Einfuhrung in Software Engineering WS 10/11

Fachbereich Informatik
Dr. Michael Eichberg
eichberg@informatik.tu-darmstadt.de

Assistent: Ralf Mitschke
mitschke@st.informatik.tu-darmstadt.de

TECHNISCHE
UNIVERSITAT
DARMSTADT

Ubungsblatt 8 (10 Punkte): GRASP, Kopplung und Kohé&sion

Abgabeformat: Reichen Sie ihre Lésung per SVN ein. Jede Ubung muss in einem eigenen Ordner
ex<Number> (<Number> = 01, 02, ...) in lhrem Gruppenverzeichnis eingereicht werden. Wahrend der
Ubungsbearbeitung kénnen Sie lhre Lésungen beliebig oft in das SVN hochladen (per Commit). Wir priifen die
Zeit der Einreichung lhrer Losungen unter der Benutzung des SVN Zeitstempels.

Erstellen Sie fur Losungen der Aufgaben, die keinen Quelltext erfordern, eine PDF-Datei mit dem Dateinamen
solution.pdf. Dies gilt auch fur alle UML-Diagramme, die Sie erstellen. Die Basisanwendung wird als Eclipse-
Projekt vorgegeben. Ihr eigener Code muss entsprechend in den dafir vorgesehenen Verzeichnissen (/src oder
/test) erstellt werden.

Abgabetermin: 19.01.2011 - 24:00 Uhr

Aufgabe 1 (4 Punkte)
Ziel: Software Design mit Hilfe von GRASP.

Verwenden Sie Ihre Flashcards-Anwendung, die Sie bereits in den letzten Ubungen erweitert haben. In dieser
Aufgabe sollen Sie die Qualitat Ihrer bisherigen Version analysieren und darlber hinaus die Strategie flr
geplante Erweiterungen festlegen.

a) Analyse der bisherigen Implementierung mit Hilfe von GRASP (2 Punkte)

Dokumentieren Sie welche Klassen fir die unten aufgelisteten Verantwortlichkeiten zustandig sind. Geben
Sie fur jedes der drei Prinzipien: Controller, Creator und Information-Expert an, ob es zur Anwendung kam
und warum bzw. warum nicht.

e Die nachste Flashcard wahrend des Lernens auswahlen (Achtung: Ul ist kein Controller)

e Erstellen einer neuen Flashcard (Achtung: Ul ist kein Controller)

b) Erweiterung der bisherigen Implementierung mit Hilfe von GRASP (2 Punkte)

Nutzen Sie nun die selben Prinzipien, um die bisherige Implementierung mit den unten aufgelisteten
Verantwortlichkeiten zu erweitern. Listen Sie fir jedes der drei Prinzipien incl. Begrindung auf, auf welche
Klassen es zutrifft. Z.B. alle Klassen, die Information-Expert sind. Lasst sich das Prinzip auf keine Klasse
anwenden, begrinden Sie warum. Wo wirden Sie ggf. die Verantwortlichkeit unterbringen.

e Zum Vokabellernen sollen Frage und Antwort in allen Flashcards der aktuellen Serie vertauscht
werden.

° Das automatische Generieren von Flashcards flir das kleine Einmaleins, um nicht manuell 100
Flashcards erstellen zu missen.

Hinweis: Verantwortlichkeiten kénnen auch aus mehreren Teilverantwortlichkeiten bestehen.

Aufgabe 2 (3 Punkte)

Ziel: Bewerten eines Software-Designs durch Betrachtung von Kopplung.

Analysieren Sie im Folgenden Ihre eigene Version der Flashcards-Anwendung. Zur automatisierten
Unterstltzung kénnen Sie das Eclipse-Plugin STAN (http://stan4j.com/general/download-ide.html) nutzen. STAN
erlaubt es die strukturellen Abhangigkeiten eines Programmes zu analysieren und zu visualisieren. Mittels STAN
kénnen Sie mit Rechtsclick auf das Flashcards-Projekt und durch Auswahl von ,,Run As...“-, Structural Analysis”
das Projekt analysieren (STAN 2.0.1. ist in einer Community-Version verfligbar, die eine Analyse von bis zu 500
Klassen ermdglicht). Alternativ kdnnen Sie die Abhangigkeiten manuell aus dem Quellcode ablesen.

a) Kopplung zu Java Bibliotheken (0,5 Punkte)

Begrunden Sie kurz warum bei der Betrachtung von Kopplung das Einbeziehen von Klassen aus der
Standard Java Bibliothek nicht sinnvoll ist.

b) Fan-In und Fan-Out (1 Punkt)

Bestimmen Sie den Fan-Out und den Fan-In der Klassen Flashcard, FlashcardSeries und
FlashcardsWindow. Testklassen sind hier zu ignorieren.

Hinweis: Der Fan-Out einer Klasse ist definiert als die Summe aller Klassen zu denen eine Abhangigkeit
besteht. Der Fan-In einer Klasse ist die Summe aller Klassen die eine Abhangigkeit zu dieser Klasse haben.

c) Software-Design und Kopplung (1,5 Punkte)

¢ Nennen Sie mindestens zwei Nachteile von hoher Kopplung. Beschreiben Sie kurz den Bezug von hoher
Kopplung zu den errechneten Fan-In und Fan-Out Metriken. Geben Sie ein Beispiel fir hohe Kopplung
aus den analysierten Klassen an.

e Was ist die Konsequenz einer haufigen Wiederverwendung einer Klasse (im Hinblick auf die
Erweiterbarkeit einer Software)? Beschreiben Sie kurz den Bezug von haufiger Wiederverwendung zu
den errechneten Fan-In und Fan-Out Metriken. Geben Sie ein Beispiel fur hohe Wiederverwendung aus
den analysierten Klassen an.

Aufgabe 3 (3 Punkte)

Ziel: Bewerten eines Software-Designs durch Betrachtung der Kohdsion.

Betrachten Sie weiterhin lhre eigene Version der Flashcards-Anwendung.

a) Kohasion der Klasse FlashcardsWindow (1,5 Punkte)

Um die Kohasion K zwischen zwei Methoden M; und M; zu definieren, nehmen wir K = |o(M; , M;)|, wobei
o(M;, M;) die Menge der von beiden Methoden genutzten Felder angibt. Das heillt o(M; , M;) berechnet sich
aus den zu M;, M; gehérenden Mengen der Variablennutzung Vi, Vjals o(M;, M;) =V, n V,.

Zwei Methoden sind dann kohasiv, wenn K > 0 ist.

Stellen Sie eine Liste von Mengen (V) auf, die Ihnen angibt, welche Felder der Klasse FlashcardsWindow in
welcher Methode genutzt werden (z.B. in der Form: Vmethod = {fieldl, field2})

lhre Liste soll alle Methoden, auRer den Konstruktoren des FlashcardsWindow beinhalten. Sehen Sie fir die
Variablen-Nutzung alle intern aufgerufene Methoden der gleichen Klasse (sowohl privat als auch 6ffentlich)
als ,inlined” an, d.h. an der Stelle eines Aufrufes an eine private Methode, wird dieser Aufruf vollstandig
durch die Implementierung der privaten Methode ersetzt. Betrachten Sie daher auch keine Methoden, die
Konstruktoren des FlashcardsWindow direkt oder indirekt aufrufen.

Nennen Sie ausgehend von den aufgestellten Mengen zwei kohdsive Methoden und zwei nicht kohasive
Methoden der Klasse FlashcardsWindow.

http://stan4j.com/general/download-ide.html

b)

LCOM* der Klasse FlashcardsWindow (1,5 Punkte)

Nutzen Sie die in der Ubungspréasentation vorgestellte Metrik LCOM* und berechnen Sie mit dieser Metrik
einen Gesamtwert fur die Kohasion der Klasse FlashcardsWindow. Ziehen Sie alle Methoden die in
Teilaufgabe a) betrachtet wurden zur Berechnung der Metrik hinzu (Konstruktoren und Methoden, die diese
Aufrufen sind weiter zu ignorieren). Behandeln Sie intern aufgerufene Methoden wie in Aufgabe a), d.h. Sie
kénnen die in Aufgabe a) aufgestellten Mengen zugrunde legen, um die Parameter der Metrik zu
berechnen. Legen Sie nur die Felder zugrunde, die auch von mindestens einer der betrachteten Methoden
genutzt wird (Felder die nur in Konstruktoren genutzt werden sind zu ignorieren).

(%Z;M(A]))- m

LCOM™ =—

1—-m

. a = Anzahl der Felder
. m = Anzahl der Untersuchten Methoden
e W(A) = Anzahl der Methoden die auf das Feld j zugreifen.

Errechnen Sie die Metrik LCOM* fir die Klasse FlashcardsWindow. Geben Sie den Rechenweg (a, m, H(A)))
in lhrer Lésung mit an.

Beschreiben Sie kurz wie Sie diesen Wert flr die Kohasion der Klasse FlashcardsWindow interpretieren.

