Formale Modellierung In

der Softwareentwicklung
Modul 9 (v1.0)

Kanonikvorlesung: Foundations of Computing

Heiko Mantel
MAIS, TU Darmstadt, WS10/11

Motivation

Was haben Sie in den Modulen 0O, 2 und 3 erlernt?

Modellierung: Szenario und Anforderungen an dieses Szenario
Methodik: formale Modellierung mit mathematischen Konzepten
Szenario: Denksportaufgabe
Szenario: Arbeitskreise der EU

Informationssysteme spielten in diesen Szenarien keine Rolle

Was haben Sie in den Modulen 5, 6, 7, 8 erlernt?
Szenario: Semantik einer imperativen Programmiersprache

Was hat formale Modellierung mit Softwareentwicklung ZU tun?
Dieser Zusammenhang wird in diesem Modul herausgearbeitet.

Vorlesung: FoC, WS10

© Heiko Mantel

© Heiko Mantel

Ubersicht: Modul 9

Vorlesung: FoC, WS10

Software Engineering
Einflhrung
Software Prozesse
Aktivitaten
Prozessmodelle

Software Engineering (1)

Warum braucht man Software Engineering?
Anstieg der Grol3e und Komplexitat von Programmen

Quelle: H Balzert. Lhrbuch der Soare-Technik, 2. Auflage, Spektrum, 2000.
Beispiele:
! Software im amerikanischen Raumfahrtprogramm (schwarz)
! Software in Siemens Telefonanlagen (blau)

Vorlesung: FoC, WS10

© Heiko Mantel

© Heiko Mantel

Software Engineering (2)

Vorlesung: FoC, WS10

Was ist Software eigentlich?
beinhaltet Programme und dazugehdrige Dokumentation.

Was ist Software Engineering eigentlich?
Ist eine Ingenieurdisziplin, die sich mit allen
Aspekten der Softwareerstellung beschéftigt.

beinhaltet die Programmierung
beinhaltet auch das Erstellen der Dokumentation

Welche Aspekte bestimmen die ?
funktionale Aspekte, z.B. Ein-/Ausgabeverhalten
nicht funktionale Aspekte, z.B. Benutzbarkeit, Effizienz, Sicherheit,
Wartbarkeit und Zuverlassigkeit

“Software engineers shall ensure that their products an d
related modifications meet the highest professional
standards pOSSible." [Software Engineering Code of Ethics and Profession al Practice]

© Heiko Mantel

Software Engineering (3)

Vorlesung: FoC, WS10

Was ist mit gemeint?
Es gibt zwei Arten von Dokumentation:
, Z.B.

Beschreibung der Funktionalitat
Anleitung zum Verwenden des Programms
Beschreibung der Systemvoraussetzungen
, Z.B.

Beschreibung der Systemanforderungen

Lastenheft und Pflichtenheft
Protokollierung von Entwurfsentscheidungen
Beschreibung der internen Funktionsweise des Systems
Beschreibung der Systemarchitektur
Testfalle und Testergebnisse

Die Aufgabe von Softwareentwicklern besteht zu einem grof3en
Tell in der Erstellung von Entwicklungsdokumentation.

J.

Software Engineering (4)

Beispiele fur Unterschiede zwischen Programmierung und SE
Die Anforderungen werden frih in der Entwicklung bestimmt.
detaillierte und methodische Anforderungsanalyse

prazise Dokumentation aller Anforderungen in einer moglichst
prazisen und verstandlichen Form

Spatere Anderungen der Anforderungen miissen erkennbar sein.
Die Komplexitat wird reduziert.
Verwendung von Teile-und-herrsche und schrittweiser Verfeinerung
Dokumentation aller Entwicklungsschritte und -entscheidungen
Die Anforderungen werden sorgfaltig und methodisch validiert

Unterscheidung von Validierung und Verifikation (spatere Folie)

Verwendung unterschiedlich aufwendiger Methoden je nach
Kritikalitat des Systems oder der Systemkomponente

Vorlesung: FoC, WS10

© Heiko Mantel

© Heiko Mantel

SoftwareProzesse

Vorlesung: FoC, WS10

Was ist ein ?

eine Menge von Aktivitdten deren Ziel ist, Software zu entwickeln

Beispiele flr

Spezifikation, Programmentwicklung, Validierung und Verifikation

Was ist ein ?

Ein Prozessmodell bietet eine vereinfachte Sicht auf einen
Software-Prozess, z.B. aus einer bestimmten Perspektive.

Ein Prozessmodell kann Aktivitadten verfeinern.

Ein Prozessmodell kann Aktivitdten in eine Reihenfolge bringen.

Beispiele flr Prozessmodelle

Wasserfallmodell, V-Modell, Spiralmodell

|

Die Qualitat eines Produkts wird zu einem grof3en Teild urch
den Prozess bestimmt, mit dem das Produkt entwickelt wird.

)

© Heiko Mantel

Aktivitat: Spezifikation (1)

Vorlesung: FoC, WS10

Relevante Aspekte bei der Spezifikation eines IT Sys tems

Welche Dienste sollten vom System angeboten werden?

Unter welchen Rahmenbedingungen soll das System arbeiten?
z.B. beschrankte Ressourcen auf mobilen Geraten

Welche Randbedingungen sind bei der Entwicklung zu beachten?
z.B. begrenztes Budget fur die Entwicklung

Machbarkeitsstudien und Marktanalysen

Sind die Anforderungen durch verfiigbare Technologie erfullbar?
Wird sich die Entwicklung des Systems wirtschatftlich rentieren?

Anforderungsanalyse

Bestimmen der Anforderungen, z.B. durch Gesprache mit Kunden
Einsatz von Prototypen und existierenden Systemen ist hilfreich

Anforderungsdefinition
Die Anforderungen werden in Dokumenten festgehalten.

Aktivitat: Spezifikation (2)

Validierung der Anforderungen beinhaltet z.B.

Sind die Anforderungen prazise beschrieben?
Sind die Anforderungen miteinander konsistent?
Sind die Anforderungen vollstandig?

Sind die Anforderungen realistisch?

%
g..
2
%L; Modelle werden bei der Spezifikation eingesetzt, um Z.B.
S 7 4 die Anforderungen zu definieren oder
23 O die Systemumgebung zu beschreiben.
©

10

© Heiko Mantel

Aktivitat: Programmentwicklung

Vorlesung: FoC, WS10

Relevante Aspekte bei der Programmentwicklung sind z.B
Entwurf und Implementierung

Architekturentwurf
Spezifikation der Komponenten des Systems
Spezifikation der Schnittstellen und der angebotenen Dienste

Spezifikation der Beziehungen zwischen den Komponenten

Entwurf der Algorithmen und Datenstrukturen
Umsetzung in der Implementierung

Entwurf der Komponenten
Das Vorgehen entspricht dem Entwurf des Gesamtsystems.

[Modelle kénnen z.B. zur Beschreibung der Architektur, der
| Datenstrukturen und der Algorithmen eingesetzt werden.

\.

(Formale Modellierung und Verifikation von Beziehungen

_ zwischen Modellen ist m Oglich.

© Heiko Mantel

Aktivitat: Validierung und Verifikation

Vorlesung: FoC, WS10

Was ist der Unterschied zwischen Validierung und Verifi kation?

Entspricht das IT System den Winschen?
lasst sich nicht vollstandig formal durchfihren

Erflllt das IT System die Spezifikation?

Techniken zur Verifikation

Manuelle Prifmethoden, z.B. Inspektionen oder Walkthrough
Statische Analyse, z.B. Typuberprifung oder formale Verifikation
Testen, z.B. kontrollfluss- oder datenflussorienterte Verfahren

/Formale Modelle bilden die Basis z.B. flr A
U die automatische Generierung von Testfallen
U eine formale Verifikation durch mathematische Beweise

\ O Erfullt die Implementierung die formale Spezifikation?)

12

Prozessmodell: das Wasserfallmodel

Vorlesung: FoC, WS10

© Heiko Mantel

Uft . . . ; :
Anforderungs- Dokumente Die Aufteilung in Phasen ist unflexibel.
definition l Das Model wird in der Praxis trotzdem
yy gepriifte verwendet. Dazu siehe auch
Entwurf Dokumente L > http://www.waterfall2006.com/
A gepriifte
Implementierung——=menc
A gepriifte
e Dokumente
f Betrieb und
Wartung

Ein dokumentengetriebenes Prozessmodell

Jede Aktivitat ist in der richtigen Reihenfolge und in der volle Breite vollstandig
durchzufihren. Der Ablauf ist sequentiell, wobei eine Aktivitat beendet sein
muss, bevor die nachste beginnen kann.

Am Ende jeder Aktivitat steht ein fertiges Dokument.

Die Auftraggeberbeteiligung ist nur in der Definitionsphase vorgesehen. Die
anschlieende Entwicklung erfolgt ohne Beteiligung des Auftraggebers. 13

Prozessmodell: das “V-Modell”

http://www.informatik.uni-bremen.de/gdpa/

Vorlesung: FoC, WS10

© Heiko Mantel

Anforderungs- Anwendungsszenarien
. g 2 » Abnahmetest
definition
R P
Testfalle
Grobentwurf —> Systemtest
" Pu
) Testfalle .
Feinentwurf —>| Integrationstest
oY Fa
= Testfall
) Modu_l e, Modultest
implementierung

Ein dokumentengetriebenes Prozessmodell
definiert Aktivitaten und Produkte

Produkte haben Zustand (geplant, in Bearbeitung, vorgelegt, akzeptiert).
Aktivitdten kbnnen ein Produkt erzeugen oder es verandern.
Verifikation und Validierung sind integraler Bestandteil
. Erfullt ein System seine Anforderungen?
Erflllt ein System seinen Zweck?

14

© Heiko Mantel

Vorlesung: FoC, WS10

Prozessmodell: das Spiralmodell

Source: http://www.elanman.org/teaching/gmu/swe620-infs622/Graphics/spiral_model.gif

Schrittweise Entwicklung in Schleifen

Vier Sektoren: Zielsetzung, Risikoabschatzung und —reduktion,
Entwicklung und Validierung, Planung

Risiko wird im Prozessmodell explizit bertcksichtigt.

In einer Schleife kann das Vorgehen in Abhangigkeit vom Risiko
gewahlt werden.

15

© Heiko Mantel

Ubersicht: Modul 9

Vorlesung: FoC, WS10

Formale Modellierung
Modellierung
Spezifikationssprachen
Formale Softwareentwicklung
Formale Verifikation
Werkzeugunterstltzung

16

© Heiko Mantel

Modellierung (1)

Vorlesung: FoC, WS10

Was ist ein ?
eine Beschreibung des Systems
aus einer gegebenen Perspektive und
auf einer gegebenen Abstraktionsstufe

modellieren

‘ interpretieren

I > Eigenschaft I
analysieren

[Ein Modell ist absichtlicht nicht originalgetreu, um bestimmte h
Aspekte der Realitat deutlicher hervorzuheben. Daher kdnnen

_nicht alle Eigenschaften des Modells der Realitat entsprechen. y
Alle relevanten Eigenschaften sollten der Realitat entsprechen.

17

© Heiko Mantel

Modellierung (2)

Vorlesung: FoC, WS10

Beispiele fiur m dgliche ,
Perspektive einer bestimmten Rolle, z.B. der Rolle Auftraggeber
Ein-/Ausgabeverhalten (Black-box Sicht)
verhaltensorientierte Sicht
Datenfluss und Kontrollfluss
Architektur

Beispiele fir m dgliche

Anforderungssicht
Abstraktionsstufen werden oft relativ zueinander als ,,hoch*
bzw. als ,niedrig"” bezeichnet, wobei es durchaus mehr als zwei

Abstraktionsstufen geben kann.

rPrinzipiell kann man Modellierung wahrend jeder Aktivitat in einer
| Software Entwicklung einsetzen.

[Modelle kénnen z.B. eingesetzt werden, um das Verstandnis des

| Systems oder seiner Anforderungen zu verbessern.

18

© Heiko Mantel

Spezifikationssprachen (1)

Vorlesung: FoC, WS10

Eine ISt
eine formale Notation zur Spezifikation von Modellen.

Die definiert,
welche Ausdricke als Spezifikationen zulassig sind.

Eine beschreibt
ein Modell oder eine Menge von Modellen.

Die definiert,
welches Modell/welche Modelle eine Spezifikation beschreibt.

Die Semantik ist eine Abbildung in die Sprache der Mathematik.

Eine Spezifikation heif3t :
wenn sie die leere Menge von Modellen beschreibt.

Beispiele fur graphische Spezifikationssprachen

Use cases, Aktionsfolgen, Datenfluss- und Klassendiagramme, ...

19

© Heiko Mantel

Vorlesung: FoC, WS10

Notation: Use Cases

Beispiel fur eine Spezifikation

£ —C

Bibliotheks- Ausleihe
nutzer
DO~ X
Nutzerverwaltung Bibliothekar
X D
Lieferant Katalogdienst

Quelle: 1. Sommerville, Software Engineering, 6"
edition, 2001, Addison-Wesley

[

Ein gerichteter Graph beschreibt die Akteure (Strichmannchen)
und die Klassen von maoglichen Interaktionen (Ellipsen).

20

Notation: Aktionsfolgen

Vorlesung: FoC, WS10

© Heiko Mantel

Beispiel fur eine Spezifikation

% Objekt in der Blcher- %

Buch- Bibliothek katalog Bibliothekar
lieferant |)
” erwerben neu ”
) katalogisieren

entfernen

A
r—
e

[dekatalogisieren

[
[
|
1

Quelle: I. Sommerville, Software Engineering, 6%
edition, 2001, Addison-Wesley

Ein Diagramm beschreibt die Akteure, die Objekte im System, die
Operationen und deren kausale Abhangigkeiten (Reihenfolge).

21

© Heiko Mantel

Notation: Datenflussdiagramm

Vorlesung: FoC, WS10

Beispiel fur eine Spezifikation

Signed order

Send t Checked and
signed order +
PP order notification

Completed order Signed order form
. form form
O[)(?erl?etzlls Validate Record
+ blank oraer order form order order :
form Signed order
form
Order details Order Ad_jUSt
amount + available
account budget
details
\ 4 A 4
Orders file Budget file
Source: I. Sommerville, Software Engineering, 6™
edition, 2001, Addison-Wesley
(Ein Diagramm beschreibt den Datenfluss zwischen Entitaten. R

O abgerundete Rechtecke: Berechnungsschritte

O beschriftete Pfeile: Datenfluss

\J Rechtecke: Datenspeicher oder Datenquellen)
22

© Heiko Mantel

Notation: Klassendiagramm

Vorlesung: FoC, WS10

Beispiel fur eine Spezifikation

Library user

Name
Address
Phone
Registration #

Register ()
De-register ()

JAN

Reader

Affiliation

Borrower

Iltems on loan
Max. loans

Ay

Staff

Student

Department

Department phone

Major subject
Home address

Quelle: I. Sommerville, Software Engineering, 6™
edition, 2001, Addison-Wesley

23

Spezifikationssprachen (2)

Welche Klassen von Spezifikationssprachen gibt es?

Es gibt semi-formale und formale Spezifikationssprachen.
Die Syntax ist in beiden Klassen jewells eine formale Notation zur
Beschreibung von Modellen.

Semantik: Es gibt syntaktisch zulassige Ausdriicke, fur die nicht
eindeutig definiert ist, welche Modelle diese spezifizieren.

Semantik: Fur jeden syntaktisch zulassigen Ausdruck ist
eindeutig definiert, welches Modell bzw. welche Menge von
Modellen dieser spezifiziert.

Vorteil von formalen Spezifikationssprachen
Die Bedeutung von Spezifikationen ist eindeutig definiert.

Vorlesung: FoC, WS10

© Heiko Mantel

24

© Heiko Mantel

Spezifikationssprachen (3)

Vorlesung: FoC, WS10

Formale Spezifikationen
konnen Bestandteil der Entwicklungsdokumentation sein.

Eine Entwicklungsdokumentation kann sowohl

informelle Beschreibungen als auch
semi-formale Spezifikationen als auch
formale Spezifikationen enthalten.

, Indem man z.B.
sehr kritische Komponenten und Anforderungen formal spezifiziert,
kritische Komponenten und Anforderungen semi-formal spezifiziert,
weniger kritische Komponenten und Anforderungen informell
beschreibt.

Beispiele fur formale Spezifikationssprachen
CSP, CCS, PI-Kalkdl, TLA, CTL, LTL, Z, CASL, ...

25

© Heiko Mantel

Einsatz von Formalen Methoden

Vorlesung: FoC, WS10

Formale Spezifikation von Anforderungen

dient zur Kommunikation zwischen Auftraggebern und Entwicklern.

Vermeidung von Missverstandnissen

Formale Spezifikationssprachen haben eine eindeutige Semantik,
wodurch Mehrdeutigkeiten vermieden werden.

Formale Spezifikation des Systems wahrend der Entwick ung

dient vor allem zur Kommunikation zwischen Entwicklern
Vermeidung von Missverstandnissen

Formale Spezifikationssprachen haben eine eindeutige Semantik,
wodurch Mehrdeutigkeiten vermieden werden.

Generierung von Programmteilen aus Spezifikationen ist moglich.

Formale Verifikation

dient zur Uberprifung von Systemeigenschaften
Durch mathematische Beweise werden Fehler vermieden.

26

Vorlesung: FoC, WS10

© Heiko Mantel

Formale Softwareentwicklung

Zweil Ansatze, um Software vollstandig formal zu ent wickeln.

Startpunkt: formale Spezifikation der Anforderungen
Die Spezifikation wird durch Anwendung von Transformationen
schrittweise modifiziert.

Jeder Ansatz beinhaltet eine Bibliothek von Transformationen.

Fur jede Transformation ist klar, welche Eigenschaften unter ihr erhalten
bleiben.

Zielpunkt: eine Spezifikation, die einem Programm entspricht
Beispiel: TAS [http://www.informatik.uni-bremen.de/~cxl/tas/]

(invent-and-verify approach)
Startpunkt: formale Spezifikation der Anforderungen
Bei jedem Entwicklungsschritt wird

eine neue, konkretere Spezifikation erfunden und verifiziert, dass alle
Eigenschaften, die von Interesse sind, erhalten wurden.
Zielpunkt: eine Spezifikation, die einem Programm entspricht
Beispiel: VSE [http://www.dfki.de/vse/projects/vse.html]

27

© Heiko Mantel

Formale Verifikation (1)

Vorlesung: FoC, WS10

Wo kann formale Verifikation eingesetzt werden?

auf der Ebene von Code
sowohl in Programmiersprachen als auch in Maschinensprachen
auf der Ebene von Modellen
Nachweis, dass ein Modell gegebene Eigenschaften erfllt
Nachweis, dass Modelle in einer gegebenen Beziehung stehen

Beispiel fur Verifikation auf Codeebene (Hoare Logik)

Hoare-Tripel:
. die Vorbedingung (eine pradikatenlogische Formel)
. das Programm (in einer imperativen Programmiersprache)
. die Nachbedingung (eine pradikatenlogische Formel)

Gilt ?

Gilt ?

Gilt ?

28

© Heiko Mantel

Formale Verifikation (2)

Vorlesung: FoC, WS10

Was ist fur formale Verifikation n6tig?
Kalklle mit denen man mathematische Beweise fihren kann
Beispiele: Hoare Logik, Refinement Calculus

Wie kann man formale Verifikation erleichtern?
durch Automatisierung der Beweisuberprufung
Sind alle Schritte im Beweis im Sinne des Kalkuls zulassig?
durch Automatisierung der Beweissuche
mit automatischen oder halbautomatischen Theorembeweisern

[Mehr zu formaler Verifikation und Model Checking siehe FGDI 3!]
29

© Heiko Mantel

Werkzeugunterstutzung

Vorlesung: FoC, WS10

Werkzeuge werden eingesetzt z.B.

um die Verwendung von formalen Methoden zu erleichtern oder
um die Qualitat der Verwendung zu erhdhen.

In welchen Bereichen ist Werkzeugunterstiitzung hilfre ich?

Editieren von formalen Spezifikation

Uberprufen, ob eine Spezifikation geman der Syntax giltig ist
Editieren und Konstruieren von formalen Beweisen
Unterstltzung bei der Beweissuche

Verwaltung von Spezifikationen und Beweisen

Welche Beweise werden durch eine gegebene Anderung der
Spezifikation ungultig?

Beispiele flr Werkzeuge fur formale Methoden
B-tool, ISABELLE, PVS, VSE, ..

30

© Heiko Mantel

Ubersicht: Modul 9

Vorlesung: FoC, WS10

Evaluierung

31

Evaluierung von Software

Uberprufung der Qualitat anhand vorgegebener Kriterien

Das Ergebnis der Uberpriifung sollte nachvollziehbar sein.
Die Kriterien sollten sinnvoll und allgemein anerkannt sein.

Was waren uberzeugende Kriterien flr Qualitat?
Die Anforderungsspezifikation spielt eine zentrale Rolle.
Spiegelt die Spezifikation die realen Anforderungen wieder?
Genugt das System den spezifizierten Anforderungen?

Formale Verifikation kann eingesetzt werden, um sicherzustellen,

dass die Software allen spezifizierten Anforderungen genigt.
Formale Verifikation ist allerdings anspruchsvoll. (Expertise?)
Formale Verifikation ist auch zeitintensiv. (Budget?)

Vorlesung: FoC, WS10

© Heiko Mantel

32

© Heiko Mantel

Evaluationskriterien

Vorlesung: FoC, WS10

Kriterienwerke zur Evaluierung
Beispiele:
TCSEC, Orange Book (1983), USA
ITSEC (1991), F, D, NL, UK
CTPEC (1993), Kanada
Common Criteria (1999), CA, F, D, NL, UK, USA

aktuell Version 3.1 (2006)
Eine vollstandige formale Verifikation wird bisher nicht gefordert.
Auf hohen Evaluierungsstufen wird die Verwendung von formalen
Methoden zur Modellierung gefordert, z.B. ab E4 in ITSEC oder
ab EAL 5 in Common Criteria v2.3: formale Sicherheitsmodelle.

Warum sollte man diese Kriterienwerke verwenden?
Einheitlichkeit von Evaluationen
Internationale Abkommen garantieren die Vergleichbarkeit von
Evaluationen in unterschiedlichen Mitgliedslandern.

33

© Heiko Mantel

Formale Sicherheitsmodelle

Vorlesung: FoC, WS10

Typische Struktur:

Wie arbeitet das
System?

Was soll erreicht
werden?

N L

System- \BeLeis/ Sichefheits-
spezifikation erfUIItkeigenschaft)

Beachte:

_| =

Erflllt das System seine

Anforderungen?

Die Spezifikation des Systems (Verhalten, Architektur, ..) ist klar
von der Spezifikation der Anforderungen getrennt.

Obiges Diagramm eignet sich fur die Spezifikation auf einer

gegebenen Abstraktionsebene.

34

© Heiko Mantel

Ubersicht: Modul 9

Vorlesung: FoC, WS10

35

© Heiko Mantel

Einsatz Formaler Methoden

Vorlesung: FoC, WS10

Wie setzt man formale Modelle im Software Engineering ein?

zur Vermeidung von Mehrdeutigkeiten in Spezifikationen

als Basis fur die formale Verifikation von kritischen Anforderungen
als Basis fur die Generierung von Testfallen

um den Anforderungen von Evaluationskriterien zu gentigen

Uberprufung: WeiR ich wirklich prazise z.B.
Was die Anforderungen an das System sind?
Fur welche Systemarchitektur das Team sich entschieden hat?
als Grundlage fir die Kommunikation mit anderen
Prazisierung der Aspekte, die man kommunizieren will
z.B. fur konzeptionell schwierige Aspekte (z.B. IT Sicherheit) oder
komplexe Systeme (z.B. nebenlaufige oder verteilte Systeme)

36

Ruckblick auf Modul 9

Einige wesentliche Lernziele dieses Moduls

Wie ist der Zusammenhang zwischen Modellierung und

strukturierte Softwareentwicklung?
Bei welchen Aktivitdten kann Modellierung einsetzen?
Wie kann man Modelle einsetzen?

Was ist eine Spezifikationssprache?
Unterscheidung: Syntax und Semantik
Unterscheidung: formal und semi-formal

Wie kann man formale Methoden einsetzen?

Selektiver Einsatz formaler Spezifikationssprachen ist moglich.

Prinzipiell ist sogar eine vollstandig formale Entwicklung von
Software moglich.

Wie wird sicherheitskritische Software evaluiert?
Kurzeinfihrung in Kriterienwerke fir die Evaluierung

Vorlesung: FoC, WS10

© Heiko Mantel

37

© Heiko Mantel

Literatur

Vorlesung: FoC, WS10

Allgemeine Einfihrungen in die Softwaretechnik:

H Balzert.
Lehrbuch der Software-Technik, 2. Auflage, Spektrum, 2000

Sommerville.
Software Engineering, 6th edition, 2001, Addison-Wesley

Common Criteria (Bespiel fur ein Kritienwerk)
www.commoncriteriaportal.org

38

