 101011 0 X 1 0 1 X 00

beq 000100 0 X 0 1 0 X 01

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 33

Wiederholung: Rechenleistung des Prozessors

Programmausführungszeit
= (# Instruktionen) (Takte/Instruktion)(Sekunden/Takt)
= # Instruktionen CPI TC

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 34

Rechenleistung des Ein-Takt-Prozessors

TC wird durch längsten Pfad bestimmt (lw)

SignImm

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PC0
1

PC' Instr 25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2
+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg4:0

Result

31:26

RegDst

Branch
MemWrite
MemtoReg

ALUSrc

RegWrite

Op
Funct

Control
Unit

Zero

PCSrc

CLK

ALUControl2:0

A
LU1

010
0

1

0

1

0 0

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 35

Rechenleistung des Ein-Takt-Prozessors

Kritischer Pfad:
Tc = tpcq_PC + tmem + max(tRFread, tsext + tmux) + tALU + tmem + tmux + tRFsetup

In vielen Implementierungen: Kritischer Pfad durch
Speicher, ALU, Registerfeld

Damit:
Tc = tpcq_PC + 2tmem + tRFread + tmux + tALU + tRFsetup

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 36

Ein-Takt Prozessor Rechenleistung: Beispiel

Tc =

Element Parameter Verzögerung (ps)

Register Clock-to-Q tpcq_PC 30

Register setup tsetup 20

Multiplexer tmux 25

ALU tALU 200

Speicher lesen tmem 250

Registerfeld lesen tRFread 150

Registerfeld setup tRFsetup 20

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 37

Ein-Takt Prozessor Rechenleistung: Beispiel

Tc = tpcq_PC + 2tmem + tRFread + tmux + tALU + tRFsetup
= [30 + 2(250) + 150 + 25 + 200 + 20] ps
= 925 ps

Element Parameter Verzögerung (ps)

Register Clock-to-Q tpcq_PC 30

Register setup tsetup 20

Multiplexer tmux 25

ALU tALU 200

Speicher lesen tmem 250

Registerfeld lesen tRFread 150

Registerfeld setup tRFsetup 20

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 38

Ein-Takt Prozessor Rechenleistung: Beispiel

Auszuführen: Programm mit 100 Milliarden Instruktionen
Auf Ein-Takt MIPS Prozessor

Ausführungszeit =

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 39

Ein-Takt Prozessor Rechenleistung: Beispiel

Auszuführen: Programm mit 100 Milliarden Instruktionen
Auf Ein-Takt MIPS Prozessor

Ausführungszeit = # Instruktionen CPI TC
= (100 × 109) (1) (925 × 10-12 s)
= 92,5 Sekunden

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 40

Mehrtakt-MIPS-Prozessor

Ein-Takt-Mikroarchitektur:
+ einfach
- Taktfrequenz wird durch langsamste Instruktion bestimmt (lw)
- Zwei Addierer / ALUs und zwei Speicher

Mehrtaktmikroarchitektur:
+ höhere Taktfrequenz
+ einfachere Instruktionen laufen schneller
+ bessere Wiederverwendung von Hardware in verschiedenen Takten
- aufwendigere Ablaufsteuerung

Gleiche Grundkomponenten
Datenpfad
Steuerwerk

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 41

Zustandselemente im Mehrtaktprozessor

CLK

A
RD

Instr / Data
Memory

A1

A3

W D3

RD2
RD1

W E3

A2

CLK

Register
File

PCPC'

W D

W E

CLK

EN

Ersetze getrennte Instruktions- und Datenspeicher
Harvard-Architektur

Durch einen gemeinsamen Speicher
Von Neumann-Architektur
Heute weiter verbreitet

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 42

Mehrtaktdatenpfad: Instruktionen holen (fetch)

b

CLK

A
R D

Instr / D ata
M em ory

A1

A3

W D 3

R D 2
R D 1

W E3

A2

C LK

R egister
F ile

PCPC ' Instr

C LK

W D

W E

C LK

EN

IR W rite

Beispiel: Ausführung von lw
Schritt 1: Hole Instruktion

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 43

Mehrtaktdatenpfad: Lese Register für lw

b

CLK

A
R D

Instr / D ata
M em ory

A1

A3

W D 3

R D 2
R D 1

W E3

A2

C LK

R egister
F ile

PCPC ' Instr 25:21

C LK

W D

W E

C LK C LK

A

EN

IR W rite

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 44

Mehrtaktdatenpfad: Werte lw Direktwert aus

SignImm

b

CLK

A
R D

Instr / D ata
M em ory

A1

A3

W D 3

R D 2
R D 1

W E3

A2

C LK

Sign Extend

R egister
F ile

PCPC ' Instr 25:21

15:0

C LK

W D

W E

C LK C LK

A

EN

IR W rite

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 45

Mehrtaktdatenpfad: Bestimme effektive
Adresse für lw

SignImm

b

C LK

A
R D

Instr / D ata
M em ory

A1

A3

W D 3

R D 2
R D 1

W E3

A2

C LK

Sign Extend

Reg ister
F ile

PCPC ' Instr 25:21

15:0

SrcB

ALUR esult

SrcA

ALUO ut

C LK

ALU Contro l2:0

A
LU

W D

W E

C LK C LK

A C LK

EN

IR W rite

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 46

Mehrtaktdatenpfad: Lesezugriff von lw

SignImm

b

C LK

A
R D

Instr / D ata
M em ory

A1

A3

W D 3

R D 2
R D 1

W E3

A2

C LK

Sign Extend

Reg ister
F ile

PCPC ' Instr 25:21

15:0

SrcB

ALUR esult

SrcA

ALUO ut

C LK

ALU Contro l2:0

A
LU

W D

W E

C LK

Adr

D ata

C LK

C LK

A C LK

EN

IR W riteIorD

0
1

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 47

Mehrtaktdatenpfad: Schreibe Register in lw

SignImm

b

C LK

A
R D

Instr / D ata
M em ory

A1

A3

W D 3

R D 2
R D 1

W E3

A2

C LK

Sign Extend

Reg ister
F ile

PCPC ' Instr 25:21

15:0

SrcB
20:16

ALUR esult

SrcA

ALUO u

R egW rite

t

C LK

ALU Contro l2:0

A
LU

W D

W E

C LK

Adr

D ata

C LK

C LK

A C LK

EN

IR W riteIorD

0
1

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 48

Mehrtaktdatenpfad: Erhöhe PC

PCW rite

S ignImm

b

C LK

A
RD

Instr / Data
M em ory

A1

A3

W D 3

RD 2
RD 1

W E3

A2

C LK

Sign Extend

Register
F ile

0
1PCPC ' Instr 25:21

15:0

SrcB
20:16

ALUR esu lt

S rcA

ALUO ut

ALUSrcARegW rite

C LK

ALUC ontro l2:0

A
LU

W D

W E

CLK

Adr

D ata

C LK

CLK

A

00
01
10
11

4

CLK

ENE N

ALU SrcB 1:0IRW riteIo rD

0
1

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 49

Mehrtaktdatenpfad: Nun Ausführung von sw

SignImm

b

C LK

A
RD

Instr / Data
M em ory

A1

A3

W D 3

RD 2
RD 1

W E3

A2

C LK

Sign Extend

Register
F ile

0
1PC 0

1

PC ' Instr 25:21

20:16

15:0

SrcB
20:16

ALUR esu lt

SrcA

ALUO ut

M emW rite ALUSrcARegW rite

C LK

ALUC ontro l2:0

A
LU

W D

W E

CLK

Adr

D ata

C LK

CLK

A

00
01
10
11

4

CLK

ENE N

ALU SrcB 1:0IRW riteIo rDPCW rite

B

Schreibe Daten aus rt in Speicher

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 50

Mehrtaktdatenpfad: Instruktion vom R-Typ

0
1

S ignImm

b

C LK

A
RD

Instr / Data
M em ory

A1

A3

W D 3

RD 2
RD 1

W E3

A2

C LK

Sign Extend

Register
F ile

0
1

0
1PC 0

1

PC ' Instr 25:21

20:16

15:0

SrcB20:16

15:11

ALUR esu lt

SrcA

ALUO ut

RegDstM emW rite M emtoR eg ALUSrcARegW rite

C LK

ALUC ontro l2:0

A
LU

W D

W E

CLK

Adr

D ata

C LK

CLK

A
B 00

01
10
11

4

CLK

E NE N

ALU SrcB 1:0IRW riteIo rDPCW rite

Lese Werte aus rs und rt
Schreibe ALUResult ins Registerfeld
Schreibe Wert nach rd (statt nach rt)

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 51

Prüfe, ob Werte in rs und rt gleich sind
Bestimme Adresse des Sprungziels (branch target address):

BTA = (vorzeichenerweiterter Direktwert << 2) + (PC+4)

Mehrtaktdatenpfad: beq

SignImm

b

CLK

A
RD

Instr / Data
Memory

A1

A3

WD3

RD2
RD1

WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1 0

1

PC 0
1

'PC Instr 25:21

20:16

15:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

RegDst BranchMemWrite MemtoReg ALUSrcARegWrite

Zero

PCSrc

CLK

ALUControl2:0

A
LU

WD

WE

CLK

Adr

0
1

Data

CLK

CLK

A
B 00

01
10
11

4

CLK

ENEN

ALUSrcB1:0IRWriteIorD PCWrite

PCEn

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 52

Vollständiger Mehrtaktprozessor

SignImm

CLK

A
RD

Instr / Data
Memory

A1

A3

WD3

RD2
RD1

WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1 0

1

PC 0
1

PC' Instr 25:21

20:16

15:0

5:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

31:26

R
egD

st

Branch

MemWrite

M
em

toR
eg

ALUSrcA
RegWrite

Op
Funct

Control
Unit

Zero

PCSrc

CLK

CLK

ALUControl2:0

A
LU

WD

WE

CLK

Adr

0
1

Data

CLK

CLK

A
B 00

01
10
11

4

CLK

ENEN

ALUSrcB1:0IRWrite

IorD

PCWrite
PCEn

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 53

Steuerwerk

ALUSrcA

PCSrc

Branch

ALUSrcB1:0

Opcode5:0

Control
Unit

ALUControl2:0Funct5:0

Main
Controller

(FSM)

ALUOp1:0

ALU
Decoder

RegWrite

PCWrite

IorD

MemWrite
IRWrite

RegDst
MemtoReg

Register
Enables

Multiplexer
Selects

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 54

Hauptsteuerwerk: Holen eines Befehls

SignImm

CLK

A
RD

Instr / Data
Memory

A1

A3

WD3

RD2
RD1

WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1 0

1

PC 0
1

PC' Instr 25:21

20:16

15:0

5:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

31:26

R
egD

st

Branch

MemWrite

M
em

toR
eg

ALUSrcA
RegWrite

Op
Funct

Control
Unit

Zero

PCSrc

CLK

CLK

ALUControl2:0

A
LU

WD

WE

CLK

Adr

0
1

Data

CLK

CLK

A
B 00

01
10
11

4

CLK

ENEN

ALUSrcB1:0IRWrite

IorD

PCWrite
PCEn

0

1 1

0

X

X

0
0

01

010
0

1
0

Reset

S0: Fetch

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 55

Hauptsteuerwerk: Holen eines Befehls

SignImm

CLK

A
RD

Instr / Data
Memory

A1

A3

WD3

RD2
RD1

WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1 0

1

PC 0
1

PC' Instr 25:21

20:16

15:0

5:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

31:26

R
egD

st

Branch

MemWrite

M
em

toR
eg

ALUSrcA
RegWrite

Op
Funct

Control
Unit

Zero

PCSrc

CLK

CLK

ALUControl2:0

A
LU

WD

WE

CLK

Adr

0
1

Data

CLK

CLK

A
B 00

01
10
11

4

CLK

ENEN

ALUSrcB1:0IRWrite

IorD

PCWrite
PCEn

0

1 1

0

X

X

0
0

01

010
0

1
0

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 0

IRWrite
PCWrite

Reset

S0: Fetch

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 56

Hauptsteuerwerk: Dekodieren eines Befehls

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 0

IRWrite
PCWrite

Reset

S0: Fetch S1: Decode

SignImm

CLK

A
RD

Instr / Data
Memory

A1

A3

WD3

RD2
RD1

WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1 0

1

PC 0
1

PC' Instr 25:21

20:16

15:0

5:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

31:26

R
egD

st

Branch

MemWrite

M
em

toR
eg

ALUSrcA
RegWrite

Op
Funct

Control
Unit

Zero

PCSrc

CLK

CLK

ALUControl2:0

A
LU

WD

WE

CLK

Adr

0
1

Data

CLK

CLK

A
B 00

01
10
11

4

CLK

ENEN

ALUSrcB1:0IRWrite

IorD

PCWrite
PCEn

X

0 0

0

X

X

0
X

XX

XXX
X

0
0

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 57

Hauptsteuerwerk: Adressberechnung

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 0

IRWrite
PCWrite

Reset

S0: Fetch

S2: MemAdr

S1: Decode

Op = LW
or

Op = SW

SignImm

CLK

A
RD

Instr / Data
Memory

A1

A3

WD3

RD2
RD1

WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1 0

1

PC 0
1

PC' Instr 25:21

20:16

15:0

5:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

31:26

R
egD

st

Branch

MemWrite

M
em

toR
eg

ALUSrcA
RegWrite

Op
Funct

Control
Unit

Zero

PCSrc

CLK

CLK

ALUControl2:0

A
LU

WD

WE

CLK

Adr

0
1

Data

CLK

CLK

A
B 00

01
10
11

4

CLK

ENEN

ALUSrcB1:0IRWrite

IorD

PCWrite
PCEn

X

0 0

0

X

X

0
1

10

010
X

0
0

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 58

Hauptsteuerwerk: Adressberechnung

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 0

IRWrite
PCWrite

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

Reset

S0: Fetch

S2: MemAdr

S1: Decode

Op = LW
or

Op = SW

SignImm

CLK

A
RD

Instr / Data
Memory

A1

A3

WD3

RD2
RD1

WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1 0

1

PC 0
1

PC' Instr 25:21

20:16

15:0

5:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

31:26

R
egD

st

Branch

MemWrite

M
em

toR
eg

ALUSrcA
RegWrite

Op
Funct

Control
Unit

Zero

PCSrc

CLK

CLK

ALUControl2:0

A
LU

WD

WE

CLK

Adr

0
1

Data

CLK

CLK

A
B 00

01
10
11

4

CLK

ENEN

ALUSrcB1:0IRWrite

IorD

PCWrite
PCEn

X

0 0

0

X

X

0
1

10

010
X

0
0

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 59

Hauptsteuerwerk: FSM für lw

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 0

IRWrite
PCWrite

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

IorD = 1

Reset

S0: Fetch

S2: MemAdr

S1: Decode

S3: MemRead

Op = LW
or

Op = SW

Op = LW

RegDst = 0
MemtoReg = 1

RegWrite

S4: Mem
Writeback

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 60

Hauptsteuerwerk: FSM für sw

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 0

IRWrite
PCWrite

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

IorD = 1 IorD = 1
MemWrite

Reset

S0: Fetch

S2: MemAdr

S1: Decode

S3: MemRead
S5: MemWrite

Op = LW
or

Op = SW

Op = LW
Op = SW

RegDst = 0
MemtoReg = 1

RegWrite

S4: Mem
Writeback

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 61

Hauptsteuerwerk: FSM für R-Typ

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 0

IRWrite
PCWrite

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

IorD = 1
RegDst = 1

MemtoReg = 0
RegWrite

IorD = 1
MemWrite

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

Reset

S0: Fetch

S2: MemAdr

S1: Decode

S3: MemRead
S5: MemWrite

S6: Execute

S7: ALU
Writeback

Op = LW
or

Op = SW
Op = R-type

Op = LW
Op = SW

RegDst = 0
MemtoReg = 1

RegWrite

S4: Mem
Writeback

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 62

Hauptsteuerwerk: FSM für beq

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 0

IRWrite
PCWrite

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

IorD = 1
RegDst = 1

MemtoReg = 0
RegWrite

IorD = 1
MemWrite

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCSrc = 1

Branch

Reset

S0: Fetch

S2: MemAdr

S1: Decode

S3: MemRead
S5: MemWrite

S6: Execute

S7: ALU
Writeback

S8: Branch

Op = LW
or

Op = SW
Op = R-type

Op = BEQ

Op = LW
Op = SW

RegDst = 0
MemtoReg = 1

RegWrite

S4: Mem
Writeback

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 63

Vollständiges Hauptsteuerwerk für Mehrtakt-CPU

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 0

IRWrite
PCWrite

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

IorD = 1
RegDst = 1

MemtoReg = 0
RegWrite

IorD = 1
MemWrite

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCSrc = 1

Branch

Reset

S0: Fetch

S2: MemAdr

S1: Decode

S3: MemRead
S5: MemWrite

S6: Execute

S7: ALU
Writeback

S8: Branch

Op = LW
or

Op = SW
Op = R-type

Op = BEQ

Op = LW
Op = SW

RegDst = 0
MemtoReg = 1

RegWrite

S4: Mem
Writeback

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 64

Erweiterung des Hauptsteuerwerks: addi

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 0

IRWrite
PCWrite

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

IorD = 1
RegDst = 1

MemtoReg = 0
RegWrite

IorD = 1
MemWrite

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCSrc = 1

Branch

Reset

S0: Fetch

S2: MemAdr

S1: Decode

S3: MemRead
S5: MemWrite

S6: Execute

S7: ALU
Writeback

S8: Branch

Op = LW
or

Op = SW
Op = R-type

Op = BEQ

Op = LW
Op = SW

RegDst = 0
MemtoReg = 1

RegWrite

S4: Mem
Writeback

Op = ADDI

S9: ADDI
Execute

S10: ADDI
Writeback

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 65

Erweiterung des Hauptsteuerwerks: addi

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 0

IRWrite
PCWrite

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

IorD = 1
RegDst = 1

MemtoReg = 0
RegWrite

IorD = 1
MemWrite

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCSrc = 1

Branch

Reset

S0: Fetch

S2: MemAdr

S1: Decode

S3: MemRead
S5: MemWrite

S6: Execute

S7: ALU
Writeback

S8: Branch

Op = LW
or

Op = SW
Op = R-type

Op = BEQ

Op = LW
Op = SW

RegDst = 0
MemtoReg = 1

RegWrite

S4: Mem
Writeback

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

RegDst = 0
MemtoReg = 0

RegWrite

Op = ADDI

S9: ADDI
Execute

S10: ADDI
Writeback

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 66

Erweiterung des Datenpfads für j

SignImm

CLK

A
RD

Instr / Data
Memory

A1

A3

WD3

RD2
RD1

WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1PC 0

1

PC' Instr 25:21

20:16

15:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

RegDst BranchMemWrite MemtoReg ALUSrcARegWrite

Zero

PCSrc1:0

CLK

ALUControl2:0

A
LU

WD

WE

CLK

Adr

0
1

Data

CLK

CLK

A
B 00

01
10
11

4

CLK

ENEN

ALUSrcB1:0IRWriteIorD PCWrite

PCEn

00
01
10

<<2

25:0 (jump)

31:28

27:0

PCJump

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 67

Erweiterung des Hauptsteuerwerks um j

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 00

IRWrite
PCWrite

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

IorD = 1
RegDst = 1

MemtoReg = 0
RegWrite

IorD = 1
MemWrite

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCSrc = 01

Branch

Reset

S0: Fetch

S2: MemAdr

S1: Decode

S3: MemRead
S5: MemWrite

S6: Execute

S7: ALU
Writeback

S8: Branch

Op = LW
or

Op = SW
Op = R-type

Op = BEQ

Op = LW
Op = SW

RegDst = 0
MemtoReg = 1

RegWrite

S4: Mem
Writeback

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

RegDst = 0
MemtoReg = 0

RegWrite

Op = ADDI

S9: ADDI
Execute

S10: ADDI
Writeback

Op = J

S11: Jump

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 68

Erweiterung des Hauptsteuerwerks um j

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 00

IRWrite
PCWrite

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

IorD = 1
RegDst = 1

MemtoReg = 0
RegWrite

IorD = 1
MemWrite

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCSrc = 01

Branch

Reset

S0: Fetch

S2: MemAdr

S1: Decode

S3: MemRead
S5: MemWrite

S6: Execute

S7: ALU
Writeback

S8: Branch

Op = LW
or

Op = SW
Op = R-type

Op = BEQ

Op = LW
Op = SW

RegDst = 0
MemtoReg = 1

RegWrite

S4: Mem
Writeback

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

RegDst = 0
MemtoReg = 0

RegWrite

Op = ADDI

S9: ADDI
Execute

S10: ADDI
Writeback

PCSrc = 10
PCWrite

Op = J

S11: Jump

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 69

Rechenleistung des Mehrtaktprozessors

Instruktionen benötigen unterschiedliche viele Takte:
3 Takte : beq, j
4 Takte : R-Typ, sw, addi
5 Takte : lw

CPI wird bestimmt als gewichteter Durchschnitt

SPECint 2000 Benchmark:
25% Laden
10% Speichern
11% Verzweigungen

2% Sprünge
52% R-Typ

Durchschnittliche CPI = (0,11 + 0,2)(3) + (0,52 + 0,10)(4) + (0,25)(5) = 4,12

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 70

Rechenleistung des Mehrtaktprozessors

Kritischer Pfad:
Tc =

SignImm

CLK

A
RD

Instr / Data
Memory

A1

A3

WD3

RD2
RD1

WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1 0

1

PC 0
1

PC' Instr 25:21

20:16

15:0

5:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

31:26

R
egD

st

Branch

MemWrite

M
em

toR
eg

ALUSrcA
RegWrite

Op
Funct

Control
Unit

Zero

PCSrc

CLK

CLK

ALUControl2:0

A
LU

WD

WE

CLK

Adr

0
1

Data

CLK

CLK

A
B 00

01
10
11

4

CLK

ENEN

ALUSrcB1:0IRWrite

IorD

PCWrite
PCEn

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 71

Rechenleistung des Mehrtaktprozessors

Kritischer Pfad :
Tc = tpcq + tmux + max(tALU + tmux, tmem) + tsetup

SignImm

CLK

A
RD

Instr / Data
Memory

A1

A3

WD3

RD2
RD1

WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1 0

1

PC 0
1

PC' Instr 25:21

20:16

15:0

5:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

31:26

R
egD

st

Branch

MemWrite

M
em

toR
eg

ALUSrcA
RegWrite

Op
Funct

Control
Unit

Zero

PCSrc

CLK

CLK

ALUControl2:0

A
LU

WD

WE

CLK

Adr

0
1

Data

CLK

CLK

A
B 00

01
10
11

4

CLK

ENEN

ALUSrcB1:0IRWrite

IorD

PCWrite
PCEn

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 72

Beispiel: Rechenleistung Mehrtaktprozessor

Tc =

Element Parameter Verzögerung (ps)

Register Clock-to-Q tpcq 30

Register Setup tsetup 20

Multiplexer tmux 25

ALU tALU 200

Speicher Lesen tmem 250

Registerfeld Lesen tRFread 150

Registerfeld Setup tRFsetup 20

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 73

Beispiel: Rechenleistung Mehrtaktprozessor

Tc = tpcq_PC + tmux + max(tALU + tmux, tmem) + tsetup
= tpcq_PC + tmux + tmem + tsetup
= [30 + 25 + 250 + 20] ps
= 325 ps

Element Parameter Verzögerung (ps)

Register Clock-to-Q tpcq 30

Register Setup tsetup 20

Multiplexer tmux 25

ALU tALU 200

Speicher Lesen tmem 250

Registerfeld Lesen tRFread 150

Registerfeld Setup tRFsetup 20

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 74

Beispiel: Rechenleistung Mehrtaktprozessor

Führe Programm mit 100 Milliarden Instruktionen auf Mehrtaktprozessor aus
CPI = 4,12
Tc = 325 ps

Ausführungszeit =

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 75

Beispiel: Rechenleistung Mehrtaktprozessor

Führe Programm mit 100 Milliarden Instruktionen auf Mehrtaktprozessor aus
CPI = 4,12
Tc = 325 ps

Ausführungszeit = (# Instruktionen) × CPI × Tc
= (100 × 109) (4,12) (325 × 10-12)
= 133,9 Sekunden

Langsamer als Ein-Takt-Prozessor (brauchte 92,5 Sekunden).
Warum?

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 76

Beispiel: Rechenleistung Mehrtaktprozessor

Führe Programm mit 100 Milliarden Instruktionen auf Mehrtaktprozessor aus
CPI = 4,12
Tc = 325 ps

Ausführungszeit = (# Instruktionen) × CPI × Tc
= (100 × 109) (4,12) (325 × 10-12)
= 133,9 Sekunden

Langsamer als Ein-Takt-Prozessor (brauchte 92,5 Sekunden).
Unterschiedlich lange Anzahl von Ausführungstakten (bis zu 5 für lw)

Aber nicht 5x schnellere Taktfrequenz
Nun zusätzliche Verzögerungen für sequentielle Logik mehrfach je Befehl

tpcq + tsetup= 50 ps

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 77

Rückblick: Ein-Takt MIPS Prozessor

SignImm

CLK

A RD

Instruction
Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PC
0
1 PC' Instr 25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg4:0

Result

31:26

RegDst

Branch
MemWrite
MemtoReg

ALUSrc

RegWrite

Op
Funct

Control
Unit

Zero

PCSrc

CLK

ALUControl2:0

A
LU

0
1

25:0 <<2

27:0 31:28

PCJump

Jump

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 78

Rückblick: Mehrtakt-MIPS-Prozessor

ImmExt

CLK

A
RD

Instr / Data
Memory

A1

A3

WD3

RD2
RD1

WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1PC 0

1

PC' Instr 25:21

20:16

15:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

Zero
CLK

A
LU

WD

WE

CLK

Adr

0
1

Data

CLK

CLK

A
B 00

01
10
11

4

CLK

ENEN
00
01
10

<<2

25:0 (Addr)

31:28

27:0

PCJump

5:0

31:26

Branch

MemWrite

ALUSrcA
RegWrite

Op
Funct

Control
Unit

PCSrc

CLK

ALUControl2:0

ALUSrcB1:0IRWrite

IorD

PCWrite
PCEn

R
egD

st

M
em

toR
eg

Potentiell etwas kleiner.

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 79

MIPS Prozessor mit Pipelining

Zeitliche Parallelität

Teile Ablauf im Ein-Takt-Prozessor in fünf Stufen:
Hole Instruktion (Fetch)
Dekodiere Bedeutung von Instruktion (Decode)
Führe Instruktion aus (Execute)
Greife auf Speicher zu (Memory)
Schreibe Ergebnisse zurück (Writeback)

Füge Pipeline-Register zwischen den Stufen ein

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 80

Rechenleistung: Ein-Takt und Pipelined

Zeit (ps)
Instr

Fetch
Instruction

Decode
Read Reg

Execute
ALU

Memory
Read / Write

Write
Reg1

2

0 100 200 300 400 500 600 700 800 900 1100 1200 1300 1400 1500 1600 1700 1800 19001000

Instr

1

2

3

Fetch
Instruction

Decode
Read Reg

Execute
ALU

Memory
Read / Write

Write
Reg

Fetch
Instruction

Decode
Read Reg

Execute
ALU

Memory
Read/Write

Write
Reg

Fetch
Instruction

Decode
Read Reg

Execute
ALU

Memory
Read/Write

Write
Reg

Fetch
Instruction

Decode
Read Reg

Execute
ALU

Memory
Read/Write

Write
Reg

Ein-Takt

Pipelined

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 81

Abstraktere Darstellung des Pipelinings

Zeit (Takte)

lw $s2, 40($0) RF 40
$0

RF
$s2

+ DM

RF $t2
$t1

RF
$s3

+ DM

RF $s5
$s1

RF
$s4

- DM

RF $t6
$t5

RF
$s5

& DM

RF 20
$s1

RF
$s6

+ DM

RF $t4
$t3

RF
$s7

| DM

add $s3, $t1, $t2

sub $s4, $s1, $s5

and $s5, $t5, $t6

sw $s6, 20($s1)

or $s7, $t3, $t4

1 2 3 4 5 6 7 8 9 10

add

IM

IM

IM

IM

IM

IM lw

sub

and

sw

or

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 82

Ein-Takt- und Pipelined-Datenpfad

SignImmE

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PCF0
1

PC' InstrD
25:21

20:16

15:0

SrcBE

20:16

15:11

RtE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

ResultW

PCPlus4EPCPlus4F

ZeroM

CLK CLK

A
LU

WriteRegE4:0

CLK
CLK

CLK

SignImm

CLK

A RD
Instruction

Memory
+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PC0
1

PC' Instr 25:21

20:16

15:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg4:0

Result

Zero

CLK

A
LU

Fetch Decode Execute Memory Writeback

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 83

Korrigierter Pipelined-Datenpfad

SignImmE

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PCF0
1

PC' InstrD 25:21

20:16

15:0

SrcBE

20:16

15:11

RtE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

WriteRegM4:0

ResultW

PCPlus4EPCPlus4F

ZeroM

CLK CLK

WriteRegW4:0

A
LU

WriteRegE4:0

CLK
CLK

CLK

Fetch Decode Execute Memory Writeback

WriteReg muss zur gleichen Zeit am Registerfeld ankommen wie Result

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 84

Steuersignale für Pipelined-Datenpfad

SignImmE

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PCF0
1

PC' InstrD
25:21

20:16

15:0

5:0

SrcBE

20:16

15:11

RtE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

WriteRegM4:0

ResultW

PCPlus4EPCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD

ALUSrcD

RegWriteD

Op

Funct

Control
Unit

ZeroM

PCSrcM

CLK CLK CLK

CLK CLK

WriteRegW4:0

ALUControlE2:0

A
LU

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

BranchE BranchM

RegDstE

ALUSrcE

WriteRegE4:0

Identisch zu Ein-Takt-Steuerwerk, aber Signale verzögert über Pipeline-Stufen

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 85

Abhängigkeiten zwischen Pipeline-Stufen
(hazards)

Treten auf wenn eine
Instruktion vom Ergebnis einer vorhergehenden abhängt
… diese aber noch kein Ergebnis geliefert hat

Arten von Hazards
Data Hazard: z.B. Neuer Wert von Register noch nicht in Registerfeld
eingetragen
Control Hazard: Unklar welche Instruktion als nächstes ausgeführt werden
muss

Tritt bei Verzweigungen auf

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 86

Data Hazard

Zeit (Takte)

add $s0, $s2, $s3 RF $s3

$s2
RF

$s0
+ DM

RF $s1

$s0
RF

$t0
& DM

RF $s0

$s4
RF

$t1
| DM

RF $s5

$s0
RF

$t2
- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM add

or

sub

Hier: Read-after-Write Hazard (RAW)
- $s0 „muss vor Lesen geschrieben werden“

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 87

Umgang mit Data Hazards

Plane Wartezeiten von Anfang an ein
Füge nops zur Compile-Zeit ein
scheduling

Stelle Maschinencode zur Compile-Zeit um
scheduling / reordering

Leite Daten zur Laufzeit schneller über Abkürzungen weiter
bypassing / forwarding

Halte Prozessor zur Laufzeit an bis Daten da sind
stalling

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 88

Beseitigung von Data Hazards zur Compile-Zeit

Füge ausreichend viele nops ein bis Ergebnis bereitsteht
Oder schiebe unabhängige Instruktionen nach vorne (statt nops)

Zeit (Takte)

add $s0, $s2, $s3 RF $s3

$s2
RF

$s0
+ DM

RF $s1

$s0
RF

$t0
& DM

RF $s0

$s4
RF$t1

| DM

RF $s5

$s0
RF

$t2
- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM add

or

sub

nop

nop

RF RFDMnopIM

RF RFDMnopIM

9 10

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 89

Data Forwarding: “Abkürzungen” einbauen

Zeit (Takte)

add $s0, $s2, $s3 RF $s3

$s2
RF

$s0
+ DM

RF $s1

$s0
RF

$t0
& DM

RF $s0

$s4
RF

$t1
| DM

RF $s5

$s0
RF

$t2
- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM add

or

sub

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 90

Data Forwarding: “Abkürzungen” einbauen

SignImmE

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign
Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE

1
0

PCF0
1

PC' InstrD 25:21

20:16

15:0

5:0

SrcBE

25:21

15:11

RsE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

WriteRegM4:0

ResultW

PCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD2:0

ALUSrcD

RegWriteD

Op

Funct

Control
Unit

PCSrcM

CLK CLK CLK

CLK CLK

WriteRegW4:0

ALUControlE2:0

A
LU

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

RegDstE

ALUSrcE

WriteRegE4:0

00
01
10

00
01
10

SignImmD

Fo
rw

ar
dA

E

Fo
rw

ar
dB

E

20:16 RtE

RsD

RdD

RtD

R
eg

W
rit

eM

R
eg

W
rit

eW

Hazard Unit

PCPlus4E

BranchE BranchM

ZeroM

RegWriteM RegWriteW

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 91

Data Forwarding: “Abkürzungen” einbauen

“Abkürzung” zur Execute-Stufe von
Memory-Stufe oder
Writeback-Stufe

Forwarding-Logik für Signal ForwardAE (Weiterleiten von Operand A):
if ((rsE != 0) AND (rsE == WriteRegM) AND RegWriteM) then

ForwardAE = 10
else if ((rsE != 0) AND (rsE == WriteRegW) AND RegWriteW) then

ForwardAE = 01
else

ForwardAE = 00

Forwarding-Logik für Signal ForwardBE (Weiterleiten von Operand B) analog
Ersetze rsE durch rtE

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 92

Anhalten des Prozessors (stalling)

Zeit (Takte)

lw $s0, 40($0) RF 40

$0
RF

$s0
+ DM

RF $s1

$s0
RF

$t0
& DM

RF $s0

$s4
RF

$t1
| DM

RF $s5

$s0
RF

$t2
- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM lw

or

sub

Problem!

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 93

Anhalten des Prozessors (stalling)

Zeit (Takte)

lw $s0, 40($0) RF 40

$0
RF

$s0
+ DM

RF $s1

$s0
RF

$t0
& DM

RF $s0

$s4
RF

$t1
| DM

RF $s5

$s0
RF

$t2
- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM lw

or

sub

9

RF $s1

$s0

IM or

Anhalten

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 94

Erweiterung der Hazard-Einheit für Stalling

SignImmE

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign
Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE

1
0

PCF0
1

PC' InstrD 25:21

20:16

15:0

5:0

SrcBE

25:21

15:11

RsE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

WriteRegM4:0

ResultW

PCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD2:0

ALUSrcD

RegWriteD

Op

Funct

Control
Unit

PCSrcM

CLK CLK CLK

CLK CLK

WriteRegW4:0

ALUControlE2:0

A
LU

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

RegDstE

ALUSrcE

WriteRegE4:0

00
01
10

00
01
10

SignImmD

St
al

lF

St
al

lD

Fo
rw

ar
dA

E

Fo
rw

ar
dB

E

20:16 RtE

RsD

RdD

RtD

R
eg

W
rit

eM

R
eg

W
rit

eW

M
em

to
R

eg
E

Hazard Unit

Fl
us

hE

PCPlus4E

BranchE BranchM

ZeroM

EN

E
N

C
LR

MemtoRegE

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 95

Behandlung von Stalling in Hazard-Einheit

Stalling-Logik:
lwstall = ((rsD == rtE) OR (rtD == rtE)) AND MemtoRegE

StallF = StallD = FlushE = lwstall

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 96

Control Hazards

beq:
Entscheidung zu Springen wird erst in vierter Stufe der Pipeline (M) getroffen
Neue Instruktionen werden aber bereits geholt

Im einfachsten Fall: Von PC+4, +8, +12, …
Falls zu springen ist, müssen diese Instruktionen aus der Pipeline entfernt werden

… das Programm wäre ja woanders (am Sprungziel) weitergegangen
“Spülen” (flush)

Kosten eines solchen falsch vorhergesagten Sprunges:
Anzahl von zu entfernenden Instruktion falls Sprung genommen

Könnte reduziert werden, wenn Sprung in früherer Pipeline-Stufe entschieden
würde

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 97

Control Hazards: Ursprüngliche Pipeline

SignImmE

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign
Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE

1
0

PCF0
1

PC' InstrD 25:21

20:16

15:0

5:0

SrcBE

25:21

15:11

RsE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

WriteRegM4:0

ResultW

PCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD2:0

ALUSrcD

RegWriteD

Op

Funct

Control
Unit

PCSrcM

CLK CLK CLK

CLK CLK

WriteRegW4:0

ALUControlE2:0

A
LU

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

RegDstE

ALUSrcE

WriteRegE4:0

00
01
10

00
01
10

SignImmD

S
ta

llF

S
ta

llD

Fo
rw

ar
dA

E

Fo
rw

ar
dB

E

20:16 RtE

RsD

RdD

RtD

R
eg

W
rit

eM

R
eg

W
rit

eW

M
em

to
R

eg
E

Hazard Unit

Fl
us

hE

PCPlus4E

BranchE BranchM

ZeroM

EN

EN

C
LR

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 98

Beispiel: Control Hazards

Zeit (Takte)

beq $t1, $t2, 40 RF $t2
$t1

RF- DM

RF $s1
$s0

RF& DM

RF $s0
$s4

RF| DM

RF $s5
$s0

RF- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM lw

or

sub

20

24

28

2C

30

...

...

9

Entferne
diese

Instruktionen

64 slt $t3, $s2, $s3 RF $s3
$s2

RF$t3s
l
t DMIM slt

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 99

Auflösen von Control Hazards durch frühere
Sprungentscheidung

Zeit (Takte)

beq $t1, $t2, 40 RF $t2

$t1
RF- DM

RF $s1

$s0
RF& DMand $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

andIM

IM lw20

24

28

2C

30

...

...

9

Entferne
diese

Instruktion

64 slt $t3, $s2, $s3 RF $s3

$s2
RF

$t3s
l
t DMIM slt

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 100

Control Hazards: Ansatz “Frühere Sprungentscheidung”

EqualD

SignImmE

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign
Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE

1
0

PCF0
1

PC' InstrD 25:21

20:16

15:0

5:0

SrcBE

25:21

15:11

RsE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchD

WriteRegM4:0

ResultW

PCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD2:0

ALUSrcD

RegWriteD

Op

Funct

Control
Unit

PCSrcD

CLK CLK CLK

CLK CLK

WriteRegW4:0

ALUControlE2:0

AL
U

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

RegDstE

ALUSrcE

WriteRegE4:0

00
01
10

00
01
10

=

SignImmD

S
ta

llF

S
ta

llD

Fo
rw

ar
dA

E

Fo
rw

ar
dB

E

20:16 RtE

RsD

RdE

RtD

R
eg

W
rit

eM

R
eg

W
rit

eW

M
em

to
R

eg
E

Hazard Unit

Fl
us

hE

E
N

E
N

C
LR

C
LR

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 101

Berücksichtige neue Data Hazards

EqualD

SignImmE

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign
Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE

1
0

PCF0
1

PC' InstrD 25:21

20:16

15:0

5:0

SrcBE

25:21

15:11

RsE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchD

WriteRegM4:0

ResultW

PCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD2:0

ALUSrcD

RegWriteD

Op

Funct

Control
Unit

PCSrcD

CLK CLK CLK

CLK CLK

WriteRegW4:0

ALUControlE2:0

A
LU

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

RegDstE

ALUSrcE

WriteRegE4:0

00
01
10

00
01
10

0
1

0
1

=

SignImmD

St
al

lF

St
al

lD

Fo
rw

ar
dA

E

Fo
rw

ar
dB

E

Fo
rw

ar
dA

D

Fo
rw

ar
dB

D

20:16 RtE

RsD

RdD

RtD

R
eg

W
rit

eE

R
eg

W
rit

eM

R
eg

W
rit

eW

M
em

to
R

eg
E

Br
an

ch
D

Hazard Unit

Fl
us

hE

EN

E
N

C
LR

C
LR

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 102

Frühe Sprungentscheidung:
Benötigte Logik für Forwarding und Stalling

Forwarding-Logik:
ForwardAD = (rsD !=0) AND (rsD == WriteRegM) AND RegWriteM

ForwardBD = (rtD !=0) AND (rtD == WriteRegM) AND RegWriteM

Stalling-Logik:
branchstall = BranchD AND RegWriteE AND

(WriteRegE == rsD OR WriteRegE == rtD)
OR

BranchD AND MemtoRegM AND
(WriteRegM == rsD OR WriteRegM == rtD)

StallF = StallD = FlushE = lwstall OR branchstall

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 103

Orthogonaler Ansatz: Sprungvorhersage

Versuche vorherzusagen, ob ein Sprung genommen wird
Dann können Instruktionen von der richtigen Stelle geholt werden
Rückwärtssprünge werden üblicherweise genommen (Schleifen!)
Genauer: Für jeden Sprung Historie führen, ob er die letzten Male genommen
wurde

… dann wird jetzt vermutlich auch wieder genommen

Eine gute Vorhersage reduziert die Zahl der Sprünge, die ein Flush der
Pipeline erforderlich machen

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 104

Beispiel: Rechenleistung des
Pipelined-Prozessors

Idealerweise wäre CPI = 1

Manchmal treten aber Stalls auf (wegen Lade- und Verzweigungsbefehlen)

SPECint 2000 benchmark:
25% loads
10% stores
11% branches
2% jumps

52% R-type

Annahmen:
40% der geladenen Daten werden gleich in der nächsten Instruktion gebraucht
25% aller Verzweigungen werden falsch vorhergesagt
Alle Sprünge erzeugen eine zu entfernende (flush) Instruktion

Wie hoch ist der durchschnittliche CPI-Wert?

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 105

Beispiel: Rechenleistung des
Pipelined-Prozessors

SPECint 2000 benchmark:
25% loads
10% stores
11% branches
2% jumps

52% R-type

Annahmen:
40% der geladenen Daten werden gleich in der nächsten Instruktion gebraucht
25% aller Verzweigungen werden falsch vorhergesagt
Alle Sprünge erzeugen eine zu entfernende (flush) Instruktion

Wie hoch ist der durchschnittliche CPI-Wert?
Lade/Verzweigungsinstruktionen haben CPI = 1 ohne Stall, = 2 mit Stall. Daher:
CPIlw = 1 (0,6) + 2 (0,4) = 1,4
CPIbeq = 1 (0,75) + 2 (0,25) = 1,25
Thus,

Durchschnittliche CPI = (0,25) (1,4) + (0,1) (1,0) + (0,11)(1,25) + (0,02) (2,0) + (0,52)(1,0)

= 1,15

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 106

Beispiel: Rechenleistung des
Pipelined-Prozessors

Kritischer Pfad des Pipelined-Prozessors:

Tc = max {
tpcq + tmem + tsetup, Fetch
2 (tRFread + tmux + teq + tAND + tmux + tsetup), Decode
tpcq + tmux + tmux + tALU + tsetup, Execute
tpcq + tmemwrite + tsetup, Memory
2 (tpcq + tmux + tRFwrite) } Writeback

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 107

Beispiel: Rechenleistung des
Pipelined-Prozessors

Element Parameter Verzögerung (ps)

Register Clock-to-Q tpcq_PC 30

Vergleich auf Gleichheit teq 40

AND Gatter tAND 15

Speicher Schreiben Tmemwrite 220

Registerfeld Schreiben tRFwrite 100

Register Setup tsetup 20

Multiplexer tmux 25

ALU tALU 200

Speicher Lesen tmem 250

Registerfeld Lesen tRFread 150

Registerfeld Setup tRFsetup 20

Tc = 2 (tRFread + tmux + teq + tAND + tmux + tsetup)
= 2 [150 + 25 + 40 + 15 + 25 + 20] ps = 550 ps

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 108

Beispiel: Rechenleistung des
Pipelined-Prozessors

Führe Programm mit 100 Milliarden Instruktionen auf Pipelined-MIPS-Prozessor aus

CPI = 1,15
Tc = 550 ps

Ausführungszeit = (# Instruktionen) × CPI × Tc
= (100 × 109) (1,15) (550 × 10-12)
= 63 Sekunden

Prozessor
Ausführungszeit
(Sekunden)

Beschleunigungsfaktor
(im Vergleich zu Ein-Takt-CPU)

Ein-Takt 95 1,00

Mehrtakt 133 0,71

Pipelined 63 1,51

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 109

Wiederholung: Ausnahmebehandlung
(exceptions)

Außerplanmäßiger Aufruf der Ausnahmebehandlungsroutine
Verursacht durch:

Hardware, auch genannt Interrupt, z.B. Tastatur, Netzwerk, …
Software, auch genannt Traps, z.B. unbekannte Instruktion, Überlauf, Teilen-durch-Null,
…

Beim Auftreten einer Ausnahme:
Abspeichern der Ursache für Ausnahme im Cause Register
Sprung zu Ausnahmebehandlungsrouting bei 0x80000180
Rückkehr zum Programm (über EPC Register)

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 110

Beispiel für Ausnahme

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 111

Register für Ausnahmebehandlung

Nicht Teil des regulären MIPS Registersfelds
Cause

Speichert die Ursache der Ausnahme
Koprozessor 0, Register 13

EPC (Exception PC)
Speichert den PC-Stand, an dem die Aufnahme auftrat
Koprozessor 0, Register 14

Befehl: “Move from Coprocessor 0”
mfc0 $t0, Cause

Überträgt aktuellen Wert von Cause nach $t0

00000 $t0 (8) Cause (13) 00000000000

mfc0

31:26 25:21 20:16 15:11 10:0

010000

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 112

Auswahl von Ausnahmeursachen

Ausnahme Ursache

Hardware Interrupt 0x00000000

System Call 0x00000020

Breakpoint / Division durch 0 0x00000024

Unbekannte Instruktion 0x00000028

Arithmetischer Überlauf 0x00000030

Ziel: Erweitere den Mehrtaktprozessor um
Behandlung der letzten beiden Ausnahmen

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 113

Hardware für Ausnahmebehandlung:
EPC und Cause

SignImm

CLK

A
RD

Instr / Data
Memory

A1

A3

WD3

RD2
RD1

WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1PC 0

1

PC' Instr 25:21

20:16

15:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

RegDst BranchMemWrite MemtoReg ALUSrcARegWrite

Zero

PCSrc1:0

CLK

ALUControl2:0

A
LU

WD

WE

CLK

Adr

0
1

Data

CLK

CLK

A
B 00

01
10
11

4

CLK

ENEN

ALUSrcB1:0IRWriteIorD PCWrite

PCEn

<<2

25:0 (jump)

31:28

27:0

PCJump

00
01
10
11

0x8000 0180

Overflow

CLK

EN

EPCWrite

CLK

EN

CauseWrite

0
1

IntCause

0x30

0x28
EPC

Cause

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 114

Hardware für Ausnahmebehandlung : mfc0

SignImm

CLK

A
RD

Instr / Data
Memory

A1

A3

WD3

RD2
RD1

WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1PC 0

1

PC' Instr 25:21

20:16

15:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

RegDst BranchMemWrite MemtoReg1:0 ALUSrcARegWrite

Zero

PCSrc1:0

CLK

ALUControl2:0

A
LU

WD

WE

CLK

Adr

00
01

Data

CLK

CLK

A
B 00

01
10
11

4

CLK

ENEN

ALUSrcB1:0IRWriteIorD PCWrite

PCEn

<<2

25:0 (jump)

31:28

27:0

PCJump

00
01
10
11

0x8000 0180

CLK

EN

EPCWrite

CLK

EN

CauseWrite

0
1

IntCause

0x30

0x28
EPC

Cause

Overflow

...
01101

01110

...
15:11

10

C0

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 115

Steuerwerk-FSM erweitert um Ausnahmen

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 00

IRWrite
PCWrite

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

IorD = 1
RegDst = 1

MemtoReg = 00
RegWrite

IorD = 1
MemWrite

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCSrc = 01

Branch

Reset

S0: Fetch

S2: MemAdr

S1: Decode

S3: MemRead
S5: MemWrite

S6: Execute

S7: ALU
Writeback

S8: Branch

Op = LW
or

Op = SW
Op = R-type

Op = BEQ

Op = LW
Op = SW

RegDst = 0
MemtoReg = 01

RegWrite

S4: Mem
Writeback

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

RegDst = 0
MemtoReg = 00

RegWrite

Op = ADDI

S9: ADDI
Execute

S10: ADDI
Writeback

PCSrc = 10
PCWrite

Op = J

S11: Jump

Overflow Overflow
S13:

Overflow
PCSrc = 11

PCWrite
IntCause = 0
CauseWrite
EPCWrite

Op = others

PCSrc = 11
PCWrite

IntCause = 1
CauseWrite
EPCWrite

S12: Undefined

RegDst = 0
Memtoreg = 10

RegWrite

Op = mfc0

S14: MFC0

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 116

Weiterführende Themen der Mikroarchitektur

Tiefe Pipelines
Sprungvorhersage
Superskalare Prozessoren
Out of Order-Prozessoren
Umbenennen von Registern
SIMD
Multithreading
Multiprozessoren

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 117

Tiefe Pipelines

Üblicherweise 10-20 Stufen
Ausnahmen

Fehlkonstruktionen (Intel P4, >30 Stufen)
Anwendungsspezifische Spezialprozessoren (ggf. Hunderte von Stufen)

Grenzen für Pipeline-Tiefe
Pipeline Hazards
Zusätzlicher Zeitaufwand für sequentielle Schaltungen
Elektrische Leistungsaufnahme und Energiebedarf
Kosten

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 118

Sprungvorhersage

Idealer Pipelined-Prozessor: CPI = 1
Fehler der Sprungvorhersage erhöht CPI

Statische Sprungvorhersage:
Prüfe Sprungrichtung (vorwärts oder rückwärts)
Falls rückwärts: Sage “Springen” vorher
Sonst: Sage “Nicht Springen” vorher

Dynamische Sprungvorhersage:
Führe Historie der letzten (einige Hundert) Verzweigungen in Branch Target
Buffer, speichert:

Sprungziel
Wurde Sprung das letzte Mal / die letzten Male genommen?

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 119

Beispiel: Sprungvorhersage

add $s1, $0, $0 # sum = 0
add $s0, $0, $0 # i = 0

addi $t0, $0, 10 # $t0 = 10
for:

beq $s0, $t0, done # falls i == 10, springe
add $s1, $s1, $s0 # sum = sum + i
addi $s0, $s0, 1 # inkrementiere i

j for
done:

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 120

1-Bit Sprungvorhersage

Speichert, ob die Verzweigung das letzte Mal genommen wurde
… und sagt genau dieses Verhalten für das aktuelle Mal vorher

Fehlvorhersagen
Einmal bei Austritt aus der Schleife bei Schleifenende
Dann wieder bei erneutem Eintritt in Schleife

add $s1, $0, $0 # sum = 0

add $s0, $0, $0 # i = 0
addi $t0, $0, 10 # $t0 = 10

for:
beq $s0, $t0, done # falls i == 10, springe
add $s1, $s1, $s0 # sum = sum + i

addi $s0, $s0, 1 # inkrementiere i
j for

done:

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 121

2-Bit Sprungvorhersage

Falsche Vorhersage nur beim letzten Sprung aus Schleife heraus

strongly
taken

predict
taken

weakly
taken

predict
taken

weakly
not taken

predict
not taken

strongly
not taken

predict
not taken

taken taken taken

takentakentaken

taken

taken

add $s1, $0, $0 # sum = 0
add $s0, $0, $0 # i = 0
addi $t0, $0, 10 # $t0 = 10

for:
beq $s0, $t0, done # falls i == 10, springe
add $s1, $s1, $s0 # sum = sum + i
addi $s0, $s0, 1 # inkrementiere i
j for

done:

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 122

Superskalare Mikroarchitektur

Mehrere Instanzen des Datenpfades führen mehrere Instruktionen gleichzeitig
aus
Abhängigkeiten zwischen Instruktionen erschweren parallele Ausführung

C LK C LK C LK C LK

A
R D A1

A2
RD1A3

W D3
W D6

A4
A5
A6

RD4

RD2
RD5

Instruction
M em ory

R eg ister
F ile D ata

M em ory

A
LU

s

PC

C LK

A1
A2

W D 1
W D 2

R D1
R D2

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 123

Beispiel: Superskalare Ausführung

lw $t0, 40($s0)
add $t1, $t0, $s1

sub $t0, $s2, $s3 Idealer IPC-Wert: 2
and $t2, $s4, $t0 Erreichter IPC-Wert: 2
or $t3, $s5, $s6
sw $s7, 80($t3)

Time (cycles)

1 2 3 4 5 6 7 8

RF
40

$s0

RF

$t0
+

DMIM

lw

add

lw $t0, 40($s0)

add $t1, $s1, $s2

sub $t2, $s1, $s3

and $t3, $s3, $s4

or $t4, $s1, $s5

sw $s5, 80($s0)

$t1
$s2

$s1

+

RF
$s3

$s1

RF

$t2
-

DMIM

sub

and $t3
$s4

$s3
&

RF
$s5

$s1

RF

$t4
|

DMIM

or

sw
80

$s0

+ $s5

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 124

Beispiel: Superskalare Ausführung mit Abhängigkeiten

lw $t0, 40($s0)

add $t1, $t0, $s1

sub $t0, $s2, $s3 Idealer IPC-Wert: 2,00
and $t2, $s4, $t0 Erreichter IPC-Wert: 6/5 = 1,20
or $t3, $s5, $s6
sw $s7, 80($t3)

Stall

Time (cycles)

1 2 3 4 5 6 7 8

RF
40

$s0

RF

$t0
+

DMIM

lwlw $t0, 40($s0)

add $t1, $t0, $s1

sub $t0, $s2, $s3

and $t2, $s4, $t0

sw $s7, 80($t3)

RF
$s1

$t0
add

RF
$s1

$t0

RF

$t1
+

DM

RF
$t0

$s4

RF

$t2
&

DMIM

and

IM
or

and

sub

|$s6

$s5
$t3

RF
80

$t3

RF
+

DM
sw

IM

$s7

9

$s3

$s2

$s3

$s2
-

$t0

oror $t3, $s5, $s6

IM

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 125

Out of Order-Mikroarchitektur

Kann Ausführungsreihenfolge von Instruktion umsortieren

Sucht im voraus nach parallel startbaren Instruktionen

Startet Instruktionen in beliebiger Reihenfolge
Solange keine Abhängigkeiten verletzt werden!

Abhängigkeiten
RAW (read after write)

Spätere Instruktion darf Register erst lesen, nachdem es vorher geschrieben wurde
WAR (write after read, anti-dependence)

Spätere Instruktion darf Register erst schreiben, nachdem es vorher gelesen wurde
WAW (write after write, output dependence)

Reihenfolge von in Register schreibenden Instruktionen muss eingehalten werden

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 126

Out of Order-Mikroarchitektur

Parallelismus auf Instruktionsebene (instruction level parallelism, ILP)
Anzahl von parallel startbaren Instruktionen (i.d.R. < 3)

Scoreboard
Tabelle im Prozessor
Verwaltet

Auf Start wartende Instruktionen
Verfügbare Recheneinheiten (z.B. ALUs)
Abhängigkeiten

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 127

Beispiel: Out of Order-Mikroarchitektur

lw $t0, 40($s0)

add $t1, $t0, $s1
sub $t0, $s2, $s3 Idealer IPC-Wert: 2,0
and $t2, $s4, $t0 Erreichter IPC-Wert: 6/4 = 1,5
or $t3, $s5, $s6
sw $s7, 80($t3)

Time (cycles)

1 2 3 4 5 6 7 8

RF
40
$s0

RF

$t0
+

DMIM

lwlw $t0, 40($s0)

add $t1, $t0, $s1

sub $t0, $s2, $s3

and $t2, $s4, $t0

sw $s7, 80($t3)

or
|$s6

$s5
$t3

RF
80
$t3

RF
+

DM
sw $s7

or $t3, $s5, $s6

IM

RF
$s1
$t0

RF

$t1
+

DMIM

add

sub -$s3
$s2

$t0

Zwei Takte Latenz
zwischen Laden und
Verwendung von $t0

RAW

WAR

RAW

RF
$t0
$s4

RF
&

DM
and

IM

$t2

RAW

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 128

Umbenennen von Registern

lw $t0, 40($s0)
add $t1, $t0, $s1

sub $t0, $s2, $s3 Idealer IPC-Wert: 2,0
and $t2, $s4, $t0 Erreichter IPC-Wert: 6/3 = 2,0
or $t3, $s5, $s6
sw $s7, 80($t3)

Time (cycles)

1 2 3 4 5 6 7

RF
40

$s0

RF

$t0
+

DMIM

lwlw $t0, 40($s0)

add $t1, $t0, $s1

sub $r0, $s2, $s3

and $t2, $s4, $r0

sw $s7, 80($t3)

sub
-$s3

$s2
$r0

RF
$r0

$s4

RF
&

DM
and

$s7

or $t3, $s5, $s6
IM

RF
$s1

$t0

RF

$t1
+

DMIM

add

sw
+80

$t3

RAW

$s6

$s5
|

or

2 Takte RAW

RAW

$t2

$t3

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 129

SIMD

Single Instruction Multiple Data (SIMD)
Eine Instruktion wird auf mehrere Datenelemente gleichzeitig angewandt
Häufige Anwendung: Graphik, Multimedia
Oft: Führe schmale arithmetische Operatione aus

Auch genannt: gepackte Arithmetik
Beispiel: Addiere gleichzeitig vier Bytes

ALU muss verändert werden
Kein Übertrag mehr zwischen einzelnen Bytes

padd8 $s2, $s0, $s1

a0

0781516232432 Bit position

$s0a1a2a3

b0 $s1b1b2b3

a0 + b0 $s2a1 + b1a2 + b2a3 + b3

+

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 130

Fortgeschrittene Mikroarchitekturtechniken

Multithreading
Beispiel: Textverarbeitung
Threads (parallel laufende, weitgehend unabhängige Instruktionsfolgen)

Texteingabe
Rechtschreibprüfung
Drucken

Multiprozessoren
Viele weitgehend unabhängige Prozessoren auf einem Chip
Am weitesten verbreitet heute in Grafikkarten (Hunderte von Prozessoren)

Aber auch in Spezialprozessoren, z.B. für UMTS Nachfolger LTE

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 131

Genauer: Multithreading

Prozesse: Auf dem Computer gleichzeitig laufende Programme
z.B. Web-Browser, Musik im Hintergrund, Textverarbeitung

Thread: Parallele Ausführung als Teil eines Programmes
Ein Prozess kann mehrere Threads enthalten

In konventionellem Prozessor
Jeweils ein Thread wird ausgeführt
Wenn eine Thread-Ausführung einen Stall hat (z.B. Warten auf Speicher)

Sichere Architekturzustand des Threads
Lade Architekturzustand eines anderen, derzeit inaktiven aber lauffähigen Threads
Starte neuen Thread
Vorgang wird Kontextumschaltung (context switching) genannt

Alle Threads laufen scheinbar gleichzeitig

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 132

Multithreading auf Mikroarchitekturebene

Mehrere Instanzen des Architekturzustandes im Prozessor
Mehrere Threads nun gleichzeitig aktiv

Sobald ein Thread stalled wird sofort ein anderer gestartet
Kein Sichern/Laden von Architekturzustand mehr
Falls ein Thread nicht alle Recheneinheiten ausnutzt, kann dies ein anderer Thread tun

Erhöht nicht den Grad an ILP innerhalb eines Threads
Erhöht aber Durchsatz des Gesamtsystems mit mehreren Threads

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 133

Multiprozessoren

Mehrere unabhängige Prozessorkerne mit einem dazwischenliegenden
Kommunikationsnetz

Arten von Multiprocessing:
Symmetric multiprocessing (SMT): mehrere gleiche Kerne mit einem gemeinsamen
Speicher
Asymmetric multiprocessing: unterschiedliche Kerne für unterschiedliche Aufgaben

Beispiel: CPU in Handy für GUI, DSP für Funksignalverarbeitung
Clusters: Jeder Kern hat seinen eigenen Speicher

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 134

Weiterführende Informationen

Patterson & Hennessy
Computer Architecture: A Quantitative Approach

Konferenzen:
www.cs.wisc.edu/~arch/www/
ISCA (International Symposium on Computer Architecture)
HPCA (International Symposium on High Performance Computer Architecture)

	Technische Grundlagen�der Informatik – Kapitel 7
	Kapitel 7: Themen
	Einleitung
	Mikroarchitektur
	Rechenleistung eines Prozessors
	Unser erster MIPS Prozessor
	Architekturzustand
	Elemente des MIPS Architekturzustands
	Ein-Takt MIPS Prozessor
	Ein-Takt Datenpfad: Holen eines lw Befehls
	Ein-Takt Datenpfad: Lesen des Registers für lw
	Ein-Takt Datenpfad: Behandle lw Direktwert
	Ein-Takt Datenpfad: Berechne lw Zieladdresse
	Ein-Takt Datenpfad: Lese Speicher mit lw
	Ein-Takt Datenpfad : Erhöhe PC nach lw
	Ein-Takt Datenpfad: sw
	Ein-Takt Datenpfad: Instruktionen vom R-Typ
	Ein-Takt Datenpfad: beq
	Vollständiger Ein-Takt-Prozessor
	Steuerwerk
	Zur Erinnerung: ALU
	Zur Erinnerung: ALU
	Steuerwerk: ALU-Decoder
	Steuerwerk: Hauptdecoder
	Steuerwerk: Hauptdecoder
	Beispiel im Ein-Takt Datenpfad: or
	Erweitere Funktionalität: addi
	Erweitere Steuerwerk: addi
	Erweitere Steuerwerk: addi
	Erweitere Funktionalität: j
	Steuerwerk: Hauptdecode
	Control Unit: Main Decoder
	Wiederholung: Rechenleistung des Prozessors
	Rechenleistung des Ein-Takt-Prozessors
	Rechenleistung des Ein-Takt-Prozessors
	Ein-Takt Prozessor Rechenleistung: Beispiel
	Ein-Takt Prozessor Rechenleistung: Beispiel
	Ein-Takt Prozessor Rechenleistung: Beispiel
	Ein-Takt Prozessor Rechenleistung: Beispiel
	Mehrtakt-MIPS-Prozessor
	Zustandselemente im Mehrtaktprozessor
	Mehrtaktdatenpfad: Instruktionen holen (fetch)
	Mehrtaktdatenpfad: Lese Register für lw
	Mehrtaktdatenpfad: Werte lw Direktwert aus
	Mehrtaktdatenpfad: Bestimme effektive Adresse für lw
	Mehrtaktdatenpfad: Lesezugriff von lw
	Mehrtaktdatenpfad: Schreibe Register in lw
	Mehrtaktdatenpfad: Erhöhe PC
	Mehrtaktdatenpfad: Nun Ausführung von sw
	Mehrtaktdatenpfad: Instruktion vom R-Typ
	Mehrtaktdatenpfad: beq
	Vollständiger Mehrtaktprozessor
	Steuerwerk
	Hauptsteuerwerk: Holen eines Befehls
	Hauptsteuerwerk: Holen eines Befehls
	Hauptsteuerwerk: Dekodieren eines Befehls
	Hauptsteuerwerk: Adressberechnung
	Hauptsteuerwerk: Adressberechnung
	Hauptsteuerwerk: FSM für lw
	Hauptsteuerwerk: FSM für sw
	Hauptsteuerwerk: FSM für R-Typ
	Hauptsteuerwerk: FSM für beq
	Vollständiges Hauptsteuerwerk für Mehrtakt-CPU
	Erweiterung des Hauptsteuerwerks: addi
	Erweiterung des Hauptsteuerwerks: addi
	Erweiterung des Datenpfads für j
	Erweiterung des Hauptsteuerwerks um j
	Erweiterung des Hauptsteuerwerks um j
	Rechenleistung des Mehrtaktprozessors
	Rechenleistung des Mehrtaktprozessors
	Rechenleistung des Mehrtaktprozessors
	Beispiel: Rechenleistung Mehrtaktprozessor
	Beispiel: Rechenleistung Mehrtaktprozessor
	Beispiel: Rechenleistung Mehrtaktprozessor
	Beispiel: Rechenleistung Mehrtaktprozessor
	Beispiel: Rechenleistung Mehrtaktprozessor
	Rückblick: Ein-Takt MIPS Prozessor
	Rückblick: Mehrtakt-MIPS-Prozessor
	MIPS Prozessor mit Pipelining
	Rechenleistung: Ein-Takt und Pipelined
	Abstraktere Darstellung des Pipelinings
	Ein-Takt- und Pipelined-Datenpfad
	Korrigierter Pipelined-Datenpfad
	Steuersignale für Pipelined-Datenpfad
	Abhängigkeiten zwischen Pipeline-Stufen�(hazards)
	Data Hazard
	Umgang mit Data Hazards
	Beseitigung von Data Hazards zur Compile-Zeit
	Data Forwarding: “Abkürzungen” einbauen
	Data Forwarding: “Abkürzungen” einbauen
	Data Forwarding: “Abkürzungen” einbauen
	Anhalten des Prozessors (stalling)
	Anhalten des Prozessors (stalling)
	Erweiterung der Hazard-Einheit für Stalling
	Behandlung von Stalling in Hazard-Einheit
	Control Hazards
	Control Hazards: Ursprüngliche Pipeline
	Beispiel: Control Hazards
	Auflösen von Control Hazards durch frühere�Sprungentscheidung
	Control Hazards: Ansatz “Frühere Sprungentscheidung”
	Berücksichtige neue Data Hazards
	Frühe Sprungentscheidung:�Benötigte Logik für Forwarding und Stalling
	Orthogonaler Ansatz: Sprungvorhersage
	Beispiel: Rechenleistung des�Pipelined-Prozessors
	Beispiel: Rechenleistung des�Pipelined-Prozessors
	Beispiel: Rechenleistung des�Pipelined-Prozessors
	Beispiel: Rechenleistung des�Pipelined-Prozessors
	Beispiel: Rechenleistung des�Pipelined-Prozessors
	Wiederholung: Ausnahmebehandlung�(exceptions)
	Beispiel für Ausnahme
	Register für Ausnahmebehandlung
	Auswahl von Ausnahmeursachen
	Hardware für Ausnahmebehandlung:�EPC und Cause
	Hardware für Ausnahmebehandlung : mfc0
	Steuerwerk-FSM erweitert um Ausnahmen
	Weiterführende Themen der Mikroarchitektur
	Tiefe Pipelines
	Sprungvorhersage
	Beispiel: Sprungvorhersage
	1-Bit Sprungvorhersage
	2-Bit Sprungvorhersage
	Superskalare Mikroarchitektur
	Beispiel: Superskalare Ausführung
	Beispiel: Superskalare Ausführung mit Abhängigkeiten
	Out of Order-Mikroarchitektur
	Out of Order-Mikroarchitektur
	Beispiel: Out of Order-Mikroarchitektur
	Umbenennen von Registern
	SIMD
	Fortgeschrittene Mikroarchitekturtechniken
	Genauer: Multithreading
	Multithreading auf Mikroarchitekturebene
	Multiprozessoren
	Weiterführende Informationen

