
Vorlesung Semantic Web

Vorlesung im Wintersemester 2011/2012
Dr. Heiko Paulheim
Fachgebiet Knowledge Engineering

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 2

Semantic Web – Aufbau

Berners-Lee (2009): Semantic Web and Linked Data
http://www.w3.org/2009/Talks/0120-campus-party-tbl/

Technische
Grundlagen

Semantic-Web-
Technologie

(Fokus der Vorlesung)

here be dragons...

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 3

Was bisher geschah

 Ontologien
 liefern die Hintergrundinformation im Semantic Web
 codieren Domänenwissen
 ermöglichen Reasoning

 Ontology Engineering
 wie baut man eine gute Ontologie?
 Patterns & Anti-Patterns

 Ontologien bauen
 ist aufwändig
 besonders im großen Maßstab

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 4

Was könnte man daran noch
verbessern?

 Menschen sind ja von Natur aus faul
 Automatisierung
 Code-Generatoren
 MDA
 …

 Wie lässt sich das auch im
Semantic Web erreichen?

http://www.earthwave.com.au/blog/wp-content/uploads/2011/06/Homer-1.jpg

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 5

Ausflug ins Data Mining

 Was ist Data Mining?
 "Data Mining is a non-trivial process of identifying
 valid
 novel
 potentially useful
 ultimately understandable
patterns in data." (Fayyad et al. 1996)

 "Data Mining is torturing the data until it confesses."
(oft zitiert, genaue Quelle unbekannt)

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 6

Data Mining: Beispiel

 Anwendung: Optimierung von Supermärkten
 Ziel: häufig gemeinsam gekaufte Dinge gruppieren

 Datengrundlage:
 Logfiles von Registrierkassen

 Häufig zitiertes Beispiel:
 Windeln und Bier
 wahrscheinlich ein Mythos...

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 7

Data Mining: Beispiel

 Populäre Anwendung im Netz
 Recommender-Systeme
 Kunden, die A kauften, kauften auch B

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 8

Data Mining: Assoziationsregeln

 Gegeben:
 Eine Menge von Einkäufen, z.B.
 Nudeln, Tomaten, Basilikum, Tageszeitung
 Brötchen, Tageszeitung
 Nudeln, Tomaten, Hackfleisch, Basilikum, Zigaretten
 …

 Gesucht:
 Häufige Muster in Form von Regeln, z.B.
 Nudeln Tomaten→
 Hackfleisch, Basilikum Nudeln, Tomaten→
 Brötchen Tageszeitung→
 ...

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 9

Data Mining: Assoziationsregeln

 Assoziationsregeln beschreiben häufige Muster
 nicht symmetrisch
 warum?

 Populäre Ausreißer
 z.B.: Verkaufsschlager
 "Semantic Web" "Harry Potter"→
 ist wahrscheinlicher als Rückrichtung

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 10

Data Mining: Assoziationsregeln

 Wie findet man Assoziationsregeln?
 Association Rule Mining
 APRIORI-Algorithmus
 Lernalgorithmus, der Assoziationsregeln lernt

 Folgende Folien teilweise übernommen von
 J. Fürnkranz: Maschinelles Lernen – Symbolische Ansätze

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 11

Der APRIORI-Algorithmus

 Entwickelt in den frühen 90ern bei IBM
von Agrawal & Srikant

 Motivation
 Steigende Verbreitung von Bar-Code-Kassen

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 12

Der APRIORI-Algorithmus

 Qualitätsmaße für Assoziationsregeln
 Support
 Anzahl der Beispiele, die eine Regel insgesamt abdeckt
 Relevanz der Regel

 Confidence
 Verhältnis von Beispielen, die die Implikation erfüllen,

zu Beispielen, die die Bedingung erfüllen
 Stärke der Implikation

support AB=support  A∪B=
n A∪B
n

confidence (A→ B)=
support (A∪B)
support (A)

=
n(A∪B)
n(A)

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 13

Der APRIORI-Algorithmus

 Beispiel-Datenset
 Nudeln, Tomaten, Basilikum, Tageszeitung
 Brötchen, Tageszeitung
 Nudeln, Tomaten, Hackfleisch, Basilikum, Zigaretten

 Vorgeschlagene Regel:
 Nudeln Tomaten, Hackfleisch, Basilikum→

 Support: 1/3
 Confidence: 1/2

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 14

Der APRIORI-Algorithmus

 Gegeben:
 eine untere Schranke für Support (s

min
)

 eine untere Schranke für Confidence (c
min

)

 Gesucht:
 alle Assoziationsregeln, die diesen Schranken gehorchen

 APRIORI läuft in zwei Schritten
 1.: finde alle frequent itemsets
 d.h., alle Produkte, die häufig gemeinsam auftreten
 beachte dabei s

min

 2.: erzeuge Regeln aus diesen Item sets
 beachte dabei c

min

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 15

Der APRIORI-Algorithmus

 Erster Schritt: finde frequent itemsets
 beachte dabei s

min

 Beispiel-Datenset
 Nudeln, Tomaten, Basilikum, Tageszeitung
 Brötchen, Tageszeitung
 Nudeln, Tomaten, Hackfleisch, Basilikum, Zigaretten

 Gegeben: minimaler Support s
min

=0.5
 Frequent Itemsets:
 {Nudeln} (0.66), {Tomaten} (0.66), {Basilikum} (0.66),

{Tageszeitung} (0.66)
 {Nudeln, Tomaten} (0.66), {Nudeln, Basilikum} (0.66)

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 16

Der APRIORI-Algorithmus

 Beobachtungen:
 Wenn ein Itemset größer wird, dann wird der Support nicht größer:

 Grund: Definition von Support

 Das ermöglicht eine effiziente Suche:
 beginne mit ein-Elementigen Itemsets
 erzeuge im k-ten Durchgang k-elementige Itemsets
 als Vereinigung von bereits gefundenen

support AB=support  A∪B=
n A∪B
n

C⊆D⇒ support C≥support D

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 17

Der APRIORI-Algorithmus

 Erster Schritt: finde frequent itemsets

1. k = 1
2. C1 = I (all items)

3. while C
k
 > Ø

(a) S
k
 = C

k
 \ all infrequent itemsets in C

k
 ← d.h., s≤s

min

(b) C
k+1

 = all sets with k+1 elements that can be formed by
 uniting of two itemsets in S

k

(c) C
k+1

 = C
k+1

 \ itemsets that do not have all subsets of size k in S
k

(d) S = S  S
k

(e) k++
4. return S

1. k = 1
2. C1 = I (all items)

3. while C
k
 > Ø

(a) S
k
 = C

k
 \ all infrequent itemsets in C

k
 ← d.h., s≤s

min

(b) C
k+1

 = all sets with k+1 elements that can be formed by
 uniting of two itemsets in S

k

(c) C
k+1

 = C
k+1

 \ itemsets that do not have all subsets of size k in S
k

(d) S = S  S
k

(e) k++
4. return S

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 18

Der APRIORI-Algorithmus

 Zweiter Schritt: Erzeuge Regeln aus frequent itemsets
 beachte dabei c

min

 Beispiel-Datenset
 Nudeln, Tomaten, Basilikum, Tageszeitung
 Brötchen, Tageszeitung
 Nudeln, Tomaten, Hackfleisch, Basilikum, Zigaretten

 Gefundene frequent itemsets (n≥2):
 {Nudeln, Tomaten} (0.66), {Nudeln, Basilikum} (0.66)

 Gegeben c
min

=0.5:
 Nudeln Tomaten (s=0.66,c=1.0), Tomaten Nudeln (s=0.66,c=1.0)→ →
 Nudeln Basilikum (s=0.66,c=1.0), Basilikum Nudeln (s=0.66,c=1.0)→ →

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 19

Der APRIORI-Algorithmus

 Beobachtungen
 Für jedes frequent itemset der Größe n gibt es n! mögliche Regeln
 {A,B,C}: A BC, B AC, C AB, AB C, BC A, CA B→ → → → → →
 Problem: Skalierbarkeit

 Verschieben von Elementen aus Wenn-Teil in Dann-Teil erhöht die
Konfidenz nicht:

 Grund: Definition von Konfidenz

confidence (A→ B)=
support (A∪B)
support (A)

=
n(A∪B)
n(A)

confidence A B ,C  ≤ confidence A , BC 

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 20

Der APRIORI-Algorithmus

 Das ermöglicht einen effizienteren Algorithmus
 Beginne bei Regeln mit 1-elementigem Dann-Teil
 Verschiebe jeweils ein Element vom Wenn- in den Dann-Teil
 solange Konfidenz hoch genug ist

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 21

Der APRIORI-Algorithmus

 Effizientes Auffinden von Assoziationsregeln
 mit Mindest-Support und Mindest-Konfidenz

 Mehr Informationen:
 Vorlesung "Maschinelles Lernen – Symbolische Ansätze"

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 22

Was hat das jetzt
mit Semantic Web zu tun?

 Betrachten wir folgende Aussagenmenge
:Julia a :Woman,:Person.
:Stephen a :Man,:Person.
:Marc a :Man,:Person.
:Anna a :Woman,:Person.
:Ann a :Woman.
:Tim a :Person.

 Nehmen wir statt Warenkörbe die Klassen einer Instanz:
Julia: {Woman, Person}
Stephen: {Man, Person}
Marc: {Man, Person}
Anna: {Woman, Person}
Ann: {Woman}
Tim: {Person}

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 23

Ontologien lernen
durch Assoziationsregeln

 Mögliche Assoziationsregeln:
 Woman Person (s=0.4, c=0.66)→
 Man Person (s=0.4, c=1.0)→
 Person Woman (s=0.4, c=0.4)→
 Person Man (s=0.4, c=0.4)→

 Regeln können auch als Subklassenbeziehungen
aufgefasst werden

 Mit einem geeigneten Satz Parameter können wir so eine
Klasenhierarchie lernen
 z.B. s

min
=0.25, c

min
=0.5

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 24

Ontologien lernen
durch Assoziationsregeln

 Linked Open Data
 oft nur schwache Ontologien als Schemata
 können durch Lernen angereichert werden

 viel Instanzinformation
 das ist gut zum Lernen!

 Komplement zum Reasoning
 Reasoning: deduktives Schließen
 Durch Fakten und Regeln zu neuen Fakten

 Ontology Learning: induktives Schließen
 Durch Fakten zu Regeln

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 25

Ontologien lernen
durch Assoziationsregeln

 Betrachten wir noch einmal das Beispiel:
:Julia a :Woman,:Person.
:Stephen a :Man,:Person.
:Marc a :Man,:Person.
:Anna a :Woman,:Person.
:Ann a :Woman.
:Tim a :Person.

 Gelernte Ontologie:
:Woman rdfs:subClassOf :Person .
:Man rdfs:subClassof :Person .

 Reasoning mit dieser Ontologie liefert zusätzlich:
:Ann a :Person .

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 26

Ontologien lernen
durch Assoziationsregeln

 Bis jetzt haben wir nur die Klassenhierarchie gelernt
 Was kann man noch mit Assoziationsregeln lernen?

 Z.B. Domain/Range von Relationen

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 27

Ontologien lernen
durch Assoziationsregeln

 Verwenden neuer Features
 rel_in: es gibt eingehende Relationen vom Typ rel
 rel_out: es gibt ausgehende Relationen vom Typ rel

 Was man daraus schließen kann:
 Gelernte Regel: rel_out C→
 d.h.: rel(X,Y) C(X)→
 das ist gleichbedeutend mit rel rdfs:domain C

 Gelernte Regel: rel_in C→
 d.h.: rel(X,Y) C(Y)→
 das ist gleichbedeutend mit rel rdfs:range C

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 28

Ontologien lernen
durch Assoziationsregeln

 Erweitern wir unser Beispiel:
:Julia a :Woman,:Person ; :knows :Stephen,:Marc .
:Stephen a :Man,:Person ; :fatherOf :Anna.
:Marc a :Man,:Person. ; :knows :Ann ; :fatherOf :Julia .
:Anna a :Woman,:Person ; :knows :Tim ; :motherOf :Julia .
:Ann a :Woman ; :motherOf :Stephen .
:Tim a :Person ; :knows :Marc, :Anna, :Ann .

 Unsere "Warenkörbe" enthalten jetzt nicht nur Klassen
 sondern auch Informationen über eingehende/ausgehende Relationen

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 29

Ontologien lernen
durch Assoziationsregeln

 Neuer "Warenkorb":
Julia: {Woman,Person,knows_out,fatherOf_in,motherOf_in}
Stephen: {Man,Person,fatherOf_out,knows_in,motherOf_in}
Marc: {Man,Person,knows_out,fatherOf_out,knows_in}
Anna: {Woman,Person,knows_out,motherOf_out,fatherOf_in}
Ann: {Woman,motherOf_out,knows_in}
Tim: {Person,knows_out,knows_in}

 Neue mögliche Regeln für domain/range von knows:
knows_out Person (s=0.66,c=1.0)→
knows_out Man (s=0.33, c=0.25)→
knows_out Woman (s=0.33, c=0.5)→
knows_in Person (s=0.5, c=0.75)→
knows_in Woman (s=0.16, c=0.25)→
knows_in Man (s=0.33,c=0.5)→

hier sind die
besten Werte!

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 30

Ontologien lernen
durch Assoziationsregeln

 Neue mögliche Regeln für domain/range von fatherOf:
fatherOf_out Person (s=0.33, c=1.0)→
fatherOf_out Man (s=0.33, c=1.0)→
fatherOf_in Person (s=0.33, c=1.0)→
fatherOf_in Woman (s=0.33, c=1.0)→

 Das ist allein nach support/confidence unentscheidbar
 beides ist mit gleicher Wahrscheinlichkeit möglich

 Konfliktlösung nötig
 z.B. allgemeinstes Konzept nehmen (Person)
 das ist einmal korrekt (range von fatherOf)
 und einmal zumindest nicht falsch (domain von fatherOf)

 z.B. weitere Gütemaße definieren und berechnen

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 31

Ontologien lernen
durch Assoziationsregeln

 Was wir jetzt gesehen haben
 Ontologien kann man automatisiert lernen
 z.B. aus Instanzmengen (Linked Open Data)
 Lernen einfacher RDF-Schemata

 Grenzen des Ansatzes
 Konflikte bei Bestimmung von domain/range
 korrekte Lösung aber meist möglich
 aber nicht immer genaueste

 Man kann nur lernen, was man in Beispielen sieht
 z.B. Man braucht :Tom a :Human, :Mammal .

um zu lernen: :Human rdfs:subClassOf :Mammal .

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 32

Ontology Matching
mit Assoziationsregeln

 In Linked Open Data werden oft
mehrere Ontologien parallel genutzt

 Beispiel:
dbpedia:Nine_Inch_Nails
a dbpedia:Band, dbpedia:Organization,
yago:IndustrialRockMusicalGroups,
yago:MusicalGroupsEstablishedIn1988, …

 Was passiert, wenn wir hierauf Assoziationsregeln lernen?

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 33

Ontology Matching
mit Assoziationsregeln

 Beispiel für gelernte Regel:
 yago:IndustrialRockMusicalGroups dbpedia:Band →
 entspricht:
yago:IndustrialRockMusicalGroups
 rdfs:subClassOf dbpedia:Band .

 Merke:
 Wir haben hier ein Mapping gelernt!
 Ontology Learning mit mehreren Ontologien ist Ontology Matching!
 und zwar aus der Klasse der instanzbasierten Verfahren

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 34

Ontology Matching
mit Assoziationsregeln

 Bei 1:1-Mappings zwischen zwei Klassen
lernt man ein symmetrisches Regelpaar:

dbpedia:ProtectedArea yago:Park→
yago:Park dbpedia:ProtectedArea→

 Daraus folgt:
dbpedia:ProtectedArea rdfs:subClassof yago:Park .
yago:Park rdfs:subClassOf dbpedia:ProtectedArea .

 und damit
dbpedia:ProtectedArea owl:equivalentClass yago:Park .

 Merke:
 das funktioniert auch bei syntaktisch unähnlichen Klassennamen!

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 35

Komplexe Mappings
mit Assoziationsregeln

 Rückblick Ontology Matching:
 die meisten Verfahren suchen simple Mappings
 komplexe Mappings werden in der Regel nicht gefunden

 Assoziationsregeln können hier mehr...
 Betrachten wir ein Beispiel:

Person

Verheiratete
Person

Person

verheiratet mit

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 36

Komplexe Mappings
mit Assoziationsregeln

 Gelernte Assoziationsregel:
o1:Person, o1:marriedTo_out o2:MarriedPerson→

 Das heißt in OWL:
o2:MarriedPerson owl:subClassOf
owl:intersectionOf (
 o1:Person
 [a owl:Restriction ;
 owl:onProperty o1:marriedTo ;
 owl:minCardinality 1^^xsd:integer]) .

 Und das ist ein ziemlich präzises Mapping!

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 37

Ontology Matching
mit Assoziationsregeln

 Valider Ansatz für Linked Open Data
 wenn mehrere Ontologien verwendet werden
 auch in zwei Datensets, mit owl:sameAs auf Instanzebene verknüpft
 instanzbasiertes Matching
 nicht-triviale und komplexe Mappings möglich

 Restriktionen ähnlich wie Ontology Learning
 man kann nur Mappings finden,

wenn die Elemente verwendet werden
 manche Mehrdeutigkeiten lassen sich nicht trivial auflösen

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 38

Ontology Learning und Matching
mit Assoziationsregeln

 Ausgangspunkt:
 viele Instanzdaten
 schwache Ontologien
 fehlende Mappings auf Klassenebene

 Was wir gewinnen können
 stärkere Ontologien
 Mappings (auch komplexe und nicht-triviale)

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 39

Ontologien aus Text lernen

 Recap:
 Ontologien sind formalisierte Beschreibungen einer Domäne
 solche liegen oft in textueller Form vor

 Beispiel: Übungsblatt 2, Aufgabe 1:
 Eine Bibliothek besitzt Bücher. Bibliotheken haben einen Namen, eine

Adresse und eine Telefonnummer. Bücher haben einen Titel, einen
oder mehrere Autoren, und eine ISBN-Nummer. Personen haben
einen Namen, eine Adresse, eine Telefonnummer und eine
E-Mailadresse. Bücher können von einer Person entliehen sein.

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 40

Ontologien aus Text lernen

 Kann man das nicht (teil-)automatisieren?
 Mögliche Tasks:
 Konzepte finden
 Synonyme finden
 Domain/Range festlegen

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 41

Kleiner Exkurs:
Part of Speech Tagging

 Automatische Erkennung von
 Wortarten
 syntaktischen Funktionen

http://cs.oberlin.edu/~jdonalds/333/lecture12.html

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 42

Kleiner Exkurs:
Part of Speech Tagging

 Manchmal sind mehrere Taggings möglich
 das deutet auf einen mehrdeutigen Satz hin

Charniak: Statistical techniques for natural language parsing (1997)

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 43

Kleiner Exkurs:
Part of Speech Tagging

 Verfahren
 Annotiertes Korpus verwenden
 Menge von Sätzen, die bereits POS Tags besitzen

 Naiver Algorithmus von Charniak (1997)
 Verwende für jedes Wort das häufigste Tag
 Alle unbekannten Wörter werden als Nomen deklariert
 Bei einem Korpus von 300.000 Wörten: 90% Accuracy!

Charniak: Statistical techniques for natural language parsing (1997)

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 44

Kleiner Exkurs:
Part of Speech Tagging

 Verbesserung: Übergangswahrscheinlichkeiten berücksichtigen

 Damit sind 96-97% Genauigkeit möglich
 Obere Grenze: ca. 98%

Charniak: Statistical techniques for natural language parsing (1997)

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 45

Ontologien lernen
mit Part of Speech Tagging

 Grundidee:
 Nomen stehen für Konzepte
 Verben stehen für Relationen

 Erstes Ergebnis:
:Man a owl:Class .
:Book a owl:Class .
:read a owl:ObjectProperty .

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 46

Ontologien lernen
mit Part of Speech Tagging

 Verfeinerungen
 Stemming
 Books → Book, Bücher → Buch

 Mindesthäufigkeit (Support)
 wenig häufige Konzepte ausfiltern

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 47

Ontologien lernen
mit Part of Speech Tagging

 Synonyme erkennen
 Wörter, die im ähnlichen Kontext verwendet werden
 z.B.: als Objekt welcher Wörter?

book rent drive ride join
Hotel X
Apartment X X
Car X X X
Bike X X X X
Excursion X X
Trip X X

Cimiano et al.: Ontology Learning. In: Handbook on Ontologies (2009)

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 48

Ontologien lernen
mit Part of Speech Tagging

 Analyse
 z.B. Jaccard-Koeffiizent: |A ∩ B| / |A ∪ B|
 Ergebnis: Ähnlichkeitsmatrix

Hotel Apartment Car Bike Excursion Trip
Hotel 1.0 0.5 0.33 0.25 0.5 0.5
Apartment 1.0 0.66 0.5 0.33 0.33
Car 1.0 0.75 0.25 0.25
Bike 1.0 0.2 0.2
Excursion 1.0 1.0
Trip 1.0

Cimiano et al.: Ontology Learning. In: Handbook on Ontologies (2009)

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 49

Klassenhierarchien lernen

 Bis jetzt haben wir
 Mengen von Klassen
 Synonyme
 d.h., owl:equivalentClass

 Viel häufiger ist aber rdfs:subClassOf
 wie kommen wir da heran?

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 50

Klassenhierarchien lernen
durch Clusterbildung

 Idee: semi-automatisches Verfahren
 Annahme: ähnliche Klassen

haben eine gemeinsame Superklasse
 Bilde Superklassen
 lasse diese vom Nutzer benennen

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 51

Klassenhierarchien lernen
durch Clusterbildung

 Bottom-Up-Verfahren:
 fasse jeweils die ähnlichsten Begriffe

zu einem Cluster zusammen

Bike Trip/
ExcursionCar Apartment Hotel

means of
transport

?

holiday
object?

?

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 52

Klassenhierarchien lernen
mit Textmustern

 Marti A. Hearst (1992):
 bestimmte Wendungen deuten

auf Hyponym-/Hyperonym-Beziehung hin

 Beispiel:
 Säugetiere, wie zum Beispiel Hunde oder Katzen,

bringen ihre Jungen lebend zur Welt.

 Abgeleitete Beziehungen:
:Katze rdfs:subClassOf :Säugetier .
:Hund rdfs:subClassOf :Säugetier .

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 53

Klassenhierarchien lernen
mit Textmustern

 Beispiel:
 Säugetiere, wie zum Beispiel Hunde oder Katzen,

bringen ihre Jungen lebend zur Welt.

 Verallgemeinertes Muster:
 NP0, wie zum Beispiel NP1, NP2 (und|oder) Npn
 Daraus folgt:

Concept(NP1) rdfs:subClassOf Concept(NP0)
…
Concept(NPn) rdfs:subClassOf Concept(NP0)

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 54

Klassenhierarchien lernen
mit Textmustern

 Beispiel-Muster für englische Texte:
 NP

hyper
 such as {NP

hypo
,}* {(and|or)} NP

hypo

 such NP
hyper

 as {NP
hypo

,}* {(and|or)} NP
hypo

 NP
hypo

 {,NP
hypo

}*, (and|or) other NP
hyper

 NP
hyper

 including {NP
hypo

,}*, (and|or) {other} NP
hypo

 NP
hyper

 especially {NP
hypo

,}*, (and|or) NP
hypo

Cimiano et al.: Ontology Learning. In: Handbook on Ontologies (2009)

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 55

Klassenhierarchien lernen
mit Textmustern

 Geläufiges Problem:
 Instanzen und Klassen unterscheiden

 Vergleiche:
 Mammals, such as cats, dogs, and cows
 Writers, such as Shakespeare, Goethe, and Schiller

 Besonders bei unbekannten Domänen
ein nicht-triviales Problem

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 56

Instanzen und Klassen
unterscheiden

 Verschiedene Ansätze:
 Syntaktische Eigenschaften
 Nomen mit Artikeln sind Klassen
 Der Stör ist ein Fisch. Paul ist ein Mensch.
 aber: Der Irak ist ein Land.

 Pluralnomen sind Klassen
 Elefanten und Giraffen sind Säugetiere.
 aber: Die Ärzte sind eine Band.

 Großgeschriebene Nomen sind Instanzen
(englisch, außer Satzanfang)

 Lookup-Lösungen
 Named Entity Recognition Instanzen→
 funktionieren nicht für "exotische" Domänen

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 57

Domain/Range von
Relationen aus Sätzen lernen

 Betrachten wir diesen Satz:
 Darmstadt liegt in Hessen

 Angenommen, wir wissen schon
:liegtIn a ObjectProperty .
:Darmstadt a :Stadt .
:Hessen a :Land .

 Dann können wir bei hinreichend vielen solchen Sätzen folgern:
:liegtIn rdfs:domain :Stadt .
:liegtIn rdfs:range :Land .

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 58

Zusammenfassung

 Ontologien bauen ist aufwändig
 Verschiedene Verfahren zum (semi-)automatischen

Ontologiebau existieren
 Ontology Learning

 Aus Instanzmengen
 z.B. mit Assoziationsregeln

 Aus Text
 Part of Speech Tagging
 Kolokationsanalyse
 Textmuster

12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 59

Aktuelle Forschung

 Lernen von mächtigeren Konstrukten
 Transitive, symmetrische, funktionale Properties
 Restriktionen
 Disjunkte Klassen
 …



12.01.12 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 60

Semantic Web – Aufbau

Berners-Lee (2009): Semantic Web and Linked Data
http://www.w3.org/2009/Talks/0120-campus-party-tbl/

Technische
Grundlagen

Semantic-Web-
Technologie

(Fokus der Vorlesung)

here be dragons...

Vorlesung Semantic Web

Vorlesung im Wintersemester 2011/2012
Dr. Heiko Paulheim
Fachgebiet Knowledge Engineering

