
Compiler I

Kompilierung
Vom Quellcode … zum MaschinenCode

Entspricht häufig den Teilen der Sprachspezifikation

1. Syntax  Syntaxanalyse
2. Kontextuelle Einschränkungen  Kontextanalyse
3. Semantik Codegenerierung

Ein-Pass Compiler

 Geht nur ein einziges Mal über das Programm
o Baut i.d.R. keine Zwischendarstellung auf

 Führt alle Phasen gleichzeitig aus

 z.B.: häufig Pascal Compiler

Multi-Pass Compiler

 Geht mehrmals über das Programm
o Programm = Quelltext oder Zwischendarstellung (IR)

Vergleich Ein-/Multi-Pass Compiler

 Ein-Pass Multi-Pass

Laufzeit + -

Speicher + (für große
Programme)

+ (für kleine
Programme)

Modularität - +

Flexibilität - +

Globale Optimierung -- +

Eingabesprache Nicht für
alle

Nur Möglich bei Sprachen, bei denen

Bezeichner vor ihrer Verwendung

deklariert werden

Syntaxanalyse
1. Pass, in 2 Phasen aufgeteilt

Scanner
Auch lexikalische Analyse oder Lexer genannt

Aufgabe

 Bilde Token aus Zeichen

 Entferne unerwünschte Leerzeichen, Zeilenvorschübe

 Führe Buch über Zeilennummer und Eingabedateinamen

Lässt sich mit regulären Ausdrücken (Automat) lösen.

Alternativ dazu:

Rekursiver Abstieg
Analog zum Parser

Normalerweise werden Kommentare übernommen, gibt aber auch Scanner, die in Kommentare
reingucken (JavaDoc Generierung)

Lexikalische Grammatik in EBNF

Diese wird transformiert

Diese Transformierung ist nicht unbedingt nötig, macht es allerdings schneller, da es weniger
Methoden gibt. Man kann nun aber nicht mehr zwischen Schlüsselwörtern und Bezeichner
unterscheiden, dies muss während des Scannens repariert werden.

Implementierung

Parser
Parsen der Token Folge in einen Abstrakten Syntaxbaum (AST)

Token

 Token ist atomares Symbol des Programms

 Zeichen selbst i.d.R. uninteressant, Ausnahme:
o Bezeichnernamen
o Konstante Werte (Zahlen, Zeichen), sog. Literale

Der Parser ist zum aufbauen des AST nur an der Art des jeweiligen Tokens interessiert.

Nur wenige Tokens tauchen später im AST wirklich auf. Viele (z.B. Schlüsselwörter) bestimmen aber
implizit die Struktur des AST.

Grammatiken

Kontextfreie Grammatiken (CFG) sind Spezifiziert durch ein Tupel von
()

Die Produktionen werden häufig in der Backus-Naur-Form (BNF) angegeben. Übersichtlicher ist es
allerdings die Extended BNF (EBNF) zu benutzen. Diese dürfen auf der rechten Seite (RHS) sowohl
BNF als auch Reguläre Ausdrücke enthalten

Transformation von Grammatiken

CFG kann transformiert werden, unter Beibehaltung der beschriebenen Sprache.
Dies ist sehr nützlich bei der Konstruktion von Parsern für CFGs

 Vor Transformation Nach Transformation

Gruppierung

Linksausklammern

Linksrekursion
Ersetzung von Nicht-
Terminalsymbolen

Wenn nur eine Produktion
mit LHS N, dann in RHS
allen Produktionen N durch
X ersetzen n

Terminologie

 Erkennung
o Entscheidung, ob ein Eingabetext ein Satz der Grammatik G ist

 Parsing
o Erkennung und zusätzlich Bestimmung der Phrasen-Struktur
 z.B. durch konkreten/abstrakten Syntaxbaum

 Eindeutigkeit
o Eine Grammatik ist eindeutig, falls jeder Eingabetext auf maximal eine Weise geparsed

werden kann

Es können für den Menschen nützliche

Informationen verloren gehen. Das

Ergebnis ist allerdings für den

Compieler besser

Strategien

Beispiel: MicroEnglish

Bottom-Up
Untersucht EingabeText Zeichenweise, von links nach rechts und baut Syntaxbaum von unten nach
oben auf.

Aktionen

 Shift
o Lese Zeichen ein und lege es auf Stack

 Reduce
o Erkenne ein Nicht-Terminal LHS der Produktion p

 Zusätzlich: Oberste Elemente des Stapels müssen RHS von p entsprechen.
Ersetze durch LHS von p (auf den Stack legen)

 Ende wenn Startsymbol S erreicht und Eingabetext komplett gelesen

Beispiel:

Schwierigkeiten beim Bottom-Up

Wie entscheiden, welche Produktion beim Zusammenfassen gewählt werden soll, wenn es mehrere
Möglichkeiten gibt?

Lösung: Nicht nur bekannte Zeichen betrachten, sondern auch Zustand einbeziehen.

Arbeitet mit LR(k)-Technik

 L: Lese Eingabetext von links nach rechts

 R: Fasse die am weitesten rechts stehenden Terminal-Symbole zusammen und baue von

unten auf

Top-Down
Rekursiver Abstieg

Untersuche Eingabetext Token weise, von links nach rechts
Baue Syntaxbaum von oben nach unten auf

 Von Start-Nicht-Terminalsymbol in der Wurzel …

 … zu den Terminalsymbolen in den Blättern

Aktionen

 Expandiere jeweils das am Weitesten links gelegene Nicht-Terminal N durch die Anwendung
einer Produktion N ::= X

 Wähle Produktion aus durch betrachten der nächsten n Zeichen (Token) (LookAhead) des
Eingabetextes (hier n = 1)

 Falls keine Produktion auf Zeichen passt  Fehler

 Ende wenn Eingabetext komplett gelesen und keine nicht expandierten Nicht-Terminale
mehr existieren

Beispiel:

…

Hintergrund

Falls es möglich ist …

 … bei Betrachtung der nächsten k Zeichen (Tokens) des Textes

 … immer die richtige Produktion zu finden

… dann ist die Grammatik LL(k)

 L: Lese EingabeText von links nach rechts,

 L: Leite immer vom am weitesten Links stehenden Nicht-Terminal ab

Konstruktion von LL(k) Grammatik kann mühsam sein.
Durch Transformation kann die Lesbarkeit erschwert werden.

Implementierung
Top-Down Parser

Die Struktur des konkreten Syntaxbaumes entspricht dem Aufrufmuster von sich wechselseitig
aufrufenden Prozeduren. Für jedes Nicht-Terminal XYZ existiert eine Parse-Prozedur parseXYZ, die
genau dieses Nicht-Terminal parst.

Ablauf einer parseN Methode

 Bei Eintritt enthält currentToken eines der Token, mit denen N beginnen kann

 … sonst wäre eine andere Parse-Methode aufgerufen worden (oder Syntaxfehler liegt vor)

Ablauf einer accept(t) Methode

 Bei Eintritt muss currentToken = t sein

 … sonst Syntaxfehler

 Bei Austritt enthält currentToken das auf t folgende Token

Entwicklung von Parsern mit rekursivem Abstieg

1. Formuliere Grammatik (CFG) in EBNF

a. Eine Produktion pro Nicht-Terminal

b. Beseitige IMMER Linksrekursion

c. Klammer gemeinsame Teilausdrücke nach links aus wo möglich

2. Erstelle Klasse für den Parser mit

a. protected Variable currentToken

b. Schnittstellenmethoden zum Scanner

i. accept(t) und acceptIT() *z.B. bei let muss nicht auf „let“ überprüft werden+

c. Public Methode parse welche …

i. Erstes Token via Scanner aus dem Eingabetext liest

ii. Die Parse-Methode des Start Nicht-Terminals S der CFG aufruft

3. Implementiere protected Parsing Methoden

a. Methode parseN für jedes NichtTerminalsymbol N

LL(k) Grammatik

Eine Grammatik G ist LL(1), wenn gilt:

 Falls G X|Y enthält und sich weder X noch Y zu Epsilon ableiten lassen:

 Falls G X|Y enthält und sich beispielsweise Y zu Epsilon ableiten lässt:

 Falls G X* enthält :

Man kann manche nicht LL(1) Grammatiken in LL(1) Grammatiken transformieren

Beispiel: Wenn G nicht LL(1), aber Schema trotzdem angewandt



Beispiel: Fehler wenn Linksausklammern vergessen

Beispiel: Fehler wenn Linksrekursion nicht eliminiert

Abstrakte Syntaxbäume

Unser bisheriger Parser baut mit seinem rekursiven Abstieg implizit einen Syntaxbaum auf, dieser
wird allerdings noch nicht gespeichert. Die rekursiven Aufrufe werden benutzt, um den Baum
aufzubauen

Der AST basiert auf der nicht transformierten Grammatik von Triangle

Repräsentation des AST in der Java Implementierung

Aufbau des AST

Wird vom Parser

verwendet

Wird für den AST

verwendet

Kontextanalyse (Semantische Analyse)

Geltungsbereiche und Symboltabellen
Monolithische Blockstruktur

 Charakteristika
o Nur ein Block
o Alle Deklarationen gelten global

 Regeln für Geltungsbereiche
o Bezeichner darf nur genau einmal

 deklariert werden
o Jeder benutzer Bezeichner muß

 deklariert sein

 Symboltabelle
o Für jeden Bezeichner genau ein Eintrag in

 der Symboltabelle
o Abruf von Daten muß schnell gehen

 (binärer Suchbaun. Hash-Tabelle)

 Charakteristika
o Mehrere überlappungsfreie Blöcke
o Zwei Geltungbereiche: Global und Lokal

 Regeln für Geltungsbereiche
o Global deklarierte Bezeichner dürfen nicht global

 redeklariert werden
o Lokal deklarierte Bezeichenr dürfen nicht im selben Block

 redeklariert werden
o Jeder benutzte Bezeichner muss global oder lokal zu seiner

 Verwendungstelle deklariert sein

 Symboltabelle
o Bis zu zwei Einträge für jeden Bezeichner (global und loal)
o Nach Bearbeiten eines Blockes müssen lokale

 Deklarationen verworfen werden

 Beispiel: FORTRAN

 Charakteristika
o Blöcke ineinander verschachtelt
o Beliebige Schachtelungstiefe der Blöcke

 Regeln für Geltungsbereiche
o Kein Bezeichner darf mehr als einmal innerhalb eines

 Blockes deklariert werden
o Kein Bezeichner darf verwendet werden, ohne dass er lokal

 oder in den umschließenden Blöcken deklariert wurde

 Symboltabelle
o Mehrere Einträge je Bezeichner möglich
o Aber maximal ein Paar (Verschachtelungstiefe, Bezeichner)
o Schneller Abruf des Eintrages mit der größten

 Verschachtelungstiefe

 Beispiele: Pascal, Modula, Ada, Java, …

Struktur der Geltungsbereiche
Für Sprachen mit verschachtelter Blockstruktur

Implementierung der Symboltabelle

 Verkettete Liste und lineare Suche
o In Triangle verwendet

 Hash-Tabelle (effizienter)

 Stack aus Hash-Tabellen

Attribute
Wofür werden Attribute gebraucht?

Mindestens für

 Überprüfung der Regeln für Geltungsbereiche von Deklarationen
o Bei geeigneter Implementierung der Symboltabelle: Einfaches Abrufen reicht, da alle

Regeln bereits in Datenstruktur realisiert

 Überprüfung der Typregeln
o Erfordert Abspeicherung von Typinformationen

 Code-Erzeugung
o Benötigt später z.B. Adresse der Variable im Speicher

Speicherung von Attributen

Imperativer Ansatz (Explizite Speicherung)

 Ok für sehr einfache Sprachen

 Bei Komplexeren nicht möglich

Objektorientierter Ansatz (explizite Speicherung)

Funktioniert, wird aber bei realistischer Sprache sehr leicht unhandlich

Bisher wurden Kombinationen wie zum Beispiel Arrays und Records (und deren Kombination) nicht
betrachtet. Dies mit Expliziten Strukturen kann leicht sehr komplex werden

Im AST stehen bereits alle Daten, also den Attributen einfach einen Verweis auf die ursprüngliche
Definition (im AST) eintragen

Identifikation
1. Schritt der Kontextanalyse

 Beinhaltet den Aufbau geeigneter Symboltabelle

 Hat als Aufgabe den Verwendungen von Bezeichnern zu ihren Definitionen zu ordnen

 Durch Pass über den AST realisierbar

Aber besser kombiniert mit nächstem Schritt

Typprüfung
Was ist ein Typ?

 „Eine Einschränkung der möglichen Interpretationen eines Speicherbereiches oder eines
anderen Programmkonstrukts“

 Eine Menge von Werten

Warum Typen benutzen?

 Fehlervermeidung: Verhindere eine Art von Programmierfehlern („eckiger Kreis“)

 Laufzeitoptimierung: Bindung zur Compile-Zeit erspart Entscheidung zur Laufzeit

Muss man immer Typen verwenden?

 Nein, viele Sprachen kommen ohne aus
o Assembler, Skriptsprachen, LISP, …

Typüberprüfung

 Bei statischer Typisierung ist jeder Ausdruck E entweder
o Misstypisiert, oder
o Hat einen statischen Typ T, der ohne Evaluation von E bestimmt werden kann

 E wird bei jeder (fehlerfreien) Evaluation den statischen Typ T haben

 Viele moderne Programmiersprachen bauen auf statische Typprüfung auf
o OOP-Sprachen haben aber auch dynamische Typprüfung zur Laufzeit

(Polymorphismus)

Generelles Vorgehen

1 Berechne oder leite Typen von Ausdrücken her
a. Aus den Typen der Teilausdrücke und der Art der Verknüpfung

2 Überprüfe, das Typen der Ausdrücke Anforderungen aus dem Kontext genügen

Bottom-Up Verfahren

 Typen an den Blättern des AST sind bekannt
o Literale (Direkt aus Knoten)
o Variablen (Aus Symboltabelle)
o Konstanten (Aus Symboltabelle)

 Typen der internen Knoten her leitbar aus
o Typen der Kinder
o Typregeln für die Art der Verknüpfung im Ausdruck

Algorithmus für Kontextanalyse
Kombiniere Identifikation und Typprüfung in einem Pass

Dies Funktioniert, solange Bindung immer vor Verwendung

Mögliche Vorgehensweise

 Tiefensuche von links nach rechts durch AST

 Dabei sowohl Identifikation und Typüberprüfung

 Speichere Ergebnisse durch Dekorieren des ASTs
o Hinzufügen weiterer Informationen

Gewünschtes Ergebnis:

Um die zusätzlichen Informationen speichern zu können, müssen einige AST Knoten um zusätzliche
Instanzvariablen erweitert werden.

Implementierung

Implementierung geht am besten über das Visitor-Pattern

Durch das ausnutzen von Overloading kann man die visitXYZ Methoden im Visitor alle in visit
umbenennen.

Standartumgebung
Wo kommen Definitionen von Integer, Char, … und putint, getint, +, -, * her?

Diese müssen vorliegen, damit der Algorithmus richtig funktionieren kann.

Sie müssen also vorher definiert sein.

 Einlesen von Definitionen aus Quelltext

o Ada, Haskell, VHDL

 Direkt im Compiler implementieret

o Pascal, teilweise C, Java, …

o Triangle

Geltungsbereich der Standardumgebung

 Ebene 0: Um gesamtes Programm herum oder

 Ebene 1: Auf Ebene der globalen Deklarationen im Programm

In Triangle

Idee: Trage Deklaration vorher direkt in AST ein (als Sub-AST)

Ohne konkrete Realisierung

 Die Konkrete Realisierung ist zu dem Zeitpunkt egal

 Bei der Code Generierung werden diese Konstrukt als Sonderfälle betrachtet

Typäquivalenz

In MiniTriangle einfach, da nur primitive Typen vorhanden.

Triangle ist komplizierter: Arrays, Records, benutzerdefinierte Typen

Struktur nicht äquivalent, Name nicht äquivalent Struktur äquivalent, Namen nicht Äquivalent

Liegt in Entscheidung des Sprachdesigners.

Möglichkeiten:

 Strukturelle Typäquivalenz

o Primitive Typen:

 Müssen identisch sein

o Arrays:

 Äquivalenter Typ für Elemente,

 gleiche Anzahl

o Records:

 Gleiche Namen für Elemente,

 Äquivalenter Typ für Elemente,

 gleiche Reihenfolge der Elemente

 Typäquivalenz über Namen

o Jedes Vorkommen eines nicht-primitiven Typs (selbstdefiniert, Array, Record)

beschreibt einen neuen und einzigarten Typ, der nur zu sich selbst äquivalent ist

Aufgrund der Komplexität von dieser Sache in Triangle reicht die Klasse Type nicht aus

Idee: Wir verweisen auf die Typbeschreibung im AST

Vorgehen:

1. Ersetze in Kontextanalyse alle Typenbezeichner durch Verweise auf Sub-ASTs der

Typdeklaration

2. Führe Typprüfung durch strukturellen Vergleich der Sub-ASTs der Deklaration durch

Beispiel:

Run-Time Organization

 Compiler übersetzt Hochsprachenprogramm in Äquivalentes

Maschinenprogramm

 Laufzeitorganisation beschreibt Darstellung von abstrakten

Strukturen der Hochsprache auf Maschinenebene

 Instruktionen und Speicherinhalte

Wichtige Aspekte

 Datendarstellung der Werte jedes Typs der Eingabesprache

 Auswertung von Ausdrücken und Handhabung von Zwischenergebnissen

 Speicherverwaltung verschiedener Daten: Global, lokal und Heap

 Routinen zur Implementierung von Prozeduren, Funktionen und ihre Datenübergabe

 Erweiterung auf OO-Sprachen Objekte, Methoden,

Klassen und Vererbung

TAM (Triangle Abstract Maschine)
Harward-Architektur (vs. Von Neuman-Architektur)

 Datenspeicher: 16b Worte

 Instruktionsspeicher 32b Worte

Die Adressierung der Adressbereich erfolgt über CPU Register

(ansonsten Stackmaschine)

Adressierung des Instruktionsspeichers Adressierung des Datenspeichers

TAM Instruktion

 op, 4b; Art der Instruktion

 r, 4b; Registernummer

 n, 8b; Operandengröße in Worten (nicht nur)

 d, 16b; Adressverschiebung (displacement, offset)

TAM Befehlssatz

TAM Intrinsics

Primitive

„Magische“ Adressen im Programmspeicher

Führen bei Aufruf als Routine komplexe Operationen aus

Darstellung von Daten
 Unverwechselbarkeit Unterschiedliche Werte sollen unterschiedliche Darstellungen haben

o Klappt nicht immer (duale Gleitkommadarstellung reeller Zahlen)

 Einzigartigkeit Ein Wert wird immer auf die gleiche Weise dargestellt

 Konstante Größe Alle Werte eines Typs belegen dieselbe Menge an Speicherplatz

 Art der Darstellung

o Direkt Wert einer Variable x kann direkt adressiert werden

 Effizienter Zugriff

o Indirekt Wert einer Variable x muss über einen Zeiger bzw. Handle adressiert werden

 Dynamische Arrays

 Rekursive Typen

 Objekte

Primitive Typen

#[T] : Anzahl unterschiedlicher Elemente in T

Size[T]: minimaler Speicherbedarf (in Bit) zur Darstellung eines Wertes aus T

Es muss immer gelten size[T] >= log2(#[T])

In der TAM

Boolean 16b

Char 16b

Integer 16b

Da in TAM Wort adressiert

Bei Triangle brauchen wir für Records und co etwas mehr.

Records

Speicherbedarf und Adressierung

Viele reale Prozessoren haben Anforderungen an Adressausrichtung der Daten

 Beispiel: Es können nur 32b Worte als Einheit adressiert werden

 Ist schneller, als größere Freiheit zu ungeschützten

Darstellung von Records im Speicher kann ineffizient werden

 Unter Platzgesichtspunkten (wenn optimal ausgerichtet)

 Unter Laufzeitgesichtspunkten (wenn optimal gepackt)

Variante Records

Ähnlich einer Record, aber zu einem Zeitpunkt existiert immer nur eine Untermenge von

Komponenten. (Wurde zur Typumwandlung benutzt, illegal ;-))

Selektion durch type tag

Arrays

 Zusammengesetzter Typ

 Besteht aus einem oder mehreren Werten eines Typs

o Unterschied zu Record

 Zugriff über Index (Beginnt bei 0)

Statische Arrays

haben feste, zur Compile-Zeit bekannte Abmessungen

Dynamische Arrays

haben zur Laufzeit variable Abmessungen

Indirekte Darstellung über Deskriptor

 Adresse des ersten Elements

 Abmessung

Speicher wird zur Laufzeit angefordert ( Heap)

Rekursive Typen

Referenzieret sich selbst in seiner eigenen Definition

In der Regel nur über Zeiger

Auswertung von Ausdrücken

Register-Maschine

Sehr schnelle Speicherelemente direkt im Prozessor

 Für Zwischenergebnisse

 In der Regel 8/16/32/64b breit

 Begrenzte Anzahl, üblicherweise 4..32 direkt verwendbar (in wirklichkeit gibt es viel mehr)

Nicht immer so allgemeingültig verwendbar, häufig Einschränkungen

 Nur bestimmte Register für bestimmte Operationen

 Nicht alle Arten von Operanden für alle Operationen

Code für Registermaschine ist effizienter, aber Kompilierung ist komplexer.

 Verwaltung (Allokation) von Registern

 Speichere Zwischenergebnisse in Registern

 Problem: Endlich viele Register! Was wenn Ausdruck komplizierter (zu viele

Zwischenergebnisse)=

Speicherverwaltung
Globale Variablen: Existieren über gesamte Programmlaufzeit

 Compiler kann bereits Speicherbedarf jeder Variable berechnen

 Damit kann jeder Variable passender Speicher zugewiesen (alloziert) werden

 Nun bekannt: Adresse jeder Variable im Speicher

Bündige Anreihung

Lokale Variablen:

 Ist im Inneren eines Blockes definiert

o Prozedur, Funktion, Let

 Existiert nur während der Block aktiv ist

 Hat eine Begrenzte Lebensdauer

Wichtig: eine Prozedur kann gleichzeitig mehrfach aktiv sein (rekursion)

Organisationsstruktur: Stack Frame

Jede Prozedur hat einen Stack Frame

 Lokale Variablen

 Verwaltungsdaten

 Aktuelle Parameter

Wird bei Prozeduraufruf angelegt und nach Prozedurende abgebaut

Verwaltungsdaten (3 Worte)

 return adress

 Rücksprungadresse

 Dynamic link

 Vorheriger LB (Verkettung der Frames)

 Static link

Beispiel: Adressierung von Variablen

Statische Programhierarchie

Mit LB und SB nicht lösbar. Daher Static Link benötigt

Variablen Umschließender Blöcke liegen auf jeden Fall auf dem Stack,

die Frage ist nur wo? Man müsste sich irgendwie hochhangeln.

Statische Verkettung

 Verweis auf Frame der im Programmtext umschließenden Prozedur

 Unterschied dynamische Verkettung

o Hier Verweis auf Frame der aufrufenden Prozedur

 Dient Zugriff auf nicht-lokale Variablen

„Nicht-Lokale Variablen werden nicht von allen Sprachen unterstützt“

Contents(LB) = Umschließender StackFrame

Contents(Contents(LB)) = noch weiter außenliegender Stack Frame

Hochhangeln würd durch Hardware realisiert (in TAM)

Sogenanntes Display

Bei TAM maximal bis L7

Das bedeutet nicht, dass Rekursion beschränkt ist, sonder man kann maximal Prozedurdefinitionen

bis zur Stufe 7 definieren.

Die Display Berechnung ist per Hand sehr umständlich, daher Hardware.

Bestimmung statische Verkettung

Aus der Kontextanalyse ist die Ebene aller Geltungsbereiche bekannt.

Routine

R sei Routine deklariert auf Ebenen l, dann gilt für die statische Verkettung (SV)

 Wenn l = 0 (R ist globale Routine)

o SV = SB; R seiht statisch nur globale Variablen

 Wenn l>0 (R ist eingeschachtelt deklariert)

o SV = LB vor Aufruf

 Wenn Aufruf von R aus Ebene l erfolgt

o SV = L1 vor Aufruf

 Wenn Aufruf von R aus Ebene l+1 erfolgt

o SV = L2 vor Aufruf

 Wenn Aufruf von R aus Ebene l+2 erfolgt

o … (bis L7 in TAM)

Anlegen von SV an Aufrufstelle

Nur der Aufrufer kennt seine Ebene

In Triangle/TAM: Parameter für CALL-Instruktion

Beispiel:

Zusammenfassung

 Kompliziertere Kompilierung

 Auch Laufzeitoverhead durch statische Verkettung

o Kompliziertere Funktionsaufruf

o Erhöhter Speicherbedarf

Es Lohnt sich nicht!

Verteilung bei Pascal

 49 % Global

 49 % Lokal

 2 % Nicht-Lokal

Routinen

Assembler-Äquivalent von Prozeduren und Funktionen einer Hochsprache.

Wichtige Maschineninstruktionen

 CALL r lege nächste Programmzeigeradresse auf Stapel und Springe auf Adresse r

 RETURN Nehme einen Wert vom Stapel und Springe dorthin

Wichtige Aspekte

 Aufruf einer Routine und Übergabe von Parametern

 Rückkehr von einer Routine und Rückgabe eines Ergebnisses

 Verwaltung von statischen Verkettungen

In Form eines Protokolls definiert (maschinenabhängig) [auch calling conventions]

Für Stack häufig

 Aufrufer legt Parameter auf Stapel (Reihenfolge?)

o Bei uns: links zuerst, dann nach links

 Routine wird aufgerufen und benutzt Parameterwerte

 Aufgerufene Routine nimmt Parameter vom Stael und ersetzt sie

durch Rückgabewerd

Dadurch beliebig viele Parameter übergebbar

Schwierig: Unterschiedliche Anzahl von Parameter an eine Routine übergeben.

Geht nicht ohne weiteres.

In der TAM

Relevante TAM Instruktionen

CALL (reg) addr Ruft Routine an Adresse addr auf, verwendet den Wert in reg als statische
Verkettung bei der Anlage eines neuen Frame

RETURN (n) d Sichert n Worte als Ergebnis vom Stack, entfernt den aktuellen Frame und d
Parameter, setzt Ausführung nach Aufrufstelle fort, legt Ergebnis oben auf
dem Stack ab.

Parameter (Argumente) zum Datenaustausch

 Aktuelle Parameter verwendet von Aufrufer bei Aufruf der Prozedur

 Formale Parameter innerhalb der Prozedur verwenden

o Verhalten sich innerhalb oder Prozedur wie lokale Variablen

 Eins-zu-eins Zuordnung von aktuellen und formalen Parameter

Übergabe als

 Call by Value

 Call by Referenz (var bei Deklaration und Aufruf der Prozedur)

o Übergabe der Adresse der Variable (als Zeiger)

Beispiel: Call-by Reference

Sonderfall: Prozedur/Funktion als Parameter (func)

 Repräsentiere Funktion durch Paar (Startadresse, statische Verkettung

 Soggenannte Closure oder Funktionsdeskriptor

 Aufruf dann über Closure

 TAM: Lege Closure auf Stack, dann CALLI zum Aufruf

Heap-Speicher

 Bisher Lebenszeit von Variablen gebunden an Geltungsbereiche

o Auch verschachtelt (statische Verkettung)

 Häufig: Lebenszeit unabhängig von Geltungsbereichen

 Beispiel: Datenstrukturen wie Listen, Bäume, etc.

o Struktur lebt unabhängig von Prozedure/Funktion

Dafür ist eine andere Speicherverwaltung als Stack

 Nachteil: Explizite Verwaltung durch Programm erforderlich

o Pascal, C, C++

 Teilweise Automatisierung möglich

o Java, Lisp, Smalltalk

o GarbageCollector

Heap i.d.R im selben Speicher wie im Stack

 Stack wächst und schrumpft bei Blockeintritt/-austritt

 Heap wächst bei Anlegen neuer Variablen, schrumpft(?) bei Freigabe

 Heap und Stack wachsen aufeinander zu

o Normalerweise: Stack wächst nach oben, Heap unten

o Bei Tam: Stack wächst nach unten, Heap Oben

Beispiel: Heap

 Elemente Löschen Neue Elemente hinzufügen

Einfügen neuer Elemente

 Bei nächten Einfügen ersten freien Platz verwenden

o Problem: Kann zu vielen kleineren Löcher in der Heap kommen (Fragmentierung)

 Heap wächst weiter

 Einfach Oben anhängen

 Heap wird immer größer und nie kleiner

 Andere Ansatz

o Finde genau passenden freien Speicherblock (Freie Bereiche verkettet)

o Finde größeren freien Speicher in HF und benutzte ihn teilweise

o Vergrößere Heap in Richtung Stack

o Falls nicht möglich: out-of-memory

Fragmentierung bekämpfen

 Verwende immer kleinsten passenden freien Speicherblock (immer sinnvoll?)

o Es können sehr viele kleine Lücken entstehen

o Verschmelzen benachbarter freier Speicherblöcke

o Kampaktierende Heap (verzweifelt!)

 Alles Zusammenschieben

 Problem: Alle Zeiger im Programm müssen aktualisiert werden

 Teillösung: Doppelte Indirektion über Handles

 These: „Es gibt kein Problem in der Informatik, was sich nicht durch

hinzufügen einer weiteren Indirektionsebene beheben lässt“

 Realisiert als Zeiger auf Zeiger

 Programm operiert mit Handles, werden nicht beeinflusst

 Zeiger innerhalb von Handles werden durch Kompaktierung

aktualisiert

Teilautomatische Speicherverwaltung

Automatische Freigabe von nicht mehr benutzten Speicher

 Garbage Collection

 Viele verschiedene Ansätze

 Einfacher Ansatz

o Kennzeichne alle Elemente auf Heap als nicht erreichbar

o Gehe nun alle Variablen durch (auf Heap und Stack!)

o Falls Zeiger: Markiere referenzierten Heap-Block als erreichbar

o Trage alle unerreichbaren Speicherblock in HF-Liste ein

o Problem:

 Wie „Zeiger“ erkennen

 Zeiger besonders kennzeichnen

 Heap-Blöcke müssen ihre Größe kennen

 Was, wenn Zeiger mitten in Heap-Block hinein?

Code-Generierung

Wir erzeugen direkt Maschinencode

Das erste Mal kommt Semantik ins Spiel:

Codegenerierung befasst sich mit Semantik der Eingabesprache

Gleiche Semantik für Quellprogramm und Zielprogramm (Ausnahmen)

 Abhängig von Eingabesprache

o Syntaktische Analyse

o Kontextanalyse

 Abhängig von Eingabesprache und Zielmaschine

o Codegenerierung

Schwierig allgemein zu formulieren

Unterprobleme

 Code-Selektion

o Ordnet Phrasen aus Quellprogramm Folgen von Maschineninstruktionen zu

 Speicherallokation

o Weist jeder Variablen Speicherplatz zu und führt über diesen Buch

 Registerallokation

o Verwaltet Registerverwendung für Variablen und Zwischenergebnisse (nicht in TAM)

Code Selektion
Semantik der Programmiersprache

 In der Regel auf Phrasenebene beschrieben

 Expressions, Commands, Declarations

Vorgehensweise

Induktives Herleiten der Übersetzung des gesamten Programms aus Übersetzungen von

Einzelphrasen

Problem: Mehrere semantisch korrekte Übersetzungen für eine Phrase. Welche konkrete

Instruktionsreihenfolge auswählen?

 Code-Selektion

Code-Funktion

Bildet Phrase auf Instruktionsfolge ab.

Wird definiert durch

Code-Schablone

Ordnet jeder speziellen Form einer Phrase eine Definition in Form von Maschineninstruktionen oder

Anwendungen von Code-Funktionen zu.

Wichtig: Eingabesprache muss vollständig durch Code-Schablone abgedeckt werden.

Code-Funktion

 * Anweisungsfolge C1;C2
Semantik: führe erst C1 aus,
dann C2

 Zuweisung I := E

Beispiel:

Aufbau einer Code-Funktion orientiert sich an Subphrasenstruktur

Die Reihenfolge ist nicht unbedingt zwingend

Code-Spezifikation

 Sammlung aller

o Code-Funktionen

o Code-Schablonen

 Muss Eingabesprache vollständig überdecken

Basierend auf Abstrakter Syntax:

Run Anweisungsfolge Zuweisung

Bedingte Anweisung Schleife Deklaration

POP nur, wenn s>0
(zusätzlicher Speicher
alloziert wurde)

Finden Sinnvoller Lablenamen schwierig. Label müssen unterschiedlich sein.

Beispiel: Code-Schablone

Code-Schablonen für Ausdrücke

Code-Schablonen für Deklarationen

Wenn 10 mal hintereinander eine Variable Deklariert wird, steht 10x PUSH z.B. 1, das könnte man

optimieren.

Ab jetzt Mini-Triangle, keine lokalen, nicht-lokalen Variablen

Beispiel:

Optimierung: const n  Inlining

Spezialisierte Schablonen für Sonderfälle

Inlining von Konstanten in Maschinen-Code

Optimiert:

Tippfehler: Pop(0) 1 richtig

Implementierung

Systematischer Aufbau

Orientiert sich direkt an Code-Funktion

Code-Funktionen beschreiben rekursiven Algorithmus zur Traversierung von DAST

Wieder bewährtes Visitor-Entwurfsmuster verwenden

Im Maschinencode gibt es keine LABELS nur Adressen

Backpatching

Const b ~ 10 ! direkt einfügen mit LOADL 10

Const y ~ 365 + x ! speicherplatz erstellen und berechnen

Geht in Triangle:

