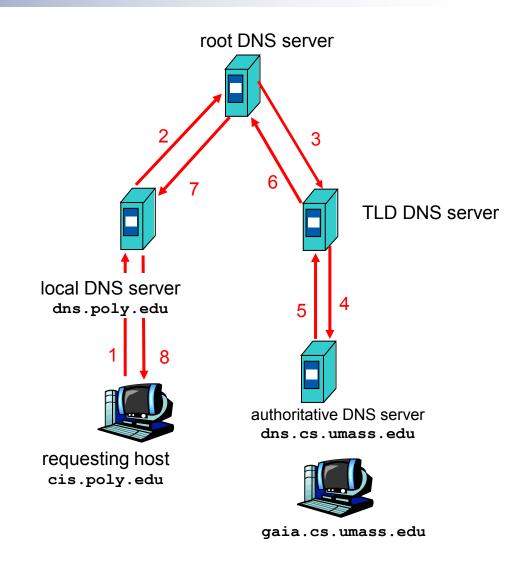

# **DNS – Example of Iterative Queries**



 Host at cis.poly.edu wants IP address for gaia.cs.umass.edu



### **DNS – Recursive Queries**




#### **Recursive query:**

- Puts burden of name resolution on contacted name server
- Heavy load?

#### **Iterated query:**

- Contacted server replies with name of server to contact
- "I don't know this name, but ask this server"



# **DNS: Caching and Updating Records**



- Once (any) name server learns mapping, it caches mapping
  - Cache entries timeout (disappear) after some time
  - TLD servers typically cached in local name servers
    - Thus root name servers not often visited

- Update/notify mechanisms under design by IETF
  - RFC 2136
  - http://www.ietf.org/html.charters/dnsind-charter.html

# **Inserting Records Into DNS**



- Example: just created startup "Network Utopia"
- Register name networkutopia.com at a registrar (e.g., Network Solutions)
  - Need to provide registrar with names and IP addresses of your authoritative name server (*primary* and *secondary*)
  - Registrar inserts two RRs into the com TLD server:

```
(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)
```

 Put in authoritative server Type A record for www.networkuptopia.com and Type MX record for networkutopia.com

### DNS – Recursive and Iterative Queries



#### **DNS HEADER (send)** - Identifier: 0x3116 - Flags: 0x00 (Q) - Opcode: 0 (Standard query) - Return code: 0 (No error) - Number questions: 1 - Number answer RR: 0 - Number authority RR: 0 root DNS server - Number additional RR: 0 (A.ROOT-SERVERS.NET) QUESTIONS (send) - Queryname: (3)www(3)p2p(12)tu-darmstadt(2)de iterative Auth DNS server - Type: 1 (A) (TLD: c.de.net) - Class: 1 (Internet) local (caching) DNS server iterative Auth DNS server (via dhcp) (TUD: ns3.tu-darmstadt.de) recursive iterative www.p2p.tu-darmstadt.de ip-92-50-90-182.unitymediagroup.de

# A Quick Example...



```
strufe@eris:~$ dnstracer -v www.p2p.tu-darmstadt.de
Tracing to informatik.tu-darmstadt.de[a] via 130.83.163.141, maximum of 3 retries
130.83.163.141 (130.83.163.141) IP HEADER
-Destination address: 130.83.163.141
-DNS HEADER (send)
-- Identifier:
               0x3116
                                                        QUESTIONS (recv)
-- Flags:
              oxoo(Q)
                                                        - Queryname:
                                                                          (3)www(3)p2p(12)tu-darmstadt(2)de
-- Opcode:
           o (Standard query)
                                                                      1 (A)
                                                        - Type:
                  o (No error)
-- Return code:
                                                                     1 (Internet)
                                                        - Class:
-- Number questions: 1
                                                        ANSWER RR
-- Number answer RR: o
                                                                           (6)charon(7)dekanat(10)informatik(12)tu-darmstadt(2)de
                                                        - Domainname:
-- Number authority RR: o
                                                                      1 (A)
                                                        - Type:
-- Number additional RR: o
                                                                     1 (Internet)
                                                        - Class:
-QUESTIONS (send)
                                                                     1592 (26m32s)
                                                        - TTL:
-- Queryname:
                  (3)www(3)p2p(12)tu-darmstadt(2)de
                                                        - Resource length: 4
-- Type:
              1(A)
                                                        - Resource data: 130.83.162.6
        1 (Internet)
-- Class:
                                                        ANSWER RR
-DNS HEADER (recv)
                                                                           (3)www(3)p2p(12)tu-darmstadt(2)de
                                                        - Domainname:
-- Identifier: 0x3116
                                                                      5 (CNAME)
                                                        - Type:
-- Flags:
        ox8o8o (R RA )
                                                        - Class:
                                                                     1 (Internet)
-- Opcode:
           o (Standard guery)
                                                                     49817 (13h50m17s)
                                                        - TTL:
-- Return code:
                  o (No error)
                                                        - Resource length: 28
-- Number questions: 1
                                                        - Resource data: (6)charon(7)dekanat(10)informatik(12)tu-darmstadt(2)de
-- Number answer RR: 2
                                                        Got answer [received type is cname]
-- Number authority RR: o
-- Number additional RR: o
```

#### So where is the Info?



```
strufe@eris:~$ dnstracer -v -qns tu-darmstadt.de
Tracing to tu-darmstadt.de[ns] via 130.83.163.130
130.83.163.130 (130.83.163.130) IP HEADER
- Destination address: 130.83.163.130
DNS HEADER (send)
- Identifier:
               0x4C45
- Flags:
              0x00 (Q)
                0 (Standard guery)
- Opcode:
- Return code:
                 0 (No error)
- Number questions: 1
- Number answer RR: 0
- Number authority RR: 0
- Number additional RR: 0
QUESTIONS (send)
                  (12)tu-darmstadt(2)de
- Queryname:
              2 (NS)
- Type:
- Class:
              1 (Internet)
DNS HEADER (recv)
              0x4C45
- Identifier:
              0x8080 (R RA)
- Flags:
                0 (Standard guery)
- Opcode:
- Return code:
                  0 (No error)
- Number questions: 1
- Number answer RR: 5
- Number authority RR: 0
- Number additional RR: 9
```

```
QUESTIONS (recv)
- Queryname:
                  (12)tu-darmstadt(2)de
               2 (NS)
- Type:
              1 (Internet)
- Class:
ANSWER RR
                    (12)tu-darmstadt(2)de
- Domainname:
- Type:
               2 (NS)
              1 (Internet)
- Class:
- TTL:
              70523 (19h35m23s)
- Resource length: 6
                   (3)ns1(3)hrz(12)tu-darmstadt(2)de
- Resource data:
ANSWER RR
                   (12)tu-darmstadt(2)de
- Domainname:
- Type:
               2 (NS)
              1 (Internet)
- Class:
              70523 (19h35m23s)
- TTL:
- Resource length: 5
- Resource data:
                   (2)ns(6)man-da(2)de
ANSWER RR
                   (12)tu-darmstadt(2)de
- Domainname:
               2 (NS)
- Type:
              1 (Internet)
- Class:
              70523 (19h35m23s)
- TTL:
- Resource length: 6
                   (3)ns2(3)hrz(12)tu-darmstadt(2)de
- Resource data:
```

.....

#### Answer ctd...



.....

**ADDITIONAL RR** 

- Domainname: (3)ns1(3)hrz(12)tu-darmstadt(2)de

- Type: 1 (A)

- Class: 1 (Internet)

- TTL: 17335 (4h48m55s)

- Resource length: 4

- Resource data: 130.83.22.63

ADDITIONAL RR

- Domainname: (2)ns(6)man-da(2)de

- Type: 28 (unknown)
- Class: 1 (Internet)

- TTL: 38386 (10h39m46s)

- Resource length: 16

- Resource data: 2001:41b8:0000:0001:0000:0000:0000:0053

ADDITIONAL RR

- Domainname: (2)ns(6)man-da(2)de

- Type: 1 (A)

- Class: 1 (Internet)

- TTL: 38386 (10h39m46s)

- Resource length: 4

- Resource data: 82.195.66.249

ADDITIONAL RR

- Domainname: (3)ns2(3)hrz(12)tu-darmstadt(2)de

- Type: 28 (unknown)- Class: 1 (Internet)

- TTL: 17335 (4h48m55s)

- Resource length: 16

- Resource data: 2001:41b8:083f:0022:0000:0000:0000:0063

•••••

.....

**ADDITIONAL RR** 

- Domainname: (3)ns2(3)hrz(12)tu-darmstadt(2)de

- Type: 1 (A)

- Class: 1 (Internet)

- TTL: 17335 (4h48m55s)

- Resource length: 4

- Resource data: 130.83.22.60

**ADDITIONAL RR** 

- Domainname: (3)ns2(6)man-da(2)de

- Type: 1 (A)

- Class: 1 (Internet)

- TTL: 38386 (10h39m46s)

- Resource length: 4

- Resource data: 217.198.242.225

ADDITIONAL RR

- Domainname: (3)ns3(3)hrz(12)tu-darmstadt(2)de

- Type: 28 (unknown)
- Class: 1 (Internet)

- TTL: 17335 (4h48m55s)

- Resource length: 16

- Resource data: 2001:41b8:083f:0056:0000:0000:0000:0060

**ADDITIONAL RR** 

- Domainname: (3)ns3(3)hrz(12)tu-darmstadt(2)de

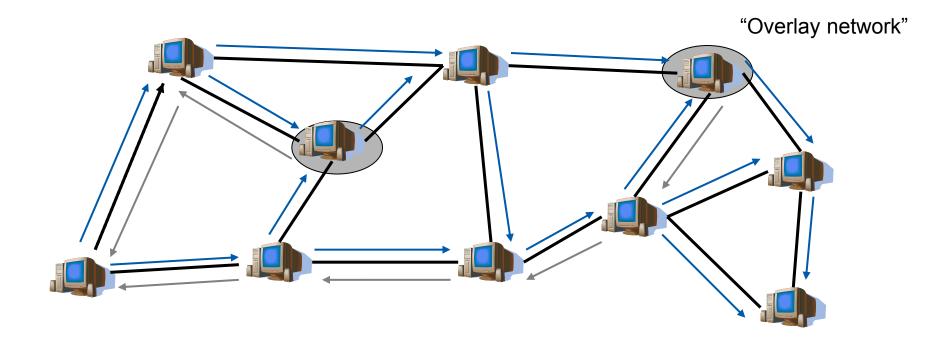
- Type: 1 (A) - Class: 1 (Internet) - TTL: 17335 (4h48m55s)

- Resource length: 4

- Resource data: 130.83.56.60

Got answer

### **DNS – Lessons Learned**




- 1. Structure name space (divide et impera)
- 2. Simple "routing" b/c of structured (hierarchical) namespace
- 3. Store information at multiple locations
- 4. Maintain multiple connections
- 5. Be redundant! (Replicate...)
  - primary and secondary server, multiple TLD servers
- 6. Delegation using iterative or recursive forwarding (Btw: what are the pros and cons of each?)

What does this "routing" mean anyways!?

# Back to P2P!





# P<sub>2</sub>P in a Nutshell



- Properties of (pure) P2P: "All peers are equal"
  - no dedicated service, no central entity
  - no a-priori knowledge / structure / hierarchy
  - highly dynamic behavior of nodes
  - → Flat system architecture, flat namespace, unreliable service providers
- Main primary problems of P2P:
  - Staying connected
  - Resource lookup (name resolution, location of replica, especially selecting a good next hop for the delegation → routing)
  - Can't trust anyone

# Peer-to-Peer (a Definition)



- Communication model: asynchronous (request-response)
- Role model: a single role (?)
  - symmetric behavior, all peers in general (can) do the same
  - **BUT**: considering an interaction there is one requesting and *n* responding peers.
- Organisational model: completely unstructured ("it's a mess!")
  - Other than bootstrapping no knowledge whatsoever about the context, no knowledge about the structure
- No Identifiers, only names

- We can introduce identifiers based on distributed algorithms (hashes)
- We can introduce structure using distributed algorithms (supernodes, etc.)
- A P2P overlay on the Internet is a subset of links of a clique graph

### The P<sub>2</sub>P Environment



#### ...all this in order to do:

File sharing, content distribution (BitTorrent/iptv), session initiation/chat/voip (skype, jabber), malware distribution/spam (botnets),...

- Standard Solutions (p2p the executive summary)
  - Connectivity: select enough fall-back "servers"
  - Name resolution: unstructured P2P (flooding) or external search engine
  - Resource location: registry and lookup in structured P2P (DHT!) (or the above...)

- Closely related fields
  - Delay Tolerant Networks (Ad-hoc-, opportunistic-, pocket-switched-, vehicular-, <you-name-it> networks)
  - Wireless Sensor Networks
  - Epidemic-, Content-/ Context-based routing

# **Properties of P2P Systems**



- P2P systems typically have the following properties:
- 1. Unreliable, uncoordinated, unmanaged
  - No central authority, peers are completely independent
  - Increases flexibility of individual peers, but makes the overall system (possibly) unreliable
- 2. Resilient to attacks, heterogeneous
  - Large number of peers in the system, hard to bring it down?
  - Heterogeneous peers make viruses and worms harder to write?
- 3. Large collection of resources
  - Voluntary participation, global reach
  - Millions of simultaneous users

# History of P2P



- What was the first P2P system and when?
- Answer: ARPANet 1969
- Later: USENET, 1979 (also FidoNet 1984, other BBSs)
  - Current Internet routing (BGP) is P2P
- The term P2P was coined by Napster in 1999
- Napster was a huge hit, brought P2P to general attention
- Illegal sharing of copyrighted material by users was the main driver behind Napster's success and the reason for its downfall
- Other systems followed Napster quickly, based on other design choices
- Research community followed suit quickly
  - Many deployed systems proprietary, hard to examine well...

### **Current State of P2P**



- Where are we now?
- P2P networks going strong, all over the world
  - Many networks highly popular and widely used
  - Different networks in different countries
- P2P networks currently mostly used for illegal sharing of copyrighted material
  - Music, videos, software, ...
  - Note: Can be used for legal sharing too (see BitTorrent)
- Other applications starting to emerge (see below)
- Content providers not so happy
  - Sue companies making P2P software (e.g., Napster), sue software developers (Winny), sue users sharing material
  - But also providing alternate means: iTunes & friends

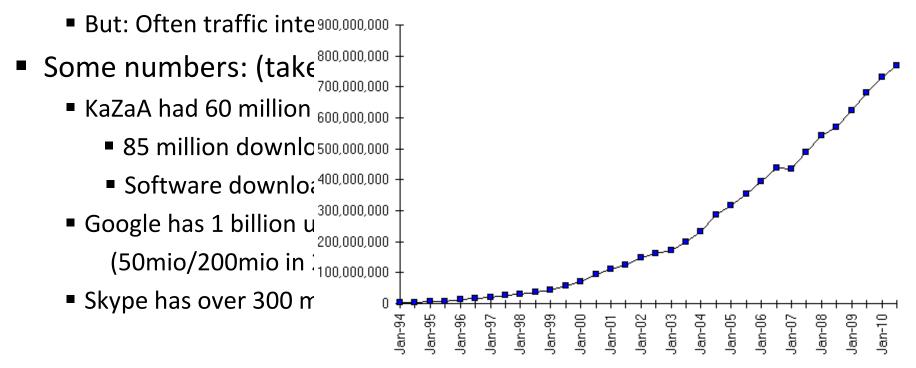
# New P2P Systems



- File sharing was first P2P application
- Other applications are coming to light
- BitTorrent more content distribution than file sharing
- P2P extending beyond file sharing: Skype
  - We will look at Skype closer in Chapter 2
- Skype is a P2P telephone "system"
  - Can call other computers, or normal phones
- Skype is based on the KaZaA network (see Chapter 2)
- Similar to VoIP services (e.g., Vonage), but fully based on the individual peers
  - Skype requires a computer, VoIP services often do not
- Using resources: Games, Video Streaming; Controlling date: OSN;

# P<sub>2</sub>P: Some Statistics




- Currently P2P accounts for 40% (\*) of network traffic
  - A bit different in different networks
  - Hard to measure accurately
- Network providers (ISP) not too happy about this
  - But: Often traffic internal to ISP! (e.g., T-Com)
- Some numbers: (take with a grain of salt...)
  - KaZaA had 60 million users total, 1-5 million online at any time
    - 85 million downloads/day
    - Software downloaded over 230 million times
  - Google has 1 billion unique users / month, 400 million queries/day (50mio/200mio in 2006)
  - Skype has over 300 million users, over 20 million concurrently

(\*) over 70% including file hosters and usenet

### P<sub>2</sub>P: Some Statistics



- Currently P2P accounts for 40% (\*) of network traffic
  - A bit different in different networks
  - Hard to measure accurately
- Network providers (ISP) not too happy about this



(\*) over 70% including file hosters and usenet

# Why Does P2P Work?



- Why are P2P file sharing networks so successful?
- 1. Easy to use
  - P2P software readily available, simple to use
- 2. Provide something useful (for free)
  - Until recently, only alternative to P2P content was "buy a CD"
  - Online music stores may change this?
- 3. Anyone can contribute
  - Contributions not tied to geographical location; user in Brazil can provide files for everyone (compare with ad hoc networks!)
  - Enough "altruistic" users to make P2P networks useful
- Some systems (Skype) completely hide the P2P-part
  - Will this become the future trend?

# P<sub>2</sub>P: Traps and Pitfalls



- What could render current P2P networks useless?
  - In particular, file sharing networks
- 1. Removal of desirable content
  - Stricter enforcement of copyright laws?
- 2. Alternative ways of getting same content
  - Online music stores?
- 3. Blocking of P2P traffic by ISPs
  - Or making users pay for bandwidth they use?
- 4. Viruses or worms on P2P networks
  - Exploit bugs in P2P software
- 5. Frighten the users away...

#### When P2P and When Not P2P?



- So, when is P2P the right solution?
- Or, when is P2P the wrong solution?
- Claim: A general P2P vision is technically feasible
  - In other words, possible to build everything on Internet without any dedicated servers
- Gotcha: Just because it's technically feasible, it doesn't necessarily make sense...
- In other words, just because we can do it P2P, doesn't mean that we should do it P2P
  - True in many areas of life...
- So, when *is* P2P the right solution?!?

### **Some Criteria**



Let's consider the following criteria

# 1. Budget

How much money do we have?

#### 2. Resource relevance

How widely are resources interesting to users?

#### 3. Trust

How much trust is there between users?

# 4. Rate of system change

How fast does "something" in the system change

### 5. Criticality

How critical is the service to the users

# **Analysis**



# **Budget**

- If you have enough money, build a centralized system
- Look at Google if you doubt this claim ;-)
  - Any system can be made to scale with enough money
- P2P is therefore useful when budget is not unlimited
  - In other words, most real-world situations...
  - From the rest of this analysis, we assume limited budget

#### Resource relevance

- If shared resources are highly relevant to a large number of users,
   P2P makes sense
- Easier to build a distributed solution when interest is widely spread

# **Analysis, Continued**



#### **Trust**

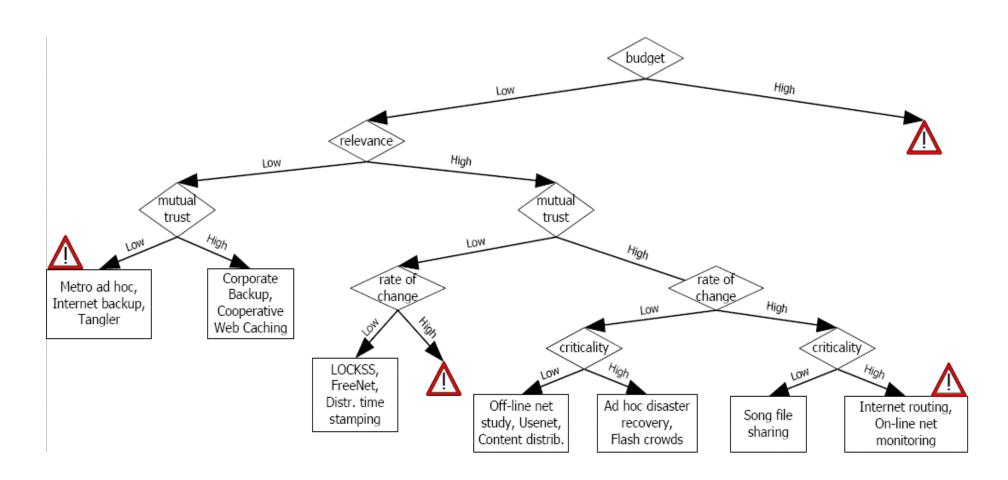
- If other users can be trusted, P2P is a good solution
  - For example, corporate network or any closed network
- Building a fully distributed, trusted network is still very much a research problem (and may remain so...)

# Rate of system change

Btw: what does "trust" mean in this context!?

- How high are the system dynamics?
  - Rate of peers joining and leaving, rate of information change in system, rate of change in network topology, ...
- If the rate of change is too high, a distributed P2P solution might not be able to keep up
- Again, research problem

# Analysis, End




### Criticality

- How important is the service to the users?
- If you "can live without it", P2P is acceptable
- If "it must work", then consider other solutions...
- Summary: P2P is good when:
  - Budget is limited
  - Resources have wide interest and relevance
  - Trust between participants is high
  - Rate of change is manageable
  - Criticality is low
- Note: Again, no need to fulfill every point!







Taken from M. Roussopoulos et al. "2 P2P or not 2 P2P?", IPTPS 2004

# What does Future Hold for P2P?



- Take out crystal ball and look 5 years into future?
  - P2P has been around for just over 10 years now...
- Where will file sharing be in 5 years?
  - Still popular? Underground activity?
- P2P content distribution? (BitTorrent and others)
  - Microsoft building their system for software patches?
  - Some other systems patch via BitTorrent
- How about Skype and others?
  - Will Skype be around in 5 years?
  - Will Internet telephony be taken over by telcos?
- Research efforts in P2P?
  - More mature, concentrate on fundamental principles
  - What makes P2P different from other systems?

# Future of P2P?



- Global P2P networks?
  - Besides file sharing, "Skype", and research prototypes?
- Taking P2P concepts for other means and applications
  - Load balancing at S3 (inherently won)
  - Online Social Networking (remove central access to data)
  - Create resilient distributed systems (bot nets..)
- Insight on future trends: (at the example of Korea)
  - High bandwidth residential and wireless access
  - Online gaming (50% of network traffic!) main source of traffic
  - File sharing moved to pay models
  - Online communities gaining importance

# **Chapter Summary**



- Peer-to-peer principle of self-organization and resource sharing
- Case Study of DNS to see it working the engineering way
- P2P systems exhibit specific characteristics:
  - Autonomy from central servers
  - Use of edge resources
  - Intermittent connectivity
- Hard to define clearly the limits of P2P
  - Quite some areas are closely related...
  - Different people working in different areas have different definitions

# Outline of the Remainder of the Course



- Current P2P Systems
- Networks, Searching, and DHT
- Some Theory: Tools and Methods
- Novel Applications for P2P
  - Online Gaming
  - Online Social Networks
  - Application Level Multicast (P2P IPTV, Live Streaming)
  - P2P Botnets
- P2P and Security