QD-NDRIB IR, ﬂ e

30003p0D
9 eAR(SeQq <

Das Java 6 Codebook

Unser Online-Tipp
fiir noch mehr Wissen...

... aktuelles Fachwissen rund
um die Uhr — zum Probelesen,
Downloaden oder auch auf Papier.

www.InformIT.de

Dirk Louis, Peter Muller

Das Java 6 Codebook

QL

‘.

“*
*%

v‘v ADDISON-WESLEY

An imprint of Pearson Education

Minchen » Boston s San Francisco » Harlow, England
Don Mills, Ontario Sydney » Mexico City
Madrid » Amsterdam

Bibliografische Information Der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie;
detaillierte bibliografische Daten sind im Internet iiber <http://dnb.ddb.de> abrufbar.

Die Informationen in diesem Produkt werden ohne Riicksicht auf einen eventuellen Patentschutz verdffentlicht.
Warennamen werden ohne Gewéhrleistung der freien Verwendbarkeit benutzt. Bei der Zusammenstellung von Texten
und Abbildungen wurde mit groBter Sorgfalt vorgegangen. Trotzdem koénnen Fehler nicht vollstindig ausgeschlossen
werden. Verlag, Herausgeber und Autoren kénnen fiir fehlerhafte Angaben und deren Folgen weder eine juristische
Verantwortung noch irgendeine Haftung tibernehmen.

Fiir Verbesserungsvorschlage und Hinweise auf Fehler sind Verlag und Herausgeber dankbar.

Alle Rechte vorbehalten, auch die der fotomechanischen Wiedergabe und der Speicherung in elektronischen Medien.
Die gewerbliche Nutzung der in diesem Produkt gezeigten Modelle und Arbeiten ist nicht zuléssig.

Fast alle Hardware- und Softwarebezeichnungen und weitere Stichworte und sonstige Angaben, die in diesem Buch ver-
wendet werden, sind als eingetragene Marken geschiitzt. Da es nicht méglich ist, in allen Fillen zeitnah zu ermitteln, ob
ein Markenschutz besteht, wird das ® Symbol in diesem Buch nicht verwendet.

Umwelthinweis:
Dieses Buch wurde auf chlorfrei gebleichtem Papier gedruckt. Die Einschrumpffolie - zum Schutz vor Verschmutzung -
ist aus umweltvertraglichem und recyclingfahigem PE-Material.

10 98765 4321

09 08 07

ISBN 978-3-8273-2465-8

© 2007 by Addison-Wesley Verlag,

ein Imprint der Pearson Education Deutschland GmbH,
Martin-Kollar-StraBe 10-12, D-81829 Miinchen/Germany
Alle Rechte vorbehalten

Korrektorat: Petra Alm

Lektorat: Brigitte Bauer-Schiewek, bbauer@pearson.de

Herstellung: Elisabeth Priimm, epruemm@pearson.de

Satz: Kosel, Krugzell (www.KoeselBuch.de)

Umschlaggestaltung: Marco Lindenbeck, webwo GmbH (mlindenbeck@webwo.de)
Druck und Verarbeitung: Kosel, Krugzell (www.KoeselBuch.de)

Printed in Germany

Inhaltsverzeichnis

Teil | Einfihrung

Uber dieses Buch

Teil Il Rezepte

Zahlen und Mathematik

1 Gerade Zahlen erkennen

2 Effizientes Multiplizieren (Dividieren) mit Potenzen von 2
3 Primzahlen erzeugen

4 Primzahlen erkennen

5 Gleitkommazahlen auf n Stellen runden

6 Gleitkommazahlen mit definierter Genauigkeit vergleichen
7 Strings in Zahlen umwandeln

8 Zahlen in Strings umwandeln

9 Ausgabe: Dezimalzahlen in Exponentialschreibweise

10 Ausgabe: Zahlenkolonnen am Dezimalzeichen ausrichten
11 Ausgabe in Ein- oder Mehrzahl (Kongruenz)

12 Umrechnung zwischen Zahlensystemen

13 Zahlen aus Strings extrahieren

14 Zufallszahlen erzeugen

15 Ganzzahlige Zufallszahlen aus einem bestimmten Bereich
16 Mehrere, nicht gleiche Zufallszahlen erzeugen (Lottozahlen)
17 Trigonometrische Funktionen

18 Temperaturwerte umrechnen (Celsius <-> Fahrenheit)

19 Fakultdt berechnen

20 Mittelwert berechnen

21 Zinseszins berechnen

22 Komplexe Zahlen

23 Vektoren

24 Matrizen

25 Gleichungssysteme I6sen

26 GroBe Zahlen beliebiger Genauigkeit

Strings

27 In Strings suchen

28 In Strings einfiigen und ersetzen

29 Strings zerlegen

30 Strings zusammenflgen

31 Strings nach den ersten n Zeichen vergleichen

13
15

17

19

19
19
20
22
24
25
26
30
34
37
44
46
49
51
53
54
56
56
57
59
60
62
72
78
90
91

95

95
98
100
101
102

6

32
33
34
35
36
37
38

>> Inhaltsverzeichnis

Zeichen (Strings) vervielfachen

Strings an Enden auffullen (Padding)

Whitespace am String-Anfang oder -Ende entfernen
Arrays in Strings umwandeln

Strings in Arrays umwandeln

Zufallige Strings erzeugen

Wortstatistik erstellen

Datum und Uhrzeit

39 Aktuelles Datum abfragen

40 Bestimmtes Datum erzeugen

41 Datums-/Zeitangaben formatieren

42 Wochentage oder Monatsnamen auflisten

43 Datumseingaben einlesen und auf Gultigkeit prifen

44 Datumswerte vergleichen

45 Differenz zwischen zwei Datumswerten berechnen

46 Differenz zwischen zwei Datumswerten in Jahren, Tagen
und Stunden berechnen

47 Differenz zwischen zwei Datumswerten in Tagen berechnen

48 Tage zu einem Datum addieren/subtrahieren

49 Datum in julianischem Kalender

50 Umrechnen zwischen julianischem und
gregorianischem Kalender

51 Ostersonntag berechnen

52 Deutsche Feiertage berechnen

53 Ermitteln, welchen Wochentag ein Datum reprasentiert

54 Ermitteln, ob ein Tag ein Feiertag ist

55 Ermitteln, ob ein Jahr ein Schaltjahr ist

56 Alter aus Geburtsdatum berechnen

57 Aktuelle Zeit abfragen

58 Zeit in bestimmte Zeitzone umrechnen

59 Zeitzone erzeugen

60 Differenz zwischen zwei Uhrzeiten berechnen

61 Differenz zwischen zwei Uhrzeiten in Stunden, Minuten,
Sekunden berechnen

62 Prazise Zeitmessungen (Laufzeitmessungen)

63 Uhrzeit einblenden

System

64 Umgebungsvariablen abfragen

65 Betriebssystem und Java-Version bestimmen

66 Informationen zum aktuellen Benutzer ermitteln

67 Zugesicherte Umgebungsvariablen

68 System-Umgebungsinformationen abrufen

69

INI-Dateien lesen

106
107
110
111
113
116
118

121

121
123
125
128
130
131
133

134
140
141
142

143
144
148
158
159
160
161
163
164
165
168

169
172
174

179

179
180
181
182
183
184

>> Inhaltsverzeichnis

70
71
72
73
74
75
76
77
78
79
80
81
82
83

INI-Dateien schreiben

INI-Dateien im XML-Format schreiben
Externe Programme ausfiihren
Verfugbaren Speicher abfragen

Speicher fur JVM reservieren

DLLs laden

Programm fir eine bestimmte Zeit anhalten
Timer verwenden

TimerTasks gesichert regelmaBig ausfuhren
Nicht blockierender Timer

Timer beenden

Auf die Windows-Registry zugreifen
Abbruch der Virtual Machine erkennen
Betriebssystem-Signale abfangen

Ein- und Ausgabe (10)

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

Auf die Konsole (Standardausgabe) schreiben
Umlaute auf die Konsole (Standardausgabe) schreiben
Von der Konsole (Standardeingabe) lesen
Passworter Uber die Konsole (Standardeingabe) lesen
Standardein- und -ausgabe umleiten
Konsolenanwendungen vorzeitig abbrechen
Fortschrittsanzeige fir Konsolenanwendungen
Konsolenments

Automatisch generierte Konsolenmenus
Konsolenausgaben in Datei umleiten
Kommandozeilenargumente auswerten

Leere Verzeichnisse und Dateien anlegen

Datei- und Verzeichniseigenschaften abfragen
Temporare Dateien anlegen

Verzeichnisinhalt auflisten

Dateien und Verzeichnisse |6schen

Dateien und Verzeichnisse kopieren

Dateien und Verzeichnisse verschieben/umbenennen
Textdateien lesen und schreiben

Textdatei in String einlesen

Binardateien lesen und schreiben

Random Access (wahlfreier Zugriff)

Dateien sperren

CSV-Dateien einlesen

CSV-Dateien in XML umwandeln

ZIP-Archive lesen

ZIP-Archive erzeugen

Excel-Dateien schreiben und lesen

PDF-Dateien erzeugen

187
188
189
191
192
192
197
197
199
200
201
201
206
208

211

211
212
214
216
216
219
219
222
225
230
230
232
234
237
238
239
241
245
245
248
249
250
256
258
266
269
272
274
278

8

GUI

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

139
140
141
142
143
144
145
146
147
148
149
150

>> Inhaltsverzeichnis

GUI-Grundgerust

Fenster (und Dialoge) zentrieren

FenstergroBe festlegen (und gegebenenfalls fixieren)
Minimale FenstergréBe sicherstellen

Bilder als Fensterhintergrund

Komponenten zur Laufzeit instanzieren

Komponenten und Ereignisbehandlung

Aus Ereignismethoden auf Fenster und Komponenten zugreifen
Komponenten in Fenster (Panel) zentrieren

Komponenten mit Rahmen versehen

Komponenten mit eigenem Cursor

Komponenten mit Kontextmen verbinden

Komponenten den Fokus geben

Die Fokusreihenfolge festlegen

Fokustasten andern

Eingabefelder mit Return verlassen

Dialoge mit Return (oder Esc) verlassen

Transparente Schalter und nichttransparente Labels
Eingabefeld fur Wahrungsangaben (inklusive InputVerifier)
Eingabefeld fur Datumsangaben (inklusive InputVerifier)
Drag-and-Drop fur Labels

Datei-Drop fur JTextArea-Komponenten (eigener TransferHandler)
Anwendungssymbol einrichten

Symbole fur Symbolleisten

Mendleiste (Symbolleiste) aus Ressourcendatei aufbauen
Befehle aus Meni und Symbolleiste zur Laufzeit aktivieren
und deaktivieren

Meni- und Symbolleiste mit Aktionen synchronisieren
Statusleiste einrichten

Hinweistexte in Statusleiste

Dateien mit Datei-Dialog (inklusive Filter) 6ffnen

Dateien mit Speichern-Dialog speichern

Unterstltzung fur die Zwischenablage

Text drucken

Editor-Grundgerust

Look&Feel andern

Systemtray unterstitzen

Splash-Screen anzeigen

Registerreiter mit SchlieBen-Schaltern (JTabbedPane)

Grafik und Multimedia

151
152
153

Mitte der Zeichenflache ermitteln
Zentrierter Text
In den Rahmen einer Komponente zeichnen

287

287
292
295
296
298
300
303
310
312
315
318
319
322
323
326
329
330
332
336
342
347
349
356
357
359

370
371
377
382
385
391
398
400
410
410
414
417
419

425

425
426
428

>> Inhaltsverzeichnis 9

154 Zeichnen mit unterschiedlichen Strichstarken und -stilen 431
155 Zeichnen mit Fullmuster und Farbverlaufen 433
156 Zeichnen mit Transformationen 436
157 Verfugbare Schriftarten ermitteln 439
158 Dialog zur Schriftartenauswahl 440
159 Text mit Schattenwurf zeichnen 443
160 Freihandzeichnungen 445
161 Bilder laden und anzeigen 448
162 Bilder pixelweise bearbeiten (und speichern) 458
163 Bilder drehen 462
164 Bilder spiegeln 464
165 Bilder in Graustufen darstellen 466
166 Audiodateien abspielen 467
167 Videodateien abspielen 471
168 Torten-, Balken- und X-Y-Diagramme erstellen 475
Regulare Ausdriicke und Pattern Matching 481
169 Syntax regularer Ausdriicke 481
170 Uberprifen auf Existenz 484
171 Alle Treffer zurickgeben 486
172 Mit regularen Ausdricken in Strings ersetzen 487
173 Anhand von regulédren Ausdricken zerlegen 438
174 Auf Zahlen prafen 490
175 E-Mail-Adressen auf Gultigkeit prifen 493
176 HTML-Tags entfernen 495
177 RegEx fur verschiedene Daten 498
Datenbanken 501
178 Datenbankverbindung herstellen 501
179 Connection-Pooling 503
180 SQL-Befehle SELECT, INSERT, UPDATE und DELETE durchfthren 505
181 Anderungen im ResultSet vornehmen 508
182 PreparedStatements ausfihren 509
183 Stored Procedures ausfiihren 510
184 BLOB- und CLOB-Daten 512
185 Mit Transaktionen arbeiten 515
186 Batch-Ausfuhrung 516
187 Metadaten ermitteln 518
188 Datenbankzugriffe vom Applet 521
Netzwerke und E-Mail 525
189 IP-Adressen ermitteln 525
190 Erreichbarkeit Uberprufen 526
191 Status aller offenen Verbindungen abfragen 529

192 E-Mail senden mit JavaMail 532

10

193
194
195
196
197
198
199
200
201
202

>> Inhaltsverzeichnis

E-Mail mit Authentifizierung versenden
HTML-E-Mail versenden

E-Mail als multipart/alternative versenden
E-Mail mit Datei-Anhang versenden
E-Mails abrufen

Multipart-E-Mails abrufen und verarbeiten
URI — Textinhalt abrufen

URI - binaren Inhalt abrufen

Senden von Daten an eine Ressource
Mini-Webserver

XML

203
204
205
206
207
208
209
210
211
212
213

Sonderzeichen in XML verwenden
Kommentare

Namensrdume

CDATA-Bereiche

XML parsen mit SAX

XML parsen mit DOM

XML-Dokumente validieren
XML-Strukturen mit Programm erzeugen
XML-Dokument formatiert ausgeben
XML-Dokument formatiert als Datei speichern
XML mit XSLT transformieren

Internationalisierung

214
215
216
217
218
219
220
221
222
223
224
225
226
227

Lokale einstellen

Standardlokale andern

Verfugbare Lokalen ermitteln

Lokale des Betriebssystems andern

Strings vergleichen

Strings sortieren

Datumsangaben parsen und formatieren

Zahlen parsen und formatieren

Wahrungsangaben parsen und formatieren
Ressourcendateien anlegen und verwenden
Ressourcendateien im XML-Format
Ressourcendateien fur verschiedene Lokale erzeugen
Ressourcendatei fur die Lokale des aktuellen Systems laden
Ressourcendatei fur eine bestimmte Lokale laden

Threads

228
229
230
231

Threads verwenden

Threads ohne Exception beenden
Eigenschaften des aktuellen Threads
Ermitteln aller laufenden Threads

535
537
540
543
545
550
554
555
557
559

565

565
565
566
567
567
571
575
578
580
582
584

589

589
592
593
597
599
600
601
604
605
607
611
614
616
618

623

623
624
627
628

>> Inhaltsverzeichnis

232
233
234
235
236
237
238
239
240
241

Prioritat von Threads
Verwenden von Thread-Gruppen

Iterieren Uber Threads und Thread-Gruppen einer Thread-Gruppe

Threads in Swing: SwingWorker
Thread-Synchronisierung mit synchronized (Monitor)
Thread-Synchronisierung mit wait() und notify()
Thread-Synchronisierung mit Semaphoren
Thread-Kommunikation via Pipes

Thread-Pooling

Thread-globale Daten als Singleton-Instanzen

Applets

242
243
244
245
246
247
248

Grundgerust

Parameter von Webseite Glbernehmen

Bilder laden und Diashow erstellen

Sounds laden

Mit JavaScript auf Applet-Methoden zugreifen
Datenaustausch zwischen Applets einer Webseite
Laufschrift (Ticker)

Objekte, Collections, Design-Pattern

249
250
251
252
253
254
255
256
257
258
259
260
261

Objekte in Strings umwandeln — toString() Uberschreiben
Objekte kopieren - clone() Uberschreiben

Objekte und Hashing — hashCode() Gberschreiben
Objekte vergleichen — equals() Gberschreiben
Objekte vergleichen — Comparable implementieren
Objekte serialisieren und deserialisieren

Arrays in Collections umwandeln

Collections in Arrays umwandeln

Collections sortieren und durchsuchen

Collections synchronisieren

Design-Pattern: Singleton

Design-Pattern: Adapter (Wrapper, Decorator)
Design-Pattern: Factory-Methoden

Sonstiges

262
263
264
265
266
267
268
269
270

Arrays effizient kopieren

Arrays vergroBern oder verkleinern
Globale Daten in Java?

Testprogramme schreiben

Debug-Stufen definieren

Code optimieren

jar-Archive erzeugen

Programme mit Ant kompilieren
AusfUhrbare jar-Dateien mit Ant erstellen

11

629
631
632
635
639
640
642
644
646
651

655

655
661
663
669
672
675
677

681

681
683
689
695
699
705
710
711
712
716
718
721
729

733

733
734
735
738
742
745
746
748
754

12 >> Inhaltsverzeichnis

271 Reflection: Klasseninformationen abrufen

272 Reflection: Klasseninformationen Uber .class-Datei abrufen
273 Reflection: Klassen instanzieren

274 Reflection: Methode aufrufen

275 Kreditkartenvalidierung

276 Statistik

Teil lll Anhang

Tabellen

Java

Swing

Regulare Ausdricke
sSQL

Lokale

Die Java-SDK-Tools

javac — der Compiler

java — der Interpreter

jar — Archive erstellen

javadoc — Dokumentationen erstellen
jdb — der Debugger

Weitere Tools

Stichwortverzeichnis

Lizenzvereinbarungen

755
760
762
766
768
770

777

779

779
782
790
796
797

799

799
801
803
806
807
809

811
825

Teil | EinfGhrung

I

3

“*
=

So

Uber dieses Buch

Wenn Sie glauben, mit dem vorliegenden Werk ein Buch samt Begleit-CD erstanden zu haben,
befinden Sie sich im Irrtum. Was Sie gerade in der Hand halten, ist in Wahrheit eine CD mit
einem Begleitbuch.

Auf der CD finden Sie - nach Themengebieten geordnet - ungefahr 300 Rezepte mit ready-to-
use Losungen fiir die verschiedensten Probleme. Zu jedem Rezept gibt es im Repository den
zugehorigen Quelltext (in Form eines Codefragments, einer Methode oder einer Klasse), den
Sie nur noch in Ihr Programm zu kopieren brauchen.

Wer den Code eines Rezepts im praktischen Einsatz erleben mochte, findet auf der CD zudem
zu fast jedem Rezept ein Beispielprogramm, das die Verwendung des Codes demonstriert.

Und dann gibt es noch das Buch.

Im Buch sind alle Rezepte abgedruckt, beschrieben und mit Hintergrundinformationen erldu-
tert. Es wurde fiir Programmierer geschrieben, die konkrete Losungen fiir typische Probleme
des Programmieralltags suchen oder einfach ihren Fundus an niitzlichen Java-Techniken und
-Tricks erweitern wollen. In diesem Sinne ist das Java-Codebook die ideale Erginzung zu
Threm Java-Lehr- oder -Referenzbuch.

Auswahl der Rezepte

Auch wenn dreihundert Rezepte zweifelsohne eine ganz stattliche Sammlung darstellen, so
bilden wir uns nicht ein, damit zu jedem Problem eine passende Losung angeboten zu haben.
Dazu ist die Java-Programmierung ein zu weites Feld (und selbst das vereinte Wissen zweier
Autoren nicht ausreichend). Wir haben uns aber bemiiht, eine gute Mischung aus hiufig
benoétigten Techniken, interessanten Tricks und praxisbezogenen Designs zu finden, wie sie
zum Standardrepertoire eines jeden fortgeschrittenen Java-Programmierers gehoren sollten.

Sollten Sie das eine oder andere unentbehrliche Rezept vermissen, schreiben Sie uns
(autoren@carpelibrum.de). Auch wenn wir nicht versprechen kénnen, jede Anfrage mit einem
nachgereichten Rezept beantworten zu kénnen, so werden wir zumindest versuchen, Ihnen
mit einem Rat oder Hinweis weiterzuhelfen. Auf jeden Fall aber werden wir ihre Rezeptvor-
schlige bei der nachsten Auflage des Buches beriicksichtigen.

Fragen an die Autoren

Trotz aller Sorgfalt ldsst es sich bei einem Werk dieses Umfangs erfahrungsgemiB nie ganz
vermeiden, dass sich Tippfehler, irrefiihrende Formulierungen oder gar inhaltliche Fehler ein-
schleichen. Scheuen Sie sich in diesem Fall nicht, uns per E-Mail an autoren@carpelibrum.de
eine Nachricht zukommen zu lassen. Auch fiir Lob, Anregungen oder Themenwiinsche sind
wir stets dankbar.

Errata werden auf der Website www.carpelibrum.de veroffentlicht.

Sollten Sie Fragen zu einem bestimmten Rezept haben, wenden Sie sich bitte direkt an den
betreffenden Autor. In den Quelltexten im Ordner Beispiele sind dazu die Namen der Autoren
angegeben. Von Ausnahmen abgesehen gilt aber auch die folgende Zuordnung.

16 >> Uber dieses Buch

Kategorien ‘ Autor(en)

Zahlen und Mathematik Dirk Louis, dirk@carpelibrum.de
Strings

Datum und Uhrzeit

System Peter Miller, leserfragen@gmy.de
Ein- und Ausgabe Peter Miiller, leserfragen@gmux.de
GUI Dirk Louis, dirk@carpelibrum.de
Grafik und Multimedia

Regulire Ausdriicke und Pattern Matching Dirk Louis, dirk@carpelibrum.de
Datenbanken Peter Miiller, leserfragen@gm.x.de
Netzwerke und E-Mail Peter Miiller, leserfragen@gmzx.de
XML

Internationalisierung Dirk Louis, dirk@carpelibrum.de
Threads Peter Miller, leserfragen@gmyr.de
Applets Dirk Louis, dirk@carpelibrum.de
Objekte, Collections, Design-Pattern Dirk Louis, dirk@carpelibrum.de
Sonstiges

Kompilieren der Buchbeispiele

Wenn Sie eines der Beispiele von der CD ausfiihren und testen mochten, gehen Sie wie folgt
vor:

1. Kopieren Sie das Verzeichnis auf Ihre Festplatte.

2. Kompilieren Sie die Quelldateien.

In der Regel geniigt es dem Java-Compiler den Namen der Programmdatei mit der main()-
Methode zu iibergeben. Meist heifit die Programmdatei Start.java oder Program.java.

javac Start.java
oder
javac Program.java
Bei einigen Programmen miissen Sie externe Bibliotheken in Form von jar-Archiven in
den CLASSPATH aufnehmen oder mit der Option -cp als Parameter an javac iibergeben
(javac -cp xyz.jar Program.java).
3. Fihren Sie das Programm aus:
Jjava Start
oder
Jjava Program

Bei einigen Programmen miissen Sie externe Bibliotheken in Form von jar-Archiven in
den CLASSPATH aufnehmen oder mit der Option -cp als Parameter an java iibergeben
(java -cp xyz.jar Program).

Fiir Beispielprogramme mit abweichendem Aufruf finden Sie im Verzeichnis des Beispiels eine
Readme-Datei mit passendem Aufruf.

Teil Il Rezepte

Zahlen und Mathematik

Strings

Datum und Uhrzeit

System

Ein- und Ausgabe (10)

GUI

Grafik und Multimedia

RegEx

Datenbanken

Netzwerke und E-Mail

XML

International

Threads

Applets

Objekte

Sonstiges

Zahlen und Mathematik

1 Gerade Zahlen erkennen

Wie alle Daten werden auch Integer-Zahlen binir kodiert, jedoch nicht, wie man vielleicht
annehmen konnte, als Zahlen im Binirsystem, sondern als nach dem 2er-Komplement
kodierte Folgen von Nullen und Einsen.

Im 2er-Komplement werden positive Zahlen durch ihre korrespondierenden Binirzahlen dar-
gestellt. Das oberste Bit (MSB = Most Significant Bit) kodiert das Vorzeichen und ist fiir posi-
tive Zahlen 0. Negative Zahlen haben eine 1 im MSB und ergeben sich, indem man alle Bits
der korrespondierenden positiven Zahlen gleichen Betrags invertiert und +1 addiert. Der Vor-
zug dieser auf den ersten Blick unnotig umstindlich anmutenden Kodierung ist, dass die
Rechengesetze trotz Kodierung des Vorzeichens im MSB erhalten bleiben.

Das Wissen um die Art der Kodierung erlaubt einige duBerst effiziente Tricks, beispielsweise
das Erkennen von geraden Zahlen. Es ldsst sich leicht nachvollziehen, dass im 2er-Komple-
ment alle geraden Zahlen im untersten Bit eine O und alle ungeraden Zahlen eine 1 stehen
haben. Man kann also leicht an dem untersten Bit (LSB = Least Significant Bit) ablesen, ob es
sich bei einer Integer-Zahl um eine gerade oder ungerade Zahl handelt.

Ein einfaches Verfahren ist, eine bitweise AND-Verkniipfung zwischen der zu priifenden Zahl
und der Zahl 1 durchzufiihren. Ist das Ergebnis 0, ist die zu priifende Zahl gerade.

/**
* Stellt fest, ob die {ibergebene Zahl gerade oder ungerade ist
*/
public static boolean isEven(long number) {
return ((number & 11) == 01) ? true : false;
}

Listing 1: Gerade Zahlen erkennen

2 Effizientes Multiplizieren (Dividieren) mit
Potenzen von 2

Wie im Dezimalsystem die Verschiebung der Ziffern um eine Stelle einer Multiplikation bzw.
Division mit 10 entspricht, so entspricht im Bindrsystem die Verschiebung um eine Stelle einer
Multiplikation bzw. Division mit 2. Multiplikationen und Divisionen mit Potenzen von 2
konnen daher mit Hilfe der bitweisen Shift-Operatoren << und >> besonders effizient durchge-
fiihrt werden.

Um eine Integer-Zahl mit 2" zu multiplizieren, muss man ihre Bits einfach nur um n Positio-
nen nach links verschieben:

20 >> Primzahlen erzeugen

/**

* Multiplizieren mit Potenz von 2

*/

public static Tong mul(long number, int pos) f
return number << pos;

Listing 2: Multiplikation

Um eine Integer-Zahl durch 2" zu dividieren, muss man ihre Bits einfach nur um n Positionen
nach rechts verschieben:

/**

* Dividieren mit Potenz von 2

*/

public static long div(Tong number, int pos) {
return number >> pos;

Listing 3: Division

Beachten Sie, dass bei Shift-Operationen mit << und >> das Vorzeichen erhalten bleibt (anders
als bei einer Verschiebung mit >>>)!

Die Division mit div() erwies sich trotz des Function Overheads durch den Methodenaufruf als
um einiges schneller als die /-Operation.

3 Primzahlen erzeugen

Primzahlen sind Zahlen, die nur durch sich selbst und durch 1 teilbar sind. Dieser schlichten
Definition stehen einige der schwierigsten und auch fruchtbarsten Probleme der Mathematik
gegeniiber: Wie viele Primzahlen gibt es? Wie kann man Primzahlen erzeugen? Wie kann man
testen, ob eine gegebene Zahl eine Primzahl ist? Wie kann man eine gegebene Zahl in ihre
Primfaktoren zerlegen?

Wihrend die erste Frage bereits in der Antike von dem griechischen Mathematiker Euklid beant-
wortet werden konnte (es gibt unendlich viele Primzahlen), erwiesen sich die anderen als Inspi-
ration und Herausforderung fiir Generationen von Mathematikern - und Informatikern. So
spielen Primzahlen beispielsweise bei der Verschliisselung oder bei der Dimensionierung von
Hashtabellen eine groBe Rolle. Im ersten Fall ist man an der Generierung groBer Primzahlen
interessiert (und nutzt den Umstand, dass sich das Produkt zweier gentigend groBer Primzahlen
relativ einfach bilden lisst, es aber andererseits unmoglich ist, in angemessener Zeit die Prim-
zahlen aus dem Produkt wieder herauszurechnen). Im zweiten Fall wird berticksichtigt, dass die
meisten Hashtabellen-Implementierungen Hashfunktionen' verwenden, die besonders effizient
arbeiten, wenn die Kapazitét der Hashtabelle eine Primzahl ist.

1. Hashtabellen speichern Daten als Schliissel/Wert-Paare. Aufgabe der Hashfunktion ist es, aus dem Schliissel den
Index zu berechnen, unter dem der Wert zu finden ist. Eine gute Hashfunktion liefert fiir jeden Schliissel einen eige-
nen Index, der direkt zu dem gesuchten Wert fithrt. Weniger gute Hashfunktionen liefern fiir verschiedene Schliissel
den gleichen Index, so dass hinter diesen Indizes Wertelisten stehen, die noch einmal extra durchsucht werden miis-
sen. In der Java-API werden Hashtabellen beispielsweise durch HashMap, HashSet oder Hashtab1e implementiert.

>> Zahlen und Mathematik 21

Der wohl bekannteste Algorithmus zur Erzeugung von Primzahlen ist das Sieb des Eratos-
thenes.

1. Schreibe alle Zahlen von 2 bis N auf.

2. Rahme die 2 ein und streiche alle Vielfachen von 2 durch.

3. Wiederhole Schritt 2 fiir alle n mit n <= sqrt(N), die noch nicht durchgestrichen wurden.
4. Alle eingerahmten oder nicht durchgestrichenen Zahlen sind Primzahlen.

Eine mogliche Implementierung dieses Algorithmus verwendet die nachfolgend definierte
Methode sieve(), die die Primzahlen aus einem durch min und max gegebenen Zahlenbereich
als LinkedlList-Container zuriickliefert.

import java.util.lLinkedList;

[k

* Sieb des Eratosthenes

*/

public static LinkedlList<Integer> sieve(int min, int max) {

Pf((min < 0) || (max < 2) || (min > max))
return null;

BitSet numbers = new BitSet(max); // anfangs liefern alle Bits false
numbers.set(0); // keine Primzahlen -> auf true setzen
numbers.set(1);

int 1imit = (int) Math.sqrt(max);

for(int n = 2; n <= Timit; ++n)
if(!numbers.get(n))
for(int i = 2*n; 1 < max; i+=n)
numbers.set(i);

// Primzahlen im gesuchten Bereich zusammenstellen
LinkedList<Integer> prims = new LinkedlList<Integer>();

for(int i =min; i < max; ++i)
if(Inumbers.get(i))
prims.add(i);

return prims;

Listing 4: Primzahlen erzeugen

Die Methode priift zuerst, ob der angegebene Bereich tiberhaupt Primzahlen enthélt. Dann legt
sie einen BitSet-Container zahlen an, der die Zahlen von O bis max représentiert. Anfangs sind
die Bits in numbers nicht gesetzt (false), was bedeutet, die Zahlen sind noch nicht ausgestri-
chen. In zwei verschachtelten for-Schleifen werden die Nicht-Primzahlen danach ausgestri-
chen. Zu guter Letzt werden die Primzahlen zwischen min und max in einen Linkedlist-
Container iibertragen und als Ergebnis zurtickgeliefert.

22 >> Primzahlen erkennen

Wenn es Sie interessiert, welche Jahre im 20. Jahrhundert Primjahre waren, konnen Sie diese
Methode beispielsweise wie folgt aufrufen:

import java.util.LinkedlList;

// Primzahlen erzeugen
LinkedList<Integer> prims = MoreMath.sieve(1900, 2000);

if(prims == null)
System.out.printin("Fehler in Sieb-Aufruf");
else
for(int elem : prims)
System.out.print(" " + elem);

Wenn Sie in einem Programm einen Hashtabellen-Container anlegen wollen, dessen Anfangs-
kapazitit sich erst zur Laufzeit ergibt, benotigen Sie allerdings eine Methode, die ihnen genau
eine passende Primzahl zuriickliefert. Dies leistet die Methode getPrim(). Sie tibergeben der
Methode die gewiinschte Mindestanfangskapazitit und erhalten die nichsthéhere Primzahl
zuriick.

import java.util.LinkedlList;

Jk

* Liefert die ndchsththere Primzahl zuriick
*/

public static int getPrim(int min) {

LinkedList<Integer> 1;
int max = min + 20;

do {
1 = sieve(min, max);
max += 10;

} while (1.size() == 0);

return 1.getFirst();

Listing 5: Die kleinste Primzahl gréBer n berechnen

Die Erzeugung eines HashMap-Containers mit Hilfe von getPrim() konnte wie folgt aussehen:

Java.util.HashMap map = new java.util.HashMap(MoreMath.getPrim(min));

4 Primzahlen erkennen

Das Erkennen von Primzahlen ist eine Wissenschaft fiir sich - und ein Gebiet, auf dem sich
vor kurzem (im Jahre 2001) Erstaunliches getan hat.

Kleinere Zahlen, also Zahlen < 9.223.372.036.854.775.807 (worin Sie unschwer die groBte
positive Tong-Zahl erkennen werden), lassen sich schnell und effizient ermitteln, indem man
priift, ob sie durch irgendeine kleinere Zahl (ohne Rest) geteilt werden kénnen.

>> Zahlen und Mathematik 23

/**

* Stellt fest, ob eine long-Zahl eine Primzahl ist
*/
public static boolean isPrim(Tong n) {

if (n<=1) // Primzahl sind positive Zahlen > 1
return false;

if ((n & 11) == 01) // gerade Zahl
return false;

Tong Timit = (long) Math.sqgrt(n);

for(long i =3; i < limit; i+=2)
if(n % 1==0)

return false;

return true;

Listing 6: »Kleine« Primzahlen erkennen

Die Methode testet zuerst, ob die zu priifende Zahl n kleiner als 2 oder gerade ist. Wenn ja, ist
die Methode fertig und liefert false zuriick. Hat n die ersten Tests {iberstanden, geht die
Methode in einer Schleife alle ungeraden Zahlen bis sqrt(n) durch und probiert, ob n durch
die Schleifenvariable i ohne Rest geteilt werden kann. Gibt es einen Teiler, ist n keine Primzahl
und die Methode kehrt sofort mit dem Riickgabewert false zuriick. Gibt es keinen Teiler, liefert
die Methode true zuriick.

Leider kénnen wegen der Beschrinkung des Datentyps long mit dieser Methode nur relativ
kleine Zahlen getestet werden. Um gréBere Zahlen zu testen, kénnte man den obigen Algo-
rithmus fiir die Klasse BigInteger implementieren. (BigInteger und BigDecimal erlauben die
Arbeit mit beliebig groBen (genauen) Integer- bzw. Gleitkommazahlen, siehe Rezept 26.) In der
Praxis ist dieser Weg aber kaum akzeptabel, denn abgesehen davon, dass die BigInteger-
Modulo-Operation recht zeitraubend ist, besitzt der Algorithmus wegen der Modulo-Operation
in der Schleife von vornherein ein ungiinstiges Laufzeitverhalten.

Mangels schneller deterministischer Verfahren werden Primzahlen daher hédufig mit Hilfe pro-
babilistischer Verfahren iiberpriift, wie zum Beispiel dem Primtest nach Rabin-Miller.

So verfiigt die Klasse BigInteger iiber eine Methode isProbablePrime(), mit der Sie BigInte-
ger-Zahlen testen konnen. Liefert die Methode false zuriick, handelt es sich definitiv um
keine Primzahl. Liefert die Methode true zuriick, liegt die Wahrscheinlichkeit, dass es sich um
eine Primzahl handelt, bei 1 - 1/2". Den Wert n iibergeben Sie der Methode als Argument.
(Die Methode testet intern nach Rabin-Miller und Lucas-Lehmer.)

import java.math.BigInteger;

/**
* Stellt fest, ob eine Biglnteger-Zahl eine Primzahl ist

* (erkennt Primzahl mit nahezu 100%-iger Sicherheit (1 - 1/28 = 0,9961))
*/

24 >> Gleitkommazahlen auf n Stellen runden

public static boolean isPrim(BigInteger n) {
return n.isProbablePrime(8);

}

AbschlieBend sei noch erwéhnt, dass es seit 2002 ein von den indischen Mathematikern Agra-
wal, Kayal und Saxena gefundenes deterministisches Polynomialzeitverfahren zum Test auf
Primzahlen gibt.

5 Gleitkommazahlen auf n Stellen runden

Die von Math angebotenen Rundungsmethoden runden - wie das Casting in einen Integer-Typ
- stets bis zu einem Integer-Wert auf oder ab.

Rundungsmethode ‘ Beschreibung

Cast () Rundet immer ab.

Math.rint(double x) Rundet mathematisch (Riickgabetyp double).

Math.round(double x) Rundet kaufméannisch (Riickgabetyp Tong bzw. int).

Math.round(float x)

Math.ceil(double x) Rundet auf die néchste groBere ganze Zahl auf (Riickgabetyp double).
Math.floor(double x) Rundet auf die néchste kleinere ganze Zahl ab (Riickgabetyp double).

Tabelle 1: Rundungsmethoden

Mochte man Dezimalzahlen auf Dezimalzahlen mit einer bestimmten Anzahl Nachkommastel-
len runden, bedarf es dazu eigener Methoden: eine zum mathematischen und eine zum kauf-
ménnischen Runden auf x Stellen.

Das kaufméinnische Runden betrachtet lediglich die erste zu rundende Stelle. Ist diese gleich O,
1, 2, 3 oder 4, wird ab-, ansonsten aufgerundet. Dieses Verfahren ist einfach, fiihrt aber zu
einer gewissen Unausgewogenheit, da mehr Zahlen auf- als abgerundet werden. Das mathe-
matische Runden rundet immer von hinten nach vorne und unterscheidet sich in der Behand-
lung der 5 als zu rundender Zahl:

» Folgen auf die 5 noch weitere von 0 verschiedene Ziffern, wird aufgerundet.

P Ist die 5 durch Abrundung entstanden, wird aufgerundet. Ist sie durch Aufrundung ent-
standen, wird abgerundet.

» Folgen auf die 5 keine weiteren Ziffern, wird so gerundet, dass die vorangehende Ziffer
gerade wird.

Der letzte Punkt fiihrt beispielsweise dazu, dass die Zahl 8.5 von rint() auf 8 abgerundet wird,
wéhrend sie beim kaufmannischen Runden mit round() auf 9 aufgerundet wird.

Mit den folgenden Methoden konnen Sie kaufménnisch bzw. mathematisch auf n Stellen
genau runden.
/**
* Kaufmdnnisches Runden auf n Stellen
*/
public static double round(double number, int n) {
return (Math.round(number * Math.pow(10,n))) / Math.pow(10,n);
}

>> Zahlen und Mathematik

/**
* Mathematisches Runden auf n Stellen
*/
public static double rint(double number, int n) {
return (Math.rint(number * Math.pow(10,n))) / Math.pow(10,n);
}

Die Methoden multiplizieren die zu rundende Zahl mit 10", um die gewiinschte Anzahl Nach-
kommastellen zu erhalten, runden das Ergebnis mit round() bzw. rint() und dividieren das
Ergebnis anschlieBend durch 10", um wieder die alte GréBenordnung herzustellen.

Eingabeaufforderung

»java Start B.5 3

round -9

rint : 8.8
round {n)>: B.5
rint <nd>: B.5

>java Start 1.1185 3

round 1
rint 1.8
round {n>: 1.119
rint <n>: 1.118

Abbildung 1: Kaufménnisches und mathematisches Runden auf drei Stellen

6 Gleitkommazahlen mit definierter Genauigkeit
vergleichen

Gleitkommazahlen kénnen zwar sehr groBe oder sehr kleine Zahlen speichern, jedoch nur mit
begrenzter Genauigkeit. So schrinkt der zur Verfiigung stehende Speicherplatz den Datentyp
float auf ca. sieben und den Datentyp double auf ungefdhr zehn signifikante Stellen ein.
Ergeben sich im Zuge einer Berechnung mit Gleitkommazahlen Zahlen mit mehr signifikanten
Stellen oder flieBen Literale mit mehr Stellen ein, so entstehen Rundungsfehler.

Kommt es bei einer Berechnung nicht auf extreme Genauigkeit an, stéren die Rundungsfehler
meist nicht weiter. (Wenn Sie beispielsweise die Wohnfliche einer Wohnung berechnen, wird
es nicht darauf ankommen, ob diese 95,45 oder 94,450000001 qm betrigt.)

Gravierende Fehler konnen allerdings entstehen, wenn man Gleitkommazahlen mit Run-
dungsfehlern vergleicht. So ergibt der Vergleich in dem folgenden Codefragment wegen Run-
dungsfehlern in der Zahlendarstellung nicht die erwartete Ausgabe »gleich Null«.

double number = 12.123456;
number -=12.0;
number -= (0.123456;

if (number == 0.0)
System.out.printin("gleich Null");

Dabei weicht number nur minimal von 0.0 ab! Um mit Rundungsfehlern behaftete Gleitkomma-
zahlen korrekt zu vergleichen, bedarf es daher einer Vergleichsfunktion, die mit einer gewis-
sen Toleranz (epsilon) arbeitet:

26 >> Strings in Zahlen umwandeln

/**

* Gleitkommazahlen mit definierter Genauigkeit vergleichen

*/

public static boolean equals(double a, double b, double eps) {
return Math.abs(a - b) < eps;

}

Mit dieser Methode kann die »Gleichheit« wie gewiinscht festgestellt werden:

double number = 12.123456;
number -= 12.0;
number -= 0.123456;

if(MoreMath.equals(number, 0.0, 1el0))
System.out.printin("gleich Null");

Apropos Vergleiche und Gleitkommazahlen: Denken Sie daran, dass Sie Vergleiche
gegen NaN oder Infinity mit Double.isNaN() bzw. Double.isInfinity() durchfiihren.

7 Strings in Zahlen umwandeln

Benutzereingaben, die {iber die Konsole (System.1in), iber Textkomponenten von GUI-Anwen-
dungen (z.B. JTextField) oder aus Textdateien in eine Anwendung eingelesen werden, sind
immer Strings - selbst wenn diese Strings Zahlen repriasentieren. Um mit den Zahlenwerten
rechnen zu kénnen, miissen die Strings daher zuerst in einen passenden numerischen Typ wie
int oder double umgewandelt werden.

Die Umwandlung besteht grundsétzlich aus zwei Schritten:
» Dem Aufruf einer geeigneten Umwandlungsmethode

» Der Absicherung der Umwandlung fiir den Fall, dass der String keine giiltige Zahl enthilt

Fiir die Umwandlung selbst gibt es verschiedene Moglichkeiten und Klassen:
» Die parse-Methoden der Wrapper-Klassen

Die Wrapper-Klassen zu den elementaren Datentypen (Short, Integer, Double etc.) verfligen
jede Uber eine passende statische parse-Methode (parseShort(), parselnt(), parseDouble()
etc.), die den ihr iibergebenen String in den zugehorigen elementaren Datentyp umwan-
delt. Kann der String nicht umgewandelt werden, wird eine NumberFormatException aus-
geldst.

Die parse-Methoden der Wrapper-Klassen fiir die Ganzzahlentypen, Byte, Short, Int und
Long, sind iiberladen, so dass Sie neben dem umzuwandelnden String auch die Basis des
Zahlensystems angeben konnen, in dem die Zahl im String niedergeschrieben ist:
parselnt(String s, int base).

try |

number = Integer.parselnt(str);
}
catch(NumberFormatException e) {}

>> Zahlen und Mathematik 27

» Die parse()-Methode von DecimalFormat

Die Klasse DecimalFormat wird zwar vorzugsweise zur formatierten Umwandlung von Zah-
len in Strings verwendet (siehe Rezept 8), mit ihrer parse()-Methode kann aber auch der
umgekehrte Weg eingeschlagen werden.

Die parse()-Methode parst die Zeichen im iibergebenen String so lange, bis sie auf ein
Zeichen trifft, das sie nicht als Teil der Zahl interpretiert (Buchstabe, Satzzeichen). Aber
Achtung! Das Dezimalzeichen, gemadB der voreingestellten Lokale der Punkt, wird igno-
riert. Die eingeparsten Zeichen werden in eine Zahl umgewandelt und als Long-Objekt
zuriickgeliefert. Ist der Zahlenwert zu groB oder wurde zuvor fiir das DecimalFormat-Objekt
setParseBigDecimal(true) aufgerufen, wird das Ergebnis als Double-Objekt zuriickgeliefert.
Kann keine Zahl zuriickgeliefert werden, etwa weil der String mit einem Buchstaben
beginnt, wird eine ParseException ausgelost.

Der Riickgabetyp ist in jedem Fall Number. Mit den Konvertierungsmethoden von Number
(toInt(), toDouble() etc.) kann ein passender elementarer Typ erzeugt werden.

Die parse()-Methode ist iiberladen. Die von NumberfFormat geerbte Version {ibernimmt
allein den umzuwandelnden String, die in DecimalFormat definierte Version erhilt als zwei-
tes Argument eine Positionsangabe vom Typ ParsePosition, die festlegt, ab wo mit dem
Parsen des Strings begonnen werden soll.

import java.text.DecimalFormat;
import java.text.ParsekException;

DecimalFormat df = new DecimalFormat();
try {

number = (df.parse(str)).intValue();
}
catch(Parsekxception e) {}

P Die next-Methoden der Klasse Scanner

Mit der Klasse Scanner kdnnen Eingaben aus Strings, Dateien, Streams oder auch der Kon-
sole (System.in) eingelesen werden. Die Eingabe wird in Tokens zerlegt (Trennzeichen
(Delimiter) sind standardméBig alle Whitespace-Zeichen - also Leerzeichen, Tabulatoren,
Zeilenumbriiche).

Die einzelnen Tokens konnen mit next() als Strings oder mit den nextTyp-Methoden
(nextInt(), nextDouble(), nextBigInteger() etc.) als numerische Typen eingelesen werden.

Im Falle eines Fehlers werden folgende Exceptions ausgeldst: InputMismatchException,
NoSuchETementException und ITlegalStateException. Letztere wird ausgeldst, wenn der
Scanner zuvor geschlossen wurde. Die beiden anderen Exceptions kénnen Sie vermeiden,
wenn Sie vorab mit next(), nextInt(), nextDouble() etc. priifen, ob ein weiteres Token vor-
handen und vom gewiinschten Format ist.

import java.util.Scanner;

Scanner scan = new Scanner(str); // new Scanner(System.in), um
// von der Konsole zu lesen
if (scan.hasNextInt())
number = scan.nextInt();

28 >> Strings in Zahlen umwandeln

Methode Beschreibung Absicherung Laufzeit
(fUr » 154«

auf PlII,
2 GHz2)

Integer.parselnt() Ubernimmt als Argument den NumberFormatException < 1 sec
umzuwandelnden String und
versucht ihn in einen int-Wert
umzuwandeln.

»154« -> 154

»15.4« -> Exception
»15s4« -> Exception
»s154« -> Exception

DecimalFormat.parse() Ubernimmt als Argument den ParseException ~ 100 sec
umzuwandelnden String, parst
diesen Zeichen fiir Zeichen, bis
das Ende oder ein Nicht-Zah-
len-Zeichen erreicht wird, und
liefert das Ergebnis als Long-
Objekt (bzw. Double) zuriick.
»154« -> 154

»15.4« -> 154

»15s84« -> 15

»s154« -> Exception

Scanner.nextInt() »154¢ -> 154 Scanner.hasNextInt() ~ 2500 sec
»15.4« -> hasNextInt() ergibt
false
»15s4« -> hasNextInt() ergibt
false
»s154« -> hasNextInt() ergibt
false

Tabelle 2: Vergleich verschiedener Verfahren zur Umwandlung von Strings in Zahlen

Mit dem folgenden Programm kdnnen Sie Verhalten und Laufzeit der verschiedenen Umwand-
lungsmethoden auf IThrem Rechner priifen:

import java.util.Scanner;
import java.text.DecimalFormat;
import java.text.Parsekxception;

public class Start {

public static void main(String[] args) {
System.out.printin();

if (args.length !=1) {
System.out.printin(" Aufruf: Start <Ganzzahl1>");

Listing 7: Vergleich verschiedener Umwandlungsverfahren

>> Zahlen und Mathematik

System.exit(0);
1

long start, end; // fir die Zeitmessung
int number;
String str = args[0]; // Die umzuwandelnde Zahl als String

// Umwandlung mit parselnt()
number = -1;
start = System.currentTimeMillis();
for(int 1 = 0; i <= 10000; ++i) {

try {

number = Integer.parselnt(str);

!

catch(NumberFormatException e) {}
}
end = System.currentTimeMillis();
System.out.printf("%15s liefert %d nach %5s sec \n", "parselnt()",

number, (end-start));

// UmwandTung mit DecimalFormat
number = -1;
start = System.currentTimeMil1is();
for(int 1 = 0; i <= 10000; ++i) {
DecimalFormat df = new DecimalFormat();
try {
number = (df.parse(str)).intValue();
}
catch(ParseException e) {}
}
end = System.currentTimeMi1lis();
System.out.printf("%15s liefert %d nach %5s sec \n", "DecimalFormat",
number, (end-start));

// Umwandlung mit Scanner
number = -1;
start = System.currentTimeMillis();
for(int 1 = 0; i <= 10000; ++i) {
Scanner scan = new Scanner(str);
if (scan.hasNextInt())
number = scan.nextInt();
}
end = System.currentTimeMi11is();
System.out.printf("%15s 1iefert %d nach %5s sec \n", "Scanner", number,
(end-start));

Listing 7: Vergleich verschiedener Umwandlungsverfahren (Forts.)

30 >> Zahlen in Strings umwandeln

8 Zahlen in Strings umwandeln

Die Umwandlung von Zahlen in Strings gehort wie ihr Pendant, die Umwandlung von Strings
in Zahlen, zu den elementarsten Programmieraufgaben iiberhaupt. Java unterstiitzt den Pro-
grammierer dabei mit drei Varianten:

P der auf toString() basierenden, (weitgehend) automatischen Umwandlung (fiir groBtmog-
liche Bequemlichkeit),

P der auf NumberFormat und DecimalFormat basierenden, beliebig formatierbaren Umwand-
lung (fir groBtmogliche Flexibilitét)

» sowie der von C {ibernommenen formatierten Ausgabe mit printf(). (printf() eignet sich
nur zur Ausgabe auf die Konsole und wird hier nicht weiter behandelt. Fiir eine Beschrei-
bung der Methode siehe Lehrbiicher zu Java oder die Java-API-Referenz.)

Zahlen in Strings umwandeln mit toString()

Wie Sie wissen, erben alle Java-Klassen von der obersten Basisklasse die Methode toString(),
die eine Stringdarstellung des aktuellen Objekts zuriickliefert. Die Implementierung von
Object liefert einen String des Aufbaus klassenname@hashCodeDesObjekts zuriick. Abgeleitete
Klassen konnen die Methode tiberschreiben, um sinnvollere Stringdarstellungen ihrer Objekte
zuriickzugeben. Fiir die Wrapper-Klassen zu den numerischen Datentypen ist dies geschehen
(siehe Tabelle 3).

toString()-Methode ‘ zurlckgelieferter String
Integer.toString() Stringdarstellung der Zahl, bestehend aus maximal 32 Ziffern. Negative
Byte.toString() Zahlen beginnen mit einem Minuszeichen.
Short.toString() 123
-9000
Long.toString() Wie fiir Integer, aber mit maximal 64 Ziffern.
Float.toString() Null wird als 0.0 dargestellt.

DoubTe.toString() Zahlen, deren Betrag zwischen 10 und 107 liegt, werden als Zahl mit

Nachkommastellen dargestellt. Es wird immer mindestens eine Nachkom-
mastelle ausgegeben. Der intern verwendete Umwandlungsalgorithmus
kann dazu fiihren, dass eine abschlieBende Null ausgegeben wird.

Zahlen auBerhalb des Bereichs von 10~ und 10’ werden in Exponential-
schreibweise dargestellt oder als infinity.

Negative Zahlen werden mit Vorzeichen dargestellt.

=333.0 /1 -333
0.0010 // 0.001
9.9E-4 //0.00099
Infinity // 1e380 * 10

Tabelle 3: Formate der toString()-Methoden

Bei Ausgaben mit PrintStream.print() und PrintStream.printin() oder bei Stringkonkatena-
tionen mit dem +-Operator wird fiir primitive numerische Daten intern automatisch ein Objekt
der zugehorigen Wrapper-Klasse erzeugt und deren toString()-Methode aufgerufen. Dieser
Trick erlaubt es, Zahlen miihelos auszugeben oder in Strings einzubauen - sofern man sich
mit der Standardformatierung durch die toString()-Methoden zufrieden gibt.

>> Zahlen und Mathematik 31

int number = 12;
System.out.print(number);
System.out.print("Wert der Variablen: " + number);

Zahlen in Strings umwandeln mit NumberFormat und DecimalFormat

Wem die Standardformate von toString() nicht geniigen, der kann auf die abstrakte Klasse
NumberFormat und die von ihr abgeleite Klasse DecimalFormat zuriickgreifen. Die Klasse
DecimalFormat arbeitet mit Patterns (Mustern). Jedes DecimalFormat-Objekt kapselt intern ein
Pattern, das angibt, wie das Objekt Zahlen formatiert. Die eigentliche Formatierung erfolgt
durch Aufruf der format()-Methode des Objekts. Die zu formatierende Zahl wird als Argument
iibergeben, der formatierte String wird als Ergebnis zuriickgeliefert.

Die Patterns haben folgenden Aufbau:
Prafixept Zahlenformat Suffixgp:

Prifix und Suffix konnen neben beliebigen Zeichen, die unverindert ausgegeben werden,
auch die Symbole % (Prozentsymbol), \u2030 (Promillesymbol) und \u0O0A4 (Wihrungssym-
bol) enthalten. Die eigentliche Zahl wird gemiB dem mittleren Teil formatiert, der folgende
Symbole enthalten kann:

Symbol ‘ Bedeutung

0 obligatorische Ziffer

1 optionale Ziffer
Dezimalzeichen
Tausenderzeichen
Minuszeichen

E Exponentialzeichen

Tabelle 4: Symbole fir DecimalFormat-Patterns

Integer- und Gleitkommazahlen kénnen nach folgenden Schemata aufgebaut werden:

#.1Hk0
#.1H0. 00#

Die Vorkommastellen kénnen durch das Tausenderzeichen gruppiert werden. Es ist unnétig,
mehr als ein Tausenderzeichen zu setzen, da bei mehreren Tausenderzeichen die Anzahl der
Stellen pro Gruppe gleich der Anzahl Stellen zwischen dem letzten Tausenderzeichen und dem
Ende des ganzzahligen Teils ist (in obigem Beispiel 3). Im Vorkommateil darf rechts von einer
obligatorischen Ziffer (0) keine optionale Ziffer mehr folgen. Die maximale Anzahl Stellen im
Vorkommateil ist unbegrenzt, optionale Stellen miissen lediglich zum Setzen des Tausender-
zeichens angegeben werden. Im Nachkommateil darf rechts von einer optionalen Ziffer keine
obligatorische Ziffer mehr folgen. Die Zahl der obligatorischen Ziffern entspricht hier der Min-
destzahl an Stellen, die Summe aus obligatorischen und optionalen Ziffern der Maximalzahl an
Stellen. Optional kann sich an beide Formate die Angabe eines Exponenten anschlieBen (siehe
Rezept 9).

Negative Zahlen werden standardmiBig durch Voranstellung des Minuszeichens gebildet, es
sei denn, es wird dem Pattern fiir die positiven Zahlen mittels ; ein spezielles Negativ-Pattern
angehingt.

32 >> Zahlen in Strings umwandeln

Landesspezifische Symbole wie Tausenderzeichen, Wahrungssymbol etc. werden gemial3 der
aktuellen Lokale der JVM gesetzt.

import java.text.DecimalFormat;

double number = 3344 .588;

DecimalFormat df = new DecimalFormat("#,70.00");
System.out.printin(df.format(number)); // Ausgabe: 3,344.59

Statt eigene Formate zu definieren, konnen Sie sich auch von den statischen Methoden der
Klasse NumberFormat vordefinierte DecimalFormat-Objekte zuriickliefern lassen:

NumberFormat-Methode ‘ Liefert

getInstance() Format fiir beliebige Zahlen:

getNumberInstance() i, 1HEO . FHHE

(= Zahl mit mindestens einer Stelle, maximal drei Nachkomma-
stellen und Tausenderzeichen nach je drei Stellen)

getIntegerInstance() Format fiir Integer-Zahlen:
#.4H0

(= Zahl mit mindestens einer Stelle, keine Nachkommastellen und
Tausenderzeichen nach je drei Stellen)

getPercentInstance() Format fiir Prozentangaben:

1, HHE0%

(= Zahl mit mindestens einer Stelle, keine Nachkommastellen,
Tausenderzeichen nach je drei Stellen und abschlieBendem Prozent-
zeichen)

(Achtung! Die zu formatierende Zahl wird automatisch mit 100
multipliziert.)

getCurrencyInstance() Format fiir Preisangaben:

#F,1H0.00 =

(= Zahl mit mindestens einer Stelle, genau zwei Nachkommastellen,
Tausenderzeichen nach je drei Stellen und abschlieBendem Leer- und
Waihrungszeichen)

Tabelle 5: Factory-Methoden der Klasse NumberFormat

import java.text.NumberFormat;

doubTe number = 0.3;
NumberFormat nf = NumberFormat.getPercentInstance();
System.out.print(nf.format(number)); // Ausgabe: 30%

number = 12345.6789;
nf = NumberFormat.getNumberInstance();
System.out.print(nf.format(number)); // Ausgabe: 12.345,679

>> Zahlen und Mathematik 33

Formatierungsobjekte anpassen

Die von einem DecimalFormat-Objekt vorgenommene Formatierung kann jederzeit durch Auf-
ruf der entsprechenden set-Methoden angepasst werden.

Methode | Beschreibung

void setCurrency(Currency c) Andert die zu verwendende Wahrung.

void setDecimalSeparatorAlwaysShown(boolean opt) Wird true tibergeben, wird das Dezimalzeichen
auch am Ende von Integer-Zahlen angezeigt.

void setGroupingSize(int n) Anzahl Stellen pro Gruppe.

void setGroupingUsed(boolean opt) Legt fest, ob die Vorkommastellen gruppiert
werden sollen.

void setMaximumFractionDigits(int n) Maximale Anzahl Stellen im Nachkommateil.

void setMaximumIntegerDigits(int n) Maximale Anzahl Stellen im Integer-Teil.

void setMinimumFractionDigits(int n) Minimale Anzahl Stellen im Nachkommateil.

void setMinimumIntegerDigits(int n) Minimale Anzahl Stellen im Integer-Teil.

void setMultiplier(int n) Faktor fiir Prozent- und Promille-Darstellung.

setNegativePrefix(String new) Setzt Priafixe und Suffixe der Patterns fiir

setNegativeSuffix(String new) negative bzw. positive Zahlen.

setPositivePrefix(String new)

(

setPositiveSuffix(String new)

Tabelle 6: Set-Methoden von DecimalFormat (die hervorgehobenen Methoden sind auch fir
NumberFormat definiert)

import java.text.DecimalFormat;
import java.text.NumberFormat;

double number = 12345.6789;
NumberFormat nf = NumberFormat.getNumberInstance();
nf.setMaximumFractionDigits(2);
nf.setGroupingUsed(false);
if (nf instanceof DecimalFormat)

((DecimalFormat) nf).setPositiveSuffix(" Meter");

System.out.print(nf.format(number)); // Ausgabe: 12345,68 Meter

Eigene, vordefinierte Formate

Wenn Sie an verschiedenen Stellen immer wieder dieselben Formatierungen benétigen, lohnt
sich unter Umstédnden die Definition eigener vordefinierter Formate, beispielsweise in Form
von static final-Konstanten, die mittels eines static-Blocks konfiguriert werden.

Die folgenden Definitionen gestatten die schnelle Formatierung von Gleitkommazahlen gemaf
US-amerikanischer Gepflogenheiten, mit maximal drei Nachkommastellen und je nach aus-
gewdhlter Konstante mit oder ohne Gruppierung.

import java.text.NumberFormat;
import java.util.locale;

public class MoreMath {

34 >> Ausgabe: Dezimalzahlen in Exponentialschreibweise

public static final NumberfFormat NFUS;
public static final Numberformat NFUS_NOGROUP;

static f
NFUS = NumberFormat.getNumberInstance(Locale.US);
NFUS_NOGROUP = NumberFormat.getNumberInstance(Locale.US);
NFUS_NOGROUP. setGroupingUsed(false);

}

// Instanzbildung unterbinden
private MoreMath() { }
}

Aufruf:
public static void main(String args[]) {

double number = 12345.6789

System.out.printin(MoreMath.NFUS. format (number));
System.out.printin(MoreMath.NFUS_NOGROUP.format(number));
}

Ausgabe:

12,345.679
12345.679

Mehr zur landesspezifischen Formatierung in der Kategorie »Internationalisierungs.

9 Ausgabe: Dezimalzahlen in Exponentialschreibweise

Es mag verwundern, aber die Ausgabe von Dezimalzahlen in Exponentialschreibweise stellt in
Java insofern ein Problem dar, als es (derzeit) keine standardméBige Unterstiitzung dafiir gibt.

Wenn Sie fiir die Umwandlung einer Dezimalzahl in einen String der toString()-Methode ver-
trauen, sind die Zahlen mal als normale Dezimalbriiche und mal in Exponentialschreibweise
formatiert. Wenn Sie NumberFormat.getNumberInstance() bemiihen, erhalten Sie immer einfache
Dezimalbriiche. Eine vordefinierte NumberFormat-Instanz fiir die Exponentialschreibweise gibt es
nicht. Lediglich printf() bietet Unterstiitzung fiir die Formatierung in Exponentialschreibweise
(Konvertierungssymbol %e), doch eignet sich printf() nur fiir die Konsolenausgabe.

Will man also Dezimalzahlen in Exponentialschreibweise darstellen, muss man fiir ein geeig-
netes Pattern ein eigenes DecimalFormat-Objekt erzeugen. (Mehr zu DecimalFormat-Patterns in
Rezept 8).

DecimalFormat-Patterns fiir die Exponentialdarstellung

Patterns fiir die Exponentialdarstellung bestehen wie jedes DecimalFormat-Pattern aus Préfix,
Zahlenformat und Suffix. Das Zahlenformat hat den Aufbau:

1£0. O#E0

>> Zahlen und Mathematik 35

Die Umwandlung eines solchen Patterns in eine formatierte Zahl ist etwas eigentiimlich.
Grundsitzlich gilt: Sie geben die maximale und minimale Anzahl Vorkommastellen an und
das DecimalFormat-Objekt berechnet den passenden Exponenten. Aus diesem Grund kann fiir
den Exponenten auch nur die minimale Anzahl Stellen angegeben werden. Die maximale Zahl
ist unbeschréankt.

Fiir die Berechnung des Exponenten gibt es zwei Modelle, die iiber den Aufbau des Vorkom-
mateils ausgewédhlt werden:

P Besteht der Vorkommateil nur aus obligatorischen Stellen (0), berechnet DecimalFormat den
Exponenten so, dass exakt die vorgegebene Zahl Stellen vor dem Komma erreicht wird.

Zahl | Pattern ‘ String
12.3456 0.#E0 1,2E1
12.3456 000.#E0 123,5E-1
12.3456 000.#E00 123,5E-01

P Enthilt der Vorkommateil optionale Stellen (#), ist der Exponent stets ein Vielfaches der

Summe an Vorkommastellen.

Zahl | Pattern ‘ String
12.3456 #.#EQ 1,2E1
12.3456 ##0.#E0 12,35E0
123456 ##0.#E0 123,5E3

Die Anzahl signifikanter Stellen in der Mantisse entspricht der Summe aus obligatorischen
Vorkomma- und maximaler Anzahl Nachkommastellen.

Tausenderzeichen sind nicht erlaubt.

Vordefinierte Patterns

Wenn Sie an verschiedenen Stellen immer wieder dieselben Formatierungen benétigen, lohnt
sich unter Umstinden die Definition eigener vordefinierter Formate, beispielsweise in Form
von static final-Konstanten, die mittels eines static-Blocks konfiguriert werden.

Die folgenden Definitionen gestatten die schnelle Formatierung von Gleitkommazahlen in
Exponentialschreibweise mit

P einer Vorkommastelle und sechs signifikanten Stellen (DFEXP),

P sechs signifikanten Stellen und Exponenten, die Vielfache von 3 sind (DFEXP_ENG).
import java.text.DecimalFormat;
public class MoreMath {

public static final DecimalFormat DFEXP;
public static final DecimalFormat DFEXP_ENG;

Listing 8: Vordefinierte DecimalFormat-Objekte flir die Exponentialdarstellung

36 >> Ausgabe: Dezimalzahlen in Exponentialschreibweise

static
DFEXP = new DecimalFormat("0.{HHHHIEQ") ;
DFEXP_ENG = new DecimalFormat("{HFO .HHHHIEO™) ;

Listing 8: Vordefinierte DecimalFormat-Objekte flr die Exponentialdarstellung (Forts.)

Eigene Formatierungsmethode

DecimalFormat verwendet zur Kennzeichnung des Exponenten ein grofles E und zeigt positive
Exponenten ohne Vorzeichen an. Wer ein kleines E bevorzugt oder den Exponenten stets mit
Vorzeichen dargestellt haben mochte (so wie es printf() tut), muss den von Decimal-
Format.format() zurtickgelieferten String manuell weiterverarbeiten.

Die Methode formatExp() kann Ihnen diese Arbeit abnehmen. Sie formatiert die {ibergebene
Zahl in Exponentialschreibweise mit einer Vorkommastelle. Die maximale Anzahl Nachkom-
mastellen in der Mantisse wird als Argument {ibergeben. Optional kénnen Sie {iber Boolesche
Argumente zwischen grofem und kleinem E und zwischen Plus- und Minuszeichen oder nur
Minuszeichen vor dem Exponenten wéhlen.

import java.text.DecimalFormat;

public class MoreMath {

/**

* Formatierung als Dezimalzahl in Exponentialschreibweise

*/

public static String formatExp(double number, int maxStellen) {
return MoreMath.formatExp(number, maxStellen, false, false);

}

public static String formatExp(double number, int maxStellen,
boolean smallExp) {
return MoreMath.formatExp(number, maxStellen, smallExp, false);
}

pubTic static String formatExp(double number, int maxDigits,
boolean smallExp, boolean plus) {

// Pattern fir Exponentialschreibweise erzeugen
StringBuilder pattern = new StringBuilder("0.#");

if(maxDigits > 1)
pattern.append(MoreString.charNTimes('#',maxDigits-1));

pattern.append("E00");

Listing 9: Dezimalzahlen in Exponentialschreibweise

>> Zahlen und Mathematik 37

// Zahl als String formatieren
String str = (new DecimalFormat(pattern.toString())).format(number);

// Exponentzeichen und/oder Pluszeichen
if (smallExp || (plus && Math.abs(number) >= 1)) {

int pos = str.indexOf('E");
StringBuilder tmp = new StringBuilder(str);

if (smallExp)
tmp.replace(pos, pos+l, "e");

if (plus && Math.abs(number) >= 1)
tmp.insert(pos+l, '+');

return tmp.toString();
} else
return str;

Listing 9: Dezimalzahlen in Exponentialschreibweise (Forts.)

Die Methode formatExp(double number, int maxStellen, boolean smallExp, boolean plus)
baut zuerst das gewiinschte Pattern auf, wobei sie zur Vervielfachung der optionalen Nach-
kommastellen die Methode MoreString.charNTimes() aus Rezept 32 aufruft. Dann erzeugt sie
den gewiinschten Formatierer und noch in der gleichen Zeile durch Aufruf der format()-
Methode die Stringdarstellung der Zahl. Fiir eine Darstellung mit kleinem e wird das groBe E
im String durch das kleine e ersetzt. Wurde die Darstellung mit Pluszeichen vor dem Exponent
gewtinscht und ist der Betrag der Zahl groBer oder gleich 1, wird das Pluszeichen hinter dem E
(bzw. e) eingefligt.

Fiir die Nachbearbeitung des Strings wird dieser in ein StringBuilder-Objekt umgewandelt -
nicht wegen der Unverinderbarkeit von String-Objekten (die dazu fiihrt, dass bei String-
Manipulationen stets Kopien erzeugt werden), sondern wegen der insert()-Methode, die
String fehlt.

Mit dem zugehorigen Testprogramm koénnen Sie das Ergebnis verschiedener Formatierungs-
moglichkeiten vergleichen.

10 Ausgabe: Zahlenkolonnen am Dezimalzeichen
ausrichten

Die meisten Programmierer betrachten die Formatierung der Ausgaben als ein notwendiges
Ubel - sicherlich nicht ganz zu Unrecht, denn neben der Berechnung korrekter Ausgaben ist
deren Formatierung natiirlich nur zweitrangig. Trotzdem sollte die Formatierung der Ausga-
ben, insbesondere die Prisentation von Ergebnissen, nicht vernachléssigt werden - nicht ein-
mal dann, wenn sich dieses notwendige Ubel als unnotig kompliziert erweist, wie
beispielsweise bei der Ausrichtung von Zahlenkolonnen am Dezimalzeichen. In der API-Doku-
mentation zur Java-Klasse NumberFormat findet sich hierzu der Hinweis, dass sich besagtes
Problem durch Ubergabe eines FieldPosition-Objekts an die format()-Methode von Number-

38 >> Ausgabe: Zahlenkolonnen am Dezimalzeichen ausrichten

Eingabeaufforderung

>java Start 12345 .67

printlnc? 12345.67
HumberFormat 12.345,.67
FDEXP 1.23457E4
FDEXP_ENG 12,34567E3
printf 1.2345%7e+84
formatExp(> 1.235E84
formatExp{> 1.235%e84
formatExp(> 1.235%e+84

Abbildung 2: Formatierung von Dezimalzahlen

Format (bzw. DecimalFormat) l6sen ldsst. Wie dies konkret aussieht, untersuchen die beiden fol-
genden Abschnitte.

Ausgaben bei proportionaler Schrift
Als Beispiel betrachten wir das folgende Zahlen-Array:
double[] numbers = { 1230.45, 100, 8.1271 };

Um diese Zahlenkolonne untereinander, ausgerichtet am Dezimalzeichen, ausgeben zu kon-
nen, miissen drei Dinge geschehen:

1. Die Zahlen miissen in Strings umgewandelt werden.

Dies geschieht durch Erzeugung einer passenden NumberFormat- oder DecimalFormat-Instanz
und Ubergabe an die Methode format(), siehe Rezept 8.

2. Die gewiinschte Position des Dezimalzeichens muss festgelegt werden.

Hier ist zu beachten, dass die gewihlte Position nicht zu weit vorne liegt, damit nicht bei
der Ausgabe der Platz fiir die Vorkommastellen der einzelnen Strings fehlt. Liegen die aus-
zugebenden Strings bereits zu Beginn der Ausgabe komplett vor, empfiehlt es sich, die
Strings mit den Zahlen in einer Schleife zu durchlaufen und sich an dem String zu orien-
tieren, in dem das Dezimalzeichen am weitesten hinten liegt.

3. Den einzelnen Strings miissen so viele Leerzeichen vorangestellt werden, bis ihr Dezimal-
zeichen an der gewiinschten Stelle liegt.

Die nachfolgend abgedruckte Methode alignAtDecimal() erledigt alle drei Schritte in einem.
Die Methode iibernimmt ein double-Array der auszugebenden Zahlen und einen Formatstring
flir DecimalFormat und liefert die fiir die Ausgabe aufbereiteten Stringdarstellungen als Array
von StringBuffer-Objekten zuriick. Fur die haufig benotigte Ausgabe von Zahlen mit zwei
Nachkommastellen gibt es eine eigene {iberladene Version, der Sie nur das Zahlen-Array iiber-
geben miissen.

import java.text.DecimalFormat;
import java.text.FieldPosition;

Jx

* Array von Strings am Dezimalzeichen ausrichten

Listing 10: Ausrichtung am Dezimalzeichen bei proportionaler Schrift

>> Zahlen und Mathematik

* (Version flr proportionale Schrift)

*/

public static StringBuffer[] alignAtDecimal (double[] numbers) {
return alignAtDecimalPoint(numbers, "#,7H0.00");

}

public static StringBuffer[] alignAtDecimal (double[] numbers,
String format) {
DecimalFormat df = new DecimalFormat(format);
FieldPosition fpos =
new FieldPosition(DecimalFormat.INTEGER _FIELD);
StringBuffer[] strings = new StringBuffer[numbers.length];
int[] charToDecP = new int[numbers.length];
int maxDist = 0;

// ndtige Vorarbeiten
// Strings initisieren, Position des Dezimalpunkts
// feststellen, max. Zahl Vorkommastellen ermitteln
for(int i = 0; i < numbers.length; ++i) {
strings[i] = new StringBuffer("");
df.format(numbers[i], strings[il, fpos);
charToDecP[i] = fpos.getEndIndex();
if (maxDist < charToDecP[1i])
maxDist = charToDecP[71];
t

// notige Anzahl Leerzeichen voranstellen
char[] pad;
for(int i = 0; i < numbers.length; ++i) {
pad = new char[maxDist - charToDecP[7]];
for(int n = 0; n < pad.length; ++n)
pad[n] =" ";

strings[i].insert(0, pad);
}

return strings;

Listing 10: Ausrichtung am Dezimalzeichen bei proportionaler Schrift (Forts.)

Wie findet diese Methode die Position der Dezimalzeichen? Denkbar wire natiirlich, einfach
mit index0f() nach dem Komma zu suchen. Doch dieser Ansatz funktioniert natiirlich nur,
wenn DecimalFormat gemaB einer Lokale formatiert, die das Komma als Dezimalzeichen ver-
wendet. Lauten die Alternativen demnach, entweder eigenen Code zur Unterstiitzung ver-
schiedener Lokale zu schreiben oder aber eine feste Lokale vorzugeben und damit auf
automatische Adaption an nationale Eigenheiten zu verzichten? Mitnichten. Sie miissen der
format()-Methode lediglich als drittes Argument eine FieldPosition-Instanz iibergeben und
konnen sich dann von diesem die Position des Dezimalzeichens zuriickliefern lassen. Fiir die
alignAtDecimal()-Methode sieht dies so aus, dass diese eingangs ein FieldPosition-Objekt
erzeugt. Dieses liefert Informationen iiber den ganzzahligen Anteil, zu welchem Zweck die
Konstante INTEGER _FIELD iibergeben wird. (Wenn Sie die ebenfalls vordefinierte Konstante

40 >> Ausgabe: Zahlenkolonnen am Dezimalzeichen ausrichten

FRACTION_FIELD tibergeben, beziehen sich die Angaben, die die Methoden des FieldPosition-
Objekts zuriickliefern, auf den Nachkommaanteil.)

In einer ersten Schleife werden dann die Zahlen mit Hilfe der format()-Methode in Strings
umgewandelt und in StringBuffer-Objekten abgespeichert. Die Position des Dezimalzeichens
wird fiir jeden String mit Hilfe der FieldPosition-Methode getEndIndex() abgefragt und im
Array charToDecP zwischengespeichert. (Enthélt der String kein Dezimalzeichen, wird die Posi-
tion hinter der letzten Ziffer des Vorkommateils zuriickgeliefert.) Gleichzeitig wird in maxDist
der grofite Abstand von Stringanfang bis Dezimalzeichen festgehalten.

In der anschlieBenden, zweiten for-Schleife werden die Strings dann so weit vorne mit Leer-
zeichen aufgefiillt, dass in allen Strings das Dezimalzeichen maxDist Positionen hinter dem
Stringanfang liegt.

Der Einsatz der Methode kénnte nicht einfacher sein: Sie {ibergeben ihr das Array der zu for-
matierenden Zahlen und erhalten die fertigen Strings in Form eines StringBuffer-Arrays
zuriick:

// aus Start.java
doublel] numbers = { 1230.45, 100, 8.1271 };
StringBuffer[] strings;

strings = MoreMath.alignAtDecimal(numbers);
System.out.printin();

(
System.out.printin(" Kapital : "+ strings[0]);
System.out.printIn(" Bonus ;" + strings[1]);
System.out.printin(" Rendite (%) : " + strings[2]);

Sagt Thnen die vorgegebene Formatierung mit zwei Nachkommastellen nicht zu, iibergeben
Sie einfach Ihren eigenen Formatstring, siehe auch Rezept 8.

// aus Start.java
strings = MoreMath.alignAtDecimal(numbers, "#,7HF0.OJHHHHHE") ;
System.out.printin();

(
System.out.printin(" Kapital : "+ strings[0]);
System.out.printin(" Bonus ;" + strings[1]);
System.out.printin(" Rendite (%) : " + strings[2]);

Ausgaben bei nichtproportionaler Schrift

Etwas komplizierter wird es, wenn die Zahlen in nichtproportionaler Schrift in ein Fenster
oder eine Komponente (vorzugsweise eine Canvas- oder JPanel-Instanz) gezeichnet werden
sollen. Da in einer nichtproportionalen Schrift die einzelnen Buchstaben unterschiedliche
Breiten haben, kénnen die Strings mit den Zahlendarstellungen nicht durch Einfiigen von
Leerzeichen ausgerichtet werden. Stattdessen muss fiir jeden String berechnet werden, ab wel-
cher x-Koordinate mit dem Zeichnen des Strings zu beginnen ist, damit sein Dezimalzeichen
in einer Hohe mit den Dezimalzeichen der anderen Strings liegt.

>> Zahlen und Mathematik 41

Eingabeaufforderung
Java Start

Ausgabe ohne Ausrichtung

Kapital : 1.238.45
Bonus : 188.8
Rendite (x> : 8,.1271

Ausgabe mit Ausrichtung

Kapital : 1.238.45
Bonus H 188,88
Rendite (x> = 8,13

Kapital = 1.238.45
Bonus H 188.8
Rendite (x> = 8.1271
Kapital = 1.238.45

H 188

Bonus
Rendite (x> = 8,13

Abbildung 3: Ausgerichtete Zahlenkolonnen (Formate: »#,##0.00« (Vorgabe der tberladenen
alignAtDecimal()-Version), »#, ##0.0######« und »#, ##0.##«)

Statt die aufbereiteten Stringdarstellungen auf die Konsole auszugeben, konnen Sie sie
auch in Dateien oder GUI-Komponenten schreiben oder in eine GUI-Komponente, bei-
spielsweise ein JPanel-Feld, zeichnen. Einzige Bedingung: Es wird eine proportionale
Schrift verwendet.

pubTlic void paintComponent(Graphics g) f{
super.paintComponent(g);

int x = 50;
int y = 50;
FontMetrics fm;

g.setFont(new Font("Courier", Font.PLAIN, 24));
fm = g.getFontMetrics();

strings = MoreMath.alignAtDecimal(numbers, "#,7H0. OHHHEHE") ;

g.drawString("Kapital : "+ strings[0].toString(), x, vy);
g.drawString("Bonus ;" + strings[1].toString(),

X, y + fm.getHeight());
g.drawString("Rendite (%) : " + strings[2].toString(),

X, y + 2 * fm.getHeight());

import java.text.DecimalFormat;
import java.text.FieldPosition;
import java.awt.FontMetrics;

/**

* Array von Strings am Dezimalzeichen ausrichten

Listing 11: Ausrichtung am Dezimalzeichen bei nichtproportionaler Schrift

42 >> Ausgabe: Zahlenkolonnen am Dezimalzeichen ausrichten

* (Version flr nicht-proportionale Schrift)
*/
public static StringBuffer[] alignAtDecimal(double[] numbers,
FontMetrics fm,
int[] x0ffsets) {
return alignAtDecimal (numbers, "#,7H0.00", fm, xOffsets);

J

public static StringBuffer[] alignAtDecimal(double[] numbers,
String format,
FontMetrics fm,
int[] xOffsets) {
DecimalFormat df = new DecimalFormat(format);
FieldPosition fpos =
new FieldPosition(DecimalFormat.INTEGER_FIELD);
StringBuffer[] strings = new StringBuffer[numbers.length];
int[] pixToDecP = new int[numbers.length];
int maxDist = 0;

if(numbers.Tength != x0ffsets.length)
throw new I11egalArgumentException("Fehler in Array-Dimensionen");

// nétige Vorarbeiten
// Strings erzeugen, Position des Dezimalpunkts
// feststellen, Pixelbreite bis Dezimalpunkt ermitteln
for(int i = 0; i < numbers.length; ++i) {
strings[i] = new StringBuffer("");
df.format(numbers(i], strings[i], fpos);

pixToDecP[i] = fm.stringWidth(strings[i].substring(0,
fpos.getEndIndex()));
if (maxDist < pixToDecP[7])
maxDist = pixToDecP[i];
}

// x0ffsets berechnen

for(int 1 = 0; i < numbers.length; ++i) {
x0ffsets[i1] = maxDist - pixToDecP[i];

}

return strings;

Listing 11: Ausrichtung am Dezimalzeichen bei nichtproportionaler Schrift (Forts.)

Fiir die Ausrichtung von Zahlen in nichtproportionaler Schrift tibernimmt die alignAtDeci-
mal ()-Methode zwei weitere Argumente:

P Zum einen muss sie fir jeden formatierten String den Abstand vom Stringanfang bis zum
Dezimalzeichen in Pixeln berechnen. Da sie dies nicht allein leisten kann, tibernimmt sie
ein FontMetrics-Objekt, das zuvor fiir den gewilinschten Ausgabefont erzeugt wurde (siehe

>> Zahlen und Mathematik 43

Listing 12). Deren stringhidth()-Methode tibergibt sie den Teilstring vom Stringanfang
bis zum Dezimalzeichen und erhilt als Ergebnis die Breite in Pixel zuriick, die sie im Array
pixToDecP speichert.

P> Neben den formatierten Strings muss die Methode dem Aufrufer fiir jeden String den x-
Offset iibergeben, um den die Ausgabe verschoben werden muss, damit die Dezimalzeichen
untereinander liegen. Zu diesem Zweck {ibernimmt die Methode ein int-Array, in dem es
die Offsetwerte abspeichert. Die Offsetwerte selbst werden in der zweiten for-Schleife als
Differenz zwischen der Pixelposition des am weitesten entfernt liegenden Dezimalzeichens
(maxDist) und der Position des Dezimalzeichens im aktuellen String (pixToDecP) berechnet.

Im folgenden Beispiel werden letzten Endes zwei Spalten ausgegeben. Die erste Spalte besteht
aus den Strings des Arrays prefix und wird rechtsbiindig ausgegeben. Die zweite Spalte ent-
hdlt die Zahlen des Arrays numbers, die am Dezimalzeichen ausgerichtet werden sollen. Um
dies zu erreichen, berechnet das Programm die Linge des groBten Strings der 1. Spalte (fest-
gehalten in prefixlength) sowie mit Hilfe von alignAtDecimal() die x-Verschiebungen fiir die
Strings der zweiten Spalte.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

pubTlic class StartGUI extends JFrame {
doublel[] numbers = { 1230.45, 100, 8.1271 };
String[] prefix = {"Kapital : ","Bonus : ","Rendite (%): "};
StringBuffer[] strings = new StringBuffer[numbers.lengthl;

class MyCanvas extends JPanel {

pubTlic void paintComponent(Graphics g) {
super.paintComponent(g);

int x = 50;
int y = 50;
FontMetrics fm;

g.setFont(new Font("Times New Roman", Font.PLAIN, 24));
fm = g.getFontMetrics();
int prefixLength = 0;
for (int i =0; i < prefix.length; ++i)
if (prefixLength < fm.stringWidth(prefix[il]))
prefixLength = fm.stringWidth(prefix[i]);

int[] xOffsets = new int[numbers.length];
strings = MoreMath.alignAtDecimal (numbers,
"3k, 4HEO . OdHEHHHE" |
fm, x0ffsets);
for (int i = 0; i < strings.length; ++i) {
g.drawString(prefix[i], x, y + i*fm.getHeight());
g.drawString(strings[iJ.toString(),
x + prefixlLength + xO0ffsets[i],

Listing 12: Fenster mit ausgerichteten Zahlen (aus StartGUI.java)

44 >> Ausgabe in Ein- oder Mehrzahl (Kongruenz)

y + i*fm.getHeight());
}
}
}// Ende von MyCanvas

Listing 12: Fenster mit ausgerichteten Zahlen (aus StartGUI.java) (Forts.)

Die Strings der ersten Spalte werden einfach mit drawString() an der X-Koordinate x gezeich-
net. Die Strings der zweiten Spalte hingegen werden ausgehend von der Koordinate x zuerst
um prefixlength Pixel (um sich nicht mit der ersten Spalte zu {iberschneiden) und dann noch
einmal um xOffsets[i] Positionen (damit die Dezimalzeichen untereinander zu liegen kom-
men) nach rechts verschoben.

< Ausrichtung von Zahlenkolonnen

Kapital : 1.230,45
Bonus : 100,0
Rendite (%0): 8,1271

Abbildung 4: Ausrichtung von Zahlenkolonnen bei nichtproportionaler Schrift

11 Ausgabe in Ein- oder Mehrzahl (Kongruenz)

Kongruenz im sprachwissenschaftlichen Sinne ist die formale Ubereinstimmung zusammenge-
horender Satzglieder, ihre wohl bekannteste Form die Ubereinstimmung von attributivem
Adjektiv und Beziehungswort in Kasus, Numerus und Genus wie in »das kleine Haus« oder
»dem kleinen Hunde. Es gibt sprachliche Wendungen, in denen selbst Leute mit gutem Sprach-
geflihl nicht gleich sagen kénnen, ob der Kongruenz Geniige getan wurde (wie z.B. in »Wie
wire es mit einem Keks oder Tortchen?«), doch dies ist ein Thema fiir ein anderes Buch.

Als Programmierer leiden wir vielmehr unter einer ganz anderen Form der Kongruenz, einer
Kongruenz im Numerus, die dem Redenden oder Schreibenden eigentlich nie Probleme berei-
tet, sondern eben nur dem Programmierer: der Kongruenz zwischen Zahlwort und Bezie-
hungswort.

Angenommen, Sie arbeiten mit einem Online-Bestellsystem fiir eine Backerei und wollen dem
Kunden zum Abschluss anzeigen, wie viele Brote er bestellt hat. Sie lesen die Anzahl der
bestellten Brote aus einer Variablen countBreads und erzeugen folgenden Ausgabestring: "Sie
haben " + countBreads + " Brote bestellt." Hat der Kunde zwei Brote bestellt, erhilt er die
Mitteilung:

Sie haben 2 Brote bestellt.
Hat er kein oder ein Brot bestellt, liest er auf seinem Bildschirm:

Sie haben 0 Brote bestellt.

>> Zahlen und Mathematik 45

oder noch schlimmer:

Sie haben 1 Brote bestellt.

Die meisten Programmierer 16sen dieses Problem, indem sie das Substantiv in Ein- und Mehr-
zahl angeben - in diesem Fall also Brot(e) - oder die verschiedenen Fille durch if-Verzwei-
gungen unterscheiden. Dariiber hinaus gibt es in Java aber noch eine eigene Klasse, die
speziell fiir solche (und noch kompliziertere) Félle gedacht ist: java.text.ChoiceFormat.

ChoiceFormat-Instanzen bilden eine Gruppe von Zahlenbereichen auf eine Gruppe von Strings
ab. Die Zahlenbereiche werden als ein Array von double-Werten definiert. Angegeben wird
jeweils der erste Wert im Zahlenbereich. So definiert das Array

double[] Timits = {0, 1, 2};

die Zahlenbereiche

[0, 1)

(1, 2)

2, <)

Werte, die kleiner als der erste Bereich sind, werden diesem zugesprochen.

Als Pendant zum Bereichsarray muss ein String-Array definiert werden, das ebenso viele
Strings enthilt, wie es Bereiche gibt (hier also drei):

String[] outputs = {"Brote", "Brot", "Brote"};

Ubergibt man beide Arrays einem ChoiceFormat-Konstruktor, erzeugt man eine Abbildung der
Zahlen aus den angegebenen Bereichen auf die Strings:

ChoiceFormat cf = new ChoiceFormat(limits, outputs);

Der Ausgabestring fiir unsere Online-Béckerei lautete damit:

"Sie haben " + countBreads + " " + cf.format(countBreads) + " bestellt.\n"
und wiirde fiir 0, 1, 2 und 3 folgende Ausgaben erzeugen:

Sie haben 0 Brote bestellt.
Sie haben 1 Brot bestellt.
Sie haben 2 Brote bestellt.
Sie haben 3 Brote bestellt.

Wire countBreads eine double-Variable, wiirde obiger Code leider auch Ausgaben wie
»Sie haben 0.5 Brote bestellt.« oder »Sie haben 1.5 Brot bestellt.« erzeugen. Um dies zu
korrigieren, konnten Sie die Grenzen als {0, 0.5, 1} festlegen, auf {"Brote", "Brot",
"Brote"} abbilden und in der Ausgabe x.5 als "x 1/2" schreiben, also beispielsweise:
»Sie haben 1 1/2 Brote bestellt.«.

Parameter in Ausgabestrings

Leider ist es nicht moglich, das Argument der format()-Methode in den zuriickgelieferten
String einzubauen. Dann brduchte man nimlich statt

countBreads + + cf.format(countBreads)

46 >> Umrechnung zwischen Zahlensystemen

nur noch
cf.format(countBreads)

zu schreiben, und was wichtiger wére: Man koénnte in den Ausgabestrings festlegen, ob fiir
einen Bereich der Zahlenwert ausgegeben soll. Beispielsweise lieBe sich dann das unschéne
»Sie haben O Brote bestellt.« durch »Sie haben kein Brot bestellt.« ersetzen.

Die Losung bringt in diesem Fall die Klasse java.text.MessageFormat:

// ChoiceFormat-Objekt erzeugen, das Zahlenwerte Strings zuordnet
double[] Timits = {0, 1, 2};

String[] outputs = {"kein Brot", "ein Brot", "{0} Brote"};
ChoiceFormat cf = new ChoiceFormat(1limits, outputs);

// MessageFormat-Objekt erzeugen und mit ChoiceFormat-Objekt verbinden
MessageFormat mf = new MessageFormat(" Sie haben {0} bestellt.\n");
mf.setFormatByArgumentIndex(0, cf);

// Ausgabe

Object[] arguments = {new Integer(number)};

System.console().printf("%s \n", mf.format(arguments)); // zur Verwendung von
// System.console()
// siehe Rezept 85

Sie erzeugen das gewtinschte ChoiceFormat-Objekt und fiigen mit {} nummerierte Platzhalter
in die Strings ein. (Beachten Sie, dass ChoicefFormat den Platzhalter nicht ersetzt, sondern
unverindert zuriickliefert. Dies ist aber genau das, was wir wollen, denn das im néchsten
Schritt erzeugte MessageFormat-Objekt, das intern unser ChoiceFormat-Objekt verwendet, sorgt
fiir die Ersetzung des Platzhalters.)

Dann erzeugen Sie das MessageFormat-Objekt mit dem Ausgabetext. In diesen Text fiigen Sie
einen Platzhalter fiir den Zahlenwert ein. Da der Zahlenwert von dem soeben erzeugten
ChoiceFormat-Objekt verarbeitet werden soll, registrieren Sie Letzteres mit Hilfe der setFormat-
ByArgument ()-Methode als Formatierer fiir den Platzhalter.

Anschliefend miissen Sie nur noch die format()-Methode des MessageFormat-Objekts aufrufen
und ihr die zu formatierende Zahl (allerdings in Form eines einelementigen Object-Arrays)
iibergeben.

12 Umrechnung zwischen Zahlensystemen

Der Rechner kennt keine Zahlensysteme, er unterscheidet allein zwischen den bindren Kodie-
rungen fiir Integer- und Gleitkommazahlen. Fiir diese Kodierungen ist die Hardware ausgelegt,
in diesen Kodierungen finden alle Berechnungen statt. Will ein Programm dem Anwender die
Verarbeitung von Zahlen aus einem bestimmten Zahlensystem erlauben, muss es lediglich
dafiir sorgen, dass Zahlen aus dem betreffenden Zahlensystem eingelesen und ausgegeben
werden kénnen. Soweit es die Integer-Zahlen betrifft, ist die hierfiir benotigte Funktionalitét
bereits in den Java-API-Klassen vorhanden.

>> Zahlen und Mathematik

ingabeaufforderung

>java Start A

Formatierung

Sie haben

Formatierung

Sie haben

>java Start 1

Formatierung

Sie haben

Formatierung

Sie haben

>java Start 2

Formatierung

Sie haben

Formatierung

Sie haben

mit ChoiceFormat:

@ Brote bestellt.

mit Choice— u. MessageFormat:

kein Brot bestellt.

mit ChoiceFormat:

1 Brot hestellt.

mit Choice— u. MessageFormat:

ein Brot bhestellt.

mit ChoiceFormat:

2 Brote hestellt.

mit Choice— u. MessageFormat:

2 Brote hestellt.

47

Abbildung 5: Mit ChoiceFormat kénnen Sie (unter anderem) Mengen korrekt in

Ein- oder Mehrzahl angeben.

Einlesen | Ausgeben
Zehnersystem Andere Systeme | Zehnersystem Andere Systeme
Byte.parseByte Integer.parselnt Byte.toString() Integer.toString(int i, int
(String s) (String s, int Byte.toString(byte n) radix)
Short.parseShort radix) Short.toString() Integer.toBinaryString(int i)
(String s) Short.toString(short n) | Integer.toOctalString(int i)
Integer.parselnt Integer.toString() Integer.toHexString(int i)
(String s) Integer.toString(int n)
Long.parseLong Long.toString() System.out.printf()
(String s) Long.toString(long n)

Tabelle 7: Ein- und Ausgabe flir Zahlen verschiedener Zahlensysteme
Mit Hilfe dieser Methoden lésst sich auch leicht ein Hilfsprogramm schreiben, mit dem man
Zahlen zwischen den in der Programmierung am weitesten verbreiteten Zahlensystemen (2, 8,

10 und 16) umrechnen kann:

pubTic class Start {

public static void main(String args[]) {

Listing 13: Programm zur Umrechnung zwischen Zahlensystemen

48 >> Umrechnung zwischen Zahlensystemen

System.out.printin();

if (args.length != 3) {
System.out.printin(" Aufruf: Start <Ganzzahl> "
+ "<Orgin. Basis: 2, 8, 10, 16> "
+ "<Zielbasis: 2, 8, 10, 16>");
System.exit(0);
}

try {
int number = 0;
int srcRadix = Integer.parselnt(args(1]);
int tarRadix = Integer.parselnt(args[2]);

o

if (! (srcRadix == 2 || srcRadix == 8 || srcRadix == 10
|| srcRadix == 16 || tarRadix == 2 || tarRadix ==
|| tarRadix == 10 || tarRadix == 16)) {
System.out.printin(" Ungueltige Basis");
System.exit(0);

J

number = Integer.parselnt(args[0], srcRadix);

System.out.printin
System.out.printin
System.out.printin
System.out.printin

" Basis \t Zahl");
e ");
" "+ srcRadix + " \t\t " + args[0]);
" "+ tarRadix + " \t\t "

+ Integer.toString(number, tarRadix));

}

catch (NumberFormatException e) {
System.err.printin(" Ungueltiges Argument");

}

Listing 13: Programm zur Umrechnung zwischen Zahlensystemen (Forts.)

ngabeaufforderung

>java Start 1118111 2 18

119
1116111

Abbildung 6: Zahlensystemrechner; Aufruf mit <Ganzzahl> <Originalbasis> <Zielbasis>

>> Zahlen und Mathematik 49

13 Zahlen aus Strings extrahieren

Manchmal sind die Zahlen, die man verarbeiten mochte, in Strings eingebettet. Beispielsweise
konnte die Kundennummer eines Unternehmens aus einem Buchstabencode, einem Zahlen-
code, einem Geburtsdatum im Format TTMMJJ und einem abschlieBenden einbuchstabigen
Landercode bestehen:

KDnr-2345-150474a

Wenn Sie aus einem solchen String die Zahlen herausziehen mochten, kdnnen Thnen die im
Rezept 8 vorgestellten Methoden nicht mehr weiterhelfen.

Gleiches gilt, wenn Sie Zahlen aus einem groBeren Text, beispielsweise einer Datei, extrahie-
ren miissen. Eine Moglichkeit, dies zu bewerkstelligen, wire das Einlesen des Textes mit einem
Scanner-Objekt. Dies geht allerdings nur, wenn der Text so in Tokens zerlegt werden kann,
dass die Zahlen als Tokens verfiigbar sind. AuBerdem ist diese Losung, obwohl im Einzelfall
sicher gangbar und auch sinnvoll, per se doch recht unflexibel.

Eine recht praktische und flexible Losung fiir beide oben angefiihrten Aufgabenstellungen ist
dagegen das Extrahieren der Zahlen (oder auch anderer Textpassagen) mittels reguldrer Aus-
driicke und Pattern Matching. Zur einfacheren Verwendung definieren wir gleich zwei Metho-
den:

ArraylList<String> getPatternsInString(String s, String p)

ArrayList<String> getNumbersInString(String s)

Die Methode getPatternsInString() tibernimmt als erstes Argument den String, der durch-
sucht werden soll, und als zweites Argument den regulidren Ausdruck (gegeben als String), mit
dem der erste String durchsucht werden soll. Alle gefundenen Vorkommen von Textpassagen,
die durch den reguldren Ausdruck beschrieben werden, werden in einer ArraylList<String>-
Collection zurtickgeliefert.

Fiir das Pattern Matching sind in dem Paket java.util.regex die Klassen Pattern und Matcher
definiert. Die Methode getPatternsinString() »kompiliert« zuerst den String mit dem regulé-
ren Ausdruck p mit Hilfe der statischen Pattern-Methode compile() in ein Pattern-Objekt pat.
Als Nichstes wird ein Matcher benétigt, der den String s unter Verwendung des in pat gespei-
cherten reguldren Ausdrucks durchsucht. Dieses Matcher-Objekt liefert die Pattern-Methode
matcher(), der als einziges Argument der zu durchsuchende String {ibergeben wird. Der Mat-
cher enthilt nun alle bendétigten Informationen (das Pattern und den zu durchsuchenden
String); die Methoden zum Finden der iibereinstimmenden Vorkommen stellt die Klasse Mat-
cher selbst zur Verfiigung:

P> Mit boolean matches() kann man priifen, ob der gesamte String als ein »Match« fiir den
reguldren Ausdruck angesehen werden kann.

> Mit boolean find() kann man den String nach iibereinstimmenden Vorkommen (»Mat-
ches«) durchsuchen. Der erste Aufruf sucht ab dem Stringanfang, nachfolgende Aufrufe
setzen die Suche hinter dem letzten gefundenen Vorkommen fort.

P Mit int start() und int end() bzw. String group() konnen Sie sich Anfangs- und End-
position bzw. das komplette zuletzt gefundene Vorkommen zuriickliefern lassen.

Da die Methode getPatternsInString() einen String nach allen Vorkommen des iibergebenen
Musters durchsuchen soll, ruft sie find() in einer while-Schleife auf und speichert die gefun-
denen Ubereinstimmungen in einem ArraylList-Container.

50 >> Zahlen aus Strings extrahieren

import java.util.regex.Pattern;
import java.util.regex.Matcher;
import java.util.ArraylList;

/**

* Pattern in einem Text finden und als ArraylList zuriickliefern

*/

public static ArraylList<String> getPatternsInString(String s, String p) {
ArraylList<String> matches = new ArraylList<String>(10);

Pattern pat = Pattern.compile(p);
Matcher m pat.matcher(s);

while(m.find())
matches.add(m.group());

return matches;

Listing 14: Strings nach beliebigen Patterns durchsuchen

Die zweite Methode, getNumbersInString(), liefert im String gefundene Zahlen zuriick. Dank
getPatternsInString() fillt die Implementierung von getNumbersInString() nicht mehr son-
derlich schwer: Die Methode ruft einfach getPatternsinString() mit einem reguliren Aus-
druck auf, der Zahlen beschreibt:

/**

* Zahlen in einem Text finden und als ArraylList zurlickliefern

*/

public static ArrayList<String> getNumbersInString(String s) {
return getPatternsInString(s, "[+-J12\\d+(\\,\\d+)?");

}

Listing 15: Strings nach Zahlen durchsuchen

Der reguldre Ausdruck von getNumbersInString() setzt Zahlen aus drei Teilen zusammen:
einem optionalen Vorzeichen ([+-1?), einer mindestens einelementigen Folge von Ziffern
(\\d+) und optional einem dritten Teil, der mit Komma eingeleitet wird und mit einer mindes-
tens einelementigen Folge von Ziffern ((\\,\\d+)?) endet. Dieser regulire Ausdruck findet
ganze Zahlen, Gleitkommazahlen mit Komma zum Abtrennen der Nachkommastellen und
ohne Tausenderzeichen, Zahlen mit und ohne Vorzeichen, aber auch Zahlenschrott (beispiels-
weise Teile englisch formatierter Zahlen, die das Komma als Tausenderzeichen verwenden).
Wenn Sie Zahlenschrott ausschlieen, gezielt nach englischen Gleitkommazahlen, beliebig
formatierten Zahlen, Hexadezimalzahlen oder irgendwelchen sonstigen Textmustern suchen
wollen, konnen Sie nach dem Muster von getNumbersInString() eine eigene Methode definie-
ren oder getPatternsInString() aufrufen und den passenden reguldren Ausdruck als Argu-
ment {ibergeben.

>> Zahlen und Mathematik 51

System.out.printin("\n Suche nach (deutschen) Zahlen: \n");

ArrayList<String> numbers = MoreMath.getNumbersInString(str);
for (String n : numbers)
System.out.printin(n);

System.out.printin("\n Suche nach Zahlen und dhnlichen Passagen: \n");
numbers = MoreMath.getPatternsInString(str, "[+-1?2[\\d.,J+\\d+|\\d+");
for (String n : numbers)

System.out.printin(n);
System.out.printin("\n Suche in Kundennummer: \n");
numbers = MoreMath.getPatternsInString("KDnr-2345-150474a", "\\d+");

for (String n : numbers)
System.out.printin(n);

Listing 16: Aus Start.java

14 Zufallszahlen erzeugen

Zur Erzeugung von Zufallszahlen gibt es in der Java-Klassenbibliothek den »Zufallszahlenge-
nerator« java.util.Random. Die Arbeit mit dieser Klasse sieht so aus, dass Sie zuerst ein Objekt
der Klasse erzeugen und sich dann durch Aufrufe der entsprechenden next-Methoden der
Klasse Random die gewiinschten Zufallswerte zurtickliefern lassen.

import java.util.Random;

Random generator = new Random();

double d = generator.nextDouble(); // 1iefert Wert zwischen [0.0, 1.0)
boolean b = generator.nextBoolean(); // liefert true oder false
long 1 = generator.nextlLong(); // 1liefert zufdlligen long-Wert
int i = generator.nextInt(); // Tiefert zufdlligen int-Wert

i = generator.nextInt(10); // Tiefert Wert zwischen [0, 1)

// Funf ganzzahlige Zufallszahlen zwischen 0 und 100 ausgeben
for(int i = 0; i < 5; ++i)
System.out.printin(generator.nextIint(100));
Wenn Sie an double-Zufallszahlen aus dem Bereich 0.0 bis 1.0 interessiert sind, brauchen Sie
Random nicht selbst zu instanzieren, sondern konnen direkt die Math-Methode random() aufrufen:

double d = Math.random();

Die Erzeugung von Zufallszahlen mit Hilfe von Computern ist im Grunde gar nicht zu
realisieren. Dies liegt daran, dass die Zahlen letzten Endes nicht zufillig gezogen wer-
den, sondern von einem mathematischen Algorithmus errechnet werden. Ein solcher
Algorithmus bildet eine Zahlenfolge, die sich zwangsweise irgendwann wiederholt.
Allerdings sind die Algorithmen, die man zur Erzeugung von Zufallszahlen in Pro-
grammen verwendet, so leistungsfahig, dass man von der Periodizitit der erzeugten
Zahlenfolge nichts merkt.

52 >> Zufallszahlen erzeugen

GauBverteilte Zufallszahlen

Die oben aufgefiihrten next-Methoden sind so implementiert, dass sie alle Zahlen aus ihrem
Wertebereich mit gleicher Wahrscheinlichkeit zurtickliefern. In Natur und Technik hat man es
dagegen hiufig mit GroBen zu tun, die normalverteilt sind.

Normalverteilung

Normalverteilte GroBen zeichnen sich dadurch aus, dass die moglichen Werte um einen
mittleren Erwartungswert streuen. Der Erwartungswert ist am hiufigsten vertreten, die
Wahrscheinlichkeit fiir andere Werte nimmt kontinuierlich ab, je mehr die Werte vom
Erwartungswert abweichen.

Haufigkeit

A

s 3 (Standardabweichung)

>

X (Mittelwert) Wert

Abbildung 7: GauBsche Normalverteilung; die Standardabweichung ist ein MaB3 dafdr,
wie schnell die Wahrscheinlichkeit der Werte bei zunehmender
Abweichung vom Mittelwert abnimmt.

Eine Firma, die Schrauben herstellt, konnte beispielsweise Software fiir eine Messanlage in
Auftrag geben, die sicherstellen soll, dass die Durchmesser der produzierten Schrauben nor-
malverteilt sind und die Standardabweichung unterhalb eines vorgegebenen Qualitétslimits
liegt. Die zum Testen einer solchen Software bendtigten normalverteilten Zufallszahlen liefert
die Random-Methode nextGaussian():

Random generator = new Random();

double d = generator.nextGaussian();

Der Erwartungswert der zuriickgelieferten Zufallszahlen ist O, die Standardabweichung 1.
Durch nachtrégliche Skalierung und Addition eines Offsets konnen beliebige normalverteilte
Zahlen erzeugt werden.

Zufallszahlen zum Testen von Anwendungen

Beim Testen von Anwendungen, die mit Zufallszahlen arbeiten, ergibt sich das Problem, dass
die Anwendung bei jedem neuen Start mit anderen Zufallszahlen arbeitet und daher unter-
schiedliche Ergebnisse produziert. Das Aufspiiren von Fehlern ist unter solchen Bedingungen

>> Zahlen und Mathematik 53

natiirlich sehr schwierig. (Gleiches gilt, wenn Sie Zufallszahlen als Eingaben zum Testen der
Anwendung benutzen.)

Aus diesem Grunde lassen sich Zufallsgeneratoren in der Regel so einstellen, dass sie auch
reproduzierbare Folgen von Zufallszahlen erzeugen koénnen. Zur Einstellung dient der so
genannte Seed. Jeder Seed erzeugt genau eine vordefinierte Folge von Zufallszahlen. Wenn
Sie also dem Random-Konstruktor einen festen Seed-Wert vorgeben:

Random generator = new Random(3);

erzeugt der zugehorige Zufallsgenerator bei jedem Start der Anwendung die gleiche Folge von
Zufallszahlen und Sie kénnen die Anwendung mit reproduzierbaren Ergebnissen testen.

Wenn Sie den Random-Konstruktor ohne Argument aufrufen (siehe vorangehende
Abschnitte), wihlt er den Seed unter Beriicksichtigung der aktuellen Zeit. So wird
gewdhrleistet, dass bei jedem Aufruf ein individueller Seed und damit eine individuelle
Zahlenfolge erzeugt wird.

15 Ganzzahlige Zufallszahlen aus einem bestimmten
Bereich

Mit Hilfe der Methode Random.nextInt(int n) konnen Sie sich eine zufillige Integer-Zahl aus
dem Bereich von 0 bis n (exklusive) zuriickliefern lassen.

Wenn Sie Integer-Zahlen aus einem beliebigen Bereich benétigen, miissen Sie entweder die
Anzahl Zahlen im Bereich selbst berechnen, als Argument an nextInt() iibergeben und zu der
zuriickgelieferten Zufallszahl die erste Zahl im gewiinschten Bereich hinzuaddieren ...

... oder Sie definieren sich nach dem Muster von Math.random() eine eigene Methode random-
Int(int min, int max), der Sie nur noch die gewiinschten Bereichsgrenzen iibergeben miissen:

import java.util.Random;
public class MoreMath {

// private Instanz des verwendeten Zufallsgenerators
private static Random randomNumberGenerator;

// nur einen Zufallsgenerator verwenden
private static synchronized void initRNG() {
if (randomNumberGenerator == null)
randomNumberGenerator = new Random();
}

/**
* Zufallszahl aus vorgegebenem Bereich zurilickliefern
*/
public static int randomInt(int min, int max) {
if (randomNumberGenerator == null)
initRNG();

Listing 17: Ganzzahlige Zufallszahlen aus einem definierten Bereich

54 >> Mehrere, nicht gleiche Zufallszahlen erzeugen (Lottozahlen)

int number = randomNumberGenerator.nextInt(max+l-min);

return min + number;

Listing 17: Ganzzahlige Zufallszahlen aus einem definierten Bereich (Forts.)

Zwei Dinge sind zu beachten:

P Die Methode liefert eine Zahl aus dem Bereich [min, max] zuriick, im Gegensatz zu Random.
nextInt(n), das eine Zahl aus [0, n) zuriickliefert, ist die Obergrenze also in den Werte-
bereich mit eingeschlossen.

P Die Methode muss sicherstellen, dass sie nur beim ersten Aufruf einen Random-Zufallsgene-
rator erzeugt, der bei nachfolgenden Aufrufen verwendet wird. Zu diesem Zweck wurde
fiir den Generator ein privates statisches Feld definiert. Eine einfache if-Bedingung priift,
ob der Generator erzeugt werden muss oder schon vorhanden ist.

Ein wenig umstédndlich erscheint die Auslagerung der if-Abfrage in eine eigene private
Methode, doch dies erlaubt es, die Methode als synchronized zu deklarieren und die Erzeu-
gung des Zufallszahlengenerators so threadsicher zu machen.

16 Mehrere, nicht gleiche Zufallszahlen erzeugen
(Lottozahlen)

Wenn Sie sich von der Methode nextInt(int n) Zufallszahlen aus dem Wertebereich [0, n)
zuriickliefern lassen, kann es schnell passieren, dass Sie die eine oder andere Zahl mehrfach
erhalten. Je kleiner der Wertebereich, umso groBer die Wahrscheinlichkeit, dass dies passiert.
Sofern Sie also an einmaligen Zufallszahlen, wie sie beispielsweise zur Simulation einer Lotto-
ziehung benotigt werden, interessiert sind, miissen Sie die Dubletten herausfiltern. Eine beson-
ders elegante Moglichkeit dafiir dies zu tun, bietet die Collection-Klasse TreeSet. Deren add()-
Methode fiigt neue Elemente ndmlich nur dann ein, wenn diese noch nicht im TreeSet-Con-
tainer enthalten sind.

Die folgende Methode erzeugt einen TreeSet-Container fiir size Integer-Zahlen und fiillt die-
sen mit Werten aus dem Bereich [min, max].

import java.util.Random;
import java.util.TreeSet;

/**

* Erzeugt size nicht gleiche Zufallszahlen aus Wertebereich von

* min bis max

*/

public static TreeSet<Integer> uniqueRandoms(int size, int min, int max) {
TreeSet<Integer> numbers = new TreeSet<Integer>();
Random generator = new Random();
int n;

Listing 18: Methode zur Erzeugung einmaliger Zufallszahlen

>> Zahlen und Mathematik 55

if (size > max+l-min)
throw new I11egalArgumentException("Gibt nicht genligend " +
"eindeutige Zahlen im Bereich!");

if (size == max+l-min) {
for(int i= min; i <= max; ++i)
numbers.add(i);
b else {
while(numbers.size() != size) {
n =min + generator.nextInt(max+l - min);

// Zahl einfligen, falls nicht schon vorhanden
numbers.add(n);

}

return numbers;

Listing 18: Methode zur Erzeugung einmaliger Zufallszahlen (Forts.)
Wenn es in dem spezifizierten Wertebereich nicht geniigend Zahlen gibt, um den Container
ohne Dubletten zu fiillen, wird eine I17egalArgumentException ausgeworfen.

Wenn der spezifizierte Wertebereich gerade genau so viele Zahlen enthilt, wie Zahlen in den
Container eingefiigt werden sollen, werden die Zahlen mit Hilfe einer for-Schleife in den Con-
tainer eingefiigt. (In diesem Fall kann eigentlich nicht mehr von Zufallszahlen die Rede sein.)

Ist der Wertebereich groBer als die gewiinschte Anzahl Zufallszahlen, werden die Zahlen
zufillig gezogen, bis der Container die gewiinschte Anzahl Elemente enthilt. Beachten Sie,
dass wir uns hier nicht die Mithe machen, den Riickgabewert der add()-Methode zu iiberprii-
fen (true oder false), da die Bedingung der while-Schleife bereits sicherstellt, dass die Zie-
hung nicht vorzeitig beendet wird.

Das folgende Programm zeigt, wie mit Hilfe von uniqueRandoms() die Ziehung der Lottozahlen
(6 aus 49) simuliert werden kann.

import java.util.TreeSet;
public class Start {

public static void main(String args[]) {
System.out.printin();

System.out.printIn("Willkommen zur Ziehung der Lottozahlen!");

TreeSet<Integer> randomNumbers = MoreMath.uniqueRandoms(6, 1, 49);

Listing 19: Lottozahlen

56 >> Trigonometrische Funktionen

for(int elem : randomNumbers)
System.out.printin(" " + elem);

Listing 19: Lottozahlen (Forts.)

Wenn Sie selbst Lotto spielen, bauen Sie das Programm und die Methode uniqueRan-
doms () doch so aus, dass hiufig getippte Zahlenkombinationen (siehe Fachliteratur zu
Spielsystemen) aussortiert werden. Viel mehr diirfte hinter den Spielsystemen kommer-
zieller Anbieter auch nicht stecken.

17 Trigonometrische Funktionen

Bei Verwendung der trigonometrischen Methoden ist zu beachten, dass diese Methoden als
Parameter stets Werte in BogenmalB (Radiant) erwarten. Beim BogenmaB wird der Winkel
nicht in Grad, sondern als Liange des Bogens angegeben, den der Winkel aus dem Einheitskreis
(Gesamtumfang 2) ausschneidet: 1 rad = 360°/2 &; 1° = 2 ©/360 rad.

360 Grad entsprechen also genau 2 w, 180 Grad entsprechen 1 &, 90 Grad entsprechen 1/2 T
Wenn Sie ausrechnen wollen, was 32 Grad in Radiant sind, multiplizieren Sie einfach die
Winkelangabe mit 2 * und teilen Sie das Ganze durch 360 (oder multiplizieren Sie mit & und
teilen Sie durch 180).

bogenlaenge = Math.PI/180 * grad;

Math stellt zur bequemen Umrechnung von Grad in Radiant und umgekehrt die Methoden
toDegrees() und toRadians() zur Verfiigung. Beachten Sie aber, dass diese Umrechnung nicht
immer exakt ist. Gehen Sie also beispielsweise nicht davon aus, dass sin(toRadians(180.0))
exakt 0.0 ergibt. (Siehe auch Rezept 6 zum Vergleichen mit definierter Genauigkeit.)

18 Temperaturwerte umrechnen (Celsius <-> Fahrenheit)

Wihrend die Wissenschaft und die meisten Voélker dieser Welt die Temperatur mittlerweile in
Grad Celsius messen, ist in den USA immer noch die Einheit Fahrenheit gebrduchlich. Die For-
mel zur Umrechnung von Fahrenheit in Celsius lautet:
c=(f -32)*5/9
Aus dieser Formel lassen sich schnell zwei praktische Methoden zur Umrechnung von Fahren-
heit in Celsius und umgekehrt ableiten:
/**

* Umrechnung von Fahrenheit in Celsius

*/
public static double fahrenheit2Celsius(double temp) {

return (temp - 32) * 5.0/9.0;
}

/**

* Umrechnung von Celsius in Fahrenheit
*/

>> Zahlen und Mathematik 57

public static double celsius2fahrenheit(double temp) {
return (temp * 9 / 5.0) + 32;
}

Die Mathematik unterscheidet nicht zwischen 5/9 und 5.0/9.0 - wohl aber der Compi-
ler, der im ersten Fall eine Ganzzahlendivision durchfiihrt, d.h. den Nachkommaanteil
unterschlagt.

Mit dem Programm Start.java zu diesem Rezept konnen Sie beliebige Temperaturwerte
umrechnen. Geben Sie einfach in der Kommandozeile die Ausgangseinheit (-f fiir Fahrenheit
oder -c fiir Celsius) und den umzurechnenden Temperaturwert an.

gabeaufforderung

>java Start —Ff 2
2.88 Grad Grad Fahrenheit entsprechen -16.67 Grad Celsius

>java Start —¢ -6.6666667
—6.67 Grad Celsius entsprechen 28,88 Grad Fahrenheit

>java Start —f 38
38.88 Grad Grad Fahrenheit entsprechen —1.11 Grad Celsius

>java Start —c 8
B.88 Grad Celsius entsprechen 32,808 Grad Fahrenheit

>

Abbildung 8: Programm zur Umrechnung zwischen Fahrenheit und Celsius

19 Fakultat berechnen
Mathematisch ist die Fakultiat definiert als:

nl =1, wenn n = 0
nl=1*2*3 ... % (n1)*n, flirn-=1,
oder rekursiv formuliert:

fac(0) = 1;

fac(n) = n * fac(n-1);

Die Fakultdt ist vor allem fiir die Berechnung von Wahrscheinlichkeiten wichtig. Wenn Sie
beispielsweise sieben Kugeln, nummeriert von 1 bis 7, in einen Behilter geben und dann
nacheinander ziehen, gibt es 7! Moglichkeiten (Permutationen), die Kugeln zu ziehen.

/**

* Fakultdt berechnen

Listing 20: Methode zur Berechnung der Fakultit

58 >> Fakultat berechnen

*/
public static double factorial(int n) {
double fac = 1;

if (n<0)
throw new ITTegalArgumentException("Fakultaet ist nur fuer
+ "positive Zahlen definiert");

if (n < 2)
return fac;

while(n > 1) {
fac *= n;
--n;

)

return fac;

Listing 20: Methode zur Berechnung der Fakultét (Forts.)

Die Fakultit ist eine extrem schnell ansteigende Funktion. Bereits fiir relativ kleine
Eingaben wie die Zahl 10 ergibt sich ein sehr hoher Wert (10! = 3.628.800) und 171!
liegt schon auBerhalb des Wertebereichs von double!

Mit dem Start-Programm zu diesem Rezept konnen Sie sich die Fakultidten von 0 bis n ausge-
ben lassen. Ubergeben Sie n beim Aufruf in der Konsole und denken Sie daran, dass Sie ab 171
nur noch infinity-Ausgaben ernten.

ingabeaufforderung

>java Start 28

. 888000 +08
. 888000 +08
- AAARAR: +AA
. AARAR: +AA
-488000e +A1
-2800000e +A2
-2A000A0e +A2
-B48000e +A3
-A32000e +A4
-628800e +A5
-628800e +A6
-271680e +A7
- 77001 6e +A3
.227021e+09
-71782%+18
-387674e+12
-A9227% +13
556874e+14
-482374e+15
-216451e+17

e O G0 I bk 00 0P i 0 G L0 i CF = b DD O DD b

Abbildung 9: Fakultat

>> Zahlen und Mathematik 59

20 Mittelwert berechnen

Wenn wir den Mittelwert oder Durchschnitt einer Folge von Zahlen berechnen, bilden wir
tiblicherweise die Summe der einzelnen Werte und dividieren diese durch die Anzahl der
Werte. In der Mathematik bezeichnet man dies als das arithmetische Mittel und stellt es weite-
ren Mittelwerten gegentiber.

Mittelwert ‘ Berechnung

arithmetischer - XXX

geometrischer

harmonischer

quadratischer

Tabelle 8: Mittelwerte

Die folgenden Methoden zur Berechnung der verschiedenen Mittelwerte wurden durchweg mit
einem double...-Parameter definiert. Als Argument kann den Methoden daher ein double-
Array oder eine beliebig lange Folge von double-Werten iibergeben werden.
/**k
* Arithmetisches Mittel (Standard fir Mittelwertberechnungen)
*/
public static double arithMean(double... values) {
double sum = 0;

for (double d : values)
sum += d;

return sum/values.length;
}

/**

* Geometrisches Mittel

*/

public static double geomMean(double... values) {
double sum = 1;

for (double d : values)
sum *= d;

return Math.pow(sum, 1.0/values.length);
}

60 >> Zinseszins berechnen

/**

* Harmonisches Mittel

*/

public static double harmonMean(double... values) {
double sum = 0;

for (double d : values)
sum += 1.0/d;

return values.length / sum;

}

/**

* Quadratisches Mittel

*/

public static double squareMean(double... values) {
double sum = 0;

for (double d : values)
sum += d*d;

return Math.sqrt(sum/values.length);
}
Mégliche Aufrufe wiren:

double[] values = {1, 5, 12.5, 0.5, 3};
MoreMath.arithMean(values);

oder
MoreMath.geomMean(1, 5, 12.5, 0.5, 3)

Die Methode geomMean() liefert NaN zuriick, wenn die Summe der Werte negativ ist
(wegen Ziehen der n-ten Wurzel).

21 Zinseszins berechnen
Die Grundformel zur Zinseszinsrechnung lautet:
K, =K, @+i)

wobei n die Laufzeit in Jahren und i den Jahreszinssatz (p/100) bezeichnet. K,, ist das Endka-
pital, das man erhélt, wenn man das Startkapital K, fiir n Jahre (oder allgemein Zinsperioden)
zu einem Zinssatz i verzinsen lésst.

Kommen monatliche Raten dazu, erweitert sich die Formel zu:

@+i)y-1

K, =Ky, -Q+i)"+R- —-Z—
n 0 () (1+i)1/12_1

>> Zahlen und Mathematik 61

In der Finanzwelt wird aber meist mit der folgenden Variante fiir vorschiissige Renten gerech-
net:

@+i)-1 /12
Eil}jﬂii:ji'61+l)

Die Methode capitalWithCompoundInterest() berechnet nach obiger Formel das Endkapital
nach n Jahren monatlicher Ratenzahlung und Zinseszinsverzinsung. Als Argumente iiber-
nimmt die Methode das Startkapital, das O sein kann, die Hohe der Raten (installment), den
Zins in Prozent (interest), der nicht 0 sein darf, und die Laufzeit (term).

K,=K, 1+i)"+R-

n

/**

* Kapitalentwicklung bei monatlicher Ratenzahlung und Zinseszins

*/

public static double capitalWithCompoundInterest(double startCapital,
double installment,
double interest,
int term) {

if(interest == 0.0)
throw new I11egalArgumentException("Zins darf nicht Null sein");

double interestRate = interest/100.0;
double accumulationFactor = 1 + interestRate;
double endCapital = startCapital * Math.pow(accumulationFactor , term)
+ installment * (Math.pow(accumulationFactor , term) - 1)
/ (Math.pow(accumulationFactor ,1/12.0) - 1)
* Math.pow(accumulationFactor , 1/12.0);

return endCapital;
}

Die Hohe der reinen Einzahlungen berechnet paidInCapital():

/**

* Berechnung des eingezahlten Kapitals

*/

public static double paidInCapital(double startCapital,
doubTle installment,
int term) {

double endCapital = startCapital;

for (int n =1; n <= term; +mn)
endCapital = endCapital + 12*installment;

return endCapital ;
}

Das Start-Programm zu diesem Rezept nutzt obige Methoden zur Implementierung eines Zins-
rechners. Startkapital, monatliche Raten, Verzinsung in Prozent und Laufzeit in Jahren werden
iiber JTextField-Komponenten abgefragt. Nach Driicken des BERECHNEN-Schalters wird die
jahrliche Kapitalentwicklung berechnet und in der JTextArea-Komponente links angezeigt.

62 >> Komplexe Zahlen

Startkapital 0| Eura Jahr Kapital Kapital + Zinsen
monatliche Rate T4 Euro 0. 0,00 € 0,00 €
1. go0,00 € 915,18 €
i L
Zinssatz | 3.75|% 2. 1800,00 € 1870,79 €
- s 3. 700,00 € Z859,1z2 €
Laufzeit 7| in Jahren 4 4
4, 3600,00 € 3854,52 €
| Berechnen | 5 4500,00 € 4945, 36 €
G, 5400,00 € 6052,11 €
Ei 6300,00 € 7197,24 €
Endkapital 71 97 Euro

Abbildung 10: Zinsrechner

22 Komplexe Zahlen

Komplexe Zahlen gehéren zwar nicht unbedingt zum téglichen Handwerkszeug eines Pro-
grammierers, bilden aber ein wichtiges Teilgebiet der Algebra und finden als solches immer
wieder Eingang in die Programmierung, so zum Beispiel bei der Berechnung von Fraktalen.

Komplexe Zahlen haben die Form
Z=X+iy

wobei x als Realteil, y als Imaginirteil und i als die imaginire Einheit bezeichnet wird (mit
i2 = -1). Vereinfacht werden Zahlen oft als Paare aus Real- und Imaginirteil geschrieben:

(%, y).

Aimagindre Achse

1 reelle Achse

Abbildung 11: Komplexe Zahlen in Koordinatendarstellung

Grafisch werden komplexe Zahlen in einem Koordinatensystem dargestellt (GauBsche Zahlen-
ebene, siehe Abbildung 11).

Statt als Paar aus Real- und Imaginérteil konnen komplexe Zahlen daher auch als Kombina-
tion aus Radius und Winkel zwischen der Verbindungslinie zum Koordinatenursprung und der
positiven reellen x-Achse angegeben werden (Polarkoordinaten). Der Radius wird dabei tibli-
cherweise als Betrag, der Winkel als Argument bezeichnet.

>> Zahlen und Mathematik 63

Rechnen mit komplexen Zahlen

Operation ‘ Beschreibung

Betrag Der Betrag einer komplexen Zahl ist die Quadratwurzel aus der
Summe der Komponentenquadrate.

7= X2+ y?
|14=+

Addition Komplexe Zahlen werden addiert, indem man die Realteile und Ima-
ginirteile addiert.

y)+ X, y)=Kx+x,y+Y)

Subtraktion Komplexe Zahlen werden subtrahiert, indem man die Realteile und
Imaginirteile voneinander subtrahiert.
xy)-&,y)=Kx-x,y-y)

Die Subtraktion entspricht der Addition der Negativen (-z = -x -yi)

Vervielfachung Vervielfachung ist die Multiplikation mit einer reellen Zahl.
3 *(x,y) = (3*x. 3%y)
Multiplikation Die Multiplikation zweier komplexer Zahlen ist gegeben durch:
X, y)* (', y) = (xx'-yy’, Xy’ + yx))
Division Die Division z/z’ ist gleich der Multiplikation mit der Inversen z*z"!.

Die Inverse einer komplexen Zahl ist definiert als:
4 Xy

= i
C1yE Xt y?

V4

Tabelle 9: Rechenoperationen flir komplexe Zahlen

Die Klasse Complex

Die Klasse Complex definiert neben verschiedenen Konstruktoren Methoden fiir die Berechnung
von Betrag, Negativer, Konjugierter und Inverser sowie Methoden fiir die Grundrechenarten
Addition, Subtraktion, Vervielfachung und Multiplikation. Die Division kann durch Multipli-
kation mit der Inversen berechnet werden. Die Methoden fiir die Grundrechenarten sind durch
statische Versionen iiberladen. Die nichtstatischen Methoden verdndern das aktuelle Objekt,
die statischen Methoden liefern das Ergebnis der Operation als neues Complex-Objekt zurtick.

Zur Unterstiitzung der Polarkoordinatendarstellung gibt es einen Konstruktor, der eine kom-
plexe Zahl aus Radius (Betrag) und Winkel (Argument) berechnet, sowie Get-Methoden, die
Radius und Winkel eines gegebenen Complex-Objekts zuriickliefern.

64 >> Komplexe Zahlen

Methode

Complex()
Complex(double real, double imag)
Complex(double r, double phi, byte polar)

‘ Beschreibung

Konstruktoren.

Der Standardkonstruktor erzeugt eine komplexe Zahl,
deren Real- und Imaginirteil 0.0 ist.

Der zweite Konstruktor erzeugt eine komplexe Zahl mit
den iibergebenen Werten fiir Real- und Imaginarteil.
Der dritte Konstruktor rechnet die tibergebenen Werte
fiir Radius und Winkel in Real- und Imaginérteil um
und erzeugt das zugehorige Complex-Objekt. Um diesen
Konstruktor von dem zweiten Konstruktor unterschei-
den zu konnen, ist ein drittes Argument notwendig,
dem Sie einfach die Konstante Complex.POLAR iliberge-
ben.

double getReal()

Liefert den Realteil der aktuellen komplexen Zahl
zuriick.

void setReal(double real)

Weist dem Realteil der aktuellen komplexen Zahl einen
Wert zu.

double getImag()

Liefert den Imaginérteil der aktuellen komplexen Zahl
zuriick.

void setImag(double real)

Weist dem Imaginérteil der aktuellen komplexen Zahl
einen Wert zu.

double getR ()

Liefert den Radius (Betrag) der aktuellen komplexen
Zahl zuriick. (Polarkoodinatendarstellung)

double getPhi ()

Liefert den Winkel (Argument) der aktuellen komple-
xen Zahl zuriick. (Polarkoodinatendarstellung)

void add(Complex a)
public static Complex add(Complex a,
Complex b)

Addiert die tibergebene komplexe Zahl zur aktuellen
komplexen Zahl.

Die statische Version addiert die beiden iibergebenen
komplexen Zahlen und liefert das Ergebnis zurtick.

void add(double s)
public static Complex add(Complex a,
double s)

Addiert die tibergebene reelle Zahl zur aktuellen kom-
plexen Zahl.

Die statische Version addiert die reelle Zahl s zur iiber-
gebenen komplexen Zahl a und liefert das Ergebnis
zurtick.

void subtract(Complex a)
public static Complex subtract(Complex a,
Complex b)

Subtrahiert die tibergebene komplexe Zahl von der
aktuellen komplexen Zahl.

Die statische Version subtrahiert die zweite iibergebene
komplexe Zahl von der ersten und liefert das Ergebnis
zuriick.

void subtract(double s)
public static Complex subtract(Complex a,
double s)

Subtrahiert die iibergebene reelle Zahl von der aktuel-
len komplexen Zahl.

Die statische Version subtrahiert die reelle Zahl s von
der libergebenen komplexen Zahl a und liefert das
Ergebnis zurtick.

Tabelle 10: Methoden der Klasse Complex

>> Zahlen und Mathematik 65

Methode ‘ Beschreibung
void times(double s) Multipliziert die aktuelle komplexe Zahl mit der tiber-
public static Complex times(Complex a, gebenen reellen Zahl s.

double s)

Die statische Version multipliziert die tibergebene kom-
plexe Zahl a mit der reellen Zahl s und liefert das
Ergebnis zurtick.

void multiply(Complex a) Multipliziert die aktuelle komplexe Zahl mit der {iber-
public static Complex multiply(Complex a, gebenen komplexen Zahl.
CompTex b) | pie statische Version multipliziert die beiden iibergebe-

nen komplexen Zahlen und liefert das Ergebnis zurtick.

void negate() Negiert die aktuelle komplexe Zahl (-x, -yi).

double abs() Liefert den Betrag der komplexen Zahl zuriick.

Complex conjugate() Liefert die konjugiert komplexe Zahl (x, -y) zur
aktuellen komplexen Zahl zuriick.

Complex inverse() Liefert die Inverse zur aktuellen komplexen Zahl
zuriick.

Object clone() Erzeugt eine Kopie der aktuellen komplexen Zahl.
Zur Uberschreibung der clone()-Methode siehe auch
Rezept 250.

boolean equals(Object obj) Liefert true zuriick, wenn das tibergebene Objekt vom

static boolean equals(Complex a, Complex b, | Typ Complex ist und Real- und Imaginérteil die gleichen

double eps) Werte wie die aktuelle komplexe Zahl besitzen. Zur

Uberschreibung der equals()-Methode siehe auch
Rezept 252.

Die statische Version erlaubt fiir den Vergleich die
Angabe einer Genauigkeit eps. Die Real- bzw. Imagi-
nérteile der beiden komplexen Zahlen werden dann als
»gleich« angesehen, wenn ihre Differenz kleiner eps ist.

int hashCode() Liefert einen Hashcode fiir die aktuelle komplexe Zahl
zuriick.

String toString() Liefert eine String-Darstellung der komplexen Zahl
zuriick:
X + yi

Tabelle 10: Methoden der Klasse Complex (Forts.)

/**

* Klasse fur komplexe Zahlen

*/

public class Complex implements Cloneable {
public final static byte POLAR = 1;

; // Realteil
; // Imagindrteil

private double real =

0.0
private double imag = 0.0

/**% Konstruktoren ***/

Listing 21: Complex.java

>> Komplexe Zahlen

public Complex() {
this.real =
this.imag =

s

O O

.0
.0;

s

}

pubTic Complex(double real, double imag) {
this.real = real;
this.imag = imag;

}

pubTic Complex(double r, double phi, byte polar)
this.real = r * Math.cos(phi);
this.imag = r * Math.sin(phi);

/*** Get- und Set-Methoden ***/

public double getReal() {
return real;

}

public void setReal(double real) {
this.real = real;

}

public double getImag() {
return imag;

}

public void setImag(double imag) {
this.imag = imag;

}

public double getR() {
return this.abs();
1
public double getPhi() f
return Math.atan2(this.imag, this.real);
!

/*** Rechenoperationen ***/

// Addition this += a
public void add(Complex a) f
this.real += a.real;
this.imag += a.imag;
}
// Addition ¢ =a + b
public static Complex add(Complex a, Complex b) {
Complex ¢ = new Complex();
c.real = a.real + b.real;
c.imag = a.imag + b.imag;

Listing 21: Complex.java (Forts.)

>> Zahlen und Mathematik 67

return c;
}

// Addition einer Gleitkommazahl

public void add(double s) {
this.real += s;

}

// Addition einer Gleitkommazahl

public static Complex add(Complex a, double s) {
Complex ¢ = new Complex();
c.real = a.real + s;
c.imag = a.imag;
return c;

1

// Subtraktion this -= a

public void subtract(Complex a) {
this.real -= a.real;
this.imag -= a.imag;

}

// Subtraktion c =a - b

public static Complex subtract(Complex a, Complex b) {
Complex ¢ = new Complex();
c.real = a.real - b.real;
c.imag = a.imag - b.imag;
return c;

}

// Subtraktion einer Gleitkommazahl
public void subtract(double s) {
this.real -=s;
}
// Subtraktion einer Gleitkommazahl
public static Complex subtract(Complex a, double s) {
Complex ¢ = new Complex();
c.real = a.real - s;
c.imag = a.imag
return c;

}

// Vervielfachung durch Multiplikation mit Gleitkommazahl
public void times(double s) {
this.real *= s;
this.imag *= s;
}
public static Complex times(Complex a, double s){
double r, 1i;

r=a.real *s;
i=a.imag * s;
return new Complex(r, i);

Listing 21: Complex.java (Forts.)

68 >> Komplexe Zahlen

// Multiplikation this *=b
public void multiply(Complex b){
double r, 1;

r = (this.real * b.real) - (this.imag * b.imag);
i (this.real * b.imag) + (this.imag * b.real);

this.real = r;
this.imag = i;

}

// Multiplikation c =a * b
public static Complex multiply(Complex a, Complex b){
double r, 1;

r = (a.real * b.real) - (a.imag * b.imag);
i = (a.real * b.imag) + (a.imag * b.real);
return new Complex(r, i);

/*** Sonstige Operationen ***x/

// Negation

public void negate() {
this.real *= -1;
this.imag *= -1;

}

// Betrag
public double abs() {

return Math.sqrt(real*real + imag*imag);
}

// Konjugierte
public Complex conjugate() {

return new Complex(this.real, -this.imag);
}

// Inverse
public Complex inverse() {
double r, 1;

r = this.real / ((this.real * this.real) + (this.imag * this.imag));
i = -this.imag / ((this.real * this.real) + (this.imag * this.imag));

return new Complex(r, i);

Listing 21: Complex.java (Forts.)

>> Zahlen und Mathematik

}

/*** (Jberschriebene Object-Methoden ***/

public Object clone() {

try {
Complex ¢ = (Complex) super.clone();
c.real = this.real;
c.imag = this.imag;
return c;

} catch (CloneNotSupportedException e) {
// sollte nicht vorkommen
throw new InternalError();

}

public boolean equals(Object obj) f{
if (obj instanceof Complex) {
Complex tmp = (Complex) obj;
// wenn beide NaN, dann als gleich ansehen
if ((Double.isNaN(this.real) || Double.isNaN(this.imag))
&& (Double.isNaN(tmp.real) || Double.isNaN(tmp.imag)))
return true;

if ((this.real == tmp.real) && (this.imag == tmp.imag))
return true;
else
return false;
t
return false;

}

public static boolean equals(Complex a, Complex b, double eps) {
if (a.equals(b))
return true;
else {
if((Math.abs(a.real - b.real) < eps)
&&(Math.abs(a.imag - b.imag) < eps))
return true;
else
return false;

}

public int hashCode() {
long bits = Double.doubleTolongBits(this.real);
bits ~= Double.doubleTolLongBits(this.imag) * 31;
return (((int) bits) » (Cint) (bits >> 32)));

}

public String toString() f{

Listing 21: Complex.java (Forts.)

70 >> Komplexe Zahlen

String sign ="+ ";
if(this.imag < 0.0)

sign =" -";
java.text.DecimalFormat df = new java.text.DecimalFormat("#,{H0.1H");
String str_rt = df.format(this.real);
String str_it = df.format(Math.abs(this.imag));

return str_rt + sign + str_it + "i";

Listing 21: Complex.java (Forts.)

Das Programm aus Listing 22 demonstriert den Einsatz der Klasse Complex anhand der Berech-
nung einer Julia-Menge. Die Berechnung der Julia-Menge erfolgt der Einfachheit halber direkt
in paintComponent(), auch wenn dies gegen den Grundsatz verstdBt, in Ereignisbehandlungs-
code zeitaufwendige Berechnungen durchzufiihren. Die Folge ist, dass die Benutzerschnitt-
stelle fiir die Dauer der Julia-Mengen-Berechnung lahm gelegt wird, was uns hier aber nicht
weiter storen soll. (Korrekt wire die Auslagerung der Berechnung in einen eigenen Thread,
siehe Kategorie »Threads«.)

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Start extends JFrame {
class MyCanvas extends JPanel {

public void paintComponent(Graphics g) {
super.paintComponent(q);

Complex ¢ = new Complex(-0.012, 0.74);

for(int 1 = 0; i < getWidth(); ++i)
for(int j = 0; j < getHeight(); ++j) {
Complex x = new Complex(0.0001*i, 0.0001*j);
for(int n=20; n < 100; +tn) {
if (x.abs() > 100.0)
break;
x.multiply(x);
x.add(c);
}
if (x.abs() < 1.0) {
g.setColor(new Color(0, 0, 255));
g.fillRect(i, j, 1, 1);
} else {
g.setColor(new Color((int)x.abs()%250, 255, 255));

Listing 22: Fraktalberechnung mit Hilfe komplexer Zahlen

>> Zahlen und Mathematik 71

g.fillRect(i, j, 1, 1);

public Start() {
setTitle("Julia-Menge");

getContentPane().add(new MyCanvas(), BorderlLayout.CENTER);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}

public static void main(String args[]) {
// Fenster erzeugen und anzeigen
Start mw = new Start();
mw.setSize(500,350);
mw.setResizable(false);
mw.setlLocation(200,300);
mw.setVisible(true);

Listing 22: Fraktalberechnung mit Hilfe komplexer Zahlen (Forts.)

- Julia-Menge

Abbildung 12: Julia-Menge

72 >> Vektoren

23 Vektoren

Vektoren finden in der Programmierung vielfache Anwendung - beispielsweise zur Représen-
tation von Koordinaten, fiir Berechnungen mit gerichteten, physikalischen GréBen wie
Geschwindigkeit oder Beschleunigung und natiirlich im Bereich der dreidimensionalen Com-
putergrafik. So konnen - um ein einfaches Beispiel zu geben - Punkte in der Ebene P(5; 12)
oder im Raum (5; 12; -1) als zwei- bzw. dreidimensionale Ortsvektoren (d.h. mit Beginn im
Ursprung des Koordinatensystems) reprisentiert werden.

5

- (5 -
= ,bzw. p=| 12
EME 2

Der Abstand zwischen zwei Punkten P und Q ist dann gleich der Liange des Vektors, der vom
einen Punkt zum anderen fiihrt.

Po=[a-p

Rechnen mit Vektoren

Operation ‘ Beschreibung

Linge Die Linge (oder der Betrag) eines Vektors ist die Quadratwurzel aus
der Summe der Komponentenquadrate. (Fiir zweidimensionale Vekto-
ren lésst sich dies leicht aus dem Satz des Pythagoras ableiten.)

M=@)+@3) . firv=(1;3)

Addition Vektoren werden addiert, indem man ihre einzelnen Komponenten
addiert.

o {o)-{s*3)-(s

Das Ergebnis ist ein Vektor, der vom Anfang des ersten Vektors zum
Ende des zweiten Vektors weist.

Subtraktion Vektoren werden subtrahiert, indem man ihre einzelnen Komponen-
ten subtrahiert.

[SHosoH5)

Fiir zwei Ortsvektoren p und q erhilt man den Vektor, der von P nach
Q fiihrt, indem man p von q subtrahiert.

Vervielfachung Vervielfachung ist die Multiplikation mit einem skalaren Faktor.

{55)

Durch die Vervielfachung wird lediglich die Lange, nicht die Richtung
des Vektors verdndert. Einer »Division« entspricht die Multiplikation
mit einem Faktor zwischen 0 und 1.

Tabelle 11: Vektoroperationen

>> Zahlen und Mathematik 73

Operation ‘ Beschreibung

Skalarprodukt Das Skalarprodukt (englisch »dot producte) ist das Produkt aus den
Léngen (Betrdgen) zweier Vektoren multipliziert mit dem Kosinus des
Winkels zwischen den Vektoren.

lcosa

Fiir zwei- und dreidimensionale Vektoren kann es als die Summe der
Komponentenprodukte berechnet werden:

[1j.(5j=1*5+3*0=5
3/ 10

Das Skalarprodukt ist ein skalarer Wert.

V-wW=

Stehen die beiden Vektoren senkrecht zueinander, ist das Skalar-
produkt gleich null.

Vektorprodukt Das Vektorprodukt (englisch »cross product«) ist das Produkt aus den
Lingen (Betridgen) zweier Vektoren multipliziert mit dem Sinus des
Winkels zwischen den Vektoren.

ifina

Fiir dreidimensionale Vektoren kann es wie folgt aus den Komponen-
ten berechnet werden:

o B 55— 33,

o, X ﬁz = 0!3ﬁ1 _a1ﬁ3

;) \Bs o, =L
Das Vektorprodukt zweier Vektoren v und w ist ein Vektor, der senk-
recht zu v und w steht. Die drei Vektoren bilden ein Rechtssystem
(Drei-Finger-Regel). Der Betrag des Vektorprodukts ist gleich dem
Flacheninhalt des von v und w aufgespannten Parallelogramms.

VXW=

In der 3D-Grafikprogrammierung kann das Vektorprodukt zur
Berechnung von Oberflichennormalen verwendet werden.

Tabelle 11: Vektoroperationen (Forts.)

Die Klasse Vector3D

Die Klasse Vector3D ist fiir die Programmierung mit dreidimensionalen Vektoren ausgelegt.
Vektoren kénnen als Objekte der Klasse erzeugt und bearbeitet werden. Fiir die Grundrechen-
arten (Addition, Subtraktion und Vervielfachung) gibt es zudem statische Methoden, die das
Ergebnis der Operation als neuen Vektor zuriickliefern. In Anwendungen, die nicht iibermaBig
zeitkritisch sind, kann man die Klasse auch fiir zweidimensionale Vektoren verwenden, indem
man die dritte Dimension (Feld z) auf null setzt. (Achtung! Das Vektorprodukt liefert stets
einen Vektor, der zur Ebene der Ausgangsvektoren senkrecht steht.) Tabelle 12 stellt Thnen die
Methoden der Klasse vor.

74 >> Vektoren

Methode ‘ Beschreibung

Vector3D() Konstruktoren.
Vector3D(double x, double y, double z)

Der Standardkonstruktor erzeugt einen Vektor,
dessen x,y,z-Felder auf 0.0 gesetzt sind.

Der zweite Konstruktor weist den Feldern die
tibergebenen Werte zu.

void add(Vector3D v) Addiert den tibergebenen Vektor zum aktuellen
static Vector3D add(Vector3D vl1, Vector3D v2) Vektor.

Die statische Version addiert die beiden tiber-
gebenen Vektoren und liefert das Ergebnis als
neuen Vektor zuriick.

double angle(Vector3D v) Berechnet den Winkel zwischen dem aktuellen
und dem tbergebenen Vektor.
Der Winkel wird in BogenmaB zuriickgeliefert
(und kann beispielsweise mit Math.toDegrees()
in Grad umgerechnet werden).

Object clone() Erzeugt eine Kopie des aktuellen Vektors.

Zur Uberschreibung der clone()-Methode siehe
auch Rezept 250.

Vector3D crossProduct(Vector3D v) Berechnet das Vektorprodukt aus dem aktuel-
len und dem tibergebenen Vektor.

double dotProduct(Vector3D v) Berechnet das Skalarprodukt aus dem aktuel-
len und dem iibergebenen Vektor.

boolean equals(Object obj) Liefert true zuriick, wenn das iibergebene
Objekt vom Typ Vector3D ist und die Felder x, y
und z die gleichen Werte wie im aktuellen Vek-
tor haben.

Zur Uberschreibung der equals()-Methode
siehe auch Rezept 252.

double Tength() Berechnet die Lange des Vektors.

void scale(double s) Skaliert den aktuellen Vektor um den Faktor s.

static Vector3D scale(Vector3D v, double s) Skaliert den iibergebenen Vektor um den Fak-
tor s und liefert das Ergebnis als neuen Vektor
zuriick.

void subtract(Vector3D v) Subtrahiert den tibergebenen Vektor vom aktu-

static Vector3D subtract(Vector3D v1, Vector3D v2) | ellen Vektor.

Die statische Version subtrahiert den zweiten
vom ersten Vektor und liefert das Ergebnis als
neuen Vektor zuriick.

String toString() Liefert eine String-Darstellung des Vektors
zuriick:
(x; y; 2)

Tabelle 12: Methoden der Klasse Vector3D

>> Zahlen und Mathematik

/**

* Klasse flir dreidimensionale Vektoren

*

*/

public class Vector3D implements Cloneable {
public double x;
pubTlic double y;
pubTlic double z;

// Konstruktoren
public Vector3D() {

x =0;
y =0;
z=0;

}
pubTlic Vector3D(double x, double y, double z) {

this.x = x;
this.y = y;
this.z = z;

}

// Addition
public void add(Vector3D v) {
X = V.X;
y t=v.ys
Z+=V.Z;
}
public static Vector3D add(Vector3D v1, Vector3D v2) {
return new Vector3D(vl.x+v2.x, vl.y+v2.y, vl.z+v2.z);
}

// Subtraktion
public void subtract(Vector3D v) {

X = V.X;
y = Vv.y;
Z "= V.Z;

}
public static Vector3D subtract(Vector3D vl, Vector3D v2) {
return new Vector3D(vl.x-vZ.x, vl.y-vZ2.y, vl.z-v2.z);

}

// Skalierung (Multiplikation mit Skalar)
public void scale(double s) {
X *=s;
y *=s;
zZ *=s;
}
public static Vector3D scale(Vector3D v, double s) {
return new Vector3D(v.x*s, v.y*s, v.z*s);
}

Listing 23: Vector3D.java

76 >> Vektoren

// Skalarprodukt
pubTic double dotProduct(Vector3D v) {
return x*v.x + y*v.y + z*v.z;

}

// Vektorprodukt
pubTic Vector3D crossProduct(Vector3D v) {
return new Vector3D(y*v.z - z*v.y,
Z*V.X - X*v.z,
X*V.Y - yRVLX)
}

// Winkel zwischen Vektoren (arccos(Skalarprodukt/(LdngeVl * LangeV2)))
public double angle(Vector3D v) {
return Math.acos((x*v.x + y*v.y + z*v.z) /
Math.sqrt((x*x + y*y + z*z) *
(V.X*V.X + voy*vey + v.zFv.z)));
}

// Lénge
public double Tength() {

return Math.sqrt(x*x + y*y + z*z);
}

// Umwandlung in String
public String toString() {

TP (" b X " Ay T Tz b)
}

// Kopieren
public Object clone() {

try {
Vector3D v = (Vector3D) super.clone();
VX = XS
V.Y =Y
v.z = 7;
return v;

} catch (CloneNotSupportedException e) {
// sollte nicht vorkommen
throw new InternalError();

}

// Vergleichen
public boolean equals(Object obj) {
if (obj instanceof Vector3D) {
if (x == ((Vector3D) obj).x
&& y == ((Vector3D) obj).y
&& z == ((Vector3D) obj).z)
return true;

Listing 23: Vector3D.java (Forts.)

>> Zahlen und Mathematik 77

return false;

Listing 23: Vector3D.java (Forts.)

Das Programm aus Listing Listing 24: demonstriert den Einsatz der Klasse Vector3D anhand
eines geometrischen Problems. Mittels Vektoren wird ausgehend von den Punktkoordinaten
eines Dreiecks der Flacheninhalt berechnet.

public class Start {

public static void main(String args[]) {
System.out.printin();

System.out.printin(" Flaecheninhalt eines Dreiecks berechnen");
System.out.printin();

System.out.printin(" Gegeben: Dreieck zwischen Punkten: ");
System.out.printin("\t A (2; 3; 0)");
System.out.printin("\t B (2.5; 5; 0)");
System.out.printin("\t C (7; 4; 0)");

// Punktvektoren

Vector3D a = new Vector3D(2, 3, 0);
Vector3D b = new Vector3D(2.5, 5, 0);
Vector3D ¢ = new Vector3D(7, 4, 0);

// Kantenvektoren

Vector3D ab = Vector3D.subtract(b, a);
Vector3D ac = Vector3D.subtract(c, a);

double cross = (ab.crossProduct(ac)).length();
double area = 0.5 * cross;

// Fur MoreMath.rint siehe Rezept 5

System.out.printin("\n Berechnete Flaeche: " +
MoreMath.rint(area, 2));

Listing 24: Testprogramm: Berechnung eines Fldcheninhalts mit Vektoren

78 >> Matrizen

ngabeaufforderung

>javac Start.java
>java Start
Flaecheninhalt eines Dreiecks berechnen

Gegehen: Dreieck zwischen Punkten:

B (2.5; 5: @)
c 7 ai @

Berechnete Flaeche: 4.75%

>

Abbildung 13: Ausgabe des Testprogramms

24 Matrizen

In der Mathematik ist eine Matrix ein rechteckiges Zahlenschema. Als (m,n)-Matrix oder
Matrix der Ordnung m X n bezeichnet man eine Anordnung aus m Zeilen und n Spalten:

o, o, «
A:(noTe 13] (Beispiel fiir eine (2, 3)-Matrix)
aZl a22 a23

Matrizen kénnen lineare Abbildungen reprisentieren (eine (m,n)-Matrix entspricht einer line-
aren Abbildung vom Vektorraum V" nach V™) oder auch lineare Gleichungssysteme. In der
Programmierung werden Matrizen vor allem zur Losung linearer Gleichungssysteme sowie fiir
Vektortransformationen in 3D-Grafikanwendungen eingesetzt.

Rechnen mit Matrizen

Operation ‘ Beschreibung

Addition Matrizen werden addiert, indem man ihre einzelnen Komponenten
addiert.

[all a12J+[ﬁ11 ﬁle :(all-'—ﬁll a12 +IBIZJ
aZl a22 ﬁ 21 ﬂ 22 az1 + ﬁ 21 aZZ + ﬂ 22

Zwei Matrizen, die addiert werden, miissen der gleichen Ordnung
angehoren.

Subtraktion Matrizen werden subtrahiert, indem man ihre einzelnen Komponen-
ten subtrahiert.

[au aﬁ]_(ﬁn ﬁﬁ]:(an_ﬂu am_ﬁﬁ]

Oy Op Ba B Opn =P Uy =P

Zwei Matrizen, die subtrahiert werden, miissen der gleichen Ordnung
angehoren.

Vervielfachung Vervielfachung ist die Multiplikation mit einem skalaren Faktor.

k [all a12 j — [kall kalZ J
aZl a22 kaZl ka22

Tabelle 13: Matrixoperationen

>> Zahlen und Mathematik 79

Operation ‘ Beschreibung

Multiplikation Bei der Matrizenmultiplikation C = A*B ergeben sich die Elemente der
Ergebnismatrix C durch Aufsummierung der Produkte aus den Ele-
menten einer Zeile von A mit den Elementen einer Spalte von B:

Spaltenvon A

G = ;a’ikbkj

Eine Multiplikation ist nur méglich, wenn die Anzahl von Spalten
von A gleich der Anzahl Zeilen von B ist. Das Ergebnis aus der Multi-
plikation einer (m,n)-Matrix A mit einer (n,r)-Matrix B ist eine (m,r)-

Matrix.
[all alzj*(ﬁll)=[(all*ﬁll)+(a12*ﬁZl)]
Oy Oyp P (0 * Buy) + (0 * Boy)

Tabelle 13: Matrixoperationen (Forts.)

Die Klasse Matrix

Die Klasse Matrix ist fiir die Programmierung mit Matrizen beliebiger Ordnung ausgelegt. Sie
unterstiitzt neben den Grundrechenarten auch die Berechnung der Transponierten, der Inver-
tierten und der Determinanten.

Ist die Matrix quadratisch und représentiert sie ein lineares Gleichungssystem, konnen Sie die-
ses mit der Methode solve() losen. Zur Losung des Gleichungssystems wie auch zur Berech-
nung der Inversen und der Determinanten wird intern eine LR-Zerlegung der Ausgangsmatrix
berechnet, die durch ein Objekt der Hilfsklasse LUMatrix reprdsentiert wird. Die LR-Zerlegung
liefert die Methode TuDecomp(), die auch direkt aufgerufen werden kann.

Eine spezielle Unterstiitzung fiir Vektortransformationen, wie sie fiir 3D-Grafikanwendungen
benoétigt werden, bietet die Klasse nicht. Die grundlegenden Operationen, von der Addition
von Transformationen iiber die Anwendung auf Vektoren durch Matrizenmultiplikation bis
hin zur Berechnung der Inversen, um Transformationen riickgéngig machen zu konnen, sind
zwar allesamt mit der Klasse durchfiihrbar, diirften aber fiir die meisten Anwendungen zu viel
Laufzeit beanspruchen. (Fiir professionelle Grafikanwendungen sollten Sie auf eine Implemen-
tierung zurtickgreifen, die fiir (4,4)-Matrizen optimiert ist, siehe beispielsweise Java 3D.)

Methode ‘ Beschreibung

Matrix(int m, int n) Konstruktoren.
Matr1:x(1:nt m, T”t n, double s) Erzeugt wird jeweils eine (m,n)-Matrix (n Zeilen, m
Matrix(int m, int n, double[][] elems) Spalten). Die Elemente der Matrix werden je nach Kon-

struktor mit 0.0, mit s oder mit den Werten aus dem
zweidimensionalen Array elems initialisiert.

Negative Zeilen- oder Spaltendimensionen fiithren zur
Auslosung einer NegativeArraySizeException.

Wird zur Initialisierung ein Array iibergeben, miissen
dessen Dimensionen mit m und n Gbereinstimmen.
Ansonsten wird eine I11egalArgumentException ausge-
16st.

Tabelle 14: Methoden der Klasse Matrix

80 >> Matrizen

Methode | Beschreibung

void add(Matrix B)
static Matrix add(Matrix A, Matrix B)

Addiert die tibergebene Matrix zur aktuellen Matrix.
Die statische Version addiert die beiden tibergebenen
Matrizen und liefert das Ergebnis als neue Matrix
zuriick.

Gehoren die Matrizen unterschiedlichen (n,m)-Ordnun-
gen an, wird eine I11egalArgumentException ausgelost.

Object clone()

Erzeugt eine Kopie der Matrix.

Zur Uberschreibung der clone()-Methode siehe auch
Rezept 250.

boolean equals(Object obj)

Liefert true zuriick, wenn das tibergebene Objekt vom
Typ Matrix ist und die Elemente die gleichen Werte wie
die Elemente der aktuellen Matrix haben.

Zur Uberschreibung der equals()-Methode siehe auch
Rezept 252.

double det()

Liefert die Determinante der aktuellen Matrix zurtick.

Fiir nichtquadratische oder singulidre Matrizen wird eine
I11egalArgumentException ausgelost.

double get(int i, int j)

Liefert den Wert des Elements in Zeile i, Spalte j zuriick.

doubTe[][] getArray()

Liefert die Elemente der Matrix als zweidimensionales
Array zuriick.

int getColumnDim()

Liefert die Anzahl der Spalten (n).

static Matrix getIdentity(int n, int m)

Erzeugt eine Identitdtsmatrix mit m Zeilen und n Spal-
ten.

In einer Identitdtsmatrix haben alle Diagonalelemente
den Wert 1.0, wéihrend die restlichen Elemente gleich
null sind.

Bei der 3D-Grafikprogrammierung kann die Identitit als
Ausgangspunkt zur Erzeugung von Translations- und
Skalierungsmatrizen verwendet werden.

int getRowDim()

Liefert die Anzahl der Zeilen (m).

Matrix inverse()

Liefert die Inverse der aktuellen Matrix zuriick. Existiert
die Inverse, gilt

A*A-1 =1

Wenn die aktuelle Matrix nicht quadratisch oder singu-
lar ist, wird eine I11egalArgumentException ausgelost.

Tabelle 14: Methoden der Klasse Matrix (Forts.)

>> Zahlen und Mathematik 81

Methode ‘ Beschreibung

LUMatrix TuDecomp() Liefert die LR-Zerlegung der aktuellen Matrix als Objekt
der Hilfsklasse LUMatrix zuriick. Die Zerlegung, die der
Konstruktor von LUMatrix vornimmt, erfolgt nach dem
Verfahren von Crout.

Die LUMatrix hat den folgenden Aufbau:

ull u12 u13

LU = I 21 u22 u23

|31 l 32 u33

Die u(i,j)-Elemente bilden die obere Dreiecksmatrix U,
die 1(i,j)-Elemente die untere Dreiecksmatrix L. Zur L-
Matrix gehoren zudem noch die 1(i,i)-Elemente, die alle
1 sind und daher nicht extra in LU abgespeichert sind.
Das Produkt aus L*U liefert nicht direkt die Ausgangs-
matrix A, sondern eine Permutation von A. Die Permu-
tationen sind in den privaten Feldern von LUMatrix
gespeichert und werden bei der Riickwartssubstitution
(LUMatrix.luBacksolve()) berticksichtigt.

Fiir nichtquadratische oder singuldre Matrizen wird eine
I11egalArgumentException ausgeldst.

Matrix multiply(Matrix B) Multipliziert die aktuelle Matrix mit der tibergebenen
Matrix und liefert das Ergebnis als neue Matrix zurtick:
Res = Akt * B

Wenn die Spaltendimension der aktuellen Matrix nicht
gleich der Zeilendimension der tibergebenen Matrix ist,
wird eine I17egalArgumentException ausgelost.

void print() Gibt die Matrix auf die Konsole (System.out) aus (vor-
nehmlich zum Debuggen und Testen gedacht).

void set(int i, int j, double s) Weist dem Element in Zeile i, Spalte j den Wert s zu.

double[] solve(double[] bvec) Lost das Gleichungssystem, dessen Koeffizienten durch

die aktuelle (quadratische) Matrix repréisentiert werden,
fiir den Vektor B (gegeben als Argument bvec). Das
zuriickgelieferte Array ist der Losungsvektor X, so dass
gilt:

A*X =B

Wenn die aktuelle Matrix nicht quadratisch oder singu-
lar ist, wird eine I11egalArgumentException ausgelost.

(Siehe auch Rezept 25)

void subtract(Matrix B) Subtrahiert die iibergebene Matrix von der aktuellen
static Matrix subtract(Matrix A, Matrix B) | Matrix.

Die statische Version subtrahiert die zweite von der ers-
ten Matrix und liefert das Ergebnis als neue Matrix
zuriick.

Gehoren die Matrizen unterschiedlichen (m,n)-Ordnun-
gen an, wird eine I11egalArgumentException ausgelost.

Tabelle 14: Methoden der Klasse Matrix (Forts.)

82 >> Matrizen

Methode ‘ Beschreibung

void times(double s) Multipliziert die Elemente der aktuellen bzw. der tiber-
static Matrix times(Matrix A, double s) gebenen Matrix mit dem Faktor s.

void transpose() Transponiert die Matrix bzw. liefert die Transponierte
static Matrix transpose(Matrix A) zur iibergebenen Matrix zuriick.

Die Transponierte ergibt sich durch Spiegelung der Ele-
mente an der Diagonalen, sprich durch paarweise Ver-

tauschung der Elemente a(ij) mit a(ji).

Wenn die zu transponierende Matrix nicht quadratisch
ist, wird eine RuntimeException bzw. I11egalArgumentEx-
ception ausgelost.

Tabelle 14: Methoden der Klasse Matrix (Forts.)

/**
* Klasse fiir Matrizen
*
* @author Dirk Louis
*/

import java.text.DecimalFormat;

class Matrix implements Cloneable {

private double[]1[] elems = null; // Zum Speichern der Elemente
private int m; // Zeilen-Dimension
private int n; // Spalten-Dimension

// Leere Matrix (mit 0.0 gefullt)
public Matrix(int m, int n) {
this.m =m;
this.n =n;
elems = new double[m][n];
}

// Konstante Matrix (mit s geflillt)
public Matrix(int m, int n, double s) f{

this.m=m;

this.n =n;

elems = new double[m][n];

for (int i =0; i <m; i++)

for (int j =0; j <n; j+o)
elems[illj] = s;

1

// Matrix (mit Werten aus zweidimensionalem Array gefiillt)
public Matrix(int m, int n, double[1[] elems) {
// Dimension des Arrays mit m und n vergleichen
if (m != elems.length) // Anzahl Zeilen gleich m?
throw new I11egalArgumentException("Fehler in Zeilendimension");

Listing 25: Matrix.java

>> Zahlen und Mathematik 83

}

for (int 1 =0; i <m; ++1) // fir alle Zeilen die Anzahl Spalten
if (n != elems[i].Tength) // gleich m?
throw new I11egalArgumentException("Fehler in Spaltendimension");

this.m =m;
this.n = n;
this.elems = elems;

// Addition THIS = THIS + B
public void add(Matrix B) {

}

if (this.m !=8B.m || this.n !=B.n)

throw new I11egalArgumentException("Matrix-Dim. passen nicht.");

doublel[][] addETems = B.getArray();
for (int i =0; i <m; i++)

for (int j =0; j <n; j+H)
elems[1][j] += addElems[i]1[j];

// Addition C=A+B
public static Matrix add(Matrix A, Matrix B) {

}

int m = A.getRowDim();
int n = A.getColumnDim();

if (m != B.getRowDim() || n != B.getColumnDim())
throw new I11egalArgumentException("Matrix-Dim. passen nicht.");

double[1[] newElems = new double[m][n];
double[1[] elemsA = A.getArray();

doublel[][] elemsB = B.getArray();

for (int 1 =0; i <m; i++)
for (int j =0; J <n; j++)
newElems[i][j] = elemsA[i][j] + elemsB[i][j];

return new Matrix(m, n, newElems);

// Subtraktion THIS = THIS - B
public void subtract(Matrix B) {

if (this.m !=B.m || this.n !=B.n)
throw new I11egalArgumentException("Matrix-Dim. passen nicht.");

double[][] subtractElems = B.getArray();
for (int 1 =10; i <m; i++H)
for (int j =0; j <n; j+H)
elems[i][j] -= subtractElems[i]1[j];

Listing 25: Matrix.java (Forts.)

84 >> Matrizen

// Subtraktion C=A - B

pubTic static Matrix subtract(Matrix A, Matrix B) {
int m = A.getRowDim();
int n = A.getColumnDim();

if (m != B.getRowDim() || n != B.getColumnDim())
throw new ITTegalArgumentException("Matrix-Dim. passen nicht.");

double[1[] newElems = new double[ml[n];
double[][] elemsA = A.getArray();
double[1[] elemsB = B.getArray();

for (int 1 =0; i <m; i++)
for (int j =0; j <n; j+)
newElems[i1[j] = elemsA[11[j] - elemsB[i1[j]1;

return new Matrix(m, n, newElems);

}

// Vervielfachung THIS = THIS * s
public void times(double s) f
for (int 1 =0; 1 <m; i++)
for (int j =0; j < n; j+)
elems[11[j] *= s;
}

// Vervielfachung C =B * s

public static Matrix times(Matrix B, double s) {
int m = B.getRowDim();
int n = B.getColumnDim();
double[1[] newElems = new double[m]l[n];
doubTel[][] elemsB = B.getArray();

for (int 1 =0; i <m; i++)
for (int j =0; j <n; j+H)
newElems[i][j] = elemsB[i][j] * s;

return new Matrix(m, n, newElems);

}

// Multiplikation C = THIS * B
public Matrix multiply(Matrix B) {
if (this.n != B.getRowDim())
throw new I11egalArgumentException("Matrix-Dim. passen nicht.");

int m = this.getRowDim();

int n = B.getColumnDim();

double[1[] newElems = new double[m][n];
doublel[][] elemsB = B.getArray();
double sum = 0;

Listing 25: Matrix.java (Forts.)

>> Zahlen und Mathematik

for (int i =0; i <m; i+) {
for (int j =0; J < n; j+) {
sum = 0;
for (int k = 0; k < this.getColumnDim(); k++)
sum += this.elems[i][k] * elemsBLkI[j];
newblems[i1[j] = sum;
}

}

return new Matrix(m, n, newElems);

// Transponieren THIS = THISAT [a(ij) -> a(ji)]
public void transpose() f
if (this.n != this.m)
throw new RuntimeException("Matrix-Dimensionen passen nicht.");

double[]J[] transelems = new double[ml[n];
for (int i =0; i <m; i++)
for (int j =05 j < n; j++)
transelems[j1[i] = this.elems[i11[j];

this.elems = transelems;
t

// Transponieren C = THISAT T[a(ij) -> c(ji)]
public static Matrix transpose(Matrix A) {

int m = A.getRowDim();

int n = A.getColumnDim();

if (m !=n)
throw new I1TegalArgumentException("Matrix-Dim. passen nicht.");

double[]J[] transelems = new double[ml[n];
doublel[][] elemsA = A.getArray();
for (int i =0; i <m; i++)
for (int j =0; § <n; j+)
transelems[jI[i] = elemsA[11(j];

return new Matrix(n, m, transelems);
1

// Tdentitdtsmatrix C = mxn-I
public static Matrix getldentity(int m, int n) {
doublel][] idelems = new double[m]l[n];
for (int 1 =0; i <m; i++)
for (int j =0; j <n; j+H)
idelems[i][jl = (i =3 7 1.0 : 0.0);

return new Matrix(m, n, idelems);

Listing 25: Matrix.java (Forts.)

>> Matrizen

// LR-Zerlegung

public LUMatrix TuDecomp() f{
return new LUMatrix(this);

}

// Gleichungssystem 1dsen

public double[] solve(double[] bvec) {
LUMatrix LU = TuDecomp();
double[] xvec = LU.luBacksolve(bvec);

return xvec;

// Inverse THIS*-1, so dass THIS*THISA-1 =1
public Matrix inverse() {

double[] col = new double[n];

doublel[] xvec = new double[n];

double[J[] invElems = new doubleln][nl;

LUMatrix LU = TuDecomp();
for (int j=0; j < n; j++) {
for(int i=0; i< n; i++)

colli] = 0.0;

col[j] = 1.0;
xvec = LU.luBacksolve(col);

for(int i=0; i< n; i++)
invElems[il[j] = xvecl[il;
}

return new Matrix(n, n, invElems);

// Determinante
public double det() {

LUMatrix LU = TuDecomp();
double d = LU.getD();

for (int i=0; i < n; i++)
d *= LU.elems[11[1];

Listing 25: Matrix.java (Forts.)

>> Zahlen und Mathematik 87

return d;

// Get/Set-Methoden

public doublel][] getArray() {
return elems;

}

public int getRowDim() {
return m;

}

public int getColumnDim() {
return n;

}

public double get(int i, int j) {
return elems[110J1;
}
public void set(int i, int j, double s) {
FCE>08 1 <m & (J>08 J<n))
elems[i][j] = s;
}

// Kopieren
public Object clone() {
try |
Matrix B = (Matrix) super.clone();
B.elems = new double[m][n];
for (int i =0; i <m; i+)
for (int j =0; j < n; j++)
B.elems[i1]1[j] = this.elems[1]1[]j];

return B;

} catch (CloneNotSupportedException e) {
// sollte nicht vorkommen
throw new InternalError();

}

// Vergleichen
public boolean equals(Object obj) {
if (obj instanceof Matrix) {
Matrix B = (Matrix) obj;
if (B.getRowDim() == m && B.getColumnDim() == n) {
for (int 1 =0; i <m; i++)
for (int j =0; j <n; j+H)
if(B.get(i, j) != this.elems[i][j]1)
return false;
return true;

Listing 25: Matrix.java (Forts.)

>> Matrizen

return false;
}
return false;

}

// Ausgeben auf Konsole

public void print() {
DecimalFormat df = new DecimalFormat("#,7H0.JHHE") ;
int maxLength = 0;

for (int 1 =0; i <m; ++i)
for (int j =0; j < n; ++j)
maxLength = (maxLength >= df.format(elems[i1[j]1).Tength())
? maxLength : df.format(elems[i][j1).length();

for (int 1 =0; 7 <m; ++i) |
System.out.print (" [");
for (int j =0; j <n; +J)
System.out.printf(MoreString.strpad(df.format(elems[i1[j1),
maxLength) + " ");
System.out.printin ("1");

Listing 25: Matrix.java (Forts.)

Das Programm aus Listing 26 demonstriert die Programmierung mit Objekten der Klasse
Matrix anhand einer Matrixmultiplikation und der Berechnung einer Inversen.

public class Start {
public static void main(String args[]) {
System.out.printin("\n /*** Matrixmultiplikation ***/ \n");
// Matrizen aus Arrays erzeugen
double[][] elemsA = { { 2, 4, -3},
{1, 0, 6} 1);

Matrix A = new Matrix(2, 3, elemsA);

doubTe[J[] elemsB = { {
{

[
1
Matrix B = new Matrix(3, 1, elemsB);

A.print();

System.out.printin("\n multipliziert mit \n");
B.print();

System.out.printin("\n ergibt: \n");

Listing 26: Rechnen mit Matrizen

>> Zahlen und Mathematik

// Matrizen multiplizieren
Matrix C = A.multiply(B);

C.print();
System.out.printin("\n\n /*** Inverse ***/ \n");

System.out.printin(" Inverse von: \n");

doublel[][] elemsD = { { 1, O },

{1, 2} };
Matrix D = new Matrix(2, 2, elemsD);
D.print();

System.out.printin("\n ist: \n");
// Inverse berechnen

C = D.inverse();
C

print();

System.out.printin();

Listing 26: Rechnen mit Matrizen (Forts.)

ngabeaufforderung

>java Start
s Matprixmultiplikation seees

[2 431
[1 8 61

multipliziert mit
[11

[2

[61

ergibt:

[-8 1

[371

saxm Jnuerse w6k
Inverse von:

[18]
[12

Abbildung 14: Matrixmultiplikation und Berechnung der Inversen

90 >> Gleichungssysteme l6sen

25 Gleichungssysteme l6sen

Mit Hilfe der Methode solve() der im vorangehenden Rezept beschriebenen Klasse Matrix
konnen Sie lineare Gleichungssysteme 16sen, die sich durch quadratische Matrizen reprédsen-
tieren lassen. Intern wird dabei ein Objekt der Hilfsklasse LUMatrix erzeugt, welches die LU-
Zerlegung der aktuellen Matrix reprisentiert. Die Klasse selbst ist hier nicht abgedruckt, steht
aber - wie alle anderen zu diesem Buch gehorenden Klassen - als Quelltext auf der Buch-CD
zur Verfiigung. Der Code der Klasse ist ausfiihrlich kommentiert.

Das Programm aus Listing 26 demonstriert, wie mit Hilfe der Klasse Matrix ein lineares Glei-
chungssystem geldst werden kann.

public class Start {

public static void main(String args(]) {
System.out.printin();

System.out.printin(" /*** Lineare Gleichungssysteme ***/ ");
System.out.printin("\n");

System.out.printin(" Gesucht werden x, y und z, sodass:\n");

System.out.printin("\t x + b5y - z = 1");
System.out.printin("\t -3x + y - z = 1");
System.out.printin("\t 3x + y + =z = -3");

System.out.printin("\n");

// Koeffizientenmatrix erzeugen

doubTel[1[] elems = { { 1, 5, 1},
(-3, 1, -1},
{3, 1, 1} };

Matrix A = new Matrix(3, 3, elems);

doublel[] bvec = {1,1, -31};

System.out.printin("\n Koeffizientenmatrix: ");
A.print();
System.out.printin();

// Gleichungssystem 18sen
doubTel[] Toesung = A.solve(bvec);

System.out.printin("\n Gefundene Loesung: ");
System.out.printin(" x = " + Toesung[0]);

System.out.printin(" y =" + Toesung[1]);
System.out.printin(" z =" + Toesung[2]);

System.out.printin();

Listing 27: Testprogramm: Lésung eines linearen Gleichungssystems

>> Zahlen und Mathematik 91

ingabeaufforderung

s#% Lineare Gleichungssysteme e/

Gesucht werden x. y und =z=.

x o+

Gefundene Loesung:

—6.3999999999999998

Abbildung 15: Lésung eines linearen Gleichungssystems durch Zerlequng der
Koeffizientenmatrix

26 GroBe Zahlen beliebiger Genauigkeit

Alle elementaren numerischen Typen arbeiten aufgrund ihrer festen Gré8e im Speicher mit
begrenzter Genauigkeit (wobei die beiden Gleitkommatypen den groBeren Integer-Typen sogar
beziiglich der Anzahl signifikanter Stellen unterlegen sind).

Die Lage ist allerdings bei weitem nicht so tragisch, wie es sich anhort: Die Integer-Typen
arbeiten in ihrem (fiir Tong durchaus beachtlichen) Wertebereich absolut exakt und die Genau-
igkeit des Datentyps double ist meist mehr als zufrieden stellend. Trotzdem gibt es natiirlich
Situationen, wo Wertebereich und Genauigkeit dieser Datentypen nicht ausreichen, etwa bei
quantenphysikalischen Berechnungen oder in der Finanzmathematik, wo manchmal schon
geringfiigige Rundungs- oder Darstellungsfehler durch Multiplikation mit groBen Faktoren zu
extremen Abweichungen fiihren.

Fiir solche Fille stellt Ihnen die Java-Bibliothek die Klassen BigInteger und BigDecimal aus
dem Paket java.math zur Verfiigung.

Beide Klassen

P arbeiten mit unverinderbaren Objekten, die Integer- (Biginteger) oder Gleitkommazahlen
(BigDecimal) beliebiger Genauigkeit kapseln.

P definieren neben anderen Konstruktoren auch solche, die als Argument die String-Darstel-
lung der zu kapselnden Zahl erwarten. (So lassen sich die zu erzeugenden Instanzen mit
Zahlen initialisieren, die nicht mehr als Literale numerischer Datentypen geschrieben wer-
den konnen.)

BigInteger (String zahl)
BigDecimal(String zahl)
» definieren numerische Methoden fiir die vier Grundrechenarten.

Beachten Sie, dass alle diese Methoden das Ergebnis der Operation als neues Objekt
zuriickliefern (da einmal erzeugte Big-Objekte wie gesagt unverinderlich sind):

92 >> GroBe Zahlen beliebiger Genauigkeit

BigInteger add(BigInteger wert)
BigInteger subtract(BigInteger wert)
Biginteger multiply (BigInteger wert)
BigInteger divide(BigInteger wert)
BigInteger pow(int exponent)

» definieren verschiedene weitere Methoden zur Umwandlung in oder aus elementaren
Datentypen:

Tong longValue()
double doubleValue ()
static BigInteger valueOf(long wert)

P definieren Vergleichsmethoden und verschiedene weitere niitzliche Methoden (siehe API-
Dokumentation)

boolean equals(Object o)

int compareTo(BigInteger wert)

Ein Anfangskapital von 200 € soll fiir 9 Jahre bei einer vierteljahrlichen Verzinsung von
0,25% p.Q. angelegt werden.

Das folgende Programm berechnet das Endkapital geméB der Zinseszins-Formel K, = K,
(1 + p/100)" in den drei Datentypen float, double und BigDecimal.

import java.math.BigDecimal;
public class Start {

/*
* 7Zinseszins-Berechnung mit float-Werten
*/
static float compoundInterest(float startCapital,
float interestRate, int term) {
return startCapital *

(float) Math.pow(1.0 + interestRate, term);

}

/*
* Zinseszins-Berechnung mit double-Werten
*/
static double compoundInterest(double startCapital,
double interestRate, int term) {
return startCapital * Math.pow(1.0 + interestRate, term);
}

/*
* Zinseszins-Berechnung mit BigDecimal-Werten
*/

Listing 28: Rechnen mit BigDecimal

>> Zahlen und Mathematik 93

static BigDecimal compoundInterest(BigDecimal startCapital,
BigDecimal interestRate, int term) {
interestRate = interestRate.add(new BigDecimal(1.0));

BigDecimal factor = new BigDecimal(0);
factor = factor.add(interestRate);

for (int i =1; 1 < term ; ++i)
factor = factor.multiply(interestRate);

return startCapital.multiply(factor);

public static void main(String args[]) {
System.out.printin();

System.out.printin(compoundInterest(200.0f, 0.025f, 36));
System.out.printin(compoundInterest(200.0, 0.025, 36));
System.out.printin(compoundInterest(new BigDecimal("200.0"),

new BigDecimal("0.025"),36).doubleValue());

Listing 28: Rechnen mit BigDecimal (Forts.)

Ausgabe:

486.50708
486.5070631435786
486.50706314358007

Fiir die Ausgabe des BigDecimal-Werts ist die Umwandlung in double notwendig, da
toString() eine Stringdarstellung des BigDecimal-Objekts liefert, aus der der tatsdchli-
che Wert praktisch nicht herauszulesen ist. Den mit der Umwandlung einhergehenden
Genauigkeitsverlust miissen wir also in Kauf nehmen. Er ist aber nicht so tragisch. Ent-
scheidend ist, dass die Formel (insbesondere die Potenz!), mit erhohter Genauigkeit
berechnet wurde.

Strings

27 In Strings suchen

Da Strings nicht sortiert sind, werden sie grundsitzlich sequentiell (von vorn nach hinten oder
umgekehrt von hinten nach vorn) durchsucht: Trotzdem lassen sich drei alternative Suchver-
fahren unterscheiden, ndmlich die Suche nach

» einzelnen Zeichen,
P Teilstrings,
P> Mustern (reguldren Ausdriicken).

Grundsitzlich gilt, dass die aufgefiihrten Suchverfahren von oben nach unten immer leis-
tungsfahiger, aber auch immer teurer werden.

Suchen nach einzelnen Zeichen

Mit den String-Methoden index0f() und lastIndex0f() konnen Sie nach einzelnen Zeichen in
einem String suchen.

Als Argument iibergeben Sie das zu suchende Zeichen und optional die Position, ab der
gesucht werden soll. Als Ergebnis erhalten Sie die Position des ndchsten gefundenen Vorkom-
mens, wobei die Methode index0f() den String von vorn nach hinten und die Methode Tast-
Index0f () von hinten nach vorn durchsucht.

Die wichtigsten Einsatzmoglichkeiten sind
P die Suche nach dem ersten Vorkommen eines Zeichens:

// Erstes Vorkommen von 'y' in String text
int pos = text.indexOf('y');

» die Suche nach dem letzten Vorkommen eines Zeichens:

// Letztes Vorkommen von 'y' in String text
int pos = text.lastIndexOf('y');

» die Suche nach allen Vorkommen eines Zeichens:

// Alle Vorkommen von 'y' in String text

int found = 0;

while ((found = text.indexOf('y", found)) != -1) {
// hier Vorkommen an Position end verarbeiten

+found;
}

Suchen nach Teilstrings

Ebenso wichtig wie die Suche nach Zeichen ist die Suche nach Teilstrings in einem String. Doch
leider gibt es in der String-Klasse derzeit keine Methode, mit der man einen String nach den
Vorkommen eines Teilstrings durchsuchen konnte. Mit Hilfe der String-Methoden index0f()
und substring() ist eine solche Methode aber schnell implementiert:

96 >> In Strings suchen

/**

* String nach Teilstrings durchsuchen

*/

public static int index0fString(String text, String searched) {
return indexOfString(text, searched, 0);

}

public static int indexOfString(String text, String searched, int pos) {
String tmp;
int TenText = text.length();
int TenSearched = searched.length();
int found = pos;

// Nach Anfangsbuchstaben suchen
while ((found = text.indexOf(searched.charAt(0), found)) != -1) {

// Wenn String noch groB genug, Teilstring herauskopieren
// und mit dem gesuchten String vergleichen
if (found + TenSearched <= TlenText) {

tmp = text.substring(found, found + lenSearched);

if (tmp.equals(searched))
break; // Vorkommen gefunden
}
+found;
}

return found;

Listing 29: Methoden zum Suchen nach Strings in Strings

Die erste der beiden Methoden {ibernimmt als Argumente den zu durchsuchenden String und
den zu suchenden String und beginnt mit der Suche am Anfang des Strings, d.h., sie ruft ein-
fach die zweite Methode mit der Startposition 0 auf. Diese zweite Methode {ibernimmt als
zusitzliches Argument besagte Positionsangabe und durchsucht dann ab dieser Position den
String text nach dem nichsten Vorkommen von searched. Sie geht dabei so vor, dass sie
zuerst mit index0f() nach dem Anfangsbuchstaben von searched sucht. Wurde ein Vorkom-
men dieses Buchstabens gefunden, kopiert die Methode ab seiner Position aus text einen
String heraus, der ebenso groB ist wie der gesuchte String (sofern die Linge von text dies
zulésst), und vergleicht diesen mit searched. Stimmen beide Strings tiberein, wird die Suche
abgebrochen und die gefundene Position zuriickgeliefert. Wird kein Vorkommen von searched
gefunden, liefert die Methode -1 zuriick.

Eingesetzt wird die Methode so wie index0f():
// Erstes Vorkommen von "John Maynard" in String text

int pos = MoreString.index0fString(text, "John Maynard");

// Alle Vorkommen von "John Maynard" in String text
found = 0;

>> Strings 97

while((found = MoreString.index0fString(text, "John Maynard", found)) != -1) {
// hier Vorkommen an Position end verarbeiten

+found;
}

Suchen nach Mustern

Mit Hilfe der RegEx-Unterstiitzung von Java kdnnen Sie auch nach Vorkommen eines Musters
suchen.

1. Zuerst definieren Sie das Muster, nach dem gesucht werden soll.

Beispielsweise konnten Sie einen deutschen Text mit folgendem Muster nach Substantiven
durchsuchen:

"[A-ZAG01[a-zA-Za6UBAOU 1+
Dieses Muster beschreibt ein Wort, das mit einem GroBbuchstaben beginnt, dem beliebig
viele Kleinbuchstaben folgen.

2. Dann kompilieren Sie das Muster in ein Pattern-Objekt und besorgen sich fiir das Pattern-
Objekt und den zu durchsuchenden String einen Matcher.

import java.util.regex.Pattern;
import java.util.regex.Matcher;

Pattern pat = Pattern.compile("[A-ZAOUI[a-zA-Za5uBADU]+");
Matcher m = pat.matcher(text);

3. SchlieBlich lassen Sie die Matcher-Methode find() das nidchste Vorkommen suchen.

Achtung! Die Methode find() setzt die Suche automatisch immer an der Position fort, an
der die letzte find()-Suche beendet wurde. Um die Suche wieder am Anfang zu beginnen,
rufen Sie reset() auf. Wenn Sie die Suche an einer bestimmten Position starten wollen,
iibergeben Sie find() als zweites Argument die gewiinschte Position.

Das letzte gefundene Vorkommen wird intern vom Matcher-Objekt gespeichert und kann
durch Aufruf der Methode group() abgefragt werden.

// Erstes Vorkommen suchen
if (m.find())
System.console().printf("Erstes Vorkommen: %s\n",
m.group());

// Alle Vorkommen suchen, gegebenenfalls nach m.reset();
while (m.find()) {

System.console().printf("%s\n", m.group());
}

Die String-Methode matches() ist nicht zum Durchsuchen von Strings geeignet. Sie
priift lediglich, ob der aktuelle String einem tibergebenen Muster entspricht!

Im Start-Programm zu diesem Rezept werden die hier vorgestellten Suchverfahren alle noch
einmal eingesetzt und demonstriert.

98 >> In Strings einfilgen und ersetzen

28 In Strings einfliigen und ersetzen

p Wenn Sie alle Vorkommen eines Zeichens durch ein anderes Zeichen ersetzen wollen,
rufen Sie die String-Methode

String replace(char oldChar, char newChar)

auf. Der resultierende String wird als Ergebnis zuriickgeliefert.

» Wenn Sie alle Vorkommen eines Teilstrings durch einen anderen Teilstring ersetzen
wollen, rufen Sie die String-Methode

String replaceAl1(String regex, String replacement)

auf. Als erstes Argument iibergeben Sie einfach den zu ersetzenden Teilstring. Der resultie-
rende String wird als Ergebnis zuriickgeliefert.

P Wenn Sie alle Vorkommen eines Musters durch einen anderen Teilstring ersetzen wol-
len, rufen Sie die String-Methode

String replaceAl1(String regex, String replacement)

auf und iibergeben Sie das Muster als erstes Argument. Der resultierende String wird als
Ergebnis zuriickgeliefert.

P Wenn Sie die Zeichen von start bis einschlieBlich end-1 durch einen anderen Teilstring
ersetzen wollen, wandeln Sie den String in ein StringBuilder-Objekt um und rufen Sie die
Methode

StringBuilder replace(int start, int end, String str)

auf. Da StringBuilder-Objekte nicht wie String-Objekte immutable sind, bearbeitet die
StringBuilder-Methode direkt das aktuelle Objekt. Den zugehdrigen String konnen Sie
sich durch Aufruf von toString() zuriickliefern lassen:

StringBuilder tmp = new StringBuilder(text);
tmp.replace(0, 10, " ");
text = tmp.toString();

» Wenn Sie Zeichen oder Strings an einer bestimmten Position in den String einfiigen
wollen, wandeln Sie den String in ein StringBuilder-Objekt um und rufen Sie eine der
iiberladenen Versionen von

StringBuilder insert(int offset, char c)
StringBuilder insert(int offset, String str)
StringBuilder insert(int offset, boolean b)
StringBuilder insert(int offset, int i)

auf. Den zugehorigen String konnen Sie sich durch Aufruf von toString() zurtickliefern
lassen.

Das Start-Programm zu diesem Rezept demonstriert die Ersetzung mit der replace()-Methode
von StringBuilder und der replaceAll()-Methode von String. (Hinweis: Das Programm ist
trotz der Erwidhnung eines bekannten Politikers nicht als politischer Kommentar gedacht, son-
dern spielt lediglich - in Anlehnung an den »Lotsen« Bismarck - mit der Vorstellung vom
Kanzler als Steuermann.)

>> Strings

public class Start {
public static void main(String args[]) {

String text = "John Maynard!\n"

"\"Wer ist John Maynard?\"\n"

"\"John Maynard war unser Steuermann,\n"
"Aus hielt er, bis er das Ufer gewann,\n"
"Er hat uns gerettet, er traegt die Kron,\n"
"Er starb fuer uns, unsre Liebe sein Lohn.\n
"John Maynard.\"\n";

+ 4+ o+ o+ o+

int pos;
int found;

// Originaltext ausgeben
System.console().printf("\n%s", text);

// Zeichen von 156 bis einschlieBlich 160 ersetzen
StringBuilder tmp = new StringBuilder(text);
tmp.replace(156,161,"tat es");

text = tmp.toString();

// "John Maynard" durch "Gerhard Schroeder" ersetzen

text = text.replaceAll("John Maynard", "Gerhard Schroeder");

// Bearbeiteten Text ausgeben
System.console().printf("\n%s", text);

Listing 30: Ersetzen in Strings

Eingabeaufforderung

>java Start

» starbh fiir uns. wunsre Liebe sein Lohn.
ohn Maynard."

Steuermann.
s Ufer gewann.
gerettet, er trigt die Kron,

Abbildung 16: Textfédlschung mittels replace()

100 >> Strings zerlegen

29 Strings zerlegen
Zum Zerlegen von Strings steht die String-Methode spl1it() zur Verfiigung.
String[] split(String regex)

Der split()-Methode liegt die Vorstellung zugrunde, dass der zu zerlegende Text aus mehre-
ren informationstragenden Passagen besteht, die durch spezielle Zeichen oder Zeichenfolgen
getrennt sind. Ein gutes Beispiel ist ein String, der mehrere Zahlenwerte enthilt, die durch
Semikolon getrennt sind:

String data = "1;-234;5623;-90";

Die Zahlen sind in diesem Fall die eigentlich interessierenden Passagen, die extrahiert werden
sollen. Die Semikolons dienen lediglich als Trennzeichen und sollen bei der Extraktion ver-
worfen werden (d.h., sie sollen nicht mehr als Teil der zuriickgelieferten Strings auftauchen).

Fiir solche Fille ist split() ideal. Sie iibergeben einfach das Trennzeichen (in Form eines
Strings aus einem Zeichen) und erhalten die zwischen den Trennzeichen stehenden Textpassa-
gen als String-Array zuriick.

Stringl[] buf = data.split(":");

Selbstverstindlich kdnnen Sie auch Strings aus mehreren Zeichen als Trennmarkierung iiber-
geben. Da der iibergebene String als reguldrer Ausdruck interpretiert wird, konnen Sie sogar
durch Definition einer passenden Zeichenklasse nach mehreren alternativen Trennmarkierun-
gen suchen lassen:

Stringl[] buf = data.split("[;/]"); // erkennt Semikolon und
// Schrdgstrich als Trennmarkierung

ngabeaufforderung

»java Start

""Sei getreu bis in den Tod.
g0 will dich dir die HKrone des Lebens geben."

Array :

Abbildung 17: Beispiel fiir die Zerlegung eines Textes in einzelne Wérter

oder beliebig komplexe Trennmarkierungen definieren:

>> Strings 101

// aus Start.java

// Text, der mit Zeilenumbriichen und zusdtzlichen Leerzeichen formatiert wurde

String text = "Sei getreu bis in den Tod,\n so will ich dir die Krone des "
+ "Lebens geben.";

String[] words = text.split("\\s+"); // Beliebige Folgen von Whitespace
// als Trennmarkierung erkennen

Listing 31: Strings mit split() zerlegen

30 Strings zusammenfiigen

Dass Strings mit Hilfe des +-Operators oder der String-Methode concat() aneinander gehdngt
werden konnen (Konkatenation), ist allgemein bekannt.

Zu beachten ist allerdings, dass diese Operationen, wie im Ubrigen sdmtliche Manipulationen
von String-Objekten, vergleichsweise kostspielig sind, da String-Objekte immutable, sprich
unverdnderlich, sind. Alle String-Operationen, die den urspriinglichen String verdndern wiir-
den, werden daher nicht auf den Originalstrings, sondern einer Kopie ausgefiihrt!

Wenn Sie also - um ein konkretes Beispiel zu geben - an einen bestehenden String einen
anderen String anhidngen, werden die Zeichen des zweiten Strings nicht einfach an das letzte
Zeichen des ersten Strings angefiigt, sondern es wird ein ganz neues String-Objekt erzeugt, in
welches die Zeichen der beiden aneinander zu hangenden Strings kopiert werden.

Solange die entsprechenden String-Manipulationen nur gelegentlich durchgefiihrt werden, ist
der Overhead, der sich durch die Anfertigung der Kopie ergibt, verschmerzbar. Sobald aber auf
einen String mehrere manipulierende Operationen nacheinander ausgefiihrt werden, stellt sich
die Frage nach einer ressourcenschonenderen Vorgehensweise.

Java definiert zu diesem Zweck die Klassen StringBuilder und StringBuffer. Diese stellen
Methoden zur Verfiigung, die direkt auf dem aktuellen Objekt (letzten Endes also der Zeichen-
kette, die dem String zugrunde liegt) operieren und mit deren Hilfe Konkatenations-, Einflige-
und Ersetzungsoperationen effizient durchgefiihrt werden konnen.

String partOne = "Der Grund, warum wir uns {ber die Welt tduschen, ";

String partTwo = "liegt sehr oft darin, ";
String partThree = "dass wir uns Uber uns selbst tduschen.";

// StringBuilder-0Objekt auf der Grundlage von partOne erzeugen
StringBuilder text = new StringBuilder(partOne);

// Text in StringBuilder-Objekt bearbeiten
text.append(partTwo);
text.append(partThree);

// String-Builder-Objekt in String verwandeln
String s = text.toString();

Listing 32: String-Konkatenation mit StringBuilder

102 >> Strings nach den ersten n Zeichen vergleichen

Wenn Sie einen String in ein StringBuilder-Objekt verwandeln wollen, um es effizienter bear-
beiten zu konnen, diirfen Sie nicht vergessen, die Kosten fiir die Umwandlung in StringBuil-
der und wieder zuriick in String in Ihre Kosten-Nutzen-Analyse mit einzubeziehen.

Denken Sie aber auch daran, dass der Geschwindigkeitsvorteil von StringBuilder.append()
nicht nur darin besteht, dass kein neues String-Objekt erzeugt werden muss. Mindestens
ebenso wichtig ist, dass die Zeichen des Ausgangsstrings (gemeint ist der String, an den ange-
hingt wird) nicht mehr kopiert werden missen. Je linger der Ausgangsstring ist, umso mehr
Zeit wird also eingespart.

Mit dem Start-Programm zu diesem Rezept konnen Sie messen, wie viel Zeit 10.000 String-
Konkatenationen mit dem String-Operator + und mit der StringBuilder-Methode append()
benétigen.

StringBuilder oder StringBuffer?

Die Klassen StringBuilder und StringBuffer verfiigen iiber praktisch identische Kon-
struktoren und Methoden und erlauben direkte Operationen auf den ihnen zugrunde
liegenden Strings. Die Klasse StringBuffer wurde bereits in Java 1.2 eingefiihrt und ist
synchronisiert, d.h., sie eignet sich fiir Implementierungen, in denen mehrere Threads
gleichzeitig auf einen String zugreifen.

So vorteilhaft es ist, eine synchronisierte Klasse fiir String-Manipulationen zur Verfii-
gung zu haben, so drgerlich ist es, in den 90% der Félle, wo Strings nur innerhalb eines
Threads benutzt werden, den unnétigen Ballast der Synchronisierung mitzuschleppen.
Aus diesem Grund wurde in Java 5 StringBuilder eingefiihrt - als nichtsynchronisier-
tes Pendant zu StringBuffer.

Sofern Sie also nicht mit einem <eren JDK (vor Version 1.5) arbeiten oder Strings
benétigen, auf die von mehreren Threads aus zugegriffen wird, sollten Sie stets String-
Builder verwenden. Im Ubrigen kann Code, der mit StringBuilder arbeitet, ohne groBe
Miihen nachtraglich auf StringBuffer umgestellt werden: Sie miissen lediglich alle
Vorkommen von StringBuilder durch StringBuffer ersetzen. (Gilt natiirlich ebenso fiir
die umgekehrte Richtung.)

31 Strings nach den ersten n Zeichen vergleichen

Die Java-String-Klassen bieten relativ wenig Unterstiitzung zur bequemen Textverarbeitung.
Nicht, dass elementare Funktionalitit fehlen wiirde; was fehlt, sind Convenience-Methoden,
wie man sie von stirker textorientierten Programmiersprachen kennt und die einem die eine
oder andere Aufgabe vereinfachen wiirden. Die folgenden Rezepte sollen helfen, diese Liicke
zu schlieBen.

Fiir String-Vergleiche gibt es in Java auf der einen Seite die String-Methoden compareTo() und
compareTolgnoreCase(), die nach dem Unicode der Zeichen vergleichen, und auf der anderen
Seite die Collator-Methode compare() fiir Vergleiche gemiB einer Lokale (siehe Rezept 205).
Diese Methoden vergleichen immer ganze Strings.

Wenn Sie lediglich die Anfinge zweier Strings vergleichen wollen, miissen Sie die zu verglei-
chenden String-Teile als Teilstrings aus den Originalstrings herausziehen (substring()-
Methode). Das folgende Listing demonstriert dies und kapselt den Code gleichzeitig in eine
Methode.

>> Strings 103

/**
* Strings nach ersten n Zeichen vergleichen
* Riickgabewert ist kleiner, gleich oder groBer Null
*/
public static int compareN(String sl, String sZ, int n) {
if (n <1)
throw new I1legalArgumentException();

if (sl ==null || s2 ==null)
throw new I1legalArgumentException();

// Kirzen, wenn String mehr als n Zeichen enthdlt
if (sl.length() > n)

sl = sl.substring(0, n);
if (s2.length() > n)

s2 = s2.substring(0, n);

// Die Stringanfdnge vergleichen
return sl.compareTo(s2);

Listing 33: Strings nach den ersten n Zeichen vergleichen

Die Methode compareN() ruft fiir den eigentlichen Vergleich die String-Methode compareTo()
auf. Folglich tibernimmt sie auch die compareTo()-Semantik: Der Riickgabewert ist kleiner,
gleich oder grofer null, je nachdem, ob der erste String kleiner, gleich oder groBer als der
zweite String ist. Verglichen wird nach dem Unicode und der zuriickgelieferte Zahlenwert gibt
die Differenz zwischen den Unicode-Werten des ersten unterschiedlichen Zeichenpaars an
(bzw. der Stringléngen, falls die Zeichenpaare alle gleich sind).

Sollen die Strings lexikografisch verglichen werden, muss der Vergleich mit Hilfe von Collator.
compare() durchgefiihrt werden:

/**
* Strings nach ersten n Zeichen gemdB Lokale vergleichen
* Rickgabewert ist -1, 0 oder 1
*/
public static int compareN(String sl, String s2, int n, Locale loc) {
if (n<1)
throw new I1legalArgumentException();

if (sl ==null || s2 ==null)
throw new I1TegalArgumentException();

// Kiirzen, wenn String mehr als n Zeichen enthdlt
if (sl.length() > n)

sl = sl.substring(0, n);
if (s2.length() > n)

s2 = s2.substring(0, n);

Listing 34: Strings lexikografisch nach den ersten n Zeichen vergleichen

104 >> Strings nach den ersten n Zeichen vergleichen

Collator coll = Collator.getInstance(loc);
return coll.compare(sl, s2);

Listing 34: Strings lexikografisch nach den ersten n Zeichen vergleichen (Forts.)

In der Datei MoreString.java zu diesem Rezept sind noch zwei weitere Methoden defi-
niert, mit denen Strings ohne Beriicksichtigung der GroB-/Kleinschreibung verglichen
werden kénnen:

static int compareNIgnoreCase(String sl, String s2, int n, Locale loc)

static int compareNIgnoreCase(String sl, String s2, int n)

Das Start-Programm zu diesem Rezept liest iiber die Befehlszeile zwei Strings und die Anzahl
der zu vergleichenden Zeichen ein. Dann vergleicht das Programm die beiden Strings auf vier
verschiedene Weisen:

» gemiB Unicode, mit Berlicksichtigung der GroB-/Kleinschreibung.

» gemiB Unicode, ohne Berticksichtigung der GroB-/Kleinschreibung.

» gemiB der deutschen Lokale, mit Berticksichtigung der GroB-/Kleinschreibung.
P gemiB der deutschen Lokale, ohne Beriicksichtigung der GroB-/Kleinschreibung.

import java.util.lLocale;
public class Start {

public static void main(String args[]) {
System.out.printin();

if (args.length !=3) {
System.out.printin(" Aufruf: Start <String> <String> <Ganzzah1>");
System.exit(0);

}

try {
int n = Integer.parselnt(args[2]);

System.out.printin("\n Vergleich nach Unicode ");
int erg = MoreString.compareN(args[0], args[1], n);

if(erg < 0) {

System.out.printin(" String 1 ist kleiner");
} else if(erg == 0) {

System.out.printin(" Strings sind gleich");
} else {

System.out.printin(" String 1 ist groesser");
t

Listing 35: Testprogramm flr String-Vergleiche

>> Strings 105

System.out.printin("\n Vergleich nach Lokale");
erg = MoreString.compareN(args[0], args[1], n,

new Locale("de", "DE"));

switch(erg) {

case -1: System.out.printin(" String 1 ist kleiner");
break;

case 0: System.out.printin(" Strings sind gleich");
break;

case 1: System.out.printin(" String 1 ist groesser");
break;

)

}

catch (NumberFormatException e)
System.err.printin(" Ungueltiges Argument");

}

Listing 35: Testprogramm fur String-Vergleiche (Forts.)

Eingabeaufforderung

>java Start Demo dem 3
Vergleich nach Unicode
String 1 ist kleiner

Vergleich nach Unicode ohne Beruecksichtigung der Gross—~Kleinschreibung
Strings sind gleich

Uergleich nach Lokale
String 1 ist groesser

Vergleich nach Lokale ohne Beruecksichtigung der Gross—sKleinschreibung
Strings sind gleich

>

Abbildung 18: Ob ein String gréBer oder kleiner als ein anderer String ist, hdngt vor
allem von der Vergleichsmethode ab!

Die in diesem Rezept vorgestellten Methoden sind, man muss es so hart sagen, alles
andere als effizient implementiert: Die Riickfiihrung auf vorhandene API-Klassen sorgt
fiir eine saubere Implementierung, bedeutet aber zusitzlichen Function Overhead, und
die Manipulation der tatsichlich ja unveridnderbaren String-Objekte fiihrt im Hinter-
grund zu versteckten Kopieraktionen. Wesentlich effizienter wire es, die Strings in
char-Arrays zu verwandeln (String-Methode toCharArray()) und diese selbst Zeichen
fiir Zeichen zu vergleichen. Der Aufwand lohnt sich aber nur, wenn Sie wirklich exzes-
siven Gebrauch von diesen Methoden machen wollen.

106 >> Zeichen (Strings) vervielfachen

32 Zeichen (Strings) vervielfachen

Strings zu vervielfachen oder ein Zeichen n Mal in einen String einzufiigen, ist nicht schwer.
Das Aufsetzen der notigen Schleifen, eventuell auch die Umwandlung in StringBuilder-
Objekte, ist allerdings lastig und stort die Lesbarkeit des Textverarbeitungscodes. Conve-
nience-Methoden, die Zeichen bzw. Strings vervielfachen und als String zuriickliefern, kénnen
hier Abhilfe schaffen.

Die Methode charNTimes() erzeugt einen String, der aus n Zeichen c besteht.

import java.util.Arrays;

/**
* Zeichen vervielfdltigen
*/
public static String charNTimes(char ¢, int n) {
if (n>0) {
char[] tmp = new char[n];

Arrays.fill(tmp, c);

return new String(tmp);
} else
return

Listing 36: String aus n gleichen Zeichen erzeugen

Beachten Sie, dass die Methode nicht einfach ein leeres String-Objekt erzeugt und diesem mit
Hilfe des +-Operators n Mal das Zeichen ¢ anhédngt. Diese Vorgehensweise wiirde wegen der
Unveridnderbarkeit von String-Objekten dazu fiihren, dass n+1 String-Objekte erzeugt wiir-
den. Stattdessen wird ein char-Array passender Grofe angelegt und mit dem Zeichen c gefiillt.
Anschliefend wird das Array in einen String umgewandelt und als Ergebnis zuriickgeliefert.

Zur Erinnerung: String-Objekte sind immutable, d.h. unverinderbar. Jegliche Ande-
rung an einem String-Objekt, sei es durch den +-Operator oder eine der String-Metho-
den fiihrt dazu, dass ein neues String-Objekt mit den gewiinschten Anderungen
erzeugt wird.

Die Schwestermethode heiBt strNTimes() und erzeugt einen String, der aus n Kopien des
Strings s besteht.

/**

* String vervielfdltigen

*/

public static String strNTimes(String s, int n) {
StringBuilder tmp = new StringBuilder();

Listing 37: String aus n Kopien einer Zeichenfolge erzeugen

>> Strings 107
for(int 1 =1; i <=n; ++i)
tmp.append(s);

return tmp.toString();
}

Listing 37: String aus n Kopien einer Zeichenfolge erzeugen (Forts.)

Diese Methode arbeitet intern mit einem StringBuilder-Objekt, um die Mehrfacherzeugung
von String-Objekten zu vermeiden.

StringBuilder- und StringBuffer-Objekte erlauben die direkte Manipulation von
Strings, d.h., die Methoden dieser Klassen operieren auf dem aktuellen Objekt und ver-
dndern dessen Zeichenfolge (statt wie im Fall von String ein neues Objekt zu erzeu-
gen). Die Klassen StringBuilder und StringBuffer besitzen identische Methoden. Die
StringBuilder-Methoden sind in der Ausfiihrung allerdings schneller, weil sie im
Gegensatz zu den StringBuffer-Methoden nicht threadsicher sind.

Die zuriickgelieferten Strings konnen Sie in andere Strings einbauen oder direkt ausgeben.

public class Start {

public static void main(String args[]) {
System.out.printin();

System.out.printin(" /" + MoreString.charNTimes('*', 40));
System.out.printin();

System.out.printin("\t Zeichen und ");

System.out.printin("\t Zeichenfolgen vervielfachen ");
System.out.printin();

System.out.printin(" " + MoreString.strNTimes("*-", 20) + "/");

Listing 38: Testprogramm zu charNTimes() und strNTimes()

33 Strings an Enden auffiillen (Padding)

Die Klasse String definiert eine Methode trim() zum Entfernen von Whitespace-Zeichen an
den Enden eines Strings, aber keine Methode, um Strings an den Enden bis zu einer
gewtinschten Linge aufzufiillen.

Die statische Methode MoreString.strpad() tibernimmt einen String, fiillt ihn bis auf die
gewiinschte Zeichenldnge auf und liefert den resultierenden String zuriick. Das Fiillzeichen ist
frei wihlbar. Der Parameter end bestimmt, ob am Anfang oder Ende des Strings aufgefiillt
wird. Als Argumente kénnen ihm die vordefinierten Konstanten MoreString.PADDING_LEFT und
MoreString.PADDING_RIGHT iibergeben werden. Der letzte Parameter cut legt fest, wie vorzuge-
hen ist, wenn die gewiinschte Lange kleiner als die Originallinge des Strings ist. Ist cut gleich
true, wird der String am Ende gekiirzt, ansonsten wird der Originalstring zuriickgeliefert.

108 >> Strings an Enden auffiillen (Padding)

ngabeaufforderung

>

Fjavac Start.java

>java Start
/**H*Hmﬂ*ﬂmﬁm*mm*

Zeichen und
Zeichenfolgen vervielfachen

e M M M R M N M M NN NN

>

Abbildung 19: Ausgabe vervielfachter Zeichen und Zeichenfolgen

public class MoreString {
public static final short PADDING_LEFT = 0;
public static final short PADDING_RIGHT = 1;

/**
* Padding (Auffillen) fir String
*/
public static String strpad(String s, int length, char c, short end,
boolean cut) {
if(length < 1 || s.length() == length)
return s;

if(s.length() > Tength)

if (cut) // String verkleinern
return s.substring(0, Tength);
else // String unverdndert zurlickgeben
return s;
// Differenz berechnen // String vergroBern

int diff = length - s.length();

char[] pad = new char[diff];
for(int i = 0; i < pad.length; ++i)
pad[i] = c;

if(end == MoreString.PADDING_LEFT)
return new String(pad) + s;
else
return s + new String(pad);

Listing 39: String auf gewdlnschte Ldange auffillen

>> Strings 109

Haufig missen Strings linksseitig mit Leerzeichen aufgefiillt werden. Fiir diese spezielle Auf-
gabe gibt es eine iiberladene Version der Methode:

public static String strpad(String s, int length) {

return MoreString.strpad(s, length,"' ', MoreString.PADDING_LEFT);
}

Listing 40 demonstriert den Einsatz der Methode.

pubTic class Start {

public static void main(String args[]) {
System.out.printin();
String s = "Text";

System.out.printin(" Padding rechts mit . auf Laengen 3, 5, 7 und 9");
System.out.printin();

System.out.printin(MoreString.strpad(s, 3,".",MoreString.PADDING_RIGHT)
System.out.printin(MoreString.strpad(s, 5,"." ,MoreString.PADDING_RIGHT)
System.out.printin(MoreString.strpad(s, 7,".",MoreString.PADDING_RIGHT)
System.out.printin(MoreString.strpad(s, 9,".",MoreString.PADDING_RIGHT)
System.out.printin();

’

)

System.out.printin(" Padding Tinks mit Leerzeichen auf Laengen 3, 5, 7 "
+ "und 9");

System.out.printin();

System.out.printin(MoreString.strpad(s, 3));

System.out.printin(MoreString.strpad(s, 5));

System.out.printin(MoreString.strpad(s, 7));

System.out.printin(MoreString.strpad(s, 9));

System.out.printin();

Listing 40: Testprogramm zu strpad()

ngabeaufforderung

>java Start

Padding rechts mit . auf Laengen 3. 5. 7 und 9

Padding links mit Leerzeichen auf Laengen 3. 5. 7 und 2

Tex
Text
Text

Abbildung 20: String-Padding

110 >> Whitespace am String-Anfang oder -Ende entfernen

34 Whitespace am String-Anfang oder -Ende entfernen

Zu den Standardaufgaben der String-Verarbeitung gehort auch das Entfernen von Whitespace
(Leerzeichen, Zeilenumbruch, Tabulatoren etc.). Die String-Klasse stellt zu diesem Zweck die
Methode trim() zur Verfigung - allerdings mit dem kleinen Wermutstropfen, dass diese
immer von beiden Seiten, Stringanfang wie -ende, den Whitespace abschneidet. Um Ihnen die
Wahlméglichkeit wiederzugeben, die trim() verweigert, erhalten Sie hier zwei Methoden
Ttrim() und rtrim(), mit denen Sie Whitespace gezielt vom String-Anfang (1trim()) bzw.
String-Ende (rtrim()) entfernen konnen.

/**
* Whitespace vom Stringanfang entfernen
*/
public static String Ttrim(String s) {
int Ten = s.length();
int i =0;
char[] chars = s.toCharArray();

// Index i vorriicken, bis Nicht-Whitespace-Zeichen
// (Unicode > Unicode von ' ') oder Stringende erreicht
while ((i < Ten) && (chars[i] <=" ")) {
+i;
}

// gekirzten String zurilickliefern
return (i > 0) ? s.substring(i, len) : s;

/**
* Whitespace vom Stringende entfernen
*/
public static String rtrim(String s) {
int len = s.length();
char[] chars = s.toCharArray();

// Ldnge Ten verkiirzen, bis Nicht-Whitespace-Zeichen
// (Unicode > Unicode von ' ') oder Stringanfang erreicht
while ((len > 0) & (chars[len - 1] <= " ")) {
--len;
}

// geklirzten String zurilickliefern
return (len < s.Tength()) ? s.substring(0, Tlen) : s;

Listing 41: Methoden zur links- bzw. rechtsseitigen Entfernung von Whitespace

Beide Methoden lassen sich von der String-Methode toCharArray() das Zeichenarray zuriick-
liefern, das dem tibergebenen String zugrunde liegt. Dieses Array gehen die Methoden in einer
while-Schleife Zeichen fiir Zeichen durch: 1trim() vom Anfang und rtrim() vom Ende ausge-
hend. Die Schleife wird so lange fortgesetzt, wie der Unicode-Wert der vorgefundenen Zeichen

>> Strings 111

kleiner oder gleich dem Unicode-Wert des Leerzeichens ist (dies schlieBt Whitespace und nicht
druckbare Sonderzeichen aus). AnschlieBend wird je nachdem, ob Whitespace gefunden wurde
oder nicht, ein vom Whitespace befreiter Teilstring oder der Originalstring zuriickgeliefert.

Um einen String mit Hilfe dieser Methoden am Anfang oder Ende von Whitespace zu befreien,
iibergeben Sie den String einfach als Argument an die jeweilige Methode und nehmen den
bearbeiteten String als return-Wert entgegen:

String trimmed = MoreString.ltrim(str);

«\ Eingabeaufforderung

>java Start " Demo-Text

Originalstring Demo—-Text
ltyim Demo—Text
rtrim Demo—Text i—
rtrim + ltrim : —iDemo-Text!i—

Abbildung 21: Effekt der Methoden Itrim() und rtrim()

35 Arrays in Strings umwandeln

Als Java-Programmierer denkt man bei der Umwandlung von Objekten in Strings natiirlich
zuerst an die Methode toString().

toString()

Fiir Arrays liefert toString() allerdings nur den Klassennamen und den Hashcode, wie in der
Notimplementierung von Object festgelegt.

int[] ints = { 1, -312, 45, 55, -9, 7005};
System.out.printin(ints); // ruft intern ints.tostring() auf

Ausgabe:
[I@187c6c7

Angesichts der Tatsache, dass man sich von der Ausgabe eines Arrays in der Regel verspricht,
dass die einzelnen Array-Elemente in der Reihenfolge, in der sie im Array gespeichert sind, in
Strings umgewandelt und aneinander gereiht werden, ist die Performance von toString() ent-
tduschend. Andererseits ist bekannt, dass die Array-Unterstiitzung von Java nicht in den
Array-Objekten selbst, sondern in der Utility-Klasse Arrays implementiert ist. Und richtig, es
gibt auch eine Arrays-Methode toString().

Arrays.toString()

Die Arrays-Methode toString() tibernimmt als Argument ein beliebiges Array und liefert als
Ergebnis einen String mit den Elementen des Arrays zuriick. Genauer gesagt: Die Elemente im
Array werden einzeln in Strings umgewandelt, durch Komma und Leerzeichen getrennt anein-
ander gehangt, schlieBlich in eckige Klammern gefasst und zuriickgeliefert:

int[] ints = { 1, -312, 45, 55, -9, 7005};
System.out.printin(Arrays.toString(ints));

Ausgabe:
(1, -312, 45, 55, -9, 7005]

112 >> Arrays in Strings umwandeln

Enthilt das Array als Elemente weitere Arrays, werden diese allerdings wiederum nur durch
Klassenname und Hashcode reprisentiert (sieche oben). Sollen Unterarrays ebenfalls durch
Auflistung ihrer Elemente dargestellt werden, rufen Sie die Arrays-Methode deepToString()
auf.

Auch wenn die Array-Methode toString() der Vorstellung einer praxisgerechten Array-to-
String-Methode schon sehr nahe kommt, ldsst sie sich noch weiter verbessern. Schén wére
zum Beispiel, wenn der Programmierer selbst bestimmen kdnnte, durch welche Zeichen oder
Zeichenfolge die einzelnen Array-Elemente getrennt werden sollen. Und auf die Klammerung
der Array-Elemente konnte man gut verzichten.

MoreString.toString()

Die statische Methode MoreString.toString() ist weitgehend identisch zu Arrays.toString(), nur
dass der erzeugte String nicht in Klammern gefasst wird und der Programmierer selbst bestimmen
kann, durch welche Zeichenfolge die einzelnen Array-Elemente getrennt werden sollen (zweites
Argument: separator). Ich stelle hier nur die Implementierungen fiir int[]- und Object[]-Arrays
vor. Fir Arrays mit Elementen anderer primitiver Datentypen (boolean, char, Tong, double etc.)
miissen nach dem gleichen Muster eigene iiberladene Versionen geschrieben werden:

/**
* int[]-Arrays in Strings umwandeln
*/
public static String toString(int[] a, String separator) {
if (a == null)
return "null";
if (a.length == 0)

return ;

StringBuilder buf = new StringBuilder();
buf.append(al01);

for (int i =1; i < a.length; i++) {
buf.append(separator);
buf.append(alil);

}

return buf.toString();

/**
* 0Object[]-Arrays in Strings umwandeln
*/
public static String toString(Object[] a, String separator) {
if (a == null)
return "null";
if (a.length == 0)

return ;

StringBuilder buf = new StringBuilder();

Listing 42: Arrays in Strings verwandeln

>> Strings

buf.append(al[0].toString());

for (int i =1; 1 < a.length; i++) {
buf.append(separator);
buf.append(ali].toString());

}

return buf.toString();

Listing 42: Arrays in Strings verwandeln (Forts.)

113

Mit Hilfe dieser Methoden ist es ein Leichtes, die Elemente eines Arrays wahlweise durch Leer-
zeichen, Kommata, Semikolons oder auch Zeilenumbriiche getrennt in einen String zu ver-

wandeln:
int[] ints = { 1, -312, 45, 55, -9, 7005};
String intStr;

intsStr = MoreString.toString(ints, ", ");
intsStr = MoreString.toString(ints, "\t");
intsStr = MoreString.toString(ints, "\n");

ingabeaufforderung

Die Arrays:

¢ R
{ "Die’. s de "won,. “der",. "He
'Schurken".

[I2187c6c?
[Ljava.lang.String;@18h62c9

[1

[Die. Na;ren: Pe&en,,am, liebsten, von,. der. Weisheit.. die, Schurken. von,. der
- Tugend.]

Unwandlung mit MoreString_toStringla. " ")

1 -312 45 55 -9 7885
Die Marren reden am liebhsten von der Weisheit. die Schurken von der Tugend.

C:sMarkt+T~Java—Codebook\Beispiele’

Abbildung 22: Vergleich der verschiedenen Array-to-String-Methoden

36 Strings in Arrays umwandeln

Ebenso wie es moglich ist, Array-Elemente in Strings zu verwandeln und zu einem einzigen
String zusammenzufassen, ist es natiirlich auch denkbar, einen String in Teilstrings zu zer-
legen, in einen passenden Datentyp umzuwandeln und als Array zu verwalten. Mégliche
Anwendungen wiren zum Beispiel die Zerlegung eines Textes in ein Array von Wortern oder

die Extraktion von Zahlen aus einem String.

114 >> Strings in Arrays umwandeln

1. Als Erstes zerlegen Sie den String in Teilstrings. Dies geschieht am effizientesten mit der
split()-Methode (siehe Rezept 29).

Als Argument iibergeben Sie einen reguldren Ausdruck (in Form eines Strings), der angibt,
an welchen Textstellen der String aufgebrochen werden soll. Im einfachsten Fall besteht
dieser reguldre Ausdruck aus einem oder mehreren Zeichen respektive Zeichenfolgen, die
als Trennzeichen zwischen den informationstragenden Teilstrings stehen. Die Teilstrings
werden als String-Array zuriickgeliefert.

String[] buf = aString.split(" "); // Leerzeichen als
// Trennzeichen

Stringl] substrings = aString.split("\\s+"); // Whitespace als
// Trennzeichen

Wenn es darum ginge, den String in ein Array von Teilstrings zu zerlegen, ist die Arbeit an
diesem Punkt bereits getan (von einer eventuell erforderlichen Nachbearbeitung der Teilstrings
einmal abgesehen). Ansonsten:

2. Wandeln Sie das String-Array in ein Array von Elementen des gewiinschten Zieltyps um.

Das Start-Programm zu diesem Rezept demonstriert die Umwandlung in Arrays an zwei Bei-
spielen. Im ersten Fall wird ein Text in Worter zerlegt (mit Whitespace als Trennzeichen), im
zweiten Fall wird ein String, der durch Tabulatoren getrennte Zahlenwerte enthilt, zerlegt und
in ein Array von int-Werten umgewandelt:

public class Start {

public static void main(String args[]) {
String paul_ernst = "Die Narren reden am Tiebsten von der Weisheit, "
+ "die Schurken von der Tugend.";
String data = "1\t-234\t5623\t-90";

System.out.printin("\n\n Text in Woerter-Array zerlegen:\n");
System.out.printIn(" \"" + paul_ernst + "\"\n\n");

// String in Array verwandeln
String[] words = paul_ernst.split("\\s+");

// Ausgabe der Array-Elemente
System.out.printin(" Array nach spTit(\"\\\\s+\") :\n");
for (String s : words)

System.out.printin("\t" + s);

System.out.printIn("\n\n String mit int-Daten in Zahlen zerlegen:\n");
System.out.printin(" \"" + data + "\"\n\n");

// String in Array verwandeln

Listing 43: Demo-Programm zur Umwandlung von Strings in Arrays

>> Strings 115

String[] buf = data.split("\t");
int[] numbers = new int[buf.length];
try |
for (int i =0; i < numbers.length; ++i)
numbers[i] = Integer.parseInt(buf[il]);
} catch (NumberFormatException
System.err.printin(" Fehler

Umwandlung in Integer");

// Ausgabe der Array-Elemente
System.out.printin(" Array nach split(\"\\t\"):\n");
for (Integer i : numbers)

System.out.printIn("\t" + i);

Listing 43: Demo-Programm zur Umwandlung von Strings in Arrays (Forts.)

Eingabeaufforderung
>java Start

Text in Woerter—Array =zerlegen:

'Die Marren reden am liebhsten von der Weisheit, die Schurken von der Tugend.'

Array nach split{"~~\s+"> =

Die
Narren
reden

an
liebsten
von

der
Weisheit.
die
Schurken
von

der
Tugend.

String mit Integer—Daten in Zahlen zerlegen:

"1 -234 5623 -98"

Array nach split{("\t">:

1
—234
5623
-8

Abbildung 23: Umwandlung von Strings in Arrays

116 >> Zufallige Strings erzeugen

37 Zufallige Strings erzeugen

Fiir Testzwecke ist es oft hilfreich, eine groBe Anzahl an unterschiedlichen, zufillig zusammen-
gesetzten Zeichenketten zur Verfligung zu haben. Als Java-Programmierer haben Sie natiirlich
die besten Mdoglichkeiten, solche Zufallsstrings zu erzeugen. Fiir den Zufall sorgt dabei die
Klasse java.util.Random, die man zur Generierung von gleichverteilten Zufallszahlen verwen-
den kann, beispielsweise aus dem Bereich von 65 bis 122, in dem die ASCII-Codes der GroB- und
Kleinbuchstaben liegen. Aus einem ASCII-Wert kann dann einfach per Cast das entsprechende
Zeichen erzeugt werden. Das folgende Beispiel zeigt eine mogliche Implementierung zur Erzeu-
gung von solchen Zufallsstrings mit einer wihlbaren Mindest- und Maximalldnge:

/**
* Klasse zur Erzeugung zufdlliger Zeichenketten aus dem Bereich a-Z
*/

import java.util.*;

class RandomStrings {

/**

* Erzeugt zufdllige Zeichenketten aus dem Bereich a-Z

*

* @param num Anzahl zu generierender Zeichenketten

* @param min minimale Ldnge pro Zeichenkette

* @param max maximale Ldnge pro Zeichenkette

* @return ArrayList<String> mit Zufallsstrings

*/

public static ArrayList<String> createRandomStrings(int num,

int min, int max) {

Random randGen = new Random(System.currentTimeMillis());
ArrayList<String> result = new ArraylList<String>();

if(min > max || num <= 0) // nichts zu tun
return result;

for(int 1 =1; i <= num; i++) {
int Tength;

// Ldnge des ndchsten Strings zufdllig wdhlen
if(min == max)

length = min;
else

length = randGen.nextInt(max + 1 - min) + min;

StringBuilder curStr = new StringBuilder();
int counter = 0;

while(counter < Tength) {
// Bereichsgrenzen: von A = 65 bis z = 122
// Bereich 91-96 sind Sonderzeichen -> {berspringen
int value = randGen.nextInt(122 + 1 -65) + 65;

Listing 44: RandomStrings.java — ein String-Generator

>> Strings 117

if(value >= 91 && value <= 96)
continue;

else
counter++;

char z = (char) value;
curStr.append(z);
}

result.add(curStr.toString());
}

return result;

Listing 44: RandomStrings.java — ein String-Generator (Forts.)

Das Start-Programm zu diesem Rezept benutzt den String-Generator zur Erzeugung von zehn
Strings mit vier bis fiinfzehn Buchstaben.

public class Start {
public static void main(String[] args) {
// Zehn Strings mit vier bis flinfzehn Zeichen erzeugen
ArrayList<String> strings;

strings = RandomStrings.createRandomStrings(10, 4, 15);

for(String str : strings)
System.out.printin(str);

Listing 45: Erzeugung zufélliger Zeichenketten

Eingabeaufforderung

>javac Start.java

>java Start
S JDKZS

by jgTHNZuLhjsgT
>

Abbildung 24: Zuféllige Strings der Ldnge 4 bis 15

118 >> Wortstatistik erstellen

38 Wortstatistik erstellen

Das Erstellen einer Wortstatistik, d.h. das Erkennen der Worter inklusive ihrer Hiufigkeit, 1dsst
sich mit Java sehr elegant realisieren. Die Kombination zweier Klassen stellt alles Notige
bereit:

P Mit java.util.StringTokenizer wird der Text in die interessierenden Worter zerlegt.
Bequemerweise kann man der Klasse auch einen String mit allen Zeichen mitgeben, die als
Trennzeichen interpretiert werden sollen. Dadurch kann man beispielsweise neben dem
iiblichen Leerzeichen auch andere Satzzeichen beim Lesen tiberspringen.

P Alle gefundenen Worter werden in einer Hashtabelle (z.B. java.util.HashMap) abgespei-
chert, zusammen mit ihrer aktuellen Haufigkeit. Wenn ein Wort bereits vorhanden ist, wird
lediglich der alte Zdhlerwert um eins erhoht.

/**k

* Klasse zur Erstellung von Wortstatistiken
*/

import java.util.*;

import java.io.*;

class WordStatistics {

/**

* Erstellt eine Wortstatistik; Riickgabe ist eine Auflistung aller

* vorkommenden Worter und ihrer Haufigkeit; Satzzeichen und gdngige

* Sonderzeichen werden ignoriert.

*

* @param text zu analysierender Text

* @return HashMap<String, Integer> mit Wortern und ihren Hdaufigkeiten

*/

public static HashMap<String, Integer> countWords(String text) {
StringTokenizer st = new StringTokenizer(text,

HashMap<String, Integer> wordTable = new HashMap<String, Integer>();

while(st.hasMoreTokens()) {
String word = st.nextToken();
Integer num = wordTable.get(word);

if(num == null) {
// bisher noch nicht vorhanden -> neu einfiigen mit Zéhlwert =1
num = new Integer(1);
wordTable.put(word, num);
}
else {
// Wort bereits vorhanden -> Zdhler erhdhen
int numValue = num.intValue() + 1;
num = new Integer(numValue);
wordTable.put(word, num);

Listing 46: WordStatistics.java

>> Strings 119

}

return wordTable;

Listing 46: WordStatistics.java (Forts.)

Das Start-Programm zu diesem Rezept demonstriert den Aufruf.

public class Start {
public static void main(String[] args) {

if(args.length != 1) {
System.out.printin("Aufruf: <Dateiname>");
System.exit(0);

}

// Datei einlesen
StringBuilder text = new StringBuilder();

try {
BufferedReader reader = new BufferedReader(
new FileReader(args[01));
String Tine;

while((1ine = reader.readlLine()) != null)
text.append(line + "\n");

} catch(Exception e) {
e.printStackTrace();
}

// Statistik erstellen
HashMap<String, Integer> statistic;
statistic = WordStatistics.countWords(text.toString());

// Statistik ausgeben

System.console().printf("\n Anzahl unterschiedlicher Worter: %d\n",
statistic.size());

Set<String> wordSet = statistic.keySet();

[terator<String> it = wordSet.iterator();

while(it.hasNext()) {
String word = it.next();
int num = statistic.get(word).intValue();
System.console().printf(" %s : %d \n", word, num); }

Listing 47: Erstellen einer Wortstatistik

120 >> Wortstatistik erstellen

Listing 47: Erstellen einer Wortstatistik (Forts.)

ngabeaufforderung

>java Start john_maynard.txt

finzahl unterschiedlicher Wirter: 136
kein = 1
Antwort = 2
starh = 1
Schreibt : 1
fragt = 2
Kron = 1
schwedigt = 1
fest = 1
kommt @ 2
Stimme : 2
Brandung : 4
Moch = 4
Ein = 2
dranf = 2
gerettet = 1
u : 2

fiir = 1
Maynard = 7
halte = 2
fehlt =

Nur :

lassen :
oder = 1
gehorst

his =

und :

halts =

Abbildung 25: Ausgabe von Worthéufigkeiten

Die Gesamtzahl an unterschiedlichen Wortern kann man wie oben gezeigt iiber die
Methode size() der Hashtabelle ermitteln. Falls man allerdings die gesamte Anzahl an
Wortern (inklusive Wiederholungen) bendtigt, bietet StringTokenizer die Methode
countTokens() an:

StringTokenizer st = new StringTokenizer(meinText, "\n\" -+,8%$§.;:21O{}[1");
System.out.printin("Gesamtzahl Wérter: " + st.countTokens());

Datum und Uhrzeit

39 Aktuelles Datum abfragen

Der einfachste und schnellste Weg, das aktuelle Datum abzufragen, besteht darin, ein Objekt
der Klasse Date zu erzeugen:

import java.util.Date;

=
[
N
N
=
=
=
=
=
=
=
=
©
(=]

Date today = new Date();
System.out.printin(today);

Ausgabe:
Thu Mar 31 10:54:31 CEST 2005

Wenn Sie dem Konstruktor keine Argumente {ibergeben, ermittelt er die aktuelle Systemzeit
als Anzahl Millisekunden, die seit dem 01.01.1970 00:00:00 Uhr, GMT, vergangen sind, und
speichert diese in dem Date-Objekt. Wenn Sie das Date-Objekt mit printin() ausgeben (oder in
einen String einbauen), wird seine toString()-Methode aufgerufen, die aus der Anzahl Milli-
sekunden das Datum berechnet. Und genau hier liegt das Problem der Date-Klasse.

Die Date-Klasse arbeitet ndmlich intern mit dem gregorianischen Kalender. Dieser ist zwar weit
verbreitet und astronomisch korrekt, jedoch bei weitem nicht der einzige Kalender. Bereits im
JDK 1.1 wurden der Klasse Date daher die abstrakte Klasse Calendar und die von Calendar
abgeleitete Klasse GregorianCalendar an die Seite gestellt. Die Idee dahinter:

P> Neben GregorianCalendar konnen weitere Klasse fiir andere Kalender implementiert wer-
den.

P Von der statischen Methode Calendar.getInstance() kann sich der Programmierer automa-
tisch den passenden Kalender zur Lokale des aktuellen Systems zuriickliefern lassen.

Leider gibt es derzeit nur drei vordefinierte Kalenderklassen, die von getInstance() zuriickge-
liefert werden: sun.util.BuddhistCalendar fiir die Thai-Lokale (th_TH), Japaneselmperial-
Calendar (fiir ja_JP) und GregorianCalendar fiir alle anderen Lokalen.

Trotzdem sollten Sie den Empfehlungen von Sun folgen und die Klasse Date nur dann verwen-
den, wenn Sie an der reinen Systemzeit interessiert sind oder die chronologische Reihenfolge
verschiedener Zeiten priifen wollen. Wenn Sie explizit mit Datumswerten programmieren
miissen, verwenden Sie Calendar oder GregorianCalendar.

// Aktuelles Datum mit Calendar abfragen
import java.util.Calendar;

Calendar calendar = Calendar.getInstance();

// verwende zur Ausgabe System.console() anstelle von System.out, um evt.

// enthaltene Umlaute korrekt auszugeben (siehe Rezept 85)

System.console().printf("%s\n",
java.text.DatefFormat.getDateTimeInstance().format(calendar.getTime()));

Der Aufruf Calendar.getInstance() liefert ein Objekt einer Calendar-Klasse zuriick (derzeit fiir
nahezu alle Lokalen eine GregorianCalendar-Instanz, siehe oben). Das Calendar-Objekt repri-
sentiert die aktuelle Zeit (Datum und Uhrzeit) gemiB der auf dem System eingestellten Lokale
und Zeitzone.

122 >> Aktuelles Datum abfragen

Die Felder (Jahr, Monat, Stunde ...) eines Calendar-Objekts konnen mit Hilfe der get-/set-
Methoden der Klasse abgefragt bzw. gesetzt werden.

Methode ‘ Beschreibung

int get(int field)

=
@
N
N
=
=
=
=
=
=
=
=
©
(=]

Zum Abfragen der verschiedenen Feldwerte. Die Felder
werden durch folgende Konstanten ausgewahlt:
AM_PM // AM (Vormittag) oder PM (Nachmittag)

DATE // entspricht DAY_OF_MONTH
DAY_OF_MONTH // Tag im Monat, beginnend mit 1
DAY_OF_WEEK // Tag in Woche (1 (SUNDAY) - 7 (SATURDAY))

DAY_OF_WEEK_IN_MONTH // 7-Tage-Abschnitt in Monat,
beginnend mit 1

DAY_OF_YEAR // Tag im Jahr, beginnend mit 1
DST_OFFSET // Sommerzeitverschiebung in Millisekunden
ERA // vor oder nach Christus

HOUR // Stunde vor oder nach Mittag (0 - 11)
HOUR_OF_DAY // Stunde (0 - 23)

MILLISECOND // Millisekunden (0-999)

MINUTE // Minuten (0-59)

MONTH // Monat, beginnend mit JANUARY

SECOND // Sekunde (0-59)

WEEK_OF_MONTH // Woche in Monat, beginnend mit 0
WEEK_OF_YEAR // Woche in Jahr, beginnend mit 1
YEAR // Jdahr

ZONE_OFFSET // Verschiebung fiir Zeitzone in Millisekun-
den

Date getTime() Liefert das Datum als Date-Objekt zurtick.

Tong getTimeInMillis() Liefert das Datum als Millisekunden seit/bis zum
01.01.1970 00:00:00 Uhr, GMT zurtick.

void set(int field, int value) Setzt den angegebenen Feldwert. Zur Bezeichnung der

Felder siehe get().

void
void

set(int year, int month, int date)
set(int year, int month, int date,
int hourOfDay, int minute)
set(int year, int month, int date,
int hourOfDay, int minute,
int second)

void

Setzt Jahr, Monat (0-11) und Tag (1-31). Optional kénnen
auch noch Stunde (0-23), Minute und Sekunde angegeben
werden.

void setTime(Date d)

Setzt das Datum gemaB dem tbergebenen Date-Objekt.

void setTimeInMillis(long millis)

Setzt das Datum gemaB der iibergebenen Anzahl Milli-
sekunden seit/bis zum 01.01.1970 00:00:00 Uhr, GMT.

Tabelle 15: Get-/Set-Methoden zum Abfragen und Setzen der Datumsfelder der Calendar-

Klasse

Die Klasse Date enthilt ebenfalls Methoden zum Abfragen und Setzen der einzelnen
Datums- und Zeitfelder. Diese sind jedoch als »deprecated« eingestuft, von ihrem

Gebrauch wird abgeraten.

>> Datum und Uhrzeit 123

40 Bestimmtes Datum erzeugen
Es gibt verschiedene Wege, ein Objekt fiir ein bestimmtes Datum zu erzeugen.

Handelt es sich um ein Datum im gregorianischen Kalender, konnen Sie direkt ein Objekt der
Klasse GregorianCalendar erzeugen und dem Konstruktor Jahr, Monat (0-11) und Tag (1-31)
iibergeben:

import java.util.GregorianCalendar;

Calendar birthday = new GregorianCalendar(1964, 4, 20);

Andere Kalender werden — mit Ausnahme des buddhistischen, des imperialistischen japani-
schen und des julianischen Kalenders (siehe unten) - derzeit nicht unterstiitzt.

Wenn Sie den Kalender nicht vorgeben, sondern gemifB den Landereinstellungen des aktuellen
Systems auswéhlen méchten, lassen Sie sich von Calendar.getInstance() ein Objekt des loka-
len Kalenders zuriickliefern und dndern das von diesem Objekt reprdsentierte Datum durch
Setzen der Felder fiir Jahr, Monat und Tag:

import java.util.Calendar;
Calendar birthday = Calendar.getInstance();
birthday.set(1964, 4, 20);

Auf einem System, das fiir die Thai-Lokale (th_TH) konfiguriert ist, liefert getInstance() eine
Instanz von sun.util.BuddhistCalendar, fiir die Lokale ja_JP eine Instanz von JapaneselImperi-
alCalendar und fiir alle anderen Lokalen eine Instanz von GregorianCalendar.

Fiir Daten vor dem 15. Oktober 1582 berechnet die Klasse GregorianCalendar das
Datum nach dem julianischen Kalender. Dies ist sinnvoll, da an diesem Tag - der dem
5. Oktober 1582 im julianischen Kalender entspricht - der gregorianische Kalender
erstmals eingefiihrt wurde (in Spanien und Portugal). Andere Linder folgten nach und
nach. In England und Amerika begann der gregorianische Kalender beispielsweise mit
dem 14. September 1752. Wenn Sie die Lebensdaten englischer bzw. amerikanischer
Personlichkeiten oder Daten aus der englischen bzw. amerikanischen Geschichte, die
vor der Einfilhrung des gregorianischen Kalender liegen, historisch korrekt darstellen
mochten, miissen Sie das Datum der Einfiihrung mit Hilfe der Methode setGregorian-
Change(Date) umstellen.

GregorianCalendar change = new GregorianCalendar(1752, 8, 14, 1, 0, 0);
((GregorianCalendar) birthday).setGregorianChange(change.getTime());

Wenn Sie Interesse halber beliebige Daten nach dem gregorianischen Kalender berech-
nen mochten, rufen Sie setGregorianChange(Date(Long.MIN_VALUE)) auf. Wenn Sie
beliebige Daten nach dem julianischen Kalender berechnen wollen, rufen Sie setGrego-
rianChange(Date(Long.MAX_VALUE)) auf.

Der Vollstindigkeit halber sei erwdhnt, dass es auch die Moglichkeit gibt, ein Date-Objekt
durch Angabe von Jahr (abzgl. 1900), Monat (0-11) und Tag (1-31) zu erzeugen:

Date birthdayl = new Date(64, 4, 20);

Vom Gebrauch dieses Konstruktors wird allerdings abgeraten, er ist als deprecated markiert.

=
[
N
N
=
=
=
=
=
=
=
=
©
(=]

124 >> Bestimmtes Datum erzeugen

Der gregorianische Kalender und die Klasse GregorianCalendar

Vor der Einfiihrung des gregorianischen Kalenders im Jahre 1582 durch Papst Gregor
XIIL. galt in Europa der julianische Kalender. Der julianische Kalender, von dem agyp-
tischen Astronomen Sosigenes ausgearbeitet und von Julius César im Jahre 46 v. Chr.
in Kraft gesetzt, war ein reiner Sonnenkalender, d.h., er richtete sich nicht nach den
Mondphasen, sondern nach der Linge des mittleren Sonnenjahres, die Sosigenes zu
365,25 Tagen berechnete. Der julianische Kalender tibernahm die zwolf romischen
Monate, korrigierte aber deren Langen auf die noch heute giiltige Anzahl Tage, so dass
das Jahr fortan 365 Tage enthielt. Um die Differenz zum »angenommenen« Sonnenjahr
auszugleichen, wurde alle vier Jahre ein Schaltjahr eingelegt.

=
@
N
N
=
=
=
=
=
£
=
=
©
(=]

Tatsdchlich ist das mittlere Sonnenjahr aber nur 365,2422 Tage lang (tropisches Jahr).
Der julianische Kalender hinkte seiner Zeit also immer weiter hinterher, bis im Jahre
1582 das Primar-Aquinoktium auf den 11. statt den 21. Mirz fiel.

Um die Differenz auszugleichen, verfiigte Papst Gregor XIII. im Jahr 1582, dass in die-
sem Jahr auf den 4. Oktober der 15. Oktober folgen sollte. Gleichzeitig wurde der
gregorianische Kalender eingefiihrt, der sich vom julianischen Kalender in der Berech-
nung der Schaltjahre unterscheidet. Wahrend der julianische Kalender alle vier Jahre
ein Schaltjahr einlegte, sind im gregorianischen Kalender alle Jahrhundertjahre, die
nicht durch 400 teilbar sind, keine Schaltjahre. Durch diese verbesserte Schaltregel ist
ein Jahr im gregorianischen Kalender durchschnittlich 365,2425 Tage lang, was dem
tatsdchlichen mittleren Wert von 365,2422 Tagen (tropisches Jahr) sehr nahe kommt.
(Erst nach 3000 Jahren wird sich die Abweichung zu einem Tag addieren.)

Spanien, Portugal und Teile Italiens fiihrten den gregorianischen Kalender wie vom
Papst vorgesehen in der Nacht vom 4. auf den 5./15. Oktober ein. Die meisten katholi-
schen Linder folgten in den nichsten Jahren, wéihrend die protestantischen Lander den
Kalender aus Opposition zum Papst zunéchst ablehnten. Die orthodoxen Linder Ost-
europas fiihrten den gregorianischen Kalender gar erst im 20. Jahrhundert ein.

Land ‘ Einfuhrung

Spanien, Portugal, Teile Italiens 04./15. Oktober 1582
Frankreich 09./20. Dezember 1582

Bayern 05./16. Oktober 1583

Hzm. PreuBlen 22. August/02. September 1612
England, Amerika 02./14. 1752

Schweden 17. Februar/1. Mérz 1753
Russland 31. Januar/14. Februar 1918
Griech.-Orthodoxe Kirche 10./24. Mirz 1924

Tiirkei 1927

Tabelle 16: Einfihrung des gregorianischen Kalenders

>> Datum und Uhrzeit 125

Die Klasse GregorianCalendar implementiert eine Hybridform aus gregorianischem und
julianischem Kalender. Anhand des Datums der Einfiihrung des gregorianischen Kalen-
ders interpretiert sie Datumswerte entweder als Daten im gregorianischen oder juliani-
schen Kalender (siehe Hinweis weiter oben). Das Datum der Einfithrung kann mit Hilfe
der Methode setGregorianChange(Date d) angepasst werden.

Das Datum, das eine GregorianCalendar-Instanz repréisentiert, kann durch Angabe der
Datumsfelder (Jahr, Monat, Tag ...), als Date-Objekt oder als Anzahl Millisekunden seit/
bis zum 01.01.1970 00:00:00 Uhr, GMT, festgelegt und umgekehrt auch als Werte der
Datumsfelder, Date-Objekt oder Anzahl Millisekunden abgefragt werden. Fiir die kor-
rekte Umrechnung zwischen Datumsfeldern und Anzahl Millisekunden sorgen dabei
die von Calendar geerbten und in GregorianCalendar iiberschriebenen protected-
Methoden computeFields() und computeTime().

41 Datums-/Zeitangaben formatieren

Zur Formatierung von Datums- und Zeitangaben gibt es drei Wege zunehmender Komplexitét,
aber auch wachsender Gestaltungsfreiheit:

» toString()
p» DateFormat-Stile

P> SimpleDateFormat-Muster

Formatierung mit toString()

Die einfachste Form der Umwandlung einer Datums-/Zeitangabe in einen String bietet die
toString()-Methode. Ist die Datums-/Zeitangabe in ein Date-Objekt verpackt, erhilt man auf
diese Weise einen String aus (engl.) Wochentagskiirzel, (engl.) Monatskiirzel, Tag im Monat,
Uhrzeit, Zeitzone und Jahr:

Thu Mar 31 10:54:31 CEST 2005

Wer Gleiches von der toString()-Methode der Klasse Calendar erwartet, sieht sich allerdings
getduscht. Die Methode ist rein zum Debuggen gedacht und packt in den zuriickgelieferten
String alle verfiigharen Informationen {iber den aktuellen Zustand des Objekts. Um dennoch
einen verniinftigen Datums-/Zeit-String zu erhalten, missen Sie sich die im Calendar-Objekt
gespeicherte Zeit als Date-Objekt zuriickliefern lassen und dessen toString()-Methode auf-
rufen:

Calendar calendar = Calendar.getInstance();
Date today = calendar.getTime();
System.out.printin(date);

Ausgabe:
Thu Mar 31 10:54:31 CEST 2005

=
[
N
N
=
=
=
=
=
=
=
=
©
(=]

126 >> Datums-/Zeitangaben formatieren

Formatierung mit DateFormat-Stilen

Die Klasse DateFormat definiert vier vordefinierte Stile zur Formatierung von Datum und Uhr-
zeit: SHORT, MEDIUM (= DEFAULT), LONG und FULL.

Die Klasse DateFormat selbst ist abstrakt, definiert aber verschiedene statische Factory-Metho-
den, die passende Objekte abgeleiteter Klassen (derzeit nur SimpleDateFormat) zur Formatie-
rung von Datum, Uhrzeit oder der Kombination aus Datum und Uhrzeit zuriickliefern.

Die Formatierung mit DateFormat besteht daher aus zwei Schritten:

1. Sie rufen die gewiinschte Factory-Methode auf und lassen sich ein Formatierer-Objekt
zuriickliefern.

=
@
N
N
=
=
=
=
=
£
=
=
©
(=]

import java.text.DateFormat;
// Formatierer fir reine Datumsangaben im SHORT-Stil
DateFormat df = DateFormat.getDatelnstance(DateFormat.SHORT);

2. Sie libergeben die Datums-/Zeitangabe als Date-Objekt an die format()-Methode des For-
matierers und erhalten den formatierten String zuriick.

Calendar calendar = Calendar.getInstance();
String str = df.format(calendar.getTime()));

Die Klasse DateFormat definiert vier Factory-Methoden, die gemaB der auf dem System einge-
stellten Lokale formatieren:

getInstance() // Formatierer fir Datum und Uhrzeit im SHORT-Stil
getDatelnstance() // Formatierer fir Datum im DEFAULT-Stil (= MEDIUM)
getTimelnstance() // Formatierer flr Uhrzeit im DEFAULT-Stil (= MEDIUM)

getDateTimeInstance() // Formatierer fir Datum und Uhrzeit
// im DEFAULT-Sti1 (= MEDIUM)

Die letzten drei Methoden sind zweifach tiberladen, so dass Sie einen anderen Stil bzw. Stil
und Lokale vorgeben konnen, beispielsweise:

getDatelnstance(int stil)
getDatelnstance(int stil, Locale loc)

gibt eine Ubersicht iiber die Formatierung durch die verschiedenen Stile.

Stil ‘ Formatierung (Lokale de_DE)

Datum

SHORT 31.03.05

MEDIUM (= DEFAULT) 31.03.2005

LONG 31. Mirz 2005

FULL Donnerstag, 31. Mdrz 2005
Uhrzeit

SHORT 19:51

MEDIUM (= DEFAULT) 19:51:14

LONG 19:51:14 CEST

FULL 19.51 Uhr CEST

Tabelle 17: DateFormat-Stile

>> Datum und Uhrzeit 127

Zur landesspezifischen Formatierung mit Lokalen siehe auch Rezepte in Kategorie
»Internationalisierunge.

Formatierung mit SimpleDateFormat-Mustern

Wer mit den vordefinierten DateFormat-Formatstilen nicht zufrieden ist, kann sich mit Hilfe
der abgeleiteten Klasse SimpleDateFormat einen individuellen Stil definieren. SimpleDateFormat
besitzt einen Konstruktor

=
[
N
N
=
=
=
=
=
=
=
=
©
(=]

SimpleDateFormat(String format, Locale loc)

der neben der Angabe der Lokale auch einen Formatstring erwartet. Dieser String enthélt feste
datums- und zeitrelevante Formatanweisungen und darf beliebig durch weitere Zeichenfolgen,
die in ' ' eingeschlossen sind, unterbrochen sein.

SimpleDateFormat df = new SimpleDateFormat("'Heute ist der 'dd'. "MMMM");
Dieser Aufruf erzeugt eine Ausgabe der Art:
"Heute ist der 12. Juni".

Die wichtigsten Formatanweisungen fiir Datum und Zeit lauten:

Format ‘ Beschreibung

G »v. Chr.« oder »n. Chr«
(in englischsprachigen Lokalen »BC« oder »AD«)

Yy Jahr, zweistellig
yyyy Jahr, vierstellig
M, MM Monat, einstellig (soweit moglich) bzw. immer zweistellig (01, 02 ...)
MMM Monat als 3-Buchstaben-Kurzform
MMMM voller Monatsname
W, Ww Woche im Jahr, einstellig (soweit moglich) bzw. immer zweistellig (01, 02 ...)
W Woche im Monat
D, DD, DDD Tag im Jahr, einstellig bzw. zweistellig (soweit moglich) oder immer dreistellig (001,
002 ...)
d, dd Tag im Monat, einstellig (soweit méglich) bzw. immer zweistellig (01, 02 ...)
E Wochentag-Kiirzel: »Moc, »Di«, »Mi«, »Do«, »Fre, »Sa«, »So«
(fiir englischsprachige Lokale werden dreibuchstabige Kiirzel verwendet)
EEEE Wochentag (ausgeschrieben)
a »AMc« oder »PM«
H, HH Stunde (0-23), einstellig (soweit moglich) bzw. immer zweistellig (00, 01 ...)
h, hh Stunde (1-12), einstellig (soweit méglich) bzw. immer zweistellig (00, 01 ...)
K, KK Stunde (1-24), einstellig (soweit moglich) bzw. immer zweistellig (00, 01 ...)
k, kk Stunde (1-12), einstellig (soweit méglich) bzw. immer zweistellig (00, 01 ...)

Tabelle 18: SimpleDateFormat-Formatanweisungen

=
@
N
N
=
=
=
=
=
£
=
=
©
(=]

128 >> Wochentage oder Monatsnamen auflisten

Format ‘ Beschreibung

m, mm Minuten, einstellig (soweit moglich) bzw. immer zweistellig (00, 01 ...)

SPSS Sekunden, einstellig (soweit moglich) bzw. immer zweistellig (00, 01 ...)

S, SS, SSS Millisekunden, einstellig bzw. zweistellig (soweit moéglich) oder immer dreistellig (001,
002 ..)

z Zeitzone

Z Zeitzone (gemiB RFC 822)

Tabelle 18: SimpleDateFormat-Formatanweisungen (Forts.)

42 Wochentage oder Monatsnamen auflisten

Manchmal ist es notig, die Namen der Wochentage oder Monate aufzulisten - beispielsweise
um sie iiber ein Listenfeld zur Auswahl anzubieten, sie in eine Tabelle einzubauen oder Ahn-
liches. Die Strings mit den Namen der Wochentage oder Monate kénnen Sie selbst aufsetzen ...
oder sich von einer passenden Java-Klasse zuriickliefern lassen. Letztere Vorgehensweise pro-
duziert in der Regel weniger Code und gestattet [hnen zudem die Wochentage und Monate in
der Sprache des aktuellen Systems anzuzeigen.

Bleibt noch zu kldren, von welcher Klasse Sie sich die Namen der Wochentage und Monate
zuriickliefern lassen. Im Paket java.text gibt es eine Klasse namens DateFormatSymbols, die
alle wichtigen Bestandteile von Datums- oder Zeitangaben in lokalisierter Form zuriickliefert.
Zwar empfiehlt die API-Dokumentation diese Klasse nicht direkt zu verwenden, doch gilt dies
vornehmlich fiir die Formatierung von Datums- bzw. Uhrzeitstrings. (Fiir diese Aufgabe
bedient man sich besser eines DateFormat-Objekts, siehe Rezept 41, welches dann intern mit
DateFormatSymbols arbeitet.) Fiir die Abfrage der lokalisierten Wochentags- und Monatsnamen
gibt es hingegen kaum etwas Besseres als die DateFormatSymbols-Methoden getWeekdays() und
getMonths():

String[] getWeekdays() // Tiefert die Wochentagsnamen

Stringl[] getShortWeekdays() // liefert die Kurzformen der Wochentagsnamen
String[] getMonths() // liefert die Monatsnamen

String[] getShortMonths() // Tiefert die Kurzformen der Monatsnamen

String-Arrays der Monats- oder Wochentagsnamen anlegen

Der Einsatz der Methoden ist denkbar einfach. Zuerst erzeugen Sie ein DateFormatSymbols-
Objekt, dann rufen Sie eine der Methoden auf und erhalten ein String-Array mit den Namen
der Wochentage von Sonntag bis Samstag bzw. der Monatsnamen von Januar bis Dezember
zurtick.

// Wochentage in der Sprache des Systems
DateFormatSymbols dfs = new DateFormatSymbols();
String[] weekdayNames = dfs.getWeekdays();
for(String n : weekdayNames)
System.console().printf("\thssn", n);

>> Datum und Uhrzeit 129

Die Sprache, in der die Namen zuriickgeliefert werden, legen Sie bei der Instanzierung des
DateFormatSymbols-Objekts fest. Wenn Sie den Konstruktor wie oben ohne Argument aufrufen,
wird die Sprache des aktuellen Systems verwendet." Wenn Sie dem Konstruktor eine Lokale
iibergeben, wird die Sprache dieser Lokale verwendet.

// Monate in franzdsisch
DateFormatSymbols dfs = new DateFormatSymbols(new Locale("fr", "FR"));
String[] monthNames = dfs.getMonths();

Wenn Sie zu einem bestimmten Datum den lokalisierten Monats- oder Wochentagsna-
men abfragen mochten, konnen Sie seit Java 6 dazu die Calendar-Methode getDisplay-
Name() verwenden:

=
[
N
N
=
=
=
=
=
=
=
=
©
(=]

String weekdayName = calendar.getDisplayName(Calendar.DAY_OF_WEEK,
Calendar.LONG,
Locale.getDefault());
String monthName = calendar.getDisplayName(Calendar.MONTH,
Calendar.LONG,
new Locale("no", "NO"));

Von der Schwestermethode getDisplayNames() konnen Sie sich eine Map<String, Inte-
ger>-Collection der Monats- oder Wochentagsnamen zuriickliefern lassen. Allerdings
verwendet diese Collection die Namen als Schliissel und da sie zudem ungeordnet ist,
eignet sie sich nicht zum Aufbau von Listenfeldern oder dhnlichen geordneten Auflis-
tungen der Wochentage oder Monate.

Listenfelder mit Monats- oder Wochentagsnamen

Der Code zum Aufbau eines Listenfelds mit Wochentagsnamen kénnte wie folgt aussehen:

// Listenfeld anlegen und mit Wochentagsnamen fiillen
DateFormatSymbols dfs = new DateFormatSymbols();
JList weekdaylList = new JList(dfs.getWeekdays());

// Listenfeld konfigurieren
weekdayList.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);
weekdayList.addListSelectionListener(new ListSelectionlistener() {
public void valueChanged(ListSelectionEvent e) {
JList 1ist = (JList) e.getSource();
String s = (String) Tist.getSelectedValue();

if (s = null) {
1b3.setText("Ausgew. Wochentag: " + s);
}
}
1)

// Listenfeld mit Bildlaufleiste ausstatten
JScrol1Pane spl = new JScrollPane(weekdaylist);

Listing 48: Listenfeld mit Wochentagsnamen

1. Um exakt zu sein: Es wird die Sprache der Standardlokale verwendet. Die Standardlokale spiegelt allerdings die Sys-
temkonfiguration wider, es sei denn, Sie hitten sie zuvor umgestellt, siehe Rezept 215.

=
@
N
N
=
=
=
=
=
£
=
=
©
(=]

130 >> Datumseingaben einlesen und auf Giiltigkeit priifen

spl.setBounds(new Rectangle(30, 40, 200, 100));

// JdScrollPane mit Listenfeld in Formular einfiligen
getContentPane().add(spl);

Listing 48: Listenfeld mit Wochentagsnamen (Forts.)

Listenfelder mit den Monatsnamen konnen Sie analog erzeugen. Sie miissen nur zum Fiillen
des Listenfelds die DateFormatSymbols-Methode getMonths() aufrufen.

43 Datumseingaben einlesen und auf Giltigkeit priifen

Zum Einlesen von Datumseingaben benutzt man am besten eine der parse()-Methoden von
DatefFormat:

Date parse(String source)
Date parse(String source, ParsePosition pos)

So wie die format()-Methode von DatefFormat ein Date-Objekt anhand der eingestellten Lokale
und dem ausgewihlten Pattern in einen String formatiert, analysieren die parse()-Methoden
einen gegebenen String, ob er ein Datum enthilt, das Lokale und Muster entspricht. Wenn ja,
liefern sie das Datum als Date-Objekt zuriick. Enthélt der iibergebene String keine passende
Datumsangabe, 16st die erste Version eine ParseException aus. Die zweite Version, welche ab
der Position pos sucht, liefert null zurtick.

Der folgende Code liest deutsche Datumseingaben im MEDIUM-Format (TT.MM.JJJJ) ein und
gibt sie zur Kontrolle im FULL-Format aus. Fiir Ein- und Ausgabe werden daher unterschied-
liche DateFormat-Instanzen (parser und formatter) erzeugt:

Date date = null;
DateFormat parser =

DateFormat.getDatelInstance(DateFormat.MEDIUM, Locale.GERMANY);
DateFormat formatter =

DateFormat.getDatelnstance(DateFormat.FULL, Locale.GERMANY);

try {
// Datum aus Kommandozeile einlesen
date = parser.parse(args[0]);

// Datum auf Konsole ausgeben (verwendet System.console() anstelle von
// System.out, um evt. enthaltene Umlaute korrekt auszugeben

// (siehe Rezept 85)

System.console().printf("\n %s \n", formatter.format(date));

} catch(ParseException e) f
System.err.printin(" Kein gueltiges Datum (TT.MM.JJJdJ)");
}

Eine Beschreibung der vordefinierten DateFormat-Formate sowie der Definition eigener For-
mate mit SimpleDateFormat finden Sie in Rezept 41. Ein Beispiel fiir das Einlesen von Datums-
werten mit eigenen SimpleDateFormaten finden Sie im Start-Programm zu diesem Rezept.

>> Datum und Uhrzeit 131

Beim Parsen spielt es grundsitzlich keine Rolle, wie oft ein bedeutungstragender Buch-
stabe, etwa das M fiir Monatsangaben, wiederholt wird. Wahrend »MM« bei der Forma-
tierung eine zweistellige Ausgabe erzwingt, sind fiir den Parser »M« und »MMz« gleich,
d.h., er liest die Anzahl der Monate - egal aus wie vielen Ziffern die Angabe besteht.
(Tatséchlich kénnen sogar Werte wie 35 oder 123 ibergeben werden. Der iiberzihlige
Betrag wird in die nichsthéhere Einheit, fiir Monate also Jahre, umgerechnet. Wenn
Sie dieses Verhalten unterbinden wollen, rufen Sie setlLenient(false) auf.)

Eine Ausnahme bilden die Jahresangaben. Zweistellige Jahresangaben werden beim
Parsen als Kiirzel fiir vierstellige Jahresangaben angesehen und so erginzt, dass das
sich ergebende Datum nicht mehr als 80 Jahre vor und nicht weiter als 20 Jahre hinter
dem aktuellen Datum liegt. Angenommen, das Programm wird am 05. April 2005 aus-
gefiihrt. Die Eingabe 05.04.24 wird dann als 5. April 2024 geparst. Auch die Eingabe
05.04.25 wird noch ins 21. Jahrhundert verlegt, wihrend die Eingabe 06.04.25 bereits
als 6. April 1925 interpretiert wird.

=
@
N
N
=
=
=
=
=
=
=
=
©
(=]

Jahresangaben aus einem oder mehr als zwei Buchstaben (vy«, »yyyy«) werden immer
unverdndert iibernommen.

o+ Eingabeaufforderung

>java Start 26.83.1998
Montag, 26. Marz 1998
>java Start B84.12_2885
Sonntag, 4. Dezember 2885

>java Start 18.87.2887

Dienstag, 18. Juli 2887

>java Start 87-18-2887

Kein gueltiges Datum (TT.MM.JJJJ>
>

Abbildung 26: Einlesen von Datumseingaben im DateFormat.MEDIUM-Format fir die
deutsche Lokale. Der dritte Aufruf demonstriert, wie zu grof3e Werte
in die ndchsthéhere Einheit umgerechnet werden. Der vierte Aufruf
zeigt, wie Datumsangaben im angelsdchsischen Format abgewiesen werden.

44 Datumswerte vergleichen

Um festzustellen, ob zwei Datumswerte (gegeben als Date- oder Calendar-Objekt) gleich sind,
brauchen Sie nur die Methode equals() aufzurufen:

// gegeben Date tl und t2
if (tl.equals(t2))
System.out.printin("gleiche Datumswerte");

Um zu priifen, ob ein Datum zeitlich vor oder nach einem zweiten Datum liegt, stehen Thnen
neben compareTo() die speziellen Methoden before() und after() zur Verfiigung:

// gegeben Calendar t1 und t2
if (tl.after(t2))
System.out.printin("\t t1 Tiegt nach t2");

=
@
N
N
=
=
=
=
=
£
=
=
©
(=]

132 >> Datumswerte vergleichen

Date-/Calendar-Methode ‘ Beschreibung

boolean equals(Object) Liefert true, wenn der aktuelle Datumswert und das tibergebene
Datum identisch sind.

Bei Date ist dies der Fall, wenn beide Objekte vom Typ Date sind
und auf derselben Anzahl Millisekunden basieren.

Bei Calendar ist dies der Fall, wenn beide Objekte vom Typ Calen-
dar sind, auf derselben Anzahl Millisekunden basieren und
bestimmte Calendar-Charakteristika sowie die Zeitzone iiberein-
stimmen.

int compareTo(Date/0bject) Liefert -1, O oder 1 zuriick, je nachdem, ob der aktuelle Datums-
wert kleiner, gleich oder gréfer dem {ibergebenen Wert ist.

boolean before(Date/Object) Liefert true, wenn der aktuelle Datumswert zeitlich vor dem tiber-
gebenen Datum liegt.

boolean after(Date/Object) Liefert true, wenn der aktuelle Datumswert zeitlich nach dem
tibergebenen Datum liegt.

Tabelle 19: Vergleichsmethoden fir Datumswerte

Vergleiche unter Ausschluss der Uhrzeit

Die vordefinierten Vergleichsmethoden der Klasse Date und Calendar basieren allesamt auf der
Anzahl Millisekunden seit dem 01.01.1970 00:00:00 Uhr, GMT. Sie sind also nicht geeignet,
wenn Sie feststellen mochten, ob zwei Datumswerte denselben Tag (ohne Beriicksichtigung
der Uhrzeit) bezeichnen:

// Datumsobjekt fur den 5. April 2005, 12 Uhr
Calendar tl = Calendar.getInstance();
tl.set(2005, 3, 5, 12, 0, 0);

// Datumsobjekt fur den 5. April 2005, 13 Uhr
Calendar t2 = Calendar.getInstance();

System.out.printin("Vergleich mit equals() : " + tl.equals(t2)); // false
System.out.printin("Vergleich mit compareTo(): " + tl.compareTo(t2)); // -1

Um Datumswerte ohne Beriicksichtigung der Uhrzeit vergleichen zu kénnen, bedarf es dem-
nach eigener Hilfsmethoden:
/**
* Prift, ob zwei Calendar-Objekte den gleichen Tag im Kalender bezeichnen
*/
public static boolean equalDays(Calendar tl, Calendar t2) {
return (tl.get(Calendar.YEAR) == t2.get(Calendar.YEAR))
&& (tl.get(Calendar.MONTH) == t2.get(Calendar.MONTH))
&& (tl.get(Calendar.DAY_OF_MONTH) == t2.get(Calendar.DAY_OF_MONTH));
}

Die Methode equalDays() priift paarweise, ob Jahr, Monat und Tag der beiden Calendar-
Objekte libereinstimmen. Wenn ja, liefert sie true zurtick.
/**

* Prift, ob zwei Calendar-Objekte den gleichen Tag bezeichnen
*/
public static int compareDays(Calendar tl, Calendar t2) {

>> Datum und Uhrzeit 133

Calendar clonel = (Calendar) t1;

clonel.set(tl.get(Calendar.YEAR), tl.get(Calendar.MONTH),
tl.get(Calendar.DATE), 0, 0, 0);

clonel.clear(Calendar.MILLISECOND);

Calendar clone2 = (Calendar) t2;

clone?.set(t2.get(Calendar.YEAR), t2.get(Calendar.MONTH),
t2.get(Calendar.DATE), 0, 0, 0);

clone2.clear(Calendar .MILLISECOND) ;

=
[
N
N
=
=
=
=
=
=
=
=
©
(=]

return clonel.compareTo(clone?);
}

Die Methode compareDays() nutzt einen anderen Ansatz als equalDays(). Sie legt Kopien der
iibergebenen Calendar-Objekte an und setzt fiir diese die Werte der Stunden, Minuten, Sekun-
den (set()-Aufruf) sowie Millisekunden (clear()-Aufruf) auf 0. Dann vergleicht sie die Klone
mit Calendar.compareTo() und liefert das Ergebnis zuriick.

45 Differenz zwischen zwei Datumswerten berechnen

Wie Sie die Differenz zwischen zwei Datumswerten berechnen, hingt vor allem davon ab,
wozu Sie die Differenz benétigen und was Sie daraus ablesen wollen. Geht es lediglich darum,
ein MaB fiir den zeitlichen Abstand zwischen zwei Datumswerten zu erhalten, geniigt es, sich
die Datumswerte als Anzahl Millisekunden, die seit dem 01.01.1970 00:00:00 Uhr, GMT, ver-
gangen sind, zuriickliefern zu lassen und voneinander zu subtrahieren:

long diff = Math.abs(datel.getTimeInMillis() - date2.getTimeInMillis());

Wenn Sie mit Calendar-Objekten arbeiten, erhalten Sie die Anzahl Millisekunden von
der Methode getTimeInMillis(). Fiir Date-Objekte rufen Sie stattdessen getTime() auf.

Uhrzeit ausschalten

Datumswerte, ob sie nun durch ein Objekt der Klasse Date oder Calendar reprdsentiert werden,
schlieBen immer auch eine Uhrzeit ein. Wenn Sie Datumsdifferenzen ohne Beriicksichtigung
der Uhrzeit berechnen wollen, miissen Sie die Uhrzeit fiir alle Datumswerte auf einen gemein-
samen Wert setzen.

Wenn Sie ein neues GregorianCalendar-Objekt fiir ein bestimmtes Datum setzen und nur die
Daten fiir Jahr, Monat und Tag angeben, werden die Uhrzeitfelder automatisch auf O gesetzt.
Um Ihre Intention deutlicher im Quelltext widerzuspiegeln, konnen Sie die Felder fiir Stunden,
Minuten und Sekunden aber auch explizit auf O setzen:

GregorianCalendar datel = new GregorianCalendar(2002, 5, 1);
GregorianCalendar date?2 = new GregorianCalendar(2002, 5, 1, 0, 0, 0);

Fir bestehende Calendar-Objekte konnen Sie die Uhrzeitfelder mit Hilfe von set() oder
clear() auf O setzen:

// Aktuelles Datum
Calendar today = Calendar.getInstance();

=
@
N
N
=
=
=
=
=
£
=
=
©
(=]

134 >> Differenz zwischen zwei Datumswerten in Jahren, Tagen und Stunden berechnen

// Stunden, Minuten und Sekunden auf 0 setzen

today.set(today.get(Calendar.YEAR), today.get(Calendar.MONTH),
today.get(Calendar.DATE), 0, 0, 0);

// Millisekunden auf 0 setzen

today.clear(Calendar.MILLISECOND);

Eine Beschreibung der verschiedenen Datums- und Uhrzeitfelder finden Sie in Tabelle 15 aus
Rezept 40.

46 Differenz zwischen zwei Datumswerten in Jahren,
Tagen und Stunden berechnen

Weit komplizierter ist es, die Differenz zwischen zwei Datumswerten aufgeschliisselt in Jahre,
Tage, Stunden etc. anzugeben. Daran sind vor allem zwei Umstédnde Schuld:

p Die Sommerzeit.

Wenn zwei Datumswerte verglichen werden, von denen einer innerhalb und der andere
auBerhalb der Sommerzeit liegt, filhrt die Sommerzeitverschiebung zu eventuell uner-
wiinschten Differenzberechnungen.

In Deutschland beginnt die Sommerzeit am 27. Mérz. Um zwei Uhr nachts wird die Uhr um
1 Stunde vorgestellt. Die Folge: Zwischen dem 27. Mirz 00:00 Uhr und dem 28. Mérz
00:00 Uhr liegen tatsdchlich nur 23 Stunden. Trotzdem entspricht dies kalendarisch einem
vollen Tag! Wie also sollte ein Programm diese Differenz anzeigen: als 23 h oder als 1 d?

» Die unterschiedlichen Langen der Monate und Jahre.

Wenn Sie eine Differenz in Jahren und/oder Monaten ausdriicken mochten, stehen Sie vor
der Entscheidung, ob Sie mit festen Lingen rechnen wollen (1 Jahr = 365 Tage, 1 Monat =
30 Tage oder auch 1 Jahr = 365,25 Tage, 1 Monat = 30,4 Tage) oder ob Sie die exakten
Langen berticksichtigen.

Die Klasse TimeSpan dient sowohl der Représentation als auch der Berechnung von Datumsdif-
ferenzen. In ihren private-Feldern speichert sie die Differenz zwischen zwei Datumswerten
sowohl in Sekunden (diff) als auch ausgedriickt als Kombination aus Jahren, Tagen, Stunden,
Minuten und Sekunden.

TimeSpan-Objekte konnen auf zweierlei Weise erzeugt werden:

» indem Sie den public-Konstruktor aufrufen und die Differenz selbst als Kombination aus
Jahren, Tagen, Stunden, Minuten und Sekunden iibergeben:
TimeSpan ts = new TimeSpan(0, 1, 2, 0, 0);

P indem Sie die Methode getInstance() aufrufen und dieser zwei GregorianCalendar-Objekte
iibergeben, sowie boolesche Werte, die der Methode mitteilen, ob bei der Berechnung der
Differenz auf Sommerzeit und Schaltjahre zu achten ist:

GregorianCalendar timel = new GregorianCalendar(2005, 2, 26);
GregorianCalendar time2 = new GregorianCalendar(2005, 2, 27);
TimeSpan ts = TimeSpan.getInstance(timel, time2, true, true);

Die Differenz, die ein TimeSpan-Objekt reprasentiert, konnen Sie auf zweierlei Weise abfragen:

» Mit Hilfe der get-Methoden (getYears(), getDays() etc.) lassen Sie sich die Werte der zu-
gehorigen Felder zuriickliefern und erhalten so die Kombination aus Jahren, Tagen, Stun-

>> Datum und Uhrzeit 135

den, Minuten und Sekunden, aus denen sich die Differenz zusammensetzt. (Die Methode
toString() liefert auf diese Weise die Differenz als String zuriick - nur dass sie natiirlich
direkt auf die Feldwerte zugreift.)

P Mittels der in-Methoden (inYears(), inWeeks() etc.) konnen Sie sich die Differenz ausge-
driickt in ganzzahligen Werten einer einzelnen Einheit (also beispielsweise in Jahren oder
Tagen) zuriickliefern lassen.

Der Quelltext der Klasse TimeSpan sieht folgendermafBen aus:

=
[
N
N
=
=
=
=
=
=
=
=
©
(=]

import java.util.Calendar;
import java.util.GregorianCalendar;
import java.util.TimeZone;

/**

* Klasse zur Reprdsentation und Berechnung von Zeitabstdnden
* zwischen zwei Datumsangaben
*/
public class TimeSpan {
private int years;
private int days;
private int hours;
private int minutes;
private int seconds;
private Tong diff;

// public Konstruktor
public TimeSpan(int years, int days, int hours,
int minutes, int seconds) {
this.years = years;
this.days = days;
this.hours = hours;
this.minutes = minutes;
this.seconds = seconds;
diff = seconds + 60*minutes + 60*60*hours
+ 24%60*60*days + 365*24*60*60*years;
t

// protected Konstruktor, wird von getInstance() verwendet
protected TimeSpan(int years, int days, int hours,
int minutes, int seconds, long diff) {

this.years = years;

this.days = days;

this.hours = hours;

this.minutes = minutes;

this.seconds = seconds;

this.diff = diff;

}

// Erzeugt aus zwei GregorianCalendar-Objekten
// ein TimeSpan-0Objekt

Listing 49: Die Klasse TimeSpan

136 >> Differenz zwischen zwei Datumswerten in Jahren, Tagen und Stunden berechnen

public static TimeSpan getlnstance(GregorianCalendar tl,
GregorianCalendar t2,
boolean summer, boolean Teap) f
// siehe unten
}

public int getYears() { return years; }
public int getDays() { return days; }
public int getHours() { return hours; !}
public int getMinutes() { return minutes; }
public int getSeconds() { return seconds; |}

=
@
N
N
=
=
=
=
=
£
=
=
©
(=]

return (int) (diff / 60); }
return (int) (diff); }

public int inMinutes()
public int inSeconds()

public int inYears() { return (int) (diff / (60 * 60 * 24 * 365)); }
public int inWeeks() { return (int) (diff / (60 * 60 * 24 * 7)); }
public int inDays() { return (int) (diff / (60 * 60 * 24)); }
public int inHours() { return (int) (diff / (60 * 60)); |}

{

{

pubTic String toString() {
StringBuilder s = new StringBuilder("");

if(years > 0) s.append(years +" j ");
if(days > 0) s.append(days + "t ");
if(hours > 0) s.append(hours + " std ");
if(minutes > 0) s.append(minutes + " min ");
if(seconds > 0) s.append(seconds + " sec ");

if (s.toString().equals(""))
s.append("Kein Zeitunterschied");

return s.toString();

Listing 49: Die Klasse TimeSpan (Forts.)

Am interessantesten ist zweifelsohne die Methode getInstance(), die die Differenz zwischen
zwei GregorianCalendar-Objekten berechnet, indem Sie die Differenz aus den Millisekunden-
Werten (zuriickgeliefert von getTimeInMillis()) berechnet, diesen Wert durch Division mit
1000 in Sekunden umrechnet und dann durch sukzessive Modulo-Berechnung und Division in
Sekunden, Minuten, Stunden, Tage und Jahr zerlegt. Am Beispiel der Berechnung des Sekun-
denanteils mochte ich dies kurz erldutern:

Nachdem die Methode die Differenz durch 1000 dividiert hat, speichert sie den sich ergeben-
den Wert in der lokalen 1ong-Variable diff, die somit anfangs die Differenz in Sekunden ent-
halt.

diff = (last.getTimeInMillis() - first.getTimeInMillis())/1000;
Rechnet man diff%60 (Modulo = Rest der Division durch 60), erhdlt man den Sekundenanteil:

int seconds = (int) (diff%60);

>> Datum und Uhrzeit 137

AnschlieBend wird diff durch 60 dividiert und das Ergebnis zuriick in diff gespeichert.
diff /= 60;

Jetzt speichert diff die Differenz in ganzen Minuten (ohne den Rest Sekunden).

public static TimeSpan getInstance(GregorianCalendar tl1,
GregorianCalendar t2,
boolean summer, boolean Teap) {
GregorianCalendar first, last;
TimeZone tz;
long diff, save;

=
[
N
N
=
=
=
=
=
=
=
=
©
(=]

// Immer frihere Zeit von spdteren Zeit abziehen
if (tl.getTimeInMillis() > t2.getTimeInMillis()) {
last = tl;
first = t2;
} else {
Tast = t2;
first = tl;
}

// Differenz in Sekunden
diff = (Tast.getTimeInMiTlis() - first.getTimeInMillis())/1000;

if (summer) { // Sommerzeit ausgleichen
tz = first.getTimeZone();
if(1(tz.inDaylightTime(first.getTime()))
&& (tz.inDaylightTime(last.getTime())))
diff += tz.getDSTSavings()/1000;
if((tz.inDaylightTime(first.getTime()))
&& ! (tz.inDaylightTime(last.getTime())))
diff -= tz.getDSTSavings()/1000;
}

save = diff;

// Sekunden, Minuten und Stunden berechnen
int seconds = (int) (diff%60); diff /= 60;
int minutes = (int) (diff%60); diff /= 60;
int hours (int) (diff%24); diff /= 24;

// Jahre und Tage berechnen
int days = 0;
int years = 0;

if (leap) { // Schaltjahre ausgleichen
int startYear = 0, endYear = 0;
int leapDays = 0; // Schalttage in Zeitraum
int subtractlLeapDays = 0; // abzuziehende Schalttage

// (da in Jahren enthalten)

Listing 50: Quelltext der Methode TimeSpan.getinstance()

138 >> Differenz zwischen zwei Datumswerten in Jahren, Tagen und Stunden berechnen

if((first.get(Calendar.MONTH) < 1)
[| ((first.get(Calendar.MONTH) == 1)
&& (first.get(Calendar.DAY_OF_MONTH) < 29)))
startYear = first.get(Calendar.YEAR);
else
startYear = first.get(Calendar.YEAR)+1;

if((lTast.get
Il (

(Calendar.MONTH) > 1)
(lTast.get(Calendar.MONTH) == 1)
&& (Tast.get(Calendar.DAY_OF_MONTH) == 29)))
endYear = last.get(Calendar.YEAR);
else
endYear = Tast.get(Calendar.YEAR)-1;

=
@
N
N
=
=
=
=
=
£
=
=
©
(=]

for(int i = startYear; i <= endYear; ++i)
if (first.islLeapYear(i))
++1eapDays;

// Jahre berechnen

years = (int) ((diff-leapDays)/365);

// in Jahren enthaltene Schalttage

subtractlLeapDays = (years+3)/4;

if (subtractlLeapDays > TeapDays)
subtractLeapDays = leapDays;

// Tage berechnen

days = (int) (diff - ((years*365) + subtractLeapDays));
b else {

days = (int) (diff%365);

years = (int) (diff/365);

}

return new TimeSpan(years, days, hours, minutes, seconds, (int) save);

Listing 50: Quelltext der Methode TimeSpan.getinstance() (Forts.)

Was zum Verstindnis der getInstance()-Methode noch fehlt, ist die Beriicksichtigung von
Sommerzeit und Schaltjahren.

Wird fiir den Parameter summer der Wert true iibergeben, priift die Methode, ob einer der
Datumswerte (aber nicht beide) in die Sommerzeit der aktuellen Zeitzone fallen. Dazu lésst sie
sich von der Calendar-Methode getTimeZone() ein TimeZone-Objekt zuriickliefern, das die Zeit-
zone des Kalenders présentiert, und tibergibt nacheinander dessen inDay1ightTime()-Methode
die zu kontrollierenden Datumswerte:

if (summer) { // Sommerzeit ausgleichen
tz = first.getTimeZone();
if(1(tz.inDaylightTime(first.getTime()))
&& (tz.inDaylightTime(last.getTime())))

>> Datum und Uhrzeit 139

diff += tz.getDSTSavings()/1000;
if((tz.inDaylightTime(first.getTime()))
&& 1(tz.inDaylightTime(last.getTime())))
diff -= tz.getDSTSavings()/1000;
}

Fallt tatsdchlich einer der Datumswerte in die Sommerzeit und der andere nicht, gleicht die
Methode die Sommerzeitverschiebung aus, indem sie sich von der getDSTSavings()-Methode
des TimeZone-Objekts die Verschiebung in Millisekunden zurtickliefern ldsst und diesen Wert,
geteilt durch 1000, auf diff hinzuaddiert oder von diff abzieht. Die Differenz zwischen dem
27. Mérz 00:00 Uhr und dem 28. Mérz 00:00 Uhr wird dann beispielsweise als 1 Tag und nicht
als 23 Stunden berechnet.

Wird fiir den Parameter 1eap der Wert true tibergeben, berticksichtigt die Methode in Zeitdiffe-
renzen, die sich iiber mehrere Jahre erstrecken, Schalttage. Schaltjahre, die in der Differenz
komplett enthalten sind, werden demnach als 366 Jahre angerechnet. So wird die Differenz
zwischen 01.02.2004 und dem 01.03.2004 zu 29 Tagen berechnet und die Differenz zwischen
dem 01.02.2004 und dem 01.02.2005 als genau 1 Jahr. In den meisten Féllen fiihrt diese
Berechnung zu Ergebnissen, die man erwartet, sie zeitigt aber auch Merkwiirdigkeiten. So
werden beispielsweise die Differenzen zwischen dem 28.02.2004 und dem 28.02.2005 zum
einen 29.02.2004 und dem 28.02.2005 zum anderen beide zu 1 Jahr berechnet.

Wenn Sie fiir den Parameter 1eap den Wert false iibergeben, wird das Jahr immer als 365 Tage
aufgefasst.

Das Start-Programm zu diesem Rezept liest iiber die Befehlszeile zwei deutsche Datumsanga-
ben im Format TT.MM.JJJJ ein und berechnet die Differenz unter Beriicksichtigung von Som-
merzeit und Schaltjahren.

import java.util.GregorianCalendar;
import java.text.DatefFormat;
import java.text.ParseException;
import java.util.locale;

pubTic class Start {

public static void main(String args[]) {
DatefFormat parser = DateFormat.getDatelnstance(DateFormat.MEDIUM,
Locale.GERMANY);
GregorianCalendar timel = new GregorianCalendar();
GregorianCalendar time2 = new GregorianCalendar();
TimeSpan ts;
System.out.printin();

if (args.length !=2) {
System.out.printin(" Aufruf: Start <Datum: TT.MM.JJJdJd> "
+ "<Datum: TT.MM.JJddd>");
System.exit(0);
}

try {

Listing 51: Differenz zwischen zwei Datumswerten berechnen

=
[
N
N
=
=
=
=
=
=
=
=
©
(=]

.E
N
=
=
=
=
=
£
=
i<}
(=]

140 >> Differenz zwischen zwei Datumswerten in Tagen berechnen

timel.setTime(parser.parse(args[0]));
time2.setTime(parser.parse(args[(1]));

ts = TimeSpan.getInstance(timel, time2, true, true);
System.out.printin(" Differenz: " + ts);

} catch(ParseException e) {
System.err.printin("\n Kein gueltiges Datum (TT.MM.JJJdd)");
}

Listing 51: Differenz zwischen zwei Datumswerten berechnen (Forts.)

ngabeaufforderung

*java Start A1.01.2804 BA1.
Differenz: 1 j

*java Start 01.01.28085 31.
Differenz=: 364 t

>java Start B1.081.2884 31.
Differen=z: 365 t

>java Start B1.01.2884 A%.
Differenz: 129 t

>java Start 01.01.2008 A9.
Differenz=z: 4 j 129 t

>

Abbildung 27: Beispielaufrufe

47 Differenz zwischen zwei Datumswerten in Tagen
berechnen

Ein Tag besteht stets aus 24 Stunden, 24*60 Minuten, 24*60*60 Sekunden oder 24*60*60*1000
Millisekunden. Was liegt also néher, als die Differenz zwischen zwei Datumswerten zu berech-
nen, indem man die in den Calendar-Objekten gespeicherte Anzahl Millisekunden seit dem
01.01.1970 00:00:00 Uhr, GMT, abfragt, voneinander abzieht, durch 1000 und weiter noch
durch 24*60*60 dividiert?

// Vereinfachter Ansatz:
Tong diff = Math.abs((time2.getTimeInMillis()-timel.getTimeInMi11is())/1000);
Tong diffInDays = diff/(60*60%24);

Das Problem an dieser Methode ist, dass die Sommerzeit nicht beriicksichtigt wird. Stiinde in
obigem Code timel fiir den 27. Mérz 00:00 Uhr und time2 fiir den 28. Mérz 00:00 Uhr, wire
diff lediglich gleich 23*60*60 und diffInDays ergibe O.

Um korrekte Ergebnisse zu erhalten, konnen Sie entweder die Zeitzone des Calendar-Objekts
auf eine TimeZone-Instanz umstellen, die keine Sommerzeit kennt (und zwar bevor in dem
Objekt die gewiinschte Zeit gespeichert wird), die Sommerzeitverschiebung manuell korrigie-
ren (siehe Quelltext zu getInstance() aus Rezept 46) oder sich der in Rezept 46 definierten
TimeSpan-Klasse bedienen. In letzterem Fall miissen die beiden Datumswerte als Gregorian-

>> Datum und Uhrzeit 141

Calendar-Objekte vorliegen. Diese iibergeben Sie dann an die Methode getInstance(), wobei
Sie als drittes Argument unbedingt true tibergeben, damit die Sommerzeit beriicksichtigt wird.
(Das vierte Argument, das die Beriicksichtigung der Schalttage bei der Berechnung der Jahre
steuert, ist fiir die Differenz in Tagen unerheblich.)

import java.util.GregorianCalendar;
// gegeben GregorianCalendar timel und time2

TimeSpan ts = TimeSpan.getInstance(timel, time2, true, true);
System.out.printin("Differenz: " + ts.inDays());

=
[
N
N
=
=
=
=
=
=
=
=
©
(=]

Das Start-Programm zu diesem Rezept berechnet auf diese Weise die Differenz in Tagen zwi-
schen zwei Datumseingaben, die iiber die Befehlszeile entgegengenommen werden.

Die Realitét ist leider oftmals komplizierter, als wir Programmierer es uns wiinschen.
Tatséchlich ist in UTC (Coordinated Universal Time) nicht jeder Tag 24*60*60 Sekunden
lang. Alle ein oder zwei Jahre wird am Ende des 31. Dezember oder 30 Juni eine
Schaltsekunde eingefiigt, so dass der Tag 24*60*60+1 Sekunden lang ist. Diese Korrek-
tur gleicht die auf einer Atomuhr basierende UTC-Zeit an die UT-Zeit (GMT) an, die auf
der Erdumdrehung beruht.

48 Tage zu einem Datum addieren/subtrahieren

In Sprachen, die die Uberladung von Operatoren unterstiitzen, erwarten Programmieranfanger
héufig, dass man das Datum, welches in einem Objekt einer Datumsklasse gekapselt ist, mit
Hilfe iiberladener Operatoren inkrementieren oder um eine bestimmte Zahl Tage erhohen
kann:

+date; // kein Java!
date = date + 3; // kein Java!

Nicht selten sehen sich die Adepten dann getduscht, weil die zugrunde liegende Implementie-
rung nicht die Anzahl Tage, sondern die Anzahl Millisekunden, auf denen das Datum basiert,
erh6hen.

Nun, in Java gibt es keine {iberladenen Operatoren und obiger Fallstrick bleibt uns erspart.
Wie aber kann man in Java Tage zu einem bestehenden Datum hinzuaddieren oder davon
abziehen?

Wie Sie mittlerweile wissen, werden Datumswerte in Calendar-Objekten sowohl als Anzahl
Millisekunden als auch in Form von Datums- und Uhrzeitfeldern (Jahr, Monat, Wochentag,
Stunde etc.) gespeichert. Diese Felder konnen mit Hilfe der get-/set-Methoden der Klasse (siehe
Tabelle 15) abgefragt und gesetzt werden.

Eine Moglichkeit, Tage zu einem Datum zu addieren oder von einem Datum abzuziehen,
ist daher, set() fiir das Feld Calendar.DAY_OF_MONTH aufzurufen und diesem den alten Wert
(= get(Calendar.DAY_OF_MONTH)) plus der zu addierenden Anzahl Tage (negativer Wert fiir
Subtraktion) zu tibergeben.

date.set(Calendar.DAY_OF_MONTH, date.get(Calendar.DAY_OF_MONTH) + days);

Einfacher noch geht es mit Hilfe der add()-Methode, der Sie nur noch das Feld und die zu
addierende Anzahl Tage (negativer Wert fiir Subtraktion) iibergeben miissen:

date.add(Calendar.DAY_OF_MONTH, days);

=
©
N
=
=
=
=
=
=
=S
=
©
[=]

142 >> Datum in julianischem Kalender

Kommt es zu einem Uber- oder Unterlauf (die berechnete Anzahl Tage ist groBer als die Tage
im aktuellen Monat bzw. kleiner als 1), passt add() die néichstgroBere Einheit an (fiir Tage also
das MONTH-Feld). Die set()-Methode passt die nichsthéhere Einheit nur dann an, wenn das
private-Feld lenient auf true steht (Standardwert, Einstellung tiber setlenient()). Ansonsten
wird eine Exception ausgelost.

Mit der rol1()-Methode schlieBlich konnen Sie den Wert eines Feldes dndern, ohne dass bei
Uber- oder Unterlauf das nichsthohere Feld angepasst wird.

date.rol1(Calendar.DAY_OF_MONTH, days);

Methode | Arbeitsweise

set(int field, int value) Anpassung der iibergeordneten Einheit, wenn lenient = true,
ansonsten Auslosen einer Exception

add(int field, int value) Anpassung der iibergeordneten Einheit

rol1(int field, int value) Keine Anpassung der iibergeordneten Einheit

Tabelle 20: Methoden zum Erhéhen bzw. Vermindern von Datumsfeldern

Das Start-Programm demonstriert die Arbeit von add() und rol1(). Datum und die hinzuzu-
addierende Anzahl Tage werden als Argumente {iber die Befehlszeile {ibergeben.

ingabeaufforderung

>java Start A1.01.2884 38

Heues Datum: 31.81.2804
roll-Klon = 31.01.20084

>java Start B1.81.2884 31

Heues Datum: B1.82_2004
roll-Klon : B1.061.2084

»java Start B1.01.2004 @8

Neues Datum:= @1.01.268084
roll-Klon : 61.81.2804

>java Start 81.81.28084 -1

Neues Datum:= 31.12.268083
roll-Klon : 31.81.2884

>

Abbildung 28: Addieren und Subtrahieren von Tagen

49 Datum in julianischem Kalender

Sie benétigen ein Calendar-Objekt, welches den 27.04.2005 im julianischen Kalender repri-
sentiert?

In diesem Fall reicht es nicht, einfach dem GregorianCalendar-Konstruktor Jahr, Monat (-1)
und Tag zu iibergeben, da die Hybridimplementierung der Klasse GregorianCalendar standard-
maBig Daten nach dem 15. Oktober 1582 als Daten im gregorianischen Kalender interpretiert
(vergleiche Rezept 40).

Stattdessen miissen Sie
1. ein neues GregorianCalendar-Objekt erzeugen:

GregorianCalendar jul = new GregorianCalendar();

>> Datum und Uhrzeit 143

2. dessen GregorianChange-Datum auf Date(Long.MAX_VALUE) einstellen:
jul.setGregorianChange(new Date(Long.MAX_VALUE));

3. Jahr, Monat und Tag fiir das Objekt setzen:
jul.set(2005, 3, 27);

Das neue Objekt reprasentiert nun das gewiinschte Datum im julianischen Kalender. (Der
intern berechnete Millisekundenwert gibt also an, wie viele Sekunden das Datum vom
01.01.1970 00:00:00 Uhr, GMT, entfernt liegt.)

=
[
N
N
=
=
=
=
=
=
=
=
©
(=]

Wenn Sie das Datum mittels einer DateFormat-Instanz in einen String umwandeln
mochten, missen Sie beachten, dass die DateFormat-Instanz standardméBig mit einer
GregorianCalendar-Instanz arbeitet, die fiir Datumswerte nach Oktober 1582 mit dem
gregorianischen Kalender arbeitet. Um das korrekte julianische Datum zu erhalten,
miissen Sie dem Formatierer eine Calendar-Instanz zuweisen, die fiir alle Datumswerte
nach dem julianischen Kalender rechnet, beispielsweise also jul:

DateFormat dfJul = DateFormat.getDatelnstance(DateFormat.FULL);
dfJdul.setCalendar(jul);
System.out.printin(dfdul.format(jul.getTime()));

50 Umrechnen zwischen julianischem und
gregorianischem Kalender

Um ein Datum im julianischen Kalender in das zugehorige Datum im gregorianischen Kalen-
der umzuwandeln (so dass beide Daten gleich viele Millisekunden vom 01.01.1970 00:00:00
Uhr, GMT, entfernt liegen), gehen Sie am besten wie folgt vor:

1. Erzeugen Sie ein neues GregorianCalendar-Objekt:
GregorianCalendar gc = new GregorianCalendar();

2. Stellen Sie dessen GregorianChange-Datum auf Date(Long.MIN_VALUE) ein:
gc.setGregorianChange(new Date(Long.MAX_VALUE));

3. Setzen sie die interne Millisekundenzeit des Objekts auf die Anzahl Millisekunden des juli-
anischen Datums:

gc.setTimeInMillis(c.getTimeInMillis());

Wenn Sie ein Datum im gregorianischen Kalender in das zugehdrige Datum im julianischen
Kalender umwandeln mochten, gehen Sie analog vor, nur dass Sie setGregorianChange() den
Date(Long.MAX_VALUE) Wert libergeben.

/**

* Gregorianisches Datum in julianisches Datum unwandeln

*/

public static GregorianCalendar gregorianTodulian(GregorianCalendar c) {

GregorianCalendar gc = new GregorianCalendar();
gc.setGregorianChange(new Date(Long.MAX_VALUE));

Listing 52: Methoden zur Umwandlung von Datumswerten zwischen julianischem und
gregorianischem Kalender

=
@
N
N
=
=
=
=
=
£
=
=
©
(=]

144 >> Ostersonntag berechnen

gc.setTimeInMillis(c.getTimeInMillis());

return gc;
}

/**

* Julianisches Datum in gregorianisches Datum unwandeln

*/

public static GregorianCalendar julianToGregorian(GregorianCalendar c) {
GregorianCalendar gc = new GregorianCalendar();
gc.setGregorianChange(new Date(Long.MIN_VALUE));
gc.setTimeInMillis(c.getTimeInMillis());

return gc;

Listing 52: Methoden zur Umwandlung von Datumswerten zwischen julianischem und
gregorianischem Kalender (Forts.)

Wenn Sie Datumswerte mittels einer DateFormat-Instanz in einen String umwandeln:

GregorianCalendar date = new GregorianCalendar();
DateFormat df = DateFormat.getDatelInstance();
String s = df.format(date.getTime());

missen Sie beachten, dass die DateFormat-Instanz das {ibergebene Datum als Date-Objekt
tibernimmt und mittels einer eigenen Calendar-Instanz in Jahr, Monat etc. umrechnet.
Wenn Sie mit DateFormat Datumswerte umwandeln, fiir die Sie das GregorianChange-
Datum umgestellt haben, miissen Sie daher auch fiir das Calendar-Objekt der DateFor-
mat-Instanz das GregorianChange-Datum umstellen - oder es einfach durch das Grego-
rianCalendar-Objekt des Datums ersetzen:

GregorianCalendar jul = new GregorianCalendar();
jul.setGregorianChange(new Date(Long.MAX_VALUE));

DateFormat dfJul = DateFormat.getDatelnstance(DateFormat.FULL);
dfdul.setCalendar(jul);

Das Start-Programm zu diesem Rezept liest ein Datum iiber die Befehlszeile ein und interpre-
tiert es einmal als gregorianisches und einmal als julianisches Datum, welche jeweils in ihre
julianische bzw. gregorianische Entsprechung umgerechnet werden.

51 Ostersonntag berechnen

Der Ostersonntag ist der Tag, an dem die Christen die Auferstehung Jesu Christi feiern. Gleich-
zeitig kennzeichnet er das Ende des oOsterlichen Festkreises, der mit dem Aschermittwoch
beginnt.

Fiir den Programmierer ist der Ostersonntag insofern von zentraler Bedeutung, als er den
Referenzpunkt fiir die Berechnung der 6sterlichen Feiertage darstellt: Aschermittwoch, Griin-
donnerstag, Karfreitag, Ostermontag, Christi Himmelfahrt, Pfingsten.

>> Datum und Uhrzeit 145

Der Ostertermin richtet sich nach dem jidischen Pessachfest und wurde auf dem Konzil von
Nicéda 325 festgelegt als:

»Der 1. Sonntag, der dem ersten Pessach-Vollmond folgt.« - was auf der Nordlichen Halb-

kugel dem ersten Vollmond nach der Friihlings-Tag-und-Nachtgleiche entspricht.

Wegen dieses Bezugs auf den Vollmond ist die Berechnung des Ostersonntags recht kompli-
ziert. Traditionell erfolgte die Berechnung mit Hilfe des Mondkalenders und der goldenen Zahl
(die laufende Nummer eines Jahres im Mondzyklus). Heute gibt es eine Vielzahl von Algorith-

men zur

Friedrich GauB, Mallen und Oudin. Auf Letzterem basiert auch der in diesem Rezept imple-
mentierte Algorithmus:

Berechnung des Ostersonntags. Die bekanntesten sind die Algorithmen von Carl

=
[
N
N
=
=
=
=
=
=
=
=
©
(=]

import java.util.GregorianCalendar;

/**

* Datum des Ostersonntags im gregorianischen Kalender berechnen

*/

public static GregorianCalendar eastern(int year) {

int
int
int

int
int
int
int
int
int
int
int

c = year/100;

n = year - 19 * (year/19);

k= (c - 17)/25;

11 =c - c/4 - (c-k)/3 +19*n + 15;

12 =11 - 30*(11/30);

13 =12 - (12/28)*(1 - (12/28) * (29/(1241)) * ((21-n)/11));
al = year + year/4 + 13+ 2 - c + c/4;

a2 =al - 7 * (al/7);

1 =13 - az;

month = 3 + (1 + 40)/44;

day = 1 + 28 - 31*(month/4);

return new GregorianCalendar(year, month-1, day);

Listing 53: Berechnung des Ostersonntags im gregorianischen Kalender

Wenn Sie historische Ostertermine berechnen, miissen Sie bedenken, dass der grego-
rianische Kalender erst im Oktober 1582, in vielen Lindern sogar noch spiter, siehe
Tabelle 16 in Rezept 41, eingefiihrt wurde.

Wenn Sie zukiinftige Ostertermine berechnen, miissen Sie bedenken, dass diese nur
nach geltender Konvention giiltig sind. Bestrebungen, die Berechnung des Ostertermins
zu vereinfachen und das Datum auf einen bestimmten Sonntag festzuschreiben, gibt es
schon seit langerem. Bisher konnten die Kirchen diesbeziiglich allerdings zu keiner
Einigung kommen.

=
@
N
N
=
=
=
=
=
£
=
=
©
(=]

146 >> Ostersonntag berechnen

Ostern in der orthodoxen Kirche

Vor der Einfiihrung des gregorianischen Kalenders galt der julianische Kalender, nach dem
folglich auch Ostern berechnet wurde. Die meisten Linder stellten mit der Ubernahme des gre-
gorianischen Kalenders auch die Berechnung des Ostersonntags auf den gregorianischen
Kalender um. Nicht so die orthodoxen Kirchen. Sie hingen nicht nur lange dem julianischen
Kalender an, siehe Tabelle 16 in Rezept 41, sondern behielten diesen fiir die Berechnung des
Ostersonntags sogar noch bis heute bei.

Die folgende Methode berechnet den Ostersonntag nach dem julianischen Kalender.

import java.util.Date;
import java.util.GregorianCalendar;

/**
* Datum des Ostersonntags im julianischen Kalender berechnen
*/
public static GregorianCalendar easterndulian(int year) {
int month, day;
int a = year%19;
int b = year%4;
int ¢ = year%/;

int d = (19 * a + 15) % 30;
int e = (2*b + 4*c + 6*%d + 6)%7;

if ((d+e) < 10) {
month = 3;
day = 22+d+e;

}oelse |
month = 4;
day = d+e-9;

}

GregorianCalendar gc = new GregorianCalendar();
gc.setGregorianChange(new Date(Long.MAX_VALUE));
gc.set(year, month-1, day, 0, 0, 0);

return gc;

Listing 54: Berechnung des Ostersonntags im julianischen Kalender

Beachten Sie, dass GregorianChange-Datum fiir das zurilickgelieferte Calendar-Objekt auf
Date(Long.MAX_VALUE) gesetzt wurde, d.h., das Calendar-Objekt berechnet den Millisekunden-
wert, der dem iibergebenen Datum entspricht, nach dem julianischen Kalender (siehe auch
Rezept 49).

Wenn Sie Jahr, Monat und Tag des Ostersonntags im julianischen Kalender aus dem zurtick-
gelieferten Calendar-Objekt auslesen méchten, brauchen Sie daher nur die entsprechenden
Felder abzufragen, beispielsweise:

>> Datum und Uhrzeit 147

GregorianCalendar easternd = MoreDate.easterndJulian(year);
System.out.printin(" " + easternJ.get(Calendar.YEAR)

+ " " + easternd.get(Calendar.MONTH)

+ " " + easternd.get(Calendar.DAY_OF_MONTH));

Wenn Sie das Datum des Ostersonntags im Julianischen Kalender mittels einer DateFormat-
Instanz in einen String umwandeln mdéchten, miissen Sie beachten, dass die DateFormat-
Instanz standardmifBig mit einer GregorianCalendar-Instanz arbeitet, die fiir Datumswerte
nach Oktober 1582 den gregorianischen Kalender zugrunde legt. Um das korrekte julianische
Datum zu erhalten, miissen Sie dem Formatierer eine Calendar-Instanz zuweisen, die fiir alle
Datumswerte nach dem julianischen Kalender rechnet, beispielsweise also das von More-
Date.easterndulian() zurilickgelieferte Objekt:

easternd = MoreDate.easternJulian(year);

df.setCalendar(easternd);

System.console().printf("Orthod. Ostersonntag (Julian.): %s\n",
f.format(easternd.getTime()));

Sicherlich wird es Sie aber auch interessieren, welchem Datum in unserem Kalender der ortho-
doxe Ostersonntag entspricht.

Dazu brauchen Sie easternJ nur mittels einer DateFormat-Instanz zu formatieren, deren Calendar-
Objekt nicht umgestellt wurde:

easternd = MoreDate.easterndulian(year);
System.console().printf("Orthod. Ostersonntag (Gregor.): %s\n",
df.format(easternd.getTime()));

Oder Sie erzeugen eine neue GregorianCalendar-Instanz und weisen dieser die Anzahl Millise-
kunden von easternd zu. Dann kénnen Sie das Datum auch durch Abfragen der Datumsfelder
auslesen:

GregorianCalendar gc = new GregorianCalendar();

gc.setTimeInMillis(easternd.getTimeInMillis());

System.out.printin(" " + gc.get(Calendar.YEAR) + " " + gc.get(Calendar.MONTH)
+ " " + gc.get(Calendar.DAY_OF_MONTH));

Das Start-Programm zu diesem Rezept demonstriert die Verwendung von MoreDate.eastern()
und MoreDate.easterndulian(). Das Programm nimmt {iber die Befehlszeile eine Jahreszahl
entgegen und gibt dazu das Datum des Ostersonntags aus.

import java.util.Date;

import java.util.Calendar;

import java.util.GregorianCalendar;
import java.text.DateFormat;

public class Start {

public static void main(String args[]) {
GregorianCalendar eastern, easternd;
DateFormat df = DateFormat.getDatelInstance(DatefFormat.FULL);
int year = 0;
System.out.printin();

Listing 55: Berechnung des Ostersonntags

=
[
N
N
=
=
=
=
=
=
=
=
©
(=]

148 >> Deutsche Feiertage berechnen

if (args.length !=1) {
System.out.printin(" Aufruf: Start <Jahreszahl>");
System.exit(0);

}

try {
year = Integer.parselnt(args[0]);

// Ostersonntag berechnen

eastern = MoreDate.eastern(year);

System.console().printf(" Ostersonntag: %s\n",
df.format(eastern.getTime()));

=
©
N
=
=
=
=
=
=
=S
=
©
[=]

// Griech-orthodoxen Ostersonntag berechnen
// (julianischer Kalender)
easternd = MoreDate.easternJulian(year);
df.setCalendar(easternd);
System.console().printf("Orthod. Ostersonntag (julian.): %s\n",
df.format(easternd.getTime()));
df.setCalendar(eastern);
System.console().printf("Orthod. Ostersonntag (gregor.): %s\n",
df.format(easternd.getTime())); }
catch (NumberFormatException e) {
System.err.printin(" Ungueltiges Argument");
}

Listing 55: Berechnung des Ostersonntags (Forts.)

ingabeaufforderung

»java Start 2806

Ogtelgonntag= Sonntag. - April 26886
{julian.?>: Sonntag. - April 26886
Orthod. 0Ftex*onntag {gregor.?: Sonntag. - April 26886

>java Start 20087
09t91¢onntag: Sonntag. 8. April 2687
{julian.?>: Sonntag., . Marz 2887
Orthod. 0¢t81¢onntag {gregor.>: Sonntag., 8. April 2887
>java Start 28008
Ogt91gonntag: Sonntag. . Harz 2068
g (julian.>: Sonntag, - April 2688
Orthod. Ogtelgonntag {gregor.?: Sonntag., - April 26888

>

Abbildung 29: Ostersonntage der Jahre 2006, 2007 und 2008

52 Deutsche Feiertage berechnen

Gébe es nur feste Feiertage, wire deren Berechnung ganz einfach - ja, eigentlich gibe es gar nichts
mehr zu berechnen, denn Sie miissten lediglich fiir jeden Feiertag ein GregorianCalendar-Objekt
erzeugen und dem Konstruktor Jahr, Monat (0-11) und Tag des Feiertagsdatum tibergeben.

>> Datum und Uhrzeit 149

Fakt ist aber, dass ungefahr die Halfte aller Feiertage beweglich sind. Da wiren zum einen die
groBe Gruppe der Feiertage, die von Osten abhéngen, dann die Gruppe der Feiertage, die von
Weihnachten abhéngen, und schlieflich noch der Muttertag.

Letzterer ist im Ubrigen kein echter Feiertag, aber wir wollen in diesem Rezept auch die Tage

beriicksichtigen, denen eine besondere Bedeutung zukommt, auch wenn es sich nicht um §
gesetzliche Feiertage handelt. %
=
Feiertag | abhéangig von ‘ Datum E
S
Neujahr - 01. Januar g
Heilige drei Konige* = 06. Januar
Rosenmontag Ostersonntag Ostersonntag - 48 Tage
Fastnacht Ostersonntag Ostersonntag - 47 Tage
Aschermittwoch Ostersonntag Ostersonntag — 46 Tage
Valentinstag - 14. Februar
Griindonnerstag Ostersonntag Ostersonntag - 3 Tage
Karfreitag Ostersonntag Ostersonntag - 2 Tage
Ostersonntag Pessach-Vollmond 1. Sonntag, der dem ersten Pes-
sach-Vollmond folgt (siehe
Rezept 51)
Ostermontag Ostersonntag Ostersonntag + 1 Tag
Maifeiertag - 1. Mai
Himmelfahrt Ostersonntag Ostersonntag + 39 Tage
Muttertag 1. Mai 2. Sonntag im Mai
Pfingstsonntag Ostersonntag Ostersonntag + 49 Tage
Pfingstmontag Ostersonntag Ostersonntag + 50 Tage
Fronleichnam® Ostersonntag Ostersonntag + 60 Tage
Maria Himmelfahrt* - 15. September
Tag der deutschen Einheit - 3. Oktober
Reformationstag* - 31. Oktober
Allerheiligen*® - 1. November
Allerseelen - 2. November
Nikolaus - 6. Dezember
Sankt Martinstag - 11. November
Volkstrauertag Heiligabend Sonntag vor Totensonntag
BuB- und Bettag* Heiligabend Mittwoch vor Totensonntag
Totensonntag Heiligabend 7 Tage vor 1. Advent
1. Advent Heiligabend 7 Tage vor 2. Advent
2. Advent Heiligabend 7 Tage vor 3. Advent
3. Advent Heiligabend 7 Tage vor 4. Advent

Tabelle 21: Deutsche Feiertage (gesetzliche Feiertage sind farbig hervorgehoben, regionale
Feiertage sind mit * gekennzeichnet)

=
@
N
N
=
=
=
=
=
£
=
=
©
(=]

150 >> Deutsche Feiertage berechnen

Feiertag abhangig von

4. Advent Heiligabend Sonntag vor Heiligabend
Heiligabend - 24. Dezember

1. Weihnachtstag - 25. Dezember

2. Weihnachtstag - 26. Dezember

Silvester - 31. Dezember

Tabelle 21: Deutsche Feiertage (gesetzliche Feiertage sind farbig hervorgehoben, regionale
Feiertage sind mit * gekennzeichnet) (Forts.)

Wie Sie der Tabelle entnehmen konnen, bereitet die Berechnung der Osterfeiertage, insbeson-
dere die Berechnung des Ostersonntags, die grofte Schwierigkeit. Doch gliicklicherweise
haben wir dieses Problem bereits im Rezept 51 gelost. Die Berechnung der Feiertage reduziert
sich damit weitgehend auf die Erzeugung und Verwaltung der Feiertagsdaten. Der hier prasen-
tierte Ansatz basiert auf zwei Klassen:

» einer Klasse CalendarDay, deren Objekte die einzelnen Feiertage reprisentieren, und

» einer Klasse Holidays, die fiir ein gegebenes Jahr alle Feiertage berechnet und in einer
Vector-Collection speichert.

Die Klasse CalendarDay

Die Klasse CalendarDay speichert zu jedem Feiertag den Namen, das Datum (als Anzahl Milli-
sekunden), einen optionalen Kommentar, ob es sich um einen gesetzlichen nationalen Feiertag
handelt oder ob es ein regionaler Feiertag ist.

/**

* Klasse zum Speichern von Kalenderinformationen zu Kalendertagen
*/

public class CalendarDay f

private String name;
private Tong time;

private boolean holiday;
private boolean nationwide;
private String comment;

public CalendarDay(String name, long time, boolean holiday,
boolean nationwide, String comment) {
this.name = name;
this.time= time;
this.holiday = holiday;
this.nationwide = nationwide;
this.comment = comment;
}

public String getName() {
return name;

Listing 56: Die Klasse CalendarDay

>> Datum und Uhrzeit 151

}

public Tong getTime() {
return time;
t

public boolean getHoliday() {
return holiday;
}

=
[
N
N
=
=
=
=
=
=
=
=
©
(=]

public boolean getNationwide() {
return nationwide;
}

public String getComment() f{
return comment;
t

Listing 56: Die Klasse CalendarDay (Forts.)

Die Klasse Holidays
Die Klasse berechnet und verwaltet die Feiertage eines gegebenen Jahres.
Das Jahr iibergeben Sie als int-Wert dem Konstruktor, der daraufhin berechnet, auf welche

Datumswerte die Feiertage fallen, und fiir jeden Feiertag ein CalendarDay-Objekt erzeugt. Die
CalendarDay-Objekte werden zusammen in einer Vector-Collection gespeichert.

Die Methode eastern(), die vom Konstruktor zur Berechnung des Ostersonntags ver-
wendet wird, ist in Holidays definiert und identisch zu der Methode aus Rezept 51.

import java.util.Calendar;
import java.util.GregorianCalendar;
import java.util.Vector;

/**
* Berechnet Feiertage eines Jahres und speichert die gewonnenen
* Informationen in einer Vector-Collection von CalendarDay-Objekten
*/
public class Holidays {
Vector<CalendarDay> days = new Vector<CalendarDay>(34);

public Holidays(int year) {
// Ostern vorab berechnen
GregorianCalendar eastern = eastern(year);
GregorianCalendar tmp;

Listing 57: Aus Holidays.java

152 >> Deutsche Feiertage berechnen

int day;

days.add(new CalendarDay("Neujahr",
(new GregorianCalendar(year,0,1)).getTimeInMillis(),
true, true, ""));
days.add(new CalendarDay("Heilige drei Konige",
(new GregorianCalendar(year,0,6)).getTimeInMillis(),
false, false, "in Baden-Wirt., Bayern und Sachsen-A."));
tmp = (GregorianCalendar) eastern.clone();
tmp.add(Calendar.DAY_OF_MONTH, -48);
days.add(new CalendarDay("Rosenmontag",
tmp.getTimeInMillis(),
false, false, ""));
tmp.add(Calendar.DAY_OF_MONTH, +1);
days.add(new CalendarDay("Fastnacht",
tmp.getTimeInMillis(),
false, false, ""));
tmp.add(Calendar.DAY_OF_MONTH, +1);
days.add(new CalendarDay("Aschermittwoch",
tmp.getTimeInMillis(),
false, false, ""));
days.add(new CalendarDay("Valentinstag",
(new GregorianCalendar(year,1,14)).getTimeInMi11is(),
false, false, ""));
tmp = (GregorianCalendar) eastern.clone();
tmp.add(Calendar.DAY_OF_MONTH, -3);
days.add(new CalendarDay("Grindonnerstag",
tmp.getTimeInMillis(),
false, false, ""));
tmp.add(Calendar.DAY_OF_MONTH, +1);
days.add(new CalendarDay("Karfreitag",
tmp.getTimeInMillis(),
true, true, ""));
days.add(new CalendarDay("Ostersonntag",
eastern.getTimeInMillis(),
true, true, ""));
tmp = (GregorianCalendar) eastern.clone();
tmp.add(Calendar.DAY_OF_MONTH, +1);
days.add(new CalendarDay("Ostermontag",
tmp.getTimeInMillis(),
true, true, ""));
days.add(new CalendarDay("Maifeiertag",
(new GregorianCalendar(year,4,1)).getTimeInMillis(),
true, true, ""));
tmp = (GregorianCalendar) eastern.clone();
tmp.add(Calendar.DAY_OF_MONTH, +39);
days.add(new CalendarDay("Himmelfahrt",
tmp.getTimeInMillis(),
true, true, ""));

=
@
N
N
=
=
=
=
=
£
=
=
©
(=]

// Muttertag = 2. Sonntag in Mai

Listing 57: Aus Holidays.java (Forts.)

>> Datum und Uhrzeit

GregorianCalendar firstMay = new GregorianCalendar(year, 4, 1);
day = firstMay.get(Calendar.DAY_OF_WEEK);
if (day == Calendar.SUNDAY)
day =1+ 7;
else
day = 1 + (8-day) + 7;
days.add(new CalendarDay("Muttertag",
(new GregorianCalendar(year,4,day)).getTimeInMillis(),
false, false, ""));

tmp = (GregorianCalendar) eastern.clone();
tmp.add(Calendar.DAY_OF_MONTH, +49);
days.add(new CalendarDay("Pfingstsonntag",
tmp.getTimeInMillis(),
true, true, ""));
tmp.add(Calendar.DAY_OF_MONTH, +1);
days.add(new CalendarDay("Pfingstmontag",
tmp.getTimeInMillis(),
true, true, ""));
tmp.add(Calendar.DAY_OF_MONTH, +10);
days.add(new CalendarDay("Fronleichnam",
tmp.getTimeInMillis(),
true, false, "in Baden-Wiirt., Bayern, Hessen, NRW,
+ "Rheinl.-Pfalz, Saarland, Sachsen (z.T.) "
+ "und Thiringen (z.T.)"));
days.add(new CalendarDay("Maria Himmelfahrt",
(new GregorianCalendar(year,7,15)).getTimeInMillis(),
false, false, "in Saarland und kathol. Gemeinden "
+ "von Bayern"));
days.add(new CalendarDay("Tag der Einheit",
(new GregorianCalendar(year,9,3)).getTimeInMillis(),
true, true, ""));
days.add(new CalendarDay("Reformationstag",
(new GregorianCalendar(year,9,31)).getTimeInMillis(),
true, false, "in Brandenburg, Meckl.-Vorp., Sachsen,
+ "Sachsen-A. und Thiringen"));
days.add(new CalendarDay("Allerheiligen",
(new GregorianCalendar(year,10,1)).getTimeInMillis(),
true, false, "in Baden-Wirt., Bayern, NRW, "
+ "Rheinl.-Pfalz und Saarland"));
days.add(new CalendarDay("Allerseelen",
(new GregorianCalendar(year,10,2)).getTimeInMillis(),
false, false, ""));
days.add(new CalendarDay("Martinstag",
(new GregorianCalendar(year,10,11)).getTimeInMillis(),
false, false, ""));

// ab hier nicht mehr chronologisch

// 4. Advent = 1. Sonntag vor 1. Weihnachtstag
GregorianCalendar advent = new GregorianCalendar(year, 11, 25);

Listing 57: Aus Holidays.java (Forts.)

=
[
N
N
=
=
=
=
=
=
=
=
©
(=]

154 >> Deutsche Feiertage berechnen

if (advent.get(Calendar.DAY_OF_WEEK) == Calendar.SUNDAY)
advent.add(Calendar.DAY_OF_MONTH, -7);
else
advent.add(Calendar.DAY_OF_MONTH,
-advent.get(Calendar.DAY_OF_WEEK)+1);
days.add(new CalendarDay("4. Advent",
advent.getTimeInMillis(),
false, false, ""));

// 3. Advent = Eine Woche vor 4. Advent

advent.add(Calendar.DAY_OF_MONTH, -7);

days.add(new CalendarDay("3. Advent",
advent.getTimeInMillis(),
false, false, ""));

// 2. Advent = Eine Woche vor 3. Advent

advent.add(Calendar.DAY_OF_MONTH, -7);

days.add(new CalendarDay("2. Advent",
advent.getTimeInMillis(),
false, false, ""));

// 1. Advent = Eine Woche vor 2. Advent

advent.add(Calendar.DAY_OF_MONTH, -7);

days.add(new CalendarDay("1. Advent",
advent.getTimeInMillis(),
false, false, ""));

=
@
N
N
=
=
=
=
=
£
=
=
©
(=]

// Totensonntag = Sonntag vor 1. Advent
tmp = (GregorianCalendar) advent.clone();
tmp.add(Calendar.DAY_OF_MONTH, -7);
days.add(new CalendarDay("Totensonntag",
tmp.getTimeInMillis(),
false, false, ""));

// Volkstrauertag = Sonntag vor Totensonntag
tmp.add(Calendar.DAY_OF_MONTH, -7);
days.add(new CalendarDay("Volkstrauertag",
tmp.getTimeInMillis(),
false, false, ""));

// BuB- und Bettag = Mittwoch vor Totensonntag
day = tmp.get(Calendar.DAY_OF_WEEK);
if (day == Calendar.WEDNESDAY)
day = -(4+day);
else
day = (4-day);
tmp.add(Calendar.DAY_OF_MONTH, day);
days.add(new CalendarDay("BuB- und Bettag",
tmp.getTimeInMillis(),
false, false, "Sachsen"));

days.add(new CalendarDay("NikoTaus",
(new GregorianCalendar(year,11,6)).getTimeInMi11is(),

Listing 57: Aus Holidays.java (Forts.)

>> Datum und Uhrzeit 155

false, false, ""));

days.add(new CalendarDay("Heiligabend",
(new GregorianCalendar(year,11,24)).getTimeInMillis(),
false, false, ""));

days.add(new CalendarDay("1. Weihnachtstag",
(new GregorianCalendar(year,11,25)).getTimeInMillis(),
true, true, ""));

days.add(new CalendarDay("2. Weihnachtstag",
(new GregorianCalendar(year,11,26)).getTimeInMillis(),
true, true, ""));

days.add(new CalendarDay("Silvester",
(new GregorianCalendar(year,11,31)).getTimeInMillis(),
false, false, ""));

Listing 57: Aus Holidays.java (Forts.)

Damit man mit der Klasse Holidays auch verniinftig arbeiten kann, definiert sie verschiedene
Methoden, mit denen der Benutzer Informationen iiber die Feiertage einholen kann:

» CalendarDay searchDay(String name)

Sucht zu einem gegebenen Feiertagsnamen (beispielsweise »Allerheiligen« das zugehorige
CalendarDay-Objekt und liefert es zuriick. Alternative Namen werden zum Teil beriicksichtigt.
Wurde kein passendes CalendarDay-Objekt gefunden, liefert die Methode null zuriick.

p CalendarDay getDay(GregorianCalendar date)

Liefert zu einem gegebenen Datum das zugehéorige CalendarDay-Objekt zuriick bzw. null, wenn
kein passendes Objekt gefunden wurde.

» boolean isNationalHoliday(GregorianCalendar date)

Liefert true zuriick, wenn auf das libergebene Datum ein gesetzlicher, nationaler Feiertag fallt.

P boolean isRegionalHoliday(GregorianCalendar date)

Liefert true zuriick, wenn auf das iibergebene Datum ein gesetzlicher, regionaler Feiertag fillt.

// Liefert das CalendarDay-Objekt zu einem Feiertag
public CalendarDay searchDay(String name) {
// Alternative Namen beriicksichtigen
if (name.equals("Heilige drei Koenige"))
name = "Heilige drei Kdnige";

if (name.equals("Gruendonnerstag"))
name = "Griindonnerstag";

if (name.equals("Tag der Arbeit"))
name = "Maifeiertag";

if (name.equals("Christi Himmelfahrt"))
name = "Himmelfahrt";

Listing 58: Die Klasse Holidays

=
[
N
N
=
=
=
=
=
=
=
=
©
(=]

156 >> Deutsche Feiertage berechnen

if (name.equals("Vatertag"))
name = "Himmelfahrt";

if (name.equals("Tag der deutschen Einheit"))
name = "Tag der Einheit";

if (name.equals("Sankt Martin"))
name = "Martinstag";

if (name.equals("Vierter Advent"))
name = "4. Advent";

if (name.equals("Dritter Advent"))
name = "3. Advent";

if (name.equals("Zweiter Advent"))
name = "2. Advent";

if (name.equals("Erster Advent"))
name = "1. Advent";

if (name.equals("Buss- und Bettag"))
name = "BuB- und Bettag";

if (name.equals("Bettag"))
name = "BuB- und Bettag";

if (name.equals("Weihnachtsabend"))
name = "Heiligabend";

if (name.equals("Erster Weihnachtstag"))
name = "1. Weihnachtstag";

if (name.equals("Zweiter Weihnachtstag"))
name = "2. Weihnachtstag";

=
@
N
N
=
=
=
=
=
£
=
=
©
(=]

for(CalendarDay d : days) {
if (name.equals(d.getName()))
return d;
t

return null;
}

// Liefert das CalendarDay-Objekt zu einem Kalenderdatum
pubTic CalendarDay getDay(GregorianCalendar date) {
for(CalendarDay d : days) {
if(d.getTime() == date.getTimeInMillis())
return d;
}

return null;
1

// Stellt fest, ob das angegebene Datum auf einen gesetzlichen, nationalen
// Feiertag fdallt
pubTic boolean isNationalHoliday(GregorianCalendar date) {
for(CalendarDay d : days) |
if(d.getTime() == date.getTimelInMillis()
&& d.getHoliday() && d.getNationwide())
return true;

Listing 58: Die Klasse Holidays (Forts.)

>> Datum und Uhrzeit 157

}

return false;
}

// Stellt fest, ob das angegebene Datum auf einen gesetzlichen, regionalen
// Feiertag fdllt
pubTlic boolean isRegionalHoliday(GregorianCalendar date) {
for(CalendarDay d : days) {
if(d.getTime() == date.getTimeInMillis()
&& d.getHoliday() && !d.getNationwide())
return true;

=
©
N
=
=
=
=
=
=
=
=
©
(=]

}

return false;
}

public static GregorianCalendar eastern(int year) {
// siehe Rezept 51
}

Listing 58: Die Klasse Holidays (Forts.)
Zu diesem Rezept gibt es zwei Start-Programme. Beide nehmen die Jahreszahl, fiir die sie ein
Holidays-Objekt erzeugen, iiber die Befehlszeile entgegen.

P> Mit Startl konnen Sie die Feiertage eines Jahres auf die Konsole ausgeben oder in eine
Datei umleiten:

java Startl > Feiertage.txt

P Mit Start2 konnen Sie abfragen, auf welches Datum ein bestimmter Feiertag im iibergebe-
nen Jahr fillt. Der Name des Feiertags wird vom Programm abgefragt.

ngabeaufforderung

>Jjava Start2 2086

Mame des gesuchten Feiertags: Ualentinstay
Ualentinstag

Dienstag. 14. Februar 2886
>java Start2 2086

Mame des gesuchten Feiertags: Pfingstsonntag

Pfingstsonntag
Sonntag, 4. Juni 2886
nationaler Feiertag

Abbildung 30: Mit Start2 kénnen Sie sich Feiertage in beliebigen Jahren? berechnen lassen.

2. Immer vorausgesetzt, die entsprechenden Feiertage gibt es in dem betreffenden Jahr und an ihrer Berechnung hat
sich nichts gedndert. (Denken Sie beispielsweise daran, dass es Bestrebungen gibt, das Osterdatum festzuschreiben.)

=
@
N
N
=
=
=
=
=
£
=
=
©
(=]

158 >> Ermitteln, welchen Wochentag ein Datum reprasentiert

53 Ermitteln, welchen Wochentag ein Datum reprasentiert

Welchem Wochentag ein Datum entspricht, ist im DAY_OF_WEEK-Feld des Calendar-Objekts
gespeichert. Fiir Instanzen von GregorianCalendar enthilt dieses Feld eine der Konstanten SUN-
DAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY oder SATURDAY.

Den Wert des Felds kénnen Sie fiir ein bestehendes Calendar-Objekt date wie folgt abfragen:
int day = date.get(Calendar.DAY_OF_WEEK);

Fiir die Umwandlung der DAY_OF_WEEK-Konstanten in Strings (»Sonntag«, »Montag« etc.) ist es
am einfachsten, ein Array der Wochentagsnamen zu definieren und den von get(Calendar.
DAY_OF_WEEK) zuriickgelieferten String als Index in dieses Array zu verwenden. Sie miissen aller-
dings beachten, dass die DAY_OF_WEEK-Konstanten den Zahlen von 1 (SUNDAY) bis 7 (SATURDAY)
entsprechen, wiahrend Arrays mit O beginnend indiziert werden.

Das Start-Programm zu diesem Rezept, welches den Wochentag zu einem beliebigen Datum
ermittelt, demonstriert diese Technik:

import java.util.Calendar;

import java.util.GregorianCalendar;
import java.text.DateFormat;

import java.text.ParseException;
import java.util.locale;

public class Start {

public static void main(String args[]) {
DateFormat df = DateFormat.getDatelnstance(DateFormat.MEDIUM,
Locale.GERMANY);
GregorianCalendar date = new GregorianCalendar();
int day;
String[] weekdayNames = { "SONNTAG", "MONTAG", "DIENSTAG", "MITTWOCH",
"DONNERSTAG", "FREITAG", "SAMSTAG" };

System.out.printin();

if (args.length !=1) {
System.out.printin(" Aufruf: Start <Datum: TT.MM.JJJJ>");
System.exit(0);

}

try {
date.setTime(df.parse(args[0]));

day = date.get(Calendar.DAY_OF_WEEK);
System.out.printin(" Wochentag: " + weekdayNames[day-11);
} catch(ParseException e) {

System.err.printin("\n Kein gueltiges Datum (TT.MM.JJJdJd)");
}

Listing 59: Programm zur Berechnung des Wochentags

>> Datum und Uhrzeit 159

Listing 59: Programm zur Berechnung des Wochentags (Forts.)

ngabeaufforderung

>java Start B1.081.2885
Wochentag: SAMSTAG

=
©
N
=
=
=
=
=
=
=
=
©
(=]

>java Staprt 01.05.2805
Wochentag: SONNTAG
>

Abbildung 31: Kann ein Maifeiertag schlechter liegen?

54 Ermitteln, ob ein Tag ein Feiertag ist

Mit Hilfe der Klasse Holidays aus Rezept 52 konnen Sie schnell priifen, ob es sich bei einem
bestimmten Tag im Jahr um einen Feiertag handelt.

1. Zuerst erzeugen Sie fiir das gewiinschte Jahr ein Holidays-Objekt.
Holidays holidays = new Holidays(2005);

2. Dann erzeugen Sie ein GregorianCalendar-Objekt fiir das zu untersuchende Datum.
GregorianCalendar date = new GregorianCalendar(2005, 3, 23);

3. SchlieBlich priifen Sie mit Hilfe der entsprechenden Methoden des Holidays-Objekts, ob es
sich um einen Feiertag handelt.

Sie konnen dabei beispielsweise so vorgehen, dass Sie zuerst durch Aufruf von isNational-
Holiday() prifen, ob es sich um einen nationalen gesetzlichen Feiertag handelt. Wenn
nicht, konnen Sie mit isRegionalHoliday() priifen, ob es ein regionaler gesetzlicher Feier-
tag ist. Trifft auch dies nicht zu, kdnnen Sie mit getDay() priifen, ob der Tag tiberhaupt als
besonderer Tag in dem holidays-Objekt gespeichert ist:

if(holidays.isNationalHoliday(date)) f{
System.out.printin("\t Nationaler Feiertag ");
} else if(holidays.isRegionalHoliday(date)) f
System.out.printin("\t Regionaler Feiertag ");
} else if (holidays.getDay(date) != null) f{
System.out.printin("\t Besonderer Tag ");
} else
System.out.printin("\t Kein Feiertag ");

Bezeichnet ein Datum einen Tag, der im Holidays-Objekt gespeichert ist, kénnen Sie sich mit
getDay() die Referenz auf das zugehorige CalendarDay-Objekt zuriickliefern lassen und die fiir
den Tag gespeicherten Informationen abfragen.

.E
N
=
=
=
=
=
£
=
i<}
(=]

160 >> Ermitteln, ob ein Jahr ein Schaltjahr ist

Eingabeaufforderung

>java Start 2805

Zu priifendes Datum (TT.HMM.Y¥Y¥YY>: 88 .82._280%
Besonderer Tag

Fastnacht
Dienstag. 8. Februar 26885

>java Start 20087

Zu priifendes Datum (TT.MM_YY¥YYY)>: B8 .84.20087
Mationaler Feiertag

Ostersonntag

Sonntag, 8. April 2687
nationaler Feiertag

»java Start 20087

Zu priifendes Datum (TT.MM.Y¥Y¥Y¥Y¥>: B4.084.2008
Kein Feiertag

>

Abbildung 32: Ermitteln, ob ein Tag ein Feiertag ist

55 Ermitteln, ob ein Jahr ein Schaltjahr ist

Ob ein gegebenes Jahr im gregorianischen Kalender ein Schaltjahr ist, ldsst sich bequem mit
Hilfe der Methode islLeapYear() feststellen. Leider ist die Methode nicht statisch, so dass Sie
zum Aufruf ein GregorianCalendar-Objekt bendtigen. Dieses muss aber nicht das zu priifende
Jahr représentieren, die Jahreszahl wird vielmehr als Argument an den int-Parameter iiber-
geben.

GregorianCalendar date = new GregorianCalendar();
int year = 2005;

date.isleapYear(year);

Mit dem Start-Programm zu diesem Rezept kénnen Sie priifen, ob ein Jahr im gregorianischen
Kalender ein Schaltjahr ist.

Eingabeaufforderung

>java Start 2805

2805 ist kein Schaltjahe
>java Start 20084

2884 ist ein Schaltjahe
>java Start 2008

2808 i=t ein Schaltjahr

>java Start 19688

ist kein Schaltjahr

Abbildung 33: 1900 ist kein Schaltjahr, weil es durch 100 teilbar ist. 2000 ist ein Schaltjahr,
obwohl es durch 100 teilbar ist, weil es ein Vielfaches von 400 darstellt.

>> Datum und Uhrzeit 161

56 Alter aus Geburtsdatum berechnen

Die Berechnung des Alters, sei es nun das Alter eines Kunden, einer Ware oder einer beliebi-
gen Sache (wie z.B. Erfindungen), ist eine recht hiufige Aufgabe. Wenn lediglich das Jahr der
»Geburt« bekannt ist, ist diese Aufgabe auch relativ schnell durch Differenzbildung der Jahres-
zahlen erledigt.

Liegt jedoch das komplette Geburtsdatum vor und ist dieses mit einem zweiten Datum, bei-
spielsweise dem aktuellen Datum, zu vergleichen, miissen Sie beachten, dass das Alter unter
Umstinden um 1 geringer ist als die Differenz der Jahreszahlen - dann namlich, wenn das
Vergleichsdatum in seinem Jahr weiter vorne liegt als das Geburtsdatum im Geburtsjahr. Die
Methode age() berticksichtigt dies:

/*k*

* Berechnet, welches Alter eine Person, die am birthdate

* geboren wurde, am otherDate hat

*/

public static int age(Calendar birthdate, Calendar otherDate) {

int age = 0;

// anderes Datum liegt vor Geburtsdatum
if (otherDate.before(birthdate))
return -1;

// Jahresunterschied berechnen
age = otherDate.get(Calendar.YEAR) - birthdate.get(Calendar.YEAR);

// Prufen, ob Tag in otherDate vor Tag in birthdate Tiegt. Wenn ja,
// Alter um 1 Jahr vermindern
if ((otherDate.get(Calendar.MONTH) < birthdate.get(Calendar.MONTH))
|| (otherDate.get(Calendar.MONTH) == birthdate.get(Calendar.MONTH)
&& otherDate.get(Calendar.DAY_OF_MONTH) <
birthdate.get(Calendar.DAY_OF_MONTH)))
--age;

return age;
}

Vielleicht wundert es Sie, dass die Methode so scheinbar umstiandlich priift, ob der Monat im
Vergleichsjahr kleiner als der Monat im Geburtsjahr ist, oder, falls die Monate gleich sind, der
Tag im Monat des Vergleichsjahrs kleiner dem Tag im Monat des Geburtsjahrs ist. Kénnte man
nicht einfach das Feld DAY_OF_YEAR fiir beide Daten abfragen und vergleichen?

Die Antwort ist nein, weil dann Schalttage das Ergebnis verfalschen kénnen. Konkret: Fiir das
Geburtsdatum 01.03.1955 und ein Vergleichsdatum 29.02.2004 wiirde get(Calendar.DAY_OF_
YEAR) in beiden Féllen 60 zuriickliefern. Das berechnete Alter wire daher falschlicherweise 50
statt 49.

Mit dem Start-Programm zu diesem Rezept kénnen Sie berechnen, wie alt eine Person oder ein
Gegenstand heute ist. Das Geburtsdatum wird im Programmverlauf abgefragt, das Vergleichs-
datum ist das aktuelle Datum. Beachten Sie auch die Formatierung der Ausgabe mit Choice-
Format, siehe Rezept 11.

=
[
N
N
=
=
=
=
=
=
=
=
©
(=]

=
@
N
N
=
=
=
=
=
£
=
=
©
(=]

162 >> Alter aus Geburtsdatum berechnen

import
import
import
import
import
import
import

public

java.
Jjava.

Java

util.Calendar;
util.GregorianCalendar;

.text.DatefFormat;
java.
java.
Jjava.
Java.

text.ChoiceFormat;
text.ParseException;
util.Locale;
util.Scanner;

class Start {

public static void main(String args[]) {
DateFormat df = DateFormat.getDatelnstance(DateFormat.MEDIUM,

Locale.GERMANY);

GregorianCalendar date = new GregorianCalendar();
Scanner sc = new Scanner(System.in);

int

try

age = 0;

{

System.out.print("\n Geben Sie Ihr Geburtsdatum im Format "
+ " TT.MM.JJdd ein: ");

String input = sc.next();

date.setTime(df.parse(input));

// Vergleich mit aktuellem Datum
age = MoreDate.age(date, Calendar.getInstance());

if (age < 0) {
System.out.printin("\n Sie sind noch nicht geboren");
} else {
double[] Timits = {0, 1, 2};
String[] outputs = {"Jahre", "Jahr", "Jahre"};
ChoiceFormat cf = new ChoiceFormat(limits, outputs);

System.out.printin("\n Sie sind " + age + " "
+ cf.format(age) + " alt");
}

} catch(ParseException e) {

}

System.err.printin("\n Kein gueltiges Datum (TT.MM.JJJdd)");

Listing 60: Start.java — Programm zur Altersberechnung

>> Datum und Uhrzeit 163

57 Aktuelle Zeit abfragen

Der einfachste und schnellste Weg, die aktuelle Zeit abzufragen, besteht darin, ein Objekt der
Klasse Date zu erzeugen:

import java.util.Date;

Date today = new Date();
System.out.printIn(today);
Ausgabe:

Thu Mar 31 10:54:31 CEST 2005

=
[
N
N
=
=
=
=
=
=
=
=
©
(=]

Wenn Sie lediglich die Zeit ausgeben mochten, lassen Sie sich von DateFormat.getTime-
Instance() ein entsprechendes Formatierer-Objekt zurtickliefern und iibergeben Sie das Date-
Objekt dessen format()-Methode. Als Ergebnis erhalten Sie einen formatierten Uhrzeit-String
zuriick.

String s = DateFormat.getTimeInstance().format(today);
System.out.printin(s); // Ausgabe: 10:54:31

Mehr zur Formatierung mit DateFormat, siehe Rezept 41.

Sofern Sie die Uhrzeit nicht nur ausgeben oder bestenfalls noch mit anderen Uhrzeiten des
gleichen Tags vergleichen mdochten, sollten Sie die Uhrzeit durch ein Calendar-Objekt (siehe
auch Rezept 39) reprisentieren.

P Sie kénnen sich mit getInstance() ein Calendar-Objekt zuriickliefern lassen, welches die
aktuelle Zeit (natiirlich inklusive Datum) reprisentiert:

Calendar calendar = Calendar.getInstance();

P Sie konnen ein Calendar-Objekt erzeugen und auf eine beliebige Zeit setzen:
Calendar calendar = Calendar.getInstance();

P Sie konnen die Zeit aus einem Date-Objekt an ein Calendar-Objekt {ibergeben:

Calendar calendar = Calendar.getInstance();

calendar.set(calendar.get(Calendar.YEAR), // Datum
calendar.get(Calendar.MONTH), // beibehalten
calendar.get(Calendar.DATE),
12, 30, 1); // Uhrzeit setzen

P Sie konnen ein GregorianCalender-Objekt fiir eine bestimmte Uhrzeit erzeugen:

GregorianCalendar gCal =
// year, m, d, h, min, sec
new GregorianCalendar(2005, 4, 20, 12, 30, 1);

=
@
N
N
=
=
=
=
=
£
=
=
©
(=]

164 >> Zeit in bestimmte Zeitzone umrechnen

Um die in einem Calendar-Objekt gespeicherte Uhrzeit auszugeben, konnen Sie entwe-
der die Werte fiir die einzelnen Uhrzeit-Felder mittels der zugehorigen get-Methoden
abfragen (siehe Tabelle 15 aus Rezept 40) und in einen String/Stream schreiben oder
sie wandeln die Feldwerte durch Aufruf von getTime() in ein Date-Objekt um und
iibergeben dieses an die format()-Methode einer DateFormat-Instanz:

String s = DateFormat.getTimelnstance().format(calendar.getTime()));

58 Zeit in bestimmte Zeitzone umrechnen

Wenn Sie mit Hilfe von Date oder Calendar die aktuelle Zeit abfragen (siehe Rezept 57), wird
das Objekt mit der Anzahl Millisekunden initialisiert, die seit dem 01.01.1970 00:00:00 Uhr,
GMT, vergangen sind. Wenn Sie diese Zeitangabe in einen formatierten String umwandeln
lassen (mittels DateFormat oder SimpleDateFormat, siehe Rezept 41), wird die Anzahl Millise-
kunden gemaB dem giiltigen Kalender und gemiB der auf dem aktuellen System eingestellten
Zeitzone in Datums- und Zeitfelder (Jahr, Monat, Tag, Stunde, Minute etc.) umgerechnet.

Formatierer auf Zeitzone umstellen

Wenn Sie die Zeit dagegen in die Zeit einer anderen Zeitzone umrechnen lassen mochten,
gehen Sie wie folgt vor:

1. Erzeugen Sie ein TimeZone-Objekt fiir die gewiinschte Zeitzone.
2. Registrieren Sie das TimeZone-Objekt beim Formatierer.
3. Wandeln Sie die Zeitangabe mit Hilfe des Formatierers in einen String um.

Um beispielsweise zu berechnen, wie viel Uhr es aktuell in Los Angeles ist, wiirden Sie schrei-
ben:

// Formatierer
DatefFormat df = DateFormat.getDateTimeInstance(DateFormat.FULL,
DateFormat.FULL);

// Aktuelles Datum
Date today = new Date();

// 1. Zeitzone erzeugen
TimeZone tz = TimeZone.getTimeZone("America/Los_Angeles");

// 2. Zeitzone beim Formatierer registrieren
df.setTimeZone(tz);

// 3. Umrechnung (und Ausgabe) in Zeitzone fir Los Angeles (Amerika)
System.out.printin(" America/lLos Angeles: " + df.format(today));

Wenn die Uhrzeit in Form eines Calendar-Objekts vorliegt, gehen Sie analog vor. Sie
miissen lediglich daran denken, die Daten des Calendar-Objekts als Date-Objekt an die
format()-Methode zu tibergeben: df.format(calObj.getTime()).

>> Datum und Uhrzeit 165

Calendar auf Zeitzone umstellen

Sie koénnen auch das Calendar-Objekt selbst auf eine andere Zeitzone umstellen. In diesem Fall
iibergeben Sie das TimeZone-Objekt, welches die Zeitzone représentiert, mittels setTimeZone()
an das Calendar-Objekt:

Calendar calendar = Calendar.getInstance();

TimeZone tz = TimeZone.getTimeZone("America/Los_Angeles");
calendar.setTimeZone(tz);

Die get-Methoden des Calendar-Objekts - wie z.B. calendar.get(calendar.HOUR_OF_DAY),
calendar.get(calendar.DST_OFFSET), siehe Tabelle 15 aus Rezept 40 - liefern daraufthin die der
Zeitzone entsprechenden Werte (inklusive Zeitverschiebung und Beriicksichtigung der Som-
merzeit) zuriick.

Die Zeit, die ein Calendar-Objekt reprasentiert, wird intern als Anzahl Millisekunden,
die seit dem 01.01.1970 00:00:00 Uhr, GMT vergangen sind, gespeichert. Dieser Wert
wird durch die Umstellung auf eine Zeitzone nicht veridndert. Es dndern sich lediglich
die Datumsfeldwerte, wie Stunden, Minuten etc., die intern aus der Anzahl Millisekun-
den unter Beriicksichtigung der Zeitzone berechnet werden. Vergessen Sie dies nie, vor
allem nicht bei der Formatierung der Zeitwerte mittels DateFormat. Wenn Sie sich nim-
lich mit getTime() ein Date-Objekt zuriickliefern lassen, das Sie der format()-Methode
von DateFormat iibergeben konnen, wird dieses Date-Objekt auf der Grundlage der
intern gespeicherten Anzahl Millisekunden erzeugt. Soll DateFormat die Uhrzeit in der
Zeitzone des Calendar-Objekts formatieren, miissen Sie die Zeitzone des Calendar-
Objekts zuvor beim Formatierer registrieren:

df.setTimeZone(calendar.getTimeZone());

59 Zeitzone erzeugen

Zeitzonen werden in Java durch Objekte vom Typ der Klasse TimeZone reprasentiert. Da Time-
Zone selbst abstrakt ist, lassen Sie sich TimeZone-Objekte von der statischen Methode getTime-
Zone() zuriickliefern, der Sie als Argument den ID-String der gewiinschten Zeitzone {ibergeben:

TimeZone tz = TimeZone.getTimeZone("Europe/Berlin");

ID ‘ Zeitzone ‘ entspricht GMT
Pacific/Samoa Samoa Normalzeit GMT-11:00
US/Hawaii Hawaii Normalzeit GMT-10:00
US/Alaska Alaska Normalzeit GMT-09:00
US/Pacific, Canada/Pacific, Pazifische Normalzeit GMT-08:00
America/Los_Angeles

US/Mountain, Canada/Mountain, Rocky Mountains Normalzeit | GMT-07:00
America/Denver

US/Central, America/Chicago, America/ Zentrale Normalzeit GMT-06:00
Mexico_City

Tabelle 22: Zeitzonen

=
[
N
N
=
=
=
=
=
=
=
=
©
(=]

166 >> Zeitzone erzeugen

ID ‘ Zeitzone | entspricht GMT
US/Eastern, Canada/Eastern, Ostliche Normalzeit GMT-05:00
America/New_York
= Canada/Atlantic, Atlantic/Bermuda Atlantik Normalzeit GMT-04:00
g America/Buenos_Aires Argentinische Zeit GMT-03:00
E Atlantic/South_Georgia South Georgia Normalzeit GMT-02:00
S Atlantic/Azores Azoren Zeit GMT-01:00
S Europe/Dublin, Europe/London, Greenwich Zeit GMT-00:00
Africa/Dakar Koordinierte Universalzeit
Etc/UTC
Europe/Berlin, Etc/GMT-1 Zentraleuropéische Zeit GMT+01:00
Europe/Kiev Osteuropéische Zeit GMT+02:00
Africa/Cairo Zentralafrikanische Zeit
Asia/Jerusalem Israelische Zeit
Europe/Moscow Moskauer Normalzeit GMT+03:00
Asia/Baghdad Arabische Normalzeit
Asia/Dubai Golf Normalzeit GMT+04:00
Indian/Maledives Maledivische Normalzeit GMT+05:00
Asia/Colombo Sri Lanka Zeit GMT+06:00
Asia/Bangkok Indochina Zeit GMT+07:00
Asia/Shanghai Chinesische Normalzeit GMT+08:00
Asia/Tokyo Japanische Normalzeit GMT+09:00
Australia/Canberra Ostliche Normalzeit GMT+10:00
Pacific/Guadalcanal Salomoninseln Zeit GMT+11:00
Pacific/Majuro Marshallinseln Zeit GMT+12:00

Tabelle 22: Zeitzonen (Forts.)

Die weit verbreiteten dreibuchstabigen Zeitzonen-Abkiirzungen wie ETC, PST, CET, die
aus Griinden der Abwértskompatibilitit noch unterstiitzt werden, sind nicht eindeutig
und sollten daher moglichst nicht mehr verwendet werden.

Verfiigbare Zeitzonen abfragen

Die Ubergabe einer korrekten ID ist aber noch keine Garantie, dass die zur Erstellung des Time-
Zone-Objekts benétigten Informationen auf dem aktuellen System vorhanden sind. Dazu miis-
sen Sie sich mit TimeZone.getAvailablelIDs() ein String-Array mit den IDs der auf dem System
verfiigharen Zeitzonen zuriickliefern lassen und priifen, ob die gewiinschte ID darin vertreten
ist.

TimeZone tz = null;
String ids[] = TimeZone.getAvailablelDs();
for (int i =0; i < ids.length; ++i)

>> Datum und Uhrzeit 167

if (ids[i].equals(searchedID))
tz = TimeZone.getTimeZone(ids[i]);

Wenn Sie TimeZone.getTimeZone() eine ungiiltige ID iibergeben, erhalten Sie die Greenwich-
Zeitzone ("GMT«) zuriick.

Eigene Zeitzonen erzeugen

Eigene Zeitzonen erzeugen Sie am einfachsten, indem Sie TimeZone.getTimeZone() als ID einen
String der Form »GMT-hh:mm« bzw. »GMT+hh:mm« iibergeben, wobei hh:mm die Zeitver-
schiebung in Stunden und Minuten angibt.

TimeZone tz = TimeZone.getTimeZone("GMT-01:00");

Allerdings beriicksichtigen die erzeugten TimeZone-Objekte dann keine Sommerzeit. Dazu
miissen Sie nidmlich explizit ein Objekt der Klasse SimpleTimeZone erzeugen und deren Kon-
struktor, neben der frei wiahlbaren ID fiir die neue Zeitzone, auch noch die Informationen fiir
Beginn und Ende der Sommerzeit {ibergeben.

Die im Folgenden abgedruckte Methode MoreDate.getTimeZone() verfolgt eine zweigleisige
Strategie. Zuerst priift sie, ob die angegebene ID in der Liste der verfiigbaren IDs zu finden ist.
Wenn ja, erzeugt sie direkt anhand der ID das gewiinschte TimeZone-Objekt. Bis hierher unter-
scheidet sich die Methode noch nicht von einem direkten TimeZone.getTimeZone()-Aufruf.
Sollte die Methode allerdings feststellen, dass es zu der ID keine passenden Zeitzonen-Infor-
mationen gibt, liefert sie nicht die GMZ-Zeitzone zuriick, sondern zieht die ebenfalls als Argu-
mente iibergebenen Informationen zu Zeitverschiebung und Sommerzeit hinzu und erzeugt
ein eigenes SimpleTimeZone-Objekt.
/**
* Hilfsmethode zum Erzeugen einer Zeitzone (TimeZone-Objekt)
*/
public static TimeZone getTimeZone(String id, int rawOffset,

int startMonth, int startDay,

int startDayOfWeek, int startTime,

int endMonth, int endDay,

int endDayOfWeek, int endTime,

int dstSavings) {

TimeZone tz = null;

// 1st gewlinschte Zeitzone verfiligbar?
String ids[] = TimeZone.getAvailableIDs();
for (int i =0; i < ids.length; ++i)
if (idslil.equals(id))
tz = TimeZone.getTimeZone(ids[i]);

if(tz == null) // Eigene Zeitzone konstruieren
tz = new SimpleTimeZone(rawOffset, id, startMonth, startDay,
startDayOfleek, startTime, endMonth,
endDay, endDayOfWeek, endTime,
dstSavings);

return tz;
}

Das Start-Programm zu diesem Rezept zeigt den Aufruf von MoreDate.getTimeZone(), um sich
ein TimeZone-Objekt fiir PAmerica/Los_Angeles« zuriickliefern zu lassen:

=
[
N
N
=
=
=
=
=
=
=
=
©
(=]

=
@
N
N
=
=
=
=
=
£
=
=
©
(=]

168 >> Differenz zwischen zwei Uhrzeiten berechnen

// aus Start.java

SimpleDateFormat sdf = new SimpleDateFormat("dd. MMMM yyyy, HH:mm");
Calendar calendar = Calendar.getInstance();

TimeZone tz;

tz = MoreDate.getTimeZone("America/Los_Angeles", -28800000,
Calendar.APRIL, 1, -Calendar.SUNDAY, 7200000,
Calendar.OCTOBER, -1, Calendar.SUNDAY, 7200000,
3600000);

sdf.setTimeZone(tz);

System.console().printf("\t%s\n", sdf.format(calendar.getTime()));

Ausgabe:
04. April 2005, 05:10

Wenn Sie die Uhrzeit mit Angabe der Zeitzonen ausgeben:
SimpleDateFormat sdf = new SimpleDateFormat("dd. MMMM yyyy, HH:mm z");

kann es passieren, dass fiir selbst definierte Zeitzonen (ID nicht in der Liste der verfiigharen
IDs vorhanden) eine falsche Zeitzone angezeigt wird. Dies liegt daran, dass SimpleDate-
Format in diesem Fall in die Berechnung der »Zeitzone« auch die Sommerzeitverschiebung
mit einbezieht.

60 Differenz zwischen zwei Uhrzeiten berechnen

Die Differenz zwischen zwei Uhrzeiten zu berechnen, ist grundsitzlich recht einfach: Sie
lassen sich die beiden Zeiten als Anzahl Millisekunden seit dem 01.01.1970 00:00:00 Uhr,
GMT, zuriickgeben, bilden durch Subtraktion die Differenz und rechnen das Ergebnis in die
gewiinschte Einheit um:

import java.util.GregorianCalendar;

GregorianCalendar timel = new GregorianCalendar(2005, 4, 1, 22, 30, 0);
GregorianCalendar time2 = new GregorianCalendar(2005, 4, 2, 7, 30, 0);

long diff = time2.getTimeInMillis() - timel.getTimeInMillis();

// Differenz in Millisekunden : diff

// Differenz in Sekunden . diff/1000
// Differenz in Minuten . diff/(60*%1000)
// Differenz in Stunden . diff/(60%60%1000)

Das obige Verfahren berechnet letzten Endes aber keine Differenz zwischen Uhrzeiten, sondern
Differenzen zwischen Zeiten (inklusive Datum). Das heiBt, fiir timel = 01.05.2005 22:30 Uhr
und time2 = 03.05.2005 7:30 Uhr wiirde die Berechnung 33 Stunden (bzw. 1980 Minuten)
ergeben. Dies kann, muss aber nicht im Sinne des Programmierers liegen.

Wenn Sie nach obigem Verfahren den zeitlichen Abstand zwischen zwei reinen Uhrzeiten (bei-
spielsweise von 07:00 zu 14:00 oder von 14:00 zu 05:00 am nichsten Tag) so berechnen wol-
len, wie man ihn am Zifferblatt einer Uhr ablesen wiirde, miissen Sie darauf achten, die
Datumsanteile beim Erzeugen der GregorianCalendar-Objekte korrekt zu setzen - oder Sie
erweitern den Algorithmus, so dass er gegebenenfalls selbsttitig den Datumsteil anpasst.

>> Datum und Uhrzeit 169

Differenz ohne Beriicksichtung des Tages

Der folgende Algorithmus vergleicht die reinen Uhrzeiten.

P Liegt die Uhrzeit von timel zeitlich vor der Uhrzeit von time2, wird die Differenz von timel
zu time?2 berechnet. Beispiel:

Fir timel = 07:30 Uhr und time2 = 22:30 Uhr werden 15 Stunden (bzw. 900 Minuten)
berechnet.

P Liegt die Uhrzeit von timel zeitlich nach der Uhrzeit von time2, wird die Differenz von
timel zu time?2 am néchsten Tag berechnet. Beispiel:

=
[
N
N
=
=
=
=
=
=
=
=
©
(=]

Fir timel = 22:30 Uhr und time2 = 07:30 Uhr werden 9 Stunden (bzw. 540 Minuten)
berechnet.

import java.util.Calendar;
import java.util.GregorianCalendar;

GregorianCalendar timel = new GregorianCalendar(2005, 1, 1, 22, 30, 0);
GregorianCalendar time2 = new GregorianCalendar(2005, 1, 3, 7, 30, 0);

// timel kopieren und Datumsanteil an timeZ angleichen

GregorianCalendar clonel = (GregorianCalendar) timel.clone();

clonel.set(time2.get(Calendar.YEAR), time2.get(Calendar.MONTH),
time2.get(Calendar.DAY_OF_MONTH));

// liegt die Uhrzeit von clonel hinter time2, erhdhe Tag von time?
if (clonel.after(time?2))

time2.add(Calendar.DAY_OF_MONTH, 1);
diff = time2.getTimeInMillis() - clonel.getTimeInMillis();

// Differenz in Millisekunden : diff

// Differenz in Sekunden : diff/1000
// Differenz in Minuten : diff/(60%1000)
// Differenz in Stunden : diff/(60%60*1000)

61 Differenz zwischen zwei Uhrzeiten in Stunden,
Minuten, Sekunden berechnen

Um die Differenz zwischen zwei Uhrzeiten in eine Kombination aus Stunden, Minuten und
Sekunden umzurechnen, berechnen Sie zuerst die Differenz in Sekunden (diff). Dann rechnen
Sie diff Modulo 60 und erhalten den Sekundenanteil. Diesen ziehen Sie von der Gesamtzahl
ab (wozu Sie am einfachsten die Ganzzahldivision diff/60 durchfiihren). Analog rechnen Sie
den Minutenanteil heraus und behalten die Stunden {ibrig.

Die statische Methode getInstance() der nachfolgend definierten Klasse TimeDiff tut genau
dies. Sie ibernimmt als Argumente die beiden Datumswerte (in Form von Calendar-Objekten)
sowie ein optionales boolesches Argument, iiber das sie steuern konnen, ob die reine Uhrzeit-
differenz ohne Beriicksichtigung des Datumsanteils (true) oder die Differenz zwischen den
vollstindigen Datumsangaben (false) berechnet wird. Als Ergebnis liefert die Methode ein
Objekt ihrer eigenen Klasse zuriick, in dessen public-Feldern die Werte fiir Stunden, Minuten
und Sekunden gespeichert sind.

170 >> Differenz zwischen zwei Uhrzeiten in Stunden, Minuten, Sekunden berechnen

import java.util.Calendar;

/**

* Klasse zur Reprdsentation und Berechnung von Zeitabstdnden

* zwischen zwei Uhrzeiten
*

*/
public class TimeDiff {

public int hours;
pubTic int minutes;
pubTic int seconds;

=
@
N
N
=
=
=
=
=
£
=
=
©
(=]

// Berechnet die Zeit zwischen zwei Uhrzeiten, gegeben als

// Calendar-Objekte (beriicksichtigt ganzes Datum)

public static TimeDiff getInstance(Calendar t1, Calendar t2) {
return getInstance(tl, t2, false);

}

// Berechnet die Zeit zwischen zwei Uhrzeiten, gegeben als
// Calendar-Objekte (wenn onlyClock true, wird nur Differenz zwischen
// Tageszeiten berechnet)
public static TimeDiff getInstance(Calendar tl, Calendar t2,
boolean onlyClock) {
Calendar clonel = (Calendar) tl.clone();
long diff;

// reine Uhrzeit, Datumsanteil eliminieren, vgl. Rezept 60
if (onlyClock) {
clonel.set(t2.get(Calendar.YEAR), t2.get(Calendar.MONTH),
t2.get(Calendar.DAY_OF_MONTH));
if (clonel.after(t2))
t2.add(Calendar.DAY_OF_MONTH, 1);
!

diff = Math.abs(t2.getTimeInMillis() - clonel.getTimeInMiT1is())/1000;
TimeDiff td = new TimeDiff();

// Sekunden, Minuten und Stunden berechnen

td.seconds = (int) (diff%60); diff /= 60;

td.minutes = (int) (diff%60); diff /= 60;
td.hours = (int) diff;

return td;

Listing 61: Die Klasse TimeDiff

>> Datum und Uhrzeit 171

Wenn Sie fiir den dritten Parameter false tibergeben oder einfach die iiberladene Version mit
nur zwei Parametern aufrufen, repriasentiert das zurlickgelieferte Objekt die Differenz in Stun-
den, Minuten, Sekunden vom ersten Datum zum zweiten.

Wenn Sie fiir den dritten Parameter true iibergeben, reprisentiert das zuriickgelieferte Objekt
die Stunden, Minuten, Sekunden von der Uhrzeit des ersten Calendar-Objekts bis zur Uhrzeit
des zweiten Calendar-Objekts - so wie die Zeitdifferenz auf dem Zifferblatt einer Uhr abzule-
sen ist:

» Fir timel = 07:30 Uhr und time2 = 22:30 Uhr werden 15 Stunden (bzw. 900 Minuten)
berechnet.

» Fiir timel = 22:30 Uhr und time2 = 07:30 Uhr werden 9 Stunden (bzw. 540 Minuten)
berechnet

Das Start-Programm zu diesem Rezept demonstriert die Verwendung:

import java.util.Calendar;
import java.util.GregorianCalendar;
import java.text.DatefFormat;

public class Start {

public static void main(String args[]) {
DateFormat dfDateTime = DateFormat.getDateTimeInstance();
TimeDiff td;
System.out.printin();

GregorianCalendar timel =

new GregorianCalendar(2005, 4, 1, 22, 30, 0);
GregorianCalendar time2 =

new GregorianCalendar(2005, 4, 3, 7, 30, 0);
System.out.printin(" Zeit 1 : " + dfDateTime.format(timel.getTime()));
System.out.printin(" Zeit 2 : " + dfDateTime.format(time2.getTime()));

// Berlicksichtigt Datum
System.out.printin("\n Differenz zw. Uhrzeiten (mit Datum)\n");

td = TimeDiff.getInstance(timel, time?2);
System.out.printin(" " + td.hours + " h "
+ td.minutes + " min " + td.seconds + " sec");

// Reine Uhrzeit
System.out.printin("\n\n Differenz zw. Uhrzeiten (ohne Datum)\n");

td = TimeDiff.getInstance(timel, time2, true);
System.out.printin(" " + td.hours + " h "
+ td.minutes + " min " + td.seconds + " sec");

Listing 62: Einsatz der Klasse TimeDiff

=
[
N
N
=
=
=
=
=
=
=
=
©
(=]

=
[
N
=
=
=
=
=
=
=S
=
<
[=]

172 >> Prazise Zeitmessungen (Laufzeitmessungen)

Eingabeaufforderung

>java Start

Zeit 1 : A1.85.2885 22:30:688
Zeit 2 : A3.85.2885 A7:38:88

Differenz zwischen Uhrzeiten (beruecksichtigt Datum)

33 h B min B8 sec

Differenz zwischen Uhrzeiten Cohne Datum)
2 h B min A sec

>

Abbildung 34: Berechnung von Uhrzeitdifferenzen in Stunden, Minuten, Sekunden

62 Prazise Zeitmessungen (Laufzeitmessungen)

Fiir Zeitmessungen definiert die Klasse System die statischen Methoden currentTimeMillis()
und nanoTime(). Beide Methoden werden in gleicher Weise eingesetzt und liefern Zeitwerte in
Millisekunden (1073 sec) bzw. Nanosekunden (1072 sec). In der Praxis werden Sie wegen der
groBeren Genauigkeit in der Regel die ab JDK-Version 1.5 verfiighare Methode nanoTime()
vorziehen.

Zeitmessungen haben typischerweise folgendes Muster:
// 1. Zeitmessung beginnen (Startzeit abfragen)

long start = System.nanoTime();

// Code, dessen Laufzeit gemessen wird
Thread.sleep(50000);

/] 2. leitmessung beenden (Endzeit abfragen)
long end = System.nanoTime();

// 3. Zeitmessung auswerten (Differenz bilden und ausgeben)
long diff = end-start;
System.out.printin(" Laufzeit: " + diff);

Laufzeitmessungen

Wenn Sie Laufzeitmessungen durchfiihren, um die Performance eines Algorithmus oder einer
Methode zu testen, beachten Sie folgende Punkte:

P Zugriffe auf Konsole, Dateisystem, Internet etc. sollten moglichst vermieden werden.

Derartige Zugriffe sind oft sehr zeitaufwendig. Wenn Sie einen Algorithmus testen, der
Daten aus einer Datei oder Datenbank verarbeitet, messen Sie den Algorithmus unbedingt
erst ab dem Zeitpunkt, da die Daten bereits eingelesen sind. Ansonsten kann es passieren,
dass das Einlesen der Daten weit mehr Zeit bendtigt als deren Verarbeitung und Sie folg-
lich nicht die Effizienz Ihres Algorithmus, sondern die der Einleseoperation messen.

» Benutzeraktionen sollten ebenfalls vermieden werden.

Sie wollen ja nicht die Reaktionszeit des Benutzers messen, sondern Ihren Code.

>> Datum und Uhrzeit 173

currentTimeMillis() und nanoTime()

Die Methode currentTimeMi11is() gibt es bereits seit dem JDK 1.0. Sie greift, ebenso wie
Date() oder Calendar.getInstance() die aktuelle Systemzeit in Millisekunden seit dem
01.01.1970 00:00:00 Uhr, GMT, ab. (Tatsdchlich rufen Date() und Calendar.getIns-
tance() intern System.currentTimeMillis() auf.) Die Genauigkeit von Zeitmessungen
mittels currentTimeMil1is() ist daher von vornherein auf die GroBenordnung von Milli-
sekunden beschriankt. Sie verschlechtert sich weiter, wenn der Systemzeitgeber, der die
Uhrzeit liefert, in noch lingeren Intervallen (etwa alle 10 Millisekunden) aktualisiert
wird.

=
[
N
N
=
=
=
=
=
=
=
=
©
(=]

Die Methode currentTimeMillis() eignet sich daher nur fiir Messungen von Operatio-
nen, die ldnger als nur einige Millisekunden andauern (Schreiben in eine Datei, Zugriff
auf Datenbanken oder Internet, Messung der Zeit, die ein Benutzer fiir die Bearbeitung
eines Dialogfelds oder Ahnliches benétigt).

Die Methode nanoTime() gibt es erst seit dem JDK 1.5. Sie fragt die Zeit von dem genau-
estens verfligbaren Systemzeitgeber ab. (Die meisten Rechner besitzen mittlerweile Sys-
temzeitgeber, die im Bereich von Nanosekunden aktualisiert werden.) Die von diesen
Systemzeitgebern zuriickgelieferte Anzahl Nanosekunden muss sich allerdings nicht auf
eine feste Zeit beziehen und kann/sollte daher nicht als Zeit/Datum interpretiert werden.
(Versuchen Sie also nicht, den Riickgabewert von nanoTime() in Millisekunden umzu-
rechnen und zum Setzen eines Date- oder Calendar-Objekts zu verwenden.)

Die Methode nanoTime() ist die Methode der Wahl fiir Performance-Messungen.

P Fiihren Sie wiederholte Messungen durch.

Verlassen Sie sich nie auf eine Messung. Wiederholen Sie die Messungen, beispielsweise in
einer Schleife, und bilden Sie den Mittelwert.

P Verwenden Sie stets gleiche Ausgangsdaten.

Wenn Sie verschiedene Algorithmen/Methoden miteinander vergleichen, achten Sie darauf,
dass die Tests unter denselben Bedingungen und mit denselben Ausgangsdaten durchge-
fiihrt werden.

Vorsicht Jitter! Viele Java-Interpreter fallen unter die Kategorie der Just-In-Time-Com-
piler, insofern als sie Codeblocke wie z.B. Methoden bei der ersten Ausfithrung von
Bytecode in Maschinencode umwandeln, speichern und bei der néchsten Ausfithrung
dann den bereits vorliegenden Maschinencode ausfiihren. In diesem Fall sollten Sie
eine zu beurteilende Methode unbedingt mehrfach ausfiihren und die erste Laufzeit-
messung verwerfen.

Nanosekunden in Stunden, Minuten, Sekunden, Millisekunden

und Nanosekunden umrechnen

Laufzeitunterschiede, die in Nanosekunden ausgegeben werden, kénnen vom Menschen meist
nur schwer miteinander verglichen und in ihrer tatsdchlichen GroBenordnung erfasst werden.
Es bietet sich daher an, die in Nanosekunden berechnete Differenz vor der Ausgabe in eine
Kombination hoherer Einheiten umzurechnen.

=
@
N
N
=
=
=
=
=
£
=
=
©
(=]

174 >> Uhrzeit einblenden

/**

* Klasse zum Umrechnen von Nanosekunden in Stunden, Minuten...
*

*/

public class TimeDiff {

pubTic int hours;
public int minutes;
public int seconds;
public int millis;
pubTic int nanos;

public static TimeDiff getlInstance(long time) {
TimeDiff td = new TimeDiff();

td.nanos = (int)
td.millis (int)
td.seconds = (int)
td.minutes = (int)
td.hours

£ime%1000000); time /= 1000000;
time%1000); time /= 1000;
time%60); time/= 60;

time%60); time/= 60;

(int) time;

return td;

Listing 63: Die Klasse TimeDiff zerlegt eine Nanosekunden-Angabe in héhere Einheiten.

Aufruf:

// 3. Zeitmessung auswerten (Differenz bilden und ausgeben)

long diff = end-start;

td = TimeDiff.getInstance(diff);

System.out.printin(" Laufzeit: " + td.hours + " h "
+ td.minutes + " min " + td.seconds + " sec "
+ td.millis + " milli " + td.nanos + " nano");

63 Uhrzeit einblenden

In den bisherigen Rezepten ging es mehr oder weniger immer darum, die Zeit einmalig abzufra-
gen und irgendwie weiterzuverarbeiten. Wie aber sieht es aus, wenn die Uhrzeit als digitale Zeit-
anzeige in die Oberflache einer GUI-Anwendung oder eines Applets eingeblendet werden soll?

Zur Erzeugung einer Uhr miissen Sie die Zeit kontinuierlich abfragen und ausgeben. In diesem
Rezept erfolgen das Abfragen und das Anzeigen der Zeit weitgehend getrennt.

P Fiir das Abfragen ist eine Klasse ClockThread verantwortlich, die, wie der Name schon ver-
rit, von Thread abgeleitet ist und einen eigenstindigen Thread représentiert.

P Die Anzeige der Uhr kann in einer beliebigen Swing-Komponente (zuriickgehend auf die
Basisklasse JComponent) erfolgen.

Um die Verbindung zwischen ClockThread und Swing-Komponente herzustellen, {ibernimmt
der ClockThread-Konstruktor eine Referenz auf die Komponente. Als Dank fordert er die Kom-
ponente nach jeder Aktualisierung der Uhrzeit auf, sich neu zu zeichnen.

>> Datum und Uhrzeit 175

import java.util.Date;
import java.text.DatefFormat;
import javax.swing.JComponent;

/**

* Thread-Klasse, die aktuelle Uhrzeit in Komponenten einblendet
*

*/
public class ClockThread extends Thread {

=
[
N
N
=
=
=
=
=
=
=
=
©
(=]

private static String time;
private DateFormat df = DateFormat.getTimeInstance();
private JComponent c;

public ClockThread(JComponent ¢) {
this.c = ¢;
this.start();

}

public void run() {
while(isInterrupted() == false) {

// Uhrzeit aktualisieren
ClockThread.time = df.format(new Date());

// Komponente zum Neuzeichnen auffordern
c.repaint();

// eine Sekunde schlafen

try {
sleep(1000);

}

catch(InterruptedException e) {
return;

}

}

public static String getTime() {
return time;

|
s

Listing 64: Die Klasse ClockThread

Der Konstruktor von ClockThread speichert die Referenz auf die Anzeige-Komponente und
startet den Thread, woraufhin intern dessen run()-Methode gestartet wird (mehr zu Threads in
der Kategorie »Threads«). Die run()-Methode enthilt eine einzige groBe while-Schleife, die so
lange durchlaufen wird, wie der Thread ausgefiihrt wird. In der Schleife wird die aktuelle Zeit
abgefragt, formatiert und im statischen Feld time gespeichert, von wo sie die Anzeige-Kompo-
nente mit Hilfe der public getTime()-Methode auslesen kann.

176 >> Uhrzeit einblenden

Das Start-Programm zu diesem Rezept demonstriert, wie die Uhrzeit mit Hilfe von ClockThread
in einem JPanel, hier die ContentPane des Fensters, angezeigt werden kann.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Start extends JFrame {
class ClockPanel extends JPanel {

public void paintComponent(Graphics g) {
super.paintComponent(g);

=
@
N
N
=
=
=
=
=
£
=
=
©
(=]

// Uhrzeit einblenden

g.setFont(new Font("Arial", Font.PLAIN, 18));
g.setColor(Color.blue);
g.drawString(ClockThread.getTime(), 15, 30);

}

private ClockThread ct;
private ClockPanel display;

public Start() {
setTitle("Fenster mit Uhrzeit");
display = new ClockPanel();
getContentPane().add(display, BorderLayout.CENTER);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

// Thread flr Uhrzeit erzeugen und starten
ct = new ClockThread(display);
}

public static void main(String args[]) {
// Fenster erzeugen und anzeigen
Start mw = new Start();
mw.setSize(500,350);
mw.setlocation(200,300);
mw.setVisible(true);

Listing 65: GUI-Programm mit Uhreinblendung

Dem Fenster fillt die Aufgabe zu, den Uhrzeit-Thread in Gang zu setzen und mit der Anzeige-
Komponente zu verbinden. Beides geschieht im Konstruktor des Fensters bei der Erzeugung
des ClockThread-Objekts.

>> Datum und Uhrzeit 177

Fiir die Anzeige-Komponente muss eine eigene Klasse (ClockPanel) abgeleitet werden. Nur so
ist es moglich, die paintComponent()-Methode zu tiberschreiben und den Code zum Einblenden
der Uhrzeit aufzunehmen.

£ Fenster mit Uhrzeit

19:05:21

=
[
N
I
=
=
=
=
=
£
=
=
©
(=]

Abbildung 35: GUI-Programm mit eingeblendeter Uhrzeit in JPanel

System

64 Umgebungsvariablen abfragen

Die java.lang.System-Klasse stellt iber die Methode getProperties() eine elegante Moglich-
keit zum Abrufen von Umgebungsinformationen zur Verfiigung. Diese Informationen kénnen
durchlaufen werden, da sie in Form einer java.util.Properties-Instanz vorliegen.

Um die Systemvariablen durchlaufen zu konnen, wird im folgenden Beispiel der lokalen Vari-
ablen env eine Referenz auf die von System.getProperties zuriickgelieferte Properties-Instanz
zugewiesen. Mit Hilfe von env.keys() lassen sich dann alle Schliissel in Form einer Enumera-
tor-Instanz auslesen. Diese kann per while-Schleife durchlaufen werden.

Innerhalb der Schleife kann der aktuelle Schliissel mit Hilfe der Methode nextElement() der
Enumerator-Instanz ermittelt werden. Deren Riickgabe liegt allerdings in Form einer Object-
Instanz vor, die deshalb noch in einen String gecastet werden muss, bevor sie weiterverwendet
werden kann.

Jetzt 1asst sich der Wert der so ermittelten Systemvariablen auslesen. Dazu wird die Methode
getProperty() der Properties-Instanz genutzt, der als Parameter der Schliissel iibergeben wird.

import java.io.PrintStream;
import java.util.Enumeration;
import java.util.Properties;

public class EnvInfo {

/**
* Abfrage und Ausgabe von Umgebungsvariablen
*/

public static void enumerate() {

// Properties einlesen
Properties env = System.getProperties();

// Schlissel auslesen
Enumeration keys = env.keys();

// Standardausgabe referenzieren
PrintStream out = System.out;

// Schliissel durchlaufen
while(keys.hasMoreElements()) {

// Aktuellen Schlissel auslesen
String key = (String)keys.nextElement();

// Wert auslesen

Listing 66: Ausgabe von Umgebungsinformationen

180 >> Betriebssystem und Java-Version bestimmen

String value = env.getProperty(key);

// Daten ausgeben
out.printin(String.format("%s = %s", key, value));

Listing 66: Ausgabe von Umgebungsinformationen (Forts.)

Wenn Sie den Wert eines bestimmten Schliissels eruieren wollen, miissen Sie nicht den
Umweg iiber System.getProperties().getProperty() gehen, sondern kénnen dies direkt
via System.getProperty() erledigen.

Eingabeaufforderung

= Java(TM> SE Runtime Environment
un.hoot.library.path = G:“\Programme“Java>jrel.6.B8%bin
java.vm.versio .6 .A-hiB85
java.vm.vendor Sun Microsystems Inc.
java.vendor.url http:/7java.sun.com”
path.separator H
java.vm.name = Java HotSpot<TH> Client UM
file.encoding.pkyg = sun.io
un.java.launcher = SUN_STAMDARD
wser.country = DE
un.os.patch.level = Service Pack 2
java.vm.specification.name = Java Uirtual Machine Specification
1ser.dir = G:“Buchprojekte~Markt+Technik™Java_ Codebhook-~Z2887“Beispiele~B5 System
B64 Ungebungsvariablen abfragen
java.runtime.version = 1.6.8-h185
java.awt _graphicsenu = sun.awt _Win32GraphicsEnvironment
java.endorsed.dirs = C:\ProgrammesJavasjrel.6.B@v1libsendorszed

CaSDOKUME™1SMED1C?™1 . LAONLOKALE™1Temnp™

line.separator

java.vm.specification.vendor = Sun Microsystems Inc.
wser.variant =

= Windows XP
un.jnu.encoding = ¢

1252

Abbildung 36: Ausgabe der Umgebungsinformationen

65 Betriebssystem und Java-Version bestimmen

Die Bestimmung von Betriebssystem und verwendeter Java-Version erfolgt mit Hilfe der
Schliissel os.name und os.version. Mit dem Schliissel java.version konnen die Versionsinfor-
mationen von Java ausgelesen werden:

public class Start {
public static void main(String[] args) {

// Betriebssystem-Name auslesen
System.out.printin(

Listing 67: Ermitteln von Betriebssystem- und Java-Versionsinformationen

>> System 181

String.format("0S: %s",
System.getProperty("os.name")));

// Betriebssystem-Version auslesen
System.out.printin(
String.format("Version: %s",
System.getProperty("os.version")));

// Java-Version auslesen
System.out.printin(
String.format("Java-Version: %s",
System.getProperty("java.version")));

Listing 67: Ermitteln von Betriebssystem- und Java-Versionsinformationen (Forts.)

. C\WIN2K3\system32\cmd.exe

>java Start
05: Windows 2883
Version: 5

Jaua—Uersian: 1.5.8

>

Abbildung 37: Ausgabe von Java- und Betriebssystem-Version

66 Informationen zum aktuellen Benutzer ermitteln

Die Java-Runtime stellt einige Informationen zum aktuellen Benutzer zur Verfiigung. Diese
konnen per System.getProperty() unter Verwendung der folgenden Schliissel abgerufen wer-
den:

Schlussel ‘ Garantiert | Beschreibung

user.country nein Kiirzel des Landes, das der Nutzer in den Systemeinstellungen ange-
geben hat - beispielsweise DE fiir Deutschland oder AT fiir Osterreich

user.dir ja Aktuelles Arbeitsverzeichnis
user.variant nein Verwendete Variante der Lander- und Spracheinstellungen
user.home ja Home-Verzeichnis des Nutzers (bei Windows beispielsweise der

Ordner »Eigene Dateienc)

user.timezone nein Verwendete Zeitzone
user.name ja Anmeldename des Nutzers
user.language nein Kiirzel der Sprache, die der Nutzer aktiviert hat — beispielsweise de

fiir Deutsch oder en fiir Englisch

Tabelle 23: Schltissel fiir den Abruf von Benutzerinformationen

182 >> Zugesicherte Umgebungsvariablen

Die nicht garantierten Elemente sind nicht auf jedem System vorhanden. Die drei Schliissel
user.dir, user.home und user.name werden aber in jedem Fall einen Wert zuriickgeben, da sie
zu den zugesicherten Systeminformationen gehéren.

67 Zugesicherte Umgebungsvariablen

Java stellt eine groBe Anzahl Umgebungsvariablen bereit, die tiber System.getProperty()
abgerufen werden konnen. Nicht alle dieser Variablen sind auf jedem System verfiigbar, aber
Java sichert die Existenz zumindest einiger Umgebungsvariablen zu:

Schlussel ‘ Beschreibung

Jjava.version

Java-Version

java.vendor

Anbieter

Jjava.vendor.url

Anbieter-Homepage

java.home

Installationsverzeichnis

java.vm.specification.version

Version der JVM-Spezifikation

Jjava.vm.specification.vendor

Anbieter der JVM-Spezifikation

java.vm.specification.name

Name der JVM-Spezifikation

Jjava.vm.version JVM-Version
java.vm.vendor JVM-Anbieter
Jjava.vm.name JVM-Name

Jjava.specification.version

JRE-Version

java.specification.vendor

JRE-Anbieter

Jjava.specification.name

JRE-Spezifikation

Jjava.class.version

Java Class Format-Version

Jjava.class.path

Klassenpfad

Jjava.library.path

Pfade, die durchsucht werden, wenn Java-Libraries geladen
werden sollen

Jjava.io.tmpdir

Temporires Verzeichnis

Java.compiler

Compiler-Name

Jjava.ext.dirs

Pfade, die durchsucht werden, wenn Java-Extensions geladen
werden sollen

os.name Name des Betriebssystems
os.arch Prozessor-Architektur
o0s.version Version des Betriebssystems

file.separator

Trenner zwischen Pfaden und Verzeichnissen

path.separator

Trenner zwischen mehreren Pfaden

line.separator

Zeilenumbruch-Zeichenfolge (»\n« bei Unix, »\r\n« bei Windows)

user.name Anmeldename des aktuellen Benutzers
user.home Home-Verzeichnis des aktuellen Benutzers
user.dir Aktuelles Arbeitsverzeichnis

Tabelle 24: Zugesicherte Systemvariablen

>> System 183

Interessant fiir den produktiven Einsatz dirften die Informationen zum Betriebssystem, zum
Benutzer, zu den Pfaden und moglicherweise auch die Java-Version sein. Andere Informatio-
nen, etwa zur JRE- oder JVM-Version, werden in der Praxis nicht allzu haufig benétigt.

Wenn Sie andere Java-Umgebungsvariablen als die zugesicherten verwenden wollen,
sollten Sie die Existenz eines Werts, den Sie mit Hilfe von System.getProperty() ermit-
teln, immer hinterfragen und auf null priifen, bevor Sie ihn verwenden:

String value = System.getProperty(key);

if(null != value && value.length() > 0) {
System.out.printin(String.format("Wert von %s: %s", key, value));

}

68 System-Umgebungsinformationen abrufen

Seit Java 5 besteht die Moglichkeit, auf die Umgebungsvariablen des Betriebssystems zuzu-
greifen. So kann beispielsweise das Home-Verzeichnis des aktuell angemeldeten Benutzers
ausgelesen oder die PATH-Angabe interpretiert werden.

Das Auslesen dieser Informationen geschieht mit Hilfe einer java.util.Map-Collection, die fiir
Schliissel und Werte nur Strings zuldsst und der mit System.getenv() eine Referenz auf die
Systemvariablen zugewiesen wird. Mittels java.util.Iterator konnen die Schliissel durchlau-
fen werden. Die Methode get() der Map-Instanz env erlaubt unter Ubergabe des Schliissels als
Parameter den Abruf des referenzierten Werts:

import java.util.Map;
import java.util.Iterator;

public class SystemInfo {

/**

* Abfrage und Ausgabe von Systemvariablen
*/

public static void enumerate() {

// Systemvariablen in Map<String, String> einlesen
Map<String, String>env = System.getenv();

// Iterator erzeugen, um die Schlissel durchlaufen
// zu kdénnen
Iterator<String> keys = env.keySet().iterator();

// Tteratur durchlaufen
while(keys.hasNext()) {
// Schliissel abrufen
String key = keys.next();

// Wert abrufen
String value = env.get(key);

Listing 68: Ausgabe aller Umgebungsvariablen des Betriebssystems

184 >> INI-Dateien lesen

// Schliissel und Wert ausgeben
System.out.printIn(String.format("%s = %s", key, value));
}

Listing 68: Ausgabe aller Umgebungsvariablen des Betriebssystems (Forts.)

69 INI-Dateien lesen

Zum Lesen und Schreiben von Konfigurationsdaten und Benutzereinstellungen kann die
Jjava.util.Properties-Klasse verwendet werden. Dabei handelt es sich um eine nicht Generics-
fahige Ableitung der java.util.Hashtable-Klasse, die ihrerseits weitestgehend der java.util.
Hashmap-Klasse entspricht.

Die Properties-Klasse verwaltet Name/Wert-Paare und bietet besondere Methoden zum Laden
und Speichern der in ihr enthaltenen Werte, wodurch sie sich besonders fiir die Sicherung von
Anwendungseinstellungen in Form von INI-Dateien oder XML eignet.

Erzeugen mit Standardwerten bzw. ohne Standardwerte
Properties-Instanzen konnen mit dem Standardkonstruktor erzeugt werden:
Jjava.util.Properties props = new java.util.Properties();

Ein iiberladener Konstruktor erlaubt es, eine bereits existierende Properties-Instanz fiir die
Definition von Standardwerten zu verwenden:

java.util.Properties props = new java.util.Properties(defaults);

Zuweisen und Abrufen von Werten

Die Zuweisung von Werten geschieht mit Hilfe der Methode setProperty(), die als Parameter
zwei String-Werte entgegennimmt. Der erste Parameter dient dabei als Schliissel, der zweite
Parameter stellt den Wert dar:

props.setProperty("Name", "Mueller");
props.setProperty("FirstName", "Paul");
props.setProperty("City", "Musterstadt");

Zum Abrufen der gespeicherten Werte verwenden Sie getProperty(). Als Parameter iibergeben
Sie den Schliissel:

System.out.printin(String.format("Name: %s",

props.getProperty("Name")));
System.out.printin(String.format("First name: %s",

props.getProperty("FirstName")));
System.out.printin(String.format("City: %s",

props.getProperty("City")));

Einer zweiten, iiberladenen Form kann als zweiter Parameter ein Default-Wert {ibergeben wer-
den, der zurtickgeliefert wird, falls der Schliissel nicht existiert:

System.out.printin(String.format("Country: %s",
props.getProperty("Country", "Germany")));

>> System 185

Gespeicherte Properties laden

Das Laden einer INI-Datei erfolgt mit Hilfe eines InputStreams. Dieser wird als Parameter der
Toad()-Methode einer zuvor erzeugten Properties-Instanz libergeben:

import java.util.Properties;
import java.io.FilelnputStream;
import java.io.IOException;

pubTic class Start {

/**

* |ddt die in der angegebenen Datei gespeicherten Parameter
*/

private static Properties Toad(String filename) {

// Properties-Instanz erzeugen
Properties props = new Properties();

try {
// FilelnputStream-Instanz zum Laden der Daten
FileInputStream in = new FilelnputStream(filename);

// Daten laden
props.load(in);

// Aufrdumen
in.close();

} catch (I0Exception e) {
// Eventuell aufgetretene Ausnahmen abfangen
t

// Ergebnis zuriickgeben
return props;
}

public static void main(Stringl] args) {

// Daten Taden
Properties props = Toad("app.ini");

// ...und ausgeben
System.out.printin(

String.format("Name: %s", props.getProperty("Name")));
System.out.printin(

String.format("First name: %s", props.getProperty("FirstName")));
System.out.printin(

String.format("City: %s", props.getProperty("City")));

Listing 69: Laden von Properties

186 >> INI-Dateien lesen

Gespeicherte Properties im XML-Format laden

Analog zum Laden von in Textform vorliegenden Einstellungen gestaltet sich das Laden der
Daten aus einer XML-Datei. Einziger Unterschied ist die verwendete Methode: Statt load()
wird hier ToadFromXML() verwendet. Dieser Methode wird eine java.io.InputStream-Instanz als

Parameter {ibergeben, mit deren Hilfe die Daten geladen werden:

import java.util.Properties;
import java.io.FilelInputStream;
import java.io.IOException;

public class Start {

/**
* Lddt die in der angegebenen XML-Datei gespeicherten Parameter

private static Properties Toad(String filename) {

}

// Properties-Instanz erzeugen
Properties props = new Properties();

try {
// FilelnputStream-Instanz zum Laden der Daten
FileInputStream in = new FilelnputStream(filename);

// Daten laden
props.loadFromXML(in);

} catch (IOException e) {
// Eventuell aufgetretene Ausnahmen abfangen

} finally {
// Aufrdumen
in.close();
}

// Ergebnis zuriickgeben
return props;

public static void main(String[] args) {

// Daten laden
Properties props = load("app.xml");

// ...und ausgeben
System.out.printin(

String.format("Name: %s", props.getProperty("Name")));

System.out.printin(

String.format("First name: %s", props.getProperty("FirstName")));

System.out.printin(

Listing 70: Laden von als XML vorliegenden Daten

>> System 187

String.format("City: %s", props.getProperty("City")));

Listing 70: Laden von als XML vorliegenden Daten (Forts.)

70 INI-Dateien schreiben

Zum Speichern einer Properties-Instanz kann deren Methode store() verwendet werden.
Dabei kann eine I0Exception auftreten, weshalb das Speichern in einen try-catch-Block
gefasst werden sollte:

import java.util.Properties;
import java.io.FileOutputStream;
import java.io.IOException;

public class Start {

/**
* Speichert eine Properties-Datei unter dem angegebenen Namen
*/
public static void save(
Properties props, String path, String comment) {
try |
// FileQutputStream-Instanz zum Speichern instanzieren
FileOutputStream fos = new FileOutputStream(path);

// Speichern
props.store(fos, comment);

// Aufrdumen
fos.close();
} catch (IOException ignored) {}
}

public static void main(String[] args) {
// Properties-Instanz erzeugen
Properties props = new Properties();

// Werte setzen
props.setProperty("Name", "Mustermann");
props.setProperty("FirstName", "Hans");
props.setProperty("City", "Musterstadt");

// Speichern
save(props, "data.ini", "Saved data");

Listing 71: Speichern einer Properties-Instanz

188 >> INI-Dateien im XML-Format schreiben

Der zweite Parameter der iiberladenen Methode store() dient der Speicherung eines Kommen-
tars - hier konnte beispielsweise auch ein Datum ausgegeben werden.

71 INI-Dateien im XML-Format schreiben

Das Speichern von INI-Dateien im XML-Format erfolgt analog zum Speichern im Textformat,
jedoch wird statt der Methode store() die Methode storeToXML() verwendet. Auch hier kann
es zu einer 10Exception kommen (etwa wenn auf die Datei nicht schreibend zugegriffen wer-
den konnte), die mit Hilfe eines try-catch-Blocks abgefangen werden sollte:

import java.util.Properties;
import java.io.FileOutputStream;
import java.io.IOException;

public class Start {

/**
* Speichert eine Properties-Datei unter dem angegebenen Namen
* als XML
*/
public static void saveAsXml(
Properties props, String path, String comment) {
try {
// FileQutputStream-Instanz zum Speichern instanzieren
FileQutputStream fos = new FileOutputStream(path);

// Speichern
props.storeToXML(fos, comment);

// Aufrdumen
fos.close();
} catch (IOException ignored) {}
}

public static void main(Stringl] args) {
// Properties-Instanz erzeugen
Properties props = new Properties();

// Werte setzen
props.setProperty("Name", "Mustermann");
props.setProperty("FirstName", "Hans");
props.setProperty("City", "Musterstadt");

// Als XML Speichern
saveAsXml (props, "data.xml", "Saved data");

Listing 72: Speichern einer INI-Datei als XML

>> System 189

72 Externe Programme ausfiihren

Externe Prozesse werden mit Hilfe der Methode exec() der java.lang.Runtime-Klasse gestartet.
Deren Riickgabe ist eine Instanz der java.lang.Process-Klasse.

Das Starten von externen Prozessen ist sehr stark plattformabhingig und verstoBt
somit gegen einen der Java-Grundséitze: »Write once, run anywhere« ist beim Ausfiih-
ren externer Prozesse nicht mehr gegeben.

Bei der Ausfiihrung von Prozessen kann es zu I0Exceptions kommen, falls Rechte aus dem
aktuellen Kontext heraus fehlen, das angegebene Programm nicht gefunden werden konnte
oder sonstige Fehler bei dessen Ausfiihrung aufgetreten sind.

Der Riickgabecode eines Prozesses lédsst sich mit Hilfe der Methode exitValue() abrufen. Alter-
nativ - und das wird in der Praxis haufiger vorkommen - kann auf die Beendigung eines Pro-
zesses mit waitFor() gewartet werden.

Die Ausgabe kann {iber die Methode getInputStream() in Form einer java.io.InputStream-
Instanz abgerufen werden. Sinnvollerweise wird dies in einer java.io.BufferedInputStream-
Instanz gekapselt. Das eigentliche Auslesen erfolgt mit Hilfe einer java.io.BufferedReader-
Instanz, die per zugrunde liegendem java.io.InputStreamReader die im BufferedInputStream
vorliegenden Daten verarbeitet. Auf diese Weise kann auch gleich sichergestellt werden, dass
Umlaute korrekt eingelesen werden: Der Konstruktor des InputStreamReaders erlaubt zu die-
sem und anderen Zwecken die Angabe des zu verwendenden Zeichensatzes.

import java.io.*;

public class Ping {

/**

* Pingt die angegebene Adresse an

*/

public static String ping(String address) {
StringBuffer result = new StringBuffer();
BufferedReader rdr = null;
PrintWriter out = null;

// Runtime-Instanz erzeugen
Runtime r = Runtime.getRuntime();

try {
// Prozess erzeugen
// Syntax fir Unix-Systeme: "ping -c 4 -i 1 <Adresse>"
// Syntax fiir Windows-Systeme: "ping <Adresse>"
Process p = r.exec(String.format("ping %s", address));

// Warten, bis der Prozess abgeschlossen ist
p.waitFor();

Listing 73: Ping auf einen externen Host

190 >> Externe Programme ausfiihren

// BufferedReader erzeugen, der die Daten einliest
// Die Angabe der CodePage ist auf Windows-Systemen
// ndtig, um Umlaute korrekt verarbeiten kdnnen
rdr = new BufferedReader(
new InputStreamReader(new BufferedInputStream(
p.getInputStream()), "cp850"));

// Daten einlesen
String Tine = null;
while(null != (Tine = rdr.readlLine())) {
if(line.length() > 0) {
result.append(Tine + "\r\n");
}
}
} catch (I0Exception e) {
// 10Exception abfangen
e.printStackTrace();
} catch (InterruptedException e) {
// Ausflhrung wurde unterbrochen
e.printStackTrace();
} finally {
try {
// Aufrdumen
rdr.close();
} catch (IOException e) {}
}

return result.toString();

Listing 73: Ping auf einen externen Host (Forts.)

Fiir die Ausgabe der zuriickgelieferten Prozessdaten auf die Konsole bietet sich die printf()-
Methode der Klasse Console an. Dann miissen Sie sich um eventuell enthaltene Umlaute keine
Sorgen machen.

import java.io.*;
public class Start {

public static void main(String[] args) {
// Anzupingende Adresse ist erster Parameter
String address = "java.sun.com";
if(args != null && args.length > 0) {
address = args[0];
}

// Pingen

Listing 74: Ausfluhren eines externen Prozesses und Ausgeben der vom Prozess
zurtickgelieferten Daten

>> System 191

String output = Ping.ping(address);

// Prozessdaten ausgeben

N/ O/ M

System.console().printf("%s%n", output);

Listing 74: Ausflhren eines externen Prozesses und Ausgeben der vom Prozess
zurtickgelieferten Daten (Forts.)

Beim Ausfiihren der Klasse konnen Sie als Parameter einen Server-Namen oder eine IP-
Adresse iibergeben.

Eingabeaufforderung

>java Start carpelibrum._de
Ping carpelibrum.de [82.165.106.1541 mit 32 Bytes Daten:
Antwort von 82.165%.106.15%4: Bytes=32 Zeit=4%mz TIL=%%
Aintwort von 82.165.106.154: Bytes=32 Zeit=43ms TTL=55
Antwort von B82._.165.106.154: Bytes=32 Zeit=43ms TTL=L5
Aintwort von 82 _165.106.154: Bytes=32 Zeit=43ms TTL=L5
ing—Statistik fiir 82.165.106.154:
Pakete: Gesendet = 4. Empfangen = 4. Uerloren = B (B2 Uerlust).
a. Zeitangahen in Millisek.:
Minimum = 43ms, Maximum = 45ms, Mittelwert = 43ms

Abbildung 38: Ausftihren eines Pings aus Java heraus

73 Verfiigbaren Speicher abfragen

Mit Hilfe der java.lang.Runtime-Klasse ldsst sich ermitteln, wie viel Speicher der aktuellen
Java-Instanz zur Verfiigung steht. Diese Information liefert die Methode freeMemory() einer
Runtime-Instanz. Die Instanz kann tiber die statische Methode Runtime.getRuntime() referen-
ziert werden:

public class Start {
public static void main(Stringl] args) {
// Runtime-Instanz referenzieren
Runtime r = Runtime.getRuntime();

// Freien Speicher auslesen
Tong mem = r.freeMemory();

// In KBytes umrechnen
double kBytes = ((mem / 1024) * 100) / 100;

// In MBytes umrechnen

Listing 75: Ermitteln des freien Speichers einer Java-Instanz

192 >> Speicher fiir JVM reservieren

double mBytes = ((kBytes / 1024) * 100) /100;

// Ausgeben
System.out.printin(
String.format(
"Diese Java-Instanz hat %d Byte
+ "(=%g KByte bzw. %g MByte) freien Speicher.",
mem, kBytes, mBytes));

Listing 75: Ermitteln des freien Speichers einer Java-Instanz (Forts.)

Die ebenfalls verfiigbaren Methoden maxMemory() und totalMemory() kénnen genutzt werden,
um den maximal verfiigharen Speicher und die Gesamtmenge an Speicher der Java-Anwen-
dung auszuwerten.

74 Speicher fiir JVM reservieren

Die Reservierung von Speicher fiir die JVM erfolgt beim Aufruf des Java-Interpreters unter
Angabe der Parameter -Xms und -Xm.x.

Die Parameter haben dabei folgende Bedeutung:

Parameter ‘ Bedeutung

-Xms<GroBe> Anfanglicher Speicher fiir die Ausfithrung der Anwendung. Der Parameter
<GroBe> kann dabei in Byte, Kilobyte oder Megabyte angegeben werden:
-Xms1024: anfanglicher Speicher von 1 Kbyte

-Xms100k: anfénglicher Speicher von 100 Kbyte

-Xms32m: anfanglicher Speicher von 32 Mbyte

Der Standardwert von -Xms ist plattformabhidngig und betragt je nach
Systemumgebung und Java-Version 1-2 Mbyte.

-Xmx<GroBe> Maximaler Speicher fiir die Ausfithrung der Anwendung:

-Xmx2048: maximaler Speicher von 2 Kbyte

-Xmx300k: maximaler Speicher von 300 Kbyte

-Xmx128m: maximaler Speicher von 128 Mbyte

Der Standardwert betragt je nach Systemumgebung und Java-Version zwi-
schen 16 und 64 Mbyte.

Tabelle 25: Kommandozeilen-Parameter flir die Reservierung von Speicher

75 DLLs laden

Das Laden und Ausfiihren externer Bibliotheken erfolgt via JNT (Java Native Interface). Dabei
wird die externe Bibliothek mit Hilfe von ToadlLibrary() in eine Java-Klasse eingebunden, ihre
Methoden werden aus Sicht der Klasse wie gewdhnliche Instanz-Methoden verwendet.

>> System 193

Das Laden und Verwenden externer Bibliotheken (auf Windows-Systemen meist als
DLLs vorliegend) sollte mit Bedacht vorgenommen werden, denn es hebt die Plattform-
und Systemunabhéngigkeit von Java auf.

Die grundsétzliche Vorgehensweise fiir den Einsatz von JNI sieht so aus:

P Erstellen einer Java-Klasse, die die zu implementierenden Funktionen definiert und die
externe Bibliothek 1adt

» Kompilieren der Java-Klasse

P Erzeugen einer C/C++-Header-Datei, die die zu implementierenden Funktionen fiir C- oder
C++-Programme definiert

» Implementieren der Funktionen in C oder C++
P Bereitstellen der externen Bibliothek

Das Laden und Verwenden der externen Bibliothek geschieht mit Hilfe eines statischen Blocks
und unter Verwendung des Schliisselworts native. Die Angabe der Dateiendung der externen
Bibliothek unterbleibt dabei, so dass hier eine gewisse Portabilitit gewahrt bleibt:

public class Start {

// Laden der externen Bibliothek
static |
System.ToadLibrary("HelToWorld");

1
J

// Deklaration der Methode in der externen Bibliothek
pubTlic native String sayHello();

public static void main(String[] args) {
// Neue Instanz erzeugen
Start instance = new Start();

// Externe Methode ausfiihren
System.out.printin(instance.sayHello());
}

Listing 76: Laden und Verwenden einer externen Bibliothek

Nach dem Kompilieren der Klasse kann eine C/C++-Header-Datei erzeugt werden, in der die zu
implementierende JNI-Methode definiert ist. Dies geschieht unter Verwendung des Hilfspro-
gramms javah, das sich im /bin-Verzeichnis der JDK-Installation befindet.

Der Aufruf von javah sieht zur Generierung einer Datei HelloWorld.h wie folgt aus:
Jjavah -jni -classpath "%ZCLASSPATH%;." -o HelloWorld.h Start

Die so erzeugte Header-Datei kann nun verwendet werden, um eine externe Bibliothek zu
erstellen. Diese wird in der Regel meist nur eine Wrapper-Funktion haben und somit den

194 >> DLLs laden

Zugriff auf andere Bibliotheken oder Systemfunktionen erlauben. Innerhalb der Header-Datei
ist eine Funktion definiert, die implementiert werden muss:

JNIEXPORT jstring JNICALL Java_Start_sayHello(JNIEnv *, jobject);

Am Beispiel eines Visual C++-Projekts soll aufgezeigt werden, wie die Umsetzung stattfinden
kann. Analog kann auch bei Verwendung eines anderen Entwicklungstools und eines anderen
Compilers vorgegangen werden.

Zunichst soll ein neues C++-Projekt im Visual Studio .NET angelegt werden. Dieses Projekt ist
vom Typ Windows-32-Applikation. In den Projekteigenschaften muss als Ausgabetyp »Dyna-
mische Bibliothek (.dll)« festgelegt werden.

Nach dem Erzeugen des Projekts miissen unter EXTRAS/OPTIONEN/PROJEKTE/VC++-VERZEICH-
NISSE die Ordner %JAVA-HOME%/include und %JAVA_HOME%/include/win32 fir Include-
Dateien hinzugefiigt werden:

ﬂ

23 Umgebung Plattform: Verzeichnisse anzeigen fir:
(1 Quellcodeverwaltung |'\-'-,'i|132 ﬂ ndudedateien 57
] Text-Editar -
[Datenbanktocls A [S S
- Del?“uggen £{vCInstallDirjindude J
1 Geratetools &{VCInstallDir)atimfcijincude
(L] HTML-Designer £{VCInstalDir)PlatformSDKndude'\prerelease
—3 Projekte £{VCInstalDir)PlatformSDKndude

VB-Standard &FrameunrkSOKDINincd de

S D:'jdk'include

D:'jdk'includewin32
5 VC++-Verzeichnisse

Webeinstellungen
(1 Windows Forms-Designer P | | " H

(] *ML-Designer

Includeverzeichnisse

Pfad, der verwendet wird, wenn beim Erstellen eines Y ++-Projekts nach
Includedateien gesucht werden soll. Stimmt mit der Umgebungsyariable
INCLUDE dberein.

a4 | Abbrechen Hilfe

Abbildung 39: Hinzufldgen der Java-Include-Verzeichnisse zum Projekt

In den Projekteigenschaften miissen unter dem Punkt ALLGEMEIN folgende Einstellungen vor-
genommen werden:

» Verwendung von ATL: Dynamische Verkniipfung zu ATL

P Zeichensatz: Unicode

Unter dem Punkt LINKER muss die Bibliothek %JAVA_HOME%/lib/jawt.lib hinzugefiigt werden.
Die Wrapper-Klasse HelloWorld kapselt den Zugriff auf die eigentlich verwendete Klasse Say-
Hello, die folgende Header-Definition besitzt:

class SayHello {
public:

Listing 77: SayHello.h

>> System 195

SayHello(void);

~SayHello(void);

char* execute(void);
}s

Listing 77: SayHello.h (Forts.)

Die Implementierung ist in diesem Fall trivial:

fFinclude "StdAfx.h"
fHinclude ".\sayhello.h"

// Konstruktor
SayHello::SayHello(void) {}

// Destruktor
SayHello::~SayHello(void) {}

// Implementierung von execute
char* SayHello::execute() f

return "Hello world from C++!";
}

Listing 78: SayHello.cpp

Die Wrapper-Klasse HelloWorld.cpp muss die von Java generierte Header-Datei HelloWorld.h
referenzieren und die dort definierte Methode Java_Start_sayHello() implementieren:

// HelloWorld.cpp : Wrapper-Klasse, wird von Java aufgerufen

// Includes

fHinclude "stdafx.h"
fFinclude "HelloWorld.h"
fHinclude "SayHello.h"
fFinclude <win32\jawt_md.h>

// Default-Einstiegspunkt

BOOL APIENTRY D11Main(HANDLE hModule,
DWORD ul_reason_for_call,
LPVOID TpReserved) {
return TRUE;

}

// Implementierung der Java-Methode
JNIEXPORT jstring JNICALL Java_Start_sayHello (
JNIEnv *env, jobject obj) {

// Instanz erstellen
SayHello *instance = new SayHello();

Listing 79: JNI-Wrapper-Implementierung HelloWorld.cpp

196 >> DLLs laden

// Riickgabe abrufen
const char* tmp = instance->execute();

// GriéBe bestimmen
size_t size = strlen(tmp);

// jchar-Array erzeugen
jchar* jc = new jchar[sizel;

// Speicher reservieren
memset(jc, 0, sizeof(jchar) * size);

// Kopieren

for(size_t i =0; 1 < size; i+) |
jeli] = tmplil;

}

// Rlickgabe erzeugen
Jstring result = (jstring)env->NewString(jc, Jsize(size));

// Aufrdumen
delete [] jc;

// Zurlickgeben
return result;

Listing 79: JNI-Wrapper-Implementierung HelloWorld.cpp (Forts.)

JNI definiert einige Datentypen, die die C-/C++-Gegenstiicke zu den Java-Datentypen darstel-
len. C-/C++-Datentypen miissen stets aus und in die JNI-Datentypen gecastet werden, da sich
sowohl GroBe als auch Kodierung der reprédsentierten Java-Datentypen deutlich von ihren
C++-Pendants unterscheiden. Die hier praktizierte Riickgabe von Zeichenketten erfordert bei-
spielsweise, dass einzelne Zeichen in ihre JNI-jchar-Pendants gecastet werden miissen.

Achten Sie darauf, nicht mehr bend&tigte Ressourcen wieder freizugeben, um keine
Speicherldcher zu erzeugen.

Nach dem Kompilieren kann die Bibliothek verwendet werden. Dabei muss sie sich innerhalb
eines durch die Umgebungsvariable PATH definierten Pfads befinden, um gefunden zu werden:

\WIN2K3\system32\cmd.exe

»java Start
Hello world from C++?

>

Abbildung 40: Verwenden einer C++-Methode aus Java heraus

>> System 197

76 Programm fiir eine bestimmte Zeit anhalten

Mit Hilfe der statischen Methode sleep() der Klasse java.lang.Thread konnen Sie den aktuel-
len Thread fiir die als Parameter angegebene Zeit in Millisekunden anhalten. So kann dafiir
gesorgt werden, dass das System insbesondere bei lang laufenden Schleifen die Moglichkeit
erhilt, andere anstehende Aufgaben abzuarbeiten.

Wihrend ein Thread per Thread.sleep() pausiert, kann es vorkommen, dass er beendet oder
sonstwie unterbrochen wird. In diesem Fall wird eine InterruptedException geworfen, die auf-
gefangen oder deklariert werden muss:

import java.util.Date;
public class Start {

public static void main(String[] args) {
// Aktuelle Uhrzeit ausgeben
System.out.printin(
String.format("Current time: %s", new Date().toString()));

// Thread pausieren

try {
Thread.sleep(5000);

} catch (InterruptedException e) {
e.printStackTrace();

}

// Aktuelle Uhrzeit ausgeben
System.out.printin(
String.format("Current time: %s", new Date().toString()));

Listing 80: Pausieren eines Threads per Thread.sleep()

77 Timer verwenden

Mit Hilfe der java.util.Timer-Klasse konnen Aufgaben wiederholt ausgefiihrt werden. Klas-
sen, die regelméBig eingebunden werden sollen, miissen von der Basisklasse java.util.Timer-
Task erben und deren run()-Methode iiberschreiben:

import java.util.TimerTask;

import java.util.Calendar;

import java.text.DateFormat;

public class SimpleTimerTask extends TimerTask {

private boolean running = false;

/**

Listing 81: Die Klasse SimpleTimerTask definiert einen per Timer auszuftihrenden Task.

198 >> Timer verwenden

* Wird vom Timer regelmdBig aufgerufen und ausgefiihrt
*/
public void run() {
String date = DateFormat.getTimelnstance().format(
Calendar.getInstance().getTime());

String message = running ?
"%s: Still running (%s)" : "%s: Started! (%s)";

// Ausgeben einer Nachricht mit der aktuellen Uhrzeit
System.out.printin(String.format(
message, "SimpleTimerTask", date));

running = true;

Listing 81: Die Klasse SimpleTimerTask definiert einen per Timer auszuflihrenden Task. (Forts.)

Das Einbinden eines TimerTask geschieht iiber eine neue Timer-Instanz, deren schedule()-
Methode eine Instanz der TimerTask-Ableitung als Parameter iibergeben wird. Weiterhin kann
angegeben werden, wann oder mit welcher Startverzégerung und in welchem Abstand die
Ausfiihrung stattfinden soll. Die Angabe von Startverzogerung und Ausfiithrungsintervall
erfolgt dabei stets in Millisekunden:

import java.util.Timer;
public class Start {
public static void main(String[] args) {
// TimerTask instanzieren

SimpleTimerTask task = new SimpleTimerTask();

// Timer instanzieren
Timer timer = new Timer();

// Task planen
timer.schedule(task, 0, 5000);

Listing 82: Ausfuhren eines Timers

Beachten Sie, dass die Ausfiihrung des Programms so lange fortgesetzt wird, wie der
Timer aktiv ist. Nach dem Planen des Tasks kann allerdings mit anderen Aufgaben
fortgefahren werden - der Timer verhilt sich wie ein eigenstindiger Thread, was er
intern auch ist.

>> System 199

C\WIN2K3\system32\cmd.exe - java Start

>java Start

SimplelimerTask: Started? (21:29:19>
SimpleTimerTask: S5till running (21:29:24)
SimpleTimerTask: i running (21:29:29>
SimpleTimerTask: i running <21:29
SimpleTimerTask: i running
SimpleTlimerTask: i running

Simplel imerTask: i running
SimpleTimerTask i running
SimpleTimerTas running

running <¢21:380:8%9>

running <{21:38:14>

running (21:38:19>

running (21:3@:245)

running (21:38:29)>

running

running

running

running

running €21:3 4>

running (21:38:59>

running ¢21:31:84)>
SimpleTimerTask: Still running <{21:31:689>

SimpleTimerTask: i running

Abbildung 41: Ausfihrung des Timers

Neben der hier gezeigten Variante existieren noch weitere Uberladungen der schedule()-
Methode:

Uberladung | Beschreibung

schedule(TimerTask task, Date time) Fiihrt den Task zur angegebenen Zeit aus. Es findet
keine Wiederholung der Ausfiihrung statt.

schedule(TimerTask task, Date firstTime, Fiihrt den Task zur angegebenen Zeit aus und wartet
long period) vor einer erneuten Ausfithrung die in period angege-
bene Zeitspanne in Millisekunden ab.

schedule(TimerTask task, long delay) Fiihrt den Task nach der in Millisekunden angegebe-
nen Zeitspanne aus. Es findet keine Wiederholung der
Ausfiihrung statt.

Tabelle 26: Weitere Uberladungen der schedule()-Methode

78 TimerTasks gesichert regelmaBig ausfiihren

Wenn TimerTasks zwingend in bestimmten Abstdnden ausgefiihrt werden miissen (etwa, wenn
exakt alle 60 Minuten ein Stunden-Signal erténen soll), kann dies mit Hilfe der Methode
scheduleAtFixedRate() erreicht werden. Diese Methode fingt Verzogerungen, wie sie etwa
durch den GarbageCollector entstehen kénnen, ab und sorgt fiir eine Ausfithrung des Timer-
Tasks basierend auf der Systemuhrzeit — die natiirlich ihrerseits genau sein sollte.

Die Verwendung von scheduleAtFixedRate() unterscheidet sich nicht wesentlich von der der
schedule()-Methode. Es existieren hier lediglich zwei Uberladungen, die die Angabe einer
Startverzogerung oder einer Startzeit sowie eines Ausfiihrungsintervalls in Millisekunden
erlauben:

200 >> Nicht blockierender Timer

import java.util.Timer;
public class Start {
public static void main(String[] args) {
// TimerTask instanzieren

SimpleTimerTask task = new SimpleTimerTask();

// Timer instanzieren
Timer timer = new Timer();

// Task planen
timer.scheduleAtFixedRate(task, 0, 5000);

Listing 83: Ausfuhren eines Timers, der exakt alle finf Sekunden lduft

79 Nicht blockierender Timer

StandardméBig sind Timer blockierend: Sie verhindern, dass die Anwendung, in der sie laufen,
beendet werden kann, solange der Timer noch aktiv ist. Dies kann zu unerwiinschten Zustén-
den fiithren. Um einen Timer automatisch zu beenden, sobald die Anwendung beendet werden
soll, muss er als Dimon-Timer ausgefiihrt werden. Dies kann durch Ubergabe des Werts true
an den Konstruktor der Timer-Instanz erreicht werden:

import java.util.Timer;
public class Start {

public static void main(String[] args) {
// TimerTask instanzieren
SimpleTimerTask task = new SimpleTimerTask();

// Timer als Ddmon instanzieren
Timer timer = new Timer(true);

// Task planen
timer.scheduleAtFixedRate(task, 0, 1000);

// Anwendung nach zehn Sekunden beenden
try {

Thread.sleep(10000);
} catch (InterruptedException e) {}

Listing 84: Démon-Timer

>> System 201

80 Timer beenden

Timer beenden sich in der Regel, wenn die letzte Referenz auf den Timer entfernt und alle aus-
stehenden Aufgaben ausgefiihrt worden sind. Dies kann je nach Programmierung einige Zeit
dauern oder bei endlos laufenden Timern schier unmoglich sein.

Aus diesem Grund verfiigt die Klasse Timer iiber die Methode cancel(), die alle noch anstehen-
den und nicht bereits ausfiihrenden Aufgaben abbricht und den Timer beendet:

import java.util.Timer;
public class Start {

public static void main(Stringl] args) {
// TimerTask instanzieren
SimpleTimerTask task = new SimpleTimerTask();

// Timer instanzieren
Timer timer = new Timer();

// Task planen
timer.scheduleAtFixedRate(task, 0, 1000);

// Anwendung zehn Sekunden pausieren
try {

Thread.sleep(10000);
} catch (InterruptedException e) {}

// Timer beenden
timer.cancel ();

Listing 85: Beenden eines Timers Uber seine cancel()-Methode

81 Auf die Windows-Registry zugreifen

Die beriichtigte Windows-Registry ist eine simple, dateibasierte Datenbank zur Registrierung
von anwendungsspezifischen Werten. Aus einem Java-Programm heraus hat man zwei Mog-
lichkeiten, darauf zuzugreifen:

P Das Paket java.util.prefs bietet Klassen und Methoden zum Setzen und Lesen von Ein-
tragen in einem Teilbaum der Registry. Der volle Zugriff auf die Registry ist hiermit aller-
dings nicht moéglich. Dafiir funktioniert dieser Ansatz auch unter Unix/Linux (wobei eine
XML-Datei erzeugt wird, die als Registry-Ersatz dient).

P Einsatz der Windows API fiir den Zugriff auf die entsprechenden Registry-Funktionen.
Dies erfordert den Einsatz des Java Native Interface (JNI).

Das Paket java.util.prefs

In diesem Paket bietet die Klasse Preferences die statischen Methoden userNode() und system-
Node(), welche die speziellen Registry-Schliissel HKEY_CURRENT_USER\Software\JavaSoft\Prefs
bzw. HKEY_LOCAL_MACHINE\Software\JavaSoft\Prefs repriasentieren. Unterhalb dieser Eintrdge

202 >> Auf die Windows-Registry zugreifen

kann ein Java-Programm beliebige eigene Knoten durch Aufruf der Methode node() generie-
ren und diesen dann Schliissel mit Werten zuweisen bzw. lesen. Dies erfolgt wie bei einer
Hashtabelle mit den Methoden put() und get(). Fiir spezielle Datentypen wie boolean oder int
stehen auch besondere putXXX()-Methoden bereit, z.B. putBoolean().

import java.util.prefs.*;

public class Start {
public static void main(String[] args) {
try {
// Knoten anlegen im Teilbaum HKEY_CURRENT_USER
Preferences userPrefs = Preferences.userRoot().node("/carpelibrum");

// mehrere Schlissel mit Werten erzeugen
userPrefs.putBoolean("online",true);
userPrefs.put("Name", "Peter");
userPrefs.putInt("Anzahl", 5);

// Alle Schlissel wieder auslesen
String[] keys = userPrefs.keys();

for(int 1 = 0; 1 < keys.length; i++)
System.out.printin(keys[i] + " : " + userPrefs.get(keys[i], ""));
} catch(Exception e) {
e.printStackTrace();
}

Listing 86: Zugriff auf Java-spezifische Registry-Eintrdge

Der Einsatz des Pakets java.util.prefs erlaubt wie bereits erwdhnt nur das Ablegen oder Aus-
lesen von Informationen, die von einem Java-Programm stammen. Es ist nicht méglich,
andere Bereiche der Windows-Registry zu lesen oder zu veridndern.

Aufruf der Windows Registry API

Den vollen Zugriff auf die Registry erhédlt man nur durch Einsatz der Windows API, was bei
einem Java-Programm per JNI erfolgen kann. Gliicklicherweise existiert eine sehr brauchbare
OpenSource-Bibliothek namens jRegistryKey, die bereits eine fertige JNI-Losung bereitstellt, so
dass man nicht gezwungen ist, mit C-Code herumzuhantieren. Laden Sie hierzu von http://
sourceforge.net/projects/jregistrykey/ das Binary-Package jRegistryKey-bin.x.y.z.zip (aktuelle
Version 1.4.3) und gegebenenfalls die Dokumentation herunter. Das ZIP-Archiv enthilt zwei
wichtige Dateien:

P jRegistryKey.jar: Extrahieren Sie diese Datei und nehmen Sie sie in den CLASSPATH Threr
Java-Anwendung auf.

P jRegistryKey.dll: Extrahieren Sie diese Datei und kopieren Sie sie in ein Verzeichnis, das in
der PATH-Umgebungsvariable definiert ist, oder in das Verzeichnis, in dem Sie Ihre Java-
Anwendung aufrufen werden.

>> System 203

Die Bibliothek stellt zwei zentrale Klassen bereit: RegistryKey repréasentiert einen Schliissel
und RegistryValue steht flir einen Schliisselwert. Hierbei gibt es verschiedene Datentypen, die
als Konstanten definiert sind, u.a. ValueType.REG_S7 (null-terminated String = endet mit dem
Zeichen '\0'), ValueType.REG_BINARY (Bindrdaten) und ValueType.REG_DWORD (32 Bit Integer).
Das Setzen bzw. Lesen von Registry-Werten erfolgt mit Hilfe der RegistryKey-Methoden set-
Value() bzw. getValue().

Das folgende Beispiel demonstriert den Einsatz dieser Klassen:

/**

* Klasse fir den Zugriff auf die Windows-Registry via JNI
*/

import ca.beq.util.win32.registry.*;

import java.util.*;

class WindowsRegistry {

/*k*

Erzeugt einen neuen Schliissel

@param root Schllssel-Wurzel, z.B. RootKey.HKEY_CURRENT_USER
@param name voller Pfad des Schliissels

(z.B. "Software\\Carpelibrum\\ProgData")
@return RegistryKey-Objekt ode null bei Fehler

(z.B. schon vorhanden)

kK ok ok ok ok oF

*/
public RegistryKey createKey(RootKey root, String name) {
try {
RegistryKey key = new RegistryKey(root, name);
key.create();
return key;

} catch(Exception e) {
e.printStackTrace();
return null;

}

/**
Erzeugt einen neuen Unterschliissel
@param root Schlissel-Wurzel, z.B. RootKey.HKEY_CURRENT_USER
@param parent voller Pfad des Vaterschliissels
(z.B."Software\\Carpelibrum")
Vaterschliissel muss existieren
@param name Name des Unterschlissels (z.B. "ProgData")
@return RegistryKey-Objekt oder null bei Fehler

k% ok K ok ok of

*/
pubTlic RegistryKey createSubKey(RootKey root,String parent,String name) {
try {
RegistryKey key = new RegistryKey(root, parent);
RegistryKey sub = key.createSubkey(name);

Listing 87: WindowsRegistry.java

204 >> Auf die Windows-Registry zugreifen

return sub;

} catch(Exception e){
e.printStackTrace();
return null;

}

}

/**

* Ldscht einen Schliissel

*/

pubTic boolean deleteKey(RootKey root, String name) {

try {

RegistryKey key = new RegistryKey(root, name);
key.delete();
return true;

} catch(Exception e) f
e.printStackTrace();
return false;

}

/**

* Liefert den gewlinschten Schliissel

*/

pubTic RegistryKey getKey(RootKey root, String name) {
RegistryKey result = null;

try {
result = new RegistryKey(root, name);

if(result.exists() == false)
result = null;

} catch(Exception e) {
e.printStackTrace();
}

return result;
}

/*k‘k

* Liefert alle Unterschliissel zu einem Schliissel

*/

public ArraylList<RegistryKey> getSubkeys(RootKey root, String name) {
ArrayList<RegistryKey> result = new ArrayList<RegistryKey>();

try {
RegistryKey key = new RegistryKey(root, name);

Listing 87: WindowsRegqistry.java (Forts.)

>> System 205

if(key.hasSubkeys()) {
Iterator it = key.subkeys();

while(it.hasNext()) {
RegistryKey rk = (RegistryKey) it.next();
result.add(rk);
}
} catch(Exception e) {
e.printStackTrace();
}

return result;

Listing 87: WindowsRegistry.java (Forts.)

Das Start-Programm zu diesem Rezept demonstriert den Zugriff auf die Windows Registry. Es
liest alle Unterschliissel von HKEY_CURRENT_USER\Software aus und trégt einen eigenen Schliissel
ein.

import ca.beq.util.win32.registry.*;
import java.util.*;

public class Start {
public static void main(String[] args) {

try |
WindowsRegistry registry = new WindowsRegistry();

// Alle Unterschliissel von HKEY_CURRENT_USER\Software ausgeben
ArrayList<RegistryKey> subs =
registry.getSubkeys(RootKey .HKEY_CURRENT_USER, "Software");

System.out.printin("\nInhalt von HKEY_CURRENT_USER\\Software :");
for(RegistryKey k : subs)
System.out.printin(k.getName());

// Schliissel HKEY_CURRENT_USER\Software\Carpelibrum anlegen falls

// noch nicht vorhanden

RegistryKey key = registry.getKey(RootKey.HKEY_CURRENT_USER,
"Software\\Carpelibrum");

if(key == null)
key = registry.createKey(RootKey.HKEY_CURRENT_USER,
"Software\\Carpelibrum");

Listing 88: Zugriff auf Windows-Registry via JNI

206 >> Abbruch der Virtual Machine erkennen

// Werte setzen

RegistryValue name = new RegistryValue("Name", "Mustermann");
RegistryValue anzahl new RegistryValue("Anzahl", 5);
key.setValue(name);

key.setValue(anzahl);

// Werte wieder auslesen

if(key.hasValues()) {
System.out.printin("Werte von
Iterator it = key.values();

+ key.getName());

while(it.hasNext()) {
RegistryValue value = (RegistryValue) it.next();
System.out.printin(value.getName() + " : " +
value.getStringValue());
}
}
} catch(Exception e) {
e.printStackTrace();
}

Listing 88: Zugriff auf Windows-Regqistry via JNI (Forts.)

Eingabeaufforderung

>javac —cp .:;JRegistryKey.jar Start.java
>java —cp .:JRegistryKey.jar Start
Inhalt von HKEY_CURRENT _USER-Softuware :

fidohe
NFPL Ghostscript

q
InstallShield

Abbildung 42: Auflistung von Registry-Eintrdgen

82 Abbruch der Virtual Machine erkennen

Da ein Java-Programm immer innerhalb einer Virtual Machine (VM) lauft, fiihrt das Beenden
der VM auch zum Abwiirgen des Programms. Dies ist oft unschon, da hierdurch einem Pro-
gramm keine Gelegenheit mehr bleibt, interessante Daten wie bisherige Resultate oder Log-
Informationen auf die Festplatte zu sichern. Seit Java 1.3 gibt es gliicklicherweise einen so
genannten ShutdownHook-Mechanismus, der teilweise Abhilfe schafft.

Ein ShutdownHook ist ein Thread, der initialisiert und laufbereit ist, aber wihrend der norma-
len Programmausfithrung nicht aktiv ist. Erst wenn das Programm beendet wird, greift der

>> System 207

Hook und wird als Letztes ausgefiihrt, und zwar sowohl bei einem reguldren Programmende
als auch einem vorzeitig erzwungenen Ende durch Beenden der VM iiber die Tastenkombina-

tion (Strg]+(C].

Das Beenden per Taskmanager unter Windows wird leider nicht erkannt. Unter Unix/
Linux werden alle Beendigungen erkannt, die das Signal SIGINT auslosen.

Der Einsatz des Hook-Mechanismus ist sehr einfach. Man definiert eine eigene Thread-Klasse,
die man mit Hilfe der Methode Runtime.addShutdownHook(Thread t) registriert. Das war es
schon. Falls man nur fiir bestimmte Programmphasen einen Hook als Riickversicherung haben
mochte, kann man jederzeit mit Runtime.removeShutdownHook(Thread t) den Hook wieder
abmelden. Dies ist beispielsweise praktisch, falls der Hook nur bei einem vorzeitigen Abbruch
abgearbeitet werden soll, aber nicht bei einem regulidren Programmende. In diesem Fall sollte
die letzte Anweisung der Aufruf von removeShutdownHook() sein.

/**
* Modellklasse fiir ShutdownHook zum Abfangen von STRG-C
*/
class ShutdownHook extends Thread {
private Start parent;

public ShutdownHook(Start t) {
parent = t;
}

public void run() {
System.out.printin("Programm wurde abgebrochen");
System.out.printin("Letzte Zwischensumme: " + parent.getValue());

Listing 89: ShutdownHook.java

Das Start-Programm zu diesem Rezept addiert in einer for-Schleife Integer-Zahlen. Im Falle
eines vorzeitigen Abbruchs mit (Strg]+(c] wird der ShutdownHook ausgefiihrt, der den letz-
ten Zwischenwert ausgibt.

/**
* Aufrufbeispiel: STRG-C flihrt zur Ausgabe des Tletzten Wertes
*/
public class Start {
private int value = 0;

public void doWork() {
ShutdownHook hook = new ShutdownHook(this);
Runtime rt = Runtime.getRuntime();

Listing 90: Abbruch der Virtual Machine erkennen

208 >> Betriebssystem-Signale abfangen

rt.addShutdownHook (hook) ;

for(int i =0 ; 1 <50; i++) {
value = value + i;

try |
Thread.sleep(500);

} catch(Exception e) f
}
}

System.out.printin("Endsumme: " + value);
rt.removeShutdownHook (hook) ;

)

public int getValue() {
return value;
}

public static void main(String[] args) {
Start s = new Start();
s.doWork();

Listing 90: Abbruch der Virtual Machine erkennen (Forts.)

Eingabeaufforderung

rjavac Start.java

>»java Start
Endsumme : 1225

>java Start
Programm wurde abgebrochen
Letzte Zwischensumme: 78

>

Abbildung 43: Abbruch der VM erkennen

83 Betriebssystem-Signale abfangen

Ein Betriebssystem kann jedem laufenden Programm Signale senden. Eines der wichtigsten
Signale ist SIGINT, das einen Programmabbruch signalisiert, wie er auf Windows-Rechnern
beispielsweise ausgelost wird, wenn innerhalb eines Konsolenfensters die Tastenkombination
(Strg)+(c) gedriickt wird (woraufhin die Java Virtual Machine und damit auch das aus-
geflihrte Java-Programm abgebrochen werden). Rezept 82 zeigte, wie Sie mit Hilfe eines so
genannten Shutdown-Hooks noch Aufrdumarbeiten oder Speicheraktionen etc. durchfiihren,
bevor das Programm zwangsweise beendet wird. Was aber, wenn das Programm einfach wei-
terarbeiten und das Betriebssystem-Signal ignorieren soll? Dann hilft auch kein Shutdown-
Hook.

>> System 209

Als Losung bietet Sun zwei inoffizielle Klassen an: sun.misc.Signal sowie sun.misc.Signal-
Handler. Diese Klassen erscheinen in keiner Dokumentation, sie sind offiziell nicht vorhanden,
und es gibt daher keine Garantie dafiir, dass sie in zukiinftigen Java-Versionen weiterhin vor-
handen sein werden. Eine entsprechende Warnung wird beim Kompilieren ausgegeben. Das
folgende Beispiel demonstriert das Abfangen des Signals SIGINT:

import sun.misc.Signal;
import sun.misc.SignalHandler;

public class Start {
public static void main(String[] args) f

// Signal SIGINT ignorieren
Signal.handle(new Signal("INT"), new SignalHandler () f{
public void handle(Signal sig) f{
System.err.printIn("SIGINT wird ignoriert. Mache weiter...");
System.err.flush();

int counter = 0;

while(counter <= 10) {
try {
Thread.sleep(2000);
System.out.printin(counter++);

} catch(Exception e) {
}

Listing 91: Signale abfangen

Zur Einrichtung einer Signalbehandlung rufen Sie die statische Methode Signal.handle() auf,
die zwei Parameter erwartet:

P Eine Instanz der Klasse Signal, der Sie den Namen des zu fangenden Signals iibergeben.
Der Name ist dabei der Betriebssystem-typische Signalname ohne »SIGg, also z.B. INT fiir
SIGINT.

P Eine Instanz der Klasse SignalHandler mit einer Implementierung der Methode handle().

210 >> Betriebssystem-Signale abfangen

IntempXjava Start

Jed Feb 21 22:17:48 CET 2887 SIGINT wird ignoriert. Mache weiter...
o

4 3

Abbildung 44: Programm ignoriert Signal SIGINT

Ein- und Ausgabe (10)

84 Auf die Konsole (Standardausgabe) schreiben

Die normale Konsolenausgabe erfolgt iiber den Ausgabestream System.out und die allseits
bekannten Methoden print() bzw. printin(), z.B.

System.out.printin("Hallo Leute!");
System.out.printin("Wert von x:" + x); // x sei eine Variable

Formatierte Ausgabe

Der groBe Nachteil dieser Methoden ist die mangelnde Formatierfihigkeit, was insbesondere
bei der Ausgabe von Gleitkommazahlen sehr unschon ist. (Eine double-Zahl wie 3.141592654
wird exakt so ausgegeben; eine Beschriankung auf beispielsweise zwei Nachkomma-Stellen ist
nicht moglich.) Gliicklicherweise bietet Java mittlerweile die Methode printf() an, der man
als ersten Parameter den eigentlichen Ausgabetext — ergénzt um spezielle Formatplatzhalter %
fiir die auszugebenden Variablenwerte - und anschliefend die Variablen iibergibt. So gibt der
folgende Code den Wert von pi mit einer Vorkomma- und drei Nachkommastellen aus:

double pi = 3.141592654;
System.out.printf("Die Zahl %1.3f nennt man PL.", pi);

[-*)
=
[1-]
(=2
(2]
=
<<
=
=
=
:
£
(8}

Die Syntax fiir eine Formatangabe ist:
%[Index$][Flags][Breite][.NachkommalTyp

Angaben in [] sind dabei optional!, so dass die einfachste Formatanweisung %Typ lautet.
Breite gibt die Anzahl an auszugebenden Zeichen an. Der Typ definiert die Art der Daten; zur
Verfiigung stehen:

Typ ‘ Beschreibung

€ Darstellung als Unicode-Zeichen

d Dezimal: Integer zur Basis 10

X Hexadezimal: Integer zur Basis 16

f Gleitkommazahl

S String

t Zeit/Datum; auf t folgt ein weiteres Zeichen:
H (Stunde), M (Minute), S (Sekunde), d (Tag), m (Monat), Y (Jahr), D (Datum als Tag-
Monat-Jahr)

% Darstellung des Prozentzeichens

Tabelle 27: Typspezifizierer fir printf()

Die wichtigsten Werte fiir Flags sind: * (Umwandlung in GroBbuchstaben), + (Vorzeichen
immer ausgeben), 0 (Auffiillen der Breite mit Nullen).

1. Die [] selbst werden nicht angegeben!

(-]
=
L]
=0
(7]
=
<<
=
=
=
[
=
w

212 >> Umlaute auf die Konsole (Standardausgabe) schreiben

import java.util.Date;
public class Start {
public static void main(Stringl] args) {

int index = 4;
float f= 3.75fF;
String txt = "Wahlanteil";
Date dt = new java.util.Date();
System.out.printin();

System.out.printf("Nr. %02d %s %2.1f %% Zeit %4$tH:%4$EM:%4$tS \n",
index, txt, f, dt);

Listing 92: Datenausgabe mit printf()

e _[o]x

>java Start
Mr. B4 Wahlanteil 3.8 » Zeit 17:17:17
>

Abbildung 45: Ausgabe des Start-Programms

85 Umlaute auf die Konsole (Standardausgabe) schreiben

Wenn Sie Java-Strings via System.out auf die Windows-Konsole ausgeben, werden die 16-Bit-
Codes der einzelnen Zeichen auf je 8-Bit zurechtgestutzt, ohne dass dabei allerdings eine kor-
rekte Umkodierung in den 8-Bit-OEM-Zeichensatz der Konsole stattfinden wiirde. Das traurige
Ergebnis: Die deutschen Umlaute sowie etliche weitere Umlaute und Sonderzeichen, die die
Konsole prinzipiell anzeigen konnte, gehen verloren.

Um die Umlaute dennoch korrekt auszugeben, miissen Sie
P entweder auf das in Java 6 neu eingefiihrte Console-Objekt zurtickgreifen

P oder die Zeichenkodierung explizit vorgeben.

>> Ein- und Ausgabe (10) 213

Umlaute liber Console ausgeben

Zur formatierten Ausgabe von Strings definiert die Klasse Console eine Methode printf(), die
wie die gleichnamige Methode von System.out arbeitet (siehe Rezept 84) - nur eben mit dem
Unterschied, dass die Zeichen in den OEM-Zeichensatz der Konsole umkodiert werden.

Die Klasse Console instanzieren Sie nicht selbst. Wenn Ihr Java-Code im Kontext einer Java
Virtual Machine-Instanz ausgefiihrt wird, die mit einem Konsolenfenster verbunden ist,
erzeugt die JVM automatisch intern ein Console-Objekt, welches das Konsolenfenster repra-
sentiert. Uber die statische Console-Methode console() kénnen Sie sich eine Referenz auf die-
ses Objekt zurtickliefern lassen.

import java.io.Console;
public class Start {
public static void main(String[] args) f

// Zugriff auf das Console-Objekt
Console cons = System.console();

// Ausgabe

if (cons !=null) {
cons.printf("\n");
cons.printf(" Ausgabe der Umlaute mit Console \n");
cons.printf(" @, &, U, B \n");

Listing 93: Ausgabe von Umlauten auf die Konsole

Fiir vereinzelte Ausgaben lohnt es sich nicht, den Verweis auf das Console-Objekt in
einer eigenen Variablen zu speichern. Hiangen Sie in solchen Féllen den printf()-Auf-
ruf einfach an den System.console()-Aufruf an:

System.console().printf("\n Ausgabe der Umlaute mit Console \n");
System.console().printf(" &, 6, U, B \n");

Umlaute iiber PrintStream ausgeben

Hinter System.out verbirgt sich ein PrintStream-Objekt, das mit der Konsole als Ausgabegerit
verbunden ist und die Standard-Zeichenkodierung verwendet. Wenn Sie eigene PrintStream-
Objekte erzeugen, konnen Sie diese mit beliebigen Ausgabestreams verbinden und auch die
Zeichenkodierung frei (soweit verfiighar) wihlen.

import java.io.*;
public class Start {
public static void main(Stringl] args) {

PrintStream out;

[-*)
=
[1-]
(=2
(2]
=
<<
=
=
=
:
£
(8}

214 >> Von der Konsole (Standardeingabe) lesen

try |

out = new PrintStream(System.out, true, "Cp850");
} catch (UnsupportedEncodingException e) {

out = System.out;
}

out.printf("\n");
out.printf(" Ausgabe der Umlaute mit PrintStream \n");
out.printf(" &, o, U4, B \n");

}

Dem PrintStream-Konstruktor werden drei Argumente iibergeben:
P ein OutputStream-Objekt, das das Ziel der Ausgabe vorgibt (hier die Konsole)

P true, damit die Ausgaben sofort ausgefithrt werden (andernfalls werden die Ausgaben
gepuffert, und Sie missen die Methode flush() aufrufen)

[-*]
=
[1-]
(=2
[}
=
<<
=
=
=
:
£
(NN

P den Namen der gewiinschten Zeichenkodierung (hier "Cp850" fiir die DOS-Codepage 850)

Vor Java 6 war dies der iibliche Weg, um Umlaute auf die Konsole auszugeben.

86 Von der Konsole (Standardeingabe) lesen

Konsolenanwendungen bedienen sich zum Einlesen von Daten iiber die Tastatur traditionell
des Eingabestreams System.in, um den dann meist ein BufferedReader-Objekt aufgebaut wird.

BufferedReader in = new BufferedReader(new InputStreamReader(System.in));

try {
System.out.print(" Geben Sie Ihren Namen ein: ");
name = in.readline();
System.out.print(" Geben Sie Ihr Alter ein: ");
age = Integer.parselnt(in.readline());

System.out.printf(" %s (Alter: %d) \n", name, age);
catch (IOException e) {!}

Fiir ausfiihrlichere Informationen zur Umwandlung von Stringeingaben in Zahlen
siehe Rezept 87.

>> Ein- und Ausgabe (10) 215

Umlaute, die tiber die Tastatur eingelesen wurden, werden bei Ausgabe auf die Konsole
mit System.out korrekt angezeigt. Probleme gibt es allerdings, wenn Sie die eingelese-
nen Strings in eine Datei schreiben oder in eine grafische Benutzeroberfliche ein-
bauen. Dann sollten Sie entweder auf Console umsteigen (siehe unten) oder den
InputStreamReader mit passender Zeichenkodierung erzeugen.

Einlesen mit Console
Seit Java 6 konnen Sie auch das vordefinierte Console-Objekt zum Einlesen verwenden.

Console cons = System.console();

cons.printf(" Geben Sie Ihren Namen ein: ");
name = cons.readlLine();

cons.printf(" Geben Sie Ihr Alter ein: ");
age = Integer.parselnt(cons.readline());

cons.printf (" %s (Alter: %d) \n", name, age);

Die auffilligste Verdnderung gegeniiber der BufferedReader-Konstruktion ist das Wegfallen
der geschachtelten Konstruktoraufrufe und der Exception-Behandlung, wodurch der Code
ubersichtlicher wird. Weniger offensichtlich, aber moglicherweise noch interessanter ist, dass
eingelesene Strings, die Umlaute enthalten, problemlos in GUI-Oberflichen eingebaut oder
iiber das Console-Objekt wieder auf die Konsole ausgegeben werden konnen. SchlieBlich kon-
nen Sie den Text zur Eingabeaufforderung direkt an readlLine() iibergeben:

Console cons = System.console();

name = cons.readlLine(" Geben Sie Ihren Namen ein: ");

Einlesen mit Scanner

Zum Einlesen und Parsen konnen Sie sich auch der Klasse Scanner bedienen:
Scanner sc = new Scanner(System.in);

System.out.print(" Geben Sie Ihren Namen ein: ");

name = sc.nextline();

System.out.print(" Geben Sie Ihr Alter ein: ");

age = sc.nextInt();
sc.nextLine();

System.out.printf(" %s (Alter: %d) \n", name, age);

Umlaute, die tiber die Tastatur eingelesen wurden, werden bei Ausgabe auf die Konsole
mit System.out korrekt angezeigt. Probleme gibt es allerdings, wenn Sie die eingelese-
nen Strings in eine Datei schreiben oder in eine grafische Benutzeroberfldche ein-
bauen. Dann sollten Sie das Scanner-Objekt auf der Basis des internen Readers des
Console-Objekts erzeugen:

Scanner sc = new Scanner(System.console().reader());

Die Ausgabe auf die Konsole muss dann ebenfalls tiber das Console-Objekt erfolgen.

@
=
<
=3
7
=
<<
=
=
=
'
=
e}

[-*]
=
[1-]
(=2
[}
=
<<
=
=
=
:
£
(NN

216 >> Passworter iiber die Konsole (Standardeingabe) lesen

87 Passworter liber die Konsole (Standardeingabe) lesen

Das Einlesen von Passwortern oder anderweitigen sensiblen Daten iiber die Konsole war in
Java frither ein groBes Problem, weil jeder Umstehende die Eingaben mitlesen konnte. Dank
der Console-Methode readPassword() gehoren diese Probleme der Vergangenheit an.

import java.io.*;

public class Start {
private final static String PASSWORT = "Sesam";

public static void main(String[] args) {
String name;
char passwort[];

Console cons = System.console();
cons.printf("\n");

cons.printf(" Benutzername eingeben: ");
name = cons.readline();

cons.printf(" Passwort eingeben: ");
passwort = cons.readPassword();

if (PASSWORT.equals(new String(passwort)))
cons.printf(" %s, Sie sind angemeldet! \n", name);
else
cons.printf(" Anmeldung fehlgeschlagen! \n");

Listing 94: Geheime Daten in Konsolenanwendungen einlesen

Ausgabe:

Benutzername eingeben: Dirk
Passwort eingeben:
Dirk, Sie sind angemeldet!

88 Standardein- und -ausgabe umleiten

Die Standardstreams System.out, System.in und System.err sind per Voreinstellung mit der
Konsole verbunden. Doch diese Einstellung ist nicht unabdnderlich. Mit Hilfe passender
Methoden der Klasse System konnen sie umgeleitet werden.

Methode ‘ Beschreibung

static setIn(InputStream stream) Setzt System.in auf den Eingabestream stream.
static setErr(PrintStream stream) Setzt System.err auf den Ausgabestream stream.
static setOut(PrintStream stream) Setzt System.out auf den Ausgabestream stream.

Tabelle 28: Methoden in System fur die Umleitung der Standardein-/-ausgabe

>> Ein- und Ausgabe (10) 217

Die nachfolgend definierte Klasse TextAreaPrintStream ist beispielsweise geeignet, um die
Standardausgabe in eine JTextArea umzuleiten. Die Klasse muss zu diesem Zweck von Print-
Stream abgeleitet werden - passend zum Argument der setOut()-Methode. Die Referenz auf
die JTextArea tibernimmt die Klasse als Konstruktorargument.

import javax.swing.*;
import java.io.*;

/*

* Klasse zur Umleitung der Standardausgabe in eine JTextArea
*/

pubTlic class TextAreaPrintStream extends PrintStream {

public TextAreaPrintStream(JTextArea ta) |
super(new TextAreaOutputStream(ta));
}
}

@
=
<
=3
7
=
<<
=
=
=
i
=
e}

// Hilfsklasse, die OutputStream fir JTextArea erzeugt
class TextAreaOutputStream extends OutputStream {
private JTextArea ta;

public TextAreaQutputStream(JTextArea ta) |
this.ta = ta;
}

public void write(int b) {
char ¢ = (char) b;
ta.append(String.value0f(c));
}

Listing 95: TextAreaPrintStream.java — PrintStream-Klasse zur Umleitung der Standardausgabe
in eine JTextArea

Ein kleines Problem ist, dass die Basisklasse PrintStream nur Konstruktoren definiert, die ein
File-Objekt, einen Dateinamen oder einen OutputStream als Argument erwarten. Die Klasse
TextAreaPrintStream lost dieses Problem, indem sie den Basisklassenkonstruktor mit dem Out-
putStream-Argument aufruft - allerdings mit einer abgeleiteten OutputStream-Klasse, deren
Konstruktor die Referenz auf die JTextArea-Instanz iibergeben werden kann. In dieser Output-
Stream-Klasse wird dann die write()-Methode iiberschrieben, die die an die Standardausgabe
geschickten Zeichencodes in die JTextArea schreibt.

Zur Erinnerung: Der Konstruktor einer abgeleiteten Klasse ruft als erste Anweisung
immer einen Konstruktor der Basisklasse auf. Ist ein entsprechender super-Aufruf im
Quelltext des Konstruktors nicht vorgesehen, erweitert der Java-Compiler den Kon-
struktorcode automatisch um den Aufruf eines Standardkonstruktors (Konstruktor
ohne Parameter) der Basisklasse.

[-*]
=
[1-]
(=2
[}
=
<<
=
=
=
:
£
(NN

218 >> Standardein- und -ausgabe umleiten

Das Programm zu diesem Rezept ist ein GUI-Programm, dessen ContentPane mittels einer
JSplitPane-Instanz in zwei Bereiche unterteilt ist:

P einem Arbeitsbereich mit zwei JButton-Instanzen, die beim Driicken einen Text an die
Standardausgabe schicken,

P einen Logging-Bereich mit der JTextArea-Komponente, in die die Ausgaben umgeleitet
werden.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;

public class Start extends JFrame {
public Start() {

// Hauptfenster konfigurieren
setTitle("Umlenken der Standardausgabe");

// Panel mit zwei Schaltern
JPanel p = new JPanel()
JButton btnl = new JButton("A ausgeben");
btnl.setFont(new Font("Dialog", Font.PLAIN, 24));
btnl.addActionlListener(new ActionlListener() {
public void actionPerformed(ActionkEvent e) {
System.out.printin(" A");
}
1)
JButton btn2 = new JButton("B ausgeben");
btn2.setFont(new Font("Dialog", Font.PLAIN, 24));
btn2.addActionlListener(new ActionlListener() {
public void actionPerformed(ActionEvent e) {
System.out.printin(" B");
}
1)
p.add(btnl);
p.add(btn2);

// JTextArea zum Protokollieren der Schalterklicks
JScrol1Pane scrollpane = new JScrollPane();
JTextArea Togpane = new JTextArea();
scrollpane.getViewport().add(Togpane, null);

// Schalter-Panel und JTextArea in SplitPane einfiigen

JSplitPane splitpane = new JSplitPane(JSplitPane.VERTICAL_SPLIT,
p, scrollpane);

getContentPane().add(splitpane, BorderLayout.CENTER);

Listing 96: Start.java — Umlenken der Standardausgabe in eine JTextArea

>> Ein- und Ausgabe (10) 219

// Standardausgabe auf JTextArea umlenken
TextAreaPrintStream out = new TextAreaPrintStream(logpane);
System.setOut(out);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

public static void main(String args[]) {
Start frame = new Start();
frame.setSize(500,300);
frame.setlLocation(300,300);
frame.setVisible(true);

[-*)
=
[1-]
(=2
(2]
=
<<
=
=
=
.
£
(FN]

Listing 96: Start.java — Umlenken der Standardausgabe in eine JTextArea (Forts.)

£ Umlenken der Standardausgabe E”E”‘S__d

A ausgeben || B ausgeben

O mEIFmI = I

Abbildung 46: JTextArea mit umgelenkten printin()-Ausgaben

89 Konsolenanwendungen vorzeitig abbrechen

Konsolenanwendungen, die sich aufgehéngt haben oder deren Ende Sie nicht mehr abwarten
mochten, konnen auf den meisten Betriebssystemen durch Driicken der Tastenkombination

(strg]) +(c)

abgebrochen werden.

90 Fortschrittsanzeige fiir Konsolenanwendungen

Auch Konsolenanwendungen fithren hin und wieder ldnger andauernde Berechnungen durch,
ohne dass irgendwelche Ergebnisse auf der Konsole angezeigt werden. Ungeduldige Anwender
kann dies dazu verleiten, das Programm - in der falschen Annahme, es sei bereits abgestiirzt -
abzubrechen. Um dem vorzubeugen, sollten Sie das Programm in regelméBigen Abstinden
Lebenszeichen ausgeben lassen.

@
=
<
=3
7
=
<<
=
=
=
\
=
[

220 >> Fortschrittsanzeige fiir Konsolenanwendungen

Es gibt unzéhlige Wege, eine Fortschrittsanzeige zu implementieren. Entscheidend ist, eine
passende Form und einen geeigneten Zeitabstand zwischen den einzelnen Lebenszeichen
(respektive Aktualisierungen der Fortschrittsanzeige) zu finden:

P Die Lebenszeichen sollten den Anwender unaufdringlich informieren.

Lebenszeichen, die vom Anwender bestitigt werden miissen, scheiden in 99% der Fille
ganz aus. Gleiches gilt fiir die Ausgabe von akustischen Signalen. (Gegen die Verbindung
des Endes der Berechnung mit einem akustischen Signal ist jedoch nichts einzuwenden.)

P Andere Ausgaben sollten durch die Fortschrittsanzeige moglichst wenig gestort werden.

Bei Ausgabe von Lebenszeichen auf die Konsolen sollten Sie vor allem darauf achten, dass
die Konsole nicht unnétig weit nach unten gescrollt wird.

Gut geeignet ist die periodische Ausgabe eines einzelnen Zeichens, beispielsweise eines
Punkts, ohne Leerzeichen oder Zeilenumbriiche:

System.out.print(".");

P Die Lebenszeichen sollten nicht zu schnell aufeinander folgen, aber auch nicht zu lange
auf sich warten lassen.

» Die Anzahl der Lebenszeichen sollte groBer als 4 sein, aber nicht zu groB werden. (Droht
die Konsole mit Lebenszeichen iiberschwemmt zu werden, so setzen Sie lieber den Zeitab-
stand zwischen den Lebenszeichen herauf.)

» Informieren Sie den Anwender vorab, dass nun mit einer lingeren Wartezeit zu rechnen
ist.

Nachdem Sie Form und Frequenz der Lebenszeichen ungefihr festgelegt haben, miissen Sie
iiberlegen, wie Sie fiir eine periodische Ausgabe der Lebenszeichen sorgen.

Fortschrittsanzeigen mit Schleifen

Wenn die Berechnung, deren Fortschreiten Sie durch Lebenszeichen verdeutlichen wollen,
eine groBe duBere Schleife durchlduft, bietet es sich an, die Lebenszeichen innerhalb dieser
Schleife auszugeben:

// 1. Zeitaufwendige Berechnung ankindigen
System.out.print(" Bitte warten");

for(int 1 =0; i < 12; +1) |
// tue so, als wiirde intensiv gerechnet
Thread.sleep(400);

// 2. Lebenszeichen periodisch ausgeben
System.out.print(".");

}

System.out.printin();

// 3. Ergebnis anzeigen
System.out.printin("\n Berechnung beendet.\n");

Listing 97: Aus Start.java — Lebenszeichen mit Schleife

>> Ein- und Ausgabe (10) 221

Bei dieser Form entspricht die Anzahl der Lebenszeichen den Durchldufen der Schleife. Wird
die Schleife sehr oft durchlaufen, setzen Sie die Anzahl der Lebenszeichen herab, indem Sie
nur bei jedem zweiten, dritten ... Schleifendurchgang Lebenszeichen ausgeben lassen:

if(i%2)

System.out.print(".");
Wird die Schleife zu selten durchlaufen, miissen Sie mehrere Lebenszeichen tiber die Schleife
verteilen (eventuell gibt es innere Schleifen, die sich besser zur Ausgabe der Lebenszeichen
eignen).

Fortschrittsanzeigen mit Timern

Durch Timer gesteuerte Fortschrittsanzeigen sind aufwandiger zu implementieren, haben aber
den Vorzug, dass die Lebenszeichen in exakt festgelegten Zeitintervallen ausgegeben werden
koénnen.

Zuerst definieren Sie eine TimerTask-Klasse, in deren run()-Methode Sie ein Lebenszeichen
ausgeben lassen, beispielsweise:

import java.util.TimerTask;

/**

* TimerTask-Klasse fiir Konsolen-Fortschrittsanzeige
*/

class ShowProgressTimer extends TimerTask f

public void run() {
System.out.print(".");
}

Listing 98: Einfache TimerTask-Klasse flir Konsolen-Fortschrittsanzeigen

Danach wechseln Sie zum Code der Berechnung. Vor dem Start der Berechnung geben Sie eine
Vorankiindigung aus, erzeugen ein Timer-Objekt und {ibergeben diesem eine Instanz der
TimerTask-Klasse, eine anfingliche Verzégerung und die Dauer des Zeitintervalls (in Milli-
sekunden).

AnschlieBend folgt die eigentliche Berechnung, wihrend im Hintergrund der Thread des
Timers ausgefiihrt und in den festgelegten periodischen Abstinden die run()-Methode des
TimerTask-Objekts ausgefiihrt wird.

Nach Abschluss der Berechnung beenden Sie den Timer.

int aMethod() throws InterruptedException {
// Zeitaufwdandige Berechnung ankiindigen
System.out.print(" Bitte warten");

// Zeitgeber fir Fortschrittsanzeige starten und alle 400 ms
// ausfihren Tassen.
Timer timer = new Timer();

Listing 99: Aus Start.java — Lebenszeichen mit Timer

@
=
<
=3
7
=
<<
=
=
=
i
=
e}

(-]
=
L]
=0
(7]
=
<<
=
=
=
[
=
w

222 >> Konsolenmeniis

timer.schedule(new ShowProgressTimer(), 0, 400);

// tue so, als wirde intensiv gerechnet
Thread.sleep(12*1000);

// leitgeber flr Fortschrittsanzeige beenden
timer.cancel();
System.out.printin();

// Ergebnis zurtickliefern
return 42;

Listing 99: Aus Start.java — Lebenszeichen mit Timer (Forts.)

ingabeaufforderung

>java Start

Programm zur Berechnung der Weltformel

Bitte warten

Bei Loesung der Weltformel gescheitert. Starte neuen Versuch.

Bitte warten

Die Loesung der Weltformel lautet: 42

Abbildung 47: Fortschrittsanzeigen in Konsolenanwendungen

91 Konsolenmeniis

Bei Meniis denken die meisten Anwender an Meniis von GUI-Anwendungen. Doch auch Kon-
solenanwendungen konnen einen Leistungsumfang erreichen, der eine mentigesteuerte Pro-
grammfiihrung opportun macht.

Die Implementierung eines Konsolenmeniis besteht aus drei Schritten:

1.

2.

Anzeigen des Meniis

Die Ausgabe erfolgt zeilenweise mit printin()-Aufrufen. Zu jedem Befehl muss ein Code
angegeben werden, iiber den der Anwender den Befehl auswihlen kann. Gut geeignet sind
hierfiir Zeichen, Integer-Werte oder Aufzdhlungskonstanten, da diese in Schritt 3 mittels
einer switch-Verzeigung ausgewertet werden konnen.

System.console().printf(" Erster Menlbefehl <@> \n");
System.console().printf(" Zweiter Meniibefeh] \n");

Abfragen der Benutzerauswahl

Der Anwender wird aufgefordert, den Code fiir einen Befehl einzugeben. Ungiiltige Einga-
ben, soweit sie nicht in Schritt 3 vom default-Block der switch-Anweisung abgefangen
werden (beispielsweise Strings aus mehr als einem Zeichen), miissen aussortiert werden.

>> Ein- und Ausgabe (10) 223

3. Abarbeiten des Mentibefehls

Typischerweise in Form einer switch-Verzweigung.

Grundstruktur

Soll das Menii nicht nur einmalig zu Beginn des Programms angezeigt werden, gehen Sie so
vor, dass Sie die obigen drei Schritte in eine do-while-Schleife fassen und das Menii um einen
Meniibefehl zum Verlassen des Programms erweitern. Wird dieser Mentibefehl ausgewihlt,
wird die do-while-Schleife und damit das Programm beendet.

import java.util.Scanner;
public class Start {
public static void main(String[] args) f{

final char NO_OPTION = '_';

[-*)
=
[1-]
(=2
(2]
=
<<
=
=
=
:
£
(8}

Scanner scan = new Scanner(System.console().reader());
String input;
char option = NO_OPTION;

// Schleife, in der Menue wiederholt angezeigt und Befehle abgearbeitet
// werden, bis Befehl zum Beenden des Programms ausgewdhlt und die
// Schleife verlassen wird

do {
// 1. Menu anzeigen

System.console
System.console().printf (" HFFkkkkrttttiddddodddhh ik xad A A4k \n");
System.console().printf(" Mend \n");

O).printf("\n");
0.
0.
System.console().printf("\n");
0.
0.
0.

System.console().printf(" Erster Mentbefehl <a> \n");
System.console().printf(" Zweiter Meniibefeh] \n");
System.console().printf(" Dritter Meniibefeh] <c> \n");
System.console().printf(" Programm beenden <g> \n");
System.out.print("\n Ihre Eingabe : ");

// 2. Eingabe Tesen

option = NO_OPTION;

input = scan.nextlLine();

if(input.length() == 1) // einzelnes Zeichen in Eingabe

option = input.charAt(0);

System.out.printin("\n");

Listing 100: Konsolenanwendung mit Meni

[-*]
=
[1-]
(=2
[}
=
<<
=
=
=
:
£
(NN

224 >> Konsolenmeniis

// 3. Menibefehl abarbeiten

switch(option) {

case 'a': System.console().printf(" Meniibefehl a \n");
break;
case 'b': System.console().printf(" Mentbefehl b \n");
break;
case 'c': System.console().printf(" Meniibefehl ¢ \n");
break;
case 'q': System.console().printf(" Programm wird beendet \n");
break;

default: System.console().printf(" Falsche Eingabe \n");
t

System.out.printin("\n");

// 4. Warten, bis Anwender fortfahren will

System.console().printf(" <Enter> dricken zum Fortfahren \n");
scan.nextLine();
} while(option !=

q');
}

Listing 100: Konsolenanwendung mit Menu (Forts.)

Schritt 2 liest eine Eingabe von der Tastatur ein. Besteht die Eingabe aus einem einzelnen Zeichen,
wird sie in option gespeichert und so an die switch-Anweisung weitergegeben. Hat der Anwender
aus Versehen mehrere Tasten gedriickt, wird der Standardwert NO_OPTION weitergereicht. (NO_
OPTION wurde zu Beginn der main()-Methode mit einem Zeichen initialisiert, das keinem Menii-
befehl entspricht. NO_OPTION wird daher vom default-Block der switch-Anweisung behandelt.)

Statt in der Schleifenbedingung zu priifen, ob die Schleife weiter auszufiihren ist
(while(option != 'g")), konnen Sie die Schleife auch mit einer Label-Sprunganweisung
aus der switch-Verzweigung heraus verlassen:

quit: while(true) {
switch(option) {

case 'q': System.console().printf(" Programm wird beendet \n");
break quit;

default: System.console().printf(" Falsche Eingabe \n");

}

>> Ein- und Ausgabe (10) 225

GroB- und Kleinschreibung unterstiitzen

Wenn Sie im Buchstabencode zu den Meniibefehlen nicht zwischen GroB- und Kleinschrei-
bung unterscheiden, konnen Sie die switch-Verzweigung nutzen, um GrofB- und Kleinbuchsta-
ben elegant auf die gleichen Meniibefehle abzubilden:

switch(option) {

case 'A":

case 'a': System.console().printf(" Mentbefehl a \n");
break;

case 'B':

case 'b': System.console().printf(" Menlbefehl b \n");
break;

case 'C':

case 'c' System.console().printf(" Mentbefehl ¢ \n");
break;

case 'Q’ option = 'q';

case 'q’ System.console().printf(" Programm wird beendet \n");
break;

default: System.console().printf(" Falsche Eingabe \n");

Die Anweisung option = 'q' ist notig, damit die do-while(option != 'q') auch bei Ein-
gabe von Q beendet wird. Wird die Schleife wie im vorangehenden Absatz beschrieben
mit einer Sprunganweisung verlassen, kann die Anweisung entfallen.

92 Automatisch generierte Konsolenmeniis

Mit der Klasse ConsoleMenu, die in diesem Rezept vorgestellt wird, konnen Sie Konsolenmeniis
auf der Basis von Textdateien erstellen. Die Arbeit zur Implementierung eines Konsolenmeniis
reduziert sich damit auf die Bearbeitung der Textdatei und das Aufsetzen der switch-Verzwei-
gung zur Behandlung der verschiedenen Mentibefehle. Die Titel der Meniibefehle konnen
jederzeit in der Textdatei gedndert werden, ohne dass die Java-Quelldatei neu kompiliert wer-
den muss (beispielsweise zur Lokalisierung des Programms).

Die Textdatei mit den Meniibefehlen besitzt folgendes Format:
P Jede Zeile reprisentiert einen Meniibefehl.

P Jede Zeile beginnt mit dem Zeichen, das spéter zum Aufruf des Meniibefehls einzugeben
ist. Danach folgt ein Semikolon und anschlieBend der Titel des Meniibefehls.

» Der Titel darf kein Semikolon enthalten.

» Zwischen Codezeichen, Semikolon und Titel diirfen keine anderen Zeichen (auch kein
Whitespace) stehen.

a;Erster Menlibefehl
b;Zweiter Meniibefehl
c;Dritter Menilibefehl
q;Programm beenden

Listing 101: Beispiel fiir eine MenUtextdatei

@
=
<
=3
7
=
<<
=
=
=
i
=
e}

@
=
<
=3
7
=
<<
=
=
=
\
=
[

226 >> Automatisch generierte Konsolenmeniis

Die Klasse ConsoleMenu erzeugt aus dieser Datei das folgende Menii:

Menue

Erster Mentibefenl........... <a>
/weiter Meniibefehl..........
Dritter Menlbefehl.......... o>
Programm beenden............. <a>

Ihre Eingabe : g

Das Fiillzeichen zwischen Befehlstitel und -code (hier der Punkt .) wird als Argument an den
Konstruktor von ConsoleMenu tibergeben. Die Meniiiiberschrift und die Eingabeaufforderung
kénnen in abgeleiteten Klassen durch Uberschreibung der Methoden printHeader() bzw.
printPrompt() angepasst werden.

Das Einlesen des Meniis geschieht vollstindig im Konstruktor, dem zu diesem Zweck der Name
der Textdatei und das zu verwendende Fiillzeichen tibergeben werden. Der Konstruktor liest
in einer while-Schleife die Zeilen der Textdatei, extrahiert daraus die Informationen fiir die
Meniibefehle und speichert diese in einem Objekt der Hilfsklasse MenuElem. Die MenuElem-
Objekte wiederum werden in einer Vector-Collection verwaltet.

Wihrend des Einlesens bestimmt der Konstruktor zusitzlich die Zeichenlénge des groften Titels
(maxLength) sowie den numerischen Code des »groBten« verwendeten Meniibefehlszeichens. Im
Anschluss an die while-Schleife fiillt der Konstruktor alle Titel bis auf maxLength+10 Zeichen mit
dem tibergebenen Fiillzeichen auf (damit die Meniibefehlszeichen spiter rechtsbiindig unterein-
ander ausgegeben werden). Der numerische Code wird bendtigt, um die Konstante NO_OPTION
sicher mit einem Zeichen initialisieren zu konnen, das mit keinem Menitibefehl verbunden ist.

Der Konstruktor iibernimmt alle nétigen Dateioperationen. Werden dabei Exceptions ausge-
16st, werden diese an den Aufrufer weitergegeben. Erkennt der Konstruktor Fehler im Dateifor-
mat, 18st er eine Exception der selbst definierten Klasse ParseMenuException aus.

import java.io.FileReader;
import java.io.BufferedReader;
import java.io.IOException;
import java.util.Vector;
import java.util.Scanner;

/**

* Klasse zum Aufbau von Konsolenmeniis
*/

public class ConsoleMenu f{

private class MenuElem { // Hilfsklasse fur Meniielemente
private char code;
private String title;

MenuElem(char code, String title) {
this.code = code;
this.title = title;

>> Ein- und Ausgabe (10) 227

public final char NO_OPTION; // nicht belegtes Zeichen
private Vector<MenuElem> menu = new Vector<MenuElem>(7); // Vektor mit

// Meniibefehlen

public ConsoleMenu(String filename, char paddChar)

throws I0Exception, ParseMenuException {

// Textdatei mit Menll 6ffnen
BufferedReader in = new BufferedReader(new FileReader(filename));

// Flr jede Zeile Meniibefehlinformationen auslesen, in MenuElem-Objekt

// speichern und in Vector ablegen
String Tine;

int maxCode = 0;

int maxLength = 0;

char code;

String title;

[-*)
=
[1-]
(=2
(2]
=
<<
=
=
=
:
£
(8}

// Meniibefehle einlesen
while((line = in.readLine()) != null) {

}

// kurz prifen, ob Zeile korrekt aufgebaut ist
if(Tine.charAt(l) ="'

|| Tine.length() < 3

|| Tine.index0f(';", 2) != -1) {

menu.clear();

in.close();

throw new ParseMenuException("Fehler beim Parsen der " +
" Menuedatei");

}

code = Tine.charAt(0);
title = Tine.substring(2);

// GroBte Titelldnge festhalten
maxLength = (title.length() > maxLength)
? title.length() : maxlength;

// GroBten Zeichencode festhalten
maxCode = (Character.getNumericValue(code) > maxCode)
? Character.getNumericValue(code) : maxCode;

menu.add(new MenuElem(code, title));

// Alle Meniititel auf gleiche Ldnge plus 10 Fiil1zeichen bringen
int diff;

for(MenuElem e : menu) {

diff = (maxLength + 10) - e.title.length();
charl] pad = new char[diff];
for(int i = 0; i < pad.length; ++i)

228 >> Automatisch generierte Konsolenmeniis

pad[i] = paddChar;

e.title += new String(pad);
}

// Zeichen bestimmen, das mit keinem Mentibefehl verbunden ist
NO_OPTION = (char) (100+maxCode);

in.close();
}

protected void printHeader() {
System.console().printf("\n");
System.console().printf (" Hkkkrrrttitddioddohdhrdx kA ik \n");
System.console().printf(" Menl \n");
System.console().printf("\n");

}

protected void printPrompt() {
System.out.printin();
System.out.print(" Ihre Eingabe : ");

[-*]
=
[1-]
(=2
[}
=
<<
=
=
=
;
£
(NN

}

public void printMenu() {
printHeader();

for(MenuElem e : menu)
System.console().printf(" %s<%s> \n", e.title, e.code);

printPrompt();
}

public char getUserOption() f{
String input;
char option = NO_OPTION;
Scanner scan = new Scanner(System.console().reader());

input = scan.nextline();
if(input.length() == 1) // einzelnes Zeichen in Eingabe
option = input.charAt(0);

System.out.printin("\n");
return option;

}

Fiir die Ausgabe des Meniis miissen Sie lediglich die Methode printMenu() aufrufen. Die Ein-
gabe des Anwenders konnen Sie selbst einlesen oder bequem mit getUserOption() abfragen,
siehe Listing 102.

public class Start {

public static void main(String args[]) {

Listing 102: Verwendung der Klasse ConsoleMenu in einem Konsolenprogramm

>> Ein- und Ausgabe (10)
char option;
ConsoleMenu menu;
System.out.printin();

try {
menu = new ConsoleMenu("Menu.txt", '.');

quit: while(true) {

menu.printMenu();
option = menu.getUserOption();

switch(option) {

case 'A":

case 'a': System.console().printf(" Meniibefehl a \n");
break;

case 'B':

case 'b': System.console().printf(" Mentbefehl b \n");
break;

case 'C":

case 'c': System.console().printf(" Mentbefehl c \n");
break;

case 'Q": option = 'q";

case 'q': System.console().printf(" Programm wird beendet \n");
break quit;

default: System.console().printf(" Falsche Eingabe \n");
t

System.out.printIn("\n");

System.console().printf(" <Enter> driicken zum Fortfahren \n");
scan.nextLine();
} // Ende while

} catch(Exception e) f
System.err.printin("Fehler:

+ e.getMessage());
}

}

Listing 102: Verwendung der Klasse ConsoleMenu in einem Konsolenprogramm (Forts.)

229

[-*)
=
[1-]
(=2
(2]
=
<<
=
=
=
:
£
(FN]

-+
=
(-]
=
(7]
=
<<
=
=
=
[
=
w

230 >> Konsolenausgaben in Datei umleiten

Eingabeaufforderung - java Start

>java Start

oS- oo oS- oo oo BE
Menii

Erster Meniibefehl

Zuweiter Meniibefehl.

Dritter Meniibefehl.
Programm heenden...

Ihre Eingabe =

Abbildung 48: Konsolenmendi

93 Konsolenausgaben in Datei umleiten

Ausgaben, die zur Konsole geschickt werden, lassen sich auf den meisten Betriebssystemen
durch Piping in Dateien umleiten.

Auf diese Weise kdnnen die Ausgaben auf bequeme Weise dauerhaft gespeichert werden, was
etliche Vorteile bringt: Sie konnen die Ausgaben mit den Ergebnissen spéterer Programm-
sitzungen vergleichen. Die Ausgaben lassen sich mit anderen Programmen elektronisch wei-
terverarbeiten. Sie konnen umfangreiche Ausgaben in einen Editor laden und mit dessen
Suchfunktion durchgehen.

Unter Windows leiten Sie die Ausgaben mit > in eine Textdatei um.
Jjava ProgrammName > Qutput.txt

Unter Linux bieten die meistens Shells gleich mehrere Symbole fiir die Umleitung von Konso-
lenausgaben in Dateien an. bash, csh und tcsh unterstiitzen beispielsweise

» > die Umleitung durch Uberschreiben,
» >> die Umleitung durch Anhingen,

P> >| die erzwungene Umleitung.

94 Kommandozeilenargumente auswerten

Konsolenanwendungen besitzen die erfreuliche Eigenschaft, dass man ihnen beim Aufruf
Argumente mitgeben kann - beispielsweise Optionen, die das Verhalten des Programms steu-
ern, oder zu verarbeitende Daten. Der Java-Interpreter iibergibt diese Argumente beim Pro-
grammstart an den args-Array-Parameter der main()-Methode. In der main()-Methode kénnen
Sie die im Array gespeicherten Kommandozeilenargumente abfragen und auswerten.

Das Programm zu diesem Rezept erwartet auf der Kommandozeile drei Argumente: eine Zahl,
ein Operatorsymbol und eine zweite Zahl. Es priift vorab, ob der Anwender beim Aufruf die
korrekte Anzahl Argumente iibergeben hat.

>> Ein- und Ausgabe (10) 231

Bei einer abweichenden Anzahl weist das Programm den Anwender auf die korrekte Aufruf-
syntax hin und beendet sich selbst.

Stimmt die Anzahl der Argumente, wandelt das Programm die Argumente in die passenden
Datentypen um (Kommandozeilenargumente sind immer Strings) und berechnet, sofern die
Typumwandlung nicht zur Auslésung einer NumberFormatException gefiihrt hat, die gewiinschte
Operation.

public class Start {

public static void main(String args[]) {
System.out.printin();

// Priifen, ob korrekte Anzahl Kommandozeilenargumente vorhanden
if (args.length != 3) {
System.out.printin("Falsche Anzahl Argumente in Kommandozeile");
System.out.printin("Aufruf: java Start "
+ "Zahl Operator Zahl <Return>\n");

@
=
<
=3
7
=
<<
=
=
=
'
=
e}

System.exit(0);
}

try f{
// Die Kommandozeilenargumente umwandeln
double zahll = Double.parseDouble(args[0]);
char operator = args[1].charAt(0);
double zahl12 = Double.parseDouble(args(2]);

System.out.print("\n " + zahll + " " + operator + " " + zahl2);

// Befehl bearbeiten

switch(operator) {

case '+': System.out.printin(" =" + (zahll + zahl2));
break;

case '-': System.out.printin(" =" + (zahll - zahl12));
break;

case 'X':

case 'x'

case '*': System.out.printin(" =" + (zahll * zahl12));
break;

case ':'

case '/': System.out.printin(" =" + (zahll / zah12));
break;

default: System.out.printin("Operator nicht bekannt");
break;

}

} catch (NumberFormatException e) {
System.err.printin(" Ungueltiges Argument");
}

Listing 103: Start.java — Verarbeitung von Kommandozeilenargumenten

-+
=
(-]
=
(7]
=
<<
=
=
=
[
=
w

232 >> Leere Verzeichnisse und Dateien anlegen

Eingabeaufforderung

>java Start

Falsche Anzahl Argumente in Hommandozeile
Aufruf: java Start Zahl Operator Zahl {Return>

>
>java Start 12 x 41

12.8 x 41.8 = 492.8
>

Abbildung 49: Ubergabe von Aufrufargumenten an ein Konsolenprogramm

Auf der Windows-Konsole fithren Aufrufe mit * moglicherweise dazu, dass der
Befehlszeileninterpreter von Windows eine falsche Zahl an Argumenten ibergibt.
Setzen Sie * dann in Anfiihrungszeichen: »*«.

95 Leere Verzeichnisse und Dateien anlegen

Neues, leeres Verzeichnis anlegen

Das Anlegen von leeren Verzeichnissen erfolgt einfach durch Aufruf der Methode
File.mkdir(), z.B.

import java.io.*;

File f = new File(".\\meinVerzeichnis");
boolean status = f.mkdir();

Hier lauert allerdings eine kleine Falle: Wenn man einen Pfad angibt, der Verzeichnisse ent-
hélt, die es selbst noch nicht gibt, z.B.

File f = new File(".\\neuesVerzeichnis\\neuesUnterverzeichnis");
boolean status = f.mkdir(); // liefert false!

... scheitert der Aufruf. In solchen Fillen kann man auf die wenig bekannte Methode mkdirs()
zuriickgreifen, die alle Verzeichnisse auf dem angegebenen Pfad erzeugt, falls sie noch nicht
vorhanden sind:

boolean status = f.mkdirs(); // liefert nun true

Neue, leere Datei anlegen

Das Anlegen einer leeren Datei war in den Anfangszeiten von Java recht umstédndlich, da man
mit Hilfe einer Ausgabeklasse wie FileQutputStream eine explizite write()-Operation durch-
fiihren musste, die null Bytes schrieb, gefolgt vom SchlieBen des Ausgabestreams mit close().
Mittlerweile geht dies aber deutlich einfacher mit der File-Methode createNewFile():

File f = new FiTe(".\\temp\\leereDatei.txt");
boolean status = f.createNewFile();

Falls man hierbei einen vollen Pfadnamen (wie im Beispiel) angibt, miissen allerdings die ent-
sprechenden Verzeichnisse bereits existieren. Es kann daher recht praktisch sein, eine eigene
Methode createNewFile() zu definieren, die zuvor sicherstellt, dass der Pfad an sich existiert:

>> Ein- und Ausgabe (10) 233

import java.io.*;

class FileUtil {

/**

* Erzeugt eine neue leere Datei; Pfad wird ggf. erzeugt

*

* @param name relativer oder absoluter Dateiname

* @return true bei Erfolg, sonst false (Datei existert schon
* oder keine Schreibrechte)

*/

public static boolean createNewFile(String name) {
boolean result;
File f = new File(name);

try {
// zuerst mal so probieren
result = f.createNewFile();

[-*)
=
[1-]
(=2
(2]
=
<<
=
=
=
:
£
(FN]

} catch(Exception e) {
result = false;
}

try {
if(result == false) {
// sicherstellen, dass Pfad existiert und nochmal probieren
int pos = name.lastIndexOf(File.separatorChar);

if(pos >= 0) {
String path = name.substring(0,pos);
File p = new File(path);
result = p.mkdirs();

if(result)
result = f.createNewFile();

}

} catch(Exception e) {
e.printStackTrace();
result = false;

}

return result;
I

Listing 104: Methode zum sicheren Anlegen neuer Dateien (aus FileUtil.java)

234 >> Datei- und Verzeichniseigenschaften abfragen

Das Start-Programm zu diesem Rezept

pubTic class Start {
public static void main(String[] args) {
boolean result = FileUtil.createNewFile(".\\temp\\test.txt");
if(result)
System.out.printin("Leere Datei angelegt!");

else
System.out.printin("Datei konnte nicht erzeugt werden!");

Listing 105: Neue Datei anlegen

[-*]
=
[1-]
(=2
[}
=
<<
=
=
=
:
£
(NN

96 Datei- und Verzeichniseigenschaften abfragen

Neben einigen offensichtlichen Eigenschaften wie Dateinamen lassen sich {iber die Klasse
Jjava.io.File weitere interessante Eigenschaften ermitteln. Das nachfolgende Codeschnipsel
zeigt ein Beispiel fiir das Ermitteln haufig benétigter Informationen wie DateigréBe, Datei-
namen (absolut und relativ), Wurzel des Dateipfads und Zugriffsrechte:

import java.io.*;
import java.util.Date;

/**
* Klasse zur Ermittlung von Datei-/Verzeichniseigenschaften
*/
class Filelnfo {
private String fileName;
private File file;

public FileInfo(String name) {
fileName = name;

try {
file = new File(name);

} catch(Exception e) {
e.printStackTrace();
}
}

// Liefert true, wenn die Datei existiert
public boolean exists() {
try {
return file.exists();

Listing 106: Filelnfo.java — Klasse zur Abfrage von Datei-/Verzeichniseigenschaften

>> Ein- und Ausgabe (10) 235

} catch(Exception e) f
e.printStackTrace();
return false;

}

// Liefert den vollen Dateinamen inkl. Pfad oder null bei Fehler
public String getAbsoluteName() {
try {
return file.getCanonicalPath();

} catch(Exception e) f
e.printStackTrace();
return null;

[-*)
=
[1-]
(=2
(2]
=
<<
=
=
=
:
£
(FN]

// Liefert den Dateinamen ohne Pfad oder null bei Fehler
public String getName() {
if(file = null)
return file.getName();
else
return null;

// DateigrdBe in Bytes oder -1 bei Fehler
public long getSize() {
long result = -1;

if(file !=null)
result = file.length();

return result;
I

// Liefert das Wurzelverzeichnis (z.B. d:\) flr die aktuelle Datei
// oder null bei Fehler
public File getRoot() {
try {
File[] roots = File.listRoots();

for(File f : roots) |{
String path = f.getCanonicalPath();

if(getAbsoluteName().startsWith(path))
return f;

else
continue;

Listing 106: Filelnfo.java — Klasse zur Abfrage von Datei-/Verzeichniseigenschaften (Forts.)

236 >> Datei- und Verzeichniseigenschaften abfragen

} catch(Exception e) {
e.printStackTrace();
}

// nichts gefunden -> Fehler
return null;

J

// Liefert das Vaterverzeichnis oder null bei Fehler
public File getParent() {
if(file = null)
return file.getParentFile();
else
return null;
}

// Liefert die Zugriffsrechte als "r" (lesen) oder "rw" (
// lesen und schreiben) oder "" (gar keine Rechte)
public String getAccessRights() f
if(file = null) {
if(file.canWrite())
return "rw";
else if(file.canRead())
return "r";
else

return

[-*]
=
[1-]
(=2
[}
=
<<
=
=
=
:
£
(NN

} else
return null;
}

// Liefert das Datum der letzten Anderung oder null bei Fehler
public Date getlastModified() f{
if(file !=null) {
Tong time = file.lastModified();
return (new Date(time));

} else
return null;

}

// Liefert true, wenn es ein Verzeichnis ist
public boolean isDirectory() {
if(file I=null && file.isDirectory())
return true;
else
return false;

Listing 106: FileInfo.java — Klasse zur Abfrage von Datei-/Verzeichniseigenschaften (Forts.)

>> Ein- und Ausgabe (10) 237

Das Start-Programm demonstriert Aufruf und Verwendung,.

public class Start {
public static void main(String[] args) {

FileInfo fi = new FileInfo("test.txt");
System.out.printin("Zugriffsrechte: " + fi.getAccessRights());

Listing 107: Dateieigenschaften ermitteln

97 Tempordre Dateien anlegen

Temporére Dateien, also Dateien, die nur voriibergehend wéhrend der Programmausfiihrung
benotigt werden, lassen sich natiirlich als ganz normale Dateien (beispielsweise wie in Rezept
95 gezeigt) anlegen und einsetzen. Die Java-Bibliothek bietet jedoch in der Klasse
Jjava.io.File spezielle Methoden an, mit denen sich der Einsatz von temporiren Dateien etwas
vereinfachen lasst. Mit createTempFile(String prefix, String suffix) lassen sich beliebig
viele Dateien im Standard-Temp-Verzeichnis erzeugen®. Jede erzeugte Datei fingt dabei mit
dem ibergebenen String prefix an, gefolgt von einer automatisch erzeugten, fortlaufenden
Zahl und dem iibergebenen String suffix als Dateiendung. Da temporédre Dateien nach Pro-
grammende nicht mehr benétigt werden, kann man sogar mit Hilfe der Methode deleteOn
Exit() vorab festlegen, dass diese Dateien beim Beenden der Virtual Machine automatisch
geloscht werden und kein unnétiger Datenmiill zuriickbleibt:

@
=
<
=3
7
=
<<
=
=
=
i
=
e}

import java.io.*;
public class Start {
public static void main(String[] args) {

try {
// eine Datei im Standard-Temp Verzeichnis erzeugen
File tmpl = File.createTempFile("daten_",".txt");
tmpl.deleteOnExit();

// die andere Datei im aktuellen Verzeichnis erzeugen
File tmpDir = new File(".");

File tmp2 = File.createTempFile("daten_",".txt",tmpDir);
tmp2.deleteOnExit();

// Dateien verwenden
System.out.printin(tmpl.getCanonicalPath());
System.out.printin(tmp2.getCanonicalPath());

Listing 108: Tempordre Datei erzeugen

2. Unter Windows ist dies meist c:\Dokumente und Einstellungen\Username\Lokale Einstellungen\Temp.

[-*]
=
[1-]
(=2
[}
=
<<
=
=
=
:
£
(NN

238 >> Verzeichnisinhalt auflisten

} catch(Exception e) {
e.printStackTrace();
}

Listing 108: Temporéare Datei erzeugen (Forts.)

98 Verzeichnisinhalt auflisten

Ein haufiges Problem ist das Durchlaufen aller Dateien und Unterverzeichnisse von einem
gegebenen Wurzelverzeichnis aus. Hierfiir eignet sich ein rekursiver Ansatz, bei dem eine
Methode 1istAl1Files() als Parameter ein Verzeichnis erhilt, alle darin enthaltenen Dateien
und Verzeichnisse auflistet und diese dann der Reihe nach durchgeht. Bei einer Datei wird der
Name gespeichert, bei einem Verzeichnis ruft sich die Methode selbst mit diesem Verzeichnis
als Argument auf.

import java.io.*;
import java.util.*;

class FileUtil {

/**
Auflistung aller Dateien/Verzeichnisse in einem Startverzeichnis
und in allen Unterzeichnissen

@param rootDir File-Objekt des Startverzeichnisses

@param includeDirNames Flag, ob auch reine Verzeichnisse als separater
Eintrag erscheinen (true/false)

@return ArrayList<File> mit allen File-Objekten

P S T

*/
public static ArrayList<File> TistAllFiles(File rootDir,
boolean includeDirNames) {
ArrayList<File> result = new ArraylList<File>();

try {
File[] fileList = rootDir.listFiles();

for(int 1 = 0; 1 < filelList.length; i++) {
if(fileList[i].isDirectory() == true) {
if(includeDirNames)
result.add(filelist[i]1);

result.addA1T(1istAT1Files(fileList[i],includeDirNames));
t
else

result.add(filelist[i]);

Listing 109: Methode zur rekursiven Auflistung von Verzeichnisinhalten

>> Ein- und Ausgabe (10) 239

} catch(Exception e) {
e.printStackTrace();
}

return result;

Listing 109: Methode zur rekursiven Auflistung von Verzeichnisinhalten (Forts.)

Das Start-Programm demonstriert den Gebrauch.

import java.io.*;
import java.util.*;

@
=
<
=3
7
=
<<
=
=
=
'
=
e}

public class Start {
public static void main(String[] args) {

File root = new File(".");
ArrayList<File> files = FileUtil.listAT1Files(root, false);

try {
for(File f : files)
System.out.printin(f.getCanonicalPath());

} catch(Exception e) {
e.printStackTrace();
}

Listing 110: Verzeichnisinhalt auflisten

99 Dateien und Verzeichnisse loschen

Zum Loschen einer Datei bzw. eines Verzeichnisses kann man die aus der Klasse File bekannte
Methode delete() verwenden, z.B.

File f = new File(".\\temp\\test.txt");
boolean st = f.delete();

if(st == true)
System.out.printin("Datei geloescht");

Voraussetzung fiir ein erfolgreiches Loschen ist eine Schreibberechtigung auf die gewiinschte
Datei fiir den Benutzer, unter dessen Kennung das Java-Programm ausgefiihrt wird. Bei Ver-
zeichnissen kommt eine weitere, oft listige Bedingung hinzu: Das zu léschende Verzeichnis
muss leer sein! In der Praxis ist dies natiirlich meist nicht der Fall und man muss erst dafiir

240 >> Dateien und Verzeichnisse loschen

sorgen, dass alle enthaltenen Dateien und Unterverzeichnisse geloscht worden sind. Hierzu
kann man den rekursiven Ansatz aus Rezept 98 einsetzen:

import java.io.*;
class FileUtil {

/** Loscht die (ibergebene Datei oder Verzeichnis
* (auch wenn es nicht Teer ist)
*
* @param Zu ldschende Datei/Verzeichnis
* @return true bei vollstdndigem Loschen, sonst false
*/
public static boolean deleteFile(File startFile) {
if(startFile == null)
return true;

[-*]
=
[1-]
(=2
[}
=
<<
=
=
=
:
£
(NN

boolean statusRecursive = true;

if(startFile.isDirectory() == true) { // rekursiv den Inhalt Tdschen
try {
File[] fileList = startFile.listFiles();

for(int 1 = 0; i < filelList.length; i++) {
boolean st = deleteFile(fileList[i]);

if(st == false)
statusRecursive = false;
I
} catch(Exception e) {
e.printStackTrace();
statusRecursive = false;

}

// Datei/Verzeichnis 16schen
boolean status = startFile.delete();

return (status && statusRecursive);

Listing 111: Methode zum rekursiven Léschen von Verzeichnissen
Das Start-Programm demonstriert den Aufruf:

public class Start {

public static void main(String[] args) {

Listing 112: DateilVerzeichnis I6schen

>> Ein- und Ausgabe (10) 241

File f = new File(".\\testdir");
boolean result = deleteFile(f);

if(result)

System.out.printin("Datei/Verzeichnis geloescht");
else

System.out.printin("Konnte nicht loeschen!");

Listing 112: DateilVerzeichnis I6schen (Forts.)

100 Dateien und Verzeichnisse kopieren

Fiir das Kopieren von Dateien und Verzeichnissen gibt es keine direkte Java-Methode, so dass
man hier selbst programmieren muss. Beim Kopieren einer Datei spielt es tibrigens keine Rolle,
ob es sich um Bindrdaten oder Text handelt, d.h., man kann immer mit einer Instanz von
FileInputStream zum Lesen und FileOutputStream zum Schreiben arbeiten. Die hochste
Kopiergeschwindigkeit erhédlt man, wenn auf Betriebssystemebene mit direktem Kanaltransfer
gearbeitet wird. Diese Funktionalitidt wird durch die Methode transferTo() der Klasse Fileln-
putStream ermoglicht.

[-*)
=
[1-]
(=2
(2]
=
<<
=
=
=
:
£
(8}

Die nachfolgende Klasse FileCopy zeigt eine mogliche Implementierung zum Kopieren von
Dateien (Methode copyFile() oder ganzen Verzeichnissen (copyTree()) inklusive Unterver-
zeichnissen:

import java.util.*;
import java.io.*;
import java.nio.channels.*;

class FileCopy {

/**
Ausgabe aller Datei-/Verzeichnisnamen in einem Startverzeichnis und in
allen Unterzeichnissen

@param rootDir File-Objekt des Startverzeichnisses

@param includeDirNames Flag, ob auch Verzeichnisnamen als separater
Eintrag erscheinen (true/false)

@return ArrayList<File> mit allen File-Objekten

ok o X X X o

*/
public static ArrayList<File> 1istAllFiles(File rootDir,
boolean includeDirNames) {
ArrayList<File> result = new ArraylList<File>();

try |
File[] filelList = rootDir.1istFiles();

for(int i = 0; i < fileList.length; i++) {

Listing 113: Methoden zum Kopieren von Dateien und Verzeichnissen

242 >> Dateien und Verzeichnisse kopieren

if(fileList[i].isDirectory() == true) {
if(includeDirNames)
result.add(fileList[i]);

result.addAT1(1istA1TFiles(fileList[i],incTudeDirNames));
1
else
result.add(filelist[i]);
}

} catch(Exception e) {
e.printStackTrace();
}

return result;
}

[-*]
=
[1-]
(=2
[}
=
<<
=
=
=
:
£
(NN

/**

* Kopieren einer Datei/Verzeichnisses; eine vorhandene Zieldatei

* wird {iberschrieben
*

* @param sourceDir Name des zu kopierenden Verzeichnisses
* @param targetRoot Name des Zielverzeichnisses, in das hineinkopiert

* werden soll (muss existieren)
* @return true bei Erfolg, ansonsten false
*/

public static boolean copyTree(String sourceDir, String targetRoot) {
boolean result;

try |
File source = new File(sourceDir);
File root = new File(targetRoot);

if(source.exists() == false || source.isDirectory() == false)
return false;

if(root.exists() == false || root.isDirectory() == false)
return false;

// sicherstellen, dass Unterverzeichnis vorhanden ist

String targetRootName = root.getCanonicalPath() + File.separator +
source.getName();

File target = new File(targetRootName);

if(target.exists() == false) {
boolean st = target.mkdir();

if(st == false)
return false;

Listing 113: Methoden zum Kopieren von Dateien und Verzeichnissen (Forts.)

>> Ein- und Ausgabe (10) 243

// Auflistung aller zu kopierenden Dateien
ArrayList<File> fileNames = listAllFiles(source, true);
result = true;

for(File f : fileNames) {
String fullName = f.getCanonicalPath();
int pos = fullName.indexOf(sourceDir);
String subName = fullName.substring(pos + sourceDir.length()+1);
String targetName = targetRootName + subName;

if(f.isDirectory()) {
// Unterverzeichnis ggf. anlegen
File t = new File(targetName);

if(t.exists() == false) {
boolean st = t.mkdir();

[-*)
=
[1-]
(=2
(2]
=
<<
=
=
=
:
£
(FN]

if(st == false)
result = false;
}

continue;
|

boolean st = copyFile(f.getCanonicalPath(), targetName);

if(st == false)
result = false;
}

} catch(Exception e) {
e.printStackTrace();
result = false;

}

return result;
}

/**

* Kopieren einer Datei; eine vorhandene Zieldatei

* wird lberschrieben

*

* @param sourceFile Name der Quelldatei

* @param targetFile Name der Zieldatei

* @return true bei Erfolg, ansonsten false

*/

public static boolean copyFile(String sourcefFile, String targetFile) {
boolean result;

try |
// Eingabedatei 6ffnen

Listing 113: Methoden zum Kopieren von Dateien und Verzeichnissen (Forts.)

244 >> Dateien und Verzeichnisse kopieren

FileInputStream inputFile= new FilelnputStream(sourceFile);
FileChannel input= inputFile.getChannel();

// Zieldatei &ffnen
FileQutputStream outputFile = new FileQutputStream(targetFile);
FileChannel output= outputFile.getChannel();

// die Ldnge der zu kopierenden Datei
long num = input.size();

// kopieren
input.transferTo(0,num,output);

input.close();
output.close();
result = true;

[-*]
=
[1-]
(=2
[}
=
<<
=
=
=
;
£
(NN

} catch(Exception e) {
e.printStackTrace();
result = false;

}

return result;

Listing 113: Methoden zum Kopieren von Dateien und Verzeichnissen (Forts.)

Das Start-Programm demonstriert den Aufruf. Denken Sie daran, Quell- und Zielverzeichnis
vor dem Aufruf anzulegen (bzw. die Pfade fiir sourceDir und targetRootDir anzupassen).

public class Start {
public static void main(String[] args) {

String sourceDir = "c:\\temp\\MyDir";
String targetRootDir ="c:\\UserDirs";
boolean result = FileCopy.copyTree(sourceDir, targetRootDir);

if(result)

System.out.printin("Verzeichnis kopiert!");
else

System.out.printin("Fehler beim Kopieren!");

Listing 114: Datei/Verzeichnis kopieren

>> Ein- und Ausgabe (10) 245

101 Dateien und Verzeichnisse verschieben/umbenennen

Das Verschieben von Dateien und Verzeichnissen ist wesentlich einfacher als das Kopieren, da
technisch gesehen nur der Name gedndert werden muss. Hierfiir bietet die Klasse java.io.File
bereits alles, was man braucht, in Form einer Methode renameTo():

import java.io.*;
pubTic class Start {
public static void main(String[] args) {
try |
// ein Verzeichnis umbenennen
File file = new File("c:\\temp\\appconfig");

File newFile = new File("c:\\temp\\basics");

boolean status = file.renameTo(newFile);
System.out.printin("Verschieben erfolgreich: " + status);

@
=
<
=3
7
=
<<
=
=
=
i
=
e}

} catch(Exception e) {
e.printStackTrace();
}

Listing 115: Datei/Verzeichnis verschieben

Beim Einsatz von renameTo() sollten Sie Folgendes beachten:
P Die Schreibrechte auf dem Dateisystem miissen vorhanden sein.
» Die Zieldatei/das Verzeichnis darf noch nicht existieren.

P Das Verschieben {iber Partitionen hinweg ist unter Windows nicht méglich (z.B. c:\test.txt
nach d:\test.txt).

102 Textdateien lesen und schreiben

Beim Einlesen von Dateien muss man prinzipiell unterscheiden, ob es sich um Binédrdaten oder
Textdaten handelt. Aus technischer Sicht besteht der Unterschied darin, dass bei einer Bindr-
datei die einzelnen Bytes ohne weitere Interpretation in den Speicher geladen werden, wih-
rend bei Textdaten ein oder mehrere aufeinander folgende Bytes zu einem Textzeichen (je
nach verwendeter Zeichenkodierung) zusammengefasst werden. Fiir das korrekte Verarbeiten
von Textdateien ist es daher wichtig zu wissen, in welcher Zeichenkodierung die Datei
urspriinglich geschrieben worden ist. Das folgende Beispiel liest eine Datei in der gewiinschten
Kodierung als String ein bzw. schreibt einen String als Textdatei:

246 >> Textdateien lesen und schreiben

/**

Listing 116: Methoden zum Lesen und Schreiben von Textdateien beliebiger Zeichenkodierung

*

* @author Peter Miiller
*/

import java.util.*;
import java.io.*;

class FileUtil {

% /**

E? * Lddt eine Textdatei mit der angegebenen Zeichenkodierung

<< *

=

s * @param fileName Name der Datei

= * @param charSet Name der Zeichenkodierung, z.B. UTF-8 oder 1S0-8859-1;

- * bei Angabe von null wird die Default-Kodierung der
* Virtual Machine genommen
* @return String-0Objekt mit eingelesenem Text oder null bei
* Fehler
*/

public static String readTextFile(String fileName, String charSet) {
String result = null;

try {
InputStreamReader reader;

if(charSet !=null)
reader = new InputStreamReader(new FileInputStream(fileName),
charSet);
else
reader = new InputStreamReader(new FilelInputStream(fileName));

BufferedReader in = new BufferedReader(reader);
StringBuilder buffer = new StringBuilder();
int c;

while((c = in.read()) >= 0) {
buffer.append((char) c);
}

in.close();
return buffer.toString();

} catch(Exception e) {
e.printStackTrace();
result = null;

}

return result;

>> Ein- und Ausgabe (10) 247

/**

* Schreibt einen String als Textdatei in der angegebenen Zeichenkodierung.
*

* @param data Zu schreibender String

* @param fileName Dateiname
* @param charSet Zeichenkodierung (oder null fir
* Default-Zeichenkodierung der VM)
* @return true bei Erfolg
*/
public static boolean writeTextFile(String data, String fileName,
String charSet) {
boolean result = true;

try {
QutputStreamhWriter writer;

[-*)
=
[1-]
(=2
(2]
=
<<
=
=
=
.
£
(FN]

if(charSet != null)
writer = new OutputStreamWriter(new FileQutputStream(fileName),
charSet);
else
writer = new OutputStreamWriter(new FileQutputStream(fileName));

BufferedWriter out = new BufferedWriter(writer);
out.write(data, 0, data.length());
out.close();

} catch(Exception e) {
e.printStackTrace();
result = false;

}

return result;
!

Listing 116: Methoden zum Lesen und Schreiben von Textdateien beliebiger Zeichenkodierung
(Forts.)

Das Start-Programm demonstriert den Aufruf.

public class Start {
public static void main(String[] args) {

FileUtil.readTextFile(".\\john_maynard.txt",
"1S0-8859-1");

boolean status = FileUtil.writelTextFile(text,

" \\Jjohn_maynard_utf8.txt",

"UTF-8");

String text

Listing 117: Textdatei lesen/schreiben

@
=
<
=3
7
=
<<
=
=
=
\
=
[

248 >> Textdatei in String einlesen

Listing 117: Textdatei lesen/schreiben (Forts.)

103 Textdatei in String einlesen

Und gleich noch ein Rezept, mit dem Sie den Inhalt einer ASCII- oder ANSI-Textdatei in einen
String einlesen konnen. In String-Form kann der Text dann beispielsweise mit den Methoden
der Klasse String bearbeitet, mit reguldren Ausdriicken durchsucht oder in eine Textkompo-
nente (beispielsweise JTextArea) kopiert werden.

Die beiden Methoden

String file2String(String filename)
String file2String(FileReader in)

lesen den Inhalt der Datei und liefern ihn als String zuriick. Die Methoden wurden iiberladen,
damit Sie sie sowohl mit einem Dateinamen als auch mit einem FileReader-Objekt aufrufen
konnen. Die erste Version spart Ihnen die Miihe, ein eigenes FileReader-Objekt zu erzeugen.

import java.io.FileReader;
import java.io.IOException;

public static String file2String(String filename) throws I0Exception {
// Versuche Datei zu 6ffnen - Lost FileNotFoundException aus,
// wenn Datei nicht existiert, ein Verzeichnis ist oder nicht gelesen
// kann

FileReader in = new FileReader(filename);

// Dateiinhalt in String Tesen
String str = file2String(in);

// Stream schlieBen und String zuriickliefern
in.close();

return str;

public static String file2String(FileReader in) throws IOException {
StringBuilder str = new StringBuilder();

int countBytes = 0;
char[] bytesRead = new char[512];

while((countBytes = in.read(bytesRead)) > 0)
str.append(bytesRead, 0, countBytes);

return str.toString();

>> Ein- und Ausgabe (10) 249

Um das Lesen des Dateiinhalts moglichst effizient zu gestalten, werden die Zeichen nicht ein-
zeln mit read(), sondern in 512-Byteblécken mit read(char[]) eingelesen. AuBerdem werden
die Zeichen nicht direkt an ein String-Objekt angehingt (etwa mit + oder concat()), sondern in
einem StringBuffer gespeichert. Der Grund ist Ihnen sicherlich bekannt: Strings sind in Java
immutable (unverdnderlich), d.h., beim Konkatenieren oder anderen String-Manipulationen
werden immer neue Strings angelegt und der Inhalt des alten Strings wird samt Anderungen
in den neuen String kopiert. StringBuffer- und StringBuilder-Objekte sind dagegen mutable
(verdnderlich) und werden direkt bearbeitet.

StringBuffer und StringBuilder sind nahezu wie Zwillinge, nur dass StringBuilder schneller
in der Ausfiihrung ist, weil nicht threadsicher. Da gleichzeitige Zugriffe aus verschiedenen
Threads auf die lokale Variable str nicht gegeben sind, haben wir fiir die obige Implementie-
rung StringBuilder gewahlt.

104 Binardateien lesen und schreiben

Der Umgang mit Bindrdaten ist eigentlich sehr einfach, da man sich hier im Gegensatz zu
Textdaten keinerlei Gedanken iiber Zeichenkodierungen machen muss. Zur Eingabe bietet sich
BufferedInputStream an, fiir die Ausgabe empfiehlt sich BufferedOutputStream.

import java.io.*;

class FileUtil {

/**

* Liest eine Bindrdatei in ein byte-Array ein

*

* @param fileName Zu lesende Bingrdatei

* @return byte[] oder null bei Misserfolg
*/

public static byte[] readBinaryFile(String fileName) {
byte[] result = null;

try |
BufferedInputStream input;
input = new BufferedInputStream(new FilelnputStream(fileName));
int num = input.available();
result = new byte[num];
input.read(result, 0, num);
input.close();

} catch(Exception e) {
e.printStackTrace();
result = null;

}

return result;
}

/*k*

Listing 118: Methoden zum Lesen und Schreiben von Bindrdateien

@
=
<
=3
7
=
<<
=
=
=
i
=
e}

250 >> Random Access (wahlfreier Zugriff)

* Schreibt ein byte-Array als Bindrdatei;
* eine vorhandene Datei wird Uberschrieben
*

* @param data Zu schreibende Bindrdaten
* @param fileName Dateiname

* @return true bei Erfolg

*/

public static boolean writeBinaryFile(byte[] data, String fileName) {
boolean result = true;

try {
BufferedOutputStream output;
output = new BufferedOutputStream(new FileOutputStream(fileName));
output.write(data, 0, data.length);
output.close();

} catch(Exception e) {
e.printStackTrace();
result = false;

}

[-*]
=
[1-]
(=2
[}
=
<<
=
=
=
:
£
(NN

return result;

Listing 118: Methoden zum Lesen und Schreiben von Binédrdateien (Forts.)

Das Start-Programm demonstriert den Aufruf.

public class Start {
public static void main(String[] args) {

byte[] data = FileUtil.readBinaryFile(".\\windows_konsole.pdf");
FileUtil.writeBinaryFile(data, ".\\kopie.pdf");

Listing 119: Bindrdateien lesen/schreiben

105 Random Access (wahlfreier Zugriff)

Beim so genannten wahlfreien Zugriff (Random Access) kann man in einer Datei den Schreib-/
Lesezeiger beliebig positionieren, um dann an dieser Position zu lesen oder zu schreiben. Man
kann sich das am besten so vorstellen, dass die Datei ein byte-Array im Hauptspeicher ist und
man auf jede Indexposition direkt zugreifen kann.

Unterstiitzt wird der Random Access durch die Klasse java.io.RandomAccessFile. Sie arbeitet
recht low-level, d.h., der Programmierer muss exakt wissen, wo er den Schreib-/Lesezeiger
positioniert, wie viele Bytes ab dieser Position gelesen oder geschrieben werden sollen und
was mit den Daten dann passieren soll. Dies betrifft insbesondere Textzeichen, die ggf. in die

>> Ein- und Ausgabe (10) 251

richtige Zeichenkodierung umgewandelt werden miissen. Es existiert in RandomAccessFile zwar
auch eine auf den ersten Blick brauchbare Methode readlLine() zum zeilenweisen Einlesen
von Textdateien. Diese ist aber erstens ungepuffert und liest somit sehr langsam und liefert
zudem lediglich fiir normale ASCII-Zeichen korrekte Zeichen zuriick. Bei anderen Zeichen-
kodierungen (z.B. UTF-8) muss man byteweise einlesen und die Konvertierung selbst durch-
filhren>. Das folgende Beispiel zeigt daher eine Klasse zur Durchfiihrung von wahlfreiem
Dateizugriff mit einigen verbesserten Methoden, z.B. writeString() zum Schreiben einer Zei-
chenkette oder readlLine() zum Lesen einer ganzen Zeile.

import java.io.*;

/**
* Klasse flir den wahlfreien Zugriff auf eine Datei
*/
class RandomAccess {
private RandomAccessFile file;
private String fileName;
private final short MAX_LINE_LENGTH = 4096;

@
=
<
=3
7
=
<<
=
=
=
i
=
e}

public RandomAccess(String name) {
fileName = name;
}

/**
Datei flr wahlfreien Zugriff &ffnen

*
*
* @param mode Modus "r" = lesen,
*
*

rw" = Tesen und schreiben
@return true bei Erfolg, sonst false

*/

public boolean open(String mode) {
boolean result = true;

try |
file = new RandomAccessFile(fileName, mode);

} catch(Exception e) {
e.printStackTrace();
result = false;

}

return result;
}

/**

* Datei schlieBen

Listing 120: RandomAccess.java — eine Klasse fir den Zugriff auf beliebige Positionen in einer
Textdatei

3. RandomAccessFile hat zwar auch eine Methode readUTF(), die leider ein java-spezifisches UTF-Format erwartet,
das nicht UTF-8-kompatibel ist, und somit in der Regel nicht brauchbar ist.

252 >> Random Access (wahlfreier Zugriff)

*

* @return true bei Erfolg, sonst false
*/
public boolean close() {
try {
file.close();
return true;

} catch(Exception e) {
e.printStackTrace();
return false;

/**
* Liefert die aktuelle GroBe der Datei in Bytes oder -1 bei Fehler
*
* @return Anzahl Bytes
*/
public Tong getlength() {

try {

return file.length();

[-*]
=
[1-]
(=2
[}
=
<<
=
=
=
;
£
(NN

} catch(Exception e) {
e.printStackTrace();
return -1;

}

/**
* Liefert den aktuellen Wert des Dateizeigers
*
* @return Tong-Wert mit Position oder -1 bei Fehler
*/
public Tong getFilePointer() {

try {

return file.getFilePointer();

} catch(Exception e) {
e.printStackTrace();
return -1;

/**

* Héngt die Ubergebenen Bytes an das Ende der Datei
*/
public void append(byte[] data) {

Listing 120: RandomAccess.java — eine Klasse fir den Zugriff auf beliebige Positionen in einer
Textdatei (Forts.)

>> Ein- und Ausgabe (10) 253

try {
file.seek(file.length());
file.write(data);

} catch(Exception e) f
e.printStackTrace();
}

/*k*

* Hangt den String in der gewiinschten Kodierung an
%/ =
public void appendString(String str, String encoding) { g%
try { =
byte[] byteData = str.getBytes(encoding); =
append(byteData); Z
=

} catch(Exception e) f
e.printStackTrace();
}

/**
* |iest die angegebene Anzahl Bytes ein und Tiefert sie als Array zurlick
*

* @param startPos Position, ab der gelesen werden soll
* @param num Anzahl einzulesender Bytes
* @return byte[] mit eingelesenen Daten oder null bei Fehler
*/

pubTlic byte[] read(long startPos, int num) {

try {
file.seek(startPos);
byte[] data = new byte[num];
int actual = file.read(data, 0, num);

if(actual < num) {
// das Array kleiner machen, da weniger als gewlinscht gelesen
// worden ist
bytel] tmp = new bytelactual];

for(int i = 0; i < actual; i++)
tmp[i] = datalil;

data = tmp;
}

return data;

Listing 120: RandomAccess.java — eine Klasse fir den Zugriff auf beliebige Positionen in einer
Textdatei (Forts.)

254 >> Random Access (wahlfreier Zugriff)

} catch(Exception e) f
e.printStackTrace();
return null;

J

/**

* Schreibt die Ubergebenen Bytes in die Datei

*

* @param data Position, ab der geschrieben werden soll
= * @param startPos Array mit zu schreibenden Daten
S * @return true bei Erfolg, sonst false
2 */
= public boolean write(byte[] data, Tong startPos) {
< try {
= file.seek(startPos);

file.write(data, 0, data.length);
return true;
} catch(Exception e) f
e.printStackTrace();
return false;
}
}
/**

* Schreibt den {bergebenen String in der gewlinschten Zeichenkodierung
* als Bytefolge
*
* @param data zu schreibender String
* @param encoding Name der Zeichenkodierung
* @param startPos Startposition, ab der geschrieben werden soll
* @return true bei Erfolg, sonst false
*/
pubTic boolean writeString(String data, String encoding,
Tong startPos) f
try {
file.seek(startPos);
byte[] byteData = data.getBytes(encoding);
file.write(byteData, 0, byteData.length);
return true;

} catch(Exception e) {
e.printStackTrace();
return false;

Listing 120: RandomAccess.java — eine Klasse fir den Zugriff auf beliebige Positionen in einer
Textdatei (Forts.)

>> Ein- und Ausgabe (10) 255

/**

* Liest ab der angebenene Position einen String

* bis zum ersten Auftreten von \n

* String darf nicht ldnger als MAX_LINE_LENGTH Bytes enthalten
*

* @param startPos Startposition

* @param encoding Zeichenkodierung

* @return eingelesene Zeile (ohne \n) oder null bei Fehler
*/
public String readLine(Tong startPos, String encoding) {

try {

file.seek(startPos);

byte[] buffer = new byte[MAX_LINE_LENGTH];
int num = file.read(buffer);
String result = null;

@
=
<
=3
7
=
<<
=
=
=
'
=
e

if(num > 0) {
result = new String(buffer, encoding);

// ab erstem Auftreten von '\n' abschneiden
int pos = result.index0f('\n");

if(pos >= 0)
result = result.substring(0, pos);
else
result = null;
t

return result;
} catch(Exception e) {

e.printStackTrace();
return null;

Listing 120: RandomAccess.java — eine Klasse fiur den Zugriff auf beliebige Positionen in einer
Textdatei (Forts.)

Das Start-Programm demonstriert die Verwendung der Klasse und ihrer Methoden.

public class Start {
public static void main(Stringl] args) {

// Datei 0ffnen

Listing 121: Wahlfreier Dateizugriff

@
=
<
=3
7
=
<<
=
=
=
\
=
[

256 >> Dateien sperren

RandomAccess file = new RandomAccess(".\\Halley.txt");
file.open("rw");

// Position des alten Dateiendes speichern
long pos = file.getlength();

// String ans Ende anhdngen
file.appendString("Am Ende der Welt\n", "IS0-8859-1");

// zuletzt erzeugte Zeile wieder lesen
String line = file.readlLine(pos,"1S0-8859-1");
System.out.printin(line);

file.close();

Listing 121: Wahlfreier Dateizugriff (Forts.)

Beachten Sie auch Rezept 106, falls unter Umstdnden mehrere Programme gleichzeitig auf
einer Datei operieren konnen und ein Sperrmechanismus bendtigt wird.

106 Dateien sperren

Um dafiir zu sorgen, dass eine Datei flir eine gewisse Zeit nur fiir ein Programm bzw. Betriebs-
system-Prozess zugreifbar ist, bietet das Windows-Dateisystem (aber nicht Unix/Linux) das
Konzept der Dateisperre. Unter Java bietet die Klasse java.nio.channels.FileChannel die
Methode trylock() an, mit deren Hilfe man versuchen kann, eine exklusive Sperre auf eine
ganze Datei oder einen bestimmten Bereich zu erhalten. Wenn eine Sperre erfolgreich war,
wird ein Objekt vom Typ Filelock zurlickgegeben. Die Datei bzw. der definierte Abschnitt ist
nun so lange gegen fremde Zugriffe gesperrt, bis die FilelLock-Methode release() aufgerufen
wird.

Die in Rezept 105 gezeigte Klasse RandomAccess konnte daher folgendermaBen um eine geeig-
nete lTock()-Methode erginzt werden:

import java.io.*;
import java.nio.channels.*;

/*‘k
* Klasse fir den wahlfreien Zugriff auf eine Datei
*/
class RandomAccess {
private RandomAccessFile file;
private String fileName;
private final short MAX_LINE_LENGTH = 4096;

public RandomAccess(String name) {
fileName = name;

Listing 122: Methoden zum Sperren von Dateien

>> Ein- und Ausgabe (10) 257

/**
* Setzt eine Sperre auf der ganzen Datei
*
* @return FilelLock-Objekt oder null bei Fehlschlag
*/
public Filelock Tock() {
try {
FileChannel fc = file.getChannel();
return fc.trylLock();

} catch(Exception e) | 2
e.printStackTrace(); S
return null; §

} S

} =
£
(FN]

/**

* Setzt eine Sperre auf einem Dateiabschnitt

*

* @param startPos Startposition in der Datei

* @param num GroBe des Sperrbereichs (Anzahl Bytes)

* @param shared Shared-Flag (true = andere Sperren diirfen (iberlappen)

* @return FilelLock-0Objekt oder null bei Fehlschlag

*/

public Filelock Tock(Tong startPos, Tong num, boolean shared) {

try |

FileChannel fc = file.getChannel();
return fc.trylock(startPos, num, shared);

} catch(Exception e){
e.printStackTrace();
return null;

1
s

// Rest wie in Rezept 105
}

Listing 122: Methoden zum Sperren von Dateien (Forts.)

Das Start-Programm o6ffnet eine Datei zum Schreiben und sperrt sie. Danach 6ffnet es die
Datei ein zweites Mal und versucht iiber das zweite RandomAccess-Objekt, in die Datei zu

schreiben.
import java.nio.channels.*;
public class Start {

public static void main(Stringl] args) {

Listing 123: Dateisperre

258 >> CSV-Dateien einlesen

// Datei 6ffnen
RandomAccess file = new RandomAccess(".\\Halley.txt");
file.open("rw");

// ganze Datei flr andere sperren und etwas schreiben
FilelLock lock = file.lock();
file.appendString("\nDateiende\n", "IS0-8859-1");

// Datei nochmals &ffnen
RandomAccess file2 = new RandomAccess(".\\Halley.txt");
file2.open("rw");

// Versuch zu schreiben

// Lost Exception aus, da Datei gesperrt
file2.appendString("Text einschmuggeln\n", "IS0-8859-1");
file2.close();

[-*]
=
[1-]
(=2
[}
=
<<
=
=
=
:
£
(NN

// Sperre freigeben
try {
Tock.release();
}
catch(Exception e) {
e.printStackTrace();
}

file.close();

Listing 123: Dateisperre (Forts.)

Der Sperrmechanismus greift nur auf Prozessebene und nicht auf Threadebene. Es ist
also nicht moglich, dass ein bestimmter Thread die Datei sperrt, um die anderen
Threads am Schreiben zu hindern. Hierflir miissen Sie eine explizite Synchronisierung
einrichten.

107 CSV-Dateien einlesen

CSV-Dateien waren friiher ein sehr beliebtes Mittel zum Austausch tabellarischer Daten zwi-
schen Programmen und Betriebssystemen. Heute wird zu diesem Zweck meist XML eingesetzt,
aber es gibt immer noch zahlreiche Programme, die das CSV-Format unterstiitzen, wie es
umgekehrt auch immer noch Datensammlungen gibt, die als CSV-Dateien vorliegen.

Der Erfolg der CSV-Dateien liegt vor allem in der Abspeicherung als Textdatei (direkt lesbar,
gut portierbar) und dem einfachen Format begriindet. Die Grundregeln fiir den Aufbau einer
CSV-Datei lauten:

» Jede Tabellenzeile (bzw. Datensatz) entspricht einer Textzeile.

» Die Daten aus den einzelnen Spalten (Feldern) werden durch Kommata getrennt.

>> Ein- und Ausgabe (10) 259

» Taucht das Komma in einem Feldwert auf, wird dieser in Anfiihrungszeichen (") gesetzt.*

Dem Einsatz des Kommas als Trennzeichen verdankt das Format im Ubrigen auch seinen
Namen: Comma Separated Values. Allerdings ist das CSV-Format nicht standardisiert, so dass
es etliche Abwandlungen gibt.

Die haufigste Variation ist der Austausch des Kommas durch ein anderes Trennzeichen, wes-
wegen CSV oft auch als Akronym fiir Character Separated Values verstanden wird (ein promi-
nentes Beispiel hierfiir ist Microsoft Excel, welches das Semikolon als Trennzeichen benutzt).
Kommentarzeilen findet man in CSV-Dateien eher selten; falls vorhanden, werden sie meist
mit einem einfachen Zeichen (# oder !) eingeleitet und erstrecken sich bis zum Zeilenende.

1D, Kundennummer,Name, Vorname, Anrede
1,"333-3001,2",Salz,Maria,Frau
2,"333-6610,1",Sauer,Florian Gerhard,Herr
3,"333-5999,5" ,Bitter,Claudia Leonie,Frau
4,"333-0134,2",S0B,Herbert ,Herr

@
=
<
=3
7
=
<<
=
=
=
i
=
e}

Listing 124: Beispiel fiir eine CSV-Datei. Die Angabe der Spaltentiberschriften in der ersten
Zeile ist weit verbreitet, aber ebenfalls nicht zwingend vorgeschrieben.

CSV-Dateien lesen - 1. Ansatz

CSV-Dateien, die nicht iibermadBig groB sind und bei denen das Trennzeichen nicht in den
Werten auftaucht, konnen ohne groBe Miihe in einer einzigen while-Schleife gelesen und
geparst werden. Alles, was Sie tun miissen, ist, die Datei mit einem BufferedReader zeilenweise
einzulesen, die Zeilen mit Hilfe der String-Methode sp1it() in Felder zu zerlegen und Letztere
in geeigneter Weise abzuspeichern. Nutzen Sie dabei ruhig den Umstand, dass split() die Fel-
der bereits als String-Array zurtickliefert, und speichern Sie die String-Arrays einfach in einer
dynamisch mitwachsenden Collection. (Die Collection speichert dann die einzelnen Zeilen - in
Form von String-Arrays - und die String-Arrays speichern die Felder der jeweiligen Zeilen.)
Die nachfolgend abgedruckte Methode Morel0.readCSVFile() verfihrt auf eben diese Weise.

/**
* Methode zum Einlesen und Parsen von CSV-Dateien
*/
public static Vector<String[]> readCSVFile(String filename, char delimiter)
throws [0Exception, ParseException {
Vector<String[1> lines = new Vector<String[1>();
String[] fields = null;
String Tine;
int countlines = 1;
int countFields = -1;

BufferedReader in = new BufferedReader(new FileReader(filename));

Listing 125: readCSVFile() parst CSV-Dateien, die keine Trennzeichen in den Werten
enthalten.

4. Manche Programme erlauben in Feldwerten, die in Anfiihrungszeichen geklammert sind, auch Zeilenumbruch-
zeichen.

260 >> CSV-Dateien einlesen

// Dateiinhalt zeilenweise lesen
while((line = in.readlLine()) != null) {

// Whitespace an Enden entfernen
Tine = Tine.trim();

// Leerzeilen Ubergehen
if (Tine.equals(""))
continue;

// Felder aus Zeilen extrahieren
fields = Tine.split(String.valueOf(delimiter));

// Wenn erste Zeile, dann Anzahl Felder abspeichern
if (countFields == -1)
countFields = fields.length;

@
=
<
=3
7
=
<<
=
=
=
\
=
[

// Sicherstellen, dass alle Zeilen die gleiche Anzahl Felder haben
if (countFields == fields.length) {

Tines.add(fields);

++countLines;
} else

throw new ParseException("Ungleiche Anzahl Felder in "

+ "Zeilen der CSV-Datei", countlines);
}

// Stream schlieBen
in.close();

// Collection mit Feld-Arrays zurilickliefern
return lines;

Listing 125: readCSVFile() parst CSV-Dateien, die keine Trennzeichen in den Werten
enthalten. (Forts.)

Die Methode readCSVFile() iibernimmt als Argumente den Namen der CSV-Datei und das
Trennzeichen. In einer einzigen while-Schleife werden die einzelnen Zeilen eingelesen, von
Whitespace an den Enden befreit und dann mit Hilfe von sp1it() in Felder aufgeteilt. (Leerzei-
len werden zuvor ausgesondert.)

Die Anzahl Felder in der ersten geparsten Zeile merkt sich die Methode in der lokalen Variable
countFields. AnschlieBend wird fiir alle geparsten Zeilen gepriift, ob die Anzahl vorgefunde-
ner Felder mit der Anzahl Felder in countFields tibereinstimmt. Trifft die Methode auf eine
Zeile mit abweichender Spaltenzahl, wird eine ParseException ausgeldst. Die Nummer der
betroffenen Zeile (countlLines) wird als Argument dem Exception-Konstruktor tibergeben und
kann vom aufrufenden Programm via getErrorOffset() abgefragt werden.

>> Ein- und Ausgabe (10) 261

try {
Vector<String[1> lines = MorelO.readCSVFile("Dateiname", ","));

} catch(I0Exception e) {
System.err.printIn("FEHLER beim Oeffnen der Datei");
} catch(ParseException e) {
System.err.printIn("FEHLER beim Parsen der Datei in Zeile "
+ e.getErrorOffset());

Listing 126: Aufruf von readCSVFile()

ngabeaufforderung

>java Start_Morel0 adressen.csv .

Datei lesen und Zeile fuer Zeile ausgeben

Ein- und Ausgabe

.Zeile: Name Uorname Strabe Stadt Telefon
S Herbert WeidenstraBe 7 Bonn 5 714568
Sauer Florian Erlenweg 54 Bonn 488392
Bitter Claudia Eichennallee 26 Bonn [
Sal= Maria Tannenhain 4 Bonn 483383

Abbildung 50: Start_MorelO parst eine CSV-Datei mit Hilfe von readCSVFile() und gibt den
Inhalt zeilenweise, mit Tabulatoren zwischen den Feldern aus. Der Name der
CSV-Datei und das Trennzeichen werden als Befehlszeilenargumente
ibergeben.®

Der entscheidende Schritt beim Parsen von CSV-Dateien ist die Zerlegung der Zeilen in
Felder. Im vorliegenden Ansatz haben wir hierfiir die String-Methode sp1it() herange-
zogen, was uns die Definition einer eigenen Parse-Methode ersparte. Doch sp1it() ist
zum Parsen von CSV-Zeilen nur mit Einschrinkungen geeignet, denn die Methode

» kann nicht zwischen echten Trennzeichen und Trennzeichen, die innerhalb von
Anfiihrungszeichen stehen und daher als normale Zeichen anzusehen sind, unter-
scheiden.

P liefert fiir leere Felder am Zeilenende (in der CSV-Datei folgt auf das letzte Trenn-
zeichen nur noch Whitespace) keinen String zurtick.

Die zu verarbeitenden CSV-Dateien diirfen also keine leeren Felder enthalten (zumin-
dest keine am Zeilenende) und das Trennzeichen darf nicht in den Feldwerten auftau-
chen.

Um beliebige CSV-Dateien verarbeiten zu konnen, bedarf es eines erweiterten Ansatzes
mit eigener Parse-Methode.

5. Achtung! Wenn in einer Spalte Feldwerte stark unterschiedlicher Breite stehen, konnen die Spalten in der von
Start_Morel0 erzeugten Ausgabe verrutschen.

@
=
<
=3
7
=
<<
=
=
=
\
=
[

262 >> CSV-Dateien einlesen

CSV-Dateien lesen - 2. Ansatz

Nach der »Quick-and-dirty«-Implementierung mit der Methode readCSVFile() wenden wir uns
nun einer professionelleren Losung zu, die CSV-Dateien mit Hilfe einer eigenen Klasse,
CSVTokenizer, einliest. Wie der Name schon erahnen lisst, ist die Klasse CSVTokenizer an
StringTokenizer angelehnt (jedoch nicht von dieser abgeleitet) und wird auch ganz dhnlich
verwendet. Statt die CSV-Datei wie readCSVFile() komplett einzulesen und zu parsen, stellt
die Klasse CSVTokenizer Methoden zur Verfligung, mit denen die Datei zeilenweise eingelesen
werden kann: hasMorelines() und nextlLine(), die analog zu den StringTokenizer-Methoden
hasMoreTokens() und nextToken() verwendet werden.

Vector<String[]> Tines = new Vector<String[]>();
CSVTokenizer csv = null;

try {
csv = new CSVTokenizer("Dateiname", ',');
while (csv.hasMorelLines()) f{
lines.add(csv.nextLine());

} catch(I0Exception e) {
System.err.printIn("FEHLER beim Oeffnen der Datei");
} catch(ParseException e) f
System.err.printIn("FEHLER beim Parsen der Datei in Zeile "
+ e.getErrorOffset());
}

Die Klasse CSVTokenizer verfligt insgesamt tiber drei Methoden:
P boolean hasMorelLines() liefert true zuriick, wenn eine weitere Zeile mit Daten vorhanden ist.

P String[] nextLine() liefert ein String-Array mit den Feldern der néchsten Zeile zuriick,
bzw. null, wenn keine weiteren Zeilen verfiighar sind.

P String[] splitLine(String 1ine, char delimiter) wird intern von nextLine() aufgerufen,
um die Zeile in Felder zu zerlegen. Die Methode {iberliest Trennzeichen, die zwischen
Anfiihrungszeichen stehen, und liefert auch fiir leere Felder am Zeilenende einen Leer-
String ("") zuriick.

Bei der Instanzierung iibergeben Sie dem Konstruktor der Klasse wahlweise den Namen der zu
parsenden CSV-Datei oder ein bereits erzeugtes Reader-Objekt sowie das Trennzeichen.

import java.io.Reader;

import java.io.FileReader;

import java.io.BufferedReader;

import java.io.IlOException;

import java.io.FileNotFoundException;
import java.text.Parsekxception;
import java.util.Vector;

/**

* Klasse zum Lesen und Parsen von CSV-Dateien
*/

>> Ein- und Ausgabe (10) 263

public class CSVTokenizer {

private BufferedReader reader;
private char delimiter;

private String nextLine = null;
private int countFields = -1;
public int countlLines = 0;

public CSVTokenizer(String filename, char delimiter)
throws FileNotFoundException {
this.reader = new BufferedReader(new FileReader(filename));
this.delimiter = delimiter;

1
J

public CSVTokenizer(Reader reader, char delimiter) {
this.reader = new BufferedReader(reader);
this.delimiter = delimiter;

1
J

[-*)
=
[1-]
(=2
(2]
=
<<
=
=
=
:
£
(8}

Die Methode hasMorelLines() versucht eine weitere, nicht leere Zeile aus der CSV-Datei zu lesen.
Gelingt dies, speichert sie die Zeile in der Instanzvariablen nextLine und liefert true zurtick.

/**

* Liest die ndchste Zeile lesen und speichert sie in nextline

* Liefert im Erfolgsfall true zuriick und false, wenn keine Zeile mehr
* verfligbar. Leerzeilen werden {bersprungen

*/

public boolean hasMoreLines() {

if (nextLine == null)
try |
while((nextLine = reader.readlLine()) != null) {
nextLine = nextlLine.trim();
if (InextLine.equals("")) // Wenn nicht leere Zeile
break; // Schleife beenden
}
} catch (I0Exception e) {
}

if (nextLine != null)
return true;
else
return false;
}

Die Methode nextLine() gleicht der Methode readCSVFile() aus dem ersten Ansatz, allerdings
mit dem Unterschied, dass zum Zerlegen der Zeilen in Felder nicht die String-Methode
split(), sondern die eigene Methode splitLine() aufgerufen wird.
/*k'k
* Liefert ein String-Array mit den Feldern der ndchsten Zeile zuriick
*/
public String[] nextline() throws ParseException {
String[] fields = null;
String Tine;

264 >> CSV-Dateien einlesen

// Ndchste Zeile in nextLine einlesen lassen
if (!hasMorelLines())
return null;

// Felder aus Zeile extrahieren
fields = splitlLine(nextLine, delimiter);

// Wenn erste Zeile, dann Anzahl Felder abspeichern
if (countFields == -1)
countFields = fields.length;

++countlines; // nur flr Exception-Handling

// Sicherstellen, dass alle Zeilen die gleiche Anzahl Felder haben
if (countFields != fields.length) {
throw new ParseException("Ungleiche Anzahl Felder in "
+ "Zeilen der CSV-Datei", countlines);
}

@
=
<
=3
7
=
<<
=
=
=
\
=
[

// nextLine zuriick auf null setzen
nextLine = null;

return fields;
}

Die Methode splitlLine() durchlduft die ibergebene Zeile Zeichen fiir Zeichen und zerlegt sie
an den Stellen, wo sie das {ibergebene Trennzeichen (delimiter) vorfindet. Trennzeichen, die
innerhalb von Anfiihrungszeichen stehen, werden ignoriert. Endet die Zeile mit einem Trenn-
zeichen, wird nach Durchlaufen der Zeile noch ein leerer String fiir das letzte Feld angehingt.
Die Teilstrings fiir die Felder werden in einer Vector-Collection gesammelt und zum Schluss in
ein String-Array umgewandelt und zuriickgeliefert.

/**

* Zeile in Felder zerlegen, wird von getNextLine() aufgerufen

*/

private String[] splitLine(String line, char delimiter) {
Vector<String> fields = new Vector<String>();

int Ten = Tine.Tength(); // Anzahl Zeichen in Zeile

int i =0; // aktuelle Indexposition

char c; // aktuelles Zeichen

int start, end; // Anfang und Ende des aktuellen Feldes
boolean quote; // wenn true, dann befindet sich

// Delimiter in Anflhrungszeichen

// Zeile Zeichen fiir Zeichen durchgehen

while (i < Ten) {
start = 1; // Erstes Zeichen des Feldes
quote = false;

// Ende des aktuellen Feldes finden

Listing 127: Die Klasse CSVTokenizer

>> Ein- und Ausgabe (10) 265

while (i < len) {
¢ = line.charAt(i);

// Im Falle eines Anfiihrungszeichen quote umschalten
if (c=""")
quote = !quote;

// Wenn ¢ gleich dem Begrenzungszeichen und quote gleich false
// dann Feldende gefunden.
if (c == delimiter && quote == false)

break;
'H—l—;
} 2
end = i; // Letztes Zeichen des Feldes g%
-
=T
// Eventuelle Anflihrungszeichen am Anfang und am Ende verwerfen =
if (Tine.charAt(start) == """ && line.charAt(end-1) == '"") { T
start++; ._.E_,
end--;

}

// Feld speichern
fields.add(1ine.substring(start, end));
i++;

}

// Wenn Tetztes Feld Teer (Zeile endet mit Trennzeichen),

// leeren String einfligen

if (Tine.charAt(1ine.length()-1) == delimiter)
fields.add("");

// Vector-Collection als String-Array zuriickliefern
String[] type = new String[0];
return fields.toArray(type);

Listing 127: Die Klasse CSVTokenizer (Forts.)

[-*]
=
[1-]
(=2
(7]
=
<<
=]
=
=
:
£
wd

266 >> CSV-Dateien in XML umwandeln

ingabeaufforderung

>java Start_CEUTokenizer Kunden.csv .
Daten einlesen
Daten zeilenweise ausgeben

1.Zeile: Kundennumme » Uorname Anrede
2_Zeile: 333-3881,.2 Maria Frau
3.Zeile: 333-6610.1 Florian Herr
4_Zeile: 333-5999.5 Claudia Frau
5.Zeile: 333-8134.2 Herbert Herr

Abbildung 51: Start_CSVTokenizer parst eine CSV-Datei mit Hilfe der Klasse CSVTokenizer und
gibt den Inhalt zeilenweise, mit Tabulatoren zwischen den Feldern aus. Der
Name der CSV-Datei und das Trennzeichen werden als Befehlszeilenargumente
(ibergeben.®

108 CSV-Dateien in XML umwandeln

Wie bereits eingangs des vorangehenden Rezepts erwihnt, wird heutzutage meist XML
anstelle von CSV fiir den elektronischen Datenaustausch verwendet. Da bietet es sich an, Alt-
bestinde von CSV-Dateien nach XML zu konvertieren.

Das folgende Programm liest mit Hilfe der CSVTokenizer-Klasse aus Rezept 107 eine CSV-Datei
ein, parst den Inhalt und schreibt ihn in eine XML-Datei. Aufgerufen wird das Programm mit
dem Namen der CSV-Datei, dem Namen der anzulegenden XML-Datei und dem Trennzeichen,
beispielsweise:

java Start kunden.csv kunden.xml ,

P Die CSV-Datei darf keine Zeilenumbriiche in den Feldwerten enthalten und in der ersten
Zeile sollten Spalteniiberschriften stehen, denn das Programm verwendet die Strings der
ersten Zeile als Namen fiir die XML-Tags (woraus des Weiteren folgt, dass die Spaltentiber-
schriften keine Leerzeichen enthalten diirfen).

» Die XML-Datei wird von dem Programm neu angelegt. Ist die Datei bereits vorhanden,
wird sie liberschrieben. Der oberste Knoten der XML-Datei lautet <csvimport>. Darunter
folgen die Knoten fiir die einzelnen Zeilen (<row>), denen wiederum die Knoten fiir die
Felder untergeordnet sind.

Fiir die folgende CSV-Datei

1D, Kundennummer,Name, Vorname,Anrede
1,"333-3001,2",Salz,Maria,Frau
2,"333-6610,1",Sauer,Florian,Herr
3,"333-5999,5" ,Bitter,Claudia,Frau
4,"333-0134,2",Suess ,Herbert ,Herr

Listing 128: Kunden.csv

6. Achtung! Wenn in einer Spalte Feldwerte stark unterschiedlicher Breite stehen, konnen die Spalten in der von
Start_Morel0 erzeugten Ausgabe verrutschen.

>> Ein- und Ausgabe (10) 267

wiirde das Programm also beispielsweise folgende Knotenstruktur anlegen:

<?xml version="1.0" encoding="1S0-8859-1"?>

<csvimport>
<row>

<ID>1</1D>

<Kundennummer>333-3001, 2</Kundennummer>
<Name>Salz</Name>
<Vorname>Maria</Vorname>
<Anrede>Frau</Anrede>

</row>
<row>

<csvimport>

Im Folgenden sehen Sie den vollstdndigen Quelltext. Fiir eine Erklarung der Klasse CSVTokeni-
zer siehe Rezept 107.

import java
import java
import java
import java
import java

[-*)
=
[1-]
(=2
(2]
=
<<
=
=
=
:
£
(8}

.util.Vector;
.io0.FilelWriter;
.10.BufferedWriter;
.i0.I10Exception;
.text.Parsekxception;

public class Start {

public static void main(String args[]) {
Vector<String[1> lines = new Vector<String[1>();
CSVTokenizer csv = null;
BufferedWriter out;
String[] header = null;

String[] fields

null;

if (args.length !=3) {
System.out.printin(" Aufruf: Start <Dateiname> "
+ "<Dateiname> <Trennzeichen>");
System.exit(0);
}
try {

// XML-Datei anlegen

out = new BufferedWriter(new FileWriter(args(1]));
out.write("<?xml version=\"1.0\" encoding=\"I1S0-8859-1\"7>");
out.newLine();

out.write("<csvimport>");

out.newLine();

// CSV-Datei &ffnen
csv = new CSVTokenizer(args[0], args[2].charAt(0));

// Uberschriften einlesen und als XML-Knoten verwenden

Listing 129: Programm zur Umwandlung von CSV-Dateien in XML

268 >> CSV-Dateien in XML umwandeln

header = csv.nextlLine();

// Zeilen einlesen und als XML-Knoten ausgeben
while (csv.hasMorelLines()) {

out.write("\t <row>");

out.newLine();

fields = csv.nextlLine();

// Felder als XML-Knoten ausgeben

for(int i = 0; i < header.length; ++i) {
out.write("\t\t <" + header[i] + ">");
out.write(fields[i]);
out.write("</" + header[i] + ">");
out.newLine();

}

out.write("\t </row>");

out.newLine();

[-*]
=
[1-]
(=2
[}
=
<<
=
=
=
:
£
(NN

}

// XML-Datei abschlieBen
out.write("</csvimport>");
out.newLine();
out.close();

} catch(IOException e) {
System.err.printin("FEHLER beim Oeffnen der Datei");
} catch(ParseException e) f
System.err.printIn("FEHLER beim Parsen der Datei in Zeile
+ e.getErrorOffset());

Listing 129: Programm zur Umwandlung von CSV-Dateien in XML (Forts.)

>> Ein- und Ausgabe (10) 269

<3l C:\Buchprojekte\Marki+Technik\ava Codebooki2007\Beispiele}06 Ein- und Ausgabel1 08 CSV-Dateien - Microsoft Internet Expl... g

Datel Eearbeiten Ansicht Faworiten Extras 7]

kunden. il v ﬂ ‘wechseln 2u hid

<tuml wersion="1.0" encoding="1S0-8859-1" 7=
<csvimport>
<rows
<IDw1</10>
<Kundennummer>333-3001,2</Kundennurmrmers>
<Mame=8alz</MName>
<Yorname=Mara</vornames
<hAnredexFrau</anredes
<frows
<row
<10=2</10>
zkundennummer>333-6610, 1</Kundennummer:
<Mame=Sauers/Mames
<Yornamez=Florian=/Yorname:
<snredexHerr</Anrede>
<O E
<FOW
<1053</10>
<kundennummer>333-5999,5</Kundennummer:
<Mame=Bitter</MName:s
<Vorname=Claudia</Yormames
<hnredex=Frau</inredes
/oW
PO
<104/ 10>
<kundennummer=333-0134,2</Kundennummer:
<Mame=8iB</MName>
<Vorname=Herbert</Yorname:=
<panredesHerr</Anredes
<frows
</osvimports

Ej Fertig } Arbeitsplatz

Abbildung 52: Die fir Kunden.cvs erzeugte XML-Datei im Internet Explorer

109 ZIP-Archive lesen

Mit der Klasse ZipFile aus dem Paket java.util.zip bietet Java die Moglichkeit, komprimierte
Dateien aus einem ZIP-Archiv auszulesen’. Jede Datei in einem ZIP-Archiv wird dabei durch
eine Instanz einer besonderen Klasse ZipEntry reprasentiert. Fiir den normalen Hausgebrauch
ist es bei ZipFile ein wenig lastig, dass auch fiir jedes enthaltene Verzeichnis ein ZipEntry-
Objekt angelegt wird, was den »Programmierfluss« etwas hemmt - schlieBlich ist man ja in der
Regel nur an den eigentlichen Dateien interessiert. Das nachfolgende Beispiel bietet eine
Wrapper-Klasse, die dieses Manko behebt:

import java.util.zip.*;
import java.util.*;
import java.io.*;

class ZipArchive {
private ZipFile myZipFile = null;

Listing 130: ZIP-Archiv lesen

7. Das Erzeugen von ZIP-Archiven ist zurzeit nicht moglich!

[-*)
=
[1-]
(=2
(2]
=
<<
=
=
=
.
£
(FN]

270 >> ZIP-Archive lesen

private String myZipFileName;

/**

* Konstruktor

*

* @param str Name des Archivs

*/

ZipArchive(String str) {
myZipFileName = str;

}

/**
= * Offnet das Archiv zum Lesen
Al *
5% * @return true bei Erfolg, false bei Fehler
T *
< public boolean open() {
=
= boolean result;

try {
myZipFile = new ZipFile(myZipFileName);
result = true;

} catch(Exception e) {
e.printStackTrace();
result = false;

}

return result;
}

/**

* Liefert ein Array mit den im Archiv enthaltenen Dateien

* (auBer Verzeichnisse) als ZipEntry-Objekte
*

* @return Zipkntry[]
*/
public ZipEntry[] getZipEntries() {
ArrayList<ZipEntry> entries = new ArraylList<ZipEntry>();

if(myZipFile !=null) {
Enumeration e = myZipFile.entries();

while(e.hasMoreElements()) {
Lipkntry ze = (Zipkntry) e.nextElement();

if(ze.isDirectory() == false) // Verzeichnisse Uberspringen
entries.add(ze);

Listing 130: ZIP-Archiv lesen (Forts.)

>> Ein- und Ausgabe (10) 271

Zipkntry[] result = new Zipkntry[0];
return entries.toArray(result);
}

/**
* Liefert ein Array mit den im Archiv enthaltenen Dateinamen
*(auBer Verzeichnisse)
*
* @return Stringl]
*/
public String[] getFileNames() {
ZipEntry[] entries = getZipkntries();
int num = entries.length;
Stringl] result = new String[num];

for(int i = 0; i < num; i++)
result[i] = entries[i].getName();

[-*)
=
[1-]
(=2
(2]
=
<<
=
=
=
.
£
(FN]

return result;
t

/**

* Liefert den Inhalt der angegebenen Datei als unkomprimierten Datenstrom
*

* @param ze gewlinschte Datei als ZipEntry-Objekt

* @return Datenstrom als InputStream

*/

public InputStream getInputStream(ZipEntry ze) {

InputStream result = null;

try |
if(myZipFile != null)
result = myZipFile.getInputStream(ze);

} catch(Exception e) {
e.printStackTrace();
}

return result;

Listing 130: ZIP-Archiv lesen (Forts.)

[-*]
=
[1-]
(=2
[}
=
<<
=
=
=
:
£
(NN

272 >> ZIP-Archive erzeugen

Wenn man eine Datei des ZIP-Archivs - repriasentiert durch ein entsprechendes ZipEntry-
Objekt - nun tatsdchlich dekomprimiert auslesen will, muss man lediglich die Methode getIn-
putStream() aufrufen, um einen Eingabestream zu erhalten, den man dann zum Lesen verwen-
den kann, z.B.:

import java.util.zip.*;
import java.io.*;

pubTic class Start {
public static void main(String[] args) {

ZipArchive za = new ZipArchive("test.zip");
za.open();

ZipEntry[] entries = za.getZipEntries();
InputStream in = za.getInputStream(entries[0]);

try {
int num = in.available();
byte[] buffer = new bytelnum];
in.read(buffer);
String str = new String(buffer);
System.out.printin(str);

} catch(Exception e) {
e.printStackTrace();
}

Listing 131: Datei aus ZIP-Archiv lesen

110 ZIP-Archive erzeugen

Das Erzeugen eines ZIP-Archivs ist nur unwesentlich aufwéndiger als das Auslesen. Fiir jede
Datei, die hinzugefiigt werden soll, benotigt man eine ZipEntry-Instanz, die zusammen mit
den Bytes der Datei einem Objekt vom Typ ZipOutputStream tibergeben wird.

import java.io.*;
import java.util.zip.*;

class ZipCreator {
private String archiveName;
private ZipOutputStream outputStream = null;

/**

* Konstruktor
*

* @param voller Name des zu erzeugenden Archivs (inkl. ZIP-Endung)
*/

Listing 132: ZIP-Archiv erzeugen

>> Ein- und Ausgabe (10) 273

public ZipCreator(String name) f{
archiveName = name;
}

/**
* leeres ZIP-Archiv erzeugen
*/
public void create() throws IOException {
outputStream = new ZipOutputStream(new FileOutputStream(archiveName));
}

/**
* 7Z1P-Archiv schlieBen
*/
pubTlic void close() throws I0Exception {
outputStream.close();
}

[-*)
=
[1-]
(=2
(2]
=
<<
=
=
=
:
£
(FN]

/**

* Datei komprimieren und hinzufiigen

*

* @return true bei Erfolg

*/

public boolean add(File f) {
boolean result = true;

try {
// ZipEntry anlegen
String name = f.getCanonicalPath();
long len = f.length();
Zipkntry zipEntry = new ZipEntry(name);
zipEntry.setSize(len);
zipEntry.setTime(f.lastModified());
zipEntry.setMethod(ZipEntry.DEFLATED);

// Datei Tesen und dem Archiv komprimiert hinzufiigen
FiTlelnputStream fis = new FilelnputStream(f);
BufferedInputStream bis = new BufferedInputStream(fis);
outputStream.putNextEntry(zipEntry);

byte[] buffer = new byte[2048];

int num;

while ((num = bis.read(buffer)) >= 0) {
outputStream.write(buffer, 0, num);
}

bis.close();
outputStream.closekntry();

} catch(Exception e) {

Listing 132: ZIP-Archiv erzeugen (Forts.)

@
=
<
=3
7
=
<<
=
=
=
\
=
[

274 >> Excel-Dateien schreiben und lesen

System.err.printin(e);
result = false;

}

return result;

}

Listing 132: ZIP-Archiv erzeugen (Forts.)

111 Excel-Dateien schreiben und lesen

Erstaunlich populir ist das Tabellenformat Excel zur Anzeige von Tabellendaten. Programmie-
rer werden daher hdufig mit der Anfrage konfrontiert, ob bestimmte Daten als Excel-Datei
erzeugt werden konnen. Dies ist eigentlich eine sehr aufwindige Forderung, aber gliicklicher-
weise gibt es eine recht brauchbare OpenSource-Implementierung im Apache-Jakarta-Projekt
namens POI, die Sie von einem der zahlreichen Apache-Server herunterladen kénnen. (Zum
Beispiel http://apache.autinity.de/jakarta/poi/release/bin, Datei poi-bin-2.5.1-final.zip. Aus
dem ZIP-Archiv ist die jar-Datei poi-2.5.1-final-20040804.jar® zu extrahieren und der Name
(inklusive jar-Endung) in den CLASSPATH der Java-Anwendung aufzunehmen).

Excel-Dateien bestehen aus Workbooks, die in Arbeitsblédtter unterteilt sind. Jedes Blatt ent-
spricht einer Tabelle, bestehend aus Zeilen/Spalten mit Zellen. Fiir all diese Objekte und viele
weitere bietet die POI-Bibliothek entsprechende Klassen an, mit denen die gewiinschte Excel-
Struktur zusammengebaut werden kann. Das folgende Beispiel zeigt eine einfache Implemen-
tierung flir den héufigen Fall, dass man den Inhalt einer JTable inklusive Spaltennamen in
eine Datei ausgeben bzw. umgekehrt eine Excel-Datei einlesen mochte (pro Arbeitsblatt ein
JTable-Objekt):

/**

*

* @author Peter Miller

*/

import java.io.*;

import javax.swing.*;

import org.apache.poi.hssf.usermodel.*;
import org.apache.poi.poifs.filesystem.*;
import java.util.*;

class Excel {

/**

* Schreibt eine Tabelle als Excel Datei; alle Zellen werden als String
* interpretiert

*

* @param table Tabelle mit den Daten

* @param fileName Dateiname

Listing 133: Excel.java — Klasse zum Lesen und Schreiben von Excel-Dateien

8. Der Zeitstempel im Dateinamen wird wahrscheinlich ein anderer sein.

>> Ein- und Ausgabe (10) 275

* @param sheetName Arbeitsblatt-Name

* @return
*/

true bei Erfolg

public boolean writeFile(JdTable table, String fileName, String sheetName) {
boolean result = false;

try {
int colNum
int rowNum

table.getColumnCount();
table.getRowCount();

HSSFWorkbook workBook = new HSSFWorkbook();

HSSFSheet sheet = workBook.createSheet(sheetName);

// Fettdruck fir erste Zeile mit Spaltennamen
HSSFCe11Style style = workBook.createCellStyle();
HSSFFont font = workBook.createFont();
font.setBoldweight (HSSFFont.BOLDWEIGHT_BOLD) ;
style.setFont(font);

@
=
<
=3
7
=
<<
=
=
=
'
=
e}

HSSFRow row = sheet.createRow((short) 0);
HSSFCell cell;

short[] maxWidth = new short[colNum]; // fiir max. Spaltenbreite

// Zeile 0 mit Spaltennamen

for(int i
cell =

r

0; i < colNum; i++) {
ow.createCell((short) i);

cell.setCell1Type(HSSFCell.CELL_TYPE_STRING);
String name = table.getColumnName(i);

if(name.length() > maxWidth[i])
maxWidth[i] = (short) name.length();

cell.setCellValue(table.getColumnName(i));
cell.setCellStyle(style);

}

// Ubrige Zeilen mit den Daten

for(int i

0; i < rowNum; i++) {

row = sheet.createRow((short) i+l); // +1 wegen 0. Zeile = Namen

for(int j = 0; j < colNum; j++) {
cell = row.createCell((short) j);
cell.setCellType(HSSFCell.CELL_TYPE_STRING);
String value = (String) table.getValueAt(i,j);

if(value.length() > maxWidth[j1)
maxWidth[j] = (short) value.length();

Listing 133: Excel.java — Klasse zum Lesen und Schreiben von Excel-Dateien (Forts.)

276 >> Excel-Dateien schreiben und lesen

cell.setCellValue(value);
1
}

for(short 1 = 0; i < colNum; i++) {
// jede Spalte breit genug machen
// Grundeinheit flir Breite: 1/256 eines Zeichens
sheet.setColumnWidth(i, (short) (maxWidth[i] * 256));
}

// in Datei schreiben

FileQutputStream out = new FileOutputStream(fileName);
workBook.write(out);

out.close();

result = true;

} catch(Exception e) {
e.printStackTrace();

[-*]
=
[1-]
(=2
[}
=
<<
=
=
=
;
£
(NN

}

return result;
}

/**

* Liest eine Excel-Datei und gibt alle Arbeitsbldtter als JTable zuriick
*

* @param name Dateiname

* @param firstRowAsColumnName Flag, ob erste Zeile als Spaltennamen

* verwendet werden soll

* @return ArrayList mit JTable pro Arbeitsblatt oder
* null bei Fehler

*/

public ArraylList<JTable> readFile(String name, boolean
firstRowAsColumnName) f{
ArrayList<JTable> result = new ArrayList<JTable>();

try {
POIFSFileSystem file = new POIFSFileSystem(new FilelnputStream(name));
HSSFWorkbook wb = new HSSFWorkbook(file);
int num = wb.getNumberQfSheets();

for(int 1 =0; i < num; i++) {
HSSFSheet sheet = wh.getSheetAt(i);

// vorhandene Zeilen
int startRow = sheet.getFirstRowNum();
int endRow = sheet.getlLastRowNum();

// erste Zeile dient zur Ermittlung der Spaltenzahl und ggf.
// Spaltennamen

Listing 133: Excel.java — Klasse zum Lesen und Schreiben von Excel-Dateien (Forts.)

>> Ein- und Ausgabe (10)

HSSFRow firstRow = sheet.getRow(startRow);

short firstCell = firstRow.getFirstCellNum();

short TastCell = firstRow.getlLastCellNum();

short cellNum = (short) (lastCell - firstCell + 1);
Stringl] colNames = new String[cellNum];

for(int ¢ = firstCell; ¢ <= lastCell; c++)
if(firstRowAsColumnName)
colNames[c] = firstRow.getCell((short)
c).getStringCellValue();
else
colNames[c] = "";

if(firstRowAsColumnName)
startRowt+t;

int rowNum = (int) (endRow - startRow + 1);
String[1[] data = new String[rowNum]l[cellNum];

for(int j = startRow; j <= endRow; j++) {
HSSFRow row = sheet.getRow(j);
int startCell = row.getFirstCelTNum();
int endCell = row.getlLastCellINum();

for(int k = startCell; k <= endCell; k++) {
HSSFCell cell = row.getCell((short) k);
int cellType = cell.getCellType();
String value;

if(cellType == HSSFCell.CELL_TYPE_NUMERIC)

value = String.valueOf(cell.getNumericCellValue());
else

value = cell.getStringCellValue();

dataljl[k] = value;
}
}

JTable table = new JTable(data, colNames);
result.add(table);
}

} catch(Exception e){
e.printStackTrace();
result = null;

}

return result;

Listing 133: Excel.java — Klasse zum Lesen und Schreiben von Excel-Dateien (Forts.)

277

@
=
<
=3
7
=
<<
=
=
=
'
=
e}

278 >> PDF-Dateien erzeugen

Das Start-Programm demonstriert, wie mit Hilfe der Klasse Excel der Inhalt einer JTable-Kom-
ponente als Excel-Datei auf die Festplatte gespeichert werden kann.

import javax.swing.*;
public class Start {
public static void main(String[] args) {

Excel x1s = new Excel();
String[] colNames = {"Name","Vorname"};
String[][] data {{"Mu1Ter", "Peter"},
{"Louis", "Dirk"},
b
JTable table = new JTable(data, colNames);

// Tabelle als Excel schreiben
xIs.writeFile(table, ".\\data.x1s", "Kunden");

[-*]
=
[1-]
(=2
[}
=
<<
=
=
=
:
£
(NN

Listing 134: Excel-Format lesen/schreiben

&4 Microsoft Excel - data.xls

Datei Bearbeiten Ansicht Einfigen Format Extras Daten Fenster 7 -8 X
fa 2 A -10 - F KU E=SE=EE € &£ 1 -d-A. 7
Ko - 3
A B C D E F G H | =

1 Name Vorname —
2 Miller Peter
3 |Louis Dirk -

1~ Mo

H 4 » ¥ Kunden/ [<] [

Eereit

Abbildung 53: Erzeugte Excel-Tabelle

Beachten Sie, dass die obigen Beispiele nur die grundlegende Vorgehensweise zeigen
und auch immer nur mit dem Allzwecktyp String hantieren. Fiir komplizierte Félle
inklusive eingebetteter OLE-Objekte, Bilder und Formeln werden Sie nicht umhin kom-
men, sich detaillierter in die POI-Bibliothek einzuarbeiten.

112 PDF-Dateien erzeugen

Ein beliebtes Format zur Verteilung von Informationen ist PDF (Portable Document Format)
von der Firma Adobe, welches insbesondere in der Windows-Welt weit verbreitet ist. Als Pro-
grammierer sieht man sich daher leicht mit der Forderung konfrontiert, ob nicht auch eine
Ausgabe als PDF-Datei machbar wire. Ahnlich wie in Rezept 112 fiir das Excel-Format wiirde

>> Ein- und Ausgabe (10) 279

eine Eigenimplementierung einen immensen Zeit- und Arbeitsaufwand bedeuten. Gliicklicher-
weise finden sich mehrere brauchbare OpenSource-Bibliotheken, deren Einsatz wir an dieser
Stelle kurz demonstrieren méchten:

P gnujpdf ist eine Bibliothek mit der gleichen Vorgehensweise wie die AWT/Print-API in
Java, d.h., die zu erzeugende Ausgabe wird mittels eines Graphics-Objekts erstellt. Dadurch
kann man ohne besonderen Mehraufwand und PDF-Kenntnisse eine (mehr oder weniger)
identische Ausgabe erreichen, sowohl fiir die Anzeige auf dem Bildschirm via paint() bzw.
paintComponent() als auch zur Ausgabe in eine PDF-Datei.

P itext bietet volle Kontrolle und erlaubt das explizite Erzeugen fast aller PDF-Elemente im
gewtinschten Format und Position. Dies erfordert allerdings einige Kenntnis iiber den Auf-
bau von Textdokumenten.

PDF mit gnujpdf erzeugen

Zunichst muss natiirlich die Bibliothek in Form eines jar-Archivs besorgt werden. Hierzu
laden Sie von http://sourceforge.net/projects/gnujpdf/ das aktuelle ZIP-Archiv herunter®.
Extrahieren Sie hieraus die Datei gnujpdf.jar. Diese Datei muss fiirs Kompilieren und Ausfiih-
ren im CLASSPATH eingetragen sein (inklusive jar-Endung).

Wichtiger Hinweis fiir UNIX/Linux: Wenn gnujpdf auf einem Unix-Server eingesetzt
werden soll (z.B. von einem Servlet), ergibt sich unter Umstinden das Problem, dass
kein X-Server und somit auch kein Graphics-Kontext verfiigbar ist. Hier hilft dann nur
die Installation eines virtuellen X-Servers weiter, beispielsweise Xvib.10

Die Bibliothek bietet in einem Paket gnu.jpdf die von java.awt.Graphics abgeleitete Klasse
PDFGraphics an, mit der wie mit einem tiiblichen Graphics-Objekt gearbeitet werden kann. Das
heiBt, man darf Fonts und Farben zuweisen und beispielsweise mit drawString() oder drawl-
mage() entsprechende Zeichenoperationen durchfiihren. Das Grundmuster zum Erzeugen einer
PDF-Ausgabe sieht damit wie folgt aus:

P Eine Instanz der Klasse PDFJob wird angelegt. Sie entspricht in ihrer Art der Klasse
java.awt.PrintJob (man »druckt« gewissermaBen das PDF in eine Datei).

P Fiir jede neue Seite des PDF-Dokuments fordert man nun von PDFJob mit Hilfe von getGra-
phics() ein PDFGraphics-Objekt an und verwendet es zum Zeichnen. Danach wird diese
Ressource wieder mit seiner dispose()-Methode freigegeben.

P Die end()-Methode von PDFJob wird aufgerufen. Das PDF wird nun in eine Datei geschrieben.

Das folgende Beispiel zeigt die konkrete Umsetzung der obigen Schritte. Die interessanten
Dinge passieren in der Klasse PaintPanel, die neben einer tiblichen Bildschirmausgabe auch
eine PDF-Variante erstellt, wobei das PDF noch eine zusitzliche zweite Seite mit weiterem
Text erhilt.

9. Bei Erscheinen dieses Buchs gnujpdf-1.6.zip
10. Fiir Solaris http://www.idevelopment.info/data/Unix/General_UNIX/GENERAL_XvfvforSolaris.shtml oder fiir Linux
z.B. http://packages.debian.org/unstable/x11/xvfb.

@
=
<
=3
7
=
<<
=
=
=
i
=
e}

280 >> PDF-Dateien erzeugen

import gnu.jpdf.*;
import java.io.*;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Start extends JFrame {
private PaintPanel panel;

public Start(String fileName) {

[-*]
=
[1-]
(=2
[}
=
<<
=
=
=
:
£
(NN

}

setTitle("PDF Test");

setSize(300,300);

Imagelcon icon = new Imagelcon("duke.gif");

Image imagel = icon.getImage();

icon = new Imagelcon("juggler.gif");

Image image2 = icon.getImage();

panel = new PaintPanel(imagel, imageZ, fileName);
add(panel);

// Programm beenden, wenn Fenster geschlossen wird
addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {
System.exit(0);

1)

public static void main(String[] args) {

/**

if(args.length !=1) {
System.out.printin("Aufruf: <Dateiname>");
System.exit(0);

}

Start s = new Start(args[0]);
s.setVisible(true);

* Panel-Klasse zum Zeichnen

*/

class PaintPanel extends JPanel {
private Image imagel;
private Image imageZ;
private FileQutputStream fos;

PaintPanel(Image imgl, Image img2, String fileName) {

Listing 135: Ausgabe von PDF mit gnujpdf

>> Ein- und Ausgabe (10) 281

super();
imagel = imgl;
image2 = img?2;
try {

fos = new FileOutputStream(fileName);

} catch(Exception e) f
e.printStackTrace();
}
}

/**
* Erzeugt im Ubergebenen Graphics-Objekt die gewlinschte Ausgabe
*/
private void showDuke(Graphics g) {
int height = imagel.getHeight(null);
int width = imagel.getWidth(null);
g.drawlmage(imagel, 0, 0, this);
g.drawlmage(image2, 0, height + 10, this);

@
=
<
=3
7
=
<<
=
=
=
'
=
e

Font f = new Font("SansSerif", Font. BOLD, 12);

g.setFont(f);

g.drawString("Dieses Mdnnchen heiBt 'Duke'.", width + 20, 80);
g.drawString("Es ist das Maskottchen von Java.", width + 20, 100);

/**
* Erzeugt im {bergebenen Graphics-Objekt die gewlinschte Ausgabe
*/
private void showText(Graphics g) {
Font f = new Font("SansSerif", Font. BOLD, 12);
g.setFont(f);
g.drawString("Mit GnuPDF wird analog zum Graphics-Kontext eine
+ "weitgehend identische PDF-Version ", 20, 20);
g.drawString("erzeugt. Dies ist praktisch, wenn man die "
+ " Bildschirmausgabe als PDF haben will.", 20, 40);

}

protected void paintComponent(Graphics g) {
super.paintComponent(g);

// Anzeige generieren
showDuke(g);

// PDF-Version erzeugen; flir jede Seite einen Graphics-Objekt erzeugen
PDFJob pdfJdob = new PDFJob(fos);

Graphics pdfGraphics = pdfdob.getGraphics();

showDuke (pdfGraphics);

pdfGraphics.dispose();

Listing 135: Ausgabe von PDF mit gnujpdf (Forts.)

// noch eine zweite Seite hinzufligen
pdfGraphics = pdfdob.getGraphics();
showText (pdfGraphics);
pdfGraphics.dispose();

pdfdob.end();
System.out.printin("PDF-Datei erzeugt!");

Listing 135: Ausgabe von PDF mit gnujpdf (Forts.)

= PDF Test

S[=1ET

Dieses Mannchen heift 'Duke’.
Es ist das Maskottchen von Java,

Abbildung 54: Bildschirmausgabe via Graphics-Objekt

g5 Acrobat Reader - [duke. pdf] [Z|@|g|
EDatei Bearbeiten Dokument ‘Werkzeuge Anzeige Fenster Hilfe S0 E
CRS®R-AHE <> >H @« OR- TG -

Shse - @ IONHE -

Lesezeichen

Dieses Mannchen heiftt 'Duke’.

Esist das Maskottchen von Java.

Gy
i

Piktogramme

] 4 1von2 P M M59x2794mm O | = W4 4| b

Abbildung 55: PDF-Datei via PDFGraphics-Objekt

>> Ein- und Ausgabe (10) 283

PDF mit iText erzeugen

Zunichst miissen Sie sich die Bibliothek in Form eines jar-Archivs besorgen. Hierzu laden Sie
das aktuelle jar-Archiv sowie die zugehorige Klassendokumentation von http://sourceforge.
net/projects/itext/ herunter'!. Die jar-Datei muss fiir das Kompilieren und Ausfiihren im
CLASSPATH eingetragen sein (inklusive jar-Endung).

Die iText-Bibliothek definiert eine Vielzahl von Klassen, mit deren Hilfe sich fast jedes
gewtiinschte PDF-Dokument zusammenstellen lisst. Die zentrale Klasse ist com.lowagie.text.
Document. Sie dient als Container zur Aufnahme der gewiinschten Text- oder Grafikkomponen-
ten. Fiir die Ausgabe selbst stellt die Bibliothek eine Klasse PdfWriter bereit, der man einen
FileOutputStream zur Ausgabe in eine Datei iibergibt.

Das folgende Beispiel zeigt die grundlegende Vorgehensweise zur Erstellung und Ausgabe
einer PDF-Datei.

import java.io.*;
import java.awt.Color;
import java.net.URL;

import com.lowagie.text.*;

import com.lowagie.text.pdf.*;
import com.lowagie.text.rtf.*;
import com.lowagie.text.html.*;

/**

* Einsatz von iText zur Erzeugung eines PDF-Dokuments
*/

pubTic class Start {

public static void main(String args(]) {

try |
// Dokument anlegen im Format DIN-A4 mit RandmaBen
// Abstand Tinks/rechts/oben/unten = 50,50,50,50
Document document = new Document(PageSize.A4, 50, 50, 50, 50);

// Ausgabestream 6ffnen
PdfWriter.getInstance(document, new
FileOutputStream("PDF_Demo.pdf"));

// Kopfzeile definieren
HeaderFooter header = new HeaderFooter(
new Phrase("Das Java-Codebook"), false);
header.setBorder(Rectangle.BOTTOM);
document . setHeader(header);

// FuBzeile mit zentrierter Seitennummer
HeaderFooter footer = new HeaderFooter(new Phrase("Seite "), true);

Listing 136: PDF-Erstellung mit Hilfe von iText

11. Bei Erscheinen dieses Buch iText 2.0.0.jar

@
=
<
=3
7
=
<<
=
=
=
i
=
e}

284 >> PDF-Dateien erzeugen

footer.setAlignment (Element.ALIGN_CENTER);
footer.setBorder(Rectangle.TOP);
document.setFooter(footer);

// Dokument 6ffnen
document.open();

// Text hinzufiligen
Paragraph pl = new Paragraph(
"Lieber Leser, Sie sehen hier ein einfaches Beispiel "
+ "flir die Erzeugung von PDF mit Hilfe der Open Source "
+ "Bibliothek iText.");
document.add(pl);
Phrase ph = new Phrase();
Chunk chunkl = new Chunk("Kleinste Einheit ist der Chunk "
+ "(\"Stlck\"), den man als String inklusive "
+ "Font-Information auffassen kann. ",
FontFactory.getFont(FontFactory.TIMES_ROMAN, 12,
Font.BOLD, Color.RED));
Chunk chunk? = new Chunk("Man kann einen Absatz aus vielen Chunks "
+ "zusammensetzen, die wiederum in "
+ "Objekten vom Typ Phrase geordnet sein koénnen.",
FontFactory.getFont(FontFactory.TIMES_ROMAN, 12,
Font.NORMAL, Color.BLACK));

[-*]
=
[1-]
(=2
[}
=
<<
=
=
=
;
£
(NN

ph.add(chunkl);
ph.add(chunk2);
Paragraph p2 = new Paragraph(ph);

document.add(p2);

Paragraph p3 = new Paragraph("Man kann natiirlich auch fir einen "
+ "ganzen Absatz die Schriftart, GroBe und "
+ "Farbe festlegen.",
FontFactory.getFont(FontFactory.HELVETICA, 16,
Font.BOLDITALIC, Color.BLUE));

document.add(p3);

Paragraph p4 = new Paragraph("iText kann aber noch viel mehr. " +

"Es ist auch geeignet, um andere Formate "

+ "zu generieren, beispielsweise RTF oder HTML!");

document.add(p4);

// neue Seite

document .newPage();

Paragraph p5 = new Paragraph("Hier beginnt eine neue Seite.");
document.add(p5);

File f = new File("duke.gif");

Image image = Image.getInstance(f.toURI().toURL());
document.add(image);

Paragraph p6 = new Paragraph("Dieses Mannchen nennt sich Duke.");

Listing 136: PDF-Erstellung mit Hilfe von iText (Forts.)

>> Ein- und Ausgabe (10) 285

document.add(p6);

// schlieBen
document.close();
System.out.printin("Datei PDF_Demo.pdf erzeugt!");
} catch(Exception e) f
e.printStackTrace();
}
}

Listing 136: PDF-Erstellung mit Hilfe von iText (Forts.)

B8 Acrobat Reader - [PDE_Demo.pdf] [ZI[EI[‘S_TI

[-*)
=
[1-]
(=2
(2]
=
<<
=
=
=
.
£
(FN]

EDatei Bearbeiten Dokument Anzeige Fenster Hilfe — | & %
EES ®BE AP € OB T-E i

2% - ® [OMOEE B -

Das Java-Codebook

Lesezeichen

Lieber Leser, Sie sehen hier ein einfaches Beispiel fur die Erzeugung von POF mit Hilfe der
COpen-Source Bibliothek iText.

Kleinste Einheit ist der Chunk ("'Stiick'), den man als String inklusive Font-Information
anffassen kann. Man kann einen Absatz aus vielen Chunks zusammensetzen, die wiederum in
Ohbjekten vom Typ Phrase geordnet sein kinnen.

Man kann natiirlich auch fiir einen ganzen Absatz die Schriftart,

Gréfie und Farbe festlegen.
iText kann aber noch viel mehr. Es ist auch geeignel, um andere Formate zu generieran,
beispielsweise RTF ader HTRL!

Piktogramime

)14 fvonz b M 20893x207mm O =

Abbildung 56: PDF-Datei mit Hilfe von iText

Interessant ist auch die Moglichkeit, anstatt in einen FileQutputStream zu schreiben,
einen ServletOutputStream einzusetzen. Hierdurch kann man sehr leicht serverseitig
PDF-Ausgaben erzeugen.

Anstelle oder auch zusitzlich kann man eine Datei im RTF-Format oder als HTML
erzeugen. Hierzu dienen die Klassen Rtflriter2 bzw. HtmlWriter, z.B.

RtfWriter2.getInstance(document, new
FileQutputStream("RTF_Demo.rtf"));

HtmIWriter html = HtmlWriter.getInstance(document, new
FileOutputStream("HTML_Demo.htm1"));

GUI

113 GUI-Grundgeriist

GUI-Anwendungen unterscheiden sich von den Konsolenanwendungen durch zwei wesent-
liche Punkte:

» Der Informations- und Datenaustausch zwischen Benutzer und Programm erfolgt nicht
iiber die Konsole, sondern iiber programmeigene Fenster und in diese eingebettete Steuer-
elemente (GUI-Komponenten) wie Schaltflichen, Eingabefelder etc.

» GUI-Anwendungen sind ereignisgesteuert. Wéahrend sich Konsolenanwendungen in der
Regel aus einer Folge von Anweisungen zusammensetzen, die nach dem Programmstart
der Reihe nach abgearbeitet werden, bestehen GUI-Anwendungen - vom Code zum Auf-
bau der GUI-Oberfldche einmal abgesehen - aus einzelnen Codeblécken, die mit bestimm-
ten Ereignissen verbunden sind und immer dann ausgefiihrt werden, wenn das betreffende
Ereignis eintritt (mehr zur Ereignisbehandlung, siehe Rezept 119).

AWT und Swing

Die Java-API unterstiitzt die GUI-Programmierung gleich mit zwei Bibliotheken: AWT und
Swing.

Grundlage jeder GUI- und Grafikprogrammierung in Java ist das AWT (Abstract Window
Toolkit). Das AWT umfasst Klassen fiir die Ereignisverarbeitung, die Grafikausgabe, das Dru-
cken und anderes sowie natiirlich etliche Komponentenklassen fiir die verschiedenen Arten
von Fenstern und Steuerelementen.

Gerade Letztere erwiesen sich aber im Laufe der Zeit als ungentigend. Die AWT-Steuerelemente
sind ndmlich als Wrapper-Klassen um die plattformspezifischen Steuerelemente implementiert.
Jedes Betriebssystem definiert in seinem Code einen eigenen Satz typischer Steuerelemente und
ermutigt Programmierer, diese zum Aufbau ihrer Programme zu verwenden (um sich Arbeit zu
sparen und ein konformes Erscheinungsbild zu erreichen). Die AWT-Steuerelemente sind so
implementiert, dass sie bei Ausfiihrung auf einem Rechner auf diese betriebssysteminternen
Steuerelemente zuriickgreifen. Ein AWT-Schalter zeigt daher auf den verschiedenen Plattfor-
men immer das fiir die Plattform typische Erscheinungsbild. Der Nachteil dieses Verfahrens ist,
dass die AWT-Klassen praktisch den kleinsten gemeinsamen Nenner aller Steuerelementsétze
der verschiedenen Plattformen bilden und zudem auch noch von Fehlern in deren Implementie-
rung betroffen sind.

Seit Java 1.2 gibt es daher eine zweite Komponentenbibliothek namens Swing, die einen
anderen Ansatz verfolgt:

In Swing werden die Komponenten komplett in Java implementiert, d.h., sie greifen nicht
mehr auf die plattformeigenen Implementierungen zuriick, sie legen selbst ihre Funktionalitit
fest und sie zeichnen sich selbst auf den Bildschirm. Die Vorziige dieses Konzepts spiegeln sich
direkt in der Swing-Bibliothek wider:

P Es gibt weit mehr Swing-Komponenten als AWT-Komponenten (da die Sun-Programmie-
rer ja nicht mehr darauf angewiesen sind, dass die angebotenen Steuerelemente auf allen
Plattformen existieren).

288 >> GUI-Grundgeriist

» Der Programmierer kann zwischen verschiedenen Erscheinungsbildern fiir seine Steuerele-
mente wihlen, siehe Rezept 147. (Damit die Swing-Komponenten sich wie die AWT-Kom-
ponenten der jeweiligen Plattform anpassen, auf der sie ausgefiihrt werden, musste man
sie so implementieren, dass sie in verschiedenen Designs gezeichnet werden kdnnen. Da
lag es nahe, neben den plattformtypischen Designs noch weitere Designs anzubieten und
dem Programmierer die Wahl zu lassen, ob er das Design der Plattform anpassen oder ein
bestimmtes Design auf allen Plattformen verwenden mochte.)

Swing ist kein Ersatz fiir das AWT, denn viele grundlegenden Klassen fiir die GUI- und Grafik-
programmierung, insbesondere die Klassen fiir die Ereignisverarbeitung, sind nur im AWT
vorhanden. Swing ist eine Komponentenbibliothek und als solche den AWT-Komponenten
weit liberlegen. In den weiteren Rezepten kommen daher nahezu ausschlieBlich die Swing-
Komponenten zum Einsatz.

Obwohl es grundsétzlich méglich ist, sollten Sie AWT- und Swing-Komponenten nicht
mischen. Verwenden Sie in einem Swing-Fenster also ausschlieflich andere Swing-
Komponenten! Ansonsten kann es zu Fehlern kommen, insbesondere durch Verde-
ckung von Komponenten.

GUI-Grundgeriiste

Die meisten GUI-Anwendungen verfiigen iiber ein Hauptfenster, welches automatisch mit dem
Start der Anwendung erscheint und das die Anwendung beendet, wenn es selbst vom Benut-
zer geschlossen wird. Kein Wunder also, dass viele Anwender Hauptfenster und Anwendung
gleichsetzen.

Ein typisches GUI-Grundgertist definiert eine eigene Klasse fiir das Hauptfenster und instanziert
diese in seiner main()-Methode. Wenn Sie mit einer Integrierten Entwicklungsumgebung wie
dem JBuilder oder Eclipse arbeiten, legen Sie Ihre Grundgertste nicht selbst an, sondern Sie
iiberlassen dies der Entwicklungsumgebung. Dies spart nicht nur Zeit und Tipparbeit, es stellt
auch sicher, dass das Grundgeriist so aufgebaut wird, dass es von der Entwicklungsumgebung
weiterbearbeitet werden kann. (Insbesondere GUI-Designer, mit denen Sie per Mausklick Kom-
ponenten in Fenster einfiigen oder mit Ereignisbehandlungsmethoden verbinden kénnen, sind
darauf angewiesen, dass das Grundgeriist einem bestimmten formalen Aufbau gentigt. Die ent-
sprechenden Abschnitte sind meist mit Kommentaren gekennzeichnet, die den Programmierer
darauf hinweisen, dass diese Abschnitte nicht manuell bearbeitet werden sollten.)

Falls Sie rein mit dem JDK arbeiten oder sich nicht von einer Entwicklungsumgebung abhin-
gig machen wollen, erhalten Sie hier einige einfache Vorschlige, wie Sie Thre Grundgeriiste
aufbauen kénnten:

Gemeinsame Klasse fiir Anwendung und Hauptfenster

01 import java.awt.*;

02 import java.awt.event.*;

03 import javax.swing.*;

04

05 public class Grundgeruest_vl extends JFrame {
06

Listing 137: Swing-Grundgertist, Vorschlag 1

>> GUI 289

07 public Grundgeruest_v1() {

08

09 // Hauptfenster konfigurieren

10 setTitle("Swing-Grundgerist™");

11 getContentPane().setBackground(Color.LIGHT_GRAY);
12

13 // Hier Komponenten erzeugen und mit getContentPane().add()
14 // in das Fenster einfligen

15

16 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
17 }

18

19 public static void main(String args[]) {

20 Grundgeruest_vl frame = new Grundgeruest_v1();

21 frame.setSize(500,300);

22 frame.setlLocation(300,300);

23 frame.setVisible(true);

24 }

25}

Listing 137: Swing-Grundgerdst, Vorschlag 1 (Forts.)

= Swing-Grundgeriist

Abbildung 57: Hauptfenster des GUI-Grundgerdists

Fiir die GUI-Programmierung werden meist eine ganze Reihe von AWT- und Swing-Klassen
benoétigt. Um sich Tipparbeit zu sparen und die Lesbarkeit des Quelltextes zu verbessern,
importieren die meisten Programmierer daher die folgenden Pakete:

Paket ‘ Klassen fur

java.awt.* AWT-Komponenten
Layout-Manager
Grafikklassen wie Graphics, Color, Font, Cursor, Image etc.

Jjava.awt.event.* AWT-Ereignisse

Tabelle 29: Wichtige GUI-Pakete

290 >> GUI-Grundgeriist

Paket | Klassen fur

javax.swing.* Swing-Komponenten, plus zuséatzlicher Layout-Manager

javax.swing.event.* spezielle Swing-Ereignisse

Tabelle 29: Wichtige GUI-Pakete (Forts.)

Die Klasse fiir das Hauptfenster wird von JFrame abgeleitet (Zeile 5). Alternative Basisklassen
sind JDialog (fiir Dialogfenster) und JWindow (fiir Fenster ohne Rahmen und Titelleiste). Konfi-
guriert wird das Fenster tiber seinen Konstruktor (Zeilen 7 bis 17) bzw. das gerade erzeugte
Objekt (Zeilen 20 bis 23). Welche Eigenschaft Sie wo einstellen, bleibt weitgehend Ihnen tiber-
lassen. Weit verbreitet sind Aufteilungen, bei denen der Konstruktor ein fertiges Fenster
erzeugt, das dann tiber das Fenster-Objekt dimensioniert, platziert (Zeilen 22 und 23) und
sichtbar gemacht wird (Zeile 23).

Die Platzierung des Fensters auf dem Desktop unterliegt der Verantwortung des Win-
dow Managers. Dieser braucht der »Empfehlung« des Programmcodes nicht zu folgen.

StandardméBig bleibt das Fenster beim Driicken der SchlieBen-Schaltfliche aus der Titelleiste
bestehen und wird lediglich unsichtbar gemacht. Dieses Verhalten ist fiir die untergeordneten
Fenster einer Anwendung mit mehreren Fenstern durchaus sinnvoll. Wenn aber der Benutzer
das Hauptfenster der Anwendung schlieBt, mochte er in der Regel auch das Programm been-
den. Zu diesem Zweck {ibergibt man der Methode setDefaultCloseOperation() die Konstante
JFrame . EXIT_ON_CLOSE.

Konstante ‘ Beschreibung

DO_NOTHING_ON_CLOSE Fiihrt keinerlei Aktionen beim SchlieBen des Fensters aus. Bei diesem
Standardverhalten muss das Ereignis windowClosing abgefangen werden.

HIDE_ON_CLOSE Verbirgt das Fenster, wenn es der Benutzer schlieBt.

DISPOSE_ON_CLOSE Verbirgt das Fenster und 16st es dann auf. Damit werden alle von diesem
Fenster belegten Ressourcen freigegeben.

EXIT_ON_CLOSE Beendet die Anwendung mit System.exit(0).

Tabelle 30: Fensterkonstanten (WindowConstants), die das Verhalten beim SchlieBen eines
Fensters steuern

Komponenten oder untergeordnete Container werden in die ContentPane des Fensters (stan-
dardméBig eine JPanel-Instanz) eingefiigt. Sie konnen sich dazu von getContentPane() eine
Referenz auf die ContentPane zuriickliefern lassen und deren add()-Methode aufrufen oder -
ab JDK-Version 1.5 - alternativ die add()-Methode von JFrame verwenden.

Getrennte Klassen fiir Anwendung und Hauptfenster

Wenn Sie zwischen anwendungs- und hauptfensterspezifischem Code unterscheiden méchten,
definieren Sie fiir beide eigene Klassen. Die Klasse der Anwendung enthélt neben dem anwen-
dungsspezifischen Code die main()-Methode, in der Sie das Anwendungsobjekt erzeugen. Im
Konstruktor der Anwendungsklasse erzeugen Sie das Hauptfenster, fiir das Sie eine eigene
Klasse definieren.

>> GUI 291

public class Grundgeruest_v2 {

public Grundgeruest_v2() {
Grundgeruest_v2_Frame frame = new Grundgeruest_v2_Frame();
frame.setSize(500,300);
frame.setlLocation(300,300);
frame.setVisible(true);
}

public static void main(Stringl] args) {
new Grundgeruest_v2();
}

Listing 138: Code der Anwendungsklasse

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class Grundgeruest_v2_Frame extends JFrame {

public Grundgeruest_v2_Frame() {

// Hauptfenster konfigurieren
setTitle("Swing-Grundgerist");
getContentPane().setBackground(Color.LIGHT_GRAY);

// Hier Komponenten erzeugen und mit getContentPane().add()
// in das Fenster einfiigen

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

Listing 139: Code des Hauptfensters

Eclipse-konformes Grundgeriist

Wenn Sie Thr Grundgeriist so aufsetzen mochten, dass Sie es spiter mit Eclipse weiterbearbei-
ten konnen, missen Sie darauf achten, dass die Klasse des Hauptfensters eine initialize()-
Methode definiert, die vom Konstruktor aufgerufen wird. Des Weiteren miissen Sie die Refe-
renz auf die ContentPane in einem private-Feld jContentPane speichern. Die ContentPane
selbst wird von einer Methode getContentPane() eingerichtet.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

Listing 140: Eclipse-konformes GUI-Grundgerust

292 >> Fenster (und Dialoge) zentrieren

public class Grundgeruest_v3 extends JFrame {

private javax.swing.JPanel jContentPane = null;

public static void main(Stringl] args) {
Grundgeruest_v3 frame = new Grundgeruest_v3();
frame.setSize(500,300);
frame.setlLocation(300,300);
frame.setVisible(true);

}

public Grundgeruest_v3() {
super();
initialize();

}

private void initialize() {
this.setContentPane(getdContentPane());
this.setTitle("Swing-Grundgerist");
this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}

private javax.swing.JPanel getdContentPane() f{
if(jContentPane == null) f{
jContentPane = new javax.swing.JPanel();
jContentPane.setlLayout(new java.awt.BorderLayout());
jContentPane.setBackground(Color.LIGHT_GRAY);
}
return jContentPane;

Listing 140: Eclipse-konformes GUI-Grundgerdast (Forts.)

114 Fenster (und Dialoge) zentrieren

Um ein Fenster auf dem Bildschirm zu zentrieren, konnen Sie natiirlich so vorgehen, dass Sie
sich von Toolkit.getDefaultToolkit().getScreenSize() ein Dimension-Objekt mit den Bild-
schirmmaBen zuriickliefern lassen und aus diesen die Koordinaten fiir die linke obere Ecke
Ihres Fensters berechnen:

// Zentrierung in eigener Regie
Dimension dim = Toolkit.getDefaultToolkit().getScreenSize();

// xPos = halbe Bildschirmbreite - halbe Fensterbreite
// yPos = halbe Bildschirmhohe - halbe Fensterhohe
int xPos = (dim.width - frame.getWidth())/2;

int yPos = (dim.height - frame.getHeight())/2;
frame.setlocation(xPos ,yPos);

Einfacher geht es jedoch mit der Window-Methode setlocationRelativeTo(), die das Fenster
iiber einer von Ihnen spezifizierten Komponente zentriert. Wenn Sie statt einer Komponenten-
referenz null iibergeben, wird das Fenster auf dem Bildschirm zentriert.

>> GUI 293

public static void main(String args[]) {
Start frame = new Start();
frame.setlLocationRelativeTo(null);
frame.setVisible(true);

Vor der Zentrierung muss die FenstergroBe feststehen. In obigem Beispiel wird davon
ausgegangen, dass die FenstergroBe im Konstruktor des Fensters vorgegeben wird (bei-
spielsweise durch Aufruf von setSize(), siehe Rezept 115).

Dialoge zentrieren

Wie im Titel dieses Rezepts versprochen, konnen Sie mit setlLocationRelativeTo() auch Dia-
loge iiber ihren {ibergeordneten Fenstern zentrieren. Das einzige Problem, das sich dabei unter
Umstidnden ergibt, ist die Referenz auf das tibergeordnete Fenster.

Sofern Sie namlich den Dialog als Antwort auf das Driicken eines Schalters oder die Auswahl
eines Meniibefehls erzeugen und anzeigen, befinden Sie sich im Code einer Ereignisbehand-
lungsmethode. Da diese in der Regel nicht als Methode der JFrame-Klassen, sondern in einer
eigenen Listener- oder Adapter-Klasse definiert ist, konnen Sie nicht mit this auf das Fenster
zugreifen.

private final class ButtonAction {
public void actionPerformed(ActionEvent e) {
DemoDialog d = new DemoDialog(null, "Dialog");
d.setlocationRelativeTo(this); // FEHLER! this verweist auf
// ButtonAction-Objekt
d.setVisible(true);

}

Eine elegante Losung fiir dieses Problem sieht vor, die Ereignisbehandlungsklasse als innere
oder anonyme Klasse innerhalb der JFrame-Klasse zu definieren. Dadurch berechtigen Sie die
Ereignisbehandlungsklasse, auf alle Felder der {ibergeordneten JFrame-Klasse zuzugreifen und
konnen in dieser ein Feld mit einer Referenz auf sich selbst ablegen:

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

class DemoDialog extends JDialog implements ActionListener {

}

public class Start extends JFrame {
private JFrame f; // Referenz auf sich selbst

public Start() {
f = this; // Referenz initialisieren

Listing 141: Zentrierung mit setLocationRelativeTo()

294 >> Fenster (und Dialoge) zentrieren

// Hauptfenster einrichten
setTitle("Fenster zentrieren");
setSize(500,300);
getContentPane().setlLayout(null);

JButton btn = new JButton("Dialog 6ffnen");

btn.setBounds(new Rectangle(300, 200, 150, 25));

btn.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

// Dialog erzeugen
DemoDialog d = new DemoDialog(f, "Dialog");

// Dialog zentrieren
d.setlLocationRelativeTo(f);

// Dialog anzeigen
d.setVisible(true);
1
1)
getContentPane().add(btn, null);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}

public static void main(String args[]) {
Start frame = new Start();
frame.setlLocationRelativeTo(null);
frame.setVisible(true);

Listing 141: Zentrierung mit setLocationRelativeTo() (Forts.)

= Fenster zentrieren

Dialog (x|

Abbildung 58: Dialog, der tiber seinem Fenster zentriert ist

>> GUI 295

Ob Sie dem Konstruktor eines Dialogs eine Referenz auf das iibergeordnete Fenster
oder null tbergeben, hat keinen Einfluss auf die Positionierung. Wenn Sie eine Fens-
terreferenz tibergeben, wird das Fenster zum Besitzer (owner) des Dialogs und dieser
wird beispielsweise mit dem Fenster minimiert oder wiederhergestellt. Die Positionie-
rung oder Verschiebung des Dialogs auf dem Desktop erfolgt aber génzlich unabhingig
vom Fenster.

115 FenstergroBe festlegen (und gegebenenfalls fixieren)
Es gibt zwei Moglichkeiten, die Fenstergrofie festzulegen:
P Sie konnen die Fenstergrofe mit setSize() explizit festlegen.
frame.setSize(500,300);
P Sie konnen die FenstergroBe durch Aufruf von pack() an den Inhalt des Fensters anpassen.

frame.pack();

Benutzen Sie pack() nicht, wenn Sie fiir das Fenster keinen Layout-Manager verwen-
den (frame.setlLayout(null)) oder es keine dimensionierten Komponenten enthilt - es
sei denn, Sie wiinschen, dass Ihr Fenster auf die Minimalversion einer Titelleiste
zusammenschrumpft.

Ob Sie die FenstergroBe bereits im Konstruktor oder erst nach Instanzierung des Fensters fest-
legen, ist Ihre freie Entscheidung. Wenn Sie von einer Fensterklasse mehrere Instanzen unter-
schiedlicher MaBe (Abmessungen) erzeugen mochten, legen Sie die FenstergroBe natiirlich erst
nach der Instanzierung fest:

MyFrame framel = new MyFrame();
framel.setSize(500,300);
MyFrame frame2 = new MyFrame();
frame2.setSize(300,300);

Wenn alle Instanzen der Fensterklasse anfangs die gleiche GroBe haben sollen, empfiehlt es
sich, diese AnfangsgroBe bereits im Konstruktor festzulegen:

public class MyFrame extends JFrame {
public MyFrame() {
setTitle("Fenster");
setSize(500,300);

Die Methode setSize() kénnen Sie bereits eingangs des Konstruktors aufrufen. Wenn
Sie die FenstergroBe von pack() berechnen lassen wollen, sollten Sie dies aber erst tun,
nachdem Sie alle Komponenten in die ContentPane des Fensters eingefiigt haben.

Fenster fester GrofBBe

Wenn Sie die FenstergroBe fixieren mochten, so dass sie nicht vom Anwender verdndert wer-
den kann, rufen Sie die Methode setResizable() mit false als Argument auf:

296 >> Minimale FenstergroBe sicherstellen

import java.awt.*;
import javax.swing.*;

public class Start extends JFrame {

public Start() {
setTitle("Fenster fester GroBe");
setSize(500,300);
setResizable(false);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}

public static void main(String args[]) {
Start frame = new Start();
frame.setLocation(300,300);
frame.setVisible(true);

Listing 142: Fenster fester GréBe

116 Minimale FenstergroBe sicherstellen

Sie kennen das: Mit viel Liebe und Ausdauer haben Sie das optimale Layout fiir die Kompo-
nenten Ihres Fensters ausgearbeitet und implementiert und dann gehen die Anwender hin und
verkleinern das Fenster, bis von Threm Layout nichts mehr {ibrig bleibt. Eine von zweifelsohne
mehreren Moglichkeiten', diesem Missstand zu begegnen, ist die Vorgabe einer MinimalgroBe,
unter die das Fenster nicht verkleinert werden kann.

In Java gehen alle Fensterklassen auf die Basisklasse Component zuriick. Sie l6sen also Ereig-
nisse vom Typ ComponentEvent aus, die dartiber informieren, wenn eine Komponente ange-
zeigt, verborgen, verschoben oder neu dimensioniert wird. Letzteres Ereignis, zu welchem die
Ereignisbehandlungsmethode componentResized() gehort, gibt uns die Moglichkeit, auf Gro-
Benidnderung zu reagieren — beispielsweise um eine MindestgroBe sicherzustellen.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Start extends JFrame implements Componentlistener {
private final int MINWIDTH = 300;
private final int MINHEIGHT = 100;

public Start() {
setTitle("Fenster mit MinimalgroBe");
setSize(MINWIDTH, MINHEIGHT);

Listing 143: Auf GréBendnderungen reagieren

1. Siehe Rezept 115 zur Fixierung der FenstergroBe.

>> GUI 297

JButton btn = new JButton("Klick mich");

btn.setBounds(new Rectangle(75, 20, 150, 25));

btn.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

((JButton) e.getSource()).setText("Danke");

}

)

getContentPane().add(btn);

addComponentListener(this);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}

public void componentHidden(ComponentEvent e) {
}
public void componentMoved(ComponentEvent e) {

1
J

public void componentShown(ComponentEvent e) f{
}
public void componentResized(ComponentEvent e) {

// Gegebenenfalls minimale FenstergrdBe herstellen
Dimension dim = this.getSize();
dim.width = (dim.width < MINWIDTH) ? MINWIDTH: dim.width ;
dim.height = (dim.height < MINHEIGHT) ? MINHEIGHT: dim.height ;
this.setSize(dim);

}

public static void main(String args[]) {
Start frame = new Start();
frame.setLocationRelativeTo(null);
frame.setVisible(true);

Listing 143: Auf GréBendnderungen reagieren (Forts.)

In obigem Beispiel implementiert die Klasse Start das Interface Componentlistener hochst-
personlich, weswegen wir verpflichtet sind, in der Klassendefinition fiir alle Methoden des Inter-
face Definitionen bereitzustellen. (Die Alternative wire, eine eigene Klasse von ComponentAdapter
abzuleiten, in dieser componentResized() zu liberschreiben und dann ein Objekt dieser Klasse als
Listener zu registrieren.)

Nachdem sich die Fensterklasse bei sich selbst als Empfanger fiir Component-Ereignisse regist-
riert hat (addComponentListener(this) im Konstruktor), wird die Methode componentResized()
automatisch aufgerufen, wenn sich die GréB8e des Fensters dndert. Die Methode fragt dann die
neue GroBe ab und priift, ob Breite oder Hohe unter den in MINWIDTH und MINHEIGHT gespei-
cherten Grenzwerten liegen. Wenn ja, wird der Mindestwert eingesetzt und das Fenster mit
einem Aufruf von setSize() neu dimensioniert.

298 >> Bilder als Fensterhintergrund

117 Bilder als Fensterhintergrund

Was der Anwender als Hintergrund eines Fensters (oder Dialogs) wahrnimmt, ist der Hinter-
grund der ContentPane. Diesen konnen Sie mittels der Methode setBackground() beliebig ein-
farben:

getContentPane().setBackground(Color .WHITE); // weiBer Hintergrund

Wenn Sie als Hintergrund ein Bild anzeigen mdchten, miissen Sie hingegen schon etwas mehr
Aufwand treiben.

1. Sie miissen das Bild laden.

2. Sie miissen fiir die ContentPane eine eigene Klasse von JPanel ableiten, damit Sie deren
paintComponent()-Methode tiberschreiben und mittels drawImage() das Bild einzeichnen
koénnen.

Mit drawImage() konnen Sie das Bild wahlweise so einzeichnen, dass es
an die MaBe der ContentPane angepasst ist:

g.drawlmage(bgImage,
0, 0, // Linke, obere Ecke sowie
this.getWidth(), // Breite und Hohe des Ziel-
this.getHeight(), // bereichs, in den das Bild
this); // eingepasst wird

oder die eigenen OriginalmaBe beibehélt:

g.drawlmage(bglmage,
0, 0,
bgImage.getWidth(this),
bgImage.getHeight(this),
this);

3. SchlieBlich erzeugen Sie eine Instanz Threr ContentPane-Klasse und richten diese als Con-
tentPane des Fensters ein.

import java.awt.*;

import java.awt.event.*;
import javax.swing.*;

import java.awt.Image;

import javax.imageio.ImagelO;
import java.io.File;

import java.io.IOException;

public class Start extends JFrame {
private Image bgImage = null;

// innere Klasse fir ContentPane
private class ContentPane extends JPanel { /]2

public ContentPane() {
setlayout(new FlowLayout());
}

Listing 144: Bild als Hintergrund der ContentPane

>> GUI 299

public void paintComponent(Graphics g) {
super.paintComponent(g);

// Hintergrundbild in Panel zeichnen
if (bgImage != null)
g.drawlmage(bglImage, 0, 0, this.getWidth(), this.getHeight(),
Color.WHITE, this);

}

public Start() {
setTitle("Fenster mit Hintergrundbild");

// Bilddatei Taden

try | /11
bgImage = ImagelQ.read(new File("background.jpg"));

} catch(IOException ignore) {

}

setContentPane(new ContentPane()); //3

JButton btn = new JButton("Beenden");
btn.addActionlListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
System.exit(0);
}
1)
getContentPane().add(btn);

setDefaultCloseOperation(JFrame. EXIT_ON_CLOSE);
}

public static void main(String args[]) {
Start frame = new Start();
frame.setSize(500,300);
frame.setLocation(300,300);
frame.setVisible(true);

Listing 144: Bild als Hintergrund der ContentPane (Forts.)

300 >> Komponenten zur Laufzeit instanzieren

£ Fepster mit Hinte ngrundbild

Abbildung 59: Beachten Sie, dass der Schalter dber dem Hintergrundbild der ContentPane
liegt. Wenn Sie die FenstergréBe verdandern, wird das Hintergrundbild
automatisch durch Skalierung an die neue Fenstergréf3e angepasst.

Motivbilder, wie oben zu sehen, sollten Sie anders als im Demobeispiel nur fiir Fenster
fixer GroBe (siehe Rezept 115) als Hintergrund verwenden. Kann der Anwender die
Fenstergrofe verandern, fiihrt dies bei Motivbildern meist dazu, dass das Motiv entwe-
der stark verzerrt wird (bei Skalierung des Bilds) oder nur als Ausschnitt (Fenster ist
kleiner als Bild) bzw. als Teil des Fensters (Fenster ist groBer als Bild) zu sehen ist. Fiir
Fenster variabler GroBe eignen sich am besten skalierte Strukturbilder oder Motivbil-
der, bei denen das Motiv auf den linken, oberen Bereich beschrinkt ist.

118 Komponenten zur Laufzeit instanzieren

Die Instanzierung von Komponenten ist eine Aufgabe, die man tiblicherweise gerne dem GUI-
Designer einer leistungsfihigen Entwicklungsumgebung tiberlisst (beispielsweise JBuilder
oder Eclipse). Fiir die Bestiickung eines Fensters oder Dialogs mit Schaltern, Textlabeln, Lis-
tenfelder, Eingabefeldern etc. gibt es kaum etwas Besseres.

Trotzdem kommt es immer wieder vor, dass der Programmierer selbst Hand anlegen muss: sei
es, dass Code iiberarbeitet werden muss, der sich nicht in den GUI-Designer einlesen lisst, weil
er von Hand oder mit einem anderen, nichtkompatiblen GUI-Designer erstellt wurde, sei es,
dass Komponenten nur nach Bedarf instanziert werden sollen.

Hier eine kleine Checkliste, welche Schritte bei der manuellen Instanzierung von Komponen-
ten zu beachten sind:

1. Deklarieren Sie in der Fensterklasse ein Feld vom Typ der Komponente, um spéter jederzeit
von beliebiger Stelle aus iiber dieses Feld auf die Komponente zugreifen zu kénnen. (Kann
entfallen, wenn eine solche Referenz nicht benétigt wird.)

2. Erzeugen Sie ein Objekt der Komponente. Meist konnen Sie dem Konstruktor dabei bereits
Argumente zur Konfiguration der Komponente iibergeben: zum Beispiel den Titel fiir
JlLabel- oder JButton-Komponenten oder die Optionen eines JList-Felds.

>> GUI 301

3. Konfigurieren Sie die Komponente.

Legen Sie GroBe und Position der Komponente fest. Dies kann explizit geschehen (Metho-
den setBounds(), setSize(), setPosition()) oder vom Layout-Manager ibernommen wer-
den. (Arbeitet der Container, in den Sie die Komponente einfligen, mit einem Layout-
Manager, konnen Sie mittels setMaximumSize(Dimension), setMinimumSize(Dimension) und
setPreferredSize(Dimension) Hinweise fiir die Dimensionierung der Komponente geben.)

Legen Sie nach Wunsch Schriftart (setFont(Font)), Hinter- und Vordergrundfarbe (set-
Background(Color), setForeground(Color)), Erscheinungsbild des Cursors iiber der Kompo-
nente (setCursor(Cursor)) und Aktivierung (setEnabled(boolean)) fest.

Konfigurieren Sie die komponentenspezifischen Eigenschaften, soweit dies nicht bereits
vom Konstruktor erledigt wurde.

4. Behandeln Sie gegebenenfalls Ereignisse der Komponente.

5. Fiigen Sie die Komponente in ein Fenster (oder eine untergeordnete Container-Kompo-
nente) ein.

Um eine Komponente in ein Fenster oder irgendeinen anderen Container (beispielsweise
eine JPanel-Instanz) einzufiigen, rufen Sie die add()-Methode des Containers auf.

Swing-Fenster betten Komponenten in ihre ContentPane (standardméBig eine JPanel-
Instanz) ein. Der korrekte Weg, Komponenten in Swing-Fenster einzufiigen, ist dem-
nach, sich von der Fenstermethode getContentPane() eine Referenz auf die Content-
Pane des Fensters zuriickliefern zu lassen und dann deren add()-Methode aufzurufen.
Um das Einfiigen von Komponenten zu vereinheitlichen, wurden die Swing-Fenster ab
JDK 1.5 mit einer add()-Methode ausgestattet, die die {ibergebene Komponente auto-
matisch in die ContentPane einfiigt.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Start extends JFrame {
JButton btn; /11

public Start() {
setTitle("Komponenten einfligen");
setSize(300,200);

setResizable(false);

setlayout(null); // kein Layout-Manager

btn = new JButton("Klick mich"); /]2
btn.setBounds(new Rectangle(75, 120, 150, 25)); //3
btn.addActionListener(new ActionlListener() { /] 4

public void actionPerformed(ActionkEvent e) {
((JButton) e.getSource()).setText("Danke");

J

)

Listing 145: Einfligen eines JButton-Schalters in ein Fenster

302 >> Komponenten zur Laufzeit instanzieren

getContentPane().add(btn); /] 5

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}

public static void main(String args[]) {
Start frame = new Start();
frame.setLocation(300,300);
frame.setVisible(true);

Listing 145: Einflgen eines JButton-Schalters in ein Fenster (Forts.)

Komponenten dynamisch zur Laufzeit instanzieren

Im vorangehenden Beispiel wurde die Komponente manuell im Konstruktor erzeugt und in das
Fenster eingefiigt. Wenn das Programm spéter ausgefiihrt wird und das Fenster zum ersten
Mal auf dem Bildschirm erscheint, wird die eingebettete Komponente automatisch als
Bestandteil des Fensters mit auf den Bildschirm gezeichnet.

Wenn Sie eine Komponente dynamisch, also zum Beispiel als Reaktion auf eine Benutzerak-
tion, erzeugen, sind die Voraussetzungen dagegen meist andere: Das Fenster, in das die Kom-
ponente eingefiigt wird, ist bereits auf dem Bildschirm sichtbar. Es geniigt daher nicht, die
Komponente einfach nur in das Fenster einzufiigen. Sie miissen auch explizit dafiir Sorge tra-
gen, dass das Fenster neu gezeichnet wird. Dazu rufen Sie die repaint()-Methode des Fensters
auf:

public class Start_dynamisch extends JFrame {
JButton btn;
JLabel 1b;
JFrame f;

public Start_dynamisch() {

setlayout(null);
f = this;

btn = new JButton("Klick mich");
btn.setBounds(new Rectangle(75, 120, 150, 25));
btn.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
// Beim ersten Driicken des Schalters ein Label-Feld erzeugen
if (1b == null) {
1b = new JLabel("");
1b.setBounds(new Rectangle(20, 50, f.getWidth()-40, 25));
1b.setFont(new Font("Arial", Font.PLAIN, 20));
1b.addMouseListener(new MouselListener() {
public void mouseClicked(MouseEvent e)
public void mouseEntered(MouseEvent e)

}

{
{1

Listing 146: Komponente nach Bedarf instanzieren

>> GUI 303

public void mouseExited(MouseEvent e) {}

public void mousePressed(MouseEvent e) {}

public void mouseReleased(Mousekvent e) f
(

((JLabel) e.getSource()).setText("");
}

1)

f.getContentPane().add(1b);

}

1b.setText(1b.getText() + "Danke ");

// Fenster neu zeichnen Tassen, damit neue Komponente
// angezeigt wird
f.repaint();
}
)
getContentPane().add(btn);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}

Listing 146: Komponente nach Bedarf instanzieren (Forts.)

Dieses Beispiel instanziert das JLabel-Feld 1b, welches von dem Schalter als Ausgabefeld
benutzt wird, nicht beim Start des Programms, sondern erst, wenn es wirklich gebraucht wird,
d.h. beim ersten Driicken des Schalters. Wird der Schalter wihrend der Ausfiihrung des Pro-
gramms tiberhaupt nicht gedriickt (was in diesem Beispiel zugegebenermaBen unwahrschein-
lich ist), werden die Kosten fiir die Instanzierung eingespart.

119 Komponenten und Ereignisbehandlung

In Java gibt es viele verschiedene Moglichkeiten, eine Ereignisbehandlung aufzubauen. Dieses
Rezept stellt Thnen - nach einer kurzen Rekapitulation des Grundmechanismus der Ereignisbe-
handlung in Java - einige weit verbreitete Grundtypen vor. Einen Konigsweg gibt es nicht.
Manchmal geben die duBeren Umstinde den richtigen Weg vor, manchmal ist es auch eine
reine Design-Entscheidung.

Mechanismus der Ereignisbehandlung in Java

Ereignisse auf Komponenten (inklusive Fenstern) werden in Java dadurch behandelt, dass bei
der betreffenden Komponente ein Lauscher-Objekt mit einer passenden Ereignisbehandlungs-
methode registriert wird. Tritt das Ereignis ein, ruft die Komponente die zugehorige Ereignis-
behandlungsmethode des registrierten Lauscher-Objekts auf.

Um Ereignisquelle (die Komponente) und Ereignisempfinger (das Lauscher-Objekt) zu koordi-
nieren, definiert die Java-API eine Reihe von so genannten Listener-Interfaces. Jedes Listener-
Interface definiert, wie die Ereignisbehandlungsmethoden fiir eine bestimmte Gruppe von
Ereignissen (manchmal auch nur ein einziges Ereignis) heiBen.

Ein Lauscher-Objekt, welches ein bestimmtes Ereignis empfangen und verarbeiten mdchte,
muss vom Typ einer Klasse sein, die das zugehorige Listener-Interface implementiert und
dabei die Behandlungsmethode fiir das Ereignis mit dem Code definiert, der als Antwort auf

304 >> Komponenten und Ereignishehandlung

das Ereignis ausgefiihrt werden soll. Sind in dem Listener-Interface noch weitere Ereignisbe-
handlungsmethoden deklariert, an deren Bearbeitung der Programmierer nicht interessiert ist,
kann er diese mit leerem Anweisungsteil definieren. (Oder er leitet seine Lauscher-Klasse von
einer Adapter-Klasse ab, die statt seiner die Ereignisbehandlungsmethoden des Interface mit
Leerdefinitionen implementiert, und iiberschreibt lediglich die ihn interessierenden Methoden.
Die API stellt allerdings nicht fiir alle Interfaces mit mehreren Methoden passende Adapter-
Klassen zur Verfiigung.)

Auf der anderen Seite des Ereignismodells stehen die Ereignisquellen, sprich die Komponen-
ten, in denen die Ereignisse auftreten. Diese sind so implementiert, dass sie bei Eintritt eines
Ereignisses die zugehorigen Ereignisbehandlungsmethoden aller registrierten Ereignisempfan-
ger ausfiihren. Die Registrierung erfolgt iber spezielle Registrierungsmethoden, die als Argu-
ment ein Objekt vom Typ eines Listener-Interface erwarten:

addActionListener(Actionlistener 1)
addComponentListener(ComponentListener 1)

Indem die Komponentenklassen selbst festlegen, welche Registrierungsmethoden sie anbieten,
konnen sie bestimmen, welche Typen von Ereignisempfingern bei ihnen registriert werden,
sprich welche Ereignisse fiir die Komponente behandelt werden kénnen.

Im Anhang zur Java-Syntax finden Sie tabellarische Auflistungen der wichtigsten
Interfaces mit ihren Ereignisbehandlungsmethoden sowie den zugehorigen Adapter-
Klassen und Ereignisobjekten.

Das Java-Modell der Ereignisbehandlung
Die Ereignisbehandlung von Java beruht auf Ereignisquellen und Ereignisempfiangern.
registrieren
Ereignisquelle I senden @ empfangen =|| Ereignisempfanger

Abbildung 60: Java-Ereignisbehandlungsmodell

Ausgangspunkt ist, dass ein bestimmtes Ereignis in einer Komponente auftritt. Ein sol-
ches Ereignis kann die vom Betriebssystem vermittelte Benachrichtigung iiber eine
Benutzeraktion auf der Komponente sein (beispielsweise das Anklicken der Kompo-
nente), es kann sich aber auch um eine Zustandsidnderung der Komponente handeln
(der Wert eines Felds wurde geindert). Wie auch immer, die Komponente méchte dem
Programmierer die Gelegenheit geben, auf dieses Ereignis zu reagieren. Dazu tritt sie
selbst als Ereignisquelle auf und sendet allen interessierten Ereignisempfingern ein
Ereignisobjekt, das iiber das eigentliche Ereignis informiert.

>> GUI 305

Der Begriff »senden« stammt aus der traditionellen objektorientierten Terminologie und
sollte nicht zu wortlich genommen werden. Tatséchlich ist es so, dass sich die Ereignis-
empfinger bei der Ereignisquelle registrieren (die passenden Registrierungsmethoden
definiert die Klasse der Ereignisquelle). Zudem muss der Ereignisempfinger ein Inter-
face implementieren, in dem spezielle Methoden zur Behandlung des Ereignisses
definiert sind. Tritt dann ein Ereignis auf, ruft die Ereignisquelle fiir alle bei ihr regist-
rierten Ereignisempfénger die passende Ereignisbehandlungsmethode auf - mit dem
Ereignisobjekt als Argument. Unter dem »Senden« des Ereignisobjekts ist also der Auf-
ruf der registrierten Methode mit dem Ereignisobjekt als Argument zu verstehen.

Ereignisbehandlung durch Container

Komponenten werden in Container eingebettet. Da liegt es nahe, dem Container auch gleich
die Verantwortung fiir die Ereignisbehandlung zu {ibertragen, indem man die Container-
Klasse die betreffenden Listener-Interfaces implementieren lidsst. Voraussetzung ist nattirlich,
dass Sie die Container-Klasse selbst definieren.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Start_Container extends JFrame implements Actionlistener {
JButton btn;

public Start_Container() f{

setTitle("Ereignisbehandlung");
setSize(500,300);

// Schalter erzeugen
btn = new JButton("Klick mich");
btn.setBounds(new Rectangle(0, 0, 150, 25));

// Fenster als Ereignisempfdnger bei Schalter registrieren
btn.addActionListener(this);

JPanel p = new JPanel();

p.setlayout(new FlowlLayout(FlowLayout.CENTER,10,20));
p.add(btn);

getContentPane().add(p, BorderLayout.SOUTH);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}

// Ereignisbehandlung fiir Schalter
public void actionPerformed(ActionEvent e) {
btn.setEnabled(false);

1
J

Listing 147: Container als Ereignisempfédnger (aus Start_Container.java)

306 >> Komponenten und Ereignishehandlung

public static void main(String args[]) {
Start_Container frame = new Start_Container();
frame.setlLocationRelativeTo(null);
frame.setVisible(true);

Listing 147: Container als Ereignisempfédnger (aus Start_Container.java) (Forts.)

Ereignisbehandlung mit inneren Klassen
Sie kénnen innere Klassen zur Ereignisbehandlung definieren.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Start_Innere extends JFrame {
JButton btn;

public Start_Innere() {

setTitle("Ereignisbehandlung");
setSize(500,300);

// Schalter erzeugen
btn = new JButton("Klick mich");
btn.setBounds(new Rectangle(0, 0, 150, 25));

// ButtonListener als Ereignisempfdnger flr Schalter registrieren
btn.addActionListener(new ButtonlListener());

JPanel p = new JPanel()

p.setlayout(new FlowlLayout(FlowlLayout.CENTER,10,20));
p.add(btn);

getContentPane().add(p, Borderlayout.SOUTH);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}

// Ereignisempfdnger-Klasse
class ButtonlListener implements ActionListener {
public void actionPerformed(ActionkEvent e) {
btn.setEnabled(false);
}
}

public static void main(String args[]) {
Start_Innere frame = new Start_Innere();

Listing 148: Innere Klasse als Ereignisempfanger (aus Start_Innere.java)

>> GUI 307

frame.setLocationRelativeTo(null);
frame.setVisible(true);

Listing 148: Innere Klasse als Ereignisempfédnger (aus Start_Innere.java) (Forts.)

Sie konnen die Ereignisempfanger-Klasse selbstverstindlich auch als eigenstindige
Klasse auBerhalb der Fensterklasse definieren. Die Definition als innere Klasse hat
jedoch den Vorteil, dass Sie in den Methoden der inneren Klasse uneingeschriankt auf
die Felder und Methoden der Fensterklasse zugreifen kénnen (selbst wenn diese pri-
vate sind).

Ereignisbehandlung mit anonymen Klassen

Sie konnen anonyme Klassen zur Ereignisbehandlung definieren. Dies hat den Vorteil, dass der
Ereignisbehandlungscode direkt bei dem Code zur Erzeugung und Konfiguration der Kompo-
nente steht. Fiir umfangreichere Ereignisbehandlungen ist dieses Modell weniger gut geeignet.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Start_Anonym extends JFrame {
JButton btn;

public Start_Anonym() {

setTitle("EreignisbehandTung");
setSize(500,300);

// Schalter erzeugen
bth = new JButton("Klick mich");
btn.setBounds(new Rectangle(0, 0, 150, 25));

// Anonyme Klasse als Ereignisempfdnger fiir Schalter registrieren
btn.addActionlListener(new ActionlListener() {
public void actionPerformed(ActionkEvent e) {
btn.setEnabled(false);
}
)

JPanel p = new JPanel();

p.setlayout(new FlowLayout(FlowLayout.CENTER,10,20));
p.add(btn);

getContentPane().add(p, BorderlLayout.SOUTH);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

Listing 149: Anonyme Klasse als Ereignisempfanger (aus Start_Anonym.java)

308 >> Komponenten und Ereignishehandlung

public static void main(String args[]) {
Start_Anonym frame = new Start_Anonym();
frame.setlLocationRelativeTo(null);
frame.setVisible(true);

Individuelle Ereignisbehandlungsmethoden

nisempfinger definieren (einen fiir jede Quelle).

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Start_NtoN extends JFrame {
JButton btnl;
JButton btn2;

public Start_NtoN() {

setTitle("Ereignisbehandlung");
setSize(500,300);

// Schalter erzeugen
btnl = new JButton("Klick mich");
btnl.setBounds(new Rectangle(0, 0, 150, 25));
btnl.addActionlListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
btnl.setEnabled(false);
btn2.setEnabled(true);
}
1)

btn2 = new JButton("Klick mich");
btn2.setBounds(new Rectangle(0, 0, 150, 25));
btn2.addActionlListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
btn2.setEnabled(false);
btnl.setEnabled(true);
}
1)

Listing 149: Anonyme Klasse als Ereignisempféanger (aus Start_Anonym.java) (Forts.)

Sie konnen fiir ein Ereignis, das von mehreren Ereignisquellen ausgeldst wird, mehrere Ereig-

Listing 150: Individuelle Ereignisemptféanger flr das gleiche Ereignis unterschiedlicher

Komponenten (aus Start_NtoN.java)

>> GUI 309

JPanel p = new JPanel();

p.setlayout(new FlowlLayout(FlowLayout.CENTER,10,20));
p.add(btnl);

p.add(btn2);

getContentPane().add(p, BorderLayout.SOUTH);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

public static void main(String args[]) {
Start_NtoN frame = new Start_NtoN();
frame.setlocationRelativeTo(null);
frame.setVisible(true);

Listing 150: Individuelle Ereignisempfédnger flr das gleiche Ereignis unterschiedlicher
Komponenten (aus Start_NtoN.java) (Forts.)

Gemeinsam genutzte Ereignisbehandlungsmethoden

Sie konnen fiir ein Ereignis, das von mehreren Ereignisquellen ausgeldst wird, einen gemein-
samen Ereignisempfénger definieren und gegebenenfalls in den Ereignisbehandlungsmetho-
den mit Hilfe der Informationen aus dem Ereignisobjekt zwischen den Ereignisquellen
unterscheiden.

Das folgende Beispiel lésst sich beispielsweise tiber die Methode getSource(), die allen Ereignis-
objekten zu eigen ist, eine Referenz auf die auslosende Komponente zuriickliefern. Durch Ver-
gleich dieser Referenz mit den Feldern fiir die Komponenten stellt die Methode fest, welcher
Schalter gedriickt wurde.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Start_Ntol extends JFrame {
JButton btnl;
JButton btnZ;

public Start_Ntol() f{

setTitle("Ereignisbehandlung”);
setSize(500,300);

// Schalter erzeugen
btnl = new JButton("Klick mich");
btnl.setBounds(new Rectangle(0, 0, 150, 25));

Listing 151: Ein Ereignisempfédnger flr das gleiche Ereignis unterschiedlicher Komponenten
(aus Start_Nto1.java)

310 >> Aus Ereignismethoden auf Fenster und Komponenten zugreifen

btnl.addActionlListener(new ButtonListener());

btn2 = new JButton("Klick mich");
btn2.setBounds(new Rectangle(0, 0, 150, 25));
btn2.addActionlListener(new ButtonListener());

JPanel p = new JPanel()

p.setlayout(new FlowlLayout(FlowlLayout.CENTER,10,20));
p.add(btnl);

p.add(btn2);

getContentPane().add(p, BorderlLayout.SOUTH);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}

// Innere Klasse zur Ereignisbehandlung
class ButtonListener implements ActionListener {
public void actionPerformed(ActionEvent e) |
if (e.getSource() == btnl) {
btnl.setEnabled(false);
btn2.setEnabled(true);
} else if (e.getSource() == btn2) {
btn2.setEnabled(false);
btnl.setEnabled(true);

public static void main(String args[]) {
Start_Ntol frame = new Start_Ntol();
frame.setlLocationRelativeTo(null);
frame.setVisible(true);

Listing 151: Ein Ereignisempfénger flr das gleiche Ereignis unterschiedlicher Komponenten
(aus Start_Nto1.java) (Forts.)

120 Aus Ereignismethoden auf Fenster und Komponenten
zugreifen

Haiufig ist es notwendig, aus den Ereignisbehandlungsmethoden der Komponenten heraus auf
die aktuelle Komponente, andere Komponenten des Fensters oder das Fenster selbst zuzugrei-
fen. Dabei gilt:

» Die aktuelle Komponente, fiir die das Ereignis ausgelost wurde, ist immer tiber das Ereignis-
objekt greifbar. Sie brauchen sich einfach nur von der getSource()-Methode des Ereignisob-
jekts eine Referenz auf die Komponente zuriickliefern zu lassen.

» Auf andere Komponenten kann nur zugegriffen werden, wenn Referenzen auf die Kompo-
nenten verfiigbar sind. Dies ist beispielsweise der Fall, wenn in der Fensterklasse Felder fiir

>> GUI 311

die Komponenten definiert wurden und die Klasse mit der Ereignisbehandlungsmethode
eine innere oder anonyme Klasse der Fensterklasse ist. (Innere Klassen kénnen ohne Ein-
schrinkung durch die Zugriffsspezifizierer auf die Elemente der duBeren Klasse zugreifen.)

P Auf das Fenster konnen Sie iiber die this-Referenz zugreifen, wenn das Fenster selbst der
Ereignisempfinger ist (sprich die Ereignisbehandlungsmethode eine Methode des Fensters
ist). Wenn die Ereignisbehandlungsmethode zu einer inneren oder anonymen Klasse des
Fensters gehort, greift this nicht auf das Fenster-Objekt, sondern auf die Instanz der inne-
ren Klasse zu. Fiir den Zugriff auf das Fenster muss dann in der Fensterklasse ein Feld
definiert und in diesem die Referenz auf das Fenster gespeichert werden.

Grundsitzlich ist es auch moglich, sich von der aktuellen Komponente iiber getPa-
rent()-Aufrufe den Weg bis zum Fenster zu bahnen. Der zugehorige Code ist wegen
der erforderlichen Castings aber recht hisslich und bereits fiir kleinere Container-Hier-
archien schlecht lesbar und ineffizient.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Start extends JFrame {

// Felder, die u.a. auch den Zugriff aus inneren Klassen gestatten
private JFrame frame;
private JButton btn;

public Start() {

setTitle("EreignisbehandTung");
setSize(500,300);

// Referenz auf Fenster in Feld frame abspeichern
frame = this;

// Schalter erzeugen und Referenz in Feld speichern
btn = new JButton("Klick mich");
btn.setBounds(new Rectangle(0, 0, 150, 25));
btn.addActionlListener(new Actionlistener() {

public void actionPerformed(ActionEvent e) {

// Zugriff auf aktuelle Komponente tber getSource()
((JButton) e.getSource()).setText("Angeklickt");

// Zugriff auf Komponente {ber Feld
btn.setEnabled(false);

// Zugriff auf Fenster Uber Feld frame
frame.setTitle(frame.getTitle() + " - Angeklickt");

Listing 152: Zugriffstechniken flir Ereignisbehandlungsmethoden (aus Start.java)

312 >> Komponenten in Fenster (Panel) zentrieren

Listing 152: Zugriffstechniken fir Ereignisbehandlungsmethoden (aus Start.java) (Forts.)

121 Komponenten in Fenster (Panel) zentrieren
Es gibt verschiedene Moglichkeiten, Komponenten zu zentrieren:

» mit der Hilfe geeigneter Layout-Manager (empfiehlt sich insbesondere, wenn Sie IThre GUI-
Oberfliche ohnehin mit Layout-Managern konstruieren),

P durch statische Positionsberechnung (falls die FenstergréBe nicht verdndert werden kann),

» durch dynamische Positionsberechnung (falls die FenstergroBe verindert werden kann).

Zentrieren mit Layout-Managern

Der FlowLayout-Manager eignet sich fiir die Zentrierung von Komponenten besonders gut.
Komponenten, die in einen Container mit FlowLayout eingefiigt werden, werden zeilenweise
von oben nach unten angeordnet, wobei die Zeilen im Container standardméBig horizontal
zentriert werden.

Um eine einzelne Komponente (oder eine Zeile von Komponenten) mittels eines FlowLayout-
Managers zu zentrieren, miissen Sie eine Container-Hierarchie aufbauen, die fiir die Kompo-
nente (Komponentenzeile) einen eigenen Container vorsieht.

Wie konnte man zum Beispiel einen Schalter horizontal zentriert am unteren Rand eines
Fensters anzeigen (siehe Abbildung 61)?

Die ContentPane eines JFrame-Fensters ist standardmaBig eine JPanel-Instanz mit Borderlay-
out. Sie konnten den Schalter direkt in den SOUTH-Bereich der ContentPane einfiigen. Er liegt
dann am unteren Rand, fiillt diesen Bereich allerdings vollstindig aus. Um den Schalter zu
zentrieren, erzeugen Sie eine JPanel-Instanz. Dann fiigen Sie den Schalter in das JPanel und
das JPanel in den SOUTH-Bereich der ContentPane ein.

// JPanel erzeugen
JPanel p = new JPanel(); // Nutzt standardmdBig FlowlLayout

// Schalter erzeugen und in Panel einfiigen
btnh = new JButton("Klick mich");
btn.setBounds(new Rectangle(0, 0, 150, 25));
p.add(btn);

// Panel in SOUTH-Bereich der ContentPane einfligen
getContentPane().add(p, BorderLayout.SOUTH);

Listing 153: Zentrieren mit FlowLayout - Version 1

>> GUI 313

Den Abstand des Schalters vom unteren Rahmen konnen Sie {iber den vgap-Wert des Layout-
Managers einstellen. Wenn Sie den Layout-Manager neu erzeugen, iibergeben Sie den vgap-
Wert als drittes Argument nach Ausrichtung und hgap-Wert.

// JPanel mit individuellem Layout-Manager erzeugen
JPanel p = new JPanel();
p.setlayout(new FlowlLayout(FlowLayout.CENTER, 10, 20));

// Schalter erzeugen und in Panel einfligen
btn = new JButton("Klick mich ");
btn.setBounds(new Rectangle(0, 0, 150, 25));
p.add(btn);

// Panel in SOUTH-Bereich der ContentPane einfligen
getContentPane().add(p, BorderLayout.SOUTH);

Listing 154: Zentrieren mit FlowLayout — Version 2 (aus Start_Layout.java)

< Kom ponenten zentrieren

Dialog dffnen

Abbildung 61: Zentrierter Schalter

Zentrieren durch statische Berechnung

Hat das Fenster - oder allgemeiner der Container, in den die Komponente eingefiigt wird —
feste, unveridnderliche Abmessungen, kénnen Sie die Komponente leicht selbst zentrieren. Sie
miissen lediglich von der Breite (respektive Hohe) des Containers die Breite (Hohe) der Kompo-
nente abziehen und das Ergebnis durch zwei teilen. Als Ergebnis erhalten Sie die x- bzw. y-
Koordinate fiir die linke obere Ecke der Komponente.

Dialogfenster haben meist eine feste GroBe (siehe auch Rezept 115). Der folgende Code zen-
triert einen Schalter am unteren Rand des Dialogs:

class DemoDialog extends JDialog implements ActionListener {

public DemoDialog(Frame owner, String title) {
super(owner, title);

Listing 155: Zentrieren eines Schalters in einem Dialogfenster ohne Layout-Manager
(aus Start.java)

314 >> Komponenten in Fenster (Panel) zentrieren

// AbmaBe filir Dialog festlegen
setSize(370, 200);
setResizable(false);

// Layout-Manager deaktivieren
getContentPane().setlLayout(null);

// Schalter erzeugen

JButton btnOK = new JButton("OK");
btnOK.setBounds(new Rectangle(0, 0, 100, 25));
btnOK.addActionlListener(this);

// Schalter horizontal zentrieren
Dimension dim = this.getSize();

int x = (dim.width - btnOK.getWidth())/2;
btnOK.setlLocation(x, 120);

// Schalter in ContentPane einfiigen
getContentPane().add(btnOK, null);
}

public void actionPerformed(ActionkEvent e) {
setVisible(false);
}

Listing 155: Zentrieren eines Schalters in einem Dialogfenster ohne Layout-Manager
(aus Start.java) (Forts.)

Zentrieren durch dynamische Berechnung

Wenn sich die GroBe des Containers wihrend der Ausfiihrung des Programms verindern kann,
muss die Position der Komponente, soll sie zentriert bleiben, stindig nachjustiert werden. Zu
diesem Zweck ist es erforderlich, das ComponentListener-Interface zu implementieren und die
Komponente in den Methoden componentShown() und ComponentResized() zu positionieren.

Das nachfolgende Listing demonstriert dies anhand eines Schalters, der horizontal und verti-
kal in einem Fenster zentriert wird.

public class Start extends JFrame implements Componentlistener {
JButton btn;
JFrame f;

public Start() f
// Hauptfenster einrichten
f = this;
setTitle("Komponenten zentrieren");
setSize(500,300);

Listing 156: Zentrieren eines Schalters in einem Fenster, dessen Abmessungen durch den
Benutzer verdndert werden kénnen (aus Start.java)

>> GUI 315

getContentPane().setlLayout(null);

// Schalter erzeugen
btn = new JButton("Dialog &ffnen");

// Schalter in ContentPane einfligen
getContentPane().add(btn, null);

addComponentListener(this);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

// Schalter bei erstem Erscheinen und jeder GroBendnderung des

// Fensters zentrieren

public void componentShown(ComponentEvent e) {
Dimension dim = getContentPane().getSize();
int x = (dim.width-btn.getWidth())/2;
int y = (dim.height-btn.getHeight())/2;
btn.setlLocation(x,y);

}

public void componentResized(ComponentEvent e) {
Dimension dim = getContentPane().getSize();
int x = (dim.width-btn.getWidth())/2;
int y = (dim.height-btn.getHeight())/2;
btn.setlLocation(x,y);

}

public void componentHidden(ComponentEvent e) {

}

public void componentMoved(ComponentEvent e) f{

}

Listing 156: Zentrieren eines Schalters in einem Fenster, dessen Abmessungen durch den
Benutzer veréndert werden kénnen (aus Start.java) (Forts.)

122 Komponenten mit Rahmen versehen

Im Package javax.swing.border sind eine Reihe von Border-Klassen definiert, mit deren Hilfe
Sie Swing-Komponenten mit Rahmen versehen konnen. In der Regel werden Sie diese Klassen
aber nicht direkt instanzieren, sondern sich passende Rahmen-Objekte von den statischen
create-Methoden der Klasse BorderFactory zuriickliefern lassen. Die so erzeugten Rahmen-
Objekte weisen Sie dann mit der JComponent-Methode setBorder() Ihren Komponenten zu.

// Komponente mit schwarzer Umrandung als Rahmen
aComponent.setBorder(Borderfactory.createlineBorder(Color.BLACK));

316 >> Komponenten mit Rahmen versehen

Welche Rahmen gibt es?

Tabelle 31 gibt Thnen eine Ubersicht iiber die vordefinierten Swingborder-Klassen und die
zugehorigen create-Methoden von BorderFactory.

Rahmenklasse ‘ BorderFactory-Methode

EmptyBorder Erzeugt einen Abstand zwischen Inhalt und AuBenumriss der Komponente (in
der Hintergrundfarbe). Wenn Sie einen Layout-Manager verwenden, der die
GroBe der Komponenten anpasst (beispielsweise GridLayout), werden Ihre Vor-
gaben tiberschrieben.
(Ersetzt die friher tibliche Angabe von Insets.)

createEmptyBorder()
Null-Pixel-Rand

createEmptyBorder(int top, int left, int bottom, int right).

Rand der angegebenen Stirke.

LineBorder Rahmen aus Linie der angegebenen Farbe und Stérke.
createlLineBorder(Color color)
createlineBorder(Color color, int thickness)

BevelBorder Rahmen fester Stirke, der unterschiedliche Farben fiir links und oben bzw.

rechts und unten verwendet.
createBevelBorder(int type)

Als Typ tibergeben Sie BevelBorder.RAISED oder BevelBorder.LOWERED, um die

Komponente hervorgehoben oder eingesenkt erscheinen zu lassen. Das Rahmen-

Objekt wahlt als Farben dazu aufgehellte bzw. abgedunkelte Varianten der Hin-

tergrundfarbe der Komponente.
createBevelBorder(int type, Color highlight, Color shadow)

Erlaubt es Ihnen, neben dem Typ auch die Farben anzugeben.
createBevelBorder(int type, Color highlightOuter, Color
highlightInner, Color shadowOuter, Color shadowlInner)

Erlaubt die Angabe von zwei Farben fiir die jeweils auen bzw. innen liegenden

Teile der aufgehellten bzw. abgedunkelten Rahmenelemente.
createlLoweredBevelBorder()

Entspricht createBevelBorder(BevelBorder.LOWERED).
createRaisedBevelBorder()

Entspricht createBevelBorder(BevelBorder.RAISED).

EtchedBorder Wie BevelBorder, erweckt aber den Eindruck einer »Gravierung«.
createEtchedBorder()
createEtchedBorder(int type)
Als Typ tibergeben Sie EtchedBorder.RAISED oder EtchedBorder.LOWERED, um den
Rahmen als hervorstehend oder eingesunken erscheinen zu lassen. Das Rahmen-
Objekt wahlt als Farben dazu aufgehellte bzw. abgedunkelte Varianten der Hin-
tergrundfarbe der Komponente.
createktchedBorder(Color highlight, Color shadow)
createEtchedBorder(int type, Color highlight, Color shadow)

Erlaubt es Ihnen, neben dem Typ auch die Farben anzugeben.

Tabelle 31: Vordefinierte Swing-Rahmen

>> GUI

317

Rahmenklasse ‘ BorderFactory-Methode

MatteBorder Farbiger Rahmen mit unterschiedlichen Linienstirken fiir die einzelnen Seiten
sowie optional der Angabe eines Musters.
createMatteBorder(int top, int left, int bottom, int right, Color
color)
Ahnlich wie LineBorder, nur dass Sie fiir jede Rahmenseite eine eigene Dicke
festlegen konnen.
createMatteBorder(int top, int left, int bottom, int right, Icon
tilelcon)
Erlaubt es Thnen, ein Muster (in Form einer Bilddatei) anzugeben, mit dem der
Rahmen gezeichnet wird.
TitledBorder Blendet einen Titel in den Rahmen ein.
createTitledBorder(Border border)
Verwendet den als Argument iibergebenen Rahmen und blendet in dessen obe-
ren Rand einen leeren Titel ein.
createTitledBorder(String title)
Verwendet einen EtchedBorder-Rahmen und blendet in dessen oberen Rand den
angegebenen Titel ein.
createTitledBorder(Border border, String title)
createTitledBorder(Border border, String title, int
titledustification, int titlePosition)
createTitledBorder(Border border, String title, int
titledustification, int titlePosition, Font titleFont)
createTitledBorder(Border border, String title, int
titledustification, int titlePosition, Font titleFont, Color
titleColor)
Verwendet den angegebenen Rahmen und blendet in dessen oberen Rand den
angegebenen Titel ein. Je nach Methode konnen Sie zudem die Titelausrichtung
(TitledBorder.LEFT, TitledBorder.CENTER, TitledBorder.RIGHT, TitledBorder.LEA-
DING, TitledBorder.TRAILING, TitledBorder.DEFAULT_JUSTIFICATION), die vertikale
Position des Titels (Tit1edBorder.ABOVE_TOP, TitledBorder.TOP, TitledBor-
der.BELOW_TOP, TitledBorder.ABOVE_BOTTOM, TitledBorder.BOTTOM, TitledBor-
der.DEFAULT_POSITION) sowie Schriftart und Farbe festlegen.

CompoundBorder Erlaubt es Thnen, zwei Border-Objekte zu einem Rahmen zusammenzufiigen.
Meist kombiniert man einen dekorativen Rahmen (LineBorder, EtchedBorder etc.)
mit einem EmptyBorder als Abstandshalter zwischen Dekorativrahmen und Kom-
ponenteninhalt.

createCompoundBorder(Border outsideBorder, Border insideBorder)

Tabelle 31: Vordefinierte Swing-Rahmen (Forts.)

Eigene Rahmenklassen leiten Sie von AbstractBorder ab.

318 >> Komponenten mit eigenem Cursor

Das Start-Programm zu diesem Rezept fiihrt zu jedem Rahmentyp drei Varianten vor.

2 Rahmen (Borders)

EmptyBorder LineBorder | BevelBorder EtchedBorder MatteBorder | TitledBorder

Hallo | Hallo oo |

£ Rahmen [Borders)

EmptyBorder | LineBorder | BevelBorder | EtchedBorder | MatteBorder || TilledBorder
. o Titel Hallo Programmierer Titel
eve [Border &= o
Rl Hallo Programmierer Tizel Hallo Programmierer

und

BevelBorder] type= RAIGI

TitledBorder{ horder= EtchedBorder(RAISED), TitledBorder{ border= EtchedBorder(RAISED), CompoundBorder mit
title = "Titel") title = "Titel",
justification = TitledBorder. CEMTER,
position = TiledBorder BOTTOM,
font= new Font{'Serif' FantITALIC,12),
colar= Color. RED)

TitledBaorderEtchedBordar, *Titel")
ErntpyBorderts,55,5)

Abbildung 62: Der Rahmenkatalog des Start-Programms

123 Komponenten mit eigenem Cursor

Um festzulegen, welcher Cursor iiber einer Komponente (oder einem Fenster) angezeigt wer-
den soll, rufen Sie einfach die Component-Methode setCursor() auf und iibergeben ihr den
gewiinschten Cursor, den Sie sich - soweit es sich um einen vordefinierten Cursor handelt -
am besten von einer der Cursor-Methoden getDefaultCursor(), getSystemCustomCursor() oder
getPredefinedCursor() zuriickliefern lassen:

Cursor cursor = Cursor.getPredefinedCursor(Cursor.HAND_CURSOR) ;
aComponent.setCursor(cursor);

oder in einer Zeile:
aComponent.setCursor(Cursor.getPredefinedCursor(Cursor.HAND_CURSOR));

Folgende Cursor-Konstanten sind in der Klasse Cursor definiert:

CROSSHAIR_CURSOR

NW_RESIZE_CURSOR

CUSTOM_CURSOR

S_RESIZE_CURSOR

DEFAULT_CURSOR

SE_RESIZE_CURSOR

E_RESIZE_CURSOR

SW_RESIZE_CURSOR

HAND_CURSOR

TEXT_CURSOR

MOVE_CURSOR

W_RESIZE_CURSOR

N_RESIZE_CURSOR

WAIT_CURSOR

NE_RESIZE_CURSOR

Tabelle 32: Vordefinerte Cursor-Konstanten

>> GUI 319

2 Cursor

Label mit eigenem Cursor

Abbildung 63: Cursor tiber Komponente

124 Komponenten mit Kontextmenii verbinden

Grundsitzlich stellt die Einrichtung eines Kontextmeniis keine allzu grofe Herausforderung
fiir den Programmierer dar:

Das Kontextmenii (eine JPopupMenu-Instanz) wird analog zu dem Meni einer Mendileiste aus
JMenultem-Elementen aufgebaut und anschlieBfend bei Bedarf durch Aufruf der JPopupMenu-
Methode show() angezeigt.

Gerade der letzte Punkt ist aber nicht ganz so einfach zu implementieren, wie es auf den ers-
ten Blick erscheint.

P Unter Linux soll das Kontextmenii ge6ffnet werden, wenn der Anwender in der Kompo-
nente die rechte Maustaste driickt.

» Unter Windows soll das Kontextmenii geéffnet werden, wenn der Anwender in der Kom-
ponente die rechte Maustaste driickt und wieder losldsst oder auf seiner Tastatur die Kon-
textmenii-Taste (soweit vorhanden) driickt.

P> In jedem Fall sollte das Kontextmenii an der Position der Maus (bzw. des Textcursors)
angezeigt werden.

Um allen drei Punkten gerecht zu werden, miissen Sie fiir die Komponente einen Mouse- und
einen KeyAdapter registrieren und die MousePressed-, MouseReleased- und KeyPressed-Ereig-
nisse tiberwachen:

public class Start extends JFrame {
private JScrollPane scrollpane;
private JTextArea textpane;
private JPopupMenu contextmenu;

public Start() {
// Hauptfenster konfigurieren
setTitle("Datei-Drag fiir JTextArea");
getContentPane().setBackground(Color.LIGHT_GRAY);

Listing 157: Aus Start.java

320 >> Komponenten mit Kontextmenii verbinden

// Scrollbare JTextArea einrichten

scrollpane = new JScrollPane();

textpane = new JTextArea();
scrollpane.getViewport().add(textpane, null);

// Kontextment mit Zwischenablagebefehlen fiir JTextArea aufbauen
contextmenu = new JPopupMenu();

JMenultem cut = new JMenultem("Ausschneiden");
cut.addActionListener(new ActionListener() {
public void actionPerformed(Actionkvent e) {
textpane.cut();
}
1)
JMenultem copy = new JMenultem("Kopieren");
copy.addActionlistener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
textpane.copy();

}
1)
JMenultem paste = new JMenultem("Einfiigen");
paste.addActionListener(new ActionListener() {
public void actionPerformed(Actionkvent e) {
textpane.paste();
}
1)

contextmenu.add(cut);
contextmenu.add(copy);
contextmenu.add(paste);

// Kontextmenli mit JTextArea verbinden
// Offnen beim Driicken der rechten Maustaste
textpane.addMouselListener(new MouseAdapter() f{
public void mousePressed(MouseEvent e) {
if (e.isPopupTrigger())
contextmenu.show(e.getComponent(), e.getX(), e.getY());
}
public void mouseReleased(MouseEvent e) {
if (e.isPopupTrigger())
contextmenu.show(e.getComponent(), e.getX(), e.getY());
}
1)
// Offnen beim Driicken der Kontextmenii-Taste (Windows)
textpane.addKeyListener(new KeyAdapter() {
public void keyReleased(KeyEvent e) {
if (e.getKeyCode() == KeyEvent.VK_CONTEXT_MENU) {
Point pos = textpane.getCaret().getMagicCaretPosition();

Listing 157: Aus Start.java (Forts.)

>> GUI 321

if (pos == null)
contextmenu.show(textpane, 0, 0);
else
contextmenu.show(textpane, pos.x, pos.y);

}
DK
getContentPane().add(scrollpane, BorderlLayout.CENTER);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

Listing 157: Aus Start.java (Forts.)

In den mousePressed()- und mouseReleased()-Methoden priifen Sie mittels e.isPopupTrigger(),
ob das Kontextmenii angezeigt werden soll (wobei e das MouseEvent-Objekt ist). Wenn ja, blen-
den Sie das Kontextmenii am Ort des Mausklicks ein.

Die getComponent()-Methode des MouseEvent-Objekts liefert die Komponente, in die
geklickt wurde; die Methoden getX() und getY() liefern die Position der Maus relativ
zum Ursprung der Komponente.

In der keyReleased()-Methode priifen Sie mittels e.getKeyCode(), ob die Kontextmenii-Taste
gedriickt wurde (wobei e das KeyEvent-Objekt ist). Wenn ja, ermitteln Sie die Position des Text-
cursors in der Komponente und blenden das Kontextmenii am Ort des Cursors ein.

2 Kontextmenii fiir JTextArea

I Kontextrmenil mit JTextArea verbinden
ii Ofinen beirn Drilcken der rechten Maustaste
textpane.addMouselistenerinew MouseAdaptard |
public void mousePressed{MouseBvent &) {
if (e.isPopupTrigger()
contestmeny.showie getComponent), e.getdd, e.gefrol; JAusschneiden
! hli id Rel i Event e} { Hopieren
public void mouseReleased{MouseEvent & .
if {e.isPopupTriggerd) (ETEED
contextmenu.showie getCompaonent)), e.getd), e.getv();
'
o
if Offnen beim Dricken der Kontextmend-Taste 04ind ows)
textpane.addikeyListenerinew KeyAdapter({
public vaid keyReleased(KeyEvent g) {
it (e.getkeyCoded) == KeyEvent WlK_CONTEXT_MEML) { L
Foint pos = textpane. getCaretd.getMagicCaretPositiond;

if fpos == null)
contextrmenu.show(textpane, 0, 0); -
else h

Abbildung 64: JTextArea mit Kontextmenu

322 >> Komponenten den Fokus geben

125 Komponenten den Fokus geben

Um einer Komponente im aktiven Fenster den Fokus zu geben, brauchen Sie einfach nur die
Component-Methode requestFocusInWindow() aufzurufen:

aComponent.requestFocusInWindow();
Ob die Komponente danach den Fokus auch wirklich erhilt, hingt davon ab,

» ob die Komponente angezeigt werden kann und sichtbar ist (trifft beispielsweise nicht zu,
wenn setVisible(false) fiir die Komponente aufgerufen wurde oder das Fenster mit der
Komponente noch nicht aktiviert ist),

P ob die Komponente aktiviert ist (trifft beispielsweise nicht zu, wenn settnabled(false) fiir
die Komponente aufgerufen wurde),

» ob die Komponente den Fokus tiberhaupt entgegennehmen kann (trifft beispielsweise nicht
fiir JLabel zu, kann aber durch Aufruf von setFocusable(true) geindert werden).

Liefert requestFocusInWindow() den Wert true zuriick, heift dies nicht, dass die Kompo-
nente den Fokus erhalten hat, sondern nur, dass sie ihn wahrscheinlich erhalten wird.
Ist der Riickgabewert dagegen false, bedeutet dies, dass die Komponente den Fokus
definitiv nicht erhalten wird.

Die Methode requestWindow(), die der aktuellen Komponente den Fokus iibergibt und
dazu notfalls auch das tibergeordnete Fenster zum aktiven Fenster macht, fiihrt auf
verschiedenen Plattformen zu unterschiedlichen Ergebnissen und sollte daher eher
nicht verwendet werden.

JLabel-Komponenten den Fokus zuweisen

JLabel-Komponenten sind per Voreinstellung so konfiguriert, dass sie nicht den Fokus erhal-
ten. Wenn Sie dies dndern mochten, miissen Sie fiir die betreffende JLabel-Instanz zuerst set-
Focusable(true) und dann requestFocusInWindow() aufrufen:

1b.setFocusable(true);
1b.requestFocusInWindow();

Fiir JLabel-Komponenten gibt es keine vordefinierte grafische Kennzeichnung, anhand
der der Anwender erkennen koénnte, dass eine JLabel-Komponente den Fokus innehat.
Mochten Sie eine solche Kennzeichnung vorsehen, kdnnen Sie beispielsweise so vorge-
hen, dass Sie die Fensterklasse das Interface FocusListener implementieren lassen und
in den Methoden focusGained() und focusLost() dafiir sorgen, dass eine entsprechende
Kennzeichnung ein- bzw. ausgeblendet wird.

Festlegen, welche Komponente bei Start des Programms

oder Aktivierung des Fensters den Fokus erhalt

Wenn Sie festlegen mochten, welche Komponente eines Fensters beim Programmstart aktiviert
ist, konnen Sie nicht so vorgehen, dass Sie im Konstruktor des Fensters nach Instanzierung
der Komponente fiir diese requestFocusInWindow() aufrufen. Da das Fenster bei Ausfiihrung
des Konstruktors weder aktiv noch iiberhaupt sichtbar ist (die eingebetteten Komponenten
folglich auch noch nicht sichtbar sind), geht die Fokusanforderung ins Leere.

>> GUI 323

Registrieren Sie stattdessen fiir das Fenster einen WindowListener und fordern Sie den Fokus
in dessen windowOpened()-Definition an:

this.addWindowlListener(new WindowAdapter() {
public void windowOpened(WindowEvent e) {
chb.requestFocusInWindow();
}
)

Soll die besagte Komponente nicht nur beim Programmstart den Fokus erhalten, sondern
immer, wenn der Anwender zu dem Fenster zuriickkehrt und es aktiviert, tiberschreiben Sie
die Methode windowActivated():

this.addWindowListener(new WindowAdapter() {
public void windowActivated(WindowEvent e) {
cb.requestFocusInWindow();
}
b

Das Start-Programm zu diesem Rezept demonstriert die drei oben angesprochenen
Techniken:

Als Antwort auf das Driicken des Schalters FOKUS AUF CHECKBOX 2 wird der CheckBox-
Komponente cb2 der Fokus zugewiesen.

Als Antwort auf das Driicken des Schalters FOKUS AUF LABEL wird der Label-Kompo-
nente 1b der Fokus zugewiesen (nachdem sie zuvor so konfiguriert wurde, dass sie den
Fokus entgegennehmen kann).

Bei Aktivierung des Fensters wird der Fokus automatisch an die zweite CheckBox-
Komponente cb? iibergeben.

126 Die Fokusreihenfolge festlegen

Auf den meisten Plattformen konnen Anwender mit Hilfe der (5,]-Taste den Fokus von einer
Komponente zur nichsten weitergeben. Die Reihenfolge, in der die Komponenten in einem
Container auf diese Weise durchlaufen werden, wird durch eine so genannte Focus Traversal
Policy festgelegt.

Focus Traversal Policy-Klassen ‘ Beschreibung

ContainerOrderFocusTraversalPolicy Durchliuft die Komponenten in der Reihenfolge, in der sie
in den Container eingefiigt wurden.

DefaultFocusTraversalPolicy Standard

Wie ContainerOrderFocusTraversalPolicy, tibergeht aber
AWT-Komponenten, deren Peers auf der aktuellen
Plattform keinen Fokus erhalten kénnen. (Es sei denn,
die Komponente wird im Programmcode explizit als
fokussierbar deklariert, beispielsweise durch Aufruf
von setFocusable(true).)

Tabelle 33: Vordefinierte Focus Traversal Policy-Klassen

324 >> Die Fokusreihenfolge festlegen

Focus Traversal Policy-Klassen ‘ Beschreibung

SortingFocusTraversalPolicy Legt die Reihenfolge mit Hilfe eines Comparators fest, der
dem Konstruktor zu iibergeben ist.

LayoutFocusTraversalPolicy Legt die Reihenfolge anhand der GroBe, Position und
Orientierung der Komponenten fest.

Tabelle 33: Vordefinierte Focus Traversal Policy-Klassen (Forts.)

Ein Container, fiir den keine eigene Focus Traversal Policy eingerichtet wurde, iibernimmt die
Focus Traversal Policy seiner tibergeordneten Focus Cycle Root. Was aber ist eine Focus Cycle
Root? Wie Sie wissen, kann ein Container Komponenten und untergeordnete Container ent-
halten, die selbst wiederum Komponenten und untergeordnete Container enthalten konnen.
Ein Container, der eine Focus Cycle Root ist, definiert eine Fokusreihenfolge fiir alle in ihm
enthaltenen Komponenten (auch derjenigen in den untergeordneten Containern). Die unter-
geordneten Container konnen fiir die in ihnen eingebetteten Komponenten eine abweichende
Fokusreihenfolge (Policy) festlegen, bleiben aber weiterhin Teil des Fokuszyklus der Focus
Cycle Root. Solange der Anwender die (%]-Taste driickt, bleibt er im Kreis der Komponenten
der aktuellen Focus Cycle Root. Um in den Kreis einer anderen Focus Cycle Root zu springen,
muss er sich spezieller, plattformabhingiger Tastenkombinationen oder der Maus bedienen.
Fenster sind per Voreinstellung Focus Cycle Roots, Container konnen durch Aufruf von set-
FocusCycleRoot(true) zu eben solchen gemacht werden.

Eigene Focus Traversal Policies

Um eine eigene Focus Traversal Policy zu implementieren, miissen Sie eine Klasse von Focus-
TraversalPolicy ableiten und die Methoden getComponentAfter(), getComponentBefore(), get-
DefaultComponent (), getInitialComponent(), getFirstComponent() und getlastComponent() iiber-
schreiben.

Die Klasse ListFocusTraversalPolicy beispielsweise tibernimmt {iber den Konstruktor eine Auf-
listung oder ein Array von Komponenten und setzt den Fokus gemifB der Reihenfolge der Kom-
ponenten in diesem Array. (Tatséchlich setzt sie den Fokus natiirlich nicht selbst, sondern meldet
tiber ihre Methoden jeweils die Komponente zuriick, der der Fokus iibergeben werden soll.)

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/**

* Klasse, die die Fokusreihenfolge festlegt

*/

public class ListFocusTraversalPolicy extends FocusTraversalPolicy {

private Component[] components; // Array der Komponenten
private int pos; // Positionszeiger

// Konstruktor
public ListFocusTraversalPolicy(Component... components) {
this.components = components;

Listing 158: ListFocusTraversalPolicy reicht den Fokus gemaB3 der Reihenfolge der
Komponenten in der Gbergebenen Auflistung weiter.

>> GUI 325

// Positionszeiger auf 1. Komponente setzen
pos = 0;
}

// Referenz auf nachfolgende Komponente zuriickliefern
public Component getComponentAfter(Container focusCycleRoot,
Component active) {

if(postl == components.Tlength) {
pos = 0;

} else {
+Hpos;

}

return components[pos];
}

// Referenz auf vorangehende Komponente zuriickliefern
pubTlic Component getComponentBefore(Container focusCycleRoot,
Component active) {

if(pos == 0) {

pos = components.length;
} else {

--pos;

}

return components[pos];
}

// Referenz auf die Komponente zuriickliefern, die bei Eintritt in einen
// neuen Fokuszyklus als Erstes den Fokus erhalten soll
pubTlic Component getDefaultComponent(Container cont) {

return components[07;
}

// Referenz auf die Komponente zuriickliefern, die beim ersten Erscheinen
// des Fensters den Fokus erhalten soll
pubTlic Component getDefaultComponent(Window win) {

return components[0];
}

// Referenz auf die erste Komponente im Zyklus zuriickliefern
public Component getFirstComponent(Container cont) {

return components[07;

Listing 158: ListFocusTraversalPolicy reicht den Fokus gemdal der Reihenfolge der
Komponenten in der Gibergebenen Auflistung weiter. (Forts.)

326 >> Fokustasten dndern

// Referenz auf die Tetzte Komponente im Zyklus zurilickliefern
pubTic Component getlastComponent(Container cont) {

return components[components.length];

Listing 158: ListFocusTraversalPolicy reicht den Fokus geméaf3 der Reihenfolge der
Komponenten in der Gbergebenen Auflistung weiter. (Forts.)

Einen Container als Focus Traversal Policy Provider einrichten
1. Erzeugen Sie die eine Instanz der Focus Traversal Policy.

2. Deklarieren Sie den Container als Focus Traversal Policy Provider, indem Sie setFocus-
TraversalPolicyProvider(true) aufrufen.

3. Legen Sie die Traversal Policy fest, indem Sie die in Schritt 1 erzeugte Instanz an die
Methode setFocusTraversalPolicy() libergeben.

// Den JPanel-Container p zum Focus Traversal Policy Provider machen
ListFocusTraversalPolicy ftp = new ListFocusTraversalPolicy(rb3, rb2, rbl);
p.setFocusTraversalPolicyProvider(true);

p.setFocusTraversalPolicy(ftp);

Einen Container als Focus Cycle Root einrichten

1. Erzeugen Sie eine Instanz der Focus Traversal Policy.

2. Deklarieren Sie den Container als Focus Cycle Root, indem Sie setFocusCycleRoot(true)
aufrufen.

3. Legen Sie die Traversal Policy fest, indem Sie die in Schritt 1 erzeugte Instanz an die
Methode setFocusTraversalPolicy() tibergeben.

// Den JPanel-Container p zur Focus Cycle Root machen
ListFocusTraversalPolicy ftp = new ListFocusTraversalPolicy(c3, c2, cl);
p.setFocusCycleRoot(true);

p.setFocusTraversalPolicy(ftp);

127 Fokustasten andern

Sun empfiehlt, dass unter Windows und Unix folgende Tasten fiir die Weiterleitung des Fokus
verwendet werden:

‘ TextArea ‘ Andere Komponenten

Néchste Komponente Driicken von: Driicken von:

+ oder +
Vorangehende Komponente Driicken von: Driicken von:

(o] + (Strd] + (5] (e] + (5] oder (o] + [Stra) + 5]

Tabelle 34: Empfohlene und vordefinierte Tasten fir die Fokusweitergabe
(innerhalb eines Focus Cycle)

>> GUI 327

Trotzdem ist es moglich, in bestimmten Fillen - beispielsweise auf Wunsch eines Kunden -
auch andere Tasten fiir die Fokusweitergabe zu registrieren.

Die Registrierung von Tasten fiir die Fokusweitergabe geschieht immer auf der Ebene eines
Containers.

1. Mit der Container-Methode getFocusTraversalKeys(int 1id) lassen Sie sich eine Set<AWT-
KeyStroke)-Collection der aktuell registrierten Fokus-Traversal-Keys zuriickliefern.

Als ID tibergeben Sie eine der folgenden Konstanten:

KeyboardFocusManager. FORWARD_TRAVERSAL_KEYS - Tasten, die zur nachfolgenden Kompo-
nente springen

KeyboardFocusManager.BACKWARD_TRAVERSAL_KEYS - Tasten, die zur vorangehenden
Komponente springen

KeyboardFocusManager.UP_CYCLE_TRAVERSAL_KEYS - Tasten, die zum iibergeordneten
Fokus-Cycle wechseln

KeyboardFocusManager.DOWN_CYCLE_TRAVERSAL_KEYS - Tasten, die zum untergeordneten
Fokus-Cycle wechseln

2. Erzeugen Sie eine Kopie der Tasten-Collection. (Das Original-Set kann nicht verdndert
werden.)

3. Erweitern Sie die neue Tasten-Collection um weitere Tasten oder entfernen Sie bestehende
Tasten.

4. Weisen Sie die neue Tasten-Collection mit setFocusTraversalKeys(int id, Set<? extends
AWTKeyStroke> keystrokes) dem Container zu.

Die nachfolgende Klasse definiert drei statische Methoden, mit denen man den aktuellen Satz
von Fokus-Traversal-Tasten erweitern, reduzieren oder ersetzen kann.

import java.awt.*;
import java.util.*;

public class MoreGUT {

// Instanzbildung unterbinden
private MoreGUI() { }

/**
* Fligt der Liste der Fokus-Traversal-Tasten eine weitere zu
*/
public static void addTraversalKey(Container c,
int traversalCode, int keyCode) {

// Aktuelle Traversal-Tasten abfragen
HashSet<AWTKeyStroke> keys =
new HashSet<AWTKeyStroke>(c.getFocusTraversalKeys(traversalCode));

Listing 159: MoreGUI.java — statische Hilfsmethoden zur Registrierung von
Fokus-Traversal-Tasten

328 >> Fokustasten dndern

// Taste hinzufiigen
keys.add(AWTKeyStroke.getAWTKeyStroke(keyCode,0,false));

// Neue Traversal-Tasten registrieren
c.setFocusTraversalKeys(traversalCode, keys);

/**
* Entfernt eine Taste aus der Liste der Fokus-Traversal-Tasten
*/
public static void removeTraversalKey(Container c,
int traversalCode, int keyCode) {

// Aktuelle Traversal-Tasten abfragen
HashSet<AWTKeyStroke> keys =
new HashSet<AWTKeyStroke>(c.getFocusTraversalKeys(traversalCode));

// Taste entfernen
keys.remove (AWTKeyStroke.getAWTKeyStroke(keyCode,0,false));

// Neue Traversal-Tasten registrieren
c.setFocusTraversalKeys(traversalCode, keys);
}

/**
* Tauscht die Liste der Fokus-Traversal-Tasten gegen eine Taste aus
*/
public static void replaceTraversalKey(Container c,
int traversalCode, int keyCode) {

// Neues Set erzeugen
HashSet<AWTKeyStroke> keys = new HashSet<AWTKeyStroke>(1);
keys.add(AWTKeyStroke.getAWTKeyStroke(keyCode,0,false));

// Neue Traversal-Tasten registrieren
c.setFocusTraversalKeys(traversalCode, keys);

Listing 159: MoreGUI.java - statische Hilfsmethoden zur Registrierung von
Fokus-Traversal-Tasten (Forts.)

Das Start-Programm zu diesem Rezept enthilt zwei Eingabefelder und zwei Schalter zum Tes-
ten der Fokusweitergabe. Uber die Schalter konnen Sie die [Enter]-Taste als zusétzliche Fokus-
Traversal-Tasten einrichten bzw. 16schen.

// <Return-Taste> als zusdtzliche Fokus-Traversal-Taste einrichten
JButton btnAdd = new JButton("<Return> hinzufligen");

Listing 160: Aus Start.java

>> GUI 329

btnAdd.setBounds(10,100,185,25);
btnAdd.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
MoreGUI.addTraversalKey(contentPane,
KeyboardFocusManager. FORWARD_TRAVERSAL_KEYS,
KeyEvent.VK_ENTER);
}
1)
contentPane.add(btnAdd);

// <Return-Taste> als Fokus-Traversal-Taste entfernen
JButton btnRemove = new JButton("<Return> entfernen");
btnRemove.setBounds(205,100,185,25);
btnRemove.addActionlListener(new ActionListener() {
pubTlic void actionPerformed(ActionEvent e) {
MoreGUI.removeTraversalKey(contentPane,
KeyboardFocusManager. FORWARD_TRAVERSAL_KEYS,
KeyEvent.VK_ENTER);
}
1)
contentPane.add(btnRemove);

Listing 160: Aus Start.java (Forts.)

Eine Liste der in KeyEvent definierten Tastencodes finden Sie im Anhang.

128 Eingabefelder mit Return verlassen

Es widerspricht zwar den offiziellen Sun-Empfehlungen zur Fokusweiterleitung (siehe Rezept
126), aber viele Anwender wissen es zu schitzen, wenn sie Eingabefelder nach der Bearbei-
tung durch Driicken der [Enter]-Taste verlassen konnen.

Wie Sie dieses Verhalten implementieren, indem Sie die [Enter]-Taste als Fokus-Traversal-
Taste fiir alle Komponenten in einem Container registrieren, haben Sie in Rezept 127 gesehen.
Sollen nur Eingabefelder oder einzelne Komponenten durch Driicken der [Enter]-Taste verlas-
sen werden, miissen Sie dagegen so vorgehen, dass Sie fiir die betreffenden Komponenten
einen passenden KeyListener registrieren:

aComponent.addKeyListener(new KeyAdapter() {
public void keyReleased(KeyEvent e) {
if (e.getKeyCode() == KeyEvent.VK_ENTER) {
KeyboardFocusManager kfm;
kfm = KeyboardFocusManager.getCurrentKeyboardFocusManager();

Listing 161: Aus Start.java — KeyListener, der beim Driicken der (Enter]-Taste den Fokus an die
néchste Komponente weitergibt.

330 >> Dialoge mit Return (oder Esc) verlassen

kfm. focusNextComponent (e.getComponent());

}
1)

Listing 161: Aus Start.java — KeyListener, der beim Driicken der (Enter]-Taste den Fokus an die
néchste Komponente weitergibt. (Forts.)

Um den Fokus weiterzugeben, lassen Sie sich eine Referenz auf den aktuellen KeyboardFocus-
Manager zuriickliefern und rufen dessen focusNextComponent()-Methode mit der aktuellen
Komponente (die verlassen werden soll) als Argument auf.

129 Dialoge mit Return (oder Esc) verlassen

Nicht selten werden Anwender mit Dialogen konfrontiert, die sie nach einem kurzen, fliichti-
gen Blick gleich wieder schlieBen mdchten. Schon, wenn der Dialog dann durch Driicken der
(Enter]-Taste beendet werden kann. In Java ist eine solche Funktionalitit tiber den Umweg
einer InputMap leicht zu implementieren.

Jede Swing-Komponente verfiigt {iber eine ActionMap und eine InputMap, die zusammen
festlegen, welche tastaturgesteuerten Aktionen fiir die Komponente ausgelost werden kénnen.
Die ActionMap speichert die Aktionen, die ausgefiihrt werden kénnen, und die InputMap ver-
knlipft diese Aktionen mit Tasten.

Als Beispiel betrachten Sie den Dialog aus Abbildung 65.

Soll Ihre Festplatte jetzt formatiert werden?

Ja | | Nein |

Abbildung 65: Dialog, der direkt mit oder verlassen werden kann.

Wie kann man diesen Dialog so implementieren, dass er direkt nach dem Aufspringen wahl-
weise mit (Enter], als Entsprechung fiir den JA-Schalter, oder mit (Esc], als Entsprechung fiir
den NEIN-Schalter, verlassen werden kann?

Da Tastaturaktionen nur ausgefiihrt werden, wenn die zugehorige Komponente den Fokus
besitzt, gehen wir so vor, dass wir

» dem Ja-Schalter beim Offnen des Dialogs den Fokus zuteilen,

P in der ActionMap des JA-Schalters die Action-Objekte eintragen, die sowohl mit dem JA-
als auch dem NEIN-Schalter verbunden sind,

P in der InputMap des JA-Schalters die Action-Objekte mit KeyStroke-Objekten fir die
gedriickten (Enter]- und [Esc]-Tasten verbinden.

>> GUI 331

Hier der Code der Dialog-Klasse:

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

class DemoDialog extends JDialog f{
private JPanel contentPane;
private JButton btnYes;
private JButton btnNo;

public DemoDialog(Frame owner, String title) {
super(owner, title);
contentPane = (JPanel) getContentPane();

setSize(350, 150);
setResizable(false);
contentPane.setlayout(null);

JLabel 1b =

new JLabel("Soll Ihre Festplatte jetzt formatiert werden?");
1b.setBounds(50,20,250,25);
contentPane.add(1b);

// Hilfsvariablen fir Schalter-Konfiguration

YesAction yes = new YesAction();

NoAction no = new NoAction();

KeyStroke yeskey = KeyStroke.getKeyStroke(KeyEvent.VK_ENTER,0,false);
KeyStroke nokey = KeyStroke.getKeyStroke(KeyEvent.VK_ESCAPE,0,false);

// No- und Yes-Schalter erzeugen

btnYes = new JButton();

btnYes.setBounds(new Rectangle(50, 60, 100, 25));
btnYes.setAction(no);

btnYes.setText("Ja");
getContentPane().add(btnYes);

btnNo = new JButton();

btnNo.setBounds(new Rectangle(190, 60, 100, 25));
btnNo.setAction(no);

btnNo.setText("Nein");
getContentPane().add(btnNo);

// Aktionen in ActionMap des Yes-Schalters eintragen
btnYes.getActionMap().put("yes", yes);
btnYes.getActionMap().put("no", no);

// Aktionen mit Tasten verbinden
btnYes.getInputMap().put(yeskey, "yes");
btnYes.getInputMap().put(nokey, "no");

Listing 162: Aus Start.java

332 >> Transparente Schalter und nichttransparente Labels

// Dem Schalter beim Offnen des Dialogs den Fokus zuweisen
addWindowListener(new WindowAdapter() {
public void windowOpened(WindowEvent e) f
btnYes.requestFocusInWindow();

b
}

// Action-Klassen fir Schalter
private class YesAction extends AbstractAction {
public void actionPerformed(ActionEvent e) {
System.out.printin("Krrrrrreerrrrereer”);
setVisible(false);
}
}
private class NoAction extends AbstractAction {
public void actionPerformed(ActionkEvent e) {
System.out.printin("Schade, dann eben nicht");
setVisible(false);

Listing 162: Aus Start.java (Forts.)

130 Transparente Schalter und nichttransparente Labels

Die Transparenz von Swing-Komponenten wird iiber die Methode setOpaque() gesteuert, der
Sie true (fiir nichttransparent) und false (fiir transparent) {ibergeben kénnen. Allerdings diir-
fen Sie nicht erwarten, dass die Einstellung mit setOpaque() auch fiir jede Komponente zum
gewiinschten Ergebnis fiihrt. Uber setOpaque() nimmt die Komponente némlich lediglich Ihren
Wunsch entgegen. Ob die Komponente diesen auch beriicksichtigt, hingt von ihrer internen
Implementierung ab.

Fiir Labels (JLabel) gilt beispielsweise, dass sie per Voreinstellung transparent sind und mit
setOpaque(true) auf nichttransparente Darstellung umgestellt werden kénnen.

JLabel 1b = new JLabel("Titel");

1b.setOpaque(true); // nicht transparentes Label

Fir Schalter (JButton) gilt dagegen, dass sie per Voreinstellung nicht transparent sind und
auch nicht mit setOpaque(false) auf transparente Darstellung umgestellt werden koénnen.
Stattdessen miissen Sie fiir Schalter deren Methode setContentAreafFilled() aufrufen.

JButton bth = new JButton("Klick mich");

btn.setContentAreaFilled(false); // transparenter Schalter

>> GUI 333

Damit die verdnderte Darstellung auf dem Bildschirm sichtbar wird, muss die Kompo-
nente neu gezeichnet werden - beispielsweise indem Sie repaint() fiir das tibergeord-
nete Fenster aufrufen.

Transparenz in eigenen Komponenten

Wenn Sie eine eigene Swing-Komponente definieren und dabei paintComponent() tiberschrei-
ben, sollten Sie grundsétzlich als erste Anweisung die geerbte paintComponent()-Version auf-
rufen, was - sofern alle Basisklassen dieser Regel folgen - letzten Endes zum Aufruf der
JComponent-Version fiihrt.

pubTlic void paintComponent(Graphics g) {
super.paintComponent(g);

Auf diese Weise wird sichergestellt, dass die Swing-Komponente hinsichtlich ihrer Transparenz
das gewlinschte Verhalten zeigt (sprich die setOpaque()-Einstellung bertiicksichtigt). Wenn Sie
die Basisklassenversion von paintComponent() nicht aufrufen, sollten Sie unbedingt in Ihrer
paintComponent ()-Version selbst mit isOpaque() abfragen, ob der Benutzer der Komponente eine
nichttransparente Darstellung wiinscht, und dann dafiir sorgen, dass der Hintergrund der Kom-
ponente komplett ausgefiillt wird - ansonsten kann es zu unschonen Artefakten kommen, wenn
fiir die Komponente setOpaque(true) aufgerufen wird.

Die Klasse TransparentButton demonstriert dies anhand eines Schalters, der im Gegensatz zu
JButton mit Hilfe von setOpaque() zwischen transparenter und nichttransparenter Darstellung
umgeschaltet werden kann.

import java.awt.*;
import javax.swing.*;

/**

* Klasse fir durchsichtige Schalter

*/

pubTlic class TransparentButton extends JButton {

public TransparentButton() {
super();

}

public TransparentButton(Action a) {
super(a);

}

public TransparentButton(Icon icon) {
super(icon);

}

public TransparentButton(String text) {
super(text);

}

public TransparentButton(String text, Icon icon) {
super(text, icon);

Listing 163: TransparentButton.java

334 >> Transparente Schalter und nichttransparente Labels

}

/*k*k

* Um transparenten Schalter zu zeichnen, darf super.paintComponent(g)
* nicht aufgerufen werden. Daflir muss isOpaque() abgefragt und die

* Komponente bei Bedarf nicht-transparent gezeichnet werden

*/

public void paintComponent(Graphics g) f{

// Hintergrund fiillen, wenn nicht transparent
if (isOpaque()) f{
g.setColor(getBackground());
g.fi11Rect(0, 0, getWidth(), getHeight());

1
J

// Komponente zeichnen lassen
getUI().paint(g,this);

Listing 163: TransparentButton.java (Forts.)

Das Start-Programm zu diesem Rezept zeigt vor dem Hintergrund einer Kiistenlandschaft ein
Label (am oberen Rand, BorderlLayout.NORTH) und einen TransparentButton-Schalter (am obe-
ren Rand, Borderlayout.SOUTH). Das Label ist anfangs transparent, der Schalter nichttranspa-
rent. Durch Klick auf den Schalter kann die Transparenz beider Komponenten umgeschaltet
werden.

Beachten Sie, dass nach Umschaltung der Transparenz das Fenster mit repaint() neu gezeich-
net wird.

import java.awt.*;

import java.awt.event.*;
import javax.swing.*;

import java.awt.Image;

import javax.imageio.ImagelQ;
import java.io.File;

import java.io.IOException;

public class Start extends JFrame {
private Image bglmage = null;
private JlLabel 1b;
private TransparentButton btn;
private JFrame frame;

// innere Klasse fir ContentPane
private class ContentPane extends JPanel {

public ContentPane() {
setlayout(new BorderlLayout());

Listing 164: Demo-Programm zur Transparenz

>> GUI 335

}
public void paintComponent(Graphics g) {
super.paintComponent(g);

// Hintergrundbild in Panel zeichnen
if (bglmage != null)
g.drawlImage(bgImage, 0, O,
this.getWidth(), this.getHeight(), this);

public Start() {
frame = this;
setTitle("Transparenz");

// Bilddatei Taden
try {
bgimage = ImageI0.read(new File("background.jpg"));
} catch(I0Exception ignore) {
}

setContentPane(new ContentPane());

1b = new JLabel("Kiistenansicht", SwingConstants.CENTER);
getContentPane().add(1b, BorderLayout.NORTH);

btn = new TransparentButton("Transparenz dndern");
btn.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
1b.setOpaque(!1b.isOpaque());
btn.setOpaque(!btn.isOpaque());
frame.repaint();
}
DK
getContentPane().add(btn, BorderLayout.SOUTH);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}

public static void main(String args[]) {
Start frame = new Start();
frame.setSize(500,300);
frame.setlLocation(300,300);
frame.setVisible(true);

Listing 164: Demo-Programm zur Transparenz (Forts.)

336 >> Eingabefeld fiir Wahrungsangaben (inklusive InputVerifier)

£ Transparenz
SEFER Kiistenansicht

Kiistenansicht

Transparenz ander * :

Abbildung 66: Swing-Komponenten mit wechselnder Transparenz

131 Eingabefeld fiir Wahrungsangaben
(inklusive InputVerifier)

£ Angebot

Ihr Aingehot; hrooooe |

| Abschicken |

Abbildung 67: Fenster mit JMoneyTextField-Eingabefeld

In diesem Rezept geht es um ein Eingabefeld, welches

» Benutzereingaben als Wihrungsangaben formatiert (sprich als Gleitkommazahlen mit zwei
Nachkommastellen zuriickliefern kann).

P Benutzereingaben automatisch verifiziert (Eingaben, die nicht dem gewiinschten Format
entsprechen, werden abgelehnt, d.h., das Eingabefeld behilt seinen alten Wert und der
Anwender kann das Eingabefeld nicht durch Driicken der [%;]-Taste verlassen).

Wer sich im Dschungel der Swing-Komponenten ein wenig auskennt, wird sicher zustimmen,
dass sich fiir die Implementierung eines solchen Eingabefelds die Klasse JFormattedTextField
als Basisklasse formlich aufdréngt.

JFormattedTextField-Eingabefelder unterscheiden sich von JTextField-Eingabefeldern dadurch,
dass sie intern mit einem Formatierer (Instanz einer AbstractFormatter-Klasse) zusammenarbei-

>> GUI 337

ten. Neben den tiblichen setText()- und getText()-Methoden, die Text unverandert in das Ein-
gabefeld schreiben bzw. dessen Text unverandert zuriickliefern, stellt JFormattedTextField noch
zwei alternative setValue()- und getValue()-Methoden zur Verfiigung:

P setValue() nimmt ein Objekt entgegen und {ibergibt es an den internen Formatierer, der es
in einen String verwandelt und im Eingabefeld anzeigt.

Typ des Objekts und Formatierer miissen zusammenpassen. Arbeitet das Eingabefeld bei-
spielsweise mit einem NumberFormatter zusammen, kénnen Objekte der Klasse Number und
ihrer abgeleiteten Klassen, wie Integer, Double etc., libergeben werden.

P getValue() wandelt umgekehrt den Wert des Eingabefeldes mit Hilfe des internen Forma-
tierers in ein entsprechendes Objekt um (der Typ des Objekts hingt vom Formatierer ab)
und liefert dieses zuriick.

Der von getValue() zuriickgelieferte Wert ist nicht notwendigerweise der Text, der im
Eingabefeld zu sehen ist! (Siehe nachfolgende Erlduterung.)

Wichtig ist, zwischen »Wert« und »Text« eines JFormattedTextField-Eingabefelds zu unter-
scheiden. Der »Text« ist der String, der im Eingabefeld angezeigt wird (entspricht dem Text des
JTextField-Eingabefelds). Tippt der Anwender etwas in das Eingabefeld ein, dndert er den
»Text«. Den gednderten Text {ibergibt die Komponente an den internen Formatierer, der entwe-
der nach jeder Anderung, spitestens aber bei Driicken der (Enter)-Taste oder beim Verlassen
des Textfelds, den Text zu formatieren versucht. Ist die Formatierung moglich, wird der forma-
tierte Text zum neuen »Text« und auch der »Wert« des Eingabefelds wird aktualisiert.

Die Aktualisierung des »Werts« kann durch Aufruf der Methode commitEdit() auch jederzeit
vom Programmcode aus angestoBen werden.

Die Klasse JMoneyTextField

Nach diesen Vorbemerkungen zur Klasse JFormattedTextField kommen wir zum Code des
JMoneyTextField-Eingabefelds.

import javax.swing.*;
import javax.swing.text.*;
import java.text.*;
import java.util.locale;

/*

* Formatiertes Textfeld fiir Wahrungsangaben

* gibt den Fokus nur weiter, wenn die aktuelle Eingabe
* korrekt formatiert ist.

*/

public class JMoneyTextField extends JFormattedTextField {
private InputVerifier inVeri = new JMoneyTextFieldVerifier();

/*

Listing 165: Klasse des Eingabefelds fir Wéhrungsangaben (aus JMoneyTextField.java)

338 >> Eingabefeld fiir Wahrungsangaben (inklusive InputVerifier)

* Konstruktor, erzeugt Wahrungsfeld fiir Locale.GERMANY
*/
public JMoneyTextField() f

// Format flr Textfeld erzeugen
NumberFormat formatOffer =
NumberFormat.getCurrencyInstance(Locale.GERMANY);

// Formatierer-Factory flr Wdhrungsangaben erzeugen und registrieren
AbstractFormatterFactory ff =

new DefaultFormatterFactory(new NumberFormatter(formatOffer));
setFormatterFactory(ff);

// Falsche Eingaben stehen Tlassen
setFocuslLostBehavior(JFormattedTextField.COMMIT);

// InputVerifier registrieren
setInputVerifier(inVeri);

/*

* Konstruktor, erzeugt Wahrungsfeld flir angegebene Locale
*/

public JMoneyTextField(Locale Toc) {

// Formatierer fir Textfeld erzeugen
NumberFormat formatOffer = NumberFormat.getCurrencylInstance(loc);

// Formatierer-Factory flr Wdhrungsangaben erzeugen und registrieren
AbstractFormatterFactory ff =

new DefaultFormatterFactory(new NumberFormatter(formatOffer));
setFormatterFactory(ff);

// Falsche Eingaben stehen lassen
setFocuslLostBehavior(JFormattedTextField.COMMIT);

// InputVerifier registrieren
setInputVerifier(inVeri);

Listing 165: Klasse des Eingabefelds fir Wéhrungsangaben (aus JMoneyTextField.java) (Forts.)

Die von JFormattedTextField abgeleitete Klasse JMoneyTextField besteht aus zwei Konstrukto-
ren, die sich lediglich darin unterscheiden, dass der erste Konstruktor ohne Argument aufgeru-
fen wird und die Wahrungsangaben nach der Lokale fiir Deutschland formatiert, wahrend der
zweite Konstruktor die zu verwendende Lokale als Argument entgegennimmt.

>> GUI 339

In den Konstruktoren wird dann zuerst eine NumberFormat-Instanz erzeugt, die Zahlenwerte
gemiB der angegebenen Lokale als Wiahrungsangaben formatiert (also mit zwei Nachkommas-
tellen und Wihrungssymbol). Auf der Basis dieser Instanz wird dann ein Formatierer-Factory
erzeugt, vom welchem die Komponente intern bei Bedarf die benétigten Formatierer-Instan-
zen bezieht.

SchlieBlich wird noch festgelegt, wie die Komponente sich verhalten soll, wenn sie den Fokus
verliert. Statt des Standardverhaltens (JFormattedTextField.COMMIT_OR_REVERT), welches im
Falle einer fehlerhaften Eingabe den alten Text einblendet, wird das Verhalten JFormattedText-
Field.COMMIT gewihlt, welches die fehlerhafte Eingabe (hoffentlich zur Nachbesserung durch
den Anwender) stehen lisst.

Eingabeniiberpriifung mittels InputVerifier

Die letzte Besonderheit der Komponente ist, dass Sie einen InputVerifier verwendet. InputVeri-
fier sind Klassen, die von der abstrakten Basisklasse InputVerifier abgeleitet sind und von
dieser zwei Methoden erben:

P boolean verify(JComponent input)
P boolean shouldYieldFocus(JComponent input)

Swing-Komponenten, fiir die mittels setInputVerifier() eine InputVerify-Instanz registriert
wurde, rufen jedes Mal, wenn sie den Fokus verlieren, die shouldYieldFocus()-Methode ihres
InputVerifiers auf. Die shouldYieldFocus()-Methode ruft intern die verify()-Methode auf,
welche entscheidet, ob der Fokus wirklich weitergegeben (Riickgabewert true) oder doch
behalten werden soll (false). Der Riickgabewert wird von der shouldYieldFocus()-Methode an
die Komponente weitergeleitet, die den Fokus daraufthin abgibt oder behilt.

Einen eigenen InputVerifier fiir eine Komponente zu schreiben, bedeutet demnach, eine Klasse
von InputVerifier abzuleiten und die abstrakte verify()-Methode zu iiberschreiben.

Der InputVerifier fiir die Klasse JMoneyTextField soll priifen, ob die vom Anwender eingetippte
Eingabe dem gewiinschten Wihrungsformat (inklusive Wihrungssymbol) entspricht. Wenn
dies nicht der Fall ist, soll der InputVerifier false zuriickliefern, damit die Komponente den
Fokus behilt, bis der Anwender die Eingabe korrigiert hat.

Der InputVerifier-Mechanismus kontrolliert nur die Fokusweitergabe mittels der Fokus-
Traversal-Tasten (siehe auch Rezept 127). Der Anwender kann den Kontrollmechanis-
mus jederzeit umgehen, indem er mit der Maus auf eine andere Komponente klickt.

class JMoneyTextFieldVerifier extends InputVerifier {
public boolean verify(JComponent input) {
if (input instanceof JFormattedTextField) f

// InputVerifier wurde flr JFormattedTextField registriert
// -> prife Eingabe mit Formatter des Textfelds

Listing 166: InputVerifier flir JFormattedTextField-Komponenten
(aus JMoneyTextField.java)

340 >> Eingabefeld fiir Wahrungsangaben (inklusive InputVerifier)

JFormattedTextField ftf = (JFormattedTextField) input;
JFormattedTextField.AbstractFormatter formatter = ftf.getFormatter();

if (formatter != null) {
try {
formatter.stringToValue(ftf.getText());
return true;
} catch (ParseException e) {
return false;
}
} else
return true;

} else {
// InputVerifier wurde flr irgendeine andere Komponente registriert
// -> Eingabe durchlassen
return true;

Listing 166: InputVerifier flir JFormattedTextField-Komponenten
(aus JMoneyTextField.java) (Forts.)

Der hier vorgestellte InputVerifier ist generisch fiir beliebige JFormattedTextField-Komponen-
ten implementiert, d.h., er liest den Text aus dem Eingabefeld und priift ihn mit Hilfe des For-
matierers, den auch die JFormattedTextField-Komponenten verwenden.

InputVerifier sind weder auf JFormattedTextField-Komponenten noch auf die Uberprii-
fung des Eingabeformats festgelegt. Beispielsweise konnte man JMoneyTextFieldVeri-
fier auch so implementieren, dass neben dem Format auch gleich der Wertebereich
(z.B. von 1 bis 100.000.000) tiberpriift wird.

Verwendung des Eingabefelds

Instanzen von JMoneyTextField werden grundsétzlich genauso behandelt wie JTextField- oder
andere Komponenten. Vorsicht ist lediglich geboten, wenn Sie vom Programm aus Text in das
Eingabefeld schreiben oder dessen Text auslesen wollen.

» Um einen beliebigen Text, beispielsweise einen Hinweis auf das spezielle Eingabeformat, in
das Eingabefeld zu schreiben, verwenden Sie die Methode setText().

» Um einen Wert, beispielsweise einen Anfangs- oder Beispielwert, in das Eingabefeld zu
schreiben, verwenden Sie die Methode setValue().

moneyTextField = new JMoneyTextField();
moneyTextField.setValue(new Double(100));

» Um den Text im Eingabefeld abzufragen, verwenden Sie die Methode getText ().

Wenn Sie sichergehen wollen, dass dieser Text auch das korrekte Format hat, rufen Sie
vorab isEditValid() auf:

if (moneyTextField.isEditValid()) {
String txt = moneyTextField.getText();

>> GUI 341

» Um den Wert des Eingabefelds abzufragen, verwenden Sie die Methode getValue().

Wenn Sie sichergehen wollen, dass der Wert auch aktuell ist (dem Text im Eingabefeld ent-
spricht), rufen Sie vorab commitEdit() auf:

moneyTextField.commitEdit(); {
Double value = moneyTextField.getValue();

Nicht unwichtig ist liberdies die Frage, wie das Programm reagieren soll, wenn im Textfeld
eine ungiiltige Eingabe steht und der Anwender versucht, diese Eingabe auswerten zu lassen,
indem er einen entsprechenden Schalter oder Meniibefehl auswihlt. (Er umgeht also den
InputVerifier, der lediglich die Fokusweitergabe mit den Fokus-Traversal-Tasten - iiblicher-
weise die (%,)-Taste - kontrolliert.)

Eine Moglichkeit wire, der Komponente bei der Erzeugung einen giiltigen Anfangs-»Wert«
zuzuweisen und dann stets den »Wert« auszuwerten (der in der oben angesprochenen Situation
dann aber nicht mit dem Text im Eingabefeld korrespondieren wiirde).

Eine andere Moglichkeit wire, die entsprechenden GUI-Komponenten zur Auswertung der
Eingabe zu deaktivieren und erst freizugeben, wenn im Textfeld eine giiltige Eingabe steht
(was beispielsweise durch direkten Aufruf der verify()-Methode des InputVerifiers méglich
ist). Diese Strategie wird im Rezept 132 zum Datumseingabefeld verfolgt.

Eine dritte Technik, die in diesem Rezept umgesetzt wird, priift mit Hilfe der Methode isEdit-
Valid(), ob der Text korrekt formatiert ist. Wenn ja, wird der Text verarbeitet, ansonsten wird
eine Fehlermeldung ausgegeben.

// Textfeld zum Einlesen von Wdhrungsangaben erzeugen
tfOffer = new JMoneyTextField(LOCALE);
tfOffer.setBounds(30+120+30,20,180,25);
tfOffer.setValue(new Double(100));
getContentPane().add(tfOffer);

// Eingabe in Textfeld auswerten

JButton btnSend = new JButton("Abschicken");

btnSend.setBounds(125,100,150,25);

getContentPane().add(btnSend) ;

btnSend.addActionListener(new ActionlListener() {
public void actionPerformed(ActionEvent e) {

if (tfOffer.isEditValid()) f
// Bestdtigung anzeigen
1bMessage.setText("Danke fir Ihr Angebot von
+ tfOffer.getText());

} else {
// Fehlermeldung anzeigen
1bMessage.setText("Eingabe ist keine korrekte
+ "Wihrungsangabe");

Listing 167: Aus Start.java — tfOffer ist eine JMoneyTextField-Komponente.

342 >> Eingabefeld filr Datumsangaben (inklusive InputVerifier)

// Meldungslabel sichtbar machen
1bMessage.setVisible(true);
}
1)

Listing 167: Aus Start.java — tfOffer ist eine JMoneyTextField-Komponente. (Forts.)

132 Eingabefeld fiir Datumsangaben
(inklusive InputVerifier)

£ Dat umseingaben

Datum eingeben: | 03.07.20-- ‘

£ Dat umseingaben

Abbrechen

Datum eingeben: ‘ 03.07.2005 ‘

Abschicken | | Abbrechen |

Abbildung 68: Fenster mit JDateTextField-Eingabefeld

In diesem Rezept geht es um ein Eingabefeld, das
P dem Anwender eine Maske fiir die Eingabe von Datumsangaben anzeigt.

P Benutzereingaben automatisch verifiziert (d.h., es akzeptiert nur Zahlen und kann erst
dann durch Driicken der (%)-Taste verlassen werden, wenn es einen korrekten Datums-
wert enthélt).

Wie auch im vorhergehenden Rezept bietet sich fiir die Implementierung eines solchen Einga-
befelds die Klasse JFormattedTextField als Basisklasse an. Es gibt in den Tiefen der Java-Bibli-
othek auch eine passende Formatierer-Klasse, javax.swing.text.DateFormatter, die, sofern sie
als Formatierer mit einem JFormattedTextField-Eingabefeld kombiniert wird, es dem Program-
mierer erlaubt, Date-Objekte im Eingabefeld anzuzeigen und umgekehrt, den Inhalt des Einga-
befelds sich als Date-Objekt zuriickliefern zu lassen. Nur leider bietet dieser Formatierer dem
Anwender nicht die Sicherheit und den Komfort einer Eingabemaske. Die folgende Implemen-
tierung verwendet daher einen javax.swing.text.MaskFormatter und stellt ergdnzend zwei
Methoden getDate() und setDate() zur Verfiigung, die den »Wert« des Eingabefelds auf der
Basis eines Date-Objekts setzen bzw. als Date-Objekt zuriickliefern.

Hintergrundinformationen zu JFormattedTextField finden Sie in Rezept 131.

>> GUI 343

Fiir Leser, die bereits mit JFormattedTextField und der Klasse AbstractFormatterFactory
vertraut sind, sei angemerkt, dass die Installation eines DateFormatter als Default-For-
matierer und eines MaskFormatter als Edit-Formatierer wegen der unterschiedlichen
Value-Klassen erheblich schwieriger ist.

Die Klasse JDateTextField

import java.awt.*;

import javax.swing.*;
import javax.swing.text.*;
import java.text.*;

import java.util.*;

public class JDateTextField extends JFormattedTextField {
private static final String DATE_PATTERN = "iHt.7HE.JHHHF"
private SimpleDateFormat df = new SimpleDateFormat("dd.MM.yyyy",
Locale.GERMANY);

private MaskFormatter fm;

private InputVerifier inVeri = new JDateTextFieldVerifier();
private int alignment = JTextField.CENTER;

private Font font = new Font("Serif",Font.PLAIN ,18);
/*

* Konstruktor

*/

public JDateTextField() f{

setHorizontalAlignment(alignment);
setFont(font);

try {
// Formatierer fir die Datumsmaske erzeugen
fm = new MaskFormatter (DATE_PATTERN);

// Platzhalter fir noch nicht geflillte Stelle festlegen
fm.setPlaceholderCharacter('-");

} catch (ParseException e) {
System.err.printIn("ERROR: Kein Formatierer");
}

// Formatierer-Factory fiir Datumsmaske erzeugen und registrieren
AbstractFormatterfFactory ff = new DefaultFormatterFactory(fm);
setFormatterFactory(ff);

// Falsche Eingaben stehen Tassen
setFocusLostBehavior(JFormattedTextField.COMMIT);

// InputVerifier registrieren
setInputVerifier(inVeri);

Listing 168: Die Klasse JDateTextField

344 >> Eingabefeld fiir Datumsangaben (inklusive InputVerifier)

/*
* Wert des Eingabefeldes als Datum zuriickliefern
*/
public Date getDate() {
return df.parse((String) getValue(), new ParsePosition(0));
}

/*

* Datum als Wert des Eingabefeldes eintragen

*/

public void setDate(Date d) f
setValue(df.format(d));

}

Listing 168: Die Klasse JDateTextField (Forts.)

Nachdem der Konstruktor der Klasse JDateTextField Ausrichtung und Schriftart des Textes im
Eingabefeld festgelegt hat (wobei diese Einstellungen natiirlich nur Empfehlungen sind, die sich
fiir jede Instanz nach Bedarf anpassen lassen), wird der Formatierer fiir die Datumseingabemaske
als Instanz der Klasse MaskFormatter erzeugt. Als Argument iibernimmt der MaskFormatter-Kon-
struktor die gewiinschte Maske, hier die String-Konstante DATE_PATTERN (gleich "{HF. #HE. 1HHHE").

Masken sind Strings, die sich aus folgenden Zeichen zusammensetzen kénnen:

Zeichen ‘ Beschreibung

Platzhalter fiir eine Ziffer

A Platzhalter fiir einen Buchstaben oder eine Ziffer

U Platzhalter fiir Kleinbuchstaben (Kleinbuchstaben werden automatisch in Grof-
buchstaben umgewandelt)

L Platzhalter fiir GroBbuchstaben (GroBbuchstaben werden automatisch in Klein-
buchstaben umgewandelt)

? Platzhalter fiir beliebigen Buchstaben

* Platzhalter fiir beliebiges Zeichen

Escape-Zeichen

sonstiges Zeichen wird unverandert in die Maske iibernommen (kann vom Anwender nicht tiber-
schrieben werden)

Tabelle 35: Platzhalter flir MaskFormatter-Masken?

MaskFormatter schreibt fiir jeden Platzhalter ein Leerzeichen in das Eingabefeld. Der JDate-
TextField-Konstruktor ersetzt das Leerzeichen als Platzhalterzeichen durch den Bindestrich,
damit der Anwender besser erkennen kann, wo er noch wie viele Stellen ausfiillen muss (Auf-
ruf von setPlaceholderCharacter()).

2. Fir jeden Platzhalter muss ein Zeichen eingetippt werden!

>> GUI 345

AnschlieBend kann ein Formatierer-Factory mit dem MaskFormatter als Formatierer erzeugt
und registriert werden.

Die letzte Anweisung ist die Einrichtung des InputVerifiers, zu dem wir gleich im néchsten
Abschnitt kommen.

Neben dem Konstruktor definiert die Klasse noch zwei Methoden getDate() und setDate(), die
den internen Wert des JDateTextField-Eingabefelds als Date-Objekt zuriickliefern bzw. nach
der Vorgabe eines Date-Objekts setzen. Fiir die korrekte Umwandlung sorgt das SimpleDate-
Format-Objekt, das eingangs der Klassendefinition als Feld df definiert wurde und auf die
String-Maske fiir den MaskFormatter abgestimmt ist.

static final String DATE_PATTERN = "{HF.{HE.JHHHE" ; // Eingabe-Maske
SimpleDateFormat df = new SimpleDateFormat("dd.MM.yyyy", // Formatierer
Locale.GERMANY);

Eingabeniiberpriifung

Da im Falle des JDateTextField-Eingabefelds bereits der MaskFormatter sicherstellt, dass die
Eingaben im korrekten Format vorliegen, wird fiir diese Aufgabe kein eigener InputVerifier
benotigt. Der MaskFormatter kann allerdings nur sicherstellen, dass die korrekte formatierte
Anzahl Ziffern eingegeben wird, nicht aber dass die Ziffern auch ein giiltiges Datum ergeben.
Zu diesem Zweck registriert JDateTextField als InputVerifier eine Instanz der Klasse JDate-
TextFieldInputVerifier, die wie folgt definiert ist:

class JDateTextFieldVerifier extends InputVerifier {

public boolean verify(JComponent input) {
boolean returnvalue = false;

if (input instanceof JFormattedTextField) {
// InputVerfifier wurde fir JFormattedTextField registriert
// -> prife, ob Datumsangabe korrekt
JFormattedTextField ftf = (JFormattedTextField) input;

String text = ftf.getText();
if (text !=null && text.length() == 10) {
try {
Integer day = Integer.parselnt(text.substring(0,2));
Integer month = Integer.parselnt(text.substring(3,5));
Integer year = Integer.parselnt(text.substring(6,text.length()));

if (day > 0 &% month > 0 && year > 0) {
GregorianCalendar date = new GregorianCalendar();

if ((month == 1 && day <= 31) ||
(month == 2 && !date.isleapYear(year) && day <= 28) ||
(month == 2 && date.isLeapYear(year) && day <= 29) ||

(month == 3 && day <= 31) ||
(month == 4 && day <= 30) ||
(month == 5 && day <= 31) ||
(month == 6 && day <= 30) ||

Listing 169: InputVerifier flir die Klasse JDateTextField

346 >> Eingabefeld fiir Datumsangaben (inklusive InputVerifier)

(month == 7 && day <= 31) ||
(month == 8 && day <= 31) ||
(month == 9 && day <= 30) ||
(month == 10 && day <= 31) ||
(month == 11 && day <= 30) ||

(month == 12 && day <= 31)) |
returnvalue = true;
}
}
} catch (NumberFormatException e) {
return false;
}

}

return returnvalue;
}

Listing 169: InputVerifier fur die Klasse JDateTextField (Forts.)

Der InputVerifier fiir die Klasse JDateTextField priift, ob die vom Anwender eingetippte Ein-
gabe einem korrekten Datum entspricht. Ist dies nicht der Fall, liefert der InputVerifier false
zuriick, damit die Komponente den Fokus behilt, bis der Anwender die Eingabe korrigiert hat.

Verwendung des Eingabefelds

Das Start-Programm zu diesem Rezept demonstriert die Verwendung des JDateTextField-Ein-
gabefelds. Nach der Instanzierung des Eingabefelds:

// Textfeld zum Einlesen von Datumsangaben erzeugen
tfDate = new JDateTextField();

initialisiert das Programm das Eingabefeld mit dem aktuellen Datum, was dank der setDate()-
Methode von JDateTextField bequem zu erledigen ist:

// Aktuelles Datum als Vorgabe in Eingabefeld schreiben
Date d = new Date();
tfDate.setDate(d);

Der Anwender kann die Positionen im Datum dann direkt {iberschreiben oder l16schen (worauf-
hin das Platzhalterzeichen erscheint) und ersetzen.

Wenn der Anwender den Abschicken-Schalter driickt, wird der Wert des Eingabefelds abge-
fragt (getValue()-Aufruf) und zur Kontrolle ausgegeben. (Eine Typumwandlung ist nicht
notig, da der »Wert« des Eingabefelds wegen des MaskFormatters vom Typ String ist.)

btnSend.addActionListener(new ActionlListener() {
public void actionPerformed(ActionkEvent e) {
DateFormat df = DateFormat.getDatelnstance(DateFormat.MEDIUM,
Locale.GERMANY);
1bMessage.setText(tfDate.getValue() + " wurde gespeichert");
1bMessage.setVisible(true);
}
1)

>> GUI 347

Bleibt noch die Frage zu kldren, wie man verhindert, dass der Anwender mit der Maus den
Abschicken-Schalter anklickt, ohne das Eingabefeld korrekt bearbeitet zu haben. (Zur Erinne-
rung: Der InputVerifier kontrolliert nur die Fokusweitergabe mittels der Fokus-Traversal-
Tasten.)

Das Start-Programm registriert zu diesem Zweck einen CaretListener fiir das Eingabefeld, der
bei jeder Bewegung des Textcursors mit Hilfe des InputVerifiers des Eingabefelds priift, ob die
aktuelle Eingabe giiltig ist, und den Schalter entsprechend aktiviert oder deaktiviert.

tfDate.addCaretlListener(new CaretListener() {
public void caretUpdate(CaretEvent e) {

// Eingabe mit Hilfe des InpuVerfiers der Komponente priifen
JDateTextFieldVerifier verifier
= (JDateTextFieldVerifier) tfDate.getInputVerifier();

if (verifier.verify(tfDate)) f
// Ist Eingabe korrekt -> Schalter fiir Auswertung aktivieren
btnSend.setEnabled(true);

} else {
// Ist Eingabe ungliltig -> Schalter fiir Auswertung deaktivieren
btnSend.setEnabled(false);

}
)

133 Drag-and-Drop fiir Labels

Drag-and-Drop ist eine mausgesteuerte Ubertragung von Daten zwischen Komponenten (gege-
benenfalls tiber Anwendungsgrenzen hinweg). Fiir eine Drag-and-Drop-Dateniibertragung zwi-
schen zwei Komponenten miissen folgende Voraussetzungen erfiillt sein:

P Die Quellkomponente muss bei Initiierung einer Drag-Operation durch den Anwender die
Daten exportieren.

In Java bedeutet dies, dass die Komponente tiber einen TransferHandler verfiigen muss, der
fiir den zu Ubertragenden Datentyp ausgelegt ist. Wird eine Drag-Operation initiiert, for-
dert die Komponente ihren TransferHandler auf, die Daten entweder als MOVE-Aktion (die
Daten werden in der Quellkomponente danach gel6scht) oder als COPY-Aktion (die Daten
werden kopiert) zu tibertragen. (Hinweis: Die Drag-Daten werden nicht von der Quellkom-
ponente an den TransferHandler {ibergeben, sondern der TransferHandler muss so imple-
mentiert sein, dass er weiB, wie er die Daten von der Komponente bekommt.)

» Der TransferHandler der Quellkomponente muss die Daten in ein Transferable-Objekt ver-
packen.

P Die Zielkomponente muss ebenfalls {iber einen TransferHandler verfiigen, der tiberpriift,
ob die Daten im Transferable-Objekt in einem Format vorliegen, das die Komponente
akzeptiert. Wenn ja, werden die Daten beim Loslassen der Maus eingefiigt.

Etliche Swing-Komponenten unterstiitzen bereits von sich aus Drag-and-Drop.

348 >> Drag-and-Drop fiir Labels

Komponente Drag-Unterstitzung Drop-Unterstitzung
JColorChooser Ja (nur COPY) Ja
JEditorPane Ja Ja
JFileChooser Ja (nur COPY) Nein
JFormattedTextField Ja Ja
JList Ja (nur COPY) Nein
JPasswordField Nein Ja
JTable Ja (nur COPY) Nein
JTextArea Ja Ja
JTextField Ja Ja
JTextPane Ja Ja
JTree Ja (nur COPY) Nein

Tabelle 36: Vorinstallierte Drag-and-Drop-Unterstltzung flr Swing-Komponenten

Die Drag-Unterstiitzung ist standardmé&Big nicht aktiviert. Um sie fiir eine Komponente
einzuschalten, miissen Sie setDragEnabled(true) fiir die Komponente aufrufen:

JTextArea ta = new JTextArea("Textfeld, das Drag-and-Drop unterstitzt");

// Drag-Support flr JTextArea aktivieren
ta.setDragEnabled(true);

Drag-and-Drop fiir Labels

JLabel besitzt keine vorinstallierte Drag-and-Drop-Unterstiitzung. Solange die Labels nur zur
Prédsentation statischen Textes verwendet werden, ist dies auch kein Manko. In Féllen, wo Sie
dem Anwender aber doch einmal erlauben wollen, den Text eines Labels mit anderen Textkom-
ponenten auszutauschen, miissen Sie die Drag-and-Drop-Unterstiitzung selbst nachinstallieren.

Das Schwierigste an der Installation eines Drag-and-Drop-Mechanismus ist in der Regel die
Implementierung eines passenden TransferHandlers. Grundséatzlich sind TransferHandler kom-
ponenten- und datenspezifisch, d.h., sie werden so implementiert, dass sie eine bestimmte Art
von Daten (den Data Flavor) fiir eine bestimmte Komponente ex- und importieren kénnen.
Mit Hilfe von if-Abfragen konnen aber auch TransferHandler geschrieben werden, die meh-
rere Datentypen fiir verschiedene Komponenten verarbeiten. Ein Beispiel hierfiir ist die Java-
Klasse TransferHandler, die JavaBean-Eigenschaften zwischen Komponenten austauschen
kann. Mit ihrer Hilfe wird die Programmierung einer Drag-and-Drop-Unterstiitzung fiir Labels
fast zum Kinderspiel. (Ein Beispiel fiir die Implementierung eines eigenen TransferHandlers
finden Sie in Rezept 134.)

1. Label erzeugen

1b = new JLabel("Label, das Drag-and-Drop unterstitzt");

2. TransferHandler fiir Texteigenschaft erzeugen und bei der Komponente registrieren
1b.setTransferHandler(new TransferHandler("text"));

3. Beim Driicken der Maus Drag-Daten exportieren lassen

>> GUI 349

1b.addMouselistener(new MouseAdapter() {
public void mousePressed(MouseEvent e) {
JComponent ¢ = (JComponent) e.getSource();
TransferHandler th = c.getTransferHandler();
th.exportAsDrag(c, e, TransferHandler.COPY);

1)

Das in Schritt 2 erzeugte TransferHandler-Objekt unterstiitzt sowohl den Drag-Export
als auch den Drop-Import von Text, wobei stets der gesamte Text im Label exportiert
oder durch die Drop-Daten ersetzt wird. Wahrend fiir den Drop-Import nichts weiter zu
tun ist, muss der Export explizit angestoBen werden (siehe Schritt 3).

- Drag-and-Drop fiir Labels

Label, das Drag-and%;up unterstiitzt

Textfeld, das Drag-and-Drap unterstitzt

Abbildung 69: Label, in das gerade ein Textfragment aus einer JTextArea-Komponente
eingefligt wird (Screenshot vom Start-Programm zu diesem Rezept)

134 Datei-Drop fiir JTextArea-Komponenten
(eigener TransferHandler)

JTextArea gehort zu den Swing-Komponenten, die {iber eine vorinstallierte Drag-and-Drop-
Unterstiitzung verfiigen (siehe Rezept 133). Strings aus anderen Komponenten (auch anderen
Anwendungen) kénnen daher ohne weiteres Zutun des Programmierers in JTextArea-Instan-
zen per Drop abgelegt werden. Dies gilt jedoch nur fiir Strings, nicht etwa fiir Textdateien.

Wenn Sie mochten, dass Ihre Anwender auch die Inhalte von Textdateien in eine JTextArea
einfiigen konnen, miissen Sie einen eigenen TransferHandler fiir JTextArea schreiben, der
neben der gewohnten Funktionalitit (Drag und Drop von Strings), die ja erhalten bleiben
sollte, auch Dateien per Drop importiert.

Eigener TransferHandler fiir JTextArea

Eigene TransferHandler werden von der Klasse TransferHandler abgeleitet.

350 >> Datei-Drop fiir JTextArea-Komponenten (eigener TransferHandler)

Wie fiir alle Swing-Komponenten, die standardmiBig Drag-and-Drop unterstiitzen, gilt
auch fiir JTextArea, dass die Drag-Unterstiitzung explizit eingeschaltet werden muss:

textarea.setDragEnabled(true);

Erst danach kénnen markierte Textstellen mit der Maus per Drag verschoben und an
anderer Stelle per Drop eingefiigt werden.

Um die Drop-Unterstiitzung anzupassen, iiberschreiben Sie die Methoden:
P boolean canImport(JComponent comp, DataFlavor[] transferfFlavors)

P boolean importData(JComponent comp, Transferable t)

Um die Drag-Unterstiitzung anzupassen, iiberschreiben Sie die Methoden:

P int getSourceActions(JComponent c)

P Transferable createTransferable(JComponent c)

P void exportDone(JComponent source, Transferable data, int action)

Die nachfolgende Implementierung orientiert sich an der TransferHandler-Klasse TextTrans-
ferHandler aus javax.swing.plaf.basic.BasicTextUI, ohne jedoch wie diese verschiedene GUI-

Komponenten und Data Flavors zu unterstiitzen. Stattdessen ist FileAndStringTransferHandler
auf Drag-and-Drop von Strings und Textdateien fiir JTextArea-Komponenten spezialisiert.

In Java 6 wurde den Methoden canImport() und importData() Uberladungen an die Seite
gestellt, die as einziges Argument ein Objekt der inneren Klasse TransferHandler.Transfer-
Support Ubernehmen. Die Klasse TransferHandler.TransferSupport wurde ebenfalls in
Java 6 eingefiihrt, um dem Entwickler ale relevanten Transfer-Informationen in gebiindelter
Form zur Verfiigung stellen zu kdnnen. Die Transfer-Informationen kénnen tber das Transfer-
Handler.TransferSupport-Objekt abgefragt oder (zum Teil) gedndert werden.

import java.io.*;

import java.util.*;

import java.awt.*;

import java.awt.datatransfer.*;
import java.awt.event.*;

import javax.swing.*;

import javax.swing.text.*;

/**

* Transfer-Handler filir JTextArea-Komponenten,

* der Dateien und Strings verarbeitet

*/

class FileAndStringTransferHandler extends TransferHandler {

Position p0 = null, pl = null; // Anfang und Ende zu exportierender
// Drag-Daten

private JTextArea source; // Drag-Quelle, wird bei String-Drag
// (Methode createTransferable())
// gespeichert, um bei Drop feststellen
// zu konnen, ob Quelle und Ziel
// identisch sind. Wenn dann auch die
// Drop-Position im Bereich der

>> GUI 351

// Drag-Auswahl liegt, muss nichts
// verdndert werden.

private boolean shouldRemove; // Wird auf false gesetzt, wenn Drop-
// Position im Drag-Bereich liegt (s.o0.),
// um zu verhindern, dass exportDone()
// die Drag-Daten 16scht

FileAndStringTransferHandler() {
}

TransferHandler, die von der Klasse TransferHandler abgeleitet sind, kdnnen bei jeder Swing-
Komponente mittels der Methode setTransferhandler() registriert werden. Wenn Sie eine
TransferHandler-Klasse schreiben, die auf eine bestimmte Art Komponente spezialisiert ist,
miissen Sie sich daher Gedanken machen, was zu tun ist, wenn Ihre TransferHandler-Klasse
fiir die falsche Komponente registriert wird.

Die Klasse FileAndStringTransferHandler priift zu diesem Zweck in den Methoden
P createTransferable() - der Anwender versucht, Daten per Drag aufzunehmen,
P canImport() - der Anwender zieht Drag-Daten iiber die Komponente,

P importData() - der Anwender versucht, Drag-Daten in der Komponente per Drop abzu-
legen,

ob es sich auch wirklich um eine JTextArea-Komponente handelt. Im Falle einer falschen
Registrierung kann dann nicht viel Schaden entstehen - auBer dass sich der Programmierer,
der FileAndStringTransferHandler fiir die falsche Komponente registriert hat, fragt, warum die
Drag-and-Drop-Unterstiitzung nicht funktioniert. Man kénnte ihm einen zusitzlichen Hinweis
geben, indem man den Konstruktor mit einem JTextArea-Parameter definiert. Eine wirklich
saubere Losung ist dies allerdings nicht, da weder der Parameter eine sinnvolle Verwendung
findet, noch dadurch die falsche Registrierung verhindert werden kann.

Damit kommen wir zur Methode canImport(), die automatisch aufgerufen wird, wenn der
Anwender Drag-Daten iiber die Komponente zieht. Liefert die Methode true zuriick, wandelt
sich der Cursor iiber der Komponente in den Drop-Cursor. Die vorliegende Implementierung
liefert nur dann true zuriick, wenn es sich um eine JTextArea-Komponente handelt und die
Drag-Daten von einem Data Flavor sind, der in die Komponente eingefiigt werden kann (Datei
oder Text).

/**

* Prift mit Hilfe der private Methoden hasFileFlavor() und

* hasStringFlavor(), ob die angebotenen Daten in einem Data Flavor

* angeboten werden, der fir die Target-Komponente geeignet ist.

*/

public boolean canImport(JComponent c, DataFlavor[] flavors) {

// Vorab prifen, ob sich hinter der Komponente c auch wirklich
// eine JTextArea-Komponente verbirgt
if (!(c instanceof JTextArea))

return false;

if(hasFileFlavor(flavors))
return true;

352 >> Datei-Drop fiir JTextArea-Komponenten (eigener TransferHandler)

if(hasStringFlavor(flavors))
return true;

return false;
}

private boolean hasFileFlavor(DataFlavor[] flavors) {
for (int i =0; i < flavors.length; i++) {
if (flavors[i].equals(DataFlavor.javaFileListFlavor))
return true;
}
return false;
}

private boolean hasStringFlavor(DataFlavor[] flavors) f{
for (int i =0; i < flavors.length; i++) {
if (flavors[il.equals(DataFlavor.stringFlavor))
return true;
}
return false;
}

Legt der Anwender die Daten ab, wird die importData()-Methode aufgerufen. Diese stellt
zuerst den Data Flavor fest. Handelt es sich um Dateien, versucht die Methode, die erste Datei
zu 6ffnen, ihren Inhalt einzulesen und an der Einfiigeposition in die JTextArea-Komponente
zu schreiben. Handelt es sich um einen String, priift die Methode zuerst, ob nicht zufilliger-
weise Quell- und Zielkomponente identisch sind (Drag und Drop innerhalb derselben Kompo-
nente) und die Drop-Position innerhalb der fiir den Drag ausgewihlten Markierung liegt. In
diesem Fall wird kein Drag-and-Drop durchgefiihrt. Ansonsten werden die Drag-Daten in der
Zielkomponente an der Drop-Position eingefiigt. (Und in der Quellkomponente werden die
Daten von exportDone(), siehe weiter unten, geléscht.)

/**

* versucht die Daten aus dem Transferable-Objekt t in der Komponente

* ¢ abzulegen

*/

public boolean importData(JComponent c, Transferable t) {

// Vorab priifen, ob sich hinter der Target-Komponente c auch wirklich
// eine JTextArea-Komponente verbirgt und ob die angebotenen Daten in
// einem Data Flavor angeboten werden, der filir die Target-Komponente
// geeignet ist.
if (I(c instanceof JTextArea) ||

fcanImport(c, t.getTransferDataFlavors())) {

return false;
}

// Referenz c in den Typ JTextArea umwandeln
JTextArea target = (JTextArea) c;

try |
if (hasFileFlavor(t.getTransferDataFlavors())) {
// Transferable-Objekt enthdlt eine (oder mehrere) Dateien.

>> GUI

353

// Lese die erste Datei und filige ihren Inhalt in die
// Target-Komponente ein

FileReader in = null;

StringBuilder str = new StringBuilder();

Jjava.util.List files = (Jjava.util.List)
t.getTransferData(DataFlavor.javaFileListFlavor);

if (files.size() > 0) {

// nur erste Datei Tesen
File f = (File) files.get(0);

try {
in = new FileReader(f);

// Dateiinhalt in String Tesen
int countBytes = 0;
char[] bytesRead = new char[512];

while((countBytes = in.read(bytesRead)) > 0)
str.append(bytesRead, 0, countBytes);

target.replaceSelection(str.toString());
} catch (IOException e) {

System.err.printin(f +
" kann nicht eingelesen werden");

b finally |
if (in = null)
in.close();

}

return true;
}

} else if (hasStringFlavor(t.getTransferDataFlavors())) {
// Transferable-Objekt enthdlt eine (oder mehrere) Dateien
// Wenn Quelle und Ziel identisch sind, verschiebe nur, wenn
// die Einfligeposition auBerhalb des zu verschiebenden
// Textes liegt

if((target == source)
&& (target.getCaretPosition() >= p0.getOffset())
&& (target.getCaretPosition() <= pl.getOffset())) {

shouldRemove = false;
return true;
}

String str =

(String) t.getTransferData(DataFlavor.stringFlavor);
target.replaceSelection(str);
return true;

354 >> Datei-Drop fiir JTextArea-Komponenten (eigener TransferHandler)

}

} catch (UnsupportedFlavorException e) {
System.err.printin("Drag-Daten werden nicht unterstiutzt");

} catch (IOException e) {
System.err.printin("I1/0-Exception");

}

return false;

}

Die Methode createTransferable() erzeugt aus der markierten Textstelle die Drag-Daten.
AuBerdem speichert sie Anfang und Ende der Textpassage im JTextArea-Dokument, um spater
beim Drop (in importData()) priifen zu konnen, ob die Drop-Position innerhalb des Drag-
Bereichs liegt.

/‘k*k

* erzeugt ein Transferable-Objekt mit den zu libertragenden Drag-Daten

*/

protected Transferable createTransferable(JComponent c) {

// Vorab prifen, ob sich hinter der Komponente c auch wirklich
// eine JTextArea-Komponente verbirgt und
if (!(c instanceof JTextArea))

return null;

source = (JTextArea) c;

int start = source.getSelectionStart();
int end = source.getSelectionEnd();
if (start == end) {

return null;

} else {

try {
// Anfangs- und Endposition des markierten Textes
// im Dokument merken
Document doc = source.getDocument();
p0 = doc.createPosition(start);
pl = doc.createPosition(end);

} catch (BadlLocationException e) {
System.err.printin("Text kann nicht verschoben werden.");

}

shouldRemove = true;
String data = source.getSelectedText();
return new StringSelection(data);

}

Aufgabe der Methode getSourceActions() ist es anzuzeigen, dass die Komponente COPY-
Aktionen (fiir Dateien) und MOVE-Aktionen (fiir Strings) unterstiitzt.

public int getSourceActions(JComponent c) f
return COPY_OR_MOVE;
}

>> GUI 355

Die Methode exportDone() wird automatisch zum Abschluss einer Drop-Aktion ausgefiihrt. Die
Klasse FileAndStringTransferHandler nutzt dies, um nach dem Einfiigen eines Strings (Drop)
den String an der Originalposition in der Quelle zu l6schen - d.h., aus Sicht des Anwenders
wird der String verschoben.

/*k‘k

* Am Ende einer String-DROP-Aktion den Text in der Quelle 1dschen.

*/

protected void exportDone(JComponent ¢, Transferable data, int action) {

if (shouldRemove && (action == MOVE)) {
if ((p0 !=null) & (pl !=null) &&
(p0.getOffset() != pl.getOffset())) {
try {
JTextArea source = (JTextArea) c;
source.getDocument().remove(p0.getOffset(),
pl.getOffset() - p0.getOffset());
} catch (BadLocationException e) {
System.err.printin("Text kann nicht geldscht werden.");
}
}
}
source = null;

}

Das Start-Programm zu diesem Rezept erzeugt eine JTextArea, in die Sie den Inhalt beliebiger
Textdateien per Drag-and-Drop einfiigen konnen.

public class Start extends JFrame {
private JScrollPane scrollpane;
private JTextArea textpane;

public Start() {

// Hauptfenster konfigurieren
setTitle("Datei-Drag flr JTextArea");
getContentPane().setBackground(Color.LIGHT_GRAY);

// Scrollbare JTextArea einrichten
scrollpane = new JScrollPane();

textpane = new JTextArea();
scrollpane.getViewport().add(textpane, null);

// Drag-Support fur JTextArea aktivieren
textpane.setDragEnabled(true);

Listing 170: Aus Start.java

356 >> Anwendungssymbol einrichten

// TransferHandler fiir Dateien und Text registrieren
textpane.setTransferHandler(new FileAndStringTransferHandler());

getContentPane().add(scrollpane, BorderLayout.CENTER);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

Listing 170: Aus Start.java (Forts.)

135 Anwendungssymbol einrichten

GUI-Anwendungen verfiigen tiblicherweise iiber ein Anwendungssymbol, das quasi als Logo
der Anwendung fungiert und vom Betriebssystem in verschiedenen Kontexten angezeigt wird
(beispielsweise in der Titelleiste des Hauptfensters oder in der Taskleiste).

Um ein Bild aus einer Bilddatei als Anwendungssymbol einzurichten, laden Sie das Bild und
iibergeben Sie es der JFrame-Methode setIconImage().

Wenn Sie die Bilddatei mit Hilfe der Class-Methode getResource() laden, konnen Sie davon
profitieren, dass der Dateiname automatisch um den Paketpfad der Anwendung erweitert wird.
Aus dem zuriickgelieferten URL-Objekt erzeugen Sie mit Hilfe der Toolkit-Methode create-
Image() das gewtinschte Image-Objekt, welches Sie setIconImage() libergeben.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Start extends JFrame {
public Start() {
// Hauptfenster konfigurieren

setTitle("Swing-Grundgeriist");
getContentPane().setBackground(Color.LIGHT_GRAY);

// Anwendungssymbol einrichten

Java.net.URL tmp = Start.class.getResource("icon.png");

if (tmp !=null)
setlconlmage(Toolkit.getDefaultToolkit().createlmage(tmp));

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

Listing 171: Anwendungssymbol einrichten

>> GUI 357

public static void main(String args(]) {
Start frame = new Start();
frame.setSize(500,300);
frame.setLocation(300,300);
frame.setVisible(true);

Listing 171: Anwendungssymbol einrichten (Forts.)

Abbildung 70: Anwendung mit Ausrufezeichen als Anwendungssymbol

Anwendungssymbole sollten moglichst 16x16 oder 24x24 Pixel groB sein und einen
transparenten Hintergrund haben.

136 Symbole fiir Symbolleisten

Symbole fiir Symbolleisten sind in der Regel 16 mal 16 Pixel groB und haben einen transpa-
renten Hintergrund (GIF- oder PNG-Format, kein JPEG).

Aus der Symboldatei erzeugen Sie eine Imagelcon-Instanz. Diese {ibergeben Sie als Argument
dem JButton- oder JToggleButton-Konstruktor. Den Schalter selbst fiigen Sie schlieBlich in die
Symbolleiste (Instanz von JToolBar) ein, die Sie wiederum in den NORTH-Bereich des Border-
Layouts der ContentPane einfiigen:

// Symbolleiste
JToolBar tb = new JToolBar();

// Schalter fir Symbolleiste
JButton btn = new JButton(new Imagelcon("resources/Newl6.gif"));
btn.setToolTipText("Neu");
btn.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

// Ereignisbehandlungscode

t
)
th.add(btn);

getContentPane().add(tb, BorderLayout.NORTH);

358 >> Symbole fiir Symbolleisten

Die Kreation von Symbolen ist eine Kunst fiir sich. Die Symbole miissen nicht nur aussagekrif-
tig und intuitiv zu deuten sein, sie miissen auch so gezeichnet werden, dass sie in Originalgrof3e
gut zu erkennen sind, was oft nur durch geschickten Einsatz von Anti-Aliasing zu erreichen ist.
Meist wird man daher die Erstellung der Symbole Grafikern iiberlassen oder auf bereits vorhan-
dene Symbole zuriickgreifen. Sun stellt selbst eine reiche Auswahl von Symbolen fiir die ver-
schiedensten Befehle zur Verfiigung. Sie konnen die Symbolsammlung als Archivdatei von der
Webseite http://java.sun.com/developer/techDocs/hi/repository/ herunterladen. (Die Archivda-
tei enthélt eine jar-Datei, aus der Sie die einzelnen Grafiken mit jedem gdngigen ZIP-Programm
extrahieren kénnen.)

Zur Gruppierung der Symbolschalter kénnen Sie Abstandshalter (Riickgabewert der statischen
Methode Box.createHorizontalStrut(int)), Trennlinien (Instanzen von JSeparator) oder bei-
des einfiigen:

// Symbolleiste erzeugen

protected JToolBar createToolBar() {
JToolBar tb = new JToolBar();
JButton btn;

// Symbolschalter flir Datei-Menlbefehle

btn = new JButton(new Imagelcon("resources/Newl6.gif"));
btn.setToolTipText("Neu");
btn.addActionListener(fileNewAction);

th.add(btn);

// Gruppierung mit Abstdnden und Separator
tb.add(Box.createHorizontalStrut(3));

JSeparator sep = new JSeparator(SwingConstants.VERTICAL);
sep.setMaximumSize(new Dimension(2,200));

th.add(sep);

tb.add(Box.createHorizontalStrut(3));

// Symbolschalter fiir Bearbeiten-Meniibefehle

btn = new JButton(new Imagelcon("resources/Cutl6.gif"));
btn.setToolTipText("Ausschneiden");
btn.addActionlListener(editCutAction);

th.add(btn);

return tb;

Listing 172: Aufbau einer Symbolleiste (aus ProgramFrame.java)

>> GUI 359

137 Meniileiste (Symbolleiste) aus Ressourcendatei
aufbauen

Heutzutage verfiigt nahezu jedes GUI-Programm {iber eine Meniileiste, meist inklusive passen-
der Symbolleiste(n).

Eine Meniileiste ist in Java eine Instanz der Klasse JMenuBar. Dieser werden die einzelnen
Mentiis als Instanzen der Klasse JMenu hinzugefiigt, in die wiederum JMenultem-Objekte fiir die
eigentlichen Meniibefehle eingefiigt werden. Jeder Meniibefehl kann mit

» einem Titel (setLabel(String) oder Konstruktor),

P einer Mnemonic-Taste fiir den Zugriff in Kombination mit der [Ait]-Taste (setMnemo-
nic(int)),

P einem Tastaturkiirzel (setAccelerator(KeyStroke)), einem Symbol (iiblicherweise das Sym-
bol des zugehorigen Schalters aus der Symbolleiste)

P und natlrlich einer ActionlListener-Instanz zur Ereignisbehandlung (addActionListe-
ner(ActionlListener))

verbunden werden. Die fertige Meniileiste wird mit Hilfe der JFrame-Methode setJMenuBar() in
das Hauptfenster eingebettet. Wahrscheinlich sind Sie mit all dem bereits vertraut - falls nicht,
schauen Sie sich die Datei ProgramFrame.java aus dem Rezept »Symbole fiir Symbolleistens«
an.

Worum es in diesem Rezept geht, ist die Frage, wie sich der Aufbau von Meniileisten zumin-
dest zum Teil automatisieren lasst. Der hier gewé&hlte Ansatz beruht auf drei Komponenten:

P einer Ressourcendatei, in der alle zum Aufbau der Meniileiste benétigten Informationen in
Textform gespeichert sind,

P einer MenuFactory-Klasse, mit deren Hilfe die Meniileiste basierend auf den Informationen
in der Ressourcendatei aufgebaut wird,

P> dem eigentlichen Programm, das sich der MenuFactory-Klasse bedient und ansonsten nur
noch die Ereignisbehandlung fiir die Meniibefehle beisteuern muss.

Die Ressourcendatei

Ressourcendateien sind letzten Endes Eigenschaftendateien, d.h., jede Ressource besteht aus
einem Namen, iiber den sie vom Programm aus abgerufen werden kann, und einem Wert, der
nach einem Gleichheitszeichen auf den Namen folgt. Die Ressourcendatei fiir die Meniileiste
ist wie folgt aufgebaut.

Die Ressource fiir die Meniileiste heiBt menuBar und zdhlt die Namen der Ressourcen fiir die
einzelnen Meniis auf:

menuBar=File Edit Info

Fiir jedes der aufgefiihrten Meniis gibt es eine gleichnamige Meniiressource, die die Namen
der Ressourcen fiir die Befehle im Menii aufzihlt (Trennzeichen werden durch einen Binde-
strich kodiert) sowie Ressourcen fiir den Titel (xxxLabel) und den Mnemonic-Buchstaben
(xxxMnemonic) des Meniis:

File=FileNew FileOpen FileSave FileSaveAs - FileQuit
Filelabel=Datei
FileMnemonic=D

360 >> Meniileiste (Symbolleiste) aus Ressourcendatei aufbauen

Fiir jeden Meniibefehl gibt es Ressourcen, die Titel (xxxLabel), Mnemonic-Buchstaben (xxx-
Mnemonic), Tastaturkiirzel (xxxAccelerator), Symbol (xxxSymbol), Tooltip-Text (xxxToolTip)
und Beschreibung (xxxDescription) definieren.

FiTeNewlLabel=Neu

FileNewMnemonic=N

FileNewAccelerator=Strg+N
FileNewSymbol=resources/new.gif
FiTleNewTooltip=Neu

FileNewDescription=Erstellt ein neues Dokument.

Die von mir vorgegebene Konvention zum Aufbau der Ressourcennamen sieht wie folgt aus:
P Die Meniileistenressource heift menuBar.

P Die Ressourcennamen fiir die Meniis und Meniibefehle lauten so, wie in der Meniileiste
und den Meniiressourcen angegeben.

» Die Namen von Eigenschaften setzen sich zusammen aus dem Namen der Ressource und
einem Suffix fiir die Eigenschaft (Label, Mnemonic etc.).

Diese Konvention ist bei Anderungen oder bei der Definition eigener Ressourcendateien unbe-
dingt einzuhalten, da die Klasse MenuFactory die Ressourcen sonst nicht findet.

Die Ressourcendatei zu diesem Rezept definiert eine Meniileiste mit Datei-, Bearbeiten- und
Info-Menii:

#f Ressourcendatei mit Menii

Menlileiste
menuBar=File Edit Info

Datei-Menli

#

File=FileNew FileOpen FileSave FileSaveAs - FileQuit
Filelabel=Datei

FileMnemonic=D

Mentibefehle fiir Menii Datei

FileNewlLabel=Neu

FileNewMnemonic=N

FileNewAccelerator=Strg+N
FileNewSymbol=resources/new.gif
FileNewTooltip=Neu

FileNewDescription=Erstellt ein neues Dokument.

Fi
Fi

eOpenLabel=0ffnen. ..
eOpenMnemonic=F

1

1
FileOpenAccelerator=Strg+0
FileOpenSymbol=resources/open.gif
FileOpenTooltip=0ffnen
FileOpenDescription=0ffnet ein vorhandenes Dokument.

Listing 173: Program.properties — die Ressourcendatei

>> GUI 361

FileSavelabel=Speichern

FileSaveMnemonic=S

FileSaveAccelerator=Strg+S
FileSaveSymbol=resources/save.gif
FileSaveTooltip=Speichern
FileSaveDescription=Speichert das aktuelle Dokument.

FileSaveAsLabel=Speichern unter...
FileSaveAsMnemonic=U
FileSaveAsDescription=Speichert das aktuelle Dokument unter neuem Namen.

FileQuitLabel=Beenden
FileQuitMnemonic=B
FileQuitDescription=Beendet die Anwendung.

Bearbeiten-Menii

i

Edit=EditCut EditCopy EditPaste
EditLabel=Bearbeiten
EditMnemonic=B

Mentibefehle fiir Menl Bearbeiten
EditCutlLabel=Ausschneiden

EditCutMnemonic=D

EditCutAccelerator=Strg+X
EditCutSymbol=resources/cut.gif
EditCutTooltip=Ausschneiden
EditCutDescription=Schneidet die Markierung aus.

EditCopyLabel=Kopieren

EditCopyMnemonic=K

EditCopyAccelerator=Strg+C

EditCopySymbol=resources/copy.gif

EditCopyTooltip=Kopieren

EditCopyDescription=Kopiert die Markierung in die Zwischenablage.

EditPastelabel=Einfiigen

EditPasteMnemonic=E

EditPasteAccelerator=Strg+V
EditPasteSymbol=resources/paste.gif
EditPasteTooltip=Einflgen

EditPasteDescription=Figt den Inhalt der Zwischenablage ein.

Info-Menii

i
Info=Infolnfo
InfolLabel=Info
InfoMnemonic=I

Listing 173: Program.properties — die Ressourcendatei (Forts.)

362 >> Meniileiste (Symbolleiste) aus Ressourcendatei aufbauen

Meniibefehle fur Menii Info
Infolnfolabel=Info

InfoInfoMnemonic=I

InfolnfoDescription=Zeigt den Info-Dialog an.

Listing 173: Program.properties — die Ressourcendatei (Forts.)

Beachten Sie, dass der Mnemonic-Buchstabe immer als GroBbuchstabe anzugeben ist,
auch wenn der Buchstabe im Titel klein geschrieben wird.

Die Klasse MenuFactory

Mit Hilfe der Klasse MenuFactory konnen Menii- und Symbolleisten aus Ressourcendateien ein-
gelesen werden. Unterschiedliche Instanzen der Klasse kénnen unterschiedliche Meniisysteme
repriasentieren.

Die Klasse definiert private Felder zum Abspeichern der Ressourcendatei, der Meniileiste, der
Symbolleiste sowie zweier Hashtabellen, in denen die Meniibefehle und Symbolleistenschalter
unter ihren Ressourcennamen abgelegt sind.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

import java.util.HashMap;

import java.util.locale;

import java.util.ResourceBundle;

import java.util.MissingResourceException;
import java.net.URL;

/**
* Klasse zur Erstellung von Menii- und Symbolleiste aus Ressourcendatei
*/
pubTlic class MenuFactory {
private ResourceBundle resources;
private JMenuBar menuBar = null;
private JToolBar toolBar = null;
private HashMap<String, JMenultem> menultems
= new HashMap<String, JMenultem>();
private HashMap<String, JButton> toolBarButtons
= new HashMap<String, JButton>();

Bei der Instanzierung der Klasse iibergeben Sie dem Konstruktor den Namen der Ressourcen-
datei (gegebenenfalls einschlieBlich relativem Pfad) sowie die zu verwendende Lokale.

public MenuFactory(String res, Locale Toc) {
try |
resources = ResourceBundle.getBundle(res, loc);

>> GUI 363

} catch (MissingResourceException mre) {
System.err.printin("Ressourcendatei nicht verfuegbar!");
System.exit(1);

}

Die fiir den Benutzer wichtigste Methode ist getMenuBar(), die eine Referenz auf die JMenuBar-
Mentileiste zuriickliefert. Existiert noch gar keine Mentileiste, wird sie automatisch aufgebaut.
Dazu greift die Methode auf die menuBar-Ressource zu, zerlegt deren Wert in die Namen der
einzelnen Meniis und lisst diese von der protected-Methode createMenu() erzeugen. Die ferti-
gen Meniis werden in die Meniileiste eingefiigt.
/**
* Liefert eine Referenz auf die Menlleiste zuriick
* Beim ersten Aufruf wird die Menlileiste erzeugt
*/
public JMenuBar getMenuBar() {

if (menuBar == null) {
menuBar = new JMenuBar();

try {
// Ressourcenstring flr Menlleiste abfragen und in
// String-Array mit Namen der Menis aufsplitten
String buf = resources.getString("menuBar");
String[] menuNames = buf.split(" ");

// Menlis erzeugen
for (String s : menuNames) {

JMenu m = createMenu(s);

if (m!=null)

menuBar.add(m);
}
} catch (MissingResourceException mre) {

System.err.printin("Menliressource nicht verfiighar!");
System.exit(1);

}

return menuBar;
t

Die Methode createMenu() tibernimmt als Argument den Namen einer Meniiressource und lie-
fert als Ergebnis das fertige Menii zuriick. Titel und Mnemonic-Buchstabe des Meniis werden
der Ressourcendatei entnommen, wobei Letzterer nicht unbedingt definiert sein muss. Welche
Meniibefehle das Menii enthalten soll, entnimmt die Methode dem Wert der Meniiressource.
Fiir einen Bindestrich wird eine Trennlinie in das Menii eingefiigt, ansonsten wird der Res-
sourcenname des Befehls an die protected-Methode createMenultem() weitergereicht.

// Menli erzeugen, wird von getMenuBar() aufgerufen
protected JMenu createMenu(String name) {
JMenu m = null;

try {
// Menli erzeugen
m = new JMenu(resources.getString(name + "Label"));

364 >> Meniileiste (Symbolleiste) aus Ressourcendatei aufbauen

// Mnemonic
String mnemo = null;
try {

mnemo = resources.getString(name + "Mnemonic");
} catch (MissingResourceException mre) {

// mnemo bleibt null
}
if (mnemo != null)

m.setMnemonic(mnemo.charAt(0));

// Ressourcenstring fiir Menii abfragen und in String-Array
// mit Namen der Meniibefehle aufsplitten
String buf = resources.getString(name);
String[] menultemNames = buf.split(" ");

// Mentibefehle erzeugen
for (String s : menultemNames) {
if (s.equals("-"))
m.addSeparator();
else {
JMenultem mi = createMenultem(s);
m.add(mi);
}
}

} catch (MissingResourceException mre) {
System.err.printin("Meniiressource nicht verflgbar!");
System.exit(1);

}

return m;
}

Die Methode createMenultem() schlieBlich erzeugt die einzelnen Meniibefehle als Instanzen
von JMenultem. Die Informationen fiir die Konfiguration der Meniibefehle werden - mit Aus-
nahme der Ereignisbehandlung, die ja das Programm beisteuert - der Ressourcendatei
entnommen. Der Titel (xxxLabel) ist obligatorisch, muss also in der Ressourcendatei definiert
sein. Die restlichen Angaben sind optional. Zum Schluss wird die JMenultem-Instanz fiir spater
in die Hashtabelle menultems eingetragen und als Ergebniswert zuriickgeliefert.

// Meniibefehl erzeugen, wird von createMenu() aufgerufen
protected JMenultem createMenultem(String name) {
JMenultem mi = null;

try |
// Mentibefehl erzeugen
String Tabel = resources.getString(name + "Label");
mi = new JMenultem(label);

// Mnemonic
String mnemo = null;
try {
mnemo = resources.getString(name + "Mnemonic");

>> GUI 365

} catch (MissingResourceException mre) {
// mnemo bleibt null
}
if (mnemo != null)
mi.setMnemonic(mnemo.charAt(0));

// Tastaturkiirzel
String accel = null;
try {
accel = resources.getString(name + "Accelerator");
} catch (MissingResourceException mre) {
// accel bleibt null
}
if (accel !=null) {
KeyStroke ks = KeyStroke.getKeyStroke(
(int) accel.charAt(accel.length()-1),
Event.CTRL_MASK);
mi.setAccelerator(ks);
}

// Auskommentieren, wenn Symbole in Meniibefehlen unerwiinscht
String image = null;
try {
image = resources.getString(name + "Symbol");
} catch (MissingResourceException mre) {
// image bleibt null
}
if (image !=null) {
URL url = this.getClass().getResource(image);
if (url = null) {
mi.setIcon(new Imagelcon(url));

}
}

// Menlibefehl in Feld menultems fir spdteren Zugriff abspeichern
menultems.put(name, mi);

} catch (MissingResourceException mre) {
System.err.printin("Menlressource nicht verflgbar!");
System.exit(1);

}

return mi;
}

Als Pendant zu den Methoden zur Erzeugung der Meniileiste gibt es Methoden zum Aufbau
einer Symbolleiste, die weiter unten im letzten Abschnitt dieses Rezepts abgedruckt sind.

protected JToolBar getToolBar() {

}
protected JButton createToolBarButton(String name) {

}

366 >> Meniileiste (Symbolleiste) aus Ressourcendatei aufbauen

Zu guter Letzt definiert die Klasse zwei Methoden, die Referenzen auf die Hashtabellen fiir die
Meniibefehle und die Symbolleistenschalter zuriickliefern. Uber diese Hashtabellen konnen
Programme, die ihre Meniileisten (Symbolleisten) mit Hilfe von MenuFactory erzeugen, bequem
auf die einzelnen Meniibefehle und Symbolleistenschalter zugreifen — beispielsweise um sie
mit einer Ereignisbehandlung zu kombinieren.

public HashMap<String, JMenultem> getMenultems() {
return menultems;

}

public HashMap<String, JButton> getToolBarButtons() {
return toolBarButtons;

}

}

Verwendung in einem Programm

Eine Frame-Klasse, die mit Hilfe von MenuFactory ihre Meniileiste aufbauen mochte, geht wie
folgt vor:

1. Sie definiert ein private-Feld fiir das MenuFactory-Objekt (und gegebenenfalls auch Felder
fiir die Meniileiste).

public class ProgramFrame extends JFrame f{
private MenuFactory mf;
private JMenuBar menuBar;

2. Sie erzeugt im Konstruktor eine Instanz von MenuFactory, wobei sie den Pfad zur Ressour-
cendatei und die zu verwendende Lokale tibergibt.

public ProgramFrame() {

// Menl aufbauen und als Hauptmenil des Fensters einrichten
mf = new MenuFactory("resources/Program",
Locale.getDefault());

3. Sie ruft die getMenuBar()-Methode des MenuFactory-Objekts auf, um die Meniileiste auf-
bauen zu lassen. Die von getMenuBar() zuriickgelieferte Referenz iibergibt sie an setJMenu-
Bar().

menuBar = mf.getMenuBar();
setdMenuBar(menuBar) ;

4. Sie verbindet die einzelnen Meniibefehle mit Ereignisbehandlungen, sprich mit ActionLis-
tener-Objekten.

Hierfiir gibt es eine Vielzahl von Moglichkeiten (siehe Rezept 119). Die Fensterklasse zu
diesem Rezept definiert fiir jeden Befehl eine eigene ActionListener-Klasse:

public class ProgramFrame extends JFrame {

>> GUI 367

// Actionlistener-Objekte fiir Meniibefehle
private FileNewAction fileNewAction =

new FileNewAction();
private FileOpenAction fileOpenAction =

new FileOpenAction();

// innere ActionlListener-Klassen fiir Meniibefehle
class FileNewAction implements ActionListener {
public void actionPerformed(ActionEvent e) {
System.out.printin(" Datei / Neu");
}
}
class FileOpenAction implements ActionListener {
public void actionPerformed(ActionEvent e) {
System.out.printin(" Datei / Qeffnen");
}

und verbindet diese im Konstruktor mit den zugehérigen Meniibefehlen:

public ProgramfFrame() {

// Ereignisbehandlung flr Menlibefehle
HashMap<String, JMenultem> menultems = mf.getMenultems();
JMenultem mi;

mi = menultems.get("FileNew");
mi.addActionlListener(fileNewAction);

mi = menultems.get("FileOpen");
mi.addActionListener(fileOpenAction);

Symbolleisten

Analog zur Mentileiste kdnnen auch Symbolleisten aus Ressourcendateien erzeugt werden.

Die Ressourcendatei zu diesem Rezept definiert zu diesem Zweck eine eigene Ressource
namens toolBar, die Namen der Meniibefehlressourcen aufzihlt, fiir die auch Symbolschalter
in der Symbolleiste angezeigt werden sollen.

Symbolleiste
1

Die Namen der Schalter missen gleich den Namen der Meniibefehle sein!
toolBar=FileNew FileOpen FileSave - EditCut EditCopy EditPaste

Alle weiteren Informationen zur Konfiguration der Schalter, sprich Bild und ToolTip-Text, wer-
den den Angaben zu den Meniibefehlen entnommen (siehe Abschnitt »Die Ressourcendatei«).

Die MenuFactory-Methode, die die Symbolleiste aufbaut, heifit getToolBar() und ist analog zur
Methode getMenuBar() aufgebaut:

368 >> Meniileiste (Symbolleiste) aus Ressourcendatei aufbauen

/**

* Liefert eine Referenz auf die Symbolleiste zuriick
* Beim ersten Aufruf wird die Symbolleiste erzeugt
*/

protected JToolBar getToolBar() f{

if (toolBar == null) {
toolBar = new JToolBar();

try {
// Ressourcenstring fiir Symbolleiste abfragen und in
// String-Array mit Namen der Schaltfldchen aufsplitten
String buf = resources.getString("toolBar");
String[] buttonNames = buf.split(" ");

// Symbolleiste erzeugen
for (String s : buttonNames) {
if (s.equals("-"))
toolBar.add(Box.createHorizontalStrut(5));
else {
JButton btn = createToolBarButton(s);
if (btn !=null)
toolBar.add(btn);
}
}
} catch (MissingResourceException mre) {
System.err.printin("Symbolleistenressource nicht verfiigbar!");
System.exit(1);

}

return toolBar;
}

Die einzelnen Schalter werden von der Hilfsmethode createToolBarButton() erzeugt, die ana-
log zu createMenultem() aufgebaut ist, d.h., sie tibernimmt den Ressourcennamen des Menii-
befehls und erzeugt zu diesem eine passende JButton-Instanz, die in die Symbolleiste
eingefiigt werden kann. Alle Informationen zur Konfiguration des Schalters werden der Res-
sourcendatei entnommen. Zum Schluss wird die JButton-Instanz fiir spdter in die Hashtabelle
toolBarButtons eingetragen und als Ergebniswert zuriickgeliefert.

// Schalter fiir Symbolleiste erzeugen, wird von getToolBar() aufgerufen
protected JButton createToolBarButton(String name) {
JButton btn = null;

try |
// Schalter mit Bild erzeugen
String image = resources.getString(name + "Symbol");
URL url = this.getClass().getResource(image);

bth = new JButton(new Imagelcon(url));
btn.setMargin(new Insets(1,1,1,1));
btn.setFocusable(false);

>> GUI 369

// ToolTip
String tooltip = null;
try {

tooltip = resources.getString(name + "Tooltip");
} catch (MissingResourceException mre) {

// tooltip bleibt null

}
if (tooltip != null)

btn.setToolTipText(tooltip);

// Schalter in Feld toolBarButtons fiir spateren Zugriff
// abspeichern
toolBarButtons.put(name, btn);

} catch (MissingResourceException mre) {
System.err.printin("Symbolleistenressource nicht verflgbar!");
System.exit(1);

}

return btn;
1

Im Programm, genauer gesagt im Konstruktor der Fensterklasse, wird die Symbolleiste durch
Aufruf der MenuFactory-Methode getToolBar() erzeugt und in den NORTH-Abschnitt des
Border-Layouts eingefiigt:

public ProgramFrame() {

// Symbolleiste aufbauen und am oberen Rand des Fensters einfiigen
toolBar = mf.getToolBar();
getContentPane().add(toolBar, BorderlLayout.NORTH);

Danach miissen die einzelnen Schalter nur noch mit den zugehéorigen Actionlistener-Objek-
ten verbunden werden:

// Ereignisbehandlung fir Symbolleistenschalter
HashMap<String, JButton> toolBarButtons = mf.getToolBarButtons();
JButton tb;

th = toolBarButtons.get("FileNew");
th.addActionListener(fileNewAction);

th = toolBarButtons.get("FileOpen");
th.addActionlListener(fileOpenAction);

370 >> Befehle aus Menii und Symbolleiste zur Laufzeit aktivieren und deaktivieren

- Programm mit, Menii
Qateil Bearbeiten Info

Dkueu Strg-M h @

& Offnen... Strg-0

E Speichern Stg-s

Speichern unter...

Beenden

Abbildung 71: Programm mit automatisch generierter Menu- und Symbolleiste

138 Befehle aus Menii und Symbolleiste zur Laufzeit
aktivieren und deaktivieren

Meniibefehle werden in Java durch Instanzen der Klasse JMenultem, Symbolleistenschalter
durch Instanzen der Klassen JButton oder JToggleButton reprasentiert. Alle drei Klassen sind
von AbstractButton abgeleitet und erben von dieser Klasse die Methode setEnabled(), mit der
die Mentibefehle und Schalter zur Laufzeit aktiviert (Ubergabe von true) oder deaktiviert
(Ubergabe von false) werden konnen.

Wenn ein Befehl sowohl als Meniibefehl in der Meniileiste wie auch als Schalter in der Symbol-
leiste (und woméglich auch noch als Befehl in einem Kontextmenii) vertreten ist, miissen Sie
selbstredend darauf achten, dass alle Vorkommen des Befehls zusammen aktiviert oder deak-
tiviert werden. Sie konnen diese Arbeit aber auch delegieren, indem Sie fiir die Ereignisbehand-
lung Aktionen definieren. Aktionen sind in diesem Sinne Instanzen von Klassen, die das
Interface Action definieren oder von der Klasse AbstractAction abgeleitet sind. In diesem Fall
konnen Sie alle Meniibefehle und Schalter, die mit ein und derselben Aktion verbunden sind,
zusammen aktivieren oder deaktivieren, indem Sie einfach die Aktion aktiveren/deaktivieren:

// 1. Action-Klasse zur Behandlung des Datei/Neu-Befehls
class FileNewAction extends AbstractAction {
public void actionPerformed(ActionEvent e) {
// Tue etwas

}

// 2. Action mit Mentibefehl und Symbollschalter verbinden
Action a = new FileNewAction();

miFileNew.setAction(a); // miFileNew sei JIMenultem-Objekt
btnFileNew.setAction(a); // btnFileNew sei JButton-Objekt

// Irgendwo im Code

>> GUI 371

// 3. Aktion flr Datei/Neu und alle zugeordneten GUI-Komponenten deaktivieren
a.setknabled(false);

Ein Beispiel hierfiir finden Sie im nachfolgenden Rezept, das Aktionen, Menii und Symbol-
leiste automatisch aus einer Ressourcendatei erstellt.

139 Meni- und Symbolleiste mit Aktionen synchronisieren

In Rezept 137 wurde Thnen eine Moglichkeit vorgestellt, wie Sie Menii- und Symbolleiste
halbautomatisch aus den Daten einer Ressourcendatei erstellen konnen. Fiir die Ereignisbe-
handlung haben wir dort eigene Klassen definiert, die das Actionlistener-Interface implemen-
tieren. Dieser Ansatz ist effektiv und schnell zu implementieren. AuBerdem muss fiir jede
Aktion, die der Anwender auslosen kann, nur ein Objekt der betreffenden Actionlistener-
Klasse erzeugt werden. Kann die Aktion auf mehreren Wegen ausgelost werden, beispielsweise
iiber Meniibefehl und Symbolschalter, wird das zugehorige ActionListener-Objekt einfach bei
allen auslésenden GUI-Komponenten als ActionListener registriert.

Wenn Sie mehrere GUI-Komponenten mit ein- und demselben ActionListener-Objekt verbin-
den, spart dies Speicherplatz und der Ereignisbehandlungscode steht nur einmal im Quelltext.
Die GUI-Komponenten sind jedoch nicht synchronisiert. Wenn Sie also die Aktion deaktivieren
wollen, missen Sie alle GUI-Komponenten deaktivieren. Wollen Sie die Aktion mit einem
anderen Tastaturkiirzel verbinden, miissen Sie die Tastaturkiirzel fiir alle GUI-Komponenten
dndern. Gerade fiir Aktionen, die sowohl iiber das Menii als auch die Symbolleiste ausgefiihrt
werden konnten, wére eine derartige automatische Synchronisierung aber wiinschenswert, um
den Programmierer von lastiger Verwaltungsarbeit zu befreien. Dies leistet das Konzept der
Actions. Actions sind Objekte von Klassen, die von AbstractAction abgeleitet sind oder direkt
das Interface Action implementieren. Actions besitzen eine actionPerformed()-Implementie-
rung und kénnen unter anderem ein Symbol, einen Mnemonic-Buchstaben, ein Tastaturkiirzel,
einen Tooltip-Text und eine ausfiihrlichere Beschreibung speichern.

Alle GUI-Komponenten, deren Klassen auf AbstractButton zuriickgehen, konnen mit einer
Action verbunden werden (Methode setAction()). Werden mehrere GUI-Komponenten mit ein
und derselben Action verbunden, spiegeln sich Anderungen an der Action (Deaktivierung,
neues Symbol etc.) in allen verbundenen Komponenten wider.

Das folgende Rezept baut Menii- und Symbolleiste aus den Daten einer Ressourcendatei auf
und verbindet die Meniibefehle und Symbolleistenschalter mit Action-Objekten.

Die Ressourcendatei

Die Ressourcendatei zu diesem Rezept ist identisch mit der Ressourcendatei aus Rezept 137.
Dort finden Sie auch néhere Erlduterungen zum Aufbau der Ressourcendatei und zur Namens-
gebung fiir die Ressourcen.

Die Klasse MenuFactory

Mit Hilfe der Klasse MenuFactory lassen sich Menii- und Symbolleisten aus Ressourcendateien
einlesen. Unterschiedliche Instanzen der Klasse kdnnen unterschiedliche Meniisysteme repri-
sentieren.

Die Klasse definiert private Felder zum Abspeichern der Ressourcendatei, der Mentileiste, der
Symbolleiste sowie drei Hashtabellen fiir die Meniibefehle, Symbolleistenschalter und Actions.
Die Hashtabellen fiir die Meniibefehle und Symbolleistenschalter baut MenuFactory selbst auf,

372 >> Menii- und Symbolleiste mit Aktionen synchronisieren

die Hashtabelle der Actions wird vom aufrufenden Programm entgegengenommen. Menii-
befehle, Symbolleistenschalter und Actions werden in den Hashtabellen unter den Ressourcen-
namen der Meniibefehle (Schliissel) gespeichert.

Die Klasse MenuFactory geht davon aus, dass es zu jedem Mentibefehl ein Action-Objekt
gibt. Die Mendtileiste mit den Meniibefehlen baut MenuFactory selbststindig aus den
Daten der Ressourcendatei auf. Die Action-Objekte muss der Aufrufer (sprich die
Hauptfensterklasse) erzeugen, in einer HashMap speichern und an den Konstruktor von
MenuFactory iibergeben. Die Klasse MenuFactory konfiguriert die Action-Objekte dann
gemidf den Meniibefehlsdaten aus der Ressourcendatei.

public class MenuFactory {
private ResourceBundle resources;
private JMenuBar menuBar = null;
private JToolBar toolBar = null;
private HashMap<String, JMenultem> menultems
= new HashMap<String, JMenultem>();
private HashMap<String, JButton> toolBarButtons
= new HashMap<String, JButton>();
private HashMap<String, Action> actions = null;

Bei der Instanzierung der Klasse iibergeben Sie dem Konstruktor den Namen der Ressourcen-
datei (gegebenenfalls einschlieBlich relativem Pfad), die zu verwendende Lokale und eine
HashMap mit den Action-Objekten. (Die Definition der Action-Klassen fiir die Mentibefehle
kann die Klasse MenuFactory dem Hauptfenster wegen der Implementierung der actionPerfor-
med()-Methode nicht abnehmen. Stattdessen erwartet MenuFactory, dass das Hauptfenster die
entsprechenden Klassen definiert und fiir jeden Meniibefehl ein Action-Objekt instanziert und
unter dem Namen der Meniibefehlsressource in eine HashMap einfiigt. Die HashMap nimmt
MenuFactory entgegen und konfiguriert dann die Action-Objekte gemiB den Meniibefehlinfor-
mationen aus der Ressourcendatei.)

public MenuFactory(String res, Locale loc,
HashMap<String, Action> actions) {
this.actions = actions;

try {
resources = ResourceBundle.getBundle(res, Toc);

} catch (MissingResourceException mre) {
System.err.printin("Ressourcendatei nicht verfuegbar!");
System.exit(1);

}

Die fiir den Benutzer wichtigste Methode ist getMenuBar(), die eine Referenz auf die JMenuBar-
Meniileiste zuriickliefert. Existiert noch gar keine Meniileiste, wird sie automatisch aufgebaut.
Dazu greift die Methode auf die menuBar-Ressource zu, zerlegt deren Wert in die Namen der
einzelnen Meniis und lésst diese von der protected-Methode createMenu() erzeugen.

Die Methode createMenu() tibernimmt als Argument den Namen einer Meniiressource und lie-
fert als Ergebnis das fertige Menii zuriick. Titel und Mnemonic-Buchstabe des Meniis werden

>> GUI 373

der Ressourcendatei entnommen, wobei Letzterer nicht unbedingt definiert sein muss. Welche
Meniibefehle das Meni enthalten soll, entnimmt die Methode dem Wert der Meniiressource.
Fiir einen Bindestrich wird eine Trennlinie in das Menii eingefiigt, ansonsten wird der Res-
sourcenname des Befehls an die protected-Methode createMenultem() weitergereicht.

Die Methode createMenultem() schlieBlich erzeugt die einzelnen Meniibefehle als Instanzen
von JMenultem. Dazu ruft sie die Methode configAction() auf, die die zu dem Meniibefehl
gehorende Action gemaB den Daten aus der Ressourcendatei konfiguriert. Die fertig konfigu-
rierte Action wird dann durch Aufruf von setAction() mit dem Meniibefehl verbunden.
AnschlieBend wird der Meniibefehl selbst angepasst, d.h., es werden durch Aufruf der entspre-
chenden JMenultem-Methoden diejenigen Action-Elemente, die fiir den Meniibefehl nicht
benotigt werden (Tooltipps und Symbole), ausgeschaltet.

public JMenuBar getMenuBar() {
// wie in Rezept 137

}

protected JMenu createMenu(String name) {
// wie in Rezept 137

}

// Mentibefehl erzeugen, wird von createMenu() aufgerufen
protected JMenultem createMenultem(String name) {
JMenultem mi = new JMenultem();
Action a = configAction(name);

// Menlbefehl mit Aktion verbinden und flr spdteren Zugriff

// in Feld menultems abspeichern

mi.setAction(a);

mi.setToolTipText(null); // keine Tooltipps fiir Menlibefehle
mi.setIcon(null); // keine Symbole filir Menlbefehle
menultems.put(name, mi);

return mi;

}

Die protected-Methode configAction() iibernimmt den Namen einer Meniibefehlsressource
und konfiguriert die zugehorige Action geméB den Angaben, die zu dem Meniibefehl in der
Ressourcendatei gespeichert sind. Der Titel (xxxLabel) ist obligatorisch, muss also in der Res-
sourcendatei definiert sein. Die restlichen Angaben sind optional.

/**

* Action konfigurieren, wird von createMenultem() und

* createToolBarButton() aufgerufen

*/

protected Action configAction(String name) {

Action a = null;

try {
// Action-Objekt zu Mentibefehlsnamen beschaffen
String Tabel = resources.getString(name + "Label");
a = actions.get(name);
a.putValue(Action.NAME, Tabel);

// Mnemonic setzen
String mnemo = null;

374 >> Menii- und Symbolleiste mit Aktionen synchronisieren

try {
mnemo = resources.getString(name + "Mnemonic");
} catch (MissingResourceException mre) {
// mnemo bleibt null
}
if (mnemo != null)
a.putValue(Action.MNEMONIC_KEY, mnemo.codePointAt(0));

// Tastaturkiirzel setzen
String accel = null;
try {
accel = resources.getString(name + "Accelerator");
} catch (MissingResourceException mre) {
// accel bleibt null
}
if (accel !=null) {
KeyStroke ks = KeyStroke.getKeyStroke(
(int) accel.charAt(accel.length()-1),
Event.CTRL_MASK);
a.putValue(Action.ACCELERATOR_KEY, ks);

}

// Bild setzen
String image = null;
try {
image = resources.getString(name + "Symbol");
} catch (MissingResourceException mre) {
// image bleibt null
}
if (image != null) {
URL url = this.getClass().getResource(image);
if (url !=null) {
a.putValue(Action.SMALL_ICON, new Imagelcon(url));
}
}

// ToolTip setzen
String tooltip = null;
try {
tooltip = resources.getString(name + "Tooltip");
} catch (MissingResourceException mre) {
// tooltip bleibt null
}
if (tooltip != null)
a.putValue(Action.SHORT_DESCRIPTION, tooltip);

// Beschreibung (fiir Statusleiste etc.) setzen
String description = null;
try {
description = resources.getString(name + "Description");
} catch (MissingResourceException mre) {
// description bleibt null
}
if (description != null)

>> GUI 375

a.putValue(Action.LONG_DESCRIPTION, description);

} catch (MissingResourceException mre) {
System.err.printin("Meniiressource nicht verfigbar!");
System.exit(1);

1
I

return a;

1
J

Als Pendant zu den Methoden zur Erzeugung der Meniileiste gibt es Methoden zum Aufbau
einer Symbolleiste.
protected JToolBar getToolBar() {

// wie in Rezept 137
}

protected JButton createToolBarButton(String name) {
JButton btn = null;

Action a = configAction(name);

btn = new JButton(a);
btn.setText(null);
toolBarButtons.put(name, btn);

return btn;
1

Zu guter Letzt definiert die Klasse zwei Methoden, die Referenzen auf die Hashtabellen fiir die
Mentibefehle und die Symbolleistenschalter zuriickliefern.

public HashMap<String, JMenultem> getMenultems() {
return menultems;

}

public HashMap<String, JButton> getToolBarButtons() {
return toolBarButtons;

}
}

Verwendung in einem Programm

Eine Frame-Klasse, die mit Hilfe von MenuFactory ihre Meniileiste aufbauen mochte, geht wie
folgt vor:

1. Sie definiert ein private Feld fiir das MenuFactory-Objekt, gegebenenfalls Felder fiir die
Mentileiste und die Symbolleiste sowie eine HashMap-Collection fiir die Action-Objekte:

public class ProgramFrame extends JFrame {
private MenuFactory mf;
private JMenuBar menuBar;
HashMap<String, Action> actions;

2. Sie definiert fiir jeden Meniibefehl eine von AbstractAction abgeleitete Action-Klasse, die
actionPerformed() implementiert.

376 >> Menii- und Symbolleiste mit Aktionen synchronisieren

Hierfiir gibt es eine Vielzahl von Mdoglichkeiten (siehe Rezept 119). Die Fensterklasse zu
diesem Rezept definiert fiir jeden Befehl eine eigene ActionlListener-Klasse ...

public class ProgramFrame extends JFrame {

// innere Action-Klassen fiir Meniibefehle
class FileNewAction extends AbstractAction {
public void actionPerformed(ActionEvent e) {
System.out.printin(" Datei / Neu");
actions.get("FileSave").setEnabled(true);
actions.get("FileSaveAs").setEnabled(true);
}
}
class FileOpenAction extends AbstractAction {
public void actionPerformed(ActionEvent e) {
System.out.printin(" Datei / QOeffnen");
actions.get("FileSave").setEnabled(true);
actions.get("FileSaveAs").setEnabled(true);

}

... und legt im Konstruktor eine HashMap mit den gewiinschten Action-Objekten an. Als
Schliissel zu den Actions dient jeweils der Name der Meniibefehlsressource.

public ProgramFrame() {

// Action-Objekte erzeugen und in Collection

// actions speichern

actions = new HashMap<String, Action>();
actions.put("FileNew", new FileNewAction());
actions.put("FileOpen", new FileOpenAction());
actions.put("FileSave", new FileSaveAction());
actions.put("FileSaveAs", new FileSaveAsAction());
actions.put("FileQuit", new FileQuitAction());
actions.put("EditCut", new EditCutAction());
actions.put("EditCopy", new EditCopyAction());
actions.put("EditPaste", new EditPasteAction());
actions.put("Infolnfo", new InfoInfoAction());

3. Sie erzeugt im Konstruktor eine Instanz von MenuFactory, wobei sie den Pfad zur Ressour-
cendatei, die zu verwendende Lokale und die actions-Collection ibergibt.

public ProgramFrame() {

// Menl aufbauen und als Hauptmenii des Fensters einrichten
mf = new MenuFactory("resources/Program",
Locale.getDefault(), actions);

4. Sie ruft die getMenuBar()- und getToolBar()-Methoden des MenuFactory-Objekts auf, um
Menii- und Symbolleiste aufbauen zu lassen. Die von getMenuBar() zuriickgelieferte Refe-

>> GUI 377

renz libergibt sie an setJMenuBar(). Die von getToolBar() zuriickgelieferte Referenz fiigt sie
in den NORTH-Bereich des Border-Layouts ein.

menuBar = mf.getMenuBar();
setJMenuBar(menuBar) ;

toolBar = mf.getToolBar();
getContentPane().add(toolBar, BorderLayout.NORTH);

Um die Synchronisierung von GUI-Komponenten via Actions zu demonstrieren, deaktiviert
das Hauptfenster dieses Rezepts anfangs die Actions FileSave und FileSaveAs.

public ProgramFrame() (

actions.get("FileSave").setEnabled(false);
actions.get("FileSaveAs").setEnabled(false);

Wenn Sie das Programm starten, miissen sowohl die entsprechenden Meniibefehle als auch
der Speicher-Schalter deaktiviert sein!

< Programm mit Menii
Qatei| Bearbeiten Info

D‘k Heu Strg-M DB @
&5 Offnen... Strg-0
Beenden

Abbildung 72: Anfangszustand des Programms: Die GUI-Komponenten, die mit den Actions
»FileSave« und »FileSaveAs« verbunden sind, sind deaktiviert. Sie werden
aktiviert, sobald Sie einen der Befehle Neu oder Offnen ausfihren.

140 Statusleiste einrichten

Es ist ein offenes Geheimnis: Die Java-API kennt keine eigene Klasse fiir Statusleisten. Wer
dennoch nicht auf seine Statusleiste verzichten mdchte, muss selbst Hand anlegen, ein JPanel
mit passenden Feldern (in der Regel JLabel-Instanzen) ausstatten und in den SOUTH-Bereich
eines Rahmenfensters mit Borderlayout einfiigen.

378 >> Statusleiste einrichten

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Statusleiste_Simple extends JFrame {
private JPanel sb;
private JLabel sb_textfield;

public Statusleiste_Simple() {

// Hauptfenster konfigurieren
setTitle("Swing-Grundgerist");

// JPanel als Statusleiste konfigurieren

sb = new JPanel();
sb.setBackground(Color.LIGHT_GRAY);
sb.setlLayout(new FlowLayout(FlowLayout.LEFT));
sb.setBorder(BorderFactory.createktchedBorder());

// Felder einfiigen

sb_textfield = new Jlabel();

sb.add(sh_textfield);

// JPanel als Statuszeile in Fenster einfiigen
getContentPane().add(sb, BorderlLayout.SOUTH);
sh_textfield.setText("Dies ist die Statusleiste");

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

Listing 174: Aus Statusleiste_Simple.java — Beispiel fiir die Implementierung einer einfachen
Statusleiste

Das Erscheinungsbild einer so konstruierten Statusleiste ldsst sich auf vielerlei Weise anpassen:
beispielsweise durch Einstellung der Hintergrundfarbe (siehe oben, setBackground()-Aufruf)
oder durch Auswahl eines Rahmens (siehe oben, createEtchedBorder()-Aufruf). Fir die einzel-
nen Felder der Statusleiste konnen entsprechende GUI-Komponenten direkt oder wiederum ein-
gebettet in untergeordnete JPanel-Instanzen eingefiigt werden. Abstinde und Position der
Felder k6nnen unter anderem durch Trennstriche (Instanzen von JSeparator) und Abstandshal-
ter (Box.createHorizontalStrut() fiir Abstinde fester Breite bzw. Box.createHorizontalGlue()
zum »Aufsaugen« beliebigen Freiraums) festgelegt werden.

Die Klasse StatusBar

Die nachfolgend definierte Klasse StatusBar kann Statusleisten aus einer beliebigen Zahl von
JLabel-Feldern erzeugen.

>> GUI 379

= Programm mit Menii
Datei Bearbeiten Info

% b 0

Dies ist die Statusleiste [% |v |z |

Abbildung 73: GUI-Programm mit Statusleiste

Das Design der von StatusBar erzeugten Statusleisten ist fix, d.h. im Code der Klasse festge-
legt (kann aber natiirlich vom Programmierer gedndert werden):

» Der Rahmen besteht aus einer CompoundBorder-Instanz, die einen dekorativen Rahmen
(SoftBevelBorder) mit einfachen Rindern unterschiedlicher Bereite (EmptyBorder) verbindet:

setBorder(new CompoundBorder(
new SoftBevelBorder(SoftBevelBorder.LOWERED),
new EmptyBorder(1,5,0,5)));

P> Auf das erste Feld folgt stets eine Glue-Komponente, die fiir den Fall, dass das Fenster
breiter ist als die MaximalgroBe des Felds, den restlichen Raum einnimmt.

add(Box.createHorizontalGlue());

P Gibt es mehrere Felder, werden diese durch zwei 5 Pixel breite Abstandshalter und einen
dazwischen geschalteten vertikalen Trennstrich getrennt.

add(Box.createHorizontalStrut(5));

JSeparator sep = new JSeparator(SwingConstants.VERTICAL);
sep.setMaximumSize(new Dimension(2,200));

add(sep);

add(Box.createHorizontalStrut(5));

Erzeugt werden die Statusleisten von den Konstruktoren der Klasse, die ansonsten nur noch
eine einzige Methode namens getField(int index) besitzt, die eine Referenz auf das index-te
Feld in der Statusleiste zuriickliefert.

import java.awt.*;

import javax.swing.*;
import javax.swing.border.*;
import java.util.Arraylist;

/**
* Klasse fiir Statusleisten
*/

Listing 175: StatusBar.java

380 >> Statusleiste einrichten

class StatusBar extends JPanel {
private ArraylList<JlLabel> fields = new ArraylList<JlLabel>();

/**
* erzeugt eine Statusleiste mit einem einzigen Textfeld, das
* maximal 400 Pixel breit wird
*/
public StatusBar() f{
setlayout(new BoxLayout(this, BoxLayout.X_AXIS));
setBorder(new CompoundBorder(
new SoftBevelBorder(SoftBevelBorder.LOWERED),
new EmptyBorder(1,5,0,5)));

JLabel 1b = new Jlabel(" ");
1b.setPreferredSize(new Dimension(400, 16));
1b.setMinimumSize(new Dimension(400, 16));
fields.add(1b);

add(1b);
add(Box.createHorizontalGlue());
}

/~k~k
* erzeugt eine Statusleiste mit einem einzigen Textfeld, dessen
* bevorzugte und maximale Breite als Argument {ibergeben wird
*/
public StatusBar(int width) {
setlayout(new BoxLayout(this, BoxLayout.X_AXIS));
setBorder(new CompoundBorder(
new SoftBevelBorder(SoftBevelBorder.LOWERED),
new EmptyBorder(1,5,0,5)));

JLabel 1b = new JLabel(" ");
1b.setPreferredSize(new Dimension(width, 16));
1b.setMinimumSize(new Dimension(width, 16));
fields.add(1b);

add(1b);
add(Box.createHorizontalGlue());

}

/~k~k
* erzeugt eine Statusleiste mit den {ibergebenen JlLabel-Komponenten
* als Feldern
*/
public StatusBar(JdLabel... Tabels) {
setlayout (new BoxLayout(this, BoxLayout.X_AXIS));
setBorder(new CompoundBorder(
new SoftBevelBorder(SoftBevelBorder.LOWERED),
new EmptyBorder(1,5,0,5)));

Listing 175: StatusBar.java (Forts.)

>> GUI 381

for (int 1 = 0; i < labels.length; ++i) {
fields.add(labels[i]);

add(Tabels[il);
add(Box.createHorizontalStrut(5));

if (1 ==0)
add(Box.createHorizontalGlue());

JSeparator sep = new JSeparator(SwingConstants.VERTICAL);
sep.setMaximumSize(new Dimension(2,200));

add(sep);
add(Box.createHorizontalStrut(5));

}

public JlLabel getField(int index) {
if (index >= 0 && index < fields.size())
return fields.get(index);
else
throw new I1legalArgumentException();

Listing 175: StatusBar.java (Forts.)

Um eine einfache Statusleiste mit einem einzigen Feld einzurichten, miissen Sie lediglich den
ersten oder zweiten Konstruktor aufrufen und die erzeugte Statusleiste in den SOUTH-Bereich
des Rahmenfensters einfiigen:

statusBar = new StatusBar();
getContentPane().add(statusBar, BorderLayout.SOUTH);

Durch Aufruf von getField(0) konnen Sie auf das Textfeld der Statusleiste zugreifen und
einen Text anzeigen.

statusBar.getField(0).setText("Dies ist die Statusleiste");

Wenn Sie mehrere Textfelder in die Statusleiste integrieren moéchten, miissen Sie die einzelnen
Textfelder als JLabel-Instanzen vorab erzeugen, die bevorzugte und die minimale GroBe fest-
legen und dann als Auflistung oder Array an den dritten Konstruktor ibergeben:

// Felder filir Statusleiste erzeugen

JLabel fieldl = new JLabel("");
fieldl.setPreferredSize(new Dimension(400,20));
fieldl.setMinimumSize(new Dimension(200,20));

Listing 176: Aus ProgramFrame.java

382 >> Hinweistexte in Statusleiste

JLabel field2 = new JLabel("X");
field2.setPreferredSize(new Dimension(20,20));
field2.setMinimumSize(new Dimension(20,20));

JLabel field3 = new JLabel("Y");
field3.setPreferredSize(new Dimension(20,20));
field3.setMinimumSize(new Dimension(20,20));

JLabel field4 = new JLabel("Z");
field4.setPreferredSize(new Dimension(20,20));
field4d.setMinimumSize(new Dimension(20,20));

// Statusleiste einrichten

statusBar = new StatusBar(fieldl, field2, field3, field4);
getContentPane().add(statusBar, BorderLayout.SOUTH);
statusBar.getField(0).setText("Dies ist die Statusleiste");

Listing 176: Aus ProgramFrame.java (Forts.)

Das Programm zu diesem Rezept erweitert das Programm aus Rezept 139 um eine Statusleiste.

141 Hinweistexte in Statusleiste

Um Hinweistexte zu Mentibefehlen und Symbolleistenschaltern in der Statusleiste anzuzeigen,
miissen Sie die Maus iiberwachen. Wird die Maus iiber die GUI-Komponente eines Menii-
befehls oder eines Symbolleistenschalters bewegt, zu dem es eine Textbeschreibung fiir die
Statusleiste gibt, ist dieser in der Statusleiste anzuzeigen. Umgekehrt ist die Textbeschreibung
zu 16schen, wenn die Maus wieder von der Komponente wegbewegt wird. Die entsprechenden
Ereignisbehandlungsmethoden des Mouselistener-Interfaces lauten mousekntered() und mouse-
Exited().

// Maus wird {iber registrierte GUI-Komponente bewegt
// -> Hinweistest anzeigen
public void mouseEntered(MouseEvent e) {

// Hinweistext der Komponente abfragen, Uber der
// der Mauszeiger steht

Component ¢ = (Component) e.getSource();

String hint = hintMap.get(c);

// Gibt es einen Hinweistext, schreibe diese in die
// das Feld der Statusleiste
if (hint !=null)
statusBarField.setText(hint);
}

// Maus wird von registrierter GUI-Komponente wegbewegt

// -> Hinweistest ausblenden

pubTlic void mouseExited(Mousekvent e) {
statusBarField.setText(" ");

}

>> GUI 383

Die Implementierung der mouseEntered()-Methode setzt voraus, dass

P hintMap eine Map-Collection ist, in der die Hinweistexte fiir die GUI-Komponenten abge-
legt sind, mit den Komponentenreferenzen als Schliissel.

P statusBarField auf das JLabel-Feld der Statusleiste weist, in welches der Hinweistext aus-
gegeben werden soll.

Natiirlich konnte man hintMap und statusBarField als Felder der Rahmenfensterklasse definie-
ren und auch die Methoden des Mousel istener-Interfaces in der Fensterklasse implementieren.
Besser wieder verwendbar ist aber die Definition einer eigenen Manager-Klasse, die die Ver-
waltung der Textbeschreibungen iibernimmt.

import java.util.WeakHashMap;
import java.awt.*;

import java.awt.event.*;
import javax.swing.*;

/~k~k

* Klasse zur Verwaltung von Hinweistexten flir die Statusleiste
*

* @author Dirk Louis

*/

public class StatusBarHintManager extends MouseAdapter {
// Statusleistenfeld flir Anzeige
private JlLabel statusBarField;

// Container zum Sammeln der Hinweise
// Key = Komponente, Value = Text
private WeakHashMap<Component, String> hintMap;

// Konstruktor

pubTlic StatusBarHintManager(JLabel statusBarField) f{
hintMap = new WeakHashMap<Component, String>();
this.statusBarField = statusBarField;

// Methode zum Registrieren von GUI-Komponenten und der zugehdrigen
// Beschreibung
public void addComponentHint(Component c, String text) {
hintMap.put(c, text);
c.addMouseListener(this);
}

// Maus wird {iber registrierte GUI-Komponente bewegt
// -> Hinweistest anzeigen
public void mouseEntered(Mousekvent e) {
// wie oben
}

Listing 177: StatusBarHintManager.java

384 >> Hinweistexte in Statusleiste

// Maus wird von registrierter GUI-Komponente wegbewegt
// -> Hinweistest ausblenden
public void mouseExited(MouseEvent e) {
// wie oben
}

Listing 177: StatusBarHintManager.java (Forts.)

Neben den Methoden zur Mausiiberwachung und einem Konstruktor, der die Referenz auf das
Statusleistenfeld fiir die Anzeige der Hinweistexte ibernimmt, definiert die Klasse nur noch
eine einzige Methode: addComponentHint(), mit der Komponenten inklusive Text registriert
werden konnen.

Um Hinweistexte zu einzelnen GUI-Komponenten eines Programms in die Statusleiste einzu-
blenden, gehen Sie so vor, dass Sie

1. in der Fensterklasse eine Instanzvariable fiir den StatusBarHintManager definieren:

private StatusBarHintManager sbHintManager;

2. im Konstruktor der Klasse, nach Einrichtung der Statusleiste, eine Instanz der Klasse Sta-
tusBarHintManager erzeugen und die GUI-Komponenten registrieren, fiir die in der Status-
leiste Hinweistexte angezeigt werden sollen.

Wie Schritt 2 im Detail zu implementieren ist, hdngt von dem jeweiligen Programm ab. Das Pro-
gramm zu diesem Rezept stellt beispielsweise eine Erweiterung des Programms aus Rezept 139
dar. Dort wurden Menii- und Symbolleiste weitgehend automatisch mit Hilfe der Klasse Menu-
Factory aufgebaut. Referenzen auf die GUI-Komponenten fiir die Meniibefehle und Symbolleis-
tenschalter kénnen mittels mf.getMenultems().values() bzw. mf.getToolBarButtons().values()
beschafft werden (wobei mf eine Instanz von MenuFactory ist). Den einzelnen Komponenten sind
Action-Objekte zugeordnet, in denen unter dem Schliissel LONG_DESCRIPTION auch Beschreibun-
gen fiir die einzelnen Aktionen gespeichert sind.

// StatusBarHintManager erzeugen
sbHintManager = new StatusBarHintManager(statusBar.getField(0));

String description = null;
Action a;

// Collection der Mentbefehl-Komponenten durchlaufen
for (JMenultem m : mf.getMenultems().values()) {

// Action-Objekt zu Komponente besorgen

a = m.getAction();

// Wenn Action-Objekt vorhanden, Hinweistext abfragen
if (a !=null) {
description = (String) a.getValue(Action.LONG_DESCRIPTION);

Listing 178: Aus ProgramFrame.java — Komponenten mit Hinweistexten bei
StatusBarHintManager registrieren

>> GUI 385

// Wenn Hinweistext zu Komponenten verfiigbar, Komponente
// samt Text registrieren
if (description !=null)
sbHintManager.addComponentHint(m, description);
}
}
// Collection der Symbolleistenschalter durchlaufen
for (JButton b : mf.getToolBarButtons().values()) {
a = b.getAction();
if (a !=null) {
description = (String) a.getValue(Action.LONG_DESCRIPTION);
if (description != null)
sbHintManager.addComponentHint(b, description);

Listing 178: Aus ProgramFrame.java — Komponenten mit Hinweistexten bei
StatusBarHintManager registrieren (Forts.)

2 Programm mit Menii
Datei | Bearbeiten | Info

4 % Ausschneiden Strg-x

@ Kopieren Strg-C

infugﬁn Strg-\

Fiigt den Inhalt der Zwischenablage ein. | X | Y | £ |

Abbildung 74: Programm mit Hinweistexten in der Statusleiste

142 Dateien mit Datei-Dialog (inklusive Filter) 6ffnen

Einen Datei-Dialog anzuzeigen und sich den vom Anwender ausgewdhlten Dateinamen
zuriickliefern zu lassen, ist nicht sonderlich schwer:

JFileChooser openDialog = new JFileChooser();
if (JFileChooser.APPROVE_OPTION == openDialog.showOpenDialog(this)) {

// Datei abfragen
File f = openDialog.getSelectedFile();

// Priifen, ob File-Objekt wirklich eine Datei ist
// Wenn ja und wenn Teshar, &ffnen
if(f.isFile() && f.canRead()) {

386 >> Dateien mit Datei-Dialog (inklusive Filter) 6ffnen

Oft sind mit dem Offnen einer Datei aber noch weitere Aspekte verbunden:

» Wie erreicht man, dass der Offnen—Dialog sich bei erneutem Aufruf an das Verzeichnis
erinnert, aus welchem der Anwender das letzte Mal die zu 6ffnende Datei ausgewéhlt hat?

p Wie installiert man einen Dateifilter, damit im ()ffnen—Dialog nur Dateien mit bestimmten
Extensionen angezeigt werden?

» Welche Aufgaben sollte eine fileOpen-Methode neben dem reinen Offnen noch erledigen?

Startverzeichnis des Offnen-Dialogs einstellen

Per Voreinstellung ladt JFileChooser das Heimverzeichnis des Anwenders in den Offnen-Dia-
log. Soll der Dialog anfangs ein anderes Verzeichnis anzeigen, miissen Sie setCurrentDirec-
tory() aufrufen und eine File-Instanz, die das gewiinschte Verzeichnis repréisentiert,
iibergeben. Dabei muss das File-Objekt nicht unbedingt das Verzeichnis selbst sein, es kann
auch eine Datei aus dem Verzeichnis repriasentieren.

Diesen Umstand kénnen Sie sich zu Nutze machen, wenn Sie bei Aufruf des Dialogs das Ver-
zeichnis anzeigen wollen, aus dem die zuletzt geéffnete Datei ausgewihlt wurde. Speichern
Sie einfach nach jedem erfolgreichen Laden einer Datei das File-Objekt in einem Feld der
Fensterklasse und setzen Sie vor jedem Dialogaufruf das aktuelle Verzeichnis:

public class ProgramFrame extends JFrame f{
private File TastDir = null; // zuletzt benutztes Verzeichnis
protected void fileOpen() {

// Zuletzt verwendetes Verzeichnis auswdhlen
openDialog.setCurrentDirectory(lastDir);

if (JFileChooser.APPROVE_OPTION == openDialog.showOpenDialog(this)) {

// Datei abfragen
File f = openDialog.getSelectedFile();

if(f.isFile() && f.canRead())
try {

// Text aus Datei einlesen
// Aktuelles Verzeichnis sichern
lastDir = f;

} catch (IOException e) {

System.err.printin("Fehler beim (ffnen");
}

Listing 179: Aus ProgramFrame.java

>> GUI 387

Achten Sie darauf, TastDir anfangs auf null zu setzen. Beim ersten Aufruf des Offnen—Dialogs,
wenn setCurrentDirectory() dann null als Argument tiberreicht wird, startet der Dialog mit
dem Heimverzeichnis des Anwenders.

Filter

Wenn Sie nur Dateien mit speziellen Dateiextensionen im Offnen-Dialog anzeigen wollen,
miissen Sie zu diesem Zweck einen FileFilter schreiben. FileFilter werden von der Klasse
Jjavax.swing.filechooser.FileFilter abgeleitet und tiberschreiben die abstrakten Methoden

P boolean accept(File f), die true zurtickliefern soll, wenn die Datei f angezeigt werden soll.

(JFileChooser geht die Dateien im aktuellen Verzeichnis durch und iibergibt sie zur Uber-
prifung an die accept()-Methoden der registrierten FileFilter.)

P String getDescription(), die die Dateibeschreibung (Text in Datentyp-Listenfeld des Dialogs)
zuriickliefert.

Die folgende Klasse ConfigurableFileFilter implementiert einen generischen FileFilter. Der
Benutzer der Klasse braucht dem Konstruktor einfach nur die Textbeschreibung und die Liste
der Dateiextensionen (als Auflistung oder als Array) zu {ibergeben - fertig!

import javax.swing.filechooser.FileFilter;
import java.io.File;

/**

* Generischer Dateifilter

*/

class ConfigurableFileFilter extends FileFilter {
private String description;
private String[] extensions;

/**
* Filter mit Beschreibung und Liste von Dateierweiterungen erzeugen
*/
public ConfigurableFileFilter(String desc, String... ext) {
this.description = desc;
this.extensions = ext;
}

/**

* Prifen, ob die gegebene Datei zu einer der registrierten Datei-
* erweiterungen gehdrt. Nur File-Objekte, fiir die true zuriick-

* geliefert wird, werden im Datei-Dialog angezeigt.

*/

public boolean accept(File f) f{

// Verzeichnisse alle anzeigen
if(f.isDirectory() == true)
return true;

Listing 180: ConfigurableFileFilterjava — ein allgemein verwendbarer File-Filter

388 >> Dateien mit Datei-Dialog (inklusive Filter) 6ffnen

else if (f.isFile()) {
for(String s : extensions)
if(f.getName().endsWith(s))
return true;
}

return false;
}

public String getDescription() {
return description;
}

Listing 180: ConfigurableFileFilter.java — ein allgemein verwendbarer File-Filter (Forts.)

fileOpen-Methode
Wie sollte eine fileOpen-Methode aufgebaut sein? Hier einige Vorschldge:

Aktion Datei zur internen | Dateibetrachter Dateieditor3

Auswertung durch (OHOEEEEER (Offnen- und
Programm laden Speichern-Befehl)

1. Priifen, ob es nicht - - X
gesicherte Anderungen gibt

2. Offnen-Dialog anzeigen X X X

3. Ausgewdhlte Datei laden X X X

4, Listener fiir Anderungen - - X
in Datei registrieren

5. Speichern-Befehl - - x (optional)
deaktivieren

6. Dateiname in Fenstertitel - X X
einblenden

Tabelle 37: Aufbau von fileOpen-Methoden

Das Programm zu diesem Rezept entspricht einem einfachen Dateibetrachter. Der gesamte
Code zum Offnen von Dateien ist in der fileOpen()-Methode untergebracht, die bei Auswahl
des Datei/Offnen-Befehls ausgefiihrt wird.

import java.awt.*;

import java.awt.event.*;
import javax.swing.*;
import javax.swing.text.*;
import javax.swing.event.*;
import java.util.*;

Listing 181: ProgramFrame.java

3. siehe Rezepte 143 und 146

>> GUI

import java.io.*;

public class ProgramFrame extends JFrame {
private JMenuBar menuBar;
private JMenultem miOpen;
private JMenultem miQuit;

// Textfeld
private JScrollPane scrollpane;
private JTextArea textpane;

// Dialog
private JFileChooser openDialog;
private ConfigurableFileFilter filter;

private final String programName = "Programm";
private File file = null; // aktuell gedffnete Datei
private File TastDir = null; // zuletzt benutztes Verzeichnis

public ProgramFrame() {

// Hauptfenster konfigurieren
setTitle(programName);

// Menli aufbauen und als Hauptmenii des Fensters einrichten
menuBar = new JMenuBar();

JMenu fileMenu = new JMenu("Datei");
fileMenu.setMnemonic(KeyEvent.VK_D);
miOpen = new JMenuItem("Offnen");
miOpen.setMnemonic(KeyEvent . VK_F);
miOpen.addActionlListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
fileOpen();
}
1);
miQuit = new JMenultem("Beenden");
miQuit.setMnemonic(KeyEvent.VK_B);
miQuit.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
System.exit(0);
}
1)

fileMenu.add(miOpen);
fileMenu.add(miQuit);
menuBar.add(fileMenu);

setJMenuBar (menuBar);

Listing 181: ProgramFrame.java (Forts.)

389

390 >> Dateien mit Datei-Dialog (inklusive Filter) 6ffnen

// Textfeld einrichten

textpane = new JTextArea();

textpane.setlinelWrap(true);
textpane.setWrapStyleWord(true);
textpane.setBackground(Color.WHITE);
textpane.setFont(new Font("SansSerif", Font.PLAIN, 12));
scrollpane = new JScrollPane();
scrollpane.getViewport().add(textpane, null);
getContentPane().add(scrollpane, BorderlLayout.CENTER);

// Filter fir Datei-Dialog konfigurieren

openDialog = new JFileChooser();

filter = new ConfigurableFileFilter("Textdokumente (.txt, .html)",
"txt", "html");

openDialog.addChoosableFileFilter(filter);

setDefaultCloseOperation(JFrame. EXIT_ON_CLOSE);

/*

* Datei o6ffnen und einlesen
*/

protected void fileOpen() {

// Zuletzt verwendetes Verzeichnis auswdhlen
openDialog.setCurrentDirectory(lastDir);

if (JFileChooser.APPROVE_OPTION == openDialog.showOpenDialog(this)) {

// Datei abfragen
File f = openDialog.getSelectedFile();

if(f.isFile() && f.canRead())
try

// Text aus Datei einlesen
FileReader in = new FileReader(f);
textpane.read(in, f);

in.close();

// Felder und Fenstertitel aktualisieren

file = f;
lastDir = f;
adjustWindowTitle();

Listing 181: ProgramFrame.java (Forts.)

>> GUI 391

} catch (IOException e) {
System.err.printin("Fehler beim Offnen von
+ this.file.getName());

/*
* Dateinamen in der Titelleiste des Fensters anzeigen
*/
private void adjustWindowTitle() {
String title;

if (file == null)

title = "Unbenannt";
else

title = file.getName();

title = programName + " - " + title;
this.setTitle(title);

Listing 181: ProgramFrame.java (Forts.)

143 Dateien mit Speichern-Dialog speichern

Einen Speichern-Dialog anzuzeigen und die aktuellen Daten in der vom Anwender ausge-
wihlten Datei zu speichern, ist nicht sonderlich schwer:

JFileChooser openDialog = new JFileChooser();
if (JFileChooser.APPROVE_OPTION == openDialog.showSaveDialog(this)) {

// Datei abfragen
file = openDialog.getSelectedFile();

// Daten in Datei file speichern
try f

Oft sind mit dem Speichern einer Datei aber noch weitere Aspekte verbunden:
P Viele Anwendungen bieten Speichern- und Speichern unter-Meniibefehle an.

» Wie verhindert man, dass Anderungen am aktuellen Dokument verloren gehen, wenn der
Anwender, ohne zuvor gespeichert zu haben, ein neues Dokument anlegt oder 6ffnet?

P> Wie erreicht man, dass der Speichern-Befehl nur aktiviert ist, wenn es noch nicht gespei-
cherte Anderungen gibt?

Die folgenden Ausfiihrungen beziehen sich auf ein Programm, das Textdateien in einer
JTextArea-Komponente namens textpane anzeigt und fiir die Dateiverwaltung - wie viele

392 >> Dateien mit Speichern-Dialog speichern

andere Anwendungen auch - die Befehle DATEI/NEU, DATEI/OFFNEN, DATEI/SPEICHERN und
DATEI/SPEICHERN UNTER anbietet.

Speichern - Speichern unter
Der SPEICHERN-Befehl soll das aktuelle Dokument in der zugehérigen Datei speichern.

Was aber, wenn es zu dem aktuellen Dokument keine Datei gibt (beispielsweise weil das Doku-
ment nicht mit dem DATEI/OFFNEN-Befehl aus einer Datei geladen, sondern mit DATEI/NEU neu
angelegt wurde)? Nun, ganz einfach, in diesem Fall leitet man zur fileSaveAs()-Methode weiter.

/‘k*

* Datei speichern

*/

protected boolean fileSave() {

// Text noch nicht mit Datei verbunden, dann nach fileSaveAs() umleiten
if (file == null) {

return fileSaveAs();
}

try {
// Text aus JTextArea textpane in Datei schreiben
FileWriter out = new FileWriter(file);
textpane.write(out);
out.close();

return true;
} catch (IOException e) {

System.err.printin("Fehler beim Speichern von " + file.getName());
return false;

Listing 182: fileSave-Methode fir Speichern-Befehl

Wichtig ist, dass file ein Feld vom Typ File ist, das entweder das File-Objekt zum aktuellen
Dokument speichert oder null ist. Mit anderen Worten: Der DATEI/OFFNEN-Befehl muss file
das gerade geoffnete File-Objekt zuweisen (siehe Rezept 142), der DATEI/NEU-Befehl muss
file auf null setzen (siehe weiter unten).

Der SPEICHERN UNTER-Befehl soll das aktuelle Dokument unter einem neuen Namen abspei-
chern. Da der Speichervorgang selbst bereits in fileSave() implementiert wurde, bietet es sich
an, in fileSaveAs() lediglich

1. den Namen abzufragen,
2. dann fileSave() aufzurufen

3. und gegebenenfalls noch den Fenstertitel zu aktualisieren.

>> GUI 393

/**

* Datei speichern unter

*/

protected boolean fileSaveAs() {

// Dateiname abfragen, unter dem gespeichert werden soll

// Dann Speichern-Befehl ausfiihren
openDialog.setCurrentDirectory(lastDir);

if (JFileChooser.APPROVE_OPTION == openDialog.showSaveDialog(this)) {

file = openDialog.getSelectedFile();

// Zum eigentlichen Speichern fileSave() aufrufen
if (fileSave() == true) {

// Fenstertitel aktualisieren
adjustWindowTitle();

// ruckmelden, dass gespeichert wurde
return true;
}

return false;
}

return false;

Listing 183: fileSaveAs-Methode fir Speichern unter-Befehl

Die Methode adjustWindowTitle() wurde bereits als Teil des Programms aus Rezept 142
vorgestellt.

Vorsicht Offnen-Befehl!

Wenn der Anwender ein neues Dokument anlegt oder ein bereits bestehendes Dokument 6ff-
net, besteht immer die Gefahr, dass er vergessen hat, die letzten Anderungen im aktuellen
Dokument zu speichern. Ein gutes Programm sollte daher tiberwachen, ob es nicht gespei-
cherte Anderungen gibt, und dem Anwender gegebenenfalls noch einmal Gelegenheit zum
Sichern geben.

Zur Uberwachung nicht gespeicherter Anderungen definieren Sie am besten in der Fenster-
klasse ein boolean-Feld, welches durch seinen Wert anzeigt, ob es nicht gespeicherte Anderun-
gen gibt (true) oder nicht (false):

public class ProgramFrame extends JFrame {)
private boolean dirty = false; // gibt es nicht gespeicherte Anderungen?

Im néchsten Schritt miissen Sie sicherstellen, dass das dirty-Feld bei Anderungen am aktuel-
len Dokument auf true gesetzt wird. Wenn die Dokumentdaten intern in einer Document-
Instanz verwaltet werden (was bei den Swing-Textkomponenten automatisch der Fall ist),
konnen Sie diese Aufgabe von einem selbst geschriebenen DocumentlListener erledigen lassen:

394 >> Dateien mit Speichern-Dialog speichern

/**

* DocumentAdapter zur Uberwachung nicht gespeicherter Anderungen

*/

class DocumentAdapter implements javax.swing.event.Documentlistener {

private void setDirty() {
dirty = true;
}

public void changedUpdate(DocumentEvent e) {
if (Mdirty) {
setDirty();
}
}
public void insertUpdate(DocumentEvent e) {
if (Mdirty) {
setDirty();
}
}
public void removeUpdate(DocumentEvent e) {
if (Mdirty) {
setDirty();
}

Listing 184: Ein DocumentListener zum Registrieren von nicht gespeicherten Anderungen

Beachten Sie, dass der DocumentAdapter eine innere Klasse der Fensterklasse ist, damit auf das
dirty-Feld zugegriffen werden kann.

Jetzt miissen Sie noch dafiir sorgen, dass der DocumentListener in den DATEI/NEU- und DATEI/
OFFNEN-Befehlen fiir die neuen Dokumente registriert wird.

protected void fileNew() {
// Neues Dokument erzeugen und in Textkomponente anzeigen
PlainDocument doc = new PlainDocument();
doc.addDocumentListener(new DocumentAdapter());
textpane.setDocument(doc);

}

protected void fileOpen() f
if (JFileChooser.APPROVE_OPTION == openDialog.showOpenDialog(this)) {

// Datei abfragen
File f = openDialog.getSelectedFile();

if(f.isFile() && f.canRead())
try {

>> GUI 395

// Dokumentlistener registrieren
PlainDocument doc = (PlainDocument) textpane.getDocument();
doc.addDocumentListener(new DocumentAdapter());

}

Und wann wird dirty auf false gesetzt? Entweder wenn ein neues Dokument angelegt oder
geoffnet wird (also ebenfalls in den Methoden fileNew() und fileOpen()) oder wenn gespei-
chert wird (also in der Methode fileSave()).

Der dritte und letzte Schritt ist, eingangs der fileNew()- und fileOpen()-Methoden zu priifen,
ob es nicht gespeicherte Anderungen gibt. Da dies, wie Sie gleich sehen werden, nicht mit
einer einfachen Abfrage von dirty getan ist, empfiehlt sich die Auslagerung des Codes in eine
eigene Methode, hier nothingToSave() genannt. Der endgiiltige Code der fileNew()- und file-
Open()-Methoden sieht damit wie folgt aus:

protected void fileNew() f{

// Zuerst dem Anwender Gelegenheit, nicht gespeicherte Anderungen
// noch zu sichern
if (nothingToSave()) {

// Neues Dokument erzeugen und in Textkomponente anzeigen
PlainDocument doc = new PlainDocument();
doc.addDocumentListener(new DocumentAdapter());
textpane.setDocument(doc);

// Da es in neuem Dokument keine zu speicherenden Anderungen gibt,
// dirty auf false setzen
dirty = false;

// file und Fenstertitel aktualisieren
file = null;
adjustWindowTitle();

protected void fileOpen() f{

// Zuerst dem Anwender Gelegenheit, nicht gespeicherte Anderungen
// noch zu sichern
if (!nothingToSave()) {
return;
}

// Zuletzt verwendetes Verzeichnis auswdhlen
openDialog.setCurrentDirectory(lastDir);

if (JFileChooser.APPROVE_OPTION == openDialog.showOpenDialog(this)) {

Listing 185: Aus ProgramFrame.java

396 >> Dateien mit Speichern-Dialog speichern

// Datei abfragen
File f = openDialog.getSelectedFile();

if(f.isFile() && f.canRead())
try {
// Text aus Datei einlesen
FileReader in = new FileReader(f);
textpane.read(in, f);
in.close();

// Dokumentlistener registrieren
PlainDocument doc = (PTainDocument) textpane.getDocument();
doc.addDocumentListener(new DocumentAdapter());

// Da es in neu gedffnetem Dokument keine zu speichernden
// Anderungen gibt, dirty auf false setzen
dirty = false;

// Felder und Fenstertitel aktualisieren

file = f;
lastDir = f;
adjustWindowTitle();

} catch (IOException e) { .
System.err.printin("Fehler beim Offnen von
+ this.file.getName());

}
protected boolean fileSave() {

// Text noch nicht mit Datei verbunden, dann nach fileSaveAs() umleiten
if (file == null) {

return fileSaveAs();
}

try {
// Text in Datei schreiben
FileWriter out = new FileWriter(file);
textpane.write(out);
out.close();

// Da es nach Speicherung keine zu speichernden Anderungen gibt,
// dirty auf false setzen
dirty = false;

return true;

} catch (IOException e) {
System.err.printin("Fehler beim Speichern von " + file.getName());

Listing 185: Aus ProgramFrame.java (Forts.)

>> GUI 397

return false;

Listing 185: Aus ProgramFrame.java (Forts.)

Bleibt noch die Methode nothingToSave().

private boolean nothingToSave() {

// Keine ungespeicherten Anderungen? Dann gleich true zuriickgeben
if (Mdirty) {

return true;
}

// Dem Anwender die Wahl Tassen, ob er speichern, nicht speichern
// oder abbrechen mdchte
int option = JOptionPane.showConfirmDialog(this,
"Anderungen speichern?",
"Texteditor",
JOptionPane.YES_NO_CANCEL_OPTION);
switch (option) {
case JOptionPane.YES_OPTION: // Anderungen speichern
return fileSave();

case JOptionPane.NO_OPTION: // Anderungen verwerfen
return true;

case JOptionPane.CANCEL_OPTION:

default: // Abbrechen
return false;

}

Listing 186: Methode, die dem Anwender die Gelegenheit gibt, nicht gespeicherte
Anderungen zu sichern (aus ProgramFrame.java)

Als Erstes priift die Methode, ob es {iberhaupt nicht gesicherte Anderungen gibt. Falls nicht,
liefert sie true zuriick, was bedeutet, dass die Methode, die nothingToSave() aufgerufen hat
(fileNew() oder fileOpen()), weiter ausgefiihrt wird.

Gibt es nicht gespeicherte Anderungen, 6ffnet die Methode einen Bestitigungsdialog, der den
Anwender zum Speichern auffordert. Verlasst der Anwender den Dialog durch Driicken der
JA-Taste, wird das aktuelle Dokument mit fileSave() gespeichert und der Riickgabewert von
fileSave() zuriickgegeben. (Wenn also beim Speichern alles glatt geht, wird true zurtickgelie-
fert.) Driickt der Anwender die NEIN-Taste, wird nichts gespeichert, aber true zuriickgeliefert
(d.h., die Anderungen gehen verloren). Die ABBRECHEN-Taste schlieBlich liefert false zuriick
und die aufrufenden Methoden werden nicht weiter ausgefiihrt.

398 >> Unterstiitzung fiir die Zwischenablage

lexteditor

IZ‘ Anderungen speichern?

| Ja | | Hein | | Abbrechen |

Abbildung 75: Aufforderung zum Speichern der letzten Anderungen

Speichern-Befehl nur aktivieren, wenn es etwas zu speichern gibt

Manche Anwendungen deaktivieren den Speichern-Befehl nach erfolgreicher Speicherung
und aktivieren ihn erst, wenn es nicht gespeicherte Anderungen gibt.

Ausgehend von der im vorangehenden Abschnitt beschriebenen Infrastruktur ist dieses Fea-
ture schnell eingerichtet.

1. In den Methoden fileNew(), fileOpen() und fileSave() deaktivieren Sie den Datei/Spei-
chern-Befehl (nach dem Setzen von dirty):

// Da es in neuem Dokument keine zu speicherenden Anderungen

// gibt, dirty auf false setzen u. Speichern-Befehl deaktivieren
dirty = false;

miSave.setEnabled(false);

2. In der setDirty()-Methode des DocumentListeners aktivieren Sie den Speichern-Befehl:

class DocumentAdapter
implements javax.swing.event.Documentlistener {

private void setDirty() {
dirty = true;

// Speichern-Befehl aktivieren
miSave.setEnabled(true);

144 Unterstitzung fiir die Zwischenablage

Die Swing-Textkomponenten verfiigen bereits iiber vordefinierte Action-Objekte zur Unter-
stiitzung der Zwischenablagebefehle. Der folgende Code zeigt, wie Sie die Action-Objekte mit
Meniibefehlen verbinden kénnen:

import java.awt.*;

import java.awt.event.*;
import javax.swing.*;
import javax.swing.text.*;
import javax.swing.event.*;

public class Start extends JFrame {
JMenultem miCut;
JMenultem miCopy;

Listing 187: Programm, das den Austausch von Text tiber die Zwischenablage unterstitzt

>> GUI 399

JMenultem miPaste;

public Start() {
// Hauptfenster konfigurieren
setTitle("Zwischenablage fir JTextArea");

// JTextArea einrichten
JTextArea textpane = new JTextArea();
getContentPane().add(textpane, BorderLayout.CENTER);

// Menli aufbauen und als Hauptmenii des Fensters einrichten
JMenuBar menuBar = new JMenuBar();

JMenu editMenu = new JMenu("Bearbeiten");
editMenu.setMnemonic(KeyEvent.VK_B);
miCut = new JMenultem("Ausschneiden");
miCopy = new JMenultem("Kopieren");
miPaste = new JMenultem("Einfligen");

editMenu.add(miCut);
editMenu.add(miCopy);
editMenu.add(miPaste);
menuBar.add(editMenu);

setJMenuBar(menuBar) ;

// Befehle fiir die Zwischenablage hinzufiigen
Action[] actionsArray = textpane.getActions();
for(Action a : actionsArray) {

if(a instanceof DefaultEditorKit.CutAction) {
a.setEnabled(false);
a.putValue(Action.NAME, "Ausschneiden");
a.putValue(Action.MNEMONIC_KEY, KeyEvent.VK_A);
a.putValue(Action.ACCELERATOR KEY,

KeyStroke.getKeyStroke(KeyEvent.VK_X, Event.CTRL_MASK));
miCut.setAction(a);

} else if(a instanceof DefaultEditorKit.CopyAction) {
a.setknabled(false);
a.putValue(Action.NAME, "Kopieren");
a.putValue(Action.MNEMONIC_KEY, KeyEvent.VK K);
a.putValue(Action.ACCELERATOR_KEY,

KeyStroke.getKeyStroke(KeyEvent.VK_C, Event.CTRL_MASK));
miCopy.setAction(a);

} else if(a instanceof DefaultEditorKit.PasteAction) {
a.putValue(Action.NAME, "Einfligen");
a.putValue(Action.MNEMONIC_KEY, KeyEvent.VK_E);
a.putValue(Action.ACCELERATOR_KEY,

KeyStroke.getKeyStroke(KeyEvent.VK_V, Event.CTRL_MASK));
miPaste.setAction(a);

Listing 187: Programm, das den Austausch von Text (ber die Zwischenablage unterstitzt

400 >> Text drucken

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}

public static void main(String args[]) {
Start frame = new Start();
frame.setSize(500,300);
frame.setLocation(300,300);
frame.setVisible(true);

Listing 187: Programm, das den Austausch von Text Uber die Zwischenablage untersttitzt

Die getActions()-Methode der JTextArea liefert ein Array der vorinstallierten Action-Objekte
zuriick. Dieses kann in einer Schleife durchlaufen werden, wobei die Action-Objekte fiir die
Zwischenablagebefehle anhand ihres Datentyps (DefaultEditorKit.CutAction, DefaultEditor-
Kit.CopyAction, DefaultEditorKit.PasteAction) identifiziert und nach entsprechender Konfi-
guration mit den Meniibefehlen verbunden werden.

Ausschneiden- und Kopieren-Befehl nach Bedarf aktivieren

Der Ausschneiden- und der Kopieren-Befehl werden eigentlich nur benotigt, wenn in der
zugehorigen Textkomponente auch ein auszuschneidender oder zu kopierender Text markiert
ist. Es liegt daher nahe, die Befehle, je nachdem, ob in der Textkomponente eine Textpassage
markiert wurde oder nicht, zu aktivieren bzw. zu deaktivieren. Mit Hilfe eines CaretListeners
ist dies moglich.

// Aktivierung / Deaktivierung der Zwischenablage-Befehle
textpane.addCaretListener(new CaretListener() {
public void caretUpdate(CaretEvent e) {

if(e.getDot() != e.getMark()) {
miCut.setEnabled(true);
miCopy.setEnabled(true);

}oelse
miCut.setEnabled(false);
miCopy.setEnabled(false);

}

}
1)

Listing 188: CaretListener, der feststellt, ob in der Textkomponente etwas markiert ist

145 Text drucken
Seit Java 6 gibt es fiir das Drucken von Texten zwei Alternativen:
p Sie drucken schnell und bequem mit der print()-Methode der Swing-Textkomponenten.

» Sie implementieren die gesamte Druckunterstiitzung selbst.

>> GUI 401

Den letzteren Weg werden Sie vermutlich nur beschreiten, wenn Sie spezielle Forderungen an
den Druckprozess stellen, die die vordefinierte print()-Methode nicht erfiillen kann, oder
wenn Sie die Inhalte von Komponenten drucken mochten, die nicht von JTextComponent abge-
leitet sind.

Dieses Rezept behandelt zunédchst das Drucken mit print(). Im zweiten Abschnitt wird dann
aufgezeigt, wie Sie vorgehen konnen, wenn Sie eine komplett eigene Druckunterstiitzung
schreiben méchten.

Drucken mit der print()-Methode von JTextComponent

Um den Inhalt einer von JTextComponent abgeleiteten Textkomponente auszudrucken, gehen
Sie wie folgt vor:

1. Importieren Sie die Pakete fiir die Namen der Druckklassen und -schnittstellen.

2. Richten Sie den Meniibefehl (gegebenenfalls auch eine Symbolleistenschaltfliche) zum
Drucken ein.

import java.awt.*;

import java.awt.print.*;

import javax.print.*;

import javax.print.attribute.*;

import javax.print.attribute.standard.*;
import java.text.MessageFormat;

public class ProgramFrame extends JFrame {

private JMenultem miPrint;

private final String programName = "Programm";
private File file = null; // aktuell gedffnete Datei
private File TastDir = null; // zuletzt benutztes Verzeichnis

public ProgramFrame() {

// Menl aufbauen und als Hauptmenii des Fensters einrichten
menuBar = new JMenuBar();

JMenu fileMenu = new JMenu("Datei");
fileMenu.setMnemonic(KeyEvent.VK_D);
miOpen = new JMenultem("Offnen");
miOpen.setMnemonic(KeyEvent.VK_F);
miOpen.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
fileOpen();
}
1)
miPrint = new JMenultem("Drucken");

Listing 189: Aus ProgramFrame.java

402 >> Text drucken

miPrint.setMnemonic(KeyEvent.VK_P);
miPrint.setAccelerator(KeyStroke.getKeyStroke('P",
Event.CTRL_MASK));
miPrint.addActionlListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
filePrint();
}
1)
miQuit = new JMenultem("Beenden");
miQuit.setMnemonic(KeyEvent.VK_B);
miQuit.addActionListener(new ActionListener() {
public void actionPerformed(ActionkEvent e) {
System.exit(0);
}
DR

fileMenu.add(miOpen);
fileMenu.add(miPrint);
fileMenu.addSeparator();
fileMenu.add(miQuit);
menuBar.add(fileMenu);

setJMenuBar(menuBar) ;

Listing 189: Aus ProgramFrame.java (Forts.)

3. In der Methode, die Sie mit dem Druckbefehl verbunden haben, rufen Sie die von JText-
Component geerbte print()-Methode auf, um den Druck zu starten.

protected void filePrint() {
String printname;

// Dateiname fur die Kopfzeile der Druckbldtter abfragen
if (file !=null)

printname = file.getName();
else

printname = "Unbenannt";

// Drucken in Schnellfassung mit Voreinstellungen fir
// Druckdialog und Kopf- und FuBzeile
try {
PrintRequestAttributeSet attrs =
new HashPrintRequestAttributeSet();
attrs.add(OrientationRequested.PORTRAIT);
attrs.add(MediaSizeName.ISO_A4);
attrs.add(new JobName(printname, null));

textpane.print(new MessagefFormat(printname),
new MessageFormat("Seite {0}"),
true, null, attrs, false);

Listing 190: Aus ProgramFrame.java

>> GUI 403

} catch (PrinterException e) {
System.err.printin("Drucken nicht moeglich.");
System.err.printin(e.getMessage());

Listing 190: Aus ProgramFrame.java (Forts.)

Von der print()-Methode gibt es drei iiberladene Versionen: eine parameterlose Uberladung,
eine zweite Version, der Sie (MessageFormat-)Texte fiir Kopf- und FuBzeile mitgeben konnen,
und eine voll konfigurierbare dritte Version:

public boolean print(MessageFormat kopfzeile,
MessageFormat fusszeile,
boolean druckdialog,
PrintService druckdienst,
PrintRequestAttributeSet druckparameter,
boolean interactiv)
throws PrinterException

Letztere Version wird auch im Beispiel verwendet und mit den folgenden Argumenten aufge-
rufen:

P einem Text fiir die Kopfzeile (im Beispiel der Titel des zu druckenden Dokuments)
P einem Text flir die FuBzeile (im Beispiel ein Platzhalter fiir die Seitenzahl)

P> dem Wert true, damit der Java-Druckdialog angezeigt wird
4

dem Wert null (es wird der Standarddrucker verwendet; andere Drucker oder Druckdienste
kénnen mit Hilfe der Klasse PrintServiceLookup ermittelt werden)*

P dem zuvor erstellten PrintRequestAttributeSet-Objekt mit den Druckparametern

P> dem Wert false (Drucken ohne Statusriickmeldung)

Uber die Druckparameter, die in Form eines PrintRequestAttributeSet-Objekts an die print()-
Methode iibergeben werden, konnen Sie die Seitenorientierung, die Anzahl zu druckender
Kopien, die Druckqualitit u.a. festlegen. Wenn Sie den Druckdialog anzeigen lassen (drittes
Argument gleich true), benutzt print() die Attribute zur Initialisierung des Druckdialogs und
der Anwender kann die Druckeinstellungen verdndern.

Attribut (wie als Argument an Beschreibung

AttributeSet.add() zu Gbergeben)

Chromaticity.COLOR Farb- (COLOR) oder SchwarzweiB3-Druck (MONOCHROME)
new Copies(1) Die Anzahl zu druckender Kopien

new Destination(Fiir die Ausgabe in eine Datei

new File("out.prn").toURI())

Tabelle 38: Standardattribute, wie sie u.a. vom Java-Druckdialog unterstitzt werden

4. Wenn kein Druckdialog angezeigt wird (drittes Argument gleich false), bestimmt dieses Argument, tiber welchen
Drucker oder Druckdienst ausgedruckt wird. Wird ein Druckdialog angezeigt, bestimmt das Argument, welcher
Drucker bzw. Druckdienst im Druckdialog voreingestellt ist.

404 >> Text drucken

Attribut (wie als Argument an
AttributeSet.add() zu iibergeben)

Beschreibung

new JobName("Dateiname", Name des Druckauftrags (iiblicherweise der Name des
nult) auszudruckenden Dokuments)

new JobPriority(2) Prioritat des Druckauftrags

MediaSizeName.ISO_A4 GroBe der Druckseite, mogliche Werte sind unter anderem:

MediaSizeName.ISO_A4
MediaSizeName.ISO_A5
MediaSizeName.IS0_B3
MediaSizeName.NA_LETTER
MediaSizeName.NA_8X10

new PageRanges(1, 5) Auszudruckender Seitenbereich

OrientationRequested. LANDSCAPE Ausrichtung: LANDSCAPE (Querformat), PORTRAIT (Hochformat),
REVERSE_LANDSCAPE (Umgekehrtes Querformat),
REVERSE_PORTRAIT (Umgekehrtes Hochformat)

PrintQuality.DRAFT Ausrichtung: DRAFT (Entwurf), NORMAL (Normal), HIGH (Hoch)

SheetCollate.COLLATED Ausrichtung: COLLATED (sortiert), UNCOLLATED (nicht sortiert)

Sides.DUPLEX Ausrichtung: DUPLEX (Duplex), ONE_SIDED (Einseitig),
TWO_SIDED_LONG_EDGE (Buchdruck), TWO_SIDED_SHORT_EDGE
(Kalenderdruck)

Tabelle 38: Standardattribute, wie sie u.a. vom Java-Druckdialog unterstitzt werden (Forts.)

Drucken mit eigener Printable-Implementierung

Um selbst festzulegen, wie der Inhalt einer Textkomponente ausgedruckt werden soll, gehen
Sie wie folgt vor:

1.

Importieren Sie das Paket java.awt.print fiir die Namen der Druckklassen und -Interfaces.
Importieren Sie auch java.util fiir Hilfsklassen wie Vector oder StringTokenizer, die zur
Aufteilung des Textes in Zeilen und Seiten benétigt werden.

Wenn Sie eine der in Java vordefinierten Textkomponentenklassen verwenden, beispiels-
weise JTextArea, lassen Sie die Fensterklasse das Interface Printable implementieren:

Wenn Sie eine eigene Textkomponentenklasse definiert haben, kann diese das Interface
implementieren.

Richten Sie den Meniibefehl (gegebenenfalls auch eine Symbolleistenschaltfliche) zum
Drucken ein.

import java.awt.*;

import java.awt.event.*;
import javax.swing.*;
import javax.swing.text.*;
import javax.swing.event.*;
import java.io.*;

import java.awt.print.*;
import java.util.*;

L

isting 191: Aus ProgramFrame.java

>> GUI 405

public class ProgramFrame extends JFrame implements Printable {

private JMenultem miPrint;
public ProgramFrame() {

// Menll aufbauen und als Hauptmenii des Fensters einrichten
menuBar = new JMenuBar();

JMenu fileMenu = new JMenu("Datei");
fileMenu.setMnemonic(KeyEvent.VK_D);
miOpen = new JMenultem("Offnen");
miOpen.setMnemonic(KeyEvent.VK_F);
miOpen.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
fileOpen();

}
1)
miPrint = new JMenultem("Drucken");
miPrint.setMnemonic(KeyEvent.VK_P);
miPrint.setAccelerator(KeyStroke.getKeyStroke('P",
Event.CTRL_MASK));
miPrint.addActionListener(new ActionListener() f{
public void actionPerformed(ActionEvent e) {
filePrint();
t
1)
miQuit = new JMenultem("Beenden");
miQuit.setMnemonic(KeyEvent.VK_B);
miQuit.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
System.exit(0);
}
1)

fileMenu.add(miOpen);
fileMenu.add(miPrint);
fileMenu.addSeparator();
fileMenu.add(miQuit);
menuBar.add(fileMenu);

setJMenuBar(menuBar);

Listing 191: Aus ProgramFrame.java (Forts.)

4. Zerlegen Sie den Text in einzelne Zeilen.

406 >> Text drucken

Um einen mehrseitigen Text ausdrucken zu kénnen, miissen Sie den Text zuerst selbst in Sei-
ten aufteilen. Der erste Schritt dazu ist die Aufteilung in Zeilen, fiir die es sich lohnt, eine
eigene Methode zu implementieren. Zuerst aber sollten Sie einige globale Instanzvariablen
definieren, die von den verschiedenen noch zu implementierenden Druckmethoden verwendet

werden konnen:

public class ProgramFrame extends JFrame implements Printable {

// flr Druck

private Vector<String> Tines;
private int TineHeight;
private int pages;

private int TinesPerPage;
private boolean getPrintinfo;

Die Methode zur Zerlegung des Textes konnte dann wie folgt aussehen:

private void splitTextInlLines() f{

}

Nachdem die Methode eine Collection vom Typ Vector<String> zum Abspeichern der einzel-
nen Textzeilen angelegt hat, holt sie den Text aus der Textkomponente und speichert ihn in

// Text in Zeilen zerlegen
lines = new Vector<String>();

String TastToken = "";

String text = textpane.getText();

StringTokenizer t = new StringTokenizer(text, "\n\r",

while (t.hasMoreTokens()) {
String Tine = t.nextToken();

if (Tine.equals("\r"))
continue;

if (Tine.equals("\n") && TastToken.equals("\n"))
lines.add("");

lastToken = line;

if (Tine.equals("\n"))
continue;

lines.add(1ine);
}

der lokalen Variable text.

Dann beginnt die Zerlegung des Textes in Zeilen. Hierfiir bedient sich die Methode eines
StringTokenizer-Objekts, das den Text an den Zeileumbruchzeichen \n und \t zerlegt. (Das
dritte Konstruktorargument gibt an, dass die Trennzeichen nicht verworfen werden sollen.)

true);

>> GUI 407

Nachfolgende nextToken()-Aufrufe zerlegen den Text dann Stiick fiir Stiick und liefern jeweils
das letzte Token zuriick. In der while-Schleife wird nextToken() so oft aufgerufen, bis der Text
komplett zerlegt ist — in welchem Fall t.hasMoreTokens() den Wert false zuriickliefert.

Der Code in der while-Schleife ist etwas komplizierter als man erwarten wiirde, aber dies ist
notwendig, um Zeilenumbriiche und Leerzeilen korrekt zu verarbeiten.

Wenn die Methode zuriickkehrt, stellt 1ines eine zeilenweise Reprédsentation des Textes dar.
Die Anzahl der Zeilen kann jederzeit mit 1ines.size() abgefragt werden.

5. Implementieren Sie die print()-Methode von Printable

In print() zeichnen Sie einfach die Textzeilen aus der Vector-Instanz 1ines nach und nach
mit drawString() in den Drucker-Geritekontext. Ganz so einfach, wie es klingt, ist dies aller-
dings nicht, denn Sie miissen berechnen,

P wie viele Zeilen auf eine Druckseite gehen,
p» welche Zeilen auf welcher Seite stehen,
P wie viele Seiten der Text insgesamt umfasst.

Nur mit diesen Informationen kdnnen Sie print() so implementieren, dass die Methode fiir
jede Seitennummer, die ihr als drittes Argument tibergeben wird, die korrekten Zeilen in den
Gerdtekontext zeichnet und den Druck beendet, wenn ihr eine Seitennummer iibergeben wird,
die grofer als die Anzahl der Textseiten ist.

Und noch ein weiteres Problem taucht auf. Wenn der Anwender den Drucken-Dialog aufruft,
kann er dort den auszudruckenden Seitenbereich festlegen. Leider wird hier als Vorgabe ein
Bereich von 1 bis 9999 angezeigt. Man kann dies korrigieren, muss dann aber als PagePainter
eine Instanz iibergeben, deren Klasse Pageable statt Printable implementiert (dies ist das
geringfiigigere Problem), und man muss vorab die Anzahl der Seiten berechnen. Um aber die
Anzahl der Seiten korrekt berechnen zu konnen, benotigt man die Information, wie hoch die
Textzeilen im Zielgerdtekontext sind. Dies ist aber im Grunde nur in print() moglich.

Wir stehen also vor den Alternativen:

P die Seitenanzahl auf einer angeniherten Zeilenh6hen zu berechnen (beispielsweise konnte
man sich einen Grafikkontext erstellen, fiir diesen die Zeilenhéhe berechnen und darauf
vertrauen, dass die H6he im Drucker-Geridtekontext nicht wesentlich von dem ermittelten
Wert abweicht)

P print() doppelt aufzurufen: einmal um die Seitenzahl zu berechnen und ein zweites Mal
fiir den eigentlichen Druck.

Obwohl es komplizierter ist, gehen wir im Folgenden den zweiten Weg.

public int print(Graphics pg, PageFormat pf, int pageNr)
throws Printerkxception {

Graphics2D pg2 = (GraphicsZD) pg;
pg2.translate(pf.getImageableX(), pf.getImageableY());

Font f = textpane.getFont();
pg2.setFont(f);
FontMetrics fm = pg2.getFontMetrics();

408 >> Text drucken

if (getPrintInfo) { // Druck nur vorbereiten
int pageWidth = (int) pf.getImageableWidth();
int pageHeight = (int) pf.getImageableHeight();

int numberOfLines = lines.size();

// Felder fullen

lineHeight = fm.getHeight();

TinesPerPage = Math.max(pageHeight/TineHeight, 1);

pages = (int) Math.ceil((double)numberOfLines/(double)linesPerPage);
return Printable.NO_SUCH_PAGE;

b else { // eigentliches Drucken

if (pageNr >= pages)
return Printable.NO_SUCH_PAGE;

int x =0;
int y = fm.getAscent();

int Tinelndex = TinesPerPage * pageNr;

while(lineIndex < Tines.size() && y < (int) pf.getImageableHeight()) {
String str = Tines.get(Tinelndex);
pg2.drawString(str, x, y);
y += lineHeight;
++1inelndex;
}

return Printable.PAGE_EXISTS;
}
}

Interessant wird es in der fiinften Codezeile, wo der Font des Textfelds ermittelt und in den
Drucker-Geriatekontext tibertragen wird. Jetzt kann ein FontMetrics-Objekt fiir den Drucker-
Geritekontext erzeugt werden, das die exakten Abmessungen des Fonts im Drucker-Geréite-
kontext kennt.

Im anschlieBenden if(getPrintInfo)-Teil wird die Anzahl der zu druckenden Seiten ermittelt.
Der eigentliche Druck erfolgt im else-Teil.

Als Erstes wird tberpriift, ob es die auszudruckende Seite iberhaupt noch gibt. Warum ist dies
notwendig? Die print()-Methode wird von der Druck-Engine aufgerufen, die ihr das Objekt
fiir den Druckerkontext, einen Seitenformatierer und die Nummer der zu druckenden Seite
iibergibt. Letztere wird einfach von null aus hochgezéhlt - so lange, bis die print()-Methode
mit dem Riickgabewert Printable.NO_SUCH_PAGE zuriickmeldet, dass es die betreffende Seite
nicht mehr gibt. Dann wird der Druck beendet.

Ist die Seitennummer im giiltigen Bereich, wird die Zeile aus dem Vector<String>-Objekt 1ines
berechnet, mit der die Seite beginnt. Die nachfolgende while-Schleife zeichnet die Zeilen
dann nacheinander in das Graphics-Objekt, wobei die y-Koordinate jedes Mal um den Betrag
der zuvor (i f-Teil) ermittelten Zeilenhohe inkrementiert wird.

6. Starten Sie den Druck.

>> GUI 409

Die print()-Methode wird ausschlieBlich von der Druck-Engine und nie direkt aufgerufen. Um
den Druck in Gang zu setzen, bedienen Sie sich vielmehr eines PrinterdJob.

protected void filePrint() {
Printerdob printdob = Printerdob.getPrinterdob();
if (file == null)
printdob.setJobName("Programm - Unbekannt drucken ");
else
printJob.setdobName("Programm - " + file.getName() + " drucken");
printJdob.setCopies(1);

Pageformat pf = printdob.pageDialog(printdob.defaultPage());
splitTextInlLines();
printJob.setPrintable(this, pf);

try |
getPrintInfo = true;
printdob.print(); // Aufruf zum Festlegen der Anzahl Zeilen pro Seite

Book book = new Book();
book.append(this, pf, pages);
printJob.setPageable(book);

getPrintInfo = false;
if(printJob.printDialog())
printdob.print();

} catch(Exception e) {
JOptionPane.showMessageDialog(this, "Fehler beim Drucken" + e,
"Druckfehler", JOptionPane.ERROR_MESSAGE);
}
}

Die filePrint()-Methode, die in Schritt 3 mit dem Drucken-Meniibefehl verbunden wurde,
erzeugt ein PrinterJob-Objekt und konfiguriert es fiir den Ausdruck einer einzigen Kopie pro
Seite.

AnschlieBend wird der SEITE EINRICHTEN-Dialog aufgerufen, iiber den der Anwender in der
Regel Seitengrofe, Orientierung und Rander einstellen kann (die Drucken-Dialoge sind sys-
temspezifisch). Die Einstellungen des Anwenders werden in einem PagefFormat-Objekt gespei-
chert, welches - nach Zerlegung des Textes in Zeilen (splitTextInLines()-Aufruf) zusammen
mit der Referenz auf das Printable-Objekt (hier das Fenster) an die setPrintable()-Methode
des PrinterJob-Objekts tibergeben wird. Dies geschieht aber noch nicht in der Absicht, etwas
zu drucken, sondern dient allein der Bestimmung der Seitenzahl.

Zu diesem Zweck wird im try-Block das boolesche Feld getPrintinfo auf true gesetzt und die
print()-Methode des PrinterJob-Objekts aufgerufen.

Nach diesem Aufruf steht die Seitenzahl fest und ist in dem Feld pages gespeichert.

Grundsitzlich konnte jetzt der Drucken-Dialog angezeigt und der Druck gestartet werden,
doch dann wiirde im Drucken-Dialog noch immer die falsche Seitenzahl stehen, was daran

410 >> Editor-Grundgeriist

liegt, dass Druckauftrige, die auf Printable beruhen, keine Informationen iiber die Seitenzahl
haben. Da nutzt es auch nichts, dass diese bereits von uns berechnet wurden.

Den Ausweg weisen das Pageable-Interface und die Klasse Book, die dieses Interface imple-
mentiert. Eine Book-Instanz, im Folgenden einfach Buch genannt, ist nichts anderes als eine
Sammlung von einer oder mehreren Printable-Druckauftragen mit Seiteninformation!

Die folgenden Zeilen aus filePrint()

Book book = new Book();
book.append(this, pf, pages);
printJdob.setPageable(book);

erzeugen ein Buch und fligen den zu erledigenden Printable-Druckauftrag in das Buch ein.
Der append()-Methode werden dazu die fiir den Druck zustindige Printable-Instanz (hier das
Fenster), ein PageFormat-Objekt (hier pf) und schlieBlich die Anzahl Seiten des Druckauftrags
(hier pages) tibergeben. AnschlieBend wird das Buch mit setPageable() bei dem PrinterdJob-
Objekt angemeldet.

Jetzt kann der eigentliche Druck beginnen:
P Zuerst wird getPrintInfo auf false gesetzt.

» Dann wird der Drucken-Dialog aufgerufen, der Dank der Informationen aus dem Buch die
korrekte Seitenzahl anzeigen kann.

P SchlieBlich wird der Druck gestartet (print()-Aufruf).

146 Editor-Grundgeriist

Dieses Rezept ist einfach die Kombination verschiedener, bereits vorgestellter Rezepte zu
einem rudimentiren Textverarbeitungsprogramm. Ausgangspunkt ist eine GUI-Anwendung
mit automatisch generiertem Menii und Symbolleiste (Rezept 139).

Diese wurde erweitert um

P eine Drag-fahige JTextArea-Komponente zum Anzeigen und Bearbeiten von Dateiinhalten
(Rezept 134),

eine Statusleiste (siehe Rezepte 140 und 141),

Methoden zum Anlegen, Offnen und Speichern von Textdateien (Rezepte 142 und 143),
Unterstiitzung fiir die Zwischenablage (Rezept 144),

einen Druckbefehl (siehe Rezept 145),

vvyVvyyVvVvyy

einen Info-Dialog (neu hinzugekommen).

147 Look&Feel andern

Swing unterstiitzt je nach Plattform mehrere Look&Feels (Designs, die das Aussehen der
Fenster und Steuerelemente festlegen). Standard ist das Look&Feel »Metal«, das im Paket
Jjavax.swing untergebracht ist. Das Paket com.sun.java enthilt weitere Look&Feels, die aller-
dings nicht in jeder Java-Implementierung vorhanden sind. Aufgrund der restriktiven Lizenz-
politik von Microsoft und Apple ist beispielsweise das Look&Feel »Windows« nur fiir die
Windows-Versionen der Java-Laufzeitumgebung und das Look&Feel »Mac« nur flir die Mac-
Versionen verfiigbar.

>> GUI 411

Look&Feel ‘ Klasse

Metal Jjavax.swing.plaf.metal.MetallLookAndFeel
Standard-Look&Feel (ab Java5 in neuem »Ocean«-Design)

Windows com.sun.java.swing.plaf.windows.WindowsLookAndFeel
Motif com.sun.java.swing.plaf.motif.MotifLookAndFee]
GTK com.sun.java.swing.plaf.gtk.GTKLookAndFeel

Tabelle 39: Vordefinierte Look&Feels

Das Look&Feel konnen Sie mit Hilfe von zwei Verfahren dndern:
P statisch Uber die Datei swing.properties

P dynamisch iiber die Methode UIManager.setLookAndFeel ()

Look&Feel liber swing.properties festlegen

Bei diesem Verfahren legen Sie eine Datei swing.properties im Verzeichnis /jdk/jre/lib an und
tragen folgende Zeilen fiir die Look&Feels »Metal«, »Motif« und »Windows« ein:

swing.defaultlaf=javax.swing.plaf.metal.MetallLookAndFeel
fkswing.defaultlaf=com.sun.java.swing.plaf.motif.MotifLookAndFeel

fkswing.defaultlaf=com.sun.java.swing.plaf.windows.WindowsLookAndFeel

Eigenschaftsdateien behandeln Zeilen, die wie hier mit einem Nummernzeichen (#) beginnen,
als Kommentar, so dass Sie die Look&Feels umschalten kénnen, indem Sie einfach das Num-
mernzeichen am Beginn der Zeile mit dem gewiinschten Look&Feel entfernen und jeweils am
Beginn der anderen Zeilen setzen. Achten Sie darauf, dass nur ein Look&Feel aktiv ist.

Auf diese Weise lasst sich das Look&Feel allerdings nicht zur Laufzeit eines Programms wech-
seln, da die Eigenschaftsdatei swing.properties nur beim Starten eines Programms eingelesen
wird.

Look&Feel iiber UIManager festlegen

Die Klasse UIManager erlaubt es, das Look&Feel zur Laufzeit des Programms umzuschalten.
Von den zahlreichen Methoden dieser Klasse sind hier vor allem Folgende interessant:

P static void setLookAndFeel() legt ein neues Look&Feel fest. Die Methode tibernimmt als
Parameter entweder ein Look&Feel-Objekt oder eine Zeichenfolge, die den jeweiligen Klas-
sennamen enthélt und dem Wert entspricht, der in der Eigenschaftsdatei nach swing.
defaultlaf=angegeben ist (siche oben).

P static String getSystemLookAndFeelClassName() liefert das native Look&Feel der Ausfiih-
rungsplattform.

P static String getCrossPlatformLookAndFeelClassName() gibt den Namen der LookAndFeel-
Klasse zuriick, die ein plattformunabhingiges Look&Feel implementiert - das Java-
Look&Feel (JLF).

Wenn Sie ein Look&Feel mit der Methode setlLookAndFeel() festlegen, kann eine Ausnahme
vom Typ UnsupportedLookAndFeelException auftreten, falls das Look&Feel nicht existiert. Des-

412 >> Look&Feel andern

halb verlangt der Compiler, dass Sie diese Ausnahme abfangen. Es geniigt, wenn Sie den
entsprechenden Abschnitt des Codes in einen try-catch-Block einschlieBen.

Das neue Look&Feel gilt automatisch fiir alle Komponenten, die Sie nach der Festlegung des
Look&Feels erzeugen. Falls Sie das Look&Feel bereits zu Beginn einer Anwendung (beispiels-
weise in der main()-Methode oder im Konstruktor des Hauptfensters) einrichten, sind keine
weiteren Vorkehrungen erforderlich. Andern Sie dagegen das Look&Feel zur Laufzeit des Pro-
gramms, miissen Sie das neue Look&Feel dem Hauptfenster und gegebenenfalls allen unterge-
ordneten Fenstern (d.h. auch den Komponenten) mit der Methode

SwingUtilities.updateComponentTreeUI(Container);
mitteilen.

Das Start-Programm zu diesem Rezept demonstriert, wie das Look&Feel zur Laufzeit (der
Anwender wihlt einen der drei angebotenen Schalter) gedndert werden kann.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Start extends JFrame {
ButtonListener buttonListener = new ButtonlListener();
JButton btnMotif, btnWindows, btnMetal;

public Start() {

// Hauptfenster einrichten
setTitle("Look and Feel");
getContentPane().setBackground(Color.LIGHT_GRAY);

getContentPane().setlLayout(new GridlLayout(0,2));

btnMotif = new JButton("Motif");
btnWindows = new JButton("Windows");
btnMetal = new JButton("Metal");

btnMotif.addActionListener(buttonlistener);
btnWindows.addActionListener(buttonlListener);
btnMetal.addActionListener(buttonListener);

// Rechtes Panel mit Schaltfldchen zum
// Umschalten des Look&Feels

Box rbox = Box.createVerticalBox();
rbox.add(Box.createGlue());
rbox.add(btnMotif);
rbox.add(btnWindows) ;
rbox.add(btnMetal);
rbox.add(Box.createGlue());

// Linkes Panel zeigt lediglich zwei
// Kontrollkdstchen zur Demonstration des

Listing 192: Start.java — Demo-Programm zur Umschaltung des Look&Feels

>> GUI 413

// Erscheinungsbildes

JPanel 1hox = new JPanel();

1box.setlLayout(new BoxLayout(Tbox, BoxLayout.Y_AXIS));
JCheckBox chkl = new JCheckBox("Unterstrichen");
JCheckBox chk2 = new JCheckBox("Kursiv");

1box.add(Box.createVerticalStrut(30));
1box.add(chkl);
1box.add(chk2);

getContentPane().add(1box);
getContentPane().add(rbox);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

// Ereignisbehandlung flr Schaltfldchen zum Umschalten des Look&Feels
class ButtonlListener implements ActionListener {
public void actionPerformed(ActionEvent e) {
try {
if (e.getSource() == btnMotif)
UIManager.setLookAndFeel(
"com.sun.java.swing.plaf.motif.MotiflLookAndFeel");
if (e.getSource() == btnWindows)
UIManager.setLookAndFeel(
"com.sun.java.swing.plaf.windows.WindowsLookAndFeel");
if (e.getSource() == btnMetal)
UIManager.setLookAndFeel(
"javax.swing.plaf.metal .MetallLookAndFeel");
}
catch(Exception ignore) {
1

// Das neue Look&Feel allen Komponenten mitteilen
SwingUtilities.updateComponentTreeUI(getContentPane());

}

public static void main(String args[]) {
Start frame = new Start();
frame.setSize(300,200);
frame.setLocation(200,300);
frame.setVisible(true);

Listing 192: Start.java — Demo-Programm zur Umschaltung des Look&Feels (Forts.)

414 >> Systemtray unterstiitzen

< ook and Feel

é Look and Feel g@g

_|Unterstrichen Mot

| Kursiv
Windows
[] Unterstiichen

Metal [Kursiv
Wwindows
[] Unterstrichen

[] Kursiv

< Look and Feel

Windows

Abbildung 76: Das Start-Programm zu diesem Rezept im Motif-, Windows- und Metal-Look

148 Systemtray unterstutzen

Ab Version 6 unterstiitzt Java auch den Systemtray®, vorausgesetzt, das verwendete Betriebs-
system bietet so etwas an. Es handelt sich dabei um einen speziellen Bereich auf dem Desktop
(unter Windows Vista/XP typischerweise die rechte untere Ecke der Taskleiste), wo Symbole
von permanent laufenden Programmen angezeigt werden. Durch Anklicken eines solchen
Symbols kann mit dem entsprechenden Programm interagiert werden.

Um ein Programm fiir den Systemtray tauglich zu machen, bendtigen wir zwei Klassen:
Jjava.awt.SystemTray zur Interaktion sowie java.awt.TraylIcon zur Darstellung des Symbols im
Systemtray.

Jede Java-Anwendung kann genau eine Instanz von SystemTray besitzen, die sie allerdings
nicht selbst anlegen kann, sondern mithilfe der statischen Methode getSystemTray() von der
Java Virtual Machine anfordern muss. Sicherheitshalber sollte man allerdings vor einem sol-
chen Aufruf mit isSupported() priifen, ob das darunter liegende Betriebssystem iiberhaupt
einen Systemtray unterstiitzt.

Die Darstellung des Programms im Systemtray erfolgt durch eine Instanz von TraylIcon. Sie
konnen das anzuzeigende Symbol festlegen sowie ein Kontextmenii definieren, das durch
Driicken der rechten Maustaste aktiviert wird. Das TrayIcon kann auch auf normale (linke)
Mausklicks reagieren, indem die iiblichen Listener (MouselListener, MouseMotionListener) und
ActionListener (Doppelklick) registriert werden.

import java.awt.*;
import java.awt.event.*;

class SystemTrayDemo implements Mouselistener, ActionListener {

private Traylcon traylcon;

Listing 193: Systemtray-Unterstltzung

5. Je nach Betriebssystem gibt es verschiedene andere Bezeichnungen, z.B. »Infobereich¢, »Notification Area« etc.

>> GUI 415

private Image[] icons;
public SystemTrayDemo() f

if (SystemTray.isSupported()) {
Systemlray tray = SystemTray.getSystemlray();

// Symbole fir Systemtray-Darstellung laden
icons = new Image[2];

Toolkit tk = Toolkit.getDefaultToolkit();
icons[0] = tk.getImage("box0.gif");
icons[1] = tk.getImage("box1l.gif");

// Kontextmenti flir Systemtray-Symbol einrichten
PopupMenu popup = new PopupMenu();

Menultem iconChange = new Menultem("Symbol wechseln");
Menultem programEnd = new Menultem("Beenden");

popup.add(iconChange);
popup.add(programend) ;

// PopupMenu: Actionlistener flr Programmende
ActionListener endListener = new ActionlListener() {
public void actionPerformed(ActionEvent e) {

System.out.printin("Programmende!");
System.exit(0);
}
b
programknd.addActionListener(endListener);

// PopupMenu: ActionListener fiir Symbolwechsel
ActionListener iconChangelistener =
new ActionListener()f{
public void actionPerformed(ActionEvent e) {
System.out.printin("Symbolwechsel");

if(traylcon.getImage() == icons[0])
traylcon.setImage(icons[1]);
else
traylcon.setImage(icons[0]);

}
bs
iconChange.addActionListener(iconChangelistener);

traylcon = new TrayIcon(icons[0], "TraylIconDemo", popup);
traylcon.setImageAutoSize(true);
traylcon.addActionListener(this);
traylcon.addMouselistener(this);

Listing 193: Systemtray-Unterstltzung (Forts.)

416 >> Systemtray unterstiitzen

// Symbol zum Systemtray hinzufiigen
try {
tray.add(traylcon);

} catch (AWTException e) {
System.err.printin("Fehler: " + e);
}

} else {
System.out.printin("Systemtray wird nicht unterstuetzt");
}

// Behandlung der Mausereignisse auf dem Traylcon

public void mouseClicked(MouseEvent e) {
System.out.printin("TraylIcon Mausklick");

}

public void mouseEntered(MouseEvent e) {
System.out.printin("TraylIcon Maus enter");
}

public void mouseExited(MouseEvent e) {
System.out.printin("TraylIcon Maus exit");
}

public void mousePressed(MouseEvent e) {
System.out.printin("Traylcon Maus gedrueckt");
}

public void mouseReleased(MouseEvent e) {
System.out.printin("TraylIcon Maus losgelassen");
}

public void actionPerformed(ActionEvent e) {
System.out.printin("Doppelklick auf Traylcon");
}

Listing 193: Systemtray-Unterstitzung (Forts.)

Die obige Beispielklasse registriert sich im Systemtray und lauscht anschlieBend auf
Mausklicks auf ihrem Systemtray-Symbol6. Bei Klick mit der linken Taste wird eine Meldung
im Konsolenfenster ausgegeben. Bei Klick mit der rechten Maustaste erscheint ein Popup-
Menii mit der Option zum Wechsel des Symbols oder Beenden des Programms.

6. Das Java-Maskottchen in einer Schachtel

>> GUI 417

| [nE;

Abbildung 77: Programm-Symbol im Systemtray

149 Splash-Screen anzeigen

Unter einer Splash-Screen versteht man ein Bild, das wihrend des Programmstarts in der
Mitte des Bildschirms angezeigt wird. Der Anwender hat dadurch das Gefiihl, dass etwas pas-
siert und empfindet den Startvorgang als weniger langsam.

Um ein Bild als Splash-Screen anzuzeigen, miissen Sie beim Programmaufruf lediglich den
Parameter -splash tibergeben:

java -splash:dasBild.png DasProgramm
Als Wert fiir den Parameter {ibergeben Sie eine Bilddatei im PNG-, GIF- oder JPEG-Format.

Falls Sie das Programm in Form eines jar-Archivs vertreiben wollen, miissen Sie der Manifest-
Datei einen Eintrag der Art:

SplashScreen-Image: meinBild.png

hinzufiigen. Danach kann das Programm wie iiblich gestartet werden (via java —jar MeinPro-
gramm.jar).

Die Splash-Screen wird automatisch so lange angezeigt, bis das erste Fenster des Programms
erscheint. Codeseitig ist also eigentlich nichts weiter zu tun. Es gibt aber auch die Méglichkeit,
mit Hilfe der Klasse java.awt.SplashScreen auf die angezeigte Splash-Screen zuzugreifen und
beispielsweise eine Fortschrittsanzeige einzubauen

import java.awt.*;
import javax.swing.*;
import java.io.*;
import java.util.*;

public class Start extends JFrame {
public Start() {

// Hauptfenster konfigurieren
setTitle("SplashScreen Demo");
setSize(300, 200);
setResizable(false);
setlayout(new BorderLayout());

JLabel Tb = new JlLabel(" Herzlich willkommen!");
1b.setFont(new Font("Arial", Font.BOLD, 20));
add(1b, BorderlLayout.CENTER);

Listing 194: Anzeige eines Splash-Screens mit Fortschrittsbalken

418 >> Splash-Screen anzeigen

SplashScreen splash = SplashScreen.getSplashScreen();

if(splash !=null) {
// Grafikkontext anlegen
Graphics2D g = splash.createGraphics();
g.setComposite(AlphaComposite.Clear);
g.setPaintMode(); // Uberschreib-Modus

// Initialisierungen durchftihren und Fortschrittsbalken updaten
try {
for(int i = 0; i <= 100; i+H) {
g.setColor(Color.BLACK);
g.fi11Rect(100,200,200,20);
g.setColor(Color.0RANGE);
g.fi1TRect(100,200,2*1, 20);
splash.update(); // Anzeige aktualisieren

// ... hier Programminitialisierungen durchfiihren
Thread.sleep(100);
}
} catch(Exception e) {
System.err.printin(e);
}
}

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}

public static void main(String args[]) f{
Start frame = new Start();
frame.setlocation(300,300);
frame.setVisible(true);

Listing 194: Anzeige eines Splash-Screens mit Fortschrittsbalken (Forts.)

>> GUI 419

[DemonsinatingthelabilitiestorathelSwing U IkTicolkit

- ALENPS Javd — 5L ASI. Y D pLAS

stemp>javac SplashScreenDemo.java

istemp?java —splash:splash.png SplashS8creenDemo

Abbildung 78: Anzeige eines Splash-Screens bei Programmstart

150 Registerreiter mit SchlieBen-Schaltern (JTabbedPane)

Die Klasse JTabbedPane (Paket javax.swing) implementiert die beliebte Registerdarstellung, wie
sie hiufig fiir die Gruppierung von Programmeinstellungen oder Optionen verwendet wird.
Dabei wird ein JTabbedPane-Objekt erzeugt, welches beliebig viele Registerkarten verwaltet
und darstellt. Der Anwender kann die einzelnen Registerkarten iiber Reiter auswdhlen und in
den Vordergrund holen.

Leider fehlte bisher die Moglichkeit, Komponenten, insbesondere SchlieBen-Schalter, in die
Reiter der Registerkarten einzubauen. In Java 6 wurde die Klasse JTabbedPane daher um eine
Methode setTabComponentAt() erweitert.

Das folgende Beispiel nutzt die neu erworbene JTabbedPane-Funktionalitidt zur Realisierung
von Registerkarten, die der Anwender selbst hinzufiigen und wieder entfernen kann.

/*

* JTabbedPane mit Registern, die {ber X-Schalter geschlossen werden konnen
*

* @author Peter Miller

*/

import java.awt.*;

import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;
import java.io.*;

import java.util.*;

public class Start extends JFrame
implements ListSelectionListener, ActionlListener {

private JlLabel curlmage;
private JList filelist;

Listing 195: JTabbedPane mit schlieBbaren Registern

420 >> Registerreiter mit SchlieBen-Schaltern (JTabbedPane)

private JTabbedPane tabbedPane;
private final JPopupMenu popupMenu = new JPopupMenu();
private HashMap<JButton, Component> closeButtons
= new HashMap<JButton, Component>();

public Start() {

// Hauptfenster konfigurieren
setTitle("Registerkarten mit SchlieBen-Schaltern");
setSize(400, 300);

setResizable(false);

setlayout(new BorderLayout());

// Registerkarten einrichten

tabbedPane = new JTabbedPane();

JSplitPane imagePanel = createlmagePanel();

tabbedPane.addTab("Bilder", new Imagelcon("Zooml6.gif"),
(Component) imagePanel);

getContentPane().add(tabbedPane,BorderLayout.CENTER);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}

// erzeugt ein SplitPane mit Datei-Liste und Bildanzeige
JSplitPane createlmagePanel () {
String[] fileNames = new String[] {"alice.gif", "caterpillar.gif",
"rabbit.gif", "rabbit2.gif",
"hatter.gif","duke.gif"};
fileList = new JList(fileNames);
filelList.setSelectionMode(ListSelectionModel .SINGLE_SELECTION);
fileList.setSelectedIndex(0);
filelist.addListSelectionlListener(this);
JScrol1Pane fileView = new JScrollPane(filelist);

// Bildanzeige
Imagelcon imagelcon =
new Imagelcon((String) filelList.getSelectedValue());
curImage = new JlLabel(imagelcon);
JScrol1Pane imageView = new JScrollPane(curlmage);

// MindestgréBen sicherstellen

Dimension minSize = new Dimension(150,100);
fileView.setMinimumSize(minSize);
imageView.setMinimumSize(minSize);

// SplitPane erzeugen

JSplitPane splitPane = new JSplitPane(JSplitPane.HORIZONTAL_SPLIT,
fileView, imageView);

splitPane.setDividerLocation(150);

splitPane.setOneTouchExpandable(true);

Listing 195: JTabbedPane mit schlieBbaren Registern (Forts.)

>> GUI 421

// Popup-Menii fir die Erzeugung von Registerkarten mit aktuellen Bild
JMenultem item = new JMenultem("Bild als Register hinzufiigen");

item.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
String name = (String) filelist.getSelectedValue();
createTab(name);
}
)

popupMenu.add(item);

filelList.addMouseListener(new MouseAdapter() {
// Achtung: wenn auch auf anderen Plattformen als Windows, dann sollte
// eine analoge Methode mousePressed() implementiert werden!
pubTlic void mouseReleased(MouseEvent e) {
if(e.isPopupTrigger())
popupMenu. show(e.getComponent(), e.getX(), e.getY());
}
)

return splitPane;

// aktuelles Bild als neue Registerkarte hinzufiigen

public void createTab(String name) {
Imagelcon image = new Imagelcon((String) filelist.getSelectedValue());
JPanel imagePanel = new JPanel();
imagePanel.add(new JLabel(image));

// dieses JPanel bildet den Registerreiter und besteht aus Bildnamen

// und SchlieBen-Schalter

JPanel tab = new JPanel();

tab.setOpaque(false); // damit Hintergrund des Reiters zu sehen ist

tab.setlLayout(new FlowLayout());

JLabel title = new JLabel(name);

Imagelcon xgif = new Imagelcon("xicon.gif");

Dimension dim = new Dimension(xgif.getIconWidth() + 5,
xgif.getIconHeight() + 5);

JButton closeButton = new JButton(xgif);

closeButton.setPreferredSize(dim);

tab.add(title, BorderLayout.WEST);

tab.add(closeButton, BorderLayout.EAST);

// wenn Schalter gedriickt wird, Registerkarte entfernen
closeButton.addActionListener(this);

// null als Registername, da wir unsere Komponente tab nehmen
tabbedPane.addTab(null, imagePanel);
tabbedPane.setTabComponentAt (tabbedPane.getTabCount()-1, tab);

Listing 195: JTabbedPane mit schlieBbaren Registern (Forts.)

422 >> Registerreiter mit SchlieBen-Schaltern (JTabbedPane)

closeButtons.put(closeButton, tab);
}

// Ereignisbehandlungsmethode fiir SchlieBen einer dynamisch erzeugten
// Registerkarte
public void actionPerformed(ActionEvent e) {

Component ¢ = closeButtons.get((JButton) e.getSource());

if(c !=null) f
closeButtons.remove((JButton) e.getSource());
int index = tabbedPane.index0fTabComponent(c);
tabbedPane.removeTabAt (index);

)

public void valueChanged(ListSelectionEvent e) {
if(e.getValuelsAdjusting())
return;

// gewdhltes Bild anzeigen

Imagelcon image = new Imagelcon((String) filelList.getSelectedValue());
curlmage.setIcon(image);

curlmage.revalidate();

pubTic static void main(String args[]) {
Start frame = new Start();
frame.setlLocation(300,300);
frame.setVisible(true);

Listing 195: JTabbedPane mit schlieBbaren Registern (Forts.)

Das Beispiel erzeugt eine Dateiauswahlliste. Klickt der Anwender mit der rechten Maustaste
auf eine ausgewihlte Datei, erscheint ein Popup-Menii mit dem Befehl zum Hinzufiigen einer
neuen Registerkarte mit dem zugehorigen Bild. Dem Reiter der neuen Registerkarte wird mit
Hilfe der Methode setTabComponentAt() ein SchlieBen-Schalter hinzugefiigt. Eine passende
Ereignisbehandlung fiir den Schalter sorgt dafiir, dass beim Anklicken des Schalters die Regis-
terkarte geschlossen wird.

>> GUI 423

B Registerkarten mit Schlieffen-S5chalienn

Bilder ’/ alice.gif [x! r caterpillar.gif x| ‘

alice.gif :
caterpillar.gif :
rabbit.gif
rabhit2.gif
hatter.gif
tuke.pif B

| Bild als Register hinzufiigen

Abbildung 79: Registerkarten mit SchlieBen-Button

Grafik und Multimedia

151 Mitte der Zeichenflache ermitteln

Um zentriert in eine Komponente zeichnen zu kénnen, muss man wissen, an welchen Koordi-
naten der Mittelpunkt der Komponente liegt. Dieser ldsst sich aus Breite und Hohe leicht
berechnen:

import java.awt.Point;
import java.awt.Component;

public static Point getCenter(Component c) {
int x, y;

X = c.getWidth() / 2;
y = c.getHeight() / 2;

return new Point(x,y);

Listing 196: Mittelpunkt einer Komponente

Die Methode tibernimmt als Argument die Referenz auf eine Komponente, ermittelt deren
Breite (getWidth()) und Hohe (getHeight()) und berechnet aus diesen durch Halbierung die
Koordinaten des Mittelpunkts.

Die Klasse Point eignet sich ideal zum Abspeichern von ganzzahligen Koordinaten. Der
Zugriff auf die Felder x und y ist public.

Mit obiger Methode bzw. nach der in der Methode verwendeten Formel konnen Sie den Mittel-
punkt beliebiger Komponenten (AWT wie Swing) berechnen. Wenn Sie mit Swing-Komponen-
ten arbeiten, sollten Sie aber bedenken, dass diese womoglich einen Rahmen definieren (siehe
Rezept 122).

Die Rahmen von Swing-Komponenten gehdéren zur Komponente, nicht aber zum Zeichen-
bereich von paintComponent()! Dies stort nicht, solange die Rahmenteile paarweise (oben -
unten, rechts - links) gleich breit sind. Sind die Rahmenteile nicht paarweise gleich, deckt sich
der Mittelpunkt der Komponente nicht mehr mit dem Mittelpunkt der Fldche innerhalb der
Komponentenrénder. Die folgende Methode beriicksichtigt dies:

import java.awt.Point;
import java.awt.Insets;
import javax.swing.JComponent;

Listing 197: Mittelpunkt der Fldche zwischen den Rahmen einer Swing-Komponente

S
==
I
£
=
=
=
e~
=
©
f
S

S
=
@
£
=
=
=
i~
=
©
f s
S

426 >> Zentrierter Text

/**
* Mittelpunkt der Fldche zwischen Randern der Komponente
*/
public static Point getCenter(JComponent c, Insets in) {

int x, y;

x = (c.getWidth() - (in.left + in.right))/ 2;
X += in.left;
y = (c.getHeight() - (in.top + in.bottom))/ 2;
y +=1in.top;

return new Point(x,y);

Listing 197: Mittelpunkt der Fldche zwischen den Rahmen einer Swing-Komponente (Forts.)

Der folgende Code stammt aus dem Start-Programm zu diesem Rezept und zeigt, wie Sie mit
Hilfe der obigen Methoden ein Fadenkreuz bzw. eine Scheibe in den Mittelpunkt einer Kompo-
nente bzw. den Mittelpunkt der Fliache innerhalb des Rahmens zeichnen. (Beachten Sie, dass
fiir Swing-Komponenten, die keinen Rahmen haben, beide Mittelpunkte zusammenfallen.)

// In Klassendefinition einer Swing-Komponente
public void paintComponent(Graphics g) {
super.paintComponent(qg);

// Fadenkreuz in Zentrum der Komponente zeichnen

Point center = Drawing.getCenter(this);
g.drawLine(center.x-5, center.y, center.xth, center.y);
g.drawLine(center.x, center.y-5, center.x, center.y+5);

// Fadenkreuz in Zentrum der Fldche zwischen Komponentenrdndern
// zeichnen

center = Drawing.getCenter(this, this.getInsets());
g.setColor(Color.cyan);

g.fill0val(center.x-5, center.y-5, 10, 10);

Listing 198: Zentriert zeichnen

152 Zentrierter Text

Wenn Sie einen Text zentriert in eine Komponente schreiben mochten, bedeutet dies in der
Regel, dass sich der Text von der Mittellinie aus gleich weit nach links und rechts ausdehnen
soll. Dies erreichen Sie nicht, indem Sie die x-Koordinate des Mittelpunkts berechnen (siehe
Rezept 151) und an drawString() iibergeben, denn die x- und y-Argumente von drawString
(String s, int x, int y) stehen fiir die x,y-Koordinate, an der die Grundlinie des Strings
beginnt. Wenn Sie also als x-Argument die x-Koordinate des Mittelpunkts {ibergeben, wird

>> Grafik und Multimedia 427

der String nicht horizontal zentriert, sondern er beginnt an der horizontalen Mittellinie. Wenn
Sie als y-Argument die y-Koordinate des Mittelpunkts iibergeben, wird der String nicht verti-
kal zentriert, sondern er liegt tiber der vertikalen Mittellinie.

Grundlinie—;
Hédhe|
Grundlinie—>

Abbildung 80: Positionierung von Textausgaben mit drawString()

Um Texte mit drawString() zentriert auszugeben, miissen Sie also Breite und Hohe des auszu-
gebenden Textes berlicksichtigen. Breite und Hohe eines Textzugs hingen aber von der ver-
wendeten Schrift ab, so dass sich insgesamt folgende Vorgehensweise ergibt:

1. Sie richten die zu verwendende Schrift als Schrift des Grafikkontextes der Komponente
ein.

2. Sie lassen sich vom Grafikkontext ein FontMetrics-Objekt zuriickliefern.

3. Sie bestimmten mit Hilfe des FontMetrics-Objekts die SchriftabmaBe und die Breite des
auszugebenden Textes und errechnen dann die Koordinaten fiir drawString().

4. Sie zeichnen den Text in die Komponente.

g.setFont(new Font("Georgia", Font.ITALIC, 30)); /11
FontMetrics fm = g.getFontMetrics(); /]2
Point p = Drawing.centerText(this, fm, text); /13
g.drawString(text, p.x, p.y); /] 4

Schritt 3, die eigentliche Koordinatenberechnung, wird hier von der Methode centerText()
erledigt, die als Argumente eine Referenz auf die Komponente, das FontMetrics-Objekt und
den auszugebenden Text iibernimmt und wie folgt definiert ist:
/**
* Berechnet Ausgabekoordinaten flir zentrierten Text
*/
public static Point centerText(JComponent c, FontMetrics fm, String s) {
Insets insets = c.getInsets();
int x, y;

// x- und y-Koordinaten fiir zentrierte Textausrichtung

// Breite minus Tinker und rechter Rand minus Stringbreite halbieren

// wenn negativ, auf 0 setzen

// Tinken Rand hinzuaddieren

x = (c.getWidth() - (insets.left+insets.right) - fm.stringWidth(s)) / 2;
x=(x>0)7x:0;

X += insets.left;

// Hdhe minus oberer und unterer Rand halbieren

// wenn negativ, auf 0 setzen

// oberer Rand plus halbe Schriftoberldnge hinzuaddieren
y = (c.getHeight() - (insets.top + insets.bottom)) / 2;
y=(@>0) 2y :0;

S
=
I
£
=
=
=
e~
=
©
f
S

S
=
@
£
=
=
=
i~
=
©
f s
S

428 >> In den Rahmen einer Komponente zeichnen

y += insets.top + fm.getAscent()/4;

return new Point(x,y);
}

Das zuriickgelieferte Point-Objekt enthdlt die x- und die y-Koordinate, die Sie drawString()
iibergeben miissen, um den Text horizontal und vertikal zentriert in die Komponente zu zeich-
nen. Wenn der String lediglich horizontal zentriert sein soll, reichen Sie einfach nur die
x-Koordinate weiter und setzen die y-Koordinate selbst.

Die vertikale Zentrierung ist etwas problematisch, denn der von FontMetrics.getAscent()
zurlickgelieferte Wert ist in der Regel um einige Pixel groBer als die Hohe der GroBbuchstaben.
Entspriache der Wert der Hohe der GroBbuchstaben, wire eine Absenkung der Grundlinie um
den halben Betrag von getAscent() korrekt. So aber ergibt eine Absenkung um ein Viertel von
getAscent() fiir die meisten Schriften eine optisch bessere Zentrierung.

In der Datei Drawing.java zu diesem Rezept ist noch eine iiberladene Version von cen-
terText() definiert, die keine Komponentenrahmen beriicksichtigt und auch fiir AWT-
Komponenten aufgerufen werden kann:

public static Point centerText(Component c, FontMetrics fm, String s)

Hallo Programmierer!

Abbildung 81: Zentrierte Textausgabe

153 In den Rahmen einer Komponente zeichnen

Gewdhnlich iiberschreiben Sie die Methode paintComponent(), wenn Sie in eine Swing-Kompo-
nente zeichnen wollen. Allerdings kénnen Sie mit dieser Methode nicht in den Rahmenbereich
einer Swing-Komponente zeichnen, da dieser durch das Clipping-Rechteck geschiitzt wird.

Um in den Rahmen zu zeichnen, gibt es eine eigene Methode paintBorder().
Wenn Sie paintBorder() tiberschreiben, sollten Sie folgende Punkte beachten:

P> Wie im Falle von paintComponent() miissen Sie als erste Anweisung in der Methode die
Basisklassenversion von paintBorder() aufrufen.

» Der Inhalt der Komponente ist nicht durch Clipping geschiitzt, d.h., wenn Sie in der
Methode in den Bereich innerhalb des Rahmens zeichnen, tiberschreiben Sie den Inhalt,
den zuvor die paintComponent()-Methode gezeichnet hat.

>> Grafik und Multimedia 429

» Um den Inhalt der Komponente zu schiitzen, sollten Sie nacheinander Clipping-Bereiche
fiir die einzelnen Rahmenteile definieren (Java unterstiitzt keine kombinierten Clipping-
Bereiche - nur Schnittmengen) und in diese zeichnen.

» Andern Sie den Clipping-Bereich nicht fiir das originale Graphics-Objekt, sondern erzeu-
gen Sie eine Kopie.

P Entsorgen Sie die Kopie nach getaner Arbeit durch Aufruf von dispose().

Die folgende paintBorder()-Methode stammt aus einer abgeleiteten JPanel-Klasse, die einen
tirkisfarbenen Rahmen definiert (siehe Rezept 122 zur Erzeugung von Kompnentenrahmen).
Die Methode zeichnet ein Muster aus Ovalen in den Rahmen.

/**

* Ovalmuster in Rahmen zeichnen

*/

public void paintBorder(Graphics g) {
super.paintBorder(g);

int width = getWidth();

int height = getHeight();

final int W= 10; // Breite der Ovale
final int H=5; // Hdhe der Ovale

// Kopie anlegen, da wir Clip-Rectangle dndern
Graphics gc = g.create();
gc.setColor(Color.BLACK);

S
==
I
£
=
=
=
e~
=
©
f
S

// Rahmenbreiten abfragen
Insets insets = this.getlnsets();

// In die vier Seiten des Rahmens muss einzeln gezeichnet werden,
// da es in Java keine Mdglichkeit zur Verschmelzung von Clipbereichen gibt

// Rahmen oben
gc.setClip(0, 0, width, insets.top);

for(int j = 0; j < insets.top; j+=H)
for(int 1 = 0; i < width; i+=W)
gc.drawOval(i, j, W, H);

// Rahmen Tinks
gc.setClip(0, insets.top, insets.left, height-insets.top-insets.bottom);

for(int j = 0; j < height; j+=H)
for(int 1 = 0; i < insets.left; i+=W)
gc.drawOval(i, j, W, H);

Listing 199: paintBorder() tberschreiben

S
=
@
£
=
=
=
i~
=
©
f s
S

430 >> In den Rahmen einer Komponente zeichnen

// Rahmen unten
gc.setClip(0, height-insets.bottom, width, insets.bottom);

int starty = (height - insets.bottom) - ((height - insets.bottom)%H);
for(int j = starty; j < height; j +=H)
for(int i =0; 1 < width; i +=W)
gc.drawOval (i, j, W, H);

// Rahmen rechts
gc.setClip(width-insets.right, insets.top, insets.right,
height-insets.top-insets.bottom);

int startx = width - insets.right - ((width - insets.right)%W);
for(int j = 0; j < height; j+=H)
for(int i = startx; i < width; i+=W)
gc.drawOval(i, j, W, H);

gc.dispose();

Listing 199: paintBorder() dberschreiben (Forts.)

Der Code fiir das untere und das rechte Rahmenelement ist etwas komplizierter, da der verti-
kale bzw. horizontale Startpunkt fiir die Zeichenausgabe so berechnet werden muss, dass es
keine Uberschneidungen oder Liicken im Muster gibt.

Vielleicht verwundert es, dass sowohl das Clipping als auch scheinbar die Grenzen der for-
Schleife dafiir sorgen, dass nur in den Rahmen gezeichnet wird. Nun, dies ist nicht der Fall.
Der Schutz des Inhaltsbereichs obliegt allein den Clipping-Bereichen. Die for-Schleifen kénn-
ten genauso gut den gesamten Bereich der Komponente durchlaufen (was im Ubrigen der ein-
fachste Weg wiire, die Konsistenz des Musters zu gewéhrleisten). Allerdings wiirde bei dieser
Vorgehensweise viel Zeit damit verbracht, die for-Schleifen in Bereiche zeichnen zu lassen, in
denen wegen des Clippings keine Ausgabe zu sehen ist.

= In Komponentenrahmen zeichnen

Abbildung 82: Panel mit Zeichnungen im Rahmen

>> Grafik und Multimedia 431

154 Zeichnen mit unterschiedlichen Strichstarken
und -stilen
Mit Java2D konnen Sie Strichstirke und -stil variieren.

Um die Vorziige von Java2D nutzen zu kénnen, miissen Sie das Graphics-Objekt, mit dem Sie
arbeiten, in ein Graphics2D-Objekt umwandeln:

public void paintComponent(Graphics g) {
super.paintComponent(g);
Graphics2D g2 = (Graphics2D) g;

Die Typumwandlung ist fiir alle Swing-Komponenten moglich.

BasicStroke

In Java2D konnen Sie fiir Strichoperationen (Zeichnen einer Linie oder eines Figurumrisses)
die Strichstiarke vorgeben. Die zugehorige Methode heiBt setStroke() und erwartet als Argu-
ment eine Stroke-Instanz:

void setStroke(Stroke s)

Stroke ist eine abstrakte Klasse. Wie meist in Java gibt es aber bereits eine abgeleitete, nicht-
abstrakte Klasse: BasicStroke. BasicStroke verfiigt tiber mehrere Konstruktoren, mit denen Sie
»Stifte« verschiedener Breiten, Endpunktverzierungen und Strichmuster erzeugen konnen.

Strichstarke

Um die Strichstirke festzulegen, iibergeben Sie dem Konstruktor einfach einen passenden
float-Wert. (1.0f entspricht dabei der bisherigen Normaldicke.)

S
=
I
£
=
=
=
e~
=
©
f
S

public void paintComponent(Graphics g) {
super.paintComponent(g);

// Java-2D verfligbar machen
Graphics2D g2 = (Graphics2D) g;

// Gelbes Rechteck mit 2-Pixel-Rahmen
g2.setColor(Color.YELLOW);
g2.fil1Rect (100, 100, 250, 100);

g2.setStroke(new BasicStroke(2.0f));
g2.setColor(Color.BLACK);
g2.drawRect (100, 100, 250, 100);

S
=
@
£
=
=
=
i~
=
©
f s
S

432 >> Zeichnen mit unterschiedlichen Strichstirken und -stilen

Darstellung der Punkte

Zusidtzlich konnen Sie die Darstellung von End- und Kreuzungspunkten bestimmen. In
BasicStroke sind hierfiir verschiedene Konstanten definiert:

Endpunktstile:

CAP_BUTT keine Endpunkte
CAP_ROUND runde Endpunkte
CAP_SQUARE quadratische Endpunkte

Kreuzungspunktstile:

JOIN_MITER verbinde Segmente tiber ihre duBeren Kanten
JOIN_ROUND verbinde Segmente durch gerundete Ecken
JOIN_BEVEL verbinde Segmente durch eine gerade Linie

Tabelle 40: End- und Kreuzungspunktstile

public void paintComponent(Graphics g) {
super.paintComponent(g);

// Java-2D verflighar machen
Graphics2D g2 = (Graphics2D) g;

// Rotes Dreieck mit abgerundetem 5-Pixel-Rahmen
Polygon triangle = new Polygon();
triangle.addPoint (150, 250);
triangle.addPoint (200, 50);
triangle.addPoint (250, 250);

g2.setColor(Color.RED);
g2.fill(triangle);

gZ.setStroke(new BasicStroke(5.0f,
BasicStroke.CAP_BUTT,
BasicStroke.JOIN_ROUND));

g2.setColor(Color.BLACK);

g2.draw(triangle);

Gestrichelte Linien

Um gestrichelte Linien zu erzeugen, miissen Sie ein Array von float-Werten definieren, die
angeben, wie lang die sichtbaren und nichtsichtbaren Segmente der Linie sein sollen. Dieses
Array lbergeben Sie zusammen mit der Angabe, ab welchem Punkt die Strichelung beginnen
soll, als flinftes und sechstes Argument an den BasicStroke-Konstruktor. (Das vierte Argument
ist fiir eine etwaige Miter-Verbindung und muss groBer oder gleich 1.0 sein.)

public void paintComponent(Graphics g) {
super.paintComponent(g);

// Java-2D verflighar machen
Graphics2D g2 = (Graphics2D) g;

>> Grafik und Multimedia 433

// Blauer Kreis mit gestricheltem 5-Pixel-Rahmen
g2.setColor(Color.BLUE);
g2.fi110val(280, 60, 100, 100);

float[] dashs = {20.0f, 5.0f};

gZ.setStroke(new BasicStroke(5.0f,
BasicStroke.CAP_BUTT,
BasicStroke.JOIN_ROUND, 1.0f,
dashs, 0.0f));

g2.setColor(Color.BLACK);

g2.drawOval (280, 60, 100, 100);

2 Strichstarken und -stile E“E|E|

Abbildung 83: Grafische Elemente mit unterschiedlichen Strichstilen

155 Zeichnen mit Fillmuster und Farbverlaufen
Mit Java2D konnen Sie mit Fiillmustern und Gradienten zeichnen.

Um die Vorziige von Java2D nutzen zu kénnen, miissen Sie das Graphics-Objekt, mit dem Sie
arbeiten, in ein Graphics2D-Objekt umwandeln:

public void paintComponent(Graphics g) {
super.paintComponent(g);
Graphics2D g2 = (Graphics2D) g;

Die Typumwandlung ist fiir alle Swing-Komponenten méglich.

Fillungen

In Java2D kénnen Sie nicht nur mit einzelnen Farbtonen, sondern auch mit Mustern und Gra-
dienten, d.h. Farbiibergdngen, malen. Die Methode, die das zu verwendende Fiillmuster ein-
richtet, lautet:

void setPaint(Paint p)

Als Argument erwartet die Methode ein Objekt, dessen Klasse die Schnittstelle Paint imple-
mentiert. Vordefinierte Java-Klassen aus java.awt, die diese Voraussetzung erfiillen, sind

P Color - zum Zeichnen mit einem einzelnen Farbton (entspricht dem Aufruf von setColor()).

S
==
I
£
=
=
=
~)
=
©
f ol
S

S
=
@
£
=
=
=
i~
=
©
f s
S

434 >> Zeichnen mit Fiillmuster und Farbverlaufen

P TexturePaint - zum Zeichnen mit einem Muster.

P GradientPaint - zum Zeichnen mit Farbiibergdngen.

Fullmuster (TexturePaint)

Das Muster wird dem TexturePaint-Konstruktor in Form einer BufferedImage-Instanz {iberge-
ben. Das zweite Argument ist ein Rectangle?D-Rechteck, das angibt, welche AbmaBe die
»Kacheln« haben sollen, in die das Muster kopiert und mit denen die spiter zu zeichnenden
Formen ausgefiillt werden sollen.

public void paintComponent(Graphics g) {
super.paintComponent(g);

// Java-2D verflighar machen
Graphics2D g2 = (Graphics2D) g;

// Rotes Dreieck mit FlUllmuster
Polygon triangle = new Polygon();
triangle.addPoint (150, 250);
triangle.addPoint (200, 50);
triangle.addPoint (250, 250);

try {
// Bilddatei flr Muster Tladen
BufferedImage pattern = ImagelO.read(new File("pattern.gif"));

// Fullmuster erzeugen
TexturePaint tp = new TexturePaint(pattern,
new Rectangle(0,0,10,10));

// Fullmuster aktivieren
g2.setPaint(tp);

} catch(I0Exception e) {
System.err.printin("Bilddatei konnte nicht geoeffnet werden");

}
g2.fill(triangle);

g2.setStroke(new BasicStroke(5.0f,
BasicStroke.CAP_BUTT,
BasicStroke.JOIN_ROUND));
g2.setColor(Color.BLACK);
gZ.draw(triangle);
}

Gradientenfiillung (GradientPaint)

Bei einer Gradientenfiillung wird langsam von einer Farbe an einem Punkt zu einer anderen
Farbe an einem anderen Punkt gewechselt. Dieser Wechsel kann sich zwischen diesen beiden
Punkten vollziehen (azyklisch) oder sich wiederholen (zyklisch). Die Bezugspunkte miissen
dabei nicht innerhalb des Objekts liegen, das gefiillt werden soll.

>> Grafik und Multimedia 435

Farbverlaufe werden als Instanzen von GradientPaint erzeugt. Als Argumente iibergeben Sie
dem Konstruktor die Koordinaten der Bezugspunkte, die beiden Farben und die Angabe, ob
azyklisch (false) oder zyklisch (true) gefiillt werden soll.

public void paintComponent(Graphics g) {
super.paintComponent(g);

// Java-2D verfligbar machen
Graphics2D g2 = (Graphics2D) g;

// Blauer Kreis mit Gradient
g2.setColor(Color.BLUE);

// Gradient definieren
GradientPaint gp = new GradientPaint(280, 60, Color.BLUE,
380, 160, Color.WHITE, false);
// Gradient aktivieren
g2.setPaint(gp);

// geflillten Kreis zeichnen
g2.fi110val(280, 60, 100, 100);

float[] dashs = {20.0f, 5.0f};

g2.setStroke(new BasicStroke(5.0f,
BasicStroke.CAP_BUTT,
BasicStroke.JOIN_ROUND, 1.0f,
dashs, 0.01));

S
==
I
£
=
=
=
~)
=
©
f ol
S

g2.setColor(Color.BLACK);
g2.drawOval(280, 60, 100, 100);

£ Fiillmuster, und -gradienten

Abbildung 84: Grafische Elemente mit unterschiedlichen Fiillungen

S
=
@
£
=
=
=
i~
=
©
f s
S

436 >> Zeichnen mit Transformationen

156 Zeichnen mit Transformationen
Mit Java2D konnen Sie Grafikelemente vor dem Einzeichnen transformieren lassen.

Um die Vorziige von Java2D nutzen zu kénnen, miissen Sie das Graphics-Objekt, mit dem Sie
arbeiten, in ein Graphics2D-Objekt umwandeln:

public void paintComponent(Graphics g) {
super.paintComponent(g);
Graphics2D g2 = (Graphics2D) g;

Die Typumwandlung ist fiir alle Swing-Komponenten méglich.

Das Java2D-Koordinatensystem

In Java2D arbeiten Sie nicht mit den Pixelkoordinaten des Zielgerdtekontextes, sondern mit
Pixel in einem eigenen, logischen Koordinatensystem, das allerdings per Voreinstellung 1:1
auf das Koordinatensystem des Zielgerdtekontextes abgebildet wird.

Wenn Sie es wiinschen, kénnen Sie die Abbildung allerdings auch veridndern, beispielsweise
durch Verschieben, Drehen, Scherung oder Skalieren.

Translation

Um alle nachfolgenden Zeichenausgaben automatisch um bestimmte Betrige in x- oder y-
Richtung zu verschieben, rufen Sie die Methode translate() auf:

void translate(double dx, double dy);

Das folgende Code-Fragment verschiebt den Ursprung in die Mitte der Komponente. Vor der
Verschiebung wird am alten Ursprung ein kleines Kreuz eingeblendet. Mit exakt dem gleichen
Code (wenn auch mit verdnderter Farbe) wird nach der Verschiebung das Kreuz am neuen
Ursprung eingeblendet.

public void paintComponent(Graphics g) {
super.paintComponent(g);

// Java-2D verflighar machen
Graphics2D g2 = (Graphics2D) g;

g2.setColor(Color.BLACK);
g2.drawLine(-5, 0, 5, 0);
g2.drawLine(0, -5, 0, 5);

g2.drawLine(4, 4, 20, 20);
g2.drawString("alter Ursprung", 25, 20);

// Ursprung in Komponenten-Mitte verschieben
g2.translate(getWidth()/2, getHeight()/2);

g2.setColor(Color.RED);

g2.drawLine(-5, 0, 5, 0);
g2.drawLine(0, -5, 0, 5);
g2.drawLine(4, 4, 20, 20);
g2.drawString("neuer Ursprung", 25, 20);

>> Grafik und Multimedia 437

Rotation

Um alle nachfolgenden Zeichenausgaben automatisch um einen bestimmten Winkel (in
BogenmaB) zu drehen, rufen Sie die Methode rotate() auf:

void rotate(double rad);

Die Drehung erfolgt immer um den Ursprung des Koordinatensystems. Negative Winkel dre-
hen entgegen dem Uhrzeigersinn, positive Werte im Uhrzeigersinn.

Das folgende Code-Fragment zeichnet zwei Rechtecke. Das zweite Rechteck ist gegeniiber dem
ersten um 45 Grad entgegen dem Uhrzeigersinn gedreht.

public void paintComponent(Graphics g) {
super.paintComponent(q);

// Java-2D verflgbar machen
Graphics2D g2 = (Graphics2D) g;

// Ursprung in Panel-Mitte verschieben
g2.translate(getWidth()/2, getHeight()/2);

g2.setColor(Color.BLACK);
g2.drawRect(0, 0, 200, 100);
g2.drawString("Original", 10, 15);

S
=
I
=
=
=
=
e~
=
©
f
S

// Drehung des KOS um 45 Grad entgegen Uhrzeigersinn
g2.rotate(Math.toRadians(-45));

g2.setColor(Color.RED);
g2.drawRect(0, 0, 200, 100);
g2.drawString("Gedreht", 10, 15);

}

Scherung

Um alle nachfolgenden Zeichenausgaben automatisch in x- oder/und y-Richtung zu scheren,
rufen Sie die Methode shear() auf:

void shear(double shx, double shy);

Die Scherung erfolgt immer relativ zum Ursprung des Koordinatensystems. Eine Scherung in
x-Richtung um 2 bedeutet, dass zu jeder x-Koordinate das Zweifache des vertikalen Abstands
zum Ursprung hinzuaddiert wird: (x, y) -> (x + 2 * y, y). Eine Scherung um O fiihrt zu keiner
Veranderung.

Das folgende Code-Fragment zeichnet zwei Rechtecke: eins links, eins rechts vom Ursprung.
Das zweite Rechteck wird mit Scherung 1 in x-Richtung gezeichnet.

public void paintComponent(Graphics g) {
super.paintComponent(q);

// Java-2D verflgbar machen
Graphics2D g2 = (Graphics2D) g;

S
=
@
£
=
=
=
i~
=
©
f s
S

438 >> Zeichnen mit Transformationen

// Ursprung in Panel-Mitte verschieben
g2.translate(getWidth()/2, getHeight()/2);
g2.setColor(Color.BLACK);
gZ.drawRect(-150, -100, 100, 150);
g2.drawString("Original", -140, 35);
// Scherung der X-Achse
g2.shear(1, 0);
g2.setColor(Color.RED);
g2.drawRect (100, -100, 100, 150);
g2.drawString("Geschert", 110, 35);

}

Skalierung

Um alle nachfolgenden Zeichenausgaben automatisch um bestimmte Faktoren in x- oder y-
Richtung zu skalieren, rufen Sie die Methode scale() auf:

void scale(double sx, double sy);

Das folgende Code-Fragment zeichnet zwei Kreise um einen gemeinsamen Mittelpunkt. Der
zweite Kreis wird gegeniiber dem ersten um den Faktor 2 in x- wie in y-Richtung vergrofert
gezeichnet.

pubTlic void paintComponent(Graphics g) {
super.paintComponent(g);

/1

Java-2D verfiighar machen

Graphics2D g2 = (Graphics2D) g;

/1

gz.

gz.
gz.
gz2.

/1

gz.

Ursprung in Panel-Mitte verschieben
translate(getWidth()/2, getHeight()/2);

setColor(Color.BLACK);
drawOval(-50, -50, 100, 100);
drawString("Original", 35, -40);

Skalierung (VergroBerung um 2 in X- und Y-Richtung)
scale(2, 2);

.setColor(Color.RED);
.drawOval(-50, -50, 100, 100);
.drawString("VergroBert", 35, -40);

>> Grafik und Multimedia 439

2 Transformationen;fiir Grafikelemente

translate Ifrutate rshear rscale |

riginal

rotate (Math toRadians(-457)

Abbildung 85: Gedrehtes Rechteck und gedrehter Text

Die Tranformationsmatrix

Alle Koordinatentransformationen werden addierend in eine interne Transformations-
matrix eingetragen. Wenn Sie also nacheinander eine Translation um 10 Pixel in x-
Richtung, eine Rotation um 0.1 Rad und eine weitere Translation um 50 Pixel in x-
Richtung vornehmen, erscheinen nachfolgende Zeichenausgaben um 0.1 Rad gedreht
und um 60 Pixel in x-Richtung verschoben!

S
==
I
£
=
=
=
~)
=
©
f ol
S

Wenn Sie die urspriingliche Koordinatentransformation wieder herstellen mdochten,
speichern Sie diese vorab und rekonstruieren Sie sie mit setTransform():

// Urspringliche Transformation sichern

AffineTransform oldAT = g2.getTransform();

// Eigene Transformationen hinzufiigen
g2.scale(0.5, 0,5);

// Urspringliche Transformation wiederherstellen
g2.setTransform(o1dAT);

157 Verfiigbare Schriftarten ermitteln

Welche Schriftarten auf dem aktuellen System installiert sind und verwendet werden kénnen,
ermitteln Sie mit Hilfe der getAvailableFontFamilyNames()-Methode der Klasse GraphicsEnvi-
ronment.

Die nachfolgend definierte Utility-Methode isFontAvailable() nimmt als Argument einen
Schriftfamilien-Namen wie »Arial, »Times New Roman« oder »Verdana« entgegen und liefert
true zuriick, wenn diese Schriftart verfiighar ist.

import java.awt.GraphicsEnvironment;

/*k'k

Listing 200: Methode, die prift, ob eine bestimmte Schriftart verfigbar ist

440 >> Dialog zur Schriftartenauswahl

* Priifen, ob der {bergebene Font verfiighar ist
*/
public static boolean isFontAvailable(String fontName) {

// Abfragen, welche Fonst auf System verfilighar sind
GraphicsEnvironment ge =

GraphicsEnvironment.getLocalGraphicsEnvironment();
String fontNames[] = ge.getAvailableFontFamilyNames();

// prifen, ob Font in Liste vorhanden
for(String s : fontNames)
if (s.equals(fontName))
return true;

return false;

Listing 200: Methode, die prift, ob eine bestimmte Schriftart verfliigbar ist (Forts.)

Im Beispielverzeichnis zu diesem Rezept finden Sie neben dem Start-Programm, welches tiber
die Kommandozeile einen Schriftartennamen entgegennimmt und mit Hilfe der obigen
Methode feststellt, ob die betreffende Schriftart verfiigbar ist, noch ein weiteres Programm
PrintFonts.java, mit dem Sie die Liste der auf dem System installierten Fonts komplett aus-
geben konnen.

S
=
@
£
=
=
=
i~
=
©
f s
S

158 Dialog zur Schriftartenauswahl

Mit Hilfe der GraphicsEnvironment-Methode getAvailableFontFamilyNames() ldsst sich nicht
nur prifen, ob eine Schriftart, die Sie fiir eine Textausgabe oder den Text einer GUI-Kompo-
nente nutzen wollen, auf dem aktuellen System verfiigbar ist. Sie konnen mit ihrer Hilfe auch
ein Listenfeld oder einen Dialog zur Schriftartenauswahl durch den Anwender einrichten.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

/*

* Fontdialog.java - Dialog zur Auswahl einer Schriftart

*/

public class Fontdialog extends JDialog implements ActionListener {
private Font chosenfont;

private List fontlList = new List();
private List sizelist = new List();
private JCheckBox btnBold new JCheckBox();
private JCheckBox btnItalic = new JCheckBox();
private JButton btnOK = new JButton();
private JButton btnCancel new JButton();

Listing 201: Dialog zur Schriftartenauswahl

>> Grafik und Multimedia 441

/**

* Konstruktor

*/

public Fontdialog(JFrame f) {
super(f);
setTitle("Schriftart auswdhlen");
setResizable(false);

setSize(new Dimension(386, 265));
setModal (true);
getContentPane().setlLayout(null);

// Abfragen, welche Fonts auf System verflighar sind
GraphicsEnvironment ge =

GraphicsEnvironment.getlLocalGraphicsEnvironment();
String fonts[] = ge.getAvailableFontFamilyNames();

// Font-Liste mit auf System installierten Fonts flillen

fontList.setBounds(new Rectangle(14, 10, 244, 159));

for(int i = 0; i < fonts.length; ++i)
fontList.add(fonts[i]);

fontList.select(0);

S
==
I
£
=
=
=
~)
=
©
f ol
S

// GroBen-Liste mit vordefinierten GroBen fillen

String sizes(] = {"8", "9", "10", "11", "12", "14", "16",
"18", "20", "22", "24", "26", "28",
"36", "48", "72" };

sizelist.setBounds(new Rectangle(270, 10, 100, 100));

for(int 1 = 0; i < sizes.length; ++i)

sizelist.add(sizes[i]);
sizelist.select(0);

// Schalter fiir fett und kursiv

btnBold.setBounds(new Rectangle(270, 120, 100, 25));
btnBold.setFont(new java.awt.Font("Dialog", 1, 12));
btnBold.setText("Fett");

btnltalic.setBounds(new Rectangle(270, 150, 100, 25));
btnltalic.setFont(new java.awt.Font("Dialog", 2, 12));
btnItalic.setText("Kursiv");

// Schalter zum Verlassen des Dialogs
btnOK.setBounds(new Rectangle(63, 204, 115, 25));
btnOK.setText("0K");
getRootPane().setDefaultButton(btn0OK);
btnOK.addActionListener(this);

btnCancel.setBounds(new Rectangle(210, 204, 115, 25));
btnCancel.setText("Abbrechen");
btnCancel.addActionListener(this);

Listing 201: Dialog zur Schriftartenauswahl (Forts.)

442 >> Dialog zur Schriftartenauswahl

getContentPane().add(fontList, null);
getContentPane().add(sizelist, null);
getContentPane().add(btnBold, null);
getContentPane().add(btnltalic, null);
getContentPane().add(btnCancel, null);
getContentPane().add(btnOK, null);

}

/**

* Ereignisbehandlung fiir Schalter

*/

public void actionPerformed(ActionkEvent e) {
String Tabel = e.getActionCommand();

if(label.equals("0K")) {
String name = fontlList.getSelectedItem();
int size = Integer.parselnt(sizelist.getSelectedItem());
int style = Font.PLAIN;
if (btnBold.isSelected())
style |= Font.BOLD;
if (btnltalic.isSelected())
style |= Font.ITALIC;

chosenfFont = new Font(name, style, size);
setVisible(false);

S
=
@
£
=
=
=
i~
=
©
f s
S

} else if(label.equals("Abbrechen")) {
chosenfFont = null;

setVisible(false);
}
}
/**
* Auf Anfrage den ausgewdhlten Font zuriickliefern
*/

public Font getFont() {
return chosenfFont;
}

Listing 201: Dialog zur Schriftartenauswahl (Forts.)

Der Dialog besteht aus zwei List-Instanzen, {iber die der Anwender Schriftart und SchriftgroBe
auswdhlen kann. Zwei JCheckBox-Schalter erlauben die Aktivierung von Fett- und Kursivschrift.
Driickt der Anwender den OK-Schalter, werden die Einstellungen fiir Schriftart, -grofe und -stil
zusammengetragen und es wird ein entsprechendes Font-Objekt erzeugt. Das Font-Objekt kann
jederzeit (solange der Dialog besteht) mit der Dialog-Methode getFont() abgefragt werden.

Das Start-Programm zu diesem Rezept zeigt ein einfaches JTextArea-Textfeld. Uber den Menii-
befehl DIALOG/SCHRIFTARTEN kann eine Instanz von FontDialog eingeblendet und eine Schrift
fiir das Textfeld ausgewihlt werden. (Hinweis: Die Instanzierung des Dialogs erfolgt im Kon-

struktor des Fensters.)

>> Grafik und Multimedia

miFonts.addActionListener(new Actionlistener() {
public void actionPerformed(ActionEvent e) {

// Schriftarten-Dialog anzeigen

fontDialog.setlocation((getLocation().x + 100),
(getlocation().y + 100));

fontDialog.setVisible(true);

// Schriftart abfragen
Font f = fontDialog.getFont();

// Schriftart fir JTextArea Ubernehmen
if (f I=null)
textpane.setFont(f);

}
1);

Listing 202: Aus Start.java — Ereignisbehandlung zu Dialog/Schriftarten-Befehl

= Schriftarten-Dialog

=

Datei Dialog
b 7 e . vf
s ist der ‘Cew
Schriftart auswahlen |Z|
Times MNew Roman A |24 ~
Trehuchet M2 26
Trendy 28
Tunga Kl
Werdana
72 =
Webdings =
Wiingdings
Wiingdings 2 L Fett
Wingdings 3 |] kursiv
oK | | awbrechen |

Abbildung 86: Dialog zur Schriftauswahl

159 Text mit Schattenwurf zeichnen

443

S
=
@
£
=
=
=
)
=
©
S
S

Eine einfache Technik, Text mit Schattenwurf zu zeichnen, ist das zweimalige Zeichnen des
Texts: einmal als eigentlicher Text und dann noch einmal, ein wenig horizontal und vertikal
versetzt und in meist blasserer Farbe, als Schatten. Zu beachten ist lediglich, dass der Schatten

zuerst und dann der eigentliche Text gezeichnet werden muss:

444 >> Text mit Schattenwurf zeichnen

/**
* Text mit Schatten zeichnen
*/
public static void drawShadowText(String s, Graphics g,
int x, int vy,
int dx, int dy,
Color textColor, Color shadowColor)

// Zuerst den Schatten zeichnen
g.setColor(shadowColor);
g.drawString(s, x+dx, y+dy);

// Dann den Text zeichnen
g.setColor(textColor);
g.drawString(s, x, y);

Listing 203: Methode, die Text mit Schatten zeichnet

Als Argumente libergeben Sie der drawShadowText ()-Methode
den auszugebenden Text,
das zum Zeichnen zu verwendende Graphics-Objekt,

die Koordinate der Textausgabe,

S
=
@
£
=
=
=
i~
=
©
f s
S

die horizontale und vertikale Verschiebung des Schattens,
die Farben fiir Text und Schatten.

vVvVvyyvyy

Ein typischer Aufruf sihe damit etwa wie folgt aus:

pubTlic void paintComponent(Graphics g) {
super.paintComponent(g);

g.setFont(new Font("Georgia", Font.BOLD, 40));

// Text mit Schatten zeichnen
Drawing.drawShadowText (text, g,

30, 60, 5, 6,

Color.BLACK, Color.LIGHT_GRAY);

= Text mit Schattenwurf

Hallo Programmierer!

Abbildung 87: Text mit Schattenwurf

>> Grafik und Multimedia 445

Um einen guten Schatteneffekt zu erzielen, sollte die Schrift nicht zu schmal und der
Versatz des Schattens im Vergleich zur Schriftbreite nicht zu groB sein.

160 Freihandzeichnungen

Es gibt verschiedene Techniken, wie man das Zeichnen von Freihandlinien unterstiitzen kann.
Der in diesem Rezept verfolgte Ansatz sieht so aus:

P Die gesamte Unterstiitzung fiir das Zeichnen von Freihandlinien ist in einer von JPanel
abgeleiteten Klasse zusammengefasst.

» Wenn der Anwender die Maustaste driickt (Mouselistener.mousePressed-Ereignis) oder die
Maus mit gedriickter Maustaste bewegt (MouseMotionListener.mouseDragged-Ereignis), wird
an der Position der Maus ein Punkt gezeichnet. Gleichzeitig werden die Koordinaten des
Punkts in einer ArraylList<Point>-Collection gespeichert.

P In der paintComponent()-Methode werden die Punkte aus der ArraylList<Point>-Collection
in das Panel gezeichnet. Auf diese Weise wird die Freihandzeichnung rekonstruiert, wenn
die Anwendung mit dem Panel nach einer Minimierung oder Verdeckung wieder in den
Vordergrund geholt wird.

P Die Panel-Klasse stellt eine Methode clear() zum Loschen der Zeichnung bereit.

S
==
I
£
=
=
=
e~
=
©
f
S

import java.awt.*;

import java.awt.event.*;
import javax.swing.*;
import java.util.Arraylist;

/**

* Panel filir Freihandzeichnungen

*/

public class FreehandPanel extends JPanel {

// Collection zum Speichern der gezeichneten Punkte
private ArrayList<Point> points = new ArraylList<Point>(37);

/*k*

* Der Konstruktor implementiert das Maushandling und setzt
* die Hintergrundfarbe

*/

FreehandPanel () {

setBackground(Color.black);

// Wenn Maus gedriickt, an Mausposition Punkt zeichnen
addMousel istener(new MouseAdapter() {

Listing 204: FreehandPanel.java — eine Panel-Klasse, in die der Benutzer mit der Maus
zeichnen kann

446 >> Freihandzeichnungen

private Point p;
public void mousePressed(MouseEvent e) {

// Punkt speichern
Point p = new Point(e.getX(), e.getY());
points.add(p);

// An Mausposition Punkt zeichnen
Graphics g = ((JPanel) e.getComponent()).getGraphics();

g.setColor(Color .WHITE);
g.fillRect(p.x, p.y, 2, 2);

g.dispose();
}
1)

// Wenn Maus mit gedriickter Maustaste bewegt wird, an Mausposition
// Punkt zeichnen
addMouseMotionListener(new MouseMotionAdapter() {

private Point p;

pubTlic void mouseDragged(Mousekvent e) {

S
=
@
£
=
=
=
i~
=
©
f s
S

// Punkt speichern
Point p = new Point(e.getX(), e.getY());
points.add(p);

// An Mausposition Punkt zeichnen
Graphics g = ((JPanel) e.getComponent()).getGraphics();

g.setColor(Color.WHITE);
g.fillRect(p.x, p.y, 2, 2);

g.dispose();

/**

* Ldscht die Zeichnung
*/

public void clear() {

// Die gespeicherten Punkte Tdschen
points.clear();

Listing 204: FreehandPanel.java — eine Panel-Klasse, in die der Benutzer mit der Maus
zeichnen kann (Forts.)

>> Grafik und Multimedia 447

// Neuzeichnen
repaint();

/**
* In paintComponent() die Freihandzeichnung bei Bedarf rekonstruieren
*/
public void paintComponent(Graphics g) {
super.paintComponent(g);

g.setColor(Color.WHITE);
for(Point p : points) {
g.fillRect(p.x, p.y, 2, 2);

1
J

Listing 204: FreehandPanel.java — eine Panel-Klasse, in die der Benutzer mit der Maus
zeichnen kann (Forts.)

S
=
@
£
=
=
=
e~
=
I
f
S

Lioschen

Abbildung 88: Frei gezeichneter Charakterkopf

S
=
@
£
=
=
=
i~
=
©
f s
S

448 >> Bilder laden und anzeigen

161 Bilder laden und anzeigen

Das Laden und Anzeigen von Bildern ist grundsitzlich nicht schwierig. Dass wir diesem
Thema ein eigenes Rezept widmen, liegt nicht nur daran, dass es sich um eine wichtige Grund-
technik handelt, sondern auch an den vielfiltigen Facetten, mit denen sich das Thema variie-
ren lasst.

Bilder laden

Es gibt In Java viele Wege, Bilder zu laden. Der traditionelle Weg fiihrt iiber die Methode get-
Image(), die fiir Anwendungen von der Klasse Toolkit und fiir Applets von der Klasse Applet
angeboten wird.

In beiden Fillen liefert die Methode direkt nach Aufruf ein Image-Objekt zuriick, das zwar mit
einer Bilddatei verbunden ist, deren Daten aber noch nicht geladen wurden. Dies geschieht erst
bei der ersten Verwendung bzw. nach AnstoB iiber einen MediaTracker (siehe auch Rezept 244):

import java.awt.*;

// Bild Taden mit Toolkit und MediaTracker
Image pic = Toolkit.getDefaultToolkit().getImage("demo.jpg");

// Bilder zur Uberwachung des Ladevorganges an einen MediaTracker Ubergeben
MediaTracker tracker = new MediaTracker(this);
tracker.addImage(pic, 1);

// Ladevorgang im Hintergrund starten, ohne zu warten.
try |

tracker.waitForiD(1);
} catch (InterruptedException ignore) {

Eine Besonderheit der getImage()-Version der Klasse Toolkit ist, dass die geladenen
Bilder in einem Cache zwischengespeichert und bei Bedarf wieder verwendet werden.
Dies bringt Laufzeitvorteile, wenn ein- und dasselbe Bild mehrfach angefordert wird,
ist aber unndtig, wenn ein Bild nur einmal geladen und angezeigt wird.

Seit dem SDK 1.4 gibt es zudem die Klasse Imagel0, mit deren Hilfe Bilder einfach und bequem
durch Ubergabe eines File-, InputStream- oder URL-Objekts geladen werden konnen:

import javax.imageio.lImagelO;

try {
Image pic = ImagelQ.read(new File("background.jpg"));

} catch(I0Exception e) {
e.printStackTrace();
}

Das vom Imagel0.read() zuriickgelieferte Bildobjekt ist vom Typ BufferedImage, einer von
Image abgeleiteten Klasse.

>> Grafik und Multimedia 449

Bilder anzeigen

Bilder werden tiblicherweise in JPanel-Instanzen angezeigt (auBer es handelt sich um Symbole
fiir Schalter etc.). Da es keine Moglichkeit gibt, JPanel-Instanzen ein Bild direkt als Hinter-
grundbild zuzuweisen (siehe auch Rezept 117), missen Sie eine eigene Panel-Klasse ableiten
und in der paintComponent()-Methode das Bild in das Panel zeichnen:

public class ImagePanel extends javax.swing.JdPanel {
private Image image;

public ImagePanel(Image image) {
this.image = image;
}

// Bild in Panel zeichnen
public void paintComponent(Graphics g) {
g.drawlmage(image, 0, 0, this.getWidth(), this.getHeight(), this);
}
}

Die Gretchenfrage dabei lautet: Soll das Bild an die GroBe des Panels oder umgekehrt das
Panel an die GroBe des Bilds angepasst werden. Im ersteren Fall iibergeben Sie der draw-
Image()-Methode als Breite und Hohe des Zielbereichs (4. und 5. Parameter) die Breite und
Hohe des Panels. Soll dagegen das Panel an die BildgroBe angepasst werden, {ibergeben Sie
Breite und Hohe des Bilds:

g.drawlmage(image, 0, 0,
image.getWidth(this), image.getHeight(this), this);

Die nachfolgend definierte Klasse ImagePanel kann beides. Ihr Konstruktor iibernimmt als
zweites Argument neben dem anzuzeigenden Bild ein Flag, welches angibt, ob das Bild an die
Panel-GroBe angepasst (true) oder vollstindig angezeigt (false) werden soll. Zur Unterstiit-
zung von Layout-Manager wird die Methode getPreferredSize() liberschrieben.

import java.awt.*;
import javax.swing.JdPanel;

/**

* Panel zur Darstellung von Bildern

*/

public class ImagePanel extends javax.swing.JdPanel {
private Image image;
private boolean scale;

public ImagePanel(Image image, boolean scale) {
this.image = image;
this.scale = scale;

}

/**

* Bild in Panel zeichnen

Listing 205: ImagePanel.java — Panel-Klasse zum Anzeigen von Bildern

S
=
I
£
=
=
=
e~
=
©
f
S

S
=
@
£
=
=
=
i~
=
©
f s
S

450 >> Bilder laden und anzeigen

*/
pubTic void paintComponent(Graphics g) {
if(scale)
g.drawImage(image, 0, 0, this.getWidth(), this.getHeight(), this);
else

g.drawImage(image, 0, 0,
image.getWidth(this), image.getHeight(this), this);

/**
* Falls ein Layout-Manager eingesetzt wird, die bevorzugte GroBe
* zurlickliefern

*/
public Dimension getPreferredSize() {
if(scale)
return new Dimension(this.getWidth(), this.getHeight());
else

return new Dimension(image.getWidth(this), image.getHeight(this));

Listing 205: ImagePanel.java — Panel-Klasse zum Anzeigen von Bildern (Forts.)

Um ein Bild in einer ImagePanel-Instanz anzuzeigen, rufen Sie einfach den Konstruktor auf,
iibergeben das anzuzeigende Image und die gewiinschte Skalierung. AnschlieBend miissen Sie
das ImagePanel-Objekt gegebenenfalls noch positionieren (iibergeordneter Container arbeitet
ohne Layout-Manager) und dimensionieren (Bild wird an Panel-GroBe angepasst). Dann bet-
ten Sie es in den Container ein:

// ImagePanel einrichten und in ContentPane einbetten
ImagePanel imagePanel = new ImagePanel(pic, true);
imagePanel.setBounds(10,10, 100, 100);
getContentPane().add(imagePanel);

Das Programm zu diesem Rezept demonstriert verschiedene Moglichkeiten der Einbettung von
Bildern in GUI-Oberflichen. Beim Aufruf teilen Sie dem Programm mit, ob das ImagePanel
von einem FlowLayout-Manager (erstes Argument = »j«) oder direkt positioniert und dimen-
sioniert werden soll (»n«) und ob das ImagePanel an die GréBe des Bilds (zweites Argument =
»n«) angepasst werden oder die eigene Gr6Be behalten soll (»j«).

>> Grafik und Multimedia 451

= Bilder laden

Abbildung 89: java Program j j — das ImagePanel wird von einem FlowLayout-Manager
zentriert, das Bild wird auf die ImagePanel-GréBe skaliert.

= Bilder laden |;”E”z|
Qe d

S
=
@
£
=
=1
=
)
=
©
S
S

Abbildung 90: java Program j n — das ImagePanel wird von einem FlowLayout-Manager
zentriert, seine GréBe wird an die BildgréBe angepasst (hier sogar gréBer
als das Fenster).

452 >> Bilder laden und anzeigen

Abbildung 91: java Program n j — das ImagePanel wird ohne Layout-Manager
direkt positioniert und dimensioniert (setBounds()-Aufruf); das Bild
wird auf die ImagePanel-GréBe skaliert.

S
=
@
£
=
=
=3
)
=
©
S
S

Abbildung 92: java Program n n — das ImagePanel wird ohne Layout-Manager
direkt positioniert und dimensioniert (setBounds()-Aufruf); das Bild
wird nicht skaliert, weswegen nur die linke obere Ecke zu sehen ist.

Bilder mit Datei-Dialog 6ffnen und anzeigen

Wenn das anzuzeigende Bild wechseln kann (beispielsweise, weil es vom Anwender tiber einen
Datei-Dialog ausgewihlt wurde), miissen Sie

p vor dem Laden die alte ImagePanel-Instanz entfernen,

» nach dem Laden den Layout-Manager aktivieren und das Fenster neu zeichnen.

>> Grafik und Multimedia 453

if (JFileChooser.APPROVE_OPTION == openDialog.showOpenDialog(this)) {

// Datei abfragen
File f = openDialog.getSelectedFile();

if(f.isFile() && f.canRead()) {

// hier wird das Bild geladen
try {
pic = Imagel0.read(f);

// letztes Bild vorab entfernen
if(imagePanel != null)
getContentPane().remove(imagePanel);

// ImagePanel einrichten und in ContentPane einbetten
imagePanel = new ImagePanel(pic, scale);

imagePanel .setBounds (10,10, 100, 100);
getContentPane().add(imagePanel);

// Fenster aktualisieren
getContentPane().doLayout();
repaint();

} catch (I0Exception e) {)
System.err.printin("Fehler beim Offnen von " + this.file.getName());
1

S
==
I
£
=
=
=
~)
=
©
f ol
S

Listing 206: Aus Program_withOpen.java (siehe Unterverzeichnis mit Datei-Dialog)

Mehr Informationen zum Offnen von Dateien mit dem Datei-Dialog finden Sie in
Rezept 142.

Diashows

Wenn Sie mehrere Bilder laden wollen, die mehrfach, an verschiedenen Stellen oder abwech-
selnd (Diashow) angezeigt werden sollen, konnen Sie sich entweder der Toolkit-Methode
getImage() bedienen oder die Bilder mit ImageI0.read() laden und selbst in einem Cache zwi-
schenspeichern. Genau dies macht die nachfolgend abgedruckte Klasse ImageManager (die im
Ubrigen auch fiir Applets verwendet werden kann, siehe Rezept 244).

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

Listing 207: ImageManager-Klasse, die Bilder l&dt und verwaltet

454 >> Bilder laden und anzeigen

import java.io.*;

import javax.imageio.ImagelO;
import java.util.Vector;
import java.applet.Applet;

public class ImageManager {
private Vector<Image> images = new Vector<Image>(5);
private MediaTracker tracker;
private int current = 0;
private boolean isApplet = false;

/*

* Konstruktor flr Applets

*/

ImageManager(JApplet applet, String... imagefilenames) {
// ... siehe Rezept 244

}

/*

* Konstruktor flr GUI-Anwendungen

*/

ImageManager(JFrame frame, String... imageFilenames) {
Image pic = null;

S
=
@
£
=
=
=
i~
=
©
f s
S

// images-Collection fillen
for (String filename : imageFilenames) {

// Image-Objekt erzeugen und in Vector-Collection speichern
try {

pic = ImagelO.read(new File(filename));

if (pic I=null)

images.add(pic);

} catch (IOException e) {

e.printStackTrace();
}

/*
* Index des aktuellen Bildes zuriickliefern
*/
public int currentImage() {
return current;
}

/*

* Index auf ndchstes Bild vorriicken und zuriickliefern
*/

public int nextImage() {

Listing 207: ImageManager-Klasse, die Bilder l&dt und verwaltet (Forts.)

>> Grafik und Multimedia 455

current++;
if (current >= images.size())
current = 0;

return current;
}

/*
* Index auf vorheriges Bild zuriicksetzen und zuriickliefern
*/
public int previousImage() f

current--;

if (current < 0)

current = images.size()-1;

return current;
}
/*
* Bild mit dem angegebenen Index zuriickliefern
*/

public Image getImage(int index) {

if (index >= 0 && index <= images.size()) {

S
=
I
£
=
=
=
e~
=
©
f
S

// Wenn Image fur Applet ist
// ... siehe Rezept 244

return images.get(index);

}

return null;

Listing 207: ImageManager-Klasse, die Bilder l&ddt und verwaltet (Forts.)

Der Konstruktor, der iiber den zweiten Parameter ein Array oder eine Auflistung von Bild-
dateinamen iibernimmt, erzeugt fiir jede Bilddatei ein Image-Objekt und speichert diese in
einer internen Vector-Collection.

Das Pendant zum Konstruktor, der die Bilder 14dt, ist die Methode getImage(), die auf Anfrage
ein geladenes Image aus der internen Vector-Collection zuriickliefert.

Ansonsten unterhélt die Klasse noch einen internen Positionszeiger current, der in Kombina-
tion mit den Methoden currentImage(), nextImage() und previousImage() zum Durchlaufen
der Bildersammlung verwendet werden kann.

Das Programm Diashow.java nutzt die Klasse ImageManager zur Implementierung einer ein-
fachen Bildergalerie.

456 >> Bilder laden und anzeigen

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Diashow extends JFrame {
ImageManager images; // Bildersammlung
DisplayPanel display; // Panel zum Anzeigen der Bilder
JPanel top;
JPanel bottom;

/*
* Bildersammlung fiillen und ContentPane einrichten
*/
public Diashow() f
setTitle("Bildbetrachter");
images = new ImageManager(this, "pic0l.jpg", "pic02.jpg", "pic03.jpg");

getContentPane().add(new ContentPane());

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}

/*

* Zweiteilige ContentPane filir eine Bildergalerie
* oben: DisplayPanel

* unten: Navigationsschalter

*/

class ContentPane extends JPanel {

S
=
@
£
=
=
=
i~
=
©
f s
S

public ContentPane() {
setlayout(new BorderLayout());

// Anzeigebereich

top = new JPanel(new FlowlLayout(FlowLayout.CENTER));
display = new DisplayPanel();

top.add(display);

// Navigationsschalter

bottom = new JPanel(new FlowLayout(FlowLayout.CENTER));

JButton btnPrevious = new JButton("Voriges Bild");

btnPrevious.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

// Vorangehendes Bild anzeigen Tassen
display.setImage(images.getImage(images.previousImage()));
top.dolLayout();
}
1)
JButton btnNext = new JButton("Ndchstes Bild");

Listing 208: TheApplet.java implementiert mit Hilfe von ImageManager eine
Bildergalerie.

>> Grafik und Multimedia 457

btnNext.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

// Ndchstes Bild anzeigen lassen
display.setImage(images.getImage(images.nextImage()));
top.dolLayout();
}
1)
bottom.add(btnPrevious);
bottom.add(btnNext);

add(top, Borderlayout.CENTER);
add(bottom, BorderlLayout.SOUTH);

// Anfangs das erste (aktuelle) Bild aus der Bildersammlung anzeigen
display.setImage(images.getImage(images.currentImage()));

[2-]
S
[-%)
/% E
* Panel zum Anzeigen der Bilder 5
* =
x g
s

private class DisplayPanel extends JPanel {
Image pic = null;

/*

* Neues Bild anzeigen

*/

public void setImage(Image pic) {
this.pic = pic;

// GréBe des Panels an Bild anpassen

this.setSize(pic.getWidth(this), pic.getHeight(this));

this.setPreferredSize(new Dimension(pic.getWidth(this),
pic.getHeight(this)));

// Neuzeichnen
repaint();
f

public void paintComponent(Graphics g) {
super.paintComponent(g);

// Bild in Panel zeichnen
if (pic !=null)
g.drawlmage(pic, 0, 0, pic.getWidth(this),
pic.getHeight(this), this);

Listing 208: TheApplet.java implementiert mit Hilfe von ImageManager eine
Bildergalerie. (Forts.)

458 >> Bilder pixelweise bearbeiten (und speichern)

}

public static void main(String args[]) {
Diashow frame = new Diashow();
frame.setSize(600,500);
frame.setLocation(300,300);
frame.setVisible(true);

Listing 208: TheApplet.java implementiert mit Hilfe von ImageManager eine
Bildergalerie. (Forts.)

S
=
@
£
=
=
=
i~
=
©
f s
S

| ‘Yoriges Bild || Machstes Bild |

Abbildung 93: Diashow

162 Bilder pixelweise bearbeiten (und speichern)

Es gibt zwei Wege, wie Sie in Bilder, d.h. Image-Objekte, zeichnen kénnen:

» Uber das Graphics-Objekt des Image-Objekts

» Uber die setData()- und setRGB()-Methoden von BufferedImage

Im ersten Fall lassen Sie sich von der getGraphics()-Methode ein Graphics-Objekt zurtick-
liefern und zeichnen dann mit den {iblichen Grafikmethoden in das Image.

Graphics g = image.getGraphics();
g.setColor(Color.WHITE);
g.fi11Rect(100,100,100,100);

// selbst erzeugte Graphics-Objekte missen entsorgt werden
g.dispose();

>> Grafik und Multimedia 459

Einzelne Pixel einfarben

Obwohl Graphics keine eigene Methode zum Einfarben einzelner Pixel vorsieht, ist es dennoch
moglich: Sie zeichnen einfach ein ausgefiilltes Rechteck der Breite und Hohe 1.

Etwas eleganter geht es, wenn es sich bei dem Image um ein Objekt der abgeleiteten Klasse
BufferedImage handelt. Dann brauchen Sie nur deren setRGB()-Methode aufrufen, der Sie die
Koordinaten des Pixels und den RGB-Wert der gewiinschten Farbe {ibergeben:

image.setRGB(i, j, (Color.BLUE).getRGB());

Bilder speichern

Wenn Sie mit BufferedImage-Objekten arbeiten, profitieren Sie zudem davon, dass Sie Ihre
Bilder mit Hilfe der Imagel0.write()-Methode als Datei auf die Festplatte speichern kdnnen.

BufferedImage image;

try {

Imagel0.write(image, "jpg", new File("dateiname.jpg"));
} catch (IOException e) {

e.printStackTrace();
}

Als zweiten Parameter {ibergeben Sie einen String mit der Bezeichnung fiir das gewiinschte
Speicherformat (beispielsweise »JPEG«, »jpegs, »JPGg, »jpge, »pngs, »gife, »BMP«, vbmp«, »BMP«).
Wenn Sie mochten, konnen Sie vorab priifen, ob das gewéahlte Speicherformat auf dem aktuel-
len Rechner unterstiitzt wird, sprich ob ein ImageWriter fiir das Format verfligbar ist:

S
==
I
=
=
=
=
e~
=
©
f
S

try {
[terator iter = Imagel0.getImagelriters(new ImageTypeSpecifier(image),
"Jjpeg");
if (iter.hasNext())
ImageIO.write(image, "JPEG", new File("dateiname.jpg"));

} catch (IOException e) {
e.printStackTrace();
}

Von der Imagel0-Methode getWriterFormatNames() konnen Sie sich eine Liste der auf
einem System registrierten Imagelriter ausgeben lassen:

for(String s : ImagelQ.getReaderFormatNames())
System.out.printin(s);

Um ein Image-Objekt in ein BufferedImage-Objekt umzuwandeln, besorgen Sie sich von
getGraphics() eine Referenz auf das Graphics-Objekt des BufferedImage und kopieren
Sie dann mittels drawImage() den Inhalt des Image-Objekts in das BufferedImage-Objekt.
(Uberlegen Sie sich aber, ob Sie nicht besser gleich alle Image-Vorkommen in Buffered-
Image umwandeln.)

Das Start-Programm zu diesem Rezept demonstriert anhand einer Fraktalberechnung (berech-
net wird eine Julia-Menge) die pixelweise Einfirbung eines BufferedImage. Wenn der Benutzer

460 >> Bilder pixelweise bearbeiten (und speichern)

die Berechnung startet, wird ein neues BufferedImage-Objekt erzeugt, das dieselben Abmafe
hat wie das Panel, in dem das Fraktal angezeigt wird. Dann wird der Thread fiir die Fraktal-
berechnung in Gang gesetzt:

class Start extends JFrame implements Runnable {
private Thread fractal;
private DisplayPanel display;
private JButton btnStart;
private JButton btnSave;
private BufferedImage image = null;

public Start() {

// Fraktalberechnung starten und abbrechen
btnStart.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

if(fractal == null) {

// Image-Objekt erzeugen

image = new BufferedImage(display.getWidth(),
display.getHeight(),
BufferedImage.TYPE_INT_RGB);

// Fraktalberechnung starten
fractal = new Thread(Start.this);
fractal.start();

S
=
@
£
=
=
=
i~
=
©
f s
S

In der run()-Methode des Threads werden die Farbwerte zur Einfiarbung der Pixel berechnet.
Mit der errechneten Farbe werden dann die Pixel im Panel und im BufferedImage gesetzt.
/**
* Julia-Menge berechnen und in display-Panel sowie image einzeichnen
*/
public void run() f
Graphics g = display.getGraphics();

int width = display.getWidth();
int height = display.getHeight();

// Fraktal berechnen und einzeichnen
for(int 1 = 0; i < width; i++) {
for(int j = 0; j < height; j++) {

if(Math.abs(x) < 1)
c = Color.RED;
else
¢ = Color.BLACK;

// Pixel in Panel einfdrben
g.setColor(c);

>> Grafik und Multimedia 461

g.fillRect(i,j,1,1);

// Pixel in Image einfdrben
image.setRGB(i, j, c.getRGB());

Driickt der Anwender nach Abschluss der Berechnung den Speichern-Schalter, wird das
Fraktal als JPEG-Datei gespeichert:

// Fraktal als "fractal.jpg" speichern
btnSave.addActionListener(new ActionListener() {
public void actionPerformed(Actionktvent e) {

try

Iterator iter = Imagel0.getImageWriters(
new ImageTypeSpecifier(image),
"Jjpeg");
if (iter.hasNext())
ImagelO.write(image, "JPEG", new File("fractal.jpg"));

} catch (IOException ioe) f
joe.printStackTrace();
}

S
=
I
£
=
=
=
e~
=
S
f
S

}
)

Listing 209: Aus Start.java

< Fraktal.- Bilder erzeugen u, speichern

=

Fraktal berechnen Speichern

Abbildung 94: Julia-Menge

S
=
@
£
=
=
=
i~
=
©
f s
S

462 >> Bilder drehen

163 Bilder drehen

Leider gibt es in Java keine direkte Unterstiitzung fiir das Drehen von Bildern. Es gibt aber in
Java2D die Moglichkeit, das Koordinatensystem des Grafikkontextes zu drehen und zu ver-
schieben - und damit ist es moglich, gedrehte Kopien zu erstellen (oder auch das Original zu
drehen, indem man zum Schluss die Kopie in das Original zuriickschreibt).

Um beispielsweise ein Bild um 90 Grad zu drehen, gehen Sie wie folgt vor:

1. Erzeugen Sie ein neues BufferedImage-Objekt, das so breit ist wie das zu drehende Bild
hoch (und umgekehrt so hoch wie das Original breit).

2. Besorgen Sie sich ein Graphics2D-Objekt fiir den Grafikkontext des BufferedImage-Objekts.

3. Verschieben Sie das Koordinatensystem des Graphics2D-Objekts um die Breite des Originals
nach unten und drehen Sie es dann 90 Grad um den Ursprung.

4. Kopieren Sie den Inhalt des Originalbilds in das BufferedImage-Objekt.

Die Kombination aus Verschiebung und Drehung des Koordinatenursprungs fiihrt dazu, dass der
einkopierte Bildinhalt wieder im urspriinglichen Anzeigebereich liegt (siehe Abbildung 95).

Original 90 Grad-Drehung Verschiebung

Abbildung 95: Bilddrehung um 90 Grad

Das Start-Programm zu diesem Rezept zeigt Original und gedrehte Kopie nebeneinander in
eigenen Panels an, wobei die Kopie anfangs durch ein leeres, nichtgedrehtes Bild repriasentiert
wird. Damit die gedrehte Kopie korrekt und vollstindig angezeigt wird, wird das alte Panel
(eine ImagePanel-Instanz, siehe Rezept 161) zuerst entfernt, dann die Kopie erzeugt und
schlieBlich die Kopie in eine neue ImagePanel-Instanz und diese in die ContentPane des Fens-
ters eingebettet.

>> Grafik und Multimedia 463

// Altes bzw. "Platzhalter-Bild entfernen
getContentPane().remove(i2Panel);

// Neues Bild erzeugen (mit vertauschter Breite und Hohe)
i2 = new BufferedImage(il.getHeight(), il.getWidth(), il.getType());

// Graphics-0Objekt beschaffen
Graphics2D g = i2.createGraphics();

// Koordinatensystem drehen und verschieben, so dass
// "gedrehtes" Bild wieder im Anzeigebereich
g.translate(0, il.getWidth());
g.rotate(Math.toRadians(-90));

// Inhalt von il hineinkopieren
g.drawlmage(il, 0, 0, null);

// Panel mit Bild neu einfiigen
i2Panel = new ImagePanel(i2, false);
getContentPane().add(i2Panel);

// Anzeige aktualisieren
getContentPane().dolayout();
repaint();

S
==
I
£
=
=
=
~)
=
©
f ol
S

g.dispose();

Listing 210: Bufferedimage i2 als gedrehte Kopie von Bufferedimage i1 erstellen

Bilder drehen
Datei Bearbeiten

Abbildung 96: Original und gedrehte Kopie

464 >> Bilder spiegeln

Wenn Sie viel mit kombinierten Koordinatentransformationen arbeiten, konnen Sie auch so
vorgehen, dass Sie ein Objekt der Klasse AffineTransform erzeugen, in diesem die
gewiinschten Transformationen speichern und dann das Objekt an die Graphics2D-Methode
transform() tbergeben. In diesem Falle kénnen Sie fiir Drehungen um Vielfache von 90
Grad die optimierte Methode quadrantRotate() verwenden, der Sie einfach das Vielfache n
iibergeben:

// Drehung um -90 Grad

AffineTransform at = new AffineTransform();
g.translate(0, il.getWidth());
at.quadrantRotate(3);

g.transform(at);

// Drehung um -180 Grad

AffineTransform at = new AffineTransform();
at.translate(il.getWidth(), il.getHeight());
at.quadrantRotate(2);

g.transform(at);

164 Bilder spiegeln

Um ein BufferedImage-Objekt an seiner horizontalen Mittelachse zu spiegeln, miissen Sie
lediglich die Farbinformationen links und rechts der Achse tauschen. Dazu durchlaufen Sie in
einer doppelten Schleife alle Pixel und kopieren die Farbinformation des Pixels (i, j) aus dem
Originalbild in das Pixel (width-1-i, j) der gespiegelten Kopie.

S
=
@
£
=
=
=
i~
=
©
f s
S

Wenn Sie das Bild an seiner vertikalen Mittelachse spiegeln wollen, kopieren Sie entsprechend
die Farbinformation des Pixels (i, j) aus dem Originalbild in das Pixel (i, height-1-j) der gespie-
gelten Kopie.

import java.awt.image.*;

pubTic class ImageUtil {
public static final int X_AXIS = 0;
public static final int Y_AXIS = 1;

// Instanzbildung unterbinden
private ImageUtil() { }

/**

* Erzeuge gespiegelte Kopie von Image org

*/

public static BufferedImage mirror(BufferedImage org, int axis) {

int width = org.getWidth();
int height = org.getHeight();

BufferedImage dest = new BufferedImage(width, height, org.getType());

Listing 211: Klasse zum Spiegeln von Bildern

>> Grafik und Multimedia 465

if(axis == X_AXIS) {
for(int i = 0; i < width; i++)
for(int j = 0; j < height; j++)
dest.setRGB(width-1-1, j, org.getRGB(i, j));
} else if (axis == Y_AXIS) {
for(int 1 = 0; i < width; i+)
for(int j = 0; j < height; j++)
dest.setRGB(i, height-1-j, org.getRGB(i, j));
}

return dest;

Listing 211: Klasse zum Spiegeln von Bildern (Forts.)

Das Start-Programm zu diesem Rezept zeigt Original und gespiegelte Kopie nebeneinander in
eigenen Panels an, wobei die Kopie anfangs durch ein leeres, nichtgedrehtes Bild reprasentiert
wird. Damit die gespiegelte Kopie korrekt angezeigt wird, wird das alte Panel (eine ImagePanel-
Instanz, siehe Rezept 161) zuerst entfernt, dann die Kopie erzeugt und schlieBlich die Kopie in
eine neue ImagePanel-Instanz und diese in die ContentPane des Fensters eingebettet.

S
==
I
£
=
=
=
~)
=
©
f
S

// Altes bzw. "Platzhalter-Bild entfernen
getContentPane().remove(i2Panel);

// Gespiegelte Kopie von il erzeugen und in i2 speichern
i2 = ImageUtil.mirror(il, ImageUtil.X_AXIS);

// i2 in ImagePanel und ContentPane einbetten
i2Panel = new ImagePanel(i2, false);
getContentPane().add(i2Panel);

// Anzeige aktualisieren
getContentPane().doLayout();
repaint();

Listing 212: Bufferedimage i2 als gespiegelte Kopie von Bufferedimage i1 erstellen

466 >> Bilder in Graustufen darstellen

Abbildung 97: Original und gespiegelte Kopie

165 Bilder in Graustufen darstellen

Der Farbraum eines BufferedImage-Objekts kann mit Hilfe der filter()-Methode von Color-
ConvertOp verdndert werden.

S
=
@
£
=
=
=
i~
=
©
f s
S

Bufferdimage filter(BufferedImage src, BufferedImage dest)

Als Argumente iibergeben Sie das Originalbild (src) und eine Referenz auf die Kopie, deren
Farbraum geédndert werden soll (dest).

Aufgerufen wird die filter()-Methode {iber ein ColorConvertOp-Objekt, das Sie fiir den
gewiinschten Farbraum erstellen. Den Farbraum erzeugen Sie als Instanz der Klasse ColorSpace
- beispielsweise ColorSpace.getInstance(ColorSpace.CS_GRAY) fiir Graustufen oder ColorSpace.
getInstance(ColorSpace.CS_sRGB) fiir RGB-Farben.

ColorConvertOp co =
new ColorConvertOp(ColorSpace.getInstance(ColorSpace.CS_sRGB),
null);

Etwas bequemer geht es mit der nachfolgend definierten Methode changeColorSpace(), der Sie
einfach eine Referenz auf das Originalbild und den gewiinschten Farbraum iibergeben. Die
Methode erzeugt dann selbststidndig eine Kopie des Originals fiir den neuen Farbraum und lie-
fert die Referenz auf die Kopie zuriick.

import java.awt.*;
import java.awt.image.*;
import java.awt.color.ColorSpace;

public class ImageUtil {

Listing 213: Methode zur Anderung des Farbraums

>> Grafik und Multimedia 467

// Instanzbildung unterbinden
private ImageUtil() { }

/**

* Erzeuge Kopie von Image org mit gedndertem ColorSpace

*/

public static BufferedImage changeColorSpace(Bufferedimage org,
ColorSpace cs) |

// Kopie erzeugen

BufferedImage dest = new BufferedImage(org.getWidth(),
org.getHeight(),
org.getType());

// Inhalt von org nach dest kopieren
Graphics2D g = dest.createGraphics();
g.drawlmage(org, 0, 0, null);
g.dispose();

// ColorSpace dndern
ColorConvertOp co = new ColorConvertOp(cs, null);
return co.filter(org, dest);

S
==
I
£
=
=
=
~)
=
©
f ol
S

Listing 213: Methode zur Anderung des Farbraums (Forts.)

Die filter()-Methode von ColorConvertOp kann auch selbststindig eine Kopie des Ori-
ginals anlegen. Das Ergebnis ist aber in der Regel nicht so gut, weil die Methode die
Kopie anfangs ohne Farbrauminformation erstellt.

166 Audiodateien abspielen

Audiodateien mit AudioClip abspielen

Fiir das Abspielen von kleinen Audiodateien im AIFF-, WAV- oder AU-Format bietet sich die
statische Methode Applet.newAudioClip() an, mit deren Hilfe ein AudioClip-Objekt erzeugt
wird, welches eine Audiodatei komplett in den Hauptspeicher 1adt. Mit der Methode play()
kann man sie dann abspielen':

import javax.swing.*;
import java.applet.*;
import java.io.*;

Listing 214: Abspielen von kleinen Audiodateien

1. Beachten Sie bitte hierbei, dass play () nichtblockierend ist, d.h., im Programmfluss geht es sofort weiter, wihrend
im Hintergrund die Audiodaten gespielt werden.

468 >> Audiodateien abspielen

/**

* Abspielen von kleinen Audiodateien als Clip
*/

public class Start extends JFrame {

public Start() {
setTitle("Audio");

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}

public static void main(String args(]) {

if (args.length !=1) {
System.out.printin(" Aufruf: Start <Audiodatei>");
System.exit(0);

}

try {
// Audiodatei Taden

File f = new File(args[0]);
AudioClip clip = Applet.newAudioClip(f.toURI().toURL());

S
=
@
£
=
=
=
i~
=
©
f s
S

// Audiodatei abspielen
clip.play();

} catch(Exception e) {
e.printStackTrace();
}

Start frame = new Start();
frame.setSize(500,300);
frame.setlLocation(300,300);
frame.setVisible(true);

Listing 214: Abspielen von kleinen Audiodateien (Forts.)

Streaming-Audio

Die AudioClip-Klasse hat den Nachteil, dass sie wie bereits erwdhnt die abzuspielenden Daten
komplett 14dt, bevor das Abspielen beginnt. Dies bringt eine teilweise deutliche zeitliche Ver-
zdgerung mit sich, bevor etwas zu hoéren ist. Ferner kann es zu Speicherproblemen kommen,
wenn die Audiodatei sehr groB ist.

In solchen Fillen bietet sich daher der Einsatz des Pakets javax.sound.sampled an, mit dem
man Audiodaten im so genannten Streaming-Modus verarbeiten kann, d.h., die Daten werden
sofort abgespielt, wihrend noch weiter geladen wird. Das zentrale Element des Pakets ist
Jjavax.sound.sampled.Dataline, welches einen Teil der Audio-Pipeline darstellt - meistens ein-
fach Line genannt, d.h. ein Teil des Wegs, den Musik von der Quelle (z.B. eine Datei) bis zum

>> Grafik und Multimedia 469

Ziel (z.B. Lautsprecher) durchlaufen muss. Eine Line kann dabei zusitzliche Kontrollobjekte
(vom Typ javax.sound.sampled.Control) besitzen, mit denen sich u.a. die Lautstirke regulieren
lasst. Zum Abspielen von Audiodaten muss man mittels eines AudioInputStream-Objekts die
Daten lesen und an den Lautsprecher schicken. Diese Verbindung erfolgt mit Hilfe von
Jjavax.sound.sampled.SourceDataline.

import java.io.*;
import javax.sound.sampled.*;

/**
* Klasse zum Abspielen von beliebig groBen Klangdateien (wav, au)
*/
class Sound {
private String fileName;
private int volume = 1;

/**

* Konstruktor

*

* @param file Dateiname

*/

public Sound(String file) {
fileName = file;

}

S
==
I
=
=
=
=
e~
=
©
f
S

/**

* Lautstdrke einstellen
*

* @param n Anzahl dB der Verstdrkung

*/

public void setVolume(int n) {
volume = n;

}

/**

* Audio ausgeben auf Lautsprecher

*/

public void play() {
try {

File file = new File(fileName);
AudiolnputStream inStream = AudioSystem.getAudiolnputStream(file);
AudioFormat format = inStream.getFormat();

// Konvertierung falls nicht-Tineares PCM
if(format.getEncoding() != AudioFormat.Encoding.PCM_SIGNED) {
AudioFormat tmp = new AudioFormat(
AudioFormat.Encoding.PCM_SIGNED,
format.getSampleRate(), 2 *
format.getSampleSizeInBits(),
format.getChannels(),

Listing 215: Sound.java

470 >> Audiodateien abspielen

2 * format.getFrameSize(),
format.getFrameRate(), true);
format = tmp;
inStream = AudioSystem.getAudiolInputStream(format, inStream);
}

SourceDataline line = null;
DatalLine.Info info = new Dataline.Info(SourceDataline.class, format);

Tine = (SourceDataline) AudioSystem.getLine(info);

Tine.open(format);

FloatControl fc;

fc = (FloatControl) Tine.getControl(FloatControl.Type.MASTER_GAIN);
fc.setValue(volume);

Tine.start();
int num = 0;
byte[] audioPuffer = new byte[10000];

while(num != -1) {
num = inStream.read(audioPuffer, 0, audioPuffer.length);

if(num >= 0)
line.write(audioPuffer, 0, num);

S
=
@
£
=
=
=
i~
=
©
f s
S

}

line.drain(); // warten bis Ausgabe beendet
Tine.close();

} catch(Exception e) {
e.printStackTrace();

Listing 215: Sound.java (Forts.)

Das Start-Programm zeigt, wie man mit Hilfe der Klasse Sound eine Audiodatei abspielen kann.

public class Start {
public static void main(String[] args) {
if(args.length !=1) {
System.out.printin("Aufruf: <Audiodatei>");

System.exit(0);
}

Sound s = new Sound(args[0]);

Listing 216: Abspielen von Audiodaten im Streaming-Verfahren

>> Grafik und Multimedia 471

s.setVolume(3); // Lautstdrke
s.play();

Listing 216: Abspielen von Audiodaten im Streaming-Verfahren (Forts.)

Zum Abspielen von Audiodateien (inklusive MP3) kann auch das Java Media Frame-
work eingesetzt werden, wie im néchsten Rezept gezeigt wird.

167 Videodateien abspielen

Fiir das Abspielen eines Videos muss man auf das Java Media Framework (JMF) zuriickgrei-
fen, welches tiber den Link http://java.sun.com/products/java-media/jmf/2.1.1/download.html
heruntergeladen werden kann. Das JMF wird dabei in zwei Varianten angeboten: eine platt-
formunabhingige (cross-platform) sowie eine Windows- bzw. Solaris-spezifische Version, die
erweiterte Moglichkeiten? und bessere Performance bietet. Die plattformunabhingige Version
ist ein ZIP-Archiv (aktueller Name jmf-2_1_1e-alljava.zip) und enthilt die Datei jmf.jar, die
Sie in den CLASSPATH aufnehmen miissen.

Die plattformspezifischen Varianten sind allerdings in der Regel die wesentlich bessere Wahl
und werden mit ihrem eigenen Setup-Programm (z.B. fir Windows: jmf-2_1_1e-windows-
i586.exe) eingerichtet. Sie installieren automatisch alle notwendigen jar-Dateien im JDK-Hei-
matverzeichnis und passen den Standard-CLASSPATH entsprechend an.

Das Java Media Framework ist eine recht umfangreiche und komplexe API und wir beschrin-
ken uns hier auf das absolute Minimum an Klassen aus dem Paket javax.media, um ein Video
auf den Bildschirm zu zaubern. Die zentrale Klasse heiBt MediaPlayer und kann iiber eine
statische Methode Manager.createPlayer() erzeugt werden, wobei man die Datenquelle als
URL mitgeben muss. Dadurch kann die Datenquelle eine Internetadresse sein oder auch eine
lokale Datei.

Das MediaPlayer-Objekt hat schon die komplette Funktionalitit in sich gekapselt. Man muss
lediglich noch einen besonderen Listener — ControllerListener — bei ihm registrieren und in
dessen Listener die Methode controllerUpdate() implementieren. Diese Methode wird immer
dann aufgerufen, wenn das MediaPlayer-Objekt seinen internen Zustand geéindert hat. Das
wichtigste Ereignis, das es zu behandeln gilt, nennt sich RealizeCompleteEvent und besagt,
dass alle Vorbereitungen abgeschlossen sind und das Abspielen beginnen kann.

Zur Anzeige bietet MediaPlayer eine Methode getVisualComponent() an, in der das Video ange-
zeigt wird. Diese Komponente (vom Typ java.awt.Component) kann man dann in seine Benutzer-
oberflache einbauen. Ferner gibt es noch getControlPanelComponent(), mit der eine besondere
Steuerungskomponente (Anhalten, Positionierung) zur Verfligung gestellt wird.

2. Mit den Performance-Packs kann man z.B. auch Videos aufnehmen. AuBerdem werden mehr Video- und Audiofor-
mate unterstiitzt. Ein Vergleich der Features findet sich hier: http://java.sun.com/products/java-media/jmf/2.1.1/
formats.html

S
=
I
£
=
=
=
e~
=
©
f
S

472 >> Videodateien abspielen

import javax.swing.*;
import javax.media.*;
import java.io.*;

import java.awt.*;
import java.awt.event.*;
import java.net.*;
import java.util.*;

/**
* Frame mit Audio-/Video-Unterstiitzung
*/
class ProgramfFrame extends JFrame
implements ControllerlListener, ActionlListener {
private Player player;
private Component control;
private JPanel viewPanel;
private JPanel labelPanel;

public ProgramFrame() {
setTitle("AudioVideo-Demo");
setlayout(new BorderLayout());

// Meniileiste erstellen

JMenuBar mb = new JMenuBar();

JMenu fileMenu = new JMenu("Datei");

JMenuItem fileMenuPlay = new JMenultem("Offnen");
fileMenuPlay.addActionListener(this);
fileMenu.add(fileMenuPlay);

mb.add(fileMenu);

setJMenuBar(mb);

JLabel Tabel = new JLabel("");

TabelPanel = new JPanel();

TabelPanel.add(1abel);
add(TabelPanel,BorderlLayout.NORTH);
setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);

S
=
@
£
=
=
=
i~
=
©
f s
S

// MausbehandTung zur Dateiauswahl

public void actionPerformed(ActionkEvent e) {
// Dateinamen auswdhlen
JFileChooser chooser = new JFileChooser();
String[] extensions = {"mpg","wav","mp3"};
MyFileFilter filter = new MyFileFilter(extensions);
chooser.setFileFilter(filter);

int choice = chooser.showOpenDialog(ProgramFrame.this);

if (choice == JFileChooser.APPROVE_OPTION) {
File file = chooser.getSelectedFile();

if(file = null)

Listing 217: Abspielen von Video mit Java Media Framework

>> Grafik und Multimedia 473

play(file);

}

// Abspielen einer Audio/Video-Datei
public void play(File file) {
if(player !=null)
player.stop();

try |
// Anzeige flr Dateinamen aktualisieren
TabelPanel.remove(0);
JLabel Tabel = new JLabel(file.getName());
labelPanel.add(1abel);

player = Manager.createPlayer(file.toURL());
player.addControllerListener(this);
player.start();

} catch(Exception e) {
e.printStackTrace();
}
}

S
=
@
£
=
=
=
)
=
©
[
S

// Anzeige von Audio/Video
pubTlic void controllerUpdate(ControllerEvent e) {

if(e instanceof RealizeCompleteEvent) {
// Player ist mit Vorbereitungen fertig

// evtl. alte Ansicht und Steuerung entfernen
if(viewPanel !=null)
remove(viewPanel);

if(control != null)
remove(control);

// AWT Komponente mit Bild
Component view = player.getVisualComponent();

// Anzeige des Bildes falls es ein Video ist
if(view != null) {
viewPanel = new JPanel();
viewPanel.add(view);
add(viewPanel, BorderLayout.CENTER);
}

control = player.getControlPanelComponent();

Listing 217: Abspielen von Video mit Java Media Framework (Forts.)

474 >> Videodateien abspielen

if(control !=null) ;
add(control, BorderLayout.SOUTH);

pack();
}
}
}
/**
* FileFilter fir Dateiauswahl-Box
*/

class MyFileFilter extends javax.swing.filechooser.FileFilter {
private HashMap<String,String> extensions;
private String description;

public MyFileFilter(Stringl] ext) {
description = "";
extensions = new HashMap<String,String>();

for(int 1 = 0; i < ext.length; i++) {
if(ext[i].startsWith("."))
ext[1] = ext[i].substring(l);

if(ext[il.startsWith("*."))
ext[i] = ext[i].substring(2);

S
=
@
£
=
=
=
i~
=
©
f s
S

extensions.put(ext[i], ext[i]);
description += " *." + ext[i] + ",";
}
}

public String getDescription() {
return description.substring(0,description.length());
}

public boolean accept(File f) {
if(f 1= null) |
if(f.isDirectory())
return true;
else {
String name = f.getName();
int pos = name.index0f(".");

if(pos < 0)
return false;

String ext = name.substring(pos+l);

if(extensions.get(ext) !=null)
return true;

Listing 217: Abspielen von Video mit Java Media Framework (Forts.)

>> Grafik und Multimedia 475

else
return false;
}
} else
return false;

Listing 217: Abspielen von Video mit Java Media Framework (Forts.)

Das vorgestellte Programm eignet sich auch zum Abspielen von Musikdateien, und zwar nicht
nur die blichen WAV-Dateien, sondern auch das beliebte MP3! Es wird dann lediglich die
Control-Leiste gezeigt und natiirlich kein Bild, da der Aufruf von getVisualComponent() den
Wert null zuriickgibt.

168 Torten-, Balken- und X-Y-Diagramme erstellen

Die grafische Darstellung von Daten in Form von Diagrammen kann zu recht aufwindiger
Programmierarbeit fiihren, bis halbwegs zufrieden stellende Resultate erzielt werden. Aus die-
sem Grund sollte man zuerst schauen, ob es eine OpenSource-Bibliothek gibt, welche die
gewiinschten Anforderungen abdeckt. Der bekannteste Vertreter ist JFreeChart. Diese Biblio-
thek bietet eine Vielzahl von Diagrammen an, z.B. Torten- und Balkengrafik, X-Y-Plots sowie
viele weitere, teilweise recht spezielle Darstellungsformen.

Um JFreeChart einzusetzen, miissen Sie von http://www.jfree.org/jfreechart das ZIP-Archiv
jfreechart-1.0.4.zip> herunterladen und daraus die jar-Dateien jcommon-1.0.8.jar und jfree-
chart-1.0.04.jar extrahieren und in den CLASSPATH Ihrer Java-Anwendung aufnehmen.

Das Grundgeriist fiir den Einsatz der Bibliothek bilden folgende Klassen:
P JFreeChart: reprisentiert ein Diagramm.

P> Dataset, DefaultPieDataset, CategoryDataset, XYSeriesCollection u.a. definieren die darzu-
stellenden Zahlenwerte.

P ChartFactory bietet statische Methoden zur Erzeugung des gewiinschten Diagrammtyps.

P ChartPanel ist eine von JPanel abgeleitete Klasse zur grafischen Anzeige eines Diagramms.

Die Methoden der nachfolgend definierten Klasse Chart zeigen, wie diese Klassen kombiniert
werden miissen, um Torten-, Balken- oder X-Y-Diagramme zu erstellen. Das jeweils zuriickge-
lieferte ChartPanel-Objekt kann dann direkt wie eine gewdhnliche Swing-Komponente an der
gewiinschten Stelle in die Benutzeroberflache eingefiigt werden.

import org.jfree.chart.*;

import org.jfree.data.*;

import org.jfree.data.xy.*;
import org.jfree.data.category.*;
import org.jfree.data.general.*;

Listing 218: Chart.java — Hilfsklasse zum Erstellen verschiedener Diagrammtypen

3. Aktueller Dateiname im Juni 2005

S
=
I
£
=
=
=
e~
=
©
f
S

476 >> Torten-, Balken- und X-Y-Diagramme erstellen

import org.jfree.chart.plot.*;
import org.jfree.util.*;

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

/**
* Klasse zum Generieren von Torten-, Balkendiagrammen und X-Y Plots
*/
class Chart {
/**
* Die Daten als 2D-Tortengrafik darstellen
*

* @aram title Uberschrift
* @param legend Array mit Legende
* @param data Array mit double-Werten
* @return Panel oder null bei Fehler
*/
public static ChartPanel createPieChart2D(String title, String[] legend,
double[] data) f{
ChartPanel result = null;

try {
DefaultPieDataset pieDataset = new DefaultPieDataset();

S
=
@
£
=
=
=
i~
=
©
f s
S

for(int 1 = 0; i < data.length; i++) {
pieDataset.setValue(legend[i], new Double(datalil));
}

JFreeChart chart = ChartFactory.createPieChart(title, pieDataset,
true, true, false);
result = new ChartPanel(chart);

} catch(Exception e) {
e.printStackTrace();
}

return result;

/**

* Die Daten als 3D-Tortengrafik darstellen
*

* @aram title Uberschrift

* @param legend Array mit Legende

* @param data Array mit double-Werten

* @return Panel oder null bei Fehler
*/

Listing 218: Chart.java — Hilfsklasse zum Erstellen verschiedener Diagrammtypen (Forts.)

>> Grafik und Multimedia 477

public ChartPanel createPieChart3D(String title, String Tegend[],
double[] data) f{
ChartPanel result = null;

try {
DefaultPieDataset pieDataset = new DefaultPieDataset();

for(int 1 = 0; i < data.length; i++) {
pieDataset.setValue(legend[i], new Double(datalil));
}

JFreeChart chart = ChartFactory.createPieChart3D(title, pieDataset,
true, true, false);
result = new ChartPanel(chart);

} catch(Exception e) {
e.printStackTrace();
}

return result; %

J E
=

/** Eh
* Daten als Balkendiagramm darstellen %é
* -
S

* @aram title Uberschrift

* @param x_label Beschriftung x-Achse
* @param y_label Beschriftung y-Achse
* @param legend Array mit Legende

* @param data Array mit double-Werten
* @return Panel oder null bei Fehler
*/

public static ChartPanel createBarChart(String title, String x_label,
String y_Tlabel, String[] legend,
double[] data)
ChartPanel result = null;

try {
DefaultCategoryDataset catDataset = new DefaultCategoryDataset();

for(int i = 0; i < data.length; i++) {
catDataset.addValue(datalil, legend[il, "");
}

JFreeChart chart = ChartFactory.createBarChart(title, x_label,
y_label,catDataset, PlotOrientation.VERTICAL,
true, true, false);

result = new ChartPanel(chart);

} catch(Exception e) {

Listing 218: Chart.java — Hilfsklasse zum Erstellen verschiedener Diagrammtypen (Forts.)

478 >> Torten-, Balken- und X-Y-Diagramme erstellen

e.printStackTrace();
}

return result;
1

/**

* x,y Paare als Kurve darstellen; Wertepaare werden automatisch nach
* x-Wert aufsteigend sortiert

*

* @aram title Uberschrift

* @param x_label Beschriftung x-Achse

* @param y_label Beschriftung y-Achse

* @param data 2-dimensionales Array mit x,y Werten
* @return Panel oder null bei Fehler
*/

public static ChartPanel createXYChart(String title, String x_label,
String y_Tlabel, double[][] data) {
ChartPanel result = null;

try {
XYSeriesCollection dataset = new XYSeriesCollection();
XYSeries series = new XYSeries("");

for(int 1 = 0; i < data.length; i++) {
series.add(datali][0], datalil[1]);
}

S
=
@
£
=
=
=
i~
=
©
f s
S

dataset.addSeries(series);

JFreeChart chart = ChartFactory.createXYLineChart(title, x_label,
y_label, dataset, PlotOrientation.VERTICAL,
false, false, false);

result = new ChartPanel(chart);
} catch(Exception e) {
e.printStackTrace();
}

return result;

Listing 218: Chart.java — Hilfsklasse zum Erstellen verschiedener Diagrammtypen (Forts.)

Das Start-Programm zu diesem Rezept erzeugt mittels der Klasse Chart ein Tortendiagramm
und einen X-Y-Plot.

>> Grafik und Multimedia 479

import javax.swing.*;
import java.awt.*;

import java.awt.event.*;
import org.jfree.chart.*;

public class Start extends JFrame {

public static void main(String[] args) {
Start s = new Start();
s.setSize(400,400);
s.setVisible(true);

1

Start() {
setTitle("Chart-Demo");
JPanel panel = new JPanel();

// Tortendiagramm erstellen

String[] Tegend = {"Europa", "Nordamerika", "Stdamerika", "Afrika",
"Asien"}; ©
double[] data = {38.4, 43.2, 7.0, 5.4, 6.0}; 5
£
ChartPanel pie2D = Chart.createPieChartZD("Umsatzverteilung", legend, 5
data); =
panel.add(pie2D); %é
S
// X-Y-Plot erstellen
doublel[][] tempData = {{0.0, 0.0},{10.0,0.3},{1.0,0.25},{2.0,0.5¢},
{3.0,0.4},{4.0,0.6}, {5.0,1.1},{6.0,0.9},
{7.0,0.8},{8.0,0.45},{9.0,0.6},{1.5,0.4}};
ChartPanel plot = Chart.createXYChart("Messwerte", "x-Achse",
"y-Achse", tempData);

panel.add(plot);

JScrol1Pane pane = new JScrollPane(panel);
add(pane);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

Listing 219: Erzeugen von Diagrammen mit JFreeChart

S
=
@
£
=
=
=3
)
=
©
S
S

480 >> Torten-, Balken- und X-Y-Diagramme erstellen

. Chart-Demo

Umsatzverteilung

@ Europa = 35,4 ® Nordamerika = 43 2
" Asien=6

Sidamerika=7 Afrika=34

Abbildung 98: Tortendiagramm

Chart-Demo

Messwerte

og

o7 i AN

y-Achse

05

04 / Ry

o / -.\\

Iﬂ.ﬂ 05 10 15 20 25 30 35 40 45 50 55 B0 65

w-Achse

70 75

80 85 920

2.5 100 10£

Abbildung 99: X-Y-Plot

Regulare Ausdricke und Pattern Matching

169 Syntax regularer Ausdriicke

Regulédre Ausdriicke sind ein méchtiges Werkzeug zur Behandlung von Texten. Im Gegensatz
zu herkdmmlichen Verfahren basiert es nicht auf einem Zeichen-, sondern auf einem Muster-
vergleich. Mit Hilfe dieser Muster kann versucht werden, in einem gegebenen Text Entspre-
chungen (Matches) zu finden.

Die reguldren Ausdriicke stammen urspriinglich aus einem Bereich, der auf den ersten Blick
nicht sehr viel mit Java zu tun zu haben scheint: die Neurobiologie - also die Forschung iiber
die Funktionsweise des Nervensystems. In den fiinfziger Jahren des vergangenen Jahrhunderts
suchte man Methoden, um Abldufe im Gehirn bei bestimmten Ereignissen und Vorkommnis-
sen mathematisch beschreiben zu konnen. In den siebziger Jahren wurden diese Ansétze wie-
der aufgenommen, verfeinert und schlieBlich in der Suchfunktion des Unix-Editors qed
implementiert. Dies war die Geburtsstunde der reguldren Ausdriicke in der IT.

Die Einsatzbereiche reguldrer Ausdriicke sind vielféltig. Sie reichen von verschiedensten Such-
funktionen iiber die Validierung von E-Mail-Adressen und das Auslesen bestimmter Teile
eines Textes bis hin zum Ersetzen von Zeichenketten. Aufgrund ihrer Flexibilitdt und Leis-
tungsfihigkeit lassen sich mit regularen Ausdriicken Dinge anstellen, fiir die man sonst einige
dutzend oder hundert Zeilen Code bendtigt hitte — und das alles in einem Bruchteil der sonst
dafiir notigen Zeit.

Regulédre Ausdriicke verwenden ihre eigene Syntax, die auf den ersten Blick sehr komplex und
abschreckend wirken muss. Bei intensiverer Beschiftigung mit der Syntax erweist sie sich aber
als duBerst logisch und nachvollziehbar - nur eben schwer zu lesen.

Grundsétzlich ist ein reguldrer Ausdruck nichts anderes als ein Textmuster, das sich idealer-
weise im zu tiberpriifenden Text identifizieren lisst. Da ein derartiges Muster universeller ein-
setzbar sein soll als ein einfacher Zeichenkettenvergleich, werden in dem Muster Zeichen und
bestimmte Metazeichen kombiniert.

Im Anhang finden Sie eine komplette Auflistung aller Metazeichen. Im Folgenden sollen die
wichtigsten Metazeichen kurz vorgestellt werden:

Zeichen ‘ Bedeutung

X Der Buchstabe x
Beliebiges Zeichen
A\ Backslash
\On Zeichen mit dem oktalen Wert On (0 <= n <= 7)
\n Zeilenumbruch (Line Feed, "\uOOOA’)
\r Carriage-Return ('\uo00D’)
\d Zahl: [0-9]
\D Nicht-Zahl: [0-9]
\s Whitespace-Zeichen: [\t\n\x0B\f\r]

Tabelle 41: Die wichtigsten Metazeichen

482 >> Syntax regulérer Ausdriicke

Zeichen ‘ Bedeutung

\S Nicht-Whitespace-Zeichen: ["\s]

\w Zeichen, Unterstrich oder Zahl: [a-zA-Z_0-9]

\W Weder Zeichen noch Unterstrich oder Zahl: [*\w]
» Zeilenanfang

$ Zeilenende

\b Wortgrenze

\B Nicht-Wortgrenze

\A Beginn der Eingabe

\G Ende des vorherigen Treffers

[abc] a, b oder ¢

[~abc] Jedes Zeichen auBer a, b oder ¢ (Negation)
[a-zA-7] a bis einschlieBlich z oder A bis einschlieBlich Z
X? X, ein oder kein Mal

X* X, kein Mal oder mehrmals

X+ X, mindestens ein Mal

X{n} X, genau n Mal

X{n,} X, mindestens n Mal

X{n,m} X, mindestens n Mal, aber nicht mehr als m Mal
XY X, gefolgt von Y

X|Y Entweder X oder Y

(X) X wird als Entsprechung gespeichert

Tabelle 41: Die wichtigsten Metazeichen (Forts.)

Neben den Metazeichen konnen auch verschiedene Flags eingesetzt werden. Eine komplette
Auflistung dieser Flags finden Sie im Anhang dieses Buchs, die wichtigsten sollen aber hier
zumindest kurz vorgestellt werden:

Flag ‘ Bedeutung

Pattern.CASE_INSENSITVE Schaltet die Berticksichtigung der GroB-/Klein-
schreibung ein oder aus.
Pattern.MULTILINE Schaltet den Multiline-Modus, bei dem die Sym-

bole » und $ auch am Zeilenanfang bzw. -ende
matchen (und nicht nur am Anfang oder Ende des
kompletten Textes), ein oder aus.

Tabelle 42: Wichtige Flags

>> Regulére Ausdriicke und Pattern Matching 483

Flag | Bedeutung

Pattern.DOTALL Wenn der DOTALL-Modus aktiviert ist, steht der
Platzhalter . fiir alle Zeichen, inklusive Zeilenum-
briiche. Per Voreinstellung werden Zeilenumbrii-
che nicht als Ubereinstimmung gewertet.

Pattern.LITERAL Schaltet den Literal-Modus ein oder aus, bei dem
im Text enthaltene Steuer- oder Metazeichen
nicht als solche interpretiert, sondern als gewohn-
liche Zeichenketten aufgefasst werden.

Tabelle 42: Wichtige Flags (Forts.)

Auf Seiten Javas erfolgt der Einsatz von reguliren Ausdriicken meist {iber eine java.util.
regex.Pattern-Instanz, die das eingesetzte Muster kompiliert. Dies beschleunigt die Ausfiih-
rung des Matchings im Wiederholungsfall deutlich. Der statischen Methode Pattern.compile()
wird dabei das zu verwendende Muster iibergeben. In einer weiteren Uberladung konnen
ebenfalls die anzuwendenden Flags iibergeben werden. Die Riickgabe der compile()-Methode
ist eine Pattern-Instanz:

Pattern pattern = Pattern.compile(<Muster>);

Diese Pattern-Instanz kann nun verwendet werden, um einen Mustervergleich vorzunehmen.
Dabei kommt eine java.util.regex.Matcher-Instanz zum Einsatz, die den Abgleich des Mus-
ters mit der zu iiberpriifenden Zeichenkette vornimmt. Diese Matcher-Instanz wird von der
Methode matcher() der instanzierten Pattern-Instanz erzeugt und zuriickgegeben:

Matcher matcher = pattern.matcher(<Text>);

Mit Hilfe der so erhaltenen Matcher-Instanz kénnen nun weitere Operationen auf dem unter-
suchten Text vorgenommen werden.

Die Pattern-Klasse stellt jedoch den Ausgangspunkt der Arbeit mit reguldren Ausdriicken dar.
Ihre wichtigsten Methoden sind:

Methode | Beschreibung

static Pattern compile(String regex) Kompiliert den als Parameter iibergebenen regula-
ren Ausdruck in eine Pattern-Instanz.

static Pattern compile(String regex, int flags) | Kompiliert den als Parameter {ibergebenen regulé-
ren Ausdruck in eine Pattern-Instanz und ver-
wendet dabei die angegebenen Flags.

Matcher matcher(CharSequence input) Erzeugt eine Matcher-Instanz, die das gegebene
Muster auf den iibergebenen Text anwendet.
static boolean matches(String regex, Kompiliert den libergebenen reguldren Ausdruck
CharSequence input) und priift, ob er auf den iibergebenen Text ange-

wendet werden kann.

String[] split(CharSequence input) Zerlegt den tibergebenen Text anhand des gegebe-
nen Musters.

Tabelle 43: Wichtige Methoden der Pattern-Klasse

484 >> Uberpriifen auf Existenz

Eine Matcher-Instanz erlaubt es, Operationen auf dem Text vorzunehmen. Ihre wichtigsten
Methoden sind:

Methode ‘ Beschreibung

boolean find() Sucht die nichste Entsprechung des reguldren Aus-
drucks in der gegebenen Zeichenkette.

boolean find(int start) Setzt den Matcher zuriick und sucht nach der néchs-
ten Entsprechung des regulidren Ausdrucks beginnend
an der durch start angegebenen Position innerhalb
der gegebenen Zeichenkette.

String group() Gibt die Entsprechung zuriick, die durch den vorheri-
gen Match-Prozess gefunden wurde.

String group(int group) Gibt die durch group gekennzeichnete Entsprechung
zuriick, die durch den vorherigen Match-Prozess
gefunden wurde.

int groupCount() Gibt die Anzahl der gefundenen Gruppen zuriick.

boolean matches() Gibt an, ob der reguldre Ausdruck auf die Zeichen-
kette angewendet werden kann.

static String quoteReplacement(String s) Gibt die Literal-Entsprechung (also mit verdoppelten
Backslashes) der iibergebenen Zeichenkette zuriick.

String replaceAll(String replacement) Ersetzt jeden Treffer innerhalb des gegebenen Texts
durch die als Parameter angegebene Zeichenkette.

String replaceFirst(String replacement) Ersetzt den ersten Treffer innerhalb des gegebenen
Texts durch die als Parameter angegebene Zeichen-
kette.

Tabelle 44: Wichtige Methoden der Matcher-Klasse

170 Uberpriifen auf Existenz
Mit Hilfe der statischen Methode matches() der java.util.regex.Pattern-Klasse kann tiber-

priift werden, ob ein Muster {iberhaupt in einer Zeichenfolge erkannt werden kann:

import java.util.regex.Pattern;
public class Start {

public static void main(String[] args) {
String input = "Default input";
String pattern = "M(ai|ay|ei|ey)e?r";

// Zu testenden Text ermitteln

if(args != null && args.length > 0) {
input = args[0];

}

// Pattern ermitteln

Listing 220: Verwendung von Pattern.matches()

>> Regulére Ausdriicke und Pattern Matching 485

if(args != null && args.length > 1) {
pattern = args[1];
}

// Ergebnis ausgeben
System.out.printin(
String.format("Pattern \"%s\" does %smatch input \"%s\"",
pattern,
Pattern.matches(pattern, input) ? "" : "not ",
input));

Listing 220: Verwendung von Pattern.matches() (Forts.)

Das vom Programm vorgegebene Pattern kann iiber den zweiten Parameter beim Aufruf des
kompilierten Programms von der Kommandozeile aus iiberschrieben werden. Der erste Para-
meter reprisentiert die zu tiberpriifende Zeichenkette. Diese muss gemiB dem Default-Pattern
mit dem Buchstaben M beginnen und von den Buchstabenkombinationen ai, ey, ei oder ey
gefolgt werden. AnschlieBend kann optional ein e folgen und am Ende wird der Buchstabe r
erwartet. Giiltige Texte sind also:

Mayr
Mayer
Meir
Meier
Meyr
Meyer
Mair

vVvVvyVvVvyVvVvyyy

Maier

Andere Texte sind nicht giiltig. Eigene Muster konnen mit Hilfe der in Rezept 169 beschriebe-
nen Metasymbole definiert und als zweiter Parameter beim Aufruf {ibergeben werden.

ingabeaufforderung

>java Start Mair
Pattern "M{ailayieiley’e?r" does match input “"Mair"

»java Start England " [“ws\W1+7land5"
Pattern "“[“w\W1+?1land$" does match input “England"

>

Abbildung 100: Anwenden verschiedener Muster auf unterschiedliche Zeichenketten

Eine komplette Ubersicht iiber die moglichen Metasymbole finden Sie im Anhang dieses
Buchs.

486 >> Alle Treffer zuriickgeben

171 Alle Treffer zuriickgeben

Wollen Sie alle Treffer eines reguldren Ausdrucks in einem Text ausgeben, verwenden Sie eine
java.util.regex.Matcher-Instanz und nutzen deren Methode find(), um iiber die einzelnen
Treffer zu iterieren. Die Methode group() gibt den jeweiligen Treffer als String zuriick:

import java.util.ArraylList;
import java.util.regex.Pattern;
import java.util.regex.Matcher;

public class FindAll {

/**

* Gibt alle Treffer eines reguldren Ausdrucks zuriick

*/

public static String[] find(String input, String pattern) {
ArrayList<String> result = new ArrayList<String>();

// Pattern-Instanz erzeugen
Pattern compiled = Pattern.compile(pattern);

// Matcher-Instanz erzeugen
Matcher matcher = compiled.matcher(input);

// Alle Ergebnisse auslesen
while(matcher.find()) {

result.add(matcher.group());
}

// Inhalt in String-Array Uberfiihren
String[] res = new Stringlresult.size()];
result.toArray(res);

// Ergebnis zuriickgeben
return res;

Listing 221: Riickgabe aller Treffer eines requldren Ausdrucks

Die Methode find() erwartet die Angabe zweier Parameter: des zu tiberpriifenden Texts und
des zu verwendenden reguldren Ausdrucks. Soll etwa eine Priifung analog zum letzten Bei-
spiel auf die verschiedenen Schreibweisen des Namens Meier vorgenommen werden, kann
folgender Code verwendet werden:

public class Start {

public static void main(String[] args) {
// Muster definieren
String pattern = "M(ai|ay|ei|ey)e?r";

Listing 222: Ausgabe aller Meier-Abwandlungen in einem String

>> Regulére Ausdriicke und Pattern Matching 487

// Text einlesen
String input = (args != null && args.length > 0 ?
args[0] : "Default input");

// Treffer auslesen
String[] matches = FindAlT.find(input, pattern);

// Treffer ausgeben

System.out.printin(String.format("%d Treffer:", matches.length));

for(String match : matches) {
System.out.printin(String.format("- %s", match));

}

Listing 222: Ausgabe aller Meier-Abwandlungen in einem String (Forts.)

Der reguldre Ausdruck entspricht dem in Rezept 170 verwendeten Ausdruck. Beim Aufruf von
der Kommandozeile aus sollte als Parameter die zu iiberpriifende Zeichenkette tibergeben wer-
den. Die Ausgabe aller Treffer erfolgt in Form einer Liste.

¢ Eingabeaufforderung

>java Start "Maier, Mair. Miiller. Meyer. Meier. Meia. MHayr
5 Treffer:

Maier
Mair
Mever
Meier
Hayr

>

Abbildung 101: Ausgabe aller Treffer eines reguléren Ausdrucks

172 Mit reguldren Ausdriicken in Strings ersetzen

Die Methode replaceAl1() der java.util.regex.Matcher-Klasse erlaubt es, Teile von Zeichen-
ketten anhand von reguldren Ausdriicken zu ersetzen:

import java.util.regex.Pattern;
import java.util.regex.Matcher;

public class ReplaceAll {

/**
* Ersetzt das Muster in der gegegeben Zeichenkette
*/
public static String replace(
String input, String pattern, String replacement) {
String result = input;

Listing 223: Ersetzen von Mustern per Matcher.replaceAll()

488 >> Anhand von regulidren Ausdriicken zerlegen

// Pattern kompilieren
Pattern compiledPattern = Pattern.compile(pattern);

// Matcher instanzieren
Matcher matcher = compiledPattern.matcher(input);

// Wenn Muster gefunden, dann alle Vorkommen ersetzen
result = matcher.replaceAll(replacement);

// Ergebnis zuriickgeben
return result;

Listing 223: Ersetzen von Mustern per Matcher.replaceAll() (Forts.)

Die hier dargestellte statische Methode replace() erwartet die Angabe der Parameter fiir die
Quellzeichenkette, den reguldren Ausdruck und die Ersetzung. Diese konnen beispielsweise
von der Kommandozeile eingelesen werden, wie folgendes Listing zeigt:

public class Start {

public static void main(String[] args) {
// 7u ersetzende Zeichenfolge einlesen
String input = (args != null && args.length > 0 ?
args[0] : "Default input");

// Einzusetzende Zeichenfolge einlesen
String replacement = (args != null && args.length > 1 ?
args[1] : "Default replacement");

// Muster einlesen
String pattern = (args != null && args.length > 2 ?
args[2] : "M(ailay|ei|ey)e?r");

// Ersetzung durchflihren und Ergebnis ausgeben
System.out.printin(
ReplaceAll.replace(input, pattern, replacement));

Listing 224: Einlesen der Parameter fur die Ersetzung tber die Kommandozeile

173 Anhand von reguldren Ausdriicken zerlegen

Die Methode split() der java.util.regex.Pattern-Klasse kann Zeichenketten anhand von
reguldren Ausdriicken zerlegen. Als Argument wird nur die zu untersuchende Zeichenkette
erwartet. Die Riickgabe ist ein String-Array, das die gefundenen Teile der Zeichenkette ohne
das durch den reguldren Ausdruck bezeichnete Token beinhaltet:

>> Regulére Ausdriicke und Pattern Matching 489

import java.util.regex.Pattern;

public class Split {

/**
* Zerlegt eine Zeichenkette anhand des angebenen Tokens
*/
public static String[] split(String input, String token) {
// Pattern-Instanz referenzieren
Pattern pattern = Pattern.compile(token);

// Anhand des {ibergebenen Musters zerlegen
return pattern.split(input);

Listing 225: Zerlegen einer Zeichenkette mittels Pattern.split()

Die beiden Parameter fiir die zu untersuchende Zeichenkette und das Token, anhand dessen
die Zerlegung stattfinden soll, konnen beispielsweise von der Kommandozeile eingelesen wer-
den - wie es hier demonstriert wird:

public class Start {

public static void main(String[] args) {
// Standardtext und Token definieren
String input = "Default input";
String token =" ";

// Kommandozeilen-Parameter einlesen: Text

if(null != args && args.length > 0) {
input = args[0];

}

// Kommandozeilen-Parameter einlesen: Token
if(null != args && args.length > 1) {

token = args[1];
}

// Eingabe zerlegen
String parts[] = Split.split(input, token);

// Rickgabe ausgeben
System.out.printin(String.format("%d Teile gefunden", parts.length));
for(String part : parts) {
System.out.printin(String.format("- %s", part));
}

Listing 226: Einlesen von Text und Token von der Kommandozeile

490 >> Auf Zahlen priifen

Als Standard-Token, anhand dessen eine Zerlegung durchgefiihrt werden soll, wird das Leer-
zeichen definiert. Sollte die Klasse also ohne Parameter aufgerufen werden, wird der Text
»Default input« anhand des Leerzeichens in zwei Teile zerlegt.

o CA\WIN2K3\system32\cmd.exe

)jauq Start

Abbildung 102: Zerlegung mit dem Standardtext und dem Standard-Token

Wenn Sie eine Zerlegung einer Zeichenkette anhand eines anderen Musters vornehmen
wollen, miissen Sie dieses Muster als zweiten Parameter sowohl beim Aufruf der Konsolen-
anwendung als auch beim Aufruf der Methode spl1it() der Split-Klasse angeben. Um zum
Beispiel anhand von Leerzeichen, Komma mit nachfolgendem Leerzeichen oder Ausrufe-
zeichen eine Zerlegung vorzunehmen, sollten Sie folgendes Muster verwenden:

]!
.

ot C\WIN2K3\system32\cmd.exe

»java Start "Hallo. dies ist ein Beispiel-Text®" ' |, itV
L Teile gefunden

— Hallo

— dies

— ist

— ein

Beispiel-Text

>

Abbildung 103: Zerlegen eines benutzerdefinierten Textes anhand eines anderen Musters

Analog verfahren Sie, wenn Sie Inhalte anhand von Buchstaben oder kompletten Wértern zer-
legen wollen.

174 Auf Zahlen priifen

Es gibt verschiedene Moglichkeiten, auf Zahlen zu priifen. Eine dieser Moglichkeiten stellt die
Verwendung reguldrer Ausdriicke dar, die sicherstellen kénnen, dass eingegebene oder {iberge-
bene Zahlen einem bestimmten Muster entsprechen. Zu diesem Zweck wird eine java.util.
regex.Pattern-Instanz erzeugt und mit Hilfe der Methode matches() der referenzierten java.
util.regex.Matcher-Instanz bestimmt, ob das Muster auf den {ibergebenen Wert angewendet
werden kann. Diese Priifung wird innerhalb der Methode validate() vorgenommen.

Die beiden Methoden validateInteger() und validateDouble() zur Validierung von Integer-
und Double-Werten sind zusitzlich in der Klasse implementiert. Im Falle von Double-Werten
sind hier noch weitere Priifungen notig - zumindest sollte mit Hilfe von DecimalValue.parse()

>> Regulére Ausdriicke und Pattern Matching 491

sichergestellt werden, dass die iibergebene Zahl in einen numerischen Wert umwandelbar ist.
Wesentlich dabei ist die Angabe einer Locale-Instanz, um beispielsweise Kommata korrekt zu
erkennen.

Die verwendeten reguldren Ausdriicke konnen auf alle Zeichenketten angewendet werden, die
folgende Bedingungen erfiillen:

Ausdruck ‘ Beschreibung

~[1-91[0-91*?$ Die Zeichenkette muss mit einer Ziffer zwischen 1 und 9
beginnen.

AnschlieBend konnen beliebig viele Ziffern folgen.
ALT-91{11[0-97*2(2:[,\\.12[0-91+2)$ | Die Zeichenkette muss mit genau einer Ziffer zwischen 1 und
9 beginnen.

AnschlieBend kénnen beliebig viele Ziffern folgen.

Falls ein Komma oder ein Punkt eingefiigt wird, muss danach
mindestens eine Ziffer folgen.

Mehr als ein Komma oder Punkt ist nicht zulassig.

Tabelle 45: Durch reguldre Ausdriicke definierte Bedingungen

Im Code werden die beiden Ausdriicke in den Methoden validateInteger() und validate-
Double() verwendet:

import java.util.regex.Pattern;
import java.util.regex.Matcher;

public class ValidateDigit {

/**

* Priift auf eine Integer-Zahl

*/

public static boolean validateInteger(String input) {
// Ganze Zahl validieren, fihrende Null nicht zuldssig
return validate(input, "~[1-9J[0-91*7§");

}

/**

* Prift auf einen Double-Wert

*/

public static boolean validateDouble(String input) f{
// Double-Zahl mit Komma validieren, flihrende Null nicht
// zuldssig
boolean result = validate(input,

"ATT-9T{LIL0-90%2(2:[,\\.1?2[0-91+2)$");

// Wenn Priifung erfolgreich, dann casten
if(result) f

// Versuchen, die Zahl zu casten

try {

Listing 227: Validierung von Zahlen

492 >> Auf Zahlen priifen

DecimalFormat.getInstance(new Locale("de")).parse(input);
} catch (Parsekxception e) {

// Zahl konnte nicht gecastet werden

result = false;

}

return result;
}

/**

* Priifen eines Wertes

*/

public static boolean validate(String input, String p) {
// Pattern erzeugen
Pattern pattern = Pattern.compile(p);

// Matcher instanzieren
Matcher matcher = pattern.matcher(input);

// Ergebnis zuriickgeben
return matcher.matches();

Listing 227: Validierung von Zahlen (Forts.)

Es bietet sich an, die Methoden der Klasse ValidateDigit zur Validierung von Integer- oder
Double-Werten aus anderen Anwendungen oder von der Kommandozeile aus zu verwenden.
Letzteres ist in der Klasse Start implementiert, in deren statischer main()-Methode die zu
tiberpriifende Zahl eingelesen wird (erster Parameter). Ebenso wird hier evaluiert, welche Art
der Priifung vorgenommen werden soll - entweder auf eine ganze Zahl (kein zweiter Parame-
ter) oder auf einen Double-Wert (zweiter Parameter muss »-d« sein):

public class Start {

public static void main(String[] args) {
boolean validateInt = true;
String digit = "123";

// Ubergebene Zahl einlesen

if(null != args && args.length > 0) {
digit = args[0];

}

// Uberpriifen, ob auf Double gepriift werden soll

if(null != args && args.length > 1 && args[1].equals("-d")) {
validatelnt = false;

}

Listing 228: Einlesen der zu prifenden Zahl und des zu verwendenden Algorithmus

>> Regulére Ausdriicke und Pattern Matching 493

// Priifung durchftihren und Ergebnis zuriickgeben
System.out.printin(
validateInt ? ValidateDigit.validateInteger(digit) :
ValidateDigit.validateDouble(digit));

Listing 228: Einlesen der zu prifenden Zahl und des zu verwendenden Algorithmus (Forts.)

Das Ergebnis dieser Priifung wird anschlieBend ausgegeben.

C\WINZK3 \system32\cmd.exe

>java Start 18732

Start 18732.21

Start 18732.21 -d

Start B732.21 -d

Start B732

Abbildung 104: Prtifung verschiedener Zahlen

175 E-Mail-Adressen auf Giiltigkeit priifen

Gerade E-Mail-Adressen sind aufgrund ihrer potenziellen Komplexitit ein dankbares Feld fiir
die Priifung per regularem Ausdruck. Das zu verwendende Muster ist zwar nicht unbedingt ein
Musterbeispiel fiir einen einfach zu erfassenden reguldren Ausdruck, erschlieft sich jedoch
recht leicht, wenn es von links nach rechts gelesen wird:

A([0-9a-zA-Z1+[-\._+&1)*[0-9a-zA-71+@([-0-9a-zA-Z1+[\.1)+[a-zA-71{2,6}$

Dieser Ausdruck kann auf alle Zeichenketten angewendet werden, die folgende Bedingungen
erfiillen:

P Die Zeichenkette muss mit mindestens einem Buchstaben oder einer Ziffer beginnen.

P AnschlieBend konnen Bindestrich, Punkt, Unterstrich, Plus-Symbol und kaufménnisches
Und folgen.

» Beide Bedingungen konnen sich beliebig oft wiederholen oder auch tiberhaupt nicht erfiillt
werden.

» Vor dem @-Symbol miissen ein Buchstabe oder eine Zahl stehen.
P Es muss ein @-Symbol vorkommen.

» Nach dem @-Symbol miissen sich mindestens eine Ziffer, ein Buchstabe oder ein Binde-
strich anschlieBen.

P Danach muss ein Punkt folgen.

494 >> E-Mail-Adressen auf Giiltigkeit priifen

» Dies kann sich beliebig oft wiederholen.

» Am Ende muss eine Toplevel-Domain-Angabe von zwei bis sechs Zeichen Linge folgen.

Die Priifung auf die Erfiillung dieser Anforderungen findet innerhalb der Methode validate-
Email() statt:

import java.util.regex.Pattern;
import java.util.regex.Matcher;

public class EmailValidator f

/**
* {berpriift eine E-Mail-Adresse auf Giiltigkeit
*/
public static boolean validateEmail(String email) {
// Pattern instanzieren
Pattern pattern = Pattern.compile(
"M[0-9a-zA-Z]+[-\\._+&1)*[0-9a-zA-Z]+@([-0-9a-zA-Z1+"
+ "[\\.D+[a-zA-71{2,6}$");

// Matcher instanzieren
Matcher matcher = pattern.matcher(email);

// Ergebnis zuriickgeben
return matcher.matches();

Listing 229: Uberprtifung einer E-Mail-Adresse

Das Start-Programm zu diesem Rezept priift mit Hilfe dieser Klasse iiber die Kommandozeile
iibergebene E-Mail-Adressen:

public class Start {

public static void main(String[] args) {
// E-Mail-Adresse einlesen
String email = "test";
if(null != args && args.length > 0) {
email = args[0];
}

// Ergebnis ausgeben

System.out.printin(
String.format("Die E-Mail-Adresse %s ist %sgueltig", email,
EmailValidator.validatetmail(email) ? "" : "un"));

Listing 230: Uberprtifung von E-Mail-Adressen tiber die Kommandozeile

>> Regulére Ausdriicke und Pattern Matching 495

Ein Test mit verschiedenen E-Mail-Adressen zeigt, dass nur giiltige Adressen akzeptiert werden.

ingabeaufforderung

>java Start autorenBcarpelibrum
Die E-Mail-Adresse autorenfcarpelibrum ist ungueltig

>java Start autorenBcarpelibrum.de
Die E-Mail-fidresse autorenlcarpelibrum.de ist gueltig

>java Start
Die E-Mail-Adresse test ist ungueltig

>java Start autorenlBcarpelibrum.de.
Die E-Mail-Adresse autorenBcarpelibrum.de. ist ungueltig

>

Abbildung 105: Ausgabe der Prifergebnisse

176 HTML-Tags entfernen

Wenn Sie Webseiten herunterladen, um an deren reinen Inhalte zu gelangen, sind Sie entwe-
der gezwungen, diese manuell zu bearbeiten oder mit Hilfe eines reguldren Ausdrucks alle
HTML-Codes zu entfernen. Dies ist eine relativ dankbare Aufgabe, weil HTML-Codes einen
definierten und gleichbleibenden Aufbau haben, der sich mit Hilfe des folgenden reguldren
Ausdrucks beschreiben lasst:

P

Dieser Ausdruck trifft auf alle mit einer 6ffnenden spitzen Klammer beginnenden Textfragmente
zu, die nach mindestens einem anderen Zeichen mit einer schlieBenden spitzen Klammer enden.

Das Fragezeichen nach dem +-Symbol kennzeichnet einen nichtgierigen reguldren Aus-
druck. Fiir diesen endet ein Match direkt nach der ersten schlieBenden spitzen Klammer,
wihrend ein gieriger Ausdruck bis zur letzten schlieBenden spitzen Klammer matchen
wiirde. Bei einem Text, der mehrere schlieBende Klammern enthélt, wiirde dies mogli-
cherweise einen zu weiten Bereich umfassen und zu unerwiinschten Ergebnissen fiihren.

Das Ersetzen von HTML-Tags lédsst sich am einfachsten mit Hilfe der Matcher-Methode
replaceAll() erledigen, die als Parameter die Ersetzung entgegennimmt:

import java.util.regex.Pattern;
import java.util.regex.Matcher;

public class HtmlStripper f{

/**

* Entfernt alle HTML-Tags aus einem Text

*/

public static String stripHTML(String input) {
// Pattern-Instanz referenzieren
Pattern pattern = Pattern.compile("<[">]+7>");

Listing 231: Entfernen aller HTML-Tags aus einem Text

496 >> HTML-Tags entfernen
// Matcher-Instanz referenzieren
Matcher matcher = pattern.matcher(input);

// Ersetzung durchfiihren
return matcher.replaceAll("");

Listing 231: Entfernen aller HTML-Tags aus einem Text (Forts.)

Wesentlich aufwéndiger als das Entfernen der HTML-Tags ist das Abrufen einer Webseite. Dies
geschieht mit Hilfe einer URL-Instanz, die die Adresse der abzurufenden Seite représentiert.
Ein java.io.BufferedReader, der eine java.io.InputStreamReader-Instanz kapselt, die auf einen
Jjava.io.BufferedInputStream zugreift, liest die Inhalte der Seite ein.

Jede einzelne eingelesene Zeile wird wihrend des Einlesens durch die Methode stripHTML()
von den HTML-Tags befreit. AnschlieBend werden die HTML-kodierten Leerzeichen ebenfalls
entfernt. Zuletzt werden die Inhalte ausgegeben.

import java.io.*;
import java.net.MalformedURLException;
import java.net.URL;

public class Start {

public static void main(String[] args) {
BufferedReader br = null;

try {
// URL-Instanz, die die gewlinschte Webseite
// reprdsentiert
String address = "http://java.sun.com";
if(null != args && args.length > 0) {

address = args[0];

}
URL url = new URL(address);

// Einlesen der Daten per BufferedReader
br = new BufferedReader(
new InputStreamReader(
new BufferedInputStream(url.openStream())));

StringBuilder content = new StringBuilder();
String Tine = null;

// Inhalt Tesen
while(null != (Tine = br.readLine())) {
// Entfernen aller HTML-Tags aus der Zeile
String replacedlLine = HtmIStripper.stripHTML(Tine);

Listing 232: Abrufen einer Webseite und Entfernen der HTML-Tags

>> Regulére Ausdriicke und Pattern Matching 497

// Entfernen der HTML-Entities fiir Leerzeichen
replacedLine = ReplaceAll.replace(

replacedlLine, " ",)

// Wenn mindestens ein Zeichen noch vorhanden, dann
// Zeile hinzufligen
if(replacedLine.trim().length() > 0) {
content.append(replacedLine + "\r\n");
}
}

// Ergebnis ausgeben
System.out.printin(content.toString());

} catch (MalformedURLException e)
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
b finally {
// Aufrdumen
if(null I=br) {
try {
br.close();
} catch (IOException e) {
e.printStackTrace();
}

Listing 232: Abrufen einer Webseite und Entfernen der HTML-Tags (Forts.)

Eine Webseite wie http://java.sun.com wird so bei Ausfiihrung der Konsolenanwendung auf
ihren reinen Text reduziert.

\WINZK3 \system32\cmd.exe

>java Start
Java Technology
&raguo; search tips
in Developers’ Site
in Sun.com
Products and Technologies
Technical Topics
Developers Home > Products & Technologies >
Join Sun Developer Metwork
Log@n i

Why Register?

Products & Technologies
Java Technology
Dowvnloads

Early Access

AFI Specifications

Code Samples & A

Abbildung 106: Darstellung von java.sun.com ohne HTML-Tags

498 >> RegEx fiir verschiedene Daten

177 RegEx fiir verschiedene Daten

Bei jedem der folgenden reguldren Ausdriicke gilt es zu beachten, dass er zwar viele Einsatz-
zwecke abdeckt, jedoch nie auf alle méglichen und zulédssigen Schreibweisen eingehen kann.
Ebenso sollten reguldre Ausdriicke nie als alleinige Kontrollinstanz dienen, denn sie validieren
nur die Syntax von Zeichenketten, nicht deren Inhalt.

Die folgenden Beispiele stellen reguldre Ausdriicke dar, wie sie direkt in Java verwen-
det werden konnen. Aus diesem Grund sind Backslashes auch verdoppelt, damit keine
ungiiltigen Escape-Sequenzen erzeugt werden. Wollen Sie diese Ausdriicke iiber die
Kommandozeile (siehe Rezept 170) verwenden, miissen Sie die verdoppelten Back-
slashes (\\) in einfache Backslashes (\) umwandeln.

Auf PLZ priifen

Die Priifung auf eine deutsche Postleitzahl kann mit Hilfe des folgenden reguldren Ausdrucks
erfolgen:

M2:(2:001-46-91) | (2:[1-357-91\\d{1}) | (?:4[0-24-91)|(?:6[013-91))\\d{3}$

Dieser Ausdruck orientiert sich an den Nummernbereichen von Postleitzahlen, von denen ein-
zelne nicht vergeben sind. Die Nummernbereiche 00, 05, 43 und 62 werden deshalb komplett
iibergangen. An die ersten beiden Ziffern kann sich eine beliebige dreistellige Ziffer anschlieBen.

Osterreichische und schweizerische Postleitzahlen sind leichter zu priifen als ihre deutschen
Pendants, denn sie sind nur vierstellig und fortlaufend nummeriert. Der reguldre Ausdruck
muss also auf Zahlen priifen, wobei die erste Zahl keine Null sein darf:

AMI1-91\\d{3}$

Auf Telefonnummer priifen

Eine Priifung auf eine Telefonnummer kann im einfachsten Fall der Priifung auf ganze Zahlen
entsprechen. Das Format von Telefonnummern kann jedoch variieren, so dass mit einer derar-
tig simplen Priifung moéglicherweise mehr Fehler verursacht als vermieden werden.

Dieser reguldre Ausdruck priift eine Telefonnummer auf die Einhaltung der deutschen DIN
5008 fiir die Formatierung von Telefonnummern, die im Wesentlichen festlegt, dass die Vor-
wahl in Klammern zu setzen ist und sdmtliche Ziffern in Gruppen zu je zwei Ziffern geschrie-
ben werden miissen. Eine Durchwahl ist durch einen Bindestrich vom Rest der Telefonnummer
zu trennen:

MAONA(LL, 28 (O\N\s\A{L, 2 {1, 20V \DA\Ss (AT, 2 (\\s\\A{1,20) {1, 1) ((-(\\d{1,4})){0,11)$
Dieser reguldre Ausdruck kann auf diese Telefonnummern angewendet werden:

(0 30) 12 34 45
(0 30) 12 34 56 78
(030) 1234567 - 12

Er trifft jedoch nicht auf diese Telefonnummern zu:

(030) 12 34 456
+49 (0)30 12 34 56 78
(0 30) 12 34 56 78 - 12334

>> Regulére Ausdriicke und Pattern Matching 499

Auf Web- und FTP-Adresse priifen

Um auf Web- und FTP-Adressen zu priifen, konnen Sie diesen Ausdruck verwenden:
Aht|f)tp(s?)://[a-zA-20-9-\\._J+(\\. [a-zA-Z0-9-\\._1+){2,} (/?) ([a-ZA-20-9-\\.\\?2, "/
+=gamp; %$#_1*)?3$

Er trifft auf alle Eingaben zu, die folgenden Konventionen entsprechen:

» Sie beginnen mit http://, https:// oder ftp://.

P AnschlieBend erfolgt die Angabe des Domain-Namens und einer Top-Level-Domain (.de,
.com etc.).

» Danach kann ein Slash folgen, damit die Pfadkomponente angehidngt werden kann.

P> Die Pfadkomponente darf die Buchstaben und Ziffern sowie die Zeichen -.?,’+=&
%$#_ enthalten. Diese Komponente ist optional.

Dieser reguldre Ausdruck findet folgende Adressangaben:

http://java.sun.com

http:// java.sun.com/

http:// java.sun.com/index.html
http:// java.sun.com/index.html?a=b
ftp://pearson.de

Folgende Angaben entsprechen hingegen nicht dem reguldren Ausdruck:

java.sun.com
http://java.sun.com/index\html
http://user:pass @java.sun.com

Auf Wahrungsangaben priifen

Auch die Priifung auf Wiahrungsangaben kann per reguldrem Ausdruck erfolgen. Folgender
Ausdruck tberpriift auf Wahrungsangaben, die als Tausendertrennzeichen einen Punkt ent-
halten und die Nachkommastellen durch ein Komma abtrennen - also der deutschen Schreib-
weise entsprechen. Am Ende darf auch ein €-Zeichen folgen:

MAs*-2(ONA (L, 3FON O 31 *) [\N\d*) ({1, 21) 2\\s? (\\u20AC) 2\ \s*$
Dieser Ausdruck findet folgende Zeichenketten:

123

123,4

123,45

1.234,56 €
1.234,56 €

Nicht gefunden werden diese Zeichenketten:

01.234,56€
1.234,56 $
1.234,567

Kreditkartennummer tiberprifen
Die Verifikation von Kreditkartennummern kann mit Hilfe des folgenden reguldren Ausdrucks
erfolgen:

(M43 -2\\d {4 -2\\d {41 -2\\d {4}] (4]5)\\d{151) | (*(6011)-2\\d{4}-2\\d{4}-
2\ {41](6011)-2\\d{12}) | ("((3\\d{3}))-\\d{6}-\\d{5}|[~((3\\d{14})))

500 >> RegEx fiir verschiedene Daten

Dieser reguldre Ausdruck priift auf die Nummern gingiger Kreditkarten (Amex, Visa, Master-
card). Dabei wird jedoch nicht die Giiltigkeit der Nummern, sondern ausschlieBlich deren kor-
rektes Format tiberpriift:

P Beginnt mit 4 oder 5, gefolgt von drei Ziffern, einem Bindestrich und zwd6lf Ziffern in
Vierergruppen durch Bindestriche getrennt oder

P beginnt mit 4 oder 5, gefolgt von flinfzehn Ziffern.

P Beginnt mit 6011, gefolgt von zwolf Ziffern in Vierergruppen, getrennt durch Bindestriche
oder

P beginnt mit 6011, gefolgt von zwolf Ziffern.

P Beginnt mit 3, gefolgt von drei Ziffern, gefolgt von einem optionalen Bindestrich und
sechs Ziffern, gefolgt von einem optionalen Bindestrich und fiinf Ziffern oder

P beginnt mit 3, gefolgt von vierzehn Ziffern.

SQL-Injection verhindern

Ein reguldrer Ausdruck kann SQL-Injection-Attacken unterbinden, indem er Schliisselworter
wie SELECT, UPDATE, INSERT, DELETE, GRANT, REVOKE oder UNION herausfiltert. Die Ein-
schleusung von Hochkommata sollte ebenfalls verhindert werden:

(%3c) | (%3e)| (SELECT) | (UPDATE) |(INSERT) |(DELETE) |(GRANT) |(REVOKE) |(UNION)

Dieser reguldre Ausdruck sollte am besten mit der Methode replaceAl1() einer Matcher-Instanz
eingesetzt und auf jeden Wert, der in ein SQL-Statement eingefiigt werden soll, angewendet
werden.

Einen weitaus wirksameren Schutz vor SQL-Injection stellt allerdings die Verwendung von
PreparedStatements dar (siehe Rezept 182).

Wortverdoppelungen verhindern

Das Herausfiltern doppelter Worte kann aufwindig werden, wenn man es auf herkommliche
Art und Weise machen mochte. Regulire Ausdriicke erlauben es, diese Uberpriifung mit Hilfe
eines Musters vorzunehmen:

OADVWAND) NS+ DNWANWT*?)ANT

Dieser Ausdruck trifft auf alle Zeichenketten zu, in denen ein beliebiges Wort an beliebiger
Stelle doppelt vorkommt:

Dieser Ausdruck ist ist doppelt.
Dieser Ausdruck ist Ausdruck doppelt.

Wollen Sie nur auf hintereinander stehende Wortverdopplungen priifen, kénnen Sie folgenden
Ausdruck verwenden:

OB\ \WHD) W\ s\

Diese Zeichenkette wird erfolgreich getestet:
Dieser Ausdruck ist ist doppelt.

Diese Zeichenkette dagegen nicht:

Dieser Ausdruck ist Ausdruck doppelt.

Datenbanken

178

Das Aufbauen einer Verbindung zu einer Datenbank besteht aus zwei Aspekten. Zundchst
muss ein geeigneter JDBC-Treiber geladen werden, {iblicherweise mit der statischen Methode
DriverManager.registerDriver() aus dem Paket java.sql. Dann erfolgt das eigentliche Verbin-
den zur Datenbank durch Erzeugen eines Connection-Objekts. Hierzu muss ein JDBC-URL im
Format jdbc:TreiberIdentfifer:Name an die Methode DriverManager.getConnection() {iberge-
ben werden (das genaue Format ist leider datenbankabhingig). Das folgende Beispiel zeigt das
Vorgehen im Falle einer Oracle-Datenbank, mit dem Oracle-JDBC-Thinclient sowie der popu-

Datenbankverbindung herstellen

laren MySQL-Datenbank:

import java.sql.*;

class DatabaseUtil {

/**

* ok Kk ok ok ok %

*/

Verbindungsaufbau zu Oracle-Datenbank mit Thinclient-Treiber
@param server Servername/IP

@param port Portnummer

@param serviceName Oracle Service Name

@param user Oracle Username

@param password Oracle User Passwort

@return Connection-0bjekt oder null

public static Connection makeOracleConnection(String server, String port,

String serviceName,

String user, String password) {

Connection conn = null;

try {
// Qracle Treiber laden

DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver());

// Verbindung herstellen

String str = "jdbc:oracle:thin:@" + server + ":" + port + ":" +
serviceName;

conn = DriverManager.getConnection(str, user, password);

} catch(SQLException e) {
e.printStackTrace();
}

return conn;

Listing 233: Methoden zur Verbindung mit Oracle- bzw. MySQL-Datenbanken

=
(2]
=
[=
(-]
=
=
[
-—
[x]
(=]

=
(1)
=
[=
[
=
=
(1)
-—
<
(=]

502 >> Datenbankverbindung herstellen

/**

* Verbindungsaufbau zu MySQL-Datenbank

*

* @param server Servername/IP

* @param port Portnummer

* @param database MySQL Datenbankname

* @param user MySQL Username

* @param password MySQL User Passwort

* @return Connection-0bjekt oder null
*/

public static Connection makeMySQLConnection(String server, String port,
String database,
String user,
String password) {
Connection conn = null;

try {
// Treiber Taden
DriverManager.registerDriver (new com.mysql.jdbc.Driver());

// Verbindung herstellen
String str = "jdbc:mysql://" + server + ":" + port + "/" + database;
conn = DriverManager.getConnection(str, user, password);

} catch(SQLException e) {
e.printStackTrace();
}

return conn;

Listing 233: Methoden zur Verbindung mit Oracle- bzw. MySQL-Datenbanken (Forts.)

Der Verbindungsaufbau zu einer Oracle-Datenbank kénnte mit Hilfe der Methode Database-
Util.makeOracleConnection() beispielsweise wie folgt aussehen:

Connection conn = DatabaseUtil.makeOracleConnection("192.168.1.1",
"1521","kdb","dba","geheim");

if(conn == null)

System.out.printin("Verbindungsaufbau ist fehlgeschlagen");
else

System.out.printin("Oracle Verbindung hergestellt");

Beachten Sie dabei Folgendes:

» Das jar-Archiv des Datenbanktreibers (z.B. fiir Oracle 9i die Datei 0jdbc14.jar) muss im
CLASSPATH aufgefiihrt sein.

» Der konkrete Name fiir die zu ladende Treiberklasse sowie der Aufbau des Verbindungs-
strings ist abhédngig von Treiber und Datenbankversion. Konsultieren Sie hierzu die Hand-
biicher. Der Standardport fiir Oracle-Datenbanken ist meist 1521, fiir MySQL 3306.

>> Datenbanken 503

P Der Verbindungsaufbau ist recht zeitaufwendig und sollte nur selten durchgefiihrt werden.
Es ist besser, ein vorhandenes Connection-Objekt so oft wie moglich wiederzuverwenden
(siehe hierzu auch Rezept 179).

P> Wenn ein Connection-Objekt fiir langere Zeit nicht mehr bendtigt wird, sollte die close()-
Methode aufgerufen werden, um die gebundenen Ressourcen freizugeben.

179 Connection-Pooling

Die im vorigen Abschnitt gezeigte Vorgehensweise zum Anfordern einer Datenbankverbin-
dung ist relativ zeitaufwendig - weswegen einmal erhaltene Connection-Objekte mehrfach
verwendet werden sollten (statt fiir jeden SQL-Befehl eine neue Verbindung aufzubauen).
Solange man ein {iberschaubares Programm schreiben muss, ist dieser Tipp auch nicht weiter
schwer zu befolgen. Etwas komplizierter wird es bei Webanwendungen und Ahnlichem, wo
Dutzende oder vielleicht sogar Hunderte von internen Threads bzw. Servlets auf die Daten-
bank zugreifen. Die Threads/Servlets leben meist nur kurze Zeit und kénnen daher selbst keine
Verbindung halten. Die Anwendung auf der anderen Seite hat das Problem, dass bei einer
hohen Anzahl an gleichzeitig gehaltenen Verbindungen alle Datenbankressourcen blockiert
werden und die ganze Anwendung »einfrierts.

Hier bietet sich der Einsatz eines Connection-Pools an. Hierbei handelt es sich um eine
begrenzte Menge an echten (physikalischen) Datenbankverbindungen, die von einem Pro-
gramm nach Bedarf mit getConnection() angefordert werden, fiir eine oder mehrere SQL-
Befehle genutzt werden und dann sofort durch Aufruf von close() geschlossen werden. Die
Verbindung wird dabei jedoch nur virtuell geschlossen; in Wirklichkeit bleibt sie bestehen und
kann beim nichsten Anfordern mit getConnection() wieder ohne zeitaufwendigen Neuaufbau
zugeteilt werden. Aus Programmsicht gibt es hierbei keinen Unterschied zwischen einer sol-
chen logischen/virtuellen Verbindung und einer echten wie in Rezept 178 erhaltenen und der
Code muss in keinster Weise umgeschrieben werden.

Um Connection-Pooling einzusetzen, muss man ein Objekt haben, welches das Interface Con-
nectionPoolDataSource aus dem Paket javax.sql implementiert. Die hierzu notwendige Klasse
ist leider treiberabhéngig, fiir den Oracle Thinclient ist es OracleConnectionPoolDataSource, fiir
MySQL Connector heifit sie MysqlConnectionPoolDataSource. Eine Instanz dieser Klasse wird bei
einer typischen Webanwendung mit Hilfe von JNDI ermittelt. (Hierzu muss der Applikations-
server die Datenbank als Datenquelle mit allen notwendigen Einstellungen wie Username,
Passwort, GroBe des Connection-Pools registriert und veroffentlicht habenl.)

Fiir einfache (Test-)Zwecke kann man auch eine Instanz direkt anlegen, z.B. fiir MySQL:

import java.sql.*;
import javax.sql.*;
import com.mysql.jdbc.jdbc2.optional.*;

class DatabaseUtil {

/**k

Listing 234: Connection-Pooling

1. Aufgrund der Vielzahl an Applikationsservern kénnen wir hier nicht auf diese speziellen Konfigurationsaspekte ein-
gehen. Bitte lesen Sie die entsprechende Dokumentation.

=
[
=
=
]
=
[
]
—
S
(=]

504 >> Connection-Pooling

* Liefert eine ConnectionPoolDataSource zu der angegebenen Datenbank

*

* @param server Datenbankserver
* @param port Port

* @param database Datenbankname

* @param user Username

* @param password Password

* @return DataSource

*/

public static DataSource getConnectionPoolDataSource(String server,
String port, String database, String user,
String password) {
MysqlConnectionPoolDataSource source;

try |
source = new MysqlConnectionPoolDataSource();
source.setServerName(server);
source.setPort(Integer.parselnt(port));
source.setDatabaseName(database);
source.setUser(user);
source.setPassword(password) ;

} catch(Exception e) {
e.printStackTrace();
source = null;

}

return source;
}

=
(1)
=
[=
[
=
=
(1)
-—
<
(=]

Listing 234: Connection-Pooling (Forts.)

Der Regelfall sieht allerdings wie erwdhnt den Weg iiber JNDI vor, bei dem iiber den konfigu-
rierten Ressourcenname die Datenbank als Datenquelle (DataSource) bekannt gemacht wird,
z.B.

import java.sql.*;
import javax.sql.*;
import javax.naming.*;

class DatabaseUtil {

/**

* Liefert eine ConnectionPoolDataSource zu der angegebenen JNDI-Ressource
*

* @param resource Name der Datenquelle

* @return DataSource-0Objekt

*/

Listing 235: Methode fiir Connection-Pooling via JNDI

>> Datenbanken 505

public static DataSource getConnectionPoolDataSource(String resource) {
InitialContext ic = null;
DataSource result = null;

try {
ic = new InitialContext();
result = (DataSource) ic.lookup(resource);

} catch (Exception e) {
e.printStackTrace();
}

return result;
}

Listing 235: Methode ftir Connection-Pooling via JNDI (Forts.)

Mit Hilfe der zuriickgelieferten DataSource-Instanz kann ein Programm dann (virtuell) eine
Verbindung aufbauen (getConnection()-Aufruf) und nach Gebrauch sofort wieder mit close()
schlieBen - und dies beliebig oft wiederholen, ohne dass dabei ein physikalischer zeitaufwen-
diger Verbindungsaufbau stattfindet:

DataSource ds;
try {
ds =
DatabaseUtil.getConnectionPoolDataSource("java:comp/env/jdbc/kunden");

Connection conn = ds.getConnection();

=
(2]
=
[=
(-]
=
=
[
-—
[x]
(=]

// conn fiir Queries einsetzen
/...

conn.close();

} catch(Exception e) {
e.printStackTrace();
}

Listing 236: Connection-Pooling via JNDI

180 SQL-Befehle SELECT, INSERT, UPDATE und DELETE
durchfiihren

Fir das Durchfiihren eines SQL-Befehls wird neben einem giiltigen Connection-Objekt eine

Instanz von Statement benotigt, die mit der statischen Methode Connection.createStatement()

erzeugt werden kann. Je nach Art des SQL-Befehls muss dann eine geeignete execute()-
Methode der Klasse Statement zum Ausfiihren eingesetzt werden:

506 >> SQL-Befehle SELECT, INSERT, UPDATE und DELETE durchfiihren

P ResultSet.executeQuery(String sql) fiir SELECT-Befehle; gefundene Zeilen werden als
ResultSet-Objekt zuriickgegeben.

P> int execute(String sql) fiir INSERT/UPDATE/DELETE-Befehle; Riickgabe ist die Anzahl
der betroffenen Zeilen.

Die nachfolgend definierten Hilfsmethoden kapseln die erforderlichen Aufrufe und iiberneh-
men die notwendige Exception-Behandlung:

import java.sql.*;

class DatabaseUtil {

/**

* Ausfiihren einer SELECT-Query

*

* @param conn Connection Objekt

* @param sql SQL-SELECT Query

* @return ResultSet oder null

*/

public static ResultSet executeSelect(Connection conn, String sql) {
ResultSet res = null;

try {
Statement stm = conn.createStatement();
res = stm.executeQuery(sql);

} catch(SQLException e) {
e.printStackTrace();
J

return res;

=
(1)
=
[=
[
=
=
(1)
-—
<
(=]

}

/**

* Ausfihren eines INSERT/UPDATE/DELETE-Befehls

*

* @param conn Connection Objekt
* @param sql SQL-Befehl

* @return Anzahl betroffene Zeilen oder -1 bei Fehler
*/
public static int execute(Connection conn, String sql) {
int res = 0;
try {

Statement stm = conn.createStatement();
boolean st = stm.execute(sql);
res = stm.getUpdateCount();

} catch(SQLException e) {
e.printStackTrace();

Listing 237: Hilfsmethoden zum Ausftihren von SQL-Befehlen

>> Datenbanken 507

res = -1;
}

return res;

/**

* Verbindungsaufbau zu Oracle-Datenbank mit Thinclient-Treiber

*/

public static Connection makeOracleConnection(String server, String port,
String serviceName,
String user, String password) {

siehe Rezept 178
}

/**

* Verbindungsaufbau zu MySQL-Datenbank

*/

public static Connection makeMySQLConnection(String server, String port,
String database,
String user,
String password) {

siehe Rezept 178
}

Listing 237: Hilfsmethoden zum Ausftihren von SQL-Befehlen (Forts.)

Ein moglicher Aufruf konnte beispielsweise wie folgt aussehen:

// Muster flir fiktive Datenbank
Connection conn = Database.makeOracleConnection("mein.server.de",
"1521", "db", "dbdba", "geheim");
ResultSet result = Database.executeSelect(conn,
"SELECT * FROM kunden WHERE name = 'Meier'");

=
(2]
=
[=
(-]
=
=
[
-—
[x]
(=]

SQL-Befehlsstrings diirfen nicht mit einem Semikolon enden, also z.B.

String sql = "SELECT * FROM DEMOTABELLE";

Anzahl Treffer fiir eine SELECT-Query ermitteln

Das bei einer SELECT-Query zuriickgegebene ResultSet-Objekt bietet keine direkte Moglich-
keit, um die Anzahl der gefundenen Zeilen zu ermitteln. Man kann sich auf zwei Arten behel-
fen: Entweder fiihrt man zusitzlich eine separate Query mit dem SQL-Befehl SELECT
COUNT(*) durch oder man verwendet ein scrollbares ResultSet-Objekt und springt an das
Ende und z&hlt so die Zeilen:

Connection conn = ...
Statement stm = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_UPDATABLE);

=
@
x
[
(]
=
[
[]
-—
S
(=]

508 >> Anderungen im ResultSet vornehmen

ResultSet rs = stm.executeQuery("SELECT * FROM DEMOTABELLE");

rs.last(); // zur Tetzten Zeile springen
int num = rs.getRowNum();
rs.first(); // zur ersten Zeile springen

Die obige Vorgehensweise funktioniert nur, wenn der eingesetzte JDBC-Treiber scroll-
fahige ResultSet-Objekte unterstiitzt und die abgefragte Tabelle einen Primérschliissel
definiert hat.

181 Anderungen im ResultSet vornehmen

Mit einem ResultSet-Objekt kann man nicht nur die einzelnen gefundenen Treffer auslesen,
man kann sie auch editieren und die Anderung in die Datenbank zuriickschreiben. Darunter
fallt natiirlich auch das Hinzufiigen oder Loschen von Datensdtzen. Voraussetzung ist aller-
dings, dass man bei Anlage des zugrunde liegenden Statement-Objekts ein scroll- und update-
fahiges ResultSet erlaubt hat:

Statement st = conn.createStatement (ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_UPDATABLE) ;

Anstelle von TYPE_SCROLL_INSENSITIVE kann auch TYPE_SCROLL_SENSITIVE verwendet werden.
Bei Letzterem wirken sich Anderungen an den zugrunde liegenden Zeilen in der Datenbank
durch andere Sessions auf die Daten im ResultSet-Objekt aus.

Wert in Datenfeld d&ndern

Das Durchfiihren von Anderungen in einem vorhandenen ResultSet-Objekt geschieht immer
auf der aktuellen Zeile und erfolgt durch Aufruf einer passenden updateXxx()-Methode. Wel-
che Update-Methode genau zum Einsatz kommt, hidngt vom Datentyp der zugrunde liegenden
Tabellenspalte ab, z.B. updateString() oder updateInt(). Alle Update-Methoden erwarten den
Namen oder Spaltenindex - bezogen auf die zugrunde liegende SELECT-Query - und den
neuen Wert. Wirksam wird eine Anderung allerdings erst durch einen nachfolgenden Aufruf
von updateRow():

try {

ResultSet rs = st.executeQuery("SELECT name, vorname from KUNDEN");

// erste Zeile bearbeiten

rs.first();

rs.updateString("name", "Korn-Westfelder");
rs.updateRow();

} catch(Exception e) {
e.printStackTrace();
}

Zeilen (Datensatze) einfligen

Das Einfiigen einer neuen Zeile erfolgt iiber die so genannte Einfiigezeile (InsertRow), die
durch moveToInsertRow() angesprungen wird und dann wie im Update-Fall gedndert wird. Mit
insertRow() wird die neue Zeile in die Datenbank geschrieben. Mit moveToCurrentRow() springt
man dann zuriick zur aktuellen Zeile:

>> Datenbanken 509

try {
ResultSet rs = st.executeQuery("SELECT name, vorname from KUNDEN");

// Zeile hinzufligen
rs.moveToInsertRow();

// Zeile mit Werten fiillen
rs.updateString("name", "Hintermoser");
rs.updateString("vorname", "Kurt");

// Zu aktueller Zeile zuriickspringen
rs.moveToCurrentRow();

} catch(Exception e) {
e.printStackTrace();
}

Zeilen (Datensatze) l6schen
Fiir das Loschen geniigt das Positionieren in der gewiinschten Zeile, gefolgt von einem Aufruf
deleteRow():

try {
ResultSet rs = st.executeQuery("SELECT name, vorname from KUNDEN");

// Zeile 3 T6schen
rs.absolute(3); // auf Zeile 3 positionieren
rs.deleteRow();

} catch(Exception e) {
e.printStackTrace();
}

=
(2]
=
[=
(-]
=
=
[
-—
[x]
(=]

182 PreparedStatements ausfiihren

Wenn immer wieder der gleiche SQL-Befehl ausgefiihrt werden soll, kann man unter Umstén-
den dadurch Zeit sparen, dass man sie vorkompiliert. Hierbei wird das zeitaufwendige Parsen
und Analysieren des SQL-Befehls nur einmal gemacht. Beim wiederholten Aufrufen muss man
dann lediglich die aktuellen Werte fiir die gewiinschten Parameter einsetzen. Hierzu dient die
Klasse java.sql.PreparedStatement und die Factory-Methode prepareStatement() von Connec-
tion. Als Argumente iibernimmt die Methode den SQL-String, wobei konkrete, sich dndernde
Werte durch den Platzhalter ? ersetzt werden.

Ein vorkompilierter SQL-Befehl fiir die Query

select * from kunden where name = 'Meier' and vorname = 'Hugo
wiirde man beispielsweise wie folgt anlegen:

Connection conn = ...
PreparedStatement ps = conn.prepareStatement(
"select * from kunden where name = ? and vorname = ?");

=
@
x
[
(]
=
[
[]
-—
S
(=]

510 >> Stored Procedures ausfiihren

Die Platzhalter werden dabei von links nach rechts mit 1 beginnend gezéihlt. Wenn es an das
Ausfiihren des SQL-Befehls mit konkreten Werten geht, wird nun mit je nach Datentyp passen-
den setXxx()-Methoden wie setString(), setInt(), setFloat() der Wert gesetzt und bei
SELECT-Befehlen mit executeQuery (), bei INSERT/UPDATE/DELETE mit execute() angewendet:

ps.setString(1l, "Meier");
ps.setString(2, "Hugo");
ResultSet rs = ps.executeQuery();

183 Stored Procedures ausfiihren

Eine Stored Procedure oder Stored Function ist eine Methode, die innerhalb des Datenbankser-
vers ausgefiihrt wird und dadurch in der Regel sehr performant sein kann. Leider ist dieses
Feature fiir MySQL erst in zukiinftigen Versionen geplant (jetziger Stand: ab Version 5.1), so
dass wir hier das Vorgehen nur fiir Oracle-Datenbanken zeigen. Theoretisch sollte das gezeigte
Vorgehen aber bei beliebigen Datenbanken funktionieren, sofern ein JDBC 3.0-kompatibler
Treiber verfiigbar ist.

Beispiel:
Eine Oracle-Stored Function mit der folgenden Signatur soll aufgerufen werden:
searchCustomer(pl IN varcharZ, p2 IN varchar2, p3 OUT int) RETURN VARCHARZ

Diese Function erwartet zwei Eingabeparameter pl und p2 und liefert ein int-Ergebnis im
Parameter p3 zuriick sowie einen String als Funktionswert.

Fiir den Aufruf wird ein besonderes Objekt vom Typ java.sql.CallableStatement benotigt, dem
man ihnlich wie bei PreparedStatement den gewiinschten Aufruf iibergibt, wobei alle Ubergabe-
parameter (bei Functions auch der Riickgabewert) als Parameter, d.h. per Platzhalter ?, definiert
werden.

Fiir die Parameter vom Typ IN werden die zu tibergebenden Werte mit Hilfe von entsprechen-
den setXxx()-Methoden gesetzt, z.B. setString().

Fiir OUT-Parameter (hierzu zihlt auch der Funktionsriickgabewert, der als Nummer 1 gezihlt
wird!) muss der Datentyp gesondert registriert werden - mit Hilfe der Methode registerQut-
Parameter(), der Sie neben der Nummer des Parameters die zu dem SQL-Datentyp passende
Konstante in java.sql.Types (siehe Tabelle 46) ibergeben.

try {
// siehe Rezept 178 fiir makeOracleConnection
Connection conn = DatabaseUtil.makeOracleConnection("mein.server.de",
"1521", "db", "dbdba", "geheim");

// Aufruf-String
String query = "{?= call searchCustomer(?,?,?)}";

// Call-0Objekt erzeugen
CallableStatement st = conn.prepareCall(query);

Listing 238: Aufruf einer Stored Procedure

>> Datenbanken 511

// Ubergabewerte setzen
st.setString(2, "Meier");
st.setString(3, "Hugo");

// OUT-Parameter registrieren
// Funktionsriickgabewert
st.registerOutParameter(1l, java.sql.Types.VARCHAR);

// QUT-Parameter p3
st.registerOutParameter(4, java.sql.Types.INTEGER);

// ausfihren
st.execute();

// Ergebnis auslesen
String status = st.getString(1); // Funktionswert
int num = st.getInt(4); // OUT-Parameter p3 (Nr 4)

} catch(Exception e) {
e.printStackTrace();
}

Listing 238: Aufruf einer Stored Procedure (Forts.)

JDBC-SQL-Typ in Java-Typ Beschreibung

java.sgl.Types

ARRAY ARRAY java.sql.Array SQL-Feld -

BIGINT BIGINT long 64 Bit Ganzzahl £

BIT BIT boolean Einzelnes Bit (0,1) %

BLOB BLOB java.sql.Blob Beliebige Bindrdaten g

BOOLEAN BOOLEAN boolean Boolescher Wert

CHAR CHAR String Zeichenkette fester Linge

CLOB CLOB java.sql.Clob Fiir groBe Zeichenketten

DATE DATE java.sql.Date Datumsangaben

DECIMAL DECIMAL java.math.BigDecimal Festkommazahl

DOUBLE DOUBLE double Gleitkommazahl in doppelter
Genauigkeit

FLOAT FLOAT double Gleitkommazahl in doppelter
Genauigkeit

INTEGER INTEGER int 32 Bit Ganzzahl

- JAVA_OBJECT Object Speicherung von Java-Objekten

Tabelle 46: Typzuordnung zwischen SQL und Java

=
(1)
=
[=
[
=
=
(1)
-—
<
(=]

512 >> BLOB- und CLOB-Daten

SQL-Typ JDBC-SQL-Typ in Java-Typ Beschreibung
java.sql.Types
NULL NULL null fur Java-Objekte, | Darstellung des NULL-Werts
false fiir boolean, (= kein Wert)
0 flr numerische Typen
NUMERIC NUMERIC java.math.BigDecimal Dezimalzahlen mit fester Genau-
igkeit
REAL REAL float Gleitkommazahl einfacher
Genauigkeit
TIME TIME java.sql.Time Zeitdarstellung (Stunden, Minu-
ten, Sekunden)
VARCHAR VARCHAR String Zeichenketten variabler
Lénge

Tabelle 46: Typzuordnung zwischen SQL und Java (Forts.)

184 BLOB- und CLOB-Daten

Das Speichern von groBeren Zeichenketten oder beliebigen Binidrdaten ist mit den géingigen
Datenbanken und JDBC erstaunlich beschriankt, da der Datentyp VARCHAR auf 255 Zeichen
beschriankt ist (und auch spezifische Datentypen wie VARCHAR?2 bei Oracle erlauben nur eine
bescheidene Linge von maximal 4096 Zeichen). Abhilfe schaffen die Datentypen BLOB fiir die
Speicherung beliebig groBer bindrer Daten sowie CLOB fiir Zeichenketten.

Die genauen Namen der Datentypen sind teilweise abhéngig von der Datenbank, z.B.
kennt MySQL die Typen BLOB (bis 65.535 Byts), MEDIUMBLOB (bis 1,6 Mbyte) und
LARGEBLOB (bis 4,2 Gbyte) sowie anstelle von CLOB die Typen TEXT, MEDIUMTEXT,
LONGTEXT (Gr6Ben wie bei BLOB-Varianten).

BLOB-/CLOB-Daten in Datenbank schreiben

Um BLOB-Daten aus Dateien einzulesen und in eine Datenbank zu schreiben, gehen Sie wie
folgt vor:

1. Sie lesen die Daten ein.

Fiir Bindrdateien verwenden Sie einen FilelInputStream, fiir Textdaten einen FileReader.
2. Sie setzen einen SQL-Befehl oder eine PreparedStatement zum Einfiigen der Daten auf.
3. Sie schicken den SQL-Befehl mit executeUpdate() ab.

Der folgende Code geht von einer Oracle-Tabelle Buecher aus, mit einer BLOB-Spalte fiir das
Titelbild und einer CLOB-Spalte fiir den Buchtext:

import java.io.*;
import java.sql.*;

Listing 239: Schreiben von BLOB-/CLOB-Daten

>> Datenbanken 513

try {
// siehe Rezept 178 fiir makeOracleConnection
Connection ¢ = DatabaseUtil.makeOracleConnection("mein.server.de",
111521u’ "db", "dbdba", ugehe.imu);

// Daten einlesen

File img = new File("cover.tif");

File text = new File("content.txt");

FileInputStream fisImage = new FilelnputStream(img);
FileReader frText = new FileReader(text);

// PreparedStatement aufsetzen

PreparedStatement ps = c.prepareStatement("INSERT into buecher" +
" VALUES (2, 27, D");

ps.setString(l, "3645-57876-46565-6");

ps.setBinaryStream(2,fisImage, (int) img.length());

ps.setCharacterStream(3, frText, (int) text.length());

// SQL-Befehl abschicken
int num = ps.executeUpdate();

} catch(Exception e) {
e.printStackTrace();
}

Listing 239: Schreiben von BLOB-/CLOB-Daten (Forts.)

BLOB-/CLOB-Daten lesen

Die umgekehrte Richtung, das Lesen von BLOB/CLOB-Daten, kann iiber eine normale SELECT-
Query erfolgen. Vom ResultSet-Objekt konnen Sie sich dann mit den Methoden getBlob()
bzw. getClob() einen »Locator« vom Typ java.sql.Blob bzw. java.sql.Clob zuriickliefern las-
sen, mit dessen Methoden - getBytes() fiir BLOB-Daten bzw. getSubString() fiir CLOB-Daten
- Sie auf die Daten zugreifen konnen.

=
(2]
=
[=
(-]
=
=
[
-—
[x]
(=]

import java.sql.*;
class DatabaseUtil {

/**
* Lesen eines BLOB aus der Datenbank
*
* @param rs ResultSet-Objekt von SELECT-Query
* @param num Nummer der Spalte mit dem Blob
* @return Array byte[] mit Blobdaten oder null bei Fehler
*/
public static byte[] readBlob(ResultSet rs, int num) {

try {

Blob b = rs.getBlob(num);

Listing 240: Hilfsmethoden zum Auslesen von BLOB- und CLOB-Daten

514 >> BLOB- und CLOB-Daten

int len = (int) b.length();
return b.getBytes(1, len);

} catch(Exception e) {
return null;
}
}

/**

* Lesen eines CLOB aus der Datenbank

*

* @param rs ResultSet-Objekt von SELECT-Query

* @param num Nummer der Spalte mit dem Clob

* @return String mit Clobdaten oder null bei Fehler

*/
public static String readClob(ResultSet rs, int num) {
try {
Clob ¢ = rs.getClob(num);
int Ten = (int) c.length();
String str = c.getSubString(l,len);
return str;
} catch(Exception e) {
return null;
}
}
/**
* Verbindungsaufbau zu Oracle-Datenbank mit Thinclient-Treiber
*/

public static Connection makeOracleConnection(String server, String port,
String serviceName,
String user, String password) {

=
(1)
=
[=
[
=
=
(1)
-—
<
(=]

siehe Rezept 178

}

/**

* Verbindungsaufbau zu MySQL-Datenbank

*/

public static Connection makeMySQLConnection(String server, String port,
String database,
String user,
String password) {

siehe Rezept 178
}

Listing 240: Hilfsmethoden zum Auslesen von BLOB- und CLOB-Daten (Forts.)

>> Datenbanken 515

Der folgende Code geht von einer Oracle-Tabelle Buecher aus, mit einer BLOB-Spalte fiir das
Titelbild und einer CLOB-Spalte fiir den Buchtext:

try {
// siehe Rezept 178 fiir makeOracleConnection
Connection conn = DatabaseUtil.makeOracleConnection("mein.server.de",
"1521", "db", "dbdba", "geheim");

Statement stm = conn.createStatement();
String sql = "SELECT * FROM buch where isbn = '3645-57876-46565-6"";
ResultSet res = stm.executeQuery(sql);

if(res.next() == true) {
// das Buchcover laden
byte[] imageBytes = DatabaseUtil.readBlob(res, 2);
Imagelcon bookCover = new Imagelcon(imageBytes);

// den Buchtext laden
String bookText = DatabaseUtil.readClob(res,3);

}

} catch(Exception e) {
e.printStackTrace();
}

Listing 241: Lesen von BLOB-/CLOB-Daten

185 Mit Transaktionen arbeiten

Unter einer Transaktion versteht man die Zusammenfassung von mehreren SQL-Befehlen zu
einer logischen Einheit, so dass entweder alle erfolgreich ausgefiihrt werden oder keine. Nor-
malerweise ist eine per JDBC-Treiber getffnete JDBC-Verbindung im Autocommit-Modus,
d.h., nach jedem einzelnen Befehl wird in der Datenbank ein Commit durchgefiihrt und die
Anderungen sind bleibend. Fiir Transaktionen muss man daher diesen Automatismus im
erhaltenen Connection-Objekt ausschalten und dann an den gewiinschten Stellen durch Aufruf
der commit()-Methode die bisher abgesetzten SQL-Befehle persistent machen oder mit rol1-
back() wieder riickgéngig machen:

// AutoCommit ausschalten
Connection conn = ... siehe Rezept 178
conn.setAutoCommit(false);

// SQL-Befehl durchfiihren
Statement st = conn.createStatement();
st.executeUpdate("INSERT ...");

// Transaktion beenden
conn.commit(); // Datenbankdnderungen akzeptieren
// oder: conn.rollback(); um Anderungen riickgdngig zu machen

Listing 242: Mit Transaktionen arbeiten

=
[
=
=
]
=
[
]
—
S
(=]

=
@
x
[
(]
=
[
[]
-—
S
(=]

516 >> Batch-Ausfiihrung

Savepoints

Der Aufruf von commit() bzw. rollback() betrifft alle SQL-Befehle, die seit dem letzten com-
mit() an die Datenbank gesendet worden sind. Eine etwas genauere Unterteilung bietet der
Einsatz von java.sql.Savepoint. Ein Savepoint-Objekt ist eine Markierung innerhalb einer
Transaktion und man kann sie an die rollback()-Methode {ibergeben: Dann werden nur die
SQL-Befehle riickgingig gemacht, die nach dem Setzen der Savepoint-Markierung gesendet
worden sind, z.B.

// AutoCommit ausschalten
Connection conn = ... siehe Rezept 178
conn.setAutoCommit(false);

// SQL-Befehl durchfiihren
Statement st = conn.createStatement();
st.executeUpdate("INSERT ..."); // SQL Nr 1

// Savepoint setzen
Savepoint sp = conn.setSavepoint();

// Weitere SQL-Befehle durchfiihren

st.executeUpdate("INSERT ..."); // SQL Nr 2
st.executeUpdate("UPDATE ..."); // SQL Nr. 3

// Rollback

conn.rolTback(sp); // SQL Nr 283 riickgdngig
// Commit

conn.commit(); // SQL 1 persistent

186 Batch-Ausfiihrung

Wenn viele einzelne Datensatzinderungen (INSERT; UPDATE; DELETE) vorgenommen werden
sollen, kann es (sofern von der Datenbank/vom Treiber unterstiitzt) sinnvoll sein, eine so
genannte Batch-Ausfiihrung zu verwenden. Hierbei werden alle SQL-Befehle gesammelt und
in einem Block zur Datenbank geschickt, was teilweise deutliche Geschwindigkeitsvorteile
bringen kann. Haufig werden Batch-Operationen als Transaktionen ausgefiihrt, so dass alle
oder keine der SQL-Operationen erfolgreich ist.

import java.sql.*;

class DatabaseUtil {

/**

* Abarbeitung von SQL-Befehlen im Batch-Modus

*

* @param conn Connection-0bjekt

* @param sql Array mit SQL-Befehlen

* @param asTransaction Angabe, ob als Transaktion zusammenfassen
* @return int-Array mit Anzahl betroffener Zeilen pro
* SQL-Befehl oder null bei Fehler

Listing 243: Hilfsmethode zur Batch-Ausflihrung von SQL-Befehlen

>> Datenbanken 517

*/
public static int[] executeBatch(Connection conn, Stringl] sql,
boolean asTransaction) {
int[] result = null;
boolean autoCommit0ld = true;
Savepoint sp = null;

try |
if(asTransaction) {
autoCommit01d = conn.getAutoCommit(); // alten Zustand merken
conn.setAutoCommit(false);
sp = conn.setSavepoint();
}

Statement stm = conn.createStatement();

for(String str : sql) {
stm.addBatch(str);
}

result = stm.executeBatch();

} catch(BatchUpdateException bex) {
result = null;
SQLException n = bex;

while(n!=null) {
System.out.printin(n);
n = n.getNextException();
}
} catch(Exception e) {
e.printStackTrace();
result = null;
}

try {
if(result == null && asTransaction == true)
// in transaction modus, bei Fehler alles riickgdngig machen
conn.rollback(sp);
else if(result != null && asTransaction == true)
conn.commit();

// aufrdumen

if(asTransaction == true) {
conn.releaseSavepoint(sp);
conn.setAutoCommit(autoCommit01d);

}

} catch(Exception e) {
e.printStackTrace();
}

Listing 243: Hilfsmethode zur Batch-Ausfuhrung von SQL-Befehlen (Forts.)

=
(2]
=
[=
(-]
=
=
[
-—
[x]
(=]

518 >> Metadaten ermitteln

return result;

/**

* Verbindungsaufbau zu Oracle-Datenbank mit Thinclient-Treiber

*/

public static Connection makeOracleConnection(String server, String port,
String serviceName,
String user, String password) f

siehe Rezept 178
}

/‘k*k

* Verbindungsaufbau zu MySQL-Datenbank

*/

public static Connection makeMySQLConnection(String server, String port,
String database,
String user,
String password) {

siehe Rezept 178
}

Listing 243: Hilfsmethode zur Batch-Ausfliihrung von SQL-Befehlen (Forts.)

Das folgende Codefragment demonstriert die Verwendung:

// siehe Rezept 178 filir makeOracleConnection
Connection conn = DatabaseUtil.makeOracleConnection("mein.server.de",
"1521", "db", "dbdba", "geheim");

=
(1)
=
[=
[
=
=
(1)
-—
<
(=]

// SQL-Befehle fir Batch-Ausfilhrung sammeln

Stringl] sql = new String[3];

sq1[0] = "INSERT INTO kunden VALUES(1,'Meier','Kurt')";
sqT[1] = "INSERT INTO kunden VALUES(Z,'MilTer','Peter')";
sq1[2] = "DELETE FROM kunden WHERE name = 'Schmidt'";

// Batch-Ausfiihrung starten
int[] result = DatabaseUtil.executeBatch(conn, sql, false);

for(int 1 = 0; i < 3; i++)
System.out.printin("Ergebnis SQL Nr. " + i + ":" + result[il);

187 Metadaten ermitteln

Metadaten sind Informationen tiber die Struktur von anderen Daten. In JDBC werden dabei
zwei Datengruppen unterschieden:

P die Datenbank selbst sowie

» die zurlickgelieferten Daten einer SELECT-Query (in Form eines ResultSet-Objekts).

>> Datenbanken 519

Datenbank-Metadaten

Zum Ermitteln von Metadaten {iber die Datenbank dient die Klasse java.sql.DatabaseMeta-
Data, von der man eine Instanz iiber das Connection-Objekt erhalten kann. DatabaseMetaData
bietet iiber 150 Methoden zum Abfragen diverser Informationen ab.

Die nachfolgend definierte Methode demonstriert den Zugriff auf die Metadaten und gibt
selbst einige grundlegende Informationen wie Datenbankversion und JDBC-Treiber auf die
Konsole aus.

import java.sql.*;

class DatabaseUtil {

/**

* Gibt Datenbank-Infos auf Konsole aus

*

* @param conn Connection-Objekt

*/

public static void printDBMetaData(Connection conn) {
try |

DatabaseMetaData md = conn.getMetaData();
System.out.printin("Datenbanktyp : "

+ md.getDatabaseProductName() + " "

+ md.getDatabaseProductVersion());
System.out.printin("JDBC Treiber : "

+ md.getDriverName() +

+ md.getDriverVersion());
System.out.printin("angemeldet als : "

+ md.getUserName() + "\n");

// Achtung: getCatalogTerm() wird nicht von allen Treibern sinnvoll
// implementiert!

System.out.printin("vorhandene " + md.getCatalogTerm() + "(s)");
ResultSet cats = md.getCatalogs();

=
(2]
=
[=
(-]
=
=
[
-—
[x]
(=]

while(cats.next()) {
System.out.printin(cats.getString(1));
}

} catch(Exception e) {
e.printStackTrace();
}

Listing 244: Hilfsmethode zum Ausgeben einiger wichtiger Datenbank-Metadaten

Aufgerufen wird die Methode einfach mit dem Connection-Objekt der abzufragenden Daten-
bank als Argument:

Connection conn = ... // siehe Rezept 178
DatabaseUtil.printDBMetaData(conn);

520 >> Metadaten ermitteln

ResultSet-Metadaten

Uber das von einer SELECT-Query zuriickgegebene ResultSet-Objekt lassen sich ebenfalls
Metadaten ermitteln, z.B. die Anzahl der Spalten und ihre Datentypen.

Die nachfolgend definierte Methode demonstriert den Zugriff auf die Metadaten und gibt
selbst einige grundlegende Informationen wie die Anzahl der Datensétze sowie Spaltennamen
und -typen auf die Konsole aus.

import java.sql.*;

class DatabaseUtil {

/**

* Gibt ResultSet-Infos auf Konsole aus

*

* @param conn ResultSet-Objekt

*/

public static void printResultSetMetaData(ResultSet rs) {

try {
ResultSetMetaData md = rs.getMetaData();

int num = md.getColumnCount();
System.out.printin("Anzahl Spalten im ResultSet: " + num);

for(int 1 =1; i <= num; i++) {
System.out.printin("Spalte " + i
+ " Name: " + md.getColumnName(i)
+ " Datentyp: " + md.getColumnTypeName(i));

}
} catch(Exception e) {

e.printStackTrace();
}

=
(1)
=
[=
[
=
=
(1)
-—
<
(=]

Listing 245: Abfrage von ResultSet-Metadaten

Aufgerufen wird die Methode einfach mit dem abzufragenden ResultSet-Objekt als Argument:

try {
Connection conn = ... // siehe Rezept 178

Statement st = conn.createStatement();
ResultSet rs = st.executeQuery("SELECT name, vorname from KUNDEN");

DatabaseUtil.printResultSetMetaData(rs);

} catch(Exception e) {
e.printStackTrace();
}

>> Datenbanken 521

188 Datenbankzugriffe vom Applet

Im Prinzip gelten fiir JDBC-Zugriffe aus einem Applet heraus natiirlich die gleichen Regeln
wie fiir normale Anwendungen oder auch Servlets. Allerdings gibt es — natlrlich! - Kleinig-
keiten, die man beachten muss, damit der Zugriff wie gewiinscht klappt:

P Sicherheit: Ein Applet darf eine JDBC-Verbindung nur zu seinem Ursprungsserver auf-
bauen (es sei denn, die entsprechenden Policy-Dateien der verwendeten Java Runtime
wurden entsprechend angepasst).

P Treiber: Es sollte ein Typ 3 oder Typ 4 sein (keinesfalls ein JDBC-ODBC-Treiber), der
zusammen mit dem Applet-Code in einem jar-Archiv gebiindelt ist.

» Browser: Der Browser muss ein aktuelles Java-Plugin installiert haben; die insbesondere
beim Internet Explorer fest eingebaute Virtual Machine kennt kein JDBC.

Das folgende Beispiel zeigt ein einfaches Applet, welches eine Tabelle aus einer MySQL-
Datenbank ausliest und anzeigt.

import java.sql.*;
import java.awt.*;
import java.applet.*;

public class DatabaseApplet extends Applet {
int numRows = 0;
int numColumns = 0;
Stringl][] tabdata;

String myServer = null;

String myPort = "3306";
String database = "kosamig";
String user = "root";

String password = "root";

=
[
=
=
]
=
[
]
—
S
(=]

/**
* in start-Methode die Datenbankverbindung herstellen und Daten lesen
*/
public void start() {
try {
// Mit Datenbank verbinden
myServer = getDocumentBase().getHost();
Connection conn = DatabaseUtil.makeMySQLConnection(myServer, myPort,
database,
user, password);
// Query durchfiihren
Statement stm = conn.createStatement(
ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_READ_ONLY);
String sql ="SELECT * from mig_status";
ResultSet rs = stm.executeQuery(sql);

Listing 246: Datenbankzugriff via Applet

522 >> Datenbankzugriffe vom Applet

// Anzahl Spalten und Datensdtze abfragen
ResultSetMetaData meta = rs.getMetaData();
numColumns = meta.getColumnCount();
rs.last();

numRows = rs.getRow();

rs.beforeFirst();

// ResultSet-Daten in String-Array einlesen
tabdata = new String[numRows][numColumns];

int row = 0;
while(rs.next()) {

for(int col = 0; col < numColumns; col+t)
tabdatalrow][col] = rs.getString(col+l);

rowt++;

J

// Ergebnis ausgeben
repaint();

// Datenbankverbindung schlieBen
conn.close();

} catch(Exception e) {
System.err.printin("Exception bei Verbindung " + e);

repaint();
= }
= }
S
=
=
g /**
a * in paint-Methode Daten ausgeben
*/

public void paint(Graphics g) f{
String output;

for(int i = 0; i < numRows; i++) {
output = "";

for(int j = 0; j < numColumns; j++)
output = output + tabdatalil[j] + " ";
g.drawString(output,20,20 + i * 30);

}

Listing 246: Datenbankzugriff via Applet (Forts.)

>> Datenbanken 523

Die HTML-Seite zum Aufruf:

<IDOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.0rg/TR/html4/strict.dtd">
<html>

<head>
<title> Datenbank-Zugriff Uber Applet </title>

</head>
<body>
<p>Zugriff auf Datenbank-Server</p>
<applet code="DatabaseApplet.class"”
archive="DatabaseApplet.jar"
width="600" height="500">
{/applet>

</body>
</htm1>

Listing 247: Einbettung des Applets in Webseite

Beachten Sie hierbei bitte, dass das Archiv DatabaseApplet.jar sowohl die jar-Datei des
Datenbanktreibers enthalten muss als auch die .class-Datei des obigen Applets.

=
(2]
=
[=
(-]
=
=
[
-—
[x]
(=]

Netzwerke und E-Mail

189 IP-Adressen ermitteln

Die Klasse java.net.NetworkInterface verfligt iiber eine statische Methode getNetworkInter-
faces(), die eine Enumeration vom Typ java.net.NetworkInterface zuriickgibt. Jedes Element
dieser Enumeration reprisentiert einen Netzwerkadapter samt Anzeigename und IP-Adressen.

Diese Adressen kénnen in Form einer Enumeration aus java.net.InetAddress-Instanzen {iber
die Methode getlInetAddresses() der NetworkInterface-Instanz abgerufen werden. Die
Methode getHostName() einer InetAddress-Instanz liefert die IP-Adresse, die der Netzwerk-
verbindung zugeordnet ist.

import java.net.*;
import java.util.Enumeration;

public class DisplayInterfaces {

/**

* Gibt eine Liste aller Netzwerk-Interfaces samt

* zugeordneter IP-Adressen aus

*/

public static void display() {

try |
// Netzwerk-Interfaces abrufen
Enumeration<NetworkInterface> interfaces =
NetworkInterface.getNetworkInterfaces();

// Alle Interfaces durchlaufen
while(interfaces.hasMoreElements()) {
// Aktuelles Element abrufen und Namen ausgeben
NetworkInterface ni = interfaces.nextElement();
System.out.printin(
String.format("Netzwerk-Interface: %s (%s)",
ni.getName(), ni.getDisplayName()));

// Adressen abrufen
Enumeration<InetAddress> addresses =
ni.getInetAddresses();

// Adressen durchlaufen
while(addresses.hasMoreElements()) {
InetAddress address = addresses.nextElement();

// Adresse ausgeben

System.out.printin(
String.format("- %s",
address.getHostAddress()));

Listing 248: Ausgabe aller Netzwerk-Interfaces samt deren IP-Adressen

526 >> Erreichbarkeit iiberpriifen

System.out.printin();
}
} catch (SocketException e) {
e.printStackTrace();
}

Listing 248: Ausgabe aller Netzwerk-Interfaces samt deren IP-Adressen (Forts.)

\WINZK3\system32\cmd.exe

>java Start
Metzwerk—Interface: lo (M5 TGP Loopback interface?
- 127.8.8.1

Metzuwerk-Interface: ethd (UMware Uirtual Ethernet Adapter for UMnetd)
— 192.168.808.1

Metzwerk-Interface: ethl (UMware Uirtual Ethernet Adapter for UMneti)
— 192.168.132.1

Metzwerk-Interface: eth2 (Bluetooth LAN Access Server Driverd

Metzwerk—Interface: ethd (Intel{R> PRO-Wireless LAN 2188 3B Mini PCI Adapter>
- 18.129.3.185

Metzwerk-Interface: ethd4 (Intel(R> PRO-1888 MI Mobile Connection>

>

Abbildung 107: Ausgabe der verfligbaren Netzwerk-Interfaces samt deren zugeordneten
IP-Adressen

190 Erreichbarkeit tiberpriifen

Mit Hilfe der Methode isReachable() einer InetAddress-Instanz kann iiberpriift werden, ob
diese von auBen erreichbar ist. Dabei wird eine ECHO-Request an den jeweiligen Server gesen-
det. Wird sie beantwortet, gilt die Adresse als erreichbar.

Die Methode isReachable() ist iiberladen:

boolean isReachable(int timeout) throws I0Exception

boolean isReachable(NetworkInterface netif, int ttl, int timeout)
throws I0Exception

Der Parameter timeout gibt die Zeitspanne, wie lange auf eine Antwort vom Server gewartet wird,
in Millisekunden an. Wird diese Zeitspanne {iberschritten, gilt die Priifung als fehlgeschlagen.

Uber die explizite Angabe einer java.net.NetworkInterface-Instanz kann angegeben werden,
welche Netzwerkschnittstelle verwendet werden soll. Sollen alle Netzwerkschnittstellen ver-
wendet werden, ist der Wert null zu iibergeben.

>> Netzwerke und E-Mail 527

Die maximale Anzahl an Hops wird {iber den Parameter tt1 definiert. Der Standardwert ist
hier null (= unendlich). Wird eine negative Anzahl an Hops tibergeben, wird eine I11egalArgu-
mentException ausgeworfen. Selbiges gilt fiir die Angabe eines negativen Werts fiir das Time-
out der Anfrage.

Bei Verwendung der Methode isReachable() kann es zu I0Exceptions kommen, wenn Netz-
werkprobleme auftreten. Diese Ausnahme ist entweder zu deklarieren oder abzufangen:

import java.io.IOException;
import java.net.InetAddress;
import java.net.UnknownHostException;

public class CheckAvailability f{

/**
* Prift, ob eine IP-Adresse erreichbar ist
*/
public static boolean isReachable(
String host, int timeout) throws IOException {

// InetAddress-Instanz erzeugen
InetAddress address = null;
try {

address = InetAddress.getByName(host);
b catch (UnknownHostException e) {

// Wird nicht speziell behandelt
}

// Uberpriifen, ob Adresse erreichbar ist
if(null != address) {

return address.isReachable(timeout);
}

// Default-Rickgabe
return false;

Listing 249: Uberprtifung, ob ein Host per ECHO-Request erreichbar ist

Beim Erzeugen einer InetAddress-Instanz mit Hilfe der statischen Methode InetAddress.getBy-
Name() kann eine UnknownHostException geworfen werden, wenn der Hostname nicht in eine
IP-Adresse aufgelost werden kann. Dies ist ein starkes Indiz fiir eine nicht existente Internet-
verbindung oder einen falsch geschriebenen Hostnamen.

Die Verwendung der beschriebenen Methode aus eigenen Klassen heraus ist sehr simpel: Die
statische Methode CheckAvailability.isReachable() nimmt als Parameter den Hostnamen und
das Timeout in Millisekunden entgegen. Es kann eine 10Exception geworfen werden, die auf-
gefangen oder deklariert werden muss:

528 >> Erreichbarkeit iiberpriifen

import java.io.IOException;
public class Start {

public static void main(Stringl] args) {
if(args != null && args.length > 0) {
// Host ermitteln
String host = args[0];

// Standard-Timeout festlegen

int timeout = 4000;

if(args.length > 1) {
// Versuchen, {ibergebenes Timeout einzulesen
String to = args[1];

// In Integer casten
if(to.Tength() > 0 && !to.equals("0")) {
try {
timeout = Integer.parselnt(to);
} catch (NumberFormatException e)
{
// Wird nicht speziell behandelt
}

}

// Ergebnis-Variable definieren
boolean reachable = false;
try |

// Erreichbarkeit prifen

reachable =

CheckAvailability.isReachable(host, timeout);

} catch (IOException e) {

e.printStackTrace();

1
J

// Ergebnis ausgeben
System.out.printin(
String.format("Host %s is %3$sreachable in %2$d MilliSeconds.",
host, timeout, reachable ? "" : "not "));

Listing 250: Uberprtifen der Erreichbarkeit eines Hosts

Der hier vorgestellten Konsolenanwendung wird iiber ihre Argumente der zu tiberpriifende Host
und - optional - das maximale Timeout fiir die Uberpriifung der Erreichbarkeit angegeben:

>> Netzwerke und E-Mail 529

e C\WIN2K3\system32\cmd.exe

>java Start www.spiegel.de 6808
Host www.szpiegel.de iz wreachable in 68808 MilliSeconds.

>

Abbildung 108: Ein Host ist erreichbar

Neben dem Priifen der Erreichbarkeit eines Servers per ECHO-Request muss oder soll
oftmals ein PING durchgefiihrt werden - allein schon deshalb, weil PING eine weit ver-
breitete Moglichkeit ist, zu erfahren, ob ein System im Netzwerk angesprochen werden
kann.

In Rezept 72 finden Sie ein Beispiel zu diesem Thema.

191 Status aller offenen Verbindungen abfragen

Leider gibt es keine direkte Moglichkeit, einen Uberblick iiber den aktuellen Status der offenen
Verbindungen eines Systems zu erhalten. Je nach Betriebssystem gibt es jedoch verschiedene
Konsolenprogramme, die diese Aufgabe erledigen. Unter Windows wird dafiir das Tool netstat
eingesetzt, das alle bestehenden Verbindungen samt deren Status auf einem System anzeigen
kann.

Das netstat-Tool muss {iber die java.lang.Runtime-Klasse aufgerufen werden. Da damit gleich-
zeitig die Plattformunabhéngigkeit von Java aufgehoben wird, ist der Einsatz einer derartigen
Losung griindlich zu durchdenken. Die Riickgabe von netstat kann entweder direkt in eine
Textdatei geschrieben und anschlieBend weiterverwendet oder eingelesen und innerhalb der
Anwendung analysiert werden:

import java.io.*;

/**

* Klasse zum Aufruf von netstat unter Windows
*/

public class Netstat extends Thread {

public void run() {
// Runtime-Instanz erzeugen
Runtime r = Runtime.getRuntime();

Process p = null;
try {
// Process-Instanz erzeugen
p = r.exec("cmd.exe /C netstat -anb");

// Lesen der Ausgabe
new OutputReader(this, p).start();

Listing 251: Abrufen des Verbindungsstatus

530 >> Status aller offenen Verbindungen abfragen

// Ausfiihren
p.waitFor();
}
// Ausnahmen abfangen
catch (IOException e) {
return;
} catch (InterruptedException e) {
return;
}

Listing 251: Abrufen des Verbindungsstatus (Forts.)

Das Handling von netstat unter Windows ist allerdings nicht befriedigend umgesetzt. Dies liegt
weniger an Java als vielmehr an der Implementierung dieses Tools. Wenn wie gewdhnlich mit
netstat als externem Prozess gearbeitet werden wiirde, bliebe die Java-Anwendung einfach
stehen. Aus diesem Grund ist die Klasse als Ableitung von Thread ausgefiihrt und verwendet
einen OutputReader-Thread, um die Ausgabe entgegenzunehmen und weiterzuverarbeiten.

Unter Windows XP/Vista kann netstat nur mit entsprechenden Benutzerrechten ausgefuhrt
werden.

Der Konstruktor der Klasse OutputReader nimmt als Parameter den aufrufenden Thread und die
java.lang.Process-Instanz entgegen, in deren Kontext die netstat-Ausfiihrung stattfindet.
Innerhalb ihrer run()-Methode wird die Ausgabe des netstat-Tools eingelesen und verarbeitet.
Sobald keine Ausgabe mehr erfolgt, werden der aufrufende und der aktuelle Thread beendet und
somit auch die Abarbeitung des im aufrufenden Thread gestarteten Prozesses unterbrochen:

import java.io.*;

/**

* Hilfsklasse fir den Aufruf von netstat unter Windows
*/

public class OQutputReader extends Thread f{

private InputStream in;
private Thread caller;

// Konstruktor

OutputReader(Thread caller, Process p) f
// InputStream abrufen
in = p.getInputStream();

// Aufrufenden Thread merken

Listing 252: Einlesen und Ausgeben der Rlickgabe des externen Prozesses

>> Netzwerke und E-Mail 531

this.caller = caller;

}

public void run() {
// Wenn kein InputStream vorhanden, dann beenden
if(null == 1in) {
return;
}

// BufferedReader zum Auslesen der Informationen
BufferedReader br = new BufferedReader(
new InputStreamReader(in));

// Informationen zeilenweise einlesen
String Tine = null;
try {
while(null != (1ine = br.readlLine())) {
// Informationen wieder auslesen
System.out.printin(line);
}
} catch (I0Exception e) {
e.printStackTrace();
}

// Thread und aufrufenden Thread beenden
if(null = caller) {
// Aufrufenden Thread unterbrechen
caller.interrupt();
return;
} else {
// Ausfihrung beenden
System.exit(0);

‘©
=
w
@
=3
el
]
g
©
=

Listing 252: Einlesen und Ausgeben der Rickgabe des externen Prozesses (Forts.)

Da die Netstat-Klasse selbst als java.io.Thread-Ableitung ausgefiihrt ist, muss ihre Ausfiih-
rung tber ihre start()-Methode angestoBen werden:

pubTlic class Start {

public static void main(String[] args) {
// Erzeugen einer Netstat-Instanz und
// starten dieser Instanz
new Netstat().start();

Listing 253: Erzeugen einer neuen Netstat-Instanz und Starten dieser Instanz

532 >> E-Mail senden mit JavaMail

Bei Ausfiihrung des Programms werden alle offenen Ports des Systems samt der 6ffnenden
Anwendungen angezeigt.

WINZK3\system32\cmd.exe

>java Start

Aktive Uerbindungen

Proto Lokale Adresse . Status
TCP A.8.8.8:21 .8.8.8: ABHGREN
[inetinfo.exel

TCP A.8.98.8: ABHGREN
[inetinfo.exel

TGP A.0.8.8: ABHGREN
W3suc
[suchost.exe]

TCP A.0.98.8: ABHGREN
RpcSs
[suchost.exe]

ICP A.8.8.8: ABHGREN
[System]

TCP A.0.98.8: ABHGREN
[lsass.exel

Abbildung 109: Ausgabe aller offenen Ports samt deren Status

192 E-Mail senden mit JavaMail

Mit Hilfe des JavaMail-Frameworks konnen Sie E-Mails versenden und abrufen. Das Frame-
work bendtigt als zusétzliche Komponente das JavaBeans Activation Framework.

JavaMail selbst ist ein komplettes Framework fiir das Senden und Empfangen von E-Mails. Es
unterstiitzt verschiedene Protokolle (SMTP fiir den Versand sowie POP3 und IMAP fiir den
Empfang und das Verarbeiten von Nachrichten) und kann bei Bedarf um eigene Protokolle
erweitert werden. JavaMail unterstiitzt verschiedene Nachrichtentypen und kann sehr flexibel
konfiguriert werden.

Unter der Adresse http://java.sun.com/products/javamail/ konnen Sie die derzeit aktuellste
Version von JavaMail kostenlos herunterladen. Das JavaBeans Activation Framework kann
unter http://java.sun.com/products/javabeans/glasgow/jaf.html heruntergeladen werden.

Das Versenden von E-Mails per JavaMail erfolgt in mehreren Schritten:
P Erzeugen einer java.util.Properties-Instanz, die einige Konfigurationsparameter enthélt

P Erzeugen einer javax.mail.Session-Instanz, in deren Kontext die weitere Verarbeitung
stattfindet

» Erzeugen einer javax.mail.MimeMessage-Instanz, die die zu versendende Nachricht
reprasentiert

P Versenden der Nachricht per javax.mail.Transport
Die Konfigurationsparameter in der Properties-Instanz bestimmen das Verhalten von Java-

Mail. Mit ihrer Hilfe kann unter anderem festgelegt werden, welcher Mailserver fiir den Ver-
sand verwendet werden soll:

>> Netzwerke und E-Mail 533

Parameter ‘ Bedeutung

mail.transport.protocol Standardprotokoll fiir die Kommunikation

mail.host Standard-Mail-Host. Wird verwendet, wenn der protokollspezifische
Host leer oder nicht angegeben ist.

mail.user Standard-Username fiir den Zugriff auf den Mail-Host. Wird verwen-
det, wenn der protokollspezifische Username leer oder nicht angege-
ben ist.

mail.<protokol1>.host Protokollspezifischer Hostname. Der Platzhalter <protokol1> muss
durch das Protokollkiirzel ersetzt werden.

mail.<protokol1>.username Protokollspezifischer Username. Der Platzhalter <protokol1> muss
durch das Protokollkiirzel ersetzt werden.

mail.from Gibt die Standard-Antwortadresse an.

mail.debug Gibt an, ob der JavaMail-Debugging-Modus aktiviert (true) oder deak-
tiviert ist.

Tabelle 47: JavaMail-Umgebungsparameter

Nach dem Setzen der benétigten Konfigurationsparameter kann eine E-Mail generiert und
versendet werden:

import
import
import
import
import
import

public

/**
*
*/

pub

Jjavax.mail.MessagingException;
javax.mail.Session;
Javax.mail.Transport;
javax.mail.internet.InternetAddress;
javax.mail.internet.MimeMessage;
Java.util.Properties;

class SendMail {

E-Mail senden

lic static void send(String from, String to,
String subject, String message,
String host) throws MessagingkException {

// Properties erzeugen
Properties props = new Properties();
props.setProperty("mail.smtp.host", host);

// Session erzeugen
Session session = Session.getInstance(props);

// Mail-Reprdsentation erzeugen
MimeMessage mail = new MimeMessage(session);

// Absender setzen
mail.setFrom(new InternetAddress(from));

Listing 254: Versenden einer E-Mail per JavaMail

534 >> E-Mail senden mit JavaMail

// Empfdnger setzen
mail.setRecipient(MimeMessage.RecipientType.TO0,
new InternetAddress(to));

// Betreff
mail.setSubject(subject);

/] Text
mail.setText(message);

// Nachricht senden
Transport.send(mail);

Listing 254: VVersenden einer E-Mail per JavaMail (Forts.)

Das Versenden einer E-Mail {iber die hier beschriebene statische Methode SendMail.send()
gestaltet sich sehr einfach:

import javax.mail.MessagingException;
public class Start {

public static void main(String[] args) {
String from="...";
String to = "...";
String host = "...";
String subject = "Test-Email via JavaMail";
String message =
"Diese Email ist {iber JavaMail gesendet worden.\r\n\r\n" +

"Dabei ist es auch mdglich, Zeilenumbriiche zu verwenden.";

// Parameter {iberprifen
if(null != args && args.length > 0) {
for(String arg : args) {
// Schlissel
String argKey = arg.substring(0, 2);

// Wert
String argVal = arg.substring(2);

// Zuweisen der Argumente zu den lokalen Variablen
if(argKey.equals("-f")) {
from = argVal;
} else if(argKey.equals("-t")) {
to = argVal;
} else if(argKey.equals("-h")) {
host = argVal;

Listing 255: Senden einer Nachricht

>> Netzwerke und E-Mail 535

} else if(argKey.equals("-s")) {
subject = argVal;

} else {
message = argVal;

}

}

// Nachricht versenden
try |
SendMail.send(from, to, subject, message, host);
} catch (MessagingException e) {
e.printStackTrace();
}

Listing 255: Senden einer Nachricht (Forts.)

Die so generierte Nachricht wird umgehend versendet.

& Test-Email via JavaMail Il o [ml]
J Datei Bearbeiten Ansicht Extras Machricht 2 |||’

E"‘J &" g8 _\f 5

Antworten Allen antw,,. Weiterleiten Drucken Ldschen

Von: test@test.de
Datum: Montag, 11. Juli 2006 23:45
An: test@test.de

Betrefi: Test-Email via JavaMail
Diese Email ist Gber JavaMail gesendet worden.

Dabei ist es auch méglich, Zeilenumbriche zu verwenden.

| Y

Abbildung 110: Per JavaMail gesendete Nachricht

193 E-Mail mit Authentifizierung versenden

Nicht jeder Mailserver erlaubt den Versand von Nachrichten ohne vorherige Authentifizie-
rung. Das JavaMail-Framework gestattet es aber, die benotigten Informationen zu Username
und Host mitzugeben.

Dazu wird eine com.sun.mail.smtp.SMTPTransport-Instanz verwendet, die den Versand von
E-Mails per SMTP vornimmt. Deren connect()-Methode kénnen als Parameter Mailserver,
Benutzername und Kennwort iibergeben werden. Die zu verwendende SMTPTransport-Instanz
wird iber die Methode getTransport() der bereits zuvor genutzten javax.mail.Session-Instanz
abgerufen:

536 >> E-Mail mit Authentifizierung versenden

import com.sun.mail.smtp.SMTPTransport;
import javax.mail.MessagingException;
import javax.mail.Session;

import javax.mail.Transport;

import javax.mail.internet.MimeMessage;
import javax.mail.internet.InternetAddress;
import java.util.Properties;

public class SendMail {

/**
* E-Mail mit Authentifizierung senden
*/
public static void sendAuth(String from, String to,
String subject, String message,
String host, String username, String password)
throws MessagingException {
// Properties erzeugen
Properties props = new Properties();
props.setProperty("mail.smtp.host", host);

// Session erzeugen
Session session = Session.getInstance(props);

// Mail-Reprdsentation erzeugen
MimeMessage mail = new MimeMessage(session);

// Absender setzen
mail.setFrom(new InternetAddress(from));

// Empfdnger setzen
mail.setRecipient(MimeMessage.RecipientType.TO0,
new InternetAddress(to));

// Betreff
mail.setSubject(subject);

/] Text
mail.setText(message);

// SMTPTransport-Instanz referenzieren

SMTPTransport smtp = (SMTPTransport)
session.getTransport("smtp");

smtp.connect(host, username, password);

// Nachricht senden
Transport.send(mail);

Listing 256: Versenden einer E-Mail Giber einen Server mit Authentifizierung

>> Netzwerke und E-Mail 537

194 HTML-E-Mail versenden

Wenn E-Mails im HTML-Format versendet werden sollen, handelt es sich bei diesen Mails
streng genommen nicht mehr um textbasierte E-Mails, sondern um E-Mails mit einem
Anhang im text/htmi-Format. Dies muss beim Erstellen der E-Mail beriicksichtigt werden,
denn hier wird der Inhalt nicht mehr iiber die Convenience-Methode setText() zugewiesen,
sondern per javax.activation.DataHandler-Instanz eingelesen.

Die zu verwendende DataHandler-Instanz wird der MimeMessage-Instanz tiber deren Methode
setDataHandler() zugewiesen. Der Konstruktor der DataHandler-Klasse nimmt dabei unter
anderem eine javax.activation.DataSource-Implementierung entgegen, die iiber ihre Methode
getInputStream() den Zugriff auf den zu versendenden HTML-Code erlaubt.

DataSource

Leider existiert weder im JavaBeans Activation Framework noch im JavaMail-Framework eine
geeignete DataSource-Implementierung zum Versenden von HTML-E-Mails. Es ist jedoch kein
groBer Aufwand nétig, um eine eigene DataSource-Implementierung zu erstellen, die zu die-
sem Zweck verwendet werden kann.

Das Interface javax.activation.DataSource definiert folgende Methoden:

Jjava.lang.String getContentType()
java.io.InputStream getInputStream()
java.lang.String getName()
Jjava.io.OutputStream getOutputStream()

Diese Methoden miissen in der abgeleiteten Klasse implementiert werden. Fiir eine Klasse
Htm1DataSource zum Verarbeiten von HTML-Texten kann dies so aussehen:

import javax.activation.DataSource;
import java.io.*;

/**

* javax.activation.DataSource-Implementierung

*/

public class HtmlDataSource implements DataSource {
// Darzustellender Text
private String text;

/**

* Text erfassen

*/

public String getText() {
return text;

}

/**

* Text abrufen

*/

public void setText(String text) {
this.text = text;

Listing 257: javax.activation.DataSource-Implementierung

538 >> HTML-E-Mail versenden

}

/~k~k
* Konstruktor
*/
public HtmlDataSource(String text) {
this.setText(text);
J
/**
* Content-Type des Inhalts
*/
public String getContentType() f{
return "text/html";
}
/**
* InputStream zum Einlesen der Daten
*/
public InputStream getInputStream() throws IOException {
return new ByteArrayInputStream(getText().getBytes());
J
/*‘k
* Name der DataSource
*/
public String getName() {
return "HtmlDataSource";
}

/~k~k

* QutputStream, in den die Daten geschrieben werden kdnnen

*/

public OutputStream getOutputStream() throws I0Exception {
return new ByteArrayOutputStream();

}

Listing 257: javax.activation.DataSource-Implementierung (Forts.)

Beim Instanzieren einer HtmlDataSource-Instanz muss deren Konstruktor der darzustellende
HTML-Text als String iibergeben werden. Per getText() und setText() kann auf diesen Text
zur Laufzeit zugegriffen werden.

Da die Methode getInputStream() eine java.io.InputStream-Implementierung zuriickgeben
muss, wird hier eine neue java.io.ByteArrayInputStream-Instanz erzeugt, die den HTML-Code
reprasentiert. Deren Konstruktor nimmt ein Byte-Array entgegen, das mit Hilfe der Methode
getBytes() der String-Instanz erzeugt werden kann.

Ebenfalls eine Rolle bei der weiteren Verarbeitung des Inhalts der DataSource spielt die
Methode getContentType(), die den Inhaltstyp der représentierten Daten zuriickgibt. In diesem
Fall handelt es sich um den Inhaltstyp text/html, durch den die E-Mail im Mailprogramm erst
als HTML-E-Mail behandelt werden kann.

>> Netzwerke und E-Mail 539

Versand der E-Mail

Der eigentliche Versand der E-Mail unterscheidet sich nicht wesentlich vom oben gezeigten
Vorgehen - mit dem Unterschied, dass statt der Convenience-Methode setText() nunmehr die
Methode setDataHandler() verwendet wird, die eine javax.activation.DataHandler-Instanz
entgegennimmt. Deren Konstruktor erhélt die zuvor erzeugte javax.activation.DataSource-
Implementierung, die den Zugriff auf den eigentlichen Inhalt erlaubt:

import com.sun.mail.smtp.SMTPTransport;
import javax.mail.MessagingException;
import javax.mail.Session;

import javax.mail.Transport;

import javax.mail.internet.MimeMessage;
import javax.mail.internet.InternetAddress;
import javax.activation.DataHandler;

import java.util.Properties;

public class SendMail {

/**
* E-Mail mit HTML-Text senden
*/
public static void sendHtm1(String from, String to,
String subject, String message,
String host, String username, String password)
throws MessagingException {
// Properties erzeugen
Properties props = new Properties();
props.setProperty("mail.smtp.host", host);

// Session erzeugen
Session session = Session.getInstance(props);

// Mail-Reprdsentation erzeugen
MimeMessage mail = new MimeMessage(session);

// Absender setzen
mail.setFrom(new InternetAddress(from));

// Empfdnger setzen
mail.setRecipient(MimeMessage.RecipientType.TO,
new InternetAddress(to));

// Betreff
mail.setSubject(subject);

// HTML-Nachricht erfassen

DataHandler dh = new DataHandler(
new HtmlDataSource(message));

mail.setDataHandler(dh);

Listing 258: Versand einer HTML-E-Mail

540 >> E-Mail als multipart/alternative versenden

// SMTPTransport-Instanz referenzieren
SMTPTransport smtp = (SMTPTransport) session.getTransport("smtp");
smtp.connect(host, username, password);

// Nachricht senden
Transport.send(mail);

Listing 258: Vlersand einer HTML-E-Mail (Forts.)

Die so versendete E-Mail kann vom E-Mail-Programm im HTML-Format angezeigt werden.
Beachten Sie jedoch, dass Sie keinen Einfluss auf die Anzeige im E-Mail-Programm des Emp-
fangers haben. Wenn dieses nicht entsprechend konfiguriert ist, werden Sie eine Darstellung
im HTML-Format nicht erzwingen koénnen.

B Test-Email via JavaMail - Nachricl -0] x|
Datei Bearbeiten Ansicht Einflgen Format Extras Aktionen 2
& Antworten & Allen antworten o Weiterleiten ¥ | X o =
Waon: test@test.de Gesendet: Di 12,07, 2008 23:33
Ant info @test.de
[BE:
Betreff: Test-Email via JavaMail

L . .

Test-Email via JavaMail
Test-Bodv der Email

Abbildung 111: Per JavaMail als HTML versendete E-Mail

195 E-Mail als multipart/alternative versenden

E-Mails im HTML-Format kénnen Darstellungsprobleme bei Mail-Clients verursachen, die aus
Sicherheitsgriinden auf die Anzeige von HTML verzichten. Als Losung fiir dieses Problem hat
sich der Versand derartiger E-Mails im Format multipart/alternative etabliert. Hier wird die
E-Mail als Text- und HTML-E-Mail versendet. Mail-Clients, die eine reine Textansicht bevor-
zugen, stellen den Textteil der E-Mail dar, wihrend Mail-Clients, die HTML darstellen kénnen
und wollen, den HTML-Teil der E-Mail anzeigen.

Sowohl Text- als auch HTML-Teil sollten den gleichen Text enthalten, damit jedes
Mail-Programm die optimierte Version anzeigen kann.

Wenn E-Mails aus mehreren Teilen bestehen sollen, miissen diese iiber eine javax.mail.Mime-
Multipart-Instanz zusammengefasst werden. Deren Konstruktor nimmt die Bezeichnung eines
alternativen Multipart-Typs entgegen - in diesem Fall muss es der Typ alternative sein, da die
E-Mail sonst nicht korrekt dargestellt werden wiirde.

>> Netzwerke und E-Mail 541

Jeder einzelne Teil wird durch eine javax.mail.MimeBodyPart-Instanz représentiert, die der
MimeMultipart-Instanz zugewiesen werden muss. Diese wird ihrerseits der Nachricht tber
deren Methode setContent() zugewiesen:

import com.sun.mail.smtp.SMTPTransport;
import javax.mail.MessagingException;
import javax.mail.Session;

import javax.mail.Transport;

import javax.mail.internet.MimeMessage;
import javax.mail.internet.InternetAddress;
import javax.mail.internet.MimeMultipart;
import javax.mail.internet.MimeBodyPart;
import javax.activation.DataHandler;

import java.util.Properties;

public class SendMail {

/**
* E-Mail als multipart/alternative senden
*/
public static void sendMultipartAlternative(String from, String to,
String subject, String message, String htmIMessage,
String host, String username, String password)
throws MessagingException {
// Properties erzeugen
Properties props = new Properties();
props.setProperty("mail.smtp.host", host);

// Session erzeugen
Session session = Session.getInstance(props);

// Mail-Reprdsentation erzeugen
MimeMessage mail = new MimeMessage(session);

// Absender setzen
mail.setFrom(new InternetAddress(from));

// Empfénger setzen
mail.setRecipient(MimeMessage.RecipientType.TO0,
new InternetAddress(to));

// Betreff
mail.setSubject(subject);

// Multipart-Nachricht erfassen
MimeMultipart mp = new MimeMultipart("alternative");

// Einzelne Elemente anfligen:

// 1. Text zuweisen

MimeBodyPart text = new MimeBodyPart();
text.setText(message);

Listing 259: Versenden einer E-Mail im Format multipart/alternative

542 >> E-Mail als multipart/alternative versenden

mp.addBodyPart(text);

// 2. HTML-Teil zuweisen
MimeBodyPart html = new MimeBodyPart();
DataHandler dh = new DataHandler(

new HtmlDataSource(htmIMessage));
html.setDataHandler(dh);
mp.addBodyPart(html);

// Multipart-Element der Mail zuweisen
mail.setContent(mp);

// SMTPTransport-Instanz referenzieren
SMTPTransport smtp = (SMTPTransport) session.getTransport("smtp");
smtp.connect(host, username, password);

// Nachricht senden
Transport.send(mail);

Listing 259: Versenden einer E-Mail im Format multipart/alternative (Forts.)

Eine derart versendete E-Mail wird vom E-Mail-Programm im fiir den Anzeigemodus am bes-
ten geeigneten Format dargestellt: als Plain-Text, wenn nur dies unterstiitzt wird, oder als
HTML, wenn die Einstellungen dies erlauben.

& Test-Multipart-Email via JavaMail - Mozilla T -1oO] x|

Datei Bearbeiten Ansicht Gehe Machricht Extras Hilfe

k—. s - & ¢)
Abrufen Verfassen Adressbuch | Antworten Allen antworten Weiterleiten | Lischen

— Betreff: Test-Multipart-Email via JavaMail
Von: test@test.de
Datum: 01:37
An: info@test.de

Test-Body der Email

Abbildung 112: Darstellung der E-Mail als Nur-Text

>> Netzwerke und E-Mail 543

& Test-Multipart-Email via JavaMail - Mozi =3
Datei Bearbeiten Ansicht Gehe Machricht Extras Hilfe

& . 2 ¥ Y X X
Abrufen Verfassen Adressbuch | Antworten Allen antworten Weiterleiten | Laschen

- Betreff: Test-Multipart-Email via JavaMail
Von: test@test.de
Datum: 01:37
An: info@test.de

Test-Multipart-Email via JavaMail

Test-Body der Email

2

Abbildung 113: Darstellung der E-Mail als HTML

196 E-Mail mit Datei-Anhang versenden

Beim Versand von Datei-Anhingen kommt ein javax.mail.MimeMultipart-Element zum Ein-
satz. Diesem kann zunichst der eigentliche Nachrichtentext (egal, ob Text oder HTML) zuge-
wiesen werden. AnschlieBend wird die Datei per javax.activation.FileDataSource-Instanz
einer MimeBodyPart-Instanz zugewiesen. Deren Konstruktor nimmt eine java.io.File- oder
eine String-Instanz entgegen, die den zu versendenden Datei-Anhang représentiert:

import com.sun.mail.smtp.SMTPTransport;
import javax.mail.MessagingException;
import javax.mail.Session;

import javax.mail.Transport;

import javax.mail.internet.MimeMessage;
import javax.mail.internet.InternetAddress;
import javax.mail.internet.MimeMultipart;
import javax.mail.internet.MimeBodyPart;
import javax.activation.DataHandler;
import javax.activation.FileDataSource;
import java.util.Properties;

import java.io.File;

public class SendMail {

/**
* E-Mail mit Datei-Anhang senden
*/
public static void sendAttachment(String from, String to, String subject,
String message, File file,
String host, String username,
String password)
throws MessagingException {
// Properties erzeugen

Listing 260: Versenden einer E-Mail mit Datei-Anhang

544 >> E-Mail mit Datei-Anhang versenden

Properties props = new Properties();
props.setProperty("mail.smtp.host", host);

// Session erzeugen
Session session = Session.getInstance(props);

// Mail-Reprdsentation erzeugen
MimeMessage mail = new MimeMessage(session);

// Absender setzen
mail.setFrom(new InternetAddress(from));

// Empfanger setzen
mail.setRecipient(MimeMessage.RecipientType.TO0,
new InternetAddress(to));

// Betreff
mail.setSubject(subject);

// Multipart-Nachricht erfassen
MimeMuTtipart mp = new MimeMultipart();

// Einzelne Elemente anfligen:

// 1. Text zuweisen

MimeBodyPart text = new MimeBodyPart();
text.setText(message);
mp.addBodyPart(text);

// 2. Datei-Referenz einfligen
MimeBodyPart filePart = new MimeBodyPart();
DataHandler dh = new DataHandler(

new FileDataSource(file));
filePart.setDataHandler(dh);

// Dateiname setzen
filePart.setFileName(file.getName());
mp.addBodyPart(filePart);

// Multipart-Element der Mail zuweisen
mail.setContent(mp);

// SMTPTransport-Instanz referenzieren
SMTPTransport smtp = (SMTPTransport) session.getTransport("smtp");
smtp.connect(host, username, password);

// Nachricht senden
Transport.send(mail);

Listing 260: Versenden einer E-Mail mit Datei-Anhang (Forts.)

>> Netzwerke und E-Mail 545

In diesem Beispiel wird die Ubergabe einer java.io.File-Instanz an die Methode erwartet. Die
referenzierte Datei muss tatsdchlich existieren. Ist dies nicht der Fall, wird eine FileNotFound-
Exception geworfen.

Vergessen Sie nicht, den Dateinamen des Anhangs zu setzen, da sonst ein interner
Dateiname zum Versand verwendet wird. Ein korrektes Speichern des Anhangs wire so
beim Client eventuell nicht mehr méglich.

& Email mit Datei-Anhang via JavaMail - Mozilla Thun I [=] 59
Datei Bearbeiten Ansicht Gehe Machricht Extras Hilfe

B z X,
o . ﬁ — Y ¢ 5 -/<
Abrufen Verfassen Adressbuch | Antworten Allen antworten Weiterleiten | Loschen

= Betreff: Email mit Datei-Anhang via JavaMail
Von: test@test.de
Datum: 02:22
An: info@test.de

Hallao,

Anbei ein Datei-Anhang...

Anhange: I E send.zip
=]]

Abbildung 114: E-Mail mit Datei-Anhang

197 E-Mails abrufen

Das Abrufen von E-Mails iiber das »nackte« POP3-Protokoll ist beim Einsatz von JavaMail
nicht notwendig, denn das Framework bringt schon alles Notwendige mit. Die Vorgehensweise
ist dabei nicht am POP3-Protokoll orientiert, sondern bedient sich einer javax.mail.Store-
Instanz, die einen Speicherort von Nachrichten reprisentiert. Der Inhalt dieser Store-Instanz
kann in Ordnern organisiert sein, die ihrerseits durch javax.mail.Folder-Instanzen reprédsen-
tiert werden konnen. Die Implementierung fiir den Zugriff auf ein POP3-Postfach verwendet
dabei den Standardordner INBOX, dessen Inhalt iiber die Methode getMessages() der Folder-
Instanz abgerufen werden kann. Die Nachrichten liegen chronologisch geordnet vor.

Die Vorgehensweise beim Abrufen der E-Mails sieht wie folgt aus:
Jjavax.mail.Session erzeugen
javax.mail.Store-Instanz abrufen

4

>

» Standardordner abrufen und zur INBOX wechseln

P Nachrichten per getMessages() abrufen und weiterverarbeiten
4

Aufrdumen der genutzten Ressourcen

Das Verarbeiten der einzelnen Nachrichten ist in diesem Beispiel relativ einfach gehalten: Zu
jeder Nachricht werden die Informationen zu Absender, GroBe, Betreff, Empfangsdatum und
Multipart-Status ausgegeben. Insbesondere bei der Verarbeitung des Absenders ist Aufmerk-

546 >> E-Mails abrufen

samkeit geboten, denn nicht immer wird ein Name fiir einen Absender angegeben - und
manchmal (Nachrichten, die per CC oder BCC gesendet werden, etwa Newsletter) existiert gar
iiberhaupt keine Absenderangabe.

Das Abrufen der genannten Informationen findet tbrigens sehr ressourcenschonend statt:
Statt die komplette Nachricht abzurufen, werden fiir diese Ausgaben nur die Header-Informa-
tionen herangezogen, was die Geschwindigkeit der Verarbeitung deutlich steigert. Das eigent-
liche Abrufen der Inhalte findet nur bei Bedarf statt — und der besteht hier nicht.

Im folgenden Beispiel findet das Abrufen der E-Mails innerhalb der Methode readAl11() statt,
die die E-Mails im INBOX-Ordner in umgekehrter chronologischer Reihenfolge durchliuft,
d.h., die neuesten E-Mails werden zuerst ausgegeben. Innerhalb der Methode processMessage()
findet dann die Ausgabe der Informationen zur tibergebenen javax.mail.Message-Instanz statt:

import javax.mail.*;

import javax.mail.internet.InternetAddress;
import java.util.Date;

import java.util.Properties;

public class ReadMail {

/**

* Ruft die im angegebenen E-Mail-Konto enthaltenen E-Mails in
* umgekehrter Reihenfolge (neueste zuerst) ab

* @param server Name oder IP-Adresse des Mailservers

* @param user Username fir den Zugriff
* @param password Password flr den Zugriff
*/

public static void readAl1(String server, String user, String password) {
Store store=null;
Folder folder=null;

try {
// Session-Instanz erzeugen
Properties props = System.getProperties();
Session session = Session.getDefaultInstance(props, null);

// POP3-Store instanzieren und mit Server verbinden
store = session.getStore("pop3");
store.connect(server, user, password);

// Auf den Standardordner zugreifen
folder = store.getDefaultFolder();

// Standardordner kann nicht gefunden werden
if (folder == null) {

throw new Exception("No default folder");
}

// Nachrichten Tiegen stets im Ordner INBOX
folder = folder.getFolder("INBOX");

Listing 261: Abrufen und Verarbeiten von E-Mails per JavaMail

>> Netzwerke und E-Mail 547

// Posteingang kann nicht gefunden werden
if (folder == null) {

throw new Exception("No POP3 INBOX");
}

// Ordner 8ffnen
folder.open(Folder.READ_ONLY);

// Messages abrufen und verarbeiten
Messagel[] msgs = folder.getMessages();
for (int msgNum = msgs.length - 1; msgNum >= 0; msgNum--) {
// Nachricht verarbeiten
processMessage(msgs[msgNum]) ;
1
} catch (Exception ex) {
ex.printStackTrace();
}
finally {
// Aufrdumen
try {
if (folder!=null) {
folder.close(false);
}

if (storel=null) {
store.close();
}
} catch (Exception ex2) {
ex2.printStackTrace();
}

}

‘©
=
[
)
=
el
>
g
]
—

/**k

* Gibt die Informationen der {ibergebenen Message-Instanz aus
* @param message Zu verarbeitende Message
*/
private static void processMessage(Message message) {
try {
// Absender ermitteln
InternetAddress fromAddress =
(InternetAddress)message.getFrom()[0];
String from = null;

if(null != fromAddress) {
if(null != fromAddress.getPersonal()) {
// Wenn ein Name angegeben ist, dann wird dieser
// als Absender angenommen
from = fromAddress.getPersonal();
} else {

Listing 261: Abrufen und Verarbeiten von E-Mails per JavaMail (Forts.)

548 >> E-Mails abrufen

// Kein Name angegeben, also die eigentliche
// E-Mail-Adresse verwenden
from = fromAddress.getAddress();
}
}
System.out.printIn(String.format("Absender: %s", from));

// Betreff ausgeben
String subject = message.getSubject();
System.out.printin(String.format("Betreff: %s", subject));

// Eigentliche Nachricht abrufen
Part messagePart = message;
Object content = messagePart.getContent();

// Uberpriifen, ob es sich bei der Nachricht

// um eine Multipart-Nachricht handelt

if (content instanceof Multipart) {
System.out.printin("(Multipart-Email)");

}

// Inhalts-Typ abrufen
String contentType = messagePart.getContentType();
System.out.printin(String.format("Inhalts-Typ: %s", contentType));

// Datum ausgeben
Date date = message.getSentDate();
System.out.printIn(String.format("Datum: %tc", date));

// GroBe ausgeben
System.out.printin(
String.format("Groesse: %0,2d Byte",
message.getSize()));

System.out.println("#rkksridakdtadd i adddida o aodod ko ")
} catch (Exception ex) {

ex.printStackTrace();
}

Listing 261: Abrufen und Verarbeiten von E-Mails per JavaMail (Forts.)

Die Klasse javax.mail.MimeMessage, die eine per POP3-Protokoll empfangene Nachricht repré-
sentiert, verfiigt tiber wesentlich mehr Informationen, als hier verwendet wurden.

>> Netzwerke und E-Mail 549

\WIN2K3 \system32\cd.exe

Datum:z Mi Jul 13 B4:@7:48 CEST 2807
Groesse: 7.778 Byte

Ahsender: infobBTest.de
: Email mit Datei-fAnhang via JavaMail
»t—Emaild
yp: multipart/mixed; boundary="————=_Part_B_5799860.11212141268858"
Jul 13 B2:22:21 CEST 2887
: 241.436 Byte
306303030 -Jof-mE- 30~ -Jof - 30~ -Jof 0o - oo 30 oo 30— -Jof oo - oo
Absender: infolTest.de
Betreff: Email mit Datei-Anhang via JavaMail

{Multipart—-Email>

Inhalts-Typ: multipartsmixed; boundary=""-———=_Part_@_5799060.1121213256357"
Mi Jul 13 @2:87:55 CEST 2887

Groesse: 241.369 Byte

SRR S R R SRR S E S O I R

Ahsender: infobBTest.de
Betreff: Test—Multipart—Email via JavaMail
{Multipart-Emaill
Inhalts-Typ: multipart-alternative;

boundary="" =_Part_@A_22155964.1121211434627"
Datum= Mi Jul 13 81:37:19 CEST 2887
Groesse: 452 Byte

Abbildung 115: Abrufen von E-Mails per JavaMail

Das Abrufen und Parsen von E-Mails ist alles andere als trivial. Dies liegt weniger am
Protokoll, als vielmehr an der Art, wie verschiedene Mail-Programme E-Mails erzeu-
gen, denn die ist hdufig alles andere als standardkonform. Es empfiehlt sich daher, alle
Feldinhalte, mit denen gearbeitet werden soll, mit besonderer Vorsicht zu behandeln.

Methode | Beschreibung

java.util.Enumeration getAllHeaders() Gibt alle Header-Felder zurtick.

Address[] getAllRecipients() Gibt alle Empfinger der E-Mail (Werte aus den TO- und
CC-Feldern) zuriick.

Object getContent() Gibt den Inhalt der E-Mail zuriick.

String getContentID() Gibt den Wert des »Content-ID«-Header-Felds zuriick.

String[] getContentlanguage() Gibt den Wert des »Content-Language«-Header-Felds
zuriick.

protected java.io.InputStream Erlaubt den Zugriff auf den Inhalt als InputStream.

getContentStream()

String getContentType() Gibt den Wert des »Content-Type«-Header-Felds zurtick.

String getDescription() Gibt den Wert des »Content-Description«-Header-Felds
zurick.

String getDisposition() Gibt den Wert des »Content-Disposition«-Header-Felds
zurick.

String getEncoding() Gibt den Wert des »Content-Transfer-Encoding«-Header-
Felds zurtick.

String getFileName() Gibt den Dateinamen der Nachricht zuriick.

Flags getFlags() Gibt eine javax.mail.Flags-Instanz zuriick, die den
Status der Nachricht reprasentiert.

Tabelle 48: Methoden, um die Informationen in einer MimeMessage-Instanz abzurufen

550 >> Multipart-E-Mails abrufen und verarbeiten

Methode | Beschreibung

Address[] getFrom() Gibt alle im »From«-Header-Feld definierten Adressen
zuriick.

String[] getHeader(java.lang.String name) | Gibt den Wert des angegebenen Headers zuriick.

Jjava.io.InputStream getInputStream() Erlaubt den Zugriff auf einen dekodierten InputStream,
der den Nachrichteninhalt reprasentiert.

int getLineCount() Gibt die Anzahl der Zeilen in der Nachricht zuriick.

String getMessagelID() Gibt den Wert des »Message-ID«-Header-Felds zuriick.

java.util.Date getReceivedDate() Gibt den Zeitpunkt zuriick, zu dem die Nachricht emp-
fangen worden ist.

Address[] getRecipients(Message. Gibt alle Empfénger vom angegebenen Typ zuriick.

RecipientType type)

Address[]1 getReplyTo() Gibt die Antwortadressen der Nachricht zuriick.

Address getSender() Gibt den Absender der Nachricht zuriick.

java.util.Date getSentDate() Gibt den Zeitpunkt zuriick, zu dem die Nachricht gesen-
det worden ist.

int getSize() Gibt die GroBe der Nachricht in Byte zuriick.

String getSubject() Gibt den Betreff der Nachricht zuriick.

Tabelle 48: Methoden, um die Informationen in einer MimeMessage-Instanz abzurufen (Forts.)

Auch diese Auflistung ist noch nicht komplett; die Klasse MimeMessage stellt weitere, weniger
gebrauchliche Methoden zur Verfiigung, auf die hier aus Platzgriinden nicht weiter eingegan-
gen werden soll. Werfen Sie deshalb auch einen Blick in die Dokumentation von JavaMail.

198 Multipart-E-Mails abrufen und verarbeiten

Die Verarbeitung von Multipart-E-Mails lésst sich basierend auf dem in Rezept 197 gezeigten
Ansatz recht einfach umsetzen, da hierfiir lediglich eine Erweiterung der Methode processMes-
sage() notwendig wird.

Innerhalb der Methode processMessage() wird nunmehr iiberpriift, ob der Inhalt der Mail, auf
den via <Messagelnstanz>.getContent() zugegriffen werden kann, vom Typ javax.mail.Multi-
part ist. Wenn dem so ist, wird er an die Methode handleMultipart() {ibergeben, die alle Ele-
mente der Multipart-Instanz durchlduft und in der Methode handlePart() behandeln lésst.

Innerhalb der Methode handlePart() wird anhand von Content-Disposition (Inhaltsangabe)
und Content-Type (Inhaltstyp) eine Verarbeitung des Inhalts vorgenommen. Ist keine Content-
Disposition vorhanden, wird davon ausgegangen, dass es sich beim zu behandelnden Inhalt
entweder um Plain-Text handelt oder es ein nicht gekennzeichneter Inhalt ist. Ersteres fiihrt
zur direkten Ausgabe des Inhalts, Letzteres sorgt zusétzlich dafiir, dass der Inhalt im aktuellen
Verzeichnis entweder unter seinem eigenen Dateinamen oder einem neu generierten Datei-
namen gespeichert wird. Gleiches gilt fiir Inhalte, die als Anhang (Aftachment) oder inline
mitgefiihrtes binires Objekt (Inline) gekennzeichnet sind.

>> Netzwerke und E-Mail 551

Die Speicherung der Daten erfolgt mit Hilfe der Methode saveFile(). Einzige Besonderheit hier
ist die Priifung darauf, ob in der E-Mail ein Dateiname angegeben worden ist. Falls dem nicht
so sein sollte, wird ein neuer eindeutiger Dateiname generiert. Der eigentliche Inhalt der Datei
wird anschliefend per java.io.BufferedOutputStream geschrieben.

Dieses Vorgehen wird fiir alle Elemente der E-Mail wiederholt:

import javax.mail.*;

import javax.mail.internet.InternetAddress;
import java.io.*;

import java.util.Properties;

import java.util.Date;

public class ReadMail {

/*k*
* Ruft die im angegebenen E-Mail-Konto enthaltenen E-Mails in
* umgekehrter Reihenfolge (neueste zuerst) ab
*/
public static void readA11(String server, String user, String password) {
/...
// Nachricht verarbeiten
processMessage(msgs[msgNum]) ;
/...
}

/**
* Gibt die Informationen der {ibergebenen Message-Instanz aus
*/
private static void processMessage(Message message) {
try {
/...

// Eigentliche Nachricht abrufen
Part messagePart = message;
Object content = messagePart.getContent();

/...

// Uberpriifen, ob es sich bei der Nachricht
// um eine Multipart-Nachricht handelt

if (content instanceof Multipart) f{

// Multipart-Nachricht behandeln
System.out.printin("(Multipart-Email)");
handTeMultipart((Multipart) content);

} else {
// Normale Nachricht behandeln
handlePart(messagePart);

|

I

/...

} catch (Exception ex) {

Listing 262: Verarbeiten von Elementen einer E-Mail

552 >> Multipart-E-Mails abrufen und verarbeiten

ex.printStackTrace();
}
}

/**

* Behandelt eine Multipart-E-Mail

*/

public static void handleMultipart(Multipart multipart)
throws MessagingException, I0Exception {

// Alle Elemente durchlaufen und einzeln behandeln

for (int i=0, n=multipart.getCount(); i<n; i++) {
// Element behandeln
handlePart(multipart.getBodyPart(i));

}

/**

* Behandelt einen Teil einer Message

*/

public static void handlePart(Part part)
throws MessagingException, IOException {

// Content-Disposition und Content-Type ermitteln
String disposition = part.getDisposition();
String contentType = part.getContentType();

// Wenn Content-Disposition null ist, ist das aktuelle
// Element nur ein Body-Element
if (disposition == null) {

// Uberpriifen, ob es sich um text/plain handelt -

// der kann direkt ausgegeben werden

if ((contentType.length() >= 10) &&

(contentType.tolLowerCase().substring(
0, 10).equals("text/plain"))) {

‘©
=
w
[
=
S
]
g
®
=

// Part ausgeben
part.writeTo(System.out);
System.out.printin();
} else {
// Fallback-Mdglichkeit flr unbekannten Body-Typ
// Wird beispielsweise flr application/octet-stream
// aufgerufen
System.out.printin(
String.format("Body-Typ: %s", contentType));

// Part ausgeben
part.writeTo(System.out);
System.out.printin();

// Speichern

Listing 262: Verarbeiten von Elementen einer E-Mail (Forts.)

>> Netzwerke und E-Mail 553

saveFile(part.getFileName(), part.getInputStream());
}
}else if (
disposition.equalsIgnoreCase(Part.ATTACHMENT) |
disposition.equalsIgnoreCase(Part.INLINE)) {

// Datei-Anhang oder Inline-Element
System.out.printin(
String.format("%s: %s (%s)",
disposition.equalsIgnoreCase(Part.ATTACHMENT)
? "Anhang" : "Inline",
part.getFileName(), contentType));

// Speichern...
saveFile(part.getFileName(), part.getInputStream());
System.out.printin();
} else {
// Unbekannter Inhaltstyp
System.out.printin(
String.format("Unbekannt: %s",
disposition));

}

/**
* Speichert einen Anhang im aktuellen Anwendungsverzeichnis
*/
public static void saveFile(String filename, InputStream input)
throws I0Exception {
// Wenn kein Dateiname vorhanden, dann eine tempordre Datei
// anlegen und deren Dateiname verwenden
if (filename == null) {
filename = File.createTempFile("xxxxxx", ".out").getName();
}

‘©
=
w
@
=3
el
]
g
©
=

// Vorhandene Dateien werden nicht {berschrieben
File file = new File(filename);
for (int i=0; file.exists(); i++) {
// Dateiname um eine Zahl erweitern,
// damit er eindeutig ist
file = new File(filename+i);
}

// BufferedOutputStream zum Schreiben
// in die Datei verwenden
BufferedOutputStream bos

new BufferedOutputStream(
new FileOutputStream(file));

// BufferedInputStream zum Lesen des Parts
BufferedInputStream bis =

Listing 262: Verarbeiten von Elementen einer E-Mail (Forts.)

554 >> URI - Textinhalt abrufen

new BufferedInputStream(input);

// Auslesen der Daten und Schreiben in den OutputStream
int aByte;
while ((aByte = bis.read()) != -1) {
bos.write(aByte);
}

// Ressourcen freigeben
bos.flush();
bos.close();
bis.close();

Listing 262: Verarbeiten von Elementen einer E-Mail (Forts.)

Da diverse Mail-Programme und Mailer die Komposition von E-Mails »kreativ« hand-
haben, kann es beim Abruf von E-Mails oder beim Durchlaufen einzelner Body-
Elemente zu Abweichungen kommen.

Wenn Sie obige Klasse auf eine Multipart-E-Mail, wie sie etwa in Rezpet 196 generiert worden
ist, anwenden, werden Sie im Anwendungsverzeichnis zwei oder mehrere Dateien finden: den
eigentlichen Datei-Anhang und zusétzlich noch einen eventuell generierten HTML-Bereich, da
dieser ebenfalls als Anhang aufgefasst wird. Alle diese Inhalte werden auch auf der Komman-
dozeile ausgegeben.

199 URI - Textinhalt abrufen

Eine java.net.URL-Instanz reprisentiert einen Verweis auf eine Ressource, wobei nicht zwin-
gend gesagt sein muss, dass es sich dabei um eine Ressource auf einem anderen Rechner oder
gar im Internet handeln muss. Typisch sind etwa Verweise auf Dateien (»file://...«), E-Mail-
Adressen (»mailto://...«, die jedoch nicht per java.net.URL-Instanz verarbeitet werden kénnen)
oder Verweise auf Inhalte auf anderen Servern (whttp://...«, »https://...«, »ftp://...«).

Der Abruf von Inhalten geschieht unter Verwendung einer java.io.InputStreamReader-Instanz.
Diese nimmt im Konstruktor die InputStream-Instanz entgegen, die die initialisierte URL-
Instanz durch ihre Methode getStream() zuriickgibt. Die zuriickgegebenen Zeilen kénnen so
lange durchlaufen und verarbeitet werden, bis die InputStreamReader-Instanz keine Inhalte
mehr zuriickliefert:

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;
import java.net.MalformedURLException;
import java.net.URL;

Listing 263: Inhalt einer externen Ressource einlesen

>> Netzwerke und E-Mail 555

public class UrlReader {
/**
* Liest den Inhalt einer externen Ressource als String ein
*/
public static String read(String address) {
// StringBuffer zum Halten der Daten
StringBuffer buff = new StringBuffer();
try {
// URL-Instanz, die den Zugriff auf die externe
// Ressource erlaubt
URL url = new URL(address);

// BufferedReader zum Einlesen der Textdaten
BufferedReader rdr = new BufferedReader(
new InputStreamReader(url.openStream()));

// Einlesen der Daten

String Tine = null;

while((1ine = rdr.readLine()) != null) {
buff.append(1ine + "\n");

}

// Aufrdumen
rdr.close();

} catch (MalformedURLException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

}

// Geladene Daten zuriickgeben
return buff.toString();

Listing 263: Inhalt einer externen Ressource einlesen (Forts.)

Beim Zugriff auf Ressourcen konnen diverse Ausnahmen auftreten, die abgefangen
oder deklariert werden miissen. Typische Ausnahmen sind MalformedURLExceptions
(URL-Angabe war nicht giiltig) oder I0Exceptions (Fehler beim Lesen der Inhalte).

200 URI - binaren Inhalt abrufen

Beim Abruf von bindren Inhalten kommt statt eines Jjava.io.BufferedReaders eine
java.io.BufferedInputStream-Instanz zum Einsatz. Die Daten werden anschlieBend mit einer
java.io.BufferedOutputStream-Instanz, die einen FileQutputStream kapselt, gespeichert.

556 >> URI - binédren Inhalt abrufen

Der eigentliche Vorgang des Abrufens findet analog zum Laden des Inhalts einer Text-
ressource statt: Es werden so lange Daten aus dem InputStream in den Puffer geschrieben, bis
keine Daten mehr zuriickgegeben werden. Der Puffer wird direkt in den Ausgabe-Stream ent-
leert. Sobald der Ausgabe-Stream geschlossen worden ist, ist die abgerufene Datei lokal ver-
figbar und kann verwendet werden:

import java.io.*;
import java.net.MalformedURLException;
import java.net.URL;

public class UrlReader {

/**

* Ruft den Inhalt einer externen Ressource ab und speichert ihn

*/

public static void readAndSaveBinary(String address, String filename)

{

try {

// File-Instanz, die die zu speichernde Datei reprdsentiert
File file = new File(filename);

// URL-Instanz, die die zu ladende Ressource reprdsentiert
URL url = new URL(address);

// OutputStream zum Speichern des Downloads
BufferedOutputStream bos =
new BufferedOutputStream(
new FileOutputStream(file));

// InputStream zum Laden des Downloads
BufferedInputStream bin =
new BufferedInputStream(
url.openStream());

// Puffer von 16.382 Bytes zum Einlesen der Daten
byte[] buffer = new byte[16382];
int bytes = 0;

// Einlesen und Speichern der Daten
while((bytes = bin.read(buffer)) > 0) {

bos.write(buffer, 0, bytes);

1
J

// Aufrdumen
bos.close();
bin.close();

} catch (MalformedURLException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

Listing 264: Speichern von bindrem Content aus einer externen Ressource

>> Netzwerke und E-Mail 557

Listing 264: Speichern von bindrem Content aus einer externen Ressource (Forts.)

201 Senden von Daten an eine Ressource

Mit Hilfe der java.net.URLConnection-Klasse konnen Daten an eine Ressource gesendet werden
- etwa um das Ausfiillen von Formularfeldern zu simulieren. Eine Instanz dieser Klasse kann
iber die Methode openConnection() einer java.net.URL-Instanz referenziert werden. Durch
Ubergabe des Werts true an die Methode setDoOutput() der URLConnection-Instanz kann der
Modus zum Ubertragen von Informationen aktiviert werden.

Die zu sendenden Parameter werden als Name-Wert-Paare gesendet. Zum Einsatz kommt
dabei eine java.io.PrintWriter-Instanz. Mehrere Name-Wert-Paare werden durch kaufméanni-
sches Und (&) getrennt.

Die Antwort des externen Servers kann per java.io.InputStreamReader und einer java.io.Buf-
feredInputStream-Instanz abgerufen und weiterverarbeitet werden:

import java.util.Properties;

import java.io.*;

import java.net.MalformedURLException;
import java.net.URLConnection;

import java.net.URL;

public class UrlSender {
/**
* {Jbergibt die in der Properties-Instanz data enthaltenen
* Informationen an den durch address bezeichneten Server und
* liefert dessen Riickgabe zuriick
*/
public static String send(String address, Properties data) {
StringBuffer buff = new StringBuffer();

try {
// Reprdsentation der Ressource
URL url = new URL(address);

// URLConnection instanzieren
URLConnection conn = url.openConnection();

// Qutput zulassen
conn.setDoOutput(true);

// PrintWriter erzeugen, mit dem in den Output
// geschrieben werden kann
PrintWriter outputToServer = new PrintWriter(
new OutputStreamWriter(conn.getOutputStream()));

Listing 265: Senden von Daten an eine Ressource

558 >> Senden von Daten an eine Ressource

// H3lt die Parameter
StringBuffer params = new StringBuffer();

// Alle Schlissel aus der Properties-Instanz auslesen
for(Object key : data.keySet().toArray()) f{
String keyVal = key.toString();

// Wert abrufen
String val = data.getProperty(keyVal);

// An die zu Ubergebenden Daten anhdngen
params.append(String.format("%s=%s&", keyVal, val));
}

// Parameter schreiben
outputToServer.print(params.toString());

// OutputStream schlieBen
outputToServer.close();

// BufferedReader zum Einlesen der Riickgabe erzeugen
BufferedReader in = new BufferedReader(
new InputStreamReader(conn.getInputStream()));

// Riickgabe einlesen und ausgeben

String Tine = null;

while((1ine = in.readLine()) != null) {
buff.append(line + "\n");

}

// Aufrdumen
in.close();

‘S
=
w
@
=
B
@
g
>
=

} catch (MalformedURLException e) f
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

}

// Ergebnis zuriickgeben
return buff.toString();

Listing 265: Senden von Daten an eine Ressource (Forts.)

>> Netzwerke und E-Mail 559

Die Daten werden in diesem Beispiel per GET {ibergeben. Wollen Sie Daten per POST
senden, miissen Sie die java.net.URLConnection-Instanz explizit in eine java.net.Http-
URLConnection-Instanz casten und deren Methode setRequestMethod() die Art des
Zugriffs mitteilen:

((HttpURLConnection) conn).setRequestMethod("POST");

Die dabei moglicherweise auftretende ProtocolException muss deklariert oder abgefan-
gen werden.

202 Mini-Webserver

Ein Webserver ist ein sehr gutes Beispiel fiir die Verbindung von Netzwerkprogrammierung
und Thread-Programmierung und eignet sich hiufig als Ausgangsbasis fiir eigene Entwick-
lungen, da viele Anwendungen den gleichen Kern besitzen: In einer Endlosschleife wird auf
eingehende Ereignisse gewartet (beim Webserver auf eine eingehende TCP/IP-Verbindung als
Socket) und dann wird jedes Ereignis einem eigenen Thread zugeordnet und von diesem bear-
beitet, wiahrend das Hauptprogramm wieder in der Endlosschleife auf Ereignisse wartet.

Im Folgenden soll ein simpler Webserver gezeigt werden, der auf Anfrage HTML-Seiten bereit-
stellt. Technisch bedeutet dies, dass der Server auf HTTP-Anfragen des Typs GET reagieren
soll. Wenn Sie z.B. www.carpelibrum.de im Browser eintippen, wird er das Kommando GET/
HTTP/1.1 an diejenige IP-Adresse senden', die mit wwuw.carpelibrum.de verkniipft ist.

Ein Webserver muss auf eine GET-Anfrage eine Antwort liefern, die zunéichst aus einem Pro-
log mit Statusangaben und Informationen besteht, gefolgt von einer Leerzeile und den Daten
der angeforderten HTML-Seite, z.B.

HTTP/1.0 200 OK

Server: Microsoft-PWS/2.0

Date: Wed, 11 May 2005 7:04:55 GMT
Content-Type: text/html

Accept-Ranges: bytes

Last-Modified: Sat, 09 May 1998 09:52:22 GMT
Content-Length: 18

Ab hier die Daten

Was der Webserver an Daten zu senden hat, ergibt sich aus der relativen Pfadangabe des
Dateinamens in der GET-Anfrage. So besagt z.B. das obige GET / HTTP/1.1, dass das Root-
Verzeichnis angefordert wird. In der Regel {ibersetzt der Server dies in eine fest konfigurierte
Standarddatei wie /index.html. Wenn der Webserver z.B. als Datenverzeichnis c:\Web verwen-
det, dann wird er versuchen, die Datei c:\Web\index.html zu lesen und dem anfragenden
Browser zu senden. Hierbei muss der Webserver noch mitteilen, um welche Art von Daten es
sich handelt (content-type) und wie viele Bytes er senden wird (content-length). Typische For-
mate fiir den Datentyp sind »text/html« fiir HTML-Text und »image/gif« oder »image/jpeg« bei
Bilddaten.

1. Es werden in der Regel noch weitere optionale Zusatzinformationen an den Webserver iibertragen, z.B. der Name
des Browsers und welche Dateiformate verarbeitet werden kénnen.

560 >> Mini-Webserver

import java.io.*;
import java.net.*;
import java.util.*;

/**
* Einfacher Webserver zum Bedienen von GET-Anfragen
*/
public class MiniWebServer {
public static void main(String[] args) {
int port = -1;
String www_dir = null;

if(args.length = 2) {
System.out.printin("Aufruf mit <www-Verzeichnis> <Port-Nummer>");
System.exit(0);
} else {
www_dir = args[0];
port = Integer.parselnt(args(1]);
}

// einen Server-Socket anlegen und auf Anfragen warten
int requestID = 0;

try {
ServerSocket serverSock = new ServerSocket(port);
System.out.printin("Webserver lduft auf Port " + port);

// in einer Endlosschleife auf Anfrage warten
while(true) {
Socket request = serverSock.accept();

// eine neue Anfrage in eigenem Thread bearbeiten
requestID+;
RequestThread tmp = new RequestThread(requestID,request,www_dir);
tmp.start();
}
} catch(I0Exception e) {
System.err.printin("Fehler beim Socket-Aufbau!");
e.printStackTrace();
}

}

/**
* Diese Thread-Klasse bearbeitet die Anfrage
*/
class RequestThread extends Thread {
private Socket mySocket;
private int my1D;
private BufferedReader inStream;
private PrintStream outStream; // kann auch Bindrdaten enthalten, daher

Listing 266: Einfacher Webserver flir GET-Anfragen

>> Netzwerke und E-Mail 561

// kein Bufferedwriter
private String www_dir;

// der Konstruktor

RequestThread(int id, Socket sock,String dir) {
myID = id;
mySocket = sock;
www_dir = dir;

}

public void run() {
System.out.printin("Anfrage " + myID + " wird bearbeitet");

// den Input/Output-Stream erdffnen
try |
inStream = new BufferedReader(new
InputStreamReader(mySocket.getInputStream()));
outStream = new PrintStream(mySocket.getOutputStream());
} catch(IOException e) {
System.err.printin("Anfrage
+ myID
+ " I/0 Socket-Stream Exception");
e.printStackTrace();

}

// den Header einlesen
ArrayList<String> header = readRequestHeader();
printHeader(header);

// Kommando und URL extrahieren; der Rest interessiert uns nicht
StringTokenizer st = new StringTokenizer((String) header.get(0));
String command = st.nextToken();

String url = st.nextToken();

Arraylist<String> response = new ArraylList<String>();
boolean dataSegment = false;

// wir beachten nur das GET-Kommando

if(command.equals("GET") == true) {
// URT 1in betriebssystem-spezifischen Dateinamen konvertieren
// indem der notwendige Dateitrenner (/ oder \) genommen wird
String separator = System.getProperty("file.separator");
StringBuffer buf = new StringBuffer(url.length());

for(int i = 0; i < url.length(); i++) {
char ¢ = url.charAt(i);

if(c=="/")
buf.append(separator);
else

buf.append(c);

Listing 266: Einfacher Webserver flir GET-Anfragen (Forts.)

562 >> Mini-Webserver

}
url = buf.toString();

// testen, ob die Datei existiert und gelesen werden kann
File file = new File(www_dir + url);

if(file.canRead() == true) {
// die Antwort zusammenbauen
response.add("HTTP/1.0 200 OK");

// den Content-type der gewlinschten Datei aufgrund der Dateiendung
// setzen
if(url.endsWith(".gif") == true)

response.add("Content-type: image/gif");

if((url.endsWith(".jpeg") == true)
|| Curl.endsWith(".jpg") == true))
response.add("Content-type: image/jpeg");

if(Curl.endsWith(".html") == true)
[| Curl.endsWith(".htm") == true))
response.add("Content-type: text/html");

response.add(""); // Leerzeile beendet den Header
dataSegment = true;

} else {
// die gewlinschte Datei gibt es nicht
response.add("HTTP/1.0 404 Not Found");
response.add("Content-type: text/html");
response.add(""); // Leerzeile beendet die Headersektion
response.add("<HTML><HEAD><TITLE> MiniWebServer-Fehlermeldung" +
"</TITLE></HEAD>");
response.add("<BODY> Angeforderte Datei nicht vorhanden " +
"oder nicht lesbar!</BODY></HTML>");
}

} else {
// ein nicht unterstiitztes Kommando
response.add("HTTP/1.0 501 Not implemented");
response.add("Content-type: text/html");
response.add("");
response.add("<HTML><HEAD><TITLE>MiniWebServer-Fehlermeldung "

+ "</TITLE></HEAD>");
response.add("<BODY> Angeforderte Datei nicht vorhanden " +
"oder nicht Tesbar!</BODY></HTML>");
}

// Die Antwort an den Client schicken. Bei Bedarf auch den Inhalt der
// angeforderten Datei als Byte-Stream

Listing 266: Einfacher Webserver flir GET-Anfragen (Forts.)

>> Netzwerke und E-Mail 563

try {
for(String line : response)
outStream.printin(line);

// die gewlinschte Datei Taden und senden
if(dataSegment == true) {
byte[] readBuffer = new byte[4096];
int num;

try {
FileInputStream file = new FileInputStream(www_dir + url);

while((num = file.read(readBuffer)) = -1)
outStream.write(readBuffer,0,num);

file.close();
outStream.flush();

} catch(I0Exception e) f
System.err.printin("Anfrage " + myID + ": Datei " + url
+ " konnte nicht gelesen werden");

}

// Verbindung schlieBen
mySocket.close();
System.out.printin("Anfrage " + myID + " abgearbeitet!");

} catch(I0Exception e) {
System.err.printin("Anfrage " + myID +
": Header konnte nicht geschrieben werden ");
e.printStackTrace();
}
}

// fir Kontrollzwecke: Ausgabe des Headers
void printHeader(ArrayList<String> header) {
for(String str : header)
System.out.printin(str);
}

// Diese Methode liest den Header ein, der vom Client geschickt worden ist
Arraylist<String> readRequestHeader() {

String Tine;

ArrayList<String> result = new ArrayList<String>();

while(true) {
try |
line = inStream.readLine();

if(line = null) {

Listing 266: Einfacher Webserver flir GET-Anfragen (Forts.)

564 >> Mini-Webserver

// der Header endet mit einer Leerzeile
if(line.length() <=0)
break;
else
result.add(line);
} else
break;

} catch(IOException e) {
System.err.printin("Anfrage " + myID
+ " Exception beim Headerlesen");
e.printStackTrace();
break;

return result;

Listing 266: Einfacher Webserver flir GET-Anfragen (Forts.)

Der Webserver benotigt beim Start zwei Parameter: den Namen seines Datenverzeichnisses, wo
die zu liefernden Dateien abgelegt sind, sowie den Port, auf dem er lauschen soll (z.B. den
Standardport fiir HTML = 80). Sie kdnnen den Server testen, indem Sie in Threm Browser eine
lokale Datei anfordern, z.B. fiir die Datei index.html geben Sie als URL ein: http://localhost/
index.html. Zum Beenden des Servers driicken Sie [Strg]+(C].

»java MinilebServer c:stemp 88

lebserver laeuft auf Port 88

Anfrage 1 wird bearbeitet

ET sindex.html HITP-1.1

ost: localhost

ser—Agent: Mozilla~s5.8 (Windows; U; Windows NI 5.1; de-DE; wv:l1.7.8> Gecko-28
ficcept: textsxml.applicationsxml.applicationsxhtml+xml.textshtml;qg=0.9., text pl
Aiccept—Language: de—de.de;q=B.B.en—ussq=8.5%.en;yq=0.3

Accept—Encoding: g=zip.deflate

Accept—Charset: I530-8859-1.utf-8;q=0.7.%;q=0.7
HKeep—Aliv 3808
onnection: keep—alive
Anfrage 1 abgearbeitet?
finfrage 2 wird bearbheitet

ET ~#jndiimages~duke.gif HTTP-1.1

ost: localhost

ser—Agent: Mozilla~s5.8 (Windows; U; Windows NI 5.1; de-DE; »v:l1.7.8> Gecko-28
ficcept: i Apng, ®/%50q=0.5

Abbildung 116: Log-Ausgaben des Mini-Webservers

Schauen Sie gegebenenfalls auch in Rezept 240, falls Sie einen Webserver mit Thread-Pooling
realisieren mochten.

XML

203 Sonderzeichen in XML verwenden

Da bestimmte Sonderzeichen Teil der XML-Sprache sind, konnen sie nicht einfach als Wert
eines Elements verwendet werden, sondern miissen durch eine besondere Kodierung (auch als
Escape-Sequenz oder Entity bezeichnet) beschrieben werden. Es handelt sich um die folgenden
fiinf Zeichen:

Zeichen ‘ Escape-Sequence (Entity)

< &1t;

> >

& &
" "
! '

Tabelle 49: Sonderzeichen in XML

Wenn Sie also beispielsweise in ein XML-Element den Text C & A einfiigen wollen, miissen
Sie schreiben:

<name>C & A</name>

Neben den oben aufgelisteten Entities konnen auch eigene definiert werden. Zusétzlich dienen
Entities dazu, nicht vom Zeichensatz abgedeckte Elemente einzubinden, sofern diese iiber eine
Unicode-Darstellung verfiigen:

&ffDezimalcode_im Unicode-Zeichensatz;
&fkxHexadezimalcode_im Unicode-Zeichensatz;

Um beispielsweise einen Zeilenumbruch (Code 13) einzufiigen, konnen Sie folgende Entity
verwenden:

<{satz>Dies ist ein  umbrochener Satz.</satz>

In der Standardeinstellung werden alle fithrenden und abschlieBenden Whitespace-
Zeichen (SPACE, TAB, RETURN) ignoriert, sofern sie nicht durch die Option xml:space
geschiitzt werden.

Eine andere Moglichkeit zur Darstellung von Text mit Sonderzeichen ist der Einsatz von
CDATA (siehe Rezept 206).

204 Kommentare

Um ein XML-Dokument oder Teile davon auch spiter noch verstehen zu konnen oder ihre
Funktion fiir andere zu dokumentieren, empfiehlt es sich, Kommentare in das Dokument ein-
zufiigen. Kommentare dienen aber nicht nur der Dokumentierung. Wiahrend der Testphase
konnen Sie die Kommentarzeichen dazu nutzen, einzelne Elemente temporiar auszukommen-
tieren.

566 >> Namensriaume

Kommentare haben in XML folgende Form:

(I-- Dies ist ein Kommentar -->

Die XML-Definition verbietet es, Kommentare ineinander zu verschachteln.

205 Namensraume

Da in XML eigene Tags definiert werden kdnnen, muss sichergestellt sein, dass gleichnamige
Tags auseinander gehalten werden konnen. Die Losung dieses Problems ist das auch aus Java
bekannte Konzept der Namensriaume.

Namensrdume werden durch das Priafix xmlins, gefolgt vom Kurznamen des Namensraums und
einem URL deklariert:

xmins:cb="http://java.codebooks.de/xml"

Diese Deklaration kann bei der ersten Verwendung eines Namensraums oder auf Ebene des
Root-Elements erfolgen. Der URL muss nicht physisch existieren - er dient lediglich der Ver-
deutlichung der Zugehorigkeit des Namensraums. Allerdings kann am angegebenen Ort ein
XML-Schema oder eine DTD hinterlegt sein, wodurch die moéglichen Elemente des Namens-
raums bestimmt werden kénnen:

xmIns:ch="http://java.codebooks.de/xml/validate.dtd"
Nach dieser Deklaration kann der Namensraum verwendet werden:

<ch:book book-number="2294"
xmlns:cb="http://java.codebooks.de/xml">
<ch:titTe>Codebook Java</cb:title>
<ch:content>
<ch:chapter number="11">Netzwerke</ch:chapter>
<cb:chapter number="12">XML</cb:chapter>
</ch:content>
</cb:book>

Innerhalb eines Dokuments kénnen verschiedene Namensrdume definiert werden. Auch die
Angabe eines Standard-Namensraums ist moglich. In diesem Fall muss kein Kurzname ange-
geben werden:

<book book-number="2294" xmlins="http://java.codebooks.de/xml">

</book>

Beachten Sie, dass alle anderen Elemente, die {iber keine explizite Namensraumangabe
verfligen, implizit dem Standard-Namensraum zugehorig sind. Sollte eine Validierung
stattfinden, muss dies natiirlich beriicksichtigt werden, die betreffenden Elemente miis-
sen im Schema oder der DTD deklariert sein.

>> XML 567

Laut Spezifikation ist das Prafix nur ein Platzhalter fiir den URL des Namensraums, der
dann die eindeutige Zuordnung iibernimmt. Zwei gleichnamige Tags, die {iber unter-
schiedliche Prifixe den gleichen URL referenzieren, sind demnach also identisch, auch
wenn nicht jede Anwendung diese Unterscheidung vornimmt.

206 CDATA-Bereiche

Per Voreinstellung parst ein XML-Parser alle Elemente eines XML-Dokuments. Dies bedeutet,
dass diese Elemente wohlgeformt sein miissen. HTML-Tags beispielsweise konnen so nicht trans-
portiert werden, da sie in der Regel nicht den Anforderungen der Wohlgeformtheit geniigen.

Um dennoch nicht wohlgeformte Inhalte einbauen zu kénnen, miissen sie als nicht zu inter-
pretierende Zeichenkette (Character Data = CDATA) markiert werden. Ein CDATA-Abschnitt
beginnt stets mit der Zeichenkette <![CDATA[und wird mit J/> abgeschlossen.

<text><![CDATA[Dieser Text wird nicht interpretiert
]I></text>

Ein CDATA-Block kann sowohl Sonderzeichen (Entities) als auch bindre Daten, z.B. Bilder,
enthalten. In ihm enthaltene Elemente werden als Text gelesen und nicht interpretiert.

207 XML parsen mit SAX

Das Verarbeiten von XML-Dokumenten per SAX (Simple API for XML, mehr iiber SAX erfah-
ren Sie beispielsweise unter http://sax.sourceforge.net/) funktioniert ereignisgesteuert. Beim
Auftreten bestimmter Ereignisse bindet der SAX-Parser eine org.xml.sax.ContentHandler-Imp-
lementierung ein und ruft deren Methoden auf.

Das Interface org.xml.sax.ContentHandler definiert folgende zu implementierende Methoden:

void characters(char[] ch, int start, int length)
void endDocument()
void endETement(java.lang.String uri,
Java.lang.String localName, java.lang.String gName)
void endPrefixMapping(java.lang.String prefix)
void ignorableWhitespace(char[] ch, int start, int length)
void processinglnstruction(java.lang.String target, java.lang.String data)
void setDocumentlocator(Locator locator)
void skippedEntity(java.lang.String name)
void startDocument()
void startETement(java.lang.String uri, java.lang.String localName,
Jjava.lang.String gName, Attributes atts)
void startPrefixMapping(java.lang.String prefix, java.lang.String uri)

Diese Methoden werden beim Auftreten von bestimmten Ereignissen eingebunden:

Methode ‘ Ereignis

characters () Textdaten werden verarbeitet.

endDocument () Das Ende des Dokuments ist erreicht.

endElement () Das Ende eines Tags ist erreicht.
endPrefixMapping() Das Ende eines Namensraum-Prifixes ist erreicht.

Tabelle 50: Methoden des Interfaces ContentHandler

568 >> XML parsen mit SAX

Methode ‘ Ereignis

ignorableWhitespace() Ignorierbare Leerzeichen werden verarbeitet.

processingInstruction() Eine Processing-Instruction ist erreicht worden.

setDocumentLocator() Ubergibt eine Locator-Instanz, mit deren Hilfe die aktuelle Posi-
tion innerhalb des XML-Dokuments bestimmt werden kann.

skippedEntity() Eine XML-Entity musste verworfen werden (etwa, weil sie nicht
deklariert worden ist).

startDocument () Parsen des Dokuments startet.

startElement() Beginn eines Tags wird erreicht.

startPrefixMapping() Ein Namensraum-Prifix wird erreicht.

Tabelle 50: Methoden des Interfaces ContentHandler

Dieses Interface muss implementiert werden, um Dokumente per SAX parsen zu konnen. Um
die Arbeit aber ein wenig zu erleichtern, existiert mit der Klasse org.xml.sax.helpers.Default-
Handler eine Adapter-Implementierung dieses Interfaces, die alle Methoden als leere Metho-
den umsetzt. Wenn von dieser Implementierung abgeleitet wird, miissen nur noch die
Methoden tiberschrieben werden, die die eigentliche Anwendungslogik beinhalten sollen.

Im Folgenden wird eine DefaultHandler-Ableitung eingesetzt, um alle Knoten eines XML-
Dokuments samt moglicherweise vorhandenem Inhalt auszugeben. Dabei wird innerhalb der
Methode read() zunéchst eine SAXParser-Instanz erzeugt. AnschlieBend wird der Verarbei-
tungsprozess iiber die Methode parse() der SAXParser-Instanz angestoBen.

import javax.xml.parsers.*;
import org.xml.sax.*;

import org.xml.sax.helpers.*;
import java.io.*;

public class SaxReader extends DefaultHandler f{
private SAXParser parser = null;

public SaxReader() f{
// Parser instanziieren
try {
SAXParserFactory fac = SAXParserFactory.newInstance();
parser = fac.newSAXParser();
} catch(Exception e) {
e.printStackTrace();

J
}

/**

* Parsen einer XML-Datei

* @param Einzulesende Datei
*/

public void read(File f) {

Listing 267: Verarbeiten eines XML-Dokuments per SAX

>> XML

try {
// Dokument parsen
parser.parse(f, this);

} catch(SAXException e) {
e.printStackTrace();

} catch(Exception e) {
e.printStackTrace();

}

}

/**
* Parsen eines XML-Strings
* @param String mit XML-Dokument
*/
public void read(String document) {
try {
InputSource input = new InputSource(new StringReader(document));

// Dokument parsen
parser.parse(input, this);

} catch(SAXException e) {
e.printStackTrace();

} catch(Exception e) {
e.printStackTrace();

}

}

/**

* Wird aufgerufen, wenn ein Element beginnt

* @param uri Namensraum-Prdfix

* @param name Name des Elements

* @param gname Voll qualifizierter Name mit uri und name

* @param attributes Attribute
* @throws SAXException
*/
public void startElement(String uri, String name, String gname,
Attributes attributes) throws SAXException {
// Ausgeben des Elementnamens
System.console().printf("Element gefunden: Qualified Name = %s\n",
gname) ;
}

/**

* Wird aufgerufen, wenn ein Text-Element behandelt wird
* @param chars Komplettes Dokument

* @param start Beginn des Textes

* @param end Ende des Textes
* @throws SAXException
*/

public void characters(char[] chars, int start, int end)
throws SAXException {

Listing 267: Verarbeiten eines XML-Dokuments per SAX (Forts.)

569

570 >> XML parsen mit SAX

// Text in String casten und fiihrende bzw. folgende
// Leerzeichen entfernen
String text = new String(chars, start, end).trim();

// Wenn Text nicht Teer ist, dann ausgeben
if(text.Tength() > 0) f

System.console().printf(" Wert: %s\n", text);
}

Listing 267: Verarbeiten eines XML-Dokuments per SAX (Forts.)

Das Start-Programm zu diesem Rezept nutzt die Klasse SaxReader zur Analyse des folgenden
XML-Dokuments:

<?xml version="1.0" encoding="1is50-8859-1"7>
<book>
<title>Java Codebook</title>
<authors>
<author>Dirk Louis</author>
<author>Peter Muller</author>
</authors>
<publisher>Addison-Wesley</publisher>
<content>
<chapter number="11">Netzwerk</chapter>
<chapter number="12">XML</chapter>
== -
</content>
</book>

Listing 268: XML-Beispieldokument

Eingabeaufforderung

>java Start buch.xml
1 gefunden: Qualified Mame = hook
gefunden: Qualified Mame = title
Wert: Java Codehook
authors
author

gefunden: Qualified Name

gefunden: Qualified Name
Hert: Dirk Louis

gefunden: Qualified Mame = author
Wert: Peter Miiller

gefunden: Qualified Mame = publisher
Hert: Addison-Wesley

gefunden: Qualified Hame = content

gefunden: Qualified Mame = chapter
Wert: Netzwerke

gefunden: Qualified Mame = chapter
Wert: HML

4 4

Abbildung 117: Ausgabe von Elementnamen und -inhalten des Beispieldokuments

>> XML 571

208 XML parsen mit DOM

Ein anderer Weg, XML-Dokumente zu parsen, besteht in der Verwendung des Document Object
Model (DOM), einer systemunabhingigen Definition des Zugriffs auf XML-Dokumente, die
sich stark an deren Struktur orientiert.

Grundprinzip der Arbeit mit dem DOM ist die Orientierung an der Dokumentenstruktur. Hier
wird nicht auf das Eintreten bestimmter Ereignisse gewartet, sondern man traversiert iiber die
Baumstruktur eines XML-Dokuments vom Root-Element hin zu den untergeordneten Elemen-
ten. Ein wesentlicher Unterschied zwischen SAX und DOM ist somit, dass bei DOM das
gesamte XML-Dokument im Speicher gehalten wird.

Bei der Arbeit mit dem DOM befindet man sich meist auf Knotenelementen. Diese werden
durch org.w3c.dom.Node- und org.w3c.dom.Element-Implementierungen reprisentiert. Sogar
das zugrunde liegende Dokument wird als Node représentiert. Fiir den Entwickler bietet dies
den unschéitzbaren Vorteil, dass sich die verschiedenen Elementtypen, die im DOM definiert
sind, weitestgehend identisch handhaben lassen - das Hinzufiigen oder Auslesen von Infor-
mationen geschieht stets {iber das gleiche API.

Um ein XML-Dokument per DOM zu laden und zu parsen, ist — wie bereits mehrfach erwdhnt
- ein anderer Denkansatz notwendig, als dies beim Einsatz von SAX der Fall war. Beim DOM
wird das Dokument von auBen nach innen durchlaufen, wobei jeder Knoten iiber einen oder
mehrere untergeordnete Knoten verfiigen kann. Ob ein Knoten untergeordnete Knoten enthilt,
lasst sich mit der Methode hasChildNodes() der Node-Implementierung feststellen. Die Methode
getChildNodes() des aktuellen Knotens gibt eine org.w3c.dom.Nodelist-Implementierung
zuriick, die alle untergeordneten Knoten enthilt. Der Textinhalt eines Knotens kann per get-
NodeValue() bestimmt werden. Uber die Methode getNodeType() kann der Typ des aktuellen
Knotens bestimmt werden.

Folgende Knoten-Typen kénnen auftreten:

Knoten-Typ ‘ Beschreibung

ATTRIBUTE_NODE

Das Element ist ein Attribut.

CDATA_SECTION_NODE

Das Element ist ein CDATA-Bereich.

COMMENT_NODE

Das Element ist ein Kommentar-Element.

DOCUMENT_FRAGMENT_NODE

Das Element ist ein Dokumentfragment.

DOCUMENT_NODE

Das Element ist ein Dokument.

DOCUMENT_TYPE_NODE

Das Element ist ein Document-Type-Node.

ELEMENT_NODE

Das Element ist ein Knoten und kann untergeordnete Inhalte
besitzen.

ENTITY_NODE

Das Element ist eine definierte Entity.

ENTITY_REFERENCE_NODE

Das Element verweist auf eine definierte Entity.

NOTATION_NODE

Das Element ist ein Notation-Element.

PROCESSING_INSTRUCTION_NODE

Das Element ist eine Processing-Instruction.

TEXT_NODE

Das Element ist reiner Text.

Tabelle 51: Knoten-Typen

572 >> XML parsen mit DOM

Um ein XML-Dokument analog zum Beispiel aus Rezept Das Verarbeiten von XML-Dokumen-
ten per SAX (Simple API for XML, mehr tiber SAX erfahren Sie beispielsweise unter http://
sax.sourceforge.net/) funktioniert ereignisgesteuert. Beim Auftreten bestimmter Ereignisse
bindet der SAX-Parser eine org.xml.sax.ContentHandler-Implementierung ein und ruft
deren Methoden auf. zu verarbeiten, miissen vor der eigentlichen Analyse und Verarbeitung
der Knoten noch folgende Schritte durchgefiihrt werden:

P javax.xml.parsers.DocumentBuilder-Instanz erzeugen
p» XML-Datei laden
» org.w3c.dom.Document-Instanz abrufen

Die so geladene Document-Instanz kann nun verarbeitet werden. Da sie sich wie jedes andere
XML-Element verhélt und das Interface org.w3c.dom.Node implementiert, kann sie analog zu
allen untergeordneten Elementen in einer rekursiv arbeitenden Methode verarbeitet werden. In
dieser Methode kann anhand des Knoten-Typs und der Anzahl der untergeordneten Elemente
bestimmt werden, ob eine weitere Rekursion erfolgen soll oder ob ein eventuell vorhandener
Textinhalt ausgegeben werden kann:

import org.w3c.dom.*;
import org.xml.sax.*;
import javax.xml.parsers.*;
import java.io.*;

public class DOMReader {
private DocumentBuilder parser = null;

pubTlic DOMReader() throws ParserConfigurationkxception f{
DocumentBuilderFactory fac = DocumentBuilderFactory.newlInstance();
parser = fac.newDocumentBuilder();

}

/**
* Parsen einer XML-Datei
* @param Einzulesende Datei
*/
public void read(File f) {
try {
// Dokument einlesen
Document doc = parser.parse(f);

// Dokument verarbeiten
analyze(doc);

} catch(SAXException e) {
e.printStackTrace();

} catch(Exception e) {
e.printStackTrace();

}

Listing 269: Verarbeiten eines XML-Dokuments per DOM

>> XML 573

/**

* Parsen eines XML-Strings

* @param String mit XML-Dokument

*/

public void read(String str) {

try {

// aus dem String ein InputSource-Objekt erstellen
InputSource input = new InputSource(new StringReader(str));

// Dokument einlesen
Document doc = parser.parse(input);

// Dokument verarbeiten
analyze(doc);

} catch(SAXException e) {
e.printStackTrace();

} catch(Exception e) {
e.printStackTrace();

}

/**

* Analysiert den {ibergebenen Knoten

* @param node Zu analysierender Knoten
*/

private void analyze(Node node) {

// Wenn es sich um einen Text-Knoten handelt, Inhalt ausgeben
if(node != null && node.getNodeType() == Node.TEXT_NODE) {

// Wert lokal zwischenspeichern
String value = node.getNodeValue().trim();

// Wenn Textinhalt vorhanden, dann ausgeben
if(value.length() > 0) {

System.console().printf(" Wert: %s\n", value);
}

} else {
// Name des Knotens ausgeben
System.console().printf("Gefundendes Element: %s\n",
node.getNodeName());

// Uberpriifen, ob untergeordnete Knoten existieren
if(node.hasChildNodes()) {

// Alle untergeordneten Knoten durchlaufen

int num = node.getChildNodes().getlLength();

Listing 269: Verarbeiten eines XML-Dokuments per DOM (Forts.)

574 >> XML parsen mit DOM

for(int i=0; i < num; i++) {
// Aktuellen Knoten analysieren
analyze(node.getChildNodes().item(i));

Listing 269: Verarbeiten eines XML-Dokuments per DOM (Forts.)

Das Start-Programm zu diesem Rezept nutzt die Klasse DOMReader zur Analyse des folgen-
den XML-Dokuments:

<?xml version="1.0" encoding="1s0-8859-1"7>
<book>
<title>dava Codebook</title>
<authors>
<author>Dirk Louis</author>
<author>Peter Muller</author>
</authors>
<publisher>Addison-Wesley</publisher>
<content>
<chapter number="11">Netzwerk</chapter>
<chapter number="12">XML</chapter>
==l -
<{/content>
</book>

Listing 270: XML-Beispieldokument

Eingabeaufforderung

buch.xml
Element: Hdocument
Element: hook
efundendes Element: title
Wert: Java Codehook
efundendes Element: authors
efundendes Element: author
Wert: Dirk Louis
efundendes Element: author
Wert: Peter Miiller
efundendes Element: pubhlisher
Wert: Addison—-Wesley
efundendes Element: content
efundendes Element: chapter
Wert: Netzwerke
efundendes Element: chapter
Hert: XML
efundendes Element: H#comment

Abbildung 118: Verarbeiten eines XML-Dokuments per DOM

>> XML 575

Neben der unterschiedlichen Herangehensweise an die Analyse und Verarbeitung eines
Dokuments unterscheiden sich die Ansdtze SAX und DOM insbesondere in einem
Punkt: der Verarbeitungsgeschwindigkeit. SAX ist deutlich schneller als DOM, beson-
ders bei groBen Dokumenten, und bendtigt viel weniger Speicher. Dafiir ist DOM
wesentlich flexibler — und spétestens wenn es darum geht, die enthaltenen Daten oder
die Struktur zu manipulieren, muss SAX ohnehin passen.

209 XML-Dokumente validieren

XML-Dokumente sollten nach Méglichkeit validiert werden, d.h. man testet, ob sie einer defi-
nierten Struktur entsprechen. Wahrend in der Friihzeit von XML vorwiegend ein sogenanntes
DTD (Document Type Definition) zum Einsatz kam, ist mittlerweile das XML Schema der
iibliche Mechanismus, um die Syntax eines XML-Dokuments festzulegen. Auf die genaue
Syntax von DTDs oder XML Schemata an dieser Stelle einzugehen, wiirde jedoch den Rah-
men dieses Buchs sprengen. Einen guten Einstieg in dieses Thema finden Sie unter
http:/fwww.w3schools.com/schema/default.asp.

Das weiter unten abgedruckte Schema validiert die Struktur des folgenden XML-Dokuments

<?xml version="1.0" encoding="1is0-8859-1"?>
<book>
<title>Java Codebook</title>
<authors>
<author>Dirk Louis</author>
<author>Peter Muller</author>
</authors>
<pubTisher>Addison-Wesley</publisher>
<content>
{chapter number="11">Netzwerk</chapter>
<chapter number="12">XML</chapter>
I-- 00 ==
<{/content>
</book>

Listing 271: XML-Beispieldokument

Das Schema definiert als Root-Element ein book-Element, das title-, authors-, publisher- und
content-Elemente enthalten darf. Den authors- und content-Elementen kénnen author- bzw.
chapter-Elemente untergeordnet sein.

<?xml version="1.0"?>
<xs:schema
xmlns="http://tempuri.org/XMLFiTel.xsd"
xmlins:xs="http://www.w3.0rg/2001/XMLSchema">
<{xs:element name="book">
<{xs:complexType>
<{xs:sequence>
<-- Titel -->
{xs:element name="title"

Listing 272: buchSchema.xsd — Schema, das auf das XML-Beispieldokument angewendet
werden soll

576 >> XML-Dokumente validieren

type="xs:string" minOccurs="0" />
<I-- Autoren -->
<{xs:element name="authors"
minOccurs="0" maxOccurs="unbounded">
<{xs:complexType>
<{Xs:sequence>
<I-- Ein Autor -->
<xs:element name="author" nillable="true
minOccurs="0" maxOccurs="unbounded">
<{xs:complexType>
<xs:simpleContent>
<{xs:extension base="xs:string">
<{/xs:extension>
</xs:simpleContent>
</xs:complexType>
<{/xs:element>
{/xs:sequence>
<{/xs:complexType>
<{/xs:element>
<I-- Verlag -->
<xs:element name="publisher"
type="xs:string" minOccurs="0" />
<!-- Inhalt des Buchs -->
<{xs:element name="content"
minOccurs="0" maxOccurs="unbounded">
<{xs:complexType>
<{Xs:sequence>
<l-- Einzelne Kapitel -->
<{xs:element name="chapter"
nillable="true" minOccurs="0" maxOccurs="unbounded">
<{xs:complexType>
<xs:simpleContent>
<{xs:extension base="xs:string">
{xs:attribute name="number"
form="unqualified" type="xs:string" />
<{/xs:extension>
</xs:simpleContent>
<{/xs:complexType>
{/xs:element>
</Xs:sequence>
{/xs:complexType>
<{/xs:element>
{/xs:sequence>
</xs:complexType>
<{/xs:element>
</xs:schema>

Listing 272: buchSchema.xsd — Schema, das auf das XML-Beispieldokument angewendet
werden soll (Forts.)

>> XML 577

Um nun eine XML-Datei gegen ein Schema zu validieren, benotigt man eine Instanz der
Klasse javax.xml.validation.Validator, die man jedoch nicht direkt erzeugen kann, sondern
mit Hilfe der Klassen SchemaFactory und Schema besorgen muss.

import org.xml.sax.*;

import javax.xml.*;

import javax.xml.transform.stream.*;
import javax.xml.validation.*;
import java.io.*;

public class SchemaValidator f{
private Validator validator = null;
public SchemaValidator(File schemaDatei) throws SAXException f{

SchemaFactory schemaFac =
SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);

Schema schema = schemaFac.newSchema(schemaDatei);
validator = schema.newValidator();

/**

* Validiert den {bergebenen XML-String

*

* @param XML-String

* @return true, falls valid, sonst false
*/

public boolean validate(String str) throws IOException {
boolean result = true;

try {
StreamSource input = new StreamSource(str);
validator.validate(input);

} catch (SAXException ex) {
System.err.printin("Nicht schema-konform: " + ex.getMessage());
result = false;

}

return result;

/**

* Validiert die lbergebene XML-Datei
*

* @param XML-String

Listing 273: Validierung eines Schemas

578 >> XML-Strukturen mit Programm erzeugen

* @return true, falls valid, sonst false

*/

public boolean validate(File f) throws I0Exception {
boolean result = true;

try {
StreamSource input = new StreamSource(f);
validator.validate(input);

} catch (SAXException ex) f
System.out.printin("Nicht schema-konform: " + ex.getMessage());
result = false;

}

return result;
}

Listing 273: Validierung eines Schemas (Forts.)

210 XML-Strukturen mit Programm erzeugen

Das programmgestiitzte Erzeugen von XML-Strukturen geschieht von auBen nach innen:
Zunichst wird tiber eine javax.xml.parsers.DocumentBuilder-Instanz eine neue Document-
Instanz erzeugt. AnschlieBend wird deren Root-Element tiber die Methode createElement() der
Document-Instanz erzeugt. Jedes weitere Element wird ebenfalls tiber createElement() erzeugt
und dann dem jeweils iibergeordneten Knoten iiber dessen appendChild()-Methode zugewie-
sen. Textinhalte werden liber die Methode setTextContent() eines Knotens erfasst. Attribute
konnen dem Knoten iiber dessen Methode setAttribute() zugewiesen werden.

import org.w3c.dom.Document;

import org.w3c.dom.Element;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;

public class DocumentCreator {

public static Document createProgrammatically() {
Document doc = null;
try {
// DocumentBuilder instanzieren
DocumentBuilder docBuilder =
DocumentBuilderFactory.newInstance().newDocumentBuilder();

// Document-Instanz erzeugen
doc = docBuilder.newDocument();

} catch (ParserConfigurationException e) {
e.printStackTrace();

}

Listing 274: Erzeugen eines XML-Dokuments

>> XML 579

if(null != doc) {
// Root-Element erzeugen
Element book = doc.createETement("book");

// Element anfligen
doc.appendChild(book);

// Titel-Element erzeugen
Element title = doc.createElement("title");

// Inhalt anfligen
title.setTextContent("Java Codebook");

// Titel-Knoten anfligen
book.appendChild(title);

// Autoren-Element erzeugen und anfligen
Element authors = doc.createElement("authors");
book.appendChild(authors);

// Einzelne Autor-Elemente erzeugen und anfiligen
Element author = doc.createElement("author");
author.setTextContent("Dirk Louis");
authors.appendChild(author);

author = doc.createETement("author");
author.setTextContent("Peter Miller");
authors.appendChild(author);

// Verlags-Info

Element publisher = doc.createElement("publisher");
pubTisher.setTextContent("Addison-Wesley");
book.appendChild(publisher);

// Kapitel-Element
Element content = doc.createElement("content");
book.appendChild(content);

// Einzelne Kapitel erzeugen und anfiigen
Element chapter = doc.createtlement("chapter");
chapter.setAttribute("number", "11");
chapter.setTextContent("Netzwerk");
content.appendChild(chapter);

chapter = doc.createElement("chapter");
chapter.setAttribute("number", "12");
chapter.setTextContent("XML");
content.appendChild(chapter);

Listing 274: Erzeugen eines XML-Dokuments (Forts.)

580 >> XML-Dokument formatiert ausgeben

// Document-Instanz zurlickgeben
return doc;

Listing 274: Erzeugen eines XML-Dokuments (Forts.)

Das erzeugte XML-Dokument sieht wie folgt aus:

<?xml version="1.0" encoding="UTF-8" standalone="no"7>
<book>
<title>Java Codebook</title>
<authors>
<author>Dirk Louis</author>
<author>Peter Miller</author>
</authors>
<publisher>Addison-Wesley</publisher>
<content>
{chapter number="11">Netzwerk</chapter>
<chapter number="12">XML</chapter>
</content>
</book>

Um den Tippaufwand fiir die Erzeugung von XML-Dokumenten zu minimieren, emp-
fiehlt es sich, typische Schritte in kleinen Methoden zu kapseln.

211 XML-Dokument formatiert ausgeben

Die Ausgabe eines XML-Dokuments in gut lesbarer - also eingeriickter Schreibweise - ist gar
nicht so einfach, wie man vielleicht erwarten wiirde.

Man benotigt hierfiir die Klasse TransformerFactory, welche eine Instanz von javax.xml.trans-
form.Transformer erzeugen kann. Diese transformiert die Document-Instanz in ihrer trans-
form()-Methode in eine javax.xml.transform.stream.StreamResult-Instanz, die in einen java.
jo.0utputStream schreiben kann. Diese OutputStream-Instanz kann beispielsweise System.out
sein, wodurch die Ausgabe auf Konsole erfolgt.

import org.w3c.dom.Document;

import javax.xml.transform.*;

import javax.xml.transform.stream.StreamResult;
import javax.xml.transform.dom.DOMSource;
import java.io.OutputStreamhriter;

public class DocWriter {

/**

* Schreibt die Ubergebene Document-Instanz nach System.out
*/

public static void writeToSystemOut(Document content) {

Listing 275: Formatierte Ausgabe eines XML-Dokuments nach System.out

>> XML 581

// TransformerFactory instanzieren
TransformerFactory tf =
TransformerFactory.newlInstance();

// Einriickungstiefe definieren
tf.setAttribute("indent-number", new Integer(3));
Transformer t = null;
try
{

// Transformer-Instanz abrufen

t = tf.newTransformer();

// Parameter setzen: Einriicken
t.setOutputProperty(OutputKeys.INDENT, "yes");

// Ausgabe-Typ: xml
t.setOutputProperty(OutputKeys.METHOD, "xml");

// Content-Type
t.setOutputProperty(
OutputKeys.MEDIA_TYPE, "text/xml");

// Transformation durchfihren und Ergebnis in einen Stream speichern
t.transform(new DOMSource(content),
new StreamResult(
new OutputStreamhriter(System.out)));

} catch (TransformerConfigurationException e) {
e.printStackTrace();

} catch (TransformerException e) {
e.printStackTrace();

}

Listing 275: Formatierte Ausgabe eines XML-Dokuments nach System.out (Forts.)

Wird das in Rezept 210 erzeugte XML-Dokument auf diese Art nach System.out geschrieben, =
ergibt sich die Ausgabe aus Abbildung 119.

>

582 >> XML-Dokument formatiert als Datei speichern

Eingabeaufforderung

>java Start
?xml version="1.8" encoding="UTF-8" standalone="no"?>
hook>
{title>Java Codehook<{stitle>
{authors>
{author>Dirk Louis<{-/author>
{author>Peter H3*1ller<{ author>
<sauthors>
{publisher>Addizon—Yesley{ /publizher>
{content>
<chapter number="11">Netzwerk<{ /chapter>
<chapter number="12"">HML{ chapter>
<s/content>
shook>

4 3

Abbildung 119: Ausgabe eines XML-Dokuments auf die Konsole

212 XML-Dokument formatiert als Datei speichern

Analog zur Ausgabe einer Document-Instanz auf die Konsole kdnnen Sie auch beim Speichern
in eine Datei vorgehen. Der einzige Unterschied zwischen den beiden Aufgaben ist die Art, wie
geschrieben wird: Beim Schreiben nach System.out kommt eine java.io.PrintWriter-Instanz
zum Einsatz, wéhrend beim Speichern in eine Datei eine java.io.FileWriter-Instanz verwen-
det wird:

import org.w3c.dom.Document;

import javax.xml.transform.*;

import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamResult;
import java.io.FileWriter;

import java.io.IOException;

public class Docliriter {

/**
* Schreibt die lbergebene Document-Instanz in die angegebene Datei
*/
public static void writeToFile(Document content, String fileName) {
// TransformerFactory instanzieren
TransformerfFactory tf = TransformerFactory.newInstance();

// Einrlickungstiefe definieren
tf.setAttribute("indent-number”, new Integer(3));
Transformer t = null;
try {

// Transformer-Instanz abrufen

t = tf.newTransformer();

// Parameter setzen: Einricken

Listing 276: Speichern einer Document-Instanz in eine Datei

>> XML 583

t.setOutputProperty(OutputKeys.INDENT, "yes");

// Ausgabe-Typ: xml
t.setOutputProperty(OutputKeys.METHOD, "xm1");

// Content-Type
t.setOutputProperty(OutputKeys.MEDIA_TYPE, "text/xml");

// Encoding setzen
t.setOutputProperty(OutputKeys.ENCODING, "is0-8859-1");

// FileWriter erzeugen
FileWriter fw = new FileWriter(fileName);

// Transformation durchfihren und Ergebnis in einen Stream speichern
t.transform(new DOMSource(content),
new StreamResult(fw));

} catch (TransformerConfigurationException e) {
e.printStackTrace();

} catch (TransformerException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

}

Listing 276: Speichern einer Document-Instanz in eine Datei (Forts.)

Vergessen Sie nicht, beim Einsatz von Umlauten die korrekte Kodierung anzugeben, so
wie hier durch Aufruf von setOutputProperty(OutputKeys.ENCODING, "iso-8859-1");
demonstriert. Tun Sie dies nicht, gehen bestenfalls Umlaute verloren oder werden nicht
korrekt dargestellt; schlimmstenfalls ist die XML-Datei nicht mehr lesbar.

Die so gespeicherte Datei kann anschlieBend weiterverarbeitet werden. Ist die korrekte Kodie-
rung gesetzt, werden auch die enthaltenen Umlaute ordnungsgeméaB visualisiert.

584 >> XML mit XSLT transformieren

) Mozilla Firefox

Datei Bearbeiten Ansicht Gehe Lesezeichen Extras Hilfe

:Jlj - |_L: - @ (X] Eﬁ | baok.xml v| ® Go “C‘v |

| L] file:///C:/...peichern/book.xml | E‘

Mlit dieser ZL-Datet sind anschemend keme Style-Informationen verlonipft. Machfolgend wird die Baum-Ansicht des
Diolouments angezeigt.

- <hook>
=title=Java Codebook=/title>
- =authors=
<anthor=Dirl: Lows=/anthor=
<anthor=Peter Miller<fauthor>
=/authors>
=publisher=4ddizon-Wesley</publisher>
- <content>
<chapter nmmber="11">Metzwerl</chapter=
<chapter number="12">31{L=/chapter>
</content>
</book=

Fertig

Abbildung 120: Diese Datei ist aus einer Document-Instanz erzeugt worden.

213 XML mit XSLT transformieren

Ein sehr hdufiger und immer wichtiger werdender Teil der Arbeit mit XML ist XSLT. Das Kiirzel
XSLT steht fiir eXtensible Markup Language for Transformations und bezeichnet einen XML-
Dialekt, mit dessen Hilfe XML-Dokumente in andere Zielformate (z.B. HTML) umgewandelt
werden konnen.

Diese Transformationen benétigen neben dem XML-Parser auch einen XSLT-Interpreter. Der
De-facto-Standard dafiir ist Apaches Xalan-J, der unter der Adresse http://xml.apache.org/
xalan-j/ heruntergeladen werden kann.

Wichtigstes Element einer XSLT-Transformation ist neben dem XML-Dokument ein XSL-
Stylesheet. Dieses definiert, wie das XML-Dokument in ein Zielformat (HTML, XML, andere text-
basierte Formate) transformiert werden soll. XSLT setzt sehr stark auf den Einsatz von XPath,
einer Technologie, die der Lokalisierung von Knoten in einem XML-Dokument dient. Eine Ein-
fithrung in XSLT finden Sie unter der Adresse http://www.w3schools.com/xsl/default.asp. Mehr
zu XPath erfahren Sie unter http://www.w3schools.com/xpath/default.asp. Im J2EE Codebook
finden Sie ein eigenes Kapitel, das sich nur mit der Verwendung von XSLT und XPath befasst.

Betrachten Sie das folgende XML-Dokument:

<?xml version="1.0" encoding="1s50-8859-1"7>
<book>
<title>Java Codebook</title>
<authors>
<author>Dirk Louis</author>

Listing 277: XML-Beispieldokument

>> XML 585

<author>Peter Miiller</author>
</authors>
<pubTisher>Addison-Wesley</publisher>
<content>
<chapter number="11">Netzwerk</chapter>
<chapter number="12">XML</chapter>
K== ==
</content>
</book>

Listing 277: XML-Beispieldokument (Forts.)

Dieses XML-Dokument soll mit Hilfe des folgenden XSL-Stylesheets nach HTML transformiert
werden.

<?xml version="1.0" encoding="is0-8859-1"7?>

<xsl:stylesheet
xmlins:xs1="http://www.w3.0rg/1999/XSL/Transform"
version="1.0">

<xs1:output method="html" indent="yes" />

<!-- Start-Element ist "Book" -->
<xsl:template match="book">
<html>
<head>
<I-- Titel ausgeben -->
<titled><xsl:value-of select="./title" /></title>
</head>
<body>
<I-- Titel nochmals ausgeben -->
<h3><xsT:value-of select=".