
Verhaltensorientierte
Modellierung 4
Modul 13 (v1.0)

Kanonikvorlesung: Foundations of Computing

Heiko Mantel

MAIS, TU Darmstadt, WS11/12

2 ©
 H

e
ik

o
 M

a
n

te
l

 V

o
rl
e

s
u

n
g
:
 F

o
C

,
W

S
1
1

Motivation

Erinnerung

Modul 10 und 11: Modellierung von Systemen

 Verhaltensorientierte Modellierung

Modul 12: Spezifikation von Systemen

 eine Teilsprache der Prozessalgebra CSP

Fokus dieses Moduls

Wie modelliert man Eigenschaften von Systemen deklarativ?

Wie modelliert man Anforderungen an Systeme?

Beispiele für Anforderungen an Informationssysteme:

 funktionale Anforderungen

 z.B. die Ausgabe ist die in aufsteigender Reihenfolge sortierte

Folge der Elemente der eingegebenen Liste

 nichtfunktionale Anforderungen

 z.B. private Informationen werden nicht an Dritte weitergegeben

3 ©
 H

e
ik

o
 M

a
n

te
l

 V

o
rl
e

s
u

n
g
:
 F

o
C

,
W

S
1
1

Übersicht: Modul 13

Formale Modellierung von Systemeigenschaften

 Vorgehen und Rahmenbedingungen

Beispiel: Sicherheitsanforderung an eine Robotersteuerung

 informelle Beschreibung der Anforderung

 Vergleich von verschiedenen Formalisierungen der Anforderung

Beispiel: Sicherheitslücke in einem Kommunikationsprotokoll

 Spezifikation von Eigenschaften in CSP

 informelle Beschreibung eines Angriffs

 Spezifikation des Protokollablaufs

 Spezifikation der Sicherheitseigenschaft

4 ©
 H

e
ik

o
 M

a
n

te
l

 V

o
rl
e

s
u

n
g
:
 F

o
C

,
W

S
1
1

Modellierung von Eigenschaften 1

Struktur der Modellierung

Verifikation von Anforderungen

 Erfüllt ein Systemmodell ein gegebenes Anforderungsmodell?

Was sind die Voraussetzungen für eine formale Verifikation?

 Das System und die Anforderungen müssen formal modelliert sein.

 In der Modellierung muss erkennbar sein, was das Systemmodell
 und was das Anforderungsmodell ist (entsprechend obigem Bild).

 Es muss formal definiert sein, unter welchen Bedingungen ein

 gegebenes Systemmodell ein Anforderungsmodell erfüllt.

Modell des

Systems

Modell der

Anforderungen erfüllt

5 ©
 H

e
ik

o
 M

a
n

te
l

 V

o
rl
e

s
u

n
g
:
 F

o
C

,
W

S
1
1

Modellierung von Eigenschaften 2

Modellierung von Anforderungen in der Softwareentwicklung

 Die Anforderungsdefinition geschieht in frühen Entwicklungsphasen.

Oft steht noch kein detailliertes Systemmodell zur Verfügung.

Wann kann man Anforderungen verifizieren?

 erst nachdem ein ausreichend detailliertes Modell vorhanden ist

 Systemmodell und Anforderungsmodell müssen existieren

 Verifikation unterscheidet sich von Validierung (siehe Modul 9)

Wie modelliert man Anforderungen, ohne ein Systemmodell?

 indem man annimmt, dass bestimmte Strukturen im Systemmodell

 definiert werden (z.B. dass Zustände durch Funktionen von

 Programmvariablen nach Werten modelliert werden), und die

 Anforderungen basierend auf diesen Strukturen definiert (Beispiele

 folgen)

6 ©
 H

e
ik

o
 M

a
n

te
l

 V

o
rl
e

s
u

n
g
:
 F

o
C

,
W

S
1
1

Modellierung von Eigenschaften 3

Beispiel für ein Vorgehen bei der Anforderungsmodellierung

Wir legen fest, dass das Systemverhalten im Systemmodell durch

 ein Transitionssystem TS = (S, S0, E, ) modelliert wird.

 Systemanforderungen können jetzt durch Prädikate auf

 Transitionssystemen modelliert werden.

 Die Modellierung der Anforderungen durch ein Prädikat K ist

 angemessen, wenn folgendes gilt:

 K(TS) gilt für ein Transitionssystem TS = (S, S0, E, )

genau dann wenn

 das durch TS modellierte System die durch K modellierte

Anforderung erfüllt.

TS K
erfüllt

Anforderun

g
System

erfüllt

wird modelliert

durch
wird modelliert

durch

7 ©
 H

e
ik

o
 M

a
n

te
l

 V

o
rl
e

s
u

n
g
:
 F

o
C

,
W

S
1
1

Übersicht: Modul 13

Formale Modellierung von Systemeigenschaften

 Vorgehen und Rahmenbedingungen

Beispiel: Sicherheitsanforderung an eine Robotersteuerung

 informelle Beschreibung der Anforderung

 Vergleich von verschiedenen Formalisierungen der Anforderung

Beispiel: Sicherheitslücke in einem Kommunikationsprotokoll

 Spezifikation von Eigenschaften in CSP

 informelle Beschreibung eines Angriffs

 Spezifikation des Protokollablaufs

 Spezifikation der Sicherheitseigenschaft

8 ©
 H

e
ik

o
 M

a
n

te
l

 V

o
rl
e

s
u

n
g
:
 F

o
C

,
W

S
1
1

Modellierung einer Steuerung 1

Beispiel

Steuerung eines Produktionsroboters

 Der Roboter bewegt sich auf Schienen nach rechts oder links.

 Vor dem linken Ende der Schienen gibt es eine Stopmarkierung.

 Vor dem rechten Ende der Schienen gibt es eine Stopmarkierung.

Informelle Beschreibung der Sicherheitsanforderung

Der Roboter soll sich nur innerhalb des erlaubten Bereichs bewegen.

linkes
Ende

rechtes
Ende

lmarker rmarker

Sicherheitszone Sicherheitszone erlaubter Bewegungsbereich des Roboters

Wie präzisiert und formalisiert man diese Anforderung?

9 ©
 H

e
ik

o
 M

a
n

te
l

 V

o
rl
e

s
u

n
g
:
 F

o
C

,
W

S
1
1

Modellierung einer Steuerung 2

Formalisierung der Anforderung

Wir legen fest, dass die Steuerung durch ein Transitionssystem

 TS = (S,S0,E,) modelliert wird. Die genaue Modellierung des

 Systemsverhalten wird noch nicht durchgeführt.

 Die möglichen Positionen des Roboters werden von links nach

 rechts durch aufsteigende ganze Zahlen fortlaufend modelliert.

 lmarker und rmarker modellieren die Positionen am linken

 bzw. rechten Rand des erlaubten Bereichs (wobei lmarker˂rmarker).
 Für einen gegebenen Systemzustand s sei die Position des

 Roboters durch pos(s) gegeben.

 Anmerkung: Die Funktion pos kann genauer definiert werden,

sobald die relevanten Teile des Systemmodells definiert sind.

 Beispiel: Wenn Zustände als Funktionen von Programmvariablen zu

Werten modelliert werden und es eine Programmvariable current-

pos gib, die die aktuelle Position des Roboters angibt, so definieren

wir pos(s) = s(current-pos).

10 ©
 H

e
ik

o
 M

a
n

te
l

 V

o
rl
e

s
u

n
g
:
 F

o
C

,
W

S
1
1

Modellierung einer Steuerung 3

Formalisierung der Anforderung (Fortsetzung)

 Die Anforderung kann nun wie folgt als Prädikat formalisiert werden:

 K1(TS) = hS-Hist(TS): n:

 (lmarker  pos(h(n))  pos(h(n))  rmarker)

Ist dieses Anforderungsmodell angemessen?

11 ©
 H

e
ik

o
 M

a
n

te
l

 V

o
rl
e

s
u

n
g
:
 F

o
C

,
W

S
1
1

Modellierung einer Steuerung 4

Erste Modellierung der Anforderung

 K1(TS) = hS-Hist(TS): n:

 (lmarker  pos(h(n))  pos(h(n))  rmarker)

Interpretation der Modellierung:

 In jedem Zustand, der in einer möglichen Zustandshistorie des

 Systems vorkommt, ist die momentane Position zwischen den

 Markierungen lmarker und rmarker.

Wir betrachten eine weitere Modellierung der Anforderung:

 K2(TS) = sS: (lmarker  pos(s)  pos(s)  rmarker)

Interpretation der Modellierung:

 In jedem Zustand ist die momentane Position zwischen den

 Markierungen lmarker und rmarker.

Welche der beiden Modellierungen ist besser?

12 ©
 H

e
ik

o
 M

a
n

te
l

 V

o
rl
e

s
u

n
g
:
 F

o
C

,
W

S
1
1

Modellierung einer Steuerung 5

Theorem

Seien TS = (S,S0,E,) und pos: S beliebig.

Dann gilt: K2(TS)  K1(TS) .

Beweis

 Angenommen K2(TS) gelte.

 Dann gilt lmarker  pos(s)  rmarker für jeden Zustand sS.

 Seien hS-Hist(TS) und n beliebig.

Gemäß Modul 10 gilt h: S.

 Da h(n)S gilt, gilt auch lmarker  pos(h(n))  rmarker .

 Also gilt hS-Hist(TS): n:

 (lmarker  pos(h(n))  pos(h(n))  rmarker)

 Somit gilt K1(TS).

13 ©
 H

e
ik

o
 M

a
n

te
l

 V

o
rl
e

s
u

n
g
:
 F

o
C

,
W

S
1
1

Modellierung einer Steuerung 6

Theorem

K1(TS)  K2(TS) gilt nicht für beliebige Transitionssysteme
TS = (S,S0,E,) und Funktionen pos: S.

Beweis

 Sei VAR eine Menge von Programmvariablen, die eine Variable
 current-pos mit Wertebereich  enthält, die die momentane
 Position des Roboters angibt.
 Wir betrachten das Transitionssystem TS = (S,S0,E,) mit

 S = VAR

 S0 = { s0 }, wobei s0(current-pos) = lmarker und lmarker  rmarker

 E = { e }

  = , d.h. keine Transitionen sind möglich.
 Für dieses Transitionsssystem gilt die Eigenschaft K1, d.h. K1(TS) gilt.
 Da lmarker gilt lmarker – 1. Also gibt es einen Zustand sS mit

s(current-pos) = lmarker – 1.
 Für den Zustand s gilt lmarker  pos(s) nicht.
 Also gilt sS: (lmarker  pos(s)  pos(s)  rmarker) nicht.
 Somit gilt K2(TS) nicht.

14 ©
 H

e
ik

o
 M

a
n

te
l

 V

o
rl
e

s
u

n
g
:
 F

o
C

,
W

S
1
1

Modellierung einer Steuerung 7

Informelle Beschreibung der Sicherheitsanforderung

Der Roboter soll sich nur innerhalb des erlaubten Bereichs bewegen.

Die alternativen formalen Modellierungen:

 K1(TS) = hS-Hist(TS): n:

 (lmarker  pos(h(n))  pos(h(n))  rmarker)

 K2(TS) = sS: (lmarker  pos(s)  pos(s)  rmarker)

Welche Probleme treten bei der zweiten Modellierung auf?

 Betrachte ein Systemmodell TS mit einem oder mehreren

 Zustände s, für die lmarker  pos(s)  rmarker) nicht gilt.

 K2(TS) kann für ein solches Systemmodell nicht gelten, auch

 dann nicht wenn alle Zustände s mit lmarker  pos(s)  rmarker)

 während keines möglichen Systemlaufs erreicht werden können

 (siehe Beispielsystem im Beweis auf der vorigen Folie).

Die erste Modellierung ist daher der zweiten vorzuziehen!

15 ©
 H

e
ik

o
 M

a
n

te
l

 V

o
rl
e

s
u

n
g
:
 F

o
C

,
W

S
1
1

Modellierung einer Steuerung 8

Wir betrachten eine dritte Modellierung der Anforderung:

 K3(TS) =

 sS0: (lmarker  pos(s)  pos(s)  rmarker)

  s,s´S: eE: [(lmarker  pos(s)  pos(s)  rmarker

  (s,e,s´)  )

  (lmarker  pos(s´)  pos(s´)  rmarker)

Wie vergleicht sich diese dritte Modellierung zu den anderen?

 siehe Übung und Musterlösung

16 ©
 H

e
ik

o
 M

a
n

te
l

 V

o
rl
e

s
u

n
g
:
 F

o
C

,
W

S
1
1

Übersicht: Modul 13

Formale Modellierung von Systemeigenschaften

 Vorgehen und Rahmenbedingungen

Beispiel: Sicherheitsanforderung an eine Robotersteuerung

 informelle Beschreibung der Anforderung

 Vergleich von verschiedenen Formalisierungen der Anforderung

Beispiel: Sicherheitslücke in einem Kommunikationsprotokoll

 Spezifikation von Eigenschaften in CSP

 informelle Beschreibung eines Angriffs

 Spezifikation des Protokollablaufs

 Spezifikation der Sicherheitseigenschaft

17 ©
 H

e
ik

o
 M

a
n

te
l

 V

o
rl
e

s
u

n
g
:
 F

o
C

,
W

S
1
1

Eigenschaften in CSP 1

Syntax, Intuition und Aussprache

P sat S spezifiziert die Aussage, dass der durch P spezifizierte

Prozess die durch S modellierte Eigenschaft hat.

 P ist ein Prozessausdruck

 S ist ein Prädikat auf Spuren, d.h. S: E*Bool

 P sat S wird „P erfüllt S“ gesprochen.

Semantik

P sat S

 Die Semantik von P sat S wird durch folgende prädikatenlogische

 Formel definiert: trtraces(P): S(tr)

18 ©
 H

e
ik

o
 M

a
n

te
l

 V

o
rl
e

s
u

n
g
:
 F

o
C

,
W

S
1
1

Eigenschaften in CSP 2

Definition

Seien E ein Alphabet und F,GE beliebig. Die Eigenschaft

 „Wenn ein Ereignis aus G geschieht, dann muss zuvor ein

 Ereignis aus F geschehen sein“

kann wie folgt in CSP für einen Prozess P spezifiziert werden

 P sat BEFOREF,G

wobei das Prädikat BEFOREF,G wie folgt definiert ist:
 BEFOREF,G(tr) = trG  ()  trF  ()

Bemerkung

Die oben definierte Eigenschaft kann verwendet werden, um

Sicherheitsanforderungen an Kommunkationsprotokolle zu

spezifizieren (siehe die folgenden Folien).

19 ©
 H

e
ik

o
 M

a
n

te
l

 V

o
rl
e

s
u

n
g
:
 F

o
C

,
W

S
1
1

Modellierung eines Protokolls

Definition von Wertebereichen

USER = { A, B, C }

modelliert die Namen der Kommunikationspartner

KEY = { Pr(u) , Pu(u)  uUSER }
modelliert die kryptographischen Schlüssel der Nutzer

 Pr(u) modelliert den privaten Schlüssel von Nutzer u
 Pu(u) modelliert den öffentlichen Schlüssel von Nutzer u

NONCE
modelliert frisch erzeugte Zufallswerte

PLAINTEXT
modelliert unverschlüsselten Text (bleibt unterspezifiziert)

MSG ::= USERKEYNONCEPLAINTEXT{MSG}KEYMSG,MSG

modelliert die Nachrichten, die verschickt werden können

 Für kKEY und mMSG modelliert {m}k die Nachricht, die

 durch Verschlüsselung der Nachricht m mit k entsteht.

 Für m1,m2MSG modelliert m1,m2 die Nachricht, die durch

 Aneinanderhängen der Nachrichten m1 und m2 entsteht.

20 ©
 H

e
ik

o
 M

a
n

te
l

 V

o
rl
e

s
u

n
g
:
 F

o
C

,
W

S
1
1

Beispiel: Sicherheitsprotokoll 1

Das Needham-Schroeder Public-Key Protokoll

Alice Bob

{A, Na}Pu(B)

“Hallo, ich bin Alice und (ausgedrückt durch A)

 ich möchte mit Bob kommunizieren (ausgedrückt durch Pu(B))

 und zwar jetzt!” (ausgedrückt durch frisches Geheimnis Na)

21 ©
 H

e
ik

o
 M

a
n

te
l

 V

o
rl
e

s
u

n
g
:
 F

o
C

,
W

S
1
1

Beispiel: Sicherheitsprotokoll 2

Das Needham-Schroeder Public-Key Protokoll

Alice Bob

{A, Na}Pu(B)

{Na,Nb}Pu(A)

“Hallo, ich bin Bob und (ausgedrückt durch Wiederverwendung von Na)

 ich möchte mit Alice kommunizieren (ausgedrückt durch Pu(a))

 und zwar jetzt!” (ausgedrückt durch frisches Geheimnis Nb)

22 ©
 H

e
ik

o
 M

a
n

te
l

 V

o
rl
e

s
u

n
g
:
 F

o
C

,
W

S
1
1

Beispiel: Sicherheitsprotokoll 3

Das Needham-Schroeder Public-Key Protokoll

Alice Bob

{A, Na}Pu(B)

{Nb}Pu(B)

{Na,Nb}Pu/A)

Sind diese Schlüsse durch die Protokolllogik gerechtfertigt?

Situation nach einem Protokolllauf

 Alice schließt, dass sie mit Bob kommuniziert.

 Bob schließt, dass er mit Alice kommuniziert.

“OK, ich bin Alice und (ausgedrückt durch Wiederverwendung von Nb)

 ich kommuniziere mit Dir Bob!” (ausgedrückt durch Pu(B))

23 ©
 H

e
ik

o
 M

a
n

te
l

 V

o
rl
e

s
u

n
g
:
 F

o
C

,
W

S
1
1

Beispiel: Sicherheitsprotokoll 4

Das Needham-Schroeder Public-Key Protokoll

Ein “Mann in der Mitte Angriff”

Alice Bob

{A, Na}Pu(C)

{Nb}Pu(C)

{Na,Nb}Pu(A)

Charlie

{A, Na}Pu(B)

{Na,Nb}Pu/A)

{Nb}Pu(B)

Situation nach einem Protokolllauf

 Alice mit kommuniziert mit Charlie (wie gewünscht).

 Aber Bob kommuniziert mit Charlie (nicht wie gewünscht mit Alice).

Gavin Lowe entdeckte den Angriff mit formalen Methoden.

24 ©
 H

e
ik

o
 M

a
n

te
l

 V

o
rl
e

s
u

n
g
:
 F

o
C

,
W

S
1
1

Beispiel: Sicherheitsprotokoll 5

Das Needham-Schroeder Public-Key Protokoll

 wurde 1978 von Needham und Schroeder vorgeschlagen

Ziel des Protokolls

Wenn beide Kommunikationspartner das Protokoll erfolgreich

beendet haben, können sie davon ausgehen, dass der jeweils

andere Kommunikationspartner mit ihnen kommuniziert und auch

wirklich mit ihnen kommunizieren will.

Sicherheitslücke

 wurde 1996 von Gavin Lowe mit formalen Methoden gefunden

 Beachte: 18 Jahre nach Entwicklung des Protokolls

Formale Methoden in der Protokollanalyse

 Es gibt viele unterschiedliche Sicherheitsprotokolle.

 Die möglichen Sicherheitslücken können recht subtil sein.

 Viele Sicherlücken wurde erst mit formalen Methoden entdeckt.

25 ©
 H

e
ik

o
 M

a
n

te
l

 V

o
rl
e

s
u

n
g
:
 F

o
C

,
W

S
1
1

Spezifikation des Protokolls in CSP

Wie kann man ein solches Protokoll in CSP spezifizieren?

Wir geben keine allgemeine Spezifikation des Protokolls, sondern
konzentrieren uns auf den zuvor illustrierten Protokolllauf.

 Eine allgemeine Spezifikation des Protokolls ist möglich. Dazu
siehe z.B. den Artikel von Steve Schneider in den Referenzen.

Spezifikation der Ereignisse im Beispielprotokoll

send.u.m

modelliert: Nutzer uUSER verschickt die Nachricht mMSG

recv.u.m

modelliert: Nutzer uUSER empfängt die Nachricht mMSG

u

modelliert: Nutzer uUSER beendet das Protokoll erfolgreich

26 ©
 H

e
ik

o
 M

a
n

te
l

 V

o
rl
e

s
u

n
g
:
 F

o
C

,
W

S
1
1

Erweiterung der Spezifikationssprache

Wir führen ein weiteren Operator der Prozessalgebra ein.

Syntax, Intuition und Aussprache

(P  Q) spezifiziert einen Prozess, der sich entweder wie der

Prozess P oder wie der Prozess Q verhält.
 (P  Q) ist nur dann ein zulässiger Ausdruck, wenn P = Q gilt.

 (P  Q) wird „P Wahl Q“ gesprochen.

Semantik von (P  Q)

  (P  Q) = P = Q und

 traces((P  Q)) = traces(P)  traces(Q) .

Beachte: Der Operator  hat die gleiche Semantik wie .
 Intuition von PQ: Die Systemumgebung hat keine Kontrolle,
 ob sich der Prozess wie P oder wie Q verhält.

 Intuition von PQ: Die Systemumgebung kann beeinflussen,
 ob sich der Prozess wie P oder wie Q verhält.

Formale Unterscheidung geschieht durch Failure Semantics (Buch).

27 ©
 H

e
ik

o
 M

a
n

te
l

 V

o
rl
e

s
u

n
g
:
 F

o
C

,
W

S
1
1

Spezifikation des Protokolllaufs 1

Verallgemeinerung zu einem n-ären Operator

Syntax, Intuition und Aussprache

(jI P(j)) spezifiziert einen Prozess, der sich wie einer der

Prozesse P(j) verhält.
 (jI P(j)) ist nur dann ein zulässiger Ausdruck, wenn

 i,jI:P(i) = P(j) gilt.

Semantik von (jI P(j))

  (jI P(j)) = P(j) und

 traces((jI P(j)) = jI traces(P(j)) .

28 ©
 H

e
ik

o
 M

a
n

te
l

 V

o
rl
e

s
u

n
g
:
 F

o
C

,
W

S
1
1

Spezifikation des Protokolllaufs 2

Spezifikation des Senders

Alice = send.A.{A,Na}Pu(C)  NNONCErecv.A.{Na,N}Pu(A)
  send.A.{N} Pu(C)  A  SKIP{send.A.m,recv.A.m,AmMSG}

Spezifikation des Empfängers

Bob = uUSER, NNONCE recv.B.{u,N}Pu(B)  send.B.{N,Nb}Pu(u)
  recv.B.{Nb}Pu(B)  B  SKIP{send.B.m,recv.B.m,BmMSG}

Spezifikation des Angreifers

Charlie = N1NONCE recv.C.{A,N1}Pu(C)  send.C.{A,N1}Pu(B)
  mMSGrecv.C.m  send.C.m
  N2NONCErecv.C.{N2}Pu(C)  send.C.{N2}Pu(B)
  SKIP{send.u.m,recv.u.muUSER, mMSG}

Spezifikation des Netzwerkes (für beliebige M  MSG)

NET(M) = (uUSER,mMSG send.u.m  NET(M{m}))
 
 (uUSER,mM recv.u.m  NET(M))

29 ©
 H

e
ik

o
 M

a
n

te
l

 V

o
rl
e

s
u

n
g
:
 F

o
C

,
W

S
1
1

Spezifikation des Protokolllaufs 3

Spezifikation des Systems

Alice  Bob  Charlie  NET()

Spezifikation der Sicherheitseigenschaft

AUTHENTICA,B(tr) = BEFOREE1,E2(tr)  BEFOREE3,E4(tr)

wobei

 E1 = { send.A.{A,N}Pu(B),NNONCE }

 E2 = { B }

und

 E3 = { send.B.{N1,N2}Pu(A),

 N1,N2NONCE }

 E4 = { A }

Beobachtung

(Alice  Bob  Charlie  NET()) sat AUTHENTICA,B gilt nicht

Wie begründet man diese Beobachtung am formalen Modell?

 siehe Übung und Musterlösung

Alice  Bob 
Charlie  NET() AUTHENTICA,B(tr)

Systemmodell Modell der

Anforderungen

Struktur der Modellierung

30 ©
 H

e
ik

o
 M

a
n

te
l

 V

o
rl
e

s
u

n
g
:
 F

o
C

,
W

S
1
1

Rückblick

Einige wesentliche Lernziele dieses Moduls

 Fähigkeit zur klaren Unterscheidung von

 Systemverhalten und Systemeigenschaften

in einem formalen Modell

 Fähigkeit formale Modellierungen von Eigenschaften zu verstehen

 Fähigkeit formale Modellierungen von Eigenschaften zu beurteilen

 Fähigkeit formale Modellierungen von Eigenschaften zu vergleichen

 Spezifikation von Eigenschaften

 Prozessalgebra CSP

31 ©
 H

e
ik

o
 M

a
n

te
l

 V

o
rl
e

s
u

n
g
:
 F

o
C

,
W

S
1
1

Literatur

C. A. R. Hoare

 Communicating Sequential Processes; Prentice Hall 1985.

 enthält die hier definierte Spezifikationssprache

Steve Schneider

Security Properties and CSP. Konferenzband IEEE Symposium on

Security and Privacy 1996, Seiten 174-187.

 Ansatz zur Spezifikation von Protokollen und

 Sicherheitsanforderungen in CSP

Steve Schneider

Verifying authentication protocols with CSP. Konferenzband IEEE

Computer Security Foundations Workshop 1997, Seiten 3-17.

 Spezifikation und Verifikation von Protokollen und

 Sicherheitsanforderungen in CSP

