Vorlesung Semantic Web 2 Dt

J'~ DARMSTADT

Vorlesung im Wintersemester 2011/2012
Dr. Heiko Paulheim
Fachgebiet Knowledge Engineering

), TECHNISCHE
7=\ UNIVERSITAT
%9’ DARMSTADT

Was bisher geschah

= Was wir bisher kennen gelernt haben:
* RDF und RDF Schema als Sprachen
* Linked Open Data

= Wie wir bisher auf Linked Open Data zugegriffen haben
* mit Browsern
* Graphen entlang hangelnd

* Was schon ware
= Zielgerichtet auf Daten zugreifen
* Direkt Zusammenhange abfragen

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 2 @

Ubung 1, Aufgabe 3

* Merke: XPath und RDF/XML ist eine ganz schlechte Idee!
* Etwas besseres lernen wir in Kurze kennen...

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 3 @

TECHNISCHE

Semantic Web - Aufbau UNIVERSITAT
User Interface and Applications
/
Trust
here be dragons... = Proof
Unifying Logic
N
e N\
[N Ontology: Rules:
. OWL RIF
Semantic-Web- Suery: S
Technologie < Schema: RDF-S g
N / =
(Fokus der Vorlesung) ~ 5
Data Interchange: RDF
N
—
. Data Interchange: XML
Technische
Grundlagen URI Unicode
S~

Berners-Lee (2009): Semantic Web and Linked Data
http://www.w3.0rg/2009/Talks/0120-campus-party-tbl/

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 4 @

06% TECHNISCHE
&/=\ UNIVERSITAT
DARMSTADT

Was hatten wir denn gern?

* RDF beschreibt Graphen

Darmstadt

liegt in

| liegt in wohnt in
wohnt in

=2
o
-
~—
5.

studiert an studiert a

gebore K

01-12-1986 Jule

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 5 @

o TECHNISCHE
7=\ UNIVERSITAT
997" DARMSTADT

Gesucht: eine Abfragesprache
fur das Semantic Web

= Analog zu SQL fur relationale Datenbanken:

SELECT Name, Geburtsdatum FROM Kunden

WHERE Kundenummer = '00423789"
Kundennummer Name Geburtsdatum
00183283 Stefan Muller 23.08.1975
00423782 Julia Meyer 05.09.1982
00789534 Gertrud Schafer 31.03.1953
00423789 Herbert Scholz 02.04.1960

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 6

Gesucht: eine Abfragesprache
fur das Semantic Web

F) TECHNISCHE
&)=\ UNIVERSITAT
%99 DARMSTADT

= SPARQL: "SPARQL Query Language for RDF" I~
" ein rekursives Akronoym W3

= Standardisiert vom W3C (2008)
* Abfragen auf RDF-Graphen

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 7 @

Hello SPARQL!

= Beispiel: .)
p | Ausdriicke mit ?
SELECT ?child kennzeichnen

WHERE { :Stefan :vaterVon} Variablen

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 8 @

7\ TECHNISCHE
UNIVERSITAT
DARMSTADT

SPARQL: Grundkonzepte

* Grundstruktur:

SELECT <Variablenliste>
WHERE { <Muster> }

* \VVariablen mit ?

* N\amensraume: wie in RDF/N3:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?person 7?name
WHERE { 7?person foaf:name ?name }

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 9 @

SPARQL: Grundkonzepte

* Der WHERE-Teil ist ahnlich wie N3-Notation
* mit Variablen

= {?p foaf:name ?n }
= {?p foaf:name ?n; foaf:homepage ?hp }
= {?p foaf:knows ?p1, ?p2 }

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 10 @

“A TECHNISCHE
UNIVERSITAT
DARMSTADT

SPARQL: Pattern Matching
auf RDF-Graphen

» WHERE-Teil der Abfrage: ein RDF-Graph mit Va/ Uber gemeinsame
Variablen wird ein

SELECT ?personl ?person? komplexes Muster
WHERE { ?personl :kenn 9anderePe@ efiniert
anderePerson xvatervVon ?person?2 . |
" Ergebnis:

= ?personl = :Peter, ?person2 = :Julia

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 11 @

), TECHNISCHE
7=\ UNIVERSITAT
%9’ DARMSTADT

SPARQL:
Matching auf Graphen

* Eine Person, die eine Tochter und einen Sohn hat
{ ?p :hatTochter ?t ; :hatSohn ?s . }

* Eine Person, die zwei Personen kennt, die sich untereinander
kennen
{ ?p :kennt ?p1, ?p2 . ?pl :kennt ?p2 . }

" Ei rson, die zweiKinder hat | Achtung: zwei Variablen missen
_ . nicht automatisch an verschiedene
{ ?p :h : ?k2 . }
Ressourcen gebunden werden!

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 12 @

SPARQL: Blank Nodes

* WHERE-Teil der Abfrage: ein RDF-Graph mit Variablen

SELECT ?personl ?personZ2 ?anderePerson

WHERE { ?personl :kennt ?anderePerson
?anderePerson :vaterVon ?person2 . }
" Ergebnis:
= ?personl = :Peter, ?person2 = :Julia; ?anderePerson = _:x1

* Blank Node IDs sind nur eindeutig innerhalb des Result Sets!

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 13 @

SPARQL:
Matching von Literalen

= Strings
{ ?person :name "Heinz" . }
* Vorsicht bei Sprachangaben:
{ ?country :name "Deutschland"@de . }

— Die Strings "Deutschland" und "Deutschland"@de sind
verschieden!

= Zahlen:

{ ?person :alter "42"""xsd:int .}

oder kurzer:

{ ?person :alter 42 . }

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 14 @

SPARQL: Filter

= Zur weiteren Eingrenzung von Ergebnissen
{?person :age ?age . FILTER(?age < 42) }

* VVergleichsoperatoren:
= | = < > <= >=

* | ogische Verknupfungen:
s& || !

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 15 @

SPARQL:Filter

= Personen, die jungere Geschwister haben
{ ?pl :geschwisterVon ?pZ
?pl :alter ?al
?p2 :alter a2
FILTER (?a2 < ?2al)}

* Personen, die sowohl jiungere und altere Geschwister haben
{ ?pl :geschwisterVon ?p2,p3
?pl :ralter ?al
?p2 :alter ?aZ
?p3 :alter ?a3 .
FILTER (?a2 < ?al && 2a3 > 2al)}

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 16 @

& TECHNISCHE

@J UNIVERSITAT

97— DARMSTADT

SPARQL: Filter

= Zweiter Versuch: Eine Person, die zwei Kinder hat
{ ?p :hatKind ?kl1, 2k2 . FILTER(?kl != ?k2) }

= Schon mal besser als der erste Versuch
— Variablen werden jetzt unterschiedlich gebunden

= Aber: es gilt immer noch die Non-Unique Naming Assumption

- AuUs
:Peter :hatKind :Julia .
:Peter :hatKind :Stefan .

folgt immer noch nicht, dass Peter zwei Kinder hat!
* Daruber hinaus gilt die Open World Assumption
— Peter kdnnte also auch noch mehr Kinder haben

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 17 @

Filter auf Strings

* Suche in Strings: Regulare Ausdricke

* Personen, die "Heinz" heiBBen
{?person :name ?n . FILTER(regex(?n,""HeinzS$")) }
{?person :name ?n . FILTER(regex(?n,"Heinz")) }
— die zweite Variante findet z.B. auch "Karl-Heinz"

* str: URIs und Literale als Strings

* ermoglicht u.a. Suche Uber String-Literale in allen Sprachen
{?country :name ?n . FILTER(str(?n) = "Tyskland") }

— wir lernen: Deutschland heiBt auch auf norwegisch "Tyskland".

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 18 @

Weitere eingebaute Funktionen

* Typ einer Ressource abfragen:
" 1sURI
" i SBLANK
" i SLITERAL

* Datentyp und Sprache eines Literals abfragen:
= DATATYPE (?V)
" LANG (?v)
* Sprache von zwei Literalen vergleichen:
" langMATCHES (?v1l, ?v2)
* Achtung: sei ?vl = "Januar"@DE, ?v2 = "Janner"@DE-at
LANG (?v1l) = LANG (?v2) — false
langMATCHES (?vl, ?v2) - true

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 19 @

Verknupfung von Teilmustern

* Finde die private oder dienstliche Telefonnummer

{ ?p :privatePhone ?nr }
UNION { 7?p :workPhone ?nr }

* UNION erzeugt eine Vereinigungsmenge
?p = :peter, ?nr = 123;
?p = :hans, ?nr = 234;
?p = :hans, ?nr = 345;

sowohl eine private als auch

Das passiert, wenn Hans
eine dienstliche Nummer hat

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 20 @

g7 TECHNISCHE

=P\

g;{\@g‘g UNIVERSITAT
) DARMSTADT

Optionale Teilmuster

* Finde die Telefonnummer einer Person
und, falls vorhanden, auch die Faxnummer

{ ?p :phone ?tel }
OPTIONAL { ?p :fax ?fax }

* OPTIONAL erzeugt auch ungebundene Variablen

?p = :peter, ?tel = 123, ?fax = 456; Ungebundene Variable:
?p = :hans, ?tel = 234, ?fax = ; Hans hat kein Fax
?p = :jutta, ?nr = 978; ?fax = 349; (soweit wir das wissen)

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 21 @

Ungebundene Variablen

* Variablen konnen auch ungebunden bleiben
= Mit BOUND(?v) kann man das abfragen

* Alle Personen, die Telefon oder Fax haben (oder beides):

OPTIONAL {?p :phone ?tel . }
OPTIONAL {?p :fax ?fax . }
FILTER (BOUND(?tel) || BOUND(?fax))

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 22 @

06% TECHNISCHE
&/=\ UNIVERSITAT
DARMSTADT

Negation

* Haufige Frage mit Bezug auf SPARQL

* Wie geht so etwas:
* "Finde alle Personen, die keine Geschwister haben."

* Das hat man in SPARQL bewusst nicht direkt vorgesehen
* Warum?

* Open World Assumption
* wir kdnnen das gar nicht wissen!

* Aus dem selben Grund gibt es (noch) kein COUNT

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 23 @

TECHNISCHE
UNIVERSITAT
DARMSTADT

Negation — Hacking SPARQL

" Es gibt dennoch Mdglichkeiten
* im "Giftschrank” von SPARQL...

= Mit OPTIONAL und BOUND

* Finde alle Personen ohne Geschwister:

OPTIONAL {?p :hasSibling ?s . }
FILTER (!'BOUND(?s))

» Das funktioniert

* man sollte aber immer wissen, was man tut
* und wie die Ergebnisse zu interpretieren sind!

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 24 @

Negation — Hacking SPARQL

* Wie funktioniert das?

* Ergebnisse vor FILTER:
OPTIONAL {?p :hasSibling ?s . }

?p = :peter, ?s = :julia
?p = :peter, ?s = :stephan
?p = :jan, ?s =

?p = :paul, ?s = ﬁ]gebundene Variablen |

* Anwendung von FILTER
" FILTER (!BOUND (?s))

?p = :jan, 7?s =
?p = :paul, 7?s =

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 25 @

06% TECHNISCHE
&/=\ UNIVERSITAT
DARMSTADT

Sortieren der Ergebnisse

= Sortierung: ORDER BY ?name
* Begrenzung: LIMIT 100
* Untere Grenze: OFFSET 200

* Beispiel: die Personen 101-200, nach Namen sortiert
" ORDER BY ?name LIMIT 100 OFFSET 100

" LIMIT/OFFSET ohne ORDER BY:
* Ergebnisse nicht deterministisch
= Es gibt keine default-Ordnung!

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 26 @

TECHNISCHE
UNIVERSITAT
DARMSTADT

Ausfiltern von Duplikaten

" SELECT DISTINCT 7?person
WHERE { 7?person :privatePhone ?nr }
UNION { ?person :workPhone ?nr }

* Bedeutet: Es werden alle Ergebnisse mit identischer
Wertebelegung der Variablen ausgefiltert

* Bedeutet nicht: die Personen, die durch die Werte von ?person
identifiziert werden, sind tatsachlich verschieden!

= Warum?
* Non-unique naming assumption

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 27 @

Custom Built-Ins

* Manche Anbieter von Endpoints erlauben zusatzliche Filter
* s0g. Custom Built-Ins
* Beispiel Linked Geo Data

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 28 @

LinkedGeoData

TECHNISCHE
UNIVERSITAT
DARMSTADT

* hat auch ein eigenes User Interface:

% || Datasets in the next LOD Cloud I || http:fjrichard.c..-22_colored. html IW linkedgendats.org : LGD Browser

x I | LinkedGeabata Browser x I || files/Jfc:jusers/.../Desktopftest.rdf | +

_|=| xi

[bttpsfjorowser.inkedgeodata.org/

Tolba - 1a

[Login - Mitarbeiter-Wiiki

This faceted Linked Geo Data browser is based on dats obtained from the CpanStrestMao project {relessed under OC-BY-S4) S e

and was developed by AKSW research group.

LinkedGeoData.org

Facets Instances Search:

powered by JSNominatim

—=rdf:RDF=
— <rdf:Description rdf:about="http:/linkedgeodata org/triplify/node3 71158882"=

|»

place: district
amenity- parking
highway: crossing
amenity: post_box
amenity” ice_cream
amenity” telephone 4
shop: kiosk
shop: books
historic: memorial
10. amenity: fountain
Query took 21ms. 11. sport: chess
12. amenity

£
]
z
E]
3
A
o
i
e~ ;s N -

vending machine ’
13. natural: tree

14. amenity: bench
15. amenity- car_sharing
16. man_made: surveillance
17. amenity: university
18. amenity: university
19. amenity: university
20 amenity university
21. amenity: recycling
22. natural: tree
23. natural tree
24 natural: tree
25. natural: tree
26. natural: tree
27. natural tree
28. natural tree
29. amenity: parking
30. amenity parking
31 shop: bakery
32. shop: butcher
33. amenity: university
34. amenity recycling
35. amenity: recycling —
36. amenity
emergency_phone
37. amenity: bench
38. amenity: bench -
39. amenity: bench T3
40. amenity: bench =l

* :

<lgdo:contributor rdf:resource="http:/linkedgeodata org/triplify/user61927" />

=rdf:type rdf:resource="http://linkedgeodata org/ontology/Chess" /=

<georss:point=49 878264 8 6537455</georss:point=

=geo:long rdf:datatype="http-/vrww w3 _org/ 2001/ XML Schemazdecimal "=8 633745 5</geo:long=

' Goethe'Denkmal

Flachbau

Robert-Piaty-Gebaude

=geo:lat rdf:datatype="http:/wvw. w3 org/200 1/ XML Schemasdecimal =49 878264</geo:lat>
</rdf:Description=

Maschinenhaus

Altes
Hauptgebiyos,

) — Universitats:

— N e SR amTe

X suchen: [frecbase & nbyarts & Aufwarts & Hervorheben [Grof-/Kleinschreibung

O x

17.11.11 | Fachbereich 20 | Knowledge Engineering

| Heiko Paulheim | 29

Custom Built-Ins

* Abfrage nach Koordinaten
" naiv:
WHERE { ?x geo:long ?long; geo:lat ?lat }
FILTER (?long >8.653, 7?long < 8.654,
?lat >49.878, ?lat < 49.879)

= Komplexere Anfragen

= alle Cafés, die sich im Umkreis von 1km
von einem bestimmten Punkt befinden

WHERE { ?x rdf:type lgdo:Cafe; geo:geometry ?geo }
FILTER (bif:st intersects(?geo,
bif:st point (8.653, 49.878), 1))

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 30 @

TECHNISCHE
UNIVERSITAT
DARMSTADT

Custom Built-Ins

* Noch komplexere Anfragen

= alle Cafés, die sich im Umkreis von 1km von einer Universitat
befinden

WHERE { 7?x rdf:type lgdo:Cafe; geo:geometry 7?cafegeo
?y rdf:type lgdo:University,; geo:geometry ?2ugeo . }
FILTER (bif:st intersects(?cafegeo, ?ugeo, 1))

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 31 @

), TECHNISCHE
7=\ UNIVERSITAT
»@>. DARMSTADT

Weitere Abfragearten: ASK

* Bis jetzt haben wir nur SELECT kennen gelernt

* Mit ASK kann man Ja/Nein-Fragen stellen:
Gibt es Personen mit Geschwistern?

ASK {?p :hasSibling ?s . }

* Die Antwort ist true oder false
= wobei false heiBBt, dass keine passenden Daten gefunden wurden
* darf man nicht falsch interpretieren (Open World Assumption)

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 32 @

Weitere Abfragearten: DESCRIBE

* Alle Eigenschaften einer Ressource:

DESCRIBE <http://dbpedia.org/resource/Berlin>

* Auch mit WHERE-Klausel

DESCRIBE ?city WHERE { :Hans :livesIn ?city . }

* Ermaoglicht das Explorieren eines Datensets,
dessen Struktur unbekannt ist

* Achtung: Nicht-normativ, W3||N'
Ergebnisse variieren je nach Implementierung!

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 33 @

Weitere Abfragearten:
CONSTRUCT

* Erzeugen eines neuen RDF-Graphen

CONSTRUCT
{ ?x rdfs:seeAlso <http://dbpedia.org/resource/Berlin> . }
WHERE { <http://dbpedia.org/resource/Berlin> ?y ?x

FILTER (1sURI (?x)) }

* Das Ergebnis ist ein kompletter RDF-Graph
= 2.B. zur Weiterverarbeitung

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 34 @

%575 TECHNISCHE
G~ UNIVERSITAT
9P DARMSTADT

SPARQL: Zusammenfassung

= Abfragesprache flr RDF
* Pattern-Matching auf Graphen

= Mit SPARQL kann man nach Informationen suchen,
nicht nur uber Graphen wandern

* Abfrageergebnisse unterliegen der Semantik von RDF!

* Open World Assumption
* Non-unique naming assumption

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 35 @

57\ TECHNISCHE

Implementierung 3 UnwERSITAT
* Interface SPARQLQuery WS'.N-
* Hat eine Methode (query()) R

= Vom W3C komplett spezifiziert

* Umsetzung:
" als Web Service (WSDL)
= als HTTP-Schnittstelle

* Eine solche Schnittstelle nennt man SPARQL Endpoint

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 36 @

TECHNISCHE
UNIVERSITAT
DARMSTADT

Implementierung

* Viele Linked Open Data Server haben auch
eine SPARQL Schnittstelle:

Intelligenter
Agent

D2R
Server

Relationale
Datenbank

Browser

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 37 @

7)) TECHNISCHE
© UNIVERSITAT
r'—— DARMSTADT

Anwendung: Datenintegration

Intelligenter
Agent

SPARQL
Server

Browser

Relationale
Datenbank

Relationale
Datenbank

Relationale
Datenbank

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 38

B), TECHNISCHE
| 7% UNIVERSITAT
%9’ DARMSTADT

Anwendung: Datenintegration

* Viele Datenbanken hinter einer SPARQL-Schnittstelle
* Nur noch ein RDF-Schema statt vieler DB-Schemata
» Zusammenhange zwischen Datenbanken entdecken

* Funktioniert prinzipiell auch mit anderen Quellen
* Strukturierte Dokumente (XML, CSV, ...)
= Anwendungen, z.B. mit Web-Service-Schnittstellen

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 39 @

Anwendung: Datenintegration

TECHNISCHE
UNIVERSITAT
DARMSTADT

= Beispiel fur ein kommerzielles Produkt: OntoStudio/OntoBroker

File Edit Mavigate

w v ¥ -

1 Ontology Navigator
= = Genealagy [F-logic]
i".‘:’h genealogy
| Concepts
=@ Person

=] Attributes
: () hasName
=] Relations
(@ hasAnchestor
i@ hasAunt
@ hasBrother
(@ hasChild
i@ hasCousin
@ hasDaughter
@ hasFather
--I@ hasMather
@ hasOffspring
(@ hasParent
(@ hasSibling
@ hasSister
-(@ hasSon
-I@ hasUncle
@ relatedTo
=] Rules
-] hasChild
+ 1 hasParent

W ruleHasAunt
1 rulaHasCAnein

< >

= O || &% Mapping 2

~

Search Project Window Help

5

Search for |*

= A mysql (Genealogy)
i @ father

® mother

o C persan

Attributes/Relations
= @ person
i & person_name
< person_gender
< person_personid

Instances &
pers... person_name ~
"M "Donald Duck”

s "Bootsmann Botte:
"M "Track Duck"

"M "Trick Duck"

"W "Dankrade Duck"
W "Daphne Duck" |+
< >

OntoPrise (2011): http://www.ontoprise.de/

@ Excel Annotation

T | (%] Integration | &' F-logic
Nehdh 7O

Search for -

=2 A genealogy (Genealogy)

© = @ Person

@ © Man

@ - @ Woman

Attributes/Relations
[C Q—r 1454 = @ Man
) »

= b P - & hasName

@ - @ hasFather

#- @ Properties from Persg

< >
» General Mapping Info Instances & &
~ Filters hasName
The 'person’ to 'Man' mapping only applies if: "Donald Duck”
source property is value "Bootsmann Bottervogel”
prop "Track Duck"
person_gent o M "Trick Duck"

"Sir Donnerbold Duck”

Create new filter "Sir Daunenstert Duck” -

< >

17.11.11

| Fachbereich 20 | Knowledge Engineering |

Heiko Paulheim

| 40

TECHNISCHE
UNIVERSITAT
DARMSTADT

Beispiel: Integration mehrerer
Produktdatenbanken

i § || 5@
Sody Latian
BodyCosaon Carmler ruer

Was passt dazu?

Body Cocoon passt zu Body Cocoon Handoreme fir
rockene Hands und Body Cocoon LIppenpliegesatt.

<>
@ -, BOCl]l Cocoon Handcreme Tiir
trockene Hande, Gamier
o

Body Cocoon Lippenpflegestift,
i ‘Garmier
213
Gesamipreis (inkl. 2% Robatt) : 5,256 kit Gesomtpreis (inkl. 8% Robat): 9,908 i

Fig. 5. Subject with CoRA Fig. 6. Step-by-step com- Fig. 7. Presentation of the
in front of a product shelf position of a question answer

Janzen et al. (2010): Linkage of Heterogeneous Knowledge Resources within In-store Dialogue Interaction.
In: International Semantic Web Conference 2010.

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 41 @

Umsetzung von SPARQL auf SQL

IS if;‘ TECHNISCHE

UNIVERSITAT

%0 Z DARMSTADT

* Daten sind in relationalen DB gespeichert
= werden mit SQL angesprochen

* Query-Interface: SPARQL
- Umsetzung von SPARQL auf SQL benétigt
* je nach Implementierung unterschiedlich

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 42

Umsetzung von SPARQL auf SQL

* Recap: Beispiel naiver Tripel-Store

Subjekt Pradikat Objekt
<http://foo.bar/Peter> <http://foo.bar/vaterVon> <http://foo.bar/Stefan>
<http://foo.bar/Peter> <rdf:type> <http://foo.bar/Person>
<http://foo.bar/Stefan> <rdf:type> <http://foo.bar/Person>
<http://foo.bar/Peter> <http://foo.bar/vaterVon> <http://foo.bar/Julia>
<http://foo.bar/Peter> <http://foo.bar/kennt> _:genlDO01

_:genlIDO1 <http://foo.bar/vaterVon> <http://foo.bar/Markus>

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 43

TECHNISCHE

Umsetzung von SPARQL auf SQL [" uyveea

* Naiver Triple-Store
* SPARQL-Beispiel:

SELECT ?person ?name ?email

WHERE { ?person :name ?name

?person :email ?email . }
" wird zu

SELECT tl.subjekt AS person, tl.objekt AS name,
t2.o0bjekt AS email

FROM triples AS tl, triples AS t2

WHERE tl.predicate = "foo:name"
AND tZ2.predicate = "foo:email"

AND tl.subjekt = t2.subjekt

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 44 @

TECHNISCHE

Umsetzung von SPARQL auf SQL (| - vwvesm

DARMSTADT

* Recap: Property Table

Subjekt foo:vaterVon foo:kennt
foo:Peter foo:Person foo:Stefan NULL
foo:Peter foo:Person foo:Julia NULL
foo:Stefan foo:Person NULL _:geniDO1
_:genIDO01 foo:Person foo:Markus NULL

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 45

Umsetzung von SPARQL auf SQL

TECHNISCHE
UNIVERSITAT
DARMSTADT

* Property Table
* SPARQL-Beispiel:

SELECT ?person ?name ?email

WHERE { ?person :name ?name
?emall :email ?email . }
" wird zu
SELECT subjekt AS person, name, email
FROM properties

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 46

TECHNISCHE

Umsetzung von SPARQL auf SQL (| - vwvesm

DARMSTADT

* Recap: Vertikale Partitionierung

Subjekt rdf:type Subjekt foo:vaterVon foo:kennt

foo:Peter foo:Person foo:Peter foo:Stefan foo:Stefan _:genlID01

_:genID01 foo:Person foo:Peter foo:Julia

_:genID01 foo:Markus

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 47

DARMSTADT

%54 TECHNISCHE
Umsetzung von SPARQL auf SQL ¢) unversmar

* Vertikale Partitionierung
* SPARQL-Beispiel:

SELECT ?person ?name ?email

WHERE { ?person :name ?name
?email :emailil ?email . }
= wird zu
SELECT tl.subjekt AS person, tl.name, t2.email
FROM name table AS tl, email table AS t2
WHERE tl.subjekt = t2.subjekt

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 48 @

), TECHNISCHE
7=\ UNIVERSITAT
%9’ DARMSTADT

Kombination von
SPARQL & Reasoning

* Reasoning mit RDF Schema haben wir schon kennen gelernt
* Viele Reasoner haben auch eine SPARQL-Schnittstelle

RDF Schema
/ e
\ RDF Instanzen
I

Intelligenter

Agent Reasoner

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 49 @

Kombination von
SPARQL & Reasoning

<578 TECHNISCHE
{>(6“J’ UNIVERSITAT
) DARMSTADT

* Beispiel-Ontologie

:Country a rdfs:Class

:City a rdfs:Class

:locatedIn a rdf:Property

:capitalOf rdfs:subPropertyOf :locatedIn
:capitalOf rdfs:domain :City

:capitalOf rdfs:range :Country

:Madrid :capitalOf :Spain
:Barcelona :locatedIn :Spain
:Spain rdfs:label "Spanien'"(@de

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 50 @

“A TECHNISCHE
UNIVERSITAT
DARMSTADT

Kombination von
SPARQL & Reasoning

* Finde die Hauptstadt von Spanien
= z.B. so:
SELECT ?x WHERE { ?x :capitalOf :Spain . ?x a :City . }

SELECT ?x WHERE { ?x :capitalOf ?y . ?x a :City
?y rdfs:label "Spanien"@de . }

= aber nicht so:

SELECT ?x WHERE { ?x :capitalOf ?y . ?x a :City
?y rdfs:label "Spanien" . }

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 51 @

Kombination von
SPARQL & Reasoning

* Finde alle Stadte in Spanien

= 7.B. so:
SELECT ?x WHERE { ?x :locatedIn :Spain . ?x a :City .}

SELECT ?x WHERE { ?x :locatedIn ?y . ?x a :City
?y rdfs:label "Spanien"@de . }

* Finde alle Stadte in Spanien, die nicht Hauptstadt von Spanien
sind
SELECT 7?x WHERE { ?x :locatedIn :Spain . ?x a :City .}

OPTIONAL { ?x :capitalOf 2y }
FILTER (!BOUND(?y) || 2y != :Spain)

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 52 @

TECHNISCHE
UNIVERSITAT
DARMSTADT

Visuelle Interfaces

H e - -
- ISPARQL (2007) — =
(&2 (.1 nttpsirdemo.openlinksvcomyisparalf -] [w - wikipedia (de) A&

" Query-by-Example Lor e 7 .

QBE| |Advanced| |Resulis

» Klassen und Relationen MM [} Q2RO | O8] | E| ol ommsomcatm [+

aus Schema per Drag and Drop o e B—
memame ¥ Visible
= Universitat Zirich -

fna°nn foaf:
pe relf:
= 3 unbound £3

foaoun B & foaf:
E 3 Classes

4
|http:,’fxmlns.cumffoﬁfo.U h

| order by |

Import | Remove |

i
Query options ﬁ—‘

’7'_ Distinct | Type: | SELECT 'I | Result size limit: |50 TOWS Lesve empty for server maximum setting
< ;'4. geIn 50

Bookmarklet - dra this link to your browser's bookmark bar: ISPARGL ISPARCL Copyright © 2006-2011 OpenLink Software
o x @

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 53 @

Visuelle Interfaces

TECHNISCHE
UNIVERSITAT
DARMSTADT
e - I =lolx|
|‘:L'g|=acel 57 -
- g Fa Cet (2 O O 8) t (2 https/jurv.visusldstameb.org/gfacet/gfacet.ohp -] [W - wikpedia (40) £ L3
- le Login - Mitarbeiter-wiki F8] Y Lesezeid hen
* Exploration von :
Linked Open Data

Show Relation:

* Einschrankungen

* ausgehend von einem Konzept

* nur die Kanten, die die Objekte :
tatsachlich besitzen

Filter: Fier e | [Zof2) y
* Universitat Duisburg-Essen .
v 1sbe! &
L4 He
Filter: {10f1) y
@ x @
17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 54

DERI Pipes

* Daten-Mashup

* Hat auch RDF-Bausteine:
= RDF von Adresse holen
» Daten in RDF umwandeln

» \Verschiedene RDF-Dokumente zusammenfihren
= SPARQL-Abfragen

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 55 @

TECHNISCHE
UNIVERSITAT
DARMSTADT

DERI Pipes

Firefox ™ _IEIIﬂ
> | [] DERI Pipes Operators Documentation -

\ (' g-) ['.' pipes. deri.org:8080,pipes/ '.f - cl [W' Wikipedia (de) P] Ill

| Twiki | Aigaion [RE] sked DLE IEEE Xplore - Home 5/ SW Forum B3 Lesezeichen

= - J o ool
#+ || Published pipes Operator_ll uﬁ]@
Operators

14 Fetch
RDF Fetch
HTML Fetch - |
HTTP GET
Spargl Result Fetch
XML Fetch
X5L Fetch

1@ Operators RDF Fetch 0ox

Simple Mix URL: fattp: //www.advogato.of

RDFS Mix Format | RDF/XML ~ |
Construct 2

Select \

Patch Generator i
Patch Executor S 6 6%

Pipe Call Query:foaf/.1/name> 2name} 2|
RDF Extract SELECT ?p ?name {?p <http://xmlns.com/foaf/0.1/name> ?namej}
Smoosher ;

Text

Replace Text

FOR loop

XSLT Output
XQuery

HTML-=XML

Stringify .l

text view table view

File * Debug~™ Help~

Pipe id |p|

Designer source code

<

p name
http:/fwnw advegats.org/ persen/timbl feal it 2 me “Tim Bermers-lz="

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 56

), TECHNISCHE
7=\ UNIVERSITAT
%9’ DARMSTADT

Zusammenfassung

= SPARQL
* eine Abfragesprache fur RDF-Daten
* Beschreibung von (Sub-)Graphen-Mustern

* Built-ins sind maoglich
* Weiterverarbeitung im Triple Store
= Kombination mit Reasoning

* Abfrageergebnisse
* unterliegen Open World Assumption
= Verneinung daher nur auf Umwegen

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 57 @

TECHNISCHE

Semantic Web - Aufbau UNIVERSITAT
User Interface and Applications
/
Trust
here be dragons... = Proof
Unifying Logic
N
e N\
[N Ontology: Rules:
. OWL RIF
Semantic-Web- Suery: S
Technologie < Schema: RDF-S g
N / =
(Fokus der Vorlesung) ~ 5
Data Interchange: RDF
N
—
. Data Interchange: XML
Technische
Grundlagen URI Unicode
S~

Berners-Lee (2009): Semantic Web and Linked Data
http://www.w3.0rg/2009/Talks/0120-campus-party-tbl/

17.11.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 58 @

Vorlesung Semantic Web 2 Dt

J'~ DARMSTADT

Vorlesung im Wintersemester 2011/2012
Dr. Heiko Paulheim
Fachgebiet Knowledge Engineering

