CAN: Performance @3

= State information at node O(d)
= Number of dimensions is d
= Need two neighbors in all coordinate axis
* Independent of the number of nodes!

= Routing takes O(dn*?) hops
= Network has n nodes
= Multiple dimensions (and realities) improve this
= Routing improved by multiple dimensions

= Multiple realities mainly improve availability and fault tolerance

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT

61

Tapestry @3

= Tapestry developed at UC Berkeley(!)
= Different group from CAN developers
= Tapestry developed in 2000, but published in 2004
= Originally only as technical report, 2004 as journal article

= Many follow-up projects on Tapestry

= Example: OceanStore,...

= Tapestry based on work by Plaxton et al.
= Plaxton network has also been used by Pastry

= Pastry was developed at Microsoft Research and Rice University
= Difference between Pastry and Tapestry minimal

= Tapestry and Pastry add dynamics and fault tolerance to Plaxton network

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT 62

Tapestry: Plaxton Network @3

= Plaxton network (or Plaxton mesh) based on prefix routing (similar to IP)
= Prefix and postfix are functionally identical
= Tapestry originally postfix, now prefix...

= Node ID and object ID hashed with SHA-1
= Expressed as hexadecimal (base 16) numbers (40 digits)

= Base is very important, here we use base 16

= Each node has a neighbor map with multiple levels
= Each level represents a matching prefix up to digit position in ID
= A given level has number of entries equal to the base of ID
= jthentry in jt level is closest node which starts prefix(N,j-1)+"i”

= Example: 9th entry of 4th level for node 325AE is the closest node with ID beginning with
3259

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT

63

Tapestry: Routing Mesh
G

= (Partial) routing mesh for a single node 4227
= Neighbors on higher levels match more digits

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT

64

Tapestry: Neighbor Map for 4227

G
Level 1 2 3 4 5 6 8 A
1 1D76 | 27AB 51E5 6F43
2 43C9 | 44AF
3 42A2
4 4228

e There are actually 16 columns in the map (base 16)

e Normally more (most?) entries would be filled

TU Darmstadt, FG P2P, Th. Strufe

Peer-to-Peer Networks — Chapter 3: DHT

65

Tapestry: Routing Example \

= Route message from 5230 to 42AD

= Always route to node closer to target

= At n'" hop, look at n+15t level in neighbor map --> “always” one digit more

= Not all nodes and links are shown

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT

66

Tapestry: Properties
G
= Node responsible for objects which have same ID
= Unlikely to find such node for every object
= Node responsible also for “nearby” objects (surrogate routing, see below)
= QObject publishing:
= Responsible nodes store only pointers
= Multiple copies of object possible (replica!)
= Each copy must publish itself
= Pointers cached along the publish path
= Queries routed towards responsible node
= Queries “often” hit cached pointers

= Queries for same object go (soon) to same nodes

= Note: Tapestry focuses on storing objects

= Chord and CAN focus on values, but in practice no difference

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT

67

Tapestry: Publishing Example

Routing path
Publish path
Location pointer

(e
-..“|“

»

= Two copies of object “DOC” with ID 4377 created at AA93 and 4228
= AA93 and 4228 publish object DOC, messages routed to 4377

= Publish messages create location pointers on the way
= Any subsequent query can use location pointers
TU Darmstadt, FG P2P, Th. Strufe

Peer-to-Peer Networks — Chapter 3: DHT

68

Tapestry: Querying Example \

= Requests initially route towards 4377

When they encounter the publish path, use location pointers to find object

Often, no need to go to responsible node
= Downside: Must keep location pointers up-to-date

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT

69

Tapestry: Making It Work
e

" Previous examples show a Plaxton network
= Requires global knowledge at creation time
= No fault tolerance, no dynamics

= Tapestry adds fault tolerance and dynamics
= Nodes join and leave the network

= Nodes may crash
= Global knowledge is impossible to achieve

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT

70

Tapestry: Fault-Tolerant Routing @3
o

= Tapestry keeps mesh connected with keep-alives
= Both TCP timeouts and UDP “hello” messages
= Requires extra state information at each node

= Neighbor table has backup neighbors
" For each entry, Tapestry keeps 2 backup neighbors
= |f primary fails, use secondary
= Works well for uncorrelated failures

= \When node notices a failed node, it marks it as invalid
= Most link/connection failures short-lived

= Second chance period (e.g., day) during which failed node can come back
and old route is valid again

" |f node does not come back, one backup neighbor is promoted and a new
backup is chosen

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT 71

Tapestry: Fault-Tolerant Location @\
o

= Responsible node is a single point of failure

= What can we do?

= Solution: Map IDs, assign multiple “IDs” per object
= Add “salt” to object name and hash as usual
= Salt = globally constant sequence of values (e.g., 1, 2, 3, ...)

= Same idea as CAN’s multiple realities

» This process makes data more available, even if the network is
partitioned
» With s roots, availability is P= 1 - (1/2)*
= Depends on partition
" These two mechanisms improve fault-tolerance

" |n most cases :-)
= Problem: If the only out-going link fails...

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT 72

Tapestry: Surrogate Routing @3
e

= Responsible node is node with same ID as object

= Such a node is unlikely to exist

= Solution: surrogate routing

=" What happens when there is no matching entry in neighbor map
for forwarding a message?

= Node picks (deterministically) one entry in neighbor map

= Details are not explained in the paper :(

= |dea: If “missing links” are deterministically picked, any message
for that ID will end up at same node

* This node is the surrogate

" |f nodes join or leave, surrogate may change

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT 73

Tapestry: Performance @\
G
= Messages routed in max O(log, N) hops (O(log, m)...)
= At each step, we resolve one more digit in ID
= N is the size of the namespace (e.g, SHA-1 = 40 (hex) digits)
= Surrogate routing adds a bit to this, but not significantly

= State required at a node is O(b log, N)
* Tapestry has ¢ backup links per neighbor, O(cb log, N)
= Additionally, same number of backpointers

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT 74

Kademlia: A Peer-to-peer Information System >

Based on the XOR Metric @\
o

= Petar Maymounkov and David Mazieres (NY Uni) at IPTPS '02

= Aims:
= Quick storage and retrieval of index information
= Tolerance to node failures
= Balancing storage and communication load
* Minimize the number of control messages

" |deas:
= DHT-based approach
= Parallel asynchronous queries to find low-latency paths
= In-band” messaging: signalling msgs are piggy-backed with key lookups

= |nstances:
= Qvernet/Kad (eMule/aMule)
= Kashmir (Bittorrent)
= Storm worm (Peacomm)

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT 75

Kademlia: Protocol Overview @\

G
= Kademlia protocol consists of 4 Remote Procedure Calls (RPCs):

= PING,__,,,
*" Probe node w to see if its online

= STORE,_, (Key, Value)
" |[nstructs node w to store a <key, value> pair

= FIND_NODE,__(T)
" |n: T, 160-bit ID
= Qut: k contacts (<IP:Port, NodelD>) “closest” to T

= FIND_VALUE,_(T)
" |n: T, 160-bit ID
= Qut: Value, if a STORE(T, Value) previously received, else
k contacts (<IP:Port, NodelD>) “closest” to T

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT 76

Kademlia: Basic Idea

G
11.11 Space of 160-bit numbers 00..00
o0—0 © © © © © © O 0—0—0—0 © o0—0 ©
1
4 0

= Nodes are treated as leafs in binary tree
= Position in the tree is determined by the shortest unique prefix of its ID
= A node isresponsible for all “closest” IDs, i.e. IDs having same prefix as itself
= Distance between ID x and y is measured as d(x,y)=x @y
"= e.g.d(010101,, 110001,) = 100100, XOR d(21,,, 49,,) = 364,
= Nodes/IDs in same subtree (i.e. with longest common prefix) are closer

® Node / Peer

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT

77

Kademlia: Basic Idea (2) =5

11.11 Space of 160-bit numbers 00..00
o0—0 © © © © © © O 0—0—0—0 © O o—0 ©

common
prefix: 00

R Common

ommon

No common prefix X
p prefix: 0 prefix: 001

= For any node (say the red node with prefix 0011) the binary tree is
divided into a series of maximal subtrees that do not contain the node.

= A node must know at least one node in each of these subtrees.

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT 78

Kademlia: Basic Idea (3)

= Consider a query for ID 111010... initiated by node 0011100...

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT

79

Kademlia: Routing Table @\
e

11..11 00..00
—0—0—0 o 0 O o o o—o—o0—0—0—=0 o—0—0 o—

= Consider routing table for node with prefix 0011
= Binary tree is divided into set of subtrees according to their prefix

= The routing table is composed of a series of k-buckets, corresponding to each of
the subtrees

" |n a 2-bucket example, each bucket will have at least 2 contacts for its key range
= Contacts are described as <IP:Port, NodelD>

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT 80

Query Routing Algorithm
e

Goal: Find k nodes closestto ID T

Initial Phase:

= Select « nodes closest to T from no’s routing
table

= Send FIND_NODE(T) to each of the o« nodes in
parallel

Iteration:
m Select < nodes closest to T from the results of
previous RPC

= Send FIND_NODE(T) to each of the o« nodes in
parallel

= Terminate when a round of FIND_NODE(T) fails
to return any closer nodes

Final Phase:

= Send FIND_NODE(T) to all of k closest nodes not
already queried

= Return when results from all the k-closest nodes
retrieved.

FIND_NODE(T)

g, Ng, Ny,

FIND_NODE(T)

FIND_NODE(T)

N, Ny, N

FIND_NODE(T)

a’ nb

Ny, Ng, Ny,

Ny, Ng, N,

Uni Mannheim, FG DDS, Th. Strufe Resilient Networking

81

Node Joining & Routing Table Evolution

= Joining Node (u):
= Borrow an alive node’s ID (w) off-line

11..11

0
= |nitial routing table has a single k-bucket /1/\

containing u and w.

» u performs FIND NODE(u) to learn

about other nodes

TU Darmstadt, FG P2P, Th. Strufe

Peer-to-Peer Networks — Chapter 3: DHT

82

Node Joining & Routing Table Evolution

= Joining Node (u):
= Borrow an alive node’s ID (w) off-line

= |nitial routing table has a single k-bucket
containing u and w.

» u performs FIND NODE(u) to learn
about other nodes

= |nserting new entry (v):

Find bucket B with

longest common prefix as v

yes

I

insert yes

no

-

11..11

Don’tinsert Split B, redistribute
contacts & insert v

TU Darmstadt, FG P2P, Th. Strufe

Peer-to-Peer Networks — Chapter 3: DHT

83

Kademlia vs Chord

OoO—O0 O O O O O O (& OoO—O0 oO—-
11..11 00...00
1 \[\
e o~]
1
1/ \0

TU Darmstadt, FG P2P, Th. Strufe

(=Y
SN
N

1/8

= Chord routing table is rigid, has only one way
information flow

= complicates recovery process

routing table.

" Incoming traffic cannot be used for reinforcing
= |ess fault-tolerance

Peer-to-Peer Networks — Chapter 3: DHT

84

Kademlia vs Chord

OoO—O0 O O O O O O (& OoO—O0 oO—-
11..11 00...00
1 \[\
e o~]
1
1/ \0

TU Darmstadt, FG P2P, Th. Strufe

(=Y
SN
N

1/8

= Chord routing table is rigid, has only one way
information flow

= complicates recovery process

routing table.

" Incoming traffic cannot be used for reinforcing
= |ess fault-tolerance

Peer-to-Peer Networks — Chapter 3: DHT

85

Kademlia vs Pastry
e

Sample routing table in Pastry

Nodeld 10233102

Leaf set [SMALER || LARGER |
10233033 | 10233021 10233120 || 10233122
10233001 10233000 || 10233230 | 10233232

RN [102331-20 []
[T]

[02010100 [2 2501205 | _3-1205003]
[_1-1-301233 || 1-2-230203 || 1-3-021022 |
10-0-31203 | 10-1-32102| :
| 102-0-0230 | 102-1-1302 || 102-2-2302 |
(0230322 | 1025-1-000]
[10233-0-01 [T

| 10-3- 23302

1023-2-121 |
10233-2-32

B]
Neighborhood set
13021022 10200230 11301233 31301233
02212102 | 22301203 || 31203203 | 33213321

» Pastry can not store redundant information in routing table, hence less tolerant to node failure

» Pastry has higher control message overhead

» Pastry has complex routing table. Two phase routing
» Routing table: for initial hops
= [eaf set: for last few hops

TU Darmstadt, FG P2P, Th. Strufe

Peer-to-Peer Networks — Chapter 3: DHT

86

Kademlia: Summary @\
G
= Strengths
= Low control message overhead
= Tolerance to node failure and leave
= Capable of selecting low-latency path for query routing

= Provable performance bounds

= \Weaknesses

= Non-uniform distribution of nodes in ID-space results into imbalanced routing
table and inefficient routing

= Balancing of storage load is not truly solved
= QOriginally underspecified, plethora of different implementations
= Hard to provide analytical results

= Non-deterministic results of routing (time, neighborhood)

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT 87

