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Avoiding Traffic ctd.

 Which degrees of freedom do we have?
 Select neighbor
 Select next hop
 Select ID !?

(The respective others kept conventional…)

 Location-based neighbor selection
 Pastry, Tapestry, etc.: only store the closest in routing tables

 Location-based next-hop selection
 Any: from all neighbors that are closer to resource select the 

nearest
 Topology-based ID selection

 „Learn“ ID depending on 
 All of them have pros and cons
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CAN revisited: Location aware DHT

 Synthetic coordinates used as ID in DHT
 mapV(v):= v = [v1||…||vd]

 Registration
 Map resource (“o”) in the coordinate space 

mapO(o):= o = [o1||…||od]

 Register at different coordinates
using well known functions:

M1(o)= -o = (-o1,…,-od)

M2(o)= ((o1+ omax)mod(2*omax), …, (od+ omax)mod(2*omax))

 Routing
 Greedy-Routing:

nextHop = v : |v – o| = min { |v – o|, v Є Neighbors}

 Overlay-Construction
 Select all “direct” neighbors in the coordinate space (in all directions)
 Additional neighbors in different distances in diverse directions

Strufe: Ein Peer-to-Peer-basierter Ansatz für die Live-Übertragung multimedialer Daten. PhD thesis

d1

d2
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What About the Load at Peers?

 „A major property of P2P systems (/DHT) is their 
inherent load balancing.“
 Requests are served from all peers equally
 Task of uploading files is shared between all downloading 

peers
 Rather random neighbor selection leads to fair allocation of 

requests
 Random ID selection leads to good distribution of the 

namespace…

 What kind of load?
 Messaging load
 Request processing load
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Load Imbalance

So what can go wrong?
 Uneven distribution of names in ID space (Zipf!)
 Neighbor selection random (preferential attachment?) -> 

uneven in-degree, uneven incoming requests
 ID selection random -> normally distributed name space 

allocation

 Heterogeneity of peers! (High-end PC at TU Darmstadt vs. 
My mobile phone…)



97TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks – Chapter 3: DHT

Difference in Area Sizes…

 Nodes in CAN are allocated areas differing up to 
factor 28 in size easily (s.b., only 30k nodes)… 

26

Tiny example for comparison…
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Zipfian Load

 For natural languages (e.g. full text search) in a keyspace:
 Expected load on the most loaded peer is 7000x average
 The loaded peer probably has only average capacity

Terpstra et al.: BubbleStorm: Resilient, Probabilistic, and Exhaustive Peer-to-Peer Search
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So what can we do?

 Don‘t know the mis-balance (and very hard to 
gather)

 Goals:
 Balance request load
 Balance name space allocation
 (Allow for heterogenous nodes to adapt load?)
 Side note: we‘re /NOT/ thinking security here!

 Possible solutions (with three examples)
 Mitigate (change protocol/system slightly, statistically for 

the better)
 Control (change protocol to guarantee better balance 

deterministically)
 Adapt (Only change when necessary)
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Virtual Servers (Mitigation attempt)

 Virtual Servers: 
 Areas in name space normally 

distributed
 All areas are small, if there 

are only enough peers!
 Idea: why don‘t we assign x 

„servers“ with small area to 
every peer?

Y. Zhu et al.:  Towards efficient load balancing in structured P2P systems
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Force Balance (Control)

  Topological changes lead to better balanced allocation / 
incoming requests

  Check direct environment and optimize to local balance
 Motif-based is one option 
 (check relations between nodes in local environment)

Krumov, Schweizer, Bradler, Strufe: MOPS: Optimizing Structured Peer-to-Peer Networks Based on their Local Motif-Signature
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Balancing Kad Request Processing

 Same idea for Kad:
 Balance the in-degree 
 the same number of requests are expected for all
 Problem: what is the mean? How would it be balanced?
 Idea: again just use relations!
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„Grow“ the DHT Adaptively

 In case of overload, balance!
 Recall: in Tapestry objects are stored in multiple peers with same 

prefix…
 Tapestry/Pastry: increase number of routed bits

 Kademlia‘s structure over the namespace is a tree…
 Increase the branch length…

 ID-allocation wrt balance: P-Grid
 „Attract“ more peers to regions with high load and grow branch
 Actually, why use these Hashes in the first place? 
 Just load-balance over name space of objects!
 Downside: creating an over-sophisticated system with lots of 

messaging
 … P-Grid not really used by networking people, but database‘rs 

love it!
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P2P-Network Design

 Recall:
 Main primary problems of P2P was:

 Connectivity
 Resource Location

 So far solved:
 Connectivity: be redundantly connected
 Resource location: send and delegate request

 „Where?“ (Routing, flooding)
 „How many?“ (Request/registration replica)

 Desgining a P2P system with demanded 
requirements
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Designing P2P: Degrees of Freedom?

 What can a joining node (or the designer) decide 
upon?
 „Free“ choice of ID
 Selecting neighbors

 At degree d
 Which

 Which freedom do we have to store data?
 Leave local, let others ask for it
 Register where?
 How often (deterministic?)?

 …for lookup (..and delegation…)?
 Request where?
 How often?
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Designing P2P (more general)

 P2P search/location systems implement a name/id resolution

 How is name space distributed – and where is it 
implemented?
 No explicit name space distribution

 Arbitrary assignment (implemented everywhere, 
gnutella)

 Hierarchic assignment (eDonkey, fasttrack)
 Explicit name space distribution

 Assigned by structured allocation

 Routing: request/delegate to where item may be!
 And: after bootstrapping: hang on to the crowd (stay 

connected)

What about Kademlia (non-deterministic 
routing)?

What about Kademlia (non-deterministic 
routing)?

(and the SN?)
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Designing P2P: 3 Main Design Decisions

 Neigbor selection
 Which
 How many

 Requesting / Delegation (routing)
 Where?
 Deterministic?
 Iterative/Recursive?

 Replication
 Content / Registrations
 Queries
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Designing P2P: Hands on!

 „We want to use DHT for our in-house data 
management. It has to be highly reliable and 
extremely fast. Help us!“

 What do you do?
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D-P2P: Fast Reliable Lookup

 One-hop DHTs!

 Select neighbors each (few more)
 Create DHT
 All your base are belong to us.

 Does this work in a file-sharing setting?
 Recall: Churn!
 What happens?
 At which request rate (/node/sec) does this make 

sense?

√n
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 Mgmt. overhead equals saved requests 
Source: Risson et al.: Stable High-Capacity One-Hop Distributed Hash Tables

Designing P2P: Hands on (1/2)!
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Designing P2P: Hands on (2/2)!

 „We have a distributed set up, and we need 
reliable, fast lookups – PLUS: comprehensive 
search!“

 What do you do?
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D-P2P: Fast Comprehensive Search

 Comprehensive search: Find all content matching request!

 Ask all nodes -> Ring/Tree routing in DHT, broadcast request
 But it‘s supposed to be fast!

 Keep name space local (unstructured -> comprehensive)
 Efficiency: random walks
 Speed: replicate! (Registration and walker)
 Reliability: that‘s tricky 

 Reliability is always bound to probability…
 Increase (provably) probability that walker hits registration
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D-P2P: Fast Comprehensive Search: BubbleStorm

 The „trick“ to make it provable:
 Be random!
 We can prove a lot about entirely random choices, hence:

 Neighbor selection
 Choose random neighbors (not entirely true, need means 

for mgmt.)

 Delegation
 Random walks

 …with replication
 Fanning to replicate registrations and to decrease delay for 

hits
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D-P2P: Example Bubblecast Execution

 Split interval between neighbors (according to fan out)

[0,17)

[1,9) [9,17)

[2,6) [6,9) [10,14) [14,17)

[3,5) [5,6) [7,8) [8,9) [11,13) [13,14) [15,16) [16,17)

[4,5) [12,13)

 Forwarding terminates when interval is 1

An interval specifies the number of replicas to create
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 Send remaining interval with message

Source: Terpstra, Leng, Buchmann: Bubblestorm
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Designing P2P: Hands on (3)!

 „We live in a country with a totalitarian 
government, freedom of speech isn‘t given, 
opinions are dangerous. Can we have a censorship 
resistant system to anonymously publish our 
jokes?“

 What do you do?
 …ask what the adversary looks like…

 May be able to resolve IP->home address
 May be able to quickly confiscate devices
 Puts „victim“ in jail if „illegal“ content is found on device

 Ask which protection is needed
 Source of data must not be identifiable
 Data should be durable/available
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D-P2P: Censorhip Resistant Publication

 What you would do:
 Neighbor selection

 Plenty, at least neighbors according to some structure 
(DHT)

 Delegation/Registration
 Structured
 Recursive (protect the data store)
 Push the data into the overlay
 Re-register continuously
 Is the client that‘s asking protected?

 With replication
 Keep data everywhere, cf. Tapestry (trade-off wrt. size)
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D-P2P: Censorship Resistant 
Publication

 What others did (freenet)…

 Neighbor selection
 Random

 Delegation
 „Steepest-ascent hill-climbing“ (greedy, no real routing 

metric..)

 Replication
 As expected
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