
1

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Peer-to-Peer Networks

Chapter 3: Networks, Searching and

 Distributed Hash Tables

2

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Chapter Outline

 Searching and addressing
 Structured and unstructured networks

 Distributed Hash Tables (DHT)
 What are DHT?

 How do they work?

 What are they good for?

 Examples: Chord, CAN, Plaxton/Pastry/Tapestry

 Networks and graphs
 Graph theory meets networking

 Different types of graphs and their properties

3

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Searching and Addressing

 Two basic ways to find objects:

1. Search for them

2. Address them using their unique name

 Both have pros and cons (see below)

 File sharing built on searching, some start addressing objects

 Difference between searching and addressing is a very
fundamental difference
 Determines how network is constructed

 Determines how objects are placed

 “Determines” efficiency of object location

 Let’s compare searching and addressing

4

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Searching vs. Addressing

 Recall: Name -> ID -> Reference

 Content Addressing maps the „content“ on a reference
 F(resource) := Reference (resource may be reg. information)

 Consider F(.) globally be known:

 Anybody can directly derive (and access) reference

 Direct addressing of content (if resource is known…)

 Location depends on F(.) and resource only

Is this always useful?
 Searching may find

 Names, IDs, References, Metadata, Content…

 But: deterministic access is big advantage in large, dist. systems!

5

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Addressing vs. Searching

Addressing
 Pros:

 Each object uniquely identifiable

 Object location can be made
efficient

 Cons:

 Need to know unique name

 Need to maintain structure
required for addressing

Searching
 Pros:

 No need to know unique names

 More user friendly

 Cons:

 Hard to make efficient

 Can solve with money, see
Google

 Need to compare actual objects to
know if they are same

• “Addressing” networks find objects by addressing them with their unique name (cf.
URLs in Web)
• “Searching” networks find objects by searching with keywords that match objects’
description (cf. Google)

7

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Searching, Addressing, and P2P

 We can distinguish two main P2P network types

 Unstructured networks/systems (Last chapter)
 Cause the need for searching (provide the possibility to search!)

 Unstructured does NOT mean complete lack of structure

 Network has graph structure, e.g., scale-free, power-law, hierachy,…

 Network has structure, but peers are free to join anywhere, choose
neighbors freely, objects are stored anywhere

 Structured networks/systems
 Allow for addressing, deterministic routing

 Network structure determines where peers belong in the network and
where objects are stored

 How can we build structured networks?

9

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Distributed Hash Tables

 What are DHT?

 How do they work?

 What are they good for?

 Examples:
 Chord

 CAN

 Tapestry (Plaxton-Mesh/Pastry)

10

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

DHT: Motivation

 Why do we need DHTs?

 Searching in unstructured P2P networks is not efficient
 Either centralized system with all its problems

 Or decentralized system with all its problems

 Hybrid systems cannot guarantee discovery either

 Actual file transfer process in P2P network is scalable
 File transfers directly between peers

 Searching does not scale in same way

 Original motivation for DHTs:

 More efficient searching and object location in P2P networks

 Put another way: Use addressing instead of searching

11

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Recall: Hash Tables

 Hash tables are a well-known data structure

 Hash tables allow insertions, deletions, and lookups in O(1)

 Hash table is a fixed-size array
 Elements of array also called hash buckets

 Hash function maps keys to elements in the array

 Properties of good hash functions:
 Fast to compute

 Good distribution of keys into hash table

 Example: SHA-1 algorithm

 www.phdcomics.com

12

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Hash Tables: Example

 Hash function:
hash(x) = x mod 10

 Insert numbers 0, 1, 4, 9, 16,
and 25

 Easy to find if a given key is
present in the table

0

1

2

6

4

8

3

7

9

5

0

1

4

25

16

9

13

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Distributed Hash Table: Idea

 Hash tables are fast for
lookups

 Idea: Distribute hash
buckets to peers

 Result is Distributed
Hash Table (DHT)

 Need efficient
mechanism for finding
which peer is
responsible for which
bucket and routing
between them

0

1

2

6

4

8

3

7

9

5

0

1

4

25

16

9

14

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

DHT: Principle

 In a DHT, each node is responsible
for one or more hash buckets
 As nodes join and leave, the

responsibilities change

 Nodes communicate among
themselves to find the responsible
node
 Scalable communications make DHTs

efficient

 DHTs support all the normal hash
table operations

0

1

2

0

1

6

4

3

5

4

25

16

8

7

9
9

15

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Summary of DHT Principles

 Hash buckets distributed over nodes

 Nodes form an overlay network
 Route messages in overlay to find responsible node

 Routing scheme in the overlay network is the difference
between different DHTs

 DHT behavior and usage:
 Node knows “object” name and wants to find it

 Unique and known object names assumed

 Node routes a message in overlay to the responsible node

 Responsible node replies with “object”

 Semantics of “object” are application defined

16

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

DHT Examples

 In the following look at some example DHTs
 Chord

 CAN

 Tapestry

 Several others exist too
 Pastry, Plaxton, Kademlia, Koorde, Symphony, P-Grid, CARP, …

 All DHTs provide the same abstraction:
 DHT stores key-value pairs

 When given a key, DHT can retrieve/store the value

 No semantics associated with key or value

 Routing in overlay is the main difference

17

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Chord

 Chord was developed at MIT

 Originally published in 2001 at Sigcomm conference

 Chord’s overlay routing principle quite easy to understand
 Paper has mathematical proofs of correctness and performance

 Many projects at MIT around Chord
 CFS storage system

 Ivy storage system

 Plus many others…

18

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Chord: Basics

 Chord uses SHA-1 hash function
 Results in a 160-bit object/node identifier

 Same hash function for objects and nodes

 Node ID hashed from IP address

 Object ID hashed from object name
 Object names somehow assumed to be known by everyone

 SHA-1 gives a 160-bit identifier space

 Organized in a ring which wraps around
 Overlay is often called “Chord ring” or “Chord circle”

 Nodes keep track of predecessor and successor

 Node registers objects on the namespace between predecessor and itself

19

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Chord: Examples

 Below examples for:
 How to join the Chord ring

 How to store and retrieve values

20

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Joining: Step-By-Step Example

 Setup: Existing network with nodes
on 0, 1 and 4

 Note: Protocol messages simply
examples

 Many different ways to

 implement Chord
 Here only conceptual example

 Covers all important aspects

0

1

2

3

4

5

6

7

21

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Joining: Step-By-Step Example: Start

 New node wants to join

 Hash of the new node: 6

 Known node in network: Node1

 Contact Node1

 Include own hash

0

1

2

3

4

5

6

7

22

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Joining: Step-By-Step Example:
Situation Before Join

0

1

2

3

4

5

6

7

Data for]4;0]

Data for]0;1]

Data for]1;4]

No data

succ0 succ0

succ1 succ1 succ4 succ4

pred1 pred1 pred0 pred0

pred4 pred4

23

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Joining: Step-By-Step Example:
Contact known node

0

1

2

3

4

5

6

7

JOIN 6

 Arrows indicate

open connections

 Example assumes

connections are kept

open, i.e., messages

processed recursively

 Iterative processing is

also possible

24

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Joining: Step-By-Step Example:
Join gets routed along the network

0

1

2

3

4

5

6

7

JOIN 6

25

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Joining: Step-By-Step Example:
Successor of New Node Found

0

1

2

3

4

5

6

7

JOIN 6

26

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Joining: Step-By-Step Example:
Joining Successful + Transfer

0

1

2

3

4

5

6

7

TRANSFER
Data in range]4;6] Joining is successful

Old responsible node
transfers data that
should be in new
node

New node informs
Node4 about new
successor (not shown)

Note: Transferring can happen also later

27

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Joining: Step-By-Step Example:
All Is Done

0

1

2

3

4

5

6

7
succ0 succ0

succ1 succ1 succ4 succ4

pred1 pred1 pred0 pred0

pred4 pred4 pred6 pred6

succ6 succ6

Data for]6;0]

Data for]0;1]

Data for]1;4]

Data for]4;6]

28

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Storing a Value

 Node 6 wants to store
object with name “Foo”
and value 5

 hash(Foo) = 2
0

1

2

3

4

5

6

7

29

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Storing a Value

0

1

2

3

4

5

6

7

STORE 2 5

30

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Storing a Value

0

1

2

3

4

5

6

7

STORE 2 5

31

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Storing a Value

0

1

2

3

4

5

6

7

STORE 2 5

Value is now stored
in node 4.

32

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Retrieving a Value

 Node 1 wants to get object
with name “Foo”

 hash(Foo) = 2

 Foo is stored on node 4
0

1

2

3

4

5

6

7

33

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Retrieving a Value

0

1

2

3

4

5

6

7

RETRIEVE 2

34

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Retrieving a Value

0

1

2

3

4

5

6

7

RESULT 5

35

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Chord: Scalable Routing

 Routing happens by passing message to successor

 What happens when there are 1 million nodes?
 On average, need to route 1/2-way across the ring

 In other words, 0.5 million hops! Complexity O(n)

 How to make routing scalable?

 Answer: Finger tables

 Basic Chord keeps track of predecessor and successor

 Finger tables keep track of more nodes
 Allow for faster routing by jumping long way across the ring

 Routing scales well, but need more state information

 Finger tables not needed for correctness, only performance
improvement

36

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Chord: Finger Tables

 In m-bit identifier space, node has up to m fingers

 Fingers are stored in the finger table

 Row i in finger table at node v contains first node s that succeeds
v by at least 2i-1 on the ring (namespace, not nodes!)

 In other words:

 finger[i] = u : |u| >= |v| + 2i-1 mod 2m

 First finger is the successor

 Distance to finger[i] is at least 2i-1

37

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Chord: Scalable Routing

 Finger intervals increase with distance
from node n

 If close, short hops and if far, long hops

Two key properties:

 Each node only stores information
about a small number of nodes

 Cannot in general determine the
successor of an arbitrary ID

 Example has three nodes at 0, 1, and 4

 3-bit ID space --> 3 rows of fingers

0

1

2

3

4

5

6

7

38

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Chord Finger Tables (Ex)

0

1

2

3

4

5

6

7

Start Int. Succ.

1 [1,2) 1

2 [2,4) 4

4 [4,0) 4

Start Int. Succ.

2 [2,3) 4

3 [3,5) 4

5 [5,1) 0

Start Int. Succ.

5 [5,6) 0

6 [6,0) 0

0 [0,4) 0

So for node 4…

39

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Chord: Performance

 Search performance of “pure” Chord O(n)
 Number of nodes is n

 With finger tables, need O(log n) hops to find the correct node
 Fingers separated by at least 2i-1

 With high probability, distance to target halves at each step

 In beginning, distance is at most 2m

 Hence, we need at most m hops

 For state information, “pure” Chord has only successor and
predecessor, O(1) state

 For finger tables, need m entries
 Actually, only O(log n) are distinct

 Proof is in the paper

