Einfuhrung in Software Engineering WS 10/11
Fachbereich Informatik

Dr. Michael Eichberg

eichberg@informatik.tu-darmstadt.de

Assistent: Ralf Mitschke
mitschke@st.informatik.tu-darmstadt.de

TECHNISCHE
UNIVERSITAT
DARMSTADT

Ubungsblatt 11 (10 Punkte): Observer Pattern

Abgabeformat: Reichen Sie ihre Lésung per SVN ein. Jede Ubung muss in einem eigenen Ordner
ex<Number> (<Number> = 01, 02, ...) in lhrem Gruppenverzeichnis eingereicht werden. Wahrend der
Ubungsbearbeitung kénnen Sie lhre Lésungen beliebig oft in das SVN hochladen (per Commit). Wir prifen die
Zeit der Einreichung lhrer Lésungen unter der Benutzung des SVN Zeitstempels.

Erstellen Sie fur Losungen der Aufgaben, die keinen Quelltext erfordern, eine PDF-Datei mit dem Dateinamen
solution.pdf. Dies gilt auch fur alle UML-Diagramme, die Sie erstellen. Die Basisanwendung wird als Eclipse-
Projekt vorgegeben. lhr eigener Code muss entsprechend in den dafur vorgesehenen Verzeichnissen (/src oder
/test) erstellt werden.

Abgabetermin: 09.02.2011 - 24:00 Uhr

Aufgabe 1 (10 Punkte)

Ziel: Aenwendung des Observer Pattern

Derzeit besteht das primare Fenster (FlashcardsWindow) unserer Flashcards-Anwendung im Wesentlichen aus
einigen Steuerungselementen und einer Auflistung der Flashcards der aktuellen Serie. In dieser Aufgabe sollen
Sie das Fenster erweitern. Alle Anzeigen sollen sich automatisch wahrend des Lernens anpassen, sobald sich die
Daten der Flashcard andern.

Nutzen Sie im Folgenden das Observer Pattern, um die entsprechenden Klassen (iber Anderungen an den Daten
zu informieren.

a) Anzeige von Metadaten (2 Punkte)

Die Oberflache soll aufgeteilt werden, um Platz fur ein Infofenster zu schaffen (siehe Code Vorschlag
fir infoPanel). In diesem Infofenster sollen die Metadaten der ausgewahlten Flashcard angezeigt wer-
den. Abb. 1 zeigt einen Vorschlag, wie dies in der GUI umgesetzt werden kann.

Folgende Metadaten sollten mindestens angezeigt werden: Erstellungsdatum, wann die Karte das letz-
te Mal nicht erfolgreich und wann sie erfolgreich gelernt wurde und wie oft sie bereits angezeigt wurde.

BT L R

Creats| Delete | Edit
Erinnerung

Hund

Haus

Date Created:

Beispiel Last Time Mot Remembered:

Entwurfsmuster

Stellvertreter Last Time Remembered:
heher Zusammenhalt

lose Kopplung

Mumber of Times Shown:

Abb. 1 Beispiel Flashcards-Anwendung mit Anzeige von Metadaten



b)

c)

d)

e)

f)

Farbliche Markierung der Flashcards (2 Punkte)

In Abhangigkeit davon wie gut eine Flashcard gelernt wurde, soll diese in der Liste farblich hinterlegt
werden. Dabei bedeutet rot, dass man sich an die Antwort der Flashcard beim letzten Mal nicht erin-
nern konnte. Grun, dass sie die letzten beiden Male gewusst wurde. Gelb, dass man bereits einmal
richtig lag. Abb. 2 zeigt einen Vorschlag, wie dies in der GUl umgesetzt werden kann.

C:eatez Delete | Edit

Date Created:
Stellvertreter
Entwurfsmuster
Beispiel

Haus

Hund
Erinnerung

lose Kopplung

Last Time Not Remembered:
Last Time Remembered:

Number of Times Shown:

Abb. 2 Beispiel Flashcards-Anwendung mit Farblicher Markierung

Nutzerwarnung ungespeicherter Anderungen (1 Punkt)

Falls Anderungen an den Daten (Flashcard, FlashcardSeries oder Metadaten) stattfanden und diese
nicht gespeichert wurden, soll der Benutzer beim Beenden der Anwendung gewarnt werden. Bevor die
Anwendung beendet wird erhalt der Nutzer dann die Méglichkeit diese Anderungen abzuspeichern.
Dies kann z.B. Uber einen Dialog geschehen, der erscheint sobald die Anwendung geschlossen wird und
nicht gespeicherte Daten vorhanden sind.

':9] Thr Dokument enthilt ungespeicherte Anderungen, abbrechen?
4

%
Abbrechen

Abb. 3 Beispieldialog zur Warnung tber nicht gespeicherte Daten

Dokumentation des Designs (3 Punkte)

Erstellen Sie ein UML Klassendiagramm welches lhre Implementierung des Observer Patterns dokumen-
tiert. Die Klassen sollten alle fir das Pattern relevanten Methoden zeigen. Weitere Methoden sind nicht
aufzuflihren. Notieren Sie welche Klassen welche Rollen des Patterns inne haben (entweder im Dia-
gramm, siehe ,,Design Pattern - Introduction” Folie 27, oder extern in lhrem Losungsdokument).

Design des Auslosens von Benachrichtigungen (1 Punkt)

Im Observer Pattern verlassen sich die Observer darauf benachrichtigt zu werden, wenn sich ein Sub-
ject andert. Es gibt allerdings unterschiedliche Optionen wer die Verantwortlichkeit bekommt, das Schi-
cken einer Benachrichtigung auszuldésen. Welche Variante haben Sie in lhrer Implementierung gewahlt.
Erlautern Sie kurz den Vor- und den Nachteil dieser Variante.

Design des Informationsaustauschs bei Anderungen (1 Punkt)

Ein Observer bendtigt meist nicht nur die Information, dass eine Anderung stattfand, sondern erwartet
Daten Uber die Art und den Umfang der Anderung. Zur Ubertragung dieser Daten gibt es zwei Grund-
satzliche Modelle. Welches Modell haben Sie in Ihrer Implementierung gewahlt. Erlautern Sie kurz fur
Ilhre Implementierung welche Methoden von welcher Klasse aufgerufen werden, um Daten auszutau-
schen. Erlautern Sie kurz den Vor- und den Nachteil dieses Modells.



Code Beispiel flir die Konfiguration der GUI

Sie kdnnen Folgendenes Codebeispiel zur Implementierung des infoPanel verwenden:

public FlashcardsWindow(FlashcardSeries flashcards) {

[..]
JPanel infoPanel = new JPanel();
// configure the infoPanel
infoPanel.setOpaque(true);
infoPanel.setBorder(BorderFactory.createEmptyBorder(10, 10, 10, 10));
infoPanel.setBackground(new Color (220, 220, 250));
infoPanel.setlLayout(new BoxLayout(infoPanel, BoxLayout.PAGE AXIS));

// create labels for metadata
dateCreatedLabel = createInfoPanelLabel(infoPanel, "Date Created:");
lastTimeNotRememberedLabel =

createInfoPaneLabel(infoPanel, "Last Time Not Remembered:");

number0fTimesRememberedInARowLabel =
createInfoPaneLabel(infoPanel,Number of Times Remembered in a Row:");

[..]
// create the split pane with list on left and info on right

JSplitPane splitPane = new JSplitPane();

splitPane.setResizeWeight(1.0d);

splitPane.setContinuousLayout(true);

splitPane.setDividerSize(1);

splitPane.setLeftComponent(listScrollPane);

splitPane.setRightComponent(infoPanel);

// add the split pane to the window frame
frame.setJMenuBar(menuBar) ;
frame.getContentPane().add(splitPane);
frame.getContentPane().add(toolbar, BorderLayout.NORTH);
frame.setSize (640, 480);
frame.setLocationByPlatform(true);

private JLabel createInfoPaneLabel(JPanel panel, String title) {

JLabel titlelLabel = new JLabel(title);
titleLabel.setFont(UIManager.getFont("TableHeader.font"));
Box titleBox = Box.createHorizontalBox();
titleBox.add(titleLabel);
titleBox.add(Box.createHorizontalGlue());

JLabel contentLabel = new JLabel("...");
contentLabel.setHorizontalTextPosition(SwingConstants.RIGHT);
contentLabel.setHorizontalAlignment (SwingConstants.RIGHT);
contentLabel.setFont(UIManager.getFont("List.font"));

Box contentBox = Box.createHorizontalBox();
contentBox.add(Box.createHorizontalGlue());
contentBox.add(contentLabel);

panel.add(titleBox);
panel.add(contentBox);

panel.add(Box.createVerticalStrut(15));

return contentLabel;

lastTimeRememberedLabel = createInfoPanelLabel(infoPanel, "Last Time Remembered:");
number0fTimesShownLabel = createInfoPaneLabel(infoPanel, "Number of Times Shown:");




