

P2P Networks – Exercise Solution For Exercise # 7

Ikram M. Khan, P2P Networks Group,
TU Darmstadt

Date: Dec. 20th, 2011

1. Overlays (1/2)

- What can goes wrong with overlays?
 - Overlay neighborhood is not real neighborhood – induces delay
 - Useless traffic traverse over the same physical link – stress
- How can we handle load-balancing problems in overlays?
 - [Look at DHASH]
- Can we create location aware overlay?
 - We can, by using characteristics of lower layer during overlay constructions

1 Overlays (2/2)

- Can we create a „location aware“ overlay?
 - BTW: what is „location“ on the Internet?
 - Darmstadt (DFN) -> Berlin (DFN) can be a lot „closer“ than Darmstadt (DFN) -> Weiterstadt (DSL)!
 - Common (mis-) used metrics:
 - RTT (ECHO, ping)
 - But: DSL without fastpath has ping times like TU-Darmstadt -> Vanuatu...
 - Bandwidth between end-hosts
 - Which bandwidth? Overall? Available? How do we measure that?
 - IP-Hops
 - Stuttgart is in same distance cmp. to New York (www.dfn.de vs www.ny.com)

2. 1. Is Chord a DHT?

- Chord does not provide complete functionalities of a DHT
 - It does not provide storage of $\langle \text{key}, \text{value} \rangle$ pairs
 - Does not associate values with identifiers
- Chord is a scalable lookup service
 - It associates keys with values
 - Successor lookup function is implemented in Chord

2. 2) DHASH

- DHASH is layered Chord application
- Uses Chord as a lookup service
 - Insert ()
 - Lookup ()
- Layer 1: Chord – Maps identifiers to successor nodes
- Layer 2: DHASH – Associate values with identifiers
- Layer 3: Application – provide a file system interface

2. 3) DoS Attacks

- Pruning links
 - Resistant against DoS attacks because of network locality
- Polluting with large amount of data
 - Flushing legitimate values from distributed storage
 - Limiting the number of blocks a single node stores
 - Limiting relation among nodes in the system
- Picking own identifier
 - Could delete data by positioning themselves as successor of data
 - Using strong ID = $\text{hash}(\text{IP}, \dots)$ could provide prevention
- Arbitrarily incorrect behavior
 - Monitoring and verifying nodes' responses with others
 - Mutual verification to verifying node's responses
 - There is no way to proof malicious activities of a group of nodes

2. 4) Load Balancing

- Avoid to store complete document on a node
 - Splitting files into blocks
 - Insert each block into the DHASH layer with the hash of the block
- Spread a single file among several nodes
- Use meta-data to provide a single name for a distributed, multi-blocked file

Programming Exercise - Routing Table

- RPC Identifiers?
 - Provides safety against forged messages.
 - Eases parsing when many messages travel around.
- Sender Identifiers?
 - Ping works without.
 - Eases parsing Pong.
 - Enables Backward learning!
- Kademlia design specification
<http://xlattice.sourceforge.net/components/protocol/kademlia/specs.html>

Next?

- There will be no theory/programming exercise during winter break
- So, Merry Christmas and Happy New Year