
Ikram M. Khan, P2P Networks, TU Darmstadt  P2P Networks Course, Exercise #  8 1

P2P Networks – Exercise 
Solution For Exercise # 6

Ikram M. Khan, P2P Networks Group,
TU Darmstadt

Date: Dec. 13th, 2011



Ikram M. Khan, P2P Networks, TU Darmstadt  P2P Networks Course, Exercise #  8 2

CAN



3

I

New node

Discover some 
node “I” 
already in CAN

1.1 CAN: Join Procedure

Ikram M. Khan, P2P Networks, TU Darmstadt  P2P Networks Course, Exercise #  8



4

pick random 
point in space

I

(p,q)

New node

New node picks
its coordinates
in space

1.1 CAN: Join Procedure

Ikram M. Khan, P2P Networks, TU Darmstadt  P2P Networks Course, Exercise #  8



5

(p,q)

I routes to (p,q), 
and discovers that 
node J owns (p,q)

I

J

new node

1.1 CAN: Join Procedure

Ikram M. Khan, P2P Networks, TU Darmstadt  P2P Networks Course, Exercise #  8

For 2D, first split on 
the X-­‐axis, then On 
the Y-­‐axis

Controller of the 
zone either take left 
or top zone created 
by the split



6

NewJ

Split J’s zone 
in half. New 
owns one 
half

1.1 CAN: Join Procedure

Ikram M. Khan, P2P Networks, TU Darmstadt  P2P Networks Course, Exercise #  8

NEW node 
extablishes 
connection 
with its 
neighborhod



Ikram M. Khan, P2P Networks, TU Darmstadt  P2P Networks Course, Exercise #  8 7

1.2 Partitioning of CAN’s identifier space 

5

3

8

2

1

0

32

32

7

9

6 10

4

Node ID

1 17/3

2 20/10

3 15/31

4 7/2

5 27/5

6 2/3

7 16/18

8 21/19

9 25/11

10 7/2



Ikram M. Khan, P2P Networks, TU Darmstadt  P2P Networks Course, Exercise #  8 8

1.2 Partitioning of CAN’s identifier space (6 P.)

5

3

8

2

1

0

32

32

7

9

6 10

4

Node Neighboring 
nodes

1 2,3,4,6,7,8,10

4 1,3, 5, 10

7 1, 2, 8, 9

10 1, 3, 4, 6



Ikram M. Khan, P2P Networks, TU Darmstadt  P2P Networks Course, Exercise #  8 9

1.3 Incorrect Paritioning of Identifier Space (2 P.)



Ikram M. Khan, P2P Networks, TU Darmstadt  P2P Networks Course, Exercise #  8 10

Kademlia



Ikram M. Khan, P2P Networks, TU Darmstadt  P2P Networks Course, Exercise #  8 11

2.1 XOR Metric

 Nodes receive requests from the same distribution of 
nodes contained in their routing tables

 Over-hearing each query they receive

 XOR's undirectionality ensure lookup convergence
 Enable caching of <key, value> pairs along a lookup path

 Requests can be sent to any node in an interval 
 Hope selection based on latency
 Query sending parallelly and asynchronously



Ikram M. Khan, P2P Networks, TU Darmstadt  P2P Networks Course, Exercise #  8 12

2.2 Routing State Information 

 Kademlia routing tables consist of 160 k-buckets 
 Contain nodes at distance 2i ≤ d ≤ 2i+1

 Each bucket contains at most k entries 
 For small i, k-buckets most probably empty

 Maximum amount of routing state information (RSI
max

)

 RSI
max

 = 160 * k * X, X: memeory required for each entry

 X = |<IP address, UDP port, Node ID>|
 X = 4 Byte + 2 Byte + 20 Byte = 26 Byte
 RSI

max
 = 160 * k * 26 => k * 4160 Byte ≈ k * 4 KB



Ikram M. Khan, P2P Networks, TU Darmstadt  P2P Networks Course, Exercise #  8 13

2.3 Update Policy

 Least-recently seen eviction policy
 Except for not removing live nodes

 Ping k-buckets least-recently seen entry 
 If Pinged node responds

 Discard the new node's information
 Else

 Remove the unresponsive node from the head of 
the list

 Insert the new node at the tail of the list

 Preferences old nodes 
 K-bucket maximizes the probability that the nodes 

they contain will remain online 



14

n0

na, nb

 Initial Phase: 
 Select α nodes closest to T from no’s 

routing table

FIND_NODE(T)

FIND_NODE(T)

nanb

 Send FIND_NODE(T) to each of the α 
nodes in parallel

n0

nd, ne, nh

nc, nd, nena

nb

nf, ng, nh

 Iteration:
 Select α nodes closest to T from the 

results of previous RPC

n0

FIND_NODE(T)

FIND_NODE(T)

nd
nh

nd, ne, nh

 Send FIND_NODE(T) to each of the α 
nodes in parallel

 Terminate when a round of 
FIND_NODE(T) fails to return any closer 
nodes

 Final Phase:
 Send FIND_NODE(T) to all of k closest 

nodes not already queried
 Return when have results from all the k-

closest nodes. 

α= 2
k = 3 

 Goal: Find k nodes closest to ID T

2.4 Lookup Algorithm

Ikram M. Khan, P2P Networks, TU Darmstadt  P2P Networks Course, Exercise #  8



Ikram M. Khan, P2P Networks, TU Darmstadt  P2P Networks Course, Exercise #  8 15

2.5 Kademlia and BitTorrent 

 Used by trackerless torrents
 hop://www.bioorrent.org/beps/bep_0005.html

 Used by Azureus in 2005
 Adopted by BitTorrent client

 µTorrent, BitComet, BitSpirit, and Transmission



Ikram M. Khan, P2P Networks, TU Darmstadt  P2P Networks Course, Exercise #  8 16

Programming Exercise

 Implement the Kademlia routing table according to 
the Kademlia Paper. Ping requests are messages that 
only transfer the value 0, 1 byte wide. Ping answers 
are also 1 byte wide but transfer the value 1.

 Prepare a test setup for the implementation to 
present on 20th December. If you are not available on 
this date please contact us via the submission mail 
address. 



Ikram M. Khan, P2P Networks, TU Darmstadt  P2P Networks Course, Exercise #  8 17

Announcement

Exam: Tuesday 14:30-16:10, 21.02.2012

Exam Hall will announced

Please check course web-page for updates



Ikram M. Khan, P2P Networks, TU Darmstadt  P2P Networks Course, Exercise #  8 18

Next Exercise

 Exercise # 8
 Due date 21.12.2011
 14:25 – 16.05
 S2|02 - C110


	Slide 1
	Slide 2
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Query Routing Algorithm
	Slide 15
	Slide 16
	Slide 17
	Slide 18

