
1

Aufgabe Nr. (Punktzahl Punkte)

Ziel: Kurze Zusammenfassung des Übungsziels

Hier kommt der einleitende Text zur Aufgabenstellung hin. Eventuell
erforderliche Tabellen, Diagramme oder Grafiken können unterhalb
dieses Textes eingefügt werden. Falls keine weiteren Informationen
verwendet werden sollen, können entsprechende Bereiche einfach aus
der Vorlage gelöscht werden.

a) Titel der Teilaufgabe (Punktzahl Punkte)

Fragestellung der Teilaufgabe. Um weitere Teilaufgaben
hinzuzufügen einfach den kompletten Block kopieren.

Hinweis: Hinweis zur Lösung der Teilaufgabe

Einführung in Software Engineering WS 10/11
Fachbereich Informatik

 Dr. Michael Eichberg
eichberg@informatik.tu-darmstadt.de

Assistent: Ralf Mitschke
mitschke@st.informatik.tu-darmstadt.de

Übungsblatt 8 (10 Punkte): GRASP, Kopplung und Kohäsion

Abgabeformat: Reichen Sie ihre Lösung per SVN ein. Jede Übung muss in einem eigenen Ordner

ex<Number> (<Number> = 01, 02, …) in Ihrem Gruppenverzeichnis eingereicht werden. Während der

Übungsbearbeitung können Sie Ihre Lösungen beliebig oft in das SVN hochladen (per Commit). Wir prüfen die

Zeit der Einreichung Ihrer Lösungen unter der Benutzung des SVN Zeitstempels.

Erstellen Sie für Lösungen der Aufgaben, die keinen Quelltext erfordern, eine PDF-Datei mit dem Dateinamen

solution.pdf. Dies gilt auch für alle UML-Diagramme, die Sie erstellen. Die Basisanwendung wird als Eclipse-

Projekt vorgegeben. Ihr eigener Code muss entsprechend in den dafür vorgesehenen Verzeichnissen (/src oder

/test) erstellt werden.

Abgabetermin: 19.01.2011 - 24:00 Uhr

Aufgabe 1 (4 Punkte)

Ziel: Software Design mit Hilfe von GRASP.

Verwenden Sie Ihre Flashcards-Anwendung, die Sie bereits in den letzten Übungen erweitert haben. In dieser

Aufgabe sollen Sie die Qualität Ihrer bisherigen Version analysieren und darüber hinaus die Strategie für

geplante Erweiterungen festlegen.

a) Analyse der bisherigen Implementierung mit Hilfe von GRASP (2 Punkte)

Dokumentieren Sie welche Klassen für die unten aufgelisteten Verantwortlichkeiten zuständig sind. Geben

Sie für jedes der drei Prinzipien: Controller, Creator und Information-Expert an, ob es zur Anwendung kam

und warum bzw. warum nicht.

 Die nächste Flashcard während des Lernens auswählen (Achtung: UI ist kein Controller)

 Erstellen einer neuen Flashcard (Achtung: UI ist kein Controller)

b) Erweiterung der bisherigen Implementierung mit Hilfe von GRASP (2 Punkte)

Nutzen Sie nun die selben Prinzipien, um die bisherige Implementierung mit den unten aufgelisteten

Verantwortlichkeiten zu erweitern. Listen Sie für jedes der drei Prinzipien incl. Begründung auf, auf welche

Klassen es zutrifft. Z.B. alle Klassen, die Information-Expert sind. Lässt sich das Prinzip auf keine Klasse

anwenden, begründen Sie warum. Wo würden Sie ggf. die Verantwortlichkeit unterbringen.

 Zum Vokabellernen sollen Frage und Antwort in allen Flashcards der aktuellen Serie vertauscht

werden.

 Das automatische Generieren von Flashcards für das kleine Einmaleins, um nicht manuell 100

Flashcards erstellen zu müssen.

Hinweis: Verantwortlichkeiten können auch aus mehreren Teilverantwortlichkeiten bestehen.

2

Aufgabe 2 (3 Punkte)

Ziel: Bewerten eines Software-Designs durch Betrachtung von Kopplung.

Analysieren Sie im Folgenden Ihre eigene Version der Flashcards-Anwendung. Zur automatisierten

Unterstützung können Sie das Eclipse-Plugin STAN (http://stan4j.com/general/download-ide.html) nutzen. STAN

erlaubt es die strukturellen Abhängigkeiten eines Programmes zu analysieren und zu visualisieren. Mittels STAN

können Sie mit Rechtsclick auf das Flashcards-Projekt und durch Auswahl von „Run As...“ „Structural Analysis“

das Projekt analysieren (STAN 2.0.1. ist in einer Community-Version verfügbar, die eine Analyse von bis zu 500

Klassen ermöglicht). Alternativ können Sie die Abhängigkeiten manuell aus dem Quellcode ablesen.

a) Kopplung zu Java Bibliotheken (0,5 Punkte)

Begründen Sie kurz warum bei der Betrachtung von Kopplung das Einbeziehen von Klassen aus der

Standard Java Bibliothek nicht sinnvoll ist.

b) Fan-In und Fan-Out (1 Punkt)

Bestimmen Sie den Fan-Out und den Fan-In der Klassen Flashcard, FlashcardSeries und

FlashcardsWindow. Testklassen sind hier zu ignorieren.

Hinweis: Der Fan-Out einer Klasse ist definiert als die Summe aller Klassen zu denen eine Abhängigkeit

besteht. Der Fan-In einer Klasse ist die Summe aller Klassen die eine Abhängigkeit zu dieser Klasse haben.

c) Software-Design und Kopplung (1,5 Punkte)

 Nennen Sie mindestens zwei Nachteile von hoher Kopplung. Beschreiben Sie kurz den Bezug von hoher

Kopplung zu den errechneten Fan-In und Fan-Out Metriken. Geben Sie ein Beispiel für hohe Kopplung

aus den analysierten Klassen an.

 Was ist die Konsequenz einer häufigen Wiederverwendung einer Klasse (im Hinblick auf die

Erweiterbarkeit einer Software)? Beschreiben Sie kurz den Bezug von häufiger Wiederverwendung zu

den errechneten Fan-In und Fan-Out Metriken. Geben Sie ein Beispiel für hohe Wiederverwendung aus

den analysierten Klassen an.

Aufgabe 3 (3 Punkte)

Ziel: Bewerten eines Software-Designs durch Betrachtung der Kohäsion.

Betrachten Sie weiterhin Ihre eigene Version der Flashcards-Anwendung.

a) Kohäsion der Klasse FlashcardsWindow (1,5 Punkte)

Um die Kohäsion K zwischen zwei Methoden Mi und Mj zu definieren, nehmen wir K = |σ(Mi , Mj)|, wobei

σ(Mi, Mj) die Menge der von beiden Methoden genutzten Felder angibt. Das heißt σ(Mi , Mj) berechnet sich

aus den zu Mi, Mj gehörenden Mengen der Variablennutzung Vi , Vj als σ(Mi , Mj) = Vi ∩ Vj.

Zwei Methoden sind dann kohäsiv, wenn K > 0 ist.

Stellen Sie eine Liste von Mengen (V) auf, die Ihnen angibt, welche Felder der Klasse FlashcardsWindow in

welcher Methode genutzt werden (z.B. in der Form: Vmethod = {field1, field2})

Ihre Liste soll alle Methoden, außer den Konstruktoren des FlashcardsWindow beinhalten. Sehen Sie für die

Variablen-Nutzung alle intern aufgerufene Methoden der gleichen Klasse (sowohl privat als auch öffentlich)

als „inlined“ an, d.h. an der Stelle eines Aufrufes an eine private Methode, wird dieser Aufruf vollständig

durch die Implementierung der privaten Methode ersetzt. Betrachten Sie daher auch keine Methoden, die

Konstruktoren des FlashcardsWindow direkt oder indirekt aufrufen.

Nennen Sie ausgehend von den aufgestellten Mengen zwei kohäsive Methoden und zwei nicht kohäsive

Methoden der Klasse FlashcardsWindow.

http://stan4j.com/general/download-ide.html

3

b) LCOM* der Klasse FlashcardsWindow (1,5 Punkte)

Nutzen Sie die in der Übungspräsentation vorgestellte Metrik LCOM* und berechnen Sie mit dieser Metrik

einen Gesamtwert für die Kohäsion der Klasse FlashcardsWindow. Ziehen Sie alle Methoden die in

Teilaufgabe a) betrachtet wurden zur Berechnung der Metrik hinzu (Konstruktoren und Methoden, die diese

Aufrufen sind weiter zu ignorieren). Behandeln Sie intern aufgerufene Methoden wie in Aufgabe a), d.h. Sie

können die in Aufgabe a) aufgestellten Mengen zugrunde legen, um die Parameter der Metrik zu

berechnen. Legen Sie nur die Felder zugrunde, die auch von mindestens einer der betrachteten Methoden

genutzt wird (Felder die nur in Konstruktoren genutzt werden sind zu ignorieren).

 a = Anzahl der Felder

 m = Anzahl der Untersuchten Methoden

 μ(Aj) = Anzahl der Methoden die auf das Feld j zugreifen.

Errechnen Sie die Metrik LCOM* für die Klasse FlashcardsWindow. Geben Sie den Rechenweg (a, m, μ(Aj))

in Ihrer Lösung mit an.

Beschreiben Sie kurz wie Sie diesen Wert für die Kohäsion der Klasse FlashcardsWindow interpretieren.

