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Peer-to-Peer Networks 

Chapter 3: Networks, Searching and  

  Distributed Hash Tables 
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Chapter Outline 

 Searching and addressing 
 Structured and unstructured networks 

 Distributed Hash Tables (DHT) 
 What are DHT? 

 How do they work? 

 What are they good for? 

 Examples: Chord, CAN, Plaxton/Pastry/Tapestry 

 Networks and graphs 
 Graph theory meets networking 

 Different types of graphs and their properties 
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Searching and Addressing 

 Two basic ways to find objects: 

1. Search for them 

2. Address them using their unique name 

 Both have pros and cons (see below) 

 File sharing built on searching, some start addressing objects 

 Difference between searching and addressing is a very 
fundamental difference 
 Determines how network is constructed 

 Determines how objects are placed 

 “Determines” efficiency of object location 

 Let’s compare searching and addressing 
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Searching vs. Addressing 

 Recall: Name -> ID -> Reference 

 

 Content Addressing maps the „content“ on a reference 
 F(resource) := Reference  (resource may be reg. information) 

 Consider F(.) globally be known:  

 Anybody can directly derive (and access) reference 

 Direct addressing of content (if resource is known…) 

 Location depends on F(.) and resource only 

 

Is this always useful? 
 Searching may find 

 Names, IDs, References, Metadata, Content… 

 But: deterministic access is big advantage in large, dist. systems! 
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Addressing vs. Searching 

Addressing 
 Pros: 

 Each object uniquely identifiable 

 Object location can be made 
efficient 

 Cons: 

 Need to know unique name 

 Need to maintain structure 
required for addressing 

Searching 
 Pros: 

 No need to know unique names 

 More user friendly 

 Cons: 

 Hard to make efficient 

 Can solve with money, see 
Google 

 Need to compare actual objects to 
know if they are same 

•  “Addressing” networks find objects by addressing them with their unique name (cf. 
URLs in Web) 
•  “Searching” networks find objects by searching with keywords that match objects’ 
description (cf. Google) 
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Searching, Addressing, and P2P 

 We can distinguish two main P2P network types 
 

 Unstructured networks/systems (Last chapter) 
 Cause the need for searching (provide the possibility to search!) 

 Unstructured does NOT mean complete lack of structure 

 Network has graph structure, e.g., scale-free, power-law, hierachy,… 

 Network has structure, but peers are free to join anywhere, choose 
neighbors freely,  objects are stored anywhere 

 

 Structured networks/systems 
 Allow for addressing, deterministic routing 

 Network structure determines where peers belong in the network and 
where objects are stored 

 How can we build structured networks? 
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Distributed Hash Tables 

 What are DHT? 

 How do they work? 

 What are they good for? 

 Examples:  
 Chord 

 CAN 

 Tapestry (Plaxton-Mesh/Pastry) 
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DHT: Motivation 

 Why do we need DHTs? 

 Searching in unstructured P2P networks is not efficient 
 Either centralized system with all its problems 

 Or decentralized system with all its problems 

 Hybrid systems cannot guarantee discovery either 

 Actual file transfer process in P2P network is scalable 
 File transfers directly between peers 

 Searching does not scale in same way 

 Original motivation for DHTs:  

 More efficient searching and object location in P2P networks 

 Put another way: Use addressing instead of searching 
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Recall: Hash Tables 

 Hash tables are a well-known data structure 

 Hash tables allow insertions, deletions, and lookups in O(1) 

 

 Hash table is a fixed-size array 
 Elements of array also called hash buckets 

 

 Hash function maps keys to elements in the array 

 

 Properties of good hash functions: 
 Fast to compute 

 Good distribution of keys into hash table 

 Example: SHA-1 algorithm 

 www.phdcomics.com 
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Hash Tables: Example 

 Hash function: 
hash(x) = x mod 10 

 Insert numbers 0, 1, 4, 9, 16, 
and 25 

 Easy to find if a given key is 
present in the table 
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Distributed Hash Table: Idea 

 Hash tables are fast for 
lookups 

 Idea: Distribute hash 
buckets to peers 

 Result is Distributed 
Hash Table (DHT) 

 Need efficient 
mechanism for finding 
which peer is 
responsible for which 
bucket and routing 
between them 
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DHT: Principle 

 In a DHT, each node is responsible 
for one or more hash buckets 
 As nodes join and leave, the 

responsibilities change 

 Nodes communicate among 
themselves to find the responsible 
node 
 Scalable communications make DHTs 

efficient 

 DHTs support all the normal hash 
table operations 
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Summary of DHT Principles 

 Hash buckets distributed over nodes 

 Nodes form an overlay network 
 Route messages in overlay to find responsible node 

 Routing scheme in the overlay network is the difference 
between different DHTs 

 DHT behavior and usage: 
 Node knows “object” name and wants to find it 

 Unique and known object names assumed 

 Node routes a message in overlay to the responsible node 

 Responsible node replies with “object” 

 Semantics of “object” are application defined 
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DHT Examples 

 In the following look at some example DHTs 
 Chord 

 CAN 

 Tapestry  

 Several others exist too 
 Pastry, Plaxton, Kademlia, Koorde, Symphony, P-Grid, CARP, … 

 

 All DHTs provide the same abstraction: 
 DHT stores key-value pairs 

 When given a key, DHT can retrieve/store the value 

 No semantics associated with key or value 

 

 Routing in overlay is the main difference 



17 

 

TU Darmstadt, FG P2P, Th. Strufe   Peer-to-Peer Networks – Chapter 3: DHT 
 

Chord 

 Chord was developed at MIT 

 Originally published in 2001 at Sigcomm conference 

 

 Chord’s overlay routing principle quite easy to understand 
 Paper has mathematical proofs of correctness and performance 

 

 Many projects at MIT around Chord 
 CFS storage system 

 Ivy storage system 

 Plus many others… 
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Chord: Basics 

 Chord uses SHA-1 hash function 
 Results in a 160-bit object/node identifier 

 Same hash function for objects and nodes 

 Node ID hashed from IP address 

 Object ID hashed from object name 
 Object names somehow assumed to be known by everyone  

 

 SHA-1 gives a 160-bit identifier space 

 Organized in a ring which wraps around 
 Overlay is often called “Chord ring” or “Chord circle” 

 Nodes keep track of predecessor and successor 

 Node registers objects on the namespace between predecessor and itself 
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Chord: Examples 

 Below examples for: 
 How to join the Chord ring 

 How to store and retrieve values 
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Joining: Step-By-Step Example 

 Setup: Existing network with nodes 
on 0, 1 and 4 

 

 Note: Protocol messages simply 
examples 

 

 Many different ways to  

 implement Chord 
 Here only conceptual example 

 Covers all important aspects 
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Joining: Step-By-Step Example: Start 

 New node wants to join 

 Hash of the new node: 6 

 Known node in network: Node1 

 

 Contact Node1 

 Include own hash 

 

0 

1 

2 

3 

4 

5 

6 

7 



22 

 

TU Darmstadt, FG P2P, Th. Strufe   Peer-to-Peer Networks – Chapter 3: DHT 
 

Joining: Step-By-Step Example: 
Situation Before Join 
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Data for ]4;0] 

Data for ]0;1] 

Data for ]1;4] 

No data 

succ0 succ0 

succ1 succ1 succ4 succ4 

pred1 pred1 pred0 pred0 

pred4 pred4 
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Joining: Step-By-Step Example: 
Contact known node 
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JOIN 6 

 Arrows indicate 

open connections 

 Example assumes 

connections are kept 

open, i.e., messages 

processed recursively 

 Iterative processing is 

also possible 
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Joining: Step-By-Step Example: 
Join gets routed along the network 
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Joining: Step-By-Step Example: 
Successor of New Node Found 
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Joining: Step-By-Step Example: 
Joining Successful + Transfer 
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TRANSFER 
Data in range ]4;6] Joining is successful 

 
Old responsible node 
transfers data that 
should be in new 
node 
 
New node informs 
Node4 about new 
successor (not shown) 

Note: Transferring can happen also later 
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Joining: Step-By-Step Example: 
All Is Done 
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succ0 succ0 

succ1 succ1 succ4 succ4 

pred1 pred1 pred0 pred0 

pred4 pred4 pred6 pred6 

succ6 succ6 

Data for ]6;0] 

Data for ]0;1] 

Data for ]1;4] 

Data for ]4;6] 
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Storing a Value 

 Node 6 wants to store 
object with name “Foo” 
and value 5 

 hash(Foo) = 2 
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Storing a Value 
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Storing a Value 
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Storing a Value 
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STORE 2 5 

Value is now stored 
in node 4. 



32 

 

TU Darmstadt, FG P2P, Th. Strufe   Peer-to-Peer Networks – Chapter 3: DHT 
 

Retrieving a Value 

 Node 1 wants to get object 
with name “Foo” 

 hash(Foo) = 2 

 Foo is stored on node 4 
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Retrieving a Value 
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Retrieving a Value 

 

0 

1 

2 

3 

4 

5 

6 

7 

RESULT 5 



35 

 

TU Darmstadt, FG P2P, Th. Strufe   Peer-to-Peer Networks – Chapter 3: DHT 
 

Chord: Scalable Routing 

 Routing happens by passing message to successor 

 What happens when there are 1 million nodes? 
 On average, need to route 1/2-way across the ring 

 In other words, 0.5 million hops! Complexity O(n)  

 How to make routing scalable? 

 Answer: Finger tables 

 Basic Chord keeps track of predecessor and successor 

 Finger tables keep track of more nodes 
 Allow for faster routing by jumping long way across the ring 

 Routing scales well, but need more state information 

 Finger tables not needed for correctness, only performance 
improvement 
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Chord: Finger Tables 

 In m-bit identifier space, node has up to m fingers 

 Fingers are stored in the finger table 

 

 Row i in finger table at node v contains first node s that succeeds 
v by at least 2i-1 on the ring (namespace, not nodes!) 

 In other words: 

   finger[i] = u : |u| >= |v| + 2i-1 mod 2m 

 First finger is the successor 

 Distance to finger[i] is at least 2i-1 
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Chord: Scalable Routing 

 Finger intervals increase with distance 
from node n 

 If close, short hops and if far, long hops 

Two key properties: 

 Each node only stores information 
about a small number of nodes 

 Cannot in general determine the 
successor of an arbitrary ID 

 

 Example has three nodes at 0, 1, and 4 

 3-bit ID space --> 3 rows of fingers 
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Chord Finger Tables (Ex) 
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Start Int. Succ. 

1 [1,2) 1 

2 [2,4) 4 

4 [4,0) 4 

Start Int. Succ. 

2 [2,3) 4 

3 [3,5) 4 

5 [5,1) 0 

Start Int. Succ. 

5 [5,6) 0 

6 [6,0) 0 

0 [0,4) 0 

So for node 4… 
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Chord: Performance 

 Search performance of “pure” Chord O(n) 
 Number of nodes is n 

 With finger tables, need O(log n) hops to find the correct node 
 Fingers separated by at least 2i-1 

 With high probability, distance to target halves at each step 

 In beginning, distance is at most 2m 

 Hence, we need at most m hops 

 For state information, “pure” Chord has only successor and 
predecessor, O(1) state 

 For finger tables, need m entries 
 Actually, only O(log n) are distinct 

 Proof is in the paper 


