Einfuhrung in Software Engineering WS 10/11
Fachbereich Informatik

Dr. Michael Eichberg

eichberg@informatik.tu-darmstadt.de

Assistent: Ralf Mitschke
mitschke@st.informatik.tu-darmstadt.de

TECHNISCHE
UNIVERSITAT
DARMSTADT

Ubungsblatt 12 (10 Punkte): Design Patterns

Abgabeformat: Reichen Sie ihre Lésung per SVN ein. Jede Ubung muss in einem eigenen Ordner
ex<Number> (<Number> = 01, 02, ...) in lhrem Gruppenverzeichnis eingereicht werden. Wahrend der
Ubungsbearbeitung kénnen Sie lhre Lésungen beliebig oft in das SVN hochladen (per Commit). Wir prifen die
Zeit der Einreichung lhrer Lésungen unter der Benutzung des SVN Zeitstempels.

Erstellen Sie fur Losungen der Aufgaben, die keinen Quelltext erfordern, eine PDF-Datei mit dem Dateinamen
solution.pdf. Dies gilt auch fur alle UML-Diagramme, die Sie erstellen. Die Basisanwendung wird als Eclipse-
Projekt vorgegeben. lhr eigener Code muss entsprechend in den dafir vorgesehenen Verzeichnissen (/src oder
/test) erstellt werden.

Abgabetermin: 16.02.2011 - 24:00 Uhr

Aufgabe 1 (4 Punkte)
Ziel: Beurteilung eines objekt-orientierten Entwurfs

Der folgende Text entstammt einem Artikel zum Thema Filtern einer Liste in Java Swing. Der Artikel stand von
2005 bis Anfang 2010 auf http://java.sun.com Online, ist aber heute nicht mehr verfugbar.

Studieren Sie den Artikel und beurteilen Sie den vorgeschlagenen Entwurf. Schauen Sie sich gegebenenfalls
auch den Code weiterer hier verwendeter Klassen an, um deren Kontrakte und Funktionsweise zu verstehen.
Machen Sie sich zuerst selber Gedanken Uber die Vorteile und Nachteile, die Sie an diesem Design erkennen.
Diskutieren Sie lhre Erkenntnisse und Schlussfolgerungen mit lhrem Team.

Notieren Sie alle Punkte die lhnen nachteilig erscheinen; geben Sie die entsprechenden Methoden und Code-
Abschnitte an. Begriinden Sie kurz warum/wann dies ein Nachteil ist. Achten Sie bei lhren Uberlegungen auch
auf die Erweiterbarkeit und Wiederverwendbarkeit dieses Designs. Uberlegen Sie sich hierzu weitere Belange,
die Sie fUr eine angezeigte Liste haben kdnnen und wie sich diese mit dem gegebenen Design kombinieren
lassen.

Providing a Filtering JList

[...] There is no feature in Java SE 6 for sorting and filtering a JList. However in this tip, you'll
learn how to do something similar in J2SE 5.0 with a JList.

A common technique for prompting users to filter elements in a long list is to show a JTextField
with the list. As the user types in the JTextField, the elements shown in the list are reduced to
the set of matching entries.

£ Filtering List M=)
Pl
Partridge in a pear tree

The implementation of this type of feature for a JList requires two supporting elements: a model
that filters its elements based on some text, and a text component that triggers the filtering ac-
tion when the user types in a field.

Implementing the input field is the easier of the two, so it will be shown first. With the Swing com-
ponent set, the model for a JTextField is a Document. To monitor input to the Document, you at-
tach a DocumentListener to the model. There are three methods for this listener, allowing you to
react differently for input, removal, and change events:

http://java.sun.com/

public void insertUpdate(DocumentEvent event)
public void removeUpdate(DocumentEvent event)
public void changedUpdate(DocumentEvent event)

The changeUpdate() method is related to attribute changes in the model. These can be ignored.
Because the same filtering action needs to happen for the two other methods, they just need to
call the same method to be created on the custom model. Here's the full definition of the JText-
Field to be associated with the filtering JList:

JTextField input = new JTextField();
String lastSearch = "";
DocumentListener listener = new DocumentListener() {
public void insertUpdate(DocumentEvent event) {
Document doc = event.getDocument();
lastSearch = doc.getText (0, doc.getlLength());
((FilteringModel) getModel()).filter(lastSearch);

public void removeUpdate(DocumentEvent event) {
Document doc = event.getDocument();
lastSearch = doc.getText (0, doc.getlLength());
((FilteringModel) getModel()).filter(lastSearch);

public void changedUpdate(DocumentEvent event) {
}
}s
input.getDocument () .addDocumentListener(listener);

Instead of limiting the usage to a JTextField created by the JList, an installJTextField()
method is provided that associates the listener to the given component, and an uninstall method
for removing the listener. This allows the user of the filtering list to offer its own JTextField, in-
stead of creating the default one.

public void installJTextField(JTextField input) {
input.getDocument().addDocumentListener(listener);

public void unnstallJTextField(JTextField input) {
input.getDocument().removeDocumentListener(listener);

}

The filtering model comes next, with its filter() method required by the DocumentListener. For
this, you simply need to maintain two lists of elements: the source list and the filtered list. With
the help of AbstractListModel, you need to implement a few methods, as follows:

= Constructor

= Adding method to add elements to the model
= getSize() to getits size

= getElementAt() to get an element back.

The constructor creates the two List objects. It doesn't matter what the elements in the List are,
so create them as a List of Object types:

List<Object> 1list;
List<Object> filteredlList;

public FilteringModel() {
list = new ArraylList<Object>();
filteredList = new ArrayList<Object>();
}

Adding elements to the model is done by adding them to the source model (list), and then tell-
ing the model to filter itself. This could be optimized to only filter the new element, however for
now, adding an element calls the same filter() method as is called to filter the entire list. (Note
that input into the Document through the DocumentListener calls filter() to filter the entire
list.) So even though you are adding one element, it still clears the entire list, and adds each ele-
ment that matches the last search term (which might be empty for a new list).

public void addElement(Object element) {
list.add(element);
filter();

}

The size of the list model is the filtered list size, not the source size:

public int getSize() {
return filteredList.size();

}

As is the case for getting the size, getting an element fetches it from the filtered list, not the orig-
inal source list. This works provided that you don't go past the end of the list:

public Object getElementAt(int index) {
Object returnValue;
if (index < filteredList.size()) {
returnValue = filteredList.get(index);
} else {
returnValue = null;
}

return returnValue;

}

The final filter() method provides the bulk of the work. Because you won't know if the search
string is expanding or contracting the result set, it is easiest to clear out the filtered list and add
items from the source list that match the input field. Matching could be done from the start of the
string or anywhere in the text. Here is an example of the latter search method. It allows "A" to
find both elements that start with "A" or have a capitalized "A" anywhere:

void filter(String search) {
filteredList.clear();
for (Object element : list) {
if (element.toString().index0f(search, 0) !'= -1) {
filteredList.add(element);
}

fireContentsChanged(this, 0, getSize());
}

The searching here is case-sensitive. In addition to changing the searching to the start of the
string, you can also modify it to be case insensitive.

You can also sort the results after adding the elements to the filtered list. This requires you to
know something about the contents of the model. At present, searching uses the toString() re-
sults -- it does not assume that the model contains elements of a Comparable type, like a String,
that can also be sorted.

The complete filtering JList is shown next with its ListModel as an inner class. The custom
ListModel is also the DocumentListener for the text component. This might seem odd at first be-
cause the filtering is localized to the model, but it appears to be the best place to define the be-
havior.

import javax.swing.*;
import javax.swing.text.*;
import javax.swing.event.*;
import java.util.*;

public class FilteringJList extends JList {
private JTextField input;

public FilteringJList() {
FilteringModel model = new FilteringModel();
setModel(new FilteringModel());

}

/**
* Associates filtering document listener to text component.
*/
public void installJTextField(JTextField input) {
if (input '= null) {
this.input = input;
FilteringModel model = (FilteringModel) getModel();
input.getDocument().addDocumentListener(model);

/**
* Disassociates filtering document listener from text component.
*/
public void uninstallJTextField(JTextField input) {
if (input != null) {
FilteringModel model = (FilteringModel) getModel();
input.getDocument().removeDocumentListener(model);
this.input = null;

}
}
/**
* Doesn't let model change to non-filtering variety
*/

public void setModel(ListModel model) {
if (!(model instanceof FilteringModel)) {
throw new IllegalArgumentException();

} else {
super.setModel (model);
}
}
/**
* Adds item to model of list
*/

public void addElement(Object element) {
((FilteringModel) getModel()).addElement(element);
}

/**
* Manages filtering of list model
*/
private class FilteringModel extends AbstractListModel implements
DocumentListener {
List<Object> list;
List<Object> filteredlList;
String lastFilter = "";

public FilteringModel() {
list = new ArraylList<Object>();
filteredList = new ArrayList<Object>();
}

public void addElement(Object element) {
list.add(element);
filter(lastFilter);

}

public int getSize() {
return filteredList.size();
}

public Object getElementAt(int index) {
Object returnValue;
if (index < filteredList.size()) {
returnValue = filteredList.get(index);
} else {
returnValue = null;
}

return returnValue;

}

void filter(String search) {
filteredList.clear();
for (Object element : list) {
if (element.toString().index0f(search, 0) !'= -1) {
filteredList.add(element);
}

fireContentsChanged(this, 0, getSize());

// DocumentListener Methods

public void insertUpdate(DocumentEvent event) {
Document doc = event.getDocument();

try {
lastFilter = doc.getText(0, doc.getlLength());
filter(lastFilter);

} catch (BadLocationException ble) {
System.err.println("Bad location: " + ble);

}

}

public void removeUpdate(DocumentEvent event) {
Document doc = event.getDocument();

try {
lastFilter = doc.getText(0, doc.getLength());
filter(lastFilter);
} catch (BadLocationException ble) {
System.err.println("Bad location: " + ble);
}
}
public void changedUpdate(DocumentEvent event) {
}
}
}

At this point you need a test program. The key part of the program is the following six lines. The
lines create the JList, add it to a JScrollPane, and then add that and the associated input field
to the screen. The bulk of the test program adds elements to the model. [...]

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class Filters {
public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {
JFrame frame = new JFrame("Filtering List");
frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);

FilteringJList list = new FilteringJList();
JScrollPane pane = new JScrollPane(list);
frame.add(pane, BorderLayout.CENTER);
JTextField text = new JTextField();
list.installJTextField(text);
frame.add(text, BorderLayout.NORTH);

String elements[] = { "Partridge in a pear tree",
"Turtle Doves", "French Hens", "Chi", "Psi", "Omega" };

for (String element : elements) {
list.addElement (element);
}

frame.setSize (250, 150);
frame.setVisible(true);
}
Y

EventQueue.invokelLater(runner);

Compile the FilteringJList and Filters classes. Then run Filters. You should get a filtering

JList.

£ Filtering List

i

EBX

Circle

Hammersmith and City
Waterloo and City

Provided that your list elements have "good" toString() representations, this approach for a fil-
tering JList, with its associated JTextField, works well. For more complex list elements, consid-
er defining a Filter interface that could be passed into the model for the filtering operation.

One thing not covered in this example is management of selection. By default, the JList doesn't
alter the selection when the list model content changes. Depending on the desired behavior, filter-
ing might try to preserve the selected element or always reset it to the first item in the list.

Although the underlying JList component doesn't support filtering directly, it does provide a
smart type-ahead option. If you don't like the default behavior, you can override the getNext-

Match() method (that method was added in J2SE 1.4).

Aufgabe 2 (6 Punkte)

Ziel: Anwendung des Decorator Patterns

Die Flashcards-Anwendung soll erweitert werden, so dass die Liste der Flashcards gefiltert und sortiert werden
kann. Die Filterung soll uber ein Suchfeld erfolgen. In der Liste sollen dann nur noch Karten angezeigt werden,
deren Frageseite den im Suchfeld eingegeben Text enthalt. Die Sortierfunktion soll verschiedene Kriterien Un-
terstutzen, wie z.B. Sortieren Anhand des Erstellungsdatums oder Anhand des Datums an dem man eine Karte
das letzte Mal erfolgreich gelernt hat. Abb. 1 zeigt einen Vorschlag, wie dies in der GUl umgesetzt werden kann.

Nutzen Sie im Folgenden das Decorator Pattern, um die Liste der Flashcards zu Filtern und zu Sortieren.

File

+ - |

_—

Create Delete | Edit

L Last Time Remembered

'
>

lose Kopplung
hoher Zusammenhalt
Stellvertreter

Date Created:

Last Time Not Remembered:

Last Time Remembered:

Number of Times Shown:

Number of Times Remembered in a Row:

Abb. 1 Beispiel Flashcards-Anwendung mit Suchfeld zum Filtern und Sortierfunktion

a)

b)

Filtern der Liste (2 Punkte)

In dieser Aufgabe soll das Suchfeld in die Flashcards-Anwendung integriert werden. Sobald etwas in das
Suchfeld eingegeben wird, soll sich sofort die Anzeige der Liste der Flashcards andern. Es sollen nur noch
Flashcards anzeigt werden, deren Vorderseite den im Suchfeld eingegebene Text enthalt.

Erweitern Sie die Anwendung um ein Suchfeld. Sie konnen dazu Sie den unten stehenden Code verwenden.
Dekorieren Sie anschlieBend die FlashcardSeries so, dass diese anhand der Sucheingabe gefiltert wird.

Code Beispiel fur die Konfiguration der GUI (zu Teilaufgabe a)

Sie kdnnen das folgende Codebeispiel zur Erstellung eines Suchfelds verwenden:

public FlashcardsWindow(DefaultFlashcardSeries flashcards) {

[..]
searchTextField = new JTextField(8);
searchTextField.putClientProperty("JTextField.variant", "search");
searchTextField.setMaximumSize(searchTextField.getPreferredSize());
searchTextField.getDocument().addDocumentListener(new DocumentListener() {

public void removeUpdate(DocumentEvent e) {
String searchText = searchTextField.getText();
// filter the list of flashcards

}

public void insertUpdate(DocumentEvent e) {
String searchText = searchTextField.getText();
// filter the list of flashcards

}

public void changedUpdate(DocumentEvent e) {
String searchText = searchTextField.getText();
// filter the list of flashcards

1)
[..]

toolbar.add(searchTextField);
[..]
}

Sortieren Anhand verschiedener Kriterien (2 Punkte)

In dieser Aufgabe soll die Flashcards-Anwendung um eine Sortierfunktion erweitert werden. Erweitern Sie
die graphische Oberflache der Anwendung um die entsprechende Funktionalitat. Sobald eine Sortieroption
gewahlt wird, soll sich sofort die Anzeige der Liste der Flashcards andern. Die Flashcards sollen in der Rei-
henfolge angezeigt werden, die der gewahlten Sortierung entspricht.

Dekorieren Sie die FlashcardSeries anhand der ausgewahlten Sortieroption. Die Anwendung soll die fol-
genden drei Kriterien als Sortieroption anbieten:

1) Erstellungsdatum, wobei die neueste Karte oben angezeigt wird
2) Datum des letzten erfolgreichen Lernens, wobei das alteste Datum oben steht
3) Wie haufig eine Karte erfolgreich gelernt wurde, wobei weniger oft gelernte Karten oben stehen

c)

d)

Code Beispiel fiir die Konfiguration der GUI (zu Teilaufgabe b)

Sie kénnen das folgende Codebeispiel fur eine Auswahlleiste der méglichen Sortieroptionen verwenden:

public FlashcardsWindow(FlashcardSeries flashcards) {
[..]
// create menu item for one sorting category
final JMenultem dateCreatedMenuItem = new JMenulItem("Date Created");
dateCreatedMenuItem.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
// sort the flashcard series
}
1)
[..]
// create a popup menu for choosing different sorting categories
sortOrderPopupMenu = new JPopupMenu("Sort Order");
sortOrderPopupMenu.add(dateCreatedMenultenm);
sortOrderPopupMenu.add(lastTimeRemeberedMenultem) ;
sortOrderPopupMenu.add(rememberedInARowCountMenultem);
sortOrderPopupMenuDimension = sortOrderPopupMenu.getPreferredSize();
// create a button for sorting categories
sortOrderButton = new JButton("Date Created);
sortOrderButton.setVerticalTextPosition(SwingConstants.CENTER);
sortOrderButton.setHorizontalTextPosition(SwingConstants.LEFT);
sortOrderButton.putClientProperty("JButton.buttonType", "roundRect");
sortOrderButton.putClientProperty("JComponent.sizeVariant", "small");
sortOrderButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
sortOrderPopupMenu.show(sortOrderButton,
sortOrderButton.getWidth()/2 - (sortOrderPopupMenuDimension.width/2),
sortOrderButton.getHeight()/2 - (sortOrderPopupMenuDimension.height/2)
);

1}

// create the left side panel with sort button and list
JPanel listPanel = new JPanel(new BorderLayout());
listPanel.setOpaque(true);
listPanel.setBackground (UIManager.getColor("Spinner.background"));
listPanel.add(sortOrderButton, BorderLayout.NORTH);
listPanel.add(listScrollPane);

[..]
splitPane.setlLeftComponent(listPanel);

b

Simultanes Filtern und Sortieren (0,5 Punkte)

Das Filtern und das Sortieren der Flashcards sollen natirlich auch gleichzeitig durchgefihrt werden kénnen.
Verbinden Sie hierzu die beiden Decorator aus Aufgabe a) und b).

Dokumentation des Decorator Patterns (1,5 Punkt)

Erstellen Sie ein UML Klassendiagramm welches Ihre Implementierung des Decorator Patterns dokumen-
tiert. Die Klassen sollten alle flr das Pattern relevanten Methoden zeigen. Weitere Methoden sind nicht auf-
zufhren. Notieren Sie welche Klassen welche Rollen des Patterns inne haben (entweder im Diagramm, sie-
he ,Design Pattern - Introduction” Folie 27, oder extern in lhrem Lésungsdokument).

