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CAN
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New node

Discover some 
node “I” 
already in CAN

1.1 CAN: Join Procedure
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(p,q)

I routes to (p,q), 
and discovers that 
node J owns (p,q)

I

J

new node

1.1 CAN: Join Procedure
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For 2D, first split on 
the X-­‐axis, then On 
the Y-­‐axis

Controller of the 
zone either take left 
or top zone created 
by the split
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NewJ

Split J’s zone 
in half. New 
owns one 
half

1.1 CAN: Join Procedure
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NEW node 
extablishes 
connection 
with its 
neighborhod
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1.2 Partitioning of CAN’s identifier space 
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Node ID

1 17/3

2 20/10

3 15/31

4 7/2

5 27/5

6 2/3

7 16/18

8 21/19

9 25/11

10 7/2



Ikram M. Khan, P2P Networks, TU Darmstadt  P2P Networks Course, Exercise #  8 8

1.2 Partitioning of CAN’s identifier space (6 P.)
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Node Neighboring 
nodes

1 2,3,4,6,7,8,10

4 1,3, 5, 10

7 1, 2, 8, 9

10 1, 3, 4, 6
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1.3 Incorrect Paritioning of Identifier Space (2 P.)
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Kademlia
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2.1 XOR Metric

 Nodes receive requests from the same distribution of 
nodes contained in their routing tables

 Over-hearing each query they receive

 XOR's undirectionality ensure lookup convergence
 Enable caching of <key, value> pairs along a lookup path

 Requests can be sent to any node in an interval 
 Hope selection based on latency
 Query sending parallelly and asynchronously
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2.2 Routing State Information 

 Kademlia routing tables consist of 160 k-buckets 
 Contain nodes at distance 2i ≤ d ≤ 2i+1

 Each bucket contains at most k entries 
 For small i, k-buckets most probably empty

 Maximum amount of routing state information (RSI
max

)

 RSI
max

 = 160 * k * X, X: memeory required for each entry

 X = |<IP address, UDP port, Node ID>|
 X = 4 Byte + 2 Byte + 20 Byte = 26 Byte
 RSI

max
 = 160 * k * 26 => k * 4160 Byte ≈ k * 4 KB
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2.3 Update Policy

 Least-recently seen eviction policy
 Except for not removing live nodes

 Ping k-buckets least-recently seen entry 
 If Pinged node responds

 Discard the new node's information
 Else

 Remove the unresponsive node from the head of 
the list

 Insert the new node at the tail of the list

 Preferences old nodes 
 K-bucket maximizes the probability that the nodes 

they contain will remain online 
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n0

na, nb

 Initial Phase: 
 Select α nodes closest to T from no’s 

routing table

FIND_NODE(T)

FIND_NODE(T)

nanb

 Send FIND_NODE(T) to each of the α 
nodes in parallel

n0

nd, ne, nh

nc, nd, nena

nb

nf, ng, nh

 Iteration:
 Select α nodes closest to T from the 

results of previous RPC

n0

FIND_NODE(T)

FIND_NODE(T)

nd
nh

nd, ne, nh

 Send FIND_NODE(T) to each of the α 
nodes in parallel

 Terminate when a round of 
FIND_NODE(T) fails to return any closer 
nodes

 Final Phase:
 Send FIND_NODE(T) to all of k closest 

nodes not already queried
 Return when have results from all the k-

closest nodes. 

α= 2
k = 3 

 Goal: Find k nodes closest to ID T

2.4 Lookup Algorithm
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2.5 Kademlia and BitTorrent 

 Used by trackerless torrents
 hop://www.bioorrent.org/beps/bep_0005.html

 Used by Azureus in 2005
 Adopted by BitTorrent client

 µTorrent, BitComet, BitSpirit, and Transmission
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Programming Exercise

 Implement the Kademlia routing table according to 
the Kademlia Paper. Ping requests are messages that 
only transfer the value 0, 1 byte wide. Ping answers 
are also 1 byte wide but transfer the value 1.

 Prepare a test setup for the implementation to 
present on 20th December. If you are not available on 
this date please contact us via the submission mail 
address. 
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Announcement

Exam: Tuesday 14:30-16:10, 21.02.2012

Exam Hall will announced

Please check course web-page for updates
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Next Exercise

 Exercise # 8
 Due date 21.12.2011
 14:25 – 16.05
 S2|02 - C110
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