
Syntax und Semantik von
Programmen 2
Modul 6 (v1.0)

Kanonikvorlesung: Foundations of Computing

Heiko Mantel

MAIS, TU Darmstadt, WS10/11

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

2

Motivation

Wie beweist man Aussagen über Programme formal?
� basierend auf der formal modellierten Syntax und Semantik

Unterschiedliche Beweistechniken
� Fallunterscheidung
� Widerspruchsbeweis
� Strukturelle Induktion
� Induktion über Herleitungen

Fokus dieses Moduls: Wie beweist man Eigenschaften ?

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

3

Übersicht: Modul 6

Äquivalenz zweier Programme
� Beweis mit Fallunterscheidung

Nichtterminierung eines Programms
� Widerspruchsbeweis

Induktionsprinzipien
� Induktion auf den natürlichen Zahlen
� wohlfundierte Induktion
� Rechtfertigung der Induktion auf den natürlichen Zahlen
� strukturelle Induktion auf Aexp
� Rechtfertigung der strukturellen Induktion auf Aexp

Deterministische Auswertung von Ausdrücken
� Beweis mit struktureller Induktion

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

4

Äquivalenz zweier Programme (1)

Definition (aus Modul 5)
Zwei Kommandos c1,c2 ∈∈∈∈Com sind zueinander semantisch
äquivalent wenn für alle Grundsubstitutionen η, deren
Definitionsbereich alle Metavariablen in c1 und c2 einschließt, und
für alle Zustände σ,σ´ die folgende Bedingung gilt:
� 〈c1η,σ〉→σ´ ist herleitbar genau dann

wenn 〈c2η,σ〉→σ´ herleitbar ist.

Notation
Wir schreiben c1 ~ c2 , um auszudrücken, dass c1 und c2
zueinander semantisch äquivalent sind.

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

5

Äquivalenz zweier Programme (2)

Theorem
while B do C od ~ if B then C; while B do C od else skip fi

Beweis
� Seien σ und σ´ beliebige Zustände und η eine beliebige

Grundsubstitution, deren Definitionsbereich B und C enthält.
� Folgende beiden Teilaussagen sind zu beweisen:

a) Wenn 〈(while B do C od)η,σ〉→σ´ herleitbar ist, dann ist

〈(if B then C; while B do C od else skip fi)η,σ〉→σ´
ebenfalls herleitbar.

b) Wenn 〈(if B then C; while B do C od else skip fi)η,σ〉→σ´

herleitbar ist, dann ist 〈(while B do C od)η,σ〉→σ´
ebenfalls herleitbar.

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

6

Äquivalenz zweier Programme (3)

Beweis (Fortsetzung)
Beweis von Aussage a)
� Angenommen 〈(while B do C od)η,σ〉→σ´ sei herleitbar.
� Es gibt zwei Möglichkeiten für die letzte Regel in der Herleitung:

i. rwhf ist die letzte Regel

ii. rwht ist die letzte Regel
Wir machen eine Fallunterscheidung über diese Möglichkeiten:

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

7

Äquivalenz zweier Programme (4)

Beweis von Fall ai.
� Da rwhf die letzte Regel in der Herleitung ist, muss diese

folgende Form haben:

� Wir haben also eine Herleitung H1 von 〈Bη,σ〉 ⇓ false
und es gilt σ´ = σ.

� Mit Hilfe der Herleitung H1 können wir folgende Herleitung von
〈(if B then C; while B do C od else skip fi)η,σ〉 → σ´
konstruieren:

_ 〈Bη,σ〉 ⇓ false _
〈(while B do C od)η,σ〉 → σ

H1

rwhf

_ _

_ 〈Bη,σ〉 ⇓ false 〈(skip)η,σ〉 → σ _
〈(if B then C; while B do C od else skip fi)η,σ〉 → σ

H1

riff

rsk

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

8

Äquivalenz zweier Programme (5)

Beweis von Fall aii.
� Da rwht die letzte Regel in der Herleitung ist, muss diese

folgende Form haben:

� Mit Hilfe von H1, H2 und H3 können wir folgende Herleitung von
〈(if B then C; while B do C od else skip fi)η,σ〉→σ´ konstruieren:

〈Bη,σ〉 ⇓ true 〈Cη,σ〉 → σ´´ 〈(while B do C od)η,σ´´〉 → σ´
〈(while B do C od)η,σ〉 → σ´

H1

rwht

H2 H3

〈Cη,σ〉→σ´´ 〈(while B do C od)η,σ´´〉→σ´
_〈Bη,σ〉 ⇓ true 〈(C; while B do C od)η,σ〉→σ´ _

〈(if B then C; while B do C od else skip fi)η,σ〉 → σ´

H1

rift

r;

H3H2

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

9

Äquivalenz zweier Programme (6)

Beweis (Fortsetzung)
Beweis von Aussage b)
� Angenommen 〈(if B then C; while B do C od else skip fi)η,σ〉→σ´

sei herleitbar.
� Es gibt zwei Möglichkeiten für die letzte Regel in der Herleitung:

i. riff ist die letzte Regel

ii. rift ist die letzte Regel
Wir machen eine Fallunterscheidung über diese Möglichkeiten:

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

10

Äquivalenz zweier Programme (7)

Beweis von Fall bi.
� Da riff die letzte Regel in der Herleitung ist, muss diese

folgende Form haben:

� Die Herleitung H2 kann nur folgende Form haben:

� Mit Hilfe von σ´= σ und H1 können wir folgende Herleitung von
〈(while B do C od)η,σ〉 → σ´ konstruieren:

_ 〈Bη,σ〉 ⇓ false _
〈(while B do C od)η,σ〉 → σ

H1

rwhf

_ 〈Bη,σ〉 ⇓ false 〈(skip)η,σ〉 → σ´ _
〈(if B then C; while B do C od else skip fi)η,σ〉 → σ´

H1

riff

H2

_

〈(skip)η,σ〉 → σ
rsk

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

11

Äquivalenz zweier Programme (8)

Beweis von Fall bii.
…

Übung: Vervollständigen Sie obigen Beweis!

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

12

Übersicht: Modul 6

Äquivalenz zweier Programme
� Beweis mit Fallunterscheidung

Nichtterminierung eines Programms
� Widerspruchsbeweis

Induktionsprinzipien
� Induktion auf den natürlichen Zahlen
� wohlfundierte Induktion
� Rechtfertigung der Induktion auf den natürlichen Zahlen
� strukturelle Induktion auf Aexp
� Rechtfertigung der strukturellen Induktion auf Aexp

Deterministische Auswertung von Ausdrücken
� Beweis mit struktureller Induktion

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

13

Nichtterminierung (1)

Theorem
Es gibt keine Zustände σ und σ´, so dass

〈while true do skip od,σ〉 → σ´ herleitbar ist.
Die Intuition ist: das Programm while true do skip od terminiert nie.

Beweis (Widerspruchsbeweis)
� Angenommen es gebe σ,σ´, so dass 〈while true do skip od,σ〉→σ´

herleitbar ist.
� Sei H eine Herleitung von 〈while true do skip od,σ〉→σ´, so dass

es keine Herleitung von 〈while true do skip od,σ〉→σ´ mit weniger
Regelanwendungen gibt, d.h. H ist eine kleinste Herleitung.

� Die letzte Regel in H kann nur die Regel rwht sein.
� Daher muss die Herleitung folgende Form haben:

_ _

〈true,σ〉⇓true 〈skip,σ〉→σ´´ 〈while true do skip od,σ´´〉→σ´
〈while true do skip od,σ〉 → σ´

rwht

H1 H2
rtrue

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

14

Nichtterminierung (2)

Beweis (Fortsetzung)
� Die Herleitung H1 kann nur folgende Form haben:

� Das heißt, es gilt σ´´=σ.
� Somit hat die Herleitung H folgende Form:

�H2 ist auch eine Herleitung von 〈while true do skip od,σ〉→σ´, hat
aber weniger Regelanwendungen als H.

�H ist also keine kleinste Herleitung von 〈while true do skip od,σ〉→σ´.
Ein Widerspruch!

qed

_

〈skip,σ〉 → σ
rsk

_ _ _ _

_ 〈true,σ〉⇓true 〈skip,σ〉→σ 〈while true do skip od,σ〉→σ´_
〈while true do skip od,σ〉 → σ´

rwht

H2
rskrtrue

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

15

Übersicht: Modul 6

Äquivalenz zweier Programme
� Beweis mit Fallunterscheidung

Nichtterminierung eines Programms
� Widerspruchsbeweis

Induktionsprinzipien
� Induktion auf den natürlichen Zahlen
� wohlfundierte Induktion
� Rechtfertigung der Induktion auf den natürlichen Zahlen
� strukturelle Induktion auf Aexp
� Rechtfertigung der strukturellen Induktion auf Aexp

Deterministische Auswertung von Ausdrücken
� Beweis mit struktureller Induktion

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

16

Induktion

Beweisprinzip der Induktion auf den natürlichen Zahl en
Sei P⊆N eine einstellige Relation über den natürlichen Zahlen.
Wenn folgende Bedingungen gelten:
� P(0)
� ∀n∈N: (P(n) ⇒ P(n+1))
dann gilt auch
� ∀n∈N: P(n)
Die Formel P(n) wird als Induktionsannahme bezeichnet, und
P wird als Induktionsformel bezeichnet.

Intuition
Wenn die „Eigenschaft P“ für 0 gilt und wenn aus „P gilt für n“ auch
„P gilt für n+1“ gefolgert werden kann, dann haben alle natürlichen
Zahlen die „Eigenschaft P“.

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

17

Wohlfundierte Induktion (1)

Definition
Sei � ⊆ D×D eine binäre Relation auf einer Menge D. Eine
unendliche Folge f: N→D (wurde in Modul 3 eingeführt) heißt
unendlich absteigende Kette für ���� genau dann wenn
∀i∈N: f(i+1)�f(i) gilt.

Definition
Eine binäre Relation � ⊆ D×D auf einer Menge D heißt
wohlfundiert genau dann wenn es keine unendliche absteigende
Kette für � gibt.

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

18

Wohlfundierte Induktion (2)

Definition
Die transitive Hülle einer binären Relation R ⊆ D×D auf einer
Menge D ist die kleinste Relation R* ⊆ D×D, so dass
� ∀d1,d2∈D: [d1 R d2 ⇒ d1 R* d2]
� ∀d1,d2,d3∈D: [(d1 R* d2 ∧ d2 R* d3) ⇒ d1 R* d3]

Theorem
Sei � ⊆ D×D eine wohlfundierte Relation auf D. Dann gilt:
�� ist irreflexiv, d.h. ∄d∈D: d � d und
��* ist eine wohlfundierte Relation.

Beweis
….

Übung: Führen Sie obigen Beweis!

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

19

Wohlfundierte Induktion (3)

Beweisprinzip der wohlfundierten Induktion
Sei P⊆D eine einstellige Relation auf einer Menge D und � ⊆ D×D
eine wohlfundierte Relation auf D. Wenn folgende Bedingung gilt:
� ∀d∈D: [(∀d´∈D: (d´�d ⇒ P(d´))) ⇒ P(d)]
dann gilt auch
� ∀d∈D: P(d)
Die Formeln P(d´) werden als Induktionsannahme bezeichnet,
und P wird als Induktionsformel bezeichnet.

Intuition
Wenn aus „P gilt für alle d´, die kleiner sind als d“ auch
„P gilt für d“ gefolgert werden kann, dann haben alle Elemente von
D die „Eigenschaft P“.

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

20

Instanziierung des Beweisprinzips (1)

Beispiel (Rechtfertigung der Induktion auf NNNN)
Die Relation � ⊆ N×N sei definiert durch
� m � n genau dann wenn m+1=n
Wir erhalten folgende Spezialisierung des Beweisprinzips der
wohlfundierten Induktion:
� „Wenn folgende Bedingung gilt:

� ∀n∈N: [(∀n´∈N: (n´+1=n ⇒ P(n´))) ⇒ P(n)]
dann gilt auch
� ∀n∈N: P(n)“

Durch ein Fallunterscheidung über „n=0“ erhalten wir
� „Wenn folgende Bedingungen gelten:

� (∀n´∈N: (n´+1=0 ⇒ P(n´)))⇒ P(0)

� ∀n∈N: [n≠0 ⇒ [(∀n´∈N: (n´+1=n ⇒ P(n´))) ⇒ P(n)]]
dann gilt auch
� ∀n∈N: P(n)“

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

21

Instanziierung des Beweisprinzips (2)

Beispiel (Fortsetzung)
Also gilt auch
� „Wenn folgende Bedingungen gelten:

� true ⇒ P(0)

� ∀n´´∈N: [n´´+1≠0 ⇒ [(∀n´∈N:(n´+1=n´´+1 ⇒ P(n´))) ⇒ P(n´´+1)]]
dann gilt auch
� ∀n∈N: P(n)“

Also gilt auch
� „Wenn folgende Bedingung gilt:

� P(0)

� ∀n´´∈N: [P(n´´) ⇒ P(n´´+1)]
dann gilt auch
� ∀n∈N: P(n)“

Das Induktionsprinzip auf den natürlichen Zahlen ist also ein
Spezialfall der wohlfundierten Induktion.

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

22

Strukturelle Induktion für Aexp (1)

Definition (aus Modul 5)
Die Menge Aexp ist durch folgende BNF definiert:
� a ::= n | X | a+a | a-a | a*a

Beweisprinzip der strukturellen Induktion für Aexp
Sei P⊆Aexp eine einstellige Relation über Aexp. Wenn folgende
Bedingungen gelten:
� ∀n∈N: P(n)
� ∀x∈Loc: P(x)
� ∀a1,a2∈Aexp: (P(a1) ∧P(a2)) ⇒ P(a1+a2)
� ∀a1,a2∈Aexp: (P(a1) ∧P(a2)) ⇒ P(a1-a2)
� ∀a1,a2∈Aexp: (P(a1) ∧P(a2)) ⇒ P(a1*a2)
dann gilt auch
� ∀a∈Aexp: P(a)
Die Formeln P(a1) und P(a2) werden als Induktionsannahmen
bezeichnet, und P wird als Induktionsformel bezeichnet.

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

23

Strukturelle Induktion für Aexp (2)

Definition
Die Ausdrücke a1 und a2 sind die direkten Teilausdrücke der
Ausdrücke a1+a2, a1-a2 und a1*a2. Die Ausdrücke n und x
haben keine direkten Teilausdrücke.

Rechtfertigung der strukturellen Induktion für Aexp
Die Relation � ⊆ Aexp×Aexp sei definiert durch
� a´ � a genau dann wenn a´ ein direkter Teilausdruck von a ist.
Wir erhalten folgende Spezialisierung des Beweisprinzips der
wohlfundierten Induktion:
� „Wenn folgende Bedingung gilt:

� ∀a∈Aexp: [(∀a´∈Aexp:
(a´ ist ein direkter Teilausdruck von a ⇒ P(a´)))

⇒ P(a)]
dann gilt auch

� ∀a∈Aexp: P(a)“

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

24

Strukturelle Induktion für Aexp (3)

Rechtfertigung (Fortsetzung)
Durch ein Fallunterscheidung über die Struktur der Ausdrücke in
Aexp erhalten wir
� „Wenn folgende Bedingung gilt:

� ∀n∈N: P(n)

� ∀x∈Loc: P(x)
� ∀a1,a2∈Aexp: [(P(a1) ∧ P(a2)) ⇒ P(a1+a2)]

� ∀a1,a2∈Aexp: [(P(a1) ∧ P(a2)) ⇒ P(a1-a2)]

� ∀a1,a2∈Aexp: [(P(a1) ∧ P(a2)) ⇒ P(a1*a2)]
dann gilt auch

� ∀a∈Aexp: P(a)“

Das Beweisprinzip der strukturellen Induktion auf Aexp ist
also ein Spezialfall der wohlfundierten Induktion.

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

25

Übersicht: Modul 6

Äquivalenz zweier Programme
� Beweis mit Fallunterscheidung

Nichtterminierung eines Programms
� Widerspruchsbeweis

Induktionsprinzipien
� Induktion auf den natürlichen Zahlen
� wohlfundierte Induktion
� Rechtfertigung der Induktion auf den natürlichen Zahlen
� strukturelle Induktion auf Aexp
� Rechtfertigung der strukturellen Induktion auf Aexp

Deterministische Auswertung von Ausdrücken
� Beweis mit struktureller Induktion

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

26

Deterministische Auswertung (1)

Theorem
Für alle a∈Aexp, m,m´∈N und alle Zustände σ gilt:
wenn 〈a,σ〉⇓m und 〈a,σ〉⇓m´ herleitbar sind, dann gilt m´=m.

Beweis
� Wir verwenden das Beweisprinzip der strukturellen Induktion für

P(a) = ∀σ: ∀m,m´∈N: [(„〈a,σ〉⇓m ist herleitbar“
∧ „〈a,σ〉⇓m´ ist herleitbar“) ⇒ m=m´]

� Wir müssen 5 Fälle beweisen:
Fall a=n für ein n ∈∈∈∈N
� Die Herleitung von 〈n,σ〉⇓n´ kann nur folgende Form haben:

Daher muss m = n = m´ gelten.

_

〈n,σ〉 ⇓ n
rN

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

27

Deterministische Auswertung (2)

Beweis (Fortsetzung)
Fall a=x für ein x ∈∈∈∈Loc
� Die Herleitung von 〈x,σ〉⇓n´ kann nur folgende Form haben:

Daher muss m = σ(x) = m´ gelten.
Fall a=a1+a2 für a1,a2 ∈∈∈∈Aexp wobei P(a1) und P(a2) gelten
� Die Herleitungen von 〈a,σ〉⇓m und 〈a,σ〉⇓m´ können nur

folgende Formen haben:

� Aus P(a1) und P(a2) folgen m1=m1´ und m2=m2´.
Daher muss m = m1+m2 = m1´+m2´ = m´ gelten.

_

〈x,σ〉 ⇓ n´
rLoc σ(x)=n´

〈a1,σ〉⇓m1 〈a2,σ〉⇓m2
〈a1+a2,σ〉 ⇓ m

H1

r+

H2

m=m1+m2 〈a1,σ〉⇓m1´ 〈a2,σ〉⇓m2´
〈a1+a2,σ〉 ⇓ m´

H1´

r+

H2´

m´=m1´+m2´

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

28

Deterministische Auswertung (3)

Beweis (Fortsetzung)
Fall a=a1-a2 für a1,a2 ∈∈∈∈Aexp wobei P(a1) und P(a2) gelten
� …
Fall a=a1*a2 für a1,a2 ∈∈∈∈Aexp wobei P(a1) und P(a2) gelten
� …

Siehe Übungsblatt und Musterlösung

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

29

Deterministische Auswertung (4)

Theorem
Für alle b∈Bexp, t,t´∈T und alle Zustände σ gilt:
wenn 〈b,σ〉⇓t und 〈b,σ〉⇓t´ herleitbar sind, dann gilt t´=t.

Beweis
� …

Siehe Übungsblatt und Musterlösung

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

30

Übersicht: Modul 6

Äquivalenz zweier Programme
� Beweis mit Fallunterscheidung

Nichtterminierung eines Programms
� Widerspruchsbeweis

Induktionsprinzipien
� Induktion auf den natürlichen Zahlen
� wohlfundierte Induktion
� Rechtfertigung der Induktion auf den natürlichen Zahlen
� strukturelle Induktion auf Aexp
� Rechtfertigung der strukturellen Induktion auf Aexp

Deterministische Auswertung von Ausdrücken
� Beweis mit struktureller Induktion

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

31

Rückblick

Einige wesentliche Lernziele dieses Moduls
� Wie kann ich eine operationelle Semantik zur Verifikation nutzen?
� Beherrschung elementarer Verifikationstechniken:

� Fallunterscheidung

� Widerspruchsbeweis

� wohlfundierte Induktion
� strukturelle Induktion

� … wird in Modul 7 vervollständigt …
� Fähigkeit, ein Induktionsprinzip zu rechtfertigen

©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:

F
oC

, W
S

10

32

Literatur

Glynn Winskel
The Formal Semantics of Programming Languages; Kapitel 3
The MIT Press, 1993.

