Peer-to-Peer Networks

Chapter 3: Networks, Searching and
Distributed Hash Tables

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT

Chapter Outline
e

= Searching and addressing

m Structured and unstructured networks

= Distributed Hash Tables (DHT)
= What are DHT?
= How do they work?
= What are they good for?
= Examples: Chord, CAN, Plaxton/Pastry/Tapestry

= Networks and graphs
= Graph theory meets networking
= Different types of graphs and their properties

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT

Searching and Addressing j
G

Two basic ways to find objects:
Search for them

Mo

Address them using their unique name

Both have pros and cons (see below)
= File sharing built on searching, some start addressing objects

= Difference between searching and addressing is a very
fundamental difference
= Determines how network is constructed
= Determines how objects are placed
= “Determines” efficiency of object location

= Let’s compare searching and addressing

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT

Searching vs. Addressing @\

m Recall: Name -> ID -> Reference

= Content Addressing maps the ,content” on a reference
= F(resource) := Reference (resource may be reg. information)
= Consider F(.) globally be known:
= Anybody can directly derive (and access) reference
= Direct addressing of content (if resource is known...)
= Location depends on F(.) and resource only

Is this always useful?
= Searching may find
= Names, IDs, References, Metadata, Content...

= But: deterministic access is big advantage in large, dist. systems!

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT

Addressing vs. Searching :
e

e “Addressing” networks find objects by addressing them with their uniqgue name (cf.
URLs in Web)

e “Searching” networks find objects by searching with keywords that match objects’
description (cf. Google)

Addressing Searching
= Pros: = Pros:
= Each object uniquely identifiable = No need to know unique names
= Object location can be made = More user friendly
efficient = Cons:
= Cons: » Hard to make efficient
= Need to know unique name = Can solve with money, see
= Need to maintain structure Google
required for addressing = Need to compare actual objects to

know if they are same

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT

Searching, Addressing, and P2P 420

= We can distinguish two main P2P network types

= Unstructured networks/systems (Last chapter)

= Cause the need for searching (provide the possibility to search!)
= Unstructured does NOT mean complete lack of structure

= Network has graph structure, e.g., scale-free, power-law, hierachy,...

= Network has structure, but peers are free to join anywhere, choose
neighbors freely, objects are stored anywhere

= Structured networks/systems
= Allow for addressing, deterministic routing

= Network structure determines where peers belong in the network and
where objects are stored

= How can we build structured networks?

TU Darmstadt, FG P2P, Th. Strufe

Peer-to-Peer Networks — Chapter 3: DHT

Distributed Hash Tables
GEE————

= What are DHT?

= How do they work?

= What are they good for?

= Examples:
= Chord
= CAN
= Tapestry (Plaxton-Mesh/Pastry)

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT

DHT: Motivation @&
G

Why do we need DHTs?

Searching in unstructured P2P networks is not efficient
= Either centralized system with all its problems
= Or decentralized system with all its problems
= Hybrid systems cannot guarantee discovery either

Actual file transfer process in P2P network is scalable

= File transfers directly between peers
Searching does not scale in same way
Original motivation for DHTs:
More efficient searching and object location in P2P networks
Put another way: Use addressing instead of searching

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT 10

Recall: Hash Tables @3

= Hash tables are a well-known data structure
= Hash tables allow insertions, deletions, and lookups in O(1)

Hash table is a fixed-size array : ﬁ

AZ
= Elements of array also called hash buckets @

Hash function maps keys to elements in the array

= Properties of good hash functions:
= Fast to compute
= Good distribution of keys into hash table
= Example: SHA-1 algorithm

www . phdcomics. com
TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT 11

Hash Tables: Example o
o

= Hash function:
hash(x) = x mod 10

= |nsert numbersO, 1, 4, 9, 16,
and 25

= Easy to find if a given key is
present in the table

>-

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT 12

Distributed Hash Table: Idea

= Hash tables are fast for

lookups

= |dea: Distribute hash
buckets to peers

= Result is Distributed
Hash Table (DHT)

= Need efficient

mechanism for finding

which peer is
responsible for which
bucket and routing
between them

TU Darmstadt, FG P2P, Th. Strufe

Peer-to-Peer Networks — Chapter 3: DHT

13

DHT: Principle
G

" |n a DHT, each node is responsible
for one or more hash buckets
= As nodes join and leave, the
responsibilities change
= Nodes communicate among
themselves to find the responsible
node

= Scalable communications make DHTs
efficient

= DHTs support all the normal hash
table operations

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT

14

Summary of DHT Principles @\
o

= Hash buckets distributed over nodes
= Nodes form an overlay network

= Route messages in overlay to find responsible node

= Routing scheme in the overlay network is the difference
between different DHTs

= DHT behavior and usage:
= Node knows “object” name and wants to find it
= Unique and known object names assumed
= Node routes a message in overlay to the responsible node
= Responsible node replies with “object”
= Semantics of “object” are application defined

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT 15

DHT Examples
e

= |n the following look at some example DHTs
= Chord
= CAN
= Tapestry

= Several others exist too

= Pastry, Plaxton, Kademlia, Koorde, Symphony, P-Grid, CARP, ...

= All DHTs provide the same abstraction:
= DHT stores key-value pairs
= When given a key, DHT can retrieve/store the value
= No semantics associated with key or value

= Routing in overlay is the main difference

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT

16

Chord
G

" Chord was developed at MIT
= QOriginally published in 2001 at Sigcomm conference

= Chord’s overlay routing principle quite easy to understand

= Paper has mathematical proofs of correctness and performance

= Many projects at MIT around Chord
= CFS storage system
= vy storage system
= Plus many others...

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT

17

Chord: Basics @\
e

* Chord uses SHA-1 hash function
= Results in a 160-bit object/node identifier
= Same hash function for objects and nodes

Node ID hashed from IP address
Object ID hashed from object name

= Object names somehow assumed to be known by everyone

SHA-1 gives a 160-bit identifier space

= Organized in a ring which wraps around
= Overlay is often called “Chord ring” or “Chord circle”
= Nodes keep track of predecessor and successor
= Node registers objects on the namespace between predecessor and itself

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT 18

Chord: Examples
G

= Below examples for:
= How to join the Chord ring
= How to store and retrieve values

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT

19

Joining: Step-By-Step Example

= Setup: Existing network with nodes
on0,1and4

= Note: Protocol messages simply
examples

= Many different ways to
implement Chord

= Here only conceptual example
= Covers all important aspects

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT

20

Joining: Step-By-Step Example:
G
= New node wants to join

= Hash of the new node: 6
= Known node in network: Nodel

= Contact Nodel

®* |Include own hash

Start

=
-

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT

21

Joining: Step-By-Step Example:
Situation Before Join

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT

22

Joining: Step-By-Step Example:

Contact known node
o

Arrows indicate

open connections
Example assumes
connections are kept
open, i.e., messages
processed recursively
Iterative processing is

also possible

TU Darmstadt, FG P2P, Th. Strufe

Peer-to-Peer Networks — Chapter 3: DHT

23

Joining: Step-By-Step Example:
Join gets routed along the network
eEE——

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT

24

Joining: Step-By-Step Example:
Successor of New Node Found
O

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT

25

Joining: Step-By-Step Example: =
Joining Successful + Transfer ; >
G

TRANSFER
Data in range]4,6]

Joining is successful

Old responsible node
transfers data that
should be in new
node

New node informs
Node4 about new
successor (not shown)

Note: Transferring can happen also later

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT 26

Joining: Step-By-Step Example:
All Is Done

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT

27

Storing a Value
e

= Node 6 wants to store
object with name “Foo”

and value 5
* hash(Foo) =2

TU Darmstadt, FG P2P, Th. Strufe

Peer-to-Peer Networks — Chapter 3: DHT

28

Storing a Value

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT 29

Storing a Value

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT 30

Storing a Value

Value is now stored
in hode 4.

TU Darmstadt, FG P2P, Th. Strufe

Peer-to-Peer Networks — Chapter 3: DHT

31

Retrieving a Value
e

= Node 1 wants to get object

with name “Foo”
* hash(Foo) =2

- Foo is stored on node 4

TU Darmstadt, FG P2P, Th. Strufe

Peer-to-Peer Networks — Chapter 3: DHT

32

Retrieving a Value
G

TU Darmstadt, FG P2P, Th. Strufe

Peer-to-Peer Networks — Chapter 3: DHT

33

Retrieving a Value
G

TU Darmstadt, FG P2P, Th. Strufe

Peer-to-Peer Networks — Chapter 3: DHT

34

Chord: Scalable Routing @3

Routing happens by passing message to successor
What happens when there are 1 million nodes?

= On average, need to route 1/2-way across the ring
= |[n other words, 0.5 million hops! Complexity O(n)

How to make routing scalable?

Answer: Finger tables

Basic Chord keeps track of predecessor and successor
Finger tables keep track of more nodes

= Allow for faster routing by jumping long way across the ring

= Routing scales well, but need more state information

Finger tables not needed for correctness, only performance
improvement

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT 35

Chord: Finger Tables @N

" In m-bit identifier space, node has up to m fingers
" Fingers are stored in the finger table

= Row iin finger table at node v contains first node s that succeeds
v by at least 2! on the ring (namespace, not nodes!)

In other words:
finger[il=u: [u] >= [v] + 2-1mod 2™
First finger is the successor

Distance to finger]i] is at least 21

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT 36

Chord: Scalable Routing ;)
e

= Finger intervals increase with distance
from node n

= |f close, short hops and if far, long hops
Two key properties:

= Each node only stores information
about a small number of nodes

= Cannotin general determine the
successor of an arbitrary ID

= Example has three nodesat 0, 1, and 4
= 3-bit ID space --> 3 rows of fingers

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT 37

Chord Finger Tables (Ex)

Start Int. Succ.
Start Int. Succ.
2 [2,3) 4
1 [1,2) 1
3 [3,5) 4
2 [2,4) 4
5 [5,1) 0
4 [4,0) 4

So for node 4...

Start Int. Succ.
5 [5,6) 0
6 [6,0) 0
0 [0,4) 0

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT 38

Chord: Performance @N

= Search performance of “pure” Chord O(n)

= Number of nodes is n

= With finger tables, need O(log n) hops to find the correct node
= Fingers separated by at least 2/1
= With high probability, distance to target halves at each step
" |In beginning, distance is at most 2™
=" Hence, we need at most m hops

® For state information, “pure” Chord has only successor and
predecessor, O(1) state
= For finger tables, need m entries

= Actually, only O(log n) are distinct
= Proof is in the paper

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Chapter 3: DHT 39

