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Abstract

One of the main tasks of database or information systems is to pro-
vide an effective access to the stored data. Responsible for this task is
the query proccessing. In large federated and shared-nothing environ-
ments, like Peer-to-Peer, the query processing has to deal with widely
fluctuating characteristics of the resources. A basic approach is the de-
velopment of methods for an adaptive query processing. In contrast to
static query optimization and execution techniques, adaptive query pro-
cessing tries to adapt optimization and execution to the characteristics
of the system throughout the duration of a query.

The existing implementations of an adaptive query processing are not
developed specifically and therefore optimized for Peer-to-Peer systems.
In this work an implementation of an adaptive query processing method
is introduced, which is designed for CAN-based Peer-to-Peer systems.
A CAN is a special overlay-network for the distribution and indexing
of the data in the network. In particular the implementation copes with
the most important advantages of Peer-to-Peer systems: scalability and
robustness. The adaptive query processing mechanism of this paper is
called P2P-Eddy and enhances the original eddy mechanisms for Peer-
to-Peer environments.
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Kapitel 1

Einflhrung

1.1 Zielstellung

Datenbankmanagementsysteme erheben den Anspruch, grofle Datenbestédnde effizient
und effektiv zu erzeugen, zu manipulieren und zu verwalten. Aus Sicht eines Nutzers
oder einer Anwendung steht in erster Linie ein schneller Zugriff auf die Daten im Vorder-
grund [Mos00]. Zustandig hierfir ist die sogenannte Anfrageverarbeitung. Neben ande-
ren Teilaufgaben umfasst sie auch die Optimierung und die eigentliche Ausfiihrung einer
Anfrage. Die Umsetzung und Performanz der Anfrageverarbeitung héngt stark von der
gesamten Systemumgebung ab. Nur wenn sie optimal an das System und die Umgebung
angepasst ist, kann eine Anfrageverarbeitung optimale Ergebnisse liefern.

Ein wichtiger Parameter dafir ist die Art und Weise, wie die Informationen der Da-
tenbank gespeichert werden. Man unterscheidet im Wesentlichen zwischen verteilter und
nichtverteilter Datenhaltung. Unterteilt man die Daten in die eigentlichen Nutzdaten und
die Metadaten, kann die Datenhaltung in drei grol3e Klassen eingeteilt werden. In diesem
Kontext sollen unter Metadaten vor allem die Indexstrukturen verstanden werden.

1. Nichtverteilte Nutzdaten. Nichtverteilte Metadaten.
Samtliche Daten der Datenbank werden von einem System verwaltet. Quasi alle
Informationen, die eine Datenbank betreffen stehen hier jederzeit zur Verfligung.

2. \erteilte Nutzdaten. Nichtverteilte Metadaten.
Die eigentlichen Nutzdaten der Datenbank liegen verteilt auf verschiedenen Rech-
nern. Alle Zugriffe auf die Datenbank werden von einer zentralen Stelle aus organi-
siert, lberwacht und ausgefihrt. Es existiert also eine Instanz, die eine globale Sicht
auf die Datenbank besitzt.

3. Verteilte Nutzdaten. Verteilte Metadaten.
Sowohl Nutz- als auch Metadaten liegen auf verschiedenen vernetzten Rechnern.
Keine Instanz im Netz besitzt ein globales Wissen Uber die Datenbank. Dadurch
stehen in der Regel auch deutlich weniger Metadaten zur Verfiigung.

Gerade fir die Anfrageverarbeitung spielen die Metadaten ein wichtige Rolle, da die Op-
timierung einer Anfrage zum groRen Teil auf KenngréRen der Datenbank (GrofRe und
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Anzahl der Relationen, Schemainformationen, ...) und andere verwaltete Statistiken (\er-
teilungen der Attributwerte, Selektivitat von Operatoren, ...) zurlickgreift. Eine Anfrage-
verarbeitung, die fr ein System aus einer der oben vorgestellten Klasse optimiert wurde,
eignet sich also nicht automatisch flr Systeme der anderen Klassen. Prinzipiell ist ein Ein-
satz zwar moglich, doch werden in der Regel damit nur suboptimale Ergebnisse erzielt.

Besonders Datenbanksysteme der ersten, aber auch der zweiten Klasse, zeichnen sich
dadurch aus, dass eine Vielzahl von Metadaten global erfasst werden kénnen. Zudem un-
terliegen die Metadaten in diesen Systemen typischerweise keinen starken Schwankungen
uber der Zeit. Deshalb hat sich hier eine strikte Trennung zwischen der Optimierung und
Ausfiihrung eine Anfrage durchgesetzt. Man spricht auch von einer statischen Anfragever-
arbeitung. Eine solche Trennung ist zwar weniger flexibel, bedeutet aber einen wesentlich
geringeren Aufwand. Und da sich die Parameter fur die Optimierung nur wenig andern,
ist dieses Vorgehen fur solche Systeme durchaus praktikabel.

In komplett verteilten Umgebungen, wie z.B. Peer-to-Peer Netzen, gelten ganz andere
\oraussetzungen. Hier stehen typischerweise deutlich weniger Metadaten zur Verfugung,
auf die nicht global zugegriffen werden kann. Besonderes Augenmerk muss dabei auf die
Indexierung der Daten gerichtet werden. Ein geeigneter Mechanismus sind Overlay-Netze
wie das Content Adressable Network. Diese logische Struktur wird tber die physikalische
P2P-Umgebung gesetzt und tbernimmt die Verwaltung bzw. Indexierung der Daten.

Umgebungen wie Peer-to-Peer Netze besitzen typischerweise eine hohe Dynamik,
d.h. dass sich die Parameter fiir die Anfrageverarbeitung bzw. -optimierung lber die Zeit
schnell stark &ndern kénnen. Je weitvereilter das Netz dabei ist, desto langer ist auch
die Dauer fiir die Ausfuhrung einer Anfrage. Bei einer Trennung zwischen Optimierung
und Ausfiihrung, kann das Resultat der Optimierung noch zur Ausfihrungszeit hinfallig
werden und eventuell nur noch suboptimale Ergebnisse liefern.

Ziel der Arbeit ist die Entwicklung einer Anfrageverarbeitung fir eine CAN-basierte
Peer-to-Peer Umgebung, welche auf eine Trennung zwischen Optimierung und Ausfiih-
rung einer Anfrage verzichtet. Zur Ausfuhrungszeit soll also entschieden werden, welche
Schritte als ndchstes abgearbeitet werden. Als Basis flr diese Entscheidungsfindung
werden dabei KenngréRRen dienen, die zur Laufzeit ermittelt bzw. erlernt werden, um den
jeweils aktuellen Zustand der Systemumgebung einflieRen zu lassen.

Ein derart flexibler und dynamischer Mechanismus fuhrt zwangslaufig zu einem
deutlichen Mehraufwand. In Abhédngigkeit der Systemumgebung kann der zusétzliche
Overhead der dynamischen Anfragverarbeitung, die Effizienz negativ beeinflussen.
Dennoch kann eine Trennung von Optimierung und Ausfiihrung im Mittel bessere
Ergebnisse erzielen.

1.2 Uberblick

Kapitel 2 gibt zunachst einen kurzen Uberblick tiber die Anfrageverarbeitung, wie sie in
den meisten kommerziellen, nichtverteilten Datanbanksystemen zum Einsatz kommt. Die
Phase der Optimierung wird dabei besonders hervorgehoben. Uber die Eigenschaften die-
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ser Anfrageverarbeitung lassen sich dann auch deren Nachteile fir verteilte Umgebungen
ableiten.

Im Anschluss daran werden die grundlegenden Ansatze und Konzepte adaptiver
Verfahren fir die Anfrageverarbeitung vorgestellt. Es werden die wichtigsten Charakteri-
stiken genannt, mit derer sich die verschiedenen adaptiven Verfahren klassifizieren lassen.
Zur Veranschaulichung soll auf verschiedene konkrete Umsetzungen néaher eingegangen
werden.

Kapitel 3 befasst sich mit der zugrundeliegenden Systemumgebung. Dazu zéhlen
vor allem die allgemeinen Eigenschaften und Besonderheiten des Peer-to-Peer Netzmo-
dells, sowie dessen Vor- und Nachteile.

Danach wird das Konzept des Content-Adressable Networks (CAN) vorgestellt. Diese
logische Netzstruktur eignet sich Dank seiner Vorteile gerade flr den Einsatz auf einem
Peer-to-Peer System.

Da auch in dieser Arbeit mit relationalen Daten in Form von Tupeln gearbeitet wird,
soll im letzten Unterpunkt noch die Organisation dieser Daten innerhalb eines CANs
demonstriert werden. Diese Ergebnisse haben einen entscheidenden Einfluss auf die
spatere Implementierung.

Der Entwurf fiir die in dieser Arbeit vorgestellten adaptiven Anfrageverarbeitung,
im Folgenden P2P-Eddy genannt, ist Thema von Kapitel 4. Es werden prinzipielle
Uberlegungen angestellt, wie die gegebenen Anforderungen, fir die anschlieRende
Implementierung, erfullt werden kénnen. Dieses Kapitel ist in zwei Hauptabschnitte
unterteilt.

Zuné&chst wird das Konzept soweit ausgearbeitet, dass eine adaptive Anfrageverarbei-
tung maoglichst flexibel und dynamisch umgesetzt werden kann. Es wird sozusagen die
technische Voraussetzung entwickelt.

Um die Dynamik und Flexibiltét effizient zu nutzen, werden Srategien bendtigt, die
anhand unterschiedlicher Kriterien, einen Einfluss auf die Anfrageverarbeitung besitzen.
Im zweiten Abschnitt werden dazu verschiedene Verfahren und Parameter vorgestellt.

In den Kapiteln 5 und 6 wird die Implementierung des P2P-Eddies behandelt. Da-
bei wird in erster Linie auf die Besonderheiten eingegangen, die aus der dynamischen
Anfrageverarbeitung heraus entstehen. Daneben werden einige Kernalgorithmen
vorgestellt.

Schwerpunkt von Kapitel 5 ist die Implementierung der dynamischen Anfrageopera-
toren. Diese bilden die Grundlage fur eine variable Operatorreihenfolge fur verschiedene
Tupel und damit flr eine dynamischen Anfrageverarbeitung.

Strategien fur die effiziente Ausnutzung dynamischer Anfrageoperatoren sind Thema
von Kapitel 6. Es werden vor allem zwei Ziele verfolgt. Zum einen sollen moglichst
kostengunstige Operatorreihenfolgen fir die Tupel gefunden werden. Zum anderen soll
die erzeugte Last einer Anfrage mdoglichst fair im Netz verteilt werden.

Ein wichtiger Punkt bei der Entwicklung neuer Verfahren ist die Evaluierung, denn
nicht immer stimmen die praktischen Ergebnisse mit den theoretischen Annahmen
uberein. Auch fiir diese adaptive Anfrageverarbeitung wurden einige Test durchgefihrt,
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um zu Uberpriifen, ob die Umsetzung den Erwartungen entspricht.

Die Evaluierung ist Thema von Kapitel 7. Anhand ausgewahlter Tests soll die Ein-
satztauglichkeit der neuen Anfrageverarbeitung demonstriert werden. Uberpriift wird das
Verhalten in verschiedenen Netzg6Ren sowie das Verhalten bei der Manipulation einiger
wichtiger Kenngrolien, die Einfluss auf die Arbeitsweise der Anfrageverarbeitung neh-
men.



Kapitel 2

Grundlagen der Anfrageverarbeitung

2.1 Traditionelle Anfrageverarbeitung und -optimierung

2.1.1 Anfrageverarbeitung

Die Anfrageverarbeitung ist Kernstiick eines jeden Datenbankmanagementsystems, da sie
die eigentliche Zugriffsmoglichkeit auf die Daten der Datenbank darstellt. Sie ist somit
als Schnittstelle zwischen der Anfragesprache und dem Dateisystem anzusehen [Vos00].
Aus diesem Grund kommt der Anfrageverarbeitung eine grofie Bedeutung zu.

Der gesamte Vorgang der Verarbeitung einer Anfrage l&sst sich grob in folgende vier
Phasen unterteilen [Vos00]:

1. Vorverarbeitung

2. Anfrageoptimierung
3. Code-Erzeugung

4. Ausfuhrung

Aufgabe der Vorverarbeitung ist die Umwandlung einer Anfrage, von der Syntax einer
Anfragesprache in eine interne Darstellung fur die Weiterverarbeitung. Dazu gehort zu-
néchst das Scannen des Anfrage-Strings. Dabei werden z.B. die Schliisselworte, Attribut-
und Relationennamen identifiziert. Der Parser prift daraufhin, ob es sich gemaR den
Grammatikregeln der Anfragesprache um eine korrekte Anfrage handelt. Letzter Teil-
schritt ist die Validierung. Die Validierung ist dann erfolgreich, wenn alle Attribute und
Relationennamen positiv auf ihre Gultigkeit geprift wurden.

Die zweite Phase ist die Anfrageoptimierung. Was eine Optimierung Uberhaupt erst
notwendig macht, ist die Deskriptivitat als wichtiges Kriterium fir Anfragesprachen
[HSO00]. Deskriptive Sprachen sind zwar schwieriger zu implementieren, garantieren aber
die gewinschte Unabhéngigkeit vom zugrundeliegenden Datenmodell. Daneben werden
solche Sprachen von den Anwendern bevorzugt [UII88]. Mit deskriptiven Anfragespra-
chen wird quasi nur das Ergebnis der Anfrage formuliert, aber nicht auf welchem Wege
dies geschehen soll. Da fur die Ausfiihrung letztlich eine prozedurale Darstellung (aus-
fihrbarer Code) der Anfrage benétigt wird, muss eine Umsetzung aus der deskriptiven
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Formulierung erfolgen. In der Regel gibt es fir eine Anfrage viele verschiedene Moglich-
keiten flr eine prozedurale Darstellung. Genau an dieser Stelle greift die Anfrageoptimie-
rung ein. Sie sorgt dafur, dass eine moglichst effiziente Ausfuhrungsstrategie gefunden
wird.

Aufgabe der dritten Phase ist die Erzeugung von ausfuihrbarem Code fiir den gewahl-
ten Anfrageplan. Der Code selbst kann entweder direkt ausgefiihrt (interpretierter Modus)
oder gespeichert und erst bei Bedarf ausgefthrt werden (kompilierter Modus) [KE99].

Die eigentliche Ausfuhrung tibernimmt in der letzten Phase der Laufzeitdatebankpro-
zessor, im kompilierten oder interpretierten Modus. Eine Technik, die bei der Ausfiihrung
einer Anfrage eingesetzt wird, ist das so genannte Pipelining, auch als strombasierte Ver-
arbeitung bezeichnet [EN02]. Ohne Pipelining werden die einzelnen Operatoren einer
Anfrage getrennt hintereinander ausgefihrt. Dies fuhrt dazu, dass die Zwischenergebnis-
se jedes Operators tempordr gespeichert werden mussen. Ein meist unnétiger Aufwand
wenn man bedenkt, dass die Ausgaben eines Operators in der Regel die Eingaben fur den
folgenden Operator sind. Das Pipelining versucht diesem Nachteil zu umgehen, indem
aktuell erzeugte Zwischenergebnisse eines Operators sofort zum ndchsten weitergereicht
werden. Diese Art der Parallelisierung bedeutet besonders auch in verteilten Datenbank-
systemen einen deutlichen Performanzgewinn.

Anfrage in einer Hochsprache (z.B. SQL)

1. Vorverarbeitung { E:rr:::u\‘;:ﬁgié?::nnen)’

Interne Darstellung der Anfrage

2. Anfrageoptimierung { Optimierer

Zugriffsplan

3. Code-Erzeugung { Code-Generator

Code zur Ausfiihrung der Anfrage

4. Ausfiihrung { Laufzeitdatenbank-
prozessor

Anfrageergebnis

Abbildung 2.1: Typische Schritte der traditionellen Anfrageverarbeitung
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2.1.2 Anfrageoptimierung

Wie bereits erwéhnt, begrindet sich die Notwendigkeit einer Anfrageoptimierung aus
dem Ziel, eine deskriptiv formulierte Anfrage in einen effizienten Ausfiihrungsplan um-
zuwandeln. Ein solcher Plan wird dann als effizient betrachtet, wenn er bei seiner Aus-
fihrung mdglichst wenig geringe verursacht [Vos00]. Die Gesamtkosten setzen sich wie
folgt zusammen [ENO02]:

e Zugriffskosten auf Sekundarpeicher
Kosten fir das Durchsuchen, Lesen und Schreiben von Datenblocken, die auf dem
Sekundarspeicher gespeichert sind.

e Speicherkosten
Kosten fur die Speicherung von temporaren Dateien.

e Abarbeitungskosten
Kosten fiir die Durchfiihrung von Speicheroperationen auf die Datenpuffer wahrend
der Anfragenausfiihrung

e Hauptspeicherkosten
Anzahl der wahrend der Anfragenausfiihrung bendétigten Puffer im Hauptspeicher

e Kommunikationskosten
Kosten der Ubertragung der Anfrage und ihrer Resultate vom Datenbankrechner an
den Anfragensteller. In verteilten Datenbanken kommt die Anzahl der bendtigten
verschickten Nachrichten dazu.

Wie bei den meisten Formen der Optimierung, handelt es sich auch bei der Anfrageopti-
mierung um ein kombinatorisches Problem mit hoher Komplexitat. Aus diesem Grund
lasst sich die beste Strategie nicht in vertretbarem Zeitaufwand finden. In der Praxis wird
deshalb weniger versucht die beste, sondern eine moglichst optimale Ausfuhrungsstrate-
gie zu ermitteln bzw. schlechte Strategien zu vermeiden.

Als wichtiger Bestandteil der Anfrageverarbeitung, besteht die Optimierung ihrer-
seits typischerweise aus drei Phasen. Dazu zéhlen zum einen die beiden prinzipiellen
Techniken der logischen und physischen Optimierung [KE99] und zum anderen die
kostenbasierte Auswahl des letztlich auszufuhrenden Anfrageplans. Die Aufgabe der
Optimierungstechniken ist die Erzeugung aquivalenter Alternativpléne. In der Phase der
kostenbasierten Auswahl wird aus allen Anfrageplédnen derjenige ausgewahlt, der auf
Basis von Kostenabschatzungen am besten ist.

Die logische Optimierung, oder auch High-Level-Optimierung, befindet sich auf der
Ebene der logischen Algebra, also der Relationenalgebra im relationalen Datenmodell. Da
die Umformung auf syntaktischer Ebene geschieht, wird diese Technik auch als Rewri-
ting bezeichnet. Dieses Niveau erlaubt eine Optimierung unabhangig von der eigentlichen
Implementierung des Datenbanksystems.

Fir das Erzeugen der Alternativanfrageplane werden im Wesentlichen heuristische
Regelen angewendet, welche die Reihenfolge der Operatoren im Anfrageplan festlegen.
Eine Heuristik ist eine Regel, die aus Erfahrung in den meisten Féllen gute Ergebnisse lie-
fert, aber nicht garantieren kann [ENO2]. Die Heuristiken bei der logischen Optimierung
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Algebraterm

o e

Optimierung

Logische Optimierung

Algebraterm

Physische Optimierung

mehrere Zugriffsplane

Kostenbasierte Auswahl

ausgewahlter Zugriffsplan

Abbildung 2.2: Phasen der Optimierung

zielen darauf ab, moglichst kleine Zwischenergebnisse zu erzeugen. Mit diesem Ansatz
lassen sich die meisten vorgestellten Kosten (Zugriffskosten, Abarbeitungskosten,...) mi-
nimieren. Im Detail fallen folgende Heuristiken darunter [KE99]:

e Aufbrechen von Selektionen
e \erschieben der Selektionen soweit wie moglich nach unten im Operatorbaum
e Zusammenfassen von Selektionen und Kreuzprodukten zu Joins

e Bestimmung der Reihenfolge der Joins in der Form, dass moglichst kleine Zwi-
schenergebnisse entstehen

e unter Umsténden Einftigen von Projektionen

e \erschieben der Projektionen soweit wie moglich nach unten im Operatorbaum

Um die Aquivalenz der Anfrageplane durch das Vertauschen der Operatorreihenfolge
zu gewadhrleisten, mussen die Umformungsregeln der Relationenalgebra eingehalten
werden. Eine vollstdndige Auflistung dieser Umformungsregeln findet sich z.B. in
[ENO2].

Bei der physischen Optimierung, oder auch Low-Level-Optimierung, werden fir
die Optimierung die Interna des Datenbanksystems herangezogen. Diese Technik
arbeitet auf der sogenannten physischen Algebra, deren Operatoren die implementierten
Gegenstlicke der abstrakten Operatoren der logischen Algebra darstellen. So gibt es in
der Regel mehrere Mdglichkeiten, einen logischen Operator physisch zu implementieren.
Vor allem fir komplexe Operatoren wie z.B. dem Join existieren unterschiedliche
Implementierungen (Nested-Loop-Join, Merge-Join, Hash-Join,...).

Die physische Optimierung erzeugt flr einen Anfrageplan, als Ergebnis der logischen
Optimierung, mehrere Zugriffsplane, indem fur die logischen Operatoren des Anfrage-
plans, die verschiedenen Implementierungen der Operatoren eingesetzt werden. Logi-
scherweise kdnnen nur diejenigen Implementierungen genutzt werden, die auch tatséch-
lich im verwendeten Datenbankmanagementsystem umgesetzt sind.
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Wird bei der Anfrageverarbeitung das vorgestellte Pipelining eingesetzt, entstehen
noch weitere Mdglichkeiten fur eine physische Optimierung. Fur einige Implementie-
rungen bindrer Operatoren (in erster Linie Joins) ist der Aufwand fiir die Abarbeitung
abhéngig von der Reihenfolge der Eingaberelationen (z.B. Nested-Loop-Join). Imple-
mentierungen, die im Gegensatz dazu ihre Eingaberelationen gleichberechtigt behandeln,
werden auch als symmetrisch bezeichnet (z.B. Merge-Join) [AHO00]. Mit dieser Technik
kann sich die Abarbeitungsdauer mit der der Reihenfolge der Eingaberelationen dndern,
wenn sich die Zeit zwischen den Eintreffen der Tupel beider Relationen unterscheidet.
In diesem Fall sollte bei der Optimierung abgeschatzt werden, welche Reihenfolge der
Eingaberelationen am sinnvollsten ist.

Da Heuristiken gute Ergebnisse nicht garantieren kodnnen, verldsst man sich nicht
allein auf diese Techniken. Um die Gute von Anfrageplanen quantifizierbar und
damit vergleichbar zu machen, wird ein Kostenmodell benétigt. Ein Kostenmodell
stellt Funktionen zur Verfiigung, die den Aufwand bzw. die Laufzeit ermitteln. Doch
auch diese Kostenfunktionen sind lediglich nur Schatzungen, so dass die gewéhite
Ausfiihrungsstrategie nicht zwangsweise optimal ist.

Kenngrolen fir das Kostenmodell sind vor allem [KE99]:

¢ Indexinformationen

e Clustering-Informationen

e Kardinalitaten der Datenbank
e Attributverteilungen, u.a.

Diese Informationen werden im Datenbankkatalog gespeichert und gepflegt.

2.1.3 Nachteile der traditionellen Anfrageverarbeitung

Die vorgestellten Konzepte der Anfrageverarbeitung und -optimierung liefern in einem
Ein-Prozessor-Datenbanksystem meist nahezu optimale Ausfiihrungsstrategien. In sol-
chen Systemen steht der kostenbasierten Auswahl eine Vielzahl von Parametern zur Ver-
flgung, welche sich dazu in kurzen Zeitrdumen kaum andern. Mit dieser Voraussetzung
lassen sich so relativ aussagekraftige Kostenabschatzungen fir die verschiedenen Ausfuh-
rungsstrategien treffen.

In verteilten Datenbanksystemen miissen dagegen andere Annahmen gemacht werden.
Diese Systeme verfligen typischerweise Uber eine weitaus hohere Komplexitét als nicht-
verteilte Systeme. Der Anstieg der Komplexitét lasst sich wie folgt einteilen [AHOO]:

e Komplexitat bezuglich der Hardware und Auslastung
In weitverteilten Umgebungen - vor allem in heterogenen, aber auch in homogenen
- ist die Performanz und Auslastung der gesamten Hardware kaum vorhersagbar.
Antowrtzeiten kdnnen nicht garantiert werden, was Verzdgerungen zur Folge haben
kann.
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o Komplexitat bezuglich der Daten
Die Schétzungen fiir die Selektivitat der Operatoren sind in weitverteilten Daten-
banksystemen oft unzureichend, da die dazu benétigten statistischen Informationen
uber die Datenverteilung in der Regel nicht verfligbar sind.

o Komplexitat bezuglich der Nutzerschnittstelle
In weitverteilten Umgebungen dauert der Grofteil der Anfragen deutlich langer als
in Ein-Prozessor-Systemen. Deshalb soll der Nutzer Einfluss auf die Ausfuhrung
einer Anfrage besitzen.

Man muss also davon ausgehen, dass sich die Parameter fiir eine Anfrageoptimierung
laufend &ndern. Die drei wesentlichen KenngrdRen sind dabei [AHOO0]:

e Kosten der Operatoren
e Selektivitat der Operatoren
e Ankunftsrate der Tupel

Das eigentliche Problem liegt nun in der strikten Trennung von Optimierung und Aus-
fuhrung einer Anfrage innerhalb der herkémmlichen Anfrageverarbeitung. Bei diesem
statischen Verfahren, kann auf Verdnderungen zur Laufzeit der Anfrage nicht eingegan-
gen werden. Sinnvoll wére eine kontinuierliche Optimierung zur Ausfihrungszeit.

2.2 Formen adaptiver Anfrageverarbeitung

2.2.1 Grundlegende Eigenschaften

Da der Begriff ,,adaptives System* nicht immer gleichbedeutend verwendet wird, soll
zunéchst definiert werden, was in diesem Kontext ein adaptives System ausmacht. Dafur
mussen drei Eigenschaften erfiillt sein [HFC*00]:

1. Das System erhalt Informationen aus seiner Umgebung.
2. Diese Informationen haben Einfluss auf das Verhalten des Systems.

3. Der gesamte Prozess ist iterativ. Es entsteht eine Riickkopplung zwischen dem Zu-
stand der Umgebung und dem Systemverhalten.

Man beachte, dass auch die statische Anfrageverarbeitung bereits die ersten beiden Punk-
te erflllt. Der wesentliche Unterschied ist der Verzicht auf eine Schleife tiber dem Erfas-
sen des Umgebungszustands und der Anpassung des Systemverhaltens. Doch genau hier
steckt das Potential flr die Entwicklung effizienter, adaptiver Verfahren fir die Anfrage-
verarbeitung. Durch obige Definition kdnnen drei Haupteigenschaften adaptiver Systeme
extrahiert werden [HFC*00]:

1. Haufigkeit der Adaption
Gibt an, wie oft das System die Parameter der Umgebung erfasst und wie oft es sich
danach anpasst.
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2. Auswirkung der Adaption
Spezifiziert, welche Systemeigenschaften bei einer Anpassung geéndert werden
kénnen.

3. Dauer der Adaption
Damit wird die L&nge des Zeitraumes beschrieben, in dem die Ruickkopplung zwi-
schen Umgebung und System aufrecht gehalten wird.

2.2.2 Maoglichkeiten fur eine adaptive Anfrageverarbeitung

Eine adaptive Anfrageverarbeitung unterscheidet sich von einer statischen nur dadurch,
dass die Anpassung an die Systemumgebung ein iterativer Prozess wéhrend der Anfrage
ist. Deshalb kdnnen die Mdoglichkeiten fiir eine adaptive Anfrageverarbeitung aus der
statischen Anfrageverarbeitung abgeleitet werden. Die Entwicklung adaptiver Verfahren
fur die Anfrageverarbeitung basiert auf zwei Prinzipien. Zum einen wird auf die Veran-
derungen der Systemumgebung eingegangen, indem der Ausfuihrungsplan einer Anfrage
zur Laufzeit modifiziert wird. Dies entspricht den Rewriting-Techniken der statischen
Anfrageverarbeitung. Zum anderen werden spezielle physische Operatoren entwickelt,
die ihr Verhalten an unvorhersagbaren Bedingungen bzw. Verdnderungen der Umgebung
anpassen. Das Gegenstiick innerhalb der statischen Anfrageverarbeitung ist die physische
Optimierung. Auf beide Punkte soll im Folgenden naher eingegangen werden [GPFS02].

Eine Modifikation des Anfrageplans kann unabhéngig auf zwei Ebenen erfolgen:
der logischen und der physischen Ebene. Auf der logischen Ebene unterscheidet man
zwei Varianten:

e Erzeugung eines Alternativplans
Fir den restlichen Plan einer Anfrage wird ein komplett neuer Alternativplan er-
stellt. Dabei kdnnen neue Operatoren hinzugeftigt, Operatoren geéndert und die
Form der Baumstrukter des Planes gedandert werden.

e Neuordnung des Anfrageplans
Hier darf lediglich die Reihenfolge der Operatoren des restlichen Anfrageplans ver-
andert werden. Operatoren kdnnen weder hinzugefigt noch verandert werden.

Die Methoden sind offensichtlich nicht disjunkt, da die Erzeugung eines Alternativplans
die Neuordnung der Operatoren mit einschliel3t. In beiden Fallen muss gewahrleistet
sein, dass durch eine Modifikation nur dquivalente Anfragpléne entstehen. In relationalen
Datenbanksystemen missen die Modifikationen deswegen gemal den Regeln der
Relationenalgebra erfolgen.

Adaptive Algorithmen fiir Operatoren koénnen ihr Verhalten zur Laufzeit andern, in
Abhangigkeit veréanderter Bedingungen und den zur Verfligung stehenden Informationen
Uber die Systemumgebung. Dazu werden die entsprechenden Parameter kontinuierlich
erfasst und ausgewertet. Die Anpassung der Algorithmen geschieht vollkommen autonom
und somit unabhangig vom Datenbankmanagementsystem.

Auch wenn die Erfassung und Auswertung der Systemparameter kontinuierlich er-
folgt, kann die Anpassung des Algorithmus nicht zu beliebigen Zeitpunkten durchgefiihrt
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werden. Zur Laufzeit entstehen in der Regel immer Zusténde, in denen keine Veranderun-
gen vorgenommen werden durfen, ohne dass das Ergebnis verfalscht wird. Um den Grad
der Adaptivitdt von Algorithmen zu quantifizieren, bedient man sich zweier Begriffe aus
der Parallelprogrammierung, mit denen sich die Zustdnde der Algorithmen beschreiben
lassen [AHOO0]:

e Synchronisationsschranke
Zeitpunkt, an dem ein Algorithmus in einen Zustand ubergeht, in dem keine Verén-
derungen am Verhalten vorgenommen werden durfen.

e Symmetriemoment
Zeitpunkt, an dem ein Algorithmus angepasst werden kann, ohne dass sein Zustand
veréndert und dadurch das Ergebnis verféalscht wird.

Je weniger Synchronisationsschranken und je mehr Symmetriemomente ein Algorithmus
besitzt, desto hoher ist dessen Adaptivitat. Bei deren Entwicklung darf allerdings die
Komplexitat und damit die absoluten Kosten nicht unbeachtet bleiben.

2.2.3 Merkmale fiir eine Klassifikation adaptiver Verfahren

Eine konkrete Umsetzung einer adaptiven Anfrageverarbeitung kann anhand einiger
charakteristischer Merkmale beschrieben werden. Damit ist es moglich, verschiedene
Verfahren zu Kklassifizieren bzw. zu vergleichen.

Einflussgroflen fir die Anpassung. Abhangig vom verwendeten \erfahren, wer-
den nur bestimmte KenngrofRen der Umgebung durch die Adaption beeinflusst. Die
wichtigsten davon sind:

e Speicherschwankungen
Das System versucht, sich auf die Verfligbarkeit des Hauptspeichers und Speicher-
knappheiten anzupassen.

e Praferenzen des Anwenders
Der Anwender kann einen indirekten Einfluss auf die Anfrageverarbeitung haben.
Dazu gehort z.B., dass der Anwender moglichst schnell Teilergebnisse der Anfrage
erwartet. Der Anwender kann auch die Anfrageergebnisse unterschiedlich wichten.
Hoher gewichtete Daten werden dann vom System schneller verarbeitet.

e Ankunftsrate der Daten
In parallelen und verteilten Systemen wird typischerweise versucht, die Ankunfts-
rate der Daten anzupassen.

o aktuelle Statistiken
Viele statistische GroRen stehen zum Beginn einer Anfrage nicht zur Verfligung
oder unterliegen wéhrend der Laufzeit starken Schwankungen. Diese GréRen mus-
sen wahrend der Ausfiihrung der Anfrage bestimmt bzw. aktualisiert werden.
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Performanzschwankungen
\or allem in parallelen Systemen kommt es oft zu unvorhersagbaren Leistungsein-
bruchen, auf die intelligent reagiert werden muss.

Kombination oben genannter Parameter
Viele adaptive Verfahren haben Einfluss auf mehrere Parameter der Umgebung.

Ziel der Anpassung. Obwohl als Hauptziel immer eine Steigerung der Effizienz und
Effektivitat der Anfrageverarbeitung angestrebt wird, kdnnen dennoch drei wesentliche
Teilziele unterschieden werden.

Minimierung der gesamten Antwortzeit
Die Zeit vom Absetzen der Anfrage bis zu deren volistandigen Verarbeitung soll
maoglichst kurz sein.

Minimierung der initialen Antwortzeit
Die Zeit vom Absetzen der Anfrage bis zum Eintreffen der ersten Teilergebnisse
soll maoglichst kurz sein.

Maximierung des Durchsatzes
Das System soll pro Zeiteinheit moglichst viele Daten einer oder mehrerer Anfragen
verarbeiten.

Parameter flir die Ruckkopplung. Fir die Anpassung kdnnen verschiedene Parameter
der Systemumgebung erfasst und ausgewertet werden.

Verfligbarkeit des Speichers
Uberwacht wird vor allem die Auslastung des Hauptspeichers bzw. des Puffers.

Nutzereingaben
Umfasst die nutzerspezifischen Prioritaten fr Teile einer Anfrage und das Update
von Teilergebnissen.

Verfuigbarkeit des Inputs fiir Operatoren
Die Eingabedaten mancher Operatoren konnen blockiert sein. Im diesem Fall muss
laufend gepriift werden, wann weiterer Input zur Verfligung steht.

Auslastung
Darunter versteht man in erster Linie die Auslastung der Operatoren. Diese spiegelt
sich beispielsweise in der Lange der Eingangswarteschlangen wider.

Datenrate
Rate, mit der neue Tupel erzeugt werden.

Statistiken

Dazu gehdren KenngrofRen wie die Grofie der Relationen, Anzahl verschiedener
Werte fir ein Attribute, die Verfligbarkeit von Indexen und andere. Welche GroRen
zur Verfligung stehen und ob es sich nur um Schatzungen handelt, hangt von der
Systemumgebung ab.
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Haufigkeit der Ruckkopplung. Beschreibt, wann und wie oft eine Anpassung auf die
veranderte Systemumgebung erfolgt.

e inter-operator
Die Anpassung an die Systemumgebung erfolgt jedes Mal zwischen zwei physi-
schen Operatoren.

e intra-operator
Die Anpassung an die Systemumgebung erfolgt zur Laufzeit der physischen Ope-
ratoren.

Zielumgebung. Adaptive Verfahren sind in der Regel fiir eine bestimmte Systemumge-
bung optimiert, da in verschiedenen Umgebungen nicht die gleichen Voraussetzungen
gelten bzw. die gleichen Annahmen gemacht werden kdnnen. Zwar ist ein konkretes Ver-
fahren nicht zwangslaufig an seine Zielumgebung gebunden, liefert aber dort die besten
Ergebnisse.

e Ein-Prozessor-System
Samtliche Operationen werden durch einen Prozessor verarbeitet.

e paralleles System
In diesem Kontext wird unter einem parallelen System ein eng verbundenes
Mehrprozesser-System verstanden (geringe raumliche Verteilung).

o verteiltes System
Loser Verbund unabhéngiger Rechner, die tiber ein Netzwerk miteinander in Ver-
bindung stehen (grofRe rdumliche Verteilung).

Verantwortliche Komponenten fur die Anpassung.

e physische Operatoren
Es werden lediglich physische Operatoren eingesetzt, die ihr Verhalten zur Laufzeit
anpassen konnen, unabhangig vom restlichen Datenbankmanagementsystem.

¢ lokale Entscheidungsfindung
Trifft zu, wenn der Anfrageoptimierer oder eine andere Komponente des Daten-
bankmanagementsystems, den aktuellen Anfrageplan zur Laufzeit auswertet.

e globale Entscheidungsfindung
In parallelen und verteilten Systemen wird hierfir eine globale Sicht mehrerer be-
teiligter Knoten bendétigt.

Art der Umsetzung. Die Strategien fiir die Implementierung einer adaptiven Anfragever-
arbeitung konnen in folgende drei Kategorien eingeteilt werden:

e physische Operatoren
Die samtliche Adaptivitat wird durch physische Operatoren realisiert. Weitere Ein-
griffe in des Datenbankmanagementsystem muissen nicht vorgenommen werden.

e konkreter Algorithmus
Die Adaptivitat wird durch Erweiterungen und gezielte Verdnderungen der Opera-
toren des Anfrageplanes erreicht.
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e System
Die Adaptivitat wird durch mehrere unabhangige Techniken realisiert, die zu einer
Einheit zusammengefasst werden.

2.2.4 Bestehende adaptive Anfrageverarbeitungen

Die Fortschritte in der Entwicklung adaptiver Anfrageverarbeitungen lasst sich gut an der
Haufigkeit der Adaption zeigen [HFC*00]. In diesem Abschnitt sollen einige Konzepte
inkl. konkreter Umsetzungen vorgestellt werden.

Batch-Optimierung und Late Binding Schemes

Obwohl beide Verhahren nicht direkt der Definition fir adaptive Systeme (siehe Ab-
schnitt 2.2) entsprechen, sollen sie aus Griinden der Vollstandigkeit dennoch kurz genannt
werden.

Der Anfrageoptimierer des System R [SAC*79], dessen Grundideen Bestandteil der
meisten relationalen Datanbankmanagementsysteme ist, verwaltet in einem Katalog Sta-
tistiken (Kardinalitdten der Tabellen, Verteilung der Attributwerte,...) fur die kostenba-
sierte Auswahl der verschiedenen Anfragepldne. Die Anpassung an das System besteht
nun darin, diesen Katalog periodisch vom System aktualisieren zu lassen. Die Aktualisie-
rung wird dabei manuell gestartet und ist unabhéngig von der eigentlichen Anfragever-
arbeitung. Die Haufigkeit der Adaption ist vergleichsweise selten, die Aktualisierung des
Katalogs erfolgt typischerweise ein Mal pro Tag oder Woche.

Late Binding Schemes sind eine spezielle Erweiterung des Anfrageoptimierers des
System R. Ziel hierbei ist es, in Laufe der Abarbeitung von Anfragen, sich haufig
wiederholende Teilanfragen zu erkennen. Diese Teilanfragen werden dann als vollstandig
kompilierter Maschinencode im Datenbanksystem hinterlegt. Muss eine solche Teilanfra-
ge dann erneut ausgefuihrt werden, wird sofort auf den kompilierten Code zurtickgegriffen.

Per-Query Adaptivitat

Die Anpassung an das System erfolgt hier zwischen der Verarbeitung von Anfragen
bzw. nach der Verarbeitung von Anfragen. Eine Umsetzung dieser Idee ist die Adap-
tive Selectivity Estimation [CR94], welche wiederum ein Erweiterung des System R
Optimierers darstellt. Hier werden die Grolien aller Teilergebnisse als Metainformation
innerhalb der Anfrage gespeichert. Nach jeder Verarbeitung einer Anfrage wird der
Datenbankkatalog gemaR den gesammelten Metadaten aktualisiert, welcher somit fir die
weitere Optimierung verwendet wird.

Competition und Sampling
Beim Competition-Verfahren [AZ97] wird unter den verschiedenen Zugriffsmoglichkei-
ten auf eine Tabelle die geeignetste ausgewdhlt. Es starten zunéchst alle Mdglichkeiten.
Nach kurzr Zeit kann anhand der ersten Ergebnisse die vielversprechendste weiter
ausgefuhrt werden. Alle anderen werden abgebrochen. Die Haufigkeit der Adaption ist
bereits intra-operator, auch wenn die Optimierung relativ beschrankt ist. Innerhalb einer
Anfrage wird lediglich eine Entscheidung pro Tabelle getroffen.

Ganz ahnlich ist die Arbeitsweise des sogenannten Sampling [BDF*97]. Beim
Sampling werden Teilanfragen stichprobenartig durchgefiihrt, um den Aufwand fur
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die Verarbeitung der gesamten Anfrage abzuschétzen. Bezlglich der Haufigkeit der
Adaptivitat bewegt sich dieses Verfahren in der Gegend der Per-Query Adaptivitat.

Inter-Operator Optimierung und Query Scrambling

Nach der Per-Query Adaptivitat ist die Inter-Operator Optimierung der nachste logische
Schritt. In einem ersten Ansatz fiir verteilte Systeme werden Teilanfragen an verschiedene
Knoten geschickt und die zurlickgegebenen Ergebnisse zur Entscheidungsfindung fiir das
weitere Vorgehen verwendet [ONP196].

Durch das Query Sampling werden Anfragepléne zu bestimmten Zeitpunkten inner-
halb der Anfrageverarbeitung modifiziert [AFTU96]. Solche Zeitpunkte kdnnen z.B. nach
der Ausfuhrung blockierender Operatoren (Sortierung,...) sein oder wenn signifikante
Performanzeinbruche auftreten.

Intra-Operator Optimierung (Adaptive Anfrageoperatoren)

Bei der Sortierung und dem Hashing handelt es sich in beiden Fallen um einen Ope-
rator, dessen Kosten abhéngig vom zur Verfugung stehenden Hauptspeicher sind. Um
auf Schwankungen bei der Vergabe von Hauptspeicherressourcen besser reagieren zu
kénnen, kommen fur das Sortieren und das Hashing spezielle Algoritmen zum Einsatz,
die ihr Verhalten den Schwankungen anpassen. Die Adaption erfolgt sowohl beim Verlust
von Hauptspeicher als auch bei der Allokation neuer Bereiche [PCL93].

Ein weiterer Operator der immer wieder gesondert betrachtet wird, ist der Join. Als
bindrer Operator verbindet er Tupel unterschiedlicher Relationen miteinander. Vor allem
in verteilten Datenbanksystemen ist die Ausfiihrungszeit des Joins deshalb abhéngig von
der Ankunftsrate der Tupel aus beiden Relationen. Spezielle Join-Algorithmen wie die
Ripple Join Familie passen ihr Verhalten automatisch an die Ankunftsraten der Tupel an
[HH99].

Adaptive Partitionierung von Anfragen

In verteilten Datenbanksystemen kann eine Intra-Operator Optimierung erreicht werden,
indem die Daten aufgeteilt und an verschiedene Knoten im Netz verteilt werden. In
traditionellen Systemen wird die Partitionierung statisch durch Round-Robin oder Hash-
Verfahren verteilt. Bei der adaptiven Partitionierung ist die Aufteilung abhéngig vom
aktuellen Zustand der Systemumgebung. Eine konkrete Umsetzung ist River [ADAT *99].

Eddies: Kontinuierliche Adaption

Eddies erreichen eine kontinuierliche Adaption durch die Verschmelzung von Intra- und
Inter-Operator Optimierung. Der Eddy ist somit einer der ,,aggressivsten* Umsetzungen
einer adaptiven Anfrageverarbeitung [AHOO]. Ein Eddy ermdglicht es, die Abarbeitungs-
reihenfolge der Operatoren einer Anfrage fur die einzelnen Tupel kontinuierlich neu zu
ordnen. Da seine grundlegenden Konzepte und Ideen die Basis fur den in dieser Arbeit
vorgestellten Mechanismus sind, soll auf den Eddy-Mechanismus an dieser Stelle naher
eingegangen werden.

Zunéchst wurde der Eddy als zentrale Komponente implementiert. GeméalR den vor-
gestellten Charakteristiken fiir eine adaptive Anfrageverarbeitung, lasst sich der
zentralisierte Eddy wie folgt einordnen [GPFS02]:
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Neuordnung der Operatorreihenfolge fur die Modifikation des Anfrageplans
kein Einfluss auf den physischen Zugriffsplan
keine Neupartitionierung der Anfrage

mehrere ZielgoRen fur die Anpassung (Speicherschwankungen, Tupelankunftsra-
ten, ...)

Hauptziel: Minimierung der Antwortzeit
Feedback durch statistische Parameter
Intra-Operator Feedback

Zielumgebung: Ein-Prozessor-Systeme

lokale Entscheidungsfindung fiir die Optimierung

Umsetzung als konkreter Algorithmus

Abbildung 2.3 zeigt schematisch die Arbeitsweise eine zentralisierten Eddies.
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Abbildung 2.3: Zentralisierter Eddy

Der Eddy ist eine Art Verteiler oder Pipeline, der die Tupel der Eingangsrelationen zu
den verschiedenen Operatoren der Anfrage leitet und die Ergebnisse derer auch wieder
erhalt. Damit wird quasi die dynamische, logische Optimierung realisiert. Die Entschei-
dung, in welcher Reihenfolge die Operatoren abgearbeitet werden, treffen unterschiedli-
che Routing-Strategien. Der Eddy-Mechanismus als solches kann auch die Konzepte der
dynamischen, physischen Optimierung ausnutzen, falls die Operatoren dementsprechend
implementiert sind.

Innerhalb des Routing muss sichergestellt werden, dass fur alle Tupel nur legale Wege
erzeugt werden. Hilfsmittel hierfir sind Statusbits. Um eine doppelte Ausfuhrung einer
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Operation zu vermeiden, erhalt jedes Tupel pro Operator ein sogenanntes Done-Bit. Bei
der Initialisierung sind alle Done-Bits ungesetzt. Passiert ein Tupel einen Operator er-
folgreich, wird das entsprechende Done-Bit gesetzt. Ein unkontrolliertes Routing birgt
dartiber hinaus die Gefahr, dass Operatorreihenfolgen entstehen kénnen, die nicht mehr
aquivalent sind, da sie die Umformungsregeln der Relationenalgebra verletzen. Als Ge-
genmalinahme wird jedes Tupel um ein Ready-Bit pro Operation erweitert. Das Ready-Bit
zeigt an, wann ein Operator ausgefiihrt werden darf. Diese Ready-Bits miissen nach je-
der Ausfiihrung eines Operators anhand der Umformungsregeln aktualisiert werden. Ein
Tupel darf also immer nur zu einem Operator mit ungesetzten Done-Bit und gesetzten
Ready-Bit geschickt werden.

Fir das Routing der Tupel sind verschiedene Strategien denkbar. So kann z.B. die
Lange der Eingangswarteschlangen der Operatoren als MaR fiir deren Kosten angesehen
werden. Ein Tupel wird dann zu dem Operator mit der kiirzesten Warteschlange geleitet.
Eine weitere Strategie nutzt einen Ticket-Mechanismus als Indikator fur die Selektivitat.
Fir jeden Operator besitzt der Eddy einen Zahler, der inkrementiert wird, wenn ein Tupel
zu dem dazugehdrigen Operator geschickt wird. Kommt danach ein Ergebnistupel zurck,
wird der Zahler wieder dekrementiert. Operatoren mit einer hohen Selektivitat erzeugen
also einen hohen Zahlerstand. Bei dieser Routing-Strategie werden genau diese Operato-
ren bevorzugt angelaufen. Eine genaue Umsetzung der kurz vorgestellten Strategien sowie
noch weiterer, findet sich in [AHOO].

\orteil des zentralisierten Eddies ist die relativ einfache Implementierung, bei einer
dennoch héchst dynamischen Ausfihrung. Als zentrale Instanz hat der Eddy aber auch
folgende Nachteile:

e alle Original-, Zwischenergebnis- und Ergebnistupel muss der Eddy verarbeiten
e der Eddy muss sdmtliche Routing-Entscheidungen fur jedes Tupel treffen
e hohe Netzlast durch das stdndige Hin- und Herschicken der Tupel

Der Eddy kann dadurch selbst schnell zum Flaschenhals werden und somit die Aus-
fuhrung bremsen [TDO03]. Vor allem in einer P2P-Umgebung ist der Einsatz eines
zentralisierten Eddies nicht praktikabel. Er widerspricht der Idee von gleichberechtigten
Netzknoten und hebt somit die genannten Vorteile von P2P-Netzen auf.

Die ndachste logische Weiterentwicklung sind die verteilten Eddies. Beziiglich der
Charakteristiken flr adaptive Anfrageverarbeitungen, ist die Zielumgebung ein verteiltes
Datenbanksystem. Ansonsten unterscheiden sich beide Eddy-Varianten nur wenig.
Kernstick ist auch hier die dynamische Auswahl des n&chsten Operators, aber ohne
Hilfe einer zentralen Komponente. Nachdem ein Operator ein Ergebnistupel erzeugt
hat, wird dieses direkt an den ndchsten Operator geschickt (siehe Abbildung 2.4). Die
Routing-Entscheidungen treffen hier also die Operatoren.

In Abbildung 2.4 stellen die gestrichelten Linien alle moglichen Wege fiir die Aus-
fihrung dar. Die dicke Linie zeigt beispielhaft die Operatorfolge fiir ein beliebiges Tupel.
Auch bei verteilten Eddies werden Ready- und Done-Bits bendtigt, um eine doppelte Aus-
fihrung von Operatoren und Verletzungen der Umformungsregeln der Relationenalgebra
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Abbildung 2.4: Verteilter Eddy

zu vermeiden. Im Graph fehlen bereits alle Pfade, die aufgrund der Ready-Bits nicht mog-
lich sind.

Praktikable Routing-Strategien basieren auf ahnlichen Parametern wie schon beim
zentralisierten Eddy. Mogliche Parameter sind beispielsweise [TDO3]:

e Lange der Eingangswarteschlangen
e erlernte Selektivitat durch einen Ticket-Mechanismus
e berechnete Selektivitat durch einen Monitor fir jeden Operator

e durchschnittliche Verweilzeit eines Tupels in einem Operator als MaR fir dessen
Kosten

Dazu kommen noch Strategien, die auf den Kombinationen der verschiedenen Parametern
basieren. In [TD03] werden konkrete Routing-Strategien sowie deren Vor- und Nachteile
im Detail vorgestellt.

Im Normalfall befindet sich ein Operator immer auf dem gleichen Peer. Um Fla-
schenhalseffekte aufgrund tberlasteter Peers zu vermeiden, werden Techniken fur eine
Lastverteilung benotigt. Beherbergt ein Peer mehr als einen Operator, kann der Peer bei
zu hoher Last einen oder mehrere Operatoren an Nachbar-Peers abgeben (Box-Sliding).
Ist ein Peer mit nur einem Operator (berlastet, kann dieser Operator auf zwei Peers
verteilt werden (Box-Splitting). In beiden Fallen muss das Routing auf die verénderte
Situation angepasst werden. Genaueres zu diesem Thema auch in [TDO03].

Der zentralisierte, aber vor allem der verteilte Eddy-Mechanismus, setzen bereits eini-
ge interessante Konzepte fur eine adaptive Anfrageverarbeitung um. Die Eingriffe sowohl
in die logische als auch in die physische Optimierung, erlauben dem Eddy ein hdchst
dynamische Ausfiihrung einer Anfrage.
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Kapitel 3

CAN-Dbasierte P2P-Netze

3.1 Das Peer-to-Peer Netzmodell

Das Peer-to-Peer Modell (kurz: P2P) ist einer der beiden grundlegenden Ansatze fir die
Vernetzung von Rechnern. Der zweite Ansatz ist die Client/Server-Architektur, siehe Ab-
bildung 3.1. Im Gegensatz zu dieser, besteht ein P2P-Netz aus gleichberechtigten Knoten,
den sogenannten Peers [Ber98]. Innerhalb solcher Umgebungen existieren keine dedi-
zierten Rechner fir die Bereitstellung von bestimmten Server-Diensten. Jeder Peer kann
gleichzeitig Client und Server sein. Alle Netzknoten arbeiten im Wesentlichen autonom
(Abbildung 3.2). Fur die Ressourcenverwaltung, Optimierung und andere Aufgaben, ist
jeder Peer selbst verantwortlich. Auch die Kommunikation findet direkt zwischen den
Peers statt, ohne den Umweg Uber eine zentrale Instanz.

Client
Client

I
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D Server
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e ®®
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Abbildung 3.1
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Abbildung 3.2: Peer-to-Peer Netzwerk

Da es in reinen P2P-Umgebungen keine zentrale Koordination und keine zentrale
Datenbasis gibt, besitzt kein Peer eine globale Sicht auf das gesamte Netz. Ein Peer kennt
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in den meisten Fallen nur seine direkten Nachbarn, seine Sicht ist also immer nur lokal.
Das globale Verhalten ergibt sich erst als Summe aller lokalen Interaktionen der Peers.

Diese Art der Vernetzung bietet einige klare Vorteile. Da alle Knoten gleichwertig
sind und weitestgehend autonom arbeiten, wird auch Last im Netz auf die Knoten verteilt.
Damit ist die Grol3e von P2P-Netzen quasi unbeschrénkt.

Durch das Fehlen von dedizierten Rechnern oder sonstigen Netzhierarchien, sind Fla-
schenhalseffekte (Single Point of Failure) durch Uberlastung einzelner Rechner nicht
maoglich. Diese Eigenschaft macht solche Systeme auch &uRerst tolerant gegeniiber Aus-
fallen und Angriffen. Fallt ein Peer aufgrund eines Fehlers oder Angriffes aus, ist die
Funktionstlchtigkeit des restlichen Netzes in der Regel nicht davon betroffen. Es stehen
hauptsachlich die Ressourcen des fehlenden Peers nicht mehr zur Verfligung.

P2P-Netze sind typischerweise besser skalierbar als Client/Server-Umgebungen, da
das Hinzuftigen bzw. Entfernen (gewollt oder ungewollt) von Knoten nur Aktionen in-
nerhalb der direkten Nachbarschaft des Knotens zur Folge hat. Aus diesem Grund eignen
sich P2P-Netze besonders fiir sehr dynamische Umgebungen, in denen es im Betrieb hau-
fig zum Einbinden oder Entfernen von Teilnehmern kommit.

Mit dem P2P-Modell koénnen also schnell grofle Ressourcen (Rechenleistung,
File-Sharing, ...) bereitgestellt werden, ohne dass eine besondere Netzplanung oder hohe
Kosten fur eine leistungsstarke Hardware (Server, Netzkomponenten, ...) notwendig sind
[RFHT01].

P2P-Netze haben natirlich auch Nachteile. Aufgrund ihrer groRen Dynamik gibt es
keine Garantien flr die Existenz von Peers und Verbindungen zwischen Peers. Ohne
zusétzliche Mechanismen sind die Ressourcen fehlender oder nicht mehr erreichbarer
Peers nicht zuganglich. Je nach Einsatzgebiet kann dieser Umstand toleriert oder auf
geeignete Weise moglichst umgangen werden.

Doch vor allem das Finden von Daten, ohne die Verwendung einer zentralen Koor-
dination bzw. Datenhaltung, ist schwierig. Um nicht jedes Mal das gesamte Netz mit
Suchanfragen zu fluten, werden skalierbare, dezentrale Indexierungsmechanismen beng-
tigt. Diese erlauben einen effizienten Zugriff auf die Daten, in einem vertretbaren Auf-
wand.

Viele existierende Implementierungen weichen das P2P-Konzept auf, indem sie
zentrale Instanzen fir die Indexierung der Daten einsetzen. Der eigentliche Datenaus-
tausch findet weiterhin direkt zwischen den Peers statt (z.B. Napster). Diese Systeme
sind allerdings dann deutlich schlechter skalierbar und anfalliger gegeniiber Uberlastung,
Ausfall oder Angriff der zentralen Instanzen.

3.2 Das Content-Adressable Network

Ein Content-Addressable Network (kurz: CAN) [RFH'01] ist eine logische Struktur, die
sich gerade fir den Einsatz als Overlay-Netzwerk auf einer P2P-Umgebung eignet. Als
Basis fir das CAN dient ein d-dimensionaler, kartesischer Koordinatenraum auf einem
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d-Torus. Dadurch besitzt der Koordinatenraum keine Rander, so dass von einem Punkt
aus in alle beliebigen Richtungen gegangen werden kann, ohne den Raum zu verlassen.
Abbildung 3.3 zeigt einen Torus fir einen 2-dimensionalen Koordinatenraum.

Abbildung 3.3: Torus

Dieser Koordinatenraum wird nun in disjunkte Zonen unterteilt, die durchaus unter-
schiedlich grof3 sein dirfen. Jede Zone wird von einem Knoten des unterliegenden Netz-
werkes verwaltet. Es muss dabei die Bedingung erfullt sein, dass zu jedem Zeitpunkt der
gesamte Raum abgedeckt wird. In einem CAN-basierten Netz kennen alle Rechnerknoten
ihre eigene Zone, sowie die Zonen ihrer direkten Nachbarn. In einem d-dimensionalen
Raum sind zwei Zonen genau dann benachbart, wenn sie entlang einer Dimension eine
gemeinsame Begrenzung haben und sie sich dort entlang der restlichen (d-1) Dimensio-
nen beruhren.

Abbildung 3.4 zeigt ein solche disjunkte Zerlegung des 2-dimensionalen Koordi-
natenraums. Die Ausdehnung des Raumes ist dabei in beiden Dimensionen auf ,,1“
normiert.

Die eigentliche Datenorganisation geschient mit Hilfe einer verteilten Hash-Tabelle
(DHT - Distributed Hash Table). Ganz allgemein versteht man unter Hashing die
Abbildung von Schlisseln auf Werte mit Hilfe der sogenannten Hash-Funktion h(x).
Im Falle eines CAN werden Schlissel-Werte-Paare der Form (key, value) gespeichert,
indem der Schlussel key durch die Hash-Funktion auf einen Punkt P im Koordinatenraum
abgebildet wird (h(key)=P). Auf dem Peer, der die Zone verwaltet in dem P liegt, wird
das Datum (key, value) abgelegt. Das Vorgehen fur das Auslesen der Daten gestaltet sich
analog.

Fir die gesamte Organisation der Daten werden im Kern folgende zwei Basisopera-
tionen bendtigt:

1. put(key, value)
Lokales Speichern des Paares (key, value) auf einem Peer.

2. get(key)->V
Ermitteln des Wertes value zum Schliissel key auf einem Peer.
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Abbildung 3.4: Beispiel CAN

Sowohl put als auch get sind lokale Operationen. Befindet sich der berechnete Punkt
nicht auf dem angesprochenen Peer, muss die Anfrage zunéchst an den richtigen Peer
weitergeleitet werden. Diese Aufgabe ubernimmt die methode 1ocokup (key), die beide
Basisoperationen bei Bedarf aufrufen kénnen. Das lookup ist von besonderem Interesse,
da fur ein schnelles Auffinden des richtigen Peers ein entsprechend effizienter Routing-
Algorithmus benétigt wird.

Ein intuitiver Ansatz fiir einen Routing-Algorithmus ist die Weiterleitung der Anfrage
entlang der Verbindungslinie zwischen dem aktuellen Peer und dem berechneten Punkt
P im kartesischen Koordinatenraum. Da jeder Peer die Zonen seiner direkten Nachbarn
kennt, kann er berechnen, wessen Zone den Punkt P enthalt bzw. am nachsten an P liegt.
Zu diesem Nachbarn wird nun die lookup-Anfrage geschickt. Abbildung 3.5 zeigt die
Wegwahl fiir ein lookup, fur den Fall dass Peer 1 angefragt wird, das Datum aber auf Peer
3 gespeichert ist.

Fir einen d-dimensionalen Datenraum der in n gleich grof3e Zonen unterteilt ist, lassen
sich einige Kenngrof3en abschéatzen:

e durchschnittliche Pfadlange einer lookup-Operation (Anzahl der Hops): (d/4)n'/?
e minimale Anzahl von Nachbarn: 2d
e Anstieg der Pfadlange bei wachsender Anzahl von Peers: O(n'/?)

Der Exponent (1/d) macht deutlich, dass die durchschnittliche Pfadlange bzw. deren
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Abbildung 3.5: Beispiel fur ein lookup

Wachstum bei einer Skalierung des Netzes mit dem Einsatz weiterer Dimensionen ge-
ringer wird.

Fur das Routing existieren immer mehrere Wege zwischen zwei Punkten im Raum,
so dass bei Ausféllen von Peers Alternativrouten gewéhlt werden kénnen. Die Anzahl
der moglichen Wege steigt mit der Dimension des Koordinatenraums.

Durch die Voraussetzung, dass der gesamte Koordinatenraum jederzeit vollstandig
abgedeckt sein muss, werden geeignete Algorithmen flir den Beitritt und das Verlassen
von Netzknoten benétigt.

Soll ein neuer Knoten in das CAN eingegliedert werden, mussen folgende drei Schritte
durchgefthrt werden:

1. Finden einer belegten Zone im CAN
Der neue Knoten wahlt einen zufalligen Punkt P im Koordinatenraum und schickt
an den Peer, der die Zone verwaltet die P enthélt, eine JOIN-Nachricht.

2. Split der Zone
Die betreffende Zone wird in zwei (typischerweise gleich groRRe) Teilzonen unter-
teilt und die Halfte die P enth&lt an den neuen Peer (ibergeben. Die Wertpaare der
ursprunglichen Zone werden gemaR der Aufteilung auf die beiden Peers verteilt.

3. Aktualisierung der Nachbarschaftsbeziehungen
Alle betroffenen Knoten (die beiden Peers der geteilten Zone sowie alle direkten
Nachbarn) mussen ihre Informationen tber die Zonen ihrer Nachbarn auf die ver-
anderte Aufteilung des Koordinatenraums anpassen.

Wenn d die Anzahl der Dimensionen des CANSs beschreibt, dann ist die maximale
Anzahl der betroffenen Knoten in der GrélRenordnung von O(d). Der Aufwand steigt also
linear mit der Anzahl der Dimensionen an.

Fur das Verlassen von Peers gibt es zwei prinzipielle Mdglichkeiten. Zum einen
kann der Peer explizit bekannt geben, dass er das Netz verlassen will und zum anderen,
wenn der Peer durch einen Ausfall, Uberlastung oder Angriff nicht mehr erreichbar ist.
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Abbildung 3.6: Einfiigen eines neuen Peer in ein CAN

Gibt ein Knoten sein Verlassen explizit bekannt, gentigen folgende Schritte, um eine
vollstandige Uberdeckung des Koordinatenraums wiederherzustellen:

1. Abgabe der verwalteten Zone
Der verlassende Peer Ubergibt seine Zone in der Regel an den Nachbarn mit der
kleinsten Zone ab. Dabei miissen auch die Daten an diesen Peer tibergeben werden.

2. Benachrichtigung aller Nachbarn
Sowohl der Peer mit der vereinigten Zone als auch alle seine direkten Nachbarn
mussen ihr Nachbarschaftsinformationen aktualisieren.

Féallt ein Knoten aus, oder ist aus anderen Griinden nicht mehr erreichbar, mussen zusétz-
liche MalRnahmen getroffen werden. Um Uberhaupt festzustellen, dass ein Nachbar nicht
mehr zu erreichen ist, werden periodisch Update-Nachrichten zwischen den Peers ausge-
tauscht. Beim Wegfall eines Peers bleibt dessen Update-Nachricht aus. Ist dies der Fall,
werden folgende Schritte durchgefihrt:

1. Aushandeln, welcher Nachbar die Zone Gibernimmt
Nach dem Ausbleiben der Update-Nachricht eines Peers, tauschen dessen Nachbarn
sogenannte TAKEOVER-Nachrichten aus. Diese beinhalten im Wesentlichen die
Grolie der vom Peer verwalteten Zone, der die Nachricht abgeschickt hat. Dadurch
kann festgestellt werden, welcher Nachbar die kleinste Zone verwaltet.

2. Ubernahme der Zone
Das restliche Vorgehen gestaltet sich analog zum expliziten Verlassen eine Peers
(Verschmelzung der Zone, Benachrichtigung aller direkten Nachbarn). Allerdings
gehen hier die Daten des ausgefallenen Peers verloren.

Um den Verlust von Daten durch einen Ausfélle zu umgehen, bedarf es zusatzlicher
Sicherungsmechanismen. So kénnen z.B. die Daten periodisch neu eingefligt werden
oder eine replizierte Datenhaltung zum Einsatz kommen.

Die vorgestellten Eigenschaften und Verfahren gelten fur die urspriingliche Version
eines Content-Adressable Networks. Doch es gibt noch verschiedene Erweiterungen, mit
denen ein CAN verbessert werden kann. Verbesserungen kénnen bezlglich des Routings,
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der Skalierbarkeit, der Ausfallsicherheit und anderer Punkte gemacht werden. Mdégliche
Erweiterungen sind z.B.:

e Erhohung der Dimensionalitat
Wegen (d/4)n'/¢ verringert sich die durchschnittliche Pfadlange beim Routing, bei
einem vergleichsweise geringen Mehraufwand fiir das Verwalten der zusétzlichen
Routing-Eintrage auf jedem Peer. Mit steigender Dimension wéchst auch die An-
zahl der Alternativrouten zwischen zwei Peers und damit die Ausfallsicherheit.

e \erwaltung mehrer unabhangiger Koordinatenraume

Es kommen fur die Datenorganisation mehrere Hash-Funktionen zum Einsatz. Ist
n die Anzahl der Hash-Funktionen, so wird ein Datum auf n verschiedene Stellen
gespeichert. Wahrend des Routings kann dann zwischen den verschiedenen Hash-
Funktionen gewechselt werden. Dieses Verfahren erhoht zum einem die Ausfallsi-
cherheit (Daten werden mehrfach gespeichert) und zum anderen die Effizienz des
Routings (es wird die Hash-Funktion mit dem kirzesten Abstand zum gesuchten
Punkt gewéhlt).

e Zusatzliche Routing-Metriken
Die vorgestellte Strategie, den schnellste Weg flr das Routing auf Basis der gering-
sten Distanz im Koordinatenraum zu finden, beschréankt sich allein auf die Ebene
des CAN. Peers, die im Koordinatenraum direkte Nachbarn sind, kdnnen auf phy-
sischer Ebene sehr weit auseinander liegen (hohe Kommunikationskosten). Es ist
daher sinnvoll fur das Routing auch Parameter des unterliegenden physischen Net-
zes heranzuziehen.

e Uberladen von Zonen
Anstatt jede Zone von genau einem Peer verwalten zu lassen, sind hier mehrere
Peers fur eine Zone zustandig. Dabei muss der Peer nicht nur seine Nachbarn, son-
dern auch die Peers, mit denen er sich seine Zone teilt, kennen. Die Daten einer
Zone konnen entweder fragmentiert oder repliziert auf die Peers verteilt werden, je
nachdem ob die Ausfallsicherheit oder die Performanz verbessert werden soll.

Alles in allem ist das Content-Adressable Network, aufgrund seine vollig dezentralen
Datenorganisation und der sehr guten Skalierbarkeit, bestens geeignet zur Indexierung
von Daten in einer Peer-to-Peer Umgebung.

3.3 Organisation relationaler Daten

Mit Hilfe der verteilten Hash-Tabelle konnen einzelne Schliissel in einem CAN gut
verwaltet werden. In den meisten Anwendungen werden allerdings strukturierte Daten
verarbeitet. In der Datenbankwelt ist vor allem das relationale Datenmodell zu finden.
Auch in dieser Arbeit kommen relationale Daten in Form von Tupeln zum Einsatz. Im
Folgenden soll kurz eine Moglichkeit vorgestellt werden, wie sich Relationen in eine
verteilte Hash-Tabelle speichern lassen. Eine genaure Beschreibung des Verfahrens findet
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sich in [RvdWSBO04].

Das Einfigen von Tupeln geschieht mit Hilfe der put-Operation. Gegebenenfalls
wird zuvor ein lookup bendtigt um den entsprechenden Peer zu finden, der dann das
lokale put durchfihrt.

Beide Operationen benétigen als Eingabeparameter eine key-Wert. Fur relationale
Daten eignet sich das Wertepaar aus dem Relationennamen und dem Attributwert des
Primarschlussels, da diese beiden GréRen ein Tupel innerhalb einer Datenbank eindeutig
identifizieren. In welcher Form der Relationenname und der Attributwert dargestellt
werden, ob als String, als numerischer oder anderweitig abgeleiteter Wert, spielt dabei
keine Rolle. Der value-Wert fir das put(key, value) ist in der Regel das gesamte Tupel.

Die besonderen Eigenschaften des CAN zeigen sich gerade bei der Suche nach Tu-
peln. Bestimmt wird das Vorgehen durch das Konzept der verteilten Hash-Tabelle.
Wie beim Hashing ublich, kann auf die Daten nur Uber die Schlisselwerte zugegriffen
werden, nach denen die Daten auch verteilt wurden. Aus diesem Grund kénnen Anfrage
in drei Klassen eingeteilt werden. Fur nachfolgende Beispielanfragen soll die Relation
student (MatNr, Matrikel, Studiengang) dienen.

Punktanfragen auf Werten des Primarschlisselattributes. Dazu zéhlt z.B. eine
Anfrage der Form:

e SELECT » FROM student WHERE MatNr=29093

Diese Art Anfrage stellen den Idealfall dar, alle GréRen die flr das lookup und get bendtigt
werden, stehen direkt zur Verfligung. Der key-Wert kann direkt aus dem Relationennamen
und dem gesuchten Wert fur das Primarschlusselattribut gebildet und in die Basisoperatio-
nen eingesetzt werden. Fur obige Anfrage wirde sich also ergeben: key=(student, 29093).

Bei solchen Anfragen zeigen sich die Vorteile des Hash-Verfahrens. Auf die Tupel
kann quasi direkt zugegriffen werden, da mit den gleichen Schlisseln gesucht wird, mit
denen die Tupel eingefligt worden sind.

Bereichsanfragen auf Werten des Primarschlisselattributes. Bespiele fir diese
Art Anfragen sind:

e SELECT x FROM student oder
e SELECT » FROM student WHERE 20000<MatNr<30000

Da hier der key-Wert nicht eindeutig bestimmt werden kann, ist auch eine gezielte Anfrage
an den entsprechenden Peer nicht moglich. Um das Problem zu I6sen, stehen zwei Ansétze
zur Verfugung.

1. Broadcast/Multicast der Anfrage.
Die Anfrage wird an alle Peers im Netz verteilt. Jeder Peer priift, ob er Tupel der
entsprechenden Relation besitzt (hier: student). Werden Tupel gefunden, wird
lokal die Selektionsbedingung tberprift und bei Erfolg das Ergebnistupel zum an-
fragenden Peer zuriickgeschickt.
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Ohne eindeutige Schlisselwerte konnen bei diesem Verfahren nicht die Basisope-
rationen eingesetzt werden. Somit fiihrt hier das Hashing eher zu Problemen.

Falls es das CAN unterstitzt, werden nur die Teilbereiche des Netze angesprochen,
die tatséchlich Tupel firr die Basisrelationen besitzten. Aus dem ,,teuren* Broadcast
wird so im Mittel mehrere ,,gunstigere” Multicast. Diese Fahigkeit ist allerdings
von einigen Bedingungen abhangig (z.B. der Datenverteilung) und soll an dieser
Stelle nicht weiter betrachtet werden.

2. Mehrere Punktanfragen auf die Elemente des Wertebereiches des Priméarschlisse-
lattributes.
Diese Option steht immer dann zur Verfugung, wenn der Wertebereich
des Primarschlisselattributes durch die Anfrage beidseitig begrenzt ist (hier:
20000<MatNr<30000). Insolchen Féllen kann fiir alle Zwischenwerte Punktan-
fragen gestellt werden. Obige Beispielanfrage musste also in 9999 einzelne Punk-
tanfragen unterteilt werden.

Der Broadcasting-Ansatz ist immer durchfthrbar, bedeutet aber in der Regel immer eine
hohen Aufwand, besonders in grof3en und weitverteilten Netzen. Ein Broadcast und damit
der Verzicht auf den Einsatz der Basisfunktionen fir das Hashing, mach dieses Verfahren
auch praktikabel fir Anfragen an Nichtschlisselattribute.

Ob eine Aufteilung in Punktanfragen moglich ist, h&dngt von der beidseitigen
Beschréanktheit des Wertebereich des Primarschliisselattributes ab. Je groRer der Werte-
bereich, desto groRer ist auch die Anzahl der resultierenden Punktanfragen. Es sollte also
abgeschatzt werden, welches Verfahren sich fur eine aktuelle Anfrage eignet.

Anfragenverarbeitung mit Hilfe einer Neuverteilung der Tupel bendétigen. Die
beiden bisherigen Klassen von Anfragen sind in erster Linie fir Anfrage bzw. Datenban-
koperationen praktikabel, die immer nur einzelne Tupel verarbeiten. Solche Operationen
sind beispielsweise die Selektion und Projektion. Doch bei einigen Datenbankoperationen
werden zwei oder mehr Tupel im Verbund verarbeitet, es existieren quasi Abhangigkeiten
zwischen den Eingangstupeln. Zu solchen Operatoren zahlen die bindren Operatoren
(Joins) und Operatoren wie die Gruppierung und Aggregation. Ein mogliche Anfrage auf
die Beispielrelation student ist:

e SELECT MAX (MatNr) FROM student

Bei dieser Anfrage mussen alle Tupel als Ganzes bearbeitet werden, um das korrekte
Ergebnis zu erhalten. Das Problem liegt nun darin, dass die Tupel ein Relation typischer-
weise auf mehr als einem Peer gespeichert sind, aber jeder Operator letztlich lokal auf
einem Peer ausgefiihrt werden muss.

Ein intelligentes Verfahren, um dieses Problem zu beheben, ist eine Neuverteilung
der betreffenden Tupel, das so genannte Re-Hashing. Die Tupel, zwischen denen fur eine
Operation eine Abhangigkeit besteht, werden dabei so neu verteilt, dass sich zum Schluss
alle Tupel auf einem Peer befinden. Grundlage dafur ist das Finden eines geeigneten key-
Wertes flr die Neuverteilung. Verteilt werden natlrlich nur Kopien der Tupel, da die Ori-
ginaltupel der Relation weiterhin dort zu finden sein mussen, wo sie durch das initiale
Einfligen gespeichert wurden. Die Reihenfolge der Abarbeitung einer Datenbankoperati-
on unter zu Hilfenahme einer Neuverteilung besteht aus drei Schritten:
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1. Finden aller betreffenden Tupel.
Dies geschieht entweder durch einen Broadcast an alle Peers oder, falls es die An-
frage erlaubt, durch die Aufteilung in Punktanfragen (vgl. Bereichsanfragen auf
Werte des Primérschliisselattributes)

2. Re-Hashing der Tupel.
Kopien bendtigten Tupel werde mit Hilfe eines eindeutigen key-Wertes neu verteilt.
Dieser Wert muss so gewahlt oder berechnet werden, dass die Tupel garantiert auf
demselben Peer landen.

3. Ausflhren der lokalen Datenbankoperation.
Da nun alle bendtigten Tupel lokal zur Verfligung stehen, kann die Operation aus-
geflhrt werden.

3.4 Fazit

Durch die Verwendung einer verteilten Hash-Tabelle eignet sich ein Contant Adressa-
ble Network zur Verteilung bzw. Indexierung auch strukturierter Daten in weitverteilten
Umgebungen. Der Verzicht auf eine zentrale Koordination und die gute Skalierbarkeit
machen eine Kombination aus CAN und P2P-Netze besonders interessant.

Diese Eigenschaften sind es auch, die fur den Einsatz einer dynamischen Anfragever-
arbeitung sprechen. Die Grunde hierflr wurden in Abschnitt 2.1.3 naher erlautert.

Alle bisherigen Umsetzungen adaptiver Anfrageverarbeitungen sind nicht gezielt fir
P2P-Netze entwickelt worden und liefern dadurch keine zufriedenstellenden Ergebnisse.
Selbst verteilte Eddies stellen nicht die optimale Losung dar, da sie dem Konzept gleich-
berechtigter Knoten in einem P2P-Netz widersprechen. Doch gerade in solchen Systemen
kann die Verteilung der Operatoren sinnvoll sein, um nicht auf dedizierte Knoten ange-
wiesen zu sein.

Benotigt wird also nicht nur eine Anfrageverarbeitung, die sich dynamisch an
verénderte Systemumgebungen anpassen kann, sondern auch auf die Ziele von P2P-
Umgebungen (Skalierbarkeit, Dynamik, Robustheit,...) eingeht. Genau diese Liicke soll
der P2P-Eddy schlieRen, indem er in weiten Bereichen alle Peers gleichberechtigt in die
Verarbeitung einer Anfrage miteinbezieht und so auch eine Verteilung von Operatoren
ermoglicht.



Kapitel 4

Entwurfskonzept

4.1 Ausgangssituation

Nicht alle Phasen der Anfrageverarbeitung sollen in dieser Arbeit betrachtet werden. Im
Kern werden dies die Optimierung und die Ausfuhrung einer Anfrage sein.

\orausgesetzt wird zum einen eine vollstdndige Vorverarbeitung. Dies beinhaltet im
Wesentlichen die Umformung einer deskriptiv formulierten Anfrage in eine interne Dar-
stellung des Datenbanksystems (Anfragebaum). Wie in Punkt 2.1.1 beschrieben, umfasst
dieser Schritt auch den Syntaxcheck der Anfrage sowie deren Validierung.

Weiterhin wird eine Voroptimierung vorgenommen. Dabei wird versucht, die interne
Baumstruktur der Anfrage zu minimieren. Eine Minimierung ist immer dann méglich,
wenn der Baum redundante Teilbdume oder auch unndétige Operationen enthélt. Solche
Fehler kénnen durch ,,ungeschickt” gestellte Anfragen der Nutzer oder automatisierte An-
frageerzeugung von Anwendungsprogrammen auftreten. Auch die Auflésung von Sichten
ist ein h&ufiger Grund fur Redundanzen im Baum.

Um den Aufwand flr die Implementierung des P2P-Eddies in Grenzen zu halten, wird
dessen Leistungsumfang bewusst eingeschrankt. Zum einen werden nur die wichtigsten
Operationen umgesetzt (Selektion, Projektion, Join) und zum anderen werden auch be-
stimmte Voraussetzungen fur die Operatoren selbst getroffen. So wird z.B. ein Join im-
mer nur Uber einem Attribut ausgefuhrt. Dazu mehr bei der konkreten Implementierung
der Operatoren.

Ausgangsbasis fir das weitere Vorgehen ist also eine Anfrage mit folgenden Eigen-
schaften:

e Darstellung als Baum

o auf Gultigkeit gepruft

e voroptimiert

e eingeschréankter Leistungsumfang

Zusatzlich befindet sich die Anfrage in einer Form, die direkt weiterverarbeitet werden
kann.
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4.2 Grundidee P2P-Eddies

Wie schon bei den beiden vorgestellten Eddy-Mechanismen, soll die Dynamik der
Verarbeitung einer Anfrage durch eine Modifikation des Anfrageplans erreicht werden.
Die Modifikation umfasst dabei lediglich eine Neuordnung der logischen Operatoren.
Es werden keine Alternativplane, durch Hinzufligen, Entfernen oder Verénderung der
Operatoren, erzeugt.

Um den Unterschied zwischen P2P-Eddy und den urpringlichen Eddy-Varianten
zu verdeutlichen, ist eine kurze Voruberlegung hilfreich. Um eine Anfrage zu bearbeiten,
sind grob betrachtet drei Dinge notwendig:

1. die Nutzdaten (Tupel)
2. die Vorschrift, wie die Daten verarbeitet werden sollen (z.B. Anfrageplan)
3. ein Rechner (CPU), der die Verarbeitung ausfihrt

Nutzdaten und Verarbeitungsvorschrift mussen sich also zur gleichen Zeit auf dem glei-
chen Peer befinden.

Der zentralisierte Eddy und die verteilten Eddies gehen dabei so vor, dass sie die
Verarbeitungsvorschrift fest an einen Rechner binden, sei es in einer zentralen Instanz
oder dedizierten Peers (Abbilding 4.1). Fir die konkrete Anfrageverarbeitung werden nun
die Tupel zur zentralen Komponente bzw. den entsprechenden Knoten gebracht.

Um die Gleichberechtigung aller Rechner in einem P2P-System zu erhalten, geht der
P2P-Eddy einen anderen Weg. Hier wird die Verarbeitungsvorschrift direkt an die Tu-
pel gebunden (Abbildung 4.2). Fur die Anfrageverarbeitung wird nur noch ein beliebiger
Rechnerknoten benétigt.

© =
o o

Abbildung 4.1: Verarbeitungsprin- Abbildung 4.2: Verarbeitungsprin-
zip in herkémmlichen Anfragever- zip des P2P-Eddies
arbeitungen

Die Darstellung einer Anfrage als Baum gibt durch ihre Struktur implizit eine Verar-
beitungsreihenfolge fir die Tupel vor. Die Abarbeitung erfolgt dabei von den Blattern in
Richtung der Wurzel. Im ersten Schritt wird also eine Darstellungsform benétigt, die auf
eine festgelegte Reihenfolge ihrer Elemente verzichtet. Eine solche Struktur ist z.B. eine
einfache Aufzahlungsliste. Die Elemente dieser Liste sind die logischen Operatoren aus



4.2 Grundidee P2P-Eddies 38

dem Anfragebaum, die auf den Tupeln ausgefiihrt werden. Im Folgenden wird diese Li-
ste deshalb auch als Todo-Liste bezeichnet. Ziel ist es nun, jedes Tupel mit einer solchen
Liste von Operatoren zu versehen. Prinzipiell kénnen auch mehrere gleichartige Tupel
(Tupel mit gleichem Schema) zusammengefasst werden. Fir die Vorstellung des gesam-
ten Verfahrens wird aus Griinden der Ubersichtlichkeit, jedes Tupel mit einer Todo-Liste
versehen.

Beim Routing durch das Netz kann jetzt jeder beliebige Peer die Tupel verarbeiten,
da jedes Tupel die Informationen mitbringt, welche Operatoren noch ausgefthrt werden
mussen. Dieses Verfahren verzichtet auf die Auswahl bestimmter Knoten im Netz und ist
somit fiir P2P-Umgebungen bestens geeignet.

Die Todo-L.iste darf nur die Operatoren enthalten, die auch tatsachlich auf die zugeho-
rigen Tupel angewendet werden dirfen. Die Information, welche Operatoren fir welche
Tupel gelten, steckt vollstandig in der urspringlichen Baumstruktur. Die Blatter des An-
frageplans sind immer die benétigten Relationen fir die Anfrage.

Projektion
R.a, T.e, S.d
Join_1
R.a=S.c \
Join_2
S.d=T.f \
Selektion 1 Selektion 2
0R.a> O Te=..
Relation R Relation S Relation T
a b - c d - e f

Abbildung 4.3: Beispiel-Anfragebaum

Um die richtigen Operatoren flr die Tupel einer Ursprungsrelation zu finden, muss der
Weg von der Relation bis zur Wurzel verfolgt werden. Pro Relation gibt es demnach im-
mer eine Todo-Liste. Enth&lt der Plan auch bindre Operatoren, miissen nicht zwangslaufig
alle Operatoren auf dem Pfad flr die Tupel einer Ursprungsrelation gelten. Durch die Ei-
genschaften der Operatoren, ist die eindeutige Zuordnung zu den Tupeln méglich. Fur die
Beispielanfrage (Abbbildung 4.3) ergeben sich somit diese drei Todo-Listen (Abbildung
4.4).

Bevor mit der eigentlichen Abarbeitung der einzelnen Todo-Listen begonnen werden
kann, missen diese zundchst an alle Peers verteilt werden. Jeder Peer prift darauf hin, ob
er flr die aktuelle Todo-Liste zugehorige Tupel besitzt. Ist dies der Fall, werden die Tupel
eindeutig ihrer Todo-Liste zugeordnet. Danach sind die Tupel bereit flir die Verarbeitung
der Anfrage.
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Todo-Liste fiir Tupel von R Todo-Liste fiir Tupel von S Todo-Liste fiir Tupel von T
- Projektion - Projektion - Projektion
- Join_1 - Join_1 - Join_2
- Selektion_1 - Join_2 - Selektion_2

Abbildung 4.4: Todo-Listen fur den Beispiel-Anfragebaum

Obwohl die Todo-Liste selbst keine Reihenfolge fiir die Abarbeitung der Operatoren
vorgibt, mussen dennoch Verletzungen von Umformungsregeln der Relationenalgebra ab-
gefangen werden. Dafir wird jedes Element der Todo-Liste mit einem Ready-Bit verse-
hen. Nur bei gesetzten Ready-Bit darf der Operator ausgefuihrt werden. Nach jeder Abar-
beitung eines Operators, missen die Ready-Bits der restlichen Elemente der Todo-Liste
aktualisiert werden. Auf ein Done-Bit, wie es bei den urspriinglichen Eddy-Mechanismen
zum Einsatz kommt, kann hier verzichtet werden. Ein Operator wird nach seiner Ausfuh-
rung einfach aus der Todo-Liste entfernt.

Bei unédren Operatoren wie der Selektion oder Projektion, ist die Abarbeitung relativ
problemlos. Erhélt ein Peer ein Paket aus Tupel und Todo-Liste, wahlt er einen Operator
aus und arbeitet diesen auf dem zugehdrigen Tupel ab. Im Anschluss wird dieser Operator
aus der Liste geloscht und die Ready-Bits der restlichen Operatoren gemaR der verénder-
ten Situation aktualisiert. Hat der Operator ein Ergebnistupel hervorgebraucht, wird dies
der aktualisierten Todo-Liste zugeordnet und weitergeleitet.

Etwas komplexer stellt sich de Sachverhalt bei bindren Operatoren dar. Da hier Tupel
unterschiedlicher Herkunft miteinander verknupft werden, missen auch die zugehorigen
Todo-Listen entsprechend verarbeitet werden. Die Todo-Liste fiir mogliche Ergebnistu-
pel muss dabei alle Elemente der beiden urspriinglichen Todo-Listen enthalten. Zunachst
wird, wie gehabt, der aktuell abgearbeitete, bindre Operator aus den beiden Listen ent-
fernt. Im zweiten Schritt werden beide Listen verschmolzen. Dieser Vorgang entspricht
einer Vereinigung von Mengen. Ist ein Operator in beiden Eingangs-Todo-Listen enthal-
ten, wird er nur einmal in die Ausgangs-Todo-Liste Gbernommen. Die restlichen Schritte
werden analog zu den unéren Operatoren durchgefiihrt. Es werden die Ready-Bits aktua-
lisiert und die Todo-Liste mit den Ergebnistupeln verkniipft.

Abbildung 4.5 zeigt schematisch das Verschmelzen zweier Todo-Listen nach Ausfih-
rung des Joins Join_1 fur zwei Tupel aus den Relationen R und S der Beispielanfrage
(Abbildung 4.3).

Fur die Ausfiuihrung der logischen Operatoren werden auch weiterhin Implementie-
rungen der verschiedenen Datenbankoperationen benotigt. Alle anderen Aufgaben wer-
den durch eine Art Superoperator erledigt, im Folgenden als Eddy-Operator oder einfach
als (P2P-)Eddy bezeichnet. Zu dessen Hauptaufgaben zéhlen:

e Erzeugung der Todo-Listen
e Broadcast der Todo-Listen
e Zuordnung zwischen Tupeln und Todo-Listen herstellen

e \ferteilung der Pakete



4.2 Grundidee P2P-Eddies 40

Todo-Liste fiir Tupel von R

- Projektion

i . ) H . e .

- Selektion 1 % TodorLise firErgebis-

- Projektion

Todo-Liste fiir Tupel von S - ‘éOI/n—k? 1

- Projektion ﬁ - oelektion_

- JoinL_

- Join_2

Abbildung 4.5: Verschmelzung zweier Todo-Listen nach einem Join

e Auswahl der Operatoren aus den Todo-Listen
e Aktualisierung der Todo-Listen
Ein vollstandiges, im Netz verschicktes Paket besteht also den zwei Komponenten:
1. Tupel (oder Menge gleichartiger Tupel)
2. Todo-Liste

Dieser zusammengehorige Verbund soll im Weiteren als Nachrichtenpaket bezeichnet
werden. Aus welchen Teilen sich die Komponenten im Einzelnen zusammensetzen, wird
sich im Rahmen der Implementierung zeigen.

Abgesehen von den initialen Operationen des Eddies, wie dem Erzeugen und Verteilen
der Todo-Listen, lauft die Abarbeitung der Todo-Listen nach folgendem Schema ab:

1. Ankunft eines Nachrichtenpaketes bei einem Peer.
Dies kann jeder beliebige Peer im Netz sein. Der Peer hat ab diesem Zeitpunkt
Zugriff auf das Tupel, den Ausflihrungsplan in Form der Todo-Liste.

2. Auswahl des nachsten Operators fur die Ausfiihrung.
Der Eddy-Operator wahlt auf Basis unterschiedlicher Strategien einen Operator aus
der Todo-Liste aus. Dieser Operator wird dabei gleich aus der Liste entfernt.

3. Ausflihrung des Operators.
Es wird eine geeignete Implementierung fir den gewahlten logischen Operator auf
dem Tupel ausgefuhrt. Liefert die Operation kein Ergebnistupel, kann abgebrochen
werden. Sonst weiter mit 4.

4. Aktualisierung der Todo-Liste.
Umfasst das Setzen von Ready-Bits und das Verschmelzen von Todo-Listen nach
bindren Operatoren. Ist die Todo-Liste leer, ist die Bearbeitung beendet und das
Ergebnistupel kann ausgegeben werden. Sonst weiter mit 5.

5. Erzeugung des neuen Nachrichtenpaketes.
Das Ergebnistupel, der Eddy-Operator und die aktualisierte Todo-Liste werden zu
einem neuen Nachrichtenpaket verschnirt und weitergeleitet.
Weiter mit 1.
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Erzeugt ein Operator kein Ergebnistupel, ist eine weitere Verarbeitung nicht moglich und
das gesamte Nachrichtenpaket kann verworfen werden.

Abbildung 4.6 veranschaulicht noch einmal graphisch das Prinzip des P2P-Eddies.
Auf jedem Peer lauft lokal eine Instanz des P2P-Eddies. Der Eddy nimmt Nachrichtenpa-

Eingangsnachrichtenpaket
Todo- Tupel-
Pee r Liste paket
Ticket- -
Container 5
c 3
£ 3
@ g
2 | warte- 9
2 | schlangen- (lokale Instanz) )
= | Container 2
N
=]
©
j Nachbar-
® |Manager
s g
— Todo- Tupel-

Liste paket

Ausgangsnachrichtenpaket

Abbildung 4.6: Prinzip des P2P-Eddies

kete (Tupel + Todo-Liste) entgegen und verarbeitet diese. Dazu gehdren das Bestimmen
des nachsten Operators aus der Todo-Liste, die Ausfiihrung des Operators mit Hilfe der
Planoperatoren und ggf. das Weiterschicken méglicher Ergebnistupel.

Fir die Auswahl eines Operators oder eines Ziel-Peers dienen verschiedene Routing-
Strategien. Diese Strategien basieren teilweise auf Laufzeitstatistiken, wie der Warte-
schlangenlange, Selektivitat und Informationen Uber die direkten Nachbarn eines Peers.

4.3 Routing-Strategien

4.3.1 Allgemeines

Bisher wurde das Konzept flir die dynamische Anfrageverarbeitung nur soweit vorgestellt,
dass eine variable Operatorreihenfolge fir die Tupel auf beliebigen Peers iberhaupt mog-
lich ist. Jetzt fehlen noch die Mechanismen fir die Entscheidungsfindungen, mit deren
Hilfe die Anfrageverarbeitung auch effizient wird. Es missen zwei grundsétzliche Ent-
scheidungen getroffen werden:

1. Operator-Routing
»Welcher Operator soll als ndchstes ausgefiihrt werden?*

2. Peer-Routing
,»ZU welchem Peer soll ein Nachrichtenpaket als n&chstes geschickt werden?*
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Fir beide Varianten werden Strategien benétigt, die obige Fragestellung so beantworten
konnen, dass die Anfrageverarbeitung moglichst effizient geschieht.

Daneben sollte darauf geachtet werden, dass sich der Aufwand fir die Routing-
Strategien in Grenzen halt. Der Mehraufwand fur die Entscheidungsfindungen setzt sich
dabei wie folgt zusammen:

e \erschicken zusatzlicher Nachrichten
Der Einsatz von Nachrichten allein fur die Verteilung von Routing-Informationen
sollte vermieden werden. Gerade in weitverteilten Systemen tragen die Kommuni-
kationskosten entscheidend zum Gesamtaufwand bei. Es wird daher versucht, die
Informationen ausschlieBlich in den vorhandenen Nachrichtenpaketen unterzubrin-
gen.

e Umfang von Zusatzinformationen
Die Routing-Strategien basieren in der Regel auf verschiedenen Parametern. Diese
Parameter missen an geeigneter Stelle hinterlegt und auch dort gepflegt werden.
\or allem ein Erweiterung der Nachrichtenpakete kann sich auf die Performanz
negativ auswirken, da mit wachsender Paketgrol3e auch die Netzlast steigt. Zusatz-
informationen auf den Peers spielen eine untergeordnete Rolle.

e zeitlicher Overhead
Wie beschrieben, werden samtliche Routing-Entscheidungen durch den Eddy-
Operator getroffen. Dafiir werden zusétzliche Methoden eingesetzt, deren Ausfiih-
rung logischerweise Zeit in Anspruch nimmt. Neben der eigentlichen Entscheidung,
ist der Eddy auch fur die Aktualisierung der benétigten Parameter zustandig. Dies
bedeutet wiederum mehr Methoden und damit mehr Overhead.

Die vorgestellten Strategien unterscheiden sich teilweise sehr stark hinsichtlich ihres
Aufwandes. Ob sich der Mehraufwand fur komplexe Routing-Strategien auch lohnt, wird
sich spéater im realen Einsatz zeigen.

4.3.2 Operator-Routing

Fir das Operator-Routing werden vier verschiedene Strategien umgesetzt. Aus der Todo-
Liste darf nur ein Operator gewé&hlt werden, dessen Ready-Bit gesetzt ist. Andernfalls
werden die Regeln der Relationenalgebra verletzt und es kommt zu falschen Ergebnissen
oder gar Fehlern.

Zufallige Auswahl. Der ndchste Operator fur die Ausfihrung wird einfach per Zu-
fall aus der Todo-Liste entnommen. Der Aufwand ist minimal. Zum einen sind keine
weiteren Parameter nétig und zum anderen kann auch der zeitliche Overhead vernach-
lassigt werden. Allerdings konnen besonders ungunstige Operatorreihenfolgen nicht
vermieden werden.

Auswahl nach Prioritat. Fur jeden Operatortyp (Selektion, Projektion, Join) wer-
den Prioritdten vergeben. Diese kdnnen ein einfacher Zahlenwert sein. Operatoren mit
einer erfahrungsgemal kleineren Selektivitat erhalten eine hohere Prioritat als andere.
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Damit kénnen z.B. Heuristiken wie ,,Selektion vor Join* leicht umgesetzt werden. Im
Mittel werden dadurch besonders schlechte Entscheidungen vermieden.

Je mehr Operatoren eines Typs vorhanden sind, desto weniger kdnnen gute Ope-
ratorreihenfolgen garantiert werden. Besitzen mehrere Operatoren die gleiche hdchste
Prioritdt, muss quasi wieder zuféllig ein Operator aus dieser Teilmenge bestimmt
werden. Vorteil ist aber auch wieder der verhaltnismaRig geringe Aufwand. Neben dem
zusétzlichen Parameter, betrdgt die Suche nach dem Operator mit der hdchsten Prioritat
maximal einen vollstdndigen Durchlauf durch die Todo-Liste.

Auswahl nach Lénge der Eingangswarteschlange. Wie schon bei den bekannten
Eddy-Mechanismen, wird auch hier die Lange der Eingangswarteschlange eines Ope-
rators als MaR flr dessen Kosten angesehen werden. Schnelle Operatoren konnen ihre
Tupel zugig verarbeiten und die Warteschlange umso schneller leeren. Je langer die
Eingangswarteschlange eines Operators also ist, desto héher sind typischerweise auch
dessen Kosten.

Im Gegensatz zu den verteilten Eddies, kann hier jeder Operator quasi auf jedem be-
liebigen Peer ausgefiihrt werden. Durch diese Verteilung ist aber auch die Warteschlange
des Operators verteilt. Dies bringt einige Nachteile mit sich:

e eingeschrankte Aussagekraft
Die Entscheidung fiir das Routing wird lokal auf den Peers getroffen. In Abhéngig-
keit von deren Vorgeschichte, kénnen von Peer zu Peer unterschiedliche Entschei-
dungen fir den gleichen Operator getroffen werden.

e eindeutige Entscheidungen nicht immer moglich
Enthalt die Todo-Liste Operatoren, die einem Peer noch unbekannt sind (sind also
auf diesem Peer noch nicht ausgefuhrt worden), kdnnen keine Aussagen tiber dessen
Kosten Uber die Warteschlangenldange gemacht werden. In diesem Fall wird aus
der Vereinigung der unbekannten Operatoren und dem Operator mit der kiirzesten
Warteschlange der Operator mit der hochsten Prioritdt gewahlt. Gibt es mehrere
Operatoren mit einer kurzesten Warteschlange, ist das Verhalten analog.

e Degenerierung des Verfahrens zu ,,Auswahl nach Prioritaten* im Worst-Case
Erzeugt eine Anfrage nur wenige Nachrichtenpakete, die zusétzlich weit tber das
Netz verteilt sind bzw. werden, erhoht sich die Wahrscheinlichkeit, dass die Pakete
bei ihrer Abarbeitung auf Peers landen, die fiir diese Anfrage noch nicht verwendet
wurden. Somit sind dem Peer sémtliche Operatoren unbekannt (oder zumindest der
groRte Teil) und die Auswahl des Operators wird aufgrund der Prioritaten vorge-
nommen. Diese Wahrscheinlichkeit steigt weiterhin mit der GroRe des Netzes und
der Verteilung der Daten.

Damit ein Peer einen Operator immer eindeutig zuordnen kann, wird fir jeden Operator
eine ID benétigt. Alle anderen Erweiterungen mussen nur auf dem Peer gemacht werden.
Dadurch ist der Mehraufwand fiir dieses Verfahrens eher gering.

Auswahl nach erlernter Selektivitat. Die Verwendung der Selektivitat von Opera-
toren als Auswahlkriterium fur eine Operatorreihenfolge findet man nahezu in allen
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Datenbanksystemen. Bei der traditionellen Anfrageverarbeitung werden die Selekti-
vitaten anhand von Statistiken berechnet bzw. abgeschatzt. In verteilten Umgebungen
stehen diese Informationen in den meisten Féllen nicht zu Verfligung. Beim zentrali-
sierten und verteilten Eddy-Mechanismus [AHO0, TDO03] werden die Selektivitidten zu
Ausfiihrungszeit, mit Hilfe eines Ticket-Mechanismus, erlernt.

Ein &hnliches Ziel soll auch bei diesem Verfahren verfolgt werden. Durch die ver-
teilten Operatoren wird allerdings eine andere Art der Umsetzung benétigt. Ein Ticket
besteht im Wesentlichen aus zwei Zahlern fiir die Eingangs- und die Ergebnistupel eines
Operators. Jedem Peer wird fiir jeden Operator einer Anfrage ein solches Ticket zuge-
wiesen. Kommt ein Operator auf einem Peer zur Ausfihrung, wird zundchst der Zahler
der Eingangstupel gemaR der Tupelanzahl des Nachrichtenpaketes erhoht. Verlassen Tu-
pel erfolgreich den Operator, wird deren Anzahl auf den Ergebnistupelzéhler des Tickets
aufaddiert. Ein Ticket ist demnach umso aussagekraftiger, je ofter ein Operator auf dem
gleichen Peer ausgefihrt wurde.

Die Selektivitét eines Operators berechnet sich anhand seines Tickets nach folgender

Formel:
Anzahl der Ergebnisstupel

Selektivitit —
elektivita Anzahl der Eingangstupel

Fur die Abarbeitung wird also immer nach dem Operator mit der kleinsten Selektivi-
tat gesucht. Bei diesem ist die Wahrscheinlichkeit, dass keine bzw. wenig Ergebnistupel
entstehen am groften. Auch hier kann es vorkommen, dass ein Peer keine eindeutige Ent-
scheidung treffen kann, falls noch kein Ticket fur einen Operator auf dem Peer vorliegt
oder es mehrere Operatoren mit minimaler Selektivitat gibt. Auf dieser Teilmenge wird
dann das ,,Auswahl nach Prioritat“-Verfahren angewandt.

Die Nachteile des Ticket-Mechanismus kénnen 1:1 von der Warteschlangen-Methode
ubernommen werden, da diese alle aufgrund der verteilten Operatoren entstehen. Der
Nachteil der lokalen Entscheidungsfindung muss aber relativiert werden. Man kann pro-
blemlos Félle konstruieren, bei denen unterschiedliche Selektivititen fiir einen Opera-
tor durchaus sinnvoll sind. So kénnen z.B. Tupel, die eine Selektionsbedingung erfullen,
raumlich eng im Netz verteilt sind. In diesem Bereich werden die Peers eine hohe Selek-
tivitat fir diese Selektion erlernen, was diesen Operator dort unattraktiv macht.

Fir die unéren Planoperatoren Selektion und Projektion kann die Selektivitat durch
den Ticket-Mechanismus direkt berechnet werden, da sowohl die Anzahl der Eingangs-
und Ausgangstupel fir ein Nachrichtenpaket bekannt sind. Problematisch wird die
Bestimmung der Selektivitat fur Join-Operatoren, da sich die Anzahl der Eingangstupel
aus dem Produkt der Kardinalititen beider Partnerrelationen ergibt. Durch die Verteilung
der Operatoren sind diese Kardinaltidten aber nicht bekannt. Fiir Join-Operatoren kann
die Selektivitéat bestenfalls geschatzt werden.

Suche nach dem ,,n&chsten” Join. Wie bereits in Punkt 3.3 kurz erwahnt, setzt
die Abarbeitung des Join-Operators eine Neuverteilung der Tupel voraus. Stehen mehrere
Join-Operatoren zur Auswahl, werden sich die Abstande zwischen dem aktuellen
Peer und dem Ziel-Peer fur die Neuverteilung der verschiedenen Joins in der Regel
unterscheiden.

Die Idee ist also, den Join-Operator auszuwahlen, bei dem das Tupel bei der Neuver-
teilung den kirzesten Weg gehen muss. Dadurch kann die Anzahl der bendtigten Nach-
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richten minimiert werden. Auch der Sonderfall, dass der aktuelle Peer und der Ziel-Peer
identisch sind wird dadurch ausgenutzt. Dazu missen im Vorfeld die Abstande vom ak-
tuellen Peer zu den resultierenden Zielpunkten aller Joins berechnet und miteinander ver-
glichen werden. Enthalt ein Nachrichtenpaket mehrere Tupel, wird der mittlere Abstand
als Vergleichswert herangezogen. Zusétzliche Informationen werden nicht bendtigt, der
Mehraufwand ergibt sich allein aus den Abstandsberechnungen.

Offen bleibt die Frage, wann nach dem né&chsten Join gesucht werden soll. Intuitiv
bietet sich diese Berechnung an, wenn innerhalb der Todo-Liste nur Join-Operatoren ein
gesetztes Ready-Bit besitzen. Es handelt sich also genau genommen nicht um eine eigene
Routing-Strategie, sondern um eine Hilfsfunktion fur andere Strategien.

4.3.3 Peer-Routing

Das Peer-Routing ist kein Bestandteil der urspriinglichen Eddy-Varianten. Selbst bei den
verteilten Eddies reicht das Operator-Routing aus, da jeder Operator quasi fest mit einem
Peer verknipft ist. Erst durch die nahezu beliebige Verteilung der Operatoren stellt sich
die Frage nach einer sinnvollen Auswahl der Peers.

Auch beim P2P-Eddy ist das Peer-Routing nicht vollig unabhéngig von der Wahl des
néachsten Operators. Durch den als Symmetric Hash Join implementierten Join-Operator,
der auf einer Neuverteilung der Tupel basiert, wird der Ziel-Peer direkt vom Join-Operator
vorgegeben.

Die Auswahl des ndchsten Peers ist nur bei den undren Operatoren Selektion und
Projektion losgel6st vom Operator-Routing. Damit eignen sich diese Operatoren beson-
ders gut flr eine gezielte Lastverteilung. Das Delegieren von Last auf andere Peers ist
besonders auch bei aufwendigen Operatoren wie Sortieren und Aggregation sinnvoll.

Im ersten Schritt muss beim Peer-Routing entschieden werden, ob ein Nachrichten-
paket Uberhaupt weitergeleitet werden soll. Um die Entscheidung dynamisch treffen zu
konnen, wird ein Parameter bendtigt, anhand dessen die Aussage getroffen werden kann,
ob eine Weiterleitung sinnvoll ist oder nicht. Hierflr bietet sich die aktuelle Auslastung
des Peers an. Uberschreitet diese einen gewissen Wert, wird das Nachrichtenpaket
weitergeleitet.

Wie die Auslastung bestimmt oder abgeschéatzt wird, ist eine andere Frage. In der
bisherigen Umsetzung wird die Auslastung eines Peers durch zwei verschiedene Para-
meter abgeschétzt. Zum einen ist dies die Summe aller aktuellen Warteschlangenlangen
auf dem Peer und zum anderen die Anzahl aller eingegangen Nachrichten innerhalb
eines festgelegten Zeitintervalls. Eine andere Mdoglichkeit ist das Auslesen der konkrete
Systeminformationen (Prozessorlast, Speicherbelegung, ...).

Wird die Entscheidung geféllt, ein Nachrichtenpaket auf demselben Peer weiterzu-
verarbeiten, ist das Peer-Routing abgeschlossen. Im anderen Fall muss nun festgelegt
werden, wohin das Packet tatsachlich geschickt werden soll. Da jeder Peer nur seine
direkten Nachbarn und deren Bereiche des CAN-Koordinatenraums kennt, ist das
Weiterleiten zu einen direkten Nachbarn am sinnvollsten. Im letzten Schritt muss nur
noch bestimmt werden, welcher Nachbar als Routing-Ziel ausgewé&hlt wird.
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Gleicher Peer. Die Tupel werden nur noch bei einer Neuverteilung aufgrund von
Joins verschickt. Selektion und Projektion werden immer auf dem aktuellen Peer
ausgefiihrt. Dadurch erhéht sich zwar das Risiko einer Uberlastung des Peers, reduziert
aber im Mittel den bendtigten Netzwerk-Traffic.

Zufallige Auswahl. Wie schon beim Operator-Routing kann die Entscheidung durch
Zufall getroffen werden. Dabei kann es allerdings passieren, dass ein Nachbar bevorzugt
das Ziel einer Weiterleitung und dadurch moglicherweise iberlastet wird.

Zyklische Auswahl. Alle Nachbarn werden nacheinander als Ziel-Peer ausgewaéhit.
Dies garantiert zumindest eine faire Verteilung der Nachrichtenpakete und damit eine
ausgewogene Lastverteilung.

Suche nach der schnellsten Verbindung. Beim Nachrichtenaustausch zwischen
den Peers wird die Zeit berechnet, wie lange eine Nachricht von einem Peer zu dessen
Nachbarn gebraucht hat. Jeder Peer weill somit, wie schnell er seine Nachbarn erreichen
kann. Ein Nachrichtenpaket wird immer zu dem Nachbarn geschickt, bei dem die
Ubertragungsdauer am geringsten ist.

Gerade in weitverteilten Netzen (Internet) konnen sich die Anbindungen eines
Peers zu seinen Nachbarn deutlich unterscheiden. Diese Strategie ist natirlich nur dann
wirklich aussagekréftig, wenn im gesamten Netz ein globale Zeit garantiert werden kann.
Anderfalls ist die Berechnung der Ubertragungsdauer einer Nachricht nicht korrekt.

Auswahl nach Auslastung der Nachbarn. Ziel soll es sein, die Auslastung der
Nachbarn abzuschatzen. Das Verfahren arbeitet ahnlich wie das fur die Bestimmung
der Auslastung eines Peers. Jeder Peer merkt sich flr jeden seiner Nachbarn, wie viele
direkte Nachrichten er in einem bestimmten Zeitintervall von diesem bekommen hat.

Die Annahme ist also, dass ein Nachbar immer dann hoher ausgelastet ist als ein
anderer, wenn er im gleichen Zeitraum mehr Nachrichten geschickt hat. Diese Annahme
bertcksichtigt nattrlich nur die Auslastung eines Peers bzgl. der Anfrageverarbeitung.
Naturlich kann ein Peer auch aus anderen Griinden unter hoher Last laufen. Solche Falle
konnen durch dieses Verfahren nicht abgefangen werden.

Richtig gute Aussagen uber die Auslastung der Nachbarn sind nur dann mdglich,
wenn diese Information direkt periodisch ausgetauscht werden wiirde. Dazu wéren
allerdings zusatzliche Nachrichen notwendig, was als Vorbedingung aber vermieden wer-
den sollte. Dartberhinaus mussten der Informationsaustausch in kurzen Zeitintervallen
erfolgen, da die Auslastung typischerweise eine stark schwankende Grolie ist.

Durch den Test auf Auslastung und der freien Wahl der Strategie fiir das Peer-
Routing, kann es unter Umstanden zu widersprichlichen Entscheidungen kommen. Es
entsteht beispielsweise ein Konflikt, wenn die Auslastung eines Peers den Grenzwert
Ubersteigt, aber die Strategie ,,Gleicher Peer* angewendet werden soll. Da der Test auf
Auslastung abschaltbar ist und alle Strategien explizit getestet werden kdnnen, bildet der
Entscheidungsbaum aus 4.7 die Basis fir das Peer Routing.

Die Abarbeitung des Entscheidungsbaums und damit das Peer-Routing wird an zwei
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Soll die Auslastung
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Peer-Routing nach Ist der aktuelle Peer
gewadhlter Strategie liberlastet?
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Grenzwert fallt

Abbildung 4.7: Entscheidungsbaum fiir das Peer-Routing

Zweitpunkten ausgefiihrt. So wird nach der Verarbeitung eines Nachrichtenpaketes ent-
schieden, wohin des Ergebnis geschickt werden soll. Aber auch bereits beim Eintreffen
von Nachrichtenpaketen wird entschieden, ob ein Paket auf dem Peer ausgefihrt oder
weitergeschickt wird. Um zu vermeiden, dass ein Paket zu lange unverarbeitet durch das
Netz geleitet wird, sind geeignete Gegenmalinahmen notwendig.

4.3.4 Anmerkungen

Die vorgestellten Routing-Strategien mussen nicht zwangslaufig exklusiv eingesetzt wer-
den, sondern kénnen auch fiir jede Anfrage parallel laufen. Als Voraussetzung muss dann
gelten, dass alle bendtigten Parameter aktualisiert werden. Wird dieser Aufwand in Kauf
genommen, kann zur Ausfiihrungszeit einer Anfrage zwischen den Strategien gewechselt
werden.

Diese zusatzliche Flexibilitat fuhrt automatisch zu der Frage, welche Routing-
Strategie tatsédchlich zum Einsatz kommt, falls dem Eddy-Operator mehrere zur Auswahl
stehen. Die Auswahl konnte beispielsweise in Abhé&ngigkeit der aktuell zur Verfiigung
stehenden Parameter des Peers geschehen. Sind fur eine Strategie zu wenige Daten vor-
handen, um ein aussagekraftiges Ergebnis zu erhalten, kann die Routing-Entscheidung
durch ein anderes Verfahren abgenommen werden.

Im Normalfall bleibt das gesamte Routing dem Anwender gegenilber verborgen.
Allerdings kann es sinnvoll sein, direkten oder indirekten Einfluss auf das Routing zu
haben.

Durch eine direkte Vorgabe einer Strategie flir das Operator- und Peer-Routing, kann
z.B. deren Ergebnisse fur die gleiche Anrage miteinander verglichen werden. Damit kon-
nen Aussagen gemacht werden, welche Strategie in welchen Fallen am giinstigsten ist.
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Wird fur beiden Teilbereiche des Routings jeweils nur eine Strategie verwendet, kann
daruber hinaus der Aufwand minimal gehalten werden. Lediglich die Parameter fir die
jeweilige Routing-Strategie werden bendtigt.

Als indirekten Einfluss auf die Auswahl der Routing-Strategie kann das Einbringen
von Vorwissen des Anwenders bezeichnet werden. Dazu gehoren z.B. globale Informa-
tionen Uber die Systemumgebung. Besteht das P2P-Netz aus leistungsschwachen Peers,
die uber schnelle Verbindungen kommunizieren, entscheidet sich der Eddy-Operator in
der Regel fir moglichst weite Verteilung der Anfrage im Netz. Sind stattdessen leistungs-
starke Peers Uber ein langsames Netz verbunden, sollten maoglichst viele Operatoren auf
demselben Peer ausgefuhrt werden, um unnétigen Netzverkehr zu vermeiden.

Sind dem Anwender solche oder &hnliche Informationen bekannt, kann er dadurch
das Routing in bestimmte Richtungen lenken.

Sowohl die Verarbeitung als auch das Routing der Nachrichtenpakete wurde so
umgesetzt, dass sich prinzipiell beliebig viele Tupel zusammenfassen lassen. Damit l&sst
sich der bendtigte Kommunikationsaufwand fir die Verarbeitung einer Anfrage im Mittel
erheblich mindern. Es muss lediglich die Bedingung eingehalten werden, dass alle Tupel
eines Paketes gleichartig sind. Was unter gleichartigen Tupeln verstanden werden soll,
wird in Abschnitt 5.3.1 erldutert. Die Anzahl der Tupel ist so mit abhangig von folgenden
Punkten:

e \erteilung der Basisrelationen
Die initialen Nachrichtenpakete kénnen maximal so viele Tupel enthalten, wie es
Tupel der zugehdrigen Basisrelationen auf einem Peer gibt. Je verteilter eine Tabelle
also ist, umso kleiner wird die maximale GroRe der Pakete.

e Ergebnisse der Planoperatoren
Alle Nachrichtenpakete werden getrennt voneinander verarbeitet. Fur jedes Ein-
gangsnachrichtenpaket wird in Falle von Ergebnistupeln genau ein Ergebnistupel-
paket erzeugt. Ergebnisse zweier Nachrichtenpakete kénnen nicht verschmolzen
werden.

o festgelegte MaximalgroRe
Durch den Nutzer oder die Anwendung kann die maximale GrolRe der Nachrich-
tenpakete vorgegeben werden. Dadurch kann bei der Evaluierung der Einfluss der
PaketgroRe auf die Verarbeitung einer Anfrage untersucht werden.

Im Normalfall wird sich die Zahl der Tupel eines Nachrichtenpaketes im Laufe der \erar-
beitung immer verringern. Lediglich durch Join-Operatoren konnen mehr Ergebnistupel
als Eingangstupel erzeugt werden. Im Allgemeinen legt also die Verteilung die maximale
verfligbare Grol3e der Pakete fest.



Kapitel 5

Implementierung der dynamischen
Operatoren

5.1 Uberblick

Bevor die einzelnen Klassen des P2P-Eddies genauer vorgestellt werden, sollen zunachst
die wichtigsten Klassen in einer Art Ubersicht prasentiert werden, um deren Zusammen-
spiel zu veranschaulichen. Ausgangspunkt ist die Abbildung 4.6 aus Abschnitt 4.2. Diese
Abbildung zeigt schematisch alle Komponenten des P2P-Eddies.

In Abbildung 5.1 wurden die Komponenten um die Klassen erweitert, welche die
Kompenenten umsetzen. Dadurch zeigt sich automatisch, welche Beziehungen zwischen
den Klassen bestehen. Weggelassen wurden Klassen, die zwar notwendig sind, aber nicht
direkt die Grundkonzepte des P2P-Eddies widerspiegeln.
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5.2 Umsetzung der Todo-Listen Idee

5.2.1 Die Klasse TodoListID

Ein eindeutiger Identifier fir jede Todo-Liste wird flr deren Verteilung im Netz benétigt.
Enthélt die Todo-Liste keine Selektion, die einer Exact-Match-Anfrage auf das Primar-
schliisselattribut entspricht, muss ein Broadcast der Listen durchgefuhrt werden. Jeder
Peer muss jede Todo-Liste genau einmal verarbeiten und sollte sie genau einmal an seine
Nachbarn verschicken. Daftir merkt sich jeder Peer in einem Vektor die TodoL.istIDs aller
bereits verarbeiteten Todo-Listen.

Innerhalb einer Anfrage wird eine Todo-Liste eindeutig durch den Relationennamen
bestimmt, fir deren Tupel die Liste bestimmt ist. Um die parallele Verarbeitung mehrerer
Anfrage zu gewéhrleisten, muss jede Anfrage mit Hilfe einer QueryID néher spezifiziert
werden. Diese beiden GroRen sind somit auch die Attribute der Klasse TodoListID.

Neben den Methoden zum Auslesen der Atribute, dient equals dazu, zwei Instanzen
dieser Klasse zu vergleichen. Mit dieser Methode kann ein Peer tberprifen, ob eine Todo-
Liste bereits flr eine Verteilung verarbeitet wurde. Ist die List noch nicht bekannt, wird
deren TodoL.istID im entsprechenden Vektor des Peers aufgenommen.

5.2.2 Die Klasse TodoList

Die Klasse TodoList stellt die eigentliche Umsetzung der Todo-Liste dar. Sie kapselt
im Wesentlichen eine Instanz der Klasse java.util.Vector (1istItems). Die
Elemente des Vektors sind aber nicht direkt die Operatoren, sondern Objekte vom Typ
TodoListItem (Siehe 5.2.3).

Die verschiedenen Methoden fir das Einfligen, Entfernen und Auslesen von Listen-
elementen, das Auslesen der Anzahl aller Elemente und andere Methode, kénnen direkt
auf die Methoden der Klasse Vector abgebildet werden.

Wichtig fir bin&re Operatoren ist die Methode joinTodoLists, welche das
Verschmelzen zweier Todo-Listen realisiert. Da die Reihenfolge innerhalb einer Liste
egal ist, kann der Algorithmus wie in Abbildung 5.2 implementiert werden

joinTodoL.ists(TodoL.ist)

1 for each item from listltems

2 if item is also element of TodoList
4 TodoL.ist.removeListltem(item)
5 end if

6 end for

7 if TodoList.getSize() > 0

8 for each item from TodoList

9 resultTodoList.insertListltem(item)
10 end for
11 end if

12 return resultTodoList

Abbildung 5.2: Algorithmus fiir das Verschmelzen zweier Todo-Listen
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Der binére Operator, der die Verschmelzung der Todo-L.isten hervorgerufen hat, wurde
schon bei seiner Auswahl aus beiden Listen entfernt.

5.2.3 Die Klasse TodoListItem

Als Elemente der Klasse TodoList, enthdlt eine Instanz der Klasse TodoListItem
den eigentlichen Planoperator. Diese zusatzliche Kapselung der Operatoren ist sinnvoll,
da die Klasse TodoList Itemnoch weitere Attribute enthélt, die fur Operatoren nur im
Umfeld der Todo-Liste gelten.

So wird hier z.B. das vorgstellte Ready-Bit umgesetzt, welches anzeigt, ob ein Ope-
rator ausgefiihrt werden darf oder nicht. Durch das Ldschen abgearbeiteter Operatoren
aus der Liste, kann auf ein Done-Bit, wie es bei den urspriinglichen Eddy-Varianten zum
Einsatz kommt, verzichtet werden.

Ein weiteres Attribut ist die Operatorprioritat, die fir die Strategie ,,Auswahl nach
Prioritat” beim Operator-Routing ben6tigt wird. Dabei handelt es sich um einen einfachen
Zahlenwert, der flr die Operatortypen Selektion, Projektion und Join entsprechend gesetzt
wird.

Fir weitere Routing-Stratgien kann die Klasse TodoListItem einfach erweitert
werden. Denkbar ware z.B. eine zusétzliche Prioritat, so dass auch Operatoren eines Typs
unterschiedlich behandelt werden. Mdglich ist auch eine vorher berechnete Selektivitat,
die sich wahrend der Abarbeitung der Todo-Liste nicht andert.

Die Methoden der Klasse beschranken sich auf das Auslesen und ggf. das Setzen ihrer
Attribute.

5.2.4 Die Klasse TodoListContainer

Diese Klasse dient lediglich dazu, ein Objekt vom Typ java.util.Vector zu kap-
seln dessen Elemente vom Typ TodoList sind. Die Methoden zum Hinzufligen und
Entfernen von den Listen kénnen direkt auf die Methode der Vektor-Klasse abgebildet
werden.

Verwendung findet der Container beim Broadcast der Todo-Listen. Anstatt jede Todo-
Liste getrennt im gesamten Netz zu verteilen, werden sie gemeinsam von Peer zu Peer
geschickt. Unabhangig von den bendtigten Ursprungsrelationen, reduziert sich der Auf-
wand auf hochstens einen Broadcast pro Anfrage.

5.3 Tupelverwaltung

5.3.1 Die Klasse TuplePacket

Diese Klasse ermaglicht es, mehrere Tupel gleichzeitig zu verarbeiten. Hauptkomponente
ist eine Instanz der Klasse java.util.Vector, welche Elemente vom Typ Tuple
aufnehmen soll. Die verschiedenen Operationen zum Einfiigen und Entfernen von Tupeln
konnen direkt auf die entsprechenden Methoden der Vektorklasse abgebildet werden.

In einem Tupelpaket kdnnen aber keine beliebigen Tupel gemeinsam gesammelt wer-
den. Da alle Tupel eines Paketes auf die gleiche Art und Weise verarbeitet werden sollen,
mussen die Tupel folgenden Bedingungen gentigen:
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e bei der initialen Erzeugung des Paketes muissen die Tupel aus der gleichen Basisre-
lation stammen

e alle Tupel besitzen die gleiche Vergangenheit, d.h. sie haben im Laufe der \erarbei-
tung die gleichen Operatoren in gleicher Reihenfolge angelaufen

e wiirden alle Tupel eine eigene Todo-L.iste besitzen, waren diese identisch

Diese Bedingungen garantieren, dass alle Tupel das gleiche Schema besitzen. Aus diesem
Grund kann jedem Tupelpaket der notwendige Attribute-Mapper (siehe Abschnitt 5.4.3)
zugeordnet werden.

Der letzte Bestandteil der Klasse TuplePacket istein Zahler (hopCounter). Die-
ser halt fest, wie oft in Folge ein Tupelpaket von Peer zu Peer geschickt wurde, ohne ver-
arbeitet worden zu sein. Ziel dabei ist eine bessere Verteilung der Auslastung Uber das
Netz bzw. die Vermeidung einer Uberlastung von Peers. Damit ein Paket nicht zu lange
unverarbeitet im Netz verbringt, muss es von einem Peer verarbeitet werden, sobald der
Hop-Zahler einen vorher festgesetzten Maximalwert erreicht.

5.3.2 Die Klasse TuplePacketWrapper

Diese Hilfsklasse dient dazu ein Problem zu l6sen, dass bei der Neuverteilung der Tu-
pel entsteht. Da eine Neuverteilung einem temporéren Einfligen entspricht, kann nur fur
Tuple-Objekte das Re-Hashing ausgefiihrt werden. Ohne geeignete MaRnahmen wiirde
dabei die notige Verbindung der Tupel mit ihrer Todo-Liste verloren gehen. Weiterhin
ware es so nicht maglich, mehrere Tupel gleichzeitig neu zu verteilen.

Aus diesem Grund kapselt die Klasse TuplePacketWrapper ein Objekt vom Typ
TuplePacket und vom Typ TodoList. Diese Kapselung ist nattrlich nur ein Zwi-
schenschritt, da Instanzen dieser Klasse nicht neuverteilt werden kénnen. Um das Re-
Hashing zu ermdglichen, wird der Wrapper in den Datenvektor eines Hilfstupel eingefugt.

Mit diesem Verfahren kénnen nun mehrere Tupel auf einmal neuverteilt werden, inkl.
der zugehoérigen Todo-Liste.

5.3.3 Die Klasse TuplePacketContainer

Mit Hilfe der Klasse TuplePacketContainer kdnnen mehrere Tupelpakete oder
Tupelpaket-Wrapper in einem Vektor gesammelt und so gemeinsam behandelt werden.
Eine Vermischung der beiden Objektypen ist allerdings nicht zul&ssig.

Mehr Methoden als die Ublichen fur das Einfligen und Entfernen oder die Bestimmung
der Anzahl der Elemente werden nicht benétigt.

5.4 Weitere Hilfsklassen

5.4.1 Die Klasse QueryID

Um mehrere Anfragen parallel verarbeiten zu kdnnen, mussen sie eindeutig unterscheid-
bar gemacht werden. Durch zwei Komponenten wird die Eindeutigkeit erreicht:
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1. Zeitstempel
Zeitpunkt, an dem eine Anfrage initiiert wurde.

2. Peer-Identifier
Peer, an den die Anfrage gestellt wurde; notwendig, da in einer verteilten Umge-
bung eine globale Zeit nicht immer zur Verfugung steht; ohne globale Zeit kann die
Eindeutigkeit des Zeitstempels nicht garantiert werden.

Verwendung findet der Anfrage-ldentifier vor allem als Komponente der Klasse
TodoListID, welche flr den korrekten Broadcast aller Todo-Listen zusténdig ist (siehe
Abschnitt 5.2.1).

5.4.2 Die Klasse AID

AID steht fir Attribute-ldentifier und dient dazu, Tupelattribute anzusprechen. Bendtigt
wird dieser fir die Planoperatoren, um Selektionsattribut, die beiden Attribute eines Joins
und die zu projezierenden Attribute einer Projektion festzulegen.

Innerhalb einer Datenbank wird ein Attribut eindeutig bestimmt durch den Identifier
der Basisrelation und der Position des Attributes im Schema der Relation. Beide GroRen
sind damit auch die beiden Komponenten der Klasse AID.

5.4.3 Die Klassen AttributeMapper und AttributeMapEntry

Wie eben beschrieben, werden Attribute unter anderem Uber die Position im Datenvek-
tor angesprochen. Durch Planoperatoren wie Projektion oder Joins kann sich das Schema
der Tupel verdndern und somit auch die Position der Attribute. Bei einer statischen An-
frageverarbeitung, bei dem die Operatorreihenfolge fir alle Tupel gleich ist, kann die
Attributposition bereits im Vorfeld korrekt gesetzt werden.

Ist die Operatorreihenfolge nicht bekannt, wie beim P2P-Eddy, missen die Attribut-
positionen im Laufe der Verarbeitung immer wieder aktualisiert werden. Da nahezu jeder
Planoperator in den Todo-Listen auf eine oder mehrere Instanzen der Klasse AID ange-
wiesen ist, empfiehlt sich die Aktualisierung in einer gemeinsam genutzten Komponente.
Andernfalls missten alle restlichen Operatoren der Todo-L.iste aktualisiert werden, sobald
ein schemaverandernder Operator ausgefiihrt wurde. Diese Komponente ist der Attribute-
Mapper, Uber den die Planoperatoren auf die Attribute im Datenvektor der Tupel zugrei-
fen.

Die Idee des Attribute-Mappers ist es, die Position der Attribute im Datenvektor
der Tupel einer Basisrelation auf die Position im aktuellen Datenvektor abzubilden. Die
Attribute-Identifier der Planoperatoren kdnnen deswegen einfach auf die Position der
Attribute innerhalb der Basistupel gesetzt werden. Muss ein Operator auf ein Attribut
zugreifen, ruft er zunédchst den Attribute-Mapper des Tupelpaketes auf und erhélt von
diesem die aktuelle Position des Attributes im Datenvektor.

Die eigentliche Abbildung Gbernehmen Instanzen der Klasse AttributeMapEntry.
Neben dem Relationennamen gehort zu dieser Klasse ein Array, dessen GroRe der Anzahl
der Attribute in der Basisrelation entspricht. Die Position im Array entspricht dabei
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der Position eines Attributes in der Basisrelation. Der jeweilige Inhalt steht fiir dessen
Position im aktuellen Datenvektor.

Werden Tupel aufgrund binédrer Operatoren miteinander verknupft, vergrolert sich
dadurch der Attribute-Mapper fur die Ergebnistupel. Die Anzahl der Mapper-Eintrage
entspricht somit immer der Anzahl der enthaltenen Basisrelationen im Datenvektor der
Tupel.

Abbildung 5.3 zeigt einen initialisierten Attribute-Mapper fir die Basisrelation R mit
vier Attributen. Zu diesem Zeitpunkt sind die Attributpositionen in den Basistupeln mit

AttributeMapper

AttributeMapEntr
RelationR |

011]2
Vi(v]v

0]1[2

WewWw

Abbildung 5.3: Beispiel fur eine neu erzeugten Attribute-Mapper

denen im aktuelle Datenvektor noch identisch, so dass die Positionen auf sich selbst ab-
gebildet werden.

Jeder schemaveréndernde Planoperator muss nun gemaR seiner Eigenschaften den
Attribute-Mapper so veréndern, dass nachfolgende Operatoren auf die richtigen Attribute
zugreifen konnen. Beispiele dafur finden sich bei den entsprechenden Operatoren.

5.5 Planoperatoren

5.5.1 Die Klasse EAdyPOP

Die Planoperatoren (kurz: POPs) stellen die Implementierung der logischen Operatoren
dar. Die abstrakte Klasse EddyPOP umfasst alle Attribute und Methoden, die allen Ope-
ratoren eigen ist. Von dieser Klasse kdnnen demnach keine Instanz erzeugt werden. In-
stantiierbar sind die von EddyPOP abgeleiteten Klassen, die umgesetzten Operationen
Projektion, Selektion und Join (siehe Abbildung 5.4)

Um die Operatoren innerhalb einer Anfrage unterscheidbar zu machen, wird ein ein-
deutiger Identifier (operatorID) bendtigt. Zum Auslesen dieses Attributes dient die
Methode getOperatorID.

Gemaél3 den Voraussetzungen aus Abschnitt 4.1 muss die Anfrage als Baum tibergeben
werden. Um die Struktur aus den Operatoren zu konstruieren, wird jeder Operator um At-
tribute erweitert, welche die Kind-Objekte des Operators im Baum repréasentieren. Da der
Anfragebaum maximal der Ordnung 2 ist, sind zwei solche Attribute nétig (LeftChild,
rightChild). Fur undre Operatoren wird eines der Attribute auf null gesetzt.

Die Verarbeitung der Tupel durch einen Operator soll Uber zwei verschieden Wege
realisiert werden. Im ersten Fall werden alle Eingangstupel am Stlick abgearbeitet. Da-
zu wird lediglich eine Methode (processEddyPOP) bendtigt, welche die ibergebenen
Tupel verarbeitet und mogliche Ergebnistupel wieder zurtickgibt.
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EddyPOP

EddyProjPOP EddySelPOP EddyJoinPOP

Abbildung 5.4: Vererbungshierarchie der Klassen der Planoperatoren

Bei der zweiten Variante werden mogliche Ergebnistupel schrittweise angefor-
dert. Dadurch kdnnen bereits die Zwischenergebnisse eines Operators weiterverabei-
tet oder auch weitergeschickt werden (vgl. Pipelining). Hierfir wird die Klasse um
ein Attribut tuplePacket erweitert, welches zunéchst alle Eingangstupel aufnimmt
(Uber die Methode setTuplePacket). Die eigentliche Abarbeitung der Tupel tber-
nimmt die Methode getNextOutputTuple. Diese arbeitet die Eingangstupel nur
soweit ab, bis ein erstes Ergebnistupel entsteht. Fur die komplette Verarbeitung muss
getNextOutputTuple solange aufgerufen werden, bis alle Eingangstupel abgearbei-
tet wurden.

Die beiden Methoden flr die Abarbeitung der Tupel missen als ,,abstrakt” definiert
werden, da deren Implementierung abhangig vom konkreten Operator ist.

5.5.2 Die Klasse EAdyProjPOP

Der Planoperator der Projektion wird durch die Klasse EddyProjPOP implementiert.
Die beispielhafte Darstellung einer Projektion im Anfragbaum (Abbildung 5.5) liefert
alle spezifischen Informationen.

| R.a, T.e

Abbildung 5.5: Darstellung einer Projektion im Anfragebaum

e Liste alle projezierten Attribute inkl. der zugehérigen Relationen (Vektor mit Ele-
menten vom Typ AID)

Die Projektion gehort zur der Sorte Operatoren, die in der Regel das Schema ihrer
Eingangstupel verdndern. Deshalb wird eine Methode benétigt die den entsprechenden
Attribute-Mapper der Tupel modifiziert. Die verbliebenen Attribute miissen dabei auf die
Position abgebildet werden, an derer sich die zugehorigen AIDs im Vektor der Projekti-
on befinden. Alle herausprojezierten Attribute werden auf eine Konstante abgebildet, die
kenntlich macht, dass diese Tupel nicht mehr giltig sind.
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Attribute-Mapper vor Attribute-Mapper nach
der Projektion der Projektion

Relation R Relation R

0 1 2 ‘Projektionaufdas O 1 2 3
\ 2% |_2. und 4. Attribut VivIiv]v
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Abbildung 5.6: Aktualisierung eines Attribute-Mappers nach einer Projektion
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5.5.3 Die Klasse EddySelPOP

Der zweite unére Planoperator ist die Selektion. Im Vergleich zur Projektion, umfasst die
Selektion wesentlich mehr beschreibende Parameter.

i
Q T.e= ‘abc’

Abbildung 5.7: Darstellung einer Selektion im Anfragebaum

Selektionsattribut inkl. zugehoriger Relation (reprasentiert durch ein Attribut vom
Typ AID)

Vergleichsoperation

Vergleichswert

Typ des Vergleichswertes (String, Double, Integer)

Natdrlich sind auch Selektionen mdglich, bei denen der Wertebereich des Selekti-
onsattributes beidseitig begrenzt ist (z.B. 20000<MatNr< 30000). Solche Selektio-
nen mussen in Teilselektionen umgewandelt werden, wobei jede fur eine Teilbedingung
verantwortlich ist.

Da eine Selektion die Schemas ihrer Ergebnistupel nicht verandert, bedarf es keiner
Anpassung des Attribute-Mappers.

5.5.4 Die Klasse EddyJoinPOP

Als binédrer Operator muss der Join, im Gegensatz zur Projektion oder Selektion, meh-
rere Tupel miteinander in Beziehung bringen. Durch diese notwendige Koordination ist
der Join zum einen weniger flexibel und zum anderen deutlich komplexer als die unéren
Operatoren.

Implementiert wurde der Join-Operator als SHJ (Symmetric Hash Join). Die Idee des
SHJ ist es, potentielle Join-Partner auf den selben Peer zu bringen und dort einen loka-
len Join durchzufiihren. Damit ist der Join ein zweistufiger Prozess bestehend aus der
Neuverteilung der Tupel und dem lokalen Join. Die charakteristischen KenngrdfRen des
Join-Operators sind:

e die beiden Join-Attribute inkl. der zugehérigen Relationen (reprasentiert durch je-
weils ein AID: 1eftAID, rightAID)
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s Ra=S.c\,

Abbildung 5.8: Darstellung einer Projektion im Anfragebaum

e eindeutiger namespace (notwendig fiir die Neuverteilung)

¢ alle Eingangstupel des Join-Operators miissen aus ihrer Todo-Liste entnehmen kon-
nen, aus welchem der beiden Teilbdume sie zum Join kommen;
diese Information wird im Attribut joinPartnerSide hinterlegt und beim Er-
zeugen der Todo-Listen entsprechend gesetzt

Obwohl fir die Join-Bedingung verschiedene Vergleichsoperationen moglich sind,
wird hier nur auf Gleichheit geprift (Equi-Join). Diese Einschrankung wird durch die
Neuverteilung der Tupel bedingt.

Die Neuverteilung oder auch das Re-Hashing von Tupeln ist ein temporéres Einfu-
gen von Kopien der Originaltupel. Da es sich bei den Tupeln der Nachrichtenpakete
bereits um Kopien handelt, konnen diese direkt verwendet werden. Obwohl das Re-
Hashing durch den Eddy-Operator durchgefiihrt wird (nur dieser kann Nachrichten
verschicken), soll der prinzipielle Ablauf dennoch hier vorgestellt werden.

Um sicherzustellen, dass potentielle Join-Partner nach der Neuverteilung auf einem
Peer landen, muss fiir alle Tupel der key-Wert fiir die Basisoperationen des CANs geeig-
net gewéhlt werden. Um dies zu erreichen, setzt sich hier der key aus dem festgelegten
namespace des Join-Operators und dem Wert des Join-Attributes eines jeden Tupel
zusammen. Die Neuverteilung anhand des Attributwertes hat den Nachteil, dass lediglich
die Gleichheit als Join-Bedingung genutzt werden kann.

Obwohl sich in einem TuplePacket immer nur gleichartige Tupel befinden dr-
fen, kénnen die Tupel dennoch unterschiedliche Werte fir das Join-Attribut besitzen.
Enthalt ein Paket also mehr als ein Tupel, werden diese in der Regel auf unterschiedliche
Peers verteilt.

Das Re-Hashing der Tupel wurde in zwei Varianten implementiert. Die trivialste L6-
sung ist die Neuverteilung jedes einzelnen Tupels aus dem Paket. Dadurch werden aber
immer genau so viele Nachrichten erzeugt, wie es Tupel gibt. In Bezug auf die Kommu-
nikationskosten ist diese Art der Neuverteilung somit ungeeignet.

Bei der zweiten Variante wird vor der eigentlichen Neuverteilung ein Sortieralgorith-
mus auf das TuplePacket angewendet. Dieser Algorithmus (Abbildung 5.9) packt alle
Tupel mit gleichem Wert flr das Join-Attribut in neue Pakete ein. Fir jedes Paket kann
nun garantiert werden, dass dessen Tupel den gleichen Ziel-Peer fiir das Re-Hashing be-
sitzen.

Abbildung 5.10 veranschaulicht die Arbeitsweise des Sortieralgorithmus. In diesem
Beispiel kann die Zahl der bendtigten Re-Hash-Nachrichten von sieben auf drei reduziert
werden.

Im Mittel kann so die Anzahl der bendtigten Nachrichten minimiert werden. Im Worst-
Case enthélt das Originalpaket nur Tupel mit unterschiedlichen Attributwerten, falls z.B.
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Die Position des Join-Attributes im Datenvektor wird ausserhalb der Methode be-
stimmt und als Parameter position (ibergeben. Der Test der Join-Bedingung
in Zeile 10 garantiert, dass beide Attributwerte identisch sind. Fur diesen Test ist
der Parameter EddyJoinPOP notwendig, da diese Klasse die benodtigte Metho-
de enthélt.

buildReHashTuplePackets(EddyJoinPOP, TuplePacket, position)
1 originalAttirbuteMapper = TuplePacket.getAttributeMapper

2 for each tuple from TuplePacket

currentValue = tuple.getData(position)

5 inserted = false

6 for each entry from resultContainer

7 firstTuple = entry.getFirstTuple()
8
9

o

firstTupleValue = firstTuple.getData(position)
resultTodoList.insertListltem(item)

10 if both values fulfil the join condition

11 inserted = true

12 entry.insertTuple(tuple)

13 end if

14 end for

15 ifinserted == false

16 TuplePacket newTuplePacket = new TuplePacket()
17 newTuplePacket.setAttributeMapper(original AttributeMapper)
18 newTuplePacket.insertTuple(tuple)

19 resultContainer.insertObject(newTuplePacket)

20 endif

21 end for

22 return resultContainer

Abbildung 5.9: Algorithmus flr die Vorsortierung von Tupel vor einem Re-Hashing

TuplePacket TuplePacketContainer
(1,_,c,) TuplePacket
(21_Ial_) i (1I_Icl_)
(3I_Ial_) i (51_Icl_)
(4, ,b, ) Sortierung nach

L 5 - c _) dritten Attribut TuplePacket
== i (2r ray )
(6,_,a,_) - -
- - i (31 ra, )
(7,_,b,_) - -
- (6,_,3.,_)
TuplePacket

i (4l_rbr_)

(7,_,b,_)

Abbildung 5.10: Beispiel fir die Vorsortierung der Tupel fur eine Neuverteilung
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das Join-Attribut der Primarschlissel ist. In solchen Féllen degeneriert das \Verfahren zur
Neuverteilung jedes einzelnen Tupels.

Um noch mehr Nachrichten einzusparen, wird vor jeder Neuverteilung berpruft, ob
Ziel-Peer und aktueller Peer identisch sind. Ist dies der Fall, kann die weitere Abarbeitung
sofort lokal fortgesetzt werden.

Systembedingt konnen im CAN nur Tupel eingefigt und somit auch nur Tupel neu
verteilt werden. Um Tupelpakete inkl. Attribute-Mapper und Todo-Liste zu vertei-
len, missen samtliche zusammengehdrigen Komponenten in eine Instanz der Klasse
TuplePacketWrapper gesteckt werden. Diese wird Element des Datenvektors eines
Hilfstupels, welches nun neu verteilt werden kann. Der vollstandige Algorithmus fur
das Re-Hashing wird in Abbildung 5.11 gezeigt. Erreicht ein solches Hilsftupel seinen

reHashTuplePackets(EddyJoinPOP, EddyProcessTodoListMessage)

1 todoList = EddyProcessTodoListMessage.getTodoL.ist()

2 position <- use AttributeMapper to get the position of the join attribute

3 container = buildReHashTuplePackets(EddyJoinPOP, TuplePacket, position
4 for each tuplePacket from container

firstTuple = tupelPacket.getFirstTuple()

value <- firstTuple.getData(position)

namespace = EddyJoinPOP.getNamespace()

currentWrapper = new TuplePacketWrapper(tuplePacket, todoL.ist)

9 reHashTuple = new Tuple(namespace, DONT CARE PRIMKEY, currentWrapper)
10  reHashTuple.setLifeTime(LIFETIME)

11  targetPoint <- lookup((namespace, value))

12 send reHashTuple to peer which administrates the targetPoint

13 end for

oo N o Ol

Abbildung 5.11: Algorithmus fur das Re-Hashing von Tupeln
Ziel-Peer, wird der lokale Join ausgefihrt.

Der lokale Join wird mittels einer Nested-Loop-Implementierung durchgefunhrt.
Durch die Dynamik der Anfrageverarbeitung, kdnnen sich die Schemas der mdglichen
Partnertupel, in Abh&ngigkeit ihrer Vorgeschichte unterscheiden. Daraus folgt, dass
auch die Ergebnistupel nicht die gleichen Schemas besitzen missen. Da sich aber
in einem Tupelpaket nur gleichartige Tupel befinden dirfen, muss eine Vermischung
ungleichartiger Tupel abgefangen werden.

Ahnlich wie beim Re-Hashen, kénnen auch hier alle Ergebnistupel gesondert betrach-
tet werden. Jedes Ergebnistupel wird dabei in ein eigenes Tupelpaket gesteckt und mit
dem entsprechenden Attribute-Mapper und entsprechender Todo-L.iste versehen. Dies be-
deutet also, dass sich nach einem Join nur noch ein Tupel in jedem Tupelpaket befindet,
was wiederum den Netzverkehr unnétig ansteigen lassen wirde.

Um dies zu umgehen, werden gleichartige Ergebnistupel in einem Tupelpaket gesam-
melt. Ob ein Tupel in ein bereits existierendes Paket gepackt werden darf, entscheiden
folgende drei Bedingungen, die alle erfllt sein missen:
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1. Die Attribute-Mapper des Ergebnistupels und des Tupelpaketes mussen identisch
sein

2. Die Todo-Listen des Ergebnistupels und des Tupelpaketes miissen identisch sein

3. Die Anzahl der Attribute im Datenvektor des Ergebnistupels muss gleich der Anzahl
der Attribute im Datenvektor der Tupel im Tupelpaket sein

Sobald eine der drei Bedingungen nicht erfullt ist, wird ein neues Tupelpaket angelegt.
Abbildung 5.12 zeigt den Algorithmus fiir das Erzeugen des Riickgabewertes eines
lokalen Joins. Ein Beispiel fur die Vorteile des gezielten Einfligens der Ergebnistupel ist
in Abbildung 5.13 zu finden. In diesem Beipiel sind alle drei Ergebnistupel gleichartig,
fur die nachfolgenden Verarbeitungsschritte wird also nur ein Nachrichtenpaket bendtigt
anstatt drei.

Durch den bindren Charakter des Join-Operators miissen sowohl die Todo-Listen

insertResultTuplelntoContainer(TuplePacketContainer, TuplePacket\Wrapper)
1 inputTuplePacket. TuplePacketWrapper.getTuplePacket()

2 inputTuple = inputTuplePacket.getFirstTuple()

4 inputTupleData = inputTuple.getAllData()

5 inputTodoList = TuplePacketWrapper.getTodoL.ist()

6 inputAtributeMapper = inputTuplePacket.getAttributeMapper()

7 found = false

8 for each wrapper from TuplePacketContainer

9 partnerTuplePacket = wrapper.getTuplePacket()

10  partnerTuple = partnerTuplePacket.getFirstTuple()

11  partnerTupleData = partnerTuple.getAllData()

12 partnerTodoList = wrapper.getTodoList()

13  partnerAttributeMapper = partnerTuplePacket.getAttributeMapper()
14 if (inputAttributeMapper == partnerAtributeMapper AND

15 inputTodoList == partnerTodoList AND

16 inputTuple.getSize() == partnerTuple.getSize())
17 found = true

18 partnerTuplePacket.insertTuple(inputTuple)
19 endif

20 end for

21 if found == false
22  TuplePacketContainer.insertObject(TuplePacketWrapper)
23 end if

Abbildung 5.12: Algorithmus fur das Einfligen eines Ergebnistupels eines Joins in den
Rickgabe-Container

als auch die Attribute-Mapper der urspriinglichen Teile eines Ergbnistupels verschmolzen
werden. Diese Vorgange waren bereits Schwerpunkte in den Abschnitten 5.2.2 bzw 5.4.3.

Neben der Verschmelzung der Attribute-Mapper, muss der neue Attribute-Mapper
noch aktualisiert werden. Da die Konvention eingehalten wird, dass die Attribute des Tu-
pels aus dem rechten Teilbaum des Join-Operators an die Attribute des Tupels aus dem
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Abbildung 5.13: Vergleich der beiden Varianten fur die Ergebnisse eines lokalen Joins

linken Teilbaum gehangt werden, mussen auch die beiden Attribute-Mapper in dieser Rei-
henfolge miteinander verbunden werden.

In diesem Fall kénnen die Eintrége des ,,linken* Attribute-Mappers unangetastet blei-
ben. Auf alle Eintrége des ,,rechten* Attribute-Mappers muss die Anzahl der Attribute
des ,linken“ Tupels addiert werden, da sich die Position der Attribute des ,,rechten” Tu-
pels genau um diese Anzahl verschoben hat. Abbildung 5.14 zeigt die Verschmelzung und
Aktualisierung zweier initialer Attribute-Mapper durch einen Join.

“linker” Attribute-Mapper “rechter” Attribute-Mapper
Relation R Relation S
0(112]3 011123
VivIv]v Vi vIv]|v
0]11[2]3 011(2]3
Ergebnis-Attribute-Mapper
Relation R Relation S
01112]13([|0[1]2]3
2020202182020 25%
01112(3(|415]6]7

Abbildung 5.14: Erzeugung eines neuen Attribute-Mappers fiir die Ergebnistupel eines
Joins

5.6 Eddy-Operator

Die Klasse Eddy ist das Herzstlick der P2P-Eddy-Implementierung. Die Aufgaben und
Arbeitsweise des Eddy-Operators lassen sich als Graph, wie in Abbildung 5.15 gezeigt,
darstellen.

Erzeugung der Todo-Listen. Diese Teilaufgabe umfasst die Umsetzung der An-
frage in Baumdarstellung in die Todo-Listen fur die Tupel der Basisrelationen. Die
Abarbeitung findet vollstandig auf dem Peer statt, an den die Anfrage gestellt wurde.
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Erzeugung der

Todo-Listen
Operator-Routing
v Empfang von Auswahl des
Broadcast der Nachrichten- nichsten
Todo-Listen paketen Operators
v Verarbeitung des
Erzeugung der Versand von Nachrichtenpaketes
Nachrichten- ——> Nachrichten- mit Hilfe des ent-
pakete paketen sprechenden Plan-
operators
Auswahl des Erzeugung der
nichsten Peers Ergebnisnach- 5 Ausgabe der

richtenpakete Ergebnistupel

Peer-Routing

Abbildung 5.15: Uberblick tber die Aufgaben des Eddy-Operators

Alle Operatoren des Anfragebaumes, die auf die Tupel einer Basisrelation angewen-
det werden mussen, liegen auf dem Pfad zwischen Relation und Wurzeloperator. Durch
binédre Operatoren (Joins) kann es allerdings vorkommen, dass auf diesem Pfad auch Ope-
ratoren liegen, die nicht fr die Tupel gelten. Diese Operatoren greifen nicht auf Attribute
der aktuellen Basisrelation zu und diirfen somit nicht in der entsprechenden Todo-Liste
eingetragen werden.

Algorithmisch lasst sich diese Aufgabe durch eine Tiefensuche durch den Anfra-
gebaum, beginnend beim Wurzeloperator, 16sen. Auf den Weg zu den Blattern (Ba-
sisrelationen), werden alle Operatoren in Richtung Wurzel in einer vorldufigen Todo-
Liste gesammelt. Wird eine Basisrelation erreicht, missen aus der Liste zun&chst al-
le Operatoren herausgefiltert werden, die nicht auf die Tupel der Relation anzuwen-
den sind. Im letzten Schritt werden alle fertigen Todo-Listen in einem Objekt vom Typ
TodoListContainer gesammelt.

Abbildung 5.16 zeigt die notwendigen Algorithmen in Pseudocode-Notation. Ender-
gebnis ist ein Container, der sdmtliche Todo-Listen fur die Basisrelationen enthélt. Die
Anzahl der Todo-Liste entspricht logischerweise der Anzahl der Basisrelationen, die fiir
die Anfrage benotigt werden.

Die Methode filterTodoList erflllt noch eine weitere Aufgabe, die in Abbil-
dung 5.16 fehlt. Beim Durchlauf durch alle Operatoren wird nach einer Selektion gesucht,
die einer Punktanfrage auf das Primérschliisselattribut entspricht. Dazu muss die Selekti-
on zwei Bedingungen gentigen:

1. Die Vergleichsoperation ist ,,=*
2. Das Vergleichsattribut ist das Primarschlisselattribut

Im Falle eine solchen Selektion, wird dieses Wissen in der Todo-Liste hinterlegt
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Der Algorithmus buildTodoList wird zu Beginn mit dem Wurzelelement
des Operatorbaumes und einer leeren Todo-Liste und einem leeren Container
aufgerufen. Die Zeilen 7-11 sind nur fur bindre Operatoren relevant. Flr undre
Operatoren wird der rechte Sohnknoten auf null gesetzt.

buildTodoL.ist(Operator, TodoList, TodoListContainer)

1 TodoList.insert(Operator)

2 if Operator.lefChild is an operator

3 buildTodoList(Operator.leftChild, TodoList, TodoListContainer)
4 else if Operator.leftChild is an relation with ID rellD

5 TodoListContainer.insert(filterTodoList(TodoList, relID))

6 endif

7 if Operator.rightChild is an operator

8 buildTodoL.ist(Operator.rightChild, TodoList, TodoListContainer)
9 else if Operator.rightChild is an relation with ID rellD

10  TodoListContainer.insert(filterTodoList(TodoList, relID))
11 end if

filterTodoL.ist(TodoList, rell D)

1 resultTodoList = new TodoList()

2 for each op from TodoList

3 if op uses relation with ID rellD
4 resultTodoList.insert(op)

5 end if

6 end for

7 return resultTodoList

Abbildung 5.16: Algorithmen flr die Erzeugung der Todo-L.isten
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(exactMatchPossible=true).

Verteilung der Todo-Listen. Bevor der Container mit den Todo-Listen an alle Peers
verteilt wird, wird nach Todo-Listen gesucht, deren Attribut exactMatchPossible
auf true gesetzt ist. Flr diese Listen wird kein Broadcast bendtigt, da sie gezielt zu den
Peer geschickt werden kdnnen, auf dem sich das mogliche Ergebnistupel befinden muss
(falls es tatsachlich existiert). Das gezielte Senden ist moglich, da durch die Punktanfrage
auf das Primarschlisselattribut der key-Wert fur eine lookup-Operation direkt gebildet
werden kann. Der key besteht in diesem Fall aus:

e dem ldentifier der Basisrelation und

e dem Wert flr das Primarschlisselattribut (= Vergleichswert des entsprechenden
Selektion-Planoperators)

Durch die Hash-Funktion wird der Peer berechnet, zu dem die Todo-L.iste geschickt wer-
den muss. Alle Todo-Liste fir die das maglich ist, werden aus dem Container entfernt.

Fur alle anderen Todo-Listen mus ein Broadcast des Containers durchgefihrt werden.
Dieser Vorgang zerfallt ein zwei Teile. Im ersten Schritt sendet ein Peer den Container an
seine direkten Nachbarn. Um die Zahl der Nachrichten etwas zu minimieren, wird sich in
einem Vektor gemerkt, welche Peers den Container bereits verarbeitet haben.

Schritt Nummer 2, der auch fur gezielt verteilte Todo-Listen ausgefthrt werden muss,
ist die Suche nach Tupeln der zugehdérigen Basisrelation. Verwaltet ein Peer Tupel flr
eine Todo-Liste, kann mit der n&chsten Teilaufgabe im Ausfuhrungsgraph (Abbildung
5.15) begonnen werden.

Um das korrekte Ergebnis zu erhalten, muss jeder Peer den Container genau einmal
verarbeiten. Dafr ist aber nicht der Eddy-Operator verantwortlich, sondern die Kommu-
nikationskomponente des Peers. Dazu wird die TodoLi st ID der ersten Todo-Liste des
Containers in einem Vektor auf dem Peer hinterlegt. Jedesmal wenn der Container einen
Peer erreicht, wird in diesem Vektor nach der ID gesucht. Nur wenn diese nicht enthalten
ist, wird der Container verarbeitet.

Eine Alternative zum Broadcast des Containers ist ein Multicast jeder Todo-Liste.
Dazu mussen die Daten so im CAN verteilt worden sein, dass die Teilbereiche des
Netzes bestimmt werden konnen, in denen sich die Tupel einer Relation befinden.
Grundvoraussetzung fur den Multicast ist die Eineindeutigkeit der Hash-Funktion, die
im Allgemeinen nicht gegeben ist. Auf diese Mdglichkeit soll nicht weiter eingegangen
werden, da dies Aufgabe der CAN-Umgebung und nicht der Anfrageverarbeitung ist.
Wird im Folgenden von der Verteilung und dem Broadcast der Todo-Liste gesprochen,
schlief3t das die Ausnutzung von Multicasts mit ein.

Erzeugung der Nachrichtenpakete Wie in Kapitel 4 bereits beschrieben, setzt
sich ein Nachrichtenpaket aus einem Tupel-Paket und zugehoriger Todo-Liste zusammen.
Bei der ersten Erzeugung der Nachrichtenpakete werden Kopien aller gefundenen Tu-
pel einer Basisrelation in einem Objekt vom Typ TuplePacket verpackt. Dabei wird
gleichzeitig der Attribute-Mapper des Tupel-Paketes initialisiert (siehe Abschnitt 5.4.3).
Zusammen mit der Todo-Liste kann nun mit der eigentlichen Verarbeitung der
Anfrage begonnen werden.
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Versand der Nachrichtenpakete. Nach der Bestimmung eines Ziel-Peers, werden
die Tupel samt Todo-Liste weitergeleitet. Sind Ziel-Peer und aktueller Peer identisch,
kdnnen gleich die Methoden fur eine weitere \Verarbeitung aufgerufen werden. Die
Altenativmoglichkeit ware, dass sich ein Peer in solchen Fallen selbst eine Nachricht
schickt.

Da mit der Abarbeitung der initialen Nachrichtenpakete auf den Peers begonnen
wird, auf denen sie erzeugt wurden, ist zu Beginn kein Versenden der Nachrichtenpakete
erforderlich.

Auswahl des nachsten Operators. Die Vorstellung des Operator-Routings ist Schwer-
punkt von Kapitel 6 und soll an dieser Stelle nicht weiter behandelt werden.

Sobald aber ein Operator ausgewahlt wurde, wird dieser sofort aus der Todo-Liste
entfernt.

Verarbeitung der Nachrichtenpakete mit Hilfe des entsprechenden Planopera-
tors. Diese Aufgabe wird nahezu vollstdndig an den ausgewéhlten Planoperator delegiert.
Der Eddy-Operator entscheidet lediglich, ob die Tupel des Paketes am Stiick oder Schritt
fur Schritt abgearbeitet werden sollen (vergleiche Abschnitt 5.5.1).

Im Falle einer Projektion oder Selektion sind die Rlckgabewerte wieder vom Typ
TuplePacket. Diese undren Operatoren sind damit vollstandig durchlaufen.

Joins miissen die Schleife aus Abbildung 5.15 quasi zweimal durchlaufen. Im ersten
Durchlauf besteht die Verarbeitung des Nachrichtenpaketes aus dem Re-Hashing der
Tupel. Dies legt automatisch den Ziel-Peer fiir das Peer-Routing fest. Erreichen die neu-
verteilten Tupel ihr Ziel beginnt der zweite Durchlauf. Dabei muss das Operator-Routing
ubersprungen werden. Die Verarbeitung entspricht dann der Ausfiihrung des lokalen
Joins. Wie in Abschnitt 5.5.4 gezeigt, ist der Riickgabewert des Join-Planoperators ein
Container der Elemente vom Typ TuplePacketWrapper enthélt. Jeder Wrapper steht
dabei wieder fiir ein komplettes Nachrichtenpaket.

Erzeugung der Ergebnisnachrichtenpakete. Bevor die Ergebnistupel weiter ver-
arbeitet werden konnen, missen sowohl Tupelpaket als auch Todo-Liste aktualisiert
werden.

Fur Tupelpakete bedeutet dies die Anpassung des zugehdérigen Attribute-Mappers. Da-
zu ruft der Eddy-Operator die Konvertierungsmethoden des eben ausgefiihrten Planope-
rators auf.

Die Aktualisierung der Todo-L.iste bezieht sich auf das korrekte Setzen der Ready-Bits
der restlichen Operatoren, um Verletzungen der Umformungsregeln der Relationenalge-
bra zu vermeiden. Die Verschmelzung von Todo-Listen aufgund von Joins wird bereits
durch den Join-Planoperator ausgefiihrt. Da Selektionen und Joins keine Attribute aus
den Tupeln entfernen, kdnnen diese zu jeder Zeit ausgefuhrt werden. Somit kann das
Ready-Bit flr diese Operatoren von Anfang an gesetzt sein. Durch eine Projektion kann
es allerdings passieren, dass Selektions- oder Join-Attribute herausprojeziert werden. Dies
muss durch die Ready-Bits verhindert werden. Daneben wirde die Ausfuhrung einer Pro-
jektion vor einem Join ggf. eine Nachprojektion mitsichbringen, um das gleiche Ergebnis
zu erzielen, wie es in umgekehrter Reihenfolge der Ausfiihrung entstehen wiirde. Da Pro-
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jektionen ohnehin eine der letzten Operationen einer Anfrage darstellen, mussen folgende
Bedingungen erfillt sein, damit das Ready-Bit einer Projektion gesetzt werden darf:

1. Die Todo-Liste darf keine weiteren Joins enthalten.

2. Die Projektion darf Selektionsattribute der restlichen Selektionen nicht herauspro-
jezieren (der AID-Vektor der Projektion muss die AlDs samtlicher Selektionen der
Todo-L.iste enthalten)

Abbildung 5.17 zeigt den Pseudocode fiir das Setzen der Ready-Bits fir die Projektionen.

Auswahl des nachsten Peers. Wie schon das Operator-Routing, ist auch das Peer-

updateTodoL.ist(TodoL ist)

1 joinCounter =0

2 collectedAIDs = new Vector()

3 projections = new Vector()

4 for each item from TodoList

5 currentOperator = item.getOperator()

6 if currentOperator is an EddySelPOP

7 collectedAIDs = currentOperator.getAlDs()
8 if currentOperator is an EddyProjPOP

9 projections.add(currentOperator)
10 if currentOperator is an EddyJoinPOP
11 joinCounter++

12 end if

13 end for

14 if joinCounter ==

15 hits =0

16 for each proj from projections

17 projAIDs = proj.getAlDs()

18 for each aid from projAIDs

19 if aid is element of collectedAIDs
20 hits++

21 end if

22 end for

23 if hits == collectedAlDs.getSize

24 proj.setReadyBite(true)

25 end if

26 end for

27 end if

Abbildung 5.17: Algorithmus fur das Setzen der Ready-Bits
Routing Thema von Kapitel 6.

Ausgabe der Ergebnistupel. Die Tupel eines Paketes sind dann Ergebnistupel,
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wenn die zugehorige Todo-Liste keine Operatoren mehr enthélt. In diesem Fall wird das
Tupelpaket an den Peer geschickt, an den die Anfrage urspriinglich gestellt wurde. Diese
Information steckt als Peer-Identifier in der QueryID, die bei jedem Nachrichtenaus-
tausch mitgeschickt wird.

Im Rahmen seiner Aufgaben stellt der Eddy-Operator die Schnittstelle zwischen
P2P-Eddy und dem CAN dar. So hat hat der Eddy-Operator als einziger direkten Zugriff
auf folgende Bestandteile der Peers:

e Kommunikationskomponente
Als einziger Teil des P2P-Eddies ist der Eddy-Operator in der Lage Nachrichen zu
verschicken.

e Datenbestand
Die Planoperatoren arbeiten alle auf Kopien der Originaltupel der Basisrelationen.
Der Zugriff auf die Basisrelationen wird allein bei der Erzeugung der initialen Tu-
pelpakete bendtigt.

¢ lokale Laufzeitstatistiken
Der Zugriff auf die Warteschlangenlangen und die erlernten Selektivitaten der Ope-
ratoren sowie die zusétzlichen Informationen tber die direkten Nachbarn des Peers,
sind Grundlage einiger Routing-Strategien.

Eine dynamische Anfrageverarbeitung wie der P2P-Eddy, l&sst einen grofien Spiel-
raum fur die Ausfiihrung. Gerade der Eddy-Operator verfugt Gber eine Vielzahl von Para-
metern, deren Werte dessen Arbeitsweise beeinflussen.

e operatorRoutingMethod
legt die Strategie fest, nach welcher der nichste Operator fur die Abarbeitung aus-
gewéhlt wird

e peerRoutingMethod
legt die Strategie fest, nach welcher der néchste Ziel-Peer fir ein Nachrichtenpaket
ausgewahlt wird (falls diese Auswahl unabhéngig vom Operator-Routing ist)

e checkWorkload
Ja/Nein-Entscheidung, ob die Auslastung eines Peers Einfluss auf das Peer-Routing
hat

e processingMethod
legt fest, ob die Tupel eines Nachrichtenpaketes am Stlick oder in Form von Teilpa-
keten verarbeitet werden sollen

e usingSharedData
Ja/Nein-Entscheidung, ob die Operator-Routing-Strategien ,,Warteschlangenléange*
und ,,Selektivitat” auf ein globales Wissen zuruckgreifen kdnnen

e findNearestJoin
Ja/Nein-Entscheidung, ob die Zusatz-Routing-Strategie ,,Suche nach den nachsten
Join*“ verwendet werden soll
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e maxPacketSize
skalarer Zahlenwert, der die maximale Anzahl von Tupeln in einem Tupelpaket
vorgibt

e maxHops
skalarer Zahlenwert, der die Anzahl festlegt, wie oft in Folge ein Nachrichtenpaket
von Peer zu Peer geschickt werden kann, ohne verarbeitet werden zu miissen

e maxWorkloadClock
skalarer Zahlenwert, der den Grenzwert festlegt, ab wann ein Peer als ausgelastet
angesehen wird; ein Peer ist dann ausgelastet, sobald die Anzahl aller eingehenden
Nachrichten in einem festen Zeitintervall diesen Grenzwert (iberschreitet

e maxWorkloadQueue
skalarer Zahlenwert, der den Grenzwert festlegt, ab wann ein Peer als ausgelastet
angesehen wird; ein Peer ist dann ausgelastet, sobald die Summe aller Warteschlan-
gen auf dem Peer diesen Grenzwert Uberschreitet

e packTuples
Ja/Nein-Entscheidung, ob ein Re-Hashing fir alle Tupel eines Tupelpaketes einzeln
durchgeftihrt werden soll; die Alternative ist eine Vorsortierung der Tupel (vorge-
stellt im Abschnitt 5.5.4)

Die vielen moglichen Parameterkombinationen machen den Eddy-Operator &uferst
flexibel. Obwohl im Normalfall die Arbeitsweise dem Anwender oder der Applikation
verborgen bleiben soll, kdnnen samtliche Parameter von Aullen tber den Konstruktor
gesetzt werden. Dadurch ist es moglich, sinnvolle Kombinationen der Parameter gezielt
miteinander zu vergleichen.

5.7 Nachrichtenklassen

5.7.1 Grundprinzip der Kommunikation

Innerhalb der Systemumgebung erfolgt die Kommunikation zwischen Peers Giber spezielle
Nachrichtenklassen. So existiert fur jede Aufgabe eine eigene Klasse, mit den jeweils
bendtigten Informationen.

Fur den P2P-Eddy wurden funf neue Typen von Nachrichtenklassen implementiert.
Sie werden alle von der Oberklasse DirectedMessage abgeleitet (Abbildung 5.18).
Diese Klasse besteht aus folgenden Attributen:

e sender
Peer, von dem die Nachricht aus geschickt wurde

e messagelD
eindeutiger Identifier der Nachricht
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e messageTarget
Zielpunkt im Koordinatenraums des CAN

In den weiteren Abschnitten sollen die neuen Nachrichtenklassen und ihre zusatzlichen
Attribute vorgestellt werden.

DirectedMessage

AN

EddyPOPRequestMessage

EddyDistributeTodoListMessage

EddyProcessTodoListMessage

EddyReHashRequestMessage

EddyPOPResponseMessage

Abbildung 5.18: Vererbungshierarchie der neuen Nachrichtenklassen fur den P2P-Eddy

5.7.2 Die Klasse EddyPOPRequestMessage

Mit dieser Nachricht wird eine Anfrage fir den P2P-Eddy initiiert. Sie wird an den
Peer geschickt, von dem aus die Anfrage gestartet werden soll. Die Attribute der Klas-
se EddyPOPRequestMessage sind:

e EddyPOP
Anfrage in Baumstruktur (Ubergebener Operator ist Wurzelelement)

e Eddy
Eddy-Operator mit den gewéhlten Parametern (vergleiche Abschnitt 5.6)
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QueryID
eindeutiger Identifier der Anfrage

PeerDescriptor
Peer an dem Anfrage gestartet werden soll

5.7.3 Die Klasse EAdyDistributeTodoListMessage

Diese Nachricht ist fir den Broadcast des Containers mit den Todo-Listen zustandig. Fur
die korrekte Durchfiihrung sind folgende Attribute notwendig:

TodoListContainer
Container mit den Todo-Listen

Eddy
Eddy-Operator mit den gewahlten Parametern (vergleiche Abschnitt 5.6)

visitedPeers Vektor mit alle Peers, auf dem der Container bereits verarbeitet
wurde

PeerDescriptor
Peer, von dem aus die Anfrage gestartet wurde

QueryID
eindeutiger Identifier der Anfrage

startTime
Sendezeitpunkt der Anfrage (dient zur Bestimmung der Ubertragungsdauer zwi-
schen zwei Peers)

5.7.4 Die Klasse EAdyProcessTodoListMessage

Innerhalb der Klasse EddyProcessTodoListMessage werden die Tupelpa-

kete

inkl. ihrer Todo-Listen von Peer zu Peer geschickt. Neben der Klasse

EddyReHashRequestMessage gehort sie zu den beiden Nachrichtentypen, die fur
die eigentliche Verarbeitung der Tupel benotigt wird. Die Attribute der Klasse sind:

Eddy
Eddy-Operator mit den gewéhlten Parametern (vergleiche Abschnitt 5.6)

TuplePacket
Tupelpaket mit gleichartigen Tupeln

TodoList
zugehorige Todo-Liste fur das Tupelpaket

TodoListItem
Element aus der Todo-Liste, falls der nachste Operator bereits vom Sender-Peer
festgelegt wurde
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e PeerDescriptor
Peer, von dem aus die Anfrage gestartet wurde

e QueryID
eindeutiger Identifier der Anfrage

e startTime
Sendezeitpunkt der Anfrage (dient zur Bestimmung der Ubertragungsdauer zwi-
schen zwei Peers)

5.7.5 Die Klasse EddyReHashRequestMessage

Wie der Name bereits andeutet, werden mit dieser Nachricht Tupel neu verteilt. Sie wird
zu dem Peer geschickt auf dem dann die Tupel temporér eingefligt werden. Die Klasse
enthélt folgende Attribute:

e EAdyPOP
Join-Planoperator der fur den lokalen Join auf dem Ziel-Peer ben6tigt wird

e Eddy
Eddy-Operator mit den gewéhlten Parametern (vergleiche Abschnitt 5.6)

e Tuple Hilfstupel, welches neu verteilt werden soll (dieses Tupel enthalt eine Ob-
jekt vom Typ TuplePacketWrapper, welcher wiederum das Tupelpaket mit
den eingentlichen Datentupeln und die Todo-L.iste enthalt)

e TodoList
zugehorige Todo-Liste fur das Tupelpaket

e PeerDescriptor
Peer, von dem aus die Anfrage gestartet wurde

e QueryID
eindeutiger Identifier der Anfrage

5.7.6 Die Klasse EddyPOPResponseMessage

Mittels dieser Nachricht werden letztlich die Ergebnistupel einer Anfrage zu dem Peer
geschickt, an den die Anfrage gestartet wurde. Die Attribute der Klasse sind:

e Eddy
Eddy-Operator mit den gewahlten Parametern (vergleiche Abschnitt 5.6)

e TuplePacket
Tupelpaket mit den Ergebnistupeln

e PeerDescriptor
Peer, von dem aus die Anfrage gestartet wurde

e QueryID
eindeutiger Identifier der Anfrage



Kapitel 6

Routing-Strategien

6.1 Allgemeines

Sowohl Operator-Routing als auch Peer-Routing sind Aufgaben des Eddy-Operators. Fur
beide Varianten wird die Klasse Eddy um jeweils eine Methode erweitert. Die konkrete
Routing-Strategie wird den Methoden als Parameter Uibergeben.

Fur das Operator-Routing ist die Methode chooseNextTodoListItem zustdn-
dig. Die Ubergebenen Parameter sind die Todo-Liste des aktuellen Nachrichtenpaketes
und die Strategie, nach welcher der néchste Operator ausgewahlt werden soll.

Abbildung 6.1 zeigt die Struktur der Methode chooseNextTodoListItem. Die
Konstanten fur die switch-Anweisung reprasentieren die im Abschnitt 4.3.2 vorgestell-
ten Strategien fur das Operator-Routing.

Die Hilfsstrategie zum Finden des ,,ndchsten” Joins kann nicht fir sich allein
verwendet werden. Sie kann nur an gegebener Stelle zusatzlich aufgerufen werden. Mehr
dazu bei der Implementierung der Operator-Routing-Strategien.

Die Methode chooseNextPeer wahlt den ndchsten Peer fur ein Nachrichtenpa-
ket aus, falls das Ziel nicht durch das Operator-Routing implizit vorgegeben ist. Der
Ubergabeparameter ist die verwendete Strategie. Realisiert wurde der Entscheidungs-
baum aus Abbildung 4.7. Dazu muss neben den bereits vorgestellten Strategien fir
das Peer-Routing auch der Test auf Auslastung integriert werden. Die Grobstruktur der
Methode chooseNextPeer zeigt Abbildung 6.2.

Vom Eddy-Operator wird die Methode immer mit der Konstante
NEXT PEER WORKLOAD aufgerufen. Im entsprechenden Teilzweig wird zunéchst
Uberpruft, ob die Auslastung eines Peers herangezogen werden soll oder nicht. In
Abhéngigkeit davon und der gewahlten Routing-Strategie, wird die Methode rekursiv mit
der entsprechenden Konstante aufgerufen.
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In einem Zwischenschritt (Zeilen 2-7) werden alle Elemente der tbergebenen
Todo-Liste haerausgefiltert, deren Ready-Bit gesetzt ist. Nur aus dieser Teilmen-
ge darf der n&chste Operator ausgewahlt werden.

chooseNextTodoL.istltem(TodoL ist, operator RoutingMethod)
trueList = new TodoList()
for each item from TodoL.ist
if item.getReadyStatus() == true
trueList.add(item)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

18 return resultltem

end if
end for

resultitem = new TodoL.istltem()
switch (operatorRoutingMethod)
case NEXT OPERATOR RANDOM:

case NEXT OPERATOR_ HIGHEST PRIORITY:

case NEXT OPERATOR MIN QUEUE LENGTH:

case NEXT OPERATOR TICKET:

end switch

Abbildung 6.1: Struktur der Methode chooseNextTodoListItem

chooseNextPeer(method)
1 resultPeer = new PeerDescritpor()
2 switch (method)

3 case NEXT PEER WORKLOAD:

4

5 case NEXT PEER SAME PEER:

6

7 case NEXT PEER RANDOM NEIGHBOR:
8

9 case NEXT PEER CYCLIC NEIGHBOR:
10

11 case NEXT PEER PING TIME:

12

13  case NEXT PEER SENT MESSAGES:
14

15 end switch

16 return resultPeer

Abbildung 6.2: Struktur der Methode chooseNextPeer
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6.2 Operator-Routing

6.2.1 Zuféallige Auswahl

Diese einfachste aller Strategien fiir das Operator-Routing kommt ohne zusatzliche Infor-
mationen aus. Das ausgewahlte Element der Todo-Liste wird tber die Position im Vektor
der Todo-Liste angesprochen. Die Position berechnet sich dabei als zufélliger Wert aus
dem Intervall [0,...,(n-1)], wobei n die Anzahl der Elemente der Todo-Liste ist. Abbildung
6.3 zeigt den betreffenden Ausschnitt der Methode chooseNextTodoListItem.

chooseNextTodoL istItem(TodoL.ist, operator RoutingM ethod)

case NEXT OPERATOR RANDOM:

random = Math.random //random value between ,,0“ and ,,1*
position = Math.round(radom * (trueL.ist.getSize() - 1))
resultltem = trueList.getListltemByPosition(position)

end case

O ~NO Ol DNPE

Abbildung 6.3: Algorithmus flr die Operator-Routing-Stratege ,,Zuféllige Auswahl*

Dieses Verfahren ermdéglicht, mit Ausnahme der Einschrankungen durch die Ready-
Bits, eine beliebige Operatorreihenfolge. Ungunstige Reihenfolgen kdnnen dadurch nicht
ausgeschlossen werden. Damit ist die ,,Zufallige Auswahl* keine echte Routing-Strategie,
da hier die Effizienz der Anfrageverarbeitung nicht gezielt verbessert wird. Mit ihr lassen
sich allerdings gut die Vorteile ,richtiger Routing-Strategien demonstrieren.

6.2.2 Auswahl nach Prioritat

Bei dieser Strategie wird die Erweiterung der Listenelemente um eine Operatorprioritét
bendtigt. Operatoren mit einer hohen Prioritdt werden dabei bevorzugt ausgewahlt. Be-
sitzen mehrere Operatoren die gleiche hochste Prioritat, wird aus dieser Teilmenge der
Operator zuriickgegeben, der am weitesten oben in der Todo-Liste steht. Die Prioritaten
fur die drei implementierten Planoperatoren besitzen folgende Rangfolge:

prio( EddySelPOP) > prio(EddyProjPOP) > prio(EddyJoinPOP)

Abbildung 6.4 zeigt den Algorithmus flr die Auswahl nach Prioritat. Dieser besteht
aus genau einem Durchlauf der gesamten Todo-Liste. Eine Optimierung ware, wenn der
Durchlauf abgebrochen werden wiirde, sobald die erste Selektion gefunden wurde. Da
der Aufwand fir lokale Operationen im Vergleich zum Kommunikationsaufwand aber
vernachléssigt werden kann, wurde darauf verzichtet.

Enthélt die Todo-Liste sowohl Selektionen als auch Joins, werden somit immer erst
alle Selektionen ausgeftihrt. Besonders ungiinstige Operatorreihenfolgen werden dadurch
vermieden, die unnotig grolle Zwischenergebnisse erzeugen wirde. Je kleiner die Zwi-
schenergebnisse, umso geringer ist vor allem auch die Auslastung des Netzes.
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chooseNextTodoL.istltem(TodoL ist, operator RoutingMethod)

1 ..

2 case NEXT OPERATOR HIGHEST PRIORITY:
3 oldHighestPriority =0

4 for each item from TodoL.ist

5 currentPriority = item.getPriority()

6 if currentPriority > oldHighestPriority
7 oldHighestPriority = currentPriority
8 resultitem = item

9 end if

10 end for

11 end case

12 ...

Abbildung 6.4: Algorithmus flr die Operator-Routing-Stratege ,,Auswahl nach Prioritat*

6.2.3 Auswahl nach Warteschlangenlange

Da die Tupel nicht wirklich in Warteschlangen eingefligt werden und somit keine War-
teschlangenlange ausgelesen werden kann, muss dies geeignet simuliert werden. Erreicht
wird dies durch einen Z&hler fir jeden Operator auf jedem Peer. Wird ein Operator aus-
geflihrt, muss der Z&hler um die Anzahl der ankommenden Tupel erhoht, nach der Abar-
beitung um die gleiche Anzahl wieder erniedrigt werden.

QueueSim

QueryID | operatorID

135

Abbildung 6.5: Beispiel fur eine Instanz der Klasse QueueSim

Der Zahler muss seinem Operator eindeutig zugeordnet werden kénnen, auch im Fal-
le mehrerer parallel ausgefiihrter Anfragen. Aus diesem Grund muss der Z&hler um die
QueryID der Anfrage und der ID des Operators erweitert werden. Implementiert wird
das Ganze durch die Klasse QueueSim. Um alle QueueSims auf einem Peer gemein-
sam verwalten zu kdnnen, werden sie in einem Objekt vom Typ QueueSimContainer
gepackt. Jeder Peer wird um einen solchen Container eweitert.

Ein Queuesim steht auf einem Peer allerdings erst dann zur Verfligung, wenn der
zugehorige Operator mindestens einmal auf diesem Peer ausgefiihrt wurde. Sobald also
die Todo-Liste Operatoren enthélt, fur die noch kein QueueSim existiert, kann fur die
Auswahl nach der Warteschlangenlénge keine eindeutige Entscheidung getroffen werden.
Gleiches gilt, wenn mehrere Operatoren die gleiche minimale Warteschlangenlange be-
sitzen. Auf dieser Teilmenge aus unbekannte Operatoren und Operatoren mit gleicher
minimaler Warteschlangenlédnge wird die Strategie ,,Auswahl nach Prioritat* ausgewahlt.

Den Code-Ausschnitt der Methode chooseNextTodoListItemfur diese Stratgie
zeigt Abbildung 6.6.
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In Zeile 19 wird geprift, ob eine eindeutige Entscheidung auf Basis der Warte-
schlangenlange getroffen werden kann. Ist dies nicht der Fall, wird die Methode
rekursiv mit neuem Parameter aufgerufen.

chosseOperator(TodoList, operator RoutingM ethod)
1 switch (operatorRoutingMethod)

3 case NEXT OPERATOR MIN QUEUE LENGTH:
4 unknownOperators = new TodoList()
5 minimumOperators = new TodoList()
6 for each op in TodoList

7 if for op a queue does not exist on the current peer
8 unknownOperators.insert(op)

9 else

10 currentQueuelLength = queue.getQueuelLength()

11 if currentQueuelLength == minimumQueuelLength

12 minimumOperators.insert(op)

13 else if currentQueuelLength < minimumQueueLength

14 minimumOperators.clearList()

15 minimumOperators.insert(op)

16 end if

17 end if

18 end for

19  if minimumOperators.size() == 1 and unknownOperators.size() ==
20 return minimumOperators.getElement()

21  else

22 combinedList = minimumOperators + unknownOperators

23 return chooseOperator(combinedList, NEXT OPERATOR HIGHEST PRIORITY)
24 endif

25 end case

26 ...

Abbildung 6.6: Algorithmus flr die Operator-Routing-Strategie ,,Auswahl nach Warte-
schlangenlange*
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6.2.4 Auswahl nach erlernter Selektivitat

Obwohl mit diesem Verfahren ein ganz anderes Ziel verfolgt wird als mit der ,,Auswahl
nach Warteschlangenlange®, ist die Umsetzung durchaus vergleichbar. Sowhl die notwen-
digen Erweiterungen als auch der Algorithmus fur die chooseNextTodoListItem-
Methode sind sich auferts &hnlich.

Ticket
QueryID | operatorID

Eingagstupel Ergebnistupel

240 | 18

Abbildung 6.7: Beispiel fur ein Ticket

Das Gegenstiick zum QueueSim ist hier die Klasse Ticket. Der Unterschied liegt
nur darin, dass ein Ticket zwei Z&hler bendtigt. Der eine Z&hler halt fest, wie viele Tupel
vom zugehdrigen Operator auf einem Peer abgearbeitet wurden und der andere, wie viele
Tupel den Operator erfolgreich passiert haben. Aus dem Verhéltnis der beiden Zahler
lasst sich die Selektivitat des Operators abschatzen. Mit der Klasse TicketContainer
lassen sich mehrere Tickets gemeinsam von einem Peer verwalten.

Auch bei diesem Ticket-Mechanismus kann es vorkommen, dass nicht alle Operatoren
aus der Todo-Liste dem Peer bekannt sind. Gel6st wird dieses Problem wie bei der Stra-
tegie ,,Auswahl nach Warteschlangenlange“ durch den rekursiven Aufruf der Methode
chooseNextTodoListItem. Parameter sind wieder die Teilmenge aus unbekannten
Operatoren und Operatoren mit gleicher minimaler Selektivitat sowie die Konstante flr
die Strategie ,,Auswahl nach Prioritat".

Der Algorithmus des Verfahrens ist mit dem aus Abbildung 6.6 nahezu identisch.
Lediglich die Berechnung der Selektivitdt kommt hier noch dazu (siehe Abbildung 6.8)

6.2.5 Hilfsmethode findNearestJoin

Abbildung 6.9 zeigt den Algorithmus fur das Finden des ,,ndchsten* Joins. Fir jeden
Join-Operator der Todo-Liste werden die Abstdnde vom aktuellen Peer zum Ziel-Peer der
Neuverteilung aller Tupel berechnet und gemittelt. Der Join mit dem kleinsten durch-
schnittlichen Abstand wird dann zuriickgegeben.

Wie bereits erwéhnt, ist diese Methode keine eigene Routing-Strategie, da sie opera-
torspezifisch ist. Bleibt also die Frage, wann im Laufe des Peer-Routings die Methode
verwendet werden soll. Als geeignete Stelle hat sich der Aufruf innerhalb der Routing-
Strategie ,,Auswahl nach Prioritat”“ erwiesen, wenn die Liste mit den Elementen, deren
Ready-Bit gesetzt ist, nur Joins enthalt. Damit kann sie auch ausgefuhrt werden, wenn fir
die Laufzeitstatistiken Warteschlangenldnge und Selektivitat keine eindeutige Entschei-
dung getroffen werden kann. Der Uberarbeitete Algorithmus fir die Strategie ,,Auswahl
nach Prioritat” findet sich in Abbildung 6.10.
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In Zeile 20 wird geprift, ob eine eindeutige Entscheidung auf Basis der Tickets
getroffen werden kann. Ist dies nicht der Fall, wird die Methode rekursiv mit
neuem Parameter aufgerufen.

chosseOperator(TodoList, operator RoutingM ethod)
1 switch (operatorRoutingMethod)

2 ..

3 case NEXT OPERATOR TICKET:

4 unknownOperators = new TodoList()

5 minimumOperators = new TodoList()

6 oldMinimumSelectivity = 1.0

7 for each op in TodoList

8 if for op a ticket does not exist on the current peer

9 unknownOperators.insert(op)

10 else

11 currentSelectivity = ticket.computeSelectivity()

12 if currentSelectivity == oldMinimumSelectivity

13 minimumOperatorurrentQueuelLengths.insert(op)
14 else if currentSelectivity < oldMinimumSelectivity

15 minimumOperators.clearList()

16 minimumOperators.insert(op)

17 end if

18 end if

19 end for

20  if minimumOperators.size() == 1 and unknownOperators.size() ==
21 return minimumOperators.getElement()

22 else

23 combinedList = minimumOperators + unknownOperators
24 return chooseOperator(combinedList, NEXT OPERATOR HIGHEST PRIORITY)
25 endif

26 end case

27 ..

Abbildung 6.8: Algorithmus fir die Operator-Routing-Strategie ,,Auswahl nach erlernter
Selektivitat*”
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findNearestJoin(TodoL ist)

1 minDistance = MAX VALUE
2 for each item from TodoL.ist
3 if item is an EddyJoinPOP

4 currentAccumulatedDistance = 0

5 currentAverageDistance = 0

6 currentJoin = item.getOperator()

7 currentNamespace = currentJoin. getNamespace()

8 for each tuple from msg.getTuplePacket

9 currentAttribute <- find join attribute

10 currentTargetPoint <- lookup((namespace, currentAttribute))

11 currentDistance <- calculate distance between currentTargetPoint and peer
12 currentAccumulatedDistance = currentAccumulatedDistance + currentDistance
13 end for

14 currentAverageDistance = currentAccumulatedDistance / (count of tuples)

15 if currentAverageDistance < minDistance

16 minDistance = currentAverageDistance

17 nearestJoin = item

18 end if

19 endif

20 end for

21 return nearestJoin

Abbildung 6.9: Algorithmus der Methode findNearestJoin
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Durch die zusétzliche Bedingung in der if-Klausel kann die Verwendung der
Methode findNearestJoin auch vollig ausgeschaltet werden.

chooseNextTodoL istItem(TodoList, operator RoutingMethod)

1 ..

2 case NEXT OPERATOR HIGHEST PRIORITY:
3 oldHighestPriority = 0

4 if trueList.getSize() == (count of joins) and findNearesJoin == YES
5 resultitem = findNearesJoin(trueList)

6 else

7 for each item from TodoList

8 currentPriority = item.getPriority()

9 if currentPriority > oldHighestPriority
10 oldHighestPriority = currentPriority
11 resultltem = item

12 end if

13 end for

14  endif

15 end case

16 ...

Abbildung 6.10: Algorithmus fur die Operator-Routing-Strategie ,,Auswahl nach Priori-
tat” inkl. dem Aufruf fir die Methode findNearestJoin

6.3 Peer-Routing

6.3.1 Allgemeines

Fur das Peer-Routing wurden zwei neue Klassen implementiert. Die Klasse Neighbor
sammelt verschiedene Informationen tiber einen Peer in seiner Rolle als direkter Nachbar.
Derzeit sind das folgende GroélRen:

e pingTime
Zeitdauer zwischen Senden und Empfang der letzten Nachricht (Sender ist der
zugehorige Nachbar; Empfanger der Peer, der die entsprechende Instanz der
Neighbor-Klassen enthalt)

e sentMessages
Anzahl der gesendeten Nachrichten eines Nachbarn

Jeder Peer wird um eine Instanz der Klasse NeighborManager erweitert. Diese
Klasse verwaltet in erster Linie einen Array (neighbors, dessen Elemente vom Typ
Neighbor sind und alle direkten Nachbarn des Peers représentieren. Die Grol3e des Arrays
entspricht somit die Anzahl der Nachbarn.

Die meisten Algortihmen fir die Strategien des Peer-Routings befinden sich
in der Klasse NeighborManager und werden lediglich von der Methode
chooseNextPeer aufgerufen.
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Die Auswahl des nachsten Peers soll auf Basis des Entscheidungsbaumes aus Ab-
bildung 4.7. Dies bedeutet, dass das Peer-Routing auch den Test auf Auslastung eines
Peers umsetzen muss. Die Methode chooseNextPeer wird dazu im ersten Schritt
immer mit der Konstanten NEXT_PEER_WORKLOAD aufgerufen, unabhangig von der
eigentlichen Peer-Routing-Strategie. Der zugehore Code-Abschnitt realisiert genau den
oben genannten Entscheidungsbaum.

Das Attribut peerRout ingMethod steht fiir die gewahlte Routing-Strategeie.
Durch die if-Klausel in Zeile 3 kann der Test auf Auslastung auch deaktiviert
werden.

chooseNextPeer(method)

1 ..

2 case NEXT PEER WORKLOAD:

3 if checkWorkload == YES

4 workload = peerQueueSimContainer.getWorkload()
5 if workload < maxWorkload

6 resultPeer = chooseNextPeer(SAME PEER)

7 else

8 resultPeer = chooseNextPeer(peerRoutingMethod)
9 end if

10 else

11 resultPeer = chooseNextPeer(peerRoutingMethod)
12 endif

13 end case

14 ...

Abbildung 6.11: Algorithmus fir den Test auf Auslastung eines Peers

Zur Bestimmung der Auslastung eines Peers anhand der Anzahl der eingegangen
Nachrichten in einem Zeitintervall, dient die Klasse WorkloadManager als Erweite-
rung fir jeden Peer. Die Klasse sammelt in einem \Vektor (messages) die Ankunftszeiten
aller eingehenden Nachrichtenpakete. Bei jedem Einfligen einer neuen Ankunftszeit wer-
den veraltete Zeiten aus dem Vektor entfernt. Eine Ankunftszeit ist dann veraltet, wenn sie
vor dem Zeitintervall liegt, der sich durch die neuste Ankunftszeit und einem festgelegten
Zeitabschnitt ergibt (siehe Algorithmus 6.12).

Je kurzer der Abstand zwischen den Ankinften eingehender Nachrichtenpakete ist,
umso mehr Elemente befinden sich somit im Vektor messages. Die Grolie des Vektors
reprasentiert die Auslastung des Peers. Beim Test auf Uberlastung wird die VektorgroRe
mit einem festgelegten Grenzwert (maxWorkloadClock) verglichen.

Wird die Summe aller Eingangswarteschlangenlangen als MaR fir die Auslastung ei-
nes Peers herangezogen, kann auf neue Klassen verzichtet werden. Dieser Parameter kann
bereits durch die Klassen QueueSim und QueueSimContainer bereitgestellt wer-
den. Lediglich ein Grenzwert muss festgelegt werden (maxWokloadQueue).
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insertMessage(messageTime)

1 minimumTime = messageTime - INTERVAL
2 if minimumTime <0

3 minimumTime =0

4 endif

5 for each time from messages
6 if time < minimumTime

7 messages.removeMessage Time(time)
8 end if

9 end for

10 messages.addMessageTime(messageTime)

Abbildung 6.12: Algorithmus fur die Aktulasierung des Vektor der Klasse

WorkloadManager

6.3.2 Routing-Strategien
6.3.3 Gleicher Peer

Beim  Aufruf der Methode chooseNextPeer mit der Konstanten
NEXT PEER SAME PEER, wird einfach der aktuelle Peer zurlickgegeben (siehe
Abildung 6.13)

chooseNextPeer(method)

1 ..

2 case NEXT PEER SAME PEER:
3 resultPeer <- current peer

4 end case

5 ..

Abbildung 6.13: Algorithmus fur die Peer-Routing-Strategie ,,Gleicher Peer*

6.3.4 Zuféalliger Nachbar

Diese Routing-Strategie wahlt aus allen direkten Nachbarn einen zufélligen aus (Abbil-
dung 6.14). Eine faire Verteilung der Nachrichtenpakete im Netz kann dadurch nicht er-
reicht werden.

6.3.5 Zyklische Auswahl

Hier werden alle Nachbarn zyklisch hintereinander mit Nachrichtenpaketen bedient. Im
Neighbor-Manager des Peers wird in einem Attribut (lastRecepient) der Nachbar
gemerkt, der als letzter ein Paket erhalten hat.



6.3 Peer-Routing

chooseNextPeer(method)

1 ..

2 case NEXT PEER SAME PEER:

3 resultPeer = peerNeighborManager.getRecepientByRandom()
4 end case

5 ..

getRecepientByRandom()

1 random = Math.random() //random value between ,,0“ and ,,1*
2 number = Math.round(random * (neighbors.length - 1))

3 return neighbors[number]

Abbildung 6.14: Algorithmen fiir die Peer-Routing-Strategie ,,Zuféllige Auswahl*

chooseNextPeer(method)

1 .

2 case NEXT PEER CYCLIC NEIGHBOR:

3 resultPeer = peerNeighborManager.getRecepientByCycle()
4 end case

5 ..

getRecepientByCycle()

1 lastRecepient++

2 if lastRecepient > neighbors.length
3 lastRecepient = 0

4 endif

5 return neighbors[lastRecepient]

Abbildung 6.15: Algorithmen fiir die Peer-Routing-Strategie ,,Zyklische Auswahl*
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6.3.6 Suche nach der schnellsten Verbindung

In einer Schleife Gber alle Nachbarn wird nach dem Kkleinsten Wert fur das Attribut
pingTime gesucht. Dieser Wert steht aber nur dann zur Verfiigung, wenn mindestens
eine Nachricht von diesem Peer empfangen wurde. Andernfalls ist die Gute fir die Ver-
bindung nicht bekannt und es kann keine eindeutige Entscheidung getroffen werden. In
solchen Féallen wird auf die Strategie ,,Zyklische Auswahl* zurtickgegriffen.

Abbildung zeigt die beiden Algorithmen fiir die Strategie.

chooseNextPeer(method)

1 ..

2 case NEXT PEER PING TIME:

3 peer = peerNeighborManager.getRecepientByPingTime()

4 if peer is not null

5 resultPeer = peer

6 else

7 resultPeer = chooseNextPeer(NEXT PEER CYCLIC NEIGHBOR)
8 end if

9 end case

10 ...

getRecepientByPingTime()

1 currentMinPingTime = MAX VALUE

2 for each neighbor from neighbors

3 if neighbor.getPingTime() is unknown

4 return null

5 else

6 if neighbor.getPingTime() < currentMinPingTime
7 currentReturnNeighbor = neighbor

8 currentMinPingTime = neighbor.getPingTime()
9 end if

10 endif

11 end for

12 return currentReturnNeighbor

Abbildung 6.16: Algorithmen fur die Peer-Routing-Strategie ,,Suche nach der schnellsten
Verbindung*

6.3.7 Auswahl nach Auslastung der Nachbarn

Gesucht wird innerhalb aller Nachbarn nach dem kleinsten Nachrichtenvek-
tor sentMessages (siehe Abbildung 6.17). Die Aktualisierung des \ektors
ubernimmt ebenfalls der Neighbor-Manager, allerdings nicht in der Methode
getRecepientByLoad. Nach veralteten Nachrichten wird immer dann gesucht,
wenn eine neue Nachricht in den Vektor eingefiigt wird.
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chooseNextPeer(method)

1 ..

2 case NEXT PEER PING TIME:

3 resultPeer = peerNeighborManager.getRecepientByLoad()
9 end case

10 ...

getRecepientByLoad()

1 currentMinLoad = MAX VALUE

2 for each neighbor from neighbors

6 if neighbor.getLoad() < currentMinLoad

7 currentReturnNeighbor = neighbor

8 currentMinLoad = neighbor.getLoad()
9 end if

11 end for

12 return currentReturnNeighbor

Abbildung 6.17: Algorithmen fur die Peer-Routing-Strategie ,,Auswahl nach Auslastung
der Nachbarn*



Kapitel 7

Evaluierung

7.1 Testbedingungen

Testumgebung

Basis flr die Experimente war ein in Java implementierter CAN-Prototyp, der sowohl
als Simulator als auch als (verteiltes) CAN-Sytem eingesetzt werden kann [BB04]. Der
Prototyp erméglicht die Simulierung von Netzen aus mehreren tausend Peers, bei Bedarf
auch auf einem Ein-Prozessor-Rechner. Dies ist auch notwendig, wenn aussagekréftige
Ergebnisse erzielt werden sollen, da reale CAN-basierte Netze in solchen Dimensionen
nicht existieren.

Testdaten

Verwendet wurden die TPC-H-Daten® fir 1MB. 1/0-Kosten fiir Externspeicherzugriffe
konnten ignoriert werden, da die Daten fur die einzelnen Peers in einfachen Haupt-
speicherstrukturen gehalten werden konnten. Diese Einschrénkung war akzeptabel, da
als wesentlicher Faktor fir den Gesamtaufwand die Kommunikation betrachtet wurde.
Besonders in weitverteilten Netzen (Internet) ist diese Annahme realistisch.

Testanfragen

Der verwendete Anfragemix bestand im Kern aus drei Klassen mit je drei Anfragen.
Innerhalb einer Klasse unterschieden sich die Anfragen hinsichtlich der Anzahl der Joins.
Der Unterschied zwischen den Klassen bestand darin, wie stark die Basisrelationen
selektiert wurden. Zu diesen neun Anfragen gehdrten somit auch solche, die fir ein
fragmentierte Speicherung besonders unguinstig sind. Dadurch konnten auch Aussagen
uber das Worst-Case Verhalten der Implementierung gemacht werden.

Untersuchte Kenngrof3en
Um quantitative Aussagen und damit Vergleiche zwischen den Testergebnissen machen
zu konnen, wurden folgende Parameter bertrachtet:

e Anzahl der Hops
Ein Hop steht fur das Senden einer Nachricht tiber eine direkte Verbindung zwi-

Lsiehe auch: www.tpc.org
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schen zwei Peers. Dieser Parameter ist ein guter Indikator fir den Gesamtaufwand
einer Anfrage.

e Anzahl der Nachrichten
Anzahl aller erzeugten Nachrichten innerhalb der Verarbeitung einer Anfrag. Ab-
héngig ist diese GroRe vor allem von der Verteilung der Daten und der Grol3e bzw.
Anzahl der Zwischenergebnisse.

o Zeit

Durch den CAN-Prototyp kann keine ,,echte* Parallelitdt ermoglicht werden. Aus
diesem Grund kann die Systemzeit nicht verwendet werden. Fir brauchbare Ergeb-
nisse muss also auch die parallel Zeit simuliert werden.

Die Zeit wurde als Funktion tiber die Anzahl der Hops und der Auslastung der Peers
realisiert, wobei die Hops starker gewichtet wurden. Um die Parallelitat zu simulie-
ren, wurden nur die Hops und Auslastungen verwendet, die sich durch eine ,,echte®
Parallelitat ergeben wirde.

Alle drei GrélRen wurden nach der vollstandigen Verarbeitung einer Anfrage ermit-
telt, auch wenn in weitverteilten Netzen alle Ergebnistupel bereits vor diesem Zeitpunkt
zurlickgegeben worden sein kdnnen. Der Erhalt aller Ergebnistupel (die in der Praxis ib-
licherweise nicht vorher bekannt sind) markiert also nicht das Ende einer Anfrageverar-
beitung.

7.2 Ausgewahlte Tests
7.2.1 Skalierbarkeit

Fir Verfahren oder Meachanismen, die in weitverteilten Umgebungen zum Einsatz kom-
men, gehort die Skalierbarkeit mit zu den wichtigsten Charakteristiken. Die Skalierbarkeit
beschreibt, wie sich der Aufwand eines Algorithmus mit der GroRe des Netzes andert.
Gerade in CAN-basierten P2P-Netzen, deren groRe Stérke ein sehr gute Skalierbarkeit ist,
werden hohe Anspriiche an die Algortihmen gesetzt.

Abbildung 7.1 zeigt das Verhalten des P2P-Eddies mit den Standardeinstellungen in
den drei NetzgroRen von 1.000, 5.000 und 10.000 Peers. Gemessen wurde alle drei Kenn-
grolen Zeit, Anzahl der Hops und Anzahl der Nachrichten.

Anzahl der Nachrichten. Bei allen drei Netzgrofien ist die Anzahl der erzeugten
Nachrichten nahezu identisch. Abhéngig ist die Anzahl dabei vor allem von der Verteilung
der Daten. Wie man Tabelle 7.1 entnehmen kann, sind die Relationen in allen drei Netzen
ahnlich stark verteilt. Damit unterscheidet sich die Anzahl der initialen Nachrichtenpakete
und die Verarbeitung von diesen nur gering. Aus diesem Grund werden in etwa die gleiche
Anzahl von Nachrichten benétigt.

Anzahl der Hops. Die Summe aller Nachrichtentibertragungen muss in gréf3eren Net-
zen zwangslaufig ansteigen. Besonders nachteilig wirkt sich der Broadcast des Containers
mit den Todo-Listen aus. Aber auch die langeren Wege fir das Erreichen von Ziel-Peers
einer Neuverteilung besitzen einen groRRen Einfluss. Je mehr Ergebniszupel eine Anfrage
erzeugt, umso stérker bestimmt auch das Zuriickschicken der Ergebnisse die Anzahl der
Hops.
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Abbildung 7.1: Skalierbarket des P2P-Eddies

Da die Anzahl der Hops ein gutes MaR fiir die Auslastung des Netzes darstellt, steigt
die absolute Auslastung bei erster Betrachtung deutlich an. Das Verhaltnis von Anzahl
der Hops zur Anzahl der Peers sinkt aber mit der GrolRe des Netzes (Abbildung 7.2). Die
Auslastung wachst somit nicht linear.

3'

1.000 5.000 10.000

Abbildung 7.2: Entwicklung der Auslastun im Vergleich zur NetzgroRe

Zeit. Aus Sicht eines Nutzers oder einer Anwendung &ndert sich die Zeit fur die Ver-
arbeitung einer Anfrage mit steigender Anzahl der Peers nur gering. Grund hierfir ist
zweifelsohne die starke Verteilung der Daten und die hohe Parallelitat der Verarbeitung.
Der Anstieg der Zeigt liegt in erster Linie an der Zunahme der benétigten Hops, begriindet
durch die langeren Wege durch das Netz.

7.2.2 \Vergleich der Strategien fur das Operator-Routing

Die Auswahl der Operatorreihenfolge fiir Tupel ist der Ansatz die fiir Optimierung in
sémtlichen Eddy-Varianten. Der groRRe Unterschied zwischen dem P2P-Eddy und den ur-
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sprunglichen Umsetzungen, liegt in der Moglichkeit verteilter Operatoren. Diese Vertei-
lung ist es auch, die die Ergebnisse fir die Untersuchung der verschiedenen Strategien flr
das Operator-Routing pragt.

Abbildung 7.3 zeigt die Ergebnisse fur die vier umgesetzten Strategien. Bis auf die
Routing-Stratgie behielten die Parameter des Eddy-Operators ihre Standardwerte. Durch-
geflihrt wurden die Tests in einem Netz mit 1000 Peers.

BZet
B AnzahlderHops
OAnzahlderNachrichten

zufallige Hochste Lange der erlemte
Auswahl Prioridt W arteschlange Selektviat
(Ticket-
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Abbildung 7.3: Vergleich der Strategien fur das Operator-Routing

Es fallt auf, dass die Strategien, mit Ausnahme der zufélligen Auswahl, quasi iden-
tische Werte fir alle drei untersuchten KenngrofRen besitzen. Dies ist auch nicht weiter
Uberraschend, wenn man daran denkt, dass die Operatorprioritat immer dann als Krite-
rium herangezogen wird, wenn fur die Laufzeitstatistiken Warteschlangenlange und er-
lernte Selektivitat (Ticket-Mechanismus) keine eindeutige Entscheidung getroffen wer-
den kann. Und durch die starke Verteilung der Daten, waren selten alle Operatoren einer
Todo-Liste dem jeweiligen bekannt. Es wurde also dufRerst oft auf die ,,Auswahl nach
Prioritat” zurtickgegriffen.

Wie zu erwarten, fallt die zufallig Auswahl des nachsten Operators ungiinstig aus, da
besonders ungiinstige Operatorreihenfolgen nicht vermieden werden kdnnen. Die Nach-
teile fur die starke Verteilung und hohe Parallelitat fir die Laufzeitstatistiken ist hier al-
lerdings von Vorteil. Wie man dem Diagramm entnehmen kann, ist der Anstieg der Zeit
im Vergleich zur Anzahl der Hops und Nachrichten eher gering.

7.2.3 \ergleich der Strategien fur das Peer-Routing

Ziel des Peer-Routings ist vor allem eine maoglichst gute Verteilung der Last. Wirklich
gute Aussagen wéren also nur moglich, wenn der CAN-Prototyp auch Last von Peers
und somit des gesamten Netzes simulieren kénnte. Im aktuellen Stand war dies nicht
der Fall. Wie bereits erwéhnt, ist das Peer-Routing nicht unabhangig von der Auswahl
des nachsten Operators. Richtige Unterschiede sind dadurch mit Anfragen, die vor al-
lem Join-Operatoren enthalten, nicht zu erwarten. Fir eine ersten Vergleich der Strategien
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wurde also nur auf die Anfrage mit den 10 Selektionen zurtickgegriffen. Um untypische
Schwankungen etwas abzufangen, wurde flr jede Strategie die Anfrage dreimal ausge-
fihrt. Um die Routing-Strategien fiir eine echte Weiterleitung auch wirklich zum Einsatz
kommen zu lassen, wurde der Schwellwert fur die maximale Auslastung eines Peers stark
verringert. Abbildung 7.4 zeigt das Ergebnis des Tests.

‘ [ Zei @ AnzahlderHops 0 AnzahlderNachrchten

G lkeicherPeer zufallge Zyklische Suchenach  Auswahlnach
Ausw ahl Ausw ahl schnellster Auslstung der
Verbindung Peers

Abbildung 7.4: Vergleich der Strategien flir das Peer-Routing

Wie oben angedeutet, bewirkt das Fehlen einer Lastsimulation eine eingeschrénkte
Aussagekraft des Tests. Die flnf implementierten Strategien liefern recht &hnliche Werte.
Alleine die Auswabhl ,,Gleicher Peer” und ,,Auswahl nach Auslastung der Nachbarn* zei-
gen im gewissen Umfang Abweichungen. Das gute Abschneiden fir die Zeit von ,,Glei-
cher Peer* liegt an der héheren Wichtung der Hops gegeniiber der Auslastung der Peers.
Da samtliche Nachrichtenpakete auf dem gleichen Peer ausgefiihrt werden konnten, wur-
den auch nur drei Nachrichten bendtigt, die Broadcast-Nachricht und zwei fir das Zu-
riickschicken des Ergebnisses. Die dennoch recht hohe Anhzahl von Hops macht klar,
wie aufwendig allein die Verteilung des Todo-Listen-Containers ist.

Die eher schlechten Werte fiir die Strategie ,,Auswahl nach Auslastung der Nachbarn®
resultiert daher, dass die eigentliche Verarbeitung der Nachrichtenpakete einen geringen
Kommunikationsaufwand besitzt. Es stehen also kaum Informationen tber die Nachbarn
zur Verfugung. Da der zugehorige Algorithmus so arbeitet, dass er den ersten Nachbarn
mit minimaler (abgeschéatzter) Auslastung liefert, wird die Last nicht fair verteilt. Da fiir
die wenigsten Nachbarn von Peers Aussagen uber deren Auslastung getroffen werden
kann, wird sehr oft der gleiche Nachbar zum Ziel-Peer beim Peer-Routing. Die mdglichst
faire Verteilung der Last und damit auch die Parallelitat der Verarbeitung einer Anfrage
wird damit untergraben.

Relativ gut konnte die Glte der Verbindungen und damit die Vorziige der Strategie
»ouche nach der schnellsten Verbindung* getestet werden. Die nétigen Erweiterungen
konnten unabhéngig von der eigentlichen CAN-Umgebung vorgenommen werden. Wie
schon beschrieben, wird die Verbindungsgeschwindigkeit zwischen zwei Peers anhand
der Ubertragungsdauer ermittelt. Wird eine Nachrichtenpaket nun an einen Nachbarn ge-
schickt, wird die aktuelle Ubertragungsdauer mit der durchschnittlichen Dauer verglichen.
GemaR dem Verhéltnis wird die Kommunikation zusatzlich gewichtet. Fir klare Ergeb-
nisse wurde der Test auf Auslastung der Peers abgeschaltet und die zusatzliche Wichtung
besonders hochgesetzt. Das Resultat zeigt Abbildung 7.5.
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Abbildung 7.5: Test auf ,,Suche nach der schnellsten Verbinding*

Wie man sehr gut erkennen kann, macht es durchaus Sinn, auf die Parameter des
physikalsichen P2P-Netzes einzugehen. Je weitverteilter und ausgelasteter das Netz, umso
stérker kdnnen die Parameter schwanken und umso brauchbarer kénnen solche Strategien
sein.

7.2.4 Suche nach dem ,,nachsten* Join

Als Hilfsstrategie fur das Peer-Routing soll der Nutzen der Methode
findNearestJoin gesondert untersucht werden. Ziel dieser Methode war die
Minimierung der Hops durch die gezielte Auswahl des Joins, bei dem die durchschnittli-
che Entfernung zu den Ziel-Peers fiir die Neuverteilung am geringsten ist.

Bis auf die Verwendung der Methode £ indNearestJoin wurden die Standardwer-
te fiir den Eddy-Operator verwendet. Abbildung 7.6 zeigt das Ergbnis.
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Abbildung 7.6: Test auf Sinn von findNearestJoin

Das Diagramm zeigt klar, dass sich die Ergebnisse nur geringftigig unterschieden. Die
Anzahl der Hops ist sogar leicht angestiegen. Erklart kann dieses Verhalten erneut durch
die starke Verteilung der Daten. Je verteilter die Daten, umso weniger unterscheiden sich
im Mittel die Entfernungen zu den Ziel-Peers.
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7.2.5 Zusatzalgorithmen fir die Ausfihrung von Join-Operatoren

Die Algorithmen sind die Vorsortierung der Tupel fiir das Re-Hashing und das Zusam-
menfassen gleichartiger Ergbnistupel eines Joins. Hauptziel waren dabei die Verringe-
rung der Nachrichten- und damit auch der Hop-Anzahl. Die Auswirkungen sind dabei
umso grolier, je mehr Tupel sich in den Eingangsnachrichtenpaketen befinden. Falls im
ungunstigen Fall die Pakete nur ein Tupel enthalten, sind die Vorteile der Algorithmen
hinfallig.

Abbildung 7.8 vergleicht die Verarbeitung des Anfragemixes mit und ohne dem
Packen von Tupeln. Alle anderen Parameter des Eddy-Operators behalten die Standard-
werte. Die zwei ,,teuersten* Anfragen mussten allerdings herausgenommen werden. Die
Anzahl der Nachrichtenpakte war bei diesen so grof3, dass der Simulator fir die Verarbei-
tung zu viele Threads benétigt hat.

EZei
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Abbildung 7.7: Test auf Sinn der Zusatzalgorithmen fur den Join-Operator

Obwohl die Daten weit im Netz verteilt liegen und die initialen Nachrichtenpakete im
Mittel nur wenige Tupel enthalten, ist der Vorteil, der sich durch die Zusatzalgorithmen
ergibt, offensichtlich. Alle drei untersuchten Kenngrolien steigen beim Verzicht auf die
Algorithmen merklich an.

7.2.6 Einfluss von globalen Wissen

Simuliert wurde das globale Wissen durch eine Klasse mit statischen Attributen und Me-
thoden. Somit konnte jeder Peer auf diese Daten zugreifen. Damit sollte untersucht wer-
den, welche Auswirkungen die verteilten Laufzeitstatistiken haben.

In beiden Testlaufen arbeitete der Eddy-Operator mit den Standardwerten flr seine Pa-
rameter. Lediglich im zweiten Lauf wurde das globale Wissen hinzugeschaltet. Graphisch
prasentiert wird das Ergebnis in Abbildung 7.8.

Wie man sieht, ist das Ergebnis bei der Verwendung von globalem Wissen merklich
schlechter, besonders bei Anzahl der Hops und Anzahl der Nachrichten. Die Zeit bleibt
durch die hohe Parallelitat weitgehend unberuhrt. Der Grund fiir dieses Resultat liegt im
Ticket-Mechanismus begriindet. Durch das globale Wissen sind kurz nach dem Start der
Anfrage alle Operatoren bekannt, so dass ab diesem Zeitpunkt immer eine eindeutige Ent-
scheidung aufgrund der Tickets getroffen werden kann. Dabei kann es durchaus passieren,



7.3 Test auf Auslastung 94

HZet
B AnzahlderHops
OAnzahlderNachrichten

ohne gbbales W issen m itglbalem W issen

Abbildung 7.8: Test auf Einfluss von globalen Wissen

dass ein Join-Operator eine geringere Selektivitat besitzt als eine Selektion. Dadurch muss
fur mehr Tupel der Join durchgefiihrt werden, was einen Anstieg der Hop- und Nachrich-
tenanzahl begunstigt. Offensichtlich ist der Ticket-Mechanismus nicht vollig ausgereift.
So kann z.B. flir Joins die Selektivitat nur abgeschatzt werden, was an der Symmetric Hash
Join-Implementierung liegt. Desweiteren sollten die erlernten Selektivitaten der Operato-
ren unterschiedlich gewichtet werden, um die Komplexitat der Algorithmen fiir die Plan-
operatoren miteinzubeziehen.

7.3 Test auf Auslastung

Bei diesem Experiment wurde untersucht, ob und wie sinnvoll es ist, ein Nachrichtenpaket
unverarbeitet weiterzuschicken, falls ein Peer Uberlastet ist. Ein Anstieg bei der Anzahl
von Hops ergibt sich selbstverstandlich automatisch. Da fiir die Berechnung der Zeit auch
die Last der Peers miteinflief3t, sollte sich die Vermeidung stark ausgelasteter Peers positiv
auf die Zeit auswirken.

Natiirlich ist auch der Aufwand (lokaler Aufwand; nicht die Ubertragungskosten) fiir
das Weiterleiten von Paketen nicht unabhangig von der Auslastung eines Peers. Allerdings
ist die Verarbeitung von Paketen im Mittel deutlich teurer als die pure Weiterleitung. In-
nerhalb diesen Tests wurde ein Verhaltnis von 20:1 angenommen.

Die Auslastung der Peers wurde durch zuféllige Werte aus einem Intervall 7 = [0..n]
simuliert. Dieses Vorgehen ist fiir diesen Test vollig ausreichend und spiegelt zusétzlich
die nicht vorhersagbare Dynamik in solchen Systemen wider. Eine wird als ausgelastet
angesehen, wenn fir seine aktuelle Last x € I gilt: x > 0.9 % n. Sobald ein Peer ein
Nachrichtenpaket verarbeitet, wurde der Zeitz&hler des Paketes um z erhoht, bei einer
direkten Weiterleitung um 0.05 % n. Der Hop-Zahhler im Nachrichtenpaket sorgt dafir,
dass ein Paket bei hoher Auslastung vieler Peers zu lange unverarbeitet verschickt wird
(siehe Abschnitt 5.3.1).

Als Vergleichskonfiguration mit den Standardwerten fir den Eddy-Operator, wurde
die Strategie ,,Gleicher Peer “ flr das Peer-Routing verwendet. Siehe dazu auch den Ent-
scheidungsbaum aus Abbildung 4.7. Um aussagekréftige Ergebnisse zu erhalten, wurden
Anfragen ohne Joins und mit vielen Selektionen pro Basisrelation verwendet. Diese An-
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fragen erlauben eine h&ufige freie Wahl von Ziel-Peers flr das Peer-Routing. Das Ergebnis
des Tests zeigt Abbilung 7.9.

H Zeit
M Anzahl der Hops
O Anzahl der Nachrichten

ohne Weiterleitung mit Weiterleitung

Abbildung 7.9: Test auf Auslastung

Die Anzahl der Hops geht ohne ein zuséatzliches Verschicken von Tupeln erwartungs-
gemal nach unten. Genaugenommen erzeugt dieses Vorgehen das Minimum an benétig-
ten Hops fur die Verarbeitung einer Anfrage.

Da alle Selektionen direkt auf den Peers ausgefuhrt werden, auf denen Tupel der ent-
sprechenden Basisrelationen liegen, beschrénken sich die bendtigten Nachrichten auf die
Broadcast-Nachricht und die Nachrichten fiir die Ergebnistupel. Erst durch die Weiterlei-
tung von Nachrichten aufgrund Uberlasteter Peers steigt die Nachrichtenanzahl an.

\orteilhaft wird der Test auf Auslastung beim Parameter Zeit. Durch die Vermeidung
von einer Verarbeitung von Nachrichtenpaketen auf stark ausgelasteten Peers, wird der
Zeitzéhler der Pakete nie um maximale Werte erhoht. Fur einen Nutzer oder eine An-
wendung ist die Weiterleitung von Nachrichtenpaketen weg von (berlasteten Peers somit
vorteilhaft.

Der Unterschied zwischen beiden Vorgehen ist in erster Linie abhdngig von der Anfra-
ge, da Operator- und Peer-Routing nicht orthogonal zueinander sind. Enthalt eine Anfrage
beispielsweise nur Joins, ist eine freie Wahl der Ziel-Peers und damit eine zuséatzliche Ver-
teilung der Last nicht moglich.

Ob ein Test auf Auslastung sinnvoll ist, wird auch durch das Verhaltnis zwischen dem
Aufwand fiir das Verschicken und der Verarbeitung von Nachrichtenpaketen bestimmt.
Sind Hops sehr ,teuer”, kann die Zeitersparnis aus der geringer Auslastung der Peers
durchaus von den Kommunikationskosten verdrangt werden. Andererseits kann durch den
Parameter maxHops des Eddy-Operators (siehe Abschnitt 5.6) die maximale Anzahl zu-
satzlicher Ubertragungen nach oben begrenzt werden. AuRerdem werden Pakete bei freier
Peer-Wahl immer nur zu direkten Nachbarn geschickt, was somit immer genau einem Hop
entspricht. Darum relativiert sich vor allem in grof3en Netzen der extra Kommunikations-
aufwand, erst recht, wenn die Anfrage auch Joins enthalt.
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7.4 \ergleich mit einem zentralisierten Verfahren

Obwohl mit dem P2P-Eddy gerade die Gefahr von Flaschenhalseffekten aufgrund dedi-
zierter Peers, wurde der P2P-Eddy nachtraglich um einen Modus erweitert, der in etwa
einen zentralisierten Eddy simuliert. Dazu wurden folgende Erweiterungen umgesetzt:

e alle initial erzeugten Nachrichtenpakete werden zum Peer geschickt, auf dem die
Anfrage gestartet wurde

e alle Operatoren werden auf diesem Peer ausgefuhrt; somit ist dieser Peer auch das
Ziel sémtlicher Neuverteilungen

e das globale Wissen wird verwendet

Bei dieser einfachen Umsetzung werden also alle Tupel auf den Initiator-Peer geholt
und von diesem verarbeitet. Verglichen wurde die zentralisierte Variante mit den Stan-
dardwerten fiir den Eddy-Operator des P2P-Eddies. Abbildung 7.10 zeigt das Ergebnis.

| Zeit
B Anzahl der Hops
O Anzahl der Nachrichten

P2P-Eddy Zentralisierter Eddy

Abbildung 7.10: Vergleich des P2P-Eddies mit einer zentralisierten Verarbeitung

Auffallend ist der deutliche Anstieg der Zeit. Bedingt wird dies durch den Verlust der
Parallelitat bei der Verarbeitung der Tupel.

Auch die Anzahl der Hops steigt bei der zentralisierten Variante im Mittel an, da
zun&chst immer alle Tupel der betroffenen Basisrelationen zum Initiator-Peer werden.
Selektionen auf den Tupeln kénnen vorher nicht ausgenutzt werden. Erst wenn, bedingt
durch die Anfrage, volistandige Relationen verbunden werden missen, sinkt die Anzahl
der benotigten Hops im Vergleich zum P2P-Eddy. Sobald sich alle Tupel einmal auf dem
Start-Peer befinden, bedarf es keiner weiteren Kommunikation.

Die realisierte Umsetzung eines zentralisierten Eddies ist allerdings nicht optimal.
Sinnvoller ware es z.B. die Abarbeitung der Planoperatoren auf andere Knoten zu dele-
gieren und lediglich die Aufgabe des Eddy-Operators vom Initiator-Peer durchfiihren zu
lassen. Damit sinkt zwar die Auslastung dieses Peers aber gleichzeitig steigt wieder der
Kommunikationsaufwand. Ausserdem missten die Fragen beantwortet werden, welcher
Peer welchen Planoperator ausfunhrt.



Kapitel 8

Zusammenfassung und Ausblick

Mit dem P2P-Eddy wurden die Ideen der urpringlichen Eddy-Umsetzungen auf die Cha-
rakteristika von P2P-Systeme angepasst. Kern ist auch hier die dynamsiche Auswahl der
Operatorreihenfolge fir die Tupel. Die grundlegende Neuerung ist die Unterstiitzung ver-
teilter Operatoren, erreicht durch die Verbindung der Tupel mit der zugehdrigen Ver-
arbeitungsvorschrift. Dieses Konzept ist natiirlich nicht auf den Einsatz in P2P-Netzen
beschrankt, sondern kann ohne groRen Aufwand auch fir andere verteilte Umgebungen
umgesetzt werden.

Die dadurch gewonnene Flexibilitat fur die Auswahl von Rechnerknoten bringt dabei
einige Vorteile mit sich. So existieren z.B. keine dedizierten Rechnerknoten, deren Aus-
fall (durch Uberlastung, Angriff,...) automatisch einen vollstandigen Abbruch der Anfrage
zur Folge hatte. Weiterhin kann eine wesentlich bessere Lastverteilung erreicht werden.
\or allem wird aber so ein Maximum an Parallelitdt ermdglicht, was sowohl der Skalier-
barkeit als auch der Robustheit des P2P-Eddies zu Gute kommt, den Hauptkriterien fur
den Einsatz in P2P-Netzen. Die teilweise freie Auswahl von Peers, erlaubt dem P2P-Eddy
eine noch ,,agressivere* Adaption an die Systemumgebung als die ersten Eddy-Varianten.

Im Mittelpunkt der Adaptivitat stehen die Strategien, welche die Operatorreihenfolge
und die Peer-Auswahl festlegen. Fir beiden Fragestellungen wurden verschiedene Strate-
gien umgesetzt, die mit der Steigerung der Effizienz ein gemeinsames Ziel verfolgen, aber
verschiedene Wege gehen. Sie unterscheiden sich dabei in Verwendung der riickgekoppel-
ten Systemparameter und ggf. der Bestimmung bzw. Pflege zugehoriger Statistiken.

Die Verteilung von Operatoren und der Verzicht auf eine zentrale Koordination haben
auch ihre Nachteile. Ganz allgemein wird die hohe Flexibilitdt und Dynamik mit einem
nicht unerheblichen Mehraufwand erkauft. Dieser setzt sich in erster Linie aus Aktuali-
sierung bendtigter Parameter und aus den Kosten fur die Entscheidungsfindungen zusam-
men.

Mit der Verteilung von Operatoren werden auch die zugehérigen Laufzeitstatistiken
verteilt. Je verteilter ein Operator, umso verteilter sind auch dessen Statistiken und
umso geringer ist somit die Aussagekraft der KenngroRen fur die lokalen Routing-
Entscheidungen. Dies betrifft vor allem das Operator-Routing. Dadurch, dass auch
Routing-Strategien, die auch ohne die lokalen Lauftzeitstatistiken gute Ergebnisse
erzielen, existieren, relativiert sich dieses Problem.

Die Moglichkeiten des P2P-Eddies wurden noch lange nicht ausgeschopft. So feh-
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len fur einen vollstandigen Anfrageprozessor noch die nétigen Planoperatoren. Dazu
zahlen Operatoren wie Aggregation, Gruppierung oder Sortierung. Auch die ausschliefli-
che Verwendung von Equi-Joins schrankt den Leistungsumfang der Anfrageverarbeitung
ein. Hinsichtlich der Flexibilitdt und Effizienz sind auch verschiedene Implementierun-
gen vor allem fir komplexe oder blockierende Operatoren denkbar (Stichwort: adaptive
dynamische Operatoren).

Das grofte Potential fur eine weitere Optimierung steckt zweifellos in den Routing-
Strategien. Durch die verteilten Operatoren sind neue Strategien fur das Operator-Routing
interessant, die auf verteilte Laufzeitstatistiken verzichten. Denkbar ware beispielsweise
eine feste Prioritat oder Selektiviat fur jeden einzelnen Operator im Anfragebaum. Wel-
che zusétzlichen Erweiterung (Stichwort: verteilter Datenbankkatalog) daflir notig waren,
steht auf einem anderen Blatt. Wie die Evaluierung gezeigt hat, sind aber auch die beste-
henden Routing-Strategien noch nicht optimal.

Unzureichend evaluiert wurde das Peer-Routing mit dem Ziel einer moglichst
effizienten Lastverteilung. Fur reprodizierbare und aussagekréftige Ergebnisse misste
der CAN-Prototyp sinnvollerweise erweitert werden, um auch Last im Netz bzw. auf die
Peers zu simulieren, vorzugsweise unabhéngig von der Anfrageverarbeitung.

Alles in allem wurde mit dem P2P-Eddy ein wichtiger Schritt in Richtung Anfra-
geverarbeitung in massiv verteilten Umgebungen gemacht. Obwohl die maximale
Effizienz sicher noch nicht erreicht wurde, zeigen die hohe Parallelitdt, Dynamik
und Flexibilitat, dass der P2P-Eddy durchaus auf dem richtigen Weg ist. Bezlglich
der Aggressivitat der Adaptivitat, hat der P2P-Eddy die MeRlatte fiir adaptive Anfra-
geverarbeitungen noch einmal hoher gelegt. Und das Potential ist noch lange nicht
ausgeschopft.
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