

Peer-to-Peer Networks

Chapter 4: Graphs and Methods
Thorsten Strufe

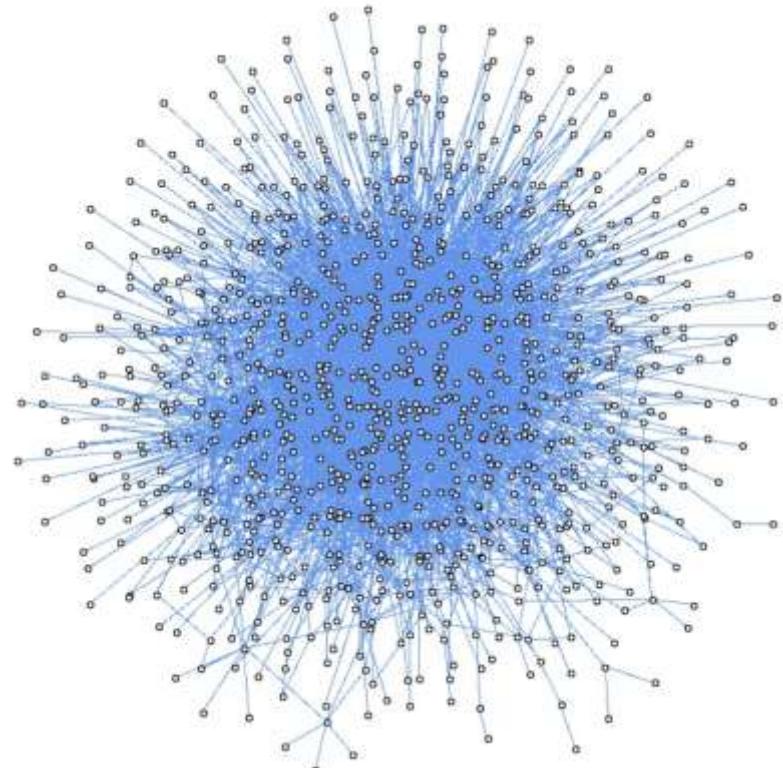
Note: these slides have been prepared with influence by material
of Prof. Michael Welzl, Prof. Pietro Michiardi, and Dr. Stefan Schmid

Chapter Outline

- P2P Overlays as Graphs (This chapter is a reminder)
- Graphs
- Metrics in and Properties of Graphs
- Algorithms on Graphs
- A tiny introduction to game theory

Some questions...

- How scalable is Gnutella?
- How robust is Kazaa?
- Why does FreeNet work?
- What would an ideal (unstructured) P2P system look like?
- What do the overlay networks of existing P2P systems look like?



Gnutella snapshot, 2000

Scalability of Gnutella: quick answer

- Bandwidth Generated in Bytes (Message 83 bytes) *[SIC]
 - Searching for a 18 byte string

	$T=2$	$T=3$	$T=4$	$T=5$	$T=6$	$T=7$	$T=8$
$N=2$	332	498	664	830	996	1,162	1,328
$N=3$	747	1,743	3,735	7,719	15,687	31,623	63,495
$N=4$	1,328	4,316	13,280	40,172	120,848	362,876	1,088,960
$N=5$	2,075	8,715	35,275	141,515	566,475	2,266,315	9,065,675
$N=6$	2,988	15,438	77,688	388,938	1,945,188	9,726,438	48,632,688
$N=7$	4,067	24,983	150,479	903,455	5,421,311	35,528,447	192,171,263
$N=8$	5,312	37,848	262,600	1,859,864	13,019,712	91,138,648	637,971,200

- N = number of connections
- T = number of hops

* [SIC]: Error already in source, orders of magnitude are important, here ;)
Source: Jordan Ritter: Why Gnutella Can't Scale. No, Really.

Graphs

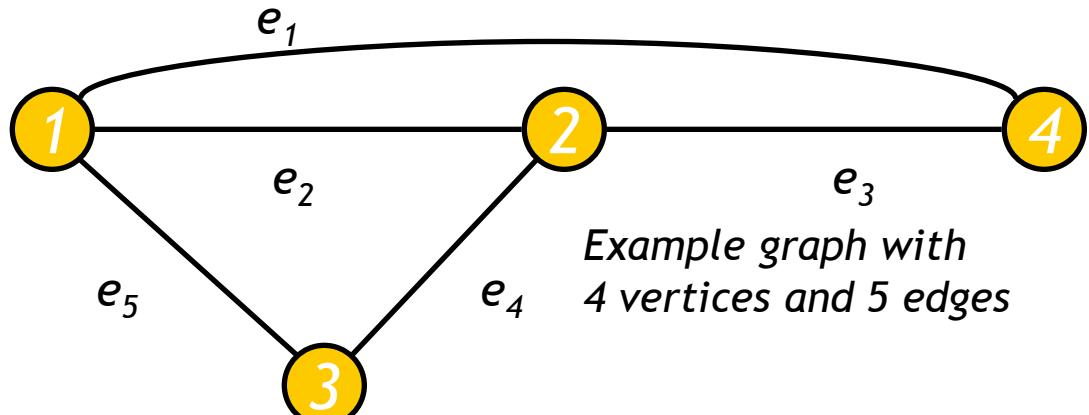
- Rigorous analysis of P2P systems: based on graph theory
 - Refresher of graph theory needed
- First: graph families and models
 - Random graphs
 - Small world graphs
 - Scale-free graphs
- Then: graph theory and P2P
 - How are the graph properties reflected in real systems?
 - Users (peers) are represented by vertices in the graph
 - Edges represent connections in the overlay (routing table entries)
- Concept of self-organization
 - Network structures emerge from simple rules
 - E.g. also in social networks, www, actors playing together in movies

What Is a Graph?

- Definition of a graph:

Graph $G = (V, E)$ consists of two finite sets, set V of **vertices** (nodes) and set E of **edges** (arcs) for which the following applies:

1. If $e \in E$, then exists $(v, u) \in V \times V$, such that $v \in e$ and $u \in e$
2. If $e \in E$ and above (v, u) exists, and further for $(x, y) \in V \times V$ applies $x \in e$ and $y \in e$, then $\{v, u\} = \{x, y\}$



Side note:

Edges can have (multiple) “weights” $w : E \rightarrow \mathbb{R}$

How are Graphs Implemented?

- Adjacency/Incidence Matrix

	1	2	3
1	0	1	0
2	1	0	1
3	0	1	0

- Adjacency/Incidence List

$(1,2)$	$1:2$
$(2,1),(2,3)$	$2:1,3$
$(3,2)$	$3:2$

- (Plus specialized others..)

VERY good book is: Sedgewick: Algorithms in C, part 3 (Graph Algorithms)

Properties of Graphs

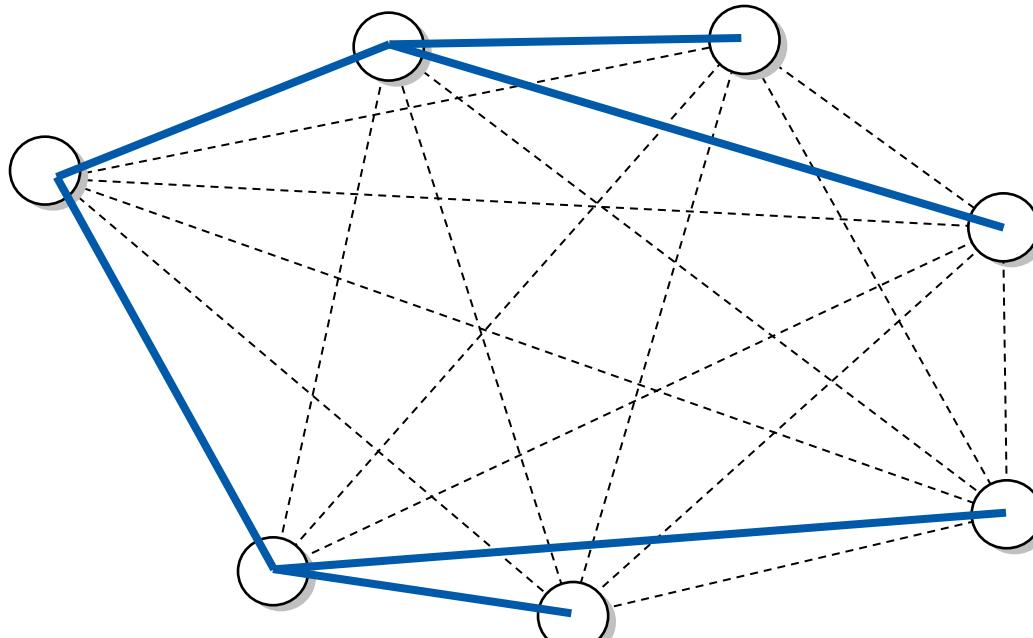
- An edge $e \in E$ is **directed** if the start and end vertices in condition 2 above are identical: $v = x$ and $y = u$
- An edge $e \in E$ is **undirected** if $v = x$ and $y = u$ as well as $v = y$ and $u = x$ are possible
- A graph G is **directed** (undirected) if the above property holds for all edges
- A *loop* is an edge with identical endpoints
- Graph $G_1 = (V_1, E_1)$ is a **subgraph** of $G = (V, E)$, if $V_1 \subseteq V$ and $E_1 \subseteq E$ (such that conditions 1 and 2 are met)

Important Types of Graphs

- Vertices $v, u \in V$ are **connected** if there is a path from v to u : $(v, v_2), (v_2, v_3), \dots, (v_{k-1}, u) \in E$
- Graph G is **connected** if all $v, u \in V$ are connected
 - **Strong connectivity** of directed graphs means, that paths between each node pair exist
 - **Weak connectivity**: edges between all node pairs exist, but not paths...
- An undirected, connected, acyclic graph is called a **tree**
 - Side note: Undirected, acyclic graphs which are not connected are called **forest**
- Directed, connected, acyclic graph is called **DAG**
 - DAG = **Directed Acyclic Graph** (connectivity is assumed)
- An **induced graph** $G(V_C) = (V_C, E_C)$ is a graph $V_C \subseteq V$ and with edges $E_C = \{e = (i, j) \mid i, j \in V_C\}$ (all edges from G connecting the nodes in G_C)
- An induced graph that is connected is called a **component**

Overlays?

- A **CLIQUE** is a graph that is fully connected
 $(u, v) \in E \mid \text{for all } u \in V \text{ and } v \in V, u \neq v$
- A P2P Overlay (V_o, E_o) (in general) is a subgraph such that $V_o = V$ and $E_o \subseteq E$ (edges are selected edges from a CLIQUE graph)



- **Why?** Considering the nodes to be on the internet, they all can create connections between each other...

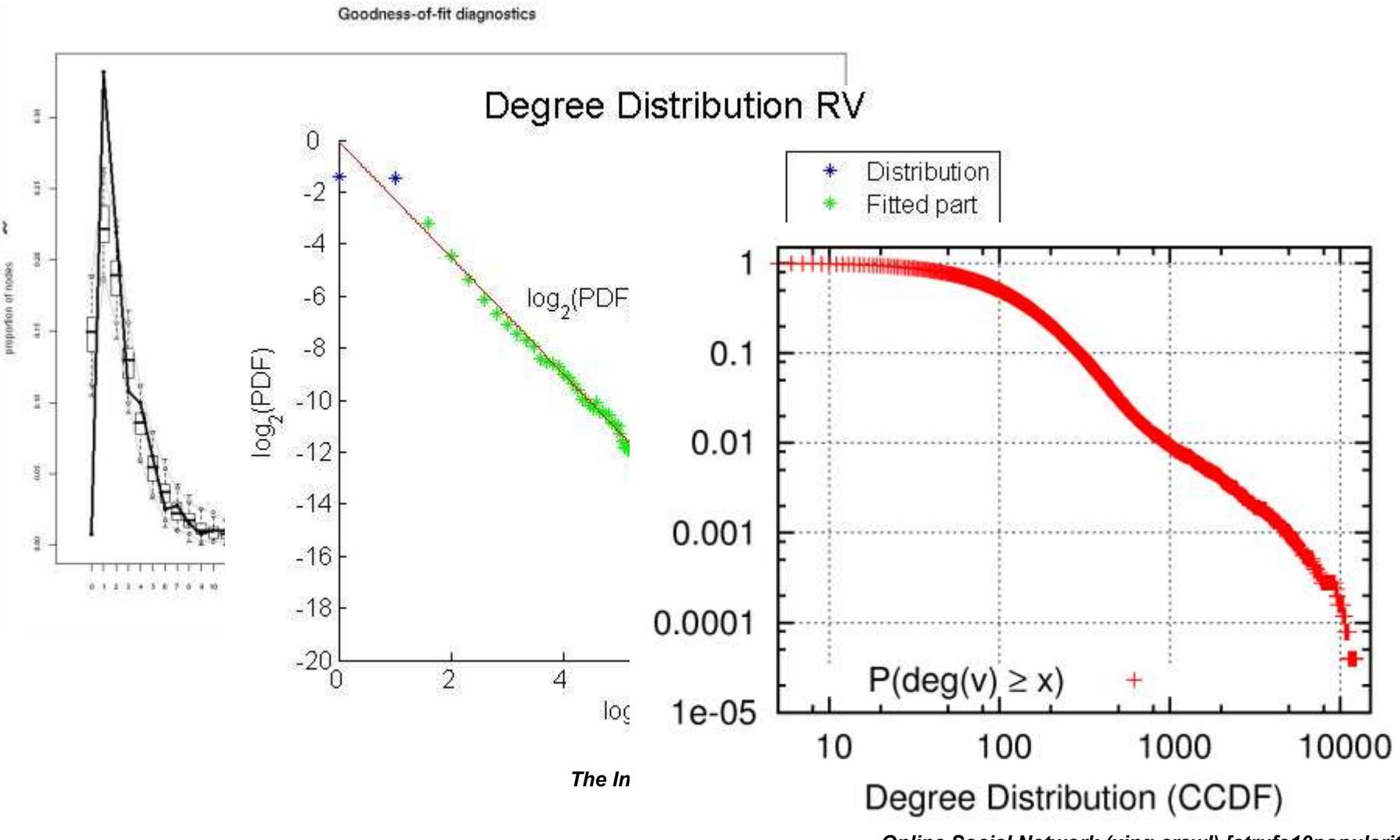
Important Graph Metrics

- **Order:** the number of vertices in a graph
- **Size** of the graph is the number of edges $|E|$
- **Distance:** $d(v, u)$ between vertices v and u is the length of the shortest path between v and u
- **Diameter:** $d(G)$ of graph G is the maximum of $d(v, u)$ for all $v, u \in V$
- The **density** of a graph is the ratio of the number of edges and the number of possible edges.

Graph Metrics: Vertex Degree

- In graph $G = (V, E)$, the **degree** of vertex $v \in V$ is the total number of edges $(v, u) \in E$ and $(u, v) \in E$
 - Degree is the number of edges which touch a vertex
- For directed graph, we distinguish between **in-degree** and **out-degree**
 - In-degree is number of edges coming to a vertex
 - Out-degree is number of edges going away from a vertex
- The degree of a vertex can be obtained as:
 - Sum of the elements in its row in the incidence matrix
 - Length of its vertex incidence list
- The **degree distribution** is the distribution over all node degrees
(given as a frequency distribution or (often) complementary cumulative distribution function CCDF (Komplement der Verteilungsfunktion))

Graph Metrics: Degree Distribution (Examples)



Further Graph Metrics

- All pairs shortest paths (APSP): $d(v, u) \mid \text{all } v, u \in V$
- Hop Plot: Distance distribution over all distances
 $Hist(APSP(G))$
- Average/characteristic path length: Sum of the distances over all pairs of nodes divided by the number of pairs

For defined routings on graphs:

Characteristic Routing Length: average length of paths *found* (potentially stochastic...)

Sanity Check:

- APSP:

1,1,1,2,2

1,1,1,2,2

1,1,1,1,1

1,1,1,1,2

1,1,1,2,2

1,1,2,2,2

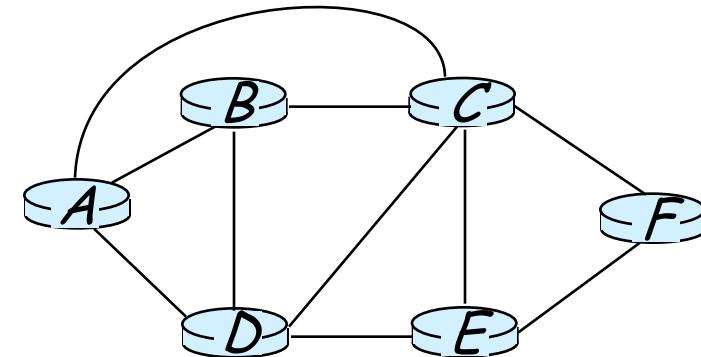
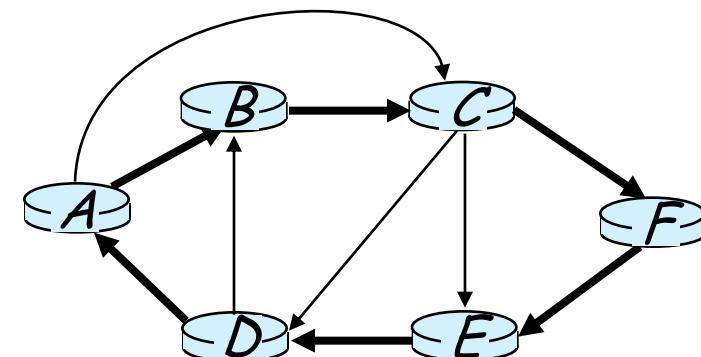
- HopPlot:

1: 20

2: 10 $40/30 = 1.333$

- CPL: 2.033

- CRL (CHORD):



Important Graph Metrics (3)

- **Edge connectivity:** is the minimum number of edges that have to be removed to separate the graph into at least two components
- **Vertex connectivity:** the minimum number of nodes..
- How to calculate them?
- Which of both is higher?
- In which cases are they the same?
- maxflow, Menger's Theorem...

- *Does each network have **ONE** maximum flow?*
- *What is the edge/vertex connectivity if we have a node with degree=1?*
 - *Is this a sensible metric? How to „heal“ this?*

==> balanced cut, size of the remaining giant connected component, fraction of disconnected nodes

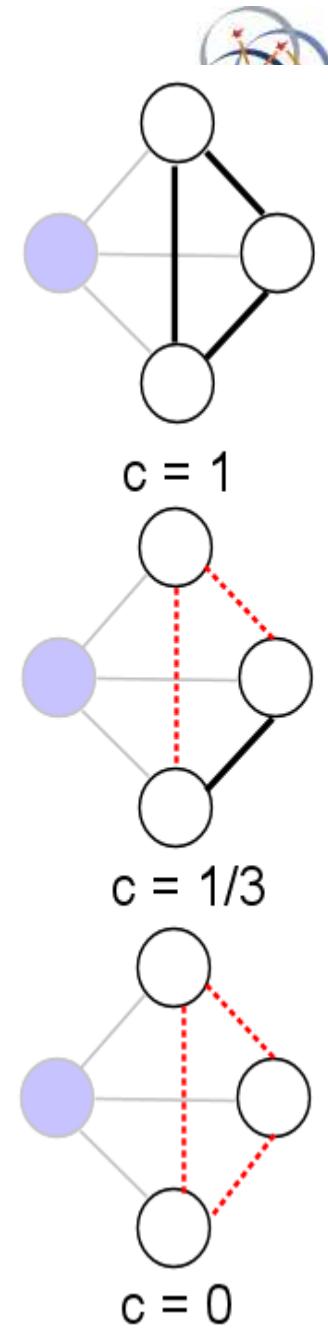
Important Graph Metrics (2)

- **Clustering coefficient:** number of edges between neighbors divided by maximum number of edges between them
 - k neighbors: $k(k-1)/2$ possible edges between them

$$C(i) = \frac{2E(N(i))}{d(i)(d(i) - 1)}$$

$E(N(i))$ = number of edges between neighbors of i
 $d(i)$ = degree of i

- **What if:** a node has only one neighbor? ☺



P2P Self Organization and Routing

- So what can a peer actually do?
 - *(Initially: bootstrapping, ID selection)*
- Select neighbors
 - Randomly
 - According to some rule
- Select next hop (when delegation is needed..)
 - Randomly
 - Single next hop
 - Multiple next hops (request replication... flooding)
 - According to some rule
- *(Change ID, but that's already advanced.. ☺)*

So what!?

Location Overlay

$$\mathcal{L} = (V_L, E_L)$$

(of Vertices V and Edges E)

- Reliability
 - High success probability
- Low response times
- Resource usage
 - Low message complexity
- ***Great! We can do maths, now! ☺*** (Plus: we can define metrics..)

$\rightarrow \text{hit ratio} = \frac{|\text{Hit}|}{|\text{Requests}|}$

$\rightarrow \text{response time} = \frac{\sum_{i=1}^{|\text{Requests}|} (t_{\text{hit}_i} - t_{\text{req}_i})}{|\text{Requests}|}$

$\rightarrow \text{message complexity} = \frac{\sum_{m_e \in \mathcal{M}} m_e \cdot d(e)}{|\text{Requests}|}$

Classes of Graphs

- Regular graphs
- Random graphs
- Graphs with Small-World characteristic
- Scale-free graphs
- ...Graphs with plenty more characteristics
 - (dis-) assortativity
 - Rich-club connectivity
 - ...