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Peer-to-Peer Networks 

Chapter 4: Graphs and Methods 

Thorsten Strufe 

 
  

Note: these slides have been prepared with influence by material  

of Prof. Michael Welzl, Prof. Pietro Michiardi, and Dr. Stefan Schmid 
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Chapter Outline 

 P2P Overlays as Graphs (This chapter is a reminder) 

 Graphs 

 Metrics in and Properties of Graphs 

 Algorithms on Graphs 

 A tiny introduction to game theory 
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Some questions... 

 How scalable is Gnutella? 

 

 How robust is Kazaa? 

 

 Why does FreeNet work? 

 

 What would an ideal (unstructured) 
P2P system look like? 

 

 What do the overlay networks 
of existing P2P systems look like? 

Gnutella snapshot, 2000 
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Scalability of Gnutella: quick answer 

 Bandwidth Generated in Bytes (Message 83 bytes) *[SIC] 
 Searching for a 18 byte string  

 

 

 

 

 

 

 

 
 

 N = number of connections 

 T  = number of hops  

T=2 T=3 T=4 T=5 T=6 T=7 T=8 

N=2 332 498 664 830 996 1,162 1,328 

N=3 747 1,743 3,735 7,719 15,687 31,623 63,495 

N=4 1,328 4,316 13,280 40,172 120,848 362,876 1,088,960 

N=5 2,075 8,715 35,275 141,515 566,475 2,266,315 9,065,675 

N=6 2,988 15,438 77,688 388,938 1,945,188 9,726,438 48,632,688 

N=7 4,067 24,983 150,479 903,455 5,421,311 35,528,447 192,171,263 

N=8 5,312 37,848 262,600 1,859,864 13,019,712 91,138,648 637,971,200 

* [SIC]: Error already in source, orders of magnitude are important, here ;) 

 Source: Jordan Ritter: Why Gnutella Can't Scale. No, Really. 
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Graphs 

 Rigorous analysis of P2P systems: based on graph theory 
 Refresher of graph theory needed 

 

 First: graph families and models 
 Random graphs 

 Small world graphs 

 Scale-free graphs 

 

 Then: graph theory and P2P 
 How are the graph properties reflected in real systems? 

 Users (peers) are represented by vertices in the graph 

 Edges represent connections in the overlay (routing table entries) 

 

 Concept of self-organization 
 Network structures emerge from simple rules 

 E.g. also in social networks, www, actors playing together in movies 
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What Is a Graph? 

 Definition of a graph: 

 Graph G = (V, E) consists of two finite sets, set V of vertices 
(nodes) and set E of edges (arcs) for which the following 
applies: 
1. If e  E, then exists (v, u)  V x V, such that v  e and u  e 

2. If e  E and above (v, u) exists, and further for (x, y)  V x V applies 
x  e and y  e, then {v, u} = {x, y} 

 

 

 

 

 

Side note: 

 Edges can have (multiple) “weights”     w : E  R 
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1 2 

3 

4 
e2 

e1 

e3 

e5 e4 
Example graph with 

4 vertices and 5 edges 
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Recall Graphs 

 Graph G = (V,E),  

 Edges can have (multiple) “weights”     w : E  R 

 Edges are directed or undirected 

 The graph hence is directed or undirected 

 A graph can be connected (strong and weak connectivity) 

 Undirected, acyclic graphs are trees 
 Directed, acyclic graphs are DAGs 

 

 Graphs have an order, size, distance, diameter, and density 
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How are Graphs Implemented? 

Adjacency/Incidence Matrix 

 

 

 

 

 

Adjacency/Incidence List 

 

 

 

(Plus specialized others..) 
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VERY good book is: Sedgewick: Algorithms in C, part 3 (Graph Algorithms) 

1 2 3 

1 0 1 0 

2 1 0 1 

3 0 1 0 

(1,2) 

(2,1),(2,3) 

(3,2) 

1:2 

2:1,3 

3:2 
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Properties of Graphs 

 An edge e  E is directed if the start and end vertices in 
condition 2 above are identical: v = x and y = u 

 

 An edge e  E  is undirected if v = x and y = u as well as v = y and  
u = x are possible 

 

 A graph G is directed (undirected) if the above property holds 
for all edges 
 

 A loop is an edge with identical endpoints 
 

 Graph G1 = (V1, E1) is a subgraph of G = (V, E), if V1  V and E1  
E (such that conditions 1 and 2 are met) 
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Important Types of Graphs 

 Vertices v, u  V are connected if there is a path from v to u: (v, v2), (v2, v3), …,  
(vk-1, u)  E 

 

 Graph G is connected if all v, u  V are connected 
 Strong connectivity of directed graphs means, that paths between each node pair exist 

 Weak connectivity: edges between all node pairs exist, but not paths… 

 

 An undirected, connected, acyclic graph is called a tree 
 Side note: Undirected, acyclic graphs which are not connected are called forest 

 

 Directed, connected, acyclic graph is called DAG 
 DAG = Directed Acyclic Graph (connectivity is assumed) 

 

 An induced graph G(VC) = (VC, EC) is a graph VC  V and with edges 
EC = {e = (i, j) | i, j  VC}    (all edges from G connecting the nodes in GC) 

 

 An induced graph that is connected is called a component 
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Overlays? 

 A CLIQUE is a graph that is fully connected  
  (u,v)  E | for all u  V and v V , u ≠ v 
 A P2P Overlay (Vo,Eo) (in general) is a subgraph such that Vo=V 

and Eo  E   (edges are selected edges from a CLIQUE graph) 
 
 
 
 
 
 
 
 

 Why? Considering the nodes to be on the Internet, they all can 
create connections between each other… 
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Important Graph Metrics 

 Order: the number of vertices in a graph 

 Size of the graph is the number of edges |E| 

 

 Distance: d(v, u) between vertices v and u is the length of the 
shortest path between v and u 

 

 Diameter: d(G) of graph G is the maximum of d(v, u)  

 for all v, u  V 

 

 The density of a graph is the ratio of the number of edges and 
the number of possible edges. 
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Graph Metrics: Vertex Degree 

 In graph G = (V, E), the degree of vertex v  V is the total number of 
edges (v, u)  E and (u, v)  E 
 Degree is the number of edges which touch a vertex 

 

 For directed graph, we distinguish between in-degree and out-degree 
 In-degree is number of edges coming to a vertex 

 Out-degree is number of edges going away from a vertex 

 

 The degree of a vertex can be obtained as:  
 Sum of the elements in its row in the incidence matrix  

 Length of its vertex incidence list 

 

 The degree distribution is the distribution over all node degrees 
 (given as a frequency distribution or (often) complementary cumulative 
 distribution function CCDF (Komplement der Verteilungsfunktion)) 
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Graph Metrics: Degree Distribution 
(Examples) 

Uni Mannheim, FG DDS, Th. Strufe                                                                                       Resilient Networking 

Human Protein Interaction [biomedcentral.com] 

The Internet (AS-level) [pacm.princeton.edu] 

Online Social Network (xing crawl) [strufe10popularity] 
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Further Graph Metrics 

 All pairs shortest paths (APSP): d(v, u) | all v,u  V 

 

 Hop Plot: Distance distribution over all distances 
Hist(APSP(G)) 

 

 Average/characteristic path length: Sum of the distances 
over all pairs of nodes divided by the number of pairs 

 

For defined routings on graphs:  

 Characterisic Routing Length: average length of paths found 
(potentially stochastic…) 
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Sanity Check: 

 APSP: 

 1,1,1,2,2 

 1,1,1,2,2 

 1,1,1,1,1 

 1,1,1,1,2 

 1,1,1,2,2 

 1,1,2,2,2 

 HopPlot: 

 1: 20 

 2: 10 

 CPL:  

 CRL (CHORD): 

 

 

A 

E D 

C B 

F 

A 

E D 

C B 

F 

2.033 

40/30 = 1.333 
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Important Graph Metrics (3) 

 Edge connectivity: is the minimum number of edges that have to 
be removed to separate the graph into at least two components 

 

 Vertex connectivity: the minimum number of nodes.. 

 

 

 How to calculate them? 

 Which of both is higher? 

 In which cases are they  

 the same? 

 

 maxflow, Menger‘s Theorem… 

• Does each network have ONE maximum flow? 
 
 
 
 
 
 
 
 

• What is the edge/vertex connectivity if we 
have a node with degree=1?  
• Is this a sensible metric? How to „heal“ this? 

 
==> balanced cut, size of the remaining giant 

connected component, fraction of 
disconnected nodes 
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Important Graph Metrics (2) 

 Clustering coefficient: number of edges between 
neighbors divided by maximum number of edges 
between them 
 k neighbors: k(k-1)/2 possible edges between them 

 

 

 

 

 

 What if: a node has only one neighbor?  
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Source: Wikipedia 

𝐶 𝑖 =
2𝐸(𝑁 𝑖 )

𝑑 𝑖 (𝑑 𝑖 − 1)
 

E(N(i))  = number of edges between 

neighbors of i  

d(i) = degree of i 
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P2P Self Organization and Routing 

 So what can a peer actually do? 
 (Initially: bootstrapping, ID selection) 

 

 Select neighbors 
 Randomly 

 According to some rule 

 

 Select next hop (when delegation is needed..) 
 Randomly 

 Single next hop 

 Multiple next hops (request replication… flooding) 

 According to some rule 

 

 (Change ID, but that‘s already advanced..  ) 
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So what!? 

Location Overlay    (of Vertices V and Edges E) 

 

 Reliability 
 High success probability 

 

 

 

 Low response times 
 

 

 Resource usage 
 Low message complexity 

 

 

 Great! We can do maths, now!  (Plus: we can define metrics..) 
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 hit ratio       =  

 

 

 

 
 

 response time  =  

 

 

 

 
 

 message 

complexity       = 
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Classes of Graphs 

 Regular graphs 

 

 Random graphs 

 

 Graphs with Small-World characteristic 

 

 Scale-free graphs 

 

 …Graphs with plenty more characteristics 
 (dis-) assortativity 

 Rich-club connectivity 

 … 
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Regular Graphs 

 Regular graphs have traditionally been used to model networks 

 

 Regular graphs: 
 Node degree is constant 

 Different topologies possible 

 

 But the model does not reflect reality of nature very well… 
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Random Graphs 

 Random graphs are first widely studied graph family 
 Many P2P networks choose neighbors more or less randomly 

 

 Two different notations generally used: 
 Erdös and Renyi 

 Gilbert 

 

 Gilbert’s definition: Graph Gn,p (with n nodes) is a graph where 
the probability of an edge e = (v, w) is p 

 

Construction algorithm: 

 For each possible edge, draw a random number 

 If the number is smaller than p, then the edge exists 

 p can be function of n or constant 
TU Darmstadt, FG P2P, Th. Strufe   Peer-to-Peer Systems 
 



24 

 

Basic Results for Random Graphs 

Giant Connected Component 
 Let c > 0 be a constant and p = c/n.  
 If c < 1 every component of Gn,p has order O(log N) with high probability. 
  If c > 1 then there is one component of size n*(f(c) + O(1)) where f(c) > 0, with 

high probability. All other components have size O(log N) 
 English: Giant connected component emerges with high probability when 

average degree is about 1 
 

Node degree distribution 
 If we take a random node, how high is the probability P(k) that it has degree 

k? 
 Node degree is Poisson distributed 

 Parameter c = expected number of occurrences 

 
Clustering coefficient 
 Clustering coefficient of a random graph is asymptotically equal to p with 

high probability 
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𝑃 𝑘 =
𝑐𝑘𝑒−𝑐

𝑘!
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Random Graphs: Summary 

 Random graphs have two advantages over regular graphs 
1. Many interesting properties analytically solvable 

2. Much more realistic (for many applications, e.g., social networks) 

 

 Note: Does not mean social/p2p networks are random graphs; 
just that the properties of social/p2p networks are well-
described by random graphs 

 

 Question: How to model networks with local clusters and small 
diameter? 

 

 Answer: Small-world networks 

TU Darmstadt, FG P2P, Th. Strufe   Peer-to-Peer Systems 
 



26 

 

Six Degrees of Separation 

 Famous experiment from 1960’s (S. Milgram) 

 

 Send a letter to random people in Kansas and Nebraska and ask people to 
forward letter to a person in Boston 
 Person identified by name, profession, and city 

 

 Rule: Give letter only to people you know by first name and ask them to pass 
it on according to same rule 
 Some letters reached their goal 

 

 Letter needed six steps on average to reach the person 

 

 Graph theoretically: Social networks have dense local structure, but 
(apparently) small diameter 
 Generally referred to as “small world effect” 

 Usually, small number of persons act as “hubs” 
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Milgram's Small World Experiment 
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Small-World Networks 

 Developed/discovered by Watts and Strogatz (1998) 
 Over 30 years after Milgram’s experiment! 

 

 Watts and Strogatz looked at three networks 
 Film collaboration between actors, US power grid, Neural network of worm 

Caenorhabditis elegans (“C. elegans”) 
 

 Measured characteristics: 
 Clustering coefficient as a measure for ‘regularity‘, or ‘locality‘ of the network  

 If it is high, edges are rather connecting neighbors than nodes far apart 
 The average path length between vertices 

 

 Results: 
 Grid-like networks:  

 High clustering coefficient  high average path length 
(edges are not ‘random‘, but rather ‘local‘) 

 Most real-world (natural) networks have a high clustering coefficient  
(0.3-0.4), but nevertheless a low average path length 
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Small-World Networks and Random Graphs 

 Results 
 Compared to a random graph with same number of nodes 

 Diameters similar, slightly higher for real graph 

 Clustering coefficient orders of magnitude higher 

 

 Definition of small-worlds network 
 Dense local clustering structure and small diameter comparable to that of 

a same-sized random graph 
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Constructing Small-World Graphs 

 Put all n nodes on a ring, number them consecutively from 1 to n 

 

 Connect each node with its k clockwise neighbors 

 

 Traverse ring in clockwise order 

 

 For every edge 
 Draw random number r 

 If r < p, then re-wire edge by selecting a random target node from the set of all 
nodes (no duplicates) 

 Otherwise keep old edge 

 

 Different values of p give different graphs 
 If p is close to 0, then original structure mostly preserved 

 If p is close to 1, then new graph is random 

 Interesting things happen when p is somewhere in-between 
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Regular, Small-World, Random 

Regular Small-World Random 

p = 0 p = 1 
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Kleinberg’s Small-World Navigability Model 

 Small-world model and power law explain why short paths exist 

 

 Missing piece in the puzzle: why can we find these paths? 
 Each node has only local information 

 Even if a short cut exists, how do people know about it? 

 Milgram’s experiment: 

 Some additional information (profession, address, hobbies etc.) is 
used to decide which neighbor is “closest” to recipient 

 results showed that first steps were the largest 

 

 Kleinberg’s Small-World Model 
 Set of points in an n x n grid 

 Distance is the number of “steps” separating points 

 d(i, j) = |xi - xj| + |yi - yj| 
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Kleinberg‘s Topologies 

 Take d-dimensional grid in which all nodes are connected to all 
neighbors along each axis 

 Additionally connect nodes in higher distance with probability 
decreasing with growing distance  
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Creating Kleinberg‘s Topologies 

 Construct graph as follows: 
 Every node i is connected to node j within distance d’ 

 For every node i, additional q edges are added. Probability that node j is 
selected is proportional to d(i, j)-r, for constant r (harmonic distribution p) 
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Navigation in Kleinberg’s Model 

 Simple greedy routing: nodes only know local links and target position, 
always use the link that brings message closest to target 
 If r=2, expected lookup time is  O(log2n) 

 If r≠2, expected lookup time is O(nε), where ε depends on r 

 

 

 

 

 

 

 Kleinberg has shown: Number of messages needed is proportional to  

  O(log² n) iff r=s (s = number of dimensions) 
 Idea behind proof: for any r > s there are too few random edges to make paths 

short 

 For r < s there are too many random edges  too many choices for passing 
message 

 The message will make a (long) random walk through the network 
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Summary of Kleinberg 

 Kleinberg small worlds thus provide a way of building a peer-to-
peer overlay network, in which a very simple, greedy and local 
routing protocol is applicable 
 Practical algorithm: Forward message to contact who is closest to target 

 Assumes some way of associating nodes with points in grid (know about 
“closest”) 

 Compare with CAN 
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Problems with Small-World Graphs 

Small-world graphs explain why: 

 Highly clustered graphs can have short average path lengths 
(“short cuts”) 

 

Small-world graphs do NOT explain why: 

 This property emerges in real networks 
 Real networks are practically never ring-like 

 

Further problem with small-world graphs: 

 Nearly all nodes have same degree 

 Not true for random graphs 

 What about real networks? 
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Internet 

 Faloutsos et al. study from 99: Internet topology examined in 1998 
 AS-level topology, during 1998 Internet grew 45% 

 

 Motivation: 
 What does the Internet look like? 
 Are there any topological properties that don’t 

change over time? 
 How to generate Internet-like graphs 

for simulations? 
 

 4 key properties found, 
each follows a power-law; 
Sort nodes according to their (out)degree 

1. Outdegree of a node is proportional to its rank to the power of a constant 
2. Number of nodes with same outdegree is proportional to the outdegree to the 

power of a constant 
3. Eigenvalues of a graph are proportional to the order to the power of a constant 
4. Total number of pairs of nodes within a distance d is proportional to d to the 

power of a constant 
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World Wide Web 

TU Darmstadt, FG P2P, Th. Strufe   Peer-to-Peer Networks – Chapter 3: DHT 

 Probability “page has 500 links”: 
P(k=500) ~ 10-99 

 Number of pages to which 500 links exist: 
N(k=500) ~ 10-90 

 Links between documents in the World Wide Web 
 800 Mio. documents investigated (S. Lawrence, 1999) 

 

 What was expected so far? 

 Number of links per web page: k ~ 6 

 Number of pages in the WWW: NWWW ~ 109 
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Pout(k)  ~ k-  out 

P(k=500) ~ 10-6 

out= 2.45  
in  = 2.1 

Pin(k)  ~ k-  in 

NWWW ~ 109  

 N(k=500) ~ 10-3 

WWW: result of investigation  

P(page has k links) P(k pages link to this page) 
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Power Law Networks 

 Also known as scale-free networks 

 

 “Power Law” relationship for Web pages 
 The probability P(k) that a page has k links (or k other pages link to this 

page) is proportional to the number of links k to the power of y 

 

 General ”Power Law” Relationships 
 A certain characteristic k is – independent of the growth of the system – 

always proportional to ka, whereby a is a constant (often -2 < a < -4) 

 

 Power laws very common (“natural”) 
 and power law networks exhibit small-world-effect 

 E.g. WWW: 19 degrees of separation 
(R. Albert et al, Nature (99); S. Lawrence et al, Nature (99)) 
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Examples for Power Law Networks 

 Economics 
 Pareto: income distribution 

(common simplification: 20% of population own 80% of the wealth) 
 Standardized price returns on individual stocks or stock indices 
 Sizes of companies and cities (Zipf’s law) 

 
 Human networks 

 professional (e.g. collaborations between actors, scientists) 
 social (friendship, acquaintances) 
 Sexual-contact networks 

 
 Many other natural occurrences 

 Distribution of English words (Zipf’s law again) 
 Areas burnt in forest fires 
 Meteor impacts on the moon 

 
 Internet also follows some power laws 

 Popularity of Web pages (possibly related to Zipf’s law for English words?) 
 Connectivity of routers and Autonomous Systems 
 Gnutella’s topology! 
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