
Compiler 1: Übung 1

Gruppe:
1. Michael Scholz (matr.: 1576630, rbg: mi48azih)

2. Ulf Gebhardt (matr.: 1574373, rbg: hu56nifa)

Aufgabe 1.1:

Aufgabe 1.2:
i := 0

while (i < count) do

foo := count – i – 2

j := 0

while (j <= foo) do

if(arr[j] > arr[j+1)

tmp := arr[j]

arr[j] := arr[j+1]

arr[j+1] := tmp

;

j = j+1

;

i := i+1

;

Aufgabe 1.3:
a) → Durch LL(1) Parser verarbeitbar.

b) → Durch LL(1) Parser nicht verarbeitbar.

Umformung:

G=({S,B},{x,y,z,0,1},P,S),P:

S ::= B (x | y) S* | zS*

B ::= 0 | 1

c) Durch LL(1) Parser nicht verarbeitbar. Die Grammatik kann nicht umgeformt werden. →
Sie produziert Wörter mit genauso vielen a wie b, bzw. genauso vielen a wie c. Deshalb
kann mit einem festen k in LL(k) die Sprache nicht verarbeitet werden.

Aufgabe 1.4:

Die minimale Größe von k ist 2. Somit benötigt man für die gegebene Grammatik einen LL(2)-
Parser.

Aufgabe 1.5:

Java Klassen: Command.java, WhileCommand.java, TypeDenoter.java, BoolTypeDenoter.java,
Identifier.java

private void parseCommand() {

if (currentToken.kind == Token.WHILE){

parseWhileCommand();

}else{

parseID();

}

}

private void parseID(){

if(currentToken.KIND == Token.IDENTIFIER){

acceptIt();

}else{

//report a syntatic error

}

}

private void parseWhileCommand(){

//wir erwarten, dass accept im Fehlerfall eine Exception wirft.

accept(Token.WHILE);

accept(Token.OpenBraket);

parseBool();

accept(Token.CloseBraket);

parseCommand();

accept(Token.END);

}

private void parseBool(){

if(currentToken == „true“ ||

currentToken == „false“){

acceptIt();

}else{

//report a syntatic error

}

}

Aufgabe 1.6:

HexLet :: = A | B | C | D | E | F

Hex ::= 0x(Digit | HexLet) (Digit | HexLet)*

private byte scanToken (){

 switch (currentchar){

case '0':

takeIt();

//Hex

if(currentchar == 'x'){

takeit();

while(isHexLet(currentChar) ||

 isDigit(currentChar))

takeit();

return Toke.HEX;

}

case 'a':

…

case 'z' :

…

}

}

Das wesentliche Problem dieser Grammatik ist „0x“. Es müssen somit zwei Zeichen gelesen
werden, um eine Hexadezimalzahl von einer Dezimalzahl zu unterscheiden.

