Einfuhrung in Software Engineering WS 10/11
Fachbereich Informatik

Dr. Michael Eichberg

eichberg@informatik.tu-darmstadt.de

Assistent: Ralf Mitschke
mitschke@st.informatik.tu-darmstadt.de

TECHNISCHE
UNIVERSITAT
DARMSTADT

Ubungsblatt 5 (10 Punkte): Automatisiertes Testen

Abgabeformat: Reichen Sie ihre Lésung per SVN ein. Jede Ubung muss in einen eigenen Ordner ex<Number>
(<Number> = 01, 02, ...) in lhrem Gruppenverzeichnis gespeichert werden. Wiahrend der Ubungsbearbeitung
kénnen Sie lhre Lésungen beliebig oft in das SVN hochladen (per Commit). Wir prifen die Zeit der Einreichung
lhrer Lésungen unter der Benutzung des SVN Zeitstempels.

Erstellen Sie fur Losungen der Aufgaben, die keinen Quelltext erfordern, eine PDF-Datei mit dem Dateinamen
solution.pdf. Dies gilt auch fur UML-Diagramme die Sie erstellen. Die Basisanwendung wird als Eclipse-Projekt
vorgegeben. lhr eigener Code muss entsprechend in den daflr vorgesehenen Verzeichnissen (/src oder /test)
erstellt werden.

Abgabetermin: 01.12.2010 - 24:00 Uhr

Aufgabe 1 (4 Punkte)

Ziel: Systematisches Testen erlernen

In dieser Aufgabe soll die Flashcards-Anwendung mit Hilfe von JUnit getestet werden. Ein Eclipse-Projekt mit den
Rumpfklassen, in denen Sie die Tests schreiben sollen finden Sie im EiSE SVN Repository unter pub-
lic/exercise/ex05. Der zu testende Code ist Ihre eigene Code-Basis der Flashcards-Anwendung, die Sie in der
vierten Ubung erhalten und weiterentwickelt haben. Nutzen Sie das Eclipse-Plugin EclEmma
(http://www.eclemma.org) zur Unterstitzung beim automatisierten Testen. EClIEmma errechnet die aktuell
erreichte Testabdeckung und zeigt diese an.

a) Basic Block Coverage (3 Punkte)

Schreiben Sie JUnit 4 Tests fur die Klassen Flashcard und FlashcardSeries. In der Vorgabe aus dem Re-
pository finden Sie im Verzeichnis test zwei Test-Klassen (FlashcardTest, FlashcardSeriesTest). Im-
plementieren Sie lhre Tests innerhalb dieser vorgegebenen Klassen. Sie kénnen die vorgegebene JUnit 4 -
TestSuite (Al1lTests) nutzen, um alle Tests flr diese Aufgabe in einem Durchlauf zu starten. Stellen Sie mit
Hilfe von EclEmma sicher, dass Ihre Tests fur die genannten Klassen 100% Basic Block Coverage erreichen.

b) Condition Coverage (1 Punkte)

Erstellen Sie in der Testklasse ConditionCoverageTest JUnit Tests, die 100% Simple Condition Coverage
fur die Methode public synchronized void removeListDataListener(ListDataListener 1) der Klasse
FlashcardSeries erreichen.

Hinweis: Simple Condition Coverage wird von EclEmma nicht errechnet. Uberpriifen Sie deshalb mit Hilfe
des Vorlesungsmaterials selbst, ob ihre Tests 100% Simple Condition Coverage erreichen.

http://www.eclemma.org/

& Java - Flashcards 0.1.1/src/de/tud/cs/se/flashcards/model/Flashcard.java - Eclipse SDK . 5 |El|5]

File Edit Source Refactor Navigate Search Project Run Modeling Window Help

| il = New " EHEG | @S| ¥ [(7 Modeling 2
| % % Open F3 (1) Profiing and L...
L S] + OpenWith > = 7 2 . = 7)o ? S =5
12 Packag 3 Tg Hierarc | g Open Type Hierarchy Fa BshcardSeriesTest.] [J] AliTests.java ‘ o= Outline &3 o
ShowIn Altsshiftsw » | Al BRY o Y
) R 2 R
B-l=y ;Iashcards 0.1.1418[s = Copy Ccri+C HT t‘ij de.tud.cs.se.flashcarc
316 = +] E
B-E§ >src316 = Copy Qualified Name @ import dedAar._aDons
-8 > de.tud.cs.se.flast Pata sy final Dimension FLASHCARD DIMENSIC £l Flashcard 316
I E} MacOSXAdapter ;D P S & F serialversionUID
i Dj Main.java 102 g question; o S WIDTH : int
- > de.tud.cs.se.flast Build Path > © 8 HEIGHT : int
[7} Flashcard.java | Source Alt+5hift+5 » bg answer:; &F FLASHCARD_DIV
H [+ m FlashcardSerit Refactor Alt+Shift+T » o question :]
E-H de.tud.cs.se.flashce — ard (String question, String answer i answer! g
[} store.java 102 “‘f port @ ~ Flashcard(String,
- de.tud.cs.se. flashc: EIEXPOrt... = question; @ ° FlashcardQ
i 10 References » | answer; 4 @ getAnswer() : Str
Dedlarations @ getQuestion() : 5
© setAnswer(String
[+ Bj > Flashcarderifl <" Refresh F5 e co @ setQuestion(Strir:
(- [J) FlashcardTest,j§ Assign Working Sets... ard() {
e T Recreate Test Suite...
&4_ jRE System Library [iret Run As » -
+]-E) JUnit 4
Debug As »
| E-Gylb102 - _'jJ < | i
| N =
54 Architecture-build. xml -
i o pate 7 < hvd
-j Ard’tftecture.pdf 387 Compare With Coverage Configurations...
o] Architecture.sad 315 | ppjace With » |~ Coverage | Covered Instructions | MissedInstru... ~ | |
| gt Architecture.sad.pl 415 pegtore from Local History... hcards.ui - 0,0% 9 1785
i LTJ[Flashcards 0.2 Tnshimentation Sorce » thcards - 0,0 % 0 287
-1z Flashcards 0.2.5 424 [svn+ Soot » o 0 94
| E-E§sresn Fractal » Jrcards.model = 100,0% 299 0
2] EP, de.tud.cs.se.flashce B 100,0 % 39 0
El-H} de.tud.cs.se.flashc; Properties Alt+Enter I 5 Lva B 100,0% 260 0
H LJj Flashcard.java o SDEEC r m, o 382 94
| & [7} Flashcardseries = -
4| Update UML Model | v

s iSelect In Maode|
J 2 de.tud.cs.se.flashcarc ~ * J

£ I Diagrani..

1: Start der Analyse

2: hier liegen die Testfalle im Projekt

3: Start der Analyse

4: Markierung des durch Testfalle abgedeckten Source-Code (Basic Block Coverage)

5: Prozentuale Source-Code Abdeckung

Aufgabe 2 (6 Punkte)

Ziel: Systematisches Testen von komplexen Methoden

Die unten gelistete Methode intervalRemoved(int u_startIndex, int u_endIndex) ist Bestandteil Klasse,
die das Filtern von Listenelementen unterstitzt. Die Methode ist dafur verantwortlich, dass Elemente, die aus
einer zugrundeliegenden Liste von Daten geléscht werden, auch im zugehdrigen Filterergebnis entfernt werden.
Die Daten und die gefilterte Liste basieren hier auf Arrays. Die Argumente u_startIndex und u_endIndex ge-
ben den ersten und den letzten Index der Elemente an, die aus der zugrundeliegenden Liste geldscht wurden.
Die Klasse zum das Filtern von Listenelementen enthalt ein Array indices, das die Indizes der Elemente bein-
haltet, die aus der zugrundeliegenden Gesamtliste ausgewahlt wurden. Die nachfolgende Abbildung verdeut-
licht die Daten der gefilterten Liste. Die Methode intervalRemoved wird aufgerufen, wenn auf der unterliegen-
den Liste eine Loschoperationen durchgefiihrt wurde. Die Liste der indices des Filters wird innerhalb dieser
Methode aktualisiert. Die Indizes in der zugrundeliegenden Liste kdnnen sich beim Entfernen von Elementen
auch verschieben. So ist z.B. nach der im Bild dargestellten Léschung, das Element das vorher Index 11 hatte
auf Index 8 aufgerlickt. Die Methode intervalRemoved beinhaltet daher auch ein update der betroffenen Indi-
zes. Nachdem die gefilterte Liste aktualisiert wurde, wird zusatzlich die Methode
fireIntervalRemoved (ElementFilter filter, int startIndex, int endIndex) aufgerufen. Diese Metho-
de erzeugt ein Ereignis, das andere Komponenten tber die Anderung informiert. Dies wird z.B. vom User-
Interface genutzt, um anschlieBend das GUI-Framework anzuweisen, die Ausgabe neu zu zeichnen.

ursprungliche Liste

0 some reference

1 some reference

gefilterte Liste
indices

2 some re

u_startIndex

entfemte Elemente

10 some reference u_endIndex

a) Testplanerstellung (3 Punkte)

Erstellen Sie analog zum Beispiel aus der Vorlesung einen Testplan flr die Methode intervalRemoved(int
u_startIndex, u_endIndex) und stellen Sie sicher, dass Sie mit diesem 100% Simple Condition Coverage
erreichen. Geben Sie fur jeden Testfall die Eingabedaten und das erwartete Ergebnis an. Markieren Sie zu-
satzlich, wie die einzelnen Bedingungen in den Testfallen abgedeckt werden und wie sie dabei auswerten.
Sie kdénnen die Zeilennummern verwenden, um die entsprechenden Conditions zu benennen. Eine Angabe
der genutzten Methode ArrayUtils. remove finden Sie auf der nachsten Seite.

public class FilteredList {
private int[] indices;
01 public void intervalRemoved(int u_startIndex, int u_endIndex) {
02 if (u_startIndex > u endIndex) throw new IllegalArgumentException();
03
04 int endIndex = -1;
05 int startIndex = indices.length;
06
07 // the list of indices is traversed in reverse order
08 for (int index = indices.length - 1; index >= 0; index--) {
09
10 if (indices[index]>=u_startIndex && indices[index]<=u_endIndex) {
11
12 // update startIndex since we moved a new (lower) element
13 startIndex = index;
14
15 // update the endIndex only if we did not do so before
16 if (index > endIndex)
17 endIndex = index;
18
19 // removes the element at index by creating a new array
20 indices = ArrayUtils.remove (indices, index);
21
22 // update indices to reflect removal in underlying array
23 for (int j = index; j < indices.length; J++) {
24 indices[j] = indices[]j] - 1;
25 }
26 }
27 }
28 if (startIndex < endIndex) {
29 // we did remove some elements
30 fireIntervalRemoved (this, startIndex, endIndex);
31 }
32 }
private void fireIntervalRemoved (ElementFilter f, int s, int e) { ... }
}

b)

c)

01

28
29
30
31
32

01

28
29
30
31
32

public class ArrayUtils {

/**

* Returns a new array where the item with the specified index is removed from

* the array <tt>ts</tt>.

* ts the base array for the creation of a new array; this is not changed.
* index the index; must be valid.

* the newly created array which contains all elements of <tt>ts</tt>

* without the element at the given index.

*/

public static int[] remove(int[] ts, int index)
throws ArrayIndexOutOfBoundsException {

if (ts.length == 1) {
if (index != 0) {
throw new ArrayIndexOutOfBoundsException (index);
}
return new int([0];
}

int[] newts = new int[ts.length - 1];
System.arraycopy (ts, 0, newts, 0, index);

if (index < newts.length) {
System.arraycopy (ts, index +1, newts, index, newts.length -index);

}

return newts;

Fehlerbestimmung (2 Punkte)

Die in a) gelistete Methode intervalRemoved(int u_startIndex, u_endIndex) enthalt einen Fehler. Er-
lautern Sie unter welchen Umstanden der Fehler im Programm auftreten wird. Diskutieren Sie, wie sich der
Fehler in einer laufenden Applikation auswirken wird. Diskutieren Sie auBerdem, ob sie diesen Fehler zwin-
gend mit lhrem Testplan flr Simple Condition Coverage aus Teilaufgabe a) gefunden hatten.

Fehlerbehebung (1 Punkt)

Zwei Entwickler haben unabhangig voneinander eine neue Implementierung geliefert, die den Fehler aus
Teilaufgabe a) behebt. Eine der beiden unten angegebenen Varianten der Methode intervalRemoved(int
u_startIndex, u_endIndex) ist korrekt, die andere beinhaltet einen neuen Fehler. Identifizieren Sie die
fehlerhafte Variante und diskutieren Sie, wie sich der Fehler in der laufenden Applikation auswirken wird,
und, ob sie diesen Fehler zwingend mit Ilhrem Testplan fur Simple Condition Coverage aus Teilaufgabe a)
gefunden hatten.

Variante I

public void intervalRemoved(int u_startIndex, int u_endIndex) {

if (endIndex > -1) {
// we did remove some elements
fireIntervalRemoved (this, startIndex, endIndex);

Variante II

public void intervalRemoved (int u startIndex, int u endIndex) {

if (startIndex < -1) {
// we did remove some elements
fireIntervalRemoved (this, startIndex, endIndex);

