Programmieren
lernen mit Java

m Leicht verstéandlich
m Griffige Beispiele
m Ausfiithrbare Programme

-—

/@, _ Mit Online-Service
o/ & zum Buch

vieweg

Erwin Merker
Roman Merker

Programmieren lernen mit JAVA

Aus dem Bereich IT erfolgreich lernen

Lexikon fiir IT-Berufe

von Peter Fetzer und Bettina Schneider
Grundkurs IT-Berufe

von Andreas M. B6hm und Bettina Jungkunz
Java fiir IT-Berufe

von Wolf-Gert Matthdus
Priifungsvorbereitung fiir IT-Berufe
von Manfred Wiinsche

Grundlegende Algorithmen

von Volker Heun

Algorithmen fiir Ingenieure - realisiert mit
Visual Basic

von Harald Nahrstedt

Grundkurs Programmieren mit Delphi
von Wolf-Gert Matthdus

Grundkurs Visual Basic

von Sabine Kdmper

Visual Basic fiir technische
Anwendungen

von Jiirgen Radel

Grundkurs Smalltalk -
Objektorientierung von Anfang an
von Johannes Brauer

Grundkurs Software-Entwicklung mit C++
von Dietrich May

Grundkurs JAVA

von Dietmar Abts

Aufbaukurs JAVA

von Dietmar Abts

Grundkurs Java-Technologien

von Erwin Merker

Java ist eine Sprache

von Ulrich Grude

Middleware in Java

von Steffen Heinzl und Markus Mathes
Das Linux-Tutorial - lhr Weg

zum LPI-Zertifikat

von Helmut Pils

Rechnerarchitektur

von Paul Herrmann

Grundkurs Relationale Datenbanken
von René Steiner

Grundkurs Datenbankentwurf

von Helmut Jarosch
Datenbank-Engineering

von Alfred Moos

Grundlagen der Rechnerkommunikation
von Bernd Schirmann

Netze - Protokolle - Spezifikationen
von Alfred Olbrich

Grundkurs Verteilte Systeme

von Giinther Bengel

Grundkurs

Mobile Kommunikationssysteme
von Martin Sauter

Grundkurs Wirtschaftsinformatik
von Dietmar Abts und Wilhelm Miilder
Grundkurs Theoretische Informatik
von Gottfried Vossen und Kurt-Ulrich Witt
Anwendungsorientierte
Wirtschaftsinformatik

von Paul Alpar, Heinz Lothar Grob, Peter Weimann
und Robert Winter

Business Intelligence - Grundlagen
und praktische Anwendungen

von Hans-Georg Kemper, Walid Mehanna und
Carsten Unger

Grundkurs
Geschiftsprozess-Management

von Andreas Gadatsch
Prozessmodellierung mit ARIS ®

von Heinrich Seidlmeier

ITIL kompakt und versténdlich

von Alfred Olbrich

BWL kompakt und verstéandlich

von Notger Carl, Rudolf Fiedler, William Jérasz und
Manfred Kiesel

Masterkurs IT-Controlling

von Andreas Gadatsch und Elmar Mayer
Masterkurs Computergrafik

und Bildverarbeitung

von Alfred Nischwitz und Peter Haberacker
Grundkurs Mediengestaltung

von David Starmann

Grundkurs Web-Programmierung
von Glinter Pomaska
Web-Programmierung

von Oral Avcl, Ralph Trittmann und Werner Mellis
Grundkurs MySQOL und PHP

von Martin Pollakowski

Grundkurs SAP R/3°

von André Maassen und Markus Schoenen
SAP*-gestiitztes Rechnungswesen
von Andreas Gadatsch und Detlev Frick
Kostentrdgerrechnung mit SAP R/3°
von Franz Klenger und Ellen Falk-Kalms
Masterkurs Kostenstellenrechnung
mit SAP®

von Franz Klenger und Ellen Falk-Kalms
Controlling mit SAP®

von Gunther Fried|, Christian Hilz

und Burkhard Pedell

Logistikprozesse mit SAP R/3°

von Jochen Benz und Markus Hoflinger
IT-Projekte strukturiert realisieren
von Ralph Brugger

Programmieren lernen mit Java

von Erwin Merker und Roman Merker

www.vieweg.de

Erwin Merker
Roman Merker

Programmieren
lernen mit Java
Leicht verstandlich -
Griffige Beispiele -
Ausfiihrbare Programme

Mit 52 Abbildungen

Bibliografische Information Der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie;
detaillierte bibliografische Daten sind im Internet tber <http://dnb.ddb.de> abrufbar.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk
berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne
von Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten waren und daher von
jedermann benutzt werden dirfen.

Hochste inhaltliche und technische Qualitat unserer Produkte ist unser Ziel. Bei der Produktion und
Auslieferung unserer Biicher wollen wir die Umwelt schonen: Dieses Buch ist auf séurefreiem und
chlorfrei gebleichtem Papier gedruckt. Die EinschweiBfolie besteht aus Polydthylen und damit aus
organischen Grundstoffen, die weder bei der Herstellung noch bei der Verbrennung Schadstoffe
freisetzen.

1. Auflage Februar 2006

Alle Rechte vorbehalten
© Friedr.Vieweg & Sohn Verlag | GWV Fachverlage GmbH, Wiesbaden 2006

Lektorat: Dr. Reinald Klockenbusch / Andrea BroBler

Der Vieweg Verlag ist ein Unternehmen von Springer Science+Business Media.
www.vieweg.de

Das Werk einschlieBlich aller seiner Teile ist urheberrechtlich geschitzt. Jede
Verwertung auBerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne
Zustimmung des Verlags unzuldssig und strafbar. Das gilt insbesondere fir
Vervielfiltigungen, Ubersetzungen, Mikroverfilmungen und die Einspeicherung
und Verarbeitung in elektronischen Systemen.

Konzeption und Layout des Umschlags: Ulrike Weigel, www.CorporateDesignGroup.de
Umschlagbild: Nina Faber de.sign, Wiesbaden

Druck und buchbinderische Verarbeitung: Té€Sinska tiskarna, a.s.; Tschechische Republik
Gedruckt auf sdurefreiem und chlorfrei gebleichtem Papier.

Printed in the Czech Republic

ISBN 3-8348-0068-6

Vorwort

Dies ist ein Arbeitsbuch, kein Nachschlagewerk. Das Ziel dieses Buches ist es, Schii-
lern und Studenten eine grundlegende Einfiihrung in das Programmieren von Com-
putern zu geben. Als Programmiersprache haben wir Java gewihlt, weil Java eine
moderne, elegante und leicht zu lernende Sprache ist. Es werden keine Program-
mierkenntnisse vorausgesetzt, auch nicht in einer anderen Sprache.

Der Leser benotigt die kostenlose Entwicklungsumgebung der Firma Sun und einen
beliebigen Texteditor, um alle Beispiele in diesem Buch selbst ausfiithren zu koénnen.
Hinweise zum Bezug und zur Installation dieser Produkte geben wir im ersten Kapi-
tel des Buches.

Alle Datenverarbeitung mit Computern basiert darauf, dass sich diese Daten im Ar-
beitsspeicher befinden. Also beginnt das Buch damit, die Datenreprisentation im
Arbeitsspeicher zu erldutern. Danach werden die Basiskonzepte der Java-Sprache
beschrieben. Wir werden die Datentypen, Kontrollstrukturen, Algorithmen und Aus-
dricke besprechen, so wie sie auch in den meisten anderen Programmiersprachen
heute zu finden sind.

Java ist eine objektorientierte Sprache. Deshalb ist ein Schwerpunkt des Buches, das
Denken in Klassen und Instanzen zu trainieren. In den Kapiteln 10 bis 16 haben wir
beschrieben, wie mitgelieferte Klassen benutzt werden, wie eigene Klassen und Me-
thoden erstellt werden und wie mit den Objekten gearbeitet wird. Und immer wie-
der gibt es Hinweise darauf, worauf zu achten ist, dass "gute" Programme entstehen,
die verstindlich sind und die Wartung erleichtern.

Das Buch enthilt keine ausfiihrliche Beschreibung aller einzelnen Klassen der Stan-
dard-Bibliothek. Die findet der Leser in der API-Dokumentation von Sun. Wichtiger
war uns, dass die Denkweisen und allgemeingiltigen Konzepte einer objektorien-
tierten Programmiersprache erlernt werden.

Hiufig stellt sich ein Verstindnis erst dann ein, wenn Fehler gemacht und korrigiert
wurden. Deswegen empfehlen wir dringend, die Beispiele dieses Buches selbst zu
editieren und zu testen. Im zweiten Schritt sollten die vorgestellten Programme mo-
difiziert und erneut getestet werden. Hinweise dazu geben wir an vielen Stellen in
diesem Buch.

Steinfurt, Januar 2006 Roman Merker, Erwin Merker

www.merkeredv.de

Hinweise fiir den Lehrenden

Dies ist ein Java-Lehrbuch ohne die Beschreibung von Applets. Um einfache Java-
Applets zu schreiben (oder auch nur zu verstehen), sind Kenntnisse in den Internet-
Standards wie HTML und HTTP notwendig. Aufferdem miissen die Techniken der
Objektorientierung, insbesondere die Vererbungsmechanismen erlernt werden. Dar-
tber hinaus muss man mit der Programmierung von grafischen Oberflichen vertraut
sein. Selbstverstindlich ist auch ein tiefes Verstindnis fiir die Nutzung der umfang-
reichen Klassenbibliotheken notwendig (die Standard-Edition enthilt die verwirren-
de Vielfalt von fast 5000 Klassen, und jede Klasse kann viele Methoden enthalten).
Und wenn dann noch das Programmieren unter dem Einsatz von komplexen Ent-
wicklungsumgebungen wie z.B. Ecplipse erfolgen soll, ist ein Anfinger hoffnungslos
uberfordert.

Vielleicht ist das der Grund fir das hiufig gehorte Vorurteil, Java sei ungeeignet als
Sprache zum Erlernen der Programmierung. Dieses Buch zeigt, dass Java eine sehr
einfache, leicht zu lernende und logisch aufgebaute Programmiersprache ist. Java
besteht aus gerade einmal 50 Schlusselwortern und ist hervorragend geeignet, um
das Programmieren von guten, Ubersichtlichen und gut strukturierten Programmen
zu lehren und zu lernen. Das ist das Ziel dieses Buches.

Damit dies gelingt, sind allerdings Beschrinkungen notwendig. Das Buch

e verzichtet auf komplexe Algorithmen, um die einfiilhrenden Beispiele moglichst
einfach zu halten,

e kann nicht die gesamte Fulle der mitgelieferten API-Klassen und Interfaces erliu-
tern, sondern beschrinkt sich auf die Basiskonzepte der Java-Sprache und Ob-
jektorientierung,

e Dbeschreibt nicht weiterfiihrende Techniken wie Threads, Polymorphismus, grafi-
sche Oberflichen oder das Arbeiten mit generischen Klassen.

Was kann der Leser dafiir erwarten?

Das Buch ist ein Lehrbuch fiir den Neueinsteiger in die Programmierung von EDV-
Anlagen. Es werden keine Vorkenntnisse in einer anderen Programmiersprache vor-
ausgesetzt. Erwartet werden aber Grundkenntnisse im Arbeiten mit dem Computer
und die Bereitschaft zum Uben und Experimentieren. Der Lernende wird interaktiv
gefiihrt und angeleitet zum selbststindigen Ausprobieren und Bewerten.

Programmieren ist eine faszinierende Titigkeit. Uber Erfolg oder Nicht-Gelingen
wird so unmittelbar entschieden wie bei kaum einer anderen Arbeit. Dabei wird von
Anfingern oft Ubersehen, dass das Erstellen von "guten" Programmen eine Entwick-
lertitigkeit ist, die neben Disziplin umfangreiche Sachkenntnis und viel Erfahrung
verlangt. Die theoretischen Voraussetzungen werden durch dieses Buch geschaffen.

VI

Inhaltsverzeichnis

Hinweise fiir den Lehrendenc..ooviiiiiiiiiiiini e VI
1 Einleitung: Die Arbeit vorbereiten..............cccocceeii i, 1
1.1 Das JDK (Java Development Kit)......cooiiieiiieiieie st 1
1.2 Die JDK-DOKUMENTAIONc.uiiiiiiiiiii ittt ettt 3
1.3 Der JAVA-EAIOr. c..ioviiiiiiiiiiiiiie ettt 4
1.4. Das erste Java-Programm erstellen, umwandeln und ausfihren....................... 6
2 Java im Uberblick: Erste Schritte machen..................... 11
2.1 Was ist ein Java-Programme?............ccooiiiiiiiiiiiii i 12
2.2 Elemente eines JAVA-PrOGIANNINS ..c..evviiuieieieiieiieieeeeieeee e eseeneesie e eaeeneeseeneenees 16
2.3 Schlusselworter, Syntax und Semantik..........c.cooeoiiiiiiiiii e, 19
2.4 Bezeichner (identifier) und Namensregeln ..o oo 20
2.5 Einige Hinweise zu moglichen Fehlern ... 22
2.6 Empfehlungen fir lesbaren QUEIltEXCocovviiiiir i 25
3 Informationen maschinell darstellen 27
3.1 Zahlensysteme und der BInArcodeocoiiviiiiiiiiiiii e 27
3.2 InformationSfOrMENocuiiiiiiiiiii it 29
3.3 ASCII-COUER ittt ettt 31
3.4 Erweiterungen des ASCII-COAEoiiiiiiiiiiiiiieieiec e 34
3.5 Rein binire Codierung von Zahlencccccooviviiiiiiiiiiceeen 35
3.0 UNHCOME ittt 36

4 Klassen und andere Typen beschreiben ("declaration") 43

4.1
4.2
4.3
4.4

DeKIaratioNSANWeEISUNGcviiiiiiiiaiiii ettt ettt 44
WAS 1St AT DALCIIYP? . viviiiieiiie ettt ettt ettt ettt ens 45
REFEIENZIYPEIL .ttt 48
Spezialfall: Primitive DatentyPen ...o..ooiiieiaieieeit e 50

VII

5 RAM verwalten: Variable und Objekte erzeugen........... 63

5.1
5.2
5.3
5.4
5.5
5.6

Was Sind Variablen?ccooiiiiiiiiiiiiiieccee e 63
Primitive Variablenc.oooiiiiiiiiiiiecccc e 64
ReferenZvariablencooiiiiiiieece e 68
KONSEANTET ..ttt ettt ettt e e eeeeeae e eee e 74
LILETALE oottt 76
ZUSAMMENTASSUNZ ..ottt 85

6 Eingabe und Ausgabe durchfihren ("i/o-operation”).... 87

6.1 SrEAM-KONZEPT 1.ttt ettt 87
6.2 Standard-EiNGaDeE........cccooviiiiiiiiiiieiei e 94
6.3 Standard-AUSZADEccocvoviiiiiieiiiee et 98
0.4 DAteIVErarDEIUNG ..c.cviiuiiiieieiecet et 102

7 Ausdricke verstehen ("expression").........ccccvveviieeeeenn. 113
7.1 Operanden Und OPEeratOreNl.......cciiiiiiiiiiiiniiiaie ettt
7.2 Arithmetische OPeratoren.......ocooi ittt
7.3 VergleiChSOPEIALOTENiiuiiiiiiiiecii ettt ettt
7.4, LOGISChE OPEIATOICN ...oviiiiiitiietiiiie ettt
7.5 BitweiSe OPEIatOrEN ...ccuiiuiiiiiiiiiiiiiiiiieiiccte e
7.6 Auswertungs-Reihenfolge (Prizedenzregeln)

8 Anweisungen kodieren ("statements")..........cccceeernnnn. 147
8.1 Einfache und zusammengesetzte ANWEISUNGZEN ...ovovviiierieeeieieieie e 148
8.2 WEITCZUWEISUING ..euitiiiiiieiiit ettt ettt ettt
8.3 SEUECTANWEISUIIGEIL. .ttt e
8.4 Verzweigungen (Selektion, Auswahl)

8.5 Schleifen (Iteration, Wiederholung, LOOP)ccccovvirieriiriieniiiieiicceeceieas 167
8.6 Sprung-Anweisungen (break, continue)coocoeieii i, 179
8.7 Losungsmuster flir Schleifen.. ... 184
8.8 Stilfragen: Konventionen zum Programmierstil...........coccovciiriiiiiiiiniicinns 188

VIII

9 Softwaresysteme entwickeln (Projekte realisieren)...... 192

9.1
9.2
9.3
9.4
9.5
9.6

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

Herausforderungen und VOrgehensweiSenooeovviieienineie i 193
Modelle Zur VOIgehenSWeISec..ciiuiiiiiiniiiiiiie e 201
Prinzipien und Methoden der Anwendungsentwicklung.........c.ccoccovineniinn 203
Java als ProjeKtSPrachie ..o e 206
ENtWUrfSSPIACREN ..viiiiiiiiici e 208
KOmMPLettheiSPIel.... v 216

Mitgelieferte Methoden benutzen ..o
Methodenaufruf ..o
Eigene Methoden erstellen ...
Methodenblock Implementierencccooiiiiiiiiiie i
Parameter tibergeben und empfangen

RUCKZADEWETT ..ot e

ZUSAMMENTASSUNZ ..ottt eieaneen

11 Klassen beschreiben und benutzen.........ccoccovvveeiinn.... 252

11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9

Mitgelieferte Klasse DenUIZENccooiiiiiiiiiieie e
Eigene Klassen erstellen ..o
KONSIUKLOTCI 1.ttt et

Vererbung ("INNEritance™)ooiiiiiiii it

Statische Elemente einer Klasse
Weitere Sprachmittel fiir Referenztypen (interface, enum)...........cccecceeeiee. 286

ZUSAMMENTASSUNZ ...ttt ettt ettt eneeneens 292

12 Module entwerfen, kapseln und dokumentieren......... 294

12.1
12.2
12.3

Was ist €in MOAUIZ.....oiiiiii e 295
Motivation fir Modulbildungcccooiiiiii e 296
Objektorientierte SystementwicklUng.......cocoeviiriniiniiniicee e 298

12.4 Unified Modeling Language (UML)cccooooiiiiiiiiiiiiiieecc e 307
12,5 Pattern und FramewWorks.......ocoovioiiiiiiiiiiiiiis e 309
13 Reihungen benutzen ("arrays")cccccceeeiiiiiiiiiinnennnn. 313
13,1 ErZEUZEN VO ATTAYS .eeeuiiiiiiiiiiiiieiiee ettt ettt ettt ettt ettt
13.2 [Initialisieren von Arrays
13.3 Zugriff auf die Array-KOMPONENTenccuciiiiiiiiiiicieiie e 317
13.4 Objekte in Arrays SAMMEINco.ociiiiiiiiiiiiiie e 321
13.5 Methoden der Class AFFaps ..ot e 322
13.6 Mehrdimensionale ATTAYSccoivvevivioioiiiiiee it 323
13.7 Arrays als Parameter und Returnwert bei Methoden ... 325
13.8 ZUSAMMENTASSUING ..ovviiiieiie ettt ettt ene s 326
14 Zeichenketten anwenden ("strings")...........cccccovvevveen.. 329
14.1 Erstellen von String-ObjeKten..........coooiiiiiiiiiiiiiiiiieccccee 329
14.2 Methoden der ClasSS SIFIIG ...o.oouveiiiiieeieeeee ettt 332
14.3 Methoden der Class StringBuilder..............cccoueciveioiiiiiiiiieeceeee e 338
14.4 Strings als Commandline-Parametercccoceoviiiiiireiiiei e 339
14.5 Zrle@EN VON TEXU ..iiuiiiiiieiieeiieiieie ettt ettt ettt ene s 341
14.6 Regulire AUSAITICKEooiiiiiiiiiiii s 343
14.7 Strings UNd UNICOAE ...c.eiviiiiiiiiiiiiiicieie et 347
15 Typumwandlungen verstehen ("casting").................... 349
15.1 Erweiternde Konvertierung bei einfachen Typen ... 350
15.2 Einschrinkende Konvertierung bei einfachen Typenc.cccccoviiiiiiinnnn 353
15.3 Verallgemeinernde Konvertierung bei Referenztypen............cccoccoeincnnne. 355
15.4 Spezialisierende Konvertierung bei Referenztypenccoooeeiiiiiiinns 356
15.5 Typ-Umwandlung zwischen einfachen und Referenztypencccecoeee. 358
16 Modifier richtig einsetzen ("access control") 362
16.1 Lokale Variable und Member-Variableccocooiiiiiiiiieiiceie, 362
16.2 Sichtbarkeit und Giiltigkeit von Variablen.............cccocoviiiiiiiicicece 364
16.3 Welchen Anfangswert haben die Variablen?cccocooiiiiiiiiiiin, 365

16.4 Lebensdauer von Variablenoooioiioe i e 366

16.5 Zugriffsrechte von auRerhalb einer Klasse ("access control")ccceeeeeee. 370
16.6 Bedeutung der Package-NAmeEnccccooioveviiiviriieiereeieeeeeeseesee e 372
16.7 Zugriffsmodifier private, public, protectedc.ccovecioineceiniaeinnn, 375
A Installationshinweise J2SE SDK 5.0...cc..coiiiiiiiiiiiiiiiie i 379
B Meta-Sprachen zur Syntaxbeschreibung............cccooooeiiiiiiiii, 384
C Die ersten 256 Unicode-Zeichen (0000-fffE)...oooooeeeeeeeeeii 386
D Komplettbeispiel einer verteilten Application..............ccoooeeeenne 394
E GIOSSAT oot e 396
SAChWOItVerZeiChnis.ooouiiiiiiiiiii e 412

XI

1.1 Das JDK (Java Development Kit)

Einleitung: Die Arbeit vorbereiten

In diesem Kapitel erfahren Sie,

e was Sie fur die Arbeit mit diesem Buch bendtigen,

e woher Sie diese kostenlosen Werkzeuge bekommen und
e wie Sie damit umgehen.

Fir das Arbeiten mit den Beispielen in diesem Buch werden ein (beliebiger) Text-
Editor und das JDK (Java Development Kit) von Sun bendtigt. Alle Installationshin-
weise und Erlduterungen zum Umwandeln und Testen der Programme in diesem
Buch beziehen sich zwar auf die Windows-Umgebung, konnen aber fiir das Linux-
/Unix-Umfeld in dhnlicher Weise tibernommen werden.

Es wird dem Anfinger nicht empfohlen, von Beginn an mit einer komfortablen Ent-
wicklungsumgebung wie Eclipse, NetBeans oder JBoss zu arbeiten. Diese komplexen
"Integrierten Entwicklungsumgebungen" (IDE fiir Integrated Development Environ-
ment) sind zwar sehr komfortabel, um diese jedoch zu verstehen und ihre Vorteile
auszunutzen, sind Kenntnisse im Programmieren und in Java erforderlich.

Als Editor konnten unter MS-Windows zwar die mitgelieferten Programme "Editor"
oder "WordPad' genutzt werden, besser sind aber spezielle Produkte fiir die Java-
Entwicklung. Diese gibt es als kostenlose Freeware-Tools wie z.B. Bluej. Moglich ist
natlrlich auch der Einsatz von kostenpflichtigen Programmen wie ZextPad. Wir ha-
ben alle Beispiele in diesem Buch mit dem Freeware-Programm "JOE" erstellt und
ausgefthrt. Hinweise zum Bezug und zur Installation dieser Produkte erfolgen im
Abschnitt 1.3.

1.1 Das JDK (Java Development Kit)
Was ist das JDK?

Die klassische Entwicklungsumgebung fiir Java ist das JDK von Sun. Dieses Soft-
ware-Paket enthilt aufler einem Editor alles, was zum Entwickeln und Ausfiihren
von Javaprogrammen notwendig ist, nimlich

e cinen Ubersetzer ("Compiler"), der den Quelltext in den Bytecode tibersetzt, und

e einen Ausfiihrer ("Java Run Time-Environment JRE"), der als Teil der "Java Virtu-
al Machine" JVM) den Bytecode interpretiert und ausfihrt.

AuBerdem enthilt die JDK die Implementierung der wichtigsten Standardklassen, die
als Bestandteil der Java-Sprache fir die Umwandlung und Ausfithrung auch der ein-

1

1 Einleitung: Die Arbeit vorbereiten

fachsten Programme unbedingt bendtigt werden (z.B. fir Strings, Input/Output, Col-
lections, Applets, GUI oder Network).

Die Beispiele in diesem Buch basieren auf dem Stand der "Standard-Edition" Version
5 (oder hoher). Die offizielle Bezeichnung des aktuellen Software-Pakets ist "Java 2
Plattform Standard-Edition" (J2SE 5.0). Es kann vom Server der Firma SUN bezogen
werden.

Bezug und Installation der JDK
Hier eine Anleitung zum Beschaffen der JDK fiir Version 5.0:
e Im Browser die Java-URL der Firma SUN eingeben: http://java.sun.com

e Dort entweder direkt die Seite "J2SE 5.0" unter der Uberschrift "Popular Downlo-
ads" anwihlen oder zunichst die Informationen, die unter dem Link "J2SE (Co-
re/Desktop)" gefunden werden, lesen und danach die Download-Schaltfliche
anklicken.

e Auf der dann folgenden Seite werden zur Auswahl drei Produkte angeboten:
e entweder das komplette JDK inclusive NetBeans IDE
e oder nur das komplette JDK
e oder nur die JRE (Run-Time-Umgebung).

® Sie benotigen das komplette JDK, allerdings ohne Netbeans IDE.

e Jetzt ist nur noch zu entscheiden, fir welche Plattform die JDK benotigt wird.
Fir MS-Windows wird dann z.B. der Download der Datei "jdk-1_5_0_nn-
windows-i586-p.exe" (ca. 50 MB) gestartet.

Weitere detaillierte Hinweise fiir die Installation der SDK unter MS-Windows siehe
Anhang A.

Muss unbedingt die J2SE 5.0 (oder hoher) installiert werden?

Ja, denn alle Beispiele in diesem Buch sind mit der Version 5.0 getestet und lauffi-
hig. Einige Programme enthalten Neuerungen, die erst mit der Version 5.0 eingeftihrt
worden sind - dltere Versionen verursachen Umwandlungs- oder auch Laufzeitfehler.

Konnen mehrere JDK-Versionen installiert sein?

Ja, auf einer Maschine konnen mehrere unterschiedliche Versionen der JDK instal-
liert und auch parallel genutzt werden. So kdonnen unter einem Betriebssystem z.B.
sowohl die iltere Version 1.4 als auch die Version 5 vorhanden sein. Welche dieser
Versionen jeweils genutzt wird, wird durch Angaben in einer PATH-Environment-
Variablen entschieden. Diese Variablen sind dynamisch dnderbar, in MS-Windows
fir jede DOS-Box individuell (siche Hinweise zur Installation im Anhang A).

1.2 Die JDK-Dokumentation

1.2 Die JDK-Dokumentation

Auf der Download-Seite von Sun werden nicht nur die JDK-Produkte angeboten,
sondern auch die J2SE-Dokumentation, etwa 45 MB. Es wird dringend empfohlen,
auch diesen Download durchzufiihren.

Was enthilt die JDK-Dokumentation?

Durch den Download bekommen Sie Zugrift auf die komplette Dokumentation der
J2SE Plattform Standard Edition. Im Wesentlichen sind dies die beiden folgenden
Teile:

The Java Language Specification: Eine komplette Beschreibung der Basis-
Sprachelemente, also die Definition der grammatikalischen und lexikalischen Struk-
tur, die Beschreibung der primitiven Datentypen und der Statements, die den Kern
der Sprache bilden. Diese Beschreibungen sind auch als HTML- oder PDF-Versionen
zum Download verfigbar unter

http://java.sun.com/docs/books/jls/

Java 2 Platform API Specification: Eine ausfihrliche Beschreibung aller Standard-
Klassen, die eingebaut sind und zum Lieferumfang der Standard-Edition gehoren.
API ist die Abkiirzung fiir "Application Programmer Interface", damit bezeichnet man
die Schnittstellen, die dem Javaprogrammierer fir das Schreiben seiner Anwendung
zur Verfligung stehen, und das sind alle Klassen und Interfaces des "Java 2 Platform-
Packages". Eine Fille von Informationen sind in dieser Dokumentation enthalten:
Tutorials, Demos und Beispielprogramme, Glossary usw. Alle Informationen sind
auch online verfiighar unter:

http://Jjava.sun.com/reference/

Bezug und Installation der API-Dokumentation fiir lokale Nutzung
e Im Browser die Java-URL der Firma SUN eingeben: http://java.sun.com

e Im Startbild direkt die Schaltfliche "J2SE 5.0" unter der Uberschrift "Popular
Downloads" anklicken.

e Danach die Schaltfliche "Download" fiir die J2SE 5.0 Documentation anklicken,
die Lizenzvereinbarungen akzeptieren und mit "continue" den Download-
Vorgang starten (vorher noch die englische Version auswihlen).

e Es wird die Datei jdk-1_5-doc.zip tibertragen (Grofle ca. 44 MB).
e Die Installation wird gestartet durch das Entzippen dieser Datei.

e Fir das Arbeiten mit der Dokumentation wird empfohlen, eine Verkniipfung auf
dem Desktop anzulegen. Die Startdatei ist: ¢:\installdir\docs\index.btml

e Hinweise zum richtigen Umgang mit der API-Dokumentation erfolgen spiiter.

1 Einleitung: Die Arbeit vorbereiten

1.3 Der Java-Editor

Ein Editor ist ein Programm, das es erlaubt, eine Textdatei zu erstellen und zu bear-
beiten. Prinzipiell kann jeder einfache Texteditor benutzt werden, um die Java-
Quelltexte einzutippen. Ein Textverarbeitungsprogramm wie MS-Word hat weiterge-
hende Aufgaben (Schriftarten, Textformatierungen ...), deswegen ist so ein Pro-
gramm nicht geeignet. Auch die Text-Editoren, die Teil des Betriebssystems MS-
Windows sind, eignen sich nicht so gut (allein schon deswegen nicht, weil sie hart-
nickig die Dateiendung selbststindig vergeben). Auch "»i” unter Linux wird nicht
empfohlen.

Welcher Editor sollte genommen werden?

Im Internet gibt es unter dem Suchbegriff "Texteditoren" einige Dutzend kostenlose
Programme zum Erstellen und Bearbeiten von ASCII-Text. Fir Java-Quelltexte gibt
es auBBerdem eine Reihe von speziellen Editoren, z.B.

e JCreator (von www.jcreator.com/download.btml (kostenlose Freeware-Version)
e BlueJ (von www.bluej.org, kostenlose Freeware-Version)
e JOE (von wwuw.javaeditor.de; kostenlose Freeware-Version)

Wir werden in diesem Buch mit dem "Java Oriented Editor JOE" arbeiten. Deswegen
dazu einige Hinweise.

Bezug und Installation des Java-Editors "JOE"
Der Editor steht zum Download unter folgender Webadresse zur Verfiigung:
http://www. javaeditor.de

Durch den Download erhdlt man die Datei "joe.zip" (GroRe: ca. 1.3 MB). Zur Instal-
lation muss diese Datei entzipped werden. Alle Fenster des Installationsprogrammes
sind unverindert zu akzeptieren. Auch im folgenden Fenster ist normalerweise mit
"JA" zu antworten.

Sall jetzt nach einem bersitz installerten Sun JODE gesucht
werden ¥

Digzer Yorgang kann mehrere Minuten in Anzpruch nebmenl

Sie konnen die Einstellung auch spater in den Optionen
wornehmen,

Hein

Abb. 1.1: Verkniipfung des JOE-Editors mit der installierten Java-Version

1.3 Der Java-Editor

Dadurch wird erreicht, dass die Einstellungen (Optionen) im JOE-Programm automa-
tisch ergidnzt werden um die Suchpfade zu den bin-Dateien, damit der Interpreter
und der Compiler gefunden werden. Auch die Verkniipfung zur Dokumentation
wird hergestellt, damit aus dem Editior heraus iber den Menupunkt Hilfe (?) direkt
dahin verzweigt werden kann.

Gestartet wird die Entwicklungsumgebung mit:
START | PROGRAMME | Fantastic—-Bits|JOE | JOE

Empfehlung: Legen Sie eine Verkniipfung auf dem Desktop an.

Priifen, ob JOE korrekt installiert ist

Uber den Menupunkt Optionen|Einstellungen sollte Giberpriift werden, ob die
Pfade zum Compiler und zum Interpreter korrekt eingetragen sind. Eventuell muss
dies manuell nachgeholt werden. Wahlweise kann hier auch der Zielpfad fir die
Ausgabe des Compilers eingetragen werden.

Anlegen eines neuen Ordners fiir die Ubungsdateien

Fur das Arbeiten mit den Beispielen in diesem Buch ist es hilfreich, wenn ein sepa-
rates Verzeichnis angelegt wird. Der Name ist frei wihlbar, z.B. "JavaProg" oder der
Name des Nutzers. Die Beispiele in diesem Buch stehen im Ordner e:\merker.

Danach testen wir, ob alle Voraussetzungen fir einen erfolgreichen Start erfillt sind.

Ubung: Priifen, ob Java korrekt installiert ist

e Offnen Sie ein Fenster fiir die Eingabeaufforderung (Linux-Shell bzw. unter MS-
Windows eine DOS-Eingabebox)

e In diesem Console-Fenster verzweigen Sie in den soeben neu angelegten Ord-
ner (z.B. cd e:\merker)

e Dort bitte eingeben: "java -version". Dadurch wird der Interpreter aufgerufen
und die Java-Version angezeigt. Wenn mit J2SE 5.0 gearbeitet wird, sieht die
Ausgabe wie folgt aus:

E:\merker>java -version
java version "1.5.0_01"
Java (TM) 2 Runtime Environment, Standard Edition (build 1.5.0_01-b08)
Java HotSpot (TM) Client VM (build 1.5.0_01-b08, mixed mode, sharing).

e Geben Sie bitte nur "java" ein. Dadurch rufen Sie den Interpreter (die JVM) auf.
Weil weitere Informationen fiir den Interpreter fehlen, werden Hilfe-
Informationen ausgegeben. Die Syntax des Befehls wird beschrieben und alle
moglichen Optionen (z.B. "-version") aufgelistet.

1 Einleitung: Die Arbeit vorbereiten

1.4. Das erste Java-Programm erstellen, umwandeln und ausfiihren

Zur Einfihrung werden wir das simpelste Java-Programm, das es gibt, erstellen und
ausfihren. Das Programm hat nur wenige Zeilen. Es geht aber nicht darum, ein Ver-
stindnis fur dieses Programm zu bekommen, sondern es handelt sich lediglich um
einen technischen Test.

Programm Test01: Das erste Java-Programm

public class Test01l {
public static void main(String[] args) {
System.out.println ("Erstes Programm") ;
}

}

Sind die Voraussetzungen, die auf den vorherigen Seiten beschrieben worden sind,
erfillt, gibt es zwei Moglichkeiten, wie Sie arbeiten konnen:

e Entweder verzichten Sie ganz auf eine IDE (also auch z.B. auf JOE) und starten
die Programme (Editor, Compiler, Interpreter usw.) direkt durch Textkomman-
dos in einem Commandprompt. Dies kann die DOS-Eingabeaufforderung in
MS-Windows oder eine Unix-Shell sein. Dadurch verzichtet man zwar auf Kom-
fort, denn es entfallen mogliche Automatisierungen, aber das Verstindnis fiir die
Abliufe wird erleichtert, weil alle Moglichkeiten ungefiltert zur Verfiigung ste-
hen.

e Oder Sie nutzen die Entwicklungsumgebung, also z.B. JOE, nicht nur zum Edi-
tieren, sondern auch, um mentigesteuert umzuwandeln und zu testen.

Wir werden beide Varianten demonstrieren. Flir den absoluten Neueinsteiger emp-
fehlen wir dringend, zumindest einmal auch die Commandline-Variante auszupro-
bieren. Das ist gut fiir das Verstindnis der Vorginge Editieren, Compilieren und Tes-
ten.

Was bedeutet "umwandeln" (compilieren)?

Der Programmierer erstellt einen Quelltext ("Sourceprogramm") mit einem Editor.
Dieses Quellenprogramm muss in ein maschinenlesbares Format, den Bytecode,
umgewandelt werden. Dafiir benotigt man ein spezielles Programm, den Compiler.
Der Compiler ist Teil des JDK. Er liest das Quellenprogramm und Uberprift es auf
formale Korrektheit. Wenn der Quelltext ohne Syntaxfehler ist, erzeugt der Compiler
daraus eine zusitzliche neue Datei. Diese hat die Dateierweiterung class und enthilt
einen Zwischencode, den so genannten Bytecode.

Es gibt Programmiersprachen (z.B. C++), bei denen das Source-Programm in ein Ma-
schinenprogramm umgewandelt wird. Bei dieser Umwandlung wird ein ausfihrbares
Programm fir eine genau definierte Plattform (welcher Prozessor, welches Betriebs-
system) erzeugt - bei einem Wechsel der Plattform muss neu compiliert werden.

0

1.4. Das erste Java-Programm erstellen, umwandeln und ausfiibren

1.4.1 Version 1: Arbeiten mit der Eingabeaufforderung

Ubung 1: Editieren und Umwandeln des Programms Test01 java

e Erstellen Sie den Quelltext: Tippen Sie die funf Zeilen des Programms mit einem
beliebigen Texteditor ein. Dabei ist unbedingt auch auf die Grof3-
/Kleinschreibung zu achten.

e Sichern Sie die Quelldatei: Der Quelltext muss unter dem Namen "TestO1.java"
gesichert werden. Dieser Dateiname ist Pflicht, denn er muss mit dem internen
(Klassen-)Namen in Zeile 1 tibereinstimmen.

e Wandeln Sie die Quelldatei um: Dazu muss in den Ordner, der die Quelldatei
enthilt, verzweigt werden. Dort eventuell mit "set path" prifen, ob das Compi-
lerprogramm auch gefunden wird. Dann wird die Umwandlung gestartet mit:
"javac TestO1.java".

Der Java-Compiler wird aufgerufen durch: javac TestO1.java.

Was ist das Ergebnis der Umwandlung?

Die fehlerfreie Umwandlung des Programms (erkennbar daran, dass keine explizite
Fehlermeldung ausgegeben wird) fiithrt dazu, dass eine neue Datei erstellt wird. Die-
se hat die Dateiendung .class, und sie enthilt den ausfihrbaren Code (bytecode).
Sollte eine Fehlermeldung kommen, so versuchen Sie, diese zu interpretieren (Hin-
weise dazu siehe Abschnitt 1.4.3). Zumindest die Zeilennummer der fehlerhaften
Zeile kann eine Hilfe sein.

Korrigieren Sie eventuelle Tippfehler und vergessen Sie nicht, danach die Umwand-
lung erneut zu starten. Erst wenn die Compilierung fehlerfrei moglich ist, wird eine
neue Datei mit der Endung .class im Arbeitsordner erzeugt. Das ist die Datei fir die
Ausfihrung.

Wie wird die Ausfithrung gestartet?

Fur die Ausfithrung bendtigt man die Run-Time-Umgebung von Java (Laufzeitumge-
bung). Sie enthilt den Java-Interpreter, das ist ein Programm, das den Bytecode in-
terpretiert (d.h. Zeile fir Zeile in den Maschinencode umwandelt) und ausfiihrt.

Der Java-Interpreter wird aufgerufen durch: java TestO1

Durch den Aufruf des Programms java wird die "Java Virtuelle Maschine" mit dem
Interpreter gestartet. Diese lidt die Class-Datei mit dem Namen 7estO1 und fihrt sie
aus.

Ubung 2: Ausfithren (Testen des Programms)

Die Ausfiihrung des umgewandelten Programms wird wie folgt gestartet:

1 Einleitung: Die Arbeit vorbereiten

java TestO01

Achtung: Die Dateiendung .class darf fiir TestO1 nicht angegeben werden. Die Datei
Jjava.exe startet eine virtuelle Java-Maschine (JVM) und beendet diese, sobald das Ja-
va-Programm 7estO1.class beendet ist.

Hier ist ein Protokoll der durchgefiihrten Arbeiten unter MS-Windows:

E:wmerker>set path

Path=D:=“WINNT~system32 ;D= \HINNT ; D:“UINNT~Systemn32-\WUbem; E:“\Programmes~Javasjdkl .5.
B_MA1xhin

PATHEAT=.COM; .EXE; .BAT ; .CMD; .UBS; .UBE; .JS; .JSE; .WSF; _WSH

E:smerker>javac TestBl. java

E:“merker>java Te=stB1
Erstes Programm

E:smerker>

Abb.1.2: Umwandeln und Testen per Commandline in einer DOS-Sitzung

1.4.2 Version 2: Arbeiten mit JOE

Und jetzt die gleiche Ubung, diesmal mit Hilfe von JOE. Nach dem Start von JOE ist
eine neue Datei anzulegen und wie folgt zu editieren:

Si=lp 3!
@] Datei Bearbeiten Quellcode Java Optionen Tools Ansicht Fenster 7 _ &
e [: = —_ - S
el & j - e Y = = @
= cpublic class Test0OZ] { |
. i 2 public static woid String[] args) {
= B Gebffnete Dateit ; Syatem.out, pr ("Erstes Programm”) :
Joel* . +
Si)
P — |)5 J_‘
El Dateien |3 | 59 Joe1*
= 2]
i
Compilerausgaben £ Ausgaben Suchergehnisse 1 Suchergebnisse 2
Bereit Zeile: 1 Spalte: Z0

Abb. 1.3: Programm Test02.java editieren mit JOE

1.4. Das erste Java-Programm erstellen, umwandeln und ausfiibren

AnschlieBend erfolgt Giber das Datei-Ment die Sicherung des Quelltextes. Achtung:
der Dateiname ist jetzt Test02 (die Dateiendung .java wird automatisch vergeben).

Die Umwandlung und Ausfithrung des Programms kann ebenfalls mentigesteuert
erfolgen.

e [Umwandeln durch: JAVA|COMPILIEREN

e Ausfuhren durch: JAVA | STARTEN.
Alternativ konnen Sie auch tiber den Meni-Eintrag
e JAVAIMSDOS Eingabeaufforderung

in eine Commandbox verzweigen und von dort aus den Compiler und den Interpre-
ter per Command aufrufen.

1.4.3 Hinweise auf mdgliche Probleme beim Compilieren und Ausfiihren

e Grof- und Kleinschreibung ist wichtig. Beim Editieren des Quelltextes und beim
Aufrufen der Programmnamen fir die Umwandlung und Ausfihrung ist darauf
zu achten, dass Java sehr wohl unterscheidet zwischen Klein- und Grofbuchsta-
ben.

e Achten Sie besonders auf die Klammernbildung: offnende und schlieSende
Klammern immer paarweise z.B. { } oder ().

e Wenn der Compiler oder der Interpreter nicht gefunden werden, ist die PATH-
Environment-Variable zu tUberpriifen. In dieser Suchpfadliste missen die Hin-
weise auf die bin-Dateien des Installationsordners stehen, z.B.

Path=D:\WINNT\....E:\Programme\Java\jdkl.5.0_01\bin
Hinweise, wie dieser Fehler korrigiert wird, finden Sie im Anhang A.

e Wenn die Quelltextdatei nicht gefunden wird, Uberprifen Sie bitte, ob der Com-
pileraufruf aus dem richtigen Ordner heraus erfolgt ist (nimlich aus dem Ar-
beitsordner, in dem sich das Quellenprogramm befindet).

e Manche Editoren erginzen den Dateinamen mit dem Quelltext hartnickig um
die Dateiendung .zxt. Dann muss z.B. mit Hilfe des Windows-Explorers oder mit
dem DOS-Command rename der gewiinschte Dateiname hergestellt werden.

e Wenn bei der Ausfithrung die Class-Datei nicht gestartet werden kann, tiberprii-
fen Sie, ob nach dem Aufruf des Interpreters durch "java" der korrekte Dateina-
me flr das ausfihrbare Javaprogramm angegeben ist (nimlich mit dem richtigen
Dateinamen, allerdings ohne die Endung .class), und ob dieser Dateiname ex-
akt Ubereinstimmt mit dem Namen der Klasse im Quelltext (Grof3-
/Kleinschreibung?).

e Wenn eine Programminderung durchgefiihrt worden ist, muss unbedingt neu
umgewandelt werden. Andernfalls wird die Anderung nicht wirksam.

1 Einleitung: Die Arbeit vorbereiten

Ubung zum Programm Test01 java

Ein Java-Programm kann Kommentarzeilen enthalten. Entweder beginnt der Kom-
mentar mit zwei Schrigstrichen //, dann gilt dies nur fir den Rest einer Zeile, oder
er beginnt mit /*, dann kann sich der Kommentar auch tber mehrere Zeilen erstre-
cken und wird mit */ abgeschlossen.

Erginzen Sie das Programm um die folgende Kommentarzeile:
"Dies ist das erste Testprogramm"

wandeln Sie das Programm neu um und testen Sie es erneut. Versuchen Sie die zwei
Moglichkeiten, wie ein Kommentar eingefiigt werden kann. Uberpriifen Sie die Gro-
Be der erzeugten Class-Datei, um zu kliren, ob der Kommentar Bestandteil der Byte-
Datei ist.

Dadurch bekommen Sie die Antwort auf die Frage: Verdndert sich die Grofle der
ausfihrbaren Datei, wenn man sehr viel Dokumentartext im Source-Programm ver-
wendet?

Zusammenfassung

Die Voraussetzungen fiir ein erfolgreiches Arbeiten mit Java haben Sie geschafft. Sie
haben auch bereits die drei wichtigsten Schritte zur Programmerstellung ausgefiihrt:

Fur diese Arbeiten ist die Installation einer Java-Entwicklungsumgebung (z.B. JDK
von Sun) erforderlich.

Und fiir das Umwandeln und Ausfiihren ist es notwendig, dass die entsprechenden
Systemprogramme (das Umwandlungsprogramm javac und das Interpreterpro-
gramm java) im Suchpfad des Betriebssystems gefunden werden. Dazu wurde die
path-Environment-Variable angepasst und um das bin-Verzeichnis der JDK erginzt.

Fur das Editieren der Quelltexte eines Java-Programms ist ein spezieller Java-
Texteditor wie z.B. JOE hilfreich. Dann konnen einige Arbeiten automatisiert und
mentigesteuert ausgefithrt werden, und die Anzeige des Quelltexts wird tibersichtlich
gestaltet, z.B. durch verschiedenfarbige Textbausteine, um Schliisselworter, Variable
und Befehle optisch kenntlich zu machen.

10

2 Java im Uberblick: Erste Schritte machen

In diesem Kapitel erhalten Sie Antworten auf folgende Fragen:
® Wie ist ein einfaches Javaprogramm aufgebaut?
e Was versteht man unter Syntax und Semantik einer Programmiersprache?

e Was sind die wichtigsten Bestandteile eines ausfiihrbaren Javaprogramms (einer
"Application")?

e Welche besondere Bedeutung hat die main-Methode?

e Was sind die Unterschiede zwischen Schlisselwortern und Programmiererwor-
tern?

e Welche Empfehlungen gibt es fiir die Namensvergabe und fir die duSere Form
eines Javaprogramms?

Dieses Kapitel beschreibt also die Vorschriften und Empfehlungen fir den Aufbau
eines Javaprogramms. Wie bei jeder Programmiersprache, gibt es auch fir Java lexi-
kalische und syntaktische Regeln, die vom Programmierer eingehalten und vom
Compiler Gberpriift werden mussen.

Der Compiler erstellt nur dann ein ausfithrbares Programm (also den Bytecode),
wenn der Quelltext keine formalen Fehler enthilt. Jeder Verstol gegen die Syntax-
regeln der Java-Sprache wird vom Compiler als Fehlermeldung dokumentiert, und es
gehort einige Ubung und Erfahrung dazu, diese Fehlermeldung zu interpretieren
und die Korrektur durchzufiihren.

Neben den Syntaxvorschriften gibt es Konventionen, die eingehalten werden soliten,
damit "gute" Programme entstehen (was gute Programme sind, miissen wir noch kli-
ren). Einige dieser Empfehlungen werden wir bereits in diesem Kapitel vorstellen.

Die Java-Programmiersprache ist objektorientiert. Jeder Programmcode ist organisiert
in Klassen. Deshalb werden Sie bereits in diesem Kapitel die wichtigen Begriffe
"Klassen" und "Methoden" aus der objektorientierten Programmierung kennen ler-
nen. Sie werden Klassen erstellen und benutzen.

11

2 Java im Uberblick: Erste Schritte machen

21 Was ist ein Java-Programm?

Generell kann ein Programm definiert werden als Vorschrift an einen Prozessor, eine
bestimmte Arbeit auszufithren. Es wird in einer formalisierten Sprache geschrieben.
Dazu muss dem Computer mitgeteilt werden

® womit

e was

e in welcher Reihenfolge

getan werden soll.

Jedes EDV-Programm muss definieren, womit es arbeitet - das sind in Java die Da-
tenbeschreibungen (Deklarationen der Variablen). AuBerdem enthilt ein Programm
die eigentlichen Befehle, die dem Prozessor vorschreiben, was zu tun ist - das sind
in Java die Methoden. Und zusitzlich kann der Programmierer festlegen, in welcher
Reihenfolge die Befehle ausgefiihrt werden sollen - dafiir gibt es Steuerbefehle.

In Java ist ein ausfihrbares Programm in einer Klasse beschrieben. Der Quelltext fiir
ein vollstindiges Programm hat mindestens folgende Struktur:

class Klassenname {

main-Methode {
ausfiihrbare Befehle

}

Abb. 2.1: Minimale Java-Klasse (selbststindig ausfihrbar)

Alle Variablen und Methoden einer Klasse werden innerhalb der geschweiften
Klammern platziert. Im Minimum hat eine ausfithrbare Klasse die Methode main.
Die Klasse kann auch umfangreicher sein - sie kann beliebig viele Methoden enthal-
ten. Auerdem kann sie Datenbeschreibungen innerhalb und auBerhalb von Metho-
den haben.

ProgrammO1: Das erste ausfithrbare Javaprogramm (mit einer Methode)

public class Einfuehrung0l {
public static void main(String[] args) {
// Datenbeschreibung = Womit?
// Methoden Was?
// Steueranweisungen In welcher Reihenfolge?

}

12

2.1 Was ist ein Java-Programm?

2.1.1 Anatomie des ersten Java-Programms

In der ersten Zeile wird die Klasse definiert. Sie bekommt den Namen Einfueh-
rung01. Alles, was danach folgt, wird als Klassenrumpf bezeichnet und ist in ge-
schweiften Klammern eingefasst. Die Klasse endet mit der letzten geschweiften
Klammer.

public class EinfuehrungO0l ({

}

In der zweiten Zeile beginnt die Beschreibung der Methode main. Jede Java-
Application muss genau eine main-Methode enthalten - und diese muss mit einer
Zeile, die genau diesen Aufbau hat, beginnen:

public static void main(String[] args) {

}

Eine Methode besteht aus dem Methodenkopf und dem Methodenrumpf. Die ers-
te Zeile wird als Methodenkopf bezeichnet. Die genaue Bedeutung der einzelnen
"Token" im Kopf wird spiter noch griindlich erliutert.

An dieser Stelle ist lediglich wichtig, dass alles, was zu dieser Methode gehort, als
Methodenrumpf (oder Methodenblock) bezeichnet wird und wiederum in ge-
schweiften Klammern eingefasst ist. Dort stehen die Anweisungen fiir die Ausfih-
rung durch den Prozessor. Die Methode endet in der vorletzten Zeile dieses Pro-
gramms.

Innerhalb der Methode main stehen drei Kommentarzeilen. Kommentare haben
fir die Ausfihrung eines Programms keinerlei Bedeutung; sie sollten vom Program-
mierer geschrieben werden, um (fiir sich selbst oder fiir Kollegen) Programmteile
niher zu erliutern. Kommentare konnen auch tiber mehrere Zeilen gehen, dann be-
ginnen sie mit /* und enden mit */. Der Compiler ignoriert diesen Quelltext.

Ubungen zum Programm Einfuebrung01

Ubung 1: Editieren Sie das o.a. Programm. Speichern Sie es unter dem Namen "Ein-
JuebrungO1 java" ab. Wandeln Sie es um und starten Sie die Ausfihrung. Aber er-
warten Sie nicht zuviel: dieses Programm macht - gar nichts. Aber fir den Anfang ist

es ein schoner Erfolg, wenn es fehlerfrei compiliert und getestet werden kann.

Eine Quelltextdatei kann eine oder mehrere Klassen enthalten.

Ubung 2: Fiigen Sie der Quelltextdatei eine zweite Klasse hinzu. Der Name der neu-
en Klasse soll sein: "EinfuehrungOla". Diese Klasse soll leer sein (ohne eine Metho-
de). Wandeln Sie die Quelltextdatei um. Uberpriifen Sie, welche neuen Class-
Dateien durch eine fehlerfreie Compilierung erstellt worden sind.

13

2 Java im Uberblick: Erste Schritte machen

Ubung 3: Andern Sie die Syntax der Kommentarzeilen. Benutzen Sie nicht die // pro
Zeile, sondern beginnen Sie den mehrzeiligen Kommentar mit /* und beenden Sie
ihn mit */.

Losungsvorschlag:

public class Einfuehrung0l {
public static void main (String[] args) {

/*
*/

}
class EinfuehrungOla {}

Achtung: Der zusitzlichen Klasse darf nicht das Wort public vorangestellt sein.

Was ist eine Umwandlungseinheit ("compilation unit")?

Eine Quelltextdatei nennt man auch Umwandlungseinheit. Sie kann mehrere Klassen
enthalten. Aus formalen Griinden ist strikt zu unterscheiden, ob die Quelltextdatei
auch ein selbststindig ausfihrbares Java-Programm enthilt oder ob sie lediglich aus
Klassenbeschreibungen besteht, die nicht selbststindig lauffihig sind, sondern nur
von anderen Programmen aufgerufen werden konnen. Fiir eine Umwandlungsein-
heit gelten folgende Regeln:

e Innerhalb einer Quelltextdatei darf nur eine Klasse die main-Methode haben,
und dies ist auch die einzige Klasse, die dann das Wort public haben darf.

e Der Name der Quelltextdatei muss identisch sein mit dem Namen der ausfiihr-
baren Klasse, also mit dem Namen der Klasse, die die Methode main enthilt.

e Durch die Umwandlung wird aus jeder Klasse in einer Umwandlungseinheit ei-
ne eigene class-Datei. Diese enthalten den Bytecode fiir die Ausfihrung.

Nach der Umwandlung von EinfuebrungO1 haben Sie also in Ihrem Arbeitsver-
zeichnis zwei zusitzliche Dateien, jeweils mit der Dateiendung class. Aber nur das
Programm EinfuebrungO1 ist ein ausfithrbares Programm, denn nur dies enthilt die
Methode main. Wie Sie bereits gesehen haben, wird ein selbststindig lauffihiges Ja-
vaprogramm gestartet, indem der Interpreter mit java.exe aufgerufen wird und dabei
der Name der ausfithrbaren Klasse als Parameter mitgegeben wird.

Ubung zum Programm Einfuebrung0la

Versuchen Sie das Programm EinfuehrungOla zu starten. Es sollte folgende Fehler-
meldung kommen: "NoSuchMethodError: main" - und das ist der eindeutige
Hinweis darauf, dass eine Klasse ohne main-Methode nicht selbststindig ausfithrbar
ist.

14

2.1 Was ist ein Java-Programm?

2.1.2 Was sind Java-Applicationen?

Die Beispiele in diesem Buch sind tUberwiegend ausfithrbare Programme, d.h. sie
sind Klassen, die eine main-Methode enthalten. Diese werden bezeichnet als Java-
Application. Sie sind im Gegensatz zu anderen Java-Klassen vollig autonom und
konnen per Betriebssystembefehl ("java progname") gestartet werden. Java-
Programme bendotigen fiir die Ausfiihrung eine spezielle Laufzeitumgebung, die vir-
tuelle Maschine (JVM). Diese wird durch Aufruf von "java" gestartet - und sie sorgt
dann dafir, dass die Datei mit dem Bytecode in den Arbeitsspeicher geladen wird.
Die Programmausfithrung beginnt mit dem ersten Befehl in der main-Methode.

Aus Betriebssystemsicht wird durch "java" ein neuer Prozess gestartet - und zwar
zunichst die JVM, die dann die Klasse startet. Es gibt andere Java-Programmtypen,
die nicht selbststindig austihrbar sind. Dazu gehoren Klassen, die keine main-
Methode haben, z.B. Applets, Servlets, EJBs und Webservices. Diese Klassen benoti-
gen spezielle Serverprogramme, in die sie eingebettet werden, damit sie dort (als
Thread und nicht als Prozess) ausgefithrt werden konnen. Diese Programmtypen
sind nicht Gegenstand dieses Buches.

Und dann gibt es die Klassen, die als Schablone benutzt werden, damit andere Klas-
sen von ihnen Objekte erzeugen konnen. Davon enthilt allein die java 2 Standard
Edition mehrere Tausend. Ohne sie kann ein Java-Programm nicht geschrieben wer-
den. Sie enthalten vorgefertigte Losungen (wiederverwendbaren Code) fir eine
Gruppe von Objekten.

Wenn ein Programm diesen vorgefertigten Code nutzen will, erzeugt es von der
Klasse eine konkrete Instanz (ein Objekt) im Arbeitsspeicher und ruft dann die da-
mit verbundenen Methoden auf. Dies ist der Kern der objektorientierten Program-
mierung.

Wir halten also fest:

Eine Java-Application ist ein Programm, das eine main-Methode enthilt. Das Pro-
gramm wird gestartet durch einen Befehl an das jeweilige Betriebssystem. Dadurch
wird eine JVM gestartet - und diese sorgt dafiir, dass der Programmablauf mit der
ersten Anweisung der Hauptmethode main beginnt. Innerhalb der main-Methode
konnen beliebig viele andere Klassen benutzt werden.

Die Klassen, die in einer Application referenziert werden, mussen bei der Umwand-
lung (und natirlich auch spiter bei der Ausfithrung) im Zugriff sein. Daftr ist der
richtige Einsatz der classpath-Variable wichtig (Hinweise siche Anhang A).

Es gibt auch Klassen, die nicht selbststindig ausfithrbar sind. Diese Klassen haben
keine main-Methode. Deswegen konnen sie nur von anderen Klassen genutzt wer-
den (Wiederverwendung von Programmcode). Durch das Zusammenspiel von meh-
reren Klassen entsteht eine Java-Anwendung ("application").

15

2 Java im Uberblick: Erste Schritte machen

2.1.3 Wie entsteht ein Programm?

Die Vorgehensweise fiir das Erstellen eines Programms ist immer gleich:
e Der Programmierer muss das Problem verstanden haben ("Problemanalyse"),

e Danach werden die Losungsmoglichkeiten fir das neue Programm(-system) ge-
plant ("Systemplanung").

e Nach der Entscheidung tiber die weitere Vorgehensweise erfolgt die "Detailor-
ganisation". Diese legt den Aufbau und Ablauf des Programms fest.

e Erst dann beginnt die eigentliche Programmiertitigkeit, das Kodieren der Daten-
beschreibungen ("Deklarationen") und das Formulieren des Algorithmus (der
Anweisungen zur Datenmanipulation und zur Ablaufsteuerung).

Im engeren Sinn besteht das Programmieren also aus dem Schreiben des Quelltextes
("codieren") und der Umwandlung durch den Compiler. Die letzte Phase der Pro-
grammentwicklung ist der Test und die Abnahme durch den Anwender (Benutzer).

2.2 Elemente eines Java-Programms

Natiirlich ist auch unser erstes echtes Programm ein "Hallo Welt"-Programm. Weil
Java eine objektorientierte Sprache ist, soll dieses Programm auch bereits (fast) alle
Elemente eines objektorientierten Programms enthalten.

Programm Einfuebrung02: "Hallo Welt" - komplett objektorientiert

public class Einfuehrung02 {

public static void main (String[] args) {
private String text; // Objektreferenz erzeugen
text = new String("Hallo "); // Objekt im Speicher anlegen
text = text.concat ("Welt"); // Nachricht senden
System.out.println (text); // Nachricht senden

Kleiner Trost fur den Neueinsteiger: Dieses Programm ist fir die nidchsten 50 Seiten
das schwierigste. Es enthilt eine Vielzahl von speziellen Java-Techniken: Zugriffs-
modifier, Arbeiten mit Referenzen und Objekten, mit Arrays und Methodenaufrufe,
Parameteriibergabe und Returnwerte bzw. void. AuSerdem wird mit der nicht ganz
selbsterklirenden Technik fiir die Standard-Ausgabeeinheit System.out gearbeitet. Al-
so: Das Programm hat es in sich, und es enthilt auch all das, was uns in den nichs-
ten Kapiteln beschiftigen wird.

In diesem Kapitel geht es zunichst vor allem darum, zu verstehen, wie ein Javapro-
gramm aufgebaut ist und welche formalen Vorschriften einzuhalten sind.

16

2.2 Elemente eines Java-Programms

2.2.1 Aufbau eines Java-Programms

Der Quelltext eines Programms ("Sourcecode") besteht aus einzelnen Wortern und
Symbolen (auch "Token" genannt), die (meistens) durch Leerstellen abgetrennt sind.
Beginnen wir mit einer grundsitzlichen Unterscheidung der einzelnen Token: es gibt
"Schlisselworter" (keywords), die Bestandteil der Javasprache sind, und es gibt frei
vom Programmierer gewihlte Worter ("Programmiererworter”, Bezeichner).

Was sind Schliisselworter und was sind Programmiererworter?

e Schlisselworter sind z.B. class, public, static, void. Die Schreibweise dieser Be-
griffe (jhre Syntax) ist exakt vorgegeben, und auch die Bedeutung (ihre Se-
mantik) ist in der Sprachdefinition festgelegt. Es gibt etwa 50 Schliisselworter in
Java.

e Programmiererworter sind Namen ("Bezeichner", identifier), die der Programmie-
rer frei gewidhlt hat, z.B. fir Klassen, Methoden oder fiir Daten. Das Programm
Einfuebrung02 enthilt z.B. folgende Programmiererworter: Einfuebrung02, args
und fext.

Hinweise zum Arbeiten mit JOE

Wenn Sie mit JOE (oder einem anderen Java-Editor) arbeiten, erkennen Sie, dass
diese Unterschiede auch farblich dargestellt werden.

Das Programm Einfuebrung02 besteht aus nur einer Methode, der Methode main.
Innerhalb von Methoden werden folgende typische Arbeiten ausgefiihrt:

e es werden Daten beschrieben und dem Programm zur Verfligung gestellt,
e danach werden die Daten verarbeitet (manipuliert), und
e zum Schluss wird das Ergebnis ausgegeben.

Ausgedriickt mit einigen Fachausdriicken der objektorientierten Programmierung
kann man den Ablauf auch wie folgt beschreiben: Wir benutzen die mitgelieferte
Klasse String, um einen neuen Datentyp im Arbeitsspeicher zu beschreiben. Dazu
wird zunichst eine Objektreferenz (man sagt auch: eine Instanzvariable) erstellt, sie
bekommt den Bezeichner text. In der nichsten Zeile wird das Objekt selbst im Spei-
cher erzeugt und durch das Senden einer Nachricht mit dem Text "Hallo" gefillt.
Der vorletzte Befehl erginzt diesen Text um das Wort "Welt". Danach wird mit der
Methode printin der Inhalt des Objekts ausgegeben am Bildschirm.

Ubung zum Programm Einfuebrung02

Editieren Sie das Programm, wandeln Sie es um und rufen Sie es auf zur Ausfih-
rung. Achten Sie auf Grof3-/Kleinschreibung, und geben Sie beim Aufruf des Inter-
reters nicht die Dateierweiterung .class fiir das ausfithrbare Programm an. Das Er-
te]
gebnis dieses Programmaufrufs ist die Ausgabe des Textes "Hallo Welt". Variieren Sie
danach das Programm, geben Sie beliebige andere Texte aus.

17

2 Java im Uberblick: Erste Schritte machen

2.2.2 Aufruf des Programms

Fir die Ausfithrung des Programms muss in einer Commandline folgender Befehl
eingegeben werden:

java Einfuehrung02

Dadurch wird vom Betriebssystem eine .exe-Datei gestartet mit dem Namen java.exe.
Dieses Programm startet die Java Virtuelle Maschine (JVM), die dann ihrerseits die
Klasse lddt, deren Name als Aufrufparameter mitgegeben wurde (Einfueh-
rung02.class, aber ohne die Dateiendung .class). Diese Start-Klasse ist die Hauptklas-
se einer Java-Anwendung. Sie muss einige spezielle Anforderungen erfillen:

e sie muss eine ausfiihrbare Klasse sein, d.h.
e sie sollte public sein,
e sie muss eine main-Methode enthalten.

Die JVM enthilt einen Classloader, der die Datei mit dem Bytecode auf dem exter-
nen Speicher (i.d.R. ist das die Festplatte) sucht und in den Arbeitsspeicher lidt. Ge-
sucht wird die Datei innerhalb des aktuellen Verzeichnisses. (Wenn der Aufruf aus
einem anderen Ordner erfolgt, muss mit Hilfe der classpath-Variablen der Suchpfad
entsprechend erginzt werden, sieche dazu Anhang A.)

Jedes Java-Programm startet mit dem ersten Befehl in der main-Methode. Von dort
aus wird dann alles Weitere gesteuert. Im Programm Einfuebrung02 wird zunidchst
die mitgelieferte Klasse String geladen und dann davon eine Instanz erzeugt. Wih-
rend der Laufzeit eines Javaprogramms konnen beliebig viele Instanzen von einer
oder mehreren Klassen erzeugt werden. Dazu werden die jeweiligen Klassen dann
bei Bedarf, also wenn sie das erste Mal gebraucht werden, in den Arbeitsspeicher
geholt. Man sagt, die Klassen werden dynamisch geladen. Wenn die Klassen und die
Instanzen nicht mehr benotigt werden, sorgt ein eingebauter Mechanismus der JVM
daftr, dass der belegte Speicherplatz wieder frei gegeben wird ("Garbage Collec-
tor").

Wenn das Programm Einfuebrung02.class insgesamt beendet ist, wird auch die JVM
beendet.

Hinweise zum Arbeiten mit JOE

Durch Driicken der Tasten UMSCHALTUNG | STEUERUNG | F10 wird ein Grundgerst
einer jeden Java-Applikation in das Editierfenster eingefiigt. Leider entspricht das Ge-
rist nicht exakt den Empfehlungen, die von der Firma Sun in den "Java Code Con-
ventions" gegeben werden, denn sowohl die geschweiften wie auch die eckigen
Klammern stehen nicht dort, wo sie stehen sollten. Unser Vorschlag: Bitte korrigie-
ren Sie das Programmgeriist entsprechend (als Muster sieche Programm Einfueb-
rung02.java).

18

2.3 Schliisselworter, Syntax und Semantik

2.3 Schliisselwarter, Syntax und Semantik

Zur Grammatik der Java-Sprache gehoren die Definition der Schliisselworter, die Be-
schreibung der formalen Regeln fiir das Codieren des Quelltexts und auch die Be-
schreibung der Bedeutung, die die Sitze im Quelltext haben.

2.3.1 Schlisselwoérter (keywords)

Schlisselworter bilden den reservierten Teil des Sprachumfangs. Sie dirfen nicht
verwendet werden, um Namen fiir Speicherplitze, Klassennamen oder Methoden-
namen zu bilden. Es gibt etwa 50 reservierte Namen in Java, z.B. gehoren dazu
class, int, switch, while usw. Im JOE-Editor sind diese Schliusselworter farblich ge-
kennzeichnet. Alle Schlisselworter bestehen ausschlieBlich aus ASCII-Zeichen (siehe
nachfolgendes KapiteD).

2.3.2 Syntaxregeln

Jede Programmiersprache hat Regeln fir den Zusammenbau der Anweisungen.
Durch diese Syntaxbeschreibung wird festgelegt:

e Art und Aufbau der Datenbeschreibung,
e Art und Aufbau der Befehle fiir die Programmausfihrung.

Die Beschreibung der Daten wird auch Deklaration oder Definition genannt. (Java
unterscheidet diese beiden Begriffe nicht so streng, wie das in anderen Sprachen tb-
lich ist). Das Kapitel 4 befasst sich ausfiihrlich mit dem Thema "Beschreibung der
Daten".

Die Befehle werden auch Anweisungen, Operationen oder Statements genannt. In
den Kapiteln 5 und folgende werden die unterschiedlichen Arten der Anweisungen
und ihre inhaltliche Bedeutung (ihre Semantik) erldutert.

Zunichst werden wir grundsitzliche Regeln fiir die Programmiersprache Java be-
sprechen. Eine Sprache besteht aus einer Folge von Wortern (und Sonderzeichen),
die nach bestimmten Regeln aneinander gereiht werden.

Hiufig wird die Syntax und die Grammatik einer Programmiersprache in einer be-
sonderen Notation (in einer "Metasprache") formal beschrieben. So gibt es grafische
Beschreibungssprache oder auch Syntax-Diagramme, z.B. Backus-Naur-Form
(BNF), siche Anhang B.

Wichtige Syntaxregeln der Java-Sprache sind:

e Java-Programme bestehen aus einzelnen Wortern und Symbolen ("token"), die
durch festgelegte Trennzeichen ("delimiter") getrennt werden.

e Bei den Token werden Schliisselworter (reservierte Worter) und Programmie-
rerworter (frei gewihlte Namen, "Bezeichner", identifier) unterschieden.

19

N

Java im Uberblick: Erste Schritte machen

e Die Schreibweise im Quelltext ist formatfrei. Eine maximale Zeilenlinge ist nicht
festgelegt. Die Steuerzeichen wie Zeilenschaltung (line-feed) oder Tabulator
(tab) spielen keine Rolle fiir die Interpretation des Quelltexts.

e Java unterscheidet zwischen Grof- und Kleinschreibung (man sagt, Java ist "ca-
se-sensitiv").

e Am Ende eines Befehls steht ein Semikolon.
e Kommentare konnen beliebig eingefiigt werden:
e am Zeilenende (dann beginnen sie mit //) oder auch

e iber mehrere Zeilen (dann beginnen sie mit /* und enden mit */)

Ubung zum Programm Einfuehrung02

Versuchen Sie zu klidren, was die Schliusselworter und was die Identifier in diesem
Programm sind (Hinweis: Schlisselworter werden farblich abgehoben im JOE-
Editierfenster). Andern Sie danach das erste Token in diesem Programm von class
auf Class. Testen Sie die Reaktion des Compilers auf diese Anderung.

24 Bezeichner (identifier) und Namensregeln

2.4.1 Wofiir werden Namen vergeben?

Identifier sind frei gewihlte Namen fir die Speicherplitze (Variablen), fiir Klassen,
Methoden, Dateien, DB-Tabellen oder Pakete. Jedes Wort endet, wenn vom Compi-
ler ein Trennzeichen (delimiter) erkannt wird. Trennzeichen sind also Zeichen, die
zwei Elemente ("token") voneinander trennen und abgrenzen. Dies konnen "whi-
tespaces" wie Leerstellen ("blank") sein oder Tabulator- oder Zeilenvorschub-
Zeichen.

Programm Einfuebrung03: Schliisselworter und Bezeichner

public class Einfuehrung03 {
public static void main (String[] args) {
int zahl;
zahl = 5;
System.out.println(zahl);
}
}

Ubung zum Programm Einfuebrung03

Editieren Sie das Programm. Achtung: ein Abtippen ist immer sinnvoll! Fehler ma-
chen und Fehler beseitigen helfen beim Lernen einer Programmiersprache. Wandeln
Sie das Programm um und fithren Sie es aus. Wenn es fehlerfrei lduft: Herzlichen
Glickwunsch. Wenn es Umwandlungsfehler produziert, korrigieren Sie diese selbst-
stindig - es konnen nur Tippfehler sein.

20

2.4 Bezeichner (identifier) und Namensregeln

2.4.2 Regeln fiir Namensvergabe

Die Regeln fir das Bilden dieser Bezeichner sind einfach. Das erste Zeichen muss
ein lateinischer Buchstabe sein, danach ist fast jeder Buchstaben aus jedem Alphabet
(siche Hinweise zum Thema Unicode) und jede Ziffer erlaubt. In der Linge gibt es
auch keine Begrenzungen. Zu beachten ist lediglich:

e Die Unterscheidung der Gro3-/Kleinschreibung ist wichtig.

e Schlisselworter sind reserviert und durfen nicht fir das Bilden von Bezeichnern
benutzt werden.

e Namen dirfen keine Leerzeichen enthalten (besonders wichtig auch bei Datei-
oder Verzeichnisnamen, selbst wenn das Betriebssystem dies gestattet).

Weil Java kaum einengende Vorschriften enthilt fiir das Bilden von Namen, ist die
Disziplin des Programmierers gefordert. Einige Konventionen zu diesem Thema fol-
gen auf den nichsten Seiten.

Giiltige (wenn auch nicht unbedingt empfohlene) Namen sind z.B.

kundennummer

weill23 // Nationales Sonderzeichen 8
bool

grin // Umlaut, nicht empfohlen
a_bereich // Unterstrich, besser vermeiden
diesIstEinIdentifier

a // wenig aussagefihig

Ungiiltige Namen sind z.B.

-gross // Erste Stelle kein Buchstabe
lkdnr // dto.

boolean // Reserviertes Wort

class // Reserviertes Wort

Die Syntaxregeln der Java-Sprache sind strikt einzuhalten. Verstoe werden norma-
lerweise vom Compiler erkannt und fithren zu "compile-time-errors'.

Programm Syntax01: Was ist hier falsch?

public class Syntax01l {

public static void main (String args|[]) {
int summe;
Summe = 2000;
System.out.println (summe) ;

21

2 Java im Uberblick: Erste Schritte machen

Ubung zum Programm Syntax01

Editieren und compilieren Sie dieses Programm. Die Fehlermeldung beim Umwan-
deln lautet: "Syntax01.java:4: cannot find symbol". Sinngemifs bedeutet dies: In der
Quelldatei Syntax01 . java in Zeile 4 befindet sich ein Symbol, das unbekannt ist. Um
welches Symbol es sich handelt, steht in der nichsten Zeile der Fehlermeldungen.

Korrigieren Sie den Fehler und fiihren Sie das Programm aus.

25 Einige Hinweise zu méglichen Fehlern

Beim Entwickeln von neuen Programmen konnen Fehler zu unterschiedlichen Zeit-
punkten auftreten bzw. entdeckt werden. Man unterscheidet: Compile-Time-Fehler,
Run-Time-Fehler und logische Fehler.

2.5.1 Compile-Time-Fehler

Diese entstehen durch Verstole gegen die Syntaxregeln der Sprache. Sie werden in
jedem Fall vom Compiler erkannt.

Programm Syntax02: Gegen welche Syntaxregel wird verstofRen?

public class Syntax02 {
public static void main(String[] args) {
String str
System.out.println(str);

}
Ubung zum Programm Syntax02

Editieren und compilieren Sie dieses Programm. Die Fehlermeldung beim Umwan-
deln lautet: "Syntax02.java:4: ';' expected". Sinngemifl bedeutet dies: In
der Quelldatei Syntax02 java in Zeile 4 fehlt das Semikolon.

Korrigieren Sie den Fehler und fiihren Sie das Programm aus.

Bei der Fehleranalyse muss bedacht werden, dass die Fehlerursache nicht unbedingt
auch in der angegebenen Zeile liegt, sie wird evtl. nur dort entdeckt. In diesem Fall
fehlt das Semikolon natiirlich in der Zeile 3.

AuBerdem konnen Syntaxfehler zu Folgefehlern fithren. Dadurch kann es zu einer
ganzen Kette von Meldungen kommen, obwohl es vielleicht nur eine Ursache gibt.
Deswegen sollte die Fehlerkorrektur immer mit der ersten Fehlermeldung des Com-
pilers beginnen.

Besonders tiickische Fehlermeldungen werden produziert, wenn die Klammerungen
durch geschweifte oder runde Klammern nicht richtig oder nicht paarweise erfolgt.
Dazu ein Beispiel, das allerdings in vollem Umfang noch nicht verstanden werden
kann - es geht hier lediglich um die Syntax.

22

2.5 Einige Hinweise zu moglichen Feblern

Programm Syntax03: Geschweifte Klammern treten immer paarweise auf

public class Syntax03 {
public static void main (String[] args) {
A a = new A(); // Instanz der Klasse A erzeugen
System.out.println("Hallo");

}
class A {}

Ubung zum Programm Syntax03

Das Programm musste fehlerfrei umwandelbar und ausfihrbar sein. Es liefert als
Ausgabe einen Grufd ("Hallo"). Das Programm funktioniert also. Jetzt 16schen Sie bit-
te die drittletzte Zeile mit der geschlossenen geschweiften Klammer. Wandeln Sie
neu um, und prifen Sie die Meldung des Compilers. Was passiert, wenn Sie die

Klammer, wie die Meldung suggeriert, in Zeile 7 einfligen?

Die Erkenntnis aus der obigen Ubung ist: Die Fehlermeldung meldet zwar einen
Fehler in der Zeile 3, tatsichlich jedoch liegt die Ursache einige Zeilen weiter hinten.

2.5.2 Run-TimesFehler

Es kann aber auch sein, dass der Compiler einen Fehler nicht erkennen kann, weil
dieser erst zur Laufzeit des Programms offenbar wird. Dann handelt es sich um so
genannte run-time-error. Sie werden in Java "Exceptions" genannt. Natlrlich haben
die Erfinder der Java-Sprache sich bemtuht, diese Fille moglichst auszuschlieen,
und wann immer moglich, werden Fehlerquellen bereits beim Compilieren erkannt
und verhindert. Aber trotzdem kann es vorkommen, dass zur Ausfihrungszeit eine
so genannte Exception (Ausnahmesituation) entsteht, die sogar zum Programmab-
bruch fihren kann.

Programm Laufzeitfehler01: Run-Time-Error produzieren

public class Laufzeitfehler01l {
static void main (String[] args) {
String name = new String("Merker");
System.out.println (name) ;
}
}

Ubung zum Programm Laufzeitfehler01

Versuchen Sie das Programm umzuwandeln und auszufiihren. Ergebnis: Es gibt kei-
nen compile-time-error, allerdings bricht die Ausfiihrung ab mit folgendem run-time-
error: "Main method not public".

Korrigieren Sie den Fehler und fiihren Sie das Programm aus.

23

2 Java im Uberblick: Erste Schritte machen

2.5.3 Logische Fehler

Und dann gibt es natiirlich logische oder semantische Fehler, die von dem Computer
gar nicht erkannt werden (konnen), die aber zu falschen Ergebnissen fithren, weil
der Programmierer Anweisungen zwar syntaktisch korrekt, aber von der Bedeutung
her falsch eingesetzt hat.

Das folgende Programm enthilt einen logischen Fehler. Es handelt sich um das Bei-
spielprogramm Einfuebrung02, das den Text "Hallo Welt" ausgeben soll. Das Pro-
gramm wurde allerdings an einer entscheidenden Stelle modifiziert.

Programm LogischeOI: Logischer Fehler im Programm

class Logische0Ol {
public static void main(String[] args) {
String text;
text = new String("Hallo ");
System.out.println (text);
text = text.concat ("Welt");

}

Ubung zum Programm Logische0l

Wenn Sie das Programm ausfiihren, sollte eigentlich der Text "Hallo Welt" ausgege-
ben werden. Leider fehlt die "Welt", weil der Programmierer (versehentlich oder
unwissend) nicht bedacht hat, dass die Befehle sequentiell ausgefiihrt werden, wenn
er nichts anderes vorsieht.

Korrigieren Sie das Programm und fithren Sie es aus.
Losungshinweis: Die Reihenfolge der Befehle im Quelltext stimmt nicht.

Das Auffinden von logischen Fehlern in Programmen gehort zu den schwierigsten
und aufwindigsten Aufgaben im Software-Entwicklungsprozess. Man nennt diesen
Vorgang "Testen". Hinzu kommt, dass beim Testen von eigenen Programmen ein
psychologisches Problem zu tiberwinden ist: Man soll herausfinden, welche Fehler
das eigene Programm enthilt, wo man doch viel eher nachweisen mochte, dass es
fehlerfrei ist.

Vielleicht hilft folgende Weisheit: Wenn der Fehler nicht da ist, wo man ihn sucht,
dann ist er woanders.

Manchmal wird auch der Begriff "Debugging" fir die Fehlersuche und -bereinigung
benutzt (als "bug" wird ein Computerfehler bezeichnet). Ein Werkzeug (tool) zum
Debuggen nennt man Debugger-Programm. Damit kann ein Programm kontrolliert
und schrittweise (mit einzelnen Haltepunkten zwischen den Schritten) ausgefiihrt
werden. Ein Debugger ist meistens Bestandteil einer Entwicklungsumgebung (IDE).

24

2.6 Empfeblungen fiir lesbaren Quelltext

2.6 Empfehlungen fiir lesbaren Quelltext

2.6.1 Guter Stil fir die Namensvergabe

Wie bereits beschrieben, gibt es in Java kaum Einschrinkungen beim Bilden von
Bezeichnern. Deswegen ist es wichtig, an die Disziplin und an den guten Willen des
Programmierers zu appellieren: Um die Lesbarkeit des Programms zu verbessern,
halten Sie sich bitte bei der Namensvergabe an folgende freiwillige Konventionen:

e Die Namen sollen sprechend sein. Einzelne Buchstaben wie x oder y sind in der
Regel zu wenig aussagefihig. Die Bezeichner sollen moglichst die Funktion be-
schreiben (wenn eine Variable brutto heifdt, soll dies auch dem Inhalt entspre-
chen).

e Es wird dringend empfohlen, lediglich die Grof- und Kleinbuchstaben aus dem
ASCII-Code (siehe nachfolgendes Kapitel) zu verwenden. Benutzen Sie z.B. kei-
ne deutschen Umlaute wie 4 oder U, auch keinen Unterstrich oder das Dollar-
zeichen $, selbst wenn Java dies erlaubt. Dadurch ist die Lesbarkeit und Aus-
tauschbarkeit der Programme gewihrleistet.

e Klassennamen beginnen mit einem Gro8buchstaben, z.B. class Kunden

e Variablen- und Methodennamen werden klein geschrieben, z.B. kdnr oder dru-
cken

e Hauptworter (Nomen) eignen sich hiufig gut fir Klassennamen, wihrend sich
Eigenschaftsworter (Adjekte) fir Variablen und Zeitworter (Verben) fiir Metho-
den anbieten.

e Wenn Variablennamen oder Methodennamen aus mehreren Wortern bestehen,
werden die Worter ohne Trennzeichen zusammen geschrieben, und jedes Teil-
wort beginnt mit einem GrofSbuchstaben. Beispiele: muwstBerechnen oder dru-
ckenRechnungen.

e Konstantennamen werden komplett grofl geschrieben, z.B. MWSTPROZENT

e Aus historischen Griinden sind zwar der Unterstrich _ und das Dollarzeichen $
als erstes Zeichen fir Identifier erlaubt, ihre Verwendung wird aber nicht emp-
fohlen.

2.6.2 Guter Stil fir Formatierung von Quellenprogrammen

Wenn auch generell der Quellcode formatfrei ist, haben diese ersten Beispiele be-
reits gezeigt, dass es unbedingt hilfreich ist, wenn der Quelltext so formatiert wird,
dass er fir den Menschen leicht lesbar ist. So sollten die geschweiften Klammern,
die immer paarweise codiert werden miissen, auch optisch als Paar erkennbar sein.
Und das wird dadurch erreicht, dass die schlieBende Klammer auf derselben Spalte

25

2 Java im Uberblick: Erste Schritte machen

(nicht verwechseln mit Zeile) steht wie der Beginn des Blocks. Zur Abschreckung
hier ein Beispiel, wie nicht codiert werden sollte:

Programm Trash01: So nicht!

public class Trash0l { public static void main
(String[] args) {int

summe; summe=

2000; System.out.println (summe); }}

Wie man (schwer) erkennen kann, handelt es sich um das bereits bekannte Pro-
gramm Syntax01.java. Es erfullt auch immer noch dieselbe Aufgabe, denn die Syn-
taxregeln wurden eingehalten. Deswegen kann auch dieses Programm fehlerfrei
umgewandelt und gestartet werden. Aber welcher menschliche Leser kann den
Quelltext verstehen?

Deswegen hier weitere Empfehlungen fir das Kodieren von ubersichtlichen Pro-
grammen:

® Pro Zeile moglichst nur eine Anweisung.
e Kommentare schreiben fiir Quellcode, der ansonsten schwer verstindlich wiire.

e Programmblocke optisch kennzeichnen durch Einricken nach rechts. Alle Zeilen
innerhalb eines Klammerpaares werden eingertickt, dadurch wird die Verschach-
telung von Programmteilen deutlich.

e Kein Whitespace (siche hierzu Glossar im Anhang E) zwischen Methodenname
und offnender Klammer.

e Die Programme sollten insgesamt einen konsistenten Aufbau haben. Hilfreich
sind Programmierrichtlinien, die unternehmensweit eingehalten werden.

26

3.1 Zablensysteme und der Bindrcode

Informationen maschinell darstellen

Bevor Sie in den nachfolgenden Kapiteln detailliert erfahren, wie in Java Klassen de-
finiert und Variablen im Arbeitsspeicher erzeugt und mit Hilfe von Methodenaufru-
fen verarbeitet werden, wollen wir in diesem Kapitel erldutern,

e wie Daten codiert werden, so dass sie maschinell gespeichert und verarbeitet
werden konnen und welche Codes es gibt,

e welche Bedeutung der von Java genutzte Unicode hat und

e welche Herausforderungen bei der Entwicklung von international einsetzbaren
Softwaresystemen und beim globalen Datenaustausch gelost werden miissen.

3.1 Zahlensysteme und der Bindrcode
3.1.1 Bits und Bytes

Im Arbeitsspeicher einer bindren Rechenanlage gibt es ausschliefRlich Bitmuster, die
jeweils nur einen von zwei moglichen Werten darstellen konnen ("bits"). Die Werte
dieser bindren Darstellung nennt man "Null" oder "Eins" bzw. "ja" oder "nein". Jedes
Zeichen einer Sprache, insbesondere auch die alphabetischen Zeichen, jeder Zah-
lenwert und auch alle Multimediadaten wie Bilder oder Tone werden in Form dieser
bits verschlisselt, stellen also ein Muster aus Nullen und Einsen dar.

Die Vorteile dieser bindren Verschlisselung sind:

e Sie ist eine ideale Grundlage fiir den Computerbau. Die zwei Zustinde lassen
sich technisch leicht realisieren (optisch: an oder aus; elektrisch: zwei verschie-
denen Spannungswerte; magnetisch: magnetisiert oder nicht magnetisiert...).

e Nicht nur Texte und Zahlen lassen sich binir kodieren, sondern auch Tone, Bil-
der und Grafiken (Multimedia-Daten).

e Fir numerische (mathematische) Probleme: das Zweiersystem (Dualsystem) ist
ein vollwertiges Stellenwertsystem zum Rechnen.

e Fir logische Probleme: es gibt eine zweiwertige Logik (z.B. Boolesche Algebra).
Die beiden Wahrheitswerte wahbr und falsch lassen sich vielfiltig verknipfen,
z.B. mit UND oder mit ODER (siehe auch Kapitel 7: Logische Operatoren).

Die Bits sind die kleinste Informationseinheit in einem Computer. Jedoch kann Java
nicht auf einzelne Bits zugreifen. Die kleinste adressierbare Einheit ist ein Byte, und
das besteht aus einer Gruppe von 8 bits.

27

3 Informationen maschinell darstellen

3.1.2 Stellenwertsysteme

Ein Java-Programmierer kann in seinem Quelltext mit unterschiedlichen Zahlensys-
temen arbeiten: Dezimal- Oktal, Hexadezimal- oder Dualsystem. Allen ist gemein-
sam, dass sie Stellenwertsysteme sind: die Zahlen setzen sich aus einzelnen Ziffern
zusammen, und jede Ziffer hat einen Nennwert (im Dezimalsystem von 0 - 9, im
Dualsystem von 0 bis 1 usw.). Der Nennwert sagt noch nichts aus Uber den tatsich-
lichen Wert, den eine Ziffer hat. Dieser hingt ab von der Stelle der Ziffer innerhalb
der Zahl. Das heifSt, abhingig von der Position einer Ziffer innerhalb einer Zahl ver-
indert sich der tatsichliche Wert.

Beispiel 1:

Im Dezimalsystem muss der Nennwert einer Position so oft mit 10 multipliziert
werden, wie es die Position erfordert (beginnend rechts mit Null):

die Zahl 532 hat den Wert 5 * 10 ° =500
+ 3%10" = 30
+ 2*10" = 2 (Summe ist: 532)
Beispiel 2:

Im Dualsystem muss der Nennwert einer Position so oft mit 2 multipliziert werden,
wie es die Position erfordert (beginnend rechts mit Null):

die Zahl 101 hat den Wert 1*2° =4
0*2" =0
1*2° =1 (Dezimal: 5).

Die Stellenwerte sind die Potenzen der Basis. Die Basis sind die Anzahl der Ziffern,
die das Zahlensystem hat. Das Dualsystem arbeitet zur Basis 2. Ein Byte hat 8 Bits,
das sind 2 *2*2*2*2*2*2*2 =256 Kombinationsmoglichkeiten.

Beispiel 3:

Das hexadezimale Zahlensystem hat insgesamt 16 Ziffern (von 0 - 9 und zusiitz-
lich die "Ziffern" A, B, C, D, E und F), es arbeitet also zur Basis 16. Folglich hat die
hexadezimale Zahl AE3 den folgenden dezimalen Wert:

die Zahl AE3 hat den Wert A(=10) * 16 * = 2560
E(=14) *16 ' = 224
3 *16° = 3 (Dezimal: 2787).

Der Computer arbeitet generell mit dem Dualsystem, der Mensch rechnet mit dem
Dezimalsystem. Das hexadezimale System wird lediglich benutzt, damit es fiir Men-
schen leichter ist, den Inhalt eines Bytes (oder besonders von mehreren Bytes) be-
nennen zu konnen.

Die praktische Bedeutung des Oktalsystems ist gering, im Wesentlichen findet man
ihn als ein theoretisches Thema in EDV-Lehrbtichern.

28

3.2 Informationsformen

3.2

Informationsformen

Beim Verarbeiten von Daten durch den Computer missen unterschiedliche Arten
von Informationen unterschieden werden:

Textcodierung im Computer

Codierte Einzelinformationen, die aus fest vereinbarten Zeichen eines Alphabets,
aus Ziffern oder aus Zeichen eines Sachgebiets wie Physik oder Mathematik be-
stehen. Fir diese Zeichen kann die Art der Bitverschliisselung und die inhaltli-
che Bedeutung der bits einmalig und allgemeingliltig festgelegt werden. Die Zu-
ordnung der Bedeutung zu den Bitfolgen wird Code genannt. So gibt es z.B.
den ASCII- und den EBCDIC-Code.

Eine Codetabelle legt nicht nur die Bitfolgen fest, sondern auch die textliche Be-
schreibung fir jedes vereinbarte Zeichen ("benannte Zeichen"). Nicht festgelegt
ist in einem Code die Darstellungsform (also das Aussehen oder die Groe) des
Zeichens. Die englische Bezeichnung fiir Zeichen ist "character".

Zahlencodierung im Computer

Zahlen bestehen aus einzelnen Ziffern (und damit aus mehreren Character). Sie
werden aber als ganze Einheit behandelt und rein bindr verschlisselt. Dabei
wechselt das Stellenwertsystem. Man geht ganz vom Dezimalsystem weg und
benutzt fir die komplette Zahl die Stellenwertigkeit 2.

Bei dieser Art der maschinellen Darstellung beno6tigt man keine Code-Tabelle,
sondern orientiert sich allein an der Stellenwertigkeit des Zahlensystems. Die
jeweilige Programmiersprache legt dann nur noch fest, wieviel Stellen fir Zah-
lendarstellung reserviert werden (man spricht dann von "eingebauten Datenty-
pen", z.B. ist der eingebaute Datentyp int bei Java immer 4 Bytes lang).

Weil bei der Wandlung einer Dezimalzahl in die Zweierdarstellung Ungenauig-
keiten entstehen konnen, gibt es das BCD-System, bei dem jede einzelne Ziffer
einer Dezimalzahl einzeln in einen Bindrwert verschlisselt wird. Wir werden
auch hierauf zurickkommen.

Multimedia-Daten im Computer

"Uncodierte" Informationen, fiir die es keine festgelegten Zeichen oder Muster
gibt, sondern eine praktisch unbegrenzte Anzahl von unterschiedlichen Auspri-
gungen und damit Interpretationen. So gibt es fir Bilder z.B. die punktformige
Anordnung von bits in einer Bitmap-Datei ("pixel") oder fiir akustische Informa-
tionen oder fiir Videos Bitfolgen in kompletten Dateien. Hier gibt es keinen Zei-
chensatz und keine byteweise Ordnung, sondern nur eine (unbegrenzte) An-
einanderreihung von einzelnen Bits, die von speziell dafiir geschriebenen Pro-

29

3 Informationen maschinell darstellen

grammen interpretiert werden. Dies geschieht hiufig unter Angabe des so ge-
nannten Mime-Typs, z.B. image/gif.

Das folgende Beispiel zeigt die Verarbeitung einer Datei mit der Dateiendung .wav
(Audio-Datei). Dies ist das einzige Beispiel in diesem Buch, das mit Multimedia-
Daten (Sound, Video, Bilder oder Grafiken) arbeitet. Im Regelfall werden dafiir Spe-
zialkenntnisse, insbesondere auch Kenntnisse in der Programmierung von grafischen
Benutzeroberflichen, bendtigt, und das ist nicht Thema dieses Buches.

Programm Sound01: Audio-Datei abspielen per Java-Programm

import Jjava.net.*;
import Jjava.applet.*;
public class Sound01l {
public static void main (String[] args) throws Exception {
URL url = new URL("file://c:/windows/media/chord.wav");
AudioClip clip = Applet.newAudioClip (url);
clip.play ();
}

}

Hinweise zu den Beispielen in diesem Kapitel

Das Verstindnis fiir die interne Darstellung und fir die unterschiedlichen Codes
wird spiter immer wieder benétigt, z.B. bei den bitweisen Operatoren (Kapitel 7)
oder bei der Diskussion um multinationale Anwendungen.

Ubung zum Programm Sound01

Denken Sie beim Testen des Programms daran, den Lautsprecher zu aktivieren. An-
dern Sie danach das Programm so, dass eine (beliebige) andere Sound-Datei abge-
spielt wird.

Die bekanntesten Verschliisselungsverfahren fiir Zeichen sind der ASCII-Code (ver-
breitet im PC- und UNIX-Bereich), der EBCDIC-Code (verbreitet auf den IBM-
Grofirechnern) und der Unicode. Die ersten beiden gruppieren die einzelnen Bits zu
Einheiten von 8 Nullen und Einsen - genannt Bytes. Bytes sind in den heute verbrei-
teten Rechnern die kleinste adressierbare Einheit. Sie bieten die 2" Moglichkeiten,
insgesamt also 256 verschiedene Verschliisselungen, die mit einer Bedeutung belegt
werden konnen. Im Unicode dagegen sind viele Tausend Zeichen verschliisselt. Da-
fiir stehen 16 bits zur Verfiigung.

30

3.3 ASCII-Code

3.3 ASCII-Code

Im ASCII-Code (American Standard Code for Information Interchange) wird jedes
Zeichen mit 7 bit codiert. Es sind also 128 unterschiedliche ASCII-Zeichen moglich,
und dies sind (wie der Name schon vermuten lisst) die Zeichen aus dem englischen
Sprachraum (Alphabet und Ziffern). Eine gebriuchliche Bezeichnung fir diesen Co-
de ist deshalb auch US-ASCIIL. Sonderzeichen aus anderen Sprachen, z.B. die deut-
schen Umlaute 4, Ui oder 6, sind im 7-bit-ASCII-Code nicht vorgesehen. Urspriinglich
bendotigten die Computer ein weiteres Bit pro Zeichen als Priifbit, so dass auch der
US-ASCII-Code mit Bytes (= 8 bits) arbeitet.

Die 128 Zeichen des ASCII-Codes sind durchnummeriert. In einer Code-Tabelle
werden den Buchstaben des Alphabets, den Ziffern und einigen Sonderzeichen die
Platznummern 0 - 127 zugeordnet, und fir die interne Darstellung werden diese de-
zimalen Platznummern umgewandelt in eine bindre Darstellung. So hat der Grog-
buchstabe * A’ die Platznummer 65 (auch Dezimalwert 65 genannt). In der biniren
Darstellung bekommen die 7 bits des ASCII-Codes eine Stellenwertigkeit von 1 be-
ginnend und dann von rechts nach links jeweils den doppelten Wert. Fir den Buch-
staben A sieht die maschinelle Darstellung und ihre Interpretation also wie folgt aus:

Bitmuster 0 1 0 10 01 0] 01

Stellenwert 128 | 64 [32|16 8| 4] 2] 1

Umrechnung | - 64 |- |- |- |- -1 64 +1 = 65

Abb.3.1: Binire Darstellung des Buchstabens * A’ im ASCII-Code

Sie finden im Anhang C eine Code-Tabelle. Diese enthiilt zwar die ersten 256 Zei-
chencodierungen des Unicode (siehe Abschnitt 3.6), doch die ersten 128 Zeichen
sind identisch mit dem ASCII-Code. Dort sind z.B. die Platznummern 65 und 66 wie
folgt beschrieben:

Platz- hexadezimaler | Symbol | Name

Nr. Wert

65 0x41 A Latin Capital Letter A
66 0x42 B Latin Capital Letter B

Abb. 3.2: Ausschnitt aus ASCII-Tabelle fiir Platz 65 und Platz 66

Die hexadezimale Darstellung dient ausschlieSlich dem Zweck, die Bitfolge eines
Zeichens prignant wiederzugeben. Es ist eben einfacher zu sagen, das Byte enthilt
"hex. 41" als "1000001". Zur Kennzeichnung, dass dies ein hexadezimaler Wert ist,
werden die beiden Zeichen Ox dem eigentlichen hex-Wert vorangestellt. Weder mit

31

3 Informationen maschinell darstellen

dem biniren Inhalt noch mit der hexadezimalen Bezeichnung des Inhalts wird der
Programmierer im Programm normalerweise arbeiten.

Programm Ascii01: Arbeiten mit dem Buchstaben’ A’ im Java-Programm

public class AsciiO1l {
public static void main (String args[]) {
char zeichen = 'A';
System.out.println (zeichen);

}

Es ist auch moglich, anstelle des Zeichens dessen Platznummer in der Tabelle des
ASCII-Codes auszugeben.

Programm Ascii02: Ausgeben der Platznummer eines Zeichens

public class Ascii02 {
public static void main (String args[]) {
char zeichen = 'A';
System.out.println ((byte)zeichen);

}

Sie werden aber in den nachfolgenden Beispielen sehen, dass fir internationale
Programme (gekennzeichnet durch mehrere Sprachen, unterschiedliche Sonderzei-
chen, kulturelle Besonderheiten bei der Darstellung von Zahlen oder Datumsanga-
ben usw.) es hiufig notwendig ist, Zeichen umzuformen oder individuell zu inter-
pretieren. Dazu sind detaillierte Kenntnisse der Codierungsformen und der verwen-
deten Zeichencodes erforderlich.

Deswegen soll das nichste Programm demonstrieren, wie der Programmierer so-
wohl den binidren Inhalt als auch die hexadezimale Reprisentation eines Bytes aus-
geben kann.

Programm Ascii03: Binarer und hexadezimaler Wert eines Zeichens

public class Ascii0O3 {
public static void main(String args[]) {
char zeichen = 'A';
System.out.println(Integer.toBinaryString(zeichen));
System.out.println (Integer.toHexString (zeichen));

}

Die ersten 32 Zeichen des ASCII-Codes sind fiir Steuerzeichen ("control character")
reserviert, etwa fir die Steuerung eines Druckers. Diese (undruckbaren) Kontrollzei-

32

3.3 ASCII-Code

chen sind historisch begriindet und haben heute keine grofe Bedeutung mehr. Aus-
nahmen sind:

Tabulator Dezimalwert 9
Line Feed (LF, Zeilenvorschub) Dezimalwert 10
Carriage Return (CR, Wagenrticklauf) Dezimalwert 13

Mit dem Dezimalwert 32 wird das Leerzeichen (space, blank) dargestellt. Man beach-
te: Auch das Leerzeichen ist fir den Digitalrechner ein Schriftzeichen, nur dass es
meistens ausschlieflich durch die Hintergrundfarbe am Bildschirm dargestellt wird.
Ab Dezimalwert 33 werden in der Tabelle die wichtigsten druckbaren Zeichen (aus
der englischen Sprache) verschlisselt: die lateinischen Gro3- und Kleinbuchstaben A
- Z, die Ziffern 0 - 9 und einige Sonderzeichen.

Ubung:

Bitte ermitteln Sie anhand der Tabelle im Anhang C, wie das Zeichen ' > (Grofer
als) im ASCII-Code dargestellt wird. Geben Sie fir dieses Zeichen den hexadezima-
len Wert, den Dezimalwert und den biniren Wert an. Uberpriifen Sie Ihre Uberle-
gungen per Programm.

Im nichsten Beispiel wollen wir einen Bindrwert umwandeln in ein Zeichen.

Programm Ascii04: Bitstring in Zeichen umwandeln

public class Ascii04 {
public static void main (String args[]) {
String bits = "1000001";
System.out.println ((char)Integer.parselnt (bits, 2));

}

Es ist auch moglich, einen hexadezimalen Wert in eine Dezimalzahl umzuwandeln.
Das nichste Programm tibernimmt diese Aufgabe und interpretiert zusitzlich diesen
Dezimalwert als Positionsnummer in der Codetabelle.

Programm Ascii06: Hexadezimalen String in Character umwandeln

public class Ascii06 {
public static void main (String args[]) {
String bits = "5A";
System.out.println((char)Integer.parselnt (bits, 16));

33

3 Informationen maschinell darstellen

34 Erweiterungen des ASCII-Code

Aufbauend auf 7-bit-ASCII existieren mehrere erweiterte Zeichensitze ("codepages")
mit nationalen Sonderzeichen. Prifbits sind im ASCII-Code seit vielen Jahren nicht
mehr erforderlich, deswegen konnte man das achte Bit auch fir die Zeichenver-
schlisselung verwenden. Dadurch hat sich der "Wertebereich" verdoppelt, anstatt
128 Verschliisselungsmoglichkeiten gibt es somit 256 verschiedene Bitkombinationen
in einem Byte.

Weil auch diese Moglichkeiten nicht ausreichen, um alle existierenden Zeichen zu
codieren, gibt es eine Vielzahl von unterschiedlichen Zeichensitzen ("Co-
depages"), in denen fir die 128 zusitzlichen Moglichkeiten linder- oder plattform-
spezifischen Sonderzeichen zugeordnet sind. Sehr gebriuchlich ist die von ISO defi-
nierte Zeichensatz-Familie mit der Bezeichnung ISO8859-x. Diese wird von Li-
nux/Unix und auch von MS-Windows (auer im DOS-Fenster) verwendet. Es gibt 15
verschiedene Ausprigungen, alle enthalten 256 Zeichen, wobei die ersten 128 Zei-
chen identisch sind mit dem ASCII-Zeichensatz und die nichsten 128 Zeichen je
nach Kulturkreis oder Land unterschiedlich belegt sind. So gibt es z.B.

ISO 8859-1 LATIN-1, enthilt die westeuropiischen Sonderzeichen

ISO 8859-2 LATIN-2, osteuropiische Sprachen wie Polnisch, Kroatisch...
ISO 8859-5 kyrillisch, wie Russisch, Ukrainisch, Bulgarisch

ISO 8859-7 neugriechisch

Bei MS-Windows werden folgende Codepages verwendet:

CP 1252 (fur MS-Windows-Programme, z.B. MS-Word...)

CP 437 (DOS Latin-US - Amerikanisch, fiir DOS-Fenster von MS-Windows)
CP 850 (DOS Latin-1 (West - Europa)

CP 852 (DOS Latin-2 (Ost - Europa)

Viele Codierungen sind mehrfach belegt. Die Bedeutung einer bestimmten Bitkom-
bination kann nur in Verbindung mit der eingestellten Codepage erkannt werden.
Dieser fehlende universelle Standard behindert natirlich den internationalen Daten-
austausch und hat zur Folge, dass viele Programme nicht kompatibel sind.

Die Tabelle im Anhang C zeigt fir die Platznummern 128 bis 255 zusitzlich zum U-
nicode die Bedeutung, die diese Bitkombinationen in der Windows-Welt haben. Da-
bei ist der Codeset CP1252 praktisch identisch mit dem westeuropiischen Standard
ISO 8859-1 und damit auch mit den ersten 256 Stellen des Unicodes, allerdings mit
einer Ausnahme. Im ISO 8859-1 werden die Zeichen 128 - 159 nicht genutzt, Micro-
soft jedoch hat diese mit einer Bedeutung belegt.

Programm Ascii07: Arbeiten mit dem Euro-Zeichen

public class Ascii0O7 {
public static void main(String args([]) {
char zeichen = '€'; // Euro-Zeichen

34

3.5 Rein bindire Codierung von Zahlen

System.out.println (zeichen);

}
Ubungen zum Programm Ascii07 (nur fiir MS-Windows)

Ubung 1: Editieren Sie das Programm. Das Eurozeichen sollte auf der Tastatur (beim
Buchstaben E?) vorhanden sein. Laut CP1252-Codepage hat dieses Zeichen die Platz-
nummer 128. Wenn Sie das Programm jedoch in einem DOS-Fenster testen, wird der
Inhalt dieses Zeichens aber als * C’ interpretiert und ausgegeben, denn dort gilt die
Codepage 850.

Ubung 2: Wenn Sie jedoch die Ausgabe des Programms umleiten durch folgenden
Befehl in der Commandline der DOS-Box: "java Ascii07 > datei.txt", kon-
nen Sie sich anschlieBend den Dateiinhalt in einem Editor oder Textprogramm an-
schauen - dort steht das €-Zeichen.

Was konnen Sie aus diesen Ubungen lernen? Auf jeden Fall die Erkenntnis, dass nur
die ersten 128 Zeichen des ASCII-Codes genormt sind. Alle anderen Zeichen, insbe-
sondere auch die deutschen Umlaute, konnen Probleme bereiten, sobald Sie die
Plattform (oder auch nur das Programm) wechseln. Natiirlich ist diese fehlende
Kompatibilitit der Daten in der Praxis nicht akzeptabel, und Java bietet auch daftr
eine sehr komfortable Losung. Sie werden diese spiter kennenlernen.

3.5 Rein binére Codierung von Zahlen

Im ASCII-Code sind auch die Binirverschliisselungen fiir die 10 Ziffern des Dezimal-
systems enthalten.

Ubung

Bitte kliren Sie anhand der Tabelle im Anhang C, wie die Ziffer 2 im ASCII-Code als
Zeichen verschlisselt wird (hexadezimal).

Eine Ziffer, die als Zeichen angesehen wird, wird anderes codiert als eine Ziffer, die
eine Zahl ist. Eine Zahl kann aus mehreren Ziffern bestehen, z.B. besteht die Zahl
270 aus drei Ziffern. Um diese Zahl als Ganzes zu codieren, benotigt man keinen
ASCII-Code, sondern man verschliisselt diese Dezimalzahl als rein bindren Wert.
Hierbei geht man vom Dezimalsystem weg und verwendet die Stellenwertigkeit des
Dualsystems. Man codiert also anhand der Stellenwertigkeit der einzelnen Bits.

Abb.3.3: Stellenwertigkeit der einzelnen Bits (Dezimalzahl 270 rein binir)

35

3 Informationen maschinell darstellen

Programm Ascii08: Bitkombination im Arbeitsspeicher fiir die Zahl 270

public class Ascii08 {
public static void main (String args|[]) {
int zahl = 270;
System.out.println (Integer.toBinaryString(zahl));

}

Fir die rein bindre Codierung spielt die ASCII-Tabelle keine Rolle, denn es wird hier
nicht ein einzelnes Zeichen, sondern die Zahl als Ganzes verschlusselt. Aus der Ta-
belle Abb. 3.3 kann man z.B. ablesen, dass die Dezimalzahl 65 rein binir wie folgt
codiert wird: 1000001 - und bitte beachten Sie, dass sie damit genau so codiert wird
wie der GroBbuchstabe * A’ .

Ubung

Codieren Sie die Zahl 2 rein binir und vergleichen Sie das Ergebnis mit der vorheri-
gen Ubung, bei der die einzelne Ziffer (das Zeichen) * 2’ verschliisselt wurde.

Die Interpretation einer Bitkombination hingt also davon ab, ob eine Zahl oder ein
Zeichen (char) an dieser Stelle erwartet wird. Anders gesagt: Es gibt nicht nur ver-
schiedene Darstellungen eines Wertes (abhingig vom verwendeten Code), sondern
die Bitfolgen konnen auch dadurch eine unterschiedliche Bedeutung bekommen,
dass sie unabhingig von einem Code als rein binire Zahl interpretiert werden.

3.6 Unicode
3.6.1 Arbeiten mit dem Unicode-Standard

Der Unicode-Standard wurde urspriinglich entworfen als eine feste 16-bit-
Verschlisselung pro Zeichen. Spiter kamen Ergidnzungen auf mehr als 2 Bytes pro
Zeichen hinzu, die aktuelle Version Unicode 4 erweitert den Bereich auf 21 bit. Au-
Berdem gibt es historische Varianten, die zwar untereinander kompatibel sind, aber
z.T. andere Bezeichnungen haben: Double-Byte-Character-Set, Universal Character
Set (UCS), Standard ISO 10646. Ausfiihrliche Informationen zum Thema Unicode
finden Sie unter der Adresse

http://www.unicode.org.

Der Unicode fasst die Bits zu Gruppen von jeweils 16 (in neueren Versionen bis zu
32) Nullen und Einsen zusammen, um ein Zeichen zu verschliusseln. Java benutzt
den 16-bit-Unicode. Dieser bietet 2", das sind 65.536 unterschiedliche Bitkombinati-
onen. Das ist ausreichend, um alle weltweit gebriuchlichen Zeichen wie Arabisch,
Hebriisch, Griechisch, Kyrillisch und auch chinesische, japanische und koreanische
Schriftzeichen kodieren zu konnen. Im Unicode konnte man alle bestehenden Zei-
chensitze zusammenfihren und zusitzlich noch die Codierung von vielen mathema-

36

3.6 Unicode

tischen und technischen Sonderzeichen standardisieren. Fir Internet-Anwendungen
ist der Unicode unverzichtbar.

Die Tabelle im Anhang C zeigt die Unicode-Zeichen von 0x0000 - 0xO00FF (die ersten
128 Zeichen von 0000 - 007F sind identisch mit dem ASCII-Code). Aufgefiihrt wer-
den die festgelegten Zeichen und ihre dezimale und hexadezimale Reprisentation
(hier "codepoint" genannt) sowie die offiziellen Namen der Zeichen. So hat z.B. das
kleine "4" den Codepoint 00E4, das "8" den Codepoint 00DF und das Eurozeichen
den Codepoint 20AC.

Wie kommen die Unicodezeichen in den Computer?

Theoretisch ist durch die Einfihrung des weltweit giiltigen Unicodes jedes Kompati-
bilititsproblem beim Datenaustausch gelost. Praktisch gilt dies - jedenfalls derzeit -
noch nicht. Denn die Frage, wie die Unicode-Zeichen eigentlich entstehen, ist noch
nicht befriedigend geldst. Die heutigen Eingabegerite und Editoren kennen hiufig
nur die Byte-Verschliisselung. Die Tastatur benutzt fir die Eingabe den 7-bit-ASCII-
Code, erginzt um nationale Besonderheiten fiir die nichsten 128 Kombinationen.
Das bedeutet, dass beim Eintippen von Zeichen tber die Tastatur eine Konvertie-
rung dieser 8-bit-ASCII-Codierung in den Unicode erfolgen muss. Allerdings gibt es
bei einigen Editoren die Moglichkeit, mit Hilfe von Umschalttasten (z.B. ALT-C-
INSERT) Unicodezeichen einzugeben.

Umgekehrt gibt es auch bei der Ausgabe von Unicodezeichen die Notwendigkeit,
die Zeichen zu transformieren. Zunichst einmal sind die heutigen Betriebssysteme
noch nicht in der Lage, durchgehend mit dem Unicode zu arbeiten, obwohl einige
Dateisysteme wie NTFS in Windows und diverse in Linux bereits Unicodezeichen
erlauben. Aber die Peripheriegerite (Drucker, herkommliche Datei- und Daten-
banksysteme auf externen Datentrigern wie Magnetplatten oder DVDs) arbeiten
weitgehend noch mit 8-bit-ASCII-Informationen. Also ist auch bei der Ausgabe der
Daten eine Umsetzung erforderlich von dem intern in der JVM verwendeten Unicode
in den Zeichensatz, den das Betriebssystem verwendet.

Sie werden im Kapitel 6 (Eingabe und Ausgabe) weitere Informationen zu diesem
Thema bekommen. Dort gibt es ausfihrliche Hinweise, wie mit Hilfe von Umset-
zungstabellen ("encoding schema") aus ASCII-Daten Unicode-Zeichen transformiert
werden und umgekehrt.

Unicode-Zeichen innerhalb eines Programms verwenden

Die ersten 256 Zeichen des Unicodes sind in der Regel auf der Eingabetastatur ver-
fiigbar. Fir weitere Sonderzeichen fehlt hiufig eine bequeme Eingabemoglichkeit.
Eine Moglichkeit, trotzdem Unicodezeichen zu verwenden, besteht darin, diese di-
rekt im Programm zu erzeugen. Dazu sucht man zunichst in der Unicode-Tabelle
das entsprechende Symbol und den dazugehorigen hexadezimalen Wert. Die Einga-
be erfolgt dann in Form von so genannten "Unicode Escapes". Diese haben die

37

3 Informationen maschinell darstellen

Form \uxxxx, wobei xxxx der hexadezimale Wert ist, den das Zeichen im Unicode
hat, der Codepoint. Der Prifix \u steht fir Unicode.

Im nachfolgenden Programm soll ein Unicode-Zeichen bearbeitet werden, das auch
mit einem "normalen" Font angezeigt werden kann: das Prozentzeichen %. Ange-
nommen, unsere Tastatur enthilt dieses Zeichen nicht, dann kénnte es im Programm
erzeugt werden. Das Zeichen hat im Unicode den Codepoint 0025.

Programm Unicode01 : Unicode-Zeichen im Programm erzeugen

public class UnicodeO1l {
public static void main(String argsl[]) {
char ¢ = '"\u0025"';
System.out.println(c);

}

Das %-Zeichen ist ein ASCII-Zeichen, es liegt im Bereich der ersten 128 Zeichen,
und dort ist der Unicode identisch mit dem ASCII-Code. Etwas problematischer wird
das Arbeiten mit Zeichen, die zum erweiterten ASCII-Code gehoren, also im Bereich
0080 - OOFF liegen. Hier wird ein "Encoding" notwendig, und dafiir wird eine Um-
setzungstabelle eingesetzt.

3.6.2 Java-Encodings UTF-8, UTF-16 und ISO-8859-1

Der Unicode selbst ist lediglich eine Tabelle, in der jedes Zeichen eine Platznummer
(Codepoint) hat. Damit ist zwar die Bedeutung eindeutig festgelegt, aber der Code-
point sagt noch nichts dartiber aus, wie die Zeichen im Computer oder auf einem
Datentriger wirklich abgebildet werden. Die einfachste Form wire es, wenn jedes
Zeichen in 2 Bytes (bzw. 3 oder 4 Bytes beim erweiterten Unicode) gespeichert
wirde. Das ist aber z.B. immer dann uneffektiv, wenn die Daten zum Grofteil im
Bereich von \u0000 bis \uOOFF liegen, weil dafiir ein Byte ausreichen wiirde.

Aus diesem Grund wurden die verschiedenen Versionen des "Universal Character
Set Transformation Format" (UTF) entworfen. Wiihrend Java intern mit dem UTF-16-
Format arbeitet, bei dem alle Zeichen in 16 bit verschliisselt werden, kann fiir die
Auslagerung der Daten auf einem Datentrdger ein anderes Format, z.B. UTF-8, ge-

38

3.6 Unicode

wihlt werden. Dieses Format produziert kompakte Dokumente fiir englischsprachige
Texte. Der Transformationsvorgang wird "Encoding" genannt.

Derzeit sind drei Encodings im Einsatz: UTF-8, UTF-16 und UTF-32. Die Zahlen 8, 16
oder 32 geben an, wieviel Bits standardmiBig fiir die Speicherung eines Zeichens
genommen werden.

UTF-16

Java arbeitet intern ausschlieBlich mit dem UTF-16-Encoding. Das bedeutet, dass ein
(normales) Zeichen innerhalb der JVM mit 16 bit verschliisselt wird. Wenn das nicht
reicht, trifft das System besondere Vorkehrungen, um grofere Einheiten zu bilden,
d.h. dann wird ein Zeichen (ausnahmsweise) in 3 oder 4 Bytes verschlisselt und
entsprechend gekennzeichnet. Das ist relativ aufwindig, aber man geht davon aus,
dass es sich dabei um Ausnahmen handelt.

UTF-8

Wenn die zu speichernden Zeichen zum GrofSteil den westeuropiischen Sprachen
entstammen, ist der UTF-16-Code natiirlich die reinste Platzvergeudung, denn dann
reicht 1 Byte pro Zeichen aus. Darum wurde der UTF-8-Standard definiert. Dieses
Encoding kann z.B. angegeben werden beim Schreiben von Texten auf externe Da-
tentriger oder beim Austausch mit anderen Systemen. Innerhalb der JVM bleibt es
beim UTF-16-Encoding fiir char- und String-Typen (siche Kapitel 4), lediglich fiir
den Datenaustausch kann etwas anderes angegeben werden.

ISO-8859-1 Latin

Bei der Installation des JDK ist eine Default-Umsetztabelle - abhingig von dem Lin-
dercode - festgelegt worden. In Westeuropa ist dies ISO-8859-1 Latin-Alphabet. Die-
se Tabelle ist weitgehend identisch mit den ersten 256 Zeichen der Unicode-Tabelle.

Eine Ausnahme ist z.B. das Eurozeichen. Im Default-Characterset 1SO-8859-1 hat das
Eurozeichen die Platznummer 80, im Unicode dagegen den Codepoint 20AC. Wir
werden nun kliren, was passiert, wenn mit diesem Zeichen gearbeitet wird.

Programm Unicode02: Zeichen auRerhalb des ASCII-Code

public class Unicode02 {
public static void main(String args/(]) {
char ¢ = '"\u20AC';
System.out.println(c);

}

Bei der Ausfihrung dieses Programms z.B. in einer DOS-Box unter MS-Windows
wird das Eurozeichen nicht angezeigt. Das liegt daran, dass Microsoft dort mit einem
anderen Characterset arbeitet (mit CP850). Aber wenn Sie die Ausgabe des Pro-
gramms Unicode02 umleiten in eine Datei (mit dem Command: java Unicode02 >

39

3 Informationen maschinell darstellen

a.lxt) und diese Datei dann mit einem hexadezimalen Editor anzeigen, bekommen
Sie folgenden Dateiinhalt angezeigt:

it =8| x|
Datei Bearbeiten
Suchen Optionen
Hilfe

0w - = G =
=] Meulhex [a l

Oxz0: 80 0D 0&

Abb. 3.4: Inhalt der Ausgabedaten (umgeleitet in eine Datei)

Die Datei enthilt also 80 0D 0A. Das sind die drei hexadezimalen Platznummern fir
das Eurozeichen, fiir CR und fir LF im erweiterten ASCII-Code. Damit ist bewiesen,
dass eine automatische Umsetzung ("encoding") stattgefunden hat: innerhalb der
JVM gilt die Unicode-Verschliisselung UTF-16, beim Schreiben wurde das Zeichen
"\u20AC’ umgesetzt in den ASCII-Wert 80 (entsprechend den ISO-8859-1-
Codierregeln).

Ubungen Programm Unicode02

Ubung 1: Starten Sie das Programm erneut aus einer Eingabeaufforderung (DOS-
Box). Geben Sie dazu folgenden Befehl ein: java Unicode02 > test.html.
Dadurch wird die Ausgabe umgeleitet in eine HTML-Datei. Diese konnen Sie dann
in einem Browser anzeigen. Wenn dort als Codierung "Westeuropiisch ISO" gewihlt
wurde, misste das Eurozeichen angezeigt werden. Probieren Sie auch eine andere
Codierung (im Internet Explorer durch ANSICHT | CODIERUNG).

Ubung 2: Andern Sie den Codepoint von \u20AC in \u2030. Damit wird im Unicode
das Promille-Zeichen dargestellt. Testen Sie, wie dieses Zeichen von den unter-
schiedlichen Programmen dargestellt wird.

Nur zur Klarstellung: der Unicode und die Encoding-Tabellen sagen nichts aus tUber
die Art, wie die Zeichen am Bildschirm oder auf Papier dargestellt werden. Dazu
werden die Fonts mit ihren unterschiedlichen Schriftarten eingesetzt.

Und zum Nachschlagen hier noch ein Beispiel, wie der UTF-16-Unicode konvertiert
werden kann in UTF-8-Code. In dem Programm Unicode0O3 werden Informationen
des Datentyps byte als UTF-8-Code-Informationen interpretiert und in einen String
umgewandelt und danach wieder zuriick. Dabei wechselt das Encoding von UTF-8
nach UTF-16. Natiirlich kann das Programm noch nicht komplett verstanden werden,
es dient ausschlieflich der Dokumentation und kann spiter (am Ende des Buches)
bei Bedarf als Muster verwendet werden.

40

3.6 Unicode

Programm Unicode03: Musterprogramm zum Konvertieren zwischen UTF-16
und UTF-8

public class Unicode03 {
public static void main (String args[]) throws Exception {

// ASCII als nach Unicode konvertieren
byte[] ascii = {'a', 'b', 'c'};

String str = new String(ascii, "IS0O-8859-1");
System.out.println(str);

// Unicode (UTF-16) nach UTF-8 konvertieren

byte[] utf8 = str.getBytes ("UTF8");

for (int i=0; i<utf8.length; i++)
System.out.println((char)utf8[i]);

}

3.6.3 Sind alle Kompatibilitditsprobleme durch Unicode gelést?

Wenn alle Computersysteme und Programme mit dem Unicode arbeiten wiirden und
auch alle vorhandenen Datenbestinde im Unicode gespeichert wiren: ja. Solange es
jedoch noch ASCII-Informationen gibt: nein. Fur die Interpretation von ASCII-
Informationen ist es erforderlich, den bei der Kodierung benutzten Standard zu ken-
nen (z.B. ISO 8859-1). Deswegen erlauben Technologien, die den Unicode benutzen
(wie XML oder Java) die Angabe einer Codepage. Dieses "Encoding" spielt eine ent-
scheidende Rolle bei internationalen Anwendungen und beim Datenaustausch. In
Java gibt es eine ganze Reihe von Klassen, die sich mit der "Lokalisierung", also auch
mit der Auswahl der Encoding-Tabelle, befassen.

Aber die Art der Codierung (ASCII, EBCDIC, Unicode) und die Darstellung der Zei-
chensitze durch verschiedene Fonts sind nicht die einzigen Hindernisse beim Da-
tenaustausch zwischen den Computern.

Folgende Fragen sind zusatzlich zu kliaren, damit eine fehlerfreie Verstindi-
gung zwischen Partnern, die sich auf verschiedenen Plattformen befinden,
moglich ist:

e Wie ist die "Byte-Order", also die Anordnung der bits innerhalb eines Bytes.
Damit ist gemeint, wie ist die Wertigkeit der Bits vereinbart: stehen die hochwer-
tigen bits links oder beginnt man rechts mit der Interpretation? Hierfiir gibt es
die Fachausdriicke "little endian" und "big endian". Welches Verfahren gewihlt
wird, hingt u.a. ab von der Hardware des Prozessors.

e Wenn Dateien ausgetauscht werden, sind Informationen iiber das Dateiformat
notwendig. Je nach Betriebssystem gibt es Stream-orientierte Dateikonzepte, wo

41

3 Informationen maschinell darstellen

die Interpretation eventueller Steuerzeichen durch das Programm erfolgen muss,
oder Record-/Block-Formate, bei denen das Betriebssystem die Struktur erkennt.

e Sollen programmiersprachen-interne Datentypen wie z.B. Integer- oder Floating-
Point-Daten (siche Kapitel Datentypen) ausgetauscht werden? Diese sind nur in
Ausnahmefillen kompatibel. So gibt es zwar z.B. in Java und in C++ den ein-
gebauten Datentyp int, doch nur in Java ist genormt, wieviel Bytes fir solche
Zahlen vorgesehen sind.

e Werden Textdaten, Informationen aus Datenbanken, objektorientierten Anwen-
dungen ("serialisierte Instanzen") oder Multimediadaten wie Tone oder Bilder
ausgetauscht? Allein die Darstellung eines Zeilenwechsels in Textdateien wird
unterschiedlich codiert: in MS-Windows durch die ASCII-CR/LF-Zeichen, in Unix
nur durch ein LF-Zeichen und im Apple-System u.U. nur durch ein CR-Zeichen.

Zusammenfassung

Im Arbeitsspeicher und auf externen Datenspeichern eines Computers finden sich
niemals Zeichen oder Dezimalzahlen, sondern immer nur Bitmuster. Diese werden
interpretiert anhand von Codetabellen. Diese Tabellen enthalten Regeln fir die Zu-
ordnung von Zeichen zu bindren Zahlen. Jedem Zeichen ist eine eindeutige Platz-
nummer zugewiesen, die dann binir verschlisselt wird. Es gibt verschiedene Code-
tabellen: ASCII, EBCDIC oder Unicode.

In Java werden die Werte von char- und String-Variablen intern als Unicode (UTE-
16-Encoding) gespeichert. Auch Literale (siehe Kapitel 5) kénnen Unicode-Zeichen
enthalten. Auflerdem konnen Kommentare und Identifier aus Unicode-Zeichen zu-
sammengesetzt sein.

Da sowohl die Dateisysteme als auch die Ein- und Ausgabegerite sowie die Pro-
grammiertools heute noch nicht durchgingig mit Unicode arbeiten, ist immer dann,
wenn die Daten die "Java Virtuelle Maschine" (JVM) verlassen, eine Konvertierung
notig. Das gleiche gilt fiir das Einlesen der Daten in die JVM.

Die Transformation von Bytecodierungen in Unicode ist nur moglich, wenn zusitzli-
che Informationen (iber die verwendete Codepage) zur Verfligung stehen.

Der Quelltext eines Java-Programmes kann Unicode enthalten, entweder direkt mit
geeigneten Editoren eingegeben oder als so genannte Escape-Sequenz \uxxxx, wo-
bei xxxx die Codepoint-Zahl des Zeichens ist.

42

Klassen und andere Typen beschreiben ("declaration”)

Java ist eine typisierte Programmiersprache. Das bedeutet, dass die zu verarbeiten-
den Daten, die im Arbeitsspeicher stehen, zu einem bestimmten Datentyp gehoren
miussen. Dies wird vom Compiler Gberprift, z.B. bei einer Wertezuweisung an den
Speicherplatz.

In diesem Kapitel erfahren Sie,

e welche Bedeutung die Datentypen haben,

e wie der Datentyp fiir einen Arbeitsspeicherplatz festgelegt wird,

e welche Datentypen es gibt,

e wodurch sich primitive Datentypen von Referenzdatentypen unterscheiden.

In einer objektorientierten Sprache wie Java werden die unterschiedlichen Datenty-
pen in Klassen beschrieben. In den Klassen ist definiert, aus welchen Datenfeldern
sich der Datentyp zusammensetzt und welche Verarbeitungsmoglichkeiten es dafir
gibt. Viele dieser Klassen sind integrierter Bestandteil der Java-Sprache ("Standard-
Klassen"), dartiber hinaus kann der Programmierer selbst neue Klassen erstellen, d.h.
der Programmierer kann seine Typen selbst definieren. Wenn der Programmierer mit
diesen Typen arbeiten will, muss er Objekte im Speicher erzeugen.

Fir diese Erlduterungen haben wir zwei Begriffe benutzt, die fundamental sind fir
jede objektorientierte Programmiersprache: Klassen und Objekte. Haufig wird gesagt:
In Java ist alles ein Objekt. Oder: Alles, was in Java geschieht, ist in Klassen codiert.
Die Abgrenzung zwischen den beiden Begriffen ist jedoch manchmal etwas un-
scharf, und ganz falsch ist es, wenn man sie als Synonyme benutzt.

Wir werden uns auch mit diesen Themen befassen und in diesem Kapitel eine erste
Einfihrung geben in die Bedeutung von Klassen als benutzerdefinierte Datentypen.

Im nichsten Kapitel 5 werden wir uns dann ausfihrlich mit dem Erzeugen von Ob-
jekten (und einfachen Variablen) im Arbeitsspeicher befassen, bevor dann im Kapitel
8 detailliert darauf eingegangen wird, wie Sie eigene Klassen erstellen und benutzen
konnen.

Ein Schwerpunkt dieses Kapitels ist die Abgrenzung zwischen primitiven Datentypen
und Referenztypen.

Sie werden mit Referenztypen arbeiten und die acht primitiven Typen, die in die Ja-
va-Sprache eingebaut sind, mit vielen Beispielen kennen lernen.

43

4 Klassen und andere Typen beschreiben ("declaration")

41 Deklarationsanweisung

Damit Daten von Programmen verarbeitet werden konnen, ist es zwingend erforder-
lich, dass sich diese im internen Arbeitsspeicher ("Hauptspeicher", "RAM") befinden,
andernfalls ist eine Verarbeitung mit Java-Befehlen nicht moglich. Das bedeutet, dass
diese Daten vorher von einem externen Speicher gelesen oder Gber die Tastatur ein-
gegeben werden missen. Dem Interpreter miissen dann die Position der Daten im
Arbeitsspeicher, ihre Struktur, d.h. die interne Darstellung der Daten, und ihre Ver-
arbeitungsmoglichkeiten, bekannt sein. Und genau dafir gibt es die Deklarations-
anweisung in Java.

Durch die Datenbeschreibung ("declaration", Vereinbarung) wird dem Compiler be-
kannt gemacht, welche Daten das Programm verarbeitet, wie sie aufgebaut sind,
welche Verarbeitungsmoglichkeiten es fir sie gibt, und wie sie referenziert, d.h. a-
dressiert, werden. In Java sieht die Deklarationsanweisung ganz allgemein wie folgt
aus:

<datentyp> <identifier>
Beispiel fur eine Datendeklaration:
String text;

Mit dieser Anweisung wird dem Compiler mitgeteilt, dass vom Datentyp String ein
Objekt benotigt wird, das unter dem Bezeichner text adressiert werden kann. Der
Bezeichner text wird auch als Referenzvariable bezeichnet, denn er kann eine Refe-
renz auf ein bestimmtes (String-)Objekt enthalten.

Der Datentyp String ist in einer mitgelieferten Klasse der Standard-Bibliothek exakt
beschrieben. Dort steht, woraus dieser Datentyp besteht (ein String ist aus einzelnen
Zeichen zusammengesetzt) und welche Verarbeitungsmoglichkeiten dem Program-
mierer zur Verfugung stehen (z.B. kann man String ausgeben, vergleichen, kopieren
und konkatenieren, also zwei Strings zusammenfassen zu einem einzigen usw).

Eine Besonderheit ist, dass bei der Deklaration mehrere Bezeichner angegeben wer-
den konnen, z.B.

double gehalt, stundenlohn, pension, rente;

Mit dieser Deklaration werden vier Bezeichner bekannt gemacht, dabei ist der Da-
tentyp nur einmal angegeben. In der Aufzihlung werden die Bezeichner, wie fir
Aufzihlungen in Java generell tblich, durch Komma getrennt. Fir jede dieser vier
Variablen gilt, dass der Datentyp double ist. Allerdings wird diese Schreibweise nicht
empfohlen, weil die Lesbarkeit des Quelltextes dadurch leidet.

Die Deklarationsanweisung kann zusitzlich eine Klausel zum Initialisicren enthalten.
Diese Klausel (der "Initializer") besteht aus dem Zuweisungsoperator = und einem
Ausdruck, der den Anfangswert spezifiziert, z.B.

int zahl = 4700;

44

4.2 Was ist der Datentyp?

4.2 Was ist der Datentyp?

Jede Variable hat einen Datentyp. Im nachfolgenden Programm wird eine Stringvari-
able (ein Objekt) angelegt und verarbeitet. Dazu muss in der Deklaration der Name
der Klasse String angegeben werden.

Programm Deklaration01: Variable vom Typ String anlegen und benutzen

public class DeklarationOl {
public static void main(String[] args) {

String text; //Referenzvariable erzeugen
text = new String("Hallo "); //Objekt erzeugen
System.out.println (text); //Objektwert ausgeben

}
4.2.1 Warum unterschiedliche Datentypen?

Der Datentyp beschreibt

e mit welchen Operationen (Methoden) die Variablen bearbeitet werden konnen,
(evtl. gibt es auch gleichnamige Operationen mit unterschiedlicher Wirkung, ab-
hingig vom Datentyp),

e die Struktur der Objekte (wie setzen sich die Daten im Arbeitsspeicher zusam-
men und wie groR ist der Speicherbereich?).

Der Compiler Gberprift, ob der Einsatz der Daten entsprechend ihrem Typ erfolgt,
z.B. beim Initialisieren, beim Einlesen vom externen Speicher, bei einer Wertezuwei-
sung, beim Methodenaufruf und bei der Parameteriibergabe. Dies wollen wir in den
nachfolgenden Beispielen praktisch iberpriifen.

a) Der Datentyp legt die Verarbeitungsmoglichkeiten fest
Ubung 1 zum Programm Deklaration01

Bitte tiberpriifen Sie, wie der Compiler reagiert, wenn Sie versuchen, in dem Pro-
gramm mit der String-Variablen zu rechnen. Fligen Sie hierzu unmittelbar vor dem
Ausgabebefehl folgende Zeile ein: text = text - 5;

Der Umwandlungsfehler wird lauten: "operator - cannot be applied to String ", denn
durch den Datentyp wird der Befehlsvorrat (die Menge der moglichen Operationen)
fiir eine Variable festgelegt. Das Minuszeichen ist fir String-Variable nicht erlaubt.

b) Der Datentyp legt die Bedeutung von Operationen fest
Ubung 2 zum Programm Deklaration01

Bitte iberprifen Sie, wie der Compiler reagiert, wenn Sie versuchen, den folgenden
Befehl einzufiigen: text = text + 5;

45

4 Klassen und andere Typen beschreiben ("declaration”)

Die Umwandlung wird fehlerfrei durchgefithrt. Wenn Sie das Programm danach zur
Ausfithrung starten, wird auf der Console ausgegeben: "Hallo 5". Offensichtlich hat
der Compiler das Plus-Zeichen (+) nicht als arithmetischen Befehl fir eine Addition
interpretiert, sondern er hat die beiden Werte "Hallo " und 5 verkettet (concateniert)
und dann ausgegeben. Abhingig vom Datentyp fiihrt die JVM also die richtige Akti-
on aus.

Ubung 3 zum Programm Deklaration01

Bitte tberpriifen Sie, wie die Ausgabe lautet, wenn Sie im Ausgabebefehl zwei nu-
merische Werte mit dem Plus-Zeichen verbinden, z.B. println (5 + 3);

c) Der Datentyp bestimmt die Art der Datenwerte (den "Wertebereich')

Nicht jeder Datentyp basiert auf einer Klassenbeschreibung. Einige einfache ("primi-
tive") Datentypen sind in die Sprache eingebaut und kénnen vom Programmierer
benutzt werden, ohne dass eine Klassenbeschreibung als Grundlage vorliegt.

Fur jeden eingebauten Datentyp ist exakt festgelegt, wieviel Speicherplatz fir ihn
reserviert wird. So hat z.B. eine Variable vom Datentyp char eine Grofie von zwei
Bytes (wegen Unicode), und sie kann genau ein einzelnes Zeichen aufnehmen.

Programm Deklaration02: Variable vom Typ char

public class Deklaration02 {
public static void main (String[] args) {
char ¢ = 'A'";
System.out.println(c);

}

In der dritten Zeile wird die Variable ¢ vom Datentyp char definiert und gleichzeitig
initialisiert, d.h. es wird ihr ein Anfangswert zugewiesen.

Ubung 1 zum Programm Deklaration02

Testen Sie die Reaktion des Compilers, wenn Sie versuchen, die Variable ¢ mit den
beiden Zeichen > AB’ zu initialisieren.

Es kommt die Fehlermeldung: "unclosed character literal", weil nach dem ersten Zei-
chen das abschliefende Hochkomma fehlt. Eine Variable vom Datentyp char kann
nur ein einzelnes Zeichen speichern.

d) Der Compiler iiberwacht die Verarbeitung typisierter Daten

Vor einem Zugriff auf den Wert einer Variablen tberprift der Compiler (soweit
moglich), ob die Variable deklariert ist und ob ein korrekter Inhalt vorhanden ist. So
muss vor der ersten Benutzung ein passender Wert zugewiesen sein, entweder
durch eine Initialisierung oder durch eine Wertezuweisung.

46

4.2 Was ist der Datentyp?

Ubung 2 zum Programm Deklaration02

Testen Sie, ob eine fehlerfreie Umwandlung moglich ist, wenn Sie die Initialisierung
in der dritten Zeile entfernen bzw. mit // als Kommentar kennzeichnen.

4.2.2 Welche Datentypen gibt es?

Java unterscheidet grundlegend zwischen zwei Arten von Datentypen:

e Referenztypen (Klassentypen), die jeweils in eigenen Klassendateien beschrie-
ben sind. Es gibt eine Fiille von Klassen, die als Bestandteil des JDK mitgeliefert
werden ("Standardklassen"). Es konnen aber zusitzlich vom Programmierer be-
liebig viele neue Klassen erstellt werden ("benutzerdefinierte Datentypen"), da-
durch wird der Sprachumfang von Java beliebig erweitert.

e Primitive Datentypen, die in die Sprache eingebaut sind und ohne weitere
Vorkehrungen genutzt werden konnen. Java kennt 4 Arten von primitiven Da-
tentypen:

die Integer-Typen int, byte, long, short fir Ganzzahlen

die Gleitkomma-Typen float und double fiir gebrochene Zahlen
den logischen Typ boolean fur Wahrheitswerte

den char-Typ fir einzelne Zeichen.

Die primitiven Typen werden auch "einfache Datentypen" genannt, weil sie nur je-
weils genau einen Wert aufnehmen konnen. Dagegen sind die Referenztypen zu-
sammengesetzte (aggregierende) Typen, die auch mehrere Werte enthalten konnen.

Auf den grundlegenden Unterschied zwischen eingebauten Datentypen und den
Klassentypen werden wir in diesem Buch immer wieder eingehen.

Eine zusammenfassende Ubersicht der Unterschiede finden Sie im nichsten Kapitel.

47

4 Klassen und andere Typen beschreiben ("declaration")

4.3 Referenztypen

Normalerweise sind in Java die Datentypen in Klassen beschrieben, d.h. der Bauplan
fir die Zusammensetzung und die Verarbeitungsmoglichkeiten von Objekten steht in
Klassen. Die Ausnahme bilden acht Datentypen, die in die Sprache eingebaut sind.

Zum Sprachumfang von Java gehoren einige Tausend Klassen, die der Programmie-
rer fur die Deklaration von Objekten benutzen kann, z.B. die Klasse String, die Klas-
se Date oder die Klasse Point.

Die Syntax fiir die Deklaration von Referenzvariablen unterscheidet sich nicht von
der Deklaration einer primitiven Variablen. In beiden Fillen besteht die Deklaration
in der einfachsten Form aus dem Datentyp und dem Namen. So kann eine primitive
Variable wie folgt definiert werden:

char buchstabe;

Dadurch wird der Bezeichner buchstabe vereinbart und ein passender Speicherbe-
reich (in diesem Fall 2 Bytes) bereitgestellt.

Eine Referenzvariable kann wie folgt definiert werden:
String text;

Dadurch wird der Bezeichner text dem Compiler bekannt gemacht und ein "passen-
der" Speicherbereich zur Verfigung gestellt. Aber es gibt einen gravierenden Unter-
schied zu primitiven Objekten: der "passende" Speicherplatz ist nicht der Bereich fiir
das eigentliche Objekt, sondern lediglich der Speicherplatz fiir die Referenz auf das
Objekt. Das eigentliche Objekt wird durch diese Definition noch nicht angelegt. Da-
zu ist ein besonderes Schliisselwort erforderlich: new.

String text = new String("ABC");

Am Beispiel des bereits bekannten Programms Deklaration01 wollen wir jetzt ge-
nauer kliren, wie die Abldufe im Arbeitsspeicher (RAM) sind, wenn mit Referenzva-
riablen gearbeitet wird.

48

4.3 Referenztypen

Programm Deklaration01: Referenzvariable und Objekt

public class DeklarationOl {
public static void main(String[] args) {

String text; //Referenzvariable erzeugen
text = new String("Hallo "); // Objekt erzeugen
System.out.println (text); // Objektwert ausgeben

}
Beim Starten dieses Programms geschieht im Speicher folgendes:

Im ersten Schritt wird ein Platz reserviert fir die Referenzvariable text. Diese Variable
ist vom Typ String, d.h. sie kann auf ein Objekt mit den Attributen und Verarbei-
tungsmoglichkeiten, die in der Klasse String beschrieben sind, verweisen. Durch die-
se Definition hat die Referenzvariable fext aber noch keinen Inhalt ("Wert").

Im zweiten Schritt wird mit dem Schlisselwort new das Stringobjekt selbst erzeugt
Auerdem bekommt das Objekt einen Anfangswert, nidmlich "Hallo" zugewiesen.
Und - ganz wichtig! - die Speicheradresse des Objekts wird in die Referenzvariable
text ibertragen. Die folgende grafische Darstellung soll dies verdeutlichen:

Abb. 4.1: Objekt im Arbeitsspeicher

Objekte werden durch Referenzvariable manipuliert

Im dritten Schritt wird mit dem Objekt gearbeitet. Der Wert wird am Bildschirm aus-
gegeben. Dabei wird der Name (Bezeichner, Identifier) der Referenzvariablen be-
nutzt (das Objekt selbst hat keinen Namen).

Ubung zum Programm Deklaration01

Modifizieren Sie das Programm so, dass eine weitere Referenzvariable mit dem Iden-
tifier name angelegt wird. Das Objekt soll vom Typ String sein. Der Anfangswert soll
aus Threm Namen bestehen. Danach wird Uber System.out der Wert des Objekts aus-
gegeben.

Fassen wir zusammen:

49

4 Klassen und andere Typen beschreiben ("declaration")

Basis fiir die Objekterzeugung ist eine Klasse. Eine Klasse kann wie ein neuer, selbst
definierter Datentyp gesehen werden. Dort ist fiir eine Gruppe von Objekten be-
schrieben, aus welchen Daten sich die Objekte zusammensetzen und welche Opera-
tionen ("Methoden") damit ausgefiihrt werden konnen. Die Objekterzeugung erfolgt
zur Laufzeit des Programms, dazu sind zwei Schritte erforderlich:

e Deklaration der Referenzvariablen. Hierzu gehort, dass der Programmierer
festlegt, welchen Datentyp das Objekt haben soll und unter welchem Namen
das Objekt referenziert werden soll. Um den Datentyp des Objekts festzulegen,
wird bei der Deklaration der Name der entsprechenden Klasse angegeben.

e Anlegen des Speicherplatzes im Arbeitsspeicher und Initialisieren dieses Plat-
zes fir das Objekt. Dazu wird das Schliisselwort new benutzt. Man sagt auch: Es
wird eine Instanz der Klasse erzeugt. Als Ergebnis dieses Vorganges wird die
Anfangsadresse der Instanz in die Referenzvariable tbertragen.

Die Verarbeitungsmoglichkeiten fir die Instanz (das Objekt) sind in der Klasse, die
beim Deklarieren der Referenzvariablen angegeben wurde, festgelegt. Ein Lesen o-
der Andern der Objektinhalte kann nur erfolgen durch Methodenaufrufe (mit Hilfe
der Referenzvariablen).

4.4 Spezialfall: Primitive Datentypen

Das beschriebene Vorgehen, Daten als Objekte im Arbeitsspeicher zu deklarieren
und mit Methoden zu verarbeiten, ist relativ aufwindig. Deshalb haben die Java-
Entwickler entschieden, fir bestimmte Grund-Datentypen, die immer wieder beno-
tigt werden, ein vereinfachtes Verfahren zu verwenden. In der Sprachreferenz sind
insgesamt acht Datentypen festgelegt, die in die Sprache "eingebaut" sind. Sie kon-
nen benutzt werden, ohne den Weg tiber eine Klasse mit Referenzvariablen und Me-
thodenaufrufe gehen zu mussen. Diese eingebauten Datentypen werden auch "pri-
mitive" oder "einfache" Typen genannt.

Durch den primitiven Datentyp wird fiir eine einzelne Variable festgelegt:
e die Anzahl der zu reservierenden Speicherstellen,
e der "Wertebereich" fir die Daten, die dort gespeichert werden konnen,

e die erlaubten Operationen fiir diese Speicherstellen.

Die Deklaration legt noch ein weiteres Merkmal der Variablen fest: den "Scope", das
ist der Gultigkeitsbereich, der beschreibt, wo diese Variable bekannt ist und genutzt
werden kann, z.B. nur innerhalb einer Methode (lokale Variable) oder von allen Me-
thoden (weitere Hinweise dazu siehe Kapitel 16).

Sie lernen in den folgenden Abschnitten, welche einfachen Typen es gibt, wie deren
Deklaration erfolgt und wie mit ihnen gearbeitet werden kann.

50

4.4 Spezialfall: Primitive Datentypen

4.41 Deklaration mit primitiven Datentypen

Einfache Variable sind keine Objekte; sie werden direkt referenziert, d.h. der verein-
barte Identifier ist ein Platzhalter fir den Wert der Variablen. Ganz anders dagegen
die Deklaration eines Objekts: Der Identifier fir ein Objekt enthilt lediglich eine
Adresse als Verweis auf die eigentlichen Objektfelder. Technisch ausgedriickt: In ei-
nem Maschinenbefehl gibt es keine symbolischen Namen, sondern nur echte Spei-
cheradressen. So wird aus dem Identifier einer einfachen Variablen die Adresse fur
den tatsichlichen Wert, aber aus dem Identifier einer Referenzvariablen wird die A-
dresse fiir die Adresse des Objekts.

Fur die Manipulation des Speicherplatzes gibt es so genannte Operatoren. Ein hiufig
benutzter Operator ist der Zuweisungsoperator, das Gleichheitszeichen =. Damit
wird der Variablen ein neuer Wert zugewiesen. Die moglichen Operatoren werden
ausfiihrlich im Kapitel 7 besprochen. Das folgende Programm zeigt, wie eine Variab-
le vom einfachen Typ deklariert und danach (per Wertezuweisung) mit einem Wert
gefillt wird.

Programm Deklaration03: Einfache Datentypen deklarieren und verarbeiten

public class DeklarationO3 {
public static void main (String[] args) {
int zahll;
zahll = 100;
System.out.println(zahll);

}

Mit der Anweisung int zahll; wird die Variable zahl/I deklariert. Der Compiler
reserviert den benotigten Speicherplatz, abhingig vom Datentyp. In diesem Beispiel
ist als Typ int angegeben, die Abklrzung fir Integer, engl. Ganzzahl. Die Sprach-
spezifikation von Java legt fest, dass fir den Datentyp int immer 4 Bytes im Speicher
angelegt werden. Und die interne Reprisentation der Werte dieses Objekts ist damit
auch festgelegt - ndmlich rein binir. Somit wird die Dezimalzahl 100 im Arbeitsspei-
cher wie folgt dargestellt (ohne Berticksichtigung des Vorzeichens):

0000 0000 0000 0000 0000 0000 0110 0100

Die obige Bitkombination konnte vom System auch als der kleine Buchstabe * d ’ in-
terpretiert werden. Denn dieser Buchstabe hat die Platznummer 100 im Unicode.
Damit der Speicherinhalt als Zeichen (und nicht als Zahl) interpretiert wird, miisste
dann bei der Deklaration als Datentyp char (fiir Character, engl. Zeichen) angege-
ben werden.

Ubung zum Programm Deklaration03

Bitte dndern Sie den Datentyp von int auf char und testen Sie das Programm.

51

4 Klassen und andere Typen beschreiben ("declaration”)

Die eingebauten Datentypen sind das Fundament einer Programmiersprache. Des-
wegen werden wir - bevor wir uns in den nachfolgenden Kapiteln mit selbst defi-
nierten Datentypen, also mit den Klassen, befassen - zuniichst die acht Basisdatenty-
pen besprechen.

Bei der Deklaration einer einfachen Variablen wird der Speicherplatz fiir einen mog-
lichen Wert gleich reserviert. Bei der Deklaration einer Referenzvariablen dagegen
wird lediglich der Platz fur die Adresse reserviert, danach ist ein zweiter Schritt, die
Instanziierung mit new, erforderlich, damit ein Objekt entsteht. Hierzu ein Hinweis:
In einigen anderen Programmiersprachen wird zwischen Deklaration und Definition
streng unterschieden. Als Deklaration wird der Vorgang bezeichnet, der einen neuen
Bezeichner (z.B. fur eine Variable) bekannt macht, und unter Definition wird dann
nicht nur die Deklaration, sondern auch die Speicherallokation fir die Variable ver-
standen. Java unterscheidet nicht zwischen diesen beiden Begriffen.

Auf den nichsten Seiten wird jeder Datentyp detailliert besprochen. Die Beispielpro-
gramme haben immer den gleichen Aufbau. Damit Sie ein Verstindnis fir die Struk-
tur und die wichtigsten Sprachelemente dieser immer gleich aufgebauten Programme
bekommen, erldutern wir zundchst ein Musterprogramm.

Programm TypenO1: Ein typisches EDV-Programm sieht in Java so aus:

import Jjava.util.Scanner;
public class TypenOl {
public static void main(String[] args) {

Scanner eingabe = new Scanner (System.in);
int zahl;

zahl = eingabe.nextInt ();

zahl = zahl + 50;

System.out.println ("Ergebnis ist: " + zahl);

}

Das Programm hat die typische Struktur vieler EDV-Programme: Eingabe, Verarbei-
tung, Ausgabe. Zunichst werden die benétigten Ressourcen bekannt gemacht ("de-
klariert"), dann werden Daten eingelesen, im Arbeitsspeicher verarbeitet und die
Ergebnisse ausgegeben. Damit das Beispielprogramm nicht zu umfangreich wird,
enthilt es keinerlei Prifungen, auch keine Formalprifungen, die sicherstellen, dass
der Bediener auch wirklich nur Daten des geforderten Typs eingeben kann. Diese
formale Priifung sollte selbstverstindlich in einem praxisrelevanten Programm vor-
handen sein.

Im Einzelnen enthilt das Programm folgende Anweisungen:

e Die import-Anweisung in Zeile 1 enthilt Hinweise darauf, wo bereits fertig co-
dierte Klassen zu finden sind, die in diesem Programm benutzt werden. Durch
diese Angabe wird dem Programm bekannt gemacht, dass aus dem Paket ja-

52

4.4 Spezialfall: Primitive Datentypen

va.util die Klasse Scanner benotigt wird. Weitere Hinweise zu Packages und der
import-Anweisung folgen spiter.

e Danach wird ab Zeile 2 die Klasse beschrieben. In diesem Fall besteht die Klas-
se aus nur einer Methode, nimlich aus der Methode main(). Die Klasse hat den
Namen Typen0O1, sie endet nach der letzten geschweiften Klammer.

e Ab Zeile 3 ist die Methode main() definiert. Die Definition einer Methode be-
steht grundsitzlich aus den beiden Teilen Methodenkopf und Methodenblock.
Im Methodenkopf werden die Eigenschaften der Methode (Name, Zugriffsrechte,
Parameter ...) beschrieben. Der Methodenblock enthilt die eigentlichen Ausfih-
rungsanweisungen, er ist eingefasst in geschweiften Klammern und enthilt in
diesem Beispiel die folgenden funf Anweisungen:
- Definition des Eingabegeriits:

Scanner eingabe = new Scanner (System.in);

- Definition des Speicherplatzes fiir eine Variable:
int zahl;

- Einlesen eines Wertes vom definierten Eingabegeriit:

zahl = eingabe.nextInt ();

- Verinderung des Variableninhalts durch Addition:
zahl = zahl + 50;

- Ausgabe des Ergebniswertes:

System.out.println("Ergebnis ist: " + zahl);
Ubungen zum Programm Typen01

Ubung 1: Starten Sie das Programm. Die Ausfithrung des Programms stoppt an der
Stelle, wo die Eingabe einer Zahl erwartet wird. Geben Sie eine ganze Zahl ein, z.B.
25. Kliren Sie, in welcher Zeile die Verarbeitung so lange unterbrochen wird, bis der
Bediener die Eingabetaste ("Enter") driickt.

Ubung 2: Rufen Sie das Programm erneut zur Ausfiihrung auf. Kliren Sie, was pas-
siert, wenn Sie keine Ganzzahl eingeben, sondern z.B. eine Kommazahl oder einen
Buchstaben.

Uns interessiert an dieser Stelle besonders die Deklaration des Speicherplatzes fir
eine primitive Variable. Dies geschieht mit der folgenden Anweisung:

int zahl;

Das Schlisselwort intlegt den Datentyp fest, danach wird der Identifier (Bezeichner)
fur die Variable definiert. Der Datentyp int ist einer von acht "eingebauten" (oder
elementaren, einfachen oder primitiven) Datentypen. Einfache Datentypen
gehoren zum Java-Sprachumfang, sie werden Uber Schlisselworter (keywords) be-
nutzt.

53

4 Klassen und andere Typen beschreiben ("declaration”)

4.4.2 Die Datentypen fiir Ganzzahlen

Eine ganze Zahl ist eine Zahl ohne Kommastellen. Sie kann positiv oder negativ
sein. Ganze Zahlen werden in Java normalerweise rein binir gespeichert, d.h. man
verldsst die Stellenwertigkeit des Dezimalsystems und codiert die Zahl mit der Stel-
lenwertigkeit 2. Die Unicode-Tabelle wird nicht benotigt.

Java kennt vier Ganzzahlen-Typen: byte, short, int und long. Die jeweils hochste
(bzw. niedrigste) Zahl hingt ab von der Anzahl der bits, die fiir den Datentyp vorge-
sehen sind. Dabei wird in jedem Fall auch das Vorzeichen gespeichert (das hat zur
Folge, dass sich der Wertebereich halbiert!) - es gibt in Java keine vorzeichenlose
Ganzzahlentypen.

Datentyp Anzahl Anzahl Wertebereich | Wertebereich
bits Bytes von: biSI

byte 8 1 127 127

short 16 2 32767 -32768

int 32 4 2.147.483.647 | -2.147.483.647

long 64 8 9223372 Mrd. | -9223372 Mrd.

Abb. 4.2: Ubersicht der ganzzahligen Datentypen

4.4.2.1 Der Datentyp int

Der wichtigste Ganzzahlentyp ist int, das ist die Abkirzung fiir Integer, engl. ganze
Zahl. Damit wird festgelegt, dass dieser Speicherplatz nur fir die Speicherung von
ganzen Zahlen genutzt werden kann, dass dafir immer 4 Bytes im Arbeitsspeicher
zur Verfiigung stehen, unabhingig von der Plattform und von der Maschinenarchi-
tektur, und dass die 32 bits rein bindr (mit der Stellenwertigkeit von 2er Potenzen)
interpretiert werden. Weiterhin ist durch den Datentyp festlegt, welche Operationen
mit dieser Variablen erlaubt sind (z.B. rechnen, aber kein konkatenieren).

Programm Integer01: Arbeiten mit dem Datentyp int

import Jjava.util.Scanner;

public class Integer01l {
public static void main(String[] args) {
Scanner eingabe = new Scanner (System.in);
int zahl; // Deklaration
zahl = eingabe.nextInt (); // Einlesen
System.out.println ("Eingelesen wurde: " + zahl);

}

54

4.4 Spezialfall: Primitive Datentypen

Ubungen zum Programm Integer01

Ubung 1: Bitte testen Sie das Programm, indem Sie zunichst einen beliebigen Inte-
gerwert eingeben. Dann ist alles in Ordnung.

Ubung 2: Testen Sie danach mit einem nicht-numerischen Wert (z.B. mit Buchsta-
ben) oder mit einem gebrochenen Anteil, entweder in amerikanischer Schreibweise,
bei der anstelle des Komma ein Punkt eingetippt wird (z.B. 15.20) oder auch die
deutsche Schreibweise. Dann erzeugt die JVM einen Laufzeitfehler ("Exception™).

Ubung 3: Testen Sie jetzt das Programm, indem Sie eine negative Ganzzahl einge-
ben (Achtung: das Vorzeichen muss vor der Zahl stehen, also z.B. -125).

4.4.2.2 Der Datentyp byte

Das nichste Programm erwartet vom Bediener Werte vom Datentyp byte. Dies ist
ebenfalls ein numerischer Datentyp. Wie die Tabelle 4.2 zeigt, ist der hochste Wert
in einer Byte-Variablen 127. Erlduterung: Eine byfe-Variable enthilt immer ein Vor-
zeichenbit, deswegen stehen fiir die Zahl selbst nur 7 bits zur Verfiigung. Das gibt
128 Moglichkeiten, beginnend mit der Dezimalzahl 0, maximal dann 127 positiv oder
minimal 127 negativ.

Programm Byte01: Arbeiten mit dem Datentyp byte

import Jjava.util.Scanner;

public class ByteOl {
public static void main (String[] args) {
Scanner eingabe = new Scanner (System.in);
byte zahl; // Deklaration
zahl = eingabe.nextByte () ; // Eingabe
System.out.println ("Eingegeben wurde: " + zahl);
}

}

Ubung zum Programm Byte01

Ubung 1: Testen Sie das Programm zunichst mit einer korrekten numerischen Ein-
gabe (z.B. 28) und danach mit einem Wert, der auBerhalb des Wertebereichs einer
byte-Variablen liegt (z.B. 128 oder einem nicht-numerischen Wert).

Ubung 2: Erlaubt dieser Datentyp die Eingabe einer negativen Zahl (z.B. -5)?

Ubung 3: Versuchen Sie selbststindig, einen long-Datentyp zu benutzen. Losungs-
hinweise: Dazu ist in Zeile 5 der Datentyp auf long zu indern, und in der Zeile 6
lautet der Lesebefehl:

zahl = eingabe.nextLong() ;

55

4 Klassen und andere Typen beschreiben ("declaration")

4.4.3 Die Datentypen fiir die Gleitkomma-Zahlen (floating-point)

Zahlen mit Nachkomma-Stellen werden als Gleitkommazahlen bezeichnet. Java
kennt die beiden Typen float und double. Die Art der Verschlisselung (Codierung)
von Kommazahlen ist im IEEE-Standard 754 normiert - natiirlich wiederum vollig
unabhingig von der Unicode-Verschlisselung, denn es sollen keine einzelnen Zei-
chen, sondern Zahlenwerte als Ganzes codiert werden.

Bei der Gleitkommadarstellung wird die Dezimalzahl in zwei Teile zerlegt:

e in eine Festkommazahl (Mantisse), diese kann sich aus einer Vor- und Nach-
kommazahl zusammensetzen und

e in die Angabe einer Zehnerpotenz, mit der diese Zahl multipliziert wird. Dieser
Exponent zur Basis 10 bezeichnet die Anzahl Stellen, um die das Komma nach
rechts oder links verschoben wird (also "gleitet").

Allgemeine Formel:

zahl = x * 10"
X = Mantisse (= die Zahl selbst)
y = Exponent zur Basis 10 (= Anzahl Gleitstellen).

Beispiele:
10000 = 1 (Mantisse) 5 (Exponent)
325000 = 325 (Mantisse) 3 (Exponent)
0.0001 = 1 (Mantisse) -4 (Exponent)

Der Exponent gibt also an, um wieviel Stellen das Komma verschoben werden soll.
Ist er positiv, gleitet das Komma nach rechts; ist er negativ, gleitet das Komma nach
links.

In Computerprogrammen (und auch in Java) benutzt man hiufig die so genannte
normalisierte (oder wissenschaftliche) Schreibweise, bei der vor den Exponent der
Buchstabe E (oder e) geschrieben wird:

10e7 100000000
10E-7 = 0,0000010,

Diese beiden Beispiele zeigen einen der Vorteile der Gleitkomma-Darstellung: die
Schreibweise kann bei groen oder sehr kleinen Zahlen sehr kompakt sein. Der
Wertebereich ist entsprechend hoch: fir double-Typen ist die groBte Zahl 1.8E308.

Die Aufteilung in Mantisse und Exponent ist wahlfrei und kann unterschiedlich ge-
wihlt werden. So kann die Dezimalzahl 37,5900 z.B. wie folgt dargestellt werden:

3759 als Mantisse und -2 als Exponent, also: 3759E-2 oder
37590 als Mantisse und -3 als Exponent, also: 37590E-3 oder
3,759 als Mantisse und 1 als Exponent, also: 3,759%¢l.

56

4.4 Spezialfall: Primitive Datentypen

Java kennt zwei unterschiedliche Gleitkomma-Typen, float und double. Sie unter-
scheiden sich in der Anzahl Speicherstellen, die zur Verfigung stehen:

e float stellt 32 bits zur Verfigung (davon 7-8 signifikante Dezimalstellen) und

e double hat doppelt so viele, niamlich 64 bits (davon 14 signifikante Dezimalstel-
len).

Das folgende Programm speichert den Eingabewert in einer Variablen vom Datentyp
double. Damit ist es fir diese Variable in der Lage, gebrochene Zahlen (mit Komma-
stellen) zu lesen und zu verarbeiten.

Programm Double01: Arbeiten mit dem Datentyp double

import Jjava.util.Scanner;
public class Double0O1l {

public static void main(String[] args) {

Scanner eingabe = new Scanner (System.in);

double zahl; // Deklaration
zahl = eingabe.nextDouble () ; // Einlesen
System.out.println ("Eingegeben wurde: " + zahl);

}

}

Ubungen zum Programm Double01

Ubung 1: Fir die Eingabe von Gleitkommazahlen gibt es mehrere Moglichkeiten:
entweder wird die Standarddarstellung gewihlt (z.B. 5,34) oder es wird die wissen-
schaftliche Notation verwendet (z.B. 7E5). Bitte testen Sie beide Varianten. Achtung:
Das Programm ist angepasst an die deutsche Schreibweise, d.h. es wird ein Komma
erwartet und kein Dezimalpunkt.

Ubung 2: Andern Sie im Quelltext den Datentyp der Variablen zahl in float. Lo-
sungshinweis: Denken Sie daran, dass sich auch der Methodenname indert - von
nextDouble auf nextFloat. Testen Sie das Programm mit den folgenden vier Gleit-
kommazahlen: -5E2, 302e-2, 3,00E8, 2,0.

Die Gleitkomma-Darstellung hat neben dem Vorteil der kompakten Darstellung
(durch Beseitigung von uberflissigen Nullen) noch den zusitzlichen Vorteil, dass
die meisten Prozessoren schneller damit arbeiten konnen als mit bindren Ganzzahlen
oder mit binidr codierten Dezimalzahlen (diese so genannten BCD-Zahlen werden
wir spiter genauer behandeln).

Aber Achtung: Durch den Wechsel des Stellenwertsystems (vom Zehnerrechnen zur
Zweierdarstellung) konnen sich Ungenauigkeiten ergeben. Der Grund ist die be-
grenzte Stellenanzahl, die fir Bruchzahlen zur Verfigung steht. Zwar ist das Binir-
system nicht mehr oder weniger genau als das Dezimalsystem, aber es entspricht
eben nicht unserer Denkweise. Im Kapitel 7 gibt es dazu weitere Hinweise.

57

4 Klassen und andere Typen beschreiben ("declaration”)

4.4.4 Der Datentyp boolean

Eine Aussage kann wahr oder falsch sein. Um einen dieser beiden "Wahrheitswerte"
speichern zu konnen, ist in Java der Datentyp boolean eingebaut. Dieser Typ kennt
also nur diese beiden Werte, dies ist sein Wertebereich. Die beiden moglichen
Wahrheitswerte werden false und true genannt.

Programm Boolean01: Arbeiten mit dem Datentyp boolean

public class BooleanO1l {

public static void main (String args|[]) {
boolean aussage = false;
System.out.println ("Aussage ist: " + aussage);
System.out.println("d.h. sie ist nicht: " + laussage);

}

Das Programm Boolean01 java erzeugt eine Boolesche Variable und initialisiert sie
mit dem Anfangswert false. Dieser wird im ersten Ausgabebefehl unverindert ausge-
geben, im zweiten printin-Aufruf jedoch wird der Wahrheitswert durch Verwendung
des ! (Ausrufezeichen) umgekehrt (aus false wird true).

Programm Boolean(02: Einlesen eines Wahrheitswertes

import java.io.*;
import java.util.Scanner;
public class Boolean02 {
public static void main(String[] args) {

Scanner eingabe = new Scanner (System.in);

boolean wahr;

wahr = eingabe.nextBoolean(); // Eingabe
System.out.println ("Ergebnis ist: " + wahr); // Ausgabe

}
}

Ubung zum Programm Boolean02

Testen die das Programm, indem Sie jeweils einmal folgende Werte eingeben: "true",
"false" und "TRUE" und "FaLse".

Man sagt, true und false sind eingebaute Literale, und sie missen exakt so geschrie-
ben werden. Aber: die Gro- oder Kleinschreibung spielt ausnahmsweise keine
Rolle, denn die Methode nextBoolean() ist so geschrieben, dass sie den eingegebe-
nen String automatisch in Kleinbuchstaben umwandelt.

Eingesetzt wird der boolean-Datentyp fiir die Speicherung von Zustinden z.B. nach
Vergleichen. Boolesche Variablen konnen so als Schalter dienen fir das Festhalten
von Vergleichsergebnissen, von denen dann weitere Abliufe abhingig gemacht wer-
den. Die Steuerbefehle (siche Kapitel 8) arbeiten alle mit booleschen Werten.

58

4.4 Spezialfall: Primitive Datentypen

4.45 Der Datentyp char

Der Zeichentyp char ist der einzige primitive Datentyp, der mit einer vereinbarten
Codierungstabelle arbeitet, d.h. wihrend die Bitkombinationen in den vier Ganzzah-
lentypen als Dezimalzahlen interpretiert werden, wird der Inhalt einer char-
Variablen als ein einzelnes Zeichen interpretiert. In Java wird intern fir jedes Zei-
chen aus dem Unicode die vereinbarte Platznummer (codepoint) gespeichert, wenn
der Datentyp char vereinbart wird. Im Unicode ist fir jedes Zeichen die Codierung
festgelegt (anders als bei Zahlen, wo nicht die Ziffernzeichen einzeln verschlisselt
werden, sondern wo der Zahlenwert als Ganzes umgerechnet wird in eine Dualzahl
mit der Stellenwertigkeit 2).

Fur jedes Zeichen werden in Java zwei Bytes belegt. Vorzeichen gibt es beim Daten-
typ char nicht. Damit liegt der hexadezimale Wertebereich des Datentyps char zwi-
schen \u0000 (niedrigster Wert) und \uFFFF (hochster Wert).

Die direkte Eingabe eines Unicodezeichens ist tiber die Tastatur (System.in) nicht so
ohne weiteres moglich, denn wo gibt es Tastaturen mit einigen Tausend Unicode-
zeichen? Deshalb haben die Java-Entwickler entschieden, dass einem Programm zu-
nichst nur der numerische Wert des Zeichens tbergeben wird, wenn es von der
Tastatur liest. Konkret wird dem Programm der Codepoint aus der Unicode-Tabelle
geliefert. Dieser Wert muss zunichst in einer in#Variablen empfangen werden und
kann dann je nach Bedarf interpretiert werden. Diese Vorgehensweise gilt auch fur
herkommliche ASCII-Zeichen, die im Unicode als Untermenge enthalten sind.

Programm Character01: Arbeiten mit dem Datentyp char

public class Character0l ({
public static void main(String[] args) throws Exception ({

int z;

z = System.in.read(); // Liefert den Codepoint

char ¢ = (char)z; // Interpretation als (Unicode-) Zeichen
System.out.println ("Ergebnis ist: " + c);

}
}

Ubung zum Programm Character01

Testen Sie das Programm, indem Sie ein beliebiges Zeichen des ASCII-Codes (z.B.
den Buchstaben A oder a per Tastatur eingeben. Uberpriifen Sie, wie das Programm
reagiert, wenn Sie ein Zeichen des erweiterten ASCII-Code (z.B. einen deutschen

Umlaut) eingeben. Offensichtlich ist dies nicht so ohne weiteres moglich. Sie werden
im Kapitel 6 Losungen fiir dieses Problem kennen lernen.

Der Kopf der Methode enthilt die Klausel "throws Exception". Damit wird doku-
mentiert, dass innerhalb der Methode ein Laufzeitfehler ("Exception") auftreten kann,
der nicht abgefangen und speziell behandelt wird, sondern "unbehandelt" durchge-

59

4 Klassen und andere Typen beschreiben ("declaration”)

reicht wird an den Aufrufer dieser Methode. Da es sich in diesem Fall um die main-
Methode handelt, wird ein eventuell auftretender Laufzeitfehler von der JVM bear-
beitet (normalerweise bedeutet dies Programmabbruch). Wenn die Klausel fehlt,
fuhrt das zu folgendem Umwandlungsfehler:

...unreported exception Jjava.io.IOException; must be caught
or declared to be thrown...

Auf der Basis von einzelnen Zeichen (char-Typ) konnen weitere Texttypen gebildet
werden. So gibt es in Java die Klassen String und StringBuffer, die ein komfortables
Arbeiten mit Zeichenketten ("strings") ermoglichen.

4.4.6 Wrapper-Klassen

In Java gibt es fir jeden primitiven Datentyp eine korrespondierende Klasse, also fir
den Typ char die Klasse Character, fir den Typ byte die Klasse Byte usw. Die Klas-
sen werden Wrapper-Klassen genannt. Sie konnen anstelle der einfachen Datenty-
pen benutzt werden.

Notwendig kann der Einsatz von Wrapper-Klassen sein, wenn Objektvariable beno-
tigt werden (also einfache Datentypen nicht erlaubt sind, z.B. bei Methodenaufrufen)
oder wenn zusitzliche Verarbeitungsmoglichkeiten genutzt werden sollen.

Programm Wrapper01: Einen Integerwert als Objekt erzeugen

public class Wrapper01l {
public static void main (String[] args) {
Integer zahl = new Integer(25);
System.out.println(zahl + 3);

}

Das Programm Wrapper02 zeigt, wie mit Hilfe einer Methode der Wrapper-Klasse
Character abgefragt werden kann, ob es sich bei einem Zeichen um einen Grof-
buchstaben handelt.

Programm Wrapper02: Methode isUpperCase() aus Klasse Character

public class Wrapper02 {
public static void main (String[] args) {
char zeichenl = 65;
if (Character.isUpperCase (zeichenl))
System.out.println("Es ist ein GroBbuchstabe");

60

4.5 Zusammenfassung

4.5 Zusammenfassung

Deklarationsanweisungen bendétigen immer die Angabe des Datentyps

Die Deklaration von einfachen Variablen sieht genau so aus wie die Deklaration von
Klassentypen:

<datentyp> <identifier>.

Beispiele:
int zahl; // primitiver Datentyp
String text; // Referenz-Datentyp

Vorteile des Typkonzepts

e Die Programmsicherheit wird erhoht (weil der Compiler die korrekte Verwen-
dung der Speicherplitze tberprift).

e Ressourcen-Optimierungen sind moglich (der Speicherbedarf und die optimale
Verarbeitungsform kann anhand des Typs ermittelt werden).

e Verstindlichkeit, weil Absicht und Wirkung der Verarbeitung von Daten deutli-
cher wird. Weil z.B. Methodensignaturen explizit den Datentyp enthalten, wird
ihre Bedeutung klarer.

Je differenzierter die Datentypen in einer Programmiersprache sind, umso umfang-
reicher konnen die eingebauten Prifungen schon zur Umwandlungszeit vorgenom-
men werden. Aufgabe des Programmierers ist es, den Datentyp auszuwihlen, der
von der Aufgabenstellung her am engsten passt.

Java ist eine typisierte und objektorientierte Programmiersprache. Prinzipiell sind die
Daten, die verarbeitet werden sollen, allesamt Objekte. Das heiflt, sie werden zu-
sammen mit ihren Verarbeitungsmethoden beschrieben in Klassen, von denen dann
zur Ausfithrungszeit Referenz-Variablen (Instanzen) erzeugt werden. Nur die in der
Klasse vorgesehenen Methoden konnen dann mit diesen Daten arbeiten.

Ein Spezialfall sind die primitiven Datentypen, die aus Vereinfachungsgriinden be-
reits in die Sprache "eingebaut" worden sind. Sie sind keine Objekte und kénnen mit
vordefinierten Schliisselwortern benutzt werden (int, char, boolean usw.).

Warum gibt es primitive Datentypen?

e Die Grdfse eines primitiven Typs wird von Java bestimmt, sie ist unabhingig von
der Hardware-Architektur und vom Betriebssystem.. Auch der Aufbau im Spei-
cher ist auf allen Plattformen gleich: Java benutzt grundsitzlich das Big-Endian-
Format. Damit wird gewihrleistet, dass Java-Programme portabel sind.

61

4 Klassen und andere Typen beschreiben ("declaration")

e Thre Nutzung ist fir den Programmierer einfacher und fir die JVM effizienter als
das Arbeiten mit Referenz-Variablen, weil z.B. keine Methoden aufgerufen wer-
den.

Welche primitiven Datentypen gibt es?

Es gibt eingebaute Datentypen fir ganze Zahlen, fiir reelle Zahlen (mit Kommastel-
len), fir einzelne Unicode-Zeichen und fiir logische Werte. Im Einzelnen sind dies
die folgenden acht Datentypen:

e vier ganzzahlige Typen (byte, short, int, long), die sich nur unterscheiden durch
die Linge des reservierten Speicherplatzes (1, 2, 4 oder 8 Byte),

e zwei reale Datentypen (die Gleitkommazahlen float oder double), die sich in der
Genauigkeit, das heilt, in der Anzahl der Stellen vor und hinter dem Komma,
unterscheiden,

® Boolescher Datentyp (boolean), der in der Lage ist, die Wahrheitswerte frue o-
der false zu speichern,

e Zeichentyp (char), der jedes einzelne Zeichen anhand der Unicode-Tabelle, d.h.
in 2 Bytes, also 16 bits, verschliisselt.

Welche Regeln gelten fiir primitive Datentypen?

e Der Platzbedarf im Arbeitsspeicher ist durch die Sprachspezifikation festgelegt,
unabhingig von der Hardwareplattform und von der Betriebssystemumgebung
(das ist ein Grund fir die Kompatibilitit von Javaprogrammen).

e Damit ist auch der "Wertebereich" (der hochste und niedrigste darstellbare Wert
in diesem Speicherplatz) festgelegt. Der Wertebereich ergibt sich durch 2", wo-
bei n die Anzahl der bits ist, die zur Verfliigung stehen.

e Allerdings wird evtl. 1 bit bendtigt fir die Vorzeichendarstellung. Alle numeri-
schen Typen werden mit Vorzeichen gespeichert (auer char und boolean sind
alle Typen numerisch).

Referenztypen wie Arrays und Strings oder beliebige andere benutzerdefinierte Da-
tentypen ("Klassen") werden aus diesen atomaren Bausteinen zusammengesetzt.

62

5.1 Was sind Variablen?

RAM verwalten: Variable und Objekte erzeugen

Wenn Daten von einem Programm angesprochen und verarbeitet werden sollen,
dann miussen sich diese Daten zwingend im RAM (Random Access Memory), d.h. im
internen Arbeitsspeicher (Hauptspeicher), befinden. Daten auf einem anderen Medi-
um sind nicht direkt manipulierbar. Also ist es notwendig, die Daten entweder ein-
zulesen oder die Daten als Teil des Quellcodes direkt im Programm zu kodieren (als
"Literale"). Fur die Aufnahme der eingelesenen Daten und fir die Verwaltung des
Arbeitsspeichers steht ein Konzept zur Verfligung, das als Variablenkonzept be-
zeichnet wird. Mit diesem Thema befassen wir uns in diesem Kapitel.

Im Kapitel 4 haben wir erliutert, welche Moglichkeiten der Typisierung der Spei-
cherplitze es gibt, wie dadurch eine unterschiedliche Reprisentation und eine opti-
mierte Behandlung moglich wird und vor allem, wie dadurch die Sicherheit der Ver-
arbeitung erhoht wird. In diesem Kapitel lernen Sie,

e was Variablen und Konstanten sind,
e wie sie im Arbeitsspeicher erzeugt und verarbeitet werden,

e warum es wichtig ist, dabei zwischen Objekten und einfachen Variablen zu un-
terscheiden,

e wie Literale im Programm benutzt werden und welche alternativen Darstellun-
gen moglich sind,

e was Escape-Sequenzen sind und welche Arten es gibt.

5.1 Was sind Variablen?

Variablen sind Arbeitsspeicherplitze, die typisiert sind und einen Namen ("identi-
fier") haben. Sie werden durch eine Deklarationsanweisung im Programm definiert,
dadurch bekommt jede Variable einen Datentyp und einen Identifier:

int zahl; oder
String text;

Java unterscheidet streng zwischen Variablen, die
e cinen primitiven Datentyp haben ("primitive Variablen") und Variablen, deren
e Datentyp eine Klasse ist ("Referenz-Variablen").

Die Unterscheidung zwischen diesen beiden Arten von Variablen ist von grundle-
gender Bedeutung, und wir werden beide Arten ausfiihrlich besprechen.

03

5 RAM verwalten: Variable und Objekte erzeugen

5.2 Primitive Variablen

5.2.1 Deklaration von primitiven Variablen

Bevor ein Speicherplatz in Java benutzt werden kann, muss dafiir eine Deklaration
ausgefihrt worden sein. Eine Variablendeklaration enthilt immer mindestens zwei
Angaben: den Datentyp und den Namen der Variablen. Primitive Variablen haben
einen der acht eingebauten Basis-Datentypen. Sie sind keine Obijekte, die explizit
mit new erzeugt werden, sondern sie werden im Speicher angelegt mit Ausfihrung
der Definition.

Der Datentyp einer Variablen bestimmt

e wieviel Speicherplatz fir die Variable belegt werden soll,

e welchen Wert eine Variable enthalten (speichern) kann und
e welche Operationen damit ausgefiihrt werden konnen.

Speicherplitze, die als Variablen definiert werden, konnen ihren Inhalt (ihren
"Wert") wihrend der Laufzeit eines Programmes beliebig oft dndern ("die Inhalte
sind variabel"). Hiervon gibt es Ausnahmen, die wir spiter besprechen werden: es
gibt "konstante Variablen", deren Inhalt einmal festgelegt wird und dann unverin-
derlich ist, und es gibt "immutable" Datentypen, deren Inhalt nur scheinbar dnderbar
ist.

Somit bestehen einfache Variablen aus:

e cinem Namen (Bezeichner, Identifier), z.B. zahl,

e cinem der eingebauten acht einfachen Datentypen (z.B. in)),
e cinem Inhalt ("Wert"), z.B. 28 oder * A’ .

Der Name und der Datentyp wird durch eine Vereinbarungsanweisung (Deklarati-
on) vom Programmierer festgelegt. Mit dem Namen wird die Variable adressiert, die-
ser Bezeichner ist im Quelltext der Stellvertreter fiir den aktuellen Inhalt.

Beispiel:
double gehalt;
Ein Wert muss vor dem ersten Ansprechen dieser Variablen vorhanden sein. Er

kann als so genannter Initialwert entweder automatisch durch Java oder bei der De-
klaration bzw. durch Wertezuweisung vom Programmierer festgelegt worden sein.

Danach kann der Wert der Variablen beliebig oft geindert werden. Man sagt, es
wird ein neuer Wert zugewiesen, und das bedeutet, dass der bisherige Inhalt kom-
plett Giberschrieben wird. Diese "Wertezuweisung" verindert also den Inhalt einer
Variablen. Beim Lesen der Variablen bleibt der Inhalt unverindert bestehen, es wird
lediglich eine Kopie zum Empfinger des Lesebefehls transportiert.

64

5.2 Primitive Variablen

5.2.2 Initialisierung von primitiven Variablen

Beispiel einer Deklaration inklusive einer Initialisierung:
double gehalt = 2000.00;

Mit dieser Deklaration wird dem Programm bekannt gemacht, dass ein Speicherbe-
reich reserviert werden soll, der 64 bit grof ist und Gleitkommazahlen speichern
kann. Der Anfangswert ist 2000,00. Sein aktueller Wert kann unter dem Namen ge-
halt gelesen oder verindert werden.

Programm Variablen01: Deklaration von Variablen

public class Variablen01l {
public static void main (String[] args) {
char zeichen;
double gehalt;
boolean vorhanden;

}
Ubungen zum Programm Variablen01

Ubung 1: Wandeln Sie das Programm um und fiihren Sie es aus. Formal ist alles in
Ordnung, aber es passiert natiirlich nichts. Andern Sie das Programm so, dass der
Wert der Variablen gebalt auf System.out ausgegeben wird, und versuchen Sie, das
Programm umzuwandeln. Die Fehlermeldung lautet sinngemifl: Die Variable ist
nicht initialisiert.

Ubung 2: Andern Sie also das Programm erneut, indem Sie Thr Wunschgehalt als
Initial-Wert in die Variable schreiben.

Namen (identifier) fiir Variablen

Die Namen sind vom Programmierer frei wihlbar. Ausgeschlossen sind allerdings
die Schliisselworter der Sprache, denn diese haben eine festgelegte Bedeutung. Die
Linge ist beliebig, als Zeichen ist (fast) jedes Unicodezeichen erlaubt, nur die erste
Stelle muss ein Buchstabe sein.

Empfehlungen fiir die Namensvergabe: Der Identifier sollte moglichst aussagefihig
sein. Damit es keine Probleme beim Anzeigen oder Ausdrucken des Quelltexts gibt,
sollten die Bezeichner keine Zeichen auflerhalb des reinen ASCII-Codes enthalten.
Auch deutsche Umlaute sind zu vermeiden.

Abhingig von der Position, wo eine Variable deklariert ist, unterscheidet man noch
die "Scope". Das ist die Sichtbarkeit der Deklaration, d.h. sie beschreibt, wo die Va-
riable genutzt werden kann und wo nicht. Dies ist ein Thema, das im Kapitel 16 er-
ldutert wird.

65

5 RAM verwalten: Variable und Objekte erzeugen

5.2.3 Wertezuweisung an Variablen

Der Inhalt einer Variablen kann z.B. durch folgende Wertezuweisung tiberschrieben
werden:

gehalt = 3000.00;
Ubung zum Programm Variablen01

Codieren Sie eine Wertezuweisung fiir die Variable geball. Das neue Gehalt soll
2100 sein. Testen Sie diese Anderung.

Variablen miissen einen Wert haben, bevor sie zum ersten Mal in einem Statement
angesprochen werden koénnen. Wenn eine Variable nicht Teil einer Klasse ist, son-
dern innerhalb einer Methode deklariert worden ist, so handelt es sich um eine loka-
le Variable. Lokale Variable mussen explizit vom Programmierer einen Initialwert
bekommen, bevor sie genutzt werden konnen. (Variablen, die Mitglieder einer Klas-
se sind, werden auflerhalb von Methoden deklariert, und diese Variablen werden
automatisch initialisiert. Dazu in spiteren Kapiteln mehr.)

Im Programm VariablenO1 sind alle drei Variablen lokal. Deshalb miissen sie expli-
zit einen Wert als Anfangswert bekommen. Das kann erfolgen

e entweder bereits bei der Deklaration, indem das Gleichheitszeichen und dahin-
ter der gewtinschte Initialwert eingetragen werden,

e oder spiter zur Laufzeit des Programms, durch eine Zuweisung, mit der ein
Wert in die Variable geschrieben wird.

Programm Variablen02: Initialisieren von lokalen Variablen

public class Variablen02 {
public static void main (String[] args) {
char zeichen = 'x';
double gehalt = 2000.00;
boolean vorhanden= true;
System.out.println (vorhanden) ;

}
Ubung zum Programm Variablen02

Andern Sie das Programm wie folgt: Fiihren Sie keine Initialisierung bei der Dekla-
ration aus, sondern codieren Sie stattdessen eine Wertezuweisung.

Die Ausgabe des Programms verindert sich dadurch nicht, sondern nur das Verhal-
ten: jetzt wird der Wert nicht bereits zur Umwandlungszeit eingetragen, sondern erst
zur Laufzeit. Bei jeder Wertezuweisung Uberprift der Compiler, ob der gesendete
Wert kompatibel ist zu dem Datentyp der Empfingervariablen ("Zuweisungskompa-
tibilitdt").

06

5.2 Primitive Variablen

Losungsvorschlag: Programm Variablen03: Wertezuweisung an Variablen

public class Variablen03 {
public static void main(String[] args) {
char zeichen;
double gehalt;
boolean vorhanden;

zeichen = 'x';
gehalt = 2000;
vorhanden = true;

System.out.println (vorhanden);

}

Der Variablenname steht fiir den Wert der Variablen. Das heilt, wenn in einem Be-
fehl der Name der Variablen verwendet wird, so wird der Wert der Variablen dafir
eingesetzt und damit gearbeitet. Beispiel:

System.out.println (vorhanden) ;

Durch diese Anweisung wird der aktuelle Inhalt des Speicherbereichs mit dem Iden-
tifier vorbanden ermittelt und auf der Standardausgabeeinheit ausgegeben. Man sagt,
der Ausdruck vorbanden wird ausgewertet ("evaluiert"), und mit dem Ergebnis wird
dann die gewilinschte Operation (hier: println) ausgefihrt.

Das folgende Programm TauschenO1 soll den Inhalt (die Werte) der Variablen z7
und z2tauschen und danach am Bildschirm ausgegeben.

Programm Tauschen01: Tauschen der Werte von 2 Variablen

import java.util.Scanner;
public class Tauschen01l {
public static void main(String[] args) {

Scanner eingabe = new Scanner (System.in);
int z1;
int z2;
System.out.println("Bitte 2 Zahlen eingeben");
z1l = eingabe.nextInt ();
z2 = eingabe.nextInt ();
System.out.println("Zahll
int hilfsvariable = z1;
z1l = z2;
z2 hilfsvariable;
System.out.println("Zahll = " + z1 + " Zahl2 = " + z2);

"+ z1 + " Zahl2

"+ z2);

67

5 RAM verwalten: Variable und Objekte erzeugen

Die Besonderheit in diesem Programm ist, dass eine Hilfsvariable definiert werden
muss, die temporir einen Wert zwischenspeichert.

Ubung zum Programm Tauschen01

Bitte notieren Sie auf einem Blatt Papier, welche Arbeitsspeicherplitze definiert wer-
den, wie grofl diese sind und wie sich deren Inhalte zur Programmlaufzeit verin-
dern.

5.3 Referenzvariablen

5.3.1 Deklaration einer Referenzvariablen

Bei der Deklaration einer Variablen kann als Datentyp nicht nur einer der acht ein-
gebauten Datentypen angegeben werden, sondern dort kann als Typ auch ein Klas-
senname stehen. Dabei kann es sich eine der mitgelieferten Klassen handeln (aus
der Standardbibliothek der J2SE) oder um eine Klasse, die zugekauft oder selbst ge-
schrieben wurde. Damit ist die Sprache Java beliebig erweiterbar - das Hinzufigen
von Klassen entspricht einem Hinzufligen von weiteren Datentypen mit ihren Verar-
beitungsmoglichkeiten.

Wir haben bereits mehrfach mit der Standardklasse String gearbeitet, z.B.
String text;

Durch diese Deklarationsanweisung wird eine Variable deklariert, die die Fihigkeit
hat, auf ein (beliebiges) Stringobjekt zu verweisen. Die Variable text wird auch Refe-
renzvariable genannt, weil sie eine Referenz auf ein Objekt enthalten soll. Eine Refe-
renz ist eine Adresse auf den Anfang der Objektwerte. Aber noch enthilt diese Vari-
able keinen Wert, denn es existiert noch kein Stringobjekt.

Programm String01 : Referenzvariable deklarieren

public class String01l {
public static void main(String[] args) {
String text;

}
Ubung 1 zum Programm String01

Erginzen Sie das Programm um einen Ausgabebefehl, der den Inhalt der Variablen
text am Bildschirm ausgeben soll. Versuchen Sie eine Umwandlung und interpretie-
ren Sie die Fehlermeldung.

Der Grund fir die Fehlermeldung ist: Die Variable fext soll ein Objekt referenzieren,
aber dieses Objekt ist im Speicher noch gar nicht vorhanden.

68

5.3 Referenzvariablen

5.3.2 Objekt erzeugen ("Instanziieren") und initialisieren

Wir haben bereits in friheren Programmen gesehen, dass ein Objekt mit dem
Schlisselwort new erzeugt wird. Hinter dem Schlisselwort new wird der Klassenna-
me wiederholt, gefolgt von runden Klammern, in denen ein Anfangswert fiir das Ob-
jekt angegeben sein kann:

text = new String("Merker");

Durch diese "Instanziierung" wird der Speicherplatz fiir das Objekt zur Verfiigung
gestellt. Und es wird auch gleich ein Initialwert hinein geschrieben ("Merker").

Ubung 2 zum Programm String01

Erginzen Sie das Programm um ein Statement, das ein weiteres Objekt der Klasse
String erzeugt. Dabei soll gleichzeitig als (Anfangs-)Text Thr Name an das Objekt
tbergeben werden. Der Identifier ist frei wihlbar. Danach soll zuerst das neue und
dann das Objekt text ausgegeben werden.

Das folgende Programm String02 benutzt wiederum die Klassenbeschreibung der
mitgelieferten Klasse String. In dieser Klasse ist vorprogrammiert,

e woraus eine Zeichenkette besteht (ndmlich aus einer Folge von einzelnen char-
Zeichen) und

e wie damit gearbeitet werden kann (welche Methoden zur Ausfihrung aufgeru-
fen werden konnen, z.B. zum Vergleichen, Zusammenfiigen oder Aufteilen von
Strings).

Das Programm hat die Aufgabe, zwei Zeichenketten zu erstellen und diese dann zu
einer Zeichenkette zu verbinden ("konkatenieren"). Daftir gibt es die Methode con-
cat. Das Ergebnis soll am Konsolbildschirm ausgegeben werden.

Programm String02: Instanzen aus mitgelieferten Klassen erzeugen

public class String02 {
public static void main (String[] args) {
String strl = new String("Java");
String str2 = new String("buch");
String ergebnis;
ergebnis = strl.concat (str2);
System.out.println (ergebnis);

Die Zeile

String strl = new String("Java");

09

5 RAM verwalten: Variable und Objekte erzeugen

fasst drei Vorginge zusammen. Es ist die Kurzschreibweise fr:

String strl;
strl = new String("Java");

Zunichst wird eine Referenzvariable mit dem Bezeichner str1 deklariert, und danach
wird das eigentliche Stringobjekt erzeugt (durch das Schlisselwort new). Und drit-
tens wird dieses Objekt mit dem Initialwert "Java" belegt.

Ubung zum Programm String02

Das Programm erzeugt insgesamt drei Objekte. Bitte identifizieren Sie die drei Ob-
jekte. Notieren Sie die Speicher-Belegung dafiir auf einem Blatt Papier. Uberlegen
Sie, wann und in welchen Schritten die bendtigten Plitze angelegt werden. Zeichnen
Sie auch den Inhalt (den "Wert") ein, den die Objekte im Laufe der Programmaus-
fihrung haben.

Genereller Hinweis zum Arbeiten mit String-Objekten

In jeder Programmiersprache werden Datentypen, mit denen Texte (Zeichenketten,
"Strings") beschrieben werden konnen, sehr hiufig bendtigt. Dies gilt natiirlich auch
fur Java. Deswegen haben die Entwickler der Sprache eine Vereinfachung speziell
fur das Arbeiten mit String-Objekten ermoglicht. So koénnen String-Variable im Ar-
beitsspeicher erzeugt werden, ohne explizit das Schliusselwort new zu benutzen.
Entweder kann die Objekterzeugung bereits zusammen mit der Deklaration der Re-
ferenzvariablen erfolgen:

String text = "Hallo";
oder spiter in einer separaten Wertezuweisung:

String text;

text = "Hallo";

Wir haben in den bisherigen Beispielen zur Objekterzeugung allerdings auch fir
Strings das Schliisselwort new benutzt, um zu demonstrieren, wie die Instanzerzeu-
gung normalerweise, d.h. bei allen anderen Klassen, zu erfolgen hat.

Beispiel fiir den Datentyp Point

Das nichste Programm verwendet den Datentyp Point. Diese Standardklasse be-
schreibt zwei Integerfelder x und y (zur Speicherung einer Position in einer Koordi-
nate). Als Verarbeitungsmoglichkeiten fiir diesen Datentyp sind etwa zehn Methoden
vorprogrammiert, u.a. auch die Methode toString().

Programm Point01: Instanz der Klasse Point erzeugen und ausgeben
import Jjava.awt.*;

class Point01 {

70

5.3 Referenzvariablen

public static void main(String[] args) {
Point p;
p = new Point (5,3);
System.out.println(p.toString());

}

Das Programm PointO1 definiert die Referenzvariable p, erzeugt mit new ein Objekt
vom Typ Point mit den Werten 5 und 3 und ruft anschlieBend die Methode toString
auf, damit die Werte tber System.out als String angezeigt werden.

5.3.3 Wertzuweisung bei Referenztypen

Wenn eine Referenzvariable verarbeitet werden soll, muss sie als Wert entweder null
enthalten (wenn fiir sie noch kein Objekt existiert) oder eine Referenz, um ein Ob-
jekt zu erreichen. Dabei konnen durchaus mehrere Referenzvariable auf dasselbe
Objekt verweisen.

Programm Point02: Zwei Referenzen, aber nur 1 Objekt

import java.awt.*;
public class Point02 {
public static void main(String[] args) {
Point pl = new Point (5,3);
Point p2;
p2 = pl; // Wertezuweisung
System.out.println(p2.toString());

}

So wie primitiven Variablen ein Wert zugewiesen werden kann, so ist dies auch fiir
Referenzvariablen erlaubt. Allerdings gilt fir beide Variablenarten: die Werte miissen
kompatibel sein, d.h. sie missen zu dem Empfinger passen. Nicht erlaubt z.B. ist
die Zuweisung eines primitiven Typs an einen Referenztyp, denn diese Variablen
sind nicht zuweisungsvertraglich. Einer Referenzvariablen kann nur ein Wert zu-
gewiesen werden, der dem Klassentyp entspricht, mit dem sie definiert worden ist.

Ubung zum Programm Point02

Ubung 1: Uberlegen Sie (zunichst theoretisch) die Auswirkung folgender Pro-
gramminderung: Weisen Sie der Variablen pl unmittelbar vor dem Ausgabebefehl
null zu (durch: "pl = null;"). Kann p2 trotzdem korrekt ausgegeben werden?
Uberpriifen Sie dies praktisch.

Ubung 2: Versuchen Sie danach, die Werte des Objekts pI auszugeben. Losungs-
hinweis: Es misste folgende Fehlermeldung kommen: "Exception in thread
"main" java.lang.NullPointerException".

71

5 RAM verwalten: Variable und Objekte erzeugen

Im Programm Point02 wurde der Wert von pI der Variable p2 zugewiesen. Damit
waren im Arbeitspeicher folgende Plitze belegt.

pl >

p2 —_—

Abb. 5.1: Zwei Referenzvariablen, aber nur 1 Objekt

Besonders wichtig ist die Erkenntnis, dass durch die Zuweisung im Programm
Point02 nicht das Objekt dem Empfinger zugewiesen wird, sondern dass lediglich
die Referenz auf das Objekt kopiert und in die Variablen p2 transportiert worden ist.

Das Objekt selbst ist nur einmal im Arbeitsspeicher.

Das nichste Programm Point03 beweist diese Aussage. Dort werden nimlich die
beiden Werte von x und y geindert (d.h. jetzt wird das Objekt selbst verindert).

Programm Point03: Wertezuweisung an das Objekt selbst

import Jjava.awt.*;
public class Point03 {
public static void main(String[] args) {

Point pl = new Point (5,3);
Point p2;
p2 = pl; // Wertezuweilsung
p2.x = 3333;
p2.y = 4444;
System.out.println(pl.toString());
System.out.println (p2.toString());

}

Die Ausgabe ist in beiden Fillen gleich. Damit wird deutlich, dass sowohl pI als
auch p2auf dasselbe Objekt referenzieren.

Ubung zum Programm Point03

Bitte geben Sie mit der printin-Methode den y-Wert der Instanz pl aus. Losungs-
hinweis: diese Variable kann referenziert werden durch "pl.y".

72

5.3 Referenzvariablen

5.3.4 Wodurch unterscheiden sich primitive und Referenzvariablen?

In einem Javaprogramm konnen Variablen einen primitiven Datentyp oder einen Re-
ferenztyp haben. Demzufolge konnen auch zwei Arten von Variablenwerten unter-
schieden werden: primitive Werte und Referenzwerte. Wo liegen die grundsitzlichen
Unterschiede zwischen den Referenzvariablen und einfachen Variablen?

Primitive Variablen bestehen aus genau einem Wert dieses Datentyps, Referenz-
Variablen koénnen auf zusammengesetzte Objekte verweisen, die aus unter-
schiedlichen Typen zusammengesetzt sind.

Die Syntax, wic sie erzeugt werden, ist unterschiedlich: fiir Referenzvariablen
bendtigt man das Schlisselwort new.

Art und Umfang des Speicherplatzes ist unterschiedlich: Objekte bendtigen zu-
sitzlich zu den eigentlichen Daten noch eine Referenzvariable, die auf den
Zielwert verweist.

Der Zeitpunkt, wann die GroRe des Arbeitsspeicherplatzes fir diese Variable be-
stimmt wird, ist unterschiedlich: bei einfachen Datentypen kann dies bereits zur
Umwandlungszeit (compile-time) und bei Referenztypen erst zur Ausfithrungs-
zeit (run-time) bestimmt werden.

Der Zeitpunkt, wann der Speicherplatz angefordert wird (Allokierung), ist unter-
schiedlich: einfache Variablen kénnen bereits beim Laden des Programms in den
Arbeitsspeicher den angeforderten Platz belegen, Referenzvariablen werden
nach Bedarf wihrend der Programmausfithrung ("dynamisch") mit dem Schlis-
selwort new erzeugt.

Obwohl eine Wertezuweisung fiir beide Variablentypen mit dem Gleichheitszei-
chen = erfolgen kann, ist die Wirkung sehr unterschiedlich: bei einfachen Vari-
ablen wird der Wert selbst zugewiesen, bei Referenztypen wird die Referenz auf
das Objekt zugewiesen.

In spiteren Kapiteln werden Sie weitere Unterschiede dieser beiden Variablenar-
ten kennenlernen. Der Vollstindigkeit halber werden diese bereits hier aufgefihrt:

Die Syntax, wie sie verarbeitet werden (z.B. vergleichen, zuweisen, kopieren
usw.) ist unterschiedlich. Bei Referenztypen werden normalerweise Methoden
aufgerufen, bei einfachen Typen wird meistens mit Operatoren wie + (Addition)
oder < (Vergleich) gearbeitet.

Die Ubergabe als Parameter beim Aufruf von Methoden unterscheidet sich bei
Objekten grundlegend von der Art, wie einfache Variable ibergeben werden. Es
wird zwar immer der Wert der Variablen kopiert, aber nur bei einfachen Variab-
len ist es der tatsichliche Wert, bei Objekten handelt es sich um den Wert der
Referenzvariablen (also um die Adresse von dem Objekt), der kopiert und tiber-
geben wird.

73

5 RAM verwalten: Variable und Objekte erzeugen

5.4 Konstanten

Deklaration von Konstanten

Konstanten sind in Java Namen fir Speicherwerte, die unveridnderbar sind. Es ist
dem Programmierer lediglich moglich, diese Plitze einmal zu fiillen - danach ist ei-
ne Anderung nicht mehr erlaubt.

Eine Konstante wird durch das Schliisselwort final deklariert, z.B.
final double MWST;

Der Wert der Konstanten kann entweder bereits bei der Deklaration festgelegt wer-
den:

final double MWST = 19.0;

oder spiter durch eine Wertezuweisung, wie das folgende Programm demonstriert.

Programm Konstanten01: Konstanten definieren und mit ihnen arbeiten

public class KonstantenOl {
public static void main (String[] args) {
final double MWST;
MWST = 19.5;
System.out.println (MWST) ;

}

Wenn der Wert der Konstanten einmal feststeht, kann er danach nicht mehr modifi-
ziert werden (nur durch Anderung des Quelltextes mit anschlieBender Umwand-
lung). Wo liegt der Sinn? Zunichst einmal wird durch das Schlisselwort final ver-
hindert, dass eine versehentliche Modifikation des Speicherinhalts erfolgt. AuBerdem
wird die Lesbarkeit erhoht, denn der Begriff "MWST" ist aussagefihiger als die Zahl
18.0. Und zusitzlich wird immer dann die Wartungsfreundlichkeit verbessert, wenn
der Wert an mehreren Stellen im Programm benutzt wird, denn bei eventuellen An-
derungen muss nur an einer Stelle modifiziert werden.

Programm Konstanten02: Konnen Konstantenwerte geindert werden?

public class Konstanten02 {
public static void main (String[] args) {

74

5.4 Konstanten

final double PI = 3.14159;
System.out.println ("PI betraegt = " + PI);

}
Ubungen zum Programm Konstanten02

Ubung 1: Kann der Initialwert auch weggelassen werden? Welche Meldung kommt
bei der Umwandlung des Programms?

Ubung 2: Fiigen Sie die Initialisierung wieder ein. Bitte versuchen Sie dann, den
Wert von Plum 3 zu erhohen durch Einfiigen von folgender Anweisung: PI = PI + 3;
Wie lautet die Fehlermeldung, die bei der Umwandlung erzeugt wird? Kliren Sie da-
nach die Frage, ob evtl. eine neue Wertezuweisung moglich ist, z.B. in der Form: PI
= 3.14?

Eingebaute Konstanten

In den mitgelieferten Klassen des Java-API gibt es als Bestandteil von Klassen hiufig
eingebaute Konstanten. Sie werden anstelle von numerischen Werten benutzt, weil
sie dadurch aussagefihiger werden.

So gibt es z.B. in den Wrapper-Klassen fiir einfache Variablen eingebaute Konstan-
ten, die den jeweils hochsten oder niedrigsten Wert des Datentyps enthalten. Das
folgende Beispiel zeigt, wie Maximalwerte von diversen primitiven Datentypen mit
Hilfe von vordefinierten Konstanten angezeigt werden konnen.

Programm Konstanten03: Arbeiten mit eingebauten Konstanten

public class Konstanten03 {
public static void main (String[] args) {
// Ganzzahlen

byte b = Byte.MAX_VALUE;
short s = Short.MAX_VALUE;

int z = Integer.MAX_VALUE;
long 1 = Long.MAX_VALUE;

// Reale Zahlen

float £ = Float.MAX_VALUE;
double d = Double.MAX_ VALUE;
System.out.println("b = " + b);
System.out.println("s = " + s);
System.out.println("z = " + z);
System.out.println ("1l = " + 1);
System.out.println("f = " + £f);
System.out.println("d = " + d);

75

5 RAM verwalten: Variable und Objekte erzeugen

Ubung zum Programm Konstanten03

Uberpriifen Sie, wie der Compiler reagiert, wenn Sie versuchen, durch folgende Zei-
le einen MAX-VALUE zu dndern: "Float .MAX_VALUE = 15;"

Wann sollten Konstanten eingesetzt werden?

Konstanten sind nicht nur dann sinnvoll einsetzbar, wenn der Wert wirklich fir im-
mer konstant ist (wie bei dem Wert fiir PI), sondern auch, wenn zu erwarten ist,
dass Anderungen eintreten (wie bei dem Wert fiir den MWST-Satz). In solchen Fil-
len wird dringend empfohlen, nicht einen festen Wert ("18 %") in den verschiedenen
Anweisungen einer oder mehrerer Klassen zu verwenden, sondern eine Konstante
zu definieren (damit bekommt der Wert einen Namen). Dann kann in allen State-
ments dieser Name verwendet werden. Bei einer Anderung des MWST-Satzes wird
dann lediglich die Initialisierung der Konstante geidndert, und in allen Statements
wird mit dem neuen Wert gearbeitet.

Fazit: Eine Konstante kann in einem Programm wie eine normale Variable benutzt
werden. Einzige Ausnahme: eine Wertezuweisung ist nur einmal moglich, wbli-
cherweise bei der Deklaration als Initialwert. Die Syntax fir eine Konstante erfor-
dert, dass das Schlisselwort final benutzt wird. Auerdem wird empfohlen, dass der
Identifier komplett aus Grobuchstaben besteht.

5.5 Literale
5.5.1 Was sind Literale?

Literale sind Werte, die im Programm direkt benutzt werden. Ohne dass vorher ein
Speicherbereich fiir eine Variable oder Konstante deklariert wurde, kann der Wert
im Quelltext benutzt werden.

Literale sind somit Werte ohne Identifier, sie werden "einfach so" in einer Anweisung
codiert. Der Wert eines Literals entspricht einem einfachen Datentyp oder einem
String.

Beispiel fiir ein Literal in einer Wertezuweisung:
zahl = 15;

Hier ist 15 ein Literal. Der Datentyp eines Literals wird vom Compiler automatisch
festgelegt, abhingig von der Schreibweise. Allerdings ist nicht immer eindeutig er-
kennbar, von welchem Typ das Literal ist, dazu missen die Regeln bekannt sein,
z.B. ist 47.25 ein float- oder double-Typ?

Welche Literale gibt es?
® Ganzzahlige Werte sind vom Typ int.

e Numerische Werte in Dezimalnotation sind vom Typ double

76

5.5 Literale

e Wahrheitswerte sind vom Typ boolean.

e Einzelne Zeichen in einfachen Anfihrungsstrichen (Apostroph) sind vom Typ
char, z.B. "a’.

e Zeichenketten missen in doppelten Anfithrungsstrichen (double quotes) stehen,
sie sind vom Typ String, z.B. "Hamburg".

In Zuweisungen muss der Datentyp des Literals evtl. an den Typ der Empfingervari-
ablen angepasst werden. Diese Konvertierung geschieht automatisch, solange die
beiden Typen kompatibel sind. Wir kommen spiter auf das Thema Typumwandlung
und Casting zurtick, dediziert wird es in Kapitel 15 behandelt.

5.5.2 Integer-Literale

Ganzzahlige Literale werden als Ziffernfolge ohne Hochkomma geschrieben. Sie
werden unabhingig von ihrer Grofe immer als Datentyp int interpretiert. Beispiele:

17
0
5000

StandardmiiBig wird angenommen, dass es sich um eine Dezimalzahl handelt (also
zur Basis 10). Aber das gilt nicht immer, es gibt auch Schreibweisen fir ganzzahlige
Literale in anderen Stellenwertsystemen:

e Enthilt die Zahl eine fithrende Null, so wird sie als Oktalzahl (also zur Basis 8)
interpretiert, z.B. 015

e Beginnt die Zahl mit den Zeichen 0x, so wird dahinter eine Hexadezimalzahl
(also zur Basis 16) erwartet, die den Binirwert der Dezimalzahl reprisentiert
und durch die ASCII-Zeichen 0-F dargestellt werden. Beispiel: 0xASFF oder OxA.

Programm LiteralO1: Ganzzahl 17 in verschiedenen Notationen

public class LiteralOl {
public static void main(String[] args) {
int zahll = 17; // Dezimal 17
int zahl2 = 021; // Oktal 17
int zahl3 = 0x0011; // Hexadezimal 17
System.out.printf ("$d %d %d", zahll, zahl2, zahl3);

}

Das letzte Statement enthilt eine Formatierung der Ganzzahlen, damit die Ausgabe
einheitlich als Dezimalzahl erfolgt. Die Methode printf (siehe Kapitel 6) erlaubt die
Angabe von Optionen flr die Formatierung, diese stehen in Anfihrungsstrichen vor
den Namen der auszugebenden Variablen und beginnen jeweils mit einem %-
Zeichen. Das d steht fir decimal (siehe Abschnitt 6.3.2).

77

5 RAM verwalten: Variable und Objekte erzeugen

Ubungen zum Programm Literal01

Ubung 1: Schreiben Sie auf ein Blatt Papier, wie die biniren Inhalte dieser drei Va-
riablen sind. (Frage: Benotigt man dazu die ASCII- oder Unicode-Tabelle im Anhang?
Antwort: Nein.) Hilfreich konnte es jedoch sein, wenn das folgende Statement in das
Programm eingefiigt wird:

System.out.println(Integer.toBinaryString(zahll));

Ubung 2: Andern Sie den Datentyp wahlweise in byte, long oder short, um zu {iber-
prifen, ob die Zahlen auch fiir diese Typen erlaubt sind.

Ubung 3: Was passiert, wenn die Zahl nicht in den Wertebereich des angegebenen
Datentyps passt? Beispiel: byte zahll = 128; Was ist die hochste Zahl, die in der Va-
riablen zahll gespeichert werden kann?

Das folgende Programm soll die Dezimalzahl 19 ausgeben. (Hinweis: Oktalzahlen
werden mit einer fihrenden Null als Literal dargestellt.)

Programm Literal02: Fehlerhafte Anwendung eines ganzzahligen Literals

public class Literal02 {
public static void main (String[] args) {
int zahll = 019;
System.out.println(zahll);

}

Ubung zum Programm Literal02

Ubung 1: Das Programm liefert folgenden Umwandlungsfehler: "integer number too
large: 019". Das erscheint zunichst seltsam. Aber gibt es eine Oktalziffer 8 oder 9?
Korrigieren Sie den Fehler.

Ubung 2: Andern Sie den Initialwert der Variablen zahlI auf einen negativen Wert.
Hinweis: Das Vorzeichen steht vor der Zahl.

Was haben Sie durch die obige Ubung gelernt? Eine fithrende Null verindert den
Wert einer Zahl, z.B. bedeutet 25 etwas ganz anderes als 025. Warum ist das so?
Zum einen ist dies eine Erblast von C++, zum anderen wollten die Entwickler wohl
garantieren, dass schwierige Fehler eingebaut werden konnen. :-)

Wie aber erreicht man, dass ein Literal als Jong-Typ interpretiert wird. Dafiir ist eine
besondere Angabe erforderlich, ndmlich der Buchstabe 1 (oder L) hinter der Zahl.

78

5.5 Literale

Programm LiteralO3: Ganzzahliges Literal als long-Datentyp interpretieren

public class Literal03 {
public static void main(String[] args) {
long zahll = 12345678901L;
System.out.println(zahll);

}
Ubungen zum Programm Literal03

Ubung 1: Dem Literal ist der Buchstabe L angehiingt. Entfernen Sie den Buchstaben
L. Welche Fehlermeldung gibt es bei der Umwandlung?

Ubung 2: Kann auch ein Kleinbuchstabe | benutzt werden? Priifen Sie, ob die Les-
barkeit leidet (besteht etwa Verwechselungsgefahr mit der Ziffer 1)?

5.5.3 Boolean-Literale

In Java gibt es fur die Wahrheitswerte "wahr" oder "falsch" entsprechende Literale:
true und false. Natirlich miissen sie exakt so geschrieben werden.

Programm Literal04: Arbeiten mit Boolean-Literalen

public class Literal04 {
public static void main(String[] args) {
boolean luege = true;
System.out.println (luege);

}
Ubung zum Programm Literal04

Die Zeile 3 enthilt eine typische Deklaration, sie enthilt die drei Teile Name, Typ
und Initialisierung. Bitte identifizieren Sie diese drei Teile.

Programm Literal05: In jeder Anweisung steckt ein Fehler!

public class LiteralO5 {
public static void main (String[] args) {
boolean luege = "false";
System.out.println(false + 3);

}
Ubung zum Programm Literal05

Jede der beiden Zeilen in der Methode main enthilt einen Fehler. Bitte korrigieren
Sie dies. Hinweis: Datentyp String passt nicht, mathematische Befehle nicht erlaubt.

79

5 RAM verwalten: Variable und Objekte erzeugen

5.5.4 Gleitkomma-Literale

Fir Real-Zahlen, also Zahlen mit Dezimalstellen hinter dem Komma, gibt es unter-
schiedliche Schreibweisen. Entweder enthalten sie (nur) den Dezimalpunkt oder
auch den Buchstaben e (bzw. E) mit nachfolgendem Exponenten. Beispiele:

123.45 // Standard-Schreibweise

1234 E 3 // "Wissenschaftliche" Schreibweise

In jedem Fall aber ist, wie allgemein in Programmiersprachen tblich, die angelsich-
sische Schreibweise fiir Dezimalzahlen gefordert, also Dezimalpunkt statt Dezimal-

komma. In der so genannten wissenschaftlichen Schreibweise fiir Gleitkomma-
Literale wird nach dem Buchstaben "E" ein Exponent angegeben.

Programm Literal06: Gleitkomma-Literal in Standardschreibweise

public class Literal06 {
public static void main(String[] args) {
double dl = 123.0;
System.out.println(dl);

}

Programm LiteralO7: Gleitkomma-Literal in wissenschaftlicher Schreibweise

public class LiteralO07 {
public static void main(String[] args) {
double dl = 12345E-2;
System.out.println (dl);

}

Ubungen zum Programm Literal07

Ubung 1: Definieren Sie eine weitere Variable d2 und initialisieren Sie diese mit
dem Anfangswert 0,0375. Benutzen Sie dabei die wissenschaftliche Schreibweise
(Beispiel fir eine mogliche Losung: 3.75e-2). Spielt die GroB-/Kleinschreibung des
Buchstaben e eine Rolle?

Ubung 2: Andern Sie den Datentyp von double auf floaf#? Ist eine fehlerfreie Um-
wandlung moglich?

Wie werden float-Literale benutzt?

Weil die Ubung 2 zu einem Umwandlungsfehler gefiihrt hat, bleibt zu kliren, wie
ein floatr-Typ mit einem Literal gefiillt werden kann, denn offensichtlich wird jedes
Gleitkomma-Literal standardmagig als double-Typ interpretiert.

80

5.5 Literale

Soll ein Literal mit einem Dezimalpunkt als float-Wert und nicht als double-Wert in-
terpretiert werden, so muss dies ausdricklich mitgeteilt werden, und zwar durch
Angabe des Buchstabens f (bzw. F) hinter dem Literal.

Programm Literal08: Arbeiten mit Float-Literalen

public class Literal08 {
public static void main (String[] args) {
float dl = 5e-3f;
System.out.println(dl);

}

Gleikomma-Literale ohne explizite Angabe von f oder F werden als double-Typ in-
terpretiert. Die Notation in hexadezimal oder oktal ist fir Gleitkomma-Werte nicht
erlaubt.

5.5.5 char-Literale

Zeichenliterale haben den Datentyp char. Sie werden im Quelltext in einfache An-
fihrungsstriche eingefasst und konnen dargestellt werden durch

e das Zeichen selbst, z.B.” A’ oder durch

e den Codepoint im Unicode z.B. ’ \u0009’ , angegeben als hexadezimale Darstel-
lung der beiden Bytes im Arbeitsspeicher, oder durch

® 5o genannte vordefinierte Escapesequenzen, z.B. > \n’ .

Fir das Arbeiten mit dem Codepoint und den vordefinierten Escapesequenzen ist
das Codieren des Ruckwirtsstrichs (backslash) \ notwendig. Der Codepoint wird als
hexadezimaler, vierstelliger Wert eingegeben, angeftihrt von dem \ und einem klei-
nen u (fir Unicode). Eine etwas verwirrende Eigenart ist die mogliche Angabe als
Oktalzahl, z.B. > \317" .

Programm Literal09: Arbeiten mit char-Literalen

public class Literal09 {
public static void main(String[] args) {
char zeichen = 'A';
System.out.println("Das Zeichen ist: " + zeichen);

}
Ubung zum Programm Literal09

Andern Sie das Programm so, dass als Zeichenliteral nicht der Buchstabe selbst, son-
dern sein Codepoint als Initialwert angegeben wird. Losungshinweis: in+Typ.

81

5 RAM verwalten: Variable und Objekte erzeugen

5.5.6 Vordefinierte Escape-Sequenzen

Literale werden benutzt, um primitive Werte oder Strings in einem Programm direkt
benutzen zu konnen. Was ist aber, wenn dieser Wert nicht per Tastatur in den Sour-
cecode eingegeben werden kann. Beispielsweise kann das Zeilenvorschubzeichen
nicht so ohne weiteres Teil des Quelltexts sein, denn es wiirde direkt beim Editieren
einen Zeilenvorschub auslosen.

Ist also zur Programmlaufzeit ein Vorschub auf eine neue Zeile erforderlich, so muss
ein spezielles Escapezeichen benutzen werden. Die Escapesequenzen fiir Zeilenvor-
schub ist " \n’ , das entspricht dem Codepoint > \u000a’ .

Programm Literall 0: Arbeiten mit vordefinierten Escape-Sequenzen

public class LiterallO {
public static void main(String[] args) {
char 1f = '"\n';
System.out.println("Zeilel" + 1f + "Zeile2");

}

Besonders ist den Fillen, wo es sich bei dem Character-Literal um nicht-darstellbare
Zeichen (im ASCII-Code die Zeichen 0- 31) handelt, ist es sinnvoll, auf vordefinierte
Darstellungen zuriickzugreifen. Sie beginnen alle mit \ (backslash).

Es gibt eine ganze Reihe von vordefinierten Escapesequenzen. Allen gemeinsam ist,
dass sie eine besondere Bedeutung fir den Compiler haben, man "flichtet" also aus
der normalen Codierung und verlangt eine besondere Leistung vom Compiler. Wei-
tere Escapesequenzen sind z.B.

A\t = Tabulator (dezimal 9, hex. 0x09)

AP = Formfeed (dezimal 12, hex. 0x0C)

TAw = Darstellung des doppelten Hochkomma
A = Darstellung des einfachen Hochkomma
AV = Darstellung des Backslash

Besonders die drei letzten Zeichen sind interessant. Sie werden bendtigt, wenn in-
nerhalb eines Programms die Zeichen " oder > oder \ als des Teil eines Textes dar-
gestellt werden miissen.

Ubung zum Programm Literall0

Ubung 1: Andern Sie das Programm so, dass zwischen den beiden Teilstrings "Zei-
le1" und "Zeile2" anstelle des Linefeed a) ein " (Anfithrungszeichen) und b) ein \
(Backslash) erscheint.

Ubung 2: Andern Sie das Programm so, dass zwischen den beiden Teilstrings ein
Alarm ertont. Das Unicodezeichen dafir ist \u0007.

82

5.5 Literale

5.5.7 String-Literale

String-Literale bestehen aus einem oder mehreren Zeichen, die in doppelten Hoch-
kommas eingeschlossen sind. (Zur Erinnerung: ein char-Literal wird in einfache
Hochkommas eingeschlossen.) Wie alle anderen Literale auch, so konnen Stringlite-
rale eingesetzt werden

e fiir die Initialisierung,
® Dbei Wertezuweisungen,

e als Parameter bei einem Methodenaufruf (siche Kapitel 10).

String-Literale bei der Objekt-Initialisierung

Die mitgelieferte Klasse String bietet eine vereinfachte Moglichkeit der Instanz-
Erzeugung. Normalerweise wird eine Instanz mit dem Schlisselwort new erzeugt.
Eine String-Instanz kann aber durch einfache Initialisierung oder auch durch eine
bloe Wertezuweisung erzeugt werden. Und dabei konnen auch Stringliterale einge-
setzt werden. Alle folgenden drei Beispiele haben exakt die gleiche Wirkung:

// Ausfihrliche Schreibweise mit dem Schlisselwort new:
String str = new String("abc");

// Kurzschreibweise durch Initialisierung:
String str = "abe";

// Objekterzeugung durch Wertzuweisung:

String str;
str = "abe";

In allen Fillen wird ein String-Literal benutzt (mit den 3 Zeichen "abc").

Java kennt fiir Referenzvariablen noch ein besonderes Literal: null. Es wird benutzt,
um anzuzeigen, dass die Referenzvariable leer ist, dass also noch kein Objekt exis-
tiert. Der Wert null wird entweder explizit vom Programmierer zugewiesen oder -
wenn es sich nicht um lokale Variable, sondern um ein Klassenmember (sieche Kapi-
tel 11) handelt, als Initialwert automatisch eingesetzt.

Programm Literall1: Schliisselwort null fiir Referenzvariablen

public class Literalll {
public static void main(String[] args) {
String sl = null;
System.out.println(sl);

83

5 RAM verwalten: Variable und Objekte erzeugen

Sonderzeichen im String-Literal

So wie es bei char-Literalen die Moglichkeit gibt, mit so genannten Escapesequen-
zen problematische Zeichen des Unicodes darzustellen, so gibt es auch bei String-
Literalen die Moglichkeit, Escape-Sequenzen oder Codepoints innerhalb eines sol-
chen String-Literals zu verwenden.

Programm Literall2: Arbeiten mit String-Literalen und Escape-Sequenzen

public class Literall2 {
public static void main (String[] args) {
String str = "a\u0062c";
System.out.println ("Der String enthaelt: " + str);

}

Wenn ein Seitenvorschub innerhalb des Strings ausgelost werden soll, so muss das
Escape-Zeichen " \n’ dafiir eingetragen werden.

Ubungen zum Programm Literall2

Ersetzen Sie den Codepoint des Buchstabens b durch die entsprechende Escape-
Sequenz fiir den Tabulator.

Bestimmte Zeichen sind in einem String also nicht direkt verwendbar, z.B. Zeilen-
vorschub. Damit darf ein Stringliteral nicht Giber zwei oder mehr Zeilen gehen. Sollte
das Literal zu lang sein fiir eine Zeile, so muss es auf mehrere Zeilen aufgeteilt und
mit dem +-Operator konkateniert werden.

Programm Literall3: Ein langes String-Literal iiber mehrere Zeilen

public class Literall3 {
public static void main (String[] args) {
String str = "Dies ist ein " +
"langer Text";
System.out.println(str);

}
Ubung zum Programm Literall3

Beantworten Sie folgende Frage: Wie kann man sehr leicht erkennen, ob der Daten-
typ einer Variablen ein primitiver Datentyp ist oder ob es sich um eine Klassenbe-
schreibung handelt?

Losungshinweis: Klassennamen sollten mit einem Grofibuchstaben beginnen. Somit
unterscheiden sich diese Identifier von den eingebauten Typen, die - wie alle
Schlisselworter - klein geschrieben werden.

84

5.6 Zusammenfassung

5.6 Zusammenfassung

In diesem Kapitel haben wir die Moglichkeiten besprochen, wie Variable im Arbeits-
speicher erzeugt und verwaltet werden kénnen. Ublicherweise kénnen die Arbeits-
speicherplitze einen variablen Inhalt haben. Das geschieht so, dass der RAM fir je-
des Programm immer wieder neu und individuell in Einzelplitze aufgeteilt wird und
dass diesen Plitzen ein Name (ein Identifier) und ein Typ zugeordnet wird. "Varia-
bel" sind sie deswegen, weil der Inhalt dieser Speicherplitze (der "Wert") wihrend
der Laufzeit durch Programmbefehle dnderbar ist.

e Wenn die Arbeitsspeicherplitze einen Namen haben wund dnderbar sind, be-
zeichnet man sie als Variablen.

e Wenn die Arbeitsspeicher-Plitze lediglich einen Namen haben, aber nicht dn-
derbar sind, so sind es Konstante (oder auch "konstante Variablen").

e Wenn die Daten im RAM keinen Namen haben, sondern Teil des Quellcodes
sind (und somit auch nicht dnderbar), so handelt es sich um Literale.

Die Variablen (und Konstanten) mussen vor ihrer Verwendung deklariert werden,
Literale werden "einfach so" im Quelltext benutzt. Den Variablen muss auerdem ein
Anfangswert zugewiesen sein, bevor sie genutzt werden konnen.

Variablen
Java unterscheidet grundsitzlich zwischen zwei Arten von Variablen:

e primitive Variablen und
e Referenz-Variablen (Objekt, Instanz).

Primitive Variablen haben einen der acht eingebauten einfachen Datentypen, Refe-
renz-Variablen sind vom Typ einer Klasse. (Der Vollstindigkeit halber wird an dieser
Stelle bereits darauf hingewiesen, dass es nicht nur Referenztypen, die von Klassen
erzeugt werden, gibt, sondern dariiber hinaus noch weitere Referenztypen, z.B. In-
terface-, Array- und Enumerationentypen. Diese werden ausfihrlich in den nichsten
Kapiteln vorgestellt.)

Primitive Variablen enthalten direkt den Wert eines einfachen Typs, Referenz-
Variablen zeigen auf ein Objekt, das zusammengesetzt sein kann aus mehreren Vari-
ablen.

Eine andere Unterscheidung der Variablen ist moglich nach der Art der Zugehorig-

keit:

e lokale Variablen (als Teil einer Methode oder eines Anweisungsblocks und
auch nur dort verwendbar)

e Member-Variablen (als Teil einer Klasse, kann von allen Methoden dieser
Klasse benutzt werden). Sie werden auch als Felder der Klasse bezeichnet
(mehr dazu im Kapitel 11).

85

5 RAM verwalten: Variable und Objekte erzeugen

Konstanten

Durch das Schlisselwort "final” bei der Variablendeklaration kann festgelegt wer-
den, dass dieser Variablen nur einmal ein Wert zugewiesen werden kann. Danach
kann nur noch lesend darauf zugegriffen werden. Vorteile bei der Verwendung von
Konstanten: Programme werden lesbarer, verstindlicher und leichter wartbar.

Literale

Literale sind namenlose Werte. Auch Literale haben einen Datentyp. Der Compiler
erkennt den Datentyp, den ein Literal hat, automatisch. Ganzzahlen z.B. sind vom
Typ int, gebrochene Zahlen sind vom Typ double. Von dieser automatischen Festle-
gung kann jedoch abgewichen werden durch zusitzliche Angaben des Programmie-
rers:

® Bei Gleitkomma-Literalen kann der Buchstabe f (grof oder klein geschrieben)
hinter dem Literal die Umwandlung des Wertes in floal erzwingen

e Bei Ganzzahlen kann der Buchstabe L (grofd oder klein geschrieben) hinter dem
Literal die Umwandlung des Wertes in /long erzwingen.

Es gibt unterschiedliche Moglichkeiten der Darstellung, so kann z.B. die Ganzzahl 25
wie folgt angegeben werden:

25 (= als Dezimalzahl)
19 (= als hexadezimale Zahl)
31 (= als Oktalzahl).

Es gibt vordefinierte Literale, z.B. true oder false. Auferdem konnen fiir spezielle
Sonderzeichen vordefinierte Escapesequenzen benutzt werden, z.B. ' \n’ fir den
Zeilenvorschub.

Die Verwendung von Literalen in Ausdriicken sollte moglichst vermieden werden,
denn durch den fehlenden Bezeichner sind sie wenig aussagefihig fiir den mensch-
lichen Leser. Besser ist oft der Einsatz von Konstanten anstelle von Literalen, diese
haben den zusitzlichen Vorteil, dass bei Anderungen nicht der gesamte Quelltext
durchsucht werden muss.

86

6.1 Stream-Konzept

6 Eingabe und Ausgabe durchfiihren ("i/o-operation ")

In diesem Kapitel erhalten Sie Antwort auf folgende Fragen:
e Wie erfolgt in Java die Ein- und Ausgabe (Input/Output)?
e Welche Bedeutung hat dabei das Stream-Konzept?

e Was ist der Unterschied zwischen byte- und characterorientierter Ein- und Aus-
gabe?

e Welche Klassen werden eingesetzt, um ASCII-Daten in Unicode-Daten umzu-
wandeln und was versteht man in dem Zusammenhang unter "encoding'?

® Wie konnen die Standard-Eingabeeinheiten bzw. Standard-Ausgabeeinheiten
(die Console) in Java-Programmen genutzt werden?

® Wie hilft die Klasse Scanner bei der Analyse und Interpretation der eingelesenen
Daten?

e Wie hilft die Klasse Formatterbei der Aufbereitung der Ausgabe?
e Wie konnen auszugebende Daten mit der format()-Methode aufbereitet werden?

e Welche Moglichkeiten der Dateiverarbeitung gibt es?

6.1 Stream-Konzept

Unter Eingabe (Input) versteht man das Einlesen von Daten in die "Java Virtuelle
Maschine" (JVM). Bei der Ausgabe (Output) verlassen die Daten die JVM. Fur diese
Arbeiten enthilt Java ein generelles Konzept: das Stream-Konzept.

Die mitgelieferte Klassenbibliothek bietet eine Fiille von vorprogrammierten Klassen
mit vielen Methoden, in der alle wichtigen Ein- und Ausgabevarianten vorprogram-
miert sind. Diese etwa 50 Klassen sind im Paket java.io zusammengefasst.

Ein wichtiges Designziel der Java-Entwickler war es, universelle und kompatible Ver-
arbeitungsmoglichkeiten anzubieten. Dabei war ein grundsitzliches Problem zu 16-
sen: Wihrend Java intern bereits mit dem Unicode arbeitet, ist es aulerhalb der JVM
nach wie vor Standard, mit einem 8-bit-Code (z.B. ASCII) zu arbeiten. Das bedeutet:

87

6 Eingabe und Ausgabe durchfiibren ("i/o-operation”)

Beim Einlesen muss das 8-bit-Zeichen in Unicode und beim Ausgeben das Unicode-
Zeichen in eine 8-bit-Codierung transformiert werden.

Eingabe: Ausgabe:
ingab Java Virtuelle Ma- us
entweder schine entweder
_ —
ASCII ASCII
: VM

oder Uni- |konvertieren g) konvertieren | oder Uni-
code = Unicode code

Bild 6.1: Codetransformation bei der Ein- und Ausgabe

Dies ist ein Grund, warum in Java die Ein- und Ausgabe grundsitzlich zeichenwei-
se erfolgt - und nicht, wie hiufig bei anderen Plattformen oder Programmierspra-
chen, zeilenweise oder satzweise. Aber keine Sorge: es gibt natirlich auch in Java
zusitzliche Klassen mit komfortablen Methoden, die all das konnen, was von einem
leistungsfihigen I/O-System erwartet wird: zeilen- oder wortweise transportieren,
einfache Datentypen oder Objekttypen senden und empfangen, dabei die Daten
komprimieren und in ZIP-Files packen oder verschliisseln und signieren nach Kryp-
tographiestandards. Und das Arbeiten mit relationalen Datenbanken ist natirlich
auch in das Java-API integriert.

Leider ist es so, dass bestimmte Aufgaben nur im Zusammenspiel von mehreren
Klassen durchgeftihrt werden konnen. In diesen Fillen wird das Streamobjekt aus
mehreren Klassen erzeugt. Dadurch wird die Einarbeitung in das Thema auch nicht
einfacher.

Aber alle Verfahren basieren auf zeichenweises Lesen und Schreiben von Streams.
Wir wollen in diesem Kapitel das Grundsitzliche, das Prinzipielle besprechen und
deswegen wird zunichst der wichtigste Eingabebefehl, die Methode read(), anhand
mehrerer Beispiele demonstriert.

6.1.2 Was bietet die Methode read()?

Sie hatten bereits gelernt: Zum Konzept der Java-Sprache gehort es, dass die Pro-
gramme universell einsetzbar sind. Sie laufen unverindert auf jeder Hardware-
Plattform, unter jedem Betriebssystem, sofern eine JVM zur Verfiigung steht. Fur je-
den Sprachraum oder Kulturkreis sollen die dort vorhandenen Zeichen verarbeitet
werden konnen. Dartiber hinaus soll das Streamkonzept immer in der gleichen Art
und Weise funktionieren, unabhingig von der Art der beteiligten Ein- und Ausgabe-
gerite. Das Lesen oder Schreiben von Magnetplattendaten soll prinzipiell nicht an-
ders funktionieren als das Lesen oder Schreiben von Daten, die iber eine Internet-
Leitung (TCP/IP mit Sockets) mit chinesischen oder arabischen Geschiftspartnern
ausgetauscht werden.

88

6.1 Stream-Konzept

Das sind also die Griinde, warum die Methode read() zunichst lediglich die Unico-
de-Reprisentation des eingelesenen Zeichens an das Programm liefert.

Somit ist man in der Lage, jede denkbare Bitkombination zu empfangen und ab-
hangig vom Kontext zu interpretieren, z.B.

e als einzelnes (Nutz-)zeichen oder

e als Zeichen, das nur im Verbund mit anderen Bytes interpretiert werden kann
wie bei typisierten Daten oder

e als Steuerzeichen fiir Zeilen- oder Dateiende usw.
Java ist fur alle Fille und vor allem fir zukinftige Entwicklungen gertstet!

Die meisten Beispiele in diesem Buch benutzen die Konsole als Benutzeroberfliche
("user-interface"). Das Wort "Konsole" bedeutet hier, dass eine Tastatur als Eingabe-
gerit und ein zeichenorientierter Bildschirm als Ausgabegerit benutzt werden. Wir
arbeiten also nicht - wie in der Praxis tiblich- mit der Maus und auch nicht mit einer
grafischen Oberfliche.

Diese textbasierte Ein- und Ausgabe am Bildschirm ist vollig ausreichend, um den
gesamten Stoff des Buches an Beispielen zu demonstrieren und zu iiben. So kann
der Leser sich ganz auf das Erlernen der Programmiersprache und auf die objektori-
entierte Denkweise konzentrieren.

Fast alle Betriebssysteme und Programmiersprachen kennen standardisierte Verfah-
ren, wie die Eingabe (Standard-Input) und die Ausgabe (Standard-Output) tiber
Bildschirm und Tastatur bereitgestellt werden. In Java werden diese Gerite als Ziel
oder Quelle eines Streams gesehen.

Das Programm StreamO1 java enthilt ein Beispiel fir das Lesen einer Bedienerein-
gabe am Konsolbildschirm. Dieses Programm soll helfen, die Frage zu kliren, was
liefert die Methode read() nun wirklich an das Programm?

Programm Stream01: Console als Eingabestream

import java.io.*;
public class Stream01l {
public static void main(String[] args) throws Exception {
InputStreamReader eingabe = new InputStreamReader (System.in);
int zeichen = eingabe.read();
System.out.println(zeichen);

}

Zunichst wird eine Instanz der Klasse InputStreamReader erzeugt. Dadurch ist es
moglich, die Methode read zu nutzen. Wir wollen die Frage kliren: Was liefert
read()?. Die Antwort ergibt sich aus den nachfolgenden Ubungen.

89

6 Eingabe und Ausgabe durchfiibren ("i/o-operation”)

Ubungen mit dem Programm Stream01

Ubung 1: Bitte wandeln Sie das Programm um und testen Sie es. Geben Sie den
Buchstaben A ein (oder ein Zeichen aus dem ASCII-Code von 0 - 127) und tber-
priifen Sie, ob die Ausgabe dem Codepoint in der Unicode-Tabelle entspricht. Han-
delt es sich um den hexadezimalen Wert oder um die Angabe als Dezimalzahl?

Ubung 2: Was gibt das Programm aus, wenn Sie (unter MS-Windows) nach dem
Programmstart lediglich die Enter-Taste driicken, ohne ein Zeichen einzugeben?
Wenn Sie in der ASCII-Tabelle (siche Anhang C) die Textbeschreibung zu diesem
Codepoint heraussuchen, finden Sie die Antwort.

Ubung 3: Fiir die erste Anniherung an das Thema Unicode geben Sie bitte einen
deutschen Umlaut ein (6, 4, 4). Die Ausgabe bleibt unverstindlich, wir werden spi-
ter eine Erkldrung dafiir geben.

6.1.2 Byte- oder characterorientiertes Input/Output (1/0)

Die vielfiltigen Moglichkeiten der Stream-Verarbeitung sind in etwa 50 Klassen vor-
programmiert. Es gibt I/O-Methoden, die gepuffert arbeiten (aus Performanzgriin-
den), es gibt Methoden, die verarbeiten komplette Objekte, oder andere, die filtern
den Ein- oder Ausgabestrom nach bestimmten Regeln, es gibt spezielle Methoden fur
den Austausch von Informationen zwischen Threads (Programmteile) usw.

Um die Ubersicht zu erleichtern, werden wir die Klassen gruppieren. Zunichst kann
man trennen zwischen Eingabeklassen und Ausgabeklassen. Und dann kann man
byteorientierte und characterorientierte Streams unterscheiden.

Eingabe Ausgabe

InpuStream | readQ = int OutputStream | writeO) = int
von 0 - 255 von 0-255

Reader read(Q) = int Writer write() = int
von 0-65535 von 0-65535

Bild 6.2: Namen der Basisklassen und -Methoden (fiir die gesamte 1/O-Hierarchie)

90

6.1 Stream-Konzept

(Fast) alle Klassen des I/O-Systems sind von diesen vier Basisklassen abgeleitet. Je
nach Ein-/Ausgabegerit und Aufgabenstellung gibt es spezialisierte Klassen, die die
vier I/O-Methoden unterschiedlich implementieren und erginzen.

Das nichste Beispielprogrammm demonstriert, wie flexibel die Java-Sprache ist,
wenn sich das Eingabemedium dndert. Wir wollen die gleiche Aufgabe wie im Pro-
gramm Stream01 16sen, nimlich das Lesen eines einzelnen Zeichens von einem Ein-
gabestrom. In diesem Beispiel soll der Eingabestrom allerdings eine Datei sein.

Programm Stream02: Datei als Eingabestrom (byteorientiert)

// Kommentarzeile (das erste Zeichen wird gelesen)
import java.io.*;
public class Stream02 {
public static void main(String[] args) throws Exception {
InputStream eingabe = new FileInputStream("Stream02.java");
int zeichen = eingabe.read();
System.out.println (zeichen);

}

Das Programm Stream02 liest mit der Methode read() aus der Klasse Fileln-
putStream ein einzelnes Zeichen aus der Datei "Stream02 java'. Das Ergebnis dieses
Lesevorganges steht dann in der inVariablen zeichen. Bitte beachten Sie: diese Va-
riable hat den Datentyp int. AnschlieBend wird das gelesene Zeichen ausgegeben.
Das Ergebnis ist 47. Laut Unicode-Tabelle ist dies der Codepoint (oder die Platz-Nr.)
fur den Schrigstrich (denn das ist das erste Zeichen in der Eingabedatei)..

Ubrigens kann man in diesem Fall auch in der ASCII-Tabelle nachsehen, denn die
ersten 128 Zeichen des ASCII-Codes sind identisch mit den ersten 128 Zeichen des
Unicodes.

Ubung zum Programm Stream02

Bitte dndern Sie das Programm so, dass das vierte Zeichen der Datei eingelesen und
dessen Codepoint ausgegeben wird. Losungshinweis: Es sind vier Lesebefehle erfor-
derlich.

91

6 Eingabe und Ausgabe durchfiibren ("i/o-operation”)

6.1.3 Unterschiedliche Interpretation der Eingabe

Das Programm Stream02 liest Daten ein. Im Programm muss entschieden werden,
wie die eingelesene Bitkombination interpretiert werden soll. Mit einfachen Mitteln
kann der eingelesene int-Wert z.B. als ein Unicode-Zeichen (character) interpretiert
werden. Dies demonstriert das nachfolgende Programm.

Programm Stream03: Interpretation der Eingabe als char

import java.io.*;
public class Stream03 {
public static void main(String[] args) throws Exception {
InputStreamReader eingabe = new InputStreamReader (System.in);
int zeichen = eingabe.read();
System.out.println((char)zeichen);

}

Notwendig ist lediglich die Angabe "(char)” im Ausgabebefehl. Dadurch wird der
Inhalt der Integervariablen als Zeichen interpretiert, und es wird anstelle des Zah-
lenwerts der Schrigstrich ausgegeben.

Ubungen zum Programm Stream01 (1)

Ubung 1: Wir kommen zuriick auf das Programm SireamO1. Bitte testen Sie dieses
Programm (= Lesen von System.in), indem Sie eine Zahl, bestehend aus einer Ziffer,
z.B. 5, eingeben.

a) Was wird vom Programm ausgegeben, wenn Sie dieses einzelne Zeichen ohne
eine zusitzliche Interpretation angeben? Hinweis: Das ist die Platz-Nummer in der
Unicode-Tabelle.

b) Was wird vom Programm ausgegeben, wenn Sie dieses einzelne Zeichen auch als
char interpretieren?

Ubung 2: Andern Sie die Interpretation des eingelesenen ini-Wertes so, dass die
Zahl als Byte-Wert ausgegeben wird. Hinweis: Der Datentyp char muss durch byte
gedndert werden.

Ein weiteres Beispiel (Programm Stream04) soll die Flexibilitit der Java-Sprache auf
andere Weise demonstrieren. Wir dndern erneut die Quelle unseres Eingabestroms.
Jetzt soll Uber eine TCP/IP-Verbindung von einem entfernten ("remoten") System ge-
lesen werden. Diese Verbindung wird als Socket-Verbindung bezeichnet. Sie setzt
voraus, dass zwei Partnerprogramme (ein Client- und ein Serverprogramm) in unter-
schiedlichen Adressriumen aktiv sind und tber eine Kommunikationsleitung mitein-
ander verbunden sind. AuBerdem miissen sie sich abgestimmt haben, wer der Sen-
der ist und wer der Empfinger.

Dieses Beispielprogramm demonstriert nur das Lesen.

92

6.1 Stream-Konzept

Programm Stream04: TCP/IP-Verbindung als Eingabestrom

import java.net.*;
import java.io.*;
public class Stream04 {
public static void main(String[] args) throws Exception {
ServerSocket ss = new ServerSocket (1500);
Socket s = ss.accept();
DataInputStream ein = new DatalnputStream(s.getInputStream());

int zahl = ein.read();
System.out.println(zahl);

}

Um tiber eine TCP/IP-Leitung Daten empfangen zu konnen, missen die beiden ers-
ten Zeilen der main-Methode zusitzlich codiert werden. Damit wird eine so genann-
te Socket-Verbindung tiber den Port 1500 aufgebaut. Zum Testen dieser Anwendung
fehlt allerdings auch noch ein Senderprogramm. Der Anspruch dieses Buches ist es,
einfache und konzentrierte Beispiele zu bieten. Und: dies sollen keine Codefragmen-
te oder Programmausschnitte sein, sondern komplette, ausfithrbare Programme. Da-
mit das Versprechen auch fiir dieses TCP/IP-Beispiel erfiillt wird, beschreiben wir im
Anhang D, wie diese kleine verteilte Anwendung komplettiert werden muss und wie
sie getestet werden kann.

Am Ende dieses Unterkapitels, in dem Sie das Stream-Konzpet kennen gelernt und
anhand vieler Beispiele ausprobiert haben, zeigen wir Ihnen ein weiteres Beispiel
fir das Lesen eines Datenstroms (Programm Stream05). Diesmal soll der Eingabe-
strom im selben Adressraum liegen wie das Programm selbst. Auch das ist mit
Stream-Techniken moglich; es muss also nicht immer ein Ein- oder Ausgabegerit
sein, mit dem kommuniziert wird. Sie sehen: Auch innerhalb des Arbeitsspeichers,
sogar innerhalb eines Adressraums (einer JVM), ist die read-Methode einsetzbar.

Programm Stream05: Lesen eines Streams im selben Adressraum

import Jjava.io.*;
public class Stream05 {
public static void main(String[] args) throws Exception {

String str = "Dies ist ein Text im Arbeitsspeicher";
StringReader text = new StringReader (str);
int ¢ = text.read();

System.out.print ((char)c);

93

6 Eingabe und Ausgabe durchfiibren ("i/o-operation”)

6.2 Standard-Eingabe

Fur das Einlesen von Zeichen, die der Bediener am Bildschirm eingetippt hat, gibt es
eine grole Vielfalt unterschiedlicher Methoden. Alle haben als Basis das Einlesen
von Einzelzeichen, doch gibt es auch komfortable Methoden, die fiir das Programm
ganze Zeichenketten, komplette Zeilen oder typisierte Daten einlesen und diese
nach bestimmten Regeln analysieren und fiir die Verarbeitung zur Verfiigung stellen.

Programm Comnsole01: Zeichenweise Lesen von der Konsole (diesmal mit
Bytestream und mit verkiirzten Schreibweise)

import java.io.*;
public class Console0Ol {
public static void main(String[] args) throws Exception {
int zeichenl = System.in.read();
System.out.println(zeichenl);

}

Das Programm Console01 erwartet vom Bediener die Eingabe eines Zeichens. Mit
der Methode read() wird versucht, aus dem Eingabestrom ein Zeichen zu lesen.
Wenn der Stream leer sein sollte, stoppt das Programm und es beginnt die Arbeit
erst dann wieder, wenn ein Zeichen tber System.in eingegeben wurde und der Be-
diener die Entertaste gedriickt hat.

Ubung zum Programm Console01

Geben Sie das Zeichen ein, das als Antwort "50" ausgibt. Losungshinweis: Bitte in
der Unicode-Tabelle nachschauen, um zu ermitteln, welches Zeichen den numeri-
schen Wert 50 hat.

Das nichste Beispiel demonstriert das Einlesen von mehreren Zeichen. An dieser
Stelle fehlen noch Kenntnisse zur Schleifenbildung in Java. Natirlich wird das Einle-
sen von mehreren Zeichen oder Zeilen z.B. durch einen while-Befehl realisiert, und
praktische Beispiele dazu finden sich reichlich im Kapitel 8. Im Augenblick geht es
lediglich um das Lesen und die Interpretation von Bildschirmeingaben.

Programm Comnsole02: Lesen von Steuerzeichen (CR/LF) von System.in

import java.io.*;
public class Console02 {
public static void main(String[] args) throws Exception {

int zeichenl = System.in.read();
int zeichen2 = System.in.read();
int zeichen3 = System.in.read();

o
Q.

System.out.printf ("%d
}

%d", zeichenl, =zeichen2,zeichen3);

94

6.2 Standard-Eingabe

Ubung zum Programm Console02

Bitte starten Sie das Programm und tippen Sie lediglich ein Zeichen ein. Wenn Sie
danach die Enter-Taste driicken, werden trotzdem drei Zeichen eingelesen und am
Bildschirm ausgegeben. Priifen Sie anhand der Unicode-Tabelle im Anhang C, um

)

welche Zeichen es sich handelt.

6.2.1 Arbeiten mit der Klasse Scanner

Es gibt natirlich auch Situationen, wo nicht einzelne Zeichen eingelesen und inter-
pretiert werden mussen, sondern das Programm typisierte Daten (also int, float
usw.) erwartet. Es kann auch sein, dass eventuell vorhandene Steuerzeichen erkannt
und automatisch interpretiert werden sollen. Die Standard-Bibliothek von J2SE ent-
hilt die Klasse Scanner, die eine komfortable Moglichkeit bietet, Texte und Java-
interne Datentypen einzulesen.

Die eingelesenen Daten werden von Methoden dieser Klasse analysiert und nach
vorgegebenen Regeln interpretiert. So konnen komplette Zeilen eingelesen und ihr
Inhalt richtig erkannt werden. Dieser Vorgang wird "Parsen” oder "Scannen" ge-
nannt. Beispielsweise kann eine Zeile neben ganzen Wortern auch die Java-internen
Datentypen wie int oder double enthalten. Die Methoden der Klasse Scanner unter-
scheiden die einzelnen Worter (hier "Token" genannt) anhand von Trennzeichen,
die frei wihlbar sind. Standardmiglig werden die einzelnen Token einer Zeile abge-
trennt durch Leerstellen ("blank").

Mit dem folgenden Beispielprogramm wird eine komplette Zeile vom Bildschirm ge-
lesen. Dabei wird davon ausgegangen, dass diese Zeile folgenden Aufbau hat: zu-
nichst wird eine beliebige Zeichenfolge (String) erwartet; beendet wird dieser String
beim Auftreten des Trennzeichens Blank. Dann folgt als nichstes Token eine ganze
Zahl, und das letzte Token in dieser Zeile muss eine Gleitkommazahl in wissen-
schaftlicher Schreibweise (mit dem Buchstaben e) sein.

Programm Scanner01: Eingabe von typisierten Daten (String, int und double)

import java.util.Scanner;
public class Scanner01l ({
public static void main(String[] args) {
Scanner eingabe = new Scanner (System.in);
String str = eingabe.next (); // Komplettes Wort lesen
int zahll = eingabe.nextInt (); // Ganzzahl lesen
double zahl2 = eingabe.nextDouble(); // E-Format z.B. 5e3 lesen
System.out.printf ("%s | &d | %$f", str, zahll,zahl2);

95

6 Eingabe und Ausgabe durchfiibren ("i/o-operation”)

Ubungen zum Programm Scanner01

Ubung 1: Eine korrekte Eingabezeile sieht etwa so aus: aaaa 4700 5e3. Konnen
die drei Daten auch in jeweils einer eigenen Zeile stehen?

Ubung 2: Was passiert, wenn "falsche" Daten im Eingabestrom stehen?

6.2.2 Fehlerbehandlung und Priifungen

Generell wird das Thema Fehlerbehandlung in diesem Buch nicht besprochen, denn
die Programmierung von Routinen zur Fehlerbehandlung ("Exceptionhandling") er-
fordert in Java einige tiefergehende Kenntnisse der Objektorientierung. Und vor al-
lem wiirde die Einfachheit der Programme durch die Programmierung der Fehlerbe-
handlung leiden und dem Einsteiger die Ubersicht erschweren.

Dennoch werden wir mit dem nachfolgenden Programm eine kurze Einfiihrung in
dieses Thema geben. Das Programm 77yCatch01 java liest von der Console das erste
Token ein und prift, ob der eingegebene Wert numerisch ist. Wenn nicht, wird eine
Fehlermeldung ausgegeben, andernfalls wird "ok" ausgegeben.

Programm TryCatch01: Lesen mit Formalpriifung (auf numerisch)

import java.util.Scanner;
public class TryCatchOl {
public static void main(String[] args) {
int zahl;
Scanner eingabe = new Scanner (System.in);

String str = eingabe.next (); // Erstes Wort lesen
try {
zahl = Integer.parselnt (str); // Konvertieren in Ganzzahl

}

catch (NumberFormatException e) {
System.out.println ("Es wurde keine Ganzzahl eingegeben");
System.exit (8);

}

System.out.println ("Der eingegebene Text ist ok");

}

Die Behandlung von Fehlern erfolgt in Java mit Hilfe der try-catch-Anweisung. In-
nerhalb des #r)-Block werden die fehlertrichtigen Anweisungen ausgefiihrt, und von
dem catch-Block werden eventuell aufgetretene Fehler behandelt. Wir haben in al-
len anderen Programmen in diesem Buch auf diese Art der Ausnahmebehandlung
verzichtet und haben durch die Klausel "throws Exception" im Kopf der Methode
festgelegt, dass mogliche Fehler vom Laufzeit-System (und nicht individuell) behan-
delt werden sollen.

96

6.2 Standard-Eingabe

Ubung zum Programm TryCatch01

Andern Sie das Programm so, dass auf eine individuelle Fehlerbehandlung verzichtet
wird. Testen Sie das Programm und beobachten Sie das Systemverhalten. Was pas-
siert, wenn der Bediener falsche Daten eintippt?

Programm Scanner03: Losungsvorschlag fiir den Verzicht auf individuelle
Fehlerbehandlung

import java.util.Scanner;
public class Scanner03 {
public static void main(String[] args) throws Exception {

int zahl;

Scanner eingabe = new Scanner (System.in);

String str = eingabe.next (); // Erstes Wort lesen

zahl = Integer.parselnt (str); // Konvertieren in Ganzzahl

System.out.println("Der eingegebene Text ist ok");

6.2.3 Andern des Delimiter (des Begrenzungszeichens) zum Auftrennen der Begriffe

Die Klasse Scanner bietet dem Programmierer die Moglichkeit, den Delimiter
(Trennzeichen) je nach Situation zu dndern. Das Trennzeichen fir einzelne Token
kann durch Aufruf der Methode useDelimiter geindert werden. Sehr hiufig werden
die einzelnen Begriffe der Eingabedaten durch Komma abgetrennt, und das folgende
Programm zeigt eine Losung fiir diese Aufgabenstellung.

Programm Scanner 04: Andern des Begrenzungszeichens

import java.util.Scanner;
public class Scanner04 {

public static void main(String[] args) {
Scanner eingabe = new Scanner (System.in);
eingabe.useDelimiter (", "); // Delimiter aendern
String str = eingabe.next (); // Komplettes Wort lesen
int zahll = eingabe.nextInt(); // Ganzzahl lesen

double zahl2 = eingabe.nextDouble(); // E-Format z.B. 5e3 lesen
System.out.printf ("%$s | %d | %f", str, zahll,zahl2);
}

97

6 Eingabe und Ausgabe durchfiibren ("i/o-operation”)

Beispiel fiir eine korrekte Eingabezeile:
Javabuch, 17, 3e5,

Das letzte Komma in der Eingabezeile ist zwingend notwendig, sonst wird der Ein-
gabevorgang des letzten Token nicht beendet. AuRerdem durfen in diesem (sehr
einfachen) Beispiel keine Leerzeichen zwischen den Token stehen. Naturlich ist
auch hier eine flexible Eingabegestaltung moglich, aber das ist ein Thema fir spitere
Kapitel. Denn die Scanner-Klasse ist besonders komfortabel im Zusammenhang mit
"Reguliren Ausdriicken", siche hierzu Kapitel 14.

Wie wird das Zeilenende erkannt?

Beim Einlesen einer kompletten Zeile ist folgendes Problem zu 16sen: das Zeilenen-
de wird auf unterschiedlichen Plattformen unterschiedlich dargestellt (in MS-
Windows durch CR/LF, in Unix durch CR und in MAC-OS durch LF). Auch dafir bie-
tet Java eine Losung. In so genannten Systemproperties sind diese Eigenschaften fir
die jeweilige Plattform gespeichert, und es gibt Methoden, diese abzufragen. Das
folgende Beispiel zeigt eine Anwendung.

Programm Scanner05: Plattformunabhingiges Einlesen von Zeilen

import java.util.Scanner;
public class Scanner05 {
public static void main (String[] args) {

Scanner eingabe = new Scanner (System.in);
String zeilenende = System.getProperty("line.separator");
eingabe.useDelimiter (zeilenende); // Delimiter aendern
String zeilel = eingabe.next(); // Komplettes Zeile lesen
String zeile2 = eingabe.next (); // ndchste Zeile lesen
System.out.printf ("$s %$s", zeilel, zeile2);

6.3 Standard-Ausgabe

Wird der Bildschirm als Standard-Ausgabeeinheit vom Programm angesprochen, so
ist damit ein eigenes Fenster gemeint. Dieses arbeitet zeilenorientiert, und das be-
deutet, dass nicht ein einzelnes, grafisches Pixel adressiert werden kann, sondern
dass mit Zeilen und Spalten fir die Zeichendarstellung gearbeitet wird. In einer MS-
Windowsumgebung ist dies die "Eingabeaufforderung" (DOS-Box).

Die Ausgabe tber die Standard-Ausgabeeinheit ist sehr komfortabel. So stehen fol-
gende Methoden zur Verfigung:

o System.out.printin() = fur die Ausgabe von Java-Datentypen in eine Zeile. Da-
nach wird auf eine neue Zeile vorgeschoben.

98

0.3 Standard-Ausgabe

o System.out.print() = flur die Ausgabe von Java-Datentypen in eine Zeile, oh-
ne dass danach auf eine neue Zeile vorgeschoben wird

e System.outformat() = fur die formatierte Ausgabe von Java-Datentypen (wie
printf)

o System.out.printf()= fir die formatierte Ausgabe von Java-Datentypen (wie for-
mat)

Ein Statement mit den Bezeichnern System.out bewirkt, dass die Klasse System gela-
den wird. In dem static-Feld out steht eine Referenz auf die aktuelle Standard-
Ausgabeeinheit. Ein Umleiten ist jederzeit moglich, wie das folgende Programm
zeigt.

Programm Redirect01: Umleiten der Standard-Ausgabe in Datei

import java.io.*;

public class Redirect0l {
public static void main(String[] args) throws Exception {
System.setOut (new PrintStream(new FileOutputStream("a.txt")));
System.out.println ("Der Text wird umgeleitet in Datei");

}

6.3.1 Arbeiten mit printin und print

Das Ergebnis einer Ausgabe mit den verschiedenen print- bzw. format-Methoden ist
immer ein String. Typisierte Daten wie int oder float werden vor der eigentlichen
Ausgabe automatisch in eine String-Reprisentation umgewandelt.

Programm Print01: Ausgabe von Java-Datentypen auf Console

public class Print01 {
public static void main(String args([]) {
int monat= 5;
float gehalt = 2123.45f;
String sl= "Im Monat ";
String s2= "haben Sie ";

System.out.print (sl + monat + " ");
System.out.print (s2 + gehalt + " ");
System.out.println("verdient");

}

Der Ausgabestrom kann also aus einer Kombination von beliebigen Java-Datentypen
bestehen. Die primitiven Datentypen werden automatisch in einen String umgewan-

99

6 Eingabe und Ausgabe durchfiibren ("i/o-operation”)

delt, und das Plus-Zeichen sorgt fiir das Konkatenieren, fiigt also die einzelnen Wer-
te so aneinander, dass ein Ausgabestring entsteht.

Wenn ein Ausgabestrom dagegen Referenz-Datentypen enthilt, so muss der Pro-
grammierer sicherstellen, dass die Umwandlung in String erfolgt. Dies kann dadurch
geschehen, dass er eine Methode toString() programmiert, diese wird dann automa-
tisch aufgerufen und ausgefiihrt. Andernfalls wird eine mitgelieferte Standardmetho-
de toString ausgefiihrt. Dieses Thema wird in Kapitel 14 detailliert besprochen.

6.3.2 Arbeiten mit class Formatter

Soll die Ausgabe der Daten in besonderer Weise formatiert erfolgen, so sollte mit der
Methode format() der Klasse Formatter oder wahlweise auch mit prinif() gearbeitet
werden. Diese beiden Methoden bieten identische Moglichkeiten zum Formatieren
und Aufbereiten der Ausgabe. Es konnen z.B. Angaben zur Linge, zum Einfligen
von fuhrenden Leerstellen, zur rechts- oder linksbiindigen Aufbereitung, zu der An-
zahl der Dezimalstellen und einiges mehr gemacht werden.

Programm Format01: Gleitkomma mit der Ausgabemethode format()

public class Format0l {
public static void main(String args[]) {
float gehalt = 2000.00f;
System.out.format ("$f \n", gehalt);
System.out.format ("$e \n", gehalt);
System.out.format ("$g \n", gehalt);

}

Ubung zum Programm Format01

Ersetzen Sie den Methodenname format durch prinif (die beiden Methoden haben
den gleichen Leistungsumfang). Andert das etwas an der Ausgabe?

Auch der syntaktische Aufbau der beiden Methoden ist gleich:

format (String format, Object ... args);
printf (String format, Object ... args);

Erlduterungen: Beide Methoden erwarten zwei Argumente, die durch Komma ge-
trennt werden. Das erste Argument ist ein String, der Formatierungsangaben enthilt,
wahlweise gemischt mit Literalen. Das zweite Argument hat eine variable Anzahl
(festgelegt durch die drei Punkte) und umfasst die zu formatierenden Objekte.

Die Formatierungselemente beginnen mit dem %-Zeichen, danach muss mindestens
ein Zeichen stehen, das die Art der Konvertierung angibt, z.B.

100

0.3 Standard-Ausgabe

f fur float,
t fiir time,
d fiir decimal oder
s fur String.
Zusitzlich konnen aber auch Angaben zur Grofe gemacht werden, z.B.

.2 fir zwei Stellen hinter dem Komma
6.2 fiir sechs Stellen vor, zwei Stellen hinter dem Komma.

Im folgenden Programm soll die Ganzzahl 90 in unterschiedlichen Varianten am
Bildschirm ausgegeben werden (als Dezimalzahl, als Oktalzahl und zweimal als He-
xadezimalzahl, jeweils getrennt durch Schrigstrich).

Programm Format02: Ganzzahl mit der Ausgabemethode format()

import Jjava.io.*;
public class Format02 {
public static void main (String args[]) {
int zahl = 90;
System.out.format ("%1d / %<o / %<x / %<X ", zahl);

}

Ubung zum Programm Format02
Bitte dndern Sie das Programm so, dass als Trennzeichen nicht ein Schrigstrich,

sondern ein Komma ausgegeben wird.

Zum Abschluss soll ein Beispiel die Ausgabe von Literalen und typisierten Variablen
demonstrieren.

Programm Format03: Formatierung mit Literalen und typisierten Variablen

import Jjava.io.*;
public class Format03 {
public static void main (String args[]) {

int monatl = 5;
float gehaltl = 2123.45f;
String sl = "Im Monat ";

String s2 = "haben Sie ";

String s3 = "%s %02d %s %4.2f verdient\n";
System.out.format (s3, sl, monatl, s2, gehaltl);
System.out.format (s3, sl, 11, s2, 983f);

101

6 Eingabe und Ausgabe durchfiibren ("i/o-operation”)

6.4 Dateiverarbeitung

Das Streamkonzept wird auch beim Lesen oder Schreiben von externen Datentri-
gern (Platten- oder DVD-Dateien) eingesetzt. Allerdings gibt es eine grole Fiille von
Klassen, die jeweils spezialisiert sind und fiir erginzende Aufgaben ihre Dienste an-
bieten. Das Arbeiten mit diesen Klassen ist voll objektorientiert. Deswegen noch
einmal der Hinweis: Es fehlen an dieser Stelle noch einige Voraussetzungen, um alle
Codiertechniken der folgenden Beispiele zu verstehen. Trotzdem wollen wir de-
monstrieren, wie Daten auf einen externen Speicher, z.B. in eine Magnetplattendateti,
geschrieben (man sagt: "persistent" gemacht) werden und wie diese anschlieRend
wieder gelesen werden konnen. Das Kapitel kann also vom Einsteiger zunichst (-
berflogen und spiter bei Bedarf nachgearbeitet werden.

Dieser Abschnitt enthiilt drei Themenbereiche:

e Die beiden Programme Datei01 und DateiO2 demonstrieren das Schreiben und
Lesen von Dateien mit Hilfe von Stream-Klassen. Weil die Datendarstellung in
einem Java-spezifischen Format erfolgt, ist diese Art der Dateiverarbeitung je-
doch nur sinnvoll, wenn kein Datenaustausch mit anderen Systemen notwendig
ist (oder wenn lediglich mit rein bindren Daten und nicht mit Texten und Zei-
chen gearbeitet wird).

e Die nichsten vier Programme KonvertO1-04 zeigen, dass ein Dateiinhalt unter-
schiedlich interpretiert werden kann: im ersten Programm wird eine Datei er-
zeugt, die einen Integerwert enthilt. In den folgenden Programmen werden die
vier int-Bytes aber als einzelne Bytes interpretiert und "encodiert" in Unicode
und zum Schluss wieder konvertiert in ASCII-Code. Dazu ist es notwendig, so
genannte Briickenklassen einzusetzen, die als Transformationshilfe zwischen der
ASCII- und der Unicodewelt fungieren.

e In den beiden letzten Programm Encode01-02 vertiefen wir die gewonnenen
Einsichten zum Thema "Wie werden aus ASCII-Zeichen Unicode-Zeichen?". Die
Programme werden zeigen, dass dies tiber den Einsatz der richtigen Encoding-
Tabelle gesteuert wird.

6.4.1 Lesen und Schreiben in Datei

Nun zum ersten Thema: Welche Moglichkeiten bieten die Streamklassen, um Daten
in Dateien zu schreiben? Das Programm soll sowohl primitive Variablen (in-Werte)
als auch Texte in die Datei "fest1.datl" ausgeben.

Programm Datei0O1: Schreiben von typisierten Variablen in eine Datei

import java.io.*;
public class DateiO1l {
public static void main(String[] args) throws Exception {
OutputStream aus = new FileOutputStream("testl.dat");
DataOutput datenAus = new DataOutputStream (aus);

102

6.4 Dateiverarbeitung

datenAus.writelInt (4700);
datenAus.writeUTF ("Merker") ;
datenAus.writeUTF ("Steinfurt");

}

Das Programm DateiO1 benutzt die Klasse DataOutputStream. Diese enthilt fur alle
eingebauten Java-Datentypen eigene Ausgabemethoden, z.B. fir Ganzzahlen die
Methode writeInt. Auerdem konnen Unicode-Zeichen einzeln (mit writeChar) oder
als String (mit writeChars) ausgegeben werden. Dabei belegt jedes Zeichen zwei
Bytes in der Ausgabedatei.

Was bedeutet UTF?

Im Programm DateiO1 benutzen wir die Methode writeUTF fir die String-Ausgabe,
und die hat eine Besonderheit: Um in der Ausgabedatei Platz zu sparen, wird jedes
Unicodezeichen nach bestimmten Verfahren transformiert, bevor es in den Ausgabe-
strom geschrieben wird. Dabei gelten folgende Transformationsregeln:

e Zeichen im Bereich \u0001 - \u007f bendtigen 1 Byte
e Zeichen im Bereich \u0080 - \u07ff bendtigen 2 Bytes
e Zeichen im Bereich \u0800 - \uffff benotigen 3 Bytes.

Anders gesagt, die ASCII-Zeichen benétigen wenig Platz, alle anderen entsprechend
mehr. (Wir werden spiter das UTF-8-Format kennen lernen. - ein Standardformat,
das mit den Reader-/Writer-Klassen von Java iibernommen wurde. Die Transformati-
on mit writeUTF entspricht leider nicht exakt diesem UTF-8-Standard, denn es han-
delt sich hierbei noch um ein Java-internes Format.)

Was bedeutet Little/Big Endian ?

Der Vollstindigkeit halber soll an dieser Stelle noch auf ein weiteres Kompatibili-
titsproblem hingewiesen werden. Immer wenn mehrere Bytes nicht einzeln, son-
dern im Verbund interpretiert werden miissen (z.B. bei Integer-Variablen oder bei
Unicode-Zeichen, die mit zwei oder drei Bytes dargestellt werden), mussen Sender
und Empfinger eines Streams sich einigen, wie die Byte-Reihenfolge ist: stehen die
hoherwertigen Bytes vorne oder hinten? Der Fachausdruck dafir ist: Little Endian
oder Big Endian. Auch dies ist im Unicode plattform-unabhingig standardisiert. Wir
werden darauf zurlickkommen.

Nachdem das Programm DateiO1 ausgefihrt wurde, ist die Datei testl.dat in dem-
selben Ordner angelegt, in dem sich die Class-Datei befindet. Die Datei enthilt 23
Bytes, die sich zusammensetzen aus 4 Bytes Ganzzahl, 6 und 9 Bytes fiir die Strings,
und zusitzlich enthilt jeder String 2 Zeichen fur die Stringlinge. Zumindest die
Textdaten kann man mit einem beliebigen Editor (oder auch an der Console mit ei-
nem Betriebssystembefehl z.B. type) anzeigen. Java arbeitet standardmilig mit dem
Big-Endian-Format.

103

6 Eingabe und Ausgabe durchfiibren ("i/o-operation”)

Ubungen zum Programm DateiO1
Ubung 1: Kliren Sie folgende Fragen durch Ausprobieren:

a) Was passiert, wenn Sie dieses Programm erneut aufrufen? Sind die Daten in der
Datei zweimal vorhanden oder wird die Datei iberschrieben?

b) Wo steht die Datei, wenn Sie in der vierten Zeile innerhalb der Anfithrungsstriche
folgendes angeben: "e:\test1l.dat"?

Ubung 2: Andern Sie die Ausgabemethode in writeBytes(). Wie ‘indert sich der In-
halt der Ausgabedatei?

AnschlieBend wollen wir ein Programm codieren, das die Daten aus der Datei
test1.dat wieder in den Arbeitsspeicher einliest und von dort in einem Konsolfenster
ausgibt.

Programm Datei02: Einlesen von typisierten Variablen aus einer Datei

import Jjava.io.*;
public class Datei02 {
public static void main(String[] args) throws Exception {

InputStream ein = new FileInputStream("testl.dat");
DatalInput datenEin = new DatalnputStream(ein);
int plz = datenEin.readInt ();
String kdname = datenEin.readUTF () ;
String ort = datenEin.readUTF () ;
System.out.println(plz + " " + kdname + " " + ort);

Ubungen zum Programm Datei02

Ubung 1: Andern Sie zunichst das Schreib-Programm DateiO1 java so ab, dass eine
zweite Adresse in die Datei geschrieben wird.

Ubung 2: Danach soll auch das Lese-Programm Datei0O2 java so geindert werden,
dass diese zweite Adresse eingelesen und angezeigt wird.

6.4.2 Unicode und die unterschiedliche Interpretation von Bitkombinationen

Der Unicode ist ein Regelwerk, wie "jedem Zeichen dieser Welt" ein numerischer
Wert, eine Platznummer, zugeordnet wird. Diese Platznummer wird Codepoint ge-
nannt. Die real existierenden Betriebssysteme, Ein-/Ausgabegerite und Program-
miersprachen arbeiten jedoch noch nicht vollstindig mit dem Unicode. In vielen Be-
reichen gilt nach wie vor die 8-Bit-Codierung. Das bedeutet, dass der Austausch
von Daten zwischen verschiedenen Plattformen in der Praxis noch fiir lingere Zeit
ein heikles Thema bleiben wird.

104

6.4 Dateiverarbeitung

Warum ist das "Encoding" ein wichtiges Thema?

Ob moderne verteilte Anwendungen erstellt werden sollen oder ob Daten mit so
genannten Legacy-Anwendungen (Alt-Systeme z.B. von COBOL, RPG oder auch von
hierarchischen Datenbanken) ausgetauscht werden, immer ist ein tiefgehendes Ver-
stindnis fur die interne Darstellung der Daten und fiir das Arbeiten mit diversen Co-
depages und Charactersets notwendig. Eine Encoding-Tabelle spielt bei allen An-
wendungen eine Rolle, die "internationalisiert" werden miissen - und dies ist zumin-
dest bei den meisten Internet-Anwendungen erforderlich. Deshalb sind auch gerade
die modernen Internettechnologien wie XML und HTTP und Java ausgestattet mit
der Fihigkeit, unterschiedliche Encoding-Tabellen zu verarbeiten. Die Angabe, wel-
ches Encoding-Schema eingesetzt wird (z.B. "charactersel=iso-8859-3"), kann in
XML-Dateien, im HTTP-Header beim Arbeiten mit Formular-Parametern, in HTML-
Dokumenten und natirlich in Java-Programmen stehen.

Datei mit int-Wert erstellen und unterschiedlich interpretieren

Die nachfolgenden vier Programme demonstrieren kurz und Ubersichtlich, wie in
Java durch Einsatz der characterorientierten Klassen Reader und Writer (in Zusam-
menarbeit mit den byteorientierten Streamklassen)

e cin einzelner Dezimalwert in einer Datei gespeichert wird (KonvertO1 java),

e diese Zahl als vier Einzelzeichen interpretiert und als UTF-8-/UTF-16-Daten kon-
vertiert in einer Datei gespeichert werden kann (Konvert02.java),

e diese Unicode-Datei wieder zuriick in eine ASCII-Datei umgestellt werden kann
(Konvert03.java) und wie zum Schluss

e die vier ASCII-Zeichen wieder als die Dezimalzahl interpretiert werden, die sie
urspriinglich dargestellt haben (Konvert04. java).

Programm Konvert01: Erstellen der Ausgangsdatei Stream01 .txt

import Jjava.io.*;
public class Konvert01l {
public static void main (String[] args) throws Exception {
OutputStream aus = new FileOutputStream("Stream0l.txt");
DataOutput ausgabe = new DataOutputStream(aus);
ausgabe.writeInt (174);

}

Die Methode writelnt() codiert die Dezimalzahl 174 als reine bindre Zahl und
schreibt sie in die Datei StreamO1.txt. In Java sind int-Typen immer 4 Bytes lang,
diese 32 bits haben die Stellenwertigkeit des Binirsystems. Also hat die Datei fol-
genden Inhalt:

bindr: 00000000 00000000 00000000 10101110
hexadezimal ausgedriickt: 00 00 00 AE

105

6 Eingabe und Ausgabe durchfiibren ("i/o-operation”)

Dieser Inhalt kann auch als eine Folge von 4 einzelnen Bytes interpretiert werden.
Das letzte Byte enthilt OxAE (hexadezimal AE), das ist ein Wert, der jenseits der AS-
ClII-Standard-Codierung von 00 - 7F liegt. Und wir wissen: alle Zeichen, die oberhalb
von 0x7F liegen, sind in ASCII nicht standardisiert. Hier ist entscheidend, mit wel-
chem Characterset gearbeitet wird. Auf der MS-Windows-Plattform wird bei der In-
stallation ein Standard-Characterset, abhingig vom Linderschlissel, festgelegt. Dies
ist in Westeuropa der Characterset CP-1252. Leider hat die DOS-Box unter MS-
Windows eine davon abweichende Codierung, namlich CP-850.

Im Anhang C sind beide Zeichencodierungen zusammen mit dem Unicode aufge-
fuhrt. Fir die hex-Verschlisselung AE finden wir dort folgende Zeile :

Codepoint: UnicodeZeichen/Text: CP-1252: CP-850:
174 0x00AE ® REGISTERED SIGN ® «

Im Unicode und im MS-Windows-Standard wird der Dezimalwert 174 also als "re-
gistered" (registriertes) Zeichen interpretiert; in einer DOS-Box dagegen wird der
doppelte Pfeil ausgegeben.

Ubung zum Programm Konvert01
Bitte tiberpriifen Sie, wie der Inhalt der Datei StreamO1.1xt in

e ciner DOS-Box (mit dem DOS-Command "type dateiname") und wie der Inhalt
e in einem Editor (z.B. MS-Editor oder MS-Word)

angezeigt wird.

6.4.3 Transformieren mit Briickenklassen und Encoding-Tabellen

Das nichste Programm soll den Inhalt der Datei als vier einzelne Bytes interpretieren
und diese als Unicode-Zeichen mit Hilfe einer "Encoding-Tabelle" ausgeben. Die
wichtigsten Hilfsklassen bei dieser Transformation sind die Brickenklassen zwischen
der 8-bit-ASCII-Welt und der 16-bit-Unicodewelt (InputStreamReader und Out-
putStreamWriter). Und die wichtigste Aufgabe fiir den Programmierer ist die Aus-
wahl der richtigen Encoding-Tabelle (Zeichensatz, Characterset). Die bekanntesten
Zeichensitze sind:

ISO 646 Standard-US-ASCII (7-bit = 128 Zeichen von hex. 00 bis 7F)
ISO 8859-x 8-bit-ASCII (256 Zeichen, von hex. 80-FF, , Latin-x, mehrere Versionen)
CP1252 MS-Windows-Version fir ISO 8859-1 (CP fir Codepage)

CP850 MS-DOS (Zeichensatz fiir Consolefenster in Windows)
UTF-8 8-bit-Unicode, die ersten 255 Zeichen sind identisch mit ISO 8859-1
UTF-16 16-bit-Unicode (auch UCS-2), wird in Java verwendet

UTF-32 32-bit-Unicode (auch UCS-4)

Im UTF-16-Code ist das Unicode-Zeichen 65279 (hexadezimal feff) das "Byte Order
Mark" (BOM). Damit kann festgelegt werden, ob die Byte-Ordnung der Big-Endian-

106

6.4 Dateiverarbeitung

oder der Little-Endian-Variante entspricht. Dartiber hinaus gibt es noch zwei Varian-
ten von UTF-10, die sich auch mit diesem fiir die Portabilitit der Daten so wichtigen
Thema beschiftigen, nimlich

UTF-16-BE (BE fiir Big Endian, d.h. das hoherwertige Byte zuerst) und
UTF-16-LE (LE fiir Little Endian, d.h. das niederwertige Byte zuerst).

Die Encoding-Tabelle kann bei der Erzeugung eines InputStreamReader-Objekts
bzw. eines OuiputStream Writer-Objektes angegeben werden. Wenn die Angabe
fehlt, wird mit einer Standard-Tabelle, die automatisch bei der Java-Installation fest-
gelegt wird, gearbeitet.

Programm Konvert02: Vier Bytes als vier Unicodezeichen "encodieren"

import Jjava.io.*;
public class Konvert02 {
public static void main (String[] args) throws Exception {
BufferedReader eingabe = new BufferedReader (
new InputStreamReader (new FileInputStream (
"StreamOl.txt"), "CP1252"));
BufferedWriter ausgabe = new BufferedWriter (
new OutputStreamWriter (new FileOutputStream
"Stream02.txt"), "UTF-16"));
int zeichen = eingabe.read();
ausgabe.write (zeichen);
zeichen = eingabe.read();
ausgabe.write (zeichen);
zeichen = eingabe.read();
ausgabe.write (zeichen);
zeichen = eingabe.read();
System.out.println ((char)zeichen);
ausgabe.close();

}

In dem Programm Konvert02 sorgen die Briickenklassen InputStreamReader bzw.
OutputStreamReader fir das Encoding (von 8-bit-ASCII nach UTF-16 Unicode). Das
Ergebnis dieser Konvertierung steht in der Datei Stream02.txt. Diese Datei ist insge-
samt 10 Bytes groff, neben den 2 Bytes je Zeichen enthilt sie auch ein Steuerzei-
chen.

Ubungen zum Programm Konvert02

Ubung 1: Bitte editieren Sie die Datei Stream02.txt mit einem MS-Windows-Editor
(z.B. Editor oder MS-Word). Angezeigt wird das Registerzeichen (laut Characterset
UTF-106).

107

6 Eingabe und Ausgabe durchfiibren ("i/o-operation”)

Ubung 2: Bitte indern Sie das Programm so, dass das vierte gelesene Zeichen am
Bildschirm ausgegeben wird mit folgendem Befehl:

ausgabe.write ((char) zeichen);
Das Ergebnis dieser Ausgabe ist der doppelte Pfeil (laut Characterset CP-850).

Ubung 3: Priifen Sie, wie sich der Dateiinhalt der Ausgabedatei verindert, wenn Sie
fur die Ausgabe statt UTF-16 den Characterset UTF-8 benutzen.

Ubung 4: Muss fiir die Eingabedatei der Characterset CP1252 zwingend angegeben
werden (oder ist dies die Standardannahme)? Kann also die Angabe entfallen?

Das nichste Programm wird den Inhalt der Datei StreamO2.ixt als vier Unicode-
Zeichen interpretieren und diese wieder zurtckfiihren in ASCII-Daten.

Programm Konvert03: Einlesen von 4 Unicodezeichen und in ASCII umwan-
deln

import Jjava.io.*;
public class Konvert03 {
public static void main(String[] args) throws Exception {
BufferedReader eingabe = new BufferedReader (
new InputStreamReader (new FileInputStream (
"Stream02.txt"), "UTF-16"));
BufferedWriter ausgabe = new BufferedWriter (
new OutputStreamWriter (new FileOutputStream (
"Stream03.txt"), "8859_1"));
int zeichen = eingabe.read();
ausgabe.write (zeichen);
zeichen = eingabe.read();
ausgabe.write (zeichen);
zeichen = eingabe.read();
ausgabe.write (zeichen);
zeichen = eingabe.read();
ausgabe.write (zeichen);
ausgabe.close();

}

Das Ergebnis nach Ausfihrung des Programms KonvertO3 steht in der Datei
Stream03.txt. Aus den 10 Bytes der Eingabedatei wurden wieder die 4 Bytes, die
auch schon die Datei StreamO1.txt hatte.

Jetzt konnten wir in einem weiteren Programm diese 4 Bytes als Integerwert inter-
pretieren und am Bildschirm als Dezimalzahl 174 ausgeben:

108

6.4 Dateiverarbeitung

Programm Konvert04: Interpretieren von 4 ASCII-Bytes als Integerwert

import java.io.*;
public class Konvert04 ({
public static void main(String[] args) throws Exception {
InputStream ein = new FileInputStream("Stream03.txt");
DataInput eingabe = new DatalnputStream(ein);
int zeichen = eingabe.readInt();
System.out.println (zeichen);

}

6.4.4 Beispielprogramme fiir Encoding und Characterset

Zur Vertiefung dieses Themas folgen noch zwei Beispiele, die zeigen sollen, wie
wichtig der richtige Einsatz des Encoding-Mechanismus ist.

Das erste Beispiel gibt einen Text aus, ohne besondere Hinweise zu einem Enco-
ding; im zweiten Beispiel wird ein individuelles Encoding explizit angegeben.

Programm Encode01: Arbeiten mit Standard-Encoding

import Jjava.io.*;
public class Encode0Ol {
public static void main (String[] args) throws Exception {
Writer writer = new FileWriter ("ausgabe.txt");
writer.write ("Java\ul234");
writer.close();

}

Nach der Ausfihrung dieses Programms enthilt die Ausgabedatei 5 Bytes, obwohl
das letzte Zeichen ein Unicode-Zeichen ist (1234 ist der Codepunkt fiir das Promille-
Zeichen). Die Datei enthilt an dieser Stelle ein ? (Fragezeichen) - und das ist das
Standardzeichen fiir alle Unicodewerte, die nicht im ASCII-Code enthalten sind.

Die korrekte Ausgabe von Unicode-Zeichen, die nicht im Bereich der 128 ASCII-
Zeichen liegen, erfordert die ausdrickliche Angabe einer Encoding-Tabelle. Zusitz-
lich muss die Ausgabeklasse geindert werden. Das nachfolgende Programm de-
monstriert, wie beliebige Unicodezeichen in eine Datei ausgegeben werden konnen.

Programm Encode02: Arbeiten mit individuellem Encoding-Schema durch
Angabe des Charactersets

import Jjava.io.*;
public class Encode02 {

public static void main (String[] args) throws Exception ({
FileOutputStream fos = new FileOutputStream("aus.txt");

109

6 Eingabe und Ausgabe durchfiibren ("i/o-operation”)

Writer writer = new OutputStreamWriter (fos, "UTEF-8");
writer.write ("testing\u2030");
writer.close();

Klasse OutputStreamWriter

Das obige Programm benutzt die bereits mehrfach erwihnte Klasse OutputStream-
Writer fur die Ausgabe. Diese Klasse bildet eine Briicke zwischen der Unicode-Welt
und ASCII-Welt. Bei der Ausgabe von Character- oder Stringwerten werden die Zei-
chen anhand einer Umwandlungstabelle neu verschlisselt. Fiir die Ausgabe werden
die intern benutzten Unicode-Zeichen in das Format konvertiert, das durch die En-
coding-Tabelle spezifiziert wird. Fehlt diese Angabe, so wird der Defaultwert des
darunter liegende Betriebssystems benutzt (meistens ASCII-Zeichen). Fiir die Eingabe
gibt es denselben Mechanismus: Mit Methoden der Klasse InputStreamReader wer-
den die eingelesenen ASCII-Informationen umgesetzt in Unicode-Zeichen.

Die Umwandlungstabelle ("encoding schema") hat in diesem Programm die Be-
zeichnung "UTF-8", damit ist eine Variante des Unicodes gemeint, der die 16-bit lan-
gen Einzelzeichen umformt in 1, 2, 3 oder 4-Byte lange Zeichen, abhingig von der
Hiufigkeit des Auftretens. So werden alle Zeichen, die im ASCII-Code enthalten
sind, in 8-bit-Verschlisselungen umgeformt. Chinesische Zeichen dagegen werden
umgeformt in 24-bit/32-bit-Verschlisselungen. Warum diese zusitzliche Umformung
der Unicode-Zeichen bei der Ausgabe? Der Grund ist Speicherplatzeinsparung: hiu-
fig benutzte Zeichen konnen komprimiert werden, selten benutzte dagegen benoti-
gen mehr Platz.

Ubungen zum Programm Encode02

Ubung 1: Priifen Sie den Inhalt der Datei aus.txt. Wieviel Bytes enthilt die Datei?
Lassen Sie sich den Inhalt in einem Unicode-fihigen Textprogramm (z.B. MS-Word)

o

anzeigen. Das Ergebnis muss so aussehen: "Java$

Nattirlich ist es auch moglich, den Inhalt der Variablen in der JVM als "normalen"
Unicode (also 16-bit pro Zeichen) ausgeben zu lassen. Dazu muss lediglich das rich-
tige Encoding angegeben werden.

Ubung 2: Andern Sie den Namen der Encoding-Tabelle von UTF-8 auf UTF-16 und
starten Sie das Programm erneut. Priifen Sie danach, wie lang die Ausgabedatei nun
ist und lassen Sie sich den Inhalt tiber MS-Word anzeigen.

Ubung 3: Andern Sie das Programm so ab, dass ein Unicodezeichen aus dem Be-
reich 00-7F ausgegeben wird, z.B: mit folgender Zeile:

writer.write (0x0078);

110

6.4 Dateiverarbeitung

Prifen Sie die Ausgabedatei und kontrollieren Sie, ob das Zeichen der Unicode-
Tabelle entspricht.

Ubung 4: Andern Sie das Programm so ab, dass eine intVariable definiert und ihr
der Dezimalwert 184 zugewiesen wird. Geben Sie dann diese Variable in die Datei
aus und kontrollieren Sie das Ergebnis wiederum mit einem Unicode-fihigen Text-
programm.

6.4.5 Hinweise zum UTF-8

Der Standard UTF-8 (Unicode Transformation Format) beschreibt, wie Unicode-
Zeichen so transformiert werden, dass ASCII-Zeichen in einem Byte und alle ande-
ren in 2 bis 4 Byte verschliisselt werden. Dieses Format ist das Standard-Format fiir
den Austausch von Unicode-Daten. Es kann genutzt werden, um Unicode-Daten in
Dateien zu schreiben und auch fiir den Transport der Daten z.B. im Internet. Der
Vorteil liegt im geringeren Platzbedarf gegentiber dem normalen Unicode, soweit es
sich um amerikanische Texte handelt, denn diese werden auf ein Byte zuriickge-
fihrt.

Die Transformation von Unicode, der innerhalb der JVM zum Einsatz kommt, in
UTF-8 fir die externe Darstellung erfolgt nach einem ausgekliigelten Algorithmus. So
gelten beispielsweise folgende Regeln:

e liegt der Wertebereich des UTF-16-Zeichens zwischen 00 und 7f, wird es trans-
formiert in 1 Byte mit folgendem Bitmuster: 0XXxXxXxX

e liegt der Wertebereich des UTF-16-Zeichens zwischen 80 und 7ff, wird es trans-
formiert in 2 Bytes mit folgenden Bitmustern: 110xxxxx 10XXXXXX

Die wichtigste Information steht in den ersten Bits eines Bytes. Steht dort eine 0, so
handelt es sich um eine 7-Bit-ASCII-Codierung; stehen dort 110, so handelt es sich
um das 1. Byte einer 16-Bit-Darstellung usw. Die folgende Tabelle verdeutlicht diese
Verschlisselung.

Unicode wird trans-

formiert in

UTF-8
dezimaler Wert Erstes Bytes Anzahl Bytes
0-127 OXXXXXXX 1
128-2048 110XXXXX 2
2048-65.535 1110xxxx 3
65.535-131.071 11110xxx 4
USW.

Abb. 6.3: Umformung von Unicode nach Standard-UTF-8

111

6 Eingabe und Ausgabe durchfiibren ("i/o-operation”)

6.4.6 Zusammenfassung

Die Input-/Output-Moglichkeiten in Java sind sehr umfassend, aber nicht unbedingt
intuitiv verstindlich. Um das Gesamtkonzept richtig zu verstehen, ist viel Erfahrung
in objektorientierter Programmierung erforderlich.

Jede der mehr als 50 Klassen, die sich mit diesem Thema befassen, erfillt eine spe-
zielle Aufgabe, und manches Programmierproblem ldsst sich nur durch das Zusam-
menspiel von mehreren Streamklassen 10sen. So sind diese Klassen einerseits sehr
stark iber Vererbungstechniken miteinander verbunden, andererseits konnen sie
sich gegenseitig benutzen, und auch eine Verkniipfung tiber Konstruktoren ist mog-
lich.

Wir konnen an dieser Stelle nur eine grundsitzliche Einfiihrung in das gesamte 1/O-
Konzept geben.

Streams beschreiben ein abstraktes Konzept fiir den Transport von Daten

Das wichtigste Einsatzgebiet von Streams ist der Transport von Daten zwischen einer
JVM und beliebigen Peripheriegeriten (Konsole, Magnetplatte, TCP-Kommu-
nikationsleitung usw.).

Unterscheidung zwischen byte- und characterorientierter Ein- und Ausgabe

Diese Unterscheidung ist fiir die Verarbeitung von codierten Zeichen wichtig, denn
byteorientierte Verarbeitung erlaubt nur die Darstellung von 256 unterschiedlichen
Zeichen, wihrend die characterorientierten Klassen die Angabe einer Encoding-
Tabelle (z.B. UTF-16, UTF-8 oder 8859-1) erlauben und damit den Unicode voll un-
terstitzen.

Encoding

Weil auRerhalb der JVM in den meisten Fillen mit Bytes fur die Zeichendarstellung
gearbeitet wird, ist ein Verstindnis fiir die Konvertierung zwischen 8- und 16-bit-
Darstellung wichtig. Wir haben die Bedeutung der Encoding-Tabellen und ihren Ein-
satz mit verschiedenen Beispielen demonstriert.

112

Ausdriicke verstehen ("expression")

Unter einem Ausdruck ("expression") versteht man eine Verarbeitungsvorschrift, mit
der ein Wert ermittelt wird. Im Java-Quelltext besteht ein Ausdruck aus Operanden
(das konnen Variablen, Konstanten oder Literale sein), die durch Operatoren (z.B.
+ oder /) verkniipft werden. Hier einige Beispicle fir Ausdriicke:

zahl = 25 // Zuweisungsausdruck
a+5/b // Mathematischer Ausdruck
a > 3 // Vergleichsausdruck

Ein Ausdruck ist kein selbststindiger Befehl, sondern Teil einer Anweisung. Die obi-
gen Beispielausdriicke konnen entweder durch Anhiingen eines Semikolons zu einer
vollstindigen Anweisung gemacht werden oder sie konnen innerhalb von anderen
Anweisungen benutzt werden. Auch hierzu einige Beispiele:

zahl = 25; // Zuweisungsanweisung
System.out.println(a+ 5 / b); // Ausdruck als Methodenparameter
boolean b = a > 3; // Ausdruck als Teil der Zuweisung

Ein Ausdruck kann tiberall da stehen, wo ein Wert ben6tigt wird. Er kann auch aus
nur einem Operanden bestehen, im einfachsten Fall aus einer Variablen oder aus
einem Literal. Das ist deswegen wichtig zu erwihnen, weil tGberall da, wo laut Syn-
taxbeschreibung ein Ausdruck erwartet wird, auch eine einzige Variable oder ein Li-
teral stehen darf. Das Ergebnis eines Ausdrucks, der nur aus einer Variablen besteht,
ist also der Wert dieser Variablen.

Ein Ausdruck kann auch aus einem Methodenaufruf bestehen. Die Operanden beim
Methodenaufruf sind normalerweise Objekte. Eine Besonderheit ist, dass es Metho-
denaufrufe gibt, die kein Ergebnis liefern. Wir werden das Arbeiten mit Methoden im
Kapitel 10 ausfiihrlich besprechen.

In diesem Kapitel geht es ausschlielich um Operanden aus einfachen Datentypen

und um die verschiedenen Operatoren, die dazu dienen, diese Operanden zu verar-
beiten. Sie werden die wichtigsten Arten von Ausdriicken kennen lernen und in vie-
len praktischen Beispielen anwenden.

Die beiden wichtigsten Einsatzgebiete fiir Ausdriicke sind

- die Steuerung des Programmablaufs, z.B. in einer If-Anweisung: if (a == b) ...
- die Wertezuweisung, z.B. a = 5 +).

Dies sind dann die Themen fiir das Kapitel 8.

113

7 Ausdriicke versteben ("expression”)

71 Operanden und Operatoren

Ein Ausdruck soll einen Wert ausdricken. Die Auswertung eines Ausdrucks liefert
also ein (und nur ein) Ergebnis. Dieses Ergebnis muss vom Programm in irgendeiner
Form weiterverarbeitet werden, andernfalls ist die Anweisung unvollstindig und
fuhrt zu einem Umwandlungsfehler.

Ein Ausdruck kann mehrere Operanden haben, die dann verknipft werden durch
Operatoren. So entsteht ein komplexer Ausdruck.

Programm Ausdruck01 : Beispiel fiir einen komplexen Ausdruck

class AusdruckO01 {
public static void main (String[] args) {
double gehalt = 2000;
gehalt = gehalt * 1.15 - 8;
System.out.println ("Das neue Gehalt ist: " + gehalt);

}

Hinweis: In der ersten Zeile fehlt der Modifier public, das bedeutet, dass der Zugriff
auf diese Klasse begrenzt ist auf das Package (weitere Erlduterungen siehe 16.7.3).

Die Zeile 4 enthilt einen zusammengesetzten Ausdruck. Er besteht aus Operanden
und aus Operatoren. Die Operatoren sind die beiden Symbole * und -. Die Operan-
den sind gebalt, 1.15 und 8. Ein Operator ist ein spezielles Symbol (oder eine
Kombination von mehreren Symbolen), das eine bestimmte Aktion veranlasst, z.B.
eine Addition durch das Pluszeichen + oder ein Vergleich von Werten durch Grofer-
oder Kleinerzeichen > < ("was soll getan werden?"). Ein Operand ist eine Variable,
eine Konstante oder ein Literal, mit dem gearbeitet wird ("womit soll etwas gemacht
werden?").

Ein Ausdruck hat einen Datentyp

Ein Ausdruck hat immer einen Datentyp, und das ist der Datentyp des Ergebnisses.
Und dieser wird bestimmt vom Typ der einzelnen Operanden. Beispiel:

5+7

Hier ist der Fall klar. Der Datentyp dieses Ausdrucks ist int (Integer), weil beide O-
peranden vom Typ int sind. Etwas komplexer sind die Regeln, wenn die einzelnen
Operanden unterschiedliche Datentypen haben. Dann werden sie "gleichnamig" ge-
macht, dazu spiter mehr.

Ausdriicke mit Nebeneffekt

In Ausnahmefillen kann es sein, dass ein Ausdruck nicht nur einen neuen Wert er-
mittelt, der dann weiter verarbeitet wird, sondern dass gleichzeitig auch der Wert ei-
nes der Operanden im Speicher verindert wird, z.B. beim Inkrement a++;. Diese

114

7.1 Operanden und Operatoren

Anweisung enthilt den Ausdruck a++. Die Wirkung des Ausdrucks besteht darin,
dass der Wert der Variablen a um 1 erhoht wird. Gleichzeitig hat er den Nebenef-
fekt, dass dieser neu ermittelte Wert auch der Variablen a zugewiesen wird. In sol-
chen Fillen spricht man von einem "Ausdruck mit Nebeneffekt". Obwohl der Begriff
Nebeneffekt in der Informatik hiufig verbunden ist mit der Vorstellung von uner-
wiinschten Nebenwirkungen bei der Verarbeitung von Variablen, ist in diesem Fall
der Zusatzeffekt erwiinscht.

Reihenfolge der Auswertung

Die Auswertung von zusammengesetzten Ausdriicken geschieht in folgender Reihen-
folge: Zunichst wird der Wert der einzelnen Operanden ermittelt (bei Variablen ist
dies der augenblickliche Inhalt des Speicherplatzes dieser Variablen). Danach wer-
den - normalerweise von links nach rechts - anhand der Operatoren die Ergebnisse
der Teilausdriicke evaluiert. Beispiel:

gehalt * 1.15 - 8

In diesem Beispiel wird also zunichst der Wert der Variablen geball, dann das Er-
gebnis der Multiplikation und erst danach die Differenz ermittelt. Da in Java bei a-
rithmetischen Operatoren die Ubliche Priorititsreihenfolge ("Punktrechnung vor
Strichrechnung") gilt, stimmt in diesem Fall die Regel, dass von links beginnend die
einzelnen Teilausdriicke berechnet werden. Durch das Setzen von Klammern kann
die Reihenfolge jedoch geindert werden. Beispiel:

gehalt * (1.15 -8)

In diesem Fall wird zuerst die Differenz ermittelt und danach multipliziert. Die um-
fangreichen Regeln zur Reihenfolge der Evaluierungsschritte ("Prizedenz") werden
wir spiter detailliert besprechen.

Ubung zum Programm Ausdruck01

Fugen Sie in den Ausdruck der Zeile 4 die runden Klammern ein. Vergleichen Sie
das Ergebnis. Testen Sie danach andere Varianten der Klammernsetzung.

Wie wichtig das Setzen von Klammern sein kann, demonstriert das folgende Pro-
gramm. Durch die Klammerung der Multiplikation wird dieser Rechenvorgang zuerst
ausgefiihrt, bevor dann das Ergebnis in einen in#-Typ konvertiert wird.

Programm Ausdruck02: Klammern verandern die Auswertungsreihenfolge

class Ausdruck02 {
public static void main(String[] args) {
// int zl = (int)1.23 * 100; // Zuerst 1.23 in int konvertieren
int z1 = (int) (123 * 100); // Zuerst multiplizieren
System.out.println(zl);

115

7 Ausdriicke versteben ("expression”)

7.2 Arithmetische Operatoren
7.2.1 Die Grundrechenarten

Es gibt fir die vier Grundrechenarten jeweils einen Operator: + - * /. Die Operanden
miussen numerische Typen sein. Zu den numerischen Datentypen gehoren alle pri-
mitiven Typen mit einer Ausnahme: Boolean-Typen sind nicht numerisch, mit ihnen
kann man nicht rechnen.

Programm Arithmetik01: Beispiel fiir die vier Grundrechenarten

class Arithmetik01 {
public static void main(String[] args) {
float a = 25.7f;

float b = 5f;
short x = 212;
int y = 148;

System.out.println("x + v = " + (x + y));
System.out.println("x — v =" + (x - y));
System.out.println("x / vy =" + (x / vy));
System.out.println("a / b =" + (a / b));

}
Ubungen zum Programm Arithmetik01

Ubung 1: Starten Sie das Programm und tiberpriifen Sie die Ergebnisse. Ist das letzte
Ergebnis korrekt? Wahrscheinlich wird ein Programmieranfinger zusammenzucken:
Konnen Computer nicht rechnen? Wir werden Ursache und Losung dieses Phino-
mens spiter besprechen.

Ubung 2: Bitte dndern Sie das Programm so, dass die vier Variablen a, b x und y
negative Initialwerte haben (z.B. -212. Uberpriifen Sie die Ergebnisse.

Neben den vier Grundrechenarten gibt es noch einen zusitzlichen arithmetischen
Operator: % (Prozentzeichen). Dieser wird auch Modulo- oder Rest-Operator ge-
nannt. Man kann dadurch den Rest einer Division ermitteln. Beispiel: Der ganzzahli-
ge Rest der Division 5 geteilt durch 3 ist 2.

Programm Arithmetik02: Anwendung des Modulo-Operators

class Arithmetik02 {
public static void main (String[] args) {
int y = 15;
System.out.println(y % 4);

116

7.2 Arithmetische Operatoren

Rechnen mit byte- oder char-Datentypen

Etwas ungewohnlich ist sicherlich, dass auch mit Variablen der Datentypen byte oder
char gerechnet werden kann. Technisch ist dies keine Besonderheit, denn auch die-
se Daten werden binir dargestellt und zwar abhingig von der Position des Zeichens
im Unicode.

Auch wenn es wahrscheinlich nur in Ausnahmefillen sinnvoll ist, Rechenoperatio-
nen auf diese Datentypen anzuwenden, soll das nichste Beispiel eine mogliche An-
wendung demonstrieren. Dabei benutzen wir ein so genanntes Inkrement. Dies er-
hoht den Inhalt einer numerischen Variablen um 1 (siehe unire Operatoren).

Programm Zeichen01: Rechnen mit char-Variablen

public class ZeichenO01l {
public static void main (String args|[]) {
char zeichen = 'A';
System.out.println (++zeichen) ;

}

Der kleinste Datentyp, mit dem in Java gerechnet werden kann, ist in#, d.h. schmale-
re Typen werden zu int konvertiert.

Programm Byte01: Ergebnisvariable hat falschen Datentyp

public class ByteOl {
public static void main (String args|[]) {
byte bl = 10;
byte b2 = 11;
byte erg = bl + b2;
System.out.println (erqg);

}

Wenn Sie versuchen, dieses Programm umzuwandeln, gibt es eine Fehlermeldung
("possible loss of precision, found int, required byte"). Sinngemifd bedeutet das, dass
als Ergebnis der Addition in der Zeile 5 ein Integerwert gefunden wurde, deshalb
muss auch die Ergebnisvariable mindestens den Typ #nt haben.

Ubungen zum Programm Byte01

Ubung 1: Bitte indern Sie das Programm so, dass das richtige Ergebnis (21) ausge-
geben wird.

Ubung 2: Uberlegen Sie, ob das obige Programm fehlerfrei umgewandelt werden
kann, wenn der Datentyp aller drei Variablen von byte nach char geindert wird. Lo-
sungshinweis: Eine char-Variable ist 2 Byte lang, eine in/-Variable ist 4 Byte lang.
Uberpriifen Sie das Ergebnis Threr Denkarbeit.

117

7 Ausdriicke versteben ("expression”)

Rechnen mit Gleitkomma-Datentypen

Wenn bei ganzzahligen Datentypen eine Division durch Null versucht wird, liefert
die Run-Time-Umgebung einen Laufzeitfehler ("Exception"). Bei float- und double-
Zahlen dagegen bewirkt die Division durch Null keine Exception, sondern liefert als
Ergebnis den speziellen Wert "unendlich" (infinity).

Programm GleitkommaO01: Falsche Operationen mit Gleitkomma-Zahlen

public class GleitkommaOl ({
public static void main(String[] args) {
double zahll = 15.21;
double zahl2 = 0.0;
double erg = zahll / zahl2;
System.out.println ("Ergebnis ist: " + erq);

}

Variable vom Typ Gleitkomma kennen neben "infinity! noch einen anderen speziel-
len Wert: "nicht definiert" bzw. "keine Zahl" (Not-a-Number NaN). Auch dieser Wert
kann als Ergebnis von unzulissigen Rechenvorgingen entstehen. Beide Werte kon-
nen abgefragt oder zugewiesen werden durch spezielle eingebaute Konstanten.

Programm Gleitkomma02: Spezielle Werte in Gleitkomma-Variablen

public class GleitkommaO2 {
public static void main (String[] args) {
double zahll = 0.0 / 0.0;
float zahl2 = Float.NaN;
System.out.println(zahll + " " + zahl2);

}
Gemischte Datentypen in einem Ausdruck und "numeric promotion"

Ein Ausdruck liefert immer nur ein Ergebnis. Der Datentyp dieses Ergebnisses be-
stimmt somit den Datentyp des gesamten Ausdrucks. Das heifst, wenn das Ergebnis
eine Integer-Variable ist, dann handelt es sich um einen Integer-Ausdruck, und wenn
das Ergebnis eine Float-Variable ist, dann handelt es sich um einen Float-Ausdruck.

Diese Unterscheidung ist wichtig, weil davon der Datentyp einer moglichen Ergeb-
nisvariablen abhingt.

Aber welcher Ergebnistyp gilt, wenn es sich um einen zusammengesetzten Ausdruck
handelt, der Operanden mit unterschiedlichen Datentypen enthilt? Generell hat
dann das Ergebnis den groften Datentyp aller Operanden, d.h. es findet eine auto-
matische Typerweiterung statt - alle Operanden der Teilausdriicke werden angepasst
("gleichnamig gemacht").

118

7.2 Arithmetische Operatoren

Programm Byte02: Numeric Promotion bei unterschiedlichen Datentypen

public class Byte02 {
public static void main(String argsl[]) {
byte z1 = 10;
z1l = z1 + 5;
System.out.println(zl);

}
Ubung zum Programm Byte02

Die Umwandlung dieses Programms endet mit einer Fehlermeldung. Bitte interpre-
tieren Sie die Fehlermeldung und idndern Sie das Programm entsprechend.

7.2.2 Unére arithmetische Operatoren

Java-Operatoren verlangen entweder ein, zwei oder drei Operanden. Die bisher be-
sprochenen arithmetischen Operatoren sind so genannte binére (dyadische) Opera-
toren, sie stehen zwischen zwei Operanden. Dariiber hinaus gibt es unire (monadi-
sche) Operatoren, die nur einen Operanden erfordern. Und es gibt sogar einen Ope-
rator, der drei Operanden erfordert, den Bedingungsoperator (siche unter If-Befehl).
Dieser wird tenér (triadisch) genannt. Undre Operatoren verlangen also nur einen
Operanden. Bei den arithmetischen Befehlen gibt es zwei unterschiedliche Auspri-
gungen der uniren Operatoren: fiir die Vorzeichendarstellung und fir die Inkre-
mentbildung.

Vorzeichen

Mit dem Minuszeichen kann also nicht nur die Differenz zwischen zwei Operanden
ermittelt werden, es kann auch als unirer Operator unmittelbar vor einem Operan-
den stehen. Dann hat es die Bedeutung eines Vorzeichens.

Programm Arithmetik05: Arbeiten mit Vorzeichen

public class Arithmetik05 {
public static void main (String args|[]) {
byte z1 = -10;
long z2 = -11;
long erg = z1 + -z2;
System.out.println (erqg);

119

7 Ausdriicke versteben ("expression”)

Inkrement/Dekrement

Fur die Addition und Subtraktion gibt es abgekurzte Schreibweisen. Auch diese er-
fordern nur einen Operanden (und werden deshalb ebenfalls als unire Operatoren
bezeichnet). Es handelt sich um das Inkrement ++ (increment, engl. Zuwachs) und
das Dekrement --.

Durch den Operator ++ wird der Inhalt einer Variablen um 1 erhoht. Ein typisches
Einsatzgebiet ist die Schleifenbildung, bei der Laufvariablen rauf- oder runtergezihlt
werden (siche Kapitel 8.5.3).

Programm Inkrement01: Arbeiten mit Inkrement

class InkrementO01l {
public static void main(String[] args) {
int zahl = 0;
zahl++; // Kurzschreibweise flir: zahl = zahl + 1;
System.out.println(zahl);
}
}

Der Ausdruck zahl++; ist eine komplette Anweisung, denn er wird abgeschlossen
mit einem Semikolon. Er hat dieselbe Wirkung wie die etwas ausfihrlichere Anwei-
sung zahl = zahl + 1;

Durch den Operator -- wird der Inhalt einer Variablen um 1 reduziert.

Programm Dekrement01: Arbeiten mit Dekrement

class Dekrement01 {
public static void main (String[] args) {
int zahl = 0;
zahl—-—; // Kurzschreibweise flr: zahl = zahl - 1;
System.out.println(zahl);
}
}

Pre- oder Postfix

Beim Arbeiten mit Inkrement- bzw. Dekrement-Operatoren ist noch eine wichtige
Besonderheit zu beachten. Beide Operatoren konnen sowohl in Prifix- als auch in
der Postfix-Notation verwendet werden:

Prifix Postfix
++zahl zahl++
--zahl zahl--

Man kann also den Operator vor oder hinter den Operanden schreiben. Und die
Wirkung dieser unterschiedlichen Schreibweise ist auch unterschiedlich: In der Pri-

120

7.2 Arithmetische Operatoren

fix-Version wird die Variable zuerst verindert und dann benutzt, in der Postfix-
Version wird sie erst benutzt und dann um 1 modifiziert. Praktische Auswirkung hat
diese Unterscheidung nur dann, wenn das Hochzihlen oder Runterzihlen in einem
zusammengesetzten Ausdruck erfolgt

Programm Dekrement02: Prifix-Notation

class Dekrement02 {

public static void main (String[] args) {
int a = 1;
System.out.println(--a);
}

}

Ubungen zum Programm Dekrement02

Ubung 1: Andern Sie das Programm Dekrement02 java so, dass erst der aktuelle Va-
riablenwert ausgegeben und danach die Rechenoperation ausgefiihrt wird.

Ubung 2: Angenommen, Sie haben den zusammengesetzten Ausdruck 9 / ++a,
dann wird zuerst eine 1 auf den Wert der Variablen a addiert und erst danach die
Division durchgefthrt. Bitte testen Sie diese Anweisung mit dem Programm Dekre-
mentO2.

Ubung 3: Dagegen wird in dem zusammengesetzten Ausdruck 9 / a++ zuerst die
Division durchgefiithrt und anschlieBend @ um 1 erhoht. Bitte testen Sie diese An-
weisung mit dem Programm Dekrement02 und vergleichen Sie die Ergebnisse.

Das folgende Programm demonstriert eine dhnliche Aufgabenstellung. Es zeigt noch
einmal die Auswirkungen der unterschiedlichen Schreibweisen beim Inkrementieren.
Und vor allem macht es deutlich, dass diese Ausdriicke schwer verstindlich sind
und deswegen besser vermieden werden sollten.

Programm Inkrement02: Ausdriicke, schwer verstiandlich, nicht empfohlen!

public class Inkrement02 {
public static void main(String args[]) {
int x = 1;
int y = 7 * ++x; // Prafix, Erst erhdhen, dann rechnen
System.out.println(y);

int z = 7 * x++; // Postfix Erst rechnen, dann erhdhen.
System.out.println(z);

}

Beide Multiplikationen lauten 7 * 2, d.h. in beiden Fillen ist das Ergebnis 14. Trotz-
dem ist die Wirkung unterschiedlich.

121

7 Ausdriicke versteben ("expression”)

Ubung zum Programm Inkrement02

Uberlegen Sie, welchen Inhalt die Variablen x am Programmende hat. Uberpriifen
Sie Thre Uberlegung dadurch, indem Sie das Programm um entsprechende Ausgabe-
anweisungen ergianzen.

Beispiel zum Nebeneffekt

Die Inkrement- bzw. Dekrement-Operatoren haben noch eine weitere Besonderheit:
sie bewirken einen "Nebeneffekt". Wihrend ein Ausdruck normalerweise lediglich
einen Wert ermittelt, aber keinen Variablenwert verindert (es sei denn, man benutzt
ausdriicklich den Operator = flir eine Wertezuweisung), haben die besprochenen
Operatoren ++ und -- eine zweifache Auswirkung: zum einen wird dadurch ein
neuer Wert errechnet und aulerdem (so ganz nebenbei, als Zusatzeffekt) dieser
Wert auch der beteiligten Variablen zugewiesen.

Programm Dekrement03: Wie wirkt der Nebeneffekt?

public class Dekrement03 {
public static void main(String args([]) {
int a = 0;
System.out.println(a + 1);
System.out.println (a++);

}
Ubung zum Programm Dekrement03

Uberlegen Sie, ob und wie der Inhalt der Variablen a sich zur Programmlaufzeit ver-
indert. Verifizieren Sie dies durch einen zusitzlichen Ausgabebefehl.

7.2.3 Probleme beim Rechnen mit primitiven Datentypen

Der Begriff "primitive" Datentypen bedeutet eigentlich nicht, dass diese Typen wenig
komfortabel sind, sondern er soll ausdriicken, dass es sich um die Basistypen einer
Programmiersprache handelt und dass sie elementare Typen sind, die nicht weiter
unterteilt werden konnen.

Aber beim Rechnen mit den eingebauten Typen sind einige Restriktionen zu beach-
ten, die dazu fihren konnen, dass diese "primitiven" Typen nicht in jedem Fall ge-
eignet sind, um mathematische Aufgabenstellungen fehlerfrei zu 16sen. Dann muss
auf mitgelieferte Klassen zuriickgegriffen werden (natiirlich bedeutet der zusitzliche
Komfort der Klassen auch Verlust an Performance, deswegen ist im Einzelfall immer
abzuwiigen, welche Losung besser ist).

Insbesondere sind es drei Themenkreise, die problematisch sind und mit besonderer
Sorgfalt behandelt werden miissen:

122

7.2 Arithmetische Operatoren

e Wie werden die Stellen rechts vom Komma behandelt? Wieviel Stellen stehen
zur Verfiigung? Wird abgeschnitten oder gerundet?

e Wie werden die Stellen links vom Komma behandelt? Was passiert, wenn der
Wertebereich der Ergebnisvariablen nicht grof8 genug ist, um alle denkbaren Er-
gebnisse auch wirklich aufnehmen zu konnen? Wie reagiert das System bei ei-
nem so genannten "Uberlauf"?

e Wie kann es zu Ungenauigkeiten beim Rechnen mit Gleitkommazahlen kom-
men? Wieso liefern die primitiven Datentypen eventuell merkwiirdige Ergebnis-
se?

Wir werden diese Themen in den nachfolgenden Beispielen diskutieren, es werden

falsche Beispiele gezeigt, aber Sie werden vor allem auch die korrekten Losungen
kennen lernen.

Eine wichtige Regel ganz zu Anfang:

Der Programmierer sollte fir mathematische Berechnungen mit Wertangaben in
Wihrungen (z.B. Euro-Betrigen) im Zweifel die mitgelieferte Klasse BigDecimal be-
nutzen und nicht mit primitiven Datentypen arbeiten. Nur so kann sichergestellt
werden, dass keine Ungenauigkeiten auftreten.

7.2.3.1 Datentyp falsch gewahlt - oder: wieviel ist 1/3 mal 3?

Das folgende Programm soll das Ergebnis aus 1/3 multipliziert mit 3 errechnen und
ausgeben.

Programm Arithmetik06: 1. Versuch, leider ist das Ergebnis falsch

public class Arithmetik06 {
public static void main(String args/(]) {
double d2 = 1/3 * 3;
System.out.println (d2);

}

Als Ergebnis wird 0.0 ausgegeben. Warum? Die Grund ist: Der Ausdruck wird von
links nach rechts evaluiert. Der Teilausdruck 1 / 3 besteht aus Integerwerten, des-
wegen ist das Ergebnis die Ganzzahl 0. Und 0 multipliziert mit 3 ergibt 0.

Das nichste Programm zeigt eine mogliche Losung dieses Problems. Jetzt sind auch
die Zwischenergebnisse korrekt, weil die Operanden des Ausdrucks den korrekten
Datentyp haben.

Programm Arithmetik07: 2. Versuch, jetzt ist alles richtig

public class Arithmetik07 {

public static void main (String args|[]) {

123

7 Ausdriicke versteben ("expression”)

double d3 = 1d / 3d * 3;
System.out.println (d3);

}
Ubung zum Programm Arithmetik07

Uberpriifen Sie, ob das richtige Ergebnis auch zu erzielen ist durch folgende Anwei-
sung: double d3=1.0/3.0*3; ?

7.2.3.2 Uberlauf-Probleme

Ein weiteres Problem kann entstehen, wenn das Ergebnis einer arithmetischen Ope-
ration mit Integerwerten zu grof$ ist fir den gewihlten Datentyp. Dann kommt es
zum Uberlauf von Integer-Werten.

Programm Arithmetik08: Multiplikationsergebnis ist 10 Mrd.

public class Arithmetik08 {
public static void main (String args|[]) {
int z1 = 100000;
int z2 = 100000;
System.out.println(zl * z2);

}

Dass in diesem Fall der Compiler keine Warnung gibt oder spitestens zur Run-Time
ein Uberlauf-Fehler gemeldet wird, ist eine problematische Schwiiche in Java. Es
liegt also in der Verantwortung des Programmierers, dafiir zu sorgen, dass ausrei-
chend Speicherplatz fir Zwischenergebnisse und fir Ergebnisvariablen zur Verfi-
gung steht.

Ubung zum Programm Arithmetik08

Wie muss das Programm gedndert werden, damit das Ergebnis korrekt ist? Gibt es
einen primitiven Datentyp, dessen Wertebereich grol genug ist? Losungshinweis:
Versuchen Sie es mit long.

Nattirlich gibt es auch Situationen, wo selbst der Wertebereich des long-Datentyps
nicht ausreicht. Das soll im nichsten Programm demonstriert werden.

Programm Arithmetik09: Uberlauf bei Integertypen

public class Arithmetik09 {
public static void main (String args|[]) {
long zl1 = Long.MAX_VALUE;
long z2 = Long.MAX_VALUE;
System.out.println(zl);

124

7.2 Arithmetische Operatoren

System.out.println(z2);
System.out.println(zl * z2);

}

Die eingebaute Konstante Long MAX_VALUE enthilt den hochsten Wert, den eine
Variable vom Typ Jong aufnehmen kann. Wenn beide Hochstwerte multipliziert wer-
den, reicht naturlich der Platz fir das Zwischenergebnis vom Typ long nicht aus.

Losung: Arbeiten mit Klassen (anstelle von primitiven Datentypen)

Wenn mit Zahlen dieser Groenordnung gearbeitet werden muss, bleibt nur die eine
Moglichkeit: man muss den Klassentyp Biginteger verwenden, Instanzen erzeugen
und Methoden aufrufen.

Programm Arithmetik10: Class BigInteger anstelle von long-Typen

import java.math.*;
public class Arithmetikl10 {
public static void main(String args(]) {
BigInteger z1l = new BiglInteger ("1234567890123456");
BigInteger z2 = new BiglInteger ("9876543210987654");
System.out.println(zl.multiply (z2));

7.2.3.3 Warum gibt es unverstindliche Ergebnisse beim Uberlauf?

Das folgende Programm ist fir den Neueinsteiger nicht unbedingt wichtig. Aber es
demonstriert, wie die internen Abliufe bei der Arithmetik sind und liefert Erkennt-
nisse fur die Interpretation von "kryptischen" Ergebnissen. Diese Informationen
konnen auch zum Nachschlagen benutzt werden.

Das Programm UeberlaufO1 liefert als Ergebnis der Addition der beiden Zahlen 2
Millionen und 1.8. Millionen -494967296. Die Ursache dafiir ist, dass das Ergebnis
zu gross ist fur die 31 bit einer Integervariablen. Aber woher kommt diese seltsame
Zahl, die zusitzlich auch noch negativ ist?

Programm Ueberlauf01: Ergebnis passt nicht in 31 bits (Integertyp)

public class Ueberlauf0l {
public static void main(String args(]) {
int z1 = 2000000000;
int z2 1800000000;
System.out.println(zl + z2);

125

7 Ausdriicke versteben ("expression”)

Damit die internen Arbeitsvorginge verstanden werden konnen, muss man zunichst
wissen, wie negative Ganzzahlen von Java dargestellt werden. Das hochstwertige Bit
reprisentiert das Vorzeichen (0 = positiv, 1 = negativ). Zusitzlich wird ein Verfahren
eingesetzt, das sich "Zweierkomplement' nennt. Dabei werden negative Zahlen so
gespeichert, dass (aus technischen Griinden) zunichst die Bits invertiert werden
(d.h. aus 0 wird 1 und aus 1 wird 0), und dann wird noch eine 1 addiert.

Beispiel 1: Die positive Dezimalzahl 20 wird binir in einer in#-Variablen wie folgt
dargestellt:
0000 0000 0000 0000 0000 0000 0001 0100

Beispiel 2: Um eine negative 20 moglichst effizient zu speichern und verarbeiten zu
konnen, passiert folgendes:

invers: 1111 1111 1111 1111 1111 1111 1110 1011
+1 0000 0000 0000 0000 0000 0000 0000 0001
Ergebnis: 1111 1111 1111 1111 1111 1111 1110 1100

Also: Zweierkomplement = Einerkomplement + 1.
Ubertragen auf das Beispielprogramm UeberlaufO1 bedeutet das:
Dezimal: hexadezimal rein bindr

2.000.000.000 77 35 94 00 0111 0111 0011 0101 1001 0100 0000 0000
+ 1.800.000.000 6b 49 d2 00 0110 1011 0100 1001 1101 0010 0000 0000
= 3.800.000.000 €2 7f 66 00 1110 0010 0111 1111 0110 0110 0000 0000

Das hochstwertige Bit ist 1, damit wird das Ergebnis als negativer Wert interpretiert.
Fur die Ausgabe wird jetzt die Codierung "riickgingig gemacht", es wird eine 1 sub-
trahiert und dann die Inversion zuriickgenommen:

Ergebnis ist: 1110 0010 0111 1111 0110 0110 0000 0000
-1 0000 0000 0000 0000 0000 0000 0000 0001
= 1110 0010 0111 1111 0110 0101 1111 1111
Umkehrung der bits: 0001 1101 1000 0000 1001 1010 0000 0000

Und diese Bitkombination reprisentiert die Dezimalzahl 494967296.

7.2.3.4 Ungenauigkeiten bei Gleitkomma-Zahlen

Ein besonders heikles Thema kann entstehen beim Rechnen mit Gleitkommazahlen.
Denn unter bestimmten Umstinden kommt es zu Ungenauigkeiten. Der Grund dafiir
ist der Wechsel des Stellenwertsystems.

Wichtige Regeln fiir das Arbeiten mit Gleitkomma-Zahlen

Nicht alle Dezimalzahlen kénnen im Speicher exakt reprisentiert werden. Weil dort
nur eine begrenzte Stellenanzahl zur Verfiigung steht, konnen nur Niherungswerte
gespeichert werden (insbesondere bei periodischen Zahlen).

126

7.2 Arithmetische Operatoren

Warum ist das so? Unser Zahlensystem basiert auf dem Stellenwert 10 (Dezimalsys-
tem), Gleitkommawerte im Rechner werden als rein bindre Zahlen codiert (mit dem
Stellenwert 2). Das dabei entstehende Problem: nicht jeder Zehnerbruch ist exakt im
Dualsystem darstellbar. Zum Beispiel hat die Dezimalzahl 0,1 in der Zweierdarstel-
lung ein unendliches Ergebnis, ndmlich 0,0(0011). Verstindlich wird dies, wenn man
berticksichtigt, dass die Stellenwertigkeit natiirlich nicht nur vor dem Komma gilt,
sondern sich rechts vom Komma fortsetzt. Je weiter rechts eine Ziffer steht, umso
kleiner wird ihr Stellenwert - im Dezimalsystem 1/10, dann 1/100, 1/1000 usw, im
Dualsystem 1/2, dann 1/4, 1/8 usw. Hier eine Gegentiberstellung fiir die Stellenwer-
tigkeit der Positionen rechts vom Komma:

Dezimalwert: das heif3t: entspricht im Dualsystem:
0,5 1/2 0,1

0,250 1/4 0,01

0,125 1/8 0,001

0,0625 1/16 0,0001

0,03125 1/32 0,00001 usw.

Die Dualzahl 0.00011 ist also umgerechnet als Dezimalzahl 1/32 + 1/16 = 0,09375.

Um den Dezimalwert 0,10000 binir darzustellen, benoétigen wir eine unendlich lange
Dualzahl. Da es aber keine komplette Darstellung einer unendlich langen Zahl gibt,
muss der Rechner diese abkirzen (abschneiden), z.B. als 0,0001100110011 spei-
chern. Damit wird dieser Dezimalbruch im Dualsystem ungenau.

Programm Arithmetik11: Ungenauigkeit bei Wechsel des Stellenwertsystems

public class Arithmetikll {
public static void main (String args|[]) {
double dl = 0.17;
float f1 0.000001%;
System.out.println(dl / f1);
System.out.println(dl * f£1);

}
Losung: Arbeiten mit der Klasse BigDecimal anstelle von Gleitkommazahlen

Die Losung des Problems besteht auch hier im Wechsel des Datentyps. Anstelle der
primitiven (und sehr effizienten) Datentypen double oder float muss der Klassentyp
BigDecimal genommen werden.

Dieser Datentyp arbeitet weiterhin mit dem Stellenwert 10, das heift, jede Ziffer ei-
ner Zahl wird fir sich allein binidr verschliisselt (z.B. in einem Halbbyte), und die
einzelnen Halbbytes behalten jeweils die Wertigkeit des Dezimalsystems. Diese Co-
dierung nennt man BCD (binir codierte Dezimalzahlen).

127

7 Ausdriicke versteben ("expression”)

Beispiel: Die Dezimalzahl 123 unterschiedlich verschlisselt:

rein binir: 0000 0000 0111 1011
BCD-Code (pro Ziffer ein Halbbyte): 0000 0001 0010 0011

Der Wechsel vom einfachen Datentyp zum Klassentyp bedeutet auch, dass nicht mit
den mathematischen Operatoren fiir die Grundrechenarten (+ - / *) gearbeitet wer-
den kann, sondern dass Methoden fiir die Verarbeitung aufgerufen werden miissen.
AuBerdem ist es so, dass die meisten Computer spezielle Hardware enthalten fir
das Rechnen mit Gleitkommazahlen. Das alles fiihrt dazu, dass das Arbeiten mit der
Klasse BigDecimal aufwindiger ist als das Arbeiten mit den eingebauten Typen. Da-
fur sind die Ergebnisse aber auch in jedem Fall richtig.

Programm BigDecimalO1: Jetzt ist das Ergebnis korrekt

import Jjava.math.*;
public class BigDecimalOl {
public static void main (String args|[]) {
BigDecimal dl = new BigDecimal ("0.17");
BigDecimal d2 = new BigDecimal ("0.000001");
System.out.println(dl.divide (d2));
System.out.println(dl.multiply(d2));

}
Ubung zum Programm BigDecimalO1

Uberpriifen Sie, ob die Ausgabe des Programms auch mit folgendem Ausgabebefehl
moglich ist: System.out.printf ("$s", dl.divide(d2));

7.2.3.5 Rundung der Ergebnisse

Jetzt bleibt nur noch eine Frage: Und wie ist es mit dem Auf- oder Abrunden der
Dezimalstellen? Gerade im Alltag und im kaufminnischen Bereich wird mit einer
vereinbarten Genauigkeit der Dezimalstellen hinter dem Komma gearbeitet. Beim
Arbeiten mit Wihrungen hat das Ergebnis normalerweise nur zwei Stellen hinter
dem Komma, danach wird auf- oder abgerundet.

Die Klasse BigDecimal erlaubt dem Programmierer die volle Kontrolle tiber die ver-
schiedenen Moglichkeiten des Rundens. Es gibt insgesamt sicben verschiedene Mog-
lichkeiten. Diese sind tuber Namen aufrufbar, sie sind als eingebaute Konstanten
(hinter denen int-Werte stehen) vordefiniert, z.B. bedeutet "ROUND_HALF_UP"
kaufminnisch runden, das heilt, wenn der Nachkommwert grofer/gleich 0.5 ist,
wird aufgerundet, andernfalls wird abgerundet.

128

7.2 Arithmetische Operatoren

Programm BigDecimal02: Zwei der moglichen Rundensarten

import java.math.BigDecimal;
class BigDecimalO2 {
static public void main(String[] args) {

BigDecimal dl = new BigDecimal (0.17);
BigDecimal d2 new BigDecimal (0.000001);
BigDecimal d3 = new BigDecimal (0.0);

d3 = dl.divide(d2, 2, BigDecimal.ROUND_HALF_UP) ;
System.out.printf ("$s\n", d3);
System.out.println (d3); // Alternative Ausgabe

// Multiplizieren

d3 = dl.multiply (d2);

// AnschlieBend runden

BigDecimal d4 = d3.setScale (2, BigDecimal.ROUND_UP) ;

// Ergebnis ausgeben
System.out.printf ("%s", d4);

}

Das folgende Programm ist ein primitiver Euro-Umrechner, es rechnet einen DM-
Wert um in Euro.

Programm Euro01: Rechnen, ohne das Ergebnis zu runden

public class Euro0l {
public static void main (String args|[]) {
double dm = 100.00;
double euro = dm / 1.95583;
System.out.println (euro);

}
Das Ergebnis ist: 51.12918811962185

Ubung zum Programm Euro01

Bitte dndern Sie das Programm EuroO1 java so, dass es mit der Klasse BigDecimal
arbeitet und dass eine kaufminnische Rundung auf zwei Stellen bei der Ausgabe er-
folgt.

129

7 Ausdriicke versteben ("expression”)

Programm Euro02: Losungsvorschlag

import java.math.*;
public class Euro02 {
public static void main(String args[]) {
new BigDecimal ("100.00");

BigDecimal dm
BigDecimal kurs = new BigDecimal ("1.95583");
BigDecimal euro = dm.divide (kurs,2, BigDecimal.ROUND_HALF_UP) ;

System.out.printf ("$s", euro);

}
Das folgende Programm errechnet die Verzinsung eines Sparbetrages von 100.000
Euro aus (fiir 20 Jahre, bei einem Zinssatz von 6,5 %, ohne Zinseszins).

Programm Arithmetik12: Zinsrechnung

public class Arithmetikl2 {
public static void main (String[] args) {
double start = 100000.0;
int jahre = 20;

float zinssatz = 1.065f; // 6.5%

double total;

total = zinssatz * jahre * start;
System.out.println ("Neues Kapital: " + total);

}

Ubung zum Programm BigDecimal03

Bitte dndern Sie das Programm so, dass es mit der Klasse BigDecimal arbeitet, und
vergleichen Sie die Ergebnisse.

Programm BigDecimal03: Losungsvorschlag

import java.math.*;
public class BigDecimalO3 {
public static void main(String[] args) {

MathContext def = MathContext.DECIMAL32;
BigDecimal start = new BigDecimal (100000) ;
BigDecimal jahre = new BigDecimal (20);
BigDecimal zinssatz = new BigDecimal ("1.065"); // 6.5%
BigDecimal total;
total = zinssatz.multiply (jahre) .multiply (start);
System.out.println ("Neues Kapital: " + total.toString());

130

7.3 Vergleichsoperatoren

Zusammenfassung: Finger oder Faust?

Der Programmierer hat beim Rechnen in Java die Wahl, das sehr effiziente Dualsys-
tem zum Rechnen zu benutzen oder im Dezimalsystem zu bleiben. Wenn die Vari-
ablen einen der eingebauten Datentypen int, float usw. haben, dann wird sehr
schnell und sehr einfach gearbeitet. Aber der Programmierer muss wissen, was er
tut. Es kann nimlich zu Uberlaufproblemen kommen oder auch zu Ungenauigkeiten
beim Arbeiten mit Kommastellen.

Wenn dies nicht tolerierbar ist, dann muss der Datentyp BigDecimal oder Biginteger
genommen werden. Diese Klassen arbeiten weiterhin mit dem Dezimalsystem
((BCD-Codierung). Wenn allerdings die Performance der wichtigste Aspekt ist und
die Auswirkungen tiberschaubar sind, kann es sinnvoll sein, mit den primitiven Da-
tentypen zu arbeiten.

Fir diese primitiven Datentypen bietet Java Operatoren fir die Grundrechenarten
an. Wenn darlber hinaus spezielle mathematische oder wissenschaftliche-technische
Funktionen bendtigt werden (z.B. Logarithmus, trigonometrische Berechnungen...)
muss auf die Klassen Math (und evtl. auch BigDecimal) zuriickgegriffen werden.

7.3 Vergleichsoperatoren

Mit einem Vergleichsoperator (relationalem Operator) konnen Vergleiche zwischen
zwei Werten durchgefiihrt werden. Das Ergebnis ist ein boolescher Wert (frue oder

Jfalse).

Programm Vergleich01: Zwei Zahlenwerte vergleichen

public class VergleichO1l {
public static void main (String[] args) {
int z1 = 10;
int z2 = 15;
System.out.println(zl < z2);

}
Das Ergebnis dieses Vergleichs ist natiirlich #rue. Andere Vergleichsoperatoren sind:

< grofder
< kleiner
== gleich
= ungleich (nicht gleich).

Ubung zum Programm Vergleich01
Ubung 1: Machen Sie eine der beiden Zahlen negativ. Wie lautet dann das Ergebnis?
Ubung 2: Variieren Sie die Tests und arbeiten Sie mit beliebigen anderen Ver-

gleichsoperatoren.

131

7 Ausdriicke versteben ("expression”)

Das nichste Beispiel vergleicht die Werte von zwei char-Variablen auf "gleich" und
"ungleich".

Programm Vergleich02: char-Variablen vergleichen

public class VergleichO2 {
public static void main (String[] args) {

char z1 = 'a';
char z2 = 'b';
System.out.println(zl != z2);
System.out.println(zl == z2);

Das folgende Beispiel enthilt einen Fehler. Die Aufgabe des Programms soll es sein,
die beiden Variablen z7 und 22 auf Gleichheit zu prifen.

Programm Vergleich03: Falsches Ergebnis

public class VergleichO03 {
public static void main(Stringl[] args) {
char z1 = 'a';
char z2 = 'b';
System.out.println(zl = z2);

}
Ubung zum Programm Vergleich03

Das Programm gibt den Buchstaben b aus. Erkliren Sie, warum dies so ist und kor-
rigieren Sie das Programm, so dass der Vergleich korrekt ausgefihrt wird.

Vorsicht ist geboten beim Vergleich von Gleitkommazahlen. Durch den Wechsel des
Stellenwertsystems kann es zu Ungenauigkeiten kommen.

Programm Vergleich04: Vergleich von Gleitkommazahlen

public class Vergleich04 {
public static void main(String[] args) {
float zahll = 0.1f;
zahll = zahll / 0.0001f;
System.out.println(zahll == 1000);
System.out.println(zahll);

132

7.3 Vergleichsoperatoren

Das Beispiel VergleichO4 zeigt, dass der Test auf exakte Gleichheit bei Gleitkomma-
zahlen problematisch ist. Es liefert als Ergebnis false.

Eine bessere Losung besteht darin, das Ergebnis entweder zu runden oder - noch
besser - abzufragen, ob die Werte "so ungefihr" gleich sind. Dies kann durch Testen
einer (tolerierbaren) Differenz abgefragt werden.

Vergleich von Objekten

Die Operatoren == (fir Gleichheit) und != (fir Ungleichheit) sind auch auf objekt-
wertige Variablen einsetzbar. Aber: Vorsicht, auch hier muss man wissen, was man
tut, wie das folgende Programm zeigt.

Programm Vergleich05: Vergleich auf Identitit

public class VergleichO5 {
public static void main(String[] args) {
String sl = new String("Hallo");
String s2 = new String("Hallo");
System.out.println(sl == s2);

}

Beide Objekte enthalten die gleichen Daten, trotzdem wird als Ergebnis des Ver-
gleichs false ausgegeben. Wie kommt das? Die Antwort: Java arbeitet streng logisch,
es werden nimlich die beiden Referenzvariablen s7 und s2 verglichen.

A 4

sl "Hallo"

A 4

s2 "Hallo"

Abb. 7.1. Zwei String - Objekte (jeweils mit Referenzvariable und Objektwert)

Und s7 und s2 enthalten als Wert die Adressen der beiden Strings. Man sagt, dies ist
ein Vergleich auf Identitit. Denn so ein Vergleich prift, ob es sich um dasselbe Ob-
jekt handelt. Und die Antwort ist "nein", weil es zwei Objekte im Arbeitsspeicher

gibt.

Ein inhaltlicher Vergleich ist nur moglich Giber den Aufruf einer Methode.

133

7 Ausdriicke versteben ("expression”)

Programm Vergleich06: Vergleich auf inhaltliche Gleichheit

public class Vergleich06 {
public static void main (String[] args) {
String sl = new String("Hallo");
String s2 = new String("Hallo");
System.out.println(sl.equals(s2));

}
Jetzt lautet das Ergebnis true. Beide Objekte sind inhaltlich gleich.

7.4. Logische Operatoren

7.4.1 Was sind logische Operatoren?

Vergleichsoperatoren werden hiufig kombiniert mit logischen Operatoren. Dadurch
kann man mehrere Vergleiche verkniipfen zu einer Gesamtaussage. Die wichtigsten
logischen Operatoren ("conditional operator") sind:

&& logische UND-Verknipfung

I logische ODER-Verkniipfung, einschlieBendes OR (= zwei senkrechte Striche)
! logische Verneinung (= Ausrufungszeichen)

A logische ODER-Verkniipfung, ausschliefendes OR

Programm Logik01: Priifung, ob Wert der Variablen x zwischen 0 und 10 liegt

class Logik01l {
public static void main (String[] args) {
int x = 7;
System.out.println(x > 0 && x < 10);

}

Dieser zusammengesetzte Ausdruck hat als Ergebnis true, weil beide Einzelbedin-
gungen (x>0 und x<10) jeweils fir sich true sind und damit die Verkntipfung durch
das logische UND auch true ergibt.

Ubung zum Programm Logik01

Bitte tberlegen Sie, wieviel Testfille Sie benotigen, um sicherzustellen, dass das
Programm auch wirklich fehlerfrei ist (unter "Testfall" ist ein Wert von x zu verste-
hen).

134

7.4. Logische Operatoren

Losungshinweise
Es sollte mindestens mit folgenden x-Werten getestet werden:

- Ein "normaler" Wert, der zwischen 1 und 9 liegt, z.B. 5 (= true).

- Dann sollten unbedingt die beiden Grenzwerte getestet werden und zwar einmal
so, dass das Ergebnis true liefert (also z.B. 1 und 9) und auch so, dass das Ergebnis
[false liefert (also z.B. 0 und 10.

Zusammenfassung

Die logischen Operatoren werden benutzt, um Teilaussagen, z.B. einzelne Verglei-
che, zu verkniipfen. Die Operatoren konnen direkt als boolesche Werte angegeben
sein:

(a && Db)
oder als Vergleiche codiert werden, die boolesche Werte liefern:

(x>5) && (y<3).

Das Ergebnis ist fiir die gesamte Aussage ein einzelnes true oder false.

7.4.2 Aussagenlogik

Das Binidrsystem der heutigen Rechner ist die ideale Grundlage nicht nur fir das Ar-
beiten mit numerischen Werten, sondern auch fiir das Losen von logischen Proble-
men, bei denen mit Aussagen gearbeitet wird, die entweder "wahr" oder "falsch"
sind. Die Bereiche der formalen zweiwertigen Logik (z.B. die Boolesche Algebra, die
Aussagenlogik und die Pridikatenlogik) sind Wissenschaften, die sich mit den Re-
geln befassen fir die formale Richtigkeit bei der Verkniipfung von Aussagen.

Die Aussagenlogik geht von bereits festgestellten Einzeltatsachen aus. Diese werden
Aussagen genannt, und es gilt der fundamentale Grundsatz: Eine Aussage a ist wahr
oder falsch, etwas Drittes gibt es nicht. Die Aussagen koénnen durch "Junktoren" ver-
kntpft werden, so dass logische "Formeln" entstehen. Bei der Verkniipfung von 2
Aussagen a und b gibt es theoretisch 16 Moglichkeiten fiir Regelfestlegungen.

Begriindung: Wenn man sich die verkniipfte Aussage als Black-Box vorstellt, die
zwei Einginge (= nimlich die zwei Aussagen) hat und wir abhingig von dem Input
dieser zwei Einginge den Ausgangswert bestimmen (vorhersagen) wollen, dann
mussen wir von 4 unterschiedlichen Eingangskombinationen ausgehen - und jede
Eingangskombination kann als Verarbeitungsregel der Black-Box dazu fihren, dass,
je nachdem, was gewtinscht wird, der Ausgang mit wahr oder falsch "gefittert" wird.

Beispiel:

Ausgegangen wird von folgenden zwei Aussagen: Klaus raucht(a), Peter raucht (b).
Demnach gibt es folgende vier Eingangskombinationen:

135

7 Ausdriicke versteben ("expression”)

a (Klaus raucht) b (Peter raucht) Mogliches Ergebnis einer Regel:
true true wahr oder falsch
true false wahr oder falsch
false true wahr oder falsch
false false wahr oder falsch

Die Aussagenlogik erstellt nun Regeln fiir das Ergebnis, das die "Black Box" liefert,
abhiingig von den Eingangswert a und b. Dabei konnen die beiden Wahrheitswerte
der vier Ergebnisse beliebig miteinander zu einer Regel verkniipft werden. Dadurch
ergeben sich 4 hoch 2 = 16 Kombinationen.

a |b | f1 |f2 |3 |f4 [f5 [f6 [f7 | f8 | f9 | f10 | f11 | f12 | f13 [f14 | f15 | f16

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

AND XOR OR

Abb. 7.2: Die 16 zweistelligen Funktionen

Beispiele fir Anwendungen dieser Regeln:

® Nur wenn a und b denselben Wahrheitswert haben, so ist der Ausgang true (A-
quivalenz, Regel f10).

e Nur wenn a und b unterschiedliche Werte haben, ist der Ausgang true (Antiva-
lenz, Regel 7).

Die in Programmiersprachen gebriuchlichsten Verkniipfungsregeln sind

e die UND-Verbindung (Konjunktion, das heift, das Gesamtergebnis ist nur dann
wahr, wenn sowohl a als auch b wahr sind) und

e die ODER-Verbindung (Disjunktion, das heilt, das Gesamtergebnis ist nur dann
falsch, wenn sowohl a als auch b falsch sind). Diese ODER-Verbindung wird
auch einschliefendes ODER genannt. Dartiber hinaus gibt es in Java noch

e die ausschlieBende ODER-Verbindung (exklusives ODER, XOR bzw. entwe-
der...oder), die nur dann wahr ist, wenn eine der beiden Aussagen, aber nicht
beide gleichzeitig, wahr ist.

Boolesche Algebra

Mit Hilfe der Booleschen Algebra werden die Gesetzmigigkeiten der Aussagenlogik
in ein mathematisches System gebracht. Sie wurde von dem englischen Mathemati-

136

7.4. Logische Operatoren

ker George Boole (1815 - 1864) entwickelt. Sie besteht aus einer Menge von zwei
Elementen (Aussagen) und nur drei moglichen Junktoren (Operatoren):

e Addition (UND-Funktion)
e Multiplikation (ODER-Funktion)
e Komplementbildung (NICHT-Funktion, Negation).

Wo sind Anwendungen fiir die Boolsche Algebra?

Die grundlegenden Schaltungen in den Computern folgen den Gesetzen der Boole-
schen Algebra. Auch fir das Formulieren von Abfragen fir Internet-Suchmaschinen
und relationalen Datenbanken werden Boolsche Operatoren eingesetzt. Und fur das
Codieren von logischen Ausdriicken in Java ist das Verstindnis der Booleschen Al-
gebra ebenfalls eine Voraussetzung.

Binire Verkniipfungen machen aus zwei Aussagen eine neue Aussage. In Java
gibt es die folgenden logischen Operatoren fiir binire Verkniipfungen:

° && (das kaufminnische Und-Zeichen, Ampersand) fir die UND-Verbindung
° I'l (zwei senkrechte Striche) fir das einschlieBende ODER
° A fir das ausschlieRende ODER.

Die Tabelle Abb. 7.3. enthiilt einen Uberblick tiber die Wahrheitwerte der Boole-
schen Algebra, ergidnzt um die exklusiv-ODER-Verbindung (XOR). Dabei steht w fiir
wahr/true und f fur falsch/false.

Auss: » UND- incl. ODER- excl. ODER
ussage | Aussage : .
. b Verbindung Verbindung (XOR)
&& [l A
W W w W f
W f f W w
f W f W W
f f f f f

Abb. 7.3: Tafel der Wahrheitswerte fir bindre Verkniipfungen

Auerdem kennt Java einen Operator (die Negation) fiir eine unéare Verkniipfung.

Eine unire Verkniipfung macht aus einer Aussage eine neue Aussage.

e | (Ausrufungszeichen) fiir die Negation, d.h. fir die Umkehrung des Wahr-

heitswertes.

7 Ausdriicke versteben ("expression”)

Ubung fiir binire Verkniipfungen

Das Programm Logik02 soll die folgende Aufgabe losen: Fir alle Werte, die zwi-
schen 0-10 und 80-90 liegen, soll das Programm true liefern.

Losungsvorschlag: Programm Logik02 - Wertebereiche abfragen

class Logik02 {

public static void main(String[] args) {
int x = 85;
boolean richtigezZahl = ((x>0 && x<10) || (x>80 && x<90));

System.out.println(richtigeZzahl);

}

Die Gesamtaussage des Ausdrucks ist wahr, wenn der Wert der Variablen x zwi-
schen 0 und 10 oder zwischen 80 und 90 liegt. Hier zeigt sich, dass umgangssprach-
lich die Begriffe und bzw. oder manchmal etwas unscharf benutzt werden. In der
strengen Logik der Booleschen Algebra muss es in diesem Fall die Oder-Verbindung
sein, obwohl laut Aufgabenstellung alle Werte gesucht werden, die "zwischen 0 und
10 und zwischen 80 und 90 liegen".

Ubung zum Programm Logik02

Kann statt des Operators flr das einschlieBende Oder auch der Operator fir das
ausschlieBende Oder eingesetzt werden? Bitte dndern Sie das Programm und testen
Sie das Ergebnis.

Ubung fiir unire Verkniipfung (Negation)

Codieren Sie ein Programm, das folgende Aufgabe 10st: Es soll gepriift werden, ob
ein Wert x nicht zwischen 0-10 oder nicht zwischen 80-90 liegt.

Losungsvorschlag: Programm Logik03 - Wertebereich ausschliefen

class Logik03 {

public static void main(String[] args) {
int x = 85;
boolean richtigeZahl = ! ((x>0 && x<10) || (x>80 && x<90));

System.out.println(richtigeZahl);

}

Die einzige Anderung, die notwendig ist im Vergleich zum Programm Logik02, ist
die Umkehrung des Wahrheitswertes der Gesamtaussage - und dies erfolgt durch
Codierung des NOT-Operators ! (Ausrufungszeichen, nicht zu verwechseln mit dem
einfachen senkrechten Strich).

138

7.4. Logische Operatoren

Die Negation in komplexen Bedingungen ist manchmal schwer verstindlich. Ein
Beispiel ist folgende Regel: "Wenn auf einem Flugticket nicht ein A oder ein B steht
und wenn das Datum nicht 11 oder 12 ist, dann ist der Flug nicht gecancelt.".

Wie bitte? Wann findet der Flug statt?

Programm Ausdruck03: Negierte Teilaussagen verkniipfen

class Ausdruck03 {
public static void main(String[] args) {

char ticket = 'C';
int datum = 13;
if (! (ticket == 'A'") || !(ticket == 'B') &¢&
(datum == 11 || datum == 12))
System.out.println ("Kein Flug");
else

System.out.println ("Flug");

}

Eine Umformulierung in eine positive Aussage macht das Programm verstindli-
cher:

"Der Flug findet statt, wenn auf dem Ticket A oder B und als Datum 11 oder 12
steht."

Ein giiltiges Ticket kann also eine der folgende vier Kombinationen enthalten: A11,
A12, B11 oder B12. Alle anderen sind ungultig.
Programm Ausdruck04: Positive Teilaussagen verkniipfen

class Ausdruck04 {
public static void main(String[] args) {

char ticket = 'B';
int datum = 12;
if ((ticket == 'A' || ticket == 'B') &&
(datum == 11 || datum == 12))
System.out.println ("Flug");
else

System.out.println ("Kein Flug");

}

Die Regel fiir die Umformung nennt man die "de Morgansche-Regel":

aus ((not (a or b) wird ((not a) and (not b)) bzw.
aus (not (a and b)) wird ((not a) or (not)).

139

7 Ausdriicke versteben ("expression”)

Logikaufgabe

Zur Vertiefung des Themas "Arbeiten mit logischen Operatoren" werden Sie jetzt ein
komplettes Beispiel 16sen. Die Aufgabenstellung ist wie folgt:

"Tulia plant ihre Party. Diese soll aber nur stattfinden, wenn folgende Bedingungen
erfullt sind:

1. Wenn Andreas (A) kommt, dann muss auch Bernd(B) kommen.

2. Entweder kommen Andreas(A) und Christian(C) oder es kommt keiner von bei-
den.

3. Entweder kommt Bernd oder Christian."

Die Party findet nur statt, wenn alle drei Bedingungen erfillt sind. Das heift, die
drei Teil-Aussagen mussen wahr sein, damit die Gesamtaussage wahr ist. Bitte for-
mulieren Sie den Ausdruck und codieren Sie anschlieend ein Java-Programm, das
diese Aufgabe 10st.

Losungshinweis: Es soll lediglich mit den logischen Operatoren UND, ODER und
NICHT gearbeitet werden.

Losungsvorschlag fiir die formale Beschreibung der Bedingungen:

1. Teilaussage: NICHT-A ODER (A UND B)
2. Teilaussage: (A UND C) ODER (NICHT-A UND NICHT-C)
3. Teilaussage: (B UND NICHT-C) ODER (NICHT-B UND C)

Programm Logik04: Losung, codiert in Java

class Logik04 {

public static void main(String[] args) {
boolean andreas = true; // Andreas kommt
boolean bernd = false; // Bernd kommt nicht
boolean christian = true; // Christian kommt
boolean party = ((!andreas | | andreas && bernd)) &é&
((andreas && christian) || (!'andreas && !christian)) &&
((bernd && !christian) || (!bernd && christian));

System.out.println(party);

}

Das Ergebnis ist false (d.h.die Party findet nicht statt), denn bereits die erste Teilaus-
sage ist nicht erfillt. Wichtig fiir die Formulierung der Losung in Java ist, dass die
Prioritit der Operatoren bekannt ist: NOT als unidrer Operator besitzt die hochste
Prioritit, danach gilt die "UVO-Regel": Und vor Oder.

Die dringende Empfehlung ist, immer Klammern zu setzen. Damit werden eventuel-
le Unsicherheiten ausgeschlossen und die Lesbarkeit von Aussagen, besonders in
dieser Komplexitit, eindeutig verbessert.

140

7.4. Logische Operatoren

Ubung zum Programm Logik04

Bitte dndern Sie die Boolean-Werte so, dass die Party stattfinden kann. (Losungs-
hinweis: Julia mochte mit Bernd allein sein, d.h. die beiden anderen miussen false
bekommen.

Kurzschluss-Auswertung ("Short-Circuit-Evaluation")

Die logischen Operatoren && (AND) und || (OR) werden auch als Short-Circuit-
Evaluation-Operatoren bezeichnet, denn der Ausdruck wird nur solange ausgewer-
tet, bis das Ergebnis eindeutig feststeht. Die Berechnung wird sofort beendet, wenn
klar ist, welcher logische Wert sich ergibt. So kann es passieren, dass ein rechts ste-
hender Teilausdruck nicht mehr ausgewertet wird, weil er fir das Gesamtergebnis
keine Bedeutung mehr hat. Beispiel: Wenn bei &&-Verkniipfung ein Teilausdruck
Jfalse liefert, muss der Gesamtausdruck auch false werden, egal, was noch an weite-
ren Teilausdricken folgt.

Im Gegensatz zu dieser Arbeitsweise gibt es in Java noch die folgenden logischen
Operatoren, die immer und in jedem Fall den gesamten Ausdruck auswerten:

e & (= das einfache und nicht doppelte Ampersand), fiir die UND-Verkniipfung,
e | (= der einfache und nicht doppelte Strich), fir die ODER-Verbindung,

Diese beiden Operatoren werden auch als non-SCE ("nicht-Short-Circuit-Evaluation")
Operatoren bezeichnet, weil die Evaluierung des Ausdrucks nicht abgebrochen wird,
auch wenn die weitere Auswertung keine Rolle mehr fiir das Gesamtergebnis hat.
Diese Art der Evaluierung ist natirlich aufwindiger als die "normalen" logischen
Ausdricke. Warum kann es trotzdem sinnvoll sein, mit diesen Operatoren zu arbei-
ten?

Programm Sce01: Short-Cut-Evaluation (SCE) mit UND-Operator

public class Sce0Ol {
public static void main (String args|[]) {
boolean bl = false;
long z2 = 11;
System.out.println (bl && z2++ > 5);
System.out.println(z2);

}

Als Ergebnis wird ausgegeben, dass der Gesamtausdruck false ist und dass der Inhalt
der Variablen z2 unverindert bei 11 geblieben ist.

Ubung zum Programm Sce01

Andern Sie den logischen UND-Operator ab, so dass der Ausdruck auf jeden Fall
komplett ausgewertet wird. Jetzt muss der Wert der Variablen 22 sich verindert ha-
ben.

141

7 Ausdriicke versteben ("expression”)

Das nichste Beispiel zeigt eine dhnliche Aufgabenstellung. Durch den logischen
Operator | | wird die Auswertung abgebrochen, wenn das Ergebnis zweifelsfrei fest-
steht.

Programm Sce02: Short-Cut-Evaluation (SCE) mit ODER-Operator

public class Sce02 {
public static void main(String args[]) throws Exception {
int a = 0;
if (a==0 || (a = System.in.read()) > 0)
System.out.println(a);

}

Die read-Methode wird nicht ausgefthrt, weil bereits der erste Teilausdruck erfallt
ist (bei ODER gentigt das!).

Ubung zum Programm Sce02

Andern Sie das Programm so ab, dass in jedem Fall auch der Einlesevorgang statt-
findet.

7.5 Bitweise Operatoren

Es gibt in Java Operatoren, die auf Bitebene arbeiten, obwohl normalerweise das
Byte (8 bits) die kleinste adressierbare Einheit ist. Mit Hilfe dieser bitweisen Operato-
ren kann man die einzelnen Bits verschieben ("shiften") oder logisch verkntipfen.

7.5.1 Verschieben von Bits innerhalb eines Operanden
Fur das Verschieben von Bits innerhalb einer Variablen oder innerhalb eines Literals
gibt es folgende Operatoren:

<< verschieben nach links
>> verschieben nach rechts

Die Operanden miissen einen ganzzahligen Datentyp haben, also int, short, long,
byte oder char.
Programm BitShift01: Einzelne Bits nach links oder nach rechts verschieben

class BitShift01l {
public static void main(String[] args) {

char zeichenl = 'A';

int zeichen2, zeichen3;

zeichen2 = zeichenl << 1; // nach links
zeichen3 = zeichenl >> 1; // nach rechts

142

7.5 Bilweise Operatoren

System.out.println(zeichen?2);
System.out.println(zeichen3);

}

Fur die Interpretation der Ergebnisse (130 und 32) wird die Unicode-Tabelle beno-
tigt.

Der Buchstabe A wird wie folgt codiert: 0100 0001 hex. 41
Nach dem Shiften nach links um 1 Bit: 1000 0010 als int=Wert (rein binidr): 130
Nach dem Shiften nach rechts um 1 Bit: 0010 0000 als int-Wert (rein binir): 32

7.5.2 Binare Verkniipfung eines Operanden

Fur die binidre Verknlpfung gibt es folgende Operatoren:

& logische UND-Verkniifung
| logische ODER-Verkntipfung
A logische XOR-Verkniipfung

~ logisches NOT (Einerkomplement, alle bits werden invertiert)

Das Ergebnis einer solchen bitweisen Verkniipfung ist ein int-Wert (= rein binir).

Programm BitVerknuepf01: Einzelne Bits logisch verkniipfen

class BitVerknuepf0l {
public static void main(String[] args) {
char zeichenl = 'A';
char zeichen2 = 'B';
int erg;

erg = zeichenl & zeichen2; // UND
System.out.print (erg + " = ");
System.out.println((char)erqg);

erg = zeichenl | zeichen2; // ODER
System.out.print (exrg + " = ");
System.out.println ((char)erqg);

erg = zeichenl ~ zeichen2; // XOR

System.out.print (erg + " = ");
System.out.println((char)erqg);

143

7 Ausdriicke versteben ("expression”)

Die Ausgabe des Programms ist:

64 =@
67 =C
3 =9

Fur die Interpretation der Ausgabe benotigen wir die Unicode-(ASCII-)Tabelle. Dort
finden sich die Zeichen fiir die bindren Inhalte der Variablen erg. Das Ergebnis wur-
de vom Programm wie folgt ermittelt:

Der Buchstabe A wird wie folgt codiert: 0100 0001 hex. 41
Der Buchstabe B wird wie folgt codiert: 0100 0010 hex. 42
Die AND-Verbindug (&) der Bits ergibt: 0100 0000 als Integer: 64
Die OR-Verbindung (1) der Bits ergibt: ~ 0100 0011 als Integer: 67
die XOR-Verbindung (A) der Bits ergibt: 0000 0011 als Integer: 3.

Eine interessante, aber praktisch wohl wenig eingesetzte Aufgabenstellung ist das
Bilden des bitweisen Komplements eines ganzzahligen Wertes, z.B. durch ~'A':

Der Buchstabe A wird wie folgt codiert: 0000 0000 0100 0001 hex 0041

Bitweises Komplement bilden: 1111 1111 1011 1110
Wird als negativ interpretiert, d.h. - 1 0000 0000 0000 0001
Ergebnis 1111 1111 1011 1101
Weil negativ, Komplement bilden 0000 0000 0100 0010 hex.0042 =" B’.

Programm BitVerknuepf02: Not-Operator fiir Komplement-Bildung

class Bitverknuepf02 {
public static void main(String[] args) {
byte b = 3;
System.out.println (~b);

}

Die Ausgabe des Programms ist -4, denn

0000 0011 entspricht 3
1111 1100 Komplement, entspricht -4 (Erlduterung siehe Kap. 7.2.3.3)

Ubung zum Programm Bitverknuepf02

Ubung 1: Notieren Sie fiir sich auf einem Blatt Papier, wie dieses Ergebnis zu Stande
gekommen ist. (Losungshinweis: Der Wert wird als negative Zahl interpretiert, da-
nach das Komplement gebildet und darauf eine 1 addiert.)

Ubung 2: Warum werden die Operatoren & bzw. | in bestimmten Anweisungen als
logische Operatoren und in anderen Anweisungen als bitweise Verkniipfungsopera-
toren behandelt?

Losungshinweis: dies hingt ab von dem Datentyp der Operanden.

144

7.6 Auswertungs-Reibenfolge (Prizedenzregeln)

7.6 Auswertungs-Reihenfolge (Prazedenzregeln)
7.6.1 Vorrang (Prioritét)

Der Vorrang regelt die Reihenfolge, in der die verschiedenen Operatoren ausgewer-
tet werden. Enthilt ein Ausdruck wunterschiedliche Operatoren, so gelten auch unter-
schiedliche Priorititen bei der Auswertung. Undre Operatoren werden zuerst aus-
gewertet.

Fir die binaren Operatoren gilt:

e Arithmetische Operatoren werden zuerst ausgewertet. Dabei geht Punkt-
Arithmetik vor Strich-Arithmetik.

e Danach werden relationale Operatoren (Vergleiche) durchgefiihrt.

e Und dann werden evtl. vorhandene logische Verkniipfungen der Ergebnisse die-
ser Vergleiche ausgewertet.

e Es gibt nur ein Ergebnis - und das wird ganz zum Schluss einer Variablen zuge-
wiesen, falls es einen Zuweisungsoperator gibt.
Programm Prioritaet01: Beispiel 1 fiir unterschiedliche Prioritaten

class Prioritaet01 {
public static void main(String[] args) {

int x = 5;

int y = 9;

System.out.println(x + 15 / 5);
System.out.println(x != 6 && y < 8);
System.out.println(x == ~ oy > 0);
System.out.println(x < 3 || y == 5);

}

Programm Prioritaet02: Beispiel 2 fiir unterschiedliche Priorititen

class Prioritaet02 {
public static void main (String[] args) {
System.out.println(2 + 15 / 3 < 7 && 5 < 3);

}

Der Ausdruck im Programm Prioritaet02.java besteht aus zwei Teilausdricken, die-
se sind mit dem logischen UND verkniipft. Das Ergebnis ist false, weil der erste Teil-
ausdruck (3 + 15 /2) < 7 falsch ist.

Durch den Einsatz von Klammern konnen diese Regeln umgangen werden. Es wird
aber dringend empfohlen, die Klammern auch zu verwenden, wenn die normale
Auswertungsreihenfolge unverindert gelten soll (damit Lesbarkeit verbessert wird).

145

7 Ausdriicke versteben ("expression”)

Ubung zum Programm Prioritaet02

Wie kann allein durch das Einfiigen von Klammern () dieser Ausdruck true liefern?
Zur Erinnerung: Wenn durch Klammern nichts anderes erzwungen wird, hat die
Multiplikation eine hohere Prioritit als die Addition.

7.6.2 Assoziativitat

Dadurch ist festgelegt, in welcher Reihenfolge ein Ausdruck ausgewertet wird, der
mehrere Operatoren mit gleicher Prioritat enthilt. Die normale Auswertungsrei-
henfolge ist von links nach rechts. Davon gibt es zwei Ausnahmen: Unidre Operatio-
nen z.B. in der Form ++zahl und Zuweisungen in Formvon: x = y = z = 0;.

Programm Assoziativitaet01: Ausnahmsweise rechts beginnen

class Assoziativitaet01l {
public static void main (String[] args) {
int x,vy,z;
x =y =2z =5;
System.out.println (x);
y =y + ++z;
System.out.println(y);

Zusammenfassung

Ein Ausdruck ("expression") ist eine Sprachkonstruktion in Java, die einer mathema-
tischen Formel dhnelt. Er wird ausgewertet nach exakt festgelegten Regeln und kann
genau einen Wert als Ergebnis liefern. Ein Ausdruck besteht aus einer Kombination
von Operanden, Operatoren und Methodenaufrufen.

Sie haben in diesem Kapitel die wichtigsten Operatoren kennengelernt. Operatoren
arbeiten typischerweise mit primitiven Datentypen.

Objekttypen dagegen werden mit Methoden bearbeitet, und dieses Thema wird de-
tailliert in den Kapiteln 10 und 11 behandelt. Es gibt (in Ausnahmefillen) aber auch
die Moglichkeit, Operatoren fiir Referenztypen einzusetzen, z.B.

e String-Konkatenierung ist sowohl durch eine Methode (concat) als auch mit ei-
nem Operator (+) moglich

e Der Zuweisungsoperator = und auch die Vergleichsoperatoren wie == oder =
sind auch fiir Referenzvariablen einsetzbar. Aber in den meisten Fillen fihrt dies
nicht zu dem gewtinschten Ergebnis. Besser ist es in jedem Fall, bei Vergleichen
mit der Methode equals() zu arbeiten und die Zuweisung mit der clone()-
Methode durchzufthren.

146

Anweisungen kodieren ("statements")

Eine Anweisung (Befehl, "statement") beschreibt eine komplette Ausfithrungsopera-
tion fiir die JVM. AuRerliches Merkmal fiir eine komplette Anweisung ist, dass sie
durch ein Semikolon abgeschlossen wird.

In den Kapiteln 4 und 5 haben wir bereits eine wichtige Anweisung ausfithrlich be-
handelt: das Deklarationsstatement. Dort haben Sie gesehen, wie im Arbeitsspeicher
Platz fir eine Variable deklariert wird, was ein Bezeichner ist und welche Bedeutung
die Datentypen haben.

Weitere wichtige Anweisungen sind
e Methodenaufrufe

e Zuweisungsanweisung und

e Steueranweisungen.

Methodenaufrufe wurden schon im Kapitel 6 (fiir die Ein- und Ausgabe) benutzt und
werden ausfiihrlich ab Kapitel 10 behandelt.

In diesem Kapitel werden Sie die Zuweisungen und Steueranweisungen kennenler-
nen. Dabei wird detailliert erldutert,

e was Zuweisungen sind und was dabei zu beachten ist,

e welche unterschiedlichen Arten von Steueranweisungen es gibt und wie sie
eingesetzt werden,

e dass es fur ein und dieselbe Aufgabenstellung verschiedene Losungsmuster
("pattern") gibt. Anhand einer Schleife, die Datensammlungen sequentiell bear-
beitet, wird beispielhaft gezeigt, wo die Vor- und Nachteile der unterschiedli-
chen Losungen liegen.

e welche Konventionen eingehalten werden sollten, damit gut lesbare und tber-
sichtliche Quelltexte entstehen.

Nur kurz erwihnt werden Leeranweisungen, die aus nur einem Semikolon bestehen
und in manchen Situationen unangenehme Fehler bewirken konnen.

Der Schwerpunkt dieses Kapitels liegt in der Beschreibung der unterschiedlichen
Steueranweisungen. Diese Statements steuern den Ablauf des Programms, und Sie
werden lernen, wie Programmteile alternativ (mit der iff bzw. switch-Anweisung)
oder mehrfach (mit der while- bzw. do- und for-Schleife) ausgefiihrt werden kon-
nen.

147

8 Anweisungen kodieren ("statements")

8.1 Einfache und zusammengesetzte Anweisungen

Java unterscheidet zwischen einfachen und zusammengesetzten Anweisungen. Zu-
sammengesetzte Anweisungen sind Anweisungen, die andere Anweisungen ("substa-
tements") enthalten. Die Liste der Substatements wird dabei eingeschlossen in ge-
schweifte Klammern { }. Es gibt zwei typische Formen der zusammengesetzten An-
weisungen ("compound statements", Verbundanweisungen): den Anweisungsblock
und die Steueranweisungen.

8.1.1 Anweisungsblock

Ein Block ist eine Folge von einfachen Statements, die von geschweiften Klammern
eingefasst sind. Beispiel fiir eine einfache Anweisung ("simple Statement"):
x = 42;

Beispiel fiir einen Block als zusammengesetzte Anweisung (Verbundanweisung oder
"compound Statement"):

{
x = 42;
y = 3;
z = X + y;
}

Wo liegt der Sinn solcher Klammerung?

e Ganz allgemein kann die Blockbildung der Strukturierung dienen. In Verbin-
dung mit dem Einrticken innerhalb der Zeilen wird eine ibersichtliche Gliede-
rung erreicht.

e AuBerdem bedeutet diese Klammerung, dass die Anweisungen im "compound
statement" behandelt werden wie eine einzelne Anweisung. Sie konnen Uberall
dort stehen, wo die Syntax eine einzelne Anweisung verlangt.

e Dariber hinaus ist es moglich, dass innerhalb dieses Blocks Variablen deklariert
werden, die dann "lokale Variablen" genannt werden, weil sie nur innerhalb die-
ses Blocks angesprochen (gelesen oder verindert) werden konnen und weil sie
nur existieren fir die Zeit der Ausfihrung dieses "compound-statements". Das
folgende Programm demonstriert das Arbeiten mit lokalen Variablen, allerdings
wird bei dem Versuch, dieses Programm umzuwandeln, eine Fehlermeldung
ausgegeben.

Programm Lokal01: Arbeiten mit lokalen Variablen (Fehlerhaft)

public class LokalOl {
public static void main(String[] a) {
int zahll = 10;

148

8.1 Einfache und zusammengesetzte Anweisungen

int zahl2 = 5;
System.out.println(zahl2++);

}

System.out.println(zahll + zahl2);

}
Ubungen mit Programm Lokal01

Ubung 1: Bitte korrigieren Sie den Fehler (Hinweise zur Ursache siehe vorherigen
Absatz: Blockbildung und lokale Variablen).

Ubung 2: Kliren Sie durch Programminderung die Frage, ob der Variablenname
zahl1 auch innerhalb des Blocks, z. B. in der println-Methode, benutzt werden darf.

Die Erkenntnis aus diesen Ubungen ist, dass ein Anweisungsblock den Giiltigkeits-
bereich von Variablen definiert. Ist eine Variable in einem Block definiert, so ist sie-
nur dort gultig. Sie kann auBerhalb dieses Blocks nicht angesprochen werden. Man
nennt diese Variable "lokale Variable".

Blocks konnen beliebig geschachtelt werden. Allerdings mussen innerhalb einer Me-
thode die Bezeichner der lokalen Variablen eindeutig sein, d.h. ein einmal deklarier-
ter Bezeichner darf nicht noch einmal deklariert werden, auch nicht in einem Unter-
block.

8.1.2 Steueranweisungen

Mit Hilfe von Steueranweisungen kann der Programmierer den Ablauf des Pro-
gramms steuern. Es gibt Steueranweisungen fiir Verzweigungen (if und switch) und
fur die Schleifenbildung (for, while, do). Sie sind ebenfalls zusammengesetzte An-
weisungen, denn sie enthalten andere Anweisungen, die dann entweder selektiv
(gar nicht, weil die Bedingung nicht erfillt ist) oder einmal bzw. mehrmals ausge-
fiihrt werden (wenn die dafiir notwendige Bedingung erfillt ist).

Allen Steueranweisungen gemeinsam ist, dass der weitere Ablauf des Programms
von einem Ausdruck gesteuert wird, der vom Typ boolean sein muss.

Programm Anweisung01 : Boolescher Ausdruck im if-Befehl

class Anweisung0l {
public static void main (String[] args) {
if (5 > 3)
System.out.println ("5 ist groesser als 3");

149

8 Anweisungen kodieren ("statements")

Der IF-Befehl beginnt mit dem Schlisselwort if. Dann folgt in runden Klammern ein
Ausdruck, der als Ergebnis einen booleschen Wert liefert (ja oder nein). Im Beispiel
enthilt die ifAnweisung danach eine weitere Anweisung, nimlich den Aufruf einer
println-Methode. Dieser Block wird nur ausgefiihrt, wenn der boolesche Ausdruck
true liefert. Auf jeden Fall ist der gesamte IF-Befehl erst nach dem Semikolon been-
det. Das Semikolon schliefst hier das Statement mit dem Methodenaufruf ab. Zu-
sammengesetzte Anweisungen, in diesem Fall also das ifStatement selbst, werden
nicht mit einem Semikolon abgeschlossen.

Programm Anweisung02: Anweisungsblock anstelle der Einzelanweisung

class Anweisung02 {
public static void main (String[] args) {
if (5 > 3) {
System.out.println("Das Ergebnis der Priefung ist: ");
System.out.println ("Fuenf ist groesser als 3");

}

In dem Programm Anweisung02 besteht der Ja-Zweig der ifAnweisung aus mehr als
einer Anweisung. Deswegen muss ein Anweisungsblock gebildet werden, der durch
die geschweiften Klammern zusammengehalten wird. Der gesamte IF-Befehl ist nach
diesem Block beendet. Es wird am Ende kein Semikolon gesetzt.

8.2 Wertezuweisung

Durch eine Wertezuweisung ("assignment") wird der Inhalt einer Variablen verin-
dert, sie bekommt einen neuen Wert zugewiesen. Der Operator fir die Zuweisung
ist das Gleichheitszeichen =.

Programm ZuweisungO0I: Variablen einen neuen Wert zuweisen

class Zuweisung0l {
public static void main (String[] args) {

int zahl = 15; // Initialisierung
System.out.println ("Vorher: " + zahl);
zahl = 1; // Wertezuweisung
System.out.println ("Nachher: " + zahl);

}

Rechts vom Gleichheitszeichen steht der "Sender", links vom Gleichheitszeichen
steht der "Empfinger". Der Sender ist ein Ausdruck, also eine Variable, Konstante
oder ein Methodenaufruf oder eine beliebige Kombination daraus. Der Empfinger
kann (nur) aus einer Variablen bestehen, d.h. vor dem Gleichheitszeichen steht der

150

8.2 Wertezuweisung

Identifier der Variablen, die den neuen Wert des Ausdrucks bekommt. Der bisherige
Wert der Variablen wird komplett ersetzt durch den evaluierten Wert des Ausdrucks.
Zur Wiederholung noch einmal der Hinweis: ein Ausdruck berechnet einen (und
nur einen) Wert.

Programm Zuweisung02: Ein Ausdruckswert wird evaluiert und zugewiesen

class Zuweisung02 {

public static void main (String[] args) {
int zahl = 15;
System.out.println ("Vorher: " + zahl);
zahl = (1 + 6) / 2;
System.out.println ("Nachher: " + zahl);

}

Jeder Ausdruck hat also nur einen Wert. Im Beispiel Zuweisung02. java ist dieser
zweifellos vom Datentyp int, denn alle Operanden dieses Statements haben densel-
ben Typ und es gibt deswegen auch keinerlei Anpassungsprobleme. Damit ist auch
gleichzeitig der Datentyp des Ausdrucks festgelegt. Dieser Datentyp des Sender-
Ausdrucks muss tibereinstimmen mit dem Datentyp der Empfingervariablen.

Was passiert aber, wenn

e der Datentyp des Sender-Ausdrucks nicht Gibereinstimmt mit dem Datentyp der
empfangenden Variablen oder

e die Operanden des Ausdrucks unterschiedliche Datentypen haben?

Unterschiedliche Datentypen bei Sender und Empfanger

Generell kann der Empfinger nur Daten speichern, die mit seinem Typ tberein-
stimmen. Deswegen wird der Datentyp des Ausdrucks an den Typ des Empfingers
angepasst, allerdings nur, wenn dadurch nicht die Gefahr besteht, dass Informatio-
nen verloren gehen ("implizite Typumwandlung"). Andernfalls gibt es Fehler bei der
Umwandlung.

Programm Zuweisung03: Umwandlungsfehler wegen falscher Zuweisung

public class Zuweisung03 {
public static void main (String args[]) {
int zahll = 10;
short zahl2 = 5;
zahl2 = zahll;
zahll = zahl2;

151

8 Anweisungen kodieren ("statements”)

Das Programm Zuweisung03.java kann nicht fehlerfrei umgewandelt werden, weil
die empfangende Variable zah/2 zu klein ist fir einen int-Wert.

Ubung zum Programm Zuweisung03

Korrigieren Sie den Fehler, indem Sie den Datentyp der empfangenden Variablen
indern.

Ein nicht ganz so offensichtlicher Fehler steckt im Programm Zuweisung04.
Programm Zuweisung04: Umwandlungsfehler wegen falscher Zuweisung

public class Zuweisung04 {
public static void main (String args|[]) {
float s1 = 5.0;

}
Ubung zum Programm Zuweisung 04

Korrigieren Sie den Fehler im Programm Zuweisung04. java. Hinweise zur Losung
finden Sie im Kapitel 5 beim Thema Floatingpoint-Literale. Dort ist beschrieben, wie
ein Literal vom Typ float codiert wird.

Unterschiedliche Datentypen innerhalb eines Ausdrucks

Typanpassungen sind auch notwendig, wenn die Operanden innerhalb eines Aus-
drucks unterschiedliche Typen haben (siehe hierzu auch Kapitel 7).

Beispiel Zuweisung05: Typanpassung der Operanden im Ausdruck

public class Zuweisung05 {
public static void main(String args([]) {
String str = "Bahnhofstr.";
int nr = 125;
System.out.println(str + nr);

}

Beim Aufruf der Methode println() werden zwei Argumente libergeben, ein String-
Argument und ein in/-Argument. Die Werte miissen "gleichnamig" gemacht werden
(denselben Typ bekommen) und dies geschieht automatisch ohne explizite Angabe
durch den Programmierer, weil kein Informationsverlust dadurch entsteht.

8.2.2. Zusammengesetzte Zuweisungsoperatoren

Neben dem bisher besprochenen Gleichheitszeichen = als Operator fir die Werte-
zuweisung gibt es in Java zusammengesetzte Zuweisungsoperatoren. Sie werden in
folgender Form verwendet:

152

8.2 Wertezuweisung

empfanger operator= sendeausdruck;

Das Gleichheitszeichen wird also kombiniert mit einem weiteren Operator z.B. ei-
nem Rechen- oder einem Vergleichsoperator. Zwischen Operator und dem Gleich-
heitszeichen darf kein Leerzeichen stehen. Beispiel:

zahl += 5;
Die Bedeutung dieses Ausdrucks ist dquivalent zu:

zahl = zahl + 5;

Programm Zuweisung06: Kombinierte Zuweisungsoperatoren

public class Zuweisung06 {
public static void main (String args[]) {

int x = 1;

int y = 10;

x += 13; // x = x + 13;
System.out.println(x);

y *=y + 5; /)y =y * (y +5);

System.out.println(y);

}

Obwohl das Arbeiten mit diesen kombinierten Operatoren zu einer verkirzten
Schreibweise fuhrt, wird der Einsatz nicht empfohlen, weil die Lesbarkeit darunter
leidet. Dies demonstriert besonders die vorletzte Zeile des Programms Zuwei-
sung06 java.

8.2.3 Mehrere Operanden als Empfénger der Zuweisung

Eine weitere Variante des Zuweisungsoperators erlaubt das Arbeiten mit mehreren
Empfinger-Operanden.

Programm Zuweisung07: Mehrere Empfangeroperanden

public class Zuweisung07 {
public static void main (String args|[]) {

int x = 1;
int y = 10;
X =y = 0;
System.out.println("x= " + x + " y= " + y);

}

Fur diese Codierung ist eine wichtige Besonderheit zu beachten: die Reihenfolge der
Ausfithrung ist nicht - wie sonst allgemein Ublich - von links nach rechts, sondern

153

8 Anweisungen kodieren ("statements")

sie beginnt rechts mit: y = 0, danach wird dann ausgefihrt: x = y. Es wird jedoch
empfohlen, diese Schreibweise zu vermeiden.

Programm Zuweisung08: Stilfragen fiir Zuweisung

public class Zuweisung08 {

public static void main (String args|[]) {
int zahl;
int zahll;
System.out.println(zahl = 2);
System.out.println(zahl +=5); // Vermeiden!

System.out.println(zahll = zahl = 6); // Vermeiden!

}

Ubung zum Programm Zuweisung08

Bitte dndern Sie das Programm so, dass es leichter lesbar ist. Vermeiden Sie den zu-
sammengesetzten Zuweisungsoperator und auch die Verwendung von mehreren
Operanden als Empfinger einer Zuweisung.

8.3 Steueranweisungen

Ein Programm ist eine Losungsbeschreibung ("Algorithmus"), formuliert durch die
Zusammenstellung von Anweisungen in einer symbolischen Programmiersprache.
Fast alle bisherigen Beispiele dieses Buchs bestanden aus einer linearen Folge von
elementaren Schritten, die nacheinander (sequentiell) und auch nur jeweils ein-
mal ausgefiihrt wurden.

Diese Programme entsprechen natiirlich nicht den realen Anforderungen. Sie nutzen
auch in keiner Weise die Vorteile der Computer, nimlich

e die Fihigkeit, sehr schnell sehr viele Daten zu verarbeiten und
e die Moglichkeit, die Verarbeitung abhingig zu machen von Bedingungen.

Es sind also Kontrollstrukturen notwendig, die die Ordnung der Ausfihrung (die
Reihenfolge und die Hiufigkeit) festlegen. Seit in den 70er Jahren die Ideen der
"Strukturierten Programmierung" von fast allen Programmiersprachen iibernommen
worden sind, gilt natiirlich auch fiir objektorientierte Sprachen die Beschrinkung auf
wenige, genau definierte Elemente fiir die Ablaufsteuerung:

- Sequenz (= ein Befehl nach dem anderen)

- Iteration (= ein Befehl oder Befehlsblock wird mehrfach ausgefiihrt)
- Selektion (= ein Befehl oder Befehlsblock wird alternativ ausgefiihrt)
- Delegation (= Aufruf eines Unterprogrammes).

Fur die Sequenz ist kein besonderes Schliusselwort erforderlich, denn dies ist der
Default-Ablauf: Die Befehle werden von links nach rechts (wenn mehrere Statements

154

8.4 Verzweigungen (Selektion, Auswahl)

in einer Zeile stehen) und dann von oben nach unten ausgefiihrt. Die Selektion
und Iteration werden wir in diesem Kapitel behandeln. Unter Delegation versteht
man den Aufruf einer Unterroutine, damit dort dann die gewiinschte Aufgabe aus-
fuhrt wird, u.U. sogar parallel zum weiteren Ablauf ("Thread"). Der Aufruf solcher
Unterroutinen geschieht in Java durch das Senden von Nachrichten - das heif3t,
durch Methodenaufruf (siche Kapitel 10 und folgende). Es gibt in Java noch eine
weitere Form der Ablaufsteuerung, die in diesem Buch jedoch nur kurz behandelt
wird: Fur die Ausnahmebehandlung (exception handling, Fehlerbehandlung) gibt es
die Schlusselworter: try-catch-finally und throw.

Die in der Abbildung 8.1 aufgelisteten Formen von "control flow-statements" in Java
werden wir in diesem Kapitel ausfithrlich besprechen.

Anweisungstyp Schliisselworter
Verzweigung (Selektion) if-else, switch-case
Wiederholung (Loop, Schleife, Iteration) while, do-while, for
Sprunganweisungen break; continue; label; return;

Abb. 8.1: Drei Arten von Steueranweisungen

Allen Steueranweisungen gemeinsam ist, dass sie mit Ausdriicken arbeiten, die vom
Boolean-Datentyp sein miissen, d.h. diese miissen nach der Auswertung entweder
true oder false liefern.

Die Java-Sprachmittel dieser algorithmischen Grundformen unterscheiden sich kaum
von den Sprachelementen in anderen Programmiersprachen. Sie sind z.B. fast iden-
tisch mit der Syntax der Steueranweisungen in der C++-Sprache. Deswegen konnen
die Denkmuster, die in diesem Kapitel eingelibt werden, durchaus auf andere Spra-
chen tbertragen werden.

8.4 Verzweigungen (Selektion, Auswahl)

8.4.1 i-Statement
Das if-Statement ermoglicht es dem Programmierer, andere Anweisungen selektiv

ausfiihren zu lassen.

8.4.1.2 Die Grundformen der ifAnweisung
Die Syntax fir die einfachste Form der if~-Anweisung ist:

if (ausdruck) {
// Ja-Block (Dann-Block);

155

8 Anweisungen kodieren ("statements")

Der Ausdruck muss in runden Klammern stehen! Nur wenn die Auswertung des
Ausdrucks true ergibt, wird der Ja-Block ausgefiihrt (bedingte Anweisung, conditio-
nal statement). Liefert der Ausdruck den Wert false, so wird der Block tibersprungen.

Zusitzlich konnen Anweisungen programmiert werden, die nur ausgefithrt werden,
wenn der Ausdruck false ist. Damit hat eine komplette iAnweisung folgende Syn-
tax:

if (ausdruck) {
// Ja-Block (Dann-Block);
}
else
// Nein-Block (Andernfalls-Block);
}

Der Ausdruck wird evaluiert und liefert entweder true oder false. Wenn der Aus-
druck wahr ist, werden die Anweisungen im Ja-Block ausgefiihrt, die Anweisungen
im Nein-Block werden dann tbersprungen. Liefert der Ausdruck den Wert false, so
werden nur die Anweisungen des Nein-Blocks ausgefiihrt.

Programm If01: Komplettes [f-Beispiel mit Ja-Block und Nein-Block

public class If01 {
public static void main(String args[]) throws Exception {
if (5 < 3) {
System.out.println ("5 ist kleiner 3");
}
else {
System.out.println ("5 ist nicht kleiner als 3");

}

}

Die geschweiften Klammern konnen entfallen, wenn der Block aus nur einer Anwei-
sung ("simple statement") besteht. Doch wird empfohlen, immer mit Klammern zu
arbeiten, damit ein Block entsteht ("compound statement"), weil die Programme da-
durch besser lesbar und wartbar werden.

Struktogramme

Gemeinsam mit den Ideen der "Strukturierten Programmierung" entstanden Darstel-
lungsformen fir Algorithmen, mit denen die Einhaltung der Entwurfs- und Codier-
techniken erzwungen wurde: die Nassi-Shneidermann-Diagramme (Struktogramme,
siehe Kapitel 9). Wir werden einige der grundlegenden Symbole dieser Notation be-
reits einfihren, bevor dann im Kapitel 9 eine ausfihrliche Darstellung und Einord-
nung der Diagramme erfolgt.

156

8.4

Verzweigungen (Selektion, Auswahl)

True

Ausdruck

False

Ja-Block

Mein-Block

Abb. 8.2: Struktogramm fiir die If~-Anweisung

Programm If02: Beispiel fiir einseitige IF-Anweisung

public class If02 {
public static void main (String args|[])

char ¢ = 'A'";

if

}

Programm If03: Beispiel fiir zweiseitige IF-Anweisung

(Character.isUpperCase (c))
System.out.println ("Der Zeichen " + c +

{

ist ein Grossbuchstabe");

public class If03 {
public static void main (String args|[])

(Character.isUpperCase (c))
System.out.println ("Der Zeichen " + c +
ist ein Grossbuchstabe");

char ¢ = 'a';
if

}

else {

}

System.out.println ("Das Zeichen " + c +
ist ein Kleinbuchstabe");

{

Das folgende Beispiel enthilt einen hinterhiltigen Fehler. In der Zeile 3 steht ein

Semikolon, dieses wirkt wie eine Leeranweisung und beendet die If-Anweisung.

Programm Leeranweisung01: Beliebter, aber schwer zu entdeckender Fehler

public class Leeranweisung0l {
public static void main (Stringl]

if

(3>5);

System.out.println ("3 ist groBer 5");

args)

{

157

8 Anweisungen kodieren ("statements")

Stilfragen (oder: Einriicken ist wichtig)

Zwar ist Java eine formatfreie Sprache (d.h. es gibt keine Regeln fir die Aufteilung
einer Zeile), trotzdem sollten einige bewihrte Regeln fir die duflere Form des Quell-
texts eingehalten werden. Zur besseren Lesbarkeit sind besonders die Einrtickungs-
regeln ("indentation rules") zu beachten. Dies gilt auf jeden Fall fir das Codieren
von Alternativen oder Wiederholungen, denn durch diese Steueranweisungen be-
kommen Programme (oder konkreter: Methoden) eine bestimmte Struktur.

Und die Erfahrung zeigt, dass die Fehlersuche im Quelltext und die Einarbeitung in
(eigene oder fremde) Programme erheblich erleichtert werden, wenn diese Struktur
duRerlich erkennbar wird ("wenn der dynamische Programmablauf aus der stati-
schen Niederschrift ersichtlich ist").

Arbeiten mit einem komplexen Ausdruck

Ein Ausdruck, der den weiteren Ablauf steuert, kann beliebig komplex sein, d.h. es
konnen beliebig viele Aussagen durch logische Operatoren verkniipft werden.

Programm If04: Komplexer Ausdruck fiir die Ablaufsteuerung

public class If04 {
public static void main(String argsl[]) {

boolean fehler = false;

int monat = 12;

if ((!fehler) && (monat > 0) && (monat < 13))
System.out.println("Alles o.k.");

else
System.out.println("Fehler aufgetreten oder Monat falsch");

}

Hinter dem Schlisselwort i muss ein Ausdruck in runden Klammern stehen, der
zwar aus beliebig vielen Teilbedingungen bestehen kann, am Ende aber lediglich
einen einzigen Wahrheitswert liefern muss: true oder false.

Besonders interessant ist in dem Programm If04 die Uberpriifung der booleschen
Variablen fehler. Wenn die Bedingung erfillt ist, enthidlt die Variable febler den
Wert true. Und das soll bedeuten, dass ein Fehler aufgetreten ist. In diesem Pro-
gramm bekommt sie den Wert false, und das heifst, es ist alles in Ordnung, es ist
kein Fehler aufgetreten. Deswegen muss in dem Ausdruck der NICHT-Operator !
benutzt werden.

Ubung zum Programm If04

Testen Sie das Programm mit dem Monat 13. Andern Sie danach die Bedingung so
ab, dass nur die Monate des 3. Quartals (von 7-9) als korrekt zugelassen werden.

158

8.4 Verzweigungen (Selektion, Auswahl)

8.4.1.2 Geschachtelte IF-Anweisung

Noch komplexer wird eine ifAnweisung, wenn innerhalb des Ja-Blocks oder inner-
halb des Nein-Blocks eine weitere ifAnweisung steht. Die Aufgabe des nachfolgen-
den Programms soll es sein, zwei Zahlen zu vergleichen.

Programm If05: If-Anweisung innerhalb des Nein-Zweiges (schlecht codiert)

public class If05 {
public static void main(String argsl[]) {
int a = 2500;
int b = 1500;
if (a < b) {
System.out.println("a ist kleiner als b ");
if (b > 1000)
System.out.println("und b ist groesser als 1000");
}

else {
System.out.println("a ist nicht kleiner als b ");

if (b > 1000)
System.out.println("und b ist groesser als 1000");

}

Die IF-Schachtelung kann beliebig tief erfolgen. Aus Grinden der Ubersichtlichkeit
wird empfohlen, nicht mehr als 2 oder 3 geschachtelte Alternativen innerhalb eines
Zweiges zu kodieren. Ausnahmen konnen so genannte ifKaskaden sein, bei denen
jeweils im else-Zweig wiederum eine if~Anweisung steht:

Programm If06: If-Else-Kaskaden

public class If06 {

public static void main(String argsl[]) {
char cl = 'z"';
char c2 = 'z';
if (¢l == "' ")

System.out.println("cl ist leer");
else if (cl < c2)
System.out.println("cl ist kleiner c2");
else if (cl > c2)
System.out.println("cl ist groesser c2");
else 1if (cl == c2)
System.out.println("cl ist gleich c2");

159

8 Anweisungen kodieren ("statements”)

8.41.3 Dangling Else

Bei geschachtelten if s kann es zu mehrdeutigen Situation kommen, nidmlich dann,
wenn es eine unpaarige Anzahl von i und else-Schlisselwortern gibt. Dann kann es
passieren, dass ein else "in der Luft hingt" (dangle, engl. fiir baumeln). Beispiel:

if (a > b)
if (a > 0
else

Daraus ergibt sich die Frage: Zu welchem if gehort der else-Zweig? Antwort: else ge-
hort immer zum unmittelbar davor stehenden if.

Programm If07: if-else-Schachtelung

public class If07 {
public static void main (String args|[]) {

int dollar = 0;

boolean kreditkarte=true;

if (!'kreditkarte) {

if (dollar == 0)

System.out.println ("Weder Dollar noch Karte");

}

else
System.out.println ("Kreditkarte vorhanden");

}

Die Regel, wie die Mehrdeutigkeit aufgelost wird, sollte auch aus der Schreibweise
erkennbar werden (richtig einrticken!).

Ubung zum Programm If07

In diesem Programm besteht der Ja-Zweig des ersten If’ s aus nur einer Anweisung.
Deswegen konnte man (filschlicherweise) auf die Idee kommen, die geschweiften
Klammern (in Zeilen 5 und 8) wegzulassen. Formal ist das in Ordnung, logisch lei-
der falsch. Die Ausfihrung liuft dann nidmlich nicht so, wie es die Einrlickung er-
warten 14Rt. Bitte testen Sie dies durch entsprechende Programminderung.

Das nachfolgende Programm If08 soll folgende Aufgabe 16sen: Zunichst soll tber-
prift werden, ob es stimmt, dass a kleiner ist als b. Wenn das stimmt, soll abgefragt,
werden, ob b > 1000 ist und abhingig davon soll zusitzlich ausgegeben werden: "b
ist groBer 1000".

Losungsvorschlag (fehlerhaft):

public class If08 {
public static void main (String args|[]) {

160

8.4 Verzweigungen (Selektion, Auswahbl)

int a = 2500;
int b = 1500;
if (a < b)

if (b > 1000)
System.out.println("a ist kleiner b " +
"und b ist groesser als 1000");
else
System.out.println("a ist nicht kleiner b ");
System.out.println ("Programmende") ;

}
Ubung zum Programm I[f08

Der Losungsvorschlag [f08.java ist falsch, es wird lediglich "Programmende" ausge-
geben. Bitte priifen Sie, wo der Fehler liegt und korrigieren Sie das Programm.

Hinweise zur Losung: Das Problem des "dangling else" kann nur vorkommen, wenn
die Anweisungen nicht durch Blockklammern begrenzt wurden.

8.4.1.4 Bedingungsoperator (Fragezeichenoperator)

Es gibt einen Operator, dessen Wirkung dem If-Befehl sehr dhnelt, der Bedingungs-
operator. Deswegen werden wir ihn an dieser Stelle besprechen. Der Bedingungs-
operator besteht aus drei Operanden und den beiden Zeichen ? und :. Er ist der ein-
zige "ternidre" Operator, alle anderen sind "unire" (z.B. ++ oder --) oder "binire"
(z.B. + oder &&) Operatoren.

Allgemeine Syntax eines Bedingungsausdrucks:
Boolescher ausdruck ? ausdruckl : ausdruck2;

Der boolesche Ausdruck wird ausgewertet. Wenn er den Wert frue ergibt, wird aus-
druckl evaluiert und als Ergebnis geliefert, andernfalls der ausdruck2. Beide Aus-
dricke miissen den gleichen Datentyp haben, dies wird vom Compiler tiberpruft.

Beispiel:
a>b?x+5:y /5

Wie bei einem Ausdruck tblich, wird ein Ergebnis evaluiert. Abhingig von der Be-
dingung wird entweder x + 5 oder y / 5 als Ergebnis geliefert. Somit kann ein derart
zusammengesetzter Ausdruck nur Teil einer kompletten Anweisung sein, z.B. ein
Parameter eines Methodenaufrufs oder Teil einer Zuweisung.

Programm Fragezeichen01: Bedingungsoperator

public class Fragezeichen0O1l ({
public static void main(String[] args) {

161

8 Anweisungen kodieren ("statements")

System.out.println((6 > 5) 2 17 + 5 : 25 / 5);

}

Die beiden nichsten Beispiele zeigen, dass der Bedingungsoperator eine kompakte
Alternative fir einen ausfihrlichen If-Befehl sein kann.

Programm Fragezeichen02: Zunachst die if-Anweisung

public class Fragezeichen02 {
public static void main(String[] args) {
String text = " " ;
if (6 > 5)
text = "Groesser";
else
text = "Kleiner/Gleich";

System.out.println (text);

}

Wenn die Bedingung in einen Ausdruck eingebettet wird, kann auf die Hilfsvariable
text verzichtet werden.

Programm IfOperator02: Und nun der Bedingungsoperator

public class IfOperator02 ({
public static void main(String[] args) {
System.out.println((6 > 5) ? "groesser" : "kleiner/gleich");
}
}

Die Syntax fiir den Bedingungsoperator ist allerdings nicht immer leicht zu lesen.
Deswegen gilt die Empfehlung: Verwenden Sie den Operator ?: nur in begriindeten
Ausnahmefillen.

8.4.2 Switch-Statement

Wenn der weitere Ablauf eines Programms mehr als zwei Moglichkeiten bietet, muss
eine if-else-Kaskade programmiert werden, denn der If-Befehl kennt nur eine Alter-
native: entweder - oder. Wenn aber alle Zweige von dem Wert einer einzigen Vari-
ablen abhingen, so kann evtl. mit der switch-Anweisung gearbeitet werden.

Beispiel: Ein Programm fordert vom Bediener einen numerischen Wert fiir einen be-
liebigen Monat des 1. Halbjahres an (1 bis 6). Die weitere Verarbeitung hingt allein
von diesem einen Wert ab.

Programm Switch01: Monatstexte fiir das 1. Halbjahr mit if ausgeben

import java.util.*;

162

8.4 Verzweigungen (Selektion, Auswahbl)

public class SwitchO1l {

public static void main(String[] args) {
System.out.println ("Bitte geben Sie den Monat 1.Halbjahr ein: ");
Scanner eingabe = new Scanner (System.in);
int monat = eingabe.nextInt ();
if (monat == 1) System.out.println ("Januar");
else if (monat == 2) System.out.println ("Februar");
else if (monat == 3) System.out.println("Marz");
else if (monat == 4) System.out.println("April");
else if (monat == 5) System.out.println("Mai");
else if (monat == 6) System.out.println ("Juni");

else System.out.println("Falsche Eingabe");

}

Fur diese Aufgabenstellung bietet sich an, den switch-Befehl einzusetzen. Dieser ist
eine Variante des [FBefehls. Immer wenn eine Ganzzahl auf mehrere unterschiedli-
che Werte zu priifen ist, kann switch eine Alternative zu geschachtelten if s sein.

Allgemeine Syntax:

switch (ausdruck) {
case wert: anweisung-1;
case wert: anweisung-2;
default: anweisung-n;

}

Das Ergebnis des Ausdrucks wird mit jedem Wert verglichen. Wenn einer tiberein-
stimmt, werden die nachfolgenden Anweisungen ausgefiihrt. Wenn keiner passt,
wird die Anweisung hinter default ausgefihrt.

Was sind die Beschrinkungen fiir den "ausdruck" und fiir den "wert"?

Der "ausdruck" muss als Ergebnis einen numerischen Wert liefern. Dieser Wert
muss ganzzahlig - oder noch genauer: vom int-Typ, sein. Ergibt die Auswertung des
Ausdrucks einen short-, byte- oder char-Typ, wird dieser umgewandelt in in-Typ.
Nicht erlaubt sind die primitiven Typen boolean, long, float oder double.

Der "wert" hinter dem Schliisselwort case muss ein "konstanter Ausdruck" sein. Dar-
unter versteht man einen Wert, der zur Compilezeit bekannt ist, z.B. 5 oder (5 * 3).
Nicht erlaubt sind Variablen. Danach folgen der Doppelpunkt und eine einzelne
Anweisung oder auch mehrere Anweisungen.

Kritischer Hinweis

Dies alles sind gravierende Einschrinkungen fiir die Einsatzmoglichkeiten des
switch-statements. Dieses Sprachkonstrukt ist nicht annihernd so leistungsfihig wie

163

8 Anweisungen kodieren ("statements")

ihnliche Moglichkeiten in anderen Sprachen (es fehlt z.B. die Abfrage von Wertebe-
reichen oder die Moglichkeit, einen Ausdruck hinter case zu formulieren).

Besonderheiten der switch-Syntax

Die Anweisungen hinter dem case-Schlisselwort mussen nicht als Block geklammert
sein. Ein "Fall" wird durch das nichste Schliisselwort case beendet.

Aber Achtung: Grundsitzlich gilt, dass beim ersten Auftreten des gesuchten Wertes
die Verarbeitung beginnt und alle nachfolgenden "case" ausgefiithrt werden, und
zwar solange, bis ein break gefunden wird oder bis die switch-Anweisung beendet
ist.

. Ausdeick=?—— 7

default Konstl Konst2 Konstn

Abb. 8.3: Struktogramm fiir Switch (Mehrfachverzweigung)

Programm Switch02: Monatstexte fiir das 1. Halbjahr mit switch ausgeben

import java.util.*;
public class Switch02 {

public static void main(String[] args) {

System.out.println("Bitte Monat eingeben (1l.Halbjahr)");

Scanner eingabe = new Scanner (System.in);

int monat = eingabe.nextInt ();

switch (monat) {
case 1: System.out.println ("Januar"); break;
case 2 System.out.println ("Februar"); break;
case 3: System.out.println ("Maerz"); break;
case 4: System.out.println ("April"); break;
case 5 System.out.println("Mai"); break;
case 6: System.out.println("Juni"); break;

default: System.out.println ("Der Monat ist falsch");
}

System.out.println ("Programm-Ende") ;

Ubung zum Programm Switch02

Bitte prifen Sie durch Programminderung, ob anstelle der konstanten Zahlen hinter
dem Schliisselwort case auch ein Variablenname stehen kann.

Zwei Angaben sind besonders zu beachten:

164

8.4 Verzweigungen (Selektion, Auswahl)

e Zum einen die Anweisung break in jedem case. Sie beendet die weitere Ausfiih-
rung der Switch-Anweisung und Ubergibt die Steuerung an den nichsten Befehl
hinter dieser Switch-Anweisung. Wenn das break-Statement fehlt, wird mit dem
nichsten case weitergemacht.

e Zum anderen das Schlisselwort defaull. Diese Angabe ist optional. Damit kon-
nen alle nicht abgefragten Fille abgefangen und behandelt werden.
Programm Switch03: Die Wirkung der break-Anweisung

import java.util.*;
public class SwitchO03 {
public static void main(String[] args) throws Exception {

System.out.println ("Bitte einen Buchstaben eingeben:");
Scanner eingabe = new Scanner (System.in);
byte ¢ = eingabe.nextByte();
switch (c) |
case 'A': System.out.println("a");
case 'B': System.out.println ("b");
case 'C': System.out.println("c");
case 'E': System.out.println("e");

default : System.out.println ("Alle anderen Buchstaben");

}
Die Methode nextByte() erwartet den Integerwert des ASCII-Zeichens, z.B. 65 fiir A.

Ubung zum Programm Switch03

Testen Sie das Programm durch Eingabe der Zahl 66 (fur das ASCII-Zeichen * B’).
Uberpriifen Sie die Ausgabe. Da diese offensichtlich falsch ist, korrigieren Sie das
Programm. Hinweis: Es fehlt die break-Anweisung.

Das folgende Beispiel errechnet die Anzahl Tage, die ein Monat hat (unter Bertick-
sichtigung der Schaltjahre). Ein Schaltjahr ist durch 4, aber nicht durch 100 teilbar, es
sei denn, es ist durch 400 teilbar.

Programm Switch04: Anzahl Tage eines Monats ermitteln

public class Switch04 {
public static void main(String[] args) {
int monat = 2;
int jahr = 2000;
int tage = 0;

165

8 Anweisungen kodieren ("statements")

switch (monat) {
case 1:
case 3:
case 5:
case 7
case 8:
case 10:
case 12:
tage = 31; break;
case 4:
case 6:
case 9:
case 11:
tage = 30; break;
case 2:
if (((jahr
Il (Jahr
else
tage = 28; break;

== 0) && !(jahr % 100 == 0))

s 4
% 400 == 0)) tage = 29;

}
System.out.println ("Anzahl der Tage

}

" + tage);

}

Die leeren case-Klauseln wirken wie ein einschlieendes Oder. Sobald der Ausdruck
mit der Konstanten Ubereinstimmt, beginnt die Ausfithrung aller nachfolgenden An-
weisungen bis zum Ende des Switch-Statements, und sie wird nur abgebrochen,
wenn ein break-Statement auftritt,

enum-Typen in switch-Anweisung verwenden

Neben den "normalen" Klassen gibt es auch enum-Typen, die ebenfalls in Klassen
beschrieben werden konnen (Erlduterungen siehe Kapitel 11.9.2). Enum-Typen wer-
den auch Aufzihlungstypen genannt, weil die moglichen Werte, die eine Variable
dieses Typs aufnehmen kann, in Form einer Aufzihlung angegeben werden. Dann
kann eine Variable vom enum-Typ als case-Wert benutzt werden.

Programm Switch05: Abfrage von einem enum-Typ abhangig machen
public class Switch05 {
enum Wochentage {montag, dienstag, mittwoch, donnerstag,

freitag, samstag, sonntag}

public static void main (String[] args) {

166

8.5 Schleifen (Iteration, Wiederbolung, Loop)

Wochentage w = Wochentage.samstag;

switch (w) {
case montag: System.out.println ("Wochenbeginn");
case samstag: System.out.println ("Arbeitsfrei");

}

Fazit: Die switch-Anweisung wird eingesetzt, wenn vom Wert einer numerischen Va-
riablen (die kann auch ein enum-Typ sein) mehrere Alternativen abhingen. Voraus-
setzung ist: Es wird der Wert einer ganzzahligen Variablen abgefragt (byte, short,
char oder inl), long ist nicht erlaubt.

8.5 Schieifen (lteration, Wiederholung, Loop)

Mit Schleifenbefehlen kann man erreichen, dass Programmiteile wiederholt, also
mehr als einmal, ausgefiihrt werden. Eine Schleife wird normalerweise beendet,
wenn ein bestimmter Zustand erreicht ist. Sie besteht aus einem Kopf und dem
Rumpf. Die allgemeine Syntax sieht so aus:

schleifenbefehl (Boolescher ausdruck) {
// Schleifenrumpf (Ausfithrungsblock)
}

Das Ergebnis des Booleschen Ausdrucks entscheidet dartiber, ob der Block durch-
laufen wird oder nicht. Erforderlich sind normalerweise Anweisungen im Schleifen-
rumpf, die die Bedingung so modifizieren, dass ein bestimmter Zustand erreicht
wird, der die Schleifendurchfiihrung beendet. Andernfalls wirde eine Endlos-
Schleife programmiert.

Abhiingig vom Zeitpunkt, wann diese Uberpriifung stattfindet, unterscheidet man in
Java zwei Arten von Schleifen-Anweisungen:

e die kopfgesteuerte while-Anweisung (abweisende Schleife) und
e die fugesteuerte do-Anweisung (nicht-abweisende Schleife).
AuBerdem gibt es eine weitere Art, nimlich

e die Ziahlschleife (for-Schleife), das ist eine besondere Form der abweisenden
Schleife.

8.5.1 While-Schleife

Mit der While-Schleife kann man erreichen, dass Programmteile solange wiederholt
werden, bis eine Bedingung false ergibt.

Syntax der while-Schleife:

167

8 Anweisungen kodieren ("statements”)

while (Boolescher Ausdruck)
// Schleifen-Block
}

Der Boolesche Ausdruck wird ausgewertet. Wenn er true ergibt, wird der Schleifen-
block ausgefiihrt. Danach wird der Ausdruck erneut ausgewertet und abhingig vom
Ergebnis der Block noch einmal wiederholt oder nicht. Wenn der Boolesche Aus-
druck false liefert, wird mit dem nichsten Befehl nach dem Schleifenrumpf fortge-

setzt.

‘Solange Ausdruck wahr

Schleifen-Block

Abb. 8.4: Struktogramm fiir while-Schleife (abweisende Schleife)

Programm While0O1 : Ausgabe der Zahlen von 1 bis 4

public class WhileO1l {
public static void main (String[] args) {
int zahl = 1;
while (zahl < 5)
System.out.println (zahl++);

}

Eine Schleife hat drei Bestandteile:

e Kopf der Schleife

e Rumpf der Schleife

e Modifikation der Bedingung (andernfalls Endlosschleife).

Ubungen zum Programm While01

Ubung 1: Identifizieren Sie fiir dieses Programm die 3 Bestandteile einer jeder voll-
stindigen Schleife, indem Sie die jeweilige Zeilen-Nr. angeben.

Ubung 2: Modifizieren Sie das Programm so, dass die Summe der Zahlen 1 - 4 ge-
bildet und am Ende der Schleife ausgegeben wird.

168

8.5 Schleifen (Iteration, Wiederholung, Loop)

Programm While02 java: Ausgabe der Kleinbuchstaben von a bis z

public class While0O2 {
public static void main(String[] args) {
char buchstabe = 'a';
while (buchstabe <= 'z'")
System.out.println (buchstabe++) ;

}

Das Programm WhileO3.java modifiziert das Programm WhileO2 java so, dass zwar
weiterhin Kleinbuchstaben iteriert werden, aber der entsprechende Grobuchstabe
ausgegeben wird. Laut Unicode-Tabelle ist die Platz-Nummer des Kleinbuchstabens

um 32 hoher als die Platz-Nummer des Groftbuchstabens.

Programm While03 java: Ausgabe der Grofibuchstaben von A bis Z

public class While03 {

public static void main (String[] args) {
char buchstabe = 'a';
while (buchstabe <= 'z"') {
System.out.println ((char) (buchstabe = 32));
buchstabe++;

}
Programm While04 java: Endlos-Schleife

import java.util.*;
public class While04 {
public static void main(String[] args) {

Scanner eingabe = new Scanner (System.in);
String zeile;

while (true) {
System.out.println ("Bitte Text eingeben:");

zeile = eingabe.next ();

System.out.println ("Eingegeben wurde: " + zeile);

}

Das Programm WhileO4.java liest zeilenweise von System.in. Die Worter einer Ein-
gabezeile werden aufgesplittet und in jeweils einer eigenen Zeile ausgegeben ("par-
sen" der Eingabezeile). Weil die Bedingung der while-Schleife das Literal true ent-

169

8 Anweisungen kodieren ("statements”)

halt, ist sie immer wahr. Deswegen kann diese Endlosschleife nur gewaltsam (unter
Windows mit CTRL-C) abgebrochen werden

Im Programm WhileO5 java werden vom Bediener Zahlen angefordert, die im Pro-
gramm solange aufaddiert werden, bis die Summe den Wert von 100 erreicht hat.
Programm While05: Zahlen aufsummieren

import Jjava.util.*;
public class While0O5 {
public static void main (String[] args) {

Scanner eingabe = new Scanner (System.in);
int zahl;
int summe = 0;

while (summe < 100) {
System.out.println("Bitte Zahl eingeben:");

zahl = eingabe.nextInt ();
summe = summe + zahl;
}
System.out.println("Die Summe betraegt: " + summe);

}

Programm While06: Logischer Fehler
public class While0O6 {

public static void main(String[] args) {
boolean ichBinMillionaer = false;
while (ichBinMillionaer == true); {

System.out.println("Ich bin Millionaer");

}
}

Das Programm gibt (wenn Sie es genau so abtippen wie vorgegeben!) den Text aus:
" Ich bin Millionaer " - aber das ist gelogen, denn die Variable ichBinMillio-
naer enthilt den Wert false.

Ubung zum Programm While06

Versuchen Sie selbststindig, den Fehler zu finden und korrigieren Sie das Pro-
gramm.

Losungshinweis: Das Programm LeeranweisungO1 . java im Abschnitt 8.4. enthilt
denselben Fehler.

170

8.5 Schleifen (Iteration, Wiederbolung, Loop)

8.5.2 Do-Schleife

Mit der Do-Anweisung wird eine fuSgesteuerte Schleife realisiert. Dadurch kann man
erreichen, dass ein Programmteil mindestens einmal ausgefithrt und danach immer
wieder, bis eine Bedingung false ergibt. Die Syntax der Do-Schleife ist:

do {
// Schleifen-Block
} while (Boolescher Ausdruck);

Der Schleifenblock wird ausgefiithrt und danach der Boolesche Ausdruck evaluiert.
Wenn das Ergebnis true ist, beginnt ein neuer Durchlauf. Der Schleifenblock wird
dann erneut ausgefiihrt, und am Ende wird geprift, ob ein weiterer Durchlauf erfor-
derlich ist usw.

Diese Art der Schleifenbildung nennt man "fufgesteuert" oder "nicht-abweisend",
denn die Prifung erfolgt nach dem Schleifendurchlauf. Der Block wird auf jeden
Fall einmal, vielleicht sogar mehrmals durchlaufen.

Schleifen-Block

Solange Ausdruck wahr

Abb.8.5: Struktogramm fiir Do-Schleife (Prifung am Ende)

Programm Do01: Ausgabe, solange zahl < 5

public class Do0O1l {

public static void main (String[] args) {
int zahl = 5;
do

System.out.println (zahl++);

while (zahl < 5);

}

}

Also: Obwohl die Bedingung nicht erfillt ist, wird der Schleifenrumpf ausgefiihrt,
weil bei der Do-Schleife die Priifung erst am Ende der Schleife stattfindet.

Ubung zum Programm Do01

Andern Sie das Programm so, dass es (analog zum Programm WhileO1 java) die
Zahlen 1 - 4 ausgibt. Hinweis: Es ist nur die Anderung eines Literals notwendig.

171

8 Anweisungen kodieren ("statements”)

Das Programm Do02 java hat eine dhnliche Aufgabenstellung, allerdings sollen jetzt
die Zahlen von 5 - 1 ausgegeben werden (d.h. von 5 beginnend rickwirts).

Programm Do02: Ausgabe der Zahlen von 5 bis 1 (riickwirts)

public class Do02 {

public static void main(String[] args) {
int zahl = 5;
do

System.out.println(zahl--);

while (zahl > 0);

}

}

Ubung zum Programm Do02

Losen Sie die Aufgabe mit der while-Schleife (anstelle der do-Anweisung).

Losungsvorschlag

public class While99 {
public static void main(String[] args) {
int zahl = 5;
while (zahl > 0)
System.out.println(zahl--);

Im Programm DoO3 java soll eine Zahl geraten werden. Die Zahl liegt zwischen 0
und 9. (Die richtige Antwort ist als Literal im Programm fest codiert. Sie lautet 4.)

Programm Do03: Eine Zahl raten

import java.util.*;
public class Do03 {
public static void main(String[] args) {

Scanner eingabe = new Scanner (System.in);
int zahl;
do {
System.out.println ("Bitte Zahl zwischen 0-9 eingeben:");
zahl = eingabe.nextInt ();
}
while (zahl !'= 4);

System.out.println("Treffer! Richtig geraten");

172

8.5 Schleifen (Iteration, Wiederbolung, Loop)

8.5.3 For-Schleife
8.5.3.1 Die Grundform der For-Schleife

Die For-Schleife ermoglicht eine sehr kompakte Schreibweise fiir eine Loop. Syntax:

for (Initialisierung; Bedingung; Modifikation) {
// Schleifenblock
}

In den runden Klammern hinter dem Schlisselwort for stehen alle Angaben, die fir
die Steuerung einer Schleife notwendig sind:

e Initialisierung: Festlegen der Anfangswerte fir die Entscheidung, ob ein Schlei-
fendurchlauf erfolgen soll oder nicht.

e Bedingung: Formulieren des Ausdrucks, der Uber die Beendigung der Schleife
entscheiden soll.

e Modifikation: Anderungen der Werte, die Teil der Bedingung sind, damit die
Schleife (irgendwann) terminiert werden kann.

Als vierter Teil einer jeden Schleife muss dann noch der Schleifenblock codiert wer-
den.

Initialisierung ;| Ausdruck; Zahler

Schleifenblock

Abb. 8.6: Struktogramm fiir For-Schleife (Zihlschleife)

Programm For01: Zahlen von 1 - 10 ausgeben

public class For0l {
public static void main (String[] args) {
for (int zahl = 1; zahl < 11; zahl++)
System.out.println(zahl);

}
Im Kopf dieser Schleife stehen die drei notwendigen Angaben:

e Deklaration und Initialisierung der Bedingungsvariablen zahl (auch "Laufvariab-
le" genannt). Weil die Laufvariable hier deklariert wird, handelt es sich um eine
lokale Variable, die auch nur im Block der For-Schleife ansprechbar ist. Aufler-
halb der Schleife ist sie nicht "sichtbar".

e Formulierung der Bedingung selbst (zahl < 11)

173

8 Anweisungen kodieren ("statements”)

e Modifikation der Laufvariablen (zahl++).

Die For-Schleife wird auch von-bis-Schleife genannt, weil die Laufvariable den
Startwert angibt, die typischerweise durch Inkrement hochgezihlt wird, bis der End-
wert erreicht ist.

In welcher Reihenfolge wird die For-Schleife ausgefiihrt?

Vor Eintritt in die Schleife wird der Startwert festgelegt (durch Initialisierung der
Laufvariablen). Dies erfolgt nur einmal, danach nie wieder. Anschliefend wird die
Bedingung uberpriift. Ist das Ergebnis true, so wird erst der Schleifenblock und an-
schlieBend die Modifikation ausgeftihrt. Bei false wird an das Ende der Schleife ver-
zweigt und dort mit dem folgenden Befehl weiter gemacht. Somit ist die For-Schleife
auch kopfgesteuert, sie wird null-mal, einmal oder mehrfach durchgefiihrt.

Die Schleifenkonstrukte sind austauschbar.

Programm While07: for-Schleife im Programm For01 ersetzen durch while

public class WhileO7 {
public static void main(String[] args) {
int zahl = 1;
while (zahl < 11) {
System.out.println(zahl);
zahl++;

}

Ubung zum Programm For01

Modifizieren Sie das Programm so, dass nur jede zweite Zahl von 1 bis 10 ausgege-
ben wird, also die ungeraden Zahlen 1, 3, 5, 7, 9.

Losungshinweis:

Es reicht, die Inkrementierung der Laufvariablen zu dndern, d.h. die Schrittweite von
1 auf 2 zu erhohen.

Das ProgrammFor02. java modifiziert das Programm For0O1 java so, dass die Summe
der Zahlen von 1 - 10 ermittelt und ausgegeben wird:
Programm For02: Summe der Zahlen von 1 bis 10

public class For02 {
public static void main (String[] args) {
int sum = 0;
for (int zahl = 1; zahl <= 10; =zahl++) {

174

8.5 Schleifen (Iteration, Wiederholung, Loop)

sum = sum + zahl;

}

System.out.println ("Summe ist = " + sum);

}

Ubung

Bitte codieren Sie ein neues Programm For03.java, das Sonderzeichen des Unicodes
ausgibt, und zwar die Zeichen mit den Codepoints \u0021 bis \u002F. Es soll mit
einer FOR-Schleife gearbeitet werden. Denken Sie daran, dass auch mit char-Typen
"gerechnet" werden kann.

Losungsvorschlag

public class For03 {
public static void main (String[] args) {
for (char c = '"\u0021'; c < '"\uOO02F'; c++)
System.out.println(c);

FOR-Schleife: Abweisend oder nicht-abweisend?

Das letzte Beispiel soll noch einmal eindeutig die Frage klidren, ob die FOR-Schleife
eine abweisende oder eine nicht-abweisende Schleife ist. Dazu schreiben wir ein
Programm, das zeigt, wie der Ablauf des Programms ist, wenn die Testbedingung
der FOR-Schleife niemals erfiillt sein kann.

Programm For04: Die Bedingung ist nie erfiillt

public class For04 {
public static void main (String[] args) {
for (int i=0; i < 0;)
System.out.println("Ich werde nie ausgegeben");
System.out.println ("Programmende") ;

Besonderheiten:

e Die drei Ausdriicke im Kopf der For-Schleife miissen nicht immer alle vorhan-
den sein. Fehlt der erste oder der zweite Ausdruck, wird er durch ein Semikolon
ersetzt.

175

8 Anweisungen kodieren ("statements”)

Programm For05: Initialisierung aufRerhalb, Modifikation innerhalb

public class For05 {
public static void main(String[] args) {
int i= 0;
for (; i < 1;) |
System.out.println ("Ich werde einmal ausgegeben");
it++;
}
}
}

Eine weitere Besonderheit zeigt das folgende Programm. Die erste und die dritte
Komponente im Kopf einer FOR-Schleife konnen aus einer Aufzihlung von mehre-
ren Teilausdriicken bestehen. Die einzelnen Teilausdriicke werden (wie generell bei
Aufzihlungen in Java) dann durch Komma abgetrennt.

Programm For06: Mehrere Modifikationen im Schleifenkopf

public class For06 {
public static void main(String[] args) {
for (int i=1, j=12; i<5 || 7 < 13; i++, J=3+2)
System.out.println("Ich werde viermal ausgegeben");

}

Achten Sie also besonders auf die Kommas zwischen den einzelnen Teilausdriicken.

Ubung zum Programm For06

Die Bedingung besteht aus zwei mit ODER verkniipften Teilaussagen. Wie dndert
sich das Programmverhalten, wenn die beiden Bedingungen mit dem UND-Operator
verkniipft werden?

Das nichste Programm zeigt eine fehlerhafte Prifbedingung. Die Prifung auf Schlei-
fenende sollte generell von Ganzzahlen abhingig gemacht werden - nicht zu emp-
fehlen ist die Abfrage eines Gleitkommawerts. Dies kann zu Endlosschleifen fiihren.

Programm For07: Ungewollte Endlosschleife, weil Gleitkomma-Wert ungenau

public class For07 {
public static void main (String[] args)throws Exception {
for (float i=0; i != 5.0; 1i=i4+0.2f) {
System.out.println (i) ;
if (i > 5) break;

176

8.5 Schleifen (Iteration, Wiederbolung, Loop)

8.5.3.2 Variante der For-Schieife: For-Each ("Enhanced For-Loop")

Wenn die For-Schleife zur Verarbeitung von Datensammlungen (z.B. Array oder Col-
lection) eingesetzt wird und wenn nur lesend auf die einzelnen Komponenten zuge-
griffen wird, dann gibt es eine vereinfachte Variante der Basis-For-Schleife, die so
genannte for-each-Schleife. Sie durchliuft die Datensammlung, von vorne begin-
nend, liickenlos bis zum Ende und stellt im Schleifenblock den Wert einer jeden
Komponente zur Verfiigung. Zum kompletten Verstindnis sind Array-Kenntnisse er-
forderlich (siche Kapitel 13).

Programm ForEachO01: Sequentielles Lesen eines Arrays

class ForEach01 {
public static void main(String[] args) {
int[] sammlung = {1,5,7,3};
for (int zahl : sammlung)
System.out.println(zahl);

}

Um ein Verstindnis fir die Syntax zu bekommen, wird der Doppelpunkt wie "in"
gelesen, also "fur jede Zahl in Sammlung...".

Weitere Informationen und Beispiele zu dieser Form einer for-each-Loop gibt es im
Kapitel 13: Arrays).

Bewertung der unterschiedlichen Schleifen-Konstrukte

Es besteht kein grundsitzlicher Unterschied zwischen den drei Schleifenformen whi-
le, do und for. Jede FOR-Schleife kann auch mit WHILE gemacht werden und umge-
kehrt. Ebenso kann eine DO-Schleife durch eine FOR- oder WHILE-Schleife ersetzt
werden. Allerdings ist - je nach Aufgabenstellung - mal die eine Form tbersichtlicher
und mal die andere.

Grundsitzlich soll die Art der Codierung die Problemstruktur widerspiegeln und
auch das ausdriicken, was der Programmierer beabsichtigt, damit das Programm ver-
stindlich wird. So ist z.B. die For-Schleife besonders geeignet fir das Durchlaufen
von Arrays, andererseits ist das Codieren einer Endlosschleife durch for(;;) zwar
moglich, verstindlicher ist aber eine while(true)-Schleife.

Wenn bereits beim Kodieren der Schleife die Anzahl der Durchliufe festgelegt wer-
den kann, bietet sich die Zihlschleife an (von-bis-Schleife).

Wenn die Laufvariable auch nach Schleifenende benotigt wird, ist die For-Schleife
nicht geeignet, dann sollte die While-Schleife eingesetzt werden. Wenn die Laufvari-
able im Rumpf manipuliert wird, ist die For-Schleife ebenfalls nicht so gut einsetzbar.

177

8 Anweisungen kodieren ("statements”)

8.5.4 Schachtelung von Schieifen

Genau so wie IF-Befehle geschachtelt werden konnen, ist auch eine Schachtelung
von Schleifenbefehlen moglich, z.B. kann eine Wiederholung eine weitere Wieder-
holung enthalten, wenn innerhalb einer for-Anweisung im Rumpf eine weitere for-
Schleife steht. Alle Steuerbefehle sind auch beliebig kombinierbar.

Programm For08: For-Schleife schachteln

public class For08 {
public static void main (String[] args) {
for (int zahll = 1; zahll <= 3; zahll++) {
for (int zahl2 = 1; zahl2 <=5; zahl2++)
System.out.println(zahll + " " + zahl2);

}

Die Ausgabe des Programms For08.java sieht wie folgt aus:

w wNh NP
S e R e R

Ubung

Bitte codieren Sie das Programm For09.java. Es soll mit einer For-Schleife arbeiten.
Der Schleifenrumpf soll 3-mal durchlaufen werden und folgende Aufgaben erfiillen:

e Der Text "Aussenschleife" soll ausgegeben werden.

e AuBlerdem soll innerhalb dieses Rumpfs eine innere FOR-Schleife codiert wer-
den, die zweimal durchlaufen wird und in der lediglich der Text "Innenschleife"
ausgegeben wird.

Losungsvorschlag

public class For09 {
public static void main (String[] args) {
for (int i=0; 1 < 3; 1i++) |
System.out.println ("Aussenschleife");
for (int 7 = 0; J < 2; J++)
System.out.println ("Innenschleife");

178

8.6 Sprung-Anweisungen (break, continue)

Ubung zum Programm For09

Bitte losen Sie die Aufgabenstellung der Programms For09.java mit einer geschach-
telten while-Schleife.

Losungsvorschlag

public class While08 {
public static void main(String[] args) {
int zahll = 1;
while (zahll <= 3) {
int zahl2 = 1;
while (zahl2 <=5) {
System.out.println(zahll + " " + zahl2);
zahl2++;

}
zahll++;

}

Insbesondere fiir das Arbeiten mit mehrdimensionalen Arrays bieten geschachtelte
FOR-Schleifen eine sehr tibersichtliche Schreibweise (sieche Kapitel 13: Arrays).

8.6 Sprung-Anweisungen (break, continue)

In manchen Situationen ist es notwendig, die normale Komplettierung eines Schlei-
fendurchlaufs zu verhindern. Dann muss der Rest der Schleifenrumpfs tibersprungen
werden. Beispiel: In einer Datei, die sequentiell gelesen wird, stehen alle Kundenda-
ten eines Unternehmens. Es werden im Programm nur die Kunden mit einem be-
stimmten Mindestumsatz benotigt. Also muss eine Schleife programmiert werden, die
etwa wie folgt aussieht:

{
Lese aus der Datei solange noch Satze vorhanden sind
Priife, ob Mindestumsatz vorhanden
Wenn nein, beginne die Schleife von vorn
Wenn ja, verarbeite den gelesenen Satz

}

Der vorzeitige Abbruch eines Schleifendurchlaufs bedeutet, dass die restlichen Be-
fehle des Schleifenrumpfs tGbersprungen werden. Die Ablaufsteuerung wird an eine
andere Stelle transferiert.

Wie es danach weiter geht, hingt in Java von der Art der Sprung-Anweisung ab:

e mit einer break-Anweisung wird die Schleife komplett abgebrochen und

179

8 Anweisungen kodieren ("statements")

* mit einer continue-Anweisung wird nur der aktuelle Durchlauf vorzeitig been-
det.

Ubung: Versuchen Sie festzustellen, welche Art von vorzeitigem Schleifenabbruch in
dem beschriebenen Fall der Umsatzdatei vorliegt.

Antwort: Der aktuelle Durchlauf wird beendet, aber es wird gepriift, ob ein erneuter
Durchlauf notwendig ist. Es handelt sich also um die continue-Anweisung).

8.6.1 break-Anweisung

Mit der Break-Anweisung wird die aktuelle Schleife komplett beendet. Der Schleifen-
rumpf wird verlassen und die Verarbeitung mit der ersten Anweisung nach der
Schleife fortgesetzt.

Das folgende Programm BreakO1.java soll eine Iteration maximal 10mal durchfiithren
und dabei Zahlen aufsummieren. Die Summe der Zahlen darf jedoch den Wert 1000
nicht Gberschreiten. Ist dies der Fall, wird die Schleife vorzeitig abgebrochen.

Programm Break01: Abbruch der Schleife, wenn Summe erreicht

import java.util.*;
public class Break0l {
public static void main(String[] args) {

int zahl;
int summe = 0;
Scanner eingabe = new Scanner (System.in);

for (int i=0; 1 < 10; i++) {
System.out.println ("Bitte Zahl eingeben: ");
zahl = eingabe.nextInt ();
if ((summe + zahl) > 1000) {
System.out.println("Die Summe ist > 1000");

break;

}

else {
summe = summe + zahl;
System.out.println("Summe = " + summe) ;

}

Typisches Anwendungsbeispiel fiir die break-Anweisung ist der Abbruch einer End-
losschleife:

180

8.6 Sprung-Anweisungen (break, continue)

for (; true ;) {

if (....) break; // Die komplette Schleife wird beendet
}

Bei geschachtelten Schleifen wird nur die innere Schleife abgebrochen.

8.6.2 continue-Anweisung

Mit der Continue-Anweisung wird (nur) der aktuelle Schleifendurchlauf vorzeitig be-
endet. Es wird zum Schleifenanfang gesprungen, und es wird eine erneute Auswer-
tung des Booleschen Ausdrucks erzwungen.

Beispiel:
for (int i=0; i<10; i++) { // 10mal die Schleife ausfiihren
if (....) continue; // Diesen Durchlauf abbrechen

}
Bei geschachtelten Schleifen wird nur die innere Schleife abgebrochen.

Das folgende Programm Continue01.java errechnet den Kehrwert der Zahlen -10 bis
+10. Ubersprungen werden soll bei dieser Berechnung aber die Null (0).

Programm Continue0l1: Innerhalb der Schleife priifen und evtl. iiberspringen

public class Continue0Ol {
public static void main(String[] args) {
for (int i= -10; 1 <11; 1i++) |
if (1 == 0)
continue; // Laufende Iteration beenden
System.out.println ("Kehrwert von " + i + " =" + 1.0 / 1i);

}

Geschachtelte Schleifen abbrechen

Bei geschachtelten Schleifen wird nur der innere Schleifenrumpf abgebrochen und
nicht etwa die gesamte Schleife.

Programm Continue02: Abbruch der inneren Schleife

import java.util.*;
public class Continue02 {
public static void main(String[] args) {

181

8 Anweisungen kodieren ("statements")

int zahl;
int summe = 0;

for (int i=0; i < 3; i++) |
System.out.println ("Aussenschleife " + 1);
for (int 3=0; J < 4; Jj++) {
if (1 == 1) continue;
System.out.println("Innenschleife " + 1);

Wenn die Aufgabenstellung es jedoch verlangt, dass alle Schleifen abgebrochen
werden missen, so kann dies mit dem Beschriften von Schleifen durch "Label" sehr
leicht realisiert werden.

8.6.3 Benannte Schleifen ("Label")

Sowohl die Break- als auch die Continue-Anweisung konnen um einen Identifier
("Marke") erginzt werden, z.B.

continue hauptschleife;

In diesem Fall handelt es sich bei "hauptschleife" um den Namen der Schleife, die
vorzeitig beendet werden soll. Der Name wird am Beginn der Schleife, die abgebro-
chen werden soll, codiert, gefolgt von einem Doppelpunkt :.

Programm Label01: Gezieltes Ende bei geschachtelten Schleifen

public class LabelOl {
public static void main (String[] args) {
aussen: // Label vergeben
for (int i=0; i <4; i++) {
for (int 3=0; Jj<4; Jj++) |
System.out.println("innen: 3 = " + J);
if (J == 1) |
System.out.println ("\n");
continue aussen;

182

8.6 Sprung-Anweisungen (break, continue)

Ubungen zum Programm Label01

Ubung 1: Testen Sie das Programmverhalten, wenn bei der continue-Anweisung das
Label (die "Marke") weggelassen wird.

Ubung 2: Bitte priifen Sie, ob Label immer am Schleifenbeginn stehen miissen oder
ob sie an einer beliebigen Stelle (auch z.B. weiter hinten in der Schleife) deklariert
und angesprungen werden konnen.

Hinweise zur Losung: Label sind in Java nur erlaubt als Namen fir Schleifen. Es sind
keine allgemeinen Sprungziele wie z. B. in manchen Script-Sprachen. Und wenn ei-
ne break- oder continue-Anweisung mit einem Label versehen wird, dann muss die-

ses Label auch in den aktuellen Schleifen gefunden werden. Es darf also nicht au-
Berhalb stehen.

Programm Label02: Fehlerhafte Codierung einer benannten Anweisung

public class Label0O2 {

public static void main(String[] args) {
for (int i=0; 1 < 3; i++) |
if (i==2)
break aussen; // Umwandlungsfehler

}

aussen: for (int x=1; x < 0; x++) {
System.out.println("So gehts nicht");

Break und Continue - nur eine verschleierte GOTO-Variante?

Andere Programmiersprachen bieten einen GOTO-Befehl, um Spriinge innerhalb ei-
nes Programms zu realisieren. GOTO ist aber zu Recht verpont (und im Java-
Sprachumfang nicht vorhanden). Wodurch aber unterscheiden sich die besproche-
nen break- und continue-Befehle von einem GOTO? Antwort: Thre Wirkung ist ein-
deutig festgelegt. Sie erlauben nur Spriinge von innen nach aufen. Die Pro-
grammsteuerung wird entweder an den Schleifenanfang (bei continue) oder an das
Schleifenende (bei break) tibergeben. Es konnen keine beliebigen Ziele vorne o-
der hinten im Programm angesprungen werden wie beim GOTO. Dadurch bleibt die
Ubersicht erhalten, und Spagetticode wird vermieden.

Als Zusammenfassung noch ein klassisches Anwendungsbeispiel im Pseudocode
(siche Kapitel 9) fur die beiden Moglichkeiten, einen Schleifendurchlauf vorzeitig
abzubrechen. Das Programmfragment soll eine Endlosschleife enthalten, in der die
Daten gelesen werden. Innerhalb der Schleife wird tiberpriift, ob eine Verarbeitung
der Daten erforderlich ist oder nicht. Bei Dateiende ist die Schleife beendet.

183

8 Anweisungen kodieren ("statements")

while (true) {
if (dateiende) break; // Schleife beenden
if (Not-VerarbeitungErforderlich) continue; // Schleife von vorn beginnen

8.6.4 Return

Mit der Return-Anweisung wird ein Unterprogramm (eine "Methode") beendet und
die Steuerung an die aufrufende Anweisung zuriickgegeben. Gegebenenfalls wird
auch ein Ergebnis zuriickgeliefert. Weitere Erlduterungen stehen im Kapitel 10.

8.7 Lésungsmuster fiir Schleifen

Die folgenden Hinweise sind fir den Anfinger nicht unbedingt wichtig. Sie konnen
auch spiter bei Bedarf durchgearbeitet werden.

Typisches Einsatzgebiet fiir eine Schleifenbildung ist das Lesen von Datensammlun-
gen, entweder von einem externen Speicher oder innerhalb des internen Speichers
z.B. aus einer Collection von Objekten. Dabei ist folgendes Problem zu 16sen: Hiufig
ist die Bedingung fiir die Wiederholung das Vorhandensein weiterer Daten im Ein-
gabestrom oder in der Collection.

Also wird diese Bedingung vor der Ausfilhrung des Schleifenrumpfs geprift. Aber
wie ist diese Prifung moglich, wenn doch (beim ersten Durchlauf) noch gar nicht
versucht worden ist zu lesen?

Folgendes Beispiel soll diese Problematik verdeutlichen.
Programm Next01: Text von System.in lesen und verarbeiten

import java.io.*;
public class Next01l {
public static wvoid main (String[] args) throws Exception
{
BufferedReader in = new BufferedReader (
new InputStreamReader (System.in));
String str = " ";
while (str != null) {
System.out.println("Bitte Text eingeben: ");
str = in.readLine();
System.out.println ("Verarbeitet wird; " + str);
}

System.out.println ("Programmende") ;

184

8.7 Ldsungsmuster fiir Schleifen

Das Programm soll Text vom Bildschirm lesen und als Echo wieder ausgeben. Die
Leseschleife wird beendet, wenn die Eingabe vom Bediener null ist (wenn also kei-
ne Daten gelesen worden sind). Dies ist dann der Fall, wenn das Programm beendet
wird ohne Dateneingabe (unter MS-Windows durch CTRL-C).

Ubung zum Programm Next01
Bitte testen Sie das Programm durch Eingabe einiger Zeilen.

Beenden Sie dann das Programm und starten Sie es neu. Geben Sie diesmal gar
nichts ein, sondern beenden Sie es sofort. Wird die Eingabe null verarbeitet?

Wie verhilt sich das Programm, wenn die Variable sir mit null initialisiert wird?

Die Losung im Programm NextO1 java ist nicht befriedigend, weil die Wiederho-
lungsbedingung (str /= null) beim ersten Durchlauf abgefragt wird, obwohl sie erst
spiter gesetzt wird durch das Lesen.

Fur dieses immer wiederkehrende Problem, dass eine Abfrage der Bedingung beim
ersten Durchlauf noch nicht moglich ist, weil die Voraussetzung fehlt, gibt es ver-
schiedene Losungsvarianten.

Programm Next02: Erster Losungsvorschlag - eine Endlosschleife

import java.io.*;
public class Next02 {
public static void main (String[] args) throws Exception {
BufferedReader in = new BufferedReader (
new InputStreamReader (System.in));
String str = " ";
while (true) {
System.out.println("Bitte Text eingeben: ");
str = in.readLine () ;
if (str == null) break;
System.out.println ("Verarbeitet wird: " + str);
}

System.out.println ("Programmende") ;

}

Die Losung funktioniert gut, doch wird sie dadurch leicht uniibersichtlich, weil nicht
erkennbar ist, dass die Endlosschleife nur vorgetiuscht ist, weil es sehr wohl eine
klar zu formulierende Bedingung fiir die Entscheidung tiber das Schleifenende gibt.

Der Quelltext soll das ausdriicken, was der Programmierer beabsichtigt. Dieses Ziel
wird hier nicht erreicht.

185

8 Anweisungen kodieren ("statements”)

Programm Next03: Zweiter Losungsvorschlag - Probelesen vor dem ersten
Schleifendurchlauf

import java.io.*;
public class Next03 {
public static void main (String[] args) throws Exception {
BufferedReader in = new BufferedReader (
new InputStreamReader (System.in));

System.out.println ("Bitte Text eingeben: ");

String str = in.readLine();

while (str != null) {
System.out.println ("Verarbeitet wird: " + str);
System.out.println("Bitte Text eingeben: ");
str = in.readLine();

}

System.out.println ("Programmende") ;

}
Dieses Programm arbeitet richtig. Der Aufbau ist logisch und verstindlich. Allerdings
hat es den Nachteil, dass der Lesevorgang zweimal programmiert werden muss.

Programm Next04: Dritter Losungsvorschlag - Einsatz von Standardmethoden
fir Iteration
import java.util.Scanner;

public class Next04 {
public static void main (String[] args) {

Scanner cons = new Scanner (System.in);
String ein = null;
System.out.println ("Bitte Text eingeben: ");
while (cons.hasNext ()) {
ein = cons.next ();
if (ein.equals("ende")) break;
System.out.println("Eingabe ist " + ein);

}

System.out.println ("Programmende") ;

}

Es gibt einige Java-Standardklassen, die enthalten fiir die Iteration besondere Metho-
den, die das "Probelesen" durchfiithren. In diesem Beispiel ist das die Methode has-
Next der Klasse Scanner. Sie liefert als Ergebnis des Vorauslesens den Wert true,
wenn der Eingabestrom noch weitere Daten enthilt, oder false, wenn keine Daten
mehr vorhanden sind.

186

8.7 Ldsungsmuster fiir Schleifen

Programm Next05: Viertes Beispiel - Class Iterator fiir eine Collection benut-
zen

import java.util.*;
public class Next05 {
public static void main (String[] args) {
// Erstellen einer Objektsammlung im Speicher
ArrayList list = new ArrayList();
list.add (new String("Erstes Objekt"));
list.add (new String("Zweites Objekt"));
list.add (new String("Drittes Objekt"))
// Iterieren durch die Objektsammlung
Iterator i = list.iterator();
while (i.hasNext ()) {
System.out.println(i.next());

4

}

Die Standardbibliothek von Java enthilt verschiedene Klassen fiir die Verwaltung
von Objekten im Arbeitsspeicher. Dieses Beispiel benutzt hierfiir die Klasse ja-
va.util ArrayList. Dann wird eine Instanz der Klasse Iterator erzeugt. Und dort ist ein
Standardalgorithmus fiir das Iterieren durch derartige Datensammlungen in den Me-
thoden hasNext() und next() vorprogrammiert.

Ubung zum Programm Next05

Wandeln Sie das Programm um (bei der Umwandlung mit J2SE 5.0 kommt eine
Warnung, die jedoch ignoriert werden kann). Testen Sie das Programm. Andern Sie
es danach so ab, dass ein viertes Objekt hinzugefiigt wird und danach das 2. Objekt

(iber den Index, mit der Methode remove) geloscht wird.
Hinweise fiir den Lehrenden:

Die Klasse ArrayList ist Teil des Collection-Frameworks. Seit J2SE 5.0 sind die Col-
lection als parametrisierbare Typen ("Generics") programmiert. Das Arbeiten mit Ge-
nerics ist ein Thema fiir Fortgeschrittene und wird deshalb in diesem Buch nicht be-
handelt. Um die Warnung bei der Umwandlung zu eliminieren, ist das Programm
wie folgt zu dndern:

Programm Next06: J2SE 5.0 - ready

import java.util.*;
public class Next06 {
public static void main (String[] args) {

// Erstellen einer Objektsammlung im Speicher

187

8 Anweisungen kodieren ("statements")

ArrayList<String> list = new ArraylList<String>();
list.add (new String("Erstes Objekt"));
list.add (new String("Zweites Objekt"));
list.add (new String("Drittes Objekt"));

// Iterieren durch die Objektsammlung

Iterator<String> i = list.iterator();

while (i.hasNext ()) {
System.out.println(i.next ());

}

Die Klasse StringTokenizer bietet ebenfalls Methoden an, die "probeweise" lesen.
Diese testen, ob weitere Token im String verfiigbar sind und liefern true oder false
als Ergebnis. Erst danach erfolgt dann mit nextToken() das echte Lesen.

Programm Next07: Fiinftes Beispiel - Class StringTokenizer

import Jjava.util.*;
public class Next07 {
public static void main (String[] args) {
String s ="Dies ist nur ein Test";
StringTokenizer st = new StringTokenizer(s);
while (st.hasMoreTokens ())
System.out.println (st.nextToken());

8.8 Stilfragen: Konventionen zum Programmierstil

In der Praxis sind immer wieder Anderungen und Anpassungsarbeiten an bestehen-
der Software notwendig. Wihrend der gesamten Software-Lebenszeit wird modifi-
ziert, ergdnzt oder korrigiert, z.B. um Fehler zu beseitigen, wegen geidnderter Aufga-
benstellung, aufgrund gesetzlicher Anderungen usw. Ein Indiz dafiir: Das Einspielen
von Updates und Servicepacks gehort zu den stindig wiederkehrenden Hauptaufga-
ben der Systemverwalter.

Deswegen ist es wichtig, Ubersichtliche und leicht verstindliche Quellenprogramme
zu schreiben.

Die nachfolgenden Standards entsprechen den Empfehlungen der Java-Entwickler.
Diese sind ausfiihrlich dokumentiert in den "Java Code Conventions" und konnen
uber die Adresse "bttp://java.sun.com/docs/codeconv/" kostenlos bezogen werden.

188

8.8 Stilfragen: Konventionen zum Programmierstil

8.8.1 Empfehlungen fiir die Quelltextdatei

Kommentarzeilen zu Beginn (Aufgabe der Klasse beschreiben, Version definie-
ren). Weitere Kommentare immer dort, wo zusitzliche Erliuterungen erforder-
lich sind, weil der Quelltext allein nicht aussagefihig ist.

Eine Zeile sollte nicht mehr als 80 Zeichen enthalten, damit die Bildschirmanzei-
ge und Druckausgabe tbersichtlich bleibt.

Wenn eine Quellendatei mehrere Klassen enthilt, so sollte die public-Class, die
die main-Methode enthilt, die erste Klasse in dieser Umwandlungseinheit sein.

Zwei Leerzeilen zwischen den einzelnen Klassen einer Quelldatei; eine Leerzeile
zwischen den Methoden einer Klasse

Leerstellen (blanks) zwischen den einzelnen "Token" der Java-Sprache eingeben.

Es gibt eine besondere Form fiir Kommentare - das sind die "Dokumentations-
kommentare". Sie werden begrenzt durch /** ... /** und konnen durch mitgelie-
ferte Tools extrahiert und in einer HTML-Datei aufbereitet werden, dhnlich wie
die API-Dokumentation. Weitere Informationen unter der Adresse:
http://java.sun.com/products/jdk/javadoec/

8.8.2 Empfehlungen zum Codierstil fiir Statements

Generell gilt: Die Schreibweise muss konsistent, d.h. durchgehend gleich sein,
z.B. sollen die Regeln zum Einriicken nicht variieren, sondern konsequent be-
nutzt werden.

Die Anweisungen sollen moglichst einfach sein und dem menschlichen Leser
einen unmittelbaren Einblick in ihre Aufgabe und Wirkung geben. Dies gilt be-
sonders fur die Steuerbefehle. Das Zusammenspiel der einzelnen Konstrukte
muss aus dem Quelltext erkennbar sein.

Eine Zeile im Quelltext sollte nicht mehr als ein Statement enthalten. Beispiel:

a++; // korrekt
X- -; // korrekt
a++; a- -; // Kein guter Stil!

Bei Kontrollanweisungen fiir Schleifenbildung und Alternativen soll eingertickt
werden, um die Struktur (z.B. einer Verschachtelung) optisch gut sichtbar zu
machen.

Beispiele fiir IF:

if (condition) {
statements;

189

8 Anweisungen kodieren ("statements")

Das else muss auf derselben Spalte stehen wie das dazu gehorende if:
Besonders wichtig ist das Einrticken bei geschachtelten Anweisungen:

if (condition) {
if (condition)
statements;
else
statements;
else
statements;

}

Jedes switch-Statement sollte ein default-Case haben. Auferdem sollte grund-
sdtzlich das break-Schliisselwort benutzt werden. Ausnahmen sind zu dokumen-
tieren.

Fur die besprochenen Steueranweisungen if; else, while, for und do sollte immer
ein Block codiert werden, auch wenn dieser aus nur einer Zeile besteht oder
sogar leer ist. Beispiel:

while (condition) {
statement;

}

Java erlaubt an vielen Stellen eine Kurzschreibweise, alternativ zu der ausfiihrli-
chen Codierung. Beispiel: a = b = ¢; Diese verkiirzte Schreibweise bedeutet
nicht, dass auch die Ausfithrung schneller ist. Aber sie erschwert dem menschli-
chen Leser das Verstindnis fir den Quelltext ("Programme werden hiufiger ge-
lesen als geschrieben"). Deswegen ist es hidufig besser, die verstindliche Lang-
schreibweise zu wihlen.

Manche Programmierer neigen zu "eleganten" Formulierungen, wobei elegant
dann leider nur eine Umschreibung ist fir unverstindliche (und oft fehleranfilli-
ge) Programmiertricks ist.

8.8.3 Empfehlungen fiir die Namensvergabe

190

Die Identifier (frei gewihlte Namen fir Klassen, Methoden usw.) sollen spre-
chend, also moglichst aussagefihig sein, und nicht aus einzelnen Zeichen be-
stehen.

Klassennamen sollten aus einem Hauptwort bestehen und immer mit einem
Groffbuchstaben beginnen. Wenn mehrere Worter zusammengesetzt werden, so
beginnt jedes Wort mit einem Grobuchstaben, z.B. BufferedinputStream.

Methodennamen sollten aus einem Verb bestehen und immer mit einem Klein-
buchstaben beginnen. Wenn mehrere Worter zusammengesetzt werden, so be-
ginnen die nachfolgenden Worter mit einem Grofbuchstaben, z.B. getDatum.

8.8 Stilfragen: Konventionen zum Programmierstil

e Feldnamen sind oft Adjektive, sie beginnen mit einem Kleinbuchstaben. Bei
zusammengesetzten Begriffen wird jedes nachfolgende Wort gro geschrieben
z.B. mwstBetrag.

e Konstanten werden komplett grof geschrieben und die einzelnen Worter
durch einen Unterstrich getrennt, z.B. MAX_VALUE.

e Package-Namen werden grundsitzlich klein geschrieben. Wenn sie global ein-
deutig sein miussen, so wird eine Anlehnung an die Internet-Domain-Namen
empfohlen, zB. com.ibm oder com java.sun.

e Setter- und Getter-Methoden sind fiir jedes private Attribut sinnvoll. Das sind
Methoden, die das Lesen (GET) und das Schreiben (SET) dieser Variablen er-
moglichen. Diese Methoden werden auch manchmal Accessoren (die Getter-
Methoden) und Mutatoren (die Setter-Methoden) genannt. Fir das Erstellen von
Java-Beans sind sogar bestimmte Namensregeln fir Setter- und Getter-Methoden
obligatorisch: die Methodennamen beginnen mit dem Prifix set oder get, danach
folgt der Name des Feldes, zB. getDatum oder setAdresse.

e Die ungarische Notation, bei der mit besonderen Zeichen der Datentyp oder die
Lokation gekennzeichnet wird, ist zu vermeiden, weil sie zu untbersichtlichem
Quelltext fihrt.

8.8.4 Hinweise zum Testen

Testen ist eine undankbare Aufgabe, denn das Ziel besteht darin, Fehler in der eige-
nen Arbeit zu finden. Wahrscheinlich ist es fir viele Programmierer einfacher, Fehler
in fremden Programmen zu finden, als den Nachweis zu erbringen, dass ihre eige-
nen Programme fehlerhaft sind.

Es kann sinnvoll sein, Testfille vor dem Codieren der Klasse zu erstellen, um zu
uberpriifen, ob das Klassendesign komplett ist.

191

9 Softwaresysteme entwickeln (Projekte realisieren)

Softwaresysteme entwickeln (Projekte realisieren)

Die Beispiele in diesem Buch sind Miniprogramme, die ausschlieflich darauf ausge-
richtet sind, den Lernstoff so einfach wie moglich darzustellen. Sie konnen jeweils
isoliert codiert, umgewandelt, getestet und genutzt werden, es gibt keine Abhingig-
keiten zwischen den einzelnen Programmen. Damit sind sie auf keinen Fall Muster
fir reale Anwendungen - dazu haben wir zu stark vereinfacht. Beispielsweise enthal-
ten die Programme keine formalen oder logischen Prifungen und auch keine
Fehlerbehandlung.

In der Praxis bestehen Projekte aus dem Zusammenspiel von vielen Einzelprogram-
men, die jeweils um ein Vielfaches grofer sind als jedes in diesem Buch besproche-
ne Beispiel.

Folgende Anekdote soll dies unterstreichen: Der berithmte Edgar Dijkstra, einer der
grolen "Pipste" der Informatik, hielt vor einigen Jahrzehnten einen Vortrag, bei dem
er erklirte: "Ich werde immer getadelt, weil meine Beispiele so klein sind, manchmal
sind sie nur 5 Zeilen lang. Ich nehme den Tadel an und bringe Thnen heute mal ein
sehr komplexes Beispiel aus der Praxis". Und dann brachte er ein Programm, das
war zwei DIN-A4-Seiten lang. Dazu gibt es in einem Gesprich mit Hasso Plattner,
dem SAP-Grinder, folgenden Kommentar: "... hier zeigt sich das Hauptproblem der
Informatik. Wir reden bei uns nicht tiber zwei Seiten, sondern tiber 40000 DIN-A4-
Seiten, und das ist eine ganz andere Kategorie..."

Dieses Kapitel hat genau diese Problematik als Thema. Weil Softwareprojekte nicht
isoliert von Einzelpersonen realisiert werden, sondern das Gemeinschaftswerk sind
von vielen Spezialisten, die in einem Team zusammenarbeiten, hingt der Gesamter-
folg eines Projekts nicht nur davon ab, dass funktionierende Einzelprogramme er-
stellt werden.

Mindestens ebenso wichtig ist es, dass sich diese sauber integrieren lassen zu einem
Gesamtsystem.

Sie werden in diesem Kapitel

e cine Einfihrung bekommen in die grundlegenden Vorgehensmodelle, Prinzipien
und Methoden der Anwendungsentwicklung;

e erfahren, warum gerade Java als Projektsprache fiir verteilte und internationali-
sierte Anwendungen besonders gut geeignet ist;

e lernen, welche Entwurfssprachen in der Design- und Realisierungsphase einge-
setzt werden und welche Vor- und Nachteile damit verbunden sind.

192

9.1 Herausforderungen und Vorgebensweisen

9.1 Herausforderungen und Vorgehensweisen

Nicht wenige Projekte scheitern. Die Grinde dafiir sind bekannt: mangelnde Vorbe-
reitung, fehlende Systematik, unstrukturierte Vorgehensweise, geringe Transparenz.
Vor allem aber: die Systeme werden immer komplexer. Das mag zum einen an
der Aufgabenstellung liegen; hiufig tragen aber unrealistische Zielvorstellungen dazu
bei, dass Projekte gar nicht oder nur mit zusitzlichem, nicht geplantem Aufwand zu
Ende gefiihrt werden konnen. Projekte sind selten daran gescheitert, dass die Losun-
gen im ersten Anlauf unvollstindig waren. Aber hiufig blieben grole Softwarepro-
jekte unvollendet, weil gleich zu Beginn zu viel auf einmal versucht wurde.

Die erfolgreiche Realisierung von EDV-Projekten erfordert deshalb prizise Vorberei-
tung, grofles Wissen, viel Erfahrung sowie systematisches Arbeiten der Teammitglie-
der bei der Realisierung. Nicht die Kreativitit des Einzelnen steht im Vordergrund,
sondern diszipliniertes Arbeiten, orientiert an festen Regeln und vorgegebenen Stan-
dards. Als Hinweis darauf, dass Software-Erstellung eine Ingenieursdisziplin ist, wird
auch der Begriff "Software-Engineering" verwendet.

Wir wollen die Prinzipien und Methoden beschreiben, die fiir das Erstellen von Ein-
zelprogrammen gelten ("Programmicren im Kleinen"), aber vor allem auch eine Ein-
fihrung bieten in die Techniken beim Realisieren von groferen Projekten ("Pro-
grammieren im Grofsen").

9.1.1 Vorgehen bei Entwickeln einzelner Programm ("Programmieren im Kleinen")

Basis eines jeden Programmsystems sind immer die einzelnen Programme. Heraus-
forderungen beim Kodieren dieser Programme bestehen im Umsetzen der Anwen-
dungslogik in "Datenstrukturen und Algorithmen". Der Programmierer muss die rich-
tigen Befehle und Datenbeschreibungen codieren und mit Kontrollstrukturen den
Ablauf des Programms steuern. Dazu ist es in den meisten Fillen hilfreich, dass das
Schreiben des Quelltexts erst erfolgt, wenn die Struktur und die Logik der Pro-
grammbausteine geklirt sind.

Schrittweise Verfeinerung

Eine typische Entwurfstechnik fiir Algorithmen ist die schrittweise Verfeinerung. Da-
bei wird zunichst ein grober Losungsvorschlag mit abstrakten Operationen erstellt,
der dann nach und nach abschnittsweise durch konkrete Operationen verfeinert und
implementiert wird ("top-down-Entwurf"). Das folgende Beispiel soll dieses Vorge-
hen demonstrieren. Die Aufgabe des Programms TopDownO1 java ist es, eine Zahl
zu potenzieren. Die Eingabedaten werden vom Bildschirm gelesen und das Ergebnis
am Bildschirm ausgegeben. Also muss das Programm folgende Teilaufgaben erfil-
len:

- Daten einlesen und priifen
- verarbeiten (potenzieren)
- ausgeben.

193

9 Softwaresysteme entwickeln (Projekte realisieren)

Wir zerlegen die Gesamtaufgabe in einzelne "Module", jede dieser Teilaufgaben ist
eine eigene Methode. Die Implementierung startet zunidchst nur mit der main-
Methode, erginzt um die Realisierung nur eines dieser Module (z.B. potenzieren).

Programm TopDownO1la: Erster Schritt - Methode potenzieren()

class TopDownOla {
public static void main(String[] args) {
int erg = potenzieren (5, 3);
System.out.println(erqg);
}
static int potenzieren(int zl, int z2) {
int erg = z1;
if (z2 == 0) return(l);
for (; z2>1; z2--) {
erg = erg * zl;
}

return erg;

}

Wenn dieses Rumpfprogramm funktioniert, wird schrittweise jeweils eine weitere
Methode hinzugefiigt und getestet, z.B. im zweiten Schritt die Methode ausgabe()
und danach im dritten Schritt die Methode eingabe() erginzt.

Ubungen zum Programm TopDownOla

Bitte versuchen Sie selbststindig, die Programme TopDown01b (erginzt um die Me-
thode ausgabe) und TopdownOlc (erginzt um die Methode eingabe) zu erstellen.
Orientieren Sie sich dabei an dem folgenden Losungsvorschlag fiir das endgultige
Programm.

Losungsvorschlag: Das komplette Programm, erstellt in 4 Schritten (a-d)

import java.io.*;
class TopDownOld {
public static void main(String[] args) {
System.out.println("Bitte eine Zahl als Basis eingeben: ");
int basis = eingabe () ;
System.out.println("Bitte eine Zahl als Exponent eingeben: ");
int exponent = eingabe () ;
int erg = potenzieren (basis, exponent);
ausgabe (erg) ;
}

static int eingabe () {

194

9.1 Herausforderungen und Vorgebensweisen

String str = null;
try {
str = new DataInputStream(System.in) .readLine () ;
}
catch (Exception e) {
System.out.println(e);
}
return Integer.parselnt (str);
}

static int potenzieren(int zl1l, int z2) {

int erg = z1;
if (z2 == 0) return(l);
for (; z2>1; z2--) {

erg = erg * zl;
}
return erg;
}
static void ausgabe (int erg) {
System.out.println("Das Ergebnis ist: " + erg);

}
Das fertige Programm produziert leider noch einen Umwandlungsfehler:

"TopDownOld. java uses or overrides a deprecated API."
Erlduterung: Als "deprecated" werden Sprachbestandteile gekennzeichnet, die veral-
tet sind und die in spiteren Versionen der Java-Sprache entfallen werden. Deswegen
sollten wir unser Programm noch einmal modifizieren, um es zukunftssicher zu ma-
chen. Dazu werden wir im Eingabemodul die veraltete readLine-Methode komplett
gegen eine neue Version austauschen. Damit ist (hoffentlich) ein wichtiger Vor-
teil der Modularisierung eindrucksvoll demonstriert.

Ubung zum Programm TopDown01d
Tauschen Sie das veraltete Modul eingabe aus gegen folgende verbesserte Version.
Methode eingabe(): Neu programmiert

static int eingabe () {

Scanner ein = new Scanner (System.in);

int zahl = 0;

try A
zahl = ein.nextInt ();

}

catch (Exception e) {
System.out.println(e);

195

9 Softwaresysteme entwickeln (Projekte realisieren)

}

return zahl;

Was sind "gute" Programme?

Natiirlich ist das wichtigste Ziel bei der Entwicklung von Programmsystemen, dass
die Programme richtig funktionieren, d.h. sie sollten fehlerfrei sein. Was macht dar-
tuber hinaus ein "gutes" Programm aus?

Hier einige Antworten:

e Gute Programme sollen benutzerfreundlich (einfach und robust) sein.

e Gute Programme sollen tbersichtlich und fiir den Menschen leicht lesbar sein.

e Gute Programme sollen wiederverwendbar und portabel sein.

e Gute Programme sollen effizient sein (schnell, mit wenig Speicherbedarf).

Es gibt natiirlich Situationen, wo die Effizienz eines Programms das wichtigste Krite-
rium ist ("real-time-Systeme"). In der Regel sind jedoch die anderen Ziele wichtiger:
Die Benutzerakzeptanz ist gesichert, wenn die Programme einfach und robust sind,
die Wartung der Programme wird erleichtert, wenn sie tibersichtlich und leicht les-
bar sind. Die zukiinftige Gebrauchsfihigkeit der Programme wird erhoht, wenn die
Programme wiederverwendbar sind und wenn sie auch auf anderen Hardware-
Plattformen und Betriebssystemen lauffihig sind.

Zur Wartungsfreundlichkeit eines Programms gehort es, dass der Quellcode transpa-
rent und Uberschaubar codiert worden ist, Kommentare an den notwendigen Stellen
enthilt, die Namensvergabe plausibel erfolgt und dass Standards eingehalten worden
sind, damit der Quellcode leicht analysiert werden kann.

Dartiber hinaus gelten folgende Prinzipien:

Prinzip des Information Hiding (Geheimnisprinzip)

e Die internen Abliufe bleiben dem Benutzer einer Klasse oder Methode verbor-
gen. Variablen moglichst privat (bei Klassen) oder lokal (bei Methoden) dekla-
rieren (siehe hierzu Kapitel 16). Globale Variable sollten vermieden werden.

Prinzip der "Strukturierten Programmierung"

Die Forderung nach tbersichtlichen Programmen beschreibt das wichtigste Ziel der
"strukturierten Programmierung". Dabei werden mehrere, bereits bekannte Techni-
ken miteinander verbunden:

e Prinzip der Modulbildung (abgeschlossene Programmblocke, die eine funktiona-
le Einheit bilden und deren Aufgabe mit moglichst einem Wort beschrieben
werden kann).

196

9.1 Herausforderungen und Vorgebensweisen

Einsatz einer begrenzten Anzahl von Steuerbefehlen (Sequenz, Alternative und
Wiederholung).

Vermeidung von Sprungbefehlen, die zu so genanntem "Spaghetticode" fithren.
In Java werden Spriinge im Programm realisiert durch die Schliisselworter break,
continue und return. Es gibt zwar das reservierte Wort goto, dieses wird in Java
aber nicht genutzt.

Das Programm sollte von oben nach unten lesbar sein. Dabei sollte die statische
Niederschrift einer Methode moglichst Ubereinstimmen mit dem dynamischen
Ablauf des Programms.

Die Strukturblocke haben nur einen Eingang (ist in Java auch nicht anders mog-
lich). Sollte ein Block mehrere Ausginge haben (break, return, continue), so ist
dies entsprechend zu kennzeichnen.

Eine besondere Moglichkeit der Ablaufsteuerung hat der Java-Programmierer
durch spezielle Sprachmittel, um Methoden parallel ausfihren zu lassen (Multi-
Threading). Dies ist ein Thema fiir Fortgeschrittene.

Der Programmierung im Sinne von "Kodieren" muss unbedingt eine detaillierte
Entwurfstitigkeit vorausgehen. Dazu gehort eine exakte Klirung der Aufgaben-
stellung und ein detailliertes Entwerfen der Programmlogik, am besten mit Un-
terstiitzung von grafischen oder verbalen Hilfsmitteln wie Struktogramme, Ab-
laufpline oder Entscheidungstabellen (Erliuterungen hierzu spiter in diesem
KapiteD).

Prinzip der Ubersichtlichkeit

Darunter vesteht man den Einsatz von Standards fir die Namensvergabe, das
Einrticken, Einfiigen von Kommentaren usw. Diese Regeln konnen auch die Art
der Dokumentation betreffen, Vorschriften fir das Arbeiten mit grafischen Mo-
dellbeschreibungen (UML) enthalten, die Verwendung von Design-Pattern
betreffen oder aus allgemeinen Programmierregeln bestehen.

Beispiele fiir Programmierregeln sind:

® Benutzen Sie, wann immer moglich, die Klassen der Standardbibliotheken
(z.B. missen Queue- oder Stackklassen nicht mehr selbst codiert werden,
sie werden bereits mitgeliefert).

e Codieren Sie - wo immer Fehler denkbar sind - individuelles Exception-
Handling (Behandlung von Ausnahmesituationen)

e Benutzen Sie anstelle von festen Zahlenwerten z.B. fiir MWST-Sitze oder Ar-
raygroflen besser Konstanten mit beschreibenden Namen.

197

9 Softwaresysteme entwickeln (Projekte realisieren)

9.1.2 Projekte: Programmieren im GroBen

9.1.2.1 Tendenzen

Seit vielen Jahren sind ganz klar zwei Tendenzen in der Softwareentwicklung zu er-
kennen:

Modularisierung der Bauteile

e Das Gesamtsystem wird aufgeteilt in kleine, iberschaubare Teilbereiche ("Klas-

sen"). Und das Einzelprogramm wird aufgeteilt in Unterprogramme ("Metho-
den").

Spezialisierung der Mitarbeiter

e Die Zeit der Generalisten ist vorbei, jeder Teilbereich erfordert Spezialwissen. So
gibt es Experten fir Graphische Oberflichen, fiir Server- und Client-
Anwendungen, fir das Deployment, Security, Internet-Technologien, XML- oder
Datenbank-Anwendungen.

Die einzelnen Teilaufgaben missen (iiber definierte Schnittstellen) im Verbund funk-
tionieren; die beteiligten Mitarbeiter miissen im Team (tuber definierte Schnittstellen)
kommunizieren. Das heif3t, das grofite Problem sind die Schnittstellen.

Wie kann die Anzahl der Schnittstellen kontrolliert werden?

Die Komplexitit eines Systems hingt wesentlich von der Anzahl der Schnittstellen
ab. Bei einer netzwerkartigen Verbindung der einzelnen Systemkomponenten kann
es schnell zu einer untbersehbaren Fulle von Schnittstellen kommen (kombinatori-
sche Explosion).

Schnittstellen zwischen den Programmen

Versuchen Sie, die Breite der Schnittstellen bei der Software gering zu halten, indem
Sie - wo immer moglich - Aufgaben in abgeschlossenen Einheiten ("Modulen") kap-
seln. Dadurch wird der erforderliche Datenaustausch minimiert.

Schnittstellen zwischen den Mitarbeitern

Die Schnittstellen zwischen den Mitarbeitern miissen standardisiert werden. Konven-
tionen und Richtlinien helfen, Kommunikationsprobleme zu vermeiden. Wichtig ist
der Einsatz von Design- und Dokumentationssprachen wie UML oder Entschei-
dungstabellen. Unterstiitzt werden die Teammitglieder durch maschinelle Entwick-
lungswerkzeuge ("tools").

9.1.22 Woliegen die konkreten Herausforderungen?

Termine planen und einhalten

Der Zeitaufwand fiir die Projektrealisierung ist keineswegs durch die Addition des
Aufwands pro Einzelprogramm zu ermitteln. Die Integration der Teilaufgaben und
ihre Implementierung machen einen grofen Teil des Gesamtaufwands aus.

198

9.1 Herausforderungen und Vorgebensweisen

Kosten kontrollieren

Qualitdt kostet Geld. Geld ist knapp, also: Hier sind Zielkonflikte aufzulésen. Nicht
alle Ziele sind gleichzeitig erreichbar. Hiufig leidet die Qualitit, weil die Zeit knapp
wird. Oder die Kosten erhohen sich bei hoherem Zeitaufwand. Die Aufgabe der
Verantwortlichen ist es, das Optimum zu finden.

Qualitit sichern

Zeitdruck darf nicht dazu fihren, dass die Qualitit leidet. Wenn die Qualitidt des
neuen Systems unzureichend ist, leidet entweder die Akzeptanz, weil der Aufwand
fir den Nutzer der Programme grofSer oder unbefriedigend ist, oder es muss nach-
gebessert werden. Und beides wird wahrscheinlich teurer.

Nicht sparen auf Kosten der Qualitit

Softwaresysteme sind in der Regel viele Jahre im Einsatz. Noch heute werden Pro-
gramme genutzt, die vor Jahrzehnten erstellt worden sind. Untersuchungen Uber
Softwarekosten haben ergeben, dass die Kosten fiir die Wartung von Programmen
die Erstellungskosten hiufig tibersteigen.

Nachlissigkeiten oder Fehler, die in der Entwicklungsphase gemacht werden, kon-
nen spiter nur mit erheblichem Mehraufwand behoben werden. Es ist in jedem Fall
kostengtinstiger, Fehler zu vermeiden, als entstandene Fehler nachtriglich zu suchen
und zu korrigieren.

Der Kampf mit der Komplexitat

Das zentrale Problem der Softwareentwicklung ist der Kampf mit der Komplexitit.
Die neuen Anwendungen werden immer grofer, immer anspruchsvoller (Grafik,
Bedienerkomfort), internationaler und sind immer stirker vernetzt (Internet und
Komponententechnologien). Sind solche Anwendungen, die durchaus aus einigen
Millionen Codierzeilen bestehen kénnen, noch Gberschaubar? Sind Wartungsarbeiten
noch gefahrlos moglich? Jede Anderung, jeder einzelne Fehler kann eine millionen-
fache Auswirkung haben. Das Software-Engineering muss als ingenieurmiiges Vor-
gehen zur Entwicklung von EDV-Systemen angesehen werden:

e Der Entwickler versucht, die Komplexitit zu reduzieren durch "Abstraktion",
d.h. durch Erkennen des Wesentlichen und Vernachlissigung von Nebensich-
lichkeiten.

e Die Vorgehensweise ist schrittweise, vom Allgemeinen zum Speziellen.

e Der Entwickler wird von Werkzeugen ("Tools") unterstiitzt , z.B. Integrierte Ent-
wicklungsumgebungen (IDE) wie Eclipse

e Es gibt anerkannte Mafnahmen zur Qualititssicherung (Dokumentation, Na-
mensvergabe, Vorgehen beim Testen usw).

199

9 Softwaresysteme entwickeln (Projekte realisieren)

9.1.3 Qualitatskriterien fiir Softwaresysteme

Die Qualitit eines Softwaresystems hingt ab von der Qualitit jedes einzelnen Mo-
duls und von der Qualitit der Beziehungen zwischen diesen Modulen. Fir die Beur-
teilung der Software-Qualitit gibt es verschiedene Ansitze. Ein Modell ist definiert
nach ISO 9126. Wir wollen Software-Qualitit unterscheiden

e nach der unmittelbaren und
e nach der zukinftigen Gebrauchsfihigkeit.

Das wichtigste Kriterium fiir die unmittelbare Gebrauchsfihigkeit ist die Korrekt-
heit der Programme. Systeme, die die gestellten Aufgaben nicht oder nicht korrekt
erfillen, sind natirlich auf keinen Fall einsetzbar. Dartiber hinaus gelten folgende
Nebenziele:

Benutzerakzeptanz

e Diese hingt wesentlich ab von der Akzeptanz der Bedieneroberfliche. Wie ist
diese Schnittstelle ("interface") zum "User" gestaltet? Uniibersichtliche Dialoge
verwirren den Benutzer, Uiberfrachtete Fenster verlingern den Bildaufbau, und
lange Antwortzeiten veridrgern den Anwender.

Zuverlassigkeit

e Diese hingt zusammen mit der Robustheit der Programme. Sind sie so geschrie-
ben, dass Bedienerfehler keine unkontrollierbaren Reaktionen zur Folge haben?
Was passiert, wenn es trotzdem zu einem Abbruch des Programms oder des Sys-
tems kommt? Gibt es ein Wiederanlaufverfahren?

Effizienz

e Hierunter versteht man das Ziel, die Ressourcen des Programms (Arbeitsspei-
cher, Prozessor) optimal einzusetzen und die Antwortzeit gering zu halten. Man
bezeichnet dies als die "performance" des Programms.

Die zukiinftige Gebrauchsfihigkeit beschreibt einerseits die Chancen fir die Wie-
derverwendbarkeit und andererseits die Wartungsfreundlichkeit des Programmes.

Wiederverwendbarkeit

® Je allgemeingultiger das Programm erstellt worden ist, umso besser sind die
Moglichkeiten zur Wiederverwendung.

Portabilitat

e Damit der zukiinftige Einsatz der Software nicht von vornherein eingegrenzt
wird, sollten die Programme keine spezifischen Eigenarten einer speziellen Platt-
form ausnutzen (z.B. sollte keine Programmiersprache gewihlt werden, die nur
auf bestimmten Systemen lauffihig ist).

200

9.2 Modelle zur Vorgebensweise

9.2 Modelle zur Vorgehensweise

Software-Entwicklung erfolgt schrittweise, es beginnt mit der Produktdefinition, da-
nach erfolgt die Realisierung und nach dem erfolgreichen Testen der Anwendung
muss das Programmsystem an die Produktionsumgebung tibergeben ("implemen-
tiert") werden. Seit Beginn der Programmiertitigkeit von einigen Jahrzehnten wurden
immer wieder neue Prinzipien und Methoden entwickelt, die diesen Software-
Entwicklungsprozess systematisieren und standardisieren sollen.

Einigkeit herrscht dariiber, dass verschiedene Schritte ("Phasen") der Softwareerstel-
lung unterschieden werden konnen.

9.2.1 Wasserfallmodell

Fur die Planung der gesamten Titigkeiten galt lange das so genannte Wasserfall-
Modell. Dies beschreibt den Ablauf der Software-Entwicklung in verschiedenen Ti-
tigkeitsblocken, die in eigenstindige Phasen eingeteilt werden:

e Analyse (Problem- und Bedarfsanalyse, Ermitteln der Schwachstellen im Ist-
Zustand)

e Design (Entwurf eines Grobkonzept, Losungsalternativen entwickeln, Datende-
sign, Funktionsdiagramme)

e Detailentwurf (Datenstrukturen festlegen, Module und ihre Schnittstellen be-
schreiben, Algorithmen entwerfen)

e Realisierung (Implementierung, Programmierung/Kodieren, Compilieren, Testen)
e Einfihrung (Integration, Auslieferung, Abnahme und Inbetriebnahme)

Die Phasen im Wasserfall-Modell laufen streng sequentiell ab. Jede Phase hat einen
wohldefinierten Start- und Endpunkt Es gibt keine parallel ablaufenden oder sich
uberlappende Titigkeiten, denn jede Phase schlielt mit einem eindeutig definierten
Ergebnis ab, und die nachfolgende Stufe wird erst begonnen, wenn die vorherige
Phase abgeschlossen ist. Die Ergebnisse fallen - wie bei einem Wasserfall - von einer
Stufe zur nichsten.

Bewertung dieses Modells: Es besteht die Gefahr, dass bei einer zu starren Festle-
gung auf diese Vorgehensweise der Auftragsgeber lediglich in der ersten Phase be-
teiligt ist, weil dort das "Pflichtenheft" verabschiedet wird und danach gibt es (theo-
retisch) kein Zurtick mehr.

9.2.2 Spiralmodell

Mit Beginn der objektorientierten Programmierung wuchs die Erkenntnis, dass die
Software-Entwicklung kein einmaliger sequentieller Prozess ist, der sich in abge-
schlossenen Phasen vollzieht, sondern dass dies als ein evolutionirer Zyklus gese-
hen werden muss, bei dem die einzelnen Phasen wiederholt durchlaufen werden.

201

9 Softwaresysteme entwickeln (Projekte realisieren)

Jede Phase kann mehrfach durchlaufen werden, z.B. pro Teilprodukt. Dieses Modell
wird als Spiralmodell bezeichnet. Es beschreibt den Entwicklungsprozess als einen
iterativen Zyklus, bei dem sich das Projekt langsam den Zielen annihert.

Das Programmsystem wird inkrementell entwickelt. Man beginnt mit einer Basis-
implementierung, eventuell sogar nur mit Prototypen, um die Ziele und Machbarkeit
zu kliren. Diese werden dann stindig verbessert und erginzt. Dabei wiederholen
sich die einzelnen Phasen (auch unter Einbeziehung der Nutzer) solange, bis alle
Bedirfnisse erfillt sind und das Produkt vom Auftraggeber akzeptiert und abge-
nommen wird.

Das Spiralmodell kann also durch folgende Merkmale beschrieben werden:
e Jede Spiraldrehung umfasst eine der 5 Phasen (steps) aus dem Wasserfallmodell.

e Jeder Step hat eine Rickkopplung auf den vorherigen Step, weil eine stindige
Uberpriifung der Zwischenprodukte stattfindet (review).

e Deswegen ist jede Entwicklung ein zyklischer (iterativer) Prozess.
e Sinnvoll ist vor Beginn eines neuen Steps ein Prototyping.

e Die Ergebnisse werden laufend validiert (iberprift), spitestens nach einer "Spi-
raldrehung".

e Die einzelnen Schritte sind nicht so streng getrennt wie beim Wasserfallmodell,
bei dem die nichste Phase erst starten kann, wenn die vorherige komplett abge-
schlossen ist. Beim Spiralmodell ist Giberlapptes Arbeiten erlaubt.

Bewertung dieses Modells: Der Vorteil dieser Vorgehensweise ist es, dass nicht
versucht wird, am Anfang einen vollstindigen Anforderungskatalog zu erstellen, der
dann als unverinderlich gilt, sondern dass pragmatisch vorgegangen wird.

Natiirlich besteht bei diesem Vorgehen die Gefahr, dass die Designphase zu kurz
kommt. Man muss unbedingt vermeiden, dass codiert wird, ohne vorher die kom-
plette Aufgabenstellung zu verstehen. Auf Systematik und Planung kann nicht ver-
zichtet werden. Ausprobieren und solange basteln, bis die Programme "irgendwie"
laufen, fithren in jedem Fall zu erhohten Gesamtkosten. Also: auch beim Spiralmo-
dell liegt die Betonung bei der Planung. Dem Drang zum unmittelbaren Codieren
darf nicht nachgegeben werden.

9.2.3 Lebenszyklus-Modell
Es gibt auBerdem Modelle, die nicht nur die Entwicklungsphasen beschreiben, son-
dern ganz ausdriicklich auch die Wartungs- und Pflegearbeiten einbeziehen.

Ein solches Modell nennt man Lebenszyklus-Modell (life-cycle-model). Es be-
schreibt die Wartung und Pflege der Software nach der gleichen Vorgehensweise
wie die Entwicklung selbst.

202

9.3 Prinzipien und Methoden der Anwendungsentwicklung

9.2.4 Resiimee

In der Praxis sind die beschriebenen Prozess-Modelle in dieser reinen Form selten.
Meistens findet man gemischte ("hybride") Systeme.

Als Kombination wire folgende Vorgehensweise denkbar:

Man entwickelt einen Prototyp, der die typischen Eigenschaften im praktischen Ein-
satz demonstriert. Danach beschreiben Auftraggeber und Entwickler die Gesamtleis-
tung nach dem Phasenmodell. Somit hat man die Basis fiir die Vertragsgestaltung,
fir die Termin- und Kostenplanung sowie fir die Projektfortschrittskontrolle. Nach
dem Testen der Einzelprogramme erfolgt die Systemintegration, das Zusammenmon-
tieren der getesteten Komponenten. Danach ist es erforderlich, das neue System auf
der Produktionsmaschine zu implementieren und im Zusammenspiel mit anderen
Anwendungen einem Lasttest zu unterziechen. Diese Titigkeiten konnen sehr auf-
windig und auch komplex sein, man denke nur an den Deployvorgang fir Web-
server-Anwendungen.

Danach beginnt die letzte (und hoffentlich lingste) Phase im /ifecycle von Software-
Produkten: die permanente Weiterentwicklung der Programme ("maintenance"). An-
derungen sind z.B. notwendig, um Design- oder Programmierfehler zu bereinigen
("bug-fixing" durch "patches") oder um das System zu erginzen, zu verbessern oder
neuen Anforderungen anzupassen. Es gibt Schitzungen, dass die Entwicklung eines
neuen Systems nur etwa ein Drittel der Gesamtkosten des Software-Produktes aus-
machen. Die stindigen Updates und Releasewechsel sind die Ursachen fiir den gro-
Beren Kostenblock.

9.3 Prinzipien und Methoden der Anwendungsentwicklung

Das Erstellen von Software-Anwendungen kann verglichen werden mit dem Herstel-
len von Modulen als Industrieprodukte. Notwendig sind

e Prinzipien, die allgemein anerkannt sind und

e Methoden und Verfahren, nach denen gearbeitet wird.

9.3.1 Prinzipien der Anwendungsentwicklung

Prinzipien sind allgemein giltige Grundsitze, die die Vorgehensweise bei der Ent-
wicklung theoretisch beschreiben:

Prinzip des Prototyping

e Die Anwender sollten grundsitzlich so weit wie moglich beteiligt werden am
Entwurf des neuen Systems und beim Entwickeln der Anwendungsmodule. Dies
geht am besten durch den Einsatz von Modellen (Prototypen). Ein Prototyp ist
zwar ein ablauffihiges Muster des Zielsystems, erfillt aber noch nicht die kom-
pletten Anforderungen.

203

9 Softwaresysteme entwickeln (Projekte realisieren)

Der Vorteil dieser Vorgehensweise besteht darin, dass der Endbenutzer einen
ersten Eindruck bekommt, wie das System funktionieren soll. Designfehler
konnen u. U. rechtzeitig erkannt werden, und der Entwickler kann den Auf-
wand und die Machbarkeit abschitzen. Die Erstellung des endgiltigen Zielsys-
tems erfolgt dann durch evolutionire Entwicklung.

Prinzip der Abstraktion

e Dies ist eine allgemeine Problemlosetaktik. Unabhingig von Details werden
durch Verallgemeinerungen zunichst die wichtigsten Aufgabenstellungen geklirt
und konkrete Themen oder Spezialfille erst spiter hinzugefiigt. Es geht darum,
durch Vereinfachung und Modellbildung ein grundsitzliches Verstindnis zu be-
kommen, ohne sich in Details oder Sonderfillen zu verlieren. Besonders hilf-
reich konnen Modellbildungen sein, um dadurch grobe Losungsansitze an-
schaulich zu machen.

Prinzip der Modulbildung

e Das Gesamtsystem wird in Gberschaubare Einzelteile ("Module") zerlegt. GroRe,
monolithische Programme sollen vermieden werden. Die einzelnen Programm-
Module sollen aus tbersichtlichen, klar voneinander abgegrenzten Bausteinen
bestehen. Aus ihnen wird dann das Programmsystem zusammengesetzt. Fiir das
Entwerfen und Codieren von Modulen gibt es Empfehlungen, die wir spiter
auch detailliert besprechen werden.

Prinzip der Lokalitat

e Bei der Bildung von Modulen soll ortlich zusammengefasst werden, was zu-
sammen gehort bzw. getrennt werden, wo keine Zusammengehorigkeit not-
wendig ist. Befehle sollen dort wirken, wo sie stehen, damit keine unerwiinsch-
ten Seiteneffekte entstehen. Als Seiteneffekt wird eine Verinderung an einer
nicht-lokalen Variablen durch ein gerufenes Unterprogramm bezeichnet.

Prinzip der Uniformitat

e Durch Standards in der Namensgebung und im duferen Erscheinungsbild der
Quelltexte, aber auch im Programmverhalten und bei den Benutzerschnittstellen
soll es sowohl dem Nutzer der Programme als auch den fir die Wartung zustin-
digen Kollegen so einfach wie moglich gemacht werden.

Prinzip der integrierten Dokumentation

® Neben dem Schreiben von Kommentaren im Quelltext (dort, wo es notwendig
ist), hilft der Einsatz von Planungshilfen wie Struktogramme oder UML (siehe
Kapitel 12). Sowohl beim Designen des Gesamtkomplexes als auch bei der Ent-
wicklung der Algorithmen kommen grafische Notationen oder umgangssprachli-
che Entwiirfe (Pseudocode) zum Einsatz, bevor mit dem eigentlichen Codieren
begonnen wird.

204

9.3 Prinzipien und Methoden der Anwendungsentwicklung

9.3.2 Methoden der Anwendungsentwicklung

Methoden definieren planmifiiges Vorgehen. Thnen liegt ein Prinzip zugrunde. Wih-
rend also die Prinzipien die Theorie definieren, beschreiben die Methoden die an-
gewandte Praxis.

Fur den fachlichen Entwurf der Programmsysteme gibt es unterschiedliche Ansitze,
je nachdem, was als Basis der Analyse gesehen wird und welche Programmierspra-
chen zur Verfigung stehen:

Datenmodellierung

Der Schwerpunkt liegt in der Analyse der Daten. Die Zusammenhinge werden
grafisch dargestellt (zumeist in Entity-Relationship-Diagrammen oder Data-
Dictionary-Eintrigen). Wichtig ist, dass die Relationen zwischen den Daten be-
schrieben werden.

Das wichtigste Ziel dieses Modells ist die Uberleitung in ein relationales Daten-
bank-Design.

Prozessmodellierung

Der Schwerpunkt liegt bei der Analyse der Abliufe und Informationsflisse
(Strukturierte Analyse). Daraus ergibt sich das Programm-Design. Das Ergebnis
ist die Beschreibung von Funktionen. Dies geschieht u.a. durch Verwendung
folgender Elemente: Datenflussdiagramme, Kontextdiagramme, Entscheidungsta-
bellen.

Es wird die Art der Aktionen und ihre Kommunikation untereinander, also der
Datentransfer, zwischen den Prozessen untersucht und dargestellt, z.B. in "Zu-
standsiibergangsdiagrammen".

Objektmodellierung

Hierbei werden Daten und Funktionen als Einheit gesehen. Die Haupttitigkeit
liegt bei der Beschreibung von Klassen und ihren Beziehungen. Konsequenz:
Die Realisierung kann nur durch eine objektorientierte Programmiersprache er-
folgen.

Fur die Beschreibung des fachlichen Entwurfs spielt bei objektorientierten (OO-)
Systemen die Unified Modeling Language (UML-Notation) eine wichtige Rolle
(siehe Kapitel 11). Durch diese Notation wird der Enwurf unterstiitzt, die Uber-
sicht erleichtert und die Programmsicherheit erhoht.

Die Vorgehensweise dabei ist wie folgt: nachdem Klassen und ihre Beziehungen
definiert sind, erfolgt der Detailentwurf des Programms. Dies geschieht dadurch,
dass die Verkniipfung der einzelnen Module (Klassen, Methoden) beschrieben
wird und auch die Ausfihrungsreihenfolge, der Algorithmus, innerhalb eines
Teilproblems festgelegt wird.

205

9 Softwaresysteme entwickeln (Projekte realisieren)

9.4 Java als Projektsprache

9.4.1 Java ist eine Sprache, die Abstraktion unterstitzt

Java ist eine Sprache, die sehr stark abstrahiert. So kann ein Java-Programm vollig
unabhiingig von einer konkreten Hardware-Umgebung oder von einem Betriebssys-
tem entwickelt und eingesetzt werden. Beim Codieren arbeitet der Programmierer
mit "abstrakten Datentypen" (in der Objektorientierung werden diese jedoch als
"Klassen" bezeichnet) und mit "abstrakten Operationen" (das sind die Methoden, von
denen nur die Schnittstelle, nicht jedoch die Implementierung bekannt ist).

Abstraktion als allgemeines Mittel zur Bewiltigung der Komplexitit

Die Abstraktion ist ein allgemeines Prinzip zur Problembewiltigung. Es spielt sowohl
beim "Programmieren im Grofen" als auch beim Realisieren von einzelnen Pro-
grammen eine entscheidende Rolle. Deshalb ist die Geschichte der Programmier-
sprachen auch eine Geschichte der fortschreitenden Abstraktion: von der hardware-
nahen Assembler-Programmierung bis zu der objektorientierten Komponententech-
nologie.

Die folgende Tabelle beschreibt stichwortartig die Abstraktionsziele und jeweiligen
Sprachmittel, durch die diese Ziele erreicht worden sind, beginnend mit den "Urzei-
ten" der elektronischen Datenverarbeitung in den 50er Jahren bis hin zu den neues-
ten Entwicklungen.

Abstraktionsziel: Mittel der Realisierung:

einzelne Bits bezeichnen Darstellung als Hexadezimalcode z.B. 7F
Codierung der Maschinenbefehle Symbole fiir Operationen, z.B. add
Adressierung der Speicherplitze Symbole fir Speicherplitze (identifier)
Einzelne Maschinenbefehle Zusammenfassung zu Ausdriicken

Befehlssequenzen zusammenfassen | Unterprogramme / Prozeduren

spezielle Berechnungsvorschriften Funktionen mit Riickgabe und Parameter
Daten und Operationen kapseln Abstrakte Datentypen (ADT) und Klassen
Ahnliche Operationen Overloading, Override von Methoden

Ahnliche Objekte/Wiederverwenden | Vererbungsmechanismus

Hardware/Betriebssystem Virtueller Rechner (z.B. in Java die JVM)

Adressraumgrenzen iberwinden Komponententechnologie (z.B. EJB in Java)

Abb. 9.1: Abstraktion in der Geschichte der Programmiersprachen

206

9.4 Java als Projekisprache

Und Java bildet die derzeitige Endstufe dieser Entwicklung. Insbesondere auch die
beiden letzten Zeilen der obigen Tabelle treffen exakt auf Java zu: Die Sprache abs-
trahiert von einer konkreten Plattform und ist hervorragend geeignet, um Anwen-
dungen zu schreiben, die tber Adressraumgrenzen hinweg miteinander kommuni-
zieren. Fur diese fortgeschrittene Technologie gibt es in Java EJBs und Webservices.

9.4.2 Welche Griinde sprechen auBerdem fiir Java?

Java ist eine objektorientierte Programmiersprache. Dadurch ergeben sich Vorteile,
die sozusagen "eingebaut" sind in die Spezifikation der Sprache:

Das Prinzip der Abstraktion wird dadurch eingehalten, dass zunichst mit allge-
meinen Beschreibungen von Objekten begonnen wird. Es werden auf hohem
Level Gemeinsamkeiten zwischen den Objekten gesucht und in Klassen be-
schrieben. Danach findet eine Spezialisierung statt. Weitere Klassen beschreiben
Abweichungen oder zusitzlich Moglichkeiten. Die Klassen werden geordnet und
miteinander verbunden

Das Prinzip der Modularitit wird dadurch gewahrt, dass jede Klasse auch gleich-
zeitig ein Modul ist. Sie beschreibt eine Gruppe von Objekten mit gleichen Ei-
genschaften und Fihigkeiten. Innerhalb der Klasse entstehen iberschaubare,
kleine Einheiten durch das Codieren von Methoden und Blocken. Im Kapitel 12
wird ausfiihrlich auf die Vorgehensweise bei der Modulbildung (Beschreibung
von Klassen) eingegangen.

Das Prinzip der Lokalitit ist ebenfalls ein in alle OO-Sprachen eingebautes Prin-
zip. Die Module (Klassen) und auch die Methoden der Klassen fassen zusam-
men, was zusammengehort, d.h. was allen beschriebenen Objekten gemeinsam
ist.

Das Geheimnisprinzip wird unterstiitzt durch das "Verstecken" von Algorithmen
und Variablen durch Klassenbildung mit privaten Elementen. Die Daten einer
Klasse sind nur ansprechbar tiber Methoden dieser Klasse, auf keinen Fall sind
sie von auflen verinderbar.

Java ist eine sehr einfache Programmiersprache (sie spezifiziert lediglich etwa 50
Schlisselworter). Allerdings ist Java mehr als eine Programmiersprache,
sie ist eine umfangreiche, komplexe Technologie. Sie bietet eine komplette
Infrastruktur, einsetzbar in allen Bereichen der IT- und Kommunikationsbranche.
Im Vergleich zur Konkurrenztechnologie .net von Microsoft, die mehr als ein
Dutzend Programmiersprachen integriert, hat die Java-Technologie auflerdem
den Vorteil, dass Java durchgingig die einzige Programmiersprache ist - ver-
wendbar fir alle Aufgabenstellungen: auf Client- und Serversystemen, fir Spie-
le- oder Unternehmensanwendungen, fiir Handys und PDAs, fir grafische Ober-
flichen und fir Datenbank- und XML-Anwendungen. Diese Einheitlichkeit ver-
einfacht natirlich nicht nur die Ausbildung der Mitarbeiter, sondern vor allem
auch die Wartung der Programme.

207

9 Softwaresysteme entwickeln (Projekte realisieren)

e Im Bereich der Internet-Anwendung und der Internationalisierung von Applika-
tionen bietet Java beste Voraussetzungen: Die Programme sind universell ein-
setzbar: durch Standardisierung der eingebauten Datentypen, durch die Ver-
wendung des Unicodes und vor allem durch die Moglichkeiten der Lokalisie-
rung, d.h. durch die Anpassung an regionale oder linderspezifische Besonder-
heiten. Beispiel fiir englische und deutsche Wihrungsaufbereitung:

import java.util.*;

import java.text.*;

class LocaleOl {

public static void main(String[] args) {

// Default-Locale (wenn nicht deutsch, dann bitte angegeben)
NumberFormat nfl = NumberFormat.getInstance();
System.out.println(nfl.format (1245.23));
// Englisches Format
NumberFormat nf2 = NumberFormat.getInstance (Locale.ENGLISH) ;
System.out.println(nf2.format (1245.23));

}
e Java Programme sind sicher durch vielfiltige eingebaute Security-Mechanismen.

In der Praxis haben sich im Bereich der Anwendungsentwicklung einige Vorge-
hensweisen entwickelt, die gerade auch fir Java typisch sind:

e Es wird sehr stark mit Modellbildung, z.B. zum Erkennen von Design-Fehlen,
gearbeitet ("Prototyping").

e Es wird hiufig auf Muster zuriickgegriffen, die sich fir dhnliche Losungen be-
wihrt haben ("Pattern"), z.B. Model-View-Control-Designpattern. Das Thema
"Codierpattern” haben wir im Abschnitt 8.7 "Losungsmuster fiir Schleifen" bereits
behandelt, das Thema "Designpattern" werden wir im Kapitel 12 besprechen.

9.5 Entwurfssprachen

Bei OO-Systemen wird ein Programmsystem nicht primir als eine Anzahl von Funk-
tionen gesehen, sondern als eine Ansammlung von kooperierenden Objekten (Mo-
dulen oder konkreter: Klassen) betrachtet. Dabei kann jedes Objekt mit allen ande-
ren kommunizieren durch das Senden von Nachrichten. Die Aufgabe des System-
entwicklers besteht darin, durch geeignete Design-Methoden die Klassen zu definie-
ren und ihre Verbindungen festzulegen. Fir diese Titigkeit stchen ihm Entwurfs-
sprachen zur Verfligung, die wir im Kapitel 12 besprechen werden (z.B. UML).

Fir den Entwurf der Algorithmen, also fiir die Beschreibung der Abldufe innerhalb
von Methoden und von Programmblocken, gibt es ebenfalls diverse, programmier-
sprachen-unabhingige Hilfsmittel: z.B. Pseudocode oder Struktogramme. Diese

208

9.5 EntwurfSsprachen

Hilfsmittel werden verwendet, um in einer frithen Entwicklungsphase Struktur und
Ablauffolge der Einzelbefehle zu entwerfen und zu dokumentieren.

Damit bilden diese Darstellungen, hiufig in Form einer grafischen Notation, die
Grundlage fir die eigentliche Codierung, d.h. sie werden anschlieend in den Quell-
text der tatsichlichen Programmiersprache umgesetzt.

Wir werden jetzt einige dieser Planungs- und Dokumentationshilfen vorstellen.

9.5.1 Programmablaufplan

Der Programmablaufplan (PAP ist eine grafische Darstellung eines Losungsweges
(Algorithmus). Die Symbole des PAP sind genormt nach DIN 66001.

Die Sinnbilder des PAP zeigen
e die Funktion des Arbeitsschrittes (= durch die Form des Symbols = Was?)
e die Reihenfolge der Operationen (= durch die Ablauflinien = Wann?).

Die Beschriftung der Sinnbilder beschreibt die konkrete Operation (allerdings sind
die Texte der Innenbeschriftung nicht genormt).

Begrenzung
Anfang - ”

Verarbeitung (allgemein)

Verzweigung

Ablauflinien (Programmfluss)
—_—

Abb. 9.2: Einige Sinnbilder nach DIN 66001
Ein Programmablaufplan (Flussdiagramm) stellt die Verarbeitungsfolgen in einem

Programm dar. Die Verbindungslinien zeigen dabei die Reihenfolge der Verarbei-
tung auf. Daten (Variablendeklarationen) werden nicht dargestellt.

209

9 Softwaresysteme entwickeln (Projekte realisieren)

Bewertung dieser Notation: Der PAP erlauben zwar Konstruktionen nach den
Konventionen der Strukturierten Programmierung, schliet aber andere Formen (wie
GO TO rickwirts) nicht aus, d.h. der PAP lisst bei der Darstellung der Ablaufsteue-
rung grofde Freiheit und vertraut auf die Disziplin des Entwicklers.

9.5.2 Struktogramme

Struktogramme sind ineinander verschachtelte Rechtecke. In DIN 66261 sind die
Sinnbilder und deren Anwendung genormt. Sie wurden von Nassi und Shneider-
mann entworfen und werden deshalb nach ihren Vitern auch "Nassi-Shneidermann-
Diagramme" genannt. Das Ziel war der Ersatz der Programmablaufpline, und zwar
so, dass die Empfehlungen der "Strukturierten Programmierung" nicht nur unter-
stiitzt, sondern konsequent erzwungen werden.

Dabei sind vor allem folgende Gesichtspunkte wichtig:

e Es ist mit den Struktogrammen keine Darstellung von Programmspriingen mog-
lich. Charakteristisch ist das vollige Fehlen von Verbindungslinien (Pfeilen) bei
der Dokumentation von Algorithmen. Die Ablauflogik ergibt sich aus der Form
der Symbole, Spriinge sind nicht darstellbar.

e Die Struktogramme werden immer ausschlieflich von oben nach unten gelesen.

e Die Diagramme werden auch eingesetzt als grafisches Entwurfshilfsmittel fir gut
stukturierte Programme. Deswegen darf jedes Element nur einen Eingang und
einen Ausgang haben.

Bewertung dieser Notation: Die Nassi-Shneidermann-Diagramme haben in der
Praxis wenig Bedeutung. Sie eignen sich aber fir den Programmieranfinger sehr
gut, um die Denkweisen der "Strukturierten Programmierung" zu trainieren.

Fur die Designphase in der praktischen Projektarbeit sind sie nicht so gut geeignet.
Die Erstellung ist unhandlich, und Modifikationen (Anderungen, Loschungen oder
Hinzufligen einzelner Schritte) sind oft kaum moglich, ohne dass die Grafik neu er-
stellt werden muss. Auf jeden Fall bendtigt man die Unterstiitzung entsprechender
Werkzeuge ("tools"), um mit den Struktogrammen praktisch zu arbeiten.

Die wichtigsten Symbole sind:

Befehl/Funktion:

Lineare Abfolgen werden durch
lickenloses Untereinanderset-
zen von Rechtecken ausdriickt

210

9.5 Entwurfssprachen

True

Ausdrck

False

Ja-Block

Iein-Block

default

L fusduger———

Konst] Konst? Konsth

Solange Ausdruckwahr

Sehleffen-Block

Schleifen-Block

Solange Ausdruckwahr

Initalisierung

Solanoe Ausdruckahr

Schieifenhlock

If-Befehl (Entscheidung/
Verzweigung)

Dieses Symbol zeigt, welcher
Zweig einer Alternative ausge-
fihrt wird. Ublicherweise steht
der Ja-Fall auf der linken Seite

Switch-Befehl (Mehrfach-
Alternative)

Fall-Unterscheidung

While-Schleife

abweisende Schleife: Der Block
wird nur durchlaufen, wenn die
Bedingung erfillt ist

Do-Schleife

nicht-abweisende Schleife: Der
Block wird mind. einmal
durchlaufen, erst danach wird
geprift, ob die Bedingung er-
fallt ist u. evtl. wiederholt wird

For-Schleife
Zihlschleife; im Kopf stehen
die Initialisierung, die Ab-
bruchbedingung und die In-
krementierung

Abb.9.3: Einige Sinnbilder nach DIN 66261 (Struktogramme)

211

9 Softwaresysteme entwickeln (Projekte realisieren)

Das nachfolgende Beispiel zeigt eine Losungsbeschreibung fiir das Errechnen der
Fakultit, also fir die Ermittlung eines Produkts aus natiirlichen Zahlen, z.B. ist die
Fakultit von 4 gleich 1* 2 * 3 * 4 (d.h. also 24).

Struktogramm: Errechnen der Fakultit von n

Solange z <= n

z=z+1

Ergebnis = f

Abb. 9.4: Darstellung des Algorithmus fiir das Errechnen der Fakultit

Ubung: Bitte codieren Sie die Aufgabe, die in der Abb. 9.4 als Struktogramm be-
schrieben ist, in Java.

Losungsvorschlag fiir n = 4:

public class Fakultaet {
public static void main(String[] args) {
int z = 1;
int £ = 1;

while (z <= 4) {

f =£f * z;

z++;
}
System.out.println(f);

212

9.5 Entwurfssprachen

9.5.3 Pseudocode

Eine verbale, keine grafische Entwurfssprache. Mit umgangssprachlichen Formulie-
rungen werden Daten und Kontrollstrukturen beschrieben. Fir jede der Grundstruk-
turen der "Strukturierten Programmierung" gibt es in dieser halb formalisierten Pla-
nungssprache einen Ausdruck.

Der Pseudocode besteht aus:
e Schlisselwortern zur Ablaufsteuerung (IF, CASE, WHILE, DO, FOR)
e Texten in natirlicher Sprache fir die Problemlésung

Bewertung: Der Pseudocode ist leicht erstellt, per Hand oder mit jedem beliebigen
Texteditor. Er ist leicht erlernbar, verstindlich und sehr flexibel. Eine Modifikation ist
ohne Probleme moglich. Der Nachteil ist, dass ein Zwang zu einer disziplinierten
Vorgehensweise aufgrund der geringen Normierung fehlt.

Ubung

Der nachfolgend beschriebene Algorithmus soll ermitteln, wieviel Spinnen und wie-
viel Kifer sich in einer Schachtel befinden konnen, wenn insgesamt 64 Beine in der
Schachtel sind und wenn Spinnen 8 Beine und Kifer 4 Beine haben. Wenn mehrere
Moglichkeiten zutreffen konnen, soll das Programm alle moglichen Kombinationen
ausgeben.

Losungsbeschreibung im Pseudocode

For-Schleife: (fiir alle Spinnen, beginnend mit 1, bis maximal 8)
For-Schleife (fir alle Kifer, beginnend mit 1, bis maximal 16)
tiberpriifen, ob die Summe der Beine = 64 ist

Ubung: Bitte codieren Sie den oben als Pseudocode beschriebenen Algorithmus in
Java.

Losungsvorschlag:

public class Kaefer01l {
public static void main(String[] args) throws Exception ({
for (int spinne=1; spinne<10; spinne++)
for (int kaefer=1; kaefer<l5; kaefer++)
if ((spinne * 8) + (kaefer * 4) == 64)
System.out.printf ("Kaefer = %d, Spinne =%d \n",
kaefer, spinne);

213

9 Softwaresysteme entwickeln (Projekte realisieren)

9.5.4 Entscheidungstabellen

Eine Entscheidungstabelle (ET) ist eine Matrix aus WENN-DANN-Bezichungen. Sie
ist gut geeignet, wenn mehrere Aktionen, die von Bedingungen abhingen, analy-
siert, dargestellt und auf Vollstindigkeit Gberprift werden mussen.

Die Entscheidungsprozeduren werden in tabellarischer Form dargestellt. In der ers-
ten Spalte der Tabelle werden zunichst alle Bedingungen aufgefiihrt, mit allen
Kombinationen, die moglich sind. Der untere Teil, der Aktionsteil, enthilt die Auf-
zihlung aller Mafinahmen, die getroffen werden, wenn alle Bedingungen einer Spal-
te zutreffen. In den weiteren Spalten werden dann alle Regeln aufgefiihrt.

Regel-1 | Regel-2 | Regel ... | Regel-n
Bedingung-1 | J J N
Bedingung-2 |] N N
Bedingung-3 | J N N
Aktion-1 X X -
Aktion-2 - X -
Aktion-3 - - X

Abb.9.5: Aufbau einer Entscheidungstabelle

Die Bedingungsanzeiger beschreiben die jeweiligen Regeln, die dann spaltenweise
zusammengefasst werden. Jede Regel reprisentiert eine Entscheidung, die zu einer
oder mehreren Aktionen fiihrt. Die einzelnen Bedingungen einer Regel sind logisch
durch UND verbunden, die verschiedenen Regeln sind logisch durch ODER verbun-
den (oder anders gesagt: von oben nach unten gilt in einer ET die UND-
Verkniipfung, von links nach rechts gilt die ODER-Verbindung). Dies demonstriert
die folgende ET fiir den "Algorithmus" vor einer Verkehrsampel.

Ampel = rot J] N N
Ampel = gelb J J

Ampel = griin | N N N J
Stoppen X - X -
Anfahren - X - -
Durchfahren - - - X

Abb.9.6: Entscheidungstabelle fiir den Autofahrer an einer Verkehrsampel

214

9.5 Entwurfssprachen

Ubung zum Thema Entscheidungstabelle: Bestellabwicklung

Die Bestellung eines Kunden wird maschinell tberpriift. Wenn der Kunde kredit-
wirdig ist und wenn er nicht weniger als die Mindestmenge bestellt, so wird der
Auftrag akzeptiert, andernfalls wird er zuriickgewiesen. Zur Auslieferung muss der
Lagerbestand abgefragt werden. Wenn dieser ausreicht, werden entweder die Ver-
sandpapiere geschrieben oder der Kunde bekommt eine Auftragsbestitigung,

Kunde kreditwiirdig J 1) |-

Bestellung > Mindestmenge J] |-

Bestellung >= Lagerbestand J IN|-

Versandpapiere schreiben X |- |-

Auftragsbestitigung schreiben | - | X | -

Auftrag ablehnen - |- | x

Abb. 9.7: Entscheidungstabelle fiir ein Programm zur Bestellabwicklung

Bewertung

Die vollstindige Form einer Entscheidungstabelle ist ein gutes Hilfsmittel, um alle
moglichen Situationen auf ihre Konsequenzen zu priifen. Sie kann mit formalen Me-
thoden auf Vollstindigkeit, Redundanz und Widerspruch tiberpriift werden.

Allerdings ist die Anzahl der moglichen Regeln sehr hoch, wenn es viele Bedingun-
gen gibt:

Anzahl Kombinationen = 2 ** Anzahl Bedingungen (= kombinatorische Explosion).

So gibt es bei zwei Bedingungen maximal 4 Kombinationen, also 4 Regeln. Bei 5
Bedingungen sind es bereits 2°, also 32 Regeln usw. Deswegen gibt es so genannte
"Dont-care"-Situationen, z.B. in der Regel 3 der obigen Entscheidungstabelle. Da-
durch wird die Anzahl der dargestellten Regeln reduziert.

Ein weiterer Vorteil der Darstellung von komplexen Entscheidungssituationen mit
Hilfe von Entscheidungstabellen besteht darin, dass die Umsetzung einer solchen
Tabelle in Programmcode sehr einfach, evtl. auch maschinell durch ET-Generatoren,
moglich ist. Hiufig ist eine Codierung mit Fallunterscheidung (SWITCH...CASE) mog-
lich, andernfalls fihrt jede Regel zu einem ELSE-Zweig.

Der Nachteil ist, dass Entscheidungstabellen lediglich fir Teilprobleme eines Pro-
gramms geeignet sind, nimlich nur fir Alternativen und nicht z.B. fir die Analyse
und Darstellung von Schleifen.

215

9 Softwaresysteme entwickeln (Projekte realisieren)

9.6 Komplettbeispiel
Aufgabenstellung: Kleinste von drei Zahlen ermitteln

Von den drei Zahlen z1, z2, z3 ist die kleinste auszuwihlen. Bei Gleichheit entschei-
det die hohere Prioritdt: z1 hat die hochste und z3 die niedrigste Prioritit. Ist z1 aus-
gewihlt, erfolgt die Verarbeitung in A, bei z2 in B und bei z3 in C.

Ubung:

* Wie wird diese Ubung im Pseudocode beschrieben?
e Wie sieht das Struktogramm aus?

e Wie sieht der Programmablauf aus?

e Wie sicht die Entscheidungstabelle aus?

e Wie wiirde man die Entscheidungstabelle in Java codieren?

Losungsvorschlag fiir Pseudocode

if (z1 nicht groBer z2) AND (zl nicht groBer z3)
Ausfihrung A
else
if (z2 nicht groRer z3)
Ausfiihrung B
else
Ausfiihrung C

Losungsvorschlag fiir Entscheidungstabelle

a) Vollstindige Entscheidungstabelle

71 <= 72 JIJ171J IN|IN|N|N
71 <= 73 J IN|N
22 <=173 JIN|JIN|J IN|J |N
Block A X | X |- -

Block B - X |- [X
Block C - | X - X

Abb. 9.8: Vollstindige ET zur Ermittlung der kleinsten Zahl

216

9.6 Komplettbeispiel

b) Entscheidungstabelle mit "dont care"

z1 <=1z2 J N -
z1 <= 1z3 J - R
72 <= 73 - J .
Block A X

Block B X
Block C X

Abb. 9.9: ET zur Ermittlung der kleinsten Zahl (verkiirzt)

Losungsvorschlag fiir Struktogramm

Einlesen z1,z2,z3

z21<=22 &&
z1<=2z3
Ja Nein
22<=23
Ja Neiry
A B C

Abb. 9.10: Nassi-Shneidermann-Diagramm zur Ermittlung der kleinsten Zahl

217

9 Softwaresysteme entwickeln (Projekte realisieren)

Losungsvorschlag fiir Programmablaufplan

— > Block C

Block B

i v

Abb.9.11: PAP zur Ermittlung der kleinsten Zahl

Codierung in Java: Ermittlung der kleinsten Zahl von z1,z2 und z3

public class KleinsteZahl {

public static void main (String[] args) {
int z1, z2, z3;
z1l = 20;
z2 = 11;
z3 = 10;

if (z1 <= z2 && z1 <= z3)

Block A

System.out.println ("Block-A wird ausgefihrt");

else
if (z2 <= z3)

System.out.println ("Block-B wird ausgefihrt");

else

System.out.println ("Block-C wird ausgefihrt");

218

Methoden erklaren, implementieren und benutzen

In Java kann ein Anweisungsblock einen Namen bekommen, der dann von anderen
Anweisungen zur Ausfiilhrung aufgerufen wird. Dadurch entsteht eine Methode. Me-
thoden werden in anderen Programmiersprachen auch als Unterprogramme, Proze-
duren, Subroutinen oder Funktionen bezeichnet.

Sie lernen in diesem Kapitel,
e wie eine Methode deklariert wird,
e was man unter der Signatur einer Methode versteht,

e was formale und aktuelle Parameter sind und in welcher Form die Argumente
tibergeben werden,

e wieso die Ubergabe bei Referenzvariablen ganz andere Konsequenzen hat als
die Ubergabe von einfachen Variablen,

e was bei der Riickgabe eines Ergebniswerts zu beachten ist und
e warum lokale Variablen ganz anders behandelt werden als Membervariablen.

Eine Moglichkeit, zwischen unterschiedlichen Arten von Methoden zu differenzieren,
ist die Einteilung in Klassen-Methoden und Instanz-Methoden:

e Instanz-Methoden operieren auf Instanzen. Der Aufruf dieser Methoden setzt
voraus, dass von ihrer Klasse ein Objekt erzeugt worden ist. Der Aufruf dieser
Instanz-Methoden aus anderen Klassen heraus ist nur mit Hilfe des Objekts, mit
dem sie arbeiten sollen, moglich.

e Klassen-Methoden dagegen operieren unabhingig von einer Instanz. Der
Zugriff aus anderen Klassen erfolgt mit dem Klassennamen als Qualifizierer und
nicht mit einem Instanznamen. Ein Nachteil dieser Klassen-Methoden ist, dass
sie nicht auf die Instanzvariablen zugreifen koénnen und auch keine Instanz-
Methoden aufrufen konnen.

Obwohl die Klassen-Methoden eher einem konventionellen Programmieransatz und
nicht dem objektorientierten Programmierstil entsprechen, werden Sie in diesem Ka-
pitel hiufig mit Klassenmethoden arbeiten. Das hat fiir den Lernenden den Vorteil,
dass die Techniken der Methodenerstellung, des Methodenaufrufs und der Parame-
teribergabe erlernt werden konnen, ohne dass weitere Klassenbeschreibungen vor-
liegen missen. Im folgenden Kapitel 11 wird dann, aufbauend auf den Erkenntnis-
sen, die Sie in diesem Kapitel gewonnen haben, das Arbeiten mit Klassen und mit
den dazugehorenden Instanz-Methoden ausfiihrlich behandelt.

219

10 Methoden erkldren, implementieren und benuizen

10.1 Was sind Methoden?

Eine Methode ist eine Befehlsgruppe (ein Programmblock), die einen Namen hat.
Uber diesen Namen wird sie zur Ausfithrung aufgerufen. Nach der Ausfiihrung kehrt
die Programmsteuerung wieder zuriick an die Stelle des Aufrufs.

Argu/ment/v berechnenO

// Aufruf der Methode—"| '/./“ausﬁihren
x.berechnen(); — |

Ergebnis return;

Abb. 10.1: Wie erfolgt die Programmsteuerung bei einem Methodenaufruf?

Bei dem Aufruf konnen Werte an die Methode iibergeben werden. Mit diesen Daten
kann innerhalb der Methode gearbeitet werden. Nach Ausfihrung der Anweisungen
kann wahlweise auch ein Ergebnis an den Aufrufer zuriick geliefert werden.

Eine Methode besteht aus einem Methodenkopf und einem Methodenblock:

methodenkopf ({
Methodenblock
}

10.1.1 Methodenkopf (header) und Methodenblock (body)

Im Methodenkopf stchen die Angaben zur Deklaration der Methode. Zur Deklara-
tion gehort es, dass der Name festgelegt wird, die Eingangsdaten ("Parameter") be-
schrieben werden und der Datentyp des Ergebnisses festgelegt wird. Die Parameter
werden unmittelbar hinter dem Namen der Methode, eingefasst in runden Klammern
(...), als Liste von Deklarationen beschrieben.

In geschweiften Klammern eingefasst steht der Methodenblock (Rumpf). Er enthilt
die Implementierung der Methode. Dort stehen die Anweisungen. Jedes ausfihrbare
Java-Programm enthdlt mindestens eine Methode, ndmlich die Methode mit dem
Namen main.

Programm Methode0l: Die wichtigste Methode ist main()

public class MethodeOl {
public static void main (String[] args) { // Kopf
System.out.println(args[0]); // Block
}

220

10.1 Was sind Methoden?

In der ersten Zeile wird die Klasse definiert. Ist die Klasse ein ausfiithrbares Pro-
gramm, so ist der Klassenname mit dem Programmnamen und auch mit dem Namen
der Quelltextdatei identisch.

Die zweite Zeile des Programms enthilt den Kopf der Methode (die "Deklaration").
Dort sind festgelegt:

e der Name der Methode (hier: main);

e Name und Typ der Eingangsdaten (Argumente, Parameter). Diese Methode er-
wartet Daten vom Datentyp String und speichert sie unter dem Identifier args.;

e der Datentyp des Ergebnisses (hier: void, engl. nichts, nicht vorhanden);

e durch das Schlisselwort static, dass es sich um eine Klassenmethode handelt,
die aufgerufen werden kann, ohne dass vorher ein Objekt erzeugt worden ist;

e durch das Schlusselwort public, dass es sich um eine offentliche Methode han-
delt, die von Uberall her aufgerufen und genutzt werden kann. Public ist ein so
genannter Access-Modifier, diese legen die "Sichtbarkeit" von Komponenten fest.
Wir werden das Thema "Access-Modifier" im Kapitel 16 behandeln.

Die dritte Zeile enthilt die Anweisungen des Methodenblocks, in diesem Beispiel
ist das nur ein Statement. Die Ausfilhrung eines Programmes startet mit dem Aufruf
der main-Methode. Alles, was danach passiert, wird von dieser Hauptmethode aus
gestartet: entweder werden weitere Methoden aus der eigenen Klasse aufgerufen
oder es werden andere Methoden aus fremden Klassen aufgerufen.

10.1.2 Aufruf von Methoden durch das Senden von Messages

In objektorientierten Sprachen wie Java werden Methoden normalerweise immer
aufgerufen fir bestimmte Objekte. Ein Methodenaufruf wird auch bezeichnet als
"das Senden von Nachrichten (messages) zu einem Objekt". Eine Message (Bot-
schaft) fordert eine Dienstleistung an fiir ein ganz bestimmtes Objekt. Dabei konnen
Argumente tbergeben und ein Ergebnis zuriickgeliefert werden. Generell haben
Messages folgenden Aufbau:

objekt.methode (parameter) ;

Programm Methode02: Senden von Nachrichten an Objekte

class Methode02 {
public static void main (String[] args) {
String zeile = new String("Dies ist ein Satz");
String wort = zeile.substring(9,12);
System.out.println (wort) ;

221

10 Methoden erkldren, implementieren und benuizen

Fur den Methodenaufruf sind also drei Angaben erforderlich:
e Name des Objekts (hier: zeile)
e Name der Methode (hier: substring)

e Wert der Parameter (hier: 9,72).

Objektname und Methodenname werden durch einen Punkt getrennt ("Punktnota-
tion"). Das Objekt wird auch Exemplar oder Instanz einer Klasse genannt. Es muss
vorher erzeugt werden mit dem Schlisselwort new. Beispiel:

String str = new String("Dies ist ein Satz");

Um Methoden einer anderen Klasse aufzurufen, muss der Identifier des Objekts dem
Methodennamen vorangestellt werden. Innerhalb der Klasse gentigt die Angabe des
Methodenbezeichners, ohne weitere Qualifizierer.

10.2 Mitgelieferte Methoden benutzen

Wenn eine Methode aufgerufen werden soll, so muss deren "Schnittstelle" bekannt
sein, d.h. der Aufrufer muss nicht nur den Namen kennen, er muss exakt wissen,
welche Parameter die Methode erwartet und was sie als Ergebnis an ihn zuriick lie-
fert.

Die Standard-Bibliothek der J2SE enthilt einige Tausend Klassen, die zum Basis-
Sprachumfang von Java gehoren. Jede davon kann eine Vielzahl von Methoden ha-
ben, die vom Java-Programmierer genutzt werden konnen.

Allein diese Fiille von Standard-Methoden zeigt, wo ein nicht zu unterschitzendes
Problem der objektorientierten Programmierung liegt, nimlich in der Antwort auf die
Frage, wie findet der Anwendungsprogrammierer die Methoden, die er benotigt?

Das JDK von Sun bietet eine umfangreiche Dokumentation aller Standardklassen. Sie
werden in diesem Kapitel mit einigen Methoden dieser mitgelieferten Klassen arbei-
ten und dabei auch tiben, die Dokumentation zu benutzen. Hilfreich ist es, wenn Sie
sich ein Icon auf dem Desktop einrichten, um direkt die Dokumentation erreichen
zu kénnen.

Arbeiten mit JOE: Aus dem JOE-Editor heraus ist die Dokumentation direkt tiber
einen Menupunkt erreichbar: durch ? (Hilfe) und dann unter "JDK Dokumentation".

Die API-Spezifikation ist organisiert nach Packages. Entweder wihlt man dann auf
der linken Seite gezielt ein Paket aus und ldsst sich die Klassen in diesem Paket an-
zeigen oder man bekommt alle Packages mit allen Klassen, alphabetisch sortiert, an-
gezeigt. Dartiber hinaus bieten die Browser tiber BEARBEITEN | SEITE DURCHSU-
CHEN den gezielten Direktzugriff auf eine ganz bestimmte Klasse. Jede einzelne
Klasse wird dokumentiert mit ihrem vollen Namen, ihrer Paketzugehorigkeit, ihrer
Einordnung in die Vererbungshierarchie und mit allen Elementen, die diese Klasse
enthalt.

222

10.2 Mitgelieferte Methoden benutzen

10.2.1 Arbeiten mit Methoden der mitgelieferten Klasse Random

Es gibt die Klasse Random, deren Dienstleistung darin besteht, Zufallszahlen zu er-
zeugen und Methoden bereit zu stellen, um damit zu arbeiten. Die API-
Dokumentation enthilt jeweils ausfiihrliche Beschreibungen der Klassenelemente.
Jedoch ist die komplette Dokumentation nur in englischer Sprache verfiigbar.

So ist eine typische Methode der Random-Klasse in der API-Dokumentation wie folgt
beschrieben:

int nextInt (int n)
Returns a pseudorandom, uniformly distributed int value be-
tween O (inclusive) and the specified value (exclusive), drawn from this
random number generator's sequence.

Die erste Zeile ist identisch mit dem Kopf der Methode, und die Zeilen danach er-
ldutern verbal die Funktion dieser Methode. Aus dem Kopf kann man erkennen:

e Wie heifdt die Methode? Antwort: nextint
e Welche Eingangsparameter benotigt die Methode? Anwort: einen int-Wert
e Welchen Ergebnistyp liefert die Methode: Anwort: einen int-Wert

Die Erlduterungen dazu beschreiben, dass die Methode einen Random-Wert liefert,
der zwischen 0 (inklusive) und dem spezifizierten Parameterwert liegt.

Aus der Sicht des Aufrufers ist eine Methode eine Black-Box, er weifd nicht (und ihn
sollte auch nicht interessieren), wie die Methode intern implementiert ist. Fur ihn ist
nur wichtig, was die Methode leistet und wie die Schnittstelle aussieht.

Was versteht man unter Signatur einer Methode?

Zur Dokumentation einer Methode gehort die Beschreibung der Schnittstelle. Damit
wird festgelegt, welche Nachricht der Empfinger akzeptiert. Gleichzeitig erkennt der
Nutzer aus der Dokumentation, wie die Syntax fir den Aufruf dieser Methode ist.
Hiufig spricht man auch von API (Application Programmer Interface) und meint
damit eine Sammlung von Methodensignaturen.

Zur Signatur gehoren:
e Name der Methode

e Art und Position der Parameter.

Diese Angaben sind die formale Festlegung, wie eine Methode aufgerufen wird, da-
mit der Compiler tiberpriifen kann, ob der Methodenaufruf syntaktisch in Ordnung
ist und ob er fir das angegebene Objekt bzw. die Klasse erlaubt ist. Die Klasse
Random ist Teil das Packages java.util (erkennbar in der ersten Zeile der Dokumen-
tation dieser Klasse).

223

10 Methoden erkldren, implementieren und benutzen

Programm Methode03: Benutzen von Methoden der Klasse Random

public class Methode03 {
public static void main(String args([]) {
java.util.Random generator = new java.util.Random() ;
int zufallszahl = generator.nextInt (50);
System.out.println(zufallszahl);

}

Eine Nachricht in diesem Programm (in Zeile 4) lautet:
generator.nextInt (50);

Auch sie enthilt wieder die drei Bestandteile (Instanzname, Methodenname, Parame-
ter). Die Aufgabe dieses Methodenaufrufs ist es, eine Zufallszahl zwischen 0 und 50
zu generieren. Diese Zahl wird nach Ausfiihrung der Methode als Ergebnis zurtick
geliefert und "an die Stelle dieses Aufrufs" gesetzt, so dass danach die Wertezuwei-
sung an die Variable zufallszahl erfolgen kann.

Ubung zum Programm Methode03

Andern Sie das Programm so, dass mit dem impori-Statement gearbeitet wird.

10.2.2 Arbeiten mit Methoden der mitgelieferten Klasse PrintStream

Das nachfolgende Beispiel Methode0O4 enthilt die bereits mehrfach genutzte Metho-
de printin (fur die Ausgabe auf Standard.out). Diese Methode wird fiir eine Instanz
aufgerufen, die der Programmierer nicht selbst erzeugt hat, sondern die in jedem
Programm implizit zur Verfigung steht: System.out. Es handelt sich dabei um eine
Klassenvariable mit dem Namen out aus der Klasse System. Sie enthilt den Hinweis
darauf, welches Gerit aktuell als Standard-Ausgabeeinheit festgelegt worden ist.

Programm Methode04: Mitgeliefertes Objekt benutzen zum Methodenaufruf

public class Methode04 ({
public static void main (String[] args) {
System.out.println(args[0]);

}
Im Programm MethodeO4.java sieht die Nachricht so aus:
System.out.println(args[0];

Der Name des Zielobjekts dieser Nachricht steht in System.out; die Ausgabemethode
hat den Identifier printin und der aktuelle Parameter steht in der Variablen args/0].
Die Variable args// ist ein Array (siche Kapitel 13) - sie enthilt die Aufrufparameter,
die beim Start des Programms Ubergeben worden sind.

224

10.2 Mitgelieferte Methoden benutzen

Ubung zum Programm Methode04

Ubung 1: Kliren Sie mit Hilfe der API-Dokumentation, welchen Datentyp das Feld
System.out hat. Dazu ist die Beschreibung der Klasse System zu analysieren.

Ubung 2: Das Feld hat den Datentyp PriniStream. Kliren Sie mit Hilfe der API-
Dokumentation, wieviel unterschiedliche printin-Methoden es in dieser Klasse gibt
und wodurch sich diese unterscheiden.

Die Aufgabe der println-Methode im Programm Methode04 ist es, den Wert des ers-
ten Commandline-Parameters auf der Standardausgabe-Einheit auszugeben. Wie aus
der API-Dokumentation zu erkennen ist, gibt es etwa zehn verschiedene Methoden
mit dem Namen printin, sie unterscheiden sich lediglich durch unterschiedliche Pa-
rametertypen. Innerhalb einer Klasse kann es also mehrere Methoden geben mit
demselben Identifier. Dann missen sie sich allerdings unterscheiden durch den Typ
oder durch die Anzahl der Parameter. Diese Technik nennt man Uberladen (Over-
loading).

Hier einige Hinweise zum Ausfithren und Testen des Programms:

Testen des Programms Methode04

Die Ubergabe der Parameter an die Methode main erfolgt dadurch, dass die String-
Werte beim Programmstart als Aufrufparameter mitgegeben werden. Es gibt mehrere
Moglichkeiten, wie dies geschehen kann.

Moglichkeit 1: Aufruf tiber Commandline

Beim Aufruf des Programms tber die Befehlszeile eines Consolfensters konnen hin-
ter dem Programmnamen die Werte angegeben werden. Beispiel:

Abb. 10.2: Parameteriibergabe beim Aufruf des Programms tiber Commandline

Moglichkeit 2: Aufruf im JOE

Beim Arbeiten mit dem Java-Editor JOE erscheint nach dem Aufruf des Menupunkts
"JAVA|Starten mit Argumenten" ein Fenster fir die Eingabe der Argumente.

Weitere Hinweise zum Arbeiten mit Argumenten beim Start eines Programms: Die
Daten werden immer als String-Typen behandelt. Wenn im Programm mit Argumen-
ten gearbeitet wird, dann miissen auch entsprechende Werte tUbergeben werden,
andernfalls gibt es Fehler bei der Ausfiihrung des Programms. Im Kapitel 13 (Arrays)
gibt es ausfiihrliche Beispiele zu diesem Thema.

225

10 Methoden erkldren, implementieren und benuizen

10.2.3 Arbeiten mit Methoden der mitgelieferten Klasse Math

In der mitgelieferten Klasse Math gibt es eine Methode mit dem Identiefer max. Sie
ist wie folgt beschrieben:

static int max(int a, int Db)
Returns the greater of two int values

Die erste Besonderheit ist das Schliisselwort static im Kopf der Methode. Damit ist
festgelegt, dass diese Methode eine so genannte Klassenmethode ist. Sie kann be-
nutzt werden, ohne dass vorher eine Instanz erzeugt werden muss. Klassenmetho-
den sind an die Klasse (und nicht an einzelne Instanzen) gebunden.

Die Signatur dieser Methode beschreibt auerdem, dass sie zwei ganzzahlige Argu-
mente erwartet. Nicht erkennbar ist die Semantik, also die Wirkung des Aufrufs. Die-
se ist verbal in der Dokumentation beschrieben und wird als "Spezifikation" be-
zeichnet. Der Aufruf fir die Ausfihrung dieser Methode muss der Signatur entspre-
chen (das wird Uberprift vom Compiler). Das Verhalten der Methode muss iiberein-
stimmen mit der Spezifikation (das kann maschinell nicht Uberpriift werden).

Die Methode liefert einen int-Wert zuriick.
Programm Math01: Arbeiten mit einer static-Methode

public class MathO0l {
public static void main (String[] args) {
int ergebnis = Math.max(5,3);
System.out.println (ergebnis) ;

}
Ubung zum Programm Math01

Andern Sie das Programm so, dass mit Hilfe einer Methode der Klasse Math ein flo-
at-Wert in eine ganze Zahl umgewandelt wird (mit Auf- bzw. Abrunden).

Hinweise zum import-Statement

Die Klasse Math ist Teil des Packages java.lang. Dieses Paket ist in jedem Java-
Programm bekannt, ohne dass der Programmierer dies explizit angeben muss. Alle
anderen Packages mussen ausdriicklich durch eine spezielle Anweisung, die impori-
Anweisung, im Programm bekannt gemacht werden, damit ein Zugriff auf die Klas-
sen dieses Paketes moglich ist.

Eine andere Moglichkeit ist die voll-qualifizierte Namensangabe beim Aufruf von
Klassen - dies ist jedoch schreibaufwindig.

Beispiele fiir den Einsatz der import-Anweisung folgen ab Abschnitt 10.3.

226

10.2 Mitgelieferte Methoden benutzen

10.2.4 Arbeiten mit Methoden der mitgelieferten Klasse System

Eine hiufig benutzte Klasse ist die Klasse System. Sie enthilt verschiedene niitzliche
Felder und Methoden. Alle Member sind static, also Klassenmember, die benutzt
werden konnen, ohne vorher eine Instanz zu erzeugen. Um diese Member zu refe-
renzieren, muss die Variable oder die Methode qualifiziert werden mit dem Klassen-
namen, z.B. System.out oder System.getSecurityManager().

Das folgende Programm benutzt die Systemklasse zweimal, nimlich beim Aufruf der
Methode getProperty, um den Benutzernamen des Systems zu ermitteln und dann
bei der Ausgabe mit printin.

Programm SystemO1: Arbeiten mit der System-Class

class System01 {
public static void main(String[] args) throws Exception {
String name;
name = System.getProperty ("user.name");
System.out.println (name) ;

}
Wozu kéonnen static import-Anweisungen genutzt werden?

Eine Variante ist der Einsatz von static-Import. Dadurch kann der Aufruf von stati-
schen Membern einer Klasse vereinfacht werden.

Programm SystemO02: Static-Import erlaubt "unqualifizierten" Zugriff

import static java.lang.System.*;
class System02 {
public static void main (String[] args) throws Exception {
String name;
name = getProperty ("user.name");
out.println (name);

}

Der Vorteil ist die kiirzere Schreibweise beim Referenzieren von static-Membern.

10.2.5 Arbeiten mit Methoden der mitgelieferten Klasse Integer

Die Java-Standard-Bibliothek enthilt fiir jeden primitiven Datentyp eine korrespon-
dierende Klasse, z.B. fir den int-Typ die Klasse Integer oder fir den boolean-Typ
die Klasse Boolean. Diese Klassen werden Wrapper-Klassen (Hiullenklassen) ge-
nannt, weil sie den primitiven Typ "einpacken" in einen Klassentyp.

227

10 Methoden erkldren, implementieren und benuizen

Durch den Einsatz von Wrapper-Klassen erhilt der Programmierer zusitzliche Verar-
beitungsmoglichkeiten, denn die Klassen enthalten Methoden, die zusitzlich zu den
eingebauten Operatoren auf diese Datentypen operieren. So enthilt die Klasse Inte-
ger z.B. die folgende Methode:

Programm Integer01: Arbeiten mit Wrapper-Klassen

public class Integer01l {
public static void main (String[] args) {
String str = "125";
int ergebnis = Integer.parselnt (str);
System.out.println (ergebnis);

}

Weitere Hinweise zu Wrapper-Klassen finden Sie im Kapitel 15.5.

10.3 Methodenaufruf

Ein Fazit aus den bisherigen Ubungen ist folgende Regel:

Ubung zum Programm Integer01

Andern Sie das Programm so, dass mit Hilfe einer Methode der Klasse Integer der
hexadezimale Wert der Variablen ergebnis ausgegeben wird.

Losungsvorschlag

public class Integer02 {
public static void main (String[] args) {
String str = "125";
int ergebnis = Integer.parselnt (str);
System.out.println (Integer.toHexString (ergebnis));

228

10.3 Methodenaufruf

10.3.1 Schachteln und Verketten von Methodenaufrufen

Der vorherige Losungsvorschlag zeigt, wie Methodenaufrufe geschachtelt werden
konnen. Eine Schachtelung kann folgenden Aufbau haben:

object.methodel (object.methode2 ());

Das entspricht dem Ausdruck des letzten Statements. Dort ist die Methode fo-
HexString Teil des Parameterausdrucks fir die Methode printin. Geklammerte Aus-
dricke werden immer zuerst aufgelost, d.h. es wird von innen nach auflen gearbei-
tet - und dann werden die Aufrufe von links nach rechts abgearbeitet.

Ein Beispiel fir die Verkettung von mehreren Methodenaufrufen, die nacheinander
ausgefiihrt werden, enthilt das folgende Beispiel.

Programm BigDecimalO1: Verkettung von Methodenaufrufen

import java.math.*;
class BigDecimalOl {
static public void main(Stringl] _) {
BigDecimal dl = new BigDecimal (15);
BigDecimal d2 = new BigDecimal (3);
System.out.println(dl.multiply(d2) .divide (dl) .multiply(d2));
}
}

Hier hat die Verkettung in der letzten Zeile den folgenden Aufbau (innerhalb der
Klammer):

object.methodel () .methode2 () .methode3 () ;

Die Voraussetzung flr diese Art der Verkettung von Methoden ist, dass Methodel
und Methode2 jeweils ein Objekt (eine Referenzvariable) als Ergebnis liefern.

Hinweise zum import-Statement

Die erste Zeile des Programms enthilt eine import-Anweisung. Die Klasse BigDeci-
mal ist Teil des java.math-Pakets. Der volle ("qualifizierte") Name der Klasse ist also:
Java.math.BigDecimal. Sie kann adressiert werden entweder mit diesem voll qualifi-
zierten Namen oder durch eine Kurzschreibweise, indem das import-Statement be-
nutzt und dann im Programm lediglich der Klassenname codiert wird. In diesem
Programm enthilt die erste Zeile eine import-Anweisung, deswegen kann im nach-
folgenden Quelltext die Kurzschreibweise benutzt werden.

Ubungen zum Programm BigDecimal01

Ubung 1: Bitte kliren Sie fiir sich, in welcher Reihenfolge die Methoden ausgefiihrt
werden.

Ubung 2: Bitte arbeiten Sie ohne die impori-Anweisung. Losungshinweis: Dann
muss die Klasse BigDecimal voll qualifiziert werden.

229

10 Methoden erkldren, implementieren und benuizen

10.3.2 Arbeiten mit Methoden der mitgelieferten Klasse Properties

Besonders im Package "java.util' sind einige Klassen enthalten, die als so genannte
"Utilities" (Hilfsklassen) bezeichnet werden und dem Programmierer Dienste fiir hiu-
fig anfallende Arbeiten anbieten. So gibt es die Klasse Properties, die es mit einfa-
chen Methodenaufrufen ermoglicht, im Speicher Daten mit Suchbegriffen zu kenn-
zeichnen, so dass ein Direktzugriff darauf moglich ist. Die Daten werden in Form
von zwei Strings gespeichert, wobei der erste String den Suchbegriff (Schlissel,
"key") und der zweite String den dazu gehorenden Wert ("value") enthilt.

Diese Art der Speicherung ist fiir viele Aufgabenstellungen hilfreich, z.B. werden Pa-
rameter zwischen heterogenen Systemen hiufig in der Key-Value-Form ausgetauscht
oder Systemwerte in dieser Form gespeichert und abgefragt (z.B. in Environment-
Variablen).

Programm Properties01: Arbeiten mit Key-/Value-Paaren

import java.util.*;
public class Properties01 {
public static void main (String[] args) {

Properties prop = new Properties();
prop.setProperty ("name", "Roman Merker");
prop.setProperty ("beruf", "Programmierer");
prop.setProperty ("ort", "Steinfurt");

prop.list (System.out);

}
Ubung zum Programm Properties01

Die Klasse Properties bietet komfortable Moglichkeiten fiir den Direktzugriff auf ein-
zelne Properties. Dabei muss lediglich der Schlissel (key) als Suchbegriff angegeben
werden. Bitte dndern Sie das Programm so, dass nur der Wohnort ausgegeben wird,
moglichst durch einen geschachtelten Methodenaufruf. Losungsvorschlag fir die
Ausgabe: "System.out .println (prop.getProperty ("ort"));"

Das folgende Programm zeigt, wie kompakt ein Ausdruck codiert werden kann, der
einen geschachtelten Methodenaufruf enthilt.
Programm Properties02: Geschachtelter Methodenaufruf

public class Properties02 {
public static void main (String[] args) {
String s = "os.name";
System.out.println (System.getProperties () .getProperty(s));

230

10.3 Methodenaufruf

Die Zeile mit dem printin-Befehl enthdlt den Aufruf der statischen Methode Sys-
tem.getProperties(). Diese Methode liefert als Ergebnis ein Objekt mit einer Zusam-
menstellung aller Systemeigenschaften. Daraus wird eine ganz bestimmte Property
gelesen: mit getProperty() wird der Key "os.name" gesucht und dessen Value mit
printin() ausgegeben.

Die Ausfithrung dieser geschachtelten Methoden erfolgt nacheinander, von links be-
ginnend.

10.3.3 Arbeiten mit Methoden der mitgelieferten Klasse DecimalFormat

Das niichste Beispiel demonstriert verschiedene Moglichkeiten fir das Formatieren
und Ausgeben von Dezimalzahlen. Gezeigt wird, welche Moglichkeiten es gibt fiir
primitive Typen und fiir Typen der Klasse BigDecimal.

Programm Zahlen01: Formatieren und Ausgeben von Dezimalzahlen

import Jjava.text.DecimalFormat;
import Jjava.math.*;
class ZahlenO1l {
public static void main (String[] args) {

// Primitive Datentypen runden / aufbereiten
double zahll = 0.15780003;

DecimalFormat df = new DecimalFormat ("##,##0.00");
System.out.println (df.format (zahll));

// Komfortabler mit BigDecimal und MethContext
BigDecimal zahl2 = new BigDecimal (0.15780003);

int nachkomma = 3;

MathContext mc = new MathContext (nachkomma,
RoundingMode.HALF_UP) ;

BigDecimal erg = zahl2.round (mc);

System.out.println (erqg);

}

Fur das Arbeiten mit der Variablen zah/2 werden nacheinander drei Methoden auf-
gerufen: zunichst wird mit new eine Instanz der Klasse MathContext erstellt (und
dafiir die Konstruktormethode aufgerufen), und danach wird die Methode round
aufgerufen. Fur die Ausgabe ist dann die Methode println zustindig.

Ubung mit Programm Zahlen01

Bitte versuchen Sie, die drei Methoden so weit wie moglich zu schachteln.

231

10 Methoden erkldren, implementieren und benulzen

Losungsvorschlag: Methoden schachteln

import java.text.DecimalFormat;

import java.math.*;

class Zahlen02 {

public static void main(String[] args) {
BigDecimal zahll = new BigDecimal (0.15780003) ;
System.out .println(zahll.round (new MathContext (3, RoundingMode.HALF_UP)));
}

}

Weil die drei Methoden jeweils in runden Klammern eingefasst sind, erfolgt die Ab-
arbeitung von innen nach auen: zuerst new, danach round und dann printin.

10.4 Eigene Methoden erstellen

Eine Methode ist immer Bestandteil einer Klasse. Um eine Methode zu deklarieren,
wird eine Klasse erstellt und dann ihre Methoden (und Attribute) darin beschrieben.

Eine Methode hat zwei Bestandteile: die Methodendeklaration (den Kopf) und die
Implementierung (den Rumpf):

public static void main(String[] args)

// Verarbeitung
return ergebnis;

Abb. 10.3: Definition einer Methode

Die Methodendeklaration besteht im Minimum aus dem Namen und der Angabe
des Returntyps. Der Methodenname kann (wie alle Identifier in Java) aus jedem Zei-
chen des Unicodes bestehen. Aber es sollten folgende Empfehlungen eingehalten
werden:

- nur ASCII-Zeichen benutzen
- nur Kleinbuchstaben benutzen
- wenn moglich, ein Verb benutzen.

Der Kopf der Methode kann weitere Informationen enthalten, die dem Aufrufer
und dem Compiler die Methode niher spezifizieren. Wahlweise konnen auch Para-
meter deklariert werden, die dann beim Aufruf mit aktuellen Werten gefillt werden.
Die Methodenimplementierung enthilt die Sammlung von Statements, eingeschlos-

232

10.4 Eigene Methoden erstellen

sen in geschweiften Klammern {...}. Wahlweise kann mit dem Schlisselwort return
ein Ergebniswert an den Aufrufer zuriick gegeben werden.

10.4.1 Neue Methode in Hauptklasse erstellen und benutzen

Das nichste Beispiel erginzt eine ausfihrbare Klasse um eine weitere Methode. Die
Klasse soll also neben der main-Mathode noch eine zusitzliche Methode, nimlich
die Methode ausgeben(), enthalten, ebenfalls eine static-Methode.

Programm Methode05: Mehrere Methoden in derselben Klasse

public class Methode0O5 {
public static void main (String[] args) {
for (int i=0; 1i<5; i++)
ausgeben () ;
}
static void ausgeben () {
System.out.println("Hallo Welt");

}

Diese Art der Methodendeklaration und des Methodenaufrufs ist untypisch fir ob-
jektorientiertes Programmieren, denn die Methode enthilt das Schlisselwort static.
Dadurch ist der Aufruf dieser Methode moglich, ohne dass vorher eine Instanz er-
zeugt worden ist. Weil in diesem Beispiel die Methode aus einer anderen static-
Methode aufgerufen wird und dort noch kein Objekt existiert, ist das Schlisselwort
static erforderlich.

Ubungen zum Programm Methode05

Ubung 1: Bitte versuchen Sie durch Programminderung herauszufinden, ob es in
Java moglich ist, dass Methodendeklarationen geschachtelt sein konnen, d.h. kann
die Methode ausgeben auch Teil der Methode main sein, also innerhalb von main
deklariert sein?

Ubung 2: Nachdem wir geklirt haben, dass in Java keine geschachtelten Methoden-
deklarationen erlaubt sind, tGberpriifen Sie bitte durch eine weitere Programminde-
rung, welche Fehlermeldung die Umwandlung liefert, wenn Sie das Schliisselwort
static bei der Methode ausgeben entfernen.

Fazit: Klassenmethoden koénnen keine Instanzmethoden aufrufen.

10.4.2 Neue Methode in einer anderen Klasse erstellen und benutzen

Was ist nun zu beachten, wenn eine nicht-ausfithrbare Klasse mit neuen Methoden
erstellt und benutzt wird? Wir zeigen einige Beispiele, bei denen eigenstindige, ab-
geschlossene Aufgaben in neue Klassen ausgelagert werden, damit sie dann von di-
versen anderen Programmen genutzt werden konnen.

233

10 Methoden erkldren, implementieren und benuizen

10.4.2.1 Arbeiten mit static-Methoden (Klassen-Methoden)

Die Aufgabenstellung fiir folgende, neu zu erstellende Klasse lautet: Es sollen Daten
von System.in eingelesen, als Werte vom Typ double interpretiert und an den Aufru-
fer der Methode tUbergeben werden.

Programm Lesen: Eine Hilfsklasse mit einer Lese-Methode

import Jjava.io.*;
class Lesen {
static String zeile;
static InputStreamReader isr =
new InputStreamReader (System.in);
static BufferedReader bfr = new BufferedReader (isr);
public static double liesDouble() throws Exception ({
System.out.println ("Bitte double-Wert eingeben: ");
zeile = bfr.readLine();
double zahl = Double.parseDouble (zeile);
return zahl;

}

Diese Klasse hat keine main-Methode. Es handelt sich also nicht um ein ausfithrba-
res Programm, lediglich die Umwandlung ist moglich.

Im zweiten Schritt erstellen wir ein ausfihrbares Programm, das die Dienstleistung
dieser Klasse Lesen nutzt (durch Aufruf der Methode liesDouble).

Programm LesenTest01: Einlesen und Ausgeben von Double-Werten

public class LesenTest0l {
public static void main(String[] args) throws Exception {
double d = Lesen.liesDouble();
System.out.println(d);

}

Beide Klassen konnen in einer Quelltextdatei stehen. Der Name der Datei muss
dann lauten: LesenTestO1.java (also so wie die ausfihrbare public-Klasse). Mogliche
Fehlerquelle: Es darf keine weitere public-Klasse in dieser Datei geben.

Ubung

Erstellen Sie eine neue ausfiihrbare Klasse Methode06. In der main-Methode soll die
Methode addieren(5, 3) aufgerufen werden.

Diese static-Methode ist Teil einer weiteren, neu zu erstellenden Klasse A. Sie ad-
diert die beiden Parameterwerte und gibt die Summe als Ergebnis zurtick.

234

10.4 Eigene Methoden erstellen

Losungsvorschlag (static-Methode aus einer anderen Klasse aufrufen)

public class Methode06 {
public static void main (String[] args) {
System.out.println(A.addieren(5,3));

}
class A {
static int addieren(int a, int b) {
return a + b;

}

Beide Klassen konnen in einer Quellendatei stehen, damit werden sie gemeinsam
umgewandelt, und es entstehen daraus zwei Class-Dateien. Diese Umwandlungsein-
heit muss aber den Namen des ausfihrbaren Programms haben, in diesem Fall den
Dateinamen Methode06.java.

10.4.2.2 Arbeiten mit non-static-Methoden (Instanz-Methoden)

Die typische Vorgehensweise in objektorientierten Programmsystemen besteht in
dem Erzeugen von Objekten und dem Austauschen von Nachrichten zwischen die-
sen Objekten. Wir modifizieren deshalb die beiden Einleseprogramme Lesen.java
und LesenTestO1.java so, dass die Methode parseDouble zu einer "normalen" In-
stanzmethode wird. Dazu muss an verschiedenen Stellen das Schlisselwort static
entfernt werden.

Programm LesenTest02: Erstellen und Aufrufen von Non-Static-Methoden

import java.io.*;

class Lesen(02 {
String zeile;
InputStreamReader isr = new InputStreamReader (System.in);
BufferedReader bfr = new BufferedReader (isr);

public double liesDouble() throws Exception {
System.out.println("Bitte double-Wert eingeben: ");
zeile = bfr.readLine();
double zahl = Double.parseDouble (zeile);
return zahl;

}
public class LesenTest02 {
public static void main(String[] args) throws Exception ({
Lesen02 objl = new Lesen02();

235

10 Methoden erkldren, implementieren und benuizen

double d = objl.liesDouble();
System.out.println(d);

}
Ubung zum Programm Methode06 (1)

Andern Sie das Programm Methode06.java so, dass die addieren-Methode zu einem
ganz normalen Element der Klasse A wird (entfernen Sie also das Schlisselwort sta-
tic). Wie erfolgt jetzt der Aufruf der Methode? Was muss in jedem Fall vorher erzeugt
werden?

Losungsvorschlag: Implementierung und Aufruf einer non-static Methode

public class MethodeO7 {
public static void main (String[] args) {
A a = new A();
System.out.println(a.addieren(5,3));

}
class A {
int addieren(int a, int Db) {
return a + b;

}
Beachten Sie die unterschiedliche Bedeutung von a und A.

Besonderheit: Bei der Deklaration der Methode addieren in der Klasse A wire es
formal moglich, das Schlisselwort static zu benutzen, um dadurch die addieren-
Methode zu einer Klassenmethode zu machen. Umwandlung und Ausfithrung wiir-
den auch fehlerfrei funktionieren, weil die Methode keine instanzabhingigen Variab-
len benutzt.

Obwohl Java also den Aufruf einer Klassenmethode tiber den Instanznamen erlaubt,
empfehlen wir doch, in solchen Fillen immer den Klassennamen zu benutzen. Da-
durch wird eindeutig signalisiert, dass es sich um eine Nachricht handelt, die klas-
senabhingige Arbeiten ausfithrt und die auch keine individuellen Datenwerte verar-
beiten kann.

Das folgende Beispiel zeigt den falschen Einsatz einer static-Methode.

Programm Methode08: Eine static-Methode - fehlerhaft eingesetzt

public class Methode08 {
public static void main (String[] args) {
A a = new A();
System.out.println (A.addieren(5,3));

2306

10.5 Methodenblock implementieren

}

}

class A {
int x = 5;

static int addieren(int a, int b) {
return a + b + x;

}

Ubung zum Programm Methode08

Andern Sie das Programm so, dass es fehlerfrei liuft. Hinweise: Die Methode darf
nicht static sein (weil sie auf die Instanzvariable x zugreift). Die Methode muss auf-
gerufen werden mit einem Instanznamen (und nicht mit dem Klassennamen).

10.5 Methodenblock implementieren

Der Implementierungscode einer Methode steht im Methodenblock ("body").

10.5.1 Mit welchen Daten kann innerhalb einer Methode gearbeitet werden?

Zunichst einmal stehen einer Methode alle Variablen der eigenen Klasse zur Verfii-
gung. Diese Variablen sind entweder Klassenvariablen oder Instanzvariablen. Ab-
hingig davon stehen sie entweder jeder Methode zur Verfiigung (die Instanzvariab-
len) oder nur den static-Methoden (die Klassenvariablen, denn die sind ebenfalls mit
static deklariert). Dann konnen innerhalb der Methode neue Variablen definiert und
mit Werten gefillt werden. Diese werden lokale Variablen genannt.

Und - sehr wichtig - aulerdem konnen einer Methode von aulen (durch den Aufru-
fer) Daten iibergeben werden. Diese werden Argumente (Parameter) genannt.

10.5.1.1 Klassenvariable oder Instanzvariable?
Programm Methode09: Arbeiten mit static-Methode (fehlerhaft)

public class Methode09 {
public static void main (String[] args) {
System.out.println(A.addieren(5,3));

}

}

class A {
int x = 5;

static int addieren(int a, int b) {
return a + b + x;

237

10 Methoden erkldren, implementieren und benuizen

Ubung zum Programm Methode09

Der Umwandlungsversuch endet mit einer Fehlermeldung ("non-static variable x
cannot be referenced from a static context"). Bitte korrigieren Sie diesen Fehler. Ver-
suchen Sie zwei unterschiedliche Losungen. Losungshinweis: Entweder wird die Va-
riable x als static deklariert oder die Methode addieren wird ohne static deklariert.
Versuchen Sie fiir sich selbst zu kliren, was die Konsequenzen jeder Losung sind.

10.5.1.2 Lokale Variablen

Zusitzlich zu den Feldern ihrer Klasse konnen Methoden eigene Variable deklarie-
ren und benutzen. Diese nennt man lokale Variablen, denn sie sind nur innerhalb
dieser Methode ansprechbar. Sobald die Methode abgearbeitet ist und beendet wird,
ist auch die lokale Variable nicht mehr verfigbar.

Eine lokale Variable wird nicht automatisch initialisiert, d.h. sie hat keinen Default-
wert wie die Felder einer Klasse. Deswegen muss der Programmierer dafliir sorgen,
dass die lokale Variable vor dem ersten Verarbeitungsbefehl einen korrekten Wert
enthilt.

Programm MethodenTest10: Arbeiten mit lokalen Variablen

public class MethodenTestl10 {
public static void main (String[] args) {
Methodel0 m = new MethodelO () ;
for (int i=0; i<5; 1i++)
m.ausgeben () ;

}
class MethodelO {
void ausgeben () {
String text = "Hallo lokale Variable";
System.out.println (text);
}
void aendern () {
// text = "Neuer Inhalt fiir lokale Variable";

}
Ubung zum Programm MethodenTest10

Ubung 1: Welche Fehlermeldung kommt bei der Umwandlung, wenn das letzte Sta-
tement aktiv wird (dazu muss der Kommentar in der drittletzten Zeile entfernt wer-
den)? Warum kommt diese Meldung?

238

10.5 Methodenblock implementieren

Ubung 2: Machen Sie die Wertezuweisung in der Methode ausgeben zu einem
Kommentar. Welche Fehlermeldung kommt bei der Umwandlung. Warum ist das so?

Ubung 3: Fiigen Sie der main-Methode als letztes Statement den folgenden Ausga-
bebefehl hinzu: System.out.println("Die Variable 1 enthdalt: " +
1)) ; Warum fihrt dieser Versuch zu einem Umwandlungsfehler? Wie kann der Feh-
ler umgangen werden? Losungshinweis: Die Deklaration der Variablen i darf nicht
im Kopf der For-Schleife vorgenommen werden, weil diese dadurch zu einer lokalen
Variablen fiir diesen Anweisungsblock wird.

Lokale Variable sind immer dann sinnvoll, wenn Zwischenergebnisse gespeichert
oder temporire Zustinde festgehalten werden missen, die nach Ablauf eines Blocks
nicht mehr benotigt werden.

10.5.2 Uberladen von Methoden (overload)

Die Signatur kennzeichnet eine Methode eindeutig. Sie besteht aus Methodenname
und Deklaration der Parameter. Wie Sie bereits bei der Erlduterung zum Programm
Methode04 gesehen haben, ist es durchaus moglich, innerhalb eines Programms
denselben Methodennamen mehrfach zu verwenden, wenn die Methoden sich durch
die Parameterliste unterscheiden. Beim Aufruf dieses Methodennamens sucht sich
Java automatisch die passende Methode - und zwar abhingig von der Signatur.

Beispiel Methodell: Uberladen von Methoden (Overloading)

public class Methodell {
public static void main (String[] args) {
A a = new A();
System.out.println (a.addieren(5,3));
System.out.println(a.addieren(15.3, 27.9));

}
class A {
int addieren(int a, int b) {
System.out.println ("Ganzzahlen addieren");
return a + b;

}
double addieren (double a, double b) {

System.out.println("Gleitkommazahlen addieren");
return a + b;

}

Was ist der Vorteil dieser Technik? Durch die Moglichkeit, Methoden zu tberladen,
kann der Programmierer gleichen Funktionalititen denselben Namen geben, auch

239

10 Methoden erkldren, implementieren und benuizen

wenn sie von verschiedenen Methoden ausgefiihrt werden. Dadurch wird das Pro-
gramm lesbarer und Methodenaufrufe verstindlicher.

10.5.3 Laufzeitfehler behandeln bzw. weiterreichen

Bei der Ausfithrung einer Methode kann es zu Laufzeitfehlern kommen. Je nach Art
des Fehlers wird der Programmierer entweder gezwungen, die Reaktion darauf
selbst zu programmieren, oder die Steuerung wird - wenn nichts anderes codiert ist -
an die JVM tbergeben, die dann entsprechende Aktionen durchfiihrt.

Programm StandardIn02: Laufzeitfehler behandeln bzw. weiter reichen

class StandardIn02 {
public static void main(String[] args) throws Exception {
int zeichenl = System.in.read();
System.out.println(zeichenl);

}

Durch die Angabe "throws Exception" bestimmt der Programmierer, dass even-
tuelle Fehler in dieser Methode nicht individuell behandelt werden sollen, sondern
an die "ndchsthohere Ebene" weiter gereicht werden, in diesem Fall an die JVM.

Ubung zum Programm StandardIn02

Prifen Sie, welche Fehlermeldung der Compiler liefert, wenn die Klausel "throws
Exception" im Quelltext fehlt.

Fazit: Im Kopf einer Methode konnen Informationen fiir den Aufrufer und fir den
Compiler codiert werden. Dazu gehort unter bestimmten Umstinden die Information
"throws Exception", die anzeigt, dass nicht auszuschlieBen ist, dass innerhalb einer
Methode ein Laufzeitfehler auftreten kann, der dann aber nicht innerhalb dieser Me-
thode abgefangen wird, sondern von dem Aufrufer behandelt werden muss.

10.6 Parameter (ibergeben und empfangen

Eine Methode wird aufgerufen, indem eine Nachricht an das Objekt gesendet wird.
Dabei konnen Werte an die Methode ibergeben werden. Diese werden als Parame-
ter bezeichnet und sind die Eingangsvariablen fiir die Methodenausfithrung. Im Kopf
der aufgerufenen Methoden missen die Parameter deklariert sein.

Formale Parameter

Bei der Methodendeklaration wird fiir jeden Parameter der Datentyp beschrieben
und der interne Bezeichner dafiir festgelegt. Die einzelnen Parameter werden durch
Komma abgetrennt. Die Aufzdhlung in dieser Liste wird auch formale Parameter-
liste genannt.

240

10.6 Parameter tibergeben und empfangen

Der Aufrufer muss die Schnittstelle fir den Methodenaufruf kennen, d.h. er muss
nicht nur die Datentypen, die erwartet werden, kennen, er muss auch wissen, an
welcher Position in der Parameterliste welcher Typ erwartet wird.

Aktuelle Parameter

Beim Aufruf der Methode muss fiir jeden formalen Parameter ein passendes Argu-
ment tbergeben werden. Die Argumente werden aktuelle Parameter genannt. Sie
mussen vom Typ her passen und werden positionsgenau, wie vom Empfinger ge-
fordert, ibergeben.

Die formalen Parameter wirken wie Platzhalter fir die Werte der aktuellen Parame-
ter. Innerhalb der Methode verhalten sich die formalen Parameter wie lokale Variab-
len, die initialisiert werden, indem der Wert der aktuellen Parameter in diese Spei-
cherzellen kopiert werden.

Programm Leerzeilen01: Methode, die einen ganzzahligen Wert erwartet

public class LeerzeilenO1l {

public static void main (String[] args) {
leerzeilen(5);

}

static void leerzeilen (int anzahl) {
System.out.println ("Nun werden " + anzahl

+ "Leerzeilen ausgegeben");
for (int i = 1; i<anzahl; 1i++) {
System.out.println ("\n");

}
System.out.println ("Ausgabe beendet");

}

Als aktuelle Parameter ("Argumente") konnen beim Aufruf angegeben werden: Vari-
able, Literale oder Ausdriicke.

Als Datentyp sind primitive und auch Referenztypen maoglich.

Ubung zum Programm Leerzeilen01

Bitte dndern Sie das Programm so ab, dass zwei Parameter ibergeben werden: ein
char-Wert und ein int-Wert. Dann soll die Methode den char-Wert so oft ausgeben,
wie in der Ganzzahl angegeben.

Beispiel: Wird als Argumente (" a’, 5) Gibergeben, so soll fiinfmal der Buchstabe *a’
ausgegeben werden.

241

10 Methoden erkldren, implementieren und benuizen

10.6.1 Wie werden Parameter libergeben?

Wir haben bereits geklirt, dass die Ubergabe der aktuellen Parameter beim Metho-
denaufruf exakt in der Reihenfolge erfolgen muss, wie sie von der empfangenden
Methode als formale Parameter deklariert wurden. Hierzu ein Beispiel:

Deklaration beim Empfinger:

void berechnen (int z1l, int z2, String s, float z3);
Aufruf durch:

berechen (zahll, zahl2, text, zahl3);

Die Deklaration beschreibt vier formale Parameter. Sie haben die Datentypen int,
int, String und float.

Die Namen dieser Parameter sind fur den Aufrufer unwichtig, denn diese haben nur
Bedeutung fiir den Block der Methode (also fiir die Implementierung).

Wichtig fiir den korrekten Aufruf ist allerdings, dass die vier Parameter in der Rei-
henfolge angeliefert werden, wie es vom Empfinger verlangt wird.

Der Compiler kann leider nur tberprifen, ob die Datentypen ibereinstimmen.
Wenn der Aufrufer aber die Bedeutung z.B. der beiden ersten int-Parameter ver-
wechseln wiirde, fithrte das zu falschen Ergebnissen, ohne dass bei der Compilie-
rung oder bei der Ausfiihrung des Programms eine Fehlermeldung moglich wiire.

Eine wichtige Frage gilt es noch zu kliren:

Werden Parameter so an die aufrufende Methode geliefert, dass die Originalinforma-
tionen dort ankommen (und dort auch gegebenenfalls gedndert werden konnen)
oder werden Kopien tibergeben?

Java arbeitet immer mit "Call by Value"

Doch muss man dabei grundsitzlich zwischen den zwei Arten von Datentypen (pri-
mitive Typen und Referenztypen) unterscheiden.

10.6 Parameter tibergeben und empfangen

10.6.2 Primitive Typen als Parameter

Das nachfolgende Programm demonstriert, wie die Parametertibergabe erfolgt, wenn
es sich um primitive Datentypen handelt.

Programm Methodel2: Primitiver Typ als Parameter

class Methodel2 {
public static void main (String[] args) {
double zahl = 123.45;
aendern (zahl) ;
System.out.println(zahl);
}
static public void aendern (double zahl) {
zahl = zahl + 200;
System.out.println(zahl);
}
}

Ausgegeben werden 323.45 und 123.45. Das zeigt, dass der Inhalt der Variablen zahl
sich in der Hauptmethode main nicht geidndert hat, weil nimlich die Methode aen-
dern mit einer Kopie der Daten arbeitet.

Die Klasse PunktO1.java bietet folgenden Service: Sie kann die Werte fiir eine Posi-
tion auf einer X- und einer Y-Achse speichern und uberprift bei Bedarf, ob beide
Ganzzahlenwerte den Wert 0 enthalten. Dann wird eine Meldung am Consolbild-
schirm ausgegeben.

Programm Punkt01: Empfangen von int-Werten als Parameter

public class PunktO01l {
private int x;
private int y;

void speichern(int a, int b) {
X = aj;
y = b;
}
void pruef () {
if (x <0] y < 0)
System.out.println ("Der Punkt liegt ausserhalb");
else
System.out.println("Der Punkt liegt im Fenster");

243

10 Methoden erkldren, implementieren und benuizen

Nun codieren wir einen Client, der eine Instanz erstellt und fur dieses Objekt die
beiden Methoden der Klasse ausfiihrt.

Programm PunktTest01: Testen der Klasse Punkt01 und Parameteribergabe

public class PunktTest01l {
public static void main(String[] args) {
int a = 5;
int b = 3;
Punkt0l p = new PunktO01l();
p.speichern(a, b);
p.pruef ();

}

In dem vorletzten Statement wird die Methode speichern aufgerufen und dabei die
aktuellen Parameter a und b ubergeben. Die aktuellen Werte der beiden Variablen
werden kopiert und dann diese Duplikate an Methode speichern ibertragen.

Ubung zum Punkt01

Bitte dndern Sie die Methode speichern so ab, dass Sie die Variable a mit dem Wert
20 fillen (Wertezuweisung). Fligen Sie dann im Programm PunktTestO1 die folgende
Zeile hinzu und Uberpriifen Sie das Ergebnis:

System.out.println(a);

10.6.3 Referenztypen als Parameter

Nattirlich koénnen auch komplette Objekte als Parameter deklariert werden. Aller-
dings passiert dann etwas fundamental anderes als beim Arbeiten mit primitiven Da-
tentypen. Um die unterschiedliche Wirkung zu demonstrieren, modifizieren wir die
obigen Programme. Zunichst wird die Klasse PunktO1 erginzt um die Methode ad-
dieren. Diese Methode erwartet als Parameter ein Objekt der Klasse Punkt02.

Programm Punkt02: Die Klasse enthalt zusatzlich die Methode addieren

public class Punkt02 {
private int x;
private int vy;

void speichern(int a, int b) {
X = a;
y = b;
}
void pruef () {
if (x <0 || v < 0)
System.out.println ("Der Punkt liegt ausserhalb");

244

10.6 Parameter tibergeben und empfangen

else
System.out.println ("Der Punkt liegt im Fenster");

}
void addieren (Punkt02 p2) ({

X = X + p2.x;
y =y t p2.y;

}

Danach dndern wir das Clientprogramm PunktTestO1 so, dass eine zweite Instanz
erzeugt wird und diese als Parameter an die additions-Methode tibergeben wird.

Programm PunktTest02: Methode addieren benutzen

public class PunktTest02 {
public static void main(String[] args) {

int a = 5;
int b = 3;
Punkt02 p = new Punkt02();
p.speichern(a, b);
Punkt02 p2 = new PunktO02();
p.addieren (p2);

}
Ubung zum Programm PunktTest02
Erginzen Sie die Methode addieren in der Klasse Position02 java um folgende An-
weisung:
p2.x = —-17;

Dadurch wird ein Element des p2-Objekts geidndert. Dabei interessiert uns besonders
die Frage, ob diese Anderung auch im Originalobjekt durchgefiihrt wurde.

Priifen Sie deshalb im Programm PositionTest02 java, ob diese Anderung hier wirk-
sam geworden ist (durch Aufruf der Methode pruef fir dieses Objekt):

p2.pruef ();

Es muss die Information kommen "Der Punkt liegt ausserhalb". Damit ist folgendes
bewiesen: Bei der Ubergabe von Instanzen als Parameter wird die Referenzvariable
kopiert, und diese Kopie wird an die aufgerufene Methode tibertragen. Damit hat
die Methode die Originaladresse der Instanz. Jede Manipulation an diesem Objekt
verdandert somit das Originalobjekt.

245

10 Methoden erkldren, implementieren und benuizen

Zusammenfassung der Regeln beim "Call by Value"

e Java arbeitet bei der Parameteribergabe grundsitzlich mit "Call by value". Das
heifdt, die Parameter werden kopiert und diese Kopie erhilt dann die aufgerufe-
ne Methode.

e Allerdings ist die Wirkung dieses Mechanismus total unterschiedlich, je nach-
dem, ob primitive Variable oder Referenzvariable tibertragen werden:

e Bei primitiven Variablen haben Anderungen der Kopie keine Auswirkungen
auf das Original.

® Dbei Referenzvaraiablen verweisen die Kopie der Referenzvariablen und das
Original auf ein und dasselbe Objekt. Werden also Anderungen vorgenom-
men, wird immer das Originalobjekt verdndert (es existiert ja auch keine Ko-
pie).

10.6.4 Gibt es in Java Default-Parameter?

In Java gibt es nicht die Moglichkeit, einen Parameterwert mit einem Defaultwert zu
belegen. Eine mogliche Losung fiir diese Aufgabenstellung (durch Uberladen der
Methoden) zeigt das folgende Programm.

Programm Leerzeilen02: Methoden uiberladen, damit Defaultwert moglich

public class Leerzeilen02 {
public static void main (String[] args) {
leerzeilen (05);
leerzeilen();

}
static void leerzeilen (int anzahl) {
for (int i = 1; i<anzahl; 1i++) {
System.out.println ("\n");
}
}

static void leerzeilen() {
int defaultanzahl= 2;
for (int i = 1; i<defaultanzahl; i++) {
System.out.println ("\n");

}

Wenn beim Methodenaufruf kein Parameter tibergeben wird, dann arbeitet die Me-
thode leerzeilen() mit dem Default-Wert 2 (denn die JVM wihlt automatisch die pas-
sende Methode aus).

246

10.6 Parameter tibergeben und empfangen

10.6.5 Missen Parametertypen beim Methodenaufruf exakt tibereinstimmen?

Missen die Datentypen der aktuellen Parameter exakt ibereinstimmen mit den Ty-
pen der formalen Parameter. Nein, aber sie missen "(zuweisungs-) kompatibel" sein,
d.h. sie missen ohne explizites Casting (siche Kapitel 15) umwandelbar sein in den
gewlnschten Typ. Eine problemlose Umwandlung von Datentypen ist immer dann
moglich, wenn dadurch kein Informationsverlust auftritt.

Programm Leerzeilen03: Ubergabe von short-Typ, Empfang als int-Typ

public class Leerzeilen03 {

public static void main (String[] args) {
short zahl = 5;
leerzeilen(zahl);

}

static void leerzeilen (int anzahl) {

for (int 1 = 1; i<anzahl; i++) {
System.out.println("\n");

}

Der Aufruf der Methode leerzeilen erfolgt mit dem aktuellen Parameter zahl. Dieser
ist zwar vom Typ short - und erwartet wird der Typ int. Da aber short zuweisungs-
vertriglich ist, wird stillschweigend eine Typumwandlung vorgenommen und die
Methode ausgefiihrt.

10.6.6 Aktuelle Parameter konnen auch in einem Ausdruck stehen

Beim Aufruf einer Methode konnen die aktuellen Parameter als Variable, als Literal
oder als Ausdruck angegeben werden. Das nachfolgende Programm demonstriert,
wie die Parameteriibergabe als Ausdruck codiert werden kann.

Programm Leerzeilen04: Parameter in Form eines Ausdrucks

public class Leerzeilen04 {

public static void main (String[] args) {
int zahl = 5;
leerzeilen(zahl / 2 + 1);

}

static void leerzeilen (int anzahl) {

for (int 1 = 1; i<anzahl; i++) {
System.out.println("\n");

247

10 Methoden erkldren, implementieren und benuizen

10.6.7 Variable Parameterliste

Nicht immer ist es moglich, bei der Deklaration einer Methode die genaue Anzahl
der zu tbergebenen Parameter anzugeben. Deshalb gibt es die Moglichkeit, eine va-
riable Anzahl zu deklarieren. Dies geschieht durch Codieren von 3 Punkten ... zwi-
schen dem Typ und dem Identifier.

Programm VarArgs01: Variable Anzahl Parameter empfangen

public class VarArgs01l {
public static void main (String[] args) {
ausgabe ("Roman", "Erwin");
}
static void ausgabe (String ... namen) ({
for (String n : namen) {
System.out.println("Hallo " + n);

10.7 Riickgabewert

Beim Aufruf von Methoden ist zu unterscheiden zwischen Methoden, die einen
Ruckgabewert liefern, und Methoden, die lediglich eine Aufgabe erfiillen, aber kein
Ergebnis an den Aufrufer zuriickgeben. Manchmal werden diese beiden unterschied-
lichen Arten von Unterprogrammen auch als Funktion (mit Rickgabewert) und Pro-
zedur (ohne Ruckgabewert) bezeichnet. In Java gibt es diese Unterscheidung nicht,
beide Arten sind als Methoden zu implementieren.

Zunichst muss deutlich gesagt werden, dass maximal ein Ergebniswert an den Auf-
rufer tbertragen werden kann. Mehr als ein Wert ist nicht moglich. Dies ist deswe-
gen aber kein wirkliches Problem, weil doch mehrere Variablen zusammengefasst
werden konnen, z.B. als Array, als Objekt oder als eine Collection von Instanzen.

Wenn die aufgerufene Methode ein Ergebnis an den Aufrufer liefert, so muss dies
bei der Deklaration der Methode festgelegt werden. Im Kopf der Methode steht der
Datentyp des Ergebnisses, und dann muss die Implementierung auch mit dem
Schlisselwort return das Ergebnis liefern. Gleichzeitig wird die Methode sofort ver-
lassen, wenn return ausgefiihrt wird. Innerhalb einer Methode kann return mehrfach
(alternativ) codiert werden

Der Aufruf einer Methode mit Riickgabewert erfolgt durch:
ergebnis = objekt.methode (parameter);

Hierzu ein Beispiel.

248

10.7 Riickgabewert

Programm Potenz01 : Ergebnisriickgabe

public class Potenz01l {
public static void main(String[] args) {
int a = 5;
int b = 3;
System.out.println (potenzieren(a,b));
}
static int potenzieren(int zl, int z2) {
int erg = zl;
if (z2 == 0)
return 1;
for (; z2>1; z2--) {
erg = erg * zl;
}

return erg;

}

Dieses Programm hat eine static-Methode zum Errechnen der Potenz zweier Zahlen,
wobei die erste Ganzzahl als Basis und die zweite als Exponent zur Basis 10 inter-
pretiert wird. In der Kopfzeile der Methode potenzieren ist als Ergebnistyp int einge-
tragen. Das bedeutet, dass der Compiler tberprift, dass auch wirklich ein Ergebnis
mit return geliefert wird und dass dieser Wert auch wirklich vom Typ int ist.

Es gibt auch typlose Methoden, das sind Methoden, die kein Ergebnis liefern. Diese
werden bei der Deklaration durch das Schlisselwort void gekennzeichnet anstelle
des Riickgabetyps. Dies ist der Hinweis, dass der Aufrufer "nichts zu erwarten hat".
Enthilt die Deklaration einer Methode nicht das Schlisselwort void, so muss mit
return ein Ergebnis zuriickgegeben werden. Auch dies wird vom Compiler tber-
pruft.

Fazit: Hat eine Methode einen Rickgabetyp, so muss hinter Schliisselwort return ein
Wert dieses Typs stehen; enthilt die Deklaration dagegen das Schlisselwort void, so
darf kein Returnwert vorhanden sein. Innerhalb einer Methode wird der Ausdruck
hinter dem Schlisselwort return kopiert und an den Aufrufer geliefert.

Typanpassung bei dem Returnwert

Fir den Datentyp des Returnwerts gelten die gleichen Regeln wie beim Arbeiten mit
Parametern:

e Es konnen sowohl primitive Datentypen als auch Referenztypen tbergeben
werden. Bei Referenztypen wird die Referenz an den Aufrufer ibergeben, so
dass dieser mit dem Originalobjekt arbeitet.

e Grundsitzlich muss der Wert dem definierten Typ entsprechen. Bei zuweisungs-
vertriaglichen Typen findet eine automatische Anpassung statt.

249

10 Methoden erkldren, implementieren und benutzen

Das folgende Programm ermittelt aus zwei ganzzahligen Werten den groften ge-
meinsamen Teiler. Dabei weichen die Datentypen der formalen Parameter von den
Typen der aktuellen Parameter ab, und auch der Returntyp ist anders deklariert als
der Wert der Ergebnisvariablen. Wichtig dabei ist, dass die Typen zuweisungsver-
traglich sind.

Programm Return01: Zuweisungsvertrigliche Datentypen

public class Return01l {

public static void main (String[] args) {
short zahll = 15;
short zahl2 = 48;
System.out.println(teiler (zahll, zahl2));

}

static int teiler(int zl, int z2) {
int rest;

do {
rest = z1 % z2;
z1 = z2;
z2 = rest;

} while (rest > 0);
return zl1;

}

Hinter return kann ein Ausdruck stehen. Der Typ dieses Ausdrucks bestimmt den
Rickgabetyp der Methode.

Programm Return02: Ein Ausdruck als Riickgabewert

public class Return02 {
public static void main (String[] args) {
System.out.println (ausgabe ("Erwin"));
}
static String ausgabe (String name) {
return "Hallo " + name;

}

Der Ausdruck hinter dem Schlisselwort return kann auch in runde Klammern einge-
fasst werden. AuBerdem ist es moglich, das Schlisselwort return ohne irgendeinen
Wert zu benutzen, dann wird die Steuerung an den Aufrufer zurtickgegeben, ohne
einen Ergebnistyp zu liefern. Voraussetzung dafiir ist natiirlich, dass im Kopf der Me-
thode anstelle des Riickgabetyps void eingetragen ist.

250

10.8 Zusammenfassung

10.8 Zusammenfassung

Methoden losen eigenstindige Teilaufgaben innerhalb einer Klasse. Sie haben einen
Namen, damit sie unter diesem Namen aufgerufen werden konnen. Je nach Einsatz
und Betrachtungsweise werden sie eingesetzt,

e um ein komplexes Programm zu zerlegen in tiberschaubare kleine Einheiten (=
das ist die Sichtweise der Strukturierte Programmierung),

e um wiederkehrende Programmteile einmal zu programmieren und diese dann
von verschiedenen Stellen aufzurufen (= Wiederverwendbarkeit von Code),

e um festzulegen, welche Operationen mit einem benutzerdefinierten Datentyp
(also fiir die Felder einer Klasse) gemacht werden konnen (= das ist die objekt-
orientierte Sichtweise),

e um die Sprache zu erweitern um einen neuen Command (= Sichtweise der pro-
zeduralen Programmierung).

Eine Methode kann Parameter empfangen und/oder ein Ergebnis liefern. Die Argu-
mente werden als Kopie des Wertes tibergeben ("call by value"). Das bedeutet fur
einfache Variablen, dass der Datenwert transportiert wird; fir Referenzvariablen be-
deutet dies die Ubergabe der Referenz. Wichtige Konsequenz dieses Mechanismus:
Die aufgerufene Methode arbeitet bei einfachen Variablen mit der Datenkopie und
bei Instanzen mit dem Originalobjekt.

Bei einer Methode, die kein Ergebnis liefert, muss anstelle des Returntyps das
Schlisselwort void angegeben werden. Fehlt dieses Schliisselwort, so muss innerhalb
der Methode mit return ein Wert geliefert werden.

Methoden sind immer als Teil einer Klasse definiert. Dabei werden Klassen-
Methoden und Instanz-Methoden unterschieden. Klassen-Methoden (definiert mit
dem Schliisselwort static) sind allgemeine Dienstleistungen der Klasse, wihrend In-
stanz-Methoden nur auf vorher erzeugte Instanzen dieser Klasse operieren. Durch
das Senden von Messages zu diesem Objekt werden die Methoden aktiviert.

Der Aufbau einer Nachricht zum Methodenaufruf ist unterschiedlich. Innerhalb ei-
ner Klasse werden die Methoden aufgerufen mit ihrem Bezeichner. Auferhalb der
Klasse erfolgt der Aufruf durch "Qualifizierung" dieses Bezeichners,

- bei Klassenmethoden durch: klassenname.methodenname
- bei Instanzmethoden durch: objektname.methodenname

In einer Klasse muss die Signatur einer Methode eindeutig ("unique") sein. Es darf
keine zwei Methoden mit demselben Namen und derselben Parameterliste geben,
weil dann die JVM kein Unterscheidungskriterium hat bei der Auswahl der richtigen
Methode. Allerdings gibt es die Technik des Uberladens ("overload"), bei der es in
einer Klasse mehrere Methoden mit gleichem Namen gibt, die sich jedoch unter-
scheiden mussen durch die Anzahl oder Art der Parameter.

251

11 Klassen beschreiben und benutzen

Klassen beschreiben und benutzen

Objektorientierte Programmierung ist vor allem gekennzeichnet durch den Einsatz
von Klassen als Schablonen fir die Instanzerzeugung. In Klassen werden die Eigen-
schaften (Attribute) und Fihigkeiten (Methoden) von gleichartigen Objekten einma-
lig beschrieben und dann beliebig oft benutzt, um konkrete Einzelfille zu bearbei-
ten. Dazu wird zunichst eine Instanz erzeugt (mit dem Schlisselwort new) und dann
konnen die Methoden dieser Klasse fiir diese Instanz aufgerufen werden.

In diesem Kapitel lernen Sie,

e wie eine Klassenbeschreibung aufgebaut ist und welche Unterschiede bestehen
zwischen Klassenelementen und Instanzelementen;

e wie eine Klasse benutzt wird, um daraus Instanzen zu erzeugen und zu manipu-
lieren;

e welche Bedeutung der Konstruktor hat und in welcher Reihenfolge die Initiali-
sierung der Membervariablen erfolgt;

e dass es unterschiedliche Moglichkeiten gibt, wie Klassen sich gegenseitig benut-
zen und welche Bedeutung dabei die Vererbungstechnik hat;

e was man unter override von Methoden versteht;

e wann die Schlisselworter this und super benotigt werden;

e dass es weitere Sprachmittel gibt fiir die Beschreibung von Klassentypen, z.B.
interface und enum.

11.1 Was steht in einer Klassenbeschreibung?

Eine Klasse enthilt die Beschreibung fiir eine Menge von Objekten. Dazu werden
die Daten (die "Felder") deklariert und der Ausfiihrungscode zur Verarbeitung dieser
Daten codiert. Eine Klasse hat in Java folgenden Aufbau:

class identifier {

// Class-Body, bestehend aus
// Konstruktoren
// Instanz-/Klassen-Variablen und
// Instanz-/Klassen-Methoden

252

11.1 Was stebt in einer Klassenbeschreibung?

Die Klasse besteht aus zwei Teilen, der Klassendeklaration und dem Klassenrumpf.
Die Deklaration beginnt mit dem Schliisselwort class. Danach folgt der Name der
Klasse. Die Implementierung der Klasse, der Rumpf (body), ist in geschweiften
Klammern zusammengefasst. Dort stehen die Elemente. Fiir die grafische Darstellung
einer Klasse gibt es mehrere Moglichkeiten. Eine Variante ist die Darstellung als
Rechteck (siehe hierzu auch Kapitel 12: UML Unified Modeling Language).

Klasse <name>

Instanz-Variablen

Klassen-Variablen

Instanz-Methoden

Klassen-Methoden

Abb. 11.1: Darstellung von Aufbau und Inhalt einer Klasse als UML-Diagramm

Das folgende Programm enthilt eine Klassenbeschreibung fiir die Verarbeitung von
Daten der Geschiftspartner einer Firma. Die Klasse ist sehr einfach und hat die Auf-
gabe, Daten zu speichern und zu verarbeiten, die sowohl fiir Kunden als auch Lie-
feranten bendtigt werden.

Die Klasse enthilt als Attribute (Felder, Variablen)

name (= fur das Speichern des Partnernamens)
nr (= fir das Speichern der Identifikationsnummer.

Als Verarbeitungsmethoden fiir diese Daten sollen programmiert werden:

neu (= fur das Anlegen eines neuen Geschiftspartners)
ausgeben (= fur die Anzeige der Daten eines bestimmten Geschiftspartners)
seliName (= fur die Moglichkeit, den Namen zu dndern).

Programm Partner01: Klassenbeschreibung (ohne main-Methode)

class Partner01 {
private int nr;
private String name;

void neu(int nrl, String namel) {
nr = nrl;
name = namel;

}

void ausgeben () {

253

11 Klassen beschreiben und benutzen

System.out.println(nr + " " + name);
}
void setName (String namel) {
name = namel;
}
}

Im Body werden die Elemente der Klasse (die "Member") definiert. Dazu gehoren
die Felder (Attribute) und die Methoden. Die Felder sind mit dem "access modifier"
private deklariert, damit wird festgelegt, dass sie nur von Methoden dieser Klasse ge-
lesen oder verindert werden konnen.

Die Reihenfolge der Elemente im Quelltext spielt keine Rolle. Die Felder kénnten
auch am Ende des Bodys aufgefiihrt werden, und auch die Reihenfolge der Metho-
den spielt keine Rolle - sie werden eh nur dann ausgefiihrt, wenn sie explizit aufge-
rufen werden.

Ubung zum Programm Partner01

Editieren und compilieren Sie das Programm. Die Umwandlung muss fehlerfrei mog-
lich sein. Probieren Sie, ob dies Programm ausgefiihrt werden kann. Welche Fehler-
meldung kommt beim Starten?

Doughnut-Diagramm

Eine andere Art der Darstellung von Klassen, unabhingig von UML, ist das Kreisdia-
gramm (doughnut-diagram; donut, so heiffen fettige englische, ringférmige Kuchen-
stiicke). Die Klasse PartnerO1 wird als Doughnut-Diagramm wie folgt dargestellt:

Abb. 11.2: Klasse Partner0O1 als Doughnut-Diagramm

Diese Darstellung visualisiert die Kapselung der Daten: wie in einer Nuss sind die
Attribute nr und name geschiitzt durch die Schale. Ein Zugriff darauf ist nur da-

254

11.2 Arbeiten mit Instanzen der Klassen

durch moglich, dass ein Objekt erzeugt wird und dann eine Nachricht an das Objekt
gesendet wird. Als mogliche Nachrichten sind vorgesehen: ausgeben, neu und set-
Name. Ein direktes Lesen oder ein Andern der Attribute ohne Aufruf dieser Metho-
den ist nicht moglich.

Bewertung dieser Notation

Es demonstriert eindrucksvoll die Kapselung der privaten Attribute. Diese befinden
sich innerhalb des Kekses und auf sie kann nur zugegriffen werden tber die Metho-
den, die sie kapseln. Deshalb ist diese grafische Notation sehr gut geeignet fiir den
Einstieg in die Denkweise der objektorientierten Programmierung. Nicht einsetzbar
ist sie fir die Darstellung von komplexen Zugriffsrechten oder fir die Darstellung
der Vererbungshierarchie.

11.2 Arbeiten mit Instanzen der Klassen
Was ist eine Instanz?

Die objektorientierte Programmierung kennt als zentralen Begriff das "Objekt". Lei-
der ist der Begriff nicht eindeutig definiert: meistens ist damit die konkrete Auspri-
gung einer Klasse (also eine "Instanz") gemeint; in manchen Zusammenhingen wird
der Begriff aber auch als Synonym fiir eine Klasse benutzt. Deswegen ist es besser,
entweder den Begriff "Klasse" zu benutzen, wenn die allgemeine Beschreibung einer
Gruppe von Variablen und die damit verbundenen Methoden gemeint ist, oder den
Begriff "Instanz" zu verwenden, wenn damit ein konkreter Einzelfall gemeint ist, der
im Arbeitsspeicher zur Laufzeit eines Programms mit new erzeugt worden ist. Eine
Instanz belegt Speicherplatz, der mit den individuellen Werten dieses Exemplars ge-
falle ist.

Instanzen werden zur Laufzeit eines Programms erzeugt durch:

Klassenname instanzname;
instanzname = new Klassenname () ;

Beispiel fir das Erzeugen einer Instanz von der Klasse Partner:
Partner0l gl = new Partner01();

Die so erzeugte Instanz g7 kann benutzt werden, um mit den Attributen und den
Methoden der Klasse zu arbeiten. Der Aufruf von Methoden geschieht durch das
Senden von Nachrichten in der Form

instanzname.methodenname (parameter) ;
Beispiel fir das Senden einer Nachricht:
gl.ausgeben() ;

Die nachfolgende Klasse enthilt ein ausfihrbares Programm. Sie benutzt die Klasse
PartnerO1 als Schablone zum Erzeugen eines konkreten Objekts, um anschliefend
damit zu arbeiten.

255

11 Klassen beschreiben und benutzen

Programm PartnerTest01: Eine Instanz erzeugen und Nachrichten schicken

class PartnerTest01l {
public static void main (String[] args) {
Partner0l gl = new Partner01();
gl.neu (4700, "Meyer");
gl.ausgeben() ;

}
Ubung zum Programm PartnerTest01

Uberpriifen Sie, welche Fehlermeldung bei der Umwandlung ausgegeben wird,
wenn die Parameter (4700, Meyer) in umgekehrter Reihenfolge tibergeben werden.

Paket:
PartnerTestO1.class benutzt PartnerO1.class
Client (Servicenehmer) Serviceprovider

Abb. 11.3: Beziehung zwischen den beiden Klassen

Klassen sind das fundamentale Strukturelement in Java. Alle Methoden und Datende-
finitionen stehen in Klassen. Sie sind die kleinste Einheit, die umgewandelt werden
kann. Aber die Klassen werden organisiert in Paketen (siche Kapitel 16). Beide Klas-
sendateien unseres Beispiels gehoren zu einem Package, und beide missen im sel-
ben Verzeichnis stehen. Obwohl keine Paketzugehorigkeit explizit angegeben wur-
de, gehoren sie zu einem (namenlosen) Default-Paket. Innerhalb eines Pakets ist je-
de Methode berechtigt, auf jede andere Methode oder auf jedes andere Datenfeld
einer Klasse zuzugreifen.

Das folgende Beispielprogramm Partner02. java realisiert dieselbe Aufgabenstellung
wie die Programme PartnerO1 und PartnerTestO1, nur dass jetzt die beiden Pro-
gramme zusammen gefasst sind in einer Quelltextdatei (= eine Umwandlungsein-
heit). Das Programm Partner02 enthilt also nicht nur die Beschreibung der Klasse
(die Schablone), sondern es ist auch gleichzeitig ein ausfihrbares Programm, das
diese Schablone benutzt, denn es enthilt die Methode main. In dieser main-
Methode wird mit new eine Instanz erstellt von der eigenen Klasse. Die Instanz hat
den Bezeichner g7 - und mit Hilfe dieses Bezeichners kann das Objekt bearbeitet
werden.

256

11.3 Mitgelieferte Klasse benutzen

Programm Pariner02: Klasse mit Elementen und einer main-Methode

public class Partner02 {

public static void main (String[] args) {
Partner02 gl = new Partner02();
gl.neu (4700, "Meyer");
gl.ausgeben() ;

}

private int nr;

private String name;

void neu(int nrl, String namel) {

nr = nrl;
name = namel;
}
void ausgeben () {
System.out.println(nr + " " + name);
}
void setName (String namel) {
name = namel;
}

}
Ubung zum Programm Partner02

Erginzen Sie das Programm Partner02 so, dass eine zweite Instanz erzeugt wird.
Der Instanzname soll sein: g2. Die Werte sind 4001 fir die Kundennummer und
"Schulz" fiir den Namen. Danach geben Sie bitte zuerst die Instanz g2 und danach
die Instanz g1 am Bildschirm aus.

11.3 Mitgelieferte Klasse benutzen

Das JDK von Sun (Java 2 Standard Edition) enthilt eine Fulle von eingebauten Klas-
sen. Diese sind ausfihrlich dokumentiert in der mitgelieferten API-Dokumentation.

Arbeiten mit JOE: Aus dem JOE-Editor heraus ist die Dokumentation direkt tiber
einen Menupunkt erreichbar: durch ? (Hilfe) und dann unter "JDK Dokumentation”.

Die API-Sperzifikation ist organisiert nach Packages. Entweder wihlt man dann auf
der linken Seite gezielt ein Paket aus und lisst sich alle Klassen in diesem Paket an-
zeigen oder man bekommt alle Packages mit allen Klassen, alphabetisch sortiert, an-
gezeigt. Die Standard Edition 5.0 enthidlt etwa 5000 verschiedene Klassen, jede ein-
zelne wird dokumentiert mit ihrem vollen Namen, ihrer Paketzugehorigkeit, ihrer
Einordnung in die Vererbungshierarchie und mit allen Elementen, die diese Klasse
enthilt. Wir werden in den folgenden Abschnitten drei dieser mitgelieferten Klassen
benutzen und dabei auch auf die Dokumentation zurtckgreifen.

257

11 Klassen beschreiben und benutzen

11.3.1 Beispiel 1: Arbeiten mit der Klasse GregorianCalendar

Allein fiir das Arbeiten mit Datum und Uhrzeit gibt es zahlreiche vorgefertigte Lo-
sungen, abhingig von Zeitzonen und lokalen Besonderheiten. Sie sind Teil des
Standard-APIL. Da es weltweit unterschiedliche Kalender gibt, die u.a. abhingig sind
vom Beginn der Zeitrechnung, haben die Java-Entwickler eine Spezialisierung einge-
fihrt, nimlich den GregorianCalendar. Die Dokumentation enthilt dafiir eine aus-
fihrliche Beschreibung. Hier ein Ausschnitt:

java.util class GregorianCalendar

GregorianCalendar is a concrete subclass of calendar and provides the
standard calendar system used by most of the world.

258

11.3 Mitgelieferte Klasse benutzen

Methods inherited from class java.util.Calendar:
int get (int field)
Returns the value of the given calendar field.

Abb.11.4: API-Dokumentation der Klasse GregorianCalendar

Die Elemente der Klasse werden in drei Abschnitten erldutert:
Field Summary

dokumentiert die Deklaration der Instanz- und Klassenvariablen, z.B. int AD oder
BC. Die Bedeutung der Elemente kann man aus dem Kurztext erfahren oder - etwas
ausfiihrlicher - indem man auf den Namen klickt, im Abschnitt "Field Details".

Construktor Summary

dokumentiert die Konstruktoren dieser Klasse, indem der Methodenkopf beschrie-
ben wird, z.B. GregorianCalendar(). Zusitzlich gibt es eine Kurzbeschreibung oder,
durch Anklicken des Konstruktornamens, Details zu dem Konstruktor.

Method Summary

Der dritte wichtige Abschnitt enthilt die Beschreibung der Methoden dieser Klasse.
Zunichst wird jede Methode mit ihrem Methodenkopf und einer Kurzbeschreibung
aufgefiihrt. Der Methodenkopf enthilt die Signatur, die Parameternamen und den
Datentyp des Rickgabewertes. Beispiel:

void add(int field, int amount)

Der Name dieser Methode ist add. Sie erwartet zwei Parameter vom Datentyp int.
Die Werte daftr stehen innerhalb der Methode unter den Bezeichnern field und a-
mount zur Verfugung. Der Aufrufer dieser Methode bekommt kein Ergebnis zurick-
geliefert. Durch Anklicken des Methodennamens bekommt man Details zur Methode
beschrieben.

Programm Gregorian01: Anwendungsbeispiel (Client) fiir die Klasse Grego-
rianCalendar

import Jjava.util.*;
public class GregorianO01l {
public static void main (String[] args) {
GregorianCalendar heute = new GregorianCalendar();
System.out.println (heute.get (Calendar.DAY_OF_MONTH)) ;
System.out.println (heute.get (Calendar.MONTH)) ;
System.out.println (heute.get (Calendar.YEAR));

259

11 Klassen beschreiben und benutzen

Ubung zum Programm Gregorian01

Andern Sie das Programm so, dass auch die Uhrzeit ausgegeben wird. Dazu muss
ebenfalls die Methode get aufgerufen werden, nun mit den folgenden eingebauten
Konstanten als Parameter: Calendar.HOUR, Calendar. MINUTE, Calendar.SECOND.

11.3.2 Beispiel 2: Klasse Point

Die Standard-Klasse Point ist Teil des mitgelieferten Pakets java.awt. Sie enthilt die
beiden Felder x und vy, beide vom Datentyp int. Als Methoden werden von ihr u.a.
zur Verfligung gestellt: equals und toString.

Programm Punkt01: Anwendungsbeispiel fiir die Klasse java.awt.Point
import Jjava.awt.*;
public class Punkt01l {
public static void main (String[] args) {
Point p = new Point (5,3);
System.out.println (p);

}
Die Ausgabe sieht wie folgt aus: java.awt.Point [x=5,y=3]

Zunichst wird der volle Name der Klasse und dann Name und Inhalt der Felder
ausgegeben. Wie kommt es zu dieser ubersichtlichen Darstellung? Dafiir sorgt ein
eingebauter Mechanismus der Methode print/n. Diese ruft automatisch die Methode
toString auf. Und genau die sorgt dafiir, dass die Run-Time-Class der Instanz und der
Inhalt der Membervariablen als String ausgegeben werden.

Ubungen zum Programm Punkt01

Ubung 1: Bitte priifen Sie anhand der API-Dokumentation die Beschreibung der
Klasse Point, und dort insbesondere die Methoden equals und toString.

Ubung 2: Modifizieren Sie das Programm so, dass eine zweite Instanz von Point er-
stellt wird und dass durch Aufruf einer geeigneten Methode festgestellt wird, ob die
beiden Punkte gleich sind oder nicht.

Losungsvorschlag

import Jjava.awt.*;
public class Punkt02 {
public static void main (String[] args) {
Point pl = new Point (5,3);
Point p2 = new Point (4,5);
System.out.println(pl.equals (p2));

260

11.3 Mitgelieferte Klasse benutzen

Ubung zum Programm Punkt02

Ubung 1: Verschieben Sie den Punkt p1 auf x = 10 und y = 15. Benutzen Sie dazu

die Methode move. Geben Sie die neuen Objektwerte aus. Benutzen Sie dazu die
Methode getLocation.

Ubung 2: Erhohen Sie den x-Wert um 5 und den y-Wert um 20. Benutzen Sie dazu
die Methode translate.

11.3.3 Beispiel 3: Klasse Color

Auch die Klasse Color ist Teil des java.awt-Packages. Sie kapselt Farbangaben nach
dem RGB-Farbmodell.

Jede Farbe wird dabei aus einer Mischung von Rot, Griin und Blau beschrieben,
wobei jede Farbe einen Anteil von 0 - 255 haben kann (die Mischung kann auch
prozentual als float-Wert zwischen 0.0 und 1.0 angegeben werden). So ergeben z.B.
die Werte 255 jeweils fiir Rot und Griin, kombiniert mit dem Wert 0 fir Blau, die
Farbe gelb.

Wir wollen ein Programm erstellen, das mehrere Color-Objekte mit unterschiedli-
chen verschiedenen Farbeinstellungen erstellt. Diese Objekte konnten dann bei-
spielsweise fiir das Arbeiten mit grafischen Benutzeroberflichen genutzt werden.

Programm Farben01: Die Klasse java.awt.Color

import Java.awt.*;
class Farben01l {
public static void main (String[] args) {

Color cl = new Color(255,0,0);
Color c2 = cl.darker();
System.out.println ("Farbe 1 " + cl);
System.out.println ("Farbe 2 " + c2);
System.out.println(cl.getRed()) ;

}

Das erste Statement in der main-Methode erzeugt eine Instanz der Klasse Color. Da-
bei werden dem Konstruktor die drei Farbwerte fir rot, griin und blau tibergeben.

Ubungen zum Programm Farben01

Ubung 1: Kliren Sie anhand der API-Dokumentation die Arbeitweise der Methoden
darker und getRed.

Ubung 2: Instanziieren Sie ein drittes Colorobjekt fiir die Farbe gelb und geben Sie
die Objektwerte mit println aus.

261

11 Klassen beschreiben und benutzen

11.4 Eigene Klassen erstellen

Als Synonym fir eine Klasse kann der Begriff "selbst erstellter Datentyp" hilfreich
sein. Die Klasse beschreibt den Aufbau von Speicherplitzen (Felder) und die dafir
moglichen Operationen (Methoden) - genau so wie es bei den eingebauten einfa-
chen Datentypen auch der Fall ist. Wenn die in der Klasse deklarierten Speicherplit-
ze im Arbeitsspeicher angelegt und mit Werten gefullt werden sollen, dann geschiecht
dies durch das Erzeugen von Instanzen - mit dem Schlisselwort new. Wir werden
nun eigene Klassen beschreiben und damit arbeiten.

11.4.1 Beispiel fiir ein "Hallo Welt"- Programm als separate Klasse

Programm HalloO1I: Eine ganz einfache Klasse

public class HalloOl {
private String text = new String("Hallo Welt");
void ausgeben () {
System.out.print ("Die Variable text enthaelt: ");
System.out.println (text);

}

Diese Klasse kann eine String-Variable speichern und bei Bedarf (durch Aufruf der
Methode ausgebenn) am Konsolbildschirm wieder ausgeben. Nur zur Erinnerung:
String ist ebenfalls eine Klasse. Sie wird als Teil des Standard-API mitgeliefert.

Ubung zum Programm Hallo01

Wandeln Sie das Programm um. Dies muss fehlerfrei moglich sein. Versuchen Sie
danach, das Programm zu starten. Es kommt die Meldung "NoSuchMethodError:
main".

Um den Service der Klasse HalloO1 nutzen zu konnen, bendtigen wir ein ausfiithrba-
res Programm, das eine Instanz erzeugt und eine Nachricht an diese Instanz schickt.

Programm HalloClient01 : Benutzen der selbst erstellten Klasse HalloO1

public class HalloClientO01l {
public static void main(String[] args) {
Hallo0l k = new HalloO1l();
k.ausgeben () ;

}
Ubungen zum Programm HalloClien01

Ubung 1: Wandeln Sie dieses Programm um. Eine mogliche Fehlerquelle ist, dass
bei der Umwandlung die Klassenbeschreibung von HalloO1 nicht im Zugriff ist. Stel-

262

11.4 Eigene Klassen erstellen

len Sie deshalb sicher, dass sich beide Programme in demselben Verzeichnis befin-
den. (Hinweis flr Fortgeschrittene: Stehen die Dateien in unterschiedlichen Ordnern,
so muss uber die Classpath-Variable der Suchpfad entsprechend erginzt werden.)

Ubung 2: Machen Sie folgenden Versuch: Loschen Sie die Class-Datei Hal-
loO1class, (nicht die Quelldatei .java)) und wandeln Sie das Programm Hallo-
Client01 java erneut um. Beantworten Sie folgende Fragen:

e Ist die Umwandlung fehlerfrei moglich, obwohl die Klasse, die benutzt werden
soll, nicht im Java-Byteformat vorliegt?

® Wenn ja, prifen Sie, ob diese Class-File etwa automatisch neu erstellt worden
ist.

Ubung 3: Versuchen Sie danach, die beiden Quell-Programme (HalloO1 java und
HalloClient01 java) in einer Quelltextdatei zusammen zu fassen. Eine Frage, die da-
bei geklirt werden muss, ist: Wie muss der Name der Quellendatei lauten?

Losungshinweise

® Wenn in einer Umwandlungseinheit mehrere Klassen stehen, so werden sie ge-
meinsam umgewandelt. Durch die Compilierung wird pro Klasse eine separate
Class-File erzeugt; nur eine davon kann eine Java-Applikation sein, die zur Aus-
fuhrung aufgerufen werden kann. Und das ist auch die Klasse, die den Namen
der Umwandlungseinheit bestimmt.

e Wenn in einer Umwandlungseinheit mehr als eine Klasse stehen, darf nur eine
davon das Schlusselwort public haben.

Natiirlich mussen auch zur Ausfiihrungszeit alle Klassen im Zugriff sein. Gestartet
wird aber zunichst nur die Hauptklasse, alle anderen werden erst bei Bedarf in den
Arbeitsspeicher tbertragen.

11.42 Beispiel zum Priifen einer Ganzzahl auf gerade/ungerade

Die Aufgabe fir das folgende Programm lautet: Bitte erstellen Sie eine Klasse Prue-
fen01 java. Diese soll die Fihigkeit haben, einen Integer-Wert zu speichern, und sie
soll die Methode pruefint enthalten, in der gepriift wird, ob dieser Integerwert eine
gerade oder eine ungerade Zahl ist. Die Methode liefert true oder false an den Auf-
rufer zuriick.

Der Wert der int-Variablen wird als Initialwert beim Erzeugen der Instanz vergeben.

203

11 Klassen beschreiben und benutzen

Programm Pruefen01: Klasse, die einen Integerwert speichert und iiberpriift

class Pruefen01 {
private int zahl = 5;
boolean prueflInt () {
if ((zahl % 2) == 0)
return true;
else
return false;

}

Ubung zum Programm Pruefen01

Erstellen Sie ein ausfithrbares Programm, das eine Instanz von Pruefen01 erstellt und
an diese Instanz eine Nachricht schickt. Abhingig vom Ergebnis dieser Nachricht
wird der Bediener informiert dartiber, ob die Zahl gerade oder ungerade ist.

Losungsvorschlag

public class PruefenClientO01l {
public static void main(Stringl[] args) {
PruefenOl p = new PruefenO01();
if (p.prueflInt())
System.out.println("Die Zahl ist gerade");

else
System.out.println("Die Zahl ist ungerade");

}

Ubung zum Programm Pruefen01

Andern Sie die Klasse Pruefen01 java so ab, dass das Feld zahl nicht explizit initiali-
siert wird. Was liefert jetzt die Methode pruefInf? Die Erkenntnis wird sein, dass
Membervariablen automatisch initialisiert werden. Wie lautet der Anfangswert einer
int-Variablen, wenn nichts anderes vom Programmierer vorgegeben wird?

Es ist auch moglich, bei der Initialisierung nicht mit den Default-Werten zu arbeiten,
sondern bei der Variablendefinition entsprechende Initialwerte anzugeben. In bei-
den Fillen arbeiten jedoch alle Instanzen mit denselben Anfangswerten.

264

11.4 Eigene Klassen erstellen

Sollen die Membervariablen mit individuellen Werten belegt werden, so kann dies
durch Codieren von entsprechenden Konstruktoren realisiert werden. Das werden
wir im Ubernichsten Beispiel ("Zeitangaben") demonstrieren.

11.43 Beispiel zum Arbeiten mit Datumsangaben

Fir die nachfolgenden Beispiele erstellen wir eine weitere komplett neue Klasse, die
Klasse DatumO1. Sie enthilt die Felder fag, monat und jabr. AuBerdem hat diese
Klasse als weitere Elemente einige Methoden, um mit diesen Attributen zu arbeiten.

Programm DatumO01: Datum speichern und verarbeiten

import java.util.*;
public class Datum01l {

private int tag;
private int monat;

private int Jjahr;

void erstellen() {

Calendar cal = new GregorianCalendar();
tag = cal.get (Calendar.DATE);
monat = (cal.get (Calendar.MONTH) + 1);
jahr = —cal.get (Calendar.YEAR);

}

void ausgeben () {
char ¢ = '.';

System.out.printf ("$s%s%$s%s%s",
tag, ¢, monat, c, jahr);

}
Erlauterungen zur Klasse Datum01

Die Klasse kann Datumsangaben speichern, und sie enthilt Methoden, um damit zu
arbeiten. Zum Erstellen des aktuellen Tagesdatum greift sie zurtick auf Dienstleis-
tungen der Standardklassen Calendar und GregorianCalendar, indem sie eine In-
stanz der Klasse GregorianCalendar erzeugt und dann an diese Instanz die Nach-
richt get() schickt, um den aktuellen Tag, Monat und das Jahr zu lesen.

Als Parameter benutzt die ge-Methode static-Felder, die lediglich sprechende Namen
bilden fir ganzzahlige Feldnummern, die fir das Lesen der Datumsangaben benotigt
werden. Weil die Monatsangabe bei 0 beginnt, muss sie fiir die Ausgabe um 1 er-
hoht werden.

265

11 Klassen beschreiben und benutzen

Die Reihenfolge der Elementdefinition in einer Klasse ist ohne Bedeutung. Die Klas-
se wird eingelesen (aktiviert), dann stehen alle static-Felder zur Verfiigung, egal, an
welcher Stelle im Quelltext sie definiert sind. Alle anderen Felder stehen zur Verfi-
gung nach der Instanzerzeugung. Und Methoden werden nur ausgefiihrt, wenn sie
explizit aufgerufen werden.

Die Klasse Datum01 benutzen

Klassen stellen Services zur Verfiigung, die von ausfihrbaren Programmen oder von
anderen Klassen genutzt werden konnen. Noch fehlt dieses ausfithrbare Programm.

Das nachfolgende Programm DatumClientO1 java soll die neu erstellte Klasse Da-
tum01 benutzen, um das aktuelle Tagesdatum von heute zu erzeugen und in einem
Consolefenster auszugeben. Erstellen Sie bitte eine neue Umwandlungseinheit.

Programm DatumcClient01 : Client-Programm fiir die Datum-Klasse

public class DatumClientO1l {
public static void main (String[] args) {
Datum0Ol heute = new DatumO1l();
heute.erstellen();
heute.ausgeben () ;

11.44 Beispiel zum Arbeiten mit Zeitangaben

Das nichste Beispiel beschreibt eine Klasse, die folgende Dienstleistungen erbringt:
e sie speichert die Stunden, Minuten und Sekunden einer bestimmten Uhrzeit,
e sie kann eine beliebige Stundenzahl addieren und

e sie kann die gespeicherte Zeit als String aufbereiten und diese Zeichenkette
dann dem Aufrufer der entsprechenden Methode zur Verfiigung stellen.

Programm Zeit: Zeitangaben speichern und verarbeiten

public class Zeit {

private int stunde;

private int minute;

private int sekunde;

Zeit (int stunde, int minute) {
this.stunde stunde;
this.minute = minute;
this.sekunde 0;

}

Zeit (int stunde, int minute, int sekunde) {

206

11.4 Eigene Klassen erstellen

this.stunde stunde;
this.minute = minute;
this.sekunde sekunde;

}
void addStunde (int st) {

stunde = stunde + st;
if (stunde > 24)
stunde = stunde - 24;

}
public String toString() {

String sl = "Stunde: " + stunde + "\n";
String s2 = "Minute: " + minute + "\n";
String s3 = "Sekunde: " + sekunde + "\n";

return sl + s2 + s3;

}

Die Klasse enthilt einige Sprachmittel, die wir bisher nur am Rande erldutert haben.
Es handelt sich um folgende Themen:

e Konstruktoren
e Overloading von Methoden und Konstruktoren
e Override von Methoden

e Arbeiten mit dem Schliisselwort this

Konstruktoren

Die ersten beiden Methoden dieser Klasse werden auch Konstruktoren genannt.
Konstruktoren werden automatisch aufgerufen, wenn eine neue Instanz der Klasse
erzeugt wird. Sie enthalten Statements zum Initialisieren der Felder. Formal unter-
scheiden sich diese Konstruktoren von "normalen" Methoden wie folgt: sie mussen
denselben Namen wie die Klasse haben und sie dirfen keinen Rickgabetyp dekla-

rieren (auch das Schliisselwort void darf bei Konstruktoren nicht angegeben wer-
den).

Uberladen ("overloading") von Methoden

Die zweite Neuerung ist, dass der Konstruktorenname mehr als einmal verwendet
wird. Es gibt einen Konstruktor, der zwei Parameter empfingt, und einen weiteren
Konstruktor, der drei Parameter erwartet. Man bezeichnet diese Technik als Uberla-
den von Konstruktoren. Dies ist auch bei "normalen" Methoden moglich. Methoden-
namen und Konstruktornamen konnen also innerhalb einer Klassenhierarchie und
auch sogar innerhalb einer einzigen Klasse mehrfach vorkommen. Dann missen sie
allerdings eine unterschiedliche Anzahl und/oder unterschiedliche Datentypen bei

267

11 Klassen beschreiben und benutzen

den Parametern haben (also eine andere "Signatur" besitzen). Der Riickgabewert ge-
hort nicht zur Signatur.

Der Einsatz dieser Technik ist immer dann sinnvoll, wenn vergleichbare Funktionali-
titen mehrfach implementiert werden miissen, aber mit unterschiedlichen Parameter-
listen. Beispiel: Verschiedene grafische Objekte sollen unterschiedlich gezeichnet.
Dann konnen Sie in einer Klasse mehrere Methoden implementieren, alle mit dem-
selben (aussagefihigen) Namen. Diese Zeichnen-Methoden mussen allerdings unter-
schiedliche Typen von Parametern definieren.

Die JVM entscheidet zur Ausfithrungszeit anhand der passenden Argumente, welche
Version aufzurufen ist.

Uberschreiben ("override") von Methoden

Eine spezielle Form der generellen Technik des Overloading ist Override (Uber-
schreiben). Override (engl. fiir "sich hinwegsetzen") ist nur moglich in Verbindung
mit der Vererbung, wenn in der Unterklasse eine geerbte Methode re-definiert, also
neu geschrieben wird. Dabei kann dieselbe Signatur verwendet werden.

Die JVM entscheidet zur Ausfiihrungszeit anhand des Objekttyps, welche Methode
ausgefiihrt werden soll. Dieses Verfahren wird immer dann eingesetzt, wenn die Un-
terklasse eine Methode der Oberklasse dndern will.

In der objektorienten Sprache Java hat jede Klasse eine Superklasse, von der sie
erbt. Wenn der Programmierer nicht ausdriicklich den Namen einer Superklasse an-
gibt, dann erbt die Klasse implizit von der Superklasse Object. Dies ist "die Mutter
aller Klassen" - alle anderen Klassen sind direkt oder indirekt davon abgeleitet. Das
Thema "Vererbung" wird auf den nichsten Seiten ausfiihrlich besprochen.

In der API-Dokumentation fiir die Klasse Object ist beschrieben, dass sie eine Me-
thode toString() zur Verfugung stellt, die dafiir sorgt, dass einfache Datentypen in
Texte (also in den Datentyp String) umgewandelt werden. Einige mitgelieferte Me-
thoden rufen diese toString-Methode automatisch auf, ohne dass dies explizit vom
Programmierer codiert werden muss (so arbeitet beispielsweise auch die printin-
Methode).

Diesen Mechanismus nutzt die Klasse Zeit. Sie enthilt nimlich selbst eine Methode
toString - und damit wird die gleichnamige Methode in der Superklasse tberschrie-
ben. Die selbst geschriebene Methode toString bereitet die einzelnen Felder der
Klasse als Text auf und liefert diesen String als Ergebnis an den Aufrufer zurtick.

Merksatz: Die JVM sucht die passende Methode in folgender Reihenfolge: Zunichst
wird eine Methode mit der gleichen Signatur in der Klasse des Objekts gesucht (also
in der eigenen Klasse). Wenn sie dort nicht fiindig wird, geht die Suche in der tiber-
geordneten Klasse weiter, bis hoch zur Klasse Object, also bis die gesamte Hierar-
chie durchsucht worden ist.

208

11.5 Konstruktoren

this-Schlusselwort

Innerhalb einer Methode kann man direkt auf die Membervariablen der eigenen
Klasse zugreifen. Adressiert werden sie tiber den einfachen Namen (Bezeichner).
Wenn jedoch innerhalb der Methode derselbe Name bereits fiir lokale Variable be-
nutzt wurde (z.B. durch formale Parameter, wie im Programm Zeif), kommt es zu
Namenskonflikten. In Java werden dann die Membervariablen verdeckt, sie werden
tberlagert von den lokalen Variablen. Ein Zugrift auf die Membervariablen ist dann
nur moglich, wenn diese mit dem Schlisselwort this qualifiziert werden.

Mit this referenziert man innerhalb einer Klasse die aktuelle Instanz. Anders gesagt:
hinter this steckt das Objekt, mit dem gerade gearbeitet wird.

Ubung zum Programm Zeit

Bitte kliren Sie durch Selbsttest, welche Fehlermeldung bei der Umwandlung
kommt, wenn das Schlisselwort public bei der toString-Methode entfernt wird.

Losungshinweis: Sinngemif3 bedeutet die Meldung, dass versucht wird, eine Metho-
de zu tberschreiben und dabei die Zugriffsrechte einzuschrinken. Das ist nicht er-
laubt. Weil die Methode toString in der Klasse Object das Zugriffsrecht public hat,
muss sie in den davon abgeleiteten Klassen auch public sein.

Programm ZeitTest: Arbeiten mit der neu erstellten Klasse Zeit

import Jjava.util.*;
public class ZeitTest {
public static void main(String[] args) {

// selbst erstellte Klasse benutzen
Zeit z = new Zeit (7, 25);
z .addStunde (2) ;
System.out.println(z.toString());
// mitgelieferte Klasse benutzen
GregorianCalendar heute = new GregorianCalendar();

int st = heute.get (Calendar.HOUR) ;
int m = heute.get (Calendar.MINUTE);
int se = heute.get (Calendar.SECOND) ;
Zeit z2 = new Zeit(st, m, se);

System.out.println(z2.toString());

115 Konstruktoren

Instanzen werden mit Hilfe des Schlisselwortes new erzeugt. Durch new wird auch
eine so genannte Konstruktormethode automatisch aufgerufen. Das ist eine Metho-
de, welche denselben Namen wie die Klasse selbst hat. Die Aufgabe dieser Kon-

269

11 Klassen beschreiben und benutzen

struktormethode ist es, einmalige Arbeiten durchzufiithren, die beim Erstellen eines
Objekts sinnvoll bzw. notwendig sind. Ihre wichtigste Aufgabe ist es, die Felder der
Klasse mit individuellen Anfangswerten zu versehen.

11.5.1 Standardkonstruktoren: selbst codieren?

Wenn der Programmierer keinen Konstruktor selbst codiert, so wird ein eingebauter
Standard-Konstruktor ausgefiihrt. Der Standardkonstruktor ("Default-Konstruktor") ist
dadurch gekennzeichnet, dass er keine Parameter empfingt.

Programm Init01 : Arbeiten mit dem Default-Konstruktor

public class Init01 {

int zahll;

char c;

float zahl2;

public static void main(String[] args) {
Init01l instanzl = new Init01();
System.out.println (instanzl.zahll);
System.out.println (instanzl.zahl?2);

}

Bei der Ausfithrung dieses Programms wird der (unsichtbare) Standardkonstruktor
ausgeftihrt. Im nichsten Beispiel ist ein Konstruktor ausdriicklich programmiert.

Programm Init02: Arbeiten mit einem selbst codierten Konstruktor

public class Init02 {
int zahll;
char c;
float zahl2;

Init02 (int zl1l, char c, int z2) {

zahll = z1;
this.c = ¢;
zahl2 = z2;

public static void main(String[] args) {
Init02 instanzl = new Init02(15, 'a', 27);
System.out.println (instanzl.zahll);
System.out.println (instanzl.c);
System.out.println(instanzl.zahl?2);

270

11.5 Konstruktoren

Der Konstruktor muss den Namen der Klasse haben (/nit02). Er kann beliebige Pa-
rameter empfangen, in diesem Beispiel werden Argumente fir die drei Felder der
Klasse entgegen genommen. Natiirlich ist hier auch die Reihenfolge sehr entschei-
dend, denn Java arbeitet immer mit Positionsparameter: beim Aufruf des Konstruk-
tors muss man wissen, an welcher Position welcher Wert erwartet wird. Die Namen
sind nicht ausschlaggebend. Die Parameterangaben im Kopf des Konstruktors wir-
ken wie die Definition von lokalen Parametern.

Ubung 1 zum Programm Init02

Versuchen Sie, in der main-Methode eine weitere Instanz zu erzeugen, diesmal al-
lerdings ohne Parameteriibergabe. Dadurch wird der Default-Konstruktor aufgerufen.
Aber die Umwandlung erzeugt folgenden Fehler:

"... cannot find symbol ... constructor Init02() ... "

Der Grund dafiir ist: Wenn vom Programmierer ein Konstruktor programmiert wird,
dann wird der Default-Konstruktor nicht mehr automatisch erstellt, d.h. dann muss
ein Konstruktor ohne Parameter auch vom Programmierer selbst codiert werden. Bit-
te erginzen Sie das Programm entsprechend.

Regel: Entweder man definiert keinen Konstruktor oder man definiert explizit alle,
also auch den Standardkonstruktor. Denn sobald eine Klasse (irgend-)einen Kon-
struktor enthilt, wird der Standardkonstruktor auch nicht mehr von Java erzeugt.

Der Name des ersten Parameters ist in unserem Beispielprogramm z1, er steht fir
den Anfangswert der Membervariablen zahll. Deswegen ist der erste Befehl im
Rumpf des Konstruktors: zahll = z1. Bei dem zweiten Argument haben wir ein
Problem zu losen, denn der Name des Parameters ist mit ¢ derselbe wie der Name
der Membervariablen. Deswegen muss die Wertezuweisung mit einem qualifizierten
Namen erfolgen - und das geschieht in diesem Fall mit dem Schliisselwort this.

Ubung 2 zum Programm Init02

Uberlegen Sie, warum es nicht sinnvoll ist, in dem Konstruktor des Programms die
Referenzvariable instanz1 anstelle des Schliisselwortes his zu benutzen. Uberpriifen
Sie, ob dann tiberhaupt eine Umwandlung moglich ist.

1152 Uberladen von Konstruktoren

Im nichsten Beispiel wird noch einmal mit der bereits bekannten Klasse Datum ge-
arbeitet. Diese Klasse ist eine Ergdnzung zur Standardklasse GregorianCalendar.
Diese Standardklasse ist ungeheuer umfangreich und leistungsfihig, wir benotigen
aber nur einen kleinen Teil des gesamten Leistungsspektrums, der zudem noch auf
unsere individuellen Bedirfnisse angepasst werden soll. Deswegen hatten wir eine
neue Klasse DatumO1 eingefithrt. Diese soll nachfolgend modifiziert und um Kon-
struktoren erginzt werden.

271

11 Klassen beschreiben und benutzen

Programm Datum: Zwei Konstruktoren in einer Klasse

import java.util.*;
public class Datum {
int tag;
int monat;
int jahr;

Datum () {
Calendar cal = new GregorianCalendar();
tag = cal.get (Calendar.DATE);
monat = (cal.get (Calendar.MONTH) + 1);
jahr = —cal.get (Calendar.YEAR);

}

Datum(int t, int m, int Jj) {

tag = t;
monat = m;
jahr = j;

}
void ausgeben (char zeichen) {
char ¢ = zeichen;
System.out.printf ("%$s %s %s %$s %s",
tag, ¢, monat, c, jahr);

}

Diese Klasse hat zwei Konstruktoren, der erste Konstruktor ist ein Standardkonstruk-
tor, d.h. er erwartet keine Argumente. Fiir den Aufruf des zweiten Konstruktors sind
drei int-Parameter notwendig. Java wihlt zur Ausfihrungszeit den Konstruktor aus,
der passend ist. Und passend ist der Konstruktor dann, wenn Anzahl und Typ der
tubergebenen Argumente Ubereinstimmt mit der deklarierten Anzahl und dem Typ.
Man sagt, Java nimmt den Konstruktor, der die erwartete Signatur hat.

Programm DatumTest01: Instanziieren und Aufrufen des "richtigen" Kon-
struktors

public class DatumTestO1l {
public static void main (String[] args) {
Datum dl = new Datum (24, 12, 2005);
dl.ausgeben('|");

}

Beim Erzeugen der Instanz mit dem Schlisselwort new werden drei Literale als Ar-
gumente an den Konstruktor tibergeben.

272

11.5 Konstruktoren

Ubung zum Programm DatumTest01

Erstellen Sie eine zweite Instanz. Diesmal aber ohne Parameteriibergabe an den
Konstruktor. Kliren Sie, welcher Konstruktor ausgefiihrt wird. Uberpriifen Sie das
Ergebnis dieses Konstruktoraufrufs.

11.53 Beispiel: Klasse Rechteck

Das Programm Rechteck.java enthilt eine Klassenbeschreibung fiir ein Rechteck. Die
dafiir notwendigen Daten sind zwei Positionsangaben: links oben und rechts unten,
jeweils angegeben als x- und y-Wert. Auferdem enthilt die Klasse zwei Konstrukto-
ren, und sie Gberschreibt die Methode foString der Klasse Object.

Programm Rechteck: Override von Methoden, Overload des Konstruktors

import java.awt.*;

import java.util.*;

class Rechteck {
private int x1, yl;
private int x2, y2;

Rechteck (int x1, int yl, int x2, int y2) {
this.x1l = x1;
this.yl = vy1;
this.x2 = x2;
this.y2 = y2;

}
Rechteck (Point linksoben, Point rechtsunten) ({
x1 = linksoben.x;
yl = linksoben.y;
x2 = rechtsunten.x;
y2 = rechtsunten.y;

}
public String toString() {
return String.format ("$d / %d / %d / %4d",
x1l , yl, x2, vy2);
}
public static void main(String[] args) {
Rechteck rl = new Rechteck (5, 10, 20, 10);
System.out.println(rl);

}

Noch einmal der Hinweis auf die Methode foString: Sie ist zwar fiir jede Klasse ver-
fugbar, weil sie Teil der Klasse Object ist, wird aber in diesem Programm tber-
schrieben, um eine individuelle Losung zu bekommen.

273

11 Klassen beschreiben und benutzen

Ubung zum Programm Rechteck

Erstellen Sie ein zweites Objekt 72, dabei soll jedoch der zweite Konstruktor aufge-
rufen werden.

Losungshinweis: Dazu sind zwei Instanzen der Klasse Point zu erstellen. Diese
miussen dann bei der Instanziierung von 72 als Parameter mitgegeben werden.

Im Paket java.awt gibt es diverse Klassen, um eine grafische Benutzeroberfliche zu
implementieren. Dazu gehoren auch die Klassen Point, Dimension und Rectangle.
Die Klasse Rectangle bietet 7 verschiedene Konstruktoren an.

Programm Rechteck02: Klassen benutzen sich gegenseitig

import Jjava.awt.*;
public class Rechteck02 {
public static void main (String[] args) {
Point pl = new Point (10,100);
Dimension dl = new Dimension (20, 30);
Rectangle rl = new Rectangle(pl, dl);
System.out.println(rl);

11.6 Vererbung ("inheritance")

Die wichtigsten Motive fir das Arbeiten mit Klassen sind

e die Kapselung von Daten, damit eine sichere und beweisbare Verwendung er-
folgt,

e die Moglichkeit der Wiederverwendung von bereits vorliegendem Programmco-

de.

Die Wiederverwendung erfolgt dadurch, dass Klassen sich gegenseitig benutzen.
Dabei kann man unterschiedliche Formen der Beziehungen zwischen Klassen unter-
scheiden:

e Die Klasse A benutzt eine andere Klasse B, indem sie mit new Instanzen davon
erzeugt und damit arbeitet (has - a - Beziehung).

e Felder der Klasse A sind Referenztypen der Klasse B, und das bedeutet, dass
diese Referenztypen von B automatisch instanziiert werden, wenn eine Instanz
von A erzeugt wird.

e Die Klasse B ist eine spezialisierte Form der Klasse A. Dies wird realisiert durch
die Vererbungsbeziehung (is - a - Beziehung).

Die ersten beiden Beziehungsarten haben wir in den bisherigen Programmen bereits
mehrfach benutzt. In den nichsten Abschnitten werden wir uns mit der Vererbungs-
technik befassen.

274

11.6 Vererbung ("inberitance")

11.6.1 Was versteht man unter Vererbung ("inheritance")?

Durch den Einsatz der Vererbungstechnik ist es moglich, dass eine neue Klasse den
Programmcode von einer bestehenden Klasse iibernehmen und verwenden kann.
Durch die Vererbungsbeziehung entsteht eine Klassenhierarchie:

Jsisklasse Superklasse
2R debls Elternklasse
ﬂ erbt/vererbt
Abgeleitete Subklasse
Kindklasse
Klasse

Abb. 11.4: Vererbungshierarchie (Super- und Subklasse)

Dabei ist es moglich, dass die Subklasse Daten und Methoden der Superklasse ab-
indert, 16scht oder auch neue hinzuftigt. Die Klassenhierarchie kann theoretisch be-
liebig tief geschachtelt werden, praktisch besteht dann die Gefahr der Uberfrach-
tung, weil die Objekte sich aus den Beschreibungen aller tibergeordneten Klassen
zusammensetzen.

11.6.2 Beispiel: Kunden und Lieferant als Subklassen der Partner-Klasse

Fir die Beispiele zur Vererbungstechnik greifen wir auf ein bereits bekanntes Pro-
gramm aus Abschnitt 11.1 zurtick. Dort wurde die Klasse (Geschifts-) Partner0O1 de-
finiert. Objekte konnen Kunden oder auch Lieferanten sein. Diese Klasse wollen wir
als Basisklasse verwenden, sie sieht jetzt - leicht modifiziert - wie folgt aus:

Programm Partner: Beschreibung von Kunden- und Lieferantenobjekten

class Partner {
private int nr;
private String name;

Partner (int nrl, String namel) {
nr = nrl;
name = namel;
}
void ausgeben () {
System.out.println(nr + " " + name);
}

void setName (String namel) {

275

11 Klassen beschreiben und benutzen

name = namel;

}

Gegentiber der urspriinglichen Version enthilt diese Klasse einen Konstruktor, dafiir
ist die Methode neu entfallen.

Erweiterung der Aufgabenstellung

Angenommen, wir wollen in einem Unternehmen spezielle Informationen tber
Kunden speichern und verarbeiten. Diese Informationen bestehen aus folgenden
Feldern: Kundennummer, Name und Umsatz. Als Verarbeitungsmoglichkeiten fir
diese Daten sind vorgesehen:

- Erstellen von neuen Kundeninformationen (durch Aufruf des Konstruktors)
- Ausgeben der Kundeninformationen (durch Aufruf der Methode ausgeben)
- Andern des Namens (durch Aufruf der Methode setName).

Grofle Teile dieser Aufgabenstellung sind bereits in der Klasse Partner realisiert (die
Felder nr und name sind dort vorhanden). Lediglich die zusitzliche Information
zum Umsatz gibt es dort nicht. Jetzt hilft uns folgende Erkenntnis: "Ein Kunde ist ei-
ne spezielle Form eines Geschiftspartners". Und solche Beziehungen kdnnen durch
Einsatz der Vererbungstechnik in objektorientierten Sprachen elegant implementiert
werden, indem fiir die spezielle Aufgabenstellung eine neue Klasse codiert wird, die
sich auf die bereits vorhandene Losung stiitzt und diese auch benutzen kann. Dies
geschieht durch das Schlisselwort "extends".

Programm Kunde: Geerbt wird die vorhandene Losung der Klasse Partner (1.
Versuch, noch fehlerhaft)

class Kunde extends Partner ({
private double umsatz;
void ausgeben () {
super.ausgeben () ;

System.out.println ("Umsatz: " + umsatz);
}
void setUmsatz (double umsatz) {
this.umsatz = umsatz;
}

}
Ubung zum Programm Kunde

Erginzen Sie die bestehende Quelltextdatei um die Klasse Kunde. Versuchen Sie ei-
ne Umwandlung. Dabei wird folgende Fehlermeldung ausgegeben:

cannot find symbol ... constructor Partner()

276

11.6 Vererbung ("inberitance")

Diese Fehlermeldung ist verwirrend und keineswegs selbsterklirend. Der Hinter-
grund ist: In der neuen Klasse Kunde ist kein Konstruktor definiert, also wird ein
Default-Konstruktor eingefiigt. Jeder Konstruktor ruft (unsichtbar) als ersten Befehl
den Konstruktor seiner Superklasse auf, in diesem Fall also den Konstruktor Part-
ner(). Weil jedoch in der Partner-Klasse ein "handgeschriebener" Konstruktor einge-
figt wurde, wird der Default-Konstruktor nicht automatisch erstellt, sondern muss
auch "handgeschrieben" werden. Also muss lediglich eine Zeile hinzugefiigt werden.

Die neue Klasse Partner0Ola sieht jetzt so aus:

class Partner0Ola {
private int nr;
private String name;

PartnerOla() {} // neu
PartnerOla(int nrl, String namel) {
nr = nrl;
name = namel;
}
void ausgeben () {
System.out.println(nr + " " + name);
}

void setName (String namel) {
name = namel;

}
Ubung zum Programm Partner0Ola

Erginzen Sie die bestehende Quelltextdatei (mit den beiden Klassen PartnerOla und
Kunde) um eine neue Klasse Lieferant. Diese Klasse soll die Attribute und Methoden
der Klasse PartnerOla erben. Zusitzlich soll sie das Attribut rabatt vom Datentyp
float bekommen und entsprechende Methoden zum Ausgeben und Updaten dieser
Membervariablen.

Losungsvorschlag

class Lieferant extends PartnerOla {
private float rabatt;
void ausgeben () {
super.ausgeben () ;
System.out.println ("Rabatt: " + rabatt);
}
void setRabatt (float rabatt) {
this.rabatt = rabatt;

277

11 Klassen beschreiben und benutzen

Jetzt haben wir eine Umwandlungseinheit mit den drei Klassen PartnerOia, Kun-
de (Achtung: muss auch von PartnerOla abgeleitet sein!), Lieferant. Die Beziehun-
gen zwischen diesen Klassen beruhen auf Vererbungstechnik. Und dies kann gra-
fisch dargestellt werden mit der UML-Notation (siehe Kapitel 12).

Abb.11.5: UML-Klassendiagramm

Einige Besonderheiten dieses Programmsystems miissen noch erlidutert werden:

e Die Klasse PartnerOla ist die Oberklasse (oder Superklasse oder Vaterklasse) fiir
die beiden anderen Klassen.

e Die Klassen Kunde und Lieferant werden als Unterklasse oder Subklasse oder
Kindklasse bezeichnet.

Eine Klasse ist definiert durch ihren Namen und ihre Oberklasse(n). Die Klasse erbt
die Speicherstrukturbeschreibung (die Variablendeklarationen) und alle Operationen
(die Methoden) der Oberklasse(n). Der Name der direkten Oberklasse kann fehlen,
dann wird von der Klasse Object geerbt. Andernfalls wird explizit der Name der Su-
perklasse hinter dem Schliisselwort extends angegeben.

Die Unterklasse kann also die geerbten Elemente

e unverindert Ubernehmen (das geschieht automatisch, ohne dass der Program-
mierer etwas angeben muss),

e erweitern, d.h. ihnen etwas komplett Neues hinzufiigen (das konnen Attribute
oder auch Methoden sein),

e redefinieren, d.h. bestehende Methoden tiberschreiben, wenn diese sich dhnlich
verhalten, jedoch mit kleinen Abweichungen)

Wenn von einem Interface (siche Abschnitt 11.8) geerbt wird, so muss die Unter-
klasse das realisieren, was in dem Interface versprochen wurde.

278

11.6 Vererbung ("inberitance")

11.6.3 Override und Schliisselwérter super und this

Die Methode ausgeben gibt es sowohl in der Superklasse als auch in den beiden
Subklassen - und zwar exakt mit derselben Signatur. Man sagt, sie wird von der
Subklasse tiberlagert ("override"). Zur Ausfihrungszeit wird Java dafir sorgen, dass
die richtige Methode ausgefiihrt wird, abhingig vom Datentyp der Instanz.

Schliisselwort super

Fur die Subklassen gilt: Innerhalb der Methoden ausgeben muss zusitzlich die Me-
thode ausgeben der Superklasse ausgefihrt werden, damit n» und name angezeigt
werden. Dafir wird das Schliusselwort super benutzt, denn dadurch wird die Su-
perklasse referenziert. Das Keyword super kann auch benutzt werden, wenn es
gleiche Feldnamen gibt in Sub- und Superklassen.

Schliisselwort this

AuBerdem sind innerhalb der Klassen die Namen fiir einige Attribute mehrfach ver-
geben worden. So gibt es z.B. in der Klasse Kunde den Identifier umsatz in der
Klasse Kunde sowohl fiir die Membervariable als auch fiir eine lokale Variable (fur
den Parameter). Um diesen Namenskonflikt aufzulésen, wurde das Schliisselwort
this als Qualifizierer benutzt. Damit wird dem Compiler mitgeteilt, dass die Variable
der aktuellen Instanz gemeint ist (und nicht etwa eine lokale Variable mit diesem
Namen).

11.6.4 Client-Programm (Driver-Programm) erstellen, um Instanzen zu erzeugen

Das folgende Programm PartnerlestO2 soll drei Instanzen erstellen, jeweils von jeder
der drei Klassen eine. Hier aber zuniichst eine komplette Ubersicht tiber die endgiil-
tige Fassung der drei Klassen, denn bisher fehlten noch 2 wichtige Konstruktoren:

Programm Partner0la: Mit den abgeleiteten Klassen Kunde und Lieferant

class Partner0Ola {

private int nr;

private String name;

PartnerOla () {}

PartnerOla(int nrl, String namel) {
nr = nrl;
name = namel;

}

void ausgeben () {
System.out.println(nr + " " + name);

}

void setName (String namel) {
name = namel;

279

11 Klassen beschreiben und benutzen

}

class Lieferant extends PartnerOla {
private float rabatt;
Lieferant (int nrl, String namel) { // neu

super (nrl, namel);

}

void ausgeben () {
super.ausgeben () ;
System.out.println ("Rabatt: " + rabatt);

}
void setRabatt (float rabatt) {
this.rabatt = rabatt;

}

class Kunde extends PartnerOla {

private double umsatz;

Kunde (int nrl, String namel) { // neu
super (nrl, namel);

}

void ausgeben () {
super.ausgeben () ;
System.out.println ("Umsatz: " + umsatz);

}
void setUmsatz (double umsatz) {
this.umsatz = umsatz;

}

Programm PartnerTest02: Benutzen der Klassen

public class PartnerTest02 {
public static void main (String[] args) {
PartnerOla p = new Partner0la(l5, "Merker");
p.ausgeben () ;

Kunde k = new Kunde (12, "Schulz");
k.setUmsatz (50000) ;
k.ausgeben () ;

Lieferant 1 = new Lieferant (21, "Meyer");

1.setRabatt (15.0f);
1l.ausgeben();

280

11.6 Vererbung ("inberitance")

Eine Instanz der Unterklasse Kunde oder Lieferant enthilt neben den eigenen Attri-
buten auch die Attribute, die von der Oberklasse geerbt werden, und sie kann auch
auf die Methoden und Daten der Oberklasse zugreifen. Grafisch kann dies so darge-
stellt werden:

Abb. 11.7: Eine Instanz der Klasse Kunde enthilt auch ein Objekt der Klasse Partner

Zur Ausfiithrungszeit sucht die JVM die bendtigten Elemente zunichst in der eigenen
Klasse, danach wird weiter oben in Hierarchie weitergesucht, bis die Daten oder Me-
thoden gefunden werden. Durch Verwendung des Zugriffsmodifiers private kann
eine Superklasse verhindern, dass in abgeleiteten Klassen direkt auf dieses Element
zugegriffen wird (siche Kapitel 16).

11.6.5 Beispiel: Obst-Klassen

Mit den folgenden Klassen soll die Vererbungstechnik noch einmal an einem Kom-
plettbeispiel demonstriert werden. Zunichst wird eine Klasse Obst erstellt, die als
Oberklasse fiir weitere spezialisierte Klassen dient. Diese Unterklassen sind die Klas-
se Apfelund Birne, jeweils abgeleitet von der Klasse Obst.

Programm Obst: Superklasse fiir weitere Spezialisierungen

class Obst {
private String name;
private float gewicht;

281

11 Klassen beschreiben und benutzen

Obst (String n, float g) {
name = n;
gewicht = g;
}
void print () {
System.out.println ("Bezeichnung: " + name);
System.out.println ("Gewicht: " + gewicht);

}

Die Klasse Apfel soll abgeleitet sein von der Klasse Obst, sie erbt also die Merkmale
name und gewicht sowie die Fihigkeit print zum Anzeigen der Daten (nicht geerbt
wird der Konstruktor). AuRerdem soll sie selbst ein zusitzliches Attribut verwalten,
namlich das Anbaugebiet.

Programm Apfel: Unterklasse von Obst

class Apfel extends Obst {
private String anbaugebiet;

Apfel (String a, String n, float g) {
super (n, g);
anbaugebiet = a;
}
void print () {
super.print () ;
System.out.println ("Anbaugebiet: " + anbaugebiet);

}
Ubung

Erstellen Sie die zusitzliche Klasse Birne. Diese soll die Klasse Obst erweitern. Als
zusitzliches Attribut enthilt sie die farbe. Alle Attribute (die eigenen und die geerb-
ten) sollen ausgegeben werden, wenn fiir eine Birnen-Instanz die Methode print
aufgerufen wird.

Losungsvorschlag

class Birne extends Obst {
private String farbe;
Birne (String f, String n, float g) {
super (n, g);
farbe = f;
}
void print () {

282

11.6 Vererbung ("inberitance")

super.print () ;
System.out.println ("Farbe : " + farbe);

}

AbschlieBend bendtigen wir noch eine Java-Applikation, die die Klassenbeschrei-
bungen benutzt. Das Programm ObstTestO1 java soll folgende Aufgabenstellung 16-
sen:

e Essoll eine Instanz der Klasse Apfel mit den konkreten Werten Boskop, 120, Al-
tes Land erstellt werden.

e Es soll eine Instanz der Klasse Birne erstellt werden: Williams Christbirne, 140,
Bodensee.

e Die Daten der beiden Instanzen sollen auf dem Konsolbildschirm ausgegeben
werden.

Losungsvorschlag

public class ObstTest01l {
public static void main (String[] args) {
Apfel al = new Apfel ("Boskop", "Altes Land",120);
Birne bl = new Birne("Williams Christ", "Bodensee",140);
al.print();
bl.print ();

11.6.6 Konstruktoren und Vererbungstechnik

Fazit: Die wichtigsten Regeln fir das Arbeiten mit Konstruktoren im Zusammenhang
mit der Vererbung sind: Konstruktoren werden nicht vererbt. Sie konnen innerhalb
einer Klasse tiberladen werden, ein Uberschreiben ist aber nicht moglich.

Aber: Ein gegenseitiges Aufrufen der Konstruktoren aus anderen Klassen ist moglich.
So kann eine Unterklasse explizit den Konstruktor der Superklasse aufrufen. Dann
muss dieser Aufruf in der ersten Zeile im Konstruktor der Subklasse stehen. Impli-
zit (im Quelltext unsichtbar) wird immer zuerst der Defaultkonstruktor der Super-
klasse aufgerufen.

Programm Konstruktor01 : Reihenfolge der Konstruktoraufrufe

public class KonstruktorOl {
public static void main(String[] args) {
ClassB b = new ClassB();

}

class ClassA {

283

11 Klassen beschreiben und benutzen

ClassA () {
System.out.println("Hier ist Konstruktor A");

}

class ClassB extends ClassA {
ClassB() {
System.out.println ("Hier ist Konstruktor B");

11.7 Statische Elemente einer Klasse

Die in einer Klasse deklarierten Felder werden standardmiBig pro Instanz im Ar-
beitsspeicher angelegt und mit individuellen Werten gefillt, d.h. es gibt keine ge-
meinsamen Datenbereiche fiir die Instanzen. Angenommen aber, wir beno6tigen bei
der Verarbeitung einer Klasse ein Feld, das fiir alle Objekte zur Verfiigung stehen
soll, weil es - unabhiingig von einzelnen Instanzen - allgemeine Informationen auf-
nehmen soll. Das konnte z.B. ein Summenfeld oder ein Zihler fir die Anzahl der
Instanzen sein. Die Losung ist, dass dieses Element mit dem Schlisselwort static ge-
kennzeichnet wird.

Programm Static01: static-Variable (unabhingig von Instanzen)

public class Static01l {

static int zaehler = 0;

StaticO01 () {
zaehler++;

}

public static void main(String[] args) {
Static0l zl1l = new StaticO01();
Static0l z2 = new StaticO01();
System.out.println (zaehler);

}

Die Variable zaebler wird angelegt, wenn die Klasse in den Arbeitsspeicher geladen
wird. Sie steht dann sofort fir die Nutzung zur Verfigung (im Gegensatz zu Instanz-
variablen, die solange nicht genutzt werden konnen, wie kein Objekt erzeugt wor-
den ist).

Ubung zum Programm Static01

Andern Sie das Programm so, dass die Variable zaebler eine ganz "normale" Mem-
bervariable wird. Damit danach die Umwandlung fehlerfrei durchgefiithrt wird, muss

284

11.7 Statische Elemente einer Klasse

auch die Nachricht (message) an diese Variable geindert werden. Prifen Sie dann,
wie sich die Ausgabe des Programms verindert.

Losungsvorschlag

public class Static02 {

int zaehler = 0;

Static02 () {
zaehler++;

}

public static void main(String[] args) {
Static02 zl1 = new Static02();
Static02 z2 = new Static02();
System.out.println(zl.zaehler);
System.out.println (z2.zaehler);

}

Dadurch, dass die Variable zaebler zu einer "ganz normalen" Instanzvariablen ge-
macht wurde, wird sie auch pro Instanz im Arbeitsspeicher angelegt.

Das Schlisselwort static kann auch fir die Definition von Methoden angegeben
werden. Dann sind dies Methoden, die als so genannte Klassenmethoden unabhin-
gig von der Existenz eines Objekts aufgerufen werden konnen. Die Adressierung
von static-Elementen erfolgt innerhalb derselben Klasse iiber den Namen, von au-
Berhalb werden sie mit dem Klassennamen qualifiziert (und nicht wie die Instanz-
elemente tber eine Referenzvariable).

Programm Static03: Zugriff auf static-Elemente mit dem Klassennamen

class Static03 {
public static void main(String[] args) {
System.out.println(A.x);
System.out.println(B.x);

}
class A {
static int x = 1;
}
class B {
static int x = 2;

Die Abbildung 11.8 zeigt eine zusammenfassende Ubersicht der Unterschiede zwi-
schen static- und non-static-Elementen. Weitere Hinweise zu dem Schliisselwort sta-
tic gibt es im Kapitel 16.

285

11 Klassen beschreiben und benutzen

Instanz-Elemente

Klassen-Elemente

duRerlich erkennbar

Default, keine Schlisselwort

Schlisselwort static

woflr eingesetzt

individuelle Eigenschaften
oder Methoden pro Objekt

allgemeingultige Attribute
oder Methoden pro Klasse

wann angelegt

bei Instanzerzeugung

beim Laden der Klasse

wie oft angelegt

jeweils pro Instanz

nur einmal

existieren wie lange

solange Objekt aktiv

solange Klasse aktiv

wie erfolgt der Zugriff

objectreferenz.clement

klassenname.element

this.element
super.element

haben Zugriff auf alle Elemente (auch static) nur auf static-Elemente

Abb.11.7: Gegeniiberstellung Instanz- und Klassenelemente

11.8 Weitere Sprachmittel fiir Referenztypen (interface, enum)
Wie bereits mehrfach demonstriert, werden Objekte wie folgt deklariert:
datentyp bezeichner;

Als Datentyp kann ein primitiver Typ oder ein Referenztyp angegeben werden. Al-
les, was nicht ein primitiver Typ ist, ist ein Referenztyp. Bisher haben Sie als Refe-
renztyp nur die Klassen kennen gelernt. Es gibt aber noch andere Referenztypen,
z.B.

- Arraytypen (durch eckige Klammern [], siehe Kapitel 13)
- interface-Beschreibungen und
- enum-Typen.

11.8.1 Interface

Interfaces (Schnittstellen) enthalten lediglich Methodenbeschreibungen, d.h. der
Kopf der Methode (mit ihrer Signatur) wird beschrieben, aber es gibt (noch) keine
Implementierung, also keinen Rumpf. Syntaktisch erkennt man Interfaces daran, dass
anstelle des Schliisselworts class das Schlisselwort interface benutzt wird.

Programm Interface0l1: Schnittstellenbeschreibung fiir zwei Methoden

interface InterfaceO0l {
void setZahll (int z);
int getZahll();

286

11.8 Weitere Sprachmittel fiir Referenztypen (interface, enum)

Diese Interface-Beschreibung deklariert die beiden Methoden: setZahll und get-
Zabll. Genau wie Klassen auch, kdnnen Interfaces genutzt werden zum Vereinba-
ren von Referenzvariablen.

Programm InterfaceTest01: Interface als Datentyp bei der Deklaration

class InterfaceTestO0l {

public static void main(String[] args) {

Interface0l schnittstellell;

}
}
Aber - nicht moglich ist das Erzeugen eines Objekts, d.h. das Anlegen von Speicher-
platz fiir ein Interface, denn es fehlt noch die Implementierung. Implementiert wird
das Interface durch eine Klassenbeschreibung, die sich auf dieses Interface bezieht.
Dazu dient das Schlisselwort "implements".

Programm InterfaceTest02: Implementierung eines Interfaces

public class InterfaceTest02 implements InterfaceOl {
int zahll;
public void setZahll (int z) {
zahll = z;

}

public int getZahll () {
return zahll;

}

public static void main(String[] args) {
InterfaceO0l schnittstelleOl1;
schnittstelle0l = new InterfaceTest02();
schnittstelleOl.setzahll (5);
System.out.println(schnittstelleOl.getZahll());

}

Durch das Schlisselwort "implements" in der ersten Zeile verpflichtet sich die Klasse,
alle im Interface vorgesehenen Methoden auch zu realisieren (zu "implementieren").
Die Zeilen 4 und 7 enthalten diese Implementierung. Und erst jetzt ist es auch mog-
lich, in der main-Methode eine Instanz zu erzeugen und damit zu arbeiten. Die In-
stanz hat eine Referenzvariable vom Typ InterfaceO1, obwohl das Objekt inhaltlich
vom Typ InterfacelestO2 ist.

Im nichsten Beispiel soll eine Klasse das folgende Interface implementieren:

287

11 Klassen beschreiben und benutzen

interface A {
int potenzieren (int z);

}

Dieses Interface verlangt von einer Implementierungsklasse, die Methode potenzie-
ren zu implementieren. Es soll die Zweierpotenz einer Ganzzahl errechnet und als
Ergebnis dem Aufrufer zuriickgegeben werden.

Programm InterfaceTest03: Implementierung des Interface und Driver-
Programm (allerdings noch fehlerhaft)

public class InterfaceTest03 {
public static void main (String[] args) {
A a = new B();
System.out.println (a.potenzieren(5));

}

}

class B implements A
int z = 5;

int potenzieren() {
return z * z;

Ubungen zum Programm InterfaceTest03

Ubung 1: Die Umwandlung wird mit folgender Fehlermeldung abgebrochen: "B is
not abstract and does not override abstract method potenzieren(int) in A". Kliren Sie
die Ursache dieses Fehlers. Hinweis: Die Signaturen in Interface und Klasse missen
exakt ibereinstimmen.

Ubung 2: Nach dieser Korrektur liefert die Umwandlung erneut einen Fehler: " po-
tenzieren(int) in B cannot implement potenzieren(int) in A; attempting to assign
weaker access privileges; was public". Die Ursache dieses Fehlers ist nicht so offen-
sichtlich. Dazu muss man wissen, dass die Methoden im Interface immer public sind.
Deswegen muss bei der Implementierung dieses Schlisselwort angegeben werden.

Die Class B sieht also endgtltig und fehlerfrei wie folgt aus:

class B implements A {
public int potenzieren(int x) {
return x * x;

288

11.8 Weitere Sprachmittel fiir Referenztypen (interface, enum)

Wozu braucht man Interfaces?

API-Spezifikationen bestehen zum Grofteil aus Interface-Beschreibungen. Sie legen
das "Protokoll" fir den Aufruf von Dienstleistungen fest, indem die Methoden-
Signaturen exakt beschrieben sowie der Rickgabetyp und zusitzliche Modifier fest-
gelegt werden. Damit konnen unterschiedliche Ziele erreicht werden:

e Fir den Aufrufer der Methoden reichen die Informationen tber die Schnittstelle,
um die Dienstleistung nutzen zu konnen. Die eigentliche Implementierung kann
ihm verborgen bleiben (z.B. aus Sicherheits- oder aus Vereinfachungsgriinden).

e Fir die Klassen, die das Interface implementieren, wird dadurch der Kopf der
Methoden exakt vorgeschrieben. Das ermoglicht eine Standardisierung von An-
wendungen. Der korrekte Aufruf wird vom Compiler tiberpriift.

e Der Aufrufer kann sich darauf verlassen, dass die im Interface angebotenen Me-
thoden leisten, was die Beschreibung verspricht (das allerdings kann von Java
nicht iberprift und sichergestellt werden).

e Die Klasse, die das Interface implementiert, ist von dem Interface "abgeleitet",
d.h. es gelten die Vererbungsregeln. Damit konnen z.B. Objekte der Subklasse
uberall da verwendet werden, wo das Interface erwartet wird.

e Weitere Einsatzmoglichkeiten von Interfaces ergeben sich bei verteilten Anwen-
dungen (RMI oder EJB), beim Polymorphismus und beim dynamischen Laden
von Klassen, alles Themen fiir erfahrene Java-Programmierer.

11.8.2 enum

Enum-Beschreibungen ("Enumerationen", engl. Aufzihlung) enthalten die Aufzih-
lung von Konstanten. Sie sind eine spezielle Form einer Klasse. Ihre Basisklasse ist
nicht die Klasse Object, sondern (davorgeschaltet) die Klasse Enum. Man kann Vari-
ablen deklarieren und dabei als Typ eine enum-Beschreibung verwenden. Dadurch
wird ein typsicheres Arbeiten mit den Konstanten der enum ermoglicht. Intern wird
die Aufzihlung der Konstanten mit einer Ganzzahl verknupft.

Programm EnumO1: enum als separate Einheit (unabhingig von einer Klasse)

enum Farbe {
rot, gruen, blau;

}

public class EnumO1l {
public static void main (String[] args) {
for (Farbe f : Farbe.values())
System.out.println (£f);

289

11 Klassen beschreiben und benutzen

In diesem Beispiel steht enum auf gleicher Ebene wie die Klasse (und konnte auch
eine eigene Umwandlungseinheit sein). Syntaktisch erkennt man Enums daran, dass
anstelle des Schliisselworts class das Schliisselwort enum benutzt wird.

Enums konnen auch innerhalb einer Klasse (gleichrangig mit Methoden, aber
nicht innerhalb von Methoden) benutzt werden.

Programm EnumO02: enum innerhalb einer Klasse

public class Enum02 {

enum Wochentage {
sonntag,montag, dienstag,mittwoch,
donnerstag, freitag, samstag;

}

public static void main(String[] args) {

for (Wochentage w : Wochentage.values())
System.out.println (w);

}

Enum-Beschreibungen konnen wie normale Klassen gesehen werden. Sie erben Me-
thoden von ihrer Basisklasse Enum, und sie konnen eigene Methoden enthalten.

Das folgende Beispiel besteht aus einer Umwandlungseinheit, die sowohl die enum-
Beschreibung als auch ihre Benutzung enthilt. Es demonstriert folgende Verarbei-
tungsmoglichkeiten:

e enum-Beschreibungen konnen als Typ einer Variablen genutzt werden,

e mit dem jfStatement wird der aktuelle Wert verglichen mit einem konstanten
Wert aus der enum-Beschreibung,

e mit dem switch-Statement wird eine elegante Mehrfach-Abfrage realisiert,
e mit der for-Schleife wird der komplette Wertebereich des enum-Typs verarbeitet,

e Aufruf einer Methode aus der enum-Beschreibung.

Programm EnumO03: enum-Beschreibung fiir typsichere Aufzihlungen

enum Tageszeit {
morgens, mittag, abends;
void anzeigen () {
System.out.println(this);

}

public class Enum03 {
public static void main(String[] args) {
Tageszeit t1; // Variable definieren

290

11.8 Weitere Sprachmittel fiir Referenztypen (interface, enum)

tl = Tageszeit.mittag; // Wertezuweisung

if (tl == Tageszeit.mittag) // Variable abfragen
System.out.println ("Guten Tag");

switch(tl) {
case morgens: System.out.println ("Guten Morgen"); break;

case mittag: System.out.println("Guten Tag"); break;
case abends: System.out.println("Guten Abend"); break;

}

for (Tageszeit t2 : Tageszeit.values())
System.out.println(t2);

tl.anzeigen(); // Aufruf einer Methode

}

Wo liegt der Vorteil einer enum-Beschreibung im Vergleich zu static final-Variablen?
Die Antwort gibt das nachfolgende Programm.

Programm EnumTest02: Typsicherheit nicht gewihrleistet

public class EnumTest02 {
// Tageszeit
static final int MORGENS = 0;

static final int MITTAG = 1;
static final int ABENDS = 2;
// Farben

static final int ROT = 0;
static final int BLAU =1;

public static void main (String[] args) {
int tageszeit = BLAU; // FALSCH ! Keine Kontrolle

if (tageszeit == MITTAG)
System.out.println ("Guten Tag");

}

Das Programm gibt den Mittagsgrufd aus, obwohl der Inhalt der Variablen tageszeit
"blau" ist. Denn: Im Gegensatz zum enum-Typ gibt es keine Typsicherheit, der Wert
der Variablen fageszeit kann ein beliebiger Integerwert sein.

Weitere Vorteile beim Einsatz von enum anstelle von final-Konstanten:

e Wenn eine weitere Konstante hinzukommt oder eine bestehende sich indert,
muss lediglich die enum-Beschreibung geindert werden (und nicht alle Klassen
mit der Aufzihlung von final-Feldern). Das erhoht die Wartungsfreundlichkeit.

291

11 Klassen beschreiben und benutzen

e Es gibt eine allgemeine Basisklasse fiir alle Enumerationstypen, die Klasse E-
num. Davon erbt jede enum-Beschreibung. Das heifst, es stehen weitere Metho-
den wie equals, values oder toString zur Verfigung, weil sie von dieser Klasse
geerbt werden. Das erhoht die Vielseitigkeit und Leistungsfihigkeit.

11.9 Zusammenfassung

Eine Klasse ist eine Schablone (template, blueprint, Bauplan, Objektmuster), die Va-
riablen und Methoden fir eine Gruppe von Objekten definiert. Durch die Definition
einer neuen Klasse erweitert der Programmierer die Sprache um einen neuen Daten-
typ.

Die wichtigsten Elemente einer Klasse

class A {
int z; // Attribut/Feld/Variable
A() |
// Konstruktor
}

void verarbeiten (int a) {
// Methode

}

Im Kopf der Klasse (unmittelbar vor dem Schlisselwort class) konnen die Modifier
public oder private angegeben werden, um die Zugriffsrechte auf diese Klasse fest-
zulegen (falls sie von der Standardannahme abweichen, siche hierzu Kapitel 16).
Hinter dem Schlisselwort class wird der Name der Klasse festgelegt. Bei einer Klasse
mit dem Modifier public muss dieser Identifier mit dem Namen der Quellendatei -
bereinstimmen.

Der Klassenbody steht in geschweiften Klammern. Er enthilt folgende Elemente
("member"):

e Instanzvariablen und Instanzmethoden: diese sind jeweils gebunden an eine
ganz bestimmte Instanz, d.h. sie existieren erst, wenn eine Instanz erzeugt wor-
den ist, und koénnen auch erst dann genutzt werden.

e Klassenvariablen und Klassenmethoden, diese sind mit dem Schlisselwort static
gekennzeichnet und konnen genutzt werden, ohne dass eine Instanz erzeugt
worden ist; sie existieren, sobald die Klasse in den Arbeitsspeicher geladen wird.

AuBerdem enthilt der Klassenbody die Konstruktoren. Das sind spezielle Methoden,
mit abweichender Syntax und mit besonderer Semantik. Sie werden nicht vererbt.

Die Reihenfolge der Variablen- und Methodendeklarationen im Body ist beliebig
und hat keinen Einfluss auf die Reihenfolge der Ausfihrung.

292

11.9 Zusammenfassung

Dieselben Methodennamen konnen innerhalb einer Klasse mehrfach vorkommen.
Allerdings miissen sie dann unterschiedliche Signaturen haben, d.h. sie miissen sich
unterscheiden in der Anzahl oder beim Datentyp der Parameter. Dieser Mechanis-
mus wird Uberladen (overload) genannt.

Wird eine Methode einer Oberklasse in einer Unterklasse noch einmal definiert (mit
derselben Signatur), so nennt man diesen Mechanismus Uberschreiben (override).
Dadurch kann eine Methode der Superklasse individuell fir die Subklasse modifi-
ziert werden.

Arbeiten mit der Klasse

Gearbeitet wird mit der Klasse, indem zur Ausfihrungszeit eines Programms konkre-
te Einzelexemplare ("Instanzen") dieser Klasse im Arbeitsspeicher erzeugt werden.
Dabei wird der Klassenname wie ein eingebauter Datentyp bei der Deklaration der
(Referenz-)Variablen eingesetzt. Danach kann mit dem Schlisselwort new der Spei-
cherplatz belegt und der Konstruktor der Klasse aufgerufen werden.

Beim Definieren eines Objekts ist es nicht so, dass der deklarierte Datentyp und der
Typ des referenzierten Objekts in jedem Fall exakt Gibereinstimmen mussen, es kon-
nen auch zwei verschiedene Typen auftreten (vorausgesetzt, sie sind "verwandt"):

Object obj = new String("Hallo");

Daraus ist ein gravierender Vorteil der Vererbungstechnik erkennbar: Untertypen
konnen Uberall dort benutzt werden, wo ein Exemplar einer Oberklasse erwartet
wird. Ein Beispiel zeigt die folgende Wertezuweisung:

Object obj;
obj = new String("Hallo");

Innerhalb der Klasse konnen die Elemente (Attribute, Methoden) mit ihrem Namen
angesprochen werden, von auferhalb muss die Punktnotation benutzt werden, d.h.
die Elemente miissen mit dem Instanznamen (bzw. Klassennamen) qualifiziert wer-
den.

Einerseits ist eine Klasse eine Beschreibung fiir einen Service, der dem Programmie-
rer angeboten wird in Form von Datenbereichen und Verarbeitungsmethoden, ande-
rerseits ist eine Klasse auch ein Programm, das den Service von anderen Klassen
nutzen kann. Ein typisches Java-Programm benutzt mehrere Klassen und erzeugt
daraus viele Objekte, die miteinander kommunizieren, indem sie einander Nachrich-
ten schicken.

Die Zusammenarbeit zwischen Klassen kann in zweierlei Form erfolgen:
e als Aggregation (has-a-Beziehung oder part-of-Beziehung).

e mit Vererbungstechnik (is-a-Beziehung), siche Kapitel 12.

293

12 Module entwerfen, kapseln und dokumentieren

Module entwerfen, kapseln und dokumentieren

Grofe Softwaresysteme sind komplex, der Entwicklungsprozess stellt grofde Anforde-
rungen an das beteiligte Team. Aber nicht nur die Komplexitit z.B. bei internationa-
len Grof3projekten ist ein Problem - kritisch fiir die Beherrschbarkeit sind auch

e das grundsitzliche Verhalten diskreter Systeme. Kleine Anderungen konnen -
berraschende Auswirkungen haben, denn im Gegensatz zu kontinuierlichen Sys-
temen genlgt ein falsches Bit, um ein fehlerhaftes Verhalten zu erzeugen;

e die multiplikative Wirkung eines Einzelfehlers. Im Gegensatz zu vielen anderen
Titigkeiten, wo ein Fehler auch wirklich nur singulire Wirkung hat, wird ein
einzelner Programmfehler u.U. millionenfach vervielfiltigt.

Ein Programm, das aus einzelnen, moglichst unabhingigen Modulen zusammenge-
setzt ist, ist leichter verstindlich als ein monolithischer Programmblock mit Tausen-
den von Programmzeilen. Diese triviale Erkenntnis fihrte dazu, dass das wichtigste
Prinzip bei der Entwicklung von EDV-Systemen die Modularisierung ist. Ein Pro-
grammierer baut seine Anwendung aus primitiven Grundbausteinen, aus Modulen,
zusammen - vergleichbar der Plattenbauweise im Wohnungsbau oder der Modul-
bauweise bei technischen Geriten.

Objektbasierte Programmsysteme werden auf der Grundlage ihrer Datenstruktur
modularisiert, unter Berlicksichtigung aller Operationen, die mit dieser Datenstruktur
ausgefiihrt werden konnen.

In diesem Kapitel bekommen Sie Antworten auf folgende Fragen:

e Was versteht man unter dem Schlagwort "Modul" (ist es eine Klasse, ein Objekt,
ein Paket)?

e Welche Griinde sprechen fir die Modularisierung?

e Warum ist es wichtig, die Prinzipien "encapsulation" und "information hiding" zu
beachten?

e Wie ist die objektorientierte Vorgehensweise beim Realisieren von Softwaresys-
temen? Was ist OOA, OOD und OOP?

e Was ist UML (unified modeling language) und wann wird diese Notation be-
nutzt?

e Was bedeuten die Fachbegriffe "Pattern" und "Framework"?

294

12.1 Was ist ein Modul?

12.1 Was ist ein Modul?

Leider gibt es in der Informatik viele Begriffe, die unscharf definiert sind. Manche
haben sogar eine mehrfache, unterschiedliche Bedeutung, andere sind unprizise
tibersetzt aus dem Englischen. Hinzu kommt, dass Anglizismen und Abkiirzungen
benutzt werden, ohne zu beschreiben, was damit gemeint ist.

In diesem Kapitel werden wir es mit einigen typischen Beispielen dafir zu tun ha-
ben: Module, Komponenten und Frameworks. Zunichst der Begriff "Modul". In die-
sem Buch wollen wir diesen Begriff benutzen fir Programm(-teile), die folgende
Eigenschaften haben:

e Module fassen Operationen und Daten zu einem Programmteil zusammen.
e Module erflllen eine abgeschlossene, sauber beschriebene Aufgabe.

e Die Kommunikation dieses Moduls mit der AuBenwelt darf nur Gber eindeutig
definierte Schnittstellen erfolgen.

e Zum Aufrufen und Benutzen dieses Moduls in einem Programmsystem sind kei-
ne Kenntnisse der internen Code-Implementierung notwendig.

e Module trennen also zwischen den Schnittstellen (interfaces) und der Implemen-
tierung. Die Implementierung enthilt den eigentlichen Programmcode. Das In-
terface beschreibt die Aufrufmoglichkeiten und die Ein- und Ausgaben fir das
Modul (Parameter und Ergebnistyp).

Bezogen auf Java ist ein Modul ganz offensichtlich eine Klasse. Eine Klasse ist also
in objektorientierten Sprachen das Mittel zur Modularisierung von Softwaresystemen.

In anderen Sprachen und Zusammenhiingen wird der Begriff "Modul" auch mit Pro-
zeduren oder Methoden, mit Komponenten oder mit Paketen gleichgesetzt, manch-
mal wird auch unterschieden zwischen den statischen Elementen einer Klasse und
dem dynamischen Aspekt bei der Instanziierung, um den Begriff Modul zu definie-
ren.

Wir bleiben bei der einfachen Definition: ein Modul ist eine Klasse.

Noch ein Hinweis zum Begriff "Komponente". Vielfach ist dies ein Synonym fir den
Modulbegriff. In der letzten Zeit allerdings ist mit dem Begriff "Komponententechno-
logie" immer hiufiger die Aufteilung einer Anwendung auf mehrere Adressriume
(also auf mehrere Maschinen bzw. bei Java auf mehrere JVM) verbunden. Beispiel:
In der Enterprise-Technologie bezeichnet man die Enterprise Java Beans (EJB) als
"Komponenten", sie konnen Uber eine bestimmte Technik von remoten (entfernten)
Programmen genutzt werden (z.B. durch Aufruf von Methoden), als wiren sie lokal
in dem eigenen System vorhanden.

Eine Komponente in diesem Sinn ist also eine Weiterentwicklung eines Moduls, sie
kann ber Adressraumgrenzen (in Java also zwischen unterschiedlichen JVM) hin-
weg genutzt werden.

295

12 Module entwerfen, kapseln und dokumentieren

12.2 Motivation fiir Modulbildung

Das wichtigste Designprinzip bei der Programmentwicklung ist die Modularisierung
des Gesamtkomplexes, d.h. ein Programmsystem soll aus einzelnen Modulen beste-
hen. Dadurch wird ein komplexes Problem in iberschaubare Teilprobleme aufgeteilt
("teile und herrsche"). Eng verbunden mit der Modularisierung sind die beiden Prin-
zipien "Kapselung" und "Verstecken von Informationen".

12.2.1 Vorteile der Modulbildung

Wenn ein Modul ein abgeschlossener, unabhingiger Teil eines Softwareprogramms
ist, der Daten und Verarbeitungsschritte zusammenfasst, so sind damit folgende Vor-
teile verbunden:

e Das gesamte System wird tbersichtlicher, es wird gegliedert und strukturiert.

e Kleine, abgeschlossene Programmblocke sind verstdndlicher als grofie.

e Mehrfachverwendung der Module ist moglich, sie sind beliebig kombinierbar.

e Testbarkeit wird vereinfacht durch inkrementelles Vorgehen.

e Anderbarkeit (Wartung, engl. maintenance) wird vereinfacht; wenn sich die Im-
plementierung eines Moduls dndert, die Schnittstellen aber gleich bleiben, so be-
rihrt dies die Nutzerprogramme nicht, sie muissen nicht geidndert werden. Bei-

spiel: Ein Sortiermodul arbeitet nach dem Bubblesort-Algorithmus und wird aus-
getauscht gegen Quicksort.

e Arbeitsteilung und Parallelentwicklung moglich (Verteilung auf mehrere Pro-
grammierer).

12.2.2 \Vorteile der Kapselung (encapsulation)

Unter Kapselung (encapsulation) versteht man das "Privatisieren" der internen Ele-
mente. Insbesondere die Datenelemente sollen von auflen nicht zugreifbar sein.
Weder das direkte Lesen und erst recht nicht das Verindern dieser Attribute sollen
durch Methoden anderer Klassen moglich sein.

Manchmal werden Module dieser Art auch als "abstrakte Datentypen" bezeichnet,
damit wird ausgedrickt, dass die Daten autonom implementiert sind und von ihnen
nur Abstraktionen bekannt sind. Das heiflt, die Realisierung bleibt verborgen, und
der Zugriff auf die Datenfelder kann nur mittels zugelassener Operationen erfolgen.

Uber Zugriffsmodifier (sieche Kapitel 16) wird pro Element die Stufe der Kapselung
(private, protected oder public) festgelegt.

e Durch Kennzeichnung der Daten als private sind sie vor unberechtigtem Zugriff
geschiitzt, weil sie nur innerhalb der eigenen Klasse benutzt werden konnen.

296

12.2 Motivation fiir Modulbildung

e Der Zugriff erfolgt iiber public-Methoden. Diese haben exakt definierte Schnitt-
stellen ("Signaturen"), und im besten Fall erlauben diese Schnittstellen minima-
len Datenaustausch.

® FEin extremes Gegenbeispiel wiren globale Daten (in Java mit static public defi-
niert). Bei ihnen ist eine Kontrolle tiber die korrekte Verwendung fast unmaog-
lich. Denn je mehr Benutzer direkt zugreifen konnen, umso fehleranfilliger und
uniiberschaubarer der Einsatz. Dagegen sind bei privaten Daten unbeabsichtigte,
schwer nachvollziehbare "Seiteneffekte" nicht moglich.

e Dadurch erreicht man eine sichere und beweisbare Verwendung der Daten. Die
Verantwortung fir inhaltliche Richtigkeit ist dann klar definiert: sind die Daten
fehlerhaft, so kann die Ursache nur innerhalb dieses Moduls gesucht werden -
kein anderer darf direkt darauf zugreifen.

12.2.3 Vorteile des Information Hiding

Unter "information hiding" versteht man, dass die internen Details fir die Benutzung
eines Moduls versteckt werden. Dadurch bleiben dem Aufrufer die Implementie-
rungsdetails verborgen. Bekannt sind von den einzelnen Modulen nur die dokumen-
tierten Leistungsbeschreibungen und die Exportschnittstellen (wie werden die Me-
thoden aufgerufen, um damit zu arbeiten?). Die interne Arbeitsweise, also wie ist die
Dienstleistung realisiert, ist versteckt. Fiir den Klienten eines Moduls hat das folgen-
de Vorteile:

e Information Hiding befreit ihn davon, die internen Abliufe eines Dienstleis-
tungsmoduls verstehen zu miissen. Der Klient kennt von einer Klasse lediglich
die Schnittstelle (das "interface"), damit er weil, wie Methoden aufgerufen wer-
den und welche Ergebnisse sie liefern.

e Die Ubersicht iber den Gesamtkomplex wird erleichtert und die Einarbeitung
vereinfacht.

Woher bekommt aber der Nutzer einer Klasse die Informationen tber die Schnittstel-
len? In Java erfolgt die Beschreibung der Interfaces einerseits im Kopf der Klasse
bzw. im Kopf der einzelnen Methoden. Und andererseits gibt es sogar die Moglich-
keit, ein besonderes Sprachmittel fiir die Beschreibung von Schnittstellen zu
benutzen: das interface (weitere Informationen hierzu im Kapitel 11) Das ist eine
spezielle Form einer Quelltextdatei, in der ausschlieflich die Angaben zu den Ex-
portschnittstellen (die Signaturen) stehen.

Natiirlich muss der Nutzer einer Klasse bzw. der Aufrufer einer Methode auch die
Leistungsbeschreibung des Moduls kennen. Fir die Standardklassen steht die Be-
schreibung in der API-Dokumentation; fir selbst codierte Klassen hat der Program-
mierer die Moglichkeit, mit Hilfe des Dokumentationsgenerators javadoc eine HTML-
Datei mit der Leistungsbeschreibung zu erstellen (siche Abschnitt 8.8.1).

297

12 Module entwerfen, kapseln und dokumentieren

12.3 Objektorientierte Systementwicklung

Der Entwickler einer neuen objektorientierten Anwendung hat zwei grofle Fragen zu
kliren: Gibt es bereits fertige Losungen in Form von Klassen oder Klassenbibliothe-
ken? Wenn nicht, wie muss ich vorgehen, um selbst neue Klassen zu entwickeln?

Wie findet man die richtige Klasse fiir eine gegebene Aufgabenstellung?

Die Komplexitit der Java-Sprache liegt nicht in der Sprachspezifikation (es gibt nur
etwa 50 Schlisselworter), sondern in der Vielfalt der Klassenbibliotheken. Neben der
Standard-Bibliothek, die zum Lieferumfang des JDK gehort und ohne die eine Java-
Entwicklung nicht moglich ist, gibt es auf dem Markt eine schier uniiberschaubare
Fulle von Bibliotheken fir jedes Sachgebiet: fir Enterprise-Anwendungen, fir die
weitgehende Automatisierung der Prifung von Benutzereingaben (Plausibilitit und
Validierung), fir mathematische Methoden (Matrizen- und Differentialrechnung) fiir
Statistikberechnung (Vorhersagen, Regression oder Optimierungen usw.).

Wie muss man vorgehen, um neue Klassen zu entwerfen und zu codieren?

Bei der objektorientierten Softwareentwicklung gibt es zwei Vorgehensweisen, die
sich unterscheiden durch die Richtung der Abstraktion: die Top-Down-Methode, bei
der die grobe Losungsidee schrittweise verfeinert wird, um so zu dem Modulentwurf
zu kommen, und die Bottom-Up-Methode, bei der zunichst die einzelnen Bauteile
(Module) entwickelt (oder auch: zusammengesucht) werden und daraus das Ge-
samtsystem zusammengestellt wird.

In der Praxis wird man Ublicherweise eine Kombination beider Vorgehensweisen
finden. Man kann dabei folgende Schritte unterscheiden (leider ist die Definition der
folgenden Begriffe nicht allgemeingtiltig und sauber festgelegt):

e OOA (Objektorientierte Analyse)
e OOD (Objektorientiertes Design)
e OOP (Ojektorientierte Programmierung).

12.3.1 Objektorientierte Analyse (OOA)

Kernaufgaben dieser Phase sind: Verstehen und Formulieren der Aufgabenstellung,
Analyse der Kundenerwartungen, Losungsalternativen entwickeln, Ziele und Zeitpli-
ne festlegen.

Das Ergebnis sind Grobvorschlige fiir die Architektur des neuen Systems mit Be-
schreibungen der weiteren Vorgehensweise.

Bei kleineren Systemen kann es bereits in dieser Phase sinnvoll sein, eine fachliche
Beschreibung in UML-Notation (siche Abschnitt 12.4) zu erstellen oder Prototypen
z.B. fur die Benutzeroberfliche, einzusetzen.

298

12.3 Objektorientierte Systementwicklung

12.3.2 Objektorientiertes Design (OOD)

Hier erfolgt die Festlegung der Systemstruktur. Der Schwerpunkt der objektorientier-
ten Designmethode liegt darauf, das Projekt aufzuteilen in Klassen. Dazu gehort die
detaillierte Festlegung, aus welchen Elementen die neuen Klassen bestehen, welche
konkreten Eigenschaften und Aktionen sie kennen und wie die Klassen untereinan-
der verbunden sind.

Dabei hilft es, zunichst zu generalisieren, bevor spiter dann Losungen fiir Spezialfil-
le entwickelt werden. Die wichtigsten Entscheidungen, basierend auf den Erkennt-
nissen aus der Analysephase, sind: Wo sind gleichartige Objekte? Wo liegen die
Gemeinsamkeiten innerhalb dieser Gruppe von Objekten. Wo sind die Unterschiede
zu den anderen Objekten? Auf diese Weise werden Klassen identifiziert.

Klassen repriasentieren zunichst lediglich Konzepte, nicht die Anwendung selbst. Sie
erweitern den Sprachumfang von Java, denn sie beschreiben neue (selbstdefinierte)
Typen mit ihren Operationen. In den meisten Fillen kann man eine Klasse als An-
gebot einer Dienstleistung sehen, das vom Client der Klasse genutzt wird (durch das
Senden einer Nachricht).

12.3.2.1 Generelle Empfehlungen fiir das Klassendesign

Die Regeln zur Klassenbildung konnen wie folgt zusammengefasst werden:

e Ein Programmmodul soll cine (und nur eine) Aufgabe erfilllen. Die Dinge, die
nicht zur Aufgabenstellung dieser Klasse gehoren, sollten separiert und in einer
eigenen Klasse untergebracht werden Gut ist die Klassenbildung gelungen,
wenn ihre Aufgabe mit einem Substantiv beschrieben werden kann.

e Die Klasse soll so einfach wie moglich sein. Kurze, einfache Klassen sind besser
als grofSe. Es sollte nicht zwanghaft versucht werden, alle denkbaren und mogli-
chen Fille abzudecken und in die Klasse aufzunehmen. Viele Projekte sind dar-
an gescheitert, dass gleich am Anfang versucht wurde, zuviel auf einmal abzu-
decken. Konzentrieren Sie sich auf die Aufgaben, die anstehen. Nicht mehr -
und nicht weniger.

¢ Die Dinge, die sich oft indern, sollten getrennt werden von Aufgabenstellungen,
die (relativ) konstant sind. Auch sollten plattformabhingige Losungen getrennt
werden von allgemein giiltigen Losungen. Damit erleichtert man die Wartung,
und eine groBere Anzahl von Klassen wird portabel.

e Vorteilhaft kann es sein, den Standpunkt des Clients einzunehmen (ist der Sinn
der Klasse einleuchtend, ist die Klasse anwenderfreundlich, ist sie robust usw.).

e Der Aspekt der Wiederverwendung spielt in objektorientierten Systemen eine
wichtige Rolle. Deswegen sollten Sie immer auch bedenken, ob universelle Bau-
steine entwickelt werden konnen, auch wenn der allgemeine Einsatz als wieder
verwendbares Modul noch nicht unmittelbar zu erkennen ist.

299

12 Module entwerfen, kapseln und dokumentieren

12.3.2.2 Formale Prinzipien fiir die Bildung von Modulen (Klassen)

Die Entscheidung, welche Teile zu einer Klasse zusammengefasst oder welche auf
mehrere Klassen aufgeteilt werden missen und wie diese Klassen zusammenarbei-
ten, ist abhingig von folgenden Kriterien:

e Die Modulbindung soll hoch sein

Das bedeutet, dass der innere Zusammenhalt moglichst eng sein soll (= grofie
Kohision). Ein Modul sollte keine Bestandteile enthalten, die inhaltlich nichts
miteinander zu tun haben ("eine Funktion = ein Modul"). Die Klasse sollte mog-
lichst so atomar sein, dass sich ihre Aufgabe mit einem Wort beschreiben ldsst.

e Die Modulkopplung soll niedrig sein

Das bedeutet, dass die Abhingigkeit zwischen den verschiedenen Modulen
moglichst gering sein soll. Die Verkniipfung untereinander sollte so schwach
wie moglich sein: wenig Parameteraustausch, keine globalen Datenbereiche.
Jedes Modul soll wohldefinierte offentliche Schnittstellen besitzen, ber die es
mit seiner Umgebung kommuniziert.

e Berticksichtigung von Design-Pattern

Profitieren Sie von den Erfahrungen anderer, benutzten Sie Entwurfsmuster.
Pattern sind keine fertigen Losungen, sondern sie bieten Losungsmuster fiir
hiufig wiederkehrende Aufgabenstellungen. Beispiel fiir ein bekanntes Pattern:
Trennung der Benutzeroberfliche von der fachlichen Verarbeitung und Einrich-
tung eines Steuerobjekts (Model-View-Control-Pattern, MVC).

o Relationen zwischen den Klassen beschreiben

Wenn das Design der einzelnen Klassen feststeht, muss tberlegt werden, wie
die Beziehungen ("Relationen") zwischen den Klassen sind. Neben der Verer-
bung gibt es noch Beziehungen, die nicht auf Vererbung beruhen ("Assoziatio-
nen"). Als Assoziation wird zunichst einmal jede Form einer Beziehung zwi-
schen zwei Klassen bezeichnet, die nicht auf Vererbung beruht. Nihere Anga-
ben, z.B. tber die Art der Realisierung, werden dabei nicht gemacht.

e Ergebnis des OOD in UML dokumentieren

Die Spezifikationen der OOD miussen dokumentiert werden. Hier helfen die
verschiedenen Diagramme der Unified Modeling Language (UML). Insbesonde-
re sind Klassendiagramme hilfreich, Details siehe nichsten Abschnitt.

Es gibt zwei fundamentale Arten von Verbindungen (Beziehungen, Relationen, As-
soziationen) zwischen Klassen:

- die is-a-Bezichung (Vererbung, z.B. Klasse B ist ein spezieller Typ der Klasse A)

- die has-a-Bezeichung (Assoziation, z.B. Klasse A hat ein Objekt der Klasse B)

300

12.3 Objektorientierte Systementwicklung

12.3.2.3 Is-a-Beziehung (Vererbung)

Die engste Bezichung zwischen Klassen ist die Vererbungsbeziechung. Eine Unter-
klasse ist ein spezieller Repriasentant der generellen Oberklasse. In Java wird dies
durch das Schlisselwort extends ausgedriickt:

class Unterklasse extends Oberklasse { ... }

Voraussetzung fiir das Bilden einer solchen Klassenhierarchie ist eine Beziehung, die
beschrieben werden kann als Generalisierung (Verallgemeinerung) der Unterklasse
bzw. Spezialisierung (Verfeinerung) der Oberklasse.

Ziel ist die Wiederverwendung von vorhandenem Code. Die Unterklasse erbt alle
Fihigkeiten der Oberklasse. Dabei kann sie die Struktur oder das Verhalten dndern,
ohne dass die Oberklasse davon bertihrt ist.

Ein weiterer Vorteil der Vererbungstechnik ergibt sich daraus, dass Uberall da, wo
ein Objekt der generellen Klasse moglich ist, auch ein Objekt der speziellen Klasse
stehen kann. Beispiel:

Programm Vererbung01l: Zuweisungskompatibilitit und Vererbungshierar-
chie

public class Vererbung0l {
public static void main (String[] args) {

A a = new A();

B b = new B();
System.out.println(b.str);
a = b;

System.out.println(a.str);

class A {
String str = "KlasseA";

}
class B extends A {

}

Die Wertezuweisung a = b ist erlaubt, weil B eine Subklasse von A ist.

Beim Erzeugen einer Instanz der Subklasse werden immer alle Elemente der Su-
perklasse automatisch eingebettet in das neu erzeugte Objekt. Diese enge Bindung
hat jedoch nicht nur Vorteile, es besteht sehr leicht die Gefahr der Uberfrachtung
von Klassen. Die Vererbung wird in UML durch einen offenen Pfeil, ausgehend von
der Subklasse in Richtung Superklasse, dargestellt.

301

12 Module entwerfen, kapseln und dokumentieren

12.3.2.4 has-a-Beziehungen (Assoziation)

Beziehungen, die nicht auf Vererbung beruhen, kénnen als "hat-eine-Beziehung" be-
schrieben werden. Dabei werden in UML drei unterschiedlich enge Bezichungen un-
terschieden:

e die allgemeine Assoziation, bei der lediglich beschrieben ist, dass Klasse-A eine
Instanz von Klasse-B benutz;

e die Aggregation, bei der zwischen den Klassen eine Ganze-Teile-Bezichung
besteht, z.B. wenn Klasse-B ein Teil von Klasse-A ist;

e die Komposition, eine stirkere Form der Aggregation, bei der die Klasse-B
nicht nur in A enthalten ist, sondern sogar existentiell von ihr abhingig ist.

Wihrend es in UML unterschiedliche Symbole gibt fiir diese drei Klassifikationen,
unterscheidet man in Java nicht zwischen Assoziation, Aggregation und Kompositi-
on. Es gibt keine speziellen sprachlichen Konstrukte dafiir, dariiber hinaus ist die
Unterscheidung nicht immer leicht und hiufig auch nicht ganz eindeutig zu treffen.

Assoziation

Ist die Beziehung zwischen den Klassen lediglich in der allgemeinen Form von "A
benutzt B", dann wird dies in UML durch eine einfache Linie dargestellt. Damit ist
nur ausgesagt, dass eine Methode der Klasse A mit einem Objekt der Klasse B arbei-
tet. Dabei kann das Objekt B in einer Methode mit new erzeugt worden sein:

Programm ClassA: Instanz erzeugen und benutzen

public class ClassA {
public static void main(String[] args) {
new ClassB("Von wem wird dies ausgegeben?");

}
class ClassB {
ClassB(String text) { // Konstruktor
System.out.println (text);

}

Diese Art der Verbindung zwischen Klassen ist immer dann sinnvoll, wenn Service
in spezielle Module ausgelagert wird.

Das Programm ClassA hat (unabhingig vom Thema Assoziation) eine zusitzliche Be-
sonderheit: es erzeugt mit new ein anonymes Objekt von der Klasse B. Das ist im-
mer dann sinnvoll, wenn lediglich die Instanziierung (also das Durchlaufen des
Konstruktors) ausgefiithrt werden soll, die lokale Variable fir dieses Objekt danach
aber nicht mehr benotigt wird.

302

12.3 Objektorientierte Systementwicklung

Eine andere Variante der Assoziation demonstriert das folgende Programm. Hier
empfingt eine Methode ein Objekt von B als Parameter.

Programm ClassA: Ubergabe einer Referenz von A nach B

public class ClassA {

String str = "Von wem wird dies ausgegeben?";
public static void main (String[] args) {
ClassA a = new ClassA();
ClassB b = new ClassB(a); // Hier ist meine Adresse

}
class ClassB {
ClassB(ClassA a) {
System.out.println(a.str);

}

Diese Art der Verbindung zwischen den Klassen wird praktiziert bei so genannten
Callback-Methoden, bei denen sich ein Objekt bei einem anderen Objekt anmeldet,
damit es dort verarbeitet wird.

Diese Beziehung kann auch als "benutzt-eine" beschrieben werden.

Aggregation

Eine konkretere Assoziation ist die Aggregation. Sie wird in UML durch eine offene
Raute an der Linie dargestellt und bezeichnet eine Beziehung, bei der die beteiligten
Klassen nicht gleichberechtigt sind, sondern wo eine Ganze-Teile-Beziehung besteht.
Das kann die Zugehorigkeit einer Klasse zu einer Sammlung sein (z.B. ein Kunden-
objekt als ein Element eines Arrayobjekts) oder auch darin bestehen, dass ein Objekt
der Klasse-A sich zusammensetzt aus einem Objekt der Klasse-B, wobei B aber auch
unabhiingig existieren kann (z.B. ein Kunde hat ein String-Objekt als Attribut).

Komposition

Eine noch stirkere Form einer Beziehung zwischen Klassen ist die Komposition.
Hier werden Klassen in andere Klasse eingefiigt, indem Felder einer Klasse aus Ob-
jekten anderer Klassen bestehen, die existentiell abhangig sind von der Gesamt-
klasse. Wird das Gesamtobjekt zerstort, so sind auch die darin enthaltenen Objekte
nicht mehr verfigbar.

Beispiel: Es gibt die Klasse Auto, die sich u.a. zusammensetzt aus Objekten der Klas-
sen Rad (und Sitz, Motor usw.). Bei der Komposition der Klasse Auto ist das Rad al-
so vollstindig enthalten. Sobald eine Instanz von Auto erzeugt wird, wird auch das
Datenmember vom Typ Rad erzeugt. Die Komposition wird in UML durch eine aus-
gefullte Raute dargestellt.

303

12 Module entwerfen, kapseln und dokumentieren

Das folgende Programm demonstriert diese enge Beziehung zwischen den Klassen A
und B. Hier sind Objekte von A enthalten in Klasse B, sie sind ein Attribut der
Klasse B, und das bedeutet, wenn eine Instanz von B erzeugt wird, wird auch ein
Objekt von A benotigt.

Programm ClassTest: Die Klasse B enthilt als Membervariable ein Objekt der
Klasse A

public class ClassTest {
public static void main(String[] args) {
ClassA a = new ClassA("Von wem wird dies ausgegeben?");
ClassB b = new ClassB(a);
b.ausgeben () ;

}
class ClassA {
String str;
ClassA(String s) {
str = s;

}
class ClassB {
private ClassA a;
ClassB(ClassA a) {
this.a = aj;
}
void ausgeben () {
System.out.println(a.str);

}

Bewertung der unterschiedlichen Klassenbeziehung beim Bilden von neuen
Klassen

Die Klassen sind das wichtigste Mittel fiir "Code-reuse" in objektorientierten Syste-
men. Java erlaubt es dem Programmierer nicht nur, neue Klasse zu erstellen, son-
dern bietet auch unterschiedliche Moglichkeiten, bestehende Klassen zu benutzen.
Die einfachste Form der Nutzung ist die Instanziierung mit anschlieBendem Nach-
richtenaustausch. Enger wird die Bezichung, wenn eine bestehende Klasse als Attri-
but in eine andere Klasse eingebettet wird.

Die engste Beziehung jedoch ist die Vererbungsbeziehung, denn bei der Instanziie-
rung werden nicht nur implizit (automatisch) alle Objekte von Oberklassen einge-
bunden, sondern die Unterklasse ist auch von der Syntax und von der Semantik her
"gefesselt" an der Oberklasse. Das hat nicht nur Vorteile:

304

12.3 Objektorientierte Systementwicklung

e Auch Designfehler werden geerbt, d.h. diese pflanzen sich bis in alle Subklassen
fort.

e AuBerdem werden Modifikationen an Oberklassen umso schwieriger, je tiefer
die Schachtelung der Klassenhierarchie ist.

Deswegen lautet eine Empfehlung beim Klassendesign: Entscheiden Sie sich fir die
Vererbung nur dann, wenn eindeutig eine Spezialisierung einer bestehenden Klasse
benotigt wird, im Zweifel ist die Aggregation bzw. Komposition vorzuziehen, weil
diese Klassenbeziehungen einfacher und flexibler sind.

12.3.3 Objektorientierte Implementierung (OOP)

Nach dem OOD folgt die Umsetzung des Designs in den Java-Quelltext, die Codie-
rung. Dazu miussen die Feinstruktur der Klassen und die Algorithmen der Methoden
entwickelt werden. Hier konnen Entwurfssprachen wie Pseudocode oder Ablaufpli-
ne (siehe Kapitel 9) als Vorstufe zur eigentlichen Codierarbeit hilfreich sein.

Encapsulation und Information Hiding

Auch beim Implementieren der Klassen und Methoden sollten unbedingt die schon
mehrfach besprochenen Prinzipien der Kapselung und des Information Hiding kon-
sequent eingehalten werden. Die Vorteile zeigen sich spitestens in der Wartungs-
phase: die innere Struktur einer solchen Klasse kann geindert werden, ohne dass
die Clients davon irgendwie berthrt sind. Die Klasse (oder komplette Packages)
werden ausgetauscht, so wie es aus dem technischen Bereich bekannt ist (z.B. Mo-
dul im TV-Gerit wird ausgetauscht, ohne dass andere Teile davon betroffen sind,
solange die Schnittstellen gleich bleiben). Ein Beispiel fiur die Einhaltung dieses Prin-
zips ist (normalerweise) der Wechsel der JDK-Version: die Anwendungsprogramme
mussen nicht gedndert werden, obwohl die aufgerufenen Klassen u.U. intern erheb-
lich modifiziert worden sind.

Die Felder einer Klasse sollten moglichst privat sein. Innerhalb einer Methode sollte
- wann immer moglich - mit lokalen Variablen gearbeitet werden. Dadurch ist der
Scope der Daten (siehe Kapitel 16) so schmal wie moglich, d.h. sowohl die Sichtbar-
keit als auch die Lebensdauer der Elemente bleiben so kurz wie moglich. Ausnah-
men sind zu dokumentieren. Fir das Lesen und Verindern von Instanzvariablen
werden speziellen Methoden geschrieben: Setter-Methoden zum Modifizieren und
Getter-Methoden zum Lesen.

Trennung der Ausfithrungsklassen von Serviceklassen und Interfaces

In der Designphase sollte - wann immer moglich - getrennt werden nach Klassen,
die einen Service anbieten, und Klassen, die diesen Service nutzen.

Durch die zusitzliche Erstellung von interface-Quelldateien wird die Syntax fir den
Aufruf eines Services, den eine Klasse bietet, extern beschrieben. Die Interfaces ent-

305

12 Module entwerfen, kapseln und dokumentieren

halten die Signaturen der Methoden, also die Namen der Methoden und die Anzahl
und Datentypen der Parameter. Auferdem enthilt das Interface den Datentyp des
Ergebnisses. Das sind die Informationen, die der Client benétigt, um den Aufruf syn-
taktisch korrekt zu codieren. Bei der Codierung dieser unterschiedlichen Sourcefiles
kann eine personelle Trennung sinnvoll sein.

Inkrementell entwickeln

Auch fiir die Implementierung gilt: Gehen Sie schrittweise vor. Codieren Sie den ers-
ten Abschnitt, wandeln Sie ihn um (denn das bedeutet auch: lassen Sie den Compi-
ler die Syntax priifen) und testen Sie abschnittsweise. Verfeinern Sie Thr Programm
nach und nach. Ein Beispiel fiir diese Vorgehensweise enthilt Kapitel 9.1.1.

Uberschaubare Gréie und einfacher Codierstil

Die einzelnen Klassen und Methoden sollen eine iberschaubare Grofe haben. Jede
Klasse ist einzeln compilierbar, d.h. sie kann eigenstindig auf Syntaxfehler tiberprift
werden.

Methoden implementieren kurze, funktional abgegrenzte Aufgaben und sollten nur
in Ausnahmefillen groRer sein als 50 - 100 Zeilen

Vermeiden Sie Codiertricks. Solche Losungen sind hiufig so kunstvoll, dass sie
schwer verstindlich sind. Codieren sollte nicht als Kunst, sondern als eine Technik,
die sehr viel Disziplin erfordert, angesehen werden.

Musterverwendung

Nicht nur in der Designphase sollte auf Pattern zurickgegriffen werden. Auch in der
Realsierungsphase gibt es fur viele Aufgabenstellung bereits Musterlosungen (weitere
Hinweise dazu folgen spiter).

Strukturierte Programmierung

Die Reihenfolge, wie Methoden in einer Javaklasse aufgefithrt sind, spielt fir den
Programmablauf keine Rolle, alle sind gleichberechtigt. Ausnahme ist die main-
Methode. Jede Java-Applikation beginnt mit der main-Methode, von dort erfolgt der
Aufruf aller anderen Klassen und Methoden dieses Prozesses. Allerdings sollten beim
Codieren der main-Methode (und auch aller anderen Methoden) die Regeln der
Strukturierten Programmierung beachtet werden. Diese sind im Kapitel 9 beschrie-
ben.

Integrierte Dokumentation (Arbeiten mit javadoc)

Kommentare helfen bei der Einarbeitung in den Quelltext. Nicht nur fiir den Autor
sollten die Programme auch nach Monaten noch zu verstehen sein, auch Kollegen
kommen in die Situation, fremde Sourcen modifizieren zu miissen. Sie werden
dankbar sein fiir jede plausible Erlduterung.

306

12.4 Unified Modeling Language (UML)

In der JDK gibt es ein Hilfsprogramm ("tool"), das analysiert eine Quelltextdatei und
extrahiert die Kommentare, um daraus eine HTML-Datei zu erstellen. Aufgerufen
wird es mit:

javadoc *.java
nachdem in den Ordner gewechselt wurde, in dem sich die Programme befinden.

Das Tool erkennt nicht nur die eingefiigten Kommentare in einem Programm (sofern
sie in /** und */ eingeschlossen sind), sondern auch speziell markierte Absitze, die
mit @ beginnen.

12.4 Unified Modeling Language (UML)

Die Unified Modeling Language (UML) ist eine grafische Beschreibungssprache zur
Darstellung von objektorientierten Softwaresystemen. Der UML-Standard umfasst
mehrere unterschiedliche Arten von Diagrammen. Die wichtigste ist das Klassendia-
gramm, andere Arten sind Use-Case-Diagramme zur Darstellung von Anwendungs-
tillen oder Sequenzdiagramme zur Darstellung von Interaktionen.

Das Klassendiagramm beschreibt die Struktur von Klassen und ihre Beziehungen un-
tereinander. Jede Klasse wird als Rechteck dargestellt. Ganz oben im Rechteck steht
der Name der Klasse. Danach werden die Attribute und dann die Methoden aufge-
fihrt.

Klasse Kunden

nr: int
String: Name

aendern(String, int);
ausgeben()

Abb. 12.1: Beispiel fur UML-Klassendiagramm

Die Klassen eines Programms (oder Programmsystems) werden durch Linien und
spezielle Symbole miteinander verbunden. Diese Symbole stellen die unterschiedli-
chen Beziehungen (Assoziationen) zwischen den Klassen dar:

e Aggregation, dargestellt durch eine Raute, eine "ist-Teil-von"-Beziehung,

e Komposition, dargestellt durch eine ausgefiillte Raute, eine physikalische "ist
ein Teil von"-Beziehung, also stirker als die Aggregation,

e Vererbung, dargestellt durch einen Pfeil, stellt eine Verallgemeinerung bzw.
Spezialisierung von Eigenschaften dar, sie wird auch als "ist-ein-"Beziehung be-
zeichnet.

307

12 Module entwerfen, kapseln und dokumentieren

Hier eine Ubersicht iiber die wichtigsten Elemente eines Klassendiagramms:

Name
Attribute Klasse
Operationen
Objekt
Assoziation
—<> Aggregation
H Komposition
f Vererbung

Abb. 12.2: Elemente eines UML-Klassendiagramms

Eine strenge visuelle Unterscheidung zwischen Objekt und Klasse ist in UML nicht
vorgesehen, beide werden durch Rechtecke reprisentiert. Die Beschriftung der Kist-
chen ist weitgehend wahlfrei. Neben diesen Klassendiagrammen sind in UML auch
Aktivititsdiagramme moglich. Diese zeigen ganz allgemeine Abliufe und konnen
auch benutzt werden, um Algorithmen grafisch darzustellen. Ahnlich wie in einem
PAP wird durch Aktivititsdiagramme der Kontrollfluss grafisch dargestellt.

Vorteil der UML-Notation im Vergleich zu PAP oder Nassi-Shneidermann: Sie er-
laubt auch die Darstellung von speziellen OO-Strukturen wie z.B. Collections,
Streams oder Exceptions.

308

12.5 Pattern und Frameworks

12.5 Pattern und Frameworks

12.5.1 Design Pattern (Entwurfsmuster)

Objektorientierte Programmierung unterscheidet sich von strukturierter Programmie-
rung nicht nur dadurch, dass Daten und Funktionen konsequent gekapselt und da-
mit geschiitzt (privat) sind, sondern auch dadurch, dass die Softwaresysteme aus
"unendlich" vielen kleinen Objekten bestehen, die miteinander Nachrichten austau-
schen. Es gibt eine ganze Reihe von Versuchen, den Aufbau der objektorientierten
Anwendungen zu standardisieren und zu normieren. Dabei handelt es sich um Emp-
fehlungen, die auf Erfahrungen aus der Praxis beruhen.

Beschrieben werden diese Empfehlungen in so genannten Design Pattern. Diese
Entwurfsmuster beschreiben schematische Losungen, nicht nur fiir Designprobleme,
wie der Name suggeriert, sondern auch fur die Codierung von Datenstrukturen und
Algorithmen in einer bestimmten Programmiersprache. Sie beschreiben die Losungs-
ansdtze fir hiufig wiederkehrende Standardprobleme, zusammengetragen und kata-
logisiert von erfahrenen Programmierern. Es gibt mittlerweile viele Hundert Pattern,
veroffentlicht in einigen Dutzend Buchern.

Konkret handelt es sich dabei um in der Praxis bewihrte Losungen in Form von
Empfehlungen. Diese konnen dann mit geringem Modifikationsaufwand so oder so
dhnlich eingesetzt werden. Design Pattern basieren damit auf zwei bereits bekannten
Konzepten der Softwareentwicklung: Abstraktion und Wiederverwendung.

Pattern und Abstraktion

Die Losungsvorschlige sind unabhingig von konkreten Projekten oder von be-
stimmten Umgebungen (Hardware- oder Softwareplattform), oft sogar programmier-
sprachen-unabhiingig. Allerdings entstammen die Losungsvorschlige normalerweise
den objektorientierten Architekturen. Konkret sind einige der Design Pattern sogar in
die Standard-Klassen der Java-Sprache eingebaut, so z.B. das Factory-Design Pattern
oder das Arbeiten mit einem Iterator.

Pattern und Wiederverwendung

Wiederverwendung ist nattrlich das eigentliche Thema der Entwurfsmuster. Denn
sie sind eine wiederverwertbare Vorlage fir Problemlosungen, entstanden aus der
Erfahrung von vielen Jahren Systementwicklung in vielen Projekten. Dies macht es
den Anfingern etwas schwer, die Bedeutung der Design Pattern zu erkennen, denn
bei der Vorschligen handelt es sich meistens um Rezepte fir kompliziertere Aufga-
benstellungen, gedacht fir erfahrene Programmierer, die komplexe Anwendungen
realisieren missen.

Ein Nebeneffekt der Beschiftigung mit Design Pattern ist, dass hiufig wiederkehren-
de Probleme dadurch einen Namen bekommen. Dieser Name ist gleichbedeutend
mit einer Standardlosung flr dieses Problem. Zum Beispiel weif§ jeder erfahrene

309

12 Module entwerfen, kapseln und dokumentieren

Programmierer, welche Losungsansitze mit Factory oder Singleton gemeint sind (bei
diesen Pattern handelt es sich um genau beschriebene Muster fur das Erzeugen von
Instanzen).

12.5.2 Beispiel 1 fiir ein Design Pattern: lterator

Ein Iterator ist ein Objekt, das es ermoglicht, die Elemente einer Collection sequen-
tiell zu durchlaufen. Eine Collection ist eine Sammlung von Objekten im Arbeitsspei-
cher. Eine einfache Collection ist in der Standardklasse Vector beschrieben. Ein Vec-
tor-Objekt ist vergleichbar mit einem Array (siehe Kapitel 13), allerdings hat Vector
den Vorteil, dass seine GroBe veridnderlich ist. Das heif$t, beim Erzeugen des Objekts
muss keine Grofe angegeben werden, und die Anzahl der Komponenten dieses
Vektors kann sich zur Laufzeit verindern.

Das folgende Beispielprogramm erzeugt eine Collection aus der Klasse Vector und
fullt diese Sammlung mit einigen Objekten. Danach soll die Collection sequentiell
durchlaufen werden, um somit alle Komponenten, die gesammelt worden sind, am
Bildschirm anzuzeigen. Fir diese Aufgabenstellung ("Iteration durch eine Collecti-
on") gibt es drei mogliche Codierlosungen: entweder wird eine einfache for-Schleife
mit einer Laufvariablen benutzt, oder der Programmierer benutzt das Iterator-
Pattern, oder es wird die erweiterte for-Schleife codiert.

Programm ArrayList01: Losungsvorschlag 1 - Iterator-Pattern

import java.util.*;
public class ArrayList01l {
public static void main(String[] args) {
ArrayList sammlung = new ArrayList ();
sammlung.add ("Erstes Objekt");
sammlung.add ("Zweites Objekt");
sammlung.add ("Drittes Objekt");
sammlung.add ("Viertes Objekt");
// Ausgeben mit Iterator
Iterator it = sammlung.iterator();
while (it.hasNext ()) {
System.out.println(it.next ());

}

Diese Losung zeigt, wie ein Objekt der Iteratorklasse eingesetzt werden kann, um
eine Sammlung von Objekten, die im Arbeitsspeicher stehen, sequentiell zu verarbei-
ten. Sie ist unabhingig von der konkreten Implementierung der Objektsammlung,
egal ob dies eine Liste oder ein Stack oder eine Queue ist, das Iterator-Pattern passt
immer. Allerdings zeigt dieses Beispiel auch, dass ein Standard-Rezept nicht immer

310

12.5 Pattern und Frameworks

die einzige (oder beste) Losung ist: denn in diesem Fall wird ein erfahrener Java-
Programmierer wahrscheinlich die erweiterte For-Schleife vorziehen.

Programm ArrayList02: Losungsvorschlag 2 - erweiterter For-Schleife

import Jjava.util.*;
public class ArrayList02 {
public static void main (String[] args) {
ArrayList sammlung = new ArrayList ();
sammlung.add ("Erstes Objekt");
sammlung.add ("Zweites Objekt");
sammlung.add ("Drittes Objekt");
sammlung.add ("Viertes Objekt");
// RAusgeben mit erweiterter For-Schleife
for (Object s : sammlung) {
System.out.println(s);

}

Diese Variante, durch eine Collection zu iterieren, ist im Gegensatz zur Iterator-
Pattern eine spezielle Java-Moglichkeit. Sie bietet sich an, wenn alle Elemente verar-
beitet werden sollen und wenn die Verarbeitung kein Update der Collection-Inhalte
erfordert.

Der Einsatz des Iterators dagegen ist ein universelles Design Pattern, unabhingig
von einer speziellen Programmiersprache. Diese Losung ist in Java immer dann ein-
zusetzen, wenn die Collection nicht nur gelesen, sondern auch inhaltlich verindert
werden soll.

Ubung zum Programm ArrayList02

Losen Sie die Aufgabe mit einer einfachen for-Schleife.
Losungshinweis: for (int i=0; i<4; i++) System.out.println(sammlung.get(i));

12.5.3 Beispiel 2 fiir Design Pattern: MVC (model-view-control)

Ein weiteres bekanntes Design-Pattern ist MVC (model-view-control). Damit wird
beschrieben, wie eine Java-Anwendung in drei Teile aufgeteilt werden kann, die je-
weils strikt getrennt voneinander als Module realisiert werden. Die Module haben
folgende fest definierte Aufgaben:

e das "model"-Modul speichert und verarbeitet die Daten ("business-logic")
e die "view'-Modul ist zustindig fiir Anzeige der Daten ("presentation")

e das "control'-Modul steuert den Ablauf der gesamten Applikation.

311

12 Module entwerfen, kapseln und dokumentieren

Fur die konkrete Umsetzung dieses Entwurfsmusters gibt es im Bereich der Unter-
nehmensanwendungen ("enterprise application") mit Internet-Techniken sogar eige-
ne Java-Programmtypen: fir das Control-Modul werden Servlets, fiir das View-Modul
Java-Server-Pages und fir die Realisierung der Model-Aufgabe hiufig Javabeans oder
auch E/B (Enterprise Java Beans) eingesetzt.

12.5.4 Framework

Im Zusammenhang mit Design Pattern und Componententechnik wird hiufig der
Begriff "Framework" genannt. Leider ist auch diese Bezeichnung nicht einheitlich de-
finiert. Nicht selten ist es nur ein Schlagwort aus dem Bereich der objektorientierten
Softwareentwicklung. Wortlich Ubersetzt bedeutet Framework Rahmenwerk, und
man kann darunter verstehen:

e Ein Programmsystem, dass im Gegensatz zu einer reinen Klassenbibliothek auch
eine Anwendungsarchitektur vorgibt. Hiufig wird diese Bezeichnung auch als
Marketingbezeichnung fiir objektorientierte Software-Produkte benutzt, die den
Losungsrahmen fiir einen vorgegebenen Problemenbereich bilden, oder anders
gesagt: Sie sind Halbfabrikate, die in konkreten Kundensituationen angepasst
und erginzt werden missen zu Endprodukten. In diesem Sinne gibt es auf dem
Markt der Anwendungen Frameworks fiir jede denkbare Aufgabenstellung, z.B.
fir Buchhaltungssysteme, elektronische Warenhduser im WWW, spezielle Lo-
sungen fir Clientanwendungen, es gibt 3D-Frameworks usw.

e Eine Paketsammlung, die fir ein bestimmtes Anwendungsgebiet neben der rei-
nen API-Beschreibung in Form von Java-Interface auch die Implementierung
enthilt. In diesem Sinne gibt es Framework-Beispiele sogar innerhalb der Stan-
dard-Library, integriert in die Klassenbibliothek von J2SE: das Collection-
Framework oder das Swing-Framework.

e [Hrginzungen zu dem Java-Standard-API, die (noch) kein offizieller Standard
sind. So gibt es Frameworks, die eine optionale Erweiterung der J2SE-Plattform
bieten, z.B. das JMF (Java Media Framework). Dabei handelt es sich um eine Ja-
va-Bibliothek mit Programmsystemen fiir das Arbeiten mit Audiosignalen (Mikro-
fon) und Videosignalen (Kamera).

Die allgemeinste und vielleicht treffendste Definition des Framework-Begriffs ist:

Ein Framework enthilt die Architektur einer Anwendung. Es definiert nicht nur die
Bestandteile und die Struktur eines Programmsystems, sondern es implementiert
auch Teile davon.

Grundprinzipien der Frameworkarchitektur sind der Einsatz von Design Pattern und
die Anwendung der Komponententechnik. Beispiele fir Frameworks sind Java-
Beans, Struts und Webservices.

312

13.1 Erzeugen von Arrays

Reihungen benutzen ("arrays")

Die meisten Programmiersprachen bieten Moglichkeiten, mehrere gleichartige Vari-
ablen im Arbeitsspeicher zu einer Einheit zusammen zu fassen. Dadurch wird die
Verwaltung und Verarbeitung der einzelnen Komponenten vereinfacht. Diese Samm-
lungen haben - je nach Programmiersprache - unterschiedliche Bezeichnungen: sie
werden Array, Tabelle oder Vektor genannt. Manchmal heien sie auch einfach
"Feld". Diese Bezeichnung ist im Java-Umfeld aber unpassend, denn damit sind ibli-
cherweise die Attribute einer Klasse gemeint, also die Membervariablen.

Die in Java korrekte Bezeichnung ist Array (oder auf Deutsch: Reihung). Sie werden
in diesem Kapitel lernen,

e was Arrays sind,
e welche Verarbeitungsmoglichkeiten es dafiir gibt,

e worin die Vor- und Nachteile liegen im Vergleich etwa zu anderen Sammlungen,
die in Java moglich sind,

e was zu beachten ist, wenn Arrays als Methodenparameter oder als Returnwert
eingesetzt werden.

13.1 Erzeugen von Arrays

Ein Gruppe von Daten, die

e oleichartig sind (gleicher Datentyp, gleicher Name),

e zusammenhingend im Arbeitsspeicher stehen und nur

e durch eine "Platznummer" (Index) unterschieden werden,
nennt man Reihung (engl. array).

Arrays sind in Java echte Objekte, obwohl es keine Klasse gibt, von der sie erzeugt
werden. Gleichwohl werden sie mit dem Schliisselwort new erstellt. Auerliches
Merkmal dafiir, dass es sich um den Datentyp Array handelt, ist die Verwendung
von eckigen Klammern [] bei der Deklaration der Referenzvariable:

int[] zahlenreihe;

Mit dieser Deklaration wird die Referenz zu einem Arrayobjekt erstellt - oder besser
gesagt, eine Variable, die die Fihigkeit hat, auf ein derartiges Objekt zu zeigen
(denn es gibt ja noch kein Arrayobjekt). Der Identifier (hier: zahlenreibe) wird auch
Arrayvariable genannt. Der Datentyp int gilt fur jedes einzelne Mitglied der Gruppe

313

13 Reibungen benutzen ("arrays")

(Komponente, Element). Die eckige Klammer steht hinter dem Datentyp, sie kann
auch hinter dem Identifier stehen, doch diese Schreibweise wird nicht empfohlen.

Das eigentliche Arrayobjekt kann - wie bei Objekten iiblich - mit new erzeugt wer-
den:
zahlenreihe = new int[5];

Mit dieser Anweisung werden dynamisch (zur Laufzeit) im Arbeitsspeicher 5 ini-
Elemente angelegt, alle unter dem Namen zahblenreibe ansprechbar. Sie werden un-
terschieden durch eine Platznummer (Index), z.B.

zahlenreihe[2] = 15;

Mit dieser Wertezuweisung wird die dritte(!) Komponente aus der Zahlenreihe mit
dem Wert 15 gefiillt. Bitte beachten Sie: der Index muss ganzzahlig sein, und die 2
adressiert die 3. Zahl, weil die Nummerierung der Plitze bei 0 beginnt.

Programm Array01: Ein Array erstellen und mit Werten fillen

public class Array0l {
public static void main(String[] args) {
int[] umsatz;
umsatz = new int[3];
umsatz[0] = 100;
umsatz[1l] = 200;
umsatz[2] = 300;

}

Durch die Deklaration int[] umsatz; wird eine Referenzvariable angelegt, die
die Fihigkeit hat, auf eine Reihung von Integer-Werten zu verweisen. Durch das an-
schlieBende Statement umsatz = new umsatz[3]; werden 3 Arbeitsspeicher-
plitze angelegt, jeder ist 4 Bytes lang. Jeder hat die Fihigkeit, Integerwerte aufzu-
nehmen. Adressiert werden die einzelnen Plitze mit einem Index von 0 bis 2.

Referenz-Variable
umsaitz

A 4

100 200 300

Abb.13.1: Array im Arbeitsspeicher

Fazit: Bei der Definition wird die Anzahl der Elemente angegeben und nicht etwa
die hochste Platz-Nummer. Die Platz-Nummern (Indices) beginnen bei 0, deswe-
gen ist der hochste Index fiir die Reihung umsatz die 2.

Die letzten Anweisungen sorgen dafir, dass die drei Plitze der Reihung mit Werten
gefiillt werden.

314

13.2 Initialisieren von Arrays

Die Angabe der Komponentenanzahl kann fehlen, wenn das Array als formaler Pa-
rameter einer Methode definiert wird (ein typisches Beispiel dafiir enthilt die main-
Methode, dort ist ein String-Array als Empfangsparameter definiert).

Aber es gibt in Java keine Moglichkeit, die Anzahl der Elemente zu idndern, wenn
das Array einmal im Arbeitsspeicher angelegt ist. Man sagt, dic Gréfle eines Arrays
ist statisch. Werden dynamische Arrays bendétigt, so muss die Standardklasse Vector
benutzt werden (oder eine andere Klasse des Frameworks Collection).

Ubung

Erstellen Sie ein neues Programm mit einer Referenzvariablen. Diese Variable soll
die Fihigkeit haben, auf ein Array mit float-Variablen zu referenzieren. Die Refe-
renzvariable soll den Identifier zahlen haben. Danach soll das Array im Arbeitsspei-
cher angelegt werden. Benotigt werden 4 Elemente.

Losungsvorschlag

public class Array02 {
public static void main(String[] args) {
float[] zahlen;
zahlen = new float[4];

13.2 Initialisieren von Arrays

Beim Anlegen des Speicherplatzes flr das eigentliche Arrayobjekt ist es unbedingt
erforderlich, dass Angaben zu der Grofe des Arrays gemacht werden. Die Grofle er-
gibt sich aus der Anzahl der Komponenten der Reihung, und die kann auf zwei Ar-
ten festgelegt werden.

Zunichst ist es moglich, dass im Deklarationsstatement eine Ganzzahl (oder ein
Ausdruck, der eine Ganzzahl ergibt) steht:

int[] zahlenreihe = new zahlenreihela + 5];

Bei dieser Schreibweise werden die einzelnen Komponenten mit Defaultwerten initi-
alisiert, abhingig vom Datentyp.

Eine andere Moglichkeit besteht darin, die Elemente bei ihrer Deklaration mit indivi-
duellen Anfangswerten zu fillen (zu "initialisieren"). In diesem Fall kann die Angabe
der Anzahl entfallen, sie ergibt sich aus der Anzahl der Werte, die als kommage-
trennte Liste in geschweiften Klammern steht:

int[] zahlenreihe = {5, 3, 4, 17, 21};

Bei dieser Kurzschreibweise entfillt auch das Schlisselwort new, der Compiler er-
mittelt die Anzahl der Elemente aus der Liste selbst.

315

13 Reibungen benutzen ("arrays")

Programm Array03: Deklaration und individuelle Initialisierung eines Arrays

public class Array03 {
public static void main(String[] args) {
int[] umsatz = {100,200,300,0,0};
umsatz[4] = 1100;
System.out.println (umsatz[1l]);

}

In der Zeile 3 wird die Referenzvariable umsatz deklariert. Gleichzeitig wird das Ar-
rayobjekt erzeugt und den fiinf Komponenten die Werte aus der Liste der funf in#-
Literale zugewiesen. Dadurch werden die Komponenten des Arrays initialisiert. Die
darauf folgende einzelne Wertezuweisung adressiert das letzte Element in der Rei-
hung. Und mit der letzten Anweisung wird der Wert des zweiten Elements ausgege-
ben.

Ubung

Erstellen Sie ein neues Programm Array04. Deklarieren Sie darin ein Array, das aus
5 char-Elementen besteht. Die Elemente sollen initialisiert werden mit den Klein-
buchstaben von a bis e. Benutzen Sie fiir die Initialisierung die Kurzschreibweise,
damit die explizite Angabe der Arraygrole ("Dimension") entfallen kann.

Losungsvorschlag

public class Array04 {
public static void main (String[] args) {
char[] buchstaben = {'a','b','c','d','e'};
System.out.println (buchstaben([3]);

}

Wenn der Programmierer keine Anfangswerte vorgibt, werden die Komponenten ei-
nes Arrays mit Standardwerten initialisiert. Beispielsweise bekommen numerische
Typen den Wert 0. Das folgende Programm definiert ein Array fur die Aufnahme
von Referenzen auf Objekte (siche auch Abschnitt 13.4). Aber weil noch keine
Objekte erzeugt worden sind, enthalten die Komponenten den Anfangswert rnu/l.

Programm Array05: Die Komponenten werden mit Defaultwerten vorbelegt

public class Array05 {
public static void main (String args[]) {
Object[] obj = new Object[3];
System.out.println (obj[0]);
}

316

13.3 Zugrilf auf die Array-Komponenten

Ubung zum Programm Array05

Uberpriifen Sie durch Programmiinderung, wie der Defaultwert lautet, wenn das Ar-
ray aus boolean-Typen besteht (false oder true?).

Das folgende Programm kann nicht fehlerfrei umgewandelt werden.

Programm Array06: Umwandlungsfehler " .. not have been initialized"

public class Array06 {
public static void main (String args[]) {
float[] zahlen;
zahlen[0] = 15.4f;

}
Ubung zum Programm Array06

Kliren Sie die Ursache des Syntaxfehlers und korrigieren Sie den Fehler.
Losungshinweis: Arrayobjekte miissen im Arbeitsspeicher mit new erzeugt werden.

Fazit aus den letzten beiden Ubungen: Beim Initialisieren von Arrayobjekten muss
sauber unterschieden werden zwischen der Initialisierung der Referenzvariablen
(dies geschieht durch Aufruf von new) und der Belegung der einzelnen Komponen-
ten mit Anfangswerten (dies geschieht dabei automatisch).

13.3 Zugriff auf die Array-Komponenten

Die einzelnen Variablen, aus denen sich das Array zusammensetzt, werden Kompo-
nenten (manchmal auch Elemente) genannt. Sie werden unterschieden tber ihre
Platz-Nummer innerhalb des Arrays, (iber den Index. Uber diesen Index sind die
einzelnen Elemente einer Reihung direkt ansprechbar - ohne Aufruf einer Methode,
z.B.

betraege[0] = 125.23;

Der Index muss eine Ganzzahl sein (entweder direkt als Literal oder als Ausdruck,
der einen int-Wert ergibt). Spitestens zur Laufzeit des Programms wird sichergestellt,
dass nur giltige Indices verarbeitet werden, andernfalls gibt es Fehlermeldungen
("Exceptions") durch die Java Virtuelle Maschine (JVM). Die Indices beginnen bei 0
zu zihlen.

13.3.1 Vorteile beim Arbeiten mit Arrays

Durch den Einsatz eines Arrays wird die Deklaration, Verwaltung und Verarbeitung
der einzelnen Komponenten erheblich vereinfacht. Sie brauchen nur einmal dekla-
riert zu werden. Sie konnen einzeln oder als Ganzes verarbeitet werden. Man kann
direkt auf einzelne Komponenten zugreifen oder man kann Schleifen formulieren,
um sequentiell durch alle Elemente zu iterieren. Besonders elegant ist das Arbeiten
mit der for-Schleife.

317

13 Reibungen benutzen ("arrays")

Programm Array07: Iterieren durch ein Array und Zugriff auf jedes Element

public class Array07 {
public static void main(String[] args) {
float[] zahlen;
zahlen = new float[4];
for (int i=0; i<4; i++)
zahlen[i] = 1 + 125.0f;

}

Eine weitere Verarbeitungsvariante besteht darin, die Gruppe der Elemente als Gan-
zes zu verarbeiten. Dazu bietet die Klasse java.util. Arrays (siche Abschnitt 13.5:
Class Arrays) eine Fiille von Methoden, z.B. die Methode fill.

Programm Array08: Das Array als Ganzes verarbeiten

public class Array08 {
public static void main (String[] args) {
float[] zahlen;
zahlen = new float[4];
java.util.Arrays.£fill (zahlen, 12.45f);
for (float zahl : zahlen)
System.out.println(zahl);

}

Ubung zum Programm Array08

Kliren Sie anhand der API-Dokumentation, mit welcher Methode der Klasse Arrays
ein float-Array in eine Stringreprisentation umgewandelt werden kann. Erginzen Sie
das Programm um einen entsprechenden Ausgabebefehl.

Losungshinweis:

System.out.println(java.util.Arrays.toString(zahlen));

13.3.2 Priifung des Index durch Run-Time-Umgebung

Jeder Array-Zugriff wird von der Laufzeitumgebung tberpriift. Der Versuch, einen
Index zu verwenden, der kleiner als Null ist oder groer oder gleich der Anzahl der
Elemente, fihrt zu einer Exception.

318

13.3 Zugriff auf die Array-Komponenten

Programm Array09: Falsche Adressierung einer Array-Komponente

public class Array09 {
public static void main (String[] args) {
char[] buchstaben = {'a','b','c','d’','e'};
for (int i=0; i<6; i++) {
System.out.println (buchstaben[i]);

}
Ubung zum Programm Array09

Bei der Ausfithrung gibt es die Fehlermeldung "ArraylndexOutOfBoundsException:
5". Sinngemifs bedeutet das, dass der Index 5 einen Speicher auflerhalb dieser Ar-
raygrenzen adressiert. Korrigieren Sie das Programm, so dass es fehlerfrei ausgefiihrt
werden kann.

13.3.3 Member-Variable length enthélt die Anzahl der Komponenten

Zu jedem Array gibt es eine zusitzliche, eingebaute Variable, die als Wert die Anzahl
der Array-Elemente enthilt, die Variable length. Sie kann z.B. im Kopf einer for-
Schleife benutzt werden, um die Durchlaufbedingung zu formulieren.

Programm Array10: Arbeiten mit der Variablen length

public class Arrayl0 {
public static void main(String[] args) {
char[] buchstaben = {'a','b','c'};
for (int i=0; i<buchstaben.length; i++) {
System.out.println (buchstaben[i]);

}

Der Vorteil dieser Schreibweise liegt zum einen darin, dass der Programmierer nicht
abzihlen muss, wieviel Elemente das Array enthilt. Zum anderen ist sie aussagefihi-
ger: man erkennt sofort, dass alle Elemente verarbeitet werden.

Ubungen zum Programm Array10

Ubung 1: Ergiinzen Sie das Programm so, dass der Wert der Variablen length auf der
Konsole ausgegeben wird.

Ubung 2: Bitte dndern Sie das Programm so, dass mit einer For-Each-Schleife das
Array durchsucht wird nach dem Buchstaben b. Wenn dieser Wert gefunden wird,
soll er ausgegeben und die Suche abgebrochen werden.

319

13 Reibungen benutzen ("arrays")

Losungsvorschlag

public class Arrayll {
public static void main (String[] args) {
char[] buchstaben = {'a','b','c'};
for (char buchstabe: buchstaben) {
if (buchstabe == 'b') {
System.out.println (buchstabe) ;
break;

}

Die Variable length enthilt nicht die Anzahl der gefiillten Komponenten, sondern
die Gesamtanzahl aller Elemente, unabhingig davon, ob sie mit individuellen Wer-
ten gefiillt worden sind oder ob sie die Default-Initwerte enthalten.

Wenn also nur die gefiillten Elemente verarbeitet werden sollen, so muss die ent-
sprechende Abfrage vom Programmierer codiert werden.

Ubung

Erstellen Sie ein neues Programm Array12. Darin soll ein Array definiert werden, das
die Zahlen 1 - 10 in seinen 10 Komponenten speichert. Die Werte der Komponenten
sollen in einer for-Schleife durch Wertezuweisung vergeben werden.

Danach soll in einer zweiten for-Schleife das Array iteriert und die Inhalte aufaddiert
werden. Das Ergebnis wird auf der Konsole ausgegeben.
Losungsvorschlag:

public class Arrayl2 {

public static void main (String[] args) {
int[] zahlen = new int[10];
for (int i=0; 1i<10; i++) {
zahlen[i] = 1i+1;
}
int summe = 0;
for (int wert: zahlen) {
summe = summe + wert;
}

System.out.println("Die Summe ist: " + summe);

320

13.4 Objekte in Arrays sammeln

13.4 Objekte in Arrays sammeln

Arrays konnen nicht nur Werte von primitiven Datentypen enthalten, sondern sie
konnen auch Objekte aufnehmen. Dann werden aber nicht die Objekte selbst im Ar-
ray gespeichert, sondern lediglich die Referenzvariablen. Die Objekte miissen vom
gleichen Typ sein, Verwandte sind erlaubt (d.h. es kénnen auch Sub-Typen der de-
finierten Klasse gespeichert werden).

Programm Arrayl4: Sammeln von Instanzen in einem Array

import java.util.*;
public class Arrayl4d {
public static void main(String[] args) {
Calendar[] tage = new Calendar([3];
for (int 1=0; 1<3; i++)
tage[i] = Calendar.getInstance();
System.out.println(tage[l]);

}

Das Programm Arrayl4 erzeugt eine Referenzvariable tage. Diese hat die Fihigkeit,
auf ein Array zu zeigen, das Objekte vom Typ Calendar sammelt. Mit new wird die-
ses Array erzeugt. Es enthilt drei Komponenten, jede referenziert auf ein Calendar-
Objekt.

tage [| Referenzl Referenz2 Referenz3

Abb.13.2: Array mit Referenzen auf 3 Objekte

Beim Sammeln und Verwalten von Objekten im Hauptspeicher ist es typisch, dass
die Anzahl der Objekte, die gespeichert werden sollen, hiufig stark variiert. Fir die-
se Fille ist ein Array nicht gut geeignet, weil dessen Groe statisch ist. Bessere Lo-
sungen bietet das Collection-Framework von Java. Dort gibt es eine ganze Anzahl
unterschiedlicher Klassen, die als Objekt-Sammlungen benutzt werden konnen, z.B.
die Vector-Klasse. Der Programmierer kann damit nach der Erzeugung des Vectors
beliebig viele Objekte eines Typs sammeln und verarbeiten. Java sorgt fir die dy-
namische Anpassung der Linge.

Ubung zum Programm Array14

Prifen Sie, ob anstelle des Referenztyps Calendar in Zeile 4 auch Object erlaubt ist.

Wenn ja, erkliren Sie warum (die Losung steht im ersten Absatz dieses Abschnitts).

321

13 Reibungen benutzen ("arrays")

13.5 Methoden der Class Arrays

Fur das komfortable Arbeiten mit kompletten Arrays gibt es die Standardklasse Ar-
rays (Achtung: das anhingende s ist wichtigh). Sie enthilt einige static-Methoden,
die vom Programmierer genutzt werden konnen, um Arrays z.B.

- zu sortieren (sort)
- zu vergleichen (equals) oder
- binir zu durchsuchen (binarySearch).

Programm Array15: Sortieren mit der Class Arrays

public class Arrayl5 {
public static void main(String[] args) {
int umsatz[] = {100,200,300,50,100,5,0,98,700,50,0,90};
java.util.Arrays.sort (umsatz);
for (int wert: umsatz) {
System.out.println (wert);

}

Im Programm Array15 wird die Klasse Arrays vollqualifiziert angesprochen. Da-
durch kann auf eine import-Anweisung verzichtet werden.

Ubung

4

Erstellen Sie ein neues Programm Arrayl6 mit einem Array, das aus 4 Integer-
Elementen besteht. Initialisieren Sie das Array mit den Werten 11, 18, 3, 15. Geben
Sie die (unsortierten) Werte am Bildschirm aus, sortieren Sie danach die Werte und
geben Sie erneut den Array-Inhalt aus. Arbeiten Sie mit der import-Anweisung.

Losungsvorschlag:

import Jjava.util.*;
public class Arrayl6 {
public static void main (String[] args) {
int[] zahlen = {11, 23, 4, 15%};
for (int zahl: zahlen)
System.out.format ("$d ", zahl);
Arrays.sort (zahlen);
System.out.println('\n");
for (int =zahl: zahlen) {
System.out.format ("$d ", zahl);

322

13.6 Mehrdimensionale Arrays

13.6 Mehrdimensionale Arrays

Ein Array kann Objekte von jedem anderen Datentyp enthalten, also auch vom Typ
Array. Das heift, in Java werden mehrdimensionale Arrays als Arrays definiert, deren
Elemente wiederum Arrays sind (verschachtelte Arrays, "array of array"). Die Defini-
tion
int matrix[4][3];
vereinbart eine Matrix vom Typ inf. Es werden 4 int-Elemente angelegt, die jeweils
wieder aus 3 int-Elementen bestehen. Der Zugriff auf die einzelnen Elemente erfolgt
unter Angabe der beiden Indizes, die jeweils in eckigen Klammern eingeschlossen
sind:

matrix[2][1] = 8;

Damit wird das 3. Element adressiert, und innerhalb dieses 3. Elements das 2. Ele-
ment.

Bei der Deklaration wird pro Schachtelungstiefe ein eckiges Klammernpaar bendotigt.
Und beim Zugriff werden soviel Klammernpaare angegeben, wie die Dimension des
Arrays angibt. Fir die Verarbeitung bieten sich geschachtelte for-Schleifen an.

13.6.1 Initialisierung von mehrdimensionalen Feldern

Mehrdimensionale Felder konnen bei der Deklaration ebenfalls mit Anfangswerten
versehen werden. Die folgende Definition initialisiert eine int-Matrix gleichzeitig mit
der Deklaration:

int matrix[][] = { {1, 2, 3}, {4, 5, 6} };

Gedanklich kann diese Definition so ibersetzt werden: Erstelle ein Array aus zwei
Zeilen mit jeweils drei Spalten. Das gleiche Ergebnis wird durch folgendes Pro-
gramm erreicht:

Programm Array20: Zweidimensionales Array mit primitiven Typen

public class Array20 {
public static void main(String[] args) {
int[][] matrix;

matrix = new int [2][3];
matrix[0] [0] = 1;
matrix[0] [1] = 2;
matrix[0] [2] = 3;
matrix[1][0] = 4;
matrix[1][1] = 5;
matrix[1l][2] = 6;

323

13 Reibungen benutzen ("arrays”)

13.6.2 Zugriff auf die Array-Elemente

Das folgende Programm erzeugt ein 2-dimensionales Array fir die Speicherung von
Strings. Es sollen 4 Sitze verarbeitet werden, die jeweils aus mehreren Wortern be-
stehen. Die maximale Anzahl von Wortern pro Satz ist 3.

Programm Array21: Zweidimensionales Array mit Objekten

public class Array2l {
public static void main(String[] args) {

String[][] woertermatrix = {
{"Wortl", "Wort2", "Wort3"},
{"Wort4", "Wortb5", "Worto"},
{"Wort7", "Wort8", "Wort9o"},
{"Wortl1O", "Wortll1l", "Wortl2"}
bi

for (int 1=0; 1<4; i++) |

for (int 3=0; Jj<3; Jj++)
System.out.println (woertermatrix[i][]]);

}
Ubung

Bitte erstellen Sie ein Programm Array22 mit einem 2-dimensionalen Array, das aus
drei Elementen besteht. Jedes der drei Elemente soll wieder aus einem Array beste-
hen, nidmlich jeweils aus einer Reihung von vier char-Werten. Im Programm soll
durch Wertezuweisung in einer geschachtelten for-Schleife die ersten vier char-
Variablen mit den Kleinbuchstaben a - d, die nichsten mit den Buchstaben e - h
und die letzten vier Variablen mit den Zeichen i - 1 gefiillt werden.

Die Ausgabe soll wie folgt aussehen:
abcd

e f gh

i 9 k1

Loésungsvorschlag

public class Array22 {
public static void main (String[] args) {
char[][] zeichen;
zeichen = new char[3][4];
char unicode = 97;
// Fuellen mit Zeichen
for (int i=0; i<3; i++) {
for (int 3=0; Jj<4; J++)

324

13.7 Arrays als Parameter und Returnwert bei Methoden

zeichen[i] [J] = unicode++;
}
// BAusgeben der Zeichen
for (int 1i=0; 1i<3; 1i++) |
for (int 3j=0; 3j<4; Jj++) |
System.out.print (zeichen[i][J]);
}
System.out.println();

}

13.7 Arrays als Parameter und Returnwert bei Methoden

Arrays sind keine einfachen Datentypen, sondern Referenztypen. Damit gilt fir sie
die Objektsemantik - und das bedeutet z.B. bei der Ubergabe von Arrays als Parame-
ter, dass der Empfinger mit dem Originalarray arbeitet und nicht mit einer Kopie,
denn er bekommt die Referenz tibergeben.

Programm Array23: Array als Argument beim Methodenaufruf

public class Array23 {

public static void main(String[] args) {
char[] buchstaben = {'a','b'};
tauschen (buchstaben) ;
for (char buchstabe: buchstaben)

System.out.println (buchstabe);

}

static void tauschen (char[] b) {
char hilf = b[0];
b[0] = b[1l];
b[l] = hilf;

}

Mehrere Returnwerte als Array zuriickgeben

In dem nichsten Programm Array24 wird ein Array als Moglichkeit benutzt, um
mehr als ein Ergebnis an den Aufrufer einer Methode zuriick zu geben. Das Pro-
gramm enthilt eine Methode, die eine Ganzzahl durch 3 dividiert und dieses Ergeb-
nis zuriickgibt. Gleichzeitig soll ein zweites Ergebnis, nidmlich der ganzzahlige Rest,
geliefert werden. Deshalb wird innerhalb der Methode eine lokale Array-Variable
deklariert, mit den beiden Ergebnissen gefillt und dann mit refurn die Referenz an
den Aufrufer iibertragen.

325

13

Reibungen benutzen ("arrays")

Programm Array24: Array als Returnwert einer Methode

public class Array24 {
public static void main(String[] args) {

}

int zahl = 125;
int[] erg = dividieren(zahl);

System.out.println("125 / 3 = " + ergl[0]);

System.out.println ("Ganzzahliger Rest: " + erg[l]);
}
static int[] dividieren (int z) {

int[] erg = {0,1};

erg (0] z / 3;

erg[l] = z % 3;

return erg;

13.8 Zusammenfassung

13.8.1 Arrays lernen in 21 Sekunden

326

Arrays sind Objekte. Sie werden mit dem Schliisselwort new erzeugt.

Aber: Arrays sind "klassenlose" Objekte, es gibt fir sie keine explizite Klasse und
von daher gibt es auch eine Subklassen von Arrays. Und dennoch: Arrays haben
Membervariablen (length) und sie besitzen alle Methoden aus der Klasse Object.

Fir das Arbeiten mit Arrays gibt es eine besondere Syntax, z.B. beim Erzeugen
und Initialisieren.

Eine Arrayvariable ist eine Referenzvariable, erkennbar an der eckigen Klammer
hinter dem Datentyp (oder hinter dem Namen).

Arrays haben eine feste Lange. Die Kapazitit (GroRe) wird bei der Erzeugung
des Objects mit new angegeben oder sie wird vom Compiler ermittelt anhand
einer Liste von Initialwerten. Danach kann die Groe nicht mehr geindert wer-
den.

Individuelle Initialwerte konnen bei der Definition angegeben werden. Sie ste-
hen in geschweiften Klammern, das Schlisselwort new kann in diesem Fall ent-
fallen.

Arrays konnen primitive Datenwerte oder auch Referenzen auf Objekte enthal-
ten. Allerdings missen alle Elemente denselben Datentyp haben.

Der Index zum Zugriff auf einzelne Elemente beginnt bei 0 zu zihlen. Wenn der
Index einen Speicherplatz auBerhalb des Arraybereichs adressiert, gibt es Run-
Time-Error ("Exception").

13.8 Zusammenfassung

e Das Arbeiten mit Arrays ist schnell:

e der Zugrift auf die einzelnen Komponenten erfolgt direkt, ohne Aufruf einer
Methode,

e die Zugriffsgeschwindigkeit fiir das Lesen, Schreiben, Loschen einer Kompo-
nente ist unabhingig von der Grole des Arrays.

e Das Arbeiten mit Arrays ist sicher:
e es erfolgt eine Datentyp-Prifung zur Umwandlungszeit und
e s erfolgt eine Indexprifung zur Laufzeit.

Wenn allerdings variabel grofe Sammlungen mit komfortablen Methoden benotigt
werden, so reichen die Moglichkeiten des Arrays nicht. Dann miissen Klassen aus
dem Collection-Framework (z.B. Vector oder Map) benutzt werden.

13.8.2 Unterschiedliche Codiermuster fiir das Kopieren von Arrays

Die folgenden Beispicle losen alle dieselbe Aufgabe: es soll ein Array z1 kopiert
werden. Dabei werden noch einmal etliche der besprochenen Verarbeitungsmog-
lichkeiten demonstriert und auch gezeigt, worauf besonders zu achten ist.

Programm Array30: Es wird nur der Verweis kopiert

public class Array30 {
public static void main(String[] args) {

int[] zl = {11, 23, 4, 15};

int[] z2;

z2 = z1; // Referenz-Semantik !
for (int z : z2)

System.out.println(z);

}
Ubung zum Programm Array30

Bitte kliren Sie durch Programminderung, ob folgende zusitzliche Anweisung be-
wirkt, dass sich auch das Array z2 dndert: z1[2] = 100;

Programm Array31: Per Schleife einzelne Werte kopieren

public class Array3l {
public static void main(String[] args) {
int[] z1 = {11, 23, 4, 15};
int[] z2 = new int[zl.length];
for (int 1=0; i<zl.length; i++)
z2[i] = zl1l[i];

327

13 Reibungen benutzen ("arrays”)

for (int z : z2)
System.out.println(z);

}
Ubung zum Programm Array31

Bitte kldren Sie durch Programminderung, ob folgende zusitzliche Anweisung (ein-
gefligt hinter Zeile 6) bewirkt, dass sich auch das Array z2idndert: z1[2] = 100;

Die System-Klasse enthilt diverse niitzliche static-Felder und mehr als 20 static-
Methoden, u.a. auch die Methode arraycopy, die benutzt werden kann, um Arrays
komplett oder teilweise zu kopieren.

Programm Array32: Mit einer System-Methode kopieren

public class Array32 {
public static void main(String[] args) {
int[] z1 = {11, 23, 4, 15};
int[] z2 = new int[zl.length];
System.arraycopy(z1l, 0, z2, 0, zl.length);
for (int z : z2)
System.out.println(z);

}

Die Klasse Object ist die "Mutter aller Klassen", jede andere Klasse ist direkt oder in-
direkt davon abgeleitet. Das bedeutet, dass die Methoden dieser Klasse allen ande-
ren Java-Klassen zur Verfligung stehen. Dazu gehoren u.a. die Methoden foString,
equals und auch die Methode clone.

Programm Array33: Benutzen der geerbten Methode clone

public class Array33 {
public static void main (String[] args) {

int[] z1 = {11, 23, 4, 15};
int[] z2 = zl.clone();
for (int z : z2)

System.out.println(z);

}
Ubung zum Programm Array33

Bitte kldren Sie auch hier durch Programminderung, ob folgende zusitzliche Anwei-
sung (eingefigt hinter Zeile 4) bewirkt, dass sich auch das Array z24dndert:

z1[2] = 100;

328

14.1 Erstellen von String-Objekten

Zeichenketten anwenden ("strings")

Eine Zeichenkette besteht aus mehbreren Zeichen. Dadurch unterscheidet sie sich
von den eingebauten Datentypen wie int oder char, die aus nur einer Zahl oder aus
nur einem einzelnen Zeichen bestehen.

Die wichtigste Klasse fir das Arbeiten mit Zeichenketten (strings) ist die vordefinier-
te Klasse String. Sie bietet die Moglichkeit, einen beliebig langen String zu spei-
chern. Fiir jedes Zeichen der Zeichenkette werden im Arbeitsspeicher 16 bit belegt,
denn es wird der Unicode (UTF-16) benutzt. Die Klasse stellt Methoden fiir das Ar-
beiten mit diesem String zur Verfigung. AufRerdem stellt die Klasse die Operatoren +
und += fiir die Verkettung von Strings zur Verfiigung.

Sie haben bereits in vielen Ubungen dieses Buches Zeichenketten benutzt. In diesem
Kapitel werden wir dieses Thema vertiefen und folgende Fragen behandeln:
e Was sind die grundlegenden Operationen mit Strings?

e Wie konnen die verschiedenen Stringklassen String, StringBuffer und String-
builder abgegrenzt werden?

e Welche Moglichkeiten gibt es, Texte in Dateien oder Zeilen am Bildschirm zu
parsen (aufzuteilen)?

e Was sind "Regulire Ausdriicke" und wie helfen sie bei der Textanalyse?

141 Erstellen von String-Objekten

Genauso wie Arrays sind auch Strings Objekte. Damit besteht auch dieser Datentyp
aus zwei Teilen: zum einen aus der Referenzvariablen und zum anderen aus dem
eigentlichen Stringobjekt. Die Referenzvariable enthilt als Wert eine Referenz auf
den aktuellen Wert des Stringobjekts.

Die Definition eines Strings erfolgt in zwei Schritten. Zunichst wird die Referenzva-
riable deklariert:

String str;

Dann muss der Speicherplatz fiir das eigentliche Stringobjekt angelegt und mit ei-
nem Wert gefillt werden, z.B. durch ein Stringliteral:

str = new String("Dies ist eine Zeichenkette");

Beide Schritte konnen zusammengefasst werden durch

329

14 Zeichenketten anwenden ("strings")

String str = new String("Dies ist eine Zeichenkette");

Eine Besonderheit der Stringklasse ist die Kurzform der Definition, ohne das Schliis-
selwort new:

String str = "Dies ist eine Zeichenkette";

Programm String01: Referenzvariable erzeugen (fehlerhaft)

public class String01l {
public static void main (String[] args) {
String vorname;
System.out.println (vorname) ;

}

Ubung zum Programm String01

Das Programm erzeugt einen Umwandlungsfehler. Uberlegen Sie, was der Grund
dafir ist und korrigieren Sie das Programm, so dass es umgewandelt und ausgeftihrt
werden kann.

Losungshinweis

Die Fehlerursache ist, dass die Referenzvariable vorname im Ausgabebefehl benutzt
wird, sie aber noch keinen Wert enthilt. Fiir die Losung der Ubung gibt es zwei
Moglichkeiten: entweder erzeugen Sie ein Objekt der Klasse String oder Sie sagen
dem Compiler, dass (noch) kein Objekt benoétigt wird und deswegen die Referenz
leer bleiben soll.

Fur die explizite Zuweisung einer leeren Referenz gibt es das Schlusselwort null.
SinngemifS ist das die englische Bezeichnung fiir "Zeiger ins Nichts" - nicht zu ver-
wechseln mit der deutschen Bezeichnung Null fir die Zahl 0.

Programm String02: Leere Referenz erzeugen (null-Referenz)

public class String02 {
public static void main(String[] args) {
String vorname = null;
System.out.println (vorname) ;

}
Ubungen zum Programm String02

Andern Sie die Wertzuweisung in der 3. Zeile wie folgt:

String vorname = "0";
Oder, wenn Sie wollen, auch so:
String vorname = "Null";

330

14.1 Erstellen von String-Objekten

Wandeln Sie danach das Programm um und testen Sie es. Uberlegen Sie, welche Ar-
beitsspeicherplitze im Originalprogramm bzw. nach dieser Anderung belegt sind.
Das folgende Programm macht den Unterschied zwischen nu/l und einem leeren
Objekt noch einmal deutlich.

Programm String03: null ist nicht blank

public class String03 {
public static void main (String[] args) {
String vorname = " ";
System.out.println (vorname) ;

}

Im Arbeitsspeicher werden durch das Programm folgende Plitze bendtigt und ange-
legt:

vorname |[—————*» Objektwert: blank
referenziert

Abb.14.1: Objekt im Speicher: Referenzvariable und Objektwert

Die Referenzvariable vorname enthilt einen Verweis auf das eigentliche Stringobjekt.
Dieses Stringobjekt enthilt den Wert " " (blank bzw. space). Das ist laut Unicodeta-
belle der hexadezimale Wert 0020 (bindr: 00000000 00100000). Wenn dagegen die
Referenzvariable den Wert nu/l enthilt, so gibt es kein Stringobjekt, auf das sie ver-
weist.

141.2 Stringliterale benutzen

Ein Stringliteral ist ein Text, der eingeschlossen ist in doppelten Hochkommas
(nicht in einfachen Hochkommas wie char-Werte). So wie char-Literale kann auch
ein Stringliteral beliebige Escape-Sequenzen enthalten.

Programm String04: Stringliterale und Escapesequenzen (mit Syntaxfehler)

public class String04 {
public static void main (String[] args) {
String str = 'Text \n mit Zeilenwechsel';
System.out.println(str);

}
Ubung zum Programm String04
Das Programm enthilt einen Syntaxfehler (Stringliterale missen in Anfithrungsstri-

chen stehen!). Bitte korrigieren Sie dies und fithren Sie das Programm aus.

331

14 Zeichenketten anwenden ("strings")

14.2 Methoden der Class String

14.2.1 Konstruktoren

Beim Erzeugen von neuen Objekten wird immer ein so genannter Konstruktor auf-
gerufen. Dies ist eine besondere Form einer Methode der jeweiligen Klasse, und er
sorgt dafiir, dass die Variablen, die zu dem Objekt gehoren, initialisiert werden.

Fur das Erstellen von neuen Stringobjekten gibt es in der Klasse String viele unter-
schiedliche Konstruktoren, z. B.

// Leeres String-Objekt erzeugen (das Argument ist blank)
String strl = new String();

oder

// Kopie des Argument-Strings als Objekt erzeugen
String str2 = new String("Meyer");

Die Klasse String enthilt mehr als 50 Methoden zum Arbeiten mit Zeichenketten,
z.B. fur

- das Verketten von Strings concat()
- das Extrahieren aus Teilstrings substring()
- das Positionieren innerhalb des Strings charAt()
- das Ersetzen von Zeichen replace()

Wir werden jetzt einige der Verarbeitungsmoglichkeiten fir Strings besprechen.

14.2.2 Verkettung von Strings

Fiur das Aneinanderfiigen von Zeichenketten ("Concatenation") gibt es zwei Mog-
lichkeiten: den Verkettungsoperator + und die Methode concat().
Programm String05: Zeichenketten aneinanderhingen

public class String05 {
public static void main(String[] args) {

String vorname = "Roman";

String nachname = "Merker";

String namel, name2;

namel = vorname + " " + nachname; // 1.Mdglichkeit
name2 = vorname.concat (" " + nachname); // 2.Moglichkeit

System.out.println (namel);
System.out.println (name?2);

332

14.2 Methoden der Class String

14.2.3 Konvertierung zwischen primitiven Typen und Strings

Der Verkettungsoperator kann auch fiir Werte benutzt werden, die keine Strings
sind. Dann konvertiert Java den Wert in einen String und konkateniert danach.

Programm String06: Automatische Umwandlung (implizit)

public class String06 {
public static void main (String[] args) {
System.out.println ("Bahnhofstr. " + 48);

Fur die explizite Umwandlung von einfachen Datentypen in Strings bzw. umgekehrt
die Konvertierung eines Strings in einen primitiven Datentyp enthilt die Standard-
Bibliothek vielfiltige Moglichkeiten. Dieses Thema wird ausfithrlich im Kapitel 15
behandelt.

Programm String07: Explizites Konvertieren von Zahlen in Strings

public class String07 {
public static void main(String[] args) {

float f1 = 3.57f%;
int z1 = 123;
String sl, s2;
// s = z1; // liefert Umwandlungsfehler
sl String.valueOf (f1);
s2 = String.valueOf (zl);
System.out.println (sl + s2);
// System.out.println(fl + z1);

}

Die generellen Regeln bei Typumwandlungen mit String sind:

e String in primitiven Typ umwandeln: Der Zieltyp hat dafiir eine Methode.

e Primitiven Typ in String umwandeln: Die Klasse String hat daftir Methoden.
Ubungen zum Programm String07

Ubung 1: Kliren Sie die Frage, warum die 6. Zeile (s=z1) zu einem Umwandlungs-
fehler fihrt und deswegen "auskommentiert” werden musste. Notieren Sie auf einem
Blatt Papier die interne Darstellung der Zeichen 123, wenn sie als Datentyp int co-

333

14 Zeichenketten anwenden ("strings")

diert werden, und die interne Darstellung der Zeichen 123, wenn sie als String be-
handelt werden. Losungshinweise siche Kapitel 3.

Ubung 2: Modifizieren Sie das Programm String07 java so, dass der Kommentar in
der drittletzten Zeile entfernt wird. Uberpriifen Sie die Ausgabe dieser Zeile und ver-
gleichen Sie die Ergebnisse.

Programm String08: Konvertieren von Strings in Arrays von Bytes

public class String08 {
public static void main(String[] args) {
String vorname = "Roman";
byte[] zeichen = vorname.getBytes();

}

Das obige Beispiel "encodiert" den Unicode-String in eine Sequenz von ASCII-Bytes,
benutzt dabei den Default-Characterset der Plattform und speichert das Ergebnis in
einem Array von Bytes.

Ubung zum Programm String08
Bitte erginzen Sie das Programm um eine for-Schleife, in der die einzelnen Bytes

des Arrays ausgegeben werden.

14.24 Vergleichen von Strings

Das Vergleichen von Strings auf inhaltliche Gleichheit ist ein heikles Thema. Grund-
sitzlich ist der Vergleichsoperator == nicht geeignet, um Strings zu vergleichen.
Programm String09: Strings werden mit der Methode equals verglichen

public class String09 {

public static void main(String[] args) {
String sl = "Merker";
String s2 = new String("Merker");
String s3 = "Merker";
if (sl == s2)
System.out.println("==: Beide Strings sind gleich");

if (sl.equals(s2))
System.out.println("equals: Beide Strings sind gleich");

}
Ubung zum Programm String09

Bitte experimentieren Sie mit dem Programm, um den Unterschied zwischen == und
der Methode equals herauszufinden.

334

14.2 Methoden der Class String

Nachdem Sie die verschiedenen Vergleiche mit den drei Strings durchgefiihrt haben,
prifen Sie besonders auch das Vergleichsergebnis zwischen s1 und s3. Auf den ers-
ten Blick scheint es fast so, als seien die Vergleichsergebnisse vom Zufall abhingig.
Wie kann dieses Phinomen erklirt werden? Denn natiirlich gibt es auch hierfiir logi-
sche Erklirungen.

Erklarung

Der Compiler optimiert die Speicherung von Stringobjekten. Wenn Strings gleiche
Inhalte haben, stehen sie unter Umstinden nur einmal im Speicher (hier haben al-
lerdings die unterschiedlichen JVMs auch individuelle Losungen).

Dieses Beispiel hat hoffentlich eindrucksvoll demonstriert, dass beim Vergleich mit
dem Vergleichsoperator == Vorsicht angebracht ist. Er prift nimlich die Referenz-
variablen auf inhaltliche Gleichheit. Nur beim Einsatz der Methode equals werden
auch wirklich die Inhalte der Stringobjekte selbst verglichen.

Fazit: Verwenden Sie nie den Operator ==, um Strings inhaltlich zu vergleichen. Ar-
beiten Sie immer mit der Methode equals. Diese Aussage gilt nicht nur fiir String,
sondern grundsitzlich fir den Vergleich von allen Objekten.

14.2.5 Einzelne Zeichen oder Teilstrings verarbeiten

Ein String kann fir die Verarbeitung wie ein Array aus einzelnen Character behan-
delt werden. Das kann in vielen Fillen sinnvoll sein, z.B. wenn jedes einzelne Zei-
chen in der Zeichenkette abgefragt und eventuell verarbeitet werden soll.

Programm String10: Den Buchstaben’ r’ suchen

public class StringlO {

public static void main (String[] args) {
String sl = "Erwin Merker";
for (int i=0; i<sl.length(); i++)
if (sl.charAt (i) == 'r'")

System.out.println ("Buchstabe r " +
"steht auf Stelle " + 1i);

}
Ubung:

Bitte schreiben Sie ein neues Programm, das im String "Vogelnest" das Wort "nest"
extrahiert, in einer neuen String-Variablen speichert und am Bildschirm ausgibt.

Losungshinweis: Es gibt die Methode substring; bitte kliren Sie die Einsatzmog-
lichkeit dieser Methode anhand der API-Dokumentation.

335

14 Zeichenketten anwenden ("strings")

Losungsvorschlag

public class Stringll {
public static void main (String[] args) {
String sl = "Vogelnest";
String s2 = sl.substring(5,9);
System.out.println(s2);

}

Der Methode substring konnen zwei Parameter ibergeben werden, die Indices von -
bis. Jedoch ist die Semantik dabei etwas eigenwillig, denn der Index bis bedeutet
nicht einschlieflich, sondern diese Position bezeichnet das erste Zeichen, das nicht
kopiert werden soll. Vorteil dieser Zihlweise: Die Linge des Substrings kann durch
bis - von einfach errechnet werden.

14.2.6 Die Methoden der Stringklasse sind auch auf Stringliterale anwendbar
Programm String12: Linge feststellen und Zeichen umwandeln

public class Stringl2 {
public static void main (String[] args) {
String name = "Merker";
System.out.println ("Steinfurt".length());
System.out.println (name.toUpperCase());

}

Ahnlich wie bei Arrays kann man auch fiir Strings die Linge feststellen. Bei Arrays
kann man den Wert der Variablen length abfragen. Bei Strings sendet man die Nach-
richt length() an das Objekt. Der Unterschied in der Schreibweise (worin besteht er?)
ist eine beliebte Fehlerquelle.

14.2.7 Was passiert, wenn ein Stringobjekt geandert wird?

Jetzt wollen wir einen bestehenden String inhaltlich verindern, um ihn an den chi-
nesichen Markt anzupasssen :-)

Programm Stringl3: Ersetzen der Buchstaben’ r’ durch’ I’

public class Stringl3 {
public static void main(String[] args) {
String sl = "Merker";
sl = sl.replace('r', '1l');
System.out.println(sl);

336

14.2 Methoden der Class String

Was bei dieser Anderung im Speicher genau passiert, werden wir nachfolgend niher
analysieren.

14.2.8 Objekte der String-Klasse sind unverénderlich ("immutable")

Zum Einstieg in dieses Thema zunichst folgende Behauptung: Ein Objekt der Klasse
String ist unverinderlich ("immutable"), d.h. man kann nur lesend darauf zugreifen.
Wenn ein String-Objekt einmal mit einem Wert geftllt ist, dann kann dieser Wert
niemals gedndert werden. Was bedeutet das - und was passiert z.B. bei Ausfihrung
der Methode replace im Programm String13? Anwort: Es wird ein komplett neuer
String erstellt und dann die Referenz in s7 ersetzt durch die Speicheradresse des
neuen Objekts. Das ist der Grund, warum alle Methoden, die ein String-Objekt mo-
difizieren, als Rickgabetyp ein Stringobjekt haben. Aber was passiert bei einer einfa-
chen Wertezuweisung?

Programm String14: Auch die Rererenzvariable andert sich

public class Stringld {
public static void main(String[] args) {
String sl = new String("Heidi");
String s2 = sl;

System.out.println (sl == s2);
s2 = "Heidi";
System.out.print (sl == s2);

}

Das Programm liefert zuerst true, dann aber false (zumindest bei der Sun-JRE unter
Windows. Damit ist klar, dass die beiden Stringobjekte nach der Wertezuweisung
zwar inhaltlich gleich, aber nicht identisch sind. Es wurde ein neues Objekt er-
zeugt.

Was ist der Grund fiir die auf den ersten Blick umstindliche Arbeitsweise? Antwort:
Strings werden in einem Pool gehalten. So kann man erreichen, dass Strings, die
denselben Inhalt haben, nur einmal im Speicher stehen. Wenn also folgende Werte-
zuweisungen erfolgen:

sl = "Heidi";
S2 = "Heidi";

dann konnen die Referenzen in s7 und s2 gleich sein. Verlassen kann man sich dar-
auf aber nicht, denn dies kann von jeder Run-Time-Umgebung anders realisiert wer-
den.

Ubung zum Programm String14
Kliren Sie, wie auf Ihrem System der Vergleich (s1 == s2) ausfillt, wenn Sie vor-

her auch der Variablen s2 den Wert "Heidi" explizit zuweisen.

337

14 Zeichenketten anwenden ("strings")

14.3 Methoden der Class StringBuilder

14.3.2 Warum gibt es drei String-Klassen?

Das oben beschriebene Verfahren ist relativ aufwindig. Die Entwickler sind offen-
sichtlich davon ausgegangen, dass die Vorteile der gemeinsamen Nutzung tberwie-
gen. Fur hiufig zu modifizierende Texte gibt es aber Stringklassen, die verinderbare
Objekte erstellen: die class StringBuffer und die class StringBuilder.

Objekte dieser Klassen konnen wihrend der Laufzeit des Programms verkiirzt oder
verlingert werden. Dadurch unterscheiden sich diese beiden Klassen von String. Fr
Einsteiger in die Programmierung mit Java gilt ganz einfach folgende Regel:

Programm String15: Arbeiten mit Class StringBuilder

public class Stringl5 {
public static void main (String[] args) {
StringBuilder sbl = new StringBuilder ("Vogel");

sbl.append ("nest"); // Anhaengen
System.out.println (sbl);

sbl.replace (0,5, "Oster"); // Ersetzen
System.out.println (sbl);

sbl.delete(6,9); // Loeschen

System.out.println(sbl);
sbl.insert (6, " ist Urlaub"); // Einfuegen
System.out.println (sbl);

}

Programm String16: Wenn dieses Beispiel mit der Klasse String und der Me-
thode concat codiert wiirde, wiirden 5 Objekte angelegt

public class Stringlé6 {
public static void main (String[] args) {
StringBuilder str = new StringBuilder().
append ("Dieser ") .append("Satz ") .append("wird ").
append ("als ein ") .append("Objekt angelegt");
System.out.println(str);

338

14.4 Strings als Commandline-Parameter

14.4 Strings als Commandline-Parameter

Strings sind beim Datenaustausch zwischen Anwendungen mit unterschiedlichen
Programmiersprachen oder auf verschiedenen Betriebssystemen der wichtigste Da-
tentyp. Bei Anwendungen im Internet erfolgt die Parameteriibergabe zwischen
Client- und Serverprogrammen generell als String, eventuell ergidnzt um den Parame-
ternamen ("Key-Value-Paare") oder eingepackt in Datenbeschreibungen nach dem
XML-Standard.

Fir den Datenaustausch zwischen Betriebssystem und einem Javaprogramm gibt es
eine einfache Moglichkeit: beim Start eines Java-Programms konnen String-Werte an
das Programm tibergeben werden. Der empfangende Speicherbereich wird im Kopf
der main-Methode definiert - und zwar als ein Array vom Datentyp String.

Programm String20: Echo der Kommandozeilen-Parameter

public class String20 {
public static void main (String[] args) {
for (int i=0; i < args.length; i++)
System.out.println(args[i]);

}
Ubung zum Programm String20
Testen Sie das Programm, indem Sie beim Starten die numerischen Werte 1, 5 und 7
als Parameter mitgeben (siehe hierzu Hinweise im Kapitel 10.2.2). Der Programmauf-
ruf sieht in einer Commandline des Betriebssystems also wie folgt aus:

java String20 1 5 7

Es gibt eine Reihe von Standardaufgaben, die typisch sind, wenn String-Parameter
von anderen Anwendungen eingelesen werden, nimlich prifen, ob und wieviel Pa-
rameter Ubergeben worden sind, oder prifen, von welchem Datentyp sie sind und
welchen Inhalt sie haben.

Programm String21: Priifen, ob Eingabeparameter tibergeben worden sind

public class String2l {
public static void main (String[] args) {
if (args.length == 0)
System.out.println ("Eingabedaten fehlen");

}
Ubung

Bitte codieren Sie ein neues Programm, das folgende Formalpriifung durchfithrt und
gegebenenfalls eine entsprechende Fehlermeldung ausgibt: Es miissen zwischen 1

339

14 Zeichenketten anwenden ("strings")

und max. 3 Parameter tibergeben werden. Kein Parameter darf mehr als 5 Zeichen
haben.

Losungsvorschlag: Wieviel und welche Parameter wurden iibergeben?

public class String22 {
public static void main(String[] args) {
if (args.length == || args.length > 3)
System.out.println("Bitte 1 - 3 Parameter eingeben");
for (int i=0; 1 < args.length; i++) {
if (args[i].length() > 5) {

System.out.print ("Mehr als 5 Zeichen nicht erlaubt ");
System.out.println(args[i]);

}

Das folgende Programm String23 Giberprift, ob der Aufrufer dieses Programms einen
Integer-Wert als Parameter mitgeliefert oder ob er eine Help-Funktion angefordert
hat (durch Eingabe eines Fragezeichens ?). Andernfalls werden Fehlermeldungen
ausgegeben.

Programm String23: CMD-Line-Parameter abfragen und ggf. konvertieren

public class String23 {

public static void main (String[] args) {
int anzahl = 0;
if (args.length == 1) {
if (args[0].equals("Help")) {

System.out.println ("Aufruf: java String23 Anzahl");
System.exit (1);

}

try {
anzahl = Integer.parselnt (args[0]);

}

catch (Exception e) {
System.out.println("Es muss die Anzahl angegeben sein");
System.exit (0);

}
System.out.println("Die Anzahl ist: " + anzahl);

340

14.5 Zerlegen von Text

14.5 Zerlegen von Text
1451 Methode split()

Die Methode split der Klasse String bietet eine Moglichkeit, mit Hilfe von "Reguliren
Ausdriicken" einen Satz zu zerlegen in einzelne Worter. Das Thema "Regulire Aus-
driicke" wird im Abschnitt 14.6 ausfiihrlich erliutert, hier zunichst ein einfaches Bei-
spiel fiir das Arbeiten mit split.

Programm Zerlegen01: Aufsplitten eines kompletten Satzes

public class Zerlegen0l {
public static void main (String[] args) {
String sl = "Dies ist ein Satz, der zerlegt wird";
String[] ergebnis = sl.split(" ");
for (int i=0; i<ergebnis.length; i++)
System.out.println (ergebnis[i]);

}

Das Standard-Trennzeichen ("delimiter") fir das Splitten ist eine Leerstelle ("blank").
Ubung zum Programm Zerlegen01

Andern Sie das Literal, das in den String s iibertragen wird, so ab, dass mehrere
Leerstellen zwischen den Wortern ist und ein stehen. Prifen Sie danach die Pro-
grammausgabe.

Hinweis: Zum Beschreiben von variablen Trennzeichen bendtigt man "Regulire Aus-
driicke". Die Losung gibt es im Abschnitt 14.6.

14.5.2 Class Scanner

Die Klasse Scanner bietet komfortable Moglichkeiten zum Lesen und Parsen von
textbasierten Dateien und Zeilen. Auch sie erlaubt den Einsatz von "Reguliren Aus-
driicken". Sie ist die bessere Alternative zur veralteten Klasse StringTokenizer.

Bei der Beschiftigung mit diesem Thema stoft man immer wieder auf einige engli-
sche Fachbegriffe, die auch in der deutschen Literatur verbreitet sind: Ein Scanner
teilt einen Eingabestring auf in einzelne Token. Dabei wird ein bestimmtes Muster
zum Auftrennen benutzt (delimiter pattern). Das Default-Pattern zum Splitten ist ein
whitespace. Unter Whitespace versteht man Zeichen, die von einem Texteditior am
Bildschirm oder beim Ausdrucken nicht angezeigt werden, z.B. Leerzeichen oder
Zeilenvorschub. Das Default-Pattern zum Splitten kann beliebig geidndert werden.

Zum Beispiel bietet die Scanner-Klasse breitgeficherte Moglichkeiten, Daten von der
Standardeingabe-Einheit System.in zu lesen und dabei einzelne Token nach be-
stimmten Regeln zu erkennen.

341

14 Zeichenketten anwenden ("strings")

Programm Scanner01: Einlesen und Auftrennen eines Satzes als String

import java.util.Scanner;
public class Scanner01l {
public static void main(String[] args) {
Scanner eingabe = new Scanner (System.in);
eingabe.useDelimiter (", ");
String s =eingabe.next ();

System.out.println ("Erster Teil: " + s);
s =eingabe.next () ;
System.out.println ("Zweiter Teil: " + s);

}
Ubung zum Programm Scanner01

Geben Sie zum Testen bitte folgenden Satz ein: "Um Objekte zu erzeugen, benutzt
man das Schlisselwort new". Wichtig ist das Komma im Satz. Das Ergebnis wird
sein, dass die erste Satzhilfte als Echo wieder ausgegeben wird. Zum Anzeigen der
zweiten Satzhilfte muss ein weiteres Trennzeichen (, Komma) eingegeben werden.

Die Klasse Scanner arbeitet mit einem "vorausschauenden Lesen" des Textes. Dazu
gibt es die Methode hasNext. Diese Methode ist besonders hilfreich beim Formulie-
ren von Leseschleifen - sie prift, ob weitere Daten vorliegen, und dann kann zum
eigentlichen Lesen dieser Daten die Methode next benutzt werden.

Programm Scanner02: Lesen in Schleife mit hasNext und next

import java.util.Scanner;
class Scanner02 {
public static void main(String[] args) {

Scanner eingabe = new Scanner (System.in);
String zeilenende = System.getProperty("line.separator");
eingabe.useDelimiter (zeilenende) ; // Delimiter aendern

while (eingabe.hasNext ())
System.out.println(eingabe.next ());

}

Das obige Programm priift mit hasNext, ob es Token im Eingabestrom gibt. Wenn
nicht, bleibt es solange stehen, bis der Stream Daten enthilt. Das kann ein zusitzli-
ches Wort oder ein Delimiter sein. Dann wird der boolesche Wert true geliefert, der
Schleifenrumpf ausgefiihrt. und hasNext startet neu. Beendet wird das Programm
durch Eingabe eines Dateiende-Zeichens. In MS-Windows ist dies CTRL-C.

Die resultierenden Token konnen beim Lesen durch spezielle Methoden umgewan-
delt werden in eingebaute Datentypen, indem die entsprechenden Lesemethoden

342

14.6 Reguldre Ausdriicke

benutzt werden, z.B. nextInt zum Einlesen von Ganzzahlen oder nextFloat zum Ein-
lesen von Gleitkommazahlen.

Programm Scanner03: Einlesen von eingebauten Datentypen

import java.util.Scanner;
class Scanner03 {

public static void main(String[] args) {
Scanner eingabe = new Scanner (System.in);
eingabe.useDelimiter (", "); // Delimiter aendern
String str = eingabe.next (); // Komplettes Wort lesen
int zahll = eingabe.nextInt (); // Ganzzahl lesen

double zahl2 = eingabe.nextDouble(); // E-Format z.B. 5e3 lesen
System.out.printf ("$s | %d | %f", str, zahll,zahl2);

Tipps zum Testen des Programms Scanner03

e Achten Sie bei der Eingabe von Wortern oder Zeichen darauf, dass diese durch
Komma getrennt werden. Leerstellen sind nicht erlaubt. Beispiel einer korrekten
Eingabe: Wort, 2000, 5e3,

e Wenn das abschliefende Komma vergessen wird, erwartet das Programm weite-
re Eingaben und bleibt stehen - solange, bis das Komma eingegeben wird.

® Bei einer fehlerhaften Eingabe bricht das Programm ab mit einer System-
Fehlermeldung

Diese Art des Einlesens von mehreren Token ist relativ primitiv, unhandlich und feh-
leranfillig. Komfortabler ist das Arbeiten mit Reguliren Ausdriicken.

14.6 Regulare Ausdriicke

"Regulire Ausdricke" werden fir das komfortable Durchsuchen von Texten einge-
setzt. Es wird ein Suchbegriff formuliert; danach tberpriift Java, ob dieses Muster im
Text gefunden wird, und stellt den gefundenen String fir die weitere Verarbeitung
zur Verfiigung. In Java werden regulire Ausdriicke durch das Paket java.util.regex
unterstltzt. Dieses Paket enthilt nur die Klassen Pattern und Matcher. Objekte die-
ser beiden Klassen arbeiten Hand in Hand. Die Pattern-Objekte halten die reguliren
Ausdriicke bereit, und Matcher-Objekte fihren den Vergleich durch und verwalten
die Ergebnis-Menge.

Um ein Muster zu beschreiben, werden besondere Zeichen verwendet, die als Platz-
halter dienen oder auch Regeln fiir die Suche beschreiben. Die wesentlichen Son-
derzeichen und Suchregeln werden hier kurz vorgestellt:

343

14 Zeichenketten anwenden ("strings")

der Punkt ist Platzhalter fiir jedes Zeichen, auer dem Zeilenvorschub

* Wiederholung vorausgehender Zeichen, auch keinmal ist moglich

+ mindestens einmal, aber auch beliebig oft

$ steht fir das Zeilenende, z.B. "\n", "\r\n", oder "\r"

\n Zeilenvorschub (" \u000A)

\s Whitespace (nicht darstellbare Zeichen, wie Tabulator oder Zeilenvorschub)
[] Bereich, z.B. ’ [0-9]' fir den Zahlenbereich oder [abc] fiir a, b oder ¢

\ Backslash

A Negation, z.B.” Aabc’ fiir jedes Zeichen aufler a, b oder ¢

| Oder-Operator, z.B. * (AIB)" bedeutet A oder B

Ein Muster wie ,Se.“ wird sowohl ,See“ als auch ,Sea“ finden. Der regulidre Ausdruck
JSchilfl*ahrt“ findet Schifahrt, Schiffahrt usw., aber eben auch Schiahrt. Mit dem Aus-
druck Schilf]+ahrt wird mindestens ein f“ erzwungen. Eine Negierung eines Zei-
chens oder Bereiches erfolgt mit A, also lisst [A0-9] keine Zahl zu.

Alle anderen Zeichen, die kein Sonderzeichen sind, missen genau so wie angege-
ben im Text vorkommen, damit die Suche erfolgreich ist. Um ein Zeichen, das auch
als Sonderzeichen definiert wurde, im Text zu finden, ist der Backslash ,\“ als
Fluchtzeichen (Escape-Sequenz), anzugeben, z.B. fir das Dollarzeichen also ,\ $.

14.6.1 Die Klasse Pattern

Mit Objekten der Klasse Pattern werden die reguliren Ausdricke intern in compi-
lierter Form verwaltet. Die Instanz bekommt mit der Methode compile einen String
mit dem regulidren Ausdruck und ldsst sich dann an verschiedenen Stellen im Pro-
gramm performant verwenden. Ein direktes Verwenden eines reguliren Ausdruckes
wird auch unterstiitzt, nur bei mehrfacher Verwendung eines Ausdruckes sollte ein
entsprechendes Objekt genutzt werden, damit die Analyse des Ausdruckes nicht
immer wieder durchgefiihrt werden muss. Der Vergleich wird mit der Methode mat-
ches durchgefiihrt.

Programm RegEx01: Substrings mit der Methode matches suchen

import java.util.regex.*;
public class RegEx01l {
public static void main(String[] args) {
boolean b = Pattern.matches (".*pfel.*", "Birne Apfel Banane");
if (b)
System.out.println ("Gefunden");
else
System.out.println ("Nicht gefunden");

344

14.6 Reguldire Ausdriicke

Eine hiufige Aufgabenstellung in der EDV ist das Zerlegen eines Strings in seine Be-
standteile anhand von Trennzeichen. Hiufig tauschen Programme Daten {ber Im-
port-/Export-Textdateien aus. In diesen steht die Information dann zeilenweise ein-
fach durch Semikolon oder Komma getrennt ("CSV-Files"). Um diese Daten nach
dem Einlesen wieder zu zerlegen, bietet die Pattern-Klasse die sehr nttzliche Me-
thode split. Diese Methode zerlegt einen String anhand eines reguliren Ausdruckes
und stellt die Ergebnisse in ein Array.

Programm RegEx03: Zerlegen von Strings (Methode split der Klasse Pattern)

import Jjava.util.regex.*;
public class RegEx03 {
public static void main(String[] args) {
Pattern p = Pattern.compile(,;");
String[] erg = p.split (“Andre;Maier;Hauptweg.12;55131 Mainz”);
for (int i1=0; i<erg.length; i++)
System.out.println(ergl[i]);

}
Ubung zum Programm RegEx03

Andern Sie das Programm so ab, das als Trennzeichen sowohl Semikolon, Komma
und Whitespace verwendet werden. Der zu untersuchende String ist ,eins zwei;
drei,vier®.

Losungsvorschlag:

import Jjava.util.regex.*;
public class RegEx04 {
public static void main (String[] args) {
Pattern p = Pattern.compile ("; |, |\\s");
String[] erg = p.split("eins zwei;drei,vier");
for (int 1=0; i<erg.length; i++)
System.out.println(ergl[i] + '\n');

Ubung zum Programm Zerlegen01 (aus Abschnitt 14.5.1):

Das Programm arbeitet mit der spli-Methode der Klasse String. Leider ist der Split-
vorgang in der bisherigen Variante wenig komfortabel (z.B. werden mehrere Blanks
zwischen den Wortern nicht richtig verarbeitet). Aber jetzt kennen Sie "Regulire Aus-
driicke" - und die konnen auch in der spli-Methode der Klasse String eingesetzt
werden.

Andern Sie deshalb das Programm so ab, dass im String auch mehrere Blanks zwi-
schen den einzelnen Wortern richtig erkannt werden.

345

14 Zeichenketten anwenden ("strings")

Losungsvorschlag

public class Zerlegen02 {
public static void main(String[] args) {
String sl = "Dies ist ein Satz, der zerlegt werden soll";
String[] ergebnis = sl.split (" +");
for (int i=0; i<ergebnis.length; i++)
System.out.println(ergebnis[i]);

14.6.2 Die Klasse Matcher

Diese Klasse vergleicht einen String mit dem reguliren Ausdruck und verwaltet die
Ergebnisse des Vergleiches. Objekte der Klasse Matcher werden von der Factory der
Pattern-Klasse erzeugt, da ein Matcher nur im Zusammenhang mit einem Pattern-
Objekt Sinn macht. Die Methode find sucht nach dem ersten bzw. dem nichsten
Auftreten des regulidren Ausdruckes in einem String. Die Matcher-Klasse stellt zwei
unterschiedliche Methoden zur Verfiigung. Die Methode matches vergleicht den Ein-
gabe-String mit dem regulidren Ausdruck und gibt eine Ergebnismenge zuriick.

Programm RegEx05: Methode find der Klasse Matcher

import java.util.regex.*;
public class RegEx05 {
public static void main(String[] args) {
// Pattern anlegen
Pattern p = Pattern.compile("rot");
// Factory zum Anlegen des Matcher
Matcher m p.matcher ("Suche: rotes Auto, rotes Rad");
boolean b = m.find();
int anz = 0;
while (b) |
anz++;
b = m.find();
}

System.out.println("Die Anzahl ist: " + anz);

}
Ubung zum Programm RegEx02 (1)

Sehen Sie sich bitte das Programm RegEx02 noch einmal an und idndern Sie es so,
dass ein Objekt der Klasse Pattern angelegt wird. Der Vergleich soll dann von einem
Objekt der Klasse Matcher durchgefithrt werden.

346

14.7 Strings und Unicode

Losungsvorschlag (Methode matches der Klasse Matcher):

import java.util.regex.*;
public class RegEx06 {
public static void main(String[] args) {
Pattern p = Pattern.compile (".*pfel.*");
Matcher m p.matcher ("Birne Apfel Banane");
Boolean b = m.matches () ;
if (b)
System.out.println ("Gefunden");
else
System.out.println ("Nicht gefunden");

14.7 Strings und Unicode

Intern, das heilt, innerhalb der Java Virtuellen Maschine, werden Werte der String-
Klasse und Zeichen vom Typ char durch Unicode-Verschlisselungen reprisentiert.
Jedes Zeichen belegt 16 bits. Fur die Kompatibilitit mit bestehenden Dateisystemen,
Datenbanken und Peripheriegeriten erfolgt eine Umwandlung, meistens in die AS-
CII-Byte-Darstellung. Also: Beim Einlesen der Daten vom Bildschirm oder von einer
Festplatten-Datei werden aus den ASCII-Zeichen entsprechende Unicode-
Verschlisselungen gemacht. Noch einmal der Hinweis: Dies gilt nicht fiir die ande-
ren Java-internen Datentypen wie int oder float, sondern nur fiir char und String.

Fir die Umwandlung wird das Standard-Encoding der Plattform benutzt. Natiirlich
kann auch mit einer anderen Codierung gearbeitet werden, z.B. mit UTF-8.

UTF8

Um die groftmogliche Kompatibilitit tiber alle Hardware-Plattformen und Betriebs-
systeme zu gewihrleisten, gibt es die UTF8-Codierung.

Programm UTF08: Komprimiertes Sichern von Unicode-Daten und kompatib-
ler Austausch von Unicode-Daten tiber Plattformgrenzen durch UTF-8

public class Utf08 {
public static void main(String[] args) throws Exception ({
String strl = "A\u0001\u0093";

// Konvertieren String in UTF

bytel[] bl = strl.getBytes ("UTEF8");

for (int 1=0; i<bl.length; i++)
System.out.println(bl[i]);

// Rekonstruieren von String aus Byte-Array

347

14 Zeichenketten anwenden ("strings")

String str2 = new String(bl, "UTF8");
System.out.println(str2);
}

Zusammenfassung

Zeichenketten sind Java-Objekte. Fiir das Arbeiten mit Strings gibt es in der Stan-
dardbibliothek von Java drei wichtige Klassen:

e Class String: Unverinderliches ("immutable") Zeichenkettenobjekt mit viel Me-
thodenkomfort

e Class StringBuffer: Verinderliches Stringobjekt, kann bei Bedarf wihrend der
Programmlaufzeit vergroRert oder verkleinert werden

e (Class StringBuilder: Genau wie StringBuffer, aber nicht threadsafe. Sollte im-
mer dann verwendet werden, wenn Stringobjekte sich hiufig dndern und wenn
man "threadsafety" nicht braucht.

Der Unterschied zwischen den beiden letztgenannten Klassen ist ein Thema fir
Fortgeschrittene: StringBuffer ist threadsafe; StringBuilder ist zwar API-kompatibel zu
StringBulffer, bietet aber keine Synchronisation bei Mehrfachzugriff.

Grundlegende Operationen fiir das Arbeiten mit Strings sind:

- Verketten (concat)

- Aufteilen (split, substring)

- Umwandeln von Grof3-/Kleinbuchstaben (foLowerCase, toUpperCase)
- Formatieren (format, trim).

Die verinderlichen Klassen StringBuffer und StringBuilder bieten dariber hinaus ei-
ne Fille von Methoden zum Manipulieren von String:

- 16schen (delete)
- einfugen (insert)
- anhingen (append).

Vorsicht ist geboten beim Vergleichen von Zeichenketten. Ein inhaltlicher Vergleich
sollte nur erfolgen mit Hilfe der Methode equals (und nicht mit dem Vergleichsope-
rator ==, denn dadurch wird lediglich ein Identititsvergleich durchgefihrt).

Auch fur das wichtige Thema "Konvertieren von einfachen Datentypen in Strings"
enthilt die Stringklasse die entsprechenden Methoden (valueof).

348

Typumwandlungen verstehen ("casting")

Java ist eine typ-sensitive Sprache. Das heifdt, die Sprache unterscheidet nach Daten-
typen und

e stellt sicher, dass nur die erlaubten Typen in den Variablen gespeichert wer-
den konnen;

e iberprift, dass nur die Operationen ausgefiihrt werden koénnen, die fur die
jeweiligen Typen auch erlaubt sind.

Die Festlegung des Datentyps erfolgt bei der Definition des Speicherplatzes fir eine
Variable. Dadurch ist es in den meisten Fillen bereits dem Compiler moglich, ent-
sprechende Prifungen vorzunehmen. In Ausnahmefillen kann aber erst zur Laufzeit
des Programms geklirt werden, ob der Operator oder die Methode fir diese Variab-
le giiltig ist.

Wir werden in diesem Kapitel kliren, ob der Datentyp einer Variablen wirklich ein-
malig festgelegt wird und danach unverdnderlich bis zum Programmende gilt oder
ob es Moglichkeiten gibt, Typanpassungen vorzunehmen.

Dabei werden wir sehen, dass in manchen Fillen der Datentyp automatisch gedndert
(angepasst) wird. Und es ist in anderen Fillen moglich, die Typumwandlung expli-
zit (aber dann auf eigenes Risko!) durchzuftihren.

Im Einzelnen erfahren Sie in diesem Kapitel
e wie primitive Datentypen in andere primitive Typen konvertiert werden;
e wie Referenztypen in andere Referenztypen konvertiert werden;

e welche Regeln gelten fiir das "Verpacken" (boxing) von einfachen Typen in Re-
ferenztypen bzw. umgekehrt fir das "Auspacken" (unboxing) der Referenztypen
in einfache Typen;

e welche speziellen Methoden genutzt werden konnen, um zwischen einfachen
Typen und Stringobjekten zu konvertieren.

Die Umwandlung von einem Datentyp in einen anderen kann erfolgen:
e Dbei der Wertezuweisung ("assignment"), abhingig vom Typ des Empfingers,
e innerhalb eines Ausdrucks, um alle Operanden "gleichnamig" zu machen oder

e Dbeim Methodenaufruf, abhingig davon, welche Parametertypen der Empfinger
akzeptiert.

349

15 Typumwandlungen versteben ("casting”)

15.1 Erweiternde Konvertierung bei einfachen Typen

Typanpassung ist die Konvertierung von einem Datentyp (oder Klasse) in einen an-
deren Typ (oder Klasse). Zwischen einfachen Typen ist eine Konvertierung nur
moglich, wenn die Typen gleichartig sind. Gleichartig sind alle numerischen Typen -
und das sind auRer boolean alle anderen sieben eingebauten Typen. Nicht moglich
ist also lediglich die Umwandlung eines boolean-Typs in einen numerischen Typ.

Uberhaupt keine Probleme ergeben sich, wenn der urspriingliche Datentyp so inter-
pretiert wird, dass eine erweiternde Umwandlung ("widening conversion") erfolgt,
wenn also der neue Typ mehr Speicherplatz bzw. einen groReren Wertebereich hat
als der bisherige.

Man kann eine Hierarchie der primitiven Typen erstellen, abhingig vom Speicher-
platz, den sie zur Verfiigung haben:

byte -> short -> int -> long -> float -> double

Problemlos ist eine Typanpassung in Pfeilrichtung, also von links nach rechts. So ist
z.B. ein int-Wert kompatibel mit einem long-Typ (aber nicht umgekehrt).

15.1.1 Typanpassung bei Wertezuweisung

Programm Konversion01: short auf long erweitern (automatisch)

public class KonversionOl {
public static void main (String[] args) {
short a = 123;
long b = a;
}
}

Bei der Umwandlung von short in long gehen keinerlei Informationen verloren,
denn der neue Typ hat einen groBeren Wertebereich als der urspriingliche. Diese
Art der Datentypumwandlung erfolgt automatisch, ohne Warnung, denn sie ist ge-
fahrlos. Auch die Konvertierung von char-Typen (2 Bytes lang) in intTypen (4
Bytes) erfolgt problem- und lautlos.

Wenn in einer Wertezuweisung ("assignment") ein Literal benutzt wird, so wird zu-
nichst der Datentyp des Literals vom Compiler festgelegt, abhingig von der
Schreibweise des Literals.

Danach wird in einem zweiten Schritt dieser Datentyp der empfangenden Variablen
angepasst, eventuell ist eine Konvertierung notwendig. Wenn in einer Wertezuwei-
sung ein Ausdruck aus mehreren Literalen und Variablen benutzt wird, so missen
zunichst die Datentypen der Operanden vereinheitlicht werden. Daraus bestimmt
sich der Typ des Ausdrucks.

350

15.1 Erweiternde Konvertierung bei einfachen Typen

Programm Konversion02: Datentyp eines Literals automatisch bestimmen

public class Konversion02 {
public static void main(String[] args) {
byte b = 66;
System.out.println (b);
}
}

Das Literal 66 wird interpretiert als Platznummer im Unicode und nicht als Zahl vom
int-Datentyp. Der Beweis kann dadurch gefihrt werden, dass wir das Programm
zwingen, den Inhalt der Variablen b als Zeichen (Typ char) auszugeben:

Programm Konversion03: Die korrekte Interpretation eines Typs erzwingen

public class KonversionO3 {
public static void main (String[] args) {
byte b = 66;
System.out.println((char)b);
}
}

Dies war ein Beispiel fir das explizite Casting. Im folgenden Programm werden
gleich mehrere Typanpassungen erforderlich: zunichst werden die Datentypen der
Literale ermittelt und dann das Ergebnis angepasst an den Empfinger der Zuwei-
sung.

Programm Konversion05: Implizites Casting bei Zuweisung

public class Konversion05 {
public static void main(String[] args) {
char z1 = 75 + 2;
long z2 = 0x4b + 1;
System.out.printf ("%$c %d ", zl,z2);

}

15.1.2 Numeric Promotion bei Ausdriicken

Wenn in einem Ausdruck mit unterschiedlichen Typen gerechnet werden soll, so
werden diese auf den hochsten Datentyp konvertiert (mindestens jedoch auf int-
Typ). Dieser Vorgang wird "numeric promotion" genannt. Das folgende Beispiel
zeigt diese automatische Anpassung aller Datentypen in einem Ausdruck.

Programm Konversion06: Anpassung der unterschiedlichen Operanden

public class KonversionO06 {

351

15 Typumwandlungen verstehen ("casting”)

public static void main(String[] args) {

short a = 110;

float b = 456789.1f;
float erg = a * b;
System.out.println (erqg);

}
}

Im Programm Konversion06. java werden zunichst die unterschiedlichen Operanden
"gleichnamig" gemacht, bevor gerechnet wird, d.h. der shor+-Typ wird zu einem flo-
at-Typ konvertiert. Danach erfolgt die Wertezuweisung, und auch dabei kann eine
zusitzliche Typanpassung erforderlich werden.

Ubungen zum Programm Konversion06

Ubung 1: Uberpriifen Sie das Rechenergebnis. Ist es mathematisch exakt? Oder gibt
es Ungenauigkeiten (die begriindet sind durch den Wechsel des Zahlensystems von
Dezimalwertigkeit auf Dualstellensystem)?

Ubung 2: Andern Sie den Datentyp der empfangenden Variablen von float auf
double. Ist das ohne weiteres moglich oder dndert das etwas am Ergebnis?

15.1.3 Typanpassung bei Parameteriibergabe

Das niichste Beispiel demonstriert, dass eine automatische Typanpassung auch bei
der Ubergabe von Argumenten erfolgt. Der aktuelle Parameter wird angepasst an
den Typ des formalen Parameters, der vom Empfinger erwartet wird.

Programm Konversion07: Typanpassung bei einer Parameteriibergabe

public class Konversion07 {
public static void main (String[] args) {
ausgeben (25) ;
}
static void ausgeben (double zahl) {
System.out.println(zahl);

}
Ubung zum Programm Konversion07

Machen Sie folgendes Experiment: Andern Sie den Typ des formalen Parameters von
double auf int. Andern Sie auBerdem den Methodenaufruf so, dass als aktueller Pa-
rameter ein Gleitkommawert tibergeben wird.

Ist eine fehlerfreie Umwandlung moglich? Wenn nein, finden Sie in dem nichsten
Abschnitt die Losung fiir diese Aufgabe.

352

15.2 Einschrinkende Konvertierung bei einfachen Typen

15.2 Einschrankende Konvertierung bei einfachen Typen

Problematisch ist eine Umwandlung von einem breiteren Datentyp in einen schmale-
ren Typ, denn dabei kdénnen Informationen verloren gehen. Die vorherige Ubung
enthielt ein Beispiel fiir diese Situation. Das gleiche Problem kann auch bei einer
Wertezuweisung entstehen oder bei der "numeric promotion" von arithmetischen
Ausdriicken. Zunichst ein Beispiel fir eine Zuweisung einer "langen" Variablen in
eine Variable mit einem schmaleren Wertebereich.

Programm Konversion08: Ein Versuch, von long auf short verkiirzen

public class Konversion08 {

public static void main(String[] args) {
long a = 1234567;
short b = a;

}

Diese Codierung fiihrt zu einem Umwandlungsfehler mit der Meldung: "Possible loss
of precision". Um dennoch die Konvertierung zu erzwingen, muss dies vom Pro-
grammierer ausdricklich codiert werden - und zwar durch Hinschreiben des Zielda-
tentyps, in runden Klammern.

Programm Konversion09: Erzwingen der Typumwandlung durch Casting

public class Konversion09 {
public static void main (String[] args) {
long a = 123;

short b = (short)a;
System.out.println (b);
}
}

Ubung mit Programm Konversion09

Bitte dndern Sie das Literal in Zeile 3 von 123 auf 1234567 und prifen Sie das Er-
gebnis. Kann fehlerfrei umgewandelt werden? Ist das Ergebnis sinnvoll?

Die Konvertierung eines grofSen primitiven Datentyps in einen kleinen primitiven
Datentyp nennt man "einschrinkende" Konversion (einengende Typumwandlung,
"narrowing conversion"). Weil damit eventuell der Verlust von Information verbun-
den ist, erfolgt die Konversion nicht automatisch, sondern nur auf ausdricklichen
Wunsch des Programmierers. Diesen Vorgang nennt man "Casting" (engl. fur "in
Form gieflen" oder auch "eine Rolle besetzen"). Erforderlich ist die explizite Angabe
eines Cast-Operators: das ist Zieldatentyp (in Klammern).

Durch Einsatz eines Cast-Operators kann auch das Programm Konversion07 formal-
fehlerfrei erstellt werden.

353

15 Typumwandlungen verstehen ("casting”)

Losung zur Ubung Konversion07

public class KonversionlO {
public static void main (String[] args) {
ausgeben ((int) 25.3);
}
static void ausgeben (int zahl) {
System.out.println(zahl);

}

Durch die explizite Angabe des Zieltyps wird eine Umwandlung des Datentyps vom
Programmierer erzwungen. Damit Gbernimmt er auch die Verantwortung daftr, ob
das Ergebnis sinnvoll ist oder nicht.

Programm Konversionl1: Typumwandlung bei Gleitkomma-Zahlen

public class Konversionll {
public static void main(String[] args) {
double a = 12345678E300;
float b = a; // Fehler !
System.out.println(a);
}
}

Ubung mit Programm Konversionl 1
Das Programm enthilt einen formalen Fehler, der bei der Umwandlung festgestellt

wird. Bitte korrigieren Sie den Quelltext.

Programm Konversionl2: Explizites Casting mit Datenverlust

public class Konversionl?2 {
public static void main(String[] args) {
double aj;
long b = 12345678912348999L;
a = b; // korrekt
b = (long)a; // Datenverlust

System.out.println (b);

}

Die Bezeichnung "Typumwandlung" konnte suggerieren, dass die Verklrzung des
Datentyps dazu fihrt, dass der neue Wert der Variablen nach einem ausgefeilten
Verfahren ermittelt wird. In Wirklichkeit ist es ganz einfach so, dass nicht umgewan-
delt, sondern lediglich abgeschnitten (bzw. aufgefillt) wird.

354

15.3 Verallgemeinernde Konvertierung bei Referenztypen

Jetzt folgt noch ein Beispiel, das zeigt, dass auch eine erweiternde Konvertierung
manchmal erzwungen werden muss, damit Gberhaupt ein korrektes Ergebnis entste-
hen kann.

Programm Konversionl3: Erweiterndes Casting erzwingen

public class Konversionl3 {
public static void main(String[] args) {
double erg;

int x = 5;

int yv = 3;

erg = x / y; // Abschneiden
System.out.println(erqg);

erg = (double)x / y; // Korrekt

System.out.println(erqg);

15.3 Verallgemeinernde Konvertierung bei Referenztypen

Generell ist eine Konvertierung bei Referenztypen nur moglich, wenn eine Ver-
wandtschaft besteht zwischen den Klassen. Es muss sich also um eine Ober- und
Unterklasse handeln, d.h. sie miissen in einer Vererbungsbeziehung stehen (durch
das Schlisselwort extends).

Keine Probleme gibt es, wenn die Referenz einer Unterklasse umgedeutet wird auf
eine Referenz der Oberklasse. Jede Unterklasse enthilt alle Elemente der Oberklasse,
so dass diese Umdeutung zwar zu Informationsverlust fithren kann, aber technisch
und formal keine Probleme verursacht, denn die Subklasse kann und hat mindestens
das alles, was die Oberklasse enthiilt.

Programm Konversion20: Implizite Typanpassung bei Verallgemeinerung

public class Konversion20 {
public static void main(String[] args) {
A referenzA = new A();
B referenzB = new B();
referenzA = referenzB;

}
class A {}
class B extends A {}

Die Wertezuweisung von B nach A ist ohne Probleme moglich, dabei findet eine au-

tomatische Konvertierung des Typs von unten (B) nach oben (A) statt. Dabei blei-
ben intern die speziellen Informationen tiber die Subklasse erhalten.

355

15 Typumwandlungen versteben ("casting”)

15.4 Spezialisierende Konvertierung bei Referenztypen

Ganz anders ist die Situation bei einer Referenz auf die Oberklasse, die nun als Refe-
renz interpretiert werden soll, die auf ein davon abgeleitetes Objekt zeigt. Die Un-
terklasse enthilt mehr Informationen (Attribute und/oder Methoden) als die Super-
klasse. Deswegen wird dieser Versuch vom Compiler abgelehnt.

Programm Konversion21: Referenztyp spezialisieren

public class Konversion2l {
public static void main(String[] args) {
A referenzA = new A();
B referenzB = new B();
referenzB = referenzAh; // Fehler, inkompatibel

}
class A {}
class B extends A {}

Der Programmierer kann aber auch hier das Casting erzwingen - genau wie bei den
primitiven Datentypen. Die Konvertierung wird auch bei Referenztypen erzwungen
durch Angabe des Cast-Operators. Der Cast-Operator besteht aus dem Namen der
Zielklasse. Wir machen einen neuen Versuch, indem wir ein explizites Casting er-
zwingen.

Programm Konversion22: Cast-Operator bei Referenztypen

public class Konversion22 {
public static void main(String[] args) {
A referenzA = new A();
B referenzB = new B();
referenzB = (B)referenzAi;

}
class A {}
class B extends A {}

Jetzt ist eine fehlerfreie Umwandlung moglich. Aber: Beim Versuch, das Programm
auszuftihren, gibt es einen Abbruchfehler (Run-Time-Error: "CastException").

Der Grund fir diesen Fehler: Wir haben versucht, aus einem Referenztyp der allge-
meinen Klasse A einen spezialisierten Typ der Klasse B zu machen. Das geht nicht -
oder besser gesagt, das geht nur, wenn es sich auch wirklich um diesen spezialisier-
ten Typ handelt. Mehr Schein als Sein 14t die JVM nicht zu.

356

15.4 Spezialisierende Konvertierung bei Referenzitypen

Wie kann sichergestellt werden, dass keine Laufzeitfehler entstehen?

Es gibt einen Operator, mit dessen Hilfe zur Laufzeit Gberprift werden kann, auf
welchen Datentyp eine Referenz verweist: instanceof. Dies ist der dringend emp-
fohlene Weg, um sicher zu stellen, dass kein falsches Casting durchgefiihrt wird.

Programm Konversion23: Laufzeittyppriifung durch instanceof

public class Konversion23 {
public static void main (String[] args) {

A referenzA = new A();

B referenzB = new B();

if (referenzA instanceof B)
referenzB = (B)referenzh;

else
System.out.println ("Kein Casting mdglich");

}
class A {}
class B extends A {}

Das nichste Beispiel demonstriert beide Arten der Konvertierung von Referenzen.

Programm Konversion24: Verallgemeinerung und Spezialisierung durch
Casting

import Jjava.awt.Point;
public class Konversion24 {
public static void main (String[] args) {
Point pl, p2;
Object object;

pl new Point (100,200);

P2 = new Point (300,400);

object = new Object ();

object = pl; // generalisierende Konvertierung
p2 = (Point)object; // spezialisierende Konvertierung
System.out.println (p2);

357

15 Typumwandlungen versteben ("casting”)

15.5 Typ-Umwandlung zwischen einfachen und Referenztypen

In Java ist es nicht erlaubt, einfache Typen in Referenztypen zu casten oder umge-
kehrt. Es ist also z.B. nicht moglich, mit Hilfe eines Cast-Operators aus einem einfa-
chen float-Typ einen Klassentyp Double zu machen.

Doch es gibt andere Moglichkeiten, um
e aus einfachen Typen die entsprechenden Referenztypen zu erzeugen bzw.
e aus Referenztypen die entsprechenden primitiven Typen herauszuziehen.

Damit dies moglich ist, gibt es in der Standardbibliothek fiir jeden primitiven Daten-
typ eine entsprechende Klasse, die einen Wert dieses Typs speichern und verarbei-
ten kann. Diese Klassen werden Wrapper-Klassen genannt. Es gibt fir jeden der acht
primitiven Datentypen eine entsprechende Wrapper-Klasse, also fir int die Klasse
Integer und fir float die Klasse Float. Diese "hiillen" die primitiven Typen ein in Ob-
jekte und bieten zusitzliche Methoden zum Arbeiten mit diesen Referenztypen.

Wozu braucht man Wrapper-Klassen?

Notwendig ist der Einsatz dieser Wrapper-Klassen z.B. immer dann, wenn eine Me-
thode ausschlieBlich Objekte (also Referenztypen) als Parameter akzeptiert und kei-
ne primitiven Datentypen zulisst. In den meisten Fillen erfolgt dann das "Einpa-
cken" (wrapping, boxing) automatisch, d.h. aus dem einfachen Datentyp wird ohne
besondere Vorkehrung durch den Programmierer ein Referenztyp der Wrapperklasse
erzeugt. Dieser Vorgang wird Autoboxing genannt. Umgekehrt erfolgt auch das
Auspacken (unboxing) in den meisten Fillen automatisch.

int-Typ » | Referenz-V. [| Objekt

Abb. 15.1: Beispiel fiir das Wrappen einer primitiven int-Variablen

In manchen Situationen muss das Arbeiten mit den Wrapper-Klassen aber ausdriick-
lich codiert werden. Damit zunichst einmal praktisch getibt werden kann, wie man
mit Wrapperklassen arbeitet, zeigt das Programm WrapperOl, wie eine ganze Zahl
als Objekt erzeugt und verarbeitet wird.

Programm Wrapper01: Ganzzahl als einfacher Datentyp und als Referenztyp

class Wrapper0Ol {
public static void main (String[] args) {
int zahll = 15;
// Integer zahll = new Integer (15);
System.out.println(zahll);

358

155 Typ-Umwandlung zwischen einfachen und Referenzitypen

Ubung zum Programm Wrapper01l

Ersetzen Sie die Definition des einfachen Typs in der Zeile 3 durch die gleichwertige
Definition in Zeile 4 und testen Sie das Ergebnis. Andert sich das Ergebnis?

1551 Autoboxing/Unboxing

Das Ein- oder Auspacken erfolgt immer dann automatisch, wenn Java erkennt, dass
dies notwendig und moglich ist. Beispiel: Wenn primitive Typen an die Methode
printfibergeben werden, dann werden diese einfachen Typen in Objekte der jewei-
ligen Klasse umgewandelt (sie werden "eingepackt in eine Box", auf englisch: "au-
toboxing" oder "autowrapping"). Auch der umgekehrte Vorgang, das Entpacken (o-
der "unboxing") kann erfolgen, ohne dass der Programmierer dafiir besondere Vor-
kehrungen treffen muss.

Programm Boxing01: Automatisches Boxing/Unboxing

class Boxing0l {
public static void main(String[] args) {
int zahll = 15;
Integer zahl2 = new Integer(25);
System.out.println(zahll + zahl2); // Autoboxing
zahll = zahl2; // Auto-Unboxing
System.out.println(zahll);

}

15.5.2 Konvertieren mit speziellen Methoden

Wie bereits mehrfach betont, bietet die Java-Sprache keine Moglichkeit, um mit ei-
nem Casting-Operator zwischen einfachen und Referenztypen zu konvertieren. Aber
es gibt Methoden zum Umwandeln von Stringobjekten in primitive Typen und auch
Methoden, um einfache Typen in Stringobjekte zu konvertieren.

Umwandeln von einfachen Typen in Stringobjekte

Die Wrapperklassen enthalten eine toString-Methode, die eine String-Reprisentation
fiir einen einfachen Datentyp liefert. Wir wissen auch bereits, dass foString von be-
stimmten Methoden automatisch aufgerufen wird - so z.B. von der printin-Methode.

359

15 Typumwandlungen verstehen ("casting”)

Programm KonvertMethod01: String erzeugen durch Methodenaufruf

class KonvertMethod01l {
public static void main(String[] args) {
float zahll = 15E3f;
System.out.println(zahll);

Umwandeln von String in einfache Typen

Fur den umgekehrten Weg, nimlich das Zurtckfiihren eines Stringobjekts in einen
primitiven Datentyp, gibt es mehrere Moglichkeiten:

e entweder wird eine Methode der entsprechenden Wrapperklasse aufgerufen,

e oder es wird eine Methode einer Stringklasse (String, StringBuf oder StringBuil-
der)

aufgerufen.

Programm KonvertMethod02: int erzeugen aus einem String (1.Moglichkeit)

class KonvertMethod02 {
public static void main(String[] args) {
String str = "153";
Integer zahl = Integer.valueOf (str);
System.out.println(zahl);

}
Programm KonvertMethod03: int erzeugen aus einem String (2.Moglichkeit)

class KonvertMethod03 {
public static void main(String[] args) {
String str = "153";
int zahl = Integer.parselnt (str);
System.out.println(zahl);

}

Jede Wrapperklasse enthilt die entsprechende parseXXX-Methode zum Parsen des
Strings, um den jeweiligen primitiven Typ daraus zu erzeugen.

Ubung zum Programm KonvertMethod03

Andern Sie das Programm so ab, dass der String in einen einfachen floatrTyp um-
gewandelt wird.

360

155 Typ-Umwandlung zwischen einfachen und Referenzitypen

Losungsvorschlag

class KonvertMethod04 {
public static void main (String[] args) {
String str "153E5";
float zahl Float.parseFloat (str);
System.out.println(zahl);

Zusammenfassung

Prinzipiell ist beim Arbeiten mit Variablen der vom Programmierer in der Deklarati-
on festgelegte Datentyp streng einzuhalten. Dies wird vom Compiler tiberpriift und
sichergestellt. Prinzipiell konnen Zuweisungen oder Parameteriibergaben nur durch-
gefihrt werden, wenn die Datentypen exakt ubereinstimmen. Stimmen Datentyp
von Sender und Empfinger nicht iiberein, so kann in bestimmten Fillen eine auto-
matische Datentyp-Anpassung erfolgen. Das geschieht aber nur, wenn die Konversi-
on ohne Gefahren von Informationsverlust oder -filschung moglich ist. Und dafir
gibt es strenge Regeln:

e Dbei einfachen Typen: Umwandlung nur von klein nach gro8,
e bei Referenztypen: Umwandlung nur von speziell auf allgemein.

Diese strenge Typisierung in Java kann allerdings mit einigen Sprachmitteln aufge-
weicht werden. So gibt es den Typ-Cast, damit kann der Programmierer das Casting
durch explizite Angabe eine Uminterpretation eines Datenwertes erzwingen. In den
meisten Fillen wird es sich dabei um einschrinkende bzw. spezialisierende Konver-
sionen handeln.

Weil es dabei zu Run-Time-Fehlern kommen kann, wird dringend empfohlen, damit
vorsichtig umzugehen und vor dieser Art der Umwandlung immer cine Typpriifung
vorzunehmen (mit instanceof). Die Verantwortung liegt allein beim Programmierer,
der Compiler kann dann nicht mehr helfen. Deswegen muss streng unterschieden
werden zwischen impliziter Typkonversion, die automatisch erfolgt, weil sie prob-
lemlos ist, und dem expliziten Casting, bei dem der Programmierer in Kauf nimmt,
dass Daten verfilscht werden konnen.

Dartiber hinaus gibt es spezielle Methoden, wenn zwischen einfachen Typen und
Stringobjekten konvertiert werden soll.

Eine besondere Art der Umwandlung ist das Auto-Boxing bzw. Auto-Unboxing. Dar-
unter versteht man die automatische Umwandlung eines primitiven Typs in einen
Referenztyp bzw. das Auspacken eines Objekts in einen Basistyp.

301

16 Modifier richtig einsetzen ("access control”)

Modifier richtig einsetzen ("access control")

Variablen sollten einen moglichst eingegrenzten Benutzerkreis haben. Dies erhoht
die Sicherheit und erleichtert die Wartung. Dieses Kapitel beschreibt die Regeln fiir
die "Sichtbarkeit" von Variablen, d.h. Sie werden lernen, wo die Identifier (Bezeich-
ner) der Variablen bekannt und zugreitbar sind, wie der Schutz der Daten vor un-
erwinschtem Zugriff funktioniert und wie der Programmierer dies beeinflussen
kann.

Im Einzelnen werden in diesem Kapitel folgende Themen besprochen:

e Wer darf innerbalb einer Klasse auf welche Variablen zugreifen?

e Wer darf von auerbalb einer Klasse auf welche Klassenelemente zugreifen?

e Welche Rolle spielt dabei das package und die import-Anweisung?

e Wie wird von innerhalb und auRerhalb einer Klasse auf Elemente zugegriffen?
e Welche Schlisselworter gibt es, um Datenkapselung zu erreichen?

e Wie lange existieren die Variablen im Arbeitsspeicher?

e Wann sollten Elemente einer Klasse mit dem static-Modifier versehen werden?
Es gibt zwei unterschiedliche Sprachmittel, die mit diesen Themen verbunden sind:

e zum einen ist es wichtig, wo (an welcher Stelle innerhalb einer Klasse) die Vari-
ablen deklariert werden und

e zum anderen gibt es die Zugriffsmodifier private, public und protected, die bei
der Deklaration benutzt werden konnen.

Wir werden uns zuerst mit der Frage beschiiftigen, welchen Einfluss die Position der
Deklaration auf die Sichtbarkeit hat, und danach die unterschiedlichen Zugriffsmodi-
fier besprechen.

16.1 Lokale Variable und Member-Variable

Die Antwort auf alle aufgeworfenen Fragen hingt wesentlich davon ab, ob die Vari-
ablen lokale oder Member-Variablen sind.

Eine lokale Variable wird innerhalb einer Methode deklariert, entweder durch ein
Deklarationsstatement oder als formaler Parameter im Kopf der Methode. Wir haben
bereits erldutert, dass innerhalb einer Methode ein Anweisungsblock codiert werden

362

16.1 Lokale Variable und Member-Variable

kann (das sind Befehle, die in geschweiften Klammern zusammengefasst werden).
Auch innerhalb eines Blocks kann eine lokale Variable deklariert werden.

Eine Member-Variable ist ein Element einer Klasse, deklariert auerhalb jeder Me-
thode. Typischerweise werden sie ganz am Klassenanfang beschrieben (dies ist aber
nicht zwingend).

Das folgende Bild soll verdeutlichen, wo die Unterschiede zwischen diesen beiden
Arten liegt:

class MeineKlasse0O1

v

member-Variable Zugriff im Paket

Methode-xyz {
lokale Variable
{ lokale Variable
}

Zugriff in Methode
Zugriff im Block

vy

}

Abb. 16.1 Lokale und Member-Variable

Wo liegt die Bedeutung dieser Unterscheidung?

Die Auswirkungen dieser unterschiedlichen Positionierung sind gravierend. Sie hat
Folgen

e fir die Sichtbarkeit ("visibility") bzw. Giiltigkeit ("scope"): Lokale Variable sind
nur bekannt und zugreifbar innerhalb der Methode (bzw. des Blocks); Member-
Variablen dagegen sind in der ganzen Klasse bekannt und sogar dariiber hinaus,
nimlich in dem gesamten Paket (das Thema package wird in den ndchsten Ab-
schnitten detailliert erldutert);

e fiir die Initialisierung der Variablen: Member-Variablen werden von Java au-
tomatisch mit Anfangswerten versehen; lokale Variablen werden nicht automa-
tisch initialisiert;

e fir die Lebensdauer (duration/lifetime) der Variablen: lokale Variable existieren
nur fiir die Dauer der Methodenausfihrung. Sie werden erzeugt beim Metho-
denaufruf, und der Speicherplatz ist wieder verfiighar, wenn die Methode been-
det wird. Bei Member-Variablen kann die Frage der Lebensdauer nur entschie-
den werden, wenn man wei, ob es sich um static-Member oder um Objekt-
member handelt (auch dazu spiter mehr);

e flr die Moglichkeit, so genannte Access Modifier zu benutzen, um die Sicht-
barkeit einzugrenzen oder auszuweiten (dies ist nur fiir Member-Variablen mog-
lich, lokale Variable bleiben immer nur lokal sichtbar).

363

16 Modifier richtig einsetzen ("access control”)

16.2 Sichtbarkeit und Giiltigkeit von Variablen

Der Scope (Giiltigkeitsbereich) einer Variablen ist der Bereich, in dem die Variable
referenziert werden kann mit ihrem simplen Namen. AuBerdem bestimmt die Gul-
tigkeit, wann das System die Variable erstellt und wieder zerstort. Bei Member-
Variablen muss auferdem noch tiber die Visibility (Sichtbarkeit) entschieden wer-
den. Dadurch wird festgelegt, wer auf diese Variable von auferhalb der Klasse
zugreifen darf.

Programm Scope0l: Membervariable und lokale Variable

class ScopeOl {

int zahll; // Membervariable
void setZahll () {
zahll = 5;
int zahl2 = 15; // lokale Variable
}
void ausgeben () {
System.out.println (zahll);
// System.out.println(zahl2); // Fehler, lokale V.

}
public class ScopeTest01l {
public static void main(String[] a) {
Scope0l scope = new Scopel0l();
scope.setZahll ()
scope.ausgeben ()

4
4

}
Die Quelltext-Datei flr dieses Programm muss ScopelestO1.java heifsen!

Die Variable zahl1 ist auRerhalb jeder Methode deklariert. Sie ist damit ein Element
("member") der Klasse und in der gesamten Klasse giiltig. Sie kann in jeder Methode
dieser Klasse benutzt werden. In diesem Programm wird die Variable in der Metho-
de ausgeben angesprochen. Innerhalb einer Klasse werden die Member mit ihrem
simplen Namen referenziert (d.h. sie muissen nicht explizit qualifiziert werden mit
dem Instanz- oder Klassennamen, der ist implizit vorhanden).

Dieselbe Methode versucht, die Variable zahl/2 zu benutzen. Diese Variable wurde
innerhalb der Methode setZahl1 deklariert. Damit ist sie eine lokale Variable. Und
diese sind nur sichtbar innerhalb der Methode (oder des Blocks), in dem sie dekla-
riert worden sind.

Ubung zum Programm Scope01

Entfernen Sie bitte die Kommentarzeichen. Wie lautet dann die Fehlermeldung bei
der Umwandlung?

364

16.3 Welchen Anfangswert haben die Variablen?

Eine Besonderheit im Leben einer Variablen ist eine Situation, wo sie temporir ver-
deckt wird von einer anderen, gleichnamigen Variablen. Trotzdem kann sie ange-
sprochen und verarbeitet werden.

Programm Shadow01: Uberdecken einer Variablen

class ShadowO1l {

static int zl1l = 100; // Member-V.
public static void main(Stringl[] a) {
int z1 = 2; // Lokale V.

System.out.println(zl);

}
Ubung zum Programm Shadow01

Ubung 1: Bitte iberlegen Sie, wie in der main-Methode auf die Membervariable z1
zugegriffen werden kann und testen Sie die Losung. Losungshinweis: Da es sich um
eine static-Variable handelt, wird sie qualifiziert mit dem Klassennamen.

Ubung 2: Bitte priifen Sie durch Programminderung, ob derselbe Name innerbalb
einer Methode mehrfach definiert werden kann, wenn dies in unterschiedlichen Blo-
cken geschieht.

16.3 Welchen Anfangswert haben die Variablen?

Grundsitzlich werden alle Member-Variablen von Java mit einem "passenden" An-
fangswert vorbelegt. Dieser Initialwert ist abhidngig vom Datentyp: z.B. werden nu-
merische Variablen mit Nullen vorbelegt und boolesche Variablen mit false.

Programm Init01: Defaultwert, wenn Objekte fehlen: null

public class Init01 {
public static void main (String[] args) {
KlasseA a = new KlasseA();
System.out.println(a.str);

}

class KlasseA {
String str;

365

16 Modifier richtig einsetzen ("access control”)

16.3.1 Ausnahme: lokale Variablen

Von dieser grundsitzlichen Regel zum Initialisieren gibt es jedoch eine Ausnahme:
Lokale Variablen werden nicht automatisch initialisiert, das ist Aufgabe des Pro-
grammierers. Dies ist auch sinnvoll, um fehlerhafte Vorbelegungen zu vermeiden,
denn lokale Variablen werden hiufig temporir als Zwischenspeicher benétigt.

Programm Init02: Lokale Variablen miissen "per Hand" initialisiert werden

public class Init02 {
public static void main(String[] args) {
String str;
System.out.println(str);

}
Ubung zum Programm Init02

Das Programm kann nicht fehlerfrei umgewandelt werden. Korrigieren Sie diesen
Fehler.

16.4 Lebensdauer von Variablen

Wann legt das System Speicherplatz fiir die Variablen an und wann wird dieser wie-
der frei gegeben? Anders gefragt, wie ist die Lebensdauer ("lifetime", "duration") der
Variablen?

16.4.1 Lebensdauer von lokalen Variablen

Am einfachsten ist diese Frage bei lokalen Variablen zu beantworten: Lokale Variab-
len werden im Arbeitsspeicher angelegt, wenn eine Deklarationsanweisung ausge-
fuhrt wird. Methodenparameter belegen Speicherplatz, sobald die Methode aufgeru-
fen wird. Danach kann jede Anweisung innerhalb dieses Blocks bzw. der Methode
darauf zugreifen. Die Existenz der Variablen endet, wenn der Block oder die Metho-
de, in der sie deklariert worden ist, verlassen wird.

Programm Lokal01: Versuch, eine lokale Variable nach Ende der Lebensdau-
er auszugeben

public class LokalOl {
public static void main (String[] a) {
for (int i = 0; i< 3; i++) {
System.out.println(i);

}

System.out.println(i);

360

16.4 Lebensdauer von Variablen

Ubung zum Programm Lokal01

Das Programm kann nicht fehlerfrei umgewandelt werden. Bitte beheben Sie den
Fehler.

Losungsvorschlag

public class Lokal02 {
public static void main(String[] a) {
int i;
for (1 = 0; i< 3; 1i++) |
System.out.println (i) ;
}
System.out.println (i) ;

}

Die Lebensdauer von Methodenparametern dhnelt der von lokalen Parametern. Auch
sie existieren nur flir kurze Zeit Sie werden im Kopf der Methode deklariert und sind
nur innerhalb der Methode sichtbar. Nach Ausfithrung der Methode "stirbt" auch die-
se Variable, und sie wird bei einem erneuten Aufruf auch neu wieder im Arbeits-
speicher angelegt.

Programm MethodParm01: Wie lange "lebt" ein Parameter?

public class MethodParm0O1l ({
public static void main(String[] a) {
MethodParm0l m = new MethodParmOl () ;
m.methodA (17);
// System.out.println(zahl); // existiert nicht mehr!

}
void methodA (int zahl) {

System.out.println (zahl++);

}

Im Programm MethodParmO01 wird die Variable zahl als formaler Parameter von der
Methode methodA deklariert. Der Versuch, von auRerhalb dieser Methode auf die
Variable zahl zuzugreifen, fihrt zu einem Umwandlungsfehler. Deswegen ist die
Zeile 5 als Kommentar geschrieben worden.

Ubung zum Programm MethodParm01

Bitte korrigieren Sie das Programm so, dass der gewtinschte Effekt erzielt wird. (Lo-
sungshinweis: Der Wert des Parameters muss als Ergebnis von der aufgerufenen Me-
thode zurtickgegeben werden und beim Aufruf empfangen werden.)

367

16 Modifier richtig einsetzen ("access control”)

16.4.2 Lebensdauer von Membervariablen

Etwas differenzierter muss die Frage nach der Lebensdauer bei Membervariablen be-
antwortet werden. Member-Variablen werden unterteilt in

e Instanz-Elemente (Objekt-Variablen) und
e Klassen-Elemente (static-Variablen).

Normalerweise sind Member-Variablen auch Objekt-Variablen. Sie sind existenziell
verkniipft mit einem Objekt, d.h. sie werden im Arbeitsspeicher angelegt, sobald ei-
ne Instanz erzeugt wird. Jede neue Instanz erstellt einen neuen Satz von Variablen
dieser Klasse. Angesprochen (adressiert) werden sie mit Hilfe der Referenz-
Variablen.

16.4.2.1 static-Variablen (Klassenelemente)

Es gibt auch Situationen, wo Informationen gespeichert werden miussen, die unab-
hingig sind von jeder Instanz. Das sind Variablen oder Konstanten, die fir die ge-
samte Klasse gelten und deswegen auch nur einmal pro Klasse existieren. Solche
Memberelemente werden mit dem Schliisselwort static gekennzeichnet.

Mit dem Schlusselwort static fir Felder einer Klasse wird gleichzeitig festgelegt, dass
diese Elemente sofort genutzt werden konnen, sobald die Klasse in den Speicher ge-
laden wurde. In dem Fall ist es also nicht erforderlich, dass vorher Instanzen dieser
Klasse erzeugt werden, um darauf zuzugreifen.

Noch ein Hinweis zum Begriff static: Das Schlisselwort static wird manchmal
gleichgesetzt mit konstant. Das passt in diesem Fall aber nicht, denn mit static ist das
Gegenteil von dynamic gemeint, weil diese Variablen nicht zur Laufzeit erzeugt wer-
den, sondern beim Laden der Klasse und dann (statisch) bis zum Ende der Pro-
grammlaufzeit zur Verfigung stehen.

Programm StaticTest01: Static-Variable verarbeiten

class StaticO01 {
static int zahl;
static String text;
}
class StaticTest01l {
public static void main(String[] a) {
System.out.println(Static0l.zahl + StaticOl.text);

}
Ubung zum Programm StaticTest01

Bitte kldren Sie durch Programminderung die Frage, ob die main-Methode auch in-
nerhalb der Klasse StaticO1 stehen konnte. Wie dndert sich dann die Art der Adres-
sierung von zahl und text?

368

16.4 Lebensdauer von Variablen

static-Modifier fiir Methoden

Nicht nur Felder konnen das Schliisselwort static bekommen, auch bei der Deklara-
tion von Methoden kann static angegeben werden. Dadurch wird diese Methode zu
einer Klassenmethode.

Ahnlich wie Klassenvariablen unabhiingig von Instanzen angelegt werden und sicht-
bar sind, kann auch auf Methoden, die das Schlisselwort static haben, zugegriffen
werden, ohne dass eine Instanz vorliegt. Prominentes Beispiel einer solchen Metho-
de: die Methode main. Sie wird vom Laufzeitsystem gestartet, ohne dass vorher eine
Instanz dieser Klasse erzeugt wird.

16.4.2.2 Instanzelemente (Objektvariablen)

Am wichtigsten sind die Instanzelemente (z.B. Variablen), diese werden fir jede In-
stanz angelegt, die erzeugt wird (normalerweise mit dem Schlisselwort new). Die
Verarbeitung kann aus allen "normalen" Methoden dieser Klasse heraus erfolgen
durch Benutzung des einfachen Namens.

Programm InstanzTest01: Instanzen erstellen und bearbeiten

class Instanz01 {
int zahl;
String text;
Instanz01 () {};
Instanz01l (int z, String t) {
zahl = z;
text t;

}
class InstanzTest0l {
public static void main(String[] a) {
Instanz01l instanzl = new Instanz01l(17,"ABC");
Instanz01l instanz2 = new Instanz01 (25,"XYzZ");
System.out.println(instanzl.zahl + instanzl.text);

}

Die Umwandlungseinheit (Quelltextdatei) muss InstanzTestO1 java heilen. Ein Test
des Programms demonstriert, dass ein Satz Membervariablen pro Objekt angelegt
wird. AuBerdem zeigt es, wie die einzelnen Variablen referenziert werden.

Ubung zum Programm InstanzTest01

Bitte dndern Sie das Programm so, dass die erste Instanz die Werte 4750 und "Bei-
spieltext" enthilt und fir die zweite Instanz der Default-Konstruktor aufgerufen wird.

369

16 Modifier richtig einsetzen ("access control”)

16.5 Zugriffsrechte von auBerhalb einer Klasse ("access control")

Dieser Abschnitt befasst sich mit der Frage: Wer darf von auSen auf Elemente einer
Klasse zugreifen? Wer darf also die Felder benutzen, d.h. lesen oder verindern, und
wer darf die Methoden aufrufen? Innerhalb einer Klasse kann jede Methode jedes
Feld und jede andere Methode benutzen, aber wie ist es, wenn die aufrufende Me-
thode zu einer anderen Klasse gehort?

Was sind die "Elemente" einer Klasse?

Zu den Elementen einer Klasse gehoren die Felder (d.h. die Variablen und die Kon-
stanten) sowie die Methoden. Zur Erinnerung: Elemente einer Klasse konnen vererbt
werden, deswegen gehoren die Konstruktoren auch nicht zu den Elementen, denn
sie werden nicht vererbt.

Wer darf auf die Elemente einer Klasse zugreifen?
Die Standardregel fir den Zugriff auf Elemente einer Klasse lautet:

Alle zu einem Paket gehorenden Klassen konnen auf alle Elemente der anderen
Klassen in diesem Paket zugreifen.

Wie wird auf die Elemente zugegriffen?

Innerhalb einer Klasse wird durch den einfachen Namen referenziert, auRerhalb der
Klasse muss das Element qualifiziert angesprochen werden.

Was bedeutet Qualifikation?

Beim Zugriff auf Methoden oder Variablen reicht oft die Angabe des Bezeichners
nicht aus, weil er nicht eindeutig ist. Der Grund dafir kann sein, dass mehrere Ex-
emplare desselben Bezeichners existieren (z.B. beim Erzeugen von mehreren Instan-
zen sind die Instanzvariablen auch mehrfach im Arbeitsspeicher), es kann aber auch
sein, dass der gleiche Bezeichner fir unterschiedliche Variablenarten (z.B. fiir lokale
Variablen und fiir Membervariablen) benutzt worden ist.

Um diese Namenskonflikte aufzulosen, miissen die Bezeichner "qualifiziert" werden.
Dies geschieht durch die Punktnotifikation: Vor den Namen werden Qualifier ge-
stellt, die den Bezeichner niher spezifizieren:

e bei Instanzelementen (Variablen oder Methoden) wird die Referenzvariable als
Qualifier benutzt, z.B. instanzl.methoded () ;

e Dbei Klassenelementen wird der Klassename als Qualifier benutzt, z.B. klas—
seA.memberX;

e bei Klassennamen wird der Paketname als Qualifier benutzt, z.B. ja-
va.util.Date

Fur die qualifizierende Adressierung von Membervariablen wird also entweder der
Name der Instanz oder der Name der Klasse vorangestellt - abhingig davon, ob das
Element eine Objektvariable oder eine static-Variable ist.

370

16.5 Zugriffsrechte von aufserbalb einer Klasse ("access control”)

Programm ZugriffTest01: Qualifikation durch Referenzvariable

class Zugriff0l |
int zahll; // Nicht private!
void setZzahll (int z3) {
zahll = z3;
}
void ausgeben () {
System.out.println(zahll);

public class ZugriffTest01l {
public static void main(String[] a) {
Zugriff0l z01 = new Zugriff0l();
z01l.setZahll (15);
z01.ausgeben () ;
System.out.println(z01.zahll); // Direktaufruf

}

Die Membervariable zahl1 ist ein Element der Klasse Zugriff01. Sie ist nicht aus-
driicklich als private deklariert. Deswegen gilt die Standardregel: Jede andere Klasse
in diesem Paket kann auf dieses Element zugreifen (und es auch verindern). Der
Zugrift erfolgt anders als innerhalb einer Klasse nun "qualifiziert", d. h. mit Hilfe des
Punkt-Operators (instanzname feldname).

Ubungen zum Programm Zugriff01

Ubung 1: Codieren Sie fiir die Membervariable zahl1 den Zugriffsmodifier private
(das e nicht vergessen, denn private ist kein deutsches Wort). Versuchen Sie eine
Umwandlung der Umwandlungseinheit ZugriffTestO1 java. Ergebnis: es wird ein
Umwandlungsfehler ausgegeben. Loschen Sie danach den Modifier private wieder.

Ubung 2: Erginzen Sie die Klasse ZugriffTestO1 um folgende Aufgabe: Es soll eine
zweite Instanz z02 der Klasse Zugriff01 erzeugt werden. Die Membervariable zahl1
soll den Wert 27 bekommen. Danach soll die Methode printin aufgerufen werden,
die direkt die Membervariable zahl1 referenziert, allerdings fir die Instanz z02.

Diese Ubung hat u.a. gezeigt, dass von der Standardregel fiir das Zugriffsrecht ab-
gewichen werden kann, indem so genannte Zugriffsmodifier (z.B. private) benutzt
werden.

Bevor wir jedoch detailliert die einzelnen Schliisselworter fiir die Zugriffsrechte be-
sprechen, missen wir die Frage kliren, was unter einem Paket zu verstehen ist und
welche Rolle ein Package fiir das Zugriftsrecht spielt.

371

16 Modifier richtig einsetzen ("access control”)

16.6 Bedeutung der Package-Namen

Ein wichtiges Ziel der objektorientierten Programmierung ist es, den Zugriff auf Da-
ten und Methoden so stark wie moglich einzuschrinken. Dadurch werden mogliche
Fehlerquellen reduziert. Bei lokalen Variablen oder bei den Parameter-Variablen von
Methoden ist die Begrenzung in die Sprache eingebaut: sie sind nur innerhalb eines
Blocks bzw. einer Methode ansprechbar. Anders verhidlt es sich mit Member-
Variablen. Die Membervariablen konnen nicht nur von allen Methoden der eigenen
Klasse, sondern auch von Methoden abgeleiteter und sogar von total fremden Klas-
sen angesprochen (gelesen, geschriecben und benutzt) werden, wenn diese zum
gleichen Paket gehoren. Einschrinkungen dieser Zugriffsrechte sind - wie schon an-
gedeutet - nur mit speziellen Modifiern moglich.

Jede Klasse in Java gehort zu einem Paket. Und die Zugriffsrechte werden abhingig
von der Paketzugehorigkeit vergeben.

Paketzugehorigkeit festlegen

Die Zugehorigkeit zu einem Paket wird in Java durch das Schlisselwort package
festgelegt. Diese Anweisung muss ganz oben in der Quelldatei stehen, sie gilt fir die
gesamte Umwandlungseinheit, also fir alle Klassen dieser Quelldatei. Verbunden ist
mit der Paketnamensvergabe auch, dass die Class-Dateien in einem Ordner mit die-
sem Namen stehen missen.

Wenn die Angabe eines expliziten Packagenamens fehlt, gilt ein (unsichtbarer) De-
fault-Packagename. Wenn eine Klasse aber die package-Anweisung enthilt, dann
wird der dort vergebene Bezeichner zum Namensbestandteil der Klasse. Das bedeu-
tet, dass Elemente dieser Klasse von aufierhalb nur angesprochen werden konnen
mit dem vollen ("qualifizierten") Namen, der sich zusammensetzt aus Package- und
Klassennamen.

Bedeutung von Paketen
Die Bedeutung von Paketen liegt vor allem darin,

e dass jedes Paket einen eigenen Namensraum bildet, d.h. die Identifier miissen
innerhalb eines Paketes eindeutig sein. Wenn in anderen Paketen dieselben
Namen noch einmal vorkommen, werden sie durch Voranstellen des Paketna-
mens unterschieden.

e Die zweite wichtige Bedeutung der Paketbildung besteht darin, dass alle Ele-
mente, die nicht ausdriicklich durch spezielle Modifier gekennzeichnet sind, in-
nerhalb dieses Pakets sichtbar sind. Auf sie kann von allen Klassen dieses Pakets
zugegriffen werden.

Speichern Sie das folgende Programm Zugriff02 in einem eigenen Ordner innerhalb
Threr Rootdirectory ab. Der Packagename muss identisch sein mit dem Namen dieser
Subdirectory. Also konnte diese Quelltext-Datei z.B. abgespeichert werden in fol-
gendem Ordner: c:{...root.../merker/Zugriff02.java.

372

16.6 Bedeutung der Package-Namen

Programm Zugriff02: Arbeiten mit Packagenamen

package merker;
class Zugriff02 {
int zahll;
void setZahll (int z3) {
zahll = z3;
}
void ausgeben () {
System.out.println(zahll);

}

Durch die Packageangabe in der ersten Zeile dieser Datei wird die Klasse zum Be-
standteil eines Pakets, ndmlich zum Element des Pakets merker. Der Package-Name
wird Teil des Klassennamens, also voll qualifiziert heilt diese Klasse mer-
ker.Zugriffo2.

Ubung zum Programm Zugriff02

Offnen Sie einen Konsolbildschirm und verzweigen Sie in die Directory, in der sich
das Quellenprogramm befindet. Wandeln Sie das Programm Zugriff02 mit dem Auf-
ruf des Compilers aus dieser Commandline um (und nicht aus einer Entwicklungs-
umgebung). Uberpriifen Sie, in welchem Ordner sich die erzeugte Classdatei mit
dem Bytecode befindet.

Speichern Sie die nachfolgende Datei in der Root-Directory des Ordners merker ab,
also nicht in demselben Ordner, wie die Class-Datei Zugriff02.java, sondern in dem
tubergeordneten Folder.

Programm ZugriffTest02: Benutzen der Klasse eines Pakets

import merker.¥*;
public class ZugriffTest02 {
public static void main(String[] a) {
Zugriff02 z1 = new Zugriff02();
z1l.setZahll (15);
z1l.ausgeben () ;

}

Durch die Angabe in der ersten Zeile dieser Datei kann dieses Programm auf die
Class-File merker.Zugriff02 zugreifen, ohne immer wieder den Packagenamen mit
anzugeben. Alternativ kann diese Angabe auch entfallen, dann misste die Erzeu-
gung der Instanz in der vierten Zeile lauten:

merker.Zugriff02 z1 = new merker.Zugriff02();

373

16 Modifier richtig einsetzen ("access control”)

Ubung zum Programm ZugriffTest02

Wandeln Sie danach das Programm ZugriffTest02 um. Achten Sie darauf, dass dies
aus der Commandline geschieht und dass Sie vorher in den Ordner verzweigen, in
dem sich dieses Programm befindet. Die Umwandlung schligt fehlt, es kommt die
Fehlermeldung:

"merker.Zugriff02 is not public in merker; cannot be accessed
from outside package".

Wie dieser Fehler zu beheben ist, werden wir im Abschnitt 16.7.1 besprechen. Es
fehlt lediglich ein Schlisselwort.

Weitere Informationen zu Packages

Fur die Vergabe von Package-Namen gilt: sie werden Ublicherweise in Kleinbuch-
staben geschrieben. Eine gebriuchliche Bezeichnung fiir Packages ist auch der Be-
griff "Library". Die gesamte mitgelieferte Klassenbibliothek der JDK ist organisiert in
Paketen. Die API-Dokumentation sowohl fiir die Standard-Edition als auch fir die
Enterprise- und Micro-Edition ist nach Paketen unterteilt. Das folgende Beispielpro-
gramm ermittelt die Anzahl der Pakete.

Programm PackageList01: Wieviel Pakete gibt es in der J2SE?

public class PackageList01l {
public static void main(String[] a) {
java.lang.Package[] all = java.lang.Package.getPackages();
System.out.println("Es gibt " + all.length + " Pakete");

Ubung zum Programm PackageList01

Andern Sie das Programm PackagelListO1 java so ab, dass auch die Namen der ein-
zelnen Pakete - und nicht nur die Gesamtanzahl - ausgegeben werden.

Losungsvorschlag

public class PackageList02 {
public static void main(String[] a) {
java.lang.Package[] all = java.lang.Package.getPackages();
for (int i=0; i<all.length; i++)
System.out.println(all[i]);

374

16.7 Zugriffsmodifier private, public, protected

16.7 Zugriffsmodifier private, public, protected

16.7.1 Zugriffsmodifier fiir Felder
Die Vorgabe (default) ist, dass auf Klassen und ihre Elemente von allen anderen
Klassen aus demselben Paket zugegriffen werden konnen.

Wenn eine Klasse aber versucht, auf Klassen oder deren Elemente zuzugreifen, die
auerhalb des eigenen Packages sind, ist dies nicht moglich. Es sei denn, der Pro-
grammierer hat dies mit den entsprechenden Schliisselwortern ausdriicklich erlaubt.
Und dieses Schlisselwort ist public.

Das ist die Erklirung fir den Umwandlungsfehler in dem Programm Zugriff02 aus
dem vorherigen Abschnitt. Die Losung lautet also: Die Klasse muss public sein!

Ubung zu den Programmen Zugriff02/ZugriffTest02

Fligen Sie im Programm Zugriff02.java fir die Klasse und fir die beiden Methoden
das Schltsselwort public ein und wandeln Sie das Programm neu um.

Losungsvorschlag

package merker;
public class Zugriff02 {
int zahll;
public void setZahll (int z3) {
zahll = z3;

}
public void ausgeben () {

System.out.println(zahll);

}

Vergessen Sie nicht, eventuell auch das Programm ZugriffTest02 neu umzuwandeln.
Danach misste die Programmausfiihrung fehlerfrei moglich sein.

Welche Zugriffsmodifier gibt es?

Es gibt drei Schliusselworter, um den Zugriff zu beschrinken bzw. zu erweitern:
e private: nur innerhalb der eigenen Klasse zugreifbar,

e public: alle dirfen zugreifen,

e prolected: nur abgeleitete Klassen (und die eigene natiirlich).

Wenn keines dieser Schlisselworter angegeben ist, gilt der "default access":

e innerhalb eines Pakets ist alles auch von anderen Klassen nutzbar.

375

16 Modifier richtig einsetzen ("access control”)

Zugriffsmodifier und das "information hiding"

Es gilt also: Wenn der Programmierer nichts anderes ausdriicklich bestimmt, dann
kann eine Variable von allen Programmen dieses Pakets verindert werden, d.h. sie
ist nicht geschutzt vor dem Zugriff aus anderen Klassen. Dies entspricht nicht der
Idee der Datenkapselung, und die Empfehlung ist deshalb, Membervariablen mit
dem Schlisselwort private zu deklarieren, damit der Zugriff so eingegrenzt wird,
dass von auBerhalb der eigenen Klasse kein direktes Lesen und kein direktes Verin-
dern (Update) moglich ist.

Programm Private01: Privat - deswegen Zugriff verboten

class PrivateOl {
private int zahl;
}
class PrivateTest01l {
public static void main(String[] a) {
PrivateOl pl = new PrivateOl();
System.out.println(pl.zahl); // illegal

}

Ein Zugriff auf die privaten Membervariablen ist in solchen Fillen nur indirekt mog-
lich, durch Setter- und Getter-Methoden. Dies entspricht der empfohlenen Vorge-
hensweise. Wenn eine Einschrinkung als private-Variable nicht moglich ist, so sollte
geprift werden, ob die Variable mit dem Modifier protected gekennzeichnet werden
kann. Dies hat zur Folge, dass nur von abgeleiteten Klassen zugegriffen werden
kann (der Zugriff "bleibt innerhalb der Verwandtschaft").

Programm Protected01: Zugriff nur fiir "Verwandte" und innerhalb des Pa-
kets

class Protected01l {
protected int zahl;
}
class ProtectedTest01l {
public static void main (Stringl[] a) {
Protected0l pl = new ProtectedO01();
System.out.println(pl.zahl); // legal

}
Ubung zum Programm ProtectedTest01

Ubung 1: Wandeln Sie das Programm um und testen Sie es. Sowohl die Umwand-
lung als auch die Ausfihrung sind ohne Probleme moglich. Nach welcher Regel ist
der Zugriff auf die Variable zah/ moglich?

376

16.7 Zugriffsmodifier private, public, protected

Losungshinweis: protected erlaubt den Zugriff entweder von allen abgeleiteten
Klassen oder aus demselben Package heraus. Beide Klassen stehen in demselben
Default-Package. Deswegen gibt es keine Probleme.

Ubung 2: Bitte ordnen Sie zunichst nur die class Protected01 einem (beliebigen)
Package zu. Testen Sie. Danach ordnen Sie auch die class ProtectedTestO1 diesem
Package zu. Dann miisste sowohl Umwandlung als auch Ausfiihrung funktionieren.

Es gibt noch ein drittes Schlisselwort fiir Variablen, um die Zugriffsrechte explizit zu
indern. Und das ist der Modifier public. Damit wird jedem erlaubt, die so gekenn-
zeichnete Variable zu lesen und/oder zu verindern. Dringende Empfehlung: dieses
Schlisselwort sollte nur in wohl begriindeten Ausnahmefillen eingesetzt werden.

16.7.2 Zugriffsmodifier fiir Methoden

Ein Zugriff auf eine Methode einer Klasse ist selbstverstindlich auch von jeder Me-
thode der eigenen Klasse moglich. Dies kann auch nicht eingegrenzt werden.

Aber weil auch hier die Vorgabe lautet: nur innerhalb eines Paketes kann diese Me-
thode benutzt werden, ist es hiufig notwendig, diese Rechte zu erweitern durch den
Modifier public. Damit wird es auch den Nutzern von auferhalb des Paketes mog-
lich, diese Methode aufzurufen.

Eine Eingrenzung der Zugriffsrechte ist ebenfalls moglich: durch den Modifier priva-
te. Dann darf diese Methode nur von Methoden der eigenen Klasse aufgerufen wer-
den.

16.7.3 Zugriffsmodifier fiir Klassen

Eine Klasse sollte mit dem Modifier public versehen sein, wenn sie eine main-
Methode enthilt. Das heift, eine Java-Applikation, die durch Aufruf des Interpreters
gestartet wird, muss nicht nur in einer Umwandlungseinheit mit dem Namen dieser
ausfihrbaren Klasse stehen, sondern diese Klasse sollte auch public sein. Und sie
muss die einzige Klasse in dieser Umwandlungseinheit mit diesem Modifier sein.

Programm PublicTest01: Wann diirfen Klassen public sein?

public class PublicTest01l {
public static void main (Stringl[] a) {
Public0l p = new PublicO01();

}
public class PublicOl {
private int zahll;

void setzahll (int z3) {
zahll = z3;

377

16 Modifier richtig einsetzen ("access control”)

}
void ausgeben () {
System.out.println(zahll);

}
Ubungen mit Programm PublicTest01

Ubung 1: Speichern Sie die obige Umwandlungseinheit in einer Quellendatei mit
dem Namen PublicTestO1 java. Bei der Umwandlung werden Fehlermeldungen aus-
gegeben. Bitte korrigieren Sie diesen Fehler. Losungshinweis: Nur die ausfithrbare
Klasse darf public sein.

Ubung 2: Wenn Ubung 1 erfolgreich war, speichern Sie die geinderte, fehlerfreie
Umwandlungseinheit in einer Quellendatei mit dem Namen PublicO1 java. Versu-
chen Sie die Umwandlung dieser Datei. Warum funktioniert das nicht?

Zusammenfassung

Fur die Sicherheit und Wartbarkeit von Programmen sollten folgende Prinzipien be-
achtet werden:

Datenkapselung: Die Felder einer Klasse sollten, soweit moglich, mit dem Schliis-
selwort private versehen werden. Dadurch wird ein Zugriff von auSerhalb der Klasse
strikt unterbunden. Fir das Lesen und Schreiben konnen Getter- und Settermetho-
den eingesetzt werden. Diese Methoden miussen selbstverstindlich von auferhalb
zugreifbar sein, deswegen bendtigen sie den Modifier public.

Information Hiding: Das Arbeiten innerhalb von Methoden (oder Programmbldcken)
soll fiir den Nutzer dieser Programmteile moglich sein, ohne die Details der internen
Implementierung zu kennen. Die Schnittstellen zum Aufrufer sollen moglichst ein-
fach sein. Gemeinsame Datenbereiche sind - so weit moglich - zu vermeiden. Des-
wegen sollten die Variablen dieses Blocks moglichst lokale Variable sein; der Modi-
fier static ist nur in begrindeten Ausnahmefillen zu verwenden.

Uberblick der Acces Level:

Modifier class Subclass | Package | Weltweit
private X

protected X X X

public X X X X
(default) X X

Abb. 16.2: Welchen Zugriff erlauben die einzelnen Access-Modifier?

378

A Installationbinweise J2SE SDK 5.0

Installationshinweise J2SE SDK 5.0

Fur die Installation der J2SE SDK 5.0 unter MS-Windows sind folgende Schritte not-
wendig:

e Es werden Verwaltungsrechte benotigt.

e Gestartet wird die Datei, die von der Web-Site der Firma Sun geholt wurde, z.B.
Jjdk-1_5_0_05-windows-i586-p.exe

e Nach der Bestitigung der Lizenzvereinbarungen erscheint das folgende Fenster:

Custom Setup

Select the program features you want installed.

Select optional features toinstal from the list below, You can change yolr choice of featires after
installation by using the Add/Remove Pragrams utility in the Control Panel

Feature Descripton -

= 125E Development Kit 5.0,
-] Dernos Including private JRE 5.0, This
B - will require 264 MB on your hard
=2 drive,
3~ | Public JRE

Instal to:

DiProgrammeJavayjdk 1,5.0_014 change. ..
= Back | et = | Cancel J

e Empfehlung: Alle Angaben unverindert lassen, eventuell kann der Installations-
ordner geidndert werden.

e Den Button Nextauswihlen

379

A Installationshinweise J2SE SDK 5.0

e Das folgende Fenster bietet weitere Setup-Angaben an:

Runtime Environment 5,0 Lpds

Custom Setup

Select the program features you want instaled,

The 125E Runtime Environment with support for European languages will be instaled, Select
optional features to instal from the list below,

= Rl e o T The J25E Runime Environiment with
| Support for Additional Languages Europearn languages. This requires
| Additional Font and Media Support 131 MB o your hard drive,

Install to:

E\ProgrammeiJavaijrel.5.0_01Y

Change...
et = | Cancel ‘

e Das Fenster bietet die Moglichkeit, die Unterstitzung fiir nicht-europiische Spra-
chen zu installieren.

e Empfehlung: Alle Angaben unverindert lassen (lediglich die Installationsordner
konnten gedndert werden).

e Den Button Nextauswihlen

e Dann prift das Installationsprogramm, welche Browser benutzt werden, und
bietet fiir alle gefundenen Browser eine Registrierung des Java-Plug-Ins an.

e Folgendes Bild erscheint:

380

A Installationbinweise J2SE SDK 5.0

E Runtime Environment 5.0 Lipds

Browser Registration

Select the browsers you want to register with Java(Tr) Plug-1n.

¥ Microsoft Internet Explorer

You may change the setfings later in the JavalTH) Contral Fanel,

Cancel

< Back

e Empfehlung: Alle Angaben unverindert lassen, damit das Plug-In fir die Brow-
ser installiert wird.

e Das Java-Plug-In verkniipft den Browser mit der neu installierten Java-Plattform.
Dadurch wird das Arbeiten mit Applets auf diesem System moglich.

In diesem Java-Lehrbuch wird das Thema "Applets" nicht behandelt. Die Griinde:
Um einfache Java-Applets zu schreiben (oder auch nur zu verstehen), sind Kenntnis-
se in den Internet-Standards wie HTML und HTTP notwendig. Dariiber hinaus muss
man mit der Programmierung von grafischen Oberflichen vertraut sein. Selbstver-
stindlich ist ein tiefes Verstindnis der umfangreichen Klassenbibliotheken notwen-
dig. Und sinnvoll ist der Einsatz von komplexen Entwicklungsumgebungen wie z.B.
Ecplipse. All dies macht es dem Anfinger zu Beginn relativ schwer, mit Applets zu
arbeiten.

e Den Button Next auswihlen

e Zum Abschluss der Installation kommt folgendes Fenster:

381

A Installationshinweise J2SE SDK 5.0

Installation Completed

The Install Wizard has successfully installed 125E Development
Kit 5.0 Update 1. Click Finish to exit the wizard,

e Herzlichen Gliickwunsch: das J2SE Developer Kit 5.0 ist auf Threm Rechner ver-
fugbar.

Anderung der path-Environment-Variable

Damit die notwendigen Programme zum Umwandeln und Ausfihren aus einer
CMD-Shell ("Eingabeaufforderung" unter Windows) beim Aufruf auch gefunden
werden, muss nun abschlieBend die PATH-Environment-Variable erginzt werden
um den bin-Ordner der Installations-Directory. Dies geschiecht entweder temporir
durch Eingabe des folgenden Commands:

E:v\»set path=e:\programmesjavasjdkl.5.8_Bivhin;xPATZHx®

E:v>java —verzion
java version ''1.5.8_61"
2 Runtime Environment, Standard Edition <build 1.5.8_81-hB8>

Java HotSpot{(TH> Client UM c<(build 1.5.8_81-bh#8, mixed mode. sharing)
E:s>

oder tiber das ICON "Arbeitsplatz": Bei Windows 2000 durch Aufruf mit der rechten
Maustaste , danach: Eigenschaften|Erweitert |Umgebungsvariablen.

382

A Installationbinweise J2SE SDK 5.0

Hinweise zum path-Suchpfad:
e Diese Anderungen werden erst wirksam nach dem Neustart des DOS-Fensters.

e Die Angaben in der PATH-Environment-Variablen beschreiben fir das Pro-
gramm "command.com" die Suchreihenfolge der ausfithrbaren Programme (.exe-
Dateien). Wenn also z.B. das Java-Programm "progri" ausgefihrt werden soll,
wird der Befehl "java progrl" eingegeben, und dann sucht Windows die ja-
va.exe-Datei nach den Pfad-Angaben in der path-Environment-Variablen. (Das
Programm progrl ist ein Java-Programm vom Dateityp .class; dieses wird ge-
sucht anhand des classpath-Suchpfads, falls es nicht im Arbeitordner steht.)

e Die einzelnen Suchpfade werden im Classpath durch Semikolon abgetrennt.
e Durch die Angabe %path% wird der derzeitige Stand eingefiigt.

e Natiirlich kann dieser Befehl auch in einer Batch-Datei stehen (.bat).

Anderung der classpath-Environment-Variable

Fiir die Umwandlung und Ausfiihrung der Beispiele in diesem Buch sind keine An-
derungen in der classpath-Variablen erforderlich.

Der classpath beschreibt die Suchreihenfolge fiir die Suche nach Class-Dateien, also
fir Dateien mit der Endung .class. Sie enthilt die Directories, die durchsucht wer-
den. Benotigt werden diese Angaben fir die Umwandlung und bei der Ausfithrung.
Die Standardannahme fiir die Suche einer .class-Datei ist, dass diese im aktuellen
Ordner steht. Wenn also der Aufruf aus dem Ordner erfolgt, wo die Datei steht, ist
keine besondere classpath-Angabe notwendig.

Sollten Sie ecine classpath-Environmentvariable einrichten oder dndern (z.B. weil
class-Dateien referenziert werden, die in einem anderen Ordner stehen), so achten
Sie darauf, dass die Environment-Variable auch einen Punkt enthalt.

Der Punkt hat eine wichtige Bedeutung fir die Suche, denn er bestimmt, dass auch
der aktuelle Pfad bei der Suche einbezogen wird. Beispiel:

set classpath=%classpath%;d:\sun\lib\j2ee.jar;.;

Eine weitere Moglichkeit, den Classpath zu setzen, besteht beim Aufruf des Java-
Compilers und des Java-Interpreters. Beide Programme erlauben eine -classpath Op-
tion beim Starten.

E:\>java -cp e:\merker Test01

Natiirlich wirkt die Option -¢p nur fir die Suche nach CLASS-Dateien (nicht fiir die
Suche von Quelldateien (.java-Dateien).

383

B Meta-Sprachen zur Syntaxbeschreibung

Meta-Sprachen zur Syntaxbeschreibung

Die Syntax einer Sprache kann mit einer speziellen Meta-Sprache ("eine Sprache, die
eine andere Sprache erklirt") beschrieben werden. Beispiele fir Metasprachen sind
die Backus-Naur-Form (BNF) oder spezielle Syntaxdiagramme.

1. Syntaxdiagramme

Grafische Darstellung der Syntax. Sie besteht aus Rechtecken, die Erlduterungen o-
der Hinweise auf andere Syntaxdiagramme enthalten, und Kreisen (oder Ovale), die
Symbole enthalten. Syntaxdiagramme werden von links nach rechts, den Linien fol-
gend, interpretiert. Beispiel:

Dezimalzahl:

Co)
N
1.9

Abb. B1: Syntaxdiagramm (Was ist eine Dezimalzahl in Java?)

2. Backus-Naur-Form (BNF)

Ein anderes Beispiel ist die textuelle Darstellung der Sprachsyntax. Angelehnt ist dies
meistens an die seit den 60er Jahren bekannte Backus-Naur-Form (BNF), bei der
durch festgelegte Sonderzeichen ("Metazeichen") beschrieben wird, wie die formal
richtige Codierung des Quelltexts zu erfolgen hat.

Es gibt zahlreiche Varianten. Hier die von Sun benutzten Symbole:

a: z a ist der zu erklirende Begriff, z enthilt die Beschreibung (a wird
durch z definiert)

x |y trennt Alternativen (entweder x oder y)
[] wahlweises Vorkommen (0-mal oder 1-mal), optional
{1 Auswahl, Vorkommen ist 1-mal oder beliebig oft

+ Element kann wiederholt werden

384

B Meta-Sprachen zur Syntaxbeschreibung

Das nachfolgende Beispiel ist angelehnt an die Language Specification von Sun
(sieche http://java.sun.com/docs/books/jls/).

BNF-Beispiel - Variablendeklaration:

VariableDeclarators:
VariableDeclarator { , VariableDeclarator }

VariableDeclarator:
Identifier VariableDeclaratorRest

VariableDeclaratorRest :
BracketsOpt [= VariableInitializer]

Kurzbeschreibung fur Control-Statements:

if (Expression) Statement [else Statement]
for (ForInitOpt ; [Expression] ; ForUpdateOpt) Statement
while (Expression) Statement

do Statement while (Expression) ;

Ausfihrliche Beschreibung (Switch):

switch (Expression) { SwitchBlockStatementGroups }

SwitchBlockStatementGroups:

{ SwitchBlockStatementGroup }

SwitchBlockStatementGroup:

SwitchLabel BlockStatements

SwitchLabel:
case ConstantExpression
default:

BlockStatements:

{ BlockStatement }

BlockStatement
LocalVariableDeclarationStatement
ClassOrInterfaceDeclaration

[Identifier :] Statement

385

C Die ersten 256 Unicode-Zeichen (0000-ff}f)

Die ersten 256 Unicode-Zeichen (0000-ffff)

Code | hexa- | Sym- CP 1252 | CP 850
pintC | dez. | bol Unicode-Namen (Bezeichnung) Windows | D O'S
dez.)

0 0x0000 NULL*

1 0x0001 START OF HEADING*

2 0x0002 START OF TEXT*

3 0x0003 END OF TEXT*

4 0x0004 END OF TRANSMISSION*

5 0x0005 ENQUIRY*

6 0x0006 ACKNOWLEDGE*

7 0x0007 BELL*

8 0x0008 BACKSPACE*

9 0x0009 CHARACTER TABULATION*

10 0x000A LINE FEED (LF)*

11 0x000B LINE TABULATION*

12 0x000C FORM FEED (FF)*

13 0x000D CARRIAGE RETURN (CR) *

14 0x000E SHIFT OUT*

15 0x000F SHIFT IN*

16 0x0010 DATA LINK ESCAPE*

17 0x0011 DEVICE CONTROL ONE*

18 0x0012 DEVICE CONTROL TWO*

19 0x0013 DEVICE CONTROL THREEX

20 0x0014 DEVICE CONTROL FOUR¥

21 0x0015 NEGATIVE ACKNOWLEDGE*

22 0x0016 SYNCHRONOUS IDLE*

23 0x0017 END OF TRANSMISSION BLOCK*
24 0x0018 CANCEL*

25 0x0019 END OF MEDTUM*

26 0x001A SUBSTITUTE*

27 0x001B ESCAPE*

28 0x001C INFORMATION SEPARATOR FOUR¥
29 0x001D INFORMATION SEPARATOR THREE*
30 0x001E INFORMATION SEPARATOR TWO*
31 0x001F INFORMATION SEPARATOR ONE*

Teil 1 von 8: Codepoint 0000-0031: Steuerzeichen, identisch mit US-ASCII

386

C Die ersten 256 Unicode-Zeichen (0000-fff)

Code- | he- Sym- CP 1252 | CP 850
point | xade | bol Unicode-Namen (Bezeichnung) Windows | DO 'S
dezim. | Z.

32 0x0020 SPACE

33 0x0021 ! EXCLAMATION MARK
34 0x0022 " QUOTATION MARK

35 0x0023 # NUMBER SIGN

36 0x0024 $ DOLLAR SIGN

37 0x0025 % PERCENT SIGN

38 0x0026 & AMPERSAND

39 0x0027 APOSTROPHE

40 0x0028 (LEFT PARENTHESIS
41 0x0029) RIGHT PARENTHESIS
42 0x002A * ASTERISK

43 0x002B + PLUS SIGN

44 0x002C coMMA

45 0x002D - HYPHEN-MINUS

46 0x002E . FULL STOP

47 0x002F / SOLIDUS

48 0x0030 0 DIGIT ZERO

49 0x0031 1 DIGIT ONE

50 0x0032 2 DIGIT TWO

51 0x0033 3 DIGIT THREE

52 0x0034 4 DIGIT FOUR

53 0x0035 5 DIGIT FIVE

54 0x0036 6 DIGIT SIX

55 0x0037 7 DIGIT SEVEN

56 0x0038 8 DIGIT EIGHT

57 0x0039 9 DIGIT NINE

58 0x003a : COLON

59 0x003B ; SEMICOLON

60 0x003C < LESS-THAN SIGN

61 0x003D = EQUALS SIGN

62 0x003E > GREATER-THAN SIGN
63 0x003F 2 QUESTION MARK

Teil 2 von 8: Codepoint 0032-0063: Ziffern und Sonderzeichen, identisch mit US-
ASCII

387

C Die ersten 256 Unicode-Zeichen (0000-ff}f)

Code- hexa- | Sym- CP 1252 CP 850
point | dez. bol Unicode-Namen (Bezeichnung) Windows DOS
dez.

64 0x0040 @ COMMERCIAL AT

65 0x0041 A LATIN CAPITAL LETTER A
66 0x0042 B LATIN CAPITAL LETTER B
67 0x0043 C LATIN CAPITAL LETTER C
68 0x0044 D LATIN CAPITAL LETTER D
69 0x0045 E LATIN CAPITAL LETTER E
70 0x0046 F LATIN CAPITAL LETTER F
71 0x0047 G LATIN CAPITAL LETTER G
72 0x0048 H LATIN CAPITAL LETTER H
73 0x0049 I LATIN CAPITAL LETTER I
74 0x004A J LATIN CAPITAL LETTER J
75 0x004B K LATIN CAPITAL LETTER K
76 0x004C L LATIN CAPITAL LETTER L
77 0x004D M LATIN CAPITAL LETTER M
78 0x004E N LATIN CAPITAL LETTER N
79 0x004F O LATIN CAPITAL LETTER O
80 0x0050 P LATIN CAPITAL LETTER P
81 0x0051 Q LATIN CAPITAL LETTER Q
82 0x0052 R LATIN CAPITAL LETTER R
83 0x0053 S LATIN CAPITAL LETTER S
84 0x0054 T LATIN CAPITAL LETTER T
85 0x0055 U LATIN CAPITAL LETTER U
86 0x0056 V LATIN CAPITAL LETTER V
87 0x0057 W LATIN CAPITAL LETTER W
88 0x0058 X LATIN CAPITAL LETTER X
89 0x0059 Y LATIN CAPITAL LETTER Y
90 0x005A 7 LATIN CAPITAL LETTER %
91 0x005B [LEFT SQUARE BRACKET

92 0x005C \ REVERSE SOLIDUS

93 0x005D] RIGHT SQUARE BRACKET
94 0x005E * CIRCUMFLEX ACCENT

95 0x005F _ LOW LINE

Teil 3 von 8: Codepoint 0064-0095: GroRbuchstaben und Sonderzeichen, identisch
mit US-ASCII

388

C Die ersten 256 Unicode-Zeichen (0000-fff)

Code- | hexa- | Sym- CP 1252 CP 850
point | dez. bol Unicode-Namen (Bezeichnung) Windows DOS
dezim.

96 0x0060 ° GRAVE ACCENT

97 0x0061 a LATIN SMALL LETTER A
98 0x0062 b LATIN SMALL LETTER B
99 0x0063 ¢ LATIN SMALL LETTER C
100 0x0064 d LATIN SMALL LETTER D
101 0x0065 e LATIN SMALL LETTER E
102 0x0066 £ LATIN SMALL LETTER F
103 0x0067 g LATIN SMALL LETTER G
104 0x0068 h LATIN SMALL LETTER H
105 0x0069 i LATIN SMALL LETTER I
106 0x0062 LATIN SMALL LETTER J
107 0x006B k LATIN SMALL LETTER K
108 0x006C 1 LATIN SMALL LETTER L
109 0x006D m LATIN SMALL LETTER M
110 0x006E n LATIN SMALL LETTER N
111 0x006F o LATIN SMALL LETTER O
112 0x0070 p LATIN SMALL LETTER P
113 0x0071 g LATIN SMALL LETTER Q
114 0x0072 r LATIN SMALL LETTER R
115 0x0073 s LATIN SMALL LETTER S
116 0x0074 t LATIN SMALL LETTER T
117 0x0075 u LATIN SMALL LETTER U
118 0x0076 v LATIN SMALL LETTER V
119 0x0077 w LATIN SMALL LETTER W
120 0x0078 x LATIN SMALL LETTER X
121 0x0079 vy LATIN SMALL LETTER Y
122 0x007A z LATIN SMALL LETTER %
123 0x007B { LEFT CURLY BRACKET
124 0x007C | VERTICAL LINE

125 0x007D } RIGHT CURLY BRACKET
126 0x007E ~ TILDE

127 0x007F DELETE*

Teil 4 von 8: Codepoint 0096-0127: Kleinbuchstaben und Sonderzeichen, identisch
mit US-ASCII

389

C Die ersten 256 Unicode-Zeichen (0000-ff}f)

Code- | hexa- | Sym- CP 1252 CP 850
point | dez. bol Unicode-Namen (Bezeichnung) | . dows DOS
dez.

128 0x0080 * 80 € 80 C
129 0x0081 * 81 i
130 0x0082 BREAK PERMITTED HERE* 82 , 82 é
131 0x0083 NO BREAK HERE* 83 f 83 a
132 0x0084 * 84) 84 a
133 0x0085 NEXT LINE (NEL)* 85 85 a
134 0x0086 START OF SELECTED AREA* 86 t 86 a
135 0x0087 END OF SELECTED AREA* 87 t 87 ¢
136 0x0088 TABULATION SET* 88 - 88 &
137 0x0089 TABULATION WITH JUST.* 89 %o 89 &
138 0x008A LINE TABULATION SET* 8A S 8A @
139 0x008B PARTIAL LINE FORWARD* 8B) 8B i
140 0x008C PARTIAL LINE BACKWARD* 8C E 8C i
141 0x008D REVERSE LINE FEED* 8D i
142 0x008E SINGLE SHIFT TWO* 8E b 8E A
143 0x008F SINGLE SHIFT THREE* 8F A
144 0x0090 DEVICE CONTROL STRING* 90 £
145 0x0091 PRIVATE USE ONE* 91 . 91 =
146 0x0092 PRIVATE USE TWO* 92 : 92 E
147 0x0093 SET TRANSMIT STATE* 93 “ 93 5
148 0x0094 CANCEL CHARACTER* 94 » 94 8
149 0x0095 MESSAGE WAITING* 95 . 95 >
150 0x0096 START OF GUARDED AREA* 9% _ % a
151 0x0097 END OF GUARDED AREA* 97 _ 97 N
152 0x0098 START OF STRING* 08 - 08 y
153 0x0099 * 99 ™ 99 o
154 0x009A SINGLE CHARACTER INTR.* 9A s 9A 0
155 0x009B CONTROL SEQUENCE INTR.* 9B , B o
156 0x009C STRING TERMINATOR* 9C e 9Cc ¢
157 0x009D OPERATING SYSTEM CM* 0 o
158 0x009E PRIVACY MESSAGE* 9E 5 9E y
159 0x009F APPLICATION PR. CMD* oF v oF f

Teil 5 von 8: Codepoint 0128-0159: Im Unicode als Steuerzeichen belegt
Unterschiedlich belegt bei CP1252, CP850 oder 8859-1

390

C Die ersten 256 Unicode-Zeichen (0000-fff)

Code- | hexa- | Sym- CP 1252 CP 850
point | dez. bol Unicode-Namen (Bezeichnung) Windows DOS
dez.

160 0x00A0 NO-BREAK SPACE A0 A0 a
161 0x00Al INVERTED EXCLAM. MARK Al i Al i
162 0x00A2 ¢ CENT SIGN A2 ¢ A2 o}
163 0x00A3 £ POUND SIGN A3 £ A3]
164 0x00A4 x CURRENCY SIGN A4 o A4 f
165 0x00A5 ¥ YEN SIGN A5 ¥ A5 N
166 0x00A6 | BROKEN BAR A6 ! A6 2
167 0x00A7 § SECTION SIGN A7 § A7 °
168 0x00A8 DIAERESIS A8 " A8 ¢
169 0x00A9 © COPYRIGHT SIGN A9 © A9 ®
170 0x00RAA 2 FEMININE ORDINAL INDICATOR AA 2 AA -
171 0x00AB « LEFT-POINTING DOUBLE ANGLE AB « AB 2
172 0x00AC = NOT SIGN AC - AC Ya
173 0x00AD SOFT HYPHEN AD AD i
174 0x00AE ® REGISTERED SIGN AE ® AE «
175 0x00AF ~ MACRON AF B AF

176 0x00BO ° DEGREE SIGN BO ° BO

177 0x00B1 =+ PLUS-MINUS SIGN B1 + B1

178 0x00B2 2 SUPERSCRIPT TWO B2 2 B2 |
179 0x00B3 3 SUPERSCRIPT THREE B3 3 B3 |
180 0x00B4 ~ ACUTE ACCENT B4 ’ B4 4
181 0x00B5 p MICRO SIGN B5 i B5 A
182 0x00B6 9 PILCROW SIGN B6 q B6 A
183 0x00B7 - MIDDLE DOT B7 - B7 A
184 0x00B8 CEDILLA B8 R B8 ©
185 0x00B9 ? SUPERSCRIPT ONE B9 1 B9 4
186 0x00BA ° MASCULINE ORDINAL INDICATOR BA o BA |
187 0x00BB » RIGHT-POINTING DOUBLE ANGLE BB » BB 7
188 0x00BC % ONE QUARTER BC a Bc 4
189 0x00BD % ONE HALF BD Y2 BD ¢
190 0x00BE % THREE QUARTERS BE Ya BE ¥
191 0x00BF ¢ INVERTED QUESTION MARK BF é BF 1

Teil 6 von 8: Codepoint 0160-0191: Unicode, CP1252 und 8859-1 identisch.
CP850 hat abweichende Belegung

391

C Die ersten 256 Unicode-Zeichen (0000-ff}f)

Code- | hexa- | Sym- CP 1252 CP 850
point | dez. bol Unicode-Namen (Bezeichnung) Windows DOS
dezim.

192 0x00C0 A A WITH GRAVE co A Co L
193 0x00C1 A A WITH ACUTE C1 A C1 1
194 0x00C2 A A WITH CIRCUMFLEX Cc2 A c2 T
195 0x00C3 A A WITH TILDE C3 A |cs F
196 0x00C4 A A WITH DIAERESIS C4 A C4 -
197 0x00C5 A A WITH RING ABOVE C5 A C5 +
198 0x00C6 E LETTER AE C6 £ C6 a
199 0x00C7 ¢ C WITH CEDILLA C7 (¢} Cc7 A
200 0x00C8 E E WITH GRAVE c8 E c8 Lk
201 0x00C9 E E WITH ACUTE C9 E | C9 P
202 0x00CA E E WITH CIRCUMFLEX CA E CA 4
203 0x00CB E WITH DIAERESIS CB E CB T
204 oxoocc 1 I WITH GRAVE cc] cc
205 0x00CD f I WITH ACUTE cD i ch =
206 0x00CE 1 I WITH CIRCUMFLEX CE) CE &+
207 0x00CF I I WITH DIAERESIS CF i CF o
208 0x00D0 B LETTER ETH DO b DO 0
209 0x00D1 N N WITH TILDE D1 N D1 5]
210 0x00D2 O O WITH GRAVE D2 o) D2 E
211 0x00D3 O O WITH ACUTE D3 o} D3 E
212 0x00D4 O O WITH CIRCUMFLEX D4 o) D4 E
213 0x00D5 O O WITH TILDE D5 0 D5 I
214 0x00D6 O O WITH DIAERESIS D6 o) D6 i
215 0x00D7 x MULTIPLICATION SIGN D7 x D7)
216 0x00D8 & O WITH STROKE D8 %] D8)
217 0x00D9 U U WITH GRAVE D9 U D9 4
218 0x00DA U U WITH ACUTE DA U | DA r
219 0x00DB U U WITH CIRCUMFLEX DB U DB [|
220 0x00DC T U WITH DIAERESIS DC U DC u
221 0x00DD ¥ Y WITH ACUTE DD \4 DD |
222 0x00DE P LETTER THORN DE b DE I
223 0x00DF B SMALL LETTER SHARP S DF B DF u

Teil 7 von 8: Codepoint 0192-0223: Unicode, CP1252 und 8859-1 identisch
CP850 hat abweichende Belegung

392

C Die ersten 256 Unicode-Zeichen (0000-fff)

Code- | hexa- | Sym- CP 1252 CP 850

point | dez. bol Unicode-Namen (Bezeichnung) Windows DOS

dezim.

224 0x00E0 a a WITH GRAVE EO a EO o]
225 0x00E1 a a WITH ACUTE E1 a E1 B
226 0x00E2 a a WITH CIRCUMFLEX E2 a E2 o]
227 0x00E3 & a WITH TILDE E3 Y E3 l¢]
228 0x00E4 a a WITH DIAERESIS E4 a E4 0
229 0x00E5 & a WITH RING ABOVE E5 a E5 6]
230 0x00E6 & LETTER AE E6 ® E6 u
231 0x00E7 e] c WITH CEDILLA E7 [+ E7 o]
232 0x00E8 & e WITH GRAVE E8 e E8 P
233 0x00E9 & e WITH ACUTE E9 é E9 U
234 0x00EA & e WITH CIRCUMFLEX EA é EA U]
235 0x00EB & e WITH DIAERESIS EB é EB U
236 0x00EC 1 i WITH GRAVE EC i EC y
237 0x00ED i i WITH ACUTE ED i ED Y
238 0x00EE 1 i WITH CIRCUMFLEX EE 7 EE h
239 0x00EF i i WITH DIAERESIS EF i EF

240 0x00F0 3 LETTER ETH FO o] FO

241 0x00F1 f n WITH TILDE F1 A F1 +
242 0x00F2 o o WITH GRAVE F2 0 F2 _
243 0x00F3 & o WITH ACUTE F3 6 F3 Ya
244 0x00F4 o) o WITH CIRCUMFLEX F4 0 F4 q
245 0x00F5 & o WITH TILDE F5 0 F5 §
246 0x00F6 o) o WITH DIAERESIS F6 o] F6 +
247 0x00F7 = DIVISION SIGN F7 + F7 N
248 0x00F8 7] o WITH STROKE F8 o] F8 °
249 0x00F9 1 u WITH GRAVE F9 u F9 h
250 0x00FA 1 u WITH ACUTE FA U FA

251 0x00FB 1 u WITH CIRCUMFLEX FB i FB 1
252 0x00FC i u WITH DIAERESIS FC U FC 3
253 0x00FD vy y WITH ACUTE FD y FD 2
254 O0x00FE b LETTER THORN FE b FE u
255 0x00FF ¥ y WITH DIAERESIS FF y FF

Teil 8 von 8: Codepoint 0224-0255: Unicode, CP1252 und 8859-1 identisch
CP850 hat abweichende Belegung

393

D Komplettbeispiel einer verteilten Application

Komplettbeispiel einer verteilten Application

Das Kapitel 6.1.3 (Streams) enthiilt folgendes Beispielprogramm zum Schreiben und
Lesen Uber eine TCP/IP-Leitung.

Programm Stream04: Server fiir Kommunikation iiber TCP/IP-Verbindung

import java.net.*;
import java.io.*;
class Stream04 {
public static void main(String[] args) throws Exception ({
ServerSocket ss = new ServerSocket (1500);
Socket s = ss.accept();

DatalInputStream ein = new
DatalInputStream(s.getInputStream());

int zahl = ein.read();
System.out.println(zahl);

Zum volligen Verstindnis sind einige Kenntnisse des TCP/IP-Protokolls erforderlich.
Das Programm erwartet iber die Port-Nr. 1500 ein Zeichen, das gelesen und danach
am Consolebildschirm ausgegeben wird. Hier ist das entsprechende Senderpro-
gramm.

Programm StreamO4a: Client fiir Kommunikation iiber TCP/IP-Verbindung

import java.net.*;

import java.io.¥*;

class StreamO4a {

public static void main(String[] args) throws Exception {
Socket s = new Socket ("localhost",1500);
DataOutputStream aus = new
DataOutputStream(s.getOutputStream()) ;

aus.write('A'");
aus.close();

}

394

D Komplettbeispiel einer verteilten Application

Hinweise zum Testen der Anwendung:

Es werden zwei DOS-Boxen bendtigt. Achtung: Diese DOS-Boxen diirfen nicht tiber
JOE geoffnet werden, weil dann Environment-Variable gedndert werden. Es ist wie
folgt vorzugehen:

START | Programme | Zubehor | Eingabeaufforderung (zweimal).

Danach jeweils in die Ordner verzweigen, in denen die Class-Dateien stehen.
Dann zunichst das Serverprogramm starten: java Stream04

Und jetzt das Clientprogramm starten: java StreamO4a.

Das Ergebnis der wundervollen Zusammenarbeit dieser beiden Programme ist, dass
auf dem Consolebildschirm des Serverprogramms der Codepoint des Buchstabens A
ausgegeben wird.

Ubung zum Programm Stream04

Ubung 1: Andern Sie das Programm so, dass nicht der Codepoint 65, sondern der
Buchstabe A vom Serverprogramm ausgegeben wird. (...println((char)zahD);

Ubung 2: Andern Sie die beiden Kommunikationsprogramme so ab, dass nicht ein-
zelne Zeichen gesendet und gelesen werden, sondern komplette Zeichenketten
(Strings) mit den Methoden writeUTF und readUTF ausgetauscht werden.
Losungsvorschlag

import java.net.*;

import java.io.*;

class Stream05 {

public static void main(String[] args) throws Exception {
ServerSocket ss = new ServerSocket (1500);
Socket s = ss.accept();
DataInputStream ein = new DatalnputStream(s.getInputStream());

String text = ein.readUTF () ;
System.out.println(text);

}
import java.net.*;
import java.io.*;
class Stream05a {
public static void main(String[] args) throws Exception {
Socket s = new Socket ("localhost",1500);
DataOutputStream aus = new
DataOutputStream(s.getOutputStream());
aus.writeUTF ("Hallo");
aus.close () ;

}

395

E Glossar

Glossar

Abstraktion

Allgemeine Vorgehensweise, um Komplexitit zu verringern. Dabei wird versucht,
die fir eine bestimmte Aufgabenstellung wichtigen Teile zu erkennen und das Un-
wesentliche zu vernachlissigen. Wird in der Programmierung z.B. beim Design von
Klassen eingesetzt, um die wesentlichen Merkmale eines Gegenstandes oder Begriffs
herauszusondern.

access modifier, siche Modifizier

Algorithmus
Beschreibung fiir die Losung eines bestimmten Problems, konkrete Anleitung, Hand-
lungsvorschrift; kann die Form eines Computerprogramms haben.

Aggregation

beschreibt, wie einzelne Teile vereinigt werden zu etwas Ganzem. In der objektori-
entierten Programmierung die Beschreibung, wie Klassen miteinander verbunden
werden, nimlich in eine Ganze-Teile-Hierachie ("is-part-of"). In Java erfolgt Aggrega-
tion dadurch, dass ein Objekt eine Referenz auf ein anderes Objekt erzeugt. Siche
auch Kompositon.

API Application Programming Interface

bezeichnet eine Sammlung von Schnittstellenspezifikationen, die einem Anwen-
dungsprogramm zur Verfiigung stehen, um eine bestimmte vorprogrammierte Funk-
tion zu nutzen, z.B. den Zugriff auf Datenbanken oder das Arbeiten mit XML. Ein
API besteht aus der Beschreibung der Methoden, die vom Programmierer fir die
Anwendungsentwicklung verwendet werden koénnen (in Java hiufig in Form von
Interfaces).

Application (Java-Anwendung)

In Java unterscheidet man unterschiedliche Programmformen. Eine Application ist
ein vollstindiges, eigenstindiges Javaprogramm ("stand alone-program"), das eine
static Main-Methode enthilt und per Betriebssystem-Befehl zur Ausfihrung aufgeru-
fen werden kann. Andere Programmformen sind Applets, Servlets, Java Server Pages.
Diese erfordern zusitzlich so genannte Container fur die Ausfihrung, z.B. Webserver
oder Browser.

Arbeitsspeicher, siche Hauptspeicher

396

E Glossar

Architektur
In der Anwendungsentwicklung die Spezifikation der grundlegenden Struktur eines
Systems.

Argument, siche Parameter

ASCII American Standard Code for Information Interchange

eine Zuordnung der gebriuchlichsten 128 Zeichen (Buchstaben und Ziffern) zu ei-
nem 7-bit-Code. Der ASCII-Standard hat sich in den 60er Jahren zur Zeit der Daten-
ubertragung mittels Telex entwickelt. Mit 7 Bit erfasst der ASCII-Code zunichst aber
nur die Buchstaben des lateinischen Alphabets, die Ziffern und einige Steuerungco-
des, die z.B. fir die Druckersteuerung bendtigt werden. Das 8. Bit des Bytes war ein
Prafbit. Spdter hat man auf die Prifung jedes Einzelbytes verzichtet, dadurch standen
zusitzliche 128 Zahlenkombinationen zur Verfiigung. Diese wurde unterschiedlich
genutzt - es entstanden linderspezifische Erginzungen des ASCII-Codes, z.B. ISO-
8859-1 fiir Westeuropa, in dem auch die deutschen Sonderzeichen (Umlaute und)
enthalten sind.

Assoziation

beschreibt eine Beziehung (Relation), die zwischen Klassen besteht. Dabei kann es
sich um ganz unterschiedliche Arten der Relation handeln, die jedoch nicht niher
spezifiziert sein miissen.

Attribut, siehe Feld

Auswahl (Selektion)

Konstrukt der Ablaufsteuerung, beschreibt die Verzweigung innerhalb eines Pro-
gramms aufgrund von Bedingungen. In Java realisiert durch if und switch-
statements.

Backslash

Der Slash "/", der "auf dem Riicken liegt", also Rickwirtsstrich "\". Im Windowsda-
teisystem zur Trennung der Ordner eines Pfades eingesetzt. In Java auch benutzt fur
die Angabe von Escape-Sequenzen (siehe dort).

Basisklasse, siche Superklasse

BCD-Code (binary coded decimal)

Verschlisselungverfahren fir Zahlen. Dabei wird nicht das rein binire Zahlensystem
wie z.B. bei dem intTyp verwendet, sondern die Stellenwertigkeit des Dezimalsys-
tems beibehalten, damit Ungenauigkeiten durch den Wechsel des Stellenwertsystems
vermieden werden. Jede Dezimalziffer wird in 4 bits (ein Halbbyte) codiert. Wird in
Java von der Klasse Biginteger benutzt und insbesondere fiir kommerzielle Anwen-
dungen eingesetzt.

blank (space)
Leerzeichen, im Unicode "\u0020" (nicht zu verwechseln mit "null"); das wichtgste
Whitespace-Character (siehe dort).

397

E Glossar

Boolesche Algebra

Von Boole (1815 - 1864) entwickelte Logik, die mit dem Dualzahlensystem als Basis
algebraische Operationen durchftihrt. Diese auch als Schaltalgebra bezeichnete Logik
wird bei der Entwicklung von digitalen Schaltungen benutzt und ist die Grundlage
fur die logischen Operatoren in den Programmiersprachen. Die wichtigsten Operati-
onen sind UND, ODER, NICHT.

Bytecode
Maschinenunabhingiger (Zwischen-)Code, der vom Java-Compiler erstellt und von
dem Java-Interpreter (JVM) ausgefiihrt wird.

Casting

Explizites Konvertieren von Objekten oder von primitiven Datentypen mit Hilfe ei-
nes Operators, dem "Castoperator". Voraussetzung ist eine Typvertriglichkeit. Die
Typumwandlung kann auch erfolgen: mit speziellen Methoden, implizit (automa-
tisch) ohne Castoperator oder durch Autoboxing.

Character
engl. Zeichen, in Java verschliisselt nach dem Unicode in 16 bit (UTF-16).

Codepoint

bezeichnet den (dezimalen oder hexadezimalen) Wert, den ein Zeichen im Unicode
hat. Die Codepoints des ASCII-Zeichensatz umfassen dezimal 0 - 127 (hexadezimal
00-7F). Beispiel: Das Multiplikationszeichen * hat den dezimalen Codepoint 215.

Codierung

a) Phase der Softwareentwicklung, in der die Ubertragung in die Programmsprache
erfolgt; das Schreiben des Quelltextes

b) verschlisseln, z.B. Zeichen in dem Unicode.

compilation unit, siche Umwandlungseinheit

Compiler

Programm, das die Quelltext-Anweisungen aus einer symbolischen Programmier-
sprache, z.B. C++ oder Pascal, prift und in den Maschinencode tbersetzt. In Java
wird zunidchst ein maschinenunabhingiger Zwischencode erstellt (Bytecode). Das
Programm, das Java-Quelltext in den Bytecode Ubersetzt, wird ebenfalls als Compiler
bezeichnet und heifSt java.exe.

Datenflussplan

Symbolische Darstellung des Datenflusses innerhalb eines Informationssystems. Ent-
hilt grafische Symbole fur die Datentriger und fir die Programme sowie Ablauf-
linien fiir den Datenfluss. Genormt nach DIN 66001.

Debugging
Englischer Ausdruck fiir das Lokalisieren und Beseitigen von Programmfehlern.

398

E Glossar

Default
engl. fur Standard, Voreinstellung; z.B. Default-Konstruktor oder Default-Wert bei
der Initialisierung.

Definition
Ein Statement, das Speicherplatz reserviert fiir eine Variable.

Deklaration (Vereinbarung)
Ein Statement, das dem Compiler einen Identifier und seinen Datentyp bekannt
macht. Eine Deklaration reserviert keinen Speicherplatz fiir eine Instanz.

Design-Pattern, siche Entwurfsmuster

Dimension

Festlegung der GroRe eines Arrays durch Angabe eines ganzzahligen Wertes. Java-
beispiel: der Wert 5 legt fest, dass das Array aus 5 Komponenten besteht und damit
der Zugriff auf die einzelnen Komponenten dieses Arrays tiber die Indices von 0 bis
4 erfolgt.

Encapsulation siche Kapselung

Entwurf (Design)
Phase der Softwareentwicklung, in der aus der (groben) Leistungsbeschreibung die
technische Systemarchitektur entwickelt wird.

Entwurfsmuster (Desing Pattern)

Vorschlige fiir den Entwurf von objektorienterten Softwaresystemen. Sie sind eine
Art "Rezept" fur gutes und effizientes Programmieren und beschreiben eine generali-
sierte Losungsidee zu immer wiederkehrenden Entwurfsproblemen. Sie sind oft das
Ergebnis von jahrelanger Erfahrung in komplexen Projekten und beschreiben be-
wihrte Losungsansitze. Sie enthalten aber keine fertig codierten Losungen.

Escape-Sequenz, siche Steuerzeichen

Exception

Ausnahmesituation bei der Ausfihrung eines Java-Programms ("run-tim-error"). Tritt
eine Ausnahme auf, so wird ein Objekt "geworfen", d.h. vom Anwendungspro-
gramm an die JVM bergeben. Die JVM sucht dann nach einem Exception-Handler,
d.h. nach einer Methode, die in der Lage ist, auf diese Exception zu reagieren.

Expression

engl. fur Ausdruck; Teil eines Statements, besteht aus Operanden und Operatoren
bzw. Methodenaufrufen. Eine Expression wird ausgewertet und liefert ein Ergebnis.
Der Datentyp des Ergebnisses bestimmt den Datentyp des Gesamtausdrucks.

Feld (field)

Unterschiedliche Bedeutung. Manchmal wird ein Array als Feld bezeichnet. In Java
meistens im Sinne von: ein Datenelement einer Klasse. Beispiel: Die Klasse Kunden
enthilt ein Feld name und ein Feld adresse. Ein Feld kann selbst wiederum ein Ob-
jekt sein.

399

E Glossar

Framework

Ein Satz von kooperierenden Klassen mit einer engen Verbindung untereinander.
Beispiel: Swing, ein Framework fiir das Erstellen einer grafischen Java-Anwendung
mit GUI-Oberfliche.

Garbage Collection
Der Mechanismus, der in Java dafir sorgt, dass nicht mehr benotigter Speicherplatz
("garbage") wieder frei gegeben wird fiir die Benutzung durch andere Programme.

Grafisches User-Interface (GUI)

Die Moglichkeit, ein Programm mit Tastatur und Maus (oder dhnlichen Geriten) zu
bedienen und Informationen nicht nur zeilenweise, sondern pixelweise in Bild-
schirmfenstern darzustellen.

Hauptspeicher (auch: Arbeitsspeicher)

RAM (Random Access Memory), interner Speicher des Computers, enthilt neben
dem Betriebssystem auch die auszufilhrende Anwendung. Das Anwendungspro-
gramm arbeitet mit Daten, die als Variablen (oder auch als Konstanten oder Literale)
im Hauptspeicher stehen miussen. Daten, die auerhalb des Arbeitsspeichers stehen,
konnen nicht direkt verarbeitet werden, sondern miissen zunichst eingelesen wer-
den. Sie sind dort solange verfiigbar, wie das Programm aktiv ist. Sollen die Daten
auch auBerhalb des Programms existieren, so missen sie entweder als "Stream-
Objekte" an eine andere Java Virtuelle Maschine transferiert werden oder als "per-
sistente Objekte" z.B. auf einen externen Datentriger wie Magnetplatte oder Spei-
cherstick, ausgelagert werden.

IDE Integrated Development Environment

Entwicklungsumgebung, die komfortable Moglichkeiten bietet zum Editieren des
Source-Codes und zum Compilieren. Enthalten sind hiufig Dokumentationstools,
Build-Tools, Werkzeuge zur Projektverwaltung, Generierung von Programmteilen
z.B. fir GUI-oder Help-Programme, integrierte Debugger. Produkte sind z.B. Eclipse,
Netbeans von Sun, Borlands JBuilder oder Websphere Studio von IBM.

Implementierung

a) Phase der Softwareentwicklung, in der aus der Leistungsbeschreibung mit Ent-
wurfshilfsmitteln wie Programmauflaufplan oder Struktogrammen der Quellcode der
Programme erstellt wird (siehe auch Codierung).

b) Bei verteilten Systemen die Phase, in der die fertig ausgetesteten Programme auf
den Run-Time-Systemen installiert werden (auch Deployen genannt).

Information Hiding (Geheimnisprinzip)

Dieses Konzept beschreibt eine wichtige Technik, um "gute" Software zu erstellen.
Denn dadurch wird es unmoglich gemacht, dass Objekte den internen Zustand an-
derer Objekte in unerwarteter Weise lesen oder dndern (sieche auch "Kapselung").
Fir den Anwender eines Moduls (in Java: Klasse) bedeutet "information hiding",
dass nicht nur die Datenstrukturen, sondern auch die Algorithmen verborgen sind,
er muss sich mit den internen Details nicht beschiftigen.

400

E Glossar

Initialisieren
Einen Startwert (Anfangswert) fiir eine Variable vergeben, entweder automatisch o-
der durch Anweisungen des Programmierers.

Inkrement

Erhohung, Zuwachs; gewohnlich angegeben als Differenz zwischen zwei Arbeits-
schritten. Inkrementieren in Java: erhohen des Variableninhalts um einen festen
Wert, z.B. eine Laufvariable in einer For-Schleife mit i++;

Instanz (instance)

Synonym fiir Objekt. Ein konkret im Speicher vorhandener Einzelfall einer Klasse.
Benutzt die Klassenbeschreibung als Schablone fir das Anlegen von Arbeitsspei-
cherplatz ("instanziieren") und erlaubt es dem Programmierer, die Methoden der
Klassen mit Hilfe des Instanznamens aufzurufen. Jede Instanz hat denselben Satz
von Attributen wie die anderen Instanzen dieser Klasse, aber sie hat ihre individuel-
len Werte, die diesen Attributen zugewiesen worden sind.

Instanz-Methode

Eine Methode, die auf Instanzen einer Klasse operiert. Fiir den Aufruf einer Instanz-
methode muss vorher ein Objekt erzeugt worden sein. Dann kann an diese Instanz
eine Nachricht geschickt werden in der Form: object.methode();

Instanz-Variable

Eine Variable, die als Attribute eines Objektes definiert wurde. Die Klasse definiert
den Typ und den Identifier einer Variablen, aber die Instanz belegt Speicherplatz
und fullt ihn mit Werten.

Interface, siehe Schnittstelle

Interpreter

Ein Programm, das einen Source-Code Zeile fir Zeile interpretiert und ausfihrt. Eine
klassische Interpretersprache ist JavaScript. In Java wird nicht der Quelltext interpre-
tiert, sondern der Bytecode. Die Run-Time-Umgebung, in der der Bytecode ausge-
fuhrt wird, enthilt den Interpreter. Er wird aufgerufen durch java <programmna-
me>.

Iteration, sieche Schleife

JavaScript

Bezeichnung fiir eine von Netscape entwickelte Script-Sprache fir HTML. JavaScript
dient hauptsichlich zur Erweiterung von HTML, es ist eine betriebssystemunabhin-
gige Scriptsprache, die in die WWW-Browser wie den Firefox integriert ist. JavaScript
ist nicht Java. Beispiele fiir die Unterschiede: JavaScript ist eine spezialisierte Sprache
fir Web-Client-Anwendungen, Java ist eine umfangreiche Technologie, auch und
gerade fir Server-Anwendungen. JavaScript wird zur Laufzeit interpretiert, Java wird
(vor-)compiliert. JavaScript ist objektbasierend und kennt keine Vererbung, Java ist
voll objektorientiert. JavaScript ist allenfalls eine Alternative zu Java-Applets.

401

E Glossar

Java Development Kit (JDK)

Software-Entwicklungsumgebung fir das Erstellen und Ubersetzen von Java-
Applicationen und Java-Applets, definiert und herausgegeben von SUN Micro-
systems. Kann auch von anderen Herstellern angeboten werden, wenn die Lizenz
vorhanden ist. Jedes JDK enthilt mindestens folgende Werkzeuge (tools): Java Com-
piler, Java Virtual Machine, Java Class Libraries, Java Applet Viewer, Java Debugger.

Java Runtime Environment (JRE)

Ein Subset des JDK; enthilt nur die JVM und die Java Core Classes. Wird benotigt,
wenn lediglich Java-Programme ausgefiihrt werden sollen, also fertig compilierte
Class-Files vorhanden sind.

Java Virtual Machine (JVM)

Eine Software-Implementierung der virtuellen CPU (Central Procssing Unit), die
compilierten Javacode (Bytecode) interpretieren und ausfihren kann. Ist Teil der Ja-
va-Laufzeitumgebung (JRE, Java Runtime Environment).

Kapselung (encapsulation)

Daten und ihre darauf operierenden Methoden sind nicht getrennt, sondern werden
als Einheit betrachtet. Daten und Methoden sind in einer Kapsel, wobei die Daten
innen liegen und im Idealfall ein Zugriff nur moglich ist Gber die offentlichen Me-
thoden dieser Kapsel (dieses "Moduls"). In Java ist das Modul eine Klasse. Das Ziel
des "encapsulation" ist es, die Sicherheit der Programme zu erhohen, weil die Mog-
lichkeiten und die Verantwortung, Daten zu manipulieren, genau festgelegt sind.
Eng mit diesem Prinzip verknupft ist das Prinzip des "information hiding".

Keyword

engl. fir Schlisselwort; die Schlisselworter bilden den Kern einer Programmierspra-
che. Java kennt etwa 50 keywords, jedes ist ein vordefiniertes Wort mit festgelegter
Bedeutung. Ein Keyword kann nicht benutzt werden als Bezeichner (identifier).

Klasse

Ein zentraler Begriff in der OOP. Klassen sind Programmmodule. Jede Klasse ist ei-
ne Programmeinheit, die eine Beschreibung fiir eine Menge von Objekten enthilt.
Sie beschreibt Daten und die dazu gehorenden Methoden. Dann kann sie als Schab-
lone genutzt werden, um Instanzen zu erzeugen.

Klassenbibliothek

eine Sammlung von Klassen: in Java entspricht dies einem Paket. Das ist eine orga-
nisatorische Einheit, die Klassen und Interfaces zusammenfasst in einem Ordner und
die einen Namensraum bildet. Physikalisch kann die Bibliothek auch als Archiv ge-
packt vorliegen (.jar-File). Das J2SE-API ist die Klassenbibliothek der JDK.

Klassendiagramm (UML)
Ein Klassendiagramm zeigt eine Menge von Klassen und ihre Beziehungen.

402

E Glossar

Klassenmethode

Eine Methode, die mit dem Schlisselwort static deklariert wurde. Gehort zur Klasse
als Ganzes und nicht zur Instanz. Sie wird nicht mit dem Instanznamen, sondern mit
dem Klassennamen aufgerufen (wird auch static method genannt).

Klassenvariable

Eine Variable, die mit dem Schlisselwort static deklariert wurde. Sie existiert pro
Klasse nur einmal im Arbeitsspeicher, unabhingig von der Anzahl der Instanzen
(wird auch static field genannt).

Komponente

a) Ein ausfihrbares Softwaremodul mit klar definierten Schnittstellen; hiufig wird
dieser Begriff benutzt in Verbindung mit dem remoten Aufruf von Methoden (RPC,
in Java: RMI oder EJB).

b) Ein Element einer Reihung (arrays), direkter Zugriff Giber Index (Platznummer).

Komposition

In der OOP eine besondere Form der Bezichung zwischen Klassen: Ein Objekt
("GroBobjekt") besitzt als Datenfeld ein anderes Objekt ("Kleinobjekt"). Beide sind
untrennbar miteinander verbunden, die Lebensdauer beider Objekte ist identisch.

Konsole

Ein zeilenorientiertes Fenster fir Kommandozeileneingabe. Wird in Java als Stan-
dard-Eingabegerit (System.in) und als Standard-Ausgabegerit (System.out) angespro-
chen.

Konstruktor

Eine besondere Art einer Methode, die automatisch aufgerufen wird, wenn eine
neue Instanz einer Klasse mit dem Schlisselwort new erzeugt wird. Ein Konstruktor
hat denselben Namen wie die Klasse selbst und kann z.B. benutzt werden, um die
Datenfelder des Objekts auf individuelle Anfangswerte zu setzen (zu initialisieren).

Literal

In der Java-Spezifikation definierte Zeichenfolge zur Darstellung von Werten der Ba-
sistypen und von Strings, z.B. bedeutet *a’ ein Wert des char-Datentyps und "a" der
Wert eines Strings.

Lokale Variable
Eine Variable, die innerhalb einer Methode bzw. eines Blocks deklariert wird. Sie
kann nur benutzt werden innerhalb dieser Methode bzw. innerhalb dieses Blocks.

Loop, siche Schleife

Member (einer Klasse)
Elemente einer Klasse, dazu gehoren die Felder und die Methoden.

Methode
allgemein: eine Handlungsvorschrift, die beschreibt, wie ein Ziel bzw. Ergebnis unter
gegebenen Bedingungen erreicht werden kann. In Java: ein Codeblock innerhalb

403

E Glossar

einer Klasse, der eine bestimmte Aufgabe ausfihren kann. Die Methode implemen-
tiert also eine Operation und wird mit einem Namen aufgerufen. Dabei konnen Pa-
rameter Ubergeben und ein Ergebnis zurlickgeliefert werden. Vergleichbar mit einem
Unterprogramm, einer Subroutine, Funktion oder einer Prozedur in anderen Pro-
grammiersprachen.

MIME (Multipurpose Internet Mail Extension)

beschreibt den Datentyp einer kompletten Datei, z.B. einer aus dem Netz geladenen
Ressource. Urspriinglich lediglich fir die Beschreibung von e-mail-Attachment ge-
nutzt, weil innerhalb der e-mail nur einfacher ASCII-Text moglich ist. Mime wird
heute von Web-Browsern und Java-Programmen zur Identifikation von Dateiformat-
typen, auch fir reine Bindrdateien, verwendet. Beispiel: "text/plain".

Modifier
Schlisselworter bei der Deklaration einer Variablen, Methode oder Klasse zur verfei-
nerten Festlegung von Eigenschaften, z.B. durch den access modifier public.

Modul

Abgeschlossener Programmbaustein mit eigenem Namen und mit eigenen (gekapsel-
ten) Variablen. Vorteile des modularen Aufbaus: saubere Zuordnung der Verantwor-
tung, parallele Programmentwicklung moglich, Aufruf ohne Kenntnis der inneren
Struktur moglich, Wartbarkeit wird erleichtert, Wiederverwendbarkeit moglich.

MVC Model/View/Control

beschreibt das modulare Design von GUI-Anwendungen, um tberschaubare Sour-
cen zu codieren. Die Anwendung wird nicht als monolithisches Programm codiert,
sondern sie besteht aus einzelnen Modulen mit klar abgegrenzten Aufgaben: Model
enthilt die Logik fiir die eigentliche Anwendung, View enthilt das Benutzer-Interface
und Control beschreibt das Steuermodul fiir den Gesamtablauf der Application.

Nachricht (message)
ist der Mechanismus, wie Objekte untereinander kommunizieren. Eine Nachricht be-
steht tiberlicherweise aus drei Teilen: Instanz, Methodenname und Parameter.

NaN (not-a-number)
Ein besonderer Wert der Datentypen double und float, der ein undefinierbares Er-
gebnis einer mathematischen Operation (z.B. Null geteilt durch Null) reprisentiert.

Nassi-Shneidermann-Diagramm
Darstellungs- und Entwurfsmittel, das die Struktur des Programms dokumentiert,
auch Struktogramm genannt. Die Notation ist genormt durch DIN 66261.

Nebeneffekt

Wenn ein Ausdruck nicht nur ausgewertet ("evaluiert") wird, sondern nebenbei auch
den Wert einer Variablen idndert, so nennt man dies Nebeneffekt (nicht zu verwech-
seln mit Seiteneffekt).

404

E Glossar

null

engl. fur "Nichts" (umgangssprachlich: "null and void" bedeutet: null und nichtig). In
Java der Nullzeiger, der ins Nichts zeigt, wenn eine Referenzvariable noch keinen
Wert enthilt. Nicht zu verwechseln mit der Ziffer 0, die im Unicode eine feste Bitco-
dierung hat.

Oberklasse, siche Superklasse
Objekt, siche Instanz

Objektidentitit

Dadurch unterscheidet sich ein Objekt im Speicher von allen anderen. In Java ist es
die Referenzvariable, die auf einen bestimmten Speicherbereich verweist und da-
durch die Instanz identifiziert, auch wenn moglicherweise ein anderes Objekt mit
gleichen Attributwerten existiert.

OOP Objektorientierte Programmierung
Eine Programmiermethode, die auf den Konzepten Vererbung und Datenabstraktion
beruht. Steht im Gegensatz zur prozeduralen Programmierung.

Operation
Ein Service, der auf Anforderung fiir ein bestimmtes Objekt aufgerufen werden
kann. In Java wird eine Operation als Methode einer Klasse implementiert.

Overloading, siehe Uberladen
Overriding, siche Uberschreiben

Paket (package)

Eine Sammlung von mehreren Klassen und/oder Interfaces, die organisatorisch und
logisch zusammengehoren. In Java identisch mit dem Namen des Ordners, in dem
die Klassen aufbewahrt werden.

Parameter

Daten fir den Austausch von Informationen beim Methodenaufruf. Man unterschei-
det die formalen Parameter, fir die bei der Definition einer Methode ihr Datentyp
und ihr Identifier angegeben werden, von den aktuellen Parametern ("Argumenten"),
das sind die Werte, die beim Aufruf einer Methode angegeben werden.

Parsen

Allgemeine Bezeichnung aus der Sprachanalyse fir das Analysieren und Zerlegen
von Texten. In der Informatik kommt Parsing in vielen Bereichen vor. Wird in Java
z.B. benutzt, um eine Zeile, Seite oder Datei auf bestimmte Begriffe ("Token") zu
uberpriifen, um diese abzutrennen oder durch andere Begriffe zu ersetzen.

Performanz

engl. performance, bezeichnet die Effizienz der Programmausfithrung. Oft ist damit
lediglich die Ausfithrungsdauer, also die Antwortzeit fiir den Nutzer gemeint. Doch
umfasst "Performanz’ den gesamten Ressourcenverbrauch, also z.B. auch die ver-
brauchte CPU-Zeit und die Grole des Hauptspeicherplatzes, der belegt wird.

405

E Glossar

Phasenmodell
Vorgehensplan, der den Softwareentwicklungprozess inhaltlich und zeitlich in abge-
schlossene Phasen zerlegt.

Programm

Arbeitsanweisung an den Computer, besteht im Quellcode aus Symbolen ("Token")
der Programmiersprache und im Ausfiihrungscode aus den Maschinenbefehlen. In
Java gibt es noch einen Zwischencode (Bytecode), der vom Compiler erzeugt und
vom Interpreter ausgefiithrt wird.

Programmablaufplan (PAP)

Darstellungs- und Entwurfsmittel, das mit genormten Symbolen den Ablauf eines
Programms zeigt. Die einzelnen Verarbeitungsschritte werden mit Pfeilen verbunden.
Die Notation ist genormt durch DIN 66001.

Prototyp

Ein vorldufiges, unvollstindiges Produkt. Meistens wird es als temporires Muster mit
unvollstindigen Eigenschaften des endgtiltigen Produktes erstellt, damit gemeinsam
mit dem Kunden (Endbenutzer) die Funktion experimentell Gberprift und weiter-
entwickelt werden kann.

Prozess

Verwaltungseinheit fir das Betriebssystem. Der Prozess ist der Eigentimer der Pro-
grammressourcen wie Arbeitsspeicherplatz (Adressraum), Dateien, Drucker usw. In
Java kann ein Prozess aus einem oder mehreren Threads bestehen; einer dieser
Threads muss die Methode main haben (Hauptthread).

Pseudocode
Darstellungs- und Entwurfsmittel, das mit Hilfe einer halb-standardisierten natrli-
chen Sprache die Funktion und den Ablauf eines Programmes beschreibt.

Qualifier

Bei Verwenden von Namen fiir Variablen, Methoden, Klassen oder Paketen wird
ein vom Programmierer vergebener Identifier (Name) benutzt. In manchen Situatio-
nen genugt der einfache Name (z.B. zahl), in anderen Fillen muss jedoch ein Quali-
tier vorangestellt werden, um den Identifier ndher zu spezifizieren (z.B. objek1.zabl).
Grundsitzliche Regel in Java: Innerhalb einer Klasse kann ein Member mit dem ein-
fachen Namen angesprochen werden, von auflerhalb muss entweder der Klassen-
name oder ein Instanzname vorangestellt werden, abgetrennt durch einen Punkt.

Quelltext (Quellenprogramm, Sourcecode)

Textform eines Programms; wird vom Programmierer mit einem Editor geschrieben,
ist nur dann unmittelbar lauffihig, wenn es von einem Interpreter ausgefiithrt wird.
In den meisten Programmiersprachen mussen die Quellenprogramme umgewandelt
(compiliert) werden in das Maschinenprogramm. In Java steht der Quelltext von ei-
ner oder mehreren Klassen im ASCII-Code in einer Umwandlungseinheit (.java-File),
der vom Java-Compiler in den Bytecode (.class-Files) umgewandelt wird.

406

E Glossar

RAM (Random Access Memory), siche Arbeitsspeicher

Referenz (reference)

Eine (RAM-)Speicheradresse fiir ein Objekt. In Java werden Objekte und Reihungen
(arrays) immer Uber Referenzen angesprochen. Auferdem werden Objekte beim
Methodenaufruf als Referenz Gibergeben (und nicht als Kopie der Werte).

Riickgabewert (return value)
Ergebnis eines Methodenaufrufs. Der Datentyp dieses Ergebnisses wird im Kopf der
aufgerufenen Methode definiert (Ergebnistyp).

Schleife (Iteration, Loop, Wiederholung)

Konstrukt der Ablaufsteuerung, sorgt dafiir, dass eine oder mehrere Anweisungen
wiederholt ausgefithrt werden, gesteuert von einer Bedingung. In Java realisiert
durch die Schlisselworter while, do und for.

Schlisselwort, siche keyword

Schnittstelle (interface)

Allgemein: Techniken, die beschreiben, wie Klienten einen Service nutzen konnen.
Dabei werden Programmschnittstellen (API) von Benutzerschnittstellen (GUI oder
Kommandozeilen) unterschieden. In Java beschreiben interfaces den extern sichtba-
ren Teil eines Moduls; manchmal beschrieben in einer eigenen Quelldatei, die um-
wandelbar ist. Sie enthilt eine Liste der Signaturen der nicht-privaten Methoden, oh-
ne Implementierungscode. Ein Interface ermoglicht es einer Klasse, sich auf dieses
Interface zu beziehen durch das Schlisselwort implements. Dann ist die Klasse ver-
pflichtet, alle Methoden der Schnittstelle zu implementieren.

Scope (Zustindigkeitsbereich)

Gultigkeitsbereich und Lebensdauer von Variablen. Die Giltigkeit bestimmt, wo in-
nerhalb eines Programms ein Identifier genutzt werden kann. Die Lebensdauer be-
schreibt, ab wann und wie lange eine Variable im Arbeitsspeicher existiert. In Java
konnen Felder und Methoden einer Klasse standardmiig in der gesamten Klasse
angesprochen werden. Ausnahme: Lokale Variablen, die nur innerhalb des Blocks,
in dem sie deklariert worden sind, genutzt werden konnen.

Script-Sprachen

Spezialisierte Programmiersprachen (im Gegensatz zu den universellen hoheren Pro-
grammiersprachen), urspriinglich gedacht fir die Automatisierung von System-
Administrator-Aufgaben. Ein Script ist ein Programm, das wie jedes andere Pro-
gramm aus einer Folge von Befehlen besteht. Ein Script, z.B. eine DOS-Batch-Datei,
wird zeilenweise gelesen und interpretiert. Andere Script-Sprachen sind z.B. Shell-
Scripts in Unix, JavaScript, JScript, Perl, PHP, Tcl, Python, Rexx. Der Vorteil von
Script-Sprachen liegt in der einfachen Erstellung und Pflege. Jede Anderung ist sofort
lauffihig. Nachteile sind geringere Ausfihrungsgeschwindigkeit und eingeschrinkte,
spezialisierte Funktionen.

407

E Glossar

Seiteneffekt

damit werden Verinderungen an nicht lokalen Variablen durch ein gerufenes Unter-
programm bezeichnet. Dies ist in vielen Situationen nicht erwtnscht, weil es zu
heimtiickischen Fehlern fithren kann. Nicht zu verwechseln mit Nebeneffekt.

Selektion, siche Auswahl

Sequenz

"normale" Form der Ablaufsteuerung, wenn der Programmierer nichts anderes be-
stimmt; bezeichnet eine Folge von Anweisungen, die nacheinander (sequentiell, se-
rielD) ausgefihrt werden.

Signatur

kennzeichnet eine Methode eindeutig, nidmlich durch den Methodennamen sowie
die Typen und die Reihenfolge der formalen Parameter. Die Parameternamen und
der Rickgabetyp gehoren nicht zur Signatur.

Software-Engineering
Sammelbezeichnung fir den Einsatz anerkannter Prinzipien, Methoden und Techni-
ken bei der Planung und Durchfiilhrung von EDV-Projekten.

Spezialisierung

Gegenteil der Generalisierung. Bei einer "top-down"-Entwicklung geht man von ge-
nerellen Strukturen (Klassifikationen) aus, die dann schrittweise verfeinert werden.
Bei der Klassenbildung ist es das Vorgehen, das von allgemeinen Klassen die Verer-
bungshierarchien ableitet.

Static Field, siche Klassenvariable
Static Methode, siche Klassenmethode

Steuerzeichen

haufig auch bezeichnet als "escape-sequence"; Zeichen, die nicht angezeigt oder ge-
druckt werden, sondern als Kommando z.B. fir den Compiler zur Darstellung von
Sonderzeichen oder fiir die Steuerung eines Peripheriegerits erkannt werden. In Java
konnen diese Steuerzeichen in Literalen enthalten sein. Sie beginnen mit dem Back-
slash (Ruckwirts-Schrigstrich \), z.B. > \t' fiir die Tabulator-Funktion.

Strukturiertes Design
Methode zum Entwurf modularer Systeme. Qualitit des Entwurfs wird an der Mo-
dulkopplung und der Modulfestigkeit gemessen

Strukturierte Programmierung

Vorgehensweise beim Entwurf und Implementierung eines Einzelprogrammes. Hat
das Ziel, einen tbersichtlichen Quellcode zu erstellen. Urspriinglich im Wesentlichen
darauf ausgerichtet, die Ablaufkonstrukte zu beschrinken auf Sequenz, Selektion
und Iteration (d.h.Vermeidung von GOTO).

408

E Glossar

Subklasse (Unterklasse, Kindklasse)

Eine Klasse, die abgeleitet worden ist von einer bestehenden Klasse und dadurch
alle Methoden und Variablen dieser Superklasse erbt. Die Unterklasse ist eine Spezi-
alisierung einer Oberklasse, in der die allgemeinen Eigenschaften und Methoden
beschrieben sind (siche auch Vererbung). Die Superklasse kann wiederum Subklasse
einer anderen Klasse in der Hierarchie sein.

Superklasse (Oberklasse, Basisklasse, Elternklasse)

Die Superklasse ist die Klasse, von der eine andere abgeleitet wird und somit all de-
ren Eigenschaften erbt. Die Superklasse beschreibt den allgemeinen Fall, von dem
dann mittels Vererbung Unterklassen als Spezialfille gebildet werden konnen.

Syntax (Grammatik)

die Regeln, wie die Worter, Zahlen und Sonderzeichen in einem Source-Programm
geschrieben werden missen, damit sie vom Compiler richtig verstanden und richtig
ubersetzt werden konnen.

Token
Zeichenmuster; Symbole, die in der Syntax eine Bedeutung haben. In einem Java-
Programm alle Zeichen, die kein Kommentar sind oder kein Whitespace (siche dort).

Top-Down-Design
Vorgehen, bei dem man ein Problem in Teilprobleme zerlegt, diese wieder in Teil-
probleme usw, bis man tberschaubare Aufgaben erhilt.

Typkonvertierung, siche Casting

Uberladen (overloading)

Die Fihigkeit, mehrere unterschiedliche Methoden mit demselben Identifier, aber
mit einer unterschiedlichen Anzahl oder mit unterschiedlichen Datentypen der Ar-
gumente zu haben. Auch Konstruktoren koénnen tiberladen werden, ebenfalls durch
Verwendung des gleichen Namens, aber mit verschiedener Parameterliste.

Uberschreiben (override)

Wenn in einer Subklasse eine Methode mit gleicher Signatur wie in der Superklasse
definiert wird und damit die Methode in der Superklasse ersetzt, so wird dies als
Override (engl. Gberfahren, sich hinwegsetzen) bezeichnet.

UML Unified Modeling Language
eine grafische Beschreibung von objektorientierten Software-Systemen. Ist durch die
Object Management Group (OMG) international standardisiert.

Umwandlungseinheit (compilation unit)

Quellendatei, die eine oder mehrere Klassen enthilt. Sie hat die Dateiendung .java.
Nach der Umwandlung durch den Compiler entsteht fiir jede Klasse eine eigene Da-
tei mit der Dateiendung .class. Eine Compilation-Unit besteht aus drei Teilen: packa-
ge-Deklaration, import-Deklaration und Klassen-Deklarationen.

409

E Glossar

Unicode

Ein 16/32-bit-Code fiir Text-Zeichen in verschiedenen Sprachen, definiert durch ISO
10646 (siche auch ASCII-Code). ASCII- und Latin-1-Zeichen sind mit den ersten 256
Unicodezeichen identisch. Java verwendet den 16-bit-Unicode (UTF-16) - und zwar
fur die Datentypen char und String. Unicode definiert den numerischen Wert aller
bekannten Zeichen, aber es gibt keine Angaben dartiber, wie das Zeichen darzustel-
len ist. Dazu sind die Schriftarten (fonts) verantwortlich. Standardisiert wird der Uni-
code von dem Unicode-Konsortium und der ISO (siehe auch www.unicode.org).

unique

(engl. fur eindeutig, einzigartig). Wichtige Voraussetzung fir die Namensvergabe im
Quelltext, insbesonderen flr Package-Namen in Java. Sind diese nicht unique, so
kann es schwer aufzulosende Namenskonflikte geben.

Unterklasse, siche Subklasse

Unterprogramm
Teilprogramm, das mit eigenem Namen angesprochen wird (siche auch Modul, Me-
thode)

Variable

Ein Identifier, der Daten im Arbeitsspeicher reprisentiert. Die Werte einer Variablen
konnen zur Laufzeit des Programms gedndert werden. Der Wertebereich der Variab-
len ist festgelegt durch den Datentyp.

Vererbung (inheritance)

Ein Mechanismus, bei dem Klassen die Attribute und Methoden benutzen konnen
von bereits bestehenden Klassen, die dhnliche, aber weniger konkrete Losungen
enthalten. Diese Technik ist die Basis der objektorientierten Programmierung. Sie er-
laubt es den Subklassen, existierende Klassen als Grundlage zum Erstellen von neu-
en Klassen zu nehmen, um den bereits vorhandenen Code mitbenutzen zu konnen.
Vererbung implementiert eine Beziehung, die eine Generalisierung und Spezialisie-
rung ausdrickt. Alternative: Aggregation.

Die Subklasse kann auf Basis der bereits vorhandenen Superklasse neue Bestandteile
hinzufiigen oder bereits vorhandene tberlagern (iiberschreiben).

Verteilte Anwendungen
Anwendungen, die in unterschiedlichen Adressriumen laufen und miteinander
kommunizieren, d.h. entweder Daten austauschen oder/und sich gegenseitig aufru-
fen bzw. Methoden aus dem "remoten" Adressraum aufrufen. In Java hat jede JVM
einen eigenen Adressraum.

voller Name (qualified identifier)

Bezeichner, der um ein Prifix erginzt wird. Dieser Prifix kennzeichnet den Namens-
raum des Bezeichners, z.B. werden in Java volle Klassennamen durch das Voranstel-
len der Packagenamens, abgetrennt durch Punkte, gebildet ("java.util.Scanner").

410

E Glossar

Wert (value)

beliebige Zeichen des Unicode oder auch Zahlen. Kann sein:
- Inhalt einer Variablen,

- Ergebnis eines Ausdrucks,

- Ergebnis eines Methodenaufrufs.

Whitespace

Zeichen im Unicode, die in einem Texteditor nicht sichtbar sind (z.B. Leerraum,
Zwischenraum). Sie dienen zur Textformatierung oder dazu, Worter voneinander
abzugrenzen. Beispiele: Space (blank, Leertaste auf Tastatur, > \u0020’), Tabulator
(tab), Newline (nl), Wagenriicklauf (cr), Zeilenvorschub ().

Wiederholung, siche Schleife

Wildcard

Wildcards ersetzten bei der Suche von Begriffen ein Zeichen, das fir den oder die
gesuchten Begriffe bedeutungslos ist. Andere Bezeichnung fiir Joker. Ein Platzhalter,
der einzelne Zeichen oder ganze Zeichenfolgen ersetzt.

Wrapper-Class

(engl. to wrap fir einpacken, einhillen); "Hiillenklasse", gibt es fiir jeden einfachen
Datentyp, z.B. die Klasse Integer, die numerische Ganzzahlen verpackt in eine Klas-
sendefinition.

Zeichensatz (characterset)

Zeichensitze decken einzelne Schriftkulturen und damit verbundene Sprachen oder
Sprachfamilien ab. So definiert z.B. der Bytewert 252 im Zeichensatz 8859-1 den
deutschen Umlaut »«. Mehrsprachige Dokumente unterschiedlicher Kulturen lassen
sich mit einem Zeichensatz hiufig nicht darstellen. Um das Problem zu l16sen, wurde
der Unicode eingefiihrt. Die gewihlte Schriftart und die SchriftgroBe realisieren die
Darstellung.

411

Sachwortverzeichnis

Sachwortverzeichnis

A

Abstraktion 206

access control Siebe Zugriffsrechte
Aggregation 303

Algorithmus 154

Anweisung 147
Anweisungsblock 148
Application 15

Arbeitsspeicher Siehe RAM

Array 313

Arrays (mehrdimensional) 323
ASCII-Code 31

ASCII-Code (erweitert) 34
Assoziation 302

Assoziativitit 146

Attribute 253

Ausdruck 114
Ausnahmebehandlung Siebe Exception
Aussagenlogik 135
Auswertungsreihenfolge 115
Autoboxing 359

B

BCD-Code 127
Bedingungsoperator 161
Bezeichner 20, 44

Big Endian 41, 103
binir (rein binidr) 35
Binidre Darstellung 31
Bits 27

Bitweise Operatoren 142
Boolean-Literal 79
Boolean-Typ 58
Boolesche Algebra 136
Break-Anweisung 179

412

Briickenklassen 106
Bytecode 6, 18
Bytes 27

byte-Typ 54

C

Call By Value 242

Casting 351, 356

Characterset Siebe Zeichensatz

char-Literal 81

char-Typ 59

Codepage Siebe Zeichensatz

Codepoint 37, 104

Collection 310

Commandline-Parameter 225, 339

Compilation Unit Siebe
Umwandlungseinheit

Compile-Time-Error Siebe
Umwandlungsfehler

Compilieren Siehe Umwandeln

concatenation Siebe Verkettung

Console, einlesen von 89

Continue-Anweisung 179

control statement Siebe Steueranweisung

D

dangling else 160
Dateiverarbeitung 102
Datentyp 45
Datentyp, primitiver 47
Deklaration 44
Dekrement 120
Delimiter 97

Design Pattern 309
Do-Statement 171
double-Typ 57

Sachwortverzeichnis

E

Editor 4

Eingabeaufforderung 7
encapsulation Siehe Kapselung
Encoding 105, 106
Entscheidungstabellen 214
Entwurfsmuster Siebe Design Pattern
Entwurfsprachen 208
enum-Typ 166, 289
Escapesequenz 82

Exception 59, 97

Expression 113

extends 276, 278

F

Fehlerbehandlung 96

Felder (einer Klasse) 254

final 74

Floating-Point Siehe Gleitkommazahlen
float-Typ 57

For-Each-Schleife 177

For-Statement 173

Framework 312

G

Ganzzahlen 54

Garbage Collector 18
Geheimnisprinzip 196, 400
Geschachtelt (If-Anweisung) 159
Gleitkomma-Literal 80
Gleitkommazahlen 56
Gultigkeit Siebe Scope

H

Hexadezimal 31

1

Identifier Siehe Bezeichner
if-Anweisung 155
immutable 337

implements 287

import 52, 229

Index (Array) 313
Information Hiding 1906, 297
inheritance Siebe Vererbung
Initialisierung 65
Inkrement 120

Instanz 255

Instanziieren 69
Instanzvariable 237
Integertypen 54

Interface 286

int-Typ 54

1SO-8859 39

Iteration Siebe Schleife

J

javadoc 189, 306

K

Kapselung 296

Keyword Siebe Schliisselwort
Klasse 252

Klasse Arrays 322

Klasse Biglnteger 125

Klasse Formatter 100

Klasse InputStreamReader 110
Klasse Integer 227

Klasse OutputStreamWriter 110
Klasse Point 70

Klasse Properties 230

Klasse Scanner 95, 341
Klassentyp Siebe Referenztyp
Klassenvariable 237
Kommentar 10, 306

413

Sachwortverzeichnis

Komplement 144
Konstante 74

Konstante, eingebaute 75
Konstruktor 267, 269, 283
Konvertierung 350
Kurzschlussauswertung 141

L

Label 182

Laufvariable 173

Laufzeitfehler 23, 240

Lebensdauer (von Variablen) 3606, 368
Literale 76

Little Endian 41, 103

logische Operatoren 134

lokale Variable 238, 362

long-Typ 54

M

Member-Variable 362
Message Siehe Nachricht
Methoden 220
Methodenaufruf 228

Modifier Siebe Zugriffsmodifier
Modifier (static) 369

Modul 295

Modulbildung 204
Modulo-Operator 116

N

Nachricht 221

Namensvergabe (Regeln) 25, 190
Nebeneffekt 114, 122

new 48

null 83, 330

numeric promotion 119, 351

414

(0]

Objekt 49

Objekt erzeugen 69
Objektvariablen 369
Operand 114

Operator 114

Overload Siehe Uberladen
Override Siehe Uberschreiben

pP

package 372

Parameter 240

Parameter (variable Anzahl) 248
Pattern Siebe Design Pattern
Postfix 120

Prizedenz 145

Prefix 120

primitive Datentypen 46
primitive Variablen 85
print/println-Methode 99
Prioritit (der Auswertung) 145
Programmablaufplan (PAP) 209
Programmieren im Grofsen 198
Programmieren im Kleinen 193
Programmierstil 188
Prototyping 203

Pseudocode 213

Q

qualifzierter Name 370
Quelltext 13, 17

R

RAM Random Access Memory 03
Rechnen, Probleme beim 122
Referenztyp 47
Referenzvariablen 68

Sachwortverzeichnis

Regulire Ausdriicke 343

Reihung Siebe Array

relationale Operatoren 131

return 184

return-value Siehe Riickgabewert
Riickgabewert 248

Runden (bei Arithmetik) 128
Runtime-Error Siebe Laufzeitfehler

\)

Schachteln (von Methodenaufrufen) 229

Schachtelung (von Schleifen) 178

Schleife (Loop) 167

Schlisselwort 19

Scope 364

Selektion Siebe Verzweigung

Short-Circuit-Evaluation Siebe
Kurzschlussauswertung

short-Typ 54

Sichtbarkeit Siebe Scope

Signatur 223

Sourcecode Siehe Quelltext

Spiralmodell 201

Sprung-Anweisung 179

Standard-In 94

Standard-Out 98

Statement Siebe Anweisung

static import 227

Static-Elemente 284

Steueranweisung 149, 154

Stream, byteorientiert 90

Stream, characterorientiert 90

Stream-Konzept 87

String-Klasse 69

String-Literal 83

Strings 329

Strings vergleichen 334

Struktogramme 156, 210

Strukturierte Programmierung 196

super 279

Switch-Anweisung 162

Syntax 19

T

TCP/IP, lesen von 92

Testen 24, 191

Text zerlegen 341

this 269, 279

throws Exception 59, 240

Try-Catch Siebe Fehlerbehandlung
Typanpassung 350

Typanpassung (bei Parametern) 352
Typanpassung (bei Referenztypen) 355
Typkonvertierung 333

Typkonzept (Vorteile) 61

U

Uberladen 267

Uberladen (von Konstruktoren) 271
Uberladen (von Methoden) 239
Uberlauf-Probleme 124
Uberschreiben (von Methoden) 268
UML 278, 307

Umwandeln 6
Umwandlungseinheit 14
Umwandlungsfehler 22

Unicode 36

UTF 103

UTF-16 38

UTF-8 38, 111

| 4

Variable Parameterliste 248
Variablen 63

Vererbung 274, 301
Vergleich (von Objekten) 133
Vergleichsoperatoren 131
Verkettung (von Strings) 332
Verzweigung 155

void 221

415

Sachwortverzeichnis

w V4

Wasserfallmodell 201 Zihlschleife 173
Wertebereich 46 Zeichenketten Siebe Strings
Wertezuweisung 66, 150 Zeichensatz 34, 106
while-Statement 167 Zeichentyp Siebe char-Typ
Wrapper-Klasse 60, 358 Zugriffsmodifier 375

Zugriftsrechte 370
Zuweisungskompatibilitit 66
Zweierkomplement 126

416

	cover-image-large.jpg
	front-matter.pdf
	fulltext.pdf
	fulltext_001.pdf
	fulltext_002.pdf
	fulltext_003.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	fulltext_006.pdf
	fulltext_007.pdf
	fulltext_008.pdf
	fulltext_009.pdf
	fulltext_010.pdf
	fulltext_011.pdf
	fulltext_012.pdf
	fulltext_013.pdf
	fulltext_014.pdf
	fulltext_015.pdf
	back-matter.pdf

