Peer-to-Peer Networks

Chapter 4: Graphs and Methods
Thorsten Strufe

Note: these slides have been prepared with influence by material
of Prof. Michael Welzl, Prof. Pietro Michiardi, and Dr. Stefan Schmid
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Chapter Outline

= P2P Overlays as Graphs (This chapter is a reminder)
= Graphs

= Metrics in and Properties of Graphs

= Algorithms on Graphs

A tiny introduction to game theory
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Some questions...

= How scalable is Gnutella?

= How robust is Kazaa?

= Why does FreeNet work?

* What would an ideal (unstructurec H
P2P system look like?

= What do the overlay networks

of existing P2P systems look like?
Gnutella snapshot, 2000
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Scalability of Gnutella: quick answer

= Bandwidth Generated in Bytes (Message 83 bytes) *[SIC]
= Searching for a 18 byte string

T=2 T=3 T=4 T=5 =6 =7 T=8
N=2 332 498 664 830 996 1,162 1,328
N=3 747 | 1,743 3,735 7,719 15,687 31,623 63,495
=4 1,328 | 4,316| 13,280 40,172 120,848 362,876 1,088,960
=5 2,075 | 8715| 35275 141,515 566,475 | 2,266,315 9,065,675
=6 2,988 | 15,438 | 77,688 | 388,938 | 1,945,188 | 9,726,438 | 48,632,688
=7 4,067 | 24,983 | 150,479 | 903,455| 5,421,311 | 35,528,447 | 192,171,263
=8 5,312 | 37,848 | 262,600 | 1,859,864 | 13,019,712 | 91,138,648 | 637,971,200

= N = number of connections

= T = number of hops

* [SIC]: Error already in source, orders of magnitude are important, here ;)
Source: Jordan Ritter: Why Gnutella Can't Scale. No, Really.

TU Darmstadt, FG P2P, Th. Strufe

Peer-to-Peer Systems

4



Graphs

= Rigorous analysis of P2P systems: based on graph theory
= Refresher of graph theory needed

= First: graph families and models
= Random graphs
= Small world graphs
= Scale-free graphs

= Then: graph theory and P2P
= How are the graph properties reflected in real systems?
= Users (peers) are represented by vertices in the graph
= Edges represent connections in the overlay (routing table entries)

= Concept of self-organization
= Network structures emerge from simple rules
= E.g. also in social networks, www, actors playing together in movies
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What Is a Graph? @3

= Definition of a graph:
Graph G = (V, E) consists of two finite sets, set V of vertices
(nodes) and set E of edges (arcs) for which the following
applies:
1. Ife € E, thenexists (v, u) € VxV,suchthatveeanduce
2. If e € Eand above (v, u) exists, and further for (x, y) € V x V applies

x € eandy € e, then {v, u} = {x, y}

€3

Example graph with
€, 4 vertices and 5 edges

Side note:
Edges can have (multiple) “weights” w:E 2R
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Recall Graphs

"= Graph G =(V,E),
= Edges can have (multiple) “weights” w:E 2R
= Edges are directed or undirected
= The graph hence is directed or undirected
= A graph can be connected (strong and weak connectivity)

= Undirected, acyclic graphs are trees
= Directed, acyclic graphs are DAGs

= Graphs have an order, size, distance, diameter, and density
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How are Graphs Implemented? =)

G
»Adjacency/Incidence Matrix
1 (2 |3
1 (0 |1 |0
2 |1 (0 |1
3 |0 (1 |0
»Adjacency/Incidence List
(1,2) 1:2
(2,1),(2,3) |2:1,3
(3,2) 3:2

*(Plus specialized others..)

VERY good book is: Sedgewick: Algorithms in C, part 3 (Graph Algorithms)
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Properties of Graphs @3
e

" An edge e € Eis directed if the start and end vertices in
condition 2 above are identical: v=xand y =u

" Anedgee € E isundirectedifv=xand y=uaswellasv=yand
u = x are possible

= Agraph Gis directed (undirected) if the above property holds
for all edges

" Aloop is an edge with identical endpoints

* Graph G, =(V,, E,)isasubgraphof G=(V, E),if V,c Vand E, =
E (such that conditions 1 and 2 are met)
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Important Types of Graphs @

= Vertices v, u € Vare connected if there is a path fromvto u: (v, v,), (v,, v;), ...,
(vi., u) e E

Graph G is connected if all v, u € V are connected
= Strong connectivity of directed graphs means, that paths between each node pair exist
=  Weak connectivity: edges between all node pairs exist, but not paths...

An undirected, connected, acyclic graph is called a tree
= Side note: Undirected, acyclic graphs which are not connected are called forest

Directed, connected, acyclic graph is called DAG
= DAG = Directed Acyclic Graph (connectivity is assumed)

An induced graph G(V,) = (V,, E.) is a graph V. <V and with edges
E.={e=(i,j)|ij eV (all edgesfrom G connecting the nodes in G,)

= Aninduced graph that is connected is called a component
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Overlays? 1

= A CLIQUE is a graph that is fully connected
(uv) e E|forallue VandveV,u#v

= A P2P Overlay (V,,E,) (in general) is a subgraph such that V_=V
and E, cE (edges are selected edges from a CLIQUE graph)

create connections between each other...
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Important Graph Metrics @3

Order: the number of vertices in a graph
Size of the graph is the number of edges |E]|

Distance: d(v, u) between vertices v and u is the length of the
shortest path between vand u

Diameter: d(G) of graph G is the maximum of d(v, u)
forallv, ueV

The density of a graph is the ratio of the number of edges and
the number of possible edges.
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Graph Metrics: Vertex Degree @3

" |ngraph G =(V, E), the degree of vertex v € Vis the total number of
edges (v, u) e Eand (u,v) € E
= Degree is the number of edges which touch a vertex

= For directed graph, we distinguish between in-degree and out-degree
" |n-degree is number of edges coming to a vertex
= Qut-degree is number of edges going away from a vertex

= The degree of a vertex can be obtained as:
= Sum of the elements in its row in the incidence matrix
= Length of its vertex incidence list

= The degree distribution is the distribution over all node degrees

(given as a frequency distribution or (often) complementary cumulative
distribution function CCDF (Komplement der Verteilungsfunktion))
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proportion of nodes

Graph Metrics: Degree Distribution =)

*  Distribution
Fitted part
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Further Graph Metrics @

= All pairs shortest paths (APSP): d(v, u) | allv,u e V

= Hop Plot: Distance distribution over all distances
Hist(APSP(G))

= Average/characteristic path length: Sum of the distances
over all pairs of nodes divided by the number of pairs

For defined routings on graphs:

Characterisic Routing Length: average length of paths found
(potentially stochastic...)
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Sanity Check:

= APSP:
1,1,1,2,2
1,1,1,2,2
1,1,1,1,1
1,1,1,1,2
1,1,1,2,2
1,1,2,2,2
= HopPlot:
1: 20
2:10

" CPL: 40/30 = 1.333
= CRL(CHORD): 2.033
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Important Graph Metrics (3) =)

= Edge connectivity: is the minimum number of edges that have to
be removed to separate the graph into at least two components

= Vertex connectivity: the minimum number of nodes..

e Does each network have ONE maximum flow?

How to calculate them? * What is the edge/vertex connectivity if we

. S 3 have a node with degree=1?
Which of both is hlgher' * Is this a sensible metric? How to ,heal” this?

In which cases are they
the same? ==> balanced cut, size of the remaining giant
connected component, fraction of
disconnected nodes

= maxflow, Menger’s Theorem...

17



Important Graph Metrics (2)

= Clustering coefficient: number of edges between
neighbors divided by maximum number of edges
between them
= k neighbors: k(k-1)/2 possible edges between them

2F ( N (1)) E(N(i)) = number of edges between

neighbors of i

d(l) (d(l) — 1) d(i) = degree of i

C(i) =

= What if: a node has only one neighbor? ©

AN\

c=0
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P2P Self Organization and Routing

= So what can a peer actually do?
= (Initially: bootstrapping, ID selection)

= Select neighbors
= Randomly
= According to some rule

= Select next hop (when delegation is needed..)
= Randomly
= Single next hop
= Multiple next hops (request replication... flooding)
= According to some rule

= (Change ID, but that’s already advanced.. ©)

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Systems
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So what!? :

G
Location Overlay L= (V.,Ep) (of Vertices V and Edges E)
= Reliability - hit ratio = | Hit]
, . | Requests|
= High success probability
- response time =
= Low response times
= Resource usage > message S me - d(e)
= Low message complexity complexity = mij\zque sts|

= Great! We can do maths, now! © (Plus: we can define metrics..)
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Classes of Graphs

= Regular graphs
= Random graphs

= Graphs with Small-World characteristic

Scale-free graphs

= ...Graphs with plenty more characteristics
= (dis-) assortativity
= Rich-club connectivity

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Graph Theory
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Regular Graphs 1

= Regular graphs have traditionally been used to model networks

= Regular graphs:
= Node degree is constant
= Different topologies possible

= But the model does not reflect reality of nature very well...
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Random Graphs @

= Random graphs are first widely studied graph family
= Many P2P networks choose neighbors more or less randomly

= Two different notations generally used:

= Erdos and Renyi
= Gilbert

" Gilbert’s definition: Graph G, , (with n nodes) is a graph where
the probability of an edge e =(v, w)isp

Construction algorithm:

" For each possible edge, draw a random number

= |f the number is smaller than p, then the edge exists
= p can be function of n or constant

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Systems
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Basic Results for Random Graphs @\

Giant Connected Component
Let ¢ > 0 be a constant and p = ¢/n.
If c < 1 every component of G, , has order O(log N) with high probability.

If c > 1 then there is one component of size n*(f(c) + O(1)) where f(c) > 0, with
high probability. All other components have size O(log N)

= English: Giant connected component emerges with high probability when
average degree is about 1

Node degree distribution
= |f we take a random node, how high is the probability P(k) that it has degree

k?
= Node degree is Poisson distributed cke=¢
= Parameter c = expected number of occurrences P(k) — I

Clustering coefficient

= Clustering coefficient of a random graph is asymptotically equal to p with
high probability
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Random Graphs: Summary @\

=  Random graphs have two advantages over regular graphs
1. Many interesting properties analytically solvable
2. Much more realistic (for many applications, e.g., social networks)

= Note: Does not mean social/p2p networks are random graphs;
just that the properties of social/p2p networks are well-
described by random graphs

= Question: How to model networks with local clusters and small
diameter?

=  Answer: Small-world networks

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Systems
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Six Degrees of Separation @3

" Famous experiment from 1960’s (S. Milgram)

= Send a letter to random people in Kansas and Nebraska and ask people to
forward letter to a person in Boston

= Person identified by name, profession, and city

= Rule: Give letter only to people you know by first name and ask them to pass
it on according to same rule

= Some letters reached their goal
= |etter needed six steps on average to reach the person

= Graph theoretically: Social networks have dense local structure, but
(apparently) small diameter

= Generally referred to as “small world effect”
= Usually, small number of persons act as “hubs”

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Systems
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Milgram's Small World Experiment
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Small-World Networks @3

= Developed/discovered by Watts and Strogatz (1998)
= Qver 30 years after Milgram’s experiment!

= Watts and Strogatz looked at three networks

= Film collaboration between actors, US power grid, Neural network of worm
Caenorhabditis elegans (“C. elegans”)

" Measured characteristics:
= Clustering coefficient as a measure for ‘regularity’, or ‘locality’ of the network
= Ifitis high, edges are rather connecting neighbors than nodes far apart
= The average path length between vertices

= Results:
» Grid-like networks:

= High clustering coefficient = high average path length
(edges are not ‘random’, but rather ‘local’)

= Most real-world (natural) networks have a high clustering coefficient
(0.3-0.4), but nevertheless a low average path length
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Small-World Networks and Random Graphs @\

= Results
= Compared to a random graph with same number of nodes
= Diameters similar, slightly higher for real graph
= Clustering coefficient orders of magnitude higher

= Definition of small-worlds network

= Dense local clustering structure and small diameter comparable to that of
a same-sized random graph

Dg (real) | Dg(random) | C'(real) | C'(random)

Film collaboration 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.08 0.005
C. elegans 2.65 2.25 0.28 0.05
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Constructing Small-World Graphs @\

= Put all n nodes on a ring, number them consecutively from 1 to n

Connect each node with its k clockwise neighbors

Traverse ring in clockwise order

For every edge
®» Draw random number r

= |f r<p, then re-wire edge by selecting a random target node from the set of all
nodes (no duplicates)

= Otherwise keep old edge

Different values of p give different graphs
= |f pis close to 0, then original structure mostly preserved
= |fpiscloseto 1, then new graph is random
" |nteresting things happen when p is somewhere in-between

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Systems

30



Regular, Small-World, Random

R
Regular Small-World
p=0

Random

(2

vV ™
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Kleinberg’s Small-World Navigability Model =)

= Small-world model and power law explain why short paths exist

= Missing piece in the puzzle: why can we find these paths?
= Each node has only local information
= Even if a short cut exists, how do people know about it?
= Milgram’s experiment:

= Some additional information (profession, address, hobbies etc.) is
used to decide which neighbor is “closest” to recipient

= results showed that first steps were the largest

= Kleinberg’s Small-World Model

= Set of pointsinannxn grid
= Distance is the number of “steps” separating points

" d(i,j) = [x;-x;| + |y;-y;l
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Kleinberg's Topologies @3
G

= Take d-dimensional grid in which all nodes are connected to all
neighbors along each axis

= Additionally connect nodes in higher distance with probability
decreasing with growing distance

A) B)

O O O O O O
<
o O O O |0 O
O
)
O O O O
=

O
O
O O
O O
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Creating Kleinberg's Topologies

= Construct graph as follows:
= Every node i is connected to node j within distance d’

= For every node i, additional g edges are added. Probability that nodej is
selected is proportional to dfi, j)', for constant r (harmonic distribution p)

TU Darmstadt, FG P2P, Th. Strufe
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ptx) =1/(x") + c;
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Peer-to-Peer Networks — Graph Theory

10

34



Navigation in Kleinberg's Model @\

= Simple greedy routing: nodes only know local links and target position,
always use the link that brings message closest to target
= |f r=2, expected lookup time is O(log?n)
= |fr#2, expected lookup time is O(n¢), where € depends on r

0.8 .

1 L 1 L
1 2 3 4 5 6
Clustering Exponent r

= Kleinberg has shown: Number of messages needed is proportional to
O(log? n) iff r=s (s = number of dimensions)
= |dea behind proof: for any r > s there are too few random edges to make paths
short

» Forr<sthere are too many random edges = too many choices for passing
message

= The message will make a (long) random walk through the network
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Summary of Kleinberg @3

= Kleinberg small worlds thus provide a way of building a peer-to-
peer overlay network, in which a very simple, greedy and local
routing protocol is applicable
= Practical algorithm: Forward message to contact who is closest to target

= Assumes some way of associating nodes with points in grid (know about
“closest”)

= Compare with CAN

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Graph Theory
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Problems with Small-World Graphs

Small-world graphs explain why:

= Highly clustered graphs can have short average path lengths
(“short cuts”)

Small-world graphs do NOT explain why:
= This property emerges in real networks

= Real networks are practically never ring-like

Further problem with small-world graphs:
= Nearly all nodes have same degree

= Not true for random graphs

= What about real networks?

= =%
X x

TU Darmstadt, FG P2P, Th. Strufe Peer-to-Peer Networks — Graph Theory
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Internet o

= Faloutsos et al. study from 99: Internet topology examined in 1998
= AS-level topology, during 1998 Internet grew 45%

= Motivation:
» What does the Internet look like?

= Are there any topological properties that don’t
change over time?

= How to generate Internet-like graphs
for simulations?

= 4 key properties found,
each follows a power-law;
Sort nodes according to their (out)degree

1. Outdegree of a node is proportional to its rank to the power of a constant

2. Number of nodes with same outdegree is proportional to the outdegree to the
power of a constant

3. Eigenvalues of a graph are proportional to the order to the power of a constant

4. Total number of pairs of nodes within a distance d is proportional to d to the
power of a constant
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World Wide Web =0

" Links between documents in the World Wide Web
= 800 Mio. documents investigated (S. Lawrence, 1999)

= What was expected so far?

= Number of links per web page: (k) ~ 6
* Number of pages in the WWW: Ny ~ 10°

Pk)

= Probability “page has 500 links”:
P(k=500) ~ 10*°

i = Number of pages to which 500 links exist:
N(k=500) ~ 109
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WWW: result of investigation
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Power Law Networks @3

= Also known as scale-free networks

= “Power Law” relationship for Web pages

= The probability P(k) that a page has k links (or k other pages link to this
page) is proportional to the number of links k to the power of y

= General "Power Law” Relationships

= A certain characteristic k is — independent of the growth of the system —
always proportional to k? whereby a is a constant (often -2 < a < -4)

= Power laws very common (“natural”)
= and power law networks exhibit small-world-effect

= E.g. WWW: 19 degrees of separation
(R. Albert et al, Nature (99); S. Lawrence et al, Nature (99))
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Examples for Power Law Networks

" Economics

= Pareto: income distribution
(common simplification: 20% of population own 80% of the wealth)

= Standardized price returns on individual stocks or stock indices
= Sizes of companies and cities (Zipf's law)

= Human networks
= professional (e.g. collaborations between actors, scientists)
= social (friendship, acquaintances)
= Sexual-contact networks

®= Many other natural occurrences
= Distribution of English words (Zipf’s law again)
= Areas burnt in forest fires
= Meteor impacts on the moon

" |nternet also follows some power laws
= Popularity of Web pages (possibly related to Zipf’s law for English words?)
= Connectivity of routers and Autonomous Systems
= Gnutella’s topology!
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