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Kapitel 7: Themen

Einführung in die Mikroarchitektur
Analyse der Rechenleistung
Ein-Takt-Prozessor
Mehrtakt-Prozessor
Pipeline-Prozessor
Ausnahmebehandlung
Weiterführende Themen
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Einleitung

Mikroarchitektur
Hardware-Implementierung einer Architektur

Prozessor:
Datenpfad: funktionale Blöcke
Steuerwerk: Steuersignale

Physik

Bauelemente

Analog-
schaltungen

Digital-
schaltungen

Logik

Mikro-
architektur

Architektur

Betriebs-
systeme

Anwendungs-
Software

Elektronen

Transistoren
Dioden

Verstärker
Filter

AND Gatter
NOT Gatter

Addierer
Speicher

Datenpfade
Steuerwerke

Instruktionen
Register

Gerätetreiber

Programme



WS 09/10 |  Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch |  4

Mikroarchitektur

Mehrere Implementierungen für eine Architektur
Ein-Takt

Jede Instruktion wird in einem Takt ausgeführt
Mehrtakt

Jede Instruktion wird in Teilschritte zerlegt
Pipelined

Jede Instruktion wird in Teilschritte zerlegt
Mehrere Instruktionen werden gleichzeitig ausgeführt
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Rechenleistung eines Prozessors

Ausführungszeit eines Programms

Ausführungszeit = (# Instruktionen)(Takte/Instruktion)(Sekunden/Takt)

Definitionen:
Takte/Instruktion = CPI (cycles per instruction)
Sekunden/Takt = Taktperiode
1/CPI = Instruktionen/Takt = IPC (instructions per cycle)

Herausforderung: Einhalten zusätzlicher Anforderungen
Kosten
Energiebedarf
Rechenleistung
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Unser erster MIPS Prozessor

Zunächst Untermenge des MIPS Befehlssatzes:
R-Typ Befehle: and, or, add, sub, slt
Speicherbefehle: lw, sw
Bedingte Verzweigungen: beq

Später hinzunehmen: addi und j
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Architekturzustand

Auf Ebene der Architektur sichtbare Daten
Für den Programmierer zugänglich

Bestimmen vollständigen Zustand der Architektur
PC
32 Register
Speicher
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Elemente des MIPS Architekturzustands
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Ein-Takt MIPS Prozessor

Datenpfad
Steuerwerk
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Ein-Takt Datenpfad: Holen eines lw Befehls

Ein load word Befehl (lw) soll ausgeführt werden
Schritt 1: Hole Instruktion
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Ein-Takt Datenpfad: Lesen des Registers für lw

Schritt 2: Lese Quelloperand aus Registerfeld

Instr
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RD2

RD1
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A2
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25:21
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Ein-Takt Datenpfad: Behandle lw Direktwert

Schritt 3: Vorzeichenerweitere den 16b Direktwert auf 32b Signal SignImm

SignImm
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Ein-Takt Datenpfad: Berechne lw Zieladdresse

Schritt 4: Berechne die effektive Speicheradresse
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A
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Ein-Takt Datenpfad: Lese Speicher mit lw

Schritt 5: Lese Daten aus Speicher und schreibe sie ins passende Register
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Ein-Takt Datenpfad : Erhöhe PC nach lw

Schritt 6: Bestimme Adresse des nächsten Befehls
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Ein-Takt Datenpfad: sw

Schreiben Daten aus rt in den Speicher
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Ein-Takt Datenpfad: Instruktionen vom R-Typ

Lese aus rs und rt
Schreibe ALUResult ins Registerfeld
Schreibe nach rd (statt nach rt wie bei sw)
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Ein-Takt Datenpfad: beq

Prüfe ob Werte in rs und rt gleich sind
Bestimme Adresse von Sprungziel (branch target adress, BTA):

BTA = (vorzeichenerweiterter Direktwert << 2) + (PC+4)
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Vollständiger Ein-Takt-Prozessor

SignImm
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Steuerwerk

RegDst
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MemWrite
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Zur Erinnerung: ALU

ALU

N N

N
3

A B

Y

F

F2:0 Funktion

000 A & B

001 A | B

010 A + B

011 unbenutzt

100 A & ~B

101 A | ~B

110 A - B

111 SLT
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Zur Erinnerung: ALU
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Steuerwerk: ALU-Decoder

ALUOp1:0 Bedeutung
00 Addiere

01 Subtrahiere

10 Werte Funct-Feld aus

11 unbenutzt

ALUOp1:0 Funct ALUControl2:0

00 X 010 (Add)

X1 X 110 (Subtract)

1X 100000 (add) 010 (Add)

1X 100010 (sub) 110 (Subtract)

1X 100100 (and) 000 (And)

1X 100101 (or) 001 (Or)

1X 101010 (slt) 111 (SLT)
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Steuerwerk: Hauptdecoder

Instruktion Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0

R-Typ 000000

lw 100011

sw 101011

beq 000100
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Steuerwerk: Hauptdecoder

Instruction Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0

R-type 000000 1 1 0 0 0 0 10

lw 100011 1 0 1 0 0 0 00

sw 101011 0 X 1 0 1 X 00

beq 000100 0 X 0 1 0 X 01
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Beispiel im Ein-Takt Datenpfad: or
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Erweitere Funktionalität: addi

Keine Änderung am Datenpfad nötig
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Erweitere Steuerwerk: addi

Instruktion Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0

R-Typ 000000 1 1 0 0 0 0 10
lw 100011 1 0 1 0 0 1 00
sw 101011 0 X 1 0 1 X 00
beq 000100 0 X 0 1 0 X 01
addi 001000
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Erweitere Steuerwerk: addi

Instruktion Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0

R-Typ 000000 1 1 0 0 0 0 10

lw 100011 1 0 1 0 0 1 00

sw 101011 0 X 1 0 1 X 00

beq 000100 0 X 0 1 0 X 01

addi 001000 1 0 1 0 0 0 00
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Erweitere Funktionalität: j
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Steuerwerk: Hauptdecode

Instruktion Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0 Jump

R-Typ 000000 1 1 0 0 0 0 10 0
0
0
0

j 000100

lw 100011 1 0 1 0 0 1 00
sw 101011 0 X 1 0 1 X 00
beq 000100 0 X 0 1 0 X 01
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Control Unit: Main Decoder

Instruction Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0 Jump

R-type 000000 1 1 0 0 0 0 10 0

0

0

0

j 000100 0 X X X 0 X XX 1

lw 100011 1 0 1 0 0 1 00

sw 101011 0 X 1 0 1 X 00

beq 000100 0 X 0 1 0 X 01



WS 09/10 |  Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch |  33

Wiederholung: Rechenleistung des Prozessors

Programmausführungszeit 
= (# Instruktionen) (Takte/Instruktion )(Sekunden/Takt)
= # Instruktionen   CPI   TC
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Rechenleistung des Ein-Takt-Prozessors

TC wird durch längsten Pfad bestimmt (lw)
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Rechenleistung des Ein-Takt-Prozessors

Kritischer Pfad:
Tc = tpcq_PC + tmem + max(tRFread, tsext + tmux) + tALU + tmem + tmux + tRFsetup

In vielen Implementierungen: Kritischer Pfad durch 
Speicher, ALU, Registerfeld

Damit: 
Tc = tpcq_PC + 2tmem + tRFread + tmux + tALU + tRFsetup
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Ein-Takt Prozessor Rechenleistung: Beispiel

Tc =

Element Parameter Verzögerung (ps)

Register Clock-to-Q tpcq_PC 30

Register setup tsetup 20

Multiplexer tmux 25

ALU tALU 200

Speicher lesen tmem 250

Registerfeld lesen tRFread 150

Registerfeld setup tRFsetup 20
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Ein-Takt Prozessor Rechenleistung: Beispiel

Tc = tpcq_PC + 2tmem + tRFread + tmux + tALU + tRFsetup
= [30 + 2(250) + 150 + 25 + 200 + 20] ps
= 925 ps

Element Parameter Verzögerung (ps)

Register Clock-to-Q tpcq_PC 30

Register setup tsetup 20

Multiplexer tmux 25

ALU tALU 200

Speicher lesen tmem 250

Registerfeld lesen tRFread 150

Registerfeld setup tRFsetup 20
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Ein-Takt Prozessor Rechenleistung: Beispiel

Auszuführen: Programm mit 100 Milliarden Instruktionen
Auf Ein-Takt MIPS Prozessor

Ausführungszeit = 
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Ein-Takt Prozessor Rechenleistung: Beispiel

Auszuführen: Programm mit 100 Milliarden Instruktionen
Auf Ein-Takt MIPS Prozessor

Ausführungszeit = # Instruktionen CPI   TC
= (100 × 109) (1) (925  × 10-12 s)
= 92,5 Sekunden
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Mehrtakt-MIPS-Prozessor

Ein-Takt-Mikroarchitektur:
+ einfach
- Taktfrequenz wird durch langsamste Instruktion bestimmt (lw)
- Zwei Addierer / ALUs und zwei Speicher

Mehrtaktmikroarchitektur:
+ höhere Taktfrequenz
+ einfachere Instruktionen laufen schneller
+ bessere Wiederverwendung von Hardware in verschiedenen Takten
- aufwendigere Ablaufsteuerung

Gleiche Grundkomponenten
Datenpfad
Steuerwerk
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Zustandselemente im Mehrtaktprozessor

CLK

A
RD

Instr / Data
Memory

A1

A3

W D3

RD2
RD1

W E3

A2

CLK

Register
File

PCPC'

W D

W E

CLK

EN

Ersetze getrennte Instruktions- und Datenspeicher
Harvard-Architektur

Durch einen gemeinsamen Speicher
Von Neumann-Architektur
Heute weiter verbreitet
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Mehrtaktdatenpfad: Instruktionen holen (fetch)

b

CLK

A
R D

Instr / D ata
M em ory

A1

A3

W D 3

R D 2
R D 1

W E3

A2

C LK

R egister
F ile

PCPC ' Instr

C LK

W D

W E

C LK

EN

IR W rite

Beispiel: Ausführung von lw
Schritt 1: Hole Instruktion
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Mehrtaktdatenpfad: Lese Register für lw

b

CLK

A
R D

Instr / D ata
M em ory

A1

A3

W D 3

R D 2
R D 1

W E3

A2

C LK

R egister
F ile

PCPC ' Instr 25:21

C LK

W D

W E

C LK C LK

A

EN

IR W rite
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Mehrtaktdatenpfad: Werte lw Direktwert aus

SignImm

b

CLK

A
R D

Instr / D ata
M em ory

A1

A3

W D 3

R D 2
R D 1

W E3

A2

C LK

Sign Extend

R egister
F ile

PCPC ' Instr 25:21

15:0

C LK

W D

W E

C LK C LK

A

EN

IR W rite
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Mehrtaktdatenpfad: Bestimme effektive
Adresse für lw

SignImm

b

C LK

A
R D

Instr / D ata
M em ory

A1

A3

W D 3

R D 2
R D 1

W E3

A2

C LK

Sign Extend

Reg ister
F ile

PCPC ' Instr 25:21

15:0

SrcB

ALUR esult

SrcA

ALUO ut

C LK

ALU Contro l2:0

A
LU

W D

W E

C LK C LK

A C LK

EN

IR W rite
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Mehrtaktdatenpfad: Lesezugriff von lw

SignImm

b

C LK

A
R D

Instr / D ata
M em ory

A1

A3

W D 3

R D 2
R D 1

W E3

A2

C LK

Sign Extend

Reg ister
F ile

PCPC ' Instr 25:21

15:0

SrcB

ALUR esult

SrcA

ALUO ut

C LK

ALU Contro l2:0

A
LU

W D

W E

C LK

Adr

D ata

C LK

C LK

A C LK

EN

IR W riteIorD

0
1
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Mehrtaktdatenpfad: Schreibe Register in lw

SignImm

b

C LK

A
R D

Instr / D ata
M em ory

A1

A3

W D 3

R D 2
R D 1

W E3

A2

C LK

Sign Extend

Reg ister
F ile

PCPC ' Instr 25:21

15:0

SrcB
20:16

ALUR esult

SrcA

ALUO u

R egW rite

t

C LK

ALU Contro l2:0

A
LU

W D

W E

C LK

Adr

D ata

C LK

C LK

A C LK

EN

IR W riteIorD

0
1
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Mehrtaktdatenpfad: Erhöhe PC

PCW rite

S ignImm

b

C LK

A
RD

Instr / Data
M em ory

A1

A3

W D 3

RD 2
RD 1

W E3

A2

C LK

Sign Extend

Register
F ile

0
1PCPC ' Instr 25:21

15:0

SrcB
20:16

ALUR esu lt

S rcA

ALUO ut

ALUSrcARegW rite

C LK

ALUC ontro l2:0

A
LU

W D

W E

CLK

Adr

D ata

C LK

CLK

A

00
01
10
11

4

CLK

ENE N

ALU SrcB 1:0IRW riteIo rD

0
1
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Mehrtaktdatenpfad: Nun Ausführung von sw

SignImm

b

C LK

A
RD

Instr / Data
M em ory

A1

A3

W D 3

RD 2
RD 1

W E3

A2

C LK

Sign Extend

Register
F ile

0
1PC 0

1

PC ' Instr 25:21

20:16

15:0

SrcB
20:16

ALUR esu lt

SrcA

ALUO ut

M emW rite ALUSrcARegW rite

C LK

ALUC ontro l2:0

A
LU

W D

W E

CLK

Adr

D ata

C LK

CLK

A

00
01
10
11

4

CLK

ENE N

ALU SrcB 1:0IRW riteIo rDPCW rite

B

Schreibe Daten aus rt in Speicher
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Mehrtaktdatenpfad: Instruktion vom R-Typ

0
1

S ignImm

b

C LK

A
RD

Instr / Data
M em ory

A1

A3

W D 3

RD 2
RD 1

W E3

A2

C LK

Sign Extend

Register
F ile

0
1

0
1PC 0

1

PC ' Instr 25:21

20:16

15:0

SrcB20:16

15:11

ALUR esu lt

SrcA

ALUO ut

RegDstM emW rite M emtoR eg ALUSrcARegW rite

C LK

ALUC ontro l2:0

A
LU

W D

W E

CLK

Adr

D ata

C LK

CLK

A
B 00

01
10
11

4

CLK

E NE N

ALU SrcB 1:0IRW riteIo rDPCW rite

Lese Werte aus rs und rt
Schreibe ALUResult ins Registerfeld
Schreibe Wert nach rd (statt nach rt)
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Prüfe, ob Werte in rs und rt gleich sind
Bestimme Adresse des Sprungziels (branch target address):

BTA = (vorzeichenerweiterter Direktwert << 2) + (PC+4)

Mehrtaktdatenpfad: beq

SignImm

b

CLK

A
RD

Instr / Data
Memory

A1

A3

WD3

RD2
RD1

WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1 0

1

PC 0
1

'PC Instr 25:21

20:16

15:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

RegDst BranchMemWrite MemtoReg ALUSrcARegWrite

Zero

PCSrc

CLK

ALUControl2:0

A
LU

WD

WE

CLK

Adr

0
1

Data

CLK

CLK

A
B 00

01
10
11

4

CLK

ENEN

ALUSrcB1:0IRWriteIorD PCWrite

PCEn
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Vollständiger Mehrtaktprozessor

SignImm

CLK

A
RD

Instr / Data
Memory

A1

A3

WD3

RD2
RD1

WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1 0

1

PC 0
1

PC' Instr 25:21

20:16

15:0

5:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

31:26

R
egD

st

Branch

MemWrite

M
em

toR
eg

ALUSrcA
RegWrite

Op
Funct

Control
Unit

Zero

PCSrc

CLK

CLK

ALUControl2:0

A
LU

WD

WE

CLK

Adr

0
1

Data

CLK

CLK

A
B 00

01
10
11

4

CLK

ENEN

ALUSrcB1:0IRWrite

IorD

PCWrite
PCEn
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Steuerwerk

ALUSrcA

PCSrc

Branch

ALUSrcB1:0

Opcode5:0

Control
Unit

ALUControl2:0Funct5:0

Main
Controller

(FSM)

ALUOp1:0

ALU
Decoder

RegWrite

PCWrite

IorD

MemWrite
IRWrite

RegDst
MemtoReg

Register
Enables

Multiplexer
Selects
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Hauptsteuerwerk: Holen eines Befehls

SignImm

CLK

A
RD

Instr / Data
Memory

A1

A3

WD3

RD2
RD1

WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1 0

1

PC 0
1

PC' Instr 25:21

20:16

15:0

5:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

31:26

R
egD

st

Branch

MemWrite

M
em

toR
eg

ALUSrcA
RegWrite

Op
Funct

Control
Unit

Zero

PCSrc

CLK

CLK

ALUControl2:0

A
LU

WD

WE

CLK

Adr

0
1

Data

CLK

CLK

A
B 00

01
10
11

4

CLK

ENEN

ALUSrcB1:0IRWrite

IorD

PCWrite
PCEn

0

1 1

0

X

X

0
0

01

010
0

1
0

Reset

S0: Fetch
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Hauptsteuerwerk: Holen eines Befehls

SignImm

CLK

A
RD

Instr / Data
Memory

A1

A3

WD3

RD2
RD1

WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1 0

1

PC 0
1

PC' Instr 25:21

20:16

15:0

5:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

31:26

R
egD

st

Branch

MemWrite

M
em

toR
eg

ALUSrcA
RegWrite

Op
Funct

Control
Unit

Zero

PCSrc

CLK

CLK

ALUControl2:0

A
LU

WD

WE

CLK

Adr

0
1

Data

CLK

CLK

A
B 00

01
10
11

4

CLK

ENEN

ALUSrcB1:0IRWrite

IorD

PCWrite
PCEn

0

1 1

0

X

X

0
0

01

010
0

1
0

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 0

IRWrite
PCWrite

Reset

S0: Fetch
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Hauptsteuerwerk: Dekodieren eines Befehls

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 0

IRWrite
PCWrite

Reset

S0: Fetch S1: Decode

SignImm

CLK

A
RD

Instr / Data
Memory

A1

A3

WD3

RD2
RD1

WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1 0

1

PC 0
1

PC' Instr 25:21

20:16

15:0

5:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

31:26

R
egD

st

Branch

MemWrite

M
em

toR
eg

ALUSrcA
RegWrite

Op
Funct

Control
Unit

Zero

PCSrc

CLK

CLK

ALUControl2:0

A
LU

WD

WE

CLK

Adr

0
1

Data

CLK

CLK

A
B 00

01
10
11

4

CLK

ENEN

ALUSrcB1:0IRWrite

IorD

PCWrite
PCEn

X

0 0

0

X

X

0
X

XX

XXX
X

0
0
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Hauptsteuerwerk: Adressberechnung

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 0

IRWrite
PCWrite

Reset

S0: Fetch

S2: MemAdr

S1: Decode

Op = LW
or

Op = SW

SignImm

CLK

A
RD

Instr / Data
Memory

A1

A3

WD3

RD2
RD1

WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1 0

1

PC 0
1

PC' Instr 25:21

20:16

15:0

5:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

31:26

R
egD

st

Branch

MemWrite

M
em

toR
eg

ALUSrcA
RegWrite

Op
Funct

Control
Unit

Zero

PCSrc

CLK

CLK

ALUControl2:0

A
LU

WD

WE

CLK

Adr

0
1

Data

CLK

CLK

A
B 00

01
10
11

4

CLK

ENEN

ALUSrcB1:0IRWrite

IorD

PCWrite
PCEn

X

0 0

0

X

X

0
1

10

010
X

0
0
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Hauptsteuerwerk: Adressberechnung

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 0

IRWrite
PCWrite

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

Reset

S0: Fetch

S2: MemAdr

S1: Decode

Op = LW
or

Op = SW

SignImm

CLK

A
RD

Instr / Data
Memory

A1

A3

WD3

RD2
RD1

WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1 0

1

PC 0
1

PC' Instr 25:21

20:16

15:0

5:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

31:26

R
egD

st

Branch

MemWrite

M
em

toR
eg

ALUSrcA
RegWrite

Op
Funct

Control
Unit

Zero

PCSrc

CLK

CLK

ALUControl2:0

A
LU

WD

WE

CLK

Adr

0
1

Data

CLK

CLK

A
B 00

01
10
11

4

CLK

ENEN

ALUSrcB1:0IRWrite

IorD

PCWrite
PCEn

X

0 0

0

X

X

0
1

10

010
X

0
0
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Hauptsteuerwerk: FSM für lw

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 0

IRWrite
PCWrite

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

IorD = 1

Reset

S0: Fetch

S2: MemAdr

S1: Decode

S3: MemRead

Op = LW
or

Op = SW

Op = LW

RegDst = 0
MemtoReg = 1

RegWrite

S4: Mem
Writeback
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Hauptsteuerwerk: FSM für sw

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 0

IRWrite
PCWrite

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

IorD = 1 IorD = 1
MemWrite

Reset

S0: Fetch

S2: MemAdr

S1: Decode

S3: MemRead
S5: MemWrite

Op = LW
or

Op = SW

Op = LW
Op = SW

RegDst = 0
MemtoReg = 1

RegWrite

S4: Mem
Writeback
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Hauptsteuerwerk: FSM für R-Typ

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 0

IRWrite
PCWrite

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

IorD = 1
RegDst = 1

MemtoReg = 0
RegWrite

IorD = 1
MemWrite

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

Reset

S0: Fetch

S2: MemAdr

S1: Decode

S3: MemRead
S5: MemWrite

S6: Execute

S7: ALU
Writeback

Op = LW
or

Op = SW
Op = R-type

Op = LW
Op = SW

RegDst = 0
MemtoReg = 1

RegWrite

S4: Mem
Writeback
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Hauptsteuerwerk: FSM für beq

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 0

IRWrite
PCWrite

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

IorD = 1
RegDst = 1

MemtoReg = 0
RegWrite

IorD = 1
MemWrite

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCSrc = 1

Branch

Reset

S0: Fetch

S2: MemAdr

S1: Decode

S3: MemRead
S5: MemWrite

S6: Execute

S7: ALU
Writeback

S8: Branch

Op = LW
or

Op = SW
Op = R-type

Op = BEQ

Op = LW
Op = SW

RegDst = 0
MemtoReg = 1

RegWrite

S4: Mem
Writeback



WS 09/10 |  Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch |  63

Vollständiges Hauptsteuerwerk für Mehrtakt-CPU

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 0

IRWrite
PCWrite

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

IorD = 1
RegDst = 1

MemtoReg = 0
RegWrite

IorD = 1
MemWrite

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCSrc = 1

Branch

Reset

S0: Fetch

S2: MemAdr

S1: Decode

S3: MemRead
S5: MemWrite

S6: Execute

S7: ALU
Writeback

S8: Branch

Op = LW
or

Op = SW
Op = R-type

Op = BEQ

Op = LW
Op = SW

RegDst = 0
MemtoReg = 1

RegWrite

S4: Mem
Writeback
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Erweiterung des Hauptsteuerwerks: addi

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 0

IRWrite
PCWrite

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

IorD = 1
RegDst = 1

MemtoReg = 0
RegWrite

IorD = 1
MemWrite

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCSrc = 1

Branch

Reset

S0: Fetch

S2: MemAdr

S1: Decode

S3: MemRead
S5: MemWrite

S6: Execute

S7: ALU
Writeback

S8: Branch

Op = LW
or

Op = SW
Op = R-type

Op = BEQ

Op = LW
Op = SW

RegDst = 0
MemtoReg = 1

RegWrite

S4: Mem
Writeback

Op = ADDI

S9: ADDI
Execute

S10: ADDI
Writeback
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Erweiterung des Hauptsteuerwerks: addi

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 0

IRWrite
PCWrite

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

IorD = 1
RegDst = 1

MemtoReg = 0
RegWrite

IorD = 1
MemWrite

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCSrc = 1

Branch

Reset

S0: Fetch

S2: MemAdr

S1: Decode

S3: MemRead
S5: MemWrite

S6: Execute

S7: ALU
Writeback

S8: Branch

Op = LW
or

Op = SW
Op = R-type

Op = BEQ

Op = LW
Op = SW

RegDst = 0
MemtoReg = 1

RegWrite

S4: Mem
Writeback

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

RegDst = 0
MemtoReg = 0

RegWrite

Op = ADDI

S9: ADDI
Execute

S10: ADDI
Writeback
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Erweiterung des Datenpfads für j

SignImm

CLK

A
RD

Instr / Data
Memory

A1

A3

WD3

RD2
RD1

WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1PC 0

1

PC' Instr 25:21

20:16

15:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

RegDst BranchMemWrite MemtoReg ALUSrcARegWrite

Zero

PCSrc1:0

CLK

ALUControl2:0

A
LU

WD

WE

CLK

Adr

0
1

Data

CLK

CLK

A
B 00

01
10
11

4

CLK

ENEN

ALUSrcB1:0IRWriteIorD PCWrite

PCEn

00
01
10

<<2

25:0 (jump)

31:28

27:0

PCJump
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Erweiterung des Hauptsteuerwerks um j

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 00

IRWrite
PCWrite

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

IorD = 1
RegDst = 1

MemtoReg = 0
RegWrite

IorD = 1
MemWrite

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCSrc = 01

Branch

Reset

S0: Fetch

S2: MemAdr

S1: Decode

S3: MemRead
S5: MemWrite

S6: Execute

S7: ALU
Writeback

S8: Branch

Op = LW
or

Op = SW
Op = R-type

Op = BEQ

Op = LW
Op = SW

RegDst = 0
MemtoReg = 1

RegWrite

S4: Mem
Writeback

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

RegDst = 0
MemtoReg = 0

RegWrite

Op = ADDI

S9: ADDI
Execute

S10: ADDI
Writeback

Op = J

S11: Jump
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Erweiterung des Hauptsteuerwerks um j

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 00

IRWrite
PCWrite

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

IorD = 1
RegDst = 1

MemtoReg = 0
RegWrite

IorD = 1
MemWrite

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCSrc = 01

Branch

Reset

S0: Fetch

S2: MemAdr

S1: Decode

S3: MemRead
S5: MemWrite

S6: Execute

S7: ALU
Writeback

S8: Branch

Op = LW
or

Op = SW
Op = R-type

Op = BEQ

Op = LW
Op = SW

RegDst = 0
MemtoReg = 1

RegWrite

S4: Mem
Writeback

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

RegDst = 0
MemtoReg = 0

RegWrite

Op = ADDI

S9: ADDI
Execute

S10: ADDI
Writeback

PCSrc = 10
PCWrite

Op = J

S11: Jump
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Rechenleistung des Mehrtaktprozessors

Instruktionen benötigen unterschiedliche viele Takte:
3 Takte : beq, j
4 Takte :  R-Typ, sw, addi
5 Takte : lw

CPI wird bestimmt als gewichteter Durchschnitt

SPECint 2000 Benchmark: 
25% Laden
10% Speichern 
11% Verzweigungen

2% Sprünge
52% R-Typ

Durchschnittliche CPI = (0,11 + 0,2)(3) + (0,52 + 0,10)(4) + (0,25)(5) = 4,12
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Rechenleistung des Mehrtaktprozessors

Kritischer Pfad:
Tc =

SignImm

CLK

A
RD

Instr / Data
Memory

A1

A3

WD3

RD2
RD1

WE3

A2

CLK
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File
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1 0

1

PC 0
1

PC' Instr 25:21
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15:0

5:0

SrcB20:16

15:11
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ALUResult

SrcA
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31:26

R
egD

st

Branch

MemWrite

M
em

toR
eg

ALUSrcA
RegWrite

Op
Funct

Control
Unit

Zero

PCSrc

CLK

CLK

ALUControl2:0

A
LU

WD

WE

CLK

Adr

0
1

Data

CLK

CLK

A
B 00

01
10
11

4

CLK

ENEN

ALUSrcB1:0IRWrite

IorD

PCWrite
PCEn
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Rechenleistung des Mehrtaktprozessors

Kritischer Pfad :
Tc = tpcq + tmux + max(tALU + tmux, tmem) + tsetup

SignImm

CLK

A
RD

Instr / Data
Memory

A1

A3

WD3

RD2
RD1

WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1 0

1

PC 0
1

PC' Instr 25:21

20:16

15:0

5:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

31:26

R
egD

st

Branch

MemWrite

M
em

toR
eg

ALUSrcA
RegWrite

Op
Funct

Control
Unit

Zero

PCSrc

CLK

CLK

ALUControl2:0

A
LU

WD

WE

CLK

Adr

0
1

Data

CLK

CLK

A
B 00

01
10
11

4

CLK

ENEN

ALUSrcB1:0IRWrite

IorD

PCWrite
PCEn
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Beispiel: Rechenleistung Mehrtaktprozessor

Tc =

Element Parameter Verzögerung (ps)

Register Clock-to-Q tpcq 30

Register Setup tsetup 20

Multiplexer tmux 25

ALU tALU 200

Speicher Lesen tmem 250

Registerfeld Lesen tRFread 150

Registerfeld Setup tRFsetup 20
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Beispiel: Rechenleistung Mehrtaktprozessor

Tc = tpcq_PC + tmux + max(tALU + tmux, tmem) + tsetup
= tpcq_PC + tmux + tmem + tsetup
= [30 + 25 + 250 + 20] ps
= 325 ps

Element Parameter Verzögerung (ps)

Register Clock-to-Q tpcq 30

Register Setup tsetup 20

Multiplexer tmux 25

ALU tALU 200

Speicher Lesen tmem 250

Registerfeld Lesen tRFread 150

Registerfeld Setup tRFsetup 20
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Beispiel: Rechenleistung Mehrtaktprozessor

Führe Programm mit 100 Milliarden Instruktionen auf Mehrtaktprozessor aus
CPI = 4,12
Tc = 325 ps

Ausführungszeit =
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Beispiel: Rechenleistung Mehrtaktprozessor

Führe Programm mit 100 Milliarden Instruktionen auf Mehrtaktprozessor aus
CPI = 4,12
Tc = 325 ps

Ausführungszeit = (# Instruktionen) × CPI × Tc
= (100 × 109) (4,12) (325  × 10-12)
= 133,9 Sekunden

Langsamer als Ein-Takt-Prozessor (brauchte 92,5 Sekunden).
Warum?
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Beispiel: Rechenleistung Mehrtaktprozessor

Führe Programm mit 100 Milliarden Instruktionen auf Mehrtaktprozessor aus
CPI = 4,12
Tc = 325 ps

Ausführungszeit = (# Instruktionen) × CPI × Tc
= (100 × 109) (4,12) (325  × 10-12)
= 133,9 Sekunden

Langsamer als Ein-Takt-Prozessor (brauchte 92,5 Sekunden).
Unterschiedlich lange Anzahl von Ausführungstakten (bis zu 5 für lw)

Aber nicht 5x schnellere Taktfrequenz
Nun zusätzliche Verzögerungen für sequentielle Logik mehrfach je Befehl

tpcq + tsetup= 50 ps
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Rückblick: Ein-Takt MIPS Prozessor
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A RD
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+
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MemWrite
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Rückblick: Mehrtakt-MIPS-Prozessor

ImmExt

CLK

A
RD

Instr / Data
Memory

A1

A3

WD3

RD2
RD1

WE3

A2

CLK

Sign Extend

Register
File

0
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PC' Instr 25:21

20:16
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SrcB20:16
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SrcA
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Data
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4

CLK

ENEN
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01
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<<2

25:0 (Addr)

31:28

27:0

PCJump

5:0

31:26
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MemWrite

ALUSrcA
RegWrite

Op
Funct
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Unit

PCSrc

CLK

ALUControl2:0

ALUSrcB1:0IRWrite
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PCWrite
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R
egD
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M
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Potentiell etwas kleiner.
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MIPS Prozessor mit Pipelining

Zeitliche Parallelität

Teile Ablauf im Ein-Takt-Prozessor in fünf Stufen:
Hole Instruktion (Fetch)
Dekodiere Bedeutung von Instruktion (Decode)
Führe Instruktion aus (Execute)
Greife auf Speicher zu (Memory)
Schreibe Ergebnisse zurück (Writeback)

Füge Pipeline-Register zwischen den Stufen ein
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Rechenleistung: Ein-Takt und Pipelined

Zeit (ps)
Instr

Fetch
Instruction

Decode
Read Reg

Execute
ALU

Memory
Read / Write

Write
Reg1

2

0 100 200 300 400 500 600 700 800 900 1100 1200 1300 1400 1500 1600 1700 1800 19001000

Instr

1

2

3

Fetch
Instruction

Decode
Read Reg

Execute
ALU

Memory
Read / Write

Write
Reg

Fetch
Instruction

Decode
Read Reg

Execute
ALU

Memory
Read/Write

Write
Reg

Fetch
Instruction

Decode
Read Reg

Execute
ALU

Memory
Read/Write

Write
Reg

Fetch
Instruction

Decode
Read Reg

Execute
ALU

Memory
Read/Write

Write
Reg

Ein-Takt

Pipelined
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Abstraktere Darstellung des Pipelinings

Zeit (Takte)

lw $s2, 40($0) RF 40
$0

RF
$s2

+ DM

RF $t2
$t1

RF
$s3

+ DM

RF $s5
$s1

RF
$s4

- DM

RF $t6
$t5

RF
$s5

& DM

RF 20
$s1

RF
$s6

+ DM

RF $t4
$t3

RF
$s7

| DM

add $s3, $t1, $t2

sub $s4, $s1, $s5

and $s5, $t5, $t6

sw $s6, 20($s1)

or $s7, $t3, $t4

1 2 3 4 5 6 7 8 9 10

add

IM

IM

IM

IM

IM

IM lw

sub

and

sw

or
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Ein-Takt- und Pipelined-Datenpfad
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+
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Data
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20:16
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20:16
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+
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Result

Zero

CLK

A
LU

Fetch Decode Execute Memory Writeback
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Korrigierter Pipelined-Datenpfad

SignImmE

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PCF0
1

PC' InstrD 25:21

20:16

15:0

SrcBE

20:16

15:11

RtE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

WriteRegM4:0

ResultW

PCPlus4EPCPlus4F

ZeroM

CLK CLK

WriteRegW4:0

A
LU

WriteRegE4:0

CLK
CLK

CLK

Fetch Decode Execute Memory Writeback

WriteReg muss zur gleichen Zeit am Registerfeld ankommen wie Result
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Steuersignale für Pipelined-Datenpfad

SignImmE

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PCF0
1

PC' InstrD
25:21

20:16

15:0

5:0

SrcBE

20:16

15:11

RtE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

WriteRegM4:0

ResultW

PCPlus4EPCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD

ALUSrcD

RegWriteD

Op

Funct

Control
Unit

ZeroM

PCSrcM

CLK CLK CLK

CLK CLK

WriteRegW4:0

ALUControlE2:0

A
LU

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

BranchE BranchM

RegDstE

ALUSrcE

WriteRegE4:0

Identisch zu Ein-Takt-Steuerwerk, aber Signale verzögert über Pipeline-Stufen
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Abhängigkeiten zwischen Pipeline-Stufen
(hazards)

Treten auf wenn eine
Instruktion vom Ergebnis einer vorhergehenden abhängt
… diese aber noch kein Ergebnis geliefert hat

Arten von Hazards
Data Hazard: z.B. Neuer Wert von Register noch nicht in Registerfeld 
eingetragen
Control Hazard: Unklar welche Instruktion als nächstes ausgeführt werden 
muss

Tritt bei Verzweigungen auf



WS 09/10 |  Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch |  86

Data Hazard

Zeit (Takte)

add $s0, $s2, $s3 RF $s3

$s2
RF

$s0
+ DM

RF $s1

$s0
RF

$t0
& DM

RF $s0

$s4
RF

$t1
| DM

RF $s5

$s0
RF

$t2
- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM add

or

sub

Hier: Read-after-Write Hazard (RAW)
- $s0 „muss vor Lesen geschrieben werden“
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Umgang mit Data Hazards

Plane Wartezeiten von Anfang an ein
Füge nops zur Compile-Zeit ein
scheduling

Stelle Maschinencode zur Compile-Zeit um
scheduling / reordering

Leite Daten zur Laufzeit schneller über Abkürzungen weiter
bypassing / forwarding

Halte Prozessor zur Laufzeit an bis Daten da sind
stalling
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Beseitigung von Data Hazards zur Compile-Zeit

Füge ausreichend viele nops ein bis Ergebnis bereitsteht
Oder schiebe unabhängige Instruktionen nach vorne (statt nops )

Zeit (Takte)

add $s0, $s2, $s3 RF $s3

$s2
RF

$s0
+ DM

RF $s1

$s0
RF

$t0
& DM

RF $s0

$s4
RF$t1

| DM

RF $s5

$s0
RF

$t2
- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM add

or

sub

nop

nop

RF RFDMnopIM

RF RFDMnopIM

9 10
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Data Forwarding: “Abkürzungen” einbauen

Zeit (Takte)

add $s0, $s2, $s3 RF $s3

$s2
RF

$s0
+ DM

RF $s1

$s0
RF

$t0
& DM

RF $s0

$s4
RF

$t1
| DM

RF $s5

$s0
RF

$t2
- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM add

or

sub
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Data Forwarding: “Abkürzungen” einbauen
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ResultW
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rw
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dB
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RdD

RtD
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R
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Hazard Unit
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RegWriteM RegWriteW
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Data Forwarding: “Abkürzungen” einbauen

“Abkürzung” zur Execute-Stufe von
Memory-Stufe oder
Writeback-Stufe

Forwarding-Logik für Signal ForwardAE (Weiterleiten von Operand A):
if ((rsE != 0) AND (rsE == WriteRegM) AND RegWriteM) then

ForwardAE = 10
else if ((rsE != 0) AND (rsE == WriteRegW) AND RegWriteW) then

ForwardAE = 01
else

ForwardAE = 00

Forwarding-Logik für Signal ForwardBE (Weiterleiten von Operand B) analog
Ersetze rsE durch rtE
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Anhalten des Prozessors (stalling)

Zeit (Takte)

lw $s0, 40($0) RF 40

$0
RF

$s0
+ DM

RF $s1

$s0
RF

$t0
& DM

RF $s0

$s4
RF

$t1
| DM

RF $s5

$s0
RF

$t2
- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM lw

or

sub

Problem!
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Anhalten des Prozessors (stalling)

Zeit (Takte)

lw $s0, 40($0) RF 40

$0
RF

$s0
+ DM

RF $s1

$s0
RF

$t0
& DM

RF $s0

$s4
RF

$t1
| DM

RF $s5

$s0
RF

$t2
- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM lw

or

sub

9

RF $s1

$s0

IM or

Anhalten
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Erweiterung der Hazard-Einheit für Stalling
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Behandlung von Stalling in Hazard-Einheit

Stalling-Logik:
lwstall = ((rsD == rtE) OR (rtD == rtE)) AND MemtoRegE

StallF = StallD = FlushE = lwstall
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Control Hazards

beq: 
Entscheidung zu Springen wird erst in vierter Stufe der Pipeline (M) getroffen
Neue Instruktionen werden aber bereits geholt

Im einfachsten Fall: Von PC+4, +8, +12, …
Falls zu springen ist, müssen diese Instruktionen aus der Pipeline entfernt werden

… das Programm wäre ja woanders (am Sprungziel) weitergegangen
“Spülen” (flush)

Kosten eines solchen falsch vorhergesagten Sprunges:
Anzahl von zu entfernenden Instruktion falls Sprung genommen

Könnte reduziert werden, wenn Sprung in früherer Pipeline-Stufe entschieden 
würde
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Control Hazards: Ursprüngliche Pipeline
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Beispiel: Control Hazards

Zeit (Takte)

beq $t1, $t2, 40 RF $t2
$t1

RF- DM

RF $s1
$s0

RF& DM

RF $s0
$s4

RF| DM

RF $s5
$s0

RF- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM lw

or

sub

20

24

28

2C

30

...

...

9

Entferne
diese

Instruktionen

64 slt $t3, $s2, $s3 RF $s3
$s2

RF$t3s
l
t DMIM slt
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Auflösen von Control Hazards durch frühere
Sprungentscheidung

Zeit (Takte)

beq $t1, $t2, 40 RF $t2

$t1
RF- DM

RF $s1

$s0
RF& DMand $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

andIM

IM lw20

24

28

2C

30

...

...

9

Entferne
diese

Instruktion

64 slt $t3, $s2, $s3 RF $s3

$s2
RF

$t3s
l
t DMIM slt
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Control Hazards: Ansatz “Frühere Sprungentscheidung”
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Berücksichtige neue Data Hazards
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Frühe Sprungentscheidung:
Benötigte Logik für Forwarding und Stalling

Forwarding-Logik:
ForwardAD = (rsD !=0) AND (rsD == WriteRegM) AND RegWriteM

ForwardBD = (rtD !=0) AND (rtD == WriteRegM) AND RegWriteM

Stalling-Logik:
branchstall = BranchD AND RegWriteE AND 

(WriteRegE == rsD OR WriteRegE == rtD) 
OR 

BranchD AND MemtoRegM AND 
(WriteRegM == rsD OR WriteRegM == rtD)

StallF = StallD = FlushE = lwstall OR branchstall
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Orthogonaler Ansatz: Sprungvorhersage

Versuche vorherzusagen, ob ein Sprung genommen wird
Dann können Instruktionen von der richtigen Stelle geholt werden
Rückwärtssprünge werden üblicherweise genommen (Schleifen!)
Genauer: Für jeden Sprung Historie führen, ob er die letzten Male genommen 
wurde

… dann wird jetzt vermutlich auch wieder genommen

Eine gute Vorhersage reduziert die Zahl der Sprünge, die ein Flush der 
Pipeline erforderlich machen 
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Beispiel: Rechenleistung des
Pipelined-Prozessors

Idealerweise wäre CPI = 1

Manchmal treten aber Stalls auf (wegen Lade- und Verzweigungsbefehlen)

SPECint 2000 benchmark: 
25% loads
10% stores
11% branches
2% jumps

52% R-type

Annahmen:
40% der geladenen Daten werden gleich in der nächsten Instruktion gebraucht
25% aller Verzweigungen werden falsch vorhergesagt
Alle Sprünge erzeugen eine zu entfernende (flush) Instruktion

Wie hoch ist der durchschnittliche CPI-Wert?
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Beispiel: Rechenleistung des
Pipelined-Prozessors

SPECint 2000 benchmark: 
25% loads
10% stores
11% branches
2% jumps

52% R-type

Annahmen:
40% der geladenen Daten werden gleich in der nächsten Instruktion gebraucht
25% aller Verzweigungen werden falsch vorhergesagt
Alle Sprünge erzeugen eine zu entfernende (flush) Instruktion

Wie hoch ist der durchschnittliche CPI-Wert?
Lade/Verzweigungsinstruktionen haben CPI = 1 ohne Stall, = 2 mit Stall.  Daher:
CPIlw = 1 (0,6) + 2 (0,4) = 1,4
CPIbeq = 1 (0,75) + 2 (0,25) = 1,25
Thus,

Durchschnittliche CPI = (0,25) (1,4) + (0,1) (1,0) + (0,11)(1,25) + (0,02) (2,0) + (0,52)(1,0)     

= 1,15



WS 09/10 |  Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch |  106

Beispiel: Rechenleistung des
Pipelined-Prozessors

Kritischer Pfad des Pipelined-Prozessors:

Tc = max {
tpcq + tmem + tsetup, Fetch
2 (tRFread + tmux + teq + tAND + tmux + tsetup ), Decode
tpcq + tmux + tmux + tALU + tsetup, Execute
tpcq + tmemwrite + tsetup, Memory
2 (tpcq + tmux + tRFwrite) } Writeback
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Beispiel: Rechenleistung des
Pipelined-Prozessors

Element Parameter Verzögerung (ps)

Register Clock-to-Q tpcq_PC 30

Vergleich auf Gleichheit teq 40

AND Gatter tAND 15

Speicher Schreiben Tmemwrite 220

Registerfeld Schreiben tRFwrite 100

Register Setup tsetup 20

Multiplexer tmux 25

ALU tALU 200

Speicher Lesen tmem 250

Registerfeld Lesen tRFread 150

Registerfeld Setup tRFsetup 20

Tc = 2 (tRFread + tmux + teq + tAND + tmux + tsetup )
= 2 [150 + 25 + 40 + 15 + 25 + 20] ps = 550 ps
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Beispiel: Rechenleistung des
Pipelined-Prozessors

Führe Programm mit 100 Milliarden Instruktionen auf Pipelined-MIPS-Prozessor aus

CPI = 1,15
Tc = 550 ps

Ausführungszeit = (# Instruktionen) × CPI × Tc
= (100 × 109) (1,15) (550  × 10-12)
= 63 Sekunden

Prozessor
Ausführungszeit
(Sekunden)

Beschleunigungsfaktor
(im Vergleich zu Ein-Takt-CPU)

Ein-Takt 95 1,00

Mehrtakt 133 0,71

Pipelined 63 1,51
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Wiederholung: Ausnahmebehandlung
(exceptions)

Außerplanmäßiger Aufruf der Ausnahmebehandlungsroutine
Verursacht durch:

Hardware, auch genannt Interrupt, z.B. Tastatur, Netzwerk, …
Software, auch genannt Traps, z.B. unbekannte Instruktion, Überlauf, Teilen-durch-Null, 
…

Beim Auftreten einer Ausnahme:
Abspeichern der Ursache für Ausnahme im Cause Register
Sprung zu Ausnahmebehandlungsrouting bei 0x80000180
Rückkehr zum Programm (über EPC Register)
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Beispiel für Ausnahme
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Register für Ausnahmebehandlung

Nicht Teil des regulären MIPS Registersfelds
Cause

Speichert die Ursache der Ausnahme
Koprozessor 0, Register 13

EPC (Exception PC)
Speichert den PC-Stand, an dem die Aufnahme auftrat
Koprozessor 0, Register 14

Befehl: “Move from Coprocessor 0”
mfc0 $t0, Cause

Überträgt aktuellen Wert von Cause nach $t0

00000 $t0  (8) Cause  (13) 00000000000

mfc0

31:26 25:21 20:16 15:11 10:0

010000
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Auswahl von Ausnahmeursachen

Ausnahme Ursache

Hardware Interrupt 0x00000000

System Call 0x00000020

Breakpoint / Division durch 0 0x00000024

Unbekannte Instruktion 0x00000028

Arithmetischer Überlauf 0x00000030

Ziel: Erweitere den Mehrtaktprozessor um 
Behandlung der letzten beiden Ausnahmen
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Hardware für Ausnahmebehandlung:
EPC und Cause
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Hardware für Ausnahmebehandlung : mfc0
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Steuerwerk-FSM erweitert um Ausnahmen

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 00

IRWrite
PCWrite

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

IorD = 1
RegDst = 1

MemtoReg = 00
RegWrite

IorD = 1
MemWrite

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCSrc = 01

Branch

Reset

S0: Fetch

S2: MemAdr

S1: Decode

S3: MemRead
S5: MemWrite

S6: Execute

S7: ALU
Writeback

S8: Branch

Op = LW
or

Op = SW
Op = R-type

Op = BEQ

Op = LW
Op = SW

RegDst = 0
MemtoReg = 01

RegWrite

S4: Mem
Writeback

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

RegDst = 0
MemtoReg = 00

RegWrite

Op = ADDI

S9: ADDI
Execute

S10: ADDI
Writeback

PCSrc = 10
PCWrite

Op = J

S11: Jump

Overflow Overflow
S13:

Overflow
PCSrc = 11

PCWrite
IntCause = 0
CauseWrite
EPCWrite

Op = others

PCSrc = 11
PCWrite

IntCause = 1
CauseWrite
EPCWrite

S12: Undefined

RegDst = 0
Memtoreg = 10

RegWrite

Op = mfc0

S14: MFC0
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Weiterführende Themen der Mikroarchitektur

Tiefe Pipelines
Sprungvorhersage
Superskalare Prozessoren
Out of Order-Prozessoren
Umbenennen von Registern
SIMD
Multithreading
Multiprozessoren
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Tiefe Pipelines

Üblicherweise 10-20 Stufen
Ausnahmen

Fehlkonstruktionen (Intel P4, >30 Stufen)
Anwendungsspezifische Spezialprozessoren (ggf. Hunderte von Stufen)

Grenzen für Pipeline-Tiefe
Pipeline Hazards
Zusätzlicher Zeitaufwand für sequentielle Schaltungen
Elektrische Leistungsaufnahme und Energiebedarf
Kosten



WS 09/10 |  Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch |  118

Sprungvorhersage

Idealer Pipelined-Prozessor: CPI = 1
Fehler der Sprungvorhersage erhöht CPI

Statische Sprungvorhersage:
Prüfe Sprungrichtung (vorwärts oder rückwärts)
Falls rückwärts: Sage “Springen” vorher
Sonst: Sage “Nicht Springen” vorher

Dynamische Sprungvorhersage:
Führe Historie der letzten (einige Hundert) Verzweigungen in Branch Target 
Buffer, speichert:

Sprungziel
Wurde Sprung das letzte Mal / die letzten Male genommen?
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Beispiel: Sprungvorhersage

add  $s1, $0, $0      # sum = 0
add  $s0, $0, $0      # i   = 0

addi $t0, $0, 10      # $t0 = 10
for:

beq $s0, $t0, done # falls i == 10, springe
add  $s1, $s1, $s0    # sum = sum + i
addi $s0, $s0, 1      # inkrementiere i

j    for
done:
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1-Bit Sprungvorhersage

Speichert, ob die Verzweigung das letzte Mal genommen wurde
… und sagt genau dieses Verhalten für das aktuelle Mal vorher

Fehlvorhersagen
Einmal bei Austritt aus der Schleife bei Schleifenende
Dann wieder bei erneutem Eintritt in Schleife

add  $s1, $0, $0      # sum = 0

add  $s0, $0, $0      # i   = 0
addi $t0, $0, 10      # $t0 = 10

for:
beq $s0, $t0, done # falls i == 10, springe
add  $s1, $s1, $s0    # sum = sum + i

addi $s0, $s0, 1      # inkrementiere i
j    for

done:



WS 09/10 |  Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch |  121

2-Bit Sprungvorhersage

Falsche Vorhersage nur beim letzten Sprung aus Schleife heraus

strongly
taken

predict
taken

weakly
taken

predict
taken

weakly
not taken

predict
not taken

strongly
not taken

predict
not taken

taken taken taken

takentakentaken

taken

taken

add $s1, $0, $0      # sum = 0
add $s0, $0, $0      # i   = 0
addi $t0, $0, 10      # $t0 = 10

for:
beq $s0, $t0, done # falls i == 10, springe
add $s1, $s1, $s0    # sum = sum + i
addi $s0, $s0, 1      # inkrementiere i
j    for

done:
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Superskalare Mikroarchitektur

Mehrere Instanzen des Datenpfades führen mehrere Instruktionen gleichzeitig 
aus
Abhängigkeiten zwischen Instruktionen erschweren parallele Ausführung
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RD1A3

W D3
W D6

A4
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A6

RD4

RD2
RD5

Instruction
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F ile D ata

M em ory
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LU

s

PC
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A1
A2

W D 1
W D 2

R D1
R D2
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Beispiel: Superskalare Ausführung

lw $t0, 40($s0)
add $t1, $t0, $s1

sub $t0, $s2, $s3 Idealer IPC-Wert: 2
and $t2, $s4, $t0 Erreichter IPC-Wert: 2
or  $t3, $s5, $s6
sw $s7, 80($t3)

Time (cycles)

1 2 3 4 5 6 7 8

RF
40

$s0

RF

$t0
+

DMIM

lw

add

lw  $t0, 40($s0)

add $t1, $s1, $s2

sub $t2, $s1, $s3

and $t3, $s3, $s4

or  $t4, $s1, $s5

sw  $s5, 80($s0)

$t1
$s2

$s1

+

RF
$s3

$s1

RF

$t2
-

DMIM

sub

and $t3
$s4

$s3
&

RF
$s5

$s1

RF

$t4
|

DMIM

or

sw
80

$s0

+ $s5
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Beispiel: Superskalare Ausführung mit Abhängigkeiten

lw $t0, 40($s0)

add $t1, $t0, $s1

sub $t0, $s2, $s3 Idealer IPC-Wert: 2,00
and $t2, $s4, $t0 Erreichter IPC-Wert:   6/5 = 1,20
or $t3, $s5, $s6
sw $s7, 80($t3)

Stall

Time (cycles)

1 2 3 4 5 6 7 8

RF
40

$s0

RF

$t0
+

DMIM

lwlw  $t0, 40($s0)

add $t1, $t0, $s1

sub $t0, $s2, $s3

and $t2, $s4, $t0

sw  $s7, 80($t3)

RF
$s1

$t0
add

RF
$s1

$t0

RF

$t1
+

DM

RF
$t0

$s4

RF

$t2
&

DMIM

and

IM
or

and

sub

|$s6

$s5
$t3

RF
80

$t3

RF
+

DM
sw

IM

$s7

9

$s3

$s2

$s3

$s2
-

$t0

oror  $t3, $s5, $s6

IM



WS 09/10 |  Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch |  125

Out of Order-Mikroarchitektur

Kann Ausführungsreihenfolge von Instruktion umsortieren

Sucht im voraus nach parallel startbaren Instruktionen

Startet Instruktionen in beliebiger Reihenfolge
Solange keine Abhängigkeiten verletzt werden!

Abhängigkeiten
RAW (read after write)

Spätere Instruktion darf Register erst lesen, nachdem es vorher geschrieben wurde
WAR (write after read, anti-dependence)

Spätere Instruktion darf Register erst schreiben, nachdem es vorher gelesen wurde
WAW (write after write, output dependence)

Reihenfolge von in Register schreibenden Instruktionen muss eingehalten werden
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Out of Order-Mikroarchitektur

Parallelismus auf Instruktionsebene (instruction level parallelism, ILP)
Anzahl von parallel startbaren Instruktionen (i.d.R. < 3)

Scoreboard
Tabelle im Prozessor
Verwaltet

Auf Start wartende Instruktionen
Verfügbare Recheneinheiten (z.B. ALUs)
Abhängigkeiten
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Beispiel: Out of Order-Mikroarchitektur

lw $t0, 40($s0)

add $t1, $t0, $s1
sub $t0, $s2, $s3 Idealer IPC-Wert: 2,0
and $t2, $s4, $t0 Erreichter IPC-Wert: 6/4 = 1,5
or  $t3, $s5, $s6
sw $s7, 80($t3)

Time (cycles)

1 2 3 4 5 6 7 8

RF
40
$s0

RF

$t0
+

DMIM

lwlw $t0, 40($s0)

add $t1, $t0, $s1

sub $t0, $s2, $s3

and $t2, $s4, $t0

sw $s7, 80($t3)

or
|$s6

$s5
$t3

RF
80
$t3

RF
+

DM
sw $s7

or $t3, $s5, $s6

IM

RF
$s1
$t0

RF

$t1
+

DMIM

add

sub -$s3
$s2

$t0

Zwei Takte Latenz
zwischen Laden und
Verwendung von $t0

RAW

WAR

RAW

RF
$t0
$s4

RF
&

DM
and

IM

$t2

RAW
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Umbenennen von Registern

lw $t0, 40($s0)
add $t1, $t0, $s1

sub $t0, $s2, $s3 Idealer IPC-Wert: 2,0
and $t2, $s4, $t0 Erreichter IPC-Wert:   6/3 = 2,0
or  $t3, $s5, $s6
sw $s7, 80($t3)

Time (cycles)

1 2 3 4 5 6 7

RF
40

$s0

RF

$t0
+

DMIM

lwlw $t0, 40($s0)

add $t1, $t0, $s1

sub $r0, $s2, $s3

and $t2, $s4, $r0

sw $s7, 80($t3)

sub
-$s3

$s2
$r0

RF
$r0

$s4

RF
&

DM
and

$s7

or $t3, $s5, $s6
IM

RF
$s1

$t0

RF

$t1
+

DMIM

add

sw
+80

$t3

RAW

$s6

$s5
|

or

2 Takte RAW

RAW

$t2

$t3
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SIMD

Single Instruction Multiple Data (SIMD)
Eine Instruktion wird auf mehrere Datenelemente gleichzeitig angewandt
Häufige Anwendung: Graphik, Multimedia
Oft: Führe schmale arithmetische Operatione aus

Auch genannt: gepackte Arithmetik
Beispiel: Addiere gleichzeitig vier Bytes

ALU muss verändert werden
Kein Übertrag mehr zwischen einzelnen Bytes

padd8 $s2, $s0, $s1

a0

0781516232432 Bit position

$s0a1a2a3

b0 $s1b1b2b3

a0 + b0 $s2a1 +  b1a2 +  b2a3 +  b3

+
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Fortgeschrittene Mikroarchitekturtechniken

Multithreading
Beispiel: Textverarbeitung
Threads (parallel laufende, weitgehend unabhängige Instruktionsfolgen)

Texteingabe
Rechtschreibprüfung
Drucken

Multiprozessoren
Viele weitgehend unabhängige Prozessoren auf einem Chip
Am weitesten verbreitet heute in Grafikkarten (Hunderte von Prozessoren)

Aber auch in Spezialprozessoren, z.B. für UMTS Nachfolger LTE
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Genauer: Multithreading

Prozesse: Auf dem Computer gleichzeitig laufende Programme
z.B. Web-Browser, Musik im Hintergrund, Textverarbeitung 

Thread: Parallele Ausführung als Teil eines Programmes
Ein Prozess kann mehrere Threads enthalten

In konventionellem Prozessor
Jeweils ein Thread wird ausgeführt
Wenn eine Thread-Ausführung einen Stall hat (z.B. Warten auf Speicher)

Sichere Architekturzustand des Threads
Lade Architekturzustand eines anderen, derzeit inaktiven aber lauffähigen Threads
Starte neuen Thread
Vorgang wird Kontextumschaltung (context switching) genannt

Alle Threads laufen scheinbar gleichzeitig
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Multithreading auf Mikroarchitekturebene

Mehrere Instanzen des Architekturzustandes im Prozessor
Mehrere Threads nun gleichzeitig aktiv

Sobald ein Thread stalled wird sofort ein anderer gestartet
Kein Sichern/Laden von Architekturzustand mehr
Falls ein Thread nicht alle Recheneinheiten ausnutzt, kann dies ein anderer Thread tun

Erhöht nicht den Grad an ILP innerhalb eines Threads
Erhöht aber Durchsatz des Gesamtsystems mit mehreren Threads
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Multiprozessoren

Mehrere unabhängige Prozessorkerne mit einem dazwischenliegenden
Kommunikationsnetz

Arten von Multiprocessing:
Symmetric multiprocessing (SMT): mehrere gleiche Kerne mit einem gemeinsamen 
Speicher
Asymmetric multiprocessing: unterschiedliche Kerne für unterschiedliche Aufgaben

Beispiel: CPU in Handy für GUI, DSP für Funksignalverarbeitung
Clusters: Jeder Kern hat seinen eigenen Speicher
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Weiterführende Informationen

Patterson & Hennessy
Computer Architecture: A Quantitative Approach

Konferenzen:
www.cs.wisc.edu/~arch/www/
ISCA (International Symposium on Computer Architecture)
HPCA (International Symposium on High Performance Computer Architecture)
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