
1

Aufgabe Nr. (Punktzahl Punkte)

Ziel: Kurze Zusammenfassung des Übungsziels

Hier kommt der einleitende Text zur Aufgabenstellung hin. Eventuell
erforderliche Tabellen, Diagramme oder Grafiken können unterhalb
dieses Textes eingefügt werden. Falls keine weiteren Informationen
verwendet werden sollen, können entsprechende Bereiche einfach aus
der Vorlage gelöscht werden.

a) Titel der Teilaufgabe (Punktzahl Punkte)

Fragestellung der Teilaufgabe. Um weitere Teilaufgaben hinzuzu-
fügen einfach den kompletten Block kopieren.

Hinweis: Hinweis zur Lösung der Teilaufgabe

Einführung in Software Engineering WS 10/11
Fachbereich Informatik

 Dr. Michael Eichberg
eichberg@informatik.tu-darmstadt.de

Assistent: Ralf Mitschke
mitschke@st.informatik.tu-darmstadt.de

Übungsblatt 5 (10 Punkte): Automatisiertes Testen

Abgabeformat: Reichen Sie ihre Lösung per SVN ein. Jede Übung muss in einen eigenen Ordner ex<Number>

(<Number> = 01, 02, …) in Ihrem Gruppenverzeichnis gespeichert werden. Während der Übungsbearbeitung

können Sie Ihre Lösungen beliebig oft in das SVN hochladen (per Commit). Wir prüfen die Zeit der Einreichung

Ihrer Lösungen unter der Benutzung des SVN Zeitstempels.

Erstellen Sie für Lösungen der Aufgaben, die keinen Quelltext erfordern, eine PDF-Datei mit dem Dateinamen

solution.pdf. Dies gilt auch für UML-Diagramme die Sie erstellen. Die Basisanwendung wird als Eclipse-Projekt

vorgegeben. Ihr eigener Code muss entsprechend in den dafür vorgesehenen Verzeichnissen (/src oder /test)

erstellt werden.

Abgabetermin: 01.12.2010 - 24:00 Uhr

Aufgabe 1 (4 Punkte)

Ziel: Systematisches Testen erlernen

In dieser Aufgabe soll die Flashcards-Anwendung mit Hilfe von JUnit getestet werden. Ein Eclipse-Projekt mit den

Rumpfklassen, in denen Sie die Tests schreiben sollen finden Sie im EiSE SVN Repository unter pub-

lic/exercise/ex05. Der zu testende Code ist Ihre eigene Code-Basis der Flashcards-Anwendung, die Sie in der

vierten Übung erhalten und weiterentwickelt haben. Nutzen Sie das Eclipse-Plugin EclEmma

(http://www.eclemma.org) zur Unterstützung beim automatisierten Testen. EclEmma errechnet die aktuell

erreichte Testabdeckung und zeigt diese an.

a) Basic Block Coverage (3 Punkte)

Schreiben Sie JUnit 4 Tests für die Klassen Flashcard und FlashcardSeries. In der Vorgabe aus dem Re-

pository finden Sie im Verzeichnis test zwei Test-Klassen (FlashcardTest, FlashcardSeriesTest). Im-

plementieren Sie Ihre Tests innerhalb dieser vorgegebenen Klassen. Sie können die vorgegebene JUnit 4 –

TestSuite (AllTests) nutzen, um alle Tests für diese Aufgabe in einem Durchlauf zu starten. Stellen Sie mit

Hilfe von EclEmma sicher, dass Ihre Tests für die genannten Klassen 100% Basic Block Coverage erreichen.

b) Condition Coverage (1 Punkte)

Erstellen Sie in der Testklasse ConditionCoverageTest JUnit Tests, die 100% Simple Condition Coverage

für die Methode public synchronized void removeListDataListener(ListDataListener l) der Klasse

FlashcardSeries erreichen.

Hinweis: Simple Condition Coverage wird von EclEmma nicht errechnet. Überprüfen Sie deshalb mit Hilfe

des Vorlesungsmaterials selbst, ob ihre Tests 100% Simple Condition Coverage erreichen.

http://www.eclemma.org/

2

1: Start der Analyse

2: hier liegen die Testfälle im Projekt

3: Start der Analyse

4: Markierung des durch Testfälle abgedeckten Source-Code (Basic Block Coverage)

5: Prozentuale Source-Code Abdeckung

Aufgabe 2 (6 Punkte)

Ziel: Systematisches Testen von komplexen Methoden

Die unten gelistete Methode intervalRemoved(int u_startIndex, int u_endIndex) ist Bestandteil Klasse,

die das Filtern von Listenelementen unterstützt. Die Methode ist dafür verantwortlich, dass Elemente, die aus

einer zugrundeliegenden Liste von Daten gelöscht werden, auch im zugehörigen Filterergebnis entfernt werden.

Die Daten und die gefilterte Liste basieren hier auf Arrays. Die Argumente u_startIndex und u_endIndex ge-

ben den ersten und den letzten Index der Elemente an, die aus der zugrundeliegenden Liste gelöscht wurden.

Die Klasse zum das Filtern von Listenelementen enthält ein Array indices, das die Indizes der Elemente bein-

haltet, die aus der zugrundeliegenden Gesamtliste ausgewählt wurden. Die nachfolgende Abbildung verdeut-

licht die Daten der gefilterten Liste. Die Methode intervalRemoved wird aufgerufen, wenn auf der unterliegen-

den Liste eine Löschoperationen durchgeführt wurde. Die Liste der indices des Filters wird innerhalb dieser

Methode aktualisiert. Die Indizes in der zugrundeliegenden Liste können sich beim Entfernen von Elementen

auch verschieben. So ist z.B. nach der im Bild dargestellten Löschung, das Element das vorher Index 11 hatte

auf Index 8 aufgerückt. Die Methode intervalRemoved beinhaltet daher auch ein update der betroffenen Indi-

zes. Nachdem die gefilterte Liste aktualisiert wurde, wird zusätzlich die Methode

fireIntervalRemoved(ElementFilter filter, int startIndex, int endIndex) aufgerufen. Diese Metho-

de erzeugt ein Ereignis, das andere Komponenten über die Änderung informiert. Dies wird z.B. vom User-

Interface genutzt, um anschließend das GUI-Framework anzuweisen, die Ausgabe neu zu zeichnen.

1

2

3

4

5

3

a) Testplanerstellung (3 Punkte)

Erstellen Sie analog zum Beispiel aus der Vorlesung einen Testplan für die Methode intervalRemoved(int

u_startIndex, u_endIndex) und stellen Sie sicher, dass Sie mit diesem 100% Simple Condition Coverage

erreichen. Geben Sie für jeden Testfall die Eingabedaten und das erwartete Ergebnis an. Markieren Sie zu-

sätzlich, wie die einzelnen Bedingungen in den Testfällen abgedeckt werden und wie sie dabei auswerten.

Sie können die Zeilennummern verwenden, um die entsprechenden Conditions zu benennen. Eine Angabe

der genutzten Methode ArrayUtils.remove finden Sie auf der nächsten Seite.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

public class FilteredList {

 …

 private int[] indices;

 public void intervalRemoved(int u_startIndex, int u_endIndex) {

 if(u_startIndex > u_endIndex) throw new IllegalArgumentException();

 int endIndex = -1;

 int startIndex = indices.length;

 // the list of indices is traversed in reverse order

 for (int index = indices.length - 1; index >= 0; index--) {

 if (indices[index]>=u_startIndex && indices[index]<=u_endIndex) {

 // update startIndex since we moved a new (lower) element

 startIndex = index;

 // update the endIndex only if we did not do so before

 if (index > endIndex)

 endIndex = index;

// removes the element at index by creating a new array

 indices = ArrayUtils.remove(indices, index);

 // update indices to reflect removal in underlying array

 for (int j = index; j < indices.length; j++) {

 indices[j] = indices[j] - 1;

 }

 }

 }

 if (startIndex < endIndex) {

 // we did remove some elements ...

 fireIntervalRemoved(this, startIndex, endIndex);

 }

 }

 …

 private void fireIntervalRemoved(ElementFilter f, int s, int e) { ... }

}

4

 public class ArrayUtils {

 …

 /**

 * Returns a new array where the item with the specified index is removed from

 * the array <tt>ts</tt>.

 * @param ts the base array for the creation of a new array; this is not changed.

 * @param index the index; must be valid.

 * @return the newly created array which contains all elements of <tt>ts</tt>

 * without the element at the given index.

 */

 public static int[] remove(int[] ts, int index)

throws ArrayIndexOutOfBoundsException {

 if (ts.length == 1) {

 if (index != 0) {

 throw new ArrayIndexOutOfBoundsException(index);

 }

 return new int[0];

 }

 int[] newts = new int[ts.length - 1];

 System.arraycopy(ts, 0, newts, 0, index);

 if (index < newts.length) {

 System.arraycopy(ts, index +1, newts, index, newts.length -index);

 }

 return newts;

 }

}

b) Fehlerbestimmung (2 Punkte)

Die in a) gelistete Methode intervalRemoved(int u_startIndex, u_endIndex) enthält einen Fehler. Er-

läutern Sie unter welchen Umständen der Fehler im Programm auftreten wird. Diskutieren Sie, wie sich der

Fehler in einer laufenden Applikation auswirken wird. Diskutieren Sie außerdem, ob sie diesen Fehler zwin-

gend mit Ihrem Testplan für Simple Condition Coverage aus Teilaufgabe a) gefunden hätten.

c) Fehlerbehebung (1 Punkt)

Zwei Entwickler haben unabhängig voneinander eine neue Implementierung geliefert, die den Fehler aus

Teilaufgabe a) behebt. Eine der beiden unten angegebenen Varianten der Methode intervalRemoved(int

u_startIndex, u_endIndex) ist korrekt, die andere beinhaltet einen neuen Fehler. Identifizieren Sie die

fehlerhafte Variante und diskutieren Sie, wie sich der Fehler in der laufenden Applikation auswirken wird,

und, ob sie diesen Fehler zwingend mit Ihrem Testplan für Simple Condition Coverage aus Teilaufgabe a)

gefunden hätten.

Variante I

01

28

29

30

31

32

public void intervalRemoved(int u_startIndex, int u_endIndex) {

 …

 if (endIndex > -1) {

 // we did remove some elements ...

 fireIntervalRemoved(this, startIndex, endIndex);

 }

}

Variante II

01

28

29

30

31

32

public void intervalRemoved(int u_startIndex, int u_endIndex) {

 …

 if (startIndex < -1) {

 // we did remove some elements ...

 fireIntervalRemoved(this, startIndex, endIndex);

 }

}

