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3.6 Numerische Losung nichtlinearer Zustands-DGLn

Foliensatz 9

Ubersicht Systemtypen [

Im Allg. keine explizite, |\ System im Allgemeinen
formelmafige, nur 'nichtlinear und

numerische Lésung izeitvariant (und explizit)
moglich (Kap. 3.6). ;

f; & hangen nicht
explizit von ¢ ab

/
/

System zeitinvari-/ System linear
ant (autonom) und und i.Allg.
i.Allg. nichtlinear‘\\

f, g hangen A, B, C, D
linear von x, u ab sind konstant

X = A X+ B u QS
y=C-x+D-u zeitinvariant




3.6 Numerische Ldsung nichtlinearer Zustands-DGLn

Grundidee numerische Integration [ Foliensatz 09

Ausgangsgleichung: B ERAE f f(x(r))dr
/ fA

Integralterm entspricht Flache

\ \

Ansatz fur numerisches Integrationsverfahren: \\

Bezeichnung:

Approximation der Flache
> z.B. durch Rechteck:

/ > andererseits auch als Approximation
der Ableitung interpretierbar:

Diese Approximation nennt man
(explizites) Euler-Verfahren!




3.6 Numerische Ldsung nichtlinearer Zustands-DGLn
Grundlegende Verfahren [

Foliensatz 9

Zunachst Betrachtung fur n=1 (skalare Zustandsdifferentialgleichung)

Gegeben: N&herungslésung am Zeitpunkt ¢,
Gesucht: Naherungslésung am Zeitpunkt #,.,

3.6.2 Einschrittverfahren (one step methods)

Allgemeiner Ansatz:

. Mit einer je nach
xk+1 = xk + h ) (I)(tkaxkaxk+1ah9 f) Verfahren unterschied-
lichen Funktion @

Explizites Euler-Verfahren: [osaba

Implizites Euler-Verfahren: ENAGAN




3.6 Numerische Lésung nichtlinearer Zustands-DGLn

Ubersicht Verfahrenstypen [ Foliensatz 9

Numerische Integrationsverfahren unterscheiden sich
in der Art der Approximation der Flache [f und/oder
des Gradienten x (¢):

//In dieser Vorlesung werden

» Einschrittverfahren L nur Einschritt-Verfahren
diskutiert.

» Mehrschrittverfahren

» Extrapolationsverfahren

Diese Verfahrensklassen konnen jewells in

» explizite und
» implizite
Verfahren unterteilt werden.




3.6 Numerische Ldsung nichtlinearer Zustands-DGLn
Einzelschritt- und Fortpflanzungsfehler Foliensatz 9

o Einzelschritt-
Fehler

Fortpflanzungs-
Fehler




3.6 Numerische Ldsung nichtlinearer Zustands-DGLn

Heun-Verfahren [ Foliensatz 10

> |Ist Beispiel fur ein Pradiktor-Korrektor Verfahren
» Pradiktor-Schritt: RYERAEYAESEGM] (cxplizites Euler-Verfahren)

» Korrektor-Schritt: Mittelung des Gradienten

1
Xppl =X + Iy °§(fk + f(x},,)

» Insgesamt: s; = f(x;)

Heun Verfahren ist EEKSSESAGFES KN
ein 2-stufiges

Einschrittverfahren hk
Xyl = X T 7(51 +5;)

t

» Rechenaufwand: zwei Funktionsauswertungen von f

» Genauigkeit: Approximationsfehler O(h?)
Heun-Verfahren ist Verfahren 2. Ordnung.




3.6 Numerische Losung nichtlinearer Zustands-DGLn
Runge-Kutta Verfahren 4. Ordnung Foliensatz 10
> Eine Moglichkeit: Das [IREaFAC
.klassische” RK- Sy =f(x, +h/2-5)
Verfahren 4. Ordnung S = f(xp +h/255)

Sq = f (X +h-s3)

Xpo1 =X +h/6-(S)+285) +2853+54)
%/—/
D

=L(D+2-QO+2-O+®@)

» Rechenaufwand: vier Funktionsauswertungen von f

» Genauigkeit: Approximationsfehler O(h?)
(falls rechte Seite f4-mal stetig differenzierbar ist innerhalb von 7.7, [)




3.6 Numerische Lésung nichtlinearer Zustands-DGLn
Schrittweitensteuerung

e Konstante Schrittweite 4,
» ungenau, wenn gesuchte Losung sich lokal sehr stark andert

» ineffizient, wenn gesuchte Lésung sich lokal sehr wenig andert

A

X

e Abhilfe mit Schrittweitensteuerung:

> Wahl von hk so ,grof$ wie moglich® und ,so klein wie notig®

> Wahl von hk, so dass lokaler Approximationsfehler nach einem Schritt
unterhalb einer Fehlerschranke (die vom Benutzer vorgegeben wird)
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3.7 Integration von Zustands-DGLn mit Unstetigkeiten
Einleitung

Ausgangsproblem: A = f(xu)
e Numerische Integrationsverfahren aus Kap. 3.6 erfordern

> dass f'mindestens so oft stetig differenzierbar ist wie Ordnung des Verfahrens
(z.B. Euler-Verfahren Ord. 1, ,klassisches” Runge-Kutta-Verfahren Ord. 4);

> sonst: ,Ordnungsreduktion® in der berechneten Losung, also (moglicherweise
massiver) Genauigkeitsveriust

e Aber (vgl. Kap. 3.3.10):
> Die physikalische und technische Welt sind nicht nur stetig differenzierbar.

> Es gibt kontinuierliche und diskrete, zeitveranderliche Phanomene!
e Annahme:

» f(x,t) abschnittsweise mehrfach stetig differenzierbar.

> An Ubergangen der Abschnitte ist f moglicherweise unstetig / stetig aber
nicht differenzierbar / etc.

> Ubergange werden durch formulierbare Ereignisse (events) ausgeldst, die
zustandsabhangig oder zeitgesteuert sein konnen.




3.7 Integration von Zustands-DGLn mit Unstetigkeiten
Schaltfunktionen

Die (Um-)Schaltzeitpunkte (events) STEREINNA werden i.Allg.
als (einfache) Nullstellen n, reellwertiger Schaltfunktionen
q,(x(t,).t,.)=0, [€{l,...,n}

charakterisiert. Bei der numerischen Integration mussen nun die
Vorzeichen der Schaltfunktionen beobachtet werden, d.h.

> wenn zwischen der letzten berechneten Naherung

und der neuen Naherung EFNEY (A

ein Vorzeichenwechsel in (mind.) einer der Schaltfunktionen stattfindet,

muss der dazwischen liegende erste Schaltzeitpunkt bestimmt werden
(und zwar in der durch die Genauigkeitsanforderung des Benutzers und der

Ordnung des Verfahrens implizit gegebenen Genauigkeit):
-» Kombination von numerischer Integration und (eindim.) Nullstellensuche

Voraussetzung: Schrittweite h, klein genug, so dass kein doppelter
\orzeichenwechsel in derselben Schaltfunktion stattfindet.
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3.8 Integration steifer Zustands-DGLn
Beispiel

Annahme: |A,2| >> |ﬂ~1| zum Beispiel:

Dann ist und liefert keinen nennenswerten Beitrag zum Ergebnis.

2
Wegen der Stabilitatsbedingung ‘1 + h/'lQ‘ <]l = h<— =0.002 Y,

0|

sehr klein gewahlt werden, obwohl zur Losung praktisch nichts
beitragt.

> Ein solches, steifes Verhalten ist allgemein zu erwarten, wenn fiir Bl A@R7))

GUCTD . verte ). mit Realteil << 0 besitzt

- max| Re(4,)|

> (zustandsabhéngiges) Steiﬁgkeitsmal& / StQiﬁngitSkOG"lZient: m
m ke
k

die Jacobi-Matrix

» Zur Berechnung sind implizite Verfahren (mit geeignetem Stabilitatsgebiet) geeignet.




3.8 Integration steifer Zustands-DGLn
Kriterien zur Auswahl des Integrators

Zur Auswahl und zur Bewertung von numerischen
Integrationsverfahren betrachtet man i.Allg.

» Rechenaufwand (Berechnungseffizienz)
» Genauigkeit (Approximationsfehler)

» Eignung fur steife Systeme (Stabilitat)

» Implementierungsaufwand
(Eigenprogrammierung oder Verwendung einer

Bibliothek)
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[ Foliensatz 11 ]

4. Tellschritte einer

Simulationsstudie




41‘ Teilschritte einer Simulationsstudie
Ubersicht | Foliensatz 11

Problemspezifikation -

VIOU SINERUNY

- Implementierung j

Validierung

Anwendung




Klassifikation zeitkontinuierlicher Simulationswerkzeuge

Foliensatz 12

Level 3

Multidisziplinare Modellgenerierung (Modelica, VHDL-A) J

Level 2

a) Graphische Modellierung (SIMULINK, WorkingModel, Aspen, STELLA,...)
b) Spezialsimulatoren (ADAN VIPACK, KSIM,...)

7

Level 1

a) Simulationssprachen  (ACSL, VHDL, Dare-P, Desire,...)
b) Simulationsframeworks (SIMULINK, C++-Klassenbibliothek)

Level 0
Direkte Programmierung (FORTRAN, C, Pascal, MATLAB,...)




Level O: Direkte Programmierung mit MATLAB

Beispiel: Euler-Verfahren fur Schiffschaukel (nach W. Wiechert, Uni Siegen)

Reibungskonstante
Schaukelmasse incl. Mensch

Abstand Schwerpunkt zu Drehachse MOde”parameter

Erdbeschleunigung

iﬁiﬁat B oo Simulationsparameter

Startzeit

Startwinkel Sta rtwe rte

Startwinkelgeschwindigkeit

hile t<=tEnd - .
s e Zeitschleife
% Ausgabe der Werte

disp (sprintf ('%8.4f %8.4f %8.4f"' ,t,phi,omega)) ; Ausgabe

% Berechnung der rechten ODE-Seite

dphi dt = omega . .
domega_dt=- d/ (m*1+2) *omega-g/l*sin (ph:L) reChte Selte

% Neue Zeit und Werte
=t +deltat ; .
phi =phi +deltat*dphi dt ; Euler-Schritt
omega=omegat+deltat*domega dt;
end;




Level 1: Differentialgleichungsloser in MATLAB

Modellgleichungen als Funktion
function dxdt=Schaukel (t, x) ;

100.0; Reibungskonstante
Schaukelmasse incl. Mensch

Abstand Schwerpunkt zu Drehachse |\/|Ode||parametel’

Erdbeschleunigung

Sprechende Variablen einfiuhren
phi x(1); .
omega x(2); Vanablen

% Berechnung der rechten ODE-Seite
dphi dt = omega . .
domega dt=-d/ (m*1+2) *omega-g/l*sin (ph:.) E reChte Selte

% Sprechende Variablen ausfihren

dxdt = [ dphi_dt ; domega dt ]; Ergebnis

Aufruf eines Differentialgleichungslosers (Integrators):
phiO 1.0; Startwert des Winkels
omegal 0.0; Startwert der Winkelgeschwindigkeit

tEnd = 20.0; Simulationsdauer SimUIationSparameter

% Integrator-Aufruf
[

T,X] = oded45 (Q@Schaukel, [0,tEnd], [phiO;omegal]) ; IntegratoranrUf




Level 3: Simulink und
Allgemeine blockorientierte Darstellung Foliensatz 12 ]

o

Lo
iy - 2(x,u)
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5. Interpretation

und Validierung




5. Interpretation und Validierung
Schritte einer Simulationsstudie

Problemspezifikation

Vlocdzlligrisie

Implementierung

/

Bezeichnung:
Simulationsmodell =

Implementierung von [ Model

L Berechnungsverfahren ]

Foliensatz 12

Systematische

Plausibilitats-
uberprufung
(,Stimmen Modell
und Simulation?®):

A
[ Validierung = ¢ Fehlersuche

e Konsistenzprufung

Anwendung ¢ Daten-,

Parameterabgleich




5. Interpretation und Validierung
Begriffe [ Foliensatz 12

Verifikation

e Formaler (meist mathematischer) Nachweis der Korrektheit, dass ein
Programm (z.B. Simulationsmodell) einer vorgegebenen Spezifikation
entspricht

e Aufgrund der unendlich gro3en Anzahl von Zustandsverlaufen und
Storungseinflussen nichtlinearer dynamischer Systeme ist es i.d.R.
unmaoglich, die volistandige Korrektheit eines kontinuierlich dynamischen
Simulationsmodells zu beweisen.

Validierung

e Plausibilitdtsiiberpriifung, dass ein Programm (z.B. Simulationsmodell)
einer vorgegebenen Spezifikation entspricht

e Ziel der Validierung ist der Nachweis der ausreichenden Glaubwurdigkeit
des Simulationsmodells im Hinblick auf dessen Einsatzbereich




5. Interpretation und Validierung
Validierung [ Foliensatz 12 ]

. . > Gesamtfehler (Huckle/Schneider, 2002):
Problemspezifikation IP-V| = |[P-M| + |[M-D]| + |D-L| + |L-V]|

Problem P - > Akzeptanz einer Losung L,
wenn in allen 4 Schritten
vergleichbar kleine Fehler
gemacht wurden!

v

Medsllizririe
Modellierungsfehler |P-M|

Implementierung

Diskretisierungsfehler [M-D|
Abbruch-&Rundungsfehler |D-L|
Visualisierungsfehler |L-V|

Validierung

Anwendung




5. Interpretation und Validierung
Fehlerquellen bei Modellierung und Simulation . Foliensatz 12

Modellierungsfehler

> vereinfachende Modellannahmen
(z.B. starrer statt elastischer Korper)

» Ungenauigkeiten in Modellparametern

Approximationsfehler des iterativen

Berechnungsverfahrens (z.B. beim Euler-
Verfahren proportional zur Schrittweite)

Rundungsfehler
(Ausfuhrung des Berechnungsverfahrens auf Computer
mit endlicher Zahldarstellung)

Programmier-, Implementierungsfehler




5. Interpretation und Validierung
Parameteridentifikation und -kalibrierung [ Foliensatz 12

,Tuning“ der Modellparameter anhand von Messwerten:
experimentelle Messwerte fur Zustandstrajektorie
J J J . .
(mit Messfehler aj) t,j=1,....n,
Optimierungsproblem zur Kalibrierung der Modellparameter

ming(x), ¢(p) =3 Y ok, -x(:p)f €
=

unter der Nebenbedingung, dass

(numerische) Losung des nichtlinearen Systemmodells
x(7) =f(x,5;p), x(0)=x,




