
1

Aufgabe Nr. (Punktzahl Punkte)

Ziel: Kurze Zusammenfassung des Übungsziels

Hier kommt der einleitende Text zur Aufgabenstellung hin. Eventuell
erforderliche Tabellen, Diagramme oder Grafiken können unterhalb
dieses Textes eingefügt werden. Falls keine weiteren Informationen
verwendet werden sollen, können entsprechende Bereiche einfach aus
der Vorlage gelöscht werden.

a) Titel der Teilaufgabe (Punktzahl Punkte)

Fragestellung der Teilaufgabe. Um weitere Teilaufgaben hinzuzu-
fügen einfach den kompletten Block kopieren.

Hinweis: Hinweis zur Lösung der Teilaufgabe

Einführung in Software Engineering WS 10/11
Fachbereich Informatik

 Dr. Michael Eichberg
eichberg@informatik.tu-darmstadt.de

Assistent: Ralf Mitschke
mitschke@st.informatik.tu-darmstadt.de

Übungsblatt 6 (10 Punkte): Interaktionsdiagramme

Abgabeformat: Reichen Sie ihre Lösung per SVN ein. Jede Übung muss in einem eigenen Ordner

ex<Number> (<Number> = 01, 02, …) in Ihrem Gruppenverzeichnis eingereicht werden. Während der

Übungsbearbeitung können Sie Ihre Lösungen beliebig oft in das SVN hochladen (per Commit). Wir prüfen die

Zeit der Einreichung Ihrer Lösungen unter der Benutzung des SVN Zeitstempels.

Erstellen Sie für Lösungen der Aufgaben, die keinen Quelltext erfordern, eine PDF-Datei mit dem Dateinamen

solution.pdf. Dies gilt auch für alle UML-Diagramme, die Sie erstellen. Die Basisanwendung wird als Eclipse-

Projekt vorgegeben. Ihr eigener Code muss entsprechend in den dafür vorgesehenen Verzeichnissen (/src oder

/test) erstellt werden.

Abgabetermin: 09.12.2010 - 24:00 Uhr

Aufgabe 1 (3 Punkte)

Ziel: Analyse des Systemverhaltens mit Hilfe von Systemsequenzdiagrammen

Zur weiteren Verfeinerung des Domänenmodells soll nun eine Analyse des Systemverhaltens durchgeführt wer-

den. Um die definierten Abläufe zu dokumentieren, wurden bereits Ablaufbeschreibungen erfasst. Erstellen Sie

ein Systemsequenzdiagramm zu der gegebenen Ablaufbeschreibung des Lernens einer Lernkartei mit der

Flashcards-Anwendung.

Lernen einer Lernkartei – Ablaufbeschreibung

Der Benutzer startet den Lernprozess in der Flashcards-Anwendung. In der Anwendung öffnet sich ein

Lerndialog, in dem der Benutzer nacheinander seine Karteikarten lernt. Der Lernprozess soll in einem

Durchlauf alle im System vorhanden Karten abfragen. Die abgefragten Karten werden in einer zufälligen

Reihenfolge gelernt. Hierzu wird innerhalb des Systems jeweils eine zufällige, noch nicht gelernte, Karte

ermittelt. Dann präsentiert die Flashcards-Anwendung dem Benutzer die Frageseite dieser Karteikarte.

Dies geschieht ebenfalls innerhalb des Lerndialogs. Der Benutzer überlegt sich eine Antwort auf die

Frage der Karteikarte. Anschließend wendet er die Karteikarte, um seine Antwort auf Korrektheit zu

überprüfen. Die Antwort der Karteikarte wird dann statt der Frageseite innerhalb des Lerndialogs ange-

zeigt. Fällt dem Benutzer während des Lernens ein Fehler auf der Frage- oder Antwortseite der Kartei-

karte auf, hat er nun die Möglichkeit die Karteikarte zu bearbeiten und anschließend seine Änderungen

abzuspeichern. Nach dem Bearbeiten einer Karteikarte wird der Lerndialog aktualisiert, so dass dem

Benutzer die geänderte Antwortseite angezeigt wird. Unmittelbar nach dem Vergleich der vermuteten

Antwort mit der Antwortseite der Karteikarte, bewertet der Benutzer seine Antwort. Hierzu kann er in-

nerhalb des Lerndialogs auswählen, ob die Antwort positiv oder negativ war. Nach der Bewertung fährt

das System sofort mit dem Lernen der nächsten Karteikarte fort, um einen möglichst optimalen Lern-

fluss zu erreichen. Mit den angegebenen Antwortbewertungen des Benutzers errechnet die Flashcards-

Anwendung ein Verhältnis zwischen korrekt beantworteten und der Anzahl der in diesem Durchgang

gelernten Karteikarten. Die errechnete Rate wird dem Benutzer direkt nach dem Ende des

Lernenprozesses angezeigt.

2

Aufgabe 2 (7 Punkte)

Ziel: Darstellung komplexer Abläufe mit Hilfe eines Sequenz-Diagramms

Im Folgenden soll die Kommunikation innerhalb des AWT-Frameworks (des JDK 1.6) verdeutlicht werden, die

stattfindet, um beim Drücken eines JButtons die gewünschte Operation der konkreten Anwendung aufzurufen.

Die AWT-Klasse JButton unterscheidet drei Arten von Events: Action-Events, Change-Events und Item-Events.

Interessenten für eine bestimmte Art von Event implementieren entsprechend eines der Interfaces

ActionListener, ChangeListener oder ItemListener und registrieren sich bei einer Instanz von JButton.

Bis zum Aufruf der eigenen registrierten Methode(n) findet ein komplexer Prozess innerhalb des AWT-

Frameworks statt. Beim Klicken der Maus findet bereit in AWT eine Abbildung der Mauskoordinaten auf AWT-

Komponenten statt. Diese Abbildung bestimmt welche der Komponenten tatsächlich eine Nachricht durch AWT

erhalten, da sie auf dem entsprechenden Bildschirmbereich der Mausinteraktion liegen. Diese Komponenten

werden dann durch AWT darüber benachrichtigt, welche Art von Interaktion stattfand. Im Falle eines einfachen

Mausklicks werden zwei Maus-Events („Maus gedrückt“, „Maus losgelassen“) ausgelöst.

Erstellen Sie ein Sequenz-Diagramm das für einen beliebigen JButton aufzeigt, welche Events des Buttons

(Action-, Change- oder Item-Events) im Laufe eines Mausklicks durch den Button ausgelöst werden. Ein Maus-

klick besteht aus zwei Maus-Events vom Typ MouseEvent mit entsprechenden Identifier: id =

MouseEvent.MOUSE_PRESSED bzw. id = MouseEvent.MOUSE_RELEASED. Starten Sie Ihr Diagramm mit dem

Aufruf an die Methode mousePressed(MouseEvent), bis der Kontrollfluss zu dieser Methode zurückkehrt, und

modellieren Sie anschließend im gleichen Diagramm den Aufruf an mouseReleased(MouseEvent). Beide Metho-

den finden Sie in der JDK 1.6 Klasse javax.swing.plaf.baisc.BasicButtonListener. Mit dem Aufruf dieser

Methoden, durch das AWT-Framework, wurde bereits eine Fallunterscheidung bzgl. der Art des Maus-Events

gemacht. Ihr Sequenz-Diagramm soll das wesentliche Szenario, welches zum auslösen der verschiedenen

Events von JButton (Action-, Change- oder Item-Events) führt, aufzeigen. Für jede Art von Event wird in einem

Button letztenendes eine zur Art des Events passende Methode aufgerufen, die alle registrierten Listener be-

nachrichtigt:

fireActionPerformed(ActionEvent), fireStateChanged(), oder fireItemStateChanged(ItemEvent).

Nur für die Methode fireActionPerformed(ActionEvent) soll die Interaktion mit registrierten Instanzen von

ActionListener aufgezeigt werden; für die anderen Events müssen Aufrufe über

fireItemStateChanged(ItemEvent) und fireStateChanged() hinaus nicht weiter verfolgt werden.

Für das Sequenz-Diagramm sollen Sie einige Vereinfachungen vornehmen: Konditionale, deren Blöcke (If, oder

Else) in diesem Szenario nicht ausgeführt werden, müssen nicht modelliert werden, um dem Leser des Diag-

ramms die wesentliche Funktion auf einfache Weise zu verdeutlichen. Konditionale, deren Auswertungsergebnis

bereits bekannt ist, führen nur den entsprechenden Block aus. Desweiteren sollen nur Methodenaufrufe und

Objekte modelliert werden, die zum Pfad der Aufrufe an Event-Listener beitragen. Daher sollte Ihr Diagramm

sich auf Instanzen der folgenden Typen beschränken (bzw. deren Implementierungen, oder Methoden aus Su-

perklassen, oder enthaltene innere, und enthaltene anonyme Klassen): JButton, MouseEvent

BasicButtonListener, ButtonModel, ActionListener. Werte, die durch Aufrufe an andere Klassen errechnet

werden, können als gegeben vorausgesetzt werden und müssen nicht modelliert werden. Sie können für dieses

Szenario davon ausgehen, dass die Maus zwischen den Klicks nicht bewegt wurde und dass es sich um einen

Klick mit der linken Maustaste handelte. Desweiteren können Sie davon ausgehen, dass der Button den Zustand

‚enabled‘ hat. Sie können weitere Vereinfachungen für Ihr Diagramm treffen, sofern diese nachvoll-

ziehbar dokumentieren sind!

Hinweis 1 (Verdeutlichung des ActionListeners): In der Flashcards-Anwendung wird für den Lerndialog

der playButton erstellt. Durch das Registrieren einer Instanz vom Typ ActionListener wird die Anwendung

informiert, wenn der entsprechende JButton gedrückt wurde. Zur Verdeutlichung der Funktionsweise von AWT

bietet es sich an, den Eclipse-Debugger zu verwenden, um die relevanten Aufrufe zu analysieren. Leider können

nicht in allen Java-Installationen Breakpoints auf die Methoden mousePressed(MouseEvent) und

mouseReleased(MouseEvent) gesetzt werden. Alternativ, kann z.B. auf dem Aufruf von learn() ein Breakpoint

gesetzt werden, um durch Analyse des Aufrufstacks herauszufinden, welche Aufrufe und Klassen bis zu diesem

Punkt beteiligt waren. Dies bildet allerdings nur einen Teil der geforderten Aufrufe ab.

playButton = Utilities.createToolBarButton(" Learn ",

 "media-playback-start.png", "learn flashcards");

playButton.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent event) {

 learn();

 }

});

Hinweis 2: Methoden-Dispatch wird nicht in UML Sequenz-Diagrammen modelliert. Methodenaufrufe auf Inter-

faces, sind z.B. immer Nachrichten an konkrete Instanzen, einer Klasse die das Interface implementiert.

