Einfuhrung in Software Engineering WS 10/11
Fachbereich Informatik

Dr. Michael Eichberg

eichberg@informatik.tu-darmstadt.de

Assistent: Ralf Mitschke
mitschke@st.informatik.tu-darmstadt.de

TECHNISCHE
UNIVERSITAT
DARMSTADT

Ubungsblatt 10 (10 Punkte): Design Patterns

Abgabeformat: Reichen Sie ihre Lésung per SVN ein. Jede Ubung muss in einem eigenen Ordner
ex<Number> (<Number> = 01, 02, ...) in lhrem Gruppenverzeichnis eingereicht werden. Wahrend der
Ubungsbearbeitung kénnen Sie lhre Lésungen beliebig oft in das SVN hochladen (per Commit). Wir prifen die
Zeit der Einreichung lhrer Lésungen unter der Benutzung des SVN Zeitstempels.

Erstellen Sie fur Losungen der Aufgaben, die keinen Quelltext erfordern, eine PDF-Datei mit dem Dateinamen
solution.pdf. Dies gilt auch fur alle UML-Diagramme, die Sie erstellen. Die Basisanwendung wird als Eclipse-
Projekt vorgegeben. lhr eigener Code muss entsprechend in den dafur vorgesehenen Verzeichnissen (/src oder
/test) erstellt werden.

Abgabetermin: 02.02.2011 - 24:00 Uhr

Aufgabe 1 (3 Punkte)

Ziel: Verwendung von Design Patterns im JDK

a) java.rmi.server.RMIClientSocketFactory (1 Punkt)

Studieren Sie die Verwendung von Design Patterns in der Klasse:
java.rmi.server.RMIClientSocketFactory des JDKs.

Welche Rolle hat diese Klasse im Rahmen der Implementierung welches Patterns inne? Ziehen Sie bei Be-
darf weitere Klassen in Betracht mit denen diese Klasse in Beziehung steht.

Hinweis: Folgender Link ist beim Verstdndnis der Zusammenhdnge ggf. hilfreich:
http://java.sun.com/j2se/1.4.2/docs/quide/rmi/socketfactory/index.html|

/ %k
An RMIClientSocketFactory instance is used by the RMI runtime in order to
obtain client sockets for RMI calls. A remote object can be associated

with an RMIClientSocketFactory when it is created/exported via the constructors
or exportObject methods of java.rmi.server.UnicastRemoteObject and
java.rmi.activation.Activatable.

An RMIClientSocketFactory instance associated with a remote object will be
downloaded to clients when the remote object's reference is transmitted in an
RMI call. This RMIClientSocketFactory will be used to create connections to
the remote object for remote method calls.

An RMIClientSocketFactory instance can also be associated with a remote object
registry so that clients can use custom socket communication with a remote
object registry.

¥ X K X X K X K X X K X X X X

*

[...]
*/
public interface RMIClientSocketFactory {

/**
* Create a client socket connected to the specified host and port.
*/

public Socket createSocket(String host, int port)
throws IOException;

b)

c)

java.util.AbstractList.Itr (1 Punkt)

Studieren Sie die Implementierung des Iterator Patterns in der Klasse java.util.AbstractList des JDKs.
Der Iterator wird in der inneren Klasse Itr implementiert. Der Code der Klasse ist im Folgenden Auszugs-
weise angegeben.

Handelt es sich um einen ,robusten” Iterator? Diskutieren Sie was passiert wenn sich die zugrunde liegen-
den Daten andern?

private class Itr implements Iterator<E> {
/**
* Index of element to be returned by subsequent call to next.
*/
int cursor = 0;

/**
* Index of element returned by most recent call to next or
* previous. Reset to -1 if this element is deleted by a call
* to remove.
*/
int lastRet = -1;

/**
* The modCount value that the iterator believes that the backing
* List should have. If this expectation is violated, the iterator
* has detected concurrent modification.
*/
int expectedModCount = modCount;

public boolean hasNext() {
return cursor != size();
}

public E next() {

checkForComodification();

try {
E next = get(cursor);
lastRet = cursor++;
return next;

} catch (IndexOutOfBoundsException e) {
checkForComodification();
throw new NoSuchElementException();

}
[...]
final void checkForComodification() {

if (modCount != expectedModCount)
throw new ConcurrentModificationException();

java.lang.Runtime (1 Punkt)

Studieren Sie die Implementierung der Klasse java.lang.Runtime. Welche(s) Pattern(s) erkennen Sie? Ge-
ben Sie genau an welche Klasse(n) welche Rolle(n) inne hat/haben (insbesondere mit Blick auf die Klasse
java.lang.Runtime). Geben Sie weiterhin an wie welche Methoden der Klasse auf welche Methoden des
von |hnen identifizierten Patterns abgebildet werden kénnen.

Aufgabe 2 (3 Punkte)

Ziel: Design Patterns diskutieren

a)

b)

Singletons und Testen (1 Punkte)

Erlautern Sie kurz, warum ,,Singletons” die Testbarkeit einer Anwendung behindern (kénnen)?

Factory Method und Abstract Factory (2 Punkte)

Abb.1 zeigt mehrere zusammengehodrige Vererbungshierarchien der Implementierung eines
WindowManager-Frameworks (ahnlich den UNIX Window Managern). Die Oberklassen bieten ein allgemei-
nes Interface und sind o6ffentlich, so dass von jedem Interessierten eine eigene Implementierung gegeben
werden kann. Konkrete WindowManager sind z.B. FVWM und SawFish. Die konkreten Subklassen des Window
und andere Bestandteile der GUI (z.B. Scrollbar etc.) missen dabei immer konsistent genutzt werden. Es
darf z.B. keine FYWMWindow mit einer SawFishScrollbar genutzt werden.

Als Designer des Frameworks (der Oberklassen) mdchten Sie die Konsistenz der Klassen sicherstellen. Er-
lautern Sie, wie Sie diese Anforderung mit Hilfe des Factory Method Patterns und/oder mit Hilfe des Abstract
Factory Patterns umsetzten wirden. Diskutieren Sie in lhrer Erlauterung welche Klassen und Methoden Sie
einfuhren wurden und wo diese platziert sind. Welche Klasse hat welche Rolle des jeweiligen Patterns inne?
Welche Klasse hat in Ihrem Design die Verantwortlichkeit welche Objekte zu erstellen? Diskutieren Sie die
Erweiterbarkeit Ihres Designs im Hinblick auf neue GUI Elemente und im Hinblick auf neue WindowManager.
Erldutern Sie hierzu welche Klassen angepasst werden mussen, bzw. welche Verantwortlichkeiten von neu
hinzugefligten Klassen implementiert werden mussen.

WindowManager Window Scrollbar

i i 1

FVYWM SawFish FVWMWindow SawFishWindow FVWMScrollbar SawFishScrollbar

Abb. 1 Klassen eines WindowManager-Frameworks mit verschiedenen Implementierungen

Aufgabe 3 (4 Punkte)

Ziel: Ubung im Umgang mit Design Patterns

a)

b)

c)

In der letzten Ubung wurden verschiedene Lernstrategien implementiert.

Erlauterung des bestehenden Designs (0,5 Punkte)

Erklaren Sie kurz welche Methode (in welcher Klasse) in lhrem Design die Verantwortlichkeit hat eine Lern-
strategie auszuwahlen und daraufhin die entsprechende konkrete Lernstrategie zu instanziieren.

Anwendung des Factory Method Patterns (2,5 Punkte)

Eine Modglichkeit die Verantwortung zur Auswahl der Strategie zu platzieren ist die Methode
FlashcardsWindow.learn(). Dies hat zur Folge, dass immer wenn eine Lernstrategie erganzt wird auch
das FlashcardsWindow angepasst werden muss.

Nutzen Sie das Factory Method Pattern, um - im Falle von Anderungen - nur noch an einer Stelle innerhalb
des Domanenmodels Lernstrategien hinzuzufiigen. Innerhalb der GUI sollte danach nur noch ein Aufruf an
die Factory Methode stattfinden.

Hinweis: Um eine Liste aller vorhandenen Lernstrategien zu prasentieren, sollte die GUlI den gesamten
Umfang aller Strategien auch aus dem Domanenmodell erfragen.

Dokumentation des Factory Method Patterns (1 Punkt)

Erstellen Sie ein UML Klassendiagramm das lhre Implementierung des Factory Method Patterns dokumen-
tiert. Die Klassen sollten alle fur das Pattern relevanten Methoden zeigen. Weitere Methoden sind nicht auf-
zufUhren. Notieren Sie welche Klassen welche Rollen des Patterns inne haben (entweder im Diagramm, cf.
,Design Pattern - Introduction” Folie 27, oder extern in lhrem Lésungsdokument).

