
Vorlesung Semantic Web

Vorlesung im Wintersemester 2011/2012
Dr. Heiko Paulheim
Fachgebiet Knowledge Engineering

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 2

Was bisher geschah

 Was wir bisher kennen gelernt haben:
 RDF und RDF Schema als Sprachen
 Linked Open Data

 Wie wir bisher auf Linked Open Data zugegriffen haben
 mit Browsern
 Graphen entlang hangelnd

 Was schön wäre
 Zielgerichtet auf Daten zugreifen
 Direkt Zusammenhänge abfragen

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 3

Übung 1, Aufgabe 3

 Merke: XPath und RDF/XML ist eine ganz schlechte Idee!
 Etwas besseres lernen wir in Kürze kennen...

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 4

Semantic Web – Aufbau

Berners-Lee (2009): Semantic Web and Linked Data
http://www.w3.org/2009/Talks/0120-campus-party-tbl/

Technische
Grundlagen

Semantic-Web-
Technologie

(Fokus der Vorlesung)

here be dragons...

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 5

Was hätten wir denn gern?

Peter Julia

TU DA

Stefan

Uni FFM

Darmstadt Frankfurt

studiert an studiert an studiert an

liegt inliegt in

kennt

wohnt in wohnt in
wohnt in

01-12-1986 Jule

geboren nick

 RDF beschreibt Graphen

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 6

Gesucht: eine Abfragesprache
für das Semantic Web

 Analog zu SQL für relationale Datenbanken:

SELECT Name, Geburtsdatum FROM Kunden
WHERE Kundenummer = '00423789'

Kundennummer Name Geburtsdatum

00183283 Stefan Müller 23.08.1975
00423782 Julia Meyer 05.09.1982
00789534 Gertrud Schäfer 31.03.1953
00423789 Herbert Scholz 02.04.1960
...

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 7

Gesucht: eine Abfragesprache
für das Semantic Web

 SPARQL: "SPARQL Query Language for RDF"
 ein rekursives Akronoym

 Standardisiert vom W3C (2008)
 Abfragen auf RDF-Graphen

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 8

Hello SPARQL!

 Beispiel:
SELECT ?child
WHERE { :Stefan :vaterVon ?child }

:Stefan :Julia:vaterVon

Ausdrücke mit ?
kennzeichnen
Variablen

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 9

SPARQL: Grundkonzepte

 Grundstruktur:
SELECT <Variablenliste>
WHERE { <Muster> }

 Variablen mit ?

 Namensräume: wie in RDF/N3:
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?person ?name
WHERE { ?person foaf:name ?name }

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 10

SPARQL: Grundkonzepte

 Der WHERE-Teil ist ähnlich wie N3-Notation
 mit Variablen

 {?p foaf:name ?n }
 {?p foaf:name ?n; foaf:homepage ?hp }
 {?p foaf:knows ?p1, ?p2 }

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 11

SPARQL: Pattern Matching
auf RDF-Graphen

 WHERE-Teil der Abfrage: ein RDF-Graph mit Variablen
SELECT ?person1 ?person2
WHERE { ?person1 :kennt ?anderePerson .

?anderePerson :vaterVon ?person2 . }

 Ergebnis:
 ?person1 = :Peter, ?person2 = :Julia

:Julia:vaterVon:Peter :kennt

über gemeinsame
Variablen wird ein
komplexes Muster
definiert

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 12

SPARQL:
Matching auf Graphen

 Eine Person, die eine Tochter und einen Sohn hat
{ ?p :hatTochter ?t ; :hatSohn ?s . }

 Eine Person, die zwei Personen kennt, die sich untereinander
kennen

{ ?p :kennt ?p1 , ?p2 . ?p1 :kennt ?p2 . }

 Eine Person, die zwei Kinder hat
{ ?p :hatKind ?k1, ?k2 . }

Achtung: zwei Variablen müssen
nicht automatisch an verschiedene

Ressourcen gebunden werden!

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 13

SPARQL: Blank Nodes

 WHERE-Teil der Abfrage: ein RDF-Graph mit Variablen
SELECT ?person1 ?person2 ?anderePerson
WHERE { ?person1 :kennt ?anderePerson .

?anderePerson :vaterVon ?person2 . }

 Ergebnis:
 ?person1 = :Peter, ?person2 = :Julia; ?anderePerson = _:x1

 Blank Node IDs sind nur eindeutig innerhalb des Result Sets!

:Julia:vaterVon:Peter :kennt

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 14

SPARQL:
Matching von Literalen

 Strings
{ ?person :name "Heinz" . }

 Vorsicht bei Sprachangaben:
{ ?country :name "Deutschland"@de . }

 → Die Strings "Deutschland" und "Deutschland"@de sind
 verschieden!

 Zahlen:
{ ?person :alter "42"^^xsd:int .}

oder kürzer:
{ ?person :alter 42 . }

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 15

SPARQL: Filter

 Zur weiteren Eingrenzung von Ergebnissen
{?person :age ?age . FILTER(?age < 42) }

 Vergleichsoperatoren:
= != < > <= >=

 Logische Verknüpfungen:
&& || !

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 16

SPARQL:Filter

 Personen, die jüngere Geschwister haben
{ ?p1 :geschwisterVon ?p2 .
 ?p1 :alter ?a1 .
 ?p2 :alter ?a2 .
 FILTER(?a2 < ?a1)}

 Personen, die sowohl jüngere und ältere Geschwister haben
{ ?p1 :geschwisterVon ?p2,p3 .
 ?p1 :alter ?a1 .
 ?p2 :alter ?a2 .
 ?p3 :alter ?a3 .
 FILTER(?a2 < ?a1 && ?a3 > ?a1)}

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 17

SPARQL: Filter

 Zweiter Versuch: Eine Person, die zwei Kinder hat
{ ?p :hatKind ?k1, ?k2 . FILTER(?k1 != ?k2) }

 Schon mal besser als der erste Versuch
 → Variablen werden jetzt unterschiedlich gebunden

 Aber: es gilt immer noch die Non-Unique Naming Assumption
 → Aus

:Peter :hatKind :Julia .
:Peter :hatKind :Stefan .
folgt immer noch nicht, dass Peter zwei Kinder hat!

 Darüber hinaus gilt die Open World Assumption
 → Peter könnte also auch noch mehr Kinder haben

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 18

Filter auf Strings

 Suche in Strings: Reguläre Ausdrücke

 Personen, die "Heinz" heißen
{?person :name ?n . FILTER(regex(?n,"^Heinz$")) }
{?person :name ?n . FILTER(regex(?n,"Heinz")) }

 → die zweite Variante findet z.B. auch "Karl-Heinz"

 str: URIs und Literale als Strings
 ermöglicht u.a. Suche über String-Literale in allen Sprachen

{?country :name ?n . FILTER(str(?n) = "Tyskland") }

 → wir lernen: Deutschland heißt auch auf norwegisch "Tyskland".

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 19

Weitere eingebaute Funktionen

 Typ einer Ressource abfragen:
 isURI
 isBLANK
 isLITERAL

 Datentyp und Sprache eines Literals abfragen:
 DATATYPE(?v)
 LANG(?v)

 Sprache von zwei Literalen vergleichen:
 langMATCHES(?v1,?v2)
 Achtung: sei ?v1 = "Januar"@DE, ?v2 = "Jänner"@DE-at
LANG(?v1) = LANG(?v2) false→
langMATCHES(?v1,?v2) true→

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 20

Verknüpfung von Teilmustern

 Finde die private oder dienstliche Telefonnummer

{ ?p :privatePhone ?nr }
UNION { ?p :workPhone ?nr }

 UNION erzeugt eine Vereinigungsmenge
?p = :peter, ?nr = 123;
?p = :hans, ?nr = 234;
?p = :hans, ?nr = 345;
...

Das passiert, wenn Hans
sowohl eine private als auch
eine dienstliche Nummer hat

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 21

Optionale Teilmuster

 Finde die Telefonnummer einer Person
und, falls vorhanden, auch die Faxnummer

 { ?p :phone ?tel }
OPTIONAL { ?p :fax ?fax }

 OPTIONAL erzeugt auch ungebundene Variablen
?p = :peter, ?tel = 123, ?fax = 456;
?p = :hans, ?tel = 234, ?fax = ;
?p = :jutta, ?nr = 978; ?fax = 349;
...

Ungebundene Variable:
Hans hat kein Fax

(soweit wir das wissen)

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 22

Ungebundene Variablen

 Variablen können auch ungebunden bleiben
 Mit BOUND(?v) kann man das abfragen

 Alle Personen, die Telefon oder Fax haben (oder beides):

OPTIONAL {?p :phone ?tel . }
OPTIONAL {?p :fax ?fax . }
FILTER (BOUND(?tel) || BOUND(?fax))

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 23

Negation

 Häufige Frage mit Bezug auf SPARQL
 Wie geht so etwas:
 "Finde alle Personen, die keine Geschwister haben."

 Das hat man in SPARQL bewusst nicht direkt vorgesehen
 Warum?

 Open World Assumption
 wir können das gar nicht wissen!

 Aus dem selben Grund gibt es (noch) kein COUNT

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 24

Negation – Hacking SPARQL

 Es gibt dennoch Möglichkeiten
 im "Giftschrank" von SPARQL...

 Mit OPTIONAL und BOUND
 Finde alle Personen ohne Geschwister:

OPTIONAL {?p :hasSibling ?s . }
FILTER (!BOUND(?s))

 Das funktioniert
 man sollte aber immer wissen, was man tut
 und wie die Ergebnisse zu interpretieren sind!

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 25

Negation – Hacking SPARQL

 Wie funktioniert das?
 Ergebnisse vor FILTER:

OPTIONAL {?p :hasSibling ?s . }

?p = :peter, ?s = :julia
?p = :peter, ?s = :stephan
?p = :jan, ?s =
?p = :paul, ?s =

 Anwendung von FILTER
 FILTER(!BOUND(?s))

?p = :jan, ?s =
?p = :paul, ?s =

Ungebundene Variablen

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 26

Sortieren der Ergebnisse

 Sortierung: ORDER BY ?name
 Begrenzung: LIMIT 100
 Untere Grenze: OFFSET 200

 Beispiel: die Personen 101-200, nach Namen sortiert
 ORDER BY ?name LIMIT 100 OFFSET 100

 LIMIT/OFFSET ohne ORDER BY:
 Ergebnisse nicht deterministisch
 Es gibt keine default-Ordnung!

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 27

Ausfiltern von Duplikaten

 SELECT DISTINCT ?person
WHERE { ?person :privatePhone ?nr }
UNION { ?person :workPhone ?nr }

 Bedeutet: Es werden alle Ergebnisse mit identischer
Wertebelegung der Variablen ausgefiltert

 Bedeutet nicht: die Personen, die durch die Werte von ?person
identifiziert werden, sind tatsächlich verschieden!

 Warum?
 Non-unique naming assumption

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 28

Custom Built-Ins

 Manche Anbieter von Endpoints erlauben zusätzliche Filter
 sog. Custom Built-Ins
 Beispiel Linked Geo Data

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 29

LinkedGeoData

 hat auch ein eigenes User Interface:

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 30

Custom Built-Ins

 Abfrage nach Koordinaten
 naiv:
WHERE { ?x geo:long ?long; geo:lat ?lat }
FILTER (?long >8.653, ?long < 8.654,
 ?lat >49.878, ?lat < 49.879)

 Komplexere Anfragen
 alle Cafés, die sich im Umkreis von 1km

von einem bestimmten Punkt befinden
WHERE { ?x rdf:type lgdo:Cafe; geo:geometry ?geo }
FILTER (bif:st_intersects(?geo,
 bif:st_point(8.653, 49.878), 1))

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 31

Custom Built-Ins

 Noch komplexere Anfragen
 alle Cafés, die sich im Umkreis von 1km von einer Universität

befinden
WHERE { ?x rdf:type lgdo:Cafe; geo:geometry ?cafegeo .
 ?y rdf:type lgdo:University; geo:geometry ?ugeo . }
FILTER (bif:st_intersects(?cafegeo, ?ugeo, 1))

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 32

Weitere Abfragearten: ASK

 Bis jetzt haben wir nur SELECT kennen gelernt
 Mit ASK kann man Ja/Nein-Fragen stellen:

Gibt es Personen mit Geschwistern?

ASK {?p :hasSibling ?s . }

 Die Antwort ist true oder false
 wobei false heißt, dass keine passenden Daten gefunden wurden
 darf man nicht falsch interpretieren (Open World Assumption)

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 33

Weitere Abfragearten: DESCRIBE

 Alle Eigenschaften einer Ressource:

DESCRIBE <http://dbpedia.org/resource/Berlin>

 Auch mit WHERE-Klausel

DESCRIBE ?city WHERE { :Hans :livesIn ?city . }

 Ermöglicht das Explorieren eines Datensets,
dessen Struktur unbekannt ist

 Achtung: Nicht-normativ,
Ergebnisse variieren je nach Implementierung!

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 34

Weitere Abfragearten:
CONSTRUCT

 Erzeugen eines neuen RDF-Graphen

CONSTRUCT
{ ?x rdfs:seeAlso <http://dbpedia.org/resource/Berlin> . }
WHERE { <http://dbpedia.org/resource/Berlin> ?y ?x .
 FILTER (isURI(?x)) }

 Das Ergebnis ist ein kompletter RDF-Graph
 z.B. zur Weiterverarbeitung

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 35

SPARQL: Zusammenfassung

 Abfragesprache für RDF
 Pattern-Matching auf Graphen
 Mit SPARQL kann man nach Informationen suchen,

nicht nur über Graphen wandern

 Abfrageergebnisse unterliegen der Semantik von RDF!
 Open World Assumption
 Non-unique naming assumption

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 36

Implementierung

 Interface SPARQLQuery
 Hat eine Methode (query())
 Vom W3C komplett spezifiziert

 Umsetzung:
 als Web Service (WSDL)
 als HTTP-Schnittstelle

 Eine solche Schnittstelle nennt man SPARQL Endpoint

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 37

Implementierung

 Viele Linked Open Data Server haben auch
eine SPARQL Schnittstelle:

Relationale
Datenbank

D2R
Server Mapping

Intelligenter
Agent

Browser

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 38

Relationale
Datenbank

Anwendung: Datenintegration

Relationale
Datenbank

SPARQL
Server

M
ap

pi
ng

Relationale
Datenbank

Intelligenter
Agent

Map
pin

g Mapping

Browser

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 39

Anwendung: Datenintegration

 Viele Datenbanken hinter einer SPARQL-Schnittstelle
 Nur noch ein RDF-Schema statt vieler DB-Schemata
 Zusammenhänge zwischen Datenbanken entdecken

 Funktioniert prinzipiell auch mit anderen Quellen
 Strukturierte Dokumente (XML, CSV, …)
 Anwendungen, z.B. mit Web-Service-Schnittstellen

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 40

Anwendung: Datenintegration

 Beispiel für ein kommerzielles Produkt: OntoStudio/OntoBroker

OntoPrise (2011): http://www.ontoprise.de/

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 41

Beispiel: Integration mehrerer
Produktdatenbanken

Janzen et al. (2010): Linkage of Heterogeneous Knowledge Resources within In-store Dialogue Interaction.
In: International Semantic Web Conference 2010.

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 42

Umsetzung von SPARQL auf SQL

 Daten sind in relationalen DB gespeichert
 werden mit SQL angesprochen

 Query-Interface: SPARQL
 → Umsetzung von SPARQL auf SQL benötigt

 je nach Implementierung unterschiedlich

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 43

Umsetzung von SPARQL auf SQL

 Recap: Beispiel naiver Tripel-Store

Subjekt Prädikat Objekt

<http://foo.bar/Peter> <http://foo.bar/vaterVon> <http://foo.bar/Stefan>

<http://foo.bar/Peter> <rdf:type> <http://foo.bar/Person>

<http://foo.bar/Stefan> <rdf:type> <http://foo.bar/Person>

<http://foo.bar/Peter> <http://foo.bar/vaterVon> <http://foo.bar/Julia>

<http://foo.bar/Peter> <http://foo.bar/kennt> _:genID01

_:genID01 <http://foo.bar/vaterVon> <http://foo.bar/Markus>

...

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 44

Umsetzung von SPARQL auf SQL

 Naiver Triple-Store
 SPARQL-Beispiel:

SELECT ?person ?name ?email
WHERE { ?person :name ?name .

?person :email ?email . }

 wird zu
SELECT t1.subjekt AS person, t1.objekt AS name,

t2.objekt AS email
FROM triples AS t1, triples AS t2
WHERE t1.predicate = "foo:name"

AND t2.predicate = "foo:email"
AND t1.subjekt = t2.subjekt

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 45

Umsetzung von SPARQL auf SQL

 Recap: Property Table

Subjekt rdf:type foo:vaterVon foo:kennt

foo:Peter foo:Person foo:Stefan NULL

foo:Peter foo:Person foo:Julia NULL

foo:Stefan foo:Person NULL _:genID01

_:genID01 foo:Person foo:Markus NULL

...

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 46

Umsetzung von SPARQL auf SQL

 Property Table
 SPARQL-Beispiel:

SELECT ?person ?name ?email
WHERE { ?person :name ?name .

?email :email ?email . }

 wird zu
SELECT subjekt AS person, name, email
FROM properties

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 47

Umsetzung von SPARQL auf SQL

 Recap: Vertikale Partitionierung

Subjekt foo:kennt

foo:Stefan _:genID01

...

Subjekt rdf:type

foo:Peter foo:Person

_:genID01 foo:Person

... ...

Subjekt foo:vaterVon

foo:Peter foo:Stefan

foo:Peter foo:Julia

_:genID01 foo:Markus

... ...

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 48

Umsetzung von SPARQL auf SQL

 Vertikale Partitionierung
 SPARQL-Beispiel:

SELECT ?person ?name ?email
WHERE { ?person :name ?name .

?email :email ?email . }

 wird zu
SELECT t1.subjekt AS person, t1.name, t2.email
FROM name_table AS t1, email_table AS t2
WHERE t1.subjekt = t2.subjekt

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 49

Kombination von
SPARQL & Reasoning

 Reasoning mit RDF Schema haben wir schon kennen gelernt
 Viele Reasoner haben auch eine SPARQL-Schnittstelle

Reasoner
Intelligenter
Agent SPARQL

RDF Schema

RDF Instanzen

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 50

Kombination von
SPARQL & Reasoning

 Beispiel-Ontologie

:Country a rdfs:Class .
:City a rdfs:Class .
:locatedIn a rdf:Property .
:capitalOf rdfs:subPropertyOf :locatedIn .
:capitalOf rdfs:domain :City .
:capitalOf rdfs:range :Country .

:Madrid :capitalOf :Spain .
:Barcelona :locatedIn :Spain .
:Spain rdfs:label "Spanien"@de .

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 51

Kombination von
SPARQL & Reasoning

 Finde die Hauptstadt von Spanien
 z.B. so:
SELECT ?x WHERE { ?x :capitalOf :Spain . ?x a :City . }

SELECT ?x WHERE { ?x :capitalOf ?y . ?x a :City .
 ?y rdfs:label "Spanien"@de . }

 aber nicht so:
SELECT ?x WHERE { ?x :capitalOf ?y . ?x a :City .
 ?y rdfs:label "Spanien" . }

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 52

Kombination von
SPARQL & Reasoning

 Finde alle Städte in Spanien
 z.B. so:
SELECT ?x WHERE { ?x :locatedIn :Spain . ?x a :City .}

SELECT ?x WHERE { ?x :locatedIn ?y . ?x a :City .
 ?y rdfs:label "Spanien"@de . }

 Finde alle Städte in Spanien, die nicht Hauptstadt von Spanien
sind
SELECT ?x WHERE { ?x :locatedIn :Spain . ?x a :City .}
 OPTIONAL { ?x :capitalOf ?y }
 FILTER (!BOUND(?y) || ?y != :Spain)

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 53

Visuelle Interfaces

 iSPARQL (2007)
 Query-by-Example
 Klassen und Relationen

aus Schema per Drag and Drop

 Universität Zürich

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 54

Visuelle Interfaces

 gFacet (2008)
 Exploration von

Linked Open Data
 Einschränkungen
 ausgehend von einem Konzept
 nur die Kanten, die die Objekte

tatsächlich besitzen

 Universität Duisburg-Essen

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 55

DERI Pipes

 Daten-Mashup
 Hat auch RDF-Bausteine:
 RDF von Adresse holen
 Daten in RDF umwandeln
 Verschiedene RDF-Dokumente zusammenführen
 SPARQL-Abfragen

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 56

DERI Pipes

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 57

Zusammenfassung

 SPARQL
 eine Abfragesprache für RDF-Daten
 Beschreibung von (Sub-)Graphen-Mustern

 Built-ins sind möglich
 Weiterverarbeitung im Triple Store
 Kombination mit Reasoning
 Abfrageergebnisse
 unterliegen Open World Assumption
 Verneinung daher nur auf Umwegen

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 58

Semantic Web – Aufbau

Berners-Lee (2009): Semantic Web and Linked Data
http://www.w3.org/2009/Talks/0120-campus-party-tbl/

Technische
Grundlagen

Semantic-Web-
Technologie

(Fokus der Vorlesung)

here be dragons...

Vorlesung Semantic Web

Vorlesung im Wintersemester 2011/2012
Dr. Heiko Paulheim
Fachgebiet Knowledge Engineering

