Technische Grundlagen

UNIVERSITAT

der Informatik — Kapitel 7

Prof. Dr. Andreas Koch
Fachbereich Informatik
TU Darmstadt

Kapitel 7: Themen

TECHNISCHE
(&)= UNIVERSITAT
97~ DARMSTADT

=" A 24)
G

» EinfUhrung in die Mikroarchitektur
= Analyse der Rechenleistung

» Ein-Takt-Prozessor

» Mehrtakt-Prozessor

» Pipeline-Prozessor

» Ausnahmebehandlung

» WeiterfiUhrende Themen

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 2

gystems +

Embedded
Elpplications

E_ | _t TECHNISCHE
Inteltun UNIVERSITAT
e u g DARMSTADT
u MlkrOarChltektur Anwendungs_ Programme
. .) Software
» Hardware-Implementierung einer Architektur
Betriebs- Geratetreiber
systeme
= Prozessor: _
. . Architektur Instruktionen
= Datenpfad: funktionale Bldcke Register
n . i
Steuerwerk: Steuersignale Mikro. Datenpfade
architektur Steuerwerke
. Addierer
Logik Speicher
Digital- AND Gatter
schaltungen | NOT Gatter
Analog- Verstarker
schaltungen Filter
Transistoren
Bauelemente :
Dioden
Physik Elektronen

gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 3

Jmbedded
Elpplications

A TECHNISCHE
UNIVERSITAT
DARMSTADT

Mikroarchitektur

= Mehrere Implementierungen fir eine Architektur
= Ein-Takt
= Jede Instruktion wird in einem Takt ausgefihrt
= Mehrtakt
» Jede Instruktion wird in Teilschritte zerlegt
= Pipelined
» Jede Instruktion wird in Teilschritte zerlegt
= Mehrere Instruktionen werden gleichzeitig ausgefihrt

gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 4 a pplications

m bedded

A TECHNISCHE
UNIVERSITAT
DARMSTADT

Rechenleistung eines Prozessors

= Ausflihrungszeit eines Programms

Ausfihrungszeit = (# Instruktionen)(Takte/Instruktion)(Sekunden/Takt)

= Definitionen:
» Takte/Instruktion = CPI (cycles per instruction)
» Sekunden/Takt = Taktperiode
» 1/CPI = Instruktionen/Takt = IPC (instructions per cycle)

» Herausforderung: Einhalten zusatzlicher Anforderungen
= Kosten
» Energiebedarf
» Rechenleistung

gystems +

Jmbedded
Elpplications

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 5

A TECHNISCHE
UNIVERSITAT
DARMSTADT

Unser erster MIPS Prozessor

» Zunachst Untermenge des MIPS Befehlssatzes:
» R-Typ Befehle: and, or, add, sub, slt
= Speicherbefehle: lw, sw
» Bedingte Verzweigungen: beq

= Spater hinzunehmen: addi und j

gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 6

m bedded

Elpplications

Architekturzustand

TECHNISCHE
UNIVERSITAT
DARMSTADT

=t

==t
i
&Y

:Ef

-

i
A

= Auf Ebene der Architektur sichtbare Daten
» FUr den Programmierer zugéanglich

» Bestimmen vollstandigen Zustand der Architektur

" PC

» 32 Register

= Speicher

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 7

gystems +

Embedded
Elpplications

Elemente des MIPS Architekturzustands

CLK CLK
| |
PC' PC WE3
32 32 + A RD + 75L Al RD1 H?Z
32 32 75; A2 RD2 7;
Befehls-
speicher
75; A3 Reqist
egister-
7| W3 el

CLK

A

Daten-
speicher

WD

WE

RD ==

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 8

gystems +

Embedded
Elpplications

TECHNISCHE
UNIVERSITAT
DARMSTADT

Ein-Takt MIPS Prozessor

» Datenpfad
= Steuerwerk

gystems +

pplications

Embedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 9 a

A TECHNISCHE
UNIVERSITAT
DARMSTADT

Ein-Takt Datenpfad: Holen eines Iw Befehls

» Ein load word Befehl (Iw) soll ausgeflihrt werden
= Schritt 1: Hole Instruktion

PC Instr

ern?edded
jystems +
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 10 Y

Elpplications

A TECHNISCHE
UNIVERSITAT
DARMSTADT

Ein-Takt Datenpfad: Lesen des Registers fur Iw

» Schritt 2: Lese Quelloperand aus Registerfeld

25:21

dnstr >

ern?edded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 11 qystems +

Elpplications

TECHNISCHE
UNIVERSITAT
DARMSTADT

Ein-Takt Datenpfad: Behandle Iw Direktwert

= Schritt 3: Vorzeichenerweitere den 16b Direktwert auf 32b Signal SignImm

15:0 Signlmm

Vorzeichenerw.

ern?edded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 12 qystems +

Elpplications

TECHNISCHE
UNIVERSITAT
DARMSTADT

Ein-Takt Datenpfad: Berechne Iw Zieladdresse

= Schritt 4: Berechne die effektive Speicheradresse
ALUControl,.,
010

SrcA Zero
ALUResult)

ALU

SrcB

Signlmm

e[y t%ed ded
jystems +
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 13 Y

Elpplications

TECHNISCHE
UNIVERSITAT
DARMSTADT

Ein-Takt Datenpfad: Lese Speicher mit lw

» Schritt 5: Lese Daten aus Speicher und schreibe sie ins passende Register

RegWrite

1
CI‘_K

N

ReadData

20:16

ern?edded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 14 qystems +

Elpplications

TECHNISCHE
UNIVERSITAT
DARMSTADT

Ein-Takt Datenpfad : Erhdohe PC nach Iw

= Schritt 6: Bestimme Adresse des nachsten Befehls

PCPlus4

ern?edded
jystems +
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 15 Y

Elpplications

Ein-Takt Datenpfad: sw

TECHNISCHE
UNIVERSITAT
DARMSTADT

» Schreiben Daten aus rt in den Speicher

20:16

MemWrite

1
CI‘_K i

N

WriteData :>

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 16

gystems +

Embedded
Elpplications

TECHNISCHE

Ein-Takt Datenpfad: Instruktionen vom R-Typ UNIVERSITAT
DARMSTADT
" Lese aus rs und rt
» Schreibe ALUResult ins Registerfeld
» Schreibe nach rd (statt nach rt wie bei sw)
RegDst ALUSrc MemtoReg
1 0 0

0
ALUResult

Sr B
—> 1

20:16 0
15:11 1
WriteReg,

Result

mbedded
gystems +
Elpplications

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 17

TECHNISCHE
UNIVERSITAT
DARMSTADT

Ein-Takt Datenpfad: beq

» Prufe ob Werte in rs und rt gleich sind
= Bestimme Adresse von Sprungziel (branch target adress, BTA):
BTA = (vorzeichenerweiterter Direktwert << 2) + (PC+4)

PCSrc

Branch
1

Zero

0]PC
1

= PCBranch

gdmbedded
; , , gystems +
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 18

Elpplications

Vollstandiger Ein-Takt-Prozessor

P
(

3>
)

TECHNISCHE
UNIVERSITAT
DARMSTADT

31:26

)
Steuer-

MemtoReg

MemWrite

werk

Branch

ALUControl,.,

5.0

Op ALUSTrc

Funct RegDst

CI‘_K

TegWrite
—

25:21

WE3

0 '
'r PC PC | A RD Instr

Befehls-
speicher

Al

MAZ

A3
WD3

~ 4 PCPlus4

feld

RD1

RD2

Register-

Zero

ALUResult

PCSrc

C‘LK

WE

A RD

20:16

WriteData

Daten-
speicher

WD

15:11

WriteReg,, .,

B
1

Signlmm
' Vorzeichenerw

+ PCBranch

0
ReadData 1

Result

Smbedded

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 19

gystems +
Elpplications

TECHNISCHE
UNIVERSITAT
DARMSTADT

Steuerwerk

+ Steuer-
i werk ' — MemtoReg
— MemWrite
EOpcode —1 Haupt — Branen .
. " dec?)udrt)ar — ALUSre ,
E — RegDst ;
— RegWrite
ALUOpz1.0
Functso ALUControlz:,o

gystems +

pplications

Embedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 20 a

5% TECHNISCHE
UNIVERSITAT
DARMSTADT

Zur Erinnerung: ALU

000 A&B
/I/ N 001 A|B
010 A+B
F
ALU 3 011 unbenutzt
100 A&~B
Y 101 A|~B
110 A-B
111 SLT

Smbedded
gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 21 a pplications

TECHNISCHE

Zur Erinnerung: ALU UNIVERSITAT
DARMSTADT
A B
N N
N
= 07
/ F2
N
Cout {"' /
N-1]|S
Y
= N
®
23
N N N N
w N = o
2 I:1:0
J(N
Y Smbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 22 g%ﬁﬁ:@tﬁoﬁs

Steuerwerk: ALU-Decoder

ALUOp,, Bedeutung

00 Addiere

01 Subtrahiere

10 Werte Funct-Feld aus

11 unbenutzt
ALUOp,., | Funct ALUControl,
00 X 010 (Add)
X1 X 110 (Subtract)
1X 100000 (add) 010 (Add)
1X 100010 (sub) 110 (Subtract)
1X 100100 (and) 000 (And)
1X 100101 (or) 001 (Or)
1X 101010 (slt) 111 (SLT)

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 23

gystems +

Embedded
Elpplications

Steuerwerk: Hauptdecoder

—
=12

o)

TECHNISCHE
UNIVERSITAT
DARMSTADT

Instruktion

OpS:O

RegWrite

RegDst

AluSrc

Branch

MemWrite

MemtoReg

ALUOP,

R-Typ

000000

Iw

100011

SW

101011

beq

000100

A RD Instr

31:26

50

MemtoReg

Control

MemWrite

Unit

Branch

ALUControl,.

Op

IALUSIc

Funct

RegDst

—
CLK
|

RegWrite

Instruction
Memory

WE3

Al

A2
A3

WwD3

PCPlus4

Register

SrcA

RD1

RD2

= o]

SrcB

Zero

ALUResult

PCSrc

CLK
|

WE

A RD

ALU

WriteData

Data
Memory

WD

File

20:16

15:11

[0
1
4:0

WriteReg

Signimm
150 Sign Extend

PCBranch
+

0
ReadData 1

Result

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 24

Jmbedded
gystems +
Elpplications

Steuerwerk: Hau , UNIVERSITAT
- Hauptdecoder e
nstruction onms RegWiite | Regost Alusre Sranch | Wemwite | MemioReg | ALUOP,
R-type | 000000 1 1 0 0 0 0 10
lw | 100011 1 0 1 0 0 0 00
SwW 101011 0 X 1 0 1 X 00
beq | 000100 0 X 0 1 0 X 01

gystems +

Elpplications

Embedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 25

Beispiel im Ein-Takt Datenpfad: or

TECHNISCHE
UNIVERSITAT
DARMSTADT

dip e o [om

Instruction
Memory

|
L)
- ()

Plus4

Instr

31:26

5.0

)
Control
Unit

Op

Funct

CLK
|

MemtoReg

MemWrite

Branch

ALUControl

2:0

ALUSIc

RegDst

RegWrite

1

-

2016

S

| A3
WD3

WE3
- - R

- a» e B

Register
File

001

Zero

ALUResult

PCSrc

CITK 0

]
J WE
]

A RD

WriteData

Data
Memory

20:16

15:11

WriteReg,

120 Sign Extend

Signimm

<<2

PCBranch
+

WD

ReadData ?

Result]

Simbedded

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 26

gystems +
Elpplications

Erweitere Funktionalitat: addi

TECHNISCHE
UNIVERSITAT
DARMSTADT

= Keine Anderung am Datenpfad notig

e
1

CLK

PC

A RD Instr

31:26

MemtoReg

)
Control
Unit

MemWrite

Branch

ALUControl,.,

5:0

Op

ALUSIc

Funct

25:21

RegDst

—
CLK
\

RegWrite

Al

Instruction
Memory

20:16

A2

A3

~ + PCPlus4

20:16

WD3

WES3

Register

[~~~ Zero

ALUResult

RD1 SrcA

PCSrc

CLK
\

WE

A RD

RD2

\Lal

Plo ISch

WriteData

Data
Memory

File

15:11

[0
1

WriteReg, ,

120 Sign Extend

Signlmm <<

PCBranch
+

WD

0
ReadData 1

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 27

ded
ystems +
p

plications

Erweitere Steuerwerk: add UNIVERSITAT
DARMSTADT
swakion | opes regwie | Regos P sranon | wemwie | wemioRes | ALUGp.
R-Typ 000000 1 1 0 0 0 0 10
tw 100011 1 0 1 0 0 1 00
sw 101011 0 X 1 0 1 X 00
bea | 000100 0 X 0 1 0 X 01
addi 001000

MemtoReg
MemWrite
Branch
ALUControl, ,
Op ALUSICc

22 Funct |RegDst

RegWrite

R
Control
Unit

PCSrc

31:26

—
CLK CLK
| |

WE3 SrcA Zero WE

Instr 2214 A1 RD1 D
ReadData
A RD 1

SrcB Data
Memory
WD

A RD

ALUResult

ALU

Instruction 20161 Ao RD2 o
Memory

Register WriteData

File

20:16)
15:11 1
WriteReg,
Signimm
<<2
—|15° Sign Extend

A3
WwD3

PCPlus4

PCBranch
+

gystems +

pplications

Result| mbEddEd
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 28 a

Erweitere Steuerwerk: addi

Instruktion Py, RegWrite RegDst Alusrc Branch MemWrite MemtoReg ALUOP,
R-Typ 000000 1 1 o) 0 o) 0 10
hw 100011 1 0 1 0 0 1 00
sw 101011 0 X 1 o) 1 X 00
beq 000100 0 X o) 1 0 X 01
addi 001000 1 o) 1 0 0 0 00

gystems +

Elpplications

Embedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 29

TECHNISCHE
UNIVERSITAT
DARMSTADT

Erweitere Funktionalitat: j

Jump

0] PC Instr
1

PCJump

27.0 | 31:28

gystems +
pplications

gdmbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 30 a

A TECHNISCHE
UNIVERSITAT
DARMSTADT

Steuerwerk: Hauptdecode

Instruktion Op;., RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp, 4 Jump
R-Typ 000000 1 1 0 0) 0 0 10 o)
Tw 100011 1 0 1 0) 0 1 00 o)
sw 101011 0 X 1 o) 1 X 00 o)
beq 000100 0 X 0 1 0 X 01 o)
i 000100
> dnstt

, . : gystems +
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 31 a gplications

A mbedded

Control Unit: Main Decoder

Instruction O RegWrite RegDst AluSrc | Branch | Memwrite | MemtoReg ALUOp,, | Jump
R-type 000000 1 1 0 0 0 0 10 0
I 100011 1 0 1 0 0 1 00 0
sw 101011 o) X 1 0 1 X 00 0
beq 000100 o) X 0 1 0 X 01 0
i 000100 0 X X X 0 X XX 1

gystems +

Elpplications

Embedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 32

7\ TECHNISCHE
UNIVERSITAT
DARMSTADT

Wiederholung: Rechenleistung des Prozessors

Programmausfihrungszeit
= (# Instruktionen) (Takte/Instruktion)(Sekunden/Takt)
= # Instruktionen CPIl T.

gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 33

mbedded

Elpplications

TECHNISCHE
UNIVERSITAT
DARMSTADT

Rechenleistung des Ein-Takt-Prozessors

= T wird durch langsten Pfad bestimmt (Iw)

MemtoReg
MemWrite
Branch 0 0
ALUControl,, D—PCSrc
Op ALUSTrC
Funct [RegDst

RegWrite

)
Control
Unit

31:26

5:0

CLK CLK
|

010

1
S| Y wEs SrcA [~~~ Zero WE
-F PC' PC Instr Bl = RB1- 'T

1

0
Po===RB ~2| ALUResult ReadData jﬂ

)/
Instruction 2016 Ao RD?2 a RS
Memory Data
A3)
Register

Memory
> WD3 e

WD
0
20:16 0
15:11 1
= WriteReg,,.,

PCPlus4

= + .
_|/ Signimm
4 = : i
150 Sign Extend N PCBranch

WriteData

Ref@ihbedded

ystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 34 pp|icati0n5

TECHNISCHE
UNIVERSITAT
DARMSTADT

Rechenleistung des Ein-Takt-Prozessors

= Kritischer Pfad:

Te= tpcq_PC t tmem MaX(trpread: tsext + tnux) + Tau * tmem tmux tRFsetup

* |n vielen Implementierungen: Kritischer Pfad durch
= Speicher, ALU, Registerfeld

= Damit;

" Tc = tpcq_PC + 2tmem + tRFread + tmux + 1:ALU + tRFsetup

gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 35 a pplications

m bedded

Ein-Takt Prozessor Rechenleistung: Beispiel

Register Clock-to-Q tocq PC 30
Register setup tsetup 20
Multiplexer tux 25
ALU taLu 200
Speicher lesen tem 250
Registerfeld lesen teFread 150
Registerfeld setup tREsetup 20

T.=

C

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 36

gystems +

Jmbedded
Elpplications

TECHNISCHE
UNIVERSITAT
DARMSTADT

S

=

&7

iy
-‘. fi
&

Ein-Takt Prozessor Rechenleistung: Beispiel

Register Clock-to-Q tocq PC 30
Register setup tsetup 20
Multiplexer tux 25
ALU ta U 200
Speicher lesen tem 250
Registerfeld lesen trFread 150
Registerfeld setup tREsetup 20

Tc = tpcq_PC + 2tmem + tRFread + tmux + tALU + tRFsetup
= [30 + 2(250) + 150 + 25 + 200 + 20] ps

=925 ps

gystems +

Elpplications

Embedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 37

TECHNISCHE
UNIVERSITAT
DARMSTADT

Ein-Takt Prozessor Rechenleistung: Beispiel

= Auszufiihren: Programm mit 100 Milliarden Instruktionen
» Auf Ein-Takt MIPS Prozessor

Ausfiihrungszeit =

gystems +

pplications

gdmbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 38 a

Ein-Takt Prozessor Rechenleistung: Beispiel

= Auszufihren: Programm mit 100 Milliarden Instruktionen
= Auf Ein-Takt MIPS Prozessor

Ausfuhrungszeit = # Instruktionen CPI T
= (100 x 109) (1) (925 x 10125s)
= 92,5 Sekunden

gystems +

Elpplications

gdmbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 39

A TECHNISCHE
UNIVERSITAT
DARMSTADT

Mehrtakt-MIPS-Prozessor

» Ein-Takt-Mikroarchitektur:
+ einfach
- Taktfrequenz wird durch langsamste Instruktion bestimmt (Iw)
- Zwei Addierer / ALUs und zwei Speicher

» Mehrtaktmikroarchitektur:
+ hohere Taktfrequenz
+ einfachere Instruktionen laufen schneller
+ bessere Wiederverwendung von Hardware in verschiedenen Takten
- aufwendigere Ablaufsteuerung

» Gleiche Grundkomponenten
= Datenpfad
= Steuerwerk

gystems +

Embedded
Elpplications

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 40

TECHNISCHE
UNIVERSITAT
DARMSTADT

Zustandselemente im Mehrtaktprozessor

» Ersetze getrennte Instruktions- und Datenspeicher
» Harvard-Architektur

= Durch einen gemeinsamen Speicher
= Von Neumann-Architektur
» Heute weiter verbreitet

CLK CLK
CLK I | I |
%7 WE Al WE3 RD1
RC1 " LBC RD b—
EN — —] A2 RD2
! Instr / Data
Memory — A3 _
WD Reg'lster
File
- WD3

gystems +

Elpplications

gdmbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 41

A TECHNISCHE
UNIVERSITAT
DARMSTADT

Mehrtaktdatenpfad: Instruktionen holen (fetch)

» Beispiel: Ausftihrung von Iw
= Schritt 1: Hole Instruktion

IRW rite
CLK
PC % nstr

Smbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 42 > yStemS +

Elpplications

TECHNISCHE
UNIVERSITAT
DARMSTADT

Mehrtaktdatenpfad: Lese Register fur Iw

) A
Instr |25'21) '»E.—

gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 43

Embedded
Elpplications

. TECHNISCHE
Mehrtaktdatenpfad: Werte lw Direktwert aus UNIVERSITAT
DARMSTADT

S_ignlmm

15:0

Sign Extend

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 44

e
SN
a

mbedded
stems +
pplications

Mehrtaktdatenpfad: Bestimme effektive TECHNISCHE
Adresse fur Iw DARMSTADT

ALUControl,.,

Signimm

gystems +
pplications

gdmbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 45 a

TECHNISCHE
UNIVERSITAT
DARMSTADT

Mehrtaktdatenpfad: Lesezugriff von Iw

lorD

0) Adr
ALUOut
1

CLK

Data

gystems +
pplications

gdmbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 46 a

TECHNISCHE
UNIVERSITAT
DARMSTADT

Mehrtaktdatenpfad: Schreibe Register in Iw

RegW rite

20:16 ’

gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 47

Embedded
Elpplications

TECHNISCHE
UNIVERSITAT
DARMSTADT

Mehrtaktdatenpfad: Erhohe PC

PCWr rite ALUSrcA ALUSrcB,,

PC!

gystems +
pplications

gdmbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 48 a

TECHNISCHE
UNIVERSITAT
DARMSTADT

Mehrtaktdatenpfad: Nun Ausflihrung von sw

» Schreibe Daten aus rt in Speicher

MemW rite

i CLK

20:16 ,

ern?edded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 49 qystems +

Elpplications

A TECHNISCHE
UNIVERSITAT
DARMSTADT

Mehrtaktdatenpfad: Instruktion vom R-Typ

= | ese Werte aus rs und rt

» Schreibe ALUResult ins Registerfeld
» Schreibe Wert nach rd (statt nach rt)

RegDst MemtoReg

20:16
0
15:11
1
0
1

v

ern?edded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 50 qystems +

Elpplications

TECHNISCHE

Mehrtaktdatenpfad: beq UNIVERSITAT
DARMSTADT
» Prufe, ob Werte in rs und rt gleich sind
» Bestimme Adresse des Sprungziels (branch target address):
BTA = (vorzeichenerweiterter Direktwert << 2) + (PC+4)

Zero

PC}
1

gdmbedded
; , , gystems +
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 51

Elpplications

TECHNISCHE

Vollstandiger Mehrtaktprozessor UNIVERSITAT
DARMSTADT
CLK
(‘% PCWrite
Branch PCEn
lorD| Control | PCSrc
MemWrite| Unit [ALUControl,
IRWTrite ALUSICB,
31:26 op ALUSr(?A
50 | Funct RegWrite
\§ J
D5
CLK & |§ ck CLK
CLK | CLK 5 |5
WE . 2] WE3 A Zero CLK
N\ PC Ad RD Instr ‘25.21 S | a1 RD1 2 O
EN d A EN 2016 A2 RD2 ALUResult Luoud
sy ||
15:11 l .
WD CLK J Reg'lster
0 File
Data 1 WD3
<<?
15:0

| Sign Extend

Simbedded

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 52

gystems +
Elpplications

S K TECHNISCHE

UNIVERSITAT

teuerwer DARMSTADT
" -- \
i C?Jr;]tiim (}— MemtoReg E
[}
| —— RegDst |
| 0
' — lorD E
: ~ [—PCsrc ;
i Main ~ L AlusreB,, :
: q Controller - :
=Opco € (FSM) —— ALUSIcA E
! — IRWrite !

[}
| — MemWrite E
[}

i —— PCWrite E
[}
E —— Branch !
| | - |
E _ D RegWrite E
[} [}
E ALUOp, , E
i i
[} [}
: ALU .
E Funct,; Decoder ALUControl,., E
| |
' 1

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 53

e
SN
a

mbedded
stems +
pplications

y—
=

TECHNISCHE

Hauptsteuerwerk: Holen eines Befehls |) UNIVERSITAT
DARMSTADT
S0: Fetch
Reset
CLK
PCWrite 1
Branch 0 PCEn
lorD| Control |PCSrc
MemWrite| Unit [ALUControl,
IRWrite ALUSIcB,
31:26 op ALUSrClA
50 | Funct RegWrite
. N—— e S —
i CLK ‘ & g CLK ‘ CLK
CLK | ‘ 0 CLK i< % ‘ 0 ———ey
@ CLK
rc | [Mlec! 2 e Instr_[22 Elar & rot £ I L
" ew ! Adrl , = =B N 2016 A2 RD2 B ALUResult Luoud, 15
[y Instr / Data 1 20:16 Oll(]
! Memory 511 A3 !
CLK =1 X Register
\ WD A 1
0 File
\ Data -D- WD3]
X 1
X 1
1 1
[I/ Signlmm v
I 130 _Sign Extend v
X 1
7 1
imbedded
gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 54

Elpplications

TECHNISCHE
UNIVERSITAT

Hauptsteuerwerk: Holen eines Befehls

DARMSTADT
SO: Fetch
lorD=0
Reset AluSrcA=0
ALUSrcB =01
ALUOp = 00
PCSrc =0 oK e .
. rite
IRW“_te Branch 0 PCEn
PCW”te lorD| Control |PCSrc
MemWrite| Unit [ALUControl,
IRWrite ALUSIcB,
31:26 op ALUSrClA
50 | Funct RegWrite
I S TGS S e GG SEEESET
! ‘ 2 5 ‘ CLK ' lo
CLK CK o CLK 8 2 9F o ‘I P
? byl SrcA 010 |
=, |0 WE ooy 1> 18 WE3 A ey [Zer0 1CLK o
PC PC _ Instr Al RD1 1 ,401 ' ' q
" ew ! Adl] s = -l N 2016 A2 RD2 B IO F? ALUResult Luout, |
) Instr / Data 1 016 Oll(4 e==tl] SrcB < '
Memory : A3 10 '
i CLK e ! X Register
! WD | 1 '
0 File

\ Data -D- WD3]
X 1
X 1
1 1
[|/ Signimm J
I 130 _Sign Extend v
X 1
7 1
Smbedded
gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 55 a pplications

TECHNISCHE

Hauptsteuerwerk: Dekodieren eines Befehls UNIVERSITAT
DARMSTADT
S1: Decode
lorD=0
Reset AluSrcA=0
ALUSrcB =01
ALUOp =00
PCSrc=0
IRWrite
PCWrite
CLK
PCWrite 0
Branch 0 PCEn
lorD| Control |PCSrc
MemWrite| Unit [ALUControl,
IRWrite ALUSIcB,
31:26 op ALUSrcA
59 | Funct RegWrite
<
CLK CLK g % CLK |y CLK X)
— X WE 2 WE3 A Zero CLK X
PC'| Pc 3 Adr RD A mmmmn Roi = >
EN 1 A AR —— - RDP - ALUResult LUO 1
wD X Reg_ister
0 File
|_ 'D wD3

J_/ Signimm
= esign = End

—_

Smbedded

, , , qystems +
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 56 a gplications

TECHNISCHE

=7 A
H tst rwerk: Adr rechnun (. /°\ UNIVERSITAT
auptsteuerwe dressberechnung - g Dy
lorD=0
Reset AluSrcA=0
ALUSrcB =01
ALUOp = 00
PCSrc=0
IRWrite
CLK
S2: MemAdr ;zvcr:e . 0 e

lorD| Control |PCSrc

MemWrite| Unit [ALUControl,

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 57

IRWrite ALUSICcB, ,
31:26 op ALUSIcA
50 | Funct RegWrite
CLK § g CLK CLK 1
CLK o CLK I 0
g |3 0 SrcA __|010
X WE . |58 WE3 A CLK X
pc| [M]pPc 5 RD Instr 22 Al RD1 1 ;o 0
u™ Adr] EN 2016 A2 RD2 B ALUResult Luoud |
1 X
0 Instr / Data 0 20:16 O\I 4=
Memory) A3
15:11 .
CLK 1 X Register
WD .
0 File
Data 1 WD3
<<2
|/ Signlmm
150 1 Sign Extend
Smbedded
Jystems +

Elpplications

TECHNISCHE

‘;i-e r" at
Hauptsteuerwerk: Adressberechnung /") UNIVERSITAT
: DARMSTADT
lorD=0
Reset AluSrcA =0
ALUSrcB =01
ALUOp =00
PCSrc =0
IRWrite
Op
CLK
S2: MemAdr PCwrite 0
Branch 0 PCEn
lorD| Control |PCSrc
MemWrite| Unit [ALUControl,
ALUSIcA=1 IRWrite ALUSICB,
ALUSIrcB = 10 sz f o ALUSICA
ALUOp =00 50 {Funet [RegWrite
z 3 CLK 1
CLK 2 3 cLK
CLK L CLK o 53’"0 | 0 0 srcA 010
WE D L WE3 A CLK X
pc | [M]pc RD Instr 22 Al RD1 4 e 3
n™ :| IAdr A EN 2016 A2 RD2 B ALUResult Luout ,
o In'\s/Itr / Data 0 2016 Oll(4 =
emory 15:11 A3 .
WD CLK :‘ 1] X Register
|_ .I‘o File
Data IJ- WD3
|/ Signimm
150 _Sign Extend

imbedded
gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 58

Elpplications

TECHNISCHE

.] UNIVERSITAT
Hauptsteuerwerk: FSM flr 1w UNIVERSITAT
lorD=0
Reset AluSrcA=0
ALUSrcB =01
ALUOp = 00
PCSrc=0
IRWrite
ALUSrcA=1
ALUSrcB = 10
ALUOp = 00
S3: MemRead
S4: Mem
Writeback
RegDst =0
MemtoReg = 1
RegWrite
imbedded
gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 59

Elpplications

TECHNISCHE

. (N] ¢ 4 ’_, -
@)=\ UNIVERSITAT
Hauptsteuerwerk: FSM flr sw) UniveRsITAT
lorD=0
Reset AluSrcA=0
ALUSrcB =01
ALUOp =00
PCSrc=0
IRWrite
ALUSrcA=1
ALUSrcB =10
ALUOp =00
Op =SW
S5: MemWrite
MemWrite
RegDst =0
MemtoReg = 1
RegWrite
Smbedded
gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 60 a pplications

TECHNISCHE

Hauptsteuerwerk: FSM fur R-Typ /") UNIVERSITAT
DARMSTADT
lorD=0
Reset AluSrcA =0
ALUSrcB =01
ALUOp =00
PCSrc=0
IRWFrite
Op = R-type
S6: Execute
ALUSrcA=1 ALUSrcA=1
ALUSrcB =10 ALUSIrcB =00
ALUOp =00 ALUOp =10
RegDst =1
; MemtoReg = 0
MemWrite RegWrite
RegDst =0
MemtoReg = 1
RegWrite
Smbedded
gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 61 a pplications

e TECHNISCHE
Hauptsteuerwerk: FSM flr beq UNIVERSITAT
n
DARMSTADT
lorD=0
Reset AluSrcA =0
ALUSrcB =01 ALUSIrcA=0
ALUOp =00 ALUSrcB = 11
PCSrc=0 ALUOp =00
IRWrite
Op = LW Op = BEQ
or Op = R-type
Op =SW
S8: Branc
ALUSIrcA=1
ALUSrcA=1 ALUSrcA=1 ALUSIrcB =00
ALUSIrcB = 10 ALUSrcB = 00 ALUOp =01
ALUOp =00 ALUOp =10 PCSrc=1
Branch
Op =SW
Op=LW
_ RegDst =1
I\/IIZ;DV\;rilte MemtoReg = 0
RegWrite
RegDst =0
MemtoReg = 1
RegWrite
Smbedded
gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 62

Elpplications

fl
Ny _ Ny $773, TECHNISCHE
Vollstandiges Hauptsteuerwerk fur Mehrtakt-CPU. % universitar
DARMSTADT
<
SO: Fetch S1: Decode
lorD=0
Reset AluSrcA=0
ALUSreB = 01 ALUSrcA=0
ALUOp =00 ALUSrcB =11
PCSrc =0 ALUOp =00
IRWrite
PCWrite
Oop = LW Op = BEQ
or Op = R-type
S2: MemAdr =
Op =S S6: Execute
S8: Branc
ALUSIcA=1
ALUSrcA=1 ALUSrcA=1 ALUSrcB =00
ALUSIrcB =10 ALUSrcB = 00 ALUOp =01
ALUOp =00 ALUOp =10 PCSrc=1
Branch
Qp = SW
Op =LW .
P S5: MemWrite Vert ﬁLUk
S3: MemRead tebac
_ RegDst =1
I\/IIZEE)V\;ri:te MemtoReg = 0
RegWrite
S4: Mem
Writeback
RegDst =0
MemtoReg = 1
RegWrite
Smbedded
gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 63

Elpplications

TECHNISCHE

Erweiterung des Hauptsteuerwerks: addi UNIVERSITAT
DARMSTADT
lorD =0
Reset AluSrcA=0
ALUSrcB = 01 ALUSrcA=0
ALUOp =00 ALUSrcB =11
PCSrc =0 ALUOp =00
IRWrite
Op = peg 9P = ADDI
Op=LW p=BEQ
or Op = R-type
Op =SW
ALUSrcA=1
ALUSrcA=1 ALUSrcA=1 ALUSrcB = 00
ALUSrcB =10 ALUSrcB = 00 ALUOp =01
ALUOp =00 ALUOp =10 PCSrc=1
Branch
Qp = SW
Op = LW
_ RegDst = 1
l\/ll(e)::\:)V\;ri:te MemtoReg = 0
RegWrite
RegDst =0
MemtoReg = 1
RegWrite
Embedded
gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 64

Elpplications

. - TECHNISCHE
Erweiterung des Hauptsteuerwerks: addi UNIVERSITAT
DARMSTADT
lorD =0
Reset AluSrcA =0
ALUSrcB =01 ALUSrcA=0
ALUOp =00 ALUSrcB = 11
PCSrc=0 ALUOp =00
IRWrite
Ob = BE Op = ADDI
Op = LW P =BEQ
or Op = R-type
Op =SwW
ALUSrcA=1
ALUSrcA=1 ALUSrcA=1 ALUSrcB = 00 ALUSrcA=1
ALUSIrcB = 10 ALUSrcB = 00 ALUOp =01 ALUSrcB = 10
ALUOp =00 ALUOp =10 PCSrc=1 ALUOp =00
Branch
Qp = SW
Op = LW
lorD = 1 RegDst =_l RegDst =E)
MemWrite MemtoReg = 0 MemtoReg = 0
RegWrite RegWrite
RegDst =0
MemtoReg = 1
RegWrite
Embedded
gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 65

Elpplications

TECHNISCHE
UNIVERSITAT
DARMSTADT

Erweiterung des Datenpfads flr j

PCSrc, ,

31:28

PC 00

PCJump

25:0 (jump)

gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 66

Embedded
Elpplications

TECHNISCHE

Erweiterung des Hauptsteuerwerks um j UNIVERSITAT
DARMSTADT
lorD=0
Reset AluSrcA =0
ALUSrcB =01 ALUSrcA=0 _
ALUOp = 00 ALUSICB = 11 Op=J
PCSrc =00 ALUOp =00
IRWrite
Ob = BE Op =ADDI
Op=LW p = BEQ
or Op = R-type
Op =SW
ALUSrcA =1
ALUSIcA=1 ALUSIcA=1 ALUSrcB =00 ALUSrcA=1
ALUSICB = 10 ALUSICcB = 00 ALUOp =01 ALUSICB = 10
ALUOp = 00 ALUOp =10 PCSrc = 01 ALUOp = 00
Branch
Qp = SW
Op = LW
lorD = 1 RegDst =} RegDst =9
MemWrite MemtoReg = 0 MemtoReg = 0
RegWrite RegWrite
RegDst =0
MemtoReg = 1
RegWrite
Embedded
gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 67 a pplications

. - TECHNISCHE
Erweiterung des Hauptsteuerwerks um j UNIVERSITAT
DARMSTADT
lorD=0
Reset AluSrcA=0
ALUSrcB = 01 ALUSrcA=0
ALUOp = 00 ALUSICB = 11 Op=J
PCSrc = 00 ALUOp = 00 PCSrc = 10
IRWrite PCWrite
Op = BE Op = ADDI
Op=Lw p=BEQ
or Op = R-type
Op =SW
ALUSrcA=1

ALUSrcA=1 ALUSrcA=1 ALUSrcB = 00 ALUSIrcA=1

ALUSICB = 10 ALUSIcB = 00 ALUOp =01 ALUSICcB = 10

ALUOp = 00 ALUOp = 10 PCSrc =01 ALUOp = 00

Branch
Qp = SW
Op =LW
_ RegDst = 1 RegDst =0
I\/Il(e)::ﬁDV\;ri:’te MemtoReg = 0 MemtoReg = 0
RegWrite RegWrite
RegDst =0
MemtoReg = 1
RegWrite
el t%e dded
. X X gystems +
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 68 a gplications

A TECHNISCHE
UNIVERSITAT
DARMSTADT

Rechenleistung des Mehrtaktprozessors

» |nstruktionen bendtigen unterschiedliche viele Takte:
= 3 Takte : beq, j
» 4 Takte : R-Typ, sw, addi
= 5 Takte : 1w

» CPI wird bestimmt als gewichteter Durchschnitt

» SPECint 2000 Benchmark:
= 25% Laden
= 10% Speichern
= 11% Verzweigungen
= 2% Springe
= 52% R-Typ

Durchschnittliche CPI = (0,11 + 0,2)(3) + (0,52 + 0,10)(4) + (0,25)(5) = 4,12

gystems +

Elpplications

Embedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 69

TECHNISCHE

Rechenleistun Mehrtaktproz r UNIVERSITAT
echenleistung des Mehrtaktprozessors UNIVERSITAT
= Kritischer Pfad:
T.=
CLK
f‘%ﬁPCWrite
Branch PCEn
lorD| Control |PCSrc
MemWrite| Unit |ALUControl,.
IRWrite ALUSICB,
31:26 op ALUSrcA
50| Funct RegWrite
CLK 2 ‘3% CLK CLK
CLK \ CLK = — .
WE = 2 |2 WE3 A B 3 zero| jolk 1
PC’ F5| PClm o o L Instr 4 == RD1 S 7’I\ \li ! i
| LIE'M _D A N EN_, 206 A2 RD2 o 2 xA_Lyngs_uI_t"fléLUOu_D:
| Instr / Data 20116 [4 =101 |srcB < I
l Memory LK 15;115' A 10 '
egister |
‘ WD .I‘c File 11— I
: Data lj— WD3 :
| |— <<2 |
E I/ Signimm E
l 150 | Sign Extend f
Smbedded
gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 70 a pp|icati0n5

f
. R;_:ij_j/ TECHNISCHE
Rechenleistung des Mehrtaktprozessors) unwveRsiTaT
» Kritischer Pfad :
Tc - tpcq + tmux + max(tALU + tmux’ tmem) + tsetup
CLK

f‘%ﬁ PCWrite

Branch PCEnN
lorD| Control |PCSrc
MemWrite| Unit |ALUControl,.
IRWrite ALUSICB,
31:26 op ALUSIcA
50| Funct RegWrite
) <
CLK CLK CLK % % CLK CLK N .
WE ¥ wn 28 WE3 A B 2 Zero JCLKt
' : Al RDL H (===== | l
P _@f’? -D,;\qr S EN_.InStr 2016 A2 RD2 B FGL £3|AL9895.U'1'|15|5LU0UJD
Instr / Data 20.16 B\I 4=—01 |srcB ﬁ
Memory 1511 y A3 Redist 10
CLK egister
g 1y

&

150

{ Sign Extend

WD ; X
File X

Data WD3 X

<<2 :

Smbedded

, . , gystems +
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 71 a gplications

Beispiel: Rechenleistung Mehrtaktprozessor

TECHNISCHE

UNIVERSITAT

DARMSTADT

Register Clock-to-Q tocq 30
Register Setup tsetup 20
Multiplexer tux 25
ALU taLu 200
Speicher Lesen tem 250
Registerfeld Lesen teFread 150
Registerfeld Setup tREsetup 20

T.=

C

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 72

gystems +

Jmbedded
Elpplications

. . . r\‘g—_—..-‘.d TECHNISCHE
Beispiel: Rechenleistung Mehrtaktprozessor L el

Register Clock-to-Q tocq 30
Register Setup tsetup 20
Multiplexer tux 25
ALU taLu 200
Speicher Lesen tem 250
Registerfeld Lesen teFread 150
Registerfeld Setup tREsetup 20

TC = tpcq_PC + tmux + ma'X(J[ALU + tmux’ tmem) + tsetup

= Leq pc t tnux t tmem + Lsetp
=[30 + 25 + 250 + 20] ps

=325 ps

gystems +

Elpplications

Embedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 73

TECHNISCHE
UNIVERSITAT
DARMSTADT

Beispiel: Rechenleistung Mehrtaktprozessor

» Fihre Programm mit 100 Milliarden Instruktionen auf Mehrtaktprozessor aus

= CPI=4,12
= T, =325ps
Ausfihrungszeit =

gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 74 a pplications

m bedded

A TECHNISCHE
UNIVERSITAT
DARMSTADT

Beispiel: Rechenleistung Mehrtaktprozessor

» Fihre Programm mit 100 Milliarden Instruktionen auf Mehrtaktprozessor aus
= CPI1=4,12
= T, =325ps

Ausfuhrungszeit = (# Instruktionen) x CPI x T
= (100 x 10°) (4,12) (325 x 101?)
= 133,9 Sekunden

= Langsamer als Ein-Takt-Prozessor (brauchte 92,5 Sekunden).
= Warum?

gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 75

m bedded

Elpplications

A TECHNISCHE
UNIVERSITAT
DARMSTADT

Beispiel: Rechenleistung Mehrtaktprozessor

» Fihre Programm mit 100 Milliarden Instruktionen auf Mehrtaktprozessor aus
= CPI1=4,12
= T, =325ps

Ausfuhrungszeit = (# Instruktionen) x CPI x T
= (100 x 10°) (4,12) (325 x 101?)
= 133,9 Sekunden

= Langsamer als Ein-Takt-Prozessor (brauchte 92,5 Sekunden).
» Unterschiedlich lange Anzahl von Ausflhrungstakten (bis zu 5 fur Iw)
= Aber nicht 5x schnellere Taktfrequenz
» Nun zusatzliche Verzogerungen fur sequentielle Logik mehrfach je Befehl
" theq T Leewp™ 90 PS

setup”

e[y t%ed ded
jystems +
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 76 Y

Elpplications

TECHNISCHE
UNIVERSITAT
DARMSTADT

Ruckblick: Ein-Takt MIPS Prozessor

Jump ——— MemtoReg

Cont_rol MemWrite
Unit

Branch

ALUControl, Dﬁ PCSrc

Op ALUSIC
Funct Reg Dst

RegWrite

31:26

—
CLK CLK
| |

CLK

-IT) s21] pq WE3 RD1 SrcA [T~

0 1
1 PC PC A RD Instr

Instruction 2016
Memory

Zero WE

Result

0
ALUResult ReadData 1

ALU [

A2 RD2 0]srcB Data
A3 Memory
WD3 WD

[y

Register WriteData
File
20:16 0

PCJump 15:11

WriteReg,

PCPlus4

* Signl
ignlmm
4 - . . <<2
150 Sign Extend .\ PCBranch

27:0 | 31:28

Simbedded

, . , Jystems +
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 77 a pplications

fiss

TECHNISCHE

Ruckblick: Mehrtakt-MIPS-Prozessor /%) UNIVERSITAT
DARMSTADT
CLK
/‘%ﬁPCWrite
Branch PCEn
lorD| Control | PCSrc
MemWrite| Unit |ALUControl,.
IRWrite ALUSIcB,
31:26 op ALUSr(?A
50 | Funct RegWrite
pu) <
& |2
Q
CLK CLK CLK
CLK ‘ CLK ‘ _I_
WE) WE3 A 3128 Zero CLK
pc [Tecl s o Instr &2 Al RD1 00
N ° Adr] EN 2016 A2 RD2 B ALUResult Luout |,
Instr / Data 20116 B\I |_| 10
Memory 15:11 A3 . PCJ
WD CLK y Register ump
0 File
Data 1 WD3
;<<3 27:0
/ ImmExt
150 | sign Extend
25:0 (Addr)
Potentiell etwas kleiner. M bedded
gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 78

Elpplications

MIPS Prozessor mit Pipelining

TECHNISCHE
UNIVERSITAT
DARMSTADT

= Zeitliche Parallelitat

= Teile Ablauf im Ein-Takt-Prozessor in flnf Stufen:
» Hole Instruktion (Fetch)

Dekodiere Bedeutung von Instruktion (Decode)

Fuhre Instruktion aus (Execute)

Greife auf Speicher zu (Memory)

Schreibe Ergebnisse zuriick (Writeback)

» Flge Pipeline-Register zwischen den Stufen ein

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 79

e
Yy
d

mbedded
stems +
pplications

Rechenleistung: Ein-Takt und Pipelined

TECHNISCHE
UNIVERSITAT
DARMSTADT

Instr

Ein-Takt

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900>
T T T T T T T T T T T T T T T T T T T
- Zeit (ps)
Fetch Decode Execute Memory Write
Instruction Read Reg ALU Read / Write Reg
Fetch Decode Execute Memory Write
Instruction Read Reg ALU Read / Write Reg
Fetch Decode Execute Memory Write
Instruction Read Reg ALU Read/Write Reg
Fetch Decode Execute Memory Write
Instruction Read Reg ALU Read/Write Reg
Fetch Decode Execute Memory Write
Instruction Read Reg ALU Read/Write Reg
Embedded
gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 80

Elpplications

Abstraktere Darstellung des Pipelinings

TECHNISCHE
UNIVERSITAT
DARMSTADT

lw $s2, 40($0) M

add $s3, $t1, $t2

sub $s4, $s1, $sb5

and $s5, $t5, $t6

sw $s6, 20($sl)

or $s7, $t3, $t4

1 2 3 4 5 6 7 8 9 10
|
Zeit (Takte)
$0
—"W |-| RF [40 |E:|_]T DM{{ |8S2f or
$t
v (24 1 RE [|E:|—]T DM—I |—$53 RF
$s1
IM ﬁ-“ﬁlj-[RF $55]:B_]T Dm| 1 [Bsdlpr
S5
v od) | Re $t6]T DM{ | ($S5For
$s1)
M Y]{ RF |20]:B—]T M| 59 r
$t3

TV Lels]{RF $t4]:B—[|—r DM $s7 RF

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 81

=
Yy
d

mbedded
stems +
pplications

TECHNISCHE
UNIVERSITAT

Ein-Takt- und Pipelined-Datenpfad

CLK CLK
CLK | | L
’ WE3 SrcA Zero WE
N RD Instr 22 AL RD1 .
— 3 ALUResult A RD ReadData 1
Instruction 20:16
Memory A2 RD2 Osea| < Data
A3 i : WriteData Memory
WD3 Re'g:;i||seter WD
2016 0] |writeReg, ,
15:11 1 —|
PCPlus4
Signlmm
150 Sign Extend <<2
9 PCBranch
+
Result
K
CLK) ALUOUtW
ChK CLK CLK ™% CLK
CLK | | |
] 2521 WES3 %] SrcAE ZeroM WE
InstrD =< Al RD1 H »
| A RD o) ALUOUtM ReadDataW
| ; = A RD 1
nstruction 2016] o RD2 S P4
Memory] SrcBE Data
A3 i 1 WriteDataM Memory
WD3 Re'g:;i||seter WiiteDataF WD
RtE
2016 0 WriteRegE,,
15:11 RdE l
SignimmE
150 Sign Extend i <<2 PCBranchM
+
PCPlus4F PCPIus4D PCPIus4E
ResultW
Fetch Decode Execute Memory Writeback SImbedded

gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 82 a pplications

TECHNISCHE

Korrigierter Pipelined-Datenpfad UNIVERSITAT
DARMSTADT
= WriteReg muss zur gleichen Zeit am Registerfeld ankommen wie Result
cLk
CiK <!7ALu0utW
o 1 [
0]~ |eeE] A RD w224 a1 VE ro1 H SroAP Zerol WE i)
1 3 ALUOUM A RD ! |ReadDataW
Instruction | | i 2016] Ao ro2 H 3 >< ; 1
Memory ! 1! SrcBE | Data ;
! A3) ! 1 !) Memory !
5 w3 Register i WriteDataE P eV i
| et H S ... 1"
' ' 0 WriteRegE,., 1 |WriteRegM,., 1+ |WriteRegW,,
| 15:11 i |RdE ! !
]]]_/]]
SignimmE <<
120 Sign Extend .\ PCBranchM
PCPlus4F PCPlus4D PCPlus4E
ResultwW
Fetch ' Decode ' Execute ' Memory 1 Writeback

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 83

gystems +

Embedded
Elpplications

fiss

TECHNISCHE

Steuersignale fur Pipelined-Datenpfad /P) UNIVERSITAT
DARMSTADT
CLK CLK CLK
~— |RegWriteD 67 RegWriteE 67 RegWriteM 67 RegWriteW
C%nt.iol MemtoRegD MemtoRegE MemtoRegM MemtoRegW
nt MemWriteD MemWriteE MemWriteM
BranchD BranchE BranchM
3126 Op ALUControlD ALUControlE,,, PCSreM
201 Funct | |ALUSKCD ALUSICE
RegDstD RegDstE |
\) ALUOUtW
CLK CLK — CLK
CLK % | | |
) WE3 SrcAE T~ ZeroM WE
-Pj pC' 67 PCF st P AL RD1 [H 0
1 A el = ALUOUM ReadDataW
— Instruction 2016] 25 RD2 [>< A RDH 1
Memory [SrcBE Data
A3) 1) Memory
WD3 Reg.lster WriteDataE WriteDataM WD
File
. RIE L
2016 0 WriteRegE, WriteRegM,., WriteRegW .,
1511 RdE ' ' '
- 1
/
4 ign Exten ignimm N PCBranchM
PCPlus4F PCPlus4D PCPIlus4E
ResultW

ldentisch zu Ein-Takt-Steuerwerk, aber Signale verzogert Uber Pipeline-Stufen

Smbedded

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 84

gystems +
Elpplications

TECHNISCHE
UNIVERSITAT
DARMSTADT

Abhangigkeiten zwischen Pipeline-Stufen
(hazards)

» Treten auf wenn eine
= Instruktion vom Ergebnis einer vorhergehenden abhangt
= ... diese aber noch kein Ergebnis geliefert hat

= Arten von Hazards
= Data Hazard: z.B. Neuer Wert von Register noch nicht in Registerfeld
eingetragen
= Control Hazard: Unklar welche Instruktion als nachstes ausgefuihrt werden
muss

= Tritt bei Verzweigungen auf

Smbedded
gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 85 a pplications

TECHNISCHE

Data Hazard UNIVERSITAT
DARMSTADT
1 2 3 4 5 6 7 8
-
Zeit (Takte)
d4d $s2
add $s0, $s2, $s3 M j{ RF $53j|:8 jTDM —r
BsO ™ V]
and $t0, $s0, $sl m fand j{ R Ilﬂ
or 4 $tl
or $tl, $s4, $sO IM —[I-[RF Mss0 RF
sub $t2, $s0, $s5 M [eul DM $2 [or

Hier: Read-after-Write Hazard (RAW)
- $s0 ,muss vor Lesen geschrieben werden®

gystems +

Elpplications

Embedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 86

A TECHNISCHE
UNIVERSITAT
DARMSTADT

Umgang mit Data Hazards

» Plane Wartezeiten von Anfang an ein
» Flige nops zur Compile-Zeit ein
» scheduling

= Stelle Maschinencode zur Compile-Zeit um
= scheduling / reordering

= | eite Daten zur Laufzeit schneller Gber Abklrzungen weiter
» pypassing / forwarding

= Halte Prozessor zur Laufzeit an bis Daten da sind
= stalling

gystems +

Elpplications

gdmbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 87

TECHNISCHE
UNIVERSITAT
DARMSTADT

Beseitigung von Data Hazards zur Compile-Zeit

» Flge ausreichend viele nops ein bis Ergebnis bereitsteht
» Oder schiebe unabhangige Instruktionen nach vorne (statt nops)

1 2 3 4 5 6 7 8 9 10

add 26 X $50
add $s0, $s2, $s3| M RF $33]:B— —I—DM—r |$|:
M M
nop IM ”OD]{ RF _:D__T D#/I _]7 RF
M M
nop M 2o || RF]T DM _]7 RE
N $s0
and $t0, $s0, $sl v 2df H re $51]T pm|_| [$tO[2C
or $s4 se1
or $t1, $s4, $s0 IM]{RF $SO]:E_]_I_ DM -
$s0
sub $t2, $s0, $s5 IM Sub]{ RE $35]:B_[|_|_ DM 1 g

Zeit (Takte)

ely tged ded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 88 qystems +

Elpplications

TECHNISCHE

Data Forwarding: “Abklrzungen” einbauen UNIVERSITAT
DARMSTADT
1 2 3 4 5 6 7 8
|
Zeit (Takte)
$s2
add $s0, $s2, $s3 |IM add} | rp $s3 :B— $s0 RF
$s0 ' ¥
and $t0, $s0, $si v 1204 1 RE [go1 T DW}"— Li0] P
or Sed M DM v$t1
or $tl, $s4, $sO IM RF |$s0 g gy RF
b 509 N $t2
sub $t2, $sO0, $s5 M BY RF [$s5 :B— —|—D'V' RF

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 89

gystems +

Embedded
Elpplications

TECHNISCHE
' - ¥ 7 aj UNIVERSITAT
Data Forwarding: “Abkirzungen” einbauen e A
RegWriteM RegWriteW
9k 3 5
[Hazard Unit
mbedded

, . , stems +
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 90 gplications

TECHNISCHE
UNIVERSITAT
DARMSTADT

Data Forwarding: “Abklrzungen” einbauen

= “AbkUrzung” zur Execute-Stufe von
= Memory-Stufe oder
= Writeback-Stufe

» Forwarding-Logik fir Signal ForwardAE (Weiterleiten von Operand A):

if ((rst = 0) AND (rsE == WriteRegM) AND RegWriteM) then
ForwardAE = 10

else if ((rs = 0) AND (rsk == WriteRegW) AND RegWriteW) then
ForwardAE = 01

else
ForwardAE = 00

» Forwarding-Logik fir Signal ForwardBE (Weiterleiten von Operand B) analog
» Ersetze rsk durch rtE

gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 91 a pplications

mbedded

TECHNISCHE

Anhalten des Prozessors (stalling) ONIVERSITAT
1 2 3 4 5 6 7 8
L
Zeit (Takte)
$O 4 4 4
Iw $s0, 40($0) IM 'iﬂ-[RF [0 :B_ o] $s0 -
o e L
S
and $t0, $SO, $s1 IM and -[RF $s1 a x Dﬁ"— $t0 RFE
N $s4 7 7
or $t1, $S4, $s0 M oL '[RF $50 _|_D|\/|_ $tl o
$s0M <
sub $t2, $s0, $s5 v 12U RE [4o5 :B— DM L] P

gystems +

pplications

gdmbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 92 a

TECHNISCHE

- UNIVERSITAT
Anhalten des Prozessors (stalling) DSl
1 2 3 4 5 6 7 8 9
>
Zeit (Takte)
$0
Iw $s0, 40($0) IM Ii[l{ RF |40]:E'_ DM _r$so e
$s0 /
and $t0, $s0, $si1 v |2and RF [gs1 5 DM $t0 -
or $s4 st
or $tl1, $s4, $sO IM : RF | $s0]TDM_ RE
Anhalte) $s0 cer
sub $t2, $s0, $s5 M =Y RF $S5]:B_]T DM -

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 93

e
SN
a

mbedded
stems +
pplications

TECHNISCHE
UNIVERSITAT
DARMSTADT

Erweiterung der Hazard-Einheit far Stalling

MemtoRegE

EN

EN
CLR

StallF

StallD
FlushE
MemtoRegE

[Hazard Unit J

ely t%ed ded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 94 gglﬁcrgtﬁo-lr_ls

TECHNISCHE
UNIVERSITAT
DARMSTADT

Behandlung von Stalling in Hazard-Einheit

= Stalling-Logik:

Iwstall = ((rsD == rtE) OR (rtD == rtE)) AND MemtoRegE

StallF = StallD = FlushE = lwstall

gystems +

pplications

Embedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 95 a

A TECHNISCHE
UNIVERSITAT
DARMSTADT

Control Hazards

» beq:
» Entscheidung zu Springen wird erst in vierter Stufe der Pipeline (M) getroffen
» Neue Instruktionen werden aber bereits geholt
» Im einfachsten Fall: Von PC+4, +8, +12, ...
» Falls zu springen ist, mussen diese Instruktionen aus der Pipeline entfernt werden
= ... das Programm ware ja woanders (am Sprungziel) weitergegangen
= “Spulen” (flush)

= Kosten eines solchen falsch vorhergesagten Sprunges:
= Anzahl von zu entfernenden Instruktion falls Sprung genommen

» KOnnte reduziert werden, wenn Sprung in friherer Pipeline-Stufe entschieden
wurde

gystems +

Elpplications

gdmbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 96

Control Hazards: Ursprungliche Pipeline

TECHNISCHE
UNIVERSITAT

DARMSTADT
CLK CLK CLK
~—\ | RegWriteD 67 RegWriteE 67 RegWriteM 67 RegWriteW
Ccl’Jnt.rtOI MemtoRegD MemtoRegE MemtoRegM MemtoRegW
ni
MemWriteD MemWriteE MemWriteM
ALUControlD,., ALUControlE,.,
31:26
Op ALUSIcD ALUSICcE
20 Funct
RegDstD RegDstE PCSIEM
BranchD BranchE BranchM
— |
CLK CLK] CLK
CLK %7 | L |
. WE3 srcAE [T WE
-F pC' pcEf o RD nstd 224 Al RD1 '8\9 = ZeroM
1 o _-Llo l_l >3 ALUOUM A pp M |Readoataw
Instruction 2016] A5 RD2 | <
Memory Data
A3 i WriteDataM Memory
i I
WD3 Reg_lster WriteDataE WD
File 1
25:21 RsD RsE ALUOUtW 0
. RtD RtE ~
2016 O\I WriteRegE,., WriteRegM,., WriteRegW ;.o
. RdD RdE L
15:11 y
Sign SignlmmD SignimmE
204 Extend
4
+
PCPlus4F - PCPIlus4D o PCPIus4E
= -l _— _—
PCBranchM
Resultw
w
ww
< e =)¢ g s S
S 3 3 HE 5 3 g
n n [g |8 s x 14
Hazard Unit
[dded
- - - ems +
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 97

pplications

TECHNISCHE

Beispiel: Control Hazards UNIVERSITAT
DARMSTADT
1 2 3 4 5 6 7 8 9
>
Zeit (Takte)
. $t1
20 beq $tl, $t2, 40 | M % RF $t2]:B_]T DM—[I— RF
l d $s0 -
24 and $t0, $s0, $si1 IM 229D H| RF [$s1]T_DM_+]___RF
Entferne
$s4 diese
28 or $tl, $s4, $s0O Im 2L RF $50]:B_]T DM—[I— RF Instruktionen
$s0
2C sub $t2, $s0, $s5 IM RF $55]:8—|]T DM—D— RF
30 ...
. l $52 $t3
64 st $t3, $s2, $s3 IM 514][RF353]}:}——4DT-DM RF

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 98

gystems +

Jmbedded
Elpplications

Auflosen von Control Hazards durch frihere

Sprungentscheidung

TECHNISCHE
UNIVERSITAT
DARMSTADT

20

24

28

2C

30

64

beq $t1, $t2, 40

and $t0, $sO0, $si

or $tl1, $s4, $sO

sub $t2, $sO, $s5

1 2 4 5 6 7 9
>
Zeit (Takte)
$tl
-
\d $s0 Entferne
an

'

slt $t3, $s2, $s3

RF

$s1

slt

$s2

$s3

JiE:

DM—H—RF

1S

$t3

DM_r

RF

]

diese
Instruktion

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 99

gystems +

Jmbedded
Elpplications

Control Hazards: Ansatz “Frihere Sprungentscheidung”

TECHNISCHE
UNIVERSITAT

CLK CLK CLK
| RegWriteD €7 RegWriteE %7 RegWriteM %7 RegWriteW
C(LJJnt_rtO MemtoRegD MemtoRegE MemtoRegM MemtoRegW
ni
MemWriteD MemWriteE MemWriteM
ALUControlQ), ALUControlg,,
31:26)
| Op ALUSrcD ALUSIcE
-0 Funct RegDstD RegDstE
BranchD —]
PCSrcQ
CLK CLK Equal — CLK
CLK | | |
. WE3
0] ec] |ece] , ro H instrd_ 24 Al RD1 90
m E _-Ll ALUOutM A ReadDataW|
Instruction 20.16] - i
Memory A2 RD2
A3 Reqi T WriteDataM Memory
i riteDatal
WD3 egllster WriteDataE WD
File 1
2521 RsD RsE ALuouw|
. RtD RtE =
20116 0\| WriteRegE, ., WriteRegM,.o WriteRegW,
1511 RAE RdE J —
1
. Sign SignlmmD SignlmmE
4 JE“D" Extend |E
= +
PCPlus4F ° PCPlus4D 2
Ol PCBranchD
ResultwW
W w = =
Sk £ g g
<4] £
n ! - g|g g 3 3
o] 5 [} [}
5 5 i 2|e s & ¢
[Hazard Unit

)

Simbedded

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 100

gystems +
Elpplications

TECHNISCHE
UNIVERSITAT
DARMSTADT

Berlcksichtige neue Data Hazards

e

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 101

imbedded
ystems +
pplications

Frihe Sprungentscheidung: TECHNISCHE
eyt . - . . UNIVERSITAT
Benotigte Logik flr Forwarding und Stalling DARMSTADT

» Forwarding-Logik:
ForwardAD = (rsD 1=0) AND (rsD == WriteRegM) AND RegWriteM
ForwardBD (rtD 1=0) AND (rtD == WriteRegM) AND RegWriteM

= Stalling-Logik:

branchstall = BranchD AND RegWriteE AND
(WriteRegE == rsD OR WriteRegE == rtD)
OR
BranchD AND MemtoRegM AND
(WriteRegM == rsD OR WriteRegM == rtD)

StallF = StallD = FlushE = lwstall OR branchstall

gystems +

pplications

Embedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 102 a

A TECHNISCHE
UNIVERSITAT
DARMSTADT

Orthogonaler Ansatz: Sprungvorhersage

» Versuche vorherzusagen, ob ein Sprung genommen wird
» Dann kénnen Instruktionen von der richtigen Stelle geholt werden
= RUckwartsspringe werden ublicherweise genommen (Schleifen!)

» Genauer: Fur jeden Sprung Historie fuhren, ob er die letzten Male genommen
wurde

= ... dann wird jetzt vermutlich auch wieder genommen

» Eine gute Vorhersage reduziert die Zahl der Springe, die ein Flush der
Pipeline erforderlich machen

gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 103

m bedded

Elpplications

TECHNISCHE
UNIVERSITAT
DARMSTADT

Beispiel: Rechenleistung des
Pipelined-Prozessors

= |dealerweise ware CPI =1
= Manchmal treten aber Stalls auf (wegen Lade- und Verzweigungsbefehlen)

= SPECint 2000 benchmark:
= 25% loads
10% stores
11% branches
2% jumps
52% R-type

Annahmen:

= 40% der geladenen Daten werden gleich in der nachsten Instruktion gebraucht
» 25% aller Verzweigungen werden falsch vorhergesagt

» Alle Spriinge erzeugen eine zu entfernende (flush) Instruktion

= Wie hoch ist der durchschnittliche CPI-Wert?

gystems +

Elpplications

gdmbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 104

TECHNISCHE
UNIVERSITAT
DARMSTADT

Beispiel: Rechenleistung des
Pipelined-Prozessors

= SPECint 2000 benchmark:
= 25% loads
10% stores
11% branches
2% jumps
52% R-type

= Annahmen:
= 40% der geladenen Daten werden gleich in der nachsten Instruktion gebraucht
» 25% aller Verzweigungen werden falsch vorhergesagt
= Alle Spriinge erzeugen eine zu entfernende (flush) Instruktion

= Wie hoch ist der durchschnittliche CPI-Wert?
» Lade/Verzweigungsinstruktionen haben CPI = 1 ohne Stall, = 2 mit Stall. Daher:

= CPI,=1(06)+2(04)=14
= CPIbeq =1(0,75) +2(0,25) =1,25
= Thus,

Durchschnittliche CPI = (0,25) (1,4) + (0,1) (1,0) + (0,11)(1,25) + (0,02) (2,0) + (0,52)(1,0)

gystems +
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 105 Y

=115 Ambedded
Elpplications

Beispiel: Rechenleistung des
Pipelined-Prozessors

TECHNISCHE
UNIVERSITAT
DARMSTADT

» Kritischer Pfad des Pipelined-Prozessors:

T, = max {
theg T 1

pcq mem T t

setup?

2 (tRFread + tmux + 1:eq + tAND + tmux + tsetup)’

+t +t

tpcq T tmux mux + tALU
theg T 1

pcq memwrite T tsetup’
2 (tpcq + tmux + tRerite) }

setup?

Fetch
Decode
Execute
Memory
Writeback

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 106

gystems +

Jmbedded
Elpplications

TECHNISCHE
UNIVERSITAT
DARMSTADT

Beispiel: Rechenleistung des
Pipelined-Prozessors

Register Clock-to-Q tocq PC 30
Register Setup tsetup 20
Multiplexer tux 25
ALU taLu 200
Speicher Lesen tmem 250
Registerfeld Lesen tRFread 150
Registerfeld Setup tREsetup 20
Vergleich auf Gleichheit teq 40
AND Gatter taND 15
Speicher Schreiben T memwrite 220
Registerfeld Schreiben tRFwrite 100

Tc =2 (tRFread + tmux + teq + tAND + tmux + tsetup)
= 2[150 + 25 + 40 + 15 + 25 + 20] ps = 550 ps

gystems +

pplications

Embedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 107 a

Beispiel: Rechenleistung des

Pipelined-Prozessors

» Fihre Programm mit 100 Milliarden Instruktionen auf Pipelined-MIPS-Prozessor aus

= CPI=1,15
= T. =550ps

Ausflhrungszeit = (# Instruktionen) x CPI x T,
= (100 x 10°) (1,15) (550 x 101?)
= 63 Sekunden

Ein-Takt 95 1,00
Mehrtakt 133 0,71
Pipelined 63 1,51

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 108

gystems +

Embedded
Elpplications

Wiederholung: Ausnahmebehandlung
(exceptions)

&5 TECHNISCHE
(&)= UNIVERSITAT
9’ DARMSTADT

» AulRerplanmafiger Aufruf der Ausnahmebehandlungsroutine

» Verursacht durch:
» Hardware, auch genannt Interrupt, z.B. Tastatur, Netzwerk, ...
= Software, auch genannt Traps, z.B. unbekannte Instruktion, Uberlauf, Teilen-durch-Null,

» Beim Auftreten einer Ausnahme:
= Abspeichern der Ursache flir Ausnahme im Cause Register

» Sprung zu Ausnahmebehandlungsrouting bei 0x80000180
» Ruckkehr zum Programm (lber EPC Register)

gystems +

Elpplications

gdmbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 109

. . . TECHNISCHE
Beispiel fur Ausnahme UNIVERSITAT
DARMSTADT

sequential circuirs.]

dll WyE LIEsIET] o .
Figure 2.1L shows a

nputs, A and B, and on The netwark, KepSerer, which is required by KepSerer
§|_‘.ID‘{ indicates that it is 0 n:u:_nntn:nlle::l programs, cannot grant pou pn_armissin:_nn ko run
T . .] thiz program. |f wou think, you have recersed this

gthis case, the function is meszage in eror, pleaze contact your KeyServer

: Adrministrator.

Visio.exe - Application Error x

@ The exception unknown software exception (Oxc06d007e) occurred in the application at location 0x7cd1eb33,

Harris ¢
—

=] 4

CHAP

...

the function performed is A OR B. :
. The snplementation of the combinational circuit is independent of its:

E‘FIH"I:'Til'H"I'.'-IliTE’ Ficrnr'.':- .-l' I '.'-Il"ll"] Fil:|'11r'ﬂ :' :' El"‘ll‘l‘l.?i.' TR&riy Hl‘liiil"lll’-‘l il'l'lr"lll'-'ll'l'll'-'ll"lf'.'-l-;

mbedded
a

gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 110 pplications

Register fur Ausnahmebehandlung

TECHNISCHE
UNIVERSITAT
DARMSTADT

=ty
&

i
A

= Nicht Teil des regularen MIPS Registersfelds

= Cause

» Speichert die Ursache der Ausnahme

= Koprozessor 0, Register 13
» EPC (Exception PC)

» Speichert den PC-Stand, an dem die Aufnahme auftrat

= Koprozessor 0, Register 14

= Befehl: “Move from Coprocessor 0”

= mfcO $t0, Cause

= Ubertragt aktuellen Wert von Cause nach $t0

mfcO
010000 | 00000 $t0 (8)| Cause (13) 00000000000
31:26 25:21 20:16 15:11 10:0

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 111

gystems +

Embedded
Elpplications

Auswahl von Ausnahmeursachen

Hardware Interrupt 0x00000000
System Calll 0x00000020
Breakpoint / Division durch O 0x00000024
Unbekannte Instruktion 0x00000028
Arithmetischer Uberlauf 0x00000030

Ziel: Erweitere den Mehrtaktprozessor um
Behandlung der letzten beiden Ausnahmen

gystems +

Jmbedded
Elpplications

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 112

TECHNISCHE
UNIVERSITAT
DARMSTADT

Hardware flr Ausnahmebehandlung:
EPC und Cause

EPCWrite IntCause CauseWrite

CLK 0x30
0x28

EN

PCSrc,

PC 0

Overflow

0x8000 0180

gystems +
pplications

gdmbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 113 a

TECHNISCHE
UNIVERSITAT
DARMSTADT

15:11

MemtoReg,

gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 114

Embedded
Elpplications

Steuerwerk-FSM erweitert um Ausnahmen

TECHNISCHE
UNIVERSITAT
DARMSTADT

S12: Undefined

PCSrc =11
PCWrite
IntCause = 1
CauseWrite
EPCWrite

Op = others y

S14:

MFCO

RegDst =0
Memtoreg = 10
RegWrite

lorD=0

Reset

IRWrite
PCWrite

Op=1LW
or
Op=SW

AlUSICA = 0
ALUSICB = 01
ALUOp = 00
PCSrc = 00

MemWrite

ALUSIcA=0
ALUSIcB = 11

ALUOp = 00

Op = R-type

ALUSrcA=1

ALUSrcB = 00

ALUOp = 10

Overflow

lorD = 1 RegDst=1

RegWrite

MemtoReg = 00

Op =mfc0

Op = ADDI
Op = BEQ

ALUSrcA=1
ALUSIrcB = 00
ALUOp =01
PCSrc =01
Branch

Overflow

S13:
Overflo

PCSrc =11
PCWrite
IntCause =0
CauseWrite
EPCWrite

PCSrc =10

PCWrite

ALUSrcA = 1
ALUSICB = 10
ALUOp = 00

RegDst =0
MemtoReg = 00

RegWrite

ALUSrcA=1

ALUSrcB =10

ALUOp =00

Qp =SW
Op=LWw

RegDst =0

MemtoReg = 01
RegWrite

Smbedded

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 115

gystems +
Elpplications

TECHNISCHE

Welterfihrende Themen der Mikroarchitektur FJ UNIVERSITAT

DARMSTADT

= Tiefe Pipelines

= Sprungvorhersage

» Superskalare Prozessoren
= Out of Order-Prozessoren

= Umbenennen von Registern
= SIMD

= Multithreading

» Multiprozessoren

gystems +

Elpplications

gdmbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 116

A TECHNISCHE
UNIVERSITAT
DARMSTADT

Tiefe Pipelines

= Ublicherweise 10-20 Stufen
= Ausnahmen
» Fehlkonstruktionen (Intel P4, >30 Stufen)
» Anwendungsspezifische Spezialprozessoren (ggf. Hunderte von Stufen)

= Grenzen fur Pipeline-Tiefe
» Pipeline Hazards
» Zusatzlicher Zeitaufwand fur sequentielle Schaltungen
» Elektrische Leistungsaufnahme und Energiebedarf
= Kosten

gystems +

Embedded
Elpplications

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 117

s TECHNISCHE
=\ UNIVERSITAT
DARMSTADT

Sprungvorhersage

= |dealer Pipelined-Prozessor: CPI =1
» Fehler der Sprungvorhersage erhoht CPI

= Statische Sprungvorhersage:
» Prife Sprungrichtung (vorwarts oder rickwarts)
= Falls rickwarts: Sage “Springen” vorher
» Sonst: Sage “Nicht Springen” vorher

= Dynamische Sprungvorhersage:

» Flhre Historie der letzten (einige Hundert) Verzweigungen in Branch Target
Buffer, speichert:

= Sprungziel
» \Wurde Sprung das letzte Mal / die letzten Male genommen?

gystems +

Embedded
Elpplications

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 118

Beispiel: Sprungvorhersage

add $s1, $0, $0 # sum = O

add $s0, $0, $0 # 1 =0

addi $t0, $0, 10 # $t0 = 10
for:

beq %$s0, $t0, done # falls i == 10, springe
add $s1, $s1, $sO # sum = sum + i

addi $s0, $s0O, 1 # inkrementiere i
] for
done:

gystems +

Elpplications

gdmbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 119

1-Bit Sprungvorhersage

= Speichert, ob die Verzweigung das letzte Mal genommen wurde
= ... und sagt genau dieses Verhalten flr das aktuelle Mal vorher

» Fehlvorhersagen
= Einmal bei Austritt aus der Schleife bei Schleifenende
= Dann wieder bei erneutem Eintritt in Schleife

add $sl1, $0, $0 # sum = O

add $s0, $0, $0 # 0 =0

addi $t0, $0, 10 # $t0 = 10
for:

beq %$s0, $t0O, done # falls 1 == 10, springe
add $sl1l, $s1, $sO # sum = sum + i

addi $s0O, $sO, 1 # inkrementiere i

J for

, . , gystems +
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 120 Y

done: Smbedded
Elpplications

TECHNISCHE

2-Bit SprU”QVOFhersage UNIVERSITAT
DARMSTADT
» Falsche Vorhersage nur beim letzten Sprung aus Schleife heraus
taken

predict
taken

predict
taken

predict
not taken

predict
not taken

taken

add $s1, $0, $0 # sum = 0O

add $s0, $0, $0 # 1 =0

addi $tO, $0, 10 # $t0 = 10
for:

beq $s0, $t0, done # falls i == 10, springe
add $sl1l, $s1, $sO # sum = sum + i

addi $s0, $s0, 1 # inkrementiere i

] for

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 121 gystems +

done: Jmbedded
Elpplications

TECHNISCHE
UNIVERSITAT
DARMSTADT

Superskalare Mikroarchitektur

» Mehrere Instanzen des Datenpfades fuhren mehrere Instruktionen gleichzeitig
aus

= Abhangigkeiten zwischen Instruktionen erschweren parallele Ausfiuihrung

CLK CLK CLK CLK
CLK [
PC RD Al L
- A A2
I:A3 RD1 E
A4 RD4 % Al RD1
Instruction —{As Register :>_| A2 RD2
Memory AS File Egg < Data

wBs 1T— Memory
WD1
WD2

gystems +

Elpplications

gdmbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 122

) i . TECHNISCHE
Beispiel: Superskalare Ausfuhrung UNIVERSITAT
Iw $t0, 40($s0)
add $t1, $t0, $si
sub $t0, $s2, $s3 Idealer IPC-Wert: 2
and $t2, $s4, $t0 Erreichter IPC-Wert; 2
or $t3, $s5, $s6
sw $s7, 80($t3) 1 2 3 4 5 6 7 8

>
Time (cycles)
Iw $t0, 40($s0) T ii" :B—v | [1]$t0
’ IM RF [$s1 bM RF

add $t1, $sl1l, $s2 add $s2 :B— || |su

$s1N $t2

b s i sub S ||

sub $t2, $s1, $s3 - il o3 ., 1
and $t3, $s3, $s4 and) 1l [ssa | 138

or N $s1 | Msta
or $t4, $s1, $s5 N -[RF iﬁg E— ou !
sw $s5, 80($s0) S I E :B_ =

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 123

mbedded

e
gystems +
Elpplications

Beispiel: Superskalare Ausfiuhrung mit Abhangigkeiten UNIVERSITAT
DARMSTADT
Iw $t0, 40($s0)
add $t1, $t0, $si
sub $t0, $s2, $s3 |dealer IPC-Wert: 2,00
and $t2, $s4, $t0 Erreichter IPC-Wert: 6/5=1,20
or $t3, $sb, $s6
sw $s7, 80($t3) 1 5 6 7 8 °
Time (cycles)

Iw $t0, 40($s0) Ty

$t0)
|$s1]
|$s2)
|$s3]

add $t1, , $s1
sub $t0, $s2, $s3

and

and $t2, $s4, @

or $t3, $s5, $s6

or

sw $s7, 80()

$s7] N

gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 124 a pplications

m bedded

: : %57 TECHNISCHE
Out of Order-Mikroarchitektur /") UNIVERSITAT
. DARMSTADT

» Kann Ausfiihrungsreihenfolge von Instruktion umsortieren
= Sucht im voraus nach parallel startbaren Instruktionen

= Startet Instruktionen in beliebiger Reihenfolge
= Solange keine Abhangigkeiten verletzt werden!

= Abhangigkeiten
= RAW (read after write)
= Spatere Instruktion darf Register erst lesen, nachdem es vorher geschrieben wurde
= WAR (write after read, anti-dependence)
= Spatere Instruktion darf Register erst schreiben, nachdem es vorher gelesen wurde
= WAW (write after write, output dependence)
» Reihenfolge von in Register schreibenden Instruktionen muss eingehalten werden

gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 125 a pplications

m bedded

A TECHNISCHE
UNIVERSITAT
DARMSTADT

Out of Order-Mikroarchitektur

» Parallelismus auf Instruktionsebene (instruction level parallelism, ILP)
= Anzahl von parallel startbaren Instruktionen (i.d.R. < 3)

= Scoreboard
» Tabelle im Prozessor
= Verwaltet
= Auf Start wartende Instruktionen
= Verfligbare Recheneinheiten (z.B. ALUS)
= Abh&ngigkeiten

enﬁ?edded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 126 qystems +

Elpplications

. . . . TECHNISCHE
Beispiel: Out of Order-Mikroarchitektur UNIVERSITAT
DARMSTADT
lw $t0, 40($s0)
add $t1, $t0, $si
sub $t0, $s2, $s3 Idealer IPC-Wert: 2.0
and $t2, $s4, $tO Erreichter IPC-Wert: 6/4=1,5
or $t3, $s5, $s6
sw $s7, 80($t3) 1 2 8 .
Time (cycles)
—— $s0
Iw |:IW 40
IM RF | ss5)
or >l | [ssd
sw $s7, =
Zwei Takte Latenz M

and $t2, $s4, @

M 12
RF

gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 127

Jmbedded
Elpplications

. CHNISC
Umbenennen von Registern N T
DARMSTADT
Ilw $t0, 40($s0)
add $t1, $t0, $s1
sub $t0, $s2, $s3 Idealer IPC-Wert: 2,0
and $t2, $s4, $t0 Erreichter IPC-Wert: 6/3=2,0
or $t3, $sb5, $s6
sw $s7, 80(5t3) 1 2 3 4 5 6 7
>
Time (cycles)
1w B $SOM] M | Msto
v $t0, 40(8s0) [~ | j;}——— - 1
sub $r0, $s2, $s3 sub $s3 :B— —{ (o
2 Takte RAW $s4
and $t2§}‘ andv{ $ro§v' oM —v $t2
IM RF $s5 RF
or or _[556 E_ || [$t3
add $t1, (510, $s1 o el TS| e
IM RFE lst3 RF
sw $s7, 80 @ 2 [so ;|:$S7—

gystems +

Elpplications

Embedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 128

TECHNISCHE
UNIVERSITAT
DARMSTADT

SIMD

= Single Instruction Multiple Data (SIMD)
» Eine Instruktion wird auf mehrere Datenelemente gleichzeitig angewandt
» Haufige Anwendung: Graphik, Multimedia
= Oft: Fihre schmale arithmetische Operatione aus
= Auch genannt: gepackte Arithmetik
= Beispiel: Addiere gleichzeitig vier Bytes
= ALU muss verandert werden
= Kein Ubertrag mehr zwischen einzelnen Bytes

padd8 $s2, $s0, $si1

32 24 23 16 15 8 7 0 Bit position
a, a, a, a, $s0
+ b, b, b, b, $s1
a, + b, a, + b, a, +b, a, + b, [$s2

gystems +

Elpplications

gdmbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 129

A TECHNISCHE
UNIVERSITAT
DARMSTADT

Fortgeschrittene Mikroarchitekturtechniken

= Multithreading
= Beispiel: Textverarbeitung
» Threads (parallel laufende, weitgehend unabhéangige Instruktionsfolgen)
» Texteingabe
» Rechtschreibprifung
» Drucken

= Multiprozessoren
» Viele weitgehend unabhangige Prozessoren auf einem Chip
= Am weitesten verbreitet heute in Grafikkarten (Hunderte von Prozessoren)
= Aber auch in Spezialprozessoren, z.B. fir UMTS Nachfolger LTE

gystems +

Embedded
Elpplications

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 130

: : 773 TECHNISCHE
Genauer: Multithreading /=) UNIVERSITAT
. DARMSTADT

= Prozesse: Auf dem Computer gleichzeitig laufende Programme
= 7.B. Web-Browser, Musik im Hintergrund, Textverarbeitung

= Thread: Parallele Ausfiihrung als Tell eines Programmes
= Ein Prozess kann mehrere Threads enthalten

» |n konventionellem Prozessor

= Jeweils ein Thread wird ausgefthrt

= Wenn eine Thread-Ausfuhrung einen Stall hat (z.B. Warten auf Speicher)
= Sichere Architekturzustand des Threads
= Lade Architekturzustand eines anderen, derzeit inaktiven aber lauffahigen Threads
= Starte neuen Thread
= Vorgang wird Kontextumschaltung (context switching) genannt

= Alle Threads laufen scheinbar gleichzeitig

gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 131 a pplications

m bedded

Multithreading auf Mikroarchitekturebene

TECHNISCHE
UNIVERSITAT
DARMSTADT

=
=

= Mehrere Instanzen des Architekturzustandes im Prozessor
= Mehrere Threads nun gleichzeitig aktiv

» Sobald ein Thread stalled wird sofort ein anderer gestartet
= Kein Sichern/Laden von Architekturzustand mehr

= Falls ein Thread nicht alle Recheneinheiten ausnutzt, kann dies ein anderer Thread tun

= Erhoht nicht den Grad an ILP innerhalb eines Threads

» Erhoht aber Durchsatz des Gesamtsystems mit mehreren Threads

gystems +

Smbedded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 132 a pplications

TECHNISCHE
UNIVERSITAT
DARMSTADT

Multiprozessoren

= Mehrere unabhangige Prozessorkerne mit einem dazwischenliegenden
Kommunikationsnetz

= Arten von Multiprocessing:
= Symmetric multiprocessing (SMT): mehrere gleiche Kerne mit einem gemeinsamen
Speicher
= Asymmetric multiprocessing: unterschiedliche Kerne flr unterschiedliche Aufgaben
= Beispiel: CPU in Handy fur GUI, DSP fur Funksignalverarbeitung
= Clusters: Jeder Kern hat seinen eigenen Speicher

ern?edded
WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 133 qystems +

Elpplications

A TECHNISCHE
UNIVERSITAT
DARMSTADT

Weiterfuhrende Informationen

= Patterson & Hennessy
Computer Architecture: A Quantitative Approach

= Konferenzen:
= WwWw.cs.wisc.edu/~arch/www/
= |[SCA (International Symposium on Computer Architecture)
= HPCA (International Symposium on High Performance Computer Architecture)

gystems +

WS 09/10 | Technische Grundlagen der Informatik - Kapitel 7 - Prof. Andreas Koch | 134

m bedded

Elpplications

	Technische Grundlagen�der Informatik – Kapitel 7
	Kapitel 7: Themen
	Einleitung
	Mikroarchitektur
	Rechenleistung eines Prozessors
	Unser erster MIPS Prozessor
	Architekturzustand
	Elemente des MIPS Architekturzustands
	Ein-Takt MIPS Prozessor
	Ein-Takt Datenpfad: Holen eines lw Befehls
	Ein-Takt Datenpfad: Lesen des Registers für lw
	Ein-Takt Datenpfad: Behandle lw Direktwert
	Ein-Takt Datenpfad: Berechne lw Zieladdresse
	Ein-Takt Datenpfad: Lese Speicher mit lw
	Ein-Takt Datenpfad : Erhöhe PC nach lw
	Ein-Takt Datenpfad: sw
	Ein-Takt Datenpfad: Instruktionen vom R-Typ
	Ein-Takt Datenpfad: beq
	Vollständiger Ein-Takt-Prozessor
	Steuerwerk
	Zur Erinnerung: ALU
	Zur Erinnerung: ALU
	Steuerwerk: ALU-Decoder
	Steuerwerk: Hauptdecoder
	Steuerwerk: Hauptdecoder
	Beispiel im Ein-Takt Datenpfad: or
	Erweitere Funktionalität: addi
	Erweitere Steuerwerk: addi
	Erweitere Steuerwerk: addi
	Erweitere Funktionalität: j
	Steuerwerk: Hauptdecode
	Control Unit: Main Decoder
	Wiederholung: Rechenleistung des Prozessors
	Rechenleistung des Ein-Takt-Prozessors
	Rechenleistung des Ein-Takt-Prozessors
	Ein-Takt Prozessor Rechenleistung: Beispiel
	Ein-Takt Prozessor Rechenleistung: Beispiel
	Ein-Takt Prozessor Rechenleistung: Beispiel
	Ein-Takt Prozessor Rechenleistung: Beispiel
	Mehrtakt-MIPS-Prozessor
	Zustandselemente im Mehrtaktprozessor
	Mehrtaktdatenpfad: Instruktionen holen (fetch)
	Mehrtaktdatenpfad: Lese Register für lw
	Mehrtaktdatenpfad: Werte lw Direktwert aus
	Mehrtaktdatenpfad: Bestimme effektive Adresse für lw
	Mehrtaktdatenpfad: Lesezugriff von lw
	Mehrtaktdatenpfad: Schreibe Register in lw
	Mehrtaktdatenpfad: Erhöhe PC
	Mehrtaktdatenpfad: Nun Ausführung von sw
	Mehrtaktdatenpfad: Instruktion vom R-Typ
	Mehrtaktdatenpfad: beq
	Vollständiger Mehrtaktprozessor
	Steuerwerk
	Hauptsteuerwerk: Holen eines Befehls
	Hauptsteuerwerk: Holen eines Befehls
	Hauptsteuerwerk: Dekodieren eines Befehls
	Hauptsteuerwerk: Adressberechnung
	Hauptsteuerwerk: Adressberechnung
	Hauptsteuerwerk: FSM für lw
	Hauptsteuerwerk: FSM für sw
	Hauptsteuerwerk: FSM für R-Typ
	Hauptsteuerwerk: FSM für beq
	Vollständiges Hauptsteuerwerk für Mehrtakt-CPU
	Erweiterung des Hauptsteuerwerks: addi
	Erweiterung des Hauptsteuerwerks: addi
	Erweiterung des Datenpfads für j
	Erweiterung des Hauptsteuerwerks um j
	Erweiterung des Hauptsteuerwerks um j
	Rechenleistung des Mehrtaktprozessors
	Rechenleistung des Mehrtaktprozessors
	Rechenleistung des Mehrtaktprozessors
	Beispiel: Rechenleistung Mehrtaktprozessor
	Beispiel: Rechenleistung Mehrtaktprozessor
	Beispiel: Rechenleistung Mehrtaktprozessor
	Beispiel: Rechenleistung Mehrtaktprozessor
	Beispiel: Rechenleistung Mehrtaktprozessor
	Rückblick: Ein-Takt MIPS Prozessor
	Rückblick: Mehrtakt-MIPS-Prozessor
	MIPS Prozessor mit Pipelining
	Rechenleistung: Ein-Takt und Pipelined
	Abstraktere Darstellung des Pipelinings
	Ein-Takt- und Pipelined-Datenpfad
	Korrigierter Pipelined-Datenpfad
	Steuersignale für Pipelined-Datenpfad
	Abhängigkeiten zwischen Pipeline-Stufen�(hazards)
	Data Hazard
	Umgang mit Data Hazards
	Beseitigung von Data Hazards zur Compile-Zeit
	Data Forwarding: “Abkürzungen” einbauen
	Data Forwarding: “Abkürzungen” einbauen
	Data Forwarding: “Abkürzungen” einbauen
	Anhalten des Prozessors (stalling)
	Anhalten des Prozessors (stalling)
	Erweiterung der Hazard-Einheit für Stalling
	Behandlung von Stalling in Hazard-Einheit
	Control Hazards
	Control Hazards: Ursprüngliche Pipeline
	Beispiel: Control Hazards
	Auflösen von Control Hazards durch frühere�Sprungentscheidung
	Control Hazards: Ansatz “Frühere Sprungentscheidung”
	Berücksichtige neue Data Hazards
	Frühe Sprungentscheidung:�Benötigte Logik für Forwarding und Stalling
	Orthogonaler Ansatz: Sprungvorhersage
	Beispiel: Rechenleistung des�Pipelined-Prozessors
	Beispiel: Rechenleistung des�Pipelined-Prozessors
	Beispiel: Rechenleistung des�Pipelined-Prozessors
	Beispiel: Rechenleistung des�Pipelined-Prozessors
	Beispiel: Rechenleistung des�Pipelined-Prozessors
	Wiederholung: Ausnahmebehandlung�(exceptions)
	Beispiel für Ausnahme
	Register für Ausnahmebehandlung
	Auswahl von Ausnahmeursachen
	Hardware für Ausnahmebehandlung:�EPC und Cause
	Hardware für Ausnahmebehandlung : mfc0
	Steuerwerk-FSM erweitert um Ausnahmen
	Weiterführende Themen der Mikroarchitektur
	Tiefe Pipelines
	Sprungvorhersage
	Beispiel: Sprungvorhersage
	1-Bit Sprungvorhersage
	2-Bit Sprungvorhersage
	Superskalare Mikroarchitektur
	Beispiel: Superskalare Ausführung
	Beispiel: Superskalare Ausführung mit Abhängigkeiten
	Out of Order-Mikroarchitektur
	Out of Order-Mikroarchitektur
	Beispiel: Out of Order-Mikroarchitektur
	Umbenennen von Registern
	SIMD
	Fortgeschrittene Mikroarchitekturtechniken
	Genauer: Multithreading
	Multithreading auf Mikroarchitekturebene
	Multiprozessoren
	Weiterführende Informationen

