Compiler 1: Ubung 1

Gruppe:
1. Michael Scholz (matr.: 1576630, rbg: mi48azih)
2. Ulf Gebhardt (matr.: 1574373, rbg: huS6nifa)

Aufgabe 1.1:

Programm
BinarvEx;\aression AssignCommand
VnameExpression Operator IntegerExpression SimpleVname BinaryExpression
SimpleVname < IntegerlLiteral Identifier ‘
| | | VnameExpression Operator IntegerExpression
Identifier 25 a
SimpleVname < IntegerLiteral
° |
Identifier 25
a

Aufgabe 1.2:
1:=0
while (i < count) do

foo ;:=count—1—2

j=0
while (j <= foo) do
if(arr[j] > arr[j+1)
tmp := arr[]]
arr[j] = arr[j+1]
arr[j+1] := tmp
j=j+1

3

1:=1+1

Aufgabe 1.3:
a) — Durch LL(1) Parser verarbeitbar.

b) — Durch LL(1) Parser nicht verarbeitbar.
Umformung:
G=({S,B},{x,y,z,0,1},P,S),P:
S:=B(x]|y) S*| zS*

B:=0/1

C) — Durch LL(1) Parser nicht verarbeitbar. Die Grammatik kann nicht umgeformt werden.
Sie produziert Worter mit genauso vielen awie b, bzw. genauso vielen awie c. Deshalb
kann mit einem festen k in LL (k) die Sprache nicht verarbeitet werden.

Aufgabe 1.4

Die minimale Grof3e von k ist 2. Somit bendtigt man fur die gegebene Grammatik einen LL(2)-
Parser.

Aufgabe 1.5:

JavaKlassen: Command.java, WhileCommand.java, TypeDenoter.java, BoolTypeDenoter.java,
Identifier.java

private void parseCommand() {
i f (currentToken. ki nd ==Token. WHI LE) {
par seWhi | eCommand() ;
}el sef

parsel () ;

private void parsel D(){
i f (current Token. KIND == Token. | DENTI FI ER) {
acceptlt();
}el sef

/lreport a syntatic error

private void parseWhil eConmand() {
[Iwir erwarten, dass accept imFehlerfall eine Exception wirft.
accept (Token. VHI LE) ;
accept (Token. OpenBr aket) ;

par seBool () ;

accept (Token. Cl oseBr aket) ;
par seCommand() ;

accept (Token. END) ;

}
private void parseBool (){
i f(current Token == ,true“ ||
current Token == ,fal se"){
acceptlt();
}el sef

/lreport a syntatic error

}
}
Aufgabe 1.6:
HexLet 2=A|B|C|D|E|F
Hex .= Ox(Digit | HexLet) (Digit | HexLet)*

private byte scanToken ()

switch (currentchar){

case '0':
takelt();
/| Hex
if(currentchar == "x"){
takeit();
whi | e(i sHexLet (current Char) ||
isDigit(currentChar))
takeit();
return Toke. HEX;
}
case 'a':
case 'z’

}

Das wesentliche Problem dieser Grammatik ist ,,0x“. Es miissen somit zwei Zeichen gelesen

werden, um eine Hexadezimalzahl von einer Dezimalzahl zu unterscheiden.

