
P2P and Grid Computing
- Exercise 7 -

- C110 - 
Michael Scholz (Matr. 1576630)
Ulf Gebhardt (Matr. 1574373)

H 7.1:

a)
Das Paper „Attacking the Kad Network“ zeigt Schwächen und neue Angriffsszenarien von/gegen KAD Netzwerke 
(eDonkey). Es werden unter anderem Reflection Attack, Sybil Attack und Indexpoisoning Attack vorgestellt, die es 
wenigen Teilnehmern des KAD Netzwerkes erlaubt, große Teile des Netzwerks außer Kraft zu setzen und dies bei 
geringem Ressourcenaufwand (nur Endsysteme). Die Angriffe zielen generell darauf ab Suchanfragen fehlschlagen zu 
lassen. Die neu aufgeführten Angriffe werden mit schon bekannten Angriffen auf KAD Netzwerke verglichen und es 
werden Lösungsvorschläge vorgestellt, die benannte Schwächen beheben sollen.

b)
Kademlia benutzt Routingtabellen, welche eine eindeutige ID für jeden Knoten nutzen. Dabei wird als Distanz 
zwischen zwei Knote die XOR-Metrik der beiden Node-IDs verwendet. Desweiteren werden alle Daten mit einer ID 
indentifiziert, welche in dem selben ID-Bereich liegen wie die Knoten-ID, der sie hält.
Jeder Client hält dabei eine Routingtabelle (max. O(log(N), wobei N die Anzahl der Knoten im Netzwerk ist), welche in 
k Buckets gegliedert ist. Die Buckets werden anhand von Knoten-ID-Prefixen identifiziert und bevorzugt langlebige 
Knoten.
Die maximale Anzahl an Queries für eine Suche ist O(log(N)).
Die Suchanfrage nach Key x wird an k Knoten geschickt(k andhand der Routingtabelle). Welche Wiederum jeweils m 
Knoten zurückgeben, von denen wieder die nächsten gewählt werden(Routingtabelle). Das wird wiederholt bis x 
gefunden wurde.

KAD benutzt Routingtabellen, welche eine 128-bit ID zum identifizieren der Knoten benutzt. Für die ID gibt es keine 
Vorgaben. Die KAD-Routingtabelle beginnt erst auf Level 4, was im Vergleich zu Kademlia zu wesentlich kürzeren 
Suchpfaden führt. Dafür ist die Tabelle breiter als bei Kadmelia.

Kad-Routingtabelle:
1111 0000 1110 0000 1101 0000

1100 0000 1011 0000 1110 0000

1001 0000 1000 0000 0111 0000

0110 0000 0101 0000 0100 1000

0100 0000 0011 1000 0011 0000

0010 1000 0010 0100 0010 0000

0001 1100 0001 1000 0001 0100

0001 0010 0001 0000 0000 1110

0000 1100 0000 1010 0000 1000

0000 0110 0000 0100 0000 0010

c)
HELLO_REQ:
Jeder Knoten schickt regelmäßig (typischerweise alle zwei Stunden) eine „HELLO_REQ“-Nachricht an die Knoten in 
seiner Routingtabelle, um zu überprüfen, ob die Knoten noch erreichbar sind. Somit können nicht mehr verfügbare 
Knoten aus der jeweiligen Routingtabelle entfernt werden.

SEARCH_REQ:
Nach Auffinden eines Replicaknotens mittels „KADEMLIA_REQ“-Nachricht sendet der Initiatorknoten eine 
„SEARCH_REQ“-Nachricht an den Replicaknoten, welche den ursprünglichen Schlüssel beinhaltet. Der Knoten, der 
die Nachricht empfängt, schickt dem Absender alle Treffer zu dem geforderten Schlüssel zurück. Der Austausch wird 
beendet, wenn der Sender der „SEARCH_REQ“-Nachricht mehr als 300 Treffer zurückgeschickt bekommen hat.

KADEMLIA_REQ:
Sucht ein Knoten nach einem bestimmten Schlüssel, so berechnet er zuerst dessen MD5-Hashwert. Mittels dem 
berechneten Wert und den Knoten aus seiner Routingtabelle kann der Knoten nun die einzelnen Abstände mit Hilfe der 
XOR-Metrik berechnen. An die drei Knoten mit der geringsten Entfernung wird nun jeweils eine „KADEMLIA_REQ“-
Nachricht gesendet. Die angesprochenen Knoten antworten mit einer „KADEMLIA_RES“-Nachricht, welche 

Kademlia-Routingtabelle:
Prefixmatch Nähester Knoten

0 1000 0000

1 0100 0000

2 0010 0000

3 0001 0000

4 0000 1000

5 0000 0100

6 0000 0010

7 0000 0001



zusätzliche Knoten beinhaltet. Dieses Verfahren wird solange wiederholt bis Replicaknoten gefunden werden.

d)
Ist ein Bucket voll und es wird ein potentieller neuer Knoten für diesen Bucket gefunden, so wird zunächst geprüft, ob 
die übrigen Knoten im Bucket noch antworten. Ist dies der Fall, so wird der neue Knoten in einer Art Cache gespeichert, 
um zu einem späteren Zeitpunkt einen „gestorbenen“ Knoten zu ersetzen. Diese Strategie wird gewählt, da davon 
ausgegangen werden kann, dass Knoten, welche in der Vergangenheit lange verfügbar waren, auch in Zukunft verfügbar 
sein werden.

e)
Allen Attacken geht das Sammeln von Daten voraus. In dem Paper als Preparation Phase bezeichnet. Es werden 
verschiedene Strategien vorgestellt um dies zu tun.
Crawling: Spawne Nodes welche einen netzwerkspezifischen ID Abstand haben und suche nach Nachbarn.
Backpointer hijacking: Es wird ein Teil der Routingtabelle des Opfers gestohlen. (macht sich unter anderem zunutze, 
dass die Knoten-ID über den Lebenszeitraum der Knoten-IP hinaus erhalten bleibt.)

Darauf folgt die Execution Phase, der eigentliche Angriff. Auch hier gibt es verschiedene Strategien:
Fake Matches: Der Gefragte antwortet mit 300 falschen Suchmatches für die Suchanfrage. 300, da nach 300 
Suchergebnissen die Suche abgebrochen wird.
Stale Contacts: Suchanfragen werden mit falschen Hosts(kein KAD/Kadmelia am laufen) beantwortet. Der Timeout 
von Kademlia führt dazu, das der Client, der das falsche Packet erhalten hat für 30 Sekunden warten muss.

Index poisoning attack:
Bei diesem Angriff wird versucht viele fehlerhafte Verlinkungen zwischen einzelnen Schlüsseln und deren Werten zu 
erstellen, so dass Suchanfragen nach diesen Schlüsseln nach dem Angriff nicht erfolgreich sind.

– preparation phase: Sammeln aller Key-Value-Paare.
– execution phase: generiere für jedes Key-Value-Paar drei ungültige Verlinkungen.

Sybil attack:
Bei diesem Angriff werden „Sybil Nodes“ in das Kad Netzwerk eingeschleust. Diese sollten Anfragen an sich ziehen, 
die eigentlich an andere Knoten gerichtet sind. Im Paper wird nun der weitere Verlauf nicht beschrieben. Es ist aber 
beispielsweise denkbar durch diese Vorgehensweise ein „Blackhole“ im Netzwerk zu schaffen.

Reflection attack:
Bei diesem Angriff wird die gesamte Routingtabelle des Opfers so manipuliert, dass alle Einträge auf das Opfer selber 
zeigen. Somit kann der angegriffene Knoten nur noch mit sich selbst kommunizieren und wurde somit aus dem 
Netzwerk „entfernt“. Ziel ist das Kad-Netzwerk funktionsunfähig zu machen. Die Autoren gehen jedoch davon aus, 
dass sich das Kad-Netzwerk aus mehreren Gründen langsam wieder regenerieren wird.


