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Motivation

Vorlesung: FoC, WS10

Wie beweist man Aussagen udber Programme formal?
basierend auf der formal modellierten Syntax und Semantik

Unterschiedliche Beweistechniken

Fallunterscheidung
Widerspruchsbeweis
Strukturelle Induktion
Induktion tber Herleitungen

[Fokus dieses Moduls: Wie beweist man Eigenschaften  ?

) .




© Heiko Mantel

Ubersicht: Modul 6

Vorlesung: FoC, WS10

Aquivalenz zweier Programme
Beweis mit Fallunterscheidung
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Aquivalenz zweier Programme (1)

Vorlesung: FoC, WS10

Definition (aus Modul 5)

Zwel
wenn flur alle Grundsubstitutionen n, deren
Definitionsbereich alle Metavariablen in c1 und c2 einschliel3t, und
fur alle Zustdnde o,0” die folgende Bedingung gilt:
(cln,0) - o ist herleitbar genau dann
wenn (c2n,0)-a herleitbar ist.

Notation

Wir schreiben , um auszudrtcken, dass cl und c2
zueinander semantisch aquivalent sind.
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Aquivalenz zweier Programme (2)

Vorlesung: FoC, WS10

Theorem
while B do C od ~ if B then C; while B do C od else skip fi

Beweis
Seien o und o° beliebige Zustande und n eine beliebige
Grundsubstitution, deren Definitionsbereich B und C enthalt.
Folgende beiden Teilaussagen sind zu beweisen:
Wenn {(while B do C od)n,0) - 0" herleitbar ist, dann ist
((if B then C; while B do C od else skip fi)n,0) - o”
ebenfalls herleitbar.
Wenn ((if B then C; while B do C od else skip fi)n,0) -0’
herleitbar ist, dann ist {(while B do C od)n,o0) -0’
ebenfalls herleitbar.
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Aquivalenz zweier Programme (3)

Vorlesung: FoC, WS10

Beweis (Fortsetzung)

Beweis von Aussage a)
Angenommen {(while B do C od)n,0) -0  sei herleitbar.
Es gibt zwei Moglichkeiten flr die letzte Regel in der Herleitung:

rwhf ist die letzte Regel

rwht ist die letzte Regel
Wir machen eine Fallunterscheidung tber diese Mdglichkeiten:
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Aquivalenz zweier Programme (4)

Vorlesung: FoC, WS10

Beweis von Fall ai.

Da rwhf die letzte Regel in der Herleitung ist, muss diese
folgende Form haben:

el
(Bn.o) U false
{(while Bdo C od)n,0) - ©

rwhf

Wir haben also eine Herleitung %1 von (Bn,o) | false
und es gilt 0" = o.
Mit Hilfe der Herleitung #1 konnen wir folgende Herleitung von

((if B then C; while B do C od else skip fi)n,0) - o’
konstruieren:

- F1

rsk

(Bn.o) U false {(skip)n,0) - O
{(if B then C; while B do C od else skip fi)n,0) - o

riff
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Aquivalenz zweier Programme (5)

Vorlesung: FoC, WS10

Beweis von Fall aii.

Da rwht die letzte Regel in der Herleitung ist, muss diese
folgende Form haben:

. FE1 5962 . J3

w_(Bn.od U true  (Cn.0) = o~ {(while B do C od)n.o”’) = o

{(while B do C od)n,0) - o

Mit Hilfe von #1, €2 und €3 konnen wir folgende Herleitung von
{(if B then C; while B do C od else skip fi)n,0) 0" konstruieren:

: g2 : %3
ta(Cnoy-o” ((while B do Cod)n.o”y-0’
(Bn,o) U true {(C: while B do C od)n,0) -0’

rift

((if B then C; while B do C od else skip fi)n,0) - o’
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Aquivalenz zweier Programme (6)

Vorlesung: FoC, WS10

Beweis (Fortsetzung)
Beweis von Aussage b)
Angenommen {(if B then C; while B do C od else skip fi)n,0) -0’
sei herleitbar.
Es gibt zwei Moglichkeiten fur die letzte Regel in der Herleitung:
riff ist die letzte Regel

rift ist die letzte Regel
Wir machen eine Fallunterscheidung tber diese Mdglichkeiten:



© Heiko Mantel

Aquivalenz zweier Programme (7)

Vorlesung: FoC, WS10

Beweis von Fall bi.

Da riff die letzte Regel in der Herleitung ist, muss diese
folgende Form haben:

: el e
(Bn,o) U false {(skip)n,o) - o
{(if B then C; while B do C od else skip fi)n,0) - o’

riff

Die Herleitung #2 kann nur folgende Form haben:

rsk

((skip)n,o) - ©

Mit Hilfe von 0= 0 und %1 konnen wir folgende Herleitung von
{(while B do C od)n,0) -~ @" konstruieren:

el
(Bn,o) U false
{(while Bdo C od)n,0) - o

rwhf

10
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Aquivalenz zweier Programme (8)

Vorlesung: FoC, WS10

Beweis von Fall bii.

[Ubung: Vervollstandigen Sie obigen Beweis! ]
11
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Ubersicht: Modul 6

Vorlesung: FoC, WS10

Nichtterminierung eines Programms
Widerspruchsbeweis

12
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Nichtterminierung (1)

Vorlesung: FoC, WS10

Theorem

Es gibt keine Zustande o und o©’, so dass
(while true do skip od,0) -~ ¢ herleitbar ist.
Die Intuition ist: das Programm while true do skip od terminiert nie.

Beweis (Widerspruchsbeweis)

Angenommen es gebe 0,0", so dass (while true do skip od,o) - 0’
herleitbar ist.

Sei J€ eine Herleitung von (while true do skip od,0) - 0", so dass
es keine Herleitung von (while true do skip od,o) -~ c” mit weniger
Regelanwendungen gibt, d.n. %€ ist eine kleinste Herleitung.

Die letzte Regel in € kann nur die Regel rwht sein.

Daher muss die Herleitung folgende Form haben:

. JE1 . J€2
rtrue - "

(true,odltrue  (skip.o) - o~ (while true do skip od.o”") - o

rwht

(while true do skip od,o) - 0

13
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Nichtterminierung (2)

Vorlesung: FoC, WS10

Beweis (Fortsetzung)
Die Herleitung #1 kann nur folgende Form haben:

rsk

(skip,0) - O

Das heil3t, es gilt 0" =0.
Somit hat die Herleitung #€ folgende Form:

. J€2

rtrue rsk

e _(true,o)ltrue (skip,0) -a  {(while true do skip 0od,c) -0’
(while true do skip od,0) - 0’

F€2 st auch eine Herleitung von {(while true do skip od,o) - o", hat
aber weniger Regelanwendungen als #¢.

J€ ist also keine kleinste Herleitung von (while true do skip od,o) - o".
Ein Widerspruch!

ged
14
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Ubersicht: Modul 6

Vorlesung: FoC, WS10

Induktionsprinzipien

Induktion auf den natirlichen Zahlen

wohlfundierte Induktion

Rechtfertigung der Induktion auf den natirlichen Zahlen
strukturelle Induktion auf Aexp

Rechtfertigung der strukturellen Induktion auf Aexp

15
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Induktion

Vorlesung: FoC, WS10

Beweisprinzip der Induktion auf den natirlichen Zahl en

Sei PLN eine einstellige Relation tber den nattrlichen Zahlen.
Wenn folgende Bedingungen gelten:

P(0)

(OnON: (P(n) = P(n+1))
dann gilt auch

(InLN: P(n)
Die Formel P(n) wird als bezeichnet, und
P wird als bezeichnet.

Intuition
Wenn die ,Eigenschaft P* fir O gilt und wenn aus ,,P gilt fur n* auch
,P gilt fir n+1“ gefolgert werden kann, dann haben alle natirlichen
Zahlen die ,Eigenschaft P

16
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Wohlfundierte Induktion (1)

Vorlesung: FoC, WS10

Definition
Sei < O DxD eine binare Relation auf einer Menge D. Eine

unendliche Folge f: N- D (wurde in Modul 3 eingefihrt) heif3t
genau dann wenn

OiON: f(i+1)<f() gilt.

Definition
Eine binare Relation < [0 DxD auf einer Menge D heil3t
genau dann wenn es keine unendliche absteigende
Kette fir < gibt.

17



© Heiko Mantel

Wohlfundierte Induktion (2)

Vorlesung: FoC, WS10

Definition
Die einer binaren Relation R O DxD auf einer
Menge D ist die kleinste Relation R* [ DxD, so dass
[1d1,d20D: [d1 R d2 = d1 R* d2]
[1d1,d2,d30D: [(d1 R*d2 O d2 R* d3) = d1 R* d3]

Theorem

Sei < 0 DxD eine wohlfundierte Relation auf D. Dann gilt:
< ist irreflexiv, d.h. A2d0D: d < d und
<* ist eine wohlfundierte Relation.

Beweis

[Ubung: Fuhren Sie obigen Beweis!
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Wohlfundierte Induktion (3)

Vorlesung: FoC, WS10

Beweisprinzip der wohlfundierten Induktion

Sei PUD eine einstellige Relation auf einer Menge D und < [0 DxD
eine wohlfundierte Relation auf D. Wenn folgende Bedingung gilt:
OdOD: [(Od'OD: (d"<d = P(d"))) = P(d)]
dann gilt auch
(dOD: P(d)
Die Formeln P(d") werden als bezeichnet,
und P wird als bezeichnet.

Intuition
Wenn aus ,P qilt fur alle d”, die kleiner sind als d* auch
,P qgilt fir d* gefolgert werden kann, dann haben alle Elemente von
D die ,Eigenschaft P

19
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Instanziierung des Beweisprinzips (1)

Vorlesung: FoC, WS10

Beispiel (Rechtfertigung der Induktion auf IN)

Die Relation < [0 NxN sei definiert durch
m < n genau dann wenn m+1=n
Wir erhalten folgende Spezialisierung des Beweisprinzips der

wohlfundierten Induktion:
~Wenn folgende Bedingung gilt:

OnON: [ (On"0ON: (n"+1=n = P(n"))) = P(n) ]
dann gilt auch

OnON: P(n)"

Durch ein Fallunterscheidung tber ,n=0“ erhalten wir

~Wenn folgende Bedingungen gelten:

(On"ON: (n"+1=0 = P(n")) )= P(0)

(OnON: [n£0 = [ (ON"ON: (n"+1=n= P(n"))) = P(n) ] ]
dann gilt auch

(InON: P(n)*

20
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Instanziierung des Beweisprinzips (2)

Vorlesung: FoC, WS10

Beispiel (Fortsetzung)

Also gilt auch
~Wenn folgende Bedingungen gelten:

true = P(0)
(On”"0N: [n”"+1#£0 = [(On"IN:(n"+1=n"+1 = P(n"))) = P(n""+1)]]
dann gilt auch
OnON: P(n)"
Also gilt auch
~Wenn folgende Bedingung gilt:

P(0)

On”ON: [ P(n”") = P(n""+1) ]
dann gilt auch

(InON: P(n)*

|

Das Induktionsprinzip auf den natirlichen Zahlen ist also ein
Spezialfall der wohlfundierten Induktion.
21
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Strukturelle Induktion flr Aexp (1)

Vorlesung: FoC, WS10

Definition (aus Modul 5)

Die Menge Aexp ist durch folgende BNF definiert:
a:=n|X]|ata|a-a|a*a

Beweisprinzip der strukturellen Induktion flr Aexp

Sei POAexp eine einstellige Relation Gber Aexp. Wenn folgende
Bedingungen gelten:
[InCIN: P(n)
[Ix[Loc: P(x)
[al,a2l0Aexp: (P(al) P(a2)) = P(al+a2)
[al,a2l0Aexp: (P(al) OP(a2)) = P(al-a2)
[al,a2l1Aexp: (P(al) OP(a2)) = P(al*a2)
dann gilt auch
[alJAexp: P(a)
Die Formeln P(al) und P(a2) werden als
bezeichnet, und P wird als bezeichnet.

22



© Heiko Mantel

Strukturelle Induktion flr Aexp (2)

Vorlesung: FoC, WS10

Definition
Die Ausdricke al und a2 sind die der
Ausdricke al+a2, al-a2 und al*a2. Die Ausdricke n und X
haben keine direkten Teilausdriicke.

Rechtfertigung der strukturellen Induktion flr Aexp
Die Relation < [0 AexpxAexp sei definiert durch

a’ < a genau dann wenn a“ ein direkter Teilausdruck von a ist.

Wir erhalten folgende Spezialisierung des Beweisprinzips der
wohlfundierten Induktion:
~Wenn folgende Bedingung gilt:

CalAexp: [(HOa OAexp:
(@” ist ein direkter Teilausdruck von a = P(a")))
= P(a)]
dann gilt auch
[allAexp: P(a)“

23



Strukturelle Induktion fur Aexp (3)

Rechtfertigung (Fortsetzung)

Durch ein Fallunterscheidung tber die Struktur der Ausdricke in

Aexp erhalten wir
~Wenn folgende Bedingung gilt:

[(InCIN: P(n)

[Ix[JLoc: P(X)

[al,a2l0Aexp: [ (P(al) OP(a2)) = P(al+a2) ]

[al,a2l0Aexp: [ (P(al) OP(a2)) = P(al-a2) |

[al,a2lJAexp: [ (P(al) OP(a2)) = P(al*a2) ]
dann gilt auch

LallAexp: P(a)"

Vorlesung: FoC, WS10

© Heiko Mantel

Das Beweisprinzip der strukturellen Induktion auf Aexp
also ein Spezialfall der wohlfundierten Induktion.

ISt ]
24
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Ubersicht: Modul 6

Vorlesung: FoC, WS10

Deterministische Auswertung von Ausdrticken
Beweis mit struktureller Induktion

25
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Deterministische Auswertung (1)

Vorlesung: FoC, WS10

Theorem

Fur alle aldAexp, m,m '[N und alle Zustande o qilt:
wenn (a,0)dm und (a,0)Um” herleitbar sind, dann gilt m’=m.

Beweis

Wir verwenden das Beweisprinzip der strukturellen Induktion flr
P(a) = Do: Om,m ON: [(,(a,0)Um ist herleitbar"
0,(a,0){m” ist herleitbar*) = m=m’]
Wir miussen 5 Falle beweisen:
Fall a=n fdreinn ON
Die Herleitung von (n,o)Un” kann nur folgende Form haben:

rN

(n,o) U n

Daher muss m=n=m" gelten.

26
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Deterministische Auswertung (2)

Vorlesung: FoC, WS10

Beweis (Fortsetzung)

Fall a=x fir ein x OLoc
Die Herleitung von (x,0)Un” kann nur folgende Form haben:

rLoc o(X)=n’

x,0) J n

Daher muss m = g(x) = m” gelten.

Fall a=al+a2 fur al,a2 OAexp wobei P(al) und P(a2) gelten
Die Herleitungen von (a,0)m und (a,0){m” kénnen nur
folgende Formen haben:

é Lk § F€2 é F1 § J€2
L @olml (@2,0)dm2 ooy . @1L,000m1° (a2,0)Um2’
(al+a2,0) U m (al+a2,0) U m’

Aus P(al) und P(a2) folgen ml=m1" und m2=m2’.
Daher muss m=ml+m2=ml1"+m2"  =m" gelten.

m'=ml1+m2’

27
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Deterministische Auswertung (3)

Vorlesung: FoC, WS10

Beweis (Fortsetzung)
Fall a=al-a2 fur al,a2 OAexp wobei P(al) und P(a2) gelten

Fall a=al*a2 fir al,a2 OAexp wobei P(al) und P(a2) gelten

[Siehe Ubungsblatt und Musterlésung
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Deterministische Auswertung (4)

Vorlesung: FoC, WS10

Theorem

Fur alle bOBexp, t,t"OT und alle Zustande o gilt:
wenn (b,o)t und (b,0)lt" herleitbar sind, dann gilt t'=t.

Beweis

[Siehe Ubungsblatt und Musterlosung ]
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Ubersicht: Modul 6

Aquivalenz zweier Programme
O Beweis mit Fallunterscheidung

Nichtterminierung eines Programms
O Widerspruchsbewels

Induktionsprinzipien
O Induktion auf den nattrlichen Zahlen

O wohlfundierte Induktion
O Rechtfertigung der Induktion auf den nattrlichen Zahlen

O strukturelle Induktion auf Aexp
O Rechtfertigung der strukturellen Induktion auf Aexp

Deterministische Auswertung von Ausdrutcken
O Beweis mit struktureller Induktion
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Ruckblick

Vorlesung: FoC, WS10

© Heiko Mantel

Einige wesentliche Lernziele dieses Moduls

Wie kann ich eine operationelle Semantik zur Verifikation nutzen?
Beherrschung elementarer Verifikationstechniken:

Fallunterscheidung
Widerspruchsbeweis
wohlfundierte Induktion
strukturelle Induktion

... wird in Modul 7 vervollstandigt ...
Fahigkeit, ein Induktionsprinzip zu rechtfertigen



© Heiko Mantel
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Vorlesung: FoC, WS10
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