

Das Java 6 Codebook

 Dirk Louis, Peter Müller

Das Java 6 Codebook

Bibliografische Information Der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie;
detaillierte bibliografische Daten sind im Internet über <http://dnb.ddb.de> abrufbar.

Die Informationen in diesem Produkt werden ohne Rücksicht auf einen eventuellen Patentschutz veröffentlicht.
Warennamen werden ohne Gewährleistung der freien Verwendbarkeit benutzt. Bei der Zusammenstellung von Texten
und Abbildungen wurde mit größter Sorgfalt vorgegangen. Trotzdem können Fehler nicht vollständig ausgeschlossen
werden. Verlag, Herausgeber und Autoren können für fehlerhafte Angaben und deren Folgen weder eine juristische
Verantwortung noch irgendeine Haftung übernehmen.
Für Verbesserungsvorschläge und Hinweise auf Fehler sind Verlag und Herausgeber dankbar.

Alle Rechte vorbehalten, auch die der fotomechanischen Wiedergabe und der Speicherung in elektronischen Medien.
Die gewerbliche Nutzung der in diesem Produkt gezeigten Modelle und Arbeiten ist nicht zulässig.

Fast alle Hardware- und Softwarebezeichnungen und weitere Stichworte und sonstige Angaben, die in diesem Buch ver-
wendet werden, sind als eingetragene Marken geschützt. Da es nicht möglich ist, in allen Fällen zeitnah zu ermitteln, ob
ein Markenschutz besteht, wird das ® Symbol in diesem Buch nicht verwendet.

Umwelthinweis:
Dieses Buch wurde auf chlorfrei gebleichtem Papier gedruckt. Die Einschrumpffolie – zum Schutz vor Verschmutzung –
ist aus umweltverträglichem und recyclingfähigem PE-Material.

10 9 8 7 6 5 4 3 2 1

09 08 07

ISBN 978-3-8273-2465-8

© 2007 by Addison-Wesley Verlag,
ein Imprint der Pearson Education Deutschland GmbH,
Martin-Kollar-Straße 10–12, D-81829 München/Germany
Alle Rechte vorbehalten

Korrektorat: Petra Alm
Lektorat: Brigitte Bauer-Schiewek, bbauer@pearson.de
Herstellung: Elisabeth Prümm, epruemm@pearson.de
Satz: Kösel, Krugzell (www.KoeselBuch.de)
Umschlaggestaltung: Marco Lindenbeck, webwo GmbH (mlindenbeck@webwo.de)
Druck und Verarbeitung: Kösel, Krugzell (www.KoeselBuch.de)

Printed in Germany

Te
xt

ge
st

al
tu

ng
Be

is
pi

el
 fü

r e
in

e
zw

ei
-

ze
ili

ge
 Ü

be
rs

ch
rif

t
Ka

pi
te

lte
xt

Ka
pi

te
lte

xt
Ka

pi
te

lte
xt

Ka
pi

te
lte

xt
Ka

pi
te

lte
xt

Ka
pi

te
lte

xt

Inhaltsverzeichnis

Teil I Einführung 13

Über dieses Buch 15

Teil II Rezepte 17

Zahlen und Mathematik 19
1 Gerade Zahlen erkennen 19
2 Effizientes Multiplizieren (Dividieren) mit Potenzen von 2 19
3 Primzahlen erzeugen 20
4 Primzahlen erkennen 22
5 Gleitkommazahlen auf n Stellen runden 24
6 Gleitkommazahlen mit definierter Genauigkeit vergleichen 25
7 Strings in Zahlen umwandeln 26
8 Zahlen in Strings umwandeln 30
9 Ausgabe: Dezimalzahlen in Exponentialschreibweise 34
10 Ausgabe: Zahlenkolonnen am Dezimalzeichen ausrichten 37
11 Ausgabe in Ein- oder Mehrzahl (Kongruenz) 44
12 Umrechnung zwischen Zahlensystemen 46
13 Zahlen aus Strings extrahieren 49
14 Zufallszahlen erzeugen 51
15 Ganzzahlige Zufallszahlen aus einem bestimmten Bereich 53
16 Mehrere, nicht gleiche Zufallszahlen erzeugen (Lottozahlen) 54
17 Trigonometrische Funktionen 56
18 Temperaturwerte umrechnen (Celsius <-> Fahrenheit) 56
19 Fakultät berechnen 57
20 Mittelwert berechnen 59
21 Zinseszins berechnen 60
22 Komplexe Zahlen 62
23 Vektoren 72
24 Matrizen 78
25 Gleichungssysteme lösen 90
26 Große Zahlen beliebiger Genauigkeit 91

Strings 95
27 In Strings suchen 95
28 In Strings einfügen und ersetzen 98
29 Strings zerlegen 100
30 Strings zusammenfügen 101
31 Strings nach den ersten n Zeichen vergleichen 102

>> Inhaltsverzeichnis6
Te

xt
ge

st
al

tu
ng

Be
is

pi
el

 fü
r e

in
e

zw
ei

-
ze

ili
ge

 Ü
be

rs
ch

rif
t

Ka
pi

te
lte

xt
Ka

pi
te

lte
xt

Ka
pi

te
lte

xt
Ka

pi
te

lte
xt

Ka
pi

te
lte

xt
Ka

pi
te

lte
xt

32 Zeichen (Strings) vervielfachen 106
33 Strings an Enden auffüllen (Padding) 107
34 Whitespace am String-Anfang oder -Ende entfernen 110
35 Arrays in Strings umwandeln 111
36 Strings in Arrays umwandeln 113
37 Zufällige Strings erzeugen 116
38 Wortstatistik erstellen 118

Datum und Uhrzeit 121
39 Aktuelles Datum abfragen 121
40 Bestimmtes Datum erzeugen 123
41 Datums-/Zeitangaben formatieren 125
42 Wochentage oder Monatsnamen auflisten 128
43 Datumseingaben einlesen und auf Gültigkeit prüfen 130
44 Datumswerte vergleichen 131
45 Differenz zwischen zwei Datumswerten berechnen 133
46 Differenz zwischen zwei Datumswerten in Jahren, Tagen

und Stunden berechnen 134
47 Differenz zwischen zwei Datumswerten in Tagen berechnen 140
48 Tage zu einem Datum addieren/subtrahieren 141
49 Datum in julianischem Kalender 142
50 Umrechnen zwischen julianischem und

gregorianischem Kalender 143
51 Ostersonntag berechnen 144
52 Deutsche Feiertage berechnen 148
53 Ermitteln, welchen Wochentag ein Datum repräsentiert 158
54 Ermitteln, ob ein Tag ein Feiertag ist 159
55 Ermitteln, ob ein Jahr ein Schaltjahr ist 160
56 Alter aus Geburtsdatum berechnen 161
57 Aktuelle Zeit abfragen 163
58 Zeit in bestimmte Zeitzone umrechnen 164
59 Zeitzone erzeugen 165
60 Differenz zwischen zwei Uhrzeiten berechnen 168
61 Differenz zwischen zwei Uhrzeiten in Stunden, Minuten,

Sekunden berechnen 169
62 Präzise Zeitmessungen (Laufzeitmessungen) 172
63 Uhrzeit einblenden 174

System 179
64 Umgebungsvariablen abfragen 179
65 Betriebssystem und Java-Version bestimmen 180
66 Informationen zum aktuellen Benutzer ermitteln 181
67 Zugesicherte Umgebungsvariablen 182
68 System-Umgebungsinformationen abrufen 183
69 INI-Dateien lesen 184

>> Inhaltsverzeichnis 7

Te
xt

ge
st

al
tu

ng
Be

is
pi

el
 fü

r e
in

e
zw

ei
-

ze
ili

ge
 Ü

be
rs

ch
rif

t
Ka

pi
te

lte
xt

Ka
pi

te
lte

xt
Ka

pi
te

lte
xt

Ka
pi

te
lte

xt
Ka

pi
te

lte
xt

Ka
pi

te
lte

xt

70 INI-Dateien schreiben 187
71 INI-Dateien im XML-Format schreiben 188
72 Externe Programme ausführen 189
73 Verfügbaren Speicher abfragen 191
74 Speicher für JVM reservieren 192
75 DLLs laden 192
76 Programm für eine bestimmte Zeit anhalten 197
77 Timer verwenden 197
78 TimerTasks gesichert regelmäßig ausführen 199
79 Nicht blockierender Timer 200
80 Timer beenden 201
81 Auf die Windows-Registry zugreifen 201
82 Abbruch der Virtual Machine erkennen 206
83 Betriebssystem-Signale abfangen 208

Ein- und Ausgabe (IO) 211
84 Auf die Konsole (Standardausgabe) schreiben 211
85 Umlaute auf die Konsole (Standardausgabe) schreiben 212
86 Von der Konsole (Standardeingabe) lesen 214
87 Passwörter über die Konsole (Standardeingabe) lesen 216
88 Standardein- und -ausgabe umleiten 216
89 Konsolenanwendungen vorzeitig abbrechen 219
90 Fortschrittsanzeige für Konsolenanwendungen 219
91 Konsolenmenüs 222
92 Automatisch generierte Konsolenmenüs 225
93 Konsolenausgaben in Datei umleiten 230
94 Kommandozeilenargumente auswerten 230
95 Leere Verzeichnisse und Dateien anlegen 232
96 Datei- und Verzeichniseigenschaften abfragen 234
97 Temporäre Dateien anlegen 237
98 Verzeichnisinhalt auflisten 238
99 Dateien und Verzeichnisse löschen 239
100 Dateien und Verzeichnisse kopieren 241
101 Dateien und Verzeichnisse verschieben/umbenennen 245
102 Textdateien lesen und schreiben 245
103 Textdatei in String einlesen 248
104 Binärdateien lesen und schreiben 249
105 Random Access (wahlfreier Zugriff) 250
106 Dateien sperren 256
107 CSV-Dateien einlesen 258
108 CSV-Dateien in XML umwandeln 266
109 ZIP-Archive lesen 269
110 ZIP-Archive erzeugen 272
111 Excel-Dateien schreiben und lesen 274
112 PDF-Dateien erzeugen 278

>> Inhaltsverzeichnis8
Te

xt
ge

st
al

tu
ng

Be
is

pi
el

 fü
r e

in
e

zw
ei

-
ze

ili
ge

 Ü
be

rs
ch

rif
t

Ka
pi

te
lte

xt
Ka

pi
te

lte
xt

Ka
pi

te
lte

xt
Ka

pi
te

lte
xt

Ka
pi

te
lte

xt
Ka

pi
te

lte
xt

GUI 287
113 GUI-Grundgerüst 287
114 Fenster (und Dialoge) zentrieren 292
115 Fenstergröße festlegen (und gegebenenfalls fixieren) 295
116 Minimale Fenstergröße sicherstellen 296
117 Bilder als Fensterhintergrund 298
118 Komponenten zur Laufzeit instanzieren 300
119 Komponenten und Ereignisbehandlung 303
120 Aus Ereignismethoden auf Fenster und Komponenten zugreifen 310
121 Komponenten in Fenster (Panel) zentrieren 312
122 Komponenten mit Rahmen versehen 315
123 Komponenten mit eigenem Cursor 318
124 Komponenten mit Kontextmenü verbinden 319
125 Komponenten den Fokus geben 322
126 Die Fokusreihenfolge festlegen 323
127 Fokustasten ändern 326
128 Eingabefelder mit Return verlassen 329
129 Dialoge mit Return (oder Esc) verlassen 330
130 Transparente Schalter und nichttransparente Labels 332
131 Eingabefeld für Währungsangaben (inklusive InputVerifier) 336
132 Eingabefeld für Datumsangaben (inklusive InputVerifier) 342
133 Drag-and-Drop für Labels 347
134 Datei-Drop für JTextArea-Komponenten (eigener TransferHandler) 349
135 Anwendungssymbol einrichten 356
136 Symbole für Symbolleisten 357
137 Menüleiste (Symbolleiste) aus Ressourcendatei aufbauen 359
138 Befehle aus Menü und Symbolleiste zur Laufzeit aktivieren

und deaktivieren 370
139 Menü- und Symbolleiste mit Aktionen synchronisieren 371
140 Statusleiste einrichten 377
141 Hinweistexte in Statusleiste 382
142 Dateien mit Datei-Dialog (inklusive Filter) öffnen 385
143 Dateien mit Speichern-Dialog speichern 391
144 Unterstützung für die Zwischenablage 398
145 Text drucken 400
146 Editor-Grundgerüst 410
147 Look&Feel ändern 410
148 Systemtray unterstützen 414
149 Splash-Screen anzeigen 417
150 Registerreiter mit Schließen-Schaltern (JTabbedPane) 419

Grafik und Multimedia 425
151 Mitte der Zeichenfläche ermitteln 425
152 Zentrierter Text 426
153 In den Rahmen einer Komponente zeichnen 428

>> Inhaltsverzeichnis 9

Te
xt

ge
st

al
tu

ng
Be

is
pi

el
 fü

r e
in

e
zw

ei
-

ze
ili

ge
 Ü

be
rs

ch
rif

t
Ka

pi
te

lte
xt

Ka
pi

te
lte

xt
Ka

pi
te

lte
xt

Ka
pi

te
lte

xt
Ka

pi
te

lte
xt

Ka
pi

te
lte

xt

154 Zeichnen mit unterschiedlichen Strichstärken und -stilen 431
155 Zeichnen mit Füllmuster und Farbverläufen 433
156 Zeichnen mit Transformationen 436
157 Verfügbare Schriftarten ermitteln 439
158 Dialog zur Schriftartenauswahl 440
159 Text mit Schattenwurf zeichnen 443
160 Freihandzeichnungen 445
161 Bilder laden und anzeigen 448
162 Bilder pixelweise bearbeiten (und speichern) 458
163 Bilder drehen 462
164 Bilder spiegeln 464
165 Bilder in Graustufen darstellen 466
166 Audiodateien abspielen 467
167 Videodateien abspielen 471
168 Torten-, Balken- und X-Y-Diagramme erstellen 475

Reguläre Ausdrücke und Pattern Matching 481
169 Syntax regulärer Ausdrücke 481
170 Überprüfen auf Existenz 484
171 Alle Treffer zurückgeben 486
172 Mit regulären Ausdrücken in Strings ersetzen 487
173 Anhand von regulären Ausdrücken zerlegen 488
174 Auf Zahlen prüfen 490
175 E-Mail-Adressen auf Gültigkeit prüfen 493
176 HTML-Tags entfernen 495
177 RegEx für verschiedene Daten 498

Datenbanken 501
178 Datenbankverbindung herstellen 501
179 Connection-Pooling 503
180 SQL-Befehle SELECT, INSERT, UPDATE und DELETE durchführen 505
181 Änderungen im ResultSet vornehmen 508
182 PreparedStatements ausführen 509
183 Stored Procedures ausführen 510
184 BLOB- und CLOB-Daten 512
185 Mit Transaktionen arbeiten 515
186 Batch-Ausführung 516
187 Metadaten ermitteln 518
188 Datenbankzugriffe vom Applet 521

Netzwerke und E-Mail 525
189 IP-Adressen ermitteln 525
190 Erreichbarkeit überprüfen 526
191 Status aller offenen Verbindungen abfragen 529
192 E-Mail senden mit JavaMail 532

>> Inhaltsverzeichnis10
Te

xt
ge

st
al

tu
ng

Be
is

pi
el

 fü
r e

in
e

zw
ei

-
ze

ili
ge

 Ü
be

rs
ch

rif
t

Ka
pi

te
lte

xt
Ka

pi
te

lte
xt

Ka
pi

te
lte

xt
Ka

pi
te

lte
xt

Ka
pi

te
lte

xt
Ka

pi
te

lte
xt

193 E-Mail mit Authentifizierung versenden 535
194 HTML-E-Mail versenden 537
195 E-Mail als multipart/alternative versenden 540
196 E-Mail mit Datei-Anhang versenden 543
197 E-Mails abrufen 545
198 Multipart-E-Mails abrufen und verarbeiten 550
199 URI – Textinhalt abrufen 554
200 URI – binären Inhalt abrufen 555
201 Senden von Daten an eine Ressource 557
202 Mini-Webserver 559

XML 565
203 Sonderzeichen in XML verwenden 565
204 Kommentare 565
205 Namensräume 566
206 CDATA-Bereiche 567
207 XML parsen mit SAX 567
208 XML parsen mit DOM 571
209 XML-Dokumente validieren 575
210 XML-Strukturen mit Programm erzeugen 578
211 XML-Dokument formatiert ausgeben 580
212 XML-Dokument formatiert als Datei speichern 582
213 XML mit XSLT transformieren 584

Internationalisierung 589
214 Lokale einstellen 589
215 Standardlokale ändern 592
216 Verfügbare Lokalen ermitteln 593
217 Lokale des Betriebssystems ändern 597
218 Strings vergleichen 599
219 Strings sortieren 600
220 Datumsangaben parsen und formatieren 601
221 Zahlen parsen und formatieren 604
222 Währungsangaben parsen und formatieren 605
223 Ressourcendateien anlegen und verwenden 607
224 Ressourcendateien im XML-Format 611
225 Ressourcendateien für verschiedene Lokale erzeugen 614
226 Ressourcendatei für die Lokale des aktuellen Systems laden 616
227 Ressourcendatei für eine bestimmte Lokale laden 618

Threads 623
228 Threads verwenden 623
229 Threads ohne Exception beenden 624
230 Eigenschaften des aktuellen Threads 627
231 Ermitteln aller laufenden Threads 628

>> Inhaltsverzeichnis 11

Te
xt

ge
st

al
tu

ng
Be

is
pi

el
 fü

r e
in

e
zw

ei
-

ze
ili

ge
 Ü

be
rs

ch
rif

t
Ka

pi
te

lte
xt

Ka
pi

te
lte

xt
Ka

pi
te

lte
xt

Ka
pi

te
lte

xt
Ka

pi
te

lte
xt

Ka
pi

te
lte

xt

232 Priorität von Threads 629
233 Verwenden von Thread-Gruppen 631
234 Iterieren über Threads und Thread-Gruppen einer Thread-Gruppe 632
235 Threads in Swing: SwingWorker 635
236 Thread-Synchronisierung mit synchronized (Monitor) 639
237 Thread-Synchronisierung mit wait() und notify() 640
238 Thread-Synchronisierung mit Semaphoren 642
239 Thread-Kommunikation via Pipes 644
240 Thread-Pooling 646
241 Thread-globale Daten als Singleton-Instanzen 651

Applets 655
242 Grundgerüst 655
243 Parameter von Webseite übernehmen 661
244 Bilder laden und Diashow erstellen 663
245 Sounds laden 669
246 Mit JavaScript auf Applet-Methoden zugreifen 672
247 Datenaustausch zwischen Applets einer Webseite 675
248 Laufschrift (Ticker) 677

Objekte, Collections, Design-Pattern 681
249 Objekte in Strings umwandeln – toString() überschreiben 681
250 Objekte kopieren – clone() überschreiben 683
251 Objekte und Hashing – hashCode() überschreiben 689
252 Objekte vergleichen – equals() überschreiben 695
253 Objekte vergleichen – Comparable implementieren 699
254 Objekte serialisieren und deserialisieren 705
255 Arrays in Collections umwandeln 710
256 Collections in Arrays umwandeln 711
257 Collections sortieren und durchsuchen 712
258 Collections synchronisieren 716
259 Design-Pattern: Singleton 718
260 Design-Pattern: Adapter (Wrapper, Decorator) 721
261 Design-Pattern: Factory-Methoden 729

Sonstiges 733
262 Arrays effizient kopieren 733
263 Arrays vergrößern oder verkleinern 734
264 Globale Daten in Java? 735
265 Testprogramme schreiben 738
266 Debug-Stufen definieren 742
267 Code optimieren 745
268 jar-Archive erzeugen 746
269 Programme mit Ant kompilieren 748
270 Ausführbare jar-Dateien mit Ant erstellen 754

>> Inhaltsverzeichnis12
Te

xt
ge

st
al

tu
ng

Be
is

pi
el

 fü
r e

in
e

zw
ei

-
ze

ili
ge

 Ü
be

rs
ch

rif
t

Ka
pi

te
lte

xt
Ka

pi
te

lte
xt

Ka
pi

te
lte

xt
Ka

pi
te

lte
xt

Ka
pi

te
lte

xt
Ka

pi
te

lte
xt

271 Reflection: Klasseninformationen abrufen 755
272 Reflection: Klasseninformationen über .class-Datei abrufen 760
273 Reflection: Klassen instanzieren 762
274 Reflection: Methode aufrufen 766
275 Kreditkartenvalidierung 768
276 Statistik 770

Teil III Anhang 777

Tabellen 779
Java 779
Swing 782
Reguläre Ausdrücke 790
SQL 796
Lokale 797

Die Java-SDK-Tools 799
javac – der Compiler 799
java – der Interpreter 801
jar – Archive erstellen 803
javadoc – Dokumentationen erstellen 806
jdb – der Debugger 807
Weitere Tools 809

Stichwortverzeichnis 811

Lizenzvereinbarungen 825

Teil I Einführung

Über dieses Buch

Wenn Sie glauben, mit dem vorliegenden Werk ein Buch samt Begleit-CD erstanden zu haben,
befinden Sie sich im Irrtum. Was Sie gerade in der Hand halten, ist in Wahrheit eine CD mit
einem Begleitbuch.

Auf der CD finden Sie – nach Themengebieten geordnet – ungefähr 300 Rezepte mit ready-to-
use Lösungen für die verschiedensten Probleme. Zu jedem Rezept gibt es im Repository den
zugehörigen Quelltext (in Form eines Codefragments, einer Methode oder einer Klasse), den
Sie nur noch in Ihr Programm zu kopieren brauchen.

Wer den Code eines Rezepts im praktischen Einsatz erleben möchte, findet auf der CD zudem
zu fast jedem Rezept ein Beispielprogramm, das die Verwendung des Codes demonstriert.

Und dann gibt es noch das Buch.

Im Buch sind alle Rezepte abgedruckt, beschrieben und mit Hintergrundinformationen erläu-
tert. Es wurde für Programmierer geschrieben, die konkrete Lösungen für typische Probleme
des Programmieralltags suchen oder einfach ihren Fundus an nützlichen Java-Techniken und
-Tricks erweitern wollen. In diesem Sinne ist das Java-Codebook die ideale Ergänzung zu
Ihrem Java-Lehr- oder -Referenzbuch.

Auswahl der Rezepte
Auch wenn dreihundert Rezepte zweifelsohne eine ganz stattliche Sammlung darstellen, so
bilden wir uns nicht ein, damit zu jedem Problem eine passende Lösung angeboten zu haben.
Dazu ist die Java-Programmierung ein zu weites Feld (und selbst das vereinte Wissen zweier
Autoren nicht ausreichend). Wir haben uns aber bemüht, eine gute Mischung aus häufig
benötigten Techniken, interessanten Tricks und praxisbezogenen Designs zu finden, wie sie
zum Standardrepertoire eines jeden fortgeschrittenen Java-Programmierers gehören sollten.

Sollten Sie das eine oder andere unentbehrliche Rezept vermissen, schreiben Sie uns
(autoren@carpelibrum.de). Auch wenn wir nicht versprechen können, jede Anfrage mit einem
nachgereichten Rezept beantworten zu können, so werden wir zumindest versuchen, Ihnen
mit einem Rat oder Hinweis weiterzuhelfen. Auf jeden Fall aber werden wir ihre Rezeptvor-
schläge bei der nächsten Auflage des Buches berücksichtigen.

Fragen an die Autoren
Trotz aller Sorgfalt lässt es sich bei einem Werk dieses Umfangs erfahrungsgemäß nie ganz
vermeiden, dass sich Tippfehler, irreführende Formulierungen oder gar inhaltliche Fehler ein-
schleichen. Scheuen Sie sich in diesem Fall nicht, uns per E-Mail an autoren@carpelibrum.de
eine Nachricht zukommen zu lassen. Auch für Lob, Anregungen oder Themenwünsche sind
wir stets dankbar.

Errata werden auf der Website www.carpelibrum.de veröffentlicht.

Sollten Sie Fragen zu einem bestimmten Rezept haben, wenden Sie sich bitte direkt an den
betreffenden Autor. In den Quelltexten im Ordner Beispiele sind dazu die Namen der Autoren
angegeben. Von Ausnahmen abgesehen gilt aber auch die folgende Zuordnung.

>> Über dieses Buch16

Kompilieren der Buchbeispiele
Wenn Sie eines der Beispiele von der CD ausführen und testen möchten, gehen Sie wie folgt
vor:

1. Kopieren Sie das Verzeichnis auf Ihre Festplatte.

2. Kompilieren Sie die Quelldateien.

In der Regel genügt es dem Java-Compiler den Namen der Programmdatei mit der main()-
Methode zu übergeben. Meist heißt die Programmdatei Start.java oder Program.java.

javac Start.java

oder

javac Program.java

Bei einigen Programmen müssen Sie externe Bibliotheken in Form von jar-Archiven in
den CLASSPATH aufnehmen oder mit der Option -cp als Parameter an javac übergeben
(javac -cp xyz.jar Program.java).

3. Führen Sie das Programm aus:

java Start

oder

java Program

Bei einigen Programmen müssen Sie externe Bibliotheken in Form von jar-Archiven in
den CLASSPATH aufnehmen oder mit der Option –cp als Parameter an java übergeben
(java -cp xyz.jar Program).

Für Beispielprogramme mit abweichendem Aufruf finden Sie im Verzeichnis des Beispiels eine
Readme-Datei mit passendem Aufruf.

Kategorien Autor(en)

Zahlen und Mathematik
Strings
Datum und Uhrzeit

Dirk Louis, dirk@carpelibrum.de

System Peter Müller, leserfragen@gmx.de

Ein- und Ausgabe Peter Müller, leserfragen@gmx.de

GUI
Grafik und Multimedia

Dirk Louis, dirk@carpelibrum.de

Reguläre Ausdrücke und Pattern Matching Dirk Louis, dirk@carpelibrum.de

Datenbanken Peter Müller, leserfragen@gmx.de

Netzwerke und E-Mail
XML

Peter Müller, leserfragen@gmx.de

Internationalisierung Dirk Louis, dirk@carpelibrum.de

Threads Peter Müller, leserfragen@gmx.de

Applets Dirk Louis, dirk@carpelibrum.de

Objekte, Collections, Design-Pattern
Sonstiges

Dirk Louis, dirk@carpelibrum.de

Teil II Rezepte

Zahlen und Mathematik

Strings

Datum und Uhrzeit

System

Ein- und Ausgabe (IO)

GUI

Grafik und Multimedia

RegEx

Datenbanken

Netzwerke und E-Mail

XML

International

Threads

Applets

Objekte

Sonstiges

Za
hl

en

Zahlen und Mathematik

1 Gerade Zahlen erkennen
Wie alle Daten werden auch Integer-Zahlen binär kodiert, jedoch nicht, wie man vielleicht
annehmen könnte, als Zahlen im Binärsystem, sondern als nach dem 2er-Komplement
kodierte Folgen von Nullen und Einsen.

Im 2er-Komplement werden positive Zahlen durch ihre korrespondierenden Binärzahlen dar-
gestellt. Das oberste Bit (MSB = Most Significant Bit) kodiert das Vorzeichen und ist für posi-
tive Zahlen 0. Negative Zahlen haben eine 1 im MSB und ergeben sich, indem man alle Bits
der korrespondierenden positiven Zahlen gleichen Betrags invertiert und +1 addiert. Der Vor-
zug dieser auf den ersten Blick unnötig umständlich anmutenden Kodierung ist, dass die
Rechengesetze trotz Kodierung des Vorzeichens im MSB erhalten bleiben.

Das Wissen um die Art der Kodierung erlaubt einige äußerst effiziente Tricks, beispielsweise
das Erkennen von geraden Zahlen. Es lässt sich leicht nachvollziehen, dass im 2er-Komple-
ment alle geraden Zahlen im untersten Bit eine 0 und alle ungeraden Zahlen eine 1 stehen
haben. Man kann also leicht an dem untersten Bit (LSB = Least Significant Bit) ablesen, ob es
sich bei einer Integer-Zahl um eine gerade oder ungerade Zahl handelt.

Ein einfaches Verfahren ist, eine bitweise AND-Verknüpfung zwischen der zu prüfenden Zahl
und der Zahl 1 durchzuführen. Ist das Ergebnis 0, ist die zu prüfende Zahl gerade.

2 Effizientes Multiplizieren (Dividieren) mit
Potenzen von 2

Wie im Dezimalsystem die Verschiebung der Ziffern um eine Stelle einer Multiplikation bzw.
Division mit 10 entspricht, so entspricht im Binärsystem die Verschiebung um eine Stelle einer
Multiplikation bzw. Division mit 2. Multiplikationen und Divisionen mit Potenzen von 2
können daher mit Hilfe der bitweisen Shift-Operatoren << und >> besonders effizient durchge-
führt werden.

Um eine Integer-Zahl mit 2n zu multiplizieren, muss man ihre Bits einfach nur um n Positio-
nen nach links verschieben:

/**
 * Stellt fest, ob die übergebene Zahl gerade oder ungerade ist
 */
public static boolean isEven(long number) {
 return ((number & 1l) == 0l) ? true : false;
}

Listing 1: Gerade Zahlen erkennen

>> Primzahlen erzeugen20
Za

hl
en

Um eine Integer-Zahl durch 2n zu dividieren, muss man ihre Bits einfach nur um n Positionen
nach rechts verschieben:

Beachten Sie, dass bei Shift-Operationen mit << und >> das Vorzeichen erhalten bleibt (anders
als bei einer Verschiebung mit >>>)!

Die Division mit div() erwies sich trotz des Function Overheads durch den Methodenaufruf als
um einiges schneller als die /-Operation.

3 Primzahlen erzeugen
Primzahlen sind Zahlen, die nur durch sich selbst und durch 1 teilbar sind. Dieser schlichten
Definition stehen einige der schwierigsten und auch fruchtbarsten Probleme der Mathematik
gegenüber: Wie viele Primzahlen gibt es? Wie kann man Primzahlen erzeugen? Wie kann man
testen, ob eine gegebene Zahl eine Primzahl ist? Wie kann man eine gegebene Zahl in ihre
Primfaktoren zerlegen?

Während die erste Frage bereits in der Antike von dem griechischen Mathematiker Euklid beant-
wortet werden konnte (es gibt unendlich viele Primzahlen), erwiesen sich die anderen als Inspi-
ration und Herausforderung für Generationen von Mathematikern – und Informatikern. So
spielen Primzahlen beispielsweise bei der Verschlüsselung oder bei der Dimensionierung von
Hashtabellen eine große Rolle. Im ersten Fall ist man an der Generierung großer Primzahlen
interessiert (und nutzt den Umstand, dass sich das Produkt zweier genügend großer Primzahlen
relativ einfach bilden lässt, es aber andererseits unmöglich ist, in angemessener Zeit die Prim-
zahlen aus dem Produkt wieder herauszurechnen). Im zweiten Fall wird berücksichtigt, dass die
meisten Hashtabellen-Implementierungen Hashfunktionen1 verwenden, die besonders effizient
arbeiten, wenn die Kapazität der Hashtabelle eine Primzahl ist.

/**
 * Multiplizieren mit Potenz von 2
 */
 public static long mul(long number, int pos) {
 return number << pos;
}

Listing 2: Multiplikation

/**
 * Dividieren mit Potenz von 2
 */
 public static long div(long number, int pos) {
 return number >> pos;
}

Listing 3: Division

1. Hashtabellen speichern Daten als Schlüssel/Wert-Paare. Aufgabe der Hashfunktion ist es, aus dem Schlüssel den
Index zu berechnen, unter dem der Wert zu finden ist. Eine gute Hashfunktion liefert für jeden Schlüssel einen eige-
nen Index, der direkt zu dem gesuchten Wert führt. Weniger gute Hashfunktionen liefern für verschiedene Schlüssel
den gleichen Index, so dass hinter diesen Indizes Wertelisten stehen, die noch einmal extra durchsucht werden müs-
sen. In der Java-API werden Hashtabellen beispielsweise durch HashMap, HashSet oder Hashtable implementiert.

>> Zahlen und Mathematik 21

Za
hl

en

Der wohl bekannteste Algorithmus zur Erzeugung von Primzahlen ist das Sieb des Eratos-
thenes.

1. Schreibe alle Zahlen von 2 bis N auf.

2. Rahme die 2 ein und streiche alle Vielfachen von 2 durch.

3. Wiederhole Schritt 2 für alle n mit n <= sqrt(N), die noch nicht durchgestrichen wurden.

4. Alle eingerahmten oder nicht durchgestrichenen Zahlen sind Primzahlen.

Eine mögliche Implementierung dieses Algorithmus verwendet die nachfolgend definierte
Methode sieve(), die die Primzahlen aus einem durch min und max gegebenen Zahlenbereich
als LinkedList-Container zurückliefert.

Die Methode prüft zuerst, ob der angegebene Bereich überhaupt Primzahlen enthält. Dann legt
sie einen BitSet-Container zahlen an, der die Zahlen von 0 bis max repräsentiert. Anfangs sind
die Bits in numbers nicht gesetzt (false), was bedeutet, die Zahlen sind noch nicht ausgestri-
chen. In zwei verschachtelten for-Schleifen werden die Nicht-Primzahlen danach ausgestri-
chen. Zu guter Letzt werden die Primzahlen zwischen min und max in einen LinkedList-
Container übertragen und als Ergebnis zurückgeliefert.

import java.util.LinkedList;
...
/**
 * Sieb des Eratosthenes
 */
public static LinkedList<Integer> sieve(int min, int max) {
 if((min < 0) || (max < 2) || (min > max))
 return null;

 BitSet numbers = new BitSet(max); // anfangs liefern alle Bits false
 numbers.set(0); // keine Primzahlen -> auf true setzen
 numbers.set(1);

 int limit = (int) Math.sqrt(max);

 for(int n = 2; n <= limit; ++n)
 if(!numbers.get(n))
 for(int i = 2*n; i < max; i+=n)
 numbers.set(i);

 // Primzahlen im gesuchten Bereich zusammenstellen
 LinkedList<Integer> prims = new LinkedList<Integer>();

 for(int i = min; i < max; ++i)
 if(!numbers.get(i))
 prims.add(i);

 return prims;
}

Listing 4: Primzahlen erzeugen

>> Primzahlen erkennen22
Za

hl
en

Wenn es Sie interessiert, welche Jahre im 20. Jahrhundert Primjahre waren, können Sie diese
Methode beispielsweise wie folgt aufrufen:

import java.util.LinkedList;
...
// Primzahlen erzeugen
LinkedList<Integer> prims = MoreMath.sieve(1900, 2000);

if(prims == null)
 System.out.println("Fehler in Sieb-Aufruf");
else
 for(int elem : prims)
 System.out.print(" " + elem);

Wenn Sie in einem Programm einen Hashtabellen-Container anlegen wollen, dessen Anfangs-
kapazität sich erst zur Laufzeit ergibt, benötigen Sie allerdings eine Methode, die ihnen genau
eine passende Primzahl zurückliefert. Dies leistet die Methode getPrim(). Sie übergeben der
Methode die gewünschte Mindestanfangskapazität und erhalten die nächsthöhere Primzahl
zurück.

Die Erzeugung eines HashMap-Containers mit Hilfe von getPrim() könnte wie folgt aussehen:

java.util.HashMap map = new java.util.HashMap(MoreMath.getPrim(min));

4 Primzahlen erkennen
Das Erkennen von Primzahlen ist eine Wissenschaft für sich – und ein Gebiet, auf dem sich
vor kurzem (im Jahre 2001) Erstaunliches getan hat.

Kleinere Zahlen, also Zahlen < 9.223.372.036.854.775.807 (worin Sie unschwer die größte
positive long-Zahl erkennen werden), lassen sich schnell und effizient ermitteln, indem man
prüft, ob sie durch irgendeine kleinere Zahl (ohne Rest) geteilt werden können.

import java.util.LinkedList;
...
/**
 * Liefert die nächsthöhere Primzahl zurück
 */
public static int getPrim(int min) {

 LinkedList<Integer> l;
 int max = min + 20;

 do {
 l = sieve(min, max);
 max += 10;
 } while (l.size() == 0);

 return l.getFirst();
}

Listing 5: Die kleinste Primzahl größer n berechnen

>> Zahlen und Mathematik 23

Za
hl

en

Die Methode testet zuerst, ob die zu prüfende Zahl n kleiner als 2 oder gerade ist. Wenn ja, ist
die Methode fertig und liefert false zurück. Hat n die ersten Tests überstanden, geht die
Methode in einer Schleife alle ungeraden Zahlen bis sqrt(n) durch und probiert, ob n durch
die Schleifenvariable i ohne Rest geteilt werden kann. Gibt es einen Teiler, ist n keine Primzahl
und die Methode kehrt sofort mit dem Rückgabewert false zurück. Gibt es keinen Teiler, liefert
die Methode true zurück.

Leider können wegen der Beschränkung des Datentyps long mit dieser Methode nur relativ
kleine Zahlen getestet werden. Um größere Zahlen zu testen, könnte man den obigen Algo-
rithmus für die Klasse BigInteger implementieren. (BigInteger und BigDecimal erlauben die
Arbeit mit beliebig großen (genauen) Integer- bzw. Gleitkommazahlen, siehe Rezept 26.) In der
Praxis ist dieser Weg aber kaum akzeptabel, denn abgesehen davon, dass die BigInteger-
Modulo-Operation recht zeitraubend ist, besitzt der Algorithmus wegen der Modulo-Operation
in der Schleife von vornherein ein ungünstiges Laufzeitverhalten.

Mangels schneller deterministischer Verfahren werden Primzahlen daher häufig mit Hilfe pro-
babilistischer Verfahren überprüft, wie zum Beispiel dem Primtest nach Rabin-Miller.

So verfügt die Klasse BigInteger über eine Methode isProbablePrime(), mit der Sie BigInte-
ger-Zahlen testen können. Liefert die Methode false zurück, handelt es sich definitiv um
keine Primzahl. Liefert die Methode true zurück, liegt die Wahrscheinlichkeit, dass es sich um
eine Primzahl handelt, bei 1 – 1/2n. Den Wert n übergeben Sie der Methode als Argument.
(Die Methode testet intern nach Rabin-Miller und Lucas-Lehmer.)

import java.math.BigInteger;

/**
 * Stellt fest, ob eine BigInteger-Zahl eine Primzahl ist
 * (erkennt Primzahl mit nahezu 100%-iger Sicherheit (1 - 1/28 = 0,9961))
 */

/**
 * Stellt fest, ob eine long-Zahl eine Primzahl ist
 */
public static boolean isPrim(long n) {

 if (n <= 1) // Primzahl sind positive Zahlen > 1
 return false;

 if ((n & 1l) == 0l) // gerade Zahl
 return false;

 long limit = (long) Math.sqrt(n);

 for(long i = 3; i < limit; i+=2)
 if(n % i == 0)
 return false;

 return true;
}

Listing 6: »Kleine« Primzahlen erkennen

>> Gleitkommazahlen auf n Stellen runden24
Za

hl
en

public static boolean isPrim(BigInteger n) {
 return n.isProbablePrime(8);
}

Abschließend sei noch erwähnt, dass es seit 2002 ein von den indischen Mathematikern Agra-
wal, Kayal und Saxena gefundenes deterministisches Polynomialzeitverfahren zum Test auf
Primzahlen gibt.

5 Gleitkommazahlen auf n Stellen runden
Die von Math angebotenen Rundungsmethoden runden – wie das Casting in einen Integer-Typ
– stets bis zu einem Integer-Wert auf oder ab.

Möchte man Dezimalzahlen auf Dezimalzahlen mit einer bestimmten Anzahl Nachkommastel-
len runden, bedarf es dazu eigener Methoden: eine zum mathematischen und eine zum kauf-
männischen Runden auf x Stellen.

Das kaufmännische Runden betrachtet lediglich die erste zu rundende Stelle. Ist diese gleich 0,
1, 2, 3 oder 4, wird ab-, ansonsten aufgerundet. Dieses Verfahren ist einfach, führt aber zu
einer gewissen Unausgewogenheit, da mehr Zahlen auf- als abgerundet werden. Das mathe-
matische Runden rundet immer von hinten nach vorne und unterscheidet sich in der Behand-
lung der 5 als zu rundender Zahl:

� Folgen auf die 5 noch weitere von 0 verschiedene Ziffern, wird aufgerundet.

� Ist die 5 durch Abrundung entstanden, wird aufgerundet. Ist sie durch Aufrundung ent-
standen, wird abgerundet.

� Folgen auf die 5 keine weiteren Ziffern, wird so gerundet, dass die vorangehende Ziffer
gerade wird.

Der letzte Punkt führt beispielsweise dazu, dass die Zahl 8.5 von rint() auf 8 abgerundet wird,
während sie beim kaufmännischen Runden mit round() auf 9 aufgerundet wird.

Mit den folgenden Methoden können Sie kaufmännisch bzw. mathematisch auf n Stellen
genau runden.

/**
 * Kaufmännisches Runden auf n Stellen
 */
public static double round(double number, int n) {
 return (Math.round(number * Math.pow(10,n))) / Math.pow(10,n);
}

Rundungsmethode Beschreibung

Cast () Rundet immer ab.

Math.rint(double x) Rundet mathematisch (Rückgabetyp double).

Math.round(double x)
Math.round(float x)

Rundet kaufmännisch (Rückgabetyp long bzw. int).

Math.ceil(double x) Rundet auf die nächste größere ganze Zahl auf (Rückgabetyp double).

Math.floor(double x) Rundet auf die nächste kleinere ganze Zahl ab (Rückgabetyp double).

Tabelle 1: Rundungsmethoden

>> Zahlen und Mathematik 25

Za
hl

en

/**
 * Mathematisches Runden auf n Stellen
 */
public static double rint(double number, int n) {
 return (Math.rint(number * Math.pow(10,n))) / Math.pow(10,n);
}

Die Methoden multiplizieren die zu rundende Zahl mit 10n, um die gewünschte Anzahl Nach-
kommastellen zu erhalten, runden das Ergebnis mit round() bzw. rint() und dividieren das
Ergebnis anschließend durch 10n, um wieder die alte Größenordnung herzustellen.

6 Gleitkommazahlen mit definierter Genauigkeit
vergleichen

Gleitkommazahlen können zwar sehr große oder sehr kleine Zahlen speichern, jedoch nur mit
begrenzter Genauigkeit. So schränkt der zur Verfügung stehende Speicherplatz den Datentyp
float auf ca. sieben und den Datentyp double auf ungefähr zehn signifikante Stellen ein.
Ergeben sich im Zuge einer Berechnung mit Gleitkommazahlen Zahlen mit mehr signifikanten
Stellen oder fließen Literale mit mehr Stellen ein, so entstehen Rundungsfehler.

Kommt es bei einer Berechnung nicht auf extreme Genauigkeit an, stören die Rundungsfehler
meist nicht weiter. (Wenn Sie beispielsweise die Wohnfläche einer Wohnung berechnen, wird
es nicht darauf ankommen, ob diese 95,45 oder 94,450000001 qm beträgt.)

Gravierende Fehler können allerdings entstehen, wenn man Gleitkommazahlen mit Run-
dungsfehlern vergleicht. So ergibt der Vergleich in dem folgenden Codefragment wegen Run-
dungsfehlern in der Zahlendarstellung nicht die erwartete Ausgabe »gleich Null«.

double number = 12.123456;
number -= 12.0;
number -= 0.123456;

if (number == 0.0)
 System.out.println("gleich Null");

Dabei weicht number nur minimal von 0.0 ab! Um mit Rundungsfehlern behaftete Gleitkomma-
zahlen korrekt zu vergleichen, bedarf es daher einer Vergleichsfunktion, die mit einer gewis-
sen Toleranz (epsilon) arbeitet:

Abbildung 1: Kaufmännisches und mathematisches Runden auf drei Stellen

>> Strings in Zahlen umwandeln26
Za

hl
en

/**
 * Gleitkommazahlen mit definierter Genauigkeit vergleichen
 */
public static boolean equals(double a, double b, double eps) {
 return Math.abs(a - b) < eps;
}

Mit dieser Methode kann die »Gleichheit« wie gewünscht festgestellt werden:

double number = 12.123456;
number -= 12.0;
number -= 0.123456;

if(MoreMath.equals(number, 0.0, 1e10))
 System.out.println("gleich Null");

7 Strings in Zahlen umwandeln
Benutzereingaben, die über die Konsole (System.in), über Textkomponenten von GUI-Anwen-
dungen (z.B. JTextField) oder aus Textdateien in eine Anwendung eingelesen werden, sind
immer Strings – selbst wenn diese Strings Zahlen repräsentieren. Um mit den Zahlenwerten
rechnen zu können, müssen die Strings daher zuerst in einen passenden numerischen Typ wie
int oder double umgewandelt werden.

Die Umwandlung besteht grundsätzlich aus zwei Schritten:

� Dem Aufruf einer geeigneten Umwandlungsmethode

� Der Absicherung der Umwandlung für den Fall, dass der String keine gültige Zahl enthält

Für die Umwandlung selbst gibt es verschiedene Möglichkeiten und Klassen:

� Die parse-Methoden der Wrapper-Klassen

Die Wrapper-Klassen zu den elementaren Datentypen (Short, Integer, Double etc.) verfügen
jede über eine passende statische parse-Methode (parseShort(), parseInt(), parseDouble()
etc.), die den ihr übergebenen String in den zugehörigen elementaren Datentyp umwan-
delt. Kann der String nicht umgewandelt werden, wird eine NumberFormatException aus-
gelöst.

Die parse-Methoden der Wrapper-Klassen für die Ganzzahlentypen, Byte, Short, Int und
Long, sind überladen, so dass Sie neben dem umzuwandelnden String auch die Basis des
Zahlensystems angeben können, in dem die Zahl im String niedergeschrieben ist:
parseInt(String s, int base).

try {
 number = Integer.parseInt(str);
}
catch(NumberFormatException e) {}

A
ch

tu
n

g Apropos Vergleiche und Gleitkommazahlen: Denken Sie daran, dass Sie Vergleiche
gegen NaN oder Infinity mit Double.isNaN() bzw. Double.isInfinity() durchführen.

>> Zahlen und Mathematik 27

Za
hl

en

� Die parse()-Methode von DecimalFormat

Die Klasse DecimalFormat wird zwar vorzugsweise zur formatierten Umwandlung von Zah-
len in Strings verwendet (siehe Rezept 8), mit ihrer parse()-Methode kann aber auch der
umgekehrte Weg eingeschlagen werden.

Die parse()-Methode parst die Zeichen im übergebenen String so lange, bis sie auf ein
Zeichen trifft, das sie nicht als Teil der Zahl interpretiert (Buchstabe, Satzzeichen). Aber
Achtung! Das Dezimalzeichen, gemäß der voreingestellten Lokale der Punkt, wird igno-
riert. Die eingeparsten Zeichen werden in eine Zahl umgewandelt und als Long-Objekt
zurückgeliefert. Ist der Zahlenwert zu groß oder wurde zuvor für das DecimalFormat-Objekt
setParseBigDecimal(true) aufgerufen, wird das Ergebnis als Double-Objekt zurückgeliefert.
Kann keine Zahl zurückgeliefert werden, etwa weil der String mit einem Buchstaben
beginnt, wird eine ParseException ausgelöst.

Der Rückgabetyp ist in jedem Fall Number. Mit den Konvertierungsmethoden von Number
(toInt(), toDouble() etc.) kann ein passender elementarer Typ erzeugt werden.

Die parse()-Methode ist überladen. Die von NumberFormat geerbte Version übernimmt
allein den umzuwandelnden String, die in DecimalFormat definierte Version erhält als zwei-
tes Argument eine Positionsangabe vom Typ ParsePosition, die festlegt, ab wo mit dem
Parsen des Strings begonnen werden soll.

import java.text.DecimalFormat;
import java.text.ParseException;

DecimalFormat df = new DecimalFormat();
try {
 number = (df.parse(str)).intValue();
}
catch(ParseException e) {}

� Die next-Methoden der Klasse Scanner

Mit der Klasse Scanner können Eingaben aus Strings, Dateien, Streams oder auch der Kon-
sole (System.in) eingelesen werden. Die Eingabe wird in Tokens zerlegt (Trennzeichen
(Delimiter) sind standardmäßig alle Whitespace-Zeichen – also Leerzeichen, Tabulatoren,
Zeilenumbrüche).

Die einzelnen Tokens können mit next() als Strings oder mit den nextTyp-Methoden
(nextInt(), nextDouble(), nextBigInteger() etc.) als numerische Typen eingelesen werden.

Im Falle eines Fehlers werden folgende Exceptions ausgelöst: InputMismatchException,
NoSuchElementException und IllegalStateException. Letztere wird ausgelöst, wenn der
Scanner zuvor geschlossen wurde. Die beiden anderen Exceptions können Sie vermeiden,
wenn Sie vorab mit next(), nextInt(), nextDouble() etc. prüfen, ob ein weiteres Token vor-
handen und vom gewünschten Format ist.

import java.util.Scanner;

Scanner scan = new Scanner(str); // new Scanner(System.in), um
 // von der Konsole zu lesen
if (scan.hasNextInt())
 number = scan.nextInt();

>> Strings in Zahlen umwandeln28
Za

hl
en

Mit dem folgenden Programm können Sie Verhalten und Laufzeit der verschiedenen Umwand-
lungsmethoden auf Ihrem Rechner prüfen:

Methode Beschreibung Absicherung Laufzeit
(für »154«
auf PIII,
2 GHz)

Integer.parseInt() Übernimmt als Argument den
umzuwandelnden String und
versucht ihn in einen int-Wert
umzuwandeln.
»154« -> 154
»15.4« -> Exception
»15s4« -> Exception
»s154« -> Exception

NumberFormatException < 1 sec

DecimalFormat.parse() Übernimmt als Argument den
umzuwandelnden String, parst
diesen Zeichen für Zeichen, bis
das Ende oder ein Nicht-Zah-
len-Zeichen erreicht wird, und
liefert das Ergebnis als Long-
Objekt (bzw. Double) zurück.
»154« -> 154
»15.4« -> 154
»15s4« -> 15
»s154« -> Exception

ParseException ~ 100 sec

Scanner.nextInt() »154« -> 154
»15.4« -> hasNextInt() ergibt
false
»15s4« -> hasNextInt() ergibt
false
»s154« -> hasNextInt() ergibt
false

Scanner.hasNextInt() ~ 2500 sec

Tabelle 2: Vergleich verschiedener Verfahren zur Umwandlung von Strings in Zahlen

import java.util.Scanner;
import java.text.DecimalFormat;
import java.text.ParseException;

public class Start {

 public static void main(String[] args) {
 System.out.println();

 if (args.length != 1) {
 System.out.println(" Aufruf: Start <Ganzzahl>");

Listing 7: Vergleich verschiedener Umwandlungsverfahren

>> Zahlen und Mathematik 29

Za
hl

en

 System.exit(0);
 }

 long start, end; // für die Zeitmessung
 int number;
 String str = args[0]; // Die umzuwandelnde Zahl als String

 // Umwandlung mit parseInt()
 number = -1;
 start = System.currentTimeMillis();
 for(int i = 0; i <= 10000; ++i) {
 try {
 number = Integer.parseInt(str);
 }
 catch(NumberFormatException e) {}
 }
 end = System.currentTimeMillis();
 System.out.printf("%15s liefert %d nach %5s sec \n", "parseInt()",
 number, (end-start));

 // Umwandlung mit DecimalFormat
 number = -1;
 start = System.currentTimeMillis();
 for(int i = 0; i <= 10000; ++i) {
 DecimalFormat df = new DecimalFormat();
 try {
 number = (df.parse(str)).intValue();
 }
 catch(ParseException e) {}
 }
 end = System.currentTimeMillis();
 System.out.printf("%15s liefert %d nach %5s sec \n", "DecimalFormat",
 number, (end-start));

 // Umwandlung mit Scanner
 number = -1;
 start = System.currentTimeMillis();
 for(int i = 0; i <= 10000; ++i) {
 Scanner scan = new Scanner(str);
 if (scan.hasNextInt())
 number = scan.nextInt();
 }
 end = System.currentTimeMillis();
 System.out.printf("%15s liefert %d nach %5s sec \n", "Scanner", number,
 (end-start));

 }
}

Listing 7: Vergleich verschiedener Umwandlungsverfahren (Forts.)

>> Zahlen in Strings umwandeln30
Za

hl
en

8 Zahlen in Strings umwandeln
Die Umwandlung von Zahlen in Strings gehört wie ihr Pendant, die Umwandlung von Strings
in Zahlen, zu den elementarsten Programmieraufgaben überhaupt. Java unterstützt den Pro-
grammierer dabei mit drei Varianten:

� der auf toString() basierenden, (weitgehend) automatischen Umwandlung (für größtmög-
liche Bequemlichkeit),

� der auf NumberFormat und DecimalFormat basierenden, beliebig formatierbaren Umwand-
lung (für größtmögliche Flexibilität)

� sowie der von C übernommenen formatierten Ausgabe mit printf(). (printf() eignet sich
nur zur Ausgabe auf die Konsole und wird hier nicht weiter behandelt. Für eine Beschrei-
bung der Methode siehe Lehrbücher zu Java oder die Java-API-Referenz.)

Zahlen in Strings umwandeln mit toString()
Wie Sie wissen, erben alle Java-Klassen von der obersten Basisklasse die Methode toString(),
die eine Stringdarstellung des aktuellen Objekts zurückliefert. Die Implementierung von
Object liefert einen String des Aufbaus klassenname@hashCodeDesObjekts zurück. Abgeleitete
Klassen können die Methode überschreiben, um sinnvollere Stringdarstellungen ihrer Objekte
zurückzugeben. Für die Wrapper-Klassen zu den numerischen Datentypen ist dies geschehen
(siehe Tabelle 3).

Bei Ausgaben mit PrintStream.print() und PrintStream.println() oder bei Stringkonkatena-
tionen mit dem +-Operator wird für primitive numerische Daten intern automatisch ein Objekt
der zugehörigen Wrapper-Klasse erzeugt und deren toString()-Methode aufgerufen. Dieser
Trick erlaubt es, Zahlen mühelos auszugeben oder in Strings einzubauen – sofern man sich
mit der Standardformatierung durch die toString()-Methoden zufrieden gibt.

toString()-Methode zurückgelieferter String

Integer.toString()
Byte.toString()
Short.toString()

Stringdarstellung der Zahl, bestehend aus maximal 32 Ziffern. Negative
Zahlen beginnen mit einem Minuszeichen.
123
-9000

Long.toString() Wie für Integer, aber mit maximal 64 Ziffern.

Float.toString()
Double.toString()

Null wird als 0.0 dargestellt.
Zahlen, deren Betrag zwischen 10-3 und 107 liegt, werden als Zahl mit
Nachkommastellen dargestellt. Es wird immer mindestens eine Nachkom-
mastelle ausgegeben. Der intern verwendete Umwandlungsalgorithmus
kann dazu führen, dass eine abschließende Null ausgegeben wird.
Zahlen außerhalb des Bereichs von 10-3 und 107 werden in Exponential-
schreibweise dargestellt oder als infinity.
Negative Zahlen werden mit Vorzeichen dargestellt.
-333.0 // -333
0.0010 // 0.001
9.9E-4 // 0.00099
Infinity // 1e380 * 10

Tabelle 3: Formate der toString()-Methoden

>> Zahlen und Mathematik 31

Za
hl

en

int number = 12;
System.out.print(number);
System.out.print("Wert der Variablen: " + number);

Zahlen in Strings umwandeln mit NumberFormat und DecimalFormat
Wem die Standardformate von toString() nicht genügen, der kann auf die abstrakte Klasse
NumberFormat und die von ihr abgeleite Klasse DecimalFormat zurückgreifen. Die Klasse
DecimalFormat arbeitet mit Patterns (Mustern). Jedes DecimalFormat-Objekt kapselt intern ein
Pattern, das angibt, wie das Objekt Zahlen formatiert. Die eigentliche Formatierung erfolgt
durch Aufruf der format()-Methode des Objekts. Die zu formatierende Zahl wird als Argument
übergeben, der formatierte String wird als Ergebnis zurückgeliefert.

Die Patterns haben folgenden Aufbau:

Präfixopt Zahlenformat Suffixopt

Präfix und Suffix können neben beliebigen Zeichen, die unverändert ausgegeben werden,
auch die Symbole % (Prozentsymbol), \u2030 (Promillesymbol) und \u00A4 (Währungssym-
bol) enthalten. Die eigentliche Zahl wird gemäß dem mittleren Teil formatiert, der folgende
Symbole enthalten kann:

Integer- und Gleitkommazahlen können nach folgenden Schemata aufgebaut werden:

#,##0

#,##0.00#

Die Vorkommastellen können durch das Tausenderzeichen gruppiert werden. Es ist unnötig,
mehr als ein Tausenderzeichen zu setzen, da bei mehreren Tausenderzeichen die Anzahl der
Stellen pro Gruppe gleich der Anzahl Stellen zwischen dem letzten Tausenderzeichen und dem
Ende des ganzzahligen Teils ist (in obigem Beispiel 3). Im Vorkommateil darf rechts von einer
obligatorischen Ziffer (0) keine optionale Ziffer mehr folgen. Die maximale Anzahl Stellen im
Vorkommateil ist unbegrenzt, optionale Stellen müssen lediglich zum Setzen des Tausender-
zeichens angegeben werden. Im Nachkommateil darf rechts von einer optionalen Ziffer keine
obligatorische Ziffer mehr folgen. Die Zahl der obligatorischen Ziffern entspricht hier der Min-
destzahl an Stellen, die Summe aus obligatorischen und optionalen Ziffern der Maximalzahl an
Stellen. Optional kann sich an beide Formate die Angabe eines Exponenten anschließen (siehe
Rezept 9).

Negative Zahlen werden standardmäßig durch Voranstellung des Minuszeichens gebildet, es
sei denn, es wird dem Pattern für die positiven Zahlen mittels ; ein spezielles Negativ-Pattern
angehängt.

Symbol Bedeutung

0 obligatorische Ziffer

optionale Ziffer

. Dezimalzeichen

, Tausenderzeichen

- Minuszeichen

E Exponentialzeichen

Tabelle 4: Symbole für DecimalFormat-Patterns

>> Zahlen in Strings umwandeln32
Za

hl
en

Landesspezifische Symbole wie Tausenderzeichen, Währungssymbol etc. werden gemäß der
aktuellen Lokale der JVM gesetzt.

import java.text.DecimalFormat;
...

double number = 3344.588;

DecimalFormat df = new DecimalFormat("#,##0.00");
System.out.println(df.format(number)); // Ausgabe: 3,344.59

Statt eigene Formate zu definieren, können Sie sich auch von den statischen Methoden der
Klasse NumberFormat vordefinierte DecimalFormat-Objekte zurückliefern lassen:

import java.text.NumberFormat;
...

double number = 0.3;
NumberFormat nf = NumberFormat.getPercentInstance();
System.out.print(nf.format(number)); // Ausgabe: 30%

number = 12345.6789;
nf = NumberFormat.getNumberInstance();
System.out.print(nf.format(number)); // Ausgabe: 12.345,679

NumberFormat-Methode Liefert

getInstance()
getNumberInstance()

Format für beliebige Zahlen:
#,##0.###

(= Zahl mit mindestens einer Stelle, maximal drei Nachkomma-
stellen und Tausenderzeichen nach je drei Stellen)

getIntegerInstance() Format für Integer-Zahlen:
#,##0

(= Zahl mit mindestens einer Stelle, keine Nachkommastellen und
Tausenderzeichen nach je drei Stellen)

getPercentInstance() Format für Prozentangaben:
#,##0%

(= Zahl mit mindestens einer Stelle, keine Nachkommastellen,
Tausenderzeichen nach je drei Stellen und abschließendem Prozent-
zeichen)
(Achtung! Die zu formatierende Zahl wird automatisch mit 100
multipliziert.)

getCurrencyInstance() Format für Preisangaben:
#,##0.00 ¤

(= Zahl mit mindestens einer Stelle, genau zwei Nachkommastellen,
Tausenderzeichen nach je drei Stellen und abschließendem Leer- und
Währungszeichen)

Tabelle 5: Factory-Methoden der Klasse NumberFormat

>> Zahlen und Mathematik 33

Za
hl

en

Formatierungsobjekte anpassen
Die von einem DecimalFormat-Objekt vorgenommene Formatierung kann jederzeit durch Auf-
ruf der entsprechenden set-Methoden angepasst werden.

import java.text.DecimalFormat;
import java.text.NumberFormat;
...

double number = 12345.6789;
NumberFormat nf = NumberFormat.getNumberInstance();
nf.setMaximumFractionDigits(2);
nf.setGroupingUsed(false);
if (nf instanceof DecimalFormat)
 ((DecimalFormat) nf).setPositiveSuffix(" Meter");

System.out.print(nf.format(number)); // Ausgabe: 12345,68 Meter

Eigene, vordefinierte Formate
Wenn Sie an verschiedenen Stellen immer wieder dieselben Formatierungen benötigen, lohnt
sich unter Umständen die Definition eigener vordefinierter Formate, beispielsweise in Form
von static final-Konstanten, die mittels eines static-Blocks konfiguriert werden.

Die folgenden Definitionen gestatten die schnelle Formatierung von Gleitkommazahlen gemäß
US-amerikanischer Gepflogenheiten, mit maximal drei Nachkommastellen und je nach aus-
gewählter Konstante mit oder ohne Gruppierung.

import java.text.NumberFormat;
import java.util.Locale;

public class MoreMath {

Methode Beschreibung

void setCurrency(Currency c) Ändert die zu verwendende Währung.

void setDecimalSeparatorAlwaysShown(boolean opt) Wird true übergeben, wird das Dezimalzeichen
auch am Ende von Integer-Zahlen angezeigt.

void setGroupingSize(int n) Anzahl Stellen pro Gruppe.

void setGroupingUsed(boolean opt) Legt fest, ob die Vorkommastellen gruppiert
werden sollen.

void setMaximumFractionDigits(int n) Maximale Anzahl Stellen im Nachkommateil.

void setMaximumIntegerDigits(int n) Maximale Anzahl Stellen im Integer-Teil.

void setMinimumFractionDigits(int n) Minimale Anzahl Stellen im Nachkommateil.

void setMinimumIntegerDigits(int n) Minimale Anzahl Stellen im Integer-Teil.

void setMultiplier(int n) Faktor für Prozent- und Promille-Darstellung.

setNegativePrefix(String new)
setNegativeSuffix(String new)
setPositivePrefix(String new)
setPositiveSuffix(String new)

Setzt Präfixe und Suffixe der Patterns für
negative bzw. positive Zahlen.

Tabelle 6: Set-Methoden von DecimalFormat (die hervorgehobenen Methoden sind auch für
NumberFormat definiert)

>> Ausgabe: Dezimalzahlen in Exponentialschreibweise34
Za

hl
en

 public static final NumberFormat NFUS;
 public static final NumberFormat NFUS_NOGROUP;

 static {
 NFUS = NumberFormat.getNumberInstance(Locale.US);
 NFUS_NOGROUP = NumberFormat.getNumberInstance(Locale.US);
 NFUS_NOGROUP.setGroupingUsed(false);
 }

 // Instanzbildung unterbinden
 private MoreMath() { }
}

Aufruf:

public static void main(String args[]) {
...
 double number = 12345.6789

 System.out.println(MoreMath.NFUS.format(number));
 System.out.println(MoreMath.NFUS_NOGROUP.format(number));
}

Ausgabe:

12,345.679
12345.679

9 Ausgabe: Dezimalzahlen in Exponentialschreibweise
Es mag verwundern, aber die Ausgabe von Dezimalzahlen in Exponentialschreibweise stellt in
Java insofern ein Problem dar, als es (derzeit) keine standardmäßige Unterstützung dafür gibt.

Wenn Sie für die Umwandlung einer Dezimalzahl in einen String der toString()-Methode ver-
trauen, sind die Zahlen mal als normale Dezimalbrüche und mal in Exponentialschreibweise
formatiert. Wenn Sie NumberFormat.getNumberInstance() bemühen, erhalten Sie immer einfache
Dezimalbrüche. Eine vordefinierte NumberFormat-Instanz für die Exponentialschreibweise gibt es
nicht. Lediglich printf() bietet Unterstützung für die Formatierung in Exponentialschreibweise
(Konvertierungssymbol %e), doch eignet sich printf() nur für die Konsolenausgabe.

Will man also Dezimalzahlen in Exponentialschreibweise darstellen, muss man für ein geeig-
netes Pattern ein eigenes DecimalFormat-Objekt erzeugen. (Mehr zu DecimalFormat-Patterns in
Rezept 8).

DecimalFormat-Patterns für die Exponentialdarstellung
Patterns für die Exponentialdarstellung bestehen wie jedes DecimalFormat-Pattern aus Präfix,
Zahlenformat und Suffix. Das Zahlenformat hat den Aufbau:

#0.0#E0

H
in

w
e

is Mehr zur landesspezifischen Formatierung in der Kategorie »Internationalisierung«.

>> Zahlen und Mathematik 35

Za
hl

en

Die Umwandlung eines solchen Patterns in eine formatierte Zahl ist etwas eigentümlich.
Grundsätzlich gilt: Sie geben die maximale und minimale Anzahl Vorkommastellen an und
das DecimalFormat-Objekt berechnet den passenden Exponenten. Aus diesem Grund kann für
den Exponenten auch nur die minimale Anzahl Stellen angegeben werden. Die maximale Zahl
ist unbeschränkt.

Für die Berechnung des Exponenten gibt es zwei Modelle, die über den Aufbau des Vorkom-
mateils ausgewählt werden:

� Besteht der Vorkommateil nur aus obligatorischen Stellen (0), berechnet DecimalFormat den
Exponenten so, dass exakt die vorgegebene Zahl Stellen vor dem Komma erreicht wird.

� Enthält der Vorkommateil optionale Stellen (#), ist der Exponent stets ein Vielfaches der
Summe an Vorkommastellen.

Die Anzahl signifikanter Stellen in der Mantisse entspricht der Summe aus obligatorischen
Vorkomma- und maximaler Anzahl Nachkommastellen.

Tausenderzeichen sind nicht erlaubt.

Vordefinierte Patterns
Wenn Sie an verschiedenen Stellen immer wieder dieselben Formatierungen benötigen, lohnt
sich unter Umständen die Definition eigener vordefinierter Formate, beispielsweise in Form
von static final-Konstanten, die mittels eines static-Blocks konfiguriert werden.

Die folgenden Definitionen gestatten die schnelle Formatierung von Gleitkommazahlen in
Exponentialschreibweise mit

� einer Vorkommastelle und sechs signifikanten Stellen (DFEXP),

� sechs signifikanten Stellen und Exponenten, die Vielfache von 3 sind (DFEXP_ENG).

Zahl Pattern String

12.3456 0.#E0 1,2E1

12.3456 000.#E0 123,5E-1

12.3456 000.#E00 123,5E-01

Zahl Pattern String

12.3456 #.#E0 1,2E1

12.3456 ##0.#E0 12,35E0

123456 ##0.#E0 123,5E3

import java.text.DecimalFormat;

public class MoreMath {

 public static final DecimalFormat DFEXP;
 public static final DecimalFormat DFEXP_ENG;

Listing 8: Vordefinierte DecimalFormat-Objekte für die Exponentialdarstellung

>> Ausgabe: Dezimalzahlen in Exponentialschreibweise36
Za

hl
en

Eigene Formatierungsmethode
DecimalFormat verwendet zur Kennzeichnung des Exponenten ein großes E und zeigt positive
Exponenten ohne Vorzeichen an. Wer ein kleines E bevorzugt oder den Exponenten stets mit
Vorzeichen dargestellt haben möchte (so wie es printf() tut), muss den von Decimal-
Format.format() zurückgelieferten String manuell weiterverarbeiten.

Die Methode formatExp() kann Ihnen diese Arbeit abnehmen. Sie formatiert die übergebene
Zahl in Exponentialschreibweise mit einer Vorkommastelle. Die maximale Anzahl Nachkom-
mastellen in der Mantisse wird als Argument übergeben. Optional können Sie über Boolesche
Argumente zwischen großem und kleinem E und zwischen Plus- und Minuszeichen oder nur
Minuszeichen vor dem Exponenten wählen.

 static {
 DFEXP = new DecimalFormat("0.#####E0");
 DFEXP_ENG = new DecimalFormat("##0.#####E0");
 }
...
}

import java.text.DecimalFormat;

public class MoreMath {
 ...

 /**
 * Formatierung als Dezimalzahl in Exponentialschreibweise
 */
 public static String formatExp(double number, int maxStellen) {
 return MoreMath.formatExp(number, maxStellen, false, false);
 }

 public static String formatExp(double number, int maxStellen,
 boolean smallExp) {
 return MoreMath.formatExp(number, maxStellen, smallExp, false);
 }

 public static String formatExp(double number, int maxDigits,
 boolean smallExp, boolean plus) {

 // Pattern für Exponentialschreibweise erzeugen
 StringBuilder pattern = new StringBuilder("0.#");

 if(maxDigits > 1)
 pattern.append(MoreString.charNTimes('#',maxDigits-1));

 pattern.append("E00");

Listing 9: Dezimalzahlen in Exponentialschreibweise

Listing 8: Vordefinierte DecimalFormat-Objekte für die Exponentialdarstellung (Forts.)

>> Zahlen und Mathematik 37

Za
hl

en

Die Methode formatExp(double number, int maxStellen, boolean smallExp, boolean plus)
baut zuerst das gewünschte Pattern auf, wobei sie zur Vervielfachung der optionalen Nach-
kommastellen die Methode MoreString.charNTimes() aus Rezept 32 aufruft. Dann erzeugt sie
den gewünschten Formatierer und noch in der gleichen Zeile durch Aufruf der format()-
Methode die Stringdarstellung der Zahl. Für eine Darstellung mit kleinem e wird das große E
im String durch das kleine e ersetzt. Wurde die Darstellung mit Pluszeichen vor dem Exponent
gewünscht und ist der Betrag der Zahl größer oder gleich 1, wird das Pluszeichen hinter dem E
(bzw. e) eingefügt.

Für die Nachbearbeitung des Strings wird dieser in ein StringBuilder-Objekt umgewandelt –
nicht wegen der Unveränderbarkeit von String-Objekten (die dazu führt, dass bei String-
Manipulationen stets Kopien erzeugt werden), sondern wegen der insert()-Methode, die
String fehlt.

Mit dem zugehörigen Testprogramm können Sie das Ergebnis verschiedener Formatierungs-
möglichkeiten vergleichen.

10 Ausgabe: Zahlenkolonnen am Dezimalzeichen
ausrichten

Die meisten Programmierer betrachten die Formatierung der Ausgaben als ein notwendiges
Übel – sicherlich nicht ganz zu Unrecht, denn neben der Berechnung korrekter Ausgaben ist
deren Formatierung natürlich nur zweitrangig. Trotzdem sollte die Formatierung der Ausga-
ben, insbesondere die Präsentation von Ergebnissen, nicht vernachlässigt werden – nicht ein-
mal dann, wenn sich dieses notwendige Übel als unnötig kompliziert erweist, wie
beispielsweise bei der Ausrichtung von Zahlenkolonnen am Dezimalzeichen. In der API-Doku-
mentation zur Java-Klasse NumberFormat findet sich hierzu der Hinweis, dass sich besagtes
Problem durch Übergabe eines FieldPosition-Objekts an die format()-Methode von Number-

 // Zahl als String formatieren
 String str = (new DecimalFormat(pattern.toString())).format(number);

 // Exponentzeichen und/oder Pluszeichen
 if (smallExp || (plus && Math.abs(number) >= 1)) {

 int pos = str.indexOf('E');
 StringBuilder tmp = new StringBuilder(str);

 if (smallExp)
 tmp.replace(pos, pos+1, "e");

 if (plus && Math.abs(number) >= 1)
 tmp.insert(pos+1, '+');

 return tmp.toString();
 } else
 return str;
 }
}

Listing 9: Dezimalzahlen in Exponentialschreibweise (Forts.)

>> Ausgabe: Zahlenkolonnen am Dezimalzeichen ausrichten38
Za

hl
en

Format (bzw. DecimalFormat) lösen lässt. Wie dies konkret aussieht, untersuchen die beiden fol-
genden Abschnitte.

Ausgaben bei proportionaler Schrift
Als Beispiel betrachten wir das folgende Zahlen-Array:

double[] numbers = { 1230.45, 100, 8.1271 };

Um diese Zahlenkolonne untereinander, ausgerichtet am Dezimalzeichen, ausgeben zu kön-
nen, müssen drei Dinge geschehen:

1. Die Zahlen müssen in Strings umgewandelt werden.

Dies geschieht durch Erzeugung einer passenden NumberFormat- oder DecimalFormat-Instanz
und Übergabe an die Methode format(), siehe Rezept 8.

2. Die gewünschte Position des Dezimalzeichens muss festgelegt werden.

Hier ist zu beachten, dass die gewählte Position nicht zu weit vorne liegt, damit nicht bei
der Ausgabe der Platz für die Vorkommastellen der einzelnen Strings fehlt. Liegen die aus-
zugebenden Strings bereits zu Beginn der Ausgabe komplett vor, empfiehlt es sich, die
Strings mit den Zahlen in einer Schleife zu durchlaufen und sich an dem String zu orien-
tieren, in dem das Dezimalzeichen am weitesten hinten liegt.

3. Den einzelnen Strings müssen so viele Leerzeichen vorangestellt werden, bis ihr Dezimal-
zeichen an der gewünschten Stelle liegt.

Die nachfolgend abgedruckte Methode alignAtDecimal() erledigt alle drei Schritte in einem.
Die Methode übernimmt ein double-Array der auszugebenden Zahlen und einen Formatstring
für DecimalFormat und liefert die für die Ausgabe aufbereiteten Stringdarstellungen als Array
von StringBuffer-Objekten zurück. Für die häufig benötigte Ausgabe von Zahlen mit zwei
Nachkommastellen gibt es eine eigene überladene Version, der Sie nur das Zahlen-Array über-
geben müssen.

Abbildung 2: Formatierung von Dezimalzahlen

import java.text.DecimalFormat;
import java.text.FieldPosition;
...
/**
 * Array von Strings am Dezimalzeichen ausrichten

Listing 10: Ausrichtung am Dezimalzeichen bei proportionaler Schrift

>> Zahlen und Mathematik 39

Za
hl

en

Wie findet diese Methode die Position der Dezimalzeichen? Denkbar wäre natürlich, einfach
mit indexOf() nach dem Komma zu suchen. Doch dieser Ansatz funktioniert natürlich nur,
wenn DecimalFormat gemäß einer Lokale formatiert, die das Komma als Dezimalzeichen ver-
wendet. Lauten die Alternativen demnach, entweder eigenen Code zur Unterstützung ver-
schiedener Lokale zu schreiben oder aber eine feste Lokale vorzugeben und damit auf
automatische Adaption an nationale Eigenheiten zu verzichten? Mitnichten. Sie müssen der
format()-Methode lediglich als drittes Argument eine FieldPosition-Instanz übergeben und
können sich dann von diesem die Position des Dezimalzeichens zurückliefern lassen. Für die
alignAtDecimal()-Methode sieht dies so aus, dass diese eingangs ein FieldPosition-Objekt
erzeugt. Dieses liefert Informationen über den ganzzahligen Anteil, zu welchem Zweck die
Konstante INTEGER_FIELD übergeben wird. (Wenn Sie die ebenfalls vordefinierte Konstante

 * (Version für proportionale Schrift)
 */
public static StringBuffer[] alignAtDecimal (double[] numbers) {
 return alignAtDecimalPoint(numbers, "#,##0.00");
}

public static StringBuffer[] alignAtDecimal (double[] numbers,
 String format) {
 DecimalFormat df = new DecimalFormat(format);
 FieldPosition fpos =
 new FieldPosition(DecimalFormat.INTEGER_FIELD);
 StringBuffer[] strings = new StringBuffer[numbers.length];
 int[] charToDecP = new int[numbers.length];
 int maxDist = 0;

 // nötige Vorarbeiten
 // Strings initisieren, Position des Dezimalpunkts
 // feststellen, max. Zahl Vorkommastellen ermitteln
 for(int i = 0; i < numbers.length; ++i) {
 strings[i] = new StringBuffer("");
 df.format(numbers[i], strings[i], fpos);
 charToDecP[i] = fpos.getEndIndex();
 if (maxDist < charToDecP[i])
 maxDist = charToDecP[i];
 }

 // nötige Anzahl Leerzeichen voranstellen
 char[] pad;
 for(int i = 0; i < numbers.length; ++i) {
 pad = new char[maxDist - charToDecP[i]];
 for(int n = 0; n < pad.length; ++n)
 pad[n] = ' ';

 strings[i].insert(0, pad);
 }

 return strings;
}

Listing 10: Ausrichtung am Dezimalzeichen bei proportionaler Schrift (Forts.)

>> Ausgabe: Zahlenkolonnen am Dezimalzeichen ausrichten40
Za

hl
en

FRACTION_FIELD übergeben, beziehen sich die Angaben, die die Methoden des FieldPosition-
Objekts zurückliefern, auf den Nachkommaanteil.)

In einer ersten Schleife werden dann die Zahlen mit Hilfe der format()-Methode in Strings
umgewandelt und in StringBuffer-Objekten abgespeichert. Die Position des Dezimalzeichens
wird für jeden String mit Hilfe der FieldPosition-Methode getEndIndex() abgefragt und im
Array charToDecP zwischengespeichert. (Enthält der String kein Dezimalzeichen, wird die Posi-
tion hinter der letzten Ziffer des Vorkommateils zurückgeliefert.) Gleichzeitig wird in maxDist
der größte Abstand von Stringanfang bis Dezimalzeichen festgehalten.

In der anschließenden, zweiten for-Schleife werden die Strings dann so weit vorne mit Leer-
zeichen aufgefüllt, dass in allen Strings das Dezimalzeichen maxDist Positionen hinter dem
Stringanfang liegt.

Der Einsatz der Methode könnte nicht einfacher sein: Sie übergeben ihr das Array der zu for-
matierenden Zahlen und erhalten die fertigen Strings in Form eines StringBuffer-Arrays
zurück:

// aus Start.java
double[] numbers = { 1230.45, 100, 8.1271 };
StringBuffer[] strings;

strings = MoreMath.alignAtDecimal(numbers);
System.out.println();
System.out.println(" Kapital : " + strings[0]);
System.out.println(" Bonus : " + strings[1]);
System.out.println(" Rendite (%) : " + strings[2]);

Sagt Ihnen die vorgegebene Formatierung mit zwei Nachkommastellen nicht zu, übergeben
Sie einfach Ihren eigenen Formatstring, siehe auch Rezept 8.

// aus Start.java
strings = MoreMath.alignAtDecimal(numbers, "#,##0.0######");
System.out.println();
System.out.println(" Kapital : " + strings[0]);
System.out.println(" Bonus : " + strings[1]);
System.out.println(" Rendite (%) : " + strings[2]);

Ausgaben bei nichtproportionaler Schrift
Etwas komplizierter wird es, wenn die Zahlen in nichtproportionaler Schrift in ein Fenster
oder eine Komponente (vorzugsweise eine Canvas- oder JPanel-Instanz) gezeichnet werden
sollen. Da in einer nichtproportionalen Schrift die einzelnen Buchstaben unterschiedliche
Breiten haben, können die Strings mit den Zahlendarstellungen nicht durch Einfügen von
Leerzeichen ausgerichtet werden. Stattdessen muss für jeden String berechnet werden, ab wel-
cher x-Koordinate mit dem Zeichnen des Strings zu beginnen ist, damit sein Dezimalzeichen
in einer Höhe mit den Dezimalzeichen der anderen Strings liegt.

>> Zahlen und Mathematik 41

Za
hl

en

Abbildung 3: Ausgerichtete Zahlenkolonnen (Formate: »#,##0.00« (Vorgabe der überladenen
alignAtDecimal()-Version), »#,##0.0######« und »#,##0.##«)

H
in

w
e

is Statt die aufbereiteten Stringdarstellungen auf die Konsole auszugeben, können Sie sie
auch in Dateien oder GUI-Komponenten schreiben oder in eine GUI-Komponente, bei-
spielsweise ein JPanel-Feld, zeichnen. Einzige Bedingung: Es wird eine proportionale
Schrift verwendet.

public void paintComponent(Graphics g) {
 super.paintComponent(g);

 int x = 50;
 int y = 50;
 FontMetrics fm;

 g.setFont(new Font("Courier", Font.PLAIN, 24));
 fm = g.getFontMetrics();

 strings = MoreMath.alignAtDecimal(numbers, "#,##0.0######");
 g.drawString("Kapital : " + strings[0].toString(), x, y);
 g.drawString("Bonus : " + strings[1].toString(),
 x, y + fm.getHeight());
 g.drawString("Rendite (%) : " + strings[2].toString(),
 x, y + 2 * fm.getHeight());
}

import java.text.DecimalFormat;
import java.text.FieldPosition;
import java.awt.FontMetrics;

/**
 * Array von Strings am Dezimalzeichen ausrichten

Listing 11: Ausrichtung am Dezimalzeichen bei nichtproportionaler Schrift

>> Ausgabe: Zahlenkolonnen am Dezimalzeichen ausrichten42
Za

hl
en

Für die Ausrichtung von Zahlen in nichtproportionaler Schrift übernimmt die alignAtDeci-
mal()-Methode zwei weitere Argumente:

� Zum einen muss sie für jeden formatierten String den Abstand vom Stringanfang bis zum
Dezimalzeichen in Pixeln berechnen. Da sie dies nicht allein leisten kann, übernimmt sie
ein FontMetrics-Objekt, das zuvor für den gewünschten Ausgabefont erzeugt wurde (siehe

 * (Version für nicht-proportionale Schrift)
 */
public static StringBuffer[] alignAtDecimal(double[] numbers,
 FontMetrics fm,
 int[] xOffsets) {
 return alignAtDecimal(numbers, "#,##0.00", fm, xOffsets);
}

public static StringBuffer[] alignAtDecimal(double[] numbers,
 String format,
 FontMetrics fm,
 int[] xOffsets) {
 DecimalFormat df = new DecimalFormat(format);
 FieldPosition fpos =
 new FieldPosition(DecimalFormat.INTEGER_FIELD);
 StringBuffer[] strings = new StringBuffer[numbers.length];
 int[] pixToDecP = new int[numbers.length];
 int maxDist = 0;

 if(numbers.length != xOffsets.length)
 throw new IllegalArgumentException("Fehler in Array-Dimensionen");

 // nötige Vorarbeiten
 // Strings erzeugen, Position des Dezimalpunkts
 // feststellen, Pixelbreite bis Dezimalpunkt ermitteln
 for(int i = 0; i < numbers.length; ++i) {
 strings[i] = new StringBuffer("");
 df.format(numbers[i], strings[i], fpos);

 pixToDecP[i] = fm.stringWidth(strings[i].substring(0,
 fpos.getEndIndex()));
 if (maxDist < pixToDecP[i])
 maxDist = pixToDecP[i];
 }

 // xOffsets berechnen
 for(int i = 0; i < numbers.length; ++i) {
 xOffsets[i] = maxDist - pixToDecP[i];
 }

 return strings;
}

Listing 11: Ausrichtung am Dezimalzeichen bei nichtproportionaler Schrift (Forts.)

>> Zahlen und Mathematik 43

Za
hl

en

Listing 12). Deren stringWidth()-Methode übergibt sie den Teilstring vom Stringanfang
bis zum Dezimalzeichen und erhält als Ergebnis die Breite in Pixel zurück, die sie im Array
pixToDecP speichert.

� Neben den formatierten Strings muss die Methode dem Aufrufer für jeden String den x-
Offset übergeben, um den die Ausgabe verschoben werden muss, damit die Dezimalzeichen
untereinander liegen. Zu diesem Zweck übernimmt die Methode ein int-Array, in dem es
die Offsetwerte abspeichert. Die Offsetwerte selbst werden in der zweiten for-Schleife als
Differenz zwischen der Pixelposition des am weitesten entfernt liegenden Dezimalzeichens
(maxDist) und der Position des Dezimalzeichens im aktuellen String (pixToDecP) berechnet.

Im folgenden Beispiel werden letzten Endes zwei Spalten ausgegeben. Die erste Spalte besteht
aus den Strings des Arrays prefix und wird rechtsbündig ausgegeben. Die zweite Spalte ent-
hält die Zahlen des Arrays numbers, die am Dezimalzeichen ausgerichtet werden sollen. Um
dies zu erreichen, berechnet das Programm die Länge des größten Strings der 1. Spalte (fest-
gehalten in prefixlength) sowie mit Hilfe von alignAtDecimal() die x-Verschiebungen für die
Strings der zweiten Spalte.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class StartGUI extends JFrame {
 double[] numbers = { 1230.45, 100, 8.1271 };
 String[] prefix = {"Kapital : ","Bonus : ","Rendite (%): "};
 StringBuffer[] strings = new StringBuffer[numbers.length];

 class MyCanvas extends JPanel {

 public void paintComponent(Graphics g) {
 super.paintComponent(g);

 int x = 50;
 int y = 50;
 FontMetrics fm;

 g.setFont(new Font("Times New Roman", Font.PLAIN, 24));
 fm = g.getFontMetrics();
 int prefixLength = 0;
 for (int i = 0; i < prefix.length; ++i)
 if (prefixLength < fm.stringWidth(prefix[i]))
 prefixLength = fm.stringWidth(prefix[i]);

 int[] xOffsets = new int[numbers.length];
 strings = MoreMath.alignAtDecimal(numbers,
 "#,##0.0######",
 fm, xOffsets);
 for (int i = 0; i < strings.length; ++i) {
 g.drawString(prefix[i], x, y + i*fm.getHeight());
 g.drawString(strings[i].toString(),
 x + prefixLength + xOffsets[i],

Listing 12: Fenster mit ausgerichteten Zahlen (aus StartGUI.java)

>> Ausgabe in Ein- oder Mehrzahl (Kongruenz)44
Za

hl
en

Die Strings der ersten Spalte werden einfach mit drawString() an der X-Koordinate x gezeich-
net. Die Strings der zweiten Spalte hingegen werden ausgehend von der Koordinate x zuerst
um prefixlength Pixel (um sich nicht mit der ersten Spalte zu überschneiden) und dann noch
einmal um xOffsets[i] Positionen (damit die Dezimalzeichen untereinander zu liegen kom-
men) nach rechts verschoben.

11 Ausgabe in Ein- oder Mehrzahl (Kongruenz)
Kongruenz im sprachwissenschaftlichen Sinne ist die formale Übereinstimmung zusammenge-
hörender Satzglieder, ihre wohl bekannteste Form die Übereinstimmung von attributivem
Adjektiv und Beziehungswort in Kasus, Numerus und Genus wie in »das kleine Haus« oder
»dem kleinen Hund«. Es gibt sprachliche Wendungen, in denen selbst Leute mit gutem Sprach-
gefühl nicht gleich sagen können, ob der Kongruenz Genüge getan wurde (wie z.B. in »Wie
wäre es mit einem Keks oder Törtchen?«), doch dies ist ein Thema für ein anderes Buch.

Als Programmierer leiden wir vielmehr unter einer ganz anderen Form der Kongruenz, einer
Kongruenz im Numerus, die dem Redenden oder Schreibenden eigentlich nie Probleme berei-
tet, sondern eben nur dem Programmierer: der Kongruenz zwischen Zahlwort und Bezie-
hungswort.

Angenommen, Sie arbeiten mit einem Online-Bestellsystem für eine Bäckerei und wollen dem
Kunden zum Abschluss anzeigen, wie viele Brote er bestellt hat. Sie lesen die Anzahl der
bestellten Brote aus einer Variablen countBreads und erzeugen folgenden Ausgabestring: "Sie
haben " + countBreads + " Brote bestellt." Hat der Kunde zwei Brote bestellt, erhält er die
Mitteilung:

Sie haben 2 Brote bestellt.

Hat er kein oder ein Brot bestellt, liest er auf seinem Bildschirm:

Sie haben 0 Brote bestellt.

 y + i*fm.getHeight());
 }
 }
 } // Ende von MyCanvas
...

Abbildung 4: Ausrichtung von Zahlenkolonnen bei nichtproportionaler Schrift

Listing 12: Fenster mit ausgerichteten Zahlen (aus StartGUI.java) (Forts.)

>> Zahlen und Mathematik 45

Za
hl

en

oder noch schlimmer:

Sie haben 1 Brote bestellt.

Die meisten Programmierer lösen dieses Problem, indem sie das Substantiv in Ein- und Mehr-
zahl angeben – in diesem Fall also Brot(e) – oder die verschiedenen Fälle durch if-Verzwei-
gungen unterscheiden. Darüber hinaus gibt es in Java aber noch eine eigene Klasse, die
speziell für solche (und noch kompliziertere) Fälle gedacht ist: java.text.ChoiceFormat.

ChoiceFormat-Instanzen bilden eine Gruppe von Zahlenbereichen auf eine Gruppe von Strings
ab. Die Zahlenbereiche werden als ein Array von double-Werten definiert. Angegeben wird
jeweils der erste Wert im Zahlenbereich. So definiert das Array

double[] limits = {0, 1, 2};

die Zahlenbereiche

[0, 1)

[1, 2)

[2, ∞)

Werte, die kleiner als der erste Bereich sind, werden diesem zugesprochen.

Als Pendant zum Bereichsarray muss ein String-Array definiert werden, das ebenso viele
Strings enthält, wie es Bereiche gibt (hier also drei):

String[] outputs = {"Brote", "Brot", "Brote"};

Übergibt man beide Arrays einem ChoiceFormat-Konstruktor, erzeugt man eine Abbildung der
Zahlen aus den angegebenen Bereichen auf die Strings:

ChoiceFormat cf = new ChoiceFormat(limits, outputs);

Der Ausgabestring für unsere Online-Bäckerei lautete damit:

"Sie haben " + countBreads + " " + cf.format(countBreads) + " bestellt.\n"

und würde für 0, 1, 2 und 3 folgende Ausgaben erzeugen:

Sie haben 0 Brote bestellt.
Sie haben 1 Brot bestellt.
Sie haben 2 Brote bestellt.
Sie haben 3 Brote bestellt.

Parameter in Ausgabestrings
Leider ist es nicht möglich, das Argument der format()-Methode in den zurückgelieferten
String einzubauen. Dann bräuchte man nämlich statt

countBreads + " " + cf.format(countBreads)

H
in

w
e

is Wäre countBreads eine double-Variable, würde obiger Code leider auch Ausgaben wie
»Sie haben 0.5 Brote bestellt.« oder »Sie haben 1.5 Brot bestellt.« erzeugen. Um dies zu
korrigieren, könnten Sie die Grenzen als {0, 0.5, 1} festlegen, auf {"Brote", "Brot",
"Brote"} abbilden und in der Ausgabe x.5 als "x 1/2" schreiben, also beispielsweise:
»Sie haben 1 1/2 Brote bestellt.«.

>> Umrechnung zwischen Zahlensystemen46
Za

hl
en

nur noch

cf.format(countBreads)

zu schreiben, und was wichtiger wäre: Man könnte in den Ausgabestrings festlegen, ob für
einen Bereich der Zahlenwert ausgegeben soll. Beispielsweise ließe sich dann das unschöne
»Sie haben 0 Brote bestellt.« durch »Sie haben kein Brot bestellt.« ersetzen.

Die Lösung bringt in diesem Fall die Klasse java.text.MessageFormat:

// ChoiceFormat-Objekt erzeugen, das Zahlenwerte Strings zuordnet
double[] limits = {0, 1, 2};
String[] outputs = {"kein Brot", "ein Brot", "{0} Brote"};
ChoiceFormat cf = new ChoiceFormat(limits, outputs);

// MessageFormat-Objekt erzeugen und mit ChoiceFormat-Objekt verbinden
MessageFormat mf = new MessageFormat(" Sie haben {0} bestellt.\n");
mf.setFormatByArgumentIndex(0, cf);

// Ausgabe
Object[] arguments = {new Integer(number)};
System.console().printf("%s \n", mf.format(arguments)); // zur Verwendung von
 // System.console()
 // siehe Rezept 85

Sie erzeugen das gewünschte ChoiceFormat-Objekt und fügen mit {} nummerierte Platzhalter
in die Strings ein. (Beachten Sie, dass ChoiceFormat den Platzhalter nicht ersetzt, sondern
unverändert zurückliefert. Dies ist aber genau das, was wir wollen, denn das im nächsten
Schritt erzeugte MessageFormat-Objekt, das intern unser ChoiceFormat-Objekt verwendet, sorgt
für die Ersetzung des Platzhalters.)

Dann erzeugen Sie das MessageFormat-Objekt mit dem Ausgabetext. In diesen Text fügen Sie
einen Platzhalter für den Zahlenwert ein. Da der Zahlenwert von dem soeben erzeugten
ChoiceFormat-Objekt verarbeitet werden soll, registrieren Sie Letzteres mit Hilfe der setFormat-
ByArgument()-Methode als Formatierer für den Platzhalter.

Anschließend müssen Sie nur noch die format()-Methode des MessageFormat-Objekts aufrufen
und ihr die zu formatierende Zahl (allerdings in Form eines einelementigen Object-Arrays)
übergeben.

12 Umrechnung zwischen Zahlensystemen
Der Rechner kennt keine Zahlensysteme, er unterscheidet allein zwischen den binären Kodie-
rungen für Integer- und Gleitkommazahlen. Für diese Kodierungen ist die Hardware ausgelegt,
in diesen Kodierungen finden alle Berechnungen statt. Will ein Programm dem Anwender die
Verarbeitung von Zahlen aus einem bestimmten Zahlensystem erlauben, muss es lediglich
dafür sorgen, dass Zahlen aus dem betreffenden Zahlensystem eingelesen und ausgegeben
werden können. Soweit es die Integer-Zahlen betrifft, ist die hierfür benötigte Funktionalität
bereits in den Java-API-Klassen vorhanden.

>> Zahlen und Mathematik 47

Za
hl

en

Mit Hilfe dieser Methoden lässt sich auch leicht ein Hilfsprogramm schreiben, mit dem man
Zahlen zwischen den in der Programmierung am weitesten verbreiteten Zahlensystemen (2, 8,
10 und 16) umrechnen kann:

Abbildung 5: Mit ChoiceFormat können Sie (unter anderem) Mengen korrekt in
Ein- oder Mehrzahl angeben.

Einlesen Ausgeben

Zehnersystem Andere Systeme Zehnersystem Andere Systeme

Byte.parseByte
(String s)

Short.parseShort
(String s)

Integer.parseInt
(String s)

Long.parseLong
(String s)

Integer.parseInt
(String s, int
radix)

Byte.toString()
Byte.toString(byte n)
Short.toString()
Short.toString(short n)
Integer.toString()
Integer.toString(int n)
Long.toString()
Long.toString(long n)

Integer.toString(int i, int
radix)

Integer.toBinaryString(int i)
Integer.toOctalString(int i)
Integer.toHexString(int i)

System.out.printf()

Tabelle 7: Ein- und Ausgabe für Zahlen verschiedener Zahlensysteme

public class Start {

 public static void main(String args[]) {

Listing 13: Programm zur Umrechnung zwischen Zahlensystemen

>> Umrechnung zwischen Zahlensystemen48
Za

hl
en

 System.out.println();

 if (args.length != 3) {
 System.out.println(" Aufruf: Start <Ganzzahl> "
 + "<Orgin. Basis: 2, 8, 10, 16> "
 + "<Zielbasis: 2, 8, 10, 16>");
 System.exit(0);
 }

 try {
 int number = 0;
 int srcRadix = Integer.parseInt(args[1]);
 int tarRadix = Integer.parseInt(args[2]);

 if (! (srcRadix == 2 || srcRadix == 8 || srcRadix == 10
 || srcRadix == 16 || tarRadix == 2 || tarRadix == 8
 || tarRadix == 10 || tarRadix == 16)) {
 System.out.println(" Ungueltige Basis");
 System.exit(0);
 }

 number = Integer.parseInt(args[0], srcRadix);

 System.out.println(" Basis \t Zahl");
 System.out.println(" ----------------------------------");
 System.out.println(" " + srcRadix + " \t\t " + args[0]);
 System.out.println(" " + tarRadix + " \t\t "
 + Integer.toString(number, tarRadix));
 }
 catch (NumberFormatException e) {
 System.err.println(" Ungueltiges Argument");
 }

 }
}

Abbildung 6: Zahlensystemrechner; Aufruf mit <Ganzzahl> <Originalbasis> <Zielbasis>

Listing 13: Programm zur Umrechnung zwischen Zahlensystemen (Forts.)

>> Zahlen und Mathematik 49

Za
hl

en

13 Zahlen aus Strings extrahieren
Manchmal sind die Zahlen, die man verarbeiten möchte, in Strings eingebettet. Beispielsweise
könnte die Kundennummer eines Unternehmens aus einem Buchstabencode, einem Zahlen-
code, einem Geburtsdatum im Format TTMMJJ und einem abschließenden einbuchstabigen
Ländercode bestehen:

KDnr-2345-150474a

Wenn Sie aus einem solchen String die Zahlen herausziehen möchten, können Ihnen die im
Rezept 8 vorgestellten Methoden nicht mehr weiterhelfen.

Gleiches gilt, wenn Sie Zahlen aus einem größeren Text, beispielsweise einer Datei, extrahie-
ren müssen. Eine Möglichkeit, dies zu bewerkstelligen, wäre das Einlesen des Textes mit einem
Scanner-Objekt. Dies geht allerdings nur, wenn der Text so in Tokens zerlegt werden kann,
dass die Zahlen als Tokens verfügbar sind. Außerdem ist diese Lösung, obwohl im Einzelfall
sicher gangbar und auch sinnvoll, per se doch recht unflexibel.

Eine recht praktische und flexible Lösung für beide oben angeführten Aufgabenstellungen ist
dagegen das Extrahieren der Zahlen (oder auch anderer Textpassagen) mittels regulärer Aus-
drücke und Pattern Matching. Zur einfacheren Verwendung definieren wir gleich zwei Metho-
den:

ArrayList<String> getPatternsInString(String s, String p)

ArrayList<String> getNumbersInString(String s)

Die Methode getPatternsInString() übernimmt als erstes Argument den String, der durch-
sucht werden soll, und als zweites Argument den regulären Ausdruck (gegeben als String), mit
dem der erste String durchsucht werden soll. Alle gefundenen Vorkommen von Textpassagen,
die durch den regulären Ausdruck beschrieben werden, werden in einer ArrayList<String>-
Collection zurückgeliefert.

Für das Pattern Matching sind in dem Paket java.util.regex die Klassen Pattern und Matcher
definiert. Die Methode getPatternsInString() »kompiliert« zuerst den String mit dem regulä-
ren Ausdruck p mit Hilfe der statischen Pattern-Methode compile() in ein Pattern-Objekt pat.
Als Nächstes wird ein Matcher benötigt, der den String s unter Verwendung des in pat gespei-
cherten regulären Ausdrucks durchsucht. Dieses Matcher-Objekt liefert die Pattern-Methode
matcher(), der als einziges Argument der zu durchsuchende String übergeben wird. Der Mat-
cher enthält nun alle benötigten Informationen (das Pattern und den zu durchsuchenden
String); die Methoden zum Finden der übereinstimmenden Vorkommen stellt die Klasse Mat-
cher selbst zur Verfügung:

� Mit boolean matches() kann man prüfen, ob der gesamte String als ein »Match« für den
regulären Ausdruck angesehen werden kann.

� Mit boolean find() kann man den String nach übereinstimmenden Vorkommen (»Mat-
ches«) durchsuchen. Der erste Aufruf sucht ab dem Stringanfang, nachfolgende Aufrufe
setzen die Suche hinter dem letzten gefundenen Vorkommen fort.

� Mit int start() und int end() bzw. String group() können Sie sich Anfangs- und End-
position bzw. das komplette zuletzt gefundene Vorkommen zurückliefern lassen.

Da die Methode getPatternsInString() einen String nach allen Vorkommen des übergebenen
Musters durchsuchen soll, ruft sie find() in einer while-Schleife auf und speichert die gefun-
denen Übereinstimmungen in einem ArrayList-Container.

>> Zahlen aus Strings extrahieren50
Za

hl
en

Die zweite Methode, getNumbersInString(), liefert im String gefundene Zahlen zurück. Dank
getPatternsInString() fällt die Implementierung von getNumbersInString() nicht mehr son-
derlich schwer: Die Methode ruft einfach getPatternsInString() mit einem regulären Aus-
druck auf, der Zahlen beschreibt:

Der reguläre Ausdruck von getNumbersInString() setzt Zahlen aus drei Teilen zusammen:
einem optionalen Vorzeichen ([+-]?), einer mindestens einelementigen Folge von Ziffern
(\\d+) und optional einem dritten Teil, der mit Komma eingeleitet wird und mit einer mindes-
tens einelementigen Folge von Ziffern ((\\,\\d+)?) endet. Dieser reguläre Ausdruck findet
ganze Zahlen, Gleitkommazahlen mit Komma zum Abtrennen der Nachkommastellen und
ohne Tausenderzeichen, Zahlen mit und ohne Vorzeichen, aber auch Zahlenschrott (beispiels-
weise Teile englisch formatierter Zahlen, die das Komma als Tausenderzeichen verwenden).
Wenn Sie Zahlenschrott ausschließen, gezielt nach englischen Gleitkommazahlen, beliebig
formatierten Zahlen, Hexadezimalzahlen oder irgendwelchen sonstigen Textmustern suchen
wollen, können Sie nach dem Muster von getNumbersInString() eine eigene Methode definie-
ren oder getPatternsInString() aufrufen und den passenden regulären Ausdruck als Argu-
ment übergeben.

import java.util.regex.Pattern;
import java.util.regex.Matcher;
import java.util.ArrayList;

/**
 * Pattern in einem Text finden und als ArrayList zurückliefern
 */
public static ArrayList<String> getPatternsInString(String s, String p) {
 ArrayList<String> matches = new ArrayList<String>(10);

 Pattern pat = Pattern.compile(p);
 Matcher m = pat.matcher(s);

 while(m.find())
 matches.add(m.group());

 return matches;
}

Listing 14: Strings nach beliebigen Patterns durchsuchen

/**
 * Zahlen in einem Text finden und als ArrayList zurückliefern
 */
public static ArrayList<String> getNumbersInString(String s) {
 return getPatternsInString(s, "[+-]?\\d+(\\,\\d+)?");
}

Listing 15: Strings nach Zahlen durchsuchen

>> Zahlen und Mathematik 51

Za
hl

en

14 Zufallszahlen erzeugen
Zur Erzeugung von Zufallszahlen gibt es in der Java-Klassenbibliothek den »Zufallszahlenge-
nerator« java.util.Random. Die Arbeit mit dieser Klasse sieht so aus, dass Sie zuerst ein Objekt
der Klasse erzeugen und sich dann durch Aufrufe der entsprechenden next-Methoden der
Klasse Random die gewünschten Zufallswerte zurückliefern lassen.

import java.util.Random;

Random generator = new Random();

double d = generator.nextDouble(); // liefert Wert zwischen [0.0, 1.0)
boolean b = generator.nextBoolean(); // liefert true oder false
long l = generator.nextLong(); // liefert zufälligen long-Wert
int i = generator.nextInt(); // liefert zufälligen int-Wert
 i = generator.nextInt(10); // liefert Wert zwischen [0, 1)

// Fünf ganzzahlige Zufallszahlen zwischen 0 und 100 ausgeben
for(int i = 0; i < 5; ++i)
 System.out.println(generator.nextInt(100));

Wenn Sie an double-Zufallszahlen aus dem Bereich 0.0 bis 1.0 interessiert sind, brauchen Sie
Random nicht selbst zu instanzieren, sondern können direkt die Math-Methode random() aufrufen:

double d = Math.random();

System.out.println("\n Suche nach (deutschen) Zahlen: \n");

ArrayList<String> numbers = MoreMath.getNumbersInString(str);
for (String n : numbers)
 System.out.println(n);

System.out.println("\n Suche nach Zahlen und ähnlichen Passagen: \n");

numbers = MoreMath.getPatternsInString(str, "[+-]?[\\d.,]+\\d+|\\d+");
for (String n : numbers)
 System.out.println(n);

System.out.println("\n Suche in Kundennummer: \n");

numbers = MoreMath.getPatternsInString("KDnr-2345-150474a", "\\d+");
for (String n : numbers)
 System.out.println(n);

Listing 16: Aus Start.java

H
in

w
e

is Die Erzeugung von Zufallszahlen mit Hilfe von Computern ist im Grunde gar nicht zu
realisieren. Dies liegt daran, dass die Zahlen letzten Endes nicht zufällig gezogen wer-
den, sondern von einem mathematischen Algorithmus errechnet werden. Ein solcher
Algorithmus bildet eine Zahlenfolge, die sich zwangsweise irgendwann wiederholt.
Allerdings sind die Algorithmen, die man zur Erzeugung von Zufallszahlen in Pro-
grammen verwendet, so leistungsfähig, dass man von der Periodizität der erzeugten
Zahlenfolge nichts merkt.

>> Zufallszahlen erzeugen52
Za

hl
en

Gaußverteilte Zufallszahlen
Die oben aufgeführten next-Methoden sind so implementiert, dass sie alle Zahlen aus ihrem
Wertebereich mit gleicher Wahrscheinlichkeit zurückliefern. In Natur und Technik hat man es
dagegen häufig mit Größen zu tun, die normalverteilt sind.

Eine Firma, die Schrauben herstellt, könnte beispielsweise Software für eine Messanlage in
Auftrag geben, die sicherstellen soll, dass die Durchmesser der produzierten Schrauben nor-
malverteilt sind und die Standardabweichung unterhalb eines vorgegebenen Qualitätslimits
liegt. Die zum Testen einer solchen Software benötigten normalverteilten Zufallszahlen liefert
die Random-Methode nextGaussian():

Random generator = new Random();

double d = generator.nextGaussian();

Der Erwartungswert der zurückgelieferten Zufallszahlen ist 0, die Standardabweichung 1.
Durch nachträgliche Skalierung und Addition eines Offsets können beliebige normalverteilte
Zahlen erzeugt werden.

Zufallszahlen zum Testen von Anwendungen
Beim Testen von Anwendungen, die mit Zufallszahlen arbeiten, ergibt sich das Problem, dass
die Anwendung bei jedem neuen Start mit anderen Zufallszahlen arbeitet und daher unter-
schiedliche Ergebnisse produziert. Das Aufspüren von Fehlern ist unter solchen Bedingungen

E
x

k
u

rs Normalverteilung
Normalverteilte Größen zeichnen sich dadurch aus, dass die möglichen Werte um einen
mittleren Erwartungswert streuen. Der Erwartungswert ist am häufigsten vertreten, die
Wahrscheinlichkeit für andere Werte nimmt kontinuierlich ab, je mehr die Werte vom
Erwartungswert abweichen.

Abbildung 7: Gaußsche Normalverteilung; die Standardabweichung ist ein Maß dafür,
wie schnell die Wahrscheinlichkeit der Werte bei zunehmender
Abweichung vom Mittelwert abnimmt.

Häufigkeit

Wertx (Mittelwert)

s s (Standardabweichung)

>> Zahlen und Mathematik 53

Za
hl

en

natürlich sehr schwierig. (Gleiches gilt, wenn Sie Zufallszahlen als Eingaben zum Testen der
Anwendung benutzen.)

Aus diesem Grunde lassen sich Zufallsgeneratoren in der Regel so einstellen, dass sie auch
reproduzierbare Folgen von Zufallszahlen erzeugen können. Zur Einstellung dient der so
genannte Seed. Jeder Seed erzeugt genau eine vordefinierte Folge von Zufallszahlen. Wenn
Sie also dem Random-Konstruktor einen festen Seed-Wert vorgeben:

Random generator = new Random(3);

erzeugt der zugehörige Zufallsgenerator bei jedem Start der Anwendung die gleiche Folge von
Zufallszahlen und Sie können die Anwendung mit reproduzierbaren Ergebnissen testen.

15 Ganzzahlige Zufallszahlen aus einem bestimmten
Bereich

Mit Hilfe der Methode Random.nextInt(int n) können Sie sich eine zufällige Integer-Zahl aus
dem Bereich von 0 bis n (exklusive) zurückliefern lassen.

Wenn Sie Integer-Zahlen aus einem beliebigen Bereich benötigen, müssen Sie entweder die
Anzahl Zahlen im Bereich selbst berechnen, als Argument an nextInt() übergeben und zu der
zurückgelieferten Zufallszahl die erste Zahl im gewünschten Bereich hinzuaddieren ...

... oder Sie definieren sich nach dem Muster von Math.random() eine eigene Methode random-
Int(int min, int max), der Sie nur noch die gewünschten Bereichsgrenzen übergeben müssen:

H
in

w
e

is Wenn Sie den Random-Konstruktor ohne Argument aufrufen (siehe vorangehende
Abschnitte), wählt er den Seed unter Berücksichtigung der aktuellen Zeit. So wird
gewährleistet, dass bei jedem Aufruf ein individueller Seed und damit eine individuelle
Zahlenfolge erzeugt wird.

import java.util.Random;

public class MoreMath {
 ...
 // private Instanz des verwendeten Zufallsgenerators
 private static Random randomNumberGenerator;

 // nur einen Zufallsgenerator verwenden
 private static synchronized void initRNG() {
 if (randomNumberGenerator == null)
 randomNumberGenerator = new Random();
 }

 /**
 * Zufallszahl aus vorgegebenem Bereich zurückliefern
 */
 public static int randomInt(int min, int max) {
 if (randomNumberGenerator == null)
 initRNG();

Listing 17: Ganzzahlige Zufallszahlen aus einem definierten Bereich

>> Mehrere, nicht gleiche Zufallszahlen erzeugen (Lottozahlen)54
Za

hl
en

Zwei Dinge sind zu beachten:

� Die Methode liefert eine Zahl aus dem Bereich [min, max] zurück, im Gegensatz zu Random.
nextInt(n), das eine Zahl aus [0, n) zurückliefert, ist die Obergrenze also in den Werte-
bereich mit eingeschlossen.

� Die Methode muss sicherstellen, dass sie nur beim ersten Aufruf einen Random-Zufallsgene-
rator erzeugt, der bei nachfolgenden Aufrufen verwendet wird. Zu diesem Zweck wurde
für den Generator ein privates statisches Feld definiert. Eine einfache if-Bedingung prüft,
ob der Generator erzeugt werden muss oder schon vorhanden ist.

Ein wenig umständlich erscheint die Auslagerung der if-Abfrage in eine eigene private
Methode, doch dies erlaubt es, die Methode als synchronized zu deklarieren und die Erzeu-
gung des Zufallszahlengenerators so threadsicher zu machen.

16 Mehrere, nicht gleiche Zufallszahlen erzeugen
(Lottozahlen)

Wenn Sie sich von der Methode nextInt(int n) Zufallszahlen aus dem Wertebereich [0, n)
zurückliefern lassen, kann es schnell passieren, dass Sie die eine oder andere Zahl mehrfach
erhalten. Je kleiner der Wertebereich, umso größer die Wahrscheinlichkeit, dass dies passiert.
Sofern Sie also an einmaligen Zufallszahlen, wie sie beispielsweise zur Simulation einer Lotto-
ziehung benötigt werden, interessiert sind, müssen Sie die Dubletten herausfiltern. Eine beson-
ders elegante Möglichkeit dafür dies zu tun, bietet die Collection-Klasse TreeSet. Deren add()-
Methode fügt neue Elemente nämlich nur dann ein, wenn diese noch nicht im TreeSet-Con-
tainer enthalten sind.

Die folgende Methode erzeugt einen TreeSet-Container für size Integer-Zahlen und füllt die-
sen mit Werten aus dem Bereich [min, max].

 int number = randomNumberGenerator.nextInt(max+1-min);

 return min + number;
 }
}

import java.util.Random;
import java.util.TreeSet;

/**
 * Erzeugt size nicht gleiche Zufallszahlen aus Wertebereich von
 * min bis max
 */
public static TreeSet<Integer> uniqueRandoms(int size, int min, int max) {
 TreeSet<Integer> numbers = new TreeSet<Integer>();
 Random generator = new Random();
 int n;

Listing 18: Methode zur Erzeugung einmaliger Zufallszahlen

Listing 17: Ganzzahlige Zufallszahlen aus einem definierten Bereich (Forts.)

>> Zahlen und Mathematik 55

Za
hl

en

Wenn es in dem spezifizierten Wertebereich nicht genügend Zahlen gibt, um den Container
ohne Dubletten zu füllen, wird eine IllegalArgumentException ausgeworfen.

Wenn der spezifizierte Wertebereich gerade genau so viele Zahlen enthält, wie Zahlen in den
Container eingefügt werden sollen, werden die Zahlen mit Hilfe einer for-Schleife in den Con-
tainer eingefügt. (In diesem Fall kann eigentlich nicht mehr von Zufallszahlen die Rede sein.)

Ist der Wertebereich größer als die gewünschte Anzahl Zufallszahlen, werden die Zahlen
zufällig gezogen, bis der Container die gewünschte Anzahl Elemente enthält. Beachten Sie,
dass wir uns hier nicht die Mühe machen, den Rückgabewert der add()-Methode zu überprü-
fen (true oder false), da die Bedingung der while-Schleife bereits sicherstellt, dass die Zie-
hung nicht vorzeitig beendet wird.

Das folgende Programm zeigt, wie mit Hilfe von uniqueRandoms() die Ziehung der Lottozahlen
(6 aus 49) simuliert werden kann.

 if (size > max+1-min)
 throw new IllegalArgumentException("Gibt nicht genügend " +
 "eindeutige Zahlen im Bereich!");

 if (size == max+1-min) {
 for(int i= min; i <= max; ++i)
 numbers.add(i);

 } else {
 while(numbers.size() != size) {
 n = min + generator.nextInt(max+1 - min);

 // Zahl einfügen, falls nicht schon vorhanden
 numbers.add(n);
 }
 }

 return numbers;
}

import java.util.TreeSet;

public class Start {

 public static void main(String args[]) {
 System.out.println();

 System.out.println("Willkommen zur Ziehung der Lottozahlen!");

 TreeSet<Integer> randomNumbers = MoreMath.uniqueRandoms(6, 1, 49);

Listing 19: Lottozahlen

Listing 18: Methode zur Erzeugung einmaliger Zufallszahlen (Forts.)

>> Trigonometrische Funktionen56
Za

hl
en

17 Trigonometrische Funktionen
Bei Verwendung der trigonometrischen Methoden ist zu beachten, dass diese Methoden als
Parameter stets Werte in Bogenmaß (Radiant) erwarten. Beim Bogenmaß wird der Winkel
nicht in Grad, sondern als Länge des Bogens angegeben, den der Winkel aus dem Einheitskreis
(Gesamtumfang 2 π) ausschneidet: 1 rad = 360º/2 π; 1º = 2 π/360 rad.

360 Grad entsprechen also genau 2 π, 180 Grad entsprechen 1 π, 90 Grad entsprechen 1/2 π.
Wenn Sie ausrechnen wollen, was 32 Grad in Radiant sind, multiplizieren Sie einfach die
Winkelangabe mit 2 * π und teilen Sie das Ganze durch 360 (oder multiplizieren Sie mit π und
teilen Sie durch 180).

bogenlaenge = Math.PI/180 * grad;

Math stellt zur bequemen Umrechnung von Grad in Radiant und umgekehrt die Methoden
toDegrees() und toRadians() zur Verfügung. Beachten Sie aber, dass diese Umrechnung nicht
immer exakt ist. Gehen Sie also beispielsweise nicht davon aus, dass sin(toRadians(180.0))
exakt 0.0 ergibt. (Siehe auch Rezept 6 zum Vergleichen mit definierter Genauigkeit.)

18 Temperaturwerte umrechnen (Celsius <-> Fahrenheit)
Während die Wissenschaft und die meisten Völker dieser Welt die Temperatur mittlerweile in
Grad Celsius messen, ist in den USA immer noch die Einheit Fahrenheit gebräuchlich. Die For-
mel zur Umrechnung von Fahrenheit in Celsius lautet:

Aus dieser Formel lassen sich schnell zwei praktische Methoden zur Umrechnung von Fahren-
heit in Celsius und umgekehrt ableiten:

/**
 * Umrechnung von Fahrenheit in Celsius
 */
public static double fahrenheit2Celsius(double temp) {
 return (temp - 32) * 5.0/9.0;
}

/**
 * Umrechnung von Celsius in Fahrenheit
 */

 for(int elem : randomNumbers)
 System.out.println(" " + elem);
 }
}

T
ip

p Wenn Sie selbst Lotto spielen, bauen Sie das Programm und die Methode uniqueRan-
doms() doch so aus, dass häufig getippte Zahlenkombinationen (siehe Fachliteratur zu
Spielsystemen) aussortiert werden. Viel mehr dürfte hinter den Spielsystemen kommer-
zieller Anbieter auch nicht stecken.

Listing 19: Lottozahlen (Forts.)

9/5*)32(−= fc

>> Zahlen und Mathematik 57

Za
hl

en

public static double celsius2fahrenheit(double temp) {
 return (temp * 9 / 5.0) + 32;
}

Mit dem Programm Start.java zu diesem Rezept können Sie beliebige Temperaturwerte
umrechnen. Geben Sie einfach in der Kommandozeile die Ausgangseinheit (-f für Fahrenheit
oder -c für Celsius) und den umzurechnenden Temperaturwert an.

19 Fakultät berechnen
Mathematisch ist die Fakultät definiert als:

 n! = 1, wenn n = 0

 n! = 1 * 2 * 3 ... * (n-1) * n, für n = 1, ..

oder rekursiv formuliert:

 fac(0) = 1;

 fac(n) = n * fac(n-1);

Die Fakultät ist vor allem für die Berechnung von Wahrscheinlichkeiten wichtig. Wenn Sie
beispielsweise sieben Kugeln, nummeriert von 1 bis 7, in einen Behälter geben und dann
nacheinander ziehen, gibt es 7! Möglichkeiten (Permutationen), die Kugeln zu ziehen.

A
ch

tu
n

g Die Mathematik unterscheidet nicht zwischen 5/9 und 5.0/9.0 – wohl aber der Compi-
ler, der im ersten Fall eine Ganzzahlendivision durchführt, d.h. den Nachkommaanteil
unterschlägt.

Abbildung 8: Programm zur Umrechnung zwischen Fahrenheit und Celsius

/**
 * Fakultät berechnen

Listing 20: Methode zur Berechnung der Fakultät

>> Fakultät berechnen58
Za

hl
en

Mit dem Start-Programm zu diesem Rezept können Sie sich die Fakultäten von 0 bis n ausge-
ben lassen. Übergeben Sie n beim Aufruf in der Konsole und denken Sie daran, dass Sie ab 171
nur noch infinity-Ausgaben ernten.

 */
public static double factorial(int n) {
 double fac = 1;

 if (n < 0)
 throw new IllegalArgumentException("Fakultaet ist nur fuer "
 + "positive Zahlen definiert");

 if (n < 2)
 return fac;

 while(n > 1) {
 fac *= n;
 --n;
 }

 return fac;
}

A
ch

tu
n

g
. Die Fakultät ist eine extrem schnell ansteigende Funktion. Bereits für relativ kleine

Eingaben wie die Zahl 10 ergibt sich ein sehr hoher Wert (10! = 3.628.800) und 171!
liegt schon außerhalb des Wertebereichs von double!

Abbildung 9: Fakultät

Listing 20: Methode zur Berechnung der Fakultät (Forts.)

>> Zahlen und Mathematik 59

Za
hl

en

20 Mittelwert berechnen
Wenn wir den Mittelwert oder Durchschnitt einer Folge von Zahlen berechnen, bilden wir
üblicherweise die Summe der einzelnen Werte und dividieren diese durch die Anzahl der
Werte. In der Mathematik bezeichnet man dies als das arithmetische Mittel und stellt es weite-
ren Mittelwerten gegenüber.

Die folgenden Methoden zur Berechnung der verschiedenen Mittelwerte wurden durchweg mit
einem double...-Parameter definiert. Als Argument kann den Methoden daher ein double-
Array oder eine beliebig lange Folge von double-Werten übergeben werden.

/**
 * Arithmetisches Mittel (Standard für Mittelwertberechnungen)
 */
public static double arithMean(double... values) {
 double sum = 0;

 for (double d : values)
 sum += d;

 return sum/values.length;
}

/**
 * Geometrisches Mittel
 */
public static double geomMean(double... values) {
 double sum = 1;

 for (double d : values)
 sum *= d;

 return Math.pow(sum, 1.0/values.length);
}

Mittelwert Berechnung

arithmetischer

geometrischer

harmonischer

quadratischer

Tabelle 8: Mittelwerte

n
xxxx n+++= ...21

n
nxxxx ⋅⋅⋅= ...21

nxxx

nx 1...11

21

+++
=

()22
2

2
1 ...1

nxxx
n

x +++=

>> Zinseszins berechnen60
Za

hl
en

/**
 * Harmonisches Mittel
 */
public static double harmonMean(double... values) {
 double sum = 0;

 for (double d : values)
 sum += 1.0/d;

 return values.length / sum;
}

/**
 * Quadratisches Mittel
 */
public static double squareMean(double... values) {
 double sum = 0;

 for (double d : values)
 sum += d*d;

 return Math.sqrt(sum/values.length);
}

Mögliche Aufrufe wären:

double[] values = {1, 5, 12.5, 0.5, 3};
MoreMath.arithMean(values);

oder

MoreMath.geomMean(1, 5, 12.5, 0.5, 3)

21 Zinseszins berechnen
Die Grundformel zur Zinseszinsrechnung lautet:

wobei n die Laufzeit in Jahren und i den Jahreszinssatz (p/100) bezeichnet. Kn ist das Endka-
pital, das man erhält, wenn man das Startkapital K0 für n Jahre (oder allgemein Zinsperioden)
zu einem Zinssatz i verzinsen lässt.

Kommen monatliche Raten dazu, erweitert sich die Formel zu:

A
ch

tu
n

g Die Methode geomMean() liefert NaN zurück, wenn die Summe der Werte negativ ist
(wegen Ziehen der n-ten Wurzel).

()n
n iKK +⋅= 10

() ()
() 11

111 12/10 −+
−+⋅++⋅=

i
iRiKK

n
n

n

>> Zahlen und Mathematik 61

Za
hl

en

In der Finanzwelt wird aber meist mit der folgenden Variante für vorschüssige Renten gerech-
net:

Die Methode capitalWithCompoundInterest() berechnet nach obiger Formel das Endkapital
nach n Jahren monatlicher Ratenzahlung und Zinseszinsverzinsung. Als Argumente über-
nimmt die Methode das Startkapital, das 0 sein kann, die Höhe der Raten (installment), den
Zins in Prozent (interest), der nicht 0 sein darf, und die Laufzeit (term).

/**
 * Kapitalentwicklung bei monatlicher Ratenzahlung und Zinseszins
 */
public static double capitalWithCompoundInterest(double startCapital,
 double installment,
 double interest,
 int term) {

 if(interest == 0.0)
 throw new IllegalArgumentException("Zins darf nicht Null sein");

 double interestRate = interest/100.0;
 double accumulationFactor = 1 + interestRate;
 double endCapital = startCapital * Math.pow(accumulationFactor , term)
 + installment * (Math.pow(accumulationFactor , term) - 1)
 / (Math.pow(accumulationFactor ,1/12.0) - 1)
 * Math.pow(accumulationFactor , 1/12.0);

 return endCapital;
}

Die Höhe der reinen Einzahlungen berechnet paidInCapital():

/**
 * Berechnung des eingezahlten Kapitals
 */
public static double paidInCapital(double startCapital,
 double installment,
 int term) {
 double endCapital = startCapital;

 for (int n = 1; n <= term; ++n)
 endCapital = endCapital + 12*installment;

 return endCapital ;
}

Das Start-Programm zu diesem Rezept nutzt obige Methoden zur Implementierung eines Zins-
rechners. Startkapital, monatliche Raten, Verzinsung in Prozent und Laufzeit in Jahren werden
über JTextField-Komponenten abgefragt. Nach Drücken des BERECHNEN-Schalters wird die
jährliche Kapitalentwicklung berechnet und in der JTextArea-Komponente links angezeigt.

() ()
() () 12/1

12/10 1
11

111 i
i
iRiKK

n
n

n +⋅
−+

−+⋅++⋅=

>> Komplexe Zahlen62
Za

hl
en

22 Komplexe Zahlen
Komplexe Zahlen gehören zwar nicht unbedingt zum täglichen Handwerkszeug eines Pro-
grammierers, bilden aber ein wichtiges Teilgebiet der Algebra und finden als solches immer
wieder Eingang in die Programmierung, so zum Beispiel bei der Berechnung von Fraktalen.

Komplexe Zahlen haben die Form

wobei x als Realteil, y als Imaginärteil und i als die imaginäre Einheit bezeichnet wird (mit
i2 = -1). Vereinfacht werden Zahlen oft als Paare aus Real- und Imaginärteil geschrieben:
(x, y).

Grafisch werden komplexe Zahlen in einem Koordinatensystem dargestellt (Gaußsche Zahlen-
ebene, siehe Abbildung 11).

Statt als Paar aus Real- und Imaginärteil können komplexe Zahlen daher auch als Kombina-
tion aus Radius und Winkel zwischen der Verbindungslinie zum Koordinatenursprung und der
positiven reellen x-Achse angegeben werden (Polarkoordinaten). Der Radius wird dabei übli-
cherweise als Betrag, der Winkel als Argument bezeichnet.

Abbildung 10: Zinsrechner

Abbildung 11: Komplexe Zahlen in Koordinatendarstellung

iyxz +=

4 + 2i

1

i

imaginäre Achse

reelle Achse

>> Zahlen und Mathematik 63

Za
hl

en

Rechnen mit komplexen Zahlen

Die Klasse Complex
Die Klasse Complex definiert neben verschiedenen Konstruktoren Methoden für die Berechnung
von Betrag, Negativer, Konjugierter und Inverser sowie Methoden für die Grundrechenarten
Addition, Subtraktion, Vervielfachung und Multiplikation. Die Division kann durch Multipli-
kation mit der Inversen berechnet werden. Die Methoden für die Grundrechenarten sind durch
statische Versionen überladen. Die nichtstatischen Methoden verändern das aktuelle Objekt,
die statischen Methoden liefern das Ergebnis der Operation als neues Complex-Objekt zurück.

Zur Unterstützung der Polarkoordinatendarstellung gibt es einen Konstruktor, der eine kom-
plexe Zahl aus Radius (Betrag) und Winkel (Argument) berechnet, sowie Get-Methoden, die
Radius und Winkel eines gegebenen Complex-Objekts zurückliefern.

Operation Beschreibung

Betrag Der Betrag einer komplexen Zahl ist die Quadratwurzel aus der
Summe der Komponentenquadrate.

Addition Komplexe Zahlen werden addiert, indem man die Realteile und Ima-
ginärteile addiert.
(x, y) + (x', y') = (x + x', y + y')

Subtraktion Komplexe Zahlen werden subtrahiert, indem man die Realteile und
Imaginärteile voneinander subtrahiert.
(x, y) – (x', y') = (x – x', y – y')
Die Subtraktion entspricht der Addition der Negativen (-z = -x -yi)

Vervielfachung Vervielfachung ist die Multiplikation mit einer reellen Zahl.
3 * (x, y) = (3*x. 3*y)

Multiplikation Die Multiplikation zweier komplexer Zahlen ist gegeben durch:
(x, y) * (x', y') = (xx'-yy', xy' + yx')

Division Die Division z/z' ist gleich der Multiplikation mit der Inversen z*z-1.
Die Inverse einer komplexen Zahl ist definiert als:

Tabelle 9: Rechenoperationen für komplexe Zahlen

22 yxz +=

i
yx

y
yx

xz 2222
1

+
−

+
=−

>> Komplexe Zahlen64
Za

hl
en

Methode Beschreibung

Complex()
Complex(double real, double imag)
Complex(double r, double phi, byte polar)

Konstruktoren.
Der Standardkonstruktor erzeugt eine komplexe Zahl,
deren Real- und Imaginärteil 0.0 ist.
Der zweite Konstruktor erzeugt eine komplexe Zahl mit
den übergebenen Werten für Real- und Imaginärteil.
Der dritte Konstruktor rechnet die übergebenen Werte
für Radius und Winkel in Real- und Imaginärteil um
und erzeugt das zugehörige Complex-Objekt. Um diesen
Konstruktor von dem zweiten Konstruktor unterschei-
den zu können, ist ein drittes Argument notwendig,
dem Sie einfach die Konstante Complex.POLAR überge-
ben.

double getReal() Liefert den Realteil der aktuellen komplexen Zahl
zurück.

void setReal(double real) Weist dem Realteil der aktuellen komplexen Zahl einen
Wert zu.

double getImag() Liefert den Imaginärteil der aktuellen komplexen Zahl
zurück.

void setImag(double real) Weist dem Imaginärteil der aktuellen komplexen Zahl
einen Wert zu.

double getR () Liefert den Radius (Betrag) der aktuellen komplexen
Zahl zurück. (Polarkoodinatendarstellung)

double getPhi () Liefert den Winkel (Argument) der aktuellen komple-
xen Zahl zurück. (Polarkoodinatendarstellung)

void add(Complex a)
public static Complex add(Complex a,
 Complex b)

Addiert die übergebene komplexe Zahl zur aktuellen
komplexen Zahl.
Die statische Version addiert die beiden übergebenen
komplexen Zahlen und liefert das Ergebnis zurück.

void add(double s)
public static Complex add(Complex a,
 double s)

Addiert die übergebene reelle Zahl zur aktuellen kom-
plexen Zahl.
Die statische Version addiert die reelle Zahl s zur über-
gebenen komplexen Zahl a und liefert das Ergebnis
zurück.

void subtract(Complex a)
public static Complex subtract(Complex a,
 Complex b)

Subtrahiert die übergebene komplexe Zahl von der
aktuellen komplexen Zahl.
Die statische Version subtrahiert die zweite übergebene
komplexe Zahl von der ersten und liefert das Ergebnis
zurück.

void subtract(double s)
public static Complex subtract(Complex a,
 double s)

Subtrahiert die übergebene reelle Zahl von der aktuel-
len komplexen Zahl.
Die statische Version subtrahiert die reelle Zahl s von
der übergebenen komplexen Zahl a und liefert das
Ergebnis zurück.

Tabelle 10: Methoden der Klasse Complex

>> Zahlen und Mathematik 65

Za
hl

en

void times(double s)
public static Complex times(Complex a,

double s)

Multipliziert die aktuelle komplexe Zahl mit der über-
gebenen reellen Zahl s.
Die statische Version multipliziert die übergebene kom-
plexe Zahl a mit der reellen Zahl s und liefert das
Ergebnis zurück.

void multiply(Complex a)
public static Complex multiply(Complex a,

Complex b)

Multipliziert die aktuelle komplexe Zahl mit der über-
gebenen komplexen Zahl.
Die statische Version multipliziert die beiden übergebe-
nen komplexen Zahlen und liefert das Ergebnis zurück.

void negate() Negiert die aktuelle komplexe Zahl (-x, -yi).

double abs() Liefert den Betrag der komplexen Zahl zurück.

Complex conjugate() Liefert die konjugiert komplexe Zahl (x, -y) zur
aktuellen komplexen Zahl zurück.

Complex inverse() Liefert die Inverse zur aktuellen komplexen Zahl
zurück.

Object clone() Erzeugt eine Kopie der aktuellen komplexen Zahl.
Zur Überschreibung der clone()-Methode siehe auch
Rezept 250.

boolean equals(Object obj)
static boolean equals(Complex a, Complex b,

double eps)

Liefert true zurück, wenn das übergebene Objekt vom
Typ Complex ist und Real- und Imaginärteil die gleichen
Werte wie die aktuelle komplexe Zahl besitzen. Zur
Überschreibung der equals()-Methode siehe auch
Rezept 252.
Die statische Version erlaubt für den Vergleich die
Angabe einer Genauigkeit eps. Die Real- bzw. Imagi-
närteile der beiden komplexen Zahlen werden dann als
»gleich« angesehen, wenn ihre Differenz kleiner eps ist.

int hashCode() Liefert einen Hashcode für die aktuelle komplexe Zahl
zurück.

String toString() Liefert eine String-Darstellung der komplexen Zahl
zurück:
x + yi

/**
 * Klasse für komplexe Zahlen
 */
public class Complex implements Cloneable {
 public final static byte POLAR = 1;

 private double real = 0.0; // Realteil
 private double imag = 0.0; // Imaginärteil

 /*** Konstruktoren ***/

Listing 21: Complex.java

Methode Beschreibung

Tabelle 10: Methoden der Klasse Complex (Forts.)

>> Komplexe Zahlen66
Za

hl
en

 public Complex() {
 this.real = 0.0;
 this.imag = 0.0;
 }
 public Complex(double real, double imag) {
 this.real = real;
 this.imag = imag;
 }
 public Complex(double r, double phi, byte polar) {
 this.real = r * Math.cos(phi);
 this.imag = r * Math.sin(phi);
 }

 /*** Get- und Set-Methoden ***/

 public double getReal() {
 return real;
 }
 public void setReal(double real) {
 this.real = real;
 }

 public double getImag() {
 return imag;
 }
 public void setImag(double imag) {
 this.imag = imag;
 }

 public double getR() {
 return this.abs();
 }
 public double getPhi() {
 return Math.atan2(this.imag, this.real);
 }

 /*** Rechenoperationen ***/

 // Addition this += a
 public void add(Complex a) {
 this.real += a.real;
 this.imag += a.imag;
 }
 // Addition c = a + b
 public static Complex add(Complex a, Complex b) {
 Complex c = new Complex();
 c.real = a.real + b.real;
 c.imag = a.imag + b.imag;

Listing 21: Complex.java (Forts.)

>> Zahlen und Mathematik 67

Za
hl

en

 return c;
 }

 // Addition einer Gleitkommazahl
 public void add(double s) {
 this.real += s;
 }
 // Addition einer Gleitkommazahl
 public static Complex add(Complex a, double s) {
 Complex c = new Complex();
 c.real = a.real + s;
 c.imag = a.imag;
 return c;
 }

 // Subtraktion this -= a
 public void subtract(Complex a) {
 this.real -= a.real;
 this.imag -= a.imag;
 }
 // Subtraktion c = a - b
 public static Complex subtract(Complex a, Complex b) {
 Complex c = new Complex();
 c.real = a.real - b.real;
 c.imag = a.imag - b.imag;
 return c;
 }

 // Subtraktion einer Gleitkommazahl
 public void subtract(double s) {
 this.real -= s;
 }
 // Subtraktion einer Gleitkommazahl
 public static Complex subtract(Complex a, double s) {
 Complex c = new Complex();
 c.real = a.real - s;
 c.imag = a.imag;
 return c;
 }

 // Vervielfachung durch Multiplikation mit Gleitkommazahl
 public void times(double s) {
 this.real *= s;
 this.imag *= s;
 }
 public static Complex times(Complex a, double s){
 double r, i;

 r = a.real * s;
 i = a.imag * s;
 return new Complex(r, i);

Listing 21: Complex.java (Forts.)

>> Komplexe Zahlen68
Za

hl
en

 }

 // Multiplikation this *= b
 public void multiply(Complex b){
 double r, i;

 r = (this.real * b.real) - (this.imag * b.imag);
 i = (this.real * b.imag) + (this.imag * b.real);

 this.real = r;
 this.imag = i;
 }

 // Multiplikation c = a * b
 public static Complex multiply(Complex a, Complex b){
 double r, i;

 r = (a.real * b.real) - (a.imag * b.imag);
 i = (a.real * b.imag) + (a.imag * b.real);
 return new Complex(r, i);
 }

 /*** Sonstige Operationen ***/

 // Negation
 public void negate() {
 this.real *= -1;
 this.imag *= -1;
 }

 // Betrag
 public double abs() {
 return Math.sqrt(real*real + imag*imag);
 }

 // Konjugierte
 public Complex conjugate() {
 return new Complex(this.real, -this.imag);
 }

 // Inverse
 public Complex inverse() {
 double r, i;

 r = this.real / ((this.real * this.real) + (this.imag * this.imag));
 i = -this.imag / ((this.real * this.real) + (this.imag * this.imag));

 return new Complex(r, i);

Listing 21: Complex.java (Forts.)

>> Zahlen und Mathematik 69

Za
hl

en

 }

 /*** Überschriebene Object-Methoden ***/

 public Object clone() {
 try {
 Complex c = (Complex) super.clone();
 c.real = this.real;
 c.imag = this.imag;
 return c;
 } catch (CloneNotSupportedException e) {
 // sollte nicht vorkommen
 throw new InternalError();
 }
 }

 public boolean equals(Object obj) {
 if (obj instanceof Complex) {
 Complex tmp = (Complex) obj;
 // wenn beide NaN, dann als gleich ansehen
 if ((Double.isNaN(this.real) || Double.isNaN(this.imag))
 && (Double.isNaN(tmp.real) || Double.isNaN(tmp.imag)))
 return true;

 if ((this.real == tmp.real) && (this.imag == tmp.imag))
 return true;
 else
 return false;
 }
 return false;
 }

 public static boolean equals(Complex a, Complex b, double eps) {
 if (a.equals(b))
 return true;
 else {
 if((Math.abs(a.real - b.real) < eps)
 &&(Math.abs(a.imag - b.imag) < eps))
 return true;
 else
 return false;
 }
 }

 public int hashCode() {
 long bits = Double.doubleToLongBits(this.real);
 bits ^= Double.doubleToLongBits(this.imag) * 31;
 return (((int) bits) ^ ((int) (bits >> 32)));
 }

 public String toString() {

Listing 21: Complex.java (Forts.)

>> Komplexe Zahlen70
Za

hl
en

Das Programm aus Listing 22 demonstriert den Einsatz der Klasse Complex anhand der Berech-
nung einer Julia-Menge. Die Berechnung der Julia-Menge erfolgt der Einfachheit halber direkt
in paintComponent(), auch wenn dies gegen den Grundsatz verstößt, in Ereignisbehandlungs-
code zeitaufwendige Berechnungen durchzuführen. Die Folge ist, dass die Benutzerschnitt-
stelle für die Dauer der Julia-Mengen-Berechnung lahm gelegt wird, was uns hier aber nicht
weiter stören soll. (Korrekt wäre die Auslagerung der Berechnung in einen eigenen Thread,
siehe Kategorie »Threads«.)

 String sign = " + ";
 if(this.imag < 0.0)
 sign = " - ";

 java.text.DecimalFormat df = new java.text.DecimalFormat("#,##0.##");
 String str_rt = df.format(this.real);
 String str_it = df.format(Math.abs(this.imag));

 return str_rt + sign + str_it + "i";
 }
}

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Start extends JFrame {

 class MyCanvas extends JPanel {

 public void paintComponent(Graphics g) {
 super.paintComponent(g);

 Complex c = new Complex(-0.012, 0.74);

 for(int i = 0; i < getWidth(); ++i)
 for(int j = 0; j < getHeight(); ++j) {
 Complex x = new Complex(0.0001*i, 0.0001*j);
 for(int n = 0; n < 100; ++n) {
 if (x.abs() > 100.0)
 break;
 x.multiply(x);
 x.add(c);
 }
 if (x.abs() < 1.0) {
 g.setColor(new Color(0, 0, 255));
 g.fillRect(i, j, 1, 1);
 } else {
 g.setColor(new Color((int)x.abs()%250, 255, 255));

Listing 22: Fraktalberechnung mit Hilfe komplexer Zahlen

Listing 21: Complex.java (Forts.)

>> Zahlen und Mathematik 71

Za
hl

en

 g.fillRect(i, j, 1, 1);
 }
 }
 }
 }

 public Start() {
 setTitle("Julia-Menge");

 getContentPane().add(new MyCanvas(), BorderLayout.CENTER);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 public static void main(String args[]) {
 // Fenster erzeugen und anzeigen
 Start mw = new Start();
 mw.setSize(500,350);
 mw.setResizable(false);
 mw.setLocation(200,300);
 mw.setVisible(true);
 }

}

Abbildung 12: Julia-Menge

Listing 22: Fraktalberechnung mit Hilfe komplexer Zahlen (Forts.)

>> Vektoren72
Za

hl
en

23 Vektoren
Vektoren finden in der Programmierung vielfache Anwendung – beispielsweise zur Repräsen-
tation von Koordinaten, für Berechnungen mit gerichteten, physikalischen Größen wie
Geschwindigkeit oder Beschleunigung und natürlich im Bereich der dreidimensionalen Com-
putergrafik. So können – um ein einfaches Beispiel zu geben – Punkte in der Ebene P(5; 12)
oder im Raum (5; 12; -1) als zwei- bzw. dreidimensionale Ortsvektoren (d.h. mit Beginn im
Ursprung des Koordinatensystems) repräsentiert werden.

Der Abstand zwischen zwei Punkten P und Q ist dann gleich der Länge des Vektors, der vom
einen Punkt zum anderen führt.

Rechnen mit Vektoren

Operation Beschreibung

Länge Die Länge (oder der Betrag) eines Vektors ist die Quadratwurzel aus
der Summe der Komponentenquadrate. (Für zweidimensionale Vekto-
ren lässt sich dies leicht aus dem Satz des Pythagoras ableiten.)

, für v = (1; 3)

Addition Vektoren werden addiert, indem man ihre einzelnen Komponenten
addiert.

Das Ergebnis ist ein Vektor, der vom Anfang des ersten Vektors zum
Ende des zweiten Vektors weist.

Subtraktion Vektoren werden subtrahiert, indem man ihre einzelnen Komponen-
ten subtrahiert.

Für zwei Ortsvektoren p und q erhält man den Vektor, der von P nach
Q führt, indem man p von q subtrahiert.

Vervielfachung Vervielfachung ist die Multiplikation mit einem skalaren Faktor.

Durch die Vervielfachung wird lediglich die Länge, nicht die Richtung
des Vektors verändert. Einer »Division« entspricht die Multiplikation
mit einem Faktor zwischen 0 und 1.

Tabelle 11: Vektoroperationen

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

1
12
5

 bzw. ,
12
5

pp

pqPQ −=

3)*3(1)*(1 +=v

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+
+

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
3
6

03
51

0
5

3
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
3
4

03
51

0
5

3
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− 14

20
7*2

10*2
7

10
2

>> Zahlen und Mathematik 73

Za
hl

en

Die Klasse Vector3D
Die Klasse Vector3D ist für die Programmierung mit dreidimensionalen Vektoren ausgelegt.
Vektoren können als Objekte der Klasse erzeugt und bearbeitet werden. Für die Grundrechen-
arten (Addition, Subtraktion und Vervielfachung) gibt es zudem statische Methoden, die das
Ergebnis der Operation als neuen Vektor zurückliefern. In Anwendungen, die nicht übermäßig
zeitkritisch sind, kann man die Klasse auch für zweidimensionale Vektoren verwenden, indem
man die dritte Dimension (Feld z) auf null setzt. (Achtung! Das Vektorprodukt liefert stets
einen Vektor, der zur Ebene der Ausgangsvektoren senkrecht steht.) Tabelle 12 stellt Ihnen die
Methoden der Klasse vor.

Skalarprodukt Das Skalarprodukt (englisch »dot product«) ist das Produkt aus den
Längen (Beträgen) zweier Vektoren multipliziert mit dem Kosinus des
Winkels zwischen den Vektoren.

Für zwei- und dreidimensionale Vektoren kann es als die Summe der
Komponentenprodukte berechnet werden:

Das Skalarprodukt ist ein skalarer Wert.
Stehen die beiden Vektoren senkrecht zueinander, ist das Skalar-
produkt gleich null.

Vektorprodukt Das Vektorprodukt (englisch »cross product«) ist das Produkt aus den
Längen (Beträgen) zweier Vektoren multipliziert mit dem Sinus des
Winkels zwischen den Vektoren.

Für dreidimensionale Vektoren kann es wie folgt aus den Komponen-
ten berechnet werden:

Das Vektorprodukt zweier Vektoren v und w ist ein Vektor, der senk-
recht zu v und w steht. Die drei Vektoren bilden ein Rechtssystem
(Drei-Finger-Regel). Der Betrag des Vektorprodukts ist gleich dem
Flächeninhalt des von v und w aufgespannten Parallelogramms.
In der 3D-Grafikprogrammierung kann das Vektorprodukt zur
Berechnung von Oberflächennormalen verwendet werden.

Operation Beschreibung

Tabelle 11: Vektoroperationen (Forts.)

αcoswvwv =⋅

50*35*1
0
5

3
1

=+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

αsinwvwv =×

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
×
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

1221

3113

2332

3

2

1

3

2

1

βαβα
βαβα
βαβα

β
β
β

α
α
α

>> Vektoren74
Za

hl
en

Methode Beschreibung

Vector3D()
Vector3D(double x, double y, double z)

Konstruktoren.
Der Standardkonstruktor erzeugt einen Vektor,
dessen x,y,z-Felder auf 0.0 gesetzt sind.
Der zweite Konstruktor weist den Feldern die
übergebenen Werte zu.

void add(Vector3D v)
static Vector3D add(Vector3D v1, Vector3D v2)

Addiert den übergebenen Vektor zum aktuellen
Vektor.
Die statische Version addiert die beiden über-
gebenen Vektoren und liefert das Ergebnis als
neuen Vektor zurück.

double angle(Vector3D v) Berechnet den Winkel zwischen dem aktuellen
und dem übergebenen Vektor.
Der Winkel wird in Bogenmaß zurückgeliefert
(und kann beispielsweise mit Math.toDegrees()
in Grad umgerechnet werden).

Object clone() Erzeugt eine Kopie des aktuellen Vektors.
Zur Überschreibung der clone()-Methode siehe
auch Rezept 250.

Vector3D crossProduct(Vector3D v) Berechnet das Vektorprodukt aus dem aktuel-
len und dem übergebenen Vektor.

double dotProduct(Vector3D v) Berechnet das Skalarprodukt aus dem aktuel-
len und dem übergebenen Vektor.

boolean equals(Object obj) Liefert true zurück, wenn das übergebene
Objekt vom Typ Vector3D ist und die Felder x, y
und z die gleichen Werte wie im aktuellen Vek-
tor haben.
Zur Überschreibung der equals()-Methode
siehe auch Rezept 252.

double length() Berechnet die Länge des Vektors.

void scale(double s)
static Vector3D scale(Vector3D v, double s)

Skaliert den aktuellen Vektor um den Faktor s.
Skaliert den übergebenen Vektor um den Fak-
tor s und liefert das Ergebnis als neuen Vektor
zurück.

void subtract(Vector3D v)
static Vector3D subtract(Vector3D v1, Vector3D v2)

Subtrahiert den übergebenen Vektor vom aktu-
ellen Vektor.
Die statische Version subtrahiert den zweiten
vom ersten Vektor und liefert das Ergebnis als
neuen Vektor zurück.

String toString() Liefert eine String-Darstellung des Vektors
zurück:
(x; y; z)

Tabelle 12: Methoden der Klasse Vector3D

>> Zahlen und Mathematik 75

Za
hl

en

/**
 * Klasse für dreidimensionale Vektoren
 *
 */
public class Vector3D implements Cloneable {
 public double x;
 public double y;
 public double z;

 // Konstruktoren
 public Vector3D() {
 x = 0;
 y = 0;
 z = 0;
 }
 public Vector3D(double x, double y, double z) {
 this.x = x;
 this.y = y;
 this.z = z;
 }

 // Addition
 public void add(Vector3D v) {
 x += v.x;
 y += v.y;
 z += v.z;
 }
 public static Vector3D add(Vector3D v1, Vector3D v2) {
 return new Vector3D(v1.x+v2.x, v1.y+v2.y, v1.z+v2.z);
 }

 // Subtraktion
 public void subtract(Vector3D v) {
 x -= v.x;
 y -= v.y;
 z -= v.z;
 }
 public static Vector3D subtract(Vector3D v1, Vector3D v2) {
 return new Vector3D(v1.x-v2.x, v1.y-v2.y, v1.z-v2.z);
 }

 // Skalierung (Multiplikation mit Skalar)
 public void scale(double s) {
 x *= s;
 y *= s;
 z *= s;
 }
 public static Vector3D scale(Vector3D v, double s) {
 return new Vector3D(v.x*s, v.y*s, v.z*s);
 }

Listing 23: Vector3D.java

>> Vektoren76
Za

hl
en

 // Skalarprodukt
 public double dotProduct(Vector3D v) {
 return x*v.x + y*v.y + z*v.z;
 }

 // Vektorprodukt
 public Vector3D crossProduct(Vector3D v) {
 return new Vector3D(y*v.z - z*v.y,
 z*v.x - x*v.z,
 x*v.y - y*v.x);
 }

 // Winkel zwischen Vektoren (arccos(Skalarprodukt/(LängeV1 * LängeV2)))
 public double angle(Vector3D v) {
 return Math.acos((x*v.x + y*v.y + z*v.z) /
 Math.sqrt((x*x + y*y + z*z) *
 (v.x*v.x + v.y*v.y + v.z*v.z)));
 }

 // Länge
 public double length() {
 return Math.sqrt(x*x + y*y + z*z);
 }

 // Umwandlung in String
 public String toString() {
 return "(" + x + "; " + y + "; " + z + ")";
 }

 // Kopieren
 public Object clone() {
 try {
 Vector3D v = (Vector3D) super.clone();
 v.x = x;
 v.y = y;
 v.z = z;
 return v;
 } catch (CloneNotSupportedException e) {
 // sollte nicht vorkommen
 throw new InternalError();
 }
 }

 // Vergleichen
 public boolean equals(Object obj) {
 if (obj instanceof Vector3D) {
 if (x == ((Vector3D) obj).x
 && y == ((Vector3D) obj).y
 && z == ((Vector3D) obj).z)
 return true;
 }

Listing 23: Vector3D.java (Forts.)

>> Zahlen und Mathematik 77

Za
hl

en

Das Programm aus Listing Listing 24: demonstriert den Einsatz der Klasse Vector3D anhand
eines geometrischen Problems. Mittels Vektoren wird ausgehend von den Punktkoordinaten
eines Dreiecks der Flächeninhalt berechnet.

 return false;
 }
 }

public class Start {

 public static void main(String args[]) {
 System.out.println();

 System.out.println(" Flaecheninhalt eines Dreiecks berechnen");
 System.out.println();

 System.out.println(" Gegeben: Dreieck zwischen Punkten: ");
 System.out.println("\t A (2; 3; 0)");
 System.out.println("\t B (2.5; 5; 0)");
 System.out.println("\t C (7; 4; 0)");

 // Punktvektoren
 Vector3D a = new Vector3D(2, 3, 0);
 Vector3D b = new Vector3D(2.5, 5, 0);
 Vector3D c = new Vector3D(7, 4, 0);

 // Kantenvektoren
 Vector3D ab = Vector3D.subtract(b, a);
 Vector3D ac = Vector3D.subtract(c, a);

 double cross = (ab.crossProduct(ac)).length();

 double area = 0.5 * cross;

 // Für MoreMath.rint siehe Rezept 5
 System.out.println("\n Berechnete Flaeche: " +
 MoreMath.rint(area, 2));
 }
}

Listing 24: Testprogramm: Berechnung eines Flächeninhalts mit Vektoren

Listing 23: Vector3D.java (Forts.)

>> Matrizen78
Za

hl
en

24 Matrizen
In der Mathematik ist eine Matrix ein rechteckiges Zahlenschema. Als (m,n)-Matrix oder
Matrix der Ordnung m × n bezeichnet man eine Anordnung aus m Zeilen und n Spalten:

 (Beispiel für eine (2, 3)-Matrix)

Matrizen können lineare Abbildungen repräsentieren (eine (m,n)-Matrix entspricht einer line-
aren Abbildung vom Vektorraum Vn nach Vm) oder auch lineare Gleichungssysteme. In der
Programmierung werden Matrizen vor allem zur Lösung linearer Gleichungssysteme sowie für
Vektortransformationen in 3D-Grafikanwendungen eingesetzt.

Rechnen mit Matrizen

Abbildung 13: Ausgabe des Testprogramms

Operation Beschreibung

Addition Matrizen werden addiert, indem man ihre einzelnen Komponenten
addiert.

Zwei Matrizen, die addiert werden, müssen der gleichen Ordnung
angehören.

Subtraktion Matrizen werden subtrahiert, indem man ihre einzelnen Komponen-
ten subtrahiert.

Zwei Matrizen, die subtrahiert werden, müssen der gleichen Ordnung
angehören.

Vervielfachung Vervielfachung ist die Multiplikation mit einem skalaren Faktor.

Tabelle 13: Matrixoperationen

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

232221

131211

ααα
ααα

A

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++
++

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

22222121

12121111

2221

1211

2221

1211

βαβα
βαβα

ββ
ββ

αα
αα

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−
−−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

22222121

12121111

2221

1211

2221

1211

βαβα
βαβα

ββ
ββ

αα
αα

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

2221

1211

2221

1211

αα
αα

αα
αα

kk
kk

k

>> Zahlen und Mathematik 79

Za
hl

en

Die Klasse Matrix
Die Klasse Matrix ist für die Programmierung mit Matrizen beliebiger Ordnung ausgelegt. Sie
unterstützt neben den Grundrechenarten auch die Berechnung der Transponierten, der Inver-
tierten und der Determinanten.

Ist die Matrix quadratisch und repräsentiert sie ein lineares Gleichungssystem, können Sie die-
ses mit der Methode solve() lösen. Zur Lösung des Gleichungssystems wie auch zur Berech-
nung der Inversen und der Determinanten wird intern eine LR-Zerlegung der Ausgangsmatrix
berechnet, die durch ein Objekt der Hilfsklasse LUMatrix repräsentiert wird. Die LR-Zerlegung
liefert die Methode luDecomp(), die auch direkt aufgerufen werden kann.

Eine spezielle Unterstützung für Vektortransformationen, wie sie für 3D-Grafikanwendungen
benötigt werden, bietet die Klasse nicht. Die grundlegenden Operationen, von der Addition
von Transformationen über die Anwendung auf Vektoren durch Matrizenmultiplikation bis
hin zur Berechnung der Inversen, um Transformationen rückgängig machen zu können, sind
zwar allesamt mit der Klasse durchführbar, dürften aber für die meisten Anwendungen zu viel
Laufzeit beanspruchen. (Für professionelle Grafikanwendungen sollten Sie auf eine Implemen-
tierung zurückgreifen, die für (4,4)-Matrizen optimiert ist, siehe beispielsweise Java 3D.)

Multiplikation Bei der Matrizenmultiplikation C = A*B ergeben sich die Elemente der
Ergebnismatrix C durch Aufsummierung der Produkte aus den Ele-
menten einer Zeile von A mit den Elementen einer Spalte von B:

Eine Multiplikation ist nur möglich, wenn die Anzahl von Spalten
von A gleich der Anzahl Zeilen von B ist. Das Ergebnis aus der Multi-
plikation einer (m,n)-Matrix A mit einer (n,r)-Matrix B ist eine (m,r)-
Matrix.

Methode Beschreibung

Matrix(int m, int n)
Matrix(int m, int n, double s)
Matrix(int m, int n, double[][] elems)

Konstruktoren.
Erzeugt wird jeweils eine (m,n)-Matrix (n Zeilen, m
Spalten). Die Elemente der Matrix werden je nach Kon-
struktor mit 0.0, mit s oder mit den Werten aus dem
zweidimensionalen Array elems initialisiert.
Negative Zeilen- oder Spaltendimensionen führen zur
Auslösung einer NegativeArraySizeException.
Wird zur Initialisierung ein Array übergeben, müssen
dessen Dimensionen mit m und n übereinstimmen.
Ansonsten wird eine IllegalArgumentException ausge-
löst.

Tabelle 14: Methoden der Klasse Matrix

Operation Beschreibung

Tabelle 13: Matrixoperationen (Forts.)

∑
=

=
AvonSpalten

k
kjikij bac

1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
)*()*(
)*()*(

*
21221121

21121111

21

11

2221

1211

βαβα
βαβα

β
β

αα
αα

>> Matrizen80
Za

hl
en

void add(Matrix B)
static Matrix add(Matrix A, Matrix B)

Addiert die übergebene Matrix zur aktuellen Matrix.
Die statische Version addiert die beiden übergebenen
Matrizen und liefert das Ergebnis als neue Matrix
zurück.
Gehören die Matrizen unterschiedlichen (n,m)-Ordnun-
gen an, wird eine IllegalArgumentException ausgelöst.

Object clone() Erzeugt eine Kopie der Matrix.
Zur Überschreibung der clone()-Methode siehe auch
Rezept 250.

boolean equals(Object obj) Liefert true zurück, wenn das übergebene Objekt vom
Typ Matrix ist und die Elemente die gleichen Werte wie
die Elemente der aktuellen Matrix haben.
Zur Überschreibung der equals()-Methode siehe auch
Rezept 252.

double det() Liefert die Determinante der aktuellen Matrix zurück.
Für nichtquadratische oder singuläre Matrizen wird eine
IllegalArgumentException ausgelöst.

double get(int i, int j) Liefert den Wert des Elements in Zeile i, Spalte j zurück.

double[][] getArray() Liefert die Elemente der Matrix als zweidimensionales
Array zurück.

int getColumnDim() Liefert die Anzahl der Spalten (n).

static Matrix getIdentity(int n, int m) Erzeugt eine Identitätsmatrix mit m Zeilen und n Spal-
ten.
In einer Identitätsmatrix haben alle Diagonalelemente
den Wert 1.0, während die restlichen Elemente gleich
null sind.
Bei der 3D-Grafikprogrammierung kann die Identität als
Ausgangspunkt zur Erzeugung von Translations- und
Skalierungsmatrizen verwendet werden.

int getRowDim() Liefert die Anzahl der Zeilen (m).

Matrix inverse() Liefert die Inverse der aktuellen Matrix zurück. Existiert
die Inverse, gilt
A*A-1 = I

Wenn die aktuelle Matrix nicht quadratisch oder singu-
lär ist, wird eine IllegalArgumentException ausgelöst.

Methode Beschreibung

Tabelle 14: Methoden der Klasse Matrix (Forts.)

>> Zahlen und Mathematik 81

Za
hl

en

LUMatrix luDecomp() Liefert die LR-Zerlegung der aktuellen Matrix als Objekt
der Hilfsklasse LUMatrix zurück. Die Zerlegung, die der
Konstruktor von LUMatrix vornimmt, erfolgt nach dem
Verfahren von Crout.
Die LUMatrix hat den folgenden Aufbau:

Die u(i,j)-Elemente bilden die obere Dreiecksmatrix U,
die l(i,j)-Elemente die untere Dreiecksmatrix L. Zur L-
Matrix gehören zudem noch die l(i,i)-Elemente, die alle
1 sind und daher nicht extra in LU abgespeichert sind.
Das Produkt aus L*U liefert nicht direkt die Ausgangs-
matrix A, sondern eine Permutation von A. Die Permu-
tationen sind in den privaten Feldern von LUMatrix
gespeichert und werden bei der Rückwärtssubstitution
(LUMatrix.luBacksolve()) berücksichtigt.
Für nichtquadratische oder singuläre Matrizen wird eine
IllegalArgumentException ausgelöst.

Matrix multiply(Matrix B) Multipliziert die aktuelle Matrix mit der übergebenen
Matrix und liefert das Ergebnis als neue Matrix zurück:
Res = Akt * B

Wenn die Spaltendimension der aktuellen Matrix nicht
gleich der Zeilendimension der übergebenen Matrix ist,
wird eine IllegalArgumentException ausgelöst.

void print() Gibt die Matrix auf die Konsole (System.out) aus (vor-
nehmlich zum Debuggen und Testen gedacht).

void set(int i, int j, double s) Weist dem Element in Zeile i, Spalte j den Wert s zu.

double[] solve(double[] bvec) Löst das Gleichungssystem, dessen Koeffizienten durch
die aktuelle (quadratische) Matrix repräsentiert werden,
für den Vektor B (gegeben als Argument bvec). Das
zurückgelieferte Array ist der Lösungsvektor X, so dass
gilt:
A*X = B

Wenn die aktuelle Matrix nicht quadratisch oder singu-
lär ist, wird eine IllegalArgumentException ausgelöst.
(Siehe auch Rezept 25)

void subtract(Matrix B)
static Matrix subtract(Matrix A, Matrix B)

Subtrahiert die übergebene Matrix von der aktuellen
Matrix.
Die statische Version subtrahiert die zweite von der ers-
ten Matrix und liefert das Ergebnis als neue Matrix
zurück.
Gehören die Matrizen unterschiedlichen (m,n)-Ordnun-
gen an, wird eine IllegalArgumentException ausgelöst.

Methode Beschreibung

Tabelle 14: Methoden der Klasse Matrix (Forts.)

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

............

...

...

...

333231

232221

131211

ull
uul
uuu

LU

>> Matrizen82
Za

hl
en

void times(double s)
static Matrix times(Matrix A, double s)

Multipliziert die Elemente der aktuellen bzw. der über-
gebenen Matrix mit dem Faktor s.

void transpose()
static Matrix transpose(Matrix A)

Transponiert die Matrix bzw. liefert die Transponierte
zur übergebenen Matrix zurück.
Die Transponierte ergibt sich durch Spiegelung der Ele-
mente an der Diagonalen, sprich durch paarweise Ver-
tauschung der Elemente a(ij) mit a(ji).
Wenn die zu transponierende Matrix nicht quadratisch
ist, wird eine RuntimeException bzw. IllegalArgumentEx-
ception ausgelöst.

/**
 * Klasse für Matrizen
 *
 * @author Dirk Louis
 */
import java.text.DecimalFormat;

class Matrix implements Cloneable {

 private double[][] elems = null; // Zum Speichern der Elemente
 private int m; // Zeilen-Dimension
 private int n; // Spalten-Dimension

 // Leere Matrix (mit 0.0 gefüllt)
 public Matrix(int m, int n) {
 this.m = m;
 this.n = n;
 elems = new double[m][n];
 }

 // Konstante Matrix (mit s gefüllt)
 public Matrix(int m, int n, double s) {
 this.m = m;
 this.n = n;
 elems = new double[m][n];
 for (int i = 0; i < m; i++)
 for (int j = 0; j < n; j++)
 elems[i][j] = s;
 }

 // Matrix (mit Werten aus zweidimensionalem Array gefüllt)
 public Matrix(int m, int n, double[][] elems) {
 // Dimension des Arrays mit m und n vergleichen
 if (m != elems.length) // Anzahl Zeilen gleich m?
 throw new IllegalArgumentException("Fehler in Zeilendimension");

Listing 25: Matrix.java

Methode Beschreibung

Tabelle 14: Methoden der Klasse Matrix (Forts.)

>> Zahlen und Mathematik 83

Za
hl

en

 for (int i = 0; i < m; ++i) // für alle Zeilen die Anzahl Spalten
 if (n != elems[i].length) // gleich m?
 throw new IllegalArgumentException("Fehler in Spaltendimension");

 this.m = m;
 this.n = n;
 this.elems = elems;
 }

 // Addition THIS = THIS + B
 public void add(Matrix B) {
 if (this.m != B.m || this.n != B.n)
 throw new IllegalArgumentException("Matrix-Dim. passen nicht.");

 double[][] addElems = B.getArray();
 for (int i = 0; i < m; i++)
 for (int j = 0; j < n; j++)
 elems[i][j] += addElems[i][j];
 }

 // Addition C = A + B
 public static Matrix add(Matrix A, Matrix B) {
 int m = A.getRowDim();
 int n = A.getColumnDim();

 if (m != B.getRowDim() || n != B.getColumnDim())
 throw new IllegalArgumentException("Matrix-Dim. passen nicht.");

 double[][] newElems = new double[m][n];
 double[][] elemsA = A.getArray();
 double[][] elemsB = B.getArray();

 for (int i = 0; i < m; i++)
 for (int j = 0; j < n; j++)
 newElems[i][j] = elemsA[i][j] + elemsB[i][j];

 return new Matrix(m, n, newElems);
 }

 // Subtraktion THIS = THIS - B
 public void subtract(Matrix B) {
 if (this.m != B.m || this.n != B.n)
 throw new IllegalArgumentException("Matrix-Dim. passen nicht.");

 double[][] subtractElems = B.getArray();
 for (int i = 0; i < m; i++)
 for (int j = 0; j < n; j++)
 elems[i][j] -= subtractElems[i][j];
 }

Listing 25: Matrix.java (Forts.)

>> Matrizen84
Za

hl
en

 // Subtraktion C = A - B
 public static Matrix subtract(Matrix A, Matrix B) {
 int m = A.getRowDim();
 int n = A.getColumnDim();

 if (m != B.getRowDim() || n != B.getColumnDim())
 throw new IllegalArgumentException("Matrix-Dim. passen nicht.");

 double[][] newElems = new double[m][n];
 double[][] elemsA = A.getArray();
 double[][] elemsB = B.getArray();

 for (int i = 0; i < m; i++)
 for (int j = 0; j < n; j++)
 newElems[i][j] = elemsA[i][j] - elemsB[i][j];

 return new Matrix(m, n, newElems);
 }

 // Vervielfachung THIS = THIS * s
 public void times(double s) {
 for (int i = 0; i < m; i++)
 for (int j = 0; j < n; j++)
 elems[i][j] *= s;
 }

 // Vervielfachung C = B * s
 public static Matrix times(Matrix B, double s) {
 int m = B.getRowDim();
 int n = B.getColumnDim();
 double[][] newElems = new double[m][n];
 double[][] elemsB = B.getArray();

 for (int i = 0; i < m; i++)
 for (int j = 0; j < n; j++)
 newElems[i][j] = elemsB[i][j] * s;

 return new Matrix(m, n, newElems);
 }

 // Multiplikation C = THIS * B
 public Matrix multiply(Matrix B) {
 if (this.n != B.getRowDim())
 throw new IllegalArgumentException("Matrix-Dim. passen nicht.");

 int m = this.getRowDim();
 int n = B.getColumnDim();
 double[][] newElems = new double[m][n];
 double[][] elemsB = B.getArray();
 double sum = 0;

Listing 25: Matrix.java (Forts.)

>> Zahlen und Mathematik 85

Za
hl

en

 for (int i = 0; i < m; i++) {
 for (int j = 0; j < n; j++) {
 sum = 0;
 for (int k = 0; k < this.getColumnDim(); k++)
 sum += this.elems[i][k] * elemsB[k][j];
 newElems[i][j] = sum;
 }
 }

 return new Matrix(m, n, newElems);
 }

 // Transponieren THIS = THIS^T [a(ij) -> a(ji)]
 public void transpose() {
 if (this.n != this.m)
 throw new RuntimeException("Matrix-Dimensionen passen nicht.");

 double[][] transelems = new double[m][n];
 for (int i = 0; i < m; i++)
 for (int j = 0; j < n; j++)
 transelems[j][i] = this.elems[i][j];

 this.elems = transelems;
 }

 // Transponieren C = THIS^T [a(ij) -> c(ji)]
 public static Matrix transpose(Matrix A) {
 int m = A.getRowDim();
 int n = A.getColumnDim();

 if (m != n)
 throw new IllegalArgumentException("Matrix-Dim. passen nicht.");

 double[][] transelems = new double[m][n];
 double[][] elemsA = A.getArray();
 for (int i = 0; i < m; i++)
 for (int j = 0; j < n; j++)
 transelems[j][i] = elemsA[i][j];

 return new Matrix(n, m, transelems);
 }

 // Identitätsmatrix C = mxn-I
 public static Matrix getIdentity(int m, int n) {
 double[][] idelems = new double[m][n];
 for (int i = 0; i < m; i++)
 for (int j = 0; j < n; j++)
 idelems[i][j] = (i == j ? 1.0 : 0.0);

 return new Matrix(m, n, idelems);

Listing 25: Matrix.java (Forts.)

>> Matrizen86
Za

hl
en

 }

 // LR-Zerlegung
 public LUMatrix luDecomp() {
 return new LUMatrix(this);
 }

 // Gleichungssystem lösen
 public double[] solve(double[] bvec) {
 LUMatrix LU = luDecomp();
 double[] xvec = LU.luBacksolve(bvec);

 return xvec;
 }

 // Inverse THIS^-1, so dass THIS*THIS^-1 = I
 public Matrix inverse() {
 double[] col = new double[n];
 double[] xvec = new double[n];
 double[][] invElems = new double[n][n];

 LUMatrix LU = luDecomp();

 for (int j=0; j < n; j++) {
 for(int i=0; i< n; i++)
 col[i] = 0.0;

 col[j] = 1.0;
 xvec = LU.luBacksolve(col);

 for(int i=0; i< n; i++)
 invElems[i][j] = xvec[i];
 }

 return new Matrix(n, n, invElems);
 }

 // Determinante
 public double det() {

 LUMatrix LU = luDecomp();

 double d = LU.getD();

 for (int i=0; i < n; i++)
 d *= LU.elems[i][i];

Listing 25: Matrix.java (Forts.)

>> Zahlen und Mathematik 87

Za
hl

en

 return d;
 }

 // Get/Set-Methoden
 public double[][] getArray() {
 return elems;
 }

 public int getRowDim() {
 return m;
 }
 public int getColumnDim() {
 return n;
 }

 public double get(int i, int j) {
 return elems[i][j];
 }
 public void set(int i, int j, double s) {
 if((i >= 0 && i < m) && (j >= 0 && j < n))
 elems[i][j] = s;
 }

 // Kopieren
 public Object clone() {
 try {
 Matrix B = (Matrix) super.clone();
 B.elems = new double[m][n];
 for (int i = 0; i < m; i++)
 for (int j = 0; j < n; j++)
 B.elems[i][j] = this.elems[i][j];

 return B;
 } catch (CloneNotSupportedException e) {
 // sollte nicht vorkommen
 throw new InternalError();
 }
 }

 // Vergleichen
 public boolean equals(Object obj) {
 if (obj instanceof Matrix) {
 Matrix B = (Matrix) obj;
 if (B.getRowDim() == m && B.getColumnDim() == n) {
 for (int i = 0; i < m; i++)
 for (int j = 0; j < n; j++)
 if(B.get(i, j) != this.elems[i][j])
 return false;
 return true;
 }

Listing 25: Matrix.java (Forts.)

>> Matrizen88
Za

hl
en

Das Programm aus Listing 26 demonstriert die Programmierung mit Objekten der Klasse
Matrix anhand einer Matrixmultiplikation und der Berechnung einer Inversen.

 return false;
 }
 return false;
 }

 // Ausgeben auf Konsole
 public void print() {
 DecimalFormat df = new DecimalFormat("#,##0.###");
 int maxLength = 0;

 for (int i = 0; i < m; ++i)
 for (int j = 0; j < n; ++j)
 maxLength = (maxLength >= df.format(elems[i][j]).length())
 ? maxLength : df.format(elems[i][j]).length();

 for (int i = 0; i < m; ++i) {
 System.out.print (" [");
 for (int j = 0; j < n; ++j)
 System.out.printf(MoreString.strpad(df.format(elems[i][j]),
 maxLength) + " ");
 System.out.println ("]");
 }
 }
}

public class Start {

 public static void main(String args[]) {

 System.out.println("\n /*** Matrixmultiplikation ***/ \n");

 // Matrizen aus Arrays erzeugen
 double[][] elemsA = { { 2, 4, -3},
 { 1, 0, 6} };
 Matrix A = new Matrix(2, 3, elemsA);

 double[][] elemsB = { {1},
 {2},
 {6} };
 Matrix B = new Matrix(3, 1, elemsB);

 A.print();
 System.out.println("\n multipliziert mit \n");
 B.print();
 System.out.println("\n ergibt: \n");

Listing 26: Rechnen mit Matrizen

Listing 25: Matrix.java (Forts.)

>> Zahlen und Mathematik 89

Za
hl

en

 // Matrizen multiplizieren
 Matrix C = A.multiply(B);

 C.print();

 System.out.println("\n\n /*** Inverse ***/ \n");

 System.out.println(" Inverse von: \n");

 double[][] elemsD = { { 1, 0 },
 { 1, 2} };
 Matrix D = new Matrix(2, 2, elemsD);
 D.print();

 System.out.println("\n ist: \n");

 // Inverse berechnen
 C = D.inverse();
 C.print();

 System.out.println();
 }
}

Abbildung 14: Matrixmultiplikation und Berechnung der Inversen

Listing 26: Rechnen mit Matrizen (Forts.)

>> Gleichungssysteme lösen90
Za

hl
en

25 Gleichungssysteme lösen
Mit Hilfe der Methode solve() der im vorangehenden Rezept beschriebenen Klasse Matrix
können Sie lineare Gleichungssysteme lösen, die sich durch quadratische Matrizen repräsen-
tieren lassen. Intern wird dabei ein Objekt der Hilfsklasse LUMatrix erzeugt, welches die LU-
Zerlegung der aktuellen Matrix repräsentiert. Die Klasse selbst ist hier nicht abgedruckt, steht
aber – wie alle anderen zu diesem Buch gehörenden Klassen – als Quelltext auf der Buch-CD
zur Verfügung. Der Code der Klasse ist ausführlich kommentiert.

Das Programm aus Listing 26 demonstriert, wie mit Hilfe der Klasse Matrix ein lineares Glei-
chungssystem gelöst werden kann.

public class Start {

 public static void main(String args[]) {
 System.out.println();

 System.out.println(" /*** Lineare Gleichungssysteme ***/ ");
 System.out.println("\n");

 System.out.println(" Gesucht werden x, y und z, sodass:\n");
 System.out.println("\t x + 5y - z = 1");
 System.out.println("\t -3x + y - z = 1");
 System.out.println("\t 3x + y + z = -3");
 System.out.println("\n");

 // Koeffizientenmatrix erzeugen
 double[][] elems = { { 1, 5, -1},
 { -3, 1, -1},
 { 3, 1, 1} };
 Matrix A = new Matrix(3, 3, elems);

 double[] bvec = { 1, 1, -3 };

 System.out.println("\n Koeffizientenmatrix: ");
 A.print();
 System.out.println();

 // Gleichungssystem lösen
 double[] loesung = A.solve(bvec);

 System.out.println("\n Gefundene Loesung: ");
 System.out.println(" x = " + loesung[0]);
 System.out.println(" y = " + loesung[1]);
 System.out.println(" z = " + loesung[2]);

 System.out.println();
 }
}

Listing 27: Testprogramm: Lösung eines linearen Gleichungssystems

>> Zahlen und Mathematik 91

Za
hl

en

26 Große Zahlen beliebiger Genauigkeit
Alle elementaren numerischen Typen arbeiten aufgrund ihrer festen Größe im Speicher mit
begrenzter Genauigkeit (wobei die beiden Gleitkommatypen den größeren Integer-Typen sogar
bezüglich der Anzahl signifikanter Stellen unterlegen sind).

Die Lage ist allerdings bei weitem nicht so tragisch, wie es sich anhört: Die Integer-Typen
arbeiten in ihrem (für long durchaus beachtlichen) Wertebereich absolut exakt und die Genau-
igkeit des Datentyps double ist meist mehr als zufrieden stellend. Trotzdem gibt es natürlich
Situationen, wo Wertebereich und Genauigkeit dieser Datentypen nicht ausreichen, etwa bei
quantenphysikalischen Berechnungen oder in der Finanzmathematik, wo manchmal schon
geringfügige Rundungs- oder Darstellungsfehler durch Multiplikation mit großen Faktoren zu
extremen Abweichungen führen.

Für solche Fälle stellt Ihnen die Java-Bibliothek die Klassen BigInteger und BigDecimal aus
dem Paket java.math zur Verfügung.

Beide Klassen

� arbeiten mit unveränderbaren Objekten, die Integer- (BigInteger) oder Gleitkommazahlen
(BigDecimal) beliebiger Genauigkeit kapseln.

� definieren neben anderen Konstruktoren auch solche, die als Argument die String-Darstel-
lung der zu kapselnden Zahl erwarten. (So lassen sich die zu erzeugenden Instanzen mit
Zahlen initialisieren, die nicht mehr als Literale numerischer Datentypen geschrieben wer-
den können.)

� BigInteger(String zahl)

� BigDecimal(String zahl)

� definieren numerische Methoden für die vier Grundrechenarten.

Beachten Sie, dass alle diese Methoden das Ergebnis der Operation als neues Objekt
zurückliefern (da einmal erzeugte Big-Objekte wie gesagt unveränderlich sind):

Abbildung 15: Lösung eines linearen Gleichungssystems durch Zerlegung der
Koeffizientenmatrix

>> Große Zahlen beliebiger Genauigkeit92
Za

hl
en

� BigInteger add(BigInteger wert)

� BigInteger subtract(BigInteger wert)

� BigInteger multiply(BigInteger wert)

� BigInteger divide(BigInteger wert)

� BigInteger pow(int exponent)

� definieren verschiedene weitere Methoden zur Umwandlung in oder aus elementaren
Datentypen:

� long longValue()

� double doubleValue()

� static BigInteger valueOf(long wert)

� definieren Vergleichsmethoden und verschiedene weitere nützliche Methoden (siehe API-
Dokumentation)

� boolean equals(Object o)

� int compareTo(BigInteger wert)

Ein Anfangskapital von 200 € soll für 9 Jahre bei einer vierteljährlichen Verzinsung von
0,25% p.Q. angelegt werden.

Das folgende Programm berechnet das Endkapital gemäß der Zinseszins-Formel Kn = K0
(1 + p/100)n in den drei Datentypen float, double und BigDecimal.

import java.math.BigDecimal;

public class Start {

 /*
 * Zinseszins-Berechnung mit float-Werten
 */
 static float compoundInterest(float startCapital,
 float interestRate, int term) {
 return startCapital *
 (float) Math.pow(1.0 + interestRate, term);
 }

 /*
 * Zinseszins-Berechnung mit double-Werten
 */
 static double compoundInterest(double startCapital,
 double interestRate, int term) {
 return startCapital * Math.pow(1.0 + interestRate, term);
 }

 /*
 * Zinseszins-Berechnung mit BigDecimal-Werten
 */

Listing 28: Rechnen mit BigDecimal

>> Zahlen und Mathematik 93

Za
hl

en

Ausgabe:

486.50708
486.5070631435786
486.50706314358007

 static BigDecimal compoundInterest(BigDecimal startCapital,
 BigDecimal interestRate, int term) {
 interestRate = interestRate.add(new BigDecimal(1.0));

 BigDecimal factor = new BigDecimal(0);
 factor = factor.add(interestRate);

 for (int i = 1; i < term ; ++i)
 factor = factor.multiply(interestRate);

 return startCapital.multiply(factor);
 }

 public static void main(String args[]) {
 System.out.println();

 System.out.println(compoundInterest(200.0f, 0.025f, 36));
 System.out.println(compoundInterest(200.0, 0.025, 36));
 System.out.println(compoundInterest(new BigDecimal("200.0"),
 new BigDecimal("0.025"),36).doubleValue());
 }
}

A
ch

tu
n

g Für die Ausgabe des BigDecimal-Werts ist die Umwandlung in double notwendig, da
toString() eine Stringdarstellung des BigDecimal-Objekts liefert, aus der der tatsächli-
che Wert praktisch nicht herauszulesen ist. Den mit der Umwandlung einhergehenden
Genauigkeitsverlust müssen wir also in Kauf nehmen. Er ist aber nicht so tragisch. Ent-
scheidend ist, dass die Formel (insbesondere die Potenz!), mit erhöhter Genauigkeit
berechnet wurde.

Listing 28: Rechnen mit BigDecimal (Forts.)

St
rin

gs

Strings

27 In Strings suchen
Da Strings nicht sortiert sind, werden sie grundsätzlich sequentiell (von vorn nach hinten oder
umgekehrt von hinten nach vorn) durchsucht: Trotzdem lassen sich drei alternative Suchver-
fahren unterscheiden, nämlich die Suche nach

� einzelnen Zeichen,

� Teilstrings,

� Mustern (regulären Ausdrücken).

Grundsätzlich gilt, dass die aufgeführten Suchverfahren von oben nach unten immer leis-
tungsfähiger, aber auch immer teurer werden.

Suchen nach einzelnen Zeichen
Mit den String-Methoden indexOf() und lastIndexOf() können Sie nach einzelnen Zeichen in
einem String suchen.

Als Argument übergeben Sie das zu suchende Zeichen und optional die Position, ab der
gesucht werden soll. Als Ergebnis erhalten Sie die Position des nächsten gefundenen Vorkom-
mens, wobei die Methode indexOf() den String von vorn nach hinten und die Methode last-
IndexOf() von hinten nach vorn durchsucht.

Die wichtigsten Einsatzmöglichkeiten sind

� die Suche nach dem ersten Vorkommen eines Zeichens:

// Erstes Vorkommen von 'y' in String text
int pos = text.indexOf('y');

� die Suche nach dem letzten Vorkommen eines Zeichens:

// Letztes Vorkommen von 'y' in String text
int pos = text.lastIndexOf('y');

� die Suche nach allen Vorkommen eines Zeichens:

// Alle Vorkommen von 'y' in String text
int found = 0;
while ((found = text.indexOf('y', found)) != -1) {
 // hier Vorkommen an Position end verarbeiten
 ...
 ++found;
}

Suchen nach Teilstrings
Ebenso wichtig wie die Suche nach Zeichen ist die Suche nach Teilstrings in einem String. Doch
leider gibt es in der String-Klasse derzeit keine Methode, mit der man einen String nach den
Vorkommen eines Teilstrings durchsuchen könnte. Mit Hilfe der String-Methoden indexOf()
und substring() ist eine solche Methode aber schnell implementiert:

>> In Strings suchen96
St

rin
gs

Die erste der beiden Methoden übernimmt als Argumente den zu durchsuchenden String und
den zu suchenden String und beginnt mit der Suche am Anfang des Strings, d.h., sie ruft ein-
fach die zweite Methode mit der Startposition 0 auf. Diese zweite Methode übernimmt als
zusätzliches Argument besagte Positionsangabe und durchsucht dann ab dieser Position den
String text nach dem nächsten Vorkommen von searched. Sie geht dabei so vor, dass sie
zuerst mit indexOf() nach dem Anfangsbuchstaben von searched sucht. Wurde ein Vorkom-
men dieses Buchstabens gefunden, kopiert die Methode ab seiner Position aus text einen
String heraus, der ebenso groß ist wie der gesuchte String (sofern die Länge von text dies
zulässt), und vergleicht diesen mit searched. Stimmen beide Strings überein, wird die Suche
abgebrochen und die gefundene Position zurückgeliefert. Wird kein Vorkommen von searched
gefunden, liefert die Methode -1 zurück.

Eingesetzt wird die Methode so wie indexOf():

// Erstes Vorkommen von "John Maynard" in String text
int pos = MoreString.indexOfString(text, "John Maynard");

// Alle Vorkommen von "John Maynard" in String text
found = 0;

/**
 * String nach Teilstrings durchsuchen
 */
public static int indexOfString(String text, String searched) {
 return indexOfString(text, searched, 0);
}

public static int indexOfString(String text, String searched, int pos) {
 String tmp;
 int lenText = text.length();
 int lenSearched = searched.length();
 int found = pos;

 // Nach Anfangsbuchstaben suchen
 while ((found = text.indexOf(searched.charAt(0), found)) != -1) {

 // Wenn String noch groß genug, Teilstring herauskopieren
 // und mit dem gesuchten String vergleichen
 if (found + lenSearched <= lenText) {
 tmp = text.substring(found, found + lenSearched);

 if (tmp.equals(searched))
 break; // Vorkommen gefunden
 }
 ++found;
 }

 return found;
}

Listing 29: Methoden zum Suchen nach Strings in Strings

>> Strings 97

St
rin

gs

while((found = MoreString.indexOfString(text, "John Maynard", found)) != -1) {
 // hier Vorkommen an Position end verarbeiten
 ...
 ++found;
}

Suchen nach Mustern
Mit Hilfe der RegEx-Unterstützung von Java können Sie auch nach Vorkommen eines Musters
suchen.

1. Zuerst definieren Sie das Muster, nach dem gesucht werden soll.

Beispielsweise könnten Sie einen deutschen Text mit folgendem Muster nach Substantiven
durchsuchen:

"[A-ZÄÖÜ][a-zA-ZäöüßÄÖÜ]+"

Dieses Muster beschreibt ein Wort, das mit einem Großbuchstaben beginnt, dem beliebig
viele Kleinbuchstaben folgen.

2. Dann kompilieren Sie das Muster in ein Pattern-Objekt und besorgen sich für das Pattern-
Objekt und den zu durchsuchenden String einen Matcher.

import java.util.regex.Pattern;
import java.util.regex.Matcher;
...

Pattern pat = Pattern.compile("[A-ZÄÖÜ][a-zA-ZäöüßÄÖÜ]+");
Matcher m = pat.matcher(text);

3. Schließlich lassen Sie die Matcher-Methode find() das nächste Vorkommen suchen.

Achtung! Die Methode find() setzt die Suche automatisch immer an der Position fort, an
der die letzte find()-Suche beendet wurde. Um die Suche wieder am Anfang zu beginnen,
rufen Sie reset() auf. Wenn Sie die Suche an einer bestimmten Position starten wollen,
übergeben Sie find() als zweites Argument die gewünschte Position.

Das letzte gefundene Vorkommen wird intern vom Matcher-Objekt gespeichert und kann
durch Aufruf der Methode group() abgefragt werden.

// Erstes Vorkommen suchen
if (m.find())
 System.console().printf("Erstes Vorkommen: %s\n",
 m.group());

// Alle Vorkommen suchen, gegebenenfalls nach m.reset();
while (m.find()) {
 System.console().printf("%s\n", m.group());
}

Im Start-Programm zu diesem Rezept werden die hier vorgestellten Suchverfahren alle noch
einmal eingesetzt und demonstriert.

A
ch

tu
n

g Die String-Methode matches() ist nicht zum Durchsuchen von Strings geeignet. Sie
prüft lediglich, ob der aktuelle String einem übergebenen Muster entspricht!

>> In Strings einfügen und ersetzen98
St

rin
gs

28 In Strings einfügen und ersetzen
� Wenn Sie alle Vorkommen eines Zeichens durch ein anderes Zeichen ersetzen wollen,

rufen Sie die String-Methode

String replace(char oldChar, char newChar)

auf. Der resultierende String wird als Ergebnis zurückgeliefert.

� Wenn Sie alle Vorkommen eines Teilstrings durch einen anderen Teilstring ersetzen
wollen, rufen Sie die String-Methode

String replaceAll(String regex, String replacement)

auf. Als erstes Argument übergeben Sie einfach den zu ersetzenden Teilstring. Der resultie-
rende String wird als Ergebnis zurückgeliefert.

� Wenn Sie alle Vorkommen eines Musters durch einen anderen Teilstring ersetzen wol-
len, rufen Sie die String-Methode

String replaceAll(String regex, String replacement)

auf und übergeben Sie das Muster als erstes Argument. Der resultierende String wird als
Ergebnis zurückgeliefert.

� Wenn Sie die Zeichen von start bis einschließlich end-1 durch einen anderen Teilstring
ersetzen wollen, wandeln Sie den String in ein StringBuilder-Objekt um und rufen Sie die
Methode

StringBuilder replace(int start, int end, String str)

auf. Da StringBuilder-Objekte nicht wie String-Objekte immutable sind, bearbeitet die
StringBuilder-Methode direkt das aktuelle Objekt. Den zugehörigen String können Sie
sich durch Aufruf von toString() zurückliefern lassen:

StringBuilder tmp = new StringBuilder(text);
tmp.replace(0, 10, " ");
text = tmp.toString();

� Wenn Sie Zeichen oder Strings an einer bestimmten Position in den String einfügen
wollen, wandeln Sie den String in ein StringBuilder-Objekt um und rufen Sie eine der
überladenen Versionen von

StringBuilder insert(int offset, char c)
StringBuilder insert(int offset, String str)
StringBuilder insert(int offset, boolean b)
StringBuilder insert(int offset, int i)
...

auf. Den zugehörigen String können Sie sich durch Aufruf von toString() zurückliefern
lassen.

Das Start-Programm zu diesem Rezept demonstriert die Ersetzung mit der replace()-Methode
von StringBuilder und der replaceAll()-Methode von String. (Hinweis: Das Programm ist
trotz der Erwähnung eines bekannten Politikers nicht als politischer Kommentar gedacht, son-
dern spielt lediglich – in Anlehnung an den »Lotsen« Bismarck – mit der Vorstellung vom
Kanzler als Steuermann.)

>> Strings 99

St
rin

gs

public class Start {

 public static void main(String args[]) {

 String text = "John Maynard!\n"
 + "\"Wer ist John Maynard?\"\n"
 + "\"John Maynard war unser Steuermann,\n"
 + "Aus hielt er, bis er das Ufer gewann,\n"
 + "Er hat uns gerettet, er traegt die Kron,\n"
 + "Er starb fuer uns, unsre Liebe sein Lohn.\n"
 + "John Maynard.\"\n";
 int pos;
 int found;

 // Originaltext ausgeben
 System.console().printf("\n%s", text);

 // Zeichen von 156 bis einschließlich 160 ersetzen
 StringBuilder tmp = new StringBuilder(text);
 tmp.replace(156,161,"tat es");
 text = tmp.toString();

 // "John Maynard" durch "Gerhard Schroeder" ersetzen
 text = text.replaceAll("John Maynard", "Gerhard Schroeder");

 // Bearbeiteten Text ausgeben
 System.console().printf("\n%s", text);

 }
}

Listing 30: Ersetzen in Strings

Abbildung 16: Textfälschung mittels replace()

>> Strings zerlegen100
St

rin
gs

29 Strings zerlegen
Zum Zerlegen von Strings steht die String-Methode split() zur Verfügung.

String[] split(String regex)

Der split()-Methode liegt die Vorstellung zugrunde, dass der zu zerlegende Text aus mehre-
ren informationstragenden Passagen besteht, die durch spezielle Zeichen oder Zeichenfolgen
getrennt sind. Ein gutes Beispiel ist ein String, der mehrere Zahlenwerte enthält, die durch
Semikolon getrennt sind:

String data = "1;-234;5623;-90";

Die Zahlen sind in diesem Fall die eigentlich interessierenden Passagen, die extrahiert werden
sollen. Die Semikolons dienen lediglich als Trennzeichen und sollen bei der Extraktion ver-
worfen werden (d.h., sie sollen nicht mehr als Teil der zurückgelieferten Strings auftauchen).

Für solche Fälle ist split() ideal. Sie übergeben einfach das Trennzeichen (in Form eines
Strings aus einem Zeichen) und erhalten die zwischen den Trennzeichen stehenden Textpassa-
gen als String-Array zurück.

String[] buf = data.split(";");

Selbstverständlich können Sie auch Strings aus mehreren Zeichen als Trennmarkierung über-
geben. Da der übergebene String als regulärer Ausdruck interpretiert wird, können Sie sogar
durch Definition einer passenden Zeichenklasse nach mehreren alternativen Trennmarkierun-
gen suchen lassen:

String[] buf = data.split("[;/]"); // erkennt Semikolon und
 // Schrägstrich als Trennmarkierung

oder beliebig komplexe Trennmarkierungen definieren:

Abbildung 17: Beispiel für die Zerlegung eines Textes in einzelne Wörter

>> Strings 101

St
rin

gs

30 Strings zusammenfügen
Dass Strings mit Hilfe des +-Operators oder der String-Methode concat() aneinander gehängt
werden können (Konkatenation), ist allgemein bekannt.

Zu beachten ist allerdings, dass diese Operationen, wie im Übrigen sämtliche Manipulationen
von String-Objekten, vergleichsweise kostspielig sind, da String-Objekte immutable, sprich
unveränderlich, sind. Alle String-Operationen, die den ursprünglichen String verändern wür-
den, werden daher nicht auf den Originalstrings, sondern einer Kopie ausgeführt!

Wenn Sie also – um ein konkretes Beispiel zu geben – an einen bestehenden String einen
anderen String anhängen, werden die Zeichen des zweiten Strings nicht einfach an das letzte
Zeichen des ersten Strings angefügt, sondern es wird ein ganz neues String-Objekt erzeugt, in
welches die Zeichen der beiden aneinander zu hängenden Strings kopiert werden.

Solange die entsprechenden String-Manipulationen nur gelegentlich durchgeführt werden, ist
der Overhead, der sich durch die Anfertigung der Kopie ergibt, verschmerzbar. Sobald aber auf
einen String mehrere manipulierende Operationen nacheinander ausgeführt werden, stellt sich
die Frage nach einer ressourcenschonenderen Vorgehensweise.

Java definiert zu diesem Zweck die Klassen StringBuilder und StringBuffer. Diese stellen
Methoden zur Verfügung, die direkt auf dem aktuellen Objekt (letzten Endes also der Zeichen-
kette, die dem String zugrunde liegt) operieren und mit deren Hilfe Konkatenations-, Einfüge-
und Ersetzungsoperationen effizient durchgeführt werden können.

// aus Start.java
// Text, der mit Zeilenumbrüchen und zusätzlichen Leerzeichen formatiert wurde
String text = "Sei getreu bis in den Tod,\n so will ich dir die Krone des "
 + "Lebens geben.";

String[] words = text.split("\\s+"); // Beliebige Folgen von Whitespace
 // als Trennmarkierung erkennen

Listing 31: Strings mit split() zerlegen

String partOne = "Der Grund, warum wir uns über die Welt täuschen, ";
String partTwo = "liegt sehr oft darin, ";
String partThree = "dass wir uns über uns selbst täuschen.";

// StringBuilder-Objekt auf der Grundlage von partOne erzeugen
StringBuilder text = new StringBuilder(partOne);

// Text in StringBuilder-Objekt bearbeiten
text.append(partTwo);
text.append(partThree);

// String-Builder-Objekt in String verwandeln
String s = text.toString();

Listing 32: String-Konkatenation mit StringBuilder

>> Strings nach den ersten n Zeichen vergleichen102
St

rin
gs

Wenn Sie einen String in ein StringBuilder-Objekt verwandeln wollen, um es effizienter bear-
beiten zu können, dürfen Sie nicht vergessen, die Kosten für die Umwandlung in StringBuil-
der und wieder zurück in String in Ihre Kosten-Nutzen-Analyse mit einzubeziehen.

Denken Sie aber auch daran, dass der Geschwindigkeitsvorteil von StringBuilder.append()
nicht nur darin besteht, dass kein neues String-Objekt erzeugt werden muss. Mindestens
ebenso wichtig ist, dass die Zeichen des Ausgangsstrings (gemeint ist der String, an den ange-
hängt wird) nicht mehr kopiert werden müssen. Je länger der Ausgangsstring ist, umso mehr
Zeit wird also eingespart.

Mit dem Start-Programm zu diesem Rezept können Sie messen, wie viel Zeit 10.000 String-
Konkatenationen mit dem String-Operator + und mit der StringBuilder-Methode append()
benötigen.

31 Strings nach den ersten n Zeichen vergleichen
Die Java-String-Klassen bieten relativ wenig Unterstützung zur bequemen Textverarbeitung.
Nicht, dass elementare Funktionalität fehlen würde; was fehlt, sind Convenience-Methoden,
wie man sie von stärker textorientierten Programmiersprachen kennt und die einem die eine
oder andere Aufgabe vereinfachen würden. Die folgenden Rezepte sollen helfen, diese Lücke
zu schließen.

Für String-Vergleiche gibt es in Java auf der einen Seite die String-Methoden compareTo() und
compareToIgnoreCase(), die nach dem Unicode der Zeichen vergleichen, und auf der anderen
Seite die Collator-Methode compare() für Vergleiche gemäß einer Lokale (siehe Rezept 205).
Diese Methoden vergleichen immer ganze Strings.

Wenn Sie lediglich die Anfänge zweier Strings vergleichen wollen, müssen Sie die zu verglei-
chenden String-Teile als Teilstrings aus den Originalstrings herausziehen (substring()-
Methode). Das folgende Listing demonstriert dies und kapselt den Code gleichzeitig in eine
Methode.

E
x

k
u

rs StringBuilder oder StringBuffer?
Die Klassen StringBuilder und StringBuffer verfügen über praktisch identische Kon-
struktoren und Methoden und erlauben direkte Operationen auf den ihnen zugrunde
liegenden Strings. Die Klasse StringBuffer wurde bereits in Java 1.2 eingeführt und ist
synchronisiert, d.h., sie eignet sich für Implementierungen, in denen mehrere Threads
gleichzeitig auf einen String zugreifen.

So vorteilhaft es ist, eine synchronisierte Klasse für String-Manipulationen zur Verfü-
gung zu haben, so ärgerlich ist es, in den 90% der Fälle, wo Strings nur innerhalb eines
Threads benutzt werden, den unnötigen Ballast der Synchronisierung mitzuschleppen.
Aus diesem Grund wurde in Java 5 StringBuilder eingeführt – als nichtsynchronisier-
tes Pendant zu StringBuffer.

Sofern Sie also nicht mit einem älteren JDK (vor Version 1.5) arbeiten oder Strings
benötigen, auf die von mehreren Threads aus zugegriffen wird, sollten Sie stets String-
Builder verwenden. Im Übrigen kann Code, der mit StringBuilder arbeitet, ohne große
Mühen nachträglich auf StringBuffer umgestellt werden: Sie müssen lediglich alle
Vorkommen von StringBuilder durch StringBuffer ersetzen. (Gilt natürlich ebenso für
die umgekehrte Richtung.)

>> Strings 103

St
rin

gs

Die Methode compareN() ruft für den eigentlichen Vergleich die String-Methode compareTo()
auf. Folglich übernimmt sie auch die compareTo()-Semantik: Der Rückgabewert ist kleiner,
gleich oder größer null, je nachdem, ob der erste String kleiner, gleich oder größer als der
zweite String ist. Verglichen wird nach dem Unicode und der zurückgelieferte Zahlenwert gibt
die Differenz zwischen den Unicode-Werten des ersten unterschiedlichen Zeichenpaars an
(bzw. der Stringlängen, falls die Zeichenpaare alle gleich sind).

Sollen die Strings lexikografisch verglichen werden, muss der Vergleich mit Hilfe von Collator.
compare() durchgeführt werden:

/**
 * Strings nach ersten n Zeichen vergleichen
 * Rückgabewert ist kleiner, gleich oder größer Null
 */
public static int compareN(String s1, String s2, int n) {
 if (n < 1)
 throw new IllegalArgumentException();

 if (s1 == null || s2 == null)
 throw new IllegalArgumentException();

 // Kürzen, wenn String mehr als n Zeichen enthält
 if (s1.length() > n)
 s1 = s1.substring(0, n);
 if (s2.length() > n)
 s2 = s2.substring(0, n);

 // Die Stringanfänge vergleichen
 return s1.compareTo(s2);
}

Listing 33: Strings nach den ersten n Zeichen vergleichen

/**
 * Strings nach ersten n Zeichen gemäß Lokale vergleichen
 * Rückgabewert ist -1, 0 oder 1
 */
public static int compareN(String s1, String s2, int n, Locale loc) {
 if (n < 1)
 throw new IllegalArgumentException();

 if (s1 == null || s2 == null)
 throw new IllegalArgumentException();

 // Kürzen, wenn String mehr als n Zeichen enthält
 if (s1.length() > n)
 s1 = s1.substring(0, n);
 if (s2.length() > n)
 s2 = s2.substring(0, n);

Listing 34: Strings lexikografisch nach den ersten n Zeichen vergleichen

>> Strings nach den ersten n Zeichen vergleichen104
St

rin
gs

Das Start-Programm zu diesem Rezept liest über die Befehlszeile zwei Strings und die Anzahl
der zu vergleichenden Zeichen ein. Dann vergleicht das Programm die beiden Strings auf vier
verschiedene Weisen:

� gemäß Unicode, mit Berücksichtigung der Groß-/Kleinschreibung.

� gemäß Unicode, ohne Berücksichtigung der Groß-/Kleinschreibung.

� gemäß der deutschen Lokale, mit Berücksichtigung der Groß-/Kleinschreibung.

� gemäß der deutschen Lokale, ohne Berücksichtigung der Groß-/Kleinschreibung.

 Collator coll = Collator.getInstance(loc);
 return coll.compare(s1, s2);
}

H
in

w
e

is In der Datei MoreString.java zu diesem Rezept sind noch zwei weitere Methoden defi-
niert, mit denen Strings ohne Berücksichtigung der Groß-/Kleinschreibung verglichen
werden können:

static int compareNIgnoreCase(String s1, String s2, int n, Locale loc)

static int compareNIgnoreCase(String s1, String s2, int n)

import java.util.Locale;

public class Start {

 public static void main(String args[]) {
 System.out.println();

 if (args.length != 3) {
 System.out.println(" Aufruf: Start <String> <String> <Ganzzahl>");
 System.exit(0);
 }

 try {
 int n = Integer.parseInt(args[2]);

 System.out.println("\n Vergleich nach Unicode ");
 int erg = MoreString.compareN(args[0], args[1], n);

 if(erg < 0) {
 System.out.println(" String 1 ist kleiner");
 } else if(erg == 0) {
 System.out.println(" Strings sind gleich");
 } else {
 System.out.println(" String 1 ist groesser");
 }

Listing 35: Testprogramm für String-Vergleiche

Listing 34: Strings lexikografisch nach den ersten n Zeichen vergleichen (Forts.)

>> Strings 105

St
rin

gs

...

 System.out.println("\n Vergleich nach Lokale");
 erg = MoreString.compareN(args[0], args[1], n,
 new Locale("de", "DE"));

 switch(erg) {
 case -1: System.out.println(" String 1 ist kleiner");
 break;
 case 0: System.out.println(" Strings sind gleich");
 break;
 case 1: System.out.println(" String 1 ist groesser");
 break;
 }

...

 }
 catch (NumberFormatException e) {
 System.err.println(" Ungueltiges Argument");
 }
 }
}

Abbildung 18: Ob ein String größer oder kleiner als ein anderer String ist, hängt vor
allem von der Vergleichsmethode ab!

T
ip

p Die in diesem Rezept vorgestellten Methoden sind, man muss es so hart sagen, alles
andere als effizient implementiert: Die Rückführung auf vorhandene API-Klassen sorgt
für eine saubere Implementierung, bedeutet aber zusätzlichen Function Overhead, und
die Manipulation der tatsächlich ja unveränderbaren String-Objekte führt im Hinter-
grund zu versteckten Kopieraktionen. Wesentlich effizienter wäre es, die Strings in
char-Arrays zu verwandeln (String-Methode toCharArray()) und diese selbst Zeichen
für Zeichen zu vergleichen. Der Aufwand lohnt sich aber nur, wenn Sie wirklich exzes-
siven Gebrauch von diesen Methoden machen wollen.

Listing 35: Testprogramm für String-Vergleiche (Forts.)

>> Zeichen (Strings) vervielfachen106
St

rin
gs

32 Zeichen (Strings) vervielfachen
Strings zu vervielfachen oder ein Zeichen n Mal in einen String einzufügen, ist nicht schwer.
Das Aufsetzen der nötigen Schleifen, eventuell auch die Umwandlung in StringBuilder-
Objekte, ist allerdings lästig und stört die Lesbarkeit des Textverarbeitungscodes. Conve-
nience-Methoden, die Zeichen bzw. Strings vervielfachen und als String zurückliefern, können
hier Abhilfe schaffen.

Die Methode charNTimes() erzeugt einen String, der aus n Zeichen c besteht.

Beachten Sie, dass die Methode nicht einfach ein leeres String-Objekt erzeugt und diesem mit
Hilfe des +-Operators n Mal das Zeichen c anhängt. Diese Vorgehensweise würde wegen der
Unveränderbarkeit von String-Objekten dazu führen, dass n+1 String-Objekte erzeugt wür-
den. Stattdessen wird ein char-Array passender Größe angelegt und mit dem Zeichen c gefüllt.
Anschließend wird das Array in einen String umgewandelt und als Ergebnis zurückgeliefert.

Die Schwestermethode heißt strNTimes() und erzeugt einen String, der aus n Kopien des
Strings s besteht.

import java.util.Arrays;

/**
 * Zeichen vervielfältigen
 */
public static String charNTimes(char c, int n) {
 if (n > 0) {
 char[] tmp = new char[n];

 Arrays.fill(tmp, c);

 return new String(tmp);
 } else
 return "";
}

Listing 36: String aus n gleichen Zeichen erzeugen

A
ch

tu
n

g Zur Erinnerung: String-Objekte sind immutable, d.h. unveränderbar. Jegliche Ände-
rung an einem String-Objekt, sei es durch den +-Operator oder eine der String-Metho-
den führt dazu, dass ein neues String-Objekt mit den gewünschten Änderungen
erzeugt wird.

/**
 * String vervielfältigen
 */
public static String strNTimes(String s, int n) {
 StringBuilder tmp = new StringBuilder();

Listing 37: String aus n Kopien einer Zeichenfolge erzeugen

>> Strings 107

St
rin

gs

Diese Methode arbeitet intern mit einem StringBuilder-Objekt, um die Mehrfacherzeugung
von String-Objekten zu vermeiden.

Die zurückgelieferten Strings können Sie in andere Strings einbauen oder direkt ausgeben.

33 Strings an Enden auffüllen (Padding)
Die Klasse String definiert eine Methode trim() zum Entfernen von Whitespace-Zeichen an
den Enden eines Strings, aber keine Methode, um Strings an den Enden bis zu einer
gewünschten Länge aufzufüllen.

Die statische Methode MoreString.strpad() übernimmt einen String, füllt ihn bis auf die
gewünschte Zeichenlänge auf und liefert den resultierenden String zurück. Das Füllzeichen ist
frei wählbar. Der Parameter end bestimmt, ob am Anfang oder Ende des Strings aufgefüllt
wird. Als Argumente können ihm die vordefinierten Konstanten MoreString.PADDING_LEFT und
MoreString.PADDING_RIGHT übergeben werden. Der letzte Parameter cut legt fest, wie vorzuge-
hen ist, wenn die gewünschte Länge kleiner als die Originallänge des Strings ist. Ist cut gleich
true, wird der String am Ende gekürzt, ansonsten wird der Originalstring zurückgeliefert.

 for(int i = 1; i <= n; ++i)
 tmp.append(s);

 return tmp.toString();
}

H
in

w
e

is StringBuilder- und StringBuffer-Objekte erlauben die direkte Manipulation von
Strings, d.h., die Methoden dieser Klassen operieren auf dem aktuellen Objekt und ver-
ändern dessen Zeichenfolge (statt wie im Fall von String ein neues Objekt zu erzeu-
gen). Die Klassen StringBuilder und StringBuffer besitzen identische Methoden. Die
StringBuilder-Methoden sind in der Ausführung allerdings schneller, weil sie im
Gegensatz zu den StringBuffer-Methoden nicht threadsicher sind.

public class Start {

 public static void main(String args[]) {
 System.out.println();

 System.out.println(" /" + MoreString.charNTimes('*', 40));
 System.out.println();
 System.out.println("\t Zeichen und ");
 System.out.println("\t Zeichenfolgen vervielfachen ");
 System.out.println();
 System.out.println(" " + MoreString.strNTimes("*-", 20) + "/");

 }
}

Listing 38: Testprogramm zu charNTimes() und strNTimes()

Listing 37: String aus n Kopien einer Zeichenfolge erzeugen (Forts.)

>> Strings an Enden auffüllen (Padding)108
St

rin
gs

Abbildung 19: Ausgabe vervielfachter Zeichen und Zeichenfolgen

public class MoreString {
 public static final short PADDING_LEFT = 0;
 public static final short PADDING_RIGHT = 1;

 ...

 /**
 * Padding (Auffüllen) für String
 */
 public static String strpad(String s, int length, char c, short end,
 boolean cut) {
 if(length < 1 || s.length() == length)
 return s;

 if(s.length() > length)
 if (cut) // String verkleinern
 return s.substring(0, length);
 else // String unverändert zurückgeben
 return s;

 // Differenz berechnen // String vergrößern
 int diff = length - s.length();

 char[] pad = new char[diff];
 for(int i = 0; i < pad.length; ++i)
 pad[i] = c;

 if(end == MoreString.PADDING_LEFT)
 return new String(pad) + s;
 else
 return s + new String(pad);
 }
 ...

Listing 39: String auf gewünschte Länge auffüllen

>> Strings 109

St
rin

gs

Häufig müssen Strings linksseitig mit Leerzeichen aufgefüllt werden. Für diese spezielle Auf-
gabe gibt es eine überladene Version der Methode:

 public static String strpad(String s, int length) {

 return MoreString.strpad(s, length,' ', MoreString.PADDING_LEFT);
 }

Listing 40 demonstriert den Einsatz der Methode.

public class Start {

 public static void main(String args[]) {
 System.out.println();
 String s = "Text";

 System.out.println(" Padding rechts mit . auf Laengen 3, 5, 7 und 9");
 System.out.println();
 System.out.println(MoreString.strpad(s, 3,'.',MoreString.PADDING_RIGHT));
 System.out.println(MoreString.strpad(s, 5,'.',MoreString.PADDING_RIGHT));
 System.out.println(MoreString.strpad(s, 7,'.',MoreString.PADDING_RIGHT));
 System.out.println(MoreString.strpad(s, 9,'.',MoreString.PADDING_RIGHT));
 System.out.println();

 System.out.println(" Padding links mit Leerzeichen auf Laengen 3, 5, 7 "
 + "und 9");
 System.out.println();
 System.out.println(MoreString.strpad(s, 3));
 System.out.println(MoreString.strpad(s, 5));
 System.out.println(MoreString.strpad(s, 7));
 System.out.println(MoreString.strpad(s, 9));

 System.out.println();
 }
}

Listing 40: Testprogramm zu strpad()

Abbildung 20: String-Padding

>> Whitespace am String-Anfang oder -Ende entfernen110
St

rin
gs

34 Whitespace am String-Anfang oder -Ende entfernen
Zu den Standardaufgaben der String-Verarbeitung gehört auch das Entfernen von Whitespace
(Leerzeichen, Zeilenumbruch, Tabulatoren etc.). Die String-Klasse stellt zu diesem Zweck die
Methode trim() zur Verfügung – allerdings mit dem kleinen Wermutstropfen, dass diese
immer von beiden Seiten, Stringanfang wie -ende, den Whitespace abschneidet. Um Ihnen die
Wahlmöglichkeit wiederzugeben, die trim() verweigert, erhalten Sie hier zwei Methoden
ltrim() und rtrim(), mit denen Sie Whitespace gezielt vom String-Anfang (ltrim()) bzw.
String-Ende (rtrim()) entfernen können.

Beide Methoden lassen sich von der String-Methode toCharArray() das Zeichenarray zurück-
liefern, das dem übergebenen String zugrunde liegt. Dieses Array gehen die Methoden in einer
while-Schleife Zeichen für Zeichen durch: ltrim() vom Anfang und rtrim() vom Ende ausge-
hend. Die Schleife wird so lange fortgesetzt, wie der Unicode-Wert der vorgefundenen Zeichen

/**
 * Whitespace vom Stringanfang entfernen
 */
public static String ltrim(String s) {
 int len = s.length();
 int i = 0;
 char[] chars = s.toCharArray();

 // Index i vorrücken, bis Nicht-Whitespace-Zeichen
 // (Unicode > Unicode von ' ') oder Stringende erreicht
 while ((i < len) && (chars[i] <= ' ')) {
 ++i;
 }

 // gekürzten String zurückliefern
 return (i > 0) ? s.substring(i, len) : s;
}

/**
 * Whitespace vom Stringende entfernen
 */
public static String rtrim(String s) {
 int len = s.length();
 char[] chars = s.toCharArray();

 // Länge len verkürzen, bis Nicht-Whitespace-Zeichen
 // (Unicode > Unicode von ' ') oder Stringanfang erreicht
 while ((len > 0) && (chars[len - 1] <= ' ')) {
 --len;
 }

 // gekürzten String zurückliefern
 return (len < s.length()) ? s.substring(0, len) : s;
}

Listing 41: Methoden zur links- bzw. rechtsseitigen Entfernung von Whitespace

>> Strings 111

St
rin

gs

kleiner oder gleich dem Unicode-Wert des Leerzeichens ist (dies schließt Whitespace und nicht
druckbare Sonderzeichen aus). Anschließend wird je nachdem, ob Whitespace gefunden wurde
oder nicht, ein vom Whitespace befreiter Teilstring oder der Originalstring zurückgeliefert.

Um einen String mit Hilfe dieser Methoden am Anfang oder Ende von Whitespace zu befreien,
übergeben Sie den String einfach als Argument an die jeweilige Methode und nehmen den
bearbeiteten String als return-Wert entgegen:

String trimmed = MoreString.ltrim(str);

35 Arrays in Strings umwandeln
Als Java-Programmierer denkt man bei der Umwandlung von Objekten in Strings natürlich
zuerst an die Methode toString().

toString()
Für Arrays liefert toString() allerdings nur den Klassennamen und den Hashcode, wie in der
Notimplementierung von Object festgelegt.

int[] ints = { 1, -312, 45, 55, -9, 7005};
System.out.println(ints); // ruft intern ints.tostring() auf

Ausgabe:

[I@187c6c7

Angesichts der Tatsache, dass man sich von der Ausgabe eines Arrays in der Regel verspricht,
dass die einzelnen Array-Elemente in der Reihenfolge, in der sie im Array gespeichert sind, in
Strings umgewandelt und aneinander gereiht werden, ist die Performance von toString() ent-
täuschend. Andererseits ist bekannt, dass die Array-Unterstützung von Java nicht in den
Array-Objekten selbst, sondern in der Utility-Klasse Arrays implementiert ist. Und richtig, es
gibt auch eine Arrays-Methode toString().

Arrays.toString()
Die Arrays-Methode toString() übernimmt als Argument ein beliebiges Array und liefert als
Ergebnis einen String mit den Elementen des Arrays zurück. Genauer gesagt: Die Elemente im
Array werden einzeln in Strings umgewandelt, durch Komma und Leerzeichen getrennt anein-
ander gehängt, schließlich in eckige Klammern gefasst und zurückgeliefert:

int[] ints = { 1, -312, 45, 55, -9, 7005};
System.out.println(Arrays.toString(ints));

Ausgabe:

[1, -312, 45, 55, -9, 7005]

Abbildung 21: Effekt der Methoden ltrim() und rtrim()

>> Arrays in Strings umwandeln112
St

rin
gs

Enthält das Array als Elemente weitere Arrays, werden diese allerdings wiederum nur durch
Klassenname und Hashcode repräsentiert (siehe oben). Sollen Unterarrays ebenfalls durch
Auflistung ihrer Elemente dargestellt werden, rufen Sie die Arrays-Methode deepToString()
auf.

Auch wenn die Array-Methode toString() der Vorstellung einer praxisgerechten Array-to-
String-Methode schon sehr nahe kommt, lässt sie sich noch weiter verbessern. Schön wäre
zum Beispiel, wenn der Programmierer selbst bestimmen könnte, durch welche Zeichen oder
Zeichenfolge die einzelnen Array-Elemente getrennt werden sollen. Und auf die Klammerung
der Array-Elemente könnte man gut verzichten.

MoreString.toString()
Die statische Methode MoreString.toString() ist weitgehend identisch zu Arrays.toString(), nur
dass der erzeugte String nicht in Klammern gefasst wird und der Programmierer selbst bestimmen
kann, durch welche Zeichenfolge die einzelnen Array-Elemente getrennt werden sollen (zweites
Argument: separator). Ich stelle hier nur die Implementierungen für int[]- und Object[]-Arrays
vor. Für Arrays mit Elementen anderer primitiver Datentypen (boolean, char, long, double etc.)
müssen nach dem gleichen Muster eigene überladene Versionen geschrieben werden:

/**
 * int[]-Arrays in Strings umwandeln
 */
public static String toString(int[] a, String separator) {
 if (a == null)
 return "null";
 if (a.length == 0)
 return "";

 StringBuilder buf = new StringBuilder();
 buf.append(a[0]);

 for (int i = 1; i < a.length; i++) {
 buf.append(separator);
 buf.append(a[i]);
 }

 return buf.toString();
}

/**
 * Object[]-Arrays in Strings umwandeln
 */
public static String toString(Object[] a, String separator) {
 if (a == null)
 return "null";
 if (a.length == 0)
 return "";

 StringBuilder buf = new StringBuilder();

Listing 42: Arrays in Strings verwandeln

>> Strings 113

St
rin

gs

Mit Hilfe dieser Methoden ist es ein Leichtes, die Elemente eines Arrays wahlweise durch Leer-
zeichen, Kommata, Semikolons oder auch Zeilenumbrüche getrennt in einen String zu ver-
wandeln:

int[] ints = { 1, -312, 45, 55, -9, 7005};
String intStr;

intsStr = MoreString.toString(ints, ", ");
intsStr = MoreString.toString(ints, "\t");
intsStr = MoreString.toString(ints, "\n");

36 Strings in Arrays umwandeln
Ebenso wie es möglich ist, Array-Elemente in Strings zu verwandeln und zu einem einzigen
String zusammenzufassen, ist es natürlich auch denkbar, einen String in Teilstrings zu zer-
legen, in einen passenden Datentyp umzuwandeln und als Array zu verwalten. Mögliche
Anwendungen wären zum Beispiel die Zerlegung eines Textes in ein Array von Wörtern oder
die Extraktion von Zahlen aus einem String.

 buf.append(a[0].toString());

 for (int i = 1; i < a.length; i++) {
 buf.append(separator);
 buf.append(a[i].toString());
 }

 return buf.toString();
}

Abbildung 22: Vergleich der verschiedenen Array-to-String-Methoden

Listing 42: Arrays in Strings verwandeln (Forts.)

>> Strings in Arrays umwandeln114
St

rin
gs

1. Als Erstes zerlegen Sie den String in Teilstrings. Dies geschieht am effizientesten mit der
split()-Methode (siehe Rezept 29).

Als Argument übergeben Sie einen regulären Ausdruck (in Form eines Strings), der angibt,
an welchen Textstellen der String aufgebrochen werden soll. Im einfachsten Fall besteht
dieser reguläre Ausdruck aus einem oder mehreren Zeichen respektive Zeichenfolgen, die
als Trennzeichen zwischen den informationstragenden Teilstrings stehen. Die Teilstrings
werden als String-Array zurückgeliefert.

String[] buf = aString.split(" "); // Leerzeichen als
 // Trennzeichen

String[] substrings = aString.split("\\s+"); // Whitespace als
 // Trennzeichen

Wenn es darum ginge, den String in ein Array von Teilstrings zu zerlegen, ist die Arbeit an
diesem Punkt bereits getan (von einer eventuell erforderlichen Nachbearbeitung der Teilstrings
einmal abgesehen). Ansonsten:

2. Wandeln Sie das String-Array in ein Array von Elementen des gewünschten Zieltyps um.

Das Start-Programm zu diesem Rezept demonstriert die Umwandlung in Arrays an zwei Bei-
spielen. Im ersten Fall wird ein Text in Wörter zerlegt (mit Whitespace als Trennzeichen), im
zweiten Fall wird ein String, der durch Tabulatoren getrennte Zahlenwerte enthält, zerlegt und
in ein Array von int-Werten umgewandelt:

public class Start {

 public static void main(String args[]) {
 String paul_ernst = "Die Narren reden am liebsten von der Weisheit, "
 + "die Schurken von der Tugend.";
 String data = "1\t-234\t5623\t-90";

 System.out.println("\n\n Text in Woerter-Array zerlegen:\n");
 System.out.println(" \"" + paul_ernst + "\"\n\n");

 // String in Array verwandeln
 String[] words = paul_ernst.split("\\s+");

 // Ausgabe der Array-Elemente
 System.out.println(" Array nach split(\"\\\\s+\") :\n");
 for (String s : words)
 System.out.println("\t" + s);

 System.out.println("\n\n String mit int-Daten in Zahlen zerlegen:\n");
 System.out.println(" \"" + data + "\"\n\n");

 // String in Array verwandeln

Listing 43: Demo-Programm zur Umwandlung von Strings in Arrays

>> Strings 115

St
rin

gs

 String[] buf = data.split("\t");
 int[] numbers = new int[buf.length];
 try {
 for (int i = 0; i < numbers.length; ++i)
 numbers[i] = Integer.parseInt(buf[i]);

 } catch (NumberFormatException e) {
 System.err.println(" Fehler bei Umwandlung in Integer");
 }

 // Ausgabe der Array-Elemente
 System.out.println(" Array nach split(\"\\t\"):\n");
 for (Integer i : numbers)
 System.out.println("\t" + i);

 }
}

Abbildung 23: Umwandlung von Strings in Arrays

Listing 43: Demo-Programm zur Umwandlung von Strings in Arrays (Forts.)

>> Zufällige Strings erzeugen116
St

rin
gs

37 Zufällige Strings erzeugen
Für Testzwecke ist es oft hilfreich, eine große Anzahl an unterschiedlichen, zufällig zusammen-
gesetzten Zeichenketten zur Verfügung zu haben. Als Java-Programmierer haben Sie natürlich
die besten Möglichkeiten, solche Zufallsstrings zu erzeugen. Für den Zufall sorgt dabei die
Klasse java.util.Random, die man zur Generierung von gleichverteilten Zufallszahlen verwen-
den kann, beispielsweise aus dem Bereich von 65 bis 122, in dem die ASCII-Codes der Groß- und
Kleinbuchstaben liegen. Aus einem ASCII-Wert kann dann einfach per Cast das entsprechende
Zeichen erzeugt werden. Das folgende Beispiel zeigt eine mögliche Implementierung zur Erzeu-
gung von solchen Zufallsstrings mit einer wählbaren Mindest- und Maximallänge:

/**
 * Klasse zur Erzeugung zufälliger Zeichenketten aus dem Bereich a-Z
 */
import java.util.*;

class RandomStrings {

 /**
 * Erzeugt zufällige Zeichenketten aus dem Bereich a-Z
 *
 * @param num Anzahl zu generierender Zeichenketten
 * @param min minimale Länge pro Zeichenkette
 * @param max maximale Länge pro Zeichenkette
 * @return ArrayList<String> mit Zufallsstrings
 */
 public static ArrayList<String> createRandomStrings(int num,
 int min, int max) {
 Random randGen = new Random(System.currentTimeMillis());
 ArrayList<String> result = new ArrayList<String>();

 if(min > max || num <= 0) // nichts zu tun
 return result;

 for(int i = 1; i <= num; i++) {
 int length;

 // Länge des nächsten Strings zufällig wählen
 if(min == max)
 length = min;
 else
 length = randGen.nextInt(max + 1 - min) + min;

 StringBuilder curStr = new StringBuilder();
 int counter = 0;

 while(counter < length) {
 // Bereichsgrenzen: von A = 65 bis z = 122
 // Bereich 91-96 sind Sonderzeichen -> überspringen
 int value = randGen.nextInt(122 + 1 -65) + 65;

Listing 44: RandomStrings.java – ein String-Generator

>> Strings 117

St
rin

gs

Das Start-Programm zu diesem Rezept benutzt den String-Generator zur Erzeugung von zehn
Strings mit vier bis fünfzehn Buchstaben.

 if(value >= 91 && value <= 96)
 continue;
 else
 counter++;

 char z = (char) value;
 curStr.append(z);
 }

 result.add(curStr.toString());
 }

 return result;
 }
}

public class Start {

 public static void main(String[] args) {

 // Zehn Strings mit vier bis fünfzehn Zeichen erzeugen
 ArrayList<String> strings;
 strings = RandomStrings.createRandomStrings(10, 4, 15);

 for(String str : strings)
 System.out.println(str);
 }
}

Listing 45: Erzeugung zufälliger Zeichenketten

Abbildung 24: Zufällige Strings der Länge 4 bis 15

Listing 44: RandomStrings.java – ein String-Generator (Forts.)

>> Wortstatistik erstellen118
St

rin
gs

38 Wortstatistik erstellen
Das Erstellen einer Wortstatistik, d.h. das Erkennen der Wörter inklusive ihrer Häufigkeit, lässt
sich mit Java sehr elegant realisieren. Die Kombination zweier Klassen stellt alles Nötige
bereit:

� Mit java.util.StringTokenizer wird der Text in die interessierenden Wörter zerlegt.
Bequemerweise kann man der Klasse auch einen String mit allen Zeichen mitgeben, die als
Trennzeichen interpretiert werden sollen. Dadurch kann man beispielsweise neben dem
üblichen Leerzeichen auch andere Satzzeichen beim Lesen überspringen.

� Alle gefundenen Wörter werden in einer Hashtabelle (z.B. java.util.HashMap) abgespei-
chert, zusammen mit ihrer aktuellen Häufigkeit. Wenn ein Wort bereits vorhanden ist, wird
lediglich der alte Zählerwert um eins erhöht.

/**
 * Klasse zur Erstellung von Wortstatistiken
 */
import java.util.*;
import java.io.*;

class WordStatistics {

 /**
 * Erstellt eine Wortstatistik; Rückgabe ist eine Auflistung aller
 * vorkommenden Wörter und ihrer Häufigkeit; Satzzeichen und gängige
 * Sonderzeichen werden ignoriert.
 *
 * @param text zu analysierender Text
 * @return HashMap<String, Integer> mit Wörtern und ihren Häufigkeiten
 */
 public static HashMap<String, Integer> countWords(String text) {
 StringTokenizer st = new StringTokenizer(text,
 "\n\" -+,&%$§.;:?!(){}[]");
 HashMap<String, Integer> wordTable = new HashMap<String, Integer>();

 while(st.hasMoreTokens()) {
 String word = st.nextToken();
 Integer num = wordTable.get(word);

 if(num == null) {
 // bisher noch nicht vorhanden -> neu einfügen mit Zählwert = 1
 num = new Integer(1);
 wordTable.put(word, num);
 }
 else {
 // Wort bereits vorhanden -> Zähler erhöhen
 int numValue = num.intValue() + 1;
 num = new Integer(numValue);
 wordTable.put(word, num);
 }

Listing 46: WordStatistics.java

>> Strings 119

St
rin

gs

Das Start-Programm zu diesem Rezept demonstriert den Aufruf.

 }

 return wordTable;
 }
}

public class Start {

 public static void main(String[] args) {

 if(args.length != 1) {
 System.out.println("Aufruf: <Dateiname>");
 System.exit(0);
 }

 // Datei einlesen
 StringBuilder text = new StringBuilder();

 try {
 BufferedReader reader = new BufferedReader(
 new FileReader(args[0]));
 String line;

 while((line = reader.readLine()) != null)
 text.append(line + "\n");

 } catch(Exception e) {
 e.printStackTrace();
 }

 // Statistik erstellen
 HashMap<String, Integer> statistic;
 statistic = WordStatistics.countWords(text.toString());

 // Statistik ausgeben
 System.console().printf("\n Anzahl unterschiedlicher Wörter: %d\n",
 statistic.size());
 Set<String> wordSet = statistic.keySet();
 Iterator<String> it = wordSet.iterator();

 while(it.hasNext()) {
 String word = it.next();
 int num = statistic.get(word).intValue();
 System.console().printf(" %s : %d \n", word, num); }

Listing 47: Erstellen einer Wortstatistik

Listing 46: WordStatistics.java (Forts.)

>> Wortstatistik erstellen120
St

rin
gs

 }
 }
}

Abbildung 25: Ausgabe von Worthäufigkeiten

H
in

w
e

is Die Gesamtzahl an unterschiedlichen Wörtern kann man wie oben gezeigt über die
Methode size() der Hashtabelle ermitteln. Falls man allerdings die gesamte Anzahl an
Wörtern (inklusive Wiederholungen) benötigt, bietet StringTokenizer die Methode
countTokens() an:

StringTokenizer st = new StringTokenizer(meinText, "\n\" -+,&%$§.;:?!(){}[]");
System.out.println("Gesamtzahl Wörter: " + st.countTokens());

Listing 47: Erstellen einer Wortstatistik (Forts.)

Da
tu

m
 u

nd
 U

hr
ze

it

Datum und Uhrzeit

39 Aktuelles Datum abfragen
Der einfachste und schnellste Weg, das aktuelle Datum abzufragen, besteht darin, ein Objekt
der Klasse Date zu erzeugen:

import java.util.Date;

Date today = new Date();
System.out.println(today);

Ausgabe:

Thu Mar 31 10:54:31 CEST 2005

Wenn Sie dem Konstruktor keine Argumente übergeben, ermittelt er die aktuelle Systemzeit
als Anzahl Millisekunden, die seit dem 01.01.1970 00:00:00 Uhr, GMT, vergangen sind, und
speichert diese in dem Date-Objekt. Wenn Sie das Date-Objekt mit println() ausgeben (oder in
einen String einbauen), wird seine toString()-Methode aufgerufen, die aus der Anzahl Milli-
sekunden das Datum berechnet. Und genau hier liegt das Problem der Date-Klasse.

Die Date-Klasse arbeitet nämlich intern mit dem gregorianischen Kalender. Dieser ist zwar weit
verbreitet und astronomisch korrekt, jedoch bei weitem nicht der einzige Kalender. Bereits im
JDK 1.1 wurden der Klasse Date daher die abstrakte Klasse Calendar und die von Calendar
abgeleitete Klasse GregorianCalendar an die Seite gestellt. Die Idee dahinter:

� Neben GregorianCalendar können weitere Klasse für andere Kalender implementiert wer-
den.

� Von der statischen Methode Calendar.getInstance() kann sich der Programmierer automa-
tisch den passenden Kalender zur Lokale des aktuellen Systems zurückliefern lassen.

Leider gibt es derzeit nur drei vordefinierte Kalenderklassen, die von getInstance() zurückge-
liefert werden: sun.util.BuddhistCalendar für die Thai-Lokale (th_TH), JapaneseImperial-
Calendar (für ja_JP) und GregorianCalendar für alle anderen Lokalen.

Trotzdem sollten Sie den Empfehlungen von Sun folgen und die Klasse Date nur dann verwen-
den, wenn Sie an der reinen Systemzeit interessiert sind oder die chronologische Reihenfolge
verschiedener Zeiten prüfen wollen. Wenn Sie explizit mit Datumswerten programmieren
müssen, verwenden Sie Calendar oder GregorianCalendar.

// Aktuelles Datum mit Calendar abfragen
import java.util.Calendar;

Calendar calendar = Calendar.getInstance();
// verwende zur Ausgabe System.console() anstelle von System.out, um evt.
// enthaltene Umlaute korrekt auszugeben (siehe Rezept 85)
System.console().printf("%s\n",
 java.text.DateFormat.getDateTimeInstance().format(calendar.getTime()));

Der Aufruf Calendar.getInstance() liefert ein Objekt einer Calendar-Klasse zurück (derzeit für
nahezu alle Lokalen eine GregorianCalendar-Instanz, siehe oben). Das Calendar-Objekt reprä-
sentiert die aktuelle Zeit (Datum und Uhrzeit) gemäß der auf dem System eingestellten Lokale
und Zeitzone.

>> Aktuelles Datum abfragen122
Da

tu
m

 u
nd

 U
hr

ze
it

Die Felder (Jahr, Monat, Stunde ...) eines Calendar-Objekts können mit Hilfe der get-/set-
Methoden der Klasse abgefragt bzw. gesetzt werden.

Methode Beschreibung

int get(int field) Zum Abfragen der verschiedenen Feldwerte. Die Felder
werden durch folgende Konstanten ausgewählt:
AM_PM // AM (Vormittag) oder PM (Nachmittag)

DATE // entspricht DAY_OF_MONTH

DAY_OF_MONTH // Tag im Monat, beginnend mit 1

DAY_OF_WEEK // Tag in Woche (1 (SUNDAY) - 7 (SATURDAY))

DAY_OF_WEEK_IN_MONTH // 7-Tage-Abschnitt in Monat,
beginnend mit 1

DAY_OF_YEAR // Tag im Jahr, beginnend mit 1

DST_OFFSET // Sommerzeitverschiebung in Millisekunden

ERA // vor oder nach Christus

HOUR // Stunde vor oder nach Mittag (0 - 11)

HOUR_OF_DAY // Stunde (0 - 23)

MILLISECOND // Millisekunden (0-999)

MINUTE // Minuten (0-59)

MONTH // Monat, beginnend mit JANUARY

SECOND // Sekunde (0-59)

WEEK_OF_MONTH // Woche in Monat, beginnend mit 0

WEEK_OF_YEAR // Woche in Jahr, beginnend mit 1

YEAR // Jahr

ZONE_OFFSET // Verschiebung für Zeitzone in Millisekun-
den

Date getTime() Liefert das Datum als Date-Objekt zurück.

long getTimeInMillis() Liefert das Datum als Millisekunden seit/bis zum
01.01.1970 00:00:00 Uhr, GMT zurück.

void set(int field, int value) Setzt den angegebenen Feldwert. Zur Bezeichnung der
Felder siehe get().

void set(int year, int month, int date)
void set(int year, int month, int date,

int hourOfDay, int minute)
void set(int year, int month, int date,

int hourOfDay, int minute,
int second)

Setzt Jahr, Monat (0-11) und Tag (1-31). Optional können
auch noch Stunde (0-23), Minute und Sekunde angegeben
werden.

void setTime(Date d) Setzt das Datum gemäß dem übergebenen Date-Objekt.

void setTimeInMillis(long millis) Setzt das Datum gemäß der übergebenen Anzahl Milli-
sekunden seit/bis zum 01.01.1970 00:00:00 Uhr, GMT.

Tabelle 15: Get-/Set-Methoden zum Abfragen und Setzen der Datumsfelder der Calendar-
Klasse

A
ch

tu
n

g Die Klasse Date enthält ebenfalls Methoden zum Abfragen und Setzen der einzelnen
Datums- und Zeitfelder. Diese sind jedoch als »deprecated« eingestuft, von ihrem
Gebrauch wird abgeraten.

>> Datum und Uhrzeit 123

Da
tu

m
 u

nd
 U

hr
ze

it

40 Bestimmtes Datum erzeugen
Es gibt verschiedene Wege, ein Objekt für ein bestimmtes Datum zu erzeugen.

Handelt es sich um ein Datum im gregorianischen Kalender, können Sie direkt ein Objekt der
Klasse GregorianCalendar erzeugen und dem Konstruktor Jahr, Monat (0–11) und Tag (1–31)
übergeben:

import java.util.GregorianCalendar;
...
Calendar birthday = new GregorianCalendar(1964, 4, 20);

Andere Kalender werden – mit Ausnahme des buddhistischen, des imperialistischen japani-
schen und des julianischen Kalenders (siehe unten) – derzeit nicht unterstützt.

Wenn Sie den Kalender nicht vorgeben, sondern gemäß den Ländereinstellungen des aktuellen
Systems auswählen möchten, lassen Sie sich von Calendar.getInstance() ein Objekt des loka-
len Kalenders zurückliefern und ändern das von diesem Objekt repräsentierte Datum durch
Setzen der Felder für Jahr, Monat und Tag:

import java.util.Calendar;
...
Calendar birthday = Calendar.getInstance();
birthday.set(1964, 4, 20);

Auf einem System, das für die Thai-Lokale (th_TH) konfiguriert ist, liefert getInstance() eine
Instanz von sun.util.BuddhistCalendar, für die Lokale ja_JP eine Instanz von JapaneseImperi-
alCalendar und für alle anderen Lokalen eine Instanz von GregorianCalendar.

Der Vollständigkeit halber sei erwähnt, dass es auch die Möglichkeit gibt, ein Date-Objekt
durch Angabe von Jahr (abzgl. 1900), Monat (0-11) und Tag (1-31) zu erzeugen:

Date birthday1 = new Date(64, 4, 20);

Vom Gebrauch dieses Konstruktors wird allerdings abgeraten, er ist als deprecated markiert.

A
ch

tu
n

g Für Daten vor dem 15. Oktober 1582 berechnet die Klasse GregorianCalendar das
Datum nach dem julianischen Kalender. Dies ist sinnvoll, da an diesem Tag – der dem
5. Oktober 1582 im julianischen Kalender entspricht – der gregorianische Kalender
erstmals eingeführt wurde (in Spanien und Portugal). Andere Länder folgten nach und
nach. In England und Amerika begann der gregorianische Kalender beispielsweise mit
dem 14. September 1752. Wenn Sie die Lebensdaten englischer bzw. amerikanischer
Persönlichkeiten oder Daten aus der englischen bzw. amerikanischen Geschichte, die
vor der Einführung des gregorianischen Kalender liegen, historisch korrekt darstellen
möchten, müssen Sie das Datum der Einführung mit Hilfe der Methode setGregorian-
Change(Date) umstellen.

GregorianCalendar change = new GregorianCalendar(1752, 8, 14, 1, 0, 0);
((GregorianCalendar) birthday).setGregorianChange(change.getTime());

Wenn Sie Interesse halber beliebige Daten nach dem gregorianischen Kalender berech-
nen möchten, rufen Sie setGregorianChange(Date(Long.MIN_VALUE)) auf. Wenn Sie
beliebige Daten nach dem julianischen Kalender berechnen wollen, rufen Sie setGrego-
rianChange(Date(Long.MAX_VALUE)) auf.

>> Bestimmtes Datum erzeugen124
Da

tu
m

 u
nd

 U
hr

ze
it

E
x

k
u

rs Der gregorianische Kalender und die Klasse GregorianCalendar
Vor der Einführung des gregorianischen Kalenders im Jahre 1582 durch Papst Gregor
XIII. galt in Europa der julianische Kalender. Der julianische Kalender, von dem ägyp-
tischen Astronomen Sosigenes ausgearbeitet und von Julius Cäsar im Jahre 46 v. Chr.
in Kraft gesetzt, war ein reiner Sonnenkalender, d.h., er richtete sich nicht nach den
Mondphasen, sondern nach der Länge des mittleren Sonnenjahres, die Sosigenes zu
365,25 Tagen berechnete. Der julianische Kalender übernahm die zwölf römischen
Monate, korrigierte aber deren Längen auf die noch heute gültige Anzahl Tage, so dass
das Jahr fortan 365 Tage enthielt. Um die Differenz zum »angenommenen« Sonnenjahr
auszugleichen, wurde alle vier Jahre ein Schaltjahr eingelegt.

Tatsächlich ist das mittlere Sonnenjahr aber nur 365,2422 Tage lang (tropisches Jahr).
Der julianische Kalender hinkte seiner Zeit also immer weiter hinterher, bis im Jahre
1582 das Primar-Äquinoktium auf den 11. statt den 21. März fiel.

Um die Differenz auszugleichen, verfügte Papst Gregor XIII. im Jahr 1582, dass in die-
sem Jahr auf den 4. Oktober der 15. Oktober folgen sollte. Gleichzeitig wurde der
gregorianische Kalender eingeführt, der sich vom julianischen Kalender in der Berech-
nung der Schaltjahre unterscheidet. Während der julianische Kalender alle vier Jahre
ein Schaltjahr einlegte, sind im gregorianischen Kalender alle Jahrhundertjahre, die
nicht durch 400 teilbar sind, keine Schaltjahre. Durch diese verbesserte Schaltregel ist
ein Jahr im gregorianischen Kalender durchschnittlich 365,2425 Tage lang, was dem
tatsächlichen mittleren Wert von 365,2422 Tagen (tropisches Jahr) sehr nahe kommt.
(Erst nach 3000 Jahren wird sich die Abweichung zu einem Tag addieren.)

Spanien, Portugal und Teile Italiens führten den gregorianischen Kalender wie vom
Papst vorgesehen in der Nacht vom 4. auf den 5./15. Oktober ein. Die meisten katholi-
schen Länder folgten in den nächsten Jahren, während die protestantischen Länder den
Kalender aus Opposition zum Papst zunächst ablehnten. Die orthodoxen Länder Ost-
europas führten den gregorianischen Kalender gar erst im 20. Jahrhundert ein.

Land Einführung

Spanien, Portugal, Teile Italiens 04./15. Oktober 1582

Frankreich 09./20. Dezember 1582

Bayern 05./16. Oktober 1583

Hzm. Preußen 22. August/02. September 1612

England, Amerika 02./14. 1752

Schweden 17. Februar/1. März 1753

Russland 31. Januar/14. Februar 1918

Griech.-Orthodoxe Kirche 10./24. März 1924

Türkei 1927

Tabelle 16: Einführung des gregorianischen Kalenders

>> Datum und Uhrzeit 125

Da
tu

m
 u

nd
 U

hr
ze

it

41 Datums-/Zeitangaben formatieren
Zur Formatierung von Datums- und Zeitangaben gibt es drei Wege zunehmender Komplexität,
aber auch wachsender Gestaltungsfreiheit:

� toString()

� DateFormat-Stile

� SimpleDateFormat-Muster

Formatierung mit toString()
Die einfachste Form der Umwandlung einer Datums-/Zeitangabe in einen String bietet die
toString()-Methode. Ist die Datums-/Zeitangabe in ein Date-Objekt verpackt, erhält man auf
diese Weise einen String aus (engl.) Wochentagskürzel, (engl.) Monatskürzel, Tag im Monat,
Uhrzeit, Zeitzone und Jahr:

Thu Mar 31 10:54:31 CEST 2005

Wer Gleiches von der toString()-Methode der Klasse Calendar erwartet, sieht sich allerdings
getäuscht. Die Methode ist rein zum Debuggen gedacht und packt in den zurückgelieferten
String alle verfügbaren Informationen über den aktuellen Zustand des Objekts. Um dennoch
einen vernünftigen Datums-/Zeit-String zu erhalten, müssen Sie sich die im Calendar-Objekt
gespeicherte Zeit als Date-Objekt zurückliefern lassen und dessen toString()-Methode auf-
rufen:

Calendar calendar = Calendar.getInstance();
Date today = calendar.getTime();
System.out.println(date);

Ausgabe:

Thu Mar 31 10:54:31 CEST 2005

Die Klasse GregorianCalendar implementiert eine Hybridform aus gregorianischem und
julianischem Kalender. Anhand des Datums der Einführung des gregorianischen Kalen-
ders interpretiert sie Datumswerte entweder als Daten im gregorianischen oder juliani-
schen Kalender (siehe Hinweis weiter oben). Das Datum der Einführung kann mit Hilfe
der Methode setGregorianChange(Date d) angepasst werden.

Das Datum, das eine GregorianCalendar-Instanz repräsentiert, kann durch Angabe der
Datumsfelder (Jahr, Monat, Tag ...), als Date-Objekt oder als Anzahl Millisekunden seit/
bis zum 01.01.1970 00:00:00 Uhr, GMT, festgelegt und umgekehrt auch als Werte der
Datumsfelder, Date-Objekt oder Anzahl Millisekunden abgefragt werden. Für die kor-
rekte Umrechnung zwischen Datumsfeldern und Anzahl Millisekunden sorgen dabei
die von Calendar geerbten und in GregorianCalendar überschriebenen protected-
Methoden computeFields() und computeTime().

>> Datums-/Zeitangaben formatieren126
Da

tu
m

 u
nd

 U
hr

ze
it

Formatierung mit DateFormat-Stilen
Die Klasse DateFormat definiert vier vordefinierte Stile zur Formatierung von Datum und Uhr-
zeit: SHORT, MEDIUM (= DEFAULT), LONG und FULL.

Die Klasse DateFormat selbst ist abstrakt, definiert aber verschiedene statische Factory-Metho-
den, die passende Objekte abgeleiteter Klassen (derzeit nur SimpleDateFormat) zur Formatie-
rung von Datum, Uhrzeit oder der Kombination aus Datum und Uhrzeit zurückliefern.

Die Formatierung mit DateFormat besteht daher aus zwei Schritten:

1. Sie rufen die gewünschte Factory-Methode auf und lassen sich ein Formatierer-Objekt
zurückliefern.

import java.text.DateFormat;

// Formatierer für reine Datumsangaben im SHORT-Stil
DateFormat df = DateFormat.getDateInstance(DateFormat.SHORT);

2. Sie übergeben die Datums-/Zeitangabe als Date-Objekt an die format()-Methode des For-
matierers und erhalten den formatierten String zurück.

Calendar calendar = Calendar.getInstance();
String str = df.format(calendar.getTime()));

Die Klasse DateFormat definiert vier Factory-Methoden, die gemäß der auf dem System einge-
stellten Lokale formatieren:

getInstance() // Formatierer für Datum und Uhrzeit im SHORT-Stil
getDateInstance() // Formatierer für Datum im DEFAULT-Stil (= MEDIUM)
getTimeInstance() // Formatierer für Uhrzeit im DEFAULT-Stil (= MEDIUM)
getDateTimeInstance() // Formatierer für Datum und Uhrzeit
 // im DEFAULT-Stil (= MEDIUM)

Die letzten drei Methoden sind zweifach überladen, so dass Sie einen anderen Stil bzw. Stil
und Lokale vorgeben können, beispielsweise:

getDateInstance(int stil)
getDateInstance(int stil, Locale loc)

gibt eine Übersicht über die Formatierung durch die verschiedenen Stile.

Stil Formatierung (Lokale de_DE)

Datum

SHORT 31.03.05

MEDIUM (= DEFAULT) 31.03.2005

LONG 31. März 2005

FULL Donnerstag, 31. März 2005

Uhrzeit

SHORT 19:51

MEDIUM (= DEFAULT) 19:51:14

LONG 19:51:14 CEST

FULL 19.51 Uhr CEST

Tabelle 17: DateFormat-Stile

>> Datum und Uhrzeit 127

Da
tu

m
 u

nd
 U

hr
ze

it

Formatierung mit SimpleDateFormat-Mustern
Wer mit den vordefinierten DateFormat-Formatstilen nicht zufrieden ist, kann sich mit Hilfe
der abgeleiteten Klasse SimpleDateFormat einen individuellen Stil definieren. SimpleDateFormat
besitzt einen Konstruktor

SimpleDateFormat(String format, Locale loc)

der neben der Angabe der Lokale auch einen Formatstring erwartet. Dieser String enthält feste
datums- und zeitrelevante Formatanweisungen und darf beliebig durch weitere Zeichenfolgen,
die in ' ' eingeschlossen sind, unterbrochen sein.

SimpleDateFormat df = new SimpleDateFormat("'Heute ist der 'dd'. 'MMMM");

Dieser Aufruf erzeugt eine Ausgabe der Art:

"Heute ist der 12. Juni".

Die wichtigsten Formatanweisungen für Datum und Zeit lauten:

H
in

w
e

is Zur landesspezifischen Formatierung mit Lokalen siehe auch Rezepte in Kategorie
»Internationalisierung«.

Format Beschreibung

G »v. Chr.« oder »n. Chr«
(in englischsprachigen Lokalen »BC« oder »AD«)

yy Jahr, zweistellig

yyyy Jahr, vierstellig

M, MM Monat, einstellig (soweit möglich) bzw. immer zweistellig (01, 02 ...)

MMM Monat als 3-Buchstaben-Kurzform

MMMM voller Monatsname

w, ww Woche im Jahr, einstellig (soweit möglich) bzw. immer zweistellig (01, 02 ...)

W Woche im Monat

D, DD, DDD Tag im Jahr, einstellig bzw. zweistellig (soweit möglich) oder immer dreistellig (001,
002 ...)

d, dd Tag im Monat, einstellig (soweit möglich) bzw. immer zweistellig (01, 02 ...)

E Wochentag-Kürzel: »Mo«, »Di«, »Mi«, »Do«, »Fr«, »Sa«, »So«
(für englischsprachige Lokale werden dreibuchstabige Kürzel verwendet)

EEEE Wochentag (ausgeschrieben)

a »AM« oder »PM«

H, HH Stunde (0-23), einstellig (soweit möglich) bzw. immer zweistellig (00, 01 ...)

h, hh Stunde (1-12), einstellig (soweit möglich) bzw. immer zweistellig (00, 01 ...)

K, KK Stunde (1-24), einstellig (soweit möglich) bzw. immer zweistellig (00, 01 ...)

k, kk Stunde (1-12), einstellig (soweit möglich) bzw. immer zweistellig (00, 01 ...)

Tabelle 18: SimpleDateFormat-Formatanweisungen

>> Wochentage oder Monatsnamen auflisten128
Da

tu
m

 u
nd

 U
hr

ze
it

42 Wochentage oder Monatsnamen auflisten
Manchmal ist es nötig, die Namen der Wochentage oder Monate aufzulisten – beispielsweise
um sie über ein Listenfeld zur Auswahl anzubieten, sie in eine Tabelle einzubauen oder Ähn-
liches. Die Strings mit den Namen der Wochentage oder Monate können Sie selbst aufsetzen …
oder sich von einer passenden Java-Klasse zurückliefern lassen. Letztere Vorgehensweise pro-
duziert in der Regel weniger Code und gestattet Ihnen zudem die Wochentage und Monate in
der Sprache des aktuellen Systems anzuzeigen.

Bleibt noch zu klären, von welcher Klasse Sie sich die Namen der Wochentage und Monate
zurückliefern lassen. Im Paket java.text gibt es eine Klasse namens DateFormatSymbols, die
alle wichtigen Bestandteile von Datums- oder Zeitangaben in lokalisierter Form zurückliefert.
Zwar empfiehlt die API-Dokumentation diese Klasse nicht direkt zu verwenden, doch gilt dies
vornehmlich für die Formatierung von Datums- bzw. Uhrzeitstrings. (Für diese Aufgabe
bedient man sich besser eines DateFormat-Objekts, siehe Rezept 41, welches dann intern mit
DateFormatSymbols arbeitet.) Für die Abfrage der lokalisierten Wochentags- und Monatsnamen
gibt es hingegen kaum etwas Besseres als die DateFormatSymbols-Methoden getWeekdays() und
getMonths():

String[] getWeekdays() // liefert die Wochentagsnamen
String[] getShortWeekdays() // liefert die Kurzformen der Wochentagsnamen
String[] getMonths() // liefert die Monatsnamen
String[] getShortMonths() // liefert die Kurzformen der Monatsnamen

String-Arrays der Monats- oder Wochentagsnamen anlegen
Der Einsatz der Methoden ist denkbar einfach. Zuerst erzeugen Sie ein DateFormatSymbols-
Objekt, dann rufen Sie eine der Methoden auf und erhalten ein String-Array mit den Namen
der Wochentage von Sonntag bis Samstag bzw. der Monatsnamen von Januar bis Dezember
zurück.

// Wochentage in der Sprache des Systems
DateFormatSymbols dfs = new DateFormatSymbols();
String[] weekdayNames = dfs.getWeekdays();
for(String n : weekdayNames)
 System.console().printf("\t%s%n", n);

m, mm Minuten, einstellig (soweit möglich) bzw. immer zweistellig (00, 01 ...)

s, ss Sekunden, einstellig (soweit möglich) bzw. immer zweistellig (00, 01 ...)

S, SS, SSS Millisekunden, einstellig bzw. zweistellig (soweit möglich) oder immer dreistellig (001,
002 ...)

z Zeitzone

Z Zeitzone (gemäß RFC 822)

Format Beschreibung

Tabelle 18: SimpleDateFormat-Formatanweisungen (Forts.)

>> Datum und Uhrzeit 129

Da
tu

m
 u

nd
 U

hr
ze

it

Die Sprache, in der die Namen zurückgeliefert werden, legen Sie bei der Instanzierung des
DateFormatSymbols-Objekts fest. Wenn Sie den Konstruktor wie oben ohne Argument aufrufen,
wird die Sprache des aktuellen Systems verwendet.1 Wenn Sie dem Konstruktor eine Lokale
übergeben, wird die Sprache dieser Lokale verwendet.

// Monate in französisch
DateFormatSymbols dfs = new DateFormatSymbols(new Locale("fr", "FR"));
String[] monthNames = dfs.getMonths();

Listenfelder mit Monats- oder Wochentagsnamen
Der Code zum Aufbau eines Listenfelds mit Wochentagsnamen könnte wie folgt aussehen:

1. Um exakt zu sein: Es wird die Sprache der Standardlokale verwendet. Die Standardlokale spiegelt allerdings die Sys-
temkonfiguration wider, es sei denn, Sie hätten sie zuvor umgestellt, siehe Rezept 215.

H
in

w
e

is Wenn Sie zu einem bestimmten Datum den lokalisierten Monats- oder Wochentagsna-
men abfragen möchten, können Sie seit Java 6 dazu die Calendar-Methode getDisplay-
Name() verwenden:

String weekdayName = calendar.getDisplayName(Calendar.DAY_OF_WEEK,
 Calendar.LONG,
 Locale.getDefault());
String monthName = calendar.getDisplayName(Calendar.MONTH,
 Calendar.LONG,
 new Locale("no", "NO"));

Von der Schwestermethode getDisplayNames() können Sie sich eine Map<String, Inte-
ger>-Collection der Monats- oder Wochentagsnamen zurückliefern lassen. Allerdings
verwendet diese Collection die Namen als Schlüssel und da sie zudem ungeordnet ist,
eignet sie sich nicht zum Aufbau von Listenfeldern oder ähnlichen geordneten Auflis-
tungen der Wochentage oder Monate.

// Listenfeld anlegen und mit Wochentagsnamen füllen
DateFormatSymbols dfs = new DateFormatSymbols();
JList weekdayList = new JList(dfs.getWeekdays());

// Listenfeld konfigurieren
weekdayList.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);
weekdayList.addListSelectionListener(new ListSelectionListener() {
 public void valueChanged(ListSelectionEvent e) {
 JList list = (JList) e.getSource();
 String s = (String) list.getSelectedValue();

 if (s != null) {
 lb3.setText("Ausgew. Wochentag: " + s);
 }
 }
});

// Listenfeld mit Bildlaufleiste ausstatten
JScrollPane sp1 = new JScrollPane(weekdayList);

Listing 48: Listenfeld mit Wochentagsnamen

>> Datumseingaben einlesen und auf Gültigkeit prüfen130
Da

tu
m

 u
nd

 U
hr

ze
it

Listenfelder mit den Monatsnamen können Sie analog erzeugen. Sie müssen nur zum Füllen
des Listenfelds die DateFormatSymbols-Methode getMonths() aufrufen.

43 Datumseingaben einlesen und auf Gültigkeit prüfen
Zum Einlesen von Datumseingaben benutzt man am besten eine der parse()-Methoden von
DateFormat:

Date parse(String source)
Date parse(String source, ParsePosition pos)

So wie die format()-Methode von DateFormat ein Date-Objekt anhand der eingestellten Lokale
und dem ausgewählten Pattern in einen String formatiert, analysieren die parse()-Methoden
einen gegebenen String, ob er ein Datum enthält, das Lokale und Muster entspricht. Wenn ja,
liefern sie das Datum als Date-Objekt zurück. Enthält der übergebene String keine passende
Datumsangabe, löst die erste Version eine ParseException aus. Die zweite Version, welche ab
der Position pos sucht, liefert null zurück.

Der folgende Code liest deutsche Datumseingaben im MEDIUM-Format (TT.MM.JJJJ) ein und
gibt sie zur Kontrolle im FULL-Format aus. Für Ein- und Ausgabe werden daher unterschied-
liche DateFormat-Instanzen (parser und formatter) erzeugt:

Date date = null;
DateFormat parser =
 DateFormat.getDateInstance(DateFormat.MEDIUM, Locale.GERMANY);
DateFormat formatter =
 DateFormat.getDateInstance(DateFormat.FULL, Locale.GERMANY);

try {
 // Datum aus Kommandozeile einlesen
 date = parser.parse(args[0]);

 // Datum auf Konsole ausgeben (verwendet System.console() anstelle von
 // System.out, um evt. enthaltene Umlaute korrekt auszugeben
 // (siehe Rezept 85)
 System.console().printf("\n %s \n", formatter.format(date));

} catch(ParseException e) {
 System.err.println(" Kein gueltiges Datum (TT.MM.JJJJ)");
}

Eine Beschreibung der vordefinierten DateFormat-Formate sowie der Definition eigener For-
mate mit SimpleDateFormat finden Sie in Rezept 41. Ein Beispiel für das Einlesen von Datums-
werten mit eigenen SimpleDateFormaten finden Sie im Start-Programm zu diesem Rezept.

sp1.setBounds(new Rectangle(30, 40, 200, 100));

// JScrollPane mit Listenfeld in Formular einfügen
getContentPane().add(sp1);

Listing 48: Listenfeld mit Wochentagsnamen (Forts.)

>> Datum und Uhrzeit 131

Da
tu

m
 u

nd
 U

hr
ze

it

44 Datumswerte vergleichen
Um festzustellen, ob zwei Datumswerte (gegeben als Date- oder Calendar-Objekt) gleich sind,
brauchen Sie nur die Methode equals() aufzurufen:

// gegeben Date t1 und t2
if (t1.equals(t2))
 System.out.println("gleiche Datumswerte");

Um zu prüfen, ob ein Datum zeitlich vor oder nach einem zweiten Datum liegt, stehen Ihnen
neben compareTo() die speziellen Methoden before() und after() zur Verfügung:

// gegeben Calendar t1 und t2
if (t1.after(t2))
 System.out.println("\t t1 liegt nach t2");

A
ch

tu
n

g Beim Parsen spielt es grundsätzlich keine Rolle, wie oft ein bedeutungstragender Buch-
stabe, etwa das M für Monatsangaben, wiederholt wird. Während »MM« bei der Forma-
tierung eine zweistellige Ausgabe erzwingt, sind für den Parser »M« und »MM« gleich,
d.h., er liest die Anzahl der Monate – egal aus wie vielen Ziffern die Angabe besteht.
(Tatsächlich können sogar Werte wie 35 oder 123 übergeben werden. Der überzählige
Betrag wird in die nächsthöhere Einheit, für Monate also Jahre, umgerechnet. Wenn
Sie dieses Verhalten unterbinden wollen, rufen Sie setLenient(false) auf.)

Eine Ausnahme bilden die Jahresangaben. Zweistellige Jahresangaben werden beim
Parsen als Kürzel für vierstellige Jahresangaben angesehen und so ergänzt, dass das
sich ergebende Datum nicht mehr als 80 Jahre vor und nicht weiter als 20 Jahre hinter
dem aktuellen Datum liegt. Angenommen, das Programm wird am 05. April 2005 aus-
geführt. Die Eingabe 05.04.24 wird dann als 5. April 2024 geparst. Auch die Eingabe
05.04.25 wird noch ins 21. Jahrhundert verlegt, während die Eingabe 06.04.25 bereits
als 6. April 1925 interpretiert wird.

Jahresangaben aus einem oder mehr als zwei Buchstaben (»y«, »yyyy«) werden immer
unverändert übernommen.

Abbildung 26: Einlesen von Datumseingaben im DateFormat.MEDIUM-Format für die
deutsche Lokale. Der dritte Aufruf demonstriert, wie zu große Werte
in die nächsthöhere Einheit umgerechnet werden. Der vierte Aufruf
zeigt, wie Datumsangaben im angelsächsischen Format abgewiesen werden.

>> Datumswerte vergleichen132
Da

tu
m

 u
nd

 U
hr

ze
it

Vergleiche unter Ausschluss der Uhrzeit
Die vordefinierten Vergleichsmethoden der Klasse Date und Calendar basieren allesamt auf der
Anzahl Millisekunden seit dem 01.01.1970 00:00:00 Uhr, GMT. Sie sind also nicht geeignet,
wenn Sie feststellen möchten, ob zwei Datumswerte denselben Tag (ohne Berücksichtigung
der Uhrzeit) bezeichnen:

// Datumsobjekt für den 5. April 2005, 12 Uhr
Calendar t1 = Calendar.getInstance();
t1.set(2005, 3, 5, 12, 0, 0);

// Datumsobjekt für den 5. April 2005, 13 Uhr
Calendar t2 = Calendar.getInstance();

System.out.println("Vergleich mit equals() : " + t1.equals(t2)); // false
System.out.println("Vergleich mit compareTo(): " + t1.compareTo(t2)); // -1

Um Datumswerte ohne Berücksichtigung der Uhrzeit vergleichen zu können, bedarf es dem-
nach eigener Hilfsmethoden:

/**
 * Prüft, ob zwei Calendar-Objekte den gleichen Tag im Kalender bezeichnen
 */
public static boolean equalDays(Calendar t1, Calendar t2) {
 return (t1.get(Calendar.YEAR) == t2.get(Calendar.YEAR))
 && (t1.get(Calendar.MONTH) == t2.get(Calendar.MONTH))
 && (t1.get(Calendar.DAY_OF_MONTH) == t2.get(Calendar.DAY_OF_MONTH));
}

Die Methode equalDays() prüft paarweise, ob Jahr, Monat und Tag der beiden Calendar-
Objekte übereinstimmen. Wenn ja, liefert sie true zurück.

/**
 * Prüft, ob zwei Calendar-Objekte den gleichen Tag bezeichnen
 */
public static int compareDays(Calendar t1, Calendar t2) {

Date-/Calendar-Methode Beschreibung

boolean equals(Object) Liefert true, wenn der aktuelle Datumswert und das übergebene
Datum identisch sind.
Bei Date ist dies der Fall, wenn beide Objekte vom Typ Date sind
und auf derselben Anzahl Millisekunden basieren.
Bei Calendar ist dies der Fall, wenn beide Objekte vom Typ Calen-
dar sind, auf derselben Anzahl Millisekunden basieren und
bestimmte Calendar-Charakteristika sowie die Zeitzone überein-
stimmen.

int compareTo(Date/Object) Liefert -1, 0 oder 1 zurück, je nachdem, ob der aktuelle Datums-
wert kleiner, gleich oder größer dem übergebenen Wert ist.

boolean before(Date/Object) Liefert true, wenn der aktuelle Datumswert zeitlich vor dem über-
gebenen Datum liegt.

boolean after(Date/Object) Liefert true, wenn der aktuelle Datumswert zeitlich nach dem
übergebenen Datum liegt.

Tabelle 19: Vergleichsmethoden für Datumswerte

>> Datum und Uhrzeit 133

Da
tu

m
 u

nd
 U

hr
ze

it

 Calendar clone1 = (Calendar) t1;
 clone1.set(t1.get(Calendar.YEAR), t1.get(Calendar.MONTH),
 t1.get(Calendar.DATE), 0, 0, 0);
 clone1.clear(Calendar.MILLISECOND);

 Calendar clone2 = (Calendar) t2;
 clone2.set(t2.get(Calendar.YEAR), t2.get(Calendar.MONTH),
 t2.get(Calendar.DATE), 0, 0, 0);
 clone2.clear(Calendar.MILLISECOND);

 return clone1.compareTo(clone2);
}

Die Methode compareDays() nutzt einen anderen Ansatz als equalDays(). Sie legt Kopien der
übergebenen Calendar-Objekte an und setzt für diese die Werte der Stunden, Minuten, Sekun-
den (set()-Aufruf) sowie Millisekunden (clear()-Aufruf) auf 0. Dann vergleicht sie die Klone
mit Calendar.compareTo() und liefert das Ergebnis zurück.

45 Differenz zwischen zwei Datumswerten berechnen
Wie Sie die Differenz zwischen zwei Datumswerten berechnen, hängt vor allem davon ab,
wozu Sie die Differenz benötigen und was Sie daraus ablesen wollen. Geht es lediglich darum,
ein Maß für den zeitlichen Abstand zwischen zwei Datumswerten zu erhalten, genügt es, sich
die Datumswerte als Anzahl Millisekunden, die seit dem 01.01.1970 00:00:00 Uhr, GMT, ver-
gangen sind, zurückliefern zu lassen und voneinander zu subtrahieren:

long diff = Math.abs(date1.getTimeInMillis() - date2.getTimeInMillis());

Uhrzeit ausschalten
Datumswerte, ob sie nun durch ein Objekt der Klasse Date oder Calendar repräsentiert werden,
schließen immer auch eine Uhrzeit ein. Wenn Sie Datumsdifferenzen ohne Berücksichtigung
der Uhrzeit berechnen wollen, müssen Sie die Uhrzeit für alle Datumswerte auf einen gemein-
samen Wert setzen.

Wenn Sie ein neues GregorianCalendar-Objekt für ein bestimmtes Datum setzen und nur die
Daten für Jahr, Monat und Tag angeben, werden die Uhrzeitfelder automatisch auf 0 gesetzt.
Um Ihre Intention deutlicher im Quelltext widerzuspiegeln, können Sie die Felder für Stunden,
Minuten und Sekunden aber auch explizit auf 0 setzen:

GregorianCalendar date1 = new GregorianCalendar(2002, 5, 1);
GregorianCalendar date2 = new GregorianCalendar(2002, 5, 1, 0, 0, 0);

Für bestehende Calendar-Objekte können Sie die Uhrzeitfelder mit Hilfe von set() oder
clear() auf 0 setzen:

// Aktuelles Datum
Calendar today = Calendar.getInstance();

H
in

w
e

is Wenn Sie mit Calendar-Objekten arbeiten, erhalten Sie die Anzahl Millisekunden von
der Methode getTimeInMillis(). Für Date-Objekte rufen Sie stattdessen getTime() auf.

>> Differenz zwischen zwei Datumswerten in Jahren, Tagen und Stunden berechnen134
Da

tu
m

 u
nd

 U
hr

ze
it

// Stunden, Minuten und Sekunden auf 0 setzen
today.set(today.get(Calendar.YEAR), today.get(Calendar.MONTH),
 today.get(Calendar.DATE), 0, 0, 0);
// Millisekunden auf 0 setzen
today.clear(Calendar.MILLISECOND);

Eine Beschreibung der verschiedenen Datums- und Uhrzeitfelder finden Sie in Tabelle 15 aus
Rezept 40.

46 Differenz zwischen zwei Datumswerten in Jahren,
Tagen und Stunden berechnen

Weit komplizierter ist es, die Differenz zwischen zwei Datumswerten aufgeschlüsselt in Jahre,
Tage, Stunden etc. anzugeben. Daran sind vor allem zwei Umstände Schuld:

� Die Sommerzeit.

Wenn zwei Datumswerte verglichen werden, von denen einer innerhalb und der andere
außerhalb der Sommerzeit liegt, führt die Sommerzeitverschiebung zu eventuell uner-
wünschten Differenzberechnungen.

In Deutschland beginnt die Sommerzeit am 27. März. Um zwei Uhr nachts wird die Uhr um
1 Stunde vorgestellt. Die Folge: Zwischen dem 27. März 00:00 Uhr und dem 28. März
00:00 Uhr liegen tatsächlich nur 23 Stunden. Trotzdem entspricht dies kalendarisch einem
vollen Tag! Wie also sollte ein Programm diese Differenz anzeigen: als 23 h oder als 1 d?

� Die unterschiedlichen Längen der Monate und Jahre.

Wenn Sie eine Differenz in Jahren und/oder Monaten ausdrücken möchten, stehen Sie vor
der Entscheidung, ob Sie mit festen Längen rechnen wollen (1 Jahr = 365 Tage, 1 Monat =
30 Tage oder auch 1 Jahr = 365,25 Tage, 1 Monat = 30,4 Tage) oder ob Sie die exakten
Längen berücksichtigen.

Die Klasse TimeSpan dient sowohl der Repräsentation als auch der Berechnung von Datumsdif-
ferenzen. In ihren private-Feldern speichert sie die Differenz zwischen zwei Datumswerten
sowohl in Sekunden (diff) als auch ausgedrückt als Kombination aus Jahren, Tagen, Stunden,
Minuten und Sekunden.

TimeSpan-Objekte können auf zweierlei Weise erzeugt werden:

� indem Sie den public-Konstruktor aufrufen und die Differenz selbst als Kombination aus
Jahren, Tagen, Stunden, Minuten und Sekunden übergeben:

TimeSpan ts = new TimeSpan(0, 1, 2, 0, 0);

� indem Sie die Methode getInstance() aufrufen und dieser zwei GregorianCalendar-Objekte
übergeben, sowie boolesche Werte, die der Methode mitteilen, ob bei der Berechnung der
Differenz auf Sommerzeit und Schaltjahre zu achten ist:

GregorianCalendar time1 = new GregorianCalendar(2005, 2, 26);
GregorianCalendar time2 = new GregorianCalendar(2005, 2, 27);
TimeSpan ts = TimeSpan.getInstance(time1, time2, true, true);

Die Differenz, die ein TimeSpan-Objekt repräsentiert, können Sie auf zweierlei Weise abfragen:

� Mit Hilfe der get-Methoden (getYears(), getDays() etc.) lassen Sie sich die Werte der zu-
gehörigen Felder zurückliefern und erhalten so die Kombination aus Jahren, Tagen, Stun-

>> Datum und Uhrzeit 135

Da
tu

m
 u

nd
 U

hr
ze

it

den, Minuten und Sekunden, aus denen sich die Differenz zusammensetzt. (Die Methode
toString() liefert auf diese Weise die Differenz als String zurück – nur dass sie natürlich
direkt auf die Feldwerte zugreift.)

� Mittels der in-Methoden (inYears(), inWeeks() etc.) können Sie sich die Differenz ausge-
drückt in ganzzahligen Werten einer einzelnen Einheit (also beispielsweise in Jahren oder
Tagen) zurückliefern lassen.

Der Quelltext der Klasse TimeSpan sieht folgendermaßen aus:

import java.util.Calendar;
import java.util.GregorianCalendar;
import java.util.TimeZone;

/**
 * Klasse zur Repräsentation und Berechnung von Zeitabständen
 * zwischen zwei Datumsangaben
 */
public class TimeSpan {
 private int years;
 private int days;
 private int hours;
 private int minutes;
 private int seconds;
 private long diff;

 // public Konstruktor
 public TimeSpan(int years, int days, int hours,
 int minutes, int seconds) {
 this.years = years;
 this.days = days;
 this.hours = hours;
 this.minutes = minutes;
 this.seconds = seconds;
 diff = seconds + 60*minutes + 60*60*hours
 + 24*60*60*days + 365*24*60*60*years;
 }

 // protected Konstruktor, wird von getInstance() verwendet
 protected TimeSpan(int years, int days, int hours,
 int minutes, int seconds, long diff) {
 this.years = years;
 this.days = days;
 this.hours = hours;
 this.minutes = minutes;
 this.seconds = seconds;
 this.diff = diff;
 }

 // Erzeugt aus zwei GregorianCalendar-Objekten
 // ein TimeSpan-Objekt

Listing 49: Die Klasse TimeSpan

>> Differenz zwischen zwei Datumswerten in Jahren, Tagen und Stunden berechnen136
Da

tu
m

 u
nd

 U
hr

ze
it

Am interessantesten ist zweifelsohne die Methode getInstance(), die die Differenz zwischen
zwei GregorianCalendar-Objekten berechnet, indem Sie die Differenz aus den Millisekunden-
Werten (zurückgeliefert von getTimeInMillis()) berechnet, diesen Wert durch Division mit
1000 in Sekunden umrechnet und dann durch sukzessive Modulo-Berechnung und Division in
Sekunden, Minuten, Stunden, Tage und Jahr zerlegt. Am Beispiel der Berechnung des Sekun-
denanteils möchte ich dies kurz erläutern:

Nachdem die Methode die Differenz durch 1000 dividiert hat, speichert sie den sich ergeben-
den Wert in der lokalen long-Variable diff, die somit anfangs die Differenz in Sekunden ent-
hält.

diff = (last.getTimeInMillis() - first.getTimeInMillis())/1000;

Rechnet man diff%60 (Modulo = Rest der Division durch 60), erhält man den Sekundenanteil:

int seconds = (int) (diff%60);

 public static TimeSpan getInstance(GregorianCalendar t1,
 GregorianCalendar t2,
 boolean summer, boolean leap) {
 // siehe unten
 }

 public int getYears() { return years; }
 public int getDays() { return days; }
 public int getHours() { return hours; }
 public int getMinutes() { return minutes; }
 public int getSeconds() { return seconds; }

 public int inYears() { return (int) (diff / (60 * 60 * 24 * 365)); }
 public int inWeeks() { return (int) (diff / (60 * 60 * 24 * 7)); }
 public int inDays() { return (int) (diff / (60 * 60 * 24)); }
 public int inHours() { return (int) (diff / (60 * 60)); }
 public int inMinutes() { return (int) (diff / 60); }
 public int inSeconds() { return (int) (diff); }

 public String toString() {
 StringBuilder s = new StringBuilder("");

 if(years > 0) s.append(years + " j ");
 if(days > 0) s.append(days + " t ");
 if(hours > 0) s.append(hours + " std ");
 if(minutes > 0) s.append(minutes + " min ");
 if(seconds > 0) s.append(seconds + " sec ");

 if (s.toString().equals(""))
 s.append("Kein Zeitunterschied");

 return s.toString();
 }
}

Listing 49: Die Klasse TimeSpan (Forts.)

>> Datum und Uhrzeit 137

Da
tu

m
 u

nd
 U

hr
ze

it

Anschließend wird diff durch 60 dividiert und das Ergebnis zurück in diff gespeichert.

diff /= 60;

Jetzt speichert diff die Differenz in ganzen Minuten (ohne den Rest Sekunden).

public static TimeSpan getInstance(GregorianCalendar t1,
 GregorianCalendar t2,
 boolean summer, boolean leap) {
 GregorianCalendar first, last;
 TimeZone tz;
 long diff, save;

 // Immer frühere Zeit von späteren Zeit abziehen
 if (t1.getTimeInMillis() > t2.getTimeInMillis()) {
 last = t1;
 first = t2;
 } else {
 last = t2;
 first = t1;
 }

 // Differenz in Sekunden
 diff = (last.getTimeInMillis() - first.getTimeInMillis())/1000;

 if (summer) { // Sommerzeit ausgleichen
 tz = first.getTimeZone();
 if(!(tz.inDaylightTime(first.getTime()))
 && (tz.inDaylightTime(last.getTime())))
 diff += tz.getDSTSavings()/1000;
 if((tz.inDaylightTime(first.getTime()))
 && !(tz.inDaylightTime(last.getTime())))
 diff -= tz.getDSTSavings()/1000;
 }

 save = diff;

 // Sekunden, Minuten und Stunden berechnen
 int seconds = (int) (diff%60); diff /= 60;
 int minutes = (int) (diff%60); diff /= 60;
 int hours = (int) (diff%24); diff /= 24;

 // Jahre und Tage berechnen
 int days = 0;
 int years = 0;

 if (leap) { // Schaltjahre ausgleichen
 int startYear = 0, endYear = 0;
 int leapDays = 0; // Schalttage in Zeitraum
 int subtractLeapDays = 0; // abzuziehende Schalttage
 // (da in Jahren enthalten)

Listing 50: Quelltext der Methode TimeSpan.getInstance()

>> Differenz zwischen zwei Datumswerten in Jahren, Tagen und Stunden berechnen138
Da

tu
m

 u
nd

 U
hr

ze
it

Was zum Verständnis der getInstance()-Methode noch fehlt, ist die Berücksichtigung von
Sommerzeit und Schaltjahren.

Wird für den Parameter summer der Wert true übergeben, prüft die Methode, ob einer der
Datumswerte (aber nicht beide) in die Sommerzeit der aktuellen Zeitzone fallen. Dazu lässt sie
sich von der Calendar-Methode getTimeZone() ein TimeZone-Objekt zurückliefern, das die Zeit-
zone des Kalenders präsentiert, und übergibt nacheinander dessen inDaylightTime()-Methode
die zu kontrollierenden Datumswerte:

 if (summer) { // Sommerzeit ausgleichen
 tz = first.getTimeZone();
 if(!(tz.inDaylightTime(first.getTime()))
 && (tz.inDaylightTime(last.getTime())))

 if((first.get(Calendar.MONTH) < 1)
 || ((first.get(Calendar.MONTH) == 1)
 && (first.get(Calendar.DAY_OF_MONTH) < 29)))
 startYear = first.get(Calendar.YEAR);
 else
 startYear = first.get(Calendar.YEAR)+1;

 if((last.get(Calendar.MONTH) > 1)
 || ((last.get(Calendar.MONTH) == 1)
 && (last.get(Calendar.DAY_OF_MONTH) == 29)))
 endYear = last.get(Calendar.YEAR);
 else
 endYear = last.get(Calendar.YEAR)-1;

 for(int i = startYear; i <= endYear; ++i)
 if (first.isLeapYear(i))
 ++leapDays;

 // Jahre berechnen
 years = (int) ((diff-leapDays)/365);

 // in Jahren enthaltene Schalttage
 subtractLeapDays = (years+3)/4;
 if (subtractLeapDays > leapDays)
 subtractLeapDays = leapDays;

 // Tage berechnen
 days = (int) (diff - ((years*365) + subtractLeapDays));

 } else {
 days = (int) (diff%365);
 years = (int) (diff/365);
 }

 return new TimeSpan(years, days, hours, minutes, seconds, (int) save);
}

Listing 50: Quelltext der Methode TimeSpan.getInstance() (Forts.)

>> Datum und Uhrzeit 139

Da
tu

m
 u

nd
 U

hr
ze

it

 diff += tz.getDSTSavings()/1000;
 if((tz.inDaylightTime(first.getTime()))
 && !(tz.inDaylightTime(last.getTime())))
 diff -= tz.getDSTSavings()/1000;
 }

Fällt tatsächlich einer der Datumswerte in die Sommerzeit und der andere nicht, gleicht die
Methode die Sommerzeitverschiebung aus, indem sie sich von der getDSTSavings()-Methode
des TimeZone-Objekts die Verschiebung in Millisekunden zurückliefern lässt und diesen Wert,
geteilt durch 1000, auf diff hinzuaddiert oder von diff abzieht. Die Differenz zwischen dem
27. März 00:00 Uhr und dem 28. März 00:00 Uhr wird dann beispielsweise als 1 Tag und nicht
als 23 Stunden berechnet.

Wird für den Parameter leap der Wert true übergeben, berücksichtigt die Methode in Zeitdiffe-
renzen, die sich über mehrere Jahre erstrecken, Schalttage. Schaltjahre, die in der Differenz
komplett enthalten sind, werden demnach als 366 Jahre angerechnet. So wird die Differenz
zwischen 01.02.2004 und dem 01.03.2004 zu 29 Tagen berechnet und die Differenz zwischen
dem 01.02.2004 und dem 01.02.2005 als genau 1 Jahr. In den meisten Fällen führt diese
Berechnung zu Ergebnissen, die man erwartet, sie zeitigt aber auch Merkwürdigkeiten. So
werden beispielsweise die Differenzen zwischen dem 28.02.2004 und dem 28.02.2005 zum
einen 29.02.2004 und dem 28.02.2005 zum anderen beide zu 1 Jahr berechnet.

Wenn Sie für den Parameter leap den Wert false übergeben, wird das Jahr immer als 365 Tage
aufgefasst.

Das Start-Programm zu diesem Rezept liest über die Befehlszeile zwei deutsche Datumsanga-
ben im Format TT.MM.JJJJ ein und berechnet die Differenz unter Berücksichtigung von Som-
merzeit und Schaltjahren.

import java.util.GregorianCalendar;
import java.text.DateFormat;
import java.text.ParseException;
import java.util.Locale;

public class Start {

 public static void main(String args[]) {
 DateFormat parser = DateFormat.getDateInstance(DateFormat.MEDIUM,
 Locale.GERMANY);
 GregorianCalendar time1 = new GregorianCalendar();
 GregorianCalendar time2 = new GregorianCalendar();
 TimeSpan ts;
 System.out.println();

 if (args.length != 2) {
 System.out.println(" Aufruf: Start <Datum: TT.MM.JJJJ> "
 + "<Datum: TT.MM.JJJJ>");
 System.exit(0);
 }

 try {

Listing 51: Differenz zwischen zwei Datumswerten berechnen

>> Differenz zwischen zwei Datumswerten in Tagen berechnen140
Da

tu
m

 u
nd

 U
hr

ze
it

47 Differenz zwischen zwei Datumswerten in Tagen
berechnen

Ein Tag besteht stets aus 24 Stunden, 24*60 Minuten, 24*60*60 Sekunden oder 24*60*60*1000
Millisekunden. Was liegt also näher, als die Differenz zwischen zwei Datumswerten zu berech-
nen, indem man die in den Calendar-Objekten gespeicherte Anzahl Millisekunden seit dem
01.01.1970 00:00:00 Uhr, GMT, abfragt, voneinander abzieht, durch 1000 und weiter noch
durch 24*60*60 dividiert?

// Vereinfachter Ansatz:
long diff = Math.abs((time2.getTimeInMillis()-time1.getTimeInMillis())/1000);
long diffInDays = diff/(60*60*24);

Das Problem an dieser Methode ist, dass die Sommerzeit nicht berücksichtigt wird. Stünde in
obigem Code time1 für den 27. März 00:00 Uhr und time2 für den 28. März 00:00 Uhr, wäre
diff lediglich gleich 23*60*60 und diffInDays ergäbe 0.

Um korrekte Ergebnisse zu erhalten, können Sie entweder die Zeitzone des Calendar-Objekts
auf eine TimeZone-Instanz umstellen, die keine Sommerzeit kennt (und zwar bevor in dem
Objekt die gewünschte Zeit gespeichert wird), die Sommerzeitverschiebung manuell korrigie-
ren (siehe Quelltext zu getInstance() aus Rezept 46) oder sich der in Rezept 46 definierten
TimeSpan-Klasse bedienen. In letzterem Fall müssen die beiden Datumswerte als Gregorian-

 time1.setTime(parser.parse(args[0]));
 time2.setTime(parser.parse(args[1]));
 ts = TimeSpan.getInstance(time1, time2, true, true);
 System.out.println(" Differenz: " + ts);

 } catch(ParseException e) {
 System.err.println("\n Kein gueltiges Datum (TT.MM.JJJJ)");
 }
 }
}

Abbildung 27: Beispielaufrufe

Listing 51: Differenz zwischen zwei Datumswerten berechnen (Forts.)

>> Datum und Uhrzeit 141

Da
tu

m
 u

nd
 U

hr
ze

it

Calendar-Objekte vorliegen. Diese übergeben Sie dann an die Methode getInstance(), wobei
Sie als drittes Argument unbedingt true übergeben, damit die Sommerzeit berücksichtigt wird.
(Das vierte Argument, das die Berücksichtigung der Schalttage bei der Berechnung der Jahre
steuert, ist für die Differenz in Tagen unerheblich.)

import java.util.GregorianCalendar;

// gegeben GregorianCalendar time1 und time2
TimeSpan ts = TimeSpan.getInstance(time1, time2, true, true);
System.out.println("Differenz: " + ts.inDays());

Das Start-Programm zu diesem Rezept berechnet auf diese Weise die Differenz in Tagen zwi-
schen zwei Datumseingaben, die über die Befehlszeile entgegengenommen werden.

48 Tage zu einem Datum addieren/subtrahieren
In Sprachen, die die Überladung von Operatoren unterstützen, erwarten Programmieranfänger
häufig, dass man das Datum, welches in einem Objekt einer Datumsklasse gekapselt ist, mit
Hilfe überladener Operatoren inkrementieren oder um eine bestimmte Zahl Tage erhöhen
kann:

++date; // kein Java!
date = date + 3; // kein Java!

Nicht selten sehen sich die Adepten dann getäuscht, weil die zugrunde liegende Implementie-
rung nicht die Anzahl Tage, sondern die Anzahl Millisekunden, auf denen das Datum basiert,
erhöhen.

Nun, in Java gibt es keine überladenen Operatoren und obiger Fallstrick bleibt uns erspart.
Wie aber kann man in Java Tage zu einem bestehenden Datum hinzuaddieren oder davon
abziehen?

Wie Sie mittlerweile wissen, werden Datumswerte in Calendar-Objekten sowohl als Anzahl
Millisekunden als auch in Form von Datums- und Uhrzeitfeldern (Jahr, Monat, Wochentag,
Stunde etc.) gespeichert. Diese Felder können mit Hilfe der get-/set-Methoden der Klasse (siehe
Tabelle 15) abgefragt und gesetzt werden.

Eine Möglichkeit, Tage zu einem Datum zu addieren oder von einem Datum abzuziehen,
ist daher, set() für das Feld Calendar.DAY_OF_MONTH aufzurufen und diesem den alten Wert
(= get(Calendar.DAY_OF_MONTH)) plus der zu addierenden Anzahl Tage (negativer Wert für
Subtraktion) zu übergeben.

date.set(Calendar.DAY_OF_MONTH, date.get(Calendar.DAY_OF_MONTH) + days);

Einfacher noch geht es mit Hilfe der add()-Methode, der Sie nur noch das Feld und die zu
addierende Anzahl Tage (negativer Wert für Subtraktion) übergeben müssen:

date.add(Calendar.DAY_OF_MONTH, days);

A
ch

tu
n

g Die Realität ist leider oftmals komplizierter, als wir Programmierer es uns wünschen.
Tatsächlich ist in UTC (Coordinated Universal Time) nicht jeder Tag 24*60*60 Sekunden
lang. Alle ein oder zwei Jahre wird am Ende des 31. Dezember oder 30 Juni eine
Schaltsekunde eingefügt, so dass der Tag 24*60*60+1 Sekunden lang ist. Diese Korrek-
tur gleicht die auf einer Atomuhr basierende UTC-Zeit an die UT-Zeit (GMT) an, die auf
der Erdumdrehung beruht.

>> Datum in julianischem Kalender142
Da

tu
m

 u
nd

 U
hr

ze
it

Kommt es zu einem Über- oder Unterlauf (die berechnete Anzahl Tage ist größer als die Tage
im aktuellen Monat bzw. kleiner als 1), passt add() die nächstgrößere Einheit an (für Tage also
das MONTH-Feld). Die set()-Methode passt die nächsthöhere Einheit nur dann an, wenn das
private-Feld lenient auf true steht (Standardwert, Einstellung über setLenient()). Ansonsten
wird eine Exception ausgelöst.

Mit der roll()-Methode schließlich können Sie den Wert eines Feldes ändern, ohne dass bei
Über- oder Unterlauf das nächsthöhere Feld angepasst wird.

date.roll(Calendar.DAY_OF_MONTH, days);

Das Start-Programm demonstriert die Arbeit von add() und roll(). Datum und die hinzuzu-
addierende Anzahl Tage werden als Argumente über die Befehlszeile übergeben.

49 Datum in julianischem Kalender
Sie benötigen ein Calendar-Objekt, welches den 27.04.2005 im julianischen Kalender reprä-
sentiert?

In diesem Fall reicht es nicht, einfach dem GregorianCalendar-Konstruktor Jahr, Monat (-1)
und Tag zu übergeben, da die Hybridimplementierung der Klasse GregorianCalendar standard-
mäßig Daten nach dem 15. Oktober 1582 als Daten im gregorianischen Kalender interpretiert
(vergleiche Rezept 40).

Stattdessen müssen Sie

1. ein neues GregorianCalendar-Objekt erzeugen:

GregorianCalendar jul = new GregorianCalendar();

Methode Arbeitsweise

set(int field, int value) Anpassung der übergeordneten Einheit, wenn lenient = true,
ansonsten Auslösen einer Exception

add(int field, int value) Anpassung der übergeordneten Einheit

roll(int field, int value) Keine Anpassung der übergeordneten Einheit

Tabelle 20: Methoden zum Erhöhen bzw. Vermindern von Datumsfeldern

Abbildung 28: Addieren und Subtrahieren von Tagen

>> Datum und Uhrzeit 143

Da
tu

m
 u

nd
 U

hr
ze

it

2. dessen GregorianChange-Datum auf Date(Long.MAX_VALUE) einstellen:

jul.setGregorianChange(new Date(Long.MAX_VALUE));

3. Jahr, Monat und Tag für das Objekt setzen:

jul.set(2005, 3, 27);

Das neue Objekt repräsentiert nun das gewünschte Datum im julianischen Kalender. (Der
intern berechnete Millisekundenwert gibt also an, wie viele Sekunden das Datum vom
01.01.1970 00:00:00 Uhr, GMT, entfernt liegt.)

50 Umrechnen zwischen julianischem und
gregorianischem Kalender

Um ein Datum im julianischen Kalender in das zugehörige Datum im gregorianischen Kalen-
der umzuwandeln (so dass beide Daten gleich viele Millisekunden vom 01.01.1970 00:00:00
Uhr, GMT, entfernt liegen), gehen Sie am besten wie folgt vor:

1. Erzeugen Sie ein neues GregorianCalendar-Objekt:

GregorianCalendar gc = new GregorianCalendar();

2. Stellen Sie dessen GregorianChange-Datum auf Date(Long.MIN_VALUE) ein:

gc.setGregorianChange(new Date(Long.MAX_VALUE));

3. Setzen sie die interne Millisekundenzeit des Objekts auf die Anzahl Millisekunden des juli-
anischen Datums:

gc.setTimeInMillis(c.getTimeInMillis());

Wenn Sie ein Datum im gregorianischen Kalender in das zugehörige Datum im julianischen
Kalender umwandeln möchten, gehen Sie analog vor, nur dass Sie setGregorianChange() den
Date(Long.MAX_VALUE) Wert übergeben.

A
ch

tu
n

g Wenn Sie das Datum mittels einer DateFormat-Instanz in einen String umwandeln
möchten, müssen Sie beachten, dass die DateFormat-Instanz standardmäßig mit einer
GregorianCalendar-Instanz arbeitet, die für Datumswerte nach Oktober 1582 mit dem
gregorianischen Kalender arbeitet. Um das korrekte julianische Datum zu erhalten,
müssen Sie dem Formatierer eine Calendar-Instanz zuweisen, die für alle Datumswerte
nach dem julianischen Kalender rechnet, beispielsweise also jul:

DateFormat dfJul = DateFormat.getDateInstance(DateFormat.FULL);
dfJul.setCalendar(jul);
System.out.println(dfJul.format(jul.getTime()));

/**
 * Gregorianisches Datum in julianisches Datum unwandeln
 */
public static GregorianCalendar gregorianToJulian(GregorianCalendar c) {

 GregorianCalendar gc = new GregorianCalendar();
 gc.setGregorianChange(new Date(Long.MAX_VALUE));

Listing 52: Methoden zur Umwandlung von Datumswerten zwischen julianischem und
gregorianischem Kalender

>> Ostersonntag berechnen144
Da

tu
m

 u
nd

 U
hr

ze
it

Das Start-Programm zu diesem Rezept liest ein Datum über die Befehlszeile ein und interpre-
tiert es einmal als gregorianisches und einmal als julianisches Datum, welche jeweils in ihre
julianische bzw. gregorianische Entsprechung umgerechnet werden.

51 Ostersonntag berechnen
Der Ostersonntag ist der Tag, an dem die Christen die Auferstehung Jesu Christi feiern. Gleich-
zeitig kennzeichnet er das Ende des österlichen Festkreises, der mit dem Aschermittwoch
beginnt.

Für den Programmierer ist der Ostersonntag insofern von zentraler Bedeutung, als er den
Referenzpunkt für die Berechnung der österlichen Feiertage darstellt: Aschermittwoch, Grün-
donnerstag, Karfreitag, Ostermontag, Christi Himmelfahrt, Pfingsten.

 gc.setTimeInMillis(c.getTimeInMillis());

 return gc;
}

/**
 * Julianisches Datum in gregorianisches Datum unwandeln
 */
public static GregorianCalendar julianToGregorian(GregorianCalendar c) {

 GregorianCalendar gc = new GregorianCalendar();
 gc.setGregorianChange(new Date(Long.MIN_VALUE));
 gc.setTimeInMillis(c.getTimeInMillis());

 return gc;
}

A
ch

tu
n

g Wenn Sie Datumswerte mittels einer DateFormat-Instanz in einen String umwandeln:

GregorianCalendar date = new GregorianCalendar();
DateFormat df = DateFormat.getDateInstance();
String s = df.format(date.getTime());

müssen Sie beachten, dass die DateFormat-Instanz das übergebene Datum als Date-Objekt
übernimmt und mittels einer eigenen Calendar-Instanz in Jahr, Monat etc. umrechnet.
Wenn Sie mit DateFormat Datumswerte umwandeln, für die Sie das GregorianChange-
Datum umgestellt haben, müssen Sie daher auch für das Calendar-Objekt der DateFor-
mat-Instanz das GregorianChange-Datum umstellen – oder es einfach durch das Grego-
rianCalendar-Objekt des Datums ersetzen:

GregorianCalendar jul = new GregorianCalendar();
jul.setGregorianChange(new Date(Long.MAX_VALUE));
DateFormat dfJul = DateFormat.getDateInstance(DateFormat.FULL);
dfJul.setCalendar(jul);

Listing 52: Methoden zur Umwandlung von Datumswerten zwischen julianischem und
gregorianischem Kalender (Forts.)

>> Datum und Uhrzeit 145

Da
tu

m
 u

nd
 U

hr
ze

it

Der Ostertermin richtet sich nach dem jüdischen Pessachfest und wurde auf dem Konzil von
Nicäa 325 festgelegt als:

»Der 1. Sonntag, der dem ersten Pessach-Vollmond folgt.« – was auf der Nördlichen Halb-
kugel dem ersten Vollmond nach der Frühlings-Tag-und-Nachtgleiche entspricht.

Wegen dieses Bezugs auf den Vollmond ist die Berechnung des Ostersonntags recht kompli-
ziert. Traditionell erfolgte die Berechnung mit Hilfe des Mondkalenders und der goldenen Zahl
(die laufende Nummer eines Jahres im Mondzyklus). Heute gibt es eine Vielzahl von Algorith-
men zur Berechnung des Ostersonntags. Die bekanntesten sind die Algorithmen von Carl
Friedrich Gauß, Mallen und Oudin. Auf Letzterem basiert auch der in diesem Rezept imple-
mentierte Algorithmus:

import java.util.GregorianCalendar;

/**
 * Datum des Ostersonntags im gregorianischen Kalender berechnen
 */
public static GregorianCalendar eastern(int year) {
 int c = year/100;
 int n = year - 19 * (year/19);
 int k = (c - 17)/25;

 int l1 = c - c/4 - (c-k)/3 + 19*n + 15;
 int l2 = l1 - 30*(l1/30);
 int l3 = l2 - (l2/28)*(1 - (l2/28) * (29/(l2+1)) * ((21-n)/11));

 int a1 = year + year/4 + l3 + 2 - c + c/4;
 int a2 = a1 - 7 * (a1/7);
 int l = l3 - a2;

 int month = 3 + (l + 40)/44;
 int day = l + 28 - 31*(month/4);

 return new GregorianCalendar(year, month-1, day);
}

Listing 53: Berechnung des Ostersonntags im gregorianischen Kalender

A
ch

tu
n

g Wenn Sie historische Ostertermine berechnen, müssen Sie bedenken, dass der grego-
rianische Kalender erst im Oktober 1582, in vielen Ländern sogar noch später, siehe
Tabelle 16 in Rezept 41, eingeführt wurde.

Wenn Sie zukünftige Ostertermine berechnen, müssen Sie bedenken, dass diese nur
nach geltender Konvention gültig sind. Bestrebungen, die Berechnung des Ostertermins
zu vereinfachen und das Datum auf einen bestimmten Sonntag festzuschreiben, gibt es
schon seit längerem. Bisher konnten die Kirchen diesbezüglich allerdings zu keiner
Einigung kommen.

>> Ostersonntag berechnen146
Da

tu
m

 u
nd

 U
hr

ze
it

Ostern in der orthodoxen Kirche
Vor der Einführung des gregorianischen Kalenders galt der julianische Kalender, nach dem
folglich auch Ostern berechnet wurde. Die meisten Länder stellten mit der Übernahme des gre-
gorianischen Kalenders auch die Berechnung des Ostersonntags auf den gregorianischen
Kalender um. Nicht so die orthodoxen Kirchen. Sie hingen nicht nur lange dem julianischen
Kalender an, siehe Tabelle 16 in Rezept 41, sondern behielten diesen für die Berechnung des
Ostersonntags sogar noch bis heute bei.

Die folgende Methode berechnet den Ostersonntag nach dem julianischen Kalender.

Beachten Sie, dass GregorianChange-Datum für das zurückgelieferte Calendar-Objekt auf
Date(Long.MAX_VALUE) gesetzt wurde, d.h., das Calendar-Objekt berechnet den Millisekunden-
wert, der dem übergebenen Datum entspricht, nach dem julianischen Kalender (siehe auch
Rezept 49).

Wenn Sie Jahr, Monat und Tag des Ostersonntags im julianischen Kalender aus dem zurück-
gelieferten Calendar-Objekt auslesen möchten, brauchen Sie daher nur die entsprechenden
Felder abzufragen, beispielsweise:

import java.util.Date;
import java.util.GregorianCalendar;

/**
 * Datum des Ostersonntags im julianischen Kalender berechnen
 */
public static GregorianCalendar easternJulian(int year) {
 int month, day;
 int a = year%19;
 int b = year%4;
 int c = year%7;

 int d = (19 * a + 15) % 30;
 int e = (2*b + 4*c + 6*d + 6)%7;

 if ((d+e) < 10) {
 month = 3;
 day = 22+d+e;
 } else {
 month = 4;
 day = d+e-9;
 }

 GregorianCalendar gc = new GregorianCalendar();
 gc.setGregorianChange(new Date(Long.MAX_VALUE));
 gc.set(year, month-1, day, 0, 0, 0);

 return gc;
}

Listing 54: Berechnung des Ostersonntags im julianischen Kalender

>> Datum und Uhrzeit 147

Da
tu

m
 u

nd
 U

hr
ze

it

GregorianCalendar easternJ = MoreDate.easternJulian(year);
System.out.println(" " + easternJ.get(Calendar.YEAR)
 + " " + easternJ.get(Calendar.MONTH)
 + " " + easternJ.get(Calendar.DAY_OF_MONTH));

Wenn Sie das Datum des Ostersonntags im Julianischen Kalender mittels einer DateFormat-
Instanz in einen String umwandeln möchten, müssen Sie beachten, dass die DateFormat-
Instanz standardmäßig mit einer GregorianCalendar-Instanz arbeitet, die für Datumswerte
nach Oktober 1582 den gregorianischen Kalender zugrunde legt. Um das korrekte julianische
Datum zu erhalten, müssen Sie dem Formatierer eine Calendar-Instanz zuweisen, die für alle
Datumswerte nach dem julianischen Kalender rechnet, beispielsweise also das von More-
Date.easternJulian() zurückgelieferte Objekt:

easternJ = MoreDate.easternJulian(year);
df.setCalendar(easternJ);
System.console().printf("Orthod. Ostersonntag (Julian.): %s\n",
 f.format(easternJ.getTime()));

Sicherlich wird es Sie aber auch interessieren, welchem Datum in unserem Kalender der ortho-
doxe Ostersonntag entspricht.

Dazu brauchen Sie easternJ nur mittels einer DateFormat-Instanz zu formatieren, deren Calendar-
Objekt nicht umgestellt wurde:

easternJ = MoreDate.easternJulian(year);
System.console().printf("Orthod. Ostersonntag (Gregor.): %s\n",
 df.format(easternJ.getTime()));

Oder Sie erzeugen eine neue GregorianCalendar-Instanz und weisen dieser die Anzahl Millise-
kunden von easternJ zu. Dann können Sie das Datum auch durch Abfragen der Datumsfelder
auslesen:

GregorianCalendar gc = new GregorianCalendar();
gc.setTimeInMillis(easternJ.getTimeInMillis());
System.out.println(" " + gc.get(Calendar.YEAR) + " " + gc.get(Calendar.MONTH)
 + " " + gc.get(Calendar.DAY_OF_MONTH));

Das Start-Programm zu diesem Rezept demonstriert die Verwendung von MoreDate.eastern()
und MoreDate.easternJulian(). Das Programm nimmt über die Befehlszeile eine Jahreszahl
entgegen und gibt dazu das Datum des Ostersonntags aus.

import java.util.Date;
import java.util.Calendar;
import java.util.GregorianCalendar;
import java.text.DateFormat;

public class Start {

 public static void main(String args[]) {
 GregorianCalendar eastern, easternJ;
 DateFormat df = DateFormat.getDateInstance(DateFormat.FULL);
 int year = 0;
 System.out.println();

Listing 55: Berechnung des Ostersonntags

>> Deutsche Feiertage berechnen148
Da

tu
m

 u
nd

 U
hr

ze
it

52 Deutsche Feiertage berechnen
Gäbe es nur feste Feiertage, wäre deren Berechnung ganz einfach – ja, eigentlich gäbe es gar nichts
mehr zu berechnen, denn Sie müssten lediglich für jeden Feiertag ein GregorianCalendar-Objekt
erzeugen und dem Konstruktor Jahr, Monat (0-11) und Tag des Feiertagsdatum übergeben.

 if (args.length != 1) {
 System.out.println(" Aufruf: Start <Jahreszahl>");
 System.exit(0);
 }

 try {
 year = Integer.parseInt(args[0]);

 // Ostersonntag berechnen
 eastern = MoreDate.eastern(year);
 System.console().printf(" Ostersonntag: %s\n",
 df.format(eastern.getTime()));

 // Griech-orthodoxen Ostersonntag berechnen
 // (julianischer Kalender)
 easternJ = MoreDate.easternJulian(year);
 df.setCalendar(easternJ);
 System.console().printf("Orthod. Ostersonntag (julian.): %s\n",
 df.format(easternJ.getTime()));
 df.setCalendar(eastern);
 System.console().printf("Orthod. Ostersonntag (gregor.): %s\n",
 df.format(easternJ.getTime())); }
 catch (NumberFormatException e) {
 System.err.println(" Ungueltiges Argument");
 }
 }
}

Abbildung 29: Ostersonntage der Jahre 2006, 2007 und 2008

Listing 55: Berechnung des Ostersonntags (Forts.)

>> Datum und Uhrzeit 149

Da
tu

m
 u

nd
 U

hr
ze

it

Fakt ist aber, dass ungefähr die Hälfte aller Feiertage beweglich sind. Da wären zum einen die
große Gruppe der Feiertage, die von Osten abhängen, dann die Gruppe der Feiertage, die von
Weihnachten abhängen, und schließlich noch der Muttertag.

Letzterer ist im Übrigen kein echter Feiertag, aber wir wollen in diesem Rezept auch die Tage
berücksichtigen, denen eine besondere Bedeutung zukommt, auch wenn es sich nicht um
gesetzliche Feiertage handelt.

Feiertag abhängig von Datum

Neujahr – 01. Januar

Heilige drei Könige* – 06. Januar

Rosenmontag Ostersonntag Ostersonntag – 48 Tage

Fastnacht Ostersonntag Ostersonntag – 47 Tage

Aschermittwoch Ostersonntag Ostersonntag – 46 Tage

Valentinstag – 14. Februar

Gründonnerstag Ostersonntag Ostersonntag – 3 Tage

Karfreitag Ostersonntag Ostersonntag – 2 Tage

Ostersonntag Pessach-Vollmond 1. Sonntag, der dem ersten Pes-
sach-Vollmond folgt (siehe
Rezept 51)

Ostermontag Ostersonntag Ostersonntag + 1 Tag

Maifeiertag – 1. Mai

Himmelfahrt Ostersonntag Ostersonntag + 39 Tage

Muttertag 1. Mai 2. Sonntag im Mai

Pfingstsonntag Ostersonntag Ostersonntag + 49 Tage

Pfingstmontag Ostersonntag Ostersonntag + 50 Tage

Fronleichnam* Ostersonntag Ostersonntag + 60 Tage

Mariä Himmelfahrt* – 15. September

Tag der deutschen Einheit – 3. Oktober

Reformationstag* – 31. Oktober

Allerheiligen* – 1. November

Allerseelen – 2. November

Nikolaus – 6. Dezember

Sankt Martinstag – 11. November

Volkstrauertag Heiligabend Sonntag vor Totensonntag

Buß- und Bettag* Heiligabend Mittwoch vor Totensonntag

Totensonntag Heiligabend 7 Tage vor 1. Advent

1. Advent Heiligabend 7 Tage vor 2. Advent

2. Advent Heiligabend 7 Tage vor 3. Advent

3. Advent Heiligabend 7 Tage vor 4. Advent

Tabelle 21: Deutsche Feiertage (gesetzliche Feiertage sind farbig hervorgehoben, regionale
Feiertage sind mit * gekennzeichnet)

>> Deutsche Feiertage berechnen150
Da

tu
m

 u
nd

 U
hr

ze
it

Wie Sie der Tabelle entnehmen können, bereitet die Berechnung der Osterfeiertage, insbeson-
dere die Berechnung des Ostersonntags, die größte Schwierigkeit. Doch glücklicherweise
haben wir dieses Problem bereits im Rezept 51 gelöst. Die Berechnung der Feiertage reduziert
sich damit weitgehend auf die Erzeugung und Verwaltung der Feiertagsdaten. Der hier präsen-
tierte Ansatz basiert auf zwei Klassen:

� einer Klasse CalendarDay, deren Objekte die einzelnen Feiertage repräsentieren, und

� einer Klasse Holidays, die für ein gegebenes Jahr alle Feiertage berechnet und in einer
Vector-Collection speichert.

Die Klasse CalendarDay
Die Klasse CalendarDay speichert zu jedem Feiertag den Namen, das Datum (als Anzahl Milli-
sekunden), einen optionalen Kommentar, ob es sich um einen gesetzlichen nationalen Feiertag
handelt oder ob es ein regionaler Feiertag ist.

4. Advent Heiligabend Sonntag vor Heiligabend

Heiligabend – 24. Dezember

1. Weihnachtstag – 25. Dezember

2. Weihnachtstag – 26. Dezember

Silvester – 31. Dezember

/**
 * Klasse zum Speichern von Kalenderinformationen zu Kalendertagen
 */
public class CalendarDay {

 private String name;
 private long time;
 private boolean holiday;
 private boolean nationwide;
 private String comment;

 public CalendarDay(String name, long time, boolean holiday,
 boolean nationwide, String comment) {
 this.name = name;
 this.time= time;
 this.holiday = holiday;
 this.nationwide = nationwide;
 this.comment = comment;
 }

 public String getName() {
 return name;

Listing 56: Die Klasse CalendarDay

Feiertag abhängig von Datum

Tabelle 21: Deutsche Feiertage (gesetzliche Feiertage sind farbig hervorgehoben, regionale
Feiertage sind mit * gekennzeichnet) (Forts.)

>> Datum und Uhrzeit 151

Da
tu

m
 u

nd
 U

hr
ze

it

Die Klasse Holidays
Die Klasse berechnet und verwaltet die Feiertage eines gegebenen Jahres.

Das Jahr übergeben Sie als int-Wert dem Konstruktor, der daraufhin berechnet, auf welche
Datumswerte die Feiertage fallen, und für jeden Feiertag ein CalendarDay-Objekt erzeugt. Die
CalendarDay-Objekte werden zusammen in einer Vector-Collection gespeichert.

 }

 public long getTime() {
 return time;
 }

 public boolean getHoliday() {
 return holiday;
 }

 public boolean getNationwide() {
 return nationwide;
 }

 public String getComment() {
 return comment;
 }
}

H
in

w
e

is Die Methode eastern(), die vom Konstruktor zur Berechnung des Ostersonntags ver-
wendet wird, ist in Holidays definiert und identisch zu der Methode aus Rezept 51.

import java.util.Calendar;
import java.util.GregorianCalendar;
import java.util.Vector;

/**
 * Berechnet Feiertage eines Jahres und speichert die gewonnenen
 * Informationen in einer Vector-Collection von CalendarDay-Objekten
 */
public class Holidays {
 Vector<CalendarDay> days = new Vector<CalendarDay>(34);

 public Holidays(int year) {
 // Ostern vorab berechnen
 GregorianCalendar eastern = eastern(year);
 GregorianCalendar tmp;

Listing 57: Aus Holidays.java

Listing 56: Die Klasse CalendarDay (Forts.)

>> Deutsche Feiertage berechnen152
Da

tu
m

 u
nd

 U
hr

ze
it

 int day;

 days.add(new CalendarDay("Neujahr",
 (new GregorianCalendar(year,0,1)).getTimeInMillis(),
 true, true, ""));
 days.add(new CalendarDay("Heilige drei Könige",
 (new GregorianCalendar(year,0,6)).getTimeInMillis(),
 false, false, "in Baden-Würt., Bayern und Sachsen-A."));
 tmp = (GregorianCalendar) eastern.clone();
 tmp.add(Calendar.DAY_OF_MONTH, -48);
 days.add(new CalendarDay("Rosenmontag",
 tmp.getTimeInMillis(),
 false, false, ""));
 tmp.add(Calendar.DAY_OF_MONTH, +1);
 days.add(new CalendarDay("Fastnacht",
 tmp.getTimeInMillis(),
 false, false, ""));
 tmp.add(Calendar.DAY_OF_MONTH, +1);
 days.add(new CalendarDay("Aschermittwoch",
 tmp.getTimeInMillis(),
 false, false, ""));
 days.add(new CalendarDay("Valentinstag",
 (new GregorianCalendar(year,1,14)).getTimeInMillis(),
 false, false, ""));
 tmp = (GregorianCalendar) eastern.clone();
 tmp.add(Calendar.DAY_OF_MONTH, -3);
 days.add(new CalendarDay("Gründonnerstag",
 tmp.getTimeInMillis(),
 false, false, ""));
 tmp.add(Calendar.DAY_OF_MONTH, +1);
 days.add(new CalendarDay("Karfreitag",
 tmp.getTimeInMillis(),
 true, true, ""));
 days.add(new CalendarDay("Ostersonntag",
 eastern.getTimeInMillis(),
 true, true, ""));
 tmp = (GregorianCalendar) eastern.clone();
 tmp.add(Calendar.DAY_OF_MONTH, +1);
 days.add(new CalendarDay("Ostermontag",
 tmp.getTimeInMillis(),
 true, true, ""));
 days.add(new CalendarDay("Maifeiertag",
 (new GregorianCalendar(year,4,1)).getTimeInMillis(),
 true, true, ""));
 tmp = (GregorianCalendar) eastern.clone();
 tmp.add(Calendar.DAY_OF_MONTH, +39);
 days.add(new CalendarDay("Himmelfahrt",
 tmp.getTimeInMillis(),
 true, true, ""));

 // Muttertag = 2. Sonntag in Mai

Listing 57: Aus Holidays.java (Forts.)

>> Datum und Uhrzeit 153

Da
tu

m
 u

nd
 U

hr
ze

it

 GregorianCalendar firstMay = new GregorianCalendar(year, 4, 1);
 day = firstMay.get(Calendar.DAY_OF_WEEK);
 if (day == Calendar.SUNDAY)
 day = 1 + 7;
 else
 day = 1 + (8-day) + 7;
 days.add(new CalendarDay("Muttertag",
 (new GregorianCalendar(year,4,day)).getTimeInMillis(),
 false, false, ""));

 tmp = (GregorianCalendar) eastern.clone();
 tmp.add(Calendar.DAY_OF_MONTH, +49);
 days.add(new CalendarDay("Pfingstsonntag",
 tmp.getTimeInMillis(),
 true, true, ""));
 tmp.add(Calendar.DAY_OF_MONTH, +1);
 days.add(new CalendarDay("Pfingstmontag",
 tmp.getTimeInMillis(),
 true, true, ""));
 tmp.add(Calendar.DAY_OF_MONTH, +10);
 days.add(new CalendarDay("Fronleichnam",
 tmp.getTimeInMillis(),
 true, false, "in Baden-Würt., Bayern, Hessen, NRW, "
 + "Rheinl.-Pfalz, Saarland, Sachsen (z.T.) "
 + "und Thüringen (z.T.)"));
 days.add(new CalendarDay("Maria Himmelfahrt",
 (new GregorianCalendar(year,7,15)).getTimeInMillis(),
 false, false, "in Saarland und kathol. Gemeinden "
 + "von Bayern"));
 days.add(new CalendarDay("Tag der Einheit",
 (new GregorianCalendar(year,9,3)).getTimeInMillis(),
 true, true, ""));
 days.add(new CalendarDay("Reformationstag",
 (new GregorianCalendar(year,9,31)).getTimeInMillis(),
 true, false, "in Brandenburg, Meckl.-Vorp., Sachsen, "
 + "Sachsen-A. und Thüringen"));
 days.add(new CalendarDay("Allerheiligen",
 (new GregorianCalendar(year,10,1)).getTimeInMillis(),
 true, false, "in Baden-Würt., Bayern, NRW, "
 + "Rheinl.-Pfalz und Saarland"));
 days.add(new CalendarDay("Allerseelen",
 (new GregorianCalendar(year,10,2)).getTimeInMillis(),
 false, false, ""));
 days.add(new CalendarDay("Martinstag",
 (new GregorianCalendar(year,10,11)).getTimeInMillis(),
 false, false, ""));

 // ab hier nicht mehr chronologisch

 // 4. Advent = 1. Sonntag vor 1. Weihnachtstag
 GregorianCalendar advent = new GregorianCalendar(year, 11, 25);

Listing 57: Aus Holidays.java (Forts.)

>> Deutsche Feiertage berechnen154
Da

tu
m

 u
nd

 U
hr

ze
it

 if (advent.get(Calendar.DAY_OF_WEEK) == Calendar.SUNDAY)
 advent.add(Calendar.DAY_OF_MONTH, -7);
 else
 advent.add(Calendar.DAY_OF_MONTH,
 -advent.get(Calendar.DAY_OF_WEEK)+1);
 days.add(new CalendarDay("4. Advent",
 advent.getTimeInMillis(),
 false, false, ""));

 // 3. Advent = Eine Woche vor 4. Advent
 advent.add(Calendar.DAY_OF_MONTH, -7);
 days.add(new CalendarDay("3. Advent",
 advent.getTimeInMillis(),
 false, false, ""));
 // 2. Advent = Eine Woche vor 3. Advent
 advent.add(Calendar.DAY_OF_MONTH, -7);
 days.add(new CalendarDay("2. Advent",
 advent.getTimeInMillis(),
 false, false, ""));
 // 1. Advent = Eine Woche vor 2. Advent
 advent.add(Calendar.DAY_OF_MONTH, -7);
 days.add(new CalendarDay("1. Advent",
 advent.getTimeInMillis(),
 false, false, ""));

 // Totensonntag = Sonntag vor 1. Advent
 tmp = (GregorianCalendar) advent.clone();
 tmp.add(Calendar.DAY_OF_MONTH, -7);
 days.add(new CalendarDay("Totensonntag",
 tmp.getTimeInMillis(),
 false, false, ""));

 // Volkstrauertag = Sonntag vor Totensonntag
 tmp.add(Calendar.DAY_OF_MONTH, -7);
 days.add(new CalendarDay("Volkstrauertag",
 tmp.getTimeInMillis(),
 false, false, ""));

 // Buß- und Bettag = Mittwoch vor Totensonntag
 day = tmp.get(Calendar.DAY_OF_WEEK);
 if (day == Calendar.WEDNESDAY)
 day = -(4+day);
 else
 day = (4-day);
 tmp.add(Calendar.DAY_OF_MONTH, day);
 days.add(new CalendarDay("Buß- und Bettag",
 tmp.getTimeInMillis(),
 false, false, "Sachsen"));

 days.add(new CalendarDay("Nikolaus",
 (new GregorianCalendar(year,11,6)).getTimeInMillis(),

Listing 57: Aus Holidays.java (Forts.)

>> Datum und Uhrzeit 155

Da
tu

m
 u

nd
 U

hr
ze

it

Damit man mit der Klasse Holidays auch vernünftig arbeiten kann, definiert sie verschiedene
Methoden, mit denen der Benutzer Informationen über die Feiertage einholen kann:

� CalendarDay searchDay(String name)

Sucht zu einem gegebenen Feiertagsnamen (beispielsweise »Allerheiligen« das zugehörige
CalendarDay-Objekt und liefert es zurück. Alternative Namen werden zum Teil berücksichtigt.
Wurde kein passendes CalendarDay-Objekt gefunden, liefert die Methode null zurück.

� CalendarDay getDay(GregorianCalendar date)

Liefert zu einem gegebenen Datum das zugehörige CalendarDay-Objekt zurück bzw. null, wenn
kein passendes Objekt gefunden wurde.

� boolean isNationalHoliday(GregorianCalendar date)

Liefert true zurück, wenn auf das übergebene Datum ein gesetzlicher, nationaler Feiertag fällt.

� boolean isRegionalHoliday(GregorianCalendar date)

Liefert true zurück, wenn auf das übergebene Datum ein gesetzlicher, regionaler Feiertag fällt.

 false, false, ""));
 days.add(new CalendarDay("Heiligabend",
 (new GregorianCalendar(year,11,24)).getTimeInMillis(),
 false, false, ""));
 days.add(new CalendarDay("1. Weihnachtstag",
 (new GregorianCalendar(year,11,25)).getTimeInMillis(),
 true, true, ""));
 days.add(new CalendarDay("2. Weihnachtstag",
 (new GregorianCalendar(year,11,26)).getTimeInMillis(),
 true, true, ""));
 days.add(new CalendarDay("Silvester",
 (new GregorianCalendar(year,11,31)).getTimeInMillis(),
 false, false, ""));
 }
...

...
 // Liefert das CalendarDay-Objekt zu einem Feiertag
 public CalendarDay searchDay(String name) {
 // Alternative Namen berücksichtigen
 if (name.equals("Heilige drei Koenige"))
 name = "Heilige drei Könige";
 if (name.equals("Gruendonnerstag"))
 name = "Gründonnerstag";
 if (name.equals("Tag der Arbeit"))
 name = "Maifeiertag";
 if (name.equals("Christi Himmelfahrt"))
 name = "Himmelfahrt";

Listing 58: Die Klasse Holidays

Listing 57: Aus Holidays.java (Forts.)

>> Deutsche Feiertage berechnen156
Da

tu
m

 u
nd

 U
hr

ze
it

 if (name.equals("Vatertag"))
 name = "Himmelfahrt";
 if (name.equals("Tag der deutschen Einheit"))
 name = "Tag der Einheit";
 if (name.equals("Sankt Martin"))
 name = "Martinstag";
 if (name.equals("Vierter Advent"))
 name = "4. Advent";
 if (name.equals("Dritter Advent"))
 name = "3. Advent";
 if (name.equals("Zweiter Advent"))
 name = "2. Advent";
 if (name.equals("Erster Advent"))
 name = "1. Advent";
 if (name.equals("Buss- und Bettag"))
 name = "Buß- und Bettag";
 if (name.equals("Bettag"))
 name = "Buß- und Bettag";
 if (name.equals("Weihnachtsabend"))
 name = "Heiligabend";
 if (name.equals("Erster Weihnachtstag"))
 name = "1. Weihnachtstag";
 if (name.equals("Zweiter Weihnachtstag"))
 name = "2. Weihnachtstag";

 for(CalendarDay d : days) {
 if (name.equals(d.getName()))
 return d;
 }

 return null;
 }

 // Liefert das CalendarDay-Objekt zu einem Kalenderdatum
 public CalendarDay getDay(GregorianCalendar date) {
 for(CalendarDay d : days) {
 if(d.getTime() == date.getTimeInMillis())
 return d;
 }

 return null;
 }

 // Stellt fest, ob das angegebene Datum auf einen gesetzlichen, nationalen
 // Feiertag fällt
 public boolean isNationalHoliday(GregorianCalendar date) {
 for(CalendarDay d : days) {
 if(d.getTime() == date.getTimeInMillis()
 && d.getHoliday() && d.getNationwide())
 return true;

Listing 58: Die Klasse Holidays (Forts.)

>> Datum und Uhrzeit 157

Da
tu

m
 u

nd
 U

hr
ze

it

Zu diesem Rezept gibt es zwei Start-Programme. Beide nehmen die Jahreszahl, für die sie ein
Holidays-Objekt erzeugen, über die Befehlszeile entgegen.

� Mit Start1 können Sie die Feiertage eines Jahres auf die Konsole ausgeben oder in eine
Datei umleiten:

java Start1 > Feiertage.txt

� Mit Start2 können Sie abfragen, auf welches Datum ein bestimmter Feiertag im übergebe-
nen Jahr fällt. Der Name des Feiertags wird vom Programm abgefragt.2

 }

 return false;
 }

 // Stellt fest, ob das angegebene Datum auf einen gesetzlichen, regionalen
 // Feiertag fällt
 public boolean isRegionalHoliday(GregorianCalendar date) {
 for(CalendarDay d : days) {
 if(d.getTime() == date.getTimeInMillis()
 && d.getHoliday() && !d.getNationwide())
 return true;
 }

 return false;
 }

 public static GregorianCalendar eastern(int year) {
 // siehe Rezept 51
 }
}

Abbildung 30: Mit Start2 können Sie sich Feiertage in beliebigen Jahren2 berechnen lassen.

2. Immer vorausgesetzt, die entsprechenden Feiertage gibt es in dem betreffenden Jahr und an ihrer Berechnung hat
sich nichts geändert. (Denken Sie beispielsweise daran, dass es Bestrebungen gibt, das Osterdatum festzuschreiben.)

Listing 58: Die Klasse Holidays (Forts.)

>> Ermitteln, welchen Wochentag ein Datum repräsentiert158
Da

tu
m

 u
nd

 U
hr

ze
it

53 Ermitteln, welchen Wochentag ein Datum repräsentiert
Welchem Wochentag ein Datum entspricht, ist im DAY_OF_WEEK-Feld des Calendar-Objekts
gespeichert. Für Instanzen von GregorianCalendar enthält dieses Feld eine der Konstanten SUN-
DAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY oder SATURDAY.

Den Wert des Felds können Sie für ein bestehendes Calendar-Objekt date wie folgt abfragen:

int day = date.get(Calendar.DAY_OF_WEEK);

Für die Umwandlung der DAY_OF_WEEK-Konstanten in Strings (»Sonntag«, »Montag« etc.) ist es
am einfachsten, ein Array der Wochentagsnamen zu definieren und den von get(Calendar.
DAY_OF_WEEK) zurückgelieferten String als Index in dieses Array zu verwenden. Sie müssen aller-
dings beachten, dass die DAY_OF_WEEK-Konstanten den Zahlen von 1 (SUNDAY) bis 7 (SATURDAY)
entsprechen, während Arrays mit 0 beginnend indiziert werden.

Das Start-Programm zu diesem Rezept, welches den Wochentag zu einem beliebigen Datum
ermittelt, demonstriert diese Technik:

import java.util.Calendar;
import java.util.GregorianCalendar;
import java.text.DateFormat;
import java.text.ParseException;
import java.util.Locale;

public class Start {

 public static void main(String args[]) {
 DateFormat df = DateFormat.getDateInstance(DateFormat.MEDIUM,
 Locale.GERMANY);
 GregorianCalendar date = new GregorianCalendar();
 int day;
 String[] weekdayNames = { "SONNTAG", "MONTAG", "DIENSTAG", "MITTWOCH",
 "DONNERSTAG", "FREITAG", "SAMSTAG" };

 System.out.println();

 if (args.length != 1) {
 System.out.println(" Aufruf: Start <Datum: TT.MM.JJJJ>");
 System.exit(0);
 }

 try {
 date.setTime(df.parse(args[0]));

 day = date.get(Calendar.DAY_OF_WEEK);

 System.out.println(" Wochentag: " + weekdayNames[day-1]);

 } catch(ParseException e) {
 System.err.println("\n Kein gueltiges Datum (TT.MM.JJJJ)");
 }

Listing 59: Programm zur Berechnung des Wochentags

>> Datum und Uhrzeit 159

Da
tu

m
 u

nd
 U

hr
ze

it

54 Ermitteln, ob ein Tag ein Feiertag ist
Mit Hilfe der Klasse Holidays aus Rezept 52 können Sie schnell prüfen, ob es sich bei einem
bestimmten Tag im Jahr um einen Feiertag handelt.

1. Zuerst erzeugen Sie für das gewünschte Jahr ein Holidays-Objekt.

Holidays holidays = new Holidays(2005);

2. Dann erzeugen Sie ein GregorianCalendar-Objekt für das zu untersuchende Datum.

GregorianCalendar date = new GregorianCalendar(2005, 3, 23);

3. Schließlich prüfen Sie mit Hilfe der entsprechenden Methoden des Holidays-Objekts, ob es
sich um einen Feiertag handelt.

Sie können dabei beispielsweise so vorgehen, dass Sie zuerst durch Aufruf von isNational-
Holiday() prüfen, ob es sich um einen nationalen gesetzlichen Feiertag handelt. Wenn
nicht, können Sie mit isRegionalHoliday() prüfen, ob es ein regionaler gesetzlicher Feier-
tag ist. Trifft auch dies nicht zu, können Sie mit getDay() prüfen, ob der Tag überhaupt als
besonderer Tag in dem holidays-Objekt gespeichert ist:

if(holidays.isNationalHoliday(date)) {
 System.out.println("\t Nationaler Feiertag ");
} else if(holidays.isRegionalHoliday(date)) {
 System.out.println("\t Regionaler Feiertag ");
} else if (holidays.getDay(date) != null) {
 System.out.println("\t Besonderer Tag ");
} else
 System.out.println("\t Kein Feiertag ");

Bezeichnet ein Datum einen Tag, der im Holidays-Objekt gespeichert ist, können Sie sich mit
getDay() die Referenz auf das zugehörige CalendarDay-Objekt zurückliefern lassen und die für
den Tag gespeicherten Informationen abfragen.

 }
}

Abbildung 31: Kann ein Maifeiertag schlechter liegen?

Listing 59: Programm zur Berechnung des Wochentags (Forts.)

>> Ermitteln, ob ein Jahr ein Schaltjahr ist160
Da

tu
m

 u
nd

 U
hr

ze
it

55 Ermitteln, ob ein Jahr ein Schaltjahr ist
Ob ein gegebenes Jahr im gregorianischen Kalender ein Schaltjahr ist, lässt sich bequem mit
Hilfe der Methode isLeapYear() feststellen. Leider ist die Methode nicht statisch, so dass Sie
zum Aufruf ein GregorianCalendar-Objekt benötigen. Dieses muss aber nicht das zu prüfende
Jahr repräsentieren, die Jahreszahl wird vielmehr als Argument an den int-Parameter über-
geben.

GregorianCalendar date = new GregorianCalendar();
int year = 2005;

date.isLeapYear(year);

Mit dem Start-Programm zu diesem Rezept können Sie prüfen, ob ein Jahr im gregorianischen
Kalender ein Schaltjahr ist.

Abbildung 32: Ermitteln, ob ein Tag ein Feiertag ist

Abbildung 33: 1900 ist kein Schaltjahr, weil es durch 100 teilbar ist. 2000 ist ein Schaltjahr,
obwohl es durch 100 teilbar ist, weil es ein Vielfaches von 400 darstellt.

>> Datum und Uhrzeit 161

Da
tu

m
 u

nd
 U

hr
ze

it

56 Alter aus Geburtsdatum berechnen
Die Berechnung des Alters, sei es nun das Alter eines Kunden, einer Ware oder einer beliebi-
gen Sache (wie z.B. Erfindungen), ist eine recht häufige Aufgabe. Wenn lediglich das Jahr der
»Geburt« bekannt ist, ist diese Aufgabe auch relativ schnell durch Differenzbildung der Jahres-
zahlen erledigt.

Liegt jedoch das komplette Geburtsdatum vor und ist dieses mit einem zweiten Datum, bei-
spielsweise dem aktuellen Datum, zu vergleichen, müssen Sie beachten, dass das Alter unter
Umständen um 1 geringer ist als die Differenz der Jahreszahlen – dann nämlich, wenn das
Vergleichsdatum in seinem Jahr weiter vorne liegt als das Geburtsdatum im Geburtsjahr. Die
Methode age() berücksichtigt dies:

/**
 * Berechnet, welches Alter eine Person, die am birthdate
 * geboren wurde, am otherDate hat
 */
public static int age(Calendar birthdate, Calendar otherDate) {
 int age = 0;

 // anderes Datum liegt vor Geburtsdatum
 if (otherDate.before(birthdate))
 return -1;

 // Jahresunterschied berechnen
 age = otherDate.get(Calendar.YEAR) - birthdate.get(Calendar.YEAR);

 // Prüfen, ob Tag in otherDate vor Tag in birthdate liegt. Wenn ja,
 // Alter um 1 Jahr vermindern
 if ((otherDate.get(Calendar.MONTH) < birthdate.get(Calendar.MONTH))
 ||(otherDate.get(Calendar.MONTH) == birthdate.get(Calendar.MONTH)
 && otherDate.get(Calendar.DAY_OF_MONTH) <
 birthdate.get(Calendar.DAY_OF_MONTH)))
 --age;

 return age;
}

Vielleicht wundert es Sie, dass die Methode so scheinbar umständlich prüft, ob der Monat im
Vergleichsjahr kleiner als der Monat im Geburtsjahr ist, oder, falls die Monate gleich sind, der
Tag im Monat des Vergleichsjahrs kleiner dem Tag im Monat des Geburtsjahrs ist. Könnte man
nicht einfach das Feld DAY_OF_YEAR für beide Daten abfragen und vergleichen?

Die Antwort ist nein, weil dann Schalttage das Ergebnis verfälschen können. Konkret: Für das
Geburtsdatum 01.03.1955 und ein Vergleichsdatum 29.02.2004 würde get(Calendar.DAY_OF_
YEAR) in beiden Fällen 60 zurückliefern. Das berechnete Alter wäre daher fälschlicherweise 50
statt 49.

Mit dem Start-Programm zu diesem Rezept können Sie berechnen, wie alt eine Person oder ein
Gegenstand heute ist. Das Geburtsdatum wird im Programmverlauf abgefragt, das Vergleichs-
datum ist das aktuelle Datum. Beachten Sie auch die Formatierung der Ausgabe mit Choice-
Format, siehe Rezept 11.

>> Alter aus Geburtsdatum berechnen162
Da

tu
m

 u
nd

 U
hr

ze
it

import java.util.Calendar;
import java.util.GregorianCalendar;
import java.text.DateFormat;
import java.text.ChoiceFormat;
import java.text.ParseException;
import java.util.Locale;
import java.util.Scanner;

public class Start {

 public static void main(String args[]) {
 DateFormat df = DateFormat.getDateInstance(DateFormat.MEDIUM,
 Locale.GERMANY);
 GregorianCalendar date = new GregorianCalendar();
 Scanner sc = new Scanner(System.in);
 int age = 0;

 try {
 System.out.print("\n Geben Sie Ihr Geburtsdatum im Format "
 + " TT.MM.JJJJ ein: ");
 String input = sc.next();

 date.setTime(df.parse(input));

 // Vergleich mit aktuellem Datum
 age = MoreDate.age(date, Calendar.getInstance());

 if (age < 0) {
 System.out.println("\n Sie sind noch nicht geboren");
 } else {
 double[] limits = {0, 1, 2};
 String[] outputs = {"Jahre", "Jahr", "Jahre"};
 ChoiceFormat cf = new ChoiceFormat(limits, outputs);

 System.out.println("\n Sie sind " + age + " "
 + cf.format(age) + " alt");
 }

 } catch(ParseException e) {
 System.err.println("\n Kein gueltiges Datum (TT.MM.JJJJ)");
 }
 }
}

Listing 60: Start.java – Programm zur Altersberechnung

>> Datum und Uhrzeit 163

Da
tu

m
 u

nd
 U

hr
ze

it

57 Aktuelle Zeit abfragen
Der einfachste und schnellste Weg, die aktuelle Zeit abzufragen, besteht darin, ein Objekt der
Klasse Date zu erzeugen:

import java.util.Date;

Date today = new Date();
System.out.println(today);

Ausgabe:

Thu Mar 31 10:54:31 CEST 2005

Wenn Sie lediglich die Zeit ausgeben möchten, lassen Sie sich von DateFormat.getTime-
Instance() ein entsprechendes Formatierer-Objekt zurückliefern und übergeben Sie das Date-
Objekt dessen format()-Methode. Als Ergebnis erhalten Sie einen formatierten Uhrzeit-String
zurück.

String s = DateFormat.getTimeInstance().format(today);
System.out.println(s); // Ausgabe: 10:54:31

Sofern Sie die Uhrzeit nicht nur ausgeben oder bestenfalls noch mit anderen Uhrzeiten des
gleichen Tags vergleichen möchten, sollten Sie die Uhrzeit durch ein Calendar-Objekt (siehe
auch Rezept 39) repräsentieren.

� Sie können sich mit getInstance() ein Calendar-Objekt zurückliefern lassen, welches die
aktuelle Zeit (natürlich inklusive Datum) repräsentiert:

Calendar calendar = Calendar.getInstance();

� Sie können ein Calendar-Objekt erzeugen und auf eine beliebige Zeit setzen:

Calendar calendar = Calendar.getInstance();

� Sie können die Zeit aus einem Date-Objekt an ein Calendar-Objekt übergeben:

Calendar calendar = Calendar.getInstance();
calendar.set(calendar.get(Calendar.YEAR), // Datum
 calendar.get(Calendar.MONTH), // beibehalten
 calendar.get(Calendar.DATE),
 12, 30, 1); // Uhrzeit setzen

� Sie können ein GregorianCalender-Objekt für eine bestimmte Uhrzeit erzeugen:

GregorianCalendar gCal =
 // year, m, d, h, min, sec
 new GregorianCalendar(2005, 4, 20, 12, 30, 1);

H
in

w
e

is Mehr zur Formatierung mit DateFormat, siehe Rezept 41.

>> Zeit in bestimmte Zeitzone umrechnen164
Da

tu
m

 u
nd

 U
hr

ze
it

58 Zeit in bestimmte Zeitzone umrechnen
Wenn Sie mit Hilfe von Date oder Calendar die aktuelle Zeit abfragen (siehe Rezept 57), wird
das Objekt mit der Anzahl Millisekunden initialisiert, die seit dem 01.01.1970 00:00:00 Uhr,
GMT, vergangen sind. Wenn Sie diese Zeitangabe in einen formatierten String umwandeln
lassen (mittels DateFormat oder SimpleDateFormat, siehe Rezept 41), wird die Anzahl Millise-
kunden gemäß dem gültigen Kalender und gemäß der auf dem aktuellen System eingestellten
Zeitzone in Datums- und Zeitfelder (Jahr, Monat, Tag, Stunde, Minute etc.) umgerechnet.

Formatierer auf Zeitzone umstellen
Wenn Sie die Zeit dagegen in die Zeit einer anderen Zeitzone umrechnen lassen möchten,
gehen Sie wie folgt vor:

1. Erzeugen Sie ein TimeZone-Objekt für die gewünschte Zeitzone.

2. Registrieren Sie das TimeZone-Objekt beim Formatierer.

3. Wandeln Sie die Zeitangabe mit Hilfe des Formatierers in einen String um.

Um beispielsweise zu berechnen, wie viel Uhr es aktuell in Los Angeles ist, würden Sie schrei-
ben:

// Formatierer
DateFormat df = DateFormat.getDateTimeInstance(DateFormat.FULL,
 DateFormat.FULL);

// Aktuelles Datum
Date today = new Date();

// 1. Zeitzone erzeugen
TimeZone tz = TimeZone.getTimeZone("America/Los_Angeles");

// 2. Zeitzone beim Formatierer registrieren
df.setTimeZone(tz);

// 3. Umrechnung (und Ausgabe) in Zeitzone für Los Angeles (Amerika)
System.out.println(" America/Los Angeles: " + df.format(today));

H
in

w
e

is Um die in einem Calendar-Objekt gespeicherte Uhrzeit auszugeben, können Sie entwe-
der die Werte für die einzelnen Uhrzeit-Felder mittels der zugehörigen get-Methoden
abfragen (siehe Tabelle 15 aus Rezept 40) und in einen String/Stream schreiben oder
sie wandeln die Feldwerte durch Aufruf von getTime() in ein Date-Objekt um und
übergeben dieses an die format()-Methode einer DateFormat-Instanz:

String s = DateFormat.getTimeInstance().format(calendar.getTime()));

H
in

w
e

is Wenn die Uhrzeit in Form eines Calendar-Objekts vorliegt, gehen Sie analog vor. Sie
müssen lediglich daran denken, die Daten des Calendar-Objekts als Date-Objekt an die
format()-Methode zu übergeben: df.format(calObj.getTime()).

>> Datum und Uhrzeit 165

Da
tu

m
 u

nd
 U

hr
ze

it

Calendar auf Zeitzone umstellen
Sie können auch das Calendar-Objekt selbst auf eine andere Zeitzone umstellen. In diesem Fall
übergeben Sie das TimeZone-Objekt, welches die Zeitzone repräsentiert, mittels setTimeZone()
an das Calendar-Objekt:

Calendar calendar = Calendar.getInstance();
...
TimeZone tz = TimeZone.getTimeZone("America/Los_Angeles");
calendar.setTimeZone(tz);

Die get-Methoden des Calendar-Objekts – wie z.B. calendar.get(calendar.HOUR_OF_DAY),
calendar.get(calendar.DST_OFFSET), siehe Tabelle 15 aus Rezept 40 – liefern daraufhin die der
Zeitzone entsprechenden Werte (inklusive Zeitverschiebung und Berücksichtigung der Som-
merzeit) zurück.

59 Zeitzone erzeugen
Zeitzonen werden in Java durch Objekte vom Typ der Klasse TimeZone repräsentiert. Da Time-
Zone selbst abstrakt ist, lassen Sie sich TimeZone-Objekte von der statischen Methode getTime-
Zone() zurückliefern, der Sie als Argument den ID-String der gewünschten Zeitzone übergeben:

TimeZone tz = TimeZone.getTimeZone("Europe/Berlin");

A
ch

tu
n

g Die Zeit, die ein Calendar-Objekt repräsentiert, wird intern als Anzahl Millisekunden,
die seit dem 01.01.1970 00:00:00 Uhr, GMT vergangen sind, gespeichert. Dieser Wert
wird durch die Umstellung auf eine Zeitzone nicht verändert. Es ändern sich lediglich
die Datumsfeldwerte, wie Stunden, Minuten etc., die intern aus der Anzahl Millisekun-
den unter Berücksichtigung der Zeitzone berechnet werden. Vergessen Sie dies nie, vor
allem nicht bei der Formatierung der Zeitwerte mittels DateFormat. Wenn Sie sich näm-
lich mit getTime() ein Date-Objekt zurückliefern lassen, das Sie der format()-Methode
von DateFormat übergeben können, wird dieses Date-Objekt auf der Grundlage der
intern gespeicherten Anzahl Millisekunden erzeugt. Soll DateFormat die Uhrzeit in der
Zeitzone des Calendar-Objekts formatieren, müssen Sie die Zeitzone des Calendar-
Objekts zuvor beim Formatierer registrieren:

df.setTimeZone(calendar.getTimeZone());

ID Zeitzone entspricht GMT

Pacific/Samoa Samoa Normalzeit GMT-11:00

US/Hawaii Hawaii Normalzeit GMT-10:00

US/Alaska Alaska Normalzeit GMT-09:00

US/Pacific, Canada/Pacific,
America/Los_Angeles

Pazifische Normalzeit GMT-08:00

US/Mountain, Canada/Mountain,
America/Denver

Rocky Mountains Normalzeit GMT-07:00

US/Central, America/Chicago, America/
Mexico_City

Zentrale Normalzeit GMT-06:00

Tabelle 22: Zeitzonen

>> Zeitzone erzeugen166
Da

tu
m

 u
nd

 U
hr

ze
it

Verfügbare Zeitzonen abfragen
Die Übergabe einer korrekten ID ist aber noch keine Garantie, dass die zur Erstellung des Time-
Zone-Objekts benötigten Informationen auf dem aktuellen System vorhanden sind. Dazu müs-
sen Sie sich mit TimeZone.getAvailableIDs() ein String-Array mit den IDs der auf dem System
verfügbaren Zeitzonen zurückliefern lassen und prüfen, ob die gewünschte ID darin vertreten
ist.

TimeZone tz = null;
String ids[] = TimeZone.getAvailableIDs();
for (int i = 0; i < ids.length; ++i)

US/Eastern, Canada/Eastern,
America/New_York

Östliche Normalzeit GMT-05:00

Canada/Atlantic, Atlantic/Bermuda Atlantik Normalzeit GMT-04:00

America/Buenos_Aires Argentinische Zeit GMT-03:00

Atlantic/South_Georgia South Georgia Normalzeit GMT-02:00

Atlantic/Azores Azoren Zeit GMT-01:00

Europe/Dublin, Europe/London,
Africa/Dakar
Etc/UTC

Greenwich Zeit
Koordinierte Universalzeit

GMT-00:00

Europe/Berlin, Etc/GMT-1 Zentraleuropäische Zeit GMT+01:00

Europe/Kiev
Africa/Cairo
Asia/Jerusalem

Osteuropäische Zeit
Zentralafrikanische Zeit
Israelische Zeit

GMT+02:00

Europe/Moscow
Asia/Baghdad

Moskauer Normalzeit
Arabische Normalzeit

GMT+03:00

Asia/Dubai Golf Normalzeit GMT+04:00

Indian/Maledives Maledivische Normalzeit GMT+05:00

Asia/Colombo Sri Lanka Zeit GMT+06:00

Asia/Bangkok Indochina Zeit GMT+07:00

Asia/Shanghai Chinesische Normalzeit GMT+08:00

Asia/Tokyo Japanische Normalzeit GMT+09:00

Australia/Canberra Östliche Normalzeit GMT+10:00

Pacific/Guadalcanal Salomoninseln Zeit GMT+11:00

Pacific/Majuro Marshallinseln Zeit GMT+12:00

H
in

w
e

is Die weit verbreiteten dreibuchstabigen Zeitzonen-Abkürzungen wie ETC, PST, CET, die
aus Gründen der Abwärtskompatibilität noch unterstützt werden, sind nicht eindeutig
und sollten daher möglichst nicht mehr verwendet werden.

ID Zeitzone entspricht GMT

Tabelle 22: Zeitzonen (Forts.)

>> Datum und Uhrzeit 167

Da
tu

m
 u

nd
 U

hr
ze

it

 if (ids[i].equals(searchedID))
 tz = TimeZone.getTimeZone(ids[i]);

Wenn Sie TimeZone.getTimeZone() eine ungültige ID übergeben, erhalten Sie die Greenwich-
Zeitzone (»GMT«) zurück.

Eigene Zeitzonen erzeugen
Eigene Zeitzonen erzeugen Sie am einfachsten, indem Sie TimeZone.getTimeZone() als ID einen
String der Form »GMT-hh:mm« bzw. »GMT+hh:mm« übergeben, wobei hh:mm die Zeitver-
schiebung in Stunden und Minuten angibt.

TimeZone tz = TimeZone.getTimeZone("GMT-01:00");

Allerdings berücksichtigen die erzeugten TimeZone-Objekte dann keine Sommerzeit. Dazu
müssen Sie nämlich explizit ein Objekt der Klasse SimpleTimeZone erzeugen und deren Kon-
struktor, neben der frei wählbaren ID für die neue Zeitzone, auch noch die Informationen für
Beginn und Ende der Sommerzeit übergeben.

Die im Folgenden abgedruckte Methode MoreDate.getTimeZone() verfolgt eine zweigleisige
Strategie. Zuerst prüft sie, ob die angegebene ID in der Liste der verfügbaren IDs zu finden ist.
Wenn ja, erzeugt sie direkt anhand der ID das gewünschte TimeZone-Objekt. Bis hierher unter-
scheidet sich die Methode noch nicht von einem direkten TimeZone.getTimeZone()-Aufruf.
Sollte die Methode allerdings feststellen, dass es zu der ID keine passenden Zeitzonen-Infor-
mationen gibt, liefert sie nicht die GMZ-Zeitzone zurück, sondern zieht die ebenfalls als Argu-
mente übergebenen Informationen zu Zeitverschiebung und Sommerzeit hinzu und erzeugt
ein eigenes SimpleTimeZone-Objekt.

/**
 * Hilfsmethode zum Erzeugen einer Zeitzone (TimeZone-Objekt)
 */
public static TimeZone getTimeZone(String id, int rawOffset,
 int startMonth, int startDay,
 int startDayOfWeek, int startTime,
 int endMonth, int endDay,
 int endDayOfWeek, int endTime,
 int dstSavings) {
 TimeZone tz = null;

 // Ist gewünschte Zeitzone verfügbar?
 String ids[] = TimeZone.getAvailableIDs();
 for (int i = 0; i < ids.length; ++i)
 if (ids[i].equals(id))
 tz = TimeZone.getTimeZone(ids[i]);

 if(tz == null) // Eigene Zeitzone konstruieren
 tz = new SimpleTimeZone(rawOffset, id, startMonth, startDay,
 startDayOfWeek, startTime, endMonth,
 endDay, endDayOfWeek, endTime,
 dstSavings);

 return tz;
}

Das Start-Programm zu diesem Rezept zeigt den Aufruf von MoreDate.getTimeZone(), um sich
ein TimeZone-Objekt für »America/Los_Angeles« zurückliefern zu lassen:

>> Differenz zwischen zwei Uhrzeiten berechnen168
Da

tu
m

 u
nd

 U
hr

ze
it

// aus Start.java
SimpleDateFormat sdf = new SimpleDateFormat("dd. MMMM yyyy, HH:mm");
Calendar calendar = Calendar.getInstance();
TimeZone tz;

tz = MoreDate.getTimeZone("America/Los_Angeles", -28800000,
 Calendar.APRIL, 1, -Calendar.SUNDAY, 7200000,
 Calendar.OCTOBER, -1, Calendar.SUNDAY, 7200000,
 3600000);
sdf.setTimeZone(tz);
System.console().printf("\t%s\n", sdf.format(calendar.getTime()));

Ausgabe:

04. April 2005, 05:10

60 Differenz zwischen zwei Uhrzeiten berechnen
Die Differenz zwischen zwei Uhrzeiten zu berechnen, ist grundsätzlich recht einfach: Sie
lassen sich die beiden Zeiten als Anzahl Millisekunden seit dem 01.01.1970 00:00:00 Uhr,
GMT, zurückgeben, bilden durch Subtraktion die Differenz und rechnen das Ergebnis in die
gewünschte Einheit um:

import java.util.GregorianCalendar;

GregorianCalendar time1 = new GregorianCalendar(2005, 4, 1, 22, 30, 0);
GregorianCalendar time2 = new GregorianCalendar(2005, 4, 2, 7, 30, 0);

long diff = time2.getTimeInMillis() - time1.getTimeInMillis();

// Differenz in Millisekunden : diff
// Differenz in Sekunden : diff/1000
// Differenz in Minuten : diff/(60*1000)
// Differenz in Stunden : diff/(60*60*1000)

Das obige Verfahren berechnet letzten Endes aber keine Differenz zwischen Uhrzeiten, sondern
Differenzen zwischen Zeiten (inklusive Datum). Das heißt, für time1 = 01.05.2005 22:30 Uhr
und time2 = 03.05.2005 7:30 Uhr würde die Berechnung 33 Stunden (bzw. 1980 Minuten)
ergeben. Dies kann, muss aber nicht im Sinne des Programmierers liegen.

Wenn Sie nach obigem Verfahren den zeitlichen Abstand zwischen zwei reinen Uhrzeiten (bei-
spielsweise von 07:00 zu 14:00 oder von 14:00 zu 05:00 am nächsten Tag) so berechnen wol-
len, wie man ihn am Zifferblatt einer Uhr ablesen würde, müssen Sie darauf achten, die
Datumsanteile beim Erzeugen der GregorianCalendar-Objekte korrekt zu setzen – oder Sie
erweitern den Algorithmus, so dass er gegebenenfalls selbsttätig den Datumsteil anpasst.

A
ch

tu
n

g Wenn Sie die Uhrzeit mit Angabe der Zeitzonen ausgeben:

SimpleDateFormat sdf = new SimpleDateFormat("dd. MMMM yyyy, HH:mm z");

kann es passieren, dass für selbst definierte Zeitzonen (ID nicht in der Liste der verfügbaren
IDs vorhanden) eine falsche Zeitzone angezeigt wird. Dies liegt daran, dass SimpleDate-
Format in diesem Fall in die Berechnung der »Zeitzone« auch die Sommerzeitverschiebung
mit einbezieht.

>> Datum und Uhrzeit 169

Da
tu

m
 u

nd
 U

hr
ze

it

Differenz ohne Berücksichtung des Tages
Der folgende Algorithmus vergleicht die reinen Uhrzeiten.

� Liegt die Uhrzeit von time1 zeitlich vor der Uhrzeit von time2, wird die Differenz von time1
zu time2 berechnet. Beispiel:

Für time1 = 07:30 Uhr und time2 = 22:30 Uhr werden 15 Stunden (bzw. 900 Minuten)
berechnet.

� Liegt die Uhrzeit von time1 zeitlich nach der Uhrzeit von time2, wird die Differenz von
time1 zu time2 am nächsten Tag berechnet. Beispiel:

Für time1 = 22:30 Uhr und time2 = 07:30 Uhr werden 9 Stunden (bzw. 540 Minuten)
berechnet.

import java.util.Calendar;
import java.util.GregorianCalendar;

GregorianCalendar time1 = new GregorianCalendar(2005, 1, 1, 22, 30, 0);
GregorianCalendar time2 = new GregorianCalendar(2005, 1, 3, 7, 30, 0);

// time1 kopieren und Datumsanteil an time2 angleichen
GregorianCalendar clone1 = (GregorianCalendar) time1.clone();
clone1.set(time2.get(Calendar.YEAR), time2.get(Calendar.MONTH),
 time2.get(Calendar.DAY_OF_MONTH));

// liegt die Uhrzeit von clone1 hinter time2, erhöhe Tag von time2
if (clone1.after(time2))
 time2.add(Calendar.DAY_OF_MONTH, 1);

diff = time2.getTimeInMillis() - clone1.getTimeInMillis();

// Differenz in Millisekunden : diff
// Differenz in Sekunden : diff/1000
// Differenz in Minuten : diff/(60*1000)
// Differenz in Stunden : diff/(60*60*1000)

61 Differenz zwischen zwei Uhrzeiten in Stunden,
Minuten, Sekunden berechnen

Um die Differenz zwischen zwei Uhrzeiten in eine Kombination aus Stunden, Minuten und
Sekunden umzurechnen, berechnen Sie zuerst die Differenz in Sekunden (diff). Dann rechnen
Sie diff Modulo 60 und erhalten den Sekundenanteil. Diesen ziehen Sie von der Gesamtzahl
ab (wozu Sie am einfachsten die Ganzzahldivision diff/60 durchführen). Analog rechnen Sie
den Minutenanteil heraus und behalten die Stunden übrig.

Die statische Methode getInstance() der nachfolgend definierten Klasse TimeDiff tut genau
dies. Sie übernimmt als Argumente die beiden Datumswerte (in Form von Calendar-Objekten)
sowie ein optionales boolesches Argument, über das sie steuern können, ob die reine Uhrzeit-
differenz ohne Berücksichtigung des Datumsanteils (true) oder die Differenz zwischen den
vollständigen Datumsangaben (false) berechnet wird. Als Ergebnis liefert die Methode ein
Objekt ihrer eigenen Klasse zurück, in dessen public-Feldern die Werte für Stunden, Minuten
und Sekunden gespeichert sind.

>> Differenz zwischen zwei Uhrzeiten in Stunden, Minuten, Sekunden berechnen170
Da

tu
m

 u
nd

 U
hr

ze
it

import java.util.Calendar;

/**
 * Klasse zur Repräsentation und Berechnung von Zeitabständen
 * zwischen zwei Uhrzeiten
 *
 */
public class TimeDiff {

 public int hours;
 public int minutes;
 public int seconds;

 // Berechnet die Zeit zwischen zwei Uhrzeiten, gegeben als
 // Calendar-Objekte (berücksichtigt ganzes Datum)
 public static TimeDiff getInstance(Calendar t1, Calendar t2) {
 return getInstance(t1, t2, false);
 }

 // Berechnet die Zeit zwischen zwei Uhrzeiten, gegeben als
 // Calendar-Objekte (wenn onlyClock true, wird nur Differenz zwischen
 // Tageszeiten berechnet)
 public static TimeDiff getInstance(Calendar t1, Calendar t2,
 boolean onlyClock) {
 Calendar clone1 = (Calendar) t1.clone();
 long diff;

 // reine Uhrzeit, Datumsanteil eliminieren, vgl. Rezept 60
 if (onlyClock) {
 clone1.set(t2.get(Calendar.YEAR), t2.get(Calendar.MONTH),
 t2.get(Calendar.DAY_OF_MONTH));
 if (clone1.after(t2))
 t2.add(Calendar.DAY_OF_MONTH, 1);
 }

 diff = Math.abs(t2.getTimeInMillis() - clone1.getTimeInMillis())/1000;

 TimeDiff td = new TimeDiff();

 // Sekunden, Minuten und Stunden berechnen
 td.seconds = (int) (diff%60); diff /= 60;
 td.minutes = (int) (diff%60); diff /= 60;
 td.hours = (int) diff;

 return td;
 }
}

Listing 61: Die Klasse TimeDiff

>> Datum und Uhrzeit 171

Da
tu

m
 u

nd
 U

hr
ze

it

Wenn Sie für den dritten Parameter false übergeben oder einfach die überladene Version mit
nur zwei Parametern aufrufen, repräsentiert das zurückgelieferte Objekt die Differenz in Stun-
den, Minuten, Sekunden vom ersten Datum zum zweiten.

Wenn Sie für den dritten Parameter true übergeben, repräsentiert das zurückgelieferte Objekt
die Stunden, Minuten, Sekunden von der Uhrzeit des ersten Calendar-Objekts bis zur Uhrzeit
des zweiten Calendar-Objekts – so wie die Zeitdifferenz auf dem Zifferblatt einer Uhr abzule-
sen ist:

� Für time1 = 07:30 Uhr und time2 = 22:30 Uhr werden 15 Stunden (bzw. 900 Minuten)
berechnet.

� Für time1 = 22:30 Uhr und time2 = 07:30 Uhr werden 9 Stunden (bzw. 540 Minuten)
berechnet

Das Start-Programm zu diesem Rezept demonstriert die Verwendung:

import java.util.Calendar;
import java.util.GregorianCalendar;
import java.text.DateFormat;

public class Start {

 public static void main(String args[]) {
 DateFormat dfDateTime = DateFormat.getDateTimeInstance();
 TimeDiff td;
 System.out.println();

 GregorianCalendar time1 =
 new GregorianCalendar(2005, 4, 1, 22, 30, 0);
 GregorianCalendar time2 =
 new GregorianCalendar(2005, 4, 3, 7, 30, 0);
 System.out.println(" Zeit 1 : " + dfDateTime.format(time1.getTime()));
 System.out.println(" Zeit 2 : " + dfDateTime.format(time2.getTime()));

 // Berücksichtigt Datum
 System.out.println("\n Differenz zw. Uhrzeiten (mit Datum)\n");

 td = TimeDiff.getInstance(time1, time2);
 System.out.println(" " + td.hours + " h "
 + td.minutes + " min " + td.seconds + " sec");

 // Reine Uhrzeit
 System.out.println("\n\n Differenz zw. Uhrzeiten (ohne Datum)\n");

 td = TimeDiff.getInstance(time1, time2, true);
 System.out.println(" " + td.hours + " h "
 + td.minutes + " min " + td.seconds + " sec");
 }
}

Listing 62: Einsatz der Klasse TimeDiff

>> Präzise Zeitmessungen (Laufzeitmessungen)172
Da

tu
m

 u
nd

 U
hr

ze
it

62 Präzise Zeitmessungen (Laufzeitmessungen)
Für Zeitmessungen definiert die Klasse System die statischen Methoden currentTimeMillis()
und nanoTime(). Beide Methoden werden in gleicher Weise eingesetzt und liefern Zeitwerte in
Millisekunden (10-3 sec) bzw. Nanosekunden (10-9 sec). In der Praxis werden Sie wegen der
größeren Genauigkeit in der Regel die ab JDK-Version 1.5 verfügbare Methode nanoTime()
vorziehen.

Zeitmessungen haben typischerweise folgendes Muster:

// 1. Zeitmessung beginnen (Startzeit abfragen)
long start = System.nanoTime();

 // Code, dessen Laufzeit gemessen wird
 Thread.sleep(50000);

// 2. Zeitmessung beenden (Endzeit abfragen)
long end = System.nanoTime();

// 3. Zeitmessung auswerten (Differenz bilden und ausgeben)
long diff = end-start;
System.out.println(" Laufzeit: " + diff);

Laufzeitmessungen
Wenn Sie Laufzeitmessungen durchführen, um die Performance eines Algorithmus oder einer
Methode zu testen, beachten Sie folgende Punkte:

� Zugriffe auf Konsole, Dateisystem, Internet etc. sollten möglichst vermieden werden.

Derartige Zugriffe sind oft sehr zeitaufwendig. Wenn Sie einen Algorithmus testen, der
Daten aus einer Datei oder Datenbank verarbeitet, messen Sie den Algorithmus unbedingt
erst ab dem Zeitpunkt, da die Daten bereits eingelesen sind. Ansonsten kann es passieren,
dass das Einlesen der Daten weit mehr Zeit benötigt als deren Verarbeitung und Sie folg-
lich nicht die Effizienz Ihres Algorithmus, sondern die der Einleseoperation messen.

� Benutzeraktionen sollten ebenfalls vermieden werden.

Sie wollen ja nicht die Reaktionszeit des Benutzers messen, sondern Ihren Code.

Abbildung 34: Berechnung von Uhrzeitdifferenzen in Stunden, Minuten, Sekunden

>> Datum und Uhrzeit 173

Da
tu

m
 u

nd
 U

hr
ze

it

� Führen Sie wiederholte Messungen durch.

Verlassen Sie sich nie auf eine Messung. Wiederholen Sie die Messungen, beispielsweise in
einer Schleife, und bilden Sie den Mittelwert.

� Verwenden Sie stets gleiche Ausgangsdaten.

Wenn Sie verschiedene Algorithmen/Methoden miteinander vergleichen, achten Sie darauf,
dass die Tests unter denselben Bedingungen und mit denselben Ausgangsdaten durchge-
führt werden.

Nanosekunden in Stunden, Minuten, Sekunden, Millisekunden
und Nanosekunden umrechnen
Laufzeitunterschiede, die in Nanosekunden ausgegeben werden, können vom Menschen meist
nur schwer miteinander verglichen und in ihrer tatsächlichen Größenordnung erfasst werden.
Es bietet sich daher an, die in Nanosekunden berechnete Differenz vor der Ausgabe in eine
Kombination höherer Einheiten umzurechnen.

E
x

k
u

rs currentTimeMillis() und nanoTime()
Die Methode currentTimeMillis() gibt es bereits seit dem JDK 1.0. Sie greift, ebenso wie
Date() oder Calendar.getInstance() die aktuelle Systemzeit in Millisekunden seit dem
01.01.1970 00:00:00 Uhr, GMT, ab. (Tatsächlich rufen Date() und Calendar.getIns-
tance() intern System.currentTimeMillis() auf.) Die Genauigkeit von Zeitmessungen
mittels currentTimeMillis() ist daher von vornherein auf die Größenordnung von Milli-
sekunden beschränkt. Sie verschlechtert sich weiter, wenn der Systemzeitgeber, der die
Uhrzeit liefert, in noch längeren Intervallen (etwa alle 10 Millisekunden) aktualisiert
wird.

Die Methode currentTimeMillis() eignet sich daher nur für Messungen von Operatio-
nen, die länger als nur einige Millisekunden andauern (Schreiben in eine Datei, Zugriff
auf Datenbanken oder Internet, Messung der Zeit, die ein Benutzer für die Bearbeitung
eines Dialogfelds oder Ähnliches benötigt).

Die Methode nanoTime() gibt es erst seit dem JDK 1.5. Sie fragt die Zeit von dem genau-
estens verfügbaren Systemzeitgeber ab. (Die meisten Rechner besitzen mittlerweile Sys-
temzeitgeber, die im Bereich von Nanosekunden aktualisiert werden.) Die von diesen
Systemzeitgebern zurückgelieferte Anzahl Nanosekunden muss sich allerdings nicht auf
eine feste Zeit beziehen und kann/sollte daher nicht als Zeit/Datum interpretiert werden.
(Versuchen Sie also nicht, den Rückgabewert von nanoTime() in Millisekunden umzu-
rechnen und zum Setzen eines Date- oder Calendar-Objekts zu verwenden.)

Die Methode nanoTime() ist die Methode der Wahl für Performance-Messungen.

A
ch

tu
n

g Vorsicht Jitter! Viele Java-Interpreter fallen unter die Kategorie der Just-In-Time-Com-
piler, insofern als sie Codeblöcke wie z.B. Methoden bei der ersten Ausführung von
Bytecode in Maschinencode umwandeln, speichern und bei der nächsten Ausführung
dann den bereits vorliegenden Maschinencode ausführen. In diesem Fall sollten Sie
eine zu beurteilende Methode unbedingt mehrfach ausführen und die erste Laufzeit-
messung verwerfen.

>> Uhrzeit einblenden174
Da

tu
m

 u
nd

 U
hr

ze
it

Aufruf:

// 3. Zeitmessung auswerten (Differenz bilden und ausgeben)
long diff = end-start;
td = TimeDiff.getInstance(diff);
System.out.println(" Laufzeit: " + td.hours + " h "
 + td.minutes + " min " + td.seconds + " sec "
 + td.millis + " milli " + td.nanos + " nano");

63 Uhrzeit einblenden
In den bisherigen Rezepten ging es mehr oder weniger immer darum, die Zeit einmalig abzufra-
gen und irgendwie weiterzuverarbeiten. Wie aber sieht es aus, wenn die Uhrzeit als digitale Zeit-
anzeige in die Oberfläche einer GUI-Anwendung oder eines Applets eingeblendet werden soll?

Zur Erzeugung einer Uhr müssen Sie die Zeit kontinuierlich abfragen und ausgeben. In diesem
Rezept erfolgen das Abfragen und das Anzeigen der Zeit weitgehend getrennt.

� Für das Abfragen ist eine Klasse ClockThread verantwortlich, die, wie der Name schon ver-
rät, von Thread abgeleitet ist und einen eigenständigen Thread repräsentiert.

� Die Anzeige der Uhr kann in einer beliebigen Swing-Komponente (zurückgehend auf die
Basisklasse JComponent) erfolgen.

Um die Verbindung zwischen ClockThread und Swing-Komponente herzustellen, übernimmt
der ClockThread-Konstruktor eine Referenz auf die Komponente. Als Dank fordert er die Kom-
ponente nach jeder Aktualisierung der Uhrzeit auf, sich neu zu zeichnen.

/**
 * Klasse zum Umrechnen von Nanosekunden in Stunden, Minuten...
 *
 */
public class TimeDiff {

 public int hours;
 public int minutes;
 public int seconds;
 public int millis;
 public int nanos;

 public static TimeDiff getInstance(long time) {
 TimeDiff td = new TimeDiff();

 td.nanos = (int) (time%1000000); time /= 1000000;
 td.millis = (int) (time%1000); time /= 1000;
 td.seconds = (int) (time%60); time/= 60;
 td.minutes = (int) (time%60); time/= 60;
 td.hours = (int) time;

 return td;
 }
}

Listing 63: Die Klasse TimeDiff zerlegt eine Nanosekunden-Angabe in höhere Einheiten.

>> Datum und Uhrzeit 175

Da
tu

m
 u

nd
 U

hr
ze

it

Der Konstruktor von ClockThread speichert die Referenz auf die Anzeige-Komponente und
startet den Thread, woraufhin intern dessen run()-Methode gestartet wird (mehr zu Threads in
der Kategorie »Threads«). Die run()-Methode enthält eine einzige große while-Schleife, die so
lange durchlaufen wird, wie der Thread ausgeführt wird. In der Schleife wird die aktuelle Zeit
abgefragt, formatiert und im statischen Feld time gespeichert, von wo sie die Anzeige-Kompo-
nente mit Hilfe der public getTime()-Methode auslesen kann.

import java.util.Date;
import java.text.DateFormat;
import javax.swing.JComponent;

/**
 * Thread-Klasse, die aktuelle Uhrzeit in Komponenten einblendet
 *
 */
public class ClockThread extends Thread {

 private static String time;
 private DateFormat df = DateFormat.getTimeInstance();
 private JComponent c;

 public ClockThread(JComponent c) {
 this.c = c;
 this.start();
 }

 public void run() {
 while(isInterrupted() == false) {

 // Uhrzeit aktualisieren
 ClockThread.time = df.format(new Date());

 // Komponente zum Neuzeichnen auffordern
 c.repaint();

 // eine Sekunde schlafen
 try {
 sleep(1000);
 }
 catch(InterruptedException e) {
 return;
 }
 }
 }

 public static String getTime() {
 return time;
 }
}

Listing 64: Die Klasse ClockThread

>> Uhrzeit einblenden176
Da

tu
m

 u
nd

 U
hr

ze
it

Das Start-Programm zu diesem Rezept demonstriert, wie die Uhrzeit mit Hilfe von ClockThread
in einem JPanel, hier die ContentPane des Fensters, angezeigt werden kann.

Dem Fenster fällt die Aufgabe zu, den Uhrzeit-Thread in Gang zu setzen und mit der Anzeige-
Komponente zu verbinden. Beides geschieht im Konstruktor des Fensters bei der Erzeugung
des ClockThread-Objekts.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Start extends JFrame {

 class ClockPanel extends JPanel {
 public void paintComponent(Graphics g) {
 super.paintComponent(g);

 // Uhrzeit einblenden
 g.setFont(new Font("Arial", Font.PLAIN, 18));
 g.setColor(Color.blue);
 g.drawString(ClockThread.getTime(), 15, 30);
 }
 }

 private ClockThread ct;
 private ClockPanel display;

 public Start() {
 setTitle("Fenster mit Uhrzeit");
 display = new ClockPanel();
 getContentPane().add(display, BorderLayout.CENTER);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // Thread für Uhrzeit erzeugen und starten
 ct = new ClockThread(display);
 }

 public static void main(String args[]) {
 // Fenster erzeugen und anzeigen
 Start mw = new Start();
 mw.setSize(500,350);
 mw.setLocation(200,300);
 mw.setVisible(true);
 }
}

Listing 65: GUI-Programm mit Uhreinblendung

>> Datum und Uhrzeit 177

Da
tu

m
 u

nd
 U

hr
ze

it

Für die Anzeige-Komponente muss eine eigene Klasse (ClockPanel) abgeleitet werden. Nur so
ist es möglich, die paintComponent()-Methode zu überschreiben und den Code zum Einblenden
der Uhrzeit aufzunehmen.

Abbildung 35: GUI-Programm mit eingeblendeter Uhrzeit in JPanel

Sy
st

em

System

64 Umgebungsvariablen abfragen
Die java.lang.System-Klasse stellt über die Methode getProperties() eine elegante Möglich-
keit zum Abrufen von Umgebungsinformationen zur Verfügung. Diese Informationen können
durchlaufen werden, da sie in Form einer java.util.Properties-Instanz vorliegen.

Um die Systemvariablen durchlaufen zu können, wird im folgenden Beispiel der lokalen Vari-
ablen env eine Referenz auf die von System.getProperties zurückgelieferte Properties-Instanz
zugewiesen. Mit Hilfe von env.keys() lassen sich dann alle Schlüssel in Form einer Enumera-
tor-Instanz auslesen. Diese kann per while-Schleife durchlaufen werden.

Innerhalb der Schleife kann der aktuelle Schlüssel mit Hilfe der Methode nextElement() der
Enumerator-Instanz ermittelt werden. Deren Rückgabe liegt allerdings in Form einer Object-
Instanz vor, die deshalb noch in einen String gecastet werden muss, bevor sie weiterverwendet
werden kann.

Jetzt lässt sich der Wert der so ermittelten Systemvariablen auslesen. Dazu wird die Methode
getProperty() der Properties-Instanz genutzt, der als Parameter der Schlüssel übergeben wird.

import java.io.PrintStream;
import java.util.Enumeration;
import java.util.Properties;

public class EnvInfo {

 /**
 * Abfrage und Ausgabe von Umgebungsvariablen
 */
 public static void enumerate() {

 // Properties einlesen
 Properties env = System.getProperties();

 // Schlüssel auslesen
 Enumeration keys = env.keys();

 // Standardausgabe referenzieren
 PrintStream out = System.out;

 // Schlüssel durchlaufen
 while(keys.hasMoreElements()) {

 // Aktuellen Schlüssel auslesen
 String key = (String)keys.nextElement();

 // Wert auslesen

Listing 66: Ausgabe von Umgebungsinformationen

>> Betriebssystem und Java-Version bestimmen180
Sy

st
em

65 Betriebssystem und Java-Version bestimmen
Die Bestimmung von Betriebssystem und verwendeter Java-Version erfolgt mit Hilfe der
Schlüssel os.name und os.version. Mit dem Schlüssel java.version können die Versionsinfor-
mationen von Java ausgelesen werden:

 String value = env.getProperty(key);

 // Daten ausgeben
 out.println(String.format("%s = %s", key, value));
 }
 }
}

H
in

w
e

is Wenn Sie den Wert eines bestimmten Schlüssels eruieren wollen, müssen Sie nicht den
Umweg über System.getProperties().getProperty() gehen, sondern können dies direkt
via System.getProperty() erledigen.

Abbildung 36: Ausgabe der Umgebungsinformationen

public class Start {

 public static void main(String[] args) {

 // Betriebssystem-Name auslesen
 System.out.println(

Listing 67: Ermitteln von Betriebssystem- und Java-Versionsinformationen

Listing 66: Ausgabe von Umgebungsinformationen (Forts.)

>> System 181

Sy
st

em

66 Informationen zum aktuellen Benutzer ermitteln
Die Java-Runtime stellt einige Informationen zum aktuellen Benutzer zur Verfügung. Diese
können per System.getProperty() unter Verwendung der folgenden Schlüssel abgerufen wer-
den:

 String.format("OS: %s",
 System.getProperty("os.name")));

 // Betriebssystem-Version auslesen
 System.out.println(
 String.format("Version: %s",
 System.getProperty("os.version")));

 // Java-Version auslesen
 System.out.println(
 String.format("Java-Version: %s",
 System.getProperty("java.version")));
 }
}

Abbildung 37: Ausgabe von Java- und Betriebssystem-Version

Schlüssel Garantiert Beschreibung

user.country nein Kürzel des Landes, das der Nutzer in den Systemeinstellungen ange-
geben hat – beispielsweise DE für Deutschland oder AT für Österreich

user.dir ja Aktuelles Arbeitsverzeichnis

user.variant nein Verwendete Variante der Länder- und Spracheinstellungen

user.home ja Home-Verzeichnis des Nutzers (bei Windows beispielsweise der
Ordner »Eigene Dateien«)

user.timezone nein Verwendete Zeitzone

user.name ja Anmeldename des Nutzers

user.language nein Kürzel der Sprache, die der Nutzer aktiviert hat – beispielsweise de
für Deutsch oder en für Englisch

Tabelle 23: Schlüssel für den Abruf von Benutzerinformationen

Listing 67: Ermitteln von Betriebssystem- und Java-Versionsinformationen (Forts.)

>> Zugesicherte Umgebungsvariablen182
Sy

st
em

Die nicht garantierten Elemente sind nicht auf jedem System vorhanden. Die drei Schlüssel
user.dir, user.home und user.name werden aber in jedem Fall einen Wert zurückgeben, da sie
zu den zugesicherten Systeminformationen gehören.

67 Zugesicherte Umgebungsvariablen
Java stellt eine große Anzahl Umgebungsvariablen bereit, die über System.getProperty()
abgerufen werden können. Nicht alle dieser Variablen sind auf jedem System verfügbar, aber
Java sichert die Existenz zumindest einiger Umgebungsvariablen zu:

Schlüssel Beschreibung

java.version Java-Version

java.vendor Anbieter

java.vendor.url Anbieter-Homepage

java.home Installationsverzeichnis

java.vm.specification.version Version der JVM-Spezifikation

java.vm.specification.vendor Anbieter der JVM-Spezifikation

java.vm.specification.name Name der JVM-Spezifikation

java.vm.version JVM-Version

java.vm.vendor JVM-Anbieter

java.vm.name JVM-Name

java.specification.version JRE-Version

java.specification.vendor JRE-Anbieter

java.specification.name JRE-Spezifikation

java.class.version Java Class Format-Version

java.class.path Klassenpfad

java.library.path Pfade, die durchsucht werden, wenn Java-Libraries geladen
werden sollen

java.io.tmpdir Temporäres Verzeichnis

java.compiler Compiler-Name

java.ext.dirs Pfade, die durchsucht werden, wenn Java-Extensions geladen
werden sollen

os.name Name des Betriebssystems

os.arch Prozessor-Architektur

os.version Version des Betriebssystems

file.separator Trenner zwischen Pfaden und Verzeichnissen

path.separator Trenner zwischen mehreren Pfaden

line.separator Zeilenumbruch-Zeichenfolge (»\n« bei Unix, »\r\n« bei Windows)

user.name Anmeldename des aktuellen Benutzers

user.home Home-Verzeichnis des aktuellen Benutzers

user.dir Aktuelles Arbeitsverzeichnis

Tabelle 24: Zugesicherte Systemvariablen

>> System 183

Sy
st

em

Interessant für den produktiven Einsatz dürften die Informationen zum Betriebssystem, zum
Benutzer, zu den Pfaden und möglicherweise auch die Java-Version sein. Andere Informatio-
nen, etwa zur JRE- oder JVM-Version, werden in der Praxis nicht allzu häufig benötigt.

68 System-Umgebungsinformationen abrufen
Seit Java 5 besteht die Möglichkeit, auf die Umgebungsvariablen des Betriebssystems zuzu-
greifen. So kann beispielsweise das Home-Verzeichnis des aktuell angemeldeten Benutzers
ausgelesen oder die PATH-Angabe interpretiert werden.

Das Auslesen dieser Informationen geschieht mit Hilfe einer java.util.Map-Collection, die für
Schlüssel und Werte nur Strings zulässt und der mit System.getenv() eine Referenz auf die
Systemvariablen zugewiesen wird. Mittels java.util.Iterator können die Schlüssel durchlau-
fen werden. Die Methode get() der Map-Instanz env erlaubt unter Übergabe des Schlüssels als
Parameter den Abruf des referenzierten Werts:

A
ch

tu
n

g Wenn Sie andere Java-Umgebungsvariablen als die zugesicherten verwenden wollen,
sollten Sie die Existenz eines Werts, den Sie mit Hilfe von System.getProperty() ermit-
teln, immer hinterfragen und auf null prüfen, bevor Sie ihn verwenden:

String value = System.getProperty(key);
if(null != value && value.length() > 0) {
 System.out.println(String.format("Wert von %s: %s", key, value));
}

import java.util.Map;
import java.util.Iterator;

public class SystemInfo {

 /**
 * Abfrage und Ausgabe von Systemvariablen
 */
 public static void enumerate() {

 // Systemvariablen in Map<String, String> einlesen
 Map<String, String>env = System.getenv();

 // Iterator erzeugen, um die Schlüssel durchlaufen
 // zu können
 Iterator<String> keys = env.keySet().iterator();

 // Iteratur durchlaufen
 while(keys.hasNext()) {
 // Schlüssel abrufen
 String key = keys.next();

 // Wert abrufen
 String value = env.get(key);

Listing 68: Ausgabe aller Umgebungsvariablen des Betriebssystems

>> INI-Dateien lesen184
Sy

st
em

69 INI-Dateien lesen
Zum Lesen und Schreiben von Konfigurationsdaten und Benutzereinstellungen kann die
java.util.Properties-Klasse verwendet werden. Dabei handelt es sich um eine nicht Generics-
fähige Ableitung der java.util.Hashtable-Klasse, die ihrerseits weitestgehend der java.util.
Hashmap-Klasse entspricht.

Die Properties-Klasse verwaltet Name/Wert-Paare und bietet besondere Methoden zum Laden
und Speichern der in ihr enthaltenen Werte, wodurch sie sich besonders für die Sicherung von
Anwendungseinstellungen in Form von INI-Dateien oder XML eignet.

Erzeugen mit Standardwerten bzw. ohne Standardwerte
Properties-Instanzen können mit dem Standardkonstruktor erzeugt werden:

java.util.Properties props = new java.util.Properties();

Ein überladener Konstruktor erlaubt es, eine bereits existierende Properties-Instanz für die
Definition von Standardwerten zu verwenden:

java.util.Properties props = new java.util.Properties(defaults);

Zuweisen und Abrufen von Werten
Die Zuweisung von Werten geschieht mit Hilfe der Methode setProperty(), die als Parameter
zwei String-Werte entgegennimmt. Der erste Parameter dient dabei als Schlüssel, der zweite
Parameter stellt den Wert dar:

props.setProperty("Name", "Mueller");
props.setProperty("FirstName", "Paul");
props.setProperty("City", "Musterstadt");

Zum Abrufen der gespeicherten Werte verwenden Sie getProperty(). Als Parameter übergeben
Sie den Schlüssel:

System.out.println(String.format("Name: %s",
 props.getProperty("Name")));
System.out.println(String.format("First name: %s",
 props.getProperty("FirstName")));
System.out.println(String.format("City: %s",
 props.getProperty("City")));

Einer zweiten, überladenen Form kann als zweiter Parameter ein Default-Wert übergeben wer-
den, der zurückgeliefert wird, falls der Schlüssel nicht existiert:

System.out.println(String.format("Country: %s",
 props.getProperty("Country", "Germany")));

 // Schlüssel und Wert ausgeben
 System.out.println(String.format("%s = %s", key, value));
 }
 }
}

Listing 68: Ausgabe aller Umgebungsvariablen des Betriebssystems (Forts.)

>> System 185

Sy
st

em

Gespeicherte Properties laden
Das Laden einer INI-Datei erfolgt mit Hilfe eines InputStreams. Dieser wird als Parameter der
load()-Methode einer zuvor erzeugten Properties-Instanz übergeben:

import java.util.Properties;
import java.io.FileInputStream;
import java.io.IOException;

public class Start {

 /**
 * Lädt die in der angegebenen Datei gespeicherten Parameter
 */
 private static Properties load(String filename) {

 // Properties-Instanz erzeugen
 Properties props = new Properties();

try {
 // FileInputStream-Instanz zum Laden der Daten
 FileInputStream in = new FileInputStream(filename);

 // Daten laden
 props.load(in);

 // Aufräumen
 in.close();

} catch (IOException e) {
 // Eventuell aufgetretene Ausnahmen abfangen
}

 // Ergebnis zurückgeben
 return props;
 }

 public static void main(String[] args) {

 // Daten laden
 Properties props = load("app.ini");

 // ...und ausgeben
 System.out.println(
 String.format("Name: %s", props.getProperty("Name")));
 System.out.println(
 String.format("First name: %s", props.getProperty("FirstName")));
 System.out.println(
 String.format("City: %s", props.getProperty("City")));
 }
}

Listing 69: Laden von Properties

>> INI-Dateien lesen186
Sy

st
em

Gespeicherte Properties im XML-Format laden
Analog zum Laden von in Textform vorliegenden Einstellungen gestaltet sich das Laden der
Daten aus einer XML-Datei. Einziger Unterschied ist die verwendete Methode: Statt load()
wird hier loadFromXML() verwendet. Dieser Methode wird eine java.io.InputStream-Instanz als
Parameter übergeben, mit deren Hilfe die Daten geladen werden:

import java.util.Properties;
import java.io.FileInputStream;
import java.io.IOException;

public class Start {

 /**
 * Lädt die in der angegebenen XML-Datei gespeicherten Parameter
 */
 private static Properties load(String filename) {

 // Properties-Instanz erzeugen
 Properties props = new Properties();

 try {
 // FileInputStream-Instanz zum Laden der Daten
 FileInputStream in = new FileInputStream(filename);

 // Daten laden
 props.loadFromXML(in);

 } catch (IOException e) {
 // Eventuell aufgetretene Ausnahmen abfangen

 } finally {
 // Aufräumen
 in.close();
 }

 // Ergebnis zurückgeben
 return props;
 }

 public static void main(String[] args) {

 // Daten laden
 Properties props = load("app.xml");

 // ...und ausgeben
 System.out.println(
 String.format("Name: %s", props.getProperty("Name")));
 System.out.println(
 String.format("First name: %s", props.getProperty("FirstName")));
 System.out.println(

Listing 70: Laden von als XML vorliegenden Daten

>> System 187

Sy
st

em70 INI-Dateien schreiben
Zum Speichern einer Properties-Instanz kann deren Methode store() verwendet werden.
Dabei kann eine IOException auftreten, weshalb das Speichern in einen try-catch-Block
gefasst werden sollte:

 String.format("City: %s", props.getProperty("City")));
 }
}

import java.util.Properties;
import java.io.FileOutputStream;
import java.io.IOException;

public class Start {

 /**
 * Speichert eine Properties-Datei unter dem angegebenen Namen
 */
 public static void save(
 Properties props, String path, String comment) {
 try {
 // FileOutputStream-Instanz zum Speichern instanzieren
 FileOutputStream fos = new FileOutputStream(path);

 // Speichern
 props.store(fos, comment);

 // Aufräumen
 fos.close();
 } catch (IOException ignored) {}
 }

 public static void main(String[] args) {
 // Properties-Instanz erzeugen
 Properties props = new Properties();

 // Werte setzen
 props.setProperty("Name", "Mustermann");
 props.setProperty("FirstName", "Hans");
 props.setProperty("City", "Musterstadt");

 // Speichern
 save(props, "data.ini", "Saved data");
 }
}

Listing 71: Speichern einer Properties-Instanz

Listing 70: Laden von als XML vorliegenden Daten (Forts.)

>> INI-Dateien im XML-Format schreiben188
Sy

st
em

Der zweite Parameter der überladenen Methode store() dient der Speicherung eines Kommen-
tars – hier könnte beispielsweise auch ein Datum ausgegeben werden.

71 INI-Dateien im XML-Format schreiben
Das Speichern von INI-Dateien im XML-Format erfolgt analog zum Speichern im Textformat,
jedoch wird statt der Methode store() die Methode storeToXML() verwendet. Auch hier kann
es zu einer IOException kommen (etwa wenn auf die Datei nicht schreibend zugegriffen wer-
den konnte), die mit Hilfe eines try-catch-Blocks abgefangen werden sollte:

import java.util.Properties;
import java.io.FileOutputStream;
import java.io.IOException;

public class Start {

 /**
 * Speichert eine Properties-Datei unter dem angegebenen Namen
 * als XML
 */
 public static void saveAsXml(
 Properties props, String path, String comment) {
 try {
 // FileOutputStream-Instanz zum Speichern instanzieren
 FileOutputStream fos = new FileOutputStream(path);

 // Speichern
 props.storeToXML(fos, comment);

 // Aufräumen
 fos.close();
 } catch (IOException ignored) {}
 }

 public static void main(String[] args) {
 // Properties-Instanz erzeugen
 Properties props = new Properties();

 // Werte setzen
 props.setProperty("Name", "Mustermann");
 props.setProperty("FirstName", "Hans");
 props.setProperty("City", "Musterstadt");

 // Als XML Speichern
 saveAsXml(props, "data.xml", "Saved data");
 }
}

Listing 72: Speichern einer INI-Datei als XML

>> System 189

Sy
st

em

72 Externe Programme ausführen
Externe Prozesse werden mit Hilfe der Methode exec() der java.lang.Runtime-Klasse gestartet.
Deren Rückgabe ist eine Instanz der java.lang.Process-Klasse.

Bei der Ausführung von Prozessen kann es zu IOExceptions kommen, falls Rechte aus dem
aktuellen Kontext heraus fehlen, das angegebene Programm nicht gefunden werden konnte
oder sonstige Fehler bei dessen Ausführung aufgetreten sind.

Der Rückgabecode eines Prozesses lässt sich mit Hilfe der Methode exitValue() abrufen. Alter-
nativ – und das wird in der Praxis häufiger vorkommen – kann auf die Beendigung eines Pro-
zesses mit waitFor() gewartet werden.

Die Ausgabe kann über die Methode getInputStream() in Form einer java.io.InputStream-
Instanz abgerufen werden. Sinnvollerweise wird dies in einer java.io.BufferedInputStream-
Instanz gekapselt. Das eigentliche Auslesen erfolgt mit Hilfe einer java.io.BufferedReader-
Instanz, die per zugrunde liegendem java.io.InputStreamReader die im BufferedInputStream
vorliegenden Daten verarbeitet. Auf diese Weise kann auch gleich sichergestellt werden, dass
Umlaute korrekt eingelesen werden: Der Konstruktor des InputStreamReaders erlaubt zu die-
sem und anderen Zwecken die Angabe des zu verwendenden Zeichensatzes.

A
ch

tu
n

g Das Starten von externen Prozessen ist sehr stark plattformabhängig und verstößt
somit gegen einen der Java-Grundsätze: »Write once, run anywhere« ist beim Ausfüh-
ren externer Prozesse nicht mehr gegeben.

import java.io.*;

public class Ping {

 /**
 * Pingt die angegebene Adresse an
 */
 public static String ping(String address) {
 StringBuffer result = new StringBuffer();
 BufferedReader rdr = null;
 PrintWriter out = null;

 // Runtime-Instanz erzeugen
 Runtime r = Runtime.getRuntime();

 try {
 // Prozess erzeugen
 // Syntax für Unix-Systeme: "ping -c 4 -i 1 <Adresse>"
 // Syntax für Windows-Systeme: "ping <Adresse>"
 Process p = r.exec(String.format("ping %s", address));

 // Warten, bis der Prozess abgeschlossen ist
 p.waitFor();

Listing 73: Ping auf einen externen Host

>> Externe Programme ausführen190
Sy

st
em

Für die Ausgabe der zurückgelieferten Prozessdaten auf die Konsole bietet sich die printf()-
Methode der Klasse Console an. Dann müssen Sie sich um eventuell enthaltene Umlaute keine
Sorgen machen.

 // BufferedReader erzeugen, der die Daten einliest
 // Die Angabe der CodePage ist auf Windows-Systemen
 // nötig, um Umlaute korrekt verarbeiten können
 rdr = new BufferedReader(
 new InputStreamReader(new BufferedInputStream(
 p.getInputStream()), "cp850"));

 // Daten einlesen
 String line = null;
 while(null != (line = rdr.readLine())) {
 if(line.length() > 0) {
 result.append(line + "\r\n");
 }
 }
 } catch (IOException e) {
 // IOException abfangen
 e.printStackTrace();
 } catch (InterruptedException e) {
 // Ausführung wurde unterbrochen
 e.printStackTrace();
 } finally {
 try {
 // Aufräumen
 rdr.close();
 } catch (IOException e) {}
 }

 return result.toString();
 }
}

import java.io.*;

public class Start {

 public static void main(String[] args) {
 // Anzupingende Adresse ist erster Parameter
 String address = "java.sun.com";
 if(args != null && args.length > 0) {
 address = args[0];
 }

 // Pingen

Listing 74: Ausführen eines externen Prozesses und Ausgeben der vom Prozess
zurückgelieferten Daten

Listing 73: Ping auf einen externen Host (Forts.)

>> System 191

Sy
st

em

Beim Ausführen der Klasse können Sie als Parameter einen Server-Namen oder eine IP-
Adresse übergeben.

73 Verfügbaren Speicher abfragen
Mit Hilfe der java.lang.Runtime-Klasse lässt sich ermitteln, wie viel Speicher der aktuellen
Java-Instanz zur Verfügung steht. Diese Information liefert die Methode freeMemory() einer
Runtime-Instanz. Die Instanz kann über die statische Methode Runtime.getRuntime() referen-
ziert werden:

 String output = Ping.ping(address);

 // Prozessdaten ausgeben
 System.console().printf("%s%n", output);
 }
}

Abbildung 38: Ausführen eines Pings aus Java heraus

public class Start {

 public static void main(String[] args) {
 // Runtime-Instanz referenzieren
 Runtime r = Runtime.getRuntime();

 // Freien Speicher auslesen
 long mem = r.freeMemory();

 // In KBytes umrechnen
 double kBytes = ((mem / 1024) * 100) / 100;

 // In MBytes umrechnen

Listing 75: Ermitteln des freien Speichers einer Java-Instanz

Listing 74: Ausführen eines externen Prozesses und Ausgeben der vom Prozess
zurückgelieferten Daten (Forts.)

>> Speicher für JVM reservieren192
Sy

st
em

Die ebenfalls verfügbaren Methoden maxMemory() und totalMemory() können genutzt werden,
um den maximal verfügbaren Speicher und die Gesamtmenge an Speicher der Java-Anwen-
dung auszuwerten.

74 Speicher für JVM reservieren
Die Reservierung von Speicher für die JVM erfolgt beim Aufruf des Java-Interpreters unter
Angabe der Parameter -Xms und -Xmx.

Die Parameter haben dabei folgende Bedeutung:

75 DLLs laden
Das Laden und Ausführen externer Bibliotheken erfolgt via JNI (Java Native Interface). Dabei
wird die externe Bibliothek mit Hilfe von loadLibrary() in eine Java-Klasse eingebunden, ihre
Methoden werden aus Sicht der Klasse wie gewöhnliche Instanz-Methoden verwendet.

 double mBytes = ((kBytes / 1024) * 100) /100;

 // Ausgeben
 System.out.println(
 String.format(
 "Diese Java-Instanz hat %d Byte "
 + "(=%g KByte bzw. %g MByte) freien Speicher.",
 mem, kBytes, mBytes));
 }
}

Parameter Bedeutung

-Xms<Größe> Anfänglicher Speicher für die Ausführung der Anwendung. Der Parameter
<Größe> kann dabei in Byte, Kilobyte oder Megabyte angegeben werden:
-Xms1024: anfänglicher Speicher von 1 Kbyte
-Xms100k: anfänglicher Speicher von 100 Kbyte
-Xms32m: anfänglicher Speicher von 32 Mbyte
Der Standardwert von -Xms ist plattformabhängig und beträgt je nach
Systemumgebung und Java-Version 1-2 Mbyte.

-Xmx<Größe> Maximaler Speicher für die Ausführung der Anwendung:
-Xmx2048: maximaler Speicher von 2 Kbyte
-Xmx300k: maximaler Speicher von 300 Kbyte
-Xmx128m: maximaler Speicher von 128 Mbyte
Der Standardwert beträgt je nach Systemumgebung und Java-Version zwi-
schen 16 und 64 Mbyte.

Tabelle 25: Kommandozeilen-Parameter für die Reservierung von Speicher

Listing 75: Ermitteln des freien Speichers einer Java-Instanz (Forts.)

>> System 193

Sy
st

emDie grundsätzliche Vorgehensweise für den Einsatz von JNI sieht so aus:

� Erstellen einer Java-Klasse, die die zu implementierenden Funktionen definiert und die
externe Bibliothek lädt

� Kompilieren der Java-Klasse

� Erzeugen einer C/C++-Header-Datei, die die zu implementierenden Funktionen für C- oder
C++-Programme definiert

� Implementieren der Funktionen in C oder C++

� Bereitstellen der externen Bibliothek

Das Laden und Verwenden der externen Bibliothek geschieht mit Hilfe eines statischen Blocks
und unter Verwendung des Schlüsselworts native. Die Angabe der Dateiendung der externen
Bibliothek unterbleibt dabei, so dass hier eine gewisse Portabilität gewahrt bleibt:

Nach dem Kompilieren der Klasse kann eine C/C++-Header-Datei erzeugt werden, in der die zu
implementierende JNI-Methode definiert ist. Dies geschieht unter Verwendung des Hilfspro-
gramms javah, das sich im /bin-Verzeichnis der JDK-Installation befindet.

Der Aufruf von javah sieht zur Generierung einer Datei HelloWorld.h wie folgt aus:

javah -jni -classpath "%CLASSPATH%;." -o HelloWorld.h Start

Die so erzeugte Header-Datei kann nun verwendet werden, um eine externe Bibliothek zu
erstellen. Diese wird in der Regel meist nur eine Wrapper-Funktion haben und somit den

A
ch

tu
n

g Das Laden und Verwenden externer Bibliotheken (auf Windows-Systemen meist als
DLLs vorliegend) sollte mit Bedacht vorgenommen werden, denn es hebt die Plattform-
und Systemunabhängigkeit von Java auf.

public class Start {

 // Laden der externen Bibliothek
 static {
 System.loadLibrary("HelloWorld");
 }

 // Deklaration der Methode in der externen Bibliothek
 public native String sayHello();

 public static void main(String[] args) {
 // Neue Instanz erzeugen
 Start instance = new Start();

 // Externe Methode ausführen
 System.out.println(instance.sayHello());
 }
}

Listing 76: Laden und Verwenden einer externen Bibliothek

>> DLLs laden194
Sy

st
em

Zugriff auf andere Bibliotheken oder Systemfunktionen erlauben. Innerhalb der Header-Datei
ist eine Funktion definiert, die implementiert werden muss:

JNIEXPORT jstring JNICALL Java_Start_sayHello(JNIEnv *, jobject);

Am Beispiel eines Visual C++-Projekts soll aufgezeigt werden, wie die Umsetzung stattfinden
kann. Analog kann auch bei Verwendung eines anderen Entwicklungstools und eines anderen
Compilers vorgegangen werden.

Zunächst soll ein neues C++-Projekt im Visual Studio .NET angelegt werden. Dieses Projekt ist
vom Typ Windows-32-Applikation. In den Projekteigenschaften muss als Ausgabetyp »Dyna-
mische Bibliothek (.dll)« festgelegt werden.

Nach dem Erzeugen des Projekts müssen unter EXTRAS/OPTIONEN/PROJEKTE/VC++-VERZEICH-
NISSE die Ordner %JAVA-HOME%/include und %JAVA_HOME%/include/win32 für Include-
Dateien hinzugefügt werden:

In den Projekteigenschaften müssen unter dem Punkt ALLGEMEIN folgende Einstellungen vor-
genommen werden:

� Verwendung von ATL: Dynamische Verknüpfung zu ATL

� Zeichensatz: Unicode

Unter dem Punkt LINKER muss die Bibliothek %JAVA_HOME%/lib/jawt.lib hinzugefügt werden.

Die Wrapper-Klasse HelloWorld kapselt den Zugriff auf die eigentlich verwendete Klasse Say-
Hello, die folgende Header-Definition besitzt:

Abbildung 39: Hinzufügen der Java-Include-Verzeichnisse zum Projekt

class SayHello {
 public:

Listing 77: SayHello.h

>> System 195

Sy
st

em

Die Implementierung ist in diesem Fall trivial:

Die Wrapper-Klasse HelloWorld.cpp muss die von Java generierte Header-Datei HelloWorld.h
referenzieren und die dort definierte Methode Java_Start_sayHello() implementieren:

 SayHello(void);
 ~SayHello(void);
 char* execute(void);
};

#include "StdAfx.h"
#include ".\sayhello.h"

// Konstruktor
SayHello::SayHello(void) {}

// Destruktor
SayHello::~SayHello(void) {}

// Implementierung von execute
char* SayHello::execute() {
 return "Hello world from C++!";
}

Listing 78: SayHello.cpp

// HelloWorld.cpp : Wrapper-Klasse, wird von Java aufgerufen

// Includes
#include "stdafx.h"
#include "HelloWorld.h"
#include "SayHello.h"
#include <win32\jawt_md.h>

// Default-Einstiegspunkt
BOOL APIENTRY DllMain(HANDLE hModule,
 DWORD ul_reason_for_call,
 LPVOID lpReserved) {
 return TRUE;
}

// Implementierung der Java-Methode
JNIEXPORT jstring JNICALL Java_Start_sayHello (
 JNIEnv *env, jobject obj) {

 // Instanz erstellen
 SayHello *instance = new SayHello();

Listing 79: JNI-Wrapper-Implementierung HelloWorld.cpp

Listing 77: SayHello.h (Forts.)

>> DLLs laden196
Sy

st
em

JNI definiert einige Datentypen, die die C-/C++-Gegenstücke zu den Java-Datentypen darstel-
len. C-/C++-Datentypen müssen stets aus und in die JNI-Datentypen gecastet werden, da sich
sowohl Größe als auch Kodierung der repräsentierten Java-Datentypen deutlich von ihren
C++-Pendants unterscheiden. Die hier praktizierte Rückgabe von Zeichenketten erfordert bei-
spielsweise, dass einzelne Zeichen in ihre JNI-jchar-Pendants gecastet werden müssen.

Nach dem Kompilieren kann die Bibliothek verwendet werden. Dabei muss sie sich innerhalb
eines durch die Umgebungsvariable PATH definierten Pfads befinden, um gefunden zu werden:

 // Rückgabe abrufen
 const char* tmp = instance->execute();

 // Größe bestimmen
 size_t size = strlen(tmp);

 // jchar-Array erzeugen
 jchar* jc = new jchar[size];

 // Speicher reservieren
 memset(jc, 0, sizeof(jchar) * size);

 // Kopieren
 for(size_t i = 0; i < size; i++) {
 jc[i] = tmp[i];
 }

 // Rückgabe erzeugen
 jstring result = (jstring)env->NewString(jc, jsize(size));

 // Aufräumen
 delete [] jc;

 // Zurückgeben
 return result;
}

A
ch

tu
n

g Achten Sie darauf, nicht mehr benötigte Ressourcen wieder freizugeben, um keine
Speicherlöcher zu erzeugen.

Abbildung 40: Verwenden einer C++-Methode aus Java heraus

Listing 79: JNI-Wrapper-Implementierung HelloWorld.cpp (Forts.)

>> System 197

Sy
st

em

76 Programm für eine bestimmte Zeit anhalten
Mit Hilfe der statischen Methode sleep() der Klasse java.lang.Thread können Sie den aktuel-
len Thread für die als Parameter angegebene Zeit in Millisekunden anhalten. So kann dafür
gesorgt werden, dass das System insbesondere bei lang laufenden Schleifen die Möglichkeit
erhält, andere anstehende Aufgaben abzuarbeiten.

Während ein Thread per Thread.sleep() pausiert, kann es vorkommen, dass er beendet oder
sonstwie unterbrochen wird. In diesem Fall wird eine InterruptedException geworfen, die auf-
gefangen oder deklariert werden muss:

77 Timer verwenden
Mit Hilfe der java.util.Timer-Klasse können Aufgaben wiederholt ausgeführt werden. Klas-
sen, die regelmäßig eingebunden werden sollen, müssen von der Basisklasse java.util.Timer-
Task erben und deren run()-Methode überschreiben:

import java.util.Date;

public class Start {

 public static void main(String[] args) {
 // Aktuelle Uhrzeit ausgeben
 System.out.println(
 String.format("Current time: %s", new Date().toString()));

 // Thread pausieren
 try {
 Thread.sleep(5000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

 // Aktuelle Uhrzeit ausgeben
 System.out.println(
 String.format("Current time: %s", new Date().toString()));
 }
}

Listing 80: Pausieren eines Threads per Thread.sleep()

import java.util.TimerTask;
import java.util.Calendar;
import java.text.DateFormat;

public class SimpleTimerTask extends TimerTask {

 private boolean running = false;

 /**

Listing 81: Die Klasse SimpleTimerTask definiert einen per Timer auszuführenden Task.

>> Timer verwenden198
Sy

st
em

Das Einbinden eines TimerTask geschieht über eine neue Timer-Instanz, deren schedule()-
Methode eine Instanz der TimerTask-Ableitung als Parameter übergeben wird. Weiterhin kann
angegeben werden, wann oder mit welcher Startverzögerung und in welchem Abstand die
Ausführung stattfinden soll. Die Angabe von Startverzögerung und Ausführungsintervall
erfolgt dabei stets in Millisekunden:

 * Wird vom Timer regelmäßig aufgerufen und ausgeführt
 */
 public void run() {
 String date = DateFormat.getTimeInstance().format(
 Calendar.getInstance().getTime());

 String message = running ?
 "%s: Still running (%s)" : "%s: Started! (%s)";

 // Ausgeben einer Nachricht mit der aktuellen Uhrzeit
 System.out.println(String.format(
 message, "SimpleTimerTask", date));

 running = true;
 }
}

import java.util.Timer;

public class Start {

 public static void main(String[] args) {
 // TimerTask instanzieren
 SimpleTimerTask task = new SimpleTimerTask();

 // Timer instanzieren
 Timer timer = new Timer();

 // Task planen
 timer.schedule(task, 0, 5000);
 }
}

Listing 82: Ausführen eines Timers

A
ch

tu
n

g Beachten Sie, dass die Ausführung des Programms so lange fortgesetzt wird, wie der
Timer aktiv ist. Nach dem Planen des Tasks kann allerdings mit anderen Aufgaben
fortgefahren werden – der Timer verhält sich wie ein eigenständiger Thread, was er
intern auch ist.

Listing 81: Die Klasse SimpleTimerTask definiert einen per Timer auszuführenden Task. (Forts.)

>> System 199

Sy
st

em

Neben der hier gezeigten Variante existieren noch weitere Überladungen der schedule()-
Methode:

78 TimerTasks gesichert regelmäßig ausführen
Wenn TimerTasks zwingend in bestimmten Abständen ausgeführt werden müssen (etwa, wenn
exakt alle 60 Minuten ein Stunden-Signal ertönen soll), kann dies mit Hilfe der Methode
scheduleAtFixedRate() erreicht werden. Diese Methode fängt Verzögerungen, wie sie etwa
durch den GarbageCollector entstehen können, ab und sorgt für eine Ausführung des Timer-
Tasks basierend auf der Systemuhrzeit – die natürlich ihrerseits genau sein sollte.

Die Verwendung von scheduleAtFixedRate() unterscheidet sich nicht wesentlich von der der
schedule()-Methode. Es existieren hier lediglich zwei Überladungen, die die Angabe einer
Startverzögerung oder einer Startzeit sowie eines Ausführungsintervalls in Millisekunden
erlauben:

Abbildung 41: Ausführung des Timers

Überladung Beschreibung

schedule(TimerTask task, Date time) Führt den Task zur angegebenen Zeit aus. Es findet
keine Wiederholung der Ausführung statt.

schedule(TimerTask task, Date firstTime,
 long period)

Führt den Task zur angegebenen Zeit aus und wartet
vor einer erneuten Ausführung die in period angege-
bene Zeitspanne in Millisekunden ab.

schedule(TimerTask task, long delay) Führt den Task nach der in Millisekunden angegebe-
nen Zeitspanne aus. Es findet keine Wiederholung der
Ausführung statt.

Tabelle 26: Weitere Überladungen der schedule()-Methode

>> Nicht blockierender Timer200
Sy

st
em

79 Nicht blockierender Timer
Standardmäßig sind Timer blockierend: Sie verhindern, dass die Anwendung, in der sie laufen,
beendet werden kann, solange der Timer noch aktiv ist. Dies kann zu unerwünschten Zustän-
den führen. Um einen Timer automatisch zu beenden, sobald die Anwendung beendet werden
soll, muss er als Dämon-Timer ausgeführt werden. Dies kann durch Übergabe des Werts true
an den Konstruktor der Timer-Instanz erreicht werden:

import java.util.Timer;

public class Start {

 public static void main(String[] args) {
 // TimerTask instanzieren
 SimpleTimerTask task = new SimpleTimerTask();

 // Timer instanzieren
 Timer timer = new Timer();

 // Task planen
 timer.scheduleAtFixedRate(task, 0, 5000);
 }
}

Listing 83: Ausführen eines Timers, der exakt alle fünf Sekunden läuft

import java.util.Timer;

public class Start {

 public static void main(String[] args) {
 // TimerTask instanzieren
 SimpleTimerTask task = new SimpleTimerTask();

 // Timer als Dämon instanzieren
 Timer timer = new Timer(true);

 // Task planen
 timer.scheduleAtFixedRate(task, 0, 1000);

 // Anwendung nach zehn Sekunden beenden
 try {
 Thread.sleep(10000);
 } catch (InterruptedException e) {}
 }
}

Listing 84: Dämon-Timer

>> System 201

Sy
st

em

80 Timer beenden
Timer beenden sich in der Regel, wenn die letzte Referenz auf den Timer entfernt und alle aus-
stehenden Aufgaben ausgeführt worden sind. Dies kann je nach Programmierung einige Zeit
dauern oder bei endlos laufenden Timern schier unmöglich sein.

Aus diesem Grund verfügt die Klasse Timer über die Methode cancel(), die alle noch anstehen-
den und nicht bereits ausführenden Aufgaben abbricht und den Timer beendet:

81 Auf die Windows-Registry zugreifen
Die berüchtigte Windows-Registry ist eine simple, dateibasierte Datenbank zur Registrierung
von anwendungsspezifischen Werten. Aus einem Java-Programm heraus hat man zwei Mög-
lichkeiten, darauf zuzugreifen:

� Das Paket java.util.prefs bietet Klassen und Methoden zum Setzen und Lesen von Ein-
trägen in einem Teilbaum der Registry. Der volle Zugriff auf die Registry ist hiermit aller-
dings nicht möglich. Dafür funktioniert dieser Ansatz auch unter Unix/Linux (wobei eine
XML-Datei erzeugt wird, die als Registry-Ersatz dient).

� Einsatz der Windows API für den Zugriff auf die entsprechenden Registry-Funktionen.
Dies erfordert den Einsatz des Java Native Interface (JNI).

Das Paket java.util.prefs
In diesem Paket bietet die Klasse Preferences die statischen Methoden userNode() und system-
Node(), welche die speziellen Registry-Schlüssel HKEY_CURRENT_USER\Software\JavaSoft\Prefs
bzw. HKEY_LOCAL_MACHINE\Software\JavaSoft\Prefs repräsentieren. Unterhalb dieser Einträge

import java.util.Timer;

public class Start {

 public static void main(String[] args) {
 // TimerTask instanzieren
 SimpleTimerTask task = new SimpleTimerTask();

 // Timer instanzieren
 Timer timer = new Timer();

 // Task planen
 timer.scheduleAtFixedRate(task, 0, 1000);

 // Anwendung zehn Sekunden pausieren
 try {
 Thread.sleep(10000);
 } catch (InterruptedException e) {}

 // Timer beenden
 timer.cancel();
 }
}

Listing 85: Beenden eines Timers über seine cancel()-Methode

>> Auf die Windows-Registry zugreifen202
Sy

st
em

kann ein Java-Programm beliebige eigene Knoten durch Aufruf der Methode node() generie-
ren und diesen dann Schlüssel mit Werten zuweisen bzw. lesen. Dies erfolgt wie bei einer
Hashtabelle mit den Methoden put() und get(). Für spezielle Datentypen wie boolean oder int
stehen auch besondere putXXX()-Methoden bereit, z.B. putBoolean().

Der Einsatz des Pakets java.util.prefs erlaubt wie bereits erwähnt nur das Ablegen oder Aus-
lesen von Informationen, die von einem Java-Programm stammen. Es ist nicht möglich,
andere Bereiche der Windows-Registry zu lesen oder zu verändern.

Aufruf der Windows Registry API
Den vollen Zugriff auf die Registry erhält man nur durch Einsatz der Windows API, was bei
einem Java-Programm per JNI erfolgen kann. Glücklicherweise existiert eine sehr brauchbare
OpenSource-Bibliothek namens jRegistryKey, die bereits eine fertige JNI-Lösung bereitstellt, so
dass man nicht gezwungen ist, mit C-Code herumzuhantieren. Laden Sie hierzu von http://
sourceforge.net/projects/jregistrykey/ das Binary-Package jRegistryKey-bin.x.y.z.zip (aktuelle
Version 1.4.3) und gegebenenfalls die Dokumentation herunter. Das ZIP-Archiv enthält zwei
wichtige Dateien:

� jRegistryKey.jar: Extrahieren Sie diese Datei und nehmen Sie sie in den CLASSPATH Ihrer
Java-Anwendung auf.

� jRegistryKey.dll: Extrahieren Sie diese Datei und kopieren Sie sie in ein Verzeichnis, das in
der PATH-Umgebungsvariable definiert ist, oder in das Verzeichnis, in dem Sie Ihre Java-
Anwendung aufrufen werden.

import java.util.prefs.*;

public class Start {
 public static void main(String[] args) {
 try {
 // Knoten anlegen im Teilbaum HKEY_CURRENT_USER
 Preferences userPrefs = Preferences.userRoot().node("/carpelibrum");

 // mehrere Schlüssel mit Werten erzeugen
 userPrefs.putBoolean("online",true);
 userPrefs.put("Name", "Peter");
 userPrefs.putInt("Anzahl", 5);

 // Alle Schlüssel wieder auslesen
 String[] keys = userPrefs.keys();

 for(int i = 0; i < keys.length; i++)
 System.out.println(keys[i] + " : " + userPrefs.get(keys[i], ""));

 } catch(Exception e) {
 e.printStackTrace();
 }
 }
}

Listing 86: Zugriff auf Java-spezifische Registry-Einträge

>> System 203

Sy
st

em

Die Bibliothek stellt zwei zentrale Klassen bereit: RegistryKey repräsentiert einen Schlüssel
und RegistryValue steht für einen Schlüsselwert. Hierbei gibt es verschiedene Datentypen, die
als Konstanten definiert sind, u.a. ValueType.REG_SZ (null-terminated String = endet mit dem
Zeichen '\0'), ValueType.REG_BINARY (Binärdaten) und ValueType.REG_DWORD (32 Bit Integer).
Das Setzen bzw. Lesen von Registry-Werten erfolgt mit Hilfe der RegistryKey-Methoden set-
Value() bzw. getValue().

Das folgende Beispiel demonstriert den Einsatz dieser Klassen:

/**
 * Klasse für den Zugriff auf die Windows-Registry via JNI
 */
import ca.beq.util.win32.registry.*;
import java.util.*;

class WindowsRegistry {

 /**
 * Erzeugt einen neuen Schlüssel
 *
 * @param root Schlüssel-Wurzel, z.B. RootKey.HKEY_CURRENT_USER
 * @param name voller Pfad des Schlüssels
 * (z.B. "Software\\Carpelibrum\\ProgData")
 * @return RegistryKey-Objekt ode null bei Fehler
 * (z.B. schon vorhanden)
 */
 public RegistryKey createKey(RootKey root, String name) {
 try {
 RegistryKey key = new RegistryKey(root, name);
 key.create();
 return key;

 } catch(Exception e) {
 e.printStackTrace();
 return null;
 }
 }

 /**
 * Erzeugt einen neuen Unterschlüssel
 * @param root Schlüssel-Wurzel, z.B. RootKey.HKEY_CURRENT_USER
 * @param parent voller Pfad des Vaterschlüssels
 * (z.B."Software\\Carpelibrum")
 * Vaterschlüssel muss existieren
 * @param name Name des Unterschlüssels (z.B. "ProgData")
 * @return RegistryKey-Objekt oder null bei Fehler
 */
 public RegistryKey createSubKey(RootKey root,String parent,String name) {
 try {
 RegistryKey key = new RegistryKey(root, parent);
 RegistryKey sub = key.createSubkey(name);

Listing 87: WindowsRegistry.java

>> Auf die Windows-Registry zugreifen204
Sy

st
em

 return sub;

 } catch(Exception e){
 e.printStackTrace();
 return null;
 }
 }

 /**
 * Löscht einen Schlüssel
 */
 public boolean deleteKey(RootKey root, String name) {
 try {
 RegistryKey key = new RegistryKey(root, name);
 key.delete();
 return true;

 } catch(Exception e) {
 e.printStackTrace();
 return false;
 }
 }

 /**
 * Liefert den gewünschten Schlüssel
 */
 public RegistryKey getKey(RootKey root, String name) {
 RegistryKey result = null;

 try {
 result = new RegistryKey(root, name);

 if(result.exists() == false)
 result = null;

 } catch(Exception e) {
 e.printStackTrace();
 }

 return result;
 }

 /**
 * Liefert alle Unterschlüssel zu einem Schlüssel
 */
 public ArrayList<RegistryKey> getSubkeys(RootKey root, String name) {
 ArrayList<RegistryKey> result = new ArrayList<RegistryKey>();

 try {
 RegistryKey key = new RegistryKey(root, name);

Listing 87: WindowsRegistry.java (Forts.)

>> System 205

Sy
st

em

Das Start-Programm zu diesem Rezept demonstriert den Zugriff auf die Windows Registry. Es
liest alle Unterschlüssel von HKEY_CURRENT_USER\Software aus und trägt einen eigenen Schlüssel
ein.

 if(key.hasSubkeys()) {
 Iterator it = key.subkeys();

 while(it.hasNext()) {
 RegistryKey rk = (RegistryKey) it.next();
 result.add(rk);
 }
 }

 } catch(Exception e) {
 e.printStackTrace();
 }

 return result;
 }
}

import ca.beq.util.win32.registry.*;
import java.util.*;

public class Start {

 public static void main(String[] args) {

 try {
 WindowsRegistry registry = new WindowsRegistry();

 // Alle Unterschlüssel von HKEY_CURRENT_USER\Software ausgeben
 ArrayList<RegistryKey> subs =
 registry.getSubkeys(RootKey.HKEY_CURRENT_USER, "Software");

 System.out.println("\nInhalt von HKEY_CURRENT_USER\\Software :");
 for(RegistryKey k : subs)
 System.out.println(k.getName());

 // Schlüssel HKEY_CURRENT_USER\Software\Carpelibrum anlegen falls
 // noch nicht vorhanden
 RegistryKey key = registry.getKey(RootKey.HKEY_CURRENT_USER,
 "Software\\Carpelibrum");

 if(key == null)
 key = registry.createKey(RootKey.HKEY_CURRENT_USER,
 "Software\\Carpelibrum");

Listing 88: Zugriff auf Windows-Registry via JNI

Listing 87: WindowsRegistry.java (Forts.)

>> Abbruch der Virtual Machine erkennen206
Sy

st
em

82 Abbruch der Virtual Machine erkennen
Da ein Java-Programm immer innerhalb einer Virtual Machine (VM) läuft, führt das Beenden
der VM auch zum Abwürgen des Programms. Dies ist oft unschön, da hierdurch einem Pro-
gramm keine Gelegenheit mehr bleibt, interessante Daten wie bisherige Resultate oder Log-
Informationen auf die Festplatte zu sichern. Seit Java 1.3 gibt es glücklicherweise einen so
genannten ShutdownHook-Mechanismus, der teilweise Abhilfe schafft.

Ein ShutdownHook ist ein Thread, der initialisiert und laufbereit ist, aber während der norma-
len Programmausführung nicht aktiv ist. Erst wenn das Programm beendet wird, greift der

 // Werte setzen
 RegistryValue name = new RegistryValue("Name", "Mustermann");
 RegistryValue anzahl = new RegistryValue("Anzahl", 5);
 key.setValue(name);
 key.setValue(anzahl);

 // Werte wieder auslesen
 if(key.hasValues()) {
 System.out.println("Werte von " + key.getName());
 Iterator it = key.values();

 while(it.hasNext()) {
 RegistryValue value = (RegistryValue) it.next();
 System.out.println(value.getName() + " : " +
 value.getStringValue());
 }
 }
 } catch(Exception e) {
 e.printStackTrace();
 }
 }
}

Abbildung 42: Auflistung von Registry-Einträgen

Listing 88: Zugriff auf Windows-Registry via JNI (Forts.)

>> System 207

Sy
st

em

Hook und wird als Letztes ausgeführt, und zwar sowohl bei einem regulären Programmende
als auch einem vorzeitig erzwungenen Ende durch Beenden der VM über die Tastenkombina-
tion (Strg)+(C).

Der Einsatz des Hook-Mechanismus ist sehr einfach. Man definiert eine eigene Thread-Klasse,
die man mit Hilfe der Methode Runtime.addShutdownHook(Thread t) registriert. Das war es
schon. Falls man nur für bestimmte Programmphasen einen Hook als Rückversicherung haben
möchte, kann man jederzeit mit Runtime.removeShutdownHook(Thread t) den Hook wieder
abmelden. Dies ist beispielsweise praktisch, falls der Hook nur bei einem vorzeitigen Abbruch
abgearbeitet werden soll, aber nicht bei einem regulären Programmende. In diesem Fall sollte
die letzte Anweisung der Aufruf von removeShutdownHook() sein.

Das Start-Programm zu diesem Rezept addiert in einer for-Schleife Integer-Zahlen. Im Falle
eines vorzeitigen Abbruchs mit (Strg)+(C) wird der ShutdownHook ausgeführt, der den letz-
ten Zwischenwert ausgibt.

H
in

w
e

is Das Beenden per Taskmanager unter Windows wird leider nicht erkannt. Unter Unix/
Linux werden alle Beendigungen erkannt, die das Signal SIGINT auslösen.

/**
 * Modellklasse für ShutdownHook zum Abfangen von STRG-C
 */
class ShutdownHook extends Thread {
 private Start parent;

 public ShutdownHook(Start t) {
 parent = t;
 }

 public void run() {
 System.out.println("Programm wurde abgebrochen");
 System.out.println("Letzte Zwischensumme: " + parent.getValue());
 }
}

Listing 89: ShutdownHook.java

/**
 * Aufrufbeispiel: STRG-C führt zur Ausgabe des letzten Wertes
 */
public class Start {
 private int value = 0;

 public void doWork() {
 ShutdownHook hook = new ShutdownHook(this);
 Runtime rt = Runtime.getRuntime();

Listing 90: Abbruch der Virtual Machine erkennen

>> Betriebssystem-Signale abfangen208
Sy

st
em

83 Betriebssystem-Signale abfangen
Ein Betriebssystem kann jedem laufenden Programm Signale senden. Eines der wichtigsten
Signale ist SIGINT, das einen Programmabbruch signalisiert, wie er auf Windows-Rechnern
beispielsweise ausgelöst wird, wenn innerhalb eines Konsolenfensters die Tastenkombination
(Strg)+(C) gedrückt wird (woraufhin die Java Virtual Machine und damit auch das aus-
geführte Java-Programm abgebrochen werden). Rezept 82 zeigte, wie Sie mit Hilfe eines so
genannten Shutdown-Hooks noch Aufräumarbeiten oder Speicheraktionen etc. durchführen,
bevor das Programm zwangsweise beendet wird. Was aber, wenn das Programm einfach wei-
terarbeiten und das Betriebssystem-Signal ignorieren soll? Dann hilft auch kein Shutdown-
Hook.

 rt.addShutdownHook(hook);

 for(int i = 0 ; i < 50; i++) {
 value = value + i;

 try {
 Thread.sleep(500);

 } catch(Exception e) {
 }
 }

 System.out.println("Endsumme: " + value);
 rt.removeShutdownHook(hook);
 }

 public int getValue() {
 return value;
 }

 public static void main(String[] args) {
 Start s = new Start();
 s.doWork();
 }
}

Abbildung 43: Abbruch der VM erkennen

Listing 90: Abbruch der Virtual Machine erkennen (Forts.)

>> System 209

Sy
st

em

Als Lösung bietet Sun zwei inoffizielle Klassen an: sun.misc.Signal sowie sun.misc.Signal-
Handler. Diese Klassen erscheinen in keiner Dokumentation, sie sind offiziell nicht vorhanden,
und es gibt daher keine Garantie dafür, dass sie in zukünftigen Java-Versionen weiterhin vor-
handen sein werden. Eine entsprechende Warnung wird beim Kompilieren ausgegeben. Das
folgende Beispiel demonstriert das Abfangen des Signals SIGINT:

import sun.misc.Signal;
import sun.misc.SignalHandler;

public class Start {
 public static void main(String[] args) {

 // Signal SIGINT ignorieren
 Signal.handle(new Signal("INT"), new SignalHandler () {
 public void handle(Signal sig) {
 System.err.println("SIGINT wird ignoriert. Mache weiter...");
 System.err.flush();
 }
 });

 int counter = 0;

 while(counter <= 10) {
 try {
 Thread.sleep(2000);
 System.out.println(counter++);

 } catch(Exception e) {
 }
 }
 }
}

Listing 91: Signale abfangen

Zur Einrichtung einer Signalbehandlung rufen Sie die statische Methode Signal.handle() auf,
die zwei Parameter erwartet:

� Eine Instanz der Klasse Signal, der Sie den Namen des zu fangenden Signals übergeben.
Der Name ist dabei der Betriebssystem-typische Signalname ohne »SIG«, also z.B. INT für
SIGINT.

� Eine Instanz der Klasse SignalHandler mit einer Implementierung der Methode handle().

>> Betriebssystem-Signale abfangen210
Sy

st
em

Abbildung 44: Programm ignoriert Signal SIGINT

Ei
n-

 u
nd

 A
us

ga
be

Ein- und Ausgabe (IO)

84 Auf die Konsole (Standardausgabe) schreiben
Die normale Konsolenausgabe erfolgt über den Ausgabestream System.out und die allseits
bekannten Methoden print() bzw. println(), z.B.

System.out.println("Hallo Leute!");
System.out.println("Wert von x:" + x); // x sei eine Variable

Formatierte Ausgabe
Der große Nachteil dieser Methoden ist die mangelnde Formatierfähigkeit, was insbesondere
bei der Ausgabe von Gleitkommazahlen sehr unschön ist. (Eine double-Zahl wie 3.141592654
wird exakt so ausgegeben; eine Beschränkung auf beispielsweise zwei Nachkomma-Stellen ist
nicht möglich.) Glücklicherweise bietet Java mittlerweile die Methode printf() an, der man
als ersten Parameter den eigentlichen Ausgabetext – ergänzt um spezielle Formatplatzhalter %
für die auszugebenden Variablenwerte – und anschließend die Variablen übergibt. So gibt der
folgende Code den Wert von pi mit einer Vorkomma- und drei Nachkommastellen aus:

double pi = 3.141592654;
System.out.printf("Die Zahl %1.3f nennt man PI.", pi);

Die Syntax für eine Formatangabe ist:

%[Index$][Flags][Breite][.Nachkomma]Typ

Angaben in [] sind dabei optional1, so dass die einfachste Formatanweisung %Typ lautet.
Breite gibt die Anzahl an auszugebenden Zeichen an. Der Typ definiert die Art der Daten; zur
Verfügung stehen:

Die wichtigsten Werte für Flags sind: ̂ (Umwandlung in Großbuchstaben), + (Vorzeichen
immer ausgeben), 0 (Auffüllen der Breite mit Nullen).

1. Die [] selbst werden nicht angegeben!

Typ Beschreibung

c Darstellung als Unicode-Zeichen

d Dezimal: Integer zur Basis 10

x Hexadezimal: Integer zur Basis 16

f Gleitkommazahl

s String

t Zeit/Datum; auf t folgt ein weiteres Zeichen:
H (Stunde), M (Minute), S (Sekunde), d (Tag), m (Monat), Y (Jahr), D (Datum als Tag-
Monat-Jahr)

% Darstellung des Prozentzeichens

Tabelle 27: Typspezifizierer für printf()

>> Umlaute auf die Konsole (Standardausgabe) schreiben212
Ei

n-
 u

nd
 A

us
ga

be

import java.util.Date;

public class Start {

 public static void main(String[] args) {

 int index = 4;
 float f= 3.75f;
 String txt = "Wahlanteil";
 Date dt = new java.util.Date();

 System.out.println();

 System.out.printf("Nr. %02d %s %2.1f %% Zeit %4$tH:%4$tM:%4$tS \n",
 index, txt, f, dt);
 }
}

Listing 92: Datenausgabe mit printf()

85 Umlaute auf die Konsole (Standardausgabe) schreiben
Wenn Sie Java-Strings via System.out auf die Windows-Konsole ausgeben, werden die 16-Bit-
Codes der einzelnen Zeichen auf je 8-Bit zurechtgestutzt, ohne dass dabei allerdings eine kor-
rekte Umkodierung in den 8-Bit-OEM-Zeichensatz der Konsole stattfinden würde. Das traurige
Ergebnis: Die deutschen Umlaute sowie etliche weitere Umlaute und Sonderzeichen, die die
Konsole prinzipiell anzeigen könnte, gehen verloren.

Um die Umlaute dennoch korrekt auszugeben, müssen Sie

� entweder auf das in Java 6 neu eingeführte Console-Objekt zurückgreifen

� oder die Zeichenkodierung explizit vorgeben.

Abbildung 45: Ausgabe des Start-Programms

>> Ein- und Ausgabe (IO) 213

Ei
n-

 u
nd

 A
us

ga
be

Umlaute über Console ausgeben
Zur formatierten Ausgabe von Strings definiert die Klasse Console eine Methode printf(), die
wie die gleichnamige Methode von System.out arbeitet (siehe Rezept 84) – nur eben mit dem
Unterschied, dass die Zeichen in den OEM-Zeichensatz der Konsole umkodiert werden.

Die Klasse Console instanzieren Sie nicht selbst. Wenn Ihr Java-Code im Kontext einer Java
Virtual Machine-Instanz ausgeführt wird, die mit einem Konsolenfenster verbunden ist,
erzeugt die JVM automatisch intern ein Console-Objekt, welches das Konsolenfenster reprä-
sentiert. Über die statische Console-Methode console() können Sie sich eine Referenz auf die-
ses Objekt zurückliefern lassen.

import java.io.Console;

public class Start {

 public static void main(String[] args) {

 // Zugriff auf das Console-Objekt
 Console cons = System.console();

 // Ausgabe
 if (cons != null) {
 cons.printf("\n");
 cons.printf(" Ausgabe der Umlaute mit Console \n");
 cons.printf(" ä, ö, ü, ß \n");
 }
 }
}

Listing 93: Ausgabe von Umlauten auf die Konsole

Umlaute über PrintStream ausgeben
Hinter System.out verbirgt sich ein PrintStream-Objekt, das mit der Konsole als Ausgabegerät
verbunden ist und die Standard-Zeichenkodierung verwendet. Wenn Sie eigene PrintStream-
Objekte erzeugen, können Sie diese mit beliebigen Ausgabestreams verbinden und auch die
Zeichenkodierung frei (soweit verfügbar) wählen.

T
ip

p Für vereinzelte Ausgaben lohnt es sich nicht, den Verweis auf das Console-Objekt in
einer eigenen Variablen zu speichern. Hängen Sie in solchen Fällen den printf()-Auf-
ruf einfach an den System.console()-Aufruf an:

System.console().printf("\n Ausgabe der Umlaute mit Console \n");
System.console().printf(" ä, ö, ü, ß \n");

import java.io.*;

public class Start {

 public static void main(String[] args) {

 PrintStream out;

>> Von der Konsole (Standardeingabe) lesen214
Ei

n-
 u

nd
 A

us
ga

be Dem PrintStream-Konstruktor werden drei Argumente übergeben:

� ein OutputStream-Objekt, das das Ziel der Ausgabe vorgibt (hier die Konsole)

� true, damit die Ausgaben sofort ausgeführt werden (andernfalls werden die Ausgaben
gepuffert, und Sie müssen die Methode flush() aufrufen)

� den Namen der gewünschten Zeichenkodierung (hier "Cp850" für die DOS-Codepage 850)

86 Von der Konsole (Standardeingabe) lesen
Konsolenanwendungen bedienen sich zum Einlesen von Daten über die Tastatur traditionell
des Eingabestreams System.in, um den dann meist ein BufferedReader-Objekt aufgebaut wird.

BufferedReader in = new BufferedReader(new InputStreamReader(System.in));

try {
 System.out.print(" Geben Sie Ihren Namen ein: ");
 name = in.readLine();
 System.out.print(" Geben Sie Ihr Alter ein: ");
 age = Integer.parseInt(in.readLine());

 System.out.printf(" %s (Alter: %d) \n", name, age);
} catch (IOException e) {}

 try {
 out = new PrintStream(System.out, true, "Cp850");
 } catch (UnsupportedEncodingException e) {
 out = System.out;
 }

 out.printf("\n");
 out.printf(" Ausgabe der Umlaute mit PrintStream \n");
 out.printf(" ä, ö, ü, ß \n");
 }
}

H
in

w
e

is Vor Java 6 war dies der übliche Weg, um Umlaute auf die Konsole auszugeben.

H
in

w
e

is Für ausführlichere Informationen zur Umwandlung von Stringeingaben in Zahlen
siehe Rezept 87.

>> Ein- und Ausgabe (IO) 215

Ei
n-

 u
nd

 A
us

ga
be

Einlesen mit Console
Seit Java 6 können Sie auch das vordefinierte Console-Objekt zum Einlesen verwenden.

Console cons = System.console();

cons.printf(" Geben Sie Ihren Namen ein: ");
name = cons.readLine();
cons.printf(" Geben Sie Ihr Alter ein: ");
age = Integer.parseInt(cons.readLine());

cons.printf (" %s (Alter: %d) \n", name, age);

Die auffälligste Veränderung gegenüber der BufferedReader-Konstruktion ist das Wegfallen
der geschachtelten Konstruktoraufrufe und der Exception-Behandlung, wodurch der Code
übersichtlicher wird. Weniger offensichtlich, aber möglicherweise noch interessanter ist, dass
eingelesene Strings, die Umlaute enthalten, problemlos in GUI-Oberflächen eingebaut oder
über das Console-Objekt wieder auf die Konsole ausgegeben werden können. Schließlich kön-
nen Sie den Text zur Eingabeaufforderung direkt an readLine() übergeben:

Console cons = System.console();

name = cons.readLine(" Geben Sie Ihren Namen ein: ");
...

Einlesen mit Scanner
Zum Einlesen und Parsen können Sie sich auch der Klasse Scanner bedienen:

Scanner sc = new Scanner(System.in);

System.out.print(" Geben Sie Ihren Namen ein: ");
name = sc.nextLine();
System.out.print(" Geben Sie Ihr Alter ein: ");
age = sc.nextInt();
sc.nextLine();

System.out.printf(" %s (Alter: %d) \n", name, age);

H
in

w
e

is Umlaute, die über die Tastatur eingelesen wurden, werden bei Ausgabe auf die Konsole
mit System.out korrekt angezeigt. Probleme gibt es allerdings, wenn Sie die eingelese-
nen Strings in eine Datei schreiben oder in eine grafische Benutzeroberfläche ein-
bauen. Dann sollten Sie entweder auf Console umsteigen (siehe unten) oder den
InputStreamReader mit passender Zeichenkodierung erzeugen.

H
in

w
e

is Umlaute, die über die Tastatur eingelesen wurden, werden bei Ausgabe auf die Konsole
mit System.out korrekt angezeigt. Probleme gibt es allerdings, wenn Sie die eingelese-
nen Strings in eine Datei schreiben oder in eine grafische Benutzeroberfläche ein-
bauen. Dann sollten Sie das Scanner-Objekt auf der Basis des internen Readers des
Console-Objekts erzeugen:

Scanner sc = new Scanner(System.console().reader());

Die Ausgabe auf die Konsole muss dann ebenfalls über das Console-Objekt erfolgen.

>> Passwörter über die Konsole (Standardeingabe) lesen216
Ei

n-
 u

nd
 A

us
ga

be

87 Passwörter über die Konsole (Standardeingabe) lesen
Das Einlesen von Passwörtern oder anderweitigen sensiblen Daten über die Konsole war in
Java früher ein großes Problem, weil jeder Umstehende die Eingaben mitlesen konnte. Dank
der Console-Methode readPassword() gehören diese Probleme der Vergangenheit an.

Ausgabe:

 Benutzername eingeben: Dirk
 Passwort eingeben:
 Dirk, Sie sind angemeldet!

88 Standardein- und -ausgabe umleiten
Die Standardstreams System.out, System.in und System.err sind per Voreinstellung mit der
Konsole verbunden. Doch diese Einstellung ist nicht unabänderlich. Mit Hilfe passender
Methoden der Klasse System können sie umgeleitet werden.

import java.io.*;

public class Start {
 private final static String PASSWORT = "Sesam";

 public static void main(String[] args) {
 String name;
 char passwort[];

 Console cons = System.console();
 cons.printf("\n");

 cons.printf(" Benutzername eingeben: ");
 name = cons.readLine();
 cons.printf(" Passwort eingeben: ");
 passwort = cons.readPassword();

 if (PASSWORT.equals(new String(passwort)))
 cons.printf(" %s, Sie sind angemeldet! \n", name);
 else
 cons.printf(" Anmeldung fehlgeschlagen! \n");
 }
}

Listing 94: Geheime Daten in Konsolenanwendungen einlesen

Methode Beschreibung

static setIn(InputStream stream) Setzt System.in auf den Eingabestream stream.

static setErr(PrintStream stream) Setzt System.err auf den Ausgabestream stream.

static setOut(PrintStream stream) Setzt System.out auf den Ausgabestream stream.

Tabelle 28: Methoden in System für die Umleitung der Standardein-/-ausgabe

>> Ein- und Ausgabe (IO) 217

Ei
n-

 u
nd

 A
us

ga
be

Die nachfolgend definierte Klasse TextAreaPrintStream ist beispielsweise geeignet, um die
Standardausgabe in eine JTextArea umzuleiten. Die Klasse muss zu diesem Zweck von Print-
Stream abgeleitet werden – passend zum Argument der setOut()-Methode. Die Referenz auf
die JTextArea übernimmt die Klasse als Konstruktorargument.

Ein kleines Problem ist, dass die Basisklasse PrintStream nur Konstruktoren definiert, die ein
File-Objekt, einen Dateinamen oder einen OutputStream als Argument erwarten. Die Klasse
TextAreaPrintStream löst dieses Problem, indem sie den Basisklassenkonstruktor mit dem Out-
putStream-Argument aufruft – allerdings mit einer abgeleiteten OutputStream-Klasse, deren
Konstruktor die Referenz auf die JTextArea-Instanz übergeben werden kann. In dieser Output-
Stream-Klasse wird dann die write()-Methode überschrieben, die die an die Standardausgabe
geschickten Zeichencodes in die JTextArea schreibt.

import javax.swing.*;
import java.io.*;

/*
 * Klasse zur Umleitung der Standardausgabe in eine JTextArea
 */
public class TextAreaPrintStream extends PrintStream {

 public TextAreaPrintStream(JTextArea ta) {
 super(new TextAreaOutputStream(ta));
 }
}

// Hilfsklasse, die OutputStream für JTextArea erzeugt
class TextAreaOutputStream extends OutputStream {
 private JTextArea ta;

 public TextAreaOutputStream(JTextArea ta) {
 this.ta = ta;
 }

 public void write(int b) {
 char c = (char) b;
 ta.append(String.valueOf(c));
 }
}

Listing 95: TextAreaPrintStream.java – PrintStream-Klasse zur Umleitung der Standardausgabe
in eine JTextArea

H
in

w
e

is Zur Erinnerung: Der Konstruktor einer abgeleiteten Klasse ruft als erste Anweisung
immer einen Konstruktor der Basisklasse auf. Ist ein entsprechender super-Aufruf im
Quelltext des Konstruktors nicht vorgesehen, erweitert der Java-Compiler den Kon-
struktorcode automatisch um den Aufruf eines Standardkonstruktors (Konstruktor
ohne Parameter) der Basisklasse.

>> Standardein- und -ausgabe umleiten218
Ei

n-
 u

nd
 A

us
ga

be

Das Programm zu diesem Rezept ist ein GUI-Programm, dessen ContentPane mittels einer
JSplitPane-Instanz in zwei Bereiche unterteilt ist:

� einem Arbeitsbereich mit zwei JButton-Instanzen, die beim Drücken einen Text an die
Standardausgabe schicken,

� einen Logging-Bereich mit der JTextArea-Komponente, in die die Ausgaben umgeleitet
werden.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;

public class Start extends JFrame {

 public Start() {

 // Hauptfenster konfigurieren
 setTitle("Umlenken der Standardausgabe");

 // Panel mit zwei Schaltern
 JPanel p = new JPanel();
 JButton btn1 = new JButton("A ausgeben");
 btn1.setFont(new Font("Dialog", Font.PLAIN, 24));
 btn1.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.out.println(" A");
 }
 });
 JButton btn2 = new JButton("B ausgeben");
 btn2.setFont(new Font("Dialog", Font.PLAIN, 24));
 btn2.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.out.println(" B");
 }
 });
 p.add(btn1);
 p.add(btn2);

 // JTextArea zum Protokollieren der Schalterklicks
 JScrollPane scrollpane = new JScrollPane();
 JTextArea logpane = new JTextArea();
 scrollpane.getViewport().add(logpane, null);

 // Schalter-Panel und JTextArea in SplitPane einfügen
 JSplitPane splitpane = new JSplitPane(JSplitPane.VERTICAL_SPLIT,
 p, scrollpane);
 getContentPane().add(splitpane, BorderLayout.CENTER);

Listing 96: Start.java – Umlenken der Standardausgabe in eine JTextArea

>> Ein- und Ausgabe (IO) 219

Ei
n-

 u
nd

 A
us

ga
be

89 Konsolenanwendungen vorzeitig abbrechen
Konsolenanwendungen, die sich aufgehängt haben oder deren Ende Sie nicht mehr abwarten
möchten, können auf den meisten Betriebssystemen durch Drücken der Tastenkombination

(Strg) +(C)

abgebrochen werden.

90 Fortschrittsanzeige für Konsolenanwendungen
Auch Konsolenanwendungen führen hin und wieder länger andauernde Berechnungen durch,
ohne dass irgendwelche Ergebnisse auf der Konsole angezeigt werden. Ungeduldige Anwender
kann dies dazu verleiten, das Programm – in der falschen Annahme, es sei bereits abgestürzt –
abzubrechen. Um dem vorzubeugen, sollten Sie das Programm in regelmäßigen Abständen
Lebenszeichen ausgeben lassen.

 // Standardausgabe auf JTextArea umlenken
 TextAreaPrintStream out = new TextAreaPrintStream(logpane);
 System.setOut(out);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 public static void main(String args[]) {
 Start frame = new Start();
 frame.setSize(500,300);
 frame.setLocation(300,300);
 frame.setVisible(true);
 }
}

Abbildung 46: JTextArea mit umgelenkten println()-Ausgaben

Listing 96: Start.java – Umlenken der Standardausgabe in eine JTextArea (Forts.)

>> Fortschrittsanzeige für Konsolenanwendungen220
Ei

n-
 u

nd
 A

us
ga

be

Es gibt unzählige Wege, eine Fortschrittsanzeige zu implementieren. Entscheidend ist, eine
passende Form und einen geeigneten Zeitabstand zwischen den einzelnen Lebenszeichen
(respektive Aktualisierungen der Fortschrittsanzeige) zu finden:

� Die Lebenszeichen sollten den Anwender unaufdringlich informieren.

Lebenszeichen, die vom Anwender bestätigt werden müssen, scheiden in 99% der Fälle
ganz aus. Gleiches gilt für die Ausgabe von akustischen Signalen. (Gegen die Verbindung
des Endes der Berechnung mit einem akustischen Signal ist jedoch nichts einzuwenden.)

� Andere Ausgaben sollten durch die Fortschrittsanzeige möglichst wenig gestört werden.

Bei Ausgabe von Lebenszeichen auf die Konsolen sollten Sie vor allem darauf achten, dass
die Konsole nicht unnötig weit nach unten gescrollt wird.

Gut geeignet ist die periodische Ausgabe eines einzelnen Zeichens, beispielsweise eines
Punkts, ohne Leerzeichen oder Zeilenumbrüche:

System.out.print(".");

� Die Lebenszeichen sollten nicht zu schnell aufeinander folgen, aber auch nicht zu lange
auf sich warten lassen.

� Die Anzahl der Lebenszeichen sollte größer als 4 sein, aber nicht zu groß werden. (Droht
die Konsole mit Lebenszeichen überschwemmt zu werden, so setzen Sie lieber den Zeitab-
stand zwischen den Lebenszeichen herauf.)

� Informieren Sie den Anwender vorab, dass nun mit einer längeren Wartezeit zu rechnen
ist.

Nachdem Sie Form und Frequenz der Lebenszeichen ungefähr festgelegt haben, müssen Sie
überlegen, wie Sie für eine periodische Ausgabe der Lebenszeichen sorgen.

Fortschrittsanzeigen mit Schleifen
Wenn die Berechnung, deren Fortschreiten Sie durch Lebenszeichen verdeutlichen wollen,
eine große äußere Schleife durchläuft, bietet es sich an, die Lebenszeichen innerhalb dieser
Schleife auszugeben:

// 1. Zeitaufwendige Berechnung ankündigen
System.out.print(" Bitte warten");

for(int i = 0; i < 12; ++i) {
 // tue so, als würde intensiv gerechnet
 Thread.sleep(400);

 // 2. Lebenszeichen periodisch ausgeben
 System.out.print(".");
}
System.out.println();

// 3. Ergebnis anzeigen
System.out.println("\n Berechnung beendet.\n");

Listing 97: Aus Start.java – Lebenszeichen mit Schleife

>> Ein- und Ausgabe (IO) 221

Ei
n-

 u
nd

 A
us

ga
be

Bei dieser Form entspricht die Anzahl der Lebenszeichen den Durchläufen der Schleife. Wird
die Schleife sehr oft durchlaufen, setzen Sie die Anzahl der Lebenszeichen herab, indem Sie
nur bei jedem zweiten, dritten ... Schleifendurchgang Lebenszeichen ausgeben lassen:

if(i%2)
 System.out.print(".");

Wird die Schleife zu selten durchlaufen, müssen Sie mehrere Lebenszeichen über die Schleife
verteilen (eventuell gibt es innere Schleifen, die sich besser zur Ausgabe der Lebenszeichen
eignen).

Fortschrittsanzeigen mit Timern
Durch Timer gesteuerte Fortschrittsanzeigen sind aufwändiger zu implementieren, haben aber
den Vorzug, dass die Lebenszeichen in exakt festgelegten Zeitintervallen ausgegeben werden
können.

Zuerst definieren Sie eine TimerTask-Klasse, in deren run()-Methode Sie ein Lebenszeichen
ausgeben lassen, beispielsweise:

Danach wechseln Sie zum Code der Berechnung. Vor dem Start der Berechnung geben Sie eine
Vorankündigung aus, erzeugen ein Timer-Objekt und übergeben diesem eine Instanz der
TimerTask-Klasse, eine anfängliche Verzögerung und die Dauer des Zeitintervalls (in Milli-
sekunden).

Anschließend folgt die eigentliche Berechnung, während im Hintergrund der Thread des
Timers ausgeführt und in den festgelegten periodischen Abständen die run()-Methode des
TimerTask-Objekts ausgeführt wird.

Nach Abschluss der Berechnung beenden Sie den Timer.

import java.util.TimerTask;

/**
 * TimerTask-Klasse für Konsolen-Fortschrittsanzeige
 */
class ShowProgressTimer extends TimerTask {

 public void run() {
 System.out.print(".");
 }
}

Listing 98: Einfache TimerTask-Klasse für Konsolen-Fortschrittsanzeigen

int aMethod() throws InterruptedException {
 // Zeitaufwändige Berechnung ankündigen
 System.out.print(" Bitte warten");

 // Zeitgeber für Fortschrittsanzeige starten und alle 400 ms
 // ausführen lassen.
 Timer timer = new Timer();

Listing 99: Aus Start.java – Lebenszeichen mit Timer

>> Konsolenmenüs222
Ei

n-
 u

nd
 A

us
ga

be

91 Konsolenmenüs
Bei Menüs denken die meisten Anwender an Menüs von GUI-Anwendungen. Doch auch Kon-
solenanwendungen können einen Leistungsumfang erreichen, der eine menügesteuerte Pro-
grammführung opportun macht.

Die Implementierung eines Konsolenmenüs besteht aus drei Schritten:

1. Anzeigen des Menüs

Die Ausgabe erfolgt zeilenweise mit println()-Aufrufen. Zu jedem Befehl muss ein Code
angegeben werden, über den der Anwender den Befehl auswählen kann. Gut geeignet sind
hierfür Zeichen, Integer-Werte oder Aufzählungskonstanten, da diese in Schritt 3 mittels
einer switch-Verzeigung ausgewertet werden können.

System.console().printf(" Erster Menübefehl <a> \n");
System.console().printf(" Zweiter Menübefehl \n");
...

2. Abfragen der Benutzerauswahl

Der Anwender wird aufgefordert, den Code für einen Befehl einzugeben. Ungültige Einga-
ben, soweit sie nicht in Schritt 3 vom default-Block der switch-Anweisung abgefangen
werden (beispielsweise Strings aus mehr als einem Zeichen), müssen aussortiert werden.

 timer.schedule(new ShowProgressTimer(), 0, 400);

 // tue so, als würde intensiv gerechnet
 Thread.sleep(12*1000);

 // Zeitgeber für Fortschrittsanzeige beenden
 timer.cancel();
 System.out.println();

 // Ergebnis zurückliefern
 return 42;
}

Abbildung 47: Fortschrittsanzeigen in Konsolenanwendungen

Listing 99: Aus Start.java – Lebenszeichen mit Timer (Forts.)

>> Ein- und Ausgabe (IO) 223

Ei
n-

 u
nd

 A
us

ga
be

3. Abarbeiten des Menübefehls

Typischerweise in Form einer switch-Verzweigung.

Grundstruktur
Soll das Menü nicht nur einmalig zu Beginn des Programms angezeigt werden, gehen Sie so
vor, dass Sie die obigen drei Schritte in eine do-while-Schleife fassen und das Menü um einen
Menübefehl zum Verlassen des Programms erweitern. Wird dieser Menübefehl ausgewählt,
wird die do-while-Schleife und damit das Programm beendet.

import java.util.Scanner;

public class Start {

 public static void main(String[] args) {

 final char NO_OPTION = '_';

 Scanner scan = new Scanner(System.console().reader());
 String input;
 char option = NO_OPTION;

 // Schleife, in der Menue wiederholt angezeigt und Befehle abgearbeitet
 // werden, bis Befehl zum Beenden des Programms ausgewählt und die
 // Schleife verlassen wird

 do {
 // 1. Menu anzeigen

 System.console().printf("\n");
 System.console().printf(" ******************************** \n");
 System.console().printf(" Menü \n");
 System.console().printf("\n");
 System.console().printf(" Erster Menübefehl <a> \n");
 System.console().printf(" Zweiter Menübefehl \n");
 System.console().printf(" Dritter Menübefehl <c> \n");
 System.console().printf(" Programm beenden <q> \n");
 System.out.print("\n Ihre Eingabe : ");

 // 2. Eingabe lesen
 option = NO_OPTION;

 input = scan.nextLine();
 if(input.length() == 1) // einzelnes Zeichen in Eingabe
 option = input.charAt(0);

 System.out.println("\n");

Listing 100: Konsolenanwendung mit Menü

>> Konsolenmenüs224
Ei

n-
 u

nd
 A

us
ga

be

Schritt 2 liest eine Eingabe von der Tastatur ein. Besteht die Eingabe aus einem einzelnen Zeichen,
wird sie in option gespeichert und so an die switch-Anweisung weitergegeben. Hat der Anwender
aus Versehen mehrere Tasten gedrückt, wird der Standardwert NO_OPTION weitergereicht. (NO_
OPTION wurde zu Beginn der main()-Methode mit einem Zeichen initialisiert, das keinem Menü-
befehl entspricht. NO_OPTION wird daher vom default-Block der switch-Anweisung behandelt.)

 // 3. Menübefehl abarbeiten

 switch(option) {
 case 'a': System.console().printf(" Menübefehl a \n");
 break;
 case 'b': System.console().printf(" Menübefehl b \n");
 break;
 case 'c': System.console().printf(" Menübefehl c \n");
 break;
 case 'q': System.console().printf(" Programm wird beendet \n");
 break;
 default: System.console().printf(" Falsche Eingabe \n");
 }

 System.out.println("\n");

 // 4. Warten, bis Anwender fortfahren will

 System.console().printf(" <Enter> drücken zum Fortfahren \n");
 scan.nextLine();
 } while(option != 'q');
 }
}

T
ip

p Statt in der Schleifenbedingung zu prüfen, ob die Schleife weiter auszuführen ist
(while(option != 'q')), können Sie die Schleife auch mit einer Label-Sprunganweisung
aus der switch-Verzweigung heraus verlassen:

quit: while(true) {
 ...
 switch(option) {
 ...
 case 'q': System.console().printf(" Programm wird beendet \n");
 break quit;
 default: System.console().printf(" Falsche Eingabe \n");
 }
 }

Listing 100: Konsolenanwendung mit Menü (Forts.)

>> Ein- und Ausgabe (IO) 225

Ei
n-

 u
nd

 A
us

ga
be

Groß- und Kleinschreibung unterstützen
Wenn Sie im Buchstabencode zu den Menübefehlen nicht zwischen Groß- und Kleinschrei-
bung unterscheiden, können Sie die switch-Verzweigung nutzen, um Groß- und Kleinbuchsta-
ben elegant auf die gleichen Menübefehle abzubilden:

switch(option) {
 case 'A':
 case 'a': System.console().printf(" Menübefehl a \n");
 break;
 case 'B':
 case 'b': System.console().printf(" Menübefehl b \n");
 break;
 case 'C':
 case 'c': System.console().printf(" Menübefehl c \n");
 break;
 case 'Q': option = 'q';
 case 'q': System.console().printf(" Programm wird beendet \n");
 break;
 default: System.console().printf(" Falsche Eingabe \n");
}

92 Automatisch generierte Konsolenmenüs
Mit der Klasse ConsoleMenu, die in diesem Rezept vorgestellt wird, können Sie Konsolenmenüs
auf der Basis von Textdateien erstellen. Die Arbeit zur Implementierung eines Konsolenmenüs
reduziert sich damit auf die Bearbeitung der Textdatei und das Aufsetzen der switch-Verzwei-
gung zur Behandlung der verschiedenen Menübefehle. Die Titel der Menübefehle können
jederzeit in der Textdatei geändert werden, ohne dass die Java-Quelldatei neu kompiliert wer-
den muss (beispielsweise zur Lokalisierung des Programms).

Die Textdatei mit den Menübefehlen besitzt folgendes Format:

� Jede Zeile repräsentiert einen Menübefehl.

� Jede Zeile beginnt mit dem Zeichen, das später zum Aufruf des Menübefehls einzugeben
ist. Danach folgt ein Semikolon und anschließend der Titel des Menübefehls.

� Der Titel darf kein Semikolon enthalten.

� Zwischen Codezeichen, Semikolon und Titel dürfen keine anderen Zeichen (auch kein
Whitespace) stehen.

A
ch

tu
n

g Die Anweisung option = 'q' ist nötig, damit die do-while(option != 'q') auch bei Ein-
gabe von Q beendet wird. Wird die Schleife wie im vorangehenden Absatz beschrieben
mit einer Sprunganweisung verlassen, kann die Anweisung entfallen.

a;Erster Menübefehl
b;Zweiter Menübefehl
c;Dritter Menübefehl
q;Programm beenden

Listing 101: Beispiel für eine Menütextdatei

>> Automatisch generierte Konsolenmenüs226
Ei

n-
 u

nd
 A

us
ga

be

Die Klasse ConsoleMenu erzeugt aus dieser Datei das folgende Menü:

 Menue

 Erster Menübefehl...........<a>
 Zweiter Menübefehl..........
 Dritter Menübefehl..........<c>
 Programm beenden.............<q>

 Ihre Eingabe : q

Das Füllzeichen zwischen Befehlstitel und -code (hier der Punkt .) wird als Argument an den
Konstruktor von ConsoleMenu übergeben. Die Menüüberschrift und die Eingabeaufforderung
können in abgeleiteten Klassen durch Überschreibung der Methoden printHeader() bzw.
printPrompt() angepasst werden.

Das Einlesen des Menüs geschieht vollständig im Konstruktor, dem zu diesem Zweck der Name
der Textdatei und das zu verwendende Füllzeichen übergeben werden. Der Konstruktor liest
in einer while-Schleife die Zeilen der Textdatei, extrahiert daraus die Informationen für die
Menübefehle und speichert diese in einem Objekt der Hilfsklasse MenuElem. Die MenuElem-
Objekte wiederum werden in einer Vector-Collection verwaltet.

Während des Einlesens bestimmt der Konstruktor zusätzlich die Zeichenlänge des größten Titels
(maxLength) sowie den numerischen Code des »größten« verwendeten Menübefehlszeichens. Im
Anschluss an die while-Schleife füllt der Konstruktor alle Titel bis auf maxLength+10 Zeichen mit
dem übergebenen Füllzeichen auf (damit die Menübefehlszeichen später rechtsbündig unterein-
ander ausgegeben werden). Der numerische Code wird benötigt, um die Konstante NO_OPTION
sicher mit einem Zeichen initialisieren zu können, das mit keinem Menübefehl verbunden ist.

Der Konstruktor übernimmt alle nötigen Dateioperationen. Werden dabei Exceptions ausge-
löst, werden diese an den Aufrufer weitergegeben. Erkennt der Konstruktor Fehler im Dateifor-
mat, löst er eine Exception der selbst definierten Klasse ParseMenuException aus.

import java.io.FileReader;
import java.io.BufferedReader;
import java.io.IOException;
import java.util.Vector;
import java.util.Scanner;

/**
 * Klasse zum Aufbau von Konsolenmenüs
 */
public class ConsoleMenu {

 private class MenuElem { // Hilfsklasse für Menüelemente
 private char code;
 private String title;

 MenuElem(char code, String title) {
 this.code = code;
 this.title = title;
 }
 }

>> Ein- und Ausgabe (IO) 227

Ei
n-

 u
nd

 A
us

ga
be

 public final char NO_OPTION; // nicht belegtes Zeichen
 private Vector<MenuElem> menu = new Vector<MenuElem>(7); // Vektor mit
 // Menübefehlen

 public ConsoleMenu(String filename, char paddChar)
 throws IOException, ParseMenuException {

 // Textdatei mit Menü öffnen
 BufferedReader in = new BufferedReader(new FileReader(filename));

 // Für jede Zeile Menübefehlinformationen auslesen, in MenuElem-Objekt
 // speichern und in Vector ablegen
 String line;
 int maxCode = 0;
 int maxLength = 0;
 char code;
 String title;

 // Menübefehle einlesen
 while((line = in.readLine()) != null) {

 // kurz prüfen, ob Zeile korrekt aufgebaut ist
 if(line.charAt(1) != ';'
 || line.length() < 3
 || line.indexOf(';', 2) != -1) {

 menu.clear();
 in.close();
 throw new ParseMenuException("Fehler beim Parsen der " +
 " Menuedatei");
 }

 code = line.charAt(0);
 title = line.substring(2);

 // Größte Titellänge festhalten
 maxLength = (title.length() > maxLength)
 ? title.length() : maxLength;

 // Größten Zeichencode festhalten
 maxCode = (Character.getNumericValue(code) > maxCode)
 ? Character.getNumericValue(code) : maxCode;

 menu.add(new MenuElem(code, title));
 }

 // Alle Menütitel auf gleiche Länge plus 10 Füllzeichen bringen
 int diff;

 for(MenuElem e : menu) {
 diff = (maxLength + 10) - e.title.length();
 char[] pad = new char[diff];
 for(int i = 0; i < pad.length; ++i)

>> Automatisch generierte Konsolenmenüs228
Ei

n-
 u

nd
 A

us
ga

be

 pad[i] = paddChar;

 e.title += new String(pad);
 }

 // Zeichen bestimmen, das mit keinem Menübefehl verbunden ist
 NO_OPTION = (char) (100+maxCode);

 in.close();
 }

 protected void printHeader() {
 System.console().printf("\n");
 System.console().printf(" ******************************** \n");
 System.console().printf(" Menü \n");
 System.console().printf("\n");
 }
 protected void printPrompt() {
 System.out.println();
 System.out.print(" Ihre Eingabe : ");
 }

 public void printMenu() {
 printHeader();

 for(MenuElem e : menu)
 System.console().printf(" %s<%s> \n", e.title, e.code);

 printPrompt();
 }

 public char getUserOption() {
 String input;
 char option = NO_OPTION;
 Scanner scan = new Scanner(System.console().reader());

 input = scan.nextLine();
 if(input.length() == 1) // einzelnes Zeichen in Eingabe
 option = input.charAt(0);

 System.out.println("\n");
 return option;
 }
}

Für die Ausgabe des Menüs müssen Sie lediglich die Methode printMenu() aufrufen. Die Ein-
gabe des Anwenders können Sie selbst einlesen oder bequem mit getUserOption() abfragen,
siehe Listing 102.

public class Start {

 public static void main(String args[]) {

Listing 102: Verwendung der Klasse ConsoleMenu in einem Konsolenprogramm

>> Ein- und Ausgabe (IO) 229

Ei
n-

 u
nd

 A
us

ga
be

 char option;
 ConsoleMenu menu;

 System.out.println();

 try {
 menu = new ConsoleMenu("Menu.txt", '.');

quit: while(true) {

 menu.printMenu();
 option = menu.getUserOption();

 switch(option) {
 case 'A':
 case 'a': System.console().printf(" Menübefehl a \n");
 break;
 case 'B':
 case 'b': System.console().printf(" Menübefehl b \n");
 break;
 case 'C':
 case 'c': System.console().printf(" Menübefehl c \n");
 break;
 case 'Q': option = 'q';
 case 'q': System.console().printf(" Programm wird beendet \n");
 break quit;
 default: System.console().printf(" Falsche Eingabe \n");
 }

 System.out.println("\n");

 System.console().printf(" <Enter> drücken zum Fortfahren \n");
 scan.nextLine();
 } // Ende while

 } catch(Exception e) {
 System.err.println("Fehler: " + e.getMessage());
 }
 }
}

Listing 102: Verwendung der Klasse ConsoleMenu in einem Konsolenprogramm (Forts.)

>> Konsolenausgaben in Datei umleiten230
Ei

n-
 u

nd
 A

us
ga

be

93 Konsolenausgaben in Datei umleiten
Ausgaben, die zur Konsole geschickt werden, lassen sich auf den meisten Betriebssystemen
durch Piping in Dateien umleiten.

Auf diese Weise können die Ausgaben auf bequeme Weise dauerhaft gespeichert werden, was
etliche Vorteile bringt: Sie können die Ausgaben mit den Ergebnissen späterer Programm-
sitzungen vergleichen. Die Ausgaben lassen sich mit anderen Programmen elektronisch wei-
terverarbeiten. Sie können umfangreiche Ausgaben in einen Editor laden und mit dessen
Suchfunktion durchgehen.

Unter Windows leiten Sie die Ausgaben mit > in eine Textdatei um.

java ProgrammName > Output.txt

Unter Linux bieten die meistens Shells gleich mehrere Symbole für die Umleitung von Konso-
lenausgaben in Dateien an. bash, csh und tcsh unterstützen beispielsweise

� > die Umleitung durch Überschreiben,

� >> die Umleitung durch Anhängen,

� >| die erzwungene Umleitung.

94 Kommandozeilenargumente auswerten
Konsolenanwendungen besitzen die erfreuliche Eigenschaft, dass man ihnen beim Aufruf
Argumente mitgeben kann – beispielsweise Optionen, die das Verhalten des Programms steu-
ern, oder zu verarbeitende Daten. Der Java-Interpreter übergibt diese Argumente beim Pro-
grammstart an den args-Array-Parameter der main()-Methode. In der main()-Methode können
Sie die im Array gespeicherten Kommandozeilenargumente abfragen und auswerten.

Das Programm zu diesem Rezept erwartet auf der Kommandozeile drei Argumente: eine Zahl,
ein Operatorsymbol und eine zweite Zahl. Es prüft vorab, ob der Anwender beim Aufruf die
korrekte Anzahl Argumente übergeben hat.

Abbildung 48: Konsolenmenü

>> Ein- und Ausgabe (IO) 231

Ei
n-

 u
nd

 A
us

ga
be

Bei einer abweichenden Anzahl weist das Programm den Anwender auf die korrekte Aufruf-
syntax hin und beendet sich selbst.

Stimmt die Anzahl der Argumente, wandelt das Programm die Argumente in die passenden
Datentypen um (Kommandozeilenargumente sind immer Strings) und berechnet, sofern die
Typumwandlung nicht zur Auslösung einer NumberFormatException geführt hat, die gewünschte
Operation.

public class Start {

 public static void main(String args[]) {
 System.out.println();

 // Prüfen, ob korrekte Anzahl Kommandozeilenargumente vorhanden
 if (args.length != 3) {
 System.out.println("Falsche Anzahl Argumente in Kommandozeile");
 System.out.println("Aufruf: java Start "
 + "Zahl Operator Zahl <Return>\n");
 System.exit(0);
 }

 try {

 // Die Kommandozeilenargumente umwandeln
 double zahl1 = Double.parseDouble(args[0]);
 char operator = args[1].charAt(0);
 double zahl2 = Double.parseDouble(args[2]);

 System.out.print("\n " + zahl1 + " " + operator + " " + zahl2);

 // Befehl bearbeiten
 switch(operator) {
 case '+': System.out.println(" = " + (zahl1 + zahl2));
 break;
 case '-': System.out.println(" = " + (zahl1 - zahl2));
 break;
 case 'X':
 case 'x':
 case '*': System.out.println(" = " + (zahl1 * zahl2));
 break;
 case ':':
 case '/': System.out.println(" = " + (zahl1 / zahl2));
 break;
 default: System.out.println("Operator nicht bekannt");
 break;
 }

 } catch (NumberFormatException e) {
 System.err.println(" Ungueltiges Argument");
 }
 }
}

Listing 103: Start.java – Verarbeitung von Kommandozeilenargumenten

>> Leere Verzeichnisse und Dateien anlegen232
Ei

n-
 u

nd
 A

us
ga

be

95 Leere Verzeichnisse und Dateien anlegen

Neues, leeres Verzeichnis anlegen
Das Anlegen von leeren Verzeichnissen erfolgt einfach durch Aufruf der Methode
File.mkdir(), z.B.

import java.io.*;

File f = new File(".\\meinVerzeichnis");
boolean status = f.mkdir();

Hier lauert allerdings eine kleine Falle: Wenn man einen Pfad angibt, der Verzeichnisse ent-
hält, die es selbst noch nicht gibt, z.B.

File f = new File(".\\neuesVerzeichnis\\neuesUnterverzeichnis");
boolean status = f.mkdir(); // liefert false!

... scheitert der Aufruf. In solchen Fällen kann man auf die wenig bekannte Methode mkdirs()
zurückgreifen, die alle Verzeichnisse auf dem angegebenen Pfad erzeugt, falls sie noch nicht
vorhanden sind:

boolean status = f.mkdirs(); // liefert nun true

Neue, leere Datei anlegen
Das Anlegen einer leeren Datei war in den Anfangszeiten von Java recht umständlich, da man
mit Hilfe einer Ausgabeklasse wie FileOutputStream eine explizite write()-Operation durch-
führen musste, die null Bytes schrieb, gefolgt vom Schließen des Ausgabestreams mit close().
Mittlerweile geht dies aber deutlich einfacher mit der File-Methode createNewFile():

File f = new File(".\\temp\\leereDatei.txt");
boolean status = f.createNewFile();

Falls man hierbei einen vollen Pfadnamen (wie im Beispiel) angibt, müssen allerdings die ent-
sprechenden Verzeichnisse bereits existieren. Es kann daher recht praktisch sein, eine eigene
Methode createNewFile() zu definieren, die zuvor sicherstellt, dass der Pfad an sich existiert:

Abbildung 49: Übergabe von Aufrufargumenten an ein Konsolenprogramm

H
in

w
e

is Auf der Windows-Konsole führen Aufrufe mit * möglicherweise dazu, dass der
Befehlszeileninterpreter von Windows eine falsche Zahl an Argumenten übergibt.
Setzen Sie * dann in Anführungszeichen: »*«.

>> Ein- und Ausgabe (IO) 233

Ei
n-

 u
nd

 A
us

ga
be

import java.io.*;

class FileUtil {

 /**
 * Erzeugt eine neue leere Datei; Pfad wird ggf. erzeugt
 *
 * @param name relativer oder absoluter Dateiname
 * @return true bei Erfolg, sonst false (Datei existert schon
 * oder keine Schreibrechte)
 */
 public static boolean createNewFile(String name) {
 boolean result;
 File f = new File(name);

 try {
 // zuerst mal so probieren
 result = f.createNewFile();

 } catch(Exception e) {
 result = false;
 }

 try {
 if(result == false) {
 // sicherstellen, dass Pfad existiert und nochmal probieren
 int pos = name.lastIndexOf(File.separatorChar);

 if(pos >= 0) {
 String path = name.substring(0,pos);
 File p = new File(path);
 result = p.mkdirs();

 if(result)
 result = f.createNewFile();
 }
 }

 } catch(Exception e) {
 e.printStackTrace();
 result = false;
 }

 return result;
 }
}

Listing 104: Methode zum sicheren Anlegen neuer Dateien (aus FileUtil.java)

>> Datei- und Verzeichniseigenschaften abfragen234
Ei

n-
 u

nd
 A

us
ga

be

Das Start-Programm zu diesem Rezept

96 Datei- und Verzeichniseigenschaften abfragen
Neben einigen offensichtlichen Eigenschaften wie Dateinamen lassen sich über die Klasse
java.io.File weitere interessante Eigenschaften ermitteln. Das nachfolgende Codeschnipsel
zeigt ein Beispiel für das Ermitteln häufig benötigter Informationen wie Dateigröße, Datei-
namen (absolut und relativ), Wurzel des Dateipfads und Zugriffsrechte:

public class Start {

 public static void main(String[] args) {

 boolean result = FileUtil.createNewFile(".\\temp\\test.txt");

 if(result)
 System.out.println("Leere Datei angelegt!");
 else
 System.out.println("Datei konnte nicht erzeugt werden!");
 }
}

Listing 105: Neue Datei anlegen

import java.io.*;
import java.util.Date;

/**
 * Klasse zur Ermittlung von Datei-/Verzeichniseigenschaften
 */
class FileInfo {
 private String fileName;
 private File file;

 public FileInfo(String name) {
 fileName = name;

 try {
 file = new File(name);

 } catch(Exception e) {
 e.printStackTrace();
 }
 }

 // Liefert true, wenn die Datei existiert
 public boolean exists() {
 try {
 return file.exists();

Listing 106: FileInfo.java – Klasse zur Abfrage von Datei-/Verzeichniseigenschaften

>> Ein- und Ausgabe (IO) 235

Ei
n-

 u
nd

 A
us

ga
be

 } catch(Exception e) {
 e.printStackTrace();
 return false;
 }
 }

 // Liefert den vollen Dateinamen inkl. Pfad oder null bei Fehler
 public String getAbsoluteName() {
 try {
 return file.getCanonicalPath();

 } catch(Exception e) {
 e.printStackTrace();
 return null;
 }
 }

 // Liefert den Dateinamen ohne Pfad oder null bei Fehler
 public String getName() {
 if(file != null)
 return file.getName();
 else
 return null;
 }

 // Dateigröße in Bytes oder -1 bei Fehler
 public long getSize() {
 long result = -1;

 if(file != null)
 result = file.length();

 return result;
 }

 // Liefert das Wurzelverzeichnis (z.B. d:\) für die aktuelle Datei
 // oder null bei Fehler
 public File getRoot() {
 try {
 File[] roots = File.listRoots();

 for(File f : roots) {
 String path = f.getCanonicalPath();

 if(getAbsoluteName().startsWith(path))
 return f;
 else
 continue;
 }

Listing 106: FileInfo.java – Klasse zur Abfrage von Datei-/Verzeichniseigenschaften (Forts.)

>> Datei- und Verzeichniseigenschaften abfragen236
Ei

n-
 u

nd
 A

us
ga

be

 } catch(Exception e) {
 e.printStackTrace();
 }

 // nichts gefunden -> Fehler
 return null;
 }

 // Liefert das Vaterverzeichnis oder null bei Fehler
 public File getParent() {
 if(file != null)
 return file.getParentFile();
 else
 return null;
 }

 // Liefert die Zugriffsrechte als "r" (lesen) oder "rw" (
 // lesen und schreiben) oder "" (gar keine Rechte)
 public String getAccessRights() {
 if(file != null) {
 if(file.canWrite())
 return "rw";
 else if(file.canRead())
 return "r";
 else
 return "";

 } else
 return null;
 }

 // Liefert das Datum der letzten Änderung oder null bei Fehler
 public Date getLastModified() {
 if(file != null) {
 long time = file.lastModified();
 return (new Date(time));

 } else
 return null;

 }

 // Liefert true, wenn es ein Verzeichnis ist
 public boolean isDirectory() {
 if(file != null && file.isDirectory())
 return true;
 else
 return false;

 }
}

Listing 106: FileInfo.java – Klasse zur Abfrage von Datei-/Verzeichniseigenschaften (Forts.)

>> Ein- und Ausgabe (IO) 237

Ei
n-

 u
nd

 A
us

ga
be

Das Start-Programm demonstriert Aufruf und Verwendung.

97 Temporäre Dateien anlegen
Temporäre Dateien, also Dateien, die nur vorübergehend während der Programmausführung
benötigt werden, lassen sich natürlich als ganz normale Dateien (beispielsweise wie in Rezept
95 gezeigt) anlegen und einsetzen. Die Java-Bibliothek bietet jedoch in der Klasse
java.io.File spezielle Methoden an, mit denen sich der Einsatz von temporären Dateien etwas
vereinfachen lässt. Mit createTempFile(String prefix, String suffix) lassen sich beliebig
viele Dateien im Standard-Temp-Verzeichnis erzeugen2. Jede erzeugte Datei fängt dabei mit
dem übergebenen String prefix an, gefolgt von einer automatisch erzeugten, fortlaufenden
Zahl und dem übergebenen String suffix als Dateiendung. Da temporäre Dateien nach Pro-
grammende nicht mehr benötigt werden, kann man sogar mit Hilfe der Methode deleteOn
Exit() vorab festlegen, dass diese Dateien beim Beenden der Virtual Machine automatisch
gelöscht werden und kein unnötiger Datenmüll zurückbleibt:

public class Start {

 public static void main(String[] args) {

 FileInfo fi = new FileInfo("test.txt");
 System.out.println("Zugriffsrechte: " + fi.getAccessRights());
 }
}

Listing 107: Dateieigenschaften ermitteln

2. Unter Windows ist dies meist c:\Dokumente und Einstellungen\Username\Lokale Einstellungen\Temp.

import java.io.*;

public class Start {

 public static void main(String[] args) {

 try {
 // eine Datei im Standard-Temp Verzeichnis erzeugen
 File tmp1 = File.createTempFile("daten_",".txt");
 tmp1.deleteOnExit();

 // die andere Datei im aktuellen Verzeichnis erzeugen
 File tmpDir = new File(".");
 File tmp2 = File.createTempFile("daten_",".txt",tmpDir);
 tmp2.deleteOnExit();

 // Dateien verwenden
 System.out.println(tmp1.getCanonicalPath());
 System.out.println(tmp2.getCanonicalPath());

Listing 108: Temporäre Datei erzeugen

>> Verzeichnisinhalt auflisten238
Ei

n-
 u

nd
 A

us
ga

be

98 Verzeichnisinhalt auflisten
Ein häufiges Problem ist das Durchlaufen aller Dateien und Unterverzeichnisse von einem
gegebenen Wurzelverzeichnis aus. Hierfür eignet sich ein rekursiver Ansatz, bei dem eine
Methode listAllFiles() als Parameter ein Verzeichnis erhält, alle darin enthaltenen Dateien
und Verzeichnisse auflistet und diese dann der Reihe nach durchgeht. Bei einer Datei wird der
Name gespeichert, bei einem Verzeichnis ruft sich die Methode selbst mit diesem Verzeichnis
als Argument auf.

 } catch(Exception e) {
 e.printStackTrace();
 }
 }
}

import java.io.*;
import java.util.*;

class FileUtil {

 /**
 * Auflistung aller Dateien/Verzeichnisse in einem Startverzeichnis
 * und in allen Unterzeichnissen
 *
 * @param rootDir File-Objekt des Startverzeichnisses
 * @param includeDirNames Flag, ob auch reine Verzeichnisse als separater
 * Eintrag erscheinen (true/false)
 * @return ArrayList<File> mit allen File-Objekten
 */
 public static ArrayList<File> listAllFiles(File rootDir,
 boolean includeDirNames) {
 ArrayList<File> result = new ArrayList<File>();

 try {
 File[] fileList = rootDir.listFiles();

 for(int i = 0; i < fileList.length; i++) {
 if(fileList[i].isDirectory() == true) {
 if(includeDirNames)
 result.add(fileList[i]);

 result.addAll(listAllFiles(fileList[i],includeDirNames));
 }
 else
 result.add(fileList[i]);
 }

Listing 109: Methode zur rekursiven Auflistung von Verzeichnisinhalten

Listing 108: Temporäre Datei erzeugen (Forts.)

>> Ein- und Ausgabe (IO) 239

Ei
n-

 u
nd

 A
us

ga
beDas Start-Programm demonstriert den Gebrauch.

99 Dateien und Verzeichnisse löschen
Zum Löschen einer Datei bzw. eines Verzeichnisses kann man die aus der Klasse File bekannte
Methode delete() verwenden, z.B.

File f = new File(".\\temp\\test.txt");
boolean st = f.delete();

if(st == true)
 System.out.println("Datei geloescht");

Voraussetzung für ein erfolgreiches Löschen ist eine Schreibberechtigung auf die gewünschte
Datei für den Benutzer, unter dessen Kennung das Java-Programm ausgeführt wird. Bei Ver-
zeichnissen kommt eine weitere, oft lästige Bedingung hinzu: Das zu löschende Verzeichnis
muss leer sein! In der Praxis ist dies natürlich meist nicht der Fall und man muss erst dafür

 } catch(Exception e) {
 e.printStackTrace();
 }

 return result;
 }
}

import java.io.*;
import java.util.*;

public class Start {

 public static void main(String[] args) {

 File root = new File(".");
 ArrayList<File> files = FileUtil.listAllFiles(root, false);

 try {
 for(File f : files)
 System.out.println(f.getCanonicalPath());

 } catch(Exception e) {
 e.printStackTrace();
 }
 }
}

Listing 110: Verzeichnisinhalt auflisten

Listing 109: Methode zur rekursiven Auflistung von Verzeichnisinhalten (Forts.)

>> Dateien und Verzeichnisse löschen240
Ei

n-
 u

nd
 A

us
ga

be

sorgen, dass alle enthaltenen Dateien und Unterverzeichnisse gelöscht worden sind. Hierzu
kann man den rekursiven Ansatz aus Rezept 98 einsetzen:

Das Start-Programm demonstriert den Aufruf:

import java.io.*;

class FileUtil {

 /** Löscht die übergebene Datei oder Verzeichnis
 * (auch wenn es nicht leer ist)
 *
 * @param Zu löschende Datei/Verzeichnis
 * @return true bei vollständigem Löschen, sonst false
 */
 public static boolean deleteFile(File startFile) {
 if(startFile == null)
 return true;

 boolean statusRecursive = true;

 if(startFile.isDirectory() == true) { // rekursiv den Inhalt löschen
 try {
 File[] fileList = startFile.listFiles();

 for(int i = 0; i < fileList.length; i++) {
 boolean st = deleteFile(fileList[i]);

 if(st == false)
 statusRecursive = false;
 }
 } catch(Exception e) {
 e.printStackTrace();
 statusRecursive = false;
 }
 }

 // Datei/Verzeichnis löschen
 boolean status = startFile.delete();

 return (status && statusRecursive);
 }
}

Listing 111: Methode zum rekursiven Löschen von Verzeichnissen

public class Start {

 public static void main(String[] args) {

Listing 112: Datei/Verzeichnis löschen

>> Ein- und Ausgabe (IO) 241

Ei
n-

 u
nd

 A
us

ga
be

100 Dateien und Verzeichnisse kopieren
Für das Kopieren von Dateien und Verzeichnissen gibt es keine direkte Java-Methode, so dass
man hier selbst programmieren muss. Beim Kopieren einer Datei spielt es übrigens keine Rolle,
ob es sich um Binärdaten oder Text handelt, d.h., man kann immer mit einer Instanz von
FileInputStream zum Lesen und FileOutputStream zum Schreiben arbeiten. Die höchste
Kopiergeschwindigkeit erhält man, wenn auf Betriebssystemebene mit direktem Kanaltransfer
gearbeitet wird. Diese Funktionalität wird durch die Methode transferTo() der Klasse FileIn-
putStream ermöglicht.

Die nachfolgende Klasse FileCopy zeigt eine mögliche Implementierung zum Kopieren von
Dateien (Methode copyFile() oder ganzen Verzeichnissen (copyTree()) inklusive Unterver-
zeichnissen:

 File f = new File(".\\testdir");
 boolean result = deleteFile(f);

 if(result)
 System.out.println("Datei/Verzeichnis geloescht");
 else
 System.out.println("Konnte nicht loeschen!");
 }
}

import java.util.*;
import java.io.*;
import java.nio.channels.*;

class FileCopy {

 /**
 * Ausgabe aller Datei-/Verzeichnisnamen in einem Startverzeichnis und in
 * allen Unterzeichnissen
 *
 * @param rootDir File-Objekt des Startverzeichnisses
 * @param includeDirNames Flag, ob auch Verzeichnisnamen als separater
 * Eintrag erscheinen (true/false)
 * @return ArrayList<File> mit allen File-Objekten
 */
 public static ArrayList<File> listAllFiles(File rootDir,
 boolean includeDirNames) {
 ArrayList<File> result = new ArrayList<File>();

 try {
 File[] fileList = rootDir.listFiles();

 for(int i = 0; i < fileList.length; i++) {

Listing 113: Methoden zum Kopieren von Dateien und Verzeichnissen

Listing 112: Datei/Verzeichnis löschen (Forts.)

>> Dateien und Verzeichnisse kopieren242
Ei

n-
 u

nd
 A

us
ga

be

 if(fileList[i].isDirectory() == true) {
 if(includeDirNames)
 result.add(fileList[i]);

 result.addAll(listAllFiles(fileList[i],includeDirNames));
 }
 else
 result.add(fileList[i]);
 }

 } catch(Exception e) {
 e.printStackTrace();
 }

 return result;
 }

 /**
 * Kopieren einer Datei/Verzeichnisses; eine vorhandene Zieldatei
 * wird überschrieben
 *
 * @param sourceDir Name des zu kopierenden Verzeichnisses
 * @param targetRoot Name des Zielverzeichnisses, in das hineinkopiert
 * werden soll (muss existieren)
 * @return true bei Erfolg, ansonsten false
 */
 public static boolean copyTree(String sourceDir, String targetRoot) {
 boolean result;

 try {
 File source = new File(sourceDir);
 File root = new File(targetRoot);

 if(source.exists() == false || source.isDirectory() == false)
 return false;

 if(root.exists() == false || root.isDirectory() == false)
 return false;

 // sicherstellen, dass Unterverzeichnis vorhanden ist
 String targetRootName = root.getCanonicalPath() + File.separator +
 source.getName();
 File target = new File(targetRootName);

 if(target.exists() == false) {
 boolean st = target.mkdir();

 if(st == false)
 return false;
 }

Listing 113: Methoden zum Kopieren von Dateien und Verzeichnissen (Forts.)

>> Ein- und Ausgabe (IO) 243

Ei
n-

 u
nd

 A
us

ga
be

 // Auflistung aller zu kopierenden Dateien
 ArrayList<File> fileNames = listAllFiles(source, true);
 result = true;

 for(File f : fileNames) {
 String fullName = f.getCanonicalPath();
 int pos = fullName.indexOf(sourceDir);
 String subName = fullName.substring(pos + sourceDir.length()+1);
 String targetName = targetRootName + subName;

 if(f.isDirectory()) {
 // Unterverzeichnis ggf. anlegen
 File t = new File(targetName);

 if(t.exists() == false) {
 boolean st = t.mkdir();

 if(st == false)
 result = false;
 }

 continue;
 }

 boolean st = copyFile(f.getCanonicalPath(), targetName);

 if(st == false)
 result = false;
 }

 } catch(Exception e) {
 e.printStackTrace();
 result = false;
 }

 return result;
 }

 /**
 * Kopieren einer Datei; eine vorhandene Zieldatei
 * wird überschrieben
 *
 * @param sourceFile Name der Quelldatei
 * @param targetFile Name der Zieldatei
 * @return true bei Erfolg, ansonsten false
 */
 public static boolean copyFile(String sourceFile, String targetFile) {
 boolean result;

 try {
 // Eingabedatei öffnen

Listing 113: Methoden zum Kopieren von Dateien und Verzeichnissen (Forts.)

>> Dateien und Verzeichnisse kopieren244
Ei

n-
 u

nd
 A

us
ga

be

Das Start-Programm demonstriert den Aufruf. Denken Sie daran, Quell- und Zielverzeichnis
vor dem Aufruf anzulegen (bzw. die Pfade für sourceDir und targetRootDir anzupassen).

 FileInputStream inputFile= new FileInputStream(sourceFile);
 FileChannel input= inputFile.getChannel();

 // Zieldatei öffnen
 FileOutputStream outputFile = new FileOutputStream(targetFile);
 FileChannel output= outputFile.getChannel();

 // die Länge der zu kopierenden Datei
 long num = input.size();

 // kopieren
 input.transferTo(0,num,output);

 input.close();
 output.close();
 result = true;

 } catch(Exception e) {
 e.printStackTrace();
 result = false;
 }

 return result;
 }
}

public class Start {

 public static void main(String[] args) {

 String sourceDir = "c:\\temp\\MyDir";
 String targetRootDir ="c:\\UserDirs";
 boolean result = FileCopy.copyTree(sourceDir, targetRootDir);

 if(result)
 System.out.println("Verzeichnis kopiert!");
 else
 System.out.println("Fehler beim Kopieren!");
 }
}

Listing 114: Datei/Verzeichnis kopieren

Listing 113: Methoden zum Kopieren von Dateien und Verzeichnissen (Forts.)

>> Ein- und Ausgabe (IO) 245

Ei
n-

 u
nd

 A
us

ga
be

101 Dateien und Verzeichnisse verschieben/umbenennen
Das Verschieben von Dateien und Verzeichnissen ist wesentlich einfacher als das Kopieren, da
technisch gesehen nur der Name geändert werden muss. Hierfür bietet die Klasse java.io.File
bereits alles, was man braucht, in Form einer Methode renameTo():

Beim Einsatz von renameTo() sollten Sie Folgendes beachten:

� Die Schreibrechte auf dem Dateisystem müssen vorhanden sein.

� Die Zieldatei/das Verzeichnis darf noch nicht existieren.

� Das Verschieben über Partitionen hinweg ist unter Windows nicht möglich (z.B. c:\test.txt
nach d:\test.txt).

102 Textdateien lesen und schreiben
Beim Einlesen von Dateien muss man prinzipiell unterscheiden, ob es sich um Binärdaten oder
Textdaten handelt. Aus technischer Sicht besteht der Unterschied darin, dass bei einer Binär-
datei die einzelnen Bytes ohne weitere Interpretation in den Speicher geladen werden, wäh-
rend bei Textdaten ein oder mehrere aufeinander folgende Bytes zu einem Textzeichen (je
nach verwendeter Zeichenkodierung) zusammengefasst werden. Für das korrekte Verarbeiten
von Textdateien ist es daher wichtig zu wissen, in welcher Zeichenkodierung die Datei
ursprünglich geschrieben worden ist. Das folgende Beispiel liest eine Datei in der gewünschten
Kodierung als String ein bzw. schreibt einen String als Textdatei:

import java.io.*;

public class Start {

 public static void main(String[] args) {

 try {
 // ein Verzeichnis umbenennen
 File file = new File("c:\\temp\\appconfig");
 File newFile = new File("c:\\temp\\basics");

 boolean status = file.renameTo(newFile);
 System.out.println("Verschieben erfolgreich: " + status);

 } catch(Exception e) {
 e.printStackTrace();
 }
 }
}

Listing 115: Datei/Verzeichnis verschieben

>> Textdateien lesen und schreiben246
Ei

n-
 u

nd
 A

us
ga

be

/**

 *
 * @author Peter Müller
 */
import java.util.*;
import java.io.*;

class FileUtil {

 /**
 * Lädt eine Textdatei mit der angegebenen Zeichenkodierung
 *
 * @param fileName Name der Datei
 * @param charSet Name der Zeichenkodierung, z.B. UTF-8 oder ISO-8859-1;
 * bei Angabe von null wird die Default-Kodierung der
 * Virtual Machine genommen
 * @return String-Objekt mit eingelesenem Text oder null bei
 * Fehler
 */
 public static String readTextFile(String fileName, String charSet) {
 String result = null;

 try {
 InputStreamReader reader;

 if(charSet != null)
 reader = new InputStreamReader(new FileInputStream(fileName),
 charSet);
 else
 reader = new InputStreamReader(new FileInputStream(fileName));

 BufferedReader in = new BufferedReader(reader);
 StringBuilder buffer = new StringBuilder();
 int c;

 while((c = in.read()) >= 0) {
 buffer.append((char) c);
 }

 in.close();
 return buffer.toString();

 } catch(Exception e) {
 e.printStackTrace();
 result = null;
 }

 return result;
 }

Listing 116: Methoden zum Lesen und Schreiben von Textdateien beliebiger Zeichenkodierung

>> Ein- und Ausgabe (IO) 247

Ei
n-

 u
nd

 A
us

ga
be

Das Start-Programm demonstriert den Aufruf.

 /**
 * Schreibt einen String als Textdatei in der angegebenen Zeichenkodierung.
 *
 * @param data Zu schreibender String
 * @param fileName Dateiname
 * @param charSet Zeichenkodierung (oder null für
 * Default-Zeichenkodierung der VM)
 * @return true bei Erfolg
 */
 public static boolean writeTextFile(String data, String fileName,
 String charSet) {
 boolean result = true;

 try {
 OutputStreamWriter writer;

 if(charSet != null)
 writer = new OutputStreamWriter(new FileOutputStream(fileName),
 charSet);
 else
 writer = new OutputStreamWriter(new FileOutputStream(fileName));

 BufferedWriter out = new BufferedWriter(writer);
 out.write(data, 0, data.length());
 out.close();

 } catch(Exception e) {
 e.printStackTrace();
 result = false;
 }

 return result;
 }
}

public class Start {

 public static void main(String[] args) {

 String text = FileUtil.readTextFile(".\\john_maynard.txt",
 "ISO-8859-1");
 boolean status = FileUtil.writeTextFile(text,
 ".\\john_maynard_utf8.txt",
 "UTF-8");

Listing 117: Textdatei lesen/schreiben

Listing 116: Methoden zum Lesen und Schreiben von Textdateien beliebiger Zeichenkodierung
(Forts.)

>> Textdatei in String einlesen248
Ei

n-
 u

nd
 A

us
ga

be

103 Textdatei in String einlesen
Und gleich noch ein Rezept, mit dem Sie den Inhalt einer ASCII- oder ANSI-Textdatei in einen
String einlesen können. In String-Form kann der Text dann beispielsweise mit den Methoden
der Klasse String bearbeitet, mit regulären Ausdrücken durchsucht oder in eine Textkompo-
nente (beispielsweise JTextArea) kopiert werden.

Die beiden Methoden

String file2String(String filename)
String file2String(FileReader in)

lesen den Inhalt der Datei und liefern ihn als String zurück. Die Methoden wurden überladen,
damit Sie sie sowohl mit einem Dateinamen als auch mit einem FileReader-Objekt aufrufen
können. Die erste Version spart Ihnen die Mühe, ein eigenes FileReader-Objekt zu erzeugen.

import java.io.FileReader;
import java.io.IOException;

public static String file2String(String filename) throws IOException {

 // Versuche Datei zu öffnen - Löst FileNotFoundException aus,
 // wenn Datei nicht existiert, ein Verzeichnis ist oder nicht gelesen
 // kann
 FileReader in = new FileReader(filename);

 // Dateiinhalt in String lesen
 String str = file2String(in);

 // Stream schließen und String zurückliefern
 in.close();

 return str;
}

public static String file2String(FileReader in) throws IOException {
 StringBuilder str = new StringBuilder();

 int countBytes = 0;
 char[] bytesRead = new char[512];

 while((countBytes = in.read(bytesRead)) > 0)
 str.append(bytesRead, 0, countBytes);

 return str.toString();
}

 }
}

Listing 117: Textdatei lesen/schreiben (Forts.)

>> Ein- und Ausgabe (IO) 249

Ei
n-

 u
nd

 A
us

ga
be

Um das Lesen des Dateiinhalts möglichst effizient zu gestalten, werden die Zeichen nicht ein-
zeln mit read(), sondern in 512-Byteblöcken mit read(char[]) eingelesen. Außerdem werden
die Zeichen nicht direkt an ein String-Objekt angehängt (etwa mit + oder concat()), sondern in
einem StringBuffer gespeichert. Der Grund ist Ihnen sicherlich bekannt: Strings sind in Java
immutable (unveränderlich), d.h., beim Konkatenieren oder anderen String-Manipulationen
werden immer neue Strings angelegt und der Inhalt des alten Strings wird samt Änderungen
in den neuen String kopiert. StringBuffer- und StringBuilder-Objekte sind dagegen mutable
(veränderlich) und werden direkt bearbeitet.

StringBuffer und StringBuilder sind nahezu wie Zwillinge, nur dass StringBuilder schneller
in der Ausführung ist, weil nicht threadsicher. Da gleichzeitige Zugriffe aus verschiedenen
Threads auf die lokale Variable str nicht gegeben sind, haben wir für die obige Implementie-
rung StringBuilder gewählt.

104 Binärdateien lesen und schreiben
Der Umgang mit Binärdaten ist eigentlich sehr einfach, da man sich hier im Gegensatz zu
Textdaten keinerlei Gedanken über Zeichenkodierungen machen muss. Zur Eingabe bietet sich
BufferedInputStream an, für die Ausgabe empfiehlt sich BufferedOutputStream.

import java.io.*;

class FileUtil {

 /**
 * Liest eine Binärdatei in ein byte-Array ein
 *
 * @param fileName Zu lesende Binärdatei
 * @return byte[] oder null bei Misserfolg
 */
 public static byte[] readBinaryFile(String fileName) {
 byte[] result = null;

 try {
 BufferedInputStream input;
 input = new BufferedInputStream(new FileInputStream(fileName));
 int num = input.available();
 result = new byte[num];
 input.read(result, 0, num);
 input.close();

 } catch(Exception e) {
 e.printStackTrace();
 result = null;
 }

 return result;
 }

 /**

Listing 118: Methoden zum Lesen und Schreiben von Binärdateien

>> Random Access (wahlfreier Zugriff)250
Ei

n-
 u

nd
 A

us
ga

be

Das Start-Programm demonstriert den Aufruf.

105 Random Access (wahlfreier Zugriff)
Beim so genannten wahlfreien Zugriff (Random Access) kann man in einer Datei den Schreib-/
Lesezeiger beliebig positionieren, um dann an dieser Position zu lesen oder zu schreiben. Man
kann sich das am besten so vorstellen, dass die Datei ein byte-Array im Hauptspeicher ist und
man auf jede Indexposition direkt zugreifen kann.

Unterstützt wird der Random Access durch die Klasse java.io.RandomAccessFile. Sie arbeitet
recht low-level, d.h., der Programmierer muss exakt wissen, wo er den Schreib-/Lesezeiger
positioniert, wie viele Bytes ab dieser Position gelesen oder geschrieben werden sollen und
was mit den Daten dann passieren soll. Dies betrifft insbesondere Textzeichen, die ggf. in die

 * Schreibt ein byte-Array als Binärdatei;
 * eine vorhandene Datei wird überschrieben
 *
 * @param data Zu schreibende Binärdaten
 * @param fileName Dateiname
 * @return true bei Erfolg
 */
 public static boolean writeBinaryFile(byte[] data, String fileName) {
 boolean result = true;

 try {
 BufferedOutputStream output;
 output = new BufferedOutputStream(new FileOutputStream(fileName));
 output.write(data, 0, data.length);
 output.close();

 } catch(Exception e) {
 e.printStackTrace();
 result = false;
 }

 return result;
 }
}

public class Start {

 public static void main(String[] args) {

 byte[] data = FileUtil.readBinaryFile(".\\windows_konsole.pdf");
 FileUtil.writeBinaryFile(data, ".\\kopie.pdf");
 }
}

Listing 119: Binärdateien lesen/schreiben

Listing 118: Methoden zum Lesen und Schreiben von Binärdateien (Forts.)

>> Ein- und Ausgabe (IO) 251

Ei
n-

 u
nd

 A
us

ga
be

richtige Zeichenkodierung umgewandelt werden müssen. Es existiert in RandomAccessFile zwar
auch eine auf den ersten Blick brauchbare Methode readLine() zum zeilenweisen Einlesen
von Textdateien. Diese ist aber erstens ungepuffert und liest somit sehr langsam und liefert
zudem lediglich für normale ASCII-Zeichen korrekte Zeichen zurück. Bei anderen Zeichen-
kodierungen (z.B. UTF-8) muss man byteweise einlesen und die Konvertierung selbst durch-
führen3. Das folgende Beispiel zeigt daher eine Klasse zur Durchführung von wahlfreiem
Dateizugriff mit einigen verbesserten Methoden, z.B. writeString() zum Schreiben einer Zei-
chenkette oder readLine() zum Lesen einer ganzen Zeile.

3. RandomAccessFile hat zwar auch eine Methode readUTF(), die leider ein java-spezifisches UTF-Format erwartet,
das nicht UTF-8-kompatibel ist, und somit in der Regel nicht brauchbar ist.

import java.io.*;

/**
 * Klasse für den wahlfreien Zugriff auf eine Datei
 */
class RandomAccess {
 private RandomAccessFile file;
 private String fileName;
 private final short MAX_LINE_LENGTH = 4096;

 public RandomAccess(String name) {
 fileName = name;
 }

 /**
 * Datei für wahlfreien Zugriff öffnen
 *
 * @param mode Modus "r" = lesen,
 * "rw" = lesen und schreiben
 * @return true bei Erfolg, sonst false
 */
 public boolean open(String mode) {
 boolean result = true;

 try {
 file = new RandomAccessFile(fileName, mode);

 } catch(Exception e) {
 e.printStackTrace();
 result = false;
 }

 return result;
 }

 /**
 * Datei schließen

Listing 120: RandomAccess.java – eine Klasse für den Zugriff auf beliebige Positionen in einer
Textdatei

>> Random Access (wahlfreier Zugriff)252
Ei

n-
 u

nd
 A

us
ga

be

 *
 * @return true bei Erfolg, sonst false
 */
 public boolean close() {
 try {
 file.close();
 return true;

 } catch(Exception e) {
 e.printStackTrace();
 return false;
 }
 }

 /**
 * Liefert die aktuelle Größe der Datei in Bytes oder -1 bei Fehler
 *
 * @return Anzahl Bytes
 */
 public long getLength() {
 try {
 return file.length();

 } catch(Exception e) {
 e.printStackTrace();
 return -1;
 }
 }

 /**
 * Liefert den aktuellen Wert des Dateizeigers
 *
 * @return long-Wert mit Position oder -1 bei Fehler
 */
 public long getFilePointer() {
 try {
 return file.getFilePointer();

 } catch(Exception e) {
 e.printStackTrace();
 return -1;
 }
 }

 /**
 * Hängt die übergebenen Bytes an das Ende der Datei
 */
 public void append(byte[] data) {

Listing 120: RandomAccess.java – eine Klasse für den Zugriff auf beliebige Positionen in einer
Textdatei (Forts.)

>> Ein- und Ausgabe (IO) 253

Ei
n-

 u
nd

 A
us

ga
be

 try {
 file.seek(file.length());
 file.write(data);

 } catch(Exception e) {
 e.printStackTrace();
 }
 }

 /**
 * Hängt den String in der gewünschten Kodierung an
 */
 public void appendString(String str, String encoding) {
 try {
 byte[] byteData = str.getBytes(encoding);
 append(byteData);

 } catch(Exception e) {
 e.printStackTrace();
 }
 }

 /**
 * Liest die angegebene Anzahl Bytes ein und liefert sie als Array zurück
 *
 * @param startPos Position, ab der gelesen werden soll
 * @param num Anzahl einzulesender Bytes
 * @return byte[] mit eingelesenen Daten oder null bei Fehler
 */
 public byte[] read(long startPos, int num) {
 try {
 file.seek(startPos);
 byte[] data = new byte[num];
 int actual = file.read(data, 0, num);

 if(actual < num) {
 // das Array kleiner machen, da weniger als gewünscht gelesen
 // worden ist
 byte[] tmp = new byte[actual];

 for(int i = 0; i < actual; i++)
 tmp[i] = data[i];

 data = tmp;
 }

 return data;

Listing 120: RandomAccess.java – eine Klasse für den Zugriff auf beliebige Positionen in einer
Textdatei (Forts.)

>> Random Access (wahlfreier Zugriff)254
Ei

n-
 u

nd
 A

us
ga

be

 } catch(Exception e) {
 e.printStackTrace();
 return null;
 }

 }

 /**
 * Schreibt die übergebenen Bytes in die Datei
 *
 * @param data Position, ab der geschrieben werden soll
 * @param startPos Array mit zu schreibenden Daten
 * @return true bei Erfolg, sonst false
 */
 public boolean write(byte[] data, long startPos) {
 try {
 file.seek(startPos);
 file.write(data, 0, data.length);
 return true;

 } catch(Exception e) {
 e.printStackTrace();
 return false;
 }

 }

 /**
 * Schreibt den übergebenen String in der gewünschten Zeichenkodierung
 * als Bytefolge
 *
 * @param data zu schreibender String
 * @param encoding Name der Zeichenkodierung
 * @param startPos Startposition, ab der geschrieben werden soll
 * @return true bei Erfolg, sonst false
 */
 public boolean writeString(String data, String encoding,
 long startPos) {
 try {
 file.seek(startPos);
 byte[] byteData = data.getBytes(encoding);
 file.write(byteData, 0, byteData.length);
 return true;

 } catch(Exception e) {
 e.printStackTrace();
 return false;
 }
 }

Listing 120: RandomAccess.java – eine Klasse für den Zugriff auf beliebige Positionen in einer
Textdatei (Forts.)

>> Ein- und Ausgabe (IO) 255

Ei
n-

 u
nd

 A
us

ga
be

Das Start-Programm demonstriert die Verwendung der Klasse und ihrer Methoden.

 /**
 * Liest ab der angebenene Position einen String
 * bis zum ersten Auftreten von \n
 * String darf nicht länger als MAX_LINE_LENGTH Bytes enthalten
 *
 * @param startPos Startposition
 * @param encoding Zeichenkodierung
 * @return eingelesene Zeile (ohne \n) oder null bei Fehler
 */
 public String readLine(long startPos, String encoding) {
 try {
 file.seek(startPos);

 byte[] buffer = new byte[MAX_LINE_LENGTH];
 int num = file.read(buffer);
 String result = null;

 if(num > 0) {
 result = new String(buffer, encoding);

 // ab erstem Auftreten von '\n' abschneiden
 int pos = result.indexOf('\n');

 if(pos >= 0)
 result = result.substring(0, pos);
 else
 result = null;
 }

 return result;

 } catch(Exception e) {
 e.printStackTrace();
 return null;
 }
 }

}

public class Start {

 public static void main(String[] args) {

 // Datei öffnen

Listing 121: Wahlfreier Dateizugriff

Listing 120: RandomAccess.java – eine Klasse für den Zugriff auf beliebige Positionen in einer
Textdatei (Forts.)

>> Dateien sperren256
Ei

n-
 u

nd
 A

us
ga

be

Beachten Sie auch Rezept 106, falls unter Umständen mehrere Programme gleichzeitig auf
einer Datei operieren können und ein Sperrmechanismus benötigt wird.

106 Dateien sperren
Um dafür zu sorgen, dass eine Datei für eine gewisse Zeit nur für ein Programm bzw. Betriebs-
system-Prozess zugreifbar ist, bietet das Windows-Dateisystem (aber nicht Unix/Linux) das
Konzept der Dateisperre. Unter Java bietet die Klasse java.nio.channels.FileChannel die
Methode tryLock() an, mit deren Hilfe man versuchen kann, eine exklusive Sperre auf eine
ganze Datei oder einen bestimmten Bereich zu erhalten. Wenn eine Sperre erfolgreich war,
wird ein Objekt vom Typ FileLock zurückgegeben. Die Datei bzw. der definierte Abschnitt ist
nun so lange gegen fremde Zugriffe gesperrt, bis die FileLock-Methode release() aufgerufen
wird.

Die in Rezept 105 gezeigte Klasse RandomAccess könnte daher folgendermaßen um eine geeig-
nete lock()-Methode ergänzt werden:

 RandomAccess file = new RandomAccess(".\\Halley.txt");
 file.open("rw");

 // Position des alten Dateiendes speichern
 long pos = file.getLength();

 // String ans Ende anhängen
 file.appendString("Am Ende der Welt\n", "ISO-8859-1");

 // zuletzt erzeugte Zeile wieder lesen
 String line = file.readLine(pos,"ISO-8859-1");
 System.out.println(line);

 file.close();
 }
}

import java.io.*;
import java.nio.channels.*;

/**
 * Klasse für den wahlfreien Zugriff auf eine Datei
 */
class RandomAccess {
 private RandomAccessFile file;
 private String fileName;
 private final short MAX_LINE_LENGTH = 4096;

 public RandomAccess(String name) {
 fileName = name;

Listing 122: Methoden zum Sperren von Dateien

Listing 121: Wahlfreier Dateizugriff (Forts.)

>> Ein- und Ausgabe (IO) 257

Ei
n-

 u
nd

 A
us

ga
be

Das Start-Programm öffnet eine Datei zum Schreiben und sperrt sie. Danach öffnet es die
Datei ein zweites Mal und versucht über das zweite RandomAccess-Objekt, in die Datei zu
schreiben.

 }

 /**
 * Setzt eine Sperre auf der ganzen Datei
 *
 * @return FileLock-Objekt oder null bei Fehlschlag
 */
 public FileLock lock() {
 try {
 FileChannel fc = file.getChannel();
 return fc.tryLock();

 } catch(Exception e) {
 e.printStackTrace();
 return null;
 }
 }

 /**
 * Setzt eine Sperre auf einem Dateiabschnitt
 *
 * @param startPos Startposition in der Datei
 * @param num Größe des Sperrbereichs (Anzahl Bytes)
 * @param shared Shared-Flag (true = andere Sperren dürfen überlappen)
 * @return FileLock-Objekt oder null bei Fehlschlag
 */
 public FileLock lock(long startPos, long num, boolean shared) {
 try {
 FileChannel fc = file.getChannel();
 return fc.tryLock(startPos, num, shared);

 } catch(Exception e){
 e.printStackTrace();
 return null;
 }
 }

// Rest wie in Rezept 105
}

import java.nio.channels.*;

public class Start {

 public static void main(String[] args) {

Listing 123: Dateisperre

Listing 122: Methoden zum Sperren von Dateien (Forts.)

>> CSV-Dateien einlesen258
Ei

n-
 u

nd
 A

us
ga

be

107 CSV-Dateien einlesen
CSV-Dateien waren früher ein sehr beliebtes Mittel zum Austausch tabellarischer Daten zwi-
schen Programmen und Betriebssystemen. Heute wird zu diesem Zweck meist XML eingesetzt,
aber es gibt immer noch zahlreiche Programme, die das CSV-Format unterstützen, wie es
umgekehrt auch immer noch Datensammlungen gibt, die als CSV-Dateien vorliegen.

Der Erfolg der CSV-Dateien liegt vor allem in der Abspeicherung als Textdatei (direkt lesbar,
gut portierbar) und dem einfachen Format begründet. Die Grundregeln für den Aufbau einer
CSV-Datei lauten:

� Jede Tabellenzeile (bzw. Datensatz) entspricht einer Textzeile.

� Die Daten aus den einzelnen Spalten (Feldern) werden durch Kommata getrennt.

 // Datei öffnen
 RandomAccess file = new RandomAccess(".\\Halley.txt");
 file.open("rw");

 // ganze Datei für andere sperren und etwas schreiben
 FileLock lock = file.lock();
 file.appendString("\nDateiende\n", "ISO-8859-1");

 // Datei nochmals öffnen
 RandomAccess file2 = new RandomAccess(".\\Halley.txt");
 file2.open("rw");

 // Versuch zu schreiben
 // Löst Exception aus, da Datei gesperrt
 file2.appendString("Text einschmuggeln\n", "ISO-8859-1");
 file2.close();

 // Sperre freigeben
 try {
 lock.release();
 }
 catch(Exception e) {
 e.printStackTrace();
 }

 file.close();
 }
}

H
in

w
e

is Der Sperrmechanismus greift nur auf Prozessebene und nicht auf Threadebene. Es ist
also nicht möglich, dass ein bestimmter Thread die Datei sperrt, um die anderen
Threads am Schreiben zu hindern. Hierfür müssen Sie eine explizite Synchronisierung
einrichten.

Listing 123: Dateisperre (Forts.)

>> Ein- und Ausgabe (IO) 259

Ei
n-

 u
nd

 A
us

ga
be

� Taucht das Komma in einem Feldwert auf, wird dieser in Anführungszeichen (") gesetzt.4

Dem Einsatz des Kommas als Trennzeichen verdankt das Format im Übrigen auch seinen
Namen: Comma Separated Values. Allerdings ist das CSV-Format nicht standardisiert, so dass
es etliche Abwandlungen gibt.

Die häufigste Variation ist der Austausch des Kommas durch ein anderes Trennzeichen, wes-
wegen CSV oft auch als Akronym für Character Separated Values verstanden wird (ein promi-
nentes Beispiel hierfür ist Microsoft Excel, welches das Semikolon als Trennzeichen benutzt).
Kommentarzeilen findet man in CSV-Dateien eher selten; falls vorhanden, werden sie meist
mit einem einfachen Zeichen (# oder !) eingeleitet und erstrecken sich bis zum Zeilenende.

CSV-Dateien lesen – 1. Ansatz
CSV-Dateien, die nicht übermäßig groß sind und bei denen das Trennzeichen nicht in den
Werten auftaucht, können ohne große Mühe in einer einzigen while-Schleife gelesen und
geparst werden. Alles, was Sie tun müssen, ist, die Datei mit einem BufferedReader zeilenweise
einzulesen, die Zeilen mit Hilfe der String-Methode split() in Felder zu zerlegen und Letztere
in geeigneter Weise abzuspeichern. Nutzen Sie dabei ruhig den Umstand, dass split() die Fel-
der bereits als String-Array zurückliefert, und speichern Sie die String-Arrays einfach in einer
dynamisch mitwachsenden Collection. (Die Collection speichert dann die einzelnen Zeilen – in
Form von String-Arrays – und die String-Arrays speichern die Felder der jeweiligen Zeilen.)
Die nachfolgend abgedruckte Methode MoreIO.readCSVFile() verfährt auf eben diese Weise.

4. Manche Programme erlauben in Feldwerten, die in Anführungszeichen geklammert sind, auch Zeilenumbruch-
zeichen.

ID,Kundennummer,Name,Vorname,Anrede
1,"333-3001,2",Salz,Maria,Frau
2,"333-6610,1",Sauer,Florian Gerhard,Herr
3,"333-5999,5",Bitter,Claudia Leonie,Frau
4,"333-0134,2",Süß,Herbert,Herr

Listing 124: Beispiel für eine CSV-Datei. Die Angabe der Spaltenüberschriften in der ersten
Zeile ist weit verbreitet, aber ebenfalls nicht zwingend vorgeschrieben.

/**
 * Methode zum Einlesen und Parsen von CSV-Dateien
 */
public static Vector<String[]> readCSVFile(String filename, char delimiter)
 throws IOException, ParseException {
 Vector<String[]> lines = new Vector<String[]>();
 String[] fields = null;
 String line;
 int countLines = 1;
 int countFields = -1;

 BufferedReader in = new BufferedReader(new FileReader(filename));

Listing 125: readCSVFile() parst CSV-Dateien, die keine Trennzeichen in den Werten
enthalten.

>> CSV-Dateien einlesen260
Ei

n-
 u

nd
 A

us
ga

be

Die Methode readCSVFile() übernimmt als Argumente den Namen der CSV-Datei und das
Trennzeichen. In einer einzigen while-Schleife werden die einzelnen Zeilen eingelesen, von
Whitespace an den Enden befreit und dann mit Hilfe von split() in Felder aufgeteilt. (Leerzei-
len werden zuvor ausgesondert.)

Die Anzahl Felder in der ersten geparsten Zeile merkt sich die Methode in der lokalen Variable
countFields. Anschließend wird für alle geparsten Zeilen geprüft, ob die Anzahl vorgefunde-
ner Felder mit der Anzahl Felder in countFields übereinstimmt. Trifft die Methode auf eine
Zeile mit abweichender Spaltenzahl, wird eine ParseException ausgelöst. Die Nummer der
betroffenen Zeile (countLines) wird als Argument dem Exception-Konstruktor übergeben und
kann vom aufrufenden Programm via getErrorOffset() abgefragt werden.

 // Dateiinhalt zeilenweise lesen
 while((line = in.readLine()) != null) {

 // Whitespace an Enden entfernen
 line = line.trim();

 // Leerzeilen übergehen
 if (line.equals(""))
 continue;

 // Felder aus Zeilen extrahieren
 fields = line.split(String.valueOf(delimiter));

 // Wenn erste Zeile, dann Anzahl Felder abspeichern
 if (countFields == -1)
 countFields = fields.length;

 // Sicherstellen, dass alle Zeilen die gleiche Anzahl Felder haben
 if (countFields == fields.length) {
 lines.add(fields);
 ++countLines;
 } else
 throw new ParseException("Ungleiche Anzahl Felder in "
 + "Zeilen der CSV-Datei", countLines);
 }

 // Stream schließen
 in.close();

 // Collection mit Feld-Arrays zurückliefern
 return lines;
}

Listing 125: readCSVFile() parst CSV-Dateien, die keine Trennzeichen in den Werten
enthalten. (Forts.)

>> Ein- und Ausgabe (IO) 261

Ei
n-

 u
nd

 A
us

ga
be

5

try {
 Vector<String[]> lines = MoreIO.readCSVFile("Dateiname", ','));

} catch(IOException e) {
 System.err.println("FEHLER beim Oeffnen der Datei");
} catch(ParseException e) {
 System.err.println("FEHLER beim Parsen der Datei in Zeile "
 + e.getErrorOffset());
}

Listing 126: Aufruf von readCSVFile()

Abbildung 50: Start_MoreIO parst eine CSV-Datei mit Hilfe von readCSVFile() und gibt den
Inhalt zeilenweise, mit Tabulatoren zwischen den Feldern aus. Der Name der
CSV-Datei und das Trennzeichen werden als Befehlszeilenargumente
übergeben.5

A
ch

tu
n

g Der entscheidende Schritt beim Parsen von CSV-Dateien ist die Zerlegung der Zeilen in
Felder. Im vorliegenden Ansatz haben wir hierfür die String-Methode split() herange-
zogen, was uns die Definition einer eigenen Parse-Methode ersparte. Doch split() ist
zum Parsen von CSV-Zeilen nur mit Einschränkungen geeignet, denn die Methode

� kann nicht zwischen echten Trennzeichen und Trennzeichen, die innerhalb von
Anführungszeichen stehen und daher als normale Zeichen anzusehen sind, unter-
scheiden.

� liefert für leere Felder am Zeilenende (in der CSV-Datei folgt auf das letzte Trenn-
zeichen nur noch Whitespace) keinen String zurück.

Die zu verarbeitenden CSV-Dateien dürfen also keine leeren Felder enthalten (zumin-
dest keine am Zeilenende) und das Trennzeichen darf nicht in den Feldwerten auftau-
chen.

Um beliebige CSV-Dateien verarbeiten zu können, bedarf es eines erweiterten Ansatzes
mit eigener Parse-Methode.

5. Achtung! Wenn in einer Spalte Feldwerte stark unterschiedlicher Breite stehen, können die Spalten in der von
Start_MoreIO erzeugten Ausgabe verrutschen.

>> CSV-Dateien einlesen262
Ei

n-
 u

nd
 A

us
ga

be

CSV-Dateien lesen – 2. Ansatz
Nach der »Quick-and-dirty«-Implementierung mit der Methode readCSVFile() wenden wir uns
nun einer professionelleren Lösung zu, die CSV-Dateien mit Hilfe einer eigenen Klasse,
CSVTokenizer, einliest. Wie der Name schon erahnen lässt, ist die Klasse CSVTokenizer an
StringTokenizer angelehnt (jedoch nicht von dieser abgeleitet) und wird auch ganz ähnlich
verwendet. Statt die CSV-Datei wie readCSVFile() komplett einzulesen und zu parsen, stellt
die Klasse CSVTokenizer Methoden zur Verfügung, mit denen die Datei zeilenweise eingelesen
werden kann: hasMoreLines() und nextLine(), die analog zu den StringTokenizer-Methoden
hasMoreTokens() und nextToken() verwendet werden.

Vector<String[]> lines = new Vector<String[]>();
CSVTokenizer csv = null;
...

try {
 csv = new CSVTokenizer("Dateiname", ',');
 while (csv.hasMoreLines()) {
 lines.add(csv.nextLine());
 ...
 }

} catch(IOException e) {
 System.err.println("FEHLER beim Oeffnen der Datei");
} catch(ParseException e) {
 System.err.println("FEHLER beim Parsen der Datei in Zeile "
 + e.getErrorOffset());
}

Die Klasse CSVTokenizer verfügt insgesamt über drei Methoden:

� boolean hasMoreLines() liefert true zurück, wenn eine weitere Zeile mit Daten vorhanden ist.

� String[] nextLine() liefert ein String-Array mit den Feldern der nächsten Zeile zurück,
bzw. null, wenn keine weiteren Zeilen verfügbar sind.

� String[] splitLine(String line, char delimiter) wird intern von nextLine() aufgerufen,
um die Zeile in Felder zu zerlegen. Die Methode überliest Trennzeichen, die zwischen
Anführungszeichen stehen, und liefert auch für leere Felder am Zeilenende einen Leer-
String ("") zurück.

Bei der Instanzierung übergeben Sie dem Konstruktor der Klasse wahlweise den Namen der zu
parsenden CSV-Datei oder ein bereits erzeugtes Reader-Objekt sowie das Trennzeichen.

import java.io.Reader;
import java.io.FileReader;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.FileNotFoundException;
import java.text.ParseException;
import java.util.Vector;

/**
 * Klasse zum Lesen und Parsen von CSV-Dateien
 */

>> Ein- und Ausgabe (IO) 263

Ei
n-

 u
nd

 A
us

ga
be

public class CSVTokenizer {

 private BufferedReader reader;
 private char delimiter;
 private String nextLine = null;
 private int countFields = -1;
 public int countLines = 0;

 public CSVTokenizer(String filename, char delimiter)
 throws FileNotFoundException {
 this.reader = new BufferedReader(new FileReader(filename));
 this.delimiter = delimiter;
 }
 public CSVTokenizer(Reader reader, char delimiter) {
 this.reader = new BufferedReader(reader);
 this.delimiter = delimiter;
 }

Die Methode hasMoreLines() versucht eine weitere, nicht leere Zeile aus der CSV-Datei zu lesen.
Gelingt dies, speichert sie die Zeile in der Instanzvariablen nextLine und liefert true zurück.

 /**
 * Liest die nächste Zeile lesen und speichert sie in nextLine
 * Liefert im Erfolgsfall true zurück und false, wenn keine Zeile mehr
 * verfügbar. Leerzeilen werden übersprungen
 */
 public boolean hasMoreLines() {

 if (nextLine == null)
 try {
 while((nextLine = reader.readLine()) != null) {
 nextLine = nextLine.trim();
 if (!nextLine.equals("")) // Wenn nicht leere Zeile
 break; // Schleife beenden
 }
 } catch (IOException e) {
 }

 if (nextLine != null)
 return true;
 else
 return false;
 }

Die Methode nextLine() gleicht der Methode readCSVFile() aus dem ersten Ansatz, allerdings
mit dem Unterschied, dass zum Zerlegen der Zeilen in Felder nicht die String-Methode
split(), sondern die eigene Methode splitLine() aufgerufen wird.

 /**
 * Liefert ein String-Array mit den Feldern der nächsten Zeile zurück
 */
 public String[] nextLine() throws ParseException {
 String[] fields = null;
 String line;

>> CSV-Dateien einlesen264
Ei

n-
 u

nd
 A

us
ga

be

 // Nächste Zeile in nextLine einlesen lassen
 if (!hasMoreLines())
 return null;

 // Felder aus Zeile extrahieren
 fields = splitLine(nextLine, delimiter);

 // Wenn erste Zeile, dann Anzahl Felder abspeichern
 if (countFields == -1)
 countFields = fields.length;

 ++countLines; // nur für Exception-Handling

 // Sicherstellen, dass alle Zeilen die gleiche Anzahl Felder haben
 if (countFields != fields.length) {
 throw new ParseException("Ungleiche Anzahl Felder in "
 + "Zeilen der CSV-Datei", countLines);
 }

 // nextLine zurück auf null setzen
 nextLine = null;

 return fields;
 }

Die Methode splitLine() durchläuft die übergebene Zeile Zeichen für Zeichen und zerlegt sie
an den Stellen, wo sie das übergebene Trennzeichen (delimiter) vorfindet. Trennzeichen, die
innerhalb von Anführungszeichen stehen, werden ignoriert. Endet die Zeile mit einem Trenn-
zeichen, wird nach Durchlaufen der Zeile noch ein leerer String für das letzte Feld angehängt.
Die Teilstrings für die Felder werden in einer Vector-Collection gesammelt und zum Schluss in
ein String-Array umgewandelt und zurückgeliefert.

 /**
 * Zeile in Felder zerlegen, wird von getNextLine() aufgerufen
 */
 private String[] splitLine(String line, char delimiter) {
 Vector<String> fields = new Vector<String>();

 int len = line.length(); // Anzahl Zeichen in Zeile
 int i = 0; // aktuelle Indexposition
 char c; // aktuelles Zeichen
 int start, end; // Anfang und Ende des aktuellen Feldes
 boolean quote; // wenn true, dann befindet sich
 // Delimiter in Anführungszeichen

 // Zeile Zeichen für Zeichen durchgehen
 while (i < len) {
 start = i; // Erstes Zeichen des Feldes
 quote = false;

 // Ende des aktuellen Feldes finden

Listing 127: Die Klasse CSVTokenizer

>> Ein- und Ausgabe (IO) 265

Ei
n-

 u
nd

 A
us

ga
be

 while (i < len) {
 c = line.charAt(i);

 // Im Falle eines Anführungszeichen quote umschalten
 if (c == '"')
 quote = !quote;

 // Wenn c gleich dem Begrenzungszeichen und quote gleich false
 // dann Feldende gefunden.
 if (c == delimiter && quote == false)
 break;
 i++;
 }
 end = i; // Letztes Zeichen des Feldes

 // Eventuelle Anführungszeichen am Anfang und am Ende verwerfen
 if (line.charAt(start) == '"' && line.charAt(end-1) == '"') {
 start++;
 end--;
 }

 // Feld speichern
 fields.add(line.substring(start, end));
 i++;
 }

 // Wenn letztes Feld leer (Zeile endet mit Trennzeichen),
 // leeren String einfügen
 if (line.charAt(line.length()-1) == delimiter)
 fields.add("");

 // Vector-Collection als String-Array zurückliefern
 String[] type = new String[0];
 return fields.toArray(type);
 }
}

Listing 127: Die Klasse CSVTokenizer (Forts.)

>> CSV-Dateien in XML umwandeln266
Ei

n-
 u

nd
 A

us
ga

be

6

108 CSV-Dateien in XML umwandeln
Wie bereits eingangs des vorangehenden Rezepts erwähnt, wird heutzutage meist XML
anstelle von CSV für den elektronischen Datenaustausch verwendet. Da bietet es sich an, Alt-
bestände von CSV-Dateien nach XML zu konvertieren.

Das folgende Programm liest mit Hilfe der CSVTokenizer-Klasse aus Rezept 107 eine CSV-Datei
ein, parst den Inhalt und schreibt ihn in eine XML-Datei. Aufgerufen wird das Programm mit
dem Namen der CSV-Datei, dem Namen der anzulegenden XML-Datei und dem Trennzeichen,
beispielsweise:

java Start kunden.csv kunden.xml ,

� Die CSV-Datei darf keine Zeilenumbrüche in den Feldwerten enthalten und in der ersten
Zeile sollten Spaltenüberschriften stehen, denn das Programm verwendet die Strings der
ersten Zeile als Namen für die XML-Tags (woraus des Weiteren folgt, dass die Spaltenüber-
schriften keine Leerzeichen enthalten dürfen).

� Die XML-Datei wird von dem Programm neu angelegt. Ist die Datei bereits vorhanden,
wird sie überschrieben. Der oberste Knoten der XML-Datei lautet <csvimport>. Darunter
folgen die Knoten für die einzelnen Zeilen (<row>), denen wiederum die Knoten für die
Felder untergeordnet sind.

Für die folgende CSV-Datei

Abbildung 51: Start_CSVTokenizer parst eine CSV-Datei mit Hilfe der Klasse CSVTokenizer und
gibt den Inhalt zeilenweise, mit Tabulatoren zwischen den Feldern aus. Der
Name der CSV-Datei und das Trennzeichen werden als Befehlszeilenargumente
übergeben.6

6. Achtung! Wenn in einer Spalte Feldwerte stark unterschiedlicher Breite stehen, können die Spalten in der von
Start_MoreIO erzeugten Ausgabe verrutschen.

ID,Kundennummer,Name,Vorname,Anrede
1,"333-3001,2",Salz,Maria,Frau
2,"333-6610,1",Sauer,Florian,Herr
3,"333-5999,5",Bitter,Claudia,Frau
4,"333-0134,2",Suess,Herbert,Herr

Listing 128: Kunden.csv

>> Ein- und Ausgabe (IO) 267

Ei
n-

 u
nd

 A
us

ga
be

würde das Programm also beispielsweise folgende Knotenstruktur anlegen:

<?xml version="1.0" encoding="ISO-8859-1"?>
<csvimport>
 <row>
 <ID>1</ID>
 <Kundennummer>333-3001,2</Kundennummer>
 <Name>Salz</Name>
 <Vorname>Maria</Vorname>
 <Anrede>Frau</Anrede>
 </row>
 <row>

<csvimport>

Im Folgenden sehen Sie den vollständigen Quelltext. Für eine Erklärung der Klasse CSVTokeni-
zer siehe Rezept 107.

import java.util.Vector;
import java.io.FileWriter;
import java.io.BufferedWriter;
import java.io.IOException;
import java.text.ParseException;

public class Start {

 public static void main(String args[]) {
 Vector<String[]> lines = new Vector<String[]>();
 CSVTokenizer csv = null;
 BufferedWriter out;
 String[] header = null;
 String[] fields = null;

 if (args.length != 3) {
 System.out.println(" Aufruf: Start <Dateiname> "
 + "<Dateiname> <Trennzeichen>");
 System.exit(0);
 }

 try {

 // XML-Datei anlegen
 out = new BufferedWriter(new FileWriter(args[1]));
 out.write("<?xml version=\"1.0\" encoding=\"ISO-8859-1\"?>");
 out.newLine();
 out.write("<csvimport>");
 out.newLine();

 // CSV-Datei öffnen
 csv = new CSVTokenizer(args[0], args[2].charAt(0));

 // Überschriften einlesen und als XML-Knoten verwenden

Listing 129: Programm zur Umwandlung von CSV-Dateien in XML

>> CSV-Dateien in XML umwandeln268
Ei

n-
 u

nd
 A

us
ga

be

 header = csv.nextLine();

 // Zeilen einlesen und als XML-Knoten ausgeben
 while (csv.hasMoreLines()) {
 out.write("\t <row>");
 out.newLine();

 fields = csv.nextLine();

 // Felder als XML-Knoten ausgeben
 for(int i = 0; i < header.length; ++i) {
 out.write("\t\t <" + header[i] + ">");
 out.write(fields[i]);
 out.write("</" + header[i] + ">");
 out.newLine();
 }
 out.write("\t </row>");
 out.newLine();
 }

 // XML-Datei abschließen
 out.write("</csvimport>");
 out.newLine();
 out.close();

 } catch(IOException e) {
 System.err.println("FEHLER beim Oeffnen der Datei");
 } catch(ParseException e) {
 System.err.println("FEHLER beim Parsen der Datei in Zeile "
 + e.getErrorOffset());
 }

 }
}

Listing 129: Programm zur Umwandlung von CSV-Dateien in XML (Forts.)

>> Ein- und Ausgabe (IO) 269

Ei
n-

 u
nd

 A
us

ga
be

109 ZIP-Archive lesen
Mit der Klasse ZipFile aus dem Paket java.util.zip bietet Java die Möglichkeit, komprimierte
Dateien aus einem ZIP-Archiv auszulesen7. Jede Datei in einem ZIP-Archiv wird dabei durch
eine Instanz einer besonderen Klasse ZipEntry repräsentiert. Für den normalen Hausgebrauch
ist es bei ZipFile ein wenig lästig, dass auch für jedes enthaltene Verzeichnis ein ZipEntry-
Objekt angelegt wird, was den »Programmierfluss« etwas hemmt – schließlich ist man ja in der
Regel nur an den eigentlichen Dateien interessiert. Das nachfolgende Beispiel bietet eine
Wrapper-Klasse, die dieses Manko behebt:

Abbildung 52: Die für Kunden.cvs erzeugte XML-Datei im Internet Explorer

7. Das Erzeugen von ZIP-Archiven ist zurzeit nicht möglich!

import java.util.zip.*;
import java.util.*;
import java.io.*;

class ZipArchive {
 private ZipFile myZipFile = null;

Listing 130: ZIP-Archiv lesen

>> ZIP-Archive lesen270
Ei

n-
 u

nd
 A

us
ga

be

 private String myZipFileName;

 /**
 * Konstruktor
 *
 * @param str Name des Archivs
 */
 ZipArchive(String str) {
 myZipFileName = str;
 }

 /**
 * Öffnet das Archiv zum Lesen
 *
 * @return true bei Erfolg, false bei Fehler
 */
 public boolean open() {
 boolean result;

 try {
 myZipFile = new ZipFile(myZipFileName);
 result = true;

 } catch(Exception e) {
 e.printStackTrace();
 result = false;
 }

 return result;
 }

 /**
 * Liefert ein Array mit den im Archiv enthaltenen Dateien
 * (außer Verzeichnisse) als ZipEntry-Objekte
 *
 * @return ZipEntry[]
 */
 public ZipEntry[] getZipEntries() {
 ArrayList<ZipEntry> entries = new ArrayList<ZipEntry>();

 if(myZipFile != null) {
 Enumeration e = myZipFile.entries();

 while(e.hasMoreElements()) {
 ZipEntry ze = (ZipEntry) e.nextElement();

 if(ze.isDirectory() == false) // Verzeichnisse überspringen
 entries.add(ze);
 }
 }

Listing 130: ZIP-Archiv lesen (Forts.)

>> Ein- und Ausgabe (IO) 271

Ei
n-

 u
nd

 A
us

ga
be

 ZipEntry[] result = new ZipEntry[0];
 return entries.toArray(result);
 }

 /**
 * Liefert ein Array mit den im Archiv enthaltenen Dateinamen
 *(außer Verzeichnisse)
 *
 * @return String[]
 */
 public String[] getFileNames() {
 ZipEntry[] entries = getZipEntries();
 int num = entries.length;
 String[] result = new String[num];

 for(int i = 0; i < num; i++)
 result[i] = entries[i].getName();

 return result;
 }

 /**
 * Liefert den Inhalt der angegebenen Datei als unkomprimierten Datenstrom
 *
 * @param ze gewünschte Datei als ZipEntry-Objekt
 * @return Datenstrom als InputStream
 */
 public InputStream getInputStream(ZipEntry ze) {
 InputStream result = null;

 try {
 if(myZipFile != null)
 result = myZipFile.getInputStream(ze);

 } catch(Exception e) {
 e.printStackTrace();
 }

 return result;
 }
}

Listing 130: ZIP-Archiv lesen (Forts.)

>> ZIP-Archive erzeugen272
Ei

n-
 u

nd
 A

us
ga

be

Wenn man eine Datei des ZIP-Archivs – repräsentiert durch ein entsprechendes ZipEntry-
Objekt – nun tatsächlich dekomprimiert auslesen will, muss man lediglich die Methode getIn-
putStream() aufrufen, um einen Eingabestream zu erhalten, den man dann zum Lesen verwen-
den kann, z.B.:

110 ZIP-Archive erzeugen
Das Erzeugen eines ZIP-Archivs ist nur unwesentlich aufwändiger als das Auslesen. Für jede
Datei, die hinzugefügt werden soll, benötigt man eine ZipEntry-Instanz, die zusammen mit
den Bytes der Datei einem Objekt vom Typ ZipOutputStream übergeben wird.

import java.util.zip.*;
import java.io.*;

public class Start {

 public static void main(String[] args) {

 ZipArchive za = new ZipArchive("test.zip");
 za.open();
 ZipEntry[] entries = za.getZipEntries();
 InputStream in = za.getInputStream(entries[0]);

 try {
 int num = in.available();
 byte[] buffer = new byte[num];
 in.read(buffer);
 String str = new String(buffer);
 System.out.println(str);

 } catch(Exception e) {
 e.printStackTrace();
 }
 }
}

Listing 131: Datei aus ZIP-Archiv lesen

import java.io.*;
import java.util.zip.*;

class ZipCreator {
 private String archiveName;
 private ZipOutputStream outputStream = null;

 /**
 * Konstruktor
 *
 * @param voller Name des zu erzeugenden Archivs (inkl. ZIP-Endung)
 */

Listing 132: ZIP-Archiv erzeugen

>> Ein- und Ausgabe (IO) 273

Ei
n-

 u
nd

 A
us

ga
be

 public ZipCreator(String name) {
 archiveName = name;
 }

 /**
 * leeres ZIP-Archiv erzeugen
 */
 public void create() throws IOException {
 outputStream = new ZipOutputStream(new FileOutputStream(archiveName));
 }

 /**
 * ZIP-Archiv schließen
 */
 public void close() throws IOException {
 outputStream.close();
 }

 /**
 * Datei komprimieren und hinzufügen
 *
 * @return true bei Erfolg
 */
 public boolean add(File f) {
 boolean result = true;

 try {
 // ZipEntry anlegen
 String name = f.getCanonicalPath();
 long len = f.length();
 ZipEntry zipEntry = new ZipEntry(name);
 zipEntry.setSize(len);
 zipEntry.setTime(f.lastModified());
 zipEntry.setMethod(ZipEntry.DEFLATED);

 // Datei lesen und dem Archiv komprimiert hinzufügen
 FileInputStream fis = new FileInputStream(f);
 BufferedInputStream bis = new BufferedInputStream(fis);
 outputStream.putNextEntry(zipEntry);
 byte[] buffer = new byte[2048];
 int num;

 while ((num = bis.read(buffer)) >= 0) {
 outputStream.write(buffer, 0, num);
 }

 bis.close();
 outputStream.closeEntry();

 } catch(Exception e) {

Listing 132: ZIP-Archiv erzeugen (Forts.)

>> Excel-Dateien schreiben und lesen274
Ei

n-
 u

nd
 A

us
ga

be

111 Excel-Dateien schreiben und lesen
Erstaunlich populär ist das Tabellenformat Excel zur Anzeige von Tabellendaten. Programmie-
rer werden daher häufig mit der Anfrage konfrontiert, ob bestimmte Daten als Excel-Datei
erzeugt werden können. Dies ist eigentlich eine sehr aufwändige Forderung, aber glücklicher-
weise gibt es eine recht brauchbare OpenSource-Implementierung im Apache-Jakarta-Projekt
namens POI, die Sie von einem der zahlreichen Apache-Server herunterladen können. (Zum
Beispiel http://apache.autinity.de/jakarta/poi/release/bin, Datei poi-bin-2.5.1-final.zip. Aus
dem ZIP-Archiv ist die jar-Datei poi-2.5.1-final-20040804.jar8 zu extrahieren und der Name
(inklusive jar-Endung) in den CLASSPATH der Java-Anwendung aufzunehmen).

Excel-Dateien bestehen aus Workbooks, die in Arbeitsblätter unterteilt sind. Jedes Blatt ent-
spricht einer Tabelle, bestehend aus Zeilen/Spalten mit Zellen. Für all diese Objekte und viele
weitere bietet die POI-Bibliothek entsprechende Klassen an, mit denen die gewünschte Excel-
Struktur zusammengebaut werden kann. Das folgende Beispiel zeigt eine einfache Implemen-
tierung für den häufigen Fall, dass man den Inhalt einer JTable inklusive Spaltennamen in
eine Datei ausgeben bzw. umgekehrt eine Excel-Datei einlesen möchte (pro Arbeitsblatt ein
JTable-Objekt):

 System.err.println(e);
 result = false;
 }

 return result;
 }
}

8. Der Zeitstempel im Dateinamen wird wahrscheinlich ein anderer sein.

/**
 *
 * @author Peter Müller
 */
import java.io.*;
import javax.swing.*;
import org.apache.poi.hssf.usermodel.*;
import org.apache.poi.poifs.filesystem.*;
import java.util.*;

class Excel {

 /**
 * Schreibt eine Tabelle als Excel Datei; alle Zellen werden als String
 * interpretiert
 *
 * @param table Tabelle mit den Daten
 * @param fileName Dateiname

Listing 133: Excel.java – Klasse zum Lesen und Schreiben von Excel-Dateien

Listing 132: ZIP-Archiv erzeugen (Forts.)

>> Ein- und Ausgabe (IO) 275

Ei
n-

 u
nd

 A
us

ga
be

 * @param sheetName Arbeitsblatt-Name
 * @return true bei Erfolg
 */
 public boolean writeFile(JTable table, String fileName, String sheetName) {
 boolean result = false;

 try {
 int colNum = table.getColumnCount();
 int rowNum = table.getRowCount();

 HSSFWorkbook workBook = new HSSFWorkbook();
 HSSFSheet sheet = workBook.createSheet(sheetName);

 // Fettdruck für erste Zeile mit Spaltennamen
 HSSFCellStyle style = workBook.createCellStyle();
 HSSFFont font = workBook.createFont();
 font.setBoldweight(HSSFFont.BOLDWEIGHT_BOLD);
 style.setFont(font);

 HSSFRow row = sheet.createRow((short) 0);
 HSSFCell cell;

 short[] maxWidth = new short[colNum]; // für max. Spaltenbreite

 // Zeile 0 mit Spaltennamen
 for(int i = 0; i < colNum; i++) {
 cell = row.createCell((short) i);
 cell.setCellType(HSSFCell.CELL_TYPE_STRING);
 String name = table.getColumnName(i);

 if(name.length() > maxWidth[i])
 maxWidth[i] = (short) name.length();

 cell.setCellValue(table.getColumnName(i));
 cell.setCellStyle(style);
 }

 // übrige Zeilen mit den Daten
 for(int i = 0; i < rowNum; i++) {
 row = sheet.createRow((short) i+1); // +1 wegen 0. Zeile = Namen

 for(int j = 0; j < colNum; j++) {
 cell = row.createCell((short) j);
 cell.setCellType(HSSFCell.CELL_TYPE_STRING);
 String value = (String) table.getValueAt(i,j);

 if(value.length() > maxWidth[j])
 maxWidth[j] = (short) value.length();

Listing 133: Excel.java – Klasse zum Lesen und Schreiben von Excel-Dateien (Forts.)

>> Excel-Dateien schreiben und lesen276
Ei

n-
 u

nd
 A

us
ga

be

 cell.setCellValue(value);
 }
 }

 for(short i = 0; i < colNum; i++) {
 // jede Spalte breit genug machen
 // Grundeinheit für Breite: 1/256 eines Zeichens
 sheet.setColumnWidth(i,(short) (maxWidth[i] * 256));
 }

 // in Datei schreiben
 FileOutputStream out = new FileOutputStream(fileName);
 workBook.write(out);
 out.close();
 result = true;

 } catch(Exception e) {
 e.printStackTrace();
 }

 return result;
 }

 /**
 * Liest eine Excel-Datei und gibt alle Arbeitsblätter als JTable zurück
 *
 * @param name Dateiname
 * @param firstRowAsColumnName Flag, ob erste Zeile als Spaltennamen
 * verwendet werden soll
 * @return ArrayList mit JTable pro Arbeitsblatt oder
 * null bei Fehler
 */
 public ArrayList<JTable> readFile(String name, boolean
 firstRowAsColumnName) {
 ArrayList<JTable> result = new ArrayList<JTable>();

 try {
 POIFSFileSystem file = new POIFSFileSystem(new FileInputStream(name));
 HSSFWorkbook wb = new HSSFWorkbook(file);
 int num = wb.getNumberOfSheets();

 for(int i = 0; i < num; i++) {
 HSSFSheet sheet = wb.getSheetAt(i);

 // vorhandene Zeilen
 int startRow = sheet.getFirstRowNum();
 int endRow = sheet.getLastRowNum();

 // erste Zeile dient zur Ermittlung der Spaltenzahl und ggf.
 // Spaltennamen

Listing 133: Excel.java – Klasse zum Lesen und Schreiben von Excel-Dateien (Forts.)

>> Ein- und Ausgabe (IO) 277

Ei
n-

 u
nd

 A
us

ga
be

 HSSFRow firstRow = sheet.getRow(startRow);
 short firstCell = firstRow.getFirstCellNum();
 short lastCell = firstRow.getLastCellNum();
 short cellNum = (short) (lastCell - firstCell + 1);
 String[] colNames = new String[cellNum];

 for(int c = firstCell; c <= lastCell; c++)
 if(firstRowAsColumnName)
 colNames[c] = firstRow.getCell((short)
 c).getStringCellValue();
 else
 colNames[c] = "";

 if(firstRowAsColumnName)
 startRow++;

 int rowNum = (int) (endRow - startRow + 1);
 String[][] data = new String[rowNum][cellNum];

 for(int j = startRow; j <= endRow; j++) {
 HSSFRow row = sheet.getRow(j);
 int startCell = row.getFirstCellNum();
 int endCell = row.getLastCellNum();

 for(int k = startCell; k <= endCell; k++) {
 HSSFCell cell = row.getCell((short) k);
 int cellType = cell.getCellType();
 String value;

 if(cellType == HSSFCell.CELL_TYPE_NUMERIC)
 value = String.valueOf(cell.getNumericCellValue());
 else
 value = cell.getStringCellValue();

 data[j][k] = value;
 }
 }

 JTable table = new JTable(data, colNames);
 result.add(table);
 }

 } catch(Exception e){
 e.printStackTrace();
 result = null;
 }

 return result;
 }
}

Listing 133: Excel.java – Klasse zum Lesen und Schreiben von Excel-Dateien (Forts.)

>> PDF-Dateien erzeugen278
Ei

n-
 u

nd
 A

us
ga

be

Das Start-Programm demonstriert, wie mit Hilfe der Klasse Excel der Inhalt einer JTable-Kom-
ponente als Excel-Datei auf die Festplatte gespeichert werden kann.

112 PDF-Dateien erzeugen
Ein beliebtes Format zur Verteilung von Informationen ist PDF (Portable Document Format)
von der Firma Adobe, welches insbesondere in der Windows-Welt weit verbreitet ist. Als Pro-
grammierer sieht man sich daher leicht mit der Forderung konfrontiert, ob nicht auch eine
Ausgabe als PDF-Datei machbar wäre. Ähnlich wie in Rezept 112 für das Excel-Format würde

import javax.swing.*;

public class Start {

 public static void main(String[] args) {

 Excel xls = new Excel();
 String[] colNames = {"Name","Vorname"};
 String[][] data = {{"Müller", "Peter"},
 {"Louis", "Dirk"},
 };
 JTable table = new JTable(data, colNames);

 // Tabelle als Excel schreiben
 xls.writeFile(table, ".\\data.xls", "Kunden");
 }
}

Listing 134: Excel-Format lesen/schreiben

Abbildung 53: Erzeugte Excel-Tabelle

H
in

w
e

is Beachten Sie, dass die obigen Beispiele nur die grundlegende Vorgehensweise zeigen
und auch immer nur mit dem Allzwecktyp String hantieren. Für komplizierte Fälle
inklusive eingebetteter OLE-Objekte, Bilder und Formeln werden Sie nicht umhin kom-
men, sich detaillierter in die POI-Bibliothek einzuarbeiten.

>> Ein- und Ausgabe (IO) 279

Ei
n-

 u
nd

 A
us

ga
be

eine Eigenimplementierung einen immensen Zeit- und Arbeitsaufwand bedeuten. Glücklicher-
weise finden sich mehrere brauchbare OpenSource-Bibliotheken, deren Einsatz wir an dieser
Stelle kurz demonstrieren möchten:

� gnujpdf ist eine Bibliothek mit der gleichen Vorgehensweise wie die AWT/Print-API in
Java, d.h., die zu erzeugende Ausgabe wird mittels eines Graphics-Objekts erstellt. Dadurch
kann man ohne besonderen Mehraufwand und PDF-Kenntnisse eine (mehr oder weniger)
identische Ausgabe erreichen, sowohl für die Anzeige auf dem Bildschirm via paint() bzw.
paintComponent() als auch zur Ausgabe in eine PDF-Datei.

� itext bietet volle Kontrolle und erlaubt das explizite Erzeugen fast aller PDF-Elemente im
gewünschten Format und Position. Dies erfordert allerdings einige Kenntnis über den Auf-
bau von Textdokumenten.

PDF mit gnujpdf erzeugen
Zunächst muss natürlich die Bibliothek in Form eines jar-Archivs besorgt werden. Hierzu
laden Sie von http://sourceforge.net/projects/gnujpdf/ das aktuelle ZIP-Archiv herunter9.
Extrahieren Sie hieraus die Datei gnujpdf.jar. Diese Datei muss fürs Kompilieren und Ausfüh-
ren im CLASSPATH eingetragen sein (inklusive jar-Endung).

10

Die Bibliothek bietet in einem Paket gnu.jpdf die von java.awt.Graphics abgeleitete Klasse
PDFGraphics an, mit der wie mit einem üblichen Graphics-Objekt gearbeitet werden kann. Das
heißt, man darf Fonts und Farben zuweisen und beispielsweise mit drawString() oder drawI-
mage() entsprechende Zeichenoperationen durchführen. Das Grundmuster zum Erzeugen einer
PDF-Ausgabe sieht damit wie folgt aus:

� Eine Instanz der Klasse PDFJob wird angelegt. Sie entspricht in ihrer Art der Klasse
java.awt.PrintJob (man »druckt« gewissermaßen das PDF in eine Datei).

� Für jede neue Seite des PDF-Dokuments fordert man nun von PDFJob mit Hilfe von getGra-
phics() ein PDFGraphics-Objekt an und verwendet es zum Zeichnen. Danach wird diese
Ressource wieder mit seiner dispose()-Methode freigegeben.

� Die end()-Methode von PDFJob wird aufgerufen. Das PDF wird nun in eine Datei geschrieben.

Das folgende Beispiel zeigt die konkrete Umsetzung der obigen Schritte. Die interessanten
Dinge passieren in der Klasse PaintPanel, die neben einer üblichen Bildschirmausgabe auch
eine PDF-Variante erstellt, wobei das PDF noch eine zusätzliche zweite Seite mit weiterem
Text erhält.

9. Bei Erscheinen dieses Buchs gnujpdf-1.6.zip

A
ch

tu
n

g Wichtiger Hinweis für UNIX/Linux: Wenn gnujpdf auf einem Unix-Server eingesetzt
werden soll (z.B. von einem Servlet), ergibt sich unter Umständen das Problem, dass
kein X-Server und somit auch kein Graphics-Kontext verfügbar ist. Hier hilft dann nur
die Installation eines virtuellen X-Servers weiter, beispielsweise Xvfb.10

10. Für Solaris http://www.idevelopment.info/data/Unix/General_UNIX/GENERAL_XvfbforSolaris.shtml oder für Linux
z.B. http://packages.debian.org/unstable/x11/xvfb.

>> PDF-Dateien erzeugen280
Ei

n-
 u

nd
 A

us
ga

be

import gnu.jpdf.*;
import java.io.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Start extends JFrame {
 private PaintPanel panel;

 public Start(String fileName) {

 setTitle("PDF Test");
 setSize(300,300);
 ImageIcon icon = new ImageIcon("duke.gif");
 Image image1 = icon.getImage();
 icon = new ImageIcon("juggler.gif");
 Image image2 = icon.getImage();
 panel = new PaintPanel(image1, image2, fileName);
 add(panel);

 // Programm beenden, wenn Fenster geschlossen wird
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 System.exit(0);
 }
 });
 }

 public static void main(String[] args) {

 if(args.length != 1) {
 System.out.println("Aufruf: <Dateiname>");
 System.exit(0);
 }

 Start s = new Start(args[0]);
 s.setVisible(true);
 }
}

/**
 * Panel-Klasse zum Zeichnen
 */
class PaintPanel extends JPanel {
 private Image image1;
 private Image image2;
 private FileOutputStream fos;

 PaintPanel(Image img1, Image img2, String fileName) {

Listing 135: Ausgabe von PDF mit gnujpdf

>> Ein- und Ausgabe (IO) 281

Ei
n-

 u
nd

 A
us

ga
be

 super();
 image1 = img1;
 image2 = img2;

 try {
 fos = new FileOutputStream(fileName);

 } catch(Exception e) {
 e.printStackTrace();
 }
 }

 /**
 * Erzeugt im übergebenen Graphics-Objekt die gewünschte Ausgabe
 */
 private void showDuke(Graphics g) {
 int height = image1.getHeight(null);
 int width = image1.getWidth(null);
 g.drawImage(image1, 0, 0, this);
 g.drawImage(image2, 0, height + 10, this);

 Font f = new Font("SansSerif", Font. BOLD, 12);
 g.setFont(f);
 g.drawString("Dieses Männchen heißt 'Duke'.", width + 20, 80);
 g.drawString("Es ist das Maskottchen von Java.", width + 20, 100);
 }

 /**
 * Erzeugt im übergebenen Graphics-Objekt die gewünschte Ausgabe
 */
 private void showText(Graphics g) {
 Font f = new Font("SansSerif", Font. BOLD, 12);
 g.setFont(f);
 g.drawString("Mit GnuPDF wird analog zum Graphics-Kontext eine "
 + "weitgehend identische PDF-Version ", 20, 20);
 g.drawString("erzeugt. Dies ist praktisch, wenn man die "
 + " Bildschirmausgabe als PDF haben will.", 20, 40);
 }

 protected void paintComponent(Graphics g) {
 super.paintComponent(g);

 // Anzeige generieren
 showDuke(g);

 // PDF-Version erzeugen; für jede Seite einen Graphics-Objekt erzeugen
 PDFJob pdfJob = new PDFJob(fos);
 Graphics pdfGraphics = pdfJob.getGraphics();
 showDuke(pdfGraphics);
 pdfGraphics.dispose();

Listing 135: Ausgabe von PDF mit gnujpdf (Forts.)

 // noch eine zweite Seite hinzufügen
 pdfGraphics = pdfJob.getGraphics();
 showText(pdfGraphics);
 pdfGraphics.dispose();
 pdfJob.end();
 System.out.println("PDF-Datei erzeugt!");
 }

}

Abbildung 54: Bildschirmausgabe via Graphics-Objekt

Abbildung 55: PDF-Datei via PDFGraphics-Objekt

Listing 135: Ausgabe von PDF mit gnujpdf (Forts.)

>> Ein- und Ausgabe (IO) 283

Ei
n-

 u
nd

 A
us

ga
be

PDF mit iText erzeugen
Zunächst müssen Sie sich die Bibliothek in Form eines jar-Archivs besorgen. Hierzu laden Sie
das aktuelle jar-Archiv sowie die zugehörige Klassendokumentation von http://sourceforge.
net/projects/itext/ herunter11. Die jar-Datei muss für das Kompilieren und Ausführen im
CLASSPATH eingetragen sein (inklusive jar-Endung).

Die iText-Bibliothek definiert eine Vielzahl von Klassen, mit deren Hilfe sich fast jedes
gewünschte PDF-Dokument zusammenstellen lässt. Die zentrale Klasse ist com.lowagie.text.
Document. Sie dient als Container zur Aufnahme der gewünschten Text- oder Grafikkomponen-
ten. Für die Ausgabe selbst stellt die Bibliothek eine Klasse PdfWriter bereit, der man einen
FileOutputStream zur Ausgabe in eine Datei übergibt.

Das folgende Beispiel zeigt die grundlegende Vorgehensweise zur Erstellung und Ausgabe
einer PDF-Datei.

11. Bei Erscheinen dieses Buch iText 2.0.0.jar

import java.io.*;
import java.awt.Color;
import java.net.URL;

import com.lowagie.text.*;
import com.lowagie.text.pdf.*;
import com.lowagie.text.rtf.*;
import com.lowagie.text.html.*;

/**
 * Einsatz von iText zur Erzeugung eines PDF-Dokuments
 */
public class Start {

 public static void main(String args[]) {

 try {
 // Dokument anlegen im Format DIN-A4 mit Randmaßen
 // Abstand links/rechts/oben/unten = 50,50,50,50
 Document document = new Document(PageSize.A4, 50, 50, 50, 50);

 // Ausgabestream öffnen
 PdfWriter.getInstance(document, new
 FileOutputStream("PDF_Demo.pdf"));

 // Kopfzeile definieren
 HeaderFooter header = new HeaderFooter(
 new Phrase("Das Java-Codebook"), false);
 header.setBorder(Rectangle.BOTTOM);
 document.setHeader(header);

 // Fußzeile mit zentrierter Seitennummer
 HeaderFooter footer = new HeaderFooter(new Phrase("Seite "), true);

Listing 136: PDF-Erstellung mit Hilfe von iText

>> PDF-Dateien erzeugen284
Ei

n-
 u

nd
 A

us
ga

be

 footer.setAlignment(Element.ALIGN_CENTER);
 footer.setBorder(Rectangle.TOP);
 document.setFooter(footer);

 // Dokument öffnen
 document.open();

 // Text hinzufügen
 Paragraph p1 = new Paragraph(
 "Lieber Leser, Sie sehen hier ein einfaches Beispiel "
 + "für die Erzeugung von PDF mit Hilfe der Open Source "
 + "Bibliothek iText.");
 document.add(p1);
 Phrase ph = new Phrase();
 Chunk chunk1 = new Chunk("Kleinste Einheit ist der Chunk "
 + "(\"Stück\"), den man als String inklusive "
 + "Font-Information auffassen kann. ",
 FontFactory.getFont(FontFactory.TIMES_ROMAN, 12,
 Font.BOLD, Color.RED));
 Chunk chunk2 = new Chunk("Man kann einen Absatz aus vielen Chunks "
 + "zusammensetzen, die wiederum in "
 + "Objekten vom Typ Phrase geordnet sein können.",
 FontFactory.getFont(FontFactory.TIMES_ROMAN, 12,
 Font.NORMAL, Color.BLACK));
 ph.add(chunk1);
 ph.add(chunk2);
 Paragraph p2 = new Paragraph(ph);

 document.add(p2);

 Paragraph p3 = new Paragraph("Man kann natürlich auch für einen "
 + "ganzen Absatz die Schriftart, Größe und "
 + "Farbe festlegen.",
 FontFactory.getFont(FontFactory.HELVETICA, 16,
 Font.BOLDITALIC, Color.BLUE));
 document.add(p3);

 Paragraph p4 = new Paragraph("iText kann aber noch viel mehr. " +
 "Es ist auch geeignet, um andere Formate "
 + "zu generieren, beispielsweise RTF oder HTML!");

 document.add(p4);

 // neue Seite
 document.newPage();
 Paragraph p5 = new Paragraph("Hier beginnt eine neue Seite.");
 document.add(p5);
 File f = new File("duke.gif");
 Image image = Image.getInstance(f.toURI().toURL());
 document.add(image);
 Paragraph p6 = new Paragraph("Dieses Männchen nennt sich Duke.");

Listing 136: PDF-Erstellung mit Hilfe von iText (Forts.)

>> Ein- und Ausgabe (IO) 285

Ei
n-

 u
nd

 A
us

ga
be

 document.add(p6);

 // schließen
 document.close();
 System.out.println("Datei PDF_Demo.pdf erzeugt!");
 } catch(Exception e) {
 e.printStackTrace();
 }
 }
}

Abbildung 56: PDF-Datei mit Hilfe von iText

H
in

w
e

is Interessant ist auch die Möglichkeit, anstatt in einen FileOutputStream zu schreiben,
einen ServletOutputStream einzusetzen. Hierdurch kann man sehr leicht serverseitig
PDF-Ausgaben erzeugen.

Anstelle oder auch zusätzlich kann man eine Datei im RTF-Format oder als HTML
erzeugen. Hierzu dienen die Klassen RtfWriter2 bzw. HtmlWriter, z.B.

RtfWriter2.getInstance(document, new
 FileOutputStream("RTF_Demo.rtf"));
HtmlWriter html = HtmlWriter.getInstance(document, new
 FileOutputStream("HTML_Demo.html"));

Listing 136: PDF-Erstellung mit Hilfe von iText (Forts.)

GU
I

GUI

113 GUI-Grundgerüst
GUI-Anwendungen unterscheiden sich von den Konsolenanwendungen durch zwei wesent-
liche Punkte:

� Der Informations- und Datenaustausch zwischen Benutzer und Programm erfolgt nicht
über die Konsole, sondern über programmeigene Fenster und in diese eingebettete Steuer-
elemente (GUI-Komponenten) wie Schaltflächen, Eingabefelder etc.

� GUI-Anwendungen sind ereignisgesteuert. Während sich Konsolenanwendungen in der
Regel aus einer Folge von Anweisungen zusammensetzen, die nach dem Programmstart
der Reihe nach abgearbeitet werden, bestehen GUI-Anwendungen – vom Code zum Auf-
bau der GUI-Oberfläche einmal abgesehen – aus einzelnen Codeblöcken, die mit bestimm-
ten Ereignissen verbunden sind und immer dann ausgeführt werden, wenn das betreffende
Ereignis eintritt (mehr zur Ereignisbehandlung, siehe Rezept 119).

AWT und Swing
Die Java-API unterstützt die GUI-Programmierung gleich mit zwei Bibliotheken: AWT und
Swing.

Grundlage jeder GUI- und Grafikprogrammierung in Java ist das AWT (Abstract Window
Toolkit). Das AWT umfasst Klassen für die Ereignisverarbeitung, die Grafikausgabe, das Dru-
cken und anderes sowie natürlich etliche Komponentenklassen für die verschiedenen Arten
von Fenstern und Steuerelementen.

Gerade Letztere erwiesen sich aber im Laufe der Zeit als ungenügend. Die AWT-Steuerelemente
sind nämlich als Wrapper-Klassen um die plattformspezifischen Steuerelemente implementiert.
Jedes Betriebssystem definiert in seinem Code einen eigenen Satz typischer Steuerelemente und
ermutigt Programmierer, diese zum Aufbau ihrer Programme zu verwenden (um sich Arbeit zu
sparen und ein konformes Erscheinungsbild zu erreichen). Die AWT-Steuerelemente sind so
implementiert, dass sie bei Ausführung auf einem Rechner auf diese betriebssysteminternen
Steuerelemente zurückgreifen. Ein AWT-Schalter zeigt daher auf den verschiedenen Plattfor-
men immer das für die Plattform typische Erscheinungsbild. Der Nachteil dieses Verfahrens ist,
dass die AWT-Klassen praktisch den kleinsten gemeinsamen Nenner aller Steuerelementsätze
der verschiedenen Plattformen bilden und zudem auch noch von Fehlern in deren Implementie-
rung betroffen sind.

Seit Java 1.2 gibt es daher eine zweite Komponentenbibliothek namens Swing, die einen
anderen Ansatz verfolgt:

In Swing werden die Komponenten komplett in Java implementiert, d.h., sie greifen nicht
mehr auf die plattformeigenen Implementierungen zurück, sie legen selbst ihre Funktionalität
fest und sie zeichnen sich selbst auf den Bildschirm. Die Vorzüge dieses Konzepts spiegeln sich
direkt in der Swing-Bibliothek wider:

� Es gibt weit mehr Swing-Komponenten als AWT-Komponenten (da die Sun-Programmie-
rer ja nicht mehr darauf angewiesen sind, dass die angebotenen Steuerelemente auf allen
Plattformen existieren).

>> GUI-Grundgerüst288
GU

I

� Der Programmierer kann zwischen verschiedenen Erscheinungsbildern für seine Steuerele-
mente wählen, siehe Rezept 147. (Damit die Swing-Komponenten sich wie die AWT-Kom-
ponenten der jeweiligen Plattform anpassen, auf der sie ausgeführt werden, musste man
sie so implementieren, dass sie in verschiedenen Designs gezeichnet werden können. Da
lag es nahe, neben den plattformtypischen Designs noch weitere Designs anzubieten und
dem Programmierer die Wahl zu lassen, ob er das Design der Plattform anpassen oder ein
bestimmtes Design auf allen Plattformen verwenden möchte.)

Swing ist kein Ersatz für das AWT, denn viele grundlegenden Klassen für die GUI- und Grafik-
programmierung, insbesondere die Klassen für die Ereignisverarbeitung, sind nur im AWT
vorhanden. Swing ist eine Komponentenbibliothek und als solche den AWT-Komponenten
weit überlegen. In den weiteren Rezepten kommen daher nahezu ausschließlich die Swing-
Komponenten zum Einsatz.

GUI-Grundgerüste
Die meisten GUI-Anwendungen verfügen über ein Hauptfenster, welches automatisch mit dem
Start der Anwendung erscheint und das die Anwendung beendet, wenn es selbst vom Benut-
zer geschlossen wird. Kein Wunder also, dass viele Anwender Hauptfenster und Anwendung
gleichsetzen.

Ein typisches GUI-Grundgerüst definiert eine eigene Klasse für das Hauptfenster und instanziert
diese in seiner main()-Methode. Wenn Sie mit einer Integrierten Entwicklungsumgebung wie
dem JBuilder oder Eclipse arbeiten, legen Sie Ihre Grundgerüste nicht selbst an, sondern Sie
überlassen dies der Entwicklungsumgebung. Dies spart nicht nur Zeit und Tipparbeit, es stellt
auch sicher, dass das Grundgerüst so aufgebaut wird, dass es von der Entwicklungsumgebung
weiterbearbeitet werden kann. (Insbesondere GUI-Designer, mit denen Sie per Mausklick Kom-
ponenten in Fenster einfügen oder mit Ereignisbehandlungsmethoden verbinden können, sind
darauf angewiesen, dass das Grundgerüst einem bestimmten formalen Aufbau genügt. Die ent-
sprechenden Abschnitte sind meist mit Kommentaren gekennzeichnet, die den Programmierer
darauf hinweisen, dass diese Abschnitte nicht manuell bearbeitet werden sollten.)

Falls Sie rein mit dem JDK arbeiten oder sich nicht von einer Entwicklungsumgebung abhän-
gig machen wollen, erhalten Sie hier einige einfache Vorschläge, wie Sie Ihre Grundgerüste
aufbauen könnten:

Gemeinsame Klasse für Anwendung und Hauptfenster

A
ch

tu
n

g Obwohl es grundsätzlich möglich ist, sollten Sie AWT- und Swing-Komponenten nicht
mischen. Verwenden Sie in einem Swing-Fenster also ausschließlich andere Swing-
Komponenten! Ansonsten kann es zu Fehlern kommen, insbesondere durch Verde-
ckung von Komponenten.

01 import java.awt.*;
02 import java.awt.event.*;
03 import javax.swing.*;
04
05 public class Grundgeruest_v1 extends JFrame {
06

Listing 137: Swing-Grundgerüst, Vorschlag 1

>> GUI 289

GU
I

Für die GUI-Programmierung werden meist eine ganze Reihe von AWT- und Swing-Klassen
benötigt. Um sich Tipparbeit zu sparen und die Lesbarkeit des Quelltextes zu verbessern,
importieren die meisten Programmierer daher die folgenden Pakete:

07 public Grundgeruest_v1() {
08
09 // Hauptfenster konfigurieren
10 setTitle("Swing-Grundgerüst");
11 getContentPane().setBackground(Color.LIGHT_GRAY);
12
13 // Hier Komponenten erzeugen und mit getContentPane().add()
14 // in das Fenster einfügen
15
16 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
17 }
18
19 public static void main(String args[]) {
20 Grundgeruest_v1 frame = new Grundgeruest_v1();
21 frame.setSize(500,300);
22 frame.setLocation(300,300);
23 frame.setVisible(true);
24 }
25 }

Abbildung 57: Hauptfenster des GUI-Grundgerüsts

Paket Klassen für

java.awt.* AWT-Komponenten
Layout-Manager
Grafikklassen wie Graphics, Color, Font, Cursor, Image etc.

java.awt.event.* AWT-Ereignisse

Tabelle 29: Wichtige GUI-Pakete

Listing 137: Swing-Grundgerüst, Vorschlag 1 (Forts.)

>> GUI-Grundgerüst290
GU

I

Die Klasse für das Hauptfenster wird von JFrame abgeleitet (Zeile 5). Alternative Basisklassen
sind JDialog (für Dialogfenster) und JWindow (für Fenster ohne Rahmen und Titelleiste). Konfi-
guriert wird das Fenster über seinen Konstruktor (Zeilen 7 bis 17) bzw. das gerade erzeugte
Objekt (Zeilen 20 bis 23). Welche Eigenschaft Sie wo einstellen, bleibt weitgehend Ihnen über-
lassen. Weit verbreitet sind Aufteilungen, bei denen der Konstruktor ein fertiges Fenster
erzeugt, das dann über das Fenster-Objekt dimensioniert, platziert (Zeilen 22 und 23) und
sichtbar gemacht wird (Zeile 23).

Standardmäßig bleibt das Fenster beim Drücken der Schließen-Schaltfläche aus der Titelleiste
bestehen und wird lediglich unsichtbar gemacht. Dieses Verhalten ist für die untergeordneten
Fenster einer Anwendung mit mehreren Fenstern durchaus sinnvoll. Wenn aber der Benutzer
das Hauptfenster der Anwendung schließt, möchte er in der Regel auch das Programm been-
den. Zu diesem Zweck übergibt man der Methode setDefaultCloseOperation() die Konstante
JFrame.EXIT_ON_CLOSE.

Komponenten oder untergeordnete Container werden in die ContentPane des Fensters (stan-
dardmäßig eine JPanel-Instanz) eingefügt. Sie können sich dazu von getContentPane() eine
Referenz auf die ContentPane zurückliefern lassen und deren add()-Methode aufrufen oder –
ab JDK-Version 1.5 – alternativ die add()-Methode von JFrame verwenden.

Getrennte Klassen für Anwendung und Hauptfenster
Wenn Sie zwischen anwendungs- und hauptfensterspezifischem Code unterscheiden möchten,
definieren Sie für beide eigene Klassen. Die Klasse der Anwendung enthält neben dem anwen-
dungsspezifischen Code die main()-Methode, in der Sie das Anwendungsobjekt erzeugen. Im
Konstruktor der Anwendungsklasse erzeugen Sie das Hauptfenster, für das Sie eine eigene
Klasse definieren.

javax.swing.* Swing-Komponenten, plus zusätzlicher Layout-Manager

javax.swing.event.* spezielle Swing-Ereignisse

H
in

w
e

is Die Platzierung des Fensters auf dem Desktop unterliegt der Verantwortung des Win-
dow Managers. Dieser braucht der »Empfehlung« des Programmcodes nicht zu folgen.

Konstante Beschreibung

DO_NOTHING_ON_CLOSE Führt keinerlei Aktionen beim Schließen des Fensters aus. Bei diesem
Standardverhalten muss das Ereignis windowClosing abgefangen werden.

HIDE_ON_CLOSE Verbirgt das Fenster, wenn es der Benutzer schließt.

DISPOSE_ON_CLOSE Verbirgt das Fenster und löst es dann auf. Damit werden alle von diesem
Fenster belegten Ressourcen freigegeben.

EXIT_ON_CLOSE Beendet die Anwendung mit System.exit(0).

Tabelle 30: Fensterkonstanten (WindowConstants), die das Verhalten beim Schließen eines
Fensters steuern

Paket Klassen für

Tabelle 29: Wichtige GUI-Pakete (Forts.)

>> GUI 291

GU
I

Eclipse-konformes Grundgerüst
Wenn Sie Ihr Grundgerüst so aufsetzen möchten, dass Sie es später mit Eclipse weiterbearbei-
ten können, müssen Sie darauf achten, dass die Klasse des Hauptfensters eine initialize()-
Methode definiert, die vom Konstruktor aufgerufen wird. Des Weiteren müssen Sie die Refe-
renz auf die ContentPane in einem private-Feld jContentPane speichern. Die ContentPane
selbst wird von einer Methode getContentPane() eingerichtet.

public class Grundgeruest_v2 {

 public Grundgeruest_v2() {
 Grundgeruest_v2_Frame frame = new Grundgeruest_v2_Frame();
 frame.setSize(500,300);
 frame.setLocation(300,300);
 frame.setVisible(true);
 }

 public static void main(String[] args) {
 new Grundgeruest_v2();
 }
}

Listing 138: Code der Anwendungsklasse

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Grundgeruest_v2_Frame extends JFrame {

 public Grundgeruest_v2_Frame() {

 // Hauptfenster konfigurieren
 setTitle("Swing-Grundgerüst");
 getContentPane().setBackground(Color.LIGHT_GRAY);

 // Hier Komponenten erzeugen und mit getContentPane().add()
 // in das Fenster einfügen

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }
}

Listing 139: Code des Hauptfensters

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

Listing 140: Eclipse-konformes GUI-Grundgerüst

>> Fenster (und Dialoge) zentrieren292
GU

I

114 Fenster (und Dialoge) zentrieren
Um ein Fenster auf dem Bildschirm zu zentrieren, können Sie natürlich so vorgehen, dass Sie
sich von Toolkit.getDefaultToolkit().getScreenSize() ein Dimension-Objekt mit den Bild-
schirmmaßen zurückliefern lassen und aus diesen die Koordinaten für die linke obere Ecke
Ihres Fensters berechnen:

// Zentrierung in eigener Regie
Dimension dim = Toolkit.getDefaultToolkit().getScreenSize();

// xPos = halbe Bildschirmbreite - halbe Fensterbreite
// yPos = halbe Bildschirmhöhe - halbe Fensterhöhe
int xPos = (dim.width - frame.getWidth())/2;
int yPos = (dim.height - frame.getHeight())/2;
frame.setLocation(xPos ,yPos);

Einfacher geht es jedoch mit der Window-Methode setLocationRelativeTo(), die das Fenster
über einer von Ihnen spezifizierten Komponente zentriert. Wenn Sie statt einer Komponenten-
referenz null übergeben, wird das Fenster auf dem Bildschirm zentriert.

public class Grundgeruest_v3 extends JFrame {

 private javax.swing.JPanel jContentPane = null;

 public static void main(String[] args) {
 Grundgeruest_v3 frame = new Grundgeruest_v3();
 frame.setSize(500,300);
 frame.setLocation(300,300);
 frame.setVisible(true);
 }

 public Grundgeruest_v3() {
 super();
 initialize();
 }

 private void initialize() {
 this.setContentPane(getJContentPane());
 this.setTitle("Swing-Grundgerüst");
 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 private javax.swing.JPanel getJContentPane() {
 if(jContentPane == null) {
 jContentPane = new javax.swing.JPanel();
 jContentPane.setLayout(new java.awt.BorderLayout());
 jContentPane.setBackground(Color.LIGHT_GRAY);
 }
 return jContentPane;
 }
}

Listing 140: Eclipse-konformes GUI-Grundgerüst (Forts.)

>> GUI 293

GU
I

public static void main(String args[]) {
 Start frame = new Start();
 frame.setLocationRelativeTo(null);
 frame.setVisible(true);
}

Dialoge zentrieren
Wie im Titel dieses Rezepts versprochen, können Sie mit setLocationRelativeTo() auch Dia-
loge über ihren übergeordneten Fenstern zentrieren. Das einzige Problem, das sich dabei unter
Umständen ergibt, ist die Referenz auf das übergeordnete Fenster.

Sofern Sie nämlich den Dialog als Antwort auf das Drücken eines Schalters oder die Auswahl
eines Menübefehls erzeugen und anzeigen, befinden Sie sich im Code einer Ereignisbehand-
lungsmethode. Da diese in der Regel nicht als Methode der JFrame-Klassen, sondern in einer
eigenen Listener- oder Adapter-Klasse definiert ist, können Sie nicht mit this auf das Fenster
zugreifen.

private final class ButtonAction {
 public void actionPerformed(ActionEvent e) {
 DemoDialog d = new DemoDialog(null, "Dialog");
 d.setLocationRelativeTo(this); // FEHLER! this verweist auf
 // ButtonAction-Objekt
 d.setVisible(true);
 }
}

Eine elegante Lösung für dieses Problem sieht vor, die Ereignisbehandlungsklasse als innere
oder anonyme Klasse innerhalb der JFrame-Klasse zu definieren. Dadurch berechtigen Sie die
Ereignisbehandlungsklasse, auf alle Felder der übergeordneten JFrame-Klasse zuzugreifen und
können in dieser ein Feld mit einer Referenz auf sich selbst ablegen:

A
ch

tu
n

g Vor der Zentrierung muss die Fenstergröße feststehen. In obigem Beispiel wird davon
ausgegangen, dass die Fenstergröße im Konstruktor des Fensters vorgegeben wird (bei-
spielsweise durch Aufruf von setSize(), siehe Rezept 115).

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

class DemoDialog extends JDialog implements ActionListener {
 ...
}

public class Start extends JFrame {
 private JFrame f; // Referenz auf sich selbst

 public Start() {
 f = this; // Referenz initialisieren

Listing 141: Zentrierung mit setLocationRelativeTo()

>> Fenster (und Dialoge) zentrieren294
GU

I

 // Hauptfenster einrichten
 setTitle("Fenster zentrieren");
 setSize(500,300);
 getContentPane().setLayout(null);

 JButton btn = new JButton("Dialog öffnen");
 btn.setBounds(new Rectangle(300, 200, 150, 25));
 btn.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {

 // Dialog erzeugen
 DemoDialog d = new DemoDialog(f, "Dialog");

 // Dialog zentrieren
 d.setLocationRelativeTo(f);

 // Dialog anzeigen
 d.setVisible(true);
 }
 });
 getContentPane().add(btn, null);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 public static void main(String args[]) {
 Start frame = new Start();
 frame.setLocationRelativeTo(null);
 frame.setVisible(true);
 }
}

Abbildung 58: Dialog, der über seinem Fenster zentriert ist

Listing 141: Zentrierung mit setLocationRelativeTo() (Forts.)

>> GUI 295

GU
I

115 Fenstergröße festlegen (und gegebenenfalls fixieren)
Es gibt zwei Möglichkeiten, die Fenstergröße festzulegen:

� Sie können die Fenstergröße mit setSize() explizit festlegen.

frame.setSize(500,300);

� Sie können die Fenstergröße durch Aufruf von pack() an den Inhalt des Fensters anpassen.

frame.pack();

Ob Sie die Fenstergröße bereits im Konstruktor oder erst nach Instanzierung des Fensters fest-
legen, ist Ihre freie Entscheidung. Wenn Sie von einer Fensterklasse mehrere Instanzen unter-
schiedlicher Maße (Abmessungen) erzeugen möchten, legen Sie die Fenstergröße natürlich erst
nach der Instanzierung fest:

MyFrame frame1 = new MyFrame();
frame1.setSize(500,300);
MyFrame frame2 = new MyFrame();
frame2.setSize(300,300);

Wenn alle Instanzen der Fensterklasse anfangs die gleiche Größe haben sollen, empfiehlt es
sich, diese Anfangsgröße bereits im Konstruktor festzulegen:

public class MyFrame extends JFrame {
 public MyFrame() {
 setTitle("Fenster");
 setSize(500,300);
 ...

Fenster fester Größe
Wenn Sie die Fenstergröße fixieren möchten, so dass sie nicht vom Anwender verändert wer-
den kann, rufen Sie die Methode setResizable() mit false als Argument auf:

H
in

w
e

is Ob Sie dem Konstruktor eines Dialogs eine Referenz auf das übergeordnete Fenster
oder null übergeben, hat keinen Einfluss auf die Positionierung. Wenn Sie eine Fens-
terreferenz übergeben, wird das Fenster zum Besitzer (owner) des Dialogs und dieser
wird beispielsweise mit dem Fenster minimiert oder wiederhergestellt. Die Positionie-
rung oder Verschiebung des Dialogs auf dem Desktop erfolgt aber gänzlich unabhängig
vom Fenster.

A
ch

tu
n

g Benutzen Sie pack() nicht, wenn Sie für das Fenster keinen Layout-Manager verwen-
den (frame.setLayout(null)) oder es keine dimensionierten Komponenten enthält – es
sei denn, Sie wünschen, dass Ihr Fenster auf die Minimalversion einer Titelleiste
zusammenschrumpft.

A
ch

tu
n

g Die Methode setSize() können Sie bereits eingangs des Konstruktors aufrufen. Wenn
Sie die Fenstergröße von pack() berechnen lassen wollen, sollten Sie dies aber erst tun,
nachdem Sie alle Komponenten in die ContentPane des Fensters eingefügt haben.

>> Minimale Fenstergröße sicherstellen296
GU

I

116 Minimale Fenstergröße sicherstellen
Sie kennen das: Mit viel Liebe und Ausdauer haben Sie das optimale Layout für die Kompo-
nenten Ihres Fensters ausgearbeitet und implementiert und dann gehen die Anwender hin und
verkleinern das Fenster, bis von Ihrem Layout nichts mehr übrig bleibt. Eine von zweifelsohne
mehreren Möglichkeiten1, diesem Missstand zu begegnen, ist die Vorgabe einer Minimalgröße,
unter die das Fenster nicht verkleinert werden kann.

In Java gehen alle Fensterklassen auf die Basisklasse Component zurück. Sie lösen also Ereig-
nisse vom Typ ComponentEvent aus, die darüber informieren, wenn eine Komponente ange-
zeigt, verborgen, verschoben oder neu dimensioniert wird. Letzteres Ereignis, zu welchem die
Ereignisbehandlungsmethode componentResized() gehört, gibt uns die Möglichkeit, auf Grö-
ßenänderung zu reagieren – beispielsweise um eine Mindestgröße sicherzustellen.

import java.awt.*;
import javax.swing.*;

public class Start extends JFrame {

 public Start() {
 setTitle("Fenster fester Größe");
 setSize(500,300);
 setResizable(false);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 public static void main(String args[]) {
 Start frame = new Start();
 frame.setLocation(300,300);
 frame.setVisible(true);
 }
}

Listing 142: Fenster fester Größe

1. Siehe Rezept 115 zur Fixierung der Fenstergröße.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Start extends JFrame implements ComponentListener {
 private final int MINWIDTH = 300;
 private final int MINHEIGHT = 100;

 public Start() {
 setTitle("Fenster mit Minimalgröße");
 setSize(MINWIDTH, MINHEIGHT);

Listing 143: Auf Größenänderungen reagieren

>> GUI 297

GU
I

In obigem Beispiel implementiert die Klasse Start das Interface ComponentListener höchst-
persönlich, weswegen wir verpflichtet sind, in der Klassendefinition für alle Methoden des Inter-
face Definitionen bereitzustellen. (Die Alternative wäre, eine eigene Klasse von ComponentAdapter
abzuleiten, in dieser componentResized() zu überschreiben und dann ein Objekt dieser Klasse als
Listener zu registrieren.)

Nachdem sich die Fensterklasse bei sich selbst als Empfänger für Component-Ereignisse regist-
riert hat (addComponentListener(this) im Konstruktor), wird die Methode componentResized()
automatisch aufgerufen, wenn sich die Größe des Fensters ändert. Die Methode fragt dann die
neue Größe ab und prüft, ob Breite oder Höhe unter den in MINWIDTH und MINHEIGHT gespei-
cherten Grenzwerten liegen. Wenn ja, wird der Mindestwert eingesetzt und das Fenster mit
einem Aufruf von setSize() neu dimensioniert.

 JButton btn = new JButton("Klick mich");
 btn.setBounds(new Rectangle(75, 20, 150, 25));
 btn.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 ((JButton) e.getSource()).setText("Danke");
 }
 });
 getContentPane().add(btn);

 addComponentListener(this);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 public void componentHidden(ComponentEvent e) {
 }
 public void componentMoved(ComponentEvent e) {
 }
 public void componentShown(ComponentEvent e) {
 }
 public void componentResized(ComponentEvent e) {

 // Gegebenenfalls minimale Fenstergröße herstellen
 Dimension dim = this.getSize();
 dim.width = (dim.width < MINWIDTH) ? MINWIDTH: dim.width ;
 dim.height = (dim.height < MINHEIGHT) ? MINHEIGHT: dim.height ;
 this.setSize(dim);
 }

 public static void main(String args[]) {
 Start frame = new Start();
 frame.setLocationRelativeTo(null);
 frame.setVisible(true);
 }
}

Listing 143: Auf Größenänderungen reagieren (Forts.)

>> Bilder als Fensterhintergrund298
GU

I

117 Bilder als Fensterhintergrund
Was der Anwender als Hintergrund eines Fensters (oder Dialogs) wahrnimmt, ist der Hinter-
grund der ContentPane. Diesen können Sie mittels der Methode setBackground() beliebig ein-
färben:

getContentPane().setBackground(Color.WHITE); // weißer Hintergrund

Wenn Sie als Hintergrund ein Bild anzeigen möchten, müssen Sie hingegen schon etwas mehr
Aufwand treiben.

1. Sie müssen das Bild laden.

2. Sie müssen für die ContentPane eine eigene Klasse von JPanel ableiten, damit Sie deren
paintComponent()-Methode überschreiben und mittels drawImage() das Bild einzeichnen
können.

Mit drawImage() können Sie das Bild wahlweise so einzeichnen, dass es

� an die Maße der ContentPane angepasst ist:

g.drawImage(bgImage,
 0, 0, // Linke, obere Ecke sowie
 this.getWidth(), // Breite und Höhe des Ziel-
 this.getHeight(), // bereichs, in den das Bild
 this); // eingepasst wird

� oder die eigenen Originalmaße beibehält:

g.drawImage(bgImage,
 0, 0,
 bgImage.getWidth(this),
 bgImage.getHeight(this),
 this);

3. Schließlich erzeugen Sie eine Instanz Ihrer ContentPane-Klasse und richten diese als Con-
tentPane des Fensters ein.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.awt.Image;
import javax.imageio.ImageIO;
import java.io.File;
import java.io.IOException;

public class Start extends JFrame {
 private Image bgImage = null;

 // innere Klasse für ContentPane
 private class ContentPane extends JPanel { // 2

 public ContentPane() {
 setLayout(new FlowLayout());
 }

Listing 144: Bild als Hintergrund der ContentPane

>> GUI 299

GU
I

 public void paintComponent(Graphics g) {
 super.paintComponent(g);

 // Hintergrundbild in Panel zeichnen
 if (bgImage != null)
 g.drawImage(bgImage, 0, 0, this.getWidth(), this.getHeight(),
 Color.WHITE, this);
 }
 }

 public Start() {
 setTitle("Fenster mit Hintergrundbild");

 // Bilddatei laden
 try { // 1
 bgImage = ImageIO.read(new File("background.jpg"));
 } catch(IOException ignore) {
 }

 setContentPane(new ContentPane()); // 3

 JButton btn = new JButton("Beenden");
 btn.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.exit(0);
 }
 });
 getContentPane().add(btn);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 public static void main(String args[]) {
 Start frame = new Start();
 frame.setSize(500,300);
 frame.setLocation(300,300);
 frame.setVisible(true);
 }

}

Listing 144: Bild als Hintergrund der ContentPane (Forts.)

>> Komponenten zur Laufzeit instanzieren300
GU

I

118 Komponenten zur Laufzeit instanzieren
Die Instanzierung von Komponenten ist eine Aufgabe, die man üblicherweise gerne dem GUI-
Designer einer leistungsfähigen Entwicklungsumgebung überlässt (beispielsweise JBuilder
oder Eclipse). Für die Bestückung eines Fensters oder Dialogs mit Schaltern, Textlabeln, Lis-
tenfelder, Eingabefeldern etc. gibt es kaum etwas Besseres.

Trotzdem kommt es immer wieder vor, dass der Programmierer selbst Hand anlegen muss: sei
es, dass Code überarbeitet werden muss, der sich nicht in den GUI-Designer einlesen lässt, weil
er von Hand oder mit einem anderen, nichtkompatiblen GUI-Designer erstellt wurde, sei es,
dass Komponenten nur nach Bedarf instanziert werden sollen.

Hier eine kleine Checkliste, welche Schritte bei der manuellen Instanzierung von Komponen-
ten zu beachten sind:

1. Deklarieren Sie in der Fensterklasse ein Feld vom Typ der Komponente, um später jederzeit
von beliebiger Stelle aus über dieses Feld auf die Komponente zugreifen zu können. (Kann
entfallen, wenn eine solche Referenz nicht benötigt wird.)

2. Erzeugen Sie ein Objekt der Komponente. Meist können Sie dem Konstruktor dabei bereits
Argumente zur Konfiguration der Komponente übergeben: zum Beispiel den Titel für
JLabel- oder JButton-Komponenten oder die Optionen eines JList-Felds.

Abbildung 59: Beachten Sie, dass der Schalter über dem Hintergrundbild der ContentPane
liegt. Wenn Sie die Fenstergröße verändern, wird das Hintergrundbild
automatisch durch Skalierung an die neue Fenstergröße angepasst.

T
ip

p Motivbilder, wie oben zu sehen, sollten Sie anders als im Demobeispiel nur für Fenster
fixer Größe (siehe Rezept 115) als Hintergrund verwenden. Kann der Anwender die
Fenstergröße verändern, führt dies bei Motivbildern meist dazu, dass das Motiv entwe-
der stark verzerrt wird (bei Skalierung des Bilds) oder nur als Ausschnitt (Fenster ist
kleiner als Bild) bzw. als Teil des Fensters (Fenster ist größer als Bild) zu sehen ist. Für
Fenster variabler Größe eignen sich am besten skalierte Strukturbilder oder Motivbil-
der, bei denen das Motiv auf den linken, oberen Bereich beschränkt ist.

>> GUI 301

GU
I

3. Konfigurieren Sie die Komponente.

Legen Sie Größe und Position der Komponente fest. Dies kann explizit geschehen (Metho-
den setBounds(), setSize(), setPosition()) oder vom Layout-Manager übernommen wer-
den. (Arbeitet der Container, in den Sie die Komponente einfügen, mit einem Layout-
Manager, können Sie mittels setMaximumSize(Dimension), setMinimumSize(Dimension) und
setPreferredSize(Dimension) Hinweise für die Dimensionierung der Komponente geben.)

Legen Sie nach Wunsch Schriftart (setFont(Font)), Hinter- und Vordergrundfarbe (set-
Background(Color), setForeground(Color)), Erscheinungsbild des Cursors über der Kompo-
nente (setCursor(Cursor)) und Aktivierung (setEnabled(boolean)) fest.

Konfigurieren Sie die komponentenspezifischen Eigenschaften, soweit dies nicht bereits
vom Konstruktor erledigt wurde.

4. Behandeln Sie gegebenenfalls Ereignisse der Komponente.

5. Fügen Sie die Komponente in ein Fenster (oder eine untergeordnete Container-Kompo-
nente) ein.

Um eine Komponente in ein Fenster oder irgendeinen anderen Container (beispielsweise
eine JPanel-Instanz) einzufügen, rufen Sie die add()-Methode des Containers auf.

H
in

w
e

is Swing-Fenster betten Komponenten in ihre ContentPane (standardmäßig eine JPanel-
Instanz) ein. Der korrekte Weg, Komponenten in Swing-Fenster einzufügen, ist dem-
nach, sich von der Fenstermethode getContentPane() eine Referenz auf die Content-
Pane des Fensters zurückliefern zu lassen und dann deren add()-Methode aufzurufen.
Um das Einfügen von Komponenten zu vereinheitlichen, wurden die Swing-Fenster ab
JDK 1.5 mit einer add()-Methode ausgestattet, die die übergebene Komponente auto-
matisch in die ContentPane einfügt.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Start extends JFrame {
 JButton btn; // 1

 public Start() {
 setTitle("Komponenten einfügen");
 setSize(300,200);
 setResizable(false);
 setLayout(null); // kein Layout-Manager

 btn = new JButton("Klick mich"); // 2
 btn.setBounds(new Rectangle(75, 120, 150, 25)); // 3
 btn.addActionListener(new ActionListener() { // 4
 public void actionPerformed(ActionEvent e) {
 ((JButton) e.getSource()).setText("Danke");
 }
 });

Listing 145: Einfügen eines JButton-Schalters in ein Fenster

>> Komponenten zur Laufzeit instanzieren302
GU

I

Komponenten dynamisch zur Laufzeit instanzieren
Im vorangehenden Beispiel wurde die Komponente manuell im Konstruktor erzeugt und in das
Fenster eingefügt. Wenn das Programm später ausgeführt wird und das Fenster zum ersten
Mal auf dem Bildschirm erscheint, wird die eingebettete Komponente automatisch als
Bestandteil des Fensters mit auf den Bildschirm gezeichnet.

Wenn Sie eine Komponente dynamisch, also zum Beispiel als Reaktion auf eine Benutzerak-
tion, erzeugen, sind die Voraussetzungen dagegen meist andere: Das Fenster, in das die Kom-
ponente eingefügt wird, ist bereits auf dem Bildschirm sichtbar. Es genügt daher nicht, die
Komponente einfach nur in das Fenster einzufügen. Sie müssen auch explizit dafür Sorge tra-
gen, dass das Fenster neu gezeichnet wird. Dazu rufen Sie die repaint()-Methode des Fensters
auf:

 getContentPane().add(btn); // 5

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 public static void main(String args[]) {
 Start frame = new Start();
 frame.setLocation(300,300);
 frame.setVisible(true);
 }
}

public class Start_dynamisch extends JFrame {
 JButton btn;
 JLabel lb;
 JFrame f;

 public Start_dynamisch() {
 ...
 setLayout(null);
 f = this;

 btn = new JButton("Klick mich");
 btn.setBounds(new Rectangle(75, 120, 150, 25));
 btn.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 // Beim ersten Drücken des Schalters ein Label-Feld erzeugen
 if (lb == null) {
 lb = new JLabel("");
 lb.setBounds(new Rectangle(20, 50, f.getWidth()-40, 25));
 lb.setFont(new Font("Arial", Font.PLAIN, 20));
 lb.addMouseListener(new MouseListener() {
 public void mouseClicked(MouseEvent e) {}
 public void mouseEntered(MouseEvent e) {}

Listing 146: Komponente nach Bedarf instanzieren

Listing 145: Einfügen eines JButton-Schalters in ein Fenster (Forts.)

>> GUI 303

GU
I

Dieses Beispiel instanziert das JLabel-Feld lb, welches von dem Schalter als Ausgabefeld
benutzt wird, nicht beim Start des Programms, sondern erst, wenn es wirklich gebraucht wird,
d.h. beim ersten Drücken des Schalters. Wird der Schalter während der Ausführung des Pro-
gramms überhaupt nicht gedrückt (was in diesem Beispiel zugegebenermaßen unwahrschein-
lich ist), werden die Kosten für die Instanzierung eingespart.

119 Komponenten und Ereignisbehandlung
In Java gibt es viele verschiedene Möglichkeiten, eine Ereignisbehandlung aufzubauen. Dieses
Rezept stellt Ihnen – nach einer kurzen Rekapitulation des Grundmechanismus der Ereignisbe-
handlung in Java – einige weit verbreitete Grundtypen vor. Einen Königsweg gibt es nicht.
Manchmal geben die äußeren Umstände den richtigen Weg vor, manchmal ist es auch eine
reine Design-Entscheidung.

Mechanismus der Ereignisbehandlung in Java
Ereignisse auf Komponenten (inklusive Fenstern) werden in Java dadurch behandelt, dass bei
der betreffenden Komponente ein Lauscher-Objekt mit einer passenden Ereignisbehandlungs-
methode registriert wird. Tritt das Ereignis ein, ruft die Komponente die zugehörige Ereignis-
behandlungsmethode des registrierten Lauscher-Objekts auf.

Um Ereignisquelle (die Komponente) und Ereignisempfänger (das Lauscher-Objekt) zu koordi-
nieren, definiert die Java-API eine Reihe von so genannten Listener-Interfaces. Jedes Listener-
Interface definiert, wie die Ereignisbehandlungsmethoden für eine bestimmte Gruppe von
Ereignissen (manchmal auch nur ein einziges Ereignis) heißen.

Ein Lauscher-Objekt, welches ein bestimmtes Ereignis empfangen und verarbeiten möchte,
muss vom Typ einer Klasse sein, die das zugehörige Listener-Interface implementiert und
dabei die Behandlungsmethode für das Ereignis mit dem Code definiert, der als Antwort auf

 public void mouseExited(MouseEvent e) {}
 public void mousePressed(MouseEvent e) {}
 public void mouseReleased(MouseEvent e) {
 ((JLabel) e.getSource()).setText("");
 }
 });
 f.getContentPane().add(lb);
 }
 lb.setText(lb.getText() + "Danke ");

 // Fenster neu zeichnen lassen, damit neue Komponente
 // angezeigt wird
 f.repaint();
 }
 });
 getContentPane().add(btn);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

Listing 146: Komponente nach Bedarf instanzieren (Forts.)

>> Komponenten und Ereignisbehandlung304
GU

I

das Ereignis ausgeführt werden soll. Sind in dem Listener-Interface noch weitere Ereignisbe-
handlungsmethoden deklariert, an deren Bearbeitung der Programmierer nicht interessiert ist,
kann er diese mit leerem Anweisungsteil definieren. (Oder er leitet seine Lauscher-Klasse von
einer Adapter-Klasse ab, die statt seiner die Ereignisbehandlungsmethoden des Interface mit
Leerdefinitionen implementiert, und überschreibt lediglich die ihn interessierenden Methoden.
Die API stellt allerdings nicht für alle Interfaces mit mehreren Methoden passende Adapter-
Klassen zur Verfügung.)

Auf der anderen Seite des Ereignismodells stehen die Ereignisquellen, sprich die Komponen-
ten, in denen die Ereignisse auftreten. Diese sind so implementiert, dass sie bei Eintritt eines
Ereignisses die zugehörigen Ereignisbehandlungsmethoden aller registrierten Ereignisempfän-
ger ausführen. Die Registrierung erfolgt über spezielle Registrierungsmethoden, die als Argu-
ment ein Objekt vom Typ eines Listener-Interface erwarten:

addActionListener(ActionListener l)
addComponentListener(ComponentListener l)
...

Indem die Komponentenklassen selbst festlegen, welche Registrierungsmethoden sie anbieten,
können sie bestimmen, welche Typen von Ereignisempfängern bei ihnen registriert werden,
sprich welche Ereignisse für die Komponente behandelt werden können.

H
in

w
e

is Im Anhang zur Java-Syntax finden Sie tabellarische Auflistungen der wichtigsten
Interfaces mit ihren Ereignisbehandlungsmethoden sowie den zugehörigen Adapter-
Klassen und Ereignisobjekten.

E
x

k
u

rs Das Java-Modell der Ereignisbehandlung
Die Ereignisbehandlung von Java beruht auf Ereignisquellen und Ereignisempfängern.

Abbildung 60: Java-Ereignisbehandlungsmodell

Ausgangspunkt ist, dass ein bestimmtes Ereignis in einer Komponente auftritt. Ein sol-
ches Ereignis kann die vom Betriebssystem vermittelte Benachrichtigung über eine
Benutzeraktion auf der Komponente sein (beispielsweise das Anklicken der Kompo-
nente), es kann sich aber auch um eine Zustandsänderung der Komponente handeln
(der Wert eines Felds wurde geändert). Wie auch immer, die Komponente möchte dem
Programmierer die Gelegenheit geben, auf dieses Ereignis zu reagieren. Dazu tritt sie
selbst als Ereignisquelle auf und sendet allen interessierten Ereignisempfängern ein
Ereignisobjekt, das über das eigentliche Ereignis informiert.

EreignisempfängerEreignisquelle Ereignissenden empfangen

registrieren

>> GUI 305

GU
I

Ereignisbehandlung durch Container
Komponenten werden in Container eingebettet. Da liegt es nahe, dem Container auch gleich
die Verantwortung für die Ereignisbehandlung zu übertragen, indem man die Container-
Klasse die betreffenden Listener-Interfaces implementieren lässt. Voraussetzung ist natürlich,
dass Sie die Container-Klasse selbst definieren.

Der Begriff »senden« stammt aus der traditionellen objektorientierten Terminologie und
sollte nicht zu wörtlich genommen werden. Tatsächlich ist es so, dass sich die Ereignis-
empfänger bei der Ereignisquelle registrieren (die passenden Registrierungsmethoden
definiert die Klasse der Ereignisquelle). Zudem muss der Ereignisempfänger ein Inter-
face implementieren, in dem spezielle Methoden zur Behandlung des Ereignisses
definiert sind. Tritt dann ein Ereignis auf, ruft die Ereignisquelle für alle bei ihr regist-
rierten Ereignisempfänger die passende Ereignisbehandlungsmethode auf – mit dem
Ereignisobjekt als Argument. Unter dem »Senden« des Ereignisobjekts ist also der Auf-
ruf der registrierten Methode mit dem Ereignisobjekt als Argument zu verstehen.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Start_Container extends JFrame implements ActionListener {
 JButton btn;

 public Start_Container() {

 setTitle("Ereignisbehandlung");
 setSize(500,300);

 // Schalter erzeugen
 btn = new JButton("Klick mich");
 btn.setBounds(new Rectangle(0, 0, 150, 25));

 // Fenster als Ereignisempfänger bei Schalter registrieren
 btn.addActionListener(this);

 JPanel p = new JPanel();
 p.setLayout(new FlowLayout(FlowLayout.CENTER,10,20));
 p.add(btn);
 getContentPane().add(p, BorderLayout.SOUTH);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 // Ereignisbehandlung für Schalter
 public void actionPerformed(ActionEvent e) {
 btn.setEnabled(false);
 }

Listing 147: Container als Ereignisempfänger (aus Start_Container.java)

>> Komponenten und Ereignisbehandlung306
GU

I

Ereignisbehandlung mit inneren Klassen
Sie können innere Klassen zur Ereignisbehandlung definieren.

 public static void main(String args[]) {
 Start_Container frame = new Start_Container();
 frame.setLocationRelativeTo(null);
 frame.setVisible(true);
 }
}

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Start_Innere extends JFrame {
 JButton btn;

 public Start_Innere() {

 setTitle("Ereignisbehandlung");
 setSize(500,300);

 // Schalter erzeugen
 btn = new JButton("Klick mich");
 btn.setBounds(new Rectangle(0, 0, 150, 25));

 // ButtonListener als Ereignisempfänger für Schalter registrieren
 btn.addActionListener(new ButtonListener());

 JPanel p = new JPanel();
 p.setLayout(new FlowLayout(FlowLayout.CENTER,10,20));
 p.add(btn);
 getContentPane().add(p, BorderLayout.SOUTH);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 // Ereignisempfänger-Klasse
 class ButtonListener implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 btn.setEnabled(false);
 }
 }

 public static void main(String args[]) {
 Start_Innere frame = new Start_Innere();

Listing 148: Innere Klasse als Ereignisempfänger (aus Start_Innere.java)

Listing 147: Container als Ereignisempfänger (aus Start_Container.java) (Forts.)

>> GUI 307

GU
I

Ereignisbehandlung mit anonymen Klassen
Sie können anonyme Klassen zur Ereignisbehandlung definieren. Dies hat den Vorteil, dass der
Ereignisbehandlungscode direkt bei dem Code zur Erzeugung und Konfiguration der Kompo-
nente steht. Für umfangreichere Ereignisbehandlungen ist dieses Modell weniger gut geeignet.

 frame.setLocationRelativeTo(null);
 frame.setVisible(true);
 }
}

A
ch

tu
n

g Sie können die Ereignisempfänger-Klasse selbstverständlich auch als eigenständige
Klasse außerhalb der Fensterklasse definieren. Die Definition als innere Klasse hat
jedoch den Vorteil, dass Sie in den Methoden der inneren Klasse uneingeschränkt auf
die Felder und Methoden der Fensterklasse zugreifen können (selbst wenn diese pri-
vate sind).

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Start_Anonym extends JFrame {
 JButton btn;

 public Start_Anonym() {

 setTitle("Ereignisbehandlung");
 setSize(500,300);

 // Schalter erzeugen
 btn = new JButton("Klick mich");
 btn.setBounds(new Rectangle(0, 0, 150, 25));

 // Anonyme Klasse als Ereignisempfänger für Schalter registrieren
 btn.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 btn.setEnabled(false);
 }
 });

 JPanel p = new JPanel();
 p.setLayout(new FlowLayout(FlowLayout.CENTER,10,20));
 p.add(btn);
 getContentPane().add(p, BorderLayout.SOUTH);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

Listing 149: Anonyme Klasse als Ereignisempfänger (aus Start_Anonym.java)

Listing 148: Innere Klasse als Ereignisempfänger (aus Start_Innere.java) (Forts.)

>> Komponenten und Ereignisbehandlung308
GU

I Individuelle Ereignisbehandlungsmethoden
Sie können für ein Ereignis, das von mehreren Ereignisquellen ausgelöst wird, mehrere Ereig-
nisempfänger definieren (einen für jede Quelle).

 public static void main(String args[]) {
 Start_Anonym frame = new Start_Anonym();
 frame.setLocationRelativeTo(null);
 frame.setVisible(true);
 }

}

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Start_NtoN extends JFrame {
 JButton btn1;
 JButton btn2;

 public Start_NtoN() {

 setTitle("Ereignisbehandlung");
 setSize(500,300);

 // Schalter erzeugen
 btn1 = new JButton("Klick mich");
 btn1.setBounds(new Rectangle(0, 0, 150, 25));
 btn1.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 btn1.setEnabled(false);
 btn2.setEnabled(true);
 }
 });

 btn2 = new JButton("Klick mich");
 btn2.setBounds(new Rectangle(0, 0, 150, 25));
 btn2.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 btn2.setEnabled(false);
 btn1.setEnabled(true);
 }
 });

Listing 150: Individuelle Ereignisempfänger für das gleiche Ereignis unterschiedlicher
Komponenten (aus Start_NtoN.java)

Listing 149: Anonyme Klasse als Ereignisempfänger (aus Start_Anonym.java) (Forts.)

>> GUI 309

GU
I

Gemeinsam genutzte Ereignisbehandlungsmethoden
Sie können für ein Ereignis, das von mehreren Ereignisquellen ausgelöst wird, einen gemein-
samen Ereignisempfänger definieren und gegebenenfalls in den Ereignisbehandlungsmetho-
den mit Hilfe der Informationen aus dem Ereignisobjekt zwischen den Ereignisquellen
unterscheiden.

Das folgende Beispiel lässt sich beispielsweise über die Methode getSource(), die allen Ereignis-
objekten zu eigen ist, eine Referenz auf die auslösende Komponente zurückliefern. Durch Ver-
gleich dieser Referenz mit den Feldern für die Komponenten stellt die Methode fest, welcher
Schalter gedrückt wurde.

 JPanel p = new JPanel();
 p.setLayout(new FlowLayout(FlowLayout.CENTER,10,20));
 p.add(btn1);
 p.add(btn2);
 getContentPane().add(p, BorderLayout.SOUTH);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 public static void main(String args[]) {
 Start_NtoN frame = new Start_NtoN();
 frame.setLocationRelativeTo(null);
 frame.setVisible(true);
 }
}

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Start_Nto1 extends JFrame {
 JButton btn1;
 JButton btn2;

 public Start_Nto1() {

 setTitle("Ereignisbehandlung");
 setSize(500,300);

 // Schalter erzeugen
 btn1 = new JButton("Klick mich");
 btn1.setBounds(new Rectangle(0, 0, 150, 25));

Listing 151: Ein Ereignisempfänger für das gleiche Ereignis unterschiedlicher Komponenten
(aus Start_Nto1.java)

Listing 150: Individuelle Ereignisempfänger für das gleiche Ereignis unterschiedlicher
Komponenten (aus Start_NtoN.java) (Forts.)

>> Aus Ereignismethoden auf Fenster und Komponenten zugreifen310
GU

I

120 Aus Ereignismethoden auf Fenster und Komponenten
zugreifen

Häufig ist es notwendig, aus den Ereignisbehandlungsmethoden der Komponenten heraus auf
die aktuelle Komponente, andere Komponenten des Fensters oder das Fenster selbst zuzugrei-
fen. Dabei gilt:

� Die aktuelle Komponente, für die das Ereignis ausgelöst wurde, ist immer über das Ereignis-
objekt greifbar. Sie brauchen sich einfach nur von der getSource()-Methode des Ereignisob-
jekts eine Referenz auf die Komponente zurückliefern zu lassen.

� Auf andere Komponenten kann nur zugegriffen werden, wenn Referenzen auf die Kompo-
nenten verfügbar sind. Dies ist beispielsweise der Fall, wenn in der Fensterklasse Felder für

 btn1.addActionListener(new ButtonListener());

 btn2 = new JButton("Klick mich");
 btn2.setBounds(new Rectangle(0, 0, 150, 25));
 btn2.addActionListener(new ButtonListener());

 JPanel p = new JPanel();
 p.setLayout(new FlowLayout(FlowLayout.CENTER,10,20));
 p.add(btn1);
 p.add(btn2);
 getContentPane().add(p, BorderLayout.SOUTH);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 // Innere Klasse zur Ereignisbehandlung
 class ButtonListener implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 if (e.getSource() == btn1) {
 btn1.setEnabled(false);
 btn2.setEnabled(true);
 } else if (e.getSource() == btn2) {
 btn2.setEnabled(false);
 btn1.setEnabled(true);
 }
 }
 }

 public static void main(String args[]) {
 Start_Nto1 frame = new Start_Nto1();
 frame.setLocationRelativeTo(null);
 frame.setVisible(true);
 }
}

Listing 151: Ein Ereignisempfänger für das gleiche Ereignis unterschiedlicher Komponenten
(aus Start_Nto1.java) (Forts.)

>> GUI 311

GU
I

die Komponenten definiert wurden und die Klasse mit der Ereignisbehandlungsmethode
eine innere oder anonyme Klasse der Fensterklasse ist. (Innere Klassen können ohne Ein-
schränkung durch die Zugriffsspezifizierer auf die Elemente der äußeren Klasse zugreifen.)

� Auf das Fenster können Sie über die this-Referenz zugreifen, wenn das Fenster selbst der
Ereignisempfänger ist (sprich die Ereignisbehandlungsmethode eine Methode des Fensters
ist). Wenn die Ereignisbehandlungsmethode zu einer inneren oder anonymen Klasse des
Fensters gehört, greift this nicht auf das Fenster-Objekt, sondern auf die Instanz der inne-
ren Klasse zu. Für den Zugriff auf das Fenster muss dann in der Fensterklasse ein Feld
definiert und in diesem die Referenz auf das Fenster gespeichert werden.

H
in

w
e

is Grundsätzlich ist es auch möglich, sich von der aktuellen Komponente über getPa-
rent()-Aufrufe den Weg bis zum Fenster zu bahnen. Der zugehörige Code ist wegen
der erforderlichen Castings aber recht hässlich und bereits für kleinere Container-Hier-
archien schlecht lesbar und ineffizient.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Start extends JFrame {

 // Felder, die u.a. auch den Zugriff aus inneren Klassen gestatten
 private JFrame frame;
 private JButton btn;

 public Start() {

 setTitle("Ereignisbehandlung");
 setSize(500,300);

 // Referenz auf Fenster in Feld frame abspeichern
 frame = this;

 // Schalter erzeugen und Referenz in Feld speichern
 btn = new JButton("Klick mich");
 btn.setBounds(new Rectangle(0, 0, 150, 25));
 btn.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {

 // Zugriff auf aktuelle Komponente über getSource()
 ((JButton) e.getSource()).setText("Angeklickt");

 // Zugriff auf Komponente über Feld
 btn.setEnabled(false);

 // Zugriff auf Fenster über Feld frame
 frame.setTitle(frame.getTitle() + " - Angeklickt");

Listing 152: Zugriffstechniken für Ereignisbehandlungsmethoden (aus Start.java)

>> Komponenten in Fenster (Panel) zentrieren312
GU

I

121 Komponenten in Fenster (Panel) zentrieren
Es gibt verschiedene Möglichkeiten, Komponenten zu zentrieren:

� mit der Hilfe geeigneter Layout-Manager (empfiehlt sich insbesondere, wenn Sie Ihre GUI-
Oberfläche ohnehin mit Layout-Managern konstruieren),

� durch statische Positionsberechnung (falls die Fenstergröße nicht verändert werden kann),

� durch dynamische Positionsberechnung (falls die Fenstergröße verändert werden kann).

Zentrieren mit Layout-Managern
Der FlowLayout-Manager eignet sich für die Zentrierung von Komponenten besonders gut.
Komponenten, die in einen Container mit FlowLayout eingefügt werden, werden zeilenweise
von oben nach unten angeordnet, wobei die Zeilen im Container standardmäßig horizontal
zentriert werden.

Um eine einzelne Komponente (oder eine Zeile von Komponenten) mittels eines FlowLayout-
Managers zu zentrieren, müssen Sie eine Container-Hierarchie aufbauen, die für die Kompo-
nente (Komponentenzeile) einen eigenen Container vorsieht.

Wie könnte man zum Beispiel einen Schalter horizontal zentriert am unteren Rand eines
Fensters anzeigen (siehe Abbildung 61)?

Die ContentPane eines JFrame-Fensters ist standardmäßig eine JPanel-Instanz mit BorderLay-
out. Sie könnten den Schalter direkt in den SOUTH-Bereich der ContentPane einfügen. Er liegt
dann am unteren Rand, füllt diesen Bereich allerdings vollständig aus. Um den Schalter zu
zentrieren, erzeugen Sie eine JPanel-Instanz. Dann fügen Sie den Schalter in das JPanel und
das JPanel in den SOUTH-Bereich der ContentPane ein.

 }
 });

 ...
}

// JPanel erzeugen
JPanel p = new JPanel(); // Nutzt standardmäßig FlowLayout

// Schalter erzeugen und in Panel einfügen
btn = new JButton("Klick mich");
btn.setBounds(new Rectangle(0, 0, 150, 25));
p.add(btn);

// Panel in SOUTH-Bereich der ContentPane einfügen
getContentPane().add(p, BorderLayout.SOUTH);

Listing 153: Zentrieren mit FlowLayout – Version 1

Listing 152: Zugriffstechniken für Ereignisbehandlungsmethoden (aus Start.java) (Forts.)

>> GUI 313

GU
I

Den Abstand des Schalters vom unteren Rahmen können Sie über den vgap-Wert des Layout-
Managers einstellen. Wenn Sie den Layout-Manager neu erzeugen, übergeben Sie den vgap-
Wert als drittes Argument nach Ausrichtung und hgap-Wert.

Zentrieren durch statische Berechnung
Hat das Fenster – oder allgemeiner der Container, in den die Komponente eingefügt wird –
feste, unveränderliche Abmessungen, können Sie die Komponente leicht selbst zentrieren. Sie
müssen lediglich von der Breite (respektive Höhe) des Containers die Breite (Höhe) der Kompo-
nente abziehen und das Ergebnis durch zwei teilen. Als Ergebnis erhalten Sie die x- bzw. y-
Koordinate für die linke obere Ecke der Komponente.

Dialogfenster haben meist eine feste Größe (siehe auch Rezept 115). Der folgende Code zen-
triert einen Schalter am unteren Rand des Dialogs:

// JPanel mit individuellem Layout-Manager erzeugen
JPanel p = new JPanel();
p.setLayout(new FlowLayout(FlowLayout.CENTER, 10, 20));

// Schalter erzeugen und in Panel einfügen
btn = new JButton("Klick mich ");
btn.setBounds(new Rectangle(0, 0, 150, 25));
p.add(btn);

// Panel in SOUTH-Bereich der ContentPane einfügen
getContentPane().add(p, BorderLayout.SOUTH);

Listing 154: Zentrieren mit FlowLayout – Version 2 (aus Start_Layout.java)

Abbildung 61: Zentrierter Schalter

class DemoDialog extends JDialog implements ActionListener {

 public DemoDialog(Frame owner, String title) {
 super(owner, title);

Listing 155: Zentrieren eines Schalters in einem Dialogfenster ohne Layout-Manager
(aus Start.java)

>> Komponenten in Fenster (Panel) zentrieren314
GU

I

Zentrieren durch dynamische Berechnung
Wenn sich die Größe des Containers während der Ausführung des Programms verändern kann,
muss die Position der Komponente, soll sie zentriert bleiben, ständig nachjustiert werden. Zu
diesem Zweck ist es erforderlich, das ComponentListener-Interface zu implementieren und die
Komponente in den Methoden componentShown() und ComponentResized() zu positionieren.

Das nachfolgende Listing demonstriert dies anhand eines Schalters, der horizontal und verti-
kal in einem Fenster zentriert wird.

 // Abmaße für Dialog festlegen
 setSize(370, 200);
 setResizable(false);

 // Layout-Manager deaktivieren
 getContentPane().setLayout(null);

 // Schalter erzeugen
 JButton btnOK = new JButton("OK");
 btnOK.setBounds(new Rectangle(0, 0, 100, 25));
 btnOK.addActionListener(this);

 // Schalter horizontal zentrieren
 Dimension dim = this.getSize();
 int x = (dim.width - btnOK.getWidth())/2;
 btnOK.setLocation(x, 120);

 // Schalter in ContentPane einfügen
 getContentPane().add(btnOK, null);
 }

 public void actionPerformed(ActionEvent e) {
 setVisible(false);
 }
}

public class Start extends JFrame implements ComponentListener {
 JButton btn;
 JFrame f;

 public Start() {
 // Hauptfenster einrichten
 f = this;
 setTitle("Komponenten zentrieren");
 setSize(500,300);

Listing 156: Zentrieren eines Schalters in einem Fenster, dessen Abmessungen durch den
Benutzer verändert werden können (aus Start.java)

Listing 155: Zentrieren eines Schalters in einem Dialogfenster ohne Layout-Manager
(aus Start.java) (Forts.)

>> GUI 315

GU
I

122 Komponenten mit Rahmen versehen
Im Package javax.swing.border sind eine Reihe von Border-Klassen definiert, mit deren Hilfe
Sie Swing-Komponenten mit Rahmen versehen können. In der Regel werden Sie diese Klassen
aber nicht direkt instanzieren, sondern sich passende Rahmen-Objekte von den statischen
create-Methoden der Klasse BorderFactory zurückliefern lassen. Die so erzeugten Rahmen-
Objekte weisen Sie dann mit der JComponent-Methode setBorder() Ihren Komponenten zu.

// Komponente mit schwarzer Umrandung als Rahmen
aComponent.setBorder(BorderFactory.createLineBorder(Color.BLACK));

 getContentPane().setLayout(null);

 // Schalter erzeugen
 btn = new JButton("Dialog öffnen");
 ...

 // Schalter in ContentPane einfügen
 getContentPane().add(btn, null);

 addComponentListener(this);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 // Schalter bei erstem Erscheinen und jeder Größenänderung des
 // Fensters zentrieren
 public void componentShown(ComponentEvent e) {
 Dimension dim = getContentPane().getSize();
 int x = (dim.width-btn.getWidth())/2;
 int y = (dim.height-btn.getHeight())/2;
 btn.setLocation(x,y);
 }
 public void componentResized(ComponentEvent e) {
 Dimension dim = getContentPane().getSize();
 int x = (dim.width-btn.getWidth())/2;
 int y = (dim.height-btn.getHeight())/2;
 btn.setLocation(x,y);
 }
 public void componentHidden(ComponentEvent e) {
 }
 public void componentMoved(ComponentEvent e) {
 }
...

Listing 156: Zentrieren eines Schalters in einem Fenster, dessen Abmessungen durch den
Benutzer verändert werden können (aus Start.java) (Forts.)

>> Komponenten mit Rahmen versehen316
GU

I

Welche Rahmen gibt es?
Tabelle 31 gibt Ihnen eine Übersicht über die vordefinierten Swingborder-Klassen und die
zugehörigen create-Methoden von BorderFactory.

Rahmenklasse BorderFactory-Methode

EmptyBorder Erzeugt einen Abstand zwischen Inhalt und Außenumriss der Komponente (in
der Hintergrundfarbe). Wenn Sie einen Layout-Manager verwenden, der die
Größe der Komponenten anpasst (beispielsweise GridLayout), werden Ihre Vor-
gaben überschrieben.
(Ersetzt die früher übliche Angabe von Insets.)
createEmptyBorder()

Null-Pixel-Rand
createEmptyBorder(int top, int left, int bottom, int right).

Rand der angegebenen Stärke.

LineBorder Rahmen aus Linie der angegebenen Farbe und Stärke.
createLineBorder(Color color)
createLineBorder(Color color, int thickness)

BevelBorder Rahmen fester Stärke, der unterschiedliche Farben für links und oben bzw.
rechts und unten verwendet.
createBevelBorder(int type)

Als Typ übergeben Sie BevelBorder.RAISED oder BevelBorder.LOWERED, um die
Komponente hervorgehoben oder eingesenkt erscheinen zu lassen. Das Rahmen-
Objekt wählt als Farben dazu aufgehellte bzw. abgedunkelte Varianten der Hin-
tergrundfarbe der Komponente.
createBevelBorder(int type, Color highlight, Color shadow)

Erlaubt es Ihnen, neben dem Typ auch die Farben anzugeben.
createBevelBorder(int type, Color highlightOuter, Color
highlightInner, Color shadowOuter, Color shadowInner)

Erlaubt die Angabe von zwei Farben für die jeweils außen bzw. innen liegenden
Teile der aufgehellten bzw. abgedunkelten Rahmenelemente.
createLoweredBevelBorder()

Entspricht createBevelBorder(BevelBorder.LOWERED).
createRaisedBevelBorder()

Entspricht createBevelBorder(BevelBorder.RAISED).

EtchedBorder Wie BevelBorder, erweckt aber den Eindruck einer »Gravierung«.
createEtchedBorder()
createEtchedBorder(int type)

Als Typ übergeben Sie EtchedBorder.RAISED oder EtchedBorder.LOWERED, um den
Rahmen als hervorstehend oder eingesunken erscheinen zu lassen. Das Rahmen-
Objekt wählt als Farben dazu aufgehellte bzw. abgedunkelte Varianten der Hin-
tergrundfarbe der Komponente.
createEtchedBorder(Color highlight, Color shadow)
createEtchedBorder(int type, Color highlight, Color shadow)

Erlaubt es Ihnen, neben dem Typ auch die Farben anzugeben.

Tabelle 31: Vordefinierte Swing-Rahmen

>> GUI 317

GU
I

MatteBorder Farbiger Rahmen mit unterschiedlichen Linienstärken für die einzelnen Seiten
sowie optional der Angabe eines Musters.
createMatteBorder(int top, int left, int bottom, int right, Color
color)

Ähnlich wie LineBorder, nur dass Sie für jede Rahmenseite eine eigene Dicke
festlegen können.
createMatteBorder(int top, int left, int bottom, int right, Icon
tileIcon)

Erlaubt es Ihnen, ein Muster (in Form einer Bilddatei) anzugeben, mit dem der
Rahmen gezeichnet wird.

TitledBorder Blendet einen Titel in den Rahmen ein.
createTitledBorder(Border border)

Verwendet den als Argument übergebenen Rahmen und blendet in dessen obe-
ren Rand einen leeren Titel ein.
createTitledBorder(String title)

Verwendet einen EtchedBorder-Rahmen und blendet in dessen oberen Rand den
angegebenen Titel ein.
createTitledBorder(Border border, String title)
createTitledBorder(Border border, String title, int
titleJustification, int titlePosition)

createTitledBorder(Border border, String title, int
titleJustification, int titlePosition, Font titleFont)

createTitledBorder(Border border, String title, int
titleJustification, int titlePosition, Font titleFont, Color
titleColor)

Verwendet den angegebenen Rahmen und blendet in dessen oberen Rand den
angegebenen Titel ein. Je nach Methode können Sie zudem die Titelausrichtung
(TitledBorder.LEFT, TitledBorder.CENTER, TitledBorder.RIGHT, TitledBorder.LEA-
DING, TitledBorder.TRAILING, TitledBorder.DEFAULT_JUSTIFICATION), die vertikale
Position des Titels (TitledBorder.ABOVE_TOP, TitledBorder.TOP, TitledBor-
der.BELOW_TOP, TitledBorder.ABOVE_BOTTOM, TitledBorder.BOTTOM, TitledBor-
der.DEFAULT_POSITION) sowie Schriftart und Farbe festlegen.

CompoundBorder Erlaubt es Ihnen, zwei Border-Objekte zu einem Rahmen zusammenzufügen.
Meist kombiniert man einen dekorativen Rahmen (LineBorder, EtchedBorder etc.)
mit einem EmptyBorder als Abstandshalter zwischen Dekorativrahmen und Kom-
ponenteninhalt.
createCompoundBorder(Border outsideBorder, Border insideBorder)

H
in

w
e

is Eigene Rahmenklassen leiten Sie von AbstractBorder ab.

Rahmenklasse BorderFactory-Methode

Tabelle 31: Vordefinierte Swing-Rahmen (Forts.)

>> Komponenten mit eigenem Cursor318
GU

I

Das Start-Programm zu diesem Rezept führt zu jedem Rahmentyp drei Varianten vor.

123 Komponenten mit eigenem Cursor
Um festzulegen, welcher Cursor über einer Komponente (oder einem Fenster) angezeigt wer-
den soll, rufen Sie einfach die Component-Methode setCursor() auf und übergeben ihr den
gewünschten Cursor, den Sie sich – soweit es sich um einen vordefinierten Cursor handelt –
am besten von einer der Cursor-Methoden getDefaultCursor(), getSystemCustomCursor() oder
getPredefinedCursor() zurückliefern lassen:

Cursor cursor = Cursor.getPredefinedCursor(Cursor.HAND_CURSOR);
aComponent.setCursor(cursor);

oder in einer Zeile:

aComponent.setCursor(Cursor.getPredefinedCursor(Cursor.HAND_CURSOR));

Folgende Cursor-Konstanten sind in der Klasse Cursor definiert:

Abbildung 62: Der Rahmenkatalog des Start-Programms

CROSSHAIR_CURSOR NW_RESIZE_CURSOR

CUSTOM_CURSOR S_RESIZE_CURSOR

DEFAULT_CURSOR SE_RESIZE_CURSOR

E_RESIZE_CURSOR SW_RESIZE_CURSOR

HAND_CURSOR TEXT_CURSOR

MOVE_CURSOR W_RESIZE_CURSOR

N_RESIZE_CURSOR WAIT_CURSOR

NE_RESIZE_CURSOR

Tabelle 32: Vordefinerte Cursor-Konstanten

>> GUI 319

GU
I

124 Komponenten mit Kontextmenü verbinden
Grundsätzlich stellt die Einrichtung eines Kontextmenüs keine allzu große Herausforderung
für den Programmierer dar:

Das Kontextmenü (eine JPopupMenu-Instanz) wird analog zu dem Menü einer Menüleiste aus
JMenuItem-Elementen aufgebaut und anschließend bei Bedarf durch Aufruf der JPopupMenu-
Methode show() angezeigt.

Gerade der letzte Punkt ist aber nicht ganz so einfach zu implementieren, wie es auf den ers-
ten Blick erscheint.

� Unter Linux soll das Kontextmenü geöffnet werden, wenn der Anwender in der Kompo-
nente die rechte Maustaste drückt.

� Unter Windows soll das Kontextmenü geöffnet werden, wenn der Anwender in der Kom-
ponente die rechte Maustaste drückt und wieder loslässt oder auf seiner Tastatur die Kon-
textmenü-Taste (soweit vorhanden) drückt.

� In jedem Fall sollte das Kontextmenü an der Position der Maus (bzw. des Textcursors)
angezeigt werden.

Um allen drei Punkten gerecht zu werden, müssen Sie für die Komponente einen Mouse- und
einen KeyAdapter registrieren und die MousePressed-, MouseReleased- und KeyPressed-Ereig-
nisse überwachen:

Abbildung 63: Cursor über Komponente

public class Start extends JFrame {
 private JScrollPane scrollpane;
 private JTextArea textpane;
 private JPopupMenu contextmenu;

 public Start() {
 // Hauptfenster konfigurieren
 setTitle("Datei-Drag für JTextArea");
 getContentPane().setBackground(Color.LIGHT_GRAY);

Listing 157: Aus Start.java

>> Komponenten mit Kontextmenü verbinden320
GU

I

 // Scrollbare JTextArea einrichten
 scrollpane = new JScrollPane();
 textpane = new JTextArea();
 scrollpane.getViewport().add(textpane, null);

 // Kontextmenü mit Zwischenablagebefehlen für JTextArea aufbauen
 contextmenu = new JPopupMenu();

 JMenuItem cut = new JMenuItem("Ausschneiden");
 cut.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 textpane.cut();
 }
 });
 JMenuItem copy = new JMenuItem("Kopieren");
 copy.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 textpane.copy();
 }
 });
 JMenuItem paste = new JMenuItem("Einfügen");
 paste.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 textpane.paste();
 }
 });

 contextmenu.add(cut);
 contextmenu.add(copy);
 contextmenu.add(paste);

 // Kontextmenü mit JTextArea verbinden
 // Öffnen beim Drücken der rechten Maustaste
 textpane.addMouseListener(new MouseAdapter() {
 public void mousePressed(MouseEvent e) {
 if (e.isPopupTrigger())
 contextmenu.show(e.getComponent(), e.getX(), e.getY());
 }
 public void mouseReleased(MouseEvent e) {
 if (e.isPopupTrigger())
 contextmenu.show(e.getComponent(), e.getX(), e.getY());
 }
 });
 // Öffnen beim Drücken der Kontextmenü-Taste (Windows)
 textpane.addKeyListener(new KeyAdapter() {
 public void keyReleased(KeyEvent e) {
 if (e.getKeyCode() == KeyEvent.VK_CONTEXT_MENU) {
 Point pos = textpane.getCaret().getMagicCaretPosition();

Listing 157: Aus Start.java (Forts.)

>> GUI 321

GU
I

In den mousePressed()- und mouseReleased()-Methoden prüfen Sie mittels e.isPopupTrigger(),
ob das Kontextmenü angezeigt werden soll (wobei e das MouseEvent-Objekt ist). Wenn ja, blen-
den Sie das Kontextmenü am Ort des Mausklicks ein.

In der keyReleased()-Methode prüfen Sie mittels e.getKeyCode(), ob die Kontextmenü-Taste
gedrückt wurde (wobei e das KeyEvent-Objekt ist). Wenn ja, ermitteln Sie die Position des Text-
cursors in der Komponente und blenden das Kontextmenü am Ort des Cursors ein.

 if (pos == null)
 contextmenu.show(textpane, 0, 0);
 else
 contextmenu.show(textpane, pos.x, pos.y);
 }
 }
 });

 getContentPane().add(scrollpane, BorderLayout.CENTER);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }
...
}

H
in

w
e

is Die getComponent()-Methode des MouseEvent-Objekts liefert die Komponente, in die
geklickt wurde; die Methoden getX() und getY() liefern die Position der Maus relativ
zum Ursprung der Komponente.

Abbildung 64: JTextArea mit Kontextmenü

Listing 157: Aus Start.java (Forts.)

>> Komponenten den Fokus geben322
GU

I

125 Komponenten den Fokus geben
Um einer Komponente im aktiven Fenster den Fokus zu geben, brauchen Sie einfach nur die
Component-Methode requestFocusInWindow() aufzurufen:

aComponent.requestFocusInWindow();

Ob die Komponente danach den Fokus auch wirklich erhält, hängt davon ab,

� ob die Komponente angezeigt werden kann und sichtbar ist (trifft beispielsweise nicht zu,
wenn setVisible(false) für die Komponente aufgerufen wurde oder das Fenster mit der
Komponente noch nicht aktiviert ist),

� ob die Komponente aktiviert ist (trifft beispielsweise nicht zu, wenn setEnabled(false) für
die Komponente aufgerufen wurde),

� ob die Komponente den Fokus überhaupt entgegennehmen kann (trifft beispielsweise nicht
für JLabel zu, kann aber durch Aufruf von setFocusable(true) geändert werden).

JLabel-Komponenten den Fokus zuweisen
JLabel-Komponenten sind per Voreinstellung so konfiguriert, dass sie nicht den Fokus erhal-
ten. Wenn Sie dies ändern möchten, müssen Sie für die betreffende JLabel-Instanz zuerst set-
Focusable(true) und dann requestFocusInWindow() aufrufen:

lb.setFocusable(true);
lb.requestFocusInWindow();

Festlegen, welche Komponente bei Start des Programms
oder Aktivierung des Fensters den Fokus erhält
Wenn Sie festlegen möchten, welche Komponente eines Fensters beim Programmstart aktiviert
ist, können Sie nicht so vorgehen, dass Sie im Konstruktor des Fensters nach Instanzierung
der Komponente für diese requestFocusInWindow() aufrufen. Da das Fenster bei Ausführung
des Konstruktors weder aktiv noch überhaupt sichtbar ist (die eingebetteten Komponenten
folglich auch noch nicht sichtbar sind), geht die Fokusanforderung ins Leere.

A
ch

tu
n

g Liefert requestFocusInWindow() den Wert true zurück, heißt dies nicht, dass die Kompo-
nente den Fokus erhalten hat, sondern nur, dass sie ihn wahrscheinlich erhalten wird.
Ist der Rückgabewert dagegen false, bedeutet dies, dass die Komponente den Fokus
definitiv nicht erhalten wird.

A
ch

tu
n

g Die Methode requestWindow(), die der aktuellen Komponente den Fokus übergibt und
dazu notfalls auch das übergeordnete Fenster zum aktiven Fenster macht, führt auf
verschiedenen Plattformen zu unterschiedlichen Ergebnissen und sollte daher eher
nicht verwendet werden.

H
in

w
e

is Für JLabel-Komponenten gibt es keine vordefinierte grafische Kennzeichnung, anhand
der der Anwender erkennen könnte, dass eine JLabel-Komponente den Fokus innehat.
Möchten Sie eine solche Kennzeichnung vorsehen, können Sie beispielsweise so vorge-
hen, dass Sie die Fensterklasse das Interface FocusListener implementieren lassen und
in den Methoden focusGained() und focusLost() dafür sorgen, dass eine entsprechende
Kennzeichnung ein- bzw. ausgeblendet wird.

>> GUI 323

GU
I

Registrieren Sie stattdessen für das Fenster einen WindowListener und fordern Sie den Fokus
in dessen windowOpened()-Definition an:

this.addWindowListener(new WindowAdapter() {
 public void windowOpened(WindowEvent e) {
 cb.requestFocusInWindow();
 }
});

Soll die besagte Komponente nicht nur beim Programmstart den Fokus erhalten, sondern
immer, wenn der Anwender zu dem Fenster zurückkehrt und es aktiviert, überschreiben Sie
die Methode windowActivated():

this.addWindowListener(new WindowAdapter() {
 public void windowActivated(WindowEvent e) {
 cb.requestFocusInWindow();
 }
});

126 Die Fokusreihenfolge festlegen
Auf den meisten Plattformen können Anwender mit Hilfe der (ÿ_)-Taste den Fokus von einer
Komponente zur nächsten weitergeben. Die Reihenfolge, in der die Komponenten in einem
Container auf diese Weise durchlaufen werden, wird durch eine so genannte Focus Traversal
Policy festgelegt.

H
in

w
e

is Das Start-Programm zu diesem Rezept demonstriert die drei oben angesprochenen
Techniken:

Als Antwort auf das Drücken des Schalters FOKUS AUF CHECKBOX 2 wird der CheckBox-
Komponente cb2 der Fokus zugewiesen.

Als Antwort auf das Drücken des Schalters FOKUS AUF LABEL wird der Label-Kompo-
nente lb der Fokus zugewiesen (nachdem sie zuvor so konfiguriert wurde, dass sie den
Fokus entgegennehmen kann).

Bei Aktivierung des Fensters wird der Fokus automatisch an die zweite CheckBox-
Komponente cb2 übergeben.

Focus Traversal Policy-Klassen Beschreibung

ContainerOrderFocusTraversalPolicy Durchläuft die Komponenten in der Reihenfolge, in der sie
in den Container eingefügt wurden.

DefaultFocusTraversalPolicy Standard
Wie ContainerOrderFocusTraversalPolicy, übergeht aber
AWT-Komponenten, deren Peers auf der aktuellen
Plattform keinen Fokus erhalten können. (Es sei denn,
die Komponente wird im Programmcode explizit als
fokussierbar deklariert, beispielsweise durch Aufruf
von setFocusable(true).)

Tabelle 33: Vordefinierte Focus Traversal Policy-Klassen

>> Die Fokusreihenfolge festlegen324
GU

I

Ein Container, für den keine eigene Focus Traversal Policy eingerichtet wurde, übernimmt die
Focus Traversal Policy seiner übergeordneten Focus Cycle Root. Was aber ist eine Focus Cycle
Root? Wie Sie wissen, kann ein Container Komponenten und untergeordnete Container ent-
halten, die selbst wiederum Komponenten und untergeordnete Container enthalten können.
Ein Container, der eine Focus Cycle Root ist, definiert eine Fokusreihenfolge für alle in ihm
enthaltenen Komponenten (auch derjenigen in den untergeordneten Containern). Die unter-
geordneten Container können für die in ihnen eingebetteten Komponenten eine abweichende
Fokusreihenfolge (Policy) festlegen, bleiben aber weiterhin Teil des Fokuszyklus der Focus
Cycle Root. Solange der Anwender die (ÿ_)-Taste drückt, bleibt er im Kreis der Komponenten
der aktuellen Focus Cycle Root. Um in den Kreis einer anderen Focus Cycle Root zu springen,
muss er sich spezieller, plattformabhängiger Tastenkombinationen oder der Maus bedienen.
Fenster sind per Voreinstellung Focus Cycle Roots, Container können durch Aufruf von set-
FocusCycleRoot(true) zu eben solchen gemacht werden.

Eigene Focus Traversal Policies
Um eine eigene Focus Traversal Policy zu implementieren, müssen Sie eine Klasse von Focus-
TraversalPolicy ableiten und die Methoden getComponentAfter(), getComponentBefore(), get-
DefaultComponent(), getInitialComponent(), getFirstComponent() und getLastComponent() über-
schreiben.

Die Klasse ListFocusTraversalPolicy beispielsweise übernimmt über den Konstruktor eine Auf-
listung oder ein Array von Komponenten und setzt den Fokus gemäß der Reihenfolge der Kom-
ponenten in diesem Array. (Tatsächlich setzt sie den Fokus natürlich nicht selbst, sondern meldet
über ihre Methoden jeweils die Komponente zurück, der der Fokus übergeben werden soll.)

SortingFocusTraversalPolicy Legt die Reihenfolge mit Hilfe eines Comparators fest, der
dem Konstruktor zu übergeben ist.

LayoutFocusTraversalPolicy Legt die Reihenfolge anhand der Größe, Position und
Orientierung der Komponenten fest.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/**
 * Klasse, die die Fokusreihenfolge festlegt
 */
public class ListFocusTraversalPolicy extends FocusTraversalPolicy {

 private Component[] components; // Array der Komponenten
 private int pos; // Positionszeiger

 // Konstruktor
 public ListFocusTraversalPolicy(Component... components) {
 this.components = components;

Listing 158: ListFocusTraversalPolicy reicht den Fokus gemäß der Reihenfolge der
Komponenten in der übergebenen Auflistung weiter.

Focus Traversal Policy-Klassen Beschreibung

Tabelle 33: Vordefinierte Focus Traversal Policy-Klassen (Forts.)

>> GUI 325

GU
I

 // Positionszeiger auf 1. Komponente setzen
 pos = 0;
 }

 // Referenz auf nachfolgende Komponente zurückliefern
 public Component getComponentAfter(Container focusCycleRoot,
 Component active) {

 if(pos+1 == components.length) {
 pos = 0;
 } else {
 ++pos;
 }

 return components[pos];
 }

 // Referenz auf vorangehende Komponente zurückliefern
 public Component getComponentBefore(Container focusCycleRoot,
 Component active) {
 if(pos == 0) {
 pos = components.length;
 } else {
 --pos;
 }

 return components[pos];
 }

 // Referenz auf die Komponente zurückliefern, die bei Eintritt in einen
 // neuen Fokuszyklus als Erstes den Fokus erhalten soll
 public Component getDefaultComponent(Container cont) {

 return components[0];
 }

 // Referenz auf die Komponente zurückliefern, die beim ersten Erscheinen
 // des Fensters den Fokus erhalten soll
 public Component getDefaultComponent(Window win) {

 return components[0];
 }

 // Referenz auf die erste Komponente im Zyklus zurückliefern
 public Component getFirstComponent(Container cont) {

 return components[0];
 }

Listing 158: ListFocusTraversalPolicy reicht den Fokus gemäß der Reihenfolge der
Komponenten in der übergebenen Auflistung weiter. (Forts.)

>> Fokustasten ändern326
GU

I

Einen Container als Focus Traversal Policy Provider einrichten
1. Erzeugen Sie die eine Instanz der Focus Traversal Policy.

2. Deklarieren Sie den Container als Focus Traversal Policy Provider, indem Sie setFocus-
TraversalPolicyProvider(true) aufrufen.

3. Legen Sie die Traversal Policy fest, indem Sie die in Schritt 1 erzeugte Instanz an die
Methode setFocusTraversalPolicy() übergeben.

// Den JPanel-Container p zum Focus Traversal Policy Provider machen
ListFocusTraversalPolicy ftp = new ListFocusTraversalPolicy(rb3, rb2, rb1);
p.setFocusTraversalPolicyProvider(true);
p.setFocusTraversalPolicy(ftp);

Einen Container als Focus Cycle Root einrichten
1. Erzeugen Sie eine Instanz der Focus Traversal Policy.

2. Deklarieren Sie den Container als Focus Cycle Root, indem Sie setFocusCycleRoot(true)
aufrufen.

3. Legen Sie die Traversal Policy fest, indem Sie die in Schritt 1 erzeugte Instanz an die
Methode setFocusTraversalPolicy() übergeben.

// Den JPanel-Container p zur Focus Cycle Root machen
ListFocusTraversalPolicy ftp = new ListFocusTraversalPolicy(c3, c2, c1);
p.setFocusCycleRoot(true);
p.setFocusTraversalPolicy(ftp);

127 Fokustasten ändern
Sun empfiehlt, dass unter Windows und Unix folgende Tasten für die Weiterleitung des Fokus
verwendet werden:

 // Referenz auf die letzte Komponente im Zyklus zurückliefern
 public Component getLastComponent(Container cont) {

 return components[components.length];
 }
}

TextArea Andere Komponenten

Nächste Komponente Drücken von:
(Strg) + (ÿ_)

Drücken von:
(ÿ_) oder (Strg) + (ÿ_)

Vorangehende Komponente Drücken von:
(ª) + (Strg) + (ÿ_)

Drücken von:
(ª) + (ÿ_) oder (ª) + (Strg) + (ÿ_)

Tabelle 34: Empfohlene und vordefinierte Tasten für die Fokusweitergabe
(innerhalb eines Focus Cycle)

Listing 158: ListFocusTraversalPolicy reicht den Fokus gemäß der Reihenfolge der
Komponenten in der übergebenen Auflistung weiter. (Forts.)

>> GUI 327

GU
I

Trotzdem ist es möglich, in bestimmten Fällen – beispielsweise auf Wunsch eines Kunden –
auch andere Tasten für die Fokusweitergabe zu registrieren.

Die Registrierung von Tasten für die Fokusweitergabe geschieht immer auf der Ebene eines
Containers.

1. Mit der Container-Methode getFocusTraversalKeys(int id) lassen Sie sich eine Set<AWT-
KeyStroke)-Collection der aktuell registrierten Fokus-Traversal-Keys zurückliefern.

Als ID übergeben Sie eine der folgenden Konstanten:

� KeyboardFocusManager.FORWARD_TRAVERSAL_KEYS – Tasten, die zur nachfolgenden Kompo-
nente springen

� KeyboardFocusManager.BACKWARD_TRAVERSAL_KEYS – Tasten, die zur vorangehenden
Komponente springen

� KeyboardFocusManager.UP_CYCLE_TRAVERSAL_KEYS – Tasten, die zum übergeordneten
Fokus-Cycle wechseln

� KeyboardFocusManager.DOWN_CYCLE_TRAVERSAL_KEYS – Tasten, die zum untergeordneten
Fokus-Cycle wechseln

2. Erzeugen Sie eine Kopie der Tasten-Collection. (Das Original-Set kann nicht verändert
werden.)

3. Erweitern Sie die neue Tasten-Collection um weitere Tasten oder entfernen Sie bestehende
Tasten.

4. Weisen Sie die neue Tasten-Collection mit setFocusTraversalKeys(int id, Set<? extends
AWTKeyStroke> keystrokes) dem Container zu.

Die nachfolgende Klasse definiert drei statische Methoden, mit denen man den aktuellen Satz
von Fokus-Traversal-Tasten erweitern, reduzieren oder ersetzen kann.

import java.awt.*;
import java.util.*;

public class MoreGUI {

 // Instanzbildung unterbinden
 private MoreGUI() { }

 /**
 * Fügt der Liste der Fokus-Traversal-Tasten eine weitere zu
 */
 public static void addTraversalKey(Container c,
 int traversalCode, int keyCode) {

 // Aktuelle Traversal-Tasten abfragen
 HashSet<AWTKeyStroke> keys =
 new HashSet<AWTKeyStroke>(c.getFocusTraversalKeys(traversalCode));

Listing 159: MoreGUI.java – statische Hilfsmethoden zur Registrierung von
Fokus-Traversal-Tasten

>> Fokustasten ändern328
GU

I

Das Start-Programm zu diesem Rezept enthält zwei Eingabefelder und zwei Schalter zum Tes-
ten der Fokusweitergabe. Über die Schalter können Sie die (Enter)-Taste als zusätzliche Fokus-
Traversal-Tasten einrichten bzw. löschen.

 // Taste hinzufügen
 keys.add(AWTKeyStroke.getAWTKeyStroke(keyCode,0,false));

 // Neue Traversal-Tasten registrieren
 c.setFocusTraversalKeys(traversalCode, keys);
 }

 /**
 * Entfernt eine Taste aus der Liste der Fokus-Traversal-Tasten
 */
 public static void removeTraversalKey(Container c,
 int traversalCode, int keyCode) {

 // Aktuelle Traversal-Tasten abfragen
 HashSet<AWTKeyStroke> keys =
 new HashSet<AWTKeyStroke>(c.getFocusTraversalKeys(traversalCode));

 // Taste entfernen
 keys.remove(AWTKeyStroke.getAWTKeyStroke(keyCode,0,false));

 // Neue Traversal-Tasten registrieren
 c.setFocusTraversalKeys(traversalCode, keys);
 }

 /**
 * Tauscht die Liste der Fokus-Traversal-Tasten gegen eine Taste aus
 */
 public static void replaceTraversalKey(Container c,
 int traversalCode, int keyCode) {

 // Neues Set erzeugen
 HashSet<AWTKeyStroke> keys = new HashSet<AWTKeyStroke>(1);
 keys.add(AWTKeyStroke.getAWTKeyStroke(keyCode,0,false));

 // Neue Traversal-Tasten registrieren
 c.setFocusTraversalKeys(traversalCode, keys);
 }
}

// <Return-Taste> als zusätzliche Fokus-Traversal-Taste einrichten
JButton btnAdd = new JButton("<Return> hinzufügen");

Listing 160: Aus Start.java

Listing 159: MoreGUI.java – statische Hilfsmethoden zur Registrierung von
Fokus-Traversal-Tasten (Forts.)

>> GUI 329

GU
I

128 Eingabefelder mit Return verlassen
Es widerspricht zwar den offiziellen Sun-Empfehlungen zur Fokusweiterleitung (siehe Rezept
126), aber viele Anwender wissen es zu schätzen, wenn sie Eingabefelder nach der Bearbei-
tung durch Drücken der (Enter)-Taste verlassen können.

Wie Sie dieses Verhalten implementieren, indem Sie die (Enter)-Taste als Fokus-Traversal-
Taste für alle Komponenten in einem Container registrieren, haben Sie in Rezept 127 gesehen.
Sollen nur Eingabefelder oder einzelne Komponenten durch Drücken der (Enter)-Taste verlas-
sen werden, müssen Sie dagegen so vorgehen, dass Sie für die betreffenden Komponenten
einen passenden KeyListener registrieren:

btnAdd.setBounds(10,100,185,25);
btnAdd.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 MoreGUI.addTraversalKey(contentPane,
 KeyboardFocusManager.FORWARD_TRAVERSAL_KEYS,
 KeyEvent.VK_ENTER);
 }
});
contentPane.add(btnAdd);

// <Return-Taste> als Fokus-Traversal-Taste entfernen
JButton btnRemove = new JButton("<Return> entfernen");
btnRemove.setBounds(205,100,185,25);
btnRemove.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 MoreGUI.removeTraversalKey(contentPane,
 KeyboardFocusManager.FORWARD_TRAVERSAL_KEYS,
 KeyEvent.VK_ENTER);
 }
});
contentPane.add(btnRemove);

H
in

w
e

is Eine Liste der in KeyEvent definierten Tastencodes finden Sie im Anhang.

aComponent.addKeyListener(new KeyAdapter() {
 public void keyReleased(KeyEvent e) {
 if (e.getKeyCode() == KeyEvent.VK_ENTER) {
 KeyboardFocusManager kfm;
 kfm = KeyboardFocusManager.getCurrentKeyboardFocusManager();

Listing 161: Aus Start.java – KeyListener, der beim Drücken der (Enter)-Taste den Fokus an die
nächste Komponente weitergibt.

Listing 160: Aus Start.java (Forts.)

>> Dialoge mit Return (oder Esc) verlassen330
GU

I

Um den Fokus weiterzugeben, lassen Sie sich eine Referenz auf den aktuellen KeyboardFocus-
Manager zurückliefern und rufen dessen focusNextComponent()-Methode mit der aktuellen
Komponente (die verlassen werden soll) als Argument auf.

129 Dialoge mit Return (oder Esc) verlassen
Nicht selten werden Anwender mit Dialogen konfrontiert, die sie nach einem kurzen, flüchti-
gen Blick gleich wieder schließen möchten. Schön, wenn der Dialog dann durch Drücken der
(Enter)-Taste beendet werden kann. In Java ist eine solche Funktionalität über den Umweg
einer InputMap leicht zu implementieren.

Jede Swing-Komponente verfügt über eine ActionMap und eine InputMap, die zusammen
festlegen, welche tastaturgesteuerten Aktionen für die Komponente ausgelöst werden können.
Die ActionMap speichert die Aktionen, die ausgeführt werden können, und die InputMap ver-
knüpft diese Aktionen mit Tasten.

Als Beispiel betrachten Sie den Dialog aus Abbildung 65.

Wie kann man diesen Dialog so implementieren, dass er direkt nach dem Aufspringen wahl-
weise mit (Enter), als Entsprechung für den JA-Schalter, oder mit (Esc), als Entsprechung für
den NEIN-Schalter, verlassen werden kann?

Da Tastaturaktionen nur ausgeführt werden, wenn die zugehörige Komponente den Fokus
besitzt, gehen wir so vor, dass wir

� dem JA-Schalter beim Öffnen des Dialogs den Fokus zuteilen,

� in der ActionMap des JA-Schalters die Action-Objekte eintragen, die sowohl mit dem JA-
als auch dem NEIN-Schalter verbunden sind,

� in der InputMap des JA-Schalters die Action-Objekte mit KeyStroke-Objekten für die
gedrückten (Enter)- und (Esc)-Tasten verbinden.

 kfm.focusNextComponent(e.getComponent());
 }
 }
});

Abbildung 65: Dialog, der direkt mit (Enter) oder (Esc) verlassen werden kann.

Listing 161: Aus Start.java – KeyListener, der beim Drücken der (Enter)-Taste den Fokus an die
nächste Komponente weitergibt. (Forts.)

>> GUI 331

GU
I

Hier der Code der Dialog-Klasse:

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

class DemoDialog extends JDialog {
 private JPanel contentPane;
 private JButton btnYes;
 private JButton btnNo;

 public DemoDialog(Frame owner, String title) {
 super(owner, title);
 contentPane = (JPanel) getContentPane();

 setSize(350, 150);
 setResizable(false);
 contentPane.setLayout(null);

 JLabel lb =
 new JLabel("Soll Ihre Festplatte jetzt formatiert werden?");
 lb.setBounds(50,20,250,25);
 contentPane.add(lb);

 // Hilfsvariablen für Schalter-Konfiguration
 YesAction yes = new YesAction();
 NoAction no = new NoAction();
 KeyStroke yeskey = KeyStroke.getKeyStroke(KeyEvent.VK_ENTER,0,false);
 KeyStroke nokey = KeyStroke.getKeyStroke(KeyEvent.VK_ESCAPE,0,false);

 // No- und Yes-Schalter erzeugen
 btnYes = new JButton();
 btnYes.setBounds(new Rectangle(50, 60, 100, 25));
 btnYes.setAction(no);
 btnYes.setText("Ja");
 getContentPane().add(btnYes);

 btnNo = new JButton();
 btnNo.setBounds(new Rectangle(190, 60, 100, 25));
 btnNo.setAction(no);
 btnNo.setText("Nein");
 getContentPane().add(btnNo);

 // Aktionen in ActionMap des Yes-Schalters eintragen
 btnYes.getActionMap().put("yes", yes);
 btnYes.getActionMap().put("no", no);

 // Aktionen mit Tasten verbinden
 btnYes.getInputMap().put(yeskey, "yes");
 btnYes.getInputMap().put(nokey, "no");

Listing 162: Aus Start.java

>> Transparente Schalter und nichttransparente Labels332
GU

I

130 Transparente Schalter und nichttransparente Labels
Die Transparenz von Swing-Komponenten wird über die Methode setOpaque() gesteuert, der
Sie true (für nichttransparent) und false (für transparent) übergeben können. Allerdings dür-
fen Sie nicht erwarten, dass die Einstellung mit setOpaque() auch für jede Komponente zum
gewünschten Ergebnis führt. Über setOpaque() nimmt die Komponente nämlich lediglich Ihren
Wunsch entgegen. Ob die Komponente diesen auch berücksichtigt, hängt von ihrer internen
Implementierung ab.

Für Labels (JLabel) gilt beispielsweise, dass sie per Voreinstellung transparent sind und mit
setOpaque(true) auf nichttransparente Darstellung umgestellt werden können.

JLabel lb = new JLabel("Titel");
...
lb.setOpaque(true); // nicht transparentes Label

Für Schalter (JButton) gilt dagegen, dass sie per Voreinstellung nicht transparent sind und
auch nicht mit setOpaque(false) auf transparente Darstellung umgestellt werden können.
Stattdessen müssen Sie für Schalter deren Methode setContentAreaFilled() aufrufen.

JButton btn = new JButton("Klick mich");
...
btn.setContentAreaFilled(false); // transparenter Schalter

 // Dem Schalter beim Öffnen des Dialogs den Fokus zuweisen
 addWindowListener(new WindowAdapter() {
 public void windowOpened(WindowEvent e) {
 btnYes.requestFocusInWindow();
 }
 });
 }

 // Action-Klassen für Schalter
 private class YesAction extends AbstractAction {
 public void actionPerformed(ActionEvent e) {
 System.out.println("Krrrrrrrrrrrrrrr");
 setVisible(false);
 }
 }
 private class NoAction extends AbstractAction {
 public void actionPerformed(ActionEvent e) {
 System.out.println("Schade, dann eben nicht");
 setVisible(false);
 }
 }
}

Listing 162: Aus Start.java (Forts.)

>> GUI 333

GU
I

Transparenz in eigenen Komponenten
Wenn Sie eine eigene Swing-Komponente definieren und dabei paintComponent() überschrei-
ben, sollten Sie grundsätzlich als erste Anweisung die geerbte paintComponent()-Version auf-
rufen, was – sofern alle Basisklassen dieser Regel folgen – letzten Endes zum Aufruf der
JComponent-Version führt.

public void paintComponent(Graphics g) {
 super.paintComponent(g);
 ...

Auf diese Weise wird sichergestellt, dass die Swing-Komponente hinsichtlich ihrer Transparenz
das gewünschte Verhalten zeigt (sprich die setOpaque()-Einstellung berücksichtigt). Wenn Sie
die Basisklassenversion von paintComponent() nicht aufrufen, sollten Sie unbedingt in Ihrer
paintComponent()-Version selbst mit isOpaque() abfragen, ob der Benutzer der Komponente eine
nichttransparente Darstellung wünscht, und dann dafür sorgen, dass der Hintergrund der Kom-
ponente komplett ausgefüllt wird – ansonsten kann es zu unschönen Artefakten kommen, wenn
für die Komponente setOpaque(true) aufgerufen wird.

Die Klasse TransparentButton demonstriert dies anhand eines Schalters, der im Gegensatz zu
JButton mit Hilfe von setOpaque() zwischen transparenter und nichttransparenter Darstellung
umgeschaltet werden kann.

A
ch

tu
n

g Damit die veränderte Darstellung auf dem Bildschirm sichtbar wird, muss die Kompo-
nente neu gezeichnet werden – beispielsweise indem Sie repaint() für das übergeord-
nete Fenster aufrufen.

import java.awt.*;
import javax.swing.*;

/**
 * Klasse für durchsichtige Schalter
 */
public class TransparentButton extends JButton {

 public TransparentButton() {
 super();
 }
 public TransparentButton(Action a) {
 super(a);
 }
 public TransparentButton(Icon icon) {
 super(icon);
 }
 public TransparentButton(String text) {
 super(text);
 }
 public TransparentButton(String text, Icon icon) {
 super(text, icon);

Listing 163: TransparentButton.java

>> Transparente Schalter und nichttransparente Labels334
GU

I

Das Start-Programm zu diesem Rezept zeigt vor dem Hintergrund einer Küstenlandschaft ein
Label (am oberen Rand, BorderLayout.NORTH) und einen TransparentButton-Schalter (am obe-
ren Rand, BorderLayout.SOUTH). Das Label ist anfangs transparent, der Schalter nichttranspa-
rent. Durch Klick auf den Schalter kann die Transparenz beider Komponenten umgeschaltet
werden.

Beachten Sie, dass nach Umschaltung der Transparenz das Fenster mit repaint() neu gezeich-
net wird.

 }

 /**
 * Um transparenten Schalter zu zeichnen, darf super.paintComponent(g)
 * nicht aufgerufen werden. Dafür muss isOpaque() abgefragt und die
 * Komponente bei Bedarf nicht-transparent gezeichnet werden
 */
 public void paintComponent(Graphics g) {

 // Hintergrund füllen, wenn nicht transparent
 if (isOpaque()) {
 g.setColor(getBackground());
 g.fillRect(0, 0, getWidth(), getHeight());
 }

 // Komponente zeichnen lassen
 getUI().paint(g,this);
 }
}

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.awt.Image;
import javax.imageio.ImageIO;
import java.io.File;
import java.io.IOException;

public class Start extends JFrame {
 private Image bgImage = null;
 private JLabel lb;
 private TransparentButton btn;
 private JFrame frame;

 // innere Klasse für ContentPane
 private class ContentPane extends JPanel {

 public ContentPane() {
 setLayout(new BorderLayout());

Listing 164: Demo-Programm zur Transparenz

Listing 163: TransparentButton.java (Forts.)

>> GUI 335

GU
I

 }
 public void paintComponent(Graphics g) {
 super.paintComponent(g);

 // Hintergrundbild in Panel zeichnen
 if (bgImage != null)
 g.drawImage(bgImage, 0, 0,
 this.getWidth(), this.getHeight(), this);
 }
 }

 public Start() {
 frame = this;
 setTitle("Transparenz");

 // Bilddatei laden
 try {
 bgImage = ImageIO.read(new File("background.jpg"));
 } catch(IOException ignore) {
 }

 setContentPane(new ContentPane());

 lb = new JLabel("Küstenansicht", SwingConstants.CENTER);
 getContentPane().add(lb, BorderLayout.NORTH);

 btn = new TransparentButton("Transparenz ändern");
 btn.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 lb.setOpaque(!lb.isOpaque());
 btn.setOpaque(!btn.isOpaque());
 frame.repaint();
 }
 });
 getContentPane().add(btn, BorderLayout.SOUTH);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 public static void main(String args[]) {
 Start frame = new Start();
 frame.setSize(500,300);
 frame.setLocation(300,300);
 frame.setVisible(true);
 }

}

Listing 164: Demo-Programm zur Transparenz (Forts.)

>> Eingabefeld für Währungsangaben (inklusive InputVerifier)336
GU

I

131 Eingabefeld für Währungsangaben
(inklusive InputVerifier)

In diesem Rezept geht es um ein Eingabefeld, welches

� Benutzereingaben als Währungsangaben formatiert (sprich als Gleitkommazahlen mit zwei
Nachkommastellen zurückliefern kann).

� Benutzereingaben automatisch verifiziert (Eingaben, die nicht dem gewünschten Format
entsprechen, werden abgelehnt, d.h., das Eingabefeld behält seinen alten Wert und der
Anwender kann das Eingabefeld nicht durch Drücken der (ÿ_)-Taste verlassen).

Wer sich im Dschungel der Swing-Komponenten ein wenig auskennt, wird sicher zustimmen,
dass sich für die Implementierung eines solchen Eingabefelds die Klasse JFormattedTextField
als Basisklasse förmlich aufdrängt.

JFormattedTextField-Eingabefelder unterscheiden sich von JTextField-Eingabefeldern dadurch,
dass sie intern mit einem Formatierer (Instanz einer AbstractFormatter-Klasse) zusammenarbei-

Abbildung 66: Swing-Komponenten mit wechselnder Transparenz

Abbildung 67: Fenster mit JMoneyTextField-Eingabefeld

>> GUI 337

GU
I

ten. Neben den üblichen setText()- und getText()-Methoden, die Text unverändert in das Ein-
gabefeld schreiben bzw. dessen Text unverändert zurückliefern, stellt JFormattedTextField noch
zwei alternative setValue()- und getValue()-Methoden zur Verfügung:

� setValue() nimmt ein Objekt entgegen und übergibt es an den internen Formatierer, der es
in einen String verwandelt und im Eingabefeld anzeigt.

Typ des Objekts und Formatierer müssen zusammenpassen. Arbeitet das Eingabefeld bei-
spielsweise mit einem NumberFormatter zusammen, können Objekte der Klasse Number und
ihrer abgeleiteten Klassen, wie Integer, Double etc., übergeben werden.

� getValue() wandelt umgekehrt den Wert des Eingabefeldes mit Hilfe des internen Forma-
tierers in ein entsprechendes Objekt um (der Typ des Objekts hängt vom Formatierer ab)
und liefert dieses zurück.

Wichtig ist, zwischen »Wert« und »Text« eines JFormattedTextField-Eingabefelds zu unter-
scheiden. Der »Text« ist der String, der im Eingabefeld angezeigt wird (entspricht dem Text des
JTextField-Eingabefelds). Tippt der Anwender etwas in das Eingabefeld ein, ändert er den
»Text«. Den geänderten Text übergibt die Komponente an den internen Formatierer, der entwe-
der nach jeder Änderung, spätestens aber bei Drücken der (Enter)-Taste oder beim Verlassen
des Textfelds, den Text zu formatieren versucht. Ist die Formatierung möglich, wird der forma-
tierte Text zum neuen »Text« und auch der »Wert« des Eingabefelds wird aktualisiert.

Die Aktualisierung des »Werts« kann durch Aufruf der Methode commitEdit() auch jederzeit
vom Programmcode aus angestoßen werden.

Die Klasse JMoneyTextField
Nach diesen Vorbemerkungen zur Klasse JFormattedTextField kommen wir zum Code des
JMoneyTextField-Eingabefelds.

A
ch

tu
n

g Der von getValue() zurückgelieferte Wert ist nicht notwendigerweise der Text, der im
Eingabefeld zu sehen ist! (Siehe nachfolgende Erläuterung.)

import javax.swing.*;
import javax.swing.text.*;
import java.text.*;
import java.util.Locale;

/*
 * Formatiertes Textfeld für Währungsangaben
 * gibt den Fokus nur weiter, wenn die aktuelle Eingabe
 * korrekt formatiert ist.
 */
public class JMoneyTextField extends JFormattedTextField {
 private InputVerifier inVeri = new JMoneyTextFieldVerifier();

 /*

Listing 165: Klasse des Eingabefelds für Währungsangaben (aus JMoneyTextField.java)

>> Eingabefeld für Währungsangaben (inklusive InputVerifier)338
GU

I

Die von JFormattedTextField abgeleitete Klasse JMoneyTextField besteht aus zwei Konstrukto-
ren, die sich lediglich darin unterscheiden, dass der erste Konstruktor ohne Argument aufgeru-
fen wird und die Währungsangaben nach der Lokale für Deutschland formatiert, während der
zweite Konstruktor die zu verwendende Lokale als Argument entgegennimmt.

 * Konstruktor, erzeugt Währungsfeld für Locale.GERMANY
 */
 public JMoneyTextField() {

 // Format für Textfeld erzeugen
 NumberFormat formatOffer =
 NumberFormat.getCurrencyInstance(Locale.GERMANY);

 // Formatierer-Factory für Währungsangaben erzeugen und registrieren
 AbstractFormatterFactory ff =
 new DefaultFormatterFactory(new NumberFormatter(formatOffer));
 setFormatterFactory(ff);

 // Falsche Eingaben stehen lassen
 setFocusLostBehavior(JFormattedTextField.COMMIT);

 // InputVerifier registrieren
 setInputVerifier(inVeri);
 }

 /*
 * Konstruktor, erzeugt Währungsfeld für angegebene Locale
 */
 public JMoneyTextField(Locale loc) {

 // Formatierer für Textfeld erzeugen
 NumberFormat formatOffer = NumberFormat.getCurrencyInstance(loc);

 // Formatierer-Factory für Währungsangaben erzeugen und registrieren
 AbstractFormatterFactory ff =
 new DefaultFormatterFactory(new NumberFormatter(formatOffer));
 setFormatterFactory(ff);

 // Falsche Eingaben stehen lassen
 setFocusLostBehavior(JFormattedTextField.COMMIT);

 // InputVerifier registrieren
 setInputVerifier(inVeri);
 }
}

Listing 165: Klasse des Eingabefelds für Währungsangaben (aus JMoneyTextField.java) (Forts.)

>> GUI 339

GU
I

In den Konstruktoren wird dann zuerst eine NumberFormat-Instanz erzeugt, die Zahlenwerte
gemäß der angegebenen Lokale als Währungsangaben formatiert (also mit zwei Nachkommas-
tellen und Währungssymbol). Auf der Basis dieser Instanz wird dann ein Formatierer-Factory
erzeugt, vom welchem die Komponente intern bei Bedarf die benötigten Formatierer-Instan-
zen bezieht.

Schließlich wird noch festgelegt, wie die Komponente sich verhalten soll, wenn sie den Fokus
verliert. Statt des Standardverhaltens (JFormattedTextField.COMMIT_OR_REVERT), welches im
Falle einer fehlerhaften Eingabe den alten Text einblendet, wird das Verhalten JFormattedText-
Field.COMMIT gewählt, welches die fehlerhafte Eingabe (hoffentlich zur Nachbesserung durch
den Anwender) stehen lässt.

Eingabenüberprüfung mittels InputVerifier
Die letzte Besonderheit der Komponente ist, dass Sie einen InputVerifier verwendet. InputVeri-
fier sind Klassen, die von der abstrakten Basisklasse InputVerifier abgeleitet sind und von
dieser zwei Methoden erben:

� boolean verify(JComponent input)

� boolean shouldYieldFocus(JComponent input)

Swing-Komponenten, für die mittels setInputVerifier() eine InputVerify-Instanz registriert
wurde, rufen jedes Mal, wenn sie den Fokus verlieren, die shouldYieldFocus()-Methode ihres
InputVerifiers auf. Die shouldYieldFocus()-Methode ruft intern die verify()-Methode auf,
welche entscheidet, ob der Fokus wirklich weitergegeben (Rückgabewert true) oder doch
behalten werden soll (false). Der Rückgabewert wird von der shouldYieldFocus()-Methode an
die Komponente weitergeleitet, die den Fokus daraufhin abgibt oder behält.

Einen eigenen InputVerifier für eine Komponente zu schreiben, bedeutet demnach, eine Klasse
von InputVerifier abzuleiten und die abstrakte verify()-Methode zu überschreiben.

Der InputVerifier für die Klasse JMoneyTextField soll prüfen, ob die vom Anwender eingetippte
Eingabe dem gewünschten Währungsformat (inklusive Währungssymbol) entspricht. Wenn
dies nicht der Fall ist, soll der InputVerifier false zurückliefern, damit die Komponente den
Fokus behält, bis der Anwender die Eingabe korrigiert hat.

A
ch

tu
n

g Der InputVerifier-Mechanismus kontrolliert nur die Fokusweitergabe mittels der Fokus-
Traversal-Tasten (siehe auch Rezept 127). Der Anwender kann den Kontrollmechanis-
mus jederzeit umgehen, indem er mit der Maus auf eine andere Komponente klickt.

class JMoneyTextFieldVerifier extends InputVerifier {

 public boolean verify(JComponent input) {

 if (input instanceof JFormattedTextField) {
 // InputVerifier wurde für JFormattedTextField registriert
 // -> prüfe Eingabe mit Formatter des Textfelds

Listing 166: InputVerifier für JFormattedTextField-Komponenten
(aus JMoneyTextField.java)

>> Eingabefeld für Währungsangaben (inklusive InputVerifier)340
GU

I

Der hier vorgestellte InputVerifier ist generisch für beliebige JFormattedTextField-Komponen-
ten implementiert, d.h., er liest den Text aus dem Eingabefeld und prüft ihn mit Hilfe des For-
matierers, den auch die JFormattedTextField-Komponenten verwenden.

Verwendung des Eingabefelds
Instanzen von JMoneyTextField werden grundsätzlich genauso behandelt wie JTextField- oder
andere Komponenten. Vorsicht ist lediglich geboten, wenn Sie vom Programm aus Text in das
Eingabefeld schreiben oder dessen Text auslesen wollen.

� Um einen beliebigen Text, beispielsweise einen Hinweis auf das spezielle Eingabeformat, in
das Eingabefeld zu schreiben, verwenden Sie die Methode setText().

� Um einen Wert, beispielsweise einen Anfangs- oder Beispielwert, in das Eingabefeld zu
schreiben, verwenden Sie die Methode setValue().

moneyTextField = new JMoneyTextField();
moneyTextField.setValue(new Double(100));

� Um den Text im Eingabefeld abzufragen, verwenden Sie die Methode getText().

Wenn Sie sichergehen wollen, dass dieser Text auch das korrekte Format hat, rufen Sie
vorab isEditValid() auf:

if (moneyTextField.isEditValid()) {
 String txt = moneyTextField.getText();

 JFormattedTextField ftf = (JFormattedTextField) input;
 JFormattedTextField.AbstractFormatter formatter = ftf.getFormatter();

 if (formatter != null) {
 try {
 formatter.stringToValue(ftf.getText());
 return true;
 } catch (ParseException e) {
 return false;
 }
 } else
 return true;

 } else {
 // InputVerifier wurde für irgendeine andere Komponente registriert
 // -> Eingabe durchlassen
 return true;
 }
 }
}

H
in

w
e

is InputVerifier sind weder auf JFormattedTextField-Komponenten noch auf die Überprü-
fung des Eingabeformats festgelegt. Beispielsweise könnte man JMoneyTextFieldVeri-
fier auch so implementieren, dass neben dem Format auch gleich der Wertebereich
(z.B. von 1 bis 100.000.000) überprüft wird.

Listing 166: InputVerifier für JFormattedTextField-Komponenten
(aus JMoneyTextField.java) (Forts.)

>> GUI 341

GU
I

� Um den Wert des Eingabefelds abzufragen, verwenden Sie die Methode getValue().

Wenn Sie sichergehen wollen, dass der Wert auch aktuell ist (dem Text im Eingabefeld ent-
spricht), rufen Sie vorab commitEdit() auf:

moneyTextField.commitEdit(); {
Double value = moneyTextField.getValue();

Nicht unwichtig ist überdies die Frage, wie das Programm reagieren soll, wenn im Textfeld
eine ungültige Eingabe steht und der Anwender versucht, diese Eingabe auswerten zu lassen,
indem er einen entsprechenden Schalter oder Menübefehl auswählt. (Er umgeht also den
InputVerifier, der lediglich die Fokusweitergabe mit den Fokus-Traversal-Tasten – üblicher-
weise die (ÿ_)-Taste – kontrolliert.)

Eine Möglichkeit wäre, der Komponente bei der Erzeugung einen gültigen Anfangs-»Wert«
zuzuweisen und dann stets den »Wert« auszuwerten (der in der oben angesprochenen Situation
dann aber nicht mit dem Text im Eingabefeld korrespondieren würde).

Eine andere Möglichkeit wäre, die entsprechenden GUI-Komponenten zur Auswertung der
Eingabe zu deaktivieren und erst freizugeben, wenn im Textfeld eine gültige Eingabe steht
(was beispielsweise durch direkten Aufruf der verify()-Methode des InputVerifiers möglich
ist). Diese Strategie wird im Rezept 132 zum Datumseingabefeld verfolgt.

Eine dritte Technik, die in diesem Rezept umgesetzt wird, prüft mit Hilfe der Methode isEdit-
Valid(), ob der Text korrekt formatiert ist. Wenn ja, wird der Text verarbeitet, ansonsten wird
eine Fehlermeldung ausgegeben.

// Textfeld zum Einlesen von Währungsangaben erzeugen
tfOffer = new JMoneyTextField(LOCALE);
tfOffer.setBounds(30+120+30,20,180,25);
tfOffer.setValue(new Double(100));
getContentPane().add(tfOffer);

...

// Eingabe in Textfeld auswerten
JButton btnSend = new JButton("Abschicken");
btnSend.setBounds(125,100,150,25);
getContentPane().add(btnSend);
btnSend.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {

 if (tfOffer.isEditValid()) {
 // Bestätigung anzeigen
 lbMessage.setText("Danke für Ihr Angebot von "
 + tfOffer.getText());
 } else {
 // Fehlermeldung anzeigen
 lbMessage.setText("Eingabe ist keine korrekte "
 + "Währungsangabe");
 }

Listing 167: Aus Start.java – tfOffer ist eine JMoneyTextField-Komponente.

>> Eingabefeld für Datumsangaben (inklusive InputVerifier)342
GU

I

132 Eingabefeld für Datumsangaben
(inklusive InputVerifier)

In diesem Rezept geht es um ein Eingabefeld, das

� dem Anwender eine Maske für die Eingabe von Datumsangaben anzeigt.

� Benutzereingaben automatisch verifiziert (d.h., es akzeptiert nur Zahlen und kann erst
dann durch Drücken der (ÿ_)-Taste verlassen werden, wenn es einen korrekten Datums-
wert enthält).

Wie auch im vorhergehenden Rezept bietet sich für die Implementierung eines solchen Einga-
befelds die Klasse JFormattedTextField als Basisklasse an. Es gibt in den Tiefen der Java-Bibli-
othek auch eine passende Formatierer-Klasse, javax.swing.text.DateFormatter, die, sofern sie
als Formatierer mit einem JFormattedTextField-Eingabefeld kombiniert wird, es dem Program-
mierer erlaubt, Date-Objekte im Eingabefeld anzuzeigen und umgekehrt, den Inhalt des Einga-
befelds sich als Date-Objekt zurückliefern zu lassen. Nur leider bietet dieser Formatierer dem
Anwender nicht die Sicherheit und den Komfort einer Eingabemaske. Die folgende Implemen-
tierung verwendet daher einen javax.swing.text.MaskFormatter und stellt ergänzend zwei
Methoden getDate() und setDate() zur Verfügung, die den »Wert« des Eingabefelds auf der
Basis eines Date-Objekts setzen bzw. als Date-Objekt zurückliefern.

 // Meldungslabel sichtbar machen
 lbMessage.setVisible(true);
 }
});

Abbildung 68: Fenster mit JDateTextField-Eingabefeld

H
in

w
e

is Hintergrundinformationen zu JFormattedTextField finden Sie in Rezept 131.

Listing 167: Aus Start.java – tfOffer ist eine JMoneyTextField-Komponente. (Forts.)

>> GUI 343

GU
I

Die Klasse JDateTextField

H
in

w
e

is Für Leser, die bereits mit JFormattedTextField und der Klasse AbstractFormatterFactory
vertraut sind, sei angemerkt, dass die Installation eines DateFormatter als Default-For-
matierer und eines MaskFormatter als Edit-Formatierer wegen der unterschiedlichen
Value-Klassen erheblich schwieriger ist.

import java.awt.*;
import javax.swing.*;
import javax.swing.text.*;
import java.text.*;
import java.util.*;

public class JDateTextField extends JFormattedTextField {
 private static final String DATE_PATTERN = "##.##.####";
 private SimpleDateFormat df = new SimpleDateFormat("dd.MM.yyyy",
 Locale.GERMANY);
 private MaskFormatter fm;
 private InputVerifier inVeri = new JDateTextFieldVerifier();
 private int alignment = JTextField.CENTER;
 private Font font = new Font("Serif",Font.PLAIN ,18);

 /*
 * Konstruktor
 */
 public JDateTextField() {

 setHorizontalAlignment(alignment);
 setFont(font);

 try {
 // Formatierer für die Datumsmaske erzeugen
 fm = new MaskFormatter(DATE_PATTERN);

 // Platzhalter für noch nicht gefüllte Stelle festlegen
 fm.setPlaceholderCharacter('-');

 } catch (ParseException e) {
 System.err.println("ERROR: Kein Formatierer");
 }

 // Formatierer-Factory für Datumsmaske erzeugen und registrieren
 AbstractFormatterFactory ff = new DefaultFormatterFactory(fm);
 setFormatterFactory(ff);

 // Falsche Eingaben stehen lassen
 setFocusLostBehavior(JFormattedTextField.COMMIT);

 // InputVerifier registrieren
 setInputVerifier(inVeri);

Listing 168: Die Klasse JDateTextField

>> Eingabefeld für Datumsangaben (inklusive InputVerifier)344
GU

I

Nachdem der Konstruktor der Klasse JDateTextField Ausrichtung und Schriftart des Textes im
Eingabefeld festgelegt hat (wobei diese Einstellungen natürlich nur Empfehlungen sind, die sich
für jede Instanz nach Bedarf anpassen lassen), wird der Formatierer für die Datumseingabemaske
als Instanz der Klasse MaskFormatter erzeugt. Als Argument übernimmt der MaskFormatter-Kon-
struktor die gewünschte Maske, hier die String-Konstante DATE_PATTERN (gleich "##.##.####").

Masken sind Strings, die sich aus folgenden Zeichen zusammensetzen können:2

MaskFormatter schreibt für jeden Platzhalter ein Leerzeichen in das Eingabefeld. Der JDate-
TextField-Konstruktor ersetzt das Leerzeichen als Platzhalterzeichen durch den Bindestrich,
damit der Anwender besser erkennen kann, wo er noch wie viele Stellen ausfüllen muss (Auf-
ruf von setPlaceholderCharacter()).

 }

 /*
 * Wert des Eingabefeldes als Datum zurückliefern
 */
 public Date getDate() {
 return df.parse((String) getValue(), new ParsePosition(0));
 }

 /*
 * Datum als Wert des Eingabefeldes eintragen
 */
 public void setDate(Date d) {
 setValue(df.format(d));
 }
}

2. Für jeden Platzhalter muss ein Zeichen eingetippt werden!

Zeichen Beschreibung

Platzhalter für eine Ziffer

A Platzhalter für einen Buchstaben oder eine Ziffer

U Platzhalter für Kleinbuchstaben (Kleinbuchstaben werden automatisch in Groß-
buchstaben umgewandelt)

L Platzhalter für Großbuchstaben (Großbuchstaben werden automatisch in Klein-
buchstaben umgewandelt)

? Platzhalter für beliebigen Buchstaben

* Platzhalter für beliebiges Zeichen

' Escape-Zeichen

sonstiges Zeichen wird unverändert in die Maske übernommen (kann vom Anwender nicht über-
schrieben werden)

Tabelle 35: Platzhalter für MaskFormatter-Masken2

Listing 168: Die Klasse JDateTextField (Forts.)

>> GUI 345

GU
I

Anschließend kann ein Formatierer-Factory mit dem MaskFormatter als Formatierer erzeugt
und registriert werden.

Die letzte Anweisung ist die Einrichtung des InputVerifiers, zu dem wir gleich im nächsten
Abschnitt kommen.

Neben dem Konstruktor definiert die Klasse noch zwei Methoden getDate() und setDate(), die
den internen Wert des JDateTextField-Eingabefelds als Date-Objekt zurückliefern bzw. nach
der Vorgabe eines Date-Objekts setzen. Für die korrekte Umwandlung sorgt das SimpleDate-
Format-Objekt, das eingangs der Klassendefinition als Feld df definiert wurde und auf die
String-Maske für den MaskFormatter abgestimmt ist.

static final String DATE_PATTERN = "##.##.####"; // Eingabe-Maske
SimpleDateFormat df = new SimpleDateFormat("dd.MM.yyyy", // Formatierer
 Locale.GERMANY);

Eingabenüberprüfung
Da im Falle des JDateTextField-Eingabefelds bereits der MaskFormatter sicherstellt, dass die
Eingaben im korrekten Format vorliegen, wird für diese Aufgabe kein eigener InputVerifier
benötigt. Der MaskFormatter kann allerdings nur sicherstellen, dass die korrekte formatierte
Anzahl Ziffern eingegeben wird, nicht aber dass die Ziffern auch ein gültiges Datum ergeben.
Zu diesem Zweck registriert JDateTextField als InputVerifier eine Instanz der Klasse JDate-
TextFieldInputVerifier, die wie folgt definiert ist:

class JDateTextFieldVerifier extends InputVerifier {

 public boolean verify(JComponent input) {
 boolean returnvalue = false;

 if (input instanceof JFormattedTextField) {
 // InputVerfifier wurde für JFormattedTextField registriert
 // -> prüfe, ob Datumsangabe korrekt
 JFormattedTextField ftf = (JFormattedTextField) input;

 String text = ftf.getText();
 if (text != null && text.length() == 10) {
 try {
 Integer day = Integer.parseInt(text.substring(0,2));
 Integer month = Integer.parseInt(text.substring(3,5));
 Integer year = Integer.parseInt(text.substring(6,text.length()));

 if (day > 0 && month > 0 && year > 0) {
 GregorianCalendar date = new GregorianCalendar();

 if ((month == 1 && day <= 31) ||
 (month == 2 && !date.isLeapYear(year) && day <= 28) ||
 (month == 2 && date.isLeapYear(year) && day <= 29) ||
 (month == 3 && day <= 31) ||
 (month == 4 && day <= 30) ||
 (month == 5 && day <= 31) ||
 (month == 6 && day <= 30) ||

Listing 169: InputVerifier für die Klasse JDateTextField

>> Eingabefeld für Datumsangaben (inklusive InputVerifier)346
GU

I

Der InputVerifier für die Klasse JDateTextField prüft, ob die vom Anwender eingetippte Ein-
gabe einem korrekten Datum entspricht. Ist dies nicht der Fall, liefert der InputVerifier false
zurück, damit die Komponente den Fokus behält, bis der Anwender die Eingabe korrigiert hat.

Verwendung des Eingabefelds
Das Start-Programm zu diesem Rezept demonstriert die Verwendung des JDateTextField-Ein-
gabefelds. Nach der Instanzierung des Eingabefelds:

// Textfeld zum Einlesen von Datumsangaben erzeugen
tfDate = new JDateTextField();
...

initialisiert das Programm das Eingabefeld mit dem aktuellen Datum, was dank der setDate()-
Methode von JDateTextField bequem zu erledigen ist:

// Aktuelles Datum als Vorgabe in Eingabefeld schreiben
Date d = new Date();
tfDate.setDate(d);

Der Anwender kann die Positionen im Datum dann direkt überschreiben oder löschen (worauf-
hin das Platzhalterzeichen erscheint) und ersetzen.

Wenn der Anwender den Abschicken-Schalter drückt, wird der Wert des Eingabefelds abge-
fragt (getValue()-Aufruf) und zur Kontrolle ausgegeben. (Eine Typumwandlung ist nicht
nötig, da der »Wert« des Eingabefelds wegen des MaskFormatters vom Typ String ist.)

btnSend.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 DateFormat df = DateFormat.getDateInstance(DateFormat.MEDIUM,
 Locale.GERMANY);
 lbMessage.setText(tfDate.getValue() + " wurde gespeichert");
 lbMessage.setVisible(true);
 }
});

 (month == 7 && day <= 31) ||
 (month == 8 && day <= 31) ||
 (month == 9 && day <= 30) ||
 (month == 10 && day <= 31) ||
 (month == 11 && day <= 30) ||
 (month == 12 && day <= 31)) {
 returnvalue = true;
 }
 }
 } catch (NumberFormatException e) {
 return false;
 }
 }
 }

 return returnvalue;
 }
}

Listing 169: InputVerifier für die Klasse JDateTextField (Forts.)

>> GUI 347

GU
I

Bleibt noch die Frage zu klären, wie man verhindert, dass der Anwender mit der Maus den
Abschicken-Schalter anklickt, ohne das Eingabefeld korrekt bearbeitet zu haben. (Zur Erinne-
rung: Der InputVerifier kontrolliert nur die Fokusweitergabe mittels der Fokus-Traversal-
Tasten.)

Das Start-Programm registriert zu diesem Zweck einen CaretListener für das Eingabefeld, der
bei jeder Bewegung des Textcursors mit Hilfe des InputVerifiers des Eingabefelds prüft, ob die
aktuelle Eingabe gültig ist, und den Schalter entsprechend aktiviert oder deaktiviert.

tfDate.addCaretListener(new CaretListener() {
 public void caretUpdate(CaretEvent e) {

 // Eingabe mit Hilfe des InpuVerfiers der Komponente prüfen
 JDateTextFieldVerifier verifier
 = (JDateTextFieldVerifier) tfDate.getInputVerifier();

 if (verifier.verify(tfDate)) {
 // Ist Eingabe korrekt -> Schalter für Auswertung aktivieren
 btnSend.setEnabled(true);
 } else {
 // Ist Eingabe ungültig -> Schalter für Auswertung deaktivieren
 btnSend.setEnabled(false);
 }
 }
});

133 Drag-and-Drop für Labels
Drag-and-Drop ist eine mausgesteuerte Übertragung von Daten zwischen Komponenten (gege-
benenfalls über Anwendungsgrenzen hinweg). Für eine Drag-and-Drop-Datenübertragung zwi-
schen zwei Komponenten müssen folgende Voraussetzungen erfüllt sein:

� Die Quellkomponente muss bei Initiierung einer Drag-Operation durch den Anwender die
Daten exportieren.

In Java bedeutet dies, dass die Komponente über einen TransferHandler verfügen muss, der
für den zu übertragenden Datentyp ausgelegt ist. Wird eine Drag-Operation initiiert, for-
dert die Komponente ihren TransferHandler auf, die Daten entweder als MOVE-Aktion (die
Daten werden in der Quellkomponente danach gelöscht) oder als COPY-Aktion (die Daten
werden kopiert) zu übertragen. (Hinweis: Die Drag-Daten werden nicht von der Quellkom-
ponente an den TransferHandler übergeben, sondern der TransferHandler muss so imple-
mentiert sein, dass er weiß, wie er die Daten von der Komponente bekommt.)

� Der TransferHandler der Quellkomponente muss die Daten in ein Transferable-Objekt ver-
packen.

� Die Zielkomponente muss ebenfalls über einen TransferHandler verfügen, der überprüft,
ob die Daten im Transferable-Objekt in einem Format vorliegen, das die Komponente
akzeptiert. Wenn ja, werden die Daten beim Loslassen der Maus eingefügt.

Etliche Swing-Komponenten unterstützen bereits von sich aus Drag-and-Drop.

>> Drag-and-Drop für Labels348
GU

I

Drag-and-Drop für Labels
JLabel besitzt keine vorinstallierte Drag-and-Drop-Unterstützung. Solange die Labels nur zur
Präsentation statischen Textes verwendet werden, ist dies auch kein Manko. In Fällen, wo Sie
dem Anwender aber doch einmal erlauben wollen, den Text eines Labels mit anderen Textkom-
ponenten auszutauschen, müssen Sie die Drag-and-Drop-Unterstützung selbst nachinstallieren.

Das Schwierigste an der Installation eines Drag-and-Drop-Mechanismus ist in der Regel die
Implementierung eines passenden TransferHandlers. Grundsätzlich sind TransferHandler kom-
ponenten- und datenspezifisch, d.h., sie werden so implementiert, dass sie eine bestimmte Art
von Daten (den Data Flavor) für eine bestimmte Komponente ex- und importieren können.
Mit Hilfe von if-Abfragen können aber auch TransferHandler geschrieben werden, die meh-
rere Datentypen für verschiedene Komponenten verarbeiten. Ein Beispiel hierfür ist die Java-
Klasse TransferHandler, die JavaBean-Eigenschaften zwischen Komponenten austauschen
kann. Mit ihrer Hilfe wird die Programmierung einer Drag-and-Drop-Unterstützung für Labels
fast zum Kinderspiel. (Ein Beispiel für die Implementierung eines eigenen TransferHandlers
finden Sie in Rezept 134.)

1. Label erzeugen

lb = new JLabel("Label, das Drag-and-Drop unterstützt");
...

2. TransferHandler für Texteigenschaft erzeugen und bei der Komponente registrieren

lb.setTransferHandler(new TransferHandler("text"));

3. Beim Drücken der Maus Drag-Daten exportieren lassen

Komponente Drag-Unterstützung Drop-Unterstützung

JColorChooser Ja (nur COPY) Ja

JEditorPane Ja Ja

JFileChooser Ja (nur COPY) Nein

JFormattedTextField Ja Ja

JList Ja (nur COPY) Nein

JPasswordField Nein Ja

JTable Ja (nur COPY) Nein

JTextArea Ja Ja

JTextField Ja Ja

JTextPane Ja Ja

JTree Ja (nur COPY) Nein

Tabelle 36: Vorinstallierte Drag-and-Drop-Unterstützung für Swing-Komponenten

A
ch

tu
n

g Die Drag-Unterstützung ist standardmäßig nicht aktiviert. Um sie für eine Komponente
einzuschalten, müssen Sie setDragEnabled(true) für die Komponente aufrufen:

JTextArea ta = new JTextArea("Textfeld, das Drag-and-Drop unterstützt");

// Drag-Support für JTextArea aktivieren
ta.setDragEnabled(true);

>> GUI 349

GU
I

lb.addMouseListener(new MouseAdapter() {
 public void mousePressed(MouseEvent e) {
 JComponent c = (JComponent) e.getSource();
 TransferHandler th = c.getTransferHandler();
 th.exportAsDrag(c, e, TransferHandler.COPY);
 }
});

134 Datei-Drop für JTextArea-Komponenten
(eigener TransferHandler)

JTextArea gehört zu den Swing-Komponenten, die über eine vorinstallierte Drag-and-Drop-
Unterstützung verfügen (siehe Rezept 133). Strings aus anderen Komponenten (auch anderen
Anwendungen) können daher ohne weiteres Zutun des Programmierers in JTextArea-Instan-
zen per Drop abgelegt werden. Dies gilt jedoch nur für Strings, nicht etwa für Textdateien.

Wenn Sie möchten, dass Ihre Anwender auch die Inhalte von Textdateien in eine JTextArea
einfügen können, müssen Sie einen eigenen TransferHandler für JTextArea schreiben, der
neben der gewohnten Funktionalität (Drag und Drop von Strings), die ja erhalten bleiben
sollte, auch Dateien per Drop importiert.

Eigener TransferHandler für JTextArea
Eigene TransferHandler werden von der Klasse TransferHandler abgeleitet.

H
in

w
e

is Das in Schritt 2 erzeugte TransferHandler-Objekt unterstützt sowohl den Drag-Export
als auch den Drop-Import von Text, wobei stets der gesamte Text im Label exportiert
oder durch die Drop-Daten ersetzt wird. Während für den Drop-Import nichts weiter zu
tun ist, muss der Export explizit angestoßen werden (siehe Schritt 3).

Abbildung 69: Label, in das gerade ein Textfragment aus einer JTextArea-Komponente
eingefügt wird (Screenshot vom Start-Programm zu diesem Rezept)

>> Datei-Drop für JTextArea-Komponenten (eigener TransferHandler)350
GU

I

Um die Drop-Unterstützung anzupassen, überschreiben Sie die Methoden:

� boolean canImport(JComponent comp, DataFlavor[] transferFlavors)

� boolean importData(JComponent comp, Transferable t)

Um die Drag-Unterstützung anzupassen, überschreiben Sie die Methoden:

� int getSourceActions(JComponent c)

� Transferable createTransferable(JComponent c)

� void exportDone(JComponent source, Transferable data, int action)

Die nachfolgende Implementierung orientiert sich an der TransferHandler-Klasse TextTrans-
ferHandler aus javax.swing.plaf.basic.BasicTextUI, ohne jedoch wie diese verschiedene GUI-
Komponenten und Data Flavors zu unterstützen. Stattdessen ist FileAndStringTransferHandler
auf Drag-and-Drop von Strings und Textdateien für JTextArea-Komponenten spezialisiert.

import java.io.*;
import java.util.*;
import java.awt.*;
import java.awt.datatransfer.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.text.*;

/**
 * Transfer-Handler für JTextArea-Komponenten,
 * der Dateien und Strings verarbeitet
 */
class FileAndStringTransferHandler extends TransferHandler {

 Position p0 = null, p1 = null; // Anfang und Ende zu exportierender
 // Drag-Daten

 private JTextArea source; // Drag-Quelle, wird bei String-Drag
 // (Methode createTransferable())
 // gespeichert, um bei Drop feststellen
 // zu können, ob Quelle und Ziel
 // identisch sind. Wenn dann auch die
 // Drop-Position im Bereich der

A
ch

tu
n

g Wie für alle Swing-Komponenten, die standardmäßig Drag-and-Drop unterstützen, gilt
auch für JTextArea, dass die Drag-Unterstützung explizit eingeschaltet werden muss:

textarea.setDragEnabled(true);

Erst danach können markierte Textstellen mit der Maus per Drag verschoben und an
anderer Stelle per Drop eingefügt werden.

H
in

w
e

is In Java 6 wurde den Methoden canImport() und importData() Überladungen an die Seite
gestellt, die als einziges Argument ein Objekt der inneren Klasse TransferHandler.Transfer-
Support übernehmen. Die Klasse TransferHandler.TransferSupport wurde ebenfalls in
Java 6 eingeführt, um dem Entwickler alle relevanten Transfer-Informationen in gebündelter
Form zur Verfügung stellen zu können. Die Transfer-Informationen können über das Transfer-
Handler.TransferSupport-Objekt abgefragt oder (zum Teil) geändert werden.

>> GUI 351

GU
I

 // Drag-Auswahl liegt, muss nichts
 // verändert werden.

 private boolean shouldRemove; // Wird auf false gesetzt, wenn Drop-
 // Position im Drag-Bereich liegt (s.o.),
 // um zu verhindern, dass exportDone()
 // die Drag-Daten löscht

 FileAndStringTransferHandler() {
 }

TransferHandler, die von der Klasse TransferHandler abgeleitet sind, können bei jeder Swing-
Komponente mittels der Methode setTransferhandler() registriert werden. Wenn Sie eine
TransferHandler-Klasse schreiben, die auf eine bestimmte Art Komponente spezialisiert ist,
müssen Sie sich daher Gedanken machen, was zu tun ist, wenn Ihre TransferHandler-Klasse
für die falsche Komponente registriert wird.

Die Klasse FileAndStringTransferHandler prüft zu diesem Zweck in den Methoden

� createTransferable() – der Anwender versucht, Daten per Drag aufzunehmen,

� canImport() – der Anwender zieht Drag-Daten über die Komponente,

� importData() – der Anwender versucht, Drag-Daten in der Komponente per Drop abzu-
legen,

ob es sich auch wirklich um eine JTextArea-Komponente handelt. Im Falle einer falschen
Registrierung kann dann nicht viel Schaden entstehen – außer dass sich der Programmierer,
der FileAndStringTransferHandler für die falsche Komponente registriert hat, fragt, warum die
Drag-and-Drop-Unterstützung nicht funktioniert. Man könnte ihm einen zusätzlichen Hinweis
geben, indem man den Konstruktor mit einem JTextArea-Parameter definiert. Eine wirklich
saubere Lösung ist dies allerdings nicht, da weder der Parameter eine sinnvolle Verwendung
findet, noch dadurch die falsche Registrierung verhindert werden kann.

Damit kommen wir zur Methode canImport(), die automatisch aufgerufen wird, wenn der
Anwender Drag-Daten über die Komponente zieht. Liefert die Methode true zurück, wandelt
sich der Cursor über der Komponente in den Drop-Cursor. Die vorliegende Implementierung
liefert nur dann true zurück, wenn es sich um eine JTextArea-Komponente handelt und die
Drag-Daten von einem Data Flavor sind, der in die Komponente eingefügt werden kann (Datei
oder Text).

 /**
 * Prüft mit Hilfe der private Methoden hasFileFlavor() und
 * hasStringFlavor(), ob die angebotenen Daten in einem Data Flavor
 * angeboten werden, der für die Target-Komponente geeignet ist.
 */
 public boolean canImport(JComponent c, DataFlavor[] flavors) {

 // Vorab prüfen, ob sich hinter der Komponente c auch wirklich
 // eine JTextArea-Komponente verbirgt
 if (!(c instanceof JTextArea))
 return false;

 if(hasFileFlavor(flavors))
 return true;

>> Datei-Drop für JTextArea-Komponenten (eigener TransferHandler)352
GU

I

 if(hasStringFlavor(flavors))
 return true;

 return false;
 }

 private boolean hasFileFlavor(DataFlavor[] flavors) {
 for (int i = 0; i < flavors.length; i++) {
 if (flavors[i].equals(DataFlavor.javaFileListFlavor))
 return true;
 }
 return false;
 }

 private boolean hasStringFlavor(DataFlavor[] flavors) {
 for (int i = 0; i < flavors.length; i++) {
 if (flavors[i].equals(DataFlavor.stringFlavor))
 return true;
 }
 return false;
 }

Legt der Anwender die Daten ab, wird die importData()-Methode aufgerufen. Diese stellt
zuerst den Data Flavor fest. Handelt es sich um Dateien, versucht die Methode, die erste Datei
zu öffnen, ihren Inhalt einzulesen und an der Einfügeposition in die JTextArea-Komponente
zu schreiben. Handelt es sich um einen String, prüft die Methode zuerst, ob nicht zufälliger-
weise Quell- und Zielkomponente identisch sind (Drag und Drop innerhalb derselben Kompo-
nente) und die Drop-Position innerhalb der für den Drag ausgewählten Markierung liegt. In
diesem Fall wird kein Drag-and-Drop durchgeführt. Ansonsten werden die Drag-Daten in der
Zielkomponente an der Drop-Position eingefügt. (Und in der Quellkomponente werden die
Daten von exportDone(), siehe weiter unten, gelöscht.)

 /**
 * versucht die Daten aus dem Transferable-Objekt t in der Komponente
 * c abzulegen
 */
 public boolean importData(JComponent c, Transferable t) {

 // Vorab prüfen, ob sich hinter der Target-Komponente c auch wirklich
 // eine JTextArea-Komponente verbirgt und ob die angebotenen Daten in
 // einem Data Flavor angeboten werden, der für die Target-Komponente
 // geeignet ist.
 if (!(c instanceof JTextArea) ||
 !canImport(c, t.getTransferDataFlavors())) {

 return false;
 }

 // Referenz c in den Typ JTextArea umwandeln
 JTextArea target = (JTextArea) c;

 try {
 if (hasFileFlavor(t.getTransferDataFlavors())) {
 // Transferable-Objekt enthält eine (oder mehrere) Dateien.

>> GUI 353

GU
I

 // Lese die erste Datei und füge ihren Inhalt in die
 // Target-Komponente ein

 FileReader in = null;
 StringBuilder str = new StringBuilder();
 java.util.List files = (java.util.List)
 t.getTransferData(DataFlavor.javaFileListFlavor);

 if (files.size() > 0) {

 // nur erste Datei lesen
 File f = (File) files.get(0);

 try {
 in = new FileReader(f);

 // Dateiinhalt in String lesen
 int countBytes = 0;
 char[] bytesRead = new char[512];

 while((countBytes = in.read(bytesRead)) > 0)
 str.append(bytesRead, 0, countBytes);

 target.replaceSelection(str.toString());

 } catch (IOException e) {
 System.err.println(f +
 " kann nicht eingelesen werden");
 } finally {
 if (in != null)
 in.close();
 }

 return true;
 }

 } else if (hasStringFlavor(t.getTransferDataFlavors())) {
 // Transferable-Objekt enthält eine (oder mehrere) Dateien
 // Wenn Quelle und Ziel identisch sind, verschiebe nur, wenn
 // die Einfügeposition außerhalb des zu verschiebenden
 // Textes liegt

 if((target == source)
 && (target.getCaretPosition() >= p0.getOffset())
 && (target.getCaretPosition() <= p1.getOffset())) {

 shouldRemove = false;
 return true;
 }

 String str =
 (String) t.getTransferData(DataFlavor.stringFlavor);
 target.replaceSelection(str);
 return true;

>> Datei-Drop für JTextArea-Komponenten (eigener TransferHandler)354
GU

I

 }
 } catch (UnsupportedFlavorException e) {
 System.err.println("Drag-Daten werden nicht unterstützt");
 } catch (IOException e) {
 System.err.println("I/O-Exception");
 }
 return false;
 }

Die Methode createTransferable() erzeugt aus der markierten Textstelle die Drag-Daten.
Außerdem speichert sie Anfang und Ende der Textpassage im JTextArea-Dokument, um später
beim Drop (in importData()) prüfen zu können, ob die Drop-Position innerhalb des Drag-
Bereichs liegt.

 /**
 * erzeugt ein Transferable-Objekt mit den zu übertragenden Drag-Daten
 */
 protected Transferable createTransferable(JComponent c) {

 // Vorab prüfen, ob sich hinter der Komponente c auch wirklich
 // eine JTextArea-Komponente verbirgt und
 if (!(c instanceof JTextArea))
 return null;

 source = (JTextArea) c;

 int start = source.getSelectionStart();
 int end = source.getSelectionEnd();
 if (start == end) {
 return null;

 } else {
 try {
 // Anfangs- und Endposition des markierten Textes
 // im Dokument merken
 Document doc = source.getDocument();
 p0 = doc.createPosition(start);
 p1 = doc.createPosition(end);
 } catch (BadLocationException e) {
 System.err.println("Text kann nicht verschoben werden.");
 }

 shouldRemove = true;
 String data = source.getSelectedText();
 return new StringSelection(data);
 }
 }

Aufgabe der Methode getSourceActions() ist es anzuzeigen, dass die Komponente COPY-
Aktionen (für Dateien) und MOVE-Aktionen (für Strings) unterstützt.

 public int getSourceActions(JComponent c) {
 return COPY_OR_MOVE;
 }

>> GUI 355

GU
I

Die Methode exportDone() wird automatisch zum Abschluss einer Drop-Aktion ausgeführt. Die
Klasse FileAndStringTransferHandler nutzt dies, um nach dem Einfügen eines Strings (Drop)
den String an der Originalposition in der Quelle zu löschen – d.h., aus Sicht des Anwenders
wird der String verschoben.

 /**
 * Am Ende einer String-DROP-Aktion den Text in der Quelle löschen.
 */
 protected void exportDone(JComponent c, Transferable data, int action) {

 if (shouldRemove && (action == MOVE)) {
 if ((p0 != null) && (p1 != null) &&
 (p0.getOffset() != p1.getOffset())) {
 try {
 JTextArea source = (JTextArea) c;
 source.getDocument().remove(p0.getOffset(),
 p1.getOffset() - p0.getOffset());
 } catch (BadLocationException e) {
 System.err.println("Text kann nicht gelöscht werden.");
 }
 }
 }
 source = null;
 }

}

Das Start-Programm zu diesem Rezept erzeugt eine JTextArea, in die Sie den Inhalt beliebiger
Textdateien per Drag-and-Drop einfügen können.

public class Start extends JFrame {
 private JScrollPane scrollpane;
 private JTextArea textpane;

 public Start() {

 // Hauptfenster konfigurieren
 setTitle("Datei-Drag für JTextArea");
 getContentPane().setBackground(Color.LIGHT_GRAY);

 // Scrollbare JTextArea einrichten
 scrollpane = new JScrollPane();
 textpane = new JTextArea();
 scrollpane.getViewport().add(textpane, null);

 // Drag-Support für JTextArea aktivieren
 textpane.setDragEnabled(true);

Listing 170: Aus Start.java

>> Anwendungssymbol einrichten356
GU

I

135 Anwendungssymbol einrichten
GUI-Anwendungen verfügen üblicherweise über ein Anwendungssymbol, das quasi als Logo
der Anwendung fungiert und vom Betriebssystem in verschiedenen Kontexten angezeigt wird
(beispielsweise in der Titelleiste des Hauptfensters oder in der Taskleiste).

Um ein Bild aus einer Bilddatei als Anwendungssymbol einzurichten, laden Sie das Bild und
übergeben Sie es der JFrame-Methode setIconImage().

Wenn Sie die Bilddatei mit Hilfe der Class-Methode getResource() laden, können Sie davon
profitieren, dass der Dateiname automatisch um den Paketpfad der Anwendung erweitert wird.
Aus dem zurückgelieferten URL-Objekt erzeugen Sie mit Hilfe der Toolkit-Methode create-
Image() das gewünschte Image-Objekt, welches Sie setIconImage() übergeben.

 // TransferHandler für Dateien und Text registrieren
 textpane.setTransferHandler(new FileAndStringTransferHandler());

 getContentPane().add(scrollpane, BorderLayout.CENTER);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

}

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Start extends JFrame {

 public Start() {

 // Hauptfenster konfigurieren
 setTitle("Swing-Grundgerüst");
 getContentPane().setBackground(Color.LIGHT_GRAY);

 // Anwendungssymbol einrichten
 java.net.URL tmp = Start.class.getResource("icon.png");
 if (tmp != null)
 setIconImage(Toolkit.getDefaultToolkit().createImage(tmp));

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

Listing 171: Anwendungssymbol einrichten

Listing 170: Aus Start.java (Forts.)

>> GUI 357

GU
I

136 Symbole für Symbolleisten
Symbole für Symbolleisten sind in der Regel 16 mal 16 Pixel groß und haben einen transpa-
renten Hintergrund (GIF- oder PNG-Format, kein JPEG).

Aus der Symboldatei erzeugen Sie eine ImageIcon-Instanz. Diese übergeben Sie als Argument
dem JButton- oder JToggleButton-Konstruktor. Den Schalter selbst fügen Sie schließlich in die
Symbolleiste (Instanz von JToolBar) ein, die Sie wiederum in den NORTH-Bereich des Border-
Layouts der ContentPane einfügen:

// Symbolleiste
JToolBar tb = new JToolBar();

// Schalter für Symbolleiste
JButton btn = new JButton(new ImageIcon("resources/New16.gif"));
btn.setToolTipText("Neu");
btn.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 // Ereignisbehandlungscode
 }
});
tb.add(btn);

getContentPane().add(tb, BorderLayout.NORTH);

 public static void main(String args[]) {
 Start frame = new Start();
 frame.setSize(500,300);
 frame.setLocation(300,300);
 frame.setVisible(true);
 }
}

Abbildung 70: Anwendung mit Ausrufezeichen als Anwendungssymbol

T
ip

p Anwendungssymbole sollten möglichst 16x16 oder 24x24 Pixel groß sein und einen
transparenten Hintergrund haben.

Listing 171: Anwendungssymbol einrichten (Forts.)

>> Symbole für Symbolleisten358
GU

I

Die Kreation von Symbolen ist eine Kunst für sich. Die Symbole müssen nicht nur aussagekräf-
tig und intuitiv zu deuten sein, sie müssen auch so gezeichnet werden, dass sie in Originalgröße
gut zu erkennen sind, was oft nur durch geschickten Einsatz von Anti-Aliasing zu erreichen ist.
Meist wird man daher die Erstellung der Symbole Grafikern überlassen oder auf bereits vorhan-
dene Symbole zurückgreifen. Sun stellt selbst eine reiche Auswahl von Symbolen für die ver-
schiedensten Befehle zur Verfügung. Sie können die Symbolsammlung als Archivdatei von der
Webseite http://java.sun.com/developer/techDocs/hi/repository/ herunterladen. (Die Archivda-
tei enthält eine jar-Datei, aus der Sie die einzelnen Grafiken mit jedem gängigen ZIP-Programm
extrahieren können.)

Zur Gruppierung der Symbolschalter können Sie Abstandshalter (Rückgabewert der statischen
Methode Box.createHorizontalStrut(int)), Trennlinien (Instanzen von JSeparator) oder bei-
des einfügen:

// Symbolleiste erzeugen
protected JToolBar createToolBar() {
 JToolBar tb = new JToolBar();
 JButton btn;

 // Symbolschalter für Datei-Menübefehle
 btn = new JButton(new ImageIcon("resources/New16.gif"));
 btn.setToolTipText("Neu");
 btn.addActionListener(fileNewAction);
 tb.add(btn);

 ...

 // Gruppierung mit Abständen und Separator
 tb.add(Box.createHorizontalStrut(3));
 JSeparator sep = new JSeparator(SwingConstants.VERTICAL);
 sep.setMaximumSize(new Dimension(2,200));
 tb.add(sep);
 tb.add(Box.createHorizontalStrut(3));

 // Symbolschalter für Bearbeiten-Menübefehle
 btn = new JButton(new ImageIcon("resources/Cut16.gif"));
 btn.setToolTipText("Ausschneiden");
 btn.addActionListener(editCutAction);
 tb.add(btn);

 ...

 return tb;
}

Listing 172: Aufbau einer Symbolleiste (aus ProgramFrame.java)

>> GUI 359

GU
I

137 Menüleiste (Symbolleiste) aus Ressourcendatei
aufbauen

Heutzutage verfügt nahezu jedes GUI-Programm über eine Menüleiste, meist inklusive passen-
der Symbolleiste(n).

Eine Menüleiste ist in Java eine Instanz der Klasse JMenuBar. Dieser werden die einzelnen
Menüs als Instanzen der Klasse JMenu hinzugefügt, in die wiederum JMenuItem-Objekte für die
eigentlichen Menübefehle eingefügt werden. Jeder Menübefehl kann mit

� einem Titel (setLabel(String) oder Konstruktor),

� einer Mnemonic-Taste für den Zugriff in Kombination mit der [Alt]-Taste (setMnemo-
nic(int)),

� einem Tastaturkürzel (setAccelerator(KeyStroke)), einem Symbol (üblicherweise das Sym-
bol des zugehörigen Schalters aus der Symbolleiste)

� und natürlich einer ActionListener-Instanz zur Ereignisbehandlung (addActionListe-
ner(ActionListener))

verbunden werden. Die fertige Menüleiste wird mit Hilfe der JFrame-Methode setJMenuBar() in
das Hauptfenster eingebettet. Wahrscheinlich sind Sie mit all dem bereits vertraut – falls nicht,
schauen Sie sich die Datei ProgramFrame.java aus dem Rezept »Symbole für Symbolleisten«
an.

Worum es in diesem Rezept geht, ist die Frage, wie sich der Aufbau von Menüleisten zumin-
dest zum Teil automatisieren lässt. Der hier gewählte Ansatz beruht auf drei Komponenten:

� einer Ressourcendatei, in der alle zum Aufbau der Menüleiste benötigten Informationen in
Textform gespeichert sind,

� einer MenuFactory-Klasse, mit deren Hilfe die Menüleiste basierend auf den Informationen
in der Ressourcendatei aufgebaut wird,

� dem eigentlichen Programm, das sich der MenuFactory-Klasse bedient und ansonsten nur
noch die Ereignisbehandlung für die Menübefehle beisteuern muss.

Die Ressourcendatei
Ressourcendateien sind letzten Endes Eigenschaftendateien, d.h., jede Ressource besteht aus
einem Namen, über den sie vom Programm aus abgerufen werden kann, und einem Wert, der
nach einem Gleichheitszeichen auf den Namen folgt. Die Ressourcendatei für die Menüleiste
ist wie folgt aufgebaut.

Die Ressource für die Menüleiste heißt menuBar und zählt die Namen der Ressourcen für die
einzelnen Menüs auf:

menuBar=File Edit Info

Für jedes der aufgeführten Menüs gibt es eine gleichnamige Menüressource, die die Namen
der Ressourcen für die Befehle im Menü aufzählt (Trennzeichen werden durch einen Binde-
strich kodiert) sowie Ressourcen für den Titel (xxxLabel) und den Mnemonic-Buchstaben
(xxxMnemonic) des Menüs:

File=FileNew FileOpen FileSave FileSaveAs - FileQuit
FileLabel=Datei
FileMnemonic=D

>> Menüleiste (Symbolleiste) aus Ressourcendatei aufbauen360
GU

I

Für jeden Menübefehl gibt es Ressourcen, die Titel (xxxLabel), Mnemonic-Buchstaben (xxx-
Mnemonic), Tastaturkürzel (xxxAccelerator), Symbol (xxxSymbol), Tooltip-Text (xxxToolTip)
und Beschreibung (xxxDescription) definieren.

 FileNewLabel=Neu
 FileNewMnemonic=N
 FileNewAccelerator=Strg+N
 FileNewSymbol=resources/new.gif
 FileNewTooltip=Neu
 FileNewDescription=Erstellt ein neues Dokument.

Die von mir vorgegebene Konvention zum Aufbau der Ressourcennamen sieht wie folgt aus:

� Die Menüleistenressource heißt menuBar.

� Die Ressourcennamen für die Menüs und Menübefehle lauten so, wie in der Menüleiste
und den Menüressourcen angegeben.

� Die Namen von Eigenschaften setzen sich zusammen aus dem Namen der Ressource und
einem Suffix für die Eigenschaft (Label, Mnemonic etc.).

Diese Konvention ist bei Änderungen oder bei der Definition eigener Ressourcendateien unbe-
dingt einzuhalten, da die Klasse MenuFactory die Ressourcen sonst nicht findet.

Die Ressourcendatei zu diesem Rezept definiert eine Menüleiste mit Datei-, Bearbeiten- und
Info-Menü:

Ressourcendatei mit Menü

Menüleiste
menuBar=File Edit Info

Datei-Menü
#
File=FileNew FileOpen FileSave FileSaveAs - FileQuit
FileLabel=Datei
FileMnemonic=D

 # Menübefehle für Menü Datei
 FileNewLabel=Neu
 FileNewMnemonic=N
 FileNewAccelerator=Strg+N
 FileNewSymbol=resources/new.gif
 FileNewTooltip=Neu
 FileNewDescription=Erstellt ein neues Dokument.

 FileOpenLabel=Öffnen...
 FileOpenMnemonic=F
 FileOpenAccelerator=Strg+O
 FileOpenSymbol=resources/open.gif
 FileOpenTooltip=Öffnen
 FileOpenDescription=Öffnet ein vorhandenes Dokument.

Listing 173: Program.properties – die Ressourcendatei

>> GUI 361

GU
I

 FileSaveLabel=Speichern
 FileSaveMnemonic=S
 FileSaveAccelerator=Strg+S
 FileSaveSymbol=resources/save.gif
 FileSaveTooltip=Speichern
 FileSaveDescription=Speichert das aktuelle Dokument.

 FileSaveAsLabel=Speichern unter...
 FileSaveAsMnemonic=U
 FileSaveAsDescription=Speichert das aktuelle Dokument unter neuem Namen.

 FileQuitLabel=Beenden
 FileQuitMnemonic=B
 FileQuitDescription=Beendet die Anwendung.

Bearbeiten-Menü
#
Edit=EditCut EditCopy EditPaste
EditLabel=Bearbeiten
EditMnemonic=B

 # Menübefehle für Menü Bearbeiten
 EditCutLabel=Ausschneiden
 EditCutMnemonic=D
 EditCutAccelerator=Strg+X
 EditCutSymbol=resources/cut.gif
 EditCutTooltip=Ausschneiden
 EditCutDescription=Schneidet die Markierung aus.

 EditCopyLabel=Kopieren
 EditCopyMnemonic=K
 EditCopyAccelerator=Strg+C
 EditCopySymbol=resources/copy.gif
 EditCopyTooltip=Kopieren
 EditCopyDescription=Kopiert die Markierung in die Zwischenablage.

 EditPasteLabel=Einfügen
 EditPasteMnemonic=E
 EditPasteAccelerator=Strg+V
 EditPasteSymbol=resources/paste.gif
 EditPasteTooltip=Einfügen
 EditPasteDescription=Fügt den Inhalt der Zwischenablage ein.

Info-Menü
#
Info=InfoInfo
InfoLabel=Info
InfoMnemonic=I

Listing 173: Program.properties – die Ressourcendatei (Forts.)

>> Menüleiste (Symbolleiste) aus Ressourcendatei aufbauen362
GU

I

Die Klasse MenuFactory
Mit Hilfe der Klasse MenuFactory können Menü- und Symbolleisten aus Ressourcendateien ein-
gelesen werden. Unterschiedliche Instanzen der Klasse können unterschiedliche Menüsysteme
repräsentieren.

Die Klasse definiert private Felder zum Abspeichern der Ressourcendatei, der Menüleiste, der
Symbolleiste sowie zweier Hashtabellen, in denen die Menübefehle und Symbolleistenschalter
unter ihren Ressourcennamen abgelegt sind.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

import java.util.HashMap;
import java.util.Locale;
import java.util.ResourceBundle;
import java.util.MissingResourceException;
import java.net.URL;

/**
 * Klasse zur Erstellung von Menü- und Symbolleiste aus Ressourcendatei
 */
public class MenuFactory {
 private ResourceBundle resources;
 private JMenuBar menuBar = null;
 private JToolBar toolBar = null;
 private HashMap<String, JMenuItem> menuItems
 = new HashMap<String, JMenuItem>();
 private HashMap<String, JButton> toolBarButtons
 = new HashMap<String, JButton>();

Bei der Instanzierung der Klasse übergeben Sie dem Konstruktor den Namen der Ressourcen-
datei (gegebenenfalls einschließlich relativem Pfad) sowie die zu verwendende Lokale.

 public MenuFactory(String res, Locale loc) {
 try {
 resources = ResourceBundle.getBundle(res, loc);

 # Menübefehle für Menü Info
 InfoInfoLabel=Info
 InfoInfoMnemonic=I
 InfoInfoDescription=Zeigt den Info-Dialog an.

H
in

w
e

is Beachten Sie, dass der Mnemonic-Buchstabe immer als Großbuchstabe anzugeben ist,
auch wenn der Buchstabe im Titel klein geschrieben wird.

Listing 173: Program.properties – die Ressourcendatei (Forts.)

>> GUI 363

GU
I

 } catch (MissingResourceException mre) {
 System.err.println("Ressourcendatei nicht verfuegbar!");
 System.exit(1);
 }
 }

Die für den Benutzer wichtigste Methode ist getMenuBar(), die eine Referenz auf die JMenuBar-
Menüleiste zurückliefert. Existiert noch gar keine Menüleiste, wird sie automatisch aufgebaut.
Dazu greift die Methode auf die menuBar-Ressource zu, zerlegt deren Wert in die Namen der
einzelnen Menüs und lässt diese von der protected-Methode createMenu() erzeugen. Die ferti-
gen Menüs werden in die Menüleiste eingefügt.

 /**
 * Liefert eine Referenz auf die Menüleiste zurück
 * Beim ersten Aufruf wird die Menüleiste erzeugt
 */
 public JMenuBar getMenuBar() {

 if (menuBar == null) {
 menuBar = new JMenuBar();

 try {
 // Ressourcenstring für Menüleiste abfragen und in
 // String-Array mit Namen der Menüs aufsplitten
 String buf = resources.getString("menuBar");
 String[] menuNames = buf.split(" ");

 // Menüs erzeugen
 for (String s : menuNames) {
 JMenu m = createMenu(s);
 if (m != null)
 menuBar.add(m);
 }
 } catch (MissingResourceException mre) {
 System.err.println("Menüressource nicht verfügbar!");
 System.exit(1);
 }
 }

 return menuBar;
 }

Die Methode createMenu() übernimmt als Argument den Namen einer Menüressource und lie-
fert als Ergebnis das fertige Menü zurück. Titel und Mnemonic-Buchstabe des Menüs werden
der Ressourcendatei entnommen, wobei Letzterer nicht unbedingt definiert sein muss. Welche
Menübefehle das Menü enthalten soll, entnimmt die Methode dem Wert der Menüressource.
Für einen Bindestrich wird eine Trennlinie in das Menü eingefügt, ansonsten wird der Res-
sourcenname des Befehls an die protected-Methode createMenuItem() weitergereicht.

 // Menü erzeugen, wird von getMenuBar() aufgerufen
 protected JMenu createMenu(String name) {
 JMenu m = null;

 try {
 // Menü erzeugen
 m = new JMenu(resources.getString(name + "Label"));

>> Menüleiste (Symbolleiste) aus Ressourcendatei aufbauen364
GU

I

 // Mnemonic
 String mnemo = null;
 try {
 mnemo = resources.getString(name + "Mnemonic");
 } catch (MissingResourceException mre) {
 // mnemo bleibt null
 }
 if (mnemo != null)
 m.setMnemonic(mnemo.charAt(0));

 // Ressourcenstring für Menü abfragen und in String-Array
 // mit Namen der Menübefehle aufsplitten
 String buf = resources.getString(name);
 String[] menuItemNames = buf.split(" ");

 // Menübefehle erzeugen
 for (String s : menuItemNames) {
 if (s.equals("-"))
 m.addSeparator();
 else {
 JMenuItem mi = createMenuItem(s);
 m.add(mi);
 }
 }
 } catch (MissingResourceException mre) {
 System.err.println("Menüressource nicht verfügbar!");
 System.exit(1);
 }

 return m;
 }

Die Methode createMenuItem() schließlich erzeugt die einzelnen Menübefehle als Instanzen
von JMenuItem. Die Informationen für die Konfiguration der Menübefehle werden – mit Aus-
nahme der Ereignisbehandlung, die ja das Programm beisteuert – der Ressourcendatei
entnommen. Der Titel (xxxLabel) ist obligatorisch, muss also in der Ressourcendatei definiert
sein. Die restlichen Angaben sind optional. Zum Schluss wird die JMenuItem-Instanz für später
in die Hashtabelle menuItems eingetragen und als Ergebniswert zurückgeliefert.

 // Menübefehl erzeugen, wird von createMenu() aufgerufen
 protected JMenuItem createMenuItem(String name) {
 JMenuItem mi = null;

 try {
 // Menübefehl erzeugen
 String label = resources.getString(name + "Label");
 mi = new JMenuItem(label);

 // Mnemonic
 String mnemo = null;
 try {
 mnemo = resources.getString(name + "Mnemonic");

>> GUI 365

GU
I

 } catch (MissingResourceException mre) {
 // mnemo bleibt null
 }
 if (mnemo != null)
 mi.setMnemonic(mnemo.charAt(0));

 // Tastaturkürzel
 String accel = null;
 try {
 accel = resources.getString(name + "Accelerator");
 } catch (MissingResourceException mre) {
 // accel bleibt null
 }
 if (accel != null) {
 KeyStroke ks = KeyStroke.getKeyStroke(
 (int) accel.charAt(accel.length()-1),
 Event.CTRL_MASK);
 mi.setAccelerator(ks);
 }

 // Auskommentieren, wenn Symbole in Menübefehlen unerwünscht
 String image = null;
 try {
 image = resources.getString(name + "Symbol");
 } catch (MissingResourceException mre) {
 // image bleibt null
 }
 if (image != null) {
 URL url = this.getClass().getResource(image);
 if (url != null) {
 mi.setIcon(new ImageIcon(url));
 }
 }

 // Menübefehl in Feld menuItems für späteren Zugriff abspeichern
 menuItems.put(name, mi);

 } catch (MissingResourceException mre) {
 System.err.println("Menüressource nicht verfügbar!");
 System.exit(1);
 }

 return mi;
 }

Als Pendant zu den Methoden zur Erzeugung der Menüleiste gibt es Methoden zum Aufbau
einer Symbolleiste, die weiter unten im letzten Abschnitt dieses Rezepts abgedruckt sind.

 protected JToolBar getToolBar() {
 ...
 }
 protected JButton createToolBarButton(String name) {
 ...
 }

>> Menüleiste (Symbolleiste) aus Ressourcendatei aufbauen366
GU

I

Zu guter Letzt definiert die Klasse zwei Methoden, die Referenzen auf die Hashtabellen für die
Menübefehle und die Symbolleistenschalter zurückliefern. Über diese Hashtabellen können
Programme, die ihre Menüleisten (Symbolleisten) mit Hilfe von MenuFactory erzeugen, bequem
auf die einzelnen Menübefehle und Symbolleistenschalter zugreifen – beispielsweise um sie
mit einer Ereignisbehandlung zu kombinieren.

 public HashMap<String, JMenuItem> getMenuItems() {
 return menuItems;
 }
 public HashMap<String, JButton> getToolBarButtons() {
 return toolBarButtons;
 }

}

Verwendung in einem Programm
Eine Frame-Klasse, die mit Hilfe von MenuFactory ihre Menüleiste aufbauen möchte, geht wie
folgt vor:

1. Sie definiert ein private-Feld für das MenuFactory-Objekt (und gegebenenfalls auch Felder
für die Menüleiste).

public class ProgramFrame extends JFrame {
 private MenuFactory mf;
 private JMenuBar menuBar;

2. Sie erzeugt im Konstruktor eine Instanz von MenuFactory, wobei sie den Pfad zur Ressour-
cendatei und die zu verwendende Lokale übergibt.

public ProgramFrame() {
 ...

 // Menü aufbauen und als Hauptmenü des Fensters einrichten
 mf = new MenuFactory("resources/Program",
 Locale.getDefault());
 ...

3. Sie ruft die getMenuBar()-Methode des MenuFactory-Objekts auf, um die Menüleiste auf-
bauen zu lassen. Die von getMenuBar() zurückgelieferte Referenz übergibt sie an setJMenu-
Bar().

 ...
 menuBar = mf.getMenuBar();
 setJMenuBar(menuBar);
 ...

4. Sie verbindet die einzelnen Menübefehle mit Ereignisbehandlungen, sprich mit ActionLis-
tener-Objekten.

Hierfür gibt es eine Vielzahl von Möglichkeiten (siehe Rezept 119). Die Fensterklasse zu
diesem Rezept definiert für jeden Befehl eine eigene ActionListener-Klasse:

public class ProgramFrame extends JFrame {
 ...

>> GUI 367

GU
I

 // ActionListener-Objekte für Menübefehle
 private FileNewAction fileNewAction =
 new FileNewAction();
 private FileOpenAction fileOpenAction =
 new FileOpenAction();
 ...

 // innere ActionListener-Klassen für Menübefehle
 class FileNewAction implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 System.out.println(" Datei / Neu");
 }
 }
 class FileOpenAction implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 System.out.println(" Datei / Oeffnen");
 }
 }
 ...

und verbindet diese im Konstruktor mit den zugehörigen Menübefehlen:

 public ProgramFrame() {
 ...

 // Ereignisbehandlung für Menübefehle
 HashMap<String, JMenuItem> menuItems = mf.getMenuItems();
 JMenuItem mi;

 mi = menuItems.get("FileNew");
 mi.addActionListener(fileNewAction);

 mi = menuItems.get("FileOpen");
 mi.addActionListener(fileOpenAction);
 ...

Symbolleisten
Analog zur Menüleiste können auch Symbolleisten aus Ressourcendateien erzeugt werden.

Die Ressourcendatei zu diesem Rezept definiert zu diesem Zweck eine eigene Ressource
namens toolBar, die Namen der Menübefehlressourcen aufzählt, für die auch Symbolschalter
in der Symbolleiste angezeigt werden sollen.

Symbolleiste
#
Die Namen der Schalter müssen gleich den Namen der Menübefehle sein!
toolBar=FileNew FileOpen FileSave - EditCut EditCopy EditPaste

Alle weiteren Informationen zur Konfiguration der Schalter, sprich Bild und ToolTip-Text, wer-
den den Angaben zu den Menübefehlen entnommen (siehe Abschnitt »Die Ressourcendatei«).

Die MenuFactory-Methode, die die Symbolleiste aufbaut, heißt getToolBar() und ist analog zur
Methode getMenuBar() aufgebaut:

>> Menüleiste (Symbolleiste) aus Ressourcendatei aufbauen368
GU

I

 /**
 * Liefert eine Referenz auf die Symbolleiste zurück
 * Beim ersten Aufruf wird die Symbolleiste erzeugt
 */
 protected JToolBar getToolBar() {

 if (toolBar == null) {
 toolBar = new JToolBar();

 try {
 // Ressourcenstring für Symbolleiste abfragen und in
 // String-Array mit Namen der Schaltflächen aufsplitten
 String buf = resources.getString("toolBar");
 String[] buttonNames = buf.split(" ");

 // Symbolleiste erzeugen
 for (String s : buttonNames) {
 if (s.equals("-"))
 toolBar.add(Box.createHorizontalStrut(5));
 else {
 JButton btn = createToolBarButton(s);
 if (btn != null)
 toolBar.add(btn);
 }
 }
 } catch (MissingResourceException mre) {
 System.err.println("Symbolleistenressource nicht verfügbar!");
 System.exit(1);
 }
 }

 return toolBar;
 }

Die einzelnen Schalter werden von der Hilfsmethode createToolBarButton() erzeugt, die ana-
log zu createMenuItem() aufgebaut ist, d.h., sie übernimmt den Ressourcennamen des Menü-
befehls und erzeugt zu diesem eine passende JButton-Instanz, die in die Symbolleiste
eingefügt werden kann. Alle Informationen zur Konfiguration des Schalters werden der Res-
sourcendatei entnommen. Zum Schluss wird die JButton-Instanz für später in die Hashtabelle
toolBarButtons eingetragen und als Ergebniswert zurückgeliefert.

 // Schalter für Symbolleiste erzeugen, wird von getToolBar() aufgerufen
 protected JButton createToolBarButton(String name) {
 JButton btn = null;

 try {
 // Schalter mit Bild erzeugen
 String image = resources.getString(name + "Symbol");
 URL url = this.getClass().getResource(image);

 btn = new JButton(new ImageIcon(url));
 btn.setMargin(new Insets(1,1,1,1));
 btn.setFocusable(false);

>> GUI 369

GU
I

 // ToolTip
 String tooltip = null;
 try {
 tooltip = resources.getString(name + "Tooltip");
 } catch (MissingResourceException mre) {
 // tooltip bleibt null
 }
 if (tooltip != null)
 btn.setToolTipText(tooltip);

 // Schalter in Feld toolBarButtons für späteren Zugriff
 // abspeichern
 toolBarButtons.put(name, btn);

 } catch (MissingResourceException mre) {
 System.err.println("Symbolleistenressource nicht verfügbar!");
 System.exit(1);
 }

 return btn;
 }

Im Programm, genauer gesagt im Konstruktor der Fensterklasse, wird die Symbolleiste durch
Aufruf der MenuFactory-Methode getToolBar() erzeugt und in den NORTH-Abschnitt des
Border-Layouts eingefügt:

public ProgramFrame() {
 ...

 // Symbolleiste aufbauen und am oberen Rand des Fensters einfügen
 toolBar = mf.getToolBar();
 getContentPane().add(toolBar, BorderLayout.NORTH);
 ...

Danach müssen die einzelnen Schalter nur noch mit den zugehörigen ActionListener-Objek-
ten verbunden werden:

 ...
 // Ereignisbehandlung für Symbolleistenschalter
 HashMap<String, JButton> toolBarButtons = mf.getToolBarButtons();
 JButton tb;

 tb = toolBarButtons.get("FileNew");
 tb.addActionListener(fileNewAction);

 tb = toolBarButtons.get("FileOpen");
 tb.addActionListener(fileOpenAction);

>> Befehle aus Menü und Symbolleiste zur Laufzeit aktivieren und deaktivieren370
GU

I

138 Befehle aus Menü und Symbolleiste zur Laufzeit
aktivieren und deaktivieren

Menübefehle werden in Java durch Instanzen der Klasse JMenuItem, Symbolleistenschalter
durch Instanzen der Klassen JButton oder JToggleButton repräsentiert. Alle drei Klassen sind
von AbstractButton abgeleitet und erben von dieser Klasse die Methode setEnabled(), mit der
die Menübefehle und Schalter zur Laufzeit aktiviert (Übergabe von true) oder deaktiviert
(Übergabe von false) werden können.

Wenn ein Befehl sowohl als Menübefehl in der Menüleiste wie auch als Schalter in der Symbol-
leiste (und womöglich auch noch als Befehl in einem Kontextmenü) vertreten ist, müssen Sie
selbstredend darauf achten, dass alle Vorkommen des Befehls zusammen aktiviert oder deak-
tiviert werden. Sie können diese Arbeit aber auch delegieren, indem Sie für die Ereignisbehand-
lung Aktionen definieren. Aktionen sind in diesem Sinne Instanzen von Klassen, die das
Interface Action definieren oder von der Klasse AbstractAction abgeleitet sind. In diesem Fall
können Sie alle Menübefehle und Schalter, die mit ein und derselben Aktion verbunden sind,
zusammen aktivieren oder deaktivieren, indem Sie einfach die Aktion aktiveren/deaktivieren:

// 1. Action-Klasse zur Behandlung des Datei/Neu-Befehls
class FileNewAction extends AbstractAction {
 public void actionPerformed(ActionEvent e) {
 // Tue etwas
 }
}

// 2. Action mit Menübefehl und Symbollschalter verbinden
Action a = new FileNewAction();
miFileNew.setAction(a); // miFileNew sei JMenuItem-Objekt
btnFileNew.setAction(a); // btnFileNew sei JButton-Objekt

// Irgendwo im Code

Abbildung 71: Programm mit automatisch generierter Menü- und Symbolleiste

>> GUI 371

GU
I

// 3. Aktion für Datei/Neu und alle zugeordneten GUI-Komponenten deaktivieren
a.setEnabled(false);

Ein Beispiel hierfür finden Sie im nachfolgenden Rezept, das Aktionen, Menü und Symbol-
leiste automatisch aus einer Ressourcendatei erstellt.

139 Menü- und Symbolleiste mit Aktionen synchronisieren
In Rezept 137 wurde Ihnen eine Möglichkeit vorgestellt, wie Sie Menü- und Symbolleiste
halbautomatisch aus den Daten einer Ressourcendatei erstellen können. Für die Ereignisbe-
handlung haben wir dort eigene Klassen definiert, die das ActionListener-Interface implemen-
tieren. Dieser Ansatz ist effektiv und schnell zu implementieren. Außerdem muss für jede
Aktion, die der Anwender auslösen kann, nur ein Objekt der betreffenden ActionListener-
Klasse erzeugt werden. Kann die Aktion auf mehreren Wegen ausgelöst werden, beispielsweise
über Menübefehl und Symbolschalter, wird das zugehörige ActionListener-Objekt einfach bei
allen auslösenden GUI-Komponenten als ActionListener registriert.

Wenn Sie mehrere GUI-Komponenten mit ein- und demselben ActionListener-Objekt verbin-
den, spart dies Speicherplatz und der Ereignisbehandlungscode steht nur einmal im Quelltext.
Die GUI-Komponenten sind jedoch nicht synchronisiert. Wenn Sie also die Aktion deaktivieren
wollen, müssen Sie alle GUI-Komponenten deaktivieren. Wollen Sie die Aktion mit einem
anderen Tastaturkürzel verbinden, müssen Sie die Tastaturkürzel für alle GUI-Komponenten
ändern. Gerade für Aktionen, die sowohl über das Menü als auch die Symbolleiste ausgeführt
werden könnten, wäre eine derartige automatische Synchronisierung aber wünschenswert, um
den Programmierer von lästiger Verwaltungsarbeit zu befreien. Dies leistet das Konzept der
Actions. Actions sind Objekte von Klassen, die von AbstractAction abgeleitet sind oder direkt
das Interface Action implementieren. Actions besitzen eine actionPerformed()-Implementie-
rung und können unter anderem ein Symbol, einen Mnemonic-Buchstaben, ein Tastaturkürzel,
einen Tooltip-Text und eine ausführlichere Beschreibung speichern.

Alle GUI-Komponenten, deren Klassen auf AbstractButton zurückgehen, können mit einer
Action verbunden werden (Methode setAction()). Werden mehrere GUI-Komponenten mit ein
und derselben Action verbunden, spiegeln sich Änderungen an der Action (Deaktivierung,
neues Symbol etc.) in allen verbundenen Komponenten wider.

Das folgende Rezept baut Menü- und Symbolleiste aus den Daten einer Ressourcendatei auf
und verbindet die Menübefehle und Symbolleistenschalter mit Action-Objekten.

Die Ressourcendatei
Die Ressourcendatei zu diesem Rezept ist identisch mit der Ressourcendatei aus Rezept 137.
Dort finden Sie auch nähere Erläuterungen zum Aufbau der Ressourcendatei und zur Namens-
gebung für die Ressourcen.

Die Klasse MenuFactory
Mit Hilfe der Klasse MenuFactory lassen sich Menü- und Symbolleisten aus Ressourcendateien
einlesen. Unterschiedliche Instanzen der Klasse können unterschiedliche Menüsysteme reprä-
sentieren.

Die Klasse definiert private Felder zum Abspeichern der Ressourcendatei, der Menüleiste, der
Symbolleiste sowie drei Hashtabellen für die Menübefehle, Symbolleistenschalter und Actions.
Die Hashtabellen für die Menübefehle und Symbolleistenschalter baut MenuFactory selbst auf,

>> Menü- und Symbolleiste mit Aktionen synchronisieren372
GU

I

die Hashtabelle der Actions wird vom aufrufenden Programm entgegengenommen. Menü-
befehle, Symbolleistenschalter und Actions werden in den Hashtabellen unter den Ressourcen-
namen der Menübefehle (Schlüssel) gespeichert.

...

public class MenuFactory {
 private ResourceBundle resources;
 private JMenuBar menuBar = null;
 private JToolBar toolBar = null;
 private HashMap<String, JMenuItem> menuItems
 = new HashMap<String, JMenuItem>();
 private HashMap<String, JButton> toolBarButtons
 = new HashMap<String, JButton>();
 private HashMap<String, Action> actions = null;

Bei der Instanzierung der Klasse übergeben Sie dem Konstruktor den Namen der Ressourcen-
datei (gegebenenfalls einschließlich relativem Pfad), die zu verwendende Lokale und eine
HashMap mit den Action-Objekten. (Die Definition der Action-Klassen für die Menübefehle
kann die Klasse MenuFactory dem Hauptfenster wegen der Implementierung der actionPerfor-
med()-Methode nicht abnehmen. Stattdessen erwartet MenuFactory, dass das Hauptfenster die
entsprechenden Klassen definiert und für jeden Menübefehl ein Action-Objekt instanziert und
unter dem Namen der Menübefehlsressource in eine HashMap einfügt. Die HashMap nimmt
MenuFactory entgegen und konfiguriert dann die Action-Objekte gemäß den Menübefehlinfor-
mationen aus der Ressourcendatei.)

 public MenuFactory(String res, Locale loc,
 HashMap<String, Action> actions) {
 this.actions = actions;

 try {
 resources = ResourceBundle.getBundle(res, loc);

 } catch (MissingResourceException mre) {
 System.err.println("Ressourcendatei nicht verfuegbar!");
 System.exit(1);
 }
 }

Die für den Benutzer wichtigste Methode ist getMenuBar(), die eine Referenz auf die JMenuBar-
Menüleiste zurückliefert. Existiert noch gar keine Menüleiste, wird sie automatisch aufgebaut.
Dazu greift die Methode auf die menuBar-Ressource zu, zerlegt deren Wert in die Namen der
einzelnen Menüs und lässt diese von der protected-Methode createMenu() erzeugen.

Die Methode createMenu() übernimmt als Argument den Namen einer Menüressource und lie-
fert als Ergebnis das fertige Menü zurück. Titel und Mnemonic-Buchstabe des Menüs werden

H
in

w
e

is Die Klasse MenuFactory geht davon aus, dass es zu jedem Menübefehl ein Action-Objekt
gibt. Die Menüleiste mit den Menübefehlen baut MenuFactory selbstständig aus den
Daten der Ressourcendatei auf. Die Action-Objekte muss der Aufrufer (sprich die
Hauptfensterklasse) erzeugen, in einer HashMap speichern und an den Konstruktor von
MenuFactory übergeben. Die Klasse MenuFactory konfiguriert die Action-Objekte dann
gemäß den Menübefehlsdaten aus der Ressourcendatei.

>> GUI 373

GU
I

der Ressourcendatei entnommen, wobei Letzterer nicht unbedingt definiert sein muss. Welche
Menübefehle das Menü enthalten soll, entnimmt die Methode dem Wert der Menüressource.
Für einen Bindestrich wird eine Trennlinie in das Menü eingefügt, ansonsten wird der Res-
sourcenname des Befehls an die protected-Methode createMenuItem() weitergereicht.

Die Methode createMenuItem() schließlich erzeugt die einzelnen Menübefehle als Instanzen
von JMenuItem. Dazu ruft sie die Methode configAction() auf, die die zu dem Menübefehl
gehörende Action gemäß den Daten aus der Ressourcendatei konfiguriert. Die fertig konfigu-
rierte Action wird dann durch Aufruf von setAction() mit dem Menübefehl verbunden.
Anschließend wird der Menübefehl selbst angepasst, d.h., es werden durch Aufruf der entspre-
chenden JMenuItem-Methoden diejenigen Action-Elemente, die für den Menübefehl nicht
benötigt werden (Tooltipps und Symbole), ausgeschaltet.

 public JMenuBar getMenuBar() {
 // wie in Rezept 137
 }
 protected JMenu createMenu(String name) {
 // wie in Rezept 137
 }

 // Menübefehl erzeugen, wird von createMenu() aufgerufen
 protected JMenuItem createMenuItem(String name) {
 JMenuItem mi = new JMenuItem();
 Action a = configAction(name);

 // Menübefehl mit Aktion verbinden und für späteren Zugriff
 // in Feld menuItems abspeichern
 mi.setAction(a);
 mi.setToolTipText(null); // keine Tooltipps für Menübefehle
 mi.setIcon(null); // keine Symbole für Menübefehle
 menuItems.put(name, mi);

 return mi;
 }

Die protected-Methode configAction() übernimmt den Namen einer Menübefehlsressource
und konfiguriert die zugehörige Action gemäß den Angaben, die zu dem Menübefehl in der
Ressourcendatei gespeichert sind. Der Titel (xxxLabel) ist obligatorisch, muss also in der Res-
sourcendatei definiert sein. Die restlichen Angaben sind optional.

 /**
 * Action konfigurieren, wird von createMenuItem() und
 * createToolBarButton() aufgerufen
 */
 protected Action configAction(String name) {
 Action a = null;

 try {
 // Action-Objekt zu Menübefehlsnamen beschaffen
 String label = resources.getString(name + "Label");
 a = actions.get(name);
 a.putValue(Action.NAME, label);

 // Mnemonic setzen
 String mnemo = null;

>> Menü- und Symbolleiste mit Aktionen synchronisieren374
GU

I

 try {
 mnemo = resources.getString(name + "Mnemonic");
 } catch (MissingResourceException mre) {
 // mnemo bleibt null
 }
 if (mnemo != null)
 a.putValue(Action.MNEMONIC_KEY, mnemo.codePointAt(0));

 // Tastaturkürzel setzen
 String accel = null;
 try {
 accel = resources.getString(name + "Accelerator");
 } catch (MissingResourceException mre) {
 // accel bleibt null
 }
 if (accel != null) {
 KeyStroke ks = KeyStroke.getKeyStroke(
 (int) accel.charAt(accel.length()-1),
 Event.CTRL_MASK);
 a.putValue(Action.ACCELERATOR_KEY, ks);
 }

 // Bild setzen
 String image = null;
 try {
 image = resources.getString(name + "Symbol");
 } catch (MissingResourceException mre) {
 // image bleibt null
 }
 if (image != null) {
 URL url = this.getClass().getResource(image);
 if (url != null) {
 a.putValue(Action.SMALL_ICON, new ImageIcon(url));
 }
 }

 // ToolTip setzen
 String tooltip = null;
 try {
 tooltip = resources.getString(name + "Tooltip");
 } catch (MissingResourceException mre) {
 // tooltip bleibt null
 }
 if (tooltip != null)
 a.putValue(Action.SHORT_DESCRIPTION, tooltip);

 // Beschreibung (für Statusleiste etc.) setzen
 String description = null;
 try {
 description = resources.getString(name + "Description");
 } catch (MissingResourceException mre) {
 // description bleibt null
 }
 if (description != null)

>> GUI 375

GU
I

 a.putValue(Action.LONG_DESCRIPTION, description);

 } catch (MissingResourceException mre) {
 System.err.println("Menüressource nicht verfügbar!");
 System.exit(1);
 }

 return a;
 }

Als Pendant zu den Methoden zur Erzeugung der Menüleiste gibt es Methoden zum Aufbau
einer Symbolleiste.

 protected JToolBar getToolBar() {
 // wie in Rezept 137
 }

 protected JButton createToolBarButton(String name) {
 JButton btn = null;

 Action a = configAction(name);

 btn = new JButton(a);
 btn.setText(null);
 toolBarButtons.put(name, btn);

 return btn;
 }

Zu guter Letzt definiert die Klasse zwei Methoden, die Referenzen auf die Hashtabellen für die
Menübefehle und die Symbolleistenschalter zurückliefern.

 public HashMap<String, JMenuItem> getMenuItems() {
 return menuItems;
 }
 public HashMap<String, JButton> getToolBarButtons() {
 return toolBarButtons;
 }

}

Verwendung in einem Programm
Eine Frame-Klasse, die mit Hilfe von MenuFactory ihre Menüleiste aufbauen möchte, geht wie
folgt vor:

1. Sie definiert ein private Feld für das MenuFactory-Objekt, gegebenenfalls Felder für die
Menüleiste und die Symbolleiste sowie eine HashMap-Collection für die Action-Objekte:

public class ProgramFrame extends JFrame {
 private MenuFactory mf;
 private JMenuBar menuBar;
 HashMap<String, Action> actions;

2. Sie definiert für jeden Menübefehl eine von AbstractAction abgeleitete Action-Klasse, die
actionPerformed() implementiert.

>> Menü- und Symbolleiste mit Aktionen synchronisieren376
GU

I

Hierfür gibt es eine Vielzahl von Möglichkeiten (siehe Rezept 119). Die Fensterklasse zu
diesem Rezept definiert für jeden Befehl eine eigene ActionListener-Klasse ...

public class ProgramFrame extends JFrame {
 ...

 // innere Action-Klassen für Menübefehle
 class FileNewAction extends AbstractAction {
 public void actionPerformed(ActionEvent e) {
 System.out.println(" Datei / Neu");
 actions.get("FileSave").setEnabled(true);
 actions.get("FileSaveAs").setEnabled(true);
 }
 }
 class FileOpenAction extends AbstractAction {
 public void actionPerformed(ActionEvent e) {
 System.out.println(" Datei / Oeffnen");
 actions.get("FileSave").setEnabled(true);
 actions.get("FileSaveAs").setEnabled(true);
 }
 }

... und legt im Konstruktor eine HashMap mit den gewünschten Action-Objekten an. Als
Schlüssel zu den Actions dient jeweils der Name der Menübefehlsressource.

 public ProgramFrame() {
 ...

 // Action-Objekte erzeugen und in Collection
 // actions speichern
 actions = new HashMap<String, Action>();
 actions.put("FileNew", new FileNewAction());
 actions.put("FileOpen", new FileOpenAction());
 actions.put("FileSave", new FileSaveAction());
 actions.put("FileSaveAs", new FileSaveAsAction());
 actions.put("FileQuit", new FileQuitAction());
 actions.put("EditCut", new EditCutAction());
 actions.put("EditCopy", new EditCopyAction());
 actions.put("EditPaste", new EditPasteAction());
 actions.put("InfoInfo", new InfoInfoAction());
 ...

3. Sie erzeugt im Konstruktor eine Instanz von MenuFactory, wobei sie den Pfad zur Ressour-
cendatei, die zu verwendende Lokale und die actions-Collection übergibt.

public ProgramFrame() {
 ...

 // Menü aufbauen und als Hauptmenü des Fensters einrichten
 mf = new MenuFactory("resources/Program",
 Locale.getDefault(), actions);
 ...

4. Sie ruft die getMenuBar()- und getToolBar()-Methoden des MenuFactory-Objekts auf, um
Menü- und Symbolleiste aufbauen zu lassen. Die von getMenuBar() zurückgelieferte Refe-

>> GUI 377

GU
I

renz übergibt sie an setJMenuBar(). Die von getToolBar() zurückgelieferte Referenz fügt sie
in den NORTH-Bereich des Border-Layouts ein.

 ...
 menuBar = mf.getMenuBar();
 setJMenuBar(menuBar);

 toolBar = mf.getToolBar();
 getContentPane().add(toolBar, BorderLayout.NORTH);
 ...

Um die Synchronisierung von GUI-Komponenten via Actions zu demonstrieren, deaktiviert
das Hauptfenster dieses Rezepts anfangs die Actions FileSave und FileSaveAs.

 public ProgramFrame() {
 ...

 actions.get("FileSave").setEnabled(false);
 actions.get("FileSaveAs").setEnabled(false);
 ...

Wenn Sie das Programm starten, müssen sowohl die entsprechenden Menübefehle als auch
der Speicher-Schalter deaktiviert sein!

140 Statusleiste einrichten
Es ist ein offenes Geheimnis: Die Java-API kennt keine eigene Klasse für Statusleisten. Wer
dennoch nicht auf seine Statusleiste verzichten möchte, muss selbst Hand anlegen, ein JPanel
mit passenden Feldern (in der Regel JLabel-Instanzen) ausstatten und in den SOUTH-Bereich
eines Rahmenfensters mit Borderlayout einfügen.

Abbildung 72: Anfangszustand des Programms: Die GUI-Komponenten, die mit den Actions
»FileSave« und »FileSaveAs« verbunden sind, sind deaktiviert. Sie werden
aktiviert, sobald Sie einen der Befehle Neu oder Öffnen ausführen.

>> Statusleiste einrichten378
GU

I

Das Erscheinungsbild einer so konstruierten Statusleiste lässt sich auf vielerlei Weise anpassen:
beispielsweise durch Einstellung der Hintergrundfarbe (siehe oben, setBackground()-Aufruf)
oder durch Auswahl eines Rahmens (siehe oben, createEtchedBorder()-Aufruf). Für die einzel-
nen Felder der Statusleiste können entsprechende GUI-Komponenten direkt oder wiederum ein-
gebettet in untergeordnete JPanel-Instanzen eingefügt werden. Abstände und Position der
Felder können unter anderem durch Trennstriche (Instanzen von JSeparator) und Abstandshal-
ter (Box.createHorizontalStrut() für Abstände fester Breite bzw. Box.createHorizontalGlue()
zum »Aufsaugen« beliebigen Freiraums) festgelegt werden.

Die Klasse StatusBar
Die nachfolgend definierte Klasse StatusBar kann Statusleisten aus einer beliebigen Zahl von
JLabel-Feldern erzeugen.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Statusleiste_Simple extends JFrame {
 private JPanel sb;
 private JLabel sb_textfield;

 public Statusleiste_Simple() {

 // Hauptfenster konfigurieren
 setTitle("Swing-Grundgerüst");

 // JPanel als Statusleiste konfigurieren
 sb = new JPanel();
 sb.setBackground(Color.LIGHT_GRAY);
 sb.setLayout(new FlowLayout(FlowLayout.LEFT));
 sb.setBorder(BorderFactory.createEtchedBorder());

 // Felder einfügen
 sb_textfield = new JLabel();
 sb.add(sb_textfield);

 // JPanel als Statuszeile in Fenster einfügen
 getContentPane().add(sb, BorderLayout.SOUTH);

 sb_textfield.setText("Dies ist die Statusleiste");

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }
...
}

Listing 174: Aus Statusleiste_Simple.java – Beispiel für die Implementierung einer einfachen
Statusleiste

>> GUI 379

GU
I

Das Design der von StatusBar erzeugten Statusleisten ist fix, d.h. im Code der Klasse festge-
legt (kann aber natürlich vom Programmierer geändert werden):

� Der Rahmen besteht aus einer CompoundBorder-Instanz, die einen dekorativen Rahmen
(SoftBevelBorder) mit einfachen Rändern unterschiedlicher Bereite (EmptyBorder) verbindet:

setBorder(new CompoundBorder(
 new SoftBevelBorder(SoftBevelBorder.LOWERED),
 new EmptyBorder(1,5,0,5)));

� Auf das erste Feld folgt stets eine Glue-Komponente, die für den Fall, dass das Fenster
breiter ist als die Maximalgröße des Felds, den restlichen Raum einnimmt.

add(Box.createHorizontalGlue());

� Gibt es mehrere Felder, werden diese durch zwei 5 Pixel breite Abstandshalter und einen
dazwischen geschalteten vertikalen Trennstrich getrennt.

add(Box.createHorizontalStrut(5));
JSeparator sep = new JSeparator(SwingConstants.VERTICAL);
sep.setMaximumSize(new Dimension(2,200));
add(sep);
add(Box.createHorizontalStrut(5));

Erzeugt werden die Statusleisten von den Konstruktoren der Klasse, die ansonsten nur noch
eine einzige Methode namens getField(int index) besitzt, die eine Referenz auf das index-te
Feld in der Statusleiste zurückliefert.

Abbildung 73: GUI-Programm mit Statusleiste

import java.awt.*;
import javax.swing.*;
import javax.swing.border.*;
import java.util.ArrayList;

/**
 * Klasse für Statusleisten
 */

Listing 175: StatusBar.java

>> Statusleiste einrichten380
GU

I

class StatusBar extends JPanel {
 private ArrayList<JLabel> fields = new ArrayList<JLabel>();

 /**
 * erzeugt eine Statusleiste mit einem einzigen Textfeld, das
 * maximal 400 Pixel breit wird
 */
 public StatusBar() {
 setLayout(new BoxLayout(this, BoxLayout.X_AXIS));
 setBorder(new CompoundBorder(
 new SoftBevelBorder(SoftBevelBorder.LOWERED),
 new EmptyBorder(1,5,0,5)));

 JLabel lb = new JLabel(" ");
 lb.setPreferredSize(new Dimension(400, 16));
 lb.setMinimumSize(new Dimension(400, 16));
 fields.add(lb);

 add(lb);
 add(Box.createHorizontalGlue());
 }

 /**
 * erzeugt eine Statusleiste mit einem einzigen Textfeld, dessen
 * bevorzugte und maximale Breite als Argument übergeben wird
 */
 public StatusBar(int width) {
 setLayout(new BoxLayout(this, BoxLayout.X_AXIS));
 setBorder(new CompoundBorder(
 new SoftBevelBorder(SoftBevelBorder.LOWERED),
 new EmptyBorder(1,5,0,5)));

 JLabel lb = new JLabel(" ");
 lb.setPreferredSize(new Dimension(width, 16));
 lb.setMinimumSize(new Dimension(width, 16));
 fields.add(lb);

 add(lb);
 add(Box.createHorizontalGlue());

 }

 /**
 * erzeugt eine Statusleiste mit den übergebenen JLabel-Komponenten
 * als Feldern
 */
 public StatusBar(JLabel... labels) {
 setLayout(new BoxLayout(this, BoxLayout.X_AXIS));
 setBorder(new CompoundBorder(
 new SoftBevelBorder(SoftBevelBorder.LOWERED),
 new EmptyBorder(1,5,0,5)));

Listing 175: StatusBar.java (Forts.)

>> GUI 381

GU
I

Um eine einfache Statusleiste mit einem einzigen Feld einzurichten, müssen Sie lediglich den
ersten oder zweiten Konstruktor aufrufen und die erzeugte Statusleiste in den SOUTH-Bereich
des Rahmenfensters einfügen:

statusBar = new StatusBar();
getContentPane().add(statusBar, BorderLayout.SOUTH);

Durch Aufruf von getField(0) können Sie auf das Textfeld der Statusleiste zugreifen und
einen Text anzeigen.

statusBar.getField(0).setText("Dies ist die Statusleiste");

Wenn Sie mehrere Textfelder in die Statusleiste integrieren möchten, müssen Sie die einzelnen
Textfelder als JLabel-Instanzen vorab erzeugen, die bevorzugte und die minimale Größe fest-
legen und dann als Auflistung oder Array an den dritten Konstruktor übergeben:

 for (int i = 0; i < labels.length; ++i) {
 fields.add(labels[i]);

 add(labels[i]);
 add(Box.createHorizontalStrut(5));

 if (i == 0)
 add(Box.createHorizontalGlue());

 JSeparator sep = new JSeparator(SwingConstants.VERTICAL);
 sep.setMaximumSize(new Dimension(2,200));

 add(sep);
 add(Box.createHorizontalStrut(5));

 }

 }

 public JLabel getField(int index) {
 if (index >= 0 && index < fields.size())
 return fields.get(index);
 else
 throw new IllegalArgumentException();
 }
}

// Felder für Statusleiste erzeugen
JLabel field1 = new JLabel("");
field1.setPreferredSize(new Dimension(400,20));
field1.setMinimumSize(new Dimension(200,20));

Listing 176: Aus ProgramFrame.java

Listing 175: StatusBar.java (Forts.)

>> Hinweistexte in Statusleiste382
GU

I

Das Programm zu diesem Rezept erweitert das Programm aus Rezept 139 um eine Statusleiste.

141 Hinweistexte in Statusleiste
Um Hinweistexte zu Menübefehlen und Symbolleistenschaltern in der Statusleiste anzuzeigen,
müssen Sie die Maus überwachen. Wird die Maus über die GUI-Komponente eines Menü-
befehls oder eines Symbolleistenschalters bewegt, zu dem es eine Textbeschreibung für die
Statusleiste gibt, ist dieser in der Statusleiste anzuzeigen. Umgekehrt ist die Textbeschreibung
zu löschen, wenn die Maus wieder von der Komponente wegbewegt wird. Die entsprechenden
Ereignisbehandlungsmethoden des MouseListener-Interfaces lauten mouseEntered() und mouse-
Exited().

// Maus wird über registrierte GUI-Komponente bewegt
// -> Hinweistest anzeigen
public void mouseEntered(MouseEvent e) {

 // Hinweistext der Komponente abfragen, über der
 // der Mauszeiger steht
 Component c = (Component) e.getSource();
 String hint = hintMap.get(c);

 // Gibt es einen Hinweistext, schreibe diese in die
 // das Feld der Statusleiste
 if (hint != null)
 statusBarField.setText(hint);
}

// Maus wird von registrierter GUI-Komponente wegbewegt
// -> Hinweistest ausblenden
public void mouseExited(MouseEvent e) {
 statusBarField.setText(" ");
}

JLabel field2 = new JLabel("X");
field2.setPreferredSize(new Dimension(20,20));
field2.setMinimumSize(new Dimension(20,20));

JLabel field3 = new JLabel("Y");
field3.setPreferredSize(new Dimension(20,20));
field3.setMinimumSize(new Dimension(20,20));

JLabel field4 = new JLabel("Z");
field4.setPreferredSize(new Dimension(20,20));
field4.setMinimumSize(new Dimension(20,20));

// Statusleiste einrichten
statusBar = new StatusBar(field1, field2, field3, field4);
getContentPane().add(statusBar, BorderLayout.SOUTH);
statusBar.getField(0).setText("Dies ist die Statusleiste");

Listing 176: Aus ProgramFrame.java (Forts.)

>> GUI 383

GU
I

Die Implementierung der mouseEntered()-Methode setzt voraus, dass

� hintMap eine Map-Collection ist, in der die Hinweistexte für die GUI-Komponenten abge-
legt sind, mit den Komponentenreferenzen als Schlüssel.

� statusBarField auf das JLabel-Feld der Statusleiste weist, in welches der Hinweistext aus-
gegeben werden soll.

Natürlich könnte man hintMap und statusBarField als Felder der Rahmenfensterklasse definie-
ren und auch die Methoden des MouseListener-Interfaces in der Fensterklasse implementieren.
Besser wieder verwendbar ist aber die Definition einer eigenen Manager-Klasse, die die Ver-
waltung der Textbeschreibungen übernimmt.

import java.util.WeakHashMap;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/**
 * Klasse zur Verwaltung von Hinweistexten für die Statusleiste
 *
 * @author Dirk Louis
 */
public class StatusBarHintManager extends MouseAdapter {
 // Statusleistenfeld für Anzeige
 private JLabel statusBarField;

 // Container zum Sammeln der Hinweise
 // Key = Komponente, Value = Text
 private WeakHashMap<Component, String> hintMap;

 // Konstruktor
 public StatusBarHintManager(JLabel statusBarField) {
 hintMap = new WeakHashMap<Component, String>();
 this.statusBarField = statusBarField;
 }

 // Methode zum Registrieren von GUI-Komponenten und der zugehörigen
 // Beschreibung
 public void addComponentHint(Component c, String text) {
 hintMap.put(c, text);
 c.addMouseListener(this);
 }

 // Maus wird über registrierte GUI-Komponente bewegt
 // -> Hinweistest anzeigen
 public void mouseEntered(MouseEvent e) {
 // wie oben
 }

Listing 177: StatusBarHintManager.java

>> Hinweistexte in Statusleiste384
GU

I

Neben den Methoden zur Mausüberwachung und einem Konstruktor, der die Referenz auf das
Statusleistenfeld für die Anzeige der Hinweistexte übernimmt, definiert die Klasse nur noch
eine einzige Methode: addComponentHint(), mit der Komponenten inklusive Text registriert
werden können.

Um Hinweistexte zu einzelnen GUI-Komponenten eines Programms in die Statusleiste einzu-
blenden, gehen Sie so vor, dass Sie

1. in der Fensterklasse eine Instanzvariable für den StatusBarHintManager definieren:

private StatusBarHintManager sbHintManager;

2. im Konstruktor der Klasse, nach Einrichtung der Statusleiste, eine Instanz der Klasse Sta-
tusBarHintManager erzeugen und die GUI-Komponenten registrieren, für die in der Status-
leiste Hinweistexte angezeigt werden sollen.

Wie Schritt 2 im Detail zu implementieren ist, hängt von dem jeweiligen Programm ab. Das Pro-
gramm zu diesem Rezept stellt beispielsweise eine Erweiterung des Programms aus Rezept 139
dar. Dort wurden Menü- und Symbolleiste weitgehend automatisch mit Hilfe der Klasse Menu-
Factory aufgebaut. Referenzen auf die GUI-Komponenten für die Menübefehle und Symbolleis-
tenschalter können mittels mf.getMenuItems().values() bzw. mf.getToolBarButtons().values()
beschafft werden (wobei mf eine Instanz von MenuFactory ist). Den einzelnen Komponenten sind
Action-Objekte zugeordnet, in denen unter dem Schlüssel LONG_DESCRIPTION auch Beschreibun-
gen für die einzelnen Aktionen gespeichert sind.

 // Maus wird von registrierter GUI-Komponente wegbewegt
 // -> Hinweistest ausblenden
 public void mouseExited(MouseEvent e) {
 // wie oben
 }
}

// StatusBarHintManager erzeugen
sbHintManager = new StatusBarHintManager(statusBar.getField(0));

String description = null;
Action a;

// Collection der Menübefehl-Komponenten durchlaufen
for (JMenuItem m : mf.getMenuItems().values()) {
 // Action-Objekt zu Komponente besorgen
 a = m.getAction();

 // Wenn Action-Objekt vorhanden, Hinweistext abfragen
 if (a != null) {
 description = (String) a.getValue(Action.LONG_DESCRIPTION);

Listing 178: Aus ProgramFrame.java – Komponenten mit Hinweistexten bei
StatusBarHintManager registrieren

Listing 177: StatusBarHintManager.java (Forts.)

>> GUI 385

GU
I

142 Dateien mit Datei-Dialog (inklusive Filter) öffnen
Einen Datei-Dialog anzuzeigen und sich den vom Anwender ausgewählten Dateinamen
zurückliefern zu lassen, ist nicht sonderlich schwer:

JFileChooser openDialog = new JFileChooser();
if (JFileChooser.APPROVE_OPTION == openDialog.showOpenDialog(this)) {

 // Datei abfragen
 File f = openDialog.getSelectedFile();

 // Prüfen, ob File-Objekt wirklich eine Datei ist
 // Wenn ja und wenn lesbar, öffnen
 if(f.isFile() && f.canRead()) {
 ...

 // Wenn Hinweistext zu Komponenten verfügbar, Komponente
 // samt Text registrieren
 if (description != null)
 sbHintManager.addComponentHint(m, description);
 }
}
// Collection der Symbolleistenschalter durchlaufen
for (JButton b : mf.getToolBarButtons().values()) {
 a = b.getAction();
 if (a != null) {
 description = (String) a.getValue(Action.LONG_DESCRIPTION);
 if (description != null)
 sbHintManager.addComponentHint(b, description);
 }
}

Abbildung 74: Programm mit Hinweistexten in der Statusleiste

Listing 178: Aus ProgramFrame.java – Komponenten mit Hinweistexten bei
StatusBarHintManager registrieren (Forts.)

>> Dateien mit Datei-Dialog (inklusive Filter) öffnen386
GU

I

Oft sind mit dem Öffnen einer Datei aber noch weitere Aspekte verbunden:

� Wie erreicht man, dass der Öffnen-Dialog sich bei erneutem Aufruf an das Verzeichnis
erinnert, aus welchem der Anwender das letzte Mal die zu öffnende Datei ausgewählt hat?

� Wie installiert man einen Dateifilter, damit im Öffnen-Dialog nur Dateien mit bestimmten
Extensionen angezeigt werden?

� Welche Aufgaben sollte eine fileOpen-Methode neben dem reinen Öffnen noch erledigen?

Startverzeichnis des Öffnen-Dialogs einstellen
Per Voreinstellung lädt JFileChooser das Heimverzeichnis des Anwenders in den Öffnen-Dia-
log. Soll der Dialog anfangs ein anderes Verzeichnis anzeigen, müssen Sie setCurrentDirec-
tory() aufrufen und eine File-Instanz, die das gewünschte Verzeichnis repräsentiert,
übergeben. Dabei muss das File-Objekt nicht unbedingt das Verzeichnis selbst sein, es kann
auch eine Datei aus dem Verzeichnis repräsentieren.

Diesen Umstand können Sie sich zu Nutze machen, wenn Sie bei Aufruf des Dialogs das Ver-
zeichnis anzeigen wollen, aus dem die zuletzt geöffnete Datei ausgewählt wurde. Speichern
Sie einfach nach jedem erfolgreichen Laden einer Datei das File-Objekt in einem Feld der
Fensterklasse und setzen Sie vor jedem Dialogaufruf das aktuelle Verzeichnis:

public class ProgramFrame extends JFrame {
 private File lastDir = null; // zuletzt benutztes Verzeichnis
 ...

protected void fileOpen() {

 // Zuletzt verwendetes Verzeichnis auswählen
 openDialog.setCurrentDirectory(lastDir);

 if (JFileChooser.APPROVE_OPTION == openDialog.showOpenDialog(this)) {

 // Datei abfragen
 File f = openDialog.getSelectedFile();

 if(f.isFile() && f.canRead())
 try {

 // Text aus Datei einlesen
 ...

 // Aktuelles Verzeichnis sichern
 lastDir = f;

 } catch (IOException e) {
 System.err.println("Fehler beim Öffnen");
 }
 }

Listing 179: Aus ProgramFrame.java

>> GUI 387

GU
I

Achten Sie darauf, lastDir anfangs auf null zu setzen. Beim ersten Aufruf des Öffnen-Dialogs,
wenn setCurrentDirectory() dann null als Argument überreicht wird, startet der Dialog mit
dem Heimverzeichnis des Anwenders.

Filter
Wenn Sie nur Dateien mit speziellen Dateiextensionen im Öffnen-Dialog anzeigen wollen,
müssen Sie zu diesem Zweck einen FileFilter schreiben. FileFilter werden von der Klasse
javax.swing.filechooser.FileFilter abgeleitet und überschreiben die abstrakten Methoden

� boolean accept(File f), die true zurückliefern soll, wenn die Datei f angezeigt werden soll.

(JFileChooser geht die Dateien im aktuellen Verzeichnis durch und übergibt sie zur Über-
prüfung an die accept()-Methoden der registrierten FileFilter.)

� String getDescription(), die die Dateibeschreibung (Text in Datentyp-Listenfeld des Dialogs)
zurückliefert.

Die folgende Klasse ConfigurableFileFilter implementiert einen generischen FileFilter. Der
Benutzer der Klasse braucht dem Konstruktor einfach nur die Textbeschreibung und die Liste
der Dateiextensionen (als Auflistung oder als Array) zu übergeben – fertig!

import javax.swing.filechooser.FileFilter;
import java.io.File;

/**
 * Generischer Dateifilter
 */
class ConfigurableFileFilter extends FileFilter {
 private String description;
 private String[] extensions;

 /**
 * Filter mit Beschreibung und Liste von Dateierweiterungen erzeugen
 */
 public ConfigurableFileFilter(String desc, String... ext) {
 this.description = desc;
 this.extensions = ext;
 }

 /**
 * Prüfen, ob die gegebene Datei zu einer der registrierten Datei-
 * erweiterungen gehört. Nur File-Objekte, für die true zurück-
 * geliefert wird, werden im Datei-Dialog angezeigt.
 */
 public boolean accept(File f) {

 // Verzeichnisse alle anzeigen
 if(f.isDirectory() == true)
 return true;

Listing 180: ConfigurableFileFilter.java – ein allgemein verwendbarer File-Filter

>> Dateien mit Datei-Dialog (inklusive Filter) öffnen388
GU

I

fileOpen-Methode
Wie sollte eine fileOpen-Methode aufgebaut sein? Hier einige Vorschläge:3

Das Programm zu diesem Rezept entspricht einem einfachen Dateibetrachter. Der gesamte
Code zum Öffnen von Dateien ist in der fileOpen()-Methode untergebracht, die bei Auswahl
des Datei/Öffnen-Befehls ausgeführt wird.

 else if (f.isFile()) {
 for(String s : extensions)
 if(f.getName().endsWith(s))
 return true;
 }

 return false;
 }

 public String getDescription() {
 return description;
 }
}

3. siehe Rezepte 143 und 146

Aktion Datei zur internen
Auswertung durch
Programm laden

Dateibetrachter

(Öffnen-Befehl)

Dateieditor3

(Öffnen- und
Speichern-Befehl)

1. Prüfen, ob es nicht
gesicherte Änderungen gibt

– – x

2. Öffnen-Dialog anzeigen x x x

3. Ausgewählte Datei laden x x x

4. Listener für Änderungen
in Datei registrieren

– – x

5. Speichern-Befehl
deaktivieren

– – x (optional)

6. Dateiname in Fenstertitel
einblenden

– x x

Tabelle 37: Aufbau von fileOpen-Methoden

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.text.*;
import javax.swing.event.*;
import java.util.*;

Listing 181: ProgramFrame.java

Listing 180: ConfigurableFileFilter.java – ein allgemein verwendbarer File-Filter (Forts.)

>> GUI 389

GU
I

import java.io.*;

public class ProgramFrame extends JFrame {
 private JMenuBar menuBar;
 private JMenuItem miOpen;
 private JMenuItem miQuit;

 // Textfeld
 private JScrollPane scrollpane;
 private JTextArea textpane;

 // Dialog
 private JFileChooser openDialog;
 private ConfigurableFileFilter filter;

 private final String programName = "Programm";
 private File file = null; // aktuell geöffnete Datei
 private File lastDir = null; // zuletzt benutztes Verzeichnis

 public ProgramFrame() {

 // Hauptfenster konfigurieren
 setTitle(programName);

 // Menü aufbauen und als Hauptmenü des Fensters einrichten
 menuBar = new JMenuBar();

 JMenu fileMenu = new JMenu("Datei");
 fileMenu.setMnemonic(KeyEvent.VK_D);
 miOpen = new JMenuItem("Öffnen");
 miOpen.setMnemonic(KeyEvent.VK_F);
 miOpen.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 fileOpen();
 }
 });
 miQuit = new JMenuItem("Beenden");
 miQuit.setMnemonic(KeyEvent.VK_B);
 miQuit.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.exit(0);
 }
 });

 fileMenu.add(miOpen);
 fileMenu.add(miQuit);
 menuBar.add(fileMenu);

 setJMenuBar(menuBar);

Listing 181: ProgramFrame.java (Forts.)

>> Dateien mit Datei-Dialog (inklusive Filter) öffnen390
GU

I

 // Textfeld einrichten
 textpane = new JTextArea();
 textpane.setLineWrap(true);
 textpane.setWrapStyleWord(true);
 textpane.setBackground(Color.WHITE);
 textpane.setFont(new Font("SansSerif", Font.PLAIN, 12));
 scrollpane = new JScrollPane();
 scrollpane.getViewport().add(textpane, null);
 getContentPane().add(scrollpane, BorderLayout.CENTER);

 // Filter für Datei-Dialog konfigurieren
 openDialog = new JFileChooser();
 filter = new ConfigurableFileFilter("Textdokumente (.txt, .html)",
 "txt", "html");
 openDialog.addChoosableFileFilter(filter);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 /*
 * Datei öffnen und einlesen
 */
 protected void fileOpen() {

 // Zuletzt verwendetes Verzeichnis auswählen
 openDialog.setCurrentDirectory(lastDir);

 if (JFileChooser.APPROVE_OPTION == openDialog.showOpenDialog(this)) {

 // Datei abfragen
 File f = openDialog.getSelectedFile();

 if(f.isFile() && f.canRead())
 try {

 // Text aus Datei einlesen
 FileReader in = new FileReader(f);
 textpane.read(in, f);
 in.close();

 // Felder und Fenstertitel aktualisieren
 file = f;
 lastDir = f;
 adjustWindowTitle();

Listing 181: ProgramFrame.java (Forts.)

>> GUI 391

GU
I

143 Dateien mit Speichern-Dialog speichern
Einen Speichern-Dialog anzuzeigen und die aktuellen Daten in der vom Anwender ausge-
wählten Datei zu speichern, ist nicht sonderlich schwer:

JFileChooser openDialog = new JFileChooser();

if (JFileChooser.APPROVE_OPTION == openDialog.showSaveDialog(this)) {

 // Datei abfragen
 file = openDialog.getSelectedFile();

 // Daten in Datei file speichern
 try {
 ...

Oft sind mit dem Speichern einer Datei aber noch weitere Aspekte verbunden:

� Viele Anwendungen bieten Speichern- und Speichern unter-Menübefehle an.

� Wie verhindert man, dass Änderungen am aktuellen Dokument verloren gehen, wenn der
Anwender, ohne zuvor gespeichert zu haben, ein neues Dokument anlegt oder öffnet?

� Wie erreicht man, dass der Speichern-Befehl nur aktiviert ist, wenn es noch nicht gespei-
cherte Änderungen gibt?

Die folgenden Ausführungen beziehen sich auf ein Programm, das Textdateien in einer
JTextArea-Komponente namens textpane anzeigt und für die Dateiverwaltung – wie viele

 } catch (IOException e) {
 System.err.println("Fehler beim Öffnen von "
 + this.file.getName());
 }
 }
 }

 /*
 * Dateinamen in der Titelleiste des Fensters anzeigen
 */
 private void adjustWindowTitle() {
 String title;

 if (file == null)
 title = "Unbenannt";
 else
 title = file.getName();

 title = programName + " - " + title;
 this.setTitle(title);
 }

}

Listing 181: ProgramFrame.java (Forts.)

>> Dateien mit Speichern-Dialog speichern392
GU

I

andere Anwendungen auch – die Befehle DATEI/NEU, DATEI/ÖFFNEN, DATEI/SPEICHERN und
DATEI/SPEICHERN UNTER anbietet.

Speichern – Speichern unter
Der SPEICHERN-Befehl soll das aktuelle Dokument in der zugehörigen Datei speichern.

Was aber, wenn es zu dem aktuellen Dokument keine Datei gibt (beispielsweise weil das Doku-
ment nicht mit dem DATEI/ÖFFNEN-Befehl aus einer Datei geladen, sondern mit DATEI/NEU neu
angelegt wurde)? Nun, ganz einfach, in diesem Fall leitet man zur fileSaveAs()-Methode weiter.

Wichtig ist, dass file ein Feld vom Typ File ist, das entweder das File-Objekt zum aktuellen
Dokument speichert oder null ist. Mit anderen Worten: Der DATEI/ÖFFNEN-Befehl muss file
das gerade geöffnete File-Objekt zuweisen (siehe Rezept 142), der DATEI/NEU-Befehl muss
file auf null setzen (siehe weiter unten).

Der SPEICHERN UNTER-Befehl soll das aktuelle Dokument unter einem neuen Namen abspei-
chern. Da der Speichervorgang selbst bereits in fileSave() implementiert wurde, bietet es sich
an, in fileSaveAs() lediglich

1. den Namen abzufragen,

2. dann fileSave() aufzurufen

3. und gegebenenfalls noch den Fenstertitel zu aktualisieren.

/**
 * Datei speichern
 */
protected boolean fileSave() {

 // Text noch nicht mit Datei verbunden, dann nach fileSaveAs() umleiten
 if (file == null) {
 return fileSaveAs();
 }

 try {
 // Text aus JTextArea textpane in Datei schreiben
 FileWriter out = new FileWriter(file);
 textpane.write(out);
 out.close();

 return true;

 } catch (IOException e) {
 System.err.println("Fehler beim Speichern von " + file.getName());
 return false;
 }
}

Listing 182: fileSave-Methode für Speichern-Befehl

>> GUI 393

GU
I

Die Methode adjustWindowTitle() wurde bereits als Teil des Programms aus Rezept 142
vorgestellt.

Vorsicht Öffnen-Befehl!
Wenn der Anwender ein neues Dokument anlegt oder ein bereits bestehendes Dokument öff-
net, besteht immer die Gefahr, dass er vergessen hat, die letzten Änderungen im aktuellen
Dokument zu speichern. Ein gutes Programm sollte daher überwachen, ob es nicht gespei-
cherte Änderungen gibt, und dem Anwender gegebenenfalls noch einmal Gelegenheit zum
Sichern geben.

Zur Überwachung nicht gespeicherter Änderungen definieren Sie am besten in der Fenster-
klasse ein boolean-Feld, welches durch seinen Wert anzeigt, ob es nicht gespeicherte Änderun-
gen gibt (true) oder nicht (false):

public class ProgramFrame extends JFrame {
 private boolean dirty = false; // gibt es nicht gespeicherte Änderungen?

Im nächsten Schritt müssen Sie sicherstellen, dass das dirty-Feld bei Änderungen am aktuel-
len Dokument auf true gesetzt wird. Wenn die Dokumentdaten intern in einer Document-
Instanz verwaltet werden (was bei den Swing-Textkomponenten automatisch der Fall ist),
können Sie diese Aufgabe von einem selbst geschriebenen DocumentListener erledigen lassen:

/**
 * Datei speichern unter
 */
protected boolean fileSaveAs() {

 // Dateiname abfragen, unter dem gespeichert werden soll
 // Dann Speichern-Befehl ausführen
 openDialog.setCurrentDirectory(lastDir);
 if (JFileChooser.APPROVE_OPTION == openDialog.showSaveDialog(this)) {

 file = openDialog.getSelectedFile();

 // Zum eigentlichen Speichern fileSave() aufrufen
 if (fileSave() == true) {

 // Fenstertitel aktualisieren
 adjustWindowTitle();

 // rückmelden, dass gespeichert wurde
 return true;
 }

 return false;
 }

 return false;
}

Listing 183: fileSaveAs-Methode für Speichern unter-Befehl

>> Dateien mit Speichern-Dialog speichern394
GU

I

Beachten Sie, dass der DocumentAdapter eine innere Klasse der Fensterklasse ist, damit auf das
dirty-Feld zugegriffen werden kann.

Jetzt müssen Sie noch dafür sorgen, dass der DocumentListener in den DATEI/NEU- und DATEI/
ÖFFNEN-Befehlen für die neuen Dokumente registriert wird.

protected void fileNew() {
 ...
 // Neues Dokument erzeugen und in Textkomponente anzeigen
 PlainDocument doc = new PlainDocument();
 doc.addDocumentListener(new DocumentAdapter());
 textpane.setDocument(doc);
 ...
}

protected void fileOpen() {
 ...
 if (JFileChooser.APPROVE_OPTION == openDialog.showOpenDialog(this)) {

 // Datei abfragen
 File f = openDialog.getSelectedFile();

 if(f.isFile() && f.canRead())
 try {
 ...

/**
 * DocumentAdapter zur Überwachung nicht gespeicherter Änderungen
 */
class DocumentAdapter implements javax.swing.event.DocumentListener {

 private void setDirty() {
 dirty = true;
 }

 public void changedUpdate(DocumentEvent e) {
 if (!dirty) {
 setDirty();
 }
 }
 public void insertUpdate(DocumentEvent e) {
 if (!dirty) {
 setDirty();
 }
 }
 public void removeUpdate(DocumentEvent e) {
 if (!dirty) {
 setDirty();
 }
 }
}

Listing 184: Ein DocumentListener zum Registrieren von nicht gespeicherten Änderungen

>> GUI 395

GU
I

 // Dokumentlistener registrieren
 PlainDocument doc = (PlainDocument) textpane.getDocument();
 doc.addDocumentListener(new DocumentAdapter());
 ...
}

Und wann wird dirty auf false gesetzt? Entweder wenn ein neues Dokument angelegt oder
geöffnet wird (also ebenfalls in den Methoden fileNew() und fileOpen()) oder wenn gespei-
chert wird (also in der Methode fileSave()).

Der dritte und letzte Schritt ist, eingangs der fileNew()- und fileOpen()-Methoden zu prüfen,
ob es nicht gespeicherte Änderungen gibt. Da dies, wie Sie gleich sehen werden, nicht mit
einer einfachen Abfrage von dirty getan ist, empfiehlt sich die Auslagerung des Codes in eine
eigene Methode, hier nothingToSave() genannt. Der endgültige Code der fileNew()- und file-
Open()-Methoden sieht damit wie folgt aus:

protected void fileNew() {

 // Zuerst dem Anwender Gelegenheit, nicht gespeicherte Änderungen
 // noch zu sichern
 if (nothingToSave()) {

 // Neues Dokument erzeugen und in Textkomponente anzeigen
 PlainDocument doc = new PlainDocument();
 doc.addDocumentListener(new DocumentAdapter());
 textpane.setDocument(doc);

 // Da es in neuem Dokument keine zu speicherenden Änderungen gibt,
 // dirty auf false setzen
 dirty = false;

 // file und Fenstertitel aktualisieren
 file = null;
 adjustWindowTitle();
 }
}

protected void fileOpen() {

 // Zuerst dem Anwender Gelegenheit, nicht gespeicherte Änderungen
 // noch zu sichern
 if (!nothingToSave()) {
 return;
 }

 // Zuletzt verwendetes Verzeichnis auswählen
 openDialog.setCurrentDirectory(lastDir);

 if (JFileChooser.APPROVE_OPTION == openDialog.showOpenDialog(this)) {

Listing 185: Aus ProgramFrame.java

>> Dateien mit Speichern-Dialog speichern396
GU

I

 // Datei abfragen
 File f = openDialog.getSelectedFile();

 if(f.isFile() && f.canRead())
 try {
 // Text aus Datei einlesen
 FileReader in = new FileReader(f);
 textpane.read(in, f);
 in.close();

 // Dokumentlistener registrieren
 PlainDocument doc = (PlainDocument) textpane.getDocument();
 doc.addDocumentListener(new DocumentAdapter());

 // Da es in neu geöffnetem Dokument keine zu speichernden
 // Änderungen gibt, dirty auf false setzen
 dirty = false;

 // Felder und Fenstertitel aktualisieren
 file = f;
 lastDir = f;
 adjustWindowTitle();

 } catch (IOException e) {
 System.err.println("Fehler beim Öffnen von "
 + this.file.getName());
 }
 }
}

protected boolean fileSave() {

 // Text noch nicht mit Datei verbunden, dann nach fileSaveAs() umleiten
 if (file == null) {
 return fileSaveAs();
 }

 try {
 // Text in Datei schreiben
 FileWriter out = new FileWriter(file);
 textpane.write(out);
 out.close();

 // Da es nach Speicherung keine zu speichernden Änderungen gibt,
 // dirty auf false setzen
 dirty = false;

 return true;

 } catch (IOException e) {
 System.err.println("Fehler beim Speichern von " + file.getName());

Listing 185: Aus ProgramFrame.java (Forts.)

>> GUI 397

GU
I

Bleibt noch die Methode nothingToSave().

Als Erstes prüft die Methode, ob es überhaupt nicht gesicherte Änderungen gibt. Falls nicht,
liefert sie true zurück, was bedeutet, dass die Methode, die nothingToSave() aufgerufen hat
(fileNew() oder fileOpen()), weiter ausgeführt wird.

Gibt es nicht gespeicherte Änderungen, öffnet die Methode einen Bestätigungsdialog, der den
Anwender zum Speichern auffordert. Verlässt der Anwender den Dialog durch Drücken der
JA-Taste, wird das aktuelle Dokument mit fileSave() gespeichert und der Rückgabewert von
fileSave() zurückgegeben. (Wenn also beim Speichern alles glatt geht, wird true zurückgelie-
fert.) Drückt der Anwender die NEIN-Taste, wird nichts gespeichert, aber true zurückgeliefert
(d.h., die Änderungen gehen verloren). Die ABBRECHEN-Taste schließlich liefert false zurück
und die aufrufenden Methoden werden nicht weiter ausgeführt.

 return false;
 }
}

private boolean nothingToSave() {

 // Keine ungespeicherten Änderungen? Dann gleich true zurückgeben
 if (!dirty) {
 return true;
 }

 // Dem Anwender die Wahl lassen, ob er speichern, nicht speichern
 // oder abbrechen möchte
 int option = JOptionPane.showConfirmDialog(this,
 "Änderungen speichern?",
 "Texteditor",
 JOptionPane.YES_NO_CANCEL_OPTION);
 switch (option) {
 case JOptionPane.YES_OPTION: // Änderungen speichern
 return fileSave();

 case JOptionPane.NO_OPTION: // Änderungen verwerfen
 return true;
 case JOptionPane.CANCEL_OPTION:
 default: // Abbrechen
 return false;
 }
}

Listing 186: Methode, die dem Anwender die Gelegenheit gibt, nicht gespeicherte
Änderungen zu sichern (aus ProgramFrame.java)

Listing 185: Aus ProgramFrame.java (Forts.)

>> Unterstützung für die Zwischenablage398
GU

I

Speichern-Befehl nur aktivieren, wenn es etwas zu speichern gibt
Manche Anwendungen deaktivieren den Speichern-Befehl nach erfolgreicher Speicherung
und aktivieren ihn erst, wenn es nicht gespeicherte Änderungen gibt.

Ausgehend von der im vorangehenden Abschnitt beschriebenen Infrastruktur ist dieses Fea-
ture schnell eingerichtet.

1. In den Methoden fileNew(), fileOpen() und fileSave() deaktivieren Sie den Datei/Spei-
chern-Befehl (nach dem Setzen von dirty):

// Da es in neuem Dokument keine zu speicherenden Änderungen
// gibt, dirty auf false setzen u. Speichern-Befehl deaktivieren
dirty = false;
miSave.setEnabled(false);

2. In der setDirty()-Methode des DocumentListeners aktivieren Sie den Speichern-Befehl:

class DocumentAdapter
 implements javax.swing.event.DocumentListener {

 private void setDirty() {
 dirty = true;

 // Speichern-Befehl aktivieren
 miSave.setEnabled(true);
 }
 ...

144 Unterstützung für die Zwischenablage
Die Swing-Textkomponenten verfügen bereits über vordefinierte Action-Objekte zur Unter-
stützung der Zwischenablagebefehle. Der folgende Code zeigt, wie Sie die Action-Objekte mit
Menübefehlen verbinden können:

Abbildung 75: Aufforderung zum Speichern der letzten Änderungen

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.text.*;
import javax.swing.event.*;

public class Start extends JFrame {
 JMenuItem miCut;
 JMenuItem miCopy;

Listing 187: Programm, das den Austausch von Text über die Zwischenablage unterstützt

>> GUI 399

GU
I

 JMenuItem miPaste;

 public Start() {
 // Hauptfenster konfigurieren
 setTitle("Zwischenablage für JTextArea");

 // JTextArea einrichten
 JTextArea textpane = new JTextArea();
 getContentPane().add(textpane, BorderLayout.CENTER);

 // Menü aufbauen und als Hauptmenü des Fensters einrichten
 JMenuBar menuBar = new JMenuBar();

 JMenu editMenu = new JMenu("Bearbeiten");
 editMenu.setMnemonic(KeyEvent.VK_B);
 miCut = new JMenuItem("Ausschneiden");
 miCopy = new JMenuItem("Kopieren");
 miPaste = new JMenuItem("Einfügen");

 editMenu.add(miCut);
 editMenu.add(miCopy);
 editMenu.add(miPaste);
 menuBar.add(editMenu);

 setJMenuBar(menuBar);

 // Befehle für die Zwischenablage hinzufügen
 Action[] actionsArray = textpane.getActions();
 for(Action a : actionsArray) {
 if(a instanceof DefaultEditorKit.CutAction) {
 a.setEnabled(false);
 a.putValue(Action.NAME, "Ausschneiden");
 a.putValue(Action.MNEMONIC_KEY, KeyEvent.VK_A);
 a.putValue(Action.ACCELERATOR_KEY,
 KeyStroke.getKeyStroke(KeyEvent.VK_X, Event.CTRL_MASK));
 miCut.setAction(a);
 } else if(a instanceof DefaultEditorKit.CopyAction) {
 a.setEnabled(false);
 a.putValue(Action.NAME, "Kopieren");
 a.putValue(Action.MNEMONIC_KEY, KeyEvent.VK_K);
 a.putValue(Action.ACCELERATOR_KEY,
 KeyStroke.getKeyStroke(KeyEvent.VK_C, Event.CTRL_MASK));
 miCopy.setAction(a);
 } else if(a instanceof DefaultEditorKit.PasteAction) {
 a.putValue(Action.NAME, "Einfügen");
 a.putValue(Action.MNEMONIC_KEY, KeyEvent.VK_E);
 a.putValue(Action.ACCELERATOR_KEY,
 KeyStroke.getKeyStroke(KeyEvent.VK_V, Event.CTRL_MASK));
 miPaste.setAction(a);
 }

Listing 187: Programm, das den Austausch von Text über die Zwischenablage unterstützt

>> Text drucken400
GU

I

Die getActions()-Methode der JTextArea liefert ein Array der vorinstallierten Action-Objekte
zurück. Dieses kann in einer Schleife durchlaufen werden, wobei die Action-Objekte für die
Zwischenablagebefehle anhand ihres Datentyps (DefaultEditorKit.CutAction, DefaultEditor-
Kit.CopyAction, DefaultEditorKit.PasteAction) identifiziert und nach entsprechender Konfi-
guration mit den Menübefehlen verbunden werden.

Ausschneiden- und Kopieren-Befehl nach Bedarf aktivieren
Der Ausschneiden- und der Kopieren-Befehl werden eigentlich nur benötigt, wenn in der
zugehörigen Textkomponente auch ein auszuschneidender oder zu kopierender Text markiert
ist. Es liegt daher nahe, die Befehle, je nachdem, ob in der Textkomponente eine Textpassage
markiert wurde oder nicht, zu aktivieren bzw. zu deaktivieren. Mit Hilfe eines CaretListeners
ist dies möglich.

145 Text drucken
Seit Java 6 gibt es für das Drucken von Texten zwei Alternativen:

� Sie drucken schnell und bequem mit der print()-Methode der Swing-Textkomponenten.

� Sie implementieren die gesamte Druckunterstützung selbst.

 }

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 public static void main(String args[]) {
 Start frame = new Start();
 frame.setSize(500,300);
 frame.setLocation(300,300);
 frame.setVisible(true);
 }
}

// Aktivierung / Deaktivierung der Zwischenablage-Befehle
textpane.addCaretListener(new CaretListener() {
 public void caretUpdate(CaretEvent e) {
 if(e.getDot() != e.getMark()) {
 miCut.setEnabled(true);
 miCopy.setEnabled(true);
 } else {
 miCut.setEnabled(false);
 miCopy.setEnabled(false);
 }
 }
});

Listing 188: CaretListener, der feststellt, ob in der Textkomponente etwas markiert ist

Listing 187: Programm, das den Austausch von Text über die Zwischenablage unterstützt

>> GUI 401

GU
I

Den letzteren Weg werden Sie vermutlich nur beschreiten, wenn Sie spezielle Forderungen an
den Druckprozess stellen, die die vordefinierte print()-Methode nicht erfüllen kann, oder
wenn Sie die Inhalte von Komponenten drucken möchten, die nicht von JTextComponent abge-
leitet sind.

Dieses Rezept behandelt zunächst das Drucken mit print(). Im zweiten Abschnitt wird dann
aufgezeigt, wie Sie vorgehen können, wenn Sie eine komplett eigene Druckunterstützung
schreiben möchten.

Drucken mit der print()-Methode von JTextComponent
Um den Inhalt einer von JTextComponent abgeleiteten Textkomponente auszudrucken, gehen
Sie wie folgt vor:

1. Importieren Sie die Pakete für die Namen der Druckklassen und -schnittstellen.

2. Richten Sie den Menübefehl (gegebenenfalls auch eine Symbolleistenschaltfläche) zum
Drucken ein.

import java.awt.*;
...
import java.awt.print.*;
import javax.print.*;
import javax.print.attribute.*;
import javax.print.attribute.standard.*;
import java.text.MessageFormat;

public class ProgramFrame extends JFrame {
 ...

 private JMenuItem miPrint;
 ...

 private final String programName = "Programm";
 private File file = null; // aktuell geöffnete Datei
 private File lastDir = null; // zuletzt benutztes Verzeichnis

 public ProgramFrame() {
 ...

 // Menü aufbauen und als Hauptmenü des Fensters einrichten
 menuBar = new JMenuBar();

 JMenu fileMenu = new JMenu("Datei");
 fileMenu.setMnemonic(KeyEvent.VK_D);
 miOpen = new JMenuItem("Öffnen");
 miOpen.setMnemonic(KeyEvent.VK_F);
 miOpen.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 fileOpen();
 }
 });

 miPrint = new JMenuItem("Drucken");

Listing 189: Aus ProgramFrame.java

>> Text drucken402
GU

I

3. In der Methode, die Sie mit dem Druckbefehl verbunden haben, rufen Sie die von JText-
Component geerbte print()-Methode auf, um den Druck zu starten.

 miPrint.setMnemonic(KeyEvent.VK_P);
 miPrint.setAccelerator(KeyStroke.getKeyStroke('P',
 Event.CTRL_MASK));
 miPrint.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 filePrint();
 }
 });
 miQuit = new JMenuItem("Beenden");
 miQuit.setMnemonic(KeyEvent.VK_B);
 miQuit.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.exit(0);
 }
 });

 fileMenu.add(miOpen);
 fileMenu.add(miPrint);
 fileMenu.addSeparator();
 fileMenu.add(miQuit);
 menuBar.add(fileMenu);

 setJMenuBar(menuBar);
...

 protected void filePrint() {
 String printname;

 // Dateiname für die Kopfzeile der Druckblätter abfragen
 if (file != null)
 printname = file.getName();
 else
 printname = "Unbenannt";

 // Drucken in Schnellfassung mit Voreinstellungen für
 // Druckdialog und Kopf- und Fußzeile
 try {
 PrintRequestAttributeSet attrs =
 new HashPrintRequestAttributeSet();
 attrs.add(OrientationRequested.PORTRAIT);
 attrs.add(MediaSizeName.ISO_A4);
 attrs.add(new JobName(printname, null));

textpane.print(new MessageFormat(printname),
 new MessageFormat("Seite {0}"),
 true, null, attrs, false);

Listing 190: Aus ProgramFrame.java

Listing 189: Aus ProgramFrame.java (Forts.)

>> GUI 403

GU
I

Von der print()-Methode gibt es drei überladene Versionen: eine parameterlose Überladung,
eine zweite Version, der Sie (MessageFormat-)Texte für Kopf- und Fußzeile mitgeben können,
und eine voll konfigurierbare dritte Version:

public boolean print(MessageFormat kopfzeile,
 MessageFormat fusszeile,
 boolean druckdialog,
 PrintService druckdienst,
 PrintRequestAttributeSet druckparameter,
 boolean interactiv)
 throws PrinterException

Letztere Version wird auch im Beispiel verwendet und mit den folgenden Argumenten aufge-
rufen:

� einem Text für die Kopfzeile (im Beispiel der Titel des zu druckenden Dokuments)

� einem Text für die Fußzeile (im Beispiel ein Platzhalter für die Seitenzahl)

� dem Wert true, damit der Java-Druckdialog angezeigt wird

� dem Wert null (es wird der Standarddrucker verwendet; andere Drucker oder Druckdienste
können mit Hilfe der Klasse PrintServiceLookup ermittelt werden)4

� dem zuvor erstellten PrintRequestAttributeSet-Objekt mit den Druckparametern

� dem Wert false (Drucken ohne Statusrückmeldung)

Über die Druckparameter, die in Form eines PrintRequestAttributeSet-Objekts an die print()-
Methode übergeben werden, können Sie die Seitenorientierung, die Anzahl zu druckender
Kopien, die Druckqualität u.a. festlegen. Wenn Sie den Druckdialog anzeigen lassen (drittes
Argument gleich true), benutzt print() die Attribute zur Initialisierung des Druckdialogs und
der Anwender kann die Druckeinstellungen verändern.

 } catch (PrinterException e) {
 System.err.println("Drucken nicht moeglich.");
 System.err.println(e.getMessage());
 }
 }

4. Wenn kein Druckdialog angezeigt wird (drittes Argument gleich false), bestimmt dieses Argument, über welchen
Drucker oder Druckdienst ausgedruckt wird. Wird ein Druckdialog angezeigt, bestimmt das Argument, welcher
Drucker bzw. Druckdienst im Druckdialog voreingestellt ist.

Attribut (wie als Argument an
AttributeSet.add() zu übergeben)

Beschreibung

Chromaticity.COLOR Farb- (COLOR) oder Schwarzweiß-Druck (MONOCHROME)

new Copies(1) Die Anzahl zu druckender Kopien

new Destination(
new File("out.prn").toURI())

Für die Ausgabe in eine Datei

Tabelle 38: Standardattribute, wie sie u.a. vom Java-Druckdialog unterstützt werden

Listing 190: Aus ProgramFrame.java (Forts.)

>> Text drucken404
GU

I

Drucken mit eigener Printable-Implementierung
Um selbst festzulegen, wie der Inhalt einer Textkomponente ausgedruckt werden soll, gehen
Sie wie folgt vor:

1. Importieren Sie das Paket java.awt.print für die Namen der Druckklassen und -Interfaces.
Importieren Sie auch java.util für Hilfsklassen wie Vector oder StringTokenizer, die zur
Aufteilung des Textes in Zeilen und Seiten benötigt werden.

2. Wenn Sie eine der in Java vordefinierten Textkomponentenklassen verwenden, beispiels-
weise JTextArea, lassen Sie die Fensterklasse das Interface Printable implementieren:

Wenn Sie eine eigene Textkomponentenklasse definiert haben, kann diese das Interface
implementieren.

3. Richten Sie den Menübefehl (gegebenenfalls auch eine Symbolleistenschaltfläche) zum
Drucken ein.

new JobName("Dateiname",
 null)

Name des Druckauftrags (üblicherweise der Name des
auszudruckenden Dokuments)

new JobPriority(2) Priorität des Druckauftrags

MediaSizeName.ISO_A4 Größe der Druckseite, mögliche Werte sind unter anderem:
MediaSizeName.ISO_A4
MediaSizeName.ISO_A5
MediaSizeName.ISO_B3
MediaSizeName.NA_LETTER
MediaSizeName.NA_8X10

new PageRanges(1, 5) Auszudruckender Seitenbereich

OrientationRequested.LANDSCAPE Ausrichtung: LANDSCAPE (Querformat), PORTRAIT (Hochformat),
REVERSE_LANDSCAPE (Umgekehrtes Querformat),
REVERSE_PORTRAIT (Umgekehrtes Hochformat)

PrintQuality.DRAFT Ausrichtung: DRAFT (Entwurf), NORMAL (Normal), HIGH (Hoch)

SheetCollate.COLLATED Ausrichtung: COLLATED (sortiert), UNCOLLATED (nicht sortiert)

Sides.DUPLEX Ausrichtung: DUPLEX (Duplex), ONE_SIDED (Einseitig),
TWO_SIDED_LONG_EDGE (Buchdruck), TWO_SIDED_SHORT_EDGE
(Kalenderdruck)

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.text.*;
import javax.swing.event.*;
import java.io.*;
import java.awt.print.*;
import java.util.*;

Listing 191: Aus ProgramFrame.java

Attribut (wie als Argument an
AttributeSet.add() zu übergeben)

Beschreibung

Tabelle 38: Standardattribute, wie sie u.a. vom Java-Druckdialog unterstützt werden (Forts.)

>> GUI 405

GU
I

4. Zerlegen Sie den Text in einzelne Zeilen.

public class ProgramFrame extends JFrame implements Printable {
 ...
 private JMenuItem miPrint;
 ...

 public ProgramFrame() {
 ...

 // Menü aufbauen und als Hauptmenü des Fensters einrichten
 menuBar = new JMenuBar();

 JMenu fileMenu = new JMenu("Datei");
 fileMenu.setMnemonic(KeyEvent.VK_D);
 miOpen = new JMenuItem("Öffnen");
 miOpen.setMnemonic(KeyEvent.VK_F);
 miOpen.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 fileOpen();
 }
 });
 miPrint = new JMenuItem("Drucken");
 miPrint.setMnemonic(KeyEvent.VK_P);
 miPrint.setAccelerator(KeyStroke.getKeyStroke('P',
 Event.CTRL_MASK));
 miPrint.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 filePrint();
 }
 });
 miQuit = new JMenuItem("Beenden");
 miQuit.setMnemonic(KeyEvent.VK_B);
 miQuit.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.exit(0);
 }
 });

 fileMenu.add(miOpen);
 fileMenu.add(miPrint);
 fileMenu.addSeparator();
 fileMenu.add(miQuit);
 menuBar.add(fileMenu);

 setJMenuBar(menuBar);
 ...

Listing 191: Aus ProgramFrame.java (Forts.)

>> Text drucken406
GU

I

Um einen mehrseitigen Text ausdrucken zu können, müssen Sie den Text zuerst selbst in Sei-
ten aufteilen. Der erste Schritt dazu ist die Aufteilung in Zeilen, für die es sich lohnt, eine
eigene Methode zu implementieren. Zuerst aber sollten Sie einige globale Instanzvariablen
definieren, die von den verschiedenen noch zu implementierenden Druckmethoden verwendet
werden können:

public class ProgramFrame extends JFrame implements Printable {
 ...

 // für Druck
 private Vector<String> lines;
 private int lineHeight;
 private int pages;
 private int linesPerPage;
 private boolean getPrintInfo;
 ...

Die Methode zur Zerlegung des Textes könnte dann wie folgt aussehen:

private void splitTextInLines() {

 // Text in Zeilen zerlegen
 lines = new Vector<String>();

 String lastToken = "";

 String text = textpane.getText();
 StringTokenizer t = new StringTokenizer(text, "\n\r", true);

 while (t.hasMoreTokens()) {
 String line = t.nextToken();

 if (line.equals("\r"))
 continue;

 if (line.equals("\n") && lastToken.equals("\n"))
 lines.add("");

 lastToken = line;

 if (line.equals("\n"))
 continue;

 lines.add(line);
 }
}

Nachdem die Methode eine Collection vom Typ Vector<String> zum Abspeichern der einzel-
nen Textzeilen angelegt hat, holt sie den Text aus der Textkomponente und speichert ihn in
der lokalen Variable text.

Dann beginnt die Zerlegung des Textes in Zeilen. Hierfür bedient sich die Methode eines
StringTokenizer-Objekts, das den Text an den Zeileumbruchzeichen \n und \t zerlegt. (Das
dritte Konstruktorargument gibt an, dass die Trennzeichen nicht verworfen werden sollen.)

>> GUI 407

GU
I

Nachfolgende nextToken()-Aufrufe zerlegen den Text dann Stück für Stück und liefern jeweils
das letzte Token zurück. In der while-Schleife wird nextToken() so oft aufgerufen, bis der Text
komplett zerlegt ist – in welchem Fall t.hasMoreTokens() den Wert false zurückliefert.

Der Code in der while-Schleife ist etwas komplizierter als man erwarten würde, aber dies ist
notwendig, um Zeilenumbrüche und Leerzeilen korrekt zu verarbeiten.

Wenn die Methode zurückkehrt, stellt lines eine zeilenweise Repräsentation des Textes dar.
Die Anzahl der Zeilen kann jederzeit mit lines.size() abgefragt werden.

5. Implementieren Sie die print()-Methode von Printable

In print() zeichnen Sie einfach die Textzeilen aus der Vector-Instanz lines nach und nach
mit drawString() in den Drucker-Gerätekontext. Ganz so einfach, wie es klingt, ist dies aller-
dings nicht, denn Sie müssen berechnen,

� wie viele Zeilen auf eine Druckseite gehen,

� welche Zeilen auf welcher Seite stehen,

� wie viele Seiten der Text insgesamt umfasst.

Nur mit diesen Informationen können Sie print() so implementieren, dass die Methode für
jede Seitennummer, die ihr als drittes Argument übergeben wird, die korrekten Zeilen in den
Gerätekontext zeichnet und den Druck beendet, wenn ihr eine Seitennummer übergeben wird,
die größer als die Anzahl der Textseiten ist.

Und noch ein weiteres Problem taucht auf. Wenn der Anwender den Drucken-Dialog aufruft,
kann er dort den auszudruckenden Seitenbereich festlegen. Leider wird hier als Vorgabe ein
Bereich von 1 bis 9999 angezeigt. Man kann dies korrigieren, muss dann aber als PagePainter
eine Instanz übergeben, deren Klasse Pageable statt Printable implementiert (dies ist das
geringfügigere Problem), und man muss vorab die Anzahl der Seiten berechnen. Um aber die
Anzahl der Seiten korrekt berechnen zu können, benötigt man die Information, wie hoch die
Textzeilen im Zielgerätekontext sind. Dies ist aber im Grunde nur in print() möglich.

Wir stehen also vor den Alternativen:

� die Seitenanzahl auf einer angenäherten Zeilenhöhen zu berechnen (beispielsweise könnte
man sich einen Grafikkontext erstellen, für diesen die Zeilenhöhe berechnen und darauf
vertrauen, dass die Höhe im Drucker-Gerätekontext nicht wesentlich von dem ermittelten
Wert abweicht)

� print() doppelt aufzurufen: einmal um die Seitenzahl zu berechnen und ein zweites Mal
für den eigentlichen Druck.

Obwohl es komplizierter ist, gehen wir im Folgenden den zweiten Weg.

public int print(Graphics pg, PageFormat pf, int pageNr)
 throws PrinterException {

 Graphics2D pg2 = (Graphics2D) pg;
 pg2.translate(pf.getImageableX(), pf.getImageableY());

 Font f = textpane.getFont();
 pg2.setFont(f);
 FontMetrics fm = pg2.getFontMetrics();

>> Text drucken408
GU

I

 if (getPrintInfo) { // Druck nur vorbereiten
 int pageWidth = (int) pf.getImageableWidth();
 int pageHeight = (int) pf.getImageableHeight();
 int numberOfLines = lines.size();

 // Felder füllen
 lineHeight = fm.getHeight();
 linesPerPage = Math.max(pageHeight/lineHeight, 1);
 pages = (int) Math.ceil((double)numberOfLines/(double)linesPerPage);

 return Printable.NO_SUCH_PAGE;

 } else { // eigentliches Drucken

 if (pageNr >= pages)
 return Printable.NO_SUCH_PAGE;

 int x = 0;
 int y = fm.getAscent();

 int lineIndex = linesPerPage * pageNr;

 while(lineIndex < lines.size() && y < (int) pf.getImageableHeight()) {
 String str = lines.get(lineIndex);
 pg2.drawString(str, x, y);
 y += lineHeight;
 ++lineIndex;
 }

 return Printable.PAGE_EXISTS;
 }
}

Interessant wird es in der fünften Codezeile, wo der Font des Textfelds ermittelt und in den
Drucker-Gerätekontext übertragen wird. Jetzt kann ein FontMetrics-Objekt für den Drucker-
Gerätekontext erzeugt werden, das die exakten Abmessungen des Fonts im Drucker-Geräte-
kontext kennt.

Im anschließenden if(getPrintInfo)-Teil wird die Anzahl der zu druckenden Seiten ermittelt.
Der eigentliche Druck erfolgt im else-Teil.

Als Erstes wird überprüft, ob es die auszudruckende Seite überhaupt noch gibt. Warum ist dies
notwendig? Die print()-Methode wird von der Druck-Engine aufgerufen, die ihr das Objekt
für den Druckerkontext, einen Seitenformatierer und die Nummer der zu druckenden Seite
übergibt. Letztere wird einfach von null aus hochgezählt – so lange, bis die print()-Methode
mit dem Rückgabewert Printable.NO_SUCH_PAGE zurückmeldet, dass es die betreffende Seite
nicht mehr gibt. Dann wird der Druck beendet.

Ist die Seitennummer im gültigen Bereich, wird die Zeile aus dem Vector<String>-Objekt lines
berechnet, mit der die Seite beginnt. Die nachfolgende while-Schleife zeichnet die Zeilen
dann nacheinander in das Graphics-Objekt, wobei die y-Koordinate jedes Mal um den Betrag
der zuvor (if-Teil) ermittelten Zeilenhöhe inkrementiert wird.

6. Starten Sie den Druck.

>> GUI 409

GU
I

Die print()-Methode wird ausschließlich von der Druck-Engine und nie direkt aufgerufen. Um
den Druck in Gang zu setzen, bedienen Sie sich vielmehr eines PrinterJob.

protected void filePrint() {
 PrinterJob printJob = PrinterJob.getPrinterJob();
 if (file == null)
 printJob.setJobName("Programm - Unbekannt drucken ");
 else
 printJob.setJobName("Programm - " + file.getName() + " drucken");
 printJob.setCopies(1);

 PageFormat pf = printJob.pageDialog(printJob.defaultPage());

 splitTextInLines();

 printJob.setPrintable(this, pf);

 try {
 getPrintInfo = true;
 printJob.print(); // Aufruf zum Festlegen der Anzahl Zeilen pro Seite

 Book book = new Book();
 book.append(this, pf, pages);
 printJob.setPageable(book);

 getPrintInfo = false;
 if(printJob.printDialog())
 printJob.print();

 } catch(Exception e) {
 JOptionPane.showMessageDialog(this, "Fehler beim Drucken" + e,
 "Druckfehler", JOptionPane.ERROR_MESSAGE);
 }
}

Die filePrint()-Methode, die in Schritt 3 mit dem Drucken-Menübefehl verbunden wurde,
erzeugt ein PrinterJob-Objekt und konfiguriert es für den Ausdruck einer einzigen Kopie pro
Seite.

Anschließend wird der SEITE EINRICHTEN-Dialog aufgerufen, über den der Anwender in der
Regel Seitengröße, Orientierung und Ränder einstellen kann (die Drucken-Dialoge sind sys-
temspezifisch). Die Einstellungen des Anwenders werden in einem PageFormat-Objekt gespei-
chert, welches – nach Zerlegung des Textes in Zeilen (splitTextInLines()-Aufruf) zusammen
mit der Referenz auf das Printable-Objekt (hier das Fenster) an die setPrintable()-Methode
des PrinterJob-Objekts übergeben wird. Dies geschieht aber noch nicht in der Absicht, etwas
zu drucken, sondern dient allein der Bestimmung der Seitenzahl.

Zu diesem Zweck wird im try-Block das boolesche Feld getPrintInfo auf true gesetzt und die
print()-Methode des PrinterJob-Objekts aufgerufen.

Nach diesem Aufruf steht die Seitenzahl fest und ist in dem Feld pages gespeichert.

Grundsätzlich könnte jetzt der Drucken-Dialog angezeigt und der Druck gestartet werden,
doch dann würde im Drucken-Dialog noch immer die falsche Seitenzahl stehen, was daran

>> Editor-Grundgerüst410
GU

I

liegt, dass Druckaufträge, die auf Printable beruhen, keine Informationen über die Seitenzahl
haben. Da nutzt es auch nichts, dass diese bereits von uns berechnet wurden.

Den Ausweg weisen das Pageable-Interface und die Klasse Book, die dieses Interface imple-
mentiert. Eine Book-Instanz, im Folgenden einfach Buch genannt, ist nichts anderes als eine
Sammlung von einer oder mehreren Printable-Druckaufträgen mit Seiteninformation!

Die folgenden Zeilen aus filePrint()

 Book book = new Book();
 book.append(this, pf, pages);
 printJob.setPageable(book);

erzeugen ein Buch und fügen den zu erledigenden Printable-Druckauftrag in das Buch ein.
Der append()-Methode werden dazu die für den Druck zuständige Printable-Instanz (hier das
Fenster), ein PageFormat-Objekt (hier pf) und schließlich die Anzahl Seiten des Druckauftrags
(hier pages) übergeben. Anschließend wird das Buch mit setPageable() bei dem PrinterJob-
Objekt angemeldet.

Jetzt kann der eigentliche Druck beginnen:

� Zuerst wird getPrintInfo auf false gesetzt.

� Dann wird der Drucken-Dialog aufgerufen, der Dank der Informationen aus dem Buch die
korrekte Seitenzahl anzeigen kann.

� Schließlich wird der Druck gestartet (print()-Aufruf).

146 Editor-Grundgerüst
Dieses Rezept ist einfach die Kombination verschiedener, bereits vorgestellter Rezepte zu
einem rudimentären Textverarbeitungsprogramm. Ausgangspunkt ist eine GUI-Anwendung
mit automatisch generiertem Menü und Symbolleiste (Rezept 139).

Diese wurde erweitert um

� eine Drag-fähige JTextArea-Komponente zum Anzeigen und Bearbeiten von Dateiinhalten
(Rezept 134),

� eine Statusleiste (siehe Rezepte 140 und 141),

� Methoden zum Anlegen, Öffnen und Speichern von Textdateien (Rezepte 142 und 143),

� Unterstützung für die Zwischenablage (Rezept 144),

� einen Druckbefehl (siehe Rezept 145),

� einen Info-Dialog (neu hinzugekommen).

147 Look&Feel ändern
Swing unterstützt je nach Plattform mehrere Look&Feels (Designs, die das Aussehen der
Fenster und Steuerelemente festlegen). Standard ist das Look&Feel »Metal«, das im Paket
javax.swing untergebracht ist. Das Paket com.sun.java enthält weitere Look&Feels, die aller-
dings nicht in jeder Java-Implementierung vorhanden sind. Aufgrund der restriktiven Lizenz-
politik von Microsoft und Apple ist beispielsweise das Look&Feel »Windows« nur für die
Windows-Versionen der Java-Laufzeitumgebung und das Look&Feel »Mac« nur für die Mac-
Versionen verfügbar.

>> GUI 411

GU
I

Das Look&Feel können Sie mit Hilfe von zwei Verfahren ändern:

� statisch über die Datei swing.properties

� dynamisch über die Methode UIManager.setLookAndFeel()

Look&Feel über swing.properties festlegen
Bei diesem Verfahren legen Sie eine Datei swing.properties im Verzeichnis /jdk/jre/lib an und
tragen folgende Zeilen für die Look&Feels »Metal«, »Motif« und »Windows« ein:

swing.defaultlaf=javax.swing.plaf.metal.MetalLookAndFeel

#swing.defaultlaf=com.sun.java.swing.plaf.motif.MotifLookAndFeel

#swing.defaultlaf=com.sun.java.swing.plaf.windows.WindowsLookAndFeel

Eigenschaftsdateien behandeln Zeilen, die wie hier mit einem Nummernzeichen (#) beginnen,
als Kommentar, so dass Sie die Look&Feels umschalten können, indem Sie einfach das Num-
mernzeichen am Beginn der Zeile mit dem gewünschten Look&Feel entfernen und jeweils am
Beginn der anderen Zeilen setzen. Achten Sie darauf, dass nur ein Look&Feel aktiv ist.

Auf diese Weise lässt sich das Look&Feel allerdings nicht zur Laufzeit eines Programms wech-
seln, da die Eigenschaftsdatei swing.properties nur beim Starten eines Programms eingelesen
wird.

Look&Feel über UIManager festlegen
Die Klasse UIManager erlaubt es, das Look&Feel zur Laufzeit des Programms umzuschalten.
Von den zahlreichen Methoden dieser Klasse sind hier vor allem Folgende interessant:

� static void setLookAndFeel() legt ein neues Look&Feel fest. Die Methode übernimmt als
Parameter entweder ein Look&Feel-Objekt oder eine Zeichenfolge, die den jeweiligen Klas-
sennamen enthält und dem Wert entspricht, der in der Eigenschaftsdatei nach swing.
defaultlaf= angegeben ist (siehe oben).

� static String getSystemLookAndFeelClassName() liefert das native Look&Feel der Ausfüh-
rungsplattform.

� static String getCrossPlatformLookAndFeelClassName() gibt den Namen der LookAndFeel-
Klasse zurück, die ein plattformunabhängiges Look&Feel implementiert – das Java-
Look&Feel (JLF).

Wenn Sie ein Look&Feel mit der Methode setLookAndFeel() festlegen, kann eine Ausnahme
vom Typ UnsupportedLookAndFeelException auftreten, falls das Look&Feel nicht existiert. Des-

Look&Feel Klasse

Metal javax.swing.plaf.metal.MetalLookAndFeel

Standard-Look&Feel (ab Java5 in neuem »Ocean«-Design)

Windows com.sun.java.swing.plaf.windows.WindowsLookAndFeel

Motif com.sun.java.swing.plaf.motif.MotifLookAndFeel

GTK com.sun.java.swing.plaf.gtk.GTKLookAndFeel

Tabelle 39: Vordefinierte Look&Feels

>> Look&Feel ändern412
GU

I

halb verlangt der Compiler, dass Sie diese Ausnahme abfangen. Es genügt, wenn Sie den
entsprechenden Abschnitt des Codes in einen try-catch-Block einschließen.

Das neue Look&Feel gilt automatisch für alle Komponenten, die Sie nach der Festlegung des
Look&Feels erzeugen. Falls Sie das Look&Feel bereits zu Beginn einer Anwendung (beispiels-
weise in der main()-Methode oder im Konstruktor des Hauptfensters) einrichten, sind keine
weiteren Vorkehrungen erforderlich. Ändern Sie dagegen das Look&Feel zur Laufzeit des Pro-
gramms, müssen Sie das neue Look&Feel dem Hauptfenster und gegebenenfalls allen unterge-
ordneten Fenstern (d.h. auch den Komponenten) mit der Methode

SwingUtilities.updateComponentTreeUI(Container);

mitteilen.

Das Start-Programm zu diesem Rezept demonstriert, wie das Look&Feel zur Laufzeit (der
Anwender wählt einen der drei angebotenen Schalter) geändert werden kann.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Start extends JFrame {
 ButtonListener buttonListener = new ButtonListener();
 JButton btnMotif, btnWindows, btnMetal;

 public Start() {

 // Hauptfenster einrichten
 setTitle("Look and Feel");
 getContentPane().setBackground(Color.LIGHT_GRAY);

 getContentPane().setLayout(new GridLayout(0,2));

 btnMotif = new JButton("Motif");
 btnWindows = new JButton("Windows");
 btnMetal = new JButton("Metal");

 btnMotif.addActionListener(buttonListener);
 btnWindows.addActionListener(buttonListener);
 btnMetal.addActionListener(buttonListener);

 // Rechtes Panel mit Schaltflächen zum
 // Umschalten des Look&Feels
 Box rbox = Box.createVerticalBox();
 rbox.add(Box.createGlue());
 rbox.add(btnMotif);
 rbox.add(btnWindows);
 rbox.add(btnMetal);
 rbox.add(Box.createGlue());

 // Linkes Panel zeigt lediglich zwei
 // Kontrollkästchen zur Demonstration des

Listing 192: Start.java – Demo-Programm zur Umschaltung des Look&Feels

>> GUI 413

GU
I

 // Erscheinungsbildes
 JPanel lbox = new JPanel();
 lbox.setLayout(new BoxLayout(lbox, BoxLayout.Y_AXIS));
 JCheckBox chk1 = new JCheckBox("Unterstrichen");
 JCheckBox chk2 = new JCheckBox("Kursiv");

 lbox.add(Box.createVerticalStrut(30));
 lbox.add(chk1);
 lbox.add(chk2);

 getContentPane().add(lbox);
 getContentPane().add(rbox);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 // Ereignisbehandlung für Schaltflächen zum Umschalten des Look&Feels
 class ButtonListener implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 try {
 if (e.getSource() == btnMotif)
 UIManager.setLookAndFeel(
 "com.sun.java.swing.plaf.motif.MotifLookAndFeel");
 if (e.getSource() == btnWindows)
 UIManager.setLookAndFeel(
 "com.sun.java.swing.plaf.windows.WindowsLookAndFeel");
 if (e.getSource() == btnMetal)
 UIManager.setLookAndFeel(
 "javax.swing.plaf.metal.MetalLookAndFeel");
 }
 catch(Exception ignore) {
 }

 // Das neue Look&Feel allen Komponenten mitteilen
 SwingUtilities.updateComponentTreeUI(getContentPane());
 }
 }

 public static void main(String args[]) {
 Start frame = new Start();
 frame.setSize(300,200);
 frame.setLocation(200,300);
 frame.setVisible(true);
 }
}

Listing 192: Start.java – Demo-Programm zur Umschaltung des Look&Feels (Forts.)

>> Systemtray unterstützen414
GU

I

148 Systemtray unterstützen
Ab Version 6 unterstützt Java auch den Systemtray5, vorausgesetzt, das verwendete Betriebs-
system bietet so etwas an. Es handelt sich dabei um einen speziellen Bereich auf dem Desktop
(unter Windows Vista/XP typischerweise die rechte untere Ecke der Taskleiste), wo Symbole
von permanent laufenden Programmen angezeigt werden. Durch Anklicken eines solchen
Symbols kann mit dem entsprechenden Programm interagiert werden.

Um ein Programm für den Systemtray tauglich zu machen, benötigen wir zwei Klassen:
java.awt.SystemTray zur Interaktion sowie java.awt.TrayIcon zur Darstellung des Symbols im
Systemtray.

Jede Java-Anwendung kann genau eine Instanz von SystemTray besitzen, die sie allerdings
nicht selbst anlegen kann, sondern mithilfe der statischen Methode getSystemTray() von der
Java Virtual Machine anfordern muss. Sicherheitshalber sollte man allerdings vor einem sol-
chen Aufruf mit isSupported() prüfen, ob das darunter liegende Betriebssystem überhaupt
einen Systemtray unterstützt.

Die Darstellung des Programms im Systemtray erfolgt durch eine Instanz von TrayIcon. Sie
können das anzuzeigende Symbol festlegen sowie ein Kontextmenü definieren, das durch
Drücken der rechten Maustaste aktiviert wird. Das TrayIcon kann auch auf normale (linke)
Mausklicks reagieren, indem die üblichen Listener (MouseListener, MouseMotionListener) und
ActionListener (Doppelklick) registriert werden.

Abbildung 76: Das Start-Programm zu diesem Rezept im Motif-, Windows- und Metal-Look

5. Je nach Betriebssystem gibt es verschiedene andere Bezeichnungen, z.B. »Infobereich«, »Notification Area« etc.

import java.awt.*;
import java.awt.event.*;

class SystemTrayDemo implements MouseListener, ActionListener {

 private TrayIcon trayIcon;

Listing 193: Systemtray-Unterstützung

>> GUI 415

GU
I

 private Image[] icons;

 public SystemTrayDemo() {

 if (SystemTray.isSupported()) {
 SystemTray tray = SystemTray.getSystemTray();

 // Symbole für Systemtray-Darstellung laden
 icons = new Image[2];
 Toolkit tk = Toolkit.getDefaultToolkit();
 icons[0] = tk.getImage("box0.gif");
 icons[1] = tk.getImage("box1.gif");

 // Kontextmenü für Systemtray-Symbol einrichten
 PopupMenu popup = new PopupMenu();
 MenuItem iconChange = new MenuItem("Symbol wechseln");
 MenuItem programEnd = new MenuItem("Beenden");

 popup.add(iconChange);
 popup.add(programEnd);

 // PopupMenu: ActionListener für Programmende
 ActionListener endListener = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.out.println("Programmende!");
 System.exit(0);
 }
 };
 programEnd.addActionListener(endListener);

 // PopupMenu: ActionListener für Symbolwechsel
 ActionListener iconChangeListener =
 new ActionListener(){
 public void actionPerformed(ActionEvent e) {
 System.out.println("Symbolwechsel");

 if(trayIcon.getImage() == icons[0])
 trayIcon.setImage(icons[1]);
 else
 trayIcon.setImage(icons[0]);

 }
 };
 iconChange.addActionListener(iconChangeListener);

trayIcon = new TrayIcon(icons[0], "TrayIconDemo", popup);
 trayIcon.setImageAutoSize(true);
 trayIcon.addActionListener(this);
 trayIcon.addMouseListener(this);

Listing 193: Systemtray-Unterstützung (Forts.)

>> Systemtray unterstützen416
GU

I

Die obige Beispielklasse registriert sich im Systemtray und lauscht anschließend auf
Mausklicks auf ihrem Systemtray-Symbol6. Bei Klick mit der linken Taste wird eine Meldung
im Konsolenfenster ausgegeben. Bei Klick mit der rechten Maustaste erscheint ein Popup-
Menü mit der Option zum Wechsel des Symbols oder Beenden des Programms.

 // Symbol zum Systemtray hinzufügen
 try {
 tray.add(trayIcon);

 } catch (AWTException e) {
 System.err.println("Fehler: " + e);
 }

 } else {
 System.out.println("Systemtray wird nicht unterstuetzt");
 }
 }

 // Behandlung der Mausereignisse auf dem TrayIcon
 public void mouseClicked(MouseEvent e) {
 System.out.println("TrayIcon Mausklick");
 }

 public void mouseEntered(MouseEvent e) {
 System.out.println("TrayIcon Maus enter");
 }

 public void mouseExited(MouseEvent e) {
 System.out.println("TrayIcon Maus exit");
 }

 public void mousePressed(MouseEvent e) {
 System.out.println("TrayIcon Maus gedrueckt");
 }

 public void mouseReleased(MouseEvent e) {
 System.out.println("TrayIcon Maus losgelassen");
 }

 public void actionPerformed(ActionEvent e) {
 System.out.println("Doppelklick auf TrayIcon");
 }
}

6. Das Java-Maskottchen in einer Schachtel

Listing 193: Systemtray-Unterstützung (Forts.)

>> GUI 417

GU
I

149 Splash-Screen anzeigen
Unter einer Splash-Screen versteht man ein Bild, das während des Programmstarts in der
Mitte des Bildschirms angezeigt wird. Der Anwender hat dadurch das Gefühl, dass etwas pas-
siert und empfindet den Startvorgang als weniger langsam.

Um ein Bild als Splash-Screen anzuzeigen, müssen Sie beim Programmaufruf lediglich den
Parameter –splash übergeben:

java –splash:dasBild.png DasProgramm

Als Wert für den Parameter übergeben Sie eine Bilddatei im PNG-, GIF- oder JPEG-Format.

Falls Sie das Programm in Form eines jar-Archivs vertreiben wollen, müssen Sie der Manifest-
Datei einen Eintrag der Art:

SplashScreen-Image: meinBild.png

hinzufügen. Danach kann das Programm wie üblich gestartet werden (via java –jar MeinPro-
gramm.jar).

Die Splash-Screen wird automatisch so lange angezeigt, bis das erste Fenster des Programms
erscheint. Codeseitig ist also eigentlich nichts weiter zu tun. Es gibt aber auch die Möglichkeit,
mit Hilfe der Klasse java.awt.SplashScreen auf die angezeigte Splash-Screen zuzugreifen und
beispielsweise eine Fortschrittsanzeige einzubauen

Abbildung 77: Programm-Symbol im Systemtray

import java.awt.*;
import javax.swing.*;
import java.io.*;
import java.util.*;

public class Start extends JFrame {

 public Start() {

 // Hauptfenster konfigurieren
 setTitle("SplashScreen Demo");
 setSize(300, 200);
 setResizable(false);
 setLayout(new BorderLayout());

 JLabel lb = new JLabel(" Herzlich willkommen!");
 lb.setFont(new Font("Arial", Font.BOLD, 20));
 add(lb, BorderLayout.CENTER);

Listing 194: Anzeige eines Splash-Screens mit Fortschrittsbalken

>> Splash-Screen anzeigen418
GU

I

 SplashScreen splash = SplashScreen.getSplashScreen();

 if(splash != null) {
 // Grafikkontext anlegen
 Graphics2D g = splash.createGraphics();
 g.setComposite(AlphaComposite.Clear);
 g.setPaintMode(); // überschreib-Modus

 // Initialisierungen durchführen und Fortschrittsbalken updaten
 try {
 for(int i = 0; i <= 100; i++) {
 g.setColor(Color.BLACK);
 g.fillRect(100,200,200,20);
 g.setColor(Color.ORANGE);
 g.fillRect(100,200,2*i, 20);
 splash.update(); // Anzeige aktualisieren

 // ... hier Programminitialisierungen durchführen
 Thread.sleep(100);
 }
 } catch(Exception e) {
 System.err.println(e);
 }
 }

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 public static void main(String args[]) {
 Start frame = new Start();
 frame.setLocation(300,300);
 frame.setVisible(true);
 }
}

Listing 194: Anzeige eines Splash-Screens mit Fortschrittsbalken (Forts.)

>> GUI 419

GU
I

150 Registerreiter mit Schließen-Schaltern (JTabbedPane)
Die Klasse JTabbedPane (Paket javax.swing) implementiert die beliebte Registerdarstellung, wie
sie häufig für die Gruppierung von Programmeinstellungen oder Optionen verwendet wird.
Dabei wird ein JTabbedPane-Objekt erzeugt, welches beliebig viele Registerkarten verwaltet
und darstellt. Der Anwender kann die einzelnen Registerkarten über Reiter auswählen und in
den Vordergrund holen.

Leider fehlte bisher die Möglichkeit, Komponenten, insbesondere Schließen-Schalter, in die
Reiter der Registerkarten einzubauen. In Java 6 wurde die Klasse JTabbedPane daher um eine
Methode setTabComponentAt() erweitert.

Das folgende Beispiel nutzt die neu erworbene JTabbedPane-Funktionalität zur Realisierung
von Registerkarten, die der Anwender selbst hinzufügen und wieder entfernen kann.

Abbildung 78: Anzeige eines Splash-Screens bei Programmstart

/*
 * JTabbedPane mit Registern, die über X-Schalter geschlossen werden können
 *
 * @author Peter Müller
 */
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;
import java.io.*;
import java.util.*;

public class Start extends JFrame
 implements ListSelectionListener, ActionListener {

 private JLabel curImage;
 private JList fileList;

Listing 195: JTabbedPane mit schließbaren Registern

>> Registerreiter mit Schließen-Schaltern (JTabbedPane)420
GU

I

 private JTabbedPane tabbedPane;
 private final JPopupMenu popupMenu = new JPopupMenu();
 private HashMap<JButton, Component> closeButtons
 = new HashMap<JButton, Component>();

 public Start() {

 // Hauptfenster konfigurieren
 setTitle("Registerkarten mit Schließen-Schaltern");
 setSize(400, 300);
 setResizable(false);
 setLayout(new BorderLayout());

 // Registerkarten einrichten
 tabbedPane = new JTabbedPane();
 JSplitPane imagePanel = createImagePanel();
 tabbedPane.addTab("Bilder", new ImageIcon("Zoom16.gif"),
 (Component) imagePanel);
 getContentPane().add(tabbedPane,BorderLayout.CENTER);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 // erzeugt ein SplitPane mit Datei-Liste und Bildanzeige
 JSplitPane createImagePanel() {
 String[] fileNames = new String[] {"alice.gif", "caterpillar.gif",
 "rabbit.gif", "rabbit2.gif",
 "hatter.gif","duke.gif"};
 fileList = new JList(fileNames);
 fileList.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);
 fileList.setSelectedIndex(0);
 fileList.addListSelectionListener(this);
 JScrollPane fileView = new JScrollPane(fileList);

 // Bildanzeige
 ImageIcon imageIcon =
 new ImageIcon((String) fileList.getSelectedValue());
 curImage = new JLabel(imageIcon);
 JScrollPane imageView = new JScrollPane(curImage);

 // Mindestgrößen sicherstellen
 Dimension minSize = new Dimension(150,100);
 fileView.setMinimumSize(minSize);
 imageView.setMinimumSize(minSize);

 // SplitPane erzeugen
 JSplitPane splitPane = new JSplitPane(JSplitPane.HORIZONTAL_SPLIT,
 fileView, imageView);
 splitPane.setDividerLocation(150);
 splitPane.setOneTouchExpandable(true);

Listing 195: JTabbedPane mit schließbaren Registern (Forts.)

>> GUI 421

GU
I

 // Popup-Menü für die Erzeugung von Registerkarten mit aktuellen Bild
 JMenuItem item = new JMenuItem("Bild als Register hinzufügen");

 item.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 String name = (String) fileList.getSelectedValue();
 createTab(name);
 }
 });

 popupMenu.add(item);

 fileList.addMouseListener(new MouseAdapter() {
 // Achtung: wenn auch auf anderen Plattformen als Windows, dann sollte
 // eine analoge Methode mousePressed() implementiert werden!
 public void mouseReleased(MouseEvent e) {
 if(e.isPopupTrigger())
 popupMenu.show(e.getComponent(), e.getX(), e.getY());
 }
 });

 return splitPane;
 }

 // aktuelles Bild als neue Registerkarte hinzufügen
 public void createTab(String name) {
 ImageIcon image = new ImageIcon((String) fileList.getSelectedValue());
 JPanel imagePanel = new JPanel();
 imagePanel.add(new JLabel(image));

 // dieses JPanel bildet den Registerreiter und besteht aus Bildnamen
 // und Schließen-Schalter
 JPanel tab = new JPanel();
 tab.setOpaque(false); // damit Hintergrund des Reiters zu sehen ist
 tab.setLayout(new FlowLayout());
 JLabel title = new JLabel(name);
 ImageIcon xgif = new ImageIcon("xicon.gif");
 Dimension dim = new Dimension(xgif.getIconWidth() + 5,
 xgif.getIconHeight() + 5);
 JButton closeButton = new JButton(xgif);
 closeButton.setPreferredSize(dim);
 tab.add(title, BorderLayout.WEST);
 tab.add(closeButton, BorderLayout.EAST);

 // wenn Schalter gedrückt wird, Registerkarte entfernen
 closeButton.addActionListener(this);

 // null als Registername, da wir unsere Komponente tab nehmen
 tabbedPane.addTab(null, imagePanel);

 tabbedPane.setTabComponentAt(tabbedPane.getTabCount()-1, tab);

Listing 195: JTabbedPane mit schließbaren Registern (Forts.)

>> Registerreiter mit Schließen-Schaltern (JTabbedPane)422
GU

I

Das Beispiel erzeugt eine Dateiauswahlliste. Klickt der Anwender mit der rechten Maustaste
auf eine ausgewählte Datei, erscheint ein Popup-Menü mit dem Befehl zum Hinzufügen einer
neuen Registerkarte mit dem zugehörigen Bild. Dem Reiter der neuen Registerkarte wird mit
Hilfe der Methode setTabComponentAt() ein Schließen-Schalter hinzugefügt. Eine passende
Ereignisbehandlung für den Schalter sorgt dafür, dass beim Anklicken des Schalters die Regis-
terkarte geschlossen wird.

 closeButtons.put(closeButton, tab);
 }

 // Ereignisbehandlungsmethode für Schließen einer dynamisch erzeugten
 // Registerkarte
 public void actionPerformed(ActionEvent e) {

 Component c = closeButtons.get((JButton) e.getSource());

 if(c != null) {
 closeButtons.remove((JButton) e.getSource());
 int index = tabbedPane.indexOfTabComponent(c);
 tabbedPane.removeTabAt(index);
 }
 }

 public void valueChanged(ListSelectionEvent e) {
 if(e.getValueIsAdjusting())
 return;

 // gewähltes Bild anzeigen
 ImageIcon image = new ImageIcon((String) fileList.getSelectedValue());
 curImage.setIcon(image);
 curImage.revalidate();
 }

 public static void main(String args[]) {
 Start frame = new Start();
 frame.setLocation(300,300);
 frame.setVisible(true);
 }
}

Listing 195: JTabbedPane mit schließbaren Registern (Forts.)

>> GUI 423

GU
I

Abbildung 79: Registerkarten mit Schließen-Button

Gr
af

ik
, M

ul
tim

ed
ia

Grafik und Multimedia

151 Mitte der Zeichenfläche ermitteln
Um zentriert in eine Komponente zeichnen zu können, muss man wissen, an welchen Koordi-
naten der Mittelpunkt der Komponente liegt. Dieser lässt sich aus Breite und Höhe leicht
berechnen:

Die Methode übernimmt als Argument die Referenz auf eine Komponente, ermittelt deren
Breite (getWidth()) und Höhe (getHeight()) und berechnet aus diesen durch Halbierung die
Koordinaten des Mittelpunkts.

Mit obiger Methode bzw. nach der in der Methode verwendeten Formel können Sie den Mittel-
punkt beliebiger Komponenten (AWT wie Swing) berechnen. Wenn Sie mit Swing-Komponen-
ten arbeiten, sollten Sie aber bedenken, dass diese womöglich einen Rahmen definieren (siehe
Rezept 122).

Die Rahmen von Swing-Komponenten gehören zur Komponente, nicht aber zum Zeichen-
bereich von paintComponent()! Dies stört nicht, solange die Rahmenteile paarweise (oben –
unten, rechts – links) gleich breit sind. Sind die Rahmenteile nicht paarweise gleich, deckt sich
der Mittelpunkt der Komponente nicht mehr mit dem Mittelpunkt der Fläche innerhalb der
Komponentenränder. Die folgende Methode berücksichtigt dies:

import java.awt.Point;
import java.awt.Component;
...

public static Point getCenter(Component c) {
 int x, y;

 x = c.getWidth() / 2;
 y = c.getHeight() / 2;

 return new Point(x,y);
}

Listing 196: Mittelpunkt einer Komponente

H
in

w
e

is Die Klasse Point eignet sich ideal zum Abspeichern von ganzzahligen Koordinaten. Der
Zugriff auf die Felder x und y ist public.

import java.awt.Point;
import java.awt.Insets;
import javax.swing.JComponent;

Listing 197: Mittelpunkt der Fläche zwischen den Rahmen einer Swing-Komponente

>> Zentrierter Text426
Gr

af
ik

, M
ul

tim
ed

ia

Der folgende Code stammt aus dem Start-Programm zu diesem Rezept und zeigt, wie Sie mit
Hilfe der obigen Methoden ein Fadenkreuz bzw. eine Scheibe in den Mittelpunkt einer Kompo-
nente bzw. den Mittelpunkt der Fläche innerhalb des Rahmens zeichnen. (Beachten Sie, dass
für Swing-Komponenten, die keinen Rahmen haben, beide Mittelpunkte zusammenfallen.)

152 Zentrierter Text
Wenn Sie einen Text zentriert in eine Komponente schreiben möchten, bedeutet dies in der
Regel, dass sich der Text von der Mittellinie aus gleich weit nach links und rechts ausdehnen
soll. Dies erreichen Sie nicht, indem Sie die x-Koordinate des Mittelpunkts berechnen (siehe
Rezept 151) und an drawString() übergeben, denn die x- und y-Argumente von drawString
(String s, int x, int y) stehen für die x,y-Koordinate, an der die Grundlinie des Strings
beginnt. Wenn Sie also als x-Argument die x-Koordinate des Mittelpunkts übergeben, wird

...

/**
 * Mittelpunkt der Fläche zwischen Rändern der Komponente
 */
public static Point getCenter(JComponent c, Insets in) {
 int x, y;

 x = (c.getWidth() - (in.left + in.right))/ 2;
 x += in.left;
 y = (c.getHeight() - (in.top + in.bottom))/ 2;
 y += in.top;

 return new Point(x,y);
}

// In Klassendefinition einer Swing-Komponente
public void paintComponent(Graphics g) {
 super.paintComponent(g);

 // Fadenkreuz in Zentrum der Komponente zeichnen
 Point center = Drawing.getCenter(this);
 g.drawLine(center.x-5, center.y, center.x+5, center.y);
 g.drawLine(center.x, center.y-5, center.x, center.y+5);

 // Fadenkreuz in Zentrum der Fläche zwischen Komponentenrändern
 // zeichnen
 center = Drawing.getCenter(this, this.getInsets());
 g.setColor(Color.cyan);
 g.fillOval(center.x-5, center.y-5, 10, 10);

}

Listing 198: Zentriert zeichnen

Listing 197: Mittelpunkt der Fläche zwischen den Rahmen einer Swing-Komponente (Forts.)

>> Grafik und Multimedia 427

Gr
af

ik
, M

ul
tim

ed
ia

der String nicht horizontal zentriert, sondern er beginnt an der horizontalen Mittellinie. Wenn
Sie als y-Argument die y-Koordinate des Mittelpunkts übergeben, wird der String nicht verti-
kal zentriert, sondern er liegt über der vertikalen Mittellinie.

Um Texte mit drawString() zentriert auszugeben, müssen Sie also Breite und Höhe des auszu-
gebenden Textes berücksichtigen. Breite und Höhe eines Textzugs hängen aber von der ver-
wendeten Schrift ab, so dass sich insgesamt folgende Vorgehensweise ergibt:

1. Sie richten die zu verwendende Schrift als Schrift des Grafikkontextes der Komponente
ein.

2. Sie lassen sich vom Grafikkontext ein FontMetrics-Objekt zurückliefern.

3. Sie bestimmten mit Hilfe des FontMetrics-Objekts die Schriftabmaße und die Breite des
auszugebenden Textes und errechnen dann die Koordinaten für drawString().

4. Sie zeichnen den Text in die Komponente.

g.setFont(new Font("Georgia", Font.ITALIC, 30)); // 1
FontMetrics fm = g.getFontMetrics(); // 2
Point p = Drawing.centerText(this, fm, text); // 3
g.drawString(text, p.x, p.y); // 4

Schritt 3, die eigentliche Koordinatenberechnung, wird hier von der Methode centerText()
erledigt, die als Argumente eine Referenz auf die Komponente, das FontMetrics-Objekt und
den auszugebenden Text übernimmt und wie folgt definiert ist:

/**
 * Berechnet Ausgabekoordinaten für zentrierten Text
 */
public static Point centerText(JComponent c, FontMetrics fm, String s) {
 Insets insets = c.getInsets();
 int x, y;

 // x- und y-Koordinaten für zentrierte Textausrichtung

 // Breite minus linker und rechter Rand minus Stringbreite halbieren
 // wenn negativ, auf 0 setzen
 // linken Rand hinzuaddieren
 x = (c.getWidth() - (insets.left+insets.right) - fm.stringWidth(s)) / 2;
 x = (x > 0) ? x : 0;
 x += insets.left;

 // Höhe minus oberer und unterer Rand halbieren
 // wenn negativ, auf 0 setzen
 // oberer Rand plus halbe Schriftoberlänge hinzuaddieren
 y = (c.getHeight() - (insets.top + insets.bottom)) / 2;
 y = (y > 0) ? y : 0;

Abbildung 80: Positionierung von Textausgaben mit drawString()

Swing ist
leistungsfähigHöhe

Grundlinie

Grundlinie
Oberlänge

Unterlänge

Durchschuss

>> In den Rahmen einer Komponente zeichnen428
Gr

af
ik

, M
ul

tim
ed

ia

 y += insets.top + fm.getAscent()/4;

 return new Point(x,y);
}

Das zurückgelieferte Point-Objekt enthält die x- und die y-Koordinate, die Sie drawString()
übergeben müssen, um den Text horizontal und vertikal zentriert in die Komponente zu zeich-
nen. Wenn der String lediglich horizontal zentriert sein soll, reichen Sie einfach nur die
x-Koordinate weiter und setzen die y-Koordinate selbst.

Die vertikale Zentrierung ist etwas problematisch, denn der von FontMetrics.getAscent()
zurückgelieferte Wert ist in der Regel um einige Pixel größer als die Höhe der Großbuchstaben.
Entspräche der Wert der Höhe der Großbuchstaben, wäre eine Absenkung der Grundlinie um
den halben Betrag von getAscent() korrekt. So aber ergibt eine Absenkung um ein Viertel von
getAscent() für die meisten Schriften eine optisch bessere Zentrierung.

153 In den Rahmen einer Komponente zeichnen
Gewöhnlich überschreiben Sie die Methode paintComponent(), wenn Sie in eine Swing-Kompo-
nente zeichnen wollen. Allerdings können Sie mit dieser Methode nicht in den Rahmenbereich
einer Swing-Komponente zeichnen, da dieser durch das Clipping-Rechteck geschützt wird.

Um in den Rahmen zu zeichnen, gibt es eine eigene Methode paintBorder().

Wenn Sie paintBorder() überschreiben, sollten Sie folgende Punkte beachten:

� Wie im Falle von paintComponent() müssen Sie als erste Anweisung in der Methode die
Basisklassenversion von paintBorder() aufrufen.

� Der Inhalt der Komponente ist nicht durch Clipping geschützt, d.h., wenn Sie in der
Methode in den Bereich innerhalb des Rahmens zeichnen, überschreiben Sie den Inhalt,
den zuvor die paintComponent()-Methode gezeichnet hat.

H
in

w
e

is In der Datei Drawing.java zu diesem Rezept ist noch eine überladene Version von cen-
terText() definiert, die keine Komponentenrahmen berücksichtigt und auch für AWT-
Komponenten aufgerufen werden kann:

public static Point centerText(Component c, FontMetrics fm, String s)

Abbildung 81: Zentrierte Textausgabe

>> Grafik und Multimedia 429

Gr
af

ik
, M

ul
tim

ed
ia

� Um den Inhalt der Komponente zu schützen, sollten Sie nacheinander Clipping-Bereiche
für die einzelnen Rahmenteile definieren (Java unterstützt keine kombinierten Clipping-
Bereiche – nur Schnittmengen) und in diese zeichnen.

� Ändern Sie den Clipping-Bereich nicht für das originale Graphics-Objekt, sondern erzeu-
gen Sie eine Kopie.

� Entsorgen Sie die Kopie nach getaner Arbeit durch Aufruf von dispose().

Die folgende paintBorder()-Methode stammt aus einer abgeleiteten JPanel-Klasse, die einen
türkisfarbenen Rahmen definiert (siehe Rezept 122 zur Erzeugung von Kompnentenrahmen).
Die Methode zeichnet ein Muster aus Ovalen in den Rahmen.

/**
 * Ovalmuster in Rahmen zeichnen
 */
public void paintBorder(Graphics g) {
 super.paintBorder(g);

 int width = getWidth();
 int height = getHeight();
 final int W = 10; // Breite der Ovale
 final int H = 5; // Höhe der Ovale

 // Kopie anlegen, da wir Clip-Rectangle ändern
 Graphics gc = g.create();
 gc.setColor(Color.BLACK);

 // Rahmenbreiten abfragen
 Insets insets = this.getInsets();

 // In die vier Seiten des Rahmens muss einzeln gezeichnet werden,
 // da es in Java keine Möglichkeit zur Verschmelzung von Clipbereichen gibt

 // Rahmen oben
 gc.setClip(0, 0, width, insets.top);

 for(int j = 0; j < insets.top; j+=H)
 for(int i = 0; i < width; i+=W)
 gc.drawOval(i, j, W, H);

 // Rahmen links
 gc.setClip(0, insets.top, insets.left, height-insets.top-insets.bottom);

 for(int j = 0; j < height; j+=H)
 for(int i = 0; i < insets.left; i+=W)
 gc.drawOval(i, j, W, H);

Listing 199: paintBorder() überschreiben

>> In den Rahmen einer Komponente zeichnen430
Gr

af
ik

, M
ul

tim
ed

ia

Der Code für das untere und das rechte Rahmenelement ist etwas komplizierter, da der verti-
kale bzw. horizontale Startpunkt für die Zeichenausgabe so berechnet werden muss, dass es
keine Überschneidungen oder Lücken im Muster gibt.

Vielleicht verwundert es, dass sowohl das Clipping als auch scheinbar die Grenzen der for-
Schleife dafür sorgen, dass nur in den Rahmen gezeichnet wird. Nun, dies ist nicht der Fall.
Der Schutz des Inhaltsbereichs obliegt allein den Clipping-Bereichen. Die for-Schleifen könn-
ten genauso gut den gesamten Bereich der Komponente durchlaufen (was im Übrigen der ein-
fachste Weg wäre, die Konsistenz des Musters zu gewährleisten). Allerdings würde bei dieser
Vorgehensweise viel Zeit damit verbracht, die for-Schleifen in Bereiche zeichnen zu lassen, in
denen wegen des Clippings keine Ausgabe zu sehen ist.

 // Rahmen unten
 gc.setClip(0, height-insets.bottom, width, insets.bottom);

 int starty = (height - insets.bottom) - ((height - insets.bottom)%H);
 for(int j = starty; j < height; j += H)
 for(int i = 0; i < width; i += W)
 gc.drawOval(i, j, W, H);

 // Rahmen rechts
 gc.setClip(width-insets.right, insets.top, insets.right,
 height-insets.top-insets.bottom);

 int startx = width - insets.right - ((width - insets.right)%W);
 for(int j = 0; j < height; j+=H)
 for(int i = startx; i < width; i+=W)
 gc.drawOval(i, j, W, H);

 gc.dispose();
}

Abbildung 82: Panel mit Zeichnungen im Rahmen

Listing 199: paintBorder() überschreiben (Forts.)

>> Grafik und Multimedia 431

Gr
af

ik
, M

ul
tim

ed
ia

154 Zeichnen mit unterschiedlichen Strichstärken
und -stilen

Mit Java2D können Sie Strichstärke und -stil variieren.

Um die Vorzüge von Java2D nutzen zu können, müssen Sie das Graphics-Objekt, mit dem Sie
arbeiten, in ein Graphics2D-Objekt umwandeln:

public void paintComponent(Graphics g) {
 super.paintComponent(g);

 Graphics2D g2 = (Graphics2D) g;

Die Typumwandlung ist für alle Swing-Komponenten möglich.

BasicStroke
In Java2D können Sie für Strichoperationen (Zeichnen einer Linie oder eines Figurumrisses)
die Strichstärke vorgeben. Die zugehörige Methode heißt setStroke() und erwartet als Argu-
ment eine Stroke-Instanz:

void setStroke(Stroke s)

Stroke ist eine abstrakte Klasse. Wie meist in Java gibt es aber bereits eine abgeleitete, nicht-
abstrakte Klasse: BasicStroke. BasicStroke verfügt über mehrere Konstruktoren, mit denen Sie
»Stifte« verschiedener Breiten, Endpunktverzierungen und Strichmuster erzeugen können.

Strichstärke
Um die Strichstärke festzulegen, übergeben Sie dem Konstruktor einfach einen passenden
float-Wert. (1.0f entspricht dabei der bisherigen Normaldicke.)

public void paintComponent(Graphics g) {
 super.paintComponent(g);

 // Java-2D verfügbar machen
 Graphics2D g2 = (Graphics2D) g;

 // Gelbes Rechteck mit 2-Pixel-Rahmen
 g2.setColor(Color.YELLOW);
 g2.fillRect(100, 100, 250, 100);

 g2.setStroke(new BasicStroke(2.0f));
 g2.setColor(Color.BLACK);
 g2.drawRect(100, 100, 250, 100);

>> Zeichnen mit unterschiedlichen Strichstärken und -stilen432
Gr

af
ik

, M
ul

tim
ed

ia

Darstellung der Punkte
Zusätzlich können Sie die Darstellung von End- und Kreuzungspunkten bestimmen. In
BasicStroke sind hierfür verschiedene Konstanten definiert:

public void paintComponent(Graphics g) {
 super.paintComponent(g);

 // Java-2D verfügbar machen
 Graphics2D g2 = (Graphics2D) g;

 // Rotes Dreieck mit abgerundetem 5-Pixel-Rahmen
 Polygon triangle = new Polygon();
 triangle.addPoint(150, 250);
 triangle.addPoint(200, 50);
 triangle.addPoint(250, 250);

 g2.setColor(Color.RED);
 g2.fill(triangle);

 g2.setStroke(new BasicStroke(5.0f,
 BasicStroke.CAP_BUTT,
 BasicStroke.JOIN_ROUND));
 g2.setColor(Color.BLACK);
 g2.draw(triangle);

Gestrichelte Linien
Um gestrichelte Linien zu erzeugen, müssen Sie ein Array von float-Werten definieren, die
angeben, wie lang die sichtbaren und nichtsichtbaren Segmente der Linie sein sollen. Dieses
Array übergeben Sie zusammen mit der Angabe, ab welchem Punkt die Strichelung beginnen
soll, als fünftes und sechstes Argument an den BasicStroke-Konstruktor. (Das vierte Argument
ist für eine etwaige Miter-Verbindung und muss größer oder gleich 1.0 sein.)

public void paintComponent(Graphics g) {
 super.paintComponent(g);

 // Java-2D verfügbar machen
 Graphics2D g2 = (Graphics2D) g;

Endpunktstile:

CAP_BUTT keine Endpunkte

CAP_ROUND runde Endpunkte

CAP_SQUARE quadratische Endpunkte

Kreuzungspunktstile:

JOIN_MITER verbinde Segmente über ihre äußeren Kanten

JOIN_ROUND verbinde Segmente durch gerundete Ecken

JOIN_BEVEL verbinde Segmente durch eine gerade Linie

Tabelle 40: End- und Kreuzungspunktstile

>> Grafik und Multimedia 433

Gr
af

ik
, M

ul
tim

ed
ia

 // Blauer Kreis mit gestricheltem 5-Pixel-Rahmen
 g2.setColor(Color.BLUE);
 g2.fillOval(280, 60, 100, 100);

 float[] dashs = {20.0f, 5.0f};
 g2.setStroke(new BasicStroke(5.0f,
 BasicStroke.CAP_BUTT,
 BasicStroke.JOIN_ROUND, 1.0f,
 dashs, 0.0f));
 g2.setColor(Color.BLACK);
 g2.drawOval(280, 60, 100, 100);

155 Zeichnen mit Füllmuster und Farbverläufen
Mit Java2D können Sie mit Füllmustern und Gradienten zeichnen.

Um die Vorzüge von Java2D nutzen zu können, müssen Sie das Graphics-Objekt, mit dem Sie
arbeiten, in ein Graphics2D-Objekt umwandeln:

public void paintComponent(Graphics g) {
 super.paintComponent(g);

 Graphics2D g2 = (Graphics2D) g;

Die Typumwandlung ist für alle Swing-Komponenten möglich.

Füllungen
In Java2D können Sie nicht nur mit einzelnen Farbtönen, sondern auch mit Mustern und Gra-
dienten, d.h. Farbübergängen, malen. Die Methode, die das zu verwendende Füllmuster ein-
richtet, lautet:

void setPaint(Paint p)

Als Argument erwartet die Methode ein Objekt, dessen Klasse die Schnittstelle Paint imple-
mentiert. Vordefinierte Java-Klassen aus java.awt, die diese Voraussetzung erfüllen, sind

� Color – zum Zeichnen mit einem einzelnen Farbton (entspricht dem Aufruf von setColor()).

Abbildung 83: Grafische Elemente mit unterschiedlichen Strichstilen

>> Zeichnen mit Füllmuster und Farbverläufen434
Gr

af
ik

, M
ul

tim
ed

ia

� TexturePaint – zum Zeichnen mit einem Muster.

� GradientPaint – zum Zeichnen mit Farbübergängen.

Füllmuster (TexturePaint)
Das Muster wird dem TexturePaint-Konstruktor in Form einer BufferedImage-Instanz überge-
ben. Das zweite Argument ist ein Rectangle2D-Rechteck, das angibt, welche Abmaße die
»Kacheln« haben sollen, in die das Muster kopiert und mit denen die später zu zeichnenden
Formen ausgefüllt werden sollen.

public void paintComponent(Graphics g) {
 super.paintComponent(g);

 // Java-2D verfügbar machen
 Graphics2D g2 = (Graphics2D) g;

 // Rotes Dreieck mit Füllmuster
 Polygon triangle = new Polygon();
 triangle.addPoint(150, 250);
 triangle.addPoint(200, 50);
 triangle.addPoint(250, 250);

 try {
 // Bilddatei für Muster laden
 BufferedImage pattern = ImageIO.read(new File("pattern.gif"));

 // Füllmuster erzeugen
 TexturePaint tp = new TexturePaint(pattern,
 new Rectangle(0,0,10,10));

 // Füllmuster aktivieren
 g2.setPaint(tp);

 } catch(IOException e) {
 System.err.println("Bilddatei konnte nicht geoeffnet werden");
 }
 g2.fill(triangle);

 g2.setStroke(new BasicStroke(5.0f,
 BasicStroke.CAP_BUTT,
 BasicStroke.JOIN_ROUND));
 g2.setColor(Color.BLACK);
 g2.draw(triangle);
}

Gradientenfüllung (GradientPaint)
Bei einer Gradientenfüllung wird langsam von einer Farbe an einem Punkt zu einer anderen
Farbe an einem anderen Punkt gewechselt. Dieser Wechsel kann sich zwischen diesen beiden
Punkten vollziehen (azyklisch) oder sich wiederholen (zyklisch). Die Bezugspunkte müssen
dabei nicht innerhalb des Objekts liegen, das gefüllt werden soll.

>> Grafik und Multimedia 435

Gr
af

ik
, M

ul
tim

ed
ia

Farbverläufe werden als Instanzen von GradientPaint erzeugt. Als Argumente übergeben Sie
dem Konstruktor die Koordinaten der Bezugspunkte, die beiden Farben und die Angabe, ob
azyklisch (false) oder zyklisch (true) gefüllt werden soll.

public void paintComponent(Graphics g) {
 super.paintComponent(g);

 // Java-2D verfügbar machen
 Graphics2D g2 = (Graphics2D) g;

 // Blauer Kreis mit Gradient
 g2.setColor(Color.BLUE);

 // Gradient definieren
 GradientPaint gp = new GradientPaint(280, 60, Color.BLUE,
 380, 160, Color.WHITE, false);
 // Gradient aktivieren
 g2.setPaint(gp);

 // gefüllten Kreis zeichnen
 g2.fillOval(280, 60, 100, 100);

 float[] dashs = {20.0f, 5.0f};
 g2.setStroke(new BasicStroke(5.0f,
 BasicStroke.CAP_BUTT,
 BasicStroke.JOIN_ROUND, 1.0f,
 dashs, 0.0f));
 g2.setColor(Color.BLACK);
 g2.drawOval(280, 60, 100, 100);
}

Abbildung 84: Grafische Elemente mit unterschiedlichen Füllungen

>> Zeichnen mit Transformationen436
Gr

af
ik

, M
ul

tim
ed

ia

156 Zeichnen mit Transformationen
Mit Java2D können Sie Grafikelemente vor dem Einzeichnen transformieren lassen.

Um die Vorzüge von Java2D nutzen zu können, müssen Sie das Graphics-Objekt, mit dem Sie
arbeiten, in ein Graphics2D-Objekt umwandeln:

public void paintComponent(Graphics g) {
 super.paintComponent(g);

 Graphics2D g2 = (Graphics2D) g;

Die Typumwandlung ist für alle Swing-Komponenten möglich.

Das Java2D-Koordinatensystem
In Java2D arbeiten Sie nicht mit den Pixelkoordinaten des Zielgerätekontextes, sondern mit
Pixel in einem eigenen, logischen Koordinatensystem, das allerdings per Voreinstellung 1:1
auf das Koordinatensystem des Zielgerätekontextes abgebildet wird.

Wenn Sie es wünschen, können Sie die Abbildung allerdings auch verändern, beispielsweise
durch Verschieben, Drehen, Scherung oder Skalieren.

Translation
Um alle nachfolgenden Zeichenausgaben automatisch um bestimmte Beträge in x- oder y-
Richtung zu verschieben, rufen Sie die Methode translate() auf:

void translate(double dx, double dy);

Das folgende Code-Fragment verschiebt den Ursprung in die Mitte der Komponente. Vor der
Verschiebung wird am alten Ursprung ein kleines Kreuz eingeblendet. Mit exakt dem gleichen
Code (wenn auch mit veränderter Farbe) wird nach der Verschiebung das Kreuz am neuen
Ursprung eingeblendet.

public void paintComponent(Graphics g) {
 super.paintComponent(g);

 // Java-2D verfügbar machen
 Graphics2D g2 = (Graphics2D) g;

 g2.setColor(Color.BLACK);
 g2.drawLine(-5, 0, 5, 0);
 g2.drawLine(0, -5, 0, 5);
 g2.drawLine(4, 4, 20, 20);
 g2.drawString("alter Ursprung", 25, 20);

 // Ursprung in Komponenten-Mitte verschieben
 g2.translate(getWidth()/2, getHeight()/2);

 g2.setColor(Color.RED);
 g2.drawLine(-5, 0, 5, 0);
 g2.drawLine(0, -5, 0, 5);
 g2.drawLine(4, 4, 20, 20);
 g2.drawString("neuer Ursprung", 25, 20);

}

>> Grafik und Multimedia 437

Gr
af

ik
, M

ul
tim

ed
ia

Rotation
Um alle nachfolgenden Zeichenausgaben automatisch um einen bestimmten Winkel (in
Bogenmaß) zu drehen, rufen Sie die Methode rotate() auf:

void rotate(double rad);

Die Drehung erfolgt immer um den Ursprung des Koordinatensystems. Negative Winkel dre-
hen entgegen dem Uhrzeigersinn, positive Werte im Uhrzeigersinn.

Das folgende Code-Fragment zeichnet zwei Rechtecke. Das zweite Rechteck ist gegenüber dem
ersten um 45 Grad entgegen dem Uhrzeigersinn gedreht.

public void paintComponent(Graphics g) {
 super.paintComponent(g);

 // Java-2D verfügbar machen
 Graphics2D g2 = (Graphics2D) g;

 // Ursprung in Panel-Mitte verschieben
 g2.translate(getWidth()/2, getHeight()/2);

 g2.setColor(Color.BLACK);
 g2.drawRect(0, 0, 200, 100);
 g2.drawString("Original", 10, 15);

 // Drehung des KOS um 45 Grad entgegen Uhrzeigersinn
 g2.rotate(Math.toRadians(-45));

 g2.setColor(Color.RED);
 g2.drawRect(0, 0, 200, 100);
 g2.drawString("Gedreht", 10, 15);

}

Scherung
Um alle nachfolgenden Zeichenausgaben automatisch in x- oder/und y-Richtung zu scheren,
rufen Sie die Methode shear() auf:

void shear(double shx, double shy);

Die Scherung erfolgt immer relativ zum Ursprung des Koordinatensystems. Eine Scherung in
x-Richtung um 2 bedeutet, dass zu jeder x-Koordinate das Zweifache des vertikalen Abstands
zum Ursprung hinzuaddiert wird: (x, y) -> (x + 2 * y, y). Eine Scherung um 0 führt zu keiner
Veränderung.

Das folgende Code-Fragment zeichnet zwei Rechtecke: eins links, eins rechts vom Ursprung.
Das zweite Rechteck wird mit Scherung 1 in x-Richtung gezeichnet.

public void paintComponent(Graphics g) {
 super.paintComponent(g);

 // Java-2D verfügbar machen
 Graphics2D g2 = (Graphics2D) g;

>> Zeichnen mit Transformationen438
Gr

af
ik

, M
ul

tim
ed

ia

 // Ursprung in Panel-Mitte verschieben
 g2.translate(getWidth()/2, getHeight()/2);

 g2.setColor(Color.BLACK);
 g2.drawRect(-150, -100, 100, 150);
 g2.drawString("Original", -140, 35);

 // Scherung der X-Achse
 g2.shear(1, 0);

 g2.setColor(Color.RED);
 g2.drawRect(100, -100, 100, 150);
 g2.drawString("Geschert", 110, 35);

}

Skalierung
Um alle nachfolgenden Zeichenausgaben automatisch um bestimmte Faktoren in x- oder y-
Richtung zu skalieren, rufen Sie die Methode scale() auf:

void scale(double sx, double sy);

Das folgende Code-Fragment zeichnet zwei Kreise um einen gemeinsamen Mittelpunkt. Der
zweite Kreis wird gegenüber dem ersten um den Faktor 2 in x- wie in y-Richtung vergrößert
gezeichnet.

public void paintComponent(Graphics g) {
 super.paintComponent(g);

 // Java-2D verfügbar machen
 Graphics2D g2 = (Graphics2D) g;

 // Ursprung in Panel-Mitte verschieben
 g2.translate(getWidth()/2, getHeight()/2);

 g2.setColor(Color.BLACK);
 g2.drawOval(-50, -50, 100, 100);
 g2.drawString("Original", 35, -40);

 // Skalierung (Vergrößerung um 2 in X- und Y-Richtung)
 g2.scale(2, 2);

 g2.setColor(Color.RED);
 g2.drawOval(-50, -50, 100, 100);
 g2.drawString("Vergrößert", 35, -40);

}

>> Grafik und Multimedia 439

Gr
af

ik
, M

ul
tim

ed
ia

157 Verfügbare Schriftarten ermitteln
Welche Schriftarten auf dem aktuellen System installiert sind und verwendet werden können,
ermitteln Sie mit Hilfe der getAvailableFontFamilyNames()-Methode der Klasse GraphicsEnvi-
ronment.

Die nachfolgend definierte Utility-Methode isFontAvailable() nimmt als Argument einen
Schriftfamilien-Namen wie »Arial«, »Times New Roman« oder »Verdana« entgegen und liefert
true zurück, wenn diese Schriftart verfügbar ist.

Abbildung 85: Gedrehtes Rechteck und gedrehter Text

E
x

k
u

rs Die Tranformationsmatrix
Alle Koordinatentransformationen werden addierend in eine interne Transformations-
matrix eingetragen. Wenn Sie also nacheinander eine Translation um 10 Pixel in x-
Richtung, eine Rotation um 0.1 Rad und eine weitere Translation um 50 Pixel in x-
Richtung vornehmen, erscheinen nachfolgende Zeichenausgaben um 0.1 Rad gedreht
und um 60 Pixel in x-Richtung verschoben!

Wenn Sie die ursprüngliche Koordinatentransformation wieder herstellen möchten,
speichern Sie diese vorab und rekonstruieren Sie sie mit setTransform():

// Ursprüngliche Transformation sichern
AffineTransform oldAT = g2.getTransform();

// Eigene Transformationen hinzufügen
g2.scale(0.5, 0,5);
...

// Ursprüngliche Transformation wiederherstellen
g2.setTransform(oldAT);

import java.awt.GraphicsEnvironment;

/**

Listing 200: Methode, die prüft, ob eine bestimmte Schriftart verfügbar ist

>> Dialog zur Schriftartenauswahl440
Gr

af
ik

, M
ul

tim
ed

ia

Im Beispielverzeichnis zu diesem Rezept finden Sie neben dem Start-Programm, welches über
die Kommandozeile einen Schriftartennamen entgegennimmt und mit Hilfe der obigen
Methode feststellt, ob die betreffende Schriftart verfügbar ist, noch ein weiteres Programm
PrintFonts.java, mit dem Sie die Liste der auf dem System installierten Fonts komplett aus-
geben können.

158 Dialog zur Schriftartenauswahl
Mit Hilfe der GraphicsEnvironment-Methode getAvailableFontFamilyNames() lässt sich nicht
nur prüfen, ob eine Schriftart, die Sie für eine Textausgabe oder den Text einer GUI-Kompo-
nente nutzen wollen, auf dem aktuellen System verfügbar ist. Sie können mit ihrer Hilfe auch
ein Listenfeld oder einen Dialog zur Schriftartenauswahl durch den Anwender einrichten.

 * Prüfen, ob der übergebene Font verfügbar ist
 */
public static boolean isFontAvailable(String fontName) {

 // Abfragen, welche Fonst auf System verfügbar sind
 GraphicsEnvironment ge =
 GraphicsEnvironment.getLocalGraphicsEnvironment();
 String fontNames[] = ge.getAvailableFontFamilyNames();

 // prüfen, ob Font in Liste vorhanden
 for(String s : fontNames)
 if (s.equals(fontName))
 return true;

 return false;

}

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

/*
 * Fontdialog.java - Dialog zur Auswahl einer Schriftart
 */
public class Fontdialog extends JDialog implements ActionListener {
 private Font chosenFont;

 private List fontList = new List();
 private List sizeList = new List();
 private JCheckBox btnBold = new JCheckBox();
 private JCheckBox btnItalic = new JCheckBox();
 private JButton btnOK = new JButton();
 private JButton btnCancel = new JButton();

Listing 201: Dialog zur Schriftartenauswahl

Listing 200: Methode, die prüft, ob eine bestimmte Schriftart verfügbar ist (Forts.)

>> Grafik und Multimedia 441

Gr
af

ik
, M

ul
tim

ed
ia

 /**
 * Konstruktor
 */
 public Fontdialog(JFrame f) {
 super(f);
 setTitle("Schriftart auswählen");
 setResizable(false);
 setSize(new Dimension(386, 265));
 setModal(true);
 getContentPane().setLayout(null);

 // Abfragen, welche Fonts auf System verfügbar sind
 GraphicsEnvironment ge =
 GraphicsEnvironment.getLocalGraphicsEnvironment();
 String fonts[] = ge.getAvailableFontFamilyNames();

 // Font-Liste mit auf System installierten Fonts füllen
 fontList.setBounds(new Rectangle(14, 10, 244, 159));
 for(int i = 0; i < fonts.length; ++i)
 fontList.add(fonts[i]);

 fontList.select(0);

 // Größen-Liste mit vordefinierten Größen füllen
 String sizes[] = {"8", "9", "10", "11", "12", "14", "16",
 "18", "20", "22", "24", "26", "28",
 "36", "48", "72" };
 sizeList.setBounds(new Rectangle(270, 10, 100, 100));
 for(int i = 0; i < sizes.length; ++i)
 sizeList.add(sizes[i]);
 sizeList.select(0);

 // Schalter für fett und kursiv
 btnBold.setBounds(new Rectangle(270, 120, 100, 25));
 btnBold.setFont(new java.awt.Font("Dialog", 1, 12));
 btnBold.setText("Fett");
 btnItalic.setBounds(new Rectangle(270, 150, 100, 25));
 btnItalic.setFont(new java.awt.Font("Dialog", 2, 12));
 btnItalic.setText("Kursiv");

 // Schalter zum Verlassen des Dialogs
 btnOK.setBounds(new Rectangle(63, 204, 115, 25));
 btnOK.setText("OK");
 getRootPane().setDefaultButton(btnOK);
 btnOK.addActionListener(this);

 btnCancel.setBounds(new Rectangle(210, 204, 115, 25));
 btnCancel.setText("Abbrechen");
 btnCancel.addActionListener(this);

Listing 201: Dialog zur Schriftartenauswahl (Forts.)

>> Dialog zur Schriftartenauswahl442
Gr

af
ik

, M
ul

tim
ed

ia

Der Dialog besteht aus zwei List-Instanzen, über die der Anwender Schriftart und Schriftgröße
auswählen kann. Zwei JCheckBox-Schalter erlauben die Aktivierung von Fett- und Kursivschrift.
Drückt der Anwender den OK-Schalter, werden die Einstellungen für Schriftart, -größe und -stil
zusammengetragen und es wird ein entsprechendes Font-Objekt erzeugt. Das Font-Objekt kann
jederzeit (solange der Dialog besteht) mit der Dialog-Methode getFont() abgefragt werden.

Das Start-Programm zu diesem Rezept zeigt ein einfaches JTextArea-Textfeld. Über den Menü-
befehl DIALOG/SCHRIFTARTEN kann eine Instanz von FontDialog eingeblendet und eine Schrift
für das Textfeld ausgewählt werden. (Hinweis: Die Instanzierung des Dialogs erfolgt im Kon-
struktor des Fensters.)

 getContentPane().add(fontList, null);
 getContentPane().add(sizeList, null);
 getContentPane().add(btnBold, null);
 getContentPane().add(btnItalic, null);
 getContentPane().add(btnCancel, null);
 getContentPane().add(btnOK, null);
 }

 /**
 * Ereignisbehandlung für Schalter
 */
 public void actionPerformed(ActionEvent e) {
 String label = e.getActionCommand();

 if(label.equals("OK")) {
 String name = fontList.getSelectedItem();
 int size = Integer.parseInt(sizeList.getSelectedItem());
 int style = Font.PLAIN;
 if (btnBold.isSelected())
 style |= Font.BOLD;
 if (btnItalic.isSelected())
 style |= Font.ITALIC;

 chosenFont = new Font(name, style, size);
 setVisible(false);

 } else if(label.equals("Abbrechen")) {
 chosenFont = null;
 setVisible(false);
 }
 }

 /**
 * Auf Anfrage den ausgewählten Font zurückliefern
 */
 public Font getFont() {
 return chosenFont;
 }
}

Listing 201: Dialog zur Schriftartenauswahl (Forts.)

>> Grafik und Multimedia 443

Gr
af

ik
, M

ul
tim

ed
ia

159 Text mit Schattenwurf zeichnen
Eine einfache Technik, Text mit Schattenwurf zu zeichnen, ist das zweimalige Zeichnen des
Texts: einmal als eigentlicher Text und dann noch einmal, ein wenig horizontal und vertikal
versetzt und in meist blasserer Farbe, als Schatten. Zu beachten ist lediglich, dass der Schatten
zuerst und dann der eigentliche Text gezeichnet werden muss:

miFonts.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {

 // Schriftarten-Dialog anzeigen
 fontDialog.setLocation((getLocation().x + 100),
 (getLocation().y + 100));
 fontDialog.setVisible(true);

 // Schriftart abfragen
 Font f = fontDialog.getFont();

 // Schriftart für JTextArea übernehmen
 if (f != null)
 textpane.setFont(f);

 }
});

Listing 202: Aus Start.java – Ereignisbehandlung zu Dialog/Schriftarten-Befehl

Abbildung 86: Dialog zur Schriftauswahl

>> Text mit Schattenwurf zeichnen444
Gr

af
ik

, M
ul

tim
ed

ia Als Argumente übergeben Sie der drawShadowText()-Methode

� den auszugebenden Text,

� das zum Zeichnen zu verwendende Graphics-Objekt,

� die Koordinate der Textausgabe,

� die horizontale und vertikale Verschiebung des Schattens,

� die Farben für Text und Schatten.

Ein typischer Aufruf sähe damit etwa wie folgt aus:
public void paintComponent(Graphics g) {
 super.paintComponent(g);

 g.setFont(new Font("Georgia", Font.BOLD, 40));

 // Text mit Schatten zeichnen
 Drawing.drawShadowText(text, g,
 30, 60, 5, 6,
 Color.BLACK, Color.LIGHT_GRAY);
}

/**
 * Text mit Schatten zeichnen
 */
public static void drawShadowText(String s, Graphics g,
 int x, int y,
 int dx, int dy,
 Color textColor, Color shadowColor) {

 // Zuerst den Schatten zeichnen
 g.setColor(shadowColor);
 g.drawString(s, x+dx, y+dy);

 // Dann den Text zeichnen
 g.setColor(textColor);
 g.drawString(s, x, y);
}

Listing 203: Methode, die Text mit Schatten zeichnet

Abbildung 87: Text mit Schattenwurf

>> Grafik und Multimedia 445

Gr
af

ik
, M

ul
tim

ed
ia

160 Freihandzeichnungen
Es gibt verschiedene Techniken, wie man das Zeichnen von Freihandlinien unterstützen kann.
Der in diesem Rezept verfolgte Ansatz sieht so aus:

� Die gesamte Unterstützung für das Zeichnen von Freihandlinien ist in einer von JPanel
abgeleiteten Klasse zusammengefasst.

� Wenn der Anwender die Maustaste drückt (MouseListener.mousePressed-Ereignis) oder die
Maus mit gedrückter Maustaste bewegt (MouseMotionListener.mouseDragged-Ereignis), wird
an der Position der Maus ein Punkt gezeichnet. Gleichzeitig werden die Koordinaten des
Punkts in einer ArrayList<Point>-Collection gespeichert.

� In der paintComponent()-Methode werden die Punkte aus der ArrayList<Point>-Collection
in das Panel gezeichnet. Auf diese Weise wird die Freihandzeichnung rekonstruiert, wenn
die Anwendung mit dem Panel nach einer Minimierung oder Verdeckung wieder in den
Vordergrund geholt wird.

� Die Panel-Klasse stellt eine Methode clear() zum Löschen der Zeichnung bereit.

A
ch

tu
n

g Um einen guten Schatteneffekt zu erzielen, sollte die Schrift nicht zu schmal und der
Versatz des Schattens im Vergleich zur Schriftbreite nicht zu groß sein.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.util.ArrayList;

/**
 * Panel für Freihandzeichnungen
 */
public class FreehandPanel extends JPanel {

 // Collection zum Speichern der gezeichneten Punkte
 private ArrayList<Point> points = new ArrayList<Point>(37);

 /**
 * Der Konstruktor implementiert das Maushandling und setzt
 * die Hintergrundfarbe
 */
 FreehandPanel() {

 setBackground(Color.black);

 // Wenn Maus gedrückt, an Mausposition Punkt zeichnen
 addMouseListener(new MouseAdapter() {

Listing 204: FreehandPanel.java – eine Panel-Klasse, in die der Benutzer mit der Maus
zeichnen kann

>> Freihandzeichnungen446
Gr

af
ik

, M
ul

tim
ed

ia

 private Point p;

 public void mousePressed(MouseEvent e) {

 // Punkt speichern
 Point p = new Point(e.getX(), e.getY());
 points.add(p);

 // An Mausposition Punkt zeichnen
 Graphics g = ((JPanel) e.getComponent()).getGraphics();

 g.setColor(Color.WHITE);
 g.fillRect(p.x, p.y, 2, 2);

 g.dispose();
 }
 });

 // Wenn Maus mit gedrückter Maustaste bewegt wird, an Mausposition
 // Punkt zeichnen
 addMouseMotionListener(new MouseMotionAdapter() {
 private Point p;

 public void mouseDragged(MouseEvent e) {

 // Punkt speichern
 Point p = new Point(e.getX(), e.getY());
 points.add(p);

 // An Mausposition Punkt zeichnen
 Graphics g = ((JPanel) e.getComponent()).getGraphics();

 g.setColor(Color.WHITE);
 g.fillRect(p.x, p.y, 2, 2);

 g.dispose();
 }
 });
 }

 /**
 * Löscht die Zeichnung
 */
 public void clear() {

 // Die gespeicherten Punkte löschen
 points.clear();

Listing 204: FreehandPanel.java – eine Panel-Klasse, in die der Benutzer mit der Maus
zeichnen kann (Forts.)

>> Grafik und Multimedia 447

Gr
af

ik
, M

ul
tim

ed
ia

 // Neuzeichnen
 repaint();
 }

 /**
 * In paintComponent() die Freihandzeichnung bei Bedarf rekonstruieren
 */
 public void paintComponent(Graphics g) {
 super.paintComponent(g);

 g.setColor(Color.WHITE);
 for(Point p : points) {
 g.fillRect(p.x, p.y, 2, 2);
 }
 }
}

Abbildung 88: Frei gezeichneter Charakterkopf

Listing 204: FreehandPanel.java – eine Panel-Klasse, in die der Benutzer mit der Maus
zeichnen kann (Forts.)

>> Bilder laden und anzeigen448
Gr

af
ik

, M
ul

tim
ed

ia

161 Bilder laden und anzeigen
Das Laden und Anzeigen von Bildern ist grundsätzlich nicht schwierig. Dass wir diesem
Thema ein eigenes Rezept widmen, liegt nicht nur daran, dass es sich um eine wichtige Grund-
technik handelt, sondern auch an den vielfältigen Facetten, mit denen sich das Thema variie-
ren lässt.

Bilder laden
Es gibt In Java viele Wege, Bilder zu laden. Der traditionelle Weg führt über die Methode get-
Image(), die für Anwendungen von der Klasse Toolkit und für Applets von der Klasse Applet
angeboten wird.

In beiden Fällen liefert die Methode direkt nach Aufruf ein Image-Objekt zurück, das zwar mit
einer Bilddatei verbunden ist, deren Daten aber noch nicht geladen wurden. Dies geschieht erst
bei der ersten Verwendung bzw. nach Anstoß über einen MediaTracker (siehe auch Rezept 244):

import java.awt.*;
...

// Bild laden mit Toolkit und MediaTracker
Image pic = Toolkit.getDefaultToolkit().getImage("demo.jpg");

// Bilder zur Überwachung des Ladevorganges an einen MediaTracker übergeben
MediaTracker tracker = new MediaTracker(this);
tracker.addImage(pic, 1);

// Ladevorgang im Hintergrund starten, ohne zu warten.
try {
 tracker.waitForID(1);
} catch (InterruptedException ignore) {
}

Seit dem SDK 1.4 gibt es zudem die Klasse ImageIO, mit deren Hilfe Bilder einfach und bequem
durch Übergabe eines File-, InputStream- oder URL-Objekts geladen werden können:

import javax.imageio.ImageIO;
...

try {
 Image pic = ImageIO.read(new File("background.jpg"));

} catch(IOException e) {
 e.printStackTrace();
}

Das vom ImageIO.read() zurückgelieferte Bildobjekt ist vom Typ BufferedImage, einer von
Image abgeleiteten Klasse.

H
in

w
e

is Eine Besonderheit der getImage()-Version der Klasse Toolkit ist, dass die geladenen
Bilder in einem Cache zwischengespeichert und bei Bedarf wieder verwendet werden.
Dies bringt Laufzeitvorteile, wenn ein- und dasselbe Bild mehrfach angefordert wird,
ist aber unnötig, wenn ein Bild nur einmal geladen und angezeigt wird.

>> Grafik und Multimedia 449

Gr
af

ik
, M

ul
tim

ed
ia

Bilder anzeigen
Bilder werden üblicherweise in JPanel-Instanzen angezeigt (außer es handelt sich um Symbole
für Schalter etc.). Da es keine Möglichkeit gibt, JPanel-Instanzen ein Bild direkt als Hinter-
grundbild zuzuweisen (siehe auch Rezept 117), müssen Sie eine eigene Panel-Klasse ableiten
und in der paintComponent()-Methode das Bild in das Panel zeichnen:

public class ImagePanel extends javax.swing.JPanel {
 private Image image;

 public ImagePanel(Image image) {
 this.image = image;
 }

 // Bild in Panel zeichnen
 public void paintComponent(Graphics g) {
 g.drawImage(image, 0, 0, this.getWidth(), this.getHeight(), this);
 }
}

Die Gretchenfrage dabei lautet: Soll das Bild an die Größe des Panels oder umgekehrt das
Panel an die Größe des Bilds angepasst werden. Im ersteren Fall übergeben Sie der draw-
Image()-Methode als Breite und Höhe des Zielbereichs (4. und 5. Parameter) die Breite und
Höhe des Panels. Soll dagegen das Panel an die Bildgröße angepasst werden, übergeben Sie
Breite und Höhe des Bilds:

g.drawImage(image, 0, 0,
 image.getWidth(this), image.getHeight(this), this);

Die nachfolgend definierte Klasse ImagePanel kann beides. Ihr Konstruktor übernimmt als
zweites Argument neben dem anzuzeigenden Bild ein Flag, welches angibt, ob das Bild an die
Panel-Größe angepasst (true) oder vollständig angezeigt (false) werden soll. Zur Unterstüt-
zung von Layout-Manager wird die Methode getPreferredSize() überschrieben.

import java.awt.*;
import javax.swing.JPanel;

/**
 * Panel zur Darstellung von Bildern
 */
public class ImagePanel extends javax.swing.JPanel {
 private Image image;
 private boolean scale;

 public ImagePanel(Image image, boolean scale) {
 this.image = image;
 this.scale = scale;
 }

 /**
 * Bild in Panel zeichnen

Listing 205: ImagePanel.java – Panel-Klasse zum Anzeigen von Bildern

>> Bilder laden und anzeigen450
Gr

af
ik

, M
ul

tim
ed

ia

Um ein Bild in einer ImagePanel-Instanz anzuzeigen, rufen Sie einfach den Konstruktor auf,
übergeben das anzuzeigende Image und die gewünschte Skalierung. Anschließend müssen Sie
das ImagePanel-Objekt gegebenenfalls noch positionieren (übergeordneter Container arbeitet
ohne Layout-Manager) und dimensionieren (Bild wird an Panel-Größe angepasst). Dann bet-
ten Sie es in den Container ein:

// ImagePanel einrichten und in ContentPane einbetten
ImagePanel imagePanel = new ImagePanel(pic, true);
imagePanel.setBounds(10,10, 100, 100);
getContentPane().add(imagePanel);

Das Programm zu diesem Rezept demonstriert verschiedene Möglichkeiten der Einbettung von
Bildern in GUI-Oberflächen. Beim Aufruf teilen Sie dem Programm mit, ob das ImagePanel
von einem FlowLayout-Manager (erstes Argument = »j«) oder direkt positioniert und dimen-
sioniert werden soll (»n«) und ob das ImagePanel an die Größe des Bilds (zweites Argument =
»n«) angepasst werden oder die eigene Größe behalten soll (»j«).

 */
 public void paintComponent(Graphics g) {

 if(scale)
 g.drawImage(image, 0, 0, this.getWidth(), this.getHeight(), this);
 else
 g.drawImage(image, 0, 0,
 image.getWidth(this), image.getHeight(this), this);
 }

 /**
 * Falls ein Layout-Manager eingesetzt wird, die bevorzugte Größe
 * zurückliefern
 */
 public Dimension getPreferredSize() {
 if(scale)
 return new Dimension(this.getWidth(), this.getHeight());
 else
 return new Dimension(image.getWidth(this), image.getHeight(this));
 }
}

Listing 205: ImagePanel.java – Panel-Klasse zum Anzeigen von Bildern (Forts.)

>> Grafik und Multimedia 451

Gr
af

ik
, M

ul
tim

ed
ia

Abbildung 89: java Program j j – das ImagePanel wird von einem FlowLayout-Manager
zentriert, das Bild wird auf die ImagePanel-Größe skaliert.

Abbildung 90: java Program j n – das ImagePanel wird von einem FlowLayout-Manager
zentriert, seine Größe wird an die Bildgröße angepasst (hier sogar größer
als das Fenster).

>> Bilder laden und anzeigen452
Gr

af
ik

, M
ul

tim
ed

ia

Bilder mit Datei-Dialog öffnen und anzeigen
Wenn das anzuzeigende Bild wechseln kann (beispielsweise, weil es vom Anwender über einen
Datei-Dialog ausgewählt wurde), müssen Sie

� vor dem Laden die alte ImagePanel-Instanz entfernen,

� nach dem Laden den Layout-Manager aktivieren und das Fenster neu zeichnen.

Abbildung 91: java Program n j – das ImagePanel wird ohne Layout-Manager
direkt positioniert und dimensioniert (setBounds()-Aufruf); das Bild
wird auf die ImagePanel-Größe skaliert.

Abbildung 92: java Program n n – das ImagePanel wird ohne Layout-Manager
direkt positioniert und dimensioniert (setBounds()-Aufruf); das Bild
wird nicht skaliert, weswegen nur die linke obere Ecke zu sehen ist.

>> Grafik und Multimedia 453

Gr
af

ik
, M

ul
tim

ed
ia

Diashows
Wenn Sie mehrere Bilder laden wollen, die mehrfach, an verschiedenen Stellen oder abwech-
selnd (Diashow) angezeigt werden sollen, können Sie sich entweder der Toolkit-Methode
getImage() bedienen oder die Bilder mit ImageIO.read() laden und selbst in einem Cache zwi-
schenspeichern. Genau dies macht die nachfolgend abgedruckte Klasse ImageManager (die im
Übrigen auch für Applets verwendet werden kann, siehe Rezept 244).

if (JFileChooser.APPROVE_OPTION == openDialog.showOpenDialog(this)) {

 // Datei abfragen
 File f = openDialog.getSelectedFile();

 if(f.isFile() && f.canRead()) {

 // hier wird das Bild geladen
 try {
 pic = ImageIO.read(f);

 // letztes Bild vorab entfernen
 if(imagePanel != null)
 getContentPane().remove(imagePanel);

 // ImagePanel einrichten und in ContentPane einbetten
 imagePanel = new ImagePanel(pic, scale);
 imagePanel.setBounds(10,10, 100, 100);
 getContentPane().add(imagePanel);

 // Fenster aktualisieren
 getContentPane().doLayout();
 repaint();

 } catch (IOException e) {
 System.err.println("Fehler beim Öffnen von " + this.file.getName());
 }
 }
}

Listing 206: Aus Program_withOpen.java (siehe Unterverzeichnis mit Datei-Dialog)

H
in

w
e

is Mehr Informationen zum Öffnen von Dateien mit dem Datei-Dialog finden Sie in
Rezept 142.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

Listing 207: ImageManager-Klasse, die Bilder lädt und verwaltet

>> Bilder laden und anzeigen454
Gr

af
ik

, M
ul

tim
ed

ia

import java.io.*;
import javax.imageio.ImageIO;
import java.util.Vector;
import java.applet.Applet;

public class ImageManager {
 private Vector<Image> images = new Vector<Image>(5);
 private MediaTracker tracker;
 private int current = 0;
 private boolean isApplet = false;

 /*
 * Konstruktor für Applets
 */
 ImageManager(JApplet applet, String... imageFilenames) {
 // ... siehe Rezept 244
 }

 /*
 * Konstruktor für GUI-Anwendungen
 */
 ImageManager(JFrame frame, String... imageFilenames) {
 Image pic = null;

 // images-Collection füllen
 for (String filename : imageFilenames) {

 // Image-Objekt erzeugen und in Vector-Collection speichern
 try {
 pic = ImageIO.read(new File(filename));
 if (pic != null)
 images.add(pic);
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }

 /*
 * Index des aktuellen Bildes zurückliefern
 */
 public int currentImage() {
 return current;
 }

 /*
 * Index auf nächstes Bild vorrücken und zurückliefern
 */
 public int nextImage() {

Listing 207: ImageManager-Klasse, die Bilder lädt und verwaltet (Forts.)

>> Grafik und Multimedia 455

Gr
af

ik
, M

ul
tim

ed
ia

Der Konstruktor, der über den zweiten Parameter ein Array oder eine Auflistung von Bild-
dateinamen übernimmt, erzeugt für jede Bilddatei ein Image-Objekt und speichert diese in
einer internen Vector-Collection.

Das Pendant zum Konstruktor, der die Bilder lädt, ist die Methode getImage(), die auf Anfrage
ein geladenes Image aus der internen Vector-Collection zurückliefert.

Ansonsten unterhält die Klasse noch einen internen Positionszeiger current, der in Kombina-
tion mit den Methoden currentImage(), nextImage() und previousImage() zum Durchlaufen
der Bildersammlung verwendet werden kann.

Das Programm Diashow.java nutzt die Klasse ImageManager zur Implementierung einer ein-
fachen Bildergalerie.

 current++;
 if (current >= images.size())
 current = 0;

 return current;
 }

 /*
 * Index auf vorheriges Bild zurücksetzen und zurückliefern
 */
 public int previousImage() {
 current--;
 if (current < 0)
 current = images.size()-1;

 return current;
 }

 /*
 * Bild mit dem angegebenen Index zurückliefern
 */
 public Image getImage(int index) {

 if (index >= 0 && index <= images.size()) {

 // Wenn Image für Applet ist
 // ... siehe Rezept 244

 return images.get(index);
 }

 return null;
 }

}

Listing 207: ImageManager-Klasse, die Bilder lädt und verwaltet (Forts.)

>> Bilder laden und anzeigen456
Gr

af
ik

, M
ul

tim
ed

ia

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Diashow extends JFrame {
 ImageManager images; // Bildersammlung
 DisplayPanel display; // Panel zum Anzeigen der Bilder
 JPanel top;
 JPanel bottom;

 /*
 * Bildersammlung füllen und ContentPane einrichten
 */
 public Diashow() {
 setTitle("Bildbetrachter");
 images = new ImageManager(this, "pic01.jpg", "pic02.jpg", "pic03.jpg");

 getContentPane().add(new ContentPane());

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 /*
 * Zweiteilige ContentPane für eine Bildergalerie
 * oben: DisplayPanel
 * unten: Navigationsschalter
 */
 class ContentPane extends JPanel {

 public ContentPane() {
 setLayout(new BorderLayout());

 // Anzeigebereich
 top = new JPanel(new FlowLayout(FlowLayout.CENTER));
 display = new DisplayPanel();
 top.add(display);

 // Navigationsschalter
 bottom = new JPanel(new FlowLayout(FlowLayout.CENTER));
 JButton btnPrevious = new JButton("Voriges Bild");
 btnPrevious.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {

 // Vorangehendes Bild anzeigen lassen
 display.setImage(images.getImage(images.previousImage()));
 top.doLayout();
 }
 });
 JButton btnNext = new JButton("Nächstes Bild");

Listing 208: TheApplet.java implementiert mit Hilfe von ImageManager eine
Bildergalerie.

>> Grafik und Multimedia 457

Gr
af

ik
, M

ul
tim

ed
ia

 btnNext.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {

 // Nächstes Bild anzeigen lassen
 display.setImage(images.getImage(images.nextImage()));
 top.doLayout();
 }
 });
 bottom.add(btnPrevious);
 bottom.add(btnNext);

 add(top, BorderLayout.CENTER);
 add(bottom, BorderLayout.SOUTH);

 // Anfangs das erste (aktuelle) Bild aus der Bildersammlung anzeigen
 display.setImage(images.getImage(images.currentImage()));
 }
 }

 /*
 * Panel zum Anzeigen der Bilder
 *
 */
 private class DisplayPanel extends JPanel {
 Image pic = null;

 /*
 * Neues Bild anzeigen
 */
 public void setImage(Image pic) {
 this.pic = pic;

 // Größe des Panels an Bild anpassen
 this.setSize(pic.getWidth(this), pic.getHeight(this));
 this.setPreferredSize(new Dimension(pic.getWidth(this),
 pic.getHeight(this)));

 // Neuzeichnen
 repaint();
 }

 public void paintComponent(Graphics g) {
 super.paintComponent(g);

 // Bild in Panel zeichnen
 if (pic != null)
 g.drawImage(pic, 0, 0, pic.getWidth(this),
 pic.getHeight(this), this);

Listing 208: TheApplet.java implementiert mit Hilfe von ImageManager eine
Bildergalerie. (Forts.)

>> Bilder pixelweise bearbeiten (und speichern)458
Gr

af
ik

, M
ul

tim
ed

ia

162 Bilder pixelweise bearbeiten (und speichern)
Es gibt zwei Wege, wie Sie in Bilder, d.h. Image-Objekte, zeichnen können:

� Über das Graphics-Objekt des Image-Objekts

� Über die setData()- und setRGB()-Methoden von BufferedImage

Im ersten Fall lassen Sie sich von der getGraphics()-Methode ein Graphics-Objekt zurück-
liefern und zeichnen dann mit den üblichen Grafikmethoden in das Image.

Graphics g = image.getGraphics();
g.setColor(Color.WHITE);
g.fillRect(100,100,100,100);

// selbst erzeugte Graphics-Objekte müssen entsorgt werden
g.dispose();

 }
 }

 public static void main(String args[]) {
 Diashow frame = new Diashow();
 frame.setSize(600,500);
 frame.setLocation(300,300);
 frame.setVisible(true);
 }

}

Abbildung 93: Diashow

Listing 208: TheApplet.java implementiert mit Hilfe von ImageManager eine
Bildergalerie. (Forts.)

>> Grafik und Multimedia 459

Gr
af

ik
, M

ul
tim

ed
ia

Einzelne Pixel einfärben
Obwohl Graphics keine eigene Methode zum Einfärben einzelner Pixel vorsieht, ist es dennoch
möglich: Sie zeichnen einfach ein ausgefülltes Rechteck der Breite und Höhe 1.

Etwas eleganter geht es, wenn es sich bei dem Image um ein Objekt der abgeleiteten Klasse
BufferedImage handelt. Dann brauchen Sie nur deren setRGB()-Methode aufrufen, der Sie die
Koordinaten des Pixels und den RGB-Wert der gewünschten Farbe übergeben:

image.setRGB(i, j, (Color.BLUE).getRGB());

Bilder speichern
Wenn Sie mit BufferedImage-Objekten arbeiten, profitieren Sie zudem davon, dass Sie Ihre
Bilder mit Hilfe der ImageIO.write()-Methode als Datei auf die Festplatte speichern können.

BufferedImage image;
...

try {
 ImageIO.write(image, "jpg", new File("dateiname.jpg"));
} catch (IOException e) {
 e.printStackTrace();
}

Als zweiten Parameter übergeben Sie einen String mit der Bezeichnung für das gewünschte
Speicherformat (beispielsweise »JPEG«, »jpeg«, »JPG«, »jpg«, »png«, »gif«, »BMP«, »bmp«, »BMP«).
Wenn Sie möchten, können Sie vorab prüfen, ob das gewählte Speicherformat auf dem aktuel-
len Rechner unterstützt wird, sprich ob ein ImageWriter für das Format verfügbar ist:

try {
 Iterator iter = ImageIO.getImageWriters(new ImageTypeSpecifier(image),
 "jpeg");
 if (iter.hasNext())
 ImageIO.write(image, "JPEG", new File("dateiname.jpg"));

} catch (IOException e) {
 e.printStackTrace();
}

Das Start-Programm zu diesem Rezept demonstriert anhand einer Fraktalberechnung (berech-
net wird eine Julia-Menge) die pixelweise Einfärbung eines BufferedImage. Wenn der Benutzer

H
in

w
e

is Von der ImageIO-Methode getWriterFormatNames() können Sie sich eine Liste der auf
einem System registrierten ImageWriter ausgeben lassen:

for(String s : ImageIO.getReaderFormatNames())
 System.out.println(s);

H
in

w
e

is Um ein Image-Objekt in ein BufferedImage-Objekt umzuwandeln, besorgen Sie sich von
getGraphics() eine Referenz auf das Graphics-Objekt des BufferedImage und kopieren
Sie dann mittels drawImage() den Inhalt des Image-Objekts in das BufferedImage-Objekt.
(Überlegen Sie sich aber, ob Sie nicht besser gleich alle Image-Vorkommen in Buffered-
Image umwandeln.)

>> Bilder pixelweise bearbeiten (und speichern)460
Gr

af
ik

, M
ul

tim
ed

ia

die Berechnung startet, wird ein neues BufferedImage-Objekt erzeugt, das dieselben Abmaße
hat wie das Panel, in dem das Fraktal angezeigt wird. Dann wird der Thread für die Fraktal-
berechnung in Gang gesetzt:

class Start extends JFrame implements Runnable {
 private Thread fractal;
 private DisplayPanel display;
 private JButton btnStart;
 private JButton btnSave;
 private BufferedImage image = null;

 public Start() {
 ...

 // Fraktalberechnung starten und abbrechen
 btnStart.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {

 if(fractal == null) {

 // Image-Objekt erzeugen
 image = new BufferedImage(display.getWidth(),
 display.getHeight(),
 BufferedImage.TYPE_INT_RGB);

 // Fraktalberechnung starten
 fractal = new Thread(Start.this);
 fractal.start();
 ...

In der run()-Methode des Threads werden die Farbwerte zur Einfärbung der Pixel berechnet.
Mit der errechneten Farbe werden dann die Pixel im Panel und im BufferedImage gesetzt.

 /**
 * Julia-Menge berechnen und in display-Panel sowie image einzeichnen
 */
 public void run() {
 Graphics g = display.getGraphics();

 int width = display.getWidth();
 int height = display.getHeight();
 ...

 // Fraktal berechnen und einzeichnen
 for(int i = 0; i < width; i++) {
 for(int j = 0; j < height; j++) {
 ...

 if(Math.abs(x) < 1)
 c = Color.RED;
 else
 c = Color.BLACK;

 // Pixel in Panel einfärben
 g.setColor(c);

>> Grafik und Multimedia 461

Gr
af

ik
, M

ul
tim

ed
ia

 g.fillRect(i,j,1,1);

 // Pixel in Image einfärben
 image.setRGB(i, j, c.getRGB());
 }
 ...

Drückt der Anwender nach Abschluss der Berechnung den Speichern-Schalter, wird das
Fraktal als JPEG-Datei gespeichert:

 // Fraktal als "fractal.jpg" speichern
 btnSave.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {

 try {

 Iterator iter = ImageIO.getImageWriters(
 new ImageTypeSpecifier(image),
 "jpeg");
 if (iter.hasNext())
 ImageIO.write(image, "JPEG", new File("fractal.jpg"));

 } catch (IOException ioe) {
 ioe.printStackTrace();
 }

 }
 });

Listing 209: Aus Start.java

Abbildung 94: Julia-Menge

>> Bilder drehen462
Gr

af
ik

, M
ul

tim
ed

ia

163 Bilder drehen
Leider gibt es in Java keine direkte Unterstützung für das Drehen von Bildern. Es gibt aber in
Java2D die Möglichkeit, das Koordinatensystem des Grafikkontextes zu drehen und zu ver-
schieben – und damit ist es möglich, gedrehte Kopien zu erstellen (oder auch das Original zu
drehen, indem man zum Schluss die Kopie in das Original zurückschreibt).

Um beispielsweise ein Bild um 90 Grad zu drehen, gehen Sie wie folgt vor:

1. Erzeugen Sie ein neues BufferedImage-Objekt, das so breit ist wie das zu drehende Bild
hoch (und umgekehrt so hoch wie das Original breit).

2. Besorgen Sie sich ein Graphics2D-Objekt für den Grafikkontext des BufferedImage-Objekts.

3. Verschieben Sie das Koordinatensystem des Graphics2D-Objekts um die Breite des Originals
nach unten und drehen Sie es dann 90 Grad um den Ursprung.

4. Kopieren Sie den Inhalt des Originalbilds in das BufferedImage-Objekt.

Die Kombination aus Verschiebung und Drehung des Koordinatenursprungs führt dazu, dass der
einkopierte Bildinhalt wieder im ursprünglichen Anzeigebereich liegt (siehe Abbildung 95).

Das Start-Programm zu diesem Rezept zeigt Original und gedrehte Kopie nebeneinander in
eigenen Panels an, wobei die Kopie anfangs durch ein leeres, nichtgedrehtes Bild repräsentiert
wird. Damit die gedrehte Kopie korrekt und vollständig angezeigt wird, wird das alte Panel
(eine ImagePanel-Instanz, siehe Rezept 161) zuerst entfernt, dann die Kopie erzeugt und
schließlich die Kopie in eine neue ImagePanel-Instanz und diese in die ContentPane des Fens-
ters eingebettet.

Abbildung 95: Bilddrehung um 90 Grad

Original 90Grad-Drehung Verschiebung

>> Grafik und Multimedia 463

Gr
af

ik
, M

ul
tim

ed
ia

// Altes bzw. "Platzhalter-Bild entfernen
getContentPane().remove(i2Panel);

// Neues Bild erzeugen (mit vertauschter Breite und Höhe)
i2 = new BufferedImage(i1.getHeight(), i1.getWidth(), i1.getType());

// Graphics-Objekt beschaffen
Graphics2D g = i2.createGraphics();

// Koordinatensystem drehen und verschieben, so dass
// "gedrehtes" Bild wieder im Anzeigebereich
g.translate(0, i1.getWidth());
g.rotate(Math.toRadians(-90));

// Inhalt von i1 hineinkopieren
g.drawImage(i1, 0, 0, null);

// Panel mit Bild neu einfügen
i2Panel = new ImagePanel(i2, false);
getContentPane().add(i2Panel);

// Anzeige aktualisieren
getContentPane().doLayout();
repaint();

g.dispose();

Listing 210: BufferedImage i2 als gedrehte Kopie von BufferedImage i1 erstellen

Abbildung 96: Original und gedrehte Kopie

>> Bilder spiegeln464
Gr

af
ik

, M
ul

tim
ed

ia 164 Bilder spiegeln
Um ein BufferedImage-Objekt an seiner horizontalen Mittelachse zu spiegeln, müssen Sie
lediglich die Farbinformationen links und rechts der Achse tauschen. Dazu durchlaufen Sie in
einer doppelten Schleife alle Pixel und kopieren die Farbinformation des Pixels (i, j) aus dem
Originalbild in das Pixel (width-1-i, j) der gespiegelten Kopie.

Wenn Sie das Bild an seiner vertikalen Mittelachse spiegeln wollen, kopieren Sie entsprechend
die Farbinformation des Pixels (i, j) aus dem Originalbild in das Pixel (i, height-1-j) der gespie-
gelten Kopie.

H
in

w
e

is Wenn Sie viel mit kombinierten Koordinatentransformationen arbeiten, können Sie auch so
vorgehen, dass Sie ein Objekt der Klasse AffineTransform erzeugen, in diesem die
gewünschten Transformationen speichern und dann das Objekt an die Graphics2D-Methode
transform() übergeben. In diesem Falle können Sie für Drehungen um Vielfache von 90
Grad die optimierte Methode quadrantRotate() verwenden, der Sie einfach das Vielfache n
übergeben:

// Drehung um -90 Grad
AffineTransform at = new AffineTransform();
g.translate(0, i1.getWidth());
at.quadrantRotate(3);
g.transform(at);

// Drehung um -180 Grad
AffineTransform at = new AffineTransform();
at.translate(i1.getWidth(), i1.getHeight());
at.quadrantRotate(2);
g.transform(at);

import java.awt.image.*;

public class ImageUtil {
 public static final int X_AXIS = 0;
 public static final int Y_AXIS = 1;

 // Instanzbildung unterbinden
 private ImageUtil() { }

 /**
 * Erzeuge gespiegelte Kopie von Image org
 */
 public static BufferedImage mirror(BufferedImage org, int axis) {

 int width = org.getWidth();
 int height = org.getHeight();

 BufferedImage dest = new BufferedImage(width, height, org.getType());

Listing 211: Klasse zum Spiegeln von Bildern

>> Grafik und Multimedia 465

Gr
af

ik
, M

ul
tim

ed
ia

Das Start-Programm zu diesem Rezept zeigt Original und gespiegelte Kopie nebeneinander in
eigenen Panels an, wobei die Kopie anfangs durch ein leeres, nichtgedrehtes Bild repräsentiert
wird. Damit die gespiegelte Kopie korrekt angezeigt wird, wird das alte Panel (eine ImagePanel-
Instanz, siehe Rezept 161) zuerst entfernt, dann die Kopie erzeugt und schließlich die Kopie in
eine neue ImagePanel-Instanz und diese in die ContentPane des Fensters eingebettet.

 if(axis == X_AXIS) {

 for(int i = 0; i < width; i++)
 for(int j = 0; j < height; j++)
 dest.setRGB(width-1-i, j, org.getRGB(i, j));

 } else if (axis == Y_AXIS) {

 for(int i = 0; i < width; i++)
 for(int j = 0; j < height; j++)
 dest.setRGB(i, height-1-j, org.getRGB(i, j));

 }

 return dest;
 }
}

// Altes bzw. "Platzhalter-Bild entfernen
getContentPane().remove(i2Panel);

// Gespiegelte Kopie von i1 erzeugen und in i2 speichern
i2 = ImageUtil.mirror(i1, ImageUtil.X_AXIS);

// i2 in ImagePanel und ContentPane einbetten
i2Panel = new ImagePanel(i2, false);
getContentPane().add(i2Panel);

// Anzeige aktualisieren
getContentPane().doLayout();
repaint();

Listing 212: BufferedImage i2 als gespiegelte Kopie von BufferedImage i1 erstellen

Listing 211: Klasse zum Spiegeln von Bildern (Forts.)

>> Bilder in Graustufen darstellen466
Gr

af
ik

, M
ul

tim
ed

ia

165 Bilder in Graustufen darstellen
Der Farbraum eines BufferedImage-Objekts kann mit Hilfe der filter()-Methode von Color-
ConvertOp verändert werden.

BufferdImage filter(BufferedImage src, BufferedImage dest)

Als Argumente übergeben Sie das Originalbild (src) und eine Referenz auf die Kopie, deren
Farbraum geändert werden soll (dest).

Aufgerufen wird die filter()-Methode über ein ColorConvertOp-Objekt, das Sie für den
gewünschten Farbraum erstellen. Den Farbraum erzeugen Sie als Instanz der Klasse ColorSpace
– beispielsweise ColorSpace.getInstance(ColorSpace.CS_GRAY) für Graustufen oder ColorSpace.
getInstance(ColorSpace.CS_sRGB) für RGB-Farben.

ColorConvertOp co =
 new ColorConvertOp(ColorSpace.getInstance(ColorSpace.CS_sRGB),
 null);

Etwas bequemer geht es mit der nachfolgend definierten Methode changeColorSpace(), der Sie
einfach eine Referenz auf das Originalbild und den gewünschten Farbraum übergeben. Die
Methode erzeugt dann selbstständig eine Kopie des Originals für den neuen Farbraum und lie-
fert die Referenz auf die Kopie zurück.

Abbildung 97: Original und gespiegelte Kopie

import java.awt.*;
import java.awt.image.*;
import java.awt.color.ColorSpace;

public class ImageUtil {

Listing 213: Methode zur Änderung des Farbraums

>> Grafik und Multimedia 467

Gr
af

ik
, M

ul
tim

ed
ia

166 Audiodateien abspielen

Audiodateien mit AudioClip abspielen
Für das Abspielen von kleinen Audiodateien im AIFF-, WAV- oder AU-Format bietet sich die
statische Methode Applet.newAudioClip() an, mit deren Hilfe ein AudioClip-Objekt erzeugt
wird, welches eine Audiodatei komplett in den Hauptspeicher lädt. Mit der Methode play()
kann man sie dann abspielen1:

 // Instanzbildung unterbinden
 private ImageUtil() { }

 /**
 * Erzeuge Kopie von Image org mit geändertem ColorSpace
 */
 public static BufferedImage changeColorSpace(BufferedImage org,
 ColorSpace cs) {

 // Kopie erzeugen
 BufferedImage dest = new BufferedImage(org.getWidth(),
 org.getHeight(),
 org.getType());

 // Inhalt von org nach dest kopieren
 Graphics2D g = dest.createGraphics();
 g.drawImage(org, 0, 0, null);
 g.dispose();

 // ColorSpace ändern
 ColorConvertOp co = new ColorConvertOp(cs, null);
 return co.filter(org, dest);
 }
}

H
in

w
e

is Die filter()-Methode von ColorConvertOp kann auch selbstständig eine Kopie des Ori-
ginals anlegen. Das Ergebnis ist aber in der Regel nicht so gut, weil die Methode die
Kopie anfangs ohne Farbrauminformation erstellt.

1. Beachten Sie bitte hierbei, dass play() nichtblockierend ist, d.h., im Programmfluss geht es sofort weiter, während
im Hintergrund die Audiodaten gespielt werden.

import javax.swing.*;
import java.applet.*;
import java.io.*;

Listing 214: Abspielen von kleinen Audiodateien

Listing 213: Methode zur Änderung des Farbraums (Forts.)

>> Audiodateien abspielen468
Gr

af
ik

, M
ul

tim
ed

ia

Streaming-Audio
Die AudioClip-Klasse hat den Nachteil, dass sie wie bereits erwähnt die abzuspielenden Daten
komplett lädt, bevor das Abspielen beginnt. Dies bringt eine teilweise deutliche zeitliche Ver-
zögerung mit sich, bevor etwas zu hören ist. Ferner kann es zu Speicherproblemen kommen,
wenn die Audiodatei sehr groß ist.

In solchen Fällen bietet sich daher der Einsatz des Pakets javax.sound.sampled an, mit dem
man Audiodaten im so genannten Streaming-Modus verarbeiten kann, d.h., die Daten werden
sofort abgespielt, während noch weiter geladen wird. Das zentrale Element des Pakets ist
javax.sound.sampled.DataLine, welches einen Teil der Audio-Pipeline darstellt – meistens ein-
fach Line genannt, d.h. ein Teil des Wegs, den Musik von der Quelle (z.B. eine Datei) bis zum

/**
 * Abspielen von kleinen Audiodateien als Clip
 */
public class Start extends JFrame {

 public Start() {
 setTitle("Audio");

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 public static void main(String args[]) {

 if (args.length != 1) {
 System.out.println(" Aufruf: Start <Audiodatei>");
 System.exit(0);
 }

 try {

 // Audiodatei laden
 File f = new File(args[0]);
 AudioClip clip = Applet.newAudioClip(f.toURI().toURL());

 // Audiodatei abspielen
 clip.play();

 } catch(Exception e) {
 e.printStackTrace();
 }

 Start frame = new Start();
 frame.setSize(500,300);
 frame.setLocation(300,300);
 frame.setVisible(true);
 }
}

Listing 214: Abspielen von kleinen Audiodateien (Forts.)

>> Grafik und Multimedia 469

Gr
af

ik
, M

ul
tim

ed
ia

Ziel (z.B. Lautsprecher) durchlaufen muss. Eine Line kann dabei zusätzliche Kontrollobjekte
(vom Typ javax.sound.sampled.Control) besitzen, mit denen sich u.a. die Lautstärke regulieren
lässt. Zum Abspielen von Audiodaten muss man mittels eines AudioInputStream-Objekts die
Daten lesen und an den Lautsprecher schicken. Diese Verbindung erfolgt mit Hilfe von
javax.sound.sampled.SourceDataLine.

import java.io.*;
import javax.sound.sampled.*;

/**
 * Klasse zum Abspielen von beliebig großen Klangdateien (wav, au)
 */
class Sound {
 private String fileName;
 private int volume = 1;

 /**
 * Konstruktor
 *
 * @param file Dateiname
 */
 public Sound(String file) {
 fileName = file;
 }

 /**
 * Lautstärke einstellen
 *
 * @param n Anzahl dB der Verstärkung
 */
 public void setVolume(int n) {
 volume = n;
 }

 /**
 * Audio ausgeben auf Lautsprecher
 */
 public void play() {
 try {
 File file = new File(fileName);
 AudioInputStream inStream = AudioSystem.getAudioInputStream(file);
 AudioFormat format = inStream.getFormat();

 // Konvertierung falls nicht-lineares PCM
 if(format.getEncoding() != AudioFormat.Encoding.PCM_SIGNED) {
 AudioFormat tmp = new AudioFormat(
 AudioFormat.Encoding.PCM_SIGNED,
 format.getSampleRate(), 2 *
 format.getSampleSizeInBits(),
 format.getChannels(),

Listing 215: Sound.java

>> Audiodateien abspielen470
Gr

af
ik

, M
ul

tim
ed

ia

Das Start-Programm zeigt, wie man mit Hilfe der Klasse Sound eine Audiodatei abspielen kann.

 2 * format.getFrameSize(),
 format.getFrameRate(), true);
 format = tmp;
 inStream = AudioSystem.getAudioInputStream(format, inStream);
 }

 SourceDataLine line = null;
 DataLine.Info info = new DataLine.Info(SourceDataLine.class, format);

 line = (SourceDataLine) AudioSystem.getLine(info);

 line.open(format);
 FloatControl fc;
 fc = (FloatControl) line.getControl(FloatControl.Type.MASTER_GAIN);
 fc.setValue(volume);

 line.start();
 int num = 0;
 byte[] audioPuffer = new byte[10000];

 while(num != -1) {
 num = inStream.read(audioPuffer, 0, audioPuffer.length);

 if(num >= 0)
 line.write(audioPuffer, 0, num);
 }

 line.drain(); // warten bis Ausgabe beendet
 line.close();

 } catch(Exception e) {
 e.printStackTrace();
 }
 }
}

public class Start {

 public static void main(String[] args) {

 if(args.length != 1) {
 System.out.println("Aufruf: <Audiodatei>");
 System.exit(0);
 }

 Sound s = new Sound(args[0]);

Listing 216: Abspielen von Audiodaten im Streaming-Verfahren

Listing 215: Sound.java (Forts.)

>> Grafik und Multimedia 471

Gr
af

ik
, M

ul
tim

ed
ia

167 Videodateien abspielen
Für das Abspielen eines Videos muss man auf das Java Media Framework (JMF) zurückgrei-
fen, welches über den Link http://java.sun.com/products/java-media/jmf/2.1.1/download.html
heruntergeladen werden kann. Das JMF wird dabei in zwei Varianten angeboten: eine platt-
formunabhängige (cross-platform) sowie eine Windows- bzw. Solaris-spezifische Version, die
erweiterte Möglichkeiten2 und bessere Performance bietet. Die plattformunabhängige Version
ist ein ZIP-Archiv (aktueller Name jmf-2_1_1e-alljava.zip) und enthält die Datei jmf.jar, die
Sie in den CLASSPATH aufnehmen müssen.

Die plattformspezifischen Varianten sind allerdings in der Regel die wesentlich bessere Wahl
und werden mit ihrem eigenen Setup-Programm (z.B. für Windows: jmf-2_1_1e-windows-
i586.exe) eingerichtet. Sie installieren automatisch alle notwendigen jar-Dateien im JDK-Hei-
matverzeichnis und passen den Standard-CLASSPATH entsprechend an.

Das Java Media Framework ist eine recht umfangreiche und komplexe API und wir beschrän-
ken uns hier auf das absolute Minimum an Klassen aus dem Paket javax.media, um ein Video
auf den Bildschirm zu zaubern. Die zentrale Klasse heißt MediaPlayer und kann über eine
statische Methode Manager.createPlayer() erzeugt werden, wobei man die Datenquelle als
URL mitgeben muss. Dadurch kann die Datenquelle eine Internetadresse sein oder auch eine
lokale Datei.

Das MediaPlayer-Objekt hat schon die komplette Funktionalität in sich gekapselt. Man muss
lediglich noch einen besonderen Listener – ControllerListener – bei ihm registrieren und in
dessen Listener die Methode controllerUpdate() implementieren. Diese Methode wird immer
dann aufgerufen, wenn das MediaPlayer-Objekt seinen internen Zustand geändert hat. Das
wichtigste Ereignis, das es zu behandeln gilt, nennt sich RealizeCompleteEvent und besagt,
dass alle Vorbereitungen abgeschlossen sind und das Abspielen beginnen kann.

Zur Anzeige bietet MediaPlayer eine Methode getVisualComponent() an, in der das Video ange-
zeigt wird. Diese Komponente (vom Typ java.awt.Component) kann man dann in seine Benutzer-
oberfläche einbauen. Ferner gibt es noch getControlPanelComponent(), mit der eine besondere
Steuerungskomponente (Anhalten, Positionierung) zur Verfügung gestellt wird.

 s.setVolume(3); // Lautstärke
 s.play();
 }
}

T
ip

p Zum Abspielen von Audiodateien (inklusive MP3) kann auch das Java Media Frame-
work eingesetzt werden, wie im nächsten Rezept gezeigt wird.

2. Mit den Performance-Packs kann man z.B. auch Videos aufnehmen. Außerdem werden mehr Video- und Audiofor-
mate unterstützt. Ein Vergleich der Features findet sich hier: http://java.sun.com/products/java-media/jmf/2.1.1/
formats.html

Listing 216: Abspielen von Audiodaten im Streaming-Verfahren (Forts.)

>> Videodateien abspielen472
Gr

af
ik

, M
ul

tim
ed

ia

import javax.swing.*;
import javax.media.*;
import java.io.*;
import java.awt.*;
import java.awt.event.*;
import java.net.*;
import java.util.*;

/**
 * Frame mit Audio-/Video-Unterstützung
 */
class ProgramFrame extends JFrame
 implements ControllerListener, ActionListener {
 private Player player;
 private Component control;
 private JPanel viewPanel;
 private JPanel labelPanel;

 public ProgramFrame() {
 setTitle("AudioVideo-Demo");
 setLayout(new BorderLayout());

 // Menüleiste erstellen
 JMenuBar mb = new JMenuBar();
 JMenu fileMenu = new JMenu("Datei");
 JMenuItem fileMenuPlay = new JMenuItem("Öffnen");
 fileMenuPlay.addActionListener(this);
 fileMenu.add(fileMenuPlay);
 mb.add(fileMenu);
 setJMenuBar(mb);
 JLabel label = new JLabel("");
 labelPanel = new JPanel();
 labelPanel.add(label);
 add(labelPanel,BorderLayout.NORTH);
 setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);

 }

 // Mausbehandlung zur Dateiauswahl
 public void actionPerformed(ActionEvent e) {
 // Dateinamen auswählen
 JFileChooser chooser = new JFileChooser();
 String[] extensions = {"mpg","wav","mp3"};
 MyFileFilter filter = new MyFileFilter(extensions);
 chooser.setFileFilter(filter);
 int choice = chooser.showOpenDialog(ProgramFrame.this);

 if (choice == JFileChooser.APPROVE_OPTION) {
 File file = chooser.getSelectedFile();

 if(file != null)

Listing 217: Abspielen von Video mit Java Media Framework

>> Grafik und Multimedia 473

Gr
af

ik
, M

ul
tim

ed
ia

 play(file);

 }
 }

 // Abspielen einer Audio/Video-Datei
 public void play(File file) {
 if(player != null)
 player.stop();

 try {
 // Anzeige für Dateinamen aktualisieren
 labelPanel.remove(0);
 JLabel label = new JLabel(file.getName());
 labelPanel.add(label);

 player = Manager.createPlayer(file.toURL());
 player.addControllerListener(this);
 player.start();

 } catch(Exception e) {
 e.printStackTrace();
 }
 }

 // Anzeige von Audio/Video
 public void controllerUpdate(ControllerEvent e) {

 if(e instanceof RealizeCompleteEvent) {
 // Player ist mit Vorbereitungen fertig

 // evtl. alte Ansicht und Steuerung entfernen
 if(viewPanel != null)
 remove(viewPanel);

 if(control != null)
 remove(control);

 // AWT Komponente mit Bild
 Component view = player.getVisualComponent();

 // Anzeige des Bildes falls es ein Video ist
 if(view != null) {
 viewPanel = new JPanel();
 viewPanel.add(view);
 add(viewPanel, BorderLayout.CENTER);
 }

 control = player.getControlPanelComponent();

Listing 217: Abspielen von Video mit Java Media Framework (Forts.)

>> Videodateien abspielen474
Gr

af
ik

, M
ul

tim
ed

ia

 if(control != null) ;
 add(control, BorderLayout.SOUTH);

 pack();
 }
 }

}

/**
 * FileFilter für Dateiauswahl-Box
 */
class MyFileFilter extends javax.swing.filechooser.FileFilter {
 private HashMap<String,String> extensions;
 private String description;

 public MyFileFilter(String[] ext) {
 description = "";
 extensions = new HashMap<String,String>();

 for(int i = 0; i < ext.length; i++) {
 if(ext[i].startsWith("."))
 ext[i] = ext[i].substring(1);

 if(ext[i].startsWith("*."))
 ext[i] = ext[i].substring(2);

 extensions.put(ext[i], ext[i]);
 description += " *." + ext[i] + ",";
 }
 }

 public String getDescription() {
 return description.substring(0,description.length());
 }

 public boolean accept(File f) {
 if(f != null) {
 if(f.isDirectory())
 return true;
 else {
 String name = f.getName();
 int pos = name.indexOf(".");

 if(pos < 0)
 return false;

 String ext = name.substring(pos+1);

 if(extensions.get(ext) != null)
 return true;

Listing 217: Abspielen von Video mit Java Media Framework (Forts.)

>> Grafik und Multimedia 475

Gr
af

ik
, M

ul
tim

ed
ia

Das vorgestellte Programm eignet sich auch zum Abspielen von Musikdateien, und zwar nicht
nur die üblichen WAV-Dateien, sondern auch das beliebte MP3! Es wird dann lediglich die
Control-Leiste gezeigt und natürlich kein Bild, da der Aufruf von getVisualComponent() den
Wert null zurückgibt.

168 Torten-, Balken- und X-Y-Diagramme erstellen
Die grafische Darstellung von Daten in Form von Diagrammen kann zu recht aufwändiger
Programmierarbeit führen, bis halbwegs zufrieden stellende Resultate erzielt werden. Aus die-
sem Grund sollte man zuerst schauen, ob es eine OpenSource-Bibliothek gibt, welche die
gewünschten Anforderungen abdeckt. Der bekannteste Vertreter ist JFreeChart. Diese Biblio-
thek bietet eine Vielzahl von Diagrammen an, z.B. Torten- und Balkengrafik, X-Y-Plots sowie
viele weitere, teilweise recht spezielle Darstellungsformen.

Um JFreeChart einzusetzen, müssen Sie von http://www.jfree.org/jfreechart das ZIP-Archiv
jfreechart-1.0.4.zip3 herunterladen und daraus die jar-Dateien jcommon-1.0.8.jar und jfree-
chart-1.0.04.jar extrahieren und in den CLASSPATH Ihrer Java-Anwendung aufnehmen.

Das Grundgerüst für den Einsatz der Bibliothek bilden folgende Klassen:

� JFreeChart: repräsentiert ein Diagramm.

� Dataset, DefaultPieDataset, CategoryDataset, XYSeriesCollection u.a. definieren die darzu-
stellenden Zahlenwerte.

� ChartFactory bietet statische Methoden zur Erzeugung des gewünschten Diagrammtyps.

� ChartPanel ist eine von JPanel abgeleitete Klasse zur grafischen Anzeige eines Diagramms.

Die Methoden der nachfolgend definierten Klasse Chart zeigen, wie diese Klassen kombiniert
werden müssen, um Torten-, Balken- oder X-Y-Diagramme zu erstellen. Das jeweils zurückge-
lieferte ChartPanel-Objekt kann dann direkt wie eine gewöhnliche Swing-Komponente an der
gewünschten Stelle in die Benutzeroberfläche eingefügt werden.

 else
 return false;
 }
 } else
 return false;
 }
}

3. Aktueller Dateiname im Juni 2005

import org.jfree.chart.*;
import org.jfree.data.*;
import org.jfree.data.xy.*;
import org.jfree.data.category.*;
import org.jfree.data.general.*;

Listing 218: Chart.java – Hilfsklasse zum Erstellen verschiedener Diagrammtypen

Listing 217: Abspielen von Video mit Java Media Framework (Forts.)

>> Torten-, Balken- und X-Y-Diagramme erstellen476
Gr

af
ik

, M
ul

tim
ed

ia

import org.jfree.chart.plot.*;
import org.jfree.util.*;

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

/**
 * Klasse zum Generieren von Torten-, Balkendiagrammen und X-Y Plots
 */
class Chart {

 /**
 * Die Daten als 2D-Tortengrafik darstellen
 *
 * @param title Überschrift
 * @param legend Array mit Legende
 * @param data Array mit double-Werten
 * @return Panel oder null bei Fehler
 */
 public static ChartPanel createPieChart2D(String title, String[] legend,
 double[] data) {
 ChartPanel result = null;

 try {
 DefaultPieDataset pieDataset = new DefaultPieDataset();

 for(int i = 0; i < data.length; i++) {
 pieDataset.setValue(legend[i], new Double(data[i]));
 }

 JFreeChart chart = ChartFactory.createPieChart(title, pieDataset,
 true, true, false);
 result = new ChartPanel(chart);

 } catch(Exception e) {
 e.printStackTrace();
 }

 return result;
 }

 /**
 * Die Daten als 3D-Tortengrafik darstellen
 *
 * @param title Überschrift
 * @param legend Array mit Legende
 * @param data Array mit double-Werten
 * @return Panel oder null bei Fehler
 */

Listing 218: Chart.java – Hilfsklasse zum Erstellen verschiedener Diagrammtypen (Forts.)

>> Grafik und Multimedia 477

Gr
af

ik
, M

ul
tim

ed
ia

 public ChartPanel createPieChart3D(String title, String legend[],
 double[] data) {
 ChartPanel result = null;

 try {
 DefaultPieDataset pieDataset = new DefaultPieDataset();

 for(int i = 0; i < data.length; i++) {
 pieDataset.setValue(legend[i], new Double(data[i]));
 }

 JFreeChart chart = ChartFactory.createPieChart3D(title, pieDataset,
 true, true, false);
 result = new ChartPanel(chart);

 } catch(Exception e) {
 e.printStackTrace();
 }

 return result;
 }

 /**
 * Daten als Balkendiagramm darstellen
 *
 * @param title Überschrift
 * @param x_label Beschriftung x-Achse
 * @param y_label Beschriftung y-Achse
 * @param legend Array mit Legende
 * @param data Array mit double-Werten
 * @return Panel oder null bei Fehler
 */
 public static ChartPanel createBarChart(String title, String x_label,
 String y_label, String[] legend,
 double[] data) {
 ChartPanel result = null;

 try {
 DefaultCategoryDataset catDataset = new DefaultCategoryDataset();

 for(int i = 0; i < data.length; i++) {
 catDataset.addValue(data[i], legend[i], "");
 }

 JFreeChart chart = ChartFactory.createBarChart(title, x_label,
 y_label,catDataset, PlotOrientation.VERTICAL,
 true, true, false);
 result = new ChartPanel(chart);

 } catch(Exception e) {

Listing 218: Chart.java – Hilfsklasse zum Erstellen verschiedener Diagrammtypen (Forts.)

>> Torten-, Balken- und X-Y-Diagramme erstellen478
Gr

af
ik

, M
ul

tim
ed

ia

Das Start-Programm zu diesem Rezept erzeugt mittels der Klasse Chart ein Tortendiagramm
und einen X-Y-Plot.

 e.printStackTrace();
 }

 return result;
 }

 /**
 * x,y Paare als Kurve darstellen; Wertepaare werden automatisch nach
 * x-Wert aufsteigend sortiert
 *
 * @param title Überschrift
 * @param x_label Beschriftung x-Achse
 * @param y_label Beschriftung y-Achse
 * @param data 2-dimensionales Array mit x,y Werten
 * @return Panel oder null bei Fehler
 */
 public static ChartPanel createXYChart(String title, String x_label,
 String y_label, double[][] data) {
 ChartPanel result = null;

 try {
 XYSeriesCollection dataset = new XYSeriesCollection();
 XYSeries series = new XYSeries("");

 for(int i = 0; i < data.length; i++) {
 series.add(data[i][0], data[i][1]);
 }

 dataset.addSeries(series);
 JFreeChart chart = ChartFactory.createXYLineChart(title, x_label,
 y_label, dataset, PlotOrientation.VERTICAL,
 false, false, false);

 result = new ChartPanel(chart);

 } catch(Exception e) {
 e.printStackTrace();
 }

 return result;
 }

}

Listing 218: Chart.java – Hilfsklasse zum Erstellen verschiedener Diagrammtypen (Forts.)

>> Grafik und Multimedia 479

Gr
af

ik
, M

ul
tim

ed
ia

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import org.jfree.chart.*;

public class Start extends JFrame {

 public static void main(String[] args) {
 Start s = new Start();
 s.setSize(400,400);
 s.setVisible(true);
 }

 Start() {
 setTitle("Chart-Demo");
 JPanel panel = new JPanel();

 // Tortendiagramm erstellen
 String[] legend = {"Europa", "Nordamerika", "Südamerika", "Afrika",
 "Asien"};
 double[] data = {38.4, 43.2, 7.0, 5.4, 6.0};

 ChartPanel pie2D = Chart.createPieChart2D("Umsatzverteilung", legend,
 data);
 panel.add(pie2D);

 // X-Y-Plot erstellen
 double[][] tempData = {{0.0, 0.0},{10.0,0.3},{1.0,0.25},{2.0,0.5},
 {3.0,0.4},{4.0,0.6}, {5.0,1.1},{6.0,0.9},
 {7.0,0.8},{8.0,0.45},{9.0,0.6},{1.5,0.4}};
 ChartPanel plot = Chart.createXYChart("Messwerte", "x-Achse",
 "y-Achse", tempData);

 panel.add(plot);

 JScrollPane pane = new JScrollPane(panel);
 add(pane);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }
}

Listing 219: Erzeugen von Diagrammen mit JFreeChart

>> Torten-, Balken- und X-Y-Diagramme erstellen480
Gr

af
ik

, M
ul

tim
ed

ia

Abbildung 98: Tortendiagramm

Abbildung 99: X-Y-Plot

Re
gE

x

Reguläre Ausdrücke und Pattern Matching

169 Syntax regulärer Ausdrücke
Reguläre Ausdrücke sind ein mächtiges Werkzeug zur Behandlung von Texten. Im Gegensatz
zu herkömmlichen Verfahren basiert es nicht auf einem Zeichen-, sondern auf einem Muster-
vergleich. Mit Hilfe dieser Muster kann versucht werden, in einem gegebenen Text Entspre-
chungen (Matches) zu finden.

Die regulären Ausdrücke stammen ursprünglich aus einem Bereich, der auf den ersten Blick
nicht sehr viel mit Java zu tun zu haben scheint: die Neurobiologie – also die Forschung über
die Funktionsweise des Nervensystems. In den fünfziger Jahren des vergangenen Jahrhunderts
suchte man Methoden, um Abläufe im Gehirn bei bestimmten Ereignissen und Vorkommnis-
sen mathematisch beschreiben zu können. In den siebziger Jahren wurden diese Ansätze wie-
der aufgenommen, verfeinert und schließlich in der Suchfunktion des Unix-Editors qed
implementiert. Dies war die Geburtsstunde der regulären Ausdrücke in der IT.

Die Einsatzbereiche regulärer Ausdrücke sind vielfältig. Sie reichen von verschiedensten Such-
funktionen über die Validierung von E-Mail-Adressen und das Auslesen bestimmter Teile
eines Textes bis hin zum Ersetzen von Zeichenketten. Aufgrund ihrer Flexibilität und Leis-
tungsfähigkeit lassen sich mit regulären Ausdrücken Dinge anstellen, für die man sonst einige
dutzend oder hundert Zeilen Code benötigt hätte – und das alles in einem Bruchteil der sonst
dafür nötigen Zeit.

Reguläre Ausdrücke verwenden ihre eigene Syntax, die auf den ersten Blick sehr komplex und
abschreckend wirken muss. Bei intensiverer Beschäftigung mit der Syntax erweist sie sich aber
als äußerst logisch und nachvollziehbar – nur eben schwer zu lesen.

Grundsätzlich ist ein regulärer Ausdruck nichts anderes als ein Textmuster, das sich idealer-
weise im zu überprüfenden Text identifizieren lässt. Da ein derartiges Muster universeller ein-
setzbar sein soll als ein einfacher Zeichenkettenvergleich, werden in dem Muster Zeichen und
bestimmte Metazeichen kombiniert.

Im Anhang finden Sie eine komplette Auflistung aller Metazeichen. Im Folgenden sollen die
wichtigsten Metazeichen kurz vorgestellt werden:

Zeichen Bedeutung

x Der Buchstabe x

. Beliebiges Zeichen

\\ Backslash

\0n Zeichen mit dem oktalen Wert 0n (0 <= n <= 7)

\n Zeilenumbruch (Line Feed, '\u000A')

\r Carriage-Return ('\u000D')

\d Zahl: [0-9]

\D Nicht-Zahl: [^0-9]

\s Whitespace-Zeichen: [\t\n\x0B\f\r]

Tabelle 41: Die wichtigsten Metazeichen

>> Syntax regulärer Ausdrücke482
Re

gE
x

Neben den Metazeichen können auch verschiedene Flags eingesetzt werden. Eine komplette
Auflistung dieser Flags finden Sie im Anhang dieses Buchs, die wichtigsten sollen aber hier
zumindest kurz vorgestellt werden:

\S Nicht-Whitespace-Zeichen: [^\s]

\w Zeichen, Unterstrich oder Zahl: [a-zA-Z_0-9]

\W Weder Zeichen noch Unterstrich oder Zahl: [^\w]

^ Zeilenanfang

$ Zeilenende

\b Wortgrenze

\B Nicht-Wortgrenze

\A Beginn der Eingabe

\G Ende des vorherigen Treffers

[abc] a, b oder c

[^abc] Jedes Zeichen außer a, b oder c (Negation)

[a-zA-Z] a bis einschließlich z oder A bis einschließlich Z

X? X, ein oder kein Mal

X* X, kein Mal oder mehrmals

X+ X, mindestens ein Mal

X{n} X, genau n Mal

X{n,} X, mindestens n Mal

X{n,m} X, mindestens n Mal, aber nicht mehr als m Mal

XY X, gefolgt von Y

X|Y Entweder X oder Y

(X) X wird als Entsprechung gespeichert

Flag Bedeutung

Pattern.CASE_INSENSITVE Schaltet die Berücksichtigung der Groß-/Klein-
schreibung ein oder aus.

Pattern.MULTILINE Schaltet den Multiline-Modus, bei dem die Sym-
bole ̂und $ auch am Zeilenanfang bzw. -ende
matchen (und nicht nur am Anfang oder Ende des
kompletten Textes), ein oder aus.

Tabelle 42: Wichtige Flags

Zeichen Bedeutung

Tabelle 41: Die wichtigsten Metazeichen (Forts.)

>> Reguläre Ausdrücke und Pattern Matching 483

Re
gE

x

Auf Seiten Javas erfolgt der Einsatz von regulären Ausdrücken meist über eine java.util.
regex.Pattern-Instanz, die das eingesetzte Muster kompiliert. Dies beschleunigt die Ausfüh-
rung des Matchings im Wiederholungsfall deutlich. Der statischen Methode Pattern.compile()
wird dabei das zu verwendende Muster übergeben. In einer weiteren Überladung können
ebenfalls die anzuwendenden Flags übergeben werden. Die Rückgabe der compile()-Methode
ist eine Pattern-Instanz:

Pattern pattern = Pattern.compile(<Muster>);

Diese Pattern-Instanz kann nun verwendet werden, um einen Mustervergleich vorzunehmen.
Dabei kommt eine java.util.regex.Matcher-Instanz zum Einsatz, die den Abgleich des Mus-
ters mit der zu überprüfenden Zeichenkette vornimmt. Diese Matcher-Instanz wird von der
Methode matcher() der instanzierten Pattern-Instanz erzeugt und zurückgegeben:

Matcher matcher = pattern.matcher(<Text>);

Mit Hilfe der so erhaltenen Matcher-Instanz können nun weitere Operationen auf dem unter-
suchten Text vorgenommen werden.

Die Pattern-Klasse stellt jedoch den Ausgangspunkt der Arbeit mit regulären Ausdrücken dar.
Ihre wichtigsten Methoden sind:

Pattern.DOTALL Wenn der DOTALL-Modus aktiviert ist, steht der
Platzhalter . für alle Zeichen, inklusive Zeilenum-
brüche. Per Voreinstellung werden Zeilenumbrü-
che nicht als Übereinstimmung gewertet.

Pattern.LITERAL Schaltet den Literal-Modus ein oder aus, bei dem
im Text enthaltene Steuer- oder Metazeichen
nicht als solche interpretiert, sondern als gewöhn-
liche Zeichenketten aufgefasst werden.

Methode Beschreibung

static Pattern compile(String regex) Kompiliert den als Parameter übergebenen regulä-
ren Ausdruck in eine Pattern-Instanz.

static Pattern compile(String regex, int flags) Kompiliert den als Parameter übergebenen regulä-
ren Ausdruck in eine Pattern-Instanz und ver-
wendet dabei die angegebenen Flags.

Matcher matcher(CharSequence input) Erzeugt eine Matcher-Instanz, die das gegebene
Muster auf den übergebenen Text anwendet.

static boolean matches(String regex,
 CharSequence input)

Kompiliert den übergebenen regulären Ausdruck
und prüft, ob er auf den übergebenen Text ange-
wendet werden kann.

String[] split(CharSequence input) Zerlegt den übergebenen Text anhand des gegebe-
nen Musters.

Tabelle 43: Wichtige Methoden der Pattern-Klasse

Flag Bedeutung

Tabelle 42: Wichtige Flags (Forts.)

>> Überprüfen auf Existenz484
Re

gE
x

Eine Matcher-Instanz erlaubt es, Operationen auf dem Text vorzunehmen. Ihre wichtigsten
Methoden sind:

170 Überprüfen auf Existenz
Mit Hilfe der statischen Methode matches() der java.util.regex.Pattern-Klasse kann über-
prüft werden, ob ein Muster überhaupt in einer Zeichenfolge erkannt werden kann:

Methode Beschreibung

boolean find() Sucht die nächste Entsprechung des regulären Aus-
drucks in der gegebenen Zeichenkette.

boolean find(int start) Setzt den Matcher zurück und sucht nach der nächs-
ten Entsprechung des regulären Ausdrucks beginnend
an der durch start angegebenen Position innerhalb
der gegebenen Zeichenkette.

String group() Gibt die Entsprechung zurück, die durch den vorheri-
gen Match-Prozess gefunden wurde.

String group(int group) Gibt die durch group gekennzeichnete Entsprechung
zurück, die durch den vorherigen Match-Prozess
gefunden wurde.

int groupCount() Gibt die Anzahl der gefundenen Gruppen zurück.

boolean matches() Gibt an, ob der reguläre Ausdruck auf die Zeichen-
kette angewendet werden kann.

static String quoteReplacement(String s) Gibt die Literal-Entsprechung (also mit verdoppelten
Backslashes) der übergebenen Zeichenkette zurück.

String replaceAll(String replacement) Ersetzt jeden Treffer innerhalb des gegebenen Texts
durch die als Parameter angegebene Zeichenkette.

String replaceFirst(String replacement) Ersetzt den ersten Treffer innerhalb des gegebenen
Texts durch die als Parameter angegebene Zeichen-
kette.

Tabelle 44: Wichtige Methoden der Matcher-Klasse

import java.util.regex.Pattern;

public class Start {

 public static void main(String[] args) {
 String input = "Default input";
 String pattern = "M(ai|ay|ei|ey)e?r";

 // Zu testenden Text ermitteln
 if(args != null && args.length > 0) {
 input = args[0];
 }

 // Pattern ermitteln

Listing 220: Verwendung von Pattern.matches()

>> Reguläre Ausdrücke und Pattern Matching 485

Re
gE

x

Das vom Programm vorgegebene Pattern kann über den zweiten Parameter beim Aufruf des
kompilierten Programms von der Kommandozeile aus überschrieben werden. Der erste Para-
meter repräsentiert die zu überprüfende Zeichenkette. Diese muss gemäß dem Default-Pattern
mit dem Buchstaben M beginnen und von den Buchstabenkombinationen ai, ey, ei oder ey
gefolgt werden. Anschließend kann optional ein e folgen und am Ende wird der Buchstabe r
erwartet. Gültige Texte sind also:

� Mayr

� Mayer

� Meir

� Meier

� Meyr

� Meyer

� Mair

� Maier

Andere Texte sind nicht gültig. Eigene Muster können mit Hilfe der in Rezept 169 beschriebe-
nen Metasymbole definiert und als zweiter Parameter beim Aufruf übergeben werden.

Eine komplette Übersicht über die möglichen Metasymbole finden Sie im Anhang dieses
Buchs.

 if(args != null && args.length > 1) {
 pattern = args[1];
 }

 // Ergebnis ausgeben
 System.out.println(
 String.format("Pattern \"%s\" does %smatch input \"%s\"",
 pattern,
 Pattern.matches(pattern, input) ? "" : "not ",
 input));
 }
}

Abbildung 100: Anwenden verschiedener Muster auf unterschiedliche Zeichenketten

Listing 220: Verwendung von Pattern.matches() (Forts.)

>> Alle Treffer zurückgeben486
Re

gE
x

171 Alle Treffer zurückgeben
Wollen Sie alle Treffer eines regulären Ausdrucks in einem Text ausgeben, verwenden Sie eine
java.util.regex.Matcher-Instanz und nutzen deren Methode find(), um über die einzelnen
Treffer zu iterieren. Die Methode group() gibt den jeweiligen Treffer als String zurück:

Die Methode find() erwartet die Angabe zweier Parameter: des zu überprüfenden Texts und
des zu verwendenden regulären Ausdrucks. Soll etwa eine Prüfung analog zum letzten Bei-
spiel auf die verschiedenen Schreibweisen des Namens Meier vorgenommen werden, kann
folgender Code verwendet werden:

import java.util.ArrayList;
import java.util.regex.Pattern;
import java.util.regex.Matcher;

public class FindAll {

 /**
 * Gibt alle Treffer eines regulären Ausdrucks zurück
 */
 public static String[] find(String input, String pattern) {
 ArrayList<String> result = new ArrayList<String>();

 // Pattern-Instanz erzeugen
 Pattern compiled = Pattern.compile(pattern);

 // Matcher-Instanz erzeugen
 Matcher matcher = compiled.matcher(input);

 // Alle Ergebnisse auslesen
 while(matcher.find()) {
 result.add(matcher.group());
 }

 // Inhalt in String-Array überführen
 String[] res = new String[result.size()];
 result.toArray(res);

 // Ergebnis zurückgeben
 return res;
 }
}

Listing 221: Rückgabe aller Treffer eines regulären Ausdrucks

public class Start {

 public static void main(String[] args) {
 // Muster definieren
 String pattern = "M(ai|ay|ei|ey)e?r";

Listing 222: Ausgabe aller Meier-Abwandlungen in einem String

>> Reguläre Ausdrücke und Pattern Matching 487

Re
gE

x

Der reguläre Ausdruck entspricht dem in Rezept 170 verwendeten Ausdruck. Beim Aufruf von
der Kommandozeile aus sollte als Parameter die zu überprüfende Zeichenkette übergeben wer-
den. Die Ausgabe aller Treffer erfolgt in Form einer Liste.

172 Mit regulären Ausdrücken in Strings ersetzen
Die Methode replaceAll() der java.util.regex.Matcher-Klasse erlaubt es, Teile von Zeichen-
ketten anhand von regulären Ausdrücken zu ersetzen:

 // Text einlesen
 String input = (args != null && args.length > 0 ?
 args[0] : "Default input");

 // Treffer auslesen
 String[] matches = FindAll.find(input, pattern);

 // Treffer ausgeben
 System.out.println(String.format("%d Treffer:", matches.length));
 for(String match : matches) {
 System.out.println(String.format("- %s", match));
 }
 }
}

Abbildung 101: Ausgabe aller Treffer eines regulären Ausdrucks

import java.util.regex.Pattern;
import java.util.regex.Matcher;

public class ReplaceAll {

 /**
 * Ersetzt das Muster in der gegegeben Zeichenkette
 */
 public static String replace(
 String input, String pattern, String replacement) {
 String result = input;

Listing 223: Ersetzen von Mustern per Matcher.replaceAll()

Listing 222: Ausgabe aller Meier-Abwandlungen in einem String (Forts.)

>> Anhand von regulären Ausdrücken zerlegen488
Re

gE
x

Die hier dargestellte statische Methode replace() erwartet die Angabe der Parameter für die
Quellzeichenkette, den regulären Ausdruck und die Ersetzung. Diese können beispielsweise
von der Kommandozeile eingelesen werden, wie folgendes Listing zeigt:

173 Anhand von regulären Ausdrücken zerlegen
Die Methode split() der java.util.regex.Pattern-Klasse kann Zeichenketten anhand von
regulären Ausdrücken zerlegen. Als Argument wird nur die zu untersuchende Zeichenkette
erwartet. Die Rückgabe ist ein String-Array, das die gefundenen Teile der Zeichenkette ohne
das durch den regulären Ausdruck bezeichnete Token beinhaltet:

 // Pattern kompilieren
 Pattern compiledPattern = Pattern.compile(pattern);

 // Matcher instanzieren
 Matcher matcher = compiledPattern.matcher(input);

 // Wenn Muster gefunden, dann alle Vorkommen ersetzen
 result = matcher.replaceAll(replacement);

 // Ergebnis zurückgeben
 return result;
 }
}

public class Start {

 public static void main(String[] args) {
 // Zu ersetzende Zeichenfolge einlesen
 String input = (args != null && args.length > 0 ?
 args[0] : "Default input");

 // Einzusetzende Zeichenfolge einlesen
 String replacement = (args != null && args.length > 1 ?
 args[1] : "Default replacement");

 // Muster einlesen
 String pattern = (args != null && args.length > 2 ?
 args[2] : "M(ai|ay|ei|ey)e?r");

 // Ersetzung durchführen und Ergebnis ausgeben
 System.out.println(
 ReplaceAll.replace(input, pattern, replacement));
 }
}

Listing 224: Einlesen der Parameter für die Ersetzung über die Kommandozeile

Listing 223: Ersetzen von Mustern per Matcher.replaceAll() (Forts.)

>> Reguläre Ausdrücke und Pattern Matching 489

Re
gE

x

Die beiden Parameter für die zu untersuchende Zeichenkette und das Token, anhand dessen
die Zerlegung stattfinden soll, können beispielsweise von der Kommandozeile eingelesen wer-
den – wie es hier demonstriert wird:

import java.util.regex.Pattern;

public class Split {

 /**
 * Zerlegt eine Zeichenkette anhand des angebenen Tokens
 */
 public static String[] split(String input, String token) {
 // Pattern-Instanz referenzieren
 Pattern pattern = Pattern.compile(token);

 // Anhand des übergebenen Musters zerlegen
 return pattern.split(input);
 }
}

Listing 225: Zerlegen einer Zeichenkette mittels Pattern.split()

public class Start {

 public static void main(String[] args) {
 // Standardtext und Token definieren
 String input = "Default input";
 String token = " ";

 // Kommandozeilen-Parameter einlesen: Text
 if(null != args && args.length > 0) {
 input = args[0];
 }

 // Kommandozeilen-Parameter einlesen: Token
 if(null != args && args.length > 1) {
 token = args[1];
 }

 // Eingabe zerlegen
 String parts[] = Split.split(input, token);

 // Rückgabe ausgeben
 System.out.println(String.format("%d Teile gefunden", parts.length));
 for(String part : parts) {
 System.out.println(String.format("- %s", part));
 }
 }
}

Listing 226: Einlesen von Text und Token von der Kommandozeile

>> Auf Zahlen prüfen490
Re

gE
x

Als Standard-Token, anhand dessen eine Zerlegung durchgeführt werden soll, wird das Leer-
zeichen definiert. Sollte die Klasse also ohne Parameter aufgerufen werden, wird der Text
»Default input« anhand des Leerzeichens in zwei Teile zerlegt.

Wenn Sie eine Zerlegung einer Zeichenkette anhand eines anderen Musters vornehmen
wollen, müssen Sie dieses Muster als zweiten Parameter sowohl beim Aufruf der Konsolen-
anwendung als auch beim Aufruf der Methode split() der Split-Klasse angeben. Um zum
Beispiel anhand von Leerzeichen, Komma mit nachfolgendem Leerzeichen oder Ausrufe-
zeichen eine Zerlegung vorzunehmen, sollten Sie folgendes Muster verwenden:

 |, |!

Analog verfahren Sie, wenn Sie Inhalte anhand von Buchstaben oder kompletten Wörtern zer-
legen wollen.

174 Auf Zahlen prüfen
Es gibt verschiedene Möglichkeiten, auf Zahlen zu prüfen. Eine dieser Möglichkeiten stellt die
Verwendung regulärer Ausdrücke dar, die sicherstellen können, dass eingegebene oder überge-
bene Zahlen einem bestimmten Muster entsprechen. Zu diesem Zweck wird eine java.util.
regex.Pattern-Instanz erzeugt und mit Hilfe der Methode matches() der referenzierten java.
util.regex.Matcher-Instanz bestimmt, ob das Muster auf den übergebenen Wert angewendet
werden kann. Diese Prüfung wird innerhalb der Methode validate() vorgenommen.

Die beiden Methoden validateInteger() und validateDouble() zur Validierung von Integer-
und Double-Werten sind zusätzlich in der Klasse implementiert. Im Falle von Double-Werten
sind hier noch weitere Prüfungen nötig – zumindest sollte mit Hilfe von DecimalValue.parse()

Abbildung 102: Zerlegung mit dem Standardtext und dem Standard-Token

Abbildung 103: Zerlegen eines benutzerdefinierten Textes anhand eines anderen Musters

>> Reguläre Ausdrücke und Pattern Matching 491

Re
gE

x

sichergestellt werden, dass die übergebene Zahl in einen numerischen Wert umwandelbar ist.
Wesentlich dabei ist die Angabe einer Locale-Instanz, um beispielsweise Kommata korrekt zu
erkennen.

Die verwendeten regulären Ausdrücke können auf alle Zeichenketten angewendet werden, die
folgende Bedingungen erfüllen:

Im Code werden die beiden Ausdrücke in den Methoden validateInteger() und validate-
Double() verwendet:

Ausdruck Beschreibung

^[1-9][0-9]*?$ Die Zeichenkette muss mit einer Ziffer zwischen 1 und 9
beginnen.
Anschließend können beliebig viele Ziffern folgen.

^[1-9]{1}[0-9]*?(?:[,\\.]?[0-9]+?)$ Die Zeichenkette muss mit genau einer Ziffer zwischen 1 und
9 beginnen.
Anschließend können beliebig viele Ziffern folgen.
Falls ein Komma oder ein Punkt eingefügt wird, muss danach
mindestens eine Ziffer folgen.
Mehr als ein Komma oder Punkt ist nicht zulässig.

Tabelle 45: Durch reguläre Ausdrücke definierte Bedingungen

import java.util.regex.Pattern;
import java.util.regex.Matcher;

public class ValidateDigit {

 /**
 * Prüft auf eine Integer-Zahl
 */
 public static boolean validateInteger(String input) {
 // Ganze Zahl validieren, führende Null nicht zulässig
 return validate(input, "^[1-9][0-9]*?$");
 }

 /**
 * Prüft auf einen Double-Wert
 */
 public static boolean validateDouble(String input) {
 // Double-Zahl mit Komma validieren, führende Null nicht
 // zulässig
 boolean result = validate(input,
 "^[1-9]{1}[0-9]*?(?:[,\\.]?[0-9]+?)$");

 // Wenn Prüfung erfolgreich, dann casten
 if(result) {
 // Versuchen, die Zahl zu casten
 try {

Listing 227: Validierung von Zahlen

>> Auf Zahlen prüfen492
Re

gE
x

Es bietet sich an, die Methoden der Klasse ValidateDigit zur Validierung von Integer- oder
Double-Werten aus anderen Anwendungen oder von der Kommandozeile aus zu verwenden.
Letzteres ist in der Klasse Start implementiert, in deren statischer main()-Methode die zu
überprüfende Zahl eingelesen wird (erster Parameter). Ebenso wird hier evaluiert, welche Art
der Prüfung vorgenommen werden soll – entweder auf eine ganze Zahl (kein zweiter Parame-
ter) oder auf einen Double-Wert (zweiter Parameter muss »-d« sein):

 DecimalFormat.getInstance(new Locale("de")).parse(input);
 } catch (ParseException e) {
 // Zahl konnte nicht gecastet werden
 result = false;
 }
 }

 return result;
 }

 /**
 * Prüfen eines Wertes
 */
 public static boolean validate(String input, String p) {
 // Pattern erzeugen
 Pattern pattern = Pattern.compile(p);

 // Matcher instanzieren
 Matcher matcher = pattern.matcher(input);

 // Ergebnis zurückgeben
 return matcher.matches();
 }
}

public class Start {

 public static void main(String[] args) {
 boolean validateInt = true;
 String digit = "123";

 // Übergebene Zahl einlesen
 if(null != args && args.length > 0) {
 digit = args[0];
 }

 // Überprüfen, ob auf Double geprüft werden soll
 if(null != args && args.length > 1 && args[1].equals("-d")) {
 validateInt = false;
 }

Listing 228: Einlesen der zu prüfenden Zahl und des zu verwendenden Algorithmus

Listing 227: Validierung von Zahlen (Forts.)

>> Reguläre Ausdrücke und Pattern Matching 493

Re
gE

x

Das Ergebnis dieser Prüfung wird anschließend ausgegeben.

175 E-Mail-Adressen auf Gültigkeit prüfen
Gerade E-Mail-Adressen sind aufgrund ihrer potenziellen Komplexität ein dankbares Feld für
die Prüfung per regulärem Ausdruck. Das zu verwendende Muster ist zwar nicht unbedingt ein
Musterbeispiel für einen einfach zu erfassenden regulären Ausdruck, erschließt sich jedoch
recht leicht, wenn es von links nach rechts gelesen wird:

^([0-9a-zA-Z]+[-\._+&])*[0-9a-zA-Z]+@([-0-9a-zA-Z]+[\.])+[a-zA-Z]{2,6}$

Dieser Ausdruck kann auf alle Zeichenketten angewendet werden, die folgende Bedingungen
erfüllen:

� Die Zeichenkette muss mit mindestens einem Buchstaben oder einer Ziffer beginnen.

� Anschließend können Bindestrich, Punkt, Unterstrich, Plus-Symbol und kaufmännisches
Und folgen.

� Beide Bedingungen können sich beliebig oft wiederholen oder auch überhaupt nicht erfüllt
werden.

� Vor dem @-Symbol müssen ein Buchstabe oder eine Zahl stehen.

� Es muss ein @-Symbol vorkommen.

� Nach dem @-Symbol müssen sich mindestens eine Ziffer, ein Buchstabe oder ein Binde-
strich anschließen.

� Danach muss ein Punkt folgen.

 // Prüfung durchführen und Ergebnis zurückgeben
 System.out.println(
 validateInt ? ValidateDigit.validateInteger(digit) :
 ValidateDigit.validateDouble(digit));
 }
}

Abbildung 104: Prüfung verschiedener Zahlen

Listing 228: Einlesen der zu prüfenden Zahl und des zu verwendenden Algorithmus (Forts.)

>> E-Mail-Adressen auf Gültigkeit prüfen494
Re

gE
x

� Dies kann sich beliebig oft wiederholen.

� Am Ende muss eine Toplevel-Domain-Angabe von zwei bis sechs Zeichen Länge folgen.

Die Prüfung auf die Erfüllung dieser Anforderungen findet innerhalb der Methode validate-
Email() statt:

Das Start-Programm zu diesem Rezept prüft mit Hilfe dieser Klasse über die Kommandozeile
übergebene E-Mail-Adressen:

import java.util.regex.Pattern;
import java.util.regex.Matcher;

public class EmailValidator {

 /**
 * Überprüft eine E-Mail-Adresse auf Gültigkeit
 */
 public static boolean validateEmail(String email) {
 // Pattern instanzieren
 Pattern pattern = Pattern.compile(
 "^([0-9a-zA-Z]+[-\\._+&])*[0-9a-zA-Z]+@([-0-9a-zA-Z]+"
 + "[\\.])+[a-zA-Z]{2,6}$");

 // Matcher instanzieren
 Matcher matcher = pattern.matcher(email);

 // Ergebnis zurückgeben
 return matcher.matches();
 }
}

Listing 229: Überprüfung einer E-Mail-Adresse

public class Start {

 public static void main(String[] args) {
 // E-Mail-Adresse einlesen
 String email = "test";
 if(null != args && args.length > 0) {
 email = args[0];
 }

 // Ergebnis ausgeben
 System.out.println(
 String.format("Die E-Mail-Adresse %s ist %sgueltig", email,
 EmailValidator.validateEmail(email) ? "" : "un"));
 }
}

Listing 230: Überprüfung von E-Mail-Adressen über die Kommandozeile

>> Reguläre Ausdrücke und Pattern Matching 495

Re
gE

x

Ein Test mit verschiedenen E-Mail-Adressen zeigt, dass nur gültige Adressen akzeptiert werden.

176 HTML-Tags entfernen
Wenn Sie Webseiten herunterladen, um an deren reinen Inhalte zu gelangen, sind Sie entwe-
der gezwungen, diese manuell zu bearbeiten oder mit Hilfe eines regulären Ausdrucks alle
HTML-Codes zu entfernen. Dies ist eine relativ dankbare Aufgabe, weil HTML-Codes einen
definierten und gleichbleibenden Aufbau haben, der sich mit Hilfe des folgenden regulären
Ausdrucks beschreiben lässt:

<[>]+?>

Dieser Ausdruck trifft auf alle mit einer öffnenden spitzen Klammer beginnenden Textfragmente
zu, die nach mindestens einem anderen Zeichen mit einer schließenden spitzen Klammer enden.

Das Ersetzen von HTML-Tags lässt sich am einfachsten mit Hilfe der Matcher-Methode
replaceAll() erledigen, die als Parameter die Ersetzung entgegennimmt:

Abbildung 105: Ausgabe der Prüfergebnisse

H
in

w
e

is Das Fragezeichen nach dem +-Symbol kennzeichnet einen nichtgierigen regulären Aus-
druck. Für diesen endet ein Match direkt nach der ersten schließenden spitzen Klammer,
während ein gieriger Ausdruck bis zur letzten schließenden spitzen Klammer matchen
würde. Bei einem Text, der mehrere schließende Klammern enthält, würde dies mögli-
cherweise einen zu weiten Bereich umfassen und zu unerwünschten Ergebnissen führen.

import java.util.regex.Pattern;
import java.util.regex.Matcher;

public class HtmlStripper {

 /**
 * Entfernt alle HTML-Tags aus einem Text
 */
 public static String stripHTML(String input) {
 // Pattern-Instanz referenzieren
 Pattern pattern = Pattern.compile("<[^>]+?>");

Listing 231: Entfernen aller HTML-Tags aus einem Text

>> HTML-Tags entfernen496
Re

gE
x

Wesentlich aufwändiger als das Entfernen der HTML-Tags ist das Abrufen einer Webseite. Dies
geschieht mit Hilfe einer URL-Instanz, die die Adresse der abzurufenden Seite repräsentiert.
Ein java.io.BufferedReader, der eine java.io.InputStreamReader-Instanz kapselt, die auf einen
java.io.BufferedInputStream zugreift, liest die Inhalte der Seite ein.

Jede einzelne eingelesene Zeile wird während des Einlesens durch die Methode stripHTML()
von den HTML-Tags befreit. Anschließend werden die HTML-kodierten Leerzeichen ebenfalls
entfernt. Zuletzt werden die Inhalte ausgegeben.

 // Matcher-Instanz referenzieren
 Matcher matcher = pattern.matcher(input);

 // Ersetzung durchführen
 return matcher.replaceAll("");
 }
}

import java.io.*;
import java.net.MalformedURLException;
import java.net.URL;

public class Start {

 public static void main(String[] args) {
 BufferedReader br = null;

 try {
 // URL-Instanz, die die gewünschte Webseite
 // repräsentiert
 String address = "http://java.sun.com";
 if(null != args && args.length > 0) {
 address = args[0];
 }
 URL url = new URL(address);

 // Einlesen der Daten per BufferedReader
 br = new BufferedReader(
 new InputStreamReader(
 new BufferedInputStream(url.openStream())));

 StringBuilder content = new StringBuilder();
 String line = null;

 // Inhalt lesen
 while(null != (line = br.readLine())) {
 // Entfernen aller HTML-Tags aus der Zeile
 String replacedLine = HtmlStripper.stripHTML(line);

Listing 232: Abrufen einer Webseite und Entfernen der HTML-Tags

Listing 231: Entfernen aller HTML-Tags aus einem Text (Forts.)

>> Reguläre Ausdrücke und Pattern Matching 497

Re
gE

x

Eine Webseite wie http://java.sun.com wird so bei Ausführung der Konsolenanwendung auf
ihren reinen Text reduziert.

 // Entfernen der HTML-Entities für Leerzeichen
 replacedLine = ReplaceAll.replace(
 replacedLine, " ", " ");

 // Wenn mindestens ein Zeichen noch vorhanden, dann
 // Zeile hinzufügen
 if(replacedLine.trim().length() > 0) {
 content.append(replacedLine + "\r\n");
 }
 }

 // Ergebnis ausgeben
 System.out.println(content.toString());

 } catch (MalformedURLException e)
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 } finally {
 // Aufräumen
 if(null != br) {
 try {
 br.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
 }
}

Abbildung 106: Darstellung von java.sun.com ohne HTML-Tags

Listing 232: Abrufen einer Webseite und Entfernen der HTML-Tags (Forts.)

>> RegEx für verschiedene Daten498
Re

gE
x

177 RegEx für verschiedene Daten
Bei jedem der folgenden regulären Ausdrücke gilt es zu beachten, dass er zwar viele Einsatz-
zwecke abdeckt, jedoch nie auf alle möglichen und zulässigen Schreibweisen eingehen kann.
Ebenso sollten reguläre Ausdrücke nie als alleinige Kontrollinstanz dienen, denn sie validieren
nur die Syntax von Zeichenketten, nicht deren Inhalt.

Auf PLZ prüfen
Die Prüfung auf eine deutsche Postleitzahl kann mit Hilfe des folgenden regulären Ausdrucks
erfolgen:

^(?:(?:0[1-46-9])|(?:[1-357-9]\\d{1})|(?:4[0-24-9])|(?:6[013-9]))\\d{3}$

Dieser Ausdruck orientiert sich an den Nummernbereichen von Postleitzahlen, von denen ein-
zelne nicht vergeben sind. Die Nummernbereiche 00, 05, 43 und 62 werden deshalb komplett
übergangen. An die ersten beiden Ziffern kann sich eine beliebige dreistellige Ziffer anschließen.

Österreichische und schweizerische Postleitzahlen sind leichter zu prüfen als ihre deutschen
Pendants, denn sie sind nur vierstellig und fortlaufend nummeriert. Der reguläre Ausdruck
muss also auf Zahlen prüfen, wobei die erste Zahl keine Null sein darf:

^[1-9]\\d{3}$

Auf Telefonnummer prüfen
Eine Prüfung auf eine Telefonnummer kann im einfachsten Fall der Prüfung auf ganze Zahlen
entsprechen. Das Format von Telefonnummern kann jedoch variieren, so dass mit einer derar-
tig simplen Prüfung möglicherweise mehr Fehler verursacht als vermieden werden.

Dieser reguläre Ausdruck prüft eine Telefonnummer auf die Einhaltung der deutschen DIN
5008 für die Formatierung von Telefonnummern, die im Wesentlichen festlegt, dass die Vor-
wahl in Klammern zu setzen ist und sämtliche Ziffern in Gruppen zu je zwei Ziffern geschrie-
ben werden müssen. Eine Durchwahl ist durch einen Bindestrich vom Rest der Telefonnummer
zu trennen:

^\\(\\d{1,2}(\\s\\d{1,2}){1,2}\\)\\s(\\d{1,2}(\\s\\d{1,2}){1,})((-(\\d{1,4})){0,1})$

Dieser reguläre Ausdruck kann auf diese Telefonnummern angewendet werden:

(0 30) 12 34 45
(0 30) 12 34 56 78
(0 30) 12 34 56 7 – 12

Er trifft jedoch nicht auf diese Telefonnummern zu:

(030) 12 34 456
+49 (0)30 12 34 56 78
(0 30) 12 34 56 78 – 12334

A
ch

tu
n

g Die folgenden Beispiele stellen reguläre Ausdrücke dar, wie sie direkt in Java verwen-
det werden können. Aus diesem Grund sind Backslashes auch verdoppelt, damit keine
ungültigen Escape-Sequenzen erzeugt werden. Wollen Sie diese Ausdrücke über die
Kommandozeile (siehe Rezept 170) verwenden, müssen Sie die verdoppelten Back-
slashes (\\) in einfache Backslashes (\) umwandeln.

>> Reguläre Ausdrücke und Pattern Matching 499

Re
gE

x

Auf Web- und FTP-Adresse prüfen
Um auf Web- und FTP-Adressen zu prüfen, können Sie diesen Ausdruck verwenden:
^(ht|f)tp(s?)://[a-zA-Z0-9-\\._]+(\\.[a-zA-Z0-9-\\._]+){2,}(/?)([a-zA-Z0-9-\\.\\?,'/
+=&%$#_]*)?$

Er trifft auf alle Eingaben zu, die folgenden Konventionen entsprechen:

� Sie beginnen mit http://, https:// oder ftp://.

� Anschließend erfolgt die Angabe des Domain-Namens und einer Top-Level-Domain (.de,
.com etc.).

� Danach kann ein Slash folgen, damit die Pfadkomponente angehängt werden kann.

� Die Pfadkomponente darf die Buchstaben und Ziffern sowie die Zeichen -.?,'+=&
%$#_ enthalten. Diese Komponente ist optional.

Dieser reguläre Ausdruck findet folgende Adressangaben:

http://java.sun.com
http:// java.sun.com/
http:// java.sun.com/index.html
http:// java.sun.com/index.html?a=b
ftp://pearson.de

Folgende Angaben entsprechen hingegen nicht dem regulären Ausdruck:

java.sun.com
http://java.sun.com/index\html
http://user:pass@java.sun.com

Auf Währungsangaben prüfen
Auch die Prüfung auf Währungsangaben kann per regulärem Ausdruck erfolgen. Folgender
Ausdruck überprüft auf Währungsangaben, die als Tausendertrennzeichen einen Punkt ent-
halten und die Nachkommastellen durch ein Komma abtrennen – also der deutschen Schreib-
weise entsprechen. Am Ende darf auch ein €-Zeichen folgen:

^\\s*-?((\\d{1,3}(\\.(\\d){3})*)|\\d*)(,\\d{1,2})?\\s?(\\u20AC)?\\s*$

Dieser Ausdruck findet folgende Zeichenketten:

123
123,4
123,45
1.234,56 €
1.234,56 €

Nicht gefunden werden diese Zeichenketten:

o1.234,56€

1.234,56 $
1.234,567

Kreditkartennummer überprüfen
Die Verifikation von Kreditkartennummern kann mit Hilfe des folgenden regulären Ausdrucks
erfolgen:

(^(4|5)\\d{3}-?\\d{4}-?\\d{4}-?\\d{4}|(4|5)\\d{15})|(^(6011)-?\\d{4}-?\\d{4}-
?\\d{4}|(6011)-?\\d{12})|(^((3\\d{3}))-\\d{6}-\\d{5}|^((3\\d{14})))

>> RegEx für verschiedene Daten500
Re

gE
x

Dieser reguläre Ausdruck prüft auf die Nummern gängiger Kreditkarten (Amex, Visa, Master-
card). Dabei wird jedoch nicht die Gültigkeit der Nummern, sondern ausschließlich deren kor-
rektes Format überprüft:

� Beginnt mit 4 oder 5, gefolgt von drei Ziffern, einem Bindestrich und zwölf Ziffern in
Vierergruppen durch Bindestriche getrennt oder

� beginnt mit 4 oder 5, gefolgt von fünfzehn Ziffern.

� Beginnt mit 6011, gefolgt von zwölf Ziffern in Vierergruppen, getrennt durch Bindestriche
oder

� beginnt mit 6011, gefolgt von zwölf Ziffern.

� Beginnt mit 3, gefolgt von drei Ziffern, gefolgt von einem optionalen Bindestrich und
sechs Ziffern, gefolgt von einem optionalen Bindestrich und fünf Ziffern oder

� beginnt mit 3, gefolgt von vierzehn Ziffern.

SQL-Injection verhindern
Ein regulärer Ausdruck kann SQL-Injection-Attacken unterbinden, indem er Schlüsselwörter
wie SELECT, UPDATE, INSERT, DELETE, GRANT, REVOKE oder UNION herausfiltert. Die Ein-
schleusung von Hochkommata sollte ebenfalls verhindert werden:

(%3c)|(%3e)|(SELECT) |(UPDATE) |(INSERT) |(DELETE) |(GRANT) |(REVOKE) |(UNION)

Dieser reguläre Ausdruck sollte am besten mit der Methode replaceAll() einer Matcher-Instanz
eingesetzt und auf jeden Wert, der in ein SQL-Statement eingefügt werden soll, angewendet
werden.

Einen weitaus wirksameren Schutz vor SQL-Injection stellt allerdings die Verwendung von
PreparedStatements dar (siehe Rezept 182).

Wortverdoppelungen verhindern
Das Herausfiltern doppelter Worte kann aufwändig werden, wenn man es auf herkömmliche
Art und Weise machen möchte. Reguläre Ausdrücke erlauben es, diese Überprüfung mit Hilfe
eines Musters vorzunehmen:

(\\b\\w+\\b)\\s+([\\w\\W]*?)\\1

Dieser Ausdruck trifft auf alle Zeichenketten zu, in denen ein beliebiges Wort an beliebiger
Stelle doppelt vorkommt:

Dieser Ausdruck ist ist doppelt.

Dieser Ausdruck ist Ausdruck doppelt.

Wollen Sie nur auf hintereinander stehende Wortverdopplungen prüfen, können Sie folgenden
Ausdruck verwenden:

(\\b\\w+\\b)\\s+\\1

Diese Zeichenkette wird erfolgreich getestet:

Dieser Ausdruck ist ist doppelt.

Diese Zeichenkette dagegen nicht:

Dieser Ausdruck ist Ausdruck doppelt.

Da
te

nb
an

ke
n

Datenbanken

178 Datenbankverbindung herstellen
Das Aufbauen einer Verbindung zu einer Datenbank besteht aus zwei Aspekten. Zunächst
muss ein geeigneter JDBC-Treiber geladen werden, üblicherweise mit der statischen Methode
DriverManager.registerDriver() aus dem Paket java.sql. Dann erfolgt das eigentliche Verbin-
den zur Datenbank durch Erzeugen eines Connection-Objekts. Hierzu muss ein JDBC-URL im
Format jdbc:TreiberIdentfifer:Name an die Methode DriverManager.getConnection() überge-
ben werden (das genaue Format ist leider datenbankabhängig). Das folgende Beispiel zeigt das
Vorgehen im Falle einer Oracle-Datenbank, mit dem Oracle-JDBC-Thinclient sowie der popu-
lären MySQL-Datenbank:

import java.sql.*;

class DatabaseUtil {

 /**
 * Verbindungsaufbau zu Oracle-Datenbank mit Thinclient-Treiber
 *
 * @param server Servername/IP
 * @param port Portnummer
 * @param serviceName Oracle Service Name
 * @param user Oracle Username
 * @param password Oracle User Passwort
 * @return Connection-Objekt oder null
 */
 public static Connection makeOracleConnection(String server, String port,
 String serviceName,
 String user, String password) {
 Connection conn = null;

 try {
 // Oracle Treiber laden
 DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver());

 // Verbindung herstellen
 String str = "jdbc:oracle:thin:@" + server + ":" + port + ":" +
 serviceName;
 conn = DriverManager.getConnection(str, user, password);

 } catch(SQLException e) {
 e.printStackTrace();
 }

 return conn;
 }

Listing 233: Methoden zur Verbindung mit Oracle- bzw. MySQL-Datenbanken

>> Datenbankverbindung herstellen502
Da

te
nb

an
ke

n

Der Verbindungsaufbau zu einer Oracle-Datenbank könnte mit Hilfe der Methode Database-
Util.makeOracleConnection() beispielsweise wie folgt aussehen:

Connection conn = DatabaseUtil.makeOracleConnection("192.168.1.1",
 "1521","kdb","dba","geheim");

if(conn == null)
 System.out.println("Verbindungsaufbau ist fehlgeschlagen");
else
 System.out.println("Oracle Verbindung hergestellt");

Beachten Sie dabei Folgendes:

� Das jar-Archiv des Datenbanktreibers (z.B. für Oracle 9i die Datei ojdbc14.jar) muss im
CLASSPATH aufgeführt sein.

� Der konkrete Name für die zu ladende Treiberklasse sowie der Aufbau des Verbindungs-
strings ist abhängig von Treiber und Datenbankversion. Konsultieren Sie hierzu die Hand-
bücher. Der Standardport für Oracle-Datenbanken ist meist 1521, für MySQL 3306.

 /**
 * Verbindungsaufbau zu MySQL-Datenbank
 *
 * @param server Servername/IP
 * @param port Portnummer
 * @param database MySQL Datenbankname
 * @param user MySQL Username
 * @param password MySQL User Passwort
 * @return Connection-Objekt oder null
 */
 public static Connection makeMySQLConnection(String server, String port,
 String database,
 String user,
 String password) {
 Connection conn = null;

 try {
 // Treiber laden
 DriverManager.registerDriver (new com.mysql.jdbc.Driver());

 // Verbindung herstellen
 String str = "jdbc:mysql://" + server + ":" + port + "/" + database;
 conn = DriverManager.getConnection(str, user, password);

 } catch(SQLException e) {
 e.printStackTrace();
 }

 return conn;
 }
}

Listing 233: Methoden zur Verbindung mit Oracle- bzw. MySQL-Datenbanken (Forts.)

>> Datenbanken 503

Da
te

nb
an

ke
n

� Der Verbindungsaufbau ist recht zeitaufwendig und sollte nur selten durchgeführt werden.
Es ist besser, ein vorhandenes Connection-Objekt so oft wie möglich wiederzuverwenden
(siehe hierzu auch Rezept 179).

� Wenn ein Connection-Objekt für längere Zeit nicht mehr benötigt wird, sollte die close()-
Methode aufgerufen werden, um die gebundenen Ressourcen freizugeben.

179 Connection-Pooling
Die im vorigen Abschnitt gezeigte Vorgehensweise zum Anfordern einer Datenbankverbin-
dung ist relativ zeitaufwendig – weswegen einmal erhaltene Connection-Objekte mehrfach
verwendet werden sollten (statt für jeden SQL-Befehl eine neue Verbindung aufzubauen).
Solange man ein überschaubares Programm schreiben muss, ist dieser Tipp auch nicht weiter
schwer zu befolgen. Etwas komplizierter wird es bei Webanwendungen und Ähnlichem, wo
Dutzende oder vielleicht sogar Hunderte von internen Threads bzw. Servlets auf die Daten-
bank zugreifen. Die Threads/Servlets leben meist nur kurze Zeit und können daher selbst keine
Verbindung halten. Die Anwendung auf der anderen Seite hat das Problem, dass bei einer
hohen Anzahl an gleichzeitig gehaltenen Verbindungen alle Datenbankressourcen blockiert
werden und die ganze Anwendung »einfriert«.

Hier bietet sich der Einsatz eines Connection-Pools an. Hierbei handelt es sich um eine
begrenzte Menge an echten (physikalischen) Datenbankverbindungen, die von einem Pro-
gramm nach Bedarf mit getConnection() angefordert werden, für eine oder mehrere SQL-
Befehle genutzt werden und dann sofort durch Aufruf von close() geschlossen werden. Die
Verbindung wird dabei jedoch nur virtuell geschlossen; in Wirklichkeit bleibt sie bestehen und
kann beim nächsten Anfordern mit getConnection() wieder ohne zeitaufwendigen Neuaufbau
zugeteilt werden. Aus Programmsicht gibt es hierbei keinen Unterschied zwischen einer sol-
chen logischen/virtuellen Verbindung und einer echten wie in Rezept 178 erhaltenen und der
Code muss in keinster Weise umgeschrieben werden.

Um Connection-Pooling einzusetzen, muss man ein Objekt haben, welches das Interface Con-
nectionPoolDataSource aus dem Paket javax.sql implementiert. Die hierzu notwendige Klasse
ist leider treiberabhängig, für den Oracle Thinclient ist es OracleConnectionPoolDataSource, für
MySQL Connector heißt sie MysqlConnectionPoolDataSource. Eine Instanz dieser Klasse wird bei
einer typischen Webanwendung mit Hilfe von JNDI ermittelt. (Hierzu muss der Applikations-
server die Datenbank als Datenquelle mit allen notwendigen Einstellungen wie Username,
Passwort, Größe des Connection-Pools registriert und veröffentlicht haben1.)

Für einfache (Test-)Zwecke kann man auch eine Instanz direkt anlegen, z.B. für MySQL:

1. Aufgrund der Vielzahl an Applikationsservern können wir hier nicht auf diese speziellen Konfigurationsaspekte ein-
gehen. Bitte lesen Sie die entsprechende Dokumentation.

import java.sql.*;
import javax.sql.*;
import com.mysql.jdbc.jdbc2.optional.*;

class DatabaseUtil {

 /**

Listing 234: Connection-Pooling

>> Connection-Pooling504
Da

te
nb

an
ke

n

Der Regelfall sieht allerdings wie erwähnt den Weg über JNDI vor, bei dem über den konfigu-
rierten Ressourcenname die Datenbank als Datenquelle (DataSource) bekannt gemacht wird,
z.B.

 * Liefert eine ConnectionPoolDataSource zu der angegebenen Datenbank
 *
 * @param server Datenbankserver
 * @param port Port
 * @param database Datenbankname
 * @param user Username
 * @param password Password
 * @return DataSource
 */
 public static DataSource getConnectionPoolDataSource(String server,
 String port, String database, String user,
 String password) {
 MysqlConnectionPoolDataSource source;

 try {
 source = new MysqlConnectionPoolDataSource();
 source.setServerName(server);
 source.setPort(Integer.parseInt(port));
 source.setDatabaseName(database);
 source.setUser(user);
 source.setPassword(password);

 } catch(Exception e) {
 e.printStackTrace();
 source = null;
 }

 return source;
 }
}

import java.sql.*;
import javax.sql.*;
import javax.naming.*;

class DatabaseUtil {

 /**
 * Liefert eine ConnectionPoolDataSource zu der angegebenen JNDI-Ressource
 *
 * @param resource Name der Datenquelle
 * @return DataSource-Objekt
 */

Listing 235: Methode für Connection-Pooling via JNDI

Listing 234: Connection-Pooling (Forts.)

>> Datenbanken 505

Da
te

nb
an

ke
n

Mit Hilfe der zurückgelieferten DataSource-Instanz kann ein Programm dann (virtuell) eine
Verbindung aufbauen (getConnection()-Aufruf) und nach Gebrauch sofort wieder mit close()
schließen – und dies beliebig oft wiederholen, ohne dass dabei ein physikalischer zeitaufwen-
diger Verbindungsaufbau stattfindet:

180 SQL-Befehle SELECT, INSERT, UPDATE und DELETE
durchführen

Für das Durchführen eines SQL-Befehls wird neben einem gültigen Connection-Objekt eine
Instanz von Statement benötigt, die mit der statischen Methode Connection.createStatement()
erzeugt werden kann. Je nach Art des SQL-Befehls muss dann eine geeignete execute()-
Methode der Klasse Statement zum Ausführen eingesetzt werden:

 public static DataSource getConnectionPoolDataSource(String resource) {
 InitialContext ic = null;
 DataSource result = null;

 try {
 ic = new InitialContext();
 result = (DataSource) ic.lookup(resource);

 } catch (Exception e) {
 e.printStackTrace();
 }

 return result;
 }
}

DataSource ds;

try {
 ds =
 DatabaseUtil.getConnectionPoolDataSource("java:comp/env/jdbc/kunden");

 Connection conn = ds.getConnection();

 // conn für Queries einsetzen
 // ...

 conn.close();

} catch(Exception e) {
 e.printStackTrace();
}

Listing 236: Connection-Pooling via JNDI

Listing 235: Methode für Connection-Pooling via JNDI (Forts.)

>> SQL-Befehle SELECT, INSERT, UPDATE und DELETE durchführen506
Da

te
nb

an
ke

n

� ResultSet.executeQuery(String sql) für SELECT-Befehle; gefundene Zeilen werden als
ResultSet-Objekt zurückgegeben.

� int execute(String sql) für INSERT/UPDATE/DELETE-Befehle; Rückgabe ist die Anzahl
der betroffenen Zeilen.

Die nachfolgend definierten Hilfsmethoden kapseln die erforderlichen Aufrufe und überneh-
men die notwendige Exception-Behandlung:

import java.sql.*;

class DatabaseUtil {

 /**
 * Ausführen einer SELECT-Query
 *
 * @param conn Connection Objekt
 * @param sql SQL-SELECT Query
 * @return ResultSet oder null
 */
 public static ResultSet executeSelect(Connection conn, String sql) {
 ResultSet res = null;

 try {
 Statement stm = conn.createStatement();
 res = stm.executeQuery(sql);

 } catch(SQLException e) {
 e.printStackTrace();
 }

 return res;
 }

 /**
 * Ausführen eines INSERT/UPDATE/DELETE-Befehls
 *
 * @param conn Connection Objekt
 * @param sql SQL-Befehl
 * @return Anzahl betroffene Zeilen oder -1 bei Fehler
 */
 public static int execute(Connection conn, String sql) {
 int res = 0;

 try {
 Statement stm = conn.createStatement();
 boolean st = stm.execute(sql);
 res = stm.getUpdateCount();

 } catch(SQLException e) {
 e.printStackTrace();

Listing 237: Hilfsmethoden zum Ausführen von SQL-Befehlen

>> Datenbanken 507

Da
te

nb
an

ke
n

Ein möglicher Aufruf könnte beispielsweise wie folgt aussehen:

// Muster für fiktive Datenbank
Connection conn = Database.makeOracleConnection("mein.server.de",
 "1521", "db", "dbdba", "geheim");
ResultSet result = Database.executeSelect(conn,
 "SELECT * FROM kunden WHERE name = 'Meier'");

Anzahl Treffer für eine SELECT-Query ermitteln
Das bei einer SELECT-Query zurückgegebene ResultSet-Objekt bietet keine direkte Möglich-
keit, um die Anzahl der gefundenen Zeilen zu ermitteln. Man kann sich auf zwei Arten behel-
fen: Entweder führt man zusätzlich eine separate Query mit dem SQL-Befehl SELECT
COUNT(*) durch oder man verwendet ein scrollbares ResultSet-Objekt und springt an das
Ende und zählt so die Zeilen:

Connection conn = ...
Statement stm = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_UPDATABLE);

 res = -1;
 }

 return res;
 }

 /**
 * Verbindungsaufbau zu Oracle-Datenbank mit Thinclient-Treiber
 */
 public static Connection makeOracleConnection(String server, String port,
 String serviceName,
 String user, String password) {
 siehe Rezept 178
 }

 /**
 * Verbindungsaufbau zu MySQL-Datenbank
 */
 public static Connection makeMySQLConnection(String server, String port,
 String database,
 String user,
 String password) {
 siehe Rezept 178
 }
}

H
in

w
e

is SQL-Befehlsstrings dürfen nicht mit einem Semikolon enden, also z.B.

String sql = "SELECT * FROM DEMOTABELLE";

Listing 237: Hilfsmethoden zum Ausführen von SQL-Befehlen (Forts.)

>> Änderungen im ResultSet vornehmen508
Da

te
nb

an
ke

n

ResultSet rs = stm.executeQuery("SELECT * FROM DEMOTABELLE");

rs.last(); // zur letzten Zeile springen
int num = rs.getRowNum();
rs.first(); // zur ersten Zeile springen

181 Änderungen im ResultSet vornehmen
Mit einem ResultSet-Objekt kann man nicht nur die einzelnen gefundenen Treffer auslesen,
man kann sie auch editieren und die Änderung in die Datenbank zurückschreiben. Darunter
fällt natürlich auch das Hinzufügen oder Löschen von Datensätzen. Voraussetzung ist aller-
dings, dass man bei Anlage des zugrunde liegenden Statement-Objekts ein scroll- und update-
fähiges ResultSet erlaubt hat:

Statement st = conn.createStatement (ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_UPDATABLE);

Anstelle von TYPE_SCROLL_INSENSITIVE kann auch TYPE_SCROLL_SENSITIVE verwendet werden.
Bei Letzterem wirken sich Änderungen an den zugrunde liegenden Zeilen in der Datenbank
durch andere Sessions auf die Daten im ResultSet-Objekt aus.

Wert in Datenfeld ändern
Das Durchführen von Änderungen in einem vorhandenen ResultSet-Objekt geschieht immer
auf der aktuellen Zeile und erfolgt durch Aufruf einer passenden updateXxx()-Methode. Wel-
che Update-Methode genau zum Einsatz kommt, hängt vom Datentyp der zugrunde liegenden
Tabellenspalte ab, z.B. updateString() oder updateInt(). Alle Update-Methoden erwarten den
Namen oder Spaltenindex – bezogen auf die zugrunde liegende SELECT-Query – und den
neuen Wert. Wirksam wird eine Änderung allerdings erst durch einen nachfolgenden Aufruf
von updateRow():

try {
 ResultSet rs = st.executeQuery("SELECT name, vorname from KUNDEN");

 // erste Zeile bearbeiten
 rs.first();
 rs.updateString("name", "Korn-Westfelder");
 rs.updateRow();

} catch(Exception e) {
 e.printStackTrace();
}

Zeilen (Datensätze) einfügen
Das Einfügen einer neuen Zeile erfolgt über die so genannte Einfügezeile (InsertRow), die
durch moveToInsertRow() angesprungen wird und dann wie im Update-Fall geändert wird. Mit
insertRow() wird die neue Zeile in die Datenbank geschrieben. Mit moveToCurrentRow() springt
man dann zurück zur aktuellen Zeile:

H
in

w
e

is Die obige Vorgehensweise funktioniert nur, wenn der eingesetzte JDBC-Treiber scroll-
fähige ResultSet-Objekte unterstützt und die abgefragte Tabelle einen Primärschlüssel
definiert hat.

>> Datenbanken 509

Da
te

nb
an

ke
n

try {
 ResultSet rs = st.executeQuery("SELECT name, vorname from KUNDEN");

 // Zeile hinzufügen
 rs.moveToInsertRow();

 // Zeile mit Werten füllen
 rs.updateString("name", "Hintermoser");
 rs.updateString("vorname", "Kurt");

 // Zu aktueller Zeile zurückspringen
 rs.moveToCurrentRow();

} catch(Exception e) {
 e.printStackTrace();
}

Zeilen (Datensätze) löschen
Für das Löschen genügt das Positionieren in der gewünschten Zeile, gefolgt von einem Aufruf
deleteRow():

try {
 ResultSet rs = st.executeQuery("SELECT name, vorname from KUNDEN");

 // Zeile 3 löschen
 rs.absolute(3); // auf Zeile 3 positionieren
 rs.deleteRow();

} catch(Exception e) {
 e.printStackTrace();
}

182 PreparedStatements ausführen
Wenn immer wieder der gleiche SQL-Befehl ausgeführt werden soll, kann man unter Umstän-
den dadurch Zeit sparen, dass man sie vorkompiliert. Hierbei wird das zeitaufwendige Parsen
und Analysieren des SQL-Befehls nur einmal gemacht. Beim wiederholten Aufrufen muss man
dann lediglich die aktuellen Werte für die gewünschten Parameter einsetzen. Hierzu dient die
Klasse java.sql.PreparedStatement und die Factory-Methode prepareStatement() von Connec-
tion. Als Argumente übernimmt die Methode den SQL-String, wobei konkrete, sich ändernde
Werte durch den Platzhalter ? ersetzt werden.

Ein vorkompilierter SQL-Befehl für die Query

select * from kunden where name = 'Meier' and vorname = 'Hugo'

würde man beispielsweise wie folgt anlegen:

Connection conn = ...
PreparedStatement ps = conn.prepareStatement(
 "select * from kunden where name = ? and vorname = ?");

>> Stored Procedures ausführen510
Da

te
nb

an
ke

n

Die Platzhalter werden dabei von links nach rechts mit 1 beginnend gezählt. Wenn es an das
Ausführen des SQL-Befehls mit konkreten Werten geht, wird nun mit je nach Datentyp passen-
den setXxx()-Methoden wie setString(), setInt(), setFloat() der Wert gesetzt und bei
SELECT-Befehlen mit executeQuery(), bei INSERT/UPDATE/DELETE mit execute() angewendet:

ps.setString(1, "Meier");
ps.setString(2, "Hugo");
ResultSet rs = ps.executeQuery();

183 Stored Procedures ausführen
Eine Stored Procedure oder Stored Function ist eine Methode, die innerhalb des Datenbankser-
vers ausgeführt wird und dadurch in der Regel sehr performant sein kann. Leider ist dieses
Feature für MySQL erst in zukünftigen Versionen geplant (jetziger Stand: ab Version 5.1), so
dass wir hier das Vorgehen nur für Oracle-Datenbanken zeigen. Theoretisch sollte das gezeigte
Vorgehen aber bei beliebigen Datenbanken funktionieren, sofern ein JDBC 3.0-kompatibler
Treiber verfügbar ist.

Beispiel:

Eine Oracle-Stored Function mit der folgenden Signatur soll aufgerufen werden:

searchCustomer(p1 IN varchar2, p2 IN varchar2, p3 OUT int) RETURN VARCHAR2

Diese Function erwartet zwei Eingabeparameter p1 und p2 und liefert ein int-Ergebnis im
Parameter p3 zurück sowie einen String als Funktionswert.

Für den Aufruf wird ein besonderes Objekt vom Typ java.sql.CallableStatement benötigt, dem
man ähnlich wie bei PreparedStatement den gewünschten Aufruf übergibt, wobei alle Übergabe-
parameter (bei Functions auch der Rückgabewert) als Parameter, d.h. per Platzhalter ?, definiert
werden.

Für die Parameter vom Typ IN werden die zu übergebenden Werte mit Hilfe von entsprechen-
den setXxx()-Methoden gesetzt, z.B. setString().

Für OUT-Parameter (hierzu zählt auch der Funktionsrückgabewert, der als Nummer 1 gezählt
wird!) muss der Datentyp gesondert registriert werden – mit Hilfe der Methode registerOut-
Parameter(), der Sie neben der Nummer des Parameters die zu dem SQL-Datentyp passende
Konstante in java.sql.Types (siehe Tabelle 46) übergeben.

try {
 // siehe Rezept 178 für makeOracleConnection
 Connection conn = DatabaseUtil.makeOracleConnection("mein.server.de",
 "1521", "db", "dbdba", "geheim");

 // Aufruf-String
 String query = "{?= call searchCustomer(?,?,?)}";

 // Call-Objekt erzeugen
 CallableStatement st = conn.prepareCall(query);

Listing 238: Aufruf einer Stored Procedure

>> Datenbanken 511

Da
te

nb
an

ke
n

 // Übergabewerte setzen
 st.setString(2, "Meier");
 st.setString(3, "Hugo");

 // OUT-Parameter registrieren
 // Funktionsrückgabewert
 st.registerOutParameter(1, java.sql.Types.VARCHAR);

 // OUT-Parameter p3
 st.registerOutParameter(4, java.sql.Types.INTEGER);

 // ausführen
 st.execute();

 // Ergebnis auslesen
 String status = st.getString(1); // Funktionswert
 int num = st.getInt(4); // OUT-Parameter p3 (Nr 4)

} catch(Exception e) {
 e.printStackTrace();
}

SQL-Typ JDBC-SQL-Typ in
java.sql.Types

Java-Typ Beschreibung

ARRAY ARRAY java.sql.Array SQL-Feld

BIGINT BIGINT long 64 Bit Ganzzahl

BIT BIT boolean Einzelnes Bit (0,1)

BLOB BLOB java.sql.Blob Beliebige Binärdaten

BOOLEAN BOOLEAN boolean Boolescher Wert

CHAR CHAR String Zeichenkette fester Länge

CLOB CLOB java.sql.Clob Für große Zeichenketten

DATE DATE java.sql.Date Datumsangaben

DECIMAL DECIMAL java.math.BigDecimal Festkommazahl

DOUBLE DOUBLE double Gleitkommazahl in doppelter
Genauigkeit

FLOAT FLOAT double Gleitkommazahl in doppelter
Genauigkeit

INTEGER INTEGER int 32 Bit Ganzzahl

– JAVA_OBJECT Object Speicherung von Java-Objekten

Tabelle 46: Typzuordnung zwischen SQL und Java

Listing 238: Aufruf einer Stored Procedure (Forts.)

>> BLOB- und CLOB-Daten512
Da

te
nb

an
ke

n

184 BLOB- und CLOB-Daten
Das Speichern von größeren Zeichenketten oder beliebigen Binärdaten ist mit den gängigen
Datenbanken und JDBC erstaunlich beschränkt, da der Datentyp VARCHAR auf 255 Zeichen
beschränkt ist (und auch spezifische Datentypen wie VARCHAR2 bei Oracle erlauben nur eine
bescheidene Länge von maximal 4096 Zeichen). Abhilfe schaffen die Datentypen BLOB für die
Speicherung beliebig großer binärer Daten sowie CLOB für Zeichenketten.

BLOB-/CLOB-Daten in Datenbank schreiben
Um BLOB-Daten aus Dateien einzulesen und in eine Datenbank zu schreiben, gehen Sie wie
folgt vor:

1. Sie lesen die Daten ein.

Für Binärdateien verwenden Sie einen FileInputStream, für Textdaten einen FileReader.

2. Sie setzen einen SQL-Befehl oder eine PreparedStatement zum Einfügen der Daten auf.

3. Sie schicken den SQL-Befehl mit executeUpdate() ab.

Der folgende Code geht von einer Oracle-Tabelle Buecher aus, mit einer BLOB-Spalte für das
Titelbild und einer CLOB-Spalte für den Buchtext:

NULL NULL null für Java-Objekte,
false für boolean,
0 für numerische Typen

Darstellung des NULL-Werts
(= kein Wert)

NUMERIC NUMERIC java.math.BigDecimal Dezimalzahlen mit fester Genau-
igkeit

REAL REAL float Gleitkommazahl einfacher
Genauigkeit

TIME TIME java.sql.Time Zeitdarstellung (Stunden, Minu-
ten, Sekunden)

VARCHAR VARCHAR String Zeichenketten variabler
Länge

A
ch

tu
n

g Die genauen Namen der Datentypen sind teilweise abhängig von der Datenbank, z.B.
kennt MySQL die Typen BLOB (bis 65.535 Byts), MEDIUMBLOB (bis 1,6 Mbyte) und
LARGEBLOB (bis 4,2 Gbyte) sowie anstelle von CLOB die Typen TEXT, MEDIUMTEXT,
LONGTEXT (Größen wie bei BLOB-Varianten).

import java.io.*;
import java.sql.*;
...

Listing 239: Schreiben von BLOB-/CLOB-Daten

SQL-Typ JDBC-SQL-Typ in
java.sql.Types

Java-Typ Beschreibung

Tabelle 46: Typzuordnung zwischen SQL und Java (Forts.)

>> Datenbanken 513

Da
te

nb
an

ke
nBLOB-/CLOB-Daten lesen

Die umgekehrte Richtung, das Lesen von BLOB/CLOB-Daten, kann über eine normale SELECT-
Query erfolgen. Vom ResultSet-Objekt können Sie sich dann mit den Methoden getBlob()
bzw. getClob() einen »Locator« vom Typ java.sql.Blob bzw. java.sql.Clob zurückliefern las-
sen, mit dessen Methoden – getBytes() für BLOB-Daten bzw. getSubString() für CLOB-Daten
– Sie auf die Daten zugreifen können.

try {
 // siehe Rezept 178 für makeOracleConnection
 Connection c = DatabaseUtil.makeOracleConnection("mein.server.de",
 "1521", "db", "dbdba", "geheim");

 // Daten einlesen
 File img = new File("cover.tif");
 File text = new File("content.txt");
 FileInputStream fisImage = new FileInputStream(img);
 FileReader frText = new FileReader(text);

 // PreparedStatement aufsetzen
 PreparedStatement ps = c.prepareStatement("INSERT into buecher" +
 " VALUES (?, ?, ?)");
 ps.setString(1, "3645-57876-46565-6");
 ps.setBinaryStream(2,fisImage,(int) img.length());
 ps.setCharacterStream(3, frText, (int) text.length());

 // SQL-Befehl abschicken
 int num = ps.executeUpdate();

} catch(Exception e) {
 e.printStackTrace();
}

import java.sql.*;

class DatabaseUtil {

 /**
 * Lesen eines BLOB aus der Datenbank
 *
 * @param rs ResultSet-Objekt von SELECT-Query
 * @param num Nummer der Spalte mit dem Blob
 * @return Array byte[] mit Blobdaten oder null bei Fehler
 */
 public static byte[] readBlob(ResultSet rs, int num) {
 try {
 Blob b = rs.getBlob(num);

Listing 240: Hilfsmethoden zum Auslesen von BLOB- und CLOB-Daten

Listing 239: Schreiben von BLOB-/CLOB-Daten (Forts.)

>> BLOB- und CLOB-Daten514
Da

te
nb

an
ke

n

 int len = (int) b.length();
 return b.getBytes(1, len);

 } catch(Exception e) {
 return null;
 }
 }

 /**
 * Lesen eines CLOB aus der Datenbank
 *
 * @param rs ResultSet-Objekt von SELECT-Query
 * @param num Nummer der Spalte mit dem Clob
 * @return String mit Clobdaten oder null bei Fehler
 */
 public static String readClob(ResultSet rs, int num) {
 try {
 Clob c = rs.getClob(num);
 int len = (int) c.length();
 String str = c.getSubString(1,len);
 return str;
 } catch(Exception e) {
 return null;
 }
 }

 /**
 * Verbindungsaufbau zu Oracle-Datenbank mit Thinclient-Treiber
 */
 public static Connection makeOracleConnection(String server, String port,
 String serviceName,
 String user, String password) {
 siehe Rezept 178
 }

 /**
 * Verbindungsaufbau zu MySQL-Datenbank
 */
 public static Connection makeMySQLConnection(String server, String port,
 String database,
 String user,
 String password) {
 siehe Rezept 178
 }
}

Listing 240: Hilfsmethoden zum Auslesen von BLOB- und CLOB-Daten (Forts.)

>> Datenbanken 515

Da
te

nb
an

ke
n

Der folgende Code geht von einer Oracle-Tabelle Buecher aus, mit einer BLOB-Spalte für das
Titelbild und einer CLOB-Spalte für den Buchtext:

185 Mit Transaktionen arbeiten
Unter einer Transaktion versteht man die Zusammenfassung von mehreren SQL-Befehlen zu
einer logischen Einheit, so dass entweder alle erfolgreich ausgeführt werden oder keine. Nor-
malerweise ist eine per JDBC-Treiber geöffnete JDBC-Verbindung im Autocommit-Modus,
d.h., nach jedem einzelnen Befehl wird in der Datenbank ein Commit durchgeführt und die
Änderungen sind bleibend. Für Transaktionen muss man daher diesen Automatismus im
erhaltenen Connection-Objekt ausschalten und dann an den gewünschten Stellen durch Aufruf
der commit()-Methode die bisher abgesetzten SQL-Befehle persistent machen oder mit roll-
back() wieder rückgängig machen:

try {
 // siehe Rezept 178 für makeOracleConnection
 Connection conn = DatabaseUtil.makeOracleConnection("mein.server.de",
 "1521", "db", "dbdba", "geheim");

 Statement stm = conn.createStatement();
 String sql = "SELECT * FROM buch where isbn = '3645-57876-46565-6'";
 ResultSet res = stm.executeQuery(sql);

 if(res.next() == true) {
 // das Buchcover laden
 byte[] imageBytes = DatabaseUtil.readBlob(res, 2);
 ImageIcon bookCover = new ImageIcon(imageBytes);

 // den Buchtext laden
 String bookText = DatabaseUtil.readClob(res,3);
 }

} catch(Exception e) {
 e.printStackTrace();
}

Listing 241: Lesen von BLOB-/CLOB-Daten

// AutoCommit ausschalten
Connection conn = ... siehe Rezept 178
conn.setAutoCommit(false);

// SQL-Befehl durchführen
Statement st = conn.createStatement();
st.executeUpdate("INSERT ...");

// Transaktion beenden
conn.commit(); // Datenbankänderungen akzeptieren
// oder: conn.rollback(); um Änderungen rückgängig zu machen

Listing 242: Mit Transaktionen arbeiten

>> Batch-Ausführung516
Da

te
nb

an
ke

n

Savepoints
Der Aufruf von commit() bzw. rollback() betrifft alle SQL-Befehle, die seit dem letzten com-
mit() an die Datenbank gesendet worden sind. Eine etwas genauere Unterteilung bietet der
Einsatz von java.sql.Savepoint. Ein Savepoint-Objekt ist eine Markierung innerhalb einer
Transaktion und man kann sie an die rollback()-Methode übergeben: Dann werden nur die
SQL-Befehle rückgängig gemacht, die nach dem Setzen der Savepoint-Markierung gesendet
worden sind, z.B.

// AutoCommit ausschalten
Connection conn = ... siehe Rezept 178
conn.setAutoCommit(false);

// SQL-Befehl durchführen
Statement st = conn.createStatement();
st.executeUpdate("INSERT ..."); // SQL Nr 1

// Savepoint setzen
Savepoint sp = conn.setSavepoint();

// Weitere SQL-Befehle durchführen
st.executeUpdate("INSERT ..."); // SQL Nr 2
st.executeUpdate("UPDATE ..."); // SQL Nr. 3

// Rollback
conn.rollback(sp); // SQL Nr 2&3 rückgängig

// Commit
conn.commit(); // SQL 1 persistent

186 Batch-Ausführung
Wenn viele einzelne Datensatzänderungen (INSERT; UPDATE; DELETE) vorgenommen werden
sollen, kann es (sofern von der Datenbank/vom Treiber unterstützt) sinnvoll sein, eine so
genannte Batch-Ausführung zu verwenden. Hierbei werden alle SQL-Befehle gesammelt und
in einem Block zur Datenbank geschickt, was teilweise deutliche Geschwindigkeitsvorteile
bringen kann. Häufig werden Batch-Operationen als Transaktionen ausgeführt, so dass alle
oder keine der SQL-Operationen erfolgreich ist.

import java.sql.*;

class DatabaseUtil {

 /**
 * Abarbeitung von SQL-Befehlen im Batch-Modus
 *
 * @param conn Connection-Objekt
 * @param sql Array mit SQL-Befehlen
 * @param asTransaction Angabe, ob als Transaktion zusammenfassen
 * @return int-Array mit Anzahl betroffener Zeilen pro
 * SQL-Befehl oder null bei Fehler

Listing 243: Hilfsmethode zur Batch-Ausführung von SQL-Befehlen

>> Datenbanken 517

Da
te

nb
an

ke
n

 */
 public static int[] executeBatch(Connection conn, String[] sql,
 boolean asTransaction) {
 int[] result = null;
 boolean autoCommitOld = true;
 Savepoint sp = null;

 try {
 if(asTransaction) {
 autoCommitOld = conn.getAutoCommit(); // alten Zustand merken
 conn.setAutoCommit(false);
 sp = conn.setSavepoint();
 }

 Statement stm = conn.createStatement();

 for(String str : sql) {
 stm.addBatch(str);
 }

 result = stm.executeBatch();

 } catch(BatchUpdateException bex) {
 result = null;
 SQLException n = bex;

 while(n!= null) {
 System.out.println(n);
 n = n.getNextException();
 }
 } catch(Exception e) {
 e.printStackTrace();
 result = null;
 }

 try {
 if(result == null && asTransaction == true)
 // in transaction modus, bei Fehler alles rückgängig machen
 conn.rollback(sp);
 else if(result != null && asTransaction == true)
 conn.commit();

 // aufräumen
 if(asTransaction == true) {
 conn.releaseSavepoint(sp);
 conn.setAutoCommit(autoCommitOld);
 }

 } catch(Exception e) {
 e.printStackTrace();
 }

Listing 243: Hilfsmethode zur Batch-Ausführung von SQL-Befehlen (Forts.)

>> Metadaten ermitteln518
Da

te
nb

an
ke

n

Das folgende Codefragment demonstriert die Verwendung:

// siehe Rezept 178 für makeOracleConnection
Connection conn = DatabaseUtil.makeOracleConnection("mein.server.de",
 "1521", "db", "dbdba", "geheim");

// SQL-Befehle für Batch-Ausführung sammeln
String[] sql = new String[3];
sql[0] = "INSERT INTO kunden VALUES(1,'Meier','Kurt')";
sql[1] = "INSERT INTO kunden VALUES(2,'Müller','Peter')";
sql[2] = "DELETE FROM kunden WHERE name = 'Schmidt'";

// Batch-Ausführung starten
int[] result = DatabaseUtil.executeBatch(conn, sql, false);

for(int i = 0; i < 3; i++)
 System.out.println("Ergebnis SQL Nr. " + i + ":" + result[i]);

187 Metadaten ermitteln
Metadaten sind Informationen über die Struktur von anderen Daten. In JDBC werden dabei
zwei Datengruppen unterschieden:

� die Datenbank selbst sowie

� die zurückgelieferten Daten einer SELECT-Query (in Form eines ResultSet-Objekts).

 return result;
 }

 /**
 * Verbindungsaufbau zu Oracle-Datenbank mit Thinclient-Treiber
 */
 public static Connection makeOracleConnection(String server, String port,
 String serviceName,
 String user, String password) {
 siehe Rezept 178
 }

 /**
 * Verbindungsaufbau zu MySQL-Datenbank
 */
 public static Connection makeMySQLConnection(String server, String port,
 String database,
 String user,
 String password) {
 siehe Rezept 178
 }
}

Listing 243: Hilfsmethode zur Batch-Ausführung von SQL-Befehlen (Forts.)

>> Datenbanken 519

Da
te

nb
an

ke
n

Datenbank-Metadaten
Zum Ermitteln von Metadaten über die Datenbank dient die Klasse java.sql.DatabaseMeta-
Data, von der man eine Instanz über das Connection-Objekt erhalten kann. DatabaseMetaData
bietet über 150 Methoden zum Abfragen diverser Informationen ab.

Die nachfolgend definierte Methode demonstriert den Zugriff auf die Metadaten und gibt
selbst einige grundlegende Informationen wie Datenbankversion und JDBC-Treiber auf die
Konsole aus.

Aufgerufen wird die Methode einfach mit dem Connection-Objekt der abzufragenden Daten-
bank als Argument:

Connection conn = ... // siehe Rezept 178
DatabaseUtil.printDBMetaData(conn);

import java.sql.*;

class DatabaseUtil {

 /**
 * Gibt Datenbank-Infos auf Konsole aus
 *
 * @param conn Connection-Objekt
 */
 public static void printDBMetaData(Connection conn) {
 try {
 DatabaseMetaData md = conn.getMetaData();

 System.out.println("Datenbanktyp : "
 + md.getDatabaseProductName() + " "
 + md.getDatabaseProductVersion());
 System.out.println("JDBC Treiber : "
 + md.getDriverName() + " "
 + md.getDriverVersion());
 System.out.println("angemeldet als : "
 + md.getUserName() + "\n");

 // Achtung: getCatalogTerm() wird nicht von allen Treibern sinnvoll
 // implementiert!
 System.out.println("vorhandene " + md.getCatalogTerm() + "(s)");
 ResultSet cats = md.getCatalogs();

 while(cats.next()) {
 System.out.println(cats.getString(1));
 }

 } catch(Exception e) {
 e.printStackTrace();
 }
 }
}

Listing 244: Hilfsmethode zum Ausgeben einiger wichtiger Datenbank-Metadaten

>> Metadaten ermitteln520
Da

te
nb

an
ke

n

ResultSet-Metadaten
Über das von einer SELECT-Query zurückgegebene ResultSet-Objekt lassen sich ebenfalls
Metadaten ermitteln, z.B. die Anzahl der Spalten und ihre Datentypen.

Die nachfolgend definierte Methode demonstriert den Zugriff auf die Metadaten und gibt
selbst einige grundlegende Informationen wie die Anzahl der Datensätze sowie Spaltennamen
und -typen auf die Konsole aus.

Aufgerufen wird die Methode einfach mit dem abzufragenden ResultSet-Objekt als Argument:

try {
 Connection conn = ... // siehe Rezept 178

 Statement st = conn.createStatement();
 ResultSet rs = st.executeQuery("SELECT name, vorname from KUNDEN");

 DatabaseUtil.printResultSetMetaData(rs);

} catch(Exception e) {
 e.printStackTrace();
}

import java.sql.*;

class DatabaseUtil {

 /**
 * Gibt ResultSet-Infos auf Konsole aus
 *
 * @param conn ResultSet-Objekt
 */
 public static void printResultSetMetaData(ResultSet rs) {

 try {
 ResultSetMetaData md = rs.getMetaData();

 int num = md.getColumnCount();
 System.out.println("Anzahl Spalten im ResultSet: " + num);

 for(int i = 1; i <= num; i++) {
 System.out.println("Spalte " + i
 + " Name: " + md.getColumnName(i)
 + " Datentyp: " + md.getColumnTypeName(i));
 }
 } catch(Exception e) {
 e.printStackTrace();
 }
 }

}

Listing 245: Abfrage von ResultSet-Metadaten

>> Datenbanken 521

Da
te

nb
an

ke
n

188 Datenbankzugriffe vom Applet
Im Prinzip gelten für JDBC-Zugriffe aus einem Applet heraus natürlich die gleichen Regeln
wie für normale Anwendungen oder auch Servlets. Allerdings gibt es – natürlich! – Kleinig-
keiten, die man beachten muss, damit der Zugriff wie gewünscht klappt:

� Sicherheit: Ein Applet darf eine JDBC-Verbindung nur zu seinem Ursprungsserver auf-
bauen (es sei denn, die entsprechenden Policy-Dateien der verwendeten Java Runtime
wurden entsprechend angepasst).

� Treiber: Es sollte ein Typ 3 oder Typ 4 sein (keinesfalls ein JDBC-ODBC-Treiber), der
zusammen mit dem Applet-Code in einem jar-Archiv gebündelt ist.

� Browser: Der Browser muss ein aktuelles Java-Plugin installiert haben; die insbesondere
beim Internet Explorer fest eingebaute Virtual Machine kennt kein JDBC.

Das folgende Beispiel zeigt ein einfaches Applet, welches eine Tabelle aus einer MySQL-
Datenbank ausliest und anzeigt.

import java.sql.*;
import java.awt.*;
import java.applet.*;

public class DatabaseApplet extends Applet {
 int numRows = 0;
 int numColumns = 0;
 String[][] tabdata;

 String myServer = null;
 String myPort = "3306";
 String database = "kosamig";
 String user = "root";
 String password = "root";

 /**
 * in start-Methode die Datenbankverbindung herstellen und Daten lesen
 */
 public void start() {
 try {
 // Mit Datenbank verbinden
 myServer = getDocumentBase().getHost();
 Connection conn = DatabaseUtil.makeMySQLConnection(myServer, myPort,
 database,
 user, password);
 // Query durchführen
 Statement stm = conn.createStatement(
 ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);
 String sql ="SELECT * from mig_status";
 ResultSet rs = stm.executeQuery(sql);

Listing 246: Datenbankzugriff via Applet

>> Datenbankzugriffe vom Applet522
Da

te
nb

an
ke

n

 // Anzahl Spalten und Datensätze abfragen
 ResultSetMetaData meta = rs.getMetaData();
 numColumns = meta.getColumnCount();
 rs.last();
 numRows = rs.getRow();
 rs.beforeFirst();

 // ResultSet-Daten in String-Array einlesen
 tabdata = new String[numRows][numColumns];

 int row = 0;
 while(rs.next()) {

 for(int col = 0; col < numColumns; col++)
 tabdata[row][col] = rs.getString(col+1);

 row++;
 }

 // Ergebnis ausgeben
 repaint();

 // Datenbankverbindung schließen
 conn.close();

 } catch(Exception e) {
 System.err.println("Exception bei Verbindung " + e);
 repaint();
 }
 }

 /**
 * in paint-Methode Daten ausgeben
 */
 public void paint(Graphics g) {
 String output;

 for(int i = 0; i < numRows; i++) {
 output = "";

 for(int j = 0; j < numColumns; j++)
 output = output + tabdata[i][j] + " ";

 g.drawString(output,20,20 + i * 30);
 }
 }
}

Listing 246: Datenbankzugriff via Applet (Forts.)

>> Datenbanken 523

Da
te

nb
an

ke
n

Die HTML-Seite zum Aufruf:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
 <title> Datenbank-Zugriff über Applet </title>
</head>

<body>

 <p>Zugriff auf Datenbank-Server</p>

 <applet code="DatabaseApplet.class"
 archive="DatabaseApplet.jar"
 width="600" height="500">
 </applet>

</body>
</html>

Listing 247: Einbettung des Applets in Webseite

A
ch

tu
n

g Beachten Sie hierbei bitte, dass das Archiv DatabaseApplet.jar sowohl die jar-Datei des
Datenbanktreibers enthalten muss als auch die .class-Datei des obigen Applets.

Ne
tz

w
er

ke
, E

-M
ai

l

Netzwerke und E-Mail

189 IP-Adressen ermitteln
Die Klasse java.net.NetworkInterface verfügt über eine statische Methode getNetworkInter-
faces(), die eine Enumeration vom Typ java.net.NetworkInterface zurückgibt. Jedes Element
dieser Enumeration repräsentiert einen Netzwerkadapter samt Anzeigename und IP-Adressen.

Diese Adressen können in Form einer Enumeration aus java.net.InetAddress-Instanzen über
die Methode getInetAddresses() der NetworkInterface-Instanz abgerufen werden. Die
Methode getHostName() einer InetAddress-Instanz liefert die IP-Adresse, die der Netzwerk-
verbindung zugeordnet ist.

import java.net.*;
import java.util.Enumeration;

public class DisplayInterfaces {

 /**
 * Gibt eine Liste aller Netzwerk-Interfaces samt
 * zugeordneter IP-Adressen aus
 */
 public static void display() {
 try {
 // Netzwerk-Interfaces abrufen
 Enumeration<NetworkInterface> interfaces =
 NetworkInterface.getNetworkInterfaces();

 // Alle Interfaces durchlaufen
 while(interfaces.hasMoreElements()) {
 // Aktuelles Element abrufen und Namen ausgeben
 NetworkInterface ni = interfaces.nextElement();
 System.out.println(
 String.format("Netzwerk-Interface: %s (%s)",
 ni.getName(), ni.getDisplayName()));

 // Adressen abrufen
 Enumeration<InetAddress> addresses =
 ni.getInetAddresses();

 // Adressen durchlaufen
 while(addresses.hasMoreElements()) {
 InetAddress address = addresses.nextElement();

 // Adresse ausgeben
 System.out.println(
 String.format("- %s",
 address.getHostAddress()));
 }

Listing 248: Ausgabe aller Netzwerk-Interfaces samt deren IP-Adressen

>> Erreichbarkeit überprüfen526
Ne

tz
w

er
ke

, E
-M

ai
l

190 Erreichbarkeit überprüfen
Mit Hilfe der Methode isReachable() einer InetAddress-Instanz kann überprüft werden, ob
diese von außen erreichbar ist. Dabei wird eine ECHO-Request an den jeweiligen Server gesen-
det. Wird sie beantwortet, gilt die Adresse als erreichbar.

Die Methode isReachable() ist überladen:

boolean isReachable(int timeout) throws IOException

boolean isReachable(NetworkInterface netif, int ttl, int timeout)
 throws IOException

Der Parameter timeout gibt die Zeitspanne, wie lange auf eine Antwort vom Server gewartet wird,
in Millisekunden an. Wird diese Zeitspanne überschritten, gilt die Prüfung als fehlgeschlagen.

Über die explizite Angabe einer java.net.NetworkInterface-Instanz kann angegeben werden,
welche Netzwerkschnittstelle verwendet werden soll. Sollen alle Netzwerkschnittstellen ver-
wendet werden, ist der Wert null zu übergeben.

 System.out.println();
 }
 } catch (SocketException e) {
 e.printStackTrace();
 }
 }
}

Abbildung 107: Ausgabe der verfügbaren Netzwerk-Interfaces samt deren zugeordneten
IP-Adressen

Listing 248: Ausgabe aller Netzwerk-Interfaces samt deren IP-Adressen (Forts.)

>> Netzwerke und E-Mail 527

Ne
tz

w
er

ke
, E

-M
ai

l

Die maximale Anzahl an Hops wird über den Parameter ttl definiert. Der Standardwert ist
hier null (= unendlich). Wird eine negative Anzahl an Hops übergeben, wird eine IllegalArgu-
mentException ausgeworfen. Selbiges gilt für die Angabe eines negativen Werts für das Time-
out der Anfrage.

Bei Verwendung der Methode isReachable() kann es zu IOExceptions kommen, wenn Netz-
werkprobleme auftreten. Diese Ausnahme ist entweder zu deklarieren oder abzufangen:

Beim Erzeugen einer InetAddress-Instanz mit Hilfe der statischen Methode InetAddress.getBy-
Name() kann eine UnknownHostException geworfen werden, wenn der Hostname nicht in eine
IP-Adresse aufgelöst werden kann. Dies ist ein starkes Indiz für eine nicht existente Internet-
verbindung oder einen falsch geschriebenen Hostnamen.

Die Verwendung der beschriebenen Methode aus eigenen Klassen heraus ist sehr simpel: Die
statische Methode CheckAvailability.isReachable() nimmt als Parameter den Hostnamen und
das Timeout in Millisekunden entgegen. Es kann eine IOException geworfen werden, die auf-
gefangen oder deklariert werden muss:

import java.io.IOException;
import java.net.InetAddress;
import java.net.UnknownHostException;

public class CheckAvailability {

 /**
 * Prüft, ob eine IP-Adresse erreichbar ist
 */
 public static boolean isReachable(
 String host, int timeout) throws IOException {

 // InetAddress-Instanz erzeugen
 InetAddress address = null;
 try {
 address = InetAddress.getByName(host);
 } catch (UnknownHostException e) {
 // Wird nicht speziell behandelt
 }

 // Überprüfen, ob Adresse erreichbar ist
 if(null != address) {
 return address.isReachable(timeout);
 }

 // Default-Rückgabe
 return false;
 }
}

Listing 249: Überprüfung, ob ein Host per ECHO-Request erreichbar ist

>> Erreichbarkeit überprüfen528
Ne

tz
w

er
ke

, E
-M

ai
l

Der hier vorgestellten Konsolenanwendung wird über ihre Argumente der zu überprüfende Host
und – optional – das maximale Timeout für die Überprüfung der Erreichbarkeit angegeben:

import java.io.IOException;

public class Start {

 public static void main(String[] args) {
 if(args != null && args.length > 0) {
 // Host ermitteln
 String host = args[0];

 // Standard-Timeout festlegen
 int timeout = 4000;
 if(args.length > 1) {
 // Versuchen, übergebenes Timeout einzulesen
 String to = args[1];

 // In Integer casten
 if(to.length() > 0 && !to.equals("0")) {
 try {
 timeout = Integer.parseInt(to);
 } catch (NumberFormatException e)
 {
 // Wird nicht speziell behandelt
 }
 }
 }

 // Ergebnis-Variable definieren
 boolean reachable = false;
 try {
 // Erreichbarkeit prüfen
 reachable =
 CheckAvailability.isReachable(host, timeout);
 } catch (IOException e) {
 e.printStackTrace();
 }

 // Ergebnis ausgeben
 System.out.println(
 String.format("Host %s is %3$sreachable in %2$d MilliSeconds.",
 host, timeout, reachable ? "" : "not "));
 }
 }
}

Listing 250: Überprüfen der Erreichbarkeit eines Hosts

>> Netzwerke und E-Mail 529

Ne
tz

w
er

ke
, E

-M
ai

l

In Rezept 72 finden Sie ein Beispiel zu diesem Thema.

191 Status aller offenen Verbindungen abfragen
Leider gibt es keine direkte Möglichkeit, einen Überblick über den aktuellen Status der offenen
Verbindungen eines Systems zu erhalten. Je nach Betriebssystem gibt es jedoch verschiedene
Konsolenprogramme, die diese Aufgabe erledigen. Unter Windows wird dafür das Tool netstat
eingesetzt, das alle bestehenden Verbindungen samt deren Status auf einem System anzeigen
kann.

Das netstat-Tool muss über die java.lang.Runtime-Klasse aufgerufen werden. Da damit gleich-
zeitig die Plattformunabhängigkeit von Java aufgehoben wird, ist der Einsatz einer derartigen
Lösung gründlich zu durchdenken. Die Rückgabe von netstat kann entweder direkt in eine
Textdatei geschrieben und anschließend weiterverwendet oder eingelesen und innerhalb der
Anwendung analysiert werden:

Abbildung 108: Ein Host ist erreichbar

H
in

w
e

is Neben dem Prüfen der Erreichbarkeit eines Servers per ECHO-Request muss oder soll
oftmals ein PING durchgeführt werden – allein schon deshalb, weil PING eine weit ver-
breitete Möglichkeit ist, zu erfahren, ob ein System im Netzwerk angesprochen werden
kann.

import java.io.*;

/**
 * Klasse zum Aufruf von netstat unter Windows
 */
public class Netstat extends Thread {

 public void run() {
 // Runtime-Instanz erzeugen
 Runtime r = Runtime.getRuntime();

 Process p = null;
 try {
 // Process-Instanz erzeugen
 p = r.exec("cmd.exe /C netstat -anb");

 // Lesen der Ausgabe
 new OutputReader(this, p).start();

Listing 251: Abrufen des Verbindungsstatus

>> Status aller offenen Verbindungen abfragen530
Ne

tz
w

er
ke

, E
-M

ai
l

Das Handling von netstat unter Windows ist allerdings nicht befriedigend umgesetzt. Dies liegt
weniger an Java als vielmehr an der Implementierung dieses Tools. Wenn wie gewöhnlich mit
netstat als externem Prozess gearbeitet werden würde, bliebe die Java-Anwendung einfach
stehen. Aus diesem Grund ist die Klasse als Ableitung von Thread ausgeführt und verwendet
einen OutputReader-Thread, um die Ausgabe entgegenzunehmen und weiterzuverarbeiten.

Der Konstruktor der Klasse OutputReader nimmt als Parameter den aufrufenden Thread und die
java.lang.Process-Instanz entgegen, in deren Kontext die netstat-Ausführung stattfindet.
Innerhalb ihrer run()-Methode wird die Ausgabe des netstat-Tools eingelesen und verarbeitet.
Sobald keine Ausgabe mehr erfolgt, werden der aufrufende und der aktuelle Thread beendet und
somit auch die Abarbeitung des im aufrufenden Thread gestarteten Prozesses unterbrochen:

 // Ausführen
 p.waitFor();
 }
 // Ausnahmen abfangen
 catch (IOException e) {
 return;
 } catch (InterruptedException e) {
 return;
 }
 }
}

A
ch

tu
n

g Unter Windows XP/Vista kann netstat nur mit entsprechenden Benutzerrechten ausgeführt
werden.

import java.io.*;

/**
 * Hilfsklasse für den Aufruf von netstat unter Windows
 */
public class OutputReader extends Thread {

 private InputStream in;
 private Thread caller;

 // Konstruktor
 OutputReader(Thread caller, Process p) {
 // InputStream abrufen
 in = p.getInputStream();

 // Aufrufenden Thread merken

Listing 252: Einlesen und Ausgeben der Rückgabe des externen Prozesses

Listing 251: Abrufen des Verbindungsstatus (Forts.)

>> Netzwerke und E-Mail 531

Ne
tz

w
er

ke
, E

-M
ai

l

Da die Netstat-Klasse selbst als java.io.Thread-Ableitung ausgeführt ist, muss ihre Ausfüh-
rung über ihre start()-Methode angestoßen werden:

 this.caller = caller;
 }

 public void run() {
 // Wenn kein InputStream vorhanden, dann beenden
 if(null == in) {
 return;
 }

 // BufferedReader zum Auslesen der Informationen
 BufferedReader br = new BufferedReader(
 new InputStreamReader(in));

 // Informationen zeilenweise einlesen
 String line = null;
 try {
 while(null != (line = br.readLine())) {
 // Informationen wieder auslesen
 System.out.println(line);
 }
 } catch (IOException e) {
 e.printStackTrace();
 }

 // Thread und aufrufenden Thread beenden
 if(null != caller) {
 // Aufrufenden Thread unterbrechen
 caller.interrupt();
 return;
 } else {
 // Ausführung beenden
 System.exit(0);
 }
 }
}

public class Start {

 public static void main(String[] args) {
 // Erzeugen einer Netstat-Instanz und
 // starten dieser Instanz
 new Netstat().start();
 }
}

Listing 253: Erzeugen einer neuen Netstat-Instanz und Starten dieser Instanz

Listing 252: Einlesen und Ausgeben der Rückgabe des externen Prozesses (Forts.)

>> E-Mail senden mit JavaMail532
Ne

tz
w

er
ke

, E
-M

ai
l

Bei Ausführung des Programms werden alle offenen Ports des Systems samt der öffnenden
Anwendungen angezeigt.

192 E-Mail senden mit JavaMail
Mit Hilfe des JavaMail-Frameworks können Sie E-Mails versenden und abrufen. Das Frame-
work benötigt als zusätzliche Komponente das JavaBeans Activation Framework.

JavaMail selbst ist ein komplettes Framework für das Senden und Empfangen von E-Mails. Es
unterstützt verschiedene Protokolle (SMTP für den Versand sowie POP3 und IMAP für den
Empfang und das Verarbeiten von Nachrichten) und kann bei Bedarf um eigene Protokolle
erweitert werden. JavaMail unterstützt verschiedene Nachrichtentypen und kann sehr flexibel
konfiguriert werden.

Unter der Adresse http://java.sun.com/products/javamail/ können Sie die derzeit aktuellste
Version von JavaMail kostenlos herunterladen. Das JavaBeans Activation Framework kann
unter http://java.sun.com/products/javabeans/glasgow/jaf.html heruntergeladen werden.

Das Versenden von E-Mails per JavaMail erfolgt in mehreren Schritten:

� Erzeugen einer java.util.Properties-Instanz, die einige Konfigurationsparameter enthält

� Erzeugen einer javax.mail.Session-Instanz, in deren Kontext die weitere Verarbeitung
stattfindet

� Erzeugen einer javax.mail.MimeMessage-Instanz, die die zu versendende Nachricht
repräsentiert

� Versenden der Nachricht per javax.mail.Transport

Die Konfigurationsparameter in der Properties-Instanz bestimmen das Verhalten von Java-
Mail. Mit ihrer Hilfe kann unter anderem festgelegt werden, welcher Mailserver für den Ver-
sand verwendet werden soll:

Abbildung 109: Ausgabe aller offenen Ports samt deren Status

>> Netzwerke und E-Mail 533

Ne
tz

w
er

ke
, E

-M
ai

l

Nach dem Setzen der benötigten Konfigurationsparameter kann eine E-Mail generiert und
versendet werden:

Parameter Bedeutung

mail.transport.protocol Standardprotokoll für die Kommunikation

mail.host Standard-Mail-Host. Wird verwendet, wenn der protokollspezifische
Host leer oder nicht angegeben ist.

mail.user Standard-Username für den Zugriff auf den Mail-Host. Wird verwen-
det, wenn der protokollspezifische Username leer oder nicht angege-
ben ist.

mail.<protokoll>.host Protokollspezifischer Hostname. Der Platzhalter <protokoll> muss
durch das Protokollkürzel ersetzt werden.

mail.<protokoll>.username Protokollspezifischer Username. Der Platzhalter <protokoll> muss
durch das Protokollkürzel ersetzt werden.

mail.from Gibt die Standard-Antwortadresse an.

mail.debug Gibt an, ob der JavaMail-Debugging-Modus aktiviert (true) oder deak-
tiviert ist.

Tabelle 47: JavaMail-Umgebungsparameter

import javax.mail.MessagingException;
import javax.mail.Session;
import javax.mail.Transport;
import javax.mail.internet.InternetAddress;
import javax.mail.internet.MimeMessage;
import java.util.Properties;

public class SendMail {

 /**
 * E-Mail senden
 */
 public static void send(String from, String to,
 String subject, String message,
 String host) throws MessagingException {

 // Properties erzeugen
 Properties props = new Properties();
 props.setProperty("mail.smtp.host", host);

 // Session erzeugen
 Session session = Session.getInstance(props);

 // Mail-Repräsentation erzeugen
 MimeMessage mail = new MimeMessage(session);

 // Absender setzen
 mail.setFrom(new InternetAddress(from));

Listing 254: Versenden einer E-Mail per JavaMail

>> E-Mail senden mit JavaMail534
Ne

tz
w

er
ke

, E
-M

ai
l

Das Versenden einer E-Mail über die hier beschriebene statische Methode SendMail.send()
gestaltet sich sehr einfach:

 // Empfänger setzen
 mail.setRecipient(MimeMessage.RecipientType.TO,
 new InternetAddress(to));

 // Betreff
 mail.setSubject(subject);

 // Text
 mail.setText(message);

 // Nachricht senden
 Transport.send(mail);
 }
}

import javax.mail.MessagingException;

public class Start {

 public static void main(String[] args) {
 String from = "...";
 String to = "...";
 String host = "...";
 String subject = "Test-Email via JavaMail";
 String message =
 "Diese Email ist über JavaMail gesendet worden.\r\n\r\n" +
 "Dabei ist es auch möglich, Zeilenumbrüche zu verwenden.";

 // Parameter überprüfen
 if(null != args && args.length > 0) {
 for(String arg : args) {
 // Schlüssel
 String argKey = arg.substring(0, 2);

 // Wert
 String argVal = arg.substring(2);

 // Zuweisen der Argumente zu den lokalen Variablen
 if(argKey.equals("-f")) {
 from = argVal;
 } else if(argKey.equals("-t")) {
 to = argVal;
 } else if(argKey.equals("-h")) {
 host = argVal;

Listing 255: Senden einer Nachricht

Listing 254: Versenden einer E-Mail per JavaMail (Forts.)

>> Netzwerke und E-Mail 535

Ne
tz

w
er

ke
, E

-M
ai

l

Die so generierte Nachricht wird umgehend versendet.

193 E-Mail mit Authentifizierung versenden
Nicht jeder Mailserver erlaubt den Versand von Nachrichten ohne vorherige Authentifizie-
rung. Das JavaMail-Framework gestattet es aber, die benötigten Informationen zu Username
und Host mitzugeben.

Dazu wird eine com.sun.mail.smtp.SMTPTransport-Instanz verwendet, die den Versand von
E-Mails per SMTP vornimmt. Deren connect()-Methode können als Parameter Mailserver,
Benutzername und Kennwort übergeben werden. Die zu verwendende SMTPTransport-Instanz
wird über die Methode getTransport() der bereits zuvor genutzten javax.mail.Session-Instanz
abgerufen:

 } else if(argKey.equals("-s")) {
 subject = argVal;
 } else {
 message = argVal;
 }
 }
 }

 // Nachricht versenden
 try {
 SendMail.send(from, to, subject, message, host);
 } catch (MessagingException e) {
 e.printStackTrace();
 }
 }
}

Abbildung 110: Per JavaMail gesendete Nachricht

Listing 255: Senden einer Nachricht (Forts.)

>> E-Mail mit Authentifizierung versenden536
Ne

tz
w

er
ke

, E
-M

ai
l

import com.sun.mail.smtp.SMTPTransport;
import javax.mail.MessagingException;
import javax.mail.Session;
import javax.mail.Transport;
import javax.mail.internet.MimeMessage;
import javax.mail.internet.InternetAddress;
import java.util.Properties;

public class SendMail {

 /**
 * E-Mail mit Authentifizierung senden
 */
 public static void sendAuth(String from, String to,
 String subject, String message,
 String host, String username, String password)
 throws MessagingException {
 // Properties erzeugen
 Properties props = new Properties();
 props.setProperty("mail.smtp.host", host);

 // Session erzeugen
 Session session = Session.getInstance(props);

 // Mail-Repräsentation erzeugen
 MimeMessage mail = new MimeMessage(session);

 // Absender setzen
 mail.setFrom(new InternetAddress(from));

 // Empfänger setzen
 mail.setRecipient(MimeMessage.RecipientType.TO,
 new InternetAddress(to));

 // Betreff
 mail.setSubject(subject);

 // Text
 mail.setText(message);

 // SMTPTransport-Instanz referenzieren
 SMTPTransport smtp = (SMTPTransport)
 session.getTransport("smtp");
 smtp.connect(host, username, password);

 // Nachricht senden
 Transport.send(mail);
 }
}

Listing 256: Versenden einer E-Mail über einen Server mit Authentifizierung

>> Netzwerke und E-Mail 537

Ne
tz

w
er

ke
, E

-M
ai

l

194 HTML-E-Mail versenden
Wenn E-Mails im HTML-Format versendet werden sollen, handelt es sich bei diesen Mails
streng genommen nicht mehr um textbasierte E-Mails, sondern um E-Mails mit einem
Anhang im text/html-Format. Dies muss beim Erstellen der E-Mail berücksichtigt werden,
denn hier wird der Inhalt nicht mehr über die Convenience-Methode setText() zugewiesen,
sondern per javax.activation.DataHandler-Instanz eingelesen.

Die zu verwendende DataHandler-Instanz wird der MimeMessage-Instanz über deren Methode
setDataHandler() zugewiesen. Der Konstruktor der DataHandler-Klasse nimmt dabei unter
anderem eine javax.activation.DataSource-Implementierung entgegen, die über ihre Methode
getInputStream() den Zugriff auf den zu versendenden HTML-Code erlaubt.

DataSource
Leider existiert weder im JavaBeans Activation Framework noch im JavaMail-Framework eine
geeignete DataSource-Implementierung zum Versenden von HTML-E-Mails. Es ist jedoch kein
großer Aufwand nötig, um eine eigene DataSource-Implementierung zu erstellen, die zu die-
sem Zweck verwendet werden kann.

Das Interface javax.activation.DataSource definiert folgende Methoden:

java.lang.String getContentType()
java.io.InputStream getInputStream()
java.lang.String getName()
java.io.OutputStream getOutputStream()

Diese Methoden müssen in der abgeleiteten Klasse implementiert werden. Für eine Klasse
HtmlDataSource zum Verarbeiten von HTML-Texten kann dies so aussehen:

import javax.activation.DataSource;
import java.io.*;

/**
 * javax.activation.DataSource-Implementierung
 */
public class HtmlDataSource implements DataSource {
 // Darzustellender Text
 private String text;

 /**
 * Text erfassen
 */
 public String getText() {
 return text;
 }

 /**
 * Text abrufen
 */
 public void setText(String text) {
 this.text = text;

Listing 257: javax.activation.DataSource-Implementierung

>> HTML-E-Mail versenden538
Ne

tz
w

er
ke

, E
-M

ai
l

Beim Instanzieren einer HtmlDataSource-Instanz muss deren Konstruktor der darzustellende
HTML-Text als String übergeben werden. Per getText() und setText() kann auf diesen Text
zur Laufzeit zugegriffen werden.

Da die Methode getInputStream() eine java.io.InputStream-Implementierung zurückgeben
muss, wird hier eine neue java.io.ByteArrayInputStream-Instanz erzeugt, die den HTML-Code
repräsentiert. Deren Konstruktor nimmt ein Byte-Array entgegen, das mit Hilfe der Methode
getBytes() der String-Instanz erzeugt werden kann.

Ebenfalls eine Rolle bei der weiteren Verarbeitung des Inhalts der DataSource spielt die
Methode getContentType(), die den Inhaltstyp der repräsentierten Daten zurückgibt. In diesem
Fall handelt es sich um den Inhaltstyp text/html, durch den die E-Mail im Mailprogramm erst
als HTML-E-Mail behandelt werden kann.

 }

 /**
 * Konstruktor
 */
 public HtmlDataSource(String text) {
 this.setText(text);
 }

 /**
 * Content-Type des Inhalts
 */
 public String getContentType() {
 return "text/html";
 }

 /**
 * InputStream zum Einlesen der Daten
 */
 public InputStream getInputStream() throws IOException {
 return new ByteArrayInputStream(getText().getBytes());
 }

 /**
 * Name der DataSource
 */
 public String getName() {
 return "HtmlDataSource";
 }

 /**
 * OutputStream, in den die Daten geschrieben werden können
 */
 public OutputStream getOutputStream() throws IOException {
 return new ByteArrayOutputStream();
 }
}

Listing 257: javax.activation.DataSource-Implementierung (Forts.)

>> Netzwerke und E-Mail 539

Ne
tz

w
er

ke
, E

-M
ai

l

Versand der E-Mail
Der eigentliche Versand der E-Mail unterscheidet sich nicht wesentlich vom oben gezeigten
Vorgehen – mit dem Unterschied, dass statt der Convenience-Methode setText() nunmehr die
Methode setDataHandler() verwendet wird, die eine javax.activation.DataHandler-Instanz
entgegennimmt. Deren Konstruktor erhält die zuvor erzeugte javax.activation.DataSource-
Implementierung, die den Zugriff auf den eigentlichen Inhalt erlaubt:

import com.sun.mail.smtp.SMTPTransport;
import javax.mail.MessagingException;
import javax.mail.Session;
import javax.mail.Transport;
import javax.mail.internet.MimeMessage;
import javax.mail.internet.InternetAddress;
import javax.activation.DataHandler;
import java.util.Properties;

public class SendMail {

 /**
 * E-Mail mit HTML-Text senden
 */
 public static void sendHtml(String from, String to,
 String subject, String message,
 String host, String username, String password)
 throws MessagingException {
 // Properties erzeugen
 Properties props = new Properties();
 props.setProperty("mail.smtp.host", host);

 // Session erzeugen
 Session session = Session.getInstance(props);

 // Mail-Repräsentation erzeugen
 MimeMessage mail = new MimeMessage(session);

 // Absender setzen
 mail.setFrom(new InternetAddress(from));

 // Empfänger setzen
 mail.setRecipient(MimeMessage.RecipientType.TO,
 new InternetAddress(to));

 // Betreff
 mail.setSubject(subject);

 // HTML-Nachricht erfassen
 DataHandler dh = new DataHandler(
 new HtmlDataSource(message));
 mail.setDataHandler(dh);

Listing 258: Versand einer HTML-E-Mail

>> E-Mail als multipart/alternative versenden540
Ne

tz
w

er
ke

, E
-M

ai
l

Die so versendete E-Mail kann vom E-Mail-Programm im HTML-Format angezeigt werden.
Beachten Sie jedoch, dass Sie keinen Einfluss auf die Anzeige im E-Mail-Programm des Emp-
fängers haben. Wenn dieses nicht entsprechend konfiguriert ist, werden Sie eine Darstellung
im HTML-Format nicht erzwingen können.

195 E-Mail als multipart/alternative versenden
E-Mails im HTML-Format können Darstellungsprobleme bei Mail-Clients verursachen, die aus
Sicherheitsgründen auf die Anzeige von HTML verzichten. Als Lösung für dieses Problem hat
sich der Versand derartiger E-Mails im Format multipart/alternative etabliert. Hier wird die
E-Mail als Text- und HTML-E-Mail versendet. Mail-Clients, die eine reine Textansicht bevor-
zugen, stellen den Textteil der E-Mail dar, während Mail-Clients, die HTML darstellen können
und wollen, den HTML-Teil der E-Mail anzeigen.

Wenn E-Mails aus mehreren Teilen bestehen sollen, müssen diese über eine javax.mail.Mime-
Multipart-Instanz zusammengefasst werden. Deren Konstruktor nimmt die Bezeichnung eines
alternativen Multipart-Typs entgegen – in diesem Fall muss es der Typ alternative sein, da die
E-Mail sonst nicht korrekt dargestellt werden würde.

 // SMTPTransport-Instanz referenzieren
 SMTPTransport smtp = (SMTPTransport) session.getTransport("smtp");
 smtp.connect(host, username, password);

 // Nachricht senden
 Transport.send(mail);
 }
}

Abbildung 111: Per JavaMail als HTML versendete E-Mail

T
ip

p Sowohl Text- als auch HTML-Teil sollten den gleichen Text enthalten, damit jedes
Mail-Programm die optimierte Version anzeigen kann.

Listing 258: Versand einer HTML-E-Mail (Forts.)

>> Netzwerke und E-Mail 541

Ne
tz

w
er

ke
, E

-M
ai

l

Jeder einzelne Teil wird durch eine javax.mail.MimeBodyPart-Instanz repräsentiert, die der
MimeMultipart-Instanz zugewiesen werden muss. Diese wird ihrerseits der Nachricht über
deren Methode setContent() zugewiesen:

import com.sun.mail.smtp.SMTPTransport;
import javax.mail.MessagingException;
import javax.mail.Session;
import javax.mail.Transport;
import javax.mail.internet.MimeMessage;
import javax.mail.internet.InternetAddress;
import javax.mail.internet.MimeMultipart;
import javax.mail.internet.MimeBodyPart;
import javax.activation.DataHandler;
import java.util.Properties;

public class SendMail {

 /**
 * E-Mail als multipart/alternative senden
 */
 public static void sendMultipartAlternative(String from, String to,
 String subject, String message, String htmlMessage,
 String host, String username, String password)
 throws MessagingException {
 // Properties erzeugen
 Properties props = new Properties();
 props.setProperty("mail.smtp.host", host);

 // Session erzeugen
 Session session = Session.getInstance(props);

 // Mail-Repräsentation erzeugen
 MimeMessage mail = new MimeMessage(session);

 // Absender setzen
 mail.setFrom(new InternetAddress(from));

 // Empfänger setzen
 mail.setRecipient(MimeMessage.RecipientType.TO,
 new InternetAddress(to));

 // Betreff
 mail.setSubject(subject);

 // Multipart-Nachricht erfassen
 MimeMultipart mp = new MimeMultipart("alternative");

 // Einzelne Elemente anfügen:
 // 1. Text zuweisen
 MimeBodyPart text = new MimeBodyPart();
 text.setText(message);

Listing 259: Versenden einer E-Mail im Format multipart/alternative

>> E-Mail als multipart/alternative versenden542
Ne

tz
w

er
ke

, E
-M

ai
l

Eine derart versendete E-Mail wird vom E-Mail-Programm im für den Anzeigemodus am bes-
ten geeigneten Format dargestellt: als Plain-Text, wenn nur dies unterstützt wird, oder als
HTML, wenn die Einstellungen dies erlauben.

 mp.addBodyPart(text);

 // 2. HTML-Teil zuweisen
 MimeBodyPart html = new MimeBodyPart();
 DataHandler dh = new DataHandler(
 new HtmlDataSource(htmlMessage));
 html.setDataHandler(dh);
 mp.addBodyPart(html);

 // Multipart-Element der Mail zuweisen
 mail.setContent(mp);

 // SMTPTransport-Instanz referenzieren
 SMTPTransport smtp = (SMTPTransport) session.getTransport("smtp");
 smtp.connect(host, username, password);

 // Nachricht senden
 Transport.send(mail);
 }
}

Abbildung 112: Darstellung der E-Mail als Nur-Text

Listing 259: Versenden einer E-Mail im Format multipart/alternative (Forts.)

>> Netzwerke und E-Mail 543

Ne
tz

w
er

ke
, E

-M
ai

l

196 E-Mail mit Datei-Anhang versenden
Beim Versand von Datei-Anhängen kommt ein javax.mail.MimeMultipart-Element zum Ein-
satz. Diesem kann zunächst der eigentliche Nachrichtentext (egal, ob Text oder HTML) zuge-
wiesen werden. Anschließend wird die Datei per javax.activation.FileDataSource-Instanz
einer MimeBodyPart-Instanz zugewiesen. Deren Konstruktor nimmt eine java.io.File- oder
eine String-Instanz entgegen, die den zu versendenden Datei-Anhang repräsentiert:

Abbildung 113: Darstellung der E-Mail als HTML

import com.sun.mail.smtp.SMTPTransport;
import javax.mail.MessagingException;
import javax.mail.Session;
import javax.mail.Transport;
import javax.mail.internet.MimeMessage;
import javax.mail.internet.InternetAddress;
import javax.mail.internet.MimeMultipart;
import javax.mail.internet.MimeBodyPart;
import javax.activation.DataHandler;
import javax.activation.FileDataSource;
import java.util.Properties;
import java.io.File;

public class SendMail {

 /**
 * E-Mail mit Datei-Anhang senden
 */
 public static void sendAttachment(String from, String to, String subject,
 String message, File file,
 String host, String username,
 String password)
 throws MessagingException {
 // Properties erzeugen

Listing 260: Versenden einer E-Mail mit Datei-Anhang

>> E-Mail mit Datei-Anhang versenden544
Ne

tz
w

er
ke

, E
-M

ai
l

 Properties props = new Properties();
 props.setProperty("mail.smtp.host", host);

 // Session erzeugen
 Session session = Session.getInstance(props);

 // Mail-Repräsentation erzeugen
 MimeMessage mail = new MimeMessage(session);

 // Absender setzen
 mail.setFrom(new InternetAddress(from));

 // Empfänger setzen
 mail.setRecipient(MimeMessage.RecipientType.TO,
 new InternetAddress(to));

 // Betreff
 mail.setSubject(subject);

 // Multipart-Nachricht erfassen
 MimeMultipart mp = new MimeMultipart();

 // Einzelne Elemente anfügen:
 // 1. Text zuweisen
 MimeBodyPart text = new MimeBodyPart();
 text.setText(message);
 mp.addBodyPart(text);

 // 2. Datei-Referenz einfügen
 MimeBodyPart filePart = new MimeBodyPart();
 DataHandler dh = new DataHandler(
 new FileDataSource(file));
 filePart.setDataHandler(dh);

 // Dateiname setzen
 filePart.setFileName(file.getName());
 mp.addBodyPart(filePart);

 // Multipart-Element der Mail zuweisen
 mail.setContent(mp);

 // SMTPTransport-Instanz referenzieren
 SMTPTransport smtp = (SMTPTransport) session.getTransport("smtp");
 smtp.connect(host, username, password);

 // Nachricht senden
 Transport.send(mail);
 }
}

Listing 260: Versenden einer E-Mail mit Datei-Anhang (Forts.)

>> Netzwerke und E-Mail 545

Ne
tz

w
er

ke
, E

-M
ai

l

In diesem Beispiel wird die Übergabe einer java.io.File-Instanz an die Methode erwartet. Die
referenzierte Datei muss tatsächlich existieren. Ist dies nicht der Fall, wird eine FileNotFound-
Exception geworfen.

197 E-Mails abrufen
Das Abrufen von E-Mails über das »nackte« POP3-Protokoll ist beim Einsatz von JavaMail
nicht notwendig, denn das Framework bringt schon alles Notwendige mit. Die Vorgehensweise
ist dabei nicht am POP3-Protokoll orientiert, sondern bedient sich einer javax.mail.Store-
Instanz, die einen Speicherort von Nachrichten repräsentiert. Der Inhalt dieser Store-Instanz
kann in Ordnern organisiert sein, die ihrerseits durch javax.mail.Folder-Instanzen repräsen-
tiert werden können. Die Implementierung für den Zugriff auf ein POP3-Postfach verwendet
dabei den Standardordner INBOX, dessen Inhalt über die Methode getMessages() der Folder-
Instanz abgerufen werden kann. Die Nachrichten liegen chronologisch geordnet vor.

Die Vorgehensweise beim Abrufen der E-Mails sieht wie folgt aus:

� javax.mail.Session erzeugen

� javax.mail.Store-Instanz abrufen

� Standardordner abrufen und zur INBOX wechseln

� Nachrichten per getMessages() abrufen und weiterverarbeiten

� Aufräumen der genutzten Ressourcen

Das Verarbeiten der einzelnen Nachrichten ist in diesem Beispiel relativ einfach gehalten: Zu
jeder Nachricht werden die Informationen zu Absender, Größe, Betreff, Empfangsdatum und
Multipart-Status ausgegeben. Insbesondere bei der Verarbeitung des Absenders ist Aufmerk-

A
ch

tu
n

g Vergessen Sie nicht, den Dateinamen des Anhangs zu setzen, da sonst ein interner
Dateiname zum Versand verwendet wird. Ein korrektes Speichern des Anhangs wäre so
beim Client eventuell nicht mehr möglich.

Abbildung 114: E-Mail mit Datei-Anhang

>> E-Mails abrufen546
Ne

tz
w

er
ke

, E
-M

ai
l

samkeit geboten, denn nicht immer wird ein Name für einen Absender angegeben – und
manchmal (Nachrichten, die per CC oder BCC gesendet werden, etwa Newsletter) existiert gar
überhaupt keine Absenderangabe.

Das Abrufen der genannten Informationen findet übrigens sehr ressourcenschonend statt:
Statt die komplette Nachricht abzurufen, werden für diese Ausgaben nur die Header-Informa-
tionen herangezogen, was die Geschwindigkeit der Verarbeitung deutlich steigert. Das eigent-
liche Abrufen der Inhalte findet nur bei Bedarf statt – und der besteht hier nicht.

Im folgenden Beispiel findet das Abrufen der E-Mails innerhalb der Methode readAll() statt,
die die E-Mails im INBOX-Ordner in umgekehrter chronologischer Reihenfolge durchläuft,
d.h., die neuesten E-Mails werden zuerst ausgegeben. Innerhalb der Methode processMessage()
findet dann die Ausgabe der Informationen zur übergebenen javax.mail.Message-Instanz statt:

import javax.mail.*;
import javax.mail.internet.InternetAddress;
import java.util.Date;
import java.util.Properties;

public class ReadMail {

 /**
 * Ruft die im angegebenen E-Mail-Konto enthaltenen E-Mails in
 * umgekehrter Reihenfolge (neueste zuerst) ab
 * @param server Name oder IP-Adresse des Mailservers
 * @param user Username für den Zugriff
 * @param password Password für den Zugriff
 */
 public static void readAll(String server, String user, String password) {
 Store store=null;
 Folder folder=null;

 try {
 // Session-Instanz erzeugen
 Properties props = System.getProperties();
 Session session = Session.getDefaultInstance(props, null);

 // POP3-Store instanzieren und mit Server verbinden
 store = session.getStore("pop3");
 store.connect(server, user, password);

 // Auf den Standardordner zugreifen
 folder = store.getDefaultFolder();

 // Standardordner kann nicht gefunden werden
 if (folder == null) {
 throw new Exception("No default folder");
 }

 // Nachrichten liegen stets im Ordner INBOX
 folder = folder.getFolder("INBOX");

Listing 261: Abrufen und Verarbeiten von E-Mails per JavaMail

>> Netzwerke und E-Mail 547

Ne
tz

w
er

ke
, E

-M
ai

l

 // Posteingang kann nicht gefunden werden
 if (folder == null) {
 throw new Exception("No POP3 INBOX");
 }

 // Ordner öffnen
 folder.open(Folder.READ_ONLY);

 // Messages abrufen und verarbeiten
 Message[] msgs = folder.getMessages();
 for (int msgNum = msgs.length - 1; msgNum >= 0; msgNum--) {
 // Nachricht verarbeiten
 processMessage(msgs[msgNum]);
 }
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 finally {
 // Aufräumen
 try {
 if (folder!=null) {
 folder.close(false);
 }

 if (store!=null) {
 store.close();
 }
 } catch (Exception ex2) {
 ex2.printStackTrace();
 }
 }
 }

 /**
 * Gibt die Informationen der übergebenen Message-Instanz aus
 * @param message Zu verarbeitende Message
 */
 private static void processMessage(Message message) {
 try {
 // Absender ermitteln
 InternetAddress fromAddress =
 (InternetAddress)message.getFrom()[0];
 String from = null;

 if(null != fromAddress) {
 if(null != fromAddress.getPersonal()) {
 // Wenn ein Name angegeben ist, dann wird dieser
 // als Absender angenommen
 from = fromAddress.getPersonal();
 } else {

Listing 261: Abrufen und Verarbeiten von E-Mails per JavaMail (Forts.)

>> E-Mails abrufen548
Ne

tz
w

er
ke

, E
-M

ai
l

Die Klasse javax.mail.MimeMessage, die eine per POP3-Protokoll empfangene Nachricht reprä-
sentiert, verfügt über wesentlich mehr Informationen, als hier verwendet wurden.

 // Kein Name angegeben, also die eigentliche
 // E-Mail-Adresse verwenden
 from = fromAddress.getAddress();
 }
 }
 System.out.println(String.format("Absender: %s", from));

 // Betreff ausgeben
 String subject = message.getSubject();
 System.out.println(String.format("Betreff: %s", subject));

 // Eigentliche Nachricht abrufen
 Part messagePart = message;
 Object content = messagePart.getContent();

 // Überprüfen, ob es sich bei der Nachricht
 // um eine Multipart-Nachricht handelt
 if (content instanceof Multipart) {
 System.out.println("(Multipart-Email)");
 }

 // Inhalts-Typ abrufen
 String contentType = messagePart.getContentType();
 System.out.println(String.format("Inhalts-Typ: %s", contentType));

 // Datum ausgeben
 Date date = message.getSentDate();
 System.out.println(String.format("Datum: %tc", date));

 // Größe ausgeben
 System.out.println(
 String.format("Groesse: %0,2d Byte",
 message.getSize()));

 System.out.println("*************************************");
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

Listing 261: Abrufen und Verarbeiten von E-Mails per JavaMail (Forts.)

>> Netzwerke und E-Mail 549

Ne
tz

w
er

ke
, E

-M
ai

l

Abbildung 115: Abrufen von E-Mails per JavaMail

A
ch

tu
n

g Das Abrufen und Parsen von E-Mails ist alles andere als trivial. Dies liegt weniger am
Protokoll, als vielmehr an der Art, wie verschiedene Mail-Programme E-Mails erzeu-
gen, denn die ist häufig alles andere als standardkonform. Es empfiehlt sich daher, alle
Feldinhalte, mit denen gearbeitet werden soll, mit besonderer Vorsicht zu behandeln.

Methode Beschreibung

java.util.Enumeration getAllHeaders() Gibt alle Header-Felder zurück.

Address[] getAllRecipients() Gibt alle Empfänger der E-Mail (Werte aus den TO- und
CC-Feldern) zurück.

Object getContent() Gibt den Inhalt der E-Mail zurück.

String getContentID() Gibt den Wert des »Content-ID«-Header-Felds zurück.

String[] getContentLanguage() Gibt den Wert des »Content-Language«-Header-Felds
zurück.

protected java.io.InputStream
getContentStream()

Erlaubt den Zugriff auf den Inhalt als InputStream.

String getContentType() Gibt den Wert des »Content-Type«-Header-Felds zurück.

String getDescription() Gibt den Wert des »Content-Description«-Header-Felds
zurück.

String getDisposition() Gibt den Wert des »Content-Disposition«-Header-Felds
zurück.

String getEncoding() Gibt den Wert des »Content-Transfer-Encoding«-Header-
Felds zurück.

String getFileName() Gibt den Dateinamen der Nachricht zurück.

Flags getFlags() Gibt eine javax.mail.Flags-Instanz zurück, die den
Status der Nachricht repräsentiert.

Tabelle 48: Methoden, um die Informationen in einer MimeMessage-Instanz abzurufen

>> Multipart-E-Mails abrufen und verarbeiten550
Ne

tz
w

er
ke

, E
-M

ai
l

Auch diese Auflistung ist noch nicht komplett; die Klasse MimeMessage stellt weitere, weniger
gebräuchliche Methoden zur Verfügung, auf die hier aus Platzgründen nicht weiter eingegan-
gen werden soll. Werfen Sie deshalb auch einen Blick in die Dokumentation von JavaMail.

198 Multipart-E-Mails abrufen und verarbeiten
Die Verarbeitung von Multipart-E-Mails lässt sich basierend auf dem in Rezept 197 gezeigten
Ansatz recht einfach umsetzen, da hierfür lediglich eine Erweiterung der Methode processMes-
sage() notwendig wird.

Innerhalb der Methode processMessage() wird nunmehr überprüft, ob der Inhalt der Mail, auf
den via <MessageInstanz>.getContent() zugegriffen werden kann, vom Typ javax.mail.Multi-
part ist. Wenn dem so ist, wird er an die Methode handleMultipart() übergeben, die alle Ele-
mente der Multipart-Instanz durchläuft und in der Methode handlePart() behandeln lässt.

Innerhalb der Methode handlePart() wird anhand von Content-Disposition (Inhaltsangabe)
und Content-Type (Inhaltstyp) eine Verarbeitung des Inhalts vorgenommen. Ist keine Content-
Disposition vorhanden, wird davon ausgegangen, dass es sich beim zu behandelnden Inhalt
entweder um Plain-Text handelt oder es ein nicht gekennzeichneter Inhalt ist. Ersteres führt
zur direkten Ausgabe des Inhalts, Letzteres sorgt zusätzlich dafür, dass der Inhalt im aktuellen
Verzeichnis entweder unter seinem eigenen Dateinamen oder einem neu generierten Datei-
namen gespeichert wird. Gleiches gilt für Inhalte, die als Anhang (Attachment) oder inline
mitgeführtes binäres Objekt (Inline) gekennzeichnet sind.

Address[] getFrom() Gibt alle im »From«-Header-Feld definierten Adressen
zurück.

String[] getHeader(java.lang.String name) Gibt den Wert des angegebenen Headers zurück.

java.io.InputStream getInputStream() Erlaubt den Zugriff auf einen dekodierten InputStream,
der den Nachrichteninhalt repräsentiert.

int getLineCount() Gibt die Anzahl der Zeilen in der Nachricht zurück.

String getMessageID() Gibt den Wert des »Message-ID«-Header-Felds zurück.

java.util.Date getReceivedDate() Gibt den Zeitpunkt zurück, zu dem die Nachricht emp-
fangen worden ist.

Address[] getRecipients(Message.
RecipientType type)

Gibt alle Empfänger vom angegebenen Typ zurück.

Address[] getReplyTo() Gibt die Antwortadressen der Nachricht zurück.

Address getSender() Gibt den Absender der Nachricht zurück.

java.util.Date getSentDate() Gibt den Zeitpunkt zurück, zu dem die Nachricht gesen-
det worden ist.

int getSize() Gibt die Größe der Nachricht in Byte zurück.

String getSubject() Gibt den Betreff der Nachricht zurück.

Methode Beschreibung

Tabelle 48: Methoden, um die Informationen in einer MimeMessage-Instanz abzurufen (Forts.)

>> Netzwerke und E-Mail 551

Ne
tz

w
er

ke
, E

-M
ai

l

Die Speicherung der Daten erfolgt mit Hilfe der Methode saveFile(). Einzige Besonderheit hier
ist die Prüfung darauf, ob in der E-Mail ein Dateiname angegeben worden ist. Falls dem nicht
so sein sollte, wird ein neuer eindeutiger Dateiname generiert. Der eigentliche Inhalt der Datei
wird anschließend per java.io.BufferedOutputStream geschrieben.

Dieses Vorgehen wird für alle Elemente der E-Mail wiederholt:

import javax.mail.*;
import javax.mail.internet.InternetAddress;
import java.io.*;
import java.util.Properties;
import java.util.Date;

public class ReadMail {

 /**
 * Ruft die im angegebenen E-Mail-Konto enthaltenen E-Mails in
 * umgekehrter Reihenfolge (neueste zuerst) ab
 */
 public static void readAll(String server, String user, String password) {
 // ...
 // Nachricht verarbeiten
 processMessage(msgs[msgNum]);
 // ...
 }

 /**
 * Gibt die Informationen der übergebenen Message-Instanz aus
 */
 private static void processMessage(Message message) {
 try {
 // ...

 // Eigentliche Nachricht abrufen
 Part messagePart = message;
 Object content = messagePart.getContent();

 // ...
 // Überprüfen, ob es sich bei der Nachricht
 // um eine Multipart-Nachricht handelt
 if (content instanceof Multipart) {

 // Multipart-Nachricht behandeln
 System.out.println("(Multipart-Email)");
 handleMultipart((Multipart) content);
 } else {
 // Normale Nachricht behandeln
 handlePart(messagePart);
 }
 // ...
 } catch (Exception ex) {

Listing 262: Verarbeiten von Elementen einer E-Mail

>> Multipart-E-Mails abrufen und verarbeiten552
Ne

tz
w

er
ke

, E
-M

ai
l

 ex.printStackTrace();
 }
 }

 /**
 * Behandelt eine Multipart-E-Mail
 */
 public static void handleMultipart(Multipart multipart)
 throws MessagingException, IOException {

 // Alle Elemente durchlaufen und einzeln behandeln
 for (int i=0, n=multipart.getCount(); i<n; i++) {
 // Element behandeln
 handlePart(multipart.getBodyPart(i));
 }
 }

 /**
 * Behandelt einen Teil einer Message
 */
 public static void handlePart(Part part)
 throws MessagingException, IOException {

 // Content-Disposition und Content-Type ermitteln
 String disposition = part.getDisposition();
 String contentType = part.getContentType();

 // Wenn Content-Disposition null ist, ist das aktuelle
 // Element nur ein Body-Element
 if (disposition == null) {
 // Überprüfen, ob es sich um text/plain handelt -
 // der kann direkt ausgegeben werden
 if ((contentType.length() >= 10) &&
 (contentType.toLowerCase().substring(
 0, 10).equals("text/plain"))) {

 // Part ausgeben
 part.writeTo(System.out);
 System.out.println();
 } else {
 // Fallback-Möglichkeit für unbekannten Body-Typ
 // Wird beispielsweise für application/octet-stream
 // aufgerufen
 System.out.println(
 String.format("Body-Typ: %s", contentType));

 // Part ausgeben
 part.writeTo(System.out);
 System.out.println();

 // Speichern

Listing 262: Verarbeiten von Elementen einer E-Mail (Forts.)

>> Netzwerke und E-Mail 553

Ne
tz

w
er

ke
, E

-M
ai

l

 saveFile(part.getFileName(), part.getInputStream());
 }
 } else if (
 disposition.equalsIgnoreCase(Part.ATTACHMENT) ||
 disposition.equalsIgnoreCase(Part.INLINE)) {

 // Datei-Anhang oder Inline-Element
 System.out.println(
 String.format("%s: %s (%s)",
 disposition.equalsIgnoreCase(Part.ATTACHMENT)
 ? "Anhang" : "Inline",
 part.getFileName(), contentType));

 // Speichern...
 saveFile(part.getFileName(), part.getInputStream());
 System.out.println();
 } else {
 // Unbekannter Inhaltstyp
 System.out.println(
 String.format("Unbekannt: %s",
 disposition));
 }
 }

 /**
 * Speichert einen Anhang im aktuellen Anwendungsverzeichnis
 */
 public static void saveFile(String filename, InputStream input)
 throws IOException {
 // Wenn kein Dateiname vorhanden, dann eine temporäre Datei
 // anlegen und deren Dateiname verwenden
 if (filename == null) {
 filename = File.createTempFile("xxxxxx", ".out").getName();
 }

 // Vorhandene Dateien werden nicht überschrieben
 File file = new File(filename);
 for (int i=0; file.exists(); i++) {
 // Dateiname um eine Zahl erweitern,
 // damit er eindeutig ist
 file = new File(filename+i);
 }

 // BufferedOutputStream zum Schreiben
 // in die Datei verwenden
 BufferedOutputStream bos =
 new BufferedOutputStream(
 new FileOutputStream(file));

 // BufferedInputStream zum Lesen des Parts
 BufferedInputStream bis =

Listing 262: Verarbeiten von Elementen einer E-Mail (Forts.)

>> URI – Textinhalt abrufen554
Ne

tz
w

er
ke

, E
-M

ai
l

Wenn Sie obige Klasse auf eine Multipart-E-Mail, wie sie etwa in Rezpet 196 generiert worden
ist, anwenden, werden Sie im Anwendungsverzeichnis zwei oder mehrere Dateien finden: den
eigentlichen Datei-Anhang und zusätzlich noch einen eventuell generierten HTML-Bereich, da
dieser ebenfalls als Anhang aufgefasst wird. Alle diese Inhalte werden auch auf der Komman-
dozeile ausgegeben.

199 URI – Textinhalt abrufen
Eine java.net.URL-Instanz repräsentiert einen Verweis auf eine Ressource, wobei nicht zwin-
gend gesagt sein muss, dass es sich dabei um eine Ressource auf einem anderen Rechner oder
gar im Internet handeln muss. Typisch sind etwa Verweise auf Dateien (»file://...«), E-Mail-
Adressen (»mailto://...«, die jedoch nicht per java.net.URL-Instanz verarbeitet werden können)
oder Verweise auf Inhalte auf anderen Servern (»http://...«, »https://...«, »ftp://...«).

Der Abruf von Inhalten geschieht unter Verwendung einer java.io.InputStreamReader-Instanz.
Diese nimmt im Konstruktor die InputStream-Instanz entgegen, die die initialisierte URL-
Instanz durch ihre Methode getStream() zurückgibt. Die zurückgegebenen Zeilen können so
lange durchlaufen und verarbeitet werden, bis die InputStreamReader-Instanz keine Inhalte
mehr zurückliefert:

 new BufferedInputStream(input);

 // Auslesen der Daten und Schreiben in den OutputStream
 int aByte;
 while ((aByte = bis.read()) != -1) {
 bos.write(aByte);
 }

 // Ressourcen freigeben
 bos.flush();
 bos.close();
 bis.close();
 }
}

A
ch

tu
n

g Da diverse Mail-Programme und Mailer die Komposition von E-Mails »kreativ« hand-
haben, kann es beim Abruf von E-Mails oder beim Durchlaufen einzelner Body-
Elemente zu Abweichungen kommen.

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.MalformedURLException;
import java.net.URL;

Listing 263: Inhalt einer externen Ressource einlesen

Listing 262: Verarbeiten von Elementen einer E-Mail (Forts.)

>> Netzwerke und E-Mail 555

Ne
tz

w
er

ke
, E

-M
ai

l

200 URI – binären Inhalt abrufen
Beim Abruf von binären Inhalten kommt statt eines java.io.BufferedReaders eine
java.io.BufferedInputStream-Instanz zum Einsatz. Die Daten werden anschließend mit einer
java.io.BufferedOutputStream-Instanz, die einen FileOutputStream kapselt, gespeichert.

public class UrlReader {
 /**
 * Liest den Inhalt einer externen Ressource als String ein
 */
 public static String read(String address) {
 // StringBuffer zum Halten der Daten
 StringBuffer buff = new StringBuffer();
 try {
 // URL-Instanz, die den Zugriff auf die externe
 // Ressource erlaubt
 URL url = new URL(address);

 // BufferedReader zum Einlesen der Textdaten
 BufferedReader rdr = new BufferedReader(
 new InputStreamReader(url.openStream()));

 // Einlesen der Daten
 String line = null;
 while((line = rdr.readLine()) != null) {
 buff.append(line + "\n");
 }

 // Aufräumen
 rdr.close();
 } catch (MalformedURLException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }

 // Geladene Daten zurückgeben
 return buff.toString();
 }
}

A
ch

tu
n

g Beim Zugriff auf Ressourcen können diverse Ausnahmen auftreten, die abgefangen
oder deklariert werden müssen. Typische Ausnahmen sind MalformedURLExceptions
(URL-Angabe war nicht gültig) oder IOExceptions (Fehler beim Lesen der Inhalte).

Listing 263: Inhalt einer externen Ressource einlesen (Forts.)

>> URI – binären Inhalt abrufen556
Ne

tz
w

er
ke

, E
-M

ai
l

Der eigentliche Vorgang des Abrufens findet analog zum Laden des Inhalts einer Text-
ressource statt: Es werden so lange Daten aus dem InputStream in den Puffer geschrieben, bis
keine Daten mehr zurückgegeben werden. Der Puffer wird direkt in den Ausgabe-Stream ent-
leert. Sobald der Ausgabe-Stream geschlossen worden ist, ist die abgerufene Datei lokal ver-
fügbar und kann verwendet werden:

import java.io.*;
import java.net.MalformedURLException;
import java.net.URL;

public class UrlReader {

 /**
 * Ruft den Inhalt einer externen Ressource ab und speichert ihn
 */
 public static void readAndSaveBinary(String address, String filename)
 {
 try {
 // File-Instanz, die die zu speichernde Datei repräsentiert
 File file = new File(filename);

 // URL-Instanz, die die zu ladende Ressource repräsentiert
 URL url = new URL(address);

 // OutputStream zum Speichern des Downloads
 BufferedOutputStream bos =
 new BufferedOutputStream(
 new FileOutputStream(file));

 // InputStream zum Laden des Downloads
 BufferedInputStream bin =
 new BufferedInputStream(
 url.openStream());

 // Puffer von 16.382 Bytes zum Einlesen der Daten
 byte[] buffer = new byte[16382];
 int bytes = 0;

 // Einlesen und Speichern der Daten
 while((bytes = bin.read(buffer)) > 0) {
 bos.write(buffer, 0, bytes);
 }

 // Aufräumen
 bos.close();
 bin.close();
 } catch (MalformedURLException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();

Listing 264: Speichern von binärem Content aus einer externen Ressource

>> Netzwerke und E-Mail 557

Ne
tz

w
er

ke
, E

-M
ai

l

201 Senden von Daten an eine Ressource
Mit Hilfe der java.net.URLConnection-Klasse können Daten an eine Ressource gesendet werden
– etwa um das Ausfüllen von Formularfeldern zu simulieren. Eine Instanz dieser Klasse kann
über die Methode openConnection() einer java.net.URL-Instanz referenziert werden. Durch
Übergabe des Werts true an die Methode setDoOutput() der URLConnection-Instanz kann der
Modus zum Übertragen von Informationen aktiviert werden.

Die zu sendenden Parameter werden als Name-Wert-Paare gesendet. Zum Einsatz kommt
dabei eine java.io.PrintWriter-Instanz. Mehrere Name-Wert-Paare werden durch kaufmänni-
sches Und (&) getrennt.

Die Antwort des externen Servers kann per java.io.InputStreamReader und einer java.io.Buf-
feredInputStream-Instanz abgerufen und weiterverarbeitet werden:

 }
 }
}

import java.util.Properties;
import java.io.*;
import java.net.MalformedURLException;
import java.net.URLConnection;
import java.net.URL;

public class UrlSender {
 /**
 * Übergibt die in der Properties-Instanz data enthaltenen
 * Informationen an den durch address bezeichneten Server und
 * liefert dessen Rückgabe zurück
 */
 public static String send(String address, Properties data) {
 StringBuffer buff = new StringBuffer();

 try {
 // Repräsentation der Ressource
 URL url = new URL(address);

 // URLConnection instanzieren
 URLConnection conn = url.openConnection();

 // Output zulassen
 conn.setDoOutput(true);

 // PrintWriter erzeugen, mit dem in den Output
 // geschrieben werden kann
 PrintWriter outputToServer = new PrintWriter(
 new OutputStreamWriter(conn.getOutputStream()));

Listing 265: Senden von Daten an eine Ressource

Listing 264: Speichern von binärem Content aus einer externen Ressource (Forts.)

>> Senden von Daten an eine Ressource558
Ne

tz
w

er
ke

, E
-M

ai
l

 // Hält die Parameter
 StringBuffer params = new StringBuffer();

 // Alle Schlüssel aus der Properties-Instanz auslesen
 for(Object key : data.keySet().toArray()) {
 String keyVal = key.toString();

 // Wert abrufen
 String val = data.getProperty(keyVal);

 // An die zu übergebenden Daten anhängen
 params.append(String.format("%s=%s&", keyVal, val));
 }

 // Parameter schreiben
 outputToServer.print(params.toString());

 // OutputStream schließen
 outputToServer.close();

 // BufferedReader zum Einlesen der Rückgabe erzeugen
 BufferedReader in = new BufferedReader(
 new InputStreamReader(conn.getInputStream()));

 // Rückgabe einlesen und ausgeben
 String line = null;
 while((line = in.readLine()) != null) {
 buff.append(line + "\n");
 }

 // Aufräumen
 in.close();

 } catch (MalformedURLException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }

 // Ergebnis zurückgeben
 return buff.toString();
 }
}

Listing 265: Senden von Daten an eine Ressource (Forts.)

>> Netzwerke und E-Mail 559

Ne
tz

w
er

ke
, E

-M
ai

l

202 Mini-Webserver
Ein Webserver ist ein sehr gutes Beispiel für die Verbindung von Netzwerkprogrammierung
und Thread-Programmierung und eignet sich häufig als Ausgangsbasis für eigene Entwick-
lungen, da viele Anwendungen den gleichen Kern besitzen: In einer Endlosschleife wird auf
eingehende Ereignisse gewartet (beim Webserver auf eine eingehende TCP/IP-Verbindung als
Socket) und dann wird jedes Ereignis einem eigenen Thread zugeordnet und von diesem bear-
beitet, während das Hauptprogramm wieder in der Endlosschleife auf Ereignisse wartet.

Im Folgenden soll ein simpler Webserver gezeigt werden, der auf Anfrage HTML-Seiten bereit-
stellt. Technisch bedeutet dies, dass der Server auf HTTP-Anfragen des Typs GET reagieren
soll. Wenn Sie z.B. www.carpelibrum.de im Browser eintippen, wird er das Kommando GET/
HTTP/1.1 an diejenige IP-Adresse senden1, die mit www.carpelibrum.de verknüpft ist.

Ein Webserver muss auf eine GET-Anfrage eine Antwort liefern, die zunächst aus einem Pro-
log mit Statusangaben und Informationen besteht, gefolgt von einer Leerzeile und den Daten
der angeforderten HTML-Seite, z.B.

HTTP/1.0 200 OK
Server: Microsoft-PWS/2.0
Date: Wed, 11 May 2005 7:04:55 GMT
Content-Type: text/html
Accept-Ranges: bytes
Last-Modified: Sat, 09 May 1998 09:52:22 GMT
Content-Length: 18

Ab hier die Daten

Was der Webserver an Daten zu senden hat, ergibt sich aus der relativen Pfadangabe des
Dateinamens in der GET-Anfrage. So besagt z.B. das obige GET / HTTP/1.1, dass das Root-
Verzeichnis angefordert wird. In der Regel übersetzt der Server dies in eine fest konfigurierte
Standarddatei wie /index.html. Wenn der Webserver z.B. als Datenverzeichnis c:\Web verwen-
det, dann wird er versuchen, die Datei c:\Web\index.html zu lesen und dem anfragenden
Browser zu senden. Hierbei muss der Webserver noch mitteilen, um welche Art von Daten es
sich handelt (content-type) und wie viele Bytes er senden wird (content-length). Typische For-
mate für den Datentyp sind »text/html« für HTML-Text und »image/gif« oder »image/jpeg« bei
Bilddaten.

H
in

w
e

is Die Daten werden in diesem Beispiel per GET übergeben. Wollen Sie Daten per POST
senden, müssen Sie die java.net.URLConnection-Instanz explizit in eine java.net.Http-
URLConnection-Instanz casten und deren Methode setRequestMethod() die Art des
Zugriffs mitteilen:

((HttpURLConnection) conn).setRequestMethod("POST");

Die dabei möglicherweise auftretende ProtocolException muss deklariert oder abgefan-
gen werden.

1. Es werden in der Regel noch weitere optionale Zusatzinformationen an den Webserver übertragen, z.B. der Name
des Browsers und welche Dateiformate verarbeitet werden können.

>> Mini-Webserver560
Ne

tz
w

er
ke

, E
-M

ai
l

import java.io.*;
import java.net.*;
import java.util.*;

/**
 * Einfacher Webserver zum Bedienen von GET-Anfragen
 */
public class MiniWebServer {
 public static void main(String[] args) {
 int port = -1;
 String www_dir = null;

 if(args.length != 2) {
 System.out.println("Aufruf mit <www-Verzeichnis> <Port-Nummer>");
 System.exit(0);
 } else {
 www_dir = args[0];
 port = Integer.parseInt(args[1]);
 }

 // einen Server-Socket anlegen und auf Anfragen warten
 int requestID = 0;

 try {
 ServerSocket serverSock = new ServerSocket(port);
 System.out.println("Webserver läuft auf Port " + port);

 // in einer Endlosschleife auf Anfrage warten
 while(true) {
 Socket request = serverSock.accept();

 // eine neue Anfrage in eigenem Thread bearbeiten
 requestID++;
 RequestThread tmp = new RequestThread(requestID,request,www_dir);
 tmp.start();
 }
 } catch(IOException e) {
 System.err.println("Fehler beim Socket-Aufbau!");
 e.printStackTrace();
 }
 }
}

/**
 * Diese Thread-Klasse bearbeitet die Anfrage
 */
class RequestThread extends Thread {
 private Socket mySocket;
 private int myID;
 private BufferedReader inStream;
 private PrintStream outStream; // kann auch Binärdaten enthalten, daher

Listing 266: Einfacher Webserver für GET-Anfragen

>> Netzwerke und E-Mail 561

Ne
tz

w
er

ke
, E

-M
ai

l

 // kein BufferedWriter
 private String www_dir;

 // der Konstruktor
 RequestThread(int id, Socket sock,String dir) {
 myID = id;
 mySocket = sock;
 www_dir = dir;
 }

 public void run() {
 System.out.println("Anfrage " + myID + " wird bearbeitet");

 // den Input/Output-Stream eröffnen
 try {
 inStream = new BufferedReader(new
 InputStreamReader(mySocket.getInputStream()));
 outStream = new PrintStream(mySocket.getOutputStream());
 } catch(IOException e) {
 System.err.println("Anfrage "
 + myID
 + " I/O Socket-Stream Exception");
 e.printStackTrace();
 }

 // den Header einlesen
 ArrayList<String> header = readRequestHeader();
 printHeader(header);

 // Kommando und URL extrahieren; der Rest interessiert uns nicht
 StringTokenizer st = new StringTokenizer((String) header.get(0));
 String command = st.nextToken();
 String url = st.nextToken();

 ArrayList<String> response = new ArrayList<String>();
 boolean dataSegment = false;

 // wir beachten nur das GET-Kommando
 if(command.equals("GET") == true) {
 // URI in betriebssystem-spezifischen Dateinamen konvertieren
 // indem der notwendige Dateitrenner (/ oder \) genommen wird
 String separator = System.getProperty("file.separator");
 StringBuffer buf = new StringBuffer(url.length());

 for(int i = 0; i < url.length(); i++) {
 char c = url.charAt(i);

 if(c == '/')
 buf.append(separator);
 else
 buf.append(c);

Listing 266: Einfacher Webserver für GET-Anfragen (Forts.)

>> Mini-Webserver562
Ne

tz
w

er
ke

, E
-M

ai
l

 }

 url = buf.toString();

 // testen, ob die Datei existiert und gelesen werden kann
 File file = new File(www_dir + url);

 if(file.canRead() == true) {
 // die Antwort zusammenbauen
 response.add("HTTP/1.0 200 OK");

 // den Content-type der gewünschten Datei aufgrund der Dateiendung
 // setzen
 if(url.endsWith(".gif") == true)
 response.add("Content-type: image/gif");

 if((url.endsWith(".jpeg") == true)
 || (url.endsWith(".jpg") == true))
 response.add("Content-type: image/jpeg");

 if((url.endsWith(".html") == true)
 || (url.endsWith(".htm") == true))
 response.add("Content-type: text/html");

 response.add(""); // Leerzeile beendet den Header
 dataSegment = true;

 } else {
 // die gewünschte Datei gibt es nicht
 response.add("HTTP/1.0 404 Not Found");
 response.add("Content-type: text/html");
 response.add(""); // Leerzeile beendet die Headersektion
 response.add("<HTML><HEAD><TITLE> MiniWebServer-Fehlermeldung" +
 "</TITLE></HEAD>");
 response.add("<BODY> Angeforderte Datei nicht vorhanden " +
 "oder nicht lesbar!</BODY></HTML>");
 }

 } else {
 // ein nicht unterstütztes Kommando
 response.add("HTTP/1.0 501 Not implemented");
 response.add("Content-type: text/html");
 response.add("");
 response.add("<HTML><HEAD><TITLE>MiniWebServer-Fehlermeldung "
 + "</TITLE></HEAD>");
 response.add("<BODY> Angeforderte Datei nicht vorhanden " +
 "oder nicht lesbar!</BODY></HTML>");
 }

 // Die Antwort an den Client schicken. Bei Bedarf auch den Inhalt der
 // angeforderten Datei als Byte-Stream

Listing 266: Einfacher Webserver für GET-Anfragen (Forts.)

>> Netzwerke und E-Mail 563

Ne
tz

w
er

ke
, E

-M
ai

l

 try {
 for(String line : response)
 outStream.println(line);

 // die gewünschte Datei laden und senden
 if(dataSegment == true) {
 byte[] readBuffer = new byte[4096];
 int num;

 try {
 FileInputStream file = new FileInputStream(www_dir + url);

 while((num = file.read(readBuffer)) != -1)
 outStream.write(readBuffer,0,num);

 file.close();
 outStream.flush();

 } catch(IOException e) {
 System.err.println("Anfrage " + myID + ": Datei " + url
 + " konnte nicht gelesen werden");
 }
 }

 // Verbindung schließen
 mySocket.close();
 System.out.println("Anfrage " + myID + " abgearbeitet!");

 } catch(IOException e) {
 System.err.println("Anfrage " + myID +
 ": Header konnte nicht geschrieben werden ");
 e.printStackTrace();
 }
 }

 // für Kontrollzwecke: Ausgabe des Headers
 void printHeader(ArrayList<String> header) {
 for(String str : header)
 System.out.println(str);
 }

 // Diese Methode liest den Header ein, der vom Client geschickt worden ist
 ArrayList<String> readRequestHeader() {
 String line;
 ArrayList<String> result = new ArrayList<String>();

 while(true) {
 try {
 line = inStream.readLine();

 if(line != null) {

Listing 266: Einfacher Webserver für GET-Anfragen (Forts.)

>> Mini-Webserver564
Ne

tz
w

er
ke

, E
-M

ai
l

Der Webserver benötigt beim Start zwei Parameter: den Namen seines Datenverzeichnisses, wo
die zu liefernden Dateien abgelegt sind, sowie den Port, auf dem er lauschen soll (z.B. den
Standardport für HTML = 80). Sie können den Server testen, indem Sie in Ihrem Browser eine
lokale Datei anfordern, z.B. für die Datei index.html geben Sie als URL ein: http://localhost/
index.html. Zum Beenden des Servers drücken Sie (Strg)+(C).

Schauen Sie gegebenenfalls auch in Rezept 240, falls Sie einen Webserver mit Thread-Pooling
realisieren möchten.

 // der Header endet mit einer Leerzeile
 if(line.length() <=0)
 break;
 else
 result.add(line);
 } else
 break;

 } catch(IOException e) {
 System.err.println("Anfrage " + myID
 + " Exception beim Headerlesen");
 e.printStackTrace();
 break;
 }
 }

 return result;
 }
}

Abbildung 116: Log-Ausgaben des Mini-Webservers

Listing 266: Einfacher Webserver für GET-Anfragen (Forts.)

XM
L

XML

203 Sonderzeichen in XML verwenden
Da bestimmte Sonderzeichen Teil der XML-Sprache sind, können sie nicht einfach als Wert
eines Elements verwendet werden, sondern müssen durch eine besondere Kodierung (auch als
Escape-Sequenz oder Entity bezeichnet) beschrieben werden. Es handelt sich um die folgenden
fünf Zeichen:

Wenn Sie also beispielsweise in ein XML-Element den Text C & A einfügen wollen, müssen
Sie schreiben:

<name>C & A</name>

Neben den oben aufgelisteten Entities können auch eigene definiert werden. Zusätzlich dienen
Entities dazu, nicht vom Zeichensatz abgedeckte Elemente einzubinden, sofern diese über eine
Unicode-Darstellung verfügen:

&#Dezimalcode_im_Unicode-Zeichensatz;
&#xHexadezimalcode_im_Unicode-Zeichensatz;

Um beispielsweise einen Zeilenumbruch (Code 13) einzufügen, können Sie folgende Entity
verwenden:

<satz>Dies ist ein  umbrochener Satz.</satz>

Eine andere Möglichkeit zur Darstellung von Text mit Sonderzeichen ist der Einsatz von
CDATA (siehe Rezept 206).

204 Kommentare
Um ein XML-Dokument oder Teile davon auch später noch verstehen zu können oder ihre
Funktion für andere zu dokumentieren, empfiehlt es sich, Kommentare in das Dokument ein-
zufügen. Kommentare dienen aber nicht nur der Dokumentierung. Während der Testphase
können Sie die Kommentarzeichen dazu nutzen, einzelne Elemente temporär auszukommen-
tieren.

Zeichen Escape-Sequence (Entity)

< <

> >

& &

" "

' '

Tabelle 49: Sonderzeichen in XML

H
in

w
e

is In der Standardeinstellung werden alle führenden und abschließenden Whitespace-
Zeichen (SPACE, TAB, RETURN) ignoriert, sofern sie nicht durch die Option xml:space
geschützt werden.

>> Namensräume566
XM

L

Kommentare haben in XML folgende Form:

<!-- Dies ist ein Kommentar -->

205 Namensräume
Da in XML eigene Tags definiert werden können, muss sichergestellt sein, dass gleichnamige
Tags auseinander gehalten werden können. Die Lösung dieses Problems ist das auch aus Java
bekannte Konzept der Namensräume.

Namensräume werden durch das Präfix xmlns, gefolgt vom Kurznamen des Namensraums und
einem URL deklariert:

xmlns:cb="http://java.codebooks.de/xml"

Diese Deklaration kann bei der ersten Verwendung eines Namensraums oder auf Ebene des
Root-Elements erfolgen. Der URL muss nicht physisch existieren – er dient lediglich der Ver-
deutlichung der Zugehörigkeit des Namensraums. Allerdings kann am angegebenen Ort ein
XML-Schema oder eine DTD hinterlegt sein, wodurch die möglichen Elemente des Namens-
raums bestimmt werden können:

xmlns:cb="http://java.codebooks.de/xml/validate.dtd"

Nach dieser Deklaration kann der Namensraum verwendet werden:

<cb:book book-number="2294"
 xmlns:cb="http://java.codebooks.de/xml">
 <cb:title>Codebook Java</cb:title>
 <cb:content>
 <cb:chapter number="11">Netzwerke</cb:chapter>
 <cb:chapter number="12">XML</cb:chapter>
 </cb:content>
</cb:book>

Innerhalb eines Dokuments können verschiedene Namensräume definiert werden. Auch die
Angabe eines Standard-Namensraums ist möglich. In diesem Fall muss kein Kurzname ange-
geben werden:

<book book-number="2294" xmlns="http://java.codebooks.de/xml">
 ...
</book>

A
ch

tu
n

g Die XML-Definition verbietet es, Kommentare ineinander zu verschachteln.

A
ch

tu
n

g Beachten Sie, dass alle anderen Elemente, die über keine explizite Namensraumangabe
verfügen, implizit dem Standard-Namensraum zugehörig sind. Sollte eine Validierung
stattfinden, muss dies natürlich berücksichtigt werden, die betreffenden Elemente müs-
sen im Schema oder der DTD deklariert sein.

>> XML 567

XM
L

206 CDATA-Bereiche
Per Voreinstellung parst ein XML-Parser alle Elemente eines XML-Dokuments. Dies bedeutet,
dass diese Elemente wohlgeformt sein müssen. HTML-Tags beispielsweise können so nicht trans-
portiert werden, da sie in der Regel nicht den Anforderungen der Wohlgeformtheit genügen.

Um dennoch nicht wohlgeformte Inhalte einbauen zu können, müssen sie als nicht zu inter-
pretierende Zeichenkette (Character Data = CDATA) markiert werden. Ein CDATA-Abschnitt
beginnt stets mit der Zeichenkette <![CDATA[und wird mit]]> abgeschlossen.

<text><![CDATA[Dieser Text wird nicht interpretiert
]]></text>

Ein CDATA-Block kann sowohl Sonderzeichen (Entities) als auch binäre Daten, z.B. Bilder,
enthalten. In ihm enthaltene Elemente werden als Text gelesen und nicht interpretiert.

207 XML parsen mit SAX
Das Verarbeiten von XML-Dokumenten per SAX (Simple API for XML, mehr über SAX erfah-
ren Sie beispielsweise unter http://sax.sourceforge.net/) funktioniert ereignisgesteuert. Beim
Auftreten bestimmter Ereignisse bindet der SAX-Parser eine org.xml.sax.ContentHandler-Imp-
lementierung ein und ruft deren Methoden auf.

Das Interface org.xml.sax.ContentHandler definiert folgende zu implementierende Methoden:

void characters(char[] ch, int start, int length)
void endDocument()
void endElement(java.lang.String uri,
 java.lang.String localName, java.lang.String qName)
void endPrefixMapping(java.lang.String prefix)
void ignorableWhitespace(char[] ch, int start, int length)
void processingInstruction(java.lang.String target, java.lang.String data)
void setDocumentLocator(Locator locator)
void skippedEntity(java.lang.String name)
void startDocument()
void startElement(java.lang.String uri, java.lang.String localName,
 java.lang.String qName, Attributes atts)
void startPrefixMapping(java.lang.String prefix, java.lang.String uri)

Diese Methoden werden beim Auftreten von bestimmten Ereignissen eingebunden:

H
in

w
e

is Laut Spezifikation ist das Präfix nur ein Platzhalter für den URL des Namensraums, der
dann die eindeutige Zuordnung übernimmt. Zwei gleichnamige Tags, die über unter-
schiedliche Präfixe den gleichen URL referenzieren, sind demnach also identisch, auch
wenn nicht jede Anwendung diese Unterscheidung vornimmt.

Methode Ereignis

characters () Textdaten werden verarbeitet.

endDocument() Das Ende des Dokuments ist erreicht.

endElement() Das Ende eines Tags ist erreicht.

endPrefixMapping() Das Ende eines Namensraum-Präfixes ist erreicht.

Tabelle 50: Methoden des Interfaces ContentHandler

>> XML parsen mit SAX568
XM

L

Dieses Interface muss implementiert werden, um Dokumente per SAX parsen zu können. Um
die Arbeit aber ein wenig zu erleichtern, existiert mit der Klasse org.xml.sax.helpers.Default-
Handler eine Adapter-Implementierung dieses Interfaces, die alle Methoden als leere Metho-
den umsetzt. Wenn von dieser Implementierung abgeleitet wird, müssen nur noch die
Methoden überschrieben werden, die die eigentliche Anwendungslogik beinhalten sollen.

Im Folgenden wird eine DefaultHandler-Ableitung eingesetzt, um alle Knoten eines XML-
Dokuments samt möglicherweise vorhandenem Inhalt auszugeben. Dabei wird innerhalb der
Methode read() zunächst eine SAXParser-Instanz erzeugt. Anschließend wird der Verarbei-
tungsprozess über die Methode parse() der SAXParser-Instanz angestoßen.

ignorableWhitespace() Ignorierbare Leerzeichen werden verarbeitet.

processingInstruction() Eine Processing-Instruction ist erreicht worden.

setDocumentLocator() Übergibt eine Locator-Instanz, mit deren Hilfe die aktuelle Posi-
tion innerhalb des XML-Dokuments bestimmt werden kann.

skippedEntity() Eine XML-Entity musste verworfen werden (etwa, weil sie nicht
deklariert worden ist).

startDocument() Parsen des Dokuments startet.

startElement() Beginn eines Tags wird erreicht.

startPrefixMapping() Ein Namensraum-Präfix wird erreicht.

import javax.xml.parsers.*;
import org.xml.sax.*;
import org.xml.sax.helpers.*;
import java.io.*;

public class SaxReader extends DefaultHandler {

 private SAXParser parser = null;

 public SaxReader() {
 // Parser instanziieren

try {
 SAXParserFactory fac = SAXParserFactory.newInstance();
 parser = fac.newSAXParser();
 } catch(Exception e) {
 e.printStackTrace();
 }
 }

 /**
 * Parsen einer XML-Datei
 * @param Einzulesende Datei
 */
 public void read(File f) {

Listing 267: Verarbeiten eines XML-Dokuments per SAX

Methode Ereignis

Tabelle 50: Methoden des Interfaces ContentHandler

>> XML 569

XM
L

 try {
 // Dokument parsen

parser.parse(f, this);
 } catch(SAXException e) {
 e.printStackTrace();
 } catch(Exception e) {
 e.printStackTrace();
 }
 }

 /**
 * Parsen eines XML-Strings
 * @param String mit XML-Dokument
 */
 public void read(String document) {
 try {
 InputSource input = new InputSource(new StringReader(document));

 // Dokument parsen

 parser.parse(input, this);
 } catch(SAXException e) {
 e.printStackTrace();
 } catch(Exception e) {
 e.printStackTrace();
 }
 }

 /**
 * Wird aufgerufen, wenn ein Element beginnt
 * @param uri Namensraum-Präfix
 * @param name Name des Elements
 * @param qname Voll qualifizierter Name mit uri und name
 * @param attributes Attribute
 * @throws SAXException
 */

public void startElement(String uri, String name, String qname,
 Attributes attributes) throws SAXException {
 // Ausgeben des Elementnamens
 System.console().printf("Element gefunden: Qualified Name = %s\n",
 qname);
 }

 /**
 * Wird aufgerufen, wenn ein Text-Element behandelt wird
 * @param chars Komplettes Dokument
 * @param start Beginn des Textes
 * @param end Ende des Textes
 * @throws SAXException
 */

public void characters(char[] chars, int start, int end)
 throws SAXException {

Listing 267: Verarbeiten eines XML-Dokuments per SAX (Forts.)

>> XML parsen mit SAX570
XM

L

Das Start-Programm zu diesem Rezept nutzt die Klasse SaxReader zur Analyse des folgenden
XML-Dokuments:

 // Text in String casten und führende bzw. folgende
 // Leerzeichen entfernen

 String text = new String(chars, start, end).trim();

 // Wenn Text nicht leer ist, dann ausgeben
 if(text.length() > 0) {
 System.console().printf(" Wert: %s\n", text);
 }
 }
}

<?xml version="1.0" encoding="iso-8859-1"?>
<book>
 <title>Java Codebook</title>
 <authors>
 <author>Dirk Louis</author>
 <author>Peter Müller</author>
 </authors>
 <publisher>Addison-Wesley</publisher>
 <content>
 <chapter number="11">Netzwerk</chapter>
 <chapter number="12">XML</chapter>
 <!-- ... -->
 </content>
</book>

Listing 268: XML-Beispieldokument

Abbildung 117: Ausgabe von Elementnamen und -inhalten des Beispieldokuments

Listing 267: Verarbeiten eines XML-Dokuments per SAX (Forts.)

>> XML 571

XM
L

208 XML parsen mit DOM
Ein anderer Weg, XML-Dokumente zu parsen, besteht in der Verwendung des Document Object
Model (DOM), einer systemunabhängigen Definition des Zugriffs auf XML-Dokumente, die
sich stark an deren Struktur orientiert.

Grundprinzip der Arbeit mit dem DOM ist die Orientierung an der Dokumentenstruktur. Hier
wird nicht auf das Eintreten bestimmter Ereignisse gewartet, sondern man traversiert über die
Baumstruktur eines XML-Dokuments vom Root-Element hin zu den untergeordneten Elemen-
ten. Ein wesentlicher Unterschied zwischen SAX und DOM ist somit, dass bei DOM das
gesamte XML-Dokument im Speicher gehalten wird.

Bei der Arbeit mit dem DOM befindet man sich meist auf Knotenelementen. Diese werden
durch org.w3c.dom.Node- und org.w3c.dom.Element-Implementierungen repräsentiert. Sogar
das zugrunde liegende Dokument wird als Node repräsentiert. Für den Entwickler bietet dies
den unschätzbaren Vorteil, dass sich die verschiedenen Elementtypen, die im DOM definiert
sind, weitestgehend identisch handhaben lassen – das Hinzufügen oder Auslesen von Infor-
mationen geschieht stets über das gleiche API.

Um ein XML-Dokument per DOM zu laden und zu parsen, ist – wie bereits mehrfach erwähnt
– ein anderer Denkansatz notwendig, als dies beim Einsatz von SAX der Fall war. Beim DOM
wird das Dokument von außen nach innen durchlaufen, wobei jeder Knoten über einen oder
mehrere untergeordnete Knoten verfügen kann. Ob ein Knoten untergeordnete Knoten enthält,
lässt sich mit der Methode hasChildNodes() der Node-Implementierung feststellen. Die Methode
getChildNodes() des aktuellen Knotens gibt eine org.w3c.dom.NodeList-Implementierung
zurück, die alle untergeordneten Knoten enthält. Der Textinhalt eines Knotens kann per get-
NodeValue() bestimmt werden. Über die Methode getNodeType() kann der Typ des aktuellen
Knotens bestimmt werden.

Folgende Knoten-Typen können auftreten:

Knoten-Typ Beschreibung

ATTRIBUTE_NODE Das Element ist ein Attribut.

CDATA_SECTION_NODE Das Element ist ein CDATA-Bereich.

COMMENT_NODE Das Element ist ein Kommentar-Element.

DOCUMENT_FRAGMENT_NODE Das Element ist ein Dokumentfragment.

DOCUMENT_NODE Das Element ist ein Dokument.

DOCUMENT_TYPE_NODE Das Element ist ein Document-Type-Node.

ELEMENT_NODE Das Element ist ein Knoten und kann untergeordnete Inhalte
besitzen.

ENTITY_NODE Das Element ist eine definierte Entity.

ENTITY_REFERENCE_NODE Das Element verweist auf eine definierte Entity.

NOTATION_NODE Das Element ist ein Notation-Element.

PROCESSING_INSTRUCTION_NODE Das Element ist eine Processing-Instruction.

TEXT_NODE Das Element ist reiner Text.

Tabelle 51: Knoten-Typen

>> XML parsen mit DOM572
XM

L

Um ein XML-Dokument analog zum Beispiel aus Rezept Das Verarbeiten von XML-Dokumen-
ten per SAX (Simple API for XML, mehr über SAX erfahren Sie beispielsweise unter http://
sax.sourceforge.net/) funktioniert ereignisgesteuert. Beim Auftreten bestimmter Ereignisse
bindet der SAX-Parser eine org.xml.sax.ContentHandler-Implementierung ein und ruft
deren Methoden auf. zu verarbeiten, müssen vor der eigentlichen Analyse und Verarbeitung
der Knoten noch folgende Schritte durchgeführt werden:

� javax.xml.parsers.DocumentBuilder-Instanz erzeugen

� XML-Datei laden

� org.w3c.dom.Document-Instanz abrufen

Die so geladene Document-Instanz kann nun verarbeitet werden. Da sie sich wie jedes andere
XML-Element verhält und das Interface org.w3c.dom.Node implementiert, kann sie analog zu
allen untergeordneten Elementen in einer rekursiv arbeitenden Methode verarbeitet werden. In
dieser Methode kann anhand des Knoten-Typs und der Anzahl der untergeordneten Elemente
bestimmt werden, ob eine weitere Rekursion erfolgen soll oder ob ein eventuell vorhandener
Textinhalt ausgegeben werden kann:

import org.w3c.dom.*;
import org.xml.sax.*;
import javax.xml.parsers.*;
import java.io.*;

public class DOMReader {

 private DocumentBuilder parser = null;

 public DOMReader() throws ParserConfigurationException {

 DocumentBuilderFactory fac = DocumentBuilderFactory.newInstance();
 parser = fac.newDocumentBuilder();
 }

 /**
 * Parsen einer XML-Datei
 * @param Einzulesende Datei
 */
 public void read(File f) {
 try {
 // Dokument einlesen

 Document doc = parser.parse(f);

 // Dokument verarbeiten
 analyze(doc);

 } catch(SAXException e) {
 e.printStackTrace();
 } catch(Exception e) {
 e.printStackTrace();
 }
 }

Listing 269: Verarbeiten eines XML-Dokuments per DOM

>> XML 573

XM
L

 /**
 * Parsen eines XML-Strings
 * @param String mit XML-Dokument
 */
 public void read(String str) {
 try {
 // aus dem String ein InputSource-Objekt erstellen
 InputSource input = new InputSource(new StringReader(str));

 // Dokument einlesen
 Document doc = parser.parse(input);

 // Dokument verarbeiten
 analyze(doc);

 } catch(SAXException e) {
 e.printStackTrace();
 } catch(Exception e) {
 e.printStackTrace();
 }
 }

 /**
 * Analysiert den übergebenen Knoten
 * @param node Zu analysierender Knoten
 */
 private void analyze(Node node) {

 // Wenn es sich um einen Text-Knoten handelt, Inhalt ausgeben
 if(node != null && node.getNodeType() == Node.TEXT_NODE) {

 // Wert lokal zwischenspeichern
 String value = node.getNodeValue().trim();

 // Wenn Textinhalt vorhanden, dann ausgeben
 if(value.length() > 0) {
 System.console().printf(" Wert: %s\n", value);
 }

 } else {
 // Name des Knotens ausgeben
 System.console().printf("Gefundendes Element: %s\n",
 node.getNodeName());

 // Überprüfen, ob untergeordnete Knoten existieren
 if(node.hasChildNodes()) {

 // Alle untergeordneten Knoten durchlaufen
 int num = node.getChildNodes().getLength();

Listing 269: Verarbeiten eines XML-Dokuments per DOM (Forts.)

>> XML parsen mit DOM574
XM

L

Das Start-Programm zu diesem Rezept nutzt die Klasse DOMReader zur Analyse des folgen-
den XML-Dokuments:

<?xml version="1.0" encoding="iso-8859-1"?>
<book>
 <title>Java Codebook</title>
 <authors>
 <author>Dirk Louis</author>
 <author>Peter Müller</author>
 </authors>
 <publisher>Addison-Wesley</publisher>
 <content>
 <chapter number="11">Netzwerk</chapter>
 <chapter number="12">XML</chapter>
 <!-- ... -->
 </content>
</book>

Listing 270: XML-Beispieldokument

 for(int i=0; i < num; i++) {
 // Aktuellen Knoten analysieren

 analyze(node.getChildNodes().item(i));
 }
 }
 }
 }
}

Abbildung 118: Verarbeiten eines XML-Dokuments per DOM

Listing 269: Verarbeiten eines XML-Dokuments per DOM (Forts.)

>> XML 575

XM
L

209 XML-Dokumente validieren
XML-Dokumente sollten nach Möglichkeit validiert werden, d.h. man testet, ob sie einer defi-
nierten Struktur entsprechen. Während in der Frühzeit von XML vorwiegend ein sogenanntes
DTD (Document Type Definition) zum Einsatz kam, ist mittlerweile das XML Schema der
übliche Mechanismus, um die Syntax eines XML-Dokuments festzulegen. Auf die genaue
Syntax von DTDs oder XML Schemata an dieser Stelle einzugehen, würde jedoch den Rah-
men dieses Buchs sprengen. Einen guten Einstieg in dieses Thema finden Sie unter
http://www.w3schools.com/schema/default.asp.

Das weiter unten abgedruckte Schema validiert die Struktur des folgenden XML-Dokuments

<?xml version="1.0" encoding="iso-8859-1"?>
<book>
 <title>Java Codebook</title>
 <authors>
 <author>Dirk Louis</author>
 <author>Peter Müller</author>
 </authors>
 <publisher>Addison-Wesley</publisher>
 <content>
 <chapter number="11">Netzwerk</chapter>
 <chapter number="12">XML</chapter>
 <!-- ... -->
 </content>
</book>

Listing 271: XML-Beispieldokument

Das Schema definiert als Root-Element ein book-Element, das title-, authors-, publisher- und
content-Elemente enthalten darf. Den authors- und content-Elementen können author- bzw.
chapter-Elemente untergeordnet sein.

H
in

w
e

is Neben der unterschiedlichen Herangehensweise an die Analyse und Verarbeitung eines
Dokuments unterscheiden sich die Ansätze SAX und DOM insbesondere in einem
Punkt: der Verarbeitungsgeschwindigkeit. SAX ist deutlich schneller als DOM, beson-
ders bei großen Dokumenten, und benötigt viel weniger Speicher. Dafür ist DOM
wesentlich flexibler – und spätestens wenn es darum geht, die enthaltenen Daten oder
die Struktur zu manipulieren, muss SAX ohnehin passen.

<?xml version="1.0"?>
<xs:schema
 xmlns="http://tempuri.org/XMLFile1.xsd"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="book">
 <xs:complexType>
 <xs:sequence>
 <!-- Titel -->
 <xs:element name="title"

Listing 272: buchSchema.xsd – Schema, das auf das XML-Beispieldokument angewendet
werden soll

>> XML-Dokumente validieren 576
XM

L

 type="xs:string" minOccurs="0" />
 <!-- Autoren -->
 <xs:element name="authors"
 minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <!-- Ein Autor -->
 <xs:element name="author" nillable="true"
 minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <!-- Verlag -->
 <xs:element name="publisher"
 type="xs:string" minOccurs="0" />
 <!-- Inhalt des Buchs -->
 <xs:element name="content"
 minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <!-- Einzelne Kapitel -->
 <xs:element name="chapter"
 nillable="true" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="number"
 form="unqualified" type="xs:string" />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Listing 272: buchSchema.xsd – Schema, das auf das XML-Beispieldokument angewendet
werden soll (Forts.)

>> XML 577

XM
L

Um nun eine XML-Datei gegen ein Schema zu validieren, benötigt man eine Instanz der
Klasse javax.xml.validation.Validator, die man jedoch nicht direkt erzeugen kann, sondern
mit Hilfe der Klassen SchemaFactory und Schema besorgen muss.

import org.xml.sax.*;
import javax.xml.*;
import javax.xml.transform.stream.*;
import javax.xml.validation.*;
import java.io.*;

public class SchemaValidator {

 private Validator validator = null;

 public SchemaValidator(File schemaDatei) throws SAXException {

 SchemaFactory schemaFac =
 SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);

 Schema schema = schemaFac.newSchema(schemaDatei);
 validator = schema.newValidator();
 }

 /**
 * Validiert den übergebenen XML-String
 *
 * @param XML-String
 * @return true, falls valid, sonst false
 */
 public boolean validate(String str) throws IOException {
 boolean result = true;

 try {
 StreamSource input = new StreamSource(str);
 validator.validate(input);

 } catch (SAXException ex) {
 System.err.println("Nicht schema-konform: " + ex.getMessage());
 result = false;
 }

 return result;
 }

 /**
 * Validiert die übergebene XML-Datei
 *
 * @param XML-String

Listing 273: Validierung eines Schemas

>> XML-Strukturen mit Programm erzeugen578
XM

L

210 XML-Strukturen mit Programm erzeugen
Das programmgestützte Erzeugen von XML-Strukturen geschieht von außen nach innen:
Zunächst wird über eine javax.xml.parsers.DocumentBuilder-Instanz eine neue Document-
Instanz erzeugt. Anschließend wird deren Root-Element über die Methode createElement() der
Document-Instanz erzeugt. Jedes weitere Element wird ebenfalls über createElement() erzeugt
und dann dem jeweils übergeordneten Knoten über dessen appendChild()-Methode zugewie-
sen. Textinhalte werden über die Methode setTextContent() eines Knotens erfasst. Attribute
können dem Knoten über dessen Methode setAttribute() zugewiesen werden.

 * @return true, falls valid, sonst false
 */
 public boolean validate(File f) throws IOException {
 boolean result = true;

 try {
 StreamSource input = new StreamSource(f);
 validator.validate(input);

 } catch (SAXException ex) {
 System.out.println("Nicht schema-konform: " + ex.getMessage());
 result = false;
 }

 return result;
 }
 }

import org.w3c.dom.Document;
import org.w3c.dom.Element;
import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;

public class DocumentCreator {

 public static Document createProgrammatically() {
 Document doc = null;
 try {
 // DocumentBuilder instanzieren
 DocumentBuilder docBuilder =
 DocumentBuilderFactory.newInstance().newDocumentBuilder();

 // Document-Instanz erzeugen
 doc = docBuilder.newDocument();
 } catch (ParserConfigurationException e) {
 e.printStackTrace();
 }

Listing 274: Erzeugen eines XML-Dokuments

Listing 273: Validierung eines Schemas (Forts.)

>> XML 579

XM
L

 if(null != doc) {
 // Root-Element erzeugen
 Element book = doc.createElement("book");

 // Element anfügen
 doc.appendChild(book);

 // Titel-Element erzeugen
 Element title = doc.createElement("title");

 // Inhalt anfügen
 title.setTextContent("Java Codebook");

 // Titel-Knoten anfügen
 book.appendChild(title);

 // Autoren-Element erzeugen und anfügen
 Element authors = doc.createElement("authors");
 book.appendChild(authors);

 // Einzelne Autor-Elemente erzeugen und anfügen
 Element author = doc.createElement("author");
 author.setTextContent("Dirk Louis");
 authors.appendChild(author);

 author = doc.createElement("author");
 author.setTextContent("Peter Müller");
 authors.appendChild(author);

 // Verlags-Info
 Element publisher = doc.createElement("publisher");
 publisher.setTextContent("Addison-Wesley");
 book.appendChild(publisher);

 // Kapitel-Element
 Element content = doc.createElement("content");
 book.appendChild(content);

 // Einzelne Kapitel erzeugen und anfügen
 Element chapter = doc.createElement("chapter");
 chapter.setAttribute("number", "11");
 chapter.setTextContent("Netzwerk");
 content.appendChild(chapter);

 chapter = doc.createElement("chapter");
 chapter.setAttribute("number", "12");
 chapter.setTextContent("XML");
 content.appendChild(chapter);
 }

Listing 274: Erzeugen eines XML-Dokuments (Forts.)

>> XML-Dokument formatiert ausgeben580
XM

L

Das erzeugte XML-Dokument sieht wie folgt aus:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<book>
 <title>Java Codebook</title>
 <authors>
 <author>Dirk Louis</author>
 <author>Peter Müller</author>
 </authors>
 <publisher>Addison-Wesley</publisher>
 <content>
 <chapter number="11">Netzwerk</chapter>
 <chapter number="12">XML</chapter>
 </content>
</book>

211 XML-Dokument formatiert ausgeben
Die Ausgabe eines XML-Dokuments in gut lesbarer – also eingerückter Schreibweise – ist gar
nicht so einfach, wie man vielleicht erwarten würde.

Man benötigt hierfür die Klasse TransformerFactory, welche eine Instanz von javax.xml.trans-
form.Transformer erzeugen kann. Diese transformiert die Document-Instanz in ihrer trans-
form()-Methode in eine javax.xml.transform.stream.StreamResult-Instanz, die in einen java.
io.OutputStream schreiben kann. Diese OutputStream-Instanz kann beispielsweise System.out
sein, wodurch die Ausgabe auf Konsole erfolgt.

 // Document-Instanz zurückgeben
 return doc;
 }
}

T
ip

p Um den Tippaufwand für die Erzeugung von XML-Dokumenten zu minimieren, emp-
fiehlt es sich, typische Schritte in kleinen Methoden zu kapseln.

import org.w3c.dom.Document;
import javax.xml.transform.*;
import javax.xml.transform.stream.StreamResult;
import javax.xml.transform.dom.DOMSource;
import java.io.OutputStreamWriter;

public class DocWriter {

 /**
 * Schreibt die übergebene Document-Instanz nach System.out
 */
 public static void writeToSystemOut(Document content) {

Listing 275: Formatierte Ausgabe eines XML-Dokuments nach System.out

Listing 274: Erzeugen eines XML-Dokuments (Forts.)

>> XML 581

XM
LWird das in Rezept 210 erzeugte XML-Dokument auf diese Art nach System.out geschrieben,

ergibt sich die Ausgabe aus Abbildung 119.

 // TransformerFactory instanzieren
 TransformerFactory tf =
 TransformerFactory.newInstance();

 // Einrückungstiefe definieren
 tf.setAttribute("indent-number", new Integer(3));
 Transformer t = null;
 try
 {
 // Transformer-Instanz abrufen
 t = tf.newTransformer();

 // Parameter setzen: Einrücken
 t.setOutputProperty(OutputKeys.INDENT, "yes");

 // Ausgabe-Typ: xml
 t.setOutputProperty(OutputKeys.METHOD, "xml");

 // Content-Type
 t.setOutputProperty(
 OutputKeys.MEDIA_TYPE, "text/xml");

 // Transformation durchführen und Ergebnis in einen Stream speichern
 t.transform(new DOMSource(content),
 new StreamResult(
 new OutputStreamWriter(System.out)));

 } catch (TransformerConfigurationException e) {
 e.printStackTrace();
 } catch (TransformerException e) {
 e.printStackTrace();
 }
 }
}

Listing 275: Formatierte Ausgabe eines XML-Dokuments nach System.out (Forts.)

>> XML-Dokument formatiert als Datei speichern582
XM

L

212 XML-Dokument formatiert als Datei speichern
Analog zur Ausgabe einer Document-Instanz auf die Konsole können Sie auch beim Speichern
in eine Datei vorgehen. Der einzige Unterschied zwischen den beiden Aufgaben ist die Art, wie
geschrieben wird: Beim Schreiben nach System.out kommt eine java.io.PrintWriter-Instanz
zum Einsatz, während beim Speichern in eine Datei eine java.io.FileWriter-Instanz verwen-
det wird:

Abbildung 119: Ausgabe eines XML-Dokuments auf die Konsole

import org.w3c.dom.Document;
import javax.xml.transform.*;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamResult;
import java.io.FileWriter;
import java.io.IOException;

public class DocWriter {

 /**
 * Schreibt die übergebene Document-Instanz in die angegebene Datei
 */
 public static void writeToFile(Document content, String fileName) {
 // TransformerFactory instanzieren
 TransformerFactory tf = TransformerFactory.newInstance();

 // Einrückungstiefe definieren
 tf.setAttribute("indent-number", new Integer(3));
 Transformer t = null;
 try {
 // Transformer-Instanz abrufen
 t = tf.newTransformer();

 // Parameter setzen: Einrücken

Listing 276: Speichern einer Document-Instanz in eine Datei

>> XML 583

XM
LDie so gespeicherte Datei kann anschließend weiterverarbeitet werden. Ist die korrekte Kodie-

rung gesetzt, werden auch die enthaltenen Umlaute ordnungsgemäß visualisiert.

 t.setOutputProperty(OutputKeys.INDENT, "yes");

 // Ausgabe-Typ: xml
 t.setOutputProperty(OutputKeys.METHOD, "xml");

 // Content-Type
 t.setOutputProperty(OutputKeys.MEDIA_TYPE, "text/xml");

 // Encoding setzen
 t.setOutputProperty(OutputKeys.ENCODING, "iso-8859-1");

 // FileWriter erzeugen
 FileWriter fw = new FileWriter(fileName);

 // Transformation durchführen und Ergebnis in einen Stream speichern
 t.transform(new DOMSource(content),
 new StreamResult(fw));

 } catch (TransformerConfigurationException e) {
 e.printStackTrace();
 } catch (TransformerException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

A
ch

tu
n

g Vergessen Sie nicht, beim Einsatz von Umlauten die korrekte Kodierung anzugeben, so
wie hier durch Aufruf von setOutputProperty(OutputKeys.ENCODING, "iso-8859-1");
demonstriert. Tun Sie dies nicht, gehen bestenfalls Umlaute verloren oder werden nicht
korrekt dargestellt; schlimmstenfalls ist die XML-Datei nicht mehr lesbar.

Listing 276: Speichern einer Document-Instanz in eine Datei (Forts.)

>> XML mit XSLT transformieren584
XM

L

213 XML mit XSLT transformieren
Ein sehr häufiger und immer wichtiger werdender Teil der Arbeit mit XML ist XSLT. Das Kürzel
XSLT steht für eXtensible Markup Language for Transformations und bezeichnet einen XML-
Dialekt, mit dessen Hilfe XML-Dokumente in andere Zielformate (z.B. HTML) umgewandelt
werden können.

Diese Transformationen benötigen neben dem XML-Parser auch einen XSLT-Interpreter. Der
De-facto-Standard dafür ist Apaches Xalan-J, der unter der Adresse http://xml.apache.org/
xalan-j/ heruntergeladen werden kann.

Wichtigstes Element einer XSLT-Transformation ist neben dem XML-Dokument ein XSL-
Stylesheet. Dieses definiert, wie das XML-Dokument in ein Zielformat (HTML, XML, andere text-
basierte Formate) transformiert werden soll. XSLT setzt sehr stark auf den Einsatz von XPath,
einer Technologie, die der Lokalisierung von Knoten in einem XML-Dokument dient. Eine Ein-
führung in XSLT finden Sie unter der Adresse http://www.w3schools.com/xsl/default.asp. Mehr
zu XPath erfahren Sie unter http://www.w3schools.com/xpath/default.asp. Im J2EE Codebook
finden Sie ein eigenes Kapitel, das sich nur mit der Verwendung von XSLT und XPath befasst.

Betrachten Sie das folgende XML-Dokument:

Abbildung 120: Diese Datei ist aus einer Document-Instanz erzeugt worden.

<?xml version="1.0" encoding="iso-8859-1"?>
<book>
 <title>Java Codebook</title>
 <authors>
 <author>Dirk Louis</author>

Listing 277: XML-Beispieldokument

>> XML 585

XM
L

Dieses XML-Dokument soll mit Hilfe des folgenden XSL-Stylesheets nach HTML transformiert
werden.

 <author>Peter Müller</author>
 </authors>
 <publisher>Addison-Wesley</publisher>
 <content>
 <chapter number="11">Netzwerk</chapter>
 <chapter number="12">XML</chapter>
 <!-- ... -->
 </content>
</book>

<?xml version="1.0" encoding="iso-8859-1"?>
<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

 <xsl:output method="html" indent="yes" />

 <!-- Start-Element ist "Book" -->
 <xsl:template match="book">
 <html>
 <head>
 <!-- Titel ausgeben -->
 <title><xsl:value-of select="./title" /></title>
 </head>
 <body>
 <!-- Titel nochmals ausgeben -->
 <h3><xsl:value-of select="./title" /></h3>
 <div>
 <!-- Verlag ausgeben -->
 Verlag

 <xsl:value-of select="./publisher" />

 </div>
 <div>
 <!-- Autoren ausgeben -->
 Autoren

 <!-- Alle Autoren durchlaufen -->
 <xsl:for-each select="./authors/author">
 <!-- Einzelnen Autor ausgeben -->
 <xsl:value-of select="." />
 </xsl:for-each>

 </div>
 <div>
 <!-- Inhalte ausgeben -->

Listing 278: buchStil.xsd – XSL-Stylesheet zur Transformation des XML-Beispieldokuments nach
HTML

Listing 277: XML-Beispieldokument (Forts.)

>> XML mit XSLT transformieren586
XM

L

Die Transformation von Dokumenten wird innerhalb der Transformation API for XML (TrAX)
beschrieben. Dieses API steht dem Entwickler innerhalb des Namensraums javax.xml.trans-
form zur Verfügung.

Eine Transformation benötigt fünf Elemente, um erfolgreich durchgeführt zu werden:

Der Ablauf einer XSL-Transformation sieht so aus:

Zunächst wird über TransformerFactory.newInstance() eine javax.xml.TransformerFactory-
Instanz erzeugt. Anschließend können die Quelldateien der Transformation per javax.xml.
transform.stream.StreamSource-Instanz referenziert werden.

Nach dem Referenzieren der beiden Quelldateien für die Transformation wird deren Ziel ange-
geben. In diesem Fall wird eine java.io.FileOutputStream-Instanz verwendet, um den gene-
rierten Output speichern zu können.

 Inhalte

 <!-- Alle Kapitel durchlaufen -->
 <xsl:for-each select="./content/chapter">
 <!-- Kapitel-Nummer und Bezeichnung ausgeben -->
 #<xsl:value-of select="@number" />:
 <xsl:value-of select="." />
 </xsl:for-each>

 </div>
 </body>
 </html>
 </xsl:template>

</xsl:stylesheet>

Element Beschreibung

TransformerFactory Diese Factory durchsucht den Klassenpfad nach einem geeigne-
ten Prozessor für die Transformation.

Transformer Diese konkrete Implementierung wird von der TransformerFac-
tory erzeugt und steuert die eigentliche Umwandlung.

Source Die konkrete Implementierung des Interfaces Source repräsen-
tiert das Quelldokument.

Result Die konkrete Implementierung des Interfaces Result repräsen-
tiert das Zieldokument.

Stylesheet Das Stylesheet wird ebenso wie das Quelldokument durch eine
Source-Implementierung repräsentiert.

Tabelle 52: Elemente einer erfolgreichen Transformation

Listing 278: buchStil.xsd – XSL-Stylesheet zur Transformation des XML-Beispieldokuments nach
HTML (Forts.)

>> XML 587

XM
L

Die Transformer-Implementierung, die als Letztes instanziert werden muss, nimmt als Para-
meter die StreamSource-Instanz des XSLT-Stylesheets entgegen und wird von der Methode
newTransformer() der TransformerFactory-Instanz erzeugt. Diese verwendet dazu den im Class-
path hinterlegten XSLT-Prozessor.

Ein Aufruf der Methode transform() der Transformer-Instanz unter Angabe von Quell- und
Ausgabestream führt die Transformation durch.

import javax.xml.transform.*;
import javax.xml.transform.stream.StreamSource;
import javax.xml.transform.stream.StreamResult;
import java.io.*;

public class XslTransform {

 /**
 * Methode zur Durchführung einer XSL-Transformation
 *
 * @param Name der XML-Datei
 * @param Name des XSL-Datei
 * @param Name der Ausgabedatei
 */
 public static void transform(String xmlFile, String xslFile,
 String resultFile) {
 try {
 // Transformer-Factory erzeugen
 TransformerFactory fact =
 TransformerFactory.newInstance();

 // Stylesheet referenzieren
 Source xsl = new StreamSource(
 new FileInputStream(xslFile));

 // Quelldokument referenzieren
 Source xml = new StreamSource(
 new FileInputStream(xmlFile));

 // Ausgabeziel definieren
 Result output = new StreamResult(
 new FileOutputStream(resultFile));

 // Transformer erzeugen
 Transformer transformer = fact.newTransformer(xsl);

 // Transformation durchführen
 transformer.transform(xml, output);

 } catch (TransformerException e) {
 e.printStackTrace();
 } catch (FileNotFoundException e) {
 e.printStackTrace();

Listing 279: Transformation eines XML-Dokuments mit Hilfe eines XSL-Stylesheets

>> XML mit XSLT transformieren588
XM

L

Da die generierte Datei aus reinem HTML besteht, kann sie in jedem Browser angezeigt werden.

 }
 }
}

Abbildung 121: Generierte HTML-Datei im Browser

Listing 279: Transformation eines XML-Dokuments mit Hilfe eines XSL-Stylesheets (Forts.)

In
te

rn
at

io
na

l

Internationalisierung

214 Lokale einstellen
Javas Unterstützung für die Internationalisierung1 von in Java geschriebener Software ruht
auf zwei wichtigen Säulen: Unicode als universeller Zeichensatz2 und das Konzept der Lokale
zur Anpassung an landes- und kulturspezifische Eigenheiten.

Unter einer Lokale (Gebietsschema) versteht man eine politische, geographische oder kulturelle
Region, mit eigener Sprache und eigenständigen Regeln für die Formatierung von Datumsan-
gaben, Zahlen etc. In Java-Programmen werden diese Lokalen durch Instanzen der Klasse
java.util.Locale repräsentiert.

Sprach- und länderspezifische Aufgaben (wie z.B. die Formatierung von Zahlen, Datumsanga-
ben, Stringvergleiche etc., siehe nachfolgende Rezepte) können Sie in Java grundsätzlich auf
vier verschiedene Weisen erledigen:

� Sie scheren sich nicht um Lokale-spezifische Eigenheiten.
Wenn Sie beispielsweise Double-Werte mittels toString() in Strings umwandeln, werden
die Nachkommastellen immer durch einen Punkt dargestellt (wie in Großbritannien/USA
üblich).

� Sie erledigen die Aufgaben gemäß der Lokale, die auf dem aktuellen System eingestellt ist.
So erreichen Sie, dass sich Ihre Anwendung automatisch an die vom Benutzer eingestell-
ten landes- und kulturspezifischen Eigenheiten anpasst (beispielsweise Nachkommastellen
in Gleitkommazahlen auf einem US-Rechner mit Punkt und auf einem für deutsche Benut-
zer konfigurierten Rechner mit Komma abgetrennt).

Hierzu müssen Sie sich der jeweiligen Lokale-sensitiven Klasse/Methode bedienen, die
Java zur Lokale-typischen Erledigung der Aufgabe vorsieht. Für die Formatierung von
Zahlen ist dies beispielsweise NumberFormat.

import java.text.NumberFormat;
import java.util.Locale;
...

NumberFormat nf = NumberFormat.getNumberInstance();

1. Die Bemühungen, ein Programm so zu implementieren, dass es möglichst gut für den internationalen Markt vorbe-
reitet ist, bezeichnet man als Internationalisierung, die Anpassung eines Programms an die nationalen Eigenheiten
eines Landes als Lokalisierung. Beide verfolgen letzten Endes den gleichen Zweck und beruhen zum Teil auf iden-
tischen Techniken.

2. Da Java intern Unicode zur Darstellung von Zeichen verwendet, kann es (grundsätzlich) sämtliche bekannten Zei-
chen verarbeiten. Die Reader- und Writer-Klassen von Java berücksichtigen automatisch die auf dem jeweiligen
Rechner vorherrschende Zeichenkodierung und wandeln automatisch von dieser Kodierung in Unicode (Eingabe)
oder umgekehrt (Ausgabe) um. Lediglich wenn Sie Daten einlesen, die anders kodiert sind, oder Textdaten in einer
anderen Kodierung ausgeben wollen, müssen Sie auf InputStreamReader (bzw. OutputStreamReader) zurückgrei-
fen, und die betreffende Zeichenkodierung explizit angeben (siehe Rezept 102).
Achtung! Auch wenn Java alle Zeichen kodieren kann, heißt dies nicht umgekehrt, dass ein Java-Programm alle
beliebigen Zeichen auf jedem Rechner korrekt anzeigen kann. Dazu muss auch eine entsprechende Unterstützung,
beispielsweise passende Fonts, auf dem Rechner installiert sein.

>> Lokale einstellen590
In

te
rn

at
io

na
l

Obige Zeile erzeugt eine NumberFormat-Instanz, die Zahlen gemäß der Standardlokale for-
matiert. Die Standardlokale ist die Lokale, die von allen Lokale-sensitiven Klassen/Metho-
den verwendet wird, wenn keine andere Lokale explizit angegeben wird. Beim Start der
Anwendung setzt die Java Virtual Machine die aktuell auf dem System verwendete Lokale
als Standardlokale der Anwendung ein.

Zur Formatierung rufen Sie die Methode format() auf:

String formatted = nf.format(aNumber);

� Sie erledigen die Aufgaben gemäß einer bestimmten, von Ihnen vorgegebenen Lokale. So
erreichen Sie, dass Ihre Anwendung, unabhängig von dem System, auf dem sie ausgeführt
wird, landes- und kulturspezifische Aufgaben immer nach Maßgabe einer festen Lokale
erledigt.

Hierzu gehen Sie wie im vorhergehenden Punkt vor, nur dass Sie zu Beginn der Anwen-
dung Ihre eigene Lokale als Standardlokale einrichten:

import java.util.Locale;
...

Locale.setDefault(new Locale("de", "DE"));

� Sie erledigen einzelne Aufgaben gemäß einer bestimmten, von der Standardlokale abwei-
chenden Lokale.

Hierzu bedienen Sie sich ebenfalls der Lokale-sensitiven Klassen/Methoden, jedoch unter
expliziter Angabe der zu verwendenden Lokale. Für die Formatierung von Zahlen mit Num-
berFormat sähe dies beispielsweise wie folgt aus:

import java.text.NumberFormat;
import java.util.Locale;
...

NumberFormat nf
 = NumberFormat.getNumberInstance(new Locale("de", "DE"));

String formatted = nf.format(aNumber);

Locale-Objekte erzeugen
Wenn Sie eine Aufgabe gemäß einer bestimmten Lokale erledigen möchten (siehe vorange-
hender Abschnitt oder nachfolgende Rezepte), müssen Sie für diese Lokale ein passendes
Locale-Objekt erzeugen. Zur Identifizierung der Lokale übergeben Sie wahlweise den Sprach-
code, Sprach- und Ländercode oder, in seltenen Fällen, Sprach-, Länder- und Umgebungscode.

Locale eigene = new Locale("de"); // Lokale für deutsch
Locale eigene = new Locale("de","CH"); // Lokale für deutsch, Schweiz

Die Sprachcodes sind durch ISO-639 standardisiert, die Ländercodes durch ISO-3166. (Vor-
sicht! Die Standards verändern sich gelegentlich.)

Sprachcode Sprache Ländercode Land

ar Arabisch LB Libanon

da Dänisch DK Dänemark

Tabelle 53: Ausgesuchte Sprach- und Ländercodes

>> Internationalisierung 591

In
te

rn
at

io
na

lVollständige Listen finden Sie im Internet3. Sie können Sie sich aber auch selbst ausdrucken.
Die Locale-Methoden getISOLanguages() und getISOCountries() liefern die Codes nach ISO-
639 und ISO-3166 zurück.

de Deutsch DE Deutschland

CH Schweiz

AT Österreich

el Griechisch GR Griechenland

en Englisch GB Großbritannien

US USA

AU Australien

CA Kanada

eo Esperanto

es Spanisch ES Spanien

CO Kolumbien

fr Französisch FR Frankreich

BE Belgien

CA Kanada

it Italienisch IT Italien

ja Japanisch JP Japan

nl Niederländisch NL Niederlande

no Norwegisch NO Norwegen

sv Schwedisch SE Schweden

tr Türkisch TR Türkei

zh Chinesisch CN China

HK Hongkong

TW Taiwan

3. Für ISO-Sprachcodes beispielsweise http://www.loc.gov/standards/iso639-2/englangn.html. Für ISO-Ländercodes
siehe http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html.

A
ch

tu
n

g Die Erzeugung einer eigenen Lokale instanziert lediglich ein Locale-Objekt, das die
gewünschte Lokale im Quellcode repräsentiert. Die mit dieser Lokale verbundenen,
Lokale-spezifischen Formatierungen sind nur verfügbar, wenn die Lokale von der
installierten Java-Laufzeitumgebung (JRE) unterstützt wird (siehe Rezept 216).

Sprachcode Sprache Ländercode Land

Tabelle 53: Ausgesuchte Sprach- und Ländercodes (Forts.)

>> Standardlokale ändern592
In

te
rn

at
io

na
l

215 Standardlokale ändern
Die Lokale-sensitiven Klassen/Methoden der Java-API arbeiten – sofern Sie nicht explizit bei
der Instanzierung der Klassen (bzw. Aufruf der Methoden) eine andere Lokale vorgeben – mit
der Standardlokale der Anwendung. Die Standardlokale wird beim Start der Anwendung von
der Java Virtual Machine initialisiert. Die Java Virtual Machine prüft dazu die Gebietsschema-
einstellungen des Betriebssystems, ermittelt die zugehörige Lokale und setzt diese als Stan-
dardlokale ein.

Standardlokale abfragen
Falls Sie einmal direkten Zugriff auf die Standardlokale benötigen, beispielsweise um den
Anwender über sein Gebietsschema zu informieren, zum Vergleichen mit einer erwarteten
Wunsch-Lokale, zum Debuggen Ihrer Anwendung oder auch um sie explizit an eine Methode
zu übergeben (einige wenige Lokale-sensitiven Methoden arbeiten nicht automatisch mit der
Standardlokale, sondern übernehmen die Lokale stets als Argument), so liefert Ihnen get-
Default() die Standardlokale zurück:

import java.util.Locale;
...

Locale loc = Locale.getDefault();

Standardlokale einstellen
Wenn Sie möchten, dass Ihre Anwendung sprach- und länderspezifische Aufgaben stets
gemäß ein und derselben Lokale erledigt, unabhängig davon, welche Lokale auf dem Rechner
eingestellt ist, richten Sie die gewünschte Lokale zu Beginn des Programms als Standardlokale
ein:

import java.util.Locale;
...

Locale.setDefault(new Locale("de", "DE"));

Das Start-Programm zu diesem Rezept gibt den Namen der auf dem System installierten
Lokale aus und verwendet sie zur Formatierung des aktuellen Datums. Dann ändert das Pro-
gramm die Standardlokale (betrifft natürlich nur das Programm und nicht die landesspezifi-
sche Einstellung des Betriebssystems) und gibt das Datum erneut aus.

A
ch

tu
n

g Die ursprüngliche Standardlokale kann nach Einstellung einer anderen Standardlokale
nicht mehr ermittelt werden, es sei denn, Sie speichern sie zuvor ab:

Locale save = Locale.getDefault();
Locale.setDefault(new Locale("de", "DE"));

public class Start {

 public static void main(String args[]) {
 Date today = new Date();
 DateFormat df;

Listing 280: Standardlokale ändern

>> Internationalisierung 593

In
te

rn
at

io
na

l

216 Verfügbare Lokalen ermitteln
Die Erzeugung einer Lokale mit new Locale() instanziert lediglich ein Locale-Objekt, das die
gewünschte Lokale im Quellcode repräsentiert. Die mit dieser Lokale verbundenen, Lokale-
spezifischen Formatierungen sind nur dann verfügbar, wenn eine entsprechende Lokale auf
dem aktuellen Rechner (als Teil der Java-Laufzeitumgebung) installiert ist.

Die Liste der garantiert unterstützten Lokalen ist nicht sehr lang. Sun fordert, dass jeder Provi-
der von Java-Laufzeitumgebungen diese mit mindestens einer Lokale ausstattet: en_US (Eng-
lisch, USA). Die meisten JREs unterstützen natürlich weit mehr Lokalen, Suns JRE der Version
1.5.0 unterstützt gar über 100 Lokalen, von denen allerdings nur 21 ausführlich getestet sind
(siehe Tabelle 54).

 // Standardlokale = Lokale des Systems
 System.out.println("\n Aktuelle Lokale: " + Locale.getDefault());
 df = DateFormat.getDateInstance(DateFormat.LONG);
 System.out.println(" Aktuelles Datum: " + df.format(today));

 // Standardlokale = fr_Fr für Frankreich
 Locale.setDefault(new Locale("fr", "FR"));
 System.out.println("\n Aktuelle Lokale: " + Locale.getDefault());
 df = DateFormat.getDateInstance(DateFormat.LONG);
 System.out.println(" Aktuelles Datum: " + df.format(today));
 }
}

Abbildung 122: Datumsausgabe gemäß den Lokalen für Deutschland und Frankreich

ID Sprache Land

ar_SA Arabic Saudi Arabia

zh_CN Chinese (Simplified) China

zh_TW Chinese (Traditional) Taiwan

nl_NL Dutch Netherlands

en_AU English Australia

en_CA English Canada

Tabelle 54: Voll unterstützte und getestete Lokale der Sun-JRE

Listing 280: Standardlokale ändern (Forts.)

>> Verfügbare Lokalen ermitteln594
In

te
rn

at
io

na
l

Um sicherzustellen, dass eine Lokale, die Sie in einem Programm verwenden, auf den jeweili-
gen Systemen, auf denen das Programm ausgeführt wird, auch tatsächlich verfügbar ist, gibt
es zwei Möglichkeiten:

� Sie sorgen dafür, dass die Unterstützung für die Lokale zusammen mit Ihrem Programm
installiert wird.

� Sie überprüfen im Programmcode, ob die Lokale von der auf dem aktuellen System instal-
lierten JRE unterstützt wird.

Letzteres ist dank der statischen Locale-Methode getAvailableLocales() gar nicht so schwer:

Locale[] list = Locale.getAvailableLocales();

Die Methode liefert ein Array der auf dem System verfügbaren Lokalen zurück. Diese Liste
brauchen Sie nur noch mit der von Ihnen gesuchten Lokale abzugleichen.

en_GB English United Kingdom

en_US English United States

fr_CA French Canada

fr_FR French France

de_DE German Germany

iw_IL Hebrew Israel

hi_IN Hindi India

it_IT Italian Italy

ja_JP Japanese Japan

ko_KR Korean South Korea

pt_BR Portuguese Brazil

es_ES Spanish Spain

sv_SE Swedish Sweden

th_TH Thai (Western digits) Thailand

th_TH_TH Thai (Thai digits) Thailand

A
ch

tu
n

g Auf Windows-Systemen, die nur europäische Sprachen unterstützen, wird auch die
JRE als rein europäische Version installiert.

// Feststellen, ob Lokale unterstützt wird
Locale requested = new Locale(de, DE);
boolean found = false;
Locale[] locs = Locale.getAvailableLocales();

Listing 281: Test auf Verfügbarkeit einer Lokale

ID Sprache Land

Tabelle 54: Voll unterstützte und getestete Lokale der Sun-JRE (Forts.)

>> Internationalisierung 595

In
te

rn
at

io
na

l

Zwei Punkte sind noch zu beachten:

� Eine installierte Lokale muss nicht alle Aspekte der Lokalisierung unterstützen!

Es ist absolut zulässig, dass eine installierte Lokale lediglich die Formatierung von Zahlen
oder das Vergleichen von Strings unterstützt. Die Lokale-sensitiven Klassen wie Number-
Format definieren daher eigene getAvailableLocales()-Methoden, die nur die Lokalen auf-
listen, die den entsprechenden Aspekt unterstützen.

Es gibt aber auch eine gute Nachricht: Die von der Sun-JRE unterstützten Lokalen sind alle
vollständig implementiert.

� Was tun Sie, wenn die gewünschte Lokale nicht verfügbar ist?

Eine Möglichkeit ist, die nächstbeste Lokale auszuwählen. In diesem Fall können Sie unter
Umständen sogar auf die Überprüfung mit getAvailableLocales() verzichten, denn die
Lokale-sensitiven Klassen/Methoden gehen bereits nach diesem Verfahren vor. Sie ermit-
teln die »nächstbeste« Lokale durch schrittweisen Verzicht auf Umgebungs-, Länder- und
Sprachcode. Letztes Refugium ist immer die Standardlokale.

Angenommen, Sie fordern eine Lokale new Locale("de", "DE") an:

� Ist keine de-Lokale mit dem Ländercode »DE« verfügbar, verwenden die Klassen/
Methoden die Lokale de.

� Ist auch keine Lokale de verfügbar, verwenden die Klassen/Methoden die Standard-
lokale.

� Die Standardlokale entspricht entweder der Lokale des aktuellen Systems oder – falls
versucht wurde, die Standardlokale auf eine nicht unterstützte Lokale einzustellen –
en_US.

for(Locale l : locs) {
 if(l.equals(requested)) {
 found = true;
 break;
 }
}
if(found) {
 // Lokale verwenden
} else {
 // Andere Lokale verwenden, evt. Benutzer informieren
}

A
ch

tu
n

g Die Sprach-, Länder- und Umgebungscodes einer mit new Locale() erzeugten Lokale
werden nicht an die tatsächlich verfügbare Lokale-Unterstützung angepasst. Wenn Sie
also eine Lokale new Locale("fr","FR") erzeugen, die installierte JRE jedoch keine
Lokale für Französisch enthält und daher auf die Standardlokale ausweicht, wird die
erzeugte Lokale vom Programm immer noch mit dem Sprachcode »fr« und dem Län-
dercode »FR« geführt.

Listing 281: Test auf Verfügbarkeit einer Lokale (Forts.)

>> Verfügbare Lokalen ermitteln596
In

te
rn

at
io

na
l

Das Start-Programm zu diesem Rezept nimmt Sprach- und Ländercode der einzustellenden
Standardlokale über die Befehlszeile entgegen. Ist die gewünschte Lokale verfügbar, wird sie
eingerichtet, ansonsten wird eine Fehlermeldung auf die Konsole ausgegeben und die
ursprüngliche Standardlokale beibehalten. Zum Schluss zeigt das Programm einen Meldungs-
dialog mit einem gemäß der Standardlokale formatierten Datum an.

import java.util.Locale;
import java.util.Date;
import java.text.DateFormat;
import javax.swing.JOptionPane;

public class Start {

 public static void main(String args[]) {
 System.out.println();

 if (args.length != 2) {
 System.out.println(" Aufruf: Start <Sprachcode> <Laendercode>");
 System.exit(0);
 }

 Locale requested = new Locale(args[0], args[1]);

 // Feststellen, ob Lokale unterstützt wird
 boolean found = false;
 Locale[] locs = Locale.getAvailableLocales();
 for(Locale l : locs) {
 if(l.equals(requested)) {
 found = true;
 break;
 }
 }
 if(found) {
 System.out.println(" Standardlokale wird umgestellt");
 Locale.setDefault(requested);

 } else {
 System.out.println(" Gewuenschte Lokale ist nicht verfuegbar.");
 System.out.println(" Standardlokale wird nicht geaendert.");
 }

 // Datum nach Standardlokale formatieren
 Date today = new Date();
 DateFormat df = DateFormat.getDateInstance(DateFormat.LONG);
 String out = "Aktuelle Lokale: " + Locale.getDefault()
 + "\n\n" + df.format(today) + "\n\n";
 javax.swing.JOptionPane.showMessageDialog(null, out);

 }
}

Listing 282: »Abgesicherte« Umstellung der Standardlokale

>> Internationalisierung 597

In
te

rn
at

io
na

l

217 Lokale des Betriebssystems ändern
Die Lokalisierung von Java-Anwendungen beruht allein auf Mitteln der Sprache (namentlich
der Unterstützung von Unicode und den Lokale-Klassen aus der Java-Laufzeitumgebung), ist
also nicht auf Unterstützung seitens des Betriebssystems angewiesen.

Sie können daher in Java – immer vorausgesetzt, die JRE unterstützt die betreffenden Lokalen
– Anwendungen schreiben, die a) auf allen Betriebssystemen die gleiche Lokale verwenden,
die b) sich der Konfiguration des Betriebssystems angleichen oder die c) unabhängig vom
Betriebssystem vom Benutzer auf verschiedene Lokale umgestellt werden können.

Und Sie können Java-Anwendungen durch Umstellung der Standardlokale für Länder und
Regionen schreiben und testen, die von Ihrem Entwicklungsrechner nicht unterstützt werden.

Nichtsdestotrotz ist es natürlich ein Vorteil, wenn auch der Entwicklungsrechner für verschie-
dene Länder und Regionen konfiguriert werden kann:

� Sie können Anwendungen, die sich der landesspezifischen Konfiguration des Betriebssys-
tems anpassen sollen, bequem für verschiedene Lokale testen.

� Sie können die Tastatur auf verschiedene Sprachen umstellen.

Abbildung 123: »Abgesicherte« Umstellung der Standardlokale

T
ip

p In dem Verzeichnis zu diesem Rezept finden Sie zudem ein Programm PrintLocales, mit
dem Sie sich die Liste der verfügbaren Lokalen auf die Konsole ausgeben lassen können.

H
in

w
e

is Der einzige Kontakt zu den Lokale-Informationen des Betriebssystems ist das Setzen
der Standardlokale beim Start einer Anwendung. Aber auch hier gilt: Die Java Virtual
Machine fragt die landesspezifische Konfiguration des Betriebssystems lediglich ab
und wählt dann als Standardlokale die Lokale aus der JRE aus, die mit der Betriebssys-
temkonfiguration am besten übereinstimmt.

>> Lokale des Betriebssystems ändern598
In

te
rn

at
io

na
l

Wie Sie die Lokalen für Betriebssystem und Tastatur umstellen, hängt von dem jeweiligen
Betriebssystem ab.

Unter Windows XP/Vista wählen Sie in der Systemsteuerung die Option für Region- und
Spracheinstellungen.

Im Dialogfenster REGIONS- UND SPRACHOPTIONEN können Sie im oberen Listenfeld auf der Regis-
terseite REGIONALE EINSTELLUNGEN (FORMATE unter Vista) die zu verwendende Lokale auswählen.

Unter Linux hängt der Weg zum Erfolg vom installierten Window Manager ab. Unter KDE 3.2
rufen Sie beispielsweise das Kontrollzentrum auf und gehen zu den Regionaleinstellungen.
Auf der Seite LAND/REGION & SPRACHE können Sie dann die gewünschten Einstellungen
vornehmen.

Abbildung 124: Einstellung eines Gebietsschemas (Lokale) unter Windows XP

H
in

w
e

is Wenn Sie im gleichen Dialogfenster auf der Registerseite SPRACHEN die Schaltfläche
DETAILS anklicken, gelangen Sie zum Textdienste-Dialog, wo Sie die Unterstützung für
verschiedene Tastaturen installieren und auswählen können. Damit Sie bequem zwi-
schen verschiedenen Tastaturen wechseln können, sollten Sie die EINGABEGEBIETS-
SCHEMA-LEISTE einblenden lassen bzw. die Tastaturen mit TASTATURKÜRZEL verbinden.

>> Internationalisierung 599

In
te

rn
at

io
na

l

218 Strings vergleichen
Die Methode compareTo() vergleicht Strings anhand der Unicode-Werte der einzelnen Zeichen.
Aus Sicht von compareTo() sind daher Kleinbuchstaben »größer« als Großbuchstaben und
nationale Sonderzeichen (ä, ö, ß. é, è ...) ausnahmslos »größer« als die Buchstaben des lateini-
schen Alphabets. »Stäbe« käme im compareTo()-Lexikon also noch nach »Stube«, wo es wohl
kein Mensch beim Nachschlagen finden würde. Wie aber kann man Strings alphabetisch kor-
rekt vergleichen?

Für Stringvergleiche unter Berücksichtigung der Besonderheiten eines nationalen Alphabets
gibt es die Klasse Collator.

Abbildung 125: Regionaleinstellungen unter Linux/KDE 3.2

String str1 = "Stäbe";
String str2 = "Stube";

Collator coll = Collator.getInstance(new Locale("de"));

if (coll.compare(str1, str2) < 0)
 // str1 < str2
else
 // str1 >= str2

Listing 283: Strings nach deutschem Alphabet vergleichen

>> Strings sortieren600
In

te
rn

at
io

na
l

1. Lassen Sie sich von Collator.getInstance() ein Collator-Objekt zurückliefern, welches
gemäß dem gewünschten Alphabet (sprich Lokale) vergleicht.

� Wenn Sie wissen, von welcher Sprache die zu vergleichenden Strings sind, erzeugen Sie
ein Locale-Objekt für diese Sprache und übergeben Sie es getInstance(), beispielsweise:

Collator coll = Collator.getInstance(new Locale("de"));

� Wenn Sie die Sprache nicht kennen, aber davon ausgehen, dass es die Sprache des
Benutzers ist, übergeben Sie keine Lokale. Die Methode verwendet dann die Standard-
lokale, die per Voreinstellung dem Gebietsschema des Betriebssystems entspricht.

Collator coll = Collator.getInstance();

2. Vergleichen Sie die Strings mit Hilfe der Collator-Methode compare().

Sie übergeben die beiden zu vergleichenden Strings und erhalten als Ergebnis -1, 0 oder 1
zurück, je nachdem, ob der erste String kleiner, gleich oder größer als der zweite String ist.

219 Strings sortieren
Am einfachsten sortieren Sie Strings mit Hilfe eines Arrays oder einer Collection-Instanz.

Einige Collections speichern die eingefügten Elemente direkt in einer sortierten Reihenfolge
(TreeMap, TreeSet), die restlichen Collections können mit Collections.sort(), Arrays mit
Arrays.sort() sortiert werden. Wenn die eingefügten Elemente das Interface Comparable imple-
mentieren, können sie nach der Maßgabe ihrer compareTo()-Methode verglichen und sortiert
werden. Alternativ kann ein Comparator-Objekt zum Sortieren der Elemente spezifiziert werden.

Strings implementieren das Comparable-Interface, doch ihre compareTo()-Methode vergleicht
allein anhand der Unicode-Werte ihrer Zeichen, ohne Berücksichtigung der Buchstabenfolge
in nationalen Alphabeten.

Um Strings alphabetisch korrekt zu sortieren, müssen Sie also auf den Einsatz eines Compara-
tor-Objekts ausweichen. Glücklicherweise ist dies viel einfacher als man vielleicht annehmen
würde, denn die Klasse Collator, die Strings gemäß einer Lokale vergleicht (siehe vorangehen-
des Rezept), implementiert dankenswerter Weise bereits für uns das Interface Comparator.

Arrays von Strings sortieren
Arrays können Sie mit Hilfe der statischen sort()-Methode der Klasse Arrays sortieren. Als
Parameter übergeben Sie das zu sortierende Array und – falls die Array-Elemente nicht das
Comparable-Interface implementieren oder Sie wie in unserem Beispiel eine andere Sortierrei-
henfolge vorgeben möchten – ein Comparator-Objekt:

import java.util.Arrays;
import java.text.Collator;
...
String[] wordsArray = { "Stäbe", "Stube", "Stange", "Stoß", "Stottern" };

Arrays.sort(wordsArray, Collator.getInstance());

A
ch

tu
n

g Die Klasse Collator ist an sich abstrakt. Ihre getInstance()-Methode liefert ein Objekt
einer abgeleiteten Klasse zurück. Beachten Sie außerdem, dass der Rückgabewert von
Collator.compare() immer -1, 0 oder 1 lautet, während String.compareTo() die Diffe-
renz zwischen den Unicode-Werten der ersten abweichenden Zeichen (bzw. der String-
längen) zurückliefert.

>> Internationalisierung 601

In
te

rn
at

io
na

l

Collections von Strings sortieren
Arrays können Sie mit Hilfe der statischen sort()-Methode der Klasse Collections sortieren.
Als Parameter übergeben Sie die zu sortierende Collection und – falls die Collection-Elemente
nicht das Comparable-Interface implementieren oder Sie wie in unserem Beispiel eine andere
Sortierreihenfolge vorgeben möchten – ein Comparator-Objekt:

import java.util.LinkedList;
import java.text.Collator;
...
LinkedList<String> wordsList = new LinkedList<String>();
wordsList.add("Stäbe");
wordsList.add("Stube");
wordsList.add("Stange");
wordsList.add("Stoß");
wordsList.add("Stottern");

Collections.sort(wordsList, Collator.getInstance());

Sortierte Collections mit Strings als Elementen
Die Collections TreeSet und TreeMap ordnen ihre Elemente bereits beim Einfügen in aufstei-
gender Reihenfolge an. Falls die Elemente nicht das Comparable-Interface implementieren oder
Sie eine andere Sortierreihenfolge vorgeben möchten, müssen Sie das Comparator-Objekt daher
bereits dem Konstruktor übergeben.

import java.util.TreeSet;
import java.text.Collator;
...
TreeSet<String> wordsTreeSet = new TreeSet<String>(Collator.getInstance());
wordsTreeSet.add("Stäbe");
wordsTreeSet.add("Stube");
wordsTreeSet.add("Stange");
wordsTreeSet.add("Stoß");
wordsTreeSet.add("Stottern");

220 Datumsangaben parsen und formatieren
Datums- und Zeitangaben werden in Java durch Objekte der Klasse Date oder Calendar
(genauer gesagt GregorianCalendar, siehe Rezept 39) repräsentiert und mit Hilfe von DateFor-
mat bzw. SimpeDateFormat in formatierte Datum-/Zeitstrings umgewandelt, siehe Rezept 41.

Abbildung 126: Sortierte String-Sammlung

>> Datumsangaben parsen und formatieren602
In

te
rn

at
io

na
l

Da die Klasse DateFormat und ihre abgeleiteten Klassen (SimpleDateFormat) Lokale-sensitiv
sind, müssen Sie zur Lokalisierung Ihrer Datums- und Zeitangaben grundsätzlich nichts weiter
tun, als die gewünschte Lokale mitzugeben.

� Den Methoden

getDateInstance()
getTimeInstance()
getDateTimeInstance()

übergeben Sie die Lokale als zweites (bzw. drittes) Argument hinter dem Formatierungsstil.
Der Methode getInstance() können Sie keine Lokale übergeben, sie arbeitet immer mit der
Standardlokale.

� Wenn Sie SimpleDateFormat explizit instanzieren, übergeben Sie die Lokale als zweites
Argument hinter dem Formatstring.

� Wenn Sie keine Lokale übergeben, wird jeweils die Standardlokale herangezogen.

Die Lokalisierung betrifft den allgemeinen Aufbau der Datums- und Zeitangaben sowie natür-
lich Textteile wie Monats- oder Wochentagsnamen, soweit sie eingebaut werden (vgl. Format-
stile LONG und FULL).

Einlesen von Datums- und Zeitangaben
Das Einlesen von Datums- und Zeitangaben wurde bereits in Rezept 43 behandelt, so dass ich
hier nur kurz die Kernpunkte erwähne:

1. Sie erzeugen für das gewünschte Eingabeformat eine DateFormat-Instanz,

2. lesen die Datums-/Zeitangabe als String ein und

3. wandeln sie mit Hilfe der parse()-Methode der DateFormat-Instanz in ein Date-Objekt um.

import java.util.Locale;
import java.util.Calendar;
import java.text.DateFormat;
import java.text.SimpleDateFormat;
...
Calendar today = Calendar.getInstance();
String dateTimeStr;

// Formatierung mit vordefinierter DateFormat-Instanz
DateFormat df = DateFormat.getDateTimeInstance(DateFormat.LONG,
 DateFormat.FULL,
 new Locale("en", "US"));
dateTimeStr = df.format(today.getTime());

// Formatierung mit eigenem SimpleDateFormat-Objekt
SimpleDateFormat sdf = new SimpleDateFormat("dd. MMMM yyyy', 'H:mm",
 new Locale("en", "US"));
dateTimeStr = sdf.format(today.getTime());

Listing 284: Datum und Zeit gemäß vorgegebener Lokale formatieren

>> Internationalisierung 603

In
te

rn
at

io
na

l

Das Start-Programm zu diesem Rezept nimmt über die Befehlszeile ein Datum entgegen (Format
TT.MM.JJJJ) und gibt es nach verschiedenen Lokalen formatiert aus (siehe Abbildung 127).

import java.util.Calendar;
import java.util.Locale;
import java.text.DateFormat;
import java.text.ParseException;
...
Calendar date = Calendar.getInstance();

DateFormat parser = DateFormat.getDateInstance(DateFormat.MEDIUM,
 new Locale("de", "DE"));
try {
 // Datum aus Befehlszeile einlesen
 date.setTime(parser.parse(args[0]));
} catch(ParseException e) {
 System.err.println("\n Kein gueltiges Datum (TT.MM.JJJJ)");
 System.err.println("\n Programm arbeitet mit aktuellem Datum.");
}

Listing 285: Datum und Zeit gemäß vorgegebener Lokale einlesen

Abbildung 127: Datum- und Zeitangaben; die erste Zeile wurde jeweils mit einer
getDateTimeInstance(DateFormat.LONG, DateFormat.FULL, Lokale)-Instanz,
die zweite Zeile mit einer SimpleDateFormat(dd. MMMM yyyy', 'H:mm",
Lokale)-Instanz formatiert.

>> Zahlen parsen und formatieren604
In

te
rn

at
io

na
l

221 Zahlen parsen und formatieren
Wenn Sie eine Zahl über die toString()-Methode der zugehörigen Wrapper-Klasse in einen
String umwandeln lassen, wird dieser gemäß englischen Konventionen formatiert, also mit
einem Komma als Tausendertrennzeichen und einem Punkt als Dezimalzeichen.

Wenn Sie eine Zahl gemäß einer bestimmten Lokale formatierten wollen, müssen Sie den Zah-
lenwert mit Hilfe der Klasse NumberFormat bzw. ihrer abgeleiteten Klasse DecimalFormat
umwandeln (siehe auch Rezept 8 zur formatierten Umwandlung von Zahlen in Strings).

� Den NumberFormat-Methoden

getInstance()
getNumberInstance()
getIntegerInstance()
getPercentInstance()

übergeben Sie als Argument die Lokale, nach der der Zahlenwert formatiert werden soll.

� Wenn Sie DecimalFormat explizit instanzieren, übergeben Sie dem Konstruktor als zweites
Argument eine lokalisierte DecimalFormatSymbols-Instanz.

� Wenn Sie keine Lokale spezifizieren, wird jeweils die Standardlokale herangezogen.

Einlesen von Zahlen
Um Zahlen in einem landesspezifischen Format einzulesen, gehen Sie wie folgt vor:

1. Sie erzeugen für das gewünschte Zahlenformat eine NumberFormat-Instanz,

2. lesen die Zahl als String ein und

3. wandeln sie mit Hilfe der parse()-Methode der NumberFormat-Instanz in ein Number-Objekt
um.

import java.util.Locale;
import java.text.NumberFormat;
import java.text.DecimalFormat;
import java.text.DecimalFormatSymbols;
...
double number = 3344.588;
String numberStr;

// Formatierung mit vordefinierter NumberFormat-Instanz
NumberFormat nf = NumberFormat.getNumberInstance(new Locale("de", "DE"));
numberStr = nf.format(number);

// Formatierung mit eigenem DecimalFormat-Objekt
DecimalFormat df = new DecimalFormat(
 "#,##0.00",
 new DecimalFormatSymbols(new Locale("en", "US")));
numberStr = df.format(number);

Listing 286: Zahl gemäß vorgegebener Lokale formatieren

>> Internationalisierung 605

In
te

rn
at

io
na

l

Das Start-Programm zu diesem Rezept nimmt über die Befehlszeile eine Zahl entgegen (deut-
sches Format) und gibt sie nach verschiedenen Lokalen formatiert aus (siehe Abbildung 128).

222 Währungsangaben parsen und formatieren
Für die lokalisierte Formatierung von Währungsangaben gilt grundsätzlich das Gleiche wie
für die lokalisierte Formatierung von Zahlen, nur dass Sie das Formatierer-Objekt

� über die Methode NumberFormat.getCurrencyInstance() anfordern oder

� im Pattern-Argument für den DecimalFormat-Konstruktur das Stellvertreterzeichen für das
Währungssymbol (\u00A4) einbauen.

import java.util.Locale;
import java.text.NumberFormat;
import java.text.ParseException;
...
double number;

// Zahl einlesen
NumberFormat parser = NumberFormat.getNumberInstance(new Locale("de", "DE"));
try {
 // Zahl aus Befehlszeile einlesen
 number = (parser.parse(args[0])).doubleValue();
} catch(ParseException e) {
 System.err.println("\n Keine korrekte Zahlenangabe)");
}

Listing 287: Zahl gemäß vorgegebener Lokale einlesen

Abbildung 128: Zahlenformatierungen; die erste Zeile wurde jeweils mit einer
getNumberInstance()-Instanz, die zweite Zeile mit einer DecimalFormat-
Instanz formatiert.

>> Währungsangaben parsen und formatieren606
In

te
rn

at
io

na
l

Einlesen von Währungsangaben
Hierfür gilt grundsätzlich das Gleiche wie für das Einlesen von Zahlen, siehe Rezept 221.

import java.util.Locale;
import java.text.NumberFormat;
import java.text.DecimalFormat;
import java.text.DecimalFormatSymbols;
...
double number = 3344.588;
String currencyStr;

// Formatierung mit vordefinierter NumberFormat-Instanz
NumberFormat nf = NumberFormat.getCurrencyInstance(new Locale("de", "DE"));
currencyStr = nf.format(number);

// Formatierung mit eigenem DecimalFormat-Objekt
DecimalFormat df = new DecimalFormat(
 "#,##0.00 \u00A4 ",
 new DecimalFormatSymbols(new Locale("en", "US")));
currencyStr = df.format(number);

Listing 288: Preisangabe gemäß vorgegebener Lokale formatieren

Abbildung 129: Formatierung von Währungsangaben; die erste Zeile wurde jeweils mit einer
getCurrencyInstance()-Instanz, die zweite Zeile mit einer DecimalFormat-
Instanz formatiert.

>> Internationalisierung 607

In
te

rn
at

io
na

l

223 Ressourcendateien anlegen und verwenden
Ressourcendateien sind ein probates Mittel, um programminterne Daten wie Fehlermeldungen,
Texte von GUI-Elementen oder die Namen von Bilddateien (für Schaltersymbole, Animatio-
nen, Hintergründe, Füllmuster etc.) als externe Ressourcen auszulagern.

Format
Ressourcendateien sind letztlich Properties-Dateien und folgen daher dem gleichen Format:

� Die Ressourcen werden als Schlüssel/Wert-Paare zeilenweise in der Datei abgespeichert.
Über den Schlüssel kann das Programm später den Wert abfragen.

� Schlüssel und Wert werden durch =, : oder durch Leerzeichen (bzw. jedes Whitespace-Zei-
chen außer dem Zeilenumbruchzeichen) getrennt.

� Schlüssel müssen eindeutig sein und enden mit dem ersten Leerzeichen, dem kein Escape-
Zeichen vorangestellt ist.

� Der Wert beginnt mit dem ersten Nicht-Whitespace-Zeichen hinter dem Trennzeichen und
reicht bis zum Ende der Zeile.

� Um einen Wert über mehrere Zeilen zu schreiben, beenden Sie die Zeilen mit \. Führende
Leerzeichen in der neuen Zeile werden (glücklicherweise) ignoriert.

� Schlüssel und Wert dürfen Latin-1-Zeichen und Escape-Sequenzen (mit Ausnahme des
Zeilenumbruchzeichens \n) enthalten. Leerzeichen sind nur als Escape-Sequenzen (\)
erlaubt. Nicht-Latin-1-Zeichen können als Escape-Sequenzen (beispielsweise \u1234) in
Schlüssel oder Werte eingebaut werden.

� Kommentare beginnen mit # oder !.

� Ressourcendateien haben immer die Extension .properties.

Hier die Ressourcendatei für das Programm zu diesem Rezept:

Program.properties

Hauptfenster
MW_TITLE = Ressourcen-Demo
MW_SYMBOL = resources/Germany.png

Schaltflaeche
BTN_TITLE = Klick mich!

Dialog
MDLG_TITLE = Nachricht
MDLG_MESSAGE = Gut geklickt!

Listing 289: Program.properties – Beispiel für eine Ressourcendatei

>> Ressourcendateien anlegen und verwenden608
In

te
rn

at
io

na
l

Ressourcen laden
Um Ressourcen aus einer Ressourcendatei zu laden, gehen Sie wie folgt vor:

1. Erzeugen Sie für die Ressourcendatei eine ResourceBundle-Instanz.

Da Sie die ResourceBundle-Instanz vermutlich durch den gesamten Programmcode hin-
durch verwenden werden, empfiehlt es sich, die Instanz in der main()-Methode zu erzeu-
gen und in einem statischen Feld der Klasse zu speichern. So ist sichergestellt, dass Sie
später jederzeit über den Namen der Klasse auf die Instanz und damit auf die Ressourcen
zugreifen können.

Zur Erzeugung der Instanz rufen Sie die getBundle()-Methode von ResourceBundle auf und
übergeben ihr den Pfad vom aktuellen Verzeichnis (von dem aus das Programm und die
JVM gestartet werden) zur Ressourcendatei. Der Name der Ressourcendatei wird dabei
ohne Extension angegeben.

Der folgende Code weist den Weg zu einer Ressourcendatei namens Program.properties in
einem Unterverzeichnis resources.

public class Start extends JFrame {
 public static ResourceBundle resources;
 ...

 public static void main(String args[]) {

 // ResourceBundle aus Ressourcendatei laden
 try {
 resources =
 ResourceBundle.getBundle("resources/Program");

 } catch (MissingResourceException e) {
 System.err.println("Missing resource file");
 System.exit(1);
 }

 // Hauptfenster erzeugen und anzeigen
 ...
 }
}

E
x

k
u

rs Pfadangaben in Ressourcendateien
Ressourcen wie Bilder, Sound, Class-Dateien können Sie in Ressourcendateien nur
indirekt, als Pfade zu den eigentlichen Ressourcen, angeben. Dabei ist zu beachten,
dass das Programm als »Resource« aus der Ressourcendatei zuerst nur den Pfad lädt
und über diesen dann auf die eigentliche Ressource zugreift. Der Pfad ist daher so
anzugeben, wie man ihn im Programmcode spezifizieren würde. (Für relative Pfadan-
gaben bedeutet dies üblicherweise, dass sie sich auf das aktuelle Verzeichnis beziehen,
aus dem das Programm und die JVM gestartet wurde.)

>> Internationalisierung 609

In
te

rn
at

io
na

l

2. Laden Sie bei Bedarf die gewünschte Ressource aus der Ressourcendatei.

Zu diesem Zweck rufen Sie die getString()-Methode der in Schritt 1 erzeugten Resource-
Bundle-Instanz auf und übergeben ihr den Schlüssel für die Ressource. Wenn Sie die
Instanz, wie in Schritt 1 vorgeschlagen, in einem statischen Feld der Programmklasse
gespeichert haben, sieht dies wie folgt aus:

String s = Start.resources.getString("MW_TITLE");

Start ist hierbei der Name der Programmklasse, resources der Name des statischen Felds
für die ResourceBundle-Instanz und MW_TITLE der Schlüssel der gewünschten Ressource. Der
Wert der Ressource steht nach Ausführung der Methode in s.

Handelt es sich bei der MW_TITLE-Ressource um einen String, was angesichts des Schlüsselna-
mens zu erwarten ist, sind Sie damit bereits fertig. Handelt es sich bei der Ressource um eine
Pfadangabe, laden Sie in einem weiteren Schritt die eigentliche Ressource aus der Datei, auf
die die Pfadangabe weist. Das Icon für einen Schalter könnten Sie beispielsweise wie folgt
laden:

String path = Start.resources.getString("MW_SYMBOL");
ImageIcon icon = new ImageIcon(path);
JButton btn = new JButton("Klick mich", icon);

oder kürzer

JButton btn = new JButton("Klick mich",
 new ImageIcon(Start.resources.getString("MW_SYMBOL")));

Das Start-Programm zu diesem Rezept lädt die Ressourcen aus der weiter oben abgedruckten
Ressourcendatei Program.properties.

H
in

w
e

is Wenn Sie Ihre Klassen in Paketen definieren, müssen Sie den Paketpfad in dem Pfad
zur Ressourcendatei mit angeben. Angenommen, Sie haben die Klasse Program mit der
main()-Methode im Paket ihreFirma.paketname definiert. Dann rufen Sie die Class-Datei
aus dem ihreFirma übergeordneten Verzeichnis mit

java ihreFirma.paketname.Program

auf. Befindet sich die Ressourcendatei in einem, dem Verzeichnis mit den Class-Dateien
untergeordneten Verzeichnis resources, geben Sie als Pfad zur Ressourcendatei an:
ihreFirma/paketname/resources/Program.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.util.*;
import java.io.*;
import javax.imageio.ImageIO;

public class Start extends JFrame {
 public static ResourceBundle resources;

 public Start() {

 // Fenstertitel laden
 setTitle(Start.resources.getString("MW_TITLE"));

Listing 290: Start.java

>> Ressourcendateien anlegen und verwenden610
In

te
rn

at
io

na
l

 // Anwendungssymbol laden
 String symbolFile = Start.resources.getString("MW_SYMBOL");
 setIconImage(Toolkit.getDefaultToolkit().getImage(symbolFile));

 // Schaltertitel laden
 JButton btn = new JButton(Start.resources.getString("BTN_TITLE"));
 btn.setFont(new Font("Dialog", Font.PLAIN, 34));
 btn.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {

 // Titel und Text der Meldung laden
 JOptionPane.showMessageDialog(null,
 Start.resources.getString("MDLG_MESSAGE"),
 Start.resources.getString("MDLG_TITLE"),
 JOptionPane.INFORMATION_MESSAGE);
 }
 });
 getContentPane().add(btn, BorderLayout.CENTER);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 public static void main(String args[]) {
 // s.o.
}

H
in

w
e

is Kann die ResourceBundle-Methode getString() die gewünschte Ressource nicht finden,
löst sie eine MissingResourceException aus.

Abbildung 130: GUI-Anwendung, deren Strings und Anwendungssymbol aus einer
Ressourcendatei geladen wurden

Listing 290: Start.java (Forts.)

>> Internationalisierung 611

In
te

rn
at

io
na

l

224 Ressourcendateien im XML-Format
Um es gleich vorwegzunehmen: Nein, es gibt derzeit noch keine direkte Unterstützung für
Ressourcendateien im XML-Format. Zumindest nicht in dem Sinne, dass Sie nur eine XML-
Ressourcendateien aufsetzen und deren Namen an ResourceBundle.getBundle() übergeben
müssten.

Immerhin, seit Java 6 können Sie den vormals starres Mechanismus zum Laden der Ressour-
cen erweitern und so konfigurieren, dass auch XML-Ressourcendateien (oder beliebige andere
Formate) verwendet werden können. Sie müssen dazu allerdings eigene ResourceBundle- und
ResourceBundle.Control-Klassen schreiben. Doch lassen Sie sich nicht gleich abschrecken. Der
Aufwand hält sich – zumindest soweit es die Unterstützung für XML-Dateien betrifft – in
Grenzen, denn für die schwerste Arbeit, das Parsen der XML-Daten in Properties (Schlüssel/
Wert-Paare), können Sie die loadFromXML()-Methode der Klasse Properties verwenden – sofern
Sie sich beim Aufbau der XML-Datei an das korrekte Format (DTD) halten.

Format
Um die Schlüssel/Wert-Paare aus der XML-Ressourcendatei bequem mit Hilfe der load-
FromXML()-Methode der Klasse Properties einlesen und in einer Properties-Instanz speichern
zu können, müssen Sie Ihre Ressourcendatei so aufbauen, dass Sie unter dem Root-Element
properties für jedes Schlüssel/Wert-Paar ein eigenes entry-Element mit dem Attribut key (für
den Schlüssel) und dem gewünschten Wert als Inhalt anlegen:

Hier die Ressourcendatei für das Programm zu diesem Rezept:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">

<properties>
 <entry key="MW_TITLE">Ressourcen-Demo</entry>

 <entry key="MW_SYMBOL">resources/Germany.png</entry>

 <entry key="BTN_TITLE">Klick mich!</entry>

 <entry key="MDLG_TITLE">Nachricht</entry>

 <entry key="MDLG_MESSAGE">Gut geklickt!</entry>
</properties>

Listing 291: Program.xml – Beispiel für eine XML-Ressourcendatei

A
ch

tu
n

g Achten Sie beim Speichern Ihrer XML-Datei darauf, dass der Text auch wirklich in der
Kodierung gespeichert wird, die Sie in der XML-Deklaration angezeigt haben (im obi-
gen Fall also UTF-8). Falls Sie z.B. mit dem Notepad-Editor von Windows arbeiten, kön-
nen Sie die Kodierung im SPEICHERN UNTER-Dialog auswählen. Und denken Sie beim
Aufsetzen der Schlüssel/Wert-Paare daran, dass der Inhalt der XML-Elemente buch-
stabengetreu, inklusive der enthaltenen Zeilenumbrüche und anderer Whitespace-Zei-
chen, wiedergegeben wird.

>> Ressourcendateien im XML-Format612
In

te
rn

at
io

na
l

Ressourcen laden
Das Laden der XML-Ressourcendatei erfolgt in drei Schritten:

1. In der Anwendung laden Sie die Ressourcendatei wie gehabt durch Aufruf von Resource-
Bundle.getBundle(). Nur dass Sie neben dem Namen der Ressourcendatei auch noch eine
Instanz Ihrer (selbst geschriebenen) XMLResourceBundleControl-Klasse übergeben.

...
// ResourceBundle aus XML-Ressourcendatei laden
try {
 resources = ResourceBundle.getBundle("resources/Program",

 new XMLResourceBundleControl());
} catch (MissingResourceException e) {
 System.err.println("Missing resource file, Program aborted");
 System.exit(1);
}
...

Listing 292: Aus Program.java – XML-Ressourcendatei laden

2. Sie leiten Ihre Klasse XMLResourceBundleControl von der Basisklasse java.util.Resource-
Bundle.Control ab und überschreiben die Methoden getFormats() und newBundle().

Aufgabe dieser Klasse und speziell ihrer newBundle()-Methode ist es:

� Die Ressourcendatei zu lokalisieren.

Diese Aufgabe ist keineswegs so trivial wie sie klingt, denn der Lademechanismus für Res-
sourcen sieht vor, dass nie nur nach einer Datei, sondern nach einer ganzen Familie von
Ressourcendateien mit unterschiedlicher Lokale-Spezifität gesucht wird (siehe Rezept 225).

Das Grundprinzip sieht so aus, dass die Methode ResourceBundle.getBundle() die new-
Bundle()-Methode mehrfach aufruft und ihr dabei verschiedene Kombinationen von Argu-
menten für den Ressourcendateinamen (wie an getBundle() übergeben), die Lokale (siehe
unten) und das Format (wie von der getFormats()-Methode Ihrer ResourceBundle.Control-
Klasse zurückgeliefert) übergibt. Ihre getBundle()-Methode muss diese Parameter zu einem
vollständigen Dateinamen zusammensetzen und diese zu öffnen versuchen.

Was relativ kompliziert klingt, ist in der Praxis allerdings recht schnell erledigt, da Sie
letzten Endes nur die Parameter der Methode an geerbte Methoden der Basisklasse überge-
ben müssen.

� Einen Stream zur Ressourcendatei zu erstellen.

� Ein ResourceBundle-Objekt zu erzeugen, das über den Stream die Ressourcendaten einliest.

� Das ResourceBundle-Objekt zurückzuliefern.

import java.io.*;
import java.util.*;
import java.net.*;

public class XMLResourceBundleControl extends ResourceBundle.Control {

Listing 293: XMLResourceBundleControl.java – Klassen zum Laden von XML-Ressourcen-
dateien

>> Internationalisierung 613

In
te

rn
at

io
na

l

Geht alles gut, liefert newBundle() ein ResourceBundle-Objekt für Ihre XML-Ressourcendatei an
getBundle() zurück und getBundle() reicht es weiter an Ihre Anwendung.

 public List<String> getFormats(String name) {
 return Arrays.asList("xml");
 }

 public ResourceBundle newBundle(String name, Locale loc,
 String format, ClassLoader loader,
 boolean reload)
 throws IOException,
 IllegalAccessException,
 InstantiationException {
 if ((name == null) || (loc == null) || (format == null) ||
 (loader == null))
 throw new NullPointerException();

 ResourceBundle bundle = null;

 if (format.equals("xml")) {

// Punkt 1: Ressourcendatei lokalisieren
 String bundleName = toBundleName(name, loc);
 String resName = toResourceName(bundleName, format);
 URL url = loader.getResource(resName);

// Punkt 2: Stream zur Ressourcendatei herstellen
 if (url != null) {
 URLConnection conn = url.openConnection();
 if (conn != null) {
 if (reload) {
 conn.setUseCaches(false);
 }

 InputStream stream = conn.getInputStream();
 if (stream != null) {

 // Punkt 3: ResourceBundle-Objekt erzeugen
 bundle = new XMLResourceBundle(stream);
 stream.close();
 }
 }
 }
 }

// Punkt 4: ResourceBundle-Objekt zurückliefern
 return bundle;
 }
...

Listing 293: XMLResourceBundleControl.java – Klassen zum Laden von XML-Ressourcen-
dateien (Forts.)

>> Ressourcendateien für verschiedene Lokale erzeugen614
In

te
rn

at
io

na
l

Was allerdings noch fehlt, ist der Klassentyp für das zurückgelieferte ResourceBundle-Objekt.
Im obigen Code (Punkt 3) wurde der Name für diese Klasse schon festgelegt: XMLResource-
Bundle. Definiert ist die Klasse aber noch nicht.

3. Sie müssen von ResourceBundle eine eigene Klasse ableiten, die einen Stream auf die Res-
sourcendatei übernimmt, diesen öffnet, die XML-Daten parst und als Schlüssel/Wert-Paare
in einem internen Properties-Objekt speichert. Hierbei hilft uns die Properties-Methode
loadFromXML():

225 Ressourcendateien für verschiedene Lokale erzeugen
Benutzerschnittstellen, die mit Hilfe von Ressourcendateien erstellt wurden (siehe vorange-
hendes Rezept), können in Java äußerst komfortabel lokalisiert werden. Sie müssen lediglich
für jede Lokale, die Sie unterstützen möchten, eine eigene lokalisierte Kopie der Ressourcen-
datei erzeugen.

Lokalisierte Kopien erstellen Sie, indem Sie

1. alle Strings lokalisieren.

Übersetzen Sie die Werte aller Schlüssel/Wert-Paare, die keine Pfadangaben sind. (Oder
lassen Sie die Werte übersetzen.)

2. kulturspezifische Symbole gegebenenfalls austauschen.

GUI-Anwendungen arbeiten viel mit Symbolen (für Symbolleisten, Menübefehle, als Icons
in Meldungsdialogen etc.). Doch nicht jedes Symbol ist in jedem Kulturkreis verständlich.
Gegebenenfalls müssen Sie das eine oder andere Symbol für eine bestimmte Lokale aus-

...
 // wird als innere Klasse von XMLResourceBundleControl implementiert
 private static class XMLResourceBundle extends ResourceBundle {
 private Properties props;

 XMLResourceBundle(InputStream stream) throws IOException {
 props = new Properties();
 try {
 props.loadFromXML(stream);
 } catch(Exception e) {
 System.err.println(e.getMessage());
 }
 }

 protected Object handleGetObject(String schluessel) {
 return props.getProperty(schluessel);
 }

 public Enumeration<String> getKeys() {
 Set<String> key = props.stringPropertyNames();
 return Collections.enumeration(key);
 }
 }
}

Listing 294: XMLResourceBundleControl.java – Klassen zum Laden von XML-Ressourcendateien

>> Internationalisierung 615

In
te

rn
at

io
na

l

tauschen und den Pfad der Ressource auf das neue Symbol richten, um Missverständnissen
vorzubeugen.

3. den Namen der Ressourcendatei um die ISO-Codes für Sprache und Land (gegebenenfalls
auch Variante) erweitern.

Angenommen, Ihre Ressourcendatei heißt Program.properties und Sie möchten Ihre Soft-
ware in Großbritannien und Deutschland vertreiben. Dann würden Sie die Kopien als
Program_de_DE.properties für Deutschland und Program_en_GB.properties für Großbri-
tannien speichern.

H
in

w
e

is Für die ISO-Codes zu Sprache und Land siehe Rezept 214 bzw.
http://www.loc.gov/ standards/iso639-2/englangn.html und
http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html.

Program_de_DE.properties

Hauptfenster
MW_TITLE = Ressourcen-Demo
MW_SYMBOL = resources/Germany.png

Schaltflaeche
BTN_TITLE = Klick mich!

Dialog
MDLG_TITLE = Nachricht
MDLG_MESSAGE = Gut geklickt!

Listing 295: Ressourcendatei für Deutschland

Program_en_GB.properties

Hauptfenster
MW_TITLE = Resources-Demo
MW_SYMBOL = resources/UK.png

Schaltflaeche
BTN_TITLE = Press me!

Dialog
MDLG_TITLE = Message
MDLG_MESSAGE = Well done!

Listing 296: Ressourcendatei für Großbritannien

>> Ressourcendatei für die Lokale des aktuellen Systems laden616
In

te
rn

at
io

na
l

226 Ressourcendatei für die Lokale des aktuellen Systems
laden

Sie möchten erreichen, dass jeder Anwender, der mit Ihrem Programm arbeitet, eine lokali-
sierte Benutzeroberfläche vor sich sieht, die möglichst gut zu seinem Kulturkreis (sprich zu der
auf seinem Rechner eingestellten Lokale) passt.

Um dies zu erreichen, müssen Sie

1. nationale und kulturspezifische Eigenheiten (alphabetische Reihenfolge in String-Verglei-
chen, Formatierung von Zahlen, Währungsangaben etc.) berücksichtigen.

Siehe Rezepte 218 bis 222.

2. Ressourcen, die lokalisiert werden müssen, in Ressourcendateien auslagern.

Siehe Rezept 223 und 224.

3. für alle Länder, in denen das Programm vertrieben wird, lokalisierte Ressourcendateien
anlegen.

Siehe Rezept 225.

E
x

k
u

rs Zuordnung Lokale – Ressourcendatei
Geladen werden die Ressourcendateien durch Angabe des Namens (ohne die Suffixe
für Sprach- und Ländercode) und die gewünschte Lokale, siehe nachfolgende Rezepte.
Dabei versucht die getBundle()-Methode der Klasse ResourceBundle die jeweils am bes-
ten passende Ressourcendatei für die gegebene Lokale zu laden.

Angenommen, Sie rufen die getBundle()-Methode wie folgt auf

resources = ResourceBundle.getBundle("resources/Program",
 new Locale("es", "ES", "WIN");

In diesem Fall würde getBundle() im Verzeichnis resources zuerst nach einer Ressour-
cendatei Program_es_ES_WIN.properties für die zu der Lokale passende Sprache ("es"),
das Land ("ES") und die Variante ("WIN") suchen. Existiert diese Datei nicht, verzichtet
getBundle() nach und nach auf die Übereinstimmung mit der Varianten und dem Land.
Kann auch für die Sprache keine Ressourcendatei gefunden werden, sucht getBundle()
nach einer Ressourcendatei, die statt zur angegebenen Lokale zur Standardlokalen (per
Voreinstellung die Lokale des Systems, siehe Rezept 215) gehört. Führt auch dies nicht
zum Erfolg, lädt getBundle() die Ressourcendatei Program.properties aus dem Ver-
zeichnis resources oder löst, wenn auch diese nicht zu finden ist, eine Missing-
ResourceException aus.

Angenommen, die Standardlokale wäre de_DE, so sähe die Abfolge der gesuchten
Dateien wie folgt aus:

Program_es_ES_WIN.properties
Program_es_ES.properties
Program_es.properties

Program_de_DE.properties
Program_de.properties

Program.properties

>> Internationalisierung 617

In
te

rn
at

io
na

l

Nicht immer ist es möglich oder notwendig, für wirklich alle Länder lokalisierte Ressour-
cendateien zur Verfügung zu stellen. Eine gute Strategie ist

� für die wichtigsten Länder eigene Ressourcendateien anzulegen (wichtige Länder sind
in diesem Sinne diejenigen, aus denen viele Kunden/Anwender kommen).

Program_de_DE.properties
Program_fr_FR.properties
Program_es_ES.properties
Program_en_GB.properties
Program_en_US.properties

� für die in diesen Ländern gesprochenen Sprachen eigene Ressourcendateien anzulegen
(wobei diese durchaus Kopien der zugehörigen länderspezifischen Ressourcendateien
sein können).

Program_de.properties //für Schweiz(de_CH),Österr.(de_AT) etc
Program_fr.properties //für Belgien(fr_BE),Kanada(fr_CA) etc
Program_es.properties //für Kolumbien(es_CO) etc
Program_en.properties //für Kanada(en_CA),Austral.(en_AU)etc

� für alle anderen Lokalen eine Standard-Ressourcendatei anzulegen (diese sollte eine
Kopie der Ressourcendatei für die Sprache des Software-Vertreibers, der Sprache der
meisten Kunden oder für Englisch sein).

Program.properties

4. Vom Programm aus die Ressourcendatei für die Standardlokale (sprich die Lokale des
aktuellen Systems) laden.

Rufen Sie dazu getBundle() mit dem Namen der Ressourcendatei als einzigem Argument
auf oder übergeben Sie an zweiter Stelle die Standardlokale des Systems (Aufruf
Locale.getDefault()).

public static void main(String args[]) {

 // ResourceBundle aus Ressourcendatei laden
 try {
 resources = ResourceBundle.getBundle("resources/Program");

 } catch (MissingResourceException e) {
 System.err.println("Missing resource file, Abort");
 System.exit(1);
 }

 // Hauptfenster erzeugen und anzeigen
 ...
}

A
ch

tu
n

g Die hier vorgestellte Lokalisierung auf Basis der Standardlokale funktioniert natürlich
nur dann wunschgemäß, wenn die Standardlokale die landesspezifischen Einstellungen
des aktuellen Systems widerspiegelt und nicht vom Programm aus umgestellt wurde
(siehe Rezept 215).

>> Ressourcendatei für eine bestimmte Lokale laden618
In

te
rn

at
io

na
l

227 Ressourcendatei für eine bestimmte Lokale laden
Um eine Ressourcendatei für eine bestimmte Lokale zu laden, übergeben Sie einfach die
Lokale an die getBundle()-Methode:

try {
 resources = ResourceBundle.getBundle("resources/Program",
 new Locale("de", "DE"));

} catch (MissingResourceException e) {
 System.err.println("Missing resource file, Abort");
}

Etwas komplizierter wird es, wenn Sie dem Anwender Schalter oder Menübefehle anbieten
möchten, über die die Lokalisierung zur Laufzeit verändert werden kann. In diesem Fall müs-
sen Sie nicht nur die passende Ressourcendatei laden, sondern auch dafür sorgen, dass die
Benutzeroberfläche mit den neuen Ressourcen aktualisiert wird.

Das Programm zu diesem Rezept löst diese Aufgabe mit Hilfe einer eigenen Methode localize-
GUI(Locale loc), die die Ressourcendatei zu der übergebenen Lokale lädt und dann die GUI-
Elemente des Fensters aktualisiert:

Abbildung 131: Das Programm zu diesem Rezept für die Lokalen de_DE und en_GB

T
ip

p Wenn Ihr Betriebssystem mehrere Lokalen unterstützt, können Sie die korrekte Aus-
wahl der Ressourcendateien und das Erscheinungsbild der lokalisierten Benutzerober-
flächen auf unkomplizierte Weise prüfen, indem Sie einfach die Lokale-Einstellung des
Rechners umstellen (siehe Rezept 217).

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.util.*;
import java.io.*;
import javax.imageio.ImageIO;

public class Start extends JFrame {

Listing 297: Start.java – Lokalisierung zur Laufzeit

>> Internationalisierung 619

In
te

rn
at

io
na

l

 public static ResourceBundle resources;
 private JMenu languageMenu;
 private JMenuItem miGerman;
 private JMenuItem miEnglish;
 private JButton btn;

 public Start() {

 // Fenstertitel laden
 setTitle("Ressourcen-Demo");

 // Anwendungssymbol laden
 setIconImage(Toolkit.getDefaultToolkit().getImage(
 "resources/Germany.png"));

 // Menü erzeugen
 JMenuBar menuBar = new JMenuBar();
 String mnemo;

 languageMenu = new JMenu("Sprache");

 miGerman = new JMenuItem("Deutsch");
 miGerman.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 localizeGUI(new Locale("de"));
 }
 });
 miEnglish = new JMenuItem("Englisch");
 miEnglish.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 localizeGUI(new Locale("en"));
 }
 });

 languageMenu.add(miGerman);
 languageMenu.add(miEnglish);
 menuBar.add(languageMenu);

 setJMenuBar(menuBar);

 // Schaltertitel laden
 btn = new JButton("Klick mich!");
 btn.setFont(new Font("Dialog", Font.PLAIN, 34));
 btn.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {

 // Titel und Text der Meldung laden
 JOptionPane.showMessageDialog(null,
 Start.resources.getString("MDLG_MESSAGE"),
 Start.resources.getString("MDLG_TITLE"),

Listing 297: Start.java – Lokalisierung zur Laufzeit (Forts.)

>> Ressourcendatei für eine bestimmte Lokale laden620
In

te
rn

at
io

na
l

 JOptionPane.INFORMATION_MESSAGE);
 }
 });
 getContentPane().add(btn, BorderLayout.CENTER);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 localizeGUI(Locale.getDefault());
 }

 /*
 * GUI-Elemente des Fensters mit lokalisierten Ressourcen aktualisieren
 */
 public void localizeGUI(Locale loc) {
 // ResourceBundle aus Ressourcendatei laden
 try {
 resources = ResourceBundle.getBundle("resources/Program", loc);

 // Fenstertitel
 setTitle(Start.resources.getString("MW_TITLE"));

 // Anwendungssymbol
 String symbolFile = Start.resources.getString("MW_SYMBOL");
 setIconImage(Toolkit.getDefaultToolkit().getImage(symbolFile));

 // Menü
 String mnemo;
 languageMenu.setText(Start.resources.getString("M_LANGUAGE"));
 mnemo = Start.resources.getString("M_LANGUAGE_MNEMO");
 languageMenu.setMnemonic(mnemo.codePointAt(0));

 miGerman.setText(Start.resources.getString("M_LANGUAGE_GERMAN"));
 mnemo = Start.resources.getString("M_LANGUAGE_GERMAN_MNEMO");
 miGerman.setMnemonic(mnemo.codePointAt(0));
 miEnglish.setText(Start.resources.getString("M_LANGUAGE_ENGLISH"));
 mnemo = Start.resources.getString("M_LANGUAGE_ENGLISH_MNEMO");
 miEnglish.setMnemonic(mnemo.codePointAt(0));

 // Schalter
 btn.setText(Start.resources.getString("BTN_TITLE"));
 } catch (MissingResourceException mre) {
 System.err.println(Start.resources.getString("ERR_NO_RESOURCEFILE"));
 }
 }

 public static void main(String args[]) {

 // ResourceBundle aus Ressourcendatei laden
 try {

Listing 297: Start.java – Lokalisierung zur Laufzeit (Forts.)

>> Internationalisierung 621

In
te

rn
at

io
na

l

Alle Anweisungen zur Lokalisierung des Fensters sind hier in die Methode localizeGUI()
gepackt, die von den ActionListenern der Menübefehle miGerman und miEnglish mit den ent-
sprechenden Lokalen aufgerufen wird.

Der Konstruktor übernimmt weiterhin die Aufgabe, das Fenster mit den eingebetteten Kompo-
nenten aufzubauen und funktionsfähig einzurichten (inklusive vorläufiger Titel, Texte, Sym-
bole etc.). Seine letzte Amtshandlung ist dann der Aufruf von localizeGUI(), um die GUI-
Oberfläche lokalisieren zu lassen und die Konfiguration der GUI-Komponenten abzuschließen
(Zuweisung der (Alt)-Tastenkombinationen an die Menüelemente).

In Anwendungen, die mehrere Fenster umfassen, könnte nach diesem Muster jedes Fenster
seine eigene localizeGUI()-Methode bereitstellen.

 resources = ResourceBundle.getBundle("resources/Program");
 } catch (MissingResourceException e) {
 System.err.println("Missing resource file, Program aborted");
 System.exit(1);
 }

 // Hauptfenster erzeugen und anzeigen
 Start frame = new Start();
 frame.setSize(500,300);
 frame.setLocation(300,300);
 frame.setVisible(true);
 }
}

Abbildung 132: Das Programm zu diesem Rezept für die Lokalen de und en

Listing 297: Start.java – Lokalisierung zur Laufzeit (Forts.)

Th
re

ad
s

Threads

228 Threads verwenden
Threads sind in Java Klassen, die das Interface java.lang.Runnable implementieren oder von der
Basisklasse java.lang.Thread erben. In beiden Fällen implementieren Sie die Methode run(), die
beim Starten des Threads ausgeführt wird und somit bestimmt, was der Thread macht.

Ein Thread läuft so lange, bis er seine run()-Methode verlässt (dann stirbt er und ist beendet)
oder das Betriebssystem ihm die CPU entzieht und einem anderen Thread die Rechenzeit
zugute kommen lässt. Nach einer gewissen Zeit ist der Thread dann wieder an der Reihe und
erhält eine Zeitscheibe, so dass er weiterarbeiten kann. Ein Thread kann jedoch auch selbst die
CPU abgeben, wenn er nichts Sinnvolles mehr tun kann, also beispielsweise eine Zeitlang
warten soll. Dies kann mit dem Aufruf Thread.sleep(int millis) erreicht werden.

import java.util.Calendar;
import java.text.DateFormat;

public class SimpleThread implements Runnable {

 private boolean running = false;

 /**
 * Hauptmethode des Threads
 */
 public void run() {

 // Endlosschleife, damit der Thread weiterläuft
 while(true) {
 String date = DateFormat.getTimeInstance().format(
 Calendar.getInstance().getTime());

 String message = running ?
 "%s: Still running (%s)" : "%s: Started! (%s)";

 // Ausgeben einer Nachricht mit der aktuellen Uhrzeit
 System.out.println(String.format(
 message, "SimpleThread", date));

 if(!running)
 running = true;

 // Thread 1 Sekunde pausieren lassen
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {}
 }
 }
}

Listing 298: Runnable-Implementierung, die als Thread laufen kann

>> Threads ohne Exception beenden624
Th

re
ad

s

Wird eine Runnable-Implementierung verwendet, muss vor der Ausführung des Threads eine
Instanz der Thread-Klasse erzeugt und dieser im Konstruktor die instanzierte Runnable-Imple-
mentierung übergeben werden. Bei Ableitungen von Thread reicht es aus, die Ableitung zu
instanzieren.

Der instanzierte Thread wird anschließend mit Hilfe seiner start()-Methode gestartet:

Der Thread läuft nun so lange, bis die Ausführung der Anwendung beendet wird.

229 Threads ohne Exception beenden
War es bei älteren Java-Versionen möglich, Threads mit Hilfe ihrer stop()-Methode zu been-
den, wird diese Vorgehensweise nun nicht mehr empfohlen. Die stop()-Methode selbst ist als
deprecated gekennzeichnet. Ein Beenden erscheint nur noch über die Verwendung der nicht
als deprecated gekennzeichneten Methode interrupt() möglich – jedoch führt dies zu unschö-
nen Nebeneffekten:

� Es wird stets eine InterruptedException geworfen.

� Dem Thread wird unter Umständen keine Möglichkeit gelassen, sich kontrolliert zu been-
den und seine Ressourcen wieder freizugeben.

Aus diesem Grund ist die Verwendung von interrupt() oft nicht zielführend und sollte des-
halb weitestgehend vermieden werden.

Ein Lösungsansatz ist, ein Interface Stoppable zu definieren, das es erlaubt, dem Thread mitzu-
teilen, dass er beendet werden soll. Der Thread kann nun selbstständig überprüfen, ob er wei-
terlaufen soll und sich gegebenenfalls kontrolliert beenden.

Ein solches Stoppable-Interface könnte folgenden Aufbau haben:

public class Start {

 public static void main(String[] args) {
 // Runnable-Implementierung instanzieren
 Runnable runnable = new SimpleThread();

 // Thread instanzieren
 Thread thread = new Thread(runnable);

 // Thread starten
 thread.start();
 }
}

Listing 299: Instanzierung eines Threads

public interface Stoppable {

 // Stoppt die Ausführung des Threads

Listing 300: Das Interface Stoppable dient dem Zweck, Threads kontrolliert beenden zu
können.

>> Threads 625

Th
re

ad
s

In eigenen Thread-Ableitungen und Runnable-Implementierungen sollte nun auch das Interface
Stoppable implementiert werden. Mit Hilfe von getIsStopped() kann der Thread überprüfen,
ob er sich beenden soll, und entsprechend reagieren:

 void setIsStopped(boolean stop);

 // Ruft den Status des Threads ab
 boolean getIsStopped();
}

import java.util.Calendar;
import java.text.DateFormat;

public class StoppableThread implements Runnable, Stoppable {

 private boolean isStopped = false;
 private boolean running = false;

 // run()-Implementierung von Runnable
 public void run() {

 // Schleife, die so lange läuft, bis der Thread gestoppt
 // wird
 while(!getIsStopped()) {

 String date = DateFormat.getTimeInstance().format(
 Calendar.getInstance().getTime());

 String message = running ?
 "%s: Still running (%s)" : "%s: Started! (%s)";

 // Ausgeben einer Nachricht mit der aktuellen Uhrzeit
 System.out.println(String.format(
 message, "SimpleThread", date));

 if(!running)
 running = true;

 // Thread 1 Sekunde pausieren lassen
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {}
 }

 // Thread wurde beendet
 System.out.println("Thread stopped!");
 }

Listing 301: Neben dem Interface Runnable wird hier auch Stoppable implementiert.

Listing 300: Das Interface Stoppable dient dem Zweck, Threads kontrolliert beenden zu
können. (Forts.)

>> Threads ohne Exception beenden626
Th

re
ad

s

Um einen Thread zu beenden, der nach obigem Muster das Interface Stoppable implementiert,
muss nur seine setIsStopped()-Methode mit dem Wert true aufgerufen werden.

Bei der Ausführung kann man sehr gut erkennen, dass der Thread nach einiger Zeit abbricht
und eine Nachricht ausgibt. Statt der Ausgabe dieser Nachricht könnten ebenso gut Aufräum-
arbeiten verrichtet werden.

 // isStopped-Setter
 public void setIsStopped(boolean stop) {
 isStopped = stop;
 }

 // isStopped-Getter
 public boolean getIsStopped() {
 return isStopped;
 }
}

public class Start {

 public static void main(String[] args) {
 // Runnable-Implementierung instanzieren
 StoppableThread instance = new StoppableThread();

 // Thread instanzieren
 Thread thread = new Thread(instance);

 // Thread starten
 thread.start();

 // 10 Sekunden warten
 try {
 Thread.sleep(10000);
 } catch (InterruptedException e) {}

 // Thread beenden
 ((Stoppable)instance).setIsStopped(true);
 }
}

Listing 302: Beenden eines Stoppable-Threads

Listing 301: Neben dem Interface Runnable wird hier auch Stoppable implementiert. (Forts.)

>> Threads 627

Th
re

ad
s

230 Eigenschaften des aktuellen Threads
Jeder Code kann auf den Thread zurückgreifen, in dem er gerade ausgeführt wird. Dieser
Zugriff geschieht mit Hilfe der statischen Methode Thread.currentThread(). Die dabei zurück-
gegebene Thread-Instanz verfügt über weitere Informationen, die anschließend ausgewertet
werden können:

Abbildung 133: Kontrolliertes Beenden eines Threads

public class Start {

 public static void main(String[] args) {
 // Aktuellen Thread ermitteln
 Thread thread = Thread.currentThread();

 // Informationen ausgeben
 System.out.println(
 String.format("Id: %d", thread.getId()));
 System.out.println(
 String.format("Name: %s", thread.getName()));
 System.out.println(
 String.format("Priorität: %d", thread.getPriority()));
 System.out.println(
 String.format("Status: %s", thread.getState()));
 System.out.println(
 String.format("Thread-Gruppe: %s",
 thread.getThreadGroup().getName()));
 System.out.println(
 String.format("Aktiv: %s", thread.isAlive()));
 System.out.println(
 String.format("Daemon: %s", thread.isDaemon()));
 System.out.println(
 String.format("Unterbrochen: %s", thread.isInterrupted()));
 }
}

Listing 303: Auslesen der Eigenschaften eines Threads

>> Ermitteln aller laufenden Threads628
Th

re
ad

s

Folgende Eigenschaften eines Threads können ausgelesen und verarbeitet werden:

231 Ermitteln aller laufenden Threads
Die statische Methode Thread.enumerate() kann verwendet werden, um alle laufenden Threads
der Thread-Gruppe des aktuellen Threads zu ermitteln. Sie kopiert die vorhandenen Threads in
ein Thread-Array, dessen Länge mit Thread.activeCount() bestimmt werden kann, und gibt
gleichzeitig die Anzahl der Threads der aktuellen Gruppe zurück:

Methode Beschreibung

getId() Gibt die ID des Threads zurück.

getName() Gibt den Namen des Threads zurück.

getPriority() Gibt die Priorität des Threads an.

getState() Gibt den aktuellen Status des Threads an; seit Java 5 verfügbar. Mögliche
Werte sind:
� ThreadState.NEW: Thread ist noch nicht gestartet.
� ThreadState.RUNNABLE: Thread wird in der JVM ausgeführt.
� ThreadState.BLOCKED: Thread, der derzeit blockiert ist und darauf wartet,

dass der Monitor seinen Status ändert.
� ThreadState.WAITING: Thread, der auf die Fertigstellung der Ausführung

eines anderen Threads wartet.
� ThreadState.TIMED_WAITING: Thread, der eine bestimmte Zeit auf die

Fertigstellung der Ausführung eines anderen Threads wartet.
� ThreadState.TERMINATED: Beendeter Thread.

getThreadGroup() Gibt die Thread-Gruppe zurück, zu der ein Thread gehört.

isAlive() Gibt an, ob der Thread gestartet, aber noch nicht beendet worden ist.

isDaemon() Gibt an, ob es sich bei dem Thread um einen Dämon-Thread handelt.

isInterrupted() Gibt an, ob die Ausführung des Threads unterbrochen worden ist.

Tabelle 55: Eigenschaften eines Threads

public class Start {

 public static void main(String[] args) {
 // Threads anlegen
 for(int i=1; i <= 15; i++) {
 SimpleThread st = new SimpleThread();
 st.setName(String.format("Thread %d", i));
 st.start();
 }

 // Alle Threads auslesen
 Thread[] threads = new Thread[Thread.activeCount()];
 Thread.enumerate(threads);

Listing 304: Durchlaufen aller Threads

>> Threads 629

Th
re

ad
s

Beim Ausführen des Beispiels werden Sie feststellen, dass neben den im Beispiel erzeugten
Threads noch ein weiterer Thread ausgegeben wird: der Hauptthread, der die untergeordneten
Threads erzeugt hat.

232 Priorität von Threads
Threads können mit einer Priorität versehen werden. Diese kommt dann zum Tragen, wenn
Threads zeitgleich ausgeführt werden sollen. Anhand der Prioritäten wird dann entschieden,
welcher Thread tatsächlich als Erster ausgeführt wird und in welcher Reihenfolge weitere
Threads ablaufen sollen.

Wenn mehrere Threads mit der gleichen Priorität auf Ausführung warten, entscheidet Java,
welcher Thread als Erstes zur Ausführung kommt. Die weiteren Threads werden anschließend
einer nach dem anderen im Round-Robin-Verfahren, bei dem die CPU-Zeit gleichmäßig ver-
teilt wird, abgearbeitet. Allerdings muss man beachten, dass auch das zugrunde liegende
Betriebssystem noch eine Rolle spielt. Ein Programm, das starken Gebrauch von expliziter
Prioritätensteuerung macht, kann auf verschiedenen Betriebssystemen ein unterschiedliches
Verhalten zeigen! Verwenden Sie Thread-Prioritäten daher nur, wenn es nicht anders geht.

Die Priorität von Threads wird mit Hilfe der Methode setPriority() einer Thread-Instanz
gesetzt, die einen Integer-Wert als Parameter entgegennimmt, der zwischen MIN_PRIORITY und

 // Alle Threads durchlaufen und jeweils beenden
 for(Thread current : threads) {
 System.out.println(current.getName());
 if(current instanceof Stoppable) {
 ((Stoppable)current).setIsStopped(true);
 }
 }
 }
}

Abbildung 134: Auflistung aller laufenden Threads

Listing 304: Durchlaufen aller Threads (Forts.)

>> Priorität von Threads630
Th

re
ad

s

MAX_PRIORITY liegen muss. MIN_PRIORITY kennzeichnet die geringste Priorität, MAX_PRIORITY steht
für die höchste mögliche Priorität eines Threads. Beide Konstanten sind in der Klasse Thread
definiert.

Zur Illustration wird eine Thread-Klasse definiert, die den eigenen Namen und die zugewiesene
Priorität ausgibt:

Im Folgenden werden zwei SimpleThread-Instanzen mit den Prioritäten MIN_PRIORITY und
MAX_PRIORITY erzeugt und gestartet. Der Start der Instanz, die mit einer Priorität von
MIN_PRIORITY läuft, erfolgt vor dem Start der mit MAX_PRIORITY gekennzeichneten Instanz:

Java behandelt beide Threads tatsächlich unterschiedlich: Der mit MIN_PRIORITY gekennzeich-
nete Thread wird zwar eher gestartet, ausgeführt wird aber zunächst sein mit MAX_PRIORITY
gekennzeichnetes Pendant:

public class SimpleThread extends Thread {

 public void run() {
 // Meldung mit Namen und Priorität ausgeben
 System.out.println(
 String.format(
 "Thread %s mit Priorität %s wurde ausgeführt!",
 this.getName(), this.getPriority()));
 }
}

Listing 305: Thread-Klasse, die ihren Namen und ihre Priorität ausgibt

public class Start {

 public static void main(String[] args) {
 // Thread mit geringer Priorität erzeugen
 Thread minPrio = new SimpleThread();
 minPrio.setName("Minimum Priority");
 minPrio.setPriority(Thread.MIN_PRIORITY);

 // Thread mit hoher Priorität erzeugen
 Thread maxPrio = new SimpleThread();
 maxPrio.setName("Maximum Priority");
 maxPrio.setPriority(Thread.MAX_PRIORITY);

 // Thread mit geringer Priorität starten
 minPrio.start();

 // Thread mit hoher Priorität starten
 maxPrio.start();
 }
}

Listing 306: Threads mit unterschiedlicher Priorität

>> Threads 631

Th
re

ad
s

233 Verwenden von Thread-Gruppen
Thread-Gruppen stellen eine Organisationsform von Threads dar, mit deren Hilfe diese leichter
verwaltet werden können. Jeder Thread kann genau einer Thread-Gruppe angehören und von
dieser beeinflusst werden.

Thread-Gruppen werden durch java.lang.ThreadGroup-Instanzen repräsentiert. Diese Instan-
zen können benannt werden und ihnen können Prioritäten zugewiesen werden. Daneben kön-
nen Thread-Gruppen weitere Thread-Gruppen beinhalten und bilden somit eine Hierarchie, in
der nur die oberste Thread-Gruppe keine übergeordnete Thread-Gruppe mehr hat.

Beim Erzeugen eines Threads kann die ThreadGroup-Instanz, der der Thread zugeordnet werden
soll, als Parameter übergeben werden. Über die ThreadGroup-Instanz können alle zugeordneten
Threads beendet werden. Änderungen, die an den Eigenschaften der Gruppe vorgenommen
werden, beeinflussen auch die zugehörigen Threads – allerdings nur, wenn sie vor dem Zuwei-
sen der Threads vorgenommen wurden.

Binden von Threads an eine Thread-Gruppe
Um einen Thread an eine Thread-Gruppe zu binden, muss seinem Konstruktor die ThreadGroup-
Instanz, zu der er gehören soll, übergeben werden. Die in der Thread-Gruppe definierten Infor-
mationen zu Priorität und Dämon-Typ werden automatisch übernommen:

Setzen der Priorität
Mit Hilfe von setMaxPriority() kann festgelegt werden, welche Prioritäten die zugehörigen
Threads einer Thread-Gruppe maximal haben dürfen. Threads, deren Prioritäten die definierten
Werte überschreiten, werden bei der Festlegung der neuen Priorität nicht berücksichtigt, ihre
Priorität bleibt unverändert. Werte, die Thread.MIN_PRIORITY unter- oder Thread.MAX_PRIORITY
überschreiten, werden ignoriert.

Abbildung 135: Ausführung von Threads nach ihrer Priorität

// ThreadGroup anlegen
ThreadGroup tg = new ThreadGroup("ThreadGroup");

// Thread erzeugen
Thread st = new SampleThread(tg, "Sample thread");

// Thread starten
st.start();

Listing 307: Anlegen einer ThreadGroup und Zuweisen zu einem Thread

>> Iterieren über Threads und Thread-Gruppen einer Thread-Gruppe632
Th

re
ad

s

Setzen des Dämon-Typs
Grundsätzlich endet ein Java-Programm, wenn im Code System.exit(0) aufgerufen wird oder
wenn alle Threads des Programms beendet wurden. Wenn Sie innerhalb des Programms einen
Thread erzeugen möchten, der das Programmende nicht blockieren soll, müssen Sie diesen
Thread als Hintergrund-Thread (»Dämon«) markieren. Um einzelne Threads oder Thread-Grup-
pen als Dämonen zu markieren, definieren die Klassen Thread und ThreadGroup die Methode
setDaemon(bool).

234 Iterieren über Threads und Thread-Gruppen einer
Thread-Gruppe

Mit Hilfe der überladenen Methode enumerate() kann über alle Threads einer ThreadGroup-
Instanz iteriert werden. Folgende Überladungen stehen zur Verfügung:

// ThreadGroup anlegen
ThreadGroup tg = new ThreadGroup("ThreadGroup");

// Priorität setzen
tg.setMaxPriority(Thread.MAX_PRIORITY);

// Thread erzeugen
Thread st = new SampleThread(tg, "Sample thread");

// Thread starten
st.start();

Listing 308: Anlegen einer ThreadGroup und Setzen der maximalen Thread-Priorität

// ThreadGroup anlegen
ThreadGroup tg = new ThreadGroup("ThreadGroup");

// Dämon-Typ setzen
tg.setDaemon(true);

// Thread erzeugen
Thread st = new SampleThread(tg, "Sample thread");

// Thread starten
st.start();

Listing 309: Anlegen einer ThreadGroup und Setzen des Dämon-Typs

Überladung Beschreibung

public int enumerate(Thread[] list) Kopiert alle aktiven Threads dieser Gruppe und
untergeordneter Gruppen in das übergebene
Array. Gibt die Anzahl der ermittelten Threads
zurück. Ist die Anzahl der Threads größer als das
Array, werden die übrigen Threads ignoriert.

Tabelle 56: Methoden zum Iterieren über Threads und Thread-Gruppen

>> Threads 633

Th
re

ad
s

Um über alle Threads einer Thread-Gruppe und deren möglicherweise untergeordneten Grup-
pen zu iterieren, verwenden Sie die Methode enumerate() mit einem initialisierten Thread-
Array in der erforderlichen Größe. Die genaue Größe, sprich die Anzahl der aktiven Threads,
liefert Ihnen die Methode getActiveCount() zurück.

Die statische Methode iterate() der Klasse ThreadIterator wird verwendet, um über die ent-
haltenen Threads zu iterieren und deren wesentlichen Eigenschaften auszugegeben. Als Para-
meter werden die Thread-Gruppe und die Angabe, ob der jeweils analysierte Thread beendet
werden soll, erwartet:

public int enumerate(Thread[] list,
 boolean recurse)

Kopiert alle aktiven Threads dieser Gruppe und –
falls recurse den Wert true hat – auch aller
untergeordneter Gruppen in das übergebene
Array. Ist die Anzahl der Threads größer als das
Array, werden die übrigen Threads ignoriert.

public int enumerate(ThreadGroup[] list) Kopiert alle aktiven Thread-Gruppen dieser
Gruppe und untergeordneter Gruppen in das über-
gebene Array. Ist die Anzahl der Thread-Gruppen
größer als das Array, werden die übrigen Thread-
Gruppen ignoriert.

public int enumerate(ThreadGroup[] list,
 boolean recurse)

Kopiert alle aktiven Thread-Gruppen dieser
Gruppe und – falls recurse den Wert true hat –
auch aller untergeordneter Gruppen in das über-
gebene Array. Ist die Anzahl der Thread-Gruppen
größer als das Array, werden die übrigen Thread-
Gruppen ignoriert.

A
ch

tu
n

g Sie sollten beim Einsatz der verschiedenen enumerate()-Methoden stets berücksichtigen,
dass zwischen dem Dimensionieren des Arrays und dem Abrufen des letzten Threads
durchaus weitere Threads erzeugt oder existierende Threads beendet werden können.
Verwenden Sie diese Methoden also stets mit einer gewissen Vorsicht und prüfen Sie den
Status der ermittelten Threads und Thread-Gruppen vor deren Verwendung.

public class ThreadIterator {

 /**
 * Iteriert über die Threads einer Thread-Gruppe, gibt
 * Statusinformationen aus und beendet die Threads auf Wunsch
 */
 public static void iterate(ThreadGroup tg, boolean stop) {
 // Anzahl der aktiven Threads ermitteln
 int count = tg.activeCount();

 // Array mit count Elementen instanzieren
 Thread[] threads = new Thread[count];

Listing 310: Iterieren über alle Threads einer Thread-Gruppe

Überladung Beschreibung

Tabelle 56: Methoden zum Iterieren über Threads und Thread-Gruppen (Forts.)

>> Iterieren über Threads und Thread-Gruppen einer Thread-Gruppe634
Th

re
ad

s

Das Erzeugen von Thread-Gruppe und Threads kann so vonstatten gehen, dass zunächst die
Thread-Gruppe angelegt und anschließend die einzelnen Thread-Instanzen erzeugt werden.
Jeder Thread-Instanz wird die ThreadGroup-Instanz, zu der der Thread gehören soll, als Para-
meter im Konstruktor übergeben:

Beim Durchlaufen der Thread-Gruppen-Mitglieder innerhalb der Methode iterate() der Thread-
Iterator-Klasse werden die Informationen zu Name und Priorität des Threads ausgegeben.

 // Array befüllen lassen
 tg.enumerate(threads);

 // Threads durchlaufen
 for(Thread thread : threads) {
 // Namen und Priorität ausgeben
 System.out.println(String.format("Thread %s\nPrioritaet: %d\n",
 thread.getName(), thread.getPriority()));

 // Thread beenden
 if(stop) {
 ((Stoppable)thread).setIsStopped(true);
 }
 }
 }
}

public class Start {

 public static void main(String[] args) {
 // ThreadGroup anlegen
 ThreadGroup tg = new ThreadGroup("ThreadGroup");

 // 15 Threads anlegen
 for(int i=0; i<15; i++) {
 // Thread erzeugen
 Thread st = new SampleThread(
 tg, String.format("Thread %d", i+1));

 // Thread starten
 st.start();
 }

 // Threads durchlaufen und deren Informationen ausgeben
 ThreadIterator.iterate(tg, true);
 }
}

Listing 311: Erzeugen von Thread-Gruppe und Threads

Listing 310: Iterieren über alle Threads einer Thread-Gruppe (Forts.)

>> Threads 635

Th
re

ad
s

235 Threads in Swing: SwingWorker
Beim Erstellen einer grafischen Benutzeroberfläche muss man zwei wichtige Punkte beachten:

� Der Event-Handling-Thread (oft auch Event-Dispatch-Thread oder EDT genannt) darf nicht
durch lang andauernde Aktivitäten blockiert werden. Sonst besteht die Gefahr, dass das
Programm »hängt« und nur mit Verzögerung auf Mausklicks etc. reagiert.

� Grafische Komponenten, die bereits gerendert (also auf dem Bildschirm sichtbar darge-
stellt) wurden, dürfen nur innerhalb des Event-Handling-Threads manipuliert werden1.

Hieraus folgt, dass man für lang andauernde Aktionen einen Thread benötigt, der zum Mani-
pulieren von GUI-Elementen mit dem Event-Handling-Thread von Swing interagiert. Da dies
in der Umsetzung durchaus etwas kompliziert werden kann, gibt es seit Java 6 eine spezielle
Klasse javax.swing.SwingWorker<T,V>, welche die Sache etwas vereinfacht.

T ist dabei der Rückgabetyp der Methode doInBackground(), in der man die gewünschte Akti-
vität kodiert. V ist der Typ des Parameters, der an eine Methode namens publish() übergeben
wird. Die publish()-Methode dient zur Übergabe von Daten an den Event-Handling-Thread,
der diese dann durch Aufruf der Methode process() bearbeitet. Die Methode process() muss
daher in geeigneter Weise implementiert werden.

Das folgende Beispiel zeigt, wie eine lang andauernde Aktivität (Durchsuchen des Dateisys-
tems) von einer SwingWorker-Instanz durchgeführt wird.

Abbildung 136: Ausgabe der Informationen zu den Threads einer ThreadGroup-Instanz

1. Hiervon gibt es nur einige wenige Ausnahmen. (Beispielsweise darf man mit setText() den Wert einer JTextArea
auch außerhalb des Event-Handling-Threads ändern.)

/*
 * Einsatz von SwingWorker in Swing-Oberflächen
 *
 * @author Peter Müller
 */
import java.awt.BorderLayout;

Listing 312: Einsatz von SwingWorker

>> Threads in Swing: SwingWorker636
Th

re
ad

s

import java.awt.Dimension;
import java.awt.geom.*;
import java.awt.event.*;
import javax.swing.*;
import java.util.*;
import java.io.*;

// SwingWorker Klasse für Hintergrund-Aktivität
class TIFSearch extends SwingWorker<Integer, String> {
 private JTextArea fileList;
 private int counter = 0;
 private JButton startStop;
 private String path;

 TIFSearch(String path, JTextArea fileList, JButton startStop) {
 super();
 this.fileList = fileList;
 this.startStop = startStop;
 this.path = path;
 }

 // durchsuchen nach TIF-Dateien und anzeigen
 public Integer doInBackground() {

 try {
 File f = new File(path);
 searchTIFFiles(f);

 } catch(Exception e) {
 System.err.println(e);
 }

 return new Integer(counter);
 }

 // wird von Event-Thread aufgerufen

protected void process(List<String> fileNames) {
 for(String s : fileNames)
 fileList.append(s + "\n");
 }

 // Ergebnis von doInBackground() ausgeben; wird vom Event-Thread aufgerufen

protected void done() {
 try {
 System.out.println("Anzahl Treffer: " + get() + "\n");
 startStop.setText("TIFs suchen");

 } catch(Exception e) {

Listing 312: Einsatz von SwingWorker (Forts.)

>> Threads 637

Th
re

ad
s

 System.err.println(e);
 }
 }

 // sucht rekursiv nach TIF-Dateien
 private void searchTIFFiles(File f) throws IOException {
 if(isCancelled())
 return;

 if(f.isDirectory()) {
 File[] files = f.listFiles();

 for(int i = 0; i < files.length; i++)
 searchTIFFiles(files[i]);

 } else {
 if(f.getName().toLowerCase().endsWith(".tif")) {

publish(f.getCanonicalPath()); // Anzeige updaten

 counter++;
 }
 }
 }
}

class Start extends JFrame implements ActionListener {
 private JPanel contentPane;
 private JTextArea fileList;
 private JButton startStop;
 private TIFSearch tifSearch;
 private JTextField rootDir;

 public Start(String startDirectory) {
 contentPane = (JPanel) this.getContentPane();
 contentPane.setLayout(new BorderLayout());
 setSize(new Dimension(500, 200));
 setTitle("SwingWorker-Demo");

 JPanel tmp = new JPanel();
 rootDir = new JTextField(startDirectory);
 rootDir.setColumns(30);
 tmp.add(new JLabel("Startverzeichnis:"));
 tmp.add(rootDir);
 contentPane.add(tmp, BorderLayout.NORTH);

 fileList = new JTextArea();
 JScrollPane scrollPane = new JScrollPane(fileList);
 contentPane.add(scrollPane, BorderLayout.CENTER);

Listing 312: Einsatz von SwingWorker (Forts.)

>> Threads in Swing: SwingWorker638
Th

re
ad

s

In der Ereignisbehandlung der Fensterklasse SwingWorkerDemo wird eine Instanz der von Swing-
Worker abgeleiteten Klasse TIFSearch angelegt und als separater Thread mit Hilfe der exe-
cute()-Methode gestartet. Damit ist für den Event-Handling-Thread die Arbeit erledigt und er
ist wieder frei, um auf die nächsten Mausaktionen reagieren zu können. Währenddessen
macht sich die SwingWorker-Instanz an die Arbeit und führt die Methode doInBackground() aus,
die das Dateisystem durchsucht. Werden dabei Dateien mit der Endung .tif gefunden, wird die
Anzeige über den publish()/process()-Mechanismus aktualisiert. Wenn die doInBackground()-
Methode endet, wird der Event-Handling-Thread automatisch informiert, der daraufhin die
done()-Methode von SwingWorker aufruft. In unserem Beispiel geben wir einfach die Anzahl an
gefundenen Treffern aus.

Beenden lässt sich übrigens eine laufende SwingWorker-Instanz durch den Aufruf ihrer can-
cel()-Methode. Wichtig ist außerdem, dass eine SwingWorker-Instanz nicht wieder verwendet
werden darf (unabhängig davon, ob sie regulär geendet hat oder abgebrochen worden ist).
Man muss immer eine neue Instanz erzeugen.

 tmp = new JPanel();

 startStop = new JButton("TIFs suchen");
 startStop.addActionListener(this);
 tmp.add(startStop);
 contentPane.add(tmp,BorderLayout.SOUTH);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 // Suche starten/stoppen
 public void actionPerformed(ActionEvent e) {
 String cmd = e.getActionCommand();

 if((cmd.equals("TIFs suchen") == true)) {
 startStop.setText("Suche beenden");
 fileList.setText("");
 tifSearch = new TIFSearch(rootDir.getText(), fileList, startStop);

 tifSearch.execute();

 } else {
 tifSearch.cancel(true);
 startStop.setText("TIFs suchen");
 }
 }

 public static void main(String args[]) {
 Start frame = new Start("c:\\");
 frame.setVisible(true);
 }
}

Listing 312: Einsatz von SwingWorker (Forts.)

>> Threads 639

Th
re

ad
s

236 Thread-Synchronisierung mit synchronized (Monitor)
Einer der schwierigsten Aspekte der Thread-Programmierung ist die Koordination von mehre-
ren Threads, die auf gemeinsame Daten zugreifen. Dies nennt man auch Synchronisierung. Ein
simples Beispiel für die Problematik ist ein gemeinsamer Zähler Z, der zur Erzeugung einer
fortlaufenden Nummer genutzt werden soll. Ein Thread T1 liest dabei den Wert von Z und
erhöht Z um eins. Mit viel Pech könnte es passieren, dass zwischen dem Lesen des Werts und
dem Erhöhen aber gerade ein weiterer Thread T2 auf Z zugreift, den aktuellen Wert liest und
um eins erhöht. Erst danach kommt T1 wieder zum Zuge und kann seine Operation beenden,
indem er Z erhöht, allerdings ausgehend von seinem alten Wert, den er vor der Unterbrechung
gelesen hatte. Die Folge ist, dass beide Threads T1 und T2 die gleiche Nummer gezogen haben
(was wir nicht wollten) und zudem der Zähler nur um eins erhöht worden ist (obwohl zwei
Nummern gezogen wurden).

Das Problem ist offensichtlich, dass das Lesen und Erhöhen des Zählers mehrere Anweisungen
umfasst und daher mittendrin unterbrochen werden kann. Man muss daher diese Anweisun-
gen zu einem unteilbaren (= atomaren) Block machen: Sobald ein Thread angefangen hat, den
Block zu durchlaufen, darf er ungestört weitermachen, bis er den Block verlassen hat. In Java
verwendet man hierzu das Schlüsselwort synchronized.

Verwendung von synchronized
Man kann das Schlüsselwort synchronized einer ganzen Methode voranstellen und sie somit
atomar machen:

class ThreadSicher {
 private long number = 0;

 // gibt aktuellen Wert und erhöht Variable für nächsten Aufruf
 synchronized long getNextNumber() {
 long num = number++;
 return num;
 }
}

Die obige Vorgehensweise hat den Nachteil, dass damit die ganze Methode synchronisiert
wird. Dies kann bei umfangreichen Methoden die Programmausführung deutlich ausbremsen,
weil dann alle anderen Threads recht lange warten müssen, bis die Methode wieder »frei« ist.
Meist sind aber nur wenige Zeilen Code innerhalb der Methode der kritische Abschnitt, den es
zu synchronisieren gilt. Dazu benutzt man folgende Syntax:

synchronized(dasObjekt) {
 // kritischer Codeabschnitt
}

H
in

w
e

is Im obigen Beispiel ist der Einsatz von publish()/process() nicht zwingend notwendig,
da man auch direkt die append()-Methode von (einer in TIFSearch bekannt zu machen-
den) JTextArea verwenden könnte. Dies ist aber nur möglich, weil append() eine der
wenigen Swing-Methoden ist, die threadsicher sind und auch außerhalb des Event-
Handling-Thread aufgerufen werden dürfen (weitere wichtige Ausnahmen sind bei-
spielsweise repaint() und setText()).

>> Thread-Synchronisierung mit wait() und notify()640
Th

re
ad

s

Bei dieser Variante muss dem Schlüsselwort synchronized in Klammern ein zu schützendes
Objekt mitgegeben werden. Häufig nimmt man dazu das aktuelle Objekt, in dessen Bereich der
kritische Block liegt. Die obige Methode getNextNumber() könnte also auch folgendermaßen
definiert werden:

class ThreadSafe {
 private long number = 0;

 // gibt aktuellen Wert und erhöht Variable für nächsten Aufruf
 long getNextNumber() {
 long num;

 synchronized(this) {
 num = number++;
 return num;
 }
 }
}

Ein Beispiel für die Verwendung von synchronized finden Sie im nachfolgenden Rezept zu
wait() und notify().

237 Thread-Synchronisierung mit wait() und notify()
Als Ergänzung zur Absicherung mit synchronized bietet Java noch besondere Methoden an:

� void wait(), void wait(long ms): Legen den aufrufenden Thread schlafen, bis ein notify()
für das mit synchronized geschützte Objekt aufgerufen wird. Bei Angabe einer maximalen
Wartezeit in Millisekunden wird der aufrufende Thread nur diese Zeit lang warten.

� void notify(), void notifyAll() weckt einen beliebigen Thread auf, der per wait() auf den
Zugang zu dem geschützten Objekt wartet. notifyAll() weckt alle ggf. vorhandenen
Threads auf, die auf das Objekt warten.

Diese Methoden können nur innerhalb von synchronized-Blöcken/Methoden aufgerufen wer-
den und beziehen sich dadurch auf das jeweilige geschützte Objekt.

Ein typischer Einsatz ist das Produzenten-Verbraucher-Problem: Ein Thread (= Produzent) legt
Daten in einem zentralen Objekt ab, die dann von einem anderen Thread (= Verbraucher) wei-
terbearbeitet werden müssen. Eine elegante Lösung sieht folgendermaßen aus: Der Verbrau-
cher schaut im Objekt nach, ob Arbeit anliegt; falls nicht, legt er sich mit wait() schlafen.
Wenn der Produzent wieder Daten abgelegt hat, informiert er per notify() den Verbraucher,
dass er wieder etwas zu tun hat.

import java.util.*;

public class Start {

 public static void main(String[] args) {

 // zentrale Datenstruktur, die von beiden Threads verwendet wird
 LinkedList<Date> timeStamps = new LinkedList<Date>();

Listing 313: Produzenten-Verbraucher-Problem mit wait()/notify()

>> Threads 641

Th
re

ad
s

 Producer producer = new Producer(timeStamps);
 Consumer consumer = new Consumer(timeStamps);

 // Produzent-Thread starten
 producer.start();

 // Konsumenten-Thread starten
 consumer.start();
 }
}

/**
 * Der Produzent kreiert Zeitstempel und legt sie in der zentralen Liste ab
 */
class Producer extends Thread {
 private LinkedList<Date> timeStamps;

 public Producer(LinkedList<Date> list) {
 super();
 timeStamps = list;
 }

 public void run() {
 Date tmp;

 for(int i = 0; i < 10; i++) {

 // ein bißchen warten
 try {
 sleep(2000);
 } catch(Exception e) { }

 tmp = new Date();

 synchronized(timeStamps) {
 timeStamps.add(tmp);
 // Verbraucher informieren, dass etwas zum Lesen da ist
 timeStamps.notify();
 }
 }
 }
}

/**
 * Der Verbraucher liest und entfernt Zeitstempel aus der zentralen Liste
 */
class Consumer extends Thread {
 private LinkedList<Date> timeStamps;

 public Consumer(LinkedList<Date> list) {

Listing 313: Produzenten-Verbraucher-Problem mit wait()/notify() (Forts.)

>> Thread-Synchronisierung mit Semaphoren642
Th

re
ad

s

238 Thread-Synchronisierung mit Semaphoren
Der Einsatz von synchronized, ggf. in Verbindung mit wait() und notifiy(), hat neben dem
allgemeinen Umstand, dass der zu erstellende Code unübersichtlicher und damit fehleranfälli-
ger wird, auch noch einen weiteren Nachteil: Immer nur ein Thread darf sich in einem
geschützten Abschnitt befinden.

Aus diesen Gründen wurde mit J2SE 1.5 ein weiterer Synchronisierungsmechanismus aufge-
nommen, das Semaphore. Dies kann man sich als einen Wächter vorstellen, der am Eingang
des zu schützenden Bereichs postiert wird und einen gewissen Vorrat an Passierscheinen
besitzt. Jeder Thread, der passieren will, kann durch Aufruf der Methode acquire() einen
Schein anfordern und mit diesem dann den gesicherten Bereich betreten und beim Verlassen
den Schein wieder zurückgeben (Aufruf der Methode release()). Wenn kein Passierschein
beim Wächter mehr vorhanden ist, muss der Thread warten, bis wieder ein Schein zurück-
gegeben worden ist. Die Anzahl num der Passierscheine kann der Programmierer beliebig fest-
legen (bei num = 1 spricht man von einem binären Semaphore oder Mutex, was dem üblichen
synchronized-Mechanismus entspricht).

Der Einsatz eines Semaphores bietet sich beispielsweise an, wenn innerhalb eines Codeab-
schnitts auf bestimmte, nur begrenzt vorhandene Ressourcen zugegriffen wird, z.B. um die
Anzahl an gleichzeitigen Datenbankverbindungen zu begrenzen:

 super();
 timeStamps = list;
 }

 public void run() {
 Date tmp;

 while(true) {
 synchronized(timeStamps) {

 try {
 timeStamps.wait(5000);
 }
 catch(InterruptedException e) {}

 if(timeStamps.size() > 0) {
 tmp = timeStamps.removeFirst();
 System.out.println("Zeitstempel: " + tmp);
 } else
 break;
 }
 }
 }
}

Listing 313: Produzenten-Verbraucher-Problem mit wait()/notify() (Forts.)

>> Threads 643

Th
re

ad
s

import java.util.concurrent.*;
import java.util.*;

public class Start {

 public static void main(String[] args) {

 Semaphore sem = new Semaphore(10); // 10 Passierscheine

 // 100 Threads starten
 for(int i = 0; i < 100; i++) {
 Worker w = new Worker(sem);
 w.start();
 }
 }
}

/**
 * Worker muss Passierschein haben, um zu arbeiten
 */
class Worker extends Thread {
 private Semaphore semaphore;

 Worker(Semaphore s) {
 semaphore = s;
 }

 public void run() {
 // in Endlosschleife wild arbeiten
 try {
 while(true) {
 // Passierschein beantragen
 semaphore.acquire();

 // Zugriff auf beschränkte Ressource,
 // z.B. Datenbankverbindung öffnen und arbeiten
 // ...

 // Passierschein zurückgeben
 semaphore.release();
 }
 } catch(Exception e) {
 e.printStackTrace();
 }
 }
}

Listing 314: Einsatz von Semaphore

>> Thread-Kommunikation via Pipes644
Th

re
ad

s

239 Thread-Kommunikation via Pipes
In vielen Anwendungen soll ein Thread Daten liefern und an einen anderen Thread zur Wei-
terbearbeitung übergeben. Dies nennt man in der Informatik das Produzenten-Verbraucher-
Problem, das auch schon im Rezept 237 zur Sprache kam. Durch die notwendige Absicherung
über synchronized-Abschnitte sowie wait()/notify()-Aufrufe kann die Programmierung bei
komplexeren Aufgaben recht schwierig werden. Deutlich einfacher wird es, wenn immer nur
genau zwei Threads miteinander kommunizieren sollen (also ein Produzent und ein Verbrau-
cher) und keine Objektstrukturen als solche benötigt werden, denn in diesem Fall lassen sich
die Klassen PipedInputStream und PipedOutputStream bzw. PipedReader/PipedWriter aus dem
Paket java.io verwenden2.

Die zentrale Idee ist eine Pipe (= Röhre), bei der an der einen Seite vom Produzenten Daten
hineingestopft werden, die auf der anderen Seite vom Verbraucher herausgenommen werden.
Der Vorteil der PipedXxx-Klassen ist, dass hinter den Kulissen für die notwendige Synchroni-
sierung gesorgt wird, d.h., der Programmierer muss sich darum keine Gedanken mehr machen.
Das folgende Beispiel zeigt, wie das Listing aus Rezept 237 mit Hilfe einer Pipe realisiert wer-
den kann.

2. Der Unterschied zwischen den beiden Paaren ist lediglich, dass die Reader/Writer-Varianten zeichenorientiert sind
(also Unicode verarbeiten), während die Stream-Klassen rein mit Bytes arbeiten.

import java.util.*;
import java.io.*;

public class Start {

 public static void main(String[] args) {

 try {
 PipedWriter writer = new PipedWriter();
 PipedReader reader = new PipedReader(writer);

 Producer producer = new Producer(writer);
 Consumer consumer = new Consumer(reader);

 // Produzent-Thread starten
 producer.start();

 // Konsumenten-Thread starten
 consumer.start();

 } catch(IOException e) {
 e.printStackTrace();
 }
 }
}

/**

Listing 315: Produzenten-Verbraucher-Problem mit Pipes

>> Threads 645

Th
re

ad
s

 * Produzent schreibt Zeitstempel in die Pipe
 */
class Producer extends Thread {
 private PipedWriter thePipe;

 public Producer(PipedWriter pipe) {
 super();
 thePipe = pipe;
 }

 public void run() {
 Date tmp;
 try {
 for(int i = 0; i < 10; i++) {
 tmp = new Date();
 thePipe.write(tmp.toString() + "\n");
 sleep(2000);
 }

 thePipe.close();
 } catch(Exception e) { }
 }
}

/**
 * Verbraucher liest Zeitstempel als Zeichenfolge aus Pipe
 */
class Consumer extends Thread {
 private PipedReader thePipe;

 public Consumer(PipedReader pipe) {
 super();
 thePipe = pipe;
 }

 public void run() {

 while(true) {
 try {
 int c = thePipe.read();

 if(c != -1)
 System.out.print((char) c);
 else
 break;
 } catch(IOException e) {
 e.printStackTrace();
 }
 }
 }
}

Listing 315: Produzenten-Verbraucher-Problem mit Pipes (Forts.)

>> Thread-Pooling646
Th

re
ad

s

Das obige Beispiel zeigt Ihnen auch, dass der Komfortgewinn bei der Programmierung einen
Nachteil hat: Die Pipes arbeiten nur auf Byte- bzw. Zeichenebene. Man kann nicht Objekte an
sich austauschen, sondern nur einzelne Bytes (mit dem Umweg über die Serialisierung könnte
man natürlich auch ganze Objekte übermitteln).

240 Thread-Pooling
Das Erzeugen eines Threads nimmt naturgemäß eine gewisse Zeit in Anspruch. Dies ist für
viele Anwendungen kein Problem, wenn nur relativ wenige Threads erzeugt werden und/oder
die Zeit zur Thread-Erzeugung im Verhältnis zur Lebenszeit (Zeit zur Abarbeitung der run()-
Methode) sehr gering ist.

Die Lage ändert sich, wenn sehr viele Threads benötigt werden, die nur relativ kleine Aufga-
ben erledigen. Hierbei wird dann prozentual gesehen ein merklicher Anteil an Ressourcen nur
zur Thread-Erzeugung anfallen, d.h., der Rechner arbeitet nicht effektiv. In solchen Fällen bie-
tet sich das so genannte Thread-Pooling an. Hierbei wird eine bestimmte Menge an Threads
vorab erzeugt (der Thread-Pool) und zur Bearbeitung von Aufgaben vorgehalten: Jede neue
Aufgabe wird einem freien Thread aus dem Pool übertragen und wenn er diese erledigt hat,
wird er nicht wie üblich beendet, sondern bleibt am Leben und kehrt in den Pool zurück, um
auf die nächste Aufgabe zu warten. Dies senkt den Overhead beträchtlich und ermöglicht es
einem Programm, eintreffende Aufgaben schneller bzw. mehr Aufgaben pro Zeitintervall
abzuarbeiten.

In früheren Java-Versionen musste man sehr mühselig einen Pooling-Mechanismus selbst
implementieren, aber mittlerweile bietet das neue Paket java.util.concurrent eine komplette
Infrastruktur zur komfortablen Realisierung von Thread-Pooling. Die wesentlichen Zutaten
sind:

� Executor.newFixedThreadPool(int): Mit dieser Methode wird ein Pool mit der gewünschten
Anzahl an Threads angelegt.

� ExecutorService: Diese Klasse übernimmt die Ausführung der auszuführenden Ausgaben
und verteilt sie auf die zur Verfügung stehenden Threads aus dem Pool.

� FutureTask: Diese Klasse repräsentiert die auszuführende Aufgabe (= Task).

Beim Erzeugen einer Instanz von FutureTask übergibt man dem Konstruktor ein Objekt einer
selbst definierten Callable-Klasse. Der auszuführende Code muss in der Methode call() defi-
niert sein. Der Rückgabewert der call()-Methode kann ein beliebiges Objekt sein, über das
man Resultate und Statusinformationen zurückmelden kann.

Das folgende Beispiel zeigt einen Multithread-Server, der nach Aufbau eines Thread-Pools auf
eingehende Socket-Verbindungen wartet und sie dann durch den Thread-Pool abarbeiten lässt.
Das Programm eignet sich als Ausgangsbasis für eigene Serverimplementierungen.

/**
 * Thread-Server mit Thread-Pooling
 * Server wartet auf TCP/IP-Verbindungen und übergibt sie einem Thread aus
 * einem Pool zur Bearbeitung
 *
 * @author Peter Müller

Listing 316: Thread-Server mit Thread-Pooling

>> Threads 647

Th
re

ad
s

 */
import java.util.*;
import java.util.concurrent.*;
import java.net.*;

public class ThreadServer {
 private int port;
 private ExecutorService executorService;
 private int maxAccepted;

 /**
 * Konstruktor
 *
 * @param port Port, auf den gelauscht werden soll
 * @param poolSize Anzahl Threads in Pool
 */
 public ThreadServer (String port, String poolSize) {
 this.port = Integer.parseInt(port);
 int size = Integer.parseInt(poolSize);

 // maximale Zahl an Anfragen, die angenommen und gesammelt werden
 // (Überlastungsschutz)
 maxAccepted = 10 * size;

 // Thread-Pool anlegen
 executorService = Executors.newFixedThreadPool(size);
 }

 public static void main(String[] args) {

 if(args.length != 2) {
 System.out.println("Aufruf mit <Portnummer> <Poolgroesse>");
 System.exit(0);
 }

 ThreadServer server = new ThreadServer(args[0], args[1]);
 server.start();
 }

 /**
 * Die Kernmethode des Servers: hier wird in einer Endlosschleife aus
 * TCP/IP-Verbindungen gewartet und an einen Thread aus
 * dem Pool übergeben
 */
 public void start() {
 ServerSocket serverSocket;
 ConcurrentLinkedQueue<FutureTask<RequestResult>> taskList =
 new ConcurrentLinkedQueue<FutureTask<RequestResult>>();

Listing 316: Thread-Server mit Thread-Pooling (Forts.)

>> Thread-Pooling648
Th

re
ad

s

 int requestID = 0;

 ControlThread control = new ControlThread(taskList);
 control.start();

 try {
 serverSocket = new ServerSocket(port);

 } catch(Exception e) {
 e.printStackTrace();
 return;
 }

 while(true) {

 try {
 Socket requestSocket = serverSocket.accept();
 requestID++;

 // Anfrage an Thread aus Pool übergeben
 RequestThread rt = new RequestThread(requestID, requestSocket);
 FutureTask<RequestResult> ft = new FutureTask<RequestResult>(rt);
 executorService.submit(ft);

 // in dieser Liste alle FutureTask-Objekte verwalten
 taskList.add(ft);

 // Evtl. warten, wenn zu viele Anfragen auf Abarbeitung warten
 while(true) {
 int number = taskList.size();

 if(number > maxAccepted) {
 System.out.println("Maximum ueberschritten. Warte ...");

 try { // bisschen warten
 Thread.sleep(10000);
 }
 catch(Exception e) {
 }
 } else
 break;
 }
 } catch(Exception e) {
 e.printStackTrace();
 }

 }
 }
}

Listing 316: Thread-Server mit Thread-Pooling (Forts.)

>> Threads 649

Th
re

ad
s

/**
 * Diese Klasse überwacht die aktuelle Task-Liste als separat laufender
 * Thread
 */
class ControlThread extends Thread {
 private ConcurrentLinkedQueue<FutureTask<RequestResult>> taskList;

 /**
 * Konstruktor
 *
 * @param list Liste mit allen Tasks
 */
 ControlThread(ConcurrentLinkedQueue<FutureTask<RequestResult>> list) {
 taskList = list;
 }

 /**
 * In einer Endlosschleife prüfen, welche Tasks beendet sind und das
 * Ergebnis ausgeben
 */
 public void run() {

 while(true) {
 try {
 Iterator<FutureTask<RequestResult>> it = taskList.iterator();

 while(it.hasNext()) {
 FutureTask<RequestResult> task = it.next();

 if(task.isDone()) {
 RequestResult result = task.get();
 System.out.println("Anfrage " + result.requestID + " Start: "
 + result.start + " Ende: " + result.end);
 it.remove();
 }
 }

 Thread.sleep(2000);
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 }
 }

}

/**
 * Diese Klasse definiert den Arbeiter-Thread, der die eigentliche Arbeit

Listing 316: Thread-Server mit Thread-Pooling (Forts.)

>> Thread-Pooling650
Th

re
ad

s

 * macht
 */
class RequestThread implements Callable<RequestResult> {
 private int id;
 private Socket socket;
 private RequestResult result;

 RequestThread(int id, Socket socket) {
 this.id = id;
 this.socket = socket;
 }

 /**
 * Die main-Methode des Threads (entspricht run() von Thread-Klasse)
 */
 public RequestResult call() {
 result = new RequestResult();
 result.requestID = id;
 result.start = new Date();

 // die Arbeit erledigen;
 // in diesem Beispiel einfach etwas warten
 try {
 Thread.sleep(5000);

 } catch(Exception e) {
 }

 result.end = new Date();
 return result;
 }
}

/**
 * Diese Klasse definiert das Ergebnis eines Arbeiter-Threads; hier als
 * Beispiel wird ganz simpel die Start- und Endzeit zurückgeliefert
 */
class RequestResult {
 public Date start;
 public Date end;
 public int requestID;
}

Listing 316: Thread-Server mit Thread-Pooling (Forts.)

>> Threads 651

Th
re

ad
s

241 Thread-globale Daten als Singleton-Instanzen
Singleton-Klassen sind Klassen, die statt eines Konstruktors eine getInstance()-Methode
anbieten, welche immer dieselbe (und einzige) Instanz der Klasse zurückliefert. Singleton-
Instanzen eignen sich damit auch für den Datenaustausch zwischen Threads.

Die nachfolgend abgedruckte Klasse Singleton verwaltet eine Collection von Strings, über die
die Threads und andere Clients Daten austauschen können.

Abbildung 137: Ausgabe des Thread-Servers

import java.util.Vector;

/**
 * Modell-Klasse für den Datenaustausch über Singleton-Instanzen
 */
public class Singleton {
 private static Singleton instance;
 private Vector<String> data;

 // direkte Instanzbildung unterbinden
 private Singleton() {
 data = new Vector<String>();
 }

 /**
 * Singleton-Instanz zurückliefern
 */
 public static Singleton getInstance() {
 if (instance == null)
 instance = new Singleton();

 return instance;
 }

 // synchronisierter Zugriff auf die data-Collection
 public synchronized Vector<String> getData() {
 return data;
 }
 public synchronized void setData(String value) {
 data.add(value);

Listing 317: Demo-Klasse für den Datenaustausch über Singleton-Instanzen

>> Thread-globale Daten als Singleton-Instanzen652
Th

re
ad

s

Threads (und andere Clients), die über die Klasse Singleton Daten austauschen möchten, gehen
so vor, dass sie sich

� zuerst von getInstance() eine Referenz auf die Singleton-Instanz besorgen

� und dann über die synchronisierten Methoden getData() oder setData() auf die Collection
zugreifen – sei es, um deren Inhalt abzufragen (getData()) oder weitere Strings einzufügen
(setData()).

Zu beachten ist lediglich, dass der Lesezugriff über getData() zusätzlich synchronisiert werden
muss, da getData() eine Referenz auf die Collection zurückliefert.

Das Start-Programm zu diesem Rezept demonstriert anhand dreier Threads den Datenaustausch.

 }
}

import java.util.Vector;

/**
 * Thread, der seinen "Namen" in die data-Collection der Singleton-Instanz
 * schreibt
 */
class EntryThread extends Thread {
 Singleton singleObj = Singleton.getInstance();
 boolean weiter = true;
 String name;
 int period;

 public EntryThread(String name, int period) {
 this.name = name;
 this.period = period;
 }

 public void run() {
 while(weiter) {
 try {
 sleep(period);
 } catch(Exception e) {}

 singleObj.setData(name);
 }
 }
}

/**
 * Thread, der die data-Collection der Singleton-Instanz ausliest
 * und ausgibt
 */

Listing 318: Start.java – demonstriert den Datenaustausch über die Singleton-Klasse.

Listing 317: Demo-Klasse für den Datenaustausch über Singleton-Instanzen (Forts.)

>> Threads 653

Th
re

ad
s

class ReadThread extends Thread {
 Singleton singleObj = Singleton.getInstance();
 boolean weiter = true;

 public void run() {
 Vector<String> data;

 while(weiter) {
 synchronized(singleObj) {
 data = singleObj.getData();

 System.out.println();
 for(String s : data)
 System.out.print(" " + s);
 }

 try {
 sleep(2000);
 } catch(Exception e) {}
 }
 }
}

public class Start {

 public static void main(String args[]) {
 Singleton singleObj = Singleton.getInstance();
 int l;
 System.out.println();

 EntryThread entry1 = new EntryThread("Hi", 1000);
 EntryThread entry2 = new EntryThread("Hoo", 4000);
 ReadThread read = new ReadThread();
 entry1.start();
 entry2.start();
 read.start();

 do {
 l = singleObj.getData().size();
 } while (l < 20);

 entry1.weiter = false;
 entry2.weiter = false;
 read.weiter = false;

 }
}

Listing 318: Start.java – demonstriert den Datenaustausch über die Singleton-Klasse. (Forts.)

>> Thread-globale Daten als Singleton-Instanzen654
Th

re
ad

s

Abbildung 138: Anwachsen der data-Collection während der Programmausführung

Ap
pl

et
s

Applets

242 Grundgerüst
Applets sind Java-Programme, die in Webseiten (HTML-Dokumente) eingebettet werden können.
Als Ende der neunziger Jahre Java zum ersten Mal einer breiteren Öffentlichkeit bekannt wurde,
standen in den Regalen der Buchhändler fast ausschließlich Java-Bücher, die der Applet-Pro-
grammierung gewidmet waren. Heute hat sich die Situation gewandelt und es gibt immer mehr
Java-Bücher, die überhaupt nicht auf die Applet-Programmierung eingehen. Darum erhalten Sie
hier eine Schnelleinführung, wie Sie Applets programmieren und in Webseiten einbinden.

Das Applet-Grundgerüst
Applets werden von einer der beiden Klassen Applet oder JApplet abgeleitet, wobei JApplet
einfach die Swing-Version von Applet ist.

Die Basisklasse JApplet (oder Applet) vererbt Ihrer Klasse eine Reihe von Standardmethoden,
die jedes Applet besitzen muss und die von der Virtual Machine des Browser-Plugins aufgeru-
fen werden.

� init() wird aufgerufen, nachdem der Browser das Applet geladen hat.

� start() wird aufgerufen, wenn der Browser das Applet startet.

� paint() wird aufgerufen, wenn der Browser möchte, dass sich das Applet ganz oder teil-
weise neu zeichnet.

� stop() wird aufgerufen, wenn der Browser das Applet anhält (beispielsweise weil der
Anwender die Webseite verlassen und zu einer anderen Webseite gewechselt hat).

� destroy() wird aufgerufen, bevor der Browser das Applet aus dem Arbeitsspeicher ent-
fernt.

Die Methoden sind nicht abstrakt, müssen also nicht überschrieben werden. Sie können sie
aber überschreiben, um das Verhalten Ihres Applets anzupassen.

Das folgende Applet gibt vor einem farbigen Hintergrund den Text »Hallo vom JApplet« aus.
Die Farbe für den Hintergrund wird bei jedem Neustart des Applets (Aufruf seiner start()-
Methode) neu ausgewählt. Außerdem gibt jede der fünf Applet-Methoden eine Meldung auf
die Konsole aus, so dass Sie den Lebenszyklus des Applets und den Aufruf der Methoden
durch den Browser mitverfolgen können (siehe Abschnitt »Applet testen«).

H
in

w
e

is Welche Aktionen genau welche Applet-Methoden aufrufen, variiert ein wenig von
Browser zu Browser und von Version zu Version. Die neueren Versionen des Internet
Explorers und des Netscape-Browsers rufen beispielsweise bei jedem Verlassen der
Webseite, die das Applet enthält, stop() und destroy() auf und führen bei einer Rück-
kehr auf die Webseite Konstruktor, init(), start() und paint() aus. Bei einer Aktuali-
sierung exerzieren Sie die gesamte Palette von stop() bis start() durch.

import java.awt.*;
import java.awt.event.*;

Listing 319: TheApplet.java – Applet-Grundgerüst

>> Grundgerüst656
Ap

pl
et

s

import javax.swing.*;
import java.util.Random;

/**
 * Applet-Grundgerüst
 */
public class TheApplet extends JApplet {
 Color bgColor;
 Random generator;

 // Konstruktor
 public TheApplet() {
 System.out.println("Konstruktor");
 }

 /**
 * init()-Methode, wird aufgerufen, nachdem der Browser
 * das Applet gestartet hat
 */
 public void init() {
 System.out.println("init()");

 getContentPane().add(new ContentPane());
 generator = new Random();
 }

 /**
 * start()-Methode, wird aufgerufen, wenn der Browser
 * das Applet startet
 */
 public void start() {
 System.out.println("start()");

 bgColor = new Color(generator.nextInt(255),
 generator.nextInt(255),
 generator.nextInt(255));
 }

 /**
 * paint()-Methode, wird aufgerufen, wenn der Browser möchte, dass
 * das Applet neu gezeichnet wird
 */
 public void paint() {
 System.out.println("paint()");
 }

 /**
 * stop()-Methode, wird aufgerufen, wenn der Browser das Applet
 * anhält
 */

Listing 319: TheApplet.java – Applet-Grundgerüst (Forts.)

>> Applets 657

Ap
pl

et
s

Einbettung in Webseiten
Applets können nur als Teil einer Webseite in der Umgebung eines Browser (oder eines geeig-
neten Simulators) ausgeführt werden.

Die Einbindung eines Applets geschieht am einfachsten mit Hilfe des <applet>-Tags:

<applet code="TheApplet.class"
 width="100" height="100"
 alt="Hier sollte ein Applet erscheinen">
</applet>

Das Attribut code gibt den Namen der Class-Datei des Applets an; width und height teilen dem
Browser mit, wie groß die Anzeigefläche für das Applet sein soll. Über das Attribut alt können
Sie einen alternativen Text angeben, der in Browsern erscheint, die keine Applets unterstützen
(für weitere Attribute siehe Tabelle 57).

 public void stop() {
 System.out.println("stop()");
 }

 /**
 * destroy()-Methode, wird aufgerufen, wenn der Browser das Applet
 * aus dem Arbeitsspeicher entfernt
 */
 public void destroy() {
 System.out.println("destroy()");
 }

 /**
 * Anzeige-Panel
 */
 class ContentPane extends JPanel {
 JLabel lb;

 public ContentPane() {
 setLayout(null);
 lb = new JLabel("Hallo vom JApplet");
 lb.setBounds(10, 10, 200, 20);
 lb.setBackground(Color.WHITE);
 add(lb);
 }

 public void paintComponent(Graphics g) {
 super.paintComponent(g);

 setBackground(bgColor);
 g.draw3DRect(5, 5, 210, 30, true);
 }
 }
}

Listing 319: TheApplet.java – Applet-Grundgerüst (Forts.)

>> Grundgerüst658
Ap

pl
et

s

Beispiel:

Attribut Beschreibung

align Ausrichtung des Applets; mögliche Werte sind:
left am linken Rand der Seite
right am rechten Rand der Seite
absmiddle in der Mitte der aktuellen Zeile
bottom am unteren Textrand
middle an der Grundlinie der Zeile
top am oberen Zeilenrand
texttop am oberen Textrand

archive Zur Angabe eines jar-Archivs.
Wenn zu dem Applet mehrere Dateien (Class-Dateien und Ressourcendateien gehören,
können Sie diese in ein jar-Archiv packen und den Pfad zu dieser im archive-Attribut
angeben.
<applet code="TheApplet.class"
 archive="Appletarchiv.jar"
 width="100" height="100">

code Name der Applet-Classdatei (relativ zur Codebasis, siehe Attribut codebase)
Liegt die Applet-Klasse in einem Paket, müssen Sie den Namen mit Paket angeben:
code="paketname.Appletklasse.class"

codebase Liegt das Applet nicht in demselben Verzeichnis wie die Webseite, die es einbindet,
müssen Sie im codebase-Attribut den Verzeichnispfad von dem Verzeichnis der Web-
seite zum Verzeichnis des Applets angeben.
Liegt das Applet in einem Unterverzeichnis ./Applets, wäre die richtige Einstellung:
<applet code="Appletklasse.class"
 codebase="Applets"
 width="100" height="100">

height Höhe des Applets im Browser

width Breite des Applets im Browser

Tabelle 57: Attribute des <applet>-Tags

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
 <title>Applet-Demo</title>
</head>

<body>
<p>Webseite ruft Applet. Bitte antworten.</p>

<applet code = "TheApplet.class"
 width = "300" height = "100">
</applet>

Listing 320: HTML-Code einer Webseite, die das Applet TheApplet einbindet

>> Applets 659

Ap
pl

et
s

</body>
</html>

E
x

k
u

rs <applet> versus <object>
Laut HTML-Spezifikation sollte zur Einbettung von Applets eigentlich das <object>-
Tag benutzt werden. Dessen Einsatz ist, nicht zuletzt wegen der Unterschiede zwischen
den Browsern, recht kompliziert. Ein guter Mittelweg ist daher, die Webseite mit dem
<applet>-Tag aufzusetzen und dann von dem Java-Tool HtmlConverter in ein
<object>-Tag umwandeln zu lassen.

Mit dem JDK-Tool HtmlConverter können Sie Ihre HTML-Seiten ohne große Mühe,
soweit möglich, an den aktuellen HTML-Standard sowie die Anforderungen der
wichtigsten Browser anpassen und gleichzeitig dafür sorgen, dass Websurfer, die Ihre
Applets nicht ausführen können, weil sie veraltete Browser-Plugins verwenden, zur
Sun-Download-seite für das aktuelle Plugin geführt werden.

Alles, was Sie tun müssen, ist

1. den HTML-Code wie oben beschrieben mit dem Applet-Tag aufsetzen.

2. das Tool HtmlConverter aus dem Bin-Verzeichnis Ihrer Java-SDK-Installation auf-
rufen. (Sie können dies über die Konsole oder über den Windows Explorer tun –
HtmlConverter ist eine Swing-Anwendung.)

3. im Fenster die zu konvertierende HTML-Datei auswählen.

4. die gewünschte Java-Version auswählen und

5. auf KONVERTIEREN drücken.

Abbildung 139: Überarbeitung des HTML mit HtmlConverter

Listing 320: HTML-Code einer Webseite, die das Applet TheApplet einbindet (Forts.)

>> Grundgerüst660
Ap

pl
et

s

Applet testen
Nachdem Sie die Webseite zusammen mit der Class-Datei des Applets in einem Verzeichnis
gespeichert haben, können Sie das Applet mit dem AppletViewer-Tool von Java testen.

1. Öffnen Sie ein Konsolenfenster und wechseln Sie in das Verzeichnis mit dem Applet und
der zugehörigen Webseite.

2. Rufen Sie den AppletViewer auf und übergeben Sie ihm die Webseite:

Prompt:> appletviewer Webseite.html

oder

2. Laden Sie die Webseite in einen Browser.

Gibt das Applet Debug- oder Fehlermeldungen auf die Konsole aus, müssen Sie die Unter-
stützung für die Konsole im Java-Plugin-Bedienungsfeld (Seite ERWEITERT für Version 1.5)
und/oder in den Optionen Ihres Browsers aktivieren. Unter Windows wird das Java-Plugin
über die Systemsteuerung aufgerufen.

E
x

k
u

rs Mehr Informationen zur Verwendung der <object />-Tags finden Sie unter folgenden
Adressen:

� http://ww2.cs.fsu.edu/~steele/XHTML/appletObject.html

� http://java.sun.com/j2se/1.5.0/docs/guide/plugin/developer_guide/contents.htm

� http://www.w3.org/TR/1999/REC-html401-19991224/

Abbildung 140: Applet in AppletViewer

>> Applets 661

Ap
pl

et
s

243 Parameter von Webseite übernehmen
Manchmal sollen einem Applet, das in ein HTML-Dokument eingebettet ist, bestimmte Para-
meter mitgegeben werden – beispielsweise die Abmessungen des Applets im Browser oder
irgendwelche zu verarbeitenden Daten. Hierzu gehen Sie wie folgt vor:

1. Definieren Sie im HTML-Code der Webseite, welche Parameter mit welchen Werten überge-
ben werden sollen.

Fügen Sie für jeden Parameter, den Sie an das Applet übergeben wollen, ein <param>-Tag in
den Aufruf des Applets ein.

Abbildung 141: Applet in Browser

A
ch

tu
n

g Damit ein Applet in einem Browser angezeigt werden kann, muss

� der Browser Java unterstützen. (Die großen Browser unterstützen mittlerweile alle
Java. So verwundert es nicht, dass nach einer unabhängigen Umfrage 90% der
Internetanwender einen java-fähigen Browser verwenden.)

� der Browser das Format der Bytecode-Klassen lesen können. (Schwierigkeiten tre-
ten immer dann auf, wenn die Anwender alte Plugins verwenden, die das Klassen-
format, in dem Sie Ihre Applets erstellt haben, nicht verstehen.)

� der Browser die Class-Dateien des Applets (sowie sonstige Dateien, die das Applet
lädt) finden. Dies können Sie durch korrekte Angaben im HTML-Code sicherstellen.
Außerdem sollte das Applet-Verzeichnis mit einem Buchstaben beginnen.

Beachten Sie diesbezüglich auch, dass die Rezepte-Verzeichnisse auf der Buch-CD
durchnummeriert sind. Zum Ausführen und Testen der Applet-Beispiele müssen Sie
diese daher in ein Verzeichnis kopieren, das nicht mit einer Nummer beginnt.

A
ch

tu
n

g Wenn Sie beim Testen Ihrer Applets feststellen, dass sich Änderungen am Code augen-
scheinlich nicht im Applet im Browser niederschlagen, liegt dies vermutlich am
Caching durch das Java-Plugin. Starten Sie dann das Bedienungsfeld des Java-Plugins
und deaktivieren Sie auf der Seite CACHE das Caching.

>> Parameter von Webseite übernehmen662
Ap

pl
et

s

<applet code="TheApplet.class"
 width="400" height="200" >
 <param name="TEXT" value="Hallo Webseite">
 <param name="COLOR_R" value="255">
 <param name="COLOR_G" value="100">
 <param name="COLOR_B" value="150">
</applet>

Jeder Parameter besteht aus einem Name/Wert-Paar, das im <param>-Tag durch die Attri-
bute name und value spezifiziert wird. name dient der Identifizierung des Parameters, value
gibt den Wert an, der für den Parameter an das Applet übergeben wird.

2. Fragen Sie in der init()-Methode des Applets im Applet die Werte der Parameter ab.

Die JApplet-Methode, mit der Sie die einzelnen Parameter vom HTML-Dokument abfragen
können, heißt getParameter() und erwartet als Argument den Namen des Applet-Para-
meters, der von der HTML-Seite übergeben wird. Als Ergebnis liefert sie den Wert dieses
Applet-Parameters als String zurück. Dieser muss gegebenenfalls in seinen eigentlichen
Typ umgewandelt werden.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.util.Random;

public class TheApplet extends JApplet {
 // Felder für Parameter, die von Webseite entgegen genommen
 // werden. Standardwerte werden benutzt, wenn die
 // Parameter nicht von der Webseite übergeben werden
 String text = "Hallo";
 Color bgColor = Color.CYAN;

 /**
 * init()-Methode
 */
 public void init() {
 String param;
 Short r, g, b;

 // Text-Parameter von Webseite abfragen
 param = getParameter("TEXT");
 if (param != null)
 text = param;

 // RGB-Werte für Hintergrundfarbe von Webseite abfragen
 try {
 param = getParameter("COLOR_R");
 r = Short.parseShort(param);
 param = getParameter("COLOR_G");
 g = Short.parseShort(param);
 param = getParameter("COLOR_B");
 b = Short.parseShort(param);

>> Applets 663

Ap
pl

et
s

 if (r*g*b >= 0 && r <= 255 && g <= 255 && b <= 255)
 bgColor = new Color(r, g, b);

 } catch(NumberFormatException e) {
 // Farbe nicht ändern
 }

 // ContentPane einrichten
 getContentPane().add(new ContentPane());
 }

 /**
 * Anzeige-Panel
 */
 class ContentPane extends JPanel {
 JLabel lb;

 public ContentPane() {
 setLayout(null);
 lb = new JLabel();
 lb.setBounds(10, 10, 200, 20);
 lb.setBackground(Color.WHITE);
 add(lb);
 }

 public void paintComponent(Graphics g) {
 super.paintComponent(g);

 // Hintergrundfarbe nach Vorgaben von Webseite setzen
 setBackground(bgColor);

 // Text nach Vorgaben von Webseite setzen
 lb.setText(text);
 g.draw3DRect(5, 5, 210, 30, true);
 }
 }
}

244 Bilder laden und Diashow erstellen
Zum Laden von Bilddateien stehen Ihnen in Applets folgende Methoden zur Verfügung:

Image getImage(URL url)
Image getImage(URL url, String name)

A
ch

tu
n

g Die Methode getParameter() kann nicht im Konstruktor verwendet werden, da Metho-
den von Klassen erst nach Erzeugung der Objekte zur Verfügung stehen.

>> Bilder laden und Diashow erstellen664
Ap

pl
et

s

Beide Methoden erwarten einen URL bzw. einen URL und eine dazu relative Pfadangabe. Der
URL muss auf den Server des Applets verweisen (wie er von der Applet-Methode getCode-
Base() zurückgeliefert wird).

Eine Besonderheit der getImage()-Methode ist, dass sie das Bild selbst nicht lädt, sondern
lediglich ein passendes Image-Objekt zurückliefert (bzw. null, wenn die Bilddatei nicht exis-
tiert). Der Ladevorgang wird zwar automatisch im Hintergrund angestoßen, wenn Sie das Bild
ins Applet zeichnen, doch dieses Verfahren ist nicht immer befriedigend.

Die Alternative ist, den Ladevorgang mit Hilfe eines MediaTrackers direkt in Gang zu setzen.
Dazu erzeugen Sie eine MediaTracker-Instanz, übergeben dieser die zu ladenden Bilder (add-
Image()-Methode) und rufen dann eine der wait-Methoden des MediaTrackers auf, um mit
dem Laden einzelner oder aller Bilder anzufangen und eventuell auch auf den Abschluss des
Ladevorgangs zu warten.

Listing 321: Lademethoden der Klasse MediaTracker

Die nachfolgend abgedruckte Klasse ImageManager demonstriert das Laden mit MediaTracker-
Unterstützung – siehe Konstruktor, der über den zweiten Parameter ein Array oder eine Auflis-
tung von Bilddateinamen übernimmt, für jede Bilddatei ein Image-Objekt erzeugt und in einer
internen Vector-Collection ablegt und schließlich das Laden der Bilder anstößt.

Methode Beschreibung

boolean waitForAll()
boolean waitForAll(long ms)

Beginnt mit dem Laden der Bilder und kehrt erst
zurück, wenn alle Bilder geladen sind oder ein Fehler
aufgetreten ist.
Wird eine Zeit in Millisekunden angegeben, kehrt die
Methode spätestens nach Ablauf dieser Zeit zurück.

boolean waitForID(int id)
boolean waitForID(int id, long ms)

Beginnt mit dem Laden des angegebenen Bilds und
kehrt erst zurück, wenn das Bild geladen oder ein
Fehler aufgetreten ist.
Wird eine Zeit in Millisekunden angegeben, kehrt die
Methode spätestens nach Ablauf dieser Zeit zurück.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.io.*;
import javax.imageio.ImageIO;
import java.util.Vector;
import java.applet.Applet;

/**
 * Klasse zum Laden und Verwalten von Bildern
 */
public class ImageManager {
 private Vector<Image> images = new Vector<Image>(5);
 private MediaTracker tracker;
 private int current = 0;

Listing 322: ImageManager-Klasse, die Bilder lädt und verwaltet

>> Applets 665

Ap
pl

et
s

 private boolean isApplet = false;

 /*
 * Konstruktor
 */
 ImageManager(JApplet applet, String... imageFilenames) {
 Image pic = null;

 // images-Collection füllen
 for (String filename : imageFilenames) {

 // Image-Objekt erzeugen und in Vector-Collection speichern
 pic = applet.getImage(applet.getCodeBase(), filename);
 if (pic != null)
 images.add(pic);
 }

 // Bilder zur Überwachung des Ladevorganges an einen MediaTracker
 // übergeben
 tracker = new MediaTracker(applet);
 for (int i = 0; i < images.size(); i++) {
 tracker.addImage(images.get(i), i);
 }

 // Ladevorgang im Hintergrund starten, ohne zu warten.
 try {
 tracker.waitForAll(0);
 } catch (InterruptedException e) {
 }

 // festhalten, dass Bilder für Applet verwahrt werden
 isApplet = true;
 }

 /*
 * Index des aktuellen Bildes zurückliefern
 */
 public int currentImage() {
 return current;
 }

 /*
 * Index auf nächstes Bild vorrücken und zurückliefern
 */
 public int nextImage() {
 current++;
 if (current >= images.size())
 current = 0;

 return current;

Listing 322: ImageManager-Klasse, die Bilder lädt und verwaltet (Forts.)

>> Bilder laden und Diashow erstellen666
Ap

pl
et

s

Das Pendant zum Konstruktor, der die Bilder lädt, ist die Methode getImage(), die auf Anfrage
ein geladenes Image aus der internen Vector-Collection zurückliefert. Die Methode übernimmt
den Index des Image-Objekts in der Vector-Collection und stellt dann mit Hilfe des MediaTra-
ckers sicher, dass das Bild fertig geladen ist (zur Erinnerung: waitForID() kehrt, wenn die
Methode ohne Zeitlimit aufgerufen wird, erst zurück, nachdem das Bild mit der übergebenen
ID komplett geladen ist). Anschließend liefert sie das Bild zurück.

Ansonsten unterhält die Klasse noch einen internen Positionszeiger current, der in Kombina-
tion mit den Methoden currentImage(), nextImage() und previousImage() zum Durchlaufen
der Bildersammlung verwendet werden kann.

Das Applet zu diesem Rezept nutzt die Klasse ImageManager zur Implementierung einer ein-
fachen Bildergalerie.

 }

 /*
 * Index auf vorheriges Bild zurücksetzen und zurückliefern
 */
 public int previousImage() {
 current--;
 if (current < 0)
 current = images.size()-1;

 return current;
 }

 /*
 * Bild mit dem angegebenen Index zurückliefern
 */
 public Image getImage(int index) {

 if (index >= 0 && index <= images.size()) {

 // Wenn Image für Applet ist, sicherstellen, dass Bild
 // vollständig geladen ist
 if (isApplet) {
 try {
 tracker.waitForID(current);
 } catch (Exception e) {
 }
 }

 return images.get(index);
 }

 return null;
 }

}

Listing 322: ImageManager-Klasse, die Bilder lädt und verwaltet (Forts.)

>> Applets 667

Ap
pl

et
s

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class TheApplet extends JApplet {
 ImageManager images; // Bildersammlung
 DisplayPanel display; // Panel zum Anzeigen der Bilder
 JPanel top;
 JPanel bottom;

 /*
 * Bildersammlung füllen und ContentPane einrichten
 */
 public void init() {
 images = new ImageManager(this, "pic01.jpg", "pic02.jpg", "pic03.jpg");

 getContentPane().add(new ContentPane());
 }

 /*
 * Zweiteilige ContentPane für eine Bildergalerie
 * oben: DisplayPanel
 * unten: Navigationsschalter
 */
 class ContentPane extends JPanel {

 public ContentPane() {
 setLayout(new BorderLayout());

 // Anzeigebereich
 top = new JPanel(new FlowLayout(FlowLayout.CENTER));
 display = new DisplayPanel();
 top.add(display);

 // Navigationsschalter
 bottom = new JPanel(new FlowLayout(FlowLayout.CENTER));
 JButton btnPrevious = new JButton("Voriges Bild");
 btnPrevious.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {

 // Vorangehendes Bild anzeigen lassen
 display.setImage(images.getImage(images.previousImage()));
 top.doLayout();
 }
 });
 JButton btnNext = new JButton("Nächstes Bild");
 btnNext.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {

 // Nächstes Bild anzeigen lassen

Listing 323: TheApplet.java implementiert mit Hilfe von ImageManager eine Bildergalerie.

>> Bilder laden und Diashow erstellen668
Ap

pl
et

s

 display.setImage(images.getImage(images.nextImage()));
 top.doLayout();
 }
 });
 bottom.add(btnPrevious);
 bottom.add(btnNext);

 add(top, BorderLayout.CENTER);
 add(bottom, BorderLayout.SOUTH);

 // Anfangs das erste (aktuelle) Bild aus der Bildersammlung anzeigen
 display.setImage(images.getImage(images.currentImage()));
 }
 }

 /*
 * Panel zum Anzeigen der Bilder
 *
 */
 private class DisplayPanel extends JPanel {
 Image pic = null;

 /*
 * Neues Bild anzeigen
 */
 public void setImage(Image pic) {
 this.pic = pic;

 // Größe des Panels an Bild anpassen
 this.setSize(pic.getWidth(this), pic.getHeight(this));
 this.setPreferredSize(new Dimension(pic.getWidth(this),
 pic.getHeight(this)));

 // Neuzeichnen
 repaint();
 }

 public void paintComponent(Graphics g) {
 super.paintComponent(g);

 // Bild in Panel zeichnen
 if (pic != null)
 g.drawImage(pic, 0, 0, pic.getWidth(this),
 pic.getHeight(this), this);
 }
 }
}

Listing 323: TheApplet.java implementiert mit Hilfe von ImageManager eine Bildergalerie.

>> Applets 669

Ap
pl

et
s

245 Sounds laden
Sounddateien können mit Hilfe der Methode getAudioClip() als AudioClip-Instanzen in
Applets geladen werden. Als Argumente übergeben Sie der Methode den URL des Servers,
von dem das Applet stammt (wie er von der Applet-Methode getCodeBase() zurückgeliefert
wird), und den Namen der zu ladenden Sounddatei (unterstützte Formate sind z.B. WAV, MIDI,
AIFF, RMF und AU).

AudioClip sound = getAudioClip(getCodeBase(),"ein_toller_Sound.au");

Im Gegensatz zum Laden von Bildern kehrt der Aufruf von getAudioClip() erst zurück, wenn
die Datei vollständig geladen worden ist. Eine MediaTracker-Instanz zur Überwachung ist
daher unnötig. Falls die angegebene Datei nicht geladen werden konnte (weil sie zum Beispiel
nicht existiert), wird der Wert null zurückgegeben.

Zum Abspielen der Sounddateien stehen die in dem AudioClip-Interface definierten Methoden
zur Verfügung:

sound.play() // spielt den Inhalt ab bis zum Dateiende,

sound.stop() // beendet das Abspielen,

sound.loop() // spielt die Sounddatei in einer Endlosschleife ab.

Abbildung 142: Applet als Bildergalerie

H
in

w
e

is Die Bilder zu diesem Rezept sind Privateigentum des Autors und dürfen außer in Ver-
bindung mit diesem Buch weder weitergegeben noch genutzt werden.

>> Sounds laden670
Ap

pl
et

s

Die Klasse SoundManager lädt eine dem Konstruktor übergebene Auflistung von Sounddateien,
verwaltet sie in einer internen Vector-Collection und liefert einzelne Sounddateien aus der
Collection auf Anfrage zurück.

Das Applet zu diesem Rezept nutzt die Klasse SoundManager, um die Navigationsschalter der
Bildergalerie aus dem vorangehenden Rezept mit unterschiedlichen Sounds zu unterlegen.

A
ch

tu
n

g Beachten Sie bitte, dass beim Einsatz der loop()-Methode das Abspielen explizit durch
stop() beendet werden muss. Ansonsten kann es passieren, dass Applet oder Anwen-
dung schon beendet sind, aber die Musik munter weiterspielt!

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.util.Vector;
import java.applet.*;

/**
 * Klasse zum Laden und Verwalten von Sounds
 */
public class SoundManager {
 private Vector<AudioClip> sounds = new Vector<AudioClip>(5);

 SoundManager(JApplet applet, String... imageFilenames) {
 AudioClip clip = null;

 // sounds-Collection füllen
 for (String filename : imageFilenames) {

 // AudioClip-Objekt erzeugen und in Vector-Collection speichern
 clip = applet.getAudioClip(applet.getCodeBase(), filename);
 if (clip != null)
 sounds.add(clip);
 }
 }

 /*
 * Sound mit dem angegebenen Index zurückliefern
 */
 public AudioClip getSound(int index) {

 if (index >= 0 && index <= sounds.size())
 return sounds.get(index);

 return null;
 }

}

Listing 324: SoundManager-Klasse, die Sounddateien lädt und verwaltet

>> Applets 671

Ap
pl

et
s

/*
 *
 * @author Dirk Louis
 */
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.applet.AudioClip;

public class TheApplet extends JApplet {
 SoundManager sounds; // Klängesammlung
 ImageManager images; // Bildersammlung
 DisplayPanel display; // Panel zum Anzeigen der Bilder
 JPanel top;
 JPanel bottom;

 /*
 * Bildersammlung füllen und ContentPane einrichten
 */
 public void init() {
 images = new ImageManager(this, "pic01.jpg", "pic02.jpg", "pic03.jpg");
 sounds = new SoundManager(this, "klick.au", "klack.au");

 getContentPane().add(new ContentPane());
 }

 /*
 * Zweiteilige ContentPane für eine Bildergalerie
 * oben: DisplayPanel
 * unten: Navigationsschalter
 */
 class ContentPane extends JPanel {

 public ContentPane() {
 setLayout(new BorderLayout());

 // Anzeigebereich
 top = new JPanel(new FlowLayout(FlowLayout.CENTER));
 display = new DisplayPanel();
 top.add(display);

 // Navigationsschalter
 bottom = new JPanel(new FlowLayout(FlowLayout.CENTER));
 JButton btnPrevious = new JButton("Voriges Bild");
 btnPrevious.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 AudioClip sound = sounds.getSound(0);
 sound.play();

 // Vorangehendes Bild anzeigen lassen

Listing 325: TheApplet.java – Bildergalerie mit Sound-unterstützten Schaltern

>> Mit JavaScript auf Applet-Methoden zugreifen672
Ap

pl
et

s

246 Mit JavaScript auf Applet-Methoden zugreifen
Um via JavaScript auf ein Applet zuzugreifen, wählen Sie am besten den Weg über das docu-
ment-Objekt und die ID des Applet-Tags, d.h.

1. Sie weisen dem Applet eine eindeutige ID zu.

<applet id = "theApplet"
 code = "TheApplet.class"
 width = "100%" height = "100">
</applet>

 display.setImage(images.getImage(images.previousImage()));
 top.doLayout();
 }
 });
 JButton btnNext = new JButton("Nächstes Bild");
 btnNext.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 AudioClip sound = sounds.getSound(1);
 sound.play();

 // Nächstes Bild anzeigen lassen
 display.setImage(images.getImage(images.nextImage()));
 top.doLayout();
 }
 });
 bottom.add(btnPrevious);
 bottom.add(btnNext);

 add(top, BorderLayout.CENTER);
 add(bottom, BorderLayout.SOUTH);

 // Anfangs das erste (aktuelle) Bild aus der Bildersammlung anzeigen
 display.setImage(images.getImage(images.currentImage()));
 }
 }

 private class DisplayPanel extends JPanel {
 s.o. Rezept 244
 }

}

H
in

w
e

is Die Sounddateien zu diesem Rezept entstammen dem Java SE 5-JKD, Verzeichnis
\demo\applets\Animator\audio.

Listing 325: TheApplet.java – Bildergalerie mit Sound-unterstützten Schaltern (Forts.)

>> Applets 673

Ap
pl

et
s

2. Sie greifen über das document-Objekt auf das Applet zu.

<script type="text/javascript">
 <!--

 function jsFunc() {
 ...
 document.theApplet.aMethod(aParam);
 ...
 }

 //-->
</script>

Dieser Weg wird derzeit von den meisten aktuellen Browsern (Internet Explorer, Netscape –
aber nicht Netscape Navigator, Opera) unterstützt, so dass Ihnen die für JavaScript nicht
gerade untypischen if-Verzweigungen zur Anpassung an unterschiedliche Browser-Typen
erspart bleiben.

Die folgende Webseite ruft beim Laden (onLoad-Ereignis des <body>-Tags) eine JavaScript-
Funktion personalize() auf, die in Abhängigkeit von dem Browser, mit dem der Websurfer
unterwegs ist, eine individuelle Begrüßungsformel generiert und an das Applet der Webseite
weitermeldet (wozu die setWelcome()-Methode des Applets aufgerufen wird).

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
 <title>Applet-Demo</title>
 <script type="text/javascript">
 <!--

 function personalize() {
 var welcomeText;

 if (navigator.appName == "Microsoft Internet Explorer")
 welcomeText = "Hallo IE-Surfer";

 else if (navigator.appName == "Netscape")
 welcomeText = "Hallo Netscape-Surfer";

 else
 welcomeText = "Hallo Websurfer";

 document.theApplet.setWelcome(welcomeText);
 }

 //-->
 </script>
</head>

<body onLoad="personalize()">

Listing 326: Webseite, die via JavaScript eine Applet-Methode aufruft

>> Mit JavaScript auf Applet-Methoden zugreifen674
Ap

pl
et

s

Das zugehörige Applet ist wie folgt definiert:

 <applet id = "theApplet"
 code = "TheApplet.class"
 width = "100%" height = "100">
 </applet>

</body>
</html>

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class TheApplet extends JApplet {
 JLabel lbWelcome; // Label zum Anzeigen des Willkommensgrußes
 Color bgColor;

 /**
 * init()-Methode
 */
 public void init() {
 lbWelcome = new JLabel("Hallo Websurfer");
 bgColor = new Color(200,200,200);

 getContentPane().add(new ContentPane());
 }

 /**
 * Methode, die neuen Begrüßungstext setzt und via JavaScript
 * aufgerufen werden kann
 */
 public void setWelcome(String text) {
 lbWelcome.setText(text);
 }

 /**
 * Anzeige-Panel
 */
 class ContentPane extends JPanel {

 public ContentPane() {
 setLayout(new FlowLayout(FlowLayout.CENTER));
 add(lbWelcome);

Listing 327: TheApplet.java

Listing 326: Webseite, die via JavaScript eine Applet-Methode aufruft (Forts.)

>> Applets 675

Ap
pl

et
s

247 Datenaustausch zwischen Applets einer Webseite
Applets, die sich zusammen auf einer Webseite befinden, können, wenn sie vom gleichen Ser-
ver (genauer gesagt der gleichen codebase) stammen, miteinander kommunizieren – d.h., sie
können gegenseitig ihre public-Methoden ausführen.

Damit ein Applet A eine Methode eines zweiten Applets B auf der gleichen Webseite aufrufen
kann (beispielsweise um Applet B Daten zu übergeben), sind folgende Anpassungen nötig:

Auf der Webseite:

1. Applet B muss mit einem eindeutigen name-Attribut deklariert werden.

<applet name = "B"
 code = "AppletB.class"
 width = "40%" height = "200">
</applet>

 }

 public void paintComponent(Graphics g) {
 super.paintComponent(g);

 setBackground(bgColor);
 }
 }
}

Abbildung 143: Applet in Opera, Netscape und Internet Explorer

Listing 327: TheApplet.java (Forts.)

>> Datenaustausch zwischen Applets einer Webseite676
Ap

pl
et

s

Im Code von Applet B:

2. Applet B muss eine passende public-Methode definieren.

// Methode, über die das Applet Strings entgegen nehmen kann
public void setData(String text) {
 // tue irgendetwas mit dem übergebenen Text;
}

Im Code von Applet A:

3. Applet A besorgt sich eine Referenz auf Applet B. Dann ruft es über diese Referenz die
public-Methode von Applet B auf.

import java.applet.*;
...

// Applet-Kontext besorgen
AppletContext ac = getAppletContext();

// Über den "Namen" des HTML-Tags eine Referenz auf das Applet
// besorgen
Applet receiver = ac.getApplet("ReceiverApplet");

// Methode aufrufen
if(receiver != null)
 ((ReceiverApplet) receiver).setData(ta.getText());

Das SenderApplet zu diesem Rezept schickt nach diesem Verfahren den Text aus seiner JText-
Area-Komponente an das ReceiverApplet.

Abbildung 144: Datenübertragung zwischen Applets

>> Applets 677

Ap
pl

et
s

248 Laufschrift (Ticker)
Das Applet aus diesem Rezept erzeugt eine Laufschrift, die endlos von rechts nach links über
das Anzeigefeld des Applets läuft.

Für das Vorrücken der Laufschrift sorgt ein Thread, der alle 100 ms den Text vorrückt und das
Neuzeichnen des Applets veranlasst. Als Run-Object des Threads wird das Applet herangezo-
gen, das zu diesem Zweck das Runnable-Interface implementiert und eine passende run()-
Methode definiert.

Die init()-Methode nimmt von der Webseite verschiedene Parameter entgegen, über die Text
und Aussehen der Laufschrift angepasst werden können.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class TickerApplet extends JApplet implements Runnable {
 Thread thread = null;

 String text;
 int width;
 int height;
 int bg_red, bg_green, bg_blue;
 int fg_red, fg_green, fg_blue;
 int font_size;
 int x, y;

 /**
 * init-Methode
 */
 public void init() {

 // Parameter von HTML-Code abfragen
 text = getParameter("TEXT");
 width = Integer.valueOf(getParameter("WIDTH")).intValue();
 height = Integer.valueOf(getParameter("HEIGHT")).intValue();
 bg_red = Integer.valueOf(getParameter("BG_RED")).intValue();
 bg_green = Integer.valueOf(getParameter("BG_GREEN")).intValue();
 bg_blue = Integer.valueOf(getParameter("BG_BLUE")).intValue();
 fg_red = Integer.valueOf(getParameter("FG_RED")).intValue();
 fg_green = Integer.valueOf(getParameter("FG_GREEN")).intValue();
 fg_blue = Integer.valueOf(getParameter("FG_BLUE")).intValue();
 font_size = Integer.valueOf(getParameter("font_size")).intValue();

 // Startposition für Ticker-Text festlegen
 x = width;
 y = height/2;

 // Farben und Font für Ticker setzen
 setBackground(new Color(bg_red, bg_green, bg_blue));

Listing 328: TickerApplet.java

>> Laufschrift (Ticker)678
Ap

pl
et

s

 setForeground(new Color(fg_red, fg_green, fg_blue));
 setFont(new Font("Monospaced", Font.BOLD, font_size));
 }

 /**
 * Ticker-Thread starten
 */
 public void start() {
 if (thread == null) {
 thread = new Thread(this);
 thread.start();
 }
 }

 /**
 * Ticker-Thread beenden
 */
 public void stop() {
 if (thread != null) {
 thread.interrupt();
 thread = null;
 }
 }

 /**
 * Ticker alle 100 ms vorrücken und neuzeichnen lassen
 */
 public void run() {
 while (thread.isInterrupted() == false) {
 try {

 // vorrücken
 x -= 5;

 // neuzeichnen
 repaint();

 // etwas warten
 Thread.sleep(100);

 } catch (InterruptedException e) {
 return;
 }
 }
 }

 /**
 * Ticker zeichnen
 */
 public void paint(Graphics gc) {
 // alten Schriftzug löschen

Listing 328: TickerApplet.java (Forts.)

>> Applets 679

Ap
pl

et
s

Eine mögliche Einbindung des Applets in eine Webseite könnte wie folgt aussehen:

<applet code="TickerApplet.class" width="800" height="40">
 <param name="TEXT" value="Heute Zucchinis im Sonderangebot" />
 <param name="WIDTH" value="800" />
 <param name="HEIGHT" value="40" />
 <param name="BG_RED" value="255" />
 <param name="BG_GREEN" value="0" />
 <param name="BG_BLUE" value="0" />
 <param name="FG_RED" value="255" />
 <param name="FG_GREEN" value="255" />
 <param name="FG_BLUE" value="255" />
 <param name="FONT_SIZE" value="18" />
</applet>

 gc.clearRect(0, 0, width, height);

 // Wenn Ende erreicht, von vorne beginnen
 FontMetrics fm = gc.getFontMetrics();
 if(x < -fm.stringWidth(text))
 x = width;

 // Schriftzug an neuer Position zeichnen
 gc.drawString(text, x, y);
 }
}

Abbildung 145: Webseite mit Ticker-Applet

Listing 328: TickerApplet.java (Forts.)

Ob
je

kt
e

Objekte, Collections, Design-Pattern

249 Objekte in Strings umwandeln – toString()
überschreiben

Damit die Objekte einer von Ihnen implementierten Klasse nach Ihren Vorstellungen in Strings
umgewandelt werden, müssen Sie die von Object geerbte Methode toString() überschreiben.

Warum ist es besser, die geerbte toString()-Methode zu überschreiben als eine eigene
Methode zu definieren? Da Object die oberste Basisklasse aller Java-Klassen ist, ist sicherge-
stellt, dass jedes Objekt über von Object vererbte Methoden, inklusive toString(), verfügt. Die
Java-Implementierung nutzt dies, indem sie beispielsweise

� bei Konkatenationen von Strings mit Objekten Letztere automatisch durch Aufruf ihrer
toString()-Methode in Strings »umwandelt«.

� die PrintStream-Methoden System.out.print() und System.out.println() für Objekte so
implementiert, dass sie für das übergebene Objekt die Methode toString() aufrufen und den
Rückgabestring ausgeben.

Indem Sie toString() überschreiben, unterstützen Sie die automatische Umwandlung, profitie-
ren weiter von ihr und geben gleichzeitig selbst vor, wie die Objekte Ihrer Klasse in Strings
verwandelt werden.

Die Object-Version
Die von Object vorgegebene Implementierung setzt den String aus den Rückgabewerten der
Methoden getClass() und hashCode() zusammen:

getClass().getName() + "@" + Integer.toHexString(hashCode());

Eigene Versionen
Die Methode toString() sollte einen verständlichen, gut lesbaren String zurückliefern, der das
aktuelle Objekt beschreibt. Da sich die Individualität und der aktuelle Zustand eines Objekts
üblicherweise in den Werten seiner Felder widerspiegeln, fügen die meisten toString()-Imple-
mentierungen die wichtigsten Feldwerte zu einem String zusammen.

public String toString() {

 // Stringrepräsentation des Objekts (hier symbolisiert durch YOUR_STRING)
 // erstellen und zurückliefern
 return YOUR_STRING;
}

Listing 329: Schema zum Überschreiben von toString()

>> Objekte in Strings umwandeln – toString() überschreiben682
Ob

je
kt

e

Für eine Klasse SimpleVector mit zwei Feldern x und y könnte toString() wie folgt aussehen:

Ausgabe:

v1 : (12 ; 124)
v2 : (20 ; 0)

class SimpleVektor {
 int x;
 int y;

 SimpleVektor(int x, int y) {
 this.x = x;
 this.y = y;
 }

 public String toString() {
 return new String("(" + x + " ; " + y + ")");
 }
}

public class Start {

 public static void main(String args[]) {
 System.out.println();

 SimpleVector v1 = new SimpleVector(12, 124);
 System.out.println(" v1 : " + v1.toString());

 SimpleVector v2 = new SimpleVector(20, 0);
 System.out.println(" v2 : " + v2.toString());

 }
}

Listing 330: toString() überschreiben

T
ip

p Überlegen Sie sich genau, zu welchem Zweck Sie toString() überschreiben.

� Vorrangig sollte die Erzeugung eines Strings sein, der das Objekt beschreibt und
sich problemlos in einen Fließtext einbauen oder zur Präsentation von Ergebnissen
verwenden lässt. Ein solcher String sollte weder unnötige Informationen noch Zei-
lenumbrüche (\n) enthalten.

� Eine andere Möglichkeit ist, toString() zum Debuggen zu verwenden und eine
vollständige Liste aller Feldwerte auszugeben.

Glücklich ist, wer beide Zielsetzungen miteinander verbinden kann – wie im Falle der
oben vorgestellten SimpleVector-Klasse geschehen.

>> Objekte, Collections, Design-Pattern 683

Ob
je

kt
e

250 Objekte kopieren – clone() überschreiben
Das Kopieren von Objekten ist per se eine diffizile Angelegenheit; in Java ist es zudem eine
Glaubensfrage, die die Gemeinde der Java-Programmierer in clone()-Befürworter, -Gegner
und -Ignoranten spaltet.

Bevor ich jedoch näher auf die Tücken des Kopierens im Allgemeinen und der Verwendung von
clone() im Besonderen eingehe, möchte ich Ihnen vorab zeigen, wie Sie grundsätzlich vorgehen
sollten, wenn Sie in einer Klasse die von Object geerbte Methode clone() überschreiben.

Sinn und Zweck der clone()-Methode ist es, eine (tiefe) Kopie des aktuellen Objekts zurück-
zuliefern. Der Kontrakt zum Überschreiben von clone(), auf den ich im Abschnitt »Eigene Versi-
onen« noch näher eingehen werde, schreibt diesbezüglich vor, dass Sie sich als Ausgangsmaterial
von der clone()-Methode der Basisklasse (super.clone()) eine flache Kopie zurückliefern lassen.

Der nächste Schritt besteht darin, die flache Kopie in eine tiefe Kopie zu verwandeln.

� Wenn Ihre Klasse Felder von Referenztypen (Klassen, Interfaces) definiert, speichert die
flache Kopie in diesen Feldern die gleichen Referenzen wie das Original. Original und
Kopie greifen also auf ein und dieselben Objekte im Speicher zu. Um eine tiefe Kopie zu
erhalten, müssen Sie die Objekte kopieren und die Referenzen auf die neuen Objekte in den
Feldern Ihrer Kopie speichern (siehe Kasten). Ausgenommen hiervon sind Referenztypen,
deren Objekte immutable sind (beispielsweise String) oder die sowieso nur ein einziges
Objekt kennen (Singleton-Design, siehe Rezept 259).

class AClass implements Cloneable {
 ...

 public Object clone() {
 try {
 AClass obj = (AClass) super.clone();

 // Hier Felder mit Referenzen oder speziellen Werten nachbearbeiten
 // siehe nachfolgende Erläuterungen

 return obj;

 } catch (CloneNotSupportedException e) {
 throw new InternalError();
 }
 }

Listing 331: Schema zum Überschreiben von Object.clone()

A
ch

tu
n

g Achtung! Damit dies funktioniert, müssen alle Basisklassen bis hin zu Object die
Methode clone() gemäß dieses Kontrakts implementieren. Im obigen Beispiel ist dies
gegeben, weil AClass die Klasse Object als direkte Basisklasse hat.

>> Objekte kopieren – clone() überschreiben684
Ob

je
kt

e

� Eventuell müssen Sie auch die Werte von Feldern primitiver Typen anpassen. Beispiels-
weise könnte die Klasse ein int-Feld definieren, das für jedes Objekt eine eindeutige ID
speichert. In solchen Fällen gilt es zu entscheiden, ob die Kopie tatsächlich denselben Wert
wie das Original erhalten soll.

Schließlich wird die Referenz auf die Kopie zurückgeliefert.

Wie Sie die Behandlung der CloneNotSupportedException gestalten, bleibt weitgehend Ihnen
überlassen. Die Exception wird von der Object-Version ausgelöst, falls die Klasse, für deren
Objekt die clone()-Methode aufgerufen wurde, nicht das Interface Cloneable implementiert.
Da dies in obigem Beispiel der Fall ist, wird die Exception nie ausgelöst. Trotzdem muss die
Exception abgefangen werden oder ... Sie leiten die Exception weiter:

public Object clone() throws CloneNotSupportedException {

und überlassen die Behandlung dem aufrufenden Code, was das Kopieren von Objekten aller-
dings unnötig kompliziert.

Falls zwischen Ihrer Klasse und Object bereits eine Basisklasse zwischengeschaltet ist, die die
CloneNotSupportedException abfängt, entfällt selbstverständlich die Exception-Behandlung.

Übrigens: Das Interface Cloneable deklariert keine Methode, nicht einmal clone()! Dass Sie es
in der Liste der implementierten Interfaces ausführen, geschieht vor allem, um die Auslösung
der CloneNotSupportedException zu verhindern (und natürlich um Objekte der Klasse als
Objekte vom Typ Cloneable behandeln zu können, Stichwort Polymorphie).

E
x

k
u

rs Flaches und tiefes Kopieren
Das grundlegende Verfahren zum Kopieren von Objekten besteht aus zwei Schritten:

1. Es wird ein neues Objekt erzeugt, das vom gleichen Typ wie das zu kopierende
Objekt ist.

2. Die Werte aus den Feldern des Originals werden in die Felder des neu angelegten
Objekts kopiert.

Dieses Verfahren ist geradlinig und einfach zu implementieren, erzeugt aber nur eine
flache Kopie, d.h., für Felder von Referenztypen werden lediglich die Referenzen (nicht
die eingebetteten Objekte, auf die die Felder verweisen) kopiert. Die Folge: Sofern Ori-
ginal und Kopie ein Feld eines Referenztyps enthalten, das nicht gleich null ist, weisen
beide auf ein und dasselbe Objekt (siehe Abbildung 146).

Abbildung 146: Flache Kopie

AClass obj1

AClass obj2

eingebettetes SubClass-Objekt

int i

char c

SubClass o

int i

char c

SubClass o

>> Objekte, Collections, Design-Pattern 685

Ob
je

kt
e

Die Object-Version
Die von Object vorgegebene Implementierung löst eine CloneNotSupportedException aus, wenn
die Klasse, für deren Objekt die clone()-Methode aufgerufen wurde, nicht das Cloneable-Inter-
face implementiert.

Ansonsten wird eine flache Kopie erstellt, d.h., es wird ein Objekt vom Typ des Original-
objekts erstellt und die Inhalte der Felder werden 1:1 kopiert.

Achtung! Die Object-Version ist protected. Sie kann also innerhalb abgeleiteter Klassen, nicht
aber über Objektreferenzen aufgerufen werden.

Eigene Versionen
Wenn Sie clone() überschreiben, sollten Sie dies so tun, dass

1. eine tiefe Kopie zurückgeliefert wird,

2. das zurückgelieferte Objekt durch einen Aufruf von super.clone() erzeugt wird,

3. x.clone() != x ist,

4. x.clone().getClass() == x.getClass() ist,

5. x.clone().equals(x) als Ergebnis true liefert,

wobei Bedingung 3 und 4 automatisch erfüllt werden, wenn Sie und alle Basisklassen bis hin
zu Object Bedingung 2 erfüllen.

Doch nicht immer ist es unbedingt erforderlich, clone() zu überschreiben. Wenn Ihre Klasse
keine Felder von Referenztypen definiert, reicht es unter Umständen, zum Kopieren einfach
die geerbte clone()-Version aufzurufen.

Wenn Sie clone() lediglich in den Methoden Ihrer Klasse aufrufen möchten ...

... genügt es, Cloneable in die Liste der implementierten Interfaces aufzunehmen.

class AClass implements Cloneable {
 ...
 public AClass aMethod() {

Um eine tiefe Kopie zu erhalten, müssen Sie dafür sorgen, dass auch die eingebetteten
Objekte kopiert werden und die Felder der Kopie auf die duplizierten Objekte verweisen
(siehe Abbildung 147).

Abbildung 147: Tiefe Kopie

AClass obj1

AClass obj2

int i

char c

SubClass o

eingebettetes SubClass-Objekt

int i

char c

SubClass o

kopiertes SubClass-Objekt

>> Objekte kopieren – clone() überschreiben686
Ob

je
kt

e

 try {
 AClass clone = (AClass) clone();
 ...
 } catch (CloneNotSupportedException e) {
 return null;
 }
 }
}

Wenn Sie möchten, dass clone() auch zum Kopieren von Objekten Ihrer Klasse aufgerufen
werden kann ...

... nehmen Sie Cloneable in die Liste der implementierten Interfaces auf und überschreiben
Sie clone() durch eine public-Version.

class AClass implements Cloneable {
 ...

 public Object clone() {
 try {
 return super.clone();
 } catch (CloneNotSupportedException e) {
 throw new InternalError();
 }
 }
}

// Aufruf über Objektreferenz

AClass obj1 = new AClass();
AClass obj2 = (AClass) obj1.clone();

Das folgende Beispiel überschreibt clone(), um die Methode öffentlich zu machen und sicher-
zustellen, dass eine tiefe Kopie erzeugt wird.

/**
 * Zwei Klassen für eingebettete Objekte, die das Kopieren spannender machen
 */
class SomeClass {
 String name;

 SomeClass(String s) {
 name = s;
 }
}

class AnotherClass implements Cloneable {
 String name;

 AnotherClass(String s) {
 name = s;
 }

Listing 332: clone()-Implementierung für eine Klasse mit eingebetteten Objekten

>> Objekte, Collections, Design-Pattern 687

Ob
je

kt
e

Die Klasse CloneableClass definiert zwei Felder von Referenztypen:

� embeddedA ist vom Typ der Klasse SomeClass. Da diese die clone()-Methode nicht über-
schreibt, erzeugt CloneableClass die Kopie von embeddedA mit Hilfe des SomeClass-Kon-
struktors.

� embeddedB ist vom Typ der Klasse AnotherClass. Da diese die clone()-Methode als public
deklariert, erzeugt CloneableClass die Kopie von embeddedB durch Aufruf von clone().

 public Object clone() {
 try {
 return super.clone();
 } catch (CloneNotSupportedException e) {
 throw new InternalError();
 }
 }

}

/**
 * Die eigentliche klonbare Klasse
 */
class CloneableClass implements Cloneable {
 String name;
 SomeClass embeddedA;
 AnotherClass embeddedB;

 CloneableClass(String name1, String name2, String name3) {
 this.name = name1;
 this.embeddedA = new SomeClass(name2);
 this.embeddedB = new AnotherClass(name3);
 }

 public Object clone() {
 try {
 // Ausgangsobjekt
 CloneableClass obj = (CloneableClass) super.clone();

 // eingebettete Objekte kopieren
 embeddedA = new SomeClass(obj.embeddedA.name);
 embeddedB = (AnotherClass) embeddedB.clone();
 return obj;
 } catch (CloneNotSupportedException e) {
 return null;
 }
 }

 public String toString() {
 return name + ", " + embeddedA.name + ", " + embeddedB.name;
 }
}

Listing 332: clone()-Implementierung für eine Klasse mit eingebetteten Objekten (Forts.)

>> Objekte kopieren – clone() überschreiben688
Ob

je
kt

e

Klonen oder nicht klonen – keine Gewissens-, sondern eine Glaubensfrage
Die clone()-Methode zu überschreiben, ist nur eine von mehreren Möglichkeiten, wie der
Autor einer Klasse das Kopieren von Objekten seiner Klasse unterstützen kann. Gute Alterna-
tiven sind

� die Definition einer eigenen Kopiermethode namens copy(), getDuplicate() oder ähnlichen
Namens, die die Kopie mit Hilfe eines Konstruktors der Klasse erzeugt.

� die Definition eines Kopierkonstruktors, der als Argument eine Referenz auf das Original-
objekt übernimmt.

Viele Programmierer ziehen diese Alternativen sogar vor. Nicht nur weil sie dies vom Kontrakt
der clone()-Methode befreit, sondern auch, weil sie den clone()-Mechanismus wegen seiner
eigenwilligen Konstruktion grundsätzlich ablehnen. Woher kommt diese Abneigung? Ein Blick
auf das Design von Object.clone() enthüllt fünf Schwachpunkte:

� Die Objekterzeugung erfolgt mit Hilfe von Techniken, die außerhalb der Sprache liegen.
Der clone()-Mechanismus weist zwei ganz bemerkenswerte Eigenschaften auf:

� Die clone()-Version von Object liefert ein Objekt der Klasse zurück, für die clone()
ursprünglich aufgerufen wurde. Wenn Sie also für ein Objekt der Klasse C die Methode
clone() aufrufen, führt dies – vorausgesetzt, alle Basisklassen besitzen clone()-Versio-
nen, die gemäß Kontrakt super.clone() aufrufen – zum Aufruf von Object.clone() und
diese Methode ist nicht nur in der Lage zu eruieren, von welchem Typ das zu kopie-
rende Objekt ist, sondern kann auch noch ein Objekt dieses Typs erzeugen.

� Die clone()-Version von Object erzeugt das Objekt ohne Hilfe eines Konstruktors! Das
schafft nicht einmal die Reflection-Methode Class.newInstance()!

Dies ist nicht mit den üblichen Mitteln der Sprache möglich. Die clone()-Methode von
Object muss sich also externer Hilfsmittel (vermutlich der JVM oder des Compilers)
bedienen.

� Es wird kein Konstruktor ausgeführt. Dies ist dann nachteilig, wenn der Konstruktor
neben der Zuweisung von Werten an die Felder noch andere Aufgaben erledigt. Diese Auf-
gaben müssen dann gegebenenfalls von der clone()-Methode übernommen werden.

� Das Interface Cloneable ist kein standesgemäßer Vertrag. Der Sinn eines Interfaces ist es,
sicherzustellen, dass die implementierenden Klassen eine bestimmte Funktionalität samt
passender öffentlicher Schnittstelle bereitstellen. Dazu deklariert das Interface eine oder
mehrere public-Methoden, die die Klassen implementieren müssen. Als Belohnung können
die Objekte der Klassen als Objekte vom Typ des Interface betrachtet werden.

Das Interface Cloneable wird diesem Anspruch nicht gerecht, denn es deklariert keine
Methode. Klassen, die das Interface implementieren, sind nicht deshalb klonbar, weil sie
eine public clone()-Methode bereitstellen, sondern weil die nominelle Implementierung
des Interfaces allein bereits genügt, die Arbeitsweise der Object-Version von clone() so
umzustellen, dass sie statt eine CloneNotSupportedException auszulösen, eine Kopie erstellt.
Der Vertrag des Cloneable-Interfaces lautet daher nicht »Für Klassen, die mich implemen-
tieren, kann zum Kopieren die clone()-Methode aufgerufen werden«, sondern »Für Klas-
sen, die mich implementieren, kann zum Kopieren die clone()-Methode aufgerufen
werden, ohne dass eine Exception ausgeworfen wird – sofern die Zugriffsrechte es erlau-
ben.«

>> Objekte, Collections, Design-Pattern 689

Ob
je

kt
e

Ob der Autor einer Klasse lediglich Cloneable als implementiert auflistet, um die geerbte pro-
tected-Methode in seiner Klassendefinition nutzen zu können, oder die geerbte Methode mit
einer public-Version überschreibt und so den üblichen Interface-Vertrag garantiert, bleibt
also dem Autor überlassen.

� Der Mechanismus funktioniert nur, wenn sich alle beteiligten Basisklassen an den Kon-
trakt halten. Gibt es auf dem Weg von der Klasse C zur obersten Basisklasse Object eine
Basisklasse B, die clone() überschreibt, ohne super.clone() aufzurufen, ist der Mechanis-
mus ausgehebelt. Wenn C nun clone() überschreibt und sich ganz vorschriftsmäßig mit
super.clone() eine flache Kopie zurückliefern lässt, erhält sie nicht mehr ein Objekt ihres
eigenen Typs, sondern ein Objekt vom Typ der Basisklasse B!

� Der Mechanismus erlaubt kein nachträgliches Korrigieren von final-Feldern. Wie erläu-
tert, liefert die clone()-Version von Object eine Kopie zurück, deren Feldwerte 1:1 von
dem Originalobjekt übernommen wurden. Es ist Aufgabe des Programmierers, diese Feld-
werte gegebenenfalls nachträglich zu ändern, beispielsweise um eine tiefe Kopie zu erzeu-
gen oder Feldern, die nicht identisch sein dürfen, andere Werte zuzuweisen. Für final-
Felder ist dies aber nach der Objekterzeugung nicht mehr möglich!

Warum diese Trickserei? Man kann nur spekulieren. Höchstwahrscheinlich ging es den Java-
Vätern darum, alle von Object vererbten Methoden mit sinnvoller Funktionalität auszustatten,
auf die alle Java-Klassen bauen und zurückgreifen können. Im Falle von clone() bedeutete
dies, dass alle Klassen automatisch über eine clone()-Methode verfügen sollten, die zumindest
eine flache Kopie liefert, und dies war eben nur mit Hilfe außersprachlicher Techniken zu
realisieren.

Ob Sie nun den angebotenen clone()-Mechanismus nutzen oder lieber einen eigenen Kopier-
mechanismus implementieren, bleibt in der Regel ganz Ihnen überlassen. Wenn Sie sich aber
entschließen, clone() zu überschreiben, dann sollten Sie sich an den Kontrakt halten und die
oben aufgeführten Bedingungen erfüllen. Lediglich, wenn Sie clone() in einer final-Klasse
überschreiben, können Sie sich überlegen, ob Sie die Kopie statt mit super.clone() durch Auf-
ruf eines Konstruktors erzeugen!

251 Objekte und Hashing – hashCode() überschreiben
Die hashCode()-Methode von Object ist zweifelsohne die unbeliebteste unter den Object-
Methoden. Vielen Programmierern ist der Sinn dieser Methode unklar und aus Ratlosigkeit,
wie die Methode zu überschreiben ist – in der Tat kein ganz leichtes Unterfangen –, beschlie-
ßen sie, die Methode einfach zu ignorieren. Dies ist in der Regel allerdings nur so lange mög-
lich, wie auch die Object-Methode equals() nicht überschrieben wird (siehe Rezept 252), denn
hashCode() und equals() sollten grundsätzlich aufeinander abgestimmt sein.

Was also ist ein Hashcode, wofür wird die Methode hashCode() gebraucht und was passiert,
wenn sie nicht überschrieben wird?

Sinn und Zweck von hashCode()
Die Java-Standardbibliothek definiert in ihrer Collection-Bibliothek eine Reihe von Klassen,
die intern mit dem Konzept der Hashtabelle arbeiten (Hashtable, HashSet, LinkedHashSet,
HashMap, LinkedHashMap, ConcurrentHashMap). Hashtabellen verwalten Daten als Schlüssel/Wert-
Paare und haben den Vorzug, dass man über den Schlüssel gezielt und effizient auf den Wert
zugreifen kann. Das Verfahren, welches zu einem gegebenen Schlüssel den zugehörigen

>> Objekte und Hashing – hashCode() überschreiben690
Ob

je
kt

e

Datensatz findet, bezeichnet man als Hashing. In der Regel besteht das Hashing aus drei
Schritten:

1. Der Schlüssel, bei dem es sich grundsätzlich um jeden beliebigen Datentyp handeln kann,
wird in einen ganzzahligen Wert (den Hashcode, abgekürzt Hash) umgerechnet.

2. Der Hashcode wird in einen Index in die Tabelle umgerechnet. (Im einfachsten Fall wird
hierzu eine einzige Rechenoperation benötigt: hashcode mod anzahlZeilenInTabelle. Wegen
Eigentümlichkeiten der Modulo-Operation sollte die Anzahl Zeilen in der Tabelle eine
Primzahl sein.)

3. Da es möglich ist, dass nach obigem Verfahren unterschiedliche Schlüssel ein und densel-
ben Index ergeben und daher zur gleichen Position in der Tabelle führen (Collision), kön-
nen unter einer Tabellenposition mehrere Werte abgelegt sein. Der letzte Schritt besteht
daher darin, die Werte unter der Tabellenposition durchzugehen, bis der passende Wert zu
dem gegebenen Schlüssel gefunden ist.

Meist werden als Schlüssel Zahlen oder Strings verwendet Ein typisches Beispiel ist die Ablage
von Kontaktadressen unter den Namen der Kontakte. Java erlaubt als Schlüssel aber nicht nur
Zahlen oder Strings, sondern Objekte beliebiger Klasse – was uns zur Methode hashCode() führt.

Den ersten Hashing-Schritt, die Umwandlung des Schlüssels in einen ganzzahligen Hashcode,
kann die Datenstruktur unmöglich selbst vornehmen. Die Java-Collection-Klassen übertragen
diese Aufgabe daher dem Schlüssel, d.h., sie rufen die hashCode()-Methode des Schlüssel-
Objekts auf. Passend dazu haben die Entwickler von Java sichergestellt, dass jedes Objekt über
die Methode hashCode() verfügt, indem sie diese in Object definierten. Was sie nicht sicherstel-
len konnten, ist, dass jedes Objekt über eine korrekt arbeitende hashCode()-Methode verfügt.

Was aber ist eine korrekt arbeitende hashCode()-Methode?

Der Sinn einer auf einer Hashtabelle basierenden Datenstruktur ist, dass Sie einen Wert mit
Hilfe eines Schlüssels darin ablegen und jederzeit mit diesem Schlüssel auch wieder abfragen

H
in

w
e

is Wie kann man sich eine Hashtabelle als realen Code vorstellen? Beginnen wir mit der
Repräsentation der Schlüssel/Wert-Paare. Für diese bietet sich die Definition einer
eigenen Klasse Entry an, die neben Schlüssel und Wert auch noch die Referenz auf das
nächste Entry-Objekt speichert, dessen Schlüssel zum gleichen Index führt (Schritt 1
und 2).

class Entry<K, V> {
 K key;
 V value;
 Entry<K, V> next;
}

Die Hashtabelle selbst kann dann als Array von Entry-Objekten angelegt werden.

Entry[] table = new Entry(InitialSize);

Soll ein neues Schlüssel/Wert-Paar in diese Hashtabelle eingefügt werden, wird gemäß
Schritt 1 und 2 aus dem Schlüssel der Index in das Array berechnet. Dann wird aus
Schlüssel und Wert ein Entry-Objekt erzeugt, welches entweder direkt unter
table[index] abgelegt wird oder, falls sich dort bereits ein Entry-Objekt befindet, ans
Ende der next-Kette angehängt wird.

>> Objekte, Collections, Design-Pattern 691

Ob
je

kt
e

können. Dies bedeutet, dass ein und derselbe Schlüssel stets1 denselben Hashcode erzeugen
muss. Im Falle der Java-Collection-Klassen kommt nun noch hinzu, dass Schlüssel und
Schlüssel-Objekt nicht identisch sind. Tatsächlich kann ein Schlüssel-Objekt mehrere Schlüssel
repräsentieren und umgekehrt können verschiedene Schlüssel-Objekte ein und denselben
Schlüssel darstellen. Dies liegt daran, dass die Java-Collection-Klassen die Gleichheit der
Schlüssel mit Hilfe der equals()-Methode der Schlüssel-Objekte feststellen. Wenn also zwei
Schlüssel-Objekte laut equals() gleich sind, repräsentieren sie für die Collection-Klassen ein
und denselben Schlüssel. Wenn umgekehrt ein Schlüssel-Objekt im Laufe der Anwendung so
verändert wird, dass sein aktueller Zustand laut equals() nicht mehr seinem früheren Zustand
entspricht, repräsentiert es fortan einen anderen Schlüssel.

Da gewährleistet sein muss, dass gleiche Schlüssel im Verlauf einer Anwendung auch gleiche
Hashcodes ergeben, die Schlüssel aber gleich sind, wenn die Schlüssel-Objekte im Sinne von
equals() gleich sind, folgt, dass hashCode() für laut equals() gleiche Schlüssel-Objekte identi-
sche Hashcodes liefern muss.

Für die in Object vorgegebenen Standardimplementierungen von equals()- und hashCode()-
Methoden ist die Bindung von hashCode() an equals() erfüllt. (Beide Methoden sind meist so
implementiert, dass sie Gleichheit bzw. Hashcode auf der Grundlage der Speicheradresse des
Objekts zurückliefern, d.h., ein Objekt ist nur zu sich selbst gleich und sein Hashcode ist seine
Speicheradresse.) Sobald Sie aber für eine Klasse equals() überschreiben, um festzulegen, dass
auch verschiedene Objekte als gleich anzusehen sind, wenn sie in bestimmten Feldwerten
übereinstimmen, zerstören Sie die Bindung von hashCode() zu equals() und müssen zur Wie-
derherstellung der von der Java-API-Spezifikation vorgegebenen Beziehung auch hashCode()
überschreiben.

Falls Sie die Beziehung nicht wiederherstellen, dürfen die Objekte Ihrer Klasse nicht als
Schlüssel-Objekte für auf Hashtabellen basierende Collection-Klassen verwendet werden. Dies
ist sicherlich eine Einschränkung, die man hinnehmen könnte, doch leider sind die Folgen
noch weitreichender:

� Manche Collection-Klassen, die an sich nur mit »Werten« arbeiten (beispielsweise HashSet),
speichern diese intern als Schlüssel! Es ist daher bei der Auswahl der Collection höchste
Vorsicht geboten, wenn Sie in einer Collection Objekte von Klassen ablegen, deren hash-
Code()-Implementierung nicht zur equals()-Methode passt.

� Nicht nur Sie können Objekte in Collection-Klassen speichern. Etliche Klassen der Java-
API (oder sonstiger Java-Bibliotheken) nutzen intern ebenfalls die Vorteile der Collections.

� Da die Java-API-Spezifikation vorschreibt, dass hashCode() für laut equals() gleiche
Objekte identische Hashcodes liefert, verlassen sich andere Programmierer darauf, dass
diese Bedingung erfüllt ist, und können Code schreiben, der nichts mit Collections zu tun
hat, aber dennoch auf die hashCode()-Methode der bearbeiteten Objekte zugreift.

1. »Stets« bedeutet hier »für die aktuelle Sitzung mit der Anwendung«.

public int hashCode() {

 // Hashcode aus Feldern berechnen, die von equals() berücksichtigt werden
 return HASHCODE;
}

Listing 333: Schema zum Überschreiben von hashCode()

>> Objekte und Hashing – hashCode() überschreiben692
Ob

je
kt

e

Fazit: Grundsätzlich sollten Sie den Anweisungen der Java-API-Spezifikation folgen und hash-
Code() in Übereinstimmung mit equals() implementieren!

Wenn Sie sicher sind, dass kein Bedarf besteht und nie bestehen wird, Objekte Ihrer Klasse
(oder abgeleiteter Klassen) in Collections zu verwahren, ist die Gefahr, dass es zu Programm-
fehlern kommt, wenn Sie sich die Anpassung von hashCode() sparen, relativ gering, aber unter
Umständen nur sehr schwer auszuschließen. Für diese Fälle gibt es die Möglichkeit, hashCode()
mit einer Notversion zu überschreiben (siehe Abschnitt »Eigene Versionen«).

Die Object-Version
Die von Object vorgegebene Implementierung liefert einen für jedes Objekt eindeutigen Inte-
ger-Wert zurück (meist wird die Methode so implementiert, dass sie die Speicheradresse des
Objekts zurückliefert).

Eigene Versionen
Die vorrangige Aufgabe der Methode hashCode() ist es, Schlüssel in Hashcodes für den Zugriff
auf Hashtabellen umzuwandeln. Die wichtigste Forderung an die hashCode()-Methode ist
daher, dass gleiche Schlüssel stets2 zum gleichen Hashcode führen. Da die Implementierung
der Java-Collection-Klassen Objekte, die laut equals() gleich sind, als identische Schlüssel
ansieht, leiten sich daraus folgende zwei Bedingungen ab, die hashCode() unbedingt erfüllen
muss – oder die Objekte der Klasse können nicht sicher zusammen mit Collection-Klassen ver-
wendet werden:

� Für zwei Objekte obj1 und obj2, für die obj1.equals(obj2) den Wert true ergibt, müssen
identische Integer-Werte zurückgeliefert werden.

� Für ein und dasselbe Objekt muss während der gesamten Ausführungszeit der Anwendung
stets der gleiche Integer-Wert zurückgeliefert werden, es sei denn, es gab Änderungen in
den Feldern, die in equals() verglichen werden.

Daneben gibt es noch einige unverbindliche Anforderungen, die die Güte der Hashfunktion
betreffen. Ihre hashCode()-Implementierung muss diese Anforderungen nicht erfüllen – eine
hundertprozentige Umsetzung ist in der Regel sowieso unmöglich –, sollte aber versuchen,
dem Ideal möglichst nahe zu kommen, da dies die Performance der Hashtabellen-basierten
Collections verbessert.

E
x

k
u

rs Hash-Funktionen
Als Hash-Funktion bezeichnet man ganz allgemein eine Funktion, die zu einer mehr
oder weniger umfangreichen oder komplexen Eingabe einen vergleichsweise einfachen
Wert aus einem begrenzten Wertebereich (meist eine Ganzzahl oder ein String fester
Länge) zurückliefert.

Hash-Funktionen werden in ganz verschiedenen Bereichen der Informatik/Program-
mierung eingesetzt und müssen dabei unterschiedliche Anforderungen erfüllen. Die an
hashCode() gestellten Bedingungen sind beispielsweise typisch für Hash-Funktionen,
die Indizes in Tabellen liefern sollen. Für Hash-Funktionen, die zur Verschlüsselung
eingesetzt werden, ist es hingegen ganz entscheidend, dass es keine Rückverfolgung
vom Hashcode zu den Ausgangsdaten gibt.

2. »Stets« bedeutet hier »für die aktuelle Sitzung mit der Anwendung«.

>> Objekte, Collections, Design-Pattern 693

Ob
je

kt
e

� Für Objekte, die gemäß equals() verschieden sind, sollten nach Möglichkeit unterschied-
liche Integer-Werte zurückgeliefert werden.

Gleiche Hashcodes für unterschiedliche Objekte (sprich Schlüssel) sind kein Beinbruch,
bedeuten aber längere Zugriffszeiten. (Schlimmstenfalls, wenn für alle Objekte ein und
derselbe Hashcode zurückgeliefert wird, degeneriert die Hashtabelle zu einer Liste.)

� Alle Zahlen aus dem Wertebereich der Hash-Funktion sollten gleich wahrscheinlich sein.

� Die Methode sollte möglichst effizient implementiert sein.

Zu den immer wiederkehrenden Aufgaben, mit denen Hashtabellen-Implementierungen zu
tun haben, gehört die Feststellung der Gleichheit zweier Schlüssel – beispielsweise, wenn
zu einem gegebenen Schlüssel das zugehörige Schlüssel/Wert-Paar gefunden werden soll.
Viele Implementierungen, darunter auch die Java-Collection-Klassen, vergleichen dazu
vorab die Hashcodes und dann erst die Schlüssel – in der Annahme, dass die Hashcodes
schneller zu vergleichen sind. Sind die Hashcodes unterschiedlich, können sie sich den
Vergleich der Schlüssel sparen.

Wenn Sie in einer Klasse die von Object geerbte equals()-Methode so überschreiben, dass
Objekte, die in bestimmten Feldern gleiche Werte besitzen, als gleich anzusehen sind, erfüllt
die geerbte hashCode()-Implementierung nicht mehr den obigen Vertrag.

Die Notversion
Die einfachste Möglichkeit, den Vertrag wieder zu erfüllen, ist hashCode() so zu überschreiben,
dass die Methode den immer gleichen Wert zurückliefert:

public int hashCode() {
 return 11;
}

So einfach kann die Überschreibung von hashCode() sein! Für Klassen, deren Objekte als
Schlüssel oder Werte in Collection-Klassen verwahrt werden könnten, ist diese Implementie-
rung natürlich absolut unbefriedigend, da sie eine effiziente Arbeitsweise der betroffenen
Hashtabellen unmöglich macht. Wenn Sie aber davon ausgehen können, dass die Objekte Ihrer
Klasse nicht in Collection-Klassen verwahrt werden, ist dies eine billige Möglichkeit, wie Sie
hashCode() mit wenig Aufwand korrekt überschreiben können – für den Fall des Falles, dass
Objekte der Klasse doch einmal in Hashtabellen landen oder als Schlüssel missbraucht werden.

Der Kompromiss
Eine gute, wenn auch nicht besonders effiziente hashCode()-Implementierung erhalten Sie,
wenn Sie die Felder der Klasse, die in equals() berücksichtigt werden, in Strings umwandeln,
aneinander hängen und dann den Hashcode des Ergebnisstrings zurückliefern.

public int hashCode() {
 StringBuilder s = new StringBuilder();
 s.append(feld1);
 s.append(feld2);

 return s.toString().hashCode();

Unter Umständen müssen Sie den String dazu nicht einmal selbst erstellen, sondern können
toString() aufrufen. Voraussetzung ist, dass toString() in den Ergebnisstring keine veränder-
lichen Werte einbaut, die nicht aus den von equals() berücksichtigten Feldern stammen. (Ach-

>> Objekte und Hashing – hashCode() überschreiben694
Ob

je
kt

e

tung! Kann zu Überlauf führen, wenn der von toString() zurückgelieferte String zu viele
Zeichen enthält.)

Die sauberste Lösung
Ein gängiges Standardverfahren zur Berechnung eines Hashcodes aus den Werten mehrerer
Felder ist, die Feldwerte in Integer-Werte umzuwandeln und rekursiv aufzusummieren:

Hash(0) = 1;

Hash(n) = Hash(n-1)*Prim + Feld(n);

Entscheidend ist, dass die Felder nicht einfach aufsummiert, sondern zu dem Produkt aus dem
letzten Zwischenergebnis mal einer Zahl (üblicherweise eine Primzahl) addiert werden. Auf
diese Weise wird ausgeschlossen, dass das Assoziativgesetz der Addition zu unerwünschten
identischen Hashcodes führt:

Die einfache Summation feld1 + feld2 liefert für (feld1 = 1, feld2 = 5) und (feld1 = 5, feld2
= 1) denselben Hashcode.

Obige rekursive Summation liefert für (feld1 = 1, feld2 = 5) den Hashcode 1*Prim + 5 und
für (feld1 = 5, feld2 = 1) den Hashcode 5*Prim + 1.

Wie Sie die Feldwerte in Integer-Werte umwandeln, können Sie Tabelle 58 entnehmen.

Datentyp des Feldes Umwandlung

boolean 1 für true
0 für false

int, short, byte, char –

long (int) (feldwert * (feldwert >>> 32))

float Float.floatToIntBits(feldwert)

double long tmp = Double.doubleToLongBits(feldwert);
(int) (tmp * (tmp >>> 32))

Referenztyp Die Umwandlung hängt davon ab, wie die equals()-Methode das Feld bei
der Feststellung der Gleichheit berücksichtigt. Wenn die equals()-Methode
einfach die equals()-Methode des Felds aufruft, können Sie analog in
hashCode() die hashCode()-Methode des Felds aufrufen.
0, wenn Referenz gleich null.

Tabelle 58: Feldwerte in Integer-Werte für Hashcode-Berechnung umwandeln

class SimpleVector {
 int x;
 int y;

 ...

 public int hashCode() {
 int hash = 1;
 final int prime = 17;

Listing 334: Aus Start.java

>> Objekte, Collections, Design-Pattern 695

Ob
je

kt
e

252 Objekte vergleichen – equals() überschreiben
Objekte können auf zweierlei Weise verglichen werden:

� Es kann überprüft werden, ob zwei Objekte gleich sind.

� Es kann überprüft werden, ob ein Objekt größer, kleiner oder gleich einem anderen Objekt ist.

Für den Größenvergleich ist die Methode compareTo() aus dem Interface Comparable verant-
wortlich (siehe Rezept 253). Für die Überprüfung auf Gleichheit dient die Methode equals(),
die von der obersten Basisklasse Object vererbt wird. Wenn Sie selbst festlegen wollen, wann
zwei Objekte einer Ihrer Klassen gleich sein sollen, müssen Sie equals() überschreiben.

Die Object-Version
Die von Object vorgegebene Implementierung liefert true, wenn die Referenzen auf das aktu-
elle Objekt und das Argument identisch sind – sie arbeitet also genauso wie der ==-Operator
für Referenzen.

public boolean equals(Object obj) {
 return (this == obj);
}

 hash = hash*prime + x;
 hash = hash*prime + y;

 return hash;
 }
}

public boolean equals(Object obj) {

 if (obj == this) // Schnelltest für Reflexivität
 return true;

 if (obj == null) // Schnelltest auf null
 return false;

 if (obj.getClass() != getClass()) // Datentyp gleich?
 return false;

 TheClass o = (TheClass) obj; // Feldwerte gleich
 if (FELDER VON o UND obj MIT GLEICHEN WERTEN ?)
 return true;
 else
 return false;
 }
}

Listing 335: Schema zum Überschreiben von equals()

Listing 334: Aus Start.java (Forts.)

>> Objekte vergleichen – equals() überschreiben696
Ob

je
kt

e

Eigene Versionen
Die von Object vererbte Methode vergleicht lediglich Objektreferenzen, während für eine ver-
nünftige Arbeit mit den Objekten einer Klasse eher Vergleiche auf der Basis von Feldwerten
angebracht wären.

Betrachten Sie dazu die folgende Klasse:

class SimpleVector {
 int x;
 int y;

 SimpleVector(int x, int y) {
 this.x = x;
 this.y = y;
 }

 public String toString() {
 return new String("(" + x + " ; " + y + ")");
 }
}

Für diese Klasse würde man sich zweifelsohne eine equals()-Implementierung wünschen, die
genau dann true zurückliefert, wenn zwei Vektoren die gleichen x,y-Koordinaten haben:

// voreilige equals()-Implementierung
public boolean equals(Object obj) {

 if (obj instanceof SimpleVector) {
 SimpleVector o = (SimpleVector) obj;
 return ((o.x == x) && (o.y == y));
 } else
 return false;
}

Hier prüft die Methode zuerst mittels des instanceof-Operators, ob sich das übergebene Objekt
in ein Objekt der Klasse SimpleVector umwandeln lässt. Ist dies möglich, führt sie die Typ-
umwandlung durch, um danach die Feldwerte des übergebenen Objekts mit den Feldwerten
des aktuellen Objekts zu vergleichen. Das Ergebnis dieses Vergleichs wird zurückgeliefert.

Aus Sicht der Klasse SimpleVector wäre diese Implementierung absolut ausreichend, aber
genügt sie auch den in der Java-Spezifikation festgeschriebenen, mehr oder weniger verbind-
lichen Regeln, die jede equals()-Implementierung erfüllen sollte? Diese Regeln lauten:

1. obj1.equals(obj1) soll true liefern (Reflexivität).

2. obj1.equals(null) soll false liefern (null-Vergleich).

3. obj1.equals(obj2) soll das gleiche Ergebnis liefern wie obj2.equals(obj1) (Symmetrie).

4. (obj1.equals(obj2) && obj2.equals(obj3)) soll nur dann true liefern, wenn auch
obj1.equals(obj3) true liefert (Transitivität).

5. Wiederholte Aufrufe von obj1.equals(obj2) sollen, solange weder obj1 noch obj2 geändert
wurden, immer das gleiche Ergebnis liefern (Konsistenz).

6. Klassen, die equals() überschreiben, sollten in der Regel auch hashCode() überschreiben
(siehe hierzu Rezept 251).

>> Objekte, Collections, Design-Pattern 697

Ob
je

kt
e

Das sind eine Menge von Vorschriften, aber lassen Sie sich nicht abschrecken. Die meisten
Vorschriften erfüllen sich ganz von selbst. Beispielsweise genügt die oben angedeutete Imple-
mentierung bereits sämtlichen Kriterien, mit Ausnahme von 3 und 6. Wie Vorschrift 6 zu
erfüllen ist, lesen Sie in Rezept 251. Bleibt noch die Symmetrie.

Die Feldwerte sind bei Berücksichtigung der Symmetrie meistens unkritisch, d.h., wenn zwei
Objekte obj1 und obj2 einer Klasse für die in equals() verglichenen Felder identische Werte
besitzen, liefert obj1.equals(obj2) in der Regel auch das gleiche Ergebnis wie obj2.
equals(obj1).

Problematisch wird es, wenn obj1 von einer Klasse SimpleVector und obj2 von einer abgeleite-
ten Klasse ExtSV stammen und beide Klassen die equals()-Methode nach obigem Muster imp-
lementieren. Dann liefern die symmetrischen equals()-Vergleiche einmal true und einmal
false:

SimpleVector obj1 = new SimpleVector(1, 2);
ExtSV obj2 = new ExtSV(1, 2);
obj1.equals(obj2); // SimpleVector.equals() liefert true
obj2.equals(obj1); // ExtSV.equals() liefert false

Der Grund hierfür ist der instanceof-Operator.

� Im ersten Aufruf verweist obj2 auf ein ExtSV-Objekt. Der Vergleich mit instanceof ergibt
daher true (weil ExtSV implizit in die Basisklasse SimpleVector umgewandelt werden kann)
und da auch die Feldwerte von x und y für beide Objekte übereinstimmen, liefert der
gesamte Vergleich true.

� Im zweiten Aufruf verweist obj1 auf ein SimpleVector-Objekt und der instanceof-Operator
prüft, ob dieses in die abgeleiteten Klasse ExtSV umgewandelt werden kann. Da dies nicht
geht, liefert er false zurück und als Gesamtergebnis des Vergleichs wird false zurück-
geliefert.

Glücklicherweise ist es aber gar nicht so schwierig, die Symmetrie herzustellen. Sie müssen
nur im else-Teil statt false das Ergebnis der Basisklassenimplementierung zurückliefern:

// endgültige equals()-Implementierung / super-Version
public boolean equals(Object obj) {

 if (obj instanceof TheClass) {
 TheClass o = (TheClass) obj;
 return ((o.x == x) && (o.y == y));
 } else
 return super.equals(obj);
}

Wenn eine Rückführung auf die Basisklassenmethoden nicht möglich oder sinnvoll ist (Verlust
der Transitivität, siehe oben), sollten Sie einen anderen Weg einschlagen und mit getClass()
sicherstellen, dass das aktuelle und das übergebene Objekt dem gleichen Klassentyp angehö-
ren. In diesem Fall garantieren Sie die Symmetrie, opfern aber die Möglichkeit, mit equals()
die Objekte einer Basisklasse mit Objekten ihrer abgeleiteten Klassen vergleichen zu können.
Außerdem müssen Sie explizit auf Reflexivität und null testen:

// endgültige equals()-Implementierung / getClass()-Version
public boolean equals(Object obj) {

>> Objekte vergleichen – equals() überschreiben698
Ob

je
kt

e

 if (obj == this) // Schnelltest für Reflexivität
 return true;

 if (obj == null) // Schnelltest auf null
 return false;

 if (obj.getClass() != getClass()) // wegen Symmetrie
 return false;

 TheClass o = (TheClass) obj;

 return ((o.x == x) && (o.y == y)); // eigentlicher Vergleich
}

A
ch

tu
n

g Wenn die abgeleitete Klasse neue Felder in den Vergleich einbezieht (wovon auszu-
gehen ist, denn wozu sollte sie sonst equals() überschreiben), geht die Transitivität
verloren!

Sind a ein Objekt einer Basisklasse und b und c Objekte abgeleiteter Klassen, deren
geerbte Felder die gleichen Werte enthalten wie a, die sich aber in einem neu definier-
ten Feld unterscheiden, folgt aus b.equals(a) gleich true und a.equals(c) gleich true
eben nicht b.equals(c) gleich true. Dies lässt sich nicht grundsätzlich vermeiden. Im
Einzelfall müssen Sie sich entscheiden, ob Sie lieber auf die Transitivität oder auf den
Vergleich zwischen Objekten verschiedener Klassen einer Klassenhierarchie (siehe
unten) verzichten möchten.

H
in

w
e

is Definiert eine Klasse Felder von Klassentypen, die Sie in den Vergleich mit einbeziehen
wollen, rufen Sie in Ihrer equals()-Implementierung deren equals()-Methoden auf.

Abbildung 148: Vergleiche von SimpleVector-Objekten mit equals()

>> Objekte, Collections, Design-Pattern 699

Ob
je

kt
e

253 Objekte vergleichen – Comparable implementieren
Wenn Sie die Objekte Ihrer Klassen nicht nur auf Gleichheit überprüfen, sondern auch in eine
Reihenfolge bringen oder sortieren möchten, sollten Sie das Interface Comparable implementieren.

Das Interface Comparable<T> enthält eine einzige Methode:

public int compareTo(T o)

die so implementiert werden muss, dass sie:

� einen positiven Integer-Wert zurückliefert, wenn das aktuelle Objekt (für das die Methode
aufgerufen wird) größer ist als das übergebene Objekt,

� einen negativen Integer-Wert zurückliefert, wenn das aktuelle Objekt kleiner ist als das
übergebene Objekt,

� 0 zurückliefert, wenn die beiden Objekte gleich groß sind.

Des Weiteren sollte die Methode so implementiert werden, dass Folgendes gegeben ist:

1. Wenn x kleiner y ist, gilt umgekehrt, dass y größer x ist ((x.compareTo(y)) gleich -(y.com-
pareTo(x))).

2. Wenn zwei Objekte gleich sind, sind sie entweder beide größer oder beide kleiner als
irgendein beliebiges anderes Objekt (wenn x.compareTo(y)==0, dann haben x.compareTo(z)
und y.compareTo(z) das gleiche Vorzeichen für jedes z).

3. Der Vergleich ist transitiv (aus (x.compareTo(y)>0 && y.compareTo(z)>0) folgt x.com-
pareTo(z)>0).

4. Der Vergleich löst mit null eine NullPointerException aus.

5. Der Vergleich löst eine ClassCastException aus, wenn der Typ des übergebenen Objekts
keinen Vergleich zulässt.

6. Die Methode stimmt in der Bewertung der Gleichheit mit equals() überein (x.compare-
To(y)==0) gleich (x.equals(y)), wenn x und y einer gemeinsamen Klasse angehören). Ist
diese Beziehung nicht gegeben, sollte dies in der Dokumentation der Klasse festgehalten
werden.

Relativ viele Bedingungen also, die allerdings nicht allzu schwer einzuhalten sind. Wir unter-
scheiden zwischen der erstmaligen Implementierung von Comparable und der Überschreibung
einer geerbten compareTo()-Methode.

>> Objekte vergleichen – Comparable implementieren700
Ob

je
kt

e

Comparable implementieren
Eine Klasse, die Comparable implementiert, braucht sich grundsätzlich keine Gedanken über
etwaige abgeleitete Klassen und deren Implementierung von compareTo() zu machen3. Es
genügt daher, wenn Sie

� anzeigen, dass Sie Comparable für den Typ der Klasse implementieren.

� compareTo() überschreiben.

� darauf achten, dass Ihre compareTo()-Implementierung geeignet ist, die Objekte der Klasse
in eine korrekte Reihenfolge zu bringen.

Betrachten Sie hierzu die Klasse Contact, deren compareTo()-Methode Objekte der Klasse nach
den Namen (zuerst Nachname, dann Vorname) vergleicht.

Diese Methode vergleicht zwei Objekte der Klasse Contact durch Vergleich der Strings für
Nach- und Vorname. Sind die Strings für Nach- und Vorname gleich, wird 0 zurückgeliefert,
ansonsten das Ergebnis des Stringvergleichs. Beachten Sie die Bedeutung der Reihenfolge!
Zuerst werden die Familiennamen verglichen. Nur wenn diese gleich sind, werden im nächs-
ten Schritt die Vornamen verglichen. So ist sichergestellt, dass der Name »Richard Alt« gemäß
compareTo() kleiner ist als »Anton Neu«.

3. Sie nimmt damit zwar den abgeleiteten Klassen die Chance, compareTo() so zu überschreiben, dass Symmetrie und
Transitivität gewahrt bleiben, erlaubt dafür aber den Vergleich ihrer eigenen Objekte mit Objekten abgeleiteter Klas-
sen (nach den Konditionen ihrer compareTo()-Methode). Die Alternative wäre, als Argumente nur Objekte des eigenen
Typs zuzulassen und ansonsten eine ClassCastException auszulösen:
if (obj.getClass() != getClass())

 throw new ClassCastException();

class Contact implements Comparable<Contact> {
 String firstname;
 String familyname;

 Contact(String firstname, String familyname) {
 this.firstname = firstname;
 this.familyname = familyname;
 }

 public int compareTo(Contact obj) {
 int result = 0;

 if((result = familyname.compareTo(obj.familyname)) != 0) {
 return result > 0 ? 1 : -1;

 } else if((result = firstname.compareTo(obj.firstname)) != 0) {
 return result > 0 ? 1 : -1;

 } else
 return result;
 }
 ...

Listing 336: Comparable implementieren

>> Objekte, Collections, Design-Pattern 701

Ob
je

kt
e

Die Vergleiche erfüllen die Bedingungen 1 bis 3. Bedingung 4 ist automatisch erfüllt. Sollte
obj gleich null sein, löst der erste Zugriff auf ein Feld von obj (hier obj.familyname) die Null-
PointerException aus. Bedingung 5 wird bereits dadurch erfüllt, dass die Methode nur Con-
tact-Objekte als Argumente akzeptiert.

Allein Bedingung 6 ist etwas schwieriger zu erfüllen. Der sicherste Weg ist, die equals()-
Methode mit Hilfe von compareTo() zu implementieren:

 ...
 public boolean equals(Object obj) {

 if (obj instanceof Contact) {
 Contact o = (Contact) obj;
 return compareTo(o) == 0;
 } else
 return super.equals(obj);
 }

compareTo() überschreiben
Wenn Sie von einer Klasse ableiten, die bereits Comparable implementiert, erben Sie die com-
pareTo()-Methode, an die Sie grundsätzlich gebunden sind, d.h., Sie können Comparable nicht
ein zweites Mal für einen anderen Typ implementieren:

class ExtContact extends Contact implements Comparable<ExtContact> // Fehler

und es nutzt Ihnen auch wenig, wenn Sie compareTo() für einen Parameter anderen Typs über-
laden:

public int compareTo(ExtContact obj) { // meist ein Fehler

Die überladene Version kann zwar für die Objekte der Klasse aufgerufen werden, aber nur wenn
auf diese über eine Referenz vom Typ der Klasse zugegriffen wird. Erfolgt der Zugriff über eine

H
in

w
e

is Die compareTo()-Methode von String liefert beim Vergleich unterschiedlicher Strings
als Ergebnis nicht -1 oder 1 zurück, sondern entweder die Differenz zwischen den Zei-
chencodes an der ersten nicht übereinstimmenden Position oder die Differenz zwischen
den Stringlängen. Da diese zusätzliche Information für den Vergleich von Contact-
Objekten keinerlei sinnvolle Bedeutung hat, wird sie nicht weitergegeben. Die com-
pareTo()-Methode von Contact prüft, ob die Differenz größer oder kleiner null ist und
gibt entsprechend 1 oder -1 zurück.

A
ch

tu
n

g Bedingung 6 ist nicht obligatorisch. Es gibt sogar in der API Klassen, die Bedingung 6
nicht erfüllen.

H
in

w
e

is Vor JDK-Version 1.5 war das Interface Comparable noch nicht parametrisiert und die
Methode compareTo() war mit einem Object-Parameter definiert. Wenn Sie also mit
JDK-Versionen vor 1.5 arbeiten, müssen Sie den Parameter in der Methode in den Typ
der Klasse umwandeln, um auf die Felder zuzugreifen bzw. eine ClassCastException
auszulösen.

>> Objekte vergleichen – Comparable implementieren702
Ob

je
kt

e

Referenz vom Typ Comparable – wie dies beispielsweise der Fall ist, wenn Sie Objekte der Klasse
in sortierten Arrays oder Collections verwahren –, wird die geerbte Version ausgeführt!

Wenn Sie das Verhalten von compareTo() anpassen wollen, sollten Sie also grundsätzlich die
geerbte compareTo()-Version überschreiben.

Neben der Gestaltung des eigentlichen Vergleichs ist dabei zu überlegen, wie Vergleiche mit
Objekten von Basisklassen oder abgeleiteten Klassen durchgeführt werden sollen. Sie können

� nur Vergleiche mit Objekten der eigenen Klasse zulassen.

Hierzu prüfen Sie den Klassentyp des Arguments mit getClass() und lösen eine ClassCast-
Exception aus, wenn das Argument kein Objekt der eigenen Klasse ist.

if (obj.getClass() != this.getClass())
 throw new ClassCastException();

Dies ist der einzige sichere Weg, Symmetrie und Transitivität für compareTo() über Klassen-
grenzen hinweg sicherzustellen (vorausgesetzt, die Basisklassen und abgeleiteten Klassen
verwenden denselben Test).

� nur Vergleiche mit Objekten der eigenen Klasse oder abgeleiteter Klassen zulassen.

Hierzu speichern Sie die übergebene Objektreferenz (welche ja in einem Parameter vom
Typ einer Basisklasse gespeichert ist) in einer lokalen Variable vom Typ der Klasse. Ist
diese Umwandlung nicht möglich (das übergebene Objekt ist weder vom Typ der Klasse
selbst noch vom Typ einer abgeleiteten Klasse), wird automatisch eine ClassCastException
ausgelöst.

TheClass o = (TheClass) obj;

Obwohl dieser Weg am wenigsten geeignet ist, um Symmetrie und Transitivität über Klas-
sengrenzen hinweg sicherzustellen, wird er am häufigsten gewählt, da er in der Regel den
Erfordernissen der Praxis am nächsten kommt.

� Vergleiche mit Objekten der eigenen Klasse, der Basisklassen und abgeleiteter Klassen
zulassen.

Hierzu prüfen Sie mit Hilfe des instanceof-Operators, ob es sich bei dem übergebenen
Objekt um ein Objekt der Klasse oder einer abgeleiteten Klasse handelt. Wenn ja, wandeln
Sie die Referenz in den Typ der aktuellen Klasse um und führen den Vergleich durch. Lie-
fert der instanceof-Operator false zurück, ist das Objekt vom Typ einer Basisklasse und
Sie rufen die compareTo()-Version der Basisklasse auf.

if (obj instanceof TheClass) {
 TheClass o = (TheClass) obj;

 // Vergleich durchführen
 return RESULT;
} else
 return super.compareTo(obj);

Dies erlaubt die Einhaltung der Symmetrie über Klassengrenzen hinweg, sofern die Basis-
klassen (bis zur Erstimplementierung von Comparable) ebenfalls für Basisklassenobjekte
super. compareTo() aufrufen.

Zudem können Sie Objekte der aktuellen Klasse, der Basisklasse und der abgeleiteten Klas-
sen zusammen in einem Array oder einer Collection speichern und sortieren. (Achtung! Die
Sortierung ist nur dann sinnvoll, wenn die Klassen die Sortierung durch die Basisklasse

>> Objekte, Collections, Design-Pattern 703

Ob
je

kt
e

übernehmen und lediglich um untergeordnete Kriterien erweitern. In diesem Fall ist gewähr-
leistet, dass die Objekte (zumindest) nach den Kriterien der Basisklasse sortiert werden.)

Arrays/Collections von Objekten sortieren
Objekte, deren Klasse das Interface Comparable implementiert, können von Arrays und Collec-
tions-Klassen sortiert werden. Die Utility-Klassen Arrays und Collections definieren hierfür
eine statische Methode sort(), die als Argument das zu sortierende Array bzw. die zu sortie-
rende Collection übernimmt.

Das Start-Programm zu diesem Rezept sortiert zwei Arrays: eines mit Objekten der Klasse
ExtContact und ein zweites, welches sowohl Contact- als auch ExtContact-Objekte enthält.

class ExtContact extends Contact {
 String city;

 ExtContact(String firstname, String familyname, String city) {
 super(firstname, familyname);
 this.city = city;
 }

 public int compareTo(Contact obj) {
 int result = 0;

 if (obj instanceof ExtContact) {
 ExtContact o = (ExtContact) obj;

 if((result = familyname.compareTo(o.familyname)) != 0) {
 return result > 0 ? 1 : -1;

 } else if((result = firstname.compareTo(o.firstname)) != 0) {
 return result > 0 ? 1 : -1;

 } else if((result = city.compareTo(o.city)) != 0) {
 return result > 0 ? 1 : -1;

 } else
 return result;
 } else
 return super.compareTo(obj);
 }
}

Listing 337: compareTo() überschreiben

class Contact implements Comparable<Contact> {
 // wie oben
}

class ExtContact extends Contact {

Listing 338: Arrays sortieren

>> Objekte vergleichen – Comparable implementieren704
Ob

je
kt

e

 // wie oben
}

public class Start {

 public static void main(String args[]) {

 System.out.println("\n\n ExtContacts \n");

 ExtContact[] extcontacts = {
 new ExtContact("Ingar", "Miller", "Stockholm"),
 new ExtContact("Ingar", "Miller", "Oslo"),
 new ExtContact("Ingar", "Stevens", "Oslo"),
 new ExtContact("Ingrid", "Miller", "Oslo")
 };
 java.util.Arrays.sort(extcontacts);

 for (ExtContact c : extcontacts)
 System.out.println(" " + c);

 System.out.println("\n\n Mixed Contacts \n");

 Contact[] mixedcontacts = {
 new ExtContact("Ingar", "Miller", "Stockholm"),
 new ExtContact("Ingar", "Miller", "Oslo"),
 new Contact("Ingar", "Stevens"),
 new Contact("Ingrid", "Miller"),
 new ExtContact("Ingar", "Stevens", "Oslo"),
 new Contact("Ingar", "Miller"),
 new ExtContact("Ingrid", "Miller", "Oslo")
 };
 java.util.Arrays.sort(mixedcontacts);

 for (Contact c : mixedcontacts)
 System.out.println(" " + c);

 }
}

Listing 338: Arrays sortieren (Forts.)

>> Objekte, Collections, Design-Pattern 705

Ob
je

kt
e

254 Objekte serialisieren und deserialisieren
Mit Hilfe von java.io.ObjectOutputStream- und java.io.ObjectInputStream-Instanzen können
Objekte serialisiert und wieder deserialisiert werden. Dabei werden ebenfalls Referenzen auf
andere Instanzen serialisiert oder wiederhergestellt. Da ObjectOutputStream und ObjectInput-
Stream andere Streams kapseln, können Objekte auch über Netzwerke hinweg serialisiert und
wiederhergestellt werden.

Das Speichern von Objekten geschieht mit Hilfe der Methode writeObject() einer ObjectOut-
putStream-Instanz, der als Parameter die zu serialisierende Instanz übergeben wird:

Abbildung 149: Nach Namen und Vornamen sortierte Arrays

A
ch

tu
n

g Objekte, die serialisiert werden sollen, müssen durch das Interface java.io.Serializ-
able gekennzeichnet werden.

import java.io.*;

public class OutputStreamWrite {

 public void serialize(String file, Object instance) throws IOException {
 // ObjectOutputStream-Instanz erzeugen
 ObjectOutputStream oos = new ObjectOutputStream(
 new FileOutputStream(new File(file)));

 // Objekt speichern
 oos.writeObject(instance);

 // Ressourcen freigeben
 oos.close();
 }
}

Listing 339: Serialisieren eines Objekts per ObjectOutputStream

>> Objekte serialisieren und deserialisieren706
Ob

je
kt

e

Das so serialisierte Objekt kann anschließend per java.io.ObjectOutputStream wieder geladen
werden. Dabei wird die Methode readObject() eingesetzt, die ein Objekt zurückgibt, wenn die
entsprechenden .class-Dateien im Klassenpfad gefunden und das Objekt über einen Konstruk-
tor ohne Parameter verfügt. Anderenfalls kann es zu einer ClassNotFoundException oder ande-
ren Ausnahmen kommen:

Eigene Serialisierungen sind ebenfalls möglich. In diesem Fall müssen Objekte, die eine
spezielle Form der Serialisierung erfordern, die Methoden readObject() und writeObject()
implementieren:

private void readObject(java.io.ObjectInputStream stream)
 throws IOException, ClassNotFoundException

private void writeObject(java.io.ObjectOutputStream stream) throws IOException

Mit Hilfe von writeObject() können Felder und Werte manuell gespeichert werden. Die dabei
vorgenommene Reihenfolge muss beim Auslesen per readObject() beibehalten werden.

Folgende Methoden stehen zum Lesen und Schreiben von Werten in eine java.io.ObjectOut-
putStream-Instanz zur Verfügung:

void write(byte[] buf)

void write(byte[] buf, int off, int len)

void write(int val)

void writeBoolean(boolean val)

import java.io.*;

public class OutputStreamRead {

 public Object deserialize(String file)
 throws IOException, ClassNotFoundException {

 // ObjectInputStream instanzieren
 ObjectInputStream oin =
 new ObjectInputStream(
 new FileInputStream(
 new File(file)));

 // Objekt deserialisieren
 Object instance = oin.readObject();

 // Ressourcen freigeben
 oin.close();

 // Instanz zurückgeben
 return instance;
 }
}

Listing 340: Deserialisieren eines Objekts

>> Objekte, Collections, Design-Pattern 707

Ob
je

kt
e

void writeByte(int val)

void writeBytes(String str)

void writeChar(int val)

void writeChars(String str)

protected void writeClassDescriptor(ObjectStreamClass desc)

void writeDouble(double val)

void writeFloat(float val)

void writeInt(int val)

void writeLong(long val)

void writeObject(Object obj)

void writeShort(int val)

void writeUTF(String str)

Analog können die so geschriebenen Informationen mit Hilfe einer java.io.ObjectInput-
Stream-Instanz wieder eingelesen werden. Dabei können neben readObject() folgende Metho-
den eingesetzt werden:

int read()

int read(byte[] buf, int off, int len)

boolean readBoolean()

byte readByte()

char readChar()

protected ObjectStreamClass readClassDescriptor()

double readDouble()

float readFloat()

void readFully(byte[] buf)

void readFully(byte[] buf, int off, int len)

int readInt()

long readLong()

Object readObject()

>> Objekte serialisieren und deserialisieren708
Ob

je
kt

e

short readShort()

int readUnsignedByte()

int readUnsignedShort()

String readUTF()

Beim Lesen und Schreiben der einfachen Datentypen verhalten sich ObjectInputStream und
ObjectOutputStream wie java.io.DataInputStream- und DataOutputStream-Instanzen. Tatsäch-
lich basieren sie auf den gleichen Basisklassen und es gelten die gleichen Regularieren hin-
sichtlich der Reihenfolge der Felder.

Um per ObjectOutputStream Daten zu schreiben, könnten Sie folgendes Code-Beispiel verwenden:

import java.io.*;

public class Start {

 public static void main(String[] args) {

 try {
 // OutputStream erzeugen
 ObjectOutputStream out = new ObjectOutputStream(
 new BufferedOutputStream(
 new FileOutputStream("c:/example.txt")));

 // Booleschen Wert schreiben
 out.writeBoolean(true);

 // String schreiben
 out.writeUTF("Hello world!");

 // Integer schreiben
 out.writeInt(1234);

 // Umlaute ausgeben
 out.writeUTF("Deutsche Umlaute: ÄÖÜäöüß");

 out.flush();

 // Freigeben der Ressourcen
 out.close();
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Listing 341: Schreiben von Informationen per ObjectOutputStream

>> Objekte, Collections, Design-Pattern 709

Ob
je

kt
e

Die Daten werden in binärer Form abgelegt. Sollten Sie sie per java.io.FileOutputStream
ablegen, können Sie die Datei in einem Texteditor öffnen:

Beim Einlesen sollten Sie sicherstellen, dass die Daten in exakt der gleichen Reihenfolge und
mit den korrekten Datentypen wieder eingelesen werden, da es sonst zu Ausnahmen kommen
kann:

Abbildung 150: Anzeige der per ObjectOutputStream geschriebenen Daten

import java.io.*;

public class Start {

 public static void main(String[] args) {
 try {
 // ObjectInputStream erzeugen
 ObjectInputStream in = new ObjectInputStream(
 new BufferedInputStream(
 new FileInputStream("c:/example.txt")));

 // Booleschen Wert einlesen
 System.out.println(in.readBoolean());

 // String einlesen
 System.out.println(in.readUTF());

 // Integer einlesen
 System.out.println(in.readInt());

 // String einlesen
 System.out.println(in.readUTF());

 // InputStream schließen
 in.close();
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();

Listing 342: Einlesen von Informationen per ObjectInputStream

>> Arrays in Collections umwandeln710
Ob

je
kt

e

Sowohl ObjectOutputStream- als auch ObjectInputStream-Instanzen können mit Umlauten
umgehen, diese speichern und wiederherstellen.

255 Arrays in Collections umwandeln

Der effizienteste Weg, die Elemente eines Arrays in eine bestehende Collection einzufügen,
führt über die addAll()-Methode von Collections:

public static <T> boolean addAll(Collection<? super T> c, T... a)

Als Argumente übergeben Sie der Methode die Collection-Instanz, in die die Elemente ein-
gefügt werden sollen, und das Array mit den Elementen. Voraussetzung ist, dass

� die Collection für einen Typ parametrisiert wurde, der ein Basistyp des Typs der Array-
Elemente ist (im einfachsten Fall sind beide Typen identisch).

� die Collections das Collection<E>-Interface implementieren (gilt grundsätzlich für alle
Collections mit Ausnahme der Maps und Hashtable).

import java.util.LinkedList;
import java.util.Collections;
...

// Array
String[] wordsArray = { "Die", "Narren", "reden", "am", "liebsten",
 "von", "der", "Weisheit", ",", "die",
 "Schurken", "von", "der", "Tugend" };

// Collection
LinkedList<String> wordsList = new LinkedList<String>();
Collections.addAll(wordsList, wordsArray);

Wenn Sie die Collection wie im obigen Fall gerade neu erzeugen, können Sie auch so vor-
gehen, dass Sie das Array in eine List-Collection umwandeln und an den Konstruktor über-
geben. Voraussetzung ist, dass

� Die Collection-Klasse einen Konstruktor definiert, der als Argument ein Collection<E>-
Objekt akzeptiert. Für die meisten Collection-Klassen, die das Collection<E>-Interface imp-
lementieren, trifft dies zu, da es von der Collection<E>-Spezifikation empfohlen wird. Aus-
nahmen in der Java-API sind Stack und SynchronousQueue.

 }
 }
}

A
ch

tu
n

g Dieses Rezept gilt nur für Collections, die das Collection-Interface implementieren
(ArrayList, EnumSet, HashSet, LinkedList, PriorityQueue, Stack, TreeSet, Vector etc.).

Listing 342: Einlesen von Informationen per ObjectInputStream (Forts.)

>> Objekte, Collections, Design-Pattern 711

Ob
je

kt
e

256 Collections in Arrays umwandeln

Da die Umwandlung von Collections in Arrays eine recht häufige Aufgabe ist, gibt es hierfür
eine eigene Collection-Methode: toArray(). Doch Vorsicht! Konstruktion und Gebrauch dieser
Methode sind ungewöhnlich.

public <T> T[] toArray(T[] a)

Auffällig ist, dass die Methode nicht nur ein Array zurückliefert, sondern auch eines als Argu-
ment übernimmt. Wozu braucht die Methode dieses Array-Argument?

� Zum einen entnimmt sie diesem Argument den gewünschten Array-Typ.

� Zum anderen prüft sie, ob das übergebene Array groß genug ist, die Elemente aus der Col-
lection aufzunehmen. Wenn ja, kopiert sie die Elemente beginnend bei Position 0 in das
Array. Das Array-Element, welches auf das letzte Element der Collection folgt, wird auf
null gesetzt, die restlichen Array-Elemente bleiben erhalten. Ist das übergebene Array
nicht groß genug, wird ein neues Array desselben Typs erzeugt.

import java.util.Arrays;
import java.util.LinkedList;
import java.util.Collections;
...

// Array
String[] wordsArray = { "Die", "Narren", "reden", "am", "liebsten",
 "von", "der", "Weisheit", ",", "die",
 "Schurken", "von", "der", "Tugend" };

// Collection
LinkedList<String> wordsList =
 new LinkedList<String>(Arrays.asList(wordsArray));

Listing 343: Umwandlung eines Arrays in eine LinkedList

T
ip

p Sie können die Collections-Methode addAll() auch dazu nutzen, mehrere Elemente in
einem Schritt einzufügen. Statt

wordsList.add("Homo");
wordsList.add("homini");
wordsList.add("lupus");

schreiben Sie einfach:

Collections.addAll(wordsList, "Homo", "homini", "lupus");

A
ch

tu
n

g Dieses Rezept gilt nur für Collections, die das Collection-Interface implementieren
(ArrayList, EnumSet, HashSet, LinkedList, PriorityQueue, Stack, TreeSet, Vector etc.).

>> Collections sortieren und durchsuchen712
Ob

je
kt

e

Egal, wie die Methode das Array erstellt, die Referenz auf das Array mit den Collection-Ele-
menten wird immer als Rückgabewert zurückgeliefert.

Am sichersten verwenden Sie die Methode, wenn Sie als Argument ein ad hoc erzeugtes
Array-Objekt übergeben, um den Datentyp vorzugeben, und das Ergebnisarray über den Rück-
gabewert entgegennehmen:

257 Collections sortieren und durchsuchen
Ein häufig auftretendes Problem ist das Finden von gewünschten Einträgen in einer Collec-
tion. Bei kleinen Datenmengen oder wenn die Datenstruktur keine Anordnung ihrer Elemente
zulässt (z.B. HashMap) kann man diese Aufgabe durch simples Durchlaufen der Collection erle-
digen. Für eine größere Anzahl von Elementen ist dieses Verfahren aber zu langsam und man
sollte effiziente Suchalgorithmen wie die binäre Suche einsetzen. Dies setzt allerdings voraus,
dass die Elemente geordnet vorliegen. Suchen ist daher eng mit dem Thema Sortieren ver-
knüpft. Beide beruhen auf der Fähigkeit, dass einzelne Elemente in einer Collection miteinan-
der verglichen werden können.

Zum Sortieren einer Collection (vom Typ List) stellt die Hilfsklasse java.util.Collections
eine statische sort(List<T> liste)-Methode bereit, die alle Elemente aufsteigend nach ihrer so
genannten natürlichen Ordnung sortiert: für Objekte vom Typ Integer also nach dem
zugrunde liegenden Zahlwert, bei String-Objekten wird alphabetisch nach dem Unicode-Zei-
chensatz sortiert. Die sort()-Methode sortiert, indem sie für das Vergleichen der einzelnen
Objekte die compareTo()-Methode aufruft, welche alle Klassen besitzen, die das Interface
java.lang.Comparable implementieren (wie z.B. String). compareTo() muss einen Wert < 0
(kleiner), 0 (gleich) oder > 0 (größer) zurückliefern.

Das Comparable-Interface
Wer eigene Klassen sortieren will, muss dafür sorgen, dass diese Klassen das Interface Com-
parable implementieren und in der compareTo()-Methode den gewünschten Vergleich definie-
ren. Im folgenden Beispiel wird eine Instanz der selbst definierten Klasse Customer nach dem
Namen sortiert:

// Collection
Vector<String> wordsSet = new Vector<String>();
Collections.addAll(wordsSet, "Die", "Narren", "reden", "am", "liebsten",
 "von", "der", "Weisheit", ",", "die",
 "Schurken", "von", "der", "Tugend");

// Array
String[] wordsArray = wordsSet.toArray(new String[0]);

Listing 344: Umwandlung eines Vector in ein Array

T
ip

p Die Umwandlung von Collections mittels toArray() ist trotz der eventuell zusätzlichen
Array-Instanzierung um einiges schneller, als die Collection mit einer for-Schleife zu
durchlaufen und Element für Element in ein Array zu kopieren.

>> Objekte, Collections, Design-Pattern 713

Ob
je

kt
e

Das Comparator-Interface
Der obige Ansatz hat den Nachteil, dass die Art, wie Objekte miteinander verglichen werden,
durch die compareTo()-Methode unveränderbar festgelegt ist. Das ist lästig, wenn Sie die gleiche
Liste auf unterschiedliche Arten sortieren wollen, z.B. einmal aufsteigend, ein andermal abstei-
gend. Für solche Fälle stellt die Collections-Klasse eine weitere Sortiermethode zur Verfügung:

sort(List<T> liste, Comparator<? super T> c)

import java.util.*;

/**
 * Klasse, die Comparable implementiert, um ihre Objekte sortierbar zu machen
 */
class Customer implements Comparable<Customer> {
 public String name;
 public int custID;

 Customer(String n, int id) {
 name = n;
 custID = id;
 }

 // vergleichen nach Namen
 public int compareTo(Customer c) {
 return name.compareTo(c.name);
 }
}

public class Start {

 public static void main(String[] args) {

 Customer c0 = new Customer("Xanther", 4);
 Customer c1 = new Customer("Louis", 1);
 Customer c2 = new Customer("Abel", 2);
 Customer c3 = new Customer("Becker", 3);

 ArrayList<Customer> customerList = new ArrayList<Customer>();
 customerList.add(c0);
 customerList.add(c1);
 customerList.add(c2);
 customerList.add(c3);

 // aufsteigend nach Namen sortieren
 Collections.sort(customerList);

 for(Customer c : customerList)
 System.out.println(c.name);
 }
}

Listing 345: Sortieren von selbst definierten Klassen

>> Collections sortieren und durchsuchen714
Ob

je
kt

e

Dieser Methode übergibt man neben der zu sortierenden Liste noch einen Komparator (Ver-
gleicher), d.h. ein Objekt, das das Interface java.util.Comparator mit der Methode

public int compare(T o1, T o2)

implementiert. Der Sortieralgorithmus verwendet dann nicht die ggf. vorhandene compareTo()-
Methode (von dem Interface Comparable) der zu sortierenden Elemente, sondern vergleicht je
zwei Elemente mit dem übergebenen Komparator und dessen compare()-Methode. Durch die
Definition von verschiedenen Komparatoren kann man somit sehr einfach auf verschiedene
Arten sortieren lassen.

Im folgenden Beispiel wird die Klasse Customer auf zwei Arten sortiert: einmal aufsteigend
nach Namen, ein andermal absteigend nach Kundennummer.

import java.util.*;

/**
 * Klasse, deren Objekte von den nachfolgend definierten Komparatoren
 * sortiert werden
 */
class Customer implements Comparable<Customer> {
 public String name;
 public int custID;

 Customer(String n, int id) {
 name = n;
 custID = id;
 }

 // vergleichen nach Namen
 public int compareTo(Customer c) {
 return name.compareTo(c.name);
 }
}

/**
 * Komparator für Customer-Objekte (aufsteigende Sortierung nach Namen)
 */
class CustCompAscName implements Comparator<Customer> {
 public int compare(Customer obj1, Customer obj2) {
 String name1 = obj1.name;
 String name2 = obj2.name;

 return name1.compareTo(name2);
 }
}

/**
 * Komparator für Customer-Objekte (absteigende Sortierung nach ID)
 */
class CustCompDescID implements Comparator<Customer> {

Listing 346: Sortieren mittels Comparator-Objekten

>> Objekte, Collections, Design-Pattern 715

Ob
je

kt
e

 public int compare(Customer obj1, Customer obj2) {
 int id1 = obj1.custID;
 int id2 = obj2.custID;

 if(id1 < id2)
 return 1;
 else
 if(id2 > id1)
 return -1;
 else
 return 0;

 }
}

public class Start {

 public static void main(String[] args) {

 Customer c0 = new Customer("Xanther", 4);
 Customer c1 = new Customer("Louis", 1);
 Customer c2 = new Customer("Abel", 2);
 Customer c3 = new Customer("Becker", 3);

 ArrayList<Customer> customerList = new ArrayList<Customer>();
 customerList.add(c0);
 customerList.add(c1);
 customerList.add(c2);
 customerList.add(c3);

 // aufsteigend nach Namen sortieren
 Comparator<Customer> compName = new CustCompAscName();
 Collections.sort(customerList, compName);
 System.out.println("Nach Namen sortiert:");

 for(Customer c : customerList)
 System.out.println(c.name + "\t " + c.custID);

 // absteigend nach ID sortieren
 Comparator<Customer> compID = new CustCompDescID();
 Collections.sort(customerList, compID);
 System.out.println("\nNach ID sortiert:");

 for(Customer c : customerList)
 System.out.println(c.name + "\t " + c.custID);
 }
}

Listing 346: Sortieren mittels Comparator-Objekten (Forts.)

>> Collections synchronisieren716
Ob

je
kt

e

Collections durchsuchen
Für Listen mit einer kleinen Anzahl an Elementen (ca. 10–20) ist es am einfachsten und meist
auch am schnellsten, einfach von Anfang bis Ende durchzulaufen, um das gewünschte Ele-
ment zu finden. Bei größeren Datenmengen wird dies aber sehr langsam und man sollte spe-
zielle Suchalgorithmen verwenden. Glücklicherweise muss man sich aber nicht selbst den
Kopf zerbrechen und mühsam ein Suchverfahren implementieren, denn in der Klasse
java.util.Collections findet sich die Methode binarySearch() zur Durchführung einer binä-
ren Suche, eines der schnellsten Verfahren. Voraussetzung für diesen Ansatz ist allerdings,
dass die Liste aufsteigend sortiert ist:

ArrayList<Customer> customerList = ...;

// aufsteigend sortieren
Collections.sort(customerList);

// wonach soll gesucht werden
Customer test = new Customer(?Meier?, -1);

// suchen
int pos = Collections.binarySearch(customerList, test);

Die binarySearch()-Methode erwartet neben der sortierten Liste natürlich auch ein Objekt vom
passenden Typ der Listenelemente mit dem Suchkriterium. Im obigen Beispiel verwenden wir
wieder die selbst erstellte Customer-Klasse, bei der die compareTo()-Methode nur den Namen
vergleicht. Aus diesem Grund wird beim Anlegen der Variable test dem Konstruktor für die ID
ein beliebiger Wert mitgegeben (hier -1), da er sowieso keine Rolle spielt. Der Rückgabewert
von binarySearch() ist die Position des gefundenen Elements in der Liste oder ein negativer
Wert (nicht notwendigerweise -1), wenn kein Treffer gefunden wurde.

258 Collections synchronisieren
Fast alle Collection-Klassen aus dem Paket java.util sind grundsätzlich nicht synchronisiert,
d.h., mehrere Threads sollten nicht gleichzeitig lesend/schreibend4 darauf zugreifen, da es
ansonsten zu Inkonsistenzen kommen kann. Falls parallele Schreib-/Lesezugriffe notwendig

Abbildung 151: Sortieren mit verschiedenen Comparator-Objekten

4. Wenn mehrere Threads immer nur lesend zugreifen, ist dies kein Problem.

>> Objekte, Collections, Design-Pattern 717

Ob
je

kt
e

sind, muss also eine Synchronisierung erfolgen, so dass die Collection-Instanz immer nur von
einem Thread zu einem beliebigen Zeitpunkt benutzt werden kann5. Hierfür gibt es mehrere
Vorgehensweisen:

� Einsatz von Hashtable (anstelle von HashMap) und Vector (anstelle von ArrayList). Diese
Klassen sind intern synchronisiert. Außerdem bietet das Paket java.util.concurrent noch
die interessante Alternative ConcurrentHashMap, die nur die Schreibzugriffe (und nicht die
Leseoperationen) synchronisiert. Sie ist damit ideal, wenn nur wenige Threads schreibend
und viele lesend zugreifen.

� Explizite Synchronisierung durch Einsatz von synchronized-Abschnitten (mehr dazu auch
in der Kategorie »Threads«).

� Einsatz der Klasse Collections und ihrer speziellen Methoden synchronizedHashMap() und
synchronizedList().

Während die ersten beiden Alternativen einigermaßen verbreitet sind, ist der Einsatz der
zuletzt genannten Methoden nicht sehr verbreitet. Sie sind praktisch, wenn eine Collection
überwiegend von einem Thread verwendet wird und nur zu bestimmten Zeitpunkten oder
Phasen die Notwendigkeit entsteht, dass mehrere Threads gleichzeitig darauf arbeiten, z.B.

HashMap<String, String> map = new HashMap<String, String>();
// ... (HashMap einsetzen nur von einem Thread
// ...
// ab hier thread-sicher machen
Map<String,String> safeMap = Collections.synchronizedMap(map);

Neben der Methode synchronizedMap() für Hashtabellen und synchronizedList() für Listen
existiert auch eine generische synchronizedCollection() für alle Collection-Klassen, welche
das Interface Collection implementieren.

5. Dies kann die Laufzeit deutlich erhöhen!

A
ch

tu
n

g � Auf der zugrunde liegenden Collection dürfen keine Schreiboperationen mehr
erfolgen (im obigen Beispiel also muss die Instanz map unangetastet bleiben,
solange mit safeMap gearbeitet wird).

� Auch wenn eine mit synchronizedList() o.ä. erhaltene Instanz synchronisiert ist,
reicht das nicht für ein sorgloses Durchlaufen mit einem Iterator. Hierbei sollte man
noch mit synchronized explizit sicherstellen, dass keine Änderungen erfolgen, wäh-
rend der Iterator durchlaufen wird:

ArrayList<String> myList = new ArrayList<String>();
List<String> list = Collections.synchronizedList(myList);
// ...
synchronized(list) {
 Iterator<String> i = list.iterator();

 while (i.hasNext()) {
 String str = i.next();
 }
}

>> Design-Pattern: Singleton718
Ob

je
kt

e

259 Design-Pattern: Singleton
Das Design-Pattern Singleton beschreibt das Konzept einer Klasse, die selbst darüber wacht,
dass von ihr nur eine einzige Instanz erzeugt werden kann.

Der Trick ist, dass die Klasse intern ein Objekt von sich selbst erzeugt und eine Referenz auf
dieses Objekt in einem private-Feld speichert. Der Konstruktor wird als protected erklärt,
damit die Klasse nicht von außen instanziert werden kann. Als Ersatz stellt die Klasse eine sta-
tische Methode zur Verfügung, die die Referenz auf die eine Instanz zurückliefert.

Das Feld, in dem die Referenz auf die Instanz gespeichert wird, muss als static deklariert wer-
den, damit die statische getInstance()-Methode, die die Referenz auf Anfrage zurückliefert,
darauf zugreifen kann. (Zur Erinnerung: Statische Methoden können nicht auf nichtstatische
Elemente zugreifen.)

Wenn Sie möchten, können Sie die eine Instanz statt in getInstance() auch direkt im Zuge der
Feldinitialisierung erzeugen. Die Implementierung ist dann aber weniger flexibel.

public class Singleton {
 private static Singleton instance = new Singleton();

 // direkte Instanzbildung unterbinden
 private Singleton() {
 }

 public static Singleton getInstance() {
 return instance;
 }
}

public class Singleton {
 private static Singleton instance = null;

 // direkte Instanzbildung unterbinden
 private Singleton() {
 }

 public static Singleton getInstance() {
 if (instance == null)
 instance = new Singleton();

 return instance;
 }
}

Listing 347: Singleton-Pattern

A
ch

tu
n

g Klassen, die lediglich private-Konstruktoren definieren, können nicht als Basisklasse
dienen. Wenn Sie also die Ableitung von Ihrer Singleton-Klasse erlauben möchten,
definieren Sie den Konstruktor als protected. (Denken Sie dann aber daran, die Klasse
in einem eigenen Paket zu definieren, sonst können alle Klassen im selben Paket den
Konstruktor direkt aufrufen!

>> Objekte, Collections, Design-Pattern 719

Ob
je

kt
e

Beispiel
Das folgende Beispiel simuliert den Zugriff von verschiedenen Stellen im Code mittels
Threads.

Die Singleton-Klasse Bushisms liefert auf Anfrage (Aufruf der Methode getBushism()) aus
einem intern verwahrten Fundus von Bush-Zitaten ein zufällig gewähltes Zitat zurück. Die
Klasse ist als Singleton implementiert, weil a) nur ein Objekt der Klasse benötigt wird und b)
beliebige Codestellen (hier die Threads) auf dieses Objekt zugreifen können sollen.

E
x

k
u

rs Singleton-Design
Letzten Endes stellt das Singleton-Design einen 1-Instanzen-Pool dar, dessen Sinn es
in der Regel ist, ein einzelnes Objekt global zur Verfügung zu stellen. Daraus ergeben
sich zwei typische Einsatzszenarien:

� Ihr Programm greift von mehreren Stellen auf eine bestimmte externe Ressource
zu, beispielsweise eine spezielle Datei oder einen Drucker. Um von den Vorteilen
der objektorientierten Programmierung zu profitieren, beschließen Sie, die Res-
source im Programm durch ein Objekt zu repräsentieren, für das Sie folglich eine
eigene Klasse schreiben.

Code, der auf die betreffende Ressource zugreifen möchte, kann jetzt ein Objekt der
Klasse erzeugen und mit dieser arbeiten. Greifen mehrere Codestellen auf die Res-
source zu, bedeutet dies allerdings, dass unnötigerweise mehrere Objekte erzeugt
und wieder aufgelöst werden. Effizienter wäre es, ein einziges Objekt zu erstellen
und dieses den verschiedenen Codestellen zur Verfügung zu stellen. Aber wie?
Wenn alle betreffenden Codestellen einer gemeinsamen Klasse angehören, geht dies
noch, indem Sie die Referenz auf das Objekt in einem Feld der Klasse speichern.
Verteilen sich die betreffenden Codestellen jedoch auf mehrere Klassen, müssen Sie
die Referenz entweder als Argument von Methode zu Methode weiterreichen oder –
was meist die sauberere Lösung ist – die Klasse des Ressourcen-Objekts als Single-
ton implementieren! Dann können sich die verschiedenen Codestellen die Referenz
mit Klassenname.getInstance() beschaffen.

� Sie haben Daten, die von mehreren Klassen Ihrer Anwendung gemeinsam genutzt
werden sollen. Eine Möglichkeit, die Daten global verfügbar zu machen, wäre, sie
in statischen Feldern zu speichern (und gegebenenfalls statische Methoden zur
Bearbeitung zu definieren). Wesentliche Vorzüge der objektorientierten Program-
mierung, von der Kapselung bis zur Möglichkeit der Erweiterung durch Vererbung,
gehen damit aber verloren. Eine bessere Alternative ist daher oft die Definition
einer Singleton-Klasse, deren Objekt ebenfalls als Medium globalen Datenaus-
tauschs angesehen werden kann (siehe auch Rezept 259).

public class Bushisms {
 private static Bushisms instance = null;
 private java.util.Random generator;
 private String[] phrases = {"The illiteracy level of our children"
 + " are appalling.",
 "Drug therapies are replacing a lot of"

Listing 348: Singleton-Klasse als »Server« für Bush-Zitate

>> Design-Pattern: Singleton720
Ob

je
kt

e

Das zugehörige Start-Programm erzeugt zwei Threads, die sich beide mittels Bushisms.get-
Instance() eine Referenz auf das Objekt mit den Bush-Zitaten besorgen und sich nach Ablauf
einer kurzen Wartezeit ein Zitat zurückliefern lassen, das sie ausgeben.

 + " medicines as we used to know it.",
 "What I am suggesting is, if you cannot"
 + " name the foreign minister of Mexico,"
 + " therefore, you know, you are not"
 + " capable of what you do. But the truth"
 + " of the matter is you are, whether"
 + " you can or not.",
 "Our nation must come together to unite.",
 "If this were a dictatorship, it would be"
 + " a heck of a lot easier, just so long"
 + " as I am the dictator.",
 "They misunderestimated me.",
 "Yes, I read the newspaper."
 };

 // direkte Instanzbildung unterbinden
 private Bushisms() {
 generator = new java.util.Random();
 }

 public static Bushisms getInstance() {
 if (instance == null)
 instance = new Bushisms();

 return instance;
 }

 public String getBushism() {
 int index = generator.nextInt(phrases.length);
 return phrases[index];
 }
}

class BushThread extends Thread {
 Bushisms singleObj = Bushisms.getInstance();
 boolean weiter = true;
 int period;

 public BushThread(int period) {
 this.period = period;
 }

 public void run() {

Listing 349: Start-Programm

Listing 348: Singleton-Klasse als »Server« für Bush-Zitate (Forts.)

>> Objekte, Collections, Design-Pattern 721

Ob
je

kt
e

260 Design-Pattern: Adapter (Wrapper, Decorator)
Das Design-Pattern Adapter beschreibt wie man einen Adapter konstruiert, mit dessen Hilfe
man Objekte einer Klasse mit der Schnittstelle A in Kontexten verwenden kann, wo ein Objekt
mit der Schnittstelle B erwartet wird.

 try {
 sleep(period);
 } catch(Exception e) {}

 System.out.println("\n Bush said: ");
 System.out.println("\t" + singleObj.getBushism());
 }
}

public class Start {

 public static void main(String args[]) {
 System.out.println();

 BushThread b1 = new BushThread(1000);
 BushThread b2 = new BushThread(2000);
 b1.start();
 b2.start();

 }
}

Abbildung 152: Bush-Zitate

A
ch

tu
n

g Das Design-Pattern Adapter beschreibt Adapter, wie man sie aus der Technik kennt.
Das Design-Pattern hat nichts mit den Adapter-Klassen aus dem Java-AWT-Paket zu
tun, die lediglich dazu dienen, dem Programmierer bei der Implementierung von Ereig-
nis-Listenern unnötige Arbeit zu ersparen.

Listing 349: Start-Programm (Forts.)

>> Design-Pattern: Adapter (Wrapper, Decorator)722
Ob

je
kt

e

Beispiel Objekt-Adapter
Stellen Sie sich folgende Situation vor:

Sie haben als Teil eines Grafikprogramms eine Klassenhierarchie für die wichtigsten Grafikpri-
mitiven und Formen geschrieben. Oben in der Hierarchie steht die abstrakte Basisklasse Shape,
von der die anderen Klassen abgeleitet sind.

/**
 * abstrakte Basisklasse
 */
abstract class Shape {
 String id;
 int x;
 int y;
 boolean visible;

 Shape(String id, int x, int y) {
 this.id = id;
 this.x = x;
 this.y = y;
 visible = true;
 }

 // Zeichen-Methode, wird in abgeleiteten Klassen überschrieben
 abstract void draw();

 void setVisible(boolean visible) {
 this.visible = visible;
 }
 boolean isVisible() {
 return visible;
 }
}

/**
 * abgeleitete Klassen
 */
class Rectangle extends Shape {

 Rectangle(String id, int x, int y) {
 super(id, x, y);
 }

 void draw() {
 System.out.println("[] \t(" + id + "," + x + "," + y + ")");
 }
}

class Snake extends Shape {

 Snake(String id, int x, int y) {

Listing 350: Hierarchie1.java – Modell einer polymorphen Klassenhierarchie

>> Objekte, Collections, Design-Pattern 723

Ob
je

kt
e

Das Hauptprogramm nutzt an verschiedenen Stellen das polymorphe Design der Klassenhier-
archie, um generische Methoden und Collections zu implementieren, die beliebige Objekte aus
der Klassenhierarchie verarbeiten können.

Nun haben Sie von einem renommierten Software-Unternehmen eine Klasse für eine weitere
Form, Circle, hinzugekauft. Circle wurde zwar für die Belange von Grafikprogrammen imple-
mentiert, hat aber eine andere Schnittstelle als Shape:

� Die Zeichenmethode von Circle heißt drawIt() statt draw() und nimmt die Zeichenkoordi-
naten als Argumente entgegen.

� Es gibt keine Unterstützung für ID und Sichtbarkeit.

 super(id, x, y);
 }

 void draw() {
 System.out.println("~ \t(" + id + "," + x + "," + y + ")");
 }
}

import java.util.Vector;

public class Start {

 /**
 * generische Methode, Objekte vom Typ der Basisklasse erwartet
 */
 static void drawElement(Shape shape) {
 if (shape.isVisible())
 shape.draw();
 }

 public static void main(String[] args) {

 // Collection vom Typ der Basisklasse
 Vector<Shape> shapes = new Vector<Shape>(5);

 shapes.add(new Rectangle("r1", 10, -10));
 shapes.add(new Snake("s1", 2, 22));
 shapes.add(new Snake("s2", -33, 303));
 shapes.get(1).setVisible(false);

 for (Shape s : shapes)
 drawElement(s);
 }
}

Listing 351: Start.java – verwendet Methoden und Collections mit Basisklassenparametern

Listing 350: Hierarchie1.java – Modell einer polymorphen Klassenhierarchie (Forts.)

>> Design-Pattern: Adapter (Wrapper, Decorator)724
Ob

je
kt

e

Weiter angenommen, Sie haben von Circle nur die Class-Datei oder wollen aus bestimmten
Gründen6 den Quelltext von Circle nicht verändern. Wie gehen Sie vor, um die Klasse Circle
dennoch für Ihr Grafikprogramm nutzen zu können?

Lösung: Sie schreiben eine Adapter-Klasse, die genau die Schnittstelle anbietet, die Ihr Pro-
gramm benötigt, intern aber die Funktionalität der Circle-Klasse nutzt.

Die Klasse CircleAdapter wird von Shape abgeleitet, um deren Schnittstelle zu übernehmen
(folglich können CircleAdapter-Objekte in der shapes-Collection des Hauptprogramms abge-
speichert und zum Zeichnen als Argumente an die drawElement()-Methode übergeben werden).

Gleichzeitig erbt CircleAdapter durch die Ableitung von Shape die Funktionalität, die Circle
fehlt (Unterstützung für ID und Sichtbarkeit).

class Circle {
 int x;
 int y;

 Circle(int x, int y) {
 this.x = x;
 this.y = y;
 }

 void drawIt(int x, int y) {
 System.out.println("o \t(" + x + "," + y + ")");
 }
}

Listing 352: So könnte die Klasse Circle definiert sein.

6. Möglicherweise ist Circle Teil einer ganzen Klassenbibliothek, die Sie erstanden haben, und kann nicht verändert
werden, ohne das funktionale Gefüge der Bibliothek durcheinander zu bringen.

class CircleAdapter extends Shape {
 Circle c;

 CircleAdapter(String id, int x, int y) {
 super(id, x, y);
 c = new Circle(x, y);
 }

 void draw() {
 // umleiten
 c.drawIt(c.x, c.y);
 }
}

Listing 353: CircleAdapter. java (Klassen-Adapter-Version)

>> Objekte, Collections, Design-Pattern 725

Ob
je

kt
e

Schließlich kapselt CircleAdapter intern ein Objekt der Klasse Circle (der Klasse, für die der
Adapter benötigt wird) und bildet, wo immer möglich, die benötigte Schnittstellenfunktionali-
tät auf die vom Circle-Objekt bereitgestellte Funktionalität ab (draw()-Methode).

Nun können in CircleAdapter-Objekten gekapselte Circle-Objekte im Hauptprogramm ganz
wie die eigenen Shape-Objekte verwendet werden:

Adapter, die intern ein Objekt der adaptierten Klasse verwenden, nennt man Objekt-Adapter.
Neben den Objekt-Adaptern gibt es noch die Klassen-Adapter, die von der zu adaptierenden
Klasse abgeleitet werden.

Beispiel Klassen-Adapter
Klassen-Adapter übernehmen die Funktionalität der zu adaptierenden Klasse, indem sie von
dieser abgeleitet werden. Da Java keine Mehrfachvererbung unterstützt, ist die Implementie-
rung von Klassen-Adaptern nicht immer möglich. Im obigen Beispiel muss der Adapter bei-

import java.util.Vector;

public class Start {

 static void drawElement(Shape shape) {
 if (shape.isVisible())
 shape.draw();
 }

 public static void main(String[] args) {

 Vector<Shape> shapes = new Vector<Shape>(5);
 shapes.add(new Rectangle("r1", 10, -10));
 shapes.add(new Snake("s1", 2, 22));
 shapes.add(new Snake("s2", -33, 303));
 shapes.add(new CircleAdapter("c1", 4, -4));
 shapes.add(new CircleAdapter("c2", 55, 55));
 shapes.get(1).setVisible(false);
 shapes.get(3).setVisible(false);

 for (Shape s : shapes)
 drawElement(s);
 }
}

Listing 354: Start.java mit CircleAdapter-Objekten

Abbildung 153: Ausgabe des Start-Programms

>> Design-Pattern: Adapter (Wrapper, Decorator)726
Ob

je
kt

e

spielsweise von Shape abgeleitet werden, damit seine Objekte als Shape-Objekt verwendet
werden können. Anders verhielte es sich, wenn die Klassenhierarchie so aufgebaut wäre, dass
die Funktionalität für die generischen Collections und Methoden von einem Interface Drawable
stammen würden:

/**
 * Abstrakte Basisklasse
 */
abstract class Shape {
 String id;
 int x;
 int y;
 boolean visible;

 Shape(String id, int x, int y) {
 this.id = id;
 this.x = x;
 this.y = y;
 visible = true;
 }

 void setVisible(boolean visible) {
 this.visible = visible;
 }
}

/**
 * Interface
 */
interface Drawable {
 void draw();
 boolean isVisible();
}

/**
 * abgeleitete Klassen
 */
class Rectangle extends Shape implements Drawable {

 Rectangle(String id, int x, int y) {
 super(id, x, y);
 }

 public void draw() {
 System.out.println("[] \t(" + id + "," + x + "," + y + ")");
 }
 public boolean isVisible() {
 return visible;
 }
}

Listing 355: Hierarchie1.java – Modell einer polymorphen Klassenhierarchie

>> Objekte, Collections, Design-Pattern 727

Ob
je

kt
e

Das Hauptprogramm sähe dann wie folgt aus.

class Snake extends Shape implements Drawable {

 Snake(String id, int x, int y) {
 super(id, x, y);
 }

 public void draw() {
 System.out.println("~ \t(" + id + "," + x + "," + y + ")");
 }
 public boolean isVisible() {
 return visible;
 }
}

import java.util.Vector;

public class Start {

 /**
 * generische Methode, Objekte vom Typ des Drawable-Interface erwartet
 */
 static void drawElement(Drawable obj) {
 if (obj.isVisible())
 obj.draw();
 }

 public static void main(String[] args) {

 // Collection vom Typ des Drawable-Interface
 Vector<Drawable> shapes = new Vector<Drawable>(5);

 shapes.add(new Rectangle("r1", 10, -10));
 Snake snake = new Snake("s1", 2, 22);
 snake.setVisible(false);
 shapes.add(snake);
 shapes.add(new Snake("s2", -33, 303));

 for (Drawable s : shapes)
 drawElement(s);
 }
}

Listing 356: Start.java – verwendet Methoden und Collections mit Basisklassenparametern

Listing 355: Hierarchie1.java – Modell einer polymorphen Klassenhierarchie (Forts.)

>> Design-Pattern: Adapter (Wrapper, Decorator)728
Ob

je
kt

e

In diesem Fall könnte die Adapter-Klasse von der hinzugekauften adaptionsbedürftigen Klasse
Circle die Kernfunktionalität und von dem Interface Drawable die benötigte Schnittstelle
erben.

Die Klasse CircleAdapter erbt von Circle die Funktionalität und von Drawable die Schnittstelle.

Sie implementiert die Methoden des Interface und fügt noch etwaige fehlende Funktionalität
hinzu (Unterstützung für ID und Sichtbarkeit).

Soweit möglich bildet CircleAdapter die definierten Konstruktoren und Methoden auf die von
Circle geerbte Funktionalität ab (draw()-Methode).

class CircleAdapter extends Circle implements Drawable {
 String id; // fehlende Funktionalität ergänzen
 boolean visible; // fehlende Funktionalität ergänzen

 CircleAdapter(String id, int x, int y) {
 super(x, y); // Basisklassenfunktionalität nutzen
 this.id = id; // fehlende Funktionalität ergänzen
 visible = true; // fehlende Funktionalität ergänzen
 }

 // Interface-Methoden implementieren
 public void draw() {
 drawIt(x, y); // Basisklassenfunktionalität nutzen
 }
 public boolean isVisible() {
 return visible;
 }

 // fehlende Funktionalität ergänzen
 void setVisible(boolean visible) {
 this.visible = visible;
 }
}

Listing 357: CircleAdapter.java (Klassen-Adapter-Version)

import java.util.Vector;

public class Start {

 static void drawElement(Drawable obj) {
 if (obj.isVisible())
 obj.draw();
 }

 public static void main(String[] args) {

 Vector<Drawable> shapes = new Vector<Drawable>(5);

Listing 358: Start.java mit CircleAdapter-Objekten

>> Objekte, Collections, Design-Pattern 729

Ob
je

kt
e

Adapter, die von der zu adaptierenden Klasse abgeleitet werden, nennt man Klassen-Adapter.

261 Design-Pattern: Factory-Methoden
Das Design-Pattern Factory-Method zielt darauf ab, die Implementierung einer oder mehrerer
Methoden einer Klasse flexibler zu gestalten, indem man die Objekterzeugung mit new durch
den Aufruf extra für diesen Zweck definierter Factory-Methoden ersetzt.

Das Factory-Method-Pattern ist für Klassenhierarchien interessant, in denen folgende Klassen-
beziehung auftaucht: Eine (abstrakte) Basisklasse Creator erzeugt in ihren Methoden Instan-
zen einer anderen (abstrakten) Basisklasse Product aus der Klassenhierarchie. Üblicherweise
würde die Klasse Creator dazu den new-Operator verwenden.

 shapes.add(new Rectangle("r1", 10, -10));
 Snake snake = new Snake("s1", 2, 22);
 snake.setVisible(false);
 shapes.add(snake);
 shapes.add(new Snake("s2", -33, 303));
 CircleAdapter circle = new CircleAdapter("c1", 4, -4);
 circle.setVisible(false);
 shapes.add(circle);
 shapes.add(new CircleAdapter("c2", 55, 55));

 for (Drawable s : shapes)
 drawElement(s);
 }
}

Abbildung 154: Ausgabe des Start-Programms

import javax.swing.*;

/*
 * Die Klasse ButtonCopyMachine ist der "Creator"
 */
class ButtonCopyMachine {

 /*
 * Methode, die JButton als "Produkt" erzeugt

Listing 359: ButtonCopyMachine.java – Version 1

Listing 358: Start.java mit CircleAdapter-Objekten (Forts.)

>> Design-Pattern: Factory-Methoden730
Ob

je
kt

e

Problematisch wird es, wenn von Creator weitere Klassen abgeleitet werden, die selbst keine
Product-Instanzen mehr erzeugen wollen, sondern Instanzen von Klassen, die von Product
abgeleitet sind.

Sind die Methoden der Creator-Klasse, die die Product-Instanzen erzeugen wie in obigem Lis-
ting mit dem new-Operator implementiert, bleibt nichts anderes übrig, als die Methoden in den
abgeleiteten Klassen zu überschreiben (selbst wenn der Code bis auf den Typ der erzeugten
Instanzen absolut identisch ist).

 */
 static JPanel makeDualButton() {
 JButton btn;
 JPanel p = new JPanel();

 btn = new JButton("Nr. 1");
 p.add(btn);
 btn = new JButton("Nr. 2");
 p.add(btn);

 return p;
 }

 /*
 * Methode, die JButton als "Produkt" erzeugt
 */
 static JPanel makeTripleButton() {
 JButton btn;
 JPanel p = new JPanel();

 btn = new JButton("Nr. 1");
 p.add(btn);
 btn = new JButton("Nr. 2");
 p.add(btn);
 btn = new JButton("Nr. 3");
 p.add(btn);

 return p;
 }
}

class FancyButton extends JButton {

 FancyButton() {
 setBorder(BorderFactory.createMatteBorder(4,4,4,4,
 new ImageIcon("pattern.gif")));
 }
}

Listing 360: Abgeleitete »Product«-Klasse

Listing 359: ButtonCopyMachine.java – Version 1 (Forts.)

>> Objekte, Collections, Design-Pattern 731

Ob
je

kt
e

Wurde dagegen in der Creator-Klasse für die reine Objekterzeugung eine Factory-Methode
definiert, die von den eigentlichen Methoden verwendet wird, brauchen nur die Factory-
Methoden überschrieben zu werden.

/**
 *
 * @author Dirk Louis
 */
import javax.swing.*;

class ButtonCopyMachine {

 /*
 * Factory-Method
 */
 JButton createButton() {
 return new JButton();
 }

 JPanel makeDualButton() {
 JButton btn;
 JPanel p = new JPanel();

 btn = createButton();
 btn.setText("Nr. 1");
 p.add(btn);
 btn = createButton();
 btn.setText("Nr. 2");
 p.add(btn);

 return p;
 }

 JPanel makeTripleButton() {
 JButton btn;
 JPanel p = new JPanel();

 btn = createButton();
 btn.setText("Nr. 1");
 p.add(btn);
 btn = createButton();
 btn.setText("Nr. 2");
 p.add(btn);
 btn = createButton();
 btn.setText("Nr. 3");
 p.add(btn);

 return p;
 }
}

Listing 361: ButtonCopyMachine.java – Version 2

>> Design-Pattern: Factory-Methoden732
Ob

je
kt

e

import javax.swing.*;

/*
 * Abgeleitete "Creator"-Klasse
 */
class FancyButtonCopyMachine extends ButtonCopyMachine {

 /*
 * Für FancyButton überschriebene Factory-Methode
 */
 JButton createButton() {
 return new FancyButton();
 }
}

Listing 362: FancyButtonCopyMachine.java

So
ns

tig
es

Sonstiges

262 Arrays effizient kopieren
Arrays sind Objekte und erben als solche von der obersten Basisklasse Object die Methode
clone(). Es ist daher nahe liegend, Arrays durch Aufruf ihrer clone()-Methode zu kopieren:

Point[] original = { new Point(1,1), new Point(2,2), new Point(3,3),
 new Point(4,4), new Point(5,5), new Point(6,6) };

Point[] clone = (Point[]) original.clone();

Mittels clone() können Sie ein Array aber immer nur komplett klonen. Mit Hilfe der System-
methode arraycopy() lassen sich dagegen beliebig viele Elemente aus einem Quellarray an
eine beliebige Stelle in einem Zielarray kopieren:

static void arraycopy(src, // Quellarray
 int srcPos, // Index des 1. kopierten Elements
 dest, // Zielarray
 int destPos, // Index, ab dem eingefügt wird
 int length) // Anzahl der zu kopierenden Elemente

Aber auch, wenn Sie eine vollständige 1:1-Kopie erzeugen wollen, lohnt es sich, arraycopy()
aufzurufen, denn die Methode arbeitet in der Regel effizienter als clone(). (Auf einem Test-
system unter Windows war die Methode um den Faktor 2 schneller.)

public static void main(String args[]) {
 Point[] koords = { new Point(1,1), new Point(2,2), new Point(3,3),
 new Point(4,4), new Point(5,5), new Point(6,6)
 };

 // Array erzeugen, das die kopierten Elemente aus koords aufnimmt
 Point[] copy = new Point[koords.length];

 // Elemente kopieren
 System.arraycopy(koords, 0, copy, 0, koords.length);

 System.out.println("\n Kopie: \n");
 for(Point p : copy)
 System.out.print(" (" + p.x + "," + p.y + ") ");

}

Listing 363: Arrays mit System.arraycopy() kopieren

A
ch

tu
n

g Achten Sie darauf, dass das Quellarray genügend Elemente enthält (src.length >=
srcPos + length) und das Zielarray ausreichend groß ist, um die Elemente aufzunehmen
(src.length >= srcPos + length). Keine Sorgen müssen Sie sich machen, wenn src und
dest dasselbe Array bezeichnen und sich Quell- und Zielbereich überschneiden. Die
Methode verfährt, als würden die zu kopierenden Elemente zuerst in einem temporären
Array zwischengespeichert.

>> Arrays vergrößern oder verkleinern734
So

ns
tig

es

263 Arrays vergrößern oder verkleinern
Seit Java 6 gibt es in der Klasse Arrays zwei Methoden, mit denen Sie bestehende Arrays ver-
größern oder verkleinern können.

copyOf(typ[] original, int newLength)

Die Methode copyOf() erzeugt ein neues Array der angegebenen Größe und kopiert die Ele-
mente aus dem Originalarray in die Kopie, die als Ergebnis zurückgeliefert wird.

copyOfRange(typ[] original, int from, int to)

Die Methode copyOfRange() erzeugt aus den Elementen mit den nullbasierten Indizes from
(inklusive) bis to (exklusive) ein neues Array und liefert dieses als Ergebnis zurück.

H
in

w
e

is Object.clone() und System.arraycopy() erzeugen beide flache Kopien, d.h., für Ele-
mente von Referenztypen werden nur die Referenzen kopiert.

import java.awt.Point;
import java.util.Arrays;

public class Start {

 public static void main(String args[]) {
 System.out.println();
 Point[] koords = { new Point(1,1), new Point(2,2), new Point(3,3),
 new Point(4,4), new Point(5,5), new Point(6,6)
 };

 System.out.println("\n\n Originalarray: \n");
 for(Point p : koords)
 System.out.print(" (" + p.x + "," + p.y + ") ");

 /*** Array vergrößern ***/
Point[] larger = Arrays.copyOf(koords, koords.length + 4);

 larger[6] = new Point(7,7);
 larger[7] = new Point(7,7);
 larger[8] = new Point(8,8);
 larger[9] = new Point(9,9);

 System.out.println("\n\n\n vergroesserte Kopie: \n");
 for(Point p : larger)
 System.out.print(" (" + p.x + "," + p.y + ") ");

 /*** Array verkleinern ***/
Point[] smaller = Arrays.copyOfRange(larger, 5, larger.length);

 System.out.println("\n\n\n verkleinerte Kopie: \n");
 for(Point p : smaller)

Listing 364: Arrays vergrößern oder verkleinern

>> Sonstiges 735

So
ns

tig
es

264 Globale Daten in Java?
In Java können Variablen nur innerhalb von Klassen (als Felder), Methoden (Parameter und
lokale Variablen) bzw. Anweisungsblöcken (lokale Variablen) definiert werden. Es gibt folglich
keine Möglichkeit, Variablen außerhalb von Klassen zu definieren. Dies macht die Einrichtung
anwendungsglobaler Variablen, auf die alle Klassen (respektive Objekte) der Anwendung
gemeinsam zugreifen können, schwierig – jedoch nicht unmöglich.

Der Trick ist, die Variablen so in eine Klasse zu verpacken, dass sie global für alle Klassen
(Objekte) der Anwendung verfügbar sind. Hierfür gibt es zwei Möglichkeiten:

� Definition als public static-Felder

� Definition als Felder einer Singleton-Klasse

Globale Daten als static-Felder
1. Definieren Sie für die globalen Daten nach Möglichkeit eine eigene public-Klasse.

Zur Erinnerung: Die public-Deklaration garantiert, dass Sie aus allen Paketen der Anwen-
dung (Bibliothek) auf die Klasse zugreifen können.

 System.out.print(" (" + p.x + "," + p.y + ") ");

 System.out.println();
 }
}

Abbildung 155: copyOf() und copyOfRange() erzeugen vergrößerte oder verkleinerte Kopien.

H
in

w
e

is Beide Methoden arbeiten intern übrigens mit der System.arraycopy()-Methode, die in
Rezept 262 vorgestellt wurde.

Listing 364: Arrays vergrößern oder verkleinern (Forts.)

>> Globale Daten in Java?736
So

ns
tig

es

2. Definieren Sie in der Klasse statische Felder für den Datenaustausch.

Wenn Sie den Zugriff auf die Felder kontrollieren möchten, definieren Sie die Felder als
private und schreiben Sie public-Get-/Set-Methoden für den Zugriff.

Die Klasse POBox implementiert nach diesem Muster ein öffentlich zugängliches »Postfach«.
Mit Hilfe der Methode setData() kann eine Nachricht im Postfach hinterlegt werden. Mit get-
Data() können die Nachrichten im Postfach abgefragt werden.

Das Start-Programm zu diesem Rezept demonstriert, wie die Objekte zweier verschiedener
Klassen über POBox Daten austauschen. Der Einfachheit halber sind die beteiligten Klassen
zusammen mit Start in einer Datei definiert.

import java.util.Vector;

public class POBox {
 private static Vector<String> data = new Vector<String>();

 public static Vector<String> getData() {
 return (Vector<String>) data.clone();
 }
 public static void setData(String value) {
 data.add(value);
 }
}

Listing 365: Globale Daten in Form statischer Felder

A
ch

tu
n

g Es ist wichtig, dass die Methode getData() nur eine Kopie des internen Collection-
Objekts zurückliefert. Würde sie eine Referenz auf das Original zurückliefern, könnte
diese dazu missbraucht werden, unter Umgehung der Get-/Set-Methoden von POBox
das Collection-Objekt zu manipulieren.

import java.util.Date;
import java.text.DateFormat;
import java.util.Vector;

/**
 * Klasse, die Nachrichten in POBox ablegt
 */
class Agent {
 String code;

 public Agent(String code) {
 this.code = code;
 }

 public void depositMessage(String text) {
 String message;

Listing 366: Datenaustausch via statische Felder

>> Sonstiges 737

So
ns

tig
es

Globale Daten als Felder einer Singleton-Klasse
Die Alternative zur Definition einer Klasse mit statischen Feldern ist die Definition einer
Klasse, die intern ein einzelnes Objekt von sich selbst verwaltet und auf Anfrage eine Referenz
auf dieses Objekt zurückliefert – ein Design, das gemeinhin als Singleton-Pattern bezeichnet
wird (siehe Rezept 259).

 // Zeitstempel + Code
 Date time = new Date();
 message = DateFormat.getDateTimeInstance().format(time);
 message += ", Agent " + code + ": ";

 // eigentliche Nachricht
 message += text;

 // Nachricht global speichern
 POBox.setData(message);
 }
}

/**
 * Klasse, die Nachrichten aus POBox ausliest
 */
class Middleman {

 public void collectMessages() {
 Vector<String> messages = POBox.getData();

 for(String s : messages)
 System.out.println(" " + s);
 }
}

public class Start {

 public static void main(String args[]) {

 Agent ag003 = new Agent("003");
 Agent ag021 = new Agent("021");

 ag003.depositMessage("Feind bringt Oelquellen unter seine Kontrolle.");
 ag021.depositMessage("Feind plant geheime Testbohrungen auf Mond.");
 ag003.depositMessage("Feind treibt Oelpreis in die Hoehe.");

 Middleman unknown = new Middleman();
 unknown.collectMessages();
 }
}

Listing 366: Datenaustausch via statische Felder (Forts.)

>> Testprogramme schreiben738
So

ns
tig

es

Code, der über das Objekt der Singleton-Klasse POBox Daten austauschen möchte, kann sich
mit getInstance() eine Referenz auf das Objekt besorgen. Das Objekt kann dann ebenso ver-
wendet werden, wie im vorangehenden Abschnitt die statische POBox-Klasse:

// Aus Agent.depositMessage()
 ...
 // Nachricht global speichern
 POBox.getInstance().setData(message);

265 Testprogramme schreiben
Die objektorientierte Programmierung führt nahezu zwangsläufig zum modularen Aufbau von
Anwendungen und Bibliotheken. Selten besteht eine Anwendung allein aus der main()-
Methode, meist verteilt sich der Code auf mehrere Klassen, deren Funktionalität wiederum auf

Abbildung 156: Postfächer sind nur eine von vielen möglichen Formen des Datenaustauschs.

import java.util.Vector;

public class POBox {
 private static POBox instance;
 private Vector<String> data;

 // direkte Instanzbildung unterbinden
 private POBox() {
 data = new Vector<String>();
 }

 public static POBox getInstance() {
 if (instance == null)
 instance = new POBox();

 return instance;
 }

 public Vector<String> getData() {
 return (Vector<String>) data.clone();
 }
 public void setData(String value) {
 data.add(value);
 }
}

Listing 367: Globale Daten in Form einer Singleton-Klasse

>> Sonstiges 739

So
ns

tig
es

mehrere Methoden (und vielleicht noch statische Anweisungsblöcke) verteilt ist. Diese Modu-
larisierung können und sollten Sie zum Testen nutzen.

Während sich kleinere Anwendungen vielleicht noch als Ganzes am Ende des Entwicklungs-
zyklus testen lassen, empfiehlt sich bei der Entwicklung größerer Anwendungen die sofortige
Überprüfung bereits fertig gestellter Klassen – im Falle von Bibliotheken ist das Testen der
einzelnen Klassen quasi obligatorisch.

Aufbau von Testprogrammen
Für den Aufbau von Testprogrammen gibt es meines Wissens nach keine verbindlichen Nor-
men oder Vorgaben, außer natürlich, dass die Tests geeignet sein müssen, die korrekte Funk-
tionalität des getesteten Codes – soweit möglich und vertretbar – sicherzustellen.

Ein gutes und bewährtes Konzept ist:

1. Für jede Klasse ein eigenes Testprogramm zu schreiben. (Das Testprogramm kann unter
Umständen auch als main()-Methode in den Code der Klasse integriert werden.)

2. Im Testprogramm jede Methode der Klasse aufrufen und prüfen:

� Liefert sie korrekte Ergebnisse?

Denken Sie dabei daran, dass Ergebnisse nicht nur in Form von Rückgabewerten,
sondern auch durch Änderung von Referenzparametern oder Feldern der Klasse
zurückgeliefert werden können.

� Wie verarbeitet sie kritische Eingaben?

Kritische Werte sind meist die 0 (bzw. 0.0), die null-Referenz und Argumente, die
in der Methode erst noch in einen anderen Typ umgewandelt werden müssen.
Kann es passieren, dass die Methode mit kritischen Werten konfrontiert wird?
Wenn ja, testen Sie dies.

� Wie verarbeitet sie Fehler?

Vielleicht erlaubt die Methode für einen ihrer Parameter nur ganzzahlige Argu-
mente im Bereich 0 bis 100 und wirft bei Übergabe größerer Zahlen eine IllegalAr-
gumentException aus. Oder die Methode greift auf eine externe Ressource zu, die
eventuell nicht vorhanden ist. Der Code zum Abfangen dieser Fehler sollte bereits
in der Methode implementiert sein. Prüfen Sie, ob die Fehlerbehandlung der
Methode zuverlässig arbeitet, indem Sie sie mit Eingaben aufrufen, die diese Fehler
heraufbeschwören.

3. Die Tests automatisieren

Kein Code wird für die Ewigkeit geschrieben. Die Software-Erstellung ist ein zyklischer
Prozess, bei dem es immer wieder passiert, dass bereits fertig gestellte und korrekt funktio-
nierende Klassen geändert oder erweitert werden müssen. Die logische Konsequenz: Sofern
man das Testen nicht bis ganz zuletzt aufschiebt, muss man sich darauf einstellen, ein und
dieselbe Klasse mehrmals zu testen. Und selbst der Abschluss eines Projekts bedeutet noch
nicht das Ende des Testens. Irgendwann wird es eine neue Version der Software geben und
dies heißt oftmals, dass die Klasse nochmals überarbeitet oder zumindest noch einmal
getestet werden muss.

>> Testprogramme schreiben740
So

ns
tig

es

Es lohnt sich daher, das Testprogramm von vornherein so aufzusetzen, dass es automatisch
abläuft. Das heißt, das Testprogramm wird so geschrieben, dass es selbstständig prüft, ob
die getesteten Methoden wie erwartet arbeiten. Statt beispielsweise den Rückgabewert
einer getesteten Methode auszugeben und es dem Programmierer zu überlassen, diesen mit
dem erwarteten Rückgabewert zu vergleichen, führt das Testprogramm den Check selbst
durch und gibt auf der Konsole nur noch aus, ob der Test erfolgreich war oder nicht.

Im Falle eines gescheiterten Tests muss der Programmierer auf den Test und die möglicher-
weise fehlerhafte Methode aufmerksam gemacht werden – beispielsweise indem das Test-
programm an der betreffenden Stelle mit einer Fehlermeldung oder einem Fehlerbericht
abbricht.

Beispiel
Anhand eines einfachen Beispiels möchte ich zeigen, wie ein Testprogramm nach obigen Maß-
gaben aussehen könnte. Zu prüfen ist dabei lediglich eine einzelne statische Methode, die das
Volumen einer Kugel berechnet:

Das zugehörige Testprogramm führt den Korrektheitsnachweis für die Methode mit Hilfe
zweier Einzeltests:

� Aufruf mit einem negativen Radius, um zu testen, ob IllegalArgumentException ausgelöst
wird.

radius = -0.5;
try {
 volume = MoreMath.volumeSphere(radius);
 error(" Neg. Argument hat keine Exception ausgeloest!");
} catch (IllegalArgumentException e) {
}

Wird keine Exception ausgelöst, wird nach dem Aufruf von MoreMath.volumeSphere() die
statische Hilfsmethode error() ausgeführt, die die übergebene Fehlermeldung ausgibt und
das Programm abbricht.

Wird hingegen wunschgemäß eine IllegalArgumentException ausgelöst, wird die error()-
Methode nicht mehr ausgeführt, da die Programmausführung direkt zum behandelnden
catch-Block springt (der nichts weiter macht, so dass das Programm normal fortgeführt
wird).

// in Klasse MoreMath

/**
 * Volumen einer Kugel aus Radius berechnen
 */
public static double volumeSphere(double r) {
 if (r < 0)
 throw new IllegalArgumentException("nicht erlaubtes negatives Argument");

 return 4.0/3.0 * Math.PI * r*r*r;
}

Listing 368: Die zu testende Methode

>> Sonstiges 741

So
ns

tig
es

� Aufruf mit positivem Radius, um zu testen, ob korrektes Volumen berechnet wird.

radius = 4.01;
corrValue = 270.0982231;
volume = MoreMath.volumeSphere(radius);

if(!equals(volume, corrValue, eps))
 error(" Volumenberechnung liefert falsches Ergebnis");

Hier ist lediglich zu beachten, dass die double-Werte mit einer vorgegebenen Genauigkeit
verglichen werden, siehe Rezept 6.

Und hier noch einmal der vollständige Quelltext:

public class Testlauf {

 // Hilfsmethode zum Ausgeben von Fehlermeldungen
 public static void error(String s) {
 System.out.println(" FEHLER: " + s);
 System.exit(0);
 }
 // Hilfsmethode zum Vergleichen mit definierter Genauigkeit
 public static boolean equals(double a, double b, double eps) {
 return Math.abs(a - b) < eps;
 }

 public static void main(String args[]) {

 System.out.println("\n *********************************");
 System.out.println(" Teste MoreMath.volumeSphere() : \n");

 double radius;
 double volume;
 double corrValue;
 double eps = 1e-7;

 // Methode soll bei negativem Argument IllegalArgumentException auslösen
 radius = -0.5;
 try {
 volume = MoreMath.volumeSphere(radius);
 error(" Negatives Argument hat keine Exception ausgeloest!");
 } catch (IllegalArgumentException e) {
 }
 System.out.println("\t IllegalArgumentException: okay");

 // Methode soll für gegebenen Radius das korrekte Volumen zurückliefern
 radius = 4.01;
 corrValue = 270.0982231;
 volume = MoreMath.volumeSphere(radius);

 if(!equals(volume, corrValue, eps))

Listing 369: Das Testprogramm

>> Debug-Stufen definieren742
So

ns
tig

es

266 Debug-Stufen definieren
Das vorliegende Rezept ist für Programmierer, die das Debuggen mit Konsolenausgaben dem
Einsatz eines Debuggers vorziehen, bzw. Programmierer, die für bestimmte Debug-Aufgaben
eine Alternative zum Debugger suchen.

Testprogramme liefern in der Regel nur allgemeine Hinweise darauf, wo Fehler auftauchen
und Fehlerquellen zu suchen sind. Hinzu kommt, dass es immer wieder Fehler gibt, die vom
Testprogramm nicht entdeckt werden und die sich dann erst beim Abschlusstest oder – noch
schlimmer – bei Ausführung durch den Kunden zeigen. Dann muss der Code debuggt werden.

Manchmal genügt es, die verdächtige Codestelle einfach nochmals gründlich anzuschauen,
und schon springt der Fehler ins Auge. Meist bedarf es aber zusätzlicher Hilfsmittel, die dem
Programmierer mehr Informationen darüber an die Hand geben, was während der Ausführung
in dem Programm/Code passiert. Das wichtigste Hilfsmittel ist zweifelsohne der Einsatz eines
Debuggers. Alternativ oder ergänzend bauen viele Programmierer aber auch println()-Ausga-
ben in den Code ein, um Informationen (aktuelle Werte wichtiger Variablen, Statusmeldungen)
auf die Konsole auszugeben.

 error(" Volumenberechnung liefert falsches Ergebnis");

 System.out.println("\t Volumenberechnung: okay");
 System.out.println("\n Methode okay!\n");

 }
}

Abbildung 157: Testprogramm bricht mit Fehler ab (der Code von volumeSphere()
wurde zuvor geändert).

Abbildung 158: Testprogramm läuft ohne Fehler bis zum Ende durch.

Listing 369: Das Testprogramm (Forts.)

>> Sonstiges 743

So
ns

tig
es

println()-Ausgaben lassen sich relativ schnell in den Code einfügen. Sie sind permanent, d.h.
der Programmierer kann das Programm ganz (oder bis zu natürlichen Unterbrechungen) aus-
führen und danach die Konsolenausgaben prüfen. Umfangreichere Ausgaben lassen sich in
Dateien umleiten, siehe Rezept 88. Mittels println()-Ausgaben kann man nachvollziehen, in
welcher Reihenfolge die Methoden während der Ausführung des Programms ausgeführt wer-
den. (Bei Einsatz eines Debuggers muss man dazu das Programm im Programm schrittweise
ausführen und verfolgen, was zwar auch seine Vorzüge hat, aber eine langwierige Angelegen-
heit darstellt.)

Nachteilig ist, dass die println()-Ausgaben den eigentlichen Quelltext zerpflücken und die
Lesbarkeit beeinträchtigen. Sie fließen in den Class-Code ein und müssen daher spätestens vor
Kompilierung der Final-Version entfernt werden. Sie lassen sich leider nicht auf Wunsch ein-
fach an- und ausschalten.

Halt! Zumindest der letzte Punkt lässt sich mit ein wenig Mehraufwand doch realisieren.

Debug-Stufen und bedingte Debug-Ausgaben
In C++ können Debug-Ausgaben in #ifdef-Präprozessordirektiven eingefasst werden:

#define DEBUG_LEVEL0; // nur C++
...
#ifdef DEBUG_LEVEL0
 printf(" ... ");
#endif

Hier wird die printf-Ausgabe nur dann ausgeführt, wenn die Konstante DEBUG_LEVEL0 definiert
ist. Tatsächlich, und dies ist der Vorteil des Präprozessors, wird der Code innerhalb der Präpro-
zessor-Direktiven #ifdef – #endif gar nicht erst kompiliert, wenn DEBUG_LEVEL0 nicht definiert
ist. Der C++-Programmierer kann also durch Ein- und Auskommentieren der #define-Zeile
steuern, ob die Debug-Ausgaben in den kompilierten Code (entspräche in etwa dem Bytecode
von Java) aufgenommen und ausgeführt werden.

Java kennt keine Präprozessordirektiven und so gibt es keine Möglichkeit, zu steuern, ob
Debug-Ausgaben in den Bytecode aufgenommen werden sollen oder nicht (außer durch Aus-
kommentierung oder Löschen). Wir können aber nach obigem Schema ein System von Debug-
Ausgaben aufbauen, die auf einfache Weise ein- und ausgeschaltet werden können.

1. Zuerst definieren Sie einen Satz boolescher Debug-Konstanten, über die Sie die Debug-
Ausgaben ein- und ausschalten können. Grundsätzlich würde eine einzige Konstante
genügen. Durch Definition mehrerer Konstanten können Sie aber zwischen verschiedenen
Arten von Debug-Ausgaben (Stackinformationen, Methodenparameter, berechnete Zwi-
schenwerte etc.) unterscheiden und diese gezielt ein- und ausschalten. Wenn Sie grund-
sätzlich stets mit denselben Debug-Konstanten arbeiten, können Sie diese in einer eigenen
public-Klasse definieren und dann in beliebigen Projekten verwenden:

public class DEBUG {
 public final static boolean LEVEL0 = false; // Methoden-
 // Tracing
 public final static boolean LEVEL1 = false; // Parameter und
 // return-Werte
 public final static boolean LEVEL2 = false; // Hilfsvariablen
 // Teilschritte
}

>> Debug-Stufen definieren744
So

ns
tig

es

2. Anschließend fassen Sie im Quellcode die Debug-Ausgaben in if-Bedingungen ein, bei-
spielsweise:

public static double eineMethode(int param) {
 int localVar = 1;

 if (DEBUG.LEVEL0)
 System.out.println("\n\t in Methode "
 + "Klasse.eineMethode()");

 // tue etwas
}

Wenn Sie die Debug-Ausgaben weiter einrücken als den eigentlichen Code, können Sie die
Debug-Ausgaben später leichter aufspüren (möglich ist auch die Suche nach dem String
»DEBUG«) und entfernen.

Um die Debug-Ausgaben übersichtlicher zu gestalten, können Sie die Ausgaben umso wei-
ter einrücken, je höher die Debug-Stufe ist.

Das folgende Listing enthält eine fehlerhafte Version der Methode geomMean() zur Berechnung
des geometrischen Mittels (siehe auch Rezept 20). Der betriebene Aufwand zum Aufbau abge-
stufter, bedingter Debug-Ausgaben steht in diesem Fall zwar in keinem Verhältnis zur Komple-
xität der Methode, doch geht es uns ja vornehmlich um die Verdeutlichung des Prinzips.

public class MoreMath {

 // Instanzbildung unterbinden
 private MoreMath() { }

 /**
 * Geometrisches Mittel
 */
 public static double geomMean(double... values) {
 double sum = 0;
 double result;

 if (DEBUG.LEVEL0)
 System.out.println("\n\t in Methode MoreMath.geomMean()");
 if (DEBUG.LEVEL1) {
 System.out.print("\t\t Parameter: ");
 for (double d : values)
 System.out.print(" " + d);
 System.out.println();
 }

 for (double d : values) {
 sum *= d;

 if (DEBUG.LEVEL2)

Listing 370: geomMean() mit bedingten Debug-Ausgaben

>> Sonstiges 745

So
ns

tig
es

Um die Methode zu debuggen, können Sie nun so vorgehen, dass Sie in DEBUG die Debug-Kons-
tanten auf true setzen, die Class-Dateien löschen, neu kompilieren und das Programm ausführen.

267 Code optimieren
Nachdem Sie den Code einer Anwendung, eines Moduls oder auch einer einzelnen Klasse
fertig gestellt, auf Fehler untersucht, getestet und für gut befunden haben, sollten Sie ihn
abschließend noch einmal kompilieren und dabei vom Compiler optimieren lassen.

Übergeben Sie dem javac-Compiler dazu beim Aufruf die Optionen -O (Optimierung einschal-
ten) und -g:none (keine Debuginformationen aufnehmen):

javac -g:none -O quelldatei.java

 System.out.println("\t\t\t sum = " + sum);
 }

 if (DEBUG.LEVEL2)
 System.out.println("\t\t\t exponent = " + 1/values.length);

 result = Math.pow(sum, 1/values.length);

 if (DEBUG.LEVEL1)
 System.out.println("\t\t Return-Wert: " + result + "\n");
 if (DEBUG.LEVEL0)
 System.out.println("\t verlasse MoreMath.geomMean()\n");

 return result;
 }
}

Abbildung 159: Ausführung mit Debug-Ausgaben der Stufen 0 bis 2

Listing 370: geomMean() mit bedingten Debug-Ausgaben (Forts.)

>> jar-Archive erzeugen746
So

ns
tig

es

268 1jar-Archive erzeugen
Da sich ein Java-Programm oder auch ein Applet in der Regel aus mehreren, teilweise sogar
Hunderten von Klassen zusammensetzt, besteht somit auch das kompilierte Programm aus
genauso vielen .class-Dateien. Hinzu kommen möglicherweise noch viele weitere Dateien, wie
zum Beispiel Bilder. Für die Weitergabe eines Programms ist dies ziemlich unpraktisch; bei
Applets bedeutet es zudem sehr lange Ladezeiten, da für jede einzelne Datei, die zu einem
Applet gehört, eine HTTP-Get-Anfrage gestellt werden muss. Aus diesen Gründen wurde das

H
in

w
e

is Die Optimierung durch den Compiler ist selbstverständlich kein Ersatz für eigene Opti-
mierungen, wie z.B.:

� Schleifen von unnötigen Anweisungen (inklusive Reservierung lokaler Variablen
oder Erzeugung temporärer Objekte) befreien.

� Zeitkritische Algorithmen und Methoden einer Laufzeitmessung unterziehen (siehe
Rezept 62) und gegebenenfalls verbessern.

� Prüfen, ob es zeitraubende Operationen gibt, die unnötigerweise wiederholt ausge-
führt werden. (Beispiel: Eine Datei wird mehrfach an verschiedenen Stellen im Pro-
gramm geöffnet, bearbeitet und wieder geschlossen. Mögliche Lösung: Die Datei
wird zu Beginn des Programms einmalig geöffnet und gelesen, alle Änderungen
werden zwischengespeichert und erst bei Beendigung des Programms in die Datei
geschrieben. Beispiel: Eine Anwendung erzeugt an mehreren Stellen im Programm
die gleichen Objekte. Mögliche Lösung: einmal erzeugte Objekte in einem Pool ver-
wahren und bei wiederholter Anforderung aus dem Pool zurückliefern, siehe
Rezepte 179 und 240.)

Übertreiben Sie es aber nicht mit eigenen Optimierungen. Wir leben nicht mehr in den
Achtzigern, als Arbeitsspeicher in Kbyte statt in Gbyte angegeben wurde, und Pro-
gramme nicht nur hinsichtlich der Laufzeit, sondern auch bezüglich ihres Speicherbe-
darfs, Arbeits- wie Festplattenspeicher, optimiert wurden. Ja, nicht selten wurden sogar
Variablennamen gekürzt und Whitespace zusammengestrichen, damit die Quelltexte (!)
nicht unnötig viel Speicher auf der Festplatte belegen. Die Folgen waren äußerst
schlanke und effiziente Programme, aber auch kryptischer, schwer zu wartender und
leider oft auch fehlerhafter Code. Kein Wunder also, dass viele namhafte Programmierer
in der Optimierung den Ursprung allen Übels sahen.

Mittlerweile haben sich die Prioritäten verschoben. Ausführungsgeschwindigkeit und
Speicherbedarf der Anwendungen sind heute angesichts immer schnellerer Prozessoren
und immer üppiger ausgestatteter Speichermedien zumeist unkritisch.1 Dies sollte
jedoch kein Freibrief sein, mit den Ressourcen des Rechners in unverantwortlich ver-
schwenderischer Weise umzugehen. Exzessive Optimierung sollte nur zum Einsatz kom-
men, wo es die Umstände erfordern bzw. die erzielten Ergebnisse den Aufwand
rechtfertigen. Leistungsvermögen, Fehlerfreiheit, Wartbarkeit und Lesbarkeit des Codes
sollten der Optimierung nach Möglichkeit nicht zum Opfer fallen.

1. Liest man die Systemanforderungen von neu erscheinenden State-of-the-Art-Programmen kann man sogar leicht
den Eindruck gewinnen, dass die Software-Entwickler es darauf anlegen, die Leistungsgrenzen der aktuellen Rech-
nergeneration auszutesten, so als befürchteten sie, dass ihre Software als veraltet oder minderwertig eingeschätzt
werden könnte, wenn sie noch auf einem Rechner der vorangehenden Generation lauffähig wäre.

>> Sonstiges 747

So
ns

tig
es

jar-Archivformat eingeführt. Es ist eng an das ZIP-Format angelehnt, so dass die üblichen
Tools wie WinZip solche Archive auch öffnen (aber in der Regel nicht erzeugen) können.

Zum Anlegen von Jar-Archiven benötigt man das Programm jar, das in jedem JDK enthalten
ist. Die allgemeine Syntax zum Anlegen von jar-Dateien sieht wie folgt aus:

jar cf Archivname.jar Dateien

Angenommen, Sie möchten die .class-Dateien MeinProg.class und Fenster.class zu einem
Archiv namens Demo.jar zusammenfassen. Dann würden Sie jar wie folgt ausführen:

jar cf Demo.jar MeinProg.class Hilfe.class

Inhalt eines jar-Archivs kontrollieren

Um zu kontrollieren, was sich in einem jar-Archiv befindet, können Sie fast alle Dateikompri-
mierer (z.B. WinZip) verwenden oder das jar-Programm selbst:

 jar tf Demo.jar

Ausführbare Jar-Dateien

Für Java-Anwendungen, die aus einem jar-Archiv starten gestartet werden sollen, müssen Sie
angeben, welche Klasse die main()-Methode enthält. Die nötigen Informationen können Sie
via eine Manifest-Datei oder – seit Java 6 – über die Option e bereitstellen.

Angabe der Startklasse (hier MeinProg.class) über die Option e:

jar cfe Demo.jar MeinProg MeinProg.class Hilfe.class

Angabe der Startklasse (hier MeinProg.class) über eine Manifest-Datei:

Legen Sie im Projektverzeichnis ein Unterverzeichnis meta-inf an und darin eine simple Text-
datei Manifest.mf mit der folgenden Zeile:

Start-Class: MeinProg

Anschließend können Sie das Archiv erzeugen, wobei Sie durch das Flag m signalisieren, dass
eine Manifest-Datei mitgegeben werden soll:

jar cmf Demo.jar meta-inf/Manifest.mf MeinProg.class Hilfe.class

Um ein solches jar-Archiv für eine Java-Anwendung auszuführen, schicken Sie in der Konsole
den Befehl java –jar Demo.jar ab oder doppelklicken in einem Dateifenster auf das jar-Archiv.

Selbstverständlich kann man nicht nur .class-Dateien, sondern auch komplette jar-Archive
hinzufügen. Allerdings wird dann eine erweiterte Manifest-Datei erwartet, bei der das jar-
Archiv im Parameter Class-Path definiert wird. Wenn beispielsweise das Archiv jdom.jar
dazugehören soll, dann muss die Manifest-Datei folgendermaßen aussehen:

Main-Class: MeinProg
Class-Path: jdom.jar

Der Aufruf zum Erzeugen des Archivs lautet dann:

jar cmf Demo.jar meta-inf/Manifest.mf MeinProg.class Hilfe.class jdom.jar

Wenn Sie keine selbstständige Anwendung verpacken wollen, sondern vielmehr eine Samm-
lung von Klassen, die von anderen Java-Programmen aufrufbar sein sollen, müssen Sie die
Null-Option (0) beim Erzeugen des jar-Archivs verwenden:

>> Programme mit Ant kompilieren748
So

ns
tig

es

jar cmf0 Demo.jar meta-inf/Manifest.mf MeinProg.class Hilfe.class jdom.jar

Hierdurch werden die Dateien nicht komprimiert, so dass die Java Virtual Machine das jar-
Archiv nach Klassen durchsuchen kann.

Applets
Für den Aufruf eines Applets müssen im <applet>-Tag die Attribute code und archive definiert
sein:

<applet code = MeinProg.class
 archive = Demo.jar
 width = 300
 height = 300>

269 Programme mit Ant kompilieren
Zur Software-Entwicklung gehört neben dem Schreiben des Codes auch das Kompilieren und
Verwalten desselbigen. Den meisten Programmierern sind diese Aufgaben lästig, lenken sie
doch nur von dem eigentlichen, kreativen Prozess der Software-Entwicklung ab. Es gibt daher
unzählige Programme auf dem Markt, die dem Programmierer bei der effizienten Bewältigung
dieser Aufgaben zur Seite stehen: angefangen von einfachen make-Tools über Editoren mit
integriertem Compiler-Aufruf bis zur ausgewachsenen IDE. Eines der herausragendsten und
leistungsfähigsten Tools ist Ant. Ant stammt von der Apache Software Foundation und ist
Open Source.

Mit Ant können Sie unter anderem

� Dateien und Verzeichnisse erstellen, kopieren, löschen,

� Java-Anwendungen kompilieren,

� Archiv-Dateien erstellen (JAR, WAR, TAR etc.),

� eine Versionskontrolle einrichten,

� mit IDE-Umgebungen interagieren,

� FTP-Befehle ausführen.

Zudem ist Ant erweiterbar, d.h., Sie können eigene Aufgaben definieren und von Ant ausfüh-
ren lassen.

Ant herunterladen und einrichten
1. Ant können Sie als Binärdistribution von der Website http://ant.apache.org/bindown-

load.cgi herunterladen. Wenn Sie unter Windows arbeiten, werden Sie vermutlich die
ZIP-Datei herunterladen, während sich Linux-Anwender wohl eher für die .tar.gz-Datei
entscheiden.

2. Als Nächstes extrahieren Sie die Dateien unter Verwendung der Pfadinformationen in ein
passendes Verzeichnis. Als Ergebnis wird unter dem Zielverzeichnis ein Verzeichnis apache-
ant-1.7.0 angelegt. (Version 1.7.0 war zum Zeitpunkt der Drucklegung dieses Buchs aktuell.
Wenn Sie eine neuere Version installieren, lautet der Pfad entsprechend anders.)

>> Sonstiges 749

So
ns

tig
es

3. Um Ant von jedem beliebigen Verzeichnis aus aufrufen zu können, müssen Sie das Ant-
bin-Verzeichnis in Ihren Systempfad (Umgebungsvariable PATH) eintragen.

Unter Windows 95/98 setzen Sie die Umgebungsvariable in der autoexec.bat. Unter
Windows2000/2003/XP/Vista setzen Sie die Umgebungsvariable über SYSTEMSTEUERUNG/
SYSTEM/ERWEITERT/UMGEBUNGSVARIABLEN, Bereich SYSTEMSVARIABLEN. Unter Windows Vista
setzen Sie die Umgebungsvariable über SYSTEMSTEUERUNG/KLASSISCHE ANSICHT/SYSTEM/
ERWEITERTE SYSTEMEINSTELLUNGEN/UMGEBUNGSVARIABLEN, Bereich SYSTEMSVARIABLEN.

Unter Unix/Linux definieren Sie die Umgebungsvariable in /etc/profile (sofern Sie dazu
berechtigt sind) oder in Ihrer lokalen Profile-Datei (je nach Konfiguration .profile, .login,
.tcshrc, .bashrc o.Ä.)

4. Definieren Sie die Umgebungsvariable ANT_HOME und weisen Sie dieser den vollständigen
Pfad bis zu dem Ant-Installationsverzeichnis, einschließlich apache-ant-x.x.x, zu.

5. Definieren Sie die Umgebungsvariable JAVA_HOME und weisen Sie dieser den vollständigen
Pfad zu dem Installationsverzeichnis Ihres Java-SDK zu.

Um die Installation einem ersten Test zu unterziehen, müssen Sie je nach Betriebssystem ein
neues Konsolenfenster starten, sich neu anmelden oder den Rechner gänzlich neu booten.
Danach schicken Sie von einer Konsole den Befehl ant -version ab. Als Ergebnis sollten die
Versionsnummer und das Datum der Kompilation angezeigt werden.

Ant-Grundprinzipien
Ant wird durch XML-Dateien namens build.xml gesteuert. Für jedes Software-Projekt, das Sie
mit Ant kompilieren oder anderweitig bearbeiten und verwalten möchten, schreiben Sie eine
eigene build.xml-Datei, die Sie im Projektverzeichnis abspeichern.

Die build.xml-Datei enthält eine Tag-Hierarchie, an deren Spitze der Projektknoten steht. Darun-
ter folgen <property>-Tags zur Definition globaler Eigenschaften und <target>-Tags, die die
eigentlichen Aufgaben darstellen, die von Ant ausgeführt werden können. Die <target>-Tags
wiederum werden als eine Abfolge von Tasks definiert. Tasks sind elementare Befehle wie
<delete> zum Löschen von Dateien und Verzeichnissen oder <javac> zum Kompilieren. Die
wichtigsten Tasks sind bereits vordefiniert (siehe Ant-Dokumentation). Daneben ist es aber auch
möglich, eigene Tasks in Form von Java-Klassen zu implementieren (siehe Ant-Dokumentation).

Um eine Target-Aufgabe auszuführen, rufen Sie Ant einfach aus dem Verzeichnis, in dem die
build.xml-Datei steht, mit dem Namen der Task auf. Wenn Sie also beispielsweise ein Target
<compile> definiert haben, können Sie dieses durch Aufruf von

ant compile

ausführen.

A
ch

tu
n

g Wenn Sie unter Windows 95, 98 oder Me arbeiten, sollten Sie den Namen des Ant-Ver-
zeichnisses so ändern, dass er dem 8.3-Format entspricht – also beispielsweise Ant164
oder einfach Ant.

>> Programme mit Ant kompilieren750
So

ns
tig

es

Alle Tags lassen sich über Attribute konfigurieren.

Für das <project>-Tag gibt es drei optionale Attribute:

� name – der frei zu vergebende Name des Projekts.

� default – gibt an, welches Target auszuführen ist, wenn Ant ohne Angabe eines Targets
aufgerufen wird.

� basedir – Basisverzeichnis des Projekts. Bezugspunkt für alle Pfadangaben, kann selbst in
Target- und Task-Attributen verwendet werden.

<property>-Tags werden meist unter Angabe von Name und Wert bzw. Name und Pfadangabe
definiert:

<property name="prop1" value="wert" />
<property name="prop2" location="./verzeichnisname" />

Der Wert (value) einer Eigenschaft kann in Attributen anderer Tags referenziert werden. Setzen
Sie den Namen der Eigenschaft dazu in geschweifte Klammern und stellen Sie dem Ganzen
das Dollarzeichen voran: ${prop1}.

Die wichtigsten <target>-Attribute sind:

� name – obligatorisch. Um eine bestimmte Aufgabe auszuführen, rufen Sie von der Konsole
Ant mit dem Namen des Targets auf.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<project name="DemoProject" default="compile" basedir=".">

 <!-- Globale Eigenschaften -->
 <property name="classes_dir" location="${basedir}/classes"/>

 <!-- Target namens compile zum Kompilieren der Quelldateien -->
 <target name="compile">
 <!-- Aufruf der Task javac
 Die .java-Dateien aus dem Unterverzeichnis src werden kompiliert,
 die erzeugten .class-Dateien werden in dem Verzeichnis gespeichert,
 das durch die Eigenschaft classes_dir angegeben wird - in diesem
 Fall wäre dies das Unterverzeichnis classes
 -->
 <javac srcdir="src" destdir="${classes_dir}" />
 </target>

</project>

Listing 371: Aufbau einer typischen build.xml-Datei

H
in

w
e

is Übrigens: basedir ist eine vordefinierte Eigenschaft, deren Wert über das gleichnamige
<project>-Attribut gesetzt wird.

>> Sonstiges 751

So
ns

tig
es

� depends – eine durch Kommata getrennte Liste von Targets, die in der angegebenen
Reihenfolge abgearbeitet werden, bevor das aktuelle Target ausgeführt wird.

Mit Ant kompilieren
Um die von Ant gebotene Flexibilität zu demonstrieren, nehmen wir an, Sie hätten sich ent-
schlossen, Quelldateien und Class-Dateien in unterschiedlichen Verzeichnishierarchien zu
organisieren. Für die Quelldateien legen Sie unter dem Projektverzeichnis ein Verzeichnis src
an, in dem Sie Ihre Java-Quelltextdateien speichern. Ressourcendateien wie Bilder, Sound etc.
speichern Sie in einem src untergeordneten Verzeichnis resources:

Projektverzeichnis
 |-- src
 |-- resources

Die Class-Dateien sollen beim Kompilieren in einem eigenen Verzeichnis Projektverzeichnis/
classes abgelegt werden, welches notfalls automatisch neu anzulegen ist. Außerdem muss das
resources-Verzeichnis mit den Ressourcendateien nach classes kopiert werden, damit die Res-
sourcen bei Ausführung des Programms gefunden werden. Sie können all dies mit einem ein-
zigen Aufruf

ant compile

erledigen, wenn Sie zuvor folgende Build-Datei in dem Projektverzeichnis (von wo Sie auch
Ant aufrufen) speichern:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<project name="DemoProject" default="compile" basedir=".">
 <description> Beispiel für eine Build-Datei zum Kompilieren einer Java-Anwendung
 </description>

 <!-- Globale Eigenschaften -->
 <property name="resource_dirname" value="resources"/>
 <property name="resource_dir"
 location="${basedir}/src/${resource_dirname}"/>

 <!-- Als Vorbereitung zum Kompilieren -->
 <!-- alte Class-Dateien löschen und Ressoucenverzeichnis kopieren -->
 <target name="prepare_compile">
 <mkdir dir="classes"/>

 <delete>
 <fileset dir="classes" includes="**/*.class" />
 </delete>

 <copy todir="classes/${resource_dirname}">
 <fileset dir="${resource_dir}" />
 </copy>

 </target>

Listing 372: Beispiel für eine Build.xml-Datei zum Kompilieren mit Ant

>> Programme mit Ant kompilieren752
So

ns
tig

es

Zu Beginn werden drei globale Eigenschaften definiert:

� Als Basisverzeichnis basedir wird das aktuelle Verzeichnis, in dem die Build-Datei steht,
festgelegt.

� resource_dirname speichert den Namen des Ressourcenverzeichnisses.

� resource_dir speichert das Ressourcenverzeichnis selbst.

Später, bei der Vorbereitung zum Kompilieren werden die beiden letztgenannten Eigenschaf-
ten herangezogen, um die Ressourcen aus dem Ressourcenverzeichnis unter src in ein gleich-
namiges Verzeichnis unter classes zu kopieren.

Damit wären wir auch schon beim ersten Target: prepare_compile. Dieses Target führt drei
Tasks aus. Zuerst wird mit <mkdir> unter dem basedir-Verzeichnis ein Verzeichnis classes
angelegt. Existiert das Verzeichnis bereits, tut <mkdir> nichts weiter. Anschließend werden mit
<delete> alle .class-Dateien in dem Verzeichnis classes gelöscht. (Für den Fall, dass von einer
früheren Kompilation noch ältere Class-Dateien in dem Verzeichnis stehen.) Schließlich wird
der Inhalt des Ressourcenverzeichnisses unter src in ein gleichnamiges Verzeichnis unter
classes kopiert.

Das zweite Target lautet compile. Das depends-Attribut des Targets sorgt dafür, dass bei jedem
Aufruf von compile zuerst prepare_compile ausgeführt wird. Danach wird die javac-Task aus-
geführt, die die Java-Dateien aus dem Verzeichnis src kompiliert und die erzeugten Class-
Dateien in classes ablegt.

Das Target compile kann wahlweise mit ant compile oder – da compile im <project>-Tag als
Standardtarget (default-Attribut) ausgewählt wurde – einfach mit ant ausgeführt werden.

Die Befehle im prepare_compile-Target hätte man natürlich auch direkt im compile-Target
unterbringen können. Durch die Auslagerung wird der Code aber modularer und das
prepare_compile-Target kann im Falle einer Erweiterung der Build-Datei auch in anderen Tar-
gets verwendet werden – beispielsweise zur Erstellung einer Build-Kompilation.

 <!-- Quelldateien kompilieren -->
 <target name="compile" depends="prepare_compile">
 <javac srcdir="src" destdir="classes" />
 </target>

</project>

Projektverzeichnis
 |-- classes
 |-- resources
 |-- src
 |-- resources

Listing 373: Verzeichnisstruktur nach Aufruf von ant compile

Listing 372: Beispiel für eine Build.xml-Datei zum Kompilieren mit Ant (Forts.)

>> Sonstiges 753

So
ns

tig
es

Von Ant eine Build-Version erstellen lassen
Mit dem compile-Target aus dem vorangehenden Abschnitt können Sie Ihr Projekt auf dem
aktuellen Stand bequem kompilieren, um es anschließend auszuführen und zu testen.
Vielleicht möchten Sie aber bei Erreichen bestimmter Projektphasen oder Zwischenstände das
gesamte Projekt als »Build« speichern, mit Quelldateien und optimierten Class-Dateien? Für
Ant kein Problem! Sie müssen lediglich ein passendes Target, wir nennen es hier build, defi-
nieren.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<project name="DemoProject" default="compile" basedir=".">
 <description> Beispiel für eine Build-Datei </description>

 <!-- Globale Eigenschaften -->
 <property name="resource_dirname" value="resources"/>
 <property name="resource_dir"
 location="${basedir}/src/${resource_dirname}"/>
 <property name="build_dir"
 location="${basedir}/build"/>

 <target name="prepare_compile">
 <!-- wie oben -->
 </target>

 <target name="compile" depends="prepare_compile">
 <!-- wie oben -->
 </target>

 <!-- Als Vorbereitung für neue Build-Version -->
 <!-- Build-Verzeichnis löschen und neu anlegen -->
 <target name="prepare_build" depends="clean, prepare_compile">
 <mkdir dir="${build_dir}"/>
 </target>

 <!-- Neue Build-Version erstellen -->
 <target name="build" depends="prepare_build">
 <javac srcdir="src" destdir="classes" debug="off"
 optimize="on" deprecation="off" />

 <copy todir="${build_dir}">
 <fileset dir="classes" />
 </copy>

 <copy todir="${build_dir}/src">
 <fileset dir="src" />
 </copy>

Listing 374: Erweitertes Beispiel für eine Build.xml-Datei zum Kompilieren mit Ant

>> Ausführbare jar-Dateien mit Ant erstellen754
So

ns
tig

es

Das Target build führt zuerst prepare_build aus, welches wiederum von clean und
prepare_compile abhängt.

Das Target clean löscht das Build-Verzeichnis, sofern dies schon einmal angelegt wurde, kom-
plett von der Festplatte.

Das Build-Verzeichnis ist nicht direkt angegeben, sondern wird über die Eigenschaft build_dir
referenziert. Für Namen, Dateien oder Verzeichnisse, auf die mehrfach Bezug genommen wird,
lohnt sich eigentlich immer die Definition einer entsprechenden Eigenschaft. Im Falle einer
nachträglichen Änderungen müssen Sie dann nur die Eigenschaft korrigieren.

Das Target prepare_compile wurde bereits im vorangehenden Abschnitt beschrieben. Es sorgt
dafür, dass ein Unterverzeichnis classes mit einem weiteren Unterverzeichnis für die Ressour-
cendateien existiert, und löscht vorhandene alte Class-Dateien.

Das neu hinzugekommene Target prepare_build legt das Verzeichnis für die Build-Dateien an.

Das Target build schließlich kompiliert die Anwendung. Im Gegensatz zum compile-Target
werden aber keine Debug-Informationen in die Class-Dateien mit aufgenommen. Dafür wird
der Code optimiert und anschließend die neu erstellten Class-Dateien aus dem Verzeichnis
classes in das Build-Verzeichnis und der Inhalt des src-Verzeichnisses in ein gleichnamiges
Verzeichnis unter dem Build-Verzeichnis kopiert.

270 Ausführbare jar-Dateien mit Ant erstellen
Um mit Ant eine ausführbare Jar-Datei zu erzeugen, müssen Sie eine passende Manifest-Datei
anlegen und ein Target definieren, das mit Hilfe der vordefinierten jar-Task die Manifest-Datei
zusammen mit den Class- und Ressourcendateien der Anwendung in eine Jar-Datei packt.

 </target>

 <!-- Build-Verzeichnis komplett entfernen -->
 <target name="clean">
 <delete dir="${build_dir}"/>
 </target>

</project>

Projektverzeichnis
 |-- build
 |-- resources
 |-- src
 |-- resources
 |-- classes
 |-- resources
 |-- src
 |-- resources

Listing 375: Verzeichnisstruktur nach Aufruf von ant build

Listing 374: Erweitertes Beispiel für eine Build.xml-Datei zum Kompilieren mit Ant (Forts.)

>> Sonstiges 755

So
ns

tig
es

Obiges Target ruft zuerst das Target build auf (siehe vorhergehendes Rezept), um sicherzustel-
len, dass die Class-Dateien in dem Verzeichnis, das von der Eigenschaft build_dir referenziert
wird, auf dem neuesten Stand sind. Dann werden die Class- und Ressourcendateien aus
build_dir zusammen mit der Manifest-Datei (die im Basisverzeichnis des Projekts steht) in
eine Jar-Datei gepackt, welche schließlich unter dem Namen des Projekts (vordefinierte Eigen-
schaft ant.project.name) im build_dir-Verzeichnis abgelegt wird.

271 Reflection: Klasseninformationen abrufen
Reflection bezeichnet eine Technologie, mit der Informationen über den Aufbau von Klassen
(Methoden, Felder) bereitgestellt und zur Laufzeit verarbeitet werden können. Reflection
erlaubt es, Klasseninstanzen zu erzeugen und Methoden aufzurufen.

Eine Java-Klasse bietet stets die Möglichkeit, über ihre Methode getClass() eine java.lang.
Class-Instanz abzurufen, die die Klasse repräsentiert. Mit deren Hilfe und der Reflection-API
können diverse Informationen ermittelt werden:

� Typ eines Objekts

� Zugriffsmodifizierer einer Klasse

� Felder

� Methoden

� Konstanten

� Konstruktoren

� Basisklassen

� Konstanten und Methoden eines Interfaces

Darüber hinaus können diverse Operationen mit der repräsentierten Klasse vorgenommen
werden:

� Instanzen von Klassen erzeugen, deren Namen und Typen zur Entwurfszeit nicht bekannt
sein müssen

� Lesender und schreibender Zugriff auf Felder und deren Werte, auch wenn die Felder und
deren mögliche Typen zur Entwurfszeit noch nicht bekannt sind

� Methoden aufrufen, auch wenn diese zur Entwurfszeit noch nicht bekannt sind

Um Informationen über eine Klasse zu erhalten, rufen Sie deren getClass()-Methode auf und
arbeiten mit der erhaltenen java.lang.Class-Instanz. Deren Konstruktoren, Methoden und
Felder können über die Methoden getConstructors(), getMethods() und getFields() ermittelt
werden. Da diese Methoden jeweils Arrays mit java.lang.Member-Instanzen zurückgeben, las-

<target name="buildjar" depends="build">
 <jar jarfile="${build_dir}/${ant.project.name}.jar"
 basedir="${build_dir}"
 manifest="Manifest.mf"/>
</target>

Listing 376: Beispiel-Target zur Erzeugung einer ausführbaren Jar-Datei

>> Reflection: Klasseninformationen abrufen756
So

ns
tig

es

sen sich diese Informationen in nahezu identischer Weise verarbeiten: Die Methode getName()
einer Member-Instanz gibt den Namen des Elements zurück, während getCannonicalName()
den voll qualifizierten Typnamen inklusive Package ermittelt. Die reinen Package-Informatio-
nen können über getPackage() abgerufen werden und müssen einzeln geparst werden.

Ein Casting in den konkreten Typ erlaubt es, mögliche Parameter (für Konstruktoren und Metho-
den) und Rückgabewerte bzw. Feldtypen (Methoden und Felder) abzurufen und zu verarbeiten.

Die nachfolgend definierten statischen Methoden helfen bei der Analyse der Klassen:

import java.lang.reflect.Constructor;
import java.lang.reflect.Member;
import java.lang.reflect.Method;
import java.lang.reflect.Field;
import java.util.ArrayList;

public class Analyzer {
 /**
 * Gibt die Parameter einer Methode oder eines
 * Konstruktors zurück
 */
 private static String parseParameters(Class[] params) {
 ArrayList<String> paramsList = new ArrayList<String>();

 // Parameter durchlaufen
 for(Class param : params) {
 paramsList.add(param.getCanonicalName());
 }

 // Parameter durch Kommata getrennt in Liste zusammenfassen
 StringBuffer result = new StringBuffer();
 for(int i=0; i<paramsList.size(); i++) {
 result.append(paramsList.get(i));
 if(i < paramsList.size() - 1) {
 result.append(", ");
 }
 }

 // Liste zurückgeben
 return result.toString();
 }

 // Analysiert ein Klassenelement
 private static String analyzeMember(Member m) {
 Class[] params = null;

 // Je nach Typ werden die Parameter abgerufen
 if (m instanceof Constructor) {
 params = ((Constructor) m).getParameterTypes();
 } else if(m instanceof Method) {
 params = ((Method) m).getParameterTypes();

Listing 377: Analyse einer Klasse

>> Sonstiges 757

So
ns

tig
es

 } else if(m instanceof Field) {
 // Felder haben nur einen Typ und einen Namen
 Field field = (Field) m;
 return String.format("%s %s",
 field.getType().getCanonicalName(),
 field.getName());
 }

 // Parameter ermitteln
 String paramList = "";
 if(null != params) {
 paramList = parseParameters(params);
 }

 // Ergebnis formatieren und zurückgeben
 // Für Methoden muss zusätzlich der Rückgabetyp ermittelt werden
 return String.format("%s%s(%s)",
 (m instanceof Method ? (
 (Method) m).getReturnType().
 getCanonicalName() + " " : ""),
 m.getName(), paramList);
 }

 /**
 * Analysiert eine Klasse
 */
 public static void analyze(Class cls) {
 System.out.println("Klasse");
 System.out.println("======");

 // Name ausgeben
 System.out.println(String.format(
 "Name: %s", cls.getName()));

 // Package ausgeben
 String pckg = (
 null != cls.getPackage() ?
 cls.getPackage().getName() : "---");
 System.out.println(String.format("Package: %s", pckg));

 // Konstruktoren ausgeben
 System.out.println();
 System.out.println("Konstruktoren");
 System.out.println("=============");

 // Konstruktoren-Array abrufen
 Constructor[] cons = cls.getConstructors();

 // Konstruktoren-Array durchlaufen
 for(Constructor con : cons) {
 System.out.println(analyzeMember(con));

Listing 377: Analyse einer Klasse (Forts.)

>> Reflection: Klasseninformationen abrufen758
So

ns
tig

es

Ein Aufruf der Methode analyze() der Analyzer-Klasse erwartet die Übergabe einer Class-
Instanz, die die zu analysierende Klasse repräsentiert:

Die im Beispiel verwendete SampleClass-Klasse hat folgenden Aufbau:

 }

 // Methoden ausgeben
 System.out.println();
 System.out.println("Methoden");
 System.out.println("========");

 // Methoden-Array abrufen
 Method[] methods = cls.getMethods();

 // Methoden-Array durchlaufen
 for(Method method : methods) {
 System.out.println(analyzeMember(method));
 }

 // Feld ausgeben
 System.out.println();
 System.out.println("Member");
 System.out.println("======");

 // Felder durchlaufen
 Field[] fields = cls.getFields();

 // Feld-Array durchlaufen
 for(Field field: fields) {
 System.out.println(analyzeMember(field));
 }
 }
}

public class Start {
 public static void main(String[] args) {

 Analyzer.analyze(SampleClass.class);
 }
}

Listing 378: Verwendung der Analyzer-Klasse

public class SampleClass {

 // Feld

Listing 379: Beispiel-Klasse, die mittels der Analyzer-Klasse analysiert wird.

Listing 377: Analyse einer Klasse (Forts.)

>> Sonstiges 759

So
ns

tig
es

Wird die Beispiel-Klasse SampleClass über die Analyzer-Klasse analysiert, ergibt sich die Aus-
gabe aus Abbildung 160.

 public String name = null;

 // Konstruktor
 public SampleClass() {
 System.out.println("SampleClass initialisiert!");
 }

 // Konstruktor
 public SampleClass(String name) {
 System.out.println(
 String.format(
 "SampleClass mit Parameter %s initialisiert!", name));
 this.name = name;
 }

 // Methode
 public int add(int a, int b) {
 return a + b;
 }
}

Abbildung 160: Analyse einer Klasse über Reflection

Listing 379: Beispiel-Klasse, die mittels der Analyzer-Klasse analysiert wird. (Forts.)

>> Reflection: Klasseninformationen über .class-Datei abrufen760
So

ns
tig

es

272 Reflection: Klasseninformationen über .class-Datei
abrufen

Die Analyse von Klassen muss nicht über bekannte oder geladene Elemente erfolgen, sondern
kann auch über die als Bytecode vorliegenden .class-Dateien erfolgen. Dies ist möglich, da der
Aufbau einer derartigen .class-Datei einem strikten Schema folgt. Dieses Schema ist unter
http://java.sun.com/docs/books/vmspec/html/ClassFile.doc.html beschrieben.

Grundsätzlich könnte die Analyse einer .class-Datei in Handarbeit über das Laden per
java.io.DataInputStream und das anschließende Auswerten der Informationen geschehen.
Bequemer jedoch ist der Einsatz des Frameworks Apache BCEL (Byte Code Engineering Library),
das unter der Adresse http://jakarta.apache.org/bcel/ heruntergeladen werden kann.

Die Analyse einer Klasse per BCEL gestaltet sich prinzipiell ähnlich wie beim Einsatz der
Reflection-API. Statt aber die Klasseninformationen über eine java.lang.Class-Instanz zu
beziehen, wird hier eine org.apache.bcel.classfile.JavaClass-Instanz eingesetzt, die über die
statische Methode lookupClass() der org.apache.bcel.Repository-Klasse zurückgegeben wird.
Die Methode lookupClass() nimmt als Parameter den voll qualifizierten Klassennamen als
String entgegen.

Der tatsächliche Name der geladenen Klasse kann per getClassName() ermittelt werden. Die
Package-Information wird über getPackageName() zurückgegeben. Ist keine Zugehörigkeit zu
einem spezifischen Package gegeben, gibt getPackageName() eine leere Zeichenkette zurück.

Der Zugriff auf alle in der Klasse definierten Methoden (und die Konstruktoren) geschieht über
die Methode getMethods() die ein org.apache.bcel.classfile.Method-Array zurückgibt. Kon-
struktoren sind dabei stets am Methodennamen <init> erkennbar. Analog erfolgt das Abrufen
der definierten Felder – statt getMethods() kommt hier die Methode getFields() zum Einsatz,
die ein org.apache.bcel.classfile.Field-Array zurückgibt.

Die so abgerufenen Arrays können durchlaufen und die Textdarstellung der jeweiligen Ele-
mente kann über deren toString()-Methode abgerufen werden. Eine aufwändige Analyse der
Elemente kann hier entfallen, so dass der Code-Umfang deutlich geringer als beim Einsatz der
Reflection-API ausfällt:

import org.apache.bcel.Repository;
import org.apache.bcel.classfile.JavaClass;
import org.apache.bcel.classfile.Method;
import org.apache.bcel.classfile.Field;

public class Analyzer {
 /**
 * Analysiert eine Klasse
 */
 public static void analyze(String clsName) {
 // JavaClass-Repräsentation der angegebenen Klasse abrufen
 // Klasse (.class-Datei) muss sich im Klassenpfad befinden!
 JavaClass cls = Repository.lookupClass(clsName);

 System.out.println("Klasse");
 System.out.println("======");

Listing 380: Analyse einer Klasse per BCEL

>> Sonstiges 761

So
ns

tig
es

Beim Aufruf der statischen Methode analyze() der Analyzer-Klasse muss der voll qualifizierte
Name (inklusive Namensraum) der zu analysierenden Klasse angegeben werden:

 // Name ausgeben
 System.out.println(String.format(
 "Name: %s", cls.getClassName()));

 // Package ausgeben
 String pckg = (
 null != cls.getPackageName() &&
 cls.getPackageName().length() > 0 ?
 cls.getPackageName() : "---");
 System.out.println(String.format("Package: %s", pckg));

 // Methoden ausgeben
 System.out.println();
 System.out.println("Methoden");
 System.out.println("========");

 // Methoden-Array abrufen
 Method[] methods = cls.getMethods();

 // Methoden-Array durchlaufen
 for(Method method : methods) {
 System.out.println(method.toString());
 }

 // Feld ausgeben
 System.out.println();
 System.out.println("Member");
 System.out.println("======");

 // Felder durchlaufen
 Field[] fields = cls.getFields();

 // Feld-Array durchlaufen
 for(Field field : fields) {
 System.out.println(field.toString());
 }
 }
}

public class Start {
 public static void main(String[] args) {

 Analyzer.analyze("SampleClass");
 }
}

Listing 381: Aufruf der analyze()-Methode unter Angabe des Klassennamens

Listing 380: Analyse einer Klasse per BCEL (Forts.)

>> Reflection: Klassen instanzieren762
So

ns
tig

es

273 Reflection: Klassen instanzieren
Über die Reflection-API ist es möglich, Klassen zur Laufzeit zu instanzieren, ohne den Typ der
Klasse zuvor kennen zu müssen. Ein derartiges Vorgehen kommt häufig beim Einsatz des Fac-
tory-Entwurfsmusters oder bei Plug-In-Systemen zum Einsatz.

Das Erzeugen einer neuen Klasseninstanz erfolgt in zwei Schritten:

� Zuerst muss eine java.lang.Class-Instanz erzeugt werden, die den Typ der zu instanzie-
renden Klasse repräsentiert. Ob dies über die Methode getClass() einer Klasse oder den
Java-Classloader (erreichbar über Class.forName()) geschieht, ist für das weitere Vorgehen
irrelevant.

� Anschließend kann ein Konstruktor, repräsentiert durch eine java.lang.Constructor-
Instanz, abgerufen werden. Dieser Abruf geschieht über die Methode getConstructor() der
Class-Instanz, der als Parameter ein Array aus Typrepräsentationen für die einzelnen Para-
meter übergeben wird. Die Methode newInstance() der Constructor-Instanz erzeugt eine
neue Klasseninstanz und kann ein Array mit benötigten Parametern entgegennehmen.

Instanzierung mit Standardkonstruktor
Verfügt die betreffende Klasse über einen Standardkonstruktor, kann dies wie folgt implemen-
tiert werden:

A
ch

tu
n

g Die .class-Datei der zu analysierenden Klasse muss sich im Klassenpfad befinden!

Abbildung 161: Analyse der Klasse SampleClass aus Rezept 271 per BCEL

import java.lang.reflect.Constructor;
import java.lang.reflect.InvocationTargetException;

public class Creator {

Listing 382: Erzeugen einer Klasseninstanz über den Standardkonstruktor

>> Sonstiges 763

So
ns

tig
es

Das Erzeugen einer neuen Klasseninstanz geschieht, indem der statischen Methode createIn-
stance() der Creator-Klasse der voll qualifizierte Name (inklusive Package-Zugehörigkeit)
übergeben wird:

 public static Object createInstance(String className) {
 try {
 // Typ-Repräsentation abrufen
 Class type = Class.forName(className);

 // Standardkonstruktor ermitteln
 Constructor con = type.getConstructor(null);

 // Wenn gefunden, dann neue Instanz erzeugen
 if(null != con) {
 return con.newInstance(null);
 }
 } catch (ClassNotFoundException e)
 {
 e.printStackTrace();
 } catch (NoSuchMethodException e)
 {
 e.printStackTrace();
 } catch (IllegalAccessException e)
 {
 e.printStackTrace();
 } catch (InvocationTargetException e)
 {
 e.printStackTrace();
 } catch (InstantiationException e)
 {
 e.printStackTrace();
 }

 // Fehler bei Verarbeitung
 return null;
 }
}

public class Start {
 public static void main(String[] args) {
 // Instanz der Klasse SampleClass erzeugen
 Object cls = Creator.createInstance("SampleClass");

 // Instanz wurde erzeugt - Hinweistext ausgeben
 if(null != cls) {
 System.out.println(
 String.format(
 "Object vom Typ %s erzeugt",

Listing 383: Erzeugen einer neuen Klasseninstanz per Reflection

Listing 382: Erzeugen einer Klasseninstanz über den Standardkonstruktor (Forts.)

>> Reflection: Klassen instanzieren764
So

ns
tig

es

Konstruktor mit Parametern
Das Vorgehen beim Verwenden eines Konstruktors mit Parametern unterscheidet sich nur an
zwei Stellen von der Verwendung des Standardkonstruktors:

� Der Methode getConstructor() einer Class-Instanz muss als Parameter ein Array mit den
Typangaben der Parameter des gesuchten Konstruktors übergeben werden.

� Beim Erzeugen des Konstruktors per newInstance() werden alle Parameter als Array über-
geben.

Angewendet auf einen Konstruktor mit einem String-Parameter, ergibt sich folgender Code in
der Klasse Creator:

 cls.getClass().getCanonicalName()));
 }
 }
}

Abbildung 162: Ausgaben beim Erzeugen einer Klasseninstanz per Reflection

import java.lang.reflect.Constructor;
import java.lang.reflect.InvocationTargetException;

public class Creator {
 // ...

 public static Object createInstance(String className, String value) {
 try {
 // Typ-Repräsentation abrufen
 Class type = Class.forName(className);

 // Konstruktor mit einem String ermitteln
 Constructor con =
 type.getConstructor(new Class[] {String.class});

 // Wenn gefunden, dann neue Instanz unter
 // Übergabe der Parameter erzeugen
 if(null != con) {
 return con.newInstance(
 new Object[] { value });
 }

Listing 384: Erzeugen einer Klasseninstanz über einen Konstruktor mit Parametern

Listing 383: Erzeugen einer neuen Klasseninstanz per Reflection (Forts.)

>> Sonstiges 765

So
ns

tig
es

Der Aufruf dieser Überladung von createInstance() kann nun unter Angabe des Klassen-
namens und des zu übergebenden Parameters erfolgen:

 } catch (ClassNotFoundException e) {
 e.printStackTrace();
 } catch (NoSuchMethodException e) {
 e.printStackTrace();
 } catch (IllegalAccessException e) {
 e.printStackTrace();
 } catch (InvocationTargetException e) {
 e.printStackTrace();
 } catch (InstantiationException e) {
 e.printStackTrace();
 }

 // Fehler bei Verarbeitung
 return null;
 }
}

public class Start {
 public static void main(String[] args) {
 // Instanz der Klasse SampleClass erzeugen
 Object cls = null;

 if(null == args || args.length == 0) {
 // Standardkonstruktor verwenden
 cls = Creator.createInstance("SampleClass");
 } else {
 // Standardkonstruktor verwenden
 cls = Creator.createInstance("SampleClass", args[0]);
 }

 // Instanz wurde erzeugt - Hinweistext ausgeben
 if(null != cls) {
 System.out.println(
 String.format(
 "Object vom Typ %s erzeugt",
 cls.getClass().getCanonicalName()));
 }
 }
}

Listing 385: Übergabe eines String-Parameters an die Methode createInstance()

Listing 384: Erzeugen einer Klasseninstanz über einen Konstruktor mit Parametern (Forts.)

>> Reflection: Methode aufrufen766
So

ns
tig

es

274 Reflection: Methode aufrufen
Die Reflection-API erlaubt das Aufrufen von Methoden, die zur Entwurfszeit nicht bekannt
sein müssen. Der Prozess des Einbindens einer neuen Methode sieht wie folgt aus:

� Eine java.lang.Class-Instanz wird referenziert. Dies kann über die Methode getClass()
einer Klasse oder den Java-Classloader (erreichbar über Class.forName()) geschehen.

� Anschließend kann die Methode, repräsentiert durch eine java.lang.Method-Instanz, abge-
rufen werden. Dies geschieht über die Methode getMethod() der Class-Instanz, der als
Parameter ein Array aus Typrepräsentationen für die einzelnen Parameter übergeben wird.
Soll eine Methode ohne Parameter verwendet werden, ist das Array null.

� Um eine Methode auszuführen, rufen Sie die invoke()-Methode der zugehörigen Method-
Instanz auf. Als ersten Parameter übergeben Sie die Instanz, auf der die Methode ausge-
führt werden soll, als zweiten Parameter ein Array aus zu übergebenden Werten oder null.

Für eine Methode mit zwei int-Parametern sieht dies wie folgt aus:

Abbildung 163: Eine Klasseninstanz ist unter Angabe eines Parameters erzeugt worden.

import java.lang.reflect.Method;
import java.lang.reflect.InvocationTargetException;

public class Invoker {

 public static Object invoke(
 Object instance, String methodName,
 int arg1, int arg2) {

 // Klassen-Repräsentation abrufen
 Class cls = instance.getClass();

 try {
 // Methoden-Repräsentation abrufen
 Method method = cls.getMethod(
 methodName, new Class[] {int.class, int.class});

 // Methode gefunden?
 if(null != method) {
 // Methode einbinden und Ergebnis zurückgeben
 return method.invoke(instance,
 new Object[] { arg1, arg2 });
 }
 } catch (NoSuchMethodException e) {

Listing 386: Dynamischer Aufruf einer Methode mit zwei int-Parametern

>> Sonstiges 767

So
ns

tig
es

Die statische main()-Methode der Klasse Start sollte nun noch um den Aufruf von Invo-
ker.invoke() unter Übergabe des zu verwendenden Objekts, des Namens der einzubindenden
Methode und der Werte erweitert werden:

 e.printStackTrace();
 } catch (IllegalAccessException e) {
 e.printStackTrace();
 } catch (InvocationTargetException e) {
 e.printStackTrace();
 }

 return null;
 }
}

public class Start {
 public static void main(String[] args) {
 // Instanz der Klasse SampleClass erzeugen
 Object cls = null;
 if(null == args || args.length == 0) {
 cls = Creator.createInstance("SampleClass");
 } else {
 cls = Creator.createInstance("SampleClass", args[0]);
 }

 // Instanz wurde erzeugt - Hinweistext ausgeben
 if(null != cls) {
 System.out.println(
 String.format(
 "Object vom Typ %s erzeugt",
 cls.getClass().getCanonicalName()));

 // Methode dynamisch einbinden
 System.out.println(
 String.format(
 "Rückgabe der Methode add mit den Werten 10 und 11: %s",
 Invoker.invoke(cls, "add", 10, 11)));
 }
 }
}

Listing 387: Einbinden der Methode add() einer SampleClass-Instanz

Listing 386: Dynamischer Aufruf einer Methode mit zwei int-Parametern (Forts.)

>> Kreditkartenvalidierung768
So

ns
tig

es

Kann die Klasse erfolgreich instanziert werden und existiert die angegebene Methode mit der
korrekten Anzahl an Parametern mit dem richtigen Typ, kann sie eingebunden und ihre Rück-
gabe verarbeitet werden (siehe Abbildung 164).

275 Kreditkartenvalidierung
Eine vollständige Prüfung, ob eine eingegebene Kreditkartennummer gültig ist, lässt sich
natürlich nur durch die Übermittlung der Nummer an die entsprechende Kreditkartengesell-
schaft bzw. eine hierfür geeignete Prüfstelle herausfinden.

Man kann jedoch schon in einer Anwendung einen ersten Test durchführen, ob die Nummer
an sich den formalen Anforderungen genügt:

� 13 bis 16 Ziffern Länge

� Erfüllung des Luhn-Check-Algorithmus

Der Luhn-Check-Algorithmus wurde ursprünglich zur Verringerung von Tippfehlern einge-
führt, bietet aber auch eine gewisse Sicherheitsfunktion, da es dadurch nicht ganz einfach ist,
eine beliebige Kreditkartennummer zu erfinden. Der Algorithmus bildet die Quersumme der
Ziffern, wobei von rechts begonnen wird. Jede zweite Ziffer wird dabei verdoppelt (und 9
abgezogen, falls der Wert größer als 9 ist). Die resultierende Summe muss durch 10 ohne Rest
teilbar sein.

Abbildung 164: Die Methode add() wurde dynamisch eingebunden.

import java.util.*;

class CreditCard {
 private String number;

 /**
 * Konstruktor
 */
 public CreditCard(String n) {

 // zuerst evtl. vorhandene Leerzeichen entfernen
 StringBuilder tmp = new StringBuilder();

 for(int i = 0; i < n.length(); i++) {
 char c = n.charAt(i);

 if(c != ' ')
 tmp.append(c);

Listing 388: CreaditCard – Klasse zur Kreditkartenvalidierung

>> Sonstiges 769

So
ns

tig
es

 }

 number = tmp.toString();
 }

 /**
 * Prüft eine Kreditkartennummer auf syntaktische Gültigkeit
 * nach Luhn-Algorithmus
 *
 * @return true wenn korrekt, sonst false
 */
 boolean isValid() {
 int sum = 0;
 int digit = 0;
 boolean multiply = false;

 if (number.length() < 13 || number.length() > 16)
 return false;

 // von rechts nach links vorgehen
 int num = number.length() - 1;

 for (int i = num;i >= 0;i--) {
 // Ziffer in Zahl umwandeln
 digit = Integer.parseInt(number.substring(i,i + 1));

 if (multiply == true) {
 digit = 2 * digit;

 if(digit > 9)
 digit -= 9;
 }

 sum += digit;

 // abwechselnd multiplizieren oder nicht
 multiply = !multiply;
 }

 int mod = sum % 10;

 if(mod == 0)
 return true;
 else
 return false;
 }
}

Listing 388: CreaditCard – Klasse zur Kreditkartenvalidierung (Forts.)

>> Statistik770
So

ns
tig

es

Das Start-Programm zu diesem Rezept prüft Kreditkartennummern mit Hilfe der Klasse Credit-
Card:

276 Statistik
Einige grundlegende Statistikfunktionen benötigt man immer wieder, aber leider finden sie
sich nicht in der ansonsten schon recht umfangreichen Klasse Math. Daher wollen wir eine
Klasse Statistics definieren mit einigen häufig benötigten Funktionen wie Mittelwerte (arith-
metisch, geometrisch, Erwartungswert), Median, Modus, Varianz und Standardabweichung:

public class Start {

 public static void main(String[] args) {

 if(args.length != 1) {
 System.out.println("Aufruf: <Kartennummer>");
 System.exit(0);
 }

 CreditCard cc = new CreditCard(args[0]);
 System.out.println("Gueltig: " + cc.isValid());
 }
}

Listing 389: Programm zur Kreditkartenvalidierung

Abbildung 165: Pech gehabt

/**
 *
 * @author Peter Müller
 */
import java.util.*;

class Statistics {
 private double[] values; // values
 private double[] probs; // probabilities

Listing 390: Klasse mit grundlegenden statistischen Methoden

>> Sonstiges 771

So
ns

tig
es

 /**
 * Konstruktor
 *
 * @param values Array mit Messwerten
 */
 public Statistics(double[] values) {
 this.values = values;

 // keine Wahrscheinlichkeiten -> gleiche Wahrscheinlichkeiten annehmen
 int n = values.length;
 probs = new double[n];
 Arrays.fill(probs, (1.0/n));
 }

 /**
 * Konstruktor
 *
 * @param values Array mit Messwerten
 * @param probs Array mit Wahrscheinlichkeiten
 */
 public Statistics(double[] values, double[] probs) {
 this.values = values;
 this.probs = probs;

 // Plausibilitätstest; nur als Warnmeldung
 double sum = 0;

 if(values.length != probs.length)
 System.out.println("Anzahl Werte ist ungleich " +
 "Anzahl Wahrscheinlichkeiten");

 for(int i = 0; i < probs.length; i++)
 sum += probs[i];

 if(sum != 1.0)
 System.out.println("Summe der Wahrscheinlichkeiten ungleich 1");
 }

 /**
 * Arithmetisches Mittel
 *
 * @return das arithmetische Mittel ("Mittelwert")
 */
 public double getArithmeticMean() {
 int n = values.length;
 double sum = 0;

 for(int i = 0; i < n; i++)
 sum += values[i];

 if(n > 0)

Listing 390: Klasse mit grundlegenden statistischen Methoden (Forts.)

>> Statistik772
So

ns
tig

es

 return (sum / n);
 else
 return 0;
 }

 /**
 * Geometrisches Mittel
 *
 * @return das geometrische Mittel; nur bei positiven Zahlen möglich,
 * sonst Rückgabe von -1
 */
 public double getGeometricMean() {
 int n = values.length;
 double product = 1;
 double result;

 try {
 for(int i = 0; i < n; i++) {
 product *= values[i];
 }

 result = Math.pow(product, (1.0/n));

 } catch(Exception e) {
 e.printStackTrace();
 result = -1;
 }

 return result;
 }

 /**
 * Median berechnen
 *
 * @return Median, d.h. 50 % der Werter sind kleiner/gleich als
 * dieser Wert, 50 % größer/gleich
 */
 public double getMedian() {
 int n = values.length;
 double[] copy = new double[n];
 double result;

 System.arraycopy(values, 0, copy, 0, n);
 Arrays.sort(copy);

 if(n % 2 != 0) {
 int index = ((n+1) / 2) - 1;
 result = copy[index];
 } else {
 int index = (n / 2) - 1;
 result = 0.5 * (copy[index] + copy[index + 1]);

Listing 390: Klasse mit grundlegenden statistischen Methoden (Forts.)

>> Sonstiges 773

So
ns

tig
es

 }

 return result;
 }

 /**
 * Modus berechnen
 *
 * @return Modus, d.h. der am häufigsten vorkommende Wert;
 * wenn es mehrere solche Werte gibt, wird ein beliebiger
 * davon zurückgeliefert
 */
 public double getMode() {
 HashMap<Double, Integer> map = new HashMap<Double, Integer>();

 for(int i = 0; i < values.length; i++) {
 Double d = new Double(values[i]);
 Integer counter = map.get(d);

 if(counter == null)
 map.put(d, 1);
 else
 map.put(d, counter.intValue() + 1);
 }

 Set<Double> keys = map.keySet();

 int max = 0;
 double result = 0;

 for(Double d : keys) {
 int counter = map.get(d).intValue();

 if(counter > max) {
 max = counter;
 result = d.doubleValue();
 }
 }

 return result;
 }

 /**
 * Erwartungswert berechnen (entspricht arithmetischem Mittel,
 * wenn dem Konstruktor keine Wahrscheinlichkeiten übergeben wurden)
 *
 * @return Erwartungswert
 */
 public double getExpectation() {
 double result = 0;

Listing 390: Klasse mit grundlegenden statistischen Methoden (Forts.)

>> Statistik774
So

ns
tig

es

 for(int i = 0; i < values.length; i++) {
 result = result + values[i] * probs[i];
 }

 return result;
 }

 /**
 * Varianz berechnen
 *
 * @return Varianz
 */
 public double getVariance() {
 double e = getExpectation();

 double result = 0;

 for(int i = 0; i < values.length; i++) {
 double diff = values[i] - e;
 diff = diff * diff;
 result += (diff * probs[i]);
 }

 return result;
 }

 /**
 * Standardabweichung berechnen
 *
 * @param estimate Flag, ob eine Schätzung berechnet werden soll
 * (Faktor 1/(n-1) statt 1/n)
 * @return Standardabweichung
 */
 public double getStandardDeviation(boolean estimate) {
 double e = getExpectation();
 double sum = 0;

 for(int i = 0; i < values.length; i++) {
 double diff = values[i] - e;
 sum += (diff * diff);
 }

 if(estimate)
 sum = sum / (values.length - 1);
 else
 sum = sum / values.length;

 return Math.sqrt(sum);
 }

 /**

Listing 390: Klasse mit grundlegenden statistischen Methoden (Forts.)

>> Sonstiges 775

So
ns

tig
es

 * Minimum ermitteln
 *
 * @return der kleinste vorkommende Wert
 */
 public double getMinimum() {
 double min = values[0];

 for(int i = 1; i < values.length; i++)
 if(values[i] < min)
 min = values[i];

 return min;
 }

 /**
 * Maximum ermitteln
 *
 * @return der größte vorkommende Wert
 */
 public double getMaximum() {
 double max = values[0];

 for(int i = 1; i < values.length; i++)
 if(values[i] > max)
 max = values[i];

 return max;
 }
}

Listing 390: Klasse mit grundlegenden statistischen Methoden (Forts.)

Teil III Anhang

Tabellen

Die Java-SDK-Tools

Ta
be

lle
n

Tabellen

Java

Java-Schlüsselwörter

Die mit * markierten Schlüsselwörter sind für zukünftige Erweiterungen reserviert oder ent-
stammen anderen Programmiersprachen und wurden in die Liste aufgenommen, damit der
Java-Compiler ihre Vorkommen leichter erkennen und als Fehler markieren kann. Die »Schlüs-
selwörter« false, true und null sind Literale.

Java-Datentypen

abstract do implements protected true

assert double import public try

boolean else inner* rest* var*

break enum instanceof return void

byte extends int short volatile

byvalue* false interface static while

case final long strictfp

cast* finally native super

catch float new switch

char for null synchronized

class future* operator* this

const* generic* outer* throw

continue goto* package throws

default if private transient

Tabelle 59: Schlüsselwörter von Java

Typ Größe Beschreibung und Wertebereich Beispiele

boolean 1 Für Boolesche Wahrheitswerte (wie sie in Bedingungen von
Schleifen und Verzweigungen verwendet werden)
true (wahr) und false (falsch)

true
false

char 2 Für einzelne Zeichen
Wertebereich sind die ersten 65536 Zeichen des Unicode-Zei-
chensatzes

'a'
'?'
'\n'

byte 1 Ganze Zahlen sehr kleinen Betrags
-128 bis 127

-3
0
98

short 2 Ganze Zahlen kleinen Betrags
-32.768 bis 32.767

-3
0
1205

Tabelle 60: Die elementaren Datentypen

>> Java780
Ta

be
lle

n

Java-Operatoren
Die folgende Tabelle listet die Operatoren nach ihrer Priorität geordnet auf. 1 ist die höchste
Priorität:

int 4 Standardtyp für ganze Zahlen
-2147483648 bis 2147483647

-3
0
1000000

long 8 Für sehr große ganze Zahlen
-9223372036854775808 bis
 9223372036854775807

-3
0
1000000000000

float 4 Für Gleitkommazahlen geringer Genauigkeit
+/-3,40282347*1038

123.56700
-3.5e10

double 8 Standardtyp für Gleitkommazahlen mit größerer Genauigkeit
+/-1,79769313486231570*10308

123.456789
12005.55e-12

Priorität Operatoren Bedeutung Assoz.

1 ()

[]

.

Methodenaufruf
Array-Index
Elementzugriff

L-R

2 ++

––

+, –

~

!

()

Inkrement
Dekrement
Vorzeichen
Bitkomplement
logische Negation
Typumwandlung

R-L

3 *

/

%

Multiplikation
Division
Modulo (Rest der Division)

L-R

4 +

–

+

Addition
Subtraktion
Konkatenation (Stringverkettung)

L-R

5 <<

>>

>>>

Linksverschiebung
Rechtsverschiebung
Rechtsverschiebung

L-R

6 <, <=

>, >=

instanceof

kleiner, kleiner gleich
größer, größer gleich
Typüberprüfung eines Objekts

L-R

Tabelle 61: Priorität und Assoziativität der Operatoren

Typ Größe Beschreibung und Wertebereich Beispiele

Tabelle 60: Die elementaren Datentypen (Forts.)

>> Tabellen 781

Ta
be

lle
n

Stilkonventionen für Bezeichner

7 ==
!=

gleich
ungleich

L-R

8 &

&

bitweises UND
logisches UND

L-R

9 ^

^

bitweises XOR
logisches XOR

L-R

10 |

|

bitweises ODER
logisches ODER

L-R

11 && logisches UND L–R

12 || logisches ODER L–R

13 ?: Bedingungsoperator R–L

14 =

*=, /=, %=, +=,

–=, &=, ^=, |=,

<<=, >>=, >>>=

Zuweisung
zusammengesetzte Zuweisung

R–L

15 , Kommaoperator L–R

Bezeichner
für

Schreibweise Beispiel

Pakete Paketnamen sollten nur Kleinbuchstaben enthalten.
Pakete, die weitergegeben werden, sollten eindeutig
sein. Sie können dies sicherstellen, indem Sie den
Domänennamen Ihrer Firma oder Website (soweit vor-
handen) komponentenweise umdrehen.

statistik.tests
com.enterprise.stats

Klassen und
Interfaces

Substantive; jedes Wort beginnt mit Großbuchstaben.
(UpperCamelCase)

Vector
AClass

Methoden Verben; der Name beginnt mit Kleinbuchstaben, jedes
weitere Wort mit Großbuchstaben. (lowerCamelCase)
Methoden, die die Werte von Feldern abfragen oder
ändern, beginnen mit »get« oder »set«, gefolgt von dem
Variablennamen.
Methoden, die die Länge von etwas zurückliefern,
heißen »length«.
Methoden, die Boolesche Variablen abfragen, beginnen
mit »is«, gefolgt von dem Variablennamen.
Methoden, die ihr Objekt umformatieren, beginnen mit
»to«, gefolgt von dem Zielformat.

alarm()
wakeUp()
getFieldname()
setFieldname()

length()

isFieldname()

toString()

Tabelle 62: Konventionen für Bezeichner

Priorität Operatoren Bedeutung Assoz.

Tabelle 61: Priorität und Assoziativität der Operatoren (Forts.)

>> Swing782
Ta

be
lle

n

Swing

Fenster-Konstanten

Die Konstanten sind verfügbar als Felder der Klassen JFrame, JDialog und JInternalFrame und
können über deren setDefaultCloseOperation()-Methode gesetzt werden.

Felder Substantive; der Name beginnt mit Kleinbuchstaben,
jedes weitere Wort mit Großbuchstaben. (lowerCamel-
Case)

color
aField

Konstanten Vollständig in Großbuchstaben, einzelne Wörter wer-
den durch Unterstriche getrennt.

PI
MAX_ELEMENTS

Lokale Vari-
ablen und
Parameter

Meist kurze, zum Teil auch symbolische Namen in
Kleinbuchstaben.
Einbuchstabige Namen werden üblicherweise so
gewählt, dass der Buchstabe auf den Typ der Variablen
hinweist: l für long, i, j, k für int, e für Exception.

l
tmp

Konstante Beschreibung

DO_NOTHING_ON_CLOSE Führt keinerlei Aktionen beim Schließen des Fensters aus. Bei die-
sem Standardverhalten muss das Ereignis windowClosing abgefan-
gen werden.

HIDE_ON_CLOSE Verbirgt das Fenster, wenn es der Benutzer schließt.

DISPOSE_ON_CLOSE Verbirgt das Fenster und löst es dann auf. Damit werden alle von
diesem Fenster belegten Ressourcen freigegeben.

EXIT_ON_CLOSE Beendet die Anwendung mit System.exit(0).

Tabelle 63: Fensterkonstanten (WindowConstants), die das Verhalten beim Schließen eines
Fensters steuern.

Bezeichner
für

Schreibweise Beispiel

Tabelle 62: Konventionen für Bezeichner (Forts.)

>>
Tabellen

783

Tabellen

Ereignisbehandlung
Im Anhang zur Java-Syntax finden Sie tabellarische Auflistungen der wichtigsten Interfaces mit ihren Ereignisbehandlungsmethoden sowie
den zugehörigen Adapter-Klassen und Registrierungsmethoden.

Interface (Adapter) Interface-Methoden Methoden des Ereignisobjekts Auslösende (Swing-)
Komponenten

ActionListener
(–)

Komponentenspezifische Aktion (beispielsweise
Klick auf Schalter)
actionPerformed(ActionEvent)

String getActionCommand()
int getModifiers()
long getWhen
String paramString()

AbstractButton
JComboBox
JFileChooser
JTextField
Timer

AdjustmentListener
(–)

Klick in eine Bildlaufleiste
adjustmentValueChanged(AdjustmentEvent)

int getAdjusmentType()
int getValue()
boolean getValueIsAdjusting()
String paramString()

JScrollBar

CaretListener
(–)

Die Position des Textcursors hat sich geändert
caretUpdate(CaretEvent)

int getDot()
int getMark()

JTextComponent

ChangeListener
(–)

Zustand der Komponente wurde geändert
stateChanged(ChangeEvent)

– AbstractButton
Caret
JProgressBar
JSlider
JSpinner
JTabbedPane
JViewport

ComponentListener
(ComponentAdapter)

Komponente wurde verschoben, verborgen oder
angezeigt, vergrößert oder verkleinert
componentHidden(ComponentEvent)
componentMoved(ComponentEvent)
componentResized(ComponentEvent)
componentShown(ComponentEvent)

Component getComponent()
String paramString()

Component

Tabelle 64: Die wichtigsten Listener-Interfaces

>>
Sw

ing
784

Tabellen

ContainerListener
(ContainerAdapter)

Komponente wurde hinzugefügt oder entfernt
componentAdded(ContainerEvent)
componentRemoved(ContainerEvent)

Component getChild()
Container getContainer()
String paramString()

Container

DocumentListener
(–)

Attribute oder Inhalte des Dokuments haben sich
geändert
changedUpdate(DocumentEvent)
insertUpdate(DocumentEvent)
removeUpdate(DocumentEvent)

ElementChange getChange(Element)
Document getDocument()
int getLength()
int getOffset()
EventType getType()

AbstractDocument

FocusListener
(FocusAdapter)

Eine Komponente hat den Fokus erhalten oder ver-
loren
focusGained(FocusEvent)
focusLost(FocusEvent)

Component getOppositeComponent()
boolean isTemporary()
String paramString()

Component

ItemListener
(–)

Ein Element wurde ausgewählt (markiert) oder die
Auswahl (Markierung) wurde aufgehoben
itemStateChanged(ItemEvent)

Object getItem()
ItemSelectable getItemSelectable()
int geStateChange()
String paramString()

AbstractButton
JComboBox

KeyListener
(KeyAdapter)

Eine Tastenbetätigung hat in einer Komponente
stattgefunden
keyPressed(KeyEvent)
keyReleased(KeyEvent)
keyTyped(KeyEvent)

char getKeyChar()
int getKeyCode()
int getKeyLocation()
static String getKeyModifiersText(int
modifizerer)
static String getKeyText(int keycode)
boolean isActionKey()
String paramString()
void setKeyChar(char keyChar)
void setKeyCode(int keyCode)

Component

Interface (Adapter) Interface-Methoden Methoden des Ereignisobjekts Auslösende (Swing-)
Komponenten

Tabelle 64: Die wichtigsten Listener-Interfaces (Forts.)

>>
Tabellen

785

Tabellen

ListSelectionListener
(–)

Änderung der Auswahl
valueChanged(ListSelectionEvent)

int getFirstIndex()
int getLastIndex()
boolean getValueIsAdjusting()
String toString()

JList

MouseListener
(MouseAdapter)

Eine Mausaktion hat in einer Komponente stattge-
funden
mouseClicked(MouseEvent)
mouseEntered(MouseEvent)
mouseExited(MouseEvent)
mousePressed(MouseEvent)
mouseReleased(MouseEvent)

int getButton()
int getClickCount()
static String getMouseModifiersText(int
modifizerer)
Point getPoint()
int getX()
int getY()
boolean isPopupTrigger()
String paramString()
void translatePoint(int x, int y)

Component

MouseMotionListener
(MouseMotionAdapter)

Die Maus wurde bewegt
mouseDragged(MouseEvent)
mouseMoved(MouseEvent)

s.o. Component

MouseWheelListener
(–)

Das Mausrädchen in einer Komponente wurde
gedreht
mouseDragged(MouseEvent)
mouseMoved(MouseEvent)

int getScrollAmount()
int getScrollType()
int getUnitsToScroll()
int getWheelRotation()
String paramString()

Component

PropertyChangeListener
()

Eine »bound«-Property33 einer Komponente hat sich
geändert
propertyChange(PropertyChangeEvent)

Object getNewValue()
Object getOldValue()
Object getPropagationId()
Object getPropertyName()
Object setPropagationId ()

Component
Container

Interface (Adapter) Interface-Methoden Methoden des Ereignisobjekts Auslösende (Swing-)
Komponenten

Tabelle 64: Die wichtigsten Listener-Interfaces (Forts.)

33. Properties sind Felder einer Klasse, für die Get-/Set-Methoden definiert sind. Eine Property, die ein PropertyChangeEvent auslöst, wenn sich ihr Wert ändert, ist eine »bound«-
Property.

>>
Sw

ing
786

Tabellen

WindowFocusListener
(–)

Fenster hat den Fokus erhalten oder verloren
windowGainedFocus(WindowEvent)
windowLostFocus(WindowEvent)

int getNewState()
int getOldState()
Window getOppositeWindow()
Window getWindow()
String paramString()

Window

WindowListener
(WindowAdapter)

Der Zustand eines Fensters hat sich geändert
windowActivated(WindowEvent)
windowClosed(WindowEvent)
windowClosing(WindowEvent)
windowDeactivated(WindowEvent)
windowDeiconified(WindowEvent)
windowIconified(WindowEvent)
windowOpened(WindowEvent)

s.o. Window

WindowStateListener
(–)

Der Zustand eines Fensters hat sich geändert
windowStateChanged(WindowEvent)

s.o. Window

Interface (Adapter) Interface-Methoden Methoden des Ereignisobjekts Auslösende (Swing-)
Komponenten

Tabelle 64: Die wichtigsten Listener-Interfaces (Forts.)

>> Tabellen 787

Ta
be

lle
n

Rahmen

Cursor

Tastencodes aus KeyEvent

Rahmenklasse Beschreibung

EmptyBorder Rand in Farbe des Komponentenhintergrunds

LineBorder Linie beliebiger Farbe und Stärke

BevelBorder Zweifarbiger Rahmen (3D-Effekt)

EtchedBorder Eingravierte Linie

MatteBorder Farbiger oder gemusterter Rahmen mit unterschiedlichen Linienstärken für
die einzelnen Seiten

TitledBorder Rahmen mit Titel

CompoundBorder Rahmen, der zwei Rahmenstile kombiniert

Tabelle 65: Vordefinierte Swing-Rahmen

CROSSHAIR_CURSOR NW_RESIZE_CURSOR

CUSTOM_CURSOR S_RESIZE_CURSOR

DEFAULT_CURSOR SE_RESIZE_CURSOR

E_RESIZE_CURSOR SW_RESIZE_CURSOR

HAND_CURSOR TEXT_CURSOR

MOVE_CURSOR W_RESIZE_CURSOR

N_RESIZE_CURSOR WAIT_CURSOR

NE_RESIZE_CURSOR

Tabelle 66: Vordefinierte Cursor-Konstanten

KeyEvent-Konstante Taste(n)

VK_0 – VK_9 (0) ... (9)

VK_A – VK_Z (A) ... (Z)

VK_ALT (Alt)

VK_AMPERSAND (&)

VK_ASTERISK (*)

VK_AT (@)

VK_BACK_SLACH (\)

VK_BACK_SPACE (æ___)

VK_BRACELEFT, VK_BRACERIGHT ({), (})

VK_CAPS_LOCK (º)

VK_CLOSE_BRACKET, VK_OPEN_BRACKET ([), (])

VK_CLEAR (Entf)

Tabelle 67: Auswahl der wichtigsten in KeyEvent definierten Tastenkonstanten

>> Swing788
Ta

be
lle

n

Drag-and-Drop-Unterstützung

VK_COLON, VK_COMMA (:), (,)

VK_CONTEXT_MENU (Kontextmenü)

VK_CONTROL (Strg)

VK_DOLLAR ($)

VK_DOWN, VK_UP, VK_LEFT, VK_RIGHT (¼), (½), (æ), (Æ)

VK_ENTER (¢)

VK_ESCAPE (Esc)

VK_EURO_SIGN (€_)

VK_F1 – VK_F24 (F1) ... (F24)

VK_GREATER, VK_LESS (>), (<)

VK_HOME (Pos1)

VK_INSERT (Einfg)

VK_PAGE_DOWN, VK_PAGE_UP (Bild_¼), (Bild_½)

VK_QUOTE, VK_QUOTEDBL ('), (")

VK_SEMICOLON (;)

VK_SHIFT (ª)

VK_SLASH (/)

VK_TAB (ÿ_)

VK_UNDERSCORE (__)

VK_WINDOWS (Windows)

Komponente Drag-Unterstützung Drop-Unterstützung

JColorChooser Ja (nur COPY) Ja

JEditorPane Ja Ja

JFileChooser Ja (nur COPY) Nein

JFormattedTextField Ja Ja

JList Ja (nur COPY) Nein

JPasswordField Nein Ja

JTable Ja (nur COPY) Nein

JTextArea Ja Ja

JTextField Ja Ja

JTextPane Ja Ja

JTree Ja (nur COPY) Nein

Tabelle 68: Vorinstallierte Drag-and-Drop-Unterstützung für Swing-Komponenten

KeyEvent-Konstante Taste(n)

Tabelle 67: Auswahl der wichtigsten in KeyEvent definierten Tastenkonstanten (Forts.)

>> Tabellen 789

Ta
be

lle
n

Look&Feels

Applets

Look&Feel Klasse

Metal javax.swing.plaf.metal.MetalLookAndFeel

Standard-Look&Feel (ab Java5 in neuem »Ocean«-Design)

Windows com.sun.java.swing.plaf.windows.WindowsLookAndFeel

Motif com.sun.java.swing.plaf.motif.MotifLookAndFeel

GTK com.sun.java.swing.plaf.gtk.GTKLookAndFeel

Tabelle 69: Vordefinierte Look&Feels

Attribut Beschreibung

align Ausrichtung des Applets; mögliche Werte sind:
left am linken Rand der Seite
right am rechten Rand der Seite
absmiddle in der Mitte der aktuellen Zeile
bottom am unteren Textrand
middle an der Grundlinie der Zeile
top am oberen Zeilenrand
texttop am oberen Textrand

archive Zur Angabe eines JAR-Archivs
Wenn zu dem Applet mehrere Dateien (Class-Dateien und Ressourcendateien,
gehören, können Sie diese in ein Jar-Archiv packen und den Pfad zu diesem im
archive-Attribut angeben.
<applet code="TheApplet.class"
 archive="Appletarchiv.jar"
 width="100" height="100">

code Name der Applet-Class-Datei (relativ zur Codebasis, siehe Attribut codebase)
Liegt die Applet-Klasse in einem Paket, müssen Sie den Namen mit Paket angeben:
code="paketname.Appletklasse.class"

codebase Liegt das Applet nicht im selben Verzeichnis wie die Webseite, die es einbindet,
müssen Sie im codebase-Attribut den Verzeichnispfad von dem Verzeichnis der
Webseite zum Verzeichnis des Applets angeben.
Liegt das Applet in einem Unterverzeichnis ./Applets, wäre die richtige Einstel-
lung:
<applet code="Appletklasse.class"
 codebase="Applets"
 width="100" height="100">

height Höhe des Applets im Browser

width Breite des Applets im Browser

Tabelle 70: Attribute des <applet>-Tags

>> Reguläre Ausdrücke790
Ta

be
lle

n

Reguläre Ausdrücke

Einzelzeichen in regulären Ausdrücken
Folgende Zeichen und Zeichenkombinationen können in regulären Ausdrücken verwendet
werden. Die angegebenen Zeichenkombinationen werden als ein Zeichen aufgefasst:

Zeichengruppen in regulären Ausdrücken
Mit Hilfe von Zeichengruppen können Reihen und einzelne Zeichen zusammengefasst werden:

Zeichen Bedeutung

x Der Buchstabe x

\\ Backslash

\0n Zeichen mit dem oktalen Wert 0n (0 <= n <= 7)

\0nn Zeichen mit dem oktalen Wert 0nn (0 <= n <= 7)

\0mnn Zeichen mit dem oktalen Wert 0mnn (0 <= m <= 3, 0 <= n <= 7)

\xhh Zeichen mit dem hexadezimalen Wert 0xhh

\uhhhh Zeichen mit dem hexadezimalen Wert 0xhhhh

\t Tab ('\u0009')

\n Zeilenumbruch (Line Feed, '\u000A')

\r Carriage-Return ('\u000D')

\f Form-Feed ('\u000C')

\a Alarm ('\u0007')

\e Escape ('\u001B')

\cx Zu x korrespondierendes Steuerzeichen

Tabelle 71: Einzelzeichen in regulären Ausdrücken

Gruppe Bedeutung

[abc] a, b oder c

[^abc] Jedes Zeichen außer a, b oder c (Negation)

[a-zA-Z] a bis einschließlich z oder A bis einschließlich Z

[a-d[m-p]] a bis d, oder m bis p: [a-dm-p]

[a-z&&[def]] d, e oder f

[a-z&&[^bc]] a bis z, mit Ausnahme von b und c: [ad-z]

[a-z&&[^m-p]] a bis z, und nicht m bis p: [a-lq-z]

Tabelle 72: Zeichengruppen in regulären Ausdrücken

>> Tabellen 791

Ta
be

lle
n

Vordefinierte Zeichenklassen
Die vordefinierten Zeichenklassen erlauben es, für bestimmte Zeichen, Zahlen und Steuer-
zeichen einen kürzeren Platzhalter zu verwenden:

POSIX-Zeichen-Klassen
Diese Zeichenklassen umfassen nur den für US-ASCII definierten Zeichenumfang, also keine
Umlaute oder sonstige Nicht-US-ASCII-Zeichen:

Klasse Bedeutung

. Beliebiges Zeichen

\d Zahl: [0-9]

\D Nicht-Zahl: [^0-9]

\s Whitespace-Zeichen: [\t\n\x0B\f\r]

\S Nicht-Whitespace-Zeichen: [^\s]

\w Zeichen, Unterstrich oder Zahl: [a-zA-Z_0-9]

\W Weder Zeichen noch Unterstrich oder Zahl: [^\w]

Tabelle 73: Vordefinierte Zeichenklassen

POSIX-Klasse Bedeutung

\p{Lower} Kleingeschriebenes Zeichen: [a-z]

\p{Upper} Großgeschriebenes Zeichen: [A-Z]

\p{ASCII} Alle US-ASCII-Zeichen: [\x00-\x7F]

\p{Alpha} Alphabetisches Zeichen: [\p{Lower}\p{Upper}]

\p{Digit} Dezimalzahl: [0-9]

\p{Alnum} Alphanumerisches Zeichen: [\p{Alpha}\p{Digit}]

\p{Punct} Interpunktionszeichen: !»#$%&'()*+,-./:;<=>?@[\]^_`{|}~

\p{Graph} Sichtbares Zeichen: [\p{Alnum}\p{Punct}]

\p{Print} Druckbares Zeichen: [\p{Graph}\x20]

\p{Blank} Leerzeichen oder Tab: [\t]

\p{Cntrl} Steuerzeichen: [\x00-\x1F\x7F]

\p{XDigit} Hexadezimal-Zeichen: [0-9a-fA-F]

\p{Space} Whitespace-Zeichen: [\t\n\x0B\f\r]

Tabelle 74: Posix-Zeichenklassen

>> Reguläre Ausdrücke792
Ta

be
lle

n

java.lang.Character-Eigenschaften
Diese Platzhalter repräsentieren java.lang.Character-Eigenschaften – also Angaben, ob es
sich um Groß- oder Kleinschreibung oder Whitespace handelt:

Unicode-Blöcke und -Kategorien
Folgende Platzhalter dienen der Verwendung mit Unicode:

Die verschiedenen InXXX-Abfragen ergeben sich jeweils aus den im Unicode-Standard 4.0
definierten Blocknamen. Die Kategorien werden ohne das Präfix In beschrieben und entspre-
chen ebenfalls den im Unicode-Standard 4.0 beschriebenen Bezeichnungen.

Mehr Informationen zu diesem Standard erhalten Sie unter der Adresse
http://www.unicode.org/versions/Unicode4.0.0/.

Begrenzer
Folgende Zeichen dienen der Markierung von Grenzen:

Klasse Bedeutung

\p{javaLowerCase} Äquivalent zu java.lang.Character.isLowerCase()

\p{javaUpperCase} Äquivalent zu java.lang.Character.isUpperCase()

\p{javaWhitespace} Äquivalent zu java.lang.Character.isWhitespace()

\p{javaMirrored} Äquivalent zu java.lang.Character.isMirrored()

Tabelle 75: java.lang.Character-Eigenschaften in regulären Ausdrücken

Platzhalter Beschreibung

\p{InGerman} Ein Zeichen im deutschen Sprachblock

\p{Lu} Ein großgeschriebenes Zeichen

\p{Sc} Währungssymbol

\P{InGreek} Alle Zeichen außer denjenigen aus dem griechischen Sprachblock

[\p{L}&&[^\p{Lu}]] Jedes Zeichen mit Ausnahme großgeschriebener Zeichen

Tabelle 76: Unicode-Klassen

Zeichen Bedeutung

^ Zeilenanfang

$ Zeilenende

\b Wortgrenze

\B Nicht-Wortgrenze

\A Beginn der Eingabe

\G Ende des vorherigen Treffers

\Z Ende der Eingabe ohne letzten Begrenzer (soweit zutreffend)

\z Ende der Eingabe

Tabelle 77: Begrenzungszeichen

>> Tabellen 793

Ta
be

lle
n

Quantifizierer
Mit Hilfe der folgenden Kennzeichner lassen sich so genannte gierige Ausdrücke bilden, die
versuchen, möglichst viel Text zu verarbeiten:

Nichtgierige Quantifizierer
Nichtgierige Quantifizierer versuchen nicht, möglichst viel Text zu verarbeiten, sondern suchen
nach einer minimalen Entsprechung:

Quantifizierer ohne Backtracking-Funktionalität
Sowohl gierige als auch nichtgierige Quantifizierer erlauben es, dass die Engine nach der
Ermittlung von vorläufigen Treffern sämtliche Treffer erneut verarbeitet, um die Suchergeb-
nisse zu verfeinern. Dies kann unter Umständen zu deutlich erhöhter Laufzeit und mehr Sys-
temlast führen. Quantifizierer ohne Backtracking-Funktionalität verhindern dies – allerdings
nur im Fehlerfall:

Quantifizierer Bedeutung

X? X, ein oder kein Mal

X* X, kein Mal oder mehrmals

X+ X, mindestens ein Mal

X{n} X, genau n Mal

X{n,} X, mindestens n Mal

X{n,m} X, mindestens n Mal, aber nicht mehr als m Mal

Tabelle 78: Quantifizierer

Quantifizierer Bedeutung

X?? X, ein oder kein Mal

X*? X, kein Mal oder mehrmals

X+? X, mindestens ein Mal

X{n}? X, genau n Mal

X{n,}? X, mindestens n Mal

X{n,m}? X, mindestens n Mal aber nicht mehr als m Mal

Tabelle 79: Nichtgierige Quantifizierer

Quantifizierer Bedeutung

X?+ X, ein oder kein Mal

X*+ X, kein Mal oder mehrmals

X++ X, mindestens ein Mal

X{n}+ X, genau n Mal

X{n,}+ X, mindestens n Mal

X{n,m}+ X, mindestens n Mal aber nicht mehr als m Mal

Tabelle 80: Quantifizierer ohne Backtracking-Funktionalität

>> Reguläre Ausdrücke794
Ta

be
lle

n

Logische Operatoren

Sonstige Metazeichen

Spezielle Konstrukte
Diese Konstrukte speichern die übereinstimmenden Zeichen nicht ab:

Operator Beschreibung

XY X, gefolgt von Y

X|Y Entweder X oder Y

(X) X wird als Entsprechung gespeichert

Tabelle 81: Logische Operatoren

Zeichen Bedeutung

\n Bezug auf die n-te einfangende Gruppe

\ Escaped das folgende Zeichen

\Q Escaped alle Zeichen bis zum schließenden \E

\E Beendet das durch \Q begonnene Escaping

Tabelle 82: Sonstige Metazeichen

Konstrukt Bedeutung

(?:X) Die Entsprechnung (X) wird nicht abgespeichert.

(?idmsux-idmsux) Schaltet die Flags i, d, m, s, u, x ein bzw. aus.

(?idmsux-idmsux:X) Die Entsprechung von X wird nicht abgespeichert, die Flags werden ein-
bzw. ausgeschaltet.

(?=X) Die Entsprechung wird nicht abgespeichert, es wird aber an der gleichen
Stelle mit der Suche fortgefahren.

(?!X) Es darf keine Entsprechung von X an der Stelle gefunden werden und die
Suche wird an dieser Stelle fortgesetzt.

(?<=X) Die Entsprechung von X wird nicht abgespeichert und die Suche wird vor
dieser Stelle fortgesetzt.

(?<!X) Es darf keine Entsprechung von X gefunden werden und die Suche wird vor
dieser Stelle fortgesetzt.

(?>X) X ist eine unabhängige Gruppe, deren Entsprechung nicht gespeichert wird.

Tabelle 83: Spezielle Konstrukte

>> Tabellen 795

Ta
be

lle
n

Flags
Folgende Flags können inline verwendet werden und haben Entsprechungen in Form von
Konstanten der Klasse java.util.regex.Pattern:

Flag Beispiel Entsprechung Beschreibung

d (?d) java.util.regex.Pattern.
UNIX_LINES

Schaltet den Unix-Zeilenmodus ein oder aus.
Falls eingeschaltet, wird ausschließlich das
Unix-Zeilenende \n als Begrenzer für Zeilen
akzeptiert.

i (?i) java.util.regex.Pattern.
CASE_INSENSITVE

Schaltet die Nicht-Berücksichtigung der
Groß-/Kleinschreibung ein oder aus.

x (?x) java.util.regex.Pattern.
COMMENTS

Schaltet die Erkennung von Kommentaren
und Whitespace ein oder aus. Falls einge-
schaltet, werden Whitespace-Zeichen igno-
riert und enthaltene Kommentare (# ...)
werden bis zum Ende der Zeile nicht beach-
tet.

m (?m) java.util.regex.Pattern.
MULTILINE

Schaltet den Multiline-Modus ein oder aus,
bei dem die Symbole ̂und $ auch am Zei-
lenanfang bzw. -ende matchen (und nicht
nur am Anfang oder Ende des kompletten
Textes).

java.util.regex.Pattern.
LITERAL

Schaltet den Literal-Modus ein oder aus,
bei dem im Text enthaltene Steuer- oder
Metazeichen nicht als solche interpretiert,
sondern als gewöhnliche Zeichenketten
aufgefasst werden. Hat keine Flag-Ent-
sprechung.

s (?s) java.util.regex.Pattern.
DOTALL

Wenn der DOTALL-Modus aktiviert ist, steht
der Platzhalter . für alle Zeichen, inklusive
Zeilenumbrüche. Per Voreinstellung werden
Zeilenumbrüche nicht als Übereinstimmung
gewertet.

u (?u) java.util.regex.Pattern.
UNICODE_CASE

Aktiviert Unicode-konforme Behandlung
von Groß- und Kleinschreibung. Wenn akti-
viert, kann es zu deutlichen Performance-
Verlusten kommen.

java.util.regex.Pattern.
CANON_EQ

Aktiviert kanonisches Matching, bei dem
zwei Zeichen nur dann als identisch angese-
hen werden, wenn ihre kanonische Entspre-
chung identisch ist. Erlaubt es, Zeichen
beispielsweise als Hexadezimal- oder Oktal-
Werte anzugeben und sie gegen ausgeschrie-
bene Zeichen mit demselben Code zu mat-
chen. Für dieses Flag gibt es keine Inline-
Entsprechung.

Tabelle 84: Flags

>> SQL796
Ta

be
lle

n

Die Inline-Flags können miteinander kombiniert werden. Um beispielsweise d und i miteinan-
der zu kombinieren, kann folgendes Statement verwendet werden:

(?di)

Die als Konstanten aufgeführten Flags werden ODER-verknüpft:

int flags = Pattern.UNIX_LINES | Pattern.CASE_INSENSITIVE;

SQL

SQL-Typen

SQL-Typ JDBC-SQL-Typ in
java.sql.Types

Java-Typ Beschreibung

ARRAY ARRAY java.sql.Array SQL-Feld

BIGINT BIGINT long 64 Bit Ganzzahl

BIT BIT boolean Einzelnes Bit (0,1)

BLOB BLOB java.sql.Blob Beliebige Binärdaten

BOOLEAN BOOLEAN boolean Boolescher Wert

CHAR CHAR String Zeichenkette fester Länge

CLOB CLOB java.sql.Clob Für große Zeichenketten

DATE DATE java.sql.Date Datumsangaben

DECIMAL DECIMAL java.math.BigDecimal Festkommazahl

DOUBLE DOUBLE double Gleitkommazahl in doppelter
Genauigkeit

FLOAT FLOAT double Gleitkommazahl in doppelter
Genauigkeit

INTEGER INTEGER int 32-Bit-Ganzzahl

– JAVA_OBJECT Object Speicherung von
Java-Objekten

NULL NULL null für Java-Objekte,
false für boolean, 0 für
numerische Typen

Darstellung des NULL-Werts
(= kein Wert)

NUMERIC NUMERIC java.math.BigDecimal Dezimalzahlen mit fester
Genauigkeit

REAL REAL float Gleitkommazahl einfacher
Genauigkeit

TIME TIME java.sql.Time Zeitdarstellung (Stunden,
Minuten, Sekunden)

VARCHAR VARCHAR String Zeichenketten variabler Länge

Tabelle 85: Typzuordnung zwischen SQL und Java

>> Tabellen 797

Ta
be

lle
n

Lokale

Unterstützte Lokale

ID Sprache Land

ar_SA Arabic Saudi Arabia

zh_CN Chinese (Simplified) China

zh_TW Chinese (Traditional) Taiwan

nl_NL Dutch Netherlands

en_AU English Australia

en_CA English Canada

en_GB English United Kingdom

en_US English United States

fr_CA French Canada

fr_FR French France

de_DE German Germany

iw_IL Hebrew Israel

hi_IN Hindi India

it_IT Italian Italy

ja_JP Japanese Japan

ko_KR Korean South Korea

pt_BR Portuguese Brazil

es_ES Spanish Spain

sv_SE Swedish Sweden

th_TH Thai (Western digits) Thailand

th_TH_TH Thai (Thai digits) Thailand

Tabelle 86: Voll unterstützte und getestete Lokale der Sun-JRE

Ja
va

-S
DK

-T
oo

ls

Die Java-SDK-Tools

Neben Laufzeitumgebung, Bibliotheken und Demobeispielen gehören zum Lieferumfang des
Java-SDK auch eine Reihe von nützlichen bis unentbehrlichen Hilfsprogrammen – allen voran
Compiler (javac) und Interpreter (java).

javac – der Compiler
Der Compiler übersetzt die ihm übergebenen Quelldateien (.java) in Bytecode (.class-Dateien).

Typische Aufrufe
javac Datei.java

Dieser Aufruf übersetzt die übergebene Datei.

Klassen, die in Datei.java verwendet werden, aber nicht definiert sind, sucht sich der Compiler
aus der Java-Standardbibliothek und den Verzeichnissen und Archiven (JAR und ZIP) des
Klassenpfads zusammen.

Kann zu einer Klasse keine passende Datei gefunden werden, hat dies in der Regel einen von
drei Gründen:

� Die Class- oder Quelldatei existiert nicht (kann auch die Ausgangsdatei Datei.java betreffen).

� Die Class- oder Quelldatei liegt nicht im Klassenpfad (kann auch die Ausgangsdatei Datei.
java betreffen).

In diesem Fall können Sie so vorgehen, dass Sie dem Compiler beim Aufruf einen Klassen-
pfad übergeben, der alle Verzeichnisse listet, auf die die benötigten Dateien verteilt sind.
Im einfachsten Fall ist dies das aktuelle Verzeichnis, gegebenenfalls plus ein oder zwei
Unterverzeichnissen.

java -classpath . Datei.java

java -classpath .;./unterVerz Datei.java

� Der Compiler vermisst eine Hilfsklasse, die in einer Datei definiert wurde, die nicht ihren
Namen trägt. In diesem Fall kann der Compiler die Klassendefinition nur finden, wenn die
Klasse schon einmal kompiliert wurde und daher eine Class-Datei verfügbar ist oder die
java-Datei mit der gesuchten Klassendefinition bereits geladen wurde. Letzteres ist der
Fall, wenn die andere Klasse, die der Datei den Namen gegeben hat, bereits geladen wurde,
oder wenn Sie die java-Datei explizit im Aufruf mit aufführen:

java Datei.java AndereDatei.java

Wenn Sie gezielt einzelne Dateien kompilieren wollen, listen Sie diese explizt auf:

javac Datei1.java Datei2.java Datei3.java

H
in

w
e

is Die offizielle Dokumentation der JDK-Werkzeuge finden Sie in den JDK-Hilfedateien
unter \docs\tooldocs. (Die gezippte Version der Hilfedateien können Sie von der Sun-
Website herunterladen.)

>> javac – der Compiler800
Ja

va
-S

DK
-T

oo
ls

Wenn Sie alle Dateien im aktuellen Verzeichnis kompilieren wollen, verwenden Sie einfach
den *-Platzhalter:

javac *.java

Wie der Compiler seine Arbeit verrichtet, kann über verschiedene Optionen gesteuert werden.
In integrierten Entwicklungsumgebungen geschieht dies in der Regel über die Dialoge der Pro-
jektverwaltung; wenn Sie allein mit dem Java-SDK arbeiten und den Compiler über die Kon-
sole aufrufen, geben Sie die gewünschten Optionen in der Befehlszeile an.

javac Optionen Quelldatei(en)

Option Beschreibung

-classpath pfad Gibt den Klassenpfad an, in dem der Compiler nach Typdefinitionen suchen soll.
Die im Klassenpfad aufgeführten Verzeichnisse und Archive (JAR und ZIP) werden
durch Semikolons (Doppelpunkt unter Linux) getrennt. Der Punkt ».« steht für das
aktuelle Verzeichnis.
Der folgende Klassenpfad besteht aus dem aktuellen Verzeichnis, dem Verzeichnis
c:\bin und dem JAR-Archiv klassen.jar, das unter c:\java gespeichert ist.
-classpath .;c:\bin;c:\java\klassen.jar

Wenn Sie die classpath-Option setzen, wird der in der CLASSPATH-Umgebungs-
variablen angegebene Klassenpfad ignoriert. (Wenn Sie weder die Option noch die
Umgebungsvariable gesetzt haben, besteht der Klassenpfad aus dem aktuellen
Verzeichnis.)
Wie im vorangehenden Abschnitt beschrieben, wertet der Compiler nicht nur im
Klassenpfad stehende Class-Dateien aus, sondern auch Quelldateien (es sei denn,
Sie setzen die Option -sourcepath, siehe unten).

-d verzeichnis Gibt das Verzeichnis an, in das die erzeugten Class-Dateien geschrieben werden.
Für Klassen, die Teil eines Pakets sind, wird verzeichnis noch um den Paketpfad
erweitert.
javac -d c:\klassen quelldatei.java

Wird die Option nicht gesetzt, werden die Class-Dateien zusammen mit ihren
Quelldateien gespeichert.

-deprecation Zeigt an, wo veraltete Bibliothekselemente verwendet werden.
javac -deprecation quelldatei.java

Voraussetzung ist allerdings, dass der Compiler etwas zum Kompilieren findet.
Wenn Sie beispielsweise ein Projekt, das veraltete API-Elemente enthält, sonst
aber fehlerfrei ist, normal kompilieren, gibt der Compiler eine Warnung aus, die
auf vorhandene »deprecated« Elemente hinweist, erzeugt aber dennoch die
gewünschten Class-Dateien. Wenn Sie daraufhin javac mit der Option -depreca-
tion aufrufen, ohne zuvor die generierten Class-Dateien zu löschen, vergleicht der
Compiler das Datum der Quelldateien mit dem Datum der Class-Dateien und
erkennt, dass es keinen Grund gibt, die Dateien neu zu kompilieren. Folglich
findet er auch keine veralteten API-Elemente und die Ausgabe bleibt leer.

-g Nimmt Informationen für den Debugger (siehe unten) in die Class-Dateien mit auf.
javac -g quelldatei.java

Tabelle 87: Die wichtigsten Compiler-Optionen

>> Die Java-SDK-Tools 801

Ja
va

-S
DK

-T
oo

ls

java – der Interpreter
Um ein Java-Programm auszuführen (Konsolen- und GUI-Anwendungen, keine Applets),
übergeben Sie die Class-Datei, die die main()-Methode enthält, an den java-Interpreter:

java Optionen Classdatei Kommandozeilenargumente

-g:none Nimmt keinerlei Debug-Informationen mit auf.
javac -g:none quelldatei.java

Verwenden Sie diese Option zusammen mit -O für die abschließende Kompilation
Ihrer fertigen Programme, Module etc.
javac -g:none -O quelldatei.java

-help Listet die Standardoptionen auf.

-nowarn Unterbindet die Ausgabe von Warnungen.

-source 1.n Kompiliert für die angegebene JDK-Version.

-sourcepath pfad Gibt an, wo der Compiler nach Quelltextdateien suchen soll. Für die Zusammen-
setzung des »Quellpfads« gelten die gleichen Regeln wie für den Klassenpfad (siehe
-classpath).
Wenn der Compiler bei der Kompilation einer Quelltextdatei auf einen Typ (Klasse
oder Interface) trifft, zu dem es weder in der Datei noch in der Java-Standardbib-
liothek eine Definition gibt, und Sie die Option -sourcepath nicht gesetzt haben,
sucht der Compiler im Klassenpfad nach Class- und Quelltextdateien mit der
benötigten Definition.
Wenn Sie dagegen die Option -sourcepath setzen, sucht der Compiler im Klassen-
pfad nur nach Class-Dateien und in dem angegebenen Quellpfad nur nach Quell-
textdateien.

-O Optimiert den Quellcode.
Verwenden Sie diese Option zusammen mit -g:none für die abschließende Kompi-
lation Ihrer fertigen Programme, Module etc.
javac -g:none -O quelldatei.java

Verwenden Sie diese Option auf gar keinen Fall während des Debuggens. Durch
die Optimierung kann es nämlich zu erheblichen Differenzen zwischen Quelltext
und Bytecode kommen – beispielsweise, wenn im Quelltext vorhandene Variablen
durch die Optimierung wegfallen.

-verbose Gibt während des Kompilierens Statusmeldungen aus.

-Xlint:deprecation Gibt detaillierte Meldungen aus, wenn Klassenelemente verwendet werden, von
deren Gebrauch mittlerweile abgeraten wird.

-Xlint:unchecked Gibt detaillierte Meldungen aus, wenn ein parametrisiertes Objekt ohne Typisie-
rung verwendet wird.

H
in

w
e

is Eine vollständige Beschreibung aller Compiler-Optionen finden Sie in den JDK-Hilfe-
dateien unter ..\docs\tooldocs.

Option Beschreibung

Tabelle 87: Die wichtigsten Compiler-Optionen (Forts.)

>> java – der Interpreter802
Ja

va
-S

DK
-T

oo
ls

oder

javaw Optionen Classdatei Kommandozeilenargumente

Wenn Sie das Programm in ein Jar-Archiv gepackt haben (siehe unten), übergeben Sie die Jar-
Datei zusammen mit der Option –jar:

java Optionen –jar Jardatei Kommandozeilenargumente

javaw Optionen –jar Jardatei Kommandozeilenargumente

javaw und java unterscheiden sich darin, dass zu java ein Konsolenfenster geöffnet wird, wäh-
rend für Programme, die mit javaw gestartet werden, kein Konsolenfenster erscheint. javaw
wird daher üblicherweise zum Starten von GUI-Anwendungen verwendet.

Typische Aufrufe
java Hauptklasse

Zum Starten einer Anwendung. Hauptklasse ist dabei der Name der Klasse, die die main()-
Methode des Programms definiert.

Klassen, die im Programm verwendet werden, sucht sich der Interpreter aus der Java-Stan-
dardbibliothek und den Verzeichnissen und Archiven (JAR und ZIP) des Klassenpfads zusam-
men.

Kann eine Klasse nicht gefunden werden, hat dies in der Regel einen von drei Gründen:

� Die zugehörige Class-Datei existiert nicht (kann auch die Class-Datei der Ausgangsklasse
Hauptklasse.class betreffen).

� Die zugehörige Class-Datei liegt nicht im Klassenpfad (kann auch die Class-Datei der Aus-
gangsklasse Hauptklasse.class betreffen).

In diesem Fall können Sie so vorgehen, dass Sie dem Interpreter beim Aufruf einen Klas-
senpfad übergeben, der alle Verzeichnisse auflistet, auf die die benötigten Dateien verteilt
sind. Im einfachsten Fall ist dies das aktuelle Verzeichnis, gegebenenfalls plus ein oder
zwei Unterverzeichnisse.

java -classpath . Hauptklasse

java -classpath .;./unterVerz Hauptklasse

Option Beschreibung

-classpath pfad
-cp pfad

Gibt den Klassenpfad an, in dem der Interpreter nach Typdefinitionen sucht.
Die im Klassenpfad aufgeführten Verzeichnisse und Archive (JAR und ZIP)
werden durch Semikolons (Doppelpunkt unter Linux) getrennt. Der Punkt ».«
steht für das aktuelle Verzeichnis.
Wenn Sie die classpath-Option setzen, wird der in der CLASSPATH-Umge-
bungsvariablen angegebene Klassenpfad ignoriert. (Wenn Sie weder die Option
noch die Umgebungsvariable gesetzt haben, besteht der Klassenpfad aus dem
aktuellen Verzeichnis.)

-Dname=Wert Setzt eine Umgebungsvariable

Tabelle 88: Die wichtigsten Interpreter-Optionen

>> Die Java-SDK-Tools 803

Ja
va

-S
DK

-T
oo

ls

jar – Archive erstellen
Mit dem jar-Tool können Sie die Dateien eines Programms (Class-Dateien, Bilddateien, Sound-
dateien u.a.) zusammen in ein Archiv packen und ausliefern.

Es gibt verschiedene Gründe, die für die Erstellung eines Archivs sprechen:

� Die Dateien werden übersichtlich und sicher verwahrt.

� Für Anwendungen, die aus dem Internet heruntergeladen werden (insbesondere Applets)
reduzieren sich die Download-Zeiten durch die Komprimierung und die Übertragung einer
einzelnen Datei dramatisch.

� Die Dateien in einem Archiv können signiert werden.

Aufrufe
Die allgemeine Syntax für den Aufruf von jar lautet:

jar Optionen Zieldatei [Manifestdatei|MainKlasse] Eingabedateien

Die optionalen Argumente Manifestdatei und MainKlasse dienen dazu, die Klasse im jar-
Archiv anzugeben, welche die main()-Methode enthält. Dies ist notwendig, damit der java-
Interpreter später bei Ausführung des jar-Archivs weiß, wo die Programmausführung beginnt.
Zwei Möglichkeiten gibt es, die Klasse mit der main()-Methode anzuzeigen:

� Vor Java 6 mussten Sie eine Manifest-Datei (Textdatei mit der Endung .mf) und einen
Main-Class-Eintrag erstellen – beispielsweise

Main-Class: Hauptklasse

-jar Zur Ausführung von Jar-Dateien.
Die angegebene Jar-Datei muss in Ihrem Manifest einen Main-Class:-Eintrag
haben, der die Class-Datei mit der main()-Methode angibt.

-verbose
-verbose:class

Informiert über Klassen, die geladen werden. Die Meldungen erscheinen auf der
Konsole.
Zusätzlich können Sie sich über die Arbeit der Speicherbereinigung (-verbose:gc)
und den Aufruf nativer Methoden (-verbose:jni) informieren lassen.

-version Zeigt die Versionsnummer des Interpreters an.

-help
-?

Listet die Standardoptionen auf.

-X Informiert über Nicht-Standardoptionen.

H
in

w
e

is Ein Archiv muss nicht entpackt werden, um das darin enthaltene Programm auszufüh-
ren oder die im Archiv abgelegten Bibliotheksklassen zu verwenden. Programme aus
Archiven können direkt vom Interpreter ausgeführt werden (Option –jar), sofern das
Archiv eine Manifest-Datei enthält, die auf die Class-Datei mit der main()-Methode
verweist. Klassen aus Archiven können von anderen Programmen genutzt werden,
wenn das Archiv im Klassenpfad steht.

Option Beschreibung

Tabelle 88: Die wichtigsten Interpreter-Optionen (Forts.)

>> jar – Archive erstellen804
Ja

va
-S

DK
-T

oo
ls

wobei »Hauptklasse« hier für die Klasse steht, in der main() definiert ist. Anschließend
rufen Sie jar mit der Option m und der Manifest-Datei auf (siehe die unten nachfolgenden
Aufruf-Beispiele). (Alternativ können Sie auch zuerst das jar-Archiv erstellen, die automa-
tisch erstellte Manifest-Datei entpacken, die Zeile mit der Hauptklasse einfügen und dann
das Archiv neu erstellen.)

� Seit Java 6 geht es auch etwas einfacher. Sie setzen die Option e und übergeben den
Namen der Hauptklasse als Argument an jar.

jar cfe archiv.jar Hauptklasse Hauptklasse.class Hilfsklasse.class

Typische Aufrufe sind:

H
in

w
e

is Applets benötigen keinen Main-Class-Eintrag. Der Name der Applet-Klasse, deren
Methoden der Browser zur Ausführung des Applets aufruft, wird im HTML-Code der
Webseite angegeben.

Aufruf Beschreibung

jar cf archiv.jar k1.class k2.class Erzeugt ein neues Archiv namens archiv.jar und fügt diesem die
Dateien k1.class und k2.class hinzu.
Zusätzlich erzeugt jar eine passende Manifest-Datei Mani-
fest.mf, allerdings ohne Main-Class-Eintrag.

jar cf archiv.jar *.* Erzeugt ein neues Archiv und fügt alle Dateien im aktuellen
Verzeichnis (inklusive Unterverzeichnisse) hinzu.

jar cf archiv.jar images sound
*.class

Erzeugt ein neues Archiv und fügt alle Class-Dateien im aktuel-
len Verzeichnis und die Unterverzeichnisse images und sound
hinzu.

jar cfm archiv.jar manifest.mf *.* Erzeugt ein neues Archiv und fügt alle Dateien im aktuellen
Verzeichnis (inklusive Unterverzeichnisse) hinzu.
Verwendet die angegebene Manifest-Datei.

jar cfe archiv.jar Hauptklasse *.* Erzeugt ein neues Archiv und fügt alle Dateien im aktuellen
Verzeichnis (inklusive Unterverzeichnisse) hinzu.
Registriert Hauptklasse als Main-Class. (Hauptklasse.class muss
selbstredend unter den in das Archiv aufgenommenen Class-
Dateien sein.)

jar tf archiv.jar Gibt das Inhaltsverzeichnis des angegebenen Archivs aus. (Sie
können jar-Archive auch zum Einsehen in Winzip laden.)

jar xf archiv.jar Entpackt das jar-Archiv.

Tabelle 89: Typische jar-Aufrufe

>> Die Java-SDK-Tools 805

Ja
va

-S
DK

-T
oo

ls

Optionen
Die jar-Optionen bestehen aus einzelnen Buchstaben ohne Bindestrich, die mehr oder weniger
beliebig kombiniert werden können. Beachten Sie aber, dass bei Optionen, die weitere Argu-
mente erfordern (f, m …), die Reihenfolge der Optionen auch die Reihenfolge der Argumente
vorgibt.

A
ch

tu
n

g Automatisch erzeugte Manifest-Dateien enthalten natürlich keine Hinweise auf even-
tuell vorhandene main()-Methoden. Wenn Sie also eine Anwendung in ein JAR-Archiv
packen, müssen Sie die Manifestdatei entweder nachbearbeiten und eine Zeile:

Main-class: Hauptklasse

hinzufügen (wobei »Hauptklasse«, hier für die Klasse steht, in der main() definiert ist).
Oder Sie erstellen zuerst eine Manifest-Datei und übergeben diese jar (Option m).

Applets benötigen keinen vergleichbaren Eintrag. Der Name der Applet-Klasse, deren
Methoden der Browser zur Ausführung des Applets aufruft, wird im HTML-Code der
Webseite angegeben.

Option Beschreibung

c Erzeugt ein neues Archiv.
(c steht für create.)

f Name des zu bearbeitenden Archivs.
(f steht für file.)

e Name der Klasse mit der main()-Methode.
(e steht für executable.)

i Erzeugt Indexinformationen für ein Archiv. (Beschleunigt das Laden der Klassen.)
(i steht für index.)

-Joption Übergibt die angegebene java-Option an den Interpreter.

m Verwendet die angegebene Manifest-Datei.
(m steht für manifest.)

M Es wird keine Manifest-Datei erzeugt.

O Die Dateien werden nicht komprimiert.

t Gibt den Inhalt des angegebenen Archivs auf die Konsole aus.
(t steht für table.)

u Fügt dem angegebenen, bestehenden Archiv weitere Dateien hinzu.
(u steht für update.)

v Erzeugt ausführliche Statusmeldungen.
(v steht für verbose.)

Tabelle 90: Wichtige jar-Optionen

>> javadoc – Dokumentationen erstellen806
Ja

va
-S

DK
-T

oo
ls

javadoc – Dokumentationen erstellen
Mit javadoc können Sie die Klassen Ihrer Programme und Bibliotheken im Stile der offiziellen
Java-API-Referenz dokumentieren. Sie müssen lediglich entsprechend formatierte Kommen-
tare in Ihre Quelltexte einfügen und dann javadoc aufrufen.

javadoc-Kommentare gleichen den üblichen mehrzeiligen Kommentaren, beginnen aber mit
zwei Sternchen hinter dem Slash:

/**
 * Dies ist ein Dokumentationskommentar.
 */

Mit diesen Kommentaren können Sie Klassen, Interfaces, Konstruktoren, Methoden und Felder
dokumentieren. Stellen Sie den Kommentar dazu einfach direkt vor die Definition des Ele-
ments:

/**
 * Dokumentation zu EineKlasse
 */
public class EineKlasse {
 /**
 * Dokumentation des Feldes einFeld
 */
 public int einFeld;

 /**
 * Dokumentation der Methode main()
 *
 */
 public static void main(String[] args) {
...

Der Dokumentartext sollte zwei Teile umfassen:

� eine Kurzbeschreibung, die aus einem Satz besteht, und

� eine nachfolgende ausführliche Beschreibung.

Aufruf
Zur Erzeugung der HTML-Dokumentation rufen Sie javadoc von der Konsole aus dem Ver-
zeichnis der Quelldateien auf – beispielsweise:

javadoc *.java

Tags
Tags sind Marker, die alle mit @ beginnen und spezielle Informationen kennzeichnen, die von
javadoc gesondert formatiert werden – beispielsweise die Parameter einer Methode.

H
in

w
e

is Es ist üblich, die einzelnen Zeilen eines Dokumentationskommentars mit einem Stern-
chen zu beginnen, notwendig ist dies aber nicht.

Dokumentartexte enden mit dem abschließenden */ oder wenn innerhalb des Kommen-
tars ein Tag (siehe unten) auftaucht.

>> Die Java-SDK-Tools 807

Ja
va

-S
DK

-T
oo

ls

jdb – der Debugger
Ein Debugger ist eine Art Super-Programm, das andere Programme ausführen und dabei über-
wachen kann. Eine Fehleranalyse führt der Debugger selbst aber nicht durch – dies ist Ihre
Aufgabe. Der Debugger hilft Ihnen lediglich dabei, zur Laufzeit gezielt Informationen über die
Ausführung des Programms zu sammeln.

Grundsätzlich gehen Sie beim Debuggen folgendermaßen vor:

1. Sie laden das Programm in den Debugger.

2. Sie definieren Haltepunkte, d.h., Sie teilen dem Debugger mit, dass die Ausführung des
Programms bei Erreichen bestimmter Quelltextzeilen angehalten werden soll.

3. Sie führen das Programm von Haltepunkt zu Haltepunkt oder schrittweise mit speziellen
Debuggerbefehlen aus und kontrollieren dabei, ob der Programmfluss korrekt ist (ob bei-
spielsweise in einer if-Bedingung korrekt verzweigt wird, ob eine Schleife ausgeführt oder
eine Methode aufgerufen wird).

4. Wurde die Programmausführung vom Debugger angehalten, können Sie sich vom Debug-
ger die Inhalte der Variablen des Programms anzeigen lassen. Auf diese Weise kontrollie-
ren Sie beispielsweise die Ausführung von Berechnungen oder die Inkrementierung von
Schleifenvariablen.

Tag-Marker Beschreibung

@author Angabe des Autors
@author name

@deprecated Zeigt an, dass das Element nicht mehr verwendet werden sollte
@deprecated Hinweistext

@exception
@throws

Angabe der Exception-Klasse, die von der Methode ausgelöst oder weiter-
geleitet werden kann
@throws Exceptionklassenname Beschreibung

@param Beschreibung eines Parameters
@param Name Beschreibung

@return Beschreibung des Rückgabewerts
@return Beschreibung

@see Verweis auf eine andere Textstelle
@see Referenz

»Referenz« kann beispielsweise der Name einer Methode oder Klasse sein, aber
auch ein HTML-Tag

@serial
@serialData
@serialField

Zur Kennzeichnung serialisierter Elemente
@serial

@since Gibt an, seit wann dieses Element existiert
@since JDK1.0

@version Angabe der Versionsnummer
@version 1.73, 12/03/01

Tabelle 91: Die javadoc-Tags

>> jdb – der Debugger808
Ja

va
-S

DK
-T

oo
ls

Der Java-SDK-Debugger
Der Java-SDK-Debugger heißt jdb und eignet sich zur Fehlersuche in Anwendungen und
Applets. Allerdings handelt es sich um ein recht einfaches Programm. Wesentlich komfortabler
ist der Einsatz von Debuggern aus integrierten Entwicklungsumgebungen (beispielsweise
JBuilder).

Vorbereitungen
Um ein Programm mit dem jdb zu debuggen, muss zunächst der javac-Compiler spezielle
Debug-Informationen hinzufügen, die der jdb-Debugger benötigt. Dazu geben Sie beim Kom-
pilieren mit javac die Option -g an:

javac -g Fehler.java

Debug-Sitzung starten
Nun kann das Programm im Debugger gestartet werden:

jdb Fehler

Falls ein Applet debuggt werden soll, muss der Appletviewer mit der Option -debug aufgerufen
werden. Er sorgt dann dafür, dass der jdb mit aufgerufen wird.

Nach dem Laden und Initialisieren wartet der jdb auf Ihre Befehle.

Wichtige jdb-Kommandos:

Kommando Beschreibung

run arg1 arg2 Startet die Ausführung des Programms; falls das Pro-
gramm Parameter erwartet, können sie mit angegeben
werden.

stop at Klasse:Zeile Setzt einen Haltepunkt in der Klasse Klasse in Zeile Zeile.

stop in Klasse.methode Setzt einen Haltepunkt in der Methode methode von Klasse
Klasse. Gestoppt wird bei der ersten Anweisung.

step Eine Codezeile ausführen.

cont Programmausführung fortsetzen (nach einem Haltepunkt).

list Den Quellcode anzeigen.

locals Anzeigen der lokalen Variablen.

print Name Anzeigen der Variablen Name.

where Die Abfolge der Methodenaufrufe zeigen.

quit jdb beenden.

help Übersicht über alle jdb-Befehle ausgeben.

!! Letztes Kommando wiederholen.

Tabelle 92: jdb-Befehle

>> Die Java-SDK-Tools 809

Ja
va

-S
DK

-T
oo

ls

Weitere Tools
Zum Java-SDK gehören noch eine Reihe weiterer Tools, deren Verwendung zum Teil in den
entsprechenden Kapiteln des Buchs beschrieben ist:

Tool Verwendungszweck

appletviewer Zum Ausführen und Testen von Applets

htmlconverter Bereitet HTML-Code zur Einbettung von Applets auf

jarsigner Zum Signieren von Jar-Dateien, siehe oben

keytool Zum Erstellen von Schlüsseln und Zertifikaten

policytool Zum Bearbeiten von Java-Policy-Dateien

rmic Zur Generierung von Stub- und Skeleton-Klassen

rmiregistry Startet die RMI-Systemregistrierung

Tabelle 93: Weitere Tools

Te
xt

ge
st

al
tu

ng
Ab

sä
tz

e

Stichwortverzeichnis

Numerics
2er-Komplement 19

A
AbstractAction 370, 371
AbstractFormatter 336
Action 370
ActionMap 330
Adapter (Design-Pattern) 721
AffineTransform 439, 464
Aktionen

Ereignisbehandlung 375
für Zwischenablage 400
Schalter synchronisieren 371

Altersberechnung 161
Ant 748

Grundprinzipien 749
installieren 748
Jar-Dateien erstellen 754
Programmerstellung 751

Anwendungssymbol 356
Apache BCEL 760
Applets 467, 655

AppletViewer 660
AudioClip 669
Bilder laden 663
Caching 661
Datenaustausch mit anderen Applets 675
Datenaustausch mit Webseite 661
Datenbankzugriff 521
Diashow 663
Grundgerüst 655
HtmlConverter 659
Jar-Archive 748
Java-Plugin 660
JavaScript 672
Laufschrift 677
Methoden 655
Parameter 661
Sounds laden 669
testen 660
Verzeichnis 661
Webseite 657, 659

AppletViewer 660

Archive 269, 272
Archive (jar) 803
Arrays 734

aus Strings erzeugen 113
effizient kopieren 733
in Collections umwandeln 710
in Strings umwandeln 111

AudioClip 669
Audiodateien 467

abspielen 467
AudioClip 467
in Applets abspielen 669
sampled 468
Streaming 468

Authentifizierung (E-Mail) 535
AWT 287

B
BasicStroke 431
Batch-Ausführung (Datenbanken) 516
Benutzer, Informationen 181
Betriebssystem 180

Signale abfangen 208
Bibliotheken

Apache BCEL 760
AWT 287
gnujpdf 279
iText 279
Java Mediaframework 471
JavaBeans Activation Framework 532
JavaMail 532
JFreeChart 475
jRegistry 202
POI 274
Swing 287

BigDecimal 91
BigInteger 23, 91
Bilder

als Fensterhintergrund 298
anzeigen 449
bearbeiten 458
BufferedImage 459
ColorConvertOp 466
ColorSpace 466

>> Stichwortverzeichnis812
Te

xt
ge

st
al

tu
ng

Ab
sä

tz
e

Diashows 453
drehen 462
ImageIO 448, 459
in Applets laden 663
in Graustufen 466
laden 448
MediaTracker 448
speichern 459
spiegeln 464

Binärdateien
lesen 249
schreiben 249

BitSet 21
BLOB-Daten 512
Bogenmaß 56
Book 410
BorderFactory 315
Box 358, 378
BufferedImage 459
BufferedInputStream 557
BufferedReader 214

C
C++-Code ausführen 192
Caching, Applets 661
Callable 646
CaretListener 400
Celsius (Umrechnung in Fahrenheit) 56
ChoiceFormat 45
Class 755, 762
CLOB-Daten 512
clone() 683
Code optimieren 745
Collator 599, 600
Collections 710, 716

Comparable 712
Comparator 713
durchsuchen 716
in Arrays umwandeln 711
sortieren 712
synchronisieren 716

ColorConvertOp 466
ColorSpace 466
Comparable 699, 712
Comparator 713
compareTo() 699
Compiler 799
Complex 63
ComponentEvent 296

CompoundBorder 379
Connection 501
ConnectionPoolDataSource 503
Connection-Pooling (Datenbanken) 503
Console 213, 215, 216
Constructor 762
ContentHandler 567
CSV-Dateien

in XML umwandeln 266
lesen 258

Cursor (über Komponente) 318

D
Dämon 200
Dämon-Thread 632
DatabaseMetaData 519
DataHandler 537, 539
DataInputStream 760
DataSource 537
Date 121
DateFormat 126, 602
DateFormatSymbols 128
DateFormatter 342
Dateien

Änderungen verfolgen 393
Binärdateien 249, 274
CSV-Dateien 258, 266
Datei-Dialog 385
Eigenschaften abfragen 234
fileOpen-Methode 388
fileSaveAs-Methode 393
fileSave-Methode 392
Filter für Datei-Dialog 387
in Verzeichnis auflisten 238
kopieren 241
löschen 239
neu anlegen 232
PDF-Dateien 278
Random Access 250
Speichern-Dialog 391
sperren 256
temporäre 237
Textdateien 245
umbenennen 245
verschieben 245
ZIP-Archive 269, 272

Datenbanken 501
Applets 521
Batch-Ausführung 516

>> Stichwortverzeichnis 813

Te
xt

ge
st

al
tu

ng
Ab

sä
tz

e

BLOB/CLOB-Daten 512
Connection-Pooling 503
Datenbankverbindung 501
Datensätze

abfragen 506
ändern 508
Anzahl in ResultSet 507, 520
einfügen 508
löschen 509
Spaltennamen 520
Spaltentypen 520

Metadaten 519
MySQL 501
Oracle-JDBC-Thinclient 501
PreparedStatements 509
SQL/Java-Datentypzuordnung 511, 796
SQL-Befehle ausführen 505
SQL-Injection 500
Stored Procedures 510
Transaktionen 515

Datentypen 779
Datum

aktuelles Datum 121
Altersberechnung 161
Date 121
DateFormat 126
DateFormatSymbols 128
Differenz 133
Differenz in Jahren, Tagen, Stunden 134
Differenz in Tagen 140
einlesen 130
erzeugen 123
Feiertage 148, 159
formatieren 125
GregorianCalendar 121
Gregorianischer Kalender 124
Julianischer Kalender 124, 142
Monatsnamen auflisten 128
Ostersonntag 144
Schaltjahr erkennen 160
SimpleDateFormat 127
Tage addieren/subtrahieren 141
Umrechnung zwischen Kalendern 143
vergleichen 131
verifizieren 130
Wochentag ermitteln 158
Wochentage auflisten 128

Datumsangaben

Eingabefeld 342
formatieren (gemäß Lokale) 601
parsen (gemäß Lokale) 601

Debugger 807
Debug-Stufen 742
DecimalFormat 27, 31, 34, 604
DecimalValue 491
DefaultHandler 568
Design-Patterns, Adapter 721

Factory-Methoden 729
Klassen-Adapter 725
Objekt-Adapter 722
Singleton 718

Determinante (Matrizen) 80
Diagramme 475
Dialoge

Bilder als Hintergrund 298
Datei öffnen 385
Datei speichern 391
Datei-Filter 387
Drucken 409
mit Return (Esc) verlassen 330
Schriftarten 440
zentrieren 293

Diashow-Applet 663
Diashows 453
Division (mit Potenzen von 2) 19
DLLs laden 192
Document 393, 572, 578, 582
DocumentBuilder 572, 578
DocumentListener 393
Dokumentationen 806
DOM 571
Double.isInfinity() 26
Double.isNaN() 26
Drag-and-Drop 347

Datei-Drop für JTextArea 349
für Labels 348
Swing-Komponenten 348, 788
TransferHandler implementieren 349
Unterstützung in Swing 788

Drucken
Book 410
Dialoge 409
Pageable 410
print() 401, 407
Printable 404
PrinterJob 409

>> Stichwortverzeichnis814
Te

xt
ge

st
al

tu
ng

Ab
sä

tz
e

PrintRequestAttributeSet 403
Seitenzahl berechnen 407
Text 400

DTD 575

E
ECHO-Request 526
Eclipse 291
Editor-Grundgerüst 410
Ein- und Ausgabe

automatische Berücksichtigung von Ein-
und Mehrzahl 44

BufferedReader 214
Console 213, 215, 216
Dateien

Änderungen verfolgen 393
Binärdateien 249
CSV-Dateien 258, 266
Datei-Dialog 385
Eigenschaften abfragen 234
Excel-Dateien 274
in Verzeichnis auflisten 238
kopieren 241
löschen 239
neu anlegen 232
PDF-Dateien 278
Random Access 250
Speichern-Dialog 391
sperren 256
temporäre 237
Textdateien 245
umbenennen 245
verschieben 245
ZIP-Archive 269, 272

Kommandozeilenargumente 230
Konsole 211, 214, 216
PrintStream 213
Scanner 215
Standardausgabe

schreiben 211
Umlaute 212
umleiten 216

Standardeingabe
lesen 214
Passwörter 216
umleiten 216

Umlaute 189, 190, 212
Umleitung 230
Verzeichnisse

Eigenschaften abfragen 234
Inhalt auflisten 238
kopieren 241
löschen 239
neu anlegen 232
umbenennen 245
verschieben 245

Zahlen 30
ausrichten 37
in Exponentialschreibweise 34
mit n Stellen 24

Eingabefelder
Eingabenüberprüfung 339, 345
für Datumsangaben 342
für Währungsangaben 336
mit Return verlassen 329

Element 571
E-Mail

abrufen 545, 550
Adressen prüfen 493
Attachments 543, 550
IMAP 532
INBOX 545
multipart/alternative 540
POP3 532
senden

als multipart/alternative 540
Authentifizierung 535
HTML 537
JavaMail 532
mit Datei-Anhang 543

SMTP 532
equals() 695
Ereignisbehandlung 303, 366

Interfaces 783
Mechanismus 303
mit Aktionen 371, 375
Modelle 305

Excel-Dateien
lesen 274
schreiben 274

ExecutorService 646
Exponentialschreibweise 34
Externe Programme 189

F
Factory-Methoden (Design-Pattern) 729
Fahrenheit (Umrechnung in Celsius) 56
Fakultät 57

>> Stichwortverzeichnis 815

Te
xt

ge
st

al
tu

ng
Ab

sä
tz

e

Farbverläufe 434
Feiertage 148
Fenster

Bilder als Hintergrund 298
Größe festlegen 295
Größe fixieren 295
Konstanten 290, 782
Minimalgröße sicherstellen 296
zentrieren 292

FieldPosition 37
FileFilter 387
FileOutputStream 586
FileWriter 582
FocusTraversalPolicy 324
Fokus

Focus Cycle Root 324
Focus Traversal Policy 323
Fokus-Tasten ändern 326
für JLabel 322
Reihenfolge 323
Start-Komponente 322
zuweisen 322

Folder 545
FontMetrics 427
Fortschrittsanzeige (für

Konsolenanwendungen) 219
Fraktale 70, 459
Freihandzeichnungen 445
FTP-Adressen, reguläre Ausdrücke 499
Füllmuster 434
FutureTask 646

G
Gleichungssysteme 90
Globale Daten 734, 735

Singleton-Instanzen 737
statische Felder 735

GradientPaint 435
Grafik

Bilder
anzeigen 449
bearbeiten 458
BufferedImage 459
Diashows 453
drehen 462
ImageIO 448, 459
in Graustufen 466
laden 448
MediaTracker 448

speichern 459
spiegeln 464

Diagramme 475
Dreiecke 432
Farbverläufe 434
Fraktale 459
Freihandzeichnungen 445
Füllmuster 434
gestrichelte Linien 432
in Rahmen zeichnen 428
Java2D 436
Julia-Menge 459
Koordinatentransformation 436
Mitte der Zeichenfläche 425
Rotation 437
Scherung 437
Schriftarten

Auswahl-Dialog 440
verfügbare 439

Skalierung 438
Strichstärke 431
Strichstil 432
Text mit Schattenwurf 443
Transformationsmatrix 439
Translation 436
zentrierte Textausgabe 426

GraphicsEnvironment 439
GregorianCalendar 121
Gregorianischer Kalender 124
Grundgerüste

Applets 655
Editor 410
GUI-Anwendungen 287

H
hashCode() 689
Hashing 689
Hashtabellen 20

Anfangskapazität 22
Hash-Funktionen 20

Hinweistexte
für Statusleiste 374
in Statusleiste 382
Manager-Klasse 383

HTML
E-Mails 537
Tags entfernen 495

HtmlConverter 659
HttpURLConnection 559

>> Stichwortverzeichnis816
Te

xt
ge

st
al

tu
ng

Ab
sä

tz
e

I
Icon siehe Symbole
ImageIcon 357
ImageIO 448, 459
IMAP 532
InetAddress 525, 526
Infobereich der Taskleiste 414
Informationen

aktueller Benutzer 181
Betriebssystem 180
Java 182
Java-Version 180
Umgebung 179

INI-Dateien
lesen 184
schreiben 187
XML-Format 188

InputMap 330
InputVerifier 339
Interfaces, für Ereignisbehandlung 783
Internationalisierung 589

Anpassung an aktuelles System 616
Anpassung an Wunsch des Benutzers 618
Datumsangaben 601
Lokale 589
Ressourcendateien 614
Standardlokale 592
Strings

Collator 599, 600
sortieren 600
vergleichen 599

Währungsangaben 605
Zahlen 604

Interpreter 801
InterruptedException 197
IP-Adressen 525
Iterator 183

J
jar (Archivierungsprogramm) 803
JAR-Archive

einsehen 804
entpacken 804
erstellen 804

Jar-Archive 746
Java

Manifest-Dateien 805
java (Interpreter) 801
Java Mediaframework 471

Java Native Interface (JNI) 201
Java Virtual Machine

Abbruch erkennen 206
Speicher reservieren 192

Java2D 436
JavaBeans Activation Framework

532
javac (Compiler) 799
javadoc (Dokumentation) 806
javah 193
JavaMail 532
Java-Plugin 660
JavaScript, Zugriff auf Applets

672
Java-Tools 799

appletviewer 809
htmlconverter 809
jar 803
jarsigner 809
java 801
javac 799
javadoc 806
javah 193
jdb 807
keytool 809
policytool 809
rmic 809
rmiregistry 809

Java-Version, bestimmen 180
JButton (Transparenz) 332
jdb (Debugger) 807
JDBC siehe Datenbanken
JFormattedTextField 336, 342
Jitter 173
JLabel

Drag-and-Drop 348
mit Fokus 322
Transparenz 332

JNI 192
JPopupMenu 319
JSeparator 358, 378
JTabbedPane 419
JTable 274

Inhalt als Excel-Datei speichern
274

JTextArea, Datei-Drop 349
JTextComponent 401
Julia-Menge 70, 459
Julianischer Kalender 124

>> Stichwortverzeichnis 817

Te
xt

ge
st

al
tu

ng
Ab

sä
tz

e

K
Kalender

Altersberechnung 161
Feiertage 148, 159
GregorianCalendar 121
GregorianCalendar umstellen 123
Gregorianischer Kalender 124
Julianischer Kalender 124, 142
orthodoxe Kirchen 124
Ostersonntag 144
Schaltjahr erkennen 160
Sommerzeit 134
Umrechnung zwischen Kalendern 143
Wochentag ermitteln 158

Kaufmännisches Runden 24
KeyEvent 787
Kommandozeilenargumente 230
Komplexe Zahlen 62
Komponenten

aktivieren/deaktivieren 370
Cursor 318
Drag-and-Drop 348, 788
dynamisch zur Laufzeit instanzieren 302
Eingabenüberprüfung 339, 345
Ereignisbehandlung 303
Fokus geben 322
Fokusreihenfolge 323
Fokus-Tasten ändern 326
in Rahmen zeichnen 428
Kontextmenü 319
manuell zur Laufzeit instanzieren 300
Mitte berechnen 425
Rahmen 315
Transparenz 332
zentrieren 312

Kongruenz 44
Konsole

Ausgaben in Datei umleiten 230
Ausgaben schreiben 211
Eingaben lesen 214
Fortschrittsanzeige 219
Menüs 222
Menüs (automatisch generierte) 225
Passwörter lesen 216
Programme abbrechen 219
Umlaute 212
XML ausgeben 580

Kontextmenü 319
Koordinatentransformation 436

Kreditkartennummern, reguläre
Ausdrücke 499

Kreditkartenvalidierung 768

L
Label

Drag-and-Drop 348
mit Fokus 322
Transparenz 332

Laufschrift-Applet 677
Laufzeitmessungen 172
Least Significant Bit 19
Lesen

Binärdateien 249
BLOB-/CLOB-Daten 513
CSV-Dateien 258, 266
Excel-Dateien 274
mit RandomAccess 250
Objekte (Serialisierung) 705
Textdateien 245
von der Standardeingabe 214
ZIP-Archive 269

LinkedList 21
Locale 589
Lokale

des Betriebssystems 597
einstellen 589
Ländercodes 590
Sprachcodes 590
Standardlokale 592
testen 597
verfügbare 593

Lokalisierung 589
Ressourcenbündel 618
Ressourcendateien 618

Lokalisierung siehe Internationalisierung
Look-and-Feel 410
LR-Zerlegung (Matrizen) 81
Luhn-Check-Algorithmus 768

M
MalformedURLException 555
Manifest-Dateien 805
MaskFormatter 342
Matcher 49, 486, 487
Mathematisches Runden 24
Matrix 78, 79

Determinante 80
LR-Zerlegung 81

>> Stichwortverzeichnis818
Te

xt
ge

st
al

tu
ng

Ab
sä

tz
e

MediaPlayer 471
MediaTracker 448, 664
Member 755
Menüs

Aktionen 371
aus Ressourcendatei aufbauen 359, 371
Ereignisbehandlung 366
für Konsolenanwendungen 222, 225
Kontextmenü 319
Mnemonic 364, 373
Symbole 365, 374
Tastaturkürzel 365, 374

Message 546
MessageFormat 46, 403
Metadaten (Datenbanken) 519
Method 760, 766
MimeBodyPart 541, 543
MimeMessage 532, 537, 548
MimeMultipart 540, 543
Mittelwert-Berechnung 59
Mnemonic-Taste 364, 373
Monate-Listenfeld 129
Most Significant Bit 19
MP3 475
Multimedia

Audiodateien 467
abspielen 467
AudioClip 467
javax.sound.sampled 468
Streaming 468

Videodateien 471
Multipart 550
Multiplikation (mit Potenzen von 2) 19
Muster

alle Treffer zurückgeben 486
in Strings ersetzen 487
prüfen auf Existenz 484

MySQL 501

N
netstat 529
NetworkInterface 525, 526
Netzwerke

Daten an Ressource senden 557
Erreichbarkeit von Adressen 526
IP-Adressen 525
netstat 529
PING 529
URI-Inhalt abrufen 554, 555

Verbindungen 525
Verbindungsstatus abfragen 529

Node 571
NodeList 571
Normalverteilung 52
NumberFormat 31, 604
NumberFormatException 26

O
ObjectInputStream 705
ObjectOutputStream 705, 706, 708
Objekte

clone() überschreiben 683
compareTo() implementieren 699
equals() überschreiben 695
hashCode() überschreiben 689
Hashing 689
in Strings umwandeln 681
kopieren 683
toString() überschreiben 681
vergleichen

Gleichheit 695
Größenvergleich 699

Open Source
Ant 748
Apache BCEL 760
gnujpdf 279
iText 279
Java Mediaframework 471
JFreeChart 475
jRegistry 202
POI 274

Operatoren 780
Oracle-JDBC-Thinclient 501
Ostersonntag 144
OutputStream 580

P
Pageable 410
ParseException 27
Passwörter, über Konsole einlesen 216
Pattern 49, 484, 488
Pattern siehe Muster
PDF-Dateien 278
PING 526, 529
PipedInputStream 644
PipedOutputStream 644
PipedReader 644
PipedWriter 644

>> Stichwortverzeichnis 819

Te
xt

ge
st

al
tu

ng
Ab

sä
tz

e

Pipes 644
Pooling

Datenbanken 503
Threads 646

POP3 532
Postleitzahlen, reguläre Ausdrücke 498
Preferences 201
PreparedStatements 509
Primzahlen

BigInteger 23
deterministische Tests 23
erkennen 22
erzeugen 20
probabilistische Tests 23
Rabin-Miller-Test 23

Printable 404
PrinterJob 409
PrintRequestAttributeSet 403
PrintStream 213, 217
PrintWriter 557, 582
Process 189
Programm, anhalten 197
Properties 179, 184, 532

laden 185
lesen 184
speichern 184, 187
XML-Format 186, 188

ProtocolException 559

R
Rabin-Miller-Test 23
Radiant 56
Rahmen

für Komponenten 315
in Rahmen zeichnen 428

Random 51
Random Access 250
RandomAccessFile 250
Reflection

.class-Dateien analysieren 760
Klassen analysieren 755
Klassen instanzieren 762
Methoden aufrufen 766

Registerkarten 419
Registerreiter mit Schließen-Schaltern 419
Reguläre Ausdrücke 97

Begrenzer 792
Einzelzeichen 790
E-Mail-Adressen 493
Flags 795

HTML-Tags entfernen 495
in Strings ersetzen 487
java.lang.Character-Eigenschaften 792
Kreditkartennummern 499
logische Operatoren 794
Matcher 483
Muster

alle Treffer zurückgeben 486
prüfen auf Existenz 484

nichtgierige Quantifizierer 793
Pattern 483
POSIX-Zeichen-Klassen 791
Postleitzahlen 498
Quantifizierer 793
Quantifizierer ohne Backtracking-

Funktionalität 793
sonstige Metazeichen 794
spezielle Konstrukte 794
SQL-Injection verhindern 500
Strings zerlegen 488
Syntax 481
Telefonnummern 498
Unicode-Blöcke und -Kategorien 792
vordefinierte Zeichenklassen 791
Währungsangaben 499
Web-/FTP-Adressen 499
Wortverdopplungen herausfiltern 500
Zahlen 490
Zahlen aus Strings extrahieren 49
Zeichengruppen 790

ResourceBundle 608
Ressourcen

laden 608, 612
Ressourcenbündel 618
Ressourcendateien 607, 618
XML 611

Ressourcendateien 607
Format 607
für bestimmte Lokale laden 618
für das aktuelle System 616
für Menüs 359
für verschiedene Lokale 614
Lokalisierung 614
XML 611

Runden (Zahlen) 24
auf n Stellen 24
kaufmännisches Runden 24
mathematisches Runden 24

Runnable 623
Runtime 189, 191

>> Stichwortverzeichnis820
Te

xt
ge

st
al

tu
ng

Ab
sä

tz
e

S
SAX 567
SAXParser 568
Scanner 27, 215
Schalter

Aktionen 371
auf Registerreitern 419
Transparenz 332

Schaltjahre 160
Schattenwurf 443
Schema 577
SchemaFactory 577
Schlüsselwörter 779
Schreiben

Binärdateien 249
BLOB-/CLOB-Daten 512
Excel-Dateien 274
mit RandomAccess 250
Objekte (Serialisierung) 705
PDF-Dateien 278
Textdateien 245
von der Standardausgabe 211
ZIP-Archive 272

Schriftarten
Auswahl-Dialog 440
verfügbare 439

Serialisierung 705
Serializable 705
Session 535
ShutdownHook-Mechanismus 206
Sieb des Eratosthenes 21
Signale, abfangen 208
SimpleDateFormat 127, 602
Singleton-Instanzen

Datenaustausch 651, 737
Design-Pattern 718

SMTP 532
SMTPTransport 535
Sommerzeit 134
Sonderzeichen, in XML 565
Sound siehe Multimedia
SourceDataLine 469
Speicher

reservieren 192
verfügbarer 191

Sperren
Anweisungen 640
Dateien 256
Methoden 639

Splash-Screen 417
SQL

Befehle ausführen 505
Datentypen 511, 796
SQL-Injection 500

Standardausgabe
schreiben 211
Umlaute 212
umleiten 216

Standardeingabe
lesen 214
Passwörter 216
umleiten 216

Statistik
Methoden 770
Wörter in Text 118

Statusleiste 377
Hinweistexte einblenden 382
Manager-Klasse für Hinweistexte 383

Stilkonventionen 781
Store 545
Stored Procedures 510
Streaming 468
StreamResult 580
StreamSource 586
Strichstärke 431
Strichstil 432
StringBuffer 102
StringBuilder 37, 101, 102
Strings

Anzahl Wörter in String 120
auffüllen (Padding) 107
aus Arrays erzeugen 111
auszählen 118
Collator 599, 600
durchsuchen 95
für Testzwecke erzeugen 116
in Arrays umwandeln 113
in Strings einfügen 98
in Strings ersetzen 98
in Zahlen umwandeln 26
sortieren 600
StringBufferer 102
StringBuilder 101, 102
Teilstrings vervielfachen 106
vergleichen (gemäß Lokale) 599
vergleichen (nach ersten n Zeichen) 102
Whitespace entfernen 110
Zeichen vervielfachen 106

>> Stichwortverzeichnis 821

Te
xt

ge
st

al
tu

ng
Ab

sä
tz

e

zerlegen 100
zufällige Strings 116
zusammenfügen 101

Suchen
in Collections 716
in Strings 95

nach einzelnen Zeichen 95
nach regulären Ausdrücken 97
nach Teilstrings 95

Swing 287
SwingWorker 635
Symbole

für Anwendung 356
für Menübefehle 365, 374
für Symbolleiste 357

Symbolleisten
aus Ressourcendatei aufbauen 367, 375
Symbole 357
ToolTips 369, 374

Synchronisierung
Collections 716
Schalter 371
Threads

Semaphoren 642
synchronized 639
wait()/notify() 640

synchronized 639
System 179, 182, 183
System.console() 213, 215
System.in 214
System.out 212
SystemTray 414

T
Tabellen, Inhalt als Excel-Datei

speichern 274
Tags

HTML-Tags, entfernen 495
Tastaturkürzel 365, 374
Tastencodes 787
Telefonnummern, reguläre Ausdrücke 498
Temperaturwerte 56
Temporäre Dateien 237
Testen

Anwendungen 738
Applets 660
Laufzeitmessungen 172
mit Testprogrammen 739
mit Zufallszahlen 52

Text
FontMetrics 427
mit Schattenwurf 443
Schriftarten

Auswahl-Dialog 440
verfügbare 439

zentrieren 426
Textdateien

lesen (in String) 245, 248
schreiben 245
Zeichenkodierung 245

TexturePaint 434
Textverarbeitung

drucken 400
Book 410
Dialoge 409
Editor-Grundgerüst 410
Pageable 410
print() 401, 407
Printable 404
PrinterJob 409
PrintRequestAttributeSet 403
Wortstatistik 118

Seitenzahl berechnen 407
Thread 197, 623

Datenaustausch über Singleton-
Instanzen 651

Eigenschaften 627
ExecutorService 646
FutureTask 646
interrupt()-Methode 624
InterruptedException 197
laufende Threads ermitteln

628
ohne Exception beenden 624
Pipes 644
Pooling 646
Prioritäten 629
run()-Methode 623
Runnable-Interface 623
start()-Methode 624
stop()-Methode 624
SwingWorker 635
Synchronisierung

Anweisungen sperren 640
Methoden sperren 639
mit Semaphoren 642
mit synchronized 639
mit wait()/notify() 640

>> Stichwortverzeichnis822
Te

xt
ge

st
al

tu
ng

Ab
sä

tz
e

Thread-Gruppen 631
Aufbau 631
Daemon-Typ 632
durchlaufen 632
Priorität 631

Timer 197
ThreadGroup 631
Ticker-Applet 677
Timer 197

beenden 201
nichtblockierende 200
TimerTasks regelmäßig ausführen 199

TimerTask 197, 221
TimeZone 165
Toolkit 448
Tooltips, für Symbolleistenschalter 369, 374
toString() 681
Transaktionen 515

aktivieren 515
beenden 515
Savepoints 516

TransferHandler 349
TransferHandler.TransferSupport 350
Transformationen (Grafik) 436
Transformer 580
TransformerFactory 580, 586
Transparenz

eigene Komponenten 333
Swing-Komponenten 332

Transport 532
TrayIcon 414
TreeSet 54
Trigonometrische Funktionen 56

U
Uhrzeit

aktuelle 163
Differenz 168
Differenz in Stunden, Minuten,

Sekunden 169
formatieren 125
in GUI-Komponenten 174
TimeZone 165
Zeitzonen 165

erzeugen 165
Umrechnung 164
verfügbare 166

Umgebungsvariablen
abfragen 179

des Betriebssystems 183
java.version 180
os.name 180
os.version 180
Properties 179
zugesicherte 182

Umlaute 189, 190, 212
UnknownHostException 527
URI, Inhalt abrufen 554, 555
URL 554
URLConnection 557

V
Validator 577
Vector3D 73
Vektoren 72
Vergleichen

Gleitkommazahlen 25
Objekte 695, 699

Verzeichnisse
Eigenschaften abfragen 234
Inhalt auflisten 238
kopieren 241
löschen 239
neu anlegen 232
umbenennen 245
verschieben 245

Videodateien 471
Virtual Machine

Abbruch erkennen 206
Speicher reservieren 192

W
Währungsangaben

Eingabefeld 336
formatieren (gemäß Lokale) 605
reguläre Ausdrücke 499

Web-Adressen, reguläre Ausdrücke 499
Webserver 559
Whitespace (aus Strings entfernen) 110
Windows-Registry 201

Zugriff über JNI 202
Zugriff über Klasse Preferences 201

Wochentage-Listenfeld 129
Wortstatistik 118

X
Xalan-J 584
XML

>> Stichwortverzeichnis 823

Te
xt

ge
st

al
tu

ng
Ab

sä
tz

e

CDATA 567
CSV-Daten konvertieren 266
Document Object Model 571
DTD 575
Entities 565
eXtensible Markup Language for

Transformations 584
formatiert als Datei speichern 582
formatiert ausgeben 580
Kommentare 565
mit Programm erzeugen 578
mit XSLT transformieren 584
Namensräume 566
parsen

mit DOM 571
mit SAX 567

Ressourcendateien 611
Simple API for XML 567
Sonderzeichen 565
TrAX 586
Validierung 575
XML Schema 575

XPath 584
XSLT 584

Z
Zahlen

2er-Komplement 19
aus Strings extrahieren 49
Ausrichtung 37
beliebige Genauigkeit 91
Division 19
Exponentialschreibweise 34
formatieren (gemäß Lokale) 604
gerade Zahlen erkennen 19
in Strings umwandeln 30
komplexe Zahlen 62
Least Significant Bit 19
Most Significant Bit 19
Multiplikation 19

parsen (gemäß Lokale) 604
Primzahlen 20, 22
reguläre Ausdrücke 490
runden 24
Sieb des Eratosthenes 21
vergleichen 25

Zahlensysteme, Umrechnung 46
Zeichen, in Strings suchen 95
Zeichenkodierung 245
Zeit siehe Uhrzeit
Zeitgeber 197
Zeitgeber siehe Timer
Zeitmessungen 172
Zeitzonen 165

erzeugen 165
Umrechnung 164
verfügbare 166

Zentrieren
Fenster 292
Komponenten 312

durch dynamische Berechnung
314

durch statische Berechnung 313
mit Layout-Managern 312

Textausgaben 426
Zinseszins-Berechnung 60
ZIP-Archive 269

erzeugen 272
ZipEntry 272
ZipFile 269
ZipOutputStream 272
Zufallszahlen 51

aus bestimmtem Wertebereich 53
doppelte Vorkommen eliminieren 54
gaußverteilte Zufallszahlen 52
gleichverteilte Zufallszahlen 51
zum Testen von Anwendungen 52

Zwischenablage 398
Aktionen 400
Befehlsaktivierung 400

Lizenzvereinbarungen

Sun Microsystems, Inc. Binary Code License Agreement for the JAVA SE DEVELOPMENT KIT
(JDK), VERSION 6

SUN MICROSYSTEMS, INC. (“SUN”) IS WILLING TO LICENSE THE SOFTWARE IDENTIFIED
BELOW TO YOU ONLY UPON THE CONDITION THAT YOU ACCEPT ALL OF THE TERMS CON-
TAINED IN THIS BINARY CODE LICENSE AGREEMENT AND SUPPLEMENTAL LICENSE
TERMS (COLLECTIVELY “AGREEMENT”). PLEASE READ THE AGREEMENT CAREFULLY. BY
DOWNLOADING OR INSTALLING THIS SOFTWARE, YOU ACCEPT THE TERMS OF THE
AGREEMENT. INDICATE ACCEPTANCE BY SELECTING THE “ACCEPT” BUTTON AT THE BOT-
TOM OF THE AGREEMENT. IF YOU ARE NOT WILLING TO BE BOUND BY ALL THE TERMS,
SELECT THE “DECLINE” BUTTON AT THE BOTTOM OF THE AGREEMENT AND THE DOWN-
LOAD OR INSTALL PROCESS WILL NOT CONTINUE.

1. DEFINITIONS. “Software” means the identified above in binary form, any other machine
readable materials (including, but not limited to, libraries, source files, header files, and data
files), any updates or error corrections provided by Sun, and any user manuals, programming
guides and other documentation provided to you by Sun under this Agreement. "Programs”
mean Java applets and applications intended to run on the Java Platform, Standard Edition
(Java SE) on Java-enabled general purpose desktop computers and servers.

2. LICENSE TO USE. Subject to the terms and conditions of this Agreement, including, but not
limited to the Java Technology Restrictions of the Supplemental License Terms, Sun grants
you a non-exclusive, non-transferable, limited license without license fees to reproduce and
use internally Software complete and unmodified for the sole purpose of running Programs.
Additional licenses for developers and/or publishers are granted in the Supplemental License
Terms.

3. RESTRICTIONS. Software is confidential and copyrighted. Title to Software and all associa-
ted intellectual property rights is retained by Sun and/or its licensors. Unless enforcement is
prohibited by applicable law, you may not modify, decompile, or reverse engineer Software.
You acknowledge that Licensed Software is not designed or intended for use in the design,
construction, operation or maintenance of any nuclear facility. Sun Microsystems, Inc. dis-
claims any express or implied warranty of fitness for such uses. No right, title or interest in or
to any trademark, service mark, logo or trade name of Sun or its licensors is granted under
this Agreement. Additional restrictions for developers and/or publishers licenses are set forth
in the Supplemental License Terms.

4. LIMITED WARRANTY. Sun warrants to you that for a period of ninety (90) days from the
date of purchase, as evidenced by a copy of the receipt, the media on which Software is fur-
nished (if any) will be free of defects in materials and workmanship under normal use. Except
for the foregoing, Software is provided “AS IS". Your exclusive remedy and Sun's entire liabi-
lity under this limited warranty will be at Sun's option to replace Software media or refund
the fee paid for Software. Any implied warranties on the Software are limited to 90 days.
Some states do not allow limitations on duration of an implied warranty, so the above may
not apply to you. This limited warranty gives you specific legal rights. You may have others,
which vary from state to state.

5. DISCLAIMER OF WARRANTY. UNLESS SPECIFIED IN THIS AGREEMENT, ALL EXPRESS OR
IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED

>> Lizenzvereinbarungen826

WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT THESE DISCLAIMERS
ARE HELD TO BE LEGALLY INVALID.

6. LIMITATION OF LIABILITY. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT
WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR
FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOW-
EVER CAUSED REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR RELATED
TO THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES. In no event will Sun's liability to you, whether in
contract, tort (including negligence), or otherwise, exceed the amount paid by you for Soft-
ware under this Agreement. The foregoing limitations will apply even if the above stated war-
ranty fails of its essential purpose. Some states do not allow the exclusion of incidental or
consequential damages, so some of the terms above may not be applicable to you.

7. TERMINATION. This Agreement is effective until terminated. You may terminate this
Agreement at any time by destroying all copies of Software. This Agreement will terminate
immediately without notice from Sun if you fail to comply with any provision of this Agree-
ment. Either party may terminate this Agreement immediately should any Software become,
or in either party's opinion be likely to become, the subject of a claim of infringement of any
intellectual property right. Upon Termination, you must destroy all copies of Software.

8. EXPORT REGULATIONS. All Software and technical data delivered under this Agreement
are subject to US export control laws and may be subject to export or import regulations in
other countries. You agree to comply strictly with all such laws and regulations and acknow-
ledge that you have the responsibility to obtain such licenses to export, re-export, or import
as may be required after delivery to you.

9. TRADEMARKS AND LOGOS. You acknowledge and agree as between you and Sun that Sun
owns the SUN, SOLARIS, JAVA, JINI, FORTE, and iPLANET trademarks and all SUN, SOLARIS,
JAVA, JINI, FORTE, and iPLANET-related trademarks, service marks, logos and other brand
designations (“Sun Marks”), and you agree to comply with the Sun Trademark and Logo Usage
Requirements currently located at http://www.sun.com/policies/trademarks. Any use you
make of the Sun Marks inures to Sun's benefit.

10. U.S. GOVERNMENT RESTRICTED RIGHTS. If Software is being acquired by or on behalf of
the U.S. Government or by a U.S. Government prime contractor or subcontractor (at any tier),
then the Government's rights in Software and accompanying documentation will be only as
set forth in this Agreement; this is in accordance with 48 CFR 227.7201 through 227.7202-4
(for Department of Defense (DOD) acquisitions) and with 48 CFR 2.101 and 12.212 (for non-
DOD acquisitions).

11. GOVERNING LAW. Any action related to this Agreement will be governed by California
law and controlling U.S. federal law. No choice of law rules of any jurisdiction will apply.

12. SEVERABILITY. If any provision of this Agreement is held to be unenforceable, this Agree-
ment will remain in effect with the provision omitted, unless omission would frustrate the
intent of the parties, in which case this Agreement will immediately terminate.

13. INTEGRATION. This Agreement is the entire agreement between you and Sun relating to
its subject matter. It supersedes all prior or contemporaneous oral or written communications,
proposals, representations and warranties and prevails over any conflicting or additional
terms of any quote, order, acknowledgment, or other communication between the parties rela-

>> Lizenzvereinbarungen 827

ting to its subject matter during the term of this Agreement. No modification of this Agree-
ment will be binding, unless in writing and signed by an authorized representative of each
party.

SUPPLEMENTAL LICENSE TERMS

These Supplemental License Terms add to or modify the terms of the Binary Code License
Agreement. Capitalized terms not defined in these Supplemental Terms shall have the same
meanings ascribed to them in the Binary Code License Agreement . These Supplemental Terms
shall supersede any inconsistent or conflicting terms in the Binary Code License Agreement,
or in any license contained within the Software.

A. Software Internal Use and Development License Grant. Subject to the terms and conditions
of this Agreement and restrictions and exceptions set forth in the Software “README” file
incorporated herein by reference, including, but not limited to the Java Technology Restric-
tions of these Supplemental Terms, Sun grants you a non-exclusive, non-transferable, limited
license without fees to reproduce internally and use internally the Software complete and
unmodified for the purpose of designing, developing, and testing your Programs.

B. License to Distribute Software. Subject to the terms and conditions of this Agreement and
restrictions and exceptions set forth in the Software README file, including, but not limited
to the Java Technology Restrictions of these Supplemental Terms, Sun grants you a non-
exclusive, non-transferable, limited license without fees to reproduce and distribute the Soft-
ware, provided that (i) you distribute the Software complete and unmodified and only bundled
as part of, and for the sole purpose of running, your Programs, (ii) the Programs add signifi-
cant and primary functionality to the Software, (iii) you do not distribute additional software
intended to replace any component(s) of the Software, (iv) you do not remove or alter any
proprietary legends or notices contained in the Software, (v) you only distribute the Software
subject to a license agreement that protects Sun's interests consistent with the terms contained
in this Agreement, and (vi) you agree to defend and indemnify Sun and its licensors from and
against any damages, costs, liabilities, settlement amounts and/or expenses (including attor-
neys' fees) incurred in connection with any claim, lawsuit or action by any third party that
arises or results from the use or distribution of any and all Programs and/or Software.

C. License to Distribute Redistributables. Subject to the terms and conditions of this Agree-
ment and restrictions and exceptions set forth in the Software README file, including but not
limited to the Java Technology Restrictions of these Supplemental Terms, Sun grants you a
non-exclusive, non-transferable, limited license without fees to reproduce and distribute those
files specifically identified as redistributable in the Software “README” file (“Redistributab-
les”) provided that: (i) you distribute the Redistributables complete and unmodified, and only
bundled as part of Programs, (ii) the Programs add significant and primary functionality to
the Redistributables, (iii) you do not distribute additional software intended to supersede any
component(s) of the Redistributables (unless otherwise specified in the applicable README
file), (iv) you do not remove or alter any proprietary legends or notices contained in or on the
Redistributables, (v) you only distribute the Redistributables pursuant to a license agreement
that protects Sun's interests consistent with the terms contained in the Agreement, (vi) you
agree to defend and indemnify Sun and its licensors from and against any damages, costs, lia-
bilities, settlement amounts and/or expenses (including attorneys' fees) incurred in connection
with any claim, lawsuit or action by any third party that arises or results from the use or dis-
tribution of any and all Programs and/or Software.

>> Lizenzvereinbarungen828

D. Java Technology Restrictions. You may not create, modify, or change the behavior of, or
authorize your licensees to create, modify, or change the behavior of, classes, interfaces, or
subpackages that are in any way identified as “java", “javax", “sun” or similar convention as
specified by Sun in any naming convention designation.

E. Distribution by Publishers. This section pertains to your distribution of the Software with
your printed book or magazine (as those terms are commonly used in the industry) relating to
Java technology (“Publication”). Subject to and conditioned upon your compliance with the
restrictions and obligations contained in the Agreement, in addition to the license granted in
Paragraph 1 above, Sun hereby grants to you a non-exclusive, nontransferable limited right to
reproduce complete and unmodified copies of the Software on electronic media (the “Media”)
for the sole purpose of inclusion and distribution with your Publication(s), subject to the follo-
wing terms: (i) You may not distribute the Software on a stand-alone basis; it must be distri-
buted with your Publication(s); (ii) You are responsible for downloading the Software from the
applicable Sun web site; (iii) You must refer to the Software as JavaTM SE Development Kit 6;
(iv) The Software must be reproduced in its entirety and without any modification whatsoever
(including, without limitation, the Binary Code License and Supplemental License Terms
accompanying the Software and proprietary rights notices contained in the Software); (v) The
Media label shall include the following information: Copyright 2006, Sun Microsystems, Inc.
All rights reserved. Use is subject to license terms. Sun, Sun Microsystems, the Sun logo, Sola-
ris, Java, the Java Coffee Cup logo, J2SE, and all trademarks and logos based on Java are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.
This information must be placed on the Media label in such a manner as to only apply to the
Sun Software; (vi) You must clearly identify the Software as Sun's product on the Media hol-
der or Media label, and you may not state or imply that Sun is responsible for any third-party
software contained on the Media; (vii) You may not include any third party software on the
Media which is intended to be a replacement or substitute for the Software; (viii) You shall
indemnify Sun for all damages arising from your failure to comply with the requirements of
this Agreement. In addition, you shall defend, at your expense, any and all claims brought
against Sun by third parties, and shall pay all damages awarded by a court of competent juris-
diction, or such settlement amount negotiated by you, arising out of or in connection with
your use, reproduction or distribution of the Software and/or the Publication. Your obligation
to provide indemnification under this section shall arise provided that Sun: (a) provides you
prompt notice of the claim; (b) gives you sole control of the defense and settlement of the
claim; (c) provides you, at your expense, with all available information, assistance and autho-
rity to defend; and (d) has not compromised or settled such claim without your prior written
consent; and (ix) You shall provide Sun with a written notice for each Publication; such notice
shall include the following information: (1) title of Publication, (2) author(s), (3) date of Publi-
cation, and (4) ISBN or ISSN numbers. Such notice shall be sent to Sun Microsystems, Inc.,
4150 Network Circle, M/S USCA12-110, Santa Clara, California 95054, U.S.A , Attention: Con-
tracts Administration.

F. Source Code. Software may contain source code that, unless expressly licensed for other
purposes, is provided solely for reference purposes pursuant to the terms of this Agreement.
Source code may not be redistributed unless expressly provided for in this Agreement.

G. Third Party Code. Additional copyright notices and license terms applicable to portions of
the Software are set forth in the THIRDPARTYLICENSEREADME.txt file. In addition to any
terms and conditions of any third party opensource/freeware license identified in the THIRD-
PARTYLICENSEREADME.txt file, the disclaimer of warranty and limitation of liability provi-

>> Lizenzvereinbarungen 829

sions in paragraphs 5 and 6 of the Binary Code License Agreement shall apply to all Software
in this distribution.

H. Termination for Infringement. Either party may terminate this Agreement immediately
should any Software become, or in either party's opinion be likely to become, the subject of a
claim of infringement of any intellectual property right.

I. Installation and Auto-Update. The Software's installation and auto-update processes trans-
mit a limited amount of data to Sun (or its service provider) about those specific processes to
help Sun understand and optimize them. Sun does not associate the data with personally
identifiable information. You can find more information about the data Sun collects at http://
java.com/data/.

For inquiries please contact: Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, Cali-
fornia 95054, U.S.A.

ISBN 978-3-8273-2451-4
99.95 EUR [D]

Das JavaScript Codebook liefert Ihnen zahlreiche, sofort einsetzbare Programmbeispiele zu fast allen
Gebieten der JavaScript-Programmierung.
Von den Grundlagen über den Umgang mit Formularen, der Ausnahmebehandlung, Animation und DHTML
bis hin zu AJAX. Die Einordnung in Kategorien erleichtert das Auffinden des gewünschten Rezepts. Die
Beispiele selbst sind so gestaltet, dass eine Anpassung an eigene Gegebenheiten schnell und unkompliziert
möglich ist.

Ralph Steyer

www.addison-wesley.de

	Inhaltsverzeichnis
	Über dieses Buch
	Auswahl der Rezepte
	Fragen an die Autoren
	Kompilieren der Buchbeispiele

	Zahlen und Mathematik
	1 Gerade Zahlen erkennen
	2 Effizientes Multiplizieren (Dividieren) mit Potenzen von 2
	3 Primzahlen erzeugen
	4 Primzahlen erkennen
	5 Gleitkommazahlen auf n Stellen runden
	6 Gleitkommazahlen mit definierter Genauigkeit vergleichen
	7 Strings in Zahlen umwandeln
	8 Zahlen in Strings umwandeln
	Zahlen in Strings umwandeln mit toString()
	Zahlen in Strings umwandeln mit NumberFormat und DecimalFormat
	Formatierungsobjekte anpassen
	Eigene, vordefinierte Formate

	9 Ausgabe: Dezimalzahlen in Exponentialschreibweise
	DecimalFormat-Patterns für die Exponentialdarstellung
	Vordefinierte Patterns
	Eigene Formatierungsmethode

	10 Ausgabe: Zahlenkolonnen am Dezimalzeichen ausrichten
	Ausgaben bei proportionaler Schrift
	Ausgaben bei nichtproportionaler Schrift

	11 Ausgabe in Ein- oder Mehrzahl (Kongruenz)
	Parameter in Ausgabestrings

	12 Umrechnung zwischen Zahlensystemen
	13 Zahlen aus Strings extrahieren
	14 Zufallszahlen erzeugen
	Gaußverteilte Zufallszahlen
	Zufallszahlen zum Testen von Anwendungen

	15 Ganzzahlige Zufallszahlen aus einem bestimmten Bereich
	16 Mehrere, nicht gleiche Zufallszahlen erzeugen (Lottozahlen)
	17 Trigonometrische Funktionen
	18 Temperaturwerte umrechnen (Celsius <-> Fahrenheit)
	19 Fakultät berechnen
	20 Mittelwert berechnen
	21 Zinseszins berechnen
	22 Komplexe Zahlen
	Rechnen mit komplexen Zahlen
	Die Klasse Complex

	23 Vektoren
	Rechnen mit Vektoren
	Die Klasse Vector3D

	24 Matrizen
	Rechnen mit Matrizen
	Die Klasse Matrix

	25 Gleichungssysteme lösen
	26 Große Zahlen beliebiger Genauigkeit

	Strings
	27 In Strings suchen
	Suchen nach einzelnen Zeichen
	Suchen nach Teilstrings
	Suchen nach Mustern

	28 In Strings einfügen und ersetzen
	29 Strings zerlegen
	30 Strings zusammenfügen
	31 Strings nach den ersten n Zeichen vergleichen
	32 Zeichen (Strings) vervielfachen
	33 Strings an Enden auffüllen (Padding)
	34 Whitespace am String-Anfang oder -Ende entfernen
	35 Arrays in Strings umwandeln
	toString()
	Arrays.toString()
	MoreString.toString()

	36 Strings in Arrays umwandeln
	37 Zufällige Strings erzeugen
	38 Wortstatistik erstellen

	Datum und Uhrzeit
	39 Aktuelles Datum abfragen
	40 Bestimmtes Datum erzeugen
	41 Datums-/Zeitangaben formatieren
	Formatierung mit toString()
	Formatierung mit DateFormat-Stilen
	Formatierung mit SimpleDateFormat-Mustern

	42 Wochentage oder Monatsnamen auflisten
	String-Arrays der Monats- oder Wochentagsnamen anlegen
	Listenfelder mit Monats- oder Wochentagsnamen

	43 Datumseingaben einlesen und auf Gültigkeit prüfen
	44 Datumswerte vergleichen
	Vergleiche unter Ausschluss der Uhrzeit

	45 Differenz zwischen zwei Datumswerten berechnen
	Uhrzeit ausschalten

	46 Differenz zwischen zwei Datumswerten in Jahren, Tagen und Stunden berechnen
	47 Differenz zwischen zwei Datumswerten in Tagen berechnen
	48 Tage zu einem Datum addieren/subtrahieren
	49 Datum in julianischem Kalender
	50 Umrechnen zwischen julianischem und gregorianischem Kalender
	51 Ostersonntag berechnen
	Ostern in der orthodoxen Kirche

	52 Deutsche Feiertage berechnen
	Die Klasse CalendarDay
	Die Klasse Holidays

	53 Ermitteln, welchen Wochentag ein Datum repräsentiert
	54 Ermitteln, ob ein Tag ein Feiertag ist
	55 Ermitteln, ob ein Jahr ein Schaltjahr ist
	56 Alter aus Geburtsdatum berechnen
	57 Aktuelle Zeit abfragen
	58 Zeit in bestimmte Zeitzone umrechnen
	Formatierer auf Zeitzone umstellen
	Calendar auf Zeitzone umstellen

	59 Zeitzone erzeugen
	Verfügbare Zeitzonen abfragen
	Eigene Zeitzonen erzeugen

	60 Differenz zwischen zwei Uhrzeiten berechnen
	Differenz ohne Berücksichtung des Tages

	61 Differenz zwischen zwei Uhrzeiten in Stunden, Minuten, Sekunden berechnen
	62 Präzise Zeitmessungen (Laufzeitmessungen)
	Laufzeitmessungen
	Nanosekunden in Stunden, Minuten, Sekunden, Millisekunden und Nanosekunden umrechnen

	63 Uhrzeit einblenden

	System
	64 Umgebungsvariablen abfragen
	65 Betriebssystem und Java-Version bestimmen
	66 Informationen zum aktuellen Benutzer ermitteln
	67 Zugesicherte Umgebungsvariablen
	68 System-Umgebungsinformationen abrufen
	69 INI-Dateien lesen
	Erzeugen mit Standardwerten bzw. ohne Standardwerte
	Zuweisen und Abrufen von Werten
	Gespeicherte Properties laden
	Gespeicherte Properties im XML-Format laden

	70 INI-Dateien schreiben
	71 INI-Dateien im XML-Format schreiben
	72 Externe Programme ausführen
	73 Verfügbaren Speicher abfragen
	74 Speicher für JVM reservieren
	75 DLLs laden
	76 Programm für eine bestimmte Zeit anhalten
	77 Timer verwenden
	78 TimerTasks gesichert regelmäßig ausführen
	79 Nicht blockierender Timer
	80 Timer beenden
	81 Auf die Windows-Registry zugreifen
	Das Paket java.util.prefs
	Aufruf der Windows Registry API

	82 Abbruch der Virtual Machine erkennen
	83 Betriebssystem-Signale abfangen

	Ein- und Ausgabe (IO)
	84 Auf die Konsole (Standardausgabe) schreiben
	Formatierte Ausgabe

	85 Umlaute auf die Konsole (Standardausgabe) schreiben
	Umlaute über Console ausgeben
	Umlaute über PrintStream ausgeben

	86 Von der Konsole (Standardeingabe) lesen
	Einlesen mit Console
	Einlesen mit Scanner

	87 Passwörter über die Konsole (Standardeingabe) lesen
	88 Standardein- und -ausgabe umleiten
	89 Konsolenanwendungen vorzeitig abbrechen
	90 Fortschrittsanzeige für Konsolenanwendungen
	Fortschrittsanzeigen mit Schleifen
	Fortschrittsanzeigen mit Timern

	91 Konsolenmenüs
	Grundstruktur
	Groß- und Kleinschreibung unterstützen

	92 Automatisch generierte Konsolenmenüs
	93 Konsolenausgaben in Datei umleiten
	94 Kommandozeilenargumente auswerten
	95 Leere Verzeichnisse und Dateien anlegen
	Neues, leeres Verzeichnis anlegen
	Neue, leere Datei anlegen

	96 Datei- und Verzeichniseigenschaften abfragen
	97 Temporäre Dateien anlegen
	98 Verzeichnisinhalt auflisten
	99 Dateien und Verzeichnisse löschen
	100 Dateien und Verzeichnisse kopieren
	101 Dateien und Verzeichnisse verschieben/umbenennen
	102 Textdateien lesen und schreiben
	103 Textdatei in String einlesen
	104 Binärdateien lesen und schreiben
	105 Random Access (wahlfreier Zugriff)
	106 Dateien sperren
	107 CSV-Dateien einlesen
	CSV-Dateien lesen - 1. Ansatz
	CSV-Dateien lesen - 2. Ansatz

	108 CSV-Dateien in XML umwandeln
	109 ZIP-Archive lesen
	110 ZIP-Archive erzeugen
	111 Excel-Dateien schreiben und lesen
	112 PDF-Dateien erzeugen
	PDF mit gnujpdf erzeugen
	PDF mit iText erzeugen

	GUI
	113 GUI-Grundgerüst
	AWT und Swing
	GUI-Grundgerüste
	Gemeinsame Klasse für Anwendung und Hauptfenster
	Getrennte Klassen für Anwendung und Hauptfenster
	Eclipse-konformes Grundgerüst

	114 Fenster (und Dialoge) zentrieren
	Dialoge zentrieren

	115 Fenstergröße festlegen (und gegebenenfalls fixieren)
	Fenster fester Größe

	116 Minimale Fenstergröße sicherstellen
	117 Bilder als Fensterhintergrund
	118 Komponenten zur Laufzeit instanzieren
	Komponenten dynamisch zur Laufzeit instanzieren

	119 Komponenten und Ereignisbehandlung
	Mechanismus der Ereignisbehandlung in Java
	Ereignisbehandlung durch Container
	Ereignisbehandlung mit inneren Klassen
	Ereignisbehandlung mit anonymen Klassen
	Individuelle Ereignisbehandlungsmethoden
	Gemeinsam genutzte Ereignisbehandlungsmethoden

	120 Aus Ereignismethoden auf Fenster und Komponenten zugreifen
	121 Komponenten in Fenster (Panel) zentrieren
	Zentrieren mit Layout-Managern
	Zentrieren durch statische Berechnung
	Zentrieren durch dynamische Berechnung

	122 Komponenten mit Rahmen versehen
	Welche Rahmen gibt es?

	123 Komponenten mit eigenem Cursor
	124 Komponenten mit Kontextmenü verbinden
	125 Komponenten den Fokus geben
	JLabel-Komponenten den Fokus zuweisen
	Festlegen, welche Komponente bei Start des Programms oder Aktivierung des Fensters den Fokus erhält

	126 Die Fokusreihenfolge festlegen
	Eigene Focus Traversal Policies
	Einen Container als Focus Traversal Policy Provider einrichten
	Einen Container als Focus Cycle Root einrichten

	127 Fokustasten ändern
	128 Eingabefelder mit Return verlassen
	129 Dialoge mit Return (oder Esc) verlassen
	130 Transparente Schalter und nichttransparente Labels
	Transparenz in eigenen Komponenten

	131 Eingabefeld für Währungsangaben (inklusive InputVerifier)
	Die Klasse JMoneyTextField
	Eingabenüberprüfung mittels InputVerifier
	Verwendung des Eingabefelds

	132 Eingabefeld für Datumsangaben (inklusive InputVerifier)
	Die Klasse JDateTextField
	Eingabenüberprüfung
	Verwendung des Eingabefelds

	133 Drag-and-Drop für Labels
	Drag-and-Drop für Labels

	134 Datei-Drop für JTextArea-Komponenten (eigener TransferHandler)
	Eigener TransferHandler für JTextArea

	135 Anwendungssymbol einrichten
	136 Symbole für Symbolleisten
	137 Menüleiste (Symbolleiste) aus Ressourcendatei aufbauen
	Die Ressourcendatei
	Die Klasse MenuFactory
	Verwendung in einem Programm
	Symbolleisten

	138 Befehle aus Menü und Symbolleiste zur Laufzeit aktivieren und deaktivieren
	139 Menü- und Symbolleiste mit Aktionen synchronisieren
	Die Ressourcendatei
	Die Klasse MenuFactory
	Verwendung in einem Programm

	140 Statusleiste einrichten
	Die Klasse StatusBar

	141 Hinweistexte in Statusleiste
	142 Dateien mit Datei-Dialog (inklusive Filter) öffnen
	Startverzeichnis des Öffnen-Dialogs einstellen
	Filter
	fileOpen-Methode

	143 Dateien mit Speichern-Dialog speichern
	Speichern - Speichern unter
	Vorsicht Öffnen-Befehl!
	Speichern-Befehl nur aktivieren, wenn es etwas zu speichern gibt

	144 Unterstützung für die Zwischenablage
	Ausschneiden- und Kopieren-Befehl nach Bedarf aktivieren

	145 Text drucken
	Drucken mit der print()-Methode von JTextComponent
	Drucken mit eigener Printable-Implementierung

	146 Editor-Grundgerüst
	147 Look&Feel ändern
	Look&Feel über swing.properties festlegen
	Look&Feel über UIManager festlegen

	148 Systemtray unterstützen
	149 Splash-Screen anzeigen
	150 Registerreiter mit Schließen-Schaltern (JTabbedPane)

	Grafik und Multimedia
	151 Mitte der Zeichenfläche ermitteln
	152 Zentrierter Text
	153 In den Rahmen einer Komponente zeichnen
	154 Zeichnen mit unterschiedlichen Strichstärken und -stilen
	BasicStroke
	Strichstärke
	Darstellung der Punkte
	Gestrichelte Linien

	155 Zeichnen mit Füllmuster und Farbverläufen
	Füllungen
	Füllmuster (TexturePaint)
	Gradientenfüllung (GradientPaint)

	156 Zeichnen mit Transformationen
	Das Java2D-Koordinatensystem
	Translation
	Rotation
	Scherung
	Skalierung

	157 Verfügbare Schriftarten ermitteln
	158 Dialog zur Schriftartenauswahl
	159 Text mit Schattenwurf zeichnen
	160 Freihandzeichnungen
	161 Bilder laden und anzeigen
	Bilder laden
	Bilder anzeigen
	Bilder mit Datei-Dialog öffnen und anzeigen
	Diashows

	162 Bilder pixelweise bearbeiten (und speichern)
	Einzelne Pixel einfärben
	Bilder speichern

	163 Bilder drehen
	164 Bilder spiegeln
	165 Bilder in Graustufen darstellen
	166 Audiodateien abspielen
	Audiodateien mit AudioClip abspielen
	Streaming-Audio

	167 Videodateien abspielen
	168 Torten-, Balken- und X-Y-Diagramme erstellen

	Reguläre Ausdrücke und Pattern Matching
	169 Syntax regulärer Ausdrücke
	170 Überprüfen auf Existenz
	171 Alle Treffer zurückgeben
	172 Mit regulären Ausdrücken in Strings ersetzen
	173 Anhand von regulären Ausdrücken zerlegen
	174 Auf Zahlen prüfen
	175 E-Mail-Adressen auf Gültigkeit prüfen
	176 HTML-Tags entfernen
	177 RegEx für verschiedene Daten
	Auf PLZ prüfen
	Auf Telefonnummer prüfen
	Auf Web- und FTP-Adresse prüfen
	Auf Währungsangaben prüfen
	Kreditkartennummer überprüfen
	SQL-Injection verhindern
	Wortverdoppelungen verhindern

	Datenbanken
	178 Datenbankverbindung herstellen
	179 Connection-Pooling
	180 SQL-Befehle SELECT, INSERT, UPDATE und DELETE durchführen
	Anzahl Treffer für eine SELECT-Query ermitteln

	181 Änderungen im ResultSet vornehmen
	Wert in Datenfeld ändern
	Zeilen (Datensätze) einfügen
	Zeilen (Datensätze) löschen

	182 PreparedStatements ausführen
	183 Stored Procedures ausführen
	184 BLOB- und CLOB-Daten
	BLOB-/CLOB-Daten in Datenbank schreiben
	BLOB-/CLOB-Daten lesen

	185 Mit Transaktionen arbeiten
	Savepoints

	186 Batch-Ausführung
	187 Metadaten ermitteln
	Datenbank-Metadaten
	ResultSet-Metadaten

	188 Datenbankzugriffe vom Applet

	Netzwerke und E-Mail
	189 IP-Adressen ermitteln
	190 Erreichbarkeit überprüfen
	191 Status aller offenen Verbindungen abfragen
	192 E-Mail senden mit JavaMail
	193 E-Mail mit Authentifizierung versenden
	194 HTML-E-Mail versenden
	DataSource
	Versand der E-Mail

	195 E-Mail als multipart/alternative versenden
	196 E-Mail mit Datei-Anhang versenden
	197 E-Mails abrufen
	198 Multipart-E-Mails abrufen und verarbeiten
	199 URI - Textinhalt abrufen
	200 URI - binären Inhalt abrufen
	201 Senden von Daten an eine Ressource
	202 Mini-Webserver

	XML
	203 Sonderzeichen in XML verwenden
	204 Kommentare
	205 Namensräume
	206 CDATA-Bereiche
	207 XML parsen mit SAX
	208 XML parsen mit DOM
	209 XML-Dokumente validieren
	210 XML-Strukturen mit Programm erzeugen
	211 XML-Dokument formatiert ausgeben
	212 XML-Dokument formatiert als Datei speichern
	213 XML mit XSLT transformieren

	Internationalisierung
	214 Lokale einstellen
	Locale-Objekte erzeugen

	215 Standardlokale ändern
	Standardlokale abfragen
	Standardlokale einstellen

	216 Verfügbare Lokalen ermitteln
	217 Lokale des Betriebssystems ändern
	218 Strings vergleichen
	219 Strings sortieren
	Arrays von Strings sortieren
	Collections von Strings sortieren
	Sortierte Collections mit Strings als Elementen

	220 Datumsangaben parsen und formatieren
	Einlesen von Datums- und Zeitangaben

	221 Zahlen parsen und formatieren
	Einlesen von Zahlen

	222 Währungsangaben parsen und formatieren
	Einlesen von Währungsangaben

	223 Ressourcendateien anlegen und verwenden
	Format
	Ressourcen laden

	224 Ressourcendateien im XML-Format
	Format
	Ressourcen laden

	225 Ressourcendateien für verschiedene Lokale erzeugen
	226 Ressourcendatei für die Lokale des aktuellen Systems laden
	227 Ressourcendatei für eine bestimmte Lokale laden

	Threads
	228 Threads verwenden
	229 Threads ohne Exception beenden
	230 Eigenschaften des aktuellen Threads
	231 Ermitteln aller laufenden Threads
	232 Priorität von Threads
	233 Verwenden von Thread-Gruppen
	Binden von Threads an eine Thread-Gruppe
	Setzen der Priorität
	Setzen des Dämon-Typs

	234 Iterieren über Threads und Thread-Gruppen einer Thread-Gruppe
	235 Threads in Swing: SwingWorker
	236 Thread-Synchronisierung mit synchronized (Monitor)
	Verwendung von synchronized

	237 Thread-Synchronisierung mit wait() und notify()
	238 Thread-Synchronisierung mit Semaphoren
	239 Thread-Kommunikation via Pipes
	240 Thread-Pooling
	241 Thread-globale Daten als Singleton-Instanzen

	Applets
	242 Grundgerüst
	Das Applet-Grundgerüst
	Einbettung in Webseiten
	Applet testen

	243 Parameter von Webseite übernehmen
	244 Bilder laden und Diashow erstellen
	245 Sounds laden
	246 Mit JavaScript auf Applet-Methoden zugreifen
	247 Datenaustausch zwischen Applets einer Webseite
	248 Laufschrift (Ticker)

	Objekte, Collections, Design-Pattern
	249 Objekte in Strings umwandeln - toString() überschreiben
	Die Object-Version
	Eigene Versionen

	250 Objekte kopieren - clone() überschreiben
	Die Object-Version
	Eigene Versionen
	Klonen oder nicht klonen - keine Gewissens-, sondern eine Glaubensfrage

	251 Objekte und Hashing - hashCode() überschreiben
	Sinn und Zweck von hashCode()
	Die Object-Version
	Eigene Versionen
	Die Notversion
	Der Kompromiss
	Die sauberste Lösung

	252 Objekte vergleichen - equals() überschreiben
	Die Object-Version
	Eigene Versionen

	253 Objekte vergleichen - Comparable implementieren
	Comparable implementieren
	compareTo() überschreiben
	Arrays/Collections von Objekten sortieren

	254 Objekte serialisieren und deserialisieren
	255 Arrays in Collections umwandeln
	256 Collections in Arrays umwandeln
	257 Collections sortieren und durchsuchen
	Das Comparable-Interface
	Das Comparator-Interface
	Collections durchsuchen

	258 Collections synchronisieren
	259 Design-Pattern: Singleton
	Beispiel

	260 Design-Pattern: Adapter (Wrapper, Decorator)
	Beispiel Objekt-Adapter
	Beispiel Klassen-Adapter

	261 Design-Pattern: Factory-Methoden

	Sonstiges
	262 Arrays effizient kopieren
	263 Arrays vergrößern oder verkleinern
	264 Globale Daten in Java?
	Globale Daten als static-Felder
	Globale Daten als Felder einer Singleton-Klasse

	265 Testprogramme schreiben
	Aufbau von Testprogrammen
	Beispiel

	266 Debug-Stufen definieren
	Debug-Stufen und bedingte Debug-Ausgaben

	267 Code optimieren
	268 jar-Archive erzeugen
	Inhalt eines jar-Archivs kontrollieren
	Ausführbare Jar-Dateien
	Applets

	269 Programme mit Ant kompilieren
	Ant herunterladen und einrichten
	Ant-Grundprinzipien
	Mit Ant kompilieren
	Von Ant eine Build-Version erstellen lassen

	270 Ausführbare jar-Dateien mit Ant erstellen
	271 Reflection: Klasseninformationen abrufen
	272 Reflection: Klasseninformationen über .class-Datei abrufen
	273 Reflection: Klassen instanzieren
	Instanzierung mit Standardkonstruktor
	Konstruktor mit Parametern

	274 Reflection: Methode aufrufen
	275 Kreditkartenvalidierung
	276 Statistik

	Tabellen
	Java
	Java-Schlüsselwörter
	Java-Datentypen
	Java-Operatoren
	Stilkonventionen für Bezeichner

	Swing
	Fenster-Konstanten
	Ereignisbehandlung
	Rahmen
	Cursor
	Tastencodes aus KeyEvent
	Drag-and-Drop-Unterstützung
	Look&Feels
	Applets

	Reguläre Ausdrücke
	Einzelzeichen in regulären Ausdrücken
	Zeichengruppen in regulären Ausdrücken
	Vordefinierte Zeichenklassen
	POSIX-Zeichen-Klassen
	java.lang.Character-Eigenschaften
	Unicode-Blöcke und -Kategorien
	Begrenzer
	Quantifizierer
	Nichtgierige Quantifizierer
	Quantifizierer ohne Backtracking-Funktionalität
	Logische Operatoren
	Sonstige Metazeichen
	Spezielle Konstrukte
	Flags

	SQL
	SQL-Typen

	Lokale
	Unterstützte Lokale

	Die Java-SDK-Tools
	javac - der Compiler
	Typische Aufrufe

	java - der Interpreter
	Typische Aufrufe

	jar - Archive erstellen
	Aufrufe
	Optionen

	javadoc - Dokumentationen erstellen
	Aufruf
	Tags

	jdb - der Debugger
	Der Java-SDK-Debugger
	Vorbereitungen
	Debug-Sitzung starten
	Wichtige jdb-Kommandos:

	Weitere Tools

	Stichwortverzeichnis
	Lizenzvereinbarungen

