
Vorlesung Semantic Web

Vorlesung im Wintersemester 2011/2012
Dr. Heiko Paulheim
Fachgebiet Knowledge Engineering

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 2

Was bisher geschah...

 RDF ist eine
Auszeichnungssprache für
Informationen

 In RDF kann man beliebige
Klassen / Relationen
definieren

 RDF-Bezeichner haben für
den Computer keine
Bedeutung

 XML ist eine
Auszeichnungssprache für
Informationen

 In XML kann man beliebige
Tags und Attribute definieren

 XML-Tagnamen haben für
den Computer keine
Bedeutung

 Kann RDF mehr als XML?

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 3

Heute: Ontologien

 Jetzt kommt endlich die Semantik!
 Einfache Ontologien mit RDF Schema bauen
 Elemente von RDF Schema
 Automatisches Schlussfolgern mit RDF Schema

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 4

Semantic Web – Aufbau

Berners-Lee (2009): Semantic Web and Linked Data
http://www.w3.org/2009/Talks/0120-campus-party-tbl/

Technische
Grundlagen

Semantic-Web-
Technologie
(Fokus der
Vorlesung)

here be dragons...

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 5

Was fehlt bis jetzt?

 Computer verstehen die Informationen im Web nicht

 Aber was heißt eigentlich verstehen?

"Madrid ist die Hauptstadt
von Spanien."

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 6

Semantik (revisited)

 Betrachten wir folgenden Satz:

"Madrid ist die Hauptstadt von Spanien."

 Im Semantic Web (RDF):

:Madrid :capitalOf :Spain .

 Wie viele Informationen können wir [Menschen]
aus diesem Satz erhalten?
 (1 Information = 1 Aussagesatz <S,P,O>)
 Schätzungen? Meinungen?

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 7

Semantik (revisited)

 Betrachten wir folgenden Satz:

"Madrid ist die Hauptstadt von Spanien."

 Aussagen, die wir erhalten können:
 "Madrid ist die Hauptstadt von Spanien."
 "Spanien ist ein Land."
 "Madrid ist eine Stadt."
 "Madrid liegt in Spanien."
 "Barcelona ist nicht die Hauptstadt von Spanien."
 "Madrid ist nicht die Hauptstadt von Frankreich."
 "Madrid ist kein Land."
 ...

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 8

Wie funktioniert Semantik?

"Madrid ist die Hauptstadt
von Spanien."

Die Hauptstadt
von einem Land
ist eine Stadt.

Länder haben genau
eine Hauptstadt.

Eine Stadt
kann nicht

Hauptstadt von
zwei Ländern

sein.
...

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 9

Ausflug in die Linguistik:
Das Zeichemodell von Saussure

"Baum"

 Ferdinand de Saussure (1857-1913):
 Zeichen (signifiant) und Bezeichnetes (signifié) untrennbar verbunden

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 10

Ausflug in die Linguistik:
Das semiotische Dreieck

"Baum"

Charles Odgen (1923): The Meaning of Meaning.

Begriff, Vorstellung

Gegenstand Bezeichner

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 11

Wie funktioniert Semantik?

 Lexikalische Semantik
 Die Bedeutung wird bestimmt durch Beziehungen zu anderen

Begriffen
 Extensionale Semantik:
 Die Bedeutung wird bestimmt durch alle Instanzen

 Intensionale Semantik, z.B. Merkmalssemantik
 Die Bedeutung wird bestimmt durch Eigenschaften, die eine Instanz

haben muss
 Prototypensemantik
 Die Bedeutung wird bestimmt durch die Nähe zu einer prototypischen

Instanz
 ...

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 12

Lexikalische Semantik

 Definiert Begriffe über Beziehungen zu anderen Begriffen

Bank

Möbelstück

Parkbank

Bank

Institution

Bad Bank

Homonym/
Polysem

Hyponym

Hyponym

Hyponym

Hyponym

Einrichtungs-
gegenstandSynonym

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 13

Extensionale Semantik

 Aufzählung von Instanzen
 Beispiel: EU-Mitgliedsstaaten sind Belgien, Bulgarien, Dänemark,

Deutschland, …, Zypern.

 Angela Merkel == Bundeskanzlerin der BRD
 beide Begriffe haben dieselbe Extension

"Angela
Merkel"

"Bundeskanzlerin
der BRD"

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 14

Intensionale Semantik

 Beschreibt Eigenschaften von Dingen
 Seme: bedeutungsunterscheidende Elemente

Begriff Hat Flügel Kann
schwimmen

Hat Fell Hat Federn

Ente + + - +
Vogel + O - +
Biene + - - -
Delphin - + - -
...

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 15

Intensionale vs. extensionale
Semantik

 Intensional verschiedene Dinge können extensional gleich sein
 Klassisches Beispiel: Morgenstern und Abendstern

 aber: beide Begriffe haben dieselbe Extension (die Venus)

Begriff Himmelskörper hell sichtbar am
Morgenhimmel

sichtbar am
Abendhimmel

Morgenstern + + + +
Abendstern + + - -
...

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 16

Intensionale vs. Extensionale
Semantik

 Die Extension kann sich über die Zeit ändern, ohne dass die
Intension sich ändert
 z.B.: die Extension von "Student"
 ändert das die Semantik?

 Die Extension eines Begriffes kann auch leer sein
 Einhorn
 Marsmensch
 Yeti (?)
 ...

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 17

Jean Aitchison: Words in the Mind (1987)

Prototypensemantik

 Intentionale und extensionale Semantik sind crisp
 Prototypensemantik: Fuzzy-Variante

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 18

Wie funktioniert Semantik?

 Semantik definiert die Bedeutung von Begriffen
 Im Semantic Web machen wir das auch
 Methoden aus lexikalischer, intensionaler und extensionaler Semantik

http://walkinthewords.blogspot.com/2008/05/
linguistic-cartoon-favorites-semantics.html

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 19

Wie funktioniert Semantik?

"Madrid ist die Hauptstadt
von Spanien."

Die Hauptstadt
von einem Land
ist eine Stadt.

Länder haben genau
eine Hauptstadt.

Eine Stadt
kann nicht

Hauptstadt von
zwei Ländern

sein.
...

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 20

Semantik im Semantic Web

City(x) ⇐ y: capitalOf(x,y)∃

Country(y) ⇐ x: capitalOf(x,y)∃

locatedIn(x,y) ⇐ capitalOf(x,y)

...

:Madrid :capitalOf :Spain .

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 21

Ontologien

 "An ontology is an explicit specification of a conceptualization."1

 Ontologien codieren das Wissen einer Domäne
 Sie bilden ein gemeinsames Vokabular
 und beschreiben die Semantik der darin enthaltenen Begriffe

City(x) ⇐ y: capitalOf(x,y)∃

Country(y) ⇐ x: capitalOf(x,y)∃

locatedIn(x,y) ⇐ capitalOf(x,y)

...

1 Gruber (1993): Toward Principles for the Design of Ontologies Used for Knowledge Sharing.
In: International Journal Human-Computer Studies Vol. 43, Issues 5-6, pp. 907-928.

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 22

Was ist eigentlich eine Ontologie?

 Ontologie (ohne Artikel) ist die "Lehre vom Seienden"
 griechisch: όντος (das, was ist), λόγος (die Lehre)
 Subdisziplin der Philosophie

 In der Informatik (mit Artikel)
 eine formalisierte Beschreibung einer Domäne
 ein gemeinsam genutztes Vokabular
 eine logische Theorie

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 23

Ontologie – weitere Definitionen

 Guarino und Giaretta (1995):
"a logical theory which gives an explicit, partial account of a
conceptualization"

 Uschold und Gruninger (1996):
"shared understanding of some domain of interest"
"an explicit account or representation of some part of a
conceptualisation"

 Guarino (1998):
"a set of logical axioms designed to account for the intended meaning
of a vocabulary"

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 24

Ontologie –
essentielle Eigenschaften

 Explizit
 Keine "versteckten" Bedeutungen

 Formal
 z.B. Logik-Sprachen, Regeln, …

 Geteilt
 Martin Hepp: "Autists don't build Ontologies"
 Eine Ontologie für einen allein ist nicht unbedingt sinnvoll

 Partiell
 Eine komplette "Welt-Ontologie" wird es (wahrscheinlich) nie geben

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 25

Klassifikation von Ontologien

Degree of Formality

C
at

al
og

G
lo

ss
ar

y

Th
es

au
r u

s

In
f o

rm
al

 T
ax

on
om

y

Fo
r m

al
 T

ax
on

om
y

Fo
r m

al
 In

st
an

ce
s

Fr
am

es

V
al

ue
 R

es
tr i

c t
i o

ns

Lo
gi

c
C

on
st

r a
i n

ts

informal
ontologies

formal
ontologies

light-
weight

ontologies

heavy-
weight

ontologies

Lassila & McGuiness (2001): The Role of Frame-Based Representation on the Semantic Web.
In: Linköping Electronic Articles in Computer and Information Science 6(5).

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 26

Klassifikation von Ontologien:
informelle Ontologien

 Katalog
 Begriffssammlung, geordnetes Vokabular

 Glossar
 Katalog + Erklärungen zu Begriffen (informell, textuell)

 Thesaurus
 Glossar + Verweise auf andere Begriffe
 Synonyme, Antonyme, Hyponyme, Hyperonyme

 Informelle Taxonomie
 Subklassenbeziehungen
 können "unecht" sein: C ⊃ D D(x) C(x)⇏ →
 Beispiel Webshop-Hierarchie: "Fachbücher" ⊃ "Informatik"

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 27

Klassifikation von Ontologien:
Informelle Ontologien

 Informelle Ontologien helfen im Semantic Web kaum weiter
 textuelle Beschreibungen
 unechte Beziehungen

 Informelle Taxonomien können zu falschen Schlussfolgerungen
führen

 Beispiel:
Fachbücher ⊃ Informatik ⊃ Algorithmen
Quicksort ∈ Algorithmen Quicksort → ∈ Fachbücher??

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 28

Klassifikation von Ontologien:
formale Ontologien

 Formale Taxonomien
 echte Subklassenbeziehung: C D D(x) C(x)⊃ ⇒ →

 Formale Instanzen
 Formale Taxonomien plus Instanzen
 z.B. Spanien Länder∈

 Frames
 Formale Instanzen + Beziehungen zwischen Dingen
 z.B. hatHauptstadt(Spanien, Madrid)

 Wertrestriktionen
 Frames + Einschränkungen von Definitions- und Wertebereich
 z.B. "Die Hauptstadt eines Landes kann nur eine Stadt sein."

 Logische Bedingungen
 Alles, was darüber hinausgeht (z.B. komplexe Regeln)

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 29

Die älteste Ontologie

Porphyrios, griechischer Philosoph, ca. 233-301

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 30

Einfache Ontologien codieren:
RDF Schema (RDFS)

 Standardisiert vom W3C (2004)

 Wichtigstes Element: Klassen

:Country a rdfs:Class .

 Klassen bilden Hierarchien

:EuropeanCountry rdfs:subClassOf :Country .

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 31

Konvention für diese VL: unbeschriftete Pfeile = rdfs:subClassOf

Land

Klassenhierarchien
in RDF Schema

Geographisches
Objekt

Stadt Geogr. Objekt
in Europa

Europäisches
Land

 Mehrfachvererbung ist erlaubt

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 32

Einige vordefinierte Konzepte
in RDFS

rdfs:Literal

rdfs:Resource

rdfs:Class rdfs:Container

rdfs:Datatype

rdf:Property

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 33

Properties in RDF Schema

 Properties sind das zweitwichtigste Element
 entsprechen zweiwertigen Prädikaten

:Madrid :capitalOf :Spain .
:capitalOf a rdf:Property .

 Auch Properties bilden Hierarchien

:capitalOf rdfs:subPropertyOf :locatedIn .

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 34

Definitions- und Wertebereiche
von Properties

 Properties existieren prinzipiell losgelöst von Klassen
 das ist anders als z.B. in OOP

 Festlegen von Definitions- und Wertebereich:

:capitalOf rdfs:domain :City .
:capitalOf rdfs:range :Country .

 Definitions- und Wertebereich werden an Sub-Properties vererbt
 Können dort weiter eingeschränkt werden (dazu später mehr)

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 35

Vordefinierte Properties

 Einige haben wir schon kennen gelernt:

rdf:type
rdf:first
rdf:rest
rdf:_1, rdf:_2, ...

 rdfs:containerMembershipProperty⊆

rdfs:subClassOf
rdfs:subPropertyOf
rdfs:domain
rdfs:range

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 36

Weitere vordefinierte Properties

 Labels:
:Germany rdfs:label "Deutschland"@de .
:Germany rdfs:label "Germany"@en .

 Kommentare:
:Germany rdfs:comment "Germany as a political entity."@en .

 Verweise auf weitere Ressourcen:
:Germany rdfs:seeAlso <http://www.deutschland.de/> .

 Verweis auf definierendes Schema:
:Country rdf:definedBy <http://foo.bar/countries.rdfs> .

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 37

URIs vs. Labels

 Ein URI ist letztlich nur ein eindeutiger Bezeichner
 eben ein Identifier
 muss nicht als solcher verstehbar sein

http://www.countries.org/4327893

 Labels sind für das menschliche Verständnis gedacht
 und potentiell mehrsprachig

countries:4327893 rfds:label "Deutschland"@de .
countries:4327893 rdfs:label "Germany"@en .
countries:4327893 rdfs:label "Tyskland"@sv .
...

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 38

URIs vs. Labels

 Auch auf Schemaebene können Labels vergeben werden
:Country a rdfs:Class .
:Country rdfs:label "Land"@de .
:Country rdfs:label "Country"@en .

:locatedIn a rdf:Property .
:locatedIn rdfs:label "liegt in"@de .
:locatedIn rdfs:label "is located in"@en .
:locatedIn rdfs:comment "bezogen auf geographische Lage" .

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 39

RDF Schema und RDF

 Jedes RDF Schema ist selbst ein gültiges RDF-Dokument
 Damit gelten alle Eigenschaften von RDF auch für RDF Schema!

 Non-unique Naming Assumption

schema1:Country a rdfs:Class .
schema2:Land a rdfs:Class .

 Open World Assumption

:Country rdfs:subClassOf :GeographicObject .
:City rdfs:subClassOf : GeographicObject .

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 40

Unsere erste Ontologie

 Städte, Länder und ihre Hauptstädte

:Country a rdfs:Class .
:City a rdfs:Class .
:locatedIn a rdf:Property .
:capitalOf rdfs:subPropertyOf :locatedIn .
:capitalOf rdfs:domain :City .
:capitalOf rdfs:range :Country .

:Madrid :capitalOf :Spain .

Beschreibung
der Terminologie
(T-Box)

Beschreibung der
Assertionen oder
Behauptungen
(A-Box)

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 41

Was haben wir jetzt gewonnen?

 :Country a rdfs:Class .
 :City a rdfs:Class .
 :locatedIn a rdfs:Property .
:capitalOf rdfs:subPropertyOf :locatedIn .
 :capitalOf rdfs:domain :City .
 :capitalOf rdfs:range :Country .

:Madrid :capitalOf :Spain .

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 42

Was haben wir jetzt gewonnen?

 :Madrid :capitalOf :Spain .
+ :capitalOf rdfs:domain :City
→ :Madrid a :City .

 :Madrid :capitalOf :Spain .
+ :capitalOf rdfs:range:Country
→ :Spain a :Country .

 :Madrid :capitalOf :Spain .
+ :capitalOf rdfs:subPropertyOf :locatedIn .
→ :Madrid :locatedIn :Spain .

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 43

Reasoning auf RDF

 Mit Hilfe von RDF Schema kann man deduktiv schließen
 Das heißt,
 aus Regeln und Fakten
 neue Fakten ableiten

 Tools dazu heißen Reasoner

 Das Gegenteil hierzu ist induktives Schließen
 aus Fakten Regeln ableiten
 wird u.a. in der Vorlesung "Maschinelles Lernen" behandelt

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 44

Kleine Geschichte des Reasoning

 Aristoteles (384 – 322 v.Chr.)
 Syllogismen
 Ableitung von Fakten mit Hilfe von Regeln

 Beispiel:
Alle Menschen sind sterblich.
Sokrates ist ein Mensch.

 → Sokrates ist sterblich.

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 45

Wie funktioniert Reasoning mit
RDF Schema?

http://www.flickr.com/photos/skepticalist/4372728626/

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 46

Definition: Extension

 Wiederholung Semantik:
 Menge aller Dinge, die von einem Begriff identifiziert werden
 z.B. Menge aller Häuser ist die Extension von "Haus"
 kann auch leer sein (z.B. Extension von "Yeti")

 Extension eines RDF-Graphen:
 Menge aller Aussagen, die in einem RDF-Graphen enthalten sind
 Abbildung von IP auf IR x IR
 IP: Menge der Prädikate
 IR: Menge der Ressourcen

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 47

Extension vs. Interpretation

 Die Interpretation bestimmt die Extension eines Graphen
 Bildet den Graph auf eine Extensionsfunktion ab

 Einfachste Interpretation:
 <s,p,o> ∈ G <s,o> → ∈ I

EXT
(p)

 Diese Interpretation enthält alle Aussagen,
die explizit im Graph enthalten sind

 Wir sind aber besonders an den impliziten Aussagen
interessiert!

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 48

Extension: schematisch

Literale URIs Vokabular /
Graph

Interpretation

Literalwerte (LV)

Properties (IP)

Ressourcen (IR)

Extension eines
Prädikates
(I

EXT
(P))

Angelehnt an: Hitzler et al. (2008): Semantic Web Grundlagen.

Interpretations-
funktion (.I)

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 49

Extension mit Ableitungsregeln

 RDFS-Ableitungsregeln bilden eine Interpretationsfunktion
 Erzeugen eine Extension
 auf Basis bestehender Ressourcen, Literale und Properties
 zusätzliche Paare der Form <s,o> ∈ I

EXT
(p)

 z.B.
 <Madrid, Stadt> ∈ I

EXT
(rdf:type)

 <Madrid, Spanien> ∈ I
EXT

(liegt_in)

 Merke:
 es entstehen niemals neue Ressourcen, Literale, Properties!

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 50

Reasoning mit Hilfe
von Ableitungsregeln

 Ableitungsregeln bilden eine Interpretationsfunktion
 Entailment: Menge aller Konsequenzen aus einem Graphen
 Einfachster Reasoning-Algorithmus (Forward Chaining):

Gegeben: RDF-Graph G
Menge von Ableitungsregeln R
Entailment E = G
Wiederhole

M := { }
Für alle Regeln in R

Für jede Aussage A in G
Wende R auf A an
Wenn Ergebnis nicht in M enthalten

Füge Ergebnis zu M hinzu
Füge alle Elemente von M zu E hinzu

bis M = { }

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 51

Ableitungsregeln für
RDF und RDF Schema (1)
ID Voraussetzung Konsequenz
rdf1 s p o . p rdf:type rdf:Property .
rdfs1 s p l .

l ist ein Literal
l rdf:type rdfs:Literal .

rdfs2 s p o .
p rdfs:domain c .

s rdf:type c .

rdfs3 s p o .
p rdfs:range c .

o rdf:type c .

rdfs4a s p o . s rdf:type rdfs:Resource .
rdfs4b s p o .

o ist ein URI oder Blank
Node

o rdf:type rdfs:Resource .

rdfs5 p1 rdfs:subPropertyOf p2 .
p2 rdfs:subPropertyOf P3 .

p1 rdfs:subPropertyOf p3 .

rdfs6 p rdf:type rdf:Property . p rdfs:subPropertyOf p .
W3C (2004): RDF Semantics. http://www.w3.org/TR/rdf-mt/

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 52

Ableitungsregeln für
RDF und RDF Schema (2)
ID Voraussetzung Konsequenz
rdfs7 p1 rdfs:subPropertyOf p2 .

s p1 o .
s p2 o.

rdfs8 c rdf:type rdfs:Class . c rdfs:subClassOf
 rdfs:Resource.

rdfs9 s rdf:type c1 .
c1 rdfs:subClassOf c2 .

s rdf:type c2 .

rdfs10 c rdf:type rdfs:Class . c rdfs:subClassOf c .
rdfs11 c1 rdfs:subClassOf c2 .

c2 rdfs:subClassOf c3 .
c1 rdfs:subClassOf c3 .

rdfs12 p rdf:type rdfs:container-
MembershipProperty.

p rdfs:subPropertyOf
 rdfs:member .

rdfs13 d rdf:type rdfs:Datatype . d rdfs:subClassOf
 rdfs:Literal .

W3C (2004): RDF Semantics. http://www.w3.org/TR/rdf-mt/

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 53

Anwendung von Ableitungsregeln

 Betrachten wir wieder unser Ausgangsbeispiel
:Madrid :capitalOf :Spain .
(ohne die zusätzliche Ontologie)

:Madrid :capitalOf :Spain . (a0)
(a0 + rdf1) :capitalOf rdf:type rdf:Property . (a1)
(a1 + rdf1) rdf:type rdf:type rdf:Property . (a2)
(a0 + rdfs4a) :Madrid rdf:type rdfs:Resource . (a3)
(a0 + rdfs4b) :Spain rdf:type rdfs:Resource . (a4)
(a1 + rdfs4a) rdf:type rdf:type rdfs:Resource . (a5)

...

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 54

Anwendung von Ableitungsregeln

 Beispiel mit Ontologie:

:Employee a rdfs:Class .
:Employee rdfs:subClassOf :Human .
:Room a rdfs:Class .
:hasOffice a rdf:Property .
:worksIn rdfs:subPropertyOf :hasOffice .
:hasOffice rdfs:domain :Employee .
:hasOffice rdfs:range :Room .

:Tim :worksIn :D0815 .

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 55

Anwendung von Ableitungsregeln

 Beispiel:

:Tim :worksIn :D0815 .
:worksIn rdfs:subPropertyOf :hasOffice .

→ :Tim :hasOffice :D0815 .

ID Voraussetzung Konsequenz
rdfs7 p1 rdfs:subPropertyOf p2 .

s p1 o .
s p2 o.

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 56

Anwendung von Ableitungsregeln

 Beispiel:

:Tim :hasOffice :D0815 .
:hasOffice rdfs:domain :Employee .

→ :Tim rdf:type :Employee .

ID Voraussetzung Konsequenz
rdfs2 s p o .

p rdfs:domain c .
s rdf:type c .

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 57

Anwendung von Ableitungsregeln

 Beispiel:

:Tim rdf:type :Employee.
:Employee rdfs:subClassOf :Human .

→ :Tim rdf:type :Human .

ID Voraussetzung Konsequenz
rdfs9 s rdf:type c1 .

c1 rdfs:subClassOf c2 .
s rdf:type c2 .

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 58

Was passiert bei mehreren
(konkurrierenden) Aussagen?

 Beispiel soziales Netzwerk:

:knows rdfs:range :People .
:knows rdfs:range :MemberOfSocialNetwork .

 Was soll die Semantik davon sein?
 Jeder, den jemand kennt,

ist ein Mensch und ein Mitglied des sozialen Netzwerks
 Jeder, den jemand kennt,

ist ein Mensch oder ein Mitglied des sozialen Netzwerks

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 59

Die Ableitungsregeln werden es
uns verraten...

:knows rdfs:range :Human . (a0)
:knows rdfs:range :MemberOfSocialNetwork . (a1)
:Peter :taughtBy :Stephen . (a2)

(rdfs3+a0+a2) :Stephen rdf:type :Human . (a3)
(rdfs3+a1+a2) :Stephen rdf:type :MemberOfSocialNetwork . (a4)

...

 Diese Schlusskette funktioniert für beliebige Objekte
 diese sind stets in beiden Klassen enthalten

 → es gilt also die Semantik mit der Schnittmenge!

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 60

Was haben wir jetzt gewonnen?

 Betrachten wir folgenden Satz:

 "Madrid ist die Hauptstadt von Spanien."

 Aussagen, die wir erhalten können:
 "Madrid ist die Hauptstadt von Spanien." ✔
 "Spanien ist ein Land." ✔
 "Madrid ist eine Stadt." ✔
 "Madrid liegt in Spanien." ✔
 "Barcelona ist nicht die Hauptstadt von Spanien." ✖
 "Madrid ist nicht die Hauptstadt von Frankreich." ✖
 "Madrid ist kein Land." ✖
 ...

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 61

Was wir (bis jetzt)
noch nicht können

 "Jedes Land hat nur genau eine Hauptstadt"
 Kardinalitäten von Properties

 "Jede Stadt kann nur Hauptstadt von genau einem Land sein"
 Funktionale Properties

 "Eine Stadt ist nicht gleichzeitig ein Land."
 Disjunkte Klassen

 ...

 hier brauchen wir mächtigere Sprachmittel als RDF Schema!

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 62

Was wir (bis jetzt)
noch nicht können

 "Jedes Land hat nur genau eine Hauptstadt"
 d.h., "Ein Land kann nicht zwei oder mehr Hauptstädte haben."

 "Jede Stadt kann nur Hauptstadt von genau einem Land sein"
 d.h., "Eine Stadt kann nicht Hauptstadt von zwei verschiedenen

Ländern sein."

 "Eine Stadt ist nicht gleichzeitig ein Land."

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 63

Was wir (bis jetzt)
noch nicht können

 Merke: in RDF und RDFS gibt es keine Verneinung

 Damit kann man auch keine Widersprüche erzeugen
 das macht das Reasoning schön einfach
 schränkt aber auch die Mächtigkeit ein
 Beispiel:

 Säugetiere legen keine Eier
 ein Pinguin legt Eier

 ein Pinguin ist kein Säugetier→

 Wir werden noch Formalismen kennenlernen,
die auch Verneinung unterstützen

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 64

Was wir (bis jetzt)
noch nicht können

 Die Freiheit von Verneinung passt gut zum AAA-Prinzip
 Anybody can say anything about anything

 und zur Open World Assumption

 Neu hinkommende Aussagen fügen sich immer in das
vorhandene Wissen ein

 Dieses Prinzip heißt "Monotonie"

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 65

Was wir (bis jetzt)
noch nicht können

 Kurt Gödel (1906-1978)
 Logische Systeme sind entweder
 nicht besonders ausdrucksstark oder
 nicht widerspruchsfrei

 RDF Schema gehört zur ersten Klasse

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 66

Was wir (bis jetzt)
noch nicht können

 Jim Hendler (*1957)

 "A little semantics goes a long way."

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 67

Moment mal...

 "Damit kann man auch keine Widersprüche erzeugen"
 Und was ist mit

:Peter a :Baby .
:Peter a :Adult .

 Ist das denn etwa kein Widerspruch?!

 Für uns Menschen schon
 aber ein Rechner weiß das nicht
 Non-unique name assumption!

07.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 68

Semantic Web – Aufbau

Berners-Lee (2009): Semantic Web and Linked Data
http://www.w3.org/2009/Talks/0120-campus-party-tbl/

Technische
Grundlagen

Semantic-Web-
Technologie
(Fokus der
Vorlesung)

here be dragons...

Vorlesung Semantic Web

Vorlesung im Wintersemester 2011/2012
Dr. Heiko Paulheim
Fachgebiet Knowledge Engineering

