Verhaltensorientierte
Modellierung 4

Modul 13 (v1.0)

Kanonikvorlesung: Foundations of Computing

Heiko Mantel
MAIS, TU Darmstadt, WS11/12

Motivation

Vorlesung: FoC, WS11

© Heiko Mantel

Erinnerung

Modul 10 und 11: Modellierung von Systemen

Verhaltensorientierte Modellierung
Modul 12: Spezifikation von Systemen

eine Teilsprache der Prozessalgebra CSP

Fokus dieses Moduls

Wie modelliert man Eigenschaften von Systemen deklarativ?
Wie modelliert man Anforderungen an Systeme?

Beispiele fur Anforderungen an Informationssysteme:

z.B. die Ausgabe ist die in aufsteigender Reihenfolge sortierte
Folge der Elemente der eingegebenen Liste

z.B. private Informationen werden nicht an Dritte weitergegeben

Ubersicht: Modul 13

Vorlesung: FoC, WS11

© Heiko Mantel

Formale Modellierung von Systemeigenschaften
Vorgehen und Rahmenbedingungen

© Heiko Mantel

Modellierung von Eigenschaften 1

Vorlesung: FoC, WS11

Struktur der Modellierung

Modell des l Modell der
Systems Anforderungen

erfullt

Verifikation von Anforderungen
Erfullt ein Systemmodell ein gegebenes Anforderungsmodell?

Was sind die Voraussetzungen fir eine formale Verifikation?
Das System und die Anforderungen mussen formal modelliert sein.

In der Modellierung muss erkennbar sein, was das Systemmaodell
und was das Anforderungsmodell ist (entsprechend obigem Bild).
Es muss formal definiert sein, unter welchen Bedingungen ein

gegebenes Systemmodell ein Anforderungsmodell erfullt.

© Heiko Mantel

Modellierung von Eigenschaften 2

Vorlesung: FoC, WS11

Modellierung von Anforderungen in der Softwareentwicklung

Die Anforderungsdefinition geschieht in frihen Entwicklungsphasen.
Oft steht noch kein detailliertes Systemmodell zur Verfigung.

Wann kann man Anforderungen verifizieren?
erst nachdem ein ausreichend detailliertes Modell vorhanden ist

Systemmodell und Anforderungsmodell miissen existieren
Verifikation unterscheidet sich von Validierung (siehe Modul 9)

Wie modelliert man Anforderungen, ohne ein Systemmodell?
indem man annimmt, dass bestimmte Strukturen im Systemmodell
definiert werden (z.B. dass Zustande durch Funktionen von
Programmvariablen nach Werten modelliert werden), und die
Anforderungen basierend auf diesen Strukturen definiert (Beispiele
folgen)

© Heiko Mantel

Modellierung von Eigenschaften 3

Vorlesung: FoC, WS11

Beispiel fur ein Vorgehen bei der Anforderungsmodellierung

Wir legen fest, dass das Systemverhalten im Systemmodell durch
ein Transitionssystem TS = (S, SO, E, —) modelliert wird.
Systemanforderungen konnen jetzt durch Pradikate auf
Transitionssystemen modelliert werden.
Die Modellierung der Anforderungen durch ein Pradikat K ist

, wenn folgendes qilt:

K(TS) gilt fir ein Transitionssystem TS = (S, SO, E, —)
genau dann wenn

das durch TS modellierte System die durch K modellierte
Anforderung erfullt.

erfullt

wird modelliert wird modelliert
durch durch

erfullt

Ubersicht: Modul 13

Vorlesung: FoC, WS11

© Heiko Mantel

Beispiel: Sicherheitsanforderung an eine Robotersteuerung

informelle Beschreibung der Anforderung
Vergleich von verschiedenen Formalisierungen der Anforderung

Modellierung einer Steuerung 1

Beispiel
Steuerung eines Produktionsroboters
Der Roboter bewegt sich auf Schienen nach rechts oder links.
Vor dem linken Ende der Schienen gibt es eine Stopmarkierung.
Vor dem rechten Ende der Schienen gibt es eine Stopmarkierung.

linkes Imarker rmarker rechtes
Ende Ende

l I

Sicherheitszone erlaubter Bewegungsbereich des Roboters Sicherheitszone

Informelle Beschreibung der Sicherheitsanforderung
Der Roboter soll sich nur innerhalb des erlaubten Bereichs bewegen.

Vorlesung: FoC, WS11

© Heiko Mantel

[Wie prazisiert und formalisiert man diese Anforderung?]
8

© Heiko Mantel

Modellierung einer Steuerung 2

Vorlesung: FoC, WS11

Formalisierung der Anforderung

Wir legen fest, dass die Steuerung durch ein Transitionssystem
modelliert wird. Die genaue Modellierung des
Systemsverhalten wird noch nicht durchgefthrt.
Die mdglichen Positionen des Roboters werden von links nach
rechts durch aufsteigende ganze Zahlen fortlaufend modelliert.
ImarkereZ und rmarkereZ modellieren die Positionen am linken
bzw. rechten Rand des erlaubten Bereichs (wobei Imarker<rmarker).
Fur einen gegebenen Systemzustand s sei die Position des
Roboters durch gegeben.

Anmerkung: Die Funktion kann genauer definiert werden,
sobald die relevanten Teile des Systemmodells definiert sind.

Beispiel: Wenn Zustande als Funktionen von Programmvariablen zu
Werten modelliert werden und es eine Programmvariable

gib, die die aktuelle Position des Roboters angibt, so definieren
wir

Modellierung einer Steuerung 3

Vorlesung: FoC, WS11

© Heiko Mantel

Formalisierung der Anforderung (Fortsetzung)
Die Anforderung kann nun wie folgt als Pradikat formalisiert werden:

Ist dieses Anforderungsmodell angemessen?

10

© Heiko Mantel

Modellierung einer Steuerung 4

Vorlesung: FoC, WS11

Erste Modellierung der Anforderung

Interpretation der Modellierung:
In jedem Zustand, der in einer moglichen Zustandshistorie des

Systems vorkommit, ist die momentane Position zwischen den
Markierungen und

Wir betrachten eine weitere Modellierung der Anforderung:

Interpretation der Modellierung:
In jedem Zustand ist die momentane Position zwischen den

Markierungen und

Welche der beiden Modellierungen ist besser? 1

© Heiko Mantel

Modellierung einer Steuerung 5

Vorlesung: FoC, WS11

Theorem
Seien TS =(S,S0,E,—) und pos: S—Z beliebig.
Dann gilt: K2(TS) = K1(TS) .
Beweis
Angenommen K2(TS) gelte.

Dann gilt Imarker < pos(s) < rmarker fur jeden Zustand seS.

Seien heS-Hist(TS) und neN beliebig.
Gemal3 Modul 10 gilt h: N—>S.
Da h(n)eS qilt, gilt auch Imarker < pos(h(n)) < rmarker .
Also gilt YheS-Hist(TS): vnelN:

(Imarker < pos(h(n)) A pos(h(n)) < rmarker)
Somit gilt K1(TS).

12

Modellierung einer Steuerung 6

Vorlesung: FoC, WS11

© Heiko Mantel

Theorem

KL1(TS) = K2(TS) qilt nicht flr beliebige Transitionssysteme
TS =(S,S0,E,—) und Funktionen pos: S—Z.

Beweis

Sei VAR eine Menge von Programmvariablen, die eine Variable
current-pos mit Wertebereich Z enthalt, die die momentane
Position des Roboters angibt.

Wir betrachten das Transitionssystem TS = (S,S0,E,—) mit

S =VAR—~Z
S0 ={s0}, wobei sO(current-pos) = Imarker und Imarker < rmarker
E ={e}

— =, d.h. keine Transitionen sind mdglich.
Fur dieses Transitionsssystem gilt die Eigenschaft K1, d.h. K1(TS) qilt.

Da ImarkereZ gilt Imarker — 1eZ. Also gibt es einen Zustand seS mit
s(current-pos) = Imarker — 1.

Fur den Zustand s qilt Imarker < pos(s) nicht.
Also gilt VseS: (Imarker < pos(s) A pos(s) < rmarker) nicht.
Somit gilt K2(TS) nicht.

Modellierung einer Steuerung 7

Vorlesung: FoC, WS11

© Heiko Mantel

Informelle Beschreibung der Sicherheitsanforderung
Der Roboter soll sich nur innerhalb des erlaubten Bereichs bewegen.

Die alternativen formalen Modellierungen:
KL1(TS) = YheS-Hist(TS): VhelN:
(Imarker < pos(h(n)) A pos(h(n)) < rmarker)
K2(TS) = VseS: (Imarker < pos(s) A pos(s) < rmarker)

Welche Probleme treten bei der zweiten Modellierung auf?

Betrachte ein Systemmodell TS mit einem oder mehreren
Zustande s, fur die Imarker < pos(s) < rmarker) nicht gilt.
K2(TS) kann flur ein solches Systemmodell nicht gelten, auch
dann nicht wenn alle Zustande s mit Imarker < pos(s) < rmarker)
wahrend keines moéglichen Systemlaufs erreicht werden kénnen
(siehe Beispielsystem im Beweis auf der vorigen Folie).

Die erste Modellierung ist daher der zweiten vorzuziehen!

© Heiko Mantel

Modellierung einer Steuerung 8

Vorlesung: FoC, WS11

Wir betrachten eine dritte Modellierung der Anforderung:
K3(TS) =
VvseSO0: (Imarker < pos(s) A pos(s) < rmarker)
A VSs,s eS: VeeE: [(Imarker < pos(s) A pos(s) < rmarker
A (s,e,5) € >)
= (Imarker < pos(s’) A pos(s’) < rmarker)

é)
Wie vergleicht sich diese dritte Modellierung zu den anderen?
Q siehe Ubung und Musterlésung

_ J 15

Ubersicht: Modul 13

Vorlesung: FoC, WS11

© Heiko Mantel

Beispiel: Sicherheitsliicke in einem Kommunikationsprotokoll

Spezifikation von Eigenschaften in CSP
informelle Beschreibung eines Angriffs
Spezifikation des Protokollablaufs
Spezifikation der Sicherheitseigenschaft

Eigenschaften in CSP 1

Vorlesung: FoC, WS11

© Heiko Mantel

Syntax, Intuition und Aussprache

spezifiziert die Aussage, dass der durch P spezifizierte
Prozess die durch S modellierte Eigenschaft hat.
P ist ein Prozessausdruck
S ist ein Pradikat auf Spuren, d.h. S: E*—~Bool
P satS wird ,P erfullt S* gesprochen.

Semantik
PsatS
Die Semantik von P sat S wird durch folgende pradikatenlogische
Formel definiert:

17

© Heiko Mantel

Eigenschaften in CSP 2

Vorlesung: FoC, WS11

Definition
Seien E ein Alphabet und F,GcE beliebig. Die Eigenschatft
,Wenn ein Ereignis aus G geschieht, dann muss zuvor ein

Ereignis aus F geschehen sein”
kann wie folgt in CSP flr einen Prozess P spezifiziert werden

wobei das Pradikat BEFORE ; wie folgt definiert ist:

Bemerkung
Die oben definierte Eigenschaft kann verwendet werden, um
Sicherheitsanforderungen an Kommunkationsprotokolle zu
spezifizieren (siehe die folgenden Folien).

18

Modellierung eines Protokolls

Vorlesung: FoC, WS11

© Heiko Mantel

Definition von Wertebereichen
modelliert die Namen der Kommunikationspartner

modelliert die kryptographischen Schliissel der Nutzer

modelliert den privaten Schlussel von Nutzer u
modelliert den 6ffentlichen Schlissel von Nutzer u

modelliert frisch erzeugte Zufallswerte
modelliert unverschlisselten Text (bleibt unterspezifiziert)

modelliert die Nachrichten, die verschickt werden kénnen
FUir keKEY und meMSG modelliert die Nachricht, die
durch Verschlisselung der Nachricht m mit k entsteht.
Fir ml1,m2eMSG modelliert die Nachricht, die durch

Aneinanderhangen der Nachrichten m1l und m2 entsteht. 19

Beispiel: Sicherheitsprotokoll 1

Vorlesung: FoC, WS11

© Heiko Mantel

Das Needham-Schroeder Public-Key Protokoll

“Hallo, ich bin Alice und (ausgedrtickt durch A)
ich moéchte mit Bob kommunizieren (ausgedrickt durch Pu(B))
und zwar jetzt!” (ausgedruckt durch frisches Geheimnis Na)

. 4

Alice Bob

20

Beispiel: Sicherheitsprotokoll 2

Vorlesung: FoC, WS11

© Heiko Mantel

Das Needham-Schroeder Public-Key Protokoll

“Hallo, ich bin Bob und (ausgedruckt durch Wiederverwendung von Na)
ich mdchte mit Alice kommunizieren (ausgedrickt durch Pu(a))
und zwar jetzt!” (ausgedruckt durch frisches Geheimnis Nb)

Alice Bob

21

Beispiel: Sicherheitsprotokoll 3

Vorlesung: FoC, WS11

© Heiko Mantel

Das Needham-Schroeder Public-Key Protokoll

“OK, ich bin Alice und (ausgedruckt durch Wiederverwendung von Nb)
ich kommuniziere mit Dir Bob!” (ausgedruckt durch Pu(B))

¢ — . T

{Nb}Pu(B)

Alice Bob
Situation nach einem Protokolllauf

Alice schlieldt, dass sie mit Bob kommuniziert.
Bob schlieldt, dass er mit Alice kommuniziert.

[Sind diese Schlisse durch die Protokolllogik gerechtfertigt?]

22

Beispiel: Sicherheitsprotokoll 4

Das Needham-Schroeder Public-Key Protokoll
Ein “Mann in der Mitte Angriff”

¢ A Nabyo | @ ANaby
« (Na.Nbloyp NaNbleuw
Noloyo) (Nblows)
Bob

© Heiko Mantel

Vorlesung: FoC, WS11

Alice Charlie

Situation nach einem Protokolllauf
Alice mit kommuniziert mit Charlie (wie gewlnscht).

Aber Bob kommuniziert mit Charlie (nicht wie gewlnscht mit Alice).

[Gavin Lowe entdeckte den Angriff mit formalen Methoden.

),

© Heiko Mantel

Beispiel: Sicherheitsprotokoll 5

Vorlesung: FoC, WS11

Das Needham-Schroeder Public-Key Protokoll
wurde 1978 von Needham und Schroeder vorgeschlagen

Ziel des Protokolls

Wenn beide Kommunikationspartner das Protokoll erfolgreich
beendet haben, kbnnen sie davon ausgehen, dass der jeweils
andere Kommunikationspartner mit ihnen kommuniziert und auch
wirklich mit ihnen kommunizieren will.

Sicherheitslicke

wurde 1996 von Gavin Lowe mit formalen Methoden gefunden
Beachte: 18 Jahre nach Entwicklung des Protokolls

Formale Methoden in der Protokollanalyse

Es gibt viele unterschiedliche Sicherheitsprotokolle.
Die mdglichen Sicherheitsliicken konnen recht subtil sein.

Viele Sicherliicken wurde erst mit formalen Methoden entdeckit.

24

© Heiko Mantel

Spezifikation des Protokolls in CSP

Vorlesung: FoC, WS11

Wie kann man ein solches Protokoll in CSP spezifizieren?

Wir geben keine allgemeine Spezifikation des Protokolls, sondern
konzentrieren uns auf den zuvor illustrierten Protokolllauf.

Eine allgemeine Spezifikation des Protokolls ist mdglich. Dazu
siehe z.B. den Artikel von Steve Schneider in den Referenzen.

Spezifikation der Ereignisse im Beispielprotokoll

modelliert: Nutzer ueUSER verschickt die Nachricht meMSG
modelliert: Nutzer ueUSER empfangt die Nachricht meMSG

modelliert: Nutzer ueUSER beendet das Protokoll erfolgreich

25

Erweiterung der Spezifikationssprache

Vorlesung: FoC, WS11

© Heiko Mantel

Wir fuhren ein weiteren Operator der Prozessalgebra ein.

Syntax, Intuition und Aussprache

spezifiziert einen Prozess, der sich entweder wie der
Prozess P oder wie der Prozess Q verhalt.

(PoQ) wird gesprochen.

Semantik von (P o Q)
und

(Beachte: Der Operator o hat die gleiche Semantik wie n.)
O Intuition von PnQ: Die Systemumgebung hat keine Kontrolle,
ob sich der Prozess wie P oder wie Q verhalt.
O Intuition von PoOQ: Die Systemumgebung kann beeinflussen,
ob sich der Prozess wie P oder wie Q verhalt.
KFormale Unterscheidung geschieht durch Failure Semantics (Buch).)

Spezifikation des Protokolllaufs 1

Vorlesung: FoC, WS11

© Heiko Mantel

Verallgemeinerung zu einem n-aren Operator

Syntax, Intuition und Aussprache
spezifiziert einen Prozess, der sich wie einer der
Prozesse P(j) verhalt.

Semantik von (g, P(j))
und

27

© Heiko Mantel

Spezifikation des Protokolllaufs 2

Vorlesung: FoC, WS11

Spezifikation des Senders

= send.A.{A,Na}p,c) = Oncnoncel€CV-A{Na,N}pa
— send.A.{N} Pu(c) — \/A - SKIP{send.A.m,recv.A.m,\/A\meMSG}

Spezifikation des Empfangers

= Oycuser, NeNonce FeCV.B.{u,N}p gy — send.B.{N,Nb}p,
— reCV'B'{Nb}Pu(B) — \/B — SKII:){send.B.m,recv.B.m,\/B|meMSG}

Spezifikation des Angreifers

= ON1eNONCE recv.C.{A,Nl}Pu&C) — send.C.{A,N1}p 5
— Opemscl€cV.C.m — send.C.m
— Onzenoncel€CV.CAN2}p,) > send.C.{N2}p g,

— SKI I:){send.u.m,recv.u.m | ueUSER, meMSG}

Spezifikation des Netzwerkes (fir beliebige M ¢ MSG)

= (Oyeusermemsc Send.u.m — NET(Mu{m}))
-
(Mycusermem recv.u.m — NET(M))

28

Spezifikation des Protokolllaufs 3

Spezifikation des Systems

Spezifikation der Sicherheitseigenschaft

wobeli
= { send.A{A N}pye) | NeNONCE }
= { \/B }

und (" Struktur der Modellierung)
= { send.B.{N1,N2}p _

N |N1,N2eNONCE } Charle I NEF(2) }—b AUTHENTIC, o(tr
- { \/A } Systemmodell Modell der
Beobachtung _ Anforderungen /
gilt nicht

Vorlesung: FoC, WS11

© Heiko Mantel

Wie begrindet man diese Beobachtung am formalen Modell?
Q siehe Ubung und Musterlosung -

Ruckblick

Vorlesung: FoC, WS11

© Heiko Mantel

Einige wesentliche Lernziele dieses Moduls
Fahigkeit zur klaren Unterscheidung von
Systemverhalten und Systemeigenschaften

in einem formalen Modell
Fahigkeit formale Modellierungen von Eigenschaften zu verstehen
Fahigkeit formale Modellierungen von Eigenschaften zu beurteilen
Fahigkeit formale Modellierungen von Eigenschaften zu vergleichen
Spezifikation von Eigenschaften

Prozessalgebra CSP

L1teratur

C. A. R. Hoare

Communicating Sequential Processes; Prentice Hall 1985.
enthalt die hier definierte Spezifikationssprache

Steve Schneider
Security Properties and CSP. Konferenzband IEEE Symposium on
Security and Privacy 1996, Seiten 174-187.
Ansatz zur Spezifikation von Protokollen und
Sicherheitsanforderungen in CSP

- Steve Schneider

© Heiko Mantel

Vorlesung: FoC, WS11

Verifying authentication protocols with CSP. Konferenzband IEEE

Computer Security Foundations Workshop 1997, Seiten 3-17.
Spezifikation und Verifikation von Protokollen und
Sicherheitsanforderungen in CSP

31

