P2P Wissenswertes

Pro Contra P2P

Pro: kein Single Point of failure, keine zentrale Uberwachung, Kostenreduktion

contra: Routing Probleme, Zuverldssigkeit, &nderungsrate des Systems, muss Erreichbarkeit
gewihrleistet sein?

Bittorrent

Chunk selection Strategien in Bittorrent

Strict Priority
Erst alle Sub-pieces downloaden, erst dann das nédchste Piece vom Peer
Rarest First

Die seltensten Pieces im Peer-Set downloaden, Ziel ist e seine mdglichst schnelle verstreute
Teilung zu erreichen. Dient dazu die Upload-Kapazitit gut auszunutzen

First Random Piece

Solange zufillige pieces downloaden, bis der Download des ersten Piece abgeschlossen ist.
Endgame Mode

Die verbleibenden Sub-Pieces bei allen Peers im Peer-Set downloaden.

Pareto Effizienz in Bittorrent ist eine lokale Optimierung um ein globales Optimum
beziiglich der Anzahl der handelnden Daten zu erreichen, basierend auf dem tit-for-tat
Paradigma.

Choking Algorithmus in Bittorrent (mit rarest first ausreichend um bittorrent zu
betreiben)

—>unchoken der vier besten uploader im peer set
—>basierend auf der downloadrate
—>alle zehn sekunden neuberechnung welcher peer ,,geunchoked* wird

- Optimistic unchoking: - alle 30 sekunden zufilligen peer unchoken, unabhingig von
downloadrate

- Anti snubbing: choken der peers, die in den letzten 60 sekunden kein chunk
hochgeladen haben

- Upload only: uploaden zu den peers mit den hochsten downloadraten, wenn man zum
seeder geworden ist



Finger Table Information- Welche Informationen miissen gespeichert werden in einer
Chord Finger Table, um korrekt zu routen?

IP adresse des betreffenden knoten und den genutzten Port speichern. Optional den identifier.
Duplicate Finger Table Entries-Szenario indem keine doppelten Eintrige auftreten

Um das zu verhindern, muss ein Knoten fiir jede ID im identifier space vorhanden sein.
Kademlia

Vorteile von XOR in DHT

- Nodes erhalten requests von den gleichen ,,Knotenverteilungen* die in ihren Routing
tables enthalten sind. Nodes kénnen von jedem querie, die Routing Informationen
lernen.

- Es garantiert eine lookup Konvergenz

- Request kdnnen an jeden node im Intervall geschickt werden. Parallele, asynchrone
queries konnen gesendet werden.

Update Policy
Der Sinn ist, aktive nodes nicht zu entfernen.

Es werden die Eintrdge im k-bucket angepingt. Wenn der gepingte node antwortet, werden
die neuen node informationen am anfang der Liste abgelegt. Ansonsten wird der node entfernt
und der neue node wird an das Ende der Liste angefiigt.

Lookup algorithm

Ziel ist es die k nidchsten nodes zu einer gegebenen ID zu finden. Der Inititator wihlt alpha-
nodes vom néichsten nicht leeren k-bucket.

Gleichzeitig sendet er FIND NODE RPCs zu diesen alpha-nodes. Er wihlt alpha nodes von
resultierenden k nodes die am néchsten zu der target ID sind. Das wiederholt er bis keine
neuen nodes gefunde wurden.

Das ist ein rekursiver algorithmus. Verglichen aber mit unserer Auffassung iiber
rekursiv/iterativ von DNS ist es ein iterativer algorithmus, da der initiator alle anfragen sendet
und antworten empfangt.

DHT in bittorrent

Bietet ein dezentralisiertes und verteiltes tracking der nodes.



CAN

Join prozedur im CAN Overlay
- Joining node A kontaktiert einen bootstrap-node B
- A wihlt eine identifier ID
- B routet JOIN-Anfrage in Richtung C mit der ID
- Cteilt eigene Zone in die Hilfte und weist A eine Hélfte zu
- A baut verbindung zu nachbarn auf
- A benachrichtigt nachbarn

- C updatet nachbarsliste

DHASH
Chord, eine DHT?

Nein, Chord ist kein DHT. Es bietet kein speichern von paaren (key, value) und es verbindet
nicht values mit identifieres.

Chord ist ein skalierbarer P2P lookup service. Es verbindet key mit nodes und nicht mit
values. Successor lookup ist die einzige implementierte funktionalitét.

DHASH

Es ist eine distributet hash table. Es implementiert chord als lookup service. Es existieren die
funktionen insert und lookup.

Es existieren die Layer Chord, DHASH und Application.
- Chord: mappt identifiers mit den successor nodes
- DHASH: verbindet values mit identifiers

- Application: bietet ein file system interface an

Arten DOS Attacks
- Entfernen von netzwerk links: ??

- Unmengen an nutzlosen daten einfiigen: block/chunk quota einfiihren, damit ein
einzelner node nur eine bestimme anzahl von blocks/chunks speichern kann



Load Balancing in DHASH
- Keine ganzen dokumente an einem node speichern
o Dokumente in chunk aufteilen
o Jeden block/chunk in den DHASH layer mit dem hash vom block einfligen

- Metaden benutzen um einen einzelnen namen fiir die datei zu bilden, eine art file
descriptor

- Verteilen eines einzelnen files unter mehreren nodes

P2P Gaming

Neighbor Discovery ist eine grofSe Herausforderung fiir die Entwicklung von P2P-
basierten Gaming-Overlays

Man muss mit den naheliegendsten Peers in der virtuellen Welt verbunden sein und nicht mit
den naheliegendsten im identifier-space eines Overlay-Netzwerkes.

Chord benétigt das mappen zwischen der virtuellen 2D oder 3D Welt und dem 1D chord
identifier space. Desweiteren bewegen sich Spieler oft, was eine hohe dnderungsrate in der
Kommunikationsstruktur zur folge hitte. Es miisste andauernd die position auf dem chord
ring gedndert werden und die nachbarn der nodes.

Bei CAN hat man ein density problem, den dicht angesiedelte areale resultieren in kleine Can
zellen. Spieler bewegen sich oft, gleiches problem wie bei chord.

Information Dissemination Overlay

Ist ein unstrukturiertes P2P overlay. Erlaubt schnelle und hiufige Ubertragung von update
Nachrichten zu den anderen Peers im Vision/Interaction Range.

Basis Idee: definiere eine Area of Interest (AOI). Nur mit den peers in AOI kommunizieren.
pSense

- Spieler sind hauptsédchlich mit den naheliegendsten in der virtuellen Welt verbunden
(position based multicast)

- hélt verbindung zu 2 verschiedenen arten von nodes
o near nodes: peer im vision range
o sensor nodes: peers auflerhalb der vision range
- lokaler multicast
o updates werden direkt zu den near nodes und sensor nodes gesendet

o dann auch weitergeleitet an peers die weiter weg sind



Donnybrook

Hauptidee ist das nutzen der mesh topology. Die update rate wird fiir spieler die nicht im
inetressanten bereich sind reduziert. Ein spieler ist interessant fiir einen wenn, in der virtuellen
nah beieinander, er auf ihn schief3t oder sie interagieren.

Unterschiede pSense und Donnybrook
- Anzahl Verbindungen
o pSense: anzahl peers in vision range
o Donnybrook: verbindung zu allen spielern
- Anzahl der gleichzeitig unterstiitzenden spieler
o pSense: kein limit
o Donnybrook: iiber 1000 speiler gleichzeitig
Wauala Erasure Coding
- Partitionierung eines files in m coding blocks gleicher grof3e
- Erstelle ¢ extra blocke
- M+c=n coding fragmente

- Redundanz erreicht, file kann rekonstruiert werden bei blockverlust



Social Networks

Goal of Cloning Attacks
- Personliche informationen von usern
- Vertrauen der user gewinnen

- Entweder einen klon eines existierenden user profil krieren oder auf die freundesliste
eines realen users gelangen

Kinds of cloning attacks
- Klonen eines profils im gleichen OSN oder in ein andrem OSN

Warum Dezentralisierte OSN?

Umgehung des Problem zentralisierter Architekturen

o Zentralisierte Kontrolle, Datenspeicherung, datenzugriff, Single Point of
Failure

Schutz der benutzer privatssphére gegen
o Intruders, crawlers und dritten parteien, Big Brother

Performanz?

o Daten sicher verwalten?,

Sicherheit?
o Availability of Service?, Key management?, fake accounts erkennen?

Safebook

Matryoshka-Pro Teilnehmer im Netzwerk eine Matryoshka

Sie dienen und unterstiitzen die privacy, basierend auf hop-by-hop trust, der
Datenspeicherung und Replizierung und der communication privacySie werden
folgendermassen gebildet:

—>Fiir alle Kontake (,,freunde*) A von V:

- Vsendet A: DHT lookup keys, TTL span

- Weiterleiten der anfrage zu #span von ihren kontakten mit dezimierter TTL
—>TTL lauft bei node D ab

- D registriert die lookup keys mit referenz @D

- Dient als entry point fiir V’s matryoshka



Core: der besitzer initiator einer matryoshka

Mirror: kontakte eines nodes — replziert das profil

Entrypoint: registriert die location bei V’s keys in der DHT

Inner shell: beinhaltet alle mirrors

intermediate shell: shells/nodes zwischen mirrors und entrypoints

outer shell: beinhaltet alle entrypoints

Profile Lookup von User A

rekursiven lookup im DHT ausfiihren
o lookup entry an position id(a)
liste der entrypoints erhalten
o Dbeinhaltet all knoten im outer shell von A’s matryoshka
anfrage zu einem dieser entrypoints senden
o anfrage wird durch A’s matryoshka weitergeleitet bis mirror erreicht wird
daten werden zuriick gesendet
es wird kein DHT benutzt, weil
o adressen der user waren ungeschiitzt
o online status wére fiir jeden sichtbar

o setzt hop-by-hop privacy aus

Profile replication stored?

Abhéngig von der Anzahl der Kontakte=> kontaktzahl=anzahl replicas

Speicherung einer replica an jedem kontakt

Spannung Ratio

Der Span legt die anzahl der nodes fest an denen die matryoshka erstellungsanfrage
weitergeleitet wird.

TTL: tiefe des baumes der von der matryoshka erstellt wird
Span: breite des baumes der von der matryoshka erstellt wird
Bei erhdhung des span wird die anzahl der entrypoints der matryoshka erhoht

Ein span von 1 wiirde nur wenige entrypoints bieten



Overlays in Safebook

- Matryoshaks
o Mittiger ring von knoten der um benutzer knoten gebaut wird
o vertrauenswiirdige daten spicherung
o profildaten abfrage
o hop-by-hop privacy

- P2P substrate
o Bietet einen Lookup-Service an um entrypoints der matryoshkas zu finden
o KAD wird als DHT benutzt
o Pseudonyme werden als node identifier benutzt

o Registrierte keys sind ,,hashed properties* von Usern

Multicast Paradigms

Different Mutlicast Paradigms

Unicast: Funktionalititen an der Quelle implementiert--> Daten werden an der Quelle
repliziert, mehrere kopien werden iiber den gleichen link gesendet

IP Multicast:funktionalititen am router implementiert (und quelle)-->daten repliziert beim
router, jeder link wird exakt einmal benutzt, router fordern status informationen an

End System Multicast: funktionalitidten an den kanten des netzwerkes implementiert-->
P2P -based an den end hosts

Scenarios
Unicast: Keine infrastruktur, hoher user churn, sender besitzt genug recourcen
IP Multicast: bestehende Infrastruktur

End System Multicast: geringe recourcen der sender, grof3e user gruppen



Application Multicast

Tree Based Topologies

explizite Konstruktion des Streaming trees

parents leiten packete an children (push)

- stream konnte gesplittet werden -->multiple trees

- Pro: geringer overhead/delays

- Contra: geringe Robustheit

- Application: live-streaming, broadcast-like streaming
Mesh Based topologies

streams geteilt in chunks

~ jedes peer fragt die chunks nach die es braucht (pull)
- mehr oder weniger willkiirliche verbindung zwischen peers
- pro: sehr robust

- contra: langsam, hohe delays, signifikanter overhead

application: video-on-demand streaming

Differences

explizite vs. Implizite tree construction

push vs. Pull

QoS vs. Robustness

Live streaming vs. VoD streaming



Pull based Streaming

- jeder part des stream explizitangefragt

- multiple connection erforderlich

- konstanter austausch der status informationen erforderlich
Push based streaming

- automatischer forward stream zu den predecessors

- daten nur von parents erhalten, weiterleiten an children
- kein state erforderlich, geringer maintenance overhead
Differences

- requesting vs. Automatic delivery

~ bidrektionale vs unidirektionale daten iibertragung

~ state maintenance vs. Topology maintenance

- implizit vs. Explizite toplogy generation

P2P Netzwerktypen: Strukturiert/Unstrukturiert

Motivation fiir DHTs: Steigerung der effizienz be Such und Objektlokalisation in P2P-

Netzwerken—> Adressierung anstatt Suchen

»Stress“: Menge identischer Packete die den gleichen physischen link traversieren

Zwei Generelle Funktion von ALM (Application-Layer-Multicast): Lokalisation und

Inhaltsverbreitung

Anforderungen an Online Games: Sicherheit, Kosten, Robustheit, Fairness

P2P fiir Games: Contra: Fair, Sicherheit, Robustheit

Pro: Single Point of Failure (Server), Kosten, Inhalt

Typische Eigenschaften von P2P Systemen:
1. Unzuverléssig, Unkoordiniert, Unverwaltet
2. Widerstandfdhiger gegen Attacken

3. @GroBe Anzahl an Ressourcen



Vergleich zwischen BitTorrent, Napster, Gnutella, FastTrack a.k.a KaZaA

BitTorrent:

Ziel ist die schnelle und verléssliche Verteilung einer Datei an einer gro3en Anzahl
Clients

Bildet ein Netzwerk (Swarm) fiir jede verteilte Datei

Vorteile von BitTorrent: Versenden von ,,links* an Freunde und Links verweisen
immer auf die gleiche Datei

Datei wird in chunks aufgeteilt-=> Erlaubt paralleles herunterladen

.torrent-datei beinhaltet Metadaten iiber die Datei, Tracker-URL und Grof3e der
Chunks—>Meistens hosted auf einem Web-Server

Seeder ist der Server der die original Datei hosted bzw. Client mit einer vollstindigen
Kopie der Datei

Leecher ist ein Client der die Datei runterladt

Client 14dt .torrent Datei und kontaktiert Tracker, Client baut Verbindung zu 20-40
peers auf->Peer-Set

Starken: Funktioniert ganz gut, sobald peer genug chunks hat ist downloadrate gut

Schwichen: Jeder muss mitmachen—>problem fiir clients hinter Firewall, dateien
miissen grof genug sein (chunk—>256kb)

Napster

Ein zentraler Index Server

User registriert sich an zentralem Server

Sendet liste der Dateien die geshared werden sollen
Server kennt alle Peers und Files im Netzwerk

Suchanfrage bringt als Resultat: Informationen {iber File und Peer und andere
Metadaten

Stirke: Uberblick auf das ganze Netzwerk, schenlles und effizientes Suchen,
Suchanfrage wird korrekt beantwortet

Schwichen: downloaden von einzelnem peer, zentraler server ist single point of
failure, index server braucht genug ressourcen um alle anfragen zu bearbeiten



Gnutella
- Dezentralisiert
- Basiert auf overlay netzwerk
- Hat nur peers—>alle peers sind gleichberechtigt
- Peers werden servents genannt

- Um netzwerk beizutreten, braucht ein Peer die Adresse eines anderen Peers im
Netzwerk

- Sobald Peer Netzwerk betritt lernt es tiber andere Peers und die Netzwerkstruktur

- Anfragen werden im Netzwerk geflutet. TTL kommt zum Einsatz, damit Anfarge
nicht stindig existiert-=>nachrichten werden an alle nachbarn gesendet. Ein Query wird
mit einem Queryhit beantwortet, das die IP und die Port nummer des Peer enthilt.

- Download findet direkt zwischen Peers statt

- Fiir peers hinter firewalls gibt es die push message. Peer au3erhal der firewall sendet
Push zu peer innerhalb der firewall via ,,relay®. Dabei gilt die annahme, das peer
innerhalb der firewall eine TCP connection zu einem nachbar-peer im overlay hélt

- Peer innerhalb firewall kontaktiert peer welches PUSH gesendet hat—>download
- Stérken: vollig dezentralsiert Netzwerk, open protocol , robust gegeniiber node failure

- Schwichen: flooding ist extrem ineffizient, QUERIES ebenfalls nicht

KaZaA
- Benutzt FastTrack Protocol

- Gibt ON, normaler peer von user, und SN, ebenfalls peer, aber mit mehr ressourcen
und verantwortlichkeiten

- KaZaA formt eine zwei Schicht hierarchie=>Top level nur SN, lower level nur ON
- Ein ON gehort zu einem SN

- ON senden Anfragen an ihrem SN->er kiimmert sich um den Rest

- SN hat alle Informaionen {iber sein ON

- Ein peer kann es ablehnen ein SN zu werden (geringe Bandbreite z.B.)

- Stérken: effizientes suchen mit geringer ressourcen belastung durch SN Einsatz

- Schwichen: Suche nicht flichendeckend, singe Point of failure=> SN



