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Motivation

Wie beweist man Aussagen über Programme formal?
� basierend auf der formal modellierten Syntax und Semantik

Unterschiedliche Beweistechniken
� Fallunterscheidung
� Widerspruchsbeweis
� Strukturelle Induktion
� Induktion über Herleitungen

Fokus dieses Moduls:  Wie beweist man Eigenschaften ?
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Übersicht: Modul 6

Äquivalenz zweier Programme
� Beweis mit Fallunterscheidung

Nichtterminierung eines Programms
� Widerspruchsbeweis

Induktionsprinzipien
� Induktion auf den natürlichen Zahlen
� wohlfundierte Induktion
� Rechtfertigung der Induktion auf den natürlichen Zahlen
� strukturelle Induktion auf Aexp
� Rechtfertigung der strukturellen Induktion auf Aexp

Deterministische Auswertung von Ausdrücken
� Beweis mit struktureller Induktion
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Äquivalenz zweier Programme (1)

Definition (aus Modul 5)
Zwei Kommandos  c1,c2 ∈∈∈∈Com  sind zueinander semantisch 
äquivalent wenn für alle Grundsubstitutionen  η, deren 
Definitionsbereich alle Metavariablen in  c1  und  c2  einschließt, und 
für alle Zustände  σ,σ´ die folgende Bedingung gilt:
� 〈c1η,σ〉→σ´ ist herleitbar genau dann 

wenn  〈c2η,σ〉→σ´ herleitbar ist.

Notation
Wir schreiben  c1 ~ c2 , um auszudrücken, dass  c1  und  c2  
zueinander semantisch äquivalent sind.
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Äquivalenz zweier Programme (2)

Theorem
while B do C od  ~ if B then C; while B do C od else skip fi

Beweis
� Seien  σ und  σ´ beliebige Zustände und η eine beliebige 

Grundsubstitution, deren Definitionsbereich  B  und  C  enthält.
� Folgende beiden Teilaussagen sind zu beweisen:

a) Wenn  〈(while B do C od)η,σ〉→σ´ herleitbar ist, dann ist  

〈(if B then C; while B do C od else skip fi)η,σ〉→σ´
ebenfalls herleitbar.

b) Wenn  〈(if B then C; while B do C od else skip fi)η,σ〉→σ´

herleitbar ist, dann ist  〈(while B do C od)η,σ〉→σ´
ebenfalls herleitbar.



©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:  

F
oC

, W
S

10

6

Äquivalenz zweier Programme (3)

Beweis (Fortsetzung)
Beweis von Aussage a)
� Angenommen 〈(while B do C od)η,σ〉→σ´ sei herleitbar.
� Es  gibt zwei Möglichkeiten für die letzte Regel in der Herleitung:

i. rwhf  ist die letzte Regel

ii. rwht  ist die letzte Regel
Wir machen eine Fallunterscheidung über diese Möglichkeiten:
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Äquivalenz zweier Programme (4)

Beweis von Fall ai.
� Da  rwhf  die letzte Regel in der Herleitung ist, muss diese 

folgende Form haben:

� Wir haben also eine Herleitung  H1  von  〈Bη,σ〉 ⇓ false  
und es gilt  σ´ = σ.

� Mit Hilfe der Herleitung H1  können wir folgende Herleitung von  
〈(if B then C; while B do C od else skip fi)η,σ〉 → σ´
konstruieren:

_        〈Bη,σ〉 ⇓ false           _
〈(while B do C od)η,σ〉 → σ

H1

rwhf

_                       _

_        〈Bη,σ〉 ⇓ false                      〈(skip)η,σ〉 → σ _
〈(if B then C; while B do C od else skip fi)η,σ〉 → σ

H1

riff

rsk
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Äquivalenz zweier Programme (5)

Beweis von Fall aii.
� Da  rwht  die letzte Regel in der Herleitung ist, muss diese 

folgende Form haben:

� Mit Hilfe von H1, H2 und H3 können wir folgende Herleitung von  
〈(if B then C; while B do C od else skip fi)η,σ〉→σ´ konstruieren:

_〈Bη,σ〉 ⇓ true    〈Cη,σ〉 → σ´´ 〈(while B do C od)η,σ´´〉 → σ´_
〈(while B do C od)η,σ〉 → σ´

H1

rwht

H2 H3

〈Cη,σ〉→σ´´ 〈(while B do C od)η,σ´´〉→σ´
_〈Bη,σ〉 ⇓ true                  〈(C; while B do C od)η,σ〉→σ´ _

〈(if B then C; while B do C od else skip fi)η,σ〉 → σ´

H1

rift

r;

H3H2
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Äquivalenz zweier Programme (6)

Beweis (Fortsetzung)
Beweis von Aussage b)
� Angenommen 〈(if B then C; while B do C od else skip fi)η,σ〉→σ´

sei herleitbar.
� Es  gibt zwei Möglichkeiten für die letzte Regel in der Herleitung:

i. riff  ist die letzte Regel

ii. rift  ist die letzte Regel
Wir machen eine Fallunterscheidung über diese Möglichkeiten:
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Äquivalenz zweier Programme (7)

Beweis von Fall bi.
� Da  riff  die letzte Regel in der Herleitung ist, muss diese 

folgende Form haben:

� Die Herleitung  H2  kann nur folgende Form haben:

� Mit Hilfe von σ´= σ und  H1  können wir folgende Herleitung von  
〈(while B do C od)η,σ〉 → σ´ konstruieren:

_        〈Bη,σ〉 ⇓ false           _
〈(while B do C od)η,σ〉 → σ

H1

rwhf

_        〈Bη,σ〉 ⇓ false                      〈(skip)η,σ〉 → σ´ _
〈(if B then C; while B do C od else skip fi)η,σ〉 → σ´

H1

riff

H2

_

〈(skip)η,σ〉 → σ
rsk
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Äquivalenz zweier Programme (8)

Beweis von Fall bii.
…

Übung:  Vervollständigen Sie obigen Beweis!
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Übersicht: Modul 6

Äquivalenz zweier Programme
� Beweis mit Fallunterscheidung

Nichtterminierung eines Programms
� Widerspruchsbeweis

Induktionsprinzipien
� Induktion auf den natürlichen Zahlen
� wohlfundierte Induktion
� Rechtfertigung der Induktion auf den natürlichen Zahlen
� strukturelle Induktion auf Aexp
� Rechtfertigung der strukturellen Induktion auf Aexp

Deterministische Auswertung von Ausdrücken
� Beweis mit struktureller Induktion
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Nichtterminierung (1)

Theorem
Es gibt keine Zustände  σ und  σ´, so dass  

〈while true do skip od,σ〉 → σ´ herleitbar ist.
Die Intuition ist: das Programm  while true do skip od  terminiert nie.

Beweis (Widerspruchsbeweis)
� Angenommen es gebe σ,σ´, so dass  〈while true do skip od,σ〉→σ´

herleitbar ist.
� Sei  H eine Herleitung von  〈while true do skip od,σ〉→σ´, so dass 

es keine Herleitung von  〈while true do skip od,σ〉→σ´ mit weniger 
Regelanwendungen gibt, d.h.  H ist eine kleinste Herleitung.

� Die letzte Regel in  H kann nur die Regel  rwht  sein.
� Daher muss die Herleitung folgende Form haben:

_                 _

_〈true,σ〉⇓true     〈skip,σ〉→σ´´ 〈while true do skip od,σ´´〉→σ´_
〈while true do skip od,σ〉 → σ´

rwht

H1 H2
rtrue
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Nichtterminierung (2)

Beweis (Fortsetzung)
� Die Herleitung H1  kann nur folgende Form haben: 

� Das heißt, es gilt  σ´´=σ.
� Somit hat die Herleitung  H folgende Form:

�H2  ist auch eine Herleitung von  〈while true do skip od,σ〉→σ´,  hat 
aber weniger Regelanwendungen als  H.

�H ist also keine kleinste Herleitung von 〈while true do skip od,σ〉→σ´.
Ein Widerspruch!

qed

_

〈skip,σ〉 → σ
rsk

_ _ _               _

_ 〈true,σ〉⇓true       〈skip,σ〉→σ 〈while true do skip od,σ〉→σ´_
〈while true do skip od,σ〉 → σ´

rwht

H2
rskrtrue
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Übersicht: Modul 6

Äquivalenz zweier Programme
� Beweis mit Fallunterscheidung

Nichtterminierung eines Programms
� Widerspruchsbeweis

Induktionsprinzipien
� Induktion auf den natürlichen Zahlen
� wohlfundierte Induktion
� Rechtfertigung der Induktion auf den natürlichen Zahlen
� strukturelle Induktion auf Aexp
� Rechtfertigung der strukturellen Induktion auf Aexp

Deterministische Auswertung von Ausdrücken
� Beweis mit struktureller Induktion
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Induktion

Beweisprinzip der Induktion auf den natürlichen Zahl en
Sei  P⊆N eine einstellige Relation über den natürlichen Zahlen.  
Wenn folgende Bedingungen gelten:
� P(0)
� ∀n∈N:  (P(n) ⇒ P(n+1))
dann gilt auch
� ∀n∈N: P(n)
Die Formel  P(n) wird als Induktionsannahme bezeichnet,  und  
P  wird als Induktionsformel bezeichnet.

Intuition
Wenn die „Eigenschaft P“ für  0  gilt und wenn aus „P gilt für n“ auch 
„P gilt für n+1“ gefolgert werden kann, dann haben alle natürlichen 
Zahlen die „Eigenschaft P“.
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Wohlfundierte Induktion (1)

Definition
Sei  � ⊆ D×D  eine binäre Relation auf einer Menge  D.  Eine 
unendliche Folge  f: N→D  (wurde in Modul 3 eingeführt) heißt 
unendlich absteigende Kette für ���� genau dann wenn
∀i∈N: f(i+1)�f(i)  gilt.

Definition
Eine binäre Relation  � ⊆ D×D  auf einer Menge  D  heißt 
wohlfundiert genau dann wenn es keine unendliche absteigende 
Kette für � gibt.
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Wohlfundierte Induktion (2)

Definition
Die transitive Hülle einer binären Relation  R ⊆ D×D  auf einer 
Menge  D  ist die kleinste Relation  R* ⊆ D×D, so dass
� ∀d1,d2∈D: [d1 R d2 ⇒ d1 R* d2]
� ∀d1,d2,d3∈D: [(d1 R* d2  ∧ d2 R* d3) ⇒ d1 R* d3]

Theorem
Sei � ⊆ D×D  eine wohlfundierte Relation auf D.  Dann gilt:
�� ist irreflexiv, d.h.  ∄d∈D: d � d  und 
��*  ist eine wohlfundierte Relation.

Beweis
….

Übung:  Führen Sie obigen Beweis!
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Wohlfundierte Induktion (3)

Beweisprinzip der wohlfundierten Induktion
Sei  P⊆D eine einstellige Relation auf einer Menge  D  und � ⊆ D×D 
eine wohlfundierte Relation auf  D.  Wenn folgende Bedingung gilt:
� ∀d∈D:  [(∀d´∈D:  (d´�d ⇒ P(d´))) ⇒ P(d)]
dann gilt auch
� ∀d∈D: P(d)
Die Formeln  P(d´) werden als Induktionsannahme bezeichnet,  
und  P  wird als Induktionsformel bezeichnet.

Intuition
Wenn aus „P gilt für alle d´, die kleiner sind als d“ auch 
„P gilt für d“ gefolgert werden kann, dann haben alle Elemente von  
D  die „Eigenschaft P“.
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Instanziierung des Beweisprinzips (1)

Beispiel (Rechtfertigung der Induktion auf NNNN)
Die Relation � ⊆ N×N sei definiert durch
� m � n  genau dann wenn  m+1=n
Wir erhalten folgende Spezialisierung des Beweisprinzips der 
wohlfundierten Induktion:
� „Wenn folgende Bedingung gilt:

� ∀n∈N:  [ (∀n´∈N:  (n´+1=n ⇒ P(n´))) ⇒ P(n) ]
dann gilt auch
� ∀n∈N: P(n)“

Durch ein Fallunterscheidung über  „n=0“ erhalten wir
� „Wenn folgende Bedingungen gelten:

� (∀n´∈N:  (n´+1=0 ⇒ P(n´)) )⇒ P(0)

� ∀n∈N:  [ n≠0 ⇒ [ (∀n´∈N:  (n´+1=n ⇒ P(n´))) ⇒ P(n) ] ]
dann gilt auch
� ∀n∈N: P(n)“
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Instanziierung des Beweisprinzips (2)

Beispiel (Fortsetzung)
Also gilt auch 
� „Wenn folgende Bedingungen gelten:

� true ⇒ P(0)

� ∀n´´∈N: [n´´+1≠0 ⇒ [(∀n´∈N:(n´+1=n´´+1 ⇒ P(n´))) ⇒ P(n´´+1)]]
dann gilt auch
� ∀n∈N: P(n)“

Also gilt auch 
� „Wenn folgende Bedingung gilt:

� P(0)

� ∀n´´∈N: [ P(n´´) ⇒ P(n´´+1) ] 
dann gilt auch
� ∀n∈N: P(n)“

Das Induktionsprinzip auf den natürlichen Zahlen ist also ein 
Spezialfall der wohlfundierten Induktion. 
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Strukturelle Induktion für Aexp (1)

Definition (aus Modul 5)
Die Menge  Aexp  ist durch folgende BNF definiert:
� a ::= n | X | a+a | a-a | a*a

Beweisprinzip der strukturellen Induktion für Aexp
Sei  P⊆Aexp  eine einstellige Relation über  Aexp.  Wenn folgende 
Bedingungen gelten:
� ∀n∈N: P(n)
� ∀x∈Loc: P(x)
� ∀a1,a2∈Aexp: (P(a1) ∧P(a2)) ⇒ P(a1+a2)
� ∀a1,a2∈Aexp: (P(a1) ∧P(a2)) ⇒ P(a1-a2)
� ∀a1,a2∈Aexp: (P(a1) ∧P(a2)) ⇒ P(a1*a2)
dann gilt auch
� ∀a∈Aexp: P(a)
Die Formeln  P(a1)  und  P(a2)  werden als Induktionsannahmen
bezeichnet,  und  P  wird als Induktionsformel bezeichnet.
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Strukturelle Induktion für Aexp (2)

Definition
Die Ausdrücke  a1  und  a2  sind die direkten Teilausdrücke der 
Ausdrücke  a1+a2,  a1-a2  und  a1*a2.  Die Ausdrücke  n  und  x  
haben keine direkten Teilausdrücke.

Rechtfertigung der strukturellen Induktion für Aexp
Die Relation � ⊆ Aexp×Aexp sei definiert durch
� a´ � a  genau dann wenn  a´ ein direkter Teilausdruck von  a  ist.
Wir erhalten folgende Spezialisierung des Beweisprinzips der 
wohlfundierten Induktion:
� „Wenn folgende Bedingung gilt:

� ∀a∈Aexp:  [(∀a´∈Aexp:  
(a´ ist ein direkter Teilausdruck von a ⇒ P(a´))) 

⇒ P(a)]
dann gilt auch

� ∀a∈Aexp: P(a)“
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Strukturelle Induktion für Aexp (3)

Rechtfertigung (Fortsetzung)
Durch ein Fallunterscheidung über die Struktur der Ausdrücke in  
Aexp erhalten wir
� „Wenn folgende Bedingung gilt:

� ∀n∈N: P(n)

� ∀x∈Loc: P(x)
� ∀a1,a2∈Aexp:  [ (P(a1) ∧ P(a2)) ⇒ P(a1+a2) ]

� ∀a1,a2∈Aexp:  [ (P(a1) ∧ P(a2)) ⇒ P(a1-a2) ]

� ∀a1,a2∈Aexp:  [ (P(a1) ∧ P(a2)) ⇒ P(a1*a2) ]
dann gilt auch

� ∀a∈Aexp: P(a)“

Das Beweisprinzip der strukturellen Induktion auf Aexp ist 
also ein Spezialfall der wohlfundierten Induktion. 
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Übersicht: Modul 6

Äquivalenz zweier Programme
� Beweis mit Fallunterscheidung

Nichtterminierung eines Programms
� Widerspruchsbeweis

Induktionsprinzipien
� Induktion auf den natürlichen Zahlen
� wohlfundierte Induktion
� Rechtfertigung der Induktion auf den natürlichen Zahlen
� strukturelle Induktion auf Aexp
� Rechtfertigung der strukturellen Induktion auf Aexp

Deterministische Auswertung von Ausdrücken
� Beweis mit struktureller Induktion
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Deterministische Auswertung (1)

Theorem
Für alle  a∈Aexp,  m,m´∈N und alle Zustände σ gilt: 
wenn  〈a,σ〉⇓m  und 〈a,σ〉⇓m´ herleitbar sind, dann  gilt  m´=m. 

Beweis
� Wir verwenden das Beweisprinzip der strukturellen Induktion für

P(a) = ∀σ: ∀m,m´∈N: [(„〈a,σ〉⇓m  ist herleitbar“
∧ „〈a,σ〉⇓m´ ist herleitbar“) ⇒ m=m´]

� Wir müssen 5 Fälle beweisen:
Fall  a=n  für ein n ∈∈∈∈N
� Die Herleitung von  〈n,σ〉⇓n´ kann nur folgende Form haben:

Daher muss  m = n = m´ gelten.

_

〈n,σ〉 ⇓ n
rN
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Deterministische Auswertung (2)

Beweis (Fortsetzung)
Fall  a=x  für ein x ∈∈∈∈Loc
� Die Herleitung von  〈x,σ〉⇓n´ kann nur folgende Form haben:

Daher muss  m = σ(x) = m´ gelten.
Fall  a=a1+a2   für  a1,a2 ∈∈∈∈Aexp  wobei  P(a1)  und  P(a2)  gelten
� Die Herleitungen von  〈a,σ〉⇓m  und  〈a,σ〉⇓m´ können nur 

folgende Formen  haben:

� Aus  P(a1)  und  P(a2)  folgen  m1=m1´ und  m2=m2´.
Daher muss  m = m1+m2 = m1´+m2´ = m´ gelten.

_    

〈x,σ〉 ⇓ n´
rLoc σ(x)=n´

〈a1,σ〉⇓m1   〈a2,σ〉⇓m2
〈a1+a2,σ〉 ⇓ m

H1

r+

H2

m=m1+m2 〈a1,σ〉⇓m1´ 〈a2,σ〉⇓m2´
〈a1+a2,σ〉 ⇓ m´

H1´

r+

H2´

m´=m1´+m2´
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Deterministische Auswertung (3)

Beweis (Fortsetzung)
Fall  a=a1-a2  für  a1,a2 ∈∈∈∈Aexp  wobei  P(a1)  und  P(a2)  gelten
� …
Fall  a=a1*a2  für  a1,a2 ∈∈∈∈Aexp  wobei  P(a1)  und  P(a2)  gelten
� …

Siehe Übungsblatt und Musterlösung
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Deterministische Auswertung (4)

Theorem
Für alle  b∈Bexp,  t,t´∈T  und alle Zustände σ gilt: 
wenn  〈b,σ〉⇓t  und 〈b,σ〉⇓t´ herleitbar sind, dann  gilt t´=t. 

Beweis
� …

Siehe Übungsblatt und Musterlösung
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Übersicht: Modul 6

Äquivalenz zweier Programme
� Beweis mit Fallunterscheidung

Nichtterminierung eines Programms
� Widerspruchsbeweis

Induktionsprinzipien
� Induktion auf den natürlichen Zahlen
� wohlfundierte Induktion
� Rechtfertigung der Induktion auf den natürlichen Zahlen
� strukturelle Induktion auf Aexp
� Rechtfertigung der strukturellen Induktion auf Aexp

Deterministische Auswertung von Ausdrücken
� Beweis mit struktureller Induktion
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Rückblick

Einige wesentliche Lernziele dieses Moduls
� Wie kann ich eine operationelle Semantik zur Verifikation nutzen?
� Beherrschung elementarer Verifikationstechniken:

� Fallunterscheidung

� Widerspruchsbeweis

� wohlfundierte Induktion
� strukturelle Induktion

� … wird in Modul 7 vervollständigt …
� Fähigkeit, ein Induktionsprinzip zu rechtfertigen



©
H

ei
ko

 M
an

te
l

V
or

le
su

ng
:  

F
oC

, W
S

10

32

Literatur

Glynn Winskel 
The Formal Semantics of Programming Languages; Kapitel 3
The MIT Press, 1993.


