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CAN: Performance 

 State information at node O(d) 
 Number of dimensions is d 

 Need two neighbors in all coordinate axis 

 Independent of the number of nodes! 

 

 Routing takes O(dn1/d) hops 
 Network has n nodes 

 Multiple dimensions (and realities) improve this 

 Routing improved by multiple dimensions 

 

 Multiple realities mainly improve availability and fault tolerance 
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Tapestry 

 Tapestry developed at UC Berkeley(!) 

 Different group from CAN developers 

 Tapestry developed in 2000, but published in 2004 

 Originally only as technical report, 2004 as journal article 

 Many follow-up projects on Tapestry 

 Example: OceanStore,… 

 

 Tapestry based on work by Plaxton et al. 

 Plaxton network has also been used by Pastry  

 Pastry was developed at Microsoft Research and Rice University 

 Difference between Pastry and Tapestry minimal 

 Tapestry and Pastry add dynamics and fault tolerance to Plaxton network 



63 

 

TU Darmstadt, FG P2P, Th. Strufe   Peer-to-Peer Networks – Chapter 3: DHT 

Tapestry: Plaxton Network 

 Plaxton network (or Plaxton mesh) based on prefix routing (similar to IP) 

 Prefix and postfix are functionally identical 

 Tapestry originally postfix, now prefix… 

 Node ID and object ID hashed with SHA-1 

 Expressed as hexadecimal (base 16) numbers (40 digits) 

 Base is very important, here we use base 16 

 

 Each node has a neighbor map with multiple levels 

 Each level represents a matching prefix up to digit position in ID 

 A given level has number of entries equal to the base of ID 

 ith entry in jth level is closest node which starts prefix(N,j-1)+”i” 

 Example: 9th entry of 4th level for node 325AE is the closest node with ID beginning with 

3259 
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Tapestry: Routing Mesh 

 (Partial) routing mesh for a single node 4227 

 Neighbors on higher levels match more digits 

4228 27AB 

6F43 

43C9 
51E5 

4242 

1D76 

44AF 

4227 

L1 

L1 L1 

L1 
L4 

L2 

L2 
L3 
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Tapestry: Neighbor Map for 4227 

Level 1 2 3 4 5 6 8 A 

1 1D76 27AB 51E5 6F43 

2 43C9 44AF 

3 42A2 

4 4228 

•   There are actually 16 columns in the map (base 16)    
•   Normally more (most?) entries would be filled 
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Tapestry: Routing Example 

42AD 

 Route message from 5230 to 42AD 

 Always route to node closer to target 

 At nth hop, look at n+1st level in neighbor map --> “always” one digit more 

 Not all nodes and links are shown 

5230 
400F 

4227 4629 

42A2 

AC78 

42A7 

4112 

4211 

42E0 

42A9 
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Tapestry: Properties 

 Node responsible for objects  which have same ID 

 Unlikely to find such node for every object 

 Node responsible also for “nearby” objects (surrogate routing, see below) 

 Object publishing: 

 Responsible nodes store only pointers 

 Multiple copies of object possible (replica!) 

 Each copy must publish itself 

 Pointers cached along the publish path 

 Queries routed towards responsible node 

 Queries “often” hit cached pointers 

 Queries for same object go (soon) to same nodes 

 Note: Tapestry focuses on storing objects 

 Chord and CAN focus on values, but in practice no difference 
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Tapestry: Publishing Example 

 Two copies of object “DOC” with ID 4377 created at AA93 and 4228 

 AA93 and 4228 publish object DOC, messages routed to 4377 

 Publish messages create location pointers on the way 

 Any subsequent query can use location pointers 

4377 

AA93 

4228 

43FE 

437A 

4361 

4664 4B4F 

E791 

4A6D 

57EC 

DOC 

DOC 

Routing path 

Publish path 

Location pointer 
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Tapestry: Querying Example 

 Requests initially route towards 4377 

 When they encounter the publish path, use location pointers to find object 

 Often, no need to go to responsible node 

 Downside: Must keep location pointers up-to-date 

4377 

AA93 

4228 

43FE 

437A 

4361 

4664 4B4F 

E791 

4A6D 

57EC 

DOC 

DOC 

Routing path 

Location pointer 
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Tapestry: Making It Work 

 Previous examples show a Plaxton network 
 Requires global knowledge at creation time 

 No fault tolerance, no dynamics 

 Tapestry adds fault tolerance and dynamics 
 Nodes join and leave the network 

 Nodes may crash 

 Global knowledge is impossible to achieve 

 Tapestry picks closest nodes for neighbor table 
 Closest in IP network sense (= shortest RTT) 

 Network distance (usually) transitive 

 If A is close to B, then B is also close to A 

 Idea: Gives best performance 
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Tapestry: Fault-Tolerant Routing 

 Tapestry keeps mesh connected with keep-alives 
 Both TCP timeouts and UDP “hello” messages 

 Requires extra state information at each node 

 

 Neighbor table has backup neighbors 
 For each entry, Tapestry keeps 2 backup neighbors 

 If primary fails, use secondary 

 Works well for uncorrelated failures 

 

 When node notices a failed node, it marks it as invalid 
 Most link/connection failures short-lived 

 Second chance period (e.g., day) during which failed node can come back 
and old route is valid again 

 If node does not come back, one backup neighbor is promoted and a new 
backup is chosen 
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Tapestry: Fault-Tolerant Location 

 Responsible node is a single point of failure 

 

 What can we do? 

 Solution: Map IDs, assign multiple “IDs” per object 
 Add “salt” to object name and hash as usual 

 Salt = globally constant sequence of values (e.g., 1, 2, 3, …) 

 

 Same idea as CAN’s multiple realities 

 This process makes data more available, even if the network is 
partitioned 
 With s roots, availability is P ≈ 1 - (1/2)s 

 Depends on partition 

 These two mechanisms improve fault-tolerance 
 In most cases :-) 

 Problem: If the only out-going link fails… 
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Tapestry: Surrogate Routing 

 Responsible node is node with same ID as object 
 Such a node is unlikely to exist 

 Solution: surrogate routing 

 What happens when there is no matching entry in neighbor map 
for forwarding a message? 

 

 Node picks (deterministically) one entry in neighbor map 
 Details are not explained in the paper :( 

 

 Idea: If “missing links” are deterministically picked, any message 
for that ID will end up at same node 
 This node is the surrogate 

 If nodes join or leave, surrogate may change 



74 

 

TU Darmstadt, FG P2P, Th. Strufe   Peer-to-Peer Networks – Chapter 3: DHT 

Tapestry: Performance 

 Messages routed in max O(logb N) hops (O(logb m)…) 

At each step, we resolve one more digit in ID 

N is the size of the namespace (e.g, SHA-1 = 40 (hex) digits) 

 Surrogate routing adds a bit to this, but not significantly 

 

 State required at a node is O(b logb N) 

 Tapestry has c backup links per neighbor, O(cb logb N) 

Additionally, same number of backpointers 
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Kademlia: A Peer-to-peer Information System 
Based on the XOR Metric 

 Petar Maymounkov and David Mazières (NY Uni) at IPTPS ’02 
 

 Aims: 
 Quick storage and retrieval of index information 
 Tolerance to node failures 
 Balancing storage and communication load 
 Minimize the number of control messages 

 

 Ideas: 
 DHT-based approach 
 Parallel asynchronous queries to find low-latency paths 
 „In-band“ messaging: signalling msgs are piggy-backed with key lookups 

 

 Instances: 
 Overnet/Kad (eMule/aMule) 
 Kashmir (Bittorrent) 
 Storm worm (Peacomm) 
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Kademlia: Protocol Overview 

 Kademlia protocol consists of 4 Remote Procedure Calls (RPCs): 

 PINGvw 

 Probe node w to see if its online 

 

 STOREvw(Key, Value) 

 Instructs node w to store a <key, value> pair 

 

 FIND_NODEvw(T) 

 In:  T, 160-bit ID 

 Out:  k contacts (<IP:Port, NodeID>) “closest” to T 

 

 FIND_VALUEvw(T) 

 In:  T, 160-bit ID 

 Out: Value, if a STORE(T, Value) previously received, else  

  k contacts (<IP:Port, NodeID>) “closest” to T 
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11…11 00…00 

1 

1 

1 

1 

1 

1 

1 1 1 

1 1 

1 

1 

1 1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 0 

0 

0 

0 

0 

0 

Space of 160-bit numbers 

Node / Peer 

Kademlia: Basic Idea 

 Nodes are treated as leafs in binary tree 

 Position in the tree is determined by the shortest unique prefix of its ID 

 A node is responsible for all “closest” IDs, i.e. IDs having same prefix as itself 

 Distance between ID x and y is measured as d(x,y) = x ⨁ y 

 e.g. d(010101b, 110001b) = 100100b  XOR  d(2110, 4910) = 3610 

 Nodes/IDs in same subtree (i.e. with longest common prefix) are closer 
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common 

prefix: 001 

common 

prefix: 00 

common 

prefix: 0 No common prefix 

11…11 00…00 
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1 1 1 

1 1 

1 

1 

1 1 

1 

0 

0 
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0 

0 
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0 0 

0 

0 

0 

0 

0 

Space of 160-bit numbers 

Kademlia: Basic Idea (2) 

 For any node (say the red node with prefix 0011) the binary tree is 
divided into a series of maximal subtrees that do not contain the node. 

 A node must know at least one node in each of these subtrees. 
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11…11 00…00 

1 
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0 
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 Consider a query for ID 111010… initiated by node 0011100… 

 

Kademlia: Basic Idea (3) 
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11…11 00…00 
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Kademlia: Routing Table 

 Consider routing table for node with prefix 0011 
 Binary tree is divided into set of subtrees according to their prefix 
 The routing table is composed of a series of k-buckets, corresponding to each of 

the subtrees 
 In a 2-bucket example, each bucket will have at least 2 contacts for its key range 
 Contacts are described as <IP:Port, NodeID> 
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Query Routing Algorithm 

 Goal: Find k nodes closest to ID T 
 Initial Phase:  

 Select ∝ nodes closest to T from no’s routing 
table 

 Send FIND_NODE(T) to each of the ∝ nodes in 
parallel 

 
 Iteration: 

 Select ∝ nodes closest to T from the results of 
previous RPC 

 Send FIND_NODE(T) to each of the ∝ nodes in 
parallel 

 Terminate when a round of FIND_NODE(T) fails 
to return any closer nodes 

 
 Final Phase: 

 Send FIND_NODE(T) to all of k closest nodes not 
already queried 

 Return when results from all the k-closest nodes 
retrieved.  

Uni Mannheim, FG DDS, Th. Strufe                                                                                       Resilient Networking 

= 2 

k = 3  

n0 

na, nb 

FIND_NODE(T) 

FIND_NODE(T) 

na nb 

n0 

nd, ne, nh 

nc, nd, ne na 

nb 

nf, ng, nh 

n0 

FIND_NODE(T) 

FIND_NODE(T) 

nd 

nh 

nd, ne, nh 
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 Joining Node (u): 

 Borrow an alive node’s ID (w) off-line 

 Initial routing table has a single k-bucket 
containing u and w. 

 u performs FIND_NODE(u) to learn 

about other nodes 

11…11 00…00 

1 
0 

1 

1 0 

0 

1 

1 

1 0 

0 

0 

1 

1 

1 
0 

0 

0 

Node Joining & Routing Table Evolution 
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Node Joining & Routing Table Evolution 

 Joining Node (u): 

 Borrow an alive node’s ID (w) off-line 

 Initial routing table has a single k-bucket 
containing u and w. 

 u performs FIND_NODE(u) to learn 

about other nodes 

11…11 00…00 

1 
0 

 Inserting new entry (v): 

Find bucket B with  

longest common prefix as v 

Is B 

full? 

insert 

no 

B has 

u? 

yes 

Don’t insert 

no 

Split B, redistribute 
contacts & insert v 

yes 

1 

1 0 

0 

1 

1 

1 0 

0 

0 

1 

1 

1 
0 

0 

0 
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 Chord routing table is rigid, has only one way 
information flow 

 complicates recovery process 

 Incoming traffic cannot be used for reinforcing 
routing table. 

 Less fault-tolerance 
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Kademlia vs Chord 
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 Chord routing table is rigid, has only one way 
information flow 

 complicates recovery process 

 Incoming traffic cannot be used for reinforcing 
routing table. 

 Less fault-tolerance 
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Kademlia vs Chord 
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Sample routing table in Pastry 

Kademlia vs Pastry 

0 1 2 3 

0 1 2 3 

2 3 0 1 

0 1 2 3 

 Pastry can not store redundant information in routing table, hence less tolerant to node failure 

 Pastry has higher control message overhead 

 Pastry has complex routing table. Two phase routing  

 Routing table: for initial hops 

 Leaf set: for last few hops 
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Kademlia: Summary 

 Strengths 

 Low control message overhead 

 Tolerance to node failure and leave 

 Capable of selecting low-latency path for query routing 

 Provable performance bounds 

 

 Weaknesses 

 Non-uniform distribution of nodes in ID-space results into imbalanced routing 
table and inefficient routing 

 Balancing of storage load is not truly solved 

 Originally underspecified, plethora of different implementations 

 Hard to provide analytical results 

 Non-deterministic results of routing (time, neighborhood) 
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