
Syntax und Semantik von
Programmen 1
Modul 5 (v1.0)

Kanonikvorlesung: Foundations of Computing

Heiko Mantel

MAIS, TU Darmstadt, WS10/11

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

2

Motivation

Spezifikationssprache in diesem Modul
� IMP

� eine einfache imperative Programmiersprache

Semantik der „Spezifikationssprache“
� operationelle Semantik

� syntaxorientierte Auswertungssemantik

Fokus dieses Moduls: Was bedeutet ein Programm?

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

3

Übersicht: Modul 5

Syntax einer imperativen Programmiersprache
� Backus-Naur Form
� arithmetische und boolesche Ausdrücke und Kommandos
� abstrakte und konkrete Syntax
� syntaktische Gleichheit versus semantische Äquivalenz

Semantik der Programmiersprache
� Urteile und Kalküle
� Substitutionen und Herleitungen
� operationelle Semantik arithmetischer Ausdrücke
� operationelle Semantik boolescher Ausdrücke
� operationelle Semantik der Kommandos

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

4

Syntax (1)

IMP
� eine einfache imperative Programmiersprache
� sequentielle Sprache mit bedingter Verzweigung und Schleifen

Wertebereiche
� N die Zahlen (N steht für engl. numbers)
� T die Wahrheitswerte (T steht für engl. truth values)
� Loc die Programmvariablen (Loc steht für engl. locations)
� Aexp die arithmetischen Ausdrücke

(Aexp steht für engl. arithmetic expressions)
� Bexp die booleschen Ausdrücke

(Bexp steht für engl. boolean expressions)
� Com die Kommandos

(Com steht für engl. Commands)

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

5

Syntax (2)

N
� Definition: N = {0} ∪ { n | n∈N } ∪ { -n | n∈N }
� Intuition: die negativen und positiven ganzen Zahlen

T
� Definition: T = { true, false }
� Intuition: die Wahrheitswerte

Loc
� Der Wertebereich Loc bleibt unterspezifiziert.
� Intuition: die Programmvariablen

Metavariablen
� Platzhalter für Elemente aus einem Wertebereich
Konventionen
� m, n Platzhalter für Elemente aus N
� t Platzhalter für Elemente aus T
� X, Y Platzhalter für Elemente aus Loc

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

6

Backus-Naur Form

Backus-Naur Form
� eine kompakte Schreibweise für Produktionsregeln
� kurz: BNF

BNF und Grammatiken
� BNF spezifiziert die Produktionsregeln einer Grammatik (Σ,V,X0,P)
� Sind Σ, V und X0 aus dem Kontext klar, dann verwendet man die

BNF auch, um Grammatiken zu spezifizieren (siehe nächste Folie).

Folgende BNF
� u ::= v1 |||| v2 |||| … |||| vn

ist eine kompakte Schreibweise für folgende Menge von Regeln:
� u →→→→ v1

u →→→→ v2
…
u →→→→ vn

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

7

Syntax (3)

Aexp
� Definition (durch Angabe einer BNF):

� a ::= n | X | a+a | a-a | a*a
� Intuition: arithmetische Ausdrücke

Obige Definition ist eine kompakte Schreibweise für fo lgendes
„Aexp ist eine formale Sprache, die durch die Grammatik (Σ,V,X0,P)
spezifiziert wird, wobei
� Σ = N ∪ Loc ∪ { +, -, * }, V = {a}, X0= a
� P = { a → n | n∈N } ∪ { a → X | X∈Loc }

∪ { a → a+a,
a → a-a,
a → a*a }

Beachte
Da die Metavariablen n und X in der BNF als Platzhalter für
beliebige Elemente aus den Wertebereichen N und Loc agieren,
ergeben sich Mengen von Produktionsregeln aus der BNF.

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

8

Syntax (4)

Bexp
� Definition (durch Angabe einer BNF):

� b ::= true | false | a=a | a≤a | ¬b | b∧b | b∨b
� Intuition: boolesche Ausdrücke

Com
� Definition (durch Angabe einer BNF):

� c ::= skip | X:=a | c;c | if b then c else c fi | while b do c od
� Intuition: Kommandos einer imperativen Programmiersprache
� Konvention:

„Programm“ wird als Synonym für „Kommando“ verwendet.

Übung: Gib die obigen Definitionen in expandierter Form an.

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

9

Syntaktische Korrektheit

Ist ein Ausdruck ein syntaktisch korrektes Programm?
� Diese Frage kann durch die Angabe einer Ableitung mit den

Produktionsregeln positiv beantwortet werden.

Beispiel
� c → if b then c else c fi

→ if a≤a then c else c fi
→ if a≤a then c else c;c fi
→ if a≤0 then c else c;c fi
→ if a≤0 then v0:=a else c;c fi
→ if a≤0 then v0:=a+a else c;c fi
→ …
→ if v0≤0 then v0:=v1+5 else skip;skip fi

� if v0≤0 then v0:=v1+5 else skip;skip fi
ist also ein syntaktisch korrektes Programm.

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

10

Abstrakte und Konkrete Syntax (1)

Wie wird 5+3*4 gelesen?
� 5+3*4 ist ein syntaktisch korrekter Ausdruck der Sprache Aexp.

Es gibt mehrere Ableitungen für 5+3*4 , z.B.
� a → a*a → a+a*a → 5+a*a → 5+3*a → 5+3*4
� a → a*a → a*4 → a+a*4 → a+3*4 → 5+3*4
� a → a+a → a+a*a → 5+a*a → 5+3*a → 5+3*4
� …

Es gibt zwei m ögliche Darstellungen von 5+3*4 als Baum:

� Dadurch lassen sich zwei Klassen von Ableitungen unterscheiden.
1. Die Regel für * wird vor der für + angewandt (linker Baum).
2. Die Regel für * wird nach der für + angewandt (rechter Baum).

*

+ 4

5 3

*

+

4

5

3

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

11

Abstrakte und Konkrete Syntax (2)

Abstrakte Syntax
� Man betrachtet Texte als Terme.
� Die Baumstruktur der Terme klärt, wie der Text abzuleiten ist.

� Baumstruktur gibt nur an, in welcher Klasse die Ableitung liegt.

� Die Ableitungen in einer Klasse werden als äquivalent gesehen.
� Beispiele: die beiden Bäume auf der vorigen Folie

Konkrete Syntax
� Man betrachtet Text ohne Struktur.
� Man fügt Klammern ein oder definiert die Bindungsstärke der

Operatoren, um zu klären, wie der Text abzuleiten ist.
� Beispiele: (5+3)*4 und 5+(3*4)

*

+ 4

5 3

*

+

4

5

3

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

12

Abstrakte und Konkrete Syntax (3)

Wann verwendet man abstrakte bzw. konkrete Syntax?
Programmieren

� Man verwendet konkrete Syntax beim Programmieren.

Kompilierung eines Programms
� Der Compiler erhält ein Programm in konkreter Syntax.

� Vor der eigentlichen Kompilierung wird die Termstruktur des
Programms rekonstruiert, d.h. es geschieht eine Übersetzung in
abstrakte Syntax.

Interpretierung eines Programms
� Der Interpreter erhält ein Programm in konkreter Syntax.

� Vor der eigentlichen Interpretierung geschieht eine Übersetzung
in abstrakte Syntax.

Theoretische Analysen von Programmen
� Man verwendet meist abstrakte Syntax zur Vereinfachung.

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

13

Syntaktische Gleichheit

Wann sind zwei Ausdrücke gleich?
Sind 5+3 und 3+5 gleich?

� Nein, die Ausdrücke sind syntaktisch unterschiedlich.

Sind 5+3 und (5+3) gleich?
� Ja, beide Ausdrücke werden auf die gleiche Weise abgeleitet.

Sind 5+3*4 und (5+3)*4 gleich?
� Nein, denn es gibt Ableitungen von 5+3*4, die keine Ableitungen

des zweiten Ausdrucks sind. Ein Gegenbeispiel ist z.B. die
Ableitung a → a+a → a+a*a → 5+a*a → 5+3*a → 5+3*4.

Ob zwei Ausdrücke syntaktisch gleich sind, hängt nur davon
ab, ob sie die gleichen Ableitungen haben.

Für syntaktische Gleichheit spielen nur die Ableitunge n der
Ausdrücke eine Rolle, nicht die Bedeutung der Ausdrü cke.

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

14

Übersicht: Modul 5

Syntax einer imperativen Programmiersprache
� Backus-Naur Form
� arithmetische und boolesche Ausdrücke und Kommandos
� abstrakte und konkrete Syntax
� syntaktische Gleichheit versus semantische Äquivalenz

Semantik der Programmiersprache
� Urteile und Kalküle
� Substitutionen und Herleitungen
� operationelle Semantik arithmetischer Ausdrücke
� operationelle Semantik boolescher Ausdrücke
� operationelle Semantik der Kommandos

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

15

Zustände

Definition
Ein Zustand ist eine Funktion σσσσ:Loc →→→→N. Die Menge aller
Zustände wird mit ΣΣΣΣ bezeichnet.

Intuition (Zustand)
Ein Zustand ordnet jeder Programmvariablen aus Loc einen Wert
aus N zu, d.h. eine ganze Zahl.

Intuition (Auswertung)
Der Wert eines arithmetischen oder booleschen Ausdrucks in einem
Zustand wird durch eine Auswertungssemantik (oder operationelle
Semantik) definiert.
Die Veränderung von Zuständen durch Ausführung von Programmen
wird ebenfalls durch eine Auswertungssemantik definiert.

Eine Auswertungssemantik für arithmetische und boole sche
Ausdrücke und für Programme wird im Folgenden eingefüh rt.

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

16

Substitutionen

Definition
Eine Substitution ist eine Funktion, die eine endliche Menge von
Metavariablen als Definitionsbereich hat und jedem Element aus
dieser Menge einen Ausdruck zuordnet.
Eine Grundsubstitution ist eine Substitution, deren Bildbereich nur
Ausdrücke ohne Metavariablen enthält.

Wir verwenden die Notation [X1����t1, …, Xn����tn] für die Substitution
mit Definitionsbereich {X1,…,Xn}, die X1 den Ausdruck t1, … und Xn
den Ausdruck tn zuordnet.

Definition
Die Anwendung einer Substitution ηηηη auf einen Ausdruck αααα
(geschrieben αηαηαηαη) resultiert in dem Ausdruck β, den man erhält,
indem man in α jedes freie Auftreten jeder Metavariablen X aus
dem Definitionsbereich von η durch η(X) ersetzt.

Beispiel (Substitution von Metavariablen in Ausdrück en)
(((2+X)*(Y-X))*X)[X����(1+Z)] = (((2+(1+Z))*(Y-(1+Z)))*(1+Z))

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

17

Auswertungssemantik (1)

Definition
Ein Urteil ist ein Schema für Ausdrücke, also ein Ausdruck, der
Metavariablen als atomare Ausdrücke enthalten kann. Ein Urteil soll
eine gegebene Intuition über einen Sachverhalt formalisieren.

Definition
Ein Ausdruck ξ ist eine Instanz eines Urteils ζ, wenn ξ und ζ
gleich sind oder man ξ durch Ersetzen einer oder mehrerer
Metavariablen in ζ durch geeignete Ausdrücke konstruieren kann.

Definition
ξ ist eine Grundinstanz , wenn ξ keine Metavariablen enthält.

Konvention: Nachfolgend erlauben wir Metavariablen al s
atomare Ausdrücke in Ausdrücken aus Aexp, Bexp und Co m.

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

18

Auswertungssemantik (2)

Notation für Kalkülregeln

ζζζζ1, ζζζζ2, …, ζζζζn
ζζζζ

r-name φ1, …, φm

Konklusion
� ein instanziiertes Urteil ζ

Name der Regel

Prämissen
� eine endliche Liste ζ1,ζ2,…,ζn

von Instanzen von Urteilen,
die leer sein kann

Seitenbedingungen
� eine endliche Liste φ1,…,φm von

Bedingungen, die leer sein kann

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

19

Auswertungssemantik (3)

Definition
Ein Kalkül ist eine Menge von Kalkülregeln.

Herleitbarkeit von Urteilen
Durch Angabe eines Kalküls wird definiert, welche Instanzen eines
Urteils herleitbar sind.

Intuition
Ist eine Grundinstanz des Urteils herleitbar, dann sollte der durch
diese ausgedrückte Sachverhalt auch zutreffen. (Angemessenheit)

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

20

Semantik für Aexp (1)

Informelle Beschreibung der Auswertung eines Ausdrucks
Die Auswertung eines arithmetischen Ausdrucks z.B. der Form
(a1+a2) in einem Zustand σσσσ lässt sich wie folgt beschreiben:
� Werte den Ausdruck a1 aus, um eine Zahl n1 zu erhalten.
� Werte den Ausdruck a2 aus, um eine Zahl n2 zu erhalten.
� Der Wert des Ausdrucks (a1+a2) ist dann das Resultat der

Addition n1+n2 .

Unterscheidung zwischen Syntax und Semantik
Das Symbol + tritt in obiger Beschreibung in zwei Rollen auf:
� in (a1+a2) als Symbol in arithmetischen Ausdrücken (Syntax)
und
� in n1+n2 als Bezeichner der Addition (Semantik).

Beachte
Wird dasselbe Symbol sowohl in der Syntax als auch in Semantik
verwendet (wie z.B. + in obigem Beispiel), so sollte man beim Lesen
und Schreiben von Ausdrücken darauf achten, dass die
Unterscheidung zwischen Syntax und Semantik eingehalten wird.

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

21

Semantik für Aexp (2)

Urteil
Wir führen das Urteil 〈〈〈〈a,σσσσ〉〉〉〉 ⇓⇓⇓⇓ n ein, um auszudrücken, dass
� ein arithmetischer Ausdruck a∈Aexp
� in einem Zustand σ
� zu einem Wert n∈N auswertet.
Der Kalkül enthält die Regeln rN, rLoc, r+, r- und r*, die auf den
folgenden Folien definiert werden.

Kalkülregeln

〈a1,σ〉⇓n1 〈a2,σ〉⇓n2
〈a1+a2,σ〉 ⇓ n

r+ n ist die Summe von n1 und n2

Alle Prämissen und die Konklusion sind Instanzen de s Urteils
(Syntax), die Seitenbedingung beschränkt Werte (Sem antik).

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

22

Semantik für Aexp (3)

Kalkülregeln (Fortsetzung)

〈a1,σ〉⇓n1 〈a2,σ〉⇓n2
〈a1-a2,σ〉 ⇓ n

r-
n ist die Differenz von n1
und n2

〈a1,σ〉⇓n1 〈a2,σ〉⇓n2
〈a1*a2,σ〉 ⇓ n

r*
n ist das Produkt von n1
und n2

_ _
〈X,σ〉 ⇓ n

rLoc n ist der Wert von X in σ,
d.h. n = σ(X)

_ _
〈n,σ〉 ⇓ n

rN eine Regel ohne Prämissen
und Seitenbedingungen

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

23

Instanziierung von Kalkülregeln

Definition
Eine Regel

ξξξξ1, ξξξξ2, …, ξξξξn
ξ

ist die Instanz (bzw. Grundinstanz) einer Kalkülregel
ζζζζ1, ζζζζ2, …, ζζζζn

ζζζζ
wenn es eine Substitution (bzw. Grundsubstitution) η gibt, so dass
ξ = ζη, ξ1 = ζ1η, … und ξn = ζnη und die Instanzen φ1η,.. und φmη
der Seitenbedingungen erfüllt sind.

Beispiel
� Der Zustand σ0 ordne allen Programmvariablen den Wert 0 zu.

Beide folgenden Regeln sind dann Instanzen der Kalkülregel r+ !

r-name φ1,…,φm

〈2,σ0〉⇓2 〈X,σ0〉⇓0
〈2+X,σ0〉 ⇓ 2

〈2,σ0〉⇓3 〈X,σ0〉⇓1
〈2+X,σ0〉 ⇓ 4

r+ r+2=2+0
gilt

4=3+1
gilt

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

24

Herleitbarkeit von Urteilen

Definition
Die Instanz ξ eines Urteils ist in einem Kalkül herleitbar genau
dann wenn eine der folgenden beiden Bedingungen erfüllt ist:
� Es gibt eine Kalkülregel der Form

_ _
ζζζζ

und eine Substitution η, so dass
� ζη = ξ und
� die Instanzen φ1η,.. und φmη der Seitenbedingungen erfüllt sind.

� Es gibt eine Kalkülregel der Form
ζζζζ1, ζζζζ2, …, ζζζζn

ζζζζ
und eine Substitution η, so dass
� ζη = ξ;
� die Instanzen φ1η,.. und φmη der Seitenbedingungen erfüllt sind und
� jede der Instanzen ζ1η, … und ζnη der Prämissen herleitbar ist.

r-name φ1,…,φm

r-name φ1,…,φm

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

25

Semantik für Aexp (4)

Beispiel (textuelle Herleitung)
Der Zustand σ ordne der Programmvariablen x den Wert 5 zu.
Dann ist 〈1+x,σ〉 ⇓ 6 herleitbar, weil
� 〈1,σ〉 ⇓ 1 durch eine Anwendung der Regel rN hergeleitet

werden kann.
� 〈x,σ〉 ⇓ 5 durch eine Anwendung der Regel rLoc hergeleitet

werden kann.
� Die Instanz σ(x)=5 der Nebenbedingung von rLoc ist gültig.

� 〈1+x,σ〉 ⇓ 6 aus 〈1,σ〉 ⇓ 1 und 〈x,σ〉 ⇓ 5 durch eine Anwendung
der Regel r+ hergeleitet werden kann.
� Die Instanz 1+5=6 der Nebenbedingung von r+ ist gültig..

Eine Herleitung muss detailliert angegeben werden.
Insbesondere sollten
�die Namen der verwendeten Regeln angegeben werden,
�alle Prämissen einer Regel hergeleitet werden und
�die Gültigkeit aller Nebenbedingungen gezeigt werden.

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

26

Semantik für Aexp (5)

Beispiel (graphische Herleitung)
Statt der textuellen Beschreibung einer Herleitung kann man auch
folgende graphische Notation verwenden:

_ _ _ _

〈1,σ〉 ⇓ 1 〈x,σ〉 ⇓ 5
〈1+x,σ〉 ⇓ 6

rN rLoc

r+ 1+5=6 gilt

σ(x)=5 gilt

Eine graphische Herleitung muss auch detailliert ange geben
werden.
Insbesondere sollten (genau wie bei einer textuellen Herleitung)
�die Namen der verwendeten Regeln angegeben werden,
�alle Prämissen einer Regel hergeleitet werden und
�die Gültigkeit aller Nebenbedingungen gezeigt werden.

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

27

Semantik für Bexp (1)

Urteil
Wir führen das Urteil 〈〈〈〈b,σσσσ〉〉〉〉 ⇓⇓⇓⇓ t ein, um auszudrücken, dass
� ein boolescher Ausdruck b∈Bexp
� in einem Zustand σ
� zu einem Wert t∈T auswertet.
Der Kalkül enthält die Regeln rtrue, rfalse, r=t, r=f, r≤t, r≤f, r¬t,
r¬f, r∧t, r∧f1, r∧f2, r∨t1, r∨t2 und r∨f, die auf den folgenden
Folien definiert werden.

Kalkülregeln

_ _
〈true,σ〉 ⇓ true

rtrue _ _
〈false,σ〉 ⇓ false

rfalse

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

28

Semantik für Bexp (2)

Kalkülregeln (Fortsetzung 1. Teil)

〈a1,σ〉 ⇓ n1 〈a2,σ〉 ⇓ n2
〈a1=a2,σ〉 ⇓ true

r=t n1 und n2 sind gleich

〈a1,σ〉 ⇓ n1 〈a2,σ〉 ⇓ n2
〈a1=a2,σ〉 ⇓ false

r=f n1 und n2 sind nicht gleich

〈a1,σ〉 ⇓ n1 〈a2,σ〉 ⇓ n2
〈a1≤a2,σ〉 ⇓ true

r≤t n1 ist kleiner oder gleich n2

〈a1,σ〉 ⇓ n1 〈a2,σ〉 ⇓ n2
〈a1≤a2,σ〉 ⇓ false

r≤f n1 ist größer als n2

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

29

Semantik für Bexp (3)

Kalkülregeln (Fortsetzung 2. Teil)

_ 〈b,σ〉 ⇓ false _
〈¬b,σ〉 ⇓ true

r¬t
_ 〈b,σ〉 ⇓ true _
〈¬b,σ〉 ⇓ false

r¬f

〈b1,σ〉 ⇓ true 〈b2,σ〉 ⇓ true
〈b1∧b2,σ〉 ⇓ true

r∧t

〈b1,σ〉 ⇓ false 〈b2,σ〉 ⇓ false
〈b1∨b2,σ〉 ⇓ false

r∨f

_ 〈b1,σ〉 ⇓ true _
〈b1∨b2,σ〉 ⇓ true

r∨t1
_ 〈b2,σ〉 ⇓ true _
〈b1∨b2,σ〉 ⇓ true

r∨t2

_ 〈b1,σ〉 ⇓ false _
〈b1∧b2,σ〉 ⇓ false

r∧f1
_ 〈b2,σ〉 ⇓ false _
〈b1∧b2,σ〉 ⇓ false

r∧f2

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

30

Semantik für Com (1)

Urteil
Wir führen das Urteil 〈〈〈〈c,σσσσ〉〉〉〉 →→→→ σσσσ´ ein, um auszudrücken, dass
� ein Kommando c∈Com
� in einem Zustand σ
� zu einem Zustand σ´ auswertet.
Der Kalkül enthält die Regeln rsk, r:=, r;, rift, riff, rwht und rwhf,
die auf den folgenden Folien definiert werden.

Kalkülregeln

_ _
〈skip,σ〉 → σ

rsk

_ 〈a,σ〉 ⇓ n _
〈X:=a,σ〉 → σ´

r:= σ´ ist der Zustand, der X den Wert n
und jeder anderen Programmvariablen
y den Wert σ(y) zuordnet

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

31

Semantik für Com (2)

Kalkülregeln (Fortsetzung)

〈c1,σ〉 → σ´´ 〈c2,σ´´〉 → σ´
〈c1;c2,σ〉 → σ´

r;

〈b,σ〉⇓true 〈c1,σ〉 → σ´
〈if b then c1else c2 fi,σ〉 → σ´

rift

〈b,σ〉⇓false 〈c2,σ〉 → σ´
〈if b then c1else c2 fi,σ〉 → σ´

riff

〈b,σ〉⇓true 〈c1,σ〉→σ´´ 〈while b do c1 od,σ´´〉→σ´
〈while b do c1 od,σ〉 → σ´

rwht

_ 〈b,σ〉⇓false _
〈while b do c1 od,σ〉 → σ

rwhf

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

32

Semantische Äquivalenz (1)

Wann sind zwei Ausdrücke semantisch äquivalent?
Die Auswertungssemantik induziert auf natürliche Weise einen
semantischen Äquivalenzbegriff
� Beachte den Unterschied zu syntaktischer Gleichheit!

Definition
Zwei boolesche Ausdrücke b1,b2 ∈∈∈∈Bexp, die keine Metavariablen
enthalten, sind zueinander semantisch äquivalent wenn für alle
Zustände σ die folgenden beiden Bedingungen gelten:
� 〈b1,σ〉⇓true ist herleitbar genau dann

wenn 〈b2,σ〉⇓true herleitbar ist,
� 〈b1,σ〉⇓false ist herleitbar genau dann

wenn 〈b2,σ〉⇓false herleitbar ist.

Wann sind zwei boolesche Ausdrücke, die Metavariable n als
atomare Ausdrücke enthalten, zueinander äquivalent?

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

33

Semantische Äquivalenz (2)

Definition
Zwei boolesche Ausdrücke b1,b2 ∈∈∈∈Bexp (die Metavariablen
enthalten dürfen) sind zueinander semantisch äquivalent wenn für
alle Grundsubstitutionen η, deren Definitionsbereich alle
Metavariablen in b1 und b2 einschließt, und für alle Zustände σ die
folgenden beiden Bedingungen gelten:
� 〈b1η,σ〉⇓true ist herleitbar genau dann

wenn 〈b2η,σ〉⇓true herleitbar ist,
� 〈b1η,σ〉⇓false ist herleitbar genau dann

wenn 〈b2η,σ〉⇓false herleitbar ist.

Beispiel
(X=5∧Y=X) und (X=Y∧Y=3+2) sind semantisch äquivalent.

Übung: Zeige formal, dass die Äquivalenz wirklich gi lt.

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

34

Semantische Äquivalenz (3)

Definition
Zwei arithmetische Ausdrücke a1,a2 ∈∈∈∈Aexp sind zueinander
semantisch äquivalent wenn für alle Grundsubstitutionen η, deren
Definitionsbereich alle Metavariablen in a1 und a2 einschließt, und
für alle Zustände σ und für alle ganzen Zahlen n die folgende
Bedingung gilt:
� 〈a1η,σ〉⇓n ist herleitbar genau dann

wenn 〈a2η,σ〉⇓n herleitbar ist.

Definition
Zwei Kommandos c1,c2 ∈∈∈∈Com sind zueinander semantisch
äquivalent wenn für alle Grundsubstitutionen η, deren
Definitionsbereich alle Metavariablen in c1 und c2 einschließt, und
für alle Zustände σ,σ´ die folgende Bedingung gilt:
� 〈c1η,σ〉→σ´ ist herleitbar genau dann

wenn 〈c2η,σ〉→σ´ herleitbar ist.

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

35

Übersicht: Modul 5

Syntax einer imperativen Programmiersprache
� Backus-Naur Form
� arithmetische und boolesche Ausdrücke und Kommandos
� abstrakte und konkrete Syntax
� syntaktische Gleichheit versus semantische Äquivalenz

Semantik der Programmiersprache
� Urteile und Kalküle
� Substitutionen und Herleitungen
� operationelle Semantik arithmetischer Ausdrücke
� operationelle Semantik boolescher Ausdrücke
� operationelle Semantik der Kommandos

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

36

Rückblick

Einige wesentliche Lernziele dieses Moduls
� Wie kann ich die Syntax einer Programmiersprache formal

modellieren?

� Wie kann ich die Bedeutung von Programmen in einer gegebenen
Programmiersprache formal modellieren?
� klare Unterscheidung zwischen Syntax und Semantik!!!

� Was ist ein Urteil?

� Was ist eine Auswertungssemantik?

� Wie definiere ich einen natürlichen Äquivalenzbegriff basierend
auf einer Auswertungssemantik?

� Was ist der Unterschied zwischen syntaktischer Gleichheit und
semantischer Äquivalenz?

Selbsttest: Können Sie Syntax und Semantik Ihrer
Lieblingsprogrammiersprache bereits formal modellieren?
�Tip: Beginnen Sie mit Teilsprachen, die Sie dann erweitern.

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

37

Literatur

Glynn Winskel
The Formal Semantics of Programming Languages; Kapitel 2
The MIT Press, 1993.

