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3.6 Numerische Lösung nichtlinearer Zustands-DGLn 
Übersicht Systemtypen 
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= System im Allgemeinen 
nichtlinear und 
zeitvariant (und explizit) 
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f, g hängen nicht 
explizit von t ab 

f, g hängen linear 
von x, u ab 

System zeitinvari-
ant (autonom) und 

i.Allg. nichtlinear 

System linear 
und i.Allg. 
zeitvariant 

f, g hängen          
linear von x, u ab 

A, B, C, D 
sind konstant 

System linear und 
zeitinvariant 

Im Allg. keine explizite, 
formelmäßige, nur 

numerische Lösung 
möglich (Kap. 3.6). 

Foliensatz 9 
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Ausgangsgleichung: 

Ansatz für numerisches Integrationsverfahren:  
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Ø  andererseits auch als Approximation 
der Ableitung interpretierbar: 
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Diese Approximation nennt man 
(explizites) Euler-Verfahren! 

Approximation der Fläche 
Ø  z.B. durch Rechteck: 

Bezeichnung:  1,,1),( +=≈ tkk nktxx …

Integralterm entspricht Fläche 

Foliensatz 09 

3.6 Numerische Lösung nichtlinearer Zustands-DGLn 
Grundidee numerische Integration 
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xk+1 = xk + h !" tk, xk, xk+1,h; f( )

Gegeben: )( kk txx ≈

Gesucht: )( 11 ++ ≈ kk txx

Allgemeiner Ansatz: 
Mit einer je nach 
Verfahren unterschied-
lichen Funktion Φ 

Zunächst Betrachtung für n=1 (skalare Zustandsdifferentialgleichung) 

Näherungslösung am Zeitpunkt tk  

Näherungslösung am Zeitpunkt tk+1  

3.6.2  Einschrittverfahren (one step methods) 

Explizites Euler-Verfahren: )( kxf=Φ

Implizites Euler-Verfahren: )( 1+=Φ kxf

3.6 Numerische Lösung nichtlinearer Zustands-DGLn 
Grundlegende Verfahren  Foliensatz 9 



Grundlagen der Modellierung und Simulation   4.02.2013   Fachgebiet Simulation, Systemoptimierung und Robotik 
(Repetitorium. Teil3)    WiSe 2012/13             Technische Universität Darmstadt 

5 

Numerische Integrationsverfahren unterscheiden sich 
in der Art der Approximation der Fläche ∫f  und/oder 
des Gradienten x‘(t): 
Ø  Einschrittverfahren 
Ø  Mehrschrittverfahren 
Ø  Extrapolationsverfahren 

Diese Verfahrensklassen können jeweils in 
Ø  explizite und 
Ø  implizite 

Verfahren unterteilt werden. 

In dieser Vorlesung werden 
nur Einschritt-Verfahren 

diskutiert. 

3.6 Numerische Lösung nichtlinearer Zustands-DGLn 
Übersicht Verfahrenstypen Foliensatz 9 
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3.6 Numerische Lösung nichtlinearer Zustands-DGLn 
Einzelschritt- und Fortpflanzungsfehler Foliensatz 9 
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Ø  Ist Beispiel für ein Prädiktor-Korrektor Verfahren 

Ø  Korrektor-Schritt: Mittelung des Gradienten 

Ø  Prädiktor-Schritt: 
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Ø  Insgesamt: 
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Heun Verfahren ist 
ein 2-stufiges 

Einschrittverfahren 

Ø  Rechenaufwand: zwei Funktionsauswertungen von f 
Ø  Genauigkeit: Approximationsfehler Ο(h2) 

 Heun-Verfahren ist Verfahren 2. Ordnung. 

(explizites Euler-Verfahren) 

3.6 Numerische Lösung nichtlinearer Zustands-DGLn 
Heun-Verfahren  Foliensatz 10 



Grundlagen der Modellierung und Simulation   4.02.2013   Fachgebiet Simulation, Systemoptimierung und Robotik 
(Repetitorium. Teil3)    WiSe 2012/13             Technische Universität Darmstadt 

8 

Ø  Eine Möglichkeit: Das 
„klassische“ RK-
Verfahren 4. Ordnung 
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Ø  Rechenaufwand: vier Funktionsauswertungen von f 
Ø  Genauigkeit: Approximationsfehler Ο(h4)              

(falls rechte Seite f 4-mal stetig differenzierbar ist innerhalb von ]tk,tk+1[) 

3.6 Numerische Lösung nichtlinearer Zustands-DGLn 
Runge-Kutta Verfahren 4. Ordnung Foliensatz 10 
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l  Konstante Schrittweite hk   
Ø  ungenau, wenn gesuchte Lösung sich lokal sehr stark ändert 
Ø  ineffizient, wenn gesuchte Lösung sich lokal sehr wenig ändert 

t 

x 

l  Abhilfe mit Schrittweitensteuerung:   
Ø  Wahl von hk so „groß wie möglich“ und „so klein wie nötig“ 

Ø  Wahl von hk, so dass lokaler Approximationsfehler nach einem Schritt 
unterhalb einer Fehlerschranke (die vom Benutzer vorgegeben wird) 

3.6 Numerische Lösung nichtlinearer Zustands-DGLn 
Schrittweitensteuerung 
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)( uxfx ,=Ausgangsproblem:  )( ,t,uxfx = 0)0( xx =bzw. mit 

l  Numerische Integrationsverfahren aus Kap. 3.6 erfordern 
Ø  dass f mindestens so oft stetig differenzierbar ist wie Ordnung des Verfahrens 

(z.B. Euler-Verfahren Ord. 1, „klassisches“ Runge-Kutta-Verfahren Ord. 4); 

Ø  sonst: „Ordnungsreduktion“ in der berechneten Lösung, also (möglicherweise 
massiver) Genauigkeitsverlust 

l  Aber (vgl. Kap. 3.3.10):  
Ø  Die physikalische und technische Welt sind nicht nur stetig differenzierbar. 
Ø  Es gibt kontinuierliche und diskrete, zeitveränderliche Phänomene! 

l  Annahme:  
Ø  f (x,t) abschnittsweise mehrfach stetig differenzierbar. 
Ø  An Übergängen der Abschnitte ist f  möglicherweise unstetig / stetig aber 

nicht differenzierbar / etc. 
Ø  Übergänge werden durch formulierbare Ereignisse (events) ausgelöst, die 

zustandsabhängig oder zeitgesteuert sein können. 

3.7 Integration von Zustands-DGLn mit Unstetigkeiten 
Einleitung 
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s,s ,,1, nit i …=Die (Um-)Schaltzeitpunkte (events) 
als (einfache) Nullstellen nq reellwertiger Schaltfunktionen 

},,1{,0)),(( ,s,s qiil nlttq …∈=x
charakterisiert. Bei der numerischen Integration müssen nun die 
Vorzeichen der Schaltfunktionen beobachtet werden, d.h.  

)( kk txx ≈Ø  wenn zwischen der letzten berechneten Näherung 

 und der neuen Näherung )( 11 ++ ≈ kk txx
 ein Vorzeichenwechsel in (mind.) einer der Schaltfunktionen stattfindet,  

Ø  muss der dazwischen liegende erste Schaltzeitpunkt bestimmt werden            
(und zwar in der durch die Genauigkeitsanforderung des Benutzers und der 
Ordnung des Verfahrens implizit gegebenen Genauigkeit):   
  à Kombination von numerischer Integration und (eindim.) Nullstellensuche 

Ø  Voraussetzung: Schrittweite hk klein genug, so dass kein doppelter 
Vorzeichenwechsel in derselben Schaltfunktion stattfindet. 

werden i.Allg.  

3.7 Integration von Zustands-DGLn mit Unstetigkeiten 
Schaltfunktionen 
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Annahme:  12 λλ >> zum Beispiel:  1000,1 21 −=−= λλ

Dann ist tt 12 ee λλ << und liefert keinen nennenswerten Beitrag zum Ergebnis. 

Wegen der Stabilitätsbedingung 002.0211
2

2 =<⇔<+
λ

λ hh

sehr klein gewählt werden, obwohl  tt 1000ee 2 −=λ zur Lösung praktisch nichts 
beiträgt.  

Ø  Ein solches, steifes Verhalten ist allgemein zu erwarten, wenn für  )( uxfx ,=

die Jacobi-Matrix  
x
uxf

∂
∂ )( , Eigenwerte λi mit Realteil << 0 besitzt. 

Ø  (zustandsabhängiges) Steifigkeitsmaß / Steifigkeitskoeffizient: 
|)Re(|min

|)Re(|max

kk

i
i

λ

λ

Ø  Zur Berechnung sind implizite Verfahren (mit geeignetem Stabilitätsgebiet) geeignet. 

muss h 

3.8 Integration steifer Zustands-DGLn 
Beispiel 
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Zur Auswahl und zur Bewertung von numerischen 
Integrationsverfahren betrachtet man i.Allg. 

Ø  Rechenaufwand (Berechnungseffizienz) 

Ø  Genauigkeit (Approximationsfehler) 

Ø  Eignung für steife Systeme (Stabilität) 

Ø  Implementierungsaufwand 
(Eigenprogrammierung oder Verwendung einer 
Bibliothek) 

3.8 Integration steifer Zustands-DGLn 
Kriterien zur Auswahl des Integrators 
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Grundlagen der Modellierung und Simulation 

4. Teilschritte einer 
Simulationsstudie 

Foliensatz 11 
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Problemspezifikation 

  Implementierung 

  Validierung 

  Anwendung 

  Modellierung 

4. Teilschritte einer Simulationsstudie 
Übersicht Foliensatz 11 
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                            Level 0 
Direkte Programmierung (FORTRAN, C, Pascal, MATLAB,...) 

                                  Level 1 
a) Simulationssprachen     (ACSL, VHDL, Dare-P, Desire,...) 
b) Simulationsframeworks (SIMULINK, C++-Klassenbibliothek) 

                                        Level 2 
a) Graphische Modellierung  (SIMULINK, WorkingModel, Aspen, STELLA,...) 
b) Spezialsimulatoren            (ADAMS, SIMPACK, KSIM,...) 

                                  Level 3 
                Multidisziplinäre Modellgenerierung (Modelica, VHDL-A) 

Klassifikation zeitkontinuierlicher Simulationswerkzeuge 
Foliensatz 12 
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Level 0: Direkte Programmierung mit MATLAB 

Beispiel: Euler-Verfahren für Schiffschaukel 

Modellparameter 

Simulationsparameter 

Startwerte 

Zeitschleife 
Ausgabe 

rechte Seite 

Euler-Schritt 

d = 100.0;      % Reibungskonstante 
m = 100.0;      % Schaukelmasse incl. Mensch 
l =   2.5;      % Abstand Schwerpunkt zu Drehachse  
g =  10.0;      % Erdbeschleunigung  
 
deltat =  0.1;  % Schrittweite 
tEnd   = 20.0;  % Endzeit 
 
t     = 0.0;    % Startzeit 
phi   = 1.0;    % Startwinkel 
omega = 0.0;    % Startwinkelgeschwindigkeit 
 
while t<=tEnd 
 
   % Ausgabe der Werte 
   disp(sprintf('%8.4f   %8.4f   %8.4f',t,phi,omega)); 
    
   % Berechnung der rechten ODE-Seite 
   dphi_dt  =           omega             ; 
   domega_dt=-d/(m*l^2)*omega-g/l*sin(phi); 
 
   % Neue Zeit und Werte 
   t    =t    +deltat          ; 
   phi  =phi  +deltat*dphi_dt  ; 
   omega=omega+deltat*domega_dt; 
end; 

(nach W. Wiechert, Uni Siegen) 
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Level 1: Differentialgleichungslöser in MATLAB 

Modellgleichungen als Funktion 

rechte Seite 

Modellparameter 

Variablen 

Ergebnis 
Aufruf eines Differentialgleichungslösers (Integrators): 

Simulationsparameter 

Integratoraufruf 

function dxdt=Schaukel(t,x); 
 
   d = 100.0;      % Reibungskonstante 
   m = 100.0;      % Schaukelmasse incl. Mensch 
   l =   2.5;      % Abstand Schwerpunkt zu Drehachse  
   g =  10.0;      % Erdbeschleunigung  
 
   % Sprechende Variablen einführen 
   phi   = x(1); 
   omega = x(2); 
 
   % Berechnung der rechten ODE-Seite 
   dphi_dt  =           omega             ; 
   domega_dt=-d/(m*l^2)*omega-g/l*sin(phi); 
 
   % Sprechende Variablen ausführen 
   dxdt = [ dphi_dt ; domega_dt ]; 

phi0   = 1.0; % Startwert des Winkels 
omega0 = 0.0; % Startwert der Winkelgeschwindigkeit 
 
tEnd  = 20.0; % Simulationsdauer 
 
% Integrator-Aufruf 
[T,X] = ode45 (@Schaukel,[0,tEnd],[phi0;omega0]); 
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τττ d))(),(()(
00 ∫+=
t

t uxfxxkann äquivalent geschrieben werden als: 

f ∫
x x

0x

u

Dynamisches System 

nttt ℜ∈== 0)0()),(),(()( xxuxfxDas DGL-System mit Anfangswert:  

),(
),(
uxgy
uxfx

=

=
u y

)0(x

Level 3: Simulink und  
Allgemeine blockorientierte Darstellung Foliensatz 12 
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Grundlagen der Modellierung und Simulation 

5. Interpretation  
und Validierung 
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Problemspezifikation 

  Anwendung 

  Modellierung 

  Implementierung 

  Validierung 

Systematische 
Plausibilitäts-
überprüfung 
(„Stimmen Modell 
und Simulation?“): 

 Fehlersuche 
 Konsistenzprüfung 
 Daten-, 

Parameterabgleich 

Bezeichnung: 
Simulationsmodell = 

Implementierung von [ Modell 
+ Berechnungsverfahren ] 

5. Interpretation und Validierung 
Schritte einer Simulationsstudie 

Foliensatz 12 
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Verifikation 
l  Formaler (meist mathematischer) Nachweis der Korrektheit, dass ein 

Programm (z.B. Simulationsmodell) einer vorgegebenen Spezifikation 
entspricht 

l  Aufgrund der unendlich großen Anzahl von Zustandsverläufen und 
Störungseinflüssen nichtlinearer dynamischer Systeme ist es i.d.R. 
unmöglich, die vollständige Korrektheit eines kontinuierlich dynamischen 
Simulationsmodells zu beweisen. 

Validierung 
l  Plausibilitätsüberprüfung, dass ein Programm (z.B. Simulationsmodell) 

einer vorgegebenen Spezifikation entspricht 
l  Ziel der Validierung ist der Nachweis der ausreichenden Glaubwürdigkeit 

des Simulationsmodells im Hinblick auf dessen Einsatzbereich 

5. Interpretation und Validierung 
Begriffe Foliensatz 12 
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Problemspezifikation 

  Anwendung 

  Modellierung 

  Implementierung 
 

  Validierung 

Problem P 

Modellierungsfehler |P-M| 

Diskretisierungsfehler |M-D| 
Abbruch-&Rundungsfehler |D-L| 
Visualisierungsfehler |L-V| 
 

Ø  Gesamtfehler (Huckle/Schneider, 2002):   
|P-V| ≤ |P-M| + |M-D| + |D-L| + |L-V| 

Ø  Akzeptanz einer Lösung L, 
wenn in allen 4 Schritten 
vergleichbar kleine Fehler 
gemacht wurden! 

5. Interpretation und Validierung 
Validierung Foliensatz 12 
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Modellierungsfehler 
Ø  vereinfachende Modellannahmen                                   

(z.B. starrer statt elastischer Körper) 
Ø  Ungenauigkeiten in Modellparametern 

Approximationsfehler des iterativen 
Berechnungsverfahrens   (z.B. beim Euler-
Verfahren proportional zur Schrittweite) 

Rundungsfehler                                       
(Ausführung des Berechnungsverfahrens auf Computer 
mit endlicher Zahldarstellung) 

Programmier-, Implementierungsfehler 

5. Interpretation und Validierung 
Fehlerquellen bei Modellierung und Simulation Foliensatz 12 



Grundlagen der Modellierung und Simulation   4.02.2013   Fachgebiet Simulation, Systemoptimierung und Robotik 
(Repetitorium. Teil3)    WiSe 2012/13             Technische Universität Darmstadt 

27 

„Tuning“ der Modellparameter anhand von Messwerten: 

jjj t εxx += )(ˆ experimentelle Messwerte für Zustandstrajektorie 
(mit Messfehler εj)   tj, j = 1,…,nt  

ℜ∈−= ∑
=ℜ∈

t

pn

n

j
jjj t

1

2
);(ˆ

2
1)(),(min pxxpx

p
ωϕϕ

Optimierungsproblem zur Kalibrierung der Modellparameter 

unter der Nebenbedingung, dass );( px t

(numerische) Lösung des nichtlinearen Systemmodells 

0)0(),;,()( xxpxfx == tt

0.const >=jω

5. Interpretation und Validierung 
Parameteridentifikation und -kalibrierung Foliensatz 12 


