
Compiler I 

Kompilierung 
Vom Quellcode … zum MaschinenCode 

Entspricht häufig den Teilen der Sprachspezifikation 

1. Syntax  Syntaxanalyse 
2. Kontextuelle Einschränkungen  Kontextanalyse 
3. Semantik Codegenerierung 

Ein-Pass Compiler 

 Geht nur ein einziges Mal über das Programm 
o Baut i.d.R. keine Zwischendarstellung auf 

 Führt alle Phasen gleichzeitig aus 

 z.B.: häufig Pascal Compiler 

Multi-Pass Compiler 

 Geht mehrmals über das Programm 
o Programm = Quelltext oder Zwischendarstellung (IR) 

Vergleich Ein-/Multi-Pass Compiler 

 Ein-Pass Multi-Pass 

Laufzeit + - 

Speicher + (für große 
Programme) 

+ (für kleine 
Programme) 

Modularität - + 

Flexibilität - + 

Globale Optimierung -- + 

Eingabesprache Nicht für 
alle 

 

 

 

  

Nur Möglich bei Sprachen, bei denen 

Bezeichner vor ihrer Verwendung 

deklariert werden 



Syntaxanalyse 
1. Pass, in 2 Phasen aufgeteilt 

 

Scanner 
Auch lexikalische Analyse oder Lexer genannt 

Aufgabe 

 Bilde Token aus Zeichen 

 Entferne unerwünschte Leerzeichen, Zeilenvorschübe 

 Führe Buch über Zeilennummer und Eingabedateinamen 

Lässt sich mit regulären Ausdrücken (Automat) lösen. 

Alternativ dazu: 

Rekursiver Abstieg 
Analog zum Parser 

Normalerweise werden Kommentare übernommen, gibt aber auch Scanner, die in Kommentare 
reingucken (JavaDoc Generierung) 

Lexikalische Grammatik in EBNF 

 

Diese wird transformiert 

 

Diese Transformierung ist nicht unbedingt nötig, macht es allerdings schneller, da es weniger 
Methoden gibt. Man kann nun aber nicht mehr zwischen Schlüsselwörtern und Bezeichner 
unterscheiden, dies muss während des Scannens repariert werden. 

 

 



Implementierung 

 

 

 

  



Parser 
Parsen der Token Folge in einen Abstrakten Syntaxbaum (AST) 

Token 

 Token ist atomares Symbol des Programms 

 Zeichen selbst i.d.R. uninteressant, Ausnahme: 
o Bezeichnernamen 
o Konstante Werte (Zahlen, Zeichen), sog. Literale 

Der Parser ist zum aufbauen des AST nur an der Art des jeweiligen Tokens interessiert. 

Nur wenige Tokens tauchen später im AST wirklich auf. Viele (z.B. Schlüsselwörter) bestimmen aber 
implizit die Struktur des AST. 

Grammatiken 

Kontextfreie Grammatiken (CFG) sind Spezifiziert durch ein Tupel von 
(                                                                                            ) 

Die Produktionen werden häufig in der Backus-Naur-Form (BNF) angegeben. Übersichtlicher ist es 
allerdings die Extended BNF (EBNF) zu benutzen. Diese dürfen auf der rechten Seite (RHS) sowohl 
BNF als auch Reguläre Ausdrücke enthalten 

Transformation von Grammatiken 

CFG kann transformiert werden, unter Beibehaltung der beschriebenen Sprache. 
Dies ist sehr nützlich bei der Konstruktion von Parsern für CFGs 

 Vor Transformation Nach Transformation 

Gruppierung           
        
        

                 
 

Linksausklammern                               

Linksrekursion                          
Ersetzung von Nicht-
Terminalsymbolen 

         
 

Wenn nur eine Produktion 
mit LHS N, dann in RHS 
allen Produktionen N durch 
X ersetzen n 

 

Terminologie 

 Erkennung 
o Entscheidung, ob ein Eingabetext ein Satz der Grammatik G ist 

 Parsing 
o Erkennung und zusätzlich Bestimmung der Phrasen-Struktur 
 z.B. durch konkreten/abstrakten Syntaxbaum 

 Eindeutigkeit 
o Eine Grammatik ist eindeutig, falls jeder Eingabetext auf maximal eine Weise geparsed 

werden kann 

  

Es können für den Menschen nützliche 

Informationen verloren gehen. Das 

Ergebnis ist allerdings für den 

Compieler besser 



Strategien 

Beispiel: MicroEnglish 

                                       
                                         
                                           
                                    
                                            

Bottom-Up 
Untersucht EingabeText Zeichenweise, von links nach rechts und baut Syntaxbaum von unten nach 
oben auf. 

Aktionen 

 Shift 
o Lese Zeichen ein und lege es auf Stack 

 Reduce 
o Erkenne ein Nicht-Terminal LHS der Produktion p 

 Zusätzlich: Oberste Elemente des Stapels müssen RHS von p entsprechen. 
Ersetze durch LHS von p (auf den Stack legen) 

 Ende wenn Startsymbol S erreicht und Eingabetext komplett gelesen 

Beispiel: 

 

 

  

 
 

 

Schwierigkeiten beim Bottom-Up 

Wie entscheiden, welche Produktion beim Zusammenfassen gewählt werden soll, wenn es mehrere 
Möglichkeiten gibt? 

Lösung: Nicht nur bekannte Zeichen betrachten, sondern auch Zustand einbeziehen. 

Arbeitet mit LR(k)-Technik 

 L: Lese Eingabetext von links nach rechts 

 R: Fasse die am weitesten rechts stehenden Terminal-Symbole zusammen und baue von 

unten auf 

  



Top-Down 
Rekursiver Abstieg 

Untersuche Eingabetext Token weise, von links nach rechts 
Baue Syntaxbaum von oben nach unten auf 

 Von Start-Nicht-Terminalsymbol in der Wurzel … 

 … zu den Terminalsymbolen in den Blättern 

Aktionen 

 Expandiere jeweils das am Weitesten links gelegene Nicht-Terminal N durch die Anwendung 
einer Produktion N ::= X 

 Wähle Produktion aus durch betrachten der nächsten n Zeichen (Token) (LookAhead) des 
Eingabetextes (hier n = 1) 

 Falls keine Produktion auf Zeichen passt  Fehler 

 Ende wenn Eingabetext komplett gelesen und keine nicht expandierten Nicht-Terminale 
mehr existieren 

Beispiel: 

 
… 

 
Hintergrund 

 

Falls es möglich ist … 

 … bei Betrachtung der nächsten k Zeichen (Tokens) des Textes 

 … immer die richtige Produktion zu finden 

… dann ist die Grammatik LL(k)   

 L: Lese EingabeText von links nach rechts,  

 L: Leite immer vom am weitesten Links stehenden Nicht-Terminal ab 

Konstruktion von LL(k) Grammatik kann mühsam sein. 
Durch Transformation kann die Lesbarkeit erschwert werden. 
 

  



Implementierung 
Top-Down Parser 

Die Struktur des konkreten Syntaxbaumes entspricht dem Aufrufmuster von sich wechselseitig 
aufrufenden Prozeduren. Für jedes Nicht-Terminal XYZ existiert eine Parse-Prozedur parseXYZ, die 
genau dieses Nicht-Terminal parst. 

 

 

Ablauf einer parseN Methode 

 Bei Eintritt enthält currentToken eines der Token, mit denen N beginnen kann 

 … sonst wäre eine andere Parse-Methode aufgerufen worden (oder Syntaxfehler liegt vor) 

Ablauf einer accept(t) Methode 

 Bei Eintritt muss currentToken = t sein 

 … sonst Syntaxfehler 

 Bei Austritt enthält currentToken das auf t folgende Token 

Entwicklung von Parsern mit rekursivem Abstieg 

1. Formuliere Grammatik (CFG) in EBNF 

a. Eine Produktion pro Nicht-Terminal 

b. Beseitige IMMER Linksrekursion 

c. Klammer gemeinsame Teilausdrücke nach links aus wo möglich 

2. Erstelle Klasse für den Parser mit 

a. protected Variable currentToken 

b. Schnittstellenmethoden zum Scanner 

i. accept(t) und acceptIT() *z.B. bei let muss nicht auf „let“ überprüft werden+ 

c. Public Methode parse welche … 

i. Erstes Token via Scanner aus dem Eingabetext liest 

ii. Die Parse-Methode des Start Nicht-Terminals S der CFG aufruft 

3. Implementiere protected Parsing Methoden 

a. Methode parseN für jedes NichtTerminalsymbol N  

LL(k) Grammatik 

              

                   

                      

                            

            

             



                
                

               

                  

               

Eine Grammatik G ist LL(1), wenn gilt: 

 Falls G X|Y enthält und sich weder X noch Y zu Epsilon ableiten lassen:  

                                

 Falls G X|Y enthält und sich beispielsweise Y zu Epsilon ableiten lässt: 

                                              

 Falls G X* enthält :  

                              

Man kann manche nicht LL(1) Grammatiken in LL(1) Grammatiken transformieren 

Beispiel: Wenn G nicht LL(1), aber Schema trotzdem angewandt 

 
 

 

  

Beispiel: Fehler wenn Linksausklammern vergessen 

 
 

 

Beispiel: Fehler wenn Linksrekursion nicht eliminiert 

 
 

 

 

  



Abstrakte Syntaxbäume 

Unser bisheriger Parser baut mit seinem rekursiven Abstieg implizit einen Syntaxbaum auf, dieser 
wird allerdings noch nicht gespeichert. Die rekursiven Aufrufe werden benutzt, um den Baum 
aufzubauen 

Der AST basiert auf der nicht transformierten Grammatik von Triangle 

 

Repräsentation des AST in der Java Implementierung 

 

Aufbau des AST 

 

  

Wird vom Parser 

verwendet 

Wird für den AST 

verwendet 



Kontextanalyse (Semantische Analyse) 

 

Geltungsbereiche und Symboltabellen 
Monolithische Blockstruktur 

 Charakteristika 
o Nur ein Block 
o Alle Deklarationen gelten global 

 Regeln für Geltungsbereiche 
o Bezeichner darf nur genau einmal  

   deklariert werden 
o Jeder benutzer Bezeichner muß  

         deklariert sein 

 Symboltabelle 
o Für jeden Bezeichner genau ein Eintrag in  

   der Symboltabelle 
o Abruf von Daten muß schnell gehen  

   (binärer Suchbaun. Hash-Tabelle) 

 

 Charakteristika 
o Mehrere überlappungsfreie Blöcke 
o Zwei Geltungbereiche: Global und Lokal 

 Regeln für Geltungsbereiche 
o Global deklarierte Bezeichner dürfen nicht global  

   redeklariert werden 
o Lokal deklarierte Bezeichenr dürfen nicht im selben Block  

   redeklariert werden 
o Jeder benutzte Bezeichner muss global oder lokal zu seiner  

   Verwendungstelle deklariert sein 

 Symboltabelle 
o Bis zu zwei Einträge für jeden Bezeichner (global und loal) 
o Nach Bearbeiten eines Blockes müssen lokale  

   Deklarationen verworfen werden 

 Beispiel: FORTRAN 

 

 

 

 



 Charakteristika 
o Blöcke ineinander verschachtelt 
o Beliebige Schachtelungstiefe der Blöcke 

 Regeln für Geltungsbereiche 
o Kein Bezeichner darf mehr als einmal innerhalb eines  

   Blockes deklariert werden 
o Kein Bezeichner darf verwendet werden, ohne dass er lokal  

   oder in den umschließenden Blöcken deklariert wurde 

 Symboltabelle 
o Mehrere Einträge je Bezeichner möglich 
o Aber maximal ein Paar (Verschachtelungstiefe, Bezeichner) 
o Schneller Abruf des Eintrages mit der größten    

   Verschachtelungstiefe 

 Beispiele: Pascal, Modula, Ada, Java, … 

 

Struktur der Geltungsbereiche 
Für Sprachen mit verschachtelter Blockstruktur 

 

Implementierung der Symboltabelle 

 Verkettete Liste und lineare Suche 
o In Triangle verwendet 

 Hash-Tabelle (effizienter) 

 Stack aus Hash-Tabellen 

Attribute 
Wofür werden Attribute gebraucht? 

Mindestens für 

 Überprüfung der Regeln für Geltungsbereiche von Deklarationen 
o Bei geeigneter Implementierung der Symboltabelle: Einfaches Abrufen reicht, da alle 

Regeln bereits in Datenstruktur realisiert 

 Überprüfung der Typregeln 
o Erfordert Abspeicherung von Typinformationen 

 Code-Erzeugung 
o Benötigt später z.B. Adresse der Variable im Speicher 

Speicherung von Attributen 

Imperativer Ansatz (Explizite Speicherung) 

 Ok für sehr einfache Sprachen 



 Bei Komplexeren nicht möglich 

Objektorientierter Ansatz (explizite Speicherung) 

Funktioniert, wird aber bei realistischer Sprache sehr leicht unhandlich 

 

Bisher wurden Kombinationen wie zum Beispiel Arrays und Records (und deren Kombination) nicht 
betrachtet. Dies mit Expliziten Strukturen kann leicht sehr komplex werden 

 

Im AST stehen bereits alle Daten, also den Attributen einfach einen Verweis auf die ursprüngliche 
Definition (im AST) eintragen 

 

Identifikation 
1. Schritt der Kontextanalyse 

 Beinhaltet den Aufbau geeigneter Symboltabelle 

 Hat als Aufgabe den Verwendungen von Bezeichnern zu ihren Definitionen zu ordnen 

 Durch Pass über den AST realisierbar 

Aber besser kombiniert mit nächstem Schritt 

Typprüfung 
Was ist ein Typ? 

 „Eine Einschränkung der möglichen Interpretationen eines Speicherbereiches oder eines 
anderen Programmkonstrukts“ 

 Eine Menge von Werten 

Warum Typen benutzen? 

 Fehlervermeidung: Verhindere eine Art von Programmierfehlern („eckiger Kreis“) 

 Laufzeitoptimierung: Bindung zur Compile-Zeit erspart Entscheidung zur Laufzeit 

Muss man immer Typen verwenden? 

 Nein, viele Sprachen kommen ohne aus 
o Assembler, Skriptsprachen, LISP, … 



 

Typüberprüfung 

 Bei statischer Typisierung ist jeder Ausdruck E entweder 
o Misstypisiert, oder 
o Hat einen statischen Typ T, der ohne Evaluation von E bestimmt werden kann 

 E wird bei jeder (fehlerfreien) Evaluation  den statischen Typ T haben 

 Viele moderne Programmiersprachen bauen auf statische Typprüfung auf 
o OOP-Sprachen haben aber auch dynamische Typprüfung zur Laufzeit 

(Polymorphismus) 

Generelles Vorgehen 

1 Berechne oder leite Typen von Ausdrücken her 
a. Aus den Typen der Teilausdrücke und der Art der Verknüpfung 

2 Überprüfe, das Typen der Ausdrücke Anforderungen aus dem Kontext genügen 

Bottom-Up Verfahren 

 Typen an den Blättern des AST sind bekannt 
o Literale (Direkt aus Knoten) 
o Variablen (Aus Symboltabelle) 
o Konstanten (Aus Symboltabelle) 

 Typen der internen Knoten her leitbar aus 
o Typen der Kinder 
o Typregeln für die Art der Verknüpfung im Ausdruck 

Algorithmus für Kontextanalyse 
Kombiniere Identifikation und Typprüfung in einem Pass 

Dies Funktioniert, solange Bindung immer vor Verwendung 

Mögliche Vorgehensweise 

 Tiefensuche von links nach rechts durch AST 

 Dabei sowohl Identifikation und Typüberprüfung 

 Speichere Ergebnisse durch Dekorieren des ASTs 
o Hinzufügen weiterer Informationen 

Gewünschtes Ergebnis: 

 

 

 

 

 

 

Um die zusätzlichen Informationen speichern zu können, müssen einige AST Knoten um zusätzliche 
Instanzvariablen erweitert werden. 



Implementierung 

Implementierung geht am besten über das Visitor-Pattern 

 

Durch das ausnutzen von Overloading kann man die visitXYZ Methoden im Visitor alle in visit 
umbenennen. 

Standartumgebung 
Wo kommen Definitionen von Integer, Char, … und putint, getint, +, -, * her? 

Diese müssen vorliegen, damit der Algorithmus richtig funktionieren kann. 

Sie müssen also vorher definiert sein. 

 Einlesen von Definitionen aus Quelltext 

o Ada, Haskell, VHDL 

 Direkt im Compiler implementieret 

o Pascal, teilweise C, Java, … 

o Triangle 

Geltungsbereich der Standardumgebung 

 Ebene 0: Um gesamtes Programm herum oder 

 Ebene 1: Auf Ebene der globalen Deklarationen im Programm 

In Triangle 

Idee: Trage Deklaration vorher direkt in AST ein (als Sub-AST) 

Ohne konkrete Realisierung 



 Die Konkrete Realisierung ist zu dem Zeitpunkt egal 

 Bei der Code Generierung werden diese Konstrukt als Sonderfälle betrachtet 

Typäquivalenz 

In MiniTriangle einfach, da nur primitive Typen vorhanden. 

Triangle ist komplizierter: Arrays, Records, benutzerdefinierte Typen 

 

Struktur nicht äquivalent, Name nicht äquivalent Struktur äquivalent, Namen nicht Äquivalent  

Liegt in Entscheidung des Sprachdesigners. 

Möglichkeiten: 

 Strukturelle Typäquivalenz 

o Primitive Typen:  

 Müssen identisch sein 

o Arrays:  

 Äquivalenter Typ für Elemente,  

 gleiche Anzahl 

o Records:  

 Gleiche Namen für Elemente,  

 Äquivalenter Typ für Elemente, 

 gleiche Reihenfolge der Elemente 

 Typäquivalenz über Namen 

o Jedes Vorkommen eines nicht-primitiven Typs (selbstdefiniert, Array, Record) 

beschreibt einen neuen und einzigarten Typ, der nur zu sich selbst äquivalent ist 

Aufgrund der Komplexität von dieser Sache in Triangle reicht die Klasse Type nicht aus 

Idee: Wir verweisen auf die Typbeschreibung im AST 

Vorgehen: 

1. Ersetze in Kontextanalyse alle Typenbezeichner durch Verweise auf Sub-ASTs der 

Typdeklaration 

2. Führe Typprüfung durch strukturellen Vergleich der Sub-ASTs der Deklaration durch 

Beispiel: 



 

Run-Time Organization 
 

 Compiler übersetzt Hochsprachenprogramm in Äquivalentes 

Maschinenprogramm 

 Laufzeitorganisation beschreibt Darstellung von abstrakten 

Strukturen der Hochsprache auf Maschinenebene 

 Instruktionen und Speicherinhalte 

Wichtige Aspekte 

 Datendarstellung der Werte jedes Typs der Eingabesprache 

 Auswertung von Ausdrücken und Handhabung von Zwischenergebnissen 

 Speicherverwaltung verschiedener Daten: Global, lokal und Heap 

 Routinen zur Implementierung von Prozeduren, Funktionen und ihre Datenübergabe 

 Erweiterung auf OO-Sprachen Objekte, Methoden, 

Klassen und Vererbung 

TAM (Triangle Abstract Maschine) 
Harward-Architektur (vs. Von Neuman-Architektur) 

 Datenspeicher: 16b Worte 

 Instruktionsspeicher 32b Worte 

Die Adressierung der Adressbereich erfolgt über CPU Register 

(ansonsten Stackmaschine) 

Adressierung des Instruktionsspeichers Adressierung des Datenspeichers 

  
TAM Instruktion 

 op, 4b; Art der Instruktion 

 r, 4b; Registernummer 

 n, 8b; Operandengröße in Worten (nicht nur) 

 d, 16b; Adressverschiebung (displacement, offset) 



TAM Befehlssatz 

 

TAM Intrinsics 

Primitive 

„Magische“ Adressen im Programmspeicher 

Führen bei Aufruf als Routine komplexe Operationen aus 

Darstellung von Daten 
 Unverwechselbarkeit Unterschiedliche Werte sollen unterschiedliche Darstellungen haben 

o Klappt nicht immer (duale Gleitkommadarstellung reeller Zahlen) 

 Einzigartigkeit Ein Wert wird immer auf die gleiche Weise dargestellt 

 Konstante Größe Alle Werte eines Typs belegen dieselbe Menge an Speicherplatz 

 Art der Darstellung 

o Direkt Wert einer Variable x kann direkt adressiert werden 

 Effizienter Zugriff 

o Indirekt Wert einer Variable x muss über einen Zeiger bzw. Handle adressiert werden 

 Dynamische Arrays 

 Rekursive Typen 

 Objekte 

Primitive Typen 

#[T] : Anzahl unterschiedlicher Elemente in T 

Size[T]: minimaler Speicherbedarf (in Bit) zur Darstellung eines Wertes aus T 

Es muss immer gelten size[T] >= log2(#[T]) 



 

In der TAM 

Boolean 16b 

Char 16b 

Integer 16b 

 

Da in TAM Wort adressiert 

Bei Triangle brauchen wir für Records und co etwas mehr. 

Records 

 

Speicherbedarf und Adressierung 

 

Viele reale Prozessoren haben Anforderungen an Adressausrichtung der Daten 

 Beispiel: Es können nur 32b Worte als Einheit adressiert werden 

 Ist schneller, als größere Freiheit zu ungeschützten 

Darstellung von Records im Speicher kann ineffizient werden 



 Unter Platzgesichtspunkten (wenn optimal ausgerichtet) 

 Unter Laufzeitgesichtspunkten (wenn optimal gepackt) 

Variante Records 

Ähnlich einer Record, aber zu einem Zeitpunkt existiert immer nur eine Untermenge von 

Komponenten. (Wurde zur Typumwandlung benutzt, illegal ;-)) 

Selektion durch type tag 

 

Arrays 

 Zusammengesetzter Typ 

 Besteht aus einem oder mehreren Werten eines Typs 

o Unterschied zu Record 

 Zugriff über Index (Beginnt bei 0) 

Statische Arrays 

haben feste, zur Compile-Zeit bekannte Abmessungen  

 

Dynamische Arrays 

haben zur Laufzeit variable Abmessungen 

Indirekte Darstellung über Deskriptor 

 Adresse des ersten Elements 

 Abmessung 

Speicher wird zur Laufzeit angefordert ( Heap) 

Rekursive Typen 

Referenzieret sich selbst in seiner eigenen Definition 

In der Regel nur über Zeiger 

  



Auswertung von Ausdrücken 

  

Register-Maschine 

Sehr schnelle Speicherelemente direkt im Prozessor 

 Für Zwischenergebnisse 

 In der Regel 8/16/32/64b breit 

 Begrenzte Anzahl, üblicherweise 4..32 direkt verwendbar (in wirklichkeit gibt es viel mehr) 

Nicht immer so allgemeingültig verwendbar, häufig Einschränkungen 

 Nur bestimmte Register für bestimmte Operationen 

 Nicht alle Arten von Operanden für alle Operationen 

Code für Registermaschine ist effizienter, aber Kompilierung ist komplexer. 

 Verwaltung (Allokation) von Registern 

 Speichere Zwischenergebnisse in Registern 

 Problem: Endlich viele Register! Was wenn Ausdruck komplizierter (zu viele 

Zwischenergebnisse)= 

Speicherverwaltung 
Globale Variablen: Existieren über gesamte Programmlaufzeit 

 Compiler kann bereits Speicherbedarf jeder Variable berechnen 

 Damit kann jeder Variable passender Speicher zugewiesen (alloziert) werden 

 Nun bekannt: Adresse jeder Variable im Speicher 

Bündige Anreihung 

Lokale Variablen: 

 Ist im Inneren eines Blockes definiert 

o Prozedur, Funktion, Let 

 Existiert nur während der Block aktiv ist 

 Hat eine Begrenzte Lebensdauer 

Wichtig: eine Prozedur kann gleichzeitig mehrfach aktiv sein (rekursion) 



Organisationsstruktur: Stack Frame 

Jede Prozedur hat einen Stack Frame 

 Lokale Variablen 

 Verwaltungsdaten 

 Aktuelle Parameter 

Wird bei Prozeduraufruf angelegt und nach Prozedurende abgebaut 

 

Verwaltungsdaten (3 Worte) 

 return adress 

 Rücksprungadresse 

 Dynamic link 

 Vorheriger LB (Verkettung der Frames) 

 Static link 

 

Beispiel: Adressierung von Variablen 

 

  



Statische Programhierarchie 

Mit LB und SB nicht lösbar. Daher Static Link benötigt 

Variablen Umschließender Blöcke liegen auf jeden Fall auf dem Stack,  

die Frage ist nur wo? Man müsste sich irgendwie hochhangeln. 

Statische Verkettung 

 Verweis auf Frame der im Programmtext umschließenden Prozedur 

 Unterschied dynamische Verkettung 

o Hier Verweis auf Frame der aufrufenden Prozedur 

 Dient Zugriff auf nicht-lokale Variablen 

„Nicht-Lokale Variablen werden nicht von allen Sprachen unterstützt“ 

Contents(LB) = Umschließender StackFrame 

Contents(Contents(LB)) = noch weiter außenliegender Stack Frame 

 

Hochhangeln würd durch Hardware realisiert (in TAM) 

Sogenanntes Display 

 



Bei TAM maximal bis L7 

Das bedeutet nicht, dass Rekursion beschränkt ist, sonder man kann maximal Prozedurdefinitionen 

bis zur Stufe 7 definieren. 

Die Display Berechnung ist per Hand sehr umständlich, daher Hardware. 

Bestimmung statische Verkettung 

Aus der Kontextanalyse ist die Ebene aller Geltungsbereiche bekannt. 

 

Routine 

R sei Routine deklariert auf Ebenen l, dann gilt für die statische Verkettung (SV) 

 Wenn l = 0 (R ist globale Routine) 

o SV = SB;  R seiht statisch nur globale Variablen 

 Wenn l>0 (R ist eingeschachtelt deklariert) 

o SV = LB vor Aufruf 

 Wenn Aufruf von R aus Ebene l erfolgt 

o SV = L1 vor Aufruf 

 Wenn Aufruf von R aus Ebene l+1 erfolgt 

o SV = L2 vor Aufruf 

 Wenn Aufruf von R aus Ebene l+2 erfolgt 

o … (bis L7 in TAM) 

Anlegen von SV an Aufrufstelle 

Nur der Aufrufer kennt seine Ebene 

In Triangle/TAM: Parameter für CALL-Instruktion 

Beispiel: 



  

Zusammenfassung 

 Kompliziertere Kompilierung 

 Auch Laufzeitoverhead durch statische Verkettung 

o Kompliziertere Funktionsaufruf 

o Erhöhter Speicherbedarf 

Es Lohnt sich nicht! 

Verteilung bei Pascal 

 49 % Global 

 49 % Lokal 

 2 % Nicht-Lokal 

Routinen 

Assembler-Äquivalent von Prozeduren und Funktionen einer Hochsprache. 

Wichtige Maschineninstruktionen 

 CALL r lege nächste Programmzeigeradresse auf Stapel und Springe auf Adresse r 

 RETURN Nehme einen Wert vom Stapel und Springe dorthin 

Wichtige Aspekte 

 Aufruf einer Routine und Übergabe von Parametern 

 Rückkehr von einer Routine und Rückgabe eines Ergebnisses 

 Verwaltung von statischen Verkettungen 

In Form eines Protokolls definiert (maschinenabhängig) [auch calling conventions] 

Für Stack häufig 

 Aufrufer legt Parameter auf Stapel (Reihenfolge?) 

o Bei uns: links zuerst, dann nach links 

 Routine wird aufgerufen und benutzt Parameterwerte 

 Aufgerufene Routine nimmt Parameter vom Stael und ersetzt sie 

durch Rückgabewerd 

Dadurch beliebig viele Parameter übergebbar 



Schwierig: Unterschiedliche Anzahl von Parameter an eine Routine übergeben. 

Geht nicht ohne weiteres. 

In der TAM 

Relevante TAM Instruktionen 

CALL (reg) addr Ruft Routine an Adresse addr auf, verwendet den Wert in reg als statische 
Verkettung bei der Anlage eines neuen Frame 

RETURN (n) d Sichert n Worte als Ergebnis vom Stack, entfernt den aktuellen Frame und d 
Parameter, setzt Ausführung nach Aufrufstelle fort, legt Ergebnis oben auf 
dem Stack ab. 

 

Parameter (Argumente) zum Datenaustausch 

 Aktuelle Parameter verwendet von Aufrufer bei Aufruf der Prozedur 

 Formale Parameter innerhalb der Prozedur verwenden  

o Verhalten sich innerhalb oder Prozedur wie lokale Variablen 

 Eins-zu-eins Zuordnung von aktuellen und formalen Parameter 

Übergabe als 

 Call by Value 

 Call by Referenz (var bei Deklaration und Aufruf der Prozedur) 

o Übergabe der Adresse der Variable (als Zeiger) 

 

Beispiel: Call-by Reference 



 

Sonderfall: Prozedur/Funktion als Parameter (func) 

 

 Repräsentiere Funktion durch Paar (Startadresse, statische Verkettung 

 Soggenannte Closure oder Funktionsdeskriptor 

 Aufruf dann über Closure 

 TAM: Lege Closure auf Stack, dann CALLI zum Aufruf 

Heap-Speicher 

 Bisher Lebenszeit von Variablen gebunden an Geltungsbereiche 

o Auch verschachtelt (statische Verkettung) 

 Häufig: Lebenszeit unabhängig von Geltungsbereichen 

 Beispiel: Datenstrukturen wie Listen, Bäume, etc. 

o Struktur lebt unabhängig von Prozedure/Funktion 

Dafür ist eine andere Speicherverwaltung als Stack 

 Nachteil: Explizite Verwaltung durch Programm erforderlich 

o Pascal, C, C++ 

 Teilweise Automatisierung möglich 

o Java, Lisp, Smalltalk  

o GarbageCollector 

Heap i.d.R im selben Speicher wie im Stack 

 Stack wächst und schrumpft bei Blockeintritt/-austritt 

 Heap wächst bei Anlegen neuer Variablen, schrumpft(?) bei Freigabe 

 Heap und Stack wachsen aufeinander zu 

o Normalerweise: Stack wächst nach oben, Heap unten 

o Bei Tam: Stack wächst nach unten, Heap Oben 

Beispiel: Heap 

 Elemente Löschen Neue Elemente hinzufügen 



 
  

 

Einfügen neuer Elemente 

 Bei nächten Einfügen ersten freien Platz verwenden 

o Problem: Kann zu vielen kleineren Löcher in der Heap kommen (Fragmentierung) 

 Heap wächst weiter 

 Einfach Oben anhängen 

 Heap wird immer größer und nie kleiner 

 Andere Ansatz 

o Finde genau passenden freien Speicherblock (Freie Bereiche verkettet) 

o Finde größeren freien Speicher in HF und benutzte ihn teilweise 

o Vergrößere Heap in Richtung Stack 

o Falls nicht möglich: out-of-memory 

Fragmentierung bekämpfen 

 Verwende immer kleinsten passenden freien Speicherblock (immer sinnvoll?) 

o Es können sehr viele kleine Lücken entstehen 

o Verschmelzen benachbarter freier Speicherblöcke 

o Kampaktierende Heap (verzweifelt!) 

 Alles Zusammenschieben 

 Problem: Alle Zeiger im Programm müssen aktualisiert werden 

 Teillösung: Doppelte Indirektion über Handles 

 These: „Es gibt kein Problem in der Informatik, was sich nicht durch 

hinzufügen einer weiteren Indirektionsebene beheben lässt“ 

 Realisiert als Zeiger auf Zeiger 

 Programm operiert mit Handles, werden nicht beeinflusst 

 Zeiger innerhalb von Handles werden durch Kompaktierung 

aktualisiert 

Teilautomatische Speicherverwaltung 

Automatische Freigabe von nicht mehr benutzten Speicher 



 Garbage Collection 

 Viele verschiedene Ansätze 

 Einfacher Ansatz 

o Kennzeichne alle Elemente auf Heap als nicht erreichbar 

o Gehe nun alle Variablen durch (auf Heap und Stack!) 

o Falls Zeiger: Markiere referenzierten Heap-Block als erreichbar 

o Trage alle unerreichbaren Speicherblock in HF-Liste ein 

o Problem: 

 Wie „Zeiger“ erkennen 

 Zeiger besonders kennzeichnen 

 Heap-Blöcke müssen ihre Größe kennen 

 Was, wenn Zeiger mitten in Heap-Block hinein? 

  



Code-Generierung 

 

Wir erzeugen direkt Maschinencode 

Das erste Mal kommt Semantik ins Spiel: 

Codegenerierung befasst sich mit Semantik der Eingabesprache 

 

Gleiche Semantik für Quellprogramm und Zielprogramm (Ausnahmen) 

 Abhängig von Eingabesprache 

o Syntaktische Analyse 

o Kontextanalyse 

 Abhängig von Eingabesprache und Zielmaschine 

o Codegenerierung 

Schwierig allgemein zu formulieren 

Unterprobleme 

 Code-Selektion 

o Ordnet Phrasen aus Quellprogramm Folgen von Maschineninstruktionen zu 

 Speicherallokation 

o Weist jeder Variablen Speicherplatz zu und führt über diesen Buch 

 Registerallokation 

o Verwaltet Registerverwendung für Variablen und Zwischenergebnisse (nicht in TAM ) 



Code Selektion 
Semantik der Programmiersprache 

 In der Regel auf Phrasenebene beschrieben 

 Expressions, Commands, Declarations 

Vorgehensweise 

Induktives Herleiten der Übersetzung des gesamten Programms aus Übersetzungen von 

Einzelphrasen 

Problem: Mehrere semantisch korrekte Übersetzungen für eine Phrase. Welche konkrete 

Instruktionsreihenfolge auswählen? 

 Code-Selektion 

Code-Funktion 

Bildet Phrase auf Instruktionsfolge ab. 

Wird definiert durch 

Code-Schablone 

Ordnet jeder speziellen Form einer Phrase eine Definition in Form von Maschineninstruktionen oder 

Anwendungen von Code-Funktionen zu. 

Wichtig: Eingabesprache muss vollständig durch Code-Schablone abgedeckt werden.  

Code-Funktion 

                           * Anweisungsfolge C1;C2 
Semantik: führe erst C1 aus, 
dann C2 

                
               

                                                 
 Zuweisung I := E                

                

                            
 

Beispiel: 

 



Aufbau einer Code-Funktion orientiert sich an Subphrasenstruktur 

 

Die Reihenfolge ist nicht unbedingt zwingend 

Code-Spezifikation 

 Sammlung aller 

o Code-Funktionen 

o Code-Schablonen 

 Muss Eingabesprache vollständig überdecken 

Basierend auf Abstrakter Syntax: 

  

Run Anweisungsfolge Zuweisung 

   

Bedingte Anweisung Schleife Deklaration 

  

 
POP nur, wenn s>0 
(zusätzlicher Speicher 
alloziert wurde) 

   

   

Finden Sinnvoller Lablenamen schwierig. Label müssen unterschiedlich sein. 

Beispiel: Code-Schablone 



 

Code-Schablonen für Ausdrücke 

 

Code-Schablonen für Deklarationen 

 



Wenn 10 mal hintereinander eine Variable Deklariert wird, steht 10x PUSH z.B. 1, das könnte man 

optimieren. 

Ab jetzt Mini-Triangle, keine lokalen, nicht-lokalen Variablen 

 

Beispiel: 

 

Optimierung: const n  Inlining 

Spezialisierte Schablonen für Sonderfälle 

 

Inlining von Konstanten in Maschinen-Code 

 

 



Optimiert: 

Tippfehler: Pop(0) 1 richtig 

Implementierung 

Systematischer Aufbau 

Orientiert sich direkt an Code-Funktion 

Code-Funktionen beschreiben rekursiven Algorithmus zur Traversierung von DAST 

Wieder bewährtes Visitor-Entwurfsmuster verwenden 

 

 

 

 

 

Im Maschinencode gibt es keine LABELS nur Adressen 

 

Backpatching 

 

Const b ~ 10 ! direkt einfügen mit LOADL 10 

Const y ~ 365 + x ! speicherplatz erstellen und berechnen 

Geht in Triangle: 

 


