
61

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

CAN: Performance

 State information at node O(d)
 Number of dimensions is d

 Need two neighbors in all coordinate axis

 Independent of the number of nodes!

 Routing takes O(dn1/d) hops
 Network has n nodes

 Multiple dimensions (and realities) improve this

 Routing improved by multiple dimensions

 Multiple realities mainly improve availability and fault tolerance

62

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Tapestry

 Tapestry developed at UC Berkeley(!)

 Different group from CAN developers

 Tapestry developed in 2000, but published in 2004

 Originally only as technical report, 2004 as journal article

 Many follow-up projects on Tapestry

 Example: OceanStore,…

 Tapestry based on work by Plaxton et al.

 Plaxton network has also been used by Pastry

 Pastry was developed at Microsoft Research and Rice University

 Difference between Pastry and Tapestry minimal

 Tapestry and Pastry add dynamics and fault tolerance to Plaxton network

63

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Tapestry: Plaxton Network

 Plaxton network (or Plaxton mesh) based on prefix routing (similar to IP)

 Prefix and postfix are functionally identical

 Tapestry originally postfix, now prefix…

 Node ID and object ID hashed with SHA-1

 Expressed as hexadecimal (base 16) numbers (40 digits)

 Base is very important, here we use base 16

 Each node has a neighbor map with multiple levels

 Each level represents a matching prefix up to digit position in ID

 A given level has number of entries equal to the base of ID

 ith entry in jth level is closest node which starts prefix(N,j-1)+”i”

 Example: 9th entry of 4th level for node 325AE is the closest node with ID beginning with

3259

64

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Tapestry: Routing Mesh

 (Partial) routing mesh for a single node 4227

 Neighbors on higher levels match more digits

4228 27AB

6F43

43C9
51E5

4242

1D76

44AF

4227

L1

L1 L1

L1
L4

L2

L2
L3

65

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Tapestry: Neighbor Map for 4227

Level 1 2 3 4 5 6 8 A

1 1D76 27AB 51E5 6F43

2 43C9 44AF

3 42A2

4 4228

• There are actually 16 columns in the map (base 16)
• Normally more (most?) entries would be filled

66

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Tapestry: Routing Example

42AD

 Route message from 5230 to 42AD

 Always route to node closer to target

 At nth hop, look at n+1st level in neighbor map --> “always” one digit more

 Not all nodes and links are shown

5230
400F

4227 4629

42A2

AC78

42A7

4112

4211

42E0

42A9

67

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Tapestry: Properties

 Node responsible for objects which have same ID

 Unlikely to find such node for every object

 Node responsible also for “nearby” objects (surrogate routing, see below)

 Object publishing:

 Responsible nodes store only pointers

 Multiple copies of object possible (replica!)

 Each copy must publish itself

 Pointers cached along the publish path

 Queries routed towards responsible node

 Queries “often” hit cached pointers

 Queries for same object go (soon) to same nodes

 Note: Tapestry focuses on storing objects

 Chord and CAN focus on values, but in practice no difference

68

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Tapestry: Publishing Example

 Two copies of object “DOC” with ID 4377 created at AA93 and 4228

 AA93 and 4228 publish object DOC, messages routed to 4377

 Publish messages create location pointers on the way

 Any subsequent query can use location pointers

4377

AA93

4228

43FE

437A

4361

4664 4B4F

E791

4A6D

57EC

DOC

DOC

Routing path

Publish path

Location pointer

69

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Tapestry: Querying Example

 Requests initially route towards 4377

 When they encounter the publish path, use location pointers to find object

 Often, no need to go to responsible node

 Downside: Must keep location pointers up-to-date

4377

AA93

4228

43FE

437A

4361

4664 4B4F

E791

4A6D

57EC

DOC

DOC

Routing path

Location pointer

70

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Tapestry: Making It Work

 Previous examples show a Plaxton network
 Requires global knowledge at creation time

 No fault tolerance, no dynamics

 Tapestry adds fault tolerance and dynamics
 Nodes join and leave the network

 Nodes may crash

 Global knowledge is impossible to achieve

 Tapestry picks closest nodes for neighbor table
 Closest in IP network sense (= shortest RTT)

 Network distance (usually) transitive

 If A is close to B, then B is also close to A

 Idea: Gives best performance

71

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Tapestry: Fault-Tolerant Routing

 Tapestry keeps mesh connected with keep-alives
 Both TCP timeouts and UDP “hello” messages

 Requires extra state information at each node

 Neighbor table has backup neighbors
 For each entry, Tapestry keeps 2 backup neighbors

 If primary fails, use secondary

 Works well for uncorrelated failures

 When node notices a failed node, it marks it as invalid
 Most link/connection failures short-lived

 Second chance period (e.g., day) during which failed node can come back
and old route is valid again

 If node does not come back, one backup neighbor is promoted and a new
backup is chosen

72

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Tapestry: Fault-Tolerant Location

 Responsible node is a single point of failure

 What can we do?

 Solution: Map IDs, assign multiple “IDs” per object
 Add “salt” to object name and hash as usual

 Salt = globally constant sequence of values (e.g., 1, 2, 3, …)

 Same idea as CAN’s multiple realities

 This process makes data more available, even if the network is
partitioned
 With s roots, availability is P ≈ 1 - (1/2)s

 Depends on partition

 These two mechanisms improve fault-tolerance
 In most cases :-)

 Problem: If the only out-going link fails…

73

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Tapestry: Surrogate Routing

 Responsible node is node with same ID as object
 Such a node is unlikely to exist

 Solution: surrogate routing

 What happens when there is no matching entry in neighbor map
for forwarding a message?

 Node picks (deterministically) one entry in neighbor map
 Details are not explained in the paper :(

 Idea: If “missing links” are deterministically picked, any message
for that ID will end up at same node
 This node is the surrogate

 If nodes join or leave, surrogate may change

74

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Tapestry: Performance

 Messages routed in max O(logb N) hops (O(logb m)…)

At each step, we resolve one more digit in ID

N is the size of the namespace (e.g, SHA-1 = 40 (hex) digits)

 Surrogate routing adds a bit to this, but not significantly

 State required at a node is O(b logb N)

 Tapestry has c backup links per neighbor, O(cb logb N)

Additionally, same number of backpointers

75

Kademlia: A Peer-to-peer Information System
Based on the XOR Metric

 Petar Maymounkov and David Mazières (NY Uni) at IPTPS ’02

 Aims:
 Quick storage and retrieval of index information
 Tolerance to node failures
 Balancing storage and communication load
 Minimize the number of control messages

 Ideas:
 DHT-based approach
 Parallel asynchronous queries to find low-latency paths
 „In-band“ messaging: signalling msgs are piggy-backed with key lookups

 Instances:
 Overnet/Kad (eMule/aMule)
 Kashmir (Bittorrent)
 Storm worm (Peacomm)

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

76

Kademlia: Protocol Overview

 Kademlia protocol consists of 4 Remote Procedure Calls (RPCs):

 PINGvw

 Probe node w to see if its online

 STOREvw(Key, Value)

 Instructs node w to store a <key, value> pair

 FIND_NODEvw(T)

 In: T, 160-bit ID

 Out: k contacts (<IP:Port, NodeID>) “closest” to T

 FIND_VALUEvw(T)

 In: T, 160-bit ID

 Out: Value, if a STORE(T, Value) previously received, else

 k contacts (<IP:Port, NodeID>) “closest” to T

 TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

77

11…11 00…00

1

1

1

1

1

1

1 1 1

1 1

1

1

1 1

1

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

Space of 160-bit numbers

Node / Peer

Kademlia: Basic Idea

 Nodes are treated as leafs in binary tree

 Position in the tree is determined by the shortest unique prefix of its ID

 A node is responsible for all “closest” IDs, i.e. IDs having same prefix as itself

 Distance between ID x and y is measured as d(x,y) = x ⨁ y

 e.g. d(010101b, 110001b) = 100100b XOR d(2110, 4910) = 3610

 Nodes/IDs in same subtree (i.e. with longest common prefix) are closer

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

78

common

prefix: 001

common

prefix: 00

common

prefix: 0 No common prefix

11…11 00…00

1

1

1

1

1

1

1 1 1

1 1

1

1

1 1

1

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

Space of 160-bit numbers

Kademlia: Basic Idea (2)

 For any node (say the red node with prefix 0011) the binary tree is
divided into a series of maximal subtrees that do not contain the node.

 A node must know at least one node in each of these subtrees.

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

79

11…11 00…00

1

1

1

1

1

1

1 1 1

1 1

1

1

1 1

1

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

 Consider a query for ID 111010… initiated by node 0011100…

Kademlia: Basic Idea (3)

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

80

11…11 00…00

1

1

1

1

1

1

1 1 1

1 1

1

1

1 1

1

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

`

Kademlia: Routing Table

 Consider routing table for node with prefix 0011
 Binary tree is divided into set of subtrees according to their prefix
 The routing table is composed of a series of k-buckets, corresponding to each of

the subtrees
 In a 2-bucket example, each bucket will have at least 2 contacts for its key range
 Contacts are described as <IP:Port, NodeID>

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

81

Query Routing Algorithm

 Goal: Find k nodes closest to ID T
 Initial Phase:

 Select ∝ nodes closest to T from no’s routing
table

 Send FIND_NODE(T) to each of the ∝ nodes in
parallel

 Iteration:

 Select ∝ nodes closest to T from the results of
previous RPC

 Send FIND_NODE(T) to each of the ∝ nodes in
parallel

 Terminate when a round of FIND_NODE(T) fails
to return any closer nodes

 Final Phase:

 Send FIND_NODE(T) to all of k closest nodes not
already queried

 Return when results from all the k-closest nodes
retrieved.

Uni Mannheim, FG DDS, Th. Strufe Resilient Networking

= 2

k = 3

n0

na, nb

FIND_NODE(T)

FIND_NODE(T)

na nb

n0

nd, ne, nh

nc, nd, ne na

nb

nf, ng, nh

n0

FIND_NODE(T)

FIND_NODE(T)

nd

nh

nd, ne, nh

82

 Joining Node (u):

 Borrow an alive node’s ID (w) off-line

 Initial routing table has a single k-bucket
containing u and w.

 u performs FIND_NODE(u) to learn

about other nodes

11…11 00…00

1
0

1

1 0

0

1

1

1 0

0

0

1

1

1
0

0

0

Node Joining & Routing Table Evolution

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

83

Node Joining & Routing Table Evolution

 Joining Node (u):

 Borrow an alive node’s ID (w) off-line

 Initial routing table has a single k-bucket
containing u and w.

 u performs FIND_NODE(u) to learn

about other nodes

11…11 00…00

1
0

 Inserting new entry (v):

Find bucket B with

longest common prefix as v

Is B

full?

insert

no

B has

u?

yes

Don’t insert

no

Split B, redistribute
contacts & insert v

yes

1

1 0

0

1

1

1 0

0

0

1

1

1
0

0

0

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

84

1/8

1/8

1/2

1/4

1/4

`

1
/1

6

 Chord routing table is rigid, has only one way
information flow

 complicates recovery process

 Incoming traffic cannot be used for reinforcing
routing table.

 Less fault-tolerance

11…11 00…00

1

1

1

1

1

1

1 1 1

1 1

1

1

1 1

1

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

1
/2

Kademlia vs Chord

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

85

1/8

1/8

1/2

1/4

1/4

`

1
/1

6

 Chord routing table is rigid, has only one way
information flow

 complicates recovery process

 Incoming traffic cannot be used for reinforcing
routing table.

 Less fault-tolerance

11…11 00…00

1

1

1

1

1

1

1 1 1

1 1

1

1

1 1

1

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

1
/2

Kademlia vs Chord

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

86

Sample routing table in Pastry

Kademlia vs Pastry

0 1 2 3

0 1 2 3

2 3 0 1

0 1 2 3

 Pastry can not store redundant information in routing table, hence less tolerant to node failure

 Pastry has higher control message overhead

 Pastry has complex routing table. Two phase routing

 Routing table: for initial hops

 Leaf set: for last few hops

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

87

Kademlia: Summary

 Strengths

 Low control message overhead

 Tolerance to node failure and leave

 Capable of selecting low-latency path for query routing

 Provable performance bounds

 Weaknesses

 Non-uniform distribution of nodes in ID-space results into imbalanced routing
table and inefficient routing

 Balancing of storage load is not truly solved

 Originally underspecified, plethora of different implementations

 Hard to provide analytical results

 Non-deterministic results of routing (time, neighborhood)

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

