Einfuhrung in Software Engineering WS 10/11
Fachbereich Informatik

Dr. Michael Eichberg

eichberg@informatik.tu-darmstadt.de

Assistent: Ralf Mitschke
mitschke@st.informatik.tu-darmstadt.de

TECHNISCHE
UNIVERSITAT
DARMSTADT

Ubungsblatt 6 (10 Punkte): Interaktionsdiagramme

Abgabeformat: Reichen Sie ihre Lésung per SVN ein. Jede Ubung muss in einem eigenen Ordner
ex<Number> (<Number> = 01, 02, ...) in lhrem Gruppenverzeichnis eingereicht werden. Wahrend der
Ubungsbearbeitung kénnen Sie lhre Lésungen beliebig oft in das SVN hochladen (per Commit). Wir prifen die
Zeit der Einreichung lhrer Lésungen unter der Benutzung des SVN Zeitstempels.

Erstellen Sie fur Losungen der Aufgaben, die keinen Quelltext erfordern, eine PDF-Datei mit dem Dateinamen
solution.pdf. Dies gilt auch fur alle UML-Diagramme, die Sie erstellen. Die Basisanwendung wird als Eclipse-
Projekt vorgegeben. lhr eigener Code muss entsprechend in den dafur vorgesehenen Verzeichnissen (/src oder
/test) erstellt werden.

Abgabetermin: 09.12.2010 - 24:00 Uhr

Aufgabe 1 (3 Punkte)

Ziel: Analyse des Systemverhaltens mit Hilfe von Systemsequenzdiagrammen

Zur weiteren Verfeinerung des Domanenmodells soll nun eine Analyse des Systemverhaltens durchgefihrt wer-
den. Um die definierten Ablaufe zu dokumentieren, wurden bereits Ablaufbeschreibungen erfasst. Erstellen Sie
ein Systemsequenzdiagramm zu der gegebenen Ablaufbeschreibung des Lernens einer Lernkartei mit der
Flashcards-Anwendung.

Lernen einer Lernkartei - Ablaufbeschreibung

Der Benutzer startet den Lernprozess in der Flashcards-Anwendung. In der Anwendung 6ffnet sich ein
Lerndialog, in dem der Benutzer nacheinander seine Karteikarten lernt. Der Lernprozess soll in einem
Durchlauf alle im System vorhanden Karten abfragen. Die abgefragten Karten werden in einer zufalligen
Reihenfolge gelernt. Hierzu wird innerhalb des Systems jeweils eine zufallige, noch nicht gelernte, Karte
ermittelt. Dann prasentiert die Flashcards-Anwendung dem Benutzer die Frageseite dieser Karteikarte.
Dies geschieht ebenfalls innerhalb des Lerndialogs. Der Benutzer Uberlegt sich eine Antwort auf die
Frage der Karteikarte. AnschlieBend wendet er die Karteikarte, um seine Antwort auf Korrektheit zu
Uberprifen. Die Antwort der Karteikarte wird dann statt der Frageseite innerhalb des Lerndialogs ange-
zeigt. Fallt dem Benutzer wahrend des Lernens ein Fehler auf der Frage- oder Antwortseite der Kartei-
karte auf, hat er nun die Méglichkeit die Karteikarte zu bearbeiten und anschlieRend seine Anderungen
abzuspeichern. Nach dem Bearbeiten einer Karteikarte wird der Lerndialog aktualisiert, so dass dem
Benutzer die geanderte Antwortseite angezeigt wird. Unmittelbar nach dem Vergleich der vermuteten
Antwort mit der Antwortseite der Karteikarte, bewertet der Benutzer seine Antwort. Hierzu kann er in-
nerhalb des Lerndialogs auswahlen, ob die Antwort positiv oder negativ war. Nach der Bewertung fahrt
das System sofort mit dem Lernen der nachsten Karteikarte fort, um einen mdglichst optimalen Lern-
fluss zu erreichen. Mit den angegebenen Antwortbewertungen des Benutzers errechnet die Flashcards-
Anwendung ein Verhaltnis zwischen korrekt beantworteten und der Anzahl der in diesem Durchgang
gelernten Karteikarten. Die errechnete Rate wird dem Benutzer direkt nach dem Ende des
Lernenprozesses angezeigt.




Aufgabe 2 (7 Punkte)

Ziel: Darstellung komplexer Ablaufe mit Hilfe eines Sequenz-Diagramms

Im Folgenden soll die Kommunikation innerhalb des AWT-Frameworks (des JDK 1.6) verdeutlicht werden, die
stattfindet, um beim Drucken eines JButtons die gewlnschte Operation der konkreten Anwendung aufzurufen.

Die AWT-Klasse JButton unterscheidet drei Arten von Events: Action-Events, Change-Events und Item-Events.
Interessenten fir eine bestimmte Art von Event implementieren entsprechend eines der Interfaces
ActionListener, ChangelListener oder ItemListener und registrieren sich bei einer Instanz von JButton.
Bis zum Aufruf der eigenen registrierten Methode(n) findet ein komplexer Prozess innerhalb des AWT-
Frameworks statt. Beim Klicken der Maus findet bereit in AWT eine Abbildung der Mauskoordinaten auf AWT-
Komponenten statt. Diese Abbildung bestimmt welche der Komponenten tatsdchlich eine Nachricht durch AWT
erhalten, da sie auf dem entsprechenden Bildschirmbereich der Mausinteraktion liegen. Diese Komponenten
werden dann durch AWT darlber benachrichtigt, welche Art von Interaktion stattfand. Im Falle eines einfachen
Mausklicks werden zwei Maus-Events (,Maus gedriickt”, ,Maus losgelassen”) ausgeldst.

Erstellen Sie ein Sequenz-Diagramm das flr einen beliebigen JButton aufzeigt, welche Events des Buttons
(Action-, Change- oder Item-Events) im Laufe eines Mausklicks durch den Button ausgeldst werden. Ein Maus-
klick besteht aus zwei Maus-Events vom Typ MouseEvent mit entsprechenden Identifier: id =
MouseEvent.MOUSE PRESSED bzw. id = MouseEvent.MOUSE RELEASED. Starten Sie lhr Diagramm mit dem
Aufruf an die Methode mousePressed(MouseEvent), bis der Kontrollfluss zu dieser Methode zurlickkehrt, und
modellieren Sie anschlieBend im gleichen Diagramm den Aufruf an mouseReleased (MouseEvent). Beide Metho-
den finden Sie in der JDK 1.6 Klasse javax.swing.plaf.baisc.BasicButtonListener. Mit dem Aufruf dieser
Methoden, durch das AWT-Framework, wurde bereits eine Fallunterscheidung bzgl. der Art des Maus-Events
gemacht. Ihr Sequenz-Diagramm soll das wesentliche Szenario, welches zum auslésen der verschiedenen
Events von JButton (Action-, Change- oder Item-Events) flhrt, aufzeigen. Fir jede Art von Event wird in einem
Button letztenendes eine zur Art des Events passende Methode aufgerufen, die alle registrierten Listener be-
nachrichtigt:

fireActionPerformed(ActionEvent), fireStateChanged(), oder fireItemStateChanged(ItemEvent).
Nur fur die Methode fireActionPerformed(ActionEvent) soll die Interaktion mit registrierten Instanzen von
ActionListener aufgezeigt werden; fur die anderen Events mussen Aufrufe Uber
fireItemStateChanged(ItemEvent) und fireStateChanged() hinaus nicht weiter verfolgt werden.

FUr das Sequenz-Diagramm sollen Sie einige Vereinfachungen vornehmen: Konditionale, deren Blocke (If, oder
Else) in diesem Szenario nicht ausgeflihrt werden, mussen nicht modelliert werden, um dem Leser des Diag-
ramms die wesentliche Funktion auf einfache Weise zu verdeutlichen. Konditionale, deren Auswertungsergebnis
bereits bekannt ist, fihren nur den entsprechenden Block aus. Desweiteren sollen nur Methodenaufrufe und
Objekte modelliert werden, die zum Pfad der Aufrufe an Event-Listener beitragen. Daher sollte |hr Diagramm
sich auf Instanzen der folgenden Typen beschranken (bzw. deren Implementierungen, oder Methoden aus Su-
perklassen, oder enthaltene innere, und enthaltene anonyme Klassen): JButton, MouseEvent
BasicButtonListener, ButtonModel, ActionListener. Werte, die durch Aufrufe an andere Klassen errechnet
werden, kénnen als gegeben vorausgesetzt werden und muissen nicht modelliert werden. Sie kénnen flr dieses
Szenario davon ausgehen, dass die Maus zwischen den Klicks nicht bewegt wurde und dass es sich um einen
Klick mit der linken Maustaste handelte. Desweiteren kénnen Sie davon ausgehen, dass der Button den Zustand
,enabled’ hat. Sie konnen weitere Vereinfachungen fir lhr Diagramm treffen, sofern diese nachvoll-
ziehbar dokumentieren sind!

Hinweis 1 (Verdeutlichung des ActionListeners): In der Flashcards-Anwendung wird fiir den Lerndialog
der playButton erstellt. Durch das Registrieren einer Instanz vom Typ ActionListener wird die Anwendung
informiert, wenn der entsprechende JButton gedriickt wurde. Zur Verdeutlichung der Funktionsweise von AWT
bietet es sich an, den Eclipse-Debugger zu verwenden, um die relevanten Aufrufe zu analysieren. Leider kénnen
nicht in allen Java-Installationen Breakpoints auf die Methoden mousePressed(MouseEvent) und
mouseReleased(MouseEvent) gesetzt werden. Alternativ, kann z.B. auf dem Aufruf von learn() ein Breakpoint
gesetzt werden, um durch Analyse des Aufrufstacks herauszufinden, welche Aufrufe und Klassen bis zu diesem
Punkt beteiligt waren. Dies bildet allerdings nur einen Teil der geforderten Aufrufe ab.

playButton = Utilities.createToolBarButton(" Learn ",
"media-playback-start.png", "learn flashcards");
playButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
learn();
}
1)

Hinweis 2: Methoden-Dispatch wird nicht in UML Sequenz-Diagrammen modelliert. Methodenaufrufe auf Inter-
faces, sind z.B. immer Nachrichten an konkrete Instanzen, einer Klasse die das Interface implementiert.



