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Motivation

Vorlesung: FoC, WS10

Wie beweist man Aussagen udber Programme formal?

basierend auf der formal modellierten Syntax und Semantik
Fortsetzung von Modul 6

Unterschiedliche Beweistechniken
Fallunterscheidung  (in Modul 6)
Widerspruchsbeweis (in Modul 6)

Strukturelle Induktion (in Modul 6)
Induktion tUber Herleitungen (in diesem Modul)

Fokus dieses Moduls: Wie beweist man Eigenschaften von
Programmiersprachen? ,
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Ubersicht: Modul 7

Vorlesung: FoC, WS10

Termbeschreibungen von Herleitungen



Termbeschreibung von Regeln (1)

Vorlesung: FoC, WS10
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Definition
Ein Ist ein Ausdruck folgender Form:
wobei
r-name der Name der Regel,
& eine Grundinstanz eines Urteils ist und
(&1r-5€p) eine endliche Liste von Grundinstanzen von Urteilen
Ist, die auch die leere Liste () sein kann
Intuition

Sei o ein beliebiger Zustand. Dann entspricht der Regelterm
r+((5+3,0)U8, ((5,0)V4, (3,0)l4))
folgender Grundinstanz von r+:

5,004 (3,004
(5+3,0) U 8

r+ 8=4+4
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Termbeschreibung von Regeln (2)

Vorlesung: FoC, WS10

Definition
Die durch eine Kalkulregel

r-name SF Zg’zm’zﬂ Q- es

reprasentierte Menge von Regeltermen ist definiert als
- { r'name(zr],(am,---,ann))
| {n,¢.N,---,¢{,n enthalten keine Metavariablen
und @n,...,@,n sind erfullt }

Beispiel
Fur die Kalktlregel r+ gilt zum Beispiel
r+((5+3,0)8, ((5,0)U5, (3,0)U3)) O RTerme(r+)
r+((5+3,0)8, ((5,0)l4, (3,0)U4)) O RTerme(r+)
aber
r+((5+X,0)8, ((5,0)U5, (X,0)U3)) O RTerme(r+), da der Ausdruck
5+X eine Metavariable enthalt.
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Termbeschreibung von Herleitungen (1)

Vorlesung: FoC, WS10

Definition
Sei & eine Instanz eines Urteils (. Die
(kurz: ) sind induktiv definiert.
Eine K—Herleitung von ¢ ist ein Term der Form

wobel
es in K eine Regel folgender Form gibt:

r-name Ca ZZZ---,ZQ Grreees Gy

und es eine Substitution n gibt, so dass
¢=¢n und
@n, ... und @,n erfullt sind

(#€,,...,3¢t,) eine moglicherweise leere Liste von Herleitungen ist, so
dass, fur jedes i({1,..,n}, F€ eine Herleitung von {;n ist.
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Termbeschreibung von Herleitungen (2)

Vorlesung: FoC, WS10

Definition
Seien ¢, &, ..., § Instanzen von Urteilen ¢, (4, ..., {, . Eine
(kurz:
) ist entweder

aleir e @ el Bke, oo @ el

oder
ein Term der Form , Wobei
esin K eine Regel folgender Form gibt:
r-name Ca ZZZ"" Cn @pyees G

und es eine Substitution n gibt, so dass
¢=¢n und
@n, ... und @n erfullt sind

(F€,,...,3€¢,) eine moglicherweise leere Liste von Herleitungen ist,
so dass, fur jedes i[}{1,..,n}, F eine Herleitung von {n aus
Eqy oeny € IS
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Termbeschreibung von Herleitungen (3)

Vorlesung: FoC, WS10

Notation
Wir schreiben

um auszudricken, dass # eine H-Herleitung von ¢ ist, und

um auszudricken, dass ¢ eine K-Herleitung hat. Wenn sich der
Kalkil K aus dem Kontext ergibt, so schreiben wir auch

anstatt und
anstatt
Notation
Die Menge aller K-Herleitungen von & wird mit bezeichnet.
Ergibt sich A aus dem Kontext, so schreiben wir auch
Notation
Die Menge aller K-Herleitungen wird mit bezeichnet.
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Nachtrag zu Modul 5

Vorlesung: FoC, WS10

Notation
Fur die Kalktle aus Modul 5 fuhren wir folgende Bezeichner ein:

. der Kalkul zur Herleitung von Instanzen von (a,0) U n

. der Kalkil zur Herleitung von Instanzen von (b,o) U t
. der Kalkul zur Herleitung von Instanzen von {c,0) - 0

Definition
Sei oJX ein Zustand. Dann ist der Zustand, der der
Programmvariablen x den Wert n und jeder anderen
Programmvariablen y den Wert o(y) zuordnet.
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Ubersicht: Modul 7

Vorlesung: FoC, WS10

Induktionsprinzip
Induktion tber Herleitungen

10
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Induktion Uber Herleitungen

Vorlesung: FoC, WS10

Unser Ziel
ein Induktionsprinzip tber Herleitungen

Vorgehen

Definition einer wohlfundierten Relation < tber Herleitungen
Instantiierung der wohlfundierten Induktion mit <

Definition
Die Herleitungen #,,...,3¢, sind die
einer Herleitung r-name(§,(#,,...,%.)).

Definition

Wir definieren < als zweistellige Relation auf Herleitungen durch
Ft < F genau dann wenn #. eine direkte Teilherleitung von J€ ist.

Somit haben wir ein Induktionsprinzip fur Herleitungen |

Aber, wie sieht das Induktionsprinzip fir einen Kalkii | aus?




Induktion Uber Herleitungen g (1)

Vorlesung: FoC, WS10
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Beweisprinzip der Induktion tber Herleitungen in G

Sei P eine einstellige Relation Gber der Menge aller Herleitungen in G.

Wenn folgende Bedingungen gelten:
Lo : P(rsk( (skip,0)-0a,()))
LolZ: OxOLoc: HalJAexp: LINLIN: DﬁlDDER%«amUn):
P( r:=((x:=a,0) - a[x\n], (#1))
Ho,0",0"0%: Ocl,c20Com:
O#1ODER ({cl,0)-0""): UH2UDER ({c2,0"") - 0"):
[ (P(#€1) OP(F€2)) = P(r;({cl;c2,0)-0, (¥1, 3€2))) ]
Ho,o0”0Z: ObOBexp: Ocl,c20Com:
D%lDDERﬁ«b,o}Utrue): O#200DER({c1,0) - 0"):
[ (P(F€2)) = P(rift( (if b then cl else c2 fi, o) - 0", (#1, F€2))) ]
Ho,o0”0Z: ObOBexp: Ucl,c20Com:
(F€10DER 4((b,0)Ufalse): 0F20DER ((c2,0) -~ 0"):
[ (P(F€2)) = P( riff( (if b then cl else c2 fi, 0) -~ 0", (¥1, F2))) ]

[Fortsetzung auf nachster Folie ] 12
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Induktion Uber Herleitungen g (2)

Vorlesung: FoC, WS10

Beweisprinzip (Fortsetzung):

Ho,o0”,0""0%: ObOBexp: OcldCom:
OF€10DER 4((b,0)Utrue):
O#H200DER ({cl,0) -0 "): UHI3UDER ({while b do c1 od,0"") - 0"):
[(P(#2)P(5€3)) = P( rwht( {while b do c1 od, 0) - 0", (#1,3€2,5€3)))]
HoUZ: ObOBexp: OclCom:
(%€10DER 4((b,0)Ufalse):
P( rwhf( (while b do c1 od, o) 0, (%1)))
dann gilt auch
O#ODER. . P(%6)

13
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Ubersicht: Modul 7

Vorlesung: FoC, WS10

Deterministische Auswertung von Programmen
Beweis mit Induktion tber Herleitungen

14
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Deterministische Berechnung (1)

Vorlesung: FoC, WS10

Theorem

Fur alle cOOCom und alle Zustdnde o, ", o™~ gilt:
wenn {(c,0)-»0 und{c,0)- 0"~ herleitbar sind, dann gilt c’=0"".

Beweis

Es genlgt zu zeigen, dass
OcOCom:Uo,0",0" " 0
O#HDER ({c,0)-0"): U TIDER ({c,0)-0""):0"=0""
Diese Aussage ist aquivalent zu
O#ODER: OcUCom:Uo,0”,0" U
[ #IDER({c,0) - 0") = U TUDER({c,0) -0 "):0'=0"" ]
Wir beweisen letztere Aussage per Induktion Uber %€, wobeli
P(%) = OcCom:Uo,0",0" " Z:
[ #DER({c,0)-0") = U TUDER ({c,0)-0""):0"=0"" ]

15
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Deterministische Berechnung (2)

Vorlesung: FoC, WS10

Beweis (Fortsetzung)
Fall Oo*0X : P(rsk( {skip, 0*Y->0*,()))
Es ist zu zeigen, dass
Ho*0%: OcOCom:Uo,0”,0”
[rsk({skip,0*) - 0*,())UDER ({c,0) - 0" )=0U# TUDER ({c,0) -0 ").:0""=0"]

Aus rsk({skip,o*) - o*,())UDER ({c,0) —» 0") folgt, dass c=skip

und o=0"= o*.

Sei #'TIDER ({c,0)->0"") beliebig.

Die einzige Regel, in deren Konklusion skip vorkommt, ist rsk.
Daher muss %€ = rsk({skip,o0) - 0,()) gelten, und somit gilt "' = o.
Also giltauch o= 0 =0".

{ Seien cOCom und o*0,6",0"" 0 beliebig.

Beachte: Diese zwel Schritte werden wir in den
nachfolgenden Féallen abkurzen.

16



Deterministische Berechnung (3)

Vorlesung: FoC, WS10
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Beweis (Fortsetzung)

Fall r.=

Es ist zu zeigen, dass
Ho*2: Ux[Loc: QallAexp: UnLIN: DﬂlDDER%«a,G’vUn):
[cOCom:Uo,0",0" " Z:
[ r:=((x:=a,0*) - o*[x\n],(#€1))LDER ({c,0) - 0")

=% TIDER ({c,0)-»0"").0""=0"]
Seien o*[J%, x[Loc, alJAexp, nCN und JélDDERZ«a,o*)Un)
beliebig.
Die Herleitung ist r:=((x:=a,o0*) - o*[x\n],(#€1)) und somit gelten:
c = X:=a, 0=0* und o’ =0*[x\n].
Sei ¢ TIDER ({c,0) - 0"") beliebig.
Nur in der Konklusion der Regel r:= kommt eine Zuweisung vor.
Daher muss %’ = r:=((x:=a,0) - o[x\m],(#1")) gelten, wobei
J€1'0DER ({a,0)Um) gilt.
Da die Auswertung von Ausdricken in Aexp deterministisch ist
(siehe Theorem in Modul 6), muss m=n gelten.
Also gilt auch ¢”"= o[x\m] = o[x\n] = o*[x\n] = 0.



Deterministische Berechnung (4)

Vorlesung: FoC, WS10
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Beweis (Fortsetzung)

Fall r;
Es ist zu zeigen, dass
Ho*,o* ,0*"0: Ocl,c20Com:
OFHLODER ((cl,0*) - 0*"): UFE20DER({c2,0*") -~ 0*):
[ (P(#1) OP(#2)) = P(r;({cl;c2,0*)-0c*, (#1, 3€2))) ]
fur P(%€) = OcCom:Uo,0",0" [

[ #UDER ({c,0) - 0") = U TIDER ({c,0)-0""):0'=0"" ]

Seien o*,0*,0*" "%, c1,c200Com, #1UDER({c1,0*)-»0*") und
FH2UDER ((c2,0*") - 0*") beliebig.
Die Herleitung ist r;( {cl;c2,0*)-0*", (#1, $€2)) und somit gelten:
c =cl;c2, o=0* und o'=0*".
Sei $TIDER ({c,0) - 0"") beliebig.
Nur in der Konklusion der Regel r; kommt sequentielle Komposition vor.
Daher muss % =r;({cl;c2,0)-0"", ($1", 2")) gelten, wobei
FE1'TIDER({cl,0)->0""") und 2 1IDER({(c2,0""")-»0c"") flrein o" L.
Aus P(#€1), 1DER({c1,0) - 0*"), 1 UDER({cl,0) -0 ") folgt 0" "=0*"".
Aus P(#€2), $2[1DER({c1,0*") - 0*"), #2'[IDER({c1,0*") - 0"") folgt c""=0*".
Alsoqgilto” =o*=0".
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Deterministische Berechnung (5)

Vorlesung: FoC, WS10

Beweis (Fortsetzung)
Fall rift

Fall riff

[Siehe Ubungsblatt und Musterlosung ]
19




Deterministische Berechnung (6)

Vorlesung: FoC, WS10
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Beweis (Fortsetzung)

Fall rwhf
Es ist zu zeigen, dass
Ho*02: ObOBexp: OclCom:
OF€10DER 4((b,0*)false):
[ P( rwhf( (while b do c1 od, c*) - c*, ($€1)) ]
fur P(%) = OcCom:Uo,0",0" [
[ #UDER ({c,0) -»0") = U TUDER ({c,0) -0""):0"=0"" ]
Seien o*[0%, bOOBexp, c10Com und %10 DER ,4((b,o*)lfalse) beliebig.
Die Herleitung ist rwhf( (while b do c1 od, o*) - ¢o*, ($€1)) und somit gelten:
c = while b do c1 od, o=0* und ¢"=0*.
Sei #TIDER ({c,0) - 0"") beliebig.
Da die Auswertung von Ausdriicken in Bexp deterministisch ist (siehe
Theorem in Modul 6), ist (b,o*)Utrue nicht herleitbar.
Es muss also %€’ = rwhf( (while b do c1 od, o) - 0, (#1°))
gelten, wobei %1 0 DER((b,0*)!false), und somit gilt 0”"=0.
Somitgilt 0'=0=0*=0".



Deterministische Berechnung (7)

Vorlesung: FoC, WS10

© Heiko Mantel

Beweis (Fortsetzung)

Fall rwht
Es ist zu zeigen, dass
Ho*,0* ,0* " [0: ObOBexp: OclOCom:
OF€L0ODER 4(¢b,a*)ltrue):
OFE20DER ({c1,0*) - 0*"): UF3LDER ((while b do c1 od,c*"") - c*"):
[(P(F€2)P(F€3)) = P( rwht( (while b do c1 od, o*) - o*", (F€1,5€2,3€3)))]
fur P(%) = OcOCom:lo,0",0" [

[ #UDER ({c,0) -0") = U TUDER({c,0) -0""):0"=0"" ]

Seien o*,0*,0*"JZ, bBexp, c1lCom, 9£1DDER£(<b,0*>Utrue),
F2DER (({c1,0*) - 0*") und FH3UIDER ((while b do c1 od,c*"") - 0*)
beliebig.
Die Herleitung ist rwht({while b do c1 od, o*) - o*", (%€1,%€2,3€3)) und somit
gelten: ¢ = while b do cl od, o=0* und oc"=0*".
Sei #TIDER ({c,0) - 0"") beliebig.
Da die Auswertung von Ausdricken in Bexp deterministisch ist (siehe
Theorem in Modul 6), ist (b,c*)Ufalse nicht herleitbar.



Deterministische Berechnung (8)

Beweis (Fortsetzung)

Fall rwht (Fortsetzung)

Daher muss % = rwht({while b do cl1 od, 0) - 0", (F€1",5€2" ,%3"))
gelten, wobei %1 ODER((b,o)ltrue), #2 0ODER((c1,0)-0""") und

FE3 IDER({while bdo cl od,0c""")>0™") furein o” 2.

Aus P(%€2), #2[IDER({(cl,0)-0*") und #2'[IDER({cl,0)-0""")
folgt o "=0*"".

Aus P(%€3), #30DER((while b do ¢l od,c*")-0*") und
F€3'IDER({while b do c1 od, 0*") - ¢"") folgt ¢ "=0*".

Alsoqgilt o™ =0* =0’ ged
S
2]
2
%)
38 .
S o Ubung:
==
oz K Welche Probleme treten auf, wenn man versucht, dass
gé’ Theorem mit struktureller Induktion Gber Com zu beweisen?

22




Ruckblick

Vorlesung: FoC, WS10
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Einige wesentliche Lernziele dieses Moduls
Beherrschung elementarer Verifikationstechniken:
... Fortsetzung von Modul 6 ...

Induktion Uber Herleitungen in einem Kalkl
Fahigkeit verschiedene Reprasentationen von Herleitungen zu
verwenden (Termreprasentation, Baumreprasentation)
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