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Was bisher geschah

 Was wir bisher kennen gelernt haben:
 RDF und RDF Schema als Sprachen
 Linked Open Data

 Wie wir bisher auf Linked Open Data zugegriffen haben
 mit Browsern
 Graphen entlang hangelnd

 Was schön wäre
 Zielgerichtet auf Daten zugreifen
 Direkt Zusammenhänge abfragen
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Übung 1, Aufgabe 3

 Merke: XPath und RDF/XML ist eine ganz schlechte Idee!
 Etwas besseres lernen wir in Kürze kennen...
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Semantic Web – Aufbau

Berners-Lee (2009): Semantic Web and Linked Data
http://www.w3.org/2009/Talks/0120-campus-party-tbl/

Technische 
Grundlagen

Semantic-Web-
Technologie

(Fokus der Vorlesung)

here be dragons...
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Was hätten wir denn gern?

Peter Julia

TU DA

Stefan

Uni FFM

Darmstadt Frankfurt

studiert an studiert an studiert an

liegt inliegt in

kennt

wohnt in wohnt in
wohnt in

01-12-1986 Jule

geboren nick

 RDF beschreibt Graphen
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Gesucht: eine Abfragesprache
für das Semantic Web

 Analog zu SQL für relationale Datenbanken:

SELECT Name, Geburtsdatum FROM Kunden
WHERE Kundenummer = '00423789'

Kundennummer Name Geburtsdatum

00183283 Stefan Müller 23.08.1975
00423782 Julia Meyer 05.09.1982
00789534 Gertrud Schäfer 31.03.1953
00423789 Herbert Scholz 02.04.1960
... ... ...
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Gesucht: eine Abfragesprache
für das Semantic Web

 SPARQL: "SPARQL Query Language for RDF"
 ein rekursives Akronoym

 Standardisiert vom W3C (2008)
 Abfragen auf RDF-Graphen
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Hello SPARQL!

 Beispiel:
SELECT ?child
WHERE { :Stefan :vaterVon ?child }

:Stefan :Julia:vaterVon

Ausdrücke mit ?
kennzeichnen
Variablen
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SPARQL: Grundkonzepte

 Grundstruktur:
SELECT <Variablenliste>
WHERE { <Muster> }

 Variablen mit ?

 Namensräume: wie in RDF/N3:
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?person ?name
WHERE { ?person foaf:name ?name }
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SPARQL: Grundkonzepte

 Der WHERE-Teil ist ähnlich wie N3-Notation
 mit Variablen

 {?p foaf:name ?n }
 {?p foaf:name ?n; foaf:homepage ?hp }
 {?p foaf:knows ?p1, ?p2 }
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SPARQL: Pattern Matching 
auf RDF-Graphen

 WHERE-Teil der Abfrage: ein RDF-Graph mit Variablen
SELECT ?person1 ?person2
WHERE { ?person1 :kennt ?anderePerson .

?anderePerson :vaterVon ?person2 . }

 Ergebnis:
 ?person1 = :Peter, ?person2 = :Julia

:Julia:vaterVon:Peter :kennt

über gemeinsame 
Variablen wird ein 
komplexes Muster 
definiert



17.11.11  |  Fachbereich 20  | Knowledge Engineering  |  Heiko Paulheim  |  12

SPARQL: 
Matching auf Graphen

 Eine Person, die eine Tochter und einen Sohn hat
{ ?p :hatTochter ?t ; :hatSohn ?s . }

 Eine Person, die zwei Personen kennt, die sich untereinander 
kennen

{ ?p :kennt ?p1 , ?p2 . ?p1 :kennt ?p2 . }

 Eine Person, die zwei Kinder hat
{ ?p :hatKind ?k1, ?k2 . }

Achtung: zwei Variablen müssen 
nicht automatisch an verschiedene 

Ressourcen gebunden werden!
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SPARQL: Blank Nodes

 WHERE-Teil der Abfrage: ein RDF-Graph mit Variablen
SELECT ?person1 ?person2 ?anderePerson
WHERE { ?person1 :kennt ?anderePerson .

?anderePerson :vaterVon ?person2 . }

 Ergebnis:
 ?person1 = :Peter, ?person2 = :Julia; ?anderePerson = _:x1

 Blank Node IDs sind nur eindeutig innerhalb des Result Sets!

:Julia:vaterVon:Peter :kennt
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SPARQL: 
Matching von Literalen

 Strings
{ ?person :name "Heinz" . }

 Vorsicht bei Sprachangaben:
{ ?country :name "Deutschland"@de . }

 → Die Strings "Deutschland" und "Deutschland"@de sind  
   verschieden!

 Zahlen:
{ ?person :alter "42"^^xsd:int .}

oder kürzer:
{ ?person :alter 42 . }
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SPARQL: Filter

 Zur weiteren Eingrenzung von Ergebnissen
{?person :age ?age . FILTER(?age < 42) }

 Vergleichsoperatoren:
= != < > <= >=

 Logische Verknüpfungen:
&& || !
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SPARQL:Filter

 Personen, die jüngere Geschwister haben
{ ?p1 :geschwisterVon ?p2 . 
  ?p1 :alter ?a1 .
  ?p2 :alter ?a2 .
  FILTER(?a2 < ?a1)}

 Personen, die sowohl jüngere und ältere Geschwister haben
{ ?p1 :geschwisterVon ?p2,p3 . 
  ?p1 :alter ?a1 .
  ?p2 :alter ?a2 .
  ?p3 :alter ?a3 .
  FILTER(?a2 < ?a1 && ?a3 > ?a1)}
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SPARQL: Filter

 Zweiter Versuch: Eine Person, die zwei Kinder hat
{ ?p :hatKind ?k1, ?k2 . FILTER( ?k1 != ?k2) }

 Schon mal besser als der erste Versuch
 → Variablen werden jetzt unterschiedlich gebunden

 Aber: es gilt immer noch die Non-Unique Naming Assumption
 → Aus

:Peter :hatKind :Julia .
:Peter :hatKind :Stefan .
folgt immer noch nicht, dass Peter zwei Kinder hat!

 Darüber hinaus gilt die Open World Assumption
 → Peter könnte also auch noch mehr Kinder haben
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Filter auf Strings

 Suche in Strings: Reguläre Ausdrücke

 Personen, die "Heinz" heißen
{?person :name ?n . FILTER(regex(?n,"^Heinz$")) }
{?person :name ?n . FILTER(regex(?n,"Heinz")) }

 → die zweite Variante findet z.B. auch "Karl-Heinz"

 str: URIs und Literale als Strings
 ermöglicht u.a. Suche über String-Literale in allen Sprachen

{?country :name ?n . FILTER(str(?n) = "Tyskland") }

 → wir lernen: Deutschland heißt auch auf norwegisch "Tyskland".
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Weitere eingebaute Funktionen

 Typ einer Ressource abfragen:
 isURI
 isBLANK
 isLITERAL

 Datentyp und Sprache eines Literals abfragen:
 DATATYPE(?v)
 LANG(?v)

 Sprache von zwei Literalen vergleichen:
 langMATCHES(?v1,?v2)
 Achtung: sei ?v1 = "Januar"@DE, ?v2 = "Jänner"@DE-at
LANG(?v1) = LANG(?v2)  false→
langMATCHES(?v1,?v2)   true→
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Verknüpfung von Teilmustern

 Finde die private oder dienstliche Telefonnummer

{ ?p :privatePhone ?nr } 
UNION { ?p :workPhone ?nr }

 UNION erzeugt eine Vereinigungsmenge
?p = :peter, ?nr = 123; 
?p = :hans, ?nr = 234;
?p = :hans, ?nr = 345;
...

Das passiert, wenn Hans 
sowohl eine private als auch 
eine dienstliche Nummer hat
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Optionale Teilmuster

 Finde die Telefonnummer einer Person 
und, falls vorhanden, auch die Faxnummer

 { ?p :phone ?tel } 
OPTIONAL { ?p :fax ?fax }

 OPTIONAL erzeugt auch ungebundene Variablen
?p = :peter, ?tel = 123, ?fax = 456;
?p = :hans, ?tel = 234, ?fax = ;
?p = :jutta, ?nr = 978; ?fax = 349;
...

Ungebundene Variable:
Hans hat kein Fax

(soweit wir das wissen)
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Ungebundene Variablen

 Variablen können auch ungebunden bleiben
 Mit BOUND(?v) kann man das abfragen

 Alle Personen, die Telefon oder Fax haben (oder beides):

OPTIONAL {?p :phone ?tel . }
OPTIONAL {?p :fax ?fax . }
FILTER ( BOUND(?tel) || BOUND(?fax) )
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Negation

 Häufige Frage mit Bezug auf SPARQL
 Wie geht so etwas:
 "Finde alle Personen, die keine Geschwister haben."

 Das hat man in SPARQL bewusst nicht direkt vorgesehen
 Warum?

 Open World Assumption
 wir können das gar nicht wissen!

 Aus dem selben Grund gibt es (noch) kein COUNT
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Negation – Hacking SPARQL

 Es gibt dennoch Möglichkeiten
 im "Giftschrank" von SPARQL...

 Mit OPTIONAL und BOUND
 Finde alle Personen ohne Geschwister:

OPTIONAL {?p :hasSibling ?s . }
FILTER ( !BOUND(?s) )

 Das funktioniert
 man sollte aber immer wissen, was man tut
 und wie die Ergebnisse zu interpretieren sind!
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Negation – Hacking SPARQL

 Wie funktioniert das?
 Ergebnisse vor FILTER:

OPTIONAL {?p :hasSibling ?s . }

?p = :peter, ?s = :julia
?p = :peter, ?s = :stephan
?p = :jan, ?s = 
?p = :paul, ?s = 

 Anwendung von FILTER
 FILTER(!BOUND(?s))

?p = :jan, ?s = 
?p = :paul, ?s = 

Ungebundene Variablen
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Sortieren der Ergebnisse

 Sortierung: ORDER BY ?name
 Begrenzung: LIMIT 100
 Untere Grenze: OFFSET 200

 Beispiel: die Personen 101-200, nach Namen sortiert
 ORDER BY ?name LIMIT 100 OFFSET 100

 LIMIT/OFFSET ohne ORDER BY:
 Ergebnisse nicht deterministisch
 Es gibt keine default-Ordnung!
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Ausfiltern von Duplikaten

 SELECT DISTINCT ?person 
WHERE { ?person :privatePhone ?nr } 
UNION { ?person :workPhone ?nr }

 Bedeutet: Es werden alle Ergebnisse mit identischer 
Wertebelegung der Variablen ausgefiltert

 Bedeutet nicht: die Personen, die durch die Werte von ?person 
identifiziert werden, sind tatsächlich verschieden!

 Warum?
 Non-unique naming assumption
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Custom Built-Ins

 Manche Anbieter von Endpoints erlauben zusätzliche Filter
 sog. Custom Built-Ins
 Beispiel Linked Geo Data
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LinkedGeoData

 hat auch ein eigenes User Interface:
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Custom Built-Ins

 Abfrage nach Koordinaten
 naiv: 
WHERE { ?x geo:long ?long; geo:lat ?lat }
FILTER (?long >8.653, ?long < 8.654, 
        ?lat >49.878, ?lat < 49.879)

 Komplexere Anfragen
 alle Cafés, die sich im Umkreis von 1km 

von einem bestimmten Punkt befinden
WHERE { ?x rdf:type lgdo:Cafe; geo:geometry ?geo }
FILTER (bif:st_intersects(?geo, 
                          bif:st_point(8.653, 49.878), 1))
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Custom Built-Ins

 Noch komplexere Anfragen
 alle Cafés, die sich im Umkreis von 1km von einer Universität 

befinden
WHERE { ?x rdf:type lgdo:Cafe; geo:geometry ?cafegeo .
        ?y rdf:type lgdo:University; geo:geometry ?ugeo . }
FILTER (bif:st_intersects(?cafegeo, ?ugeo, 1))
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Weitere Abfragearten: ASK

 Bis jetzt haben wir nur SELECT kennen gelernt
 Mit ASK kann man Ja/Nein-Fragen stellen:

Gibt es Personen mit Geschwistern?

ASK {?p :hasSibling ?s . }

 Die Antwort ist true oder false
 wobei false heißt, dass keine passenden Daten gefunden wurden
 darf man nicht falsch interpretieren (Open World Assumption)
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Weitere Abfragearten: DESCRIBE

 Alle Eigenschaften einer Ressource:

DESCRIBE <http://dbpedia.org/resource/Berlin>

 Auch mit WHERE-Klausel

DESCRIBE ?city WHERE { :Hans :livesIn ?city . }

 Ermöglicht das Explorieren eines Datensets,
dessen Struktur unbekannt ist

 Achtung: Nicht-normativ, 
Ergebnisse variieren je nach Implementierung!
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Weitere Abfragearten: 
CONSTRUCT

 Erzeugen eines neuen RDF-Graphen

CONSTRUCT 
{ ?x rdfs:seeAlso <http://dbpedia.org/resource/Berlin> . } 
WHERE { <http://dbpedia.org/resource/Berlin> ?y ?x . 
        FILTER (isURI(?x)) }

 Das Ergebnis ist ein kompletter RDF-Graph
 z.B. zur Weiterverarbeitung
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SPARQL: Zusammenfassung

 Abfragesprache für RDF
 Pattern-Matching auf Graphen
 Mit SPARQL kann man nach Informationen suchen, 

nicht nur über Graphen wandern

 Abfrageergebnisse unterliegen der Semantik von RDF!
 Open World Assumption
 Non-unique naming assumption
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Implementierung

 Interface SPARQLQuery
 Hat eine Methode (query())
 Vom W3C komplett spezifiziert

 Umsetzung:
 als Web Service (WSDL)
 als HTTP-Schnittstelle

 Eine solche Schnittstelle nennt man SPARQL Endpoint
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Implementierung

 Viele Linked Open Data Server haben auch 
eine SPARQL Schnittstelle:

Relationale
Datenbank

D2R
Server Mapping

Intelligenter
Agent

Browser
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Relationale
Datenbank

Anwendung: Datenintegration

Relationale
Datenbank

SPARQL
Server

M
ap

pi
ng

Relationale
Datenbank

Intelligenter
Agent

Map
pin

g Mapping

Browser
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Anwendung: Datenintegration

 Viele Datenbanken hinter einer SPARQL-Schnittstelle
 Nur noch ein RDF-Schema statt vieler DB-Schemata
 Zusammenhänge zwischen Datenbanken entdecken

 Funktioniert prinzipiell auch mit anderen Quellen
 Strukturierte Dokumente (XML, CSV, …)
 Anwendungen, z.B. mit Web-Service-Schnittstellen
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Anwendung: Datenintegration

 Beispiel für ein kommerzielles Produkt: OntoStudio/OntoBroker

OntoPrise (2011): http://www.ontoprise.de/
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Beispiel: Integration mehrerer 
Produktdatenbanken

Janzen et al. (2010): Linkage of Heterogeneous Knowledge Resources within In-store Dialogue Interaction.
In: International Semantic Web Conference 2010.
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Umsetzung von SPARQL auf SQL

 Daten sind in relationalen DB gespeichert
 werden mit SQL angesprochen

 Query-Interface: SPARQL
 → Umsetzung von SPARQL auf SQL benötigt

 je nach Implementierung unterschiedlich
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Umsetzung von SPARQL auf SQL

 Recap: Beispiel naiver Tripel-Store

Subjekt Prädikat Objekt

<http://foo.bar/Peter> <http://foo.bar/vaterVon> <http://foo.bar/Stefan>

<http://foo.bar/Peter> <rdf:type> <http://foo.bar/Person>

<http://foo.bar/Stefan> <rdf:type> <http://foo.bar/Person>

<http://foo.bar/Peter> <http://foo.bar/vaterVon> <http://foo.bar/Julia>

<http://foo.bar/Peter> <http://foo.bar/kennt> _:genID01

_:genID01 <http://foo.bar/vaterVon> <http://foo.bar/Markus>

... ... ...
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Umsetzung von SPARQL auf SQL

 Naiver Triple-Store
 SPARQL-Beispiel:

SELECT ?person ?name ?email
WHERE { ?person :name ?name .

?person :email ?email . }

 wird zu
SELECT t1.subjekt AS person, t1.objekt AS name, 

t2.objekt AS email
FROM triples AS t1, triples AS t2
WHERE t1.predicate = "foo:name"

AND t2.predicate = "foo:email"
AND t1.subjekt = t2.subjekt
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Umsetzung von SPARQL auf SQL

 Recap: Property Table

Subjekt rdf:type foo:vaterVon foo:kennt

foo:Peter foo:Person foo:Stefan NULL

foo:Peter foo:Person foo:Julia NULL

foo:Stefan foo:Person NULL _:genID01

_:genID01 foo:Person foo:Markus NULL

... ... ...
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Umsetzung von SPARQL auf SQL

 Property Table
 SPARQL-Beispiel:

SELECT ?person ?name ?email
WHERE { ?person :name ?name .

?email :email ?email . }

 wird zu
SELECT subjekt AS person, name, email
FROM properties
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Umsetzung von SPARQL auf SQL

 Recap: Vertikale Partitionierung

Subjekt foo:kennt

foo:Stefan _:genID01

...

Subjekt rdf:type

foo:Peter foo:Person

_:genID01 foo:Person

... ...

Subjekt foo:vaterVon

foo:Peter foo:Stefan

foo:Peter foo:Julia

_:genID01 foo:Markus

... ...
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Umsetzung von SPARQL auf SQL

 Vertikale Partitionierung
 SPARQL-Beispiel:

SELECT ?person ?name ?email
WHERE { ?person :name ?name .

?email :email ?email . }

 wird zu
SELECT t1.subjekt AS person, t1.name, t2.email
FROM name_table AS t1, email_table AS t2
WHERE t1.subjekt = t2.subjekt
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Kombination von 
SPARQL & Reasoning

 Reasoning mit RDF Schema haben wir schon kennen gelernt
 Viele Reasoner haben auch eine SPARQL-Schnittstelle

Reasoner
Intelligenter
Agent SPARQL

RDF Schema

RDF Instanzen
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Kombination von 
SPARQL & Reasoning

 Beispiel-Ontologie

:Country a rdfs:Class .
:City a rdfs:Class .
:locatedIn a rdf:Property .
:capitalOf rdfs:subPropertyOf :locatedIn .
:capitalOf rdfs:domain :City .
:capitalOf rdfs:range :Country .

:Madrid :capitalOf :Spain .
:Barcelona :locatedIn :Spain .
:Spain rdfs:label "Spanien"@de .
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Kombination von 
SPARQL & Reasoning

 Finde die Hauptstadt von Spanien
 z.B. so:
SELECT ?x WHERE { ?x :capitalOf :Spain . ?x a :City . }

SELECT ?x WHERE { ?x :capitalOf ?y . ?x a :City .
                  ?y rdfs:label "Spanien"@de . }

 aber nicht so:
SELECT ?x WHERE { ?x :capitalOf ?y . ?x a :City .
                  ?y rdfs:label "Spanien" . }
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Kombination von 
SPARQL & Reasoning

 Finde alle Städte in Spanien
 z.B. so:
SELECT ?x WHERE { ?x :locatedIn :Spain . ?x a :City .}

SELECT ?x WHERE { ?x :locatedIn ?y . ?x a :City .
                  ?y rdfs:label "Spanien"@de . }

 Finde alle Städte in Spanien, die nicht Hauptstadt von Spanien 
sind
SELECT ?x WHERE { ?x :locatedIn :Spain . ?x a :City .}
          OPTIONAL { ?x :capitalOf ?y }
          FILTER (!BOUND(?y) || ?y != :Spain)
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Visuelle Interfaces

 iSPARQL (2007)
 Query-by-Example
 Klassen und Relationen

aus Schema per Drag and Drop

 Universität Zürich
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Visuelle Interfaces

 gFacet (2008)
 Exploration von 

Linked Open Data
 Einschränkungen
 ausgehend von einem Konzept
 nur die Kanten, die die Objekte

tatsächlich besitzen

 Universität Duisburg-Essen
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DERI Pipes

 Daten-Mashup
 Hat auch RDF-Bausteine:
 RDF von Adresse holen
 Daten in RDF umwandeln
 Verschiedene RDF-Dokumente zusammenführen
 SPARQL-Abfragen
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DERI Pipes
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Zusammenfassung

 SPARQL
 eine Abfragesprache für RDF-Daten
 Beschreibung von (Sub-)Graphen-Mustern

 Built-ins sind möglich
 Weiterverarbeitung im Triple Store
 Kombination mit Reasoning
 Abfrageergebnisse
 unterliegen Open World Assumption
 Verneinung daher nur auf Umwegen
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Semantic Web – Aufbau

Berners-Lee (2009): Semantic Web and Linked Data
http://www.w3.org/2009/Talks/0120-campus-party-tbl/

Technische 
Grundlagen

Semantic-Web-
Technologie

(Fokus der Vorlesung)

here be dragons...
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