
93TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Avoiding Traffic ctd.

 Which degrees of freedom do we have?
 Select neighbor
 Select next hop
 Select ID !?

(The respective others kept conventional…)

 Location-based neighbor selection
 Pastry, Tapestry, etc.: only store the closest in routing tables

 Location-based next-hop selection
 Any: from all neighbors that are closer to resource select the 

nearest
 Topology-based ID selection

 „Learn“ ID depending on 
 All of them have pros and cons



94TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

CAN revisited: Location aware DHT

 Synthetic coordinates used as ID in DHT
 mapV(v):= v = [v1||…||vd]

 Registration
 Map resource (“o”) in the coordinate space 

mapO(o):= o = [o1||…||od]

 Register at different coordinates
using well known functions:

M1(o)= -o = (-o1,…,-od)

M2(o)= ((o1+ omax)mod(2*omax), …, (od+ omax)mod(2*omax))

 Routing
 Greedy-Routing:

nextHop = v : |v – o| = min { |v – o|, v Є Neighbors}

 Overlay-Construction
 Select all “direct” neighbors in the coordinate space (in all directions)
 Additional neighbors in different distances in diverse directions

Strufe: Ein Peer-to-Peer-basierter Ansatz für die Live-Übertragung multimedialer Daten. PhD thesis

d1

d2



95TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

What About the Load at Peers?

 „A major property of P2P systems (/DHT) is their 
inherent load balancing.“
 Requests are served from all peers equally
 Task of uploading files is shared between all downloading 

peers
 Rather random neighbor selection leads to fair allocation of 

requests
 Random ID selection leads to good distribution of the 

namespace…

 What kind of load?
 Messaging load
 Request processing load



96TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Load Imbalance

So what can go wrong?
 Uneven distribution of names in ID space (Zipf!)
 Neighbor selection random (preferential attachment?) -> 

uneven in-degree, uneven incoming requests
 ID selection random -> normally distributed name space 

allocation

 Heterogeneity of peers! (High-end PC at TU Darmstadt vs. 
My mobile phone…)



97TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Difference in Area Sizes…

 Nodes in CAN are allocated areas differing up to 
factor 28 in size easily (s.b., only 30k nodes)… 

26

Tiny example for comparison…



98TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Zipfian Load

 For natural languages (e.g. full text search) in a keyspace:
 Expected load on the most loaded peer is 7000x average
 The loaded peer probably has only average capacity

Terpstra et al.: BubbleStorm: Resilient, Probabilistic, and Exhaustive Peer-to-Peer Search

 1000

 10000

 100

 10

1

 0.1
 100000 10000

Node Rank
 1000 100 101

Lo
a
d

 co
m

p
a
re

d
 to

 lo
a
d

 a
v
e
ra

g
e

alpha=1.0

alpha=0.5

alpha=0.0

100,000 peers
1 million documents



99TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

So what can we do?

 Don‘t know the mis-balance (and very hard to 
gather)

 Goals:
 Balance request load
 Balance name space allocation
 (Allow for heterogenous nodes to adapt load?)
 Side note: we‘re /NOT/ thinking security here!

 Possible solutions (with three examples)
 Mitigate (change protocol/system slightly, statistically for 

the better)
 Control (change protocol to guarantee better balance 

deterministically)
 Adapt (Only change when necessary)



100TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Virtual Servers (Mitigation attempt)

 Virtual Servers: 
 Areas in name space normally 

distributed
 All areas are small, if there 

are only enough peers!
 Idea: why don‘t we assign x 

„servers“ with small area to 
every peer?

Y. Zhu et al.:  Towards efficient load balancing in structured P2P systems



101TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Force Balance (Control)

  Topological changes lead to better balanced allocation / 
incoming requests

  Check direct environment and optimize to local balance
 Motif-based is one option 
 (check relations between nodes in local environment)

Krumov, Schweizer, Bradler, Strufe: MOPS: Optimizing Structured Peer-to-Peer Networks Based on their Local Motif-Signature



102TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Balancing Kad Request Processing

 Same idea for Kad:
 Balance the in-degree 
 the same number of requests are expected for all
 Problem: what is the mean? How would it be balanced?
 Idea: again just use relations!



103TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

„Grow“ the DHT Adaptively

 In case of overload, balance!
 Recall: in Tapestry objects are stored in multiple peers with same 

prefix…
 Tapestry/Pastry: increase number of routed bits

 Kademlia‘s structure over the namespace is a tree…
 Increase the branch length…

 ID-allocation wrt balance: P-Grid
 „Attract“ more peers to regions with high load and grow branch
 Actually, why use these Hashes in the first place? 
 Just load-balance over name space of objects!
 Downside: creating an over-sophisticated system with lots of 

messaging
 … P-Grid not really used by networking people, but database‘rs 

love it!



104TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

P2P-Network Design

 Recall:
 Main primary problems of P2P was:

 Connectivity
 Resource Location

 So far solved:
 Connectivity: be redundantly connected
 Resource location: send and delegate request

 „Where?“ (Routing, flooding)
 „How many?“ (Request/registration replica)

 Desgining a P2P system with demanded 
requirements



105TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Designing P2P: Degrees of Freedom?

 What can a joining node (or the designer) decide 
upon?
 „Free“ choice of ID
 Selecting neighbors

 At degree d
 Which

 Which freedom do we have to store data?
 Leave local, let others ask for it
 Register where?
 How often (deterministic?)?

 …for lookup (..and delegation…)?
 Request where?
 How often?



106TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Designing P2P (more general)

 P2P search/location systems implement a name/id resolution

 How is name space distributed – and where is it 
implemented?
 No explicit name space distribution

 Arbitrary assignment (implemented everywhere, 
gnutella)

 Hierarchic assignment (eDonkey, fasttrack)
 Explicit name space distribution

 Assigned by structured allocation

 Routing: request/delegate to where item may be!
 And: after bootstrapping: hang on to the crowd (stay 

connected)

What about Kademlia (non-deterministic 
routing)?

What about Kademlia (non-deterministic 
routing)?

(and the SN?)



107TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Designing P2P: 3 Main Design Decisions

 Neigbor selection
 Which
 How many

 Requesting / Delegation (routing)
 Where?
 Deterministic?
 Iterative/Recursive?

 Replication
 Content / Registrations
 Queries



108TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Designing P2P: Hands on!

 „We want to use DHT for our in-house data 
management. It has to be highly reliable and 
extremely fast. Help us!“

 What do you do?



109TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

D-P2P: Fast Reliable Lookup

 One-hop DHTs!

 Select neighbors each (few more)
 Create DHT
 All your base are belong to us.

 Does this work in a file-sharing setting?
 Recall: Churn!
 What happens?
 At which request rate (/node/sec) does this make 

sense?

√n



110TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

 Mgmt. overhead equals saved requests 
Source: Risson et al.: Stable High-Capacity One-Hop Distributed Hash Tables

Designing P2P: Hands on (1/2)!



111TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Designing P2P: Hands on (2/2)!

 „We have a distributed set up, and we need 
reliable, fast lookups – PLUS: comprehensive 
search!“

 What do you do?



112TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

D-P2P: Fast Comprehensive Search

 Comprehensive search: Find all content matching request!

 Ask all nodes -> Ring/Tree routing in DHT, broadcast request
 But it‘s supposed to be fast!

 Keep name space local (unstructured -> comprehensive)
 Efficiency: random walks
 Speed: replicate! (Registration and walker)
 Reliability: that‘s tricky 

 Reliability is always bound to probability…
 Increase (provably) probability that walker hits registration



113TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

D-P2P: Fast Comprehensive Search: BubbleStorm

 The „trick“ to make it provable:
 Be random!
 We can prove a lot about entirely random choices, hence:

 Neighbor selection
 Choose random neighbors (not entirely true, need means 

for mgmt.)

 Delegation
 Random walks

 …with replication
 Fanning to replicate registrations and to decrease delay for 

hits



114TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

D-P2P: Example Bubblecast Execution

 Split interval between neighbors (according to fan out)

[0,17)

[1,9) [9,17)

[2,6) [6,9) [10,14) [14,17)

[3,5) [5,6) [7,8) [8,9) [11,13) [13,14) [15,16) [16,17)

[4,5) [12,13)

 Forwarding terminates when interval is 1

An interval specifies the number of replicas to create

0

91

10 14

16151311

12

62

53

4

7 8

 Send remaining interval with message

Source: Terpstra, Leng, Buchmann: Bubblestorm



115TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Designing P2P: Hands on (3)!

 „We live in a country with a totalitarian 
government, freedom of speech isn‘t given, 
opinions are dangerous. Can we have a censorship 
resistant system to anonymously publish our 
jokes?“

 What do you do?
 …ask what the adversary looks like…

 May be able to resolve IP->home address
 May be able to quickly confiscate devices
 Puts „victim“ in jail if „illegal“ content is found on device

 Ask which protection is needed
 Source of data must not be identifiable
 Data should be durable/available



116TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

D-P2P: Censorhip Resistant Publication

 What you would do:
 Neighbor selection

 Plenty, at least neighbors according to some structure 
(DHT)

 Delegation/Registration
 Structured
 Recursive (protect the data store)
 Push the data into the overlay
 Re-register continuously
 Is the client that‘s asking protected?

 With replication
 Keep data everywhere, cf. Tapestry (trade-off wrt. size)



117TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

D-P2P: Censorship Resistant 
Publication

 What others did (freenet)…

 Neighbor selection
 Random

 Delegation
 „Steepest-ascent hill-climbing“ (greedy, no real routing 

metric..)

 Replication
 As expected


	Folie 93
	Folie 94
	Folie 95
	Folie 96
	Folie 97
	Folie 98
	Folie 99
	Folie 100
	Folie 101
	Folie 102
	Folie 103
	Folie 104
	Folie 105
	Folie 106
	Folie 107
	Folie 108
	Folie 109
	Folie 110
	Folie 111
	Folie 112
	Folie 113
	Folie 114
	Folie 115
	Folie 116
	Folie 117

