Compiler I

Kompilierung
Vom Quellcode ... zum MaschinenCode

Entspricht haufig den Teilen der Sprachspezifikation

1. Syntax = Syntaxanalyse
2. Kontextuelle Einschrankungen - Kontextanalyse
3. Semantik > Codegenerierung

Ein-Pass Compiler

e Geht nur ein einziges Mal iber das Programm

o Bauti.d.R. keine Zwischendarstellung auf
e Fiihrt alle Phasen gleichzeitig aus
e z.B.: haufig Pascal Compiler

Multi-Pass Compiler

e Geht mehrmals Gber das Programm

Programmtext

J

| Syntaxanalyse

|—> Fehlermeldungen

Abstract Syntax Tree

| Kontextanalyse I———- Fehlermeldungen
Decorated Abstract Syntax Tree
| Codegenerierung |

I

Maschinencode

o Programm = Quelltext oder Zwischendarstellung (IR)

Vergleich Ein-/Multi-Pass Compiler

Ein-Pass Multi-Pass
Laufzeit + -
Speicher + (fur groBe | + (fiir kleine

Programme) | Programme)
Modularitat - +
Flexibilitat - +
Globale Optimierung - +
Eingabesprache Nicht fir

alle __

Nur Moglich bei Sprachen, bei denen

Bezeichner vor ihrer Verwendung

deklariert werden




Syntaxanalyse
1. Pass, in 2 Phasen aufgeteilt

Source Program

- Source Program
L | Syntax Analysis | Ch.4 .
__________ T ——-----
AST Aufteilen der Zeichfolge in Folge
l von Tokens.

| Contextual Analysis |

Token Stream Token ist atomares Symbol des

AST Quellprogramms
l - — Aufbau des ASTs aus Token-
| Code Generation | Ch.7 Folge
L}
Object Code Abstract Syntax Tree
|

| (Abstract) Machine | Ch. 6: Run-Time Organization

Scanner
Auch lexikalische Analyse oder Lexer genannt

Aufgabe

e Bilde Token aus Zeichen
e Entferne unerwiinschte Leerzeichen, Zeilenvorschiibe
e Fiihre Buch liber Zeilennummer und Eingabedateinamen

Lasst sich mit reguldren Ausdricken (Automat) I6sen.
Alternativ dazu:

Rekursiver Abstieg
Analog zum Parser

Normalerweise werden Kommentare ibernommen, gibt aber auch Scanner, die in Kommentare
reingucken (JavaDoc Generierung)

Lexikalische Grammatik in EBNF

Token ::= Identifier | Integer-Literal | Operator |
slsl=1~1(]) | eot

|dentifier ::= Letter (Letter | Digit)*

Integer-Literal ::= Digit Digit"

Operator =+ |- |*|/]|<|>|=

Separator ::= Comment | space | eol

Comment ::= | Graphic* eol

Diese wird transformiert

Token ::= Letter (Letter | Digit)*
| Digit Digit*
=< > =

[51:(=1€) | ~1(])]eot

Separator ::= | Graphic* eol | space | eol

Diese Transformierung ist nicht unbedingt notig, macht es allerdings schneller, da es weniger
Methoden gibt. Man kann nun aber nicht mehr zwischen Schliisselwortern und Bezeichner
unterscheiden, dies muss wahrend des Scannens repariert werden.



Implementierung

public Token scan() {
{/ Get nd of potential separators before
{// scanning a token
while { (currentChar =="1")

|| (currentChar == *?)
" (CUITEntChar ==’ } )
scanSeparator();

currentSpelling = new StringBuffer();

currentKind = scanToken();

return new Token(currentkind,
currentSpelling toString());

}

private byte scanToken() {
switch (currentChar) {

case ‘a’- case ‘b .. case ‘Z- case 'a case 'b" ... case 'z"
case ‘A’ case ‘B: __case 7" case 'A': case ‘B". ... case 'Z"
scan Letter (Letter | Digit)* takelt();
return Token.IDENTIFIER; while (isLetter(currentChar)
case ‘0" ... case ‘9" || isDigit(currentChar) )
scan Digit Digit* \ takelt();
return Token.INTLITERAL ; return Token.|IDENTIFIER;
case '+ case - __ . case =
takelt();
return Token. OPERATOR;
_.efc.

}

public class Token {

private static String[] tokenTable = new String[] {

"=int=", "=<char=", "<idenfiifier=", "<operator=",

“arl’a}"", Ilbeginll, "Eﬂnst", |rdD|r, "ElSE“, “'End",

"fLInC", “if", Irir-lll1 "let", "Df“, Ilpmclrr IFremrdllr

Ilthenlrr "t!"rpe"r Il.k“;]l.-llr IIM—.“EIF’

Il-lr Ir:ll n-n Il’llr II:=Il1 Il_,__Il’ Il(llr ||}|r’ Ir[ll1 Il]ll? Ir{ll1 "}"r IrIIr

"<emor>" };

private final static int firstiReservedWord = Token ARRAY,
lastReservedWord = Token WHILE;



Parser
Parsen der Token Folge in einen Abstrakten Syntaxbaum (AST)

Token

e Token ist atomares Symbol des Programms
e Zeichen selbst i.d.R. uninteressant, Ausnahme:
o Bezeichnernamen
o Konstante Werte (Zahlen, Zeichen), sog. Literale

Der Parser ist zum aufbauen des AST nur an der Art des jeweiligen Tokens interessiert.

Nur wenige Tokens tauchen spater im AST wirklich auf. Viele (z.B. Schlisselworter) bestimmen aber
implizit die Struktur des AST.

Grammatiken

Kontextfreie Grammatiken (CFG) sind Spezifiziert durch ein Tupel von
(nicht Terminalsymbolen, Terminalsymbolen, Produktionen, Startsymbolen € nicht Terminalsymbolen)

Die Produktionen werden haufig in der Backus-Naur-Form (BNF) angegeben. Ubersichtlicher ist es
allerdings die Extended BNF (EBNF) zu benutzen. Diese dirfen auf der rechten Seite (RHS) sowohl
BNF als auch Regulare Ausdriicke enthalten

Transformation von Grammatiken

CFG kann transformiert werden, unter Beibehaltung der beschriebenen Sprache.
Dies ist sehr nitzlich bei der Konstruktion von Parsern fiir CFGs

Vor Transformation Nach Transformation
Gruppierung Su= X+S S = X+5|X|e
S = X
NS
Linksausklammern S = XY |XZ Su= X(Y|2)
Linksrekursion N == X|NY N == X(Y) *
Ersetzung von Nicht- N = X Wenn nur eine Produktion
Terminalsymbolen mit LHS N, dann in RHS
allen Produktionen N durch
Xersetzenn = TST— |

Es konnen fir den Menschen niitzliche
Informationen verloren gehen. Das
Terminologie Ergebnis ist allerdings fir den

Compieler besser

e Erkennung
o Entscheidung, ob ein Eingabetext ein Satz der Grammatik G ist
e  Parsing
o Erkennung und zusatzlich Bestimmung der Phrasen-Struktur
= z.B. durch konkreten/abstrakten Syntaxbaum
e  Findeutigkeit

o Eine Grammatik ist eindeutig, falls jeder Eingabetext auf maximal eine Weise geparsed
werden kann



Strategien

Beispiel: MicroEnglish

Sentence = Subject Verb Object.
Subject := I |aNoun|the Noun
Object := me |aNoun | the Noun
Noun = cat|mat|rat

Verb u= like | is | see | sees

Bottom-Up
Untersucht EingabeText Zeichenweise, von links nach rechts und baut Syntaxbaum von unten nach

oben auf.

Aktionen
e Shift
o Lese Zeichen ein und lege es auf Stack
e Reduce
o Erkenne ein Nicht-Terminal LHS der Produktion p
= Zusatzlich: Oberste Elemente des Stapels miissen RHS von p entsprechen.
Ersetze durch LHS von p (auf den Stack legen)
= Ende wenn Startsymbol S erreicht und Eingabetext komplett gelesen
Beispiel:
Noun Subject
the cat sees a rat 5 ‘ Noun
the cat sees a rat
Subject Subject
Noun Verb Noun ‘ Noun Verb
the c:llt sele.s a rat . the cat sees a rat
Sentence Subject Object
1
| | ’—‘—‘ ’—‘—‘
Subject ‘ Object Noun Verb Noun
Noun Verb Noun | | |
| | | the cat sees a rat
the cat sees a rat .

Schwierigkeiten beim Bottom-Up

Wie entscheiden, welche Produktion beim Zusammenfassen gewahlt werden soll, wenn es mehrere
Moglichkeiten gibt?

Lésung: Nicht nur bekannte Zeichen betrachten, sondern auch Zustand einbeziehen.
Arbeitet mit LR(k)-Technik

e L:Lese Eingabetext von links nach rechts
e R: Fasse die am weitesten rechts stehenden Terminal-Symbole zusammen und baue von

unten auf



Top-Down
Rekursiver Abstieg

Untersuche Eingabetext Token weise, von links nach rechts
Baue Syntaxbaum von oben nach unten auf

e Von Start-Nicht-Terminalsymbol in der Wurzel ...
e ..zuden Terminalsymbolen in den Blattern

Aktionen

e Expandiere jeweils das am Weitesten links gelegene Nicht-Terminal N durch die Anwendung
einer Produktion N ::= X

e Waihle Produktion aus durch betrachten der nachsten n Zeichen (Token) (LookAhead) des
Eingabetextes (hier n = 1)

e Falls keine Produktion auf Zeichen passt = Fehler

e Ende wenn Eingabetext komplett gelesen und keine nicht expandierten Nicht-Terminale
mehr existieren

Beispiel:
Sentence
Sentence |
1
Sentence [ | | ] s I
I : 1 | | Subject Verb Object . Subject Object
Subject Verb Object 5
N
eun Noun Verb Noun
the cat sees a rat .
the cat sees a rat o | I I
the cat sees a rat

Hintergrund

s _—  parse tree of the
_— sentential form
aq ... g AXqp... Xm

al " oaj aj an

current look-ahead symbol
Falls es moglich ist ...

e .. bei Betrachtung der nachsten k Zeichen (Tokens) des Textes
e .. immer die richtige Produktion zu finden

... dann ist die Grammatik LL(k)

e L:Lese EingabeText von links nach rechts,
e L:Leite immer vom am weitesten Links stehenden Nicht-Terminal ab

Konstruktion von LL(k) Grammatik kann mihsam sein.
Durch Transformation kann die Lesbarkeit erschwert werden.



Implementierung
Top-Down Parser

Die Struktur des konkreten Syntaxbaumes entspricht dem Aufrufmuster von sich wechselseitig
aufrufenden Prozeduren. Fir jedes Nicht-Terminal XYZ existiert eine Parse-Prozedur parseXYZ, die

genau dieses Nicht-Terminal parst. Subject = I |a Noun| the Noun

Sentence = Subject Verb Object . protected void parseSubject() ({
if (currentToken matches “1I7) {
. accept (“I”) ;
protectecsl. ;It-)ldtp();lrseSentence() { } else if (currentToken matches “a”) {
parseSubjec ; accept (“a”) ;
parseVerb() ; parseNoun () ;
parseObject() ; . } else if (currentToken matches “the”) (
accept (“.”) ,./ accept (t) pruft, ob aktuelles accept (“the”) ;
} Token das erwartete Token t ist. parseNoun () ;
} else

report a syntax error
Die Methode muf2 immer anhand

von currentToken die passende
Alternative auswahlen kénnen.

Ablauf einer parseN Methode

e Bei Eintritt enthalt currentToken eines der Token, mit denen N beginnen kann
e .. sonst ware eine andere Parse-Methode aufgerufen worden (oder Syntaxfehler liegt vor)

Ablauf einer accept(t) Methode

e Bei Eintritt muss currentToken =t sein
e .. sonst Syntaxfehler
e Bei Austritt enthalt currentToken das auf t folgende Token

Entwicklung von Parsern mit rekursivem Abstieg

1. Formuliere Grammatik (CFG) in EBNF
a. Eine Produktion pro Nicht-Terminal
b. Beseitige IMMER Linksrekursion
c. Klammer gemeinsame Teilausdriicke nach links aus wo méglich
2. Erstelle Klasse fir den Parser mit
a. protected Variable currentToken
b. Schnittstellenmethoden zum Scanner
i. accept(t) und acceptIT() [z.B. bei let muss nicht auf ,let” Gberpriift werden]
c. Public Methode parse welche ...
i. Erstes Token via Scanner aus dem Eingabetext liest
ii. Die Parse-Methode des Start Nicht-Terminals S der CFG aufruft
3. Implementiere protected Parsing Methoden
a. Methode parseN fiir jedes NichtTerminalsymbol N

LL(k) Grammatik
starters[[X]]

starters[[ab]] = {a}
starters[[alb]] = {a, b}
starters[[(re) * set]] = {r,s}

follow[[X]]



X = alb
Y == c|d

follow[[N]] ={ }
follow[[X]] ={c,d}
follow[[Y]] ={ }

Eine Grammatik G ist LL(1), wenn gilt:

e Falls G X|Y enthélt und sich weder X noch Y zu Epsilon ableiten lassen:
starters[[X]] n starters[[Y]] =0

e Falls G X|Y enthélt und sich beispielsweise Y zu Epsilon ableiten |asst:
starters[[X]] n (starters[[Y]] U follow[[X|Y]] = @

e Falls G X* enthélt :
starters[[X]] N follow[[X *]] = @

Man kann manche nicht LL(1) Grammatiken in LL(1) Grammatiken transformieren

Beispiel: Wenn G nicht LL(1), aber Schema trotzdem angewandt

single-Command ::= V-name := Expression starters[[ V-name := Expression]] = starters[[ V-name ]]
| Identifier ( Expression ) = { Identifier }

ifE ion th ingle-C and . . -
| I Expression then single-Comman starters[[Identifier ( Expression ) ]] = { Identifier }

else single-Command
starters[[ if Expression then ... ]] = {if}

private void parseSingleCommand () {
switch (currentToken.kind) {

accept (Taoken.BECOMES) ;
parseExpression(); }
ak ;

ca, Token.IDENTIFIER:
parseldentiit .
accept (Token.LPAREN) ;
parzeExpression();
accept (Token.RPAREN)

2>

Beispiel: Fehler wenn Linksausklammern vergessen

single-Command ::= Identifier := Expression starters[[ Identifier := Expression ]] = { Identifier}
| Identifier ( Expression )
| if Expression then single-Command starters[[ Identifier ( Expression ) ]] = { Identifier }

else single-Command

private void parseCommand () {
switch (curremntFs —ind)

cas .IDENTIFIER:
Beispiel: Fehler wenn Linksrekursion nicht eliminiert colbe Token.1F:
case Token.WHILE:
case Token.LET:
BEGIN-

starters[[ single-Command J]

Command ::= single-Command
| Command ; single-Command

case Token.

= { Identifier, if, while, let, begin }

starters[[ Command ; single-Command ]] break;

= { Identifier, if, while, let, begin } — _
.IDENTIFIER:

Token.IF:
case Token.WHILE:
case Token.LET:
cak%e Token.BEGIN:
rseCom
accept (Token.SEMICOLCN)
parseSingleCommand () ;

}

break;




Abstrakte Syntaxbaume

Unser bisheriger Parser baut mit seinem rekursiven Abstieg implizit einen Syntaxbaum auf, dieser

wird allerdings noch nicht gespeichert. Die rekursiven Aufrufe werden benutzt, um den Baum

aufzubauen

Der AST basiert auf der nicht transformierten Grammatik von Triangle

Program ::= Command Program
Command = Command ; Command SequentialCmd
V-name := Expression AssignCmd .
| Identifier ( Expression ) CallCmd SequentialCmd
| if Expression then single-Command IfCmd
else single-Command
| while Expression do single-CommandWhileCmd
| 1let Declaration in single-Command LetCmd Cy Cy
Expression ::= Integer-Literal IntegerExpr
| V-name VnameExpr
| Operator Expression UnaryExpr IfCmd
| Expression Operator Expression BinaryExpr ‘
V-name = Identifier SimpleVname
Declaration ::= Declaration ; Declaration SeqDecl E Cy C,
| const Identifier ~ Expression ConstDecl
| var Identifier : Type-denoter VarDecl
Type-denoter ::= Identifier SimpleTypeDen

Reprdsentation des AST in der Java Implementierung

Command
abstract class Command = i p B

extends AST { ... } | V-name := Expression

| Identifier ( Expression )

| if Expression then single-Command
else single-Command

|  while Expression do single-Command

| 1et Declaration in single-Command

public class SequentialCmd extends Command {
public Command cl, <2;

}

public class AssignCmd extends Command {
public Vname v
public Expression e;

AssignCmd
v E
WhileCmd
E Cc
SequentialCmd
AssignCmd
CallCmd
HCmd
WhileCmd
LetCmd

} Die AST Subklassen haben

public eclass CallCmd extends Command {
public Identifier i;
public Expression e;

}

public class IfCmd extends Command {
public Expression e;
public Command cl, e2;

etc.

Aufbau des AST

auch entsprechende
Konstruktoren zur korrekten
Initialisierung der Objekte.

CallCmd

—

Ident

LetCmd

E

—

D

Wird vom Parser

- = verwendet
Command ::= single-Command ( ; single-Command):x

Wird fur den AST
verwendet

Command ::= Command ; Command SequentialCmd

protected Command parseCommand () {
Command clAST = parseSingleCommand() ;
while (currentToken.kind == Token.SEMICOLON) {
acceptIt();
Command c¢2AST = parseSingleCommand () ;
clAST = new SequentialCmd(clAST, c2AST);
}

return clAST; SeqCmd

SeqCmd Cmds

Cmd, Cmd,

C



Kontextanalyse (Semantische Analyse)

Gelegentlich auch
“Semantische

analyscyocnanit Code Generation Ch.7

Source Program

Syntax Analysis Ch.4

AST

Uberprifung der
kontextuellen
Einschrankungen.

Decorated AST

Object Code

(Abstract) Machine Ch. 6: Run-Time Organization

Geltungsbereiche und Symboltabellen

Monolithische Blockstruktur

program
Declarations

sequence of
declarations

sequence of
commands

begin
Commands

end

program

D

procedure P
D

begin
=

end

procedure Q
D

begin
(e

end

begin
=
end

Charakteristika
o Nur ein Block
o Alle Deklarationen gelten global
Regeln fir Geltungsbereiche
o Bezeichner darf nur genau einmal
deklariert werden
o Jeder benutzer Bezeichner muf3
deklariert sein
Symboltabelle
o Fir jeden Bezeichner genau ein Eintrag in
der Symboltabelle
o Abruf von Daten muB schnell gehen
(bindrer Suchbaun. Hash-Tabelle)

Charakteristika
o Mebhrere liberlappungsfreie Blocke
o Zwei Geltungbereiche: Global und Lokal
Regeln fir Geltungsbereiche
o Global deklarierte Bezeichner diirfen nicht global
redeklariert werden
o Lokal deklarierte Bezeichenr diirfen nicht im selben Block
redeklariert werden
o Jeder benutzte Bezeichner muss global oder lokal zu seiner
Verwendungstelle deklariert sein
Symboltabelle
o Bis zu zwei Eintrage fiir jeden Bezeichner (global und loal)
o Nach Bearbeiten eines Blockes missen lokale
Deklarationen verworfen werden
Beispiel: FORTRAN



program
D

procedure P

procedure PP

proc PPP

Charakteristika
o Blécke ineinander verschachtelt
o Beliebige Schachtelungstiefe der Blécke
Regeln fir Geltungsbereiche
o Kein Bezeichner darf mehr als einmal innerhalb eines

Blockes deklariert werden
o Kein Bezeichner darf verwendet werden, ohne dass er lokal
oder in den umschliefSenden Blocken deklariert wurde
e Symboltabelle

procedure Q

begin o Mehrere Eintrage je Bezeichner moglich
e o Aber maximal ein Paar (Verschachtelungstiefe, Bezeichner)
snd o Schneller Abruf des Eintrages mit der grofRten
pegin Verschachtelungstiefe
end e Beispiele: Pascal, Modula, Ada, Java, ...

Struktur der Geltungsbereiche
Fiir Sprachen mit verschachtelter Blockstruktur

Global G¥oba
P
? ©
<] Suchpfad fur ein
verwendendes
D Auftreten in P3
D3 * Pl P2
Q
Wahrend der Programmanalyse ist immer
nur ein einzelner Pfad sichtbar.

Implementierung der Symboltabelle

o Verkettete Liste und lineare Suche
o InTriangle verwendet

e Hash-Tabelle (effizienter)

e Stack aus Hash-Tabellen

Attribute
Wofiir werden Attribute gebraucht?

Mindestens fur

e Uberpriifung der Regeln fiir Geltungsbereiche von Deklarationen
o Bei geeigneter Implementierung der Symboltabelle: Einfaches Abrufen reicht, da alle
Regeln bereits in Datenstruktur realisiert
e Uberpriifung der Typregeln
o Erfordert Abspeicherung von Typinformationen
e Code-Erzeugung
o Benotigt spater z.B. Adresse der Variable im Speicher

Speicherung von Attributen
Imperativer Ansatz (Explizite Speicherung)

e Ok fiir sehr einfache Sprachen



e Bei Komplexeren nicht moglich
Objektorientierter Ansatz (explizite Speicherung)

Funktioniert, wird aber bei realistischer Sprache sehr leicht unhandlich

Bisher wurden Kombinationen wie zum Beispiel Arrays und Records (und deren Kombination) nicht
betrachtet. Dies mit Expliziten Strukturen kann leicht sehr komplex werden

Im AST stehen bereits alle Daten, also den Attributen einfach einen Verweis auf die urspriingliche
Definition (im AST) eintragen

let var x: Integer;
var y: Char
in begin
let var z: Boolean
Verwendet Zeiger Program din coa
in AST. | e

LetCmd

level | idN

1 . LVAEEr.
| . 1| S
Sequentia | 1 —e
2 I
VarDecl
VarDecl LetC‘ md
SimpleT SimpleT VarDecl o
| |

N =X

Ident. Ident. Ident. Ident. :
| | [ SimpleT Sehr hilfreich fir
x Integer y Char |dent. Ident. DEMXZQPHdeS
l I S.

z Boolean

Identifikation
1. Schritt der Kontextanalyse

e Beinhaltet den Aufbau geeigneter Symboltabelle
e Hat als Aufgabe den Verwendungen von Bezeichnern zu ihren Definitionen zu ordnen
e Durch Pass liber den AST realisierbar

Aber besser kombiniert mit ndchstem Schritt

Typprifung
Was ist ein Typ?

e Eine Einschrankung der moglichen Interpretationen eines Speicherbereiches oder eines
anderen Programmkonstrukts”

e Eine Menge von Werten
Warum Typen benutzen?

e Fehlervermeidung: Verhindere eine Art von Programmierfehlern (,,eckiger Kreis“)
e laufzeitoptimierung: Bindung zur Compile-Zeit erspart Entscheidung zur Laufzeit

Muss man immer Typen verwenden?

e Nein, viele Sprachen kommen ohne aus
o Assembler, Skriptsprachen, LISP, ...



Typiiberpriifung

e Bei statischer Typisierung ist jeder Ausdruck E entweder
o Misstypisiert, oder
o Hat einen statischen Typ T, der ohne Evaluation von E bestimmt werden kann
e E wird bei jeder (fehlerfreien) Evaluation den statischen Typ T haben
e Viele moderne Programmiersprachen bauen auf statische Typprifung auf
o OOP-Sprachen haben aber auch dynamische Typpriifung zur Laufzeit
(Polymorphismus)

Generelles Vorgehen

1 Berechne oder leite Typen von Ausdriicken her
a. Ausden Typen der Teilausdriicke und der Art der Verkniipfung
2 Uberpriife, das Typen der Ausdriicke Anforderungen aus dem Kontext geniigen

Bottom-Up Verfahren

e Typen an den Blattern des AST sind bekannt
o Literale (Direkt aus Knoten)
o Variablen (Aus Symboltabelle)
o Konstanten (Aus Symboltabelle)
e Typen der internen Knoten her leitbar aus
o Typen der Kinder
o Typregeln fiir die Art der Verknipfung im Ausdruck

Algorithmus fiir Kontextanalyse
Kombiniere Identifikation und Typprifung in einem Pass

Dies Funktioniert, solange Bindung immer vor Verwendung
Mogliche Vorgehensweise

e Tiefensuche von links nach rechts durch AST

e Dabei sowohl Identifikation und Typuberprifung

e Speichere Ergebnisse durch Dekorieren des ASTs
o Hinzufligen weiterer Informationen

Gewiinschtes Ergebnis:

Zwei Unterphasen:
* Regel fur Geltungsbereiche public abstract class Expression extends AST {
gepruft in Identifikationsphase LetCmd // Every expression has a t e
+ Typregeln gepruft in —_—— Y P ¥P

Typiiberpriifungsphase public Type type;

Program
|

SequentialCmd

AssignCmd AssignCmd }

SequentialDecl BinaryExpr
! P

public class Identifier extends Token {

:char ) . ) X e
VarDecl VarDecl Vnamqlﬁ)]({:r // Binding occurrence of this identifier
e) ' \ntE)I?)r public Declaration decl;
SimpleT SimpleT\ SimpleVar 'mtS\mpIeVar Ant
I | |:char 1:int }

Ident Ident Ident. Ident Ident Char-Lit ™ Ident Ident  Op Int-Lit

| | 1 | I | | |

n Integer ¢ Char < ‘& n n + 1

Um die zusatzlichen Informationen speichern zu kénnen, missen einige AST Knoten um zusatzliche
Instanzvariablen erweitert werden.



Implementierung

Implementierung geht am besten Uber das Visitor-Pattern

Program visitProgram * return null
Command visit..Cmd * return null
Expression |visit..Expr + dekoriere ihn mit seinem Typ

* return Typ

Vname visitsimpleVname + dekoriere ihn mit seinem Typ
+ setze Flag, falls Variable
* return Typ

Declaration |visit..Decl + trage alle deklarierten Bezeichner in
Symboltabelle ein
* return null

TypeDenoter | visit. .TypeDenoter |+ dekoriere ihn mit seinem Typ
* return Typ

Identifier visitIdentifier + prufe ob Bezeichner deklariert ist
+ yvarweise auf bindende Deklaration
+ return diese Deklaration

Operator visitOperator + prufe ob Operator deklariert ist
+ verweise auf bindende Deklaration
+ return diese Deklaration

Durch das ausnutzen von Overloading kann man die visitXYZ Methoden im Visitor alle in visit
umbenennen.

Standartumgebung
Wo kommen Definitionen von Integer, Char, ... und putint, getint, +, -, * her?

Diese missen vorliegen, damit der Algorithmus richtig funktionieren kann.
Sie miissen also vorher definiert sein.

e Einlesen von Definitionen aus Quelltext
o Ada, Haskell, VHDL

e Direkt im Compiler implementieret
o Pascal, teilweise C, Java, ...
o Triangle

Geltungsbereich der Standardumgebung

e Ebene 0: Um gesamtes Programm herum oder
e Ebene 1: Auf Ebene der globalen Deklarationen im Programm

In Triangle
Idee: Trage Deklaration vorher direkt in AST ein (als Sub-AST)

Ohne konkrete Realisierung



e Die Konkrete Realisierung ist zu dem Zeitpunkt egal

e Bei der Code Generierung werden diese Konstrukt als Sonderfalle betrachtet
Typaquivalenz
In MiniTriangle einfach, da nur primitive Typen vorhanden.

Triangle ist komplizierter: Arrays, Records, benutzerdefinierte Typen

type Tl ~ record n: Integer; c: Char end; type Word ~ array 8 of Char;
type T2 ~ record c: Char; n: Integer end;

var wl : Word;

var t1 : Tl; wvar t2 : T2; var w2 : array 8 of Char;
if €1 = t2 then ... if wl = w2 then ...
Legal? Legal?

Struktur nicht dquivalent, Name nicht dquivalent  Struktur dquivalent, Namen nicht Aquivalent
Liegt in Entscheidung des Sprachdesigners.

Moglichkeiten:

e Strukturelle Typaquivalenz
o Primitive Typen:
= Missen identisch sein
o Arrays:
» Aquivalenter Typ fiir Elemente,
= gleiche Anzahl
o Records:
=  Gleiche Namen fiir Elemente,
* Aquivalenter Typ fiir Elemente,
= gleiche Reihenfolge der Elemente
e Typéaquivalenz liber Namen
o Jedes Vorkommen eines nicht-primitiven Typs (selbstdefiniert, Array, Record)
beschreibt einen neuen und einzigarten Typ, der nur zu sich selbst dquivalent ist

Aufgrund der Komplexitat von dieser Sache in Triangle reicht die Klasse Type nicht aus
Idee: Wir verweisen auf die Typbeschreibung im AST

Vorgehen:

1. Ersetze in Kontextanalyse alle Typenbezeichner durch Verweise auf Sub-ASTs der
Typdeklaration

2. Fihre Typprufung durch strukturellen Vergleich der Sub-ASTs der Deklaration durch

Beispiel:



Before: [ i | (2) Atter:
TypeDeclaration VarDeclaratuon VarDeclaration TypeDeclaration

(1)
ArrayTypeDenoter ArrayTypeDenoter

SimpleT SimpleT SimpleT

Ident.  IntLit  Idemt Ident Ident Ident. IntLit. Ident

(3)

Ident.  IntLit

Word 8 Char wl Word w2 8 Char Word &

Run-Time Organization

e Compiler libersetzt Hochsprachenprogramm in Aquivalentes
Maschinenprogramm

e laufzeitorganisation beschreibt Darstellung von abstrakten
Strukturen der Hochsprache auf Maschinenebene

e Instruktionen und Speicherinhalte

Wichtige Aspekte

e Datendarstellung der Werte jedes Typs der Eingabesprache

AurrayTypeDenoter

char

VarDeclaration VarDeclaration

L 1

)

ArrayTypeDenoter

P

ﬁi:pressic-ns Objects

Arrays

Ident Ident.  IntLit.  char
wl wl a

Y

WVariables Procedures
\ Methods

semantic
aap

Machine
Instructions

e Auswertung von Ausdriicken und Handhabung von Zwischenergebnissen

e Speicherverwaltung verschiedener Daten: Global, lokal und Heap

e Routinen zur Implementierung von Prozeduren, Funktionen und ihre Dateniibergabe

e Erweiterung auf 00-Sprachen Objekte, Methoden,
Klassen und Vererbung

TAM (Triangle Abstract Maschine)

Harward-Architektur (vs. Von Neuman-Architektur)

e Datenspeicher: 16b Worte
e Instruktionsspeicher 32b Worte

Die Adressierung der Adressbereich erfolgt liber CPU Register
(ansonsten Stackmaschine)

Adressierung des Instruktionsspeichers

Aufsteigende Adressen

Code Store Data Store
CE— 5B
global
segmer
code
E=gment frame
cp—+}
CT—%
LB —*
frame
unused a7~
unused
FE—] HT—*]
prim- heap
itive segmen
E=gment t
PT—* HE—*

Adressierung des Datenspeichers

Programm | CB Code Base (konstant) Stack
CT Code Top (konstant)

CP Code Pointer (variabel) Heap
Intrinsics | PB | Primitive Base (konstant)
PT Primitive Top (konstant)

SB
ST
HB
HT
bl

Stack Base (konstant)
Stack Top (variabel)
Heap Base (konstant)
Heap Top (variabel)
Heap Free (variabel)

TAM Instruktion

e 0p, 4b; Art der Instruktion

e 1, 4b; Registernummer

e n, 8b; OperandengrolRe in Worten (nicht nur)

e d, 16b; Adressverschiebung (displacement, offset)

stack



TAM Befehlssatz

Wnerm.

Eff=ct

0 | LOAD(n) alf]
1| LOADA d[r]
2 | LOADI(n)

3 | LoaDLd
4 | STORE(n) d[r]
5 | STOREI(n)

& | CALL{n} d]r|
7 | caLu
8 | RETURN(n) d

g —
10 | PUSH d
11 | POP(n) 4

12 | Jume djf]
13 | Jumrl
14 | JUMPIF(n) dr]

1% HALT

TAM Intrinsics
Primitive

»Magische” Adressen im Programmspeicher

Fihren bei Aufruf als Routine komplexe Operationen aus

Fetch an n-word abject from the data address and push it onto the stack

Fush the data addrest onta the stack

Pop a data address from the stack, fetch an n-word object from that address,
push it anto the stack

Fush the oneward literal valuee d anto the stack

Fop an n-word object {rom the stack, and store it at the data address

Fop an address from the stack, then pop an n-word object from the stack

and stere it at that address

Call the routine at the code address wsing the address in register noas the statc link
Fop a closure (static link and code address) from the stack, then call the routine
Return from the current routine; pop an n-word result from the stack, then pop
the topmast frame, then pop d words of arguments, then push the result back
{unused})

Fush d words [uninitialised) onte the stack

Fop an n-word result from the stack, then pop d more words,

then push the result back on the stack

Jump to code address

Fop a code address from the stack, then jump to that address

Fop a one-word value from the stack, then jump to code address

if and only if that value equals n

Stop esecution of the program

Addr | Mnemao | Arg | Res | Effect

2[PB| net t t

=1t
B‘[l‘i‘.B] add |2 | @ |i=il4i
15[‘P‘B] ge il, 2 t Set t'=true iff il > i2
Zﬁ[IPIB] putint i - Write an integer whose value is |

Darstellung von Daten
e Unverwechselbarkeit Unterschiedliche Werte sollen unterschiedliche Darstellungen haben
o Klappt nicht immer (duale Gleitkommadarstellung reeller Zahlen)
e Einzigartigkeit Ein Wert wird immer auf die gleiche Weise dargestellt
e Konstante GrofRe Alle Werte eines Typs belegen dieselbe Menge an Speicherplatz

e Art der Darstellung
o Direkt Wert einer Variable x kann direkt adressiert werden

Effizienter Zugriff

o Indirekt Wert einer Variable x muss liber einen Zeiger bzw. Handle adressiert werden

Primitive Typen

Dynamische Arrays
Rekursive Typen
Objekte

#[T] : Anzahl unterschiedlicher Elemente in T

Size[T]: minimaler Speicherbedarf (in Bit) zur Darstellung eines Wertes aus T

Es muss immer gelten size[T] >= log2(#[T])



#T] size[T] | Darstellung
Boolean 2 =1 Oand 1
Integer g:;g or 16/ 32 | 2-complement
A
Char g,\?e"r 8/16 |ASCIl/Unicode
float infinite 32/ 64 |approximation
In der TAM
Boolean | 16b
Char 16b
Integer 16b

Da in TAM Wort adressiert

Bei Triangle brauchen wir fiir Records und co etwas mehr.

Record

S

type Date ~ record

¥y -
m :
d :

end;

Integer,
Integer,
Integer

type Details ~ record

female : Boolean,

dob : Date,

end;

status : Char

var today: Date;
var my: Details

today.y
today.m
today.d

Speicherbedarf und Adressierung

type Date = record

Y Integer,
m Integer,
d Integer
end;

var today: Date;

Ublicherweise wird ein
Record durch die Anreihung
der Darstellungen seiner
Komponenten reprasentiert.

Im Beispiel wird angenommen, das
ganze Worter adressiert werden.
erschwenderisch fur Boolean!

my . female

my.dob.y

my .dok.m
my.dob.d

my .status

@ size[Date] = 3 * size[Integer] = 3 Worte

@ address[today. y] = address[today]

@ address[today.m] = address[today] + size[Integer]

@ address[today.d] = address[today] +
2"size[Integer]

Viele reale Prozessoren haben Anforderungen an Adressausrichtung der Daten

Beispiel: Es konnen nur 32b Worte als Einheit adressiert werden

Ist schneller, als groRere Freiheit zu ungeschitzten

Darstellung von Records im Speicher kann ineffizient werden



e Unter Platzgesichtspunkten (wenn optimal ausgerichtet)
e Unter Laufzeitgesichtspunkten (wenn optimal gepackt)

Variante Records

Ahnlich einer Record, aber zu einem Zeitpunkt existiert immer nur eine Untermenge von
Komponenten. (Wurde zur Typumwandlung benutzt, illegal ;-))

Selektion durch type tag

type Number = size[Number] = size[Boolean] + max(size[Integer],
CEEmel size[Real])
case (discrete:Boolean) of
true: (i: Integer): address[num. acc] = address[Number]
N Ellres (@ keEl address[num. i] = address[Number] + size[Boolean)]
end;
var num: Number address[num. r] = address[Number] + size[Boolean)]
num.discrete true num.discrete false
num. i 27 num.r

§.23312

unused

Arrays
e Zusammengesetzter Typ
e Besteht aus einem oder mehreren Werten eines Typs
o Unterschied zu Record

type Hame = array 4 of Chae;

e  Zugriff Gber Index (Beginnt bei 0) var me: Hama
var full: array I of Hams

Statische Arrays =elon ] T
m=[1] | ‘e

haben feste, zur Compile-Zeit bekannte Abmessungen mel2] ) T |
m=[3] [ '@
et £a11[01101 [ K
£ull[0][1] | &

@ size[Name] = 6 * size[Char] = 6 Worte Fa11ro1121 [ |

@ address[me [0]] = address[me] fulllOT03] | -5 |

. £al1[1119] [0 |
@ address[me [11] = address[me] + 1 * size[Char] Zallr11011 | ¥

@ address[me [1]] = address[me] + i * size[Char] fulllllizl | ¥ |
£all[1]103] | o

Dynamische Arrays g

buffer = new char[len]:

haben zur Laufzeit variable Abmessungen

buffer.length

Indirekte Darstellung tiber Deskriptor putter %‘ butfer.scazt | p |
E buffer.length
‘C’ | buffer[0] buffer[0]
e Adresse des ersten Elements "o | bufzerii "o | butger(i]
Ab | 'm" | buffer(2] buffer[2]
[ ) Y
messung T = Ferr I =
. . . | 1| buffer(s] [ | butfer[5]
Speicher wird zur Laufzeit angefordert (- Heap) e | butteri6] buffer[6]
| T | buffer[7] buffer[7]

Rekursive Typen

Referenzieret sich selbst in seiner eigenen Definition .
class IntList {

In der Regel nur Uber Zeiger int head;
IntList tail;

[a—



Auswertung von Ausdriicken

STORE a
LOAD a
LOADL n
d := a*a + 2%a*b — A*a¥c; ADD
SUB
MUL
LOAD a
LEEE 2 a a aka aka
oot 2 —
LOAD a nstr. eaning
MUL B
T & STORE a |Pop the top value off the stack and store it at address a.
g LoaD @ |Fetch a value from address a and push it on to the stack
LOADL 4 a*a | a*a | | a*a | LoaDL n |Push the literal value n onto the stack
LOAD a 2 2%g 24z*h
MUL ADD Replace the two top values on the top by their sum.
LOAD c
MUL SUB Replace the two top values on the top by their difference.
SUB
STORE d MUL Replace the two top values on the stack by their product.

Register-Maschine
Sehr schnelle Speicherelemente direkt im Prozessor

e  Fir Zwischenergebnisse
e Inder Regel 8/16/32/64b breit
e Begrenzte Anzahl, Gblicherweise 4..32 direkt verwendbar (in wirklichkeit gibt es viel mehr)

Nicht immer so allgemeingiltig verwendbar, haufig Einschrankungen

e Nur bestimmte Register fiir bestimmte Operationen
e Nicht alle Arten von Operanden fir alle Operationen

Code fur Registermaschine ist effizienter, aber Kompilierung ist komplexer.

e Verwaltung (Allokation) von Registern

e Speichere Zwischenergebnisse in Registern

e Problem: Endlich viele Register! Was wenn Ausdruck komplizierter (zu viele
Zwischenergebnisse)=

Speicherverwaltung
Globale Variablen: Existieren iber gesamte Programmlaufzeit

e Compiler kann bereits Speicherbedarf jeder Variable berechnen
e Damit kann jeder Variable passender Speicher zugewiesen (alloziert) werden
e Nun bekannt: Adresse jeder Variable im Speicher

Blindige Anreihung
Lokale Variablen:

e [stim Inneren eines Blockes definiert

o Prozedur, Funktion, Let
e Existiert nur wahrend der Block aktiv ist
e Hat eine Begrenzte Lebensdauer

Wichtig: eine Prozedur kann gleichzeitig mehrfach aktiv sein (rekursion)



Organisationsstruktur: Stack Frame

Jede Prozedur hat einen Stack Frame

e Lokale Variablen

e Verwaltungsdaten

e Aktuelle Parameter

Wird bei Prozeduraufruf angelegt und nach Prozedurende abgebaut

after start

SB
globals

ST

program calls ¥

SB
-I:‘ glohals

LBE—
frame
for Y

ST

Verwaltungsdaten (3 Worte)

e return adress

e Ricksprungadresse

e Dynamic link

e Vorheriger LB (Verkettung der Frames)

e Static link

Beispiel: Adressierung von Variablen

let
var a:
var b:
var c:
in
proc Y() ~
let war d:
var e:
in

Boolean:
Char;

Integer

proc Z() ~
let wvar £: Integer
var g: Char:
in
B 4 ) I
in begin
- X{): .0 Zf):
end

array 3 of Char;

Integer:

Y has returned

SE—
glohals

ST

link
data

local

let ...
£cals Y in proc Y() =~
proc E{) ~ .. ¥()
SB in .. ¥{); &(0);
Qlobals
dynamic
o ylink
frame
for & )
LE— f registers
rame
for Y 5B | Stack Base
ST— LB |Local Base
ST | Stack Top
frame
static link
d}-‘namiclink

retumn addressT™ Riicksprungadresse nach

Abarbeiten der Prozedur

variables

frame Wegen der
ink static link Werwaltungsdaten

data dynamic link (3 Worte)

return address beginnen die

i { lokalen Variablen
variables erst bei Adresse 3
im Stack Frame

var | size |address
a 3 0[SB]
b 1 3[sB]
c 1 4[SB]
d 1 3[LB]
e 1 4[LB]
1 3[LB]
g 1 4[1B]




Statische Programhierarchie

Mit LB und SB nicht I6sbar. Daher Static Link bendtigt progrem
Variablen UmschlieRender Blocke liegen auf jeden Fall auf dem Stack, Fegeesam= £

die Frage ist nur wo? Man misste sich irgendwie hochhangeln.

Statische Verkettung

e Verweis auf Frame der im Programmtext umschlieRenden Prozedur

pcl:\?‘-mdn.r: 1]
e Unterschied dynamische Verkettung begin
o Hier Verweis auf Frame der aufrufenden Prozedur end
o Dient Zugriff auf nicht-lokale Variablen b"_‘:‘l‘“
and
,Nicht-Lokale Variablen werden nicht von allen Sprachen unterstitzt”
Contents(LB) = UmschlieRender StackFrame
Contents(Contents(LB)) = noch weiter auRenliegender Stack Frame
let
P SET*
: Broc P) - globals J
P B Statische Verketiung
S[) ~ . von R gﬂauht Zugriff
P let ... ~ r"f auf Variablen von L.
S BTN - 1| P :] Statische Verkettung
P Q von O erlaubt Zugniff
P i proc Q) ~ N auf Variablen von P.
S R
Po: F . -
; : ' proc B[} -~ ‘H\H" ’_’_,-"’-‘ stafic
: P let ~ = link
i i odm ... 80 W=E T
EoEo =
i f dim ... RO, -
P oin ... Q0O; Dynamische YVerkettung
’ # Statizche Verkettung
in . Fi): .
Hochhangeln wiird durch Hardware realisiert (in TAM)
Sogenanntes Display
(| sB Zeigt auf Frame mit globalen Variablen
LB Zeigt auf oberste Frame R

L1 | contents(LB)| Zeigt auf Frame R' umschlieend R

{ | L2 | contents(L1)| Zeigt auf Frame R" umschlieRend R’
(

(

L3 | contents(L2)| Zeigt auf Frame R™ umschliefend R"
L4 | contents(L3)| Zeigt auf Frame R"" umschliefend R™

display registers




Bei TAM maximal bis L7

Das bedeutet nicht, dass Rekursion beschrankt ist, sonder man kann maximal Prozedurdefinitionen
bis zur Stufe 7 definieren.

Die Display Berechnung ist per Hand sehr umstandlich, daher Hardware.
Bestimmung statische Verkettung

Aus der Kontextanalyse ist die Ebene aller Geltungsbereiche bekannt.

In R sind alle Variablen a, b, c, und
d zugreifbar. Aus Kontextanalyse
bekannt: Ebenen aller
Geltungsbereiche.

let f level @
var a: Integer;

proc P() -~

let ! level 1

TR LEE IEiRE s level | .scope, | address
proc O() =~ £ ¥
let ! level 2 a 0 [ global ‘| orsBl
- = T
:i::r'{ (Tnfege ' b 1 1] levelR)}2 { 3[L2)
let ! lewel o 2 Y level(R}-1 1 3[ra]
war d I,
in d 3 |s local ] 3[LB]
in ... T \_]
in ... Geltungsbereiche zur Compile-Zeit
in ... bekannt! Adressen aller Vanablen
vorher berechenbar.

Routine
R sei Routine deklariert auf Ebenen |, dann gilt fiir die statische Verkettung (SV)

e Wennl=0 (R ist globale Routine)
o SV =SB; R seiht statisch nur globale Variablen
e Wenn |>0 (R ist eingeschachtelt deklariert)
o SV =LBvor Aufruf
=  Wenn Aufruf von R aus Ebene | erfolgt
o SV =L1vor Aufruf
=  Wenn Aufruf von R aus Ebene I+1 erfolgt
o SV =1L12vor Aufruf
=  Wenn Aufruf von R aus Ebene 1+2 erfolgt
0 .. (bisL7 in TAM)

Anlegen von SV an Aufrufstelle
Nur der Aufrufer kennt seine Ebene
In Triangle/TAM: Parameter fiir CALL-Instruktion

Beispiel:



let

é;éc P() ~ sB globals j—
50 ~ \.(
proc § P
a . e0s g
proc Q() ~ 4 -
T 1 s () deklariert auf I = 1, Aufruf auf I =3
I S — L2 verwenden
ll.n...R(J:‘u ST- £

in ... Q) : ... - —_

in 207 . ' CALL (LZ2) s
Zusammenfassung

o Kompliziertere Kompilierung

e Auch Laufzeitoverhead durch statische Verkettung
o Kompliziertere Funktionsaufruf
o Erhohter Speicherbedarf

Es Lohnt sich nicht!
Verteilung bei Pascal

e 49 % Global
e 49 % Lokal
e 2 % Nicht-Lokal

Routinen
Assembler-Aquivalent von Prozeduren und Funktionen einer Hochsprache.

Wichtige Maschineninstruktionen

e CALL r lege nachste Programmzeigeradresse auf Stapel und Springe auf Adresse r
e RETURN Nehme einen Wert vom Stapel und Springe dorthin

Wichtige Aspekte

e Aufruf einer Routine und Ubergabe von Parametern
e Rickkehr von einer Routine und Riickgabe eines Ergebnisses
e Verwaltung von statischen Verkettungen

In Form eines Protokolls definiert (maschinenabhéangig) [auch calling conventions]

. . . (1) Just before the call (2) Just after retum:
Flr Stack haufig

58 —»f 5B —

o Aufrufer legt Parameter auf Stapel (Reihenfolge?)

. . . — | — |
o Bei uns: links zuerst, dann nach links 5 5 o
e Routine wird aufgerufen und benutzt Parameterwerte
result
o Aufgerufene Routine nimmt Parameter vom Stael und ersetzt sie — ST

durch Riickgabewerd

Dadurch beliebig viele Parameter libergebbar



Schwierig: Unterschiedliche Anzahl von Parameter an eine Routine Gibergeben.

Geht nicht ohne weiteres.

In der TAM

Relevante TAM Instruktionen

CALL (reg) addr

RETURN (n) d

Ruft Routine an Adresse addr auf, verwendet den Wert in reg als statische
Verkettung bei der Anlage eines neuen Frame

Sichert n Worte als Ergebnis vom Stack, entfernt den aktuellen Frame und d
Parameter, setzt Ausfiihrung nach Aufrufstelle fort, legt Ergebnis oben auf

dem Stack ab.

Erguments] largumentsy fargumentsy result
ST —my
T = LE —f link LB = link
data data
[ =
ST local
data
result

Parameter (Argumente) zum Datenaustausch

e Aktuelle Parameter verwendet von Aufrufer bei Aufruf der Prozedur

e Formale Parameter innerhalb der Prozedur verwenden
o Verhalten sich innerhalb oder Prozedur wie lokale Variablen
e Eins-zu-eins Zuordnung von aktuellen und formalen Parameter

Ubergabe als

e (Call by Value
e Call by Referenz (var bei Deklaration und Aufruf der Prozedur)

O

Ubergabe der Adresse der Variable (als Zeiger)

" = Parameter werden relativ zu LB
1 : mit negativen Offsets adressiert
1

Parameter fur aktuelle Prozedur, dort
abgelegt durch Aufrufer

arguments

return address

local vars and
intermediate
results

Lokale Daten; Bereich wachst und schrumpft

LB— static link
dynamic link Verkettungsdaten
} wahrend der Ausfiihrung

Beispiel: Call-by Reference



let var g: Integer;
func F(m: Integer, n: Integer)
: Integer ~ m*n ; /
-1[LB] ~ - push the value of i

proc W(i:Integer) ~ W: LOAD
let const s ~ i*i LOAD -1[LB] - push the value of i
o Lok . CALL mult - muitiply, the result will be the value of 5
putint(F(i,s)); LOAD -1[LB] - push the value of i
Endput‘lnt (Fl=,s)) LOAD 3[LB] - pu;r::epe ya!a.éesofa -
. - ~ ist var-Parameter CALL(SB) F - Cda using as static lin
= ;:E;Et e o) 9 CALL putint - write the value refurned
W(g+1) i LOAD 3[LE] - push the value of s
end g+1 ist Wert-Parameter LOAD 3[LB] - push the value of 5
CALL(SB) F - call F (using SE as static link)
PUSH 1 - expand globals fto make space for g CALL putint - write the value refurned
LOADA 0[sSBE] - push the address of g RETUENH(0) 1 - return, replacing the 1-word argument
CALL getint - read an integer into g by a 0-word resuit
LOAD 0[sBE] - push the value of g F: LOAD -2[LB] - push the value of m
CALL succ -add 1 LOAD -1[LB] - push the value of n
CALL(SB) W - call W (using SB as the static link) CALL mult - muitiply
POP 1 - remove globals RETURH (1) 2 - return, replacing the 2-word argument pair
HALT - end the program by a 1-word result

Sonderfall: Prozedur/Funktion als Parameter (func)

let
func twice (func doit(Integer x): Integer, i: Integer): Integer ~
doit{doit (i)} ;
func double (Integer d) ~ d*2;
wvar x: Integer
in begin
x = bwice(double, 10);
end

e Repréasentiere Funktion durch Paar (Startadresse, statische Verkettung
e Soggenannte Closure oder Funktionsdeskriptor

e Aufruf dann tber Closure

e TAM: Lege Closure auf Stack, dann CALLI zum Aufruf

Heap-Speicher
e Bisher Lebenszeit von Variablen gebunden an Geltungsbereiche
o Auch verschachtelt (statische Verkettung)
e Haufig: Lebenszeit unabhangig von Geltungsbereichen
e Beispiel: Datenstrukturen wie Listen, Baume, etc.
o Struktur lebt unabhangig von Prozedure/Funktion

Dafir ist eine andere Speicherverwaltung als Stack

e Nachteil: Explizite Verwaltung durch Programm erforderlich
o Pascal, C, C++

o Teilweise Automatisierung moglich
o Java, Lisp, Smalltalk
o GarbageCollector

Heap i.d.R im selben Speicher wie im Stack

e Stack wachst und schrumpft bei Blockeintritt/-austritt
e Heap wachst bei Anlegen neuer Variablen, schrumpft(?) bei Freigabe
e Heap und Stack wachsen aufeinander zu

o Normalerweise: Stack wachst nach oben, Heap unten

o Bei Tam: Stack wachst nach unten, Heap Oben

Beispiel: Heap

Elemente Loschen Neue Elemente hinzufligen
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Einfiigen neuer Elemente

e Bei nachten Einfligen ersten freien Platz verwenden
o Problem: Kann zu vielen kleineren Lécher in der Heap kommen (Fragmentierung)

= Heap wachst weiter

e Einfach Oben anhidngen
= Heap wird immer gréRer und nie kleiner

e Andere Ansatz

Finde genau passenden freien Speicherblock (Freie Bereiche verkettet)

Finde gréReren freien Speicher in HF und benutzte ihn teilweise

o VergroRere Heap in Richtung Stack

o

o Falls nicht méglich: out-of-memory
Fragmentierung bekampfen

e Verwende immer kleinsten passenden freien Speicherblock (immer sinnvoll?)
o Es kodnnen sehr viele kleine Liicken entstehen
o Verschmelzen benachbarter freier Speicherblécke
o Kampaktierende Heap (verzweifelt!)
= Alles Zusammenschieben
=  Problem: Alle Zeiger im Programm miissen aktualisiert werden
= Teilldsung: Doppelte Indirektion tiber Handles
e These: ,Es gibt kein Problem in der Informatik, was sich nicht durch
hinzufligen einer weiteren Indirektionsebene beheben lasst”
e Realisiert als Zeiger auf Zeiger
e Programm operiert mit Handles, werden nicht beeinflusst
e Zeiger innerhalb von Handles werden durch Kompaktierung
aktualisiert

Teilautomatische Speicherverwaltung
Automatische Freigabe von nicht mehr benutzten Speicher



Garbage Collection

Viele verschiedene Ansétze

Einfacher Ansatz

O O O O

Kennzeichne alle Elemente auf Heap als nicht erreichbar
Gehe nun alle Variablen durch (auf Heap und Stack!)
Falls Zeiger: Markiere referenzierten Heap-Block als erreichbar
Trage alle unerreichbaren Speicherblock in HF-Liste ein
Problem:

=  Wie ,Zeiger” erkennen

e Zeiger besonders kennzeichnen
= Heap-Blocke missen ihre Grofle kennen
=  Was, wenn Zeiger mitten in Heap-Block hinein?



Code-Generierung

Source Program

|
| Syntax Analysis | Ch. 4
1
AST
i
| Contextual Analysis | Ch. 5

+ * Codeselektion
Decorated AST + Speicherallokation
= F-——=---- — + Registerallokation

. | Code Generation l| Ch.7 :‘
LT D -
Object Code

| (Abstract) Machine | Ch. 6: Run-Time Organization

Wir erzeugen direkt Maschinencode
Das erste Mal kommt Semantik ins Spiel:
Codegenerierung befasst sich mit Semantik der Eingabesprache

let PUSH 2
LOADL 2
STORE (1) 1[SB]
LOADL T
STORE (1) O[SB]

var x: integer;
var y: integer

in begin

= = LOAD (1)  1[SB]

x =7y CALL putint

printint(y) ; LOAD (1) 0[se]

printint (x) ; CALL putint
end HALT

Gleiche Semantik fiir Quellprogramm und Zielprogramm (Ausnahmen)

e Abhdngig von Eingabesprache
o Syntaktische Analyse
o Kontextanalyse

e Abhangig von Eingabesprache und Zielmaschine
o Codegenerierung

Schwierig allgemein zu formulieren
Unterprobleme

e (Code-Selektion
o Ordnet Phrasen aus Quellprogramm Folgen von Maschineninstruktionen zu
e Speicherallokation
o Weist jeder Variablen Speicherplatz zu und fihrt iber diesen Buch
e Registerallokation

o Verwaltet Registerverwendung flr Variablen und Zwischenergebnisse (nicht in TAM )



Code Selektion
Semantik der Programmiersprache

e In der Regel auf Phrasenebene beschrieben
e Expressions, Commands, Declarations

Vorgehensweise

Induktives Herleiten der Ubersetzung des gesamten Programms aus Ubersetzungen von
Einzelphrasen

Problem: Mehrere semantisch korrekte Ubersetzungen fiir eine Phrase. Welche konkrete
Instruktionsreihenfolge auswahlen?

e Code-Selektion
Code-Funktion
Bildet Phrase auf Instruktionsfolge ab.
Wird definiert durch
Code-Schablone

Ordnet jeder speziellen Form einer Phrase eine Definition in Form von Maschineninstruktionen oder
Anwendungen von Code-Funktionen zu.

Wichtig: Eingabesprache muss vollstandig durch Code-Schablone abgedeckt werden.

Code-Funktion

execute: Command — Instruction* | Anweisungsfolge C1;C2 execute[[Cl; CZ]]
Semantik: fiihre erst C1 aus, = execute[C1]]
dann C2 execute[C2]]

Zuweisung | := E execute[[[ 1= E]]

= evaluate[[E]|
store a, mit a = Adresse von |

Beispiel:
Anweisungsfolge £ := f+n; n := n-1
execute [[f := f£+n; n := n-1]]=
execute [[f := f«n]]
execute[[n := n-1]] =

evaluate [[f+n]]
STORE £

evaluate [[n - 1]]
STORE n =




Aufbau einer Code-Funktion orientiert sich an Subphrasenstruktur
fell...Q...R...]]=

follQl]

f IR

Die Reihenfolge ist nicht unbedingt zwingend
Code-Spezifikation

e Sammlung aller
o Code-Funktionen
o Code-Schablonen
e Muss Eingabesprache vollstandig tiberdecken

Basierend auf Abstrakter Syntax:

class code funclion | effect of the generaled code
Program ::= Command Frogram Program run P Run the program P and then halt, starting and
Command ::= V—'nnntll = Expm::i.on_ AssignCommand finizhing with an empiy stack.
: ég:::::’frcﬁ:““m ! ;;ﬁiﬁ:g’:ﬂam Command | execute C Execute the command C, possibly updating
| if g,pm;,im then Command IfCommand variables, but neither expanding nor contracting the
-nl.s-n Command ) . stack.
: ::;hhm;::;;?ifchzd &téﬂ;':::m Expression | evaluate E | Evaluate the expression E, pushing its result on the
stack top, but having no other effects.
run - Program — Instruction® -name fetch V Push the value of the constant or variable named '/
_ on the stack.
execute Command — Instruction™ - - — — —
evaluate : Exprassion — Instruction® V-name assign V Pop Elvalue fr?’rﬂme stack top, and store it in the
etch © V-name — Instruction® wanenE nemee —
i . : v Instruction® Declaration | elabarate D | Elaborate the declaration 0, expanding the stack to
GSsIET - v-name — in chon make space for any constants and varables
elaborate : Declaration — Instruction* declared therein.
Run ‘ Anweisungsfolge Zuweisung ‘
run [C] execute [C4 ; C)] execute [V :=E]
= execute [C] = execute [Cq] = evaluate [E]
HALT execute [Co] assign [V]
Bedingte Anweisung Schleife Deklaration
execute [1f E then Cyelse T4 execute [while E do C] = execute [let D in C]
= evaluate [E] Lwhile: evaluate [E] = ela bo"t‘f‘r‘[*é][D]
JUHMPIF (3} Le=lse execute
execute [Cq] MI:‘ I[[é}] Ler POP(0) E
JUHE LEi exectite
Lelse: execute [Cd] JUMP Lwhile POP nur, wenn s>0
LEi: Lend: (zusatzlicher Speicher
alloziert wurde)

Finden Sinnvoller Lablenamen schwierig. Label miissen unterschiedlich sein.

Beispiel: Code-Schablone



while i > 0 do i 2= 1 - 2

L1
evaluate [1>0] { 51: LOADL

execute [while i=0 53: JUMEIF (0)

do i:=i-Z] 55: LOADL
execute [i:=1i-2] 56- CALL
57: STORE

execute [while E do 0]
= Iwhile: evaluate[E]
JUHPIF(0) Lend
execute [C]
JUHP Lwhile

Code-Schablonen fiir Ausdriicke

Integer-Literal

evaluate [IL] =
LOADL w i v s the valoe of TL

Variable

evaluate [V] =
fatch V

| L

Unarer Operator

evaluate [0 E] =
svaluate E
CALL p ; pis the addmess of the routine comesponding to O

Binarer Operator

evaluate[EL O E2] =
svaluate EL
avaluate EZ
CALL p ; pis the addmess of the routine comesponding to O

Code-Schablonen fiir Deklarationen

elaborate [const I © E] =
evalusts E i - and decorate the tome

@ Beachte: Legt berechneten Wert auf Stack ab!
Optimierung maglich:
@ Setze Wert der Konstante direkt in Maschinencode ein
@ Dann leere Schablone

elaborate [var I : T] =
POSH size(T) i - and decorate the tree

Deklarationsfolge

elaborate [D1; D2] =
alaboraka Dl
alaborate D2

[N kJ R £ (=T ]
3 E 249



Wenn 10 mal hintereinander eine Variable Deklariert wird, steht 10x PUSH z.B. 1, das kdnnte man
optimieren.

Ab jetzt Mini-Triangle, keine lokalen, nicht-lokalen Variablen

etch[I] =
LOAD d[SB] ; disthe addmess of I

Beispiel:

aexacute[let const m © 7; war i : Inbeger im i = nsn]

= wlaboratalconst m © 7; war i : Integar)
axeouta [1 1= nen]

= @laborataconst m © T)
@laboratevar i : Inbagar]
evaluata[nsn]
assign[i]

= LOADL 7
PUSHE 1
LOAD o
LOAD o
fALL malt
ETORE 1
BOP(O] Z

Optimierung: const n = Inlining

Spezialisierte Schablonen fiir Sonderfille

Effizienterer Code fiir
17,
Allg. Schablone
Lﬂinq i Spez. Schablone
LOADL 1 Sl = Analoges Vorgehen fir
CALL  add CALL succ Inlining von Konstanten

Inlining von Konstanten in Maschinen-Code

Konstante 1 mit statischem Wert v = valueOf(IL)

etch(I] =
LOADL v ; .. Uretnevedfrom DAST

elaborate [const I © IL] =
i — just decorabe the tree




Optimiert:

exocuta[let const n © T7; war i Integer in i = mnen] =
alaborataconst m © 7; war i : Intagar]
axecuba [i := nen]
= wlaboratafconst o =~ 7]
@laboratavar i : Intagar]
svaluats[n+*n]
assign[i]

PUEE 1
LOADL 7
LOADL 7
CALL malt
STORE 1
POE (D) 2 Tippfehler: Pop(0) 1 richtig
Implementierung
Systematischer Aufbau
Orientiert sich direkt an Code-Funktion
Code-Funktionen beschreiben rekursiven Algorithmus zur Traversierung von DAST

Wieder bewéhrtes Visitor-Entwurfsmuster verwenden

Im Maschinencode gibt es keine LABELS nur Adressen
Backpatching

Const b~ 10 ! direkt einfligen mit LOADL 10
Consty ~ 365 + x ! speicherplatz erstellen und berechnen

Geht in Triangle:

Verschachtelte Blocke

var| size|address

a 1 |[0]SB

b 1 |[1]SB

: I8
—




