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Abstract

One of the main tasks of database or information systems is to pro-
vide an effective access to the stored data. Responsible for this task is
the query proccessing. In large federated and shared-nothing environ-
ments, like Peer-to-Peer, the query processing has to deal with widely
fluctuating characteristics of the resources. A basic approach is the de-
velopment of methods for an adaptive query processing. In contrast to
static query optimization and execution techniques, adaptive query pro-
cessing tries to adapt optimization and execution to the characteristics
of the system throughout the duration of a query.
The existing implementations of an adaptive query processing are not
developed specifically and therefore optimized for Peer-to-Peer systems.
In this work an implementation of an adaptive query processing method
is introduced, which is designed for CAN-based Peer-to-Peer systems.
A CAN is a special overlay-network for the distribution and indexing
of the data in the network. In particular the implementation copes with
the most important advantages of Peer-to-Peer systems: scalability and
robustness. The adaptive query processing mechanism of this paper is
called P2P-Eddy and enhances the original eddy mechanisms for Peer-
to-Peer environments.
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Kapitel 1

Einführung

1.1 Zielstellung

Datenbankmanagementsysteme erheben den Anspruch, große Datenbestände effizient
und effektiv zu erzeugen, zu manipulieren und zu verwalten. Aus Sicht eines Nutzers
oder einer Anwendung steht in erster Linie ein schneller Zugriff auf die Daten im Vorder-
grund [Vos00]. Zuständig hierfür ist die sogenannte Anfrageverarbeitung. Neben ande-
ren Teilaufgaben umfasst sie auch die Optimierung und die eigentliche Ausführung einer
Anfrage. Die Umsetzung und Performanz der Anfrageverarbeitung hängt stark von der
gesamten Systemumgebung ab. Nur wenn sie optimal an das System und die Umgebung
angepasst ist, kann eine Anfrageverarbeitung optimale Ergebnisse liefern.

Ein wichtiger Parameter dafür ist die Art und Weise, wie die Informationen der Da-
tenbank gespeichert werden. Man unterscheidet im Wesentlichen zwischen verteilter und
nichtverteilter Datenhaltung. Unterteilt man die Daten in die eigentlichen Nutzdaten und
die Metadaten, kann die Datenhaltung in drei große Klassen eingeteilt werden. In diesem
Kontext sollen unter Metadaten vor allem die Indexstrukturen verstanden werden.

1. Nichtverteilte Nutzdaten. Nichtverteilte Metadaten.
Sämtliche Daten der Datenbank werden von einem System verwaltet. Quasi alle
Informationen, die eine Datenbank betreffen stehen hier jederzeit zur Verfügung.

2. Verteilte Nutzdaten. Nichtverteilte Metadaten.
Die eigentlichen Nutzdaten der Datenbank liegen verteilt auf verschiedenen Rech-
nern. Alle Zugriffe auf die Datenbank werden von einer zentralen Stelle aus organi-
siert, überwacht und ausgeführt. Es existiert also eine Instanz, die eine globale Sicht
auf die Datenbank besitzt.

3. Verteilte Nutzdaten. Verteilte Metadaten.
Sowohl Nutz- als auch Metadaten liegen auf verschiedenen vernetzten Rechnern.
Keine Instanz im Netz besitzt ein globales Wissen über die Datenbank. Dadurch
stehen in der Regel auch deutlich weniger Metadaten zur Verfügung.

Gerade für die Anfrageverarbeitung spielen die Metadaten ein wichtige Rolle, da die Op-
timierung einer Anfrage zum großen Teil auf Kenngrößen der Datenbank (Größe und



1.2 Überblick 7

Anzahl der Relationen, Schemainformationen, ...) und andere verwaltete Statistiken (Ver-
teilungen der Attributwerte, Selektivität von Operatoren, ...) zurückgreift. Eine Anfrage-
verarbeitung, die für ein System aus einer der oben vorgestellten Klasse optimiert wurde,
eignet sich also nicht automatisch für Systeme der anderen Klassen. Prinzipiell ist ein Ein-
satz zwar möglich, doch werden in der Regel damit nur suboptimale Ergebnisse erzielt.

Besonders Datenbanksysteme der ersten, aber auch der zweiten Klasse, zeichnen sich
dadurch aus, dass eine Vielzahl von Metadaten global erfasst werden können. Zudem un-
terliegen die Metadaten in diesen Systemen typischerweise keinen starken Schwankungen
über der Zeit. Deshalb hat sich hier eine strikte Trennung zwischen der Optimierung und
Ausführung eine Anfrage durchgesetzt. Man spricht auch von einer statischen Anfragever-
arbeitung. Eine solche Trennung ist zwar weniger flexibel, bedeutet aber einen wesentlich
geringeren Aufwand. Und da sich die Parameter für die Optimierung nur wenig ändern,
ist dieses Vorgehen für solche Systeme durchaus praktikabel.

In komplett verteilten Umgebungen, wie z.B. Peer-to-Peer Netzen, gelten ganz andere
Voraussetzungen. Hier stehen typischerweise deutlich weniger Metadaten zur Verfügung,
auf die nicht global zugegriffen werden kann. Besonderes Augenmerk muss dabei auf die
Indexierung der Daten gerichtet werden. Ein geeigneter Mechanismus sind Overlay-Netze
wie das Content Adressable Network. Diese logische Struktur wird über die physikalische
P2P-Umgebung gesetzt und übernimmt die Verwaltung bzw. Indexierung der Daten.

Umgebungen wie Peer-to-Peer Netze besitzen typischerweise eine hohe Dynamik,
d.h. dass sich die Parameter für die Anfrageverarbeitung bzw. -optimierung über die Zeit
schnell stark ändern können. Je weitvereilter das Netz dabei ist, desto länger ist auch
die Dauer für die Ausführung einer Anfrage. Bei einer Trennung zwischen Optimierung
und Ausführung, kann das Resultat der Optimierung noch zur Ausführungszeit hinfällig
werden und eventuell nur noch suboptimale Ergebnisse liefern.

Ziel der Arbeit ist die Entwicklung einer Anfrageverarbeitung für eine CAN-basierte
Peer-to-Peer Umgebung, welche auf eine Trennung zwischen Optimierung und Ausfüh-
rung einer Anfrage verzichtet. Zur Ausführungszeit soll also entschieden werden, welche
Schritte als nächstes abgearbeitet werden. Als Basis für diese Entscheidungsfindung
werden dabei Kenngrößen dienen, die zur Laufzeit ermittelt bzw. erlernt werden, um den
jeweils aktuellen Zustand der Systemumgebung einfließen zu lassen.

Ein derart flexibler und dynamischer Mechanismus führt zwangsläufig zu einem
deutlichen Mehraufwand. In Abhängigkeit der Systemumgebung kann der zusätzliche
Overhead der dynamischen Anfragverarbeitung, die Effizienz negativ beeinflussen.
Dennoch kann eine Trennung von Optimierung und Ausführung im Mittel bessere
Ergebnisse erzielen.

1.2 Überblick

Kapitel 2 gibt zunächst einen kurzen Überblick über die Anfrageverarbeitung, wie sie in
den meisten kommerziellen, nichtverteilten Datanbanksystemen zum Einsatz kommt. Die
Phase der Optimierung wird dabei besonders hervorgehoben. Über die Eigenschaften die-



1.2 Überblick 8

ser Anfrageverarbeitung lassen sich dann auch deren Nachteile für verteilte Umgebungen
ableiten.

Im Anschluss daran werden die grundlegenden Ansätze und Konzepte adaptiver
Verfahren für die Anfrageverarbeitung vorgestellt. Es werden die wichtigsten Charakteri-
stiken genannt, mit derer sich die verschiedenen adaptiven Verfahren klassifizieren lassen.
Zur Veranschaulichung soll auf verschiedene konkrete Umsetzungen näher eingegangen
werden.

Kapitel 3 befasst sich mit der zugrundeliegenden Systemumgebung. Dazu zählen
vor allem die allgemeinen Eigenschaften und Besonderheiten des Peer-to-Peer Netzmo-
dells, sowie dessen Vor- und Nachteile.

Danach wird das Konzept des Content-Adressable Networks (CAN) vorgestellt. Diese
logische Netzstruktur eignet sich Dank seiner Vorteile gerade für den Einsatz auf einem
Peer-to-Peer System.

Da auch in dieser Arbeit mit relationalen Daten in Form von Tupeln gearbeitet wird,
soll im letzten Unterpunkt noch die Organisation dieser Daten innerhalb eines CANs
demonstriert werden. Diese Ergebnisse haben einen entscheidenden Einfluss auf die
spätere Implementierung.

Der Entwurf für die in dieser Arbeit vorgestellten adaptiven Anfrageverarbeitung,
im Folgenden P2P-Eddy genannt, ist Thema von Kapitel 4. Es werden prinzipielle
Überlegungen angestellt, wie die gegebenen Anforderungen, für die anschließende
Implementierung, erfüllt werden können. Dieses Kapitel ist in zwei Hauptabschnitte
unterteilt.

Zunächst wird das Konzept soweit ausgearbeitet, dass eine adaptive Anfrageverarbei-
tung möglichst flexibel und dynamisch umgesetzt werden kann. Es wird sozusagen die
technische Voraussetzung entwickelt.

Um die Dynamik und Flexibiltät effizient zu nutzen, werden Srategien benötigt, die
anhand unterschiedlicher Kriterien, einen Einfluss auf die Anfrageverarbeitung besitzen.
Im zweiten Abschnitt werden dazu verschiedene Verfahren und Parameter vorgestellt.

In den Kapiteln 5 und 6 wird die Implementierung des P2P-Eddies behandelt. Da-
bei wird in erster Linie auf die Besonderheiten eingegangen, die aus der dynamischen
Anfrageverarbeitung heraus entstehen. Daneben werden einige Kernalgorithmen
vorgestellt.

Schwerpunkt von Kapitel 5 ist die Implementierung der dynamischen Anfrageopera-
toren. Diese bilden die Grundlage für eine variable Operatorreihenfolge für verschiedene
Tupel und damit für eine dynamischen Anfrageverarbeitung.

Strategien für die effiziente Ausnutzung dynamischer Anfrageoperatoren sind Thema
von Kapitel 6. Es werden vor allem zwei Ziele verfolgt. Zum einen sollen möglichst
kostengünstige Operatorreihenfolgen für die Tupel gefunden werden. Zum anderen soll
die erzeugte Last einer Anfrage möglichst fair im Netz verteilt werden.

Ein wichtiger Punkt bei der Entwicklung neuer Verfahren ist die Evaluierung, denn
nicht immer stimmen die praktischen Ergebnisse mit den theoretischen Annahmen
überein. Auch für diese adaptive Anfrageverarbeitung wurden einige Test durchgeführt,
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um zu überprüfen, ob die Umsetzung den Erwartungen entspricht.
Die Evaluierung ist Thema von Kapitel 7. Anhand ausgewählter Tests soll die Ein-

satztauglichkeit der neuen Anfrageverarbeitung demonstriert werden. Überprüft wird das
Verhalten in verschiedenen Netzgößen sowie das Verhalten bei der Manipulation einiger
wichtiger Kenngrößen, die Einfluss auf die Arbeitsweise der Anfrageverarbeitung neh-
men.



Kapitel 2

Grundlagen der Anfrageverarbeitung

2.1 Traditionelle Anfrageverarbeitung und -optimierung

2.1.1 Anfrageverarbeitung

Die Anfrageverarbeitung ist Kernstück eines jeden Datenbankmanagementsystems, da sie
die eigentliche Zugriffsmöglichkeit auf die Daten der Datenbank darstellt. Sie ist somit
als Schnittstelle zwischen der Anfragesprache und dem Dateisystem anzusehen [Vos00].
Aus diesem Grund kommt der Anfrageverarbeitung eine große Bedeutung zu.

Der gesamte Vorgang der Verarbeitung einer Anfrage lässt sich grob in folgende vier
Phasen unterteilen [Vos00]:

1. Vorverarbeitung

2. Anfrageoptimierung

3. Code-Erzeugung

4. Ausführung

Aufgabe der Vorverarbeitung ist die Umwandlung einer Anfrage, von der Syntax einer
Anfragesprache in eine interne Darstellung für die Weiterverarbeitung. Dazu gehört zu-
nächst das Scannen des Anfrage-Strings. Dabei werden z.B. die Schlüsselworte, Attribut-
und Relationennamen identifiziert. Der Parser prüft daraufhin, ob es sich gemäß den
Grammatikregeln der Anfragesprache um eine korrekte Anfrage handelt. Letzter Teil-
schritt ist die Validierung. Die Validierung ist dann erfolgreich, wenn alle Attribute und
Relationennamen positiv auf ihre Gültigkeit geprüft wurden.

Die zweite Phase ist die Anfrageoptimierung. Was eine Optimierung überhaupt erst
notwendig macht, ist die Deskriptivität als wichtiges Kriterium für Anfragesprachen
[HS00]. Deskriptive Sprachen sind zwar schwieriger zu implementieren, garantieren aber
die gewünschte Unabhängigkeit vom zugrundeliegenden Datenmodell. Daneben werden
solche Sprachen von den Anwendern bevorzugt [Ull88]. Mit deskriptiven Anfragespra-
chen wird quasi nur das Ergebnis der Anfrage formuliert, aber nicht auf welchem Wege
dies geschehen soll. Da für die Ausführung letztlich eine prozedurale Darstellung (aus-
führbarer Code) der Anfrage benötigt wird, muss eine Umsetzung aus der deskriptiven
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Formulierung erfolgen. In der Regel gibt es für eine Anfrage viele verschiedene Möglich-
keiten für eine prozedurale Darstellung. Genau an dieser Stelle greift die Anfrageoptimie-
rung ein. Sie sorgt dafür, dass eine möglichst effiziente Ausführungsstrategie gefunden
wird.

Aufgabe der dritten Phase ist die Erzeugung von ausführbarem Code für den gewähl-
ten Anfrageplan. Der Code selbst kann entweder direkt ausgeführt (interpretierter Modus)
oder gespeichert und erst bei Bedarf ausgeführt werden (kompilierter Modus) [KE99].

Die eigentliche Ausführung übernimmt in der letzten Phase der Laufzeitdatebankpro-
zessor, im kompilierten oder interpretierten Modus. Eine Technik, die bei der Ausführung
einer Anfrage eingesetzt wird, ist das so genannte Pipelining, auch als strombasierte Ver-
arbeitung bezeichnet [EN02]. Ohne Pipelining werden die einzelnen Operatoren einer
Anfrage getrennt hintereinander ausgeführt. Dies führt dazu, dass die Zwischenergebnis-
se jedes Operators temporär gespeichert werden müssen. Ein meist unnötiger Aufwand
wenn man bedenkt, dass die Ausgaben eines Operators in der Regel die Eingaben für den
folgenden Operator sind. Das Pipelining versucht diesem Nachteil zu umgehen, indem
aktuell erzeugte Zwischenergebnisse eines Operators sofort zum nächsten weitergereicht
werden. Diese Art der Parallelisierung bedeutet besonders auch in verteilten Datenbank-
systemen einen deutlichen Performanzgewinn.

Durchsuchen (Scannen),
Parsen, Validieren

Anfrage in einer Hochsprache (z.B. SQL)

Interne Darstellung der Anfrage

Optimierer

Zugriffsplan

Code-Generator

Code zur Ausführung der Anfrage

Laufzeitdatenbank-
prozessor

Anfrageergebnis

{

{

{

{

1. Vorverarbeitung

2. Anfrageoptimierung

3. Code-Erzeugung

4. Ausführung

Abbildung 2.1: Typische Schritte der traditionellen Anfrageverarbeitung
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2.1.2 Anfrageoptimierung

Wie bereits erwähnt, begründet sich die Notwendigkeit einer Anfrageoptimierung aus
dem Ziel, eine deskriptiv formulierte Anfrage in einen effizienten Ausführungsplan um-
zuwandeln. Ein solcher Plan wird dann als effizient betrachtet, wenn er bei seiner Aus-
führung möglichst wenig geringe verursacht [Vos00]. Die Gesamtkosten setzen sich wie
folgt zusammen [EN02]:

• Zugriffskosten auf Sekundärpeicher
Kosten für das Durchsuchen, Lesen und Schreiben von Datenblöcken, die auf dem
Sekundärspeicher gespeichert sind.

• Speicherkosten
Kosten für die Speicherung von temporären Dateien.

• Abarbeitungskosten
Kosten für die Durchführung von Speicheroperationen auf die Datenpuffer während
der Anfragenausführung

• Hauptspeicherkosten
Anzahl der während der Anfragenausführung benötigten Puffer im Hauptspeicher

• Kommunikationskosten
Kosten der Übertragung der Anfrage und ihrer Resultate vom Datenbankrechner an
den Anfragensteller. In verteilten Datenbanken kommt die Anzahl der benötigten
verschickten Nachrichten dazu.

Wie bei den meisten Formen der Optimierung, handelt es sich auch bei der Anfrageopti-
mierung um ein kombinatorisches Problem mit hoher Komplexität. Aus diesem Grund
lässt sich die beste Strategie nicht in vertretbarem Zeitaufwand finden. In der Praxis wird
deshalb weniger versucht die beste, sondern eine möglichst optimale Ausführungsstrate-
gie zu ermitteln bzw. schlechte Strategien zu vermeiden.

Als wichtiger Bestandteil der Anfrageverarbeitung, besteht die Optimierung ihrer-
seits typischerweise aus drei Phasen. Dazu zählen zum einen die beiden prinzipiellen
Techniken der logischen und physischen Optimierung [KE99] und zum anderen die
kostenbasierte Auswahl des letztlich auszuführenden Anfrageplans. Die Aufgabe der
Optimierungstechniken ist die Erzeugung äquivalenter Alternativpläne. In der Phase der
kostenbasierten Auswahl wird aus allen Anfrageplänen derjenige ausgewählt, der auf
Basis von Kostenabschätzungen am besten ist.

Die logische Optimierung, oder auch High-Level-Optimierung, befindet sich auf der
Ebene der logischen Algebra, also der Relationenalgebra im relationalen Datenmodell. Da
die Umformung auf syntaktischer Ebene geschieht, wird diese Technik auch als Rewri-
ting bezeichnet. Dieses Niveau erlaubt eine Optimierung unabhängig von der eigentlichen
Implementierung des Datenbanksystems.

Für das Erzeugen der Alternativanfragepläne werden im Wesentlichen heuristische
Regelen angewendet, welche die Reihenfolge der Operatoren im Anfrageplan festlegen.
Eine Heuristik ist eine Regel, die aus Erfahrung in den meisten Fällen gute Ergebnisse lie-
fert, aber nicht garantieren kann [EN02]. Die Heuristiken bei der logischen Optimierung
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Logische Optimierung

Physische Optimierung

Kostenbasierte Auswahl

Algebraterm

mehrere Zugriffspläne

ausgewählter Zugriffsplan

Algebraterm

Optimierung

Abbildung 2.2: Phasen der Optimierung

zielen darauf ab, möglichst kleine Zwischenergebnisse zu erzeugen. Mit diesem Ansatz
lassen sich die meisten vorgestellten Kosten (Zugriffskosten, Abarbeitungskosten,...) mi-
nimieren. Im Detail fallen folgende Heuristiken darunter [KE99]:

• Aufbrechen von Selektionen

• Verschieben der Selektionen soweit wie möglich nach unten im Operatorbaum

• Zusammenfassen von Selektionen und Kreuzprodukten zu Joins

• Bestimmung der Reihenfolge der Joins in der Form, dass möglichst kleine Zwi-
schenergebnisse entstehen

• unter Umständen Einfügen von Projektionen

• Verschieben der Projektionen soweit wie möglich nach unten im Operatorbaum

Um die Äquivalenz der Anfragepläne durch das Vertauschen der Operatorreihenfolge
zu gewährleisten, müssen die Umformungsregeln der Relationenalgebra eingehalten
werden. Eine vollständige Auflistung dieser Umformungsregeln findet sich z.B. in
[EN02].

Bei der physischen Optimierung, oder auch Low-Level-Optimierung, werden für
die Optimierung die Interna des Datenbanksystems herangezogen. Diese Technik
arbeitet auf der sogenannten physischen Algebra, deren Operatoren die implementierten
Gegenstücke der abstrakten Operatoren der logischen Algebra darstellen. So gibt es in
der Regel mehrere Möglichkeiten, einen logischen Operator physisch zu implementieren.
Vor allem für komplexe Operatoren wie z.B. dem Join existieren unterschiedliche
Implementierungen (Nested-Loop-Join, Merge-Join, Hash-Join,...).

Die physische Optimierung erzeugt für einen Anfrageplan, als Ergebnis der logischen
Optimierung, mehrere Zugriffspläne, indem für die logischen Operatoren des Anfrage-
plans, die verschiedenen Implementierungen der Operatoren eingesetzt werden. Logi-
scherweise können nur diejenigen Implementierungen genutzt werden, die auch tatsäch-
lich im verwendeten Datenbankmanagementsystem umgesetzt sind.
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Wird bei der Anfrageverarbeitung das vorgestellte Pipelining eingesetzt, entstehen
noch weitere Möglichkeiten für eine physische Optimierung. Für einige Implementie-
rungen binärer Operatoren (in erster Linie Joins) ist der Aufwand für die Abarbeitung
abhängig von der Reihenfolge der Eingaberelationen (z.B. Nested-Loop-Join). Imple-
mentierungen, die im Gegensatz dazu ihre Eingaberelationen gleichberechtigt behandeln,
werden auch als symmetrisch bezeichnet (z.B. Merge-Join) [AH00]. Mit dieser Technik
kann sich die Abarbeitungsdauer mit der der Reihenfolge der Eingaberelationen ändern,
wenn sich die Zeit zwischen den Eintreffen der Tupel beider Relationen unterscheidet.
In diesem Fall sollte bei der Optimierung abgeschätzt werden, welche Reihenfolge der
Eingaberelationen am sinnvollsten ist.

Da Heuristiken gute Ergebnisse nicht garantieren können, verlässt man sich nicht
allein auf diese Techniken. Um die Güte von Anfrageplänen quantifizierbar und
damit vergleichbar zu machen, wird ein Kostenmodell benötigt. Ein Kostenmodell
stellt Funktionen zur Verfügung, die den Aufwand bzw. die Laufzeit ermitteln. Doch
auch diese Kostenfunktionen sind lediglich nur Schätzungen, so dass die gewählte
Ausführungsstrategie nicht zwangsweise optimal ist.

Kenngrößen für das Kostenmodell sind vor allem [KE99]:

• Indexinformationen

• Clustering-Informationen

• Kardinalitäten der Datenbank

• Attributverteilungen, u.a.

Diese Informationen werden im Datenbankkatalog gespeichert und gepflegt.

2.1.3 Nachteile der traditionellen Anfrageverarbeitung

Die vorgestellten Konzepte der Anfrageverarbeitung und -optimierung liefern in einem
Ein-Prozessor-Datenbanksystem meist nahezu optimale Ausführungsstrategien. In sol-
chen Systemen steht der kostenbasierten Auswahl eine Vielzahl von Parametern zur Ver-
fügung, welche sich dazu in kurzen Zeiträumen kaum ändern. Mit dieser Voraussetzung
lassen sich so relativ aussagekräftige Kostenabschätzungen für die verschiedenen Ausfüh-
rungsstrategien treffen.

In verteilten Datenbanksystemen müssen dagegen andere Annahmen gemacht werden.
Diese Systeme verfügen typischerweise über eine weitaus höhere Komplexität als nicht-
verteilte Systeme. Der Anstieg der Komplexität lässt sich wie folgt einteilen [AH00]:

• Komplexität bezüglich der Hardware und Auslastung
In weitverteilten Umgebungen - vor allem in heterogenen, aber auch in homogenen
- ist die Performanz und Auslastung der gesamten Hardware kaum vorhersagbar.
Antowrtzeiten können nicht garantiert werden, was Verzögerungen zur Folge haben
kann.
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• Komplexität bezüglich der Daten
Die Schätzungen für die Selektivität der Operatoren sind in weitverteilten Daten-
banksystemen oft unzureichend, da die dazu benötigten statistischen Informationen
über die Datenverteilung in der Regel nicht verfügbar sind.

• Komplexität bezüglich der Nutzerschnittstelle
In weitverteilten Umgebungen dauert der Großteil der Anfragen deutlich länger als
in Ein-Prozessor-Systemen. Deshalb soll der Nutzer Einfluss auf die Ausführung
einer Anfrage besitzen.

Man muss also davon ausgehen, dass sich die Parameter für eine Anfrageoptimierung
laufend ändern. Die drei wesentlichen Kenngrößen sind dabei [AH00]:

• Kosten der Operatoren

• Selektivität der Operatoren

• Ankunftsrate der Tupel

Das eigentliche Problem liegt nun in der strikten Trennung von Optimierung und Aus-
führung einer Anfrage innerhalb der herkömmlichen Anfrageverarbeitung. Bei diesem
statischen Verfahren, kann auf Veränderungen zur Laufzeit der Anfrage nicht eingegan-
gen werden. Sinnvoll wäre eine kontinuierliche Optimierung zur Ausführungszeit.

2.2 Formen adaptiver Anfrageverarbeitung

2.2.1 Grundlegende Eigenschaften

Da der Begriff „adaptives System“ nicht immer gleichbedeutend verwendet wird, soll
zunächst definiert werden, was in diesem Kontext ein adaptives System ausmacht. Dafür
müssen drei Eigenschaften erfüllt sein [HFC+00]:

1. Das System erhält Informationen aus seiner Umgebung.

2. Diese Informationen haben Einfluss auf das Verhalten des Systems.

3. Der gesamte Prozess ist iterativ. Es entsteht eine Rückkopplung zwischen dem Zu-
stand der Umgebung und dem Systemverhalten.

Man beachte, dass auch die statische Anfrageverarbeitung bereits die ersten beiden Punk-
te erfüllt. Der wesentliche Unterschied ist der Verzicht auf eine Schleife über dem Erfas-
sen des Umgebungszustands und der Anpassung des Systemverhaltens. Doch genau hier
steckt das Potential für die Entwicklung effizienter, adaptiver Verfahren für die Anfrage-
verarbeitung. Durch obige Definition können drei Haupteigenschaften adaptiver Systeme
extrahiert werden [HFC+00]:

1. Häufigkeit der Adaption
Gibt an, wie oft das System die Parameter der Umgebung erfasst und wie oft es sich
danach anpasst.
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2. Auswirkung der Adaption
Spezifiziert, welche Systemeigenschaften bei einer Anpassung geändert werden
können.

3. Dauer der Adaption
Damit wird die Länge des Zeitraumes beschrieben, in dem die Rückkopplung zwi-
schen Umgebung und System aufrecht gehalten wird.

2.2.2 Möglichkeiten für eine adaptive Anfrageverarbeitung

Eine adaptive Anfrageverarbeitung unterscheidet sich von einer statischen nur dadurch,
dass die Anpassung an die Systemumgebung ein iterativer Prozess während der Anfrage
ist. Deshalb können die Möglichkeiten für eine adaptive Anfrageverarbeitung aus der
statischen Anfrageverarbeitung abgeleitet werden. Die Entwicklung adaptiver Verfahren
für die Anfrageverarbeitung basiert auf zwei Prinzipien. Zum einen wird auf die Verän-
derungen der Systemumgebung eingegangen, indem der Ausführungsplan einer Anfrage
zur Laufzeit modifiziert wird. Dies entspricht den Rewriting-Techniken der statischen
Anfrageverarbeitung. Zum anderen werden spezielle physische Operatoren entwickelt,
die ihr Verhalten an unvorhersagbaren Bedingungen bzw. Veränderungen der Umgebung
anpassen. Das Gegenstück innerhalb der statischen Anfrageverarbeitung ist die physische
Optimierung. Auf beide Punkte soll im Folgenden näher eingegangen werden [GPFS02].

Eine Modifikation des Anfrageplans kann unabhängig auf zwei Ebenen erfolgen:
der logischen und der physischen Ebene. Auf der logischen Ebene unterscheidet man
zwei Varianten:

• Erzeugung eines Alternativplans
Für den restlichen Plan einer Anfrage wird ein komplett neuer Alternativplan er-
stellt. Dabei können neue Operatoren hinzugefügt, Operatoren geändert und die
Form der Baumstrukter des Planes geändert werden.

• Neuordnung des Anfrageplans
Hier darf lediglich die Reihenfolge der Operatoren des restlichen Anfrageplans ver-
ändert werden. Operatoren können weder hinzugefügt noch verändert werden.

Die Methoden sind offensichtlich nicht disjunkt, da die Erzeugung eines Alternativplans
die Neuordnung der Operatoren mit einschließt. In beiden Fällen muss gewährleistet
sein, dass durch eine Modifikation nur äquivalente Anfragpläne entstehen. In relationalen
Datenbanksystemen müssen die Modifikationen deswegen gemäß den Regeln der
Relationenalgebra erfolgen.

Adaptive Algorithmen für Operatoren können ihr Verhalten zur Laufzeit ändern, in
Abhängigkeit veränderter Bedingungen und den zur Verfügung stehenden Informationen
über die Systemumgebung. Dazu werden die entsprechenden Parameter kontinuierlich
erfasst und ausgewertet. Die Anpassung der Algorithmen geschieht vollkommen autonom
und somit unabhängig vom Datenbankmanagementsystem.

Auch wenn die Erfassung und Auswertung der Systemparameter kontinuierlich er-
folgt, kann die Anpassung des Algorithmus nicht zu beliebigen Zeitpunkten durchgeführt
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werden. Zur Laufzeit entstehen in der Regel immer Zustände, in denen keine Veränderun-
gen vorgenommen werden dürfen, ohne dass das Ergebnis verfälscht wird. Um den Grad
der Adaptivität von Algorithmen zu quantifizieren, bedient man sich zweier Begriffe aus
der Parallelprogrammierung, mit denen sich die Zustände der Algorithmen beschreiben
lassen [AH00]:

• Synchronisationsschranke
Zeitpunkt, an dem ein Algorithmus in einen Zustand übergeht, in dem keine Verän-
derungen am Verhalten vorgenommen werden dürfen.

• Symmetriemoment
Zeitpunkt, an dem ein Algorithmus angepasst werden kann, ohne dass sein Zustand
verändert und dadurch das Ergebnis verfälscht wird.

Je weniger Synchronisationsschranken und je mehr Symmetriemomente ein Algorithmus
besitzt, desto höher ist dessen Adaptivität. Bei deren Entwicklung darf allerdings die
Komplexität und damit die absoluten Kosten nicht unbeachtet bleiben.

2.2.3 Merkmale für eine Klassifikation adaptiver Verfahren

Eine konkrete Umsetzung einer adaptiven Anfrageverarbeitung kann anhand einiger
charakteristischer Merkmale beschrieben werden. Damit ist es möglich, verschiedene
Verfahren zu klassifizieren bzw. zu vergleichen.

Einflussgrößen für die Anpassung. Abhängig vom verwendeten Verfahren, wer-
den nur bestimmte Kenngrößen der Umgebung durch die Adaption beeinflusst. Die
wichtigsten davon sind:

• Speicherschwankungen
Das System versucht, sich auf die Verfügbarkeit des Hauptspeichers und Speicher-
knappheiten anzupassen.

• Präferenzen des Anwenders
Der Anwender kann einen indirekten Einfluss auf die Anfrageverarbeitung haben.
Dazu gehört z.B., dass der Anwender möglichst schnell Teilergebnisse der Anfrage
erwartet. Der Anwender kann auch die Anfrageergebnisse unterschiedlich wichten.
Höher gewichtete Daten werden dann vom System schneller verarbeitet.

• Ankunftsrate der Daten
In parallelen und verteilten Systemen wird typischerweise versucht, die Ankunfts-
rate der Daten anzupassen.

• aktuelle Statistiken
Viele statistische Größen stehen zum Beginn einer Anfrage nicht zur Verfügung
oder unterliegen während der Laufzeit starken Schwankungen. Diese Größen müs-
sen während der Ausführung der Anfrage bestimmt bzw. aktualisiert werden.
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• Performanzschwankungen
Vor allem in parallelen Systemen kommt es oft zu unvorhersagbaren Leistungsein-
brüchen, auf die intelligent reagiert werden muss.

• Kombination oben genannter Parameter
Viele adaptive Verfahren haben Einfluss auf mehrere Parameter der Umgebung.

Ziel der Anpassung. Obwohl als Hauptziel immer eine Steigerung der Effizienz und
Effektivität der Anfrageverarbeitung angestrebt wird, können dennoch drei wesentliche
Teilziele unterschieden werden.

• Minimierung der gesamten Antwortzeit
Die Zeit vom Absetzen der Anfrage bis zu deren vollständigen Verarbeitung soll
möglichst kurz sein.

• Minimierung der initialen Antwortzeit
Die Zeit vom Absetzen der Anfrage bis zum Eintreffen der ersten Teilergebnisse
soll möglichst kurz sein.

• Maximierung des Durchsatzes
Das System soll pro Zeiteinheit möglichst viele Daten einer oder mehrerer Anfragen
verarbeiten.

Parameter für die Rückkopplung. Für die Anpassung können verschiedene Parameter
der Systemumgebung erfasst und ausgewertet werden.

• Verfügbarkeit des Speichers
Überwacht wird vor allem die Auslastung des Hauptspeichers bzw. des Puffers.

• Nutzereingaben
Umfasst die nutzerspezifischen Prioritäten für Teile einer Anfrage und das Update
von Teilergebnissen.

• Verfügbarkeit des Inputs für Operatoren
Die Eingabedaten mancher Operatoren können blockiert sein. Im diesem Fall muss
laufend geprüft werden, wann weiterer Input zur Verfügung steht.

• Auslastung
Darunter versteht man in erster Linie die Auslastung der Operatoren. Diese spiegelt
sich beispielsweise in der Länge der Eingangswarteschlangen wider.

• Datenrate
Rate, mit der neue Tupel erzeugt werden.

• Statistiken
Dazu gehören Kenngrößen wie die Größe der Relationen, Anzahl verschiedener
Werte für ein Attribute, die Verfügbarkeit von Indexen und andere. Welche Größen
zur Verfügung stehen und ob es sich nur um Schätzungen handelt, hängt von der
Systemumgebung ab.
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Häufigkeit der Rückkopplung. Beschreibt, wann und wie oft eine Anpassung auf die
veränderte Systemumgebung erfolgt.

• inter-operator
Die Anpassung an die Systemumgebung erfolgt jedes Mal zwischen zwei physi-
schen Operatoren.

• intra-operator
Die Anpassung an die Systemumgebung erfolgt zur Laufzeit der physischen Ope-
ratoren.

Zielumgebung. Adaptive Verfahren sind in der Regel für eine bestimmte Systemumge-
bung optimiert, da in verschiedenen Umgebungen nicht die gleichen Voraussetzungen
gelten bzw. die gleichen Annahmen gemacht werden können. Zwar ist ein konkretes Ver-
fahren nicht zwangsläufig an seine Zielumgebung gebunden, liefert aber dort die besten
Ergebnisse.

• Ein-Prozessor-System
Sämtliche Operationen werden durch einen Prozessor verarbeitet.

• paralleles System
In diesem Kontext wird unter einem parallelen System ein eng verbundenes
Mehrprozesser-System verstanden (geringe räumliche Verteilung).

• verteiltes System
Loser Verbund unabhängiger Rechner, die über ein Netzwerk miteinander in Ver-
bindung stehen (große räumliche Verteilung).

Verantwortliche Komponenten für die Anpassung.

• physische Operatoren
Es werden lediglich physische Operatoren eingesetzt, die ihr Verhalten zur Laufzeit
anpassen können, unabhängig vom restlichen Datenbankmanagementsystem.

• lokale Entscheidungsfindung
Trifft zu, wenn der Anfrageoptimierer oder eine andere Komponente des Daten-
bankmanagementsystems, den aktuellen Anfrageplan zur Laufzeit auswertet.

• globale Entscheidungsfindung
In parallelen und verteilten Systemen wird hierfür eine globale Sicht mehrerer be-
teiligter Knoten benötigt.

Art der Umsetzung. Die Strategien für die Implementierung einer adaptiven Anfragever-
arbeitung können in folgende drei Kategorien eingeteilt werden:

• physische Operatoren
Die sämtliche Adaptivität wird durch physische Operatoren realisiert. Weitere Ein-
griffe in des Datenbankmanagementsystem müssen nicht vorgenommen werden.

• konkreter Algorithmus
Die Adaptivität wird durch Erweiterungen und gezielte Veränderungen der Opera-
toren des Anfrageplanes erreicht.
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• System
Die Adaptivität wird durch mehrere unabhängige Techniken realisiert, die zu einer
Einheit zusammengefasst werden.

2.2.4 Bestehende adaptive Anfrageverarbeitungen

Die Fortschritte in der Entwicklung adaptiver Anfrageverarbeitungen lässt sich gut an der
Häufigkeit der Adaption zeigen [HFC+00]. In diesem Abschnitt sollen einige Konzepte
inkl. konkreter Umsetzungen vorgestellt werden.

Batch-Optimierung und Late Binding Schemes
Obwohl beide Verhahren nicht direkt der Definition für adaptive Systeme (siehe Ab-
schnitt 2.2) entsprechen, sollen sie aus Gründen der Vollständigkeit dennoch kurz genannt
werden.

Der Anfrageoptimierer des System R [SAC+79], dessen Grundideen Bestandteil der
meisten relationalen Datanbankmanagementsysteme ist, verwaltet in einem Katalog Sta-
tistiken (Kardinalitäten der Tabellen, Verteilung der Attributwerte,...) für die kostenba-
sierte Auswahl der verschiedenen Anfragepläne. Die Anpassung an das System besteht
nun darin, diesen Katalog periodisch vom System aktualisieren zu lassen. Die Aktualisie-
rung wird dabei manuell gestartet und ist unabhängig von der eigentlichen Anfragever-
arbeitung. Die Häufigkeit der Adaption ist vergleichsweise selten, die Aktualisierung des
Katalogs erfolgt typischerweise ein Mal pro Tag oder Woche.

Late Binding Schemes sind eine spezielle Erweiterung des Anfrageoptimierers des
System R. Ziel hierbei ist es, in Laufe der Abarbeitung von Anfragen, sich häufig
wiederholende Teilanfragen zu erkennen. Diese Teilanfragen werden dann als vollständig
kompilierter Maschinencode im Datenbanksystem hinterlegt. Muss eine solche Teilanfra-
ge dann erneut ausgeführt werden, wird sofort auf den kompilierten Code zurückgegriffen.

Per-Query Adaptivität
Die Anpassung an das System erfolgt hier zwischen der Verarbeitung von Anfragen
bzw. nach der Verarbeitung von Anfragen. Eine Umsetzung dieser Idee ist die Adap-
tive Selectivity Estimation [CR94], welche wiederum ein Erweiterung des System R
Optimierers darstellt. Hier werden die Größen aller Teilergebnisse als Metainformation
innerhalb der Anfrage gespeichert. Nach jeder Verarbeitung einer Anfrage wird der
Datenbankkatalog gemäß den gesammelten Metadaten aktualisiert, welcher somit für die
weitere Optimierung verwendet wird.

Competition und Sampling
Beim Competition-Verfahren [AZ97] wird unter den verschiedenen Zugriffsmöglichkei-
ten auf eine Tabelle die geeignetste ausgewählt. Es starten zunächst alle Möglichkeiten.
Nach kurzr Zeit kann anhand der ersten Ergebnisse die vielversprechendste weiter
ausgeführt werden. Alle anderen werden abgebrochen. Die Häufigkeit der Adaption ist
bereits intra-operator, auch wenn die Optimierung relativ beschränkt ist. Innerhalb einer
Anfrage wird lediglich eine Entscheidung pro Tabelle getroffen.

Ganz ähnlich ist die Arbeitsweise des sogenannten Sampling [BDF+97]. Beim
Sampling werden Teilanfragen stichprobenartig durchgeführt, um den Aufwand für
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die Verarbeitung der gesamten Anfrage abzuschätzen. Bezüglich der Häufigkeit der
Adaptivität bewegt sich dieses Verfahren in der Gegend der Per-Query Adaptivität.

Inter-Operator Optimierung und Query Scrambling
Nach der Per-Query Adaptivität ist die Inter-Operator Optimierung der nächste logische
Schritt. In einem ersten Ansatz für verteilte Systeme werden Teilanfragen an verschiedene
Knoten geschickt und die zurückgegebenen Ergebnisse zur Entscheidungsfindung für das
weitere Vorgehen verwendet [ONP+96].

Durch das Query Sampling werden Anfragepläne zu bestimmten Zeitpunkten inner-
halb der Anfrageverarbeitung modifiziert [AFTU96]. Solche Zeitpunkte können z.B. nach
der Ausführung blockierender Operatoren (Sortierung,...) sein oder wenn signifikante
Performanzeinbrüche auftreten.

Intra-Operator Optimierung (Adaptive Anfrageoperatoren)
Bei der Sortierung und dem Hashing handelt es sich in beiden Fällen um einen Ope-
rator, dessen Kosten abhängig vom zur Verfügung stehenden Hauptspeicher sind. Um
auf Schwankungen bei der Vergabe von Hauptspeicherressourcen besser reagieren zu
können, kommen für das Sortieren und das Hashing spezielle Algoritmen zum Einsatz,
die ihr Verhalten den Schwankungen anpassen. Die Adaption erfolgt sowohl beim Verlust
von Hauptspeicher als auch bei der Allokation neuer Bereiche [PCL93].

Ein weiterer Operator der immer wieder gesondert betrachtet wird, ist der Join. Als
binärer Operator verbindet er Tupel unterschiedlicher Relationen miteinander. Vor allem
in verteilten Datenbanksystemen ist die Ausführungszeit des Joins deshalb abhängig von
der Ankunftsrate der Tupel aus beiden Relationen. Spezielle Join-Algorithmen wie die
Ripple Join Familie passen ihr Verhalten automatisch an die Ankunftsraten der Tupel an
[HH99].

Adaptive Partitionierung von Anfragen
In verteilten Datenbanksystemen kann eine Intra-Operator Optimierung erreicht werden,
indem die Daten aufgeteilt und an verschiedene Knoten im Netz verteilt werden. In
traditionellen Systemen wird die Partitionierung statisch durch Round-Robin oder Hash-
Verfahren verteilt. Bei der adaptiven Partitionierung ist die Aufteilung abhängig vom
aktuellen Zustand der Systemumgebung. Eine konkrete Umsetzung ist River [ADAT+99].

Eddies: Kontinuierliche Adaption
Eddies erreichen eine kontinuierliche Adaption durch die Verschmelzung von Intra- und
Inter-Operator Optimierung. Der Eddy ist somit einer der „aggressivsten“ Umsetzungen
einer adaptiven Anfrageverarbeitung [AH00]. Ein Eddy ermöglicht es, die Abarbeitungs-
reihenfolge der Operatoren einer Anfrage für die einzelnen Tupel kontinuierlich neu zu
ordnen. Da seine grundlegenden Konzepte und Ideen die Basis für den in dieser Arbeit
vorgestellten Mechanismus sind, soll auf den Eddy-Mechanismus an dieser Stelle näher
eingegangen werden.

Zunächst wurde der Eddy als zentrale Komponente implementiert. Gemäß den vor-
gestellten Charakteristiken für eine adaptive Anfrageverarbeitung, lässt sich der
zentralisierte Eddy wie folgt einordnen [GPFS02]:
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• Neuordnung der Operatorreihenfolge für die Modifikation des Anfrageplans

• kein Einfluss auf den physischen Zugriffsplan

• keine Neupartitionierung der Anfrage

• mehrere Zielgößen für die Anpassung (Speicherschwankungen, Tupelankunftsra-
ten, ...)

• Hauptziel: Minimierung der Antwortzeit

• Feedback durch statistische Parameter

• Intra-Operator Feedback

• Zielumgebung: Ein-Prozessor-Systeme

• lokale Entscheidungsfindung für die Optimierung

• Umsetzung als konkreter Algorithmus

Abbildung 2.3 zeigt schematisch die Arbeitsweise eine zentralisierten Eddies.

a b x y
Relation R Relation S

�
y = ...

�A.a, A.b

�

�

Eddy

Ergebnistupel

R S

�

Abbildung 2.3: Zentralisierter Eddy

Der Eddy ist eine Art Verteiler oder Pipeline, der die Tupel der Eingangsrelationen zu
den verschiedenen Operatoren der Anfrage leitet und die Ergebnisse derer auch wieder
erhält. Damit wird quasi die dynamische, logische Optimierung realisiert. Die Entschei-
dung, in welcher Reihenfolge die Operatoren abgearbeitet werden, treffen unterschiedli-
che Routing-Strategien. Der Eddy-Mechanismus als solches kann auch die Konzepte der
dynamischen, physischen Optimierung ausnutzen, falls die Operatoren dementsprechend
implementiert sind.

Innerhalb des Routing muss sichergestellt werden, dass für alle Tupel nur legale Wege
erzeugt werden. Hilfsmittel hierfür sind Statusbits. Um eine doppelte Ausführung einer
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Operation zu vermeiden, erhält jedes Tupel pro Operator ein sogenanntes Done-Bit. Bei
der Initialisierung sind alle Done-Bits ungesetzt. Passiert ein Tupel einen Operator er-
folgreich, wird das entsprechende Done-Bit gesetzt. Ein unkontrolliertes Routing birgt
darüber hinaus die Gefahr, dass Operatorreihenfolgen entstehen können, die nicht mehr
äquivalent sind, da sie die Umformungsregeln der Relationenalgebra verletzen. Als Ge-
genmaßnahme wird jedes Tupel um ein Ready-Bit pro Operation erweitert. Das Ready-Bit
zeigt an, wann ein Operator ausgeführt werden darf. Diese Ready-Bits müssen nach je-
der Ausführung eines Operators anhand der Umformungsregeln aktualisiert werden. Ein
Tupel darf also immer nur zu einem Operator mit ungesetzten Done-Bit und gesetzten
Ready-Bit geschickt werden.

Für das Routing der Tupel sind verschiedene Strategien denkbar. So kann z.B. die
Länge der Eingangswarteschlangen der Operatoren als Maß für deren Kosten angesehen
werden. Ein Tupel wird dann zu dem Operator mit der kürzesten Warteschlange geleitet.
Eine weitere Strategie nutzt einen Ticket-Mechanismus als Indikator für die Selektivität.
Für jeden Operator besitzt der Eddy einen Zähler, der inkrementiert wird, wenn ein Tupel
zu dem dazugehörigen Operator geschickt wird. Kommt danach ein Ergebnistupel zurück,
wird der Zähler wieder dekrementiert. Operatoren mit einer hohen Selektivität erzeugen
also einen hohen Zählerstand. Bei dieser Routing-Strategie werden genau diese Operato-
ren bevorzugt angelaufen. Eine genaue Umsetzung der kurz vorgestellten Strategien sowie
noch weiterer, findet sich in [AH00].

Vorteil des zentralisierten Eddies ist die relativ einfache Implementierung, bei einer
dennoch höchst dynamischen Ausführung. Als zentrale Instanz hat der Eddy aber auch
folgende Nachteile:

• alle Original-, Zwischenergebnis- und Ergebnistupel muss der Eddy verarbeiten

• der Eddy muss sämtliche Routing-Entscheidungen für jedes Tupel treffen

• hohe Netzlast durch das ständige Hin- und Herschicken der Tupel

Der Eddy kann dadurch selbst schnell zum Flaschenhals werden und somit die Aus-
führung bremsen [TD03]. Vor allem in einer P2P-Umgebung ist der Einsatz eines
zentralisierten Eddies nicht praktikabel. Er widerspricht der Idee von gleichberechtigten
Netzknoten und hebt somit die genannten Vorteile von P2P-Netzen auf.

Die nächste logische Weiterentwicklung sind die verteilten Eddies. Bezüglich der
Charakteristiken für adaptive Anfrageverarbeitungen, ist die Zielumgebung ein verteiltes
Datenbanksystem. Ansonsten unterscheiden sich beide Eddy-Varianten nur wenig.
Kernstück ist auch hier die dynamische Auswahl des nächsten Operators, aber ohne
Hilfe einer zentralen Komponente. Nachdem ein Operator ein Ergebnistupel erzeugt
hat, wird dieses direkt an den nächsten Operator geschickt (siehe Abbildung 2.4). Die
Routing-Entscheidungen treffen hier also die Operatoren.

In Abbildung 2.4 stellen die gestrichelten Linien alle möglichen Wege für die Aus-
führung dar. Die dicke Linie zeigt beispielhaft die Operatorfolge für ein beliebiges Tupel.
Auch bei verteilten Eddies werden Ready- und Done-Bits benötigt, um eine doppelte Aus-
führung von Operatoren und Verletzungen der Umformungsregeln der Relationenalgebra
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Abbildung 2.4: Verteilter Eddy

zu vermeiden. Im Graph fehlen bereits alle Pfade, die aufgrund der Ready-Bits nicht mög-
lich sind.

Praktikable Routing-Strategien basieren auf ähnlichen Parametern wie schon beim
zentralisierten Eddy. Mögliche Parameter sind beispielsweise [TD03]:

• Länge der Eingangswarteschlangen

• erlernte Selektivität durch einen Ticket-Mechanismus

• berechnete Selektivität durch einen Monitor für jeden Operator

• durchschnittliche Verweilzeit eines Tupels in einem Operator als Maß für dessen
Kosten

Dazu kommen noch Strategien, die auf den Kombinationen der verschiedenen Parametern
basieren. In [TD03] werden konkrete Routing-Strategien sowie deren Vor- und Nachteile
im Detail vorgestellt.

Im Normalfall befindet sich ein Operator immer auf dem gleichen Peer. Um Fla-
schenhalseffekte aufgrund überlasteter Peers zu vermeiden, werden Techniken für eine
Lastverteilung benötigt. Beherbergt ein Peer mehr als einen Operator, kann der Peer bei
zu hoher Last einen oder mehrere Operatoren an Nachbar-Peers abgeben (Box-Sliding).
Ist ein Peer mit nur einem Operator überlastet, kann dieser Operator auf zwei Peers
verteilt werden (Box-Splitting). In beiden Fällen muss das Routing auf die veränderte
Situation angepasst werden. Genaueres zu diesem Thema auch in [TD03].

Der zentralisierte, aber vor allem der verteilte Eddy-Mechanismus, setzen bereits eini-
ge interessante Konzepte für eine adaptive Anfrageverarbeitung um. Die Eingriffe sowohl
in die logische als auch in die physische Optimierung, erlauben dem Eddy ein höchst
dynamische Ausführung einer Anfrage.
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Abbildung 2.5: Box Sliding und Box Splitting



Kapitel 3

CAN-basierte P2P-Netze

3.1 Das Peer-to-Peer Netzmodell

Das Peer-to-Peer Modell (kurz: P2P) ist einer der beiden grundlegenden Ansätze für die
Vernetzung von Rechnern. Der zweite Ansatz ist die Client/Server-Architektur, siehe Ab-
bildung 3.1. Im Gegensatz zu dieser, besteht ein P2P-Netz aus gleichberechtigten Knoten,
den sogenannten Peers [Ber98]. Innerhalb solcher Umgebungen existieren keine dedi-
zierten Rechner für die Bereitstellung von bestimmten Server-Diensten. Jeder Peer kann
gleichzeitig Client und Server sein. Alle Netzknoten arbeiten im Wesentlichen autonom
(Abbildung 3.2). Für die Ressourcenverwaltung, Optimierung und andere Aufgaben, ist
jeder Peer selbst verantwortlich. Auch die Kommunikation findet direkt zwischen den
Peers statt, ohne den Umweg über eine zentrale Instanz.

Client

Client

Client

Client

Client

Server

Abbildung 3.1: Client/Server-
Architektur

Peer

Peer

Peer

Peer

Peer

Peer

Peer

Abbildung 3.2: Peer-to-Peer Netzwerk

Da es in reinen P2P-Umgebungen keine zentrale Koordination und keine zentrale
Datenbasis gibt, besitzt kein Peer eine globale Sicht auf das gesamte Netz. Ein Peer kennt
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in den meisten Fällen nur seine direkten Nachbarn, seine Sicht ist also immer nur lokal.
Das globale Verhalten ergibt sich erst als Summe aller lokalen Interaktionen der Peers.

Diese Art der Vernetzung bietet einige klare Vorteile. Da alle Knoten gleichwertig
sind und weitestgehend autonom arbeiten, wird auch Last im Netz auf die Knoten verteilt.
Damit ist die Größe von P2P-Netzen quasi unbeschränkt.

Durch das Fehlen von dedizierten Rechnern oder sonstigen Netzhierarchien, sind Fla-
schenhalseffekte (Single Point of Failure) durch Überlastung einzelner Rechner nicht
möglich. Diese Eigenschaft macht solche Systeme auch äußerst tolerant gegenüber Aus-
fällen und Angriffen. Fällt ein Peer aufgrund eines Fehlers oder Angriffes aus, ist die
Funktionstüchtigkeit des restlichen Netzes in der Regel nicht davon betroffen. Es stehen
hauptsächlich die Ressourcen des fehlenden Peers nicht mehr zur Verfügung.

P2P-Netze sind typischerweise besser skalierbar als Client/Server-Umgebungen, da
das Hinzufügen bzw. Entfernen (gewollt oder ungewollt) von Knoten nur Aktionen in-
nerhalb der direkten Nachbarschaft des Knotens zur Folge hat. Aus diesem Grund eignen
sich P2P-Netze besonders für sehr dynamische Umgebungen, in denen es im Betrieb häu-
fig zum Einbinden oder Entfernen von Teilnehmern kommt.

Mit dem P2P-Modell können also schnell große Ressourcen (Rechenleistung,
File-Sharing, ...) bereitgestellt werden, ohne dass eine besondere Netzplanung oder hohe
Kosten für eine leistungsstarke Hardware (Server, Netzkomponenten, ...) notwendig sind
[RFH+01].

P2P-Netze haben natürlich auch Nachteile. Aufgrund ihrer großen Dynamik gibt es
keine Garantien für die Existenz von Peers und Verbindungen zwischen Peers. Ohne
zusätzliche Mechanismen sind die Ressourcen fehlender oder nicht mehr erreichbarer
Peers nicht zugänglich. Je nach Einsatzgebiet kann dieser Umstand toleriert oder auf
geeignete Weise möglichst umgangen werden.

Doch vor allem das Finden von Daten, ohne die Verwendung einer zentralen Koor-
dination bzw. Datenhaltung, ist schwierig. Um nicht jedes Mal das gesamte Netz mit
Suchanfragen zu fluten, werden skalierbare, dezentrale Indexierungsmechanismen benö-
tigt. Diese erlauben einen effizienten Zugriff auf die Daten, in einem vertretbaren Auf-
wand.

Viele existierende Implementierungen weichen das P2P-Konzept auf, indem sie
zentrale Instanzen für die Indexierung der Daten einsetzen. Der eigentliche Datenaus-
tausch findet weiterhin direkt zwischen den Peers statt (z.B. Napster). Diese Systeme
sind allerdings dann deutlich schlechter skalierbar und anfälliger gegenüber Überlastung,
Ausfall oder Angriff der zentralen Instanzen.

3.2 Das Content-Adressable Network

Ein Content-Addressable Network (kurz: CAN) [RFH+01] ist eine logische Struktur, die
sich gerade für den Einsatz als Overlay-Netzwerk auf einer P2P-Umgebung eignet. Als
Basis für das CAN dient ein d-dimensionaler, kartesischer Koordinatenraum auf einem
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d-Torus. Dadurch besitzt der Koordinatenraum keine Ränder, so dass von einem Punkt
aus in alle beliebigen Richtungen gegangen werden kann, ohne den Raum zu verlassen.
Abbildung 3.3 zeigt einen Torus für einen 2-dimensionalen Koordinatenraum.

Abbildung 3.3: Torus

Dieser Koordinatenraum wird nun in disjunkte Zonen unterteilt, die durchaus unter-
schiedlich groß sein dürfen. Jede Zone wird von einem Knoten des unterliegenden Netz-
werkes verwaltet. Es muss dabei die Bedingung erfüllt sein, dass zu jedem Zeitpunkt der
gesamte Raum abgedeckt wird. In einem CAN-basierten Netz kennen alle Rechnerknoten
ihre eigene Zone, sowie die Zonen ihrer direkten Nachbarn. In einem d-dimensionalen
Raum sind zwei Zonen genau dann benachbart, wenn sie entlang einer Dimension eine
gemeinsame Begrenzung haben und sie sich dort entlang der restlichen (d-1) Dimensio-
nen berühren.

Abbildung 3.4 zeigt ein solche disjunkte Zerlegung des 2-dimensionalen Koordi-
natenraums. Die Ausdehnung des Raumes ist dabei in beiden Dimensionen auf „1“
normiert.

Die eigentliche Datenorganisation geschieht mit Hilfe einer verteilten Hash-Tabelle
(DHT - Distributed Hash Table). Ganz allgemein versteht man unter Hashing die
Abbildung von Schlüsseln auf Werte mit Hilfe der sogenannten Hash-Funktion h(x).
Im Falle eines CAN werden Schlüssel-Werte-Paare der Form (key, value) gespeichert,
indem der Schlüssel key durch die Hash-Funktion auf einen Punkt P im Koordinatenraum
abgebildet wird (h(key)=P). Auf dem Peer, der die Zone verwaltet in dem P liegt, wird
das Datum (key, value) abgelegt. Das Vorgehen für das Auslesen der Daten gestaltet sich
analog.

Für die gesamte Organisation der Daten werden im Kern folgende zwei Basisopera-
tionen benötigt:

1. put(key, value)
Lokales Speichern des Paares (key, value) auf einem Peer.

2. get(key)->V
Ermitteln des Wertes value zum Schlüssel key auf einem Peer.
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Abbildung 3.4: Beispiel CAN

Sowohl put als auch get sind lokale Operationen. Befindet sich der berechnete Punkt
nicht auf dem angesprochenen Peer, muss die Anfrage zunächst an den richtigen Peer
weitergeleitet werden. Diese Aufgabe übernimmt die methode lookup(key), die beide
Basisoperationen bei Bedarf aufrufen können. Das lookup ist von besonderem Interesse,
da für ein schnelles Auffinden des richtigen Peers ein entsprechend effizienter Routing-
Algorithmus benötigt wird.

Ein intuitiver Ansatz für einen Routing-Algorithmus ist die Weiterleitung der Anfrage
entlang der Verbindungslinie zwischen dem aktuellen Peer und dem berechneten Punkt
P im kartesischen Koordinatenraum. Da jeder Peer die Zonen seiner direkten Nachbarn
kennt, kann er berechnen, wessen Zone den Punkt P enthält bzw. am nächsten an P liegt.
Zu diesem Nachbarn wird nun die lookup-Anfrage geschickt. Abbildung 3.5 zeigt die
Wegwahl für ein lookup, für den Fall dass Peer 1 angefragt wird, das Datum aber auf Peer
3 gespeichert ist.

Für einen d-dimensionalen Datenraum der in n gleich große Zonen unterteilt ist, lassen
sich einige Kenngrößen abschätzen:

• durchschnittliche Pfadlänge einer lookup-Operation (Anzahl der Hops): (d/4)n1/d

• minimale Anzahl von Nachbarn: 2d

• Anstieg der Pfadlänge bei wachsender Anzahl von Peers: O(n1/d)

Der Exponent (1/d) macht deutlich, dass die durchschnittliche Pfadlänge bzw. deren
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Abbildung 3.5: Beispiel für ein lookup

Wachstum bei einer Skalierung des Netzes mit dem Einsatz weiterer Dimensionen ge-
ringer wird.

Für das Routing existieren immer mehrere Wege zwischen zwei Punkten im Raum,
so dass bei Ausfällen von Peers Alternativrouten gewählt werden können. Die Anzahl
der möglichen Wege steigt mit der Dimension des Koordinatenraums.

Durch die Voraussetzung, dass der gesamte Koordinatenraum jederzeit vollständig
abgedeckt sein muss, werden geeignete Algorithmen für den Beitritt und das Verlassen
von Netzknoten benötigt.

Soll ein neuer Knoten in das CAN eingegliedert werden, müssen folgende drei Schritte
durchgeführt werden:

1. Finden einer belegten Zone im CAN
Der neue Knoten wählt einen zufälligen Punkt P im Koordinatenraum und schickt
an den Peer, der die Zone verwaltet die P enthält, eine JOIN-Nachricht.

2. Split der Zone
Die betreffende Zone wird in zwei (typischerweise gleich große) Teilzonen unter-
teilt und die Hälfte die P enthält an den neuen Peer übergeben. Die Wertpaare der
ursprünglichen Zone werden gemäß der Aufteilung auf die beiden Peers verteilt.

3. Aktualisierung der Nachbarschaftsbeziehungen
Alle betroffenen Knoten (die beiden Peers der geteilten Zone sowie alle direkten
Nachbarn) müssen ihre Informationen über die Zonen ihrer Nachbarn auf die ver-
änderte Aufteilung des Koordinatenraums anpassen.

Wenn d die Anzahl der Dimensionen des CANs beschreibt, dann ist die maximale
Anzahl der betroffenen Knoten in der Größenordnung von O(d). Der Aufwand steigt also
linear mit der Anzahl der Dimensionen an.

Für das Verlassen von Peers gibt es zwei prinzipielle Möglichkeiten. Zum einen
kann der Peer explizit bekannt geben, dass er das Netz verlassen will und zum anderen,
wenn der Peer durch einen Ausfall, Überlastung oder Angriff nicht mehr erreichbar ist.
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Abbildung 3.6: Einfügen eines neuen Peer in ein CAN

Gibt ein Knoten sein Verlassen explizit bekannt, genügen folgende Schritte, um eine
vollständige Überdeckung des Koordinatenraums wiederherzustellen:

1. Abgabe der verwalteten Zone
Der verlassende Peer übergibt seine Zone in der Regel an den Nachbarn mit der
kleinsten Zone ab. Dabei müssen auch die Daten an diesen Peer übergeben werden.

2. Benachrichtigung aller Nachbarn
Sowohl der Peer mit der vereinigten Zone als auch alle seine direkten Nachbarn
müssen ihr Nachbarschaftsinformationen aktualisieren.

Fällt ein Knoten aus, oder ist aus anderen Gründen nicht mehr erreichbar, müssen zusätz-
liche Maßnahmen getroffen werden. Um überhaupt festzustellen, dass ein Nachbar nicht
mehr zu erreichen ist, werden periodisch Update-Nachrichten zwischen den Peers ausge-
tauscht. Beim Wegfall eines Peers bleibt dessen Update-Nachricht aus. Ist dies der Fall,
werden folgende Schritte durchgeführt:

1. Aushandeln, welcher Nachbar die Zone übernimmt
Nach dem Ausbleiben der Update-Nachricht eines Peers, tauschen dessen Nachbarn
sogenannte TAKEOVER-Nachrichten aus. Diese beinhalten im Wesentlichen die
Größe der vom Peer verwalteten Zone, der die Nachricht abgeschickt hat. Dadurch
kann festgestellt werden, welcher Nachbar die kleinste Zone verwaltet.

2. Übernahme der Zone
Das restliche Vorgehen gestaltet sich analog zum expliziten Verlassen eine Peers
(Verschmelzung der Zone, Benachrichtigung aller direkten Nachbarn). Allerdings
gehen hier die Daten des ausgefallenen Peers verloren.

Um den Verlust von Daten durch einen Ausfälle zu umgehen, bedarf es zusätzlicher
Sicherungsmechanismen. So können z.B. die Daten periodisch neu eingefügt werden
oder eine replizierte Datenhaltung zum Einsatz kommen.

Die vorgestellten Eigenschaften und Verfahren gelten für die ursprüngliche Version
eines Content-Adressable Networks. Doch es gibt noch verschiedene Erweiterungen, mit
denen ein CAN verbessert werden kann. Verbesserungen können bezüglich des Routings,
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der Skalierbarkeit, der Ausfallsicherheit und anderer Punkte gemacht werden. Mögliche
Erweiterungen sind z.B.:

• Erhöhung der Dimensionalität
Wegen (d/4)n1/d verringert sich die durchschnittliche Pfadlänge beim Routing, bei
einem vergleichsweise geringen Mehraufwand für das Verwalten der zusätzlichen
Routing-Einträge auf jedem Peer. Mit steigender Dimension wächst auch die An-
zahl der Alternativrouten zwischen zwei Peers und damit die Ausfallsicherheit.

• Verwaltung mehrer unabhängiger Koordinatenräume
Es kommen für die Datenorganisation mehrere Hash-Funktionen zum Einsatz. Ist
n die Anzahl der Hash-Funktionen, so wird ein Datum auf n verschiedene Stellen
gespeichert. Während des Routings kann dann zwischen den verschiedenen Hash-
Funktionen gewechselt werden. Dieses Verfahren erhöht zum einem die Ausfallsi-
cherheit (Daten werden mehrfach gespeichert) und zum anderen die Effizienz des
Routings (es wird die Hash-Funktion mit dem kürzesten Abstand zum gesuchten
Punkt gewählt).

• Zusätzliche Routing-Metriken
Die vorgestellte Strategie, den schnellste Weg für das Routing auf Basis der gering-
sten Distanz im Koordinatenraum zu finden, beschränkt sich allein auf die Ebene
des CAN. Peers, die im Koordinatenraum direkte Nachbarn sind, können auf phy-
sischer Ebene sehr weit auseinander liegen (hohe Kommunikationskosten). Es ist
daher sinnvoll für das Routing auch Parameter des unterliegenden physischen Net-
zes heranzuziehen.

• Überladen von Zonen
Anstatt jede Zone von genau einem Peer verwalten zu lassen, sind hier mehrere
Peers für eine Zone zuständig. Dabei muss der Peer nicht nur seine Nachbarn, son-
dern auch die Peers, mit denen er sich seine Zone teilt, kennen. Die Daten einer
Zone können entweder fragmentiert oder repliziert auf die Peers verteilt werden, je
nachdem ob die Ausfallsicherheit oder die Performanz verbessert werden soll.

Alles in allem ist das Content-Adressable Network, aufgrund seine völlig dezentralen
Datenorganisation und der sehr guten Skalierbarkeit, bestens geeignet zur Indexierung
von Daten in einer Peer-to-Peer Umgebung.

3.3 Organisation relationaler Daten

Mit Hilfe der verteilten Hash-Tabelle können einzelne Schlüssel in einem CAN gut
verwaltet werden. In den meisten Anwendungen werden allerdings strukturierte Daten
verarbeitet. In der Datenbankwelt ist vor allem das relationale Datenmodell zu finden.
Auch in dieser Arbeit kommen relationale Daten in Form von Tupeln zum Einsatz. Im
Folgenden soll kurz eine Möglichkeit vorgestellt werden, wie sich Relationen in eine
verteilte Hash-Tabelle speichern lassen. Eine genaure Beschreibung des Verfahrens findet
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sich in [RvdWSB04].

Das Einfügen von Tupeln geschieht mit Hilfe der put-Operation. Gegebenenfalls
wird zuvor ein lookup benötigt um den entsprechenden Peer zu finden, der dann das
lokale put durchführt.

Beide Operationen benötigen als Eingabeparameter eine key-Wert. Für relationale
Daten eignet sich das Wertepaar aus dem Relationennamen und dem Attributwert des
Primärschlüssels, da diese beiden Größen ein Tupel innerhalb einer Datenbank eindeutig
identifizieren. In welcher Form der Relationenname und der Attributwert dargestellt
werden, ob als String, als numerischer oder anderweitig abgeleiteter Wert, spielt dabei
keine Rolle. Der value-Wert für das put(key, value) ist in der Regel das gesamte Tupel.

Die besonderen Eigenschaften des CAN zeigen sich gerade bei der Suche nach Tu-
peln. Bestimmt wird das Vorgehen durch das Konzept der verteilten Hash-Tabelle.
Wie beim Hashing üblich, kann auf die Daten nur über die Schlüsselwerte zugegriffen
werden, nach denen die Daten auch verteilt wurden. Aus diesem Grund können Anfrage
in drei Klassen eingeteilt werden. Für nachfolgende Beispielanfragen soll die Relation
student(MatNr, Matrikel, Studiengang) dienen.

Punktanfragen auf Werten des Primärschlüsselattributes. Dazu zählt z.B. eine
Anfrage der Form:

• SELECT * FROM student WHERE MatNr=29093

Diese Art Anfrage stellen den Idealfall dar, alle Größen die für das lookup und get benötigt
werden, stehen direkt zur Verfügung. Der key-Wert kann direkt aus dem Relationennamen
und dem gesuchten Wert für das Primärschlüsselattribut gebildet und in die Basisoperatio-
nen eingesetzt werden. Für obige Anfrage würde sich also ergeben: key=(student, 29093).

Bei solchen Anfragen zeigen sich die Vorteile des Hash-Verfahrens. Auf die Tupel
kann quasi direkt zugegriffen werden, da mit den gleichen Schlüsseln gesucht wird, mit
denen die Tupel eingefügt worden sind.

Bereichsanfragen auf Werten des Primärschlüsselattributes. Bespiele für diese
Art Anfragen sind:

• SELECT * FROM student oder

• SELECT * FROM student WHERE 20000<MatNr<30000

Da hier der key-Wert nicht eindeutig bestimmt werden kann, ist auch eine gezielte Anfrage
an den entsprechenden Peer nicht möglich. Um das Problem zu lösen, stehen zwei Ansätze
zur Verfügung.

1. Broadcast/Multicast der Anfrage.
Die Anfrage wird an alle Peers im Netz verteilt. Jeder Peer prüft, ob er Tupel der
entsprechenden Relation besitzt (hier: student). Werden Tupel gefunden, wird
lokal die Selektionsbedingung überprüft und bei Erfolg das Ergebnistupel zum an-
fragenden Peer zurückgeschickt.
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Ohne eindeutige Schlüsselwerte können bei diesem Verfahren nicht die Basisope-
rationen eingesetzt werden. Somit führt hier das Hashing eher zu Problemen.
Falls es das CAN unterstützt, werden nur die Teilbereiche des Netze angesprochen,
die tatsächlich Tupel für die Basisrelationen besitzten. Aus dem „teuren“ Broadcast
wird so im Mittel mehrere „günstigere“ Multicast. Diese Fähigkeit ist allerdings
von einigen Bedingungen abhängig (z.B. der Datenverteilung) und soll an dieser
Stelle nicht weiter betrachtet werden.

2. Mehrere Punktanfragen auf die Elemente des Wertebereiches des Primärschlüsse-
lattributes.
Diese Option steht immer dann zur Verfügung, wenn der Wertebereich
des Primärschlüsselattributes durch die Anfrage beidseitig begrenzt ist (hier:
20000<MatNr<30000). In solchen Fällen kann für alle Zwischenwerte Punktan-
fragen gestellt werden. Obige Beispielanfrage müsste also in 9999 einzelne Punk-
tanfragen unterteilt werden.

Der Broadcasting-Ansatz ist immer durchführbar, bedeutet aber in der Regel immer eine
hohen Aufwand, besonders in großen und weitverteilten Netzen. Ein Broadcast und damit
der Verzicht auf den Einsatz der Basisfunktionen für das Hashing, mach dieses Verfahren
auch praktikabel für Anfragen an Nichtschlüsselattribute.

Ob eine Aufteilung in Punktanfragen möglich ist, hängt von der beidseitigen
Beschränktheit des Wertebereich des Primärschlüsselattributes ab. Je größer der Werte-
bereich, desto größer ist auch die Anzahl der resultierenden Punktanfragen. Es sollte also
abgeschätzt werden, welches Verfahren sich für eine aktuelle Anfrage eignet.

Anfragenverarbeitung mit Hilfe einer Neuverteilung der Tupel benötigen. Die
beiden bisherigen Klassen von Anfragen sind in erster Linie für Anfrage bzw. Datenban-
koperationen praktikabel, die immer nur einzelne Tupel verarbeiten. Solche Operationen
sind beispielsweise die Selektion und Projektion. Doch bei einigen Datenbankoperationen
werden zwei oder mehr Tupel im Verbund verarbeitet, es existieren quasi Abhängigkeiten
zwischen den Eingangstupeln. Zu solchen Operatoren zählen die binären Operatoren
(Joins) und Operatoren wie die Gruppierung und Aggregation. Ein mögliche Anfrage auf
die Beispielrelation student ist:

• SELECT MAX(MatNr) FROM student

Bei dieser Anfrage müssen alle Tupel als Ganzes bearbeitet werden, um das korrekte
Ergebnis zu erhalten. Das Problem liegt nun darin, dass die Tupel ein Relation typischer-
weise auf mehr als einem Peer gespeichert sind, aber jeder Operator letztlich lokal auf
einem Peer ausgeführt werden muss.

Ein intelligentes Verfahren, um dieses Problem zu beheben, ist eine Neuverteilung
der betreffenden Tupel, das so genannte Re-Hashing. Die Tupel, zwischen denen für eine
Operation eine Abhängigkeit besteht, werden dabei so neu verteilt, dass sich zum Schluss
alle Tupel auf einem Peer befinden. Grundlage dafür ist das Finden eines geeigneten key-
Wertes für die Neuverteilung. Verteilt werden natürlich nur Kopien der Tupel, da die Ori-
ginaltupel der Relation weiterhin dort zu finden sein müssen, wo sie durch das initiale
Einfügen gespeichert wurden. Die Reihenfolge der Abarbeitung einer Datenbankoperati-
on unter zu Hilfenahme einer Neuverteilung besteht aus drei Schritten:
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1. Finden aller betreffenden Tupel.
Dies geschieht entweder durch einen Broadcast an alle Peers oder, falls es die An-
frage erlaubt, durch die Aufteilung in Punktanfragen (vgl. Bereichsanfragen auf
Werte des Primärschlüsselattributes)

2. Re-Hashing der Tupel.
Kopien benötigten Tupel werde mit Hilfe eines eindeutigen key-Wertes neu verteilt.
Dieser Wert muss so gewählt oder berechnet werden, dass die Tupel garantiert auf
demselben Peer landen.

3. Ausführen der lokalen Datenbankoperation.
Da nun alle benötigten Tupel lokal zur Verfügung stehen, kann die Operation aus-
geführt werden.

3.4 Fazit

Durch die Verwendung einer verteilten Hash-Tabelle eignet sich ein Contant Adressa-
ble Network zur Verteilung bzw. Indexierung auch strukturierter Daten in weitverteilten
Umgebungen. Der Verzicht auf eine zentrale Koordination und die gute Skalierbarkeit
machen eine Kombination aus CAN und P2P-Netze besonders interessant.

Diese Eigenschaften sind es auch, die für den Einsatz einer dynamischen Anfragever-
arbeitung sprechen. Die Gründe hierfür wurden in Abschnitt 2.1.3 näher erläutert.

Alle bisherigen Umsetzungen adaptiver Anfrageverarbeitungen sind nicht gezielt für
P2P-Netze entwickelt worden und liefern dadurch keine zufriedenstellenden Ergebnisse.
Selbst verteilte Eddies stellen nicht die optimale Lösung dar, da sie dem Konzept gleich-
berechtigter Knoten in einem P2P-Netz widersprechen. Doch gerade in solchen Systemen
kann die Verteilung der Operatoren sinnvoll sein, um nicht auf dedizierte Knoten ange-
wiesen zu sein.

Benötigt wird also nicht nur eine Anfrageverarbeitung, die sich dynamisch an
veränderte Systemumgebungen anpassen kann, sondern auch auf die Ziele von P2P-
Umgebungen (Skalierbarkeit, Dynamik, Robustheit,...) eingeht. Genau diese Lücke soll
der P2P-Eddy schließen, indem er in weiten Bereichen alle Peers gleichberechtigt in die
Verarbeitung einer Anfrage miteinbezieht und so auch eine Verteilung von Operatoren
ermöglicht.



Kapitel 4

Entwurfskonzept

4.1 Ausgangssituation

Nicht alle Phasen der Anfrageverarbeitung sollen in dieser Arbeit betrachtet werden. Im
Kern werden dies die Optimierung und die Ausführung einer Anfrage sein.

Vorausgesetzt wird zum einen eine vollständige Vorverarbeitung. Dies beinhaltet im
Wesentlichen die Umformung einer deskriptiv formulierten Anfrage in eine interne Dar-
stellung des Datenbanksystems (Anfragebaum). Wie in Punkt 2.1.1 beschrieben, umfasst
dieser Schritt auch den Syntaxcheck der Anfrage sowie deren Validierung.

Weiterhin wird eine Voroptimierung vorgenommen. Dabei wird versucht, die interne
Baumstruktur der Anfrage zu minimieren. Eine Minimierung ist immer dann möglich,
wenn der Baum redundante Teilbäume oder auch unnötige Operationen enthält. Solche
Fehler können durch „ungeschickt“ gestellte Anfragen der Nutzer oder automatisierte An-
frageerzeugung von Anwendungsprogrammen auftreten. Auch die Auflösung von Sichten
ist ein häufiger Grund für Redundanzen im Baum.

Um den Aufwand für die Implementierung des P2P-Eddies in Grenzen zu halten, wird
dessen Leistungsumfang bewusst eingeschränkt. Zum einen werden nur die wichtigsten
Operationen umgesetzt (Selektion, Projektion, Join) und zum anderen werden auch be-
stimmte Voraussetzungen für die Operatoren selbst getroffen. So wird z.B. ein Join im-
mer nur über einem Attribut ausgeführt. Dazu mehr bei der konkreten Implementierung
der Operatoren.

Ausgangsbasis für das weitere Vorgehen ist also eine Anfrage mit folgenden Eigen-
schaften:

• Darstellung als Baum

• auf Gültigkeit geprüft

• voroptimiert

• eingeschränkter Leistungsumfang

Zusätzlich befindet sich die Anfrage in einer Form, die direkt weiterverarbeitet werden
kann.
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4.2 Grundidee P2P-Eddies

Wie schon bei den beiden vorgestellten Eddy-Mechanismen, soll die Dynamik der
Verarbeitung einer Anfrage durch eine Modifikation des Anfrageplans erreicht werden.
Die Modifikation umfasst dabei lediglich eine Neuordnung der logischen Operatoren.
Es werden keine Alternativpläne, durch Hinzufügen, Entfernen oder Veränderung der
Operatoren, erzeugt.

Um den Unterschied zwischen P2P-Eddy und den urprünglichen Eddy-Varianten
zu verdeutlichen, ist eine kurze Vorüberlegung hilfreich. Um eine Anfrage zu bearbeiten,
sind grob betrachtet drei Dinge notwendig:

1. die Nutzdaten (Tupel)

2. die Vorschrift, wie die Daten verarbeitet werden sollen (z.B. Anfrageplan)

3. ein Rechner (CPU), der die Verarbeitung ausführt

Nutzdaten und Verarbeitungsvorschrift müssen sich also zur gleichen Zeit auf dem glei-
chen Peer befinden.

Der zentralisierte Eddy und die verteilten Eddies gehen dabei so vor, dass sie die
Verarbeitungsvorschrift fest an einen Rechner binden, sei es in einer zentralen Instanz
oder dedizierten Peers (Abbilding 4.1). Für die konkrete Anfrageverarbeitung werden nun
die Tupel zur zentralen Komponente bzw. den entsprechenden Knoten gebracht.

Um die Gleichberechtigung aller Rechner in einem P2P-System zu erhalten, geht der
P2P-Eddy einen anderen Weg. Hier wird die Verarbeitungsvorschrift direkt an die Tu-
pel gebunden (Abbildung 4.2). Für die Anfrageverarbeitung wird nur noch ein beliebiger
Rechnerknoten benötigt.

CPU

Tupel Plan

Abbildung 4.1: Verarbeitungsprin-
zip in herkömmlichen Anfragever-
arbeitungen

CPU

Tupel Plan

Abbildung 4.2: Verarbeitungsprin-
zip des P2P-Eddies

Die Darstellung einer Anfrage als Baum gibt durch ihre Struktur implizit eine Verar-
beitungsreihenfolge für die Tupel vor. Die Abarbeitung erfolgt dabei von den Blättern in
Richtung der Wurzel. Im ersten Schritt wird also eine Darstellungsform benötigt, die auf
eine festgelegte Reihenfolge ihrer Elemente verzichtet. Eine solche Struktur ist z.B. eine
einfache Aufzählungsliste. Die Elemente dieser Liste sind die logischen Operatoren aus
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dem Anfragebaum, die auf den Tupeln ausgeführt werden. Im Folgenden wird diese Li-
ste deshalb auch als Todo-Liste bezeichnet. Ziel ist es nun, jedes Tupel mit einer solchen
Liste von Operatoren zu versehen. Prinzipiell können auch mehrere gleichartige Tupel
(Tupel mit gleichem Schema) zusammengefasst werden. Für die Vorstellung des gesam-
ten Verfahrens wird aus Gründen der Übersichtlichkeit, jedes Tupel mit einer Todo-Liste
versehen.

Beim Routing durch das Netz kann jetzt jeder beliebige Peer die Tupel verarbeiten,
da jedes Tupel die Informationen mitbringt, welche Operatoren noch ausgeführt werden
müssen. Dieses Verfahren verzichtet auf die Auswahl bestimmter Knoten im Netz und ist
somit für P2P-Umgebungen bestens geeignet.

Die Todo-Liste darf nur die Operatoren enthalten, die auch tatsächlich auf die zugehö-
rigen Tupel angewendet werden dürfen. Die Information, welche Operatoren für welche
Tupel gelten, steckt vollständig in der ursprünglichen Baumstruktur. Die Blätter des An-
frageplans sind immer die benötigten Relationen für die Anfrage.

Relation R Relation S Relation T

a b c d e f

��

�

R.a=S.c

S.d=T.f

R.a, T.e, S.d

T.e= ...R.a> ...

Join_1

Join_2

Selektion_1 Selektion_2

Projektion

Abbildung 4.3: Beispiel-Anfragebaum

Um die richtigen Operatoren für die Tupel einer Ursprungsrelation zu finden, muss der
Weg von der Relation bis zur Wurzel verfolgt werden. Pro Relation gibt es demnach im-
mer eine Todo-Liste. Enthält der Plan auch binäre Operatoren, müssen nicht zwangsläufig
alle Operatoren auf dem Pfad für die Tupel einer Ursprungsrelation gelten. Durch die Ei-
genschaften der Operatoren, ist die eindeutige Zuordnung zu den Tupeln möglich. Für die
Beispielanfrage (Abbbildung 4.3) ergeben sich somit diese drei Todo-Listen (Abbildung
4.4).

Bevor mit der eigentlichen Abarbeitung der einzelnen Todo-Listen begonnen werden
kann, müssen diese zunächst an alle Peers verteilt werden. Jeder Peer prüft darauf hin, ob
er für die aktuelle Todo-Liste zugehörige Tupel besitzt. Ist dies der Fall, werden die Tupel
eindeutig ihrer Todo-Liste zugeordnet. Danach sind die Tupel bereit für die Verarbeitung
der Anfrage.
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Join_2
Selektion_2

Todo-Liste für Tupel von T

Abbildung 4.4: Todo-Listen für den Beispiel-Anfragebaum

Obwohl die Todo-Liste selbst keine Reihenfolge für die Abarbeitung der Operatoren
vorgibt, müssen dennoch Verletzungen von Umformungsregeln der Relationenalgebra ab-
gefangen werden. Dafür wird jedes Element der Todo-Liste mit einem Ready-Bit verse-
hen. Nur bei gesetzten Ready-Bit darf der Operator ausgeführt werden. Nach jeder Abar-
beitung eines Operators, müssen die Ready-Bits der restlichen Elemente der Todo-Liste
aktualisiert werden. Auf ein Done-Bit, wie es bei den ursprünglichen Eddy-Mechanismen
zum Einsatz kommt, kann hier verzichtet werden. Ein Operator wird nach seiner Ausfüh-
rung einfach aus der Todo-Liste entfernt.

Bei unären Operatoren wie der Selektion oder Projektion, ist die Abarbeitung relativ
problemlos. Erhält ein Peer ein Paket aus Tupel und Todo-Liste, wählt er einen Operator
aus und arbeitet diesen auf dem zugehörigen Tupel ab. Im Anschluss wird dieser Operator
aus der Liste gelöscht und die Ready-Bits der restlichen Operatoren gemäß der veränder-
ten Situation aktualisiert. Hat der Operator ein Ergebnistupel hervorgebraucht, wird dies
der aktualisierten Todo-Liste zugeordnet und weitergeleitet.

Etwas komplexer stellt sich de Sachverhalt bei binären Operatoren dar. Da hier Tupel
unterschiedlicher Herkunft miteinander verknüpft werden, müssen auch die zugehörigen
Todo-Listen entsprechend verarbeitet werden. Die Todo-Liste für mögliche Ergebnistu-
pel muss dabei alle Elemente der beiden ursprünglichen Todo-Listen enthalten. Zunächst
wird, wie gehabt, der aktuell abgearbeitete, binäre Operator aus den beiden Listen ent-
fernt. Im zweiten Schritt werden beide Listen verschmolzen. Dieser Vorgang entspricht
einer Vereinigung von Mengen. Ist ein Operator in beiden Eingangs-Todo-Listen enthal-
ten, wird er nur einmal in die Ausgangs-Todo-Liste übernommen. Die restlichen Schritte
werden analog zu den unären Operatoren durchgeführt. Es werden die Ready-Bits aktua-
lisiert und die Todo-Liste mit den Ergebnistupeln verknüpft.

Abbildung 4.5 zeigt schematisch das Verschmelzen zweier Todo-Listen nach Ausfüh-
rung des Joins Join_1 für zwei Tupel aus den Relationen R und S der Beispielanfrage
(Abbildung 4.3).

Für die Ausführung der logischen Operatoren werden auch weiterhin Implementie-
rungen der verschiedenen Datenbankoperationen benötigt. Alle anderen Aufgaben wer-
den durch eine Art Superoperator erledigt, im Folgenden als Eddy-Operator oder einfach
als (P2P-)Eddy bezeichnet. Zu dessen Hauptaufgaben zählen:

• Erzeugung der Todo-Listen

• Broadcast der Todo-Listen

• Zuordnung zwischen Tupeln und Todo-Listen herstellen

• Verteilung der Pakete
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Abbildung 4.5: Verschmelzung zweier Todo-Listen nach einem Join

• Auswahl der Operatoren aus den Todo-Listen

• Aktualisierung der Todo-Listen

Ein vollständiges, im Netz verschicktes Paket besteht also den zwei Komponenten:

1. Tupel (oder Menge gleichartiger Tupel)

2. Todo-Liste

Dieser zusammengehörige Verbund soll im Weiteren als Nachrichtenpaket bezeichnet
werden. Aus welchen Teilen sich die Komponenten im Einzelnen zusammensetzen, wird
sich im Rahmen der Implementierung zeigen.

Abgesehen von den initialen Operationen des Eddies, wie dem Erzeugen und Verteilen
der Todo-Listen, läuft die Abarbeitung der Todo-Listen nach folgendem Schema ab:

1. Ankunft eines Nachrichtenpaketes bei einem Peer.
Dies kann jeder beliebige Peer im Netz sein. Der Peer hat ab diesem Zeitpunkt
Zugriff auf das Tupel, den Ausführungsplan in Form der Todo-Liste.

2. Auswahl des nächsten Operators für die Ausführung.
Der Eddy-Operator wählt auf Basis unterschiedlicher Strategien einen Operator aus
der Todo-Liste aus. Dieser Operator wird dabei gleich aus der Liste entfernt.

3. Ausführung des Operators.
Es wird eine geeignete Implementierung für den gewählten logischen Operator auf
dem Tupel ausgeführt. Liefert die Operation kein Ergebnistupel, kann abgebrochen
werden. Sonst weiter mit 4.

4. Aktualisierung der Todo-Liste.
Umfasst das Setzen von Ready-Bits und das Verschmelzen von Todo-Listen nach
binären Operatoren. Ist die Todo-Liste leer, ist die Bearbeitung beendet und das
Ergebnistupel kann ausgegeben werden. Sonst weiter mit 5.

5. Erzeugung des neuen Nachrichtenpaketes.
Das Ergebnistupel, der Eddy-Operator und die aktualisierte Todo-Liste werden zu
einem neuen Nachrichtenpaket verschnürt und weitergeleitet.
Weiter mit 1.
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Erzeugt ein Operator kein Ergebnistupel, ist eine weitere Verarbeitung nicht möglich und
das gesamte Nachrichtenpaket kann verworfen werden.

Abbildung 4.6 veranschaulicht noch einmal graphisch das Prinzip des P2P-Eddies.
Auf jedem Peer läuft lokal eine Instanz des P2P-Eddies. Der Eddy nimmt Nachrichtenpa-
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Abbildung 4.6: Prinzip des P2P-Eddies

kete (Tupel + Todo-Liste) entgegen und verarbeitet diese. Dazu gehören das Bestimmen
des nächsten Operators aus der Todo-Liste, die Ausführung des Operators mit Hilfe der
Planoperatoren und ggf. das Weiterschicken möglicher Ergebnistupel.

Für die Auswahl eines Operators oder eines Ziel-Peers dienen verschiedene Routing-
Strategien. Diese Strategien basieren teilweise auf Laufzeitstatistiken, wie der Warte-
schlangenlänge, Selektivität und Informationen über die direkten Nachbarn eines Peers.

4.3 Routing-Strategien

4.3.1 Allgemeines

Bisher wurde das Konzept für die dynamische Anfrageverarbeitung nur soweit vorgestellt,
dass eine variable Operatorreihenfolge für die Tupel auf beliebigen Peers überhaupt mög-
lich ist. Jetzt fehlen noch die Mechanismen für die Entscheidungsfindungen, mit deren
Hilfe die Anfrageverarbeitung auch effizient wird. Es müssen zwei grundsätzliche Ent-
scheidungen getroffen werden:

1. Operator-Routing
„Welcher Operator soll als nächstes ausgeführt werden?“

2. Peer-Routing
„Zu welchem Peer soll ein Nachrichtenpaket als nächstes geschickt werden?“
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Für beide Varianten werden Strategien benötigt, die obige Fragestellung so beantworten
können, dass die Anfrageverarbeitung möglichst effizient geschieht.

Daneben sollte darauf geachtet werden, dass sich der Aufwand für die Routing-
Strategien in Grenzen hält. Der Mehraufwand für die Entscheidungsfindungen setzt sich
dabei wie folgt zusammen:

• Verschicken zusätzlicher Nachrichten
Der Einsatz von Nachrichten allein für die Verteilung von Routing-Informationen
sollte vermieden werden. Gerade in weitverteilten Systemen tragen die Kommuni-
kationskosten entscheidend zum Gesamtaufwand bei. Es wird daher versucht, die
Informationen ausschließlich in den vorhandenen Nachrichtenpaketen unterzubrin-
gen.

• Umfang von Zusatzinformationen
Die Routing-Strategien basieren in der Regel auf verschiedenen Parametern. Diese
Parameter müssen an geeigneter Stelle hinterlegt und auch dort gepflegt werden.
Vor allem ein Erweiterung der Nachrichtenpakete kann sich auf die Performanz
negativ auswirken, da mit wachsender Paketgröße auch die Netzlast steigt. Zusatz-
informationen auf den Peers spielen eine untergeordnete Rolle.

• zeitlicher Overhead
Wie beschrieben, werden sämtliche Routing-Entscheidungen durch den Eddy-
Operator getroffen. Dafür werden zusätzliche Methoden eingesetzt, deren Ausfüh-
rung logischerweise Zeit in Anspruch nimmt. Neben der eigentlichen Entscheidung,
ist der Eddy auch für die Aktualisierung der benötigten Parameter zuständig. Dies
bedeutet wiederum mehr Methoden und damit mehr Overhead.

Die vorgestellten Strategien unterscheiden sich teilweise sehr stark hinsichtlich ihres
Aufwandes. Ob sich der Mehraufwand für komplexe Routing-Strategien auch lohnt, wird
sich später im realen Einsatz zeigen.

4.3.2 Operator-Routing

Für das Operator-Routing werden vier verschiedene Strategien umgesetzt. Aus der Todo-
Liste darf nur ein Operator gewählt werden, dessen Ready-Bit gesetzt ist. Andernfalls
werden die Regeln der Relationenalgebra verletzt und es kommt zu falschen Ergebnissen
oder gar Fehlern.

Zufällige Auswahl. Der nächste Operator für die Ausführung wird einfach per Zu-
fall aus der Todo-Liste entnommen. Der Aufwand ist minimal. Zum einen sind keine
weiteren Parameter nötig und zum anderen kann auch der zeitliche Overhead vernach-
lässigt werden. Allerdings können besonders ungünstige Operatorreihenfolgen nicht
vermieden werden.

Auswahl nach Priorität. Für jeden Operatortyp (Selektion, Projektion, Join) wer-
den Prioritäten vergeben. Diese können ein einfacher Zahlenwert sein. Operatoren mit
einer erfahrungsgemäß kleineren Selektivität erhalten eine höhere Priorität als andere.
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Damit können z.B. Heuristiken wie „Selektion vor Join“ leicht umgesetzt werden. Im
Mittel werden dadurch besonders schlechte Entscheidungen vermieden.

Je mehr Operatoren eines Typs vorhanden sind, desto weniger können gute Ope-
ratorreihenfolgen garantiert werden. Besitzen mehrere Operatoren die gleiche höchste
Priorität, muss quasi wieder zufällig ein Operator aus dieser Teilmenge bestimmt
werden. Vorteil ist aber auch wieder der verhältnismäßig geringe Aufwand. Neben dem
zusätzlichen Parameter, beträgt die Suche nach dem Operator mit der höchsten Priorität
maximal einen vollständigen Durchlauf durch die Todo-Liste.

Auswahl nach Länge der Eingangswarteschlange. Wie schon bei den bekannten
Eddy-Mechanismen, wird auch hier die Länge der Eingangswarteschlange eines Ope-
rators als Maß für dessen Kosten angesehen werden. Schnelle Operatoren können ihre
Tupel zügig verarbeiten und die Warteschlange umso schneller leeren. Je länger die
Eingangswarteschlange eines Operators also ist, desto höher sind typischerweise auch
dessen Kosten.

Im Gegensatz zu den verteilten Eddies, kann hier jeder Operator quasi auf jedem be-
liebigen Peer ausgeführt werden. Durch diese Verteilung ist aber auch die Warteschlange
des Operators verteilt. Dies bringt einige Nachteile mit sich:

• eingeschränkte Aussagekraft
Die Entscheidung für das Routing wird lokal auf den Peers getroffen. In Abhängig-
keit von deren Vorgeschichte, können von Peer zu Peer unterschiedliche Entschei-
dungen für den gleichen Operator getroffen werden.

• eindeutige Entscheidungen nicht immer möglich
Enthält die Todo-Liste Operatoren, die einem Peer noch unbekannt sind (sind also
auf diesem Peer noch nicht ausgeführt worden), können keine Aussagen über dessen
Kosten über die Warteschlangenlänge gemacht werden. In diesem Fall wird aus
der Vereinigung der unbekannten Operatoren und dem Operator mit der kürzesten
Warteschlange der Operator mit der höchsten Priorität gewählt. Gibt es mehrere
Operatoren mit einer kürzesten Warteschlange, ist das Verhalten analog.

• Degenerierung des Verfahrens zu „Auswahl nach Prioritäten“ im Worst-Case
Erzeugt eine Anfrage nur wenige Nachrichtenpakete, die zusätzlich weit über das
Netz verteilt sind bzw. werden, erhöht sich die Wahrscheinlichkeit, dass die Pakete
bei ihrer Abarbeitung auf Peers landen, die für diese Anfrage noch nicht verwendet
wurden. Somit sind dem Peer sämtliche Operatoren unbekannt (oder zumindest der
größte Teil) und die Auswahl des Operators wird aufgrund der Prioritäten vorge-
nommen. Diese Wahrscheinlichkeit steigt weiterhin mit der Größe des Netzes und
der Verteilung der Daten.

Damit ein Peer einen Operator immer eindeutig zuordnen kann, wird für jeden Operator
eine ID benötigt. Alle anderen Erweiterungen müssen nur auf dem Peer gemacht werden.
Dadurch ist der Mehraufwand für dieses Verfahrens eher gering.

Auswahl nach erlernter Selektivität. Die Verwendung der Selektivität von Opera-
toren als Auswahlkriterium für eine Operatorreihenfolge findet man nahezu in allen
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Datenbanksystemen. Bei der traditionellen Anfrageverarbeitung werden die Selekti-
vitäten anhand von Statistiken berechnet bzw. abgeschätzt. In verteilten Umgebungen
stehen diese Informationen in den meisten Fällen nicht zu Verfügung. Beim zentrali-
sierten und verteilten Eddy-Mechanismus [AH00, TD03] werden die Selektivitäten zu
Ausführungszeit, mit Hilfe eines Ticket-Mechanismus, erlernt.

Ein ähnliches Ziel soll auch bei diesem Verfahren verfolgt werden. Durch die ver-
teilten Operatoren wird allerdings eine andere Art der Umsetzung benötigt. Ein Ticket
besteht im Wesentlichen aus zwei Zählern für die Eingangs- und die Ergebnistupel eines
Operators. Jedem Peer wird für jeden Operator einer Anfrage ein solches Ticket zuge-
wiesen. Kommt ein Operator auf einem Peer zur Ausführung, wird zunächst der Zähler
der Eingangstupel gemäß der Tupelanzahl des Nachrichtenpaketes erhöht. Verlassen Tu-
pel erfolgreich den Operator, wird deren Anzahl auf den Ergebnistupelzähler des Tickets
aufaddiert. Ein Ticket ist demnach umso aussagekräftiger, je öfter ein Operator auf dem
gleichen Peer ausgeführt wurde.

Die Selektivität eines Operators berechnet sich anhand seines Tickets nach folgender
Formel:

Selektivität =
Anzahl der Ergebnisstupel

Anzahl der Eingangstupel

Für die Abarbeitung wird also immer nach dem Operator mit der kleinsten Selektivi-
tät gesucht. Bei diesem ist die Wahrscheinlichkeit, dass keine bzw. wenig Ergebnistupel
entstehen am größten. Auch hier kann es vorkommen, dass ein Peer keine eindeutige Ent-
scheidung treffen kann, falls noch kein Ticket für einen Operator auf dem Peer vorliegt
oder es mehrere Operatoren mit minimaler Selektivität gibt. Auf dieser Teilmenge wird
dann das „Auswahl nach Priorität“-Verfahren angewandt.

Die Nachteile des Ticket-Mechanismus können 1:1 von der Warteschlangen-Methode
übernommen werden, da diese alle aufgrund der verteilten Operatoren entstehen. Der
Nachteil der lokalen Entscheidungsfindung muss aber relativiert werden. Man kann pro-
blemlos Fälle konstruieren, bei denen unterschiedliche Selektivitäten für einen Opera-
tor durchaus sinnvoll sind. So können z.B. Tupel, die eine Selektionsbedingung erfüllen,
räumlich eng im Netz verteilt sind. In diesem Bereich werden die Peers eine hohe Selek-
tivität für diese Selektion erlernen, was diesen Operator dort unattraktiv macht.

Für die unären Planoperatoren Selektion und Projektion kann die Selektivität durch
den Ticket-Mechanismus direkt berechnet werden, da sowohl die Anzahl der Eingangs-
und Ausgangstupel für ein Nachrichtenpaket bekannt sind. Problematisch wird die
Bestimmung der Selektivität für Join-Operatoren, da sich die Anzahl der Eingangstupel
aus dem Produkt der Kardinalitäten beider Partnerrelationen ergibt. Durch die Verteilung
der Operatoren sind diese Kardinaltiäten aber nicht bekannt. Für Join-Operatoren kann
die Selektivität bestenfalls geschätzt werden.

Suche nach dem „nächsten“ Join. Wie bereits in Punkt 3.3 kurz erwähnt, setzt
die Abarbeitung des Join-Operators eine Neuverteilung der Tupel voraus. Stehen mehrere
Join-Operatoren zur Auswahl, werden sich die Abstände zwischen dem aktuellen
Peer und dem Ziel-Peer für die Neuverteilung der verschiedenen Joins in der Regel
unterscheiden.

Die Idee ist also, den Join-Operator auszuwählen, bei dem das Tupel bei der Neuver-
teilung den kürzesten Weg gehen muss. Dadurch kann die Anzahl der benötigten Nach-
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richten minimiert werden. Auch der Sonderfall, dass der aktuelle Peer und der Ziel-Peer
identisch sind wird dadurch ausgenutzt. Dazu müssen im Vorfeld die Abstände vom ak-
tuellen Peer zu den resultierenden Zielpunkten aller Joins berechnet und miteinander ver-
glichen werden. Enthält ein Nachrichtenpaket mehrere Tupel, wird der mittlere Abstand
als Vergleichswert herangezogen. Zusätzliche Informationen werden nicht benötigt, der
Mehraufwand ergibt sich allein aus den Abstandsberechnungen.

Offen bleibt die Frage, wann nach dem nächsten Join gesucht werden soll. Intuitiv
bietet sich diese Berechnung an, wenn innerhalb der Todo-Liste nur Join-Operatoren ein
gesetztes Ready-Bit besitzen. Es handelt sich also genau genommen nicht um eine eigene
Routing-Strategie, sondern um eine Hilfsfunktion für andere Strategien.

4.3.3 Peer-Routing

Das Peer-Routing ist kein Bestandteil der ursprünglichen Eddy-Varianten. Selbst bei den
verteilten Eddies reicht das Operator-Routing aus, da jeder Operator quasi fest mit einem
Peer verknüpft ist. Erst durch die nahezu beliebige Verteilung der Operatoren stellt sich
die Frage nach einer sinnvollen Auswahl der Peers.

Auch beim P2P-Eddy ist das Peer-Routing nicht völlig unabhängig von der Wahl des
nächsten Operators. Durch den als Symmetric Hash Join implementierten Join-Operator,
der auf einer Neuverteilung der Tupel basiert, wird der Ziel-Peer direkt vom Join-Operator
vorgegeben.

Die Auswahl des nächsten Peers ist nur bei den unären Operatoren Selektion und
Projektion losgelöst vom Operator-Routing. Damit eignen sich diese Operatoren beson-
ders gut für eine gezielte Lastverteilung. Das Delegieren von Last auf andere Peers ist
besonders auch bei aufwendigen Operatoren wie Sortieren und Aggregation sinnvoll.

Im ersten Schritt muss beim Peer-Routing entschieden werden, ob ein Nachrichten-
paket überhaupt weitergeleitet werden soll. Um die Entscheidung dynamisch treffen zu
können, wird ein Parameter benötigt, anhand dessen die Aussage getroffen werden kann,
ob eine Weiterleitung sinnvoll ist oder nicht. Hierfür bietet sich die aktuelle Auslastung
des Peers an. Überschreitet diese einen gewissen Wert, wird das Nachrichtenpaket
weitergeleitet.

Wie die Auslastung bestimmt oder abgeschätzt wird, ist eine andere Frage. In der
bisherigen Umsetzung wird die Auslastung eines Peers durch zwei verschiedene Para-
meter abgeschätzt. Zum einen ist dies die Summe aller aktuellen Warteschlangenlängen
auf dem Peer und zum anderen die Anzahl aller eingegangen Nachrichten innerhalb
eines festgelegten Zeitintervalls. Eine andere Möglichkeit ist das Auslesen der konkrete
Systeminformationen (Prozessorlast, Speicherbelegung, ...).

Wird die Entscheidung gefällt, ein Nachrichtenpaket auf demselben Peer weiterzu-
verarbeiten, ist das Peer-Routing abgeschlossen. Im anderen Fall muss nun festgelegt
werden, wohin das Packet tatsächlich geschickt werden soll. Da jeder Peer nur seine
direkten Nachbarn und deren Bereiche des CAN-Koordinatenraums kennt, ist das
Weiterleiten zu einen direkten Nachbarn am sinnvollsten. Im letzten Schritt muss nur
noch bestimmt werden, welcher Nachbar als Routing-Ziel ausgewählt wird.
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Gleicher Peer. Die Tupel werden nur noch bei einer Neuverteilung aufgrund von
Joins verschickt. Selektion und Projektion werden immer auf dem aktuellen Peer
ausgeführt. Dadurch erhöht sich zwar das Risiko einer Überlastung des Peers, reduziert
aber im Mittel den benötigten Netzwerk-Traffic.

Zufällige Auswahl. Wie schon beim Operator-Routing kann die Entscheidung durch
Zufall getroffen werden. Dabei kann es allerdings passieren, dass ein Nachbar bevorzugt
das Ziel einer Weiterleitung und dadurch möglicherweise überlastet wird.

Zyklische Auswahl. Alle Nachbarn werden nacheinander als Ziel-Peer ausgewählt.
Dies garantiert zumindest eine faire Verteilung der Nachrichtenpakete und damit eine
ausgewogene Lastverteilung.

Suche nach der schnellsten Verbindung. Beim Nachrichtenaustausch zwischen
den Peers wird die Zeit berechnet, wie lange eine Nachricht von einem Peer zu dessen
Nachbarn gebraucht hat. Jeder Peer weiß somit, wie schnell er seine Nachbarn erreichen
kann. Ein Nachrichtenpaket wird immer zu dem Nachbarn geschickt, bei dem die
Übertragungsdauer am geringsten ist.

Gerade in weitverteilten Netzen (Internet) können sich die Anbindungen eines
Peers zu seinen Nachbarn deutlich unterscheiden. Diese Strategie ist natürlich nur dann
wirklich aussagekräftig, wenn im gesamten Netz ein globale Zeit garantiert werden kann.
Anderfalls ist die Berechnung der Übertragungsdauer einer Nachricht nicht korrekt.

Auswahl nach Auslastung der Nachbarn. Ziel soll es sein, die Auslastung der
Nachbarn abzuschätzen. Das Verfahren arbeitet ähnlich wie das für die Bestimmung
der Auslastung eines Peers. Jeder Peer merkt sich für jeden seiner Nachbarn, wie viele
direkte Nachrichten er in einem bestimmten Zeitintervall von diesem bekommen hat.

Die Annahme ist also, dass ein Nachbar immer dann höher ausgelastet ist als ein
anderer, wenn er im gleichen Zeitraum mehr Nachrichten geschickt hat. Diese Annahme
berücksichtigt natürlich nur die Auslastung eines Peers bzgl. der Anfrageverarbeitung.
Natürlich kann ein Peer auch aus anderen Gründen unter hoher Last laufen. Solche Fälle
können durch dieses Verfahren nicht abgefangen werden.

Richtig gute Aussagen über die Auslastung der Nachbarn sind nur dann möglich,
wenn diese Information direkt periodisch ausgetauscht werden würde. Dazu wären
allerdings zusätzliche Nachrichen notwendig, was als Vorbedingung aber vermieden wer-
den sollte. Darüberhinaus müssten der Informationsaustausch in kurzen Zeitintervallen
erfolgen, da die Auslastung typischerweise eine stark schwankende Größe ist.

Durch den Test auf Auslastung und der freien Wahl der Strategie für das Peer-
Routing, kann es unter Umständen zu widersprüchlichen Entscheidungen kommen. Es
entsteht beispielsweise ein Konflikt, wenn die Auslastung eines Peers den Grenzwert
übersteigt, aber die Strategie „Gleicher Peer“ angewendet werden soll. Da der Test auf
Auslastung abschaltbar ist und alle Strategien explizit getestet werden können, bildet der
Entscheidungsbaum aus 4.7 die Basis für das Peer Routing.

Die Abarbeitung des Entscheidungsbaums und damit das Peer-Routing wird an zwei
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Abbildung 4.7: Entscheidungsbaum für das Peer-Routing

Zweitpunkten ausgeführt. So wird nach der Verarbeitung eines Nachrichtenpaketes ent-
schieden, wohin des Ergebnis geschickt werden soll. Aber auch bereits beim Eintreffen
von Nachrichtenpaketen wird entschieden, ob ein Paket auf dem Peer ausgeführt oder
weitergeschickt wird. Um zu vermeiden, dass ein Paket zu lange unverarbeitet durch das
Netz geleitet wird, sind geeignete Gegenmaßnahmen notwendig.

4.3.4 Anmerkungen

Die vorgestellten Routing-Strategien müssen nicht zwangsläufig exklusiv eingesetzt wer-
den, sondern können auch für jede Anfrage parallel laufen. Als Voraussetzung muss dann
gelten, dass alle benötigten Parameter aktualisiert werden. Wird dieser Aufwand in Kauf
genommen, kann zur Ausführungszeit einer Anfrage zwischen den Strategien gewechselt
werden.

Diese zusätzliche Flexibilität führt automatisch zu der Frage, welche Routing-
Strategie tatsächlich zum Einsatz kommt, falls dem Eddy-Operator mehrere zur Auswahl
stehen. Die Auswahl könnte beispielsweise in Abhängigkeit der aktuell zur Verfügung
stehenden Parameter des Peers geschehen. Sind für eine Strategie zu wenige Daten vor-
handen, um ein aussagekräftiges Ergebnis zu erhalten, kann die Routing-Entscheidung
durch ein anderes Verfahren abgenommen werden.

Im Normalfall bleibt das gesamte Routing dem Anwender gegenüber verborgen.
Allerdings kann es sinnvoll sein, direkten oder indirekten Einfluss auf das Routing zu
haben.

Durch eine direkte Vorgabe einer Strategie für das Operator- und Peer-Routing, kann
z.B. deren Ergebnisse für die gleiche Anrage miteinander verglichen werden. Damit kön-
nen Aussagen gemacht werden, welche Strategie in welchen Fällen am günstigsten ist.
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Wird für beiden Teilbereiche des Routings jeweils nur eine Strategie verwendet, kann
darüber hinaus der Aufwand minimal gehalten werden. Lediglich die Parameter für die
jeweilige Routing-Strategie werden benötigt.

Als indirekten Einfluss auf die Auswahl der Routing-Strategie kann das Einbringen
von Vorwissen des Anwenders bezeichnet werden. Dazu gehören z.B. globale Informa-
tionen über die Systemumgebung. Besteht das P2P-Netz aus leistungsschwachen Peers,
die über schnelle Verbindungen kommunizieren, entscheidet sich der Eddy-Operator in
der Regel für möglichst weite Verteilung der Anfrage im Netz. Sind stattdessen leistungs-
starke Peers über ein langsames Netz verbunden, sollten möglichst viele Operatoren auf
demselben Peer ausgeführt werden, um unnötigen Netzverkehr zu vermeiden.

Sind dem Anwender solche oder ähnliche Informationen bekannt, kann er dadurch
das Routing in bestimmte Richtungen lenken.

Sowohl die Verarbeitung als auch das Routing der Nachrichtenpakete wurde so
umgesetzt, dass sich prinzipiell beliebig viele Tupel zusammenfassen lassen. Damit lässt
sich der benötigte Kommunikationsaufwand für die Verarbeitung einer Anfrage im Mittel
erheblich mindern. Es muss lediglich die Bedingung eingehalten werden, dass alle Tupel
eines Paketes gleichartig sind. Was unter gleichartigen Tupeln verstanden werden soll,
wird in Abschnitt 5.3.1 erläutert. Die Anzahl der Tupel ist so mit abhängig von folgenden
Punkten:

• Verteilung der Basisrelationen
Die initialen Nachrichtenpakete können maximal so viele Tupel enthalten, wie es
Tupel der zugehörigen Basisrelationen auf einem Peer gibt. Je verteilter eine Tabelle
also ist, umso kleiner wird die maximale Größe der Pakete.

• Ergebnisse der Planoperatoren
Alle Nachrichtenpakete werden getrennt voneinander verarbeitet. Für jedes Ein-
gangsnachrichtenpaket wird in Falle von Ergebnistupeln genau ein Ergebnistupel-
paket erzeugt. Ergebnisse zweier Nachrichtenpakete können nicht verschmolzen
werden.

• festgelegte Maximalgröße
Durch den Nutzer oder die Anwendung kann die maximale Größe der Nachrich-
tenpakete vorgegeben werden. Dadurch kann bei der Evaluierung der Einfluss der
Paketgröße auf die Verarbeitung einer Anfrage untersucht werden.

Im Normalfall wird sich die Zahl der Tupel eines Nachrichtenpaketes im Laufe der Verar-
beitung immer verringern. Lediglich durch Join-Operatoren können mehr Ergebnistupel
als Eingangstupel erzeugt werden. Im Allgemeinen legt also die Verteilung die maximale
verfügbare Größe der Pakete fest.



Kapitel 5

Implementierung der dynamischen
Operatoren

5.1 Überblick

Bevor die einzelnen Klassen des P2P-Eddies genauer vorgestellt werden, sollen zunächst
die wichtigsten Klassen in einer Art Übersicht präsentiert werden, um deren Zusammen-
spiel zu veranschaulichen. Ausgangspunkt ist die Abbildung 4.6 aus Abschnitt 4.2. Diese
Abbildung zeigt schematisch alle Komponenten des P2P-Eddies.

In Abbildung 5.1 wurden die Komponenten um die Klassen erweitert, welche die
Kompenenten umsetzen. Dadurch zeigt sich automatisch, welche Beziehungen zwischen
den Klassen bestehen. Weggelassen wurden Klassen, die zwar notwendig sind, aber nicht
direkt die Grundkonzepte des P2P-Eddies widerspiegeln.
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5.2 Umsetzung der Todo-Listen Idee

5.2.1 Die Klasse TodoListID

Ein eindeutiger Identifier für jede Todo-Liste wird für deren Verteilung im Netz benötigt.
Enthält die Todo-Liste keine Selektion, die einer Exact-Match-Anfrage auf das Primär-
schlüsselattribut entspricht, muss ein Broadcast der Listen durchgeführt werden. Jeder
Peer muss jede Todo-Liste genau einmal verarbeiten und sollte sie genau einmal an seine
Nachbarn verschicken. Dafür merkt sich jeder Peer in einem Vektor die TodoListIDs aller
bereits verarbeiteten Todo-Listen.

Innerhalb einer Anfrage wird eine Todo-Liste eindeutig durch den Relationennamen
bestimmt, für deren Tupel die Liste bestimmt ist. Um die parallele Verarbeitung mehrerer
Anfrage zu gewährleisten, muss jede Anfrage mit Hilfe einer QueryID näher spezifiziert
werden. Diese beiden Größen sind somit auch die Attribute der Klasse TodoListID.

Neben den Methoden zum Auslesen der Atribute, dient equals dazu, zwei Instanzen
dieser Klasse zu vergleichen. Mit dieser Methode kann ein Peer überprüfen, ob eine Todo-
Liste bereits für eine Verteilung verarbeitet wurde. Ist die List noch nicht bekannt, wird
deren TodoListID im entsprechenden Vektor des Peers aufgenommen.

5.2.2 Die Klasse TodoList

Die Klasse TodoList stellt die eigentliche Umsetzung der Todo-Liste dar. Sie kapselt
im Wesentlichen eine Instanz der Klasse java.util.Vector (listItems). Die
Elemente des Vektors sind aber nicht direkt die Operatoren, sondern Objekte vom Typ
TodoListItem (Siehe 5.2.3).

Die verschiedenen Methoden für das Einfügen, Entfernen und Auslesen von Listen-
elementen, das Auslesen der Anzahl aller Elemente und andere Methode, können direkt
auf die Methoden der Klasse Vector abgebildet werden.

Wichtig für binäre Operatoren ist die Methode joinTodoLists, welche das
Verschmelzen zweier Todo-Listen realisiert. Da die Reihenfolge innerhalb einer Liste
egal ist, kann der Algorithmus wie in Abbildung 5.2 implementiert werden

joinTodoLists(TodoList)
1 for each item from listItems
2 if item is also element of TodoList
4 TodoList.removeListItem(item)
5 end if
6 end for
7 if TodoList.getSize() > 0
8 for each item from TodoList
9 resultTodoList.insertListItem(item)
10 end for
11 end if
12 return resultTodoList

Abbildung 5.2: Algorithmus für das Verschmelzen zweier Todo-Listen
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Der binäre Operator, der die Verschmelzung der Todo-Listen hervorgerufen hat, wurde
schon bei seiner Auswahl aus beiden Listen entfernt.

5.2.3 Die Klasse TodoListItem

Als Elemente der Klasse TodoList, enthält eine Instanz der Klasse TodoListItem
den eigentlichen Planoperator. Diese zusätzliche Kapselung der Operatoren ist sinnvoll,
da die Klasse TodoListItem noch weitere Attribute enthält, die für Operatoren nur im
Umfeld der Todo-Liste gelten.

So wird hier z.B. das vorgstellte Ready-Bit umgesetzt, welches anzeigt, ob ein Ope-
rator ausgeführt werden darf oder nicht. Durch das Löschen abgearbeiteter Operatoren
aus der Liste, kann auf ein Done-Bit, wie es bei den ursprünglichen Eddy-Varianten zum
Einsatz kommt, verzichtet werden.

Ein weiteres Attribut ist die Operatorpriorität, die für die Strategie „Auswahl nach
Priorität“ beim Operator-Routing benötigt wird. Dabei handelt es sich um einen einfachen
Zahlenwert, der für die Operatortypen Selektion, Projektion und Join entsprechend gesetzt
wird.

Für weitere Routing-Stratgien kann die Klasse TodoListItem einfach erweitert
werden. Denkbar wäre z.B. eine zusätzliche Priorität, so dass auch Operatoren eines Typs
unterschiedlich behandelt werden. Möglich ist auch eine vorher berechnete Selektivität,
die sich während der Abarbeitung der Todo-Liste nicht ändert.

Die Methoden der Klasse beschränken sich auf das Auslesen und ggf. das Setzen ihrer
Attribute.

5.2.4 Die Klasse TodoListContainer

Diese Klasse dient lediglich dazu, ein Objekt vom Typ java.util.Vector zu kap-
seln dessen Elemente vom Typ TodoList sind. Die Methoden zum Hinzufügen und
Entfernen von den Listen können direkt auf die Methode der Vektor-Klasse abgebildet
werden.

Verwendung findet der Container beim Broadcast der Todo-Listen. Anstatt jede Todo-
Liste getrennt im gesamten Netz zu verteilen, werden sie gemeinsam von Peer zu Peer
geschickt. Unabhängig von den benötigten Ursprungsrelationen, reduziert sich der Auf-
wand auf höchstens einen Broadcast pro Anfrage.

5.3 Tupelverwaltung

5.3.1 Die Klasse TuplePacket

Diese Klasse ermöglicht es, mehrere Tupel gleichzeitig zu verarbeiten. Hauptkomponente
ist eine Instanz der Klasse java.util.Vector, welche Elemente vom Typ Tuple
aufnehmen soll. Die verschiedenen Operationen zum Einfügen und Entfernen von Tupeln
können direkt auf die entsprechenden Methoden der Vektorklasse abgebildet werden.

In einem Tupelpaket können aber keine beliebigen Tupel gemeinsam gesammelt wer-
den. Da alle Tupel eines Paketes auf die gleiche Art und Weise verarbeitet werden sollen,
müssen die Tupel folgenden Bedingungen genügen:
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• bei der initialen Erzeugung des Paketes müssen die Tupel aus der gleichen Basisre-
lation stammen

• alle Tupel besitzen die gleiche Vergangenheit, d.h. sie haben im Laufe der Verarbei-
tung die gleichen Operatoren in gleicher Reihenfolge angelaufen

• würden alle Tupel eine eigene Todo-Liste besitzen, wären diese identisch

Diese Bedingungen garantieren, dass alle Tupel das gleiche Schema besitzen. Aus diesem
Grund kann jedem Tupelpaket der notwendige Attribute-Mapper (siehe Abschnitt 5.4.3)
zugeordnet werden.

Der letzte Bestandteil der Klasse TuplePacket ist ein Zähler (hopCounter). Die-
ser hält fest, wie oft in Folge ein Tupelpaket von Peer zu Peer geschickt wurde, ohne ver-
arbeitet worden zu sein. Ziel dabei ist eine bessere Verteilung der Auslastung über das
Netz bzw. die Vermeidung einer Überlastung von Peers. Damit ein Paket nicht zu lange
unverarbeitet im Netz verbringt, muss es von einem Peer verarbeitet werden, sobald der
Hop-Zähler einen vorher festgesetzten Maximalwert erreicht.

5.3.2 Die Klasse TuplePacketWrapper

Diese Hilfsklasse dient dazu ein Problem zu lösen, dass bei der Neuverteilung der Tu-
pel entsteht. Da eine Neuverteilung einem temporären Einfügen entspricht, kann nur für
Tuple-Objekte das Re-Hashing ausgeführt werden. Ohne geeignete Maßnahmen würde
dabei die nötige Verbindung der Tupel mit ihrer Todo-Liste verloren gehen. Weiterhin
wäre es so nicht möglich, mehrere Tupel gleichzeitig neu zu verteilen.

Aus diesem Grund kapselt die Klasse TuplePacketWrapper ein Objekt vom Typ
TuplePacket und vom Typ TodoList. Diese Kapselung ist natürlich nur ein Zwi-
schenschritt, da Instanzen dieser Klasse nicht neuverteilt werden können. Um das Re-
Hashing zu ermöglichen, wird der Wrapper in den Datenvektor eines Hilfstupel eingefügt.

Mit diesem Verfahren können nun mehrere Tupel auf einmal neuverteilt werden, inkl.
der zugehörigen Todo-Liste.

5.3.3 Die Klasse TuplePacketContainer

Mit Hilfe der Klasse TuplePacketContainer können mehrere Tupelpakete oder
Tupelpaket-Wrapper in einem Vektor gesammelt und so gemeinsam behandelt werden.
Eine Vermischung der beiden Objektypen ist allerdings nicht zulässig.

Mehr Methoden als die üblichen für das Einfügen und Entfernen oder die Bestimmung
der Anzahl der Elemente werden nicht benötigt.

5.4 Weitere Hilfsklassen

5.4.1 Die Klasse QueryID

Um mehrere Anfragen parallel verarbeiten zu können, müssen sie eindeutig unterscheid-
bar gemacht werden. Durch zwei Komponenten wird die Eindeutigkeit erreicht:
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1. Zeitstempel
Zeitpunkt, an dem eine Anfrage initiiert wurde.

2. Peer-Identifier
Peer, an den die Anfrage gestellt wurde; notwendig, da in einer verteilten Umge-
bung eine globale Zeit nicht immer zur Verfügung steht; ohne globale Zeit kann die
Eindeutigkeit des Zeitstempels nicht garantiert werden.

Verwendung findet der Anfrage-Identifier vor allem als Komponente der Klasse
TodoListID, welche für den korrekten Broadcast aller Todo-Listen zuständig ist (siehe
Abschnitt 5.2.1).

5.4.2 Die Klasse AID

AID steht für Attribute-Identifier und dient dazu, Tupelattribute anzusprechen. Benötigt
wird dieser für die Planoperatoren, um Selektionsattribut, die beiden Attribute eines Joins
und die zu projezierenden Attribute einer Projektion festzulegen.

Innerhalb einer Datenbank wird ein Attribut eindeutig bestimmt durch den Identifier
der Basisrelation und der Position des Attributes im Schema der Relation. Beide Größen
sind damit auch die beiden Komponenten der Klasse AID.

5.4.3 Die Klassen AttributeMapper und AttributeMapEntry

Wie eben beschrieben, werden Attribute unter anderem über die Position im Datenvek-
tor angesprochen. Durch Planoperatoren wie Projektion oder Joins kann sich das Schema
der Tupel verändern und somit auch die Position der Attribute. Bei einer statischen An-
frageverarbeitung, bei dem die Operatorreihenfolge für alle Tupel gleich ist, kann die
Attributposition bereits im Vorfeld korrekt gesetzt werden.

Ist die Operatorreihenfolge nicht bekannt, wie beim P2P-Eddy, müssen die Attribut-
positionen im Laufe der Verarbeitung immer wieder aktualisiert werden. Da nahezu jeder
Planoperator in den Todo-Listen auf eine oder mehrere Instanzen der Klasse AID ange-
wiesen ist, empfiehlt sich die Aktualisierung in einer gemeinsam genutzten Komponente.
Andernfalls müssten alle restlichen Operatoren der Todo-Liste aktualisiert werden, sobald
ein schemaverändernder Operator ausgeführt wurde. Diese Komponente ist der Attribute-
Mapper, über den die Planoperatoren auf die Attribute im Datenvektor der Tupel zugrei-
fen.

Die Idee des Attribute-Mappers ist es, die Position der Attribute im Datenvektor
der Tupel einer Basisrelation auf die Position im aktuellen Datenvektor abzubilden. Die
Attribute-Identifier der Planoperatoren können deswegen einfach auf die Position der
Attribute innerhalb der Basistupel gesetzt werden. Muss ein Operator auf ein Attribut
zugreifen, ruft er zunächst den Attribute-Mapper des Tupelpaketes auf und erhält von
diesem die aktuelle Position des Attributes im Datenvektor.

Die eigentliche Abbildung übernehmen Instanzen der Klasse AttributeMapEntry.
Neben dem Relationennamen gehört zu dieser Klasse ein Array, dessen Größe der Anzahl
der Attribute in der Basisrelation entspricht. Die Position im Array entspricht dabei
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der Position eines Attributes in der Basisrelation. Der jeweilige Inhalt steht für dessen
Position im aktuellen Datenvektor.

Werden Tupel aufgrund binärer Operatoren miteinander verknüpft, vergrößert sich
dadurch der Attribute-Mapper für die Ergebnistupel. Die Anzahl der Mapper-Einträge
entspricht somit immer der Anzahl der enthaltenen Basisrelationen im Datenvektor der
Tupel.

Abbildung 5.3 zeigt einen initialisierten Attribute-Mapper für die Basisrelation R mit
vier Attributen. Zu diesem Zeitpunkt sind die Attributpositionen in den Basistupeln mit

0

0

1

1

2

2

3

3

Relation R

AttributeMapEntry

AttributeMapper

Abbildung 5.3: Beispiel für eine neu erzeugten Attribute-Mapper

denen im aktuelle Datenvektor noch identisch, so dass die Positionen auf sich selbst ab-
gebildet werden.

Jeder schemaverändernde Planoperator muss nun gemäß seiner Eigenschaften den
Attribute-Mapper so verändern, dass nachfolgende Operatoren auf die richtigen Attribute
zugreifen können. Beispiele dafür finden sich bei den entsprechenden Operatoren.

5.5 Planoperatoren

5.5.1 Die Klasse EddyPOP

Die Planoperatoren (kurz: POPs) stellen die Implementierung der logischen Operatoren
dar. Die abstrakte Klasse EddyPOP umfasst alle Attribute und Methoden, die allen Ope-
ratoren eigen ist. Von dieser Klasse können demnach keine Instanz erzeugt werden. In-
stantiierbar sind die von EddyPOP abgeleiteten Klassen, die umgesetzten Operationen
Projektion, Selektion und Join (siehe Abbildung 5.4)

Um die Operatoren innerhalb einer Anfrage unterscheidbar zu machen, wird ein ein-
deutiger Identifier (operatorID) benötigt. Zum Auslesen dieses Attributes dient die
Methode getOperatorID.

Gemäß den Voraussetzungen aus Abschnitt 4.1 muss die Anfrage als Baum übergeben
werden. Um die Struktur aus den Operatoren zu konstruieren, wird jeder Operator um At-
tribute erweitert, welche die Kind-Objekte des Operators im Baum repräsentieren. Da der
Anfragebaum maximal der Ordnung 2 ist, sind zwei solche Attribute nötig (leftChild,
rightChild). Für unäre Operatoren wird eines der Attribute auf null gesetzt.

Die Verarbeitung der Tupel durch einen Operator soll über zwei verschieden Wege
realisiert werden. Im ersten Fall werden alle Eingangstupel am Stück abgearbeitet. Da-
zu wird lediglich eine Methode (processEddyPOP) benötigt, welche die übergebenen
Tupel verarbeitet und mögliche Ergebnistupel wieder zurückgibt.
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EddyPOP

EddyProjPOP EddySelPOP EddyJoinPOP

Abbildung 5.4: Vererbungshierarchie der Klassen der Planoperatoren

Bei der zweiten Variante werden mögliche Ergebnistupel schrittweise angefor-
dert. Dadurch können bereits die Zwischenergebnisse eines Operators weiterverabei-
tet oder auch weitergeschickt werden (vgl. Pipelining). Hierfür wird die Klasse um
ein Attribut tuplePacket erweitert, welches zunächst alle Eingangstupel aufnimmt
(über die Methode setTuplePacket). Die eigentliche Abarbeitung der Tupel über-
nimmt die Methode getNextOutputTuple. Diese arbeitet die Eingangstupel nur
soweit ab, bis ein erstes Ergebnistupel entsteht. Für die komplette Verarbeitung muss
getNextOutputTuple solange aufgerufen werden, bis alle Eingangstupel abgearbei-
tet wurden.

Die beiden Methoden für die Abarbeitung der Tupel müssen als „abstrakt“ definiert
werden, da deren Implementierung abhängig vom konkreten Operator ist.

5.5.2 Die Klasse EddyProjPOP

Der Planoperator der Projektion wird durch die Klasse EddyProjPOP implementiert.
Die beispielhafte Darstellung einer Projektion im Anfragbaum (Abbildung 5.5) liefert
alle spezifischen Informationen.

�R.a, T.e

Abbildung 5.5: Darstellung einer Projektion im Anfragebaum

• Liste alle projezierten Attribute inkl. der zugehörigen Relationen (Vektor mit Ele-
menten vom Typ AID)

Die Projektion gehört zur der Sorte Operatoren, die in der Regel das Schema ihrer
Eingangstupel verändern. Deshalb wird eine Methode benötigt die den entsprechenden
Attribute-Mapper der Tupel modifiziert. Die verbliebenen Attribute müssen dabei auf die
Position abgebildet werden, an derer sich die zugehörigen AIDs im Vektor der Projekti-
on befinden. Alle herausprojezierten Attribute werden auf eine Konstante abgebildet, die
kenntlich macht, dass diese Tupel nicht mehr gültig sind.
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Abbildung 5.6: Aktualisierung eines Attribute-Mappers nach einer Projektion

5.5.3 Die Klasse EddySelPOP

Der zweite unäre Planoperator ist die Selektion. Im Vergleich zur Projektion, umfasst die
Selektion wesentlich mehr beschreibende Parameter.

� T.e= ‘abc’

Abbildung 5.7: Darstellung einer Selektion im Anfragebaum

• Selektionsattribut inkl. zugehöriger Relation (repräsentiert durch ein Attribut vom
Typ AID)

• Vergleichsoperation

• Vergleichswert

• Typ des Vergleichswertes (String, Double, Integer)

Natürlich sind auch Selektionen möglich, bei denen der Wertebereich des Selekti-
onsattributes beidseitig begrenzt ist (z.B. 20000<MatNr< 30000). Solche Selektio-
nen müssen in Teilselektionen umgewandelt werden, wobei jede für eine Teilbedingung
verantwortlich ist.

Da eine Selektion die Schemas ihrer Ergebnistupel nicht verändert, bedarf es keiner
Anpassung des Attribute-Mappers.

5.5.4 Die Klasse EddyJoinPOP

Als binärer Operator muss der Join, im Gegensatz zur Projektion oder Selektion, meh-
rere Tupel miteinander in Beziehung bringen. Durch diese notwendige Koordination ist
der Join zum einen weniger flexibel und zum anderen deutlich komplexer als die unären
Operatoren.

Implementiert wurde der Join-Operator als SHJ (Symmetric Hash Join). Die Idee des
SHJ ist es, potentielle Join-Partner auf den selben Peer zu bringen und dort einen loka-
len Join durchzuführen. Damit ist der Join ein zweistufiger Prozess bestehend aus der
Neuverteilung der Tupel und dem lokalen Join. Die charakteristischen Kenngrößen des
Join-Operators sind:

• die beiden Join-Attribute inkl. der zugehörigen Relationen (repräsentiert durch je-
weils ein AID: leftAID, rightAID)
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R.a=S.c

Abbildung 5.8: Darstellung einer Projektion im Anfragebaum

• eindeutiger namespace (notwendig für die Neuverteilung)

• alle Eingangstupel des Join-Operators müssen aus ihrer Todo-Liste entnehmen kön-
nen, aus welchem der beiden Teilbäume sie zum Join kommen;
diese Information wird im Attribut joinPartnerSide hinterlegt und beim Er-
zeugen der Todo-Listen entsprechend gesetzt

Obwohl für die Join-Bedingung verschiedene Vergleichsoperationen möglich sind,
wird hier nur auf Gleichheit geprüft (Equi-Join). Diese Einschränkung wird durch die
Neuverteilung der Tupel bedingt.

Die Neuverteilung oder auch das Re-Hashing von Tupeln ist ein temporäres Einfü-
gen von Kopien der Originaltupel. Da es sich bei den Tupeln der Nachrichtenpakete
bereits um Kopien handelt, können diese direkt verwendet werden. Obwohl das Re-
Hashing durch den Eddy-Operator durchgeführt wird (nur dieser kann Nachrichten
verschicken), soll der prinzipielle Ablauf dennoch hier vorgestellt werden.

Um sicherzustellen, dass potentielle Join-Partner nach der Neuverteilung auf einem
Peer landen, muss für alle Tupel der key-Wert für die Basisoperationen des CANs geeig-
net gewählt werden. Um dies zu erreichen, setzt sich hier der key aus dem festgelegten
namespace des Join-Operators und dem Wert des Join-Attributes eines jeden Tupel
zusammen. Die Neuverteilung anhand des Attributwertes hat den Nachteil, dass lediglich
die Gleichheit als Join-Bedingung genutzt werden kann.

Obwohl sich in einem TuplePacket immer nur gleichartige Tupel befinden dür-
fen, können die Tupel dennoch unterschiedliche Werte für das Join-Attribut besitzen.
Enthält ein Paket also mehr als ein Tupel, werden diese in der Regel auf unterschiedliche
Peers verteilt.

Das Re-Hashing der Tupel wurde in zwei Varianten implementiert. Die trivialste Lö-
sung ist die Neuverteilung jedes einzelnen Tupels aus dem Paket. Dadurch werden aber
immer genau so viele Nachrichten erzeugt, wie es Tupel gibt. In Bezug auf die Kommu-
nikationskosten ist diese Art der Neuverteilung somit ungeeignet.

Bei der zweiten Variante wird vor der eigentlichen Neuverteilung ein Sortieralgorith-
mus auf das TuplePacket angewendet. Dieser Algorithmus (Abbildung 5.9) packt alle
Tupel mit gleichem Wert für das Join-Attribut in neue Pakete ein. Für jedes Paket kann
nun garantiert werden, dass dessen Tupel den gleichen Ziel-Peer für das Re-Hashing be-
sitzen.

Abbildung 5.10 veranschaulicht die Arbeitsweise des Sortieralgorithmus. In diesem
Beispiel kann die Zahl der benötigten Re-Hash-Nachrichten von sieben auf drei reduziert
werden.

Im Mittel kann so die Anzahl der benötigten Nachrichten minimiert werden. Im Worst-
Case enthält das Originalpaket nur Tupel mit unterschiedlichen Attributwerten, falls z.B.
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Die Position des Join-Attributes im Datenvektor wird ausserhalb der Methode be-
stimmt und als Parameter position übergeben. Der Test der Join-Bedingung
in Zeile 10 garantiert, dass beide Attributwerte identisch sind. Für diesen Test ist
der Parameter EddyJoinPOP notwendig, da diese Klasse die benötigte Metho-
de enthält.

buildReHashTuplePackets(EddyJoinPOP, TuplePacket, position)
1 originalAttirbuteMapper = TuplePacket.getAttributeMapper
2 for each tuple from TuplePacket
4 currentValue = tuple.getData(position)
5 inserted = false
6 for each entry from resultContainer
7 firstTuple = entry.getFirstTuple()
8 firstTupleValue = firstTuple.getData(position)
9 resultTodoList.insertListItem(item)
10 if both values fulfil the join condition
11 inserted = true
12 entry.insertTuple(tuple)
13 end if
14 end for
15 if inserted == false
16 TuplePacket newTuplePacket = new TuplePacket()
17 newTuplePacket.setAttributeMapper(originalAttributeMapper)
18 newTuplePacket.insertTuple(tuple)
19 resultContainer.insertObject(newTuplePacket)
20 end if
21 end for
22 return resultContainer

Abbildung 5.9: Algorithmus für die Vorsortierung von Tupel vor einem Re-Hashing

TuplePacket TuplePacketContainer
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Abbildung 5.10: Beispiel für die Vorsortierung der Tupel für eine Neuverteilung
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das Join-Attribut der Primärschlüssel ist. In solchen Fällen degeneriert das Verfahren zur
Neuverteilung jedes einzelnen Tupels.

Um noch mehr Nachrichten einzusparen, wird vor jeder Neuverteilung überprüft, ob
Ziel-Peer und aktueller Peer identisch sind. Ist dies der Fall, kann die weitere Abarbeitung
sofort lokal fortgesetzt werden.

Systembedingt können im CAN nur Tupel eingefügt und somit auch nur Tupel neu
verteilt werden. Um Tupelpakete inkl. Attribute-Mapper und Todo-Liste zu vertei-
len, müssen sämtliche zusammengehörigen Komponenten in eine Instanz der Klasse
TuplePacketWrapper gesteckt werden. Diese wird Element des Datenvektors eines
Hilfstupels, welches nun neu verteilt werden kann. Der vollständige Algorithmus für
das Re-Hashing wird in Abbildung 5.11 gezeigt. Erreicht ein solches Hilsftupel seinen

reHashTuplePackets(EddyJoinPOP, EddyProcessTodoListMessage)
1 todoList = EddyProcessTodoListMessage.getTodoList()
2 position <- use AttributeMapper to get the position of the join attribute
3 container = buildReHashTuplePackets(EddyJoinPOP, TuplePacket, position
4 for each tuplePacket from container
5 firstTuple = tupelPacket.getFirstTuple()
6 value <- firstTuple.getData(position)
7 namespace = EddyJoinPOP.getNamespace()
8 currentWrapper = new TuplePacketWrapper(tuplePacket, todoList)
9 reHashTuple = new Tuple(namespace, DONT_CARE_PRIMKEY, currentWrapper)
10 reHashTuple.setLifeTime(LIFETIME)
11 targetPoint <- lookup((namespace, value))
12 send reHashTuple to peer which administrates the targetPoint
13 end for

Abbildung 5.11: Algorithmus für das Re-Hashing von Tupeln

Ziel-Peer, wird der lokale Join ausgeführt.

Der lokale Join wird mittels einer Nested-Loop-Implementierung durchgeführt.
Durch die Dynamik der Anfrageverarbeitung, können sich die Schemas der möglichen
Partnertupel, in Abhängigkeit ihrer Vorgeschichte unterscheiden. Daraus folgt, dass
auch die Ergebnistupel nicht die gleichen Schemas besitzen müssen. Da sich aber
in einem Tupelpaket nur gleichartige Tupel befinden dürfen, muss eine Vermischung
ungleichartiger Tupel abgefangen werden.

Ähnlich wie beim Re-Hashen, können auch hier alle Ergebnistupel gesondert betrach-
tet werden. Jedes Ergebnistupel wird dabei in ein eigenes Tupelpaket gesteckt und mit
dem entsprechenden Attribute-Mapper und entsprechender Todo-Liste versehen. Dies be-
deutet also, dass sich nach einem Join nur noch ein Tupel in jedem Tupelpaket befindet,
was wiederum den Netzverkehr unnötig ansteigen lassen würde.

Um dies zu umgehen, werden gleichartige Ergebnistupel in einem Tupelpaket gesam-
melt. Ob ein Tupel in ein bereits existierendes Paket gepackt werden darf, entscheiden
folgende drei Bedingungen, die alle erfüllt sein müssen:
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1. Die Attribute-Mapper des Ergebnistupels und des Tupelpaketes müssen identisch
sein

2. Die Todo-Listen des Ergebnistupels und des Tupelpaketes müssen identisch sein

3. Die Anzahl der Attribute im Datenvektor des Ergebnistupels muss gleich der Anzahl
der Attribute im Datenvektor der Tupel im Tupelpaket sein

Sobald eine der drei Bedingungen nicht erfüllt ist, wird ein neues Tupelpaket angelegt.
Abbildung 5.12 zeigt den Algorithmus für das Erzeugen des Rückgabewertes eines
lokalen Joins. Ein Beispiel für die Vorteile des gezielten Einfügens der Ergebnistupel ist
in Abbildung 5.13 zu finden. In diesem Beipiel sind alle drei Ergebnistupel gleichartig,
für die nachfolgenden Verarbeitungsschritte wird also nur ein Nachrichtenpaket benötigt
anstatt drei.

Durch den binären Charakter des Join-Operators müssen sowohl die Todo-Listen

insertResultTupleIntoContainer(TuplePacketContainer, TuplePacketWrapper)
1 inputTuplePacket.TuplePacketWrapper.getTuplePacket()
2 inputTuple = inputTuplePacket.getFirstTuple()
4 inputTupleData = inputTuple.getAllData()
5 inputTodoList = TuplePacketWrapper.getTodoList()
6 inputAtributeMapper = inputTuplePacket.getAttributeMapper()
7 found = false
8 for each wrapper from TuplePacketContainer
9 partnerTuplePacket = wrapper.getTuplePacket()
10 partnerTuple = partnerTuplePacket.getFirstTuple()
11 partnerTupleData = partnerTuple.getAllData()
12 partnerTodoList = wrapper.getTodoList()
13 partnerAttributeMapper = partnerTuplePacket.getAttributeMapper()
14 if (inputAttributeMapper == partnerAtributeMapper AND
15 inputTodoList == partnerTodoList AND
16 inputTuple.getSize() == partnerTuple.getSize())
17 found = true
18 partnerTuplePacket.insertTuple(inputTuple)
19 end if
20 end for
21 if found == false
22 TuplePacketContainer.insertObject(TuplePacketWrapper)
23 end if

Abbildung 5.12: Algorithmus für das Einfügen eines Ergebnistupels eines Joins in den
Rückgabe-Container

als auch die Attribute-Mapper der ursprünglichen Teile eines Ergbnistupels verschmolzen
werden. Diese Vorgänge waren bereits Schwerpunkte in den Abschnitten 5.2.2 bzw 5.4.3.

Neben der Verschmelzung der Attribute-Mapper, muss der neue Attribute-Mapper
noch aktualisiert werden. Da die Konvention eingehalten wird, dass die Attribute des Tu-
pels aus dem rechten Teilbaum des Join-Operators an die Attribute des Tupels aus dem
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Abbildung 5.13: Vergleich der beiden Varianten für die Ergebnisse eines lokalen Joins

linken Teilbaum gehängt werden, müssen auch die beiden Attribute-Mapper in dieser Rei-
henfolge miteinander verbunden werden.

In diesem Fall können die Einträge des „linken“ Attribute-Mappers unangetastet blei-
ben. Auf alle Einträge des „rechten“ Attribute-Mappers muss die Anzahl der Attribute
des „linken“ Tupels addiert werden, da sich die Position der Attribute des „rechten“ Tu-
pels genau um diese Anzahl verschoben hat. Abbildung 5.14 zeigt die Verschmelzung und
Aktualisierung zweier initialer Attribute-Mapper durch einen Join.
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Abbildung 5.14: Erzeugung eines neuen Attribute-Mappers für die Ergebnistupel eines
Joins

5.6 Eddy-Operator

Die Klasse Eddy ist das Herzstück der P2P-Eddy-Implementierung. Die Aufgaben und
Arbeitsweise des Eddy-Operators lassen sich als Graph, wie in Abbildung 5.15 gezeigt,
darstellen.

Erzeugung der Todo-Listen. Diese Teilaufgabe umfasst die Umsetzung der An-
frage in Baumdarstellung in die Todo-Listen für die Tupel der Basisrelationen. Die
Abarbeitung findet vollständig auf dem Peer statt, an den die Anfrage gestellt wurde.
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Abbildung 5.15: Überblick über die Aufgaben des Eddy-Operators

Alle Operatoren des Anfragebaumes, die auf die Tupel einer Basisrelation angewen-
det werden müssen, liegen auf dem Pfad zwischen Relation und Wurzeloperator. Durch
binäre Operatoren (Joins) kann es allerdings vorkommen, dass auf diesem Pfad auch Ope-
ratoren liegen, die nicht für die Tupel gelten. Diese Operatoren greifen nicht auf Attribute
der aktuellen Basisrelation zu und dürfen somit nicht in der entsprechenden Todo-Liste
eingetragen werden.

Algorithmisch lässt sich diese Aufgabe durch eine Tiefensuche durch den Anfra-
gebaum, beginnend beim Wurzeloperator, lösen. Auf den Weg zu den Blättern (Ba-
sisrelationen), werden alle Operatoren in Richtung Wurzel in einer vorläufigen Todo-
Liste gesammelt. Wird eine Basisrelation erreicht, müssen aus der Liste zunächst al-
le Operatoren herausgefiltert werden, die nicht auf die Tupel der Relation anzuwen-
den sind. Im letzten Schritt werden alle fertigen Todo-Listen in einem Objekt vom Typ
TodoListContainer gesammelt.

Abbildung 5.16 zeigt die notwendigen Algorithmen in Pseudocode-Notation. Ender-
gebnis ist ein Container, der sämtliche Todo-Listen für die Basisrelationen enthält. Die
Anzahl der Todo-Liste entspricht logischerweise der Anzahl der Basisrelationen, die für
die Anfrage benötigt werden.

Die Methode filterTodoList erfüllt noch eine weitere Aufgabe, die in Abbil-
dung 5.16 fehlt. Beim Durchlauf durch alle Operatoren wird nach einer Selektion gesucht,
die einer Punktanfrage auf das Primärschlüsselattribut entspricht. Dazu muss die Selekti-
on zwei Bedingungen genügen:

1. Die Vergleichsoperation ist „=“

2. Das Vergleichsattribut ist das Primärschlüsselattribut

Im Falle eine solchen Selektion, wird dieses Wissen in der Todo-Liste hinterlegt
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Der Algorithmus buildTodoList wird zu Beginn mit dem Wurzelelement
des Operatorbaumes und einer leeren Todo-Liste und einem leeren Container
aufgerufen. Die Zeilen 7-11 sind nur für binäre Operatoren relevant. Für unäre
Operatoren wird der rechte Sohnknoten auf null gesetzt.

buildTodoList(Operator, TodoList, TodoListContainer)
1 TodoList.insert(Operator)
2 if Operator.lefChild is an operator
3 buildTodoList(Operator.leftChild, TodoList, TodoListContainer)
4 else if Operator.leftChild is an relation with ID relID
5 TodoListContainer.insert(filterTodoList(TodoList, relID))
6 end if
7 if Operator.rightChild is an operator
8 buildTodoList(Operator.rightChild, TodoList, TodoListContainer)
9 else if Operator.rightChild is an relation with ID relID
10 TodoListContainer.insert(filterTodoList(TodoList, relID))
11 end if

filterTodoList(TodoList, relID)
1 resultTodoList = new TodoList()
2 for each op from TodoList
3 if op uses relation with ID relID
4 resultTodoList.insert(op)
5 end if
6 end for
7 return resultTodoList

Abbildung 5.16: Algorithmen für die Erzeugung der Todo-Listen
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(exactMatchPossible=true).

Verteilung der Todo-Listen. Bevor der Container mit den Todo-Listen an alle Peers
verteilt wird, wird nach Todo-Listen gesucht, deren Attribut exactMatchPossible
auf true gesetzt ist. Für diese Listen wird kein Broadcast benötigt, da sie gezielt zu den
Peer geschickt werden können, auf dem sich das mögliche Ergebnistupel befinden muss
(falls es tatsächlich existiert). Das gezielte Senden ist möglich, da durch die Punktanfrage
auf das Primärschlüsselattribut der key-Wert für eine lookup-Operation direkt gebildet
werden kann. Der key besteht in diesem Fall aus:

• dem Identifier der Basisrelation und

• dem Wert für das Primärschlüsselattribut (= Vergleichswert des entsprechenden
Selektion-Planoperators)

Durch die Hash-Funktion wird der Peer berechnet, zu dem die Todo-Liste geschickt wer-
den muss. Alle Todo-Liste für die das möglich ist, werden aus dem Container entfernt.

Für alle anderen Todo-Listen mus ein Broadcast des Containers durchgeführt werden.
Dieser Vorgang zerfällt ein zwei Teile. Im ersten Schritt sendet ein Peer den Container an
seine direkten Nachbarn. Um die Zahl der Nachrichten etwas zu minimieren, wird sich in
einem Vektor gemerkt, welche Peers den Container bereits verarbeitet haben.

Schritt Nummer 2, der auch für gezielt verteilte Todo-Listen ausgeführt werden muss,
ist die Suche nach Tupeln der zugehörigen Basisrelation. Verwaltet ein Peer Tupel für
eine Todo-Liste, kann mit der nächsten Teilaufgabe im Ausführungsgraph (Abbildung
5.15) begonnen werden.

Um das korrekte Ergebnis zu erhalten, muss jeder Peer den Container genau einmal
verarbeiten. Dafür ist aber nicht der Eddy-Operator verantwortlich, sondern die Kommu-
nikationskomponente des Peers. Dazu wird die TodoListID der ersten Todo-Liste des
Containers in einem Vektor auf dem Peer hinterlegt. Jedesmal wenn der Container einen
Peer erreicht, wird in diesem Vektor nach der ID gesucht. Nur wenn diese nicht enthalten
ist, wird der Container verarbeitet.

Eine Alternative zum Broadcast des Containers ist ein Multicast jeder Todo-Liste.
Dazu müssen die Daten so im CAN verteilt worden sein, dass die Teilbereiche des
Netzes bestimmt werden können, in denen sich die Tupel einer Relation befinden.
Grundvoraussetzung für den Multicast ist die Eineindeutigkeit der Hash-Funktion, die
im Allgemeinen nicht gegeben ist. Auf diese Möglichkeit soll nicht weiter eingegangen
werden, da dies Aufgabe der CAN-Umgebung und nicht der Anfrageverarbeitung ist.
Wird im Folgenden von der Verteilung und dem Broadcast der Todo-Liste gesprochen,
schließt das die Ausnutzung von Multicasts mit ein.

Erzeugung der Nachrichtenpakete Wie in Kapitel 4 bereits beschrieben, setzt
sich ein Nachrichtenpaket aus einem Tupel-Paket und zugehöriger Todo-Liste zusammen.

Bei der ersten Erzeugung der Nachrichtenpakete werden Kopien aller gefundenen Tu-
pel einer Basisrelation in einem Objekt vom Typ TuplePacket verpackt. Dabei wird
gleichzeitig der Attribute-Mapper des Tupel-Paketes initialisiert (siehe Abschnitt 5.4.3).

Zusammen mit der Todo-Liste kann nun mit der eigentlichen Verarbeitung der
Anfrage begonnen werden.
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Versand der Nachrichtenpakete. Nach der Bestimmung eines Ziel-Peers, werden
die Tupel samt Todo-Liste weitergeleitet. Sind Ziel-Peer und aktueller Peer identisch,
können gleich die Methoden für eine weitere Verarbeitung aufgerufen werden. Die
Altenativmöglichkeit wäre, dass sich ein Peer in solchen Fällen selbst eine Nachricht
schickt.

Da mit der Abarbeitung der initialen Nachrichtenpakete auf den Peers begonnen
wird, auf denen sie erzeugt wurden, ist zu Beginn kein Versenden der Nachrichtenpakete
erforderlich.

Auswahl des nächsten Operators. Die Vorstellung des Operator-Routings ist Schwer-
punkt von Kapitel 6 und soll an dieser Stelle nicht weiter behandelt werden.

Sobald aber ein Operator ausgewählt wurde, wird dieser sofort aus der Todo-Liste
entfernt.

Verarbeitung der Nachrichtenpakete mit Hilfe des entsprechenden Planopera-
tors. Diese Aufgabe wird nahezu vollständig an den ausgewählten Planoperator delegiert.
Der Eddy-Operator entscheidet lediglich, ob die Tupel des Paketes am Stück oder Schritt
für Schritt abgearbeitet werden sollen (vergleiche Abschnitt 5.5.1).

Im Falle einer Projektion oder Selektion sind die Rückgabewerte wieder vom Typ
TuplePacket. Diese unären Operatoren sind damit vollständig durchlaufen.

Joins müssen die Schleife aus Abbildung 5.15 quasi zweimal durchlaufen. Im ersten
Durchlauf besteht die Verarbeitung des Nachrichtenpaketes aus dem Re-Hashing der
Tupel. Dies legt automatisch den Ziel-Peer für das Peer-Routing fest. Erreichen die neu-
verteilten Tupel ihr Ziel beginnt der zweite Durchlauf. Dabei muss das Operator-Routing
übersprungen werden. Die Verarbeitung entspricht dann der Ausführung des lokalen
Joins. Wie in Abschnitt 5.5.4 gezeigt, ist der Rückgabewert des Join-Planoperators ein
Container der Elemente vom Typ TuplePacketWrapper enthält. Jeder Wrapper steht
dabei wieder für ein komplettes Nachrichtenpaket.

Erzeugung der Ergebnisnachrichtenpakete. Bevor die Ergebnistupel weiter ver-
arbeitet werden können, müssen sowohl Tupelpaket als auch Todo-Liste aktualisiert
werden.

Für Tupelpakete bedeutet dies die Anpassung des zugehörigen Attribute-Mappers. Da-
zu ruft der Eddy-Operator die Konvertierungsmethoden des eben ausgeführten Planope-
rators auf.

Die Aktualisierung der Todo-Liste bezieht sich auf das korrekte Setzen der Ready-Bits
der restlichen Operatoren, um Verletzungen der Umformungsregeln der Relationenalge-
bra zu vermeiden. Die Verschmelzung von Todo-Listen aufgund von Joins wird bereits
durch den Join-Planoperator ausgeführt. Da Selektionen und Joins keine Attribute aus
den Tupeln entfernen, können diese zu jeder Zeit ausgeführt werden. Somit kann das
Ready-Bit für diese Operatoren von Anfang an gesetzt sein. Durch eine Projektion kann
es allerdings passieren, dass Selektions- oder Join-Attribute herausprojeziert werden. Dies
muss durch die Ready-Bits verhindert werden. Daneben würde die Ausführung einer Pro-
jektion vor einem Join ggf. eine Nachprojektion mitsichbringen, um das gleiche Ergebnis
zu erzielen, wie es in umgekehrter Reihenfolge der Ausführung entstehen würde. Da Pro-
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jektionen ohnehin eine der letzten Operationen einer Anfrage darstellen, müssen folgende
Bedingungen erfüllt sein, damit das Ready-Bit einer Projektion gesetzt werden darf:

1. Die Todo-Liste darf keine weiteren Joins enthalten.

2. Die Projektion darf Selektionsattribute der restlichen Selektionen nicht herauspro-
jezieren (der AID-Vektor der Projektion muss die AIDs sämtlicher Selektionen der
Todo-Liste enthalten)

Abbildung 5.17 zeigt den Pseudocode für das Setzen der Ready-Bits für die Projektionen.

Auswahl des nachsten Peers. Wie schon das Operator-Routing, ist auch das Peer-

updateTodoList(TodoList)
1 joinCounter = 0
2 collectedAIDs = new Vector()
3 projections = new Vector()
4 for each item from TodoList
5 currentOperator = item.getOperator()
6 if currentOperator is an EddySelPOP
7 collectedAIDs = currentOperator.getAIDs()
8 if currentOperator is an EddyProjPOP
9 projections.add(currentOperator)
10 if currentOperator is an EddyJoinPOP
11 joinCounter++
12 end if
13 end for
14 if joinCounter == 0
15 hits = 0
16 for each proj from projections
17 projAIDs = proj.getAIDs()
18 for each aid from projAIDs
19 if aid is element of collectedAIDs
20 hits++
21 end if
22 end for
23 if hits == collectedAIDs.getSize
24 proj.setReadyBite(true)
25 end if
26 end for
27 end if

Abbildung 5.17: Algorithmus für das Setzen der Ready-Bits

Routing Thema von Kapitel 6.

Ausgabe der Ergebnistupel. Die Tupel eines Paketes sind dann Ergebnistupel,
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wenn die zugehörige Todo-Liste keine Operatoren mehr enthält. In diesem Fall wird das
Tupelpaket an den Peer geschickt, an den die Anfrage ursprünglich gestellt wurde. Diese
Information steckt als Peer-Identifier in der QueryID, die bei jedem Nachrichtenaus-
tausch mitgeschickt wird.

Im Rahmen seiner Aufgaben stellt der Eddy-Operator die Schnittstelle zwischen
P2P-Eddy und dem CAN dar. So hat hat der Eddy-Operator als einziger direkten Zugriff
auf folgende Bestandteile der Peers:

• Kommunikationskomponente
Als einziger Teil des P2P-Eddies ist der Eddy-Operator in der Lage Nachrichen zu
verschicken.

• Datenbestand
Die Planoperatoren arbeiten alle auf Kopien der Originaltupel der Basisrelationen.
Der Zugriff auf die Basisrelationen wird allein bei der Erzeugung der initialen Tu-
pelpakete benötigt.

• lokale Laufzeitstatistiken
Der Zugriff auf die Warteschlangenlängen und die erlernten Selektivitäten der Ope-
ratoren sowie die zusätzlichen Informationen über die direkten Nachbarn des Peers,
sind Grundlage einiger Routing-Strategien.

Eine dynamische Anfrageverarbeitung wie der P2P-Eddy, lässt einen großen Spiel-
raum für die Ausführung. Gerade der Eddy-Operator verfügt über eine Vielzahl von Para-
metern, deren Werte dessen Arbeitsweise beeinflussen.

• operatorRoutingMethod
legt die Strategie fest, nach welcher der nächste Operator für die Abarbeitung aus-
gewählt wird

• peerRoutingMethod
legt die Strategie fest, nach welcher der nächste Ziel-Peer für ein Nachrichtenpaket
ausgewählt wird (falls diese Auswahl unabhängig vom Operator-Routing ist)

• checkWorkload
Ja/Nein-Entscheidung, ob die Auslastung eines Peers Einfluss auf das Peer-Routing
hat

• processingMethod
legt fest, ob die Tupel eines Nachrichtenpaketes am Stück oder in Form von Teilpa-
keten verarbeitet werden sollen

• usingSharedData
Ja/Nein-Entscheidung, ob die Operator-Routing-Strategien „Warteschlangenlänge“
und „Selektivität“ auf ein globales Wissen zurückgreifen können

• findNearestJoin
Ja/Nein-Entscheidung, ob die Zusatz-Routing-Strategie „Suche nach den nächsten
Join“ verwendet werden soll
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• maxPacketSize
skalarer Zahlenwert, der die maximale Anzahl von Tupeln in einem Tupelpaket
vorgibt

• maxHops
skalarer Zahlenwert, der die Anzahl festlegt, wie oft in Folge ein Nachrichtenpaket
von Peer zu Peer geschickt werden kann, ohne verarbeitet werden zu müssen

• maxWorkloadClock
skalarer Zahlenwert, der den Grenzwert festlegt, ab wann ein Peer als ausgelastet
angesehen wird; ein Peer ist dann ausgelastet, sobald die Anzahl aller eingehenden
Nachrichten in einem festen Zeitintervall diesen Grenzwert überschreitet

• maxWorkloadQueue
skalarer Zahlenwert, der den Grenzwert festlegt, ab wann ein Peer als ausgelastet
angesehen wird; ein Peer ist dann ausgelastet, sobald die Summe aller Warteschlan-
gen auf dem Peer diesen Grenzwert überschreitet

• packTuples
Ja/Nein-Entscheidung, ob ein Re-Hashing für alle Tupel eines Tupelpaketes einzeln
durchgeführt werden soll; die Alternative ist eine Vorsortierung der Tupel (vorge-
stellt im Abschnitt 5.5.4)

Die vielen möglichen Parameterkombinationen machen den Eddy-Operator äußerst
flexibel. Obwohl im Normalfall die Arbeitsweise dem Anwender oder der Applikation
verborgen bleiben soll, können sämtliche Parameter von Außen über den Konstruktor
gesetzt werden. Dadurch ist es möglich, sinnvolle Kombinationen der Parameter gezielt
miteinander zu vergleichen.

5.7 Nachrichtenklassen

5.7.1 Grundprinzip der Kommunikation

Innerhalb der Systemumgebung erfolgt die Kommunikation zwischen Peers über spezielle
Nachrichtenklassen. So existiert für jede Aufgabe eine eigene Klasse, mit den jeweils
benötigten Informationen.

Für den P2P-Eddy wurden fünf neue Typen von Nachrichtenklassen implementiert.
Sie werden alle von der Oberklasse DirectedMessage abgeleitet (Abbildung 5.18).
Diese Klasse besteht aus folgenden Attributen:

• sender
Peer, von dem die Nachricht aus geschickt wurde

• messageID
eindeutiger Identifier der Nachricht
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• messageTarget
Zielpunkt im Koordinatenraums des CAN

In den weiteren Abschnitten sollen die neuen Nachrichtenklassen und ihre zusätzlichen
Attribute vorgestellt werden.

DirectedMessage

EddyDistributeTodoListMessage

EddyProcessTodoListMessage

EddyReHashRequestMessage

EddyPOPRequestMessage

EddyPOPResponseMessage

Abbildung 5.18: Vererbungshierarchie der neuen Nachrichtenklassen für den P2P-Eddy

5.7.2 Die Klasse EddyPOPRequestMessage

Mit dieser Nachricht wird eine Anfrage für den P2P-Eddy initiiert. Sie wird an den
Peer geschickt, von dem aus die Anfrage gestartet werden soll. Die Attribute der Klas-
se EddyPOPRequestMessage sind:

• EddyPOP
Anfrage in Baumstruktur (übergebener Operator ist Wurzelelement)

• Eddy
Eddy-Operator mit den gewählten Parametern (vergleiche Abschnitt 5.6)



5.7 Nachrichtenklassen 71

• QueryID
eindeutiger Identifier der Anfrage

• PeerDescriptor
Peer an dem Anfrage gestartet werden soll

5.7.3 Die Klasse EddyDistributeTodoListMessage

Diese Nachricht ist für den Broadcast des Containers mit den Todo-Listen zuständig. Für
die korrekte Durchführung sind folgende Attribute notwendig:

• TodoListContainer
Container mit den Todo-Listen

• Eddy
Eddy-Operator mit den gewählten Parametern (vergleiche Abschnitt 5.6)

• visitedPeers Vektor mit alle Peers, auf dem der Container bereits verarbeitet
wurde

• PeerDescriptor
Peer, von dem aus die Anfrage gestartet wurde

• QueryID
eindeutiger Identifier der Anfrage

• startTime
Sendezeitpunkt der Anfrage (dient zur Bestimmung der Übertragungsdauer zwi-
schen zwei Peers)

5.7.4 Die Klasse EddyProcessTodoListMessage

Innerhalb der Klasse EddyProcessTodoListMessage werden die Tupelpa-
kete inkl. ihrer Todo-Listen von Peer zu Peer geschickt. Neben der Klasse
EddyReHashRequestMessage gehört sie zu den beiden Nachrichtentypen, die für
die eigentliche Verarbeitung der Tupel benötigt wird. Die Attribute der Klasse sind:

• Eddy
Eddy-Operator mit den gewählten Parametern (vergleiche Abschnitt 5.6)

• TuplePacket
Tupelpaket mit gleichartigen Tupeln

• TodoList
zugehörige Todo-Liste für das Tupelpaket

• TodoListItem
Element aus der Todo-Liste, falls der nächste Operator bereits vom Sender-Peer
festgelegt wurde
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• PeerDescriptor
Peer, von dem aus die Anfrage gestartet wurde

• QueryID
eindeutiger Identifier der Anfrage

• startTime
Sendezeitpunkt der Anfrage (dient zur Bestimmung der Übertragungsdauer zwi-
schen zwei Peers)

5.7.5 Die Klasse EddyReHashRequestMessage

Wie der Name bereits andeutet, werden mit dieser Nachricht Tupel neu verteilt. Sie wird
zu dem Peer geschickt auf dem dann die Tupel temporär eingefügt werden. Die Klasse
enthält folgende Attribute:

• EddyPOP
Join-Planoperator der für den lokalen Join auf dem Ziel-Peer benötigt wird

• Eddy
Eddy-Operator mit den gewählten Parametern (vergleiche Abschnitt 5.6)

• Tuple Hilfstupel, welches neu verteilt werden soll (dieses Tupel enthält eine Ob-
jekt vom Typ TuplePacketWrapper, welcher wiederum das Tupelpaket mit
den eingentlichen Datentupeln und die Todo-Liste enthält)

• TodoList
zugehörige Todo-Liste für das Tupelpaket

• PeerDescriptor
Peer, von dem aus die Anfrage gestartet wurde

• QueryID
eindeutiger Identifier der Anfrage

5.7.6 Die Klasse EddyPOPResponseMessage

Mittels dieser Nachricht werden letztlich die Ergebnistupel einer Anfrage zu dem Peer
geschickt, an den die Anfrage gestartet wurde. Die Attribute der Klasse sind:

• Eddy
Eddy-Operator mit den gewählten Parametern (vergleiche Abschnitt 5.6)

• TuplePacket
Tupelpaket mit den Ergebnistupeln

• PeerDescriptor
Peer, von dem aus die Anfrage gestartet wurde

• QueryID
eindeutiger Identifier der Anfrage



Kapitel 6

Routing-Strategien

6.1 Allgemeines

Sowohl Operator-Routing als auch Peer-Routing sind Aufgaben des Eddy-Operators. Für
beide Varianten wird die Klasse Eddy um jeweils eine Methode erweitert. Die konkrete
Routing-Strategie wird den Methoden als Parameter übergeben.

Für das Operator-Routing ist die Methode chooseNextTodoListItem zustän-
dig. Die übergebenen Parameter sind die Todo-Liste des aktuellen Nachrichtenpaketes
und die Strategie, nach welcher der nächste Operator ausgewählt werden soll.

Abbildung 6.1 zeigt die Struktur der Methode chooseNextTodoListItem. Die
Konstanten für die switch-Anweisung repräsentieren die im Abschnitt 4.3.2 vorgestell-
ten Strategien für das Operator-Routing.

Die Hilfsstrategie zum Finden des „nächsten“ Joins kann nicht für sich allein
verwendet werden. Sie kann nur an gegebener Stelle zusätzlich aufgerufen werden. Mehr
dazu bei der Implementierung der Operator-Routing-Strategien.

Die Methode chooseNextPeer wählt den nächsten Peer für ein Nachrichtenpa-
ket aus, falls das Ziel nicht durch das Operator-Routing implizit vorgegeben ist. Der
Übergabeparameter ist die verwendete Strategie. Realisiert wurde der Entscheidungs-
baum aus Abbildung 4.7. Dazu muss neben den bereits vorgestellten Strategien für
das Peer-Routing auch der Test auf Auslastung integriert werden. Die Grobstruktur der
Methode chooseNextPeer zeigt Abbildung 6.2.

Vom Eddy-Operator wird die Methode immer mit der Konstante
NEXT_PEER_WORKLOAD aufgerufen. Im entsprechenden Teilzweig wird zunächst
überprüft, ob die Auslastung eines Peers herangezogen werden soll oder nicht. In
Abhängigkeit davon und der gewählten Routing-Strategie, wird die Methode rekursiv mit
der entsprechenden Konstante aufgerufen.
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In einem Zwischenschritt (Zeilen 2-7) werden alle Elemente der übergebenen
Todo-Liste haerausgefiltert, deren Ready-Bit gesetzt ist. Nur aus dieser Teilmen-
ge darf der nächste Operator ausgewählt werden.

chooseNextTodoListItem(TodoList, operatorRoutingMethod)
1 trueList = new TodoList()
2 for each item from TodoList
3 if item.getReadyStatus() == true
4 trueList.add(item)
5 end if
6 end for
7 resultItem = new TodoListItem()
8 switch (operatorRoutingMethod)
9 case NEXT_OPERATOR_RANDOM:
10 ...
11 case NEXT_OPERATOR_HIGHEST_PRIORITY:
12 ...
13 case NEXT_OPERATOR_MIN_QUEUE_LENGTH:
14 ...
15 case NEXT_OPERATOR_TICKET:
16 ...
17 end switch
18 return resultItem

Abbildung 6.1: Struktur der Methode chooseNextTodoListItem

chooseNextPeer(method)
1 resultPeer = new PeerDescritpor()
2 switch (method)
3 case NEXT_PEER_WORKLOAD:
4 ...
5 case NEXT_PEER_SAME_PEER:
6 ...
7 case NEXT_PEER_RANDOM_NEIGHBOR:
8 ...
9 case NEXT_PEER_CYCLIC_NEIGHBOR:
10 ...
11 case NEXT_PEER_PING_TIME:
12 ...
13 case NEXT_PEER_SENT_MESSAGES:
14 ...
15 end switch
16 return resultPeer

Abbildung 6.2: Struktur der Methode chooseNextPeer
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6.2 Operator-Routing

6.2.1 Zufällige Auswahl

Diese einfachste aller Strategien für das Operator-Routing kommt ohne zusätzliche Infor-
mationen aus. Das ausgewählte Element der Todo-Liste wird über die Position im Vektor
der Todo-Liste angesprochen. Die Position berechnet sich dabei als zufälliger Wert aus
dem Intervall [0,...,(n-1)], wobei n die Anzahl der Elemente der Todo-Liste ist. Abbildung
6.3 zeigt den betreffenden Ausschnitt der Methode chooseNextTodoListItem.

chooseNextTodoListItem(TodoList, operatorRoutingMethod)
1 ...
2 case NEXT_OPERATOR_RANDOM:
4 random = Math.random //random value between „0“ and „1“
5 position = Math.round(radom * (trueList.getSize() - 1))
6 resultItem = trueList.getListItemByPosition(position)
7 end case
8 ...

Abbildung 6.3: Algorithmus für die Operator-Routing-Stratege „Zufällige Auswahl“

Dieses Verfahren ermöglicht, mit Ausnahme der Einschränkungen durch die Ready-
Bits, eine beliebige Operatorreihenfolge. Ungünstige Reihenfolgen können dadurch nicht
ausgeschlossen werden. Damit ist die „Zufällige Auswahl“ keine echte Routing-Strategie,
da hier die Effizienz der Anfrageverarbeitung nicht gezielt verbessert wird. Mit ihr lassen
sich allerdings gut die Vorteile „richtiger“ Routing-Strategien demonstrieren.

6.2.2 Auswahl nach Priorität

Bei dieser Strategie wird die Erweiterung der Listenelemente um eine Operatorpriorität
benötigt. Operatoren mit einer hohen Priorität werden dabei bevorzugt ausgewählt. Be-
sitzen mehrere Operatoren die gleiche höchste Priorität, wird aus dieser Teilmenge der
Operator zurückgegeben, der am weitesten oben in der Todo-Liste steht. Die Prioritäten
für die drei implementierten Planoperatoren besitzen folgende Rangfolge:

prio(EddySelPOP ) > prio(EddyProjPOP ) > prio(EddyJoinPOP )

Abbildung 6.4 zeigt den Algorithmus für die Auswahl nach Priorität. Dieser besteht
aus genau einem Durchlauf der gesamten Todo-Liste. Eine Optimierung wäre, wenn der
Durchlauf abgebrochen werden würde, sobald die erste Selektion gefunden wurde. Da
der Aufwand für lokale Operationen im Vergleich zum Kommunikationsaufwand aber
vernachlässigt werden kann, wurde darauf verzichtet.

Enthält die Todo-Liste sowohl Selektionen als auch Joins, werden somit immer erst
alle Selektionen ausgeführt. Besonders ungünstige Operatorreihenfolgen werden dadurch
vermieden, die unnötig große Zwischenergebnisse erzeugen würde. Je kleiner die Zwi-
schenergebnisse, umso geringer ist vor allem auch die Auslastung des Netzes.
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chooseNextTodoListItem(TodoList, operatorRoutingMethod)
1 ...
2 case NEXT_OPERATOR_HIGHEST_PRIORITY:
3 oldHighestPriority = 0
4 for each item from TodoList
5 currentPriority = item.getPriority()
6 if currentPriority > oldHighestPriority
7 oldHighestPriority = currentPriority
8 resultItem = item
9 end if
10 end for
11 end case
12 ...

Abbildung 6.4: Algorithmus für die Operator-Routing-Stratege „Auswahl nach Priorität“

6.2.3 Auswahl nach Warteschlangenlänge

Da die Tupel nicht wirklich in Warteschlangen eingefügt werden und somit keine War-
teschlangenlänge ausgelesen werden kann, muss dies geeignet simuliert werden. Erreicht
wird dies durch einen Zähler für jeden Operator auf jedem Peer. Wird ein Operator aus-
geführt, muss der Zähler um die Anzahl der ankommenden Tupel erhöht, nach der Abar-
beitung um die gleiche Anzahl wieder erniedrigt werden.

QueryID operatorID

135

QueueSim

Abbildung 6.5: Beispiel für eine Instanz der Klasse QueueSim

Der Zähler muss seinem Operator eindeutig zugeordnet werden können, auch im Fal-
le mehrerer parallel ausgeführter Anfragen. Aus diesem Grund muss der Zähler um die
QueryID der Anfrage und der ID des Operators erweitert werden. Implementiert wird
das Ganze durch die Klasse QueueSim. Um alle QueueSims auf einem Peer gemein-
sam verwalten zu können, werden sie in einem Objekt vom Typ QueueSimContainer
gepackt. Jeder Peer wird um einen solchen Container eweitert.

Ein QueueSim steht auf einem Peer allerdings erst dann zur Verfügung, wenn der
zugehörige Operator mindestens einmal auf diesem Peer ausgeführt wurde. Sobald also
die Todo-Liste Operatoren enthält, für die noch kein QueueSim existiert, kann für die
Auswahl nach der Warteschlangenlänge keine eindeutige Entscheidung getroffen werden.
Gleiches gilt, wenn mehrere Operatoren die gleiche minimale Warteschlangenlänge be-
sitzen. Auf dieser Teilmenge aus unbekannte Operatoren und Operatoren mit gleicher
minimaler Warteschlangenlänge wird die Strategie „Auswahl nach Priorität“ ausgewählt.

Den Code-Ausschnitt der Methode chooseNextTodoListItem für diese Stratgie
zeigt Abbildung 6.6.
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In Zeile 19 wird geprüft, ob eine eindeutige Entscheidung auf Basis der Warte-
schlangenlänge getroffen werden kann. Ist dies nicht der Fall, wird die Methode
rekursiv mit neuem Parameter aufgerufen.

chosseOperator(TodoList, operatorRoutingMethod)
1 switch (operatorRoutingMethod)
2 ...
3 case NEXT_OPERATOR_MIN_QUEUE_LENGTH:
4 unknownOperators = new TodoList()
5 minimumOperators = new TodoList()
6 for each op in TodoList
7 if for op a queue does not exist on the current peer
8 unknownOperators.insert(op)
9 else
10 currentQueueLength = queue.getQueueLength()
11 if currentQueueLength == minimumQueueLength
12 minimumOperators.insert(op)
13 else if currentQueueLength < minimumQueueLength
14 minimumOperators.clearList()
15 minimumOperators.insert(op)
16 end if
17 end if
18 end for
19 if minimumOperators.size() == 1 and unknownOperators.size() == 0
20 return minimumOperators.getElement()
21 else
22 combinedList = minimumOperators + unknownOperators
23 return chooseOperator(combinedList, NEXT_OPERATOR_HIGHEST_PRIORITY)
24 end if
25 end case
26 ...

Abbildung 6.6: Algorithmus für die Operator-Routing-Strategie „Auswahl nach Warte-
schlangenlänge“
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6.2.4 Auswahl nach erlernter Selektivität

Obwohl mit diesem Verfahren ein ganz anderes Ziel verfolgt wird als mit der „Auswahl
nach Warteschlangenlänge“, ist die Umsetzung durchaus vergleichbar. Sowhl die notwen-
digen Erweiterungen als auch der Algorithmus für die chooseNextTodoListItem-
Methode sind sich äußerts ähnlich.

QueryID operatorID

Ticket

240 18

Eingagstupel Ergebnistupel

Abbildung 6.7: Beispiel für ein Ticket

Das Gegenstück zum QueueSim ist hier die Klasse Ticket. Der Unterschied liegt
nur darin, dass ein Ticket zwei Zähler benötigt. Der eine Zähler hält fest, wie viele Tupel
vom zugehörigen Operator auf einem Peer abgearbeitet wurden und der andere, wie viele
Tupel den Operator erfolgreich passiert haben. Aus dem Verhältnis der beiden Zähler
lässt sich die Selektivität des Operators abschätzen. Mit der Klasse TicketContainer
lassen sich mehrere Tickets gemeinsam von einem Peer verwalten.

Auch bei diesem Ticket-Mechanismus kann es vorkommen, dass nicht alle Operatoren
aus der Todo-Liste dem Peer bekannt sind. Gelöst wird dieses Problem wie bei der Stra-
tegie „Auswahl nach Warteschlangenlänge“ durch den rekursiven Aufruf der Methode
chooseNextTodoListItem. Parameter sind wieder die Teilmenge aus unbekannten
Operatoren und Operatoren mit gleicher minimaler Selektivität sowie die Konstante für
die Strategie „Auswahl nach Priorität“.

Der Algorithmus des Verfahrens ist mit dem aus Abbildung 6.6 nahezu identisch.
Lediglich die Berechnung der Selektivität kommt hier noch dazu (siehe Abbildung 6.8)

6.2.5 Hilfsmethode findNearestJoin

Abbildung 6.9 zeigt den Algorithmus für das Finden des „nächsten“ Joins. Für jeden
Join-Operator der Todo-Liste werden die Abstände vom aktuellen Peer zum Ziel-Peer der
Neuverteilung aller Tupel berechnet und gemittelt. Der Join mit dem kleinsten durch-
schnittlichen Abstand wird dann zurückgegeben.

Wie bereits erwähnt, ist diese Methode keine eigene Routing-Strategie, da sie opera-
torspezifisch ist. Bleibt also die Frage, wann im Laufe des Peer-Routings die Methode
verwendet werden soll. Als geeignete Stelle hat sich der Aufruf innerhalb der Routing-
Strategie „Auswahl nach Priorität“ erwiesen, wenn die Liste mit den Elementen, deren
Ready-Bit gesetzt ist, nur Joins enthält. Damit kann sie auch ausgeführt werden, wenn für
die Laufzeitstatistiken Warteschlangenlänge und Selektivität keine eindeutige Entschei-
dung getroffen werden kann. Der überarbeitete Algorithmus für die Strategie „Auswahl
nach Priorität“ findet sich in Abbildung 6.10.
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In Zeile 20 wird geprüft, ob eine eindeutige Entscheidung auf Basis der Tickets
getroffen werden kann. Ist dies nicht der Fall, wird die Methode rekursiv mit
neuem Parameter aufgerufen.

chosseOperator(TodoList, operatorRoutingMethod)
1 switch (operatorRoutingMethod)
2 ...
3 case NEXT_OPERATOR_TICKET:
4 unknownOperators = new TodoList()
5 minimumOperators = new TodoList()
6 oldMinimumSelectivity = 1.0
7 for each op in TodoList
8 if for op a ticket does not exist on the current peer
9 unknownOperators.insert(op)
10 else
11 currentSelectivity = ticket.computeSelectivity()
12 if currentSelectivity == oldMinimumSelectivity
13 minimumOperatorurrentQueueLengths.insert(op)
14 else if currentSelectivity < oldMinimumSelectivity
15 minimumOperators.clearList()
16 minimumOperators.insert(op)
17 end if
18 end if
19 end for
20 if minimumOperators.size() == 1 and unknownOperators.size() == 0
21 return minimumOperators.getElement()
22 else
23 combinedList = minimumOperators + unknownOperators
24 return chooseOperator(combinedList, NEXT_OPERATOR_HIGHEST_PRIORITY)
25 end if
26 end case
27 ...

Abbildung 6.8: Algorithmus für die Operator-Routing-Strategie „Auswahl nach erlernter
Selektivität“



6.2 Operator-Routing 80

findNearestJoin(TodoList)
1 minDistance = MAX_VALUE
2 for each item from TodoList
3 if item is an EddyJoinPOP
4 currentAccumulatedDistance = 0
5 currentAverageDistance = 0
6 currentJoin = item.getOperator()
7 currentNamespace = currentJoin. getNamespace()
8 for each tuple from msg.getTuplePacket
9 currentAttribute <- find join attribute
10 currentTargetPoint <- lookup((namespace, currentAttribute))
11 currentDistance <- calculate distance between currentTargetPoint and peer
12 currentAccumulatedDistance = currentAccumulatedDistance + currentDistance
13 end for
14 currentAverageDistance = currentAccumulatedDistance / (count of tuples)
15 if currentAverageDistance < minDistance
16 minDistance = currentAverageDistance
17 nearestJoin = item
18 end if
19 end if
20 end for
21 return nearestJoin

Abbildung 6.9: Algorithmus der Methode findNearestJoin
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Durch die zusätzliche Bedingung in der if-Klausel kann die Verwendung der
Methode findNearestJoin auch völlig ausgeschaltet werden.

chooseNextTodoListItem(TodoList, operatorRoutingMethod)
1 ...
2 case NEXT_OPERATOR_HIGHEST_PRIORITY:
3 oldHighestPriority = 0
4 if trueList.getSize() == (count of joins) and findNearesJoin == YES
5 resultItem = findNearesJoin(trueList)
6 else
7 for each item from TodoList
8 currentPriority = item.getPriority()
9 if currentPriority > oldHighestPriority
10 oldHighestPriority = currentPriority
11 resultItem = item
12 end if
13 end for
14 end if
15 end case
16 ...

Abbildung 6.10: Algorithmus für die Operator-Routing-Strategie „Auswahl nach Priori-
tät“ inkl. dem Aufruf für die Methode findNearestJoin

6.3 Peer-Routing

6.3.1 Allgemeines

Für das Peer-Routing wurden zwei neue Klassen implementiert. Die Klasse Neighbor
sammelt verschiedene Informationen über einen Peer in seiner Rolle als direkter Nachbar.
Derzeit sind das folgende Größen:

• pingTime
Zeitdauer zwischen Senden und Empfang der letzten Nachricht (Sender ist der
zugehörige Nachbar; Empfänger der Peer, der die entsprechende Instanz der
Neighbor-Klassen enthält)

• sentMessages
Anzahl der gesendeten Nachrichten eines Nachbarn

Jeder Peer wird um eine Instanz der Klasse NeighborManager erweitert. Diese
Klasse verwaltet in erster Linie einen Array (neighbors, dessen Elemente vom Typ
Neighbor sind und alle direkten Nachbarn des Peers repräsentieren. Die Größe des Arrays
entspricht somit die Anzahl der Nachbarn.

Die meisten Algortihmen für die Strategien des Peer-Routings befinden sich
in der Klasse NeighborManager und werden lediglich von der Methode
chooseNextPeer aufgerufen.
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Die Auswahl des nächsten Peers soll auf Basis des Entscheidungsbaumes aus Ab-
bildung 4.7. Dies bedeutet, dass das Peer-Routing auch den Test auf Auslastung eines
Peers umsetzen muss. Die Methode chooseNextPeer wird dazu im ersten Schritt
immer mit der Konstanten NEXT_PEER_WORKLOAD aufgerufen, unabhängig von der
eigentlichen Peer-Routing-Strategie. Der zugehöre Code-Abschnitt realisiert genau den
oben genannten Entscheidungsbaum.

Das Attribut peerRoutingMethod steht für die gewählte Routing-Strategeie.
Durch die if-Klausel in Zeile 3 kann der Test auf Auslastung auch deaktiviert
werden.

chooseNextPeer(method)
1 ...
2 case NEXT_PEER_WORKLOAD:
3 if checkWorkload == YES
4 workload = peerQueueSimContainer.getWorkload()
5 if workload < maxWorkload
6 resultPeer = chooseNextPeer(SAME_PEER)
7 else
8 resultPeer = chooseNextPeer(peerRoutingMethod)
9 end if
10 else
11 resultPeer = chooseNextPeer(peerRoutingMethod)
12 end if
13 end case
14 ...

Abbildung 6.11: Algorithmus für den Test auf Auslastung eines Peers

Zur Bestimmung der Auslastung eines Peers anhand der Anzahl der eingegangen
Nachrichten in einem Zeitintervall, dient die Klasse WorkloadManager als Erweite-
rung für jeden Peer. Die Klasse sammelt in einem Vektor (messages) die Ankunftszeiten
aller eingehenden Nachrichtenpakete. Bei jedem Einfügen einer neuen Ankunftszeit wer-
den veraltete Zeiten aus dem Vektor entfernt. Eine Ankunftszeit ist dann veraltet, wenn sie
vor dem Zeitintervall liegt, der sich durch die neuste Ankunftszeit und einem festgelegten
Zeitabschnitt ergibt (siehe Algorithmus 6.12).

Je kürzer der Abstand zwischen den Ankünften eingehender Nachrichtenpakete ist,
umso mehr Elemente befinden sich somit im Vektor messages. Die Größe des Vektors
repräsentiert die Auslastung des Peers. Beim Test auf Überlastung wird die Vektorgröße
mit einem festgelegten Grenzwert (maxWorkloadClock) verglichen.

Wird die Summe aller Eingangswarteschlangenlängen als Maß für die Auslastung ei-
nes Peers herangezogen, kann auf neue Klassen verzichtet werden. Dieser Parameter kann
bereits durch die Klassen QueueSim und QueueSimContainer bereitgestellt wer-
den. Lediglich ein Grenzwert muss festgelegt werden (maxWokloadQueue).
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insertMessage(messageTime)
1 minimumTime = messageTime - INTERVAL
2 if minimumTime < 0
3 minimumTime = 0
4 end if
5 for each time from messages
6 if time < minimumTime
7 messages.removeMessageTime(time)
8 end if
9 end for
10 messages.addMessageTime(messageTime)

Abbildung 6.12: Algorithmus für die Aktulasierung des Vektor der Klasse
WorkloadManager

6.3.2 Routing-Strategien

6.3.3 Gleicher Peer

Beim Aufruf der Methode chooseNextPeer mit der Konstanten
NEXT_PEER_SAME_PEER, wird einfach der aktuelle Peer zurückgegeben (siehe
Abildung 6.13)

chooseNextPeer(method)
1 ...
2 case NEXT_PEER_SAME_PEER:
3 resultPeer <- current peer
4 end case
5 ...

Abbildung 6.13: Algorithmus für die Peer-Routing-Strategie „Gleicher Peer“

6.3.4 Zufälliger Nachbar

Diese Routing-Strategie wählt aus allen direkten Nachbarn einen zufälligen aus (Abbil-
dung 6.14). Eine faire Verteilung der Nachrichtenpakete im Netz kann dadurch nicht er-
reicht werden.

6.3.5 Zyklische Auswahl

Hier werden alle Nachbarn zyklisch hintereinander mit Nachrichtenpaketen bedient. Im
Neighbor-Manager des Peers wird in einem Attribut (lastRecepient) der Nachbar
gemerkt, der als letzter ein Paket erhalten hat.
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chooseNextPeer(method)
1 ...
2 case NEXT_PEER_SAME_PEER:
3 resultPeer = peerNeighborManager.getRecepientByRandom()
4 end case
5 ...

getRecepientByRandom()
1 random = Math.random() //random value between „0“ and „1“
2 number = Math.round(random * (neighbors.length - 1))
3 return neighbors[number]

Abbildung 6.14: Algorithmen für die Peer-Routing-Strategie „Zufällige Auswahl“

chooseNextPeer(method)
1 ...
2 case NEXT_PEER_CYCLIC_NEIGHBOR:
3 resultPeer = peerNeighborManager.getRecepientByCycle()
4 end case
5 ...

getRecepientByCycle()
1 lastRecepient++
2 if lastRecepient > neighbors.length
3 lastRecepient = 0
4 end if
5 return neighbors[lastRecepient]

Abbildung 6.15: Algorithmen für die Peer-Routing-Strategie „Zyklische Auswahl“
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6.3.6 Suche nach der schnellsten Verbindung

In einer Schleife über alle Nachbarn wird nach dem kleinsten Wert für das Attribut
pingTime gesucht. Dieser Wert steht aber nur dann zur Verfügung, wenn mindestens
eine Nachricht von diesem Peer empfangen wurde. Andernfalls ist die Güte für die Ver-
bindung nicht bekannt und es kann keine eindeutige Entscheidung getroffen werden. In
solchen Fällen wird auf die Strategie „Zyklische Auswahl“ zurückgegriffen.

Abbildung zeigt die beiden Algorithmen für die Strategie.

chooseNextPeer(method)
1 ...
2 case NEXT_PEER_PING_TIME:
3 peer = peerNeighborManager.getRecepientByPingTime()
4 if peer is not null
5 resultPeer = peer
6 else
7 resultPeer = chooseNextPeer(NEXT_PEER_CYCLIC_NEIGHBOR)
8 end if
9 end case
10 ...

getRecepientByPingTime()
1 currentMinPingTime = MAX_VALUE
2 for each neighbor from neighbors
3 if neighbor.getPingTime() is unknown
4 return null
5 else
6 if neighbor.getPingTime() < currentMinPingTime
7 currentReturnNeighbor = neighbor
8 currentMinPingTime = neighbor.getPingTime()
9 end if
10 end if
11 end for
12 return currentReturnNeighbor

Abbildung 6.16: Algorithmen für die Peer-Routing-Strategie „Suche nach der schnellsten
Verbindung“

6.3.7 Auswahl nach Auslastung der Nachbarn

Gesucht wird innerhalb aller Nachbarn nach dem kleinsten Nachrichtenvek-
tor sentMessages (siehe Abbildung 6.17). Die Aktualisierung des Vektors
übernimmt ebenfalls der Neighbor-Manager, allerdings nicht in der Methode
getRecepientByLoad. Nach veralteten Nachrichten wird immer dann gesucht,
wenn eine neue Nachricht in den Vektor eingefügt wird.
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chooseNextPeer(method)
1 ...
2 case NEXT_PEER_PING_TIME:
3 resultPeer = peerNeighborManager.getRecepientByLoad()
9 end case
10 ...

getRecepientByLoad()
1 currentMinLoad = MAX_VALUE
2 for each neighbor from neighbors
6 if neighbor.getLoad() < currentMinLoad
7 currentReturnNeighbor = neighbor
8 currentMinLoad = neighbor.getLoad()
9 end if
11 end for
12 return currentReturnNeighbor

Abbildung 6.17: Algorithmen für die Peer-Routing-Strategie „Auswahl nach Auslastung
der Nachbarn“



Kapitel 7

Evaluierung

7.1 Testbedingungen

Testumgebung
Basis für die Experimente war ein in Java implementierter CAN-Prototyp, der sowohl
als Simulator als auch als (verteiltes) CAN-Sytem eingesetzt werden kann [BB04]. Der
Prototyp ermöglicht die Simulierung von Netzen aus mehreren tausend Peers, bei Bedarf
auch auf einem Ein-Prozessor-Rechner. Dies ist auch notwendig, wenn aussagekräftige
Ergebnisse erzielt werden sollen, da reale CAN-basierte Netze in solchen Dimensionen
nicht existieren.

Testdaten
Verwendet wurden die TPC-H-Daten1 für 1MB. I/O-Kosten für Externspeicherzugriffe
konnten ignoriert werden, da die Daten für die einzelnen Peers in einfachen Haupt-
speicherstrukturen gehalten werden konnten. Diese Einschränkung war akzeptabel, da
als wesentlicher Faktor für den Gesamtaufwand die Kommunikation betrachtet wurde.
Besonders in weitverteilten Netzen (Internet) ist diese Annahme realistisch.

Testanfragen
Der verwendete Anfragemix bestand im Kern aus drei Klassen mit je drei Anfragen.
Innerhalb einer Klasse unterschieden sich die Anfragen hinsichtlich der Anzahl der Joins.
Der Unterschied zwischen den Klassen bestand darin, wie stark die Basisrelationen
selektiert wurden. Zu diesen neun Anfragen gehörten somit auch solche, die für ein
fragmentierte Speicherung besonders ungünstig sind. Dadurch konnten auch Aussagen
über das Worst-Case Verhalten der Implementierung gemacht werden.

Untersuchte Kenngrößen
Um quantitative Aussagen und damit Vergleiche zwischen den Testergebnissen machen
zu können, wurden folgende Parameter bertrachtet:

• Anzahl der Hops
Ein Hop steht für das Senden einer Nachricht über eine direkte Verbindung zwi-

1siehe auch: www.tpc.org
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schen zwei Peers. Dieser Parameter ist ein guter Indikator für den Gesamtaufwand
einer Anfrage.

• Anzahl der Nachrichten
Anzahl aller erzeugten Nachrichten innerhalb der Verarbeitung einer Anfrag. Ab-
hängig ist diese Größe vor allem von der Verteilung der Daten und der Größe bzw.
Anzahl der Zwischenergebnisse.

• Zeit
Durch den CAN-Prototyp kann keine „echte“ Parallelität ermöglicht werden. Aus
diesem Grund kann die Systemzeit nicht verwendet werden. Für brauchbare Ergeb-
nisse muss also auch die parallel Zeit simuliert werden.
Die Zeit wurde als Funktion über die Anzahl der Hops und der Auslastung der Peers
realisiert, wobei die Hops stärker gewichtet wurden. Um die Parallelität zu simulie-
ren, wurden nur die Hops und Auslastungen verwendet, die sich durch eine „echte“
Parallelität ergeben würde.

Alle drei Größen wurden nach der vollständigen Verarbeitung einer Anfrage ermit-
telt, auch wenn in weitverteilten Netzen alle Ergebnistupel bereits vor diesem Zeitpunkt
zurückgegeben worden sein können. Der Erhalt aller Ergebnistupel (die in der Praxis üb-
licherweise nicht vorher bekannt sind) markiert also nicht das Ende einer Anfrageverar-
beitung.

7.2 Ausgewählte Tests

7.2.1 Skalierbarkeit

Für Verfahren oder Meachanismen, die in weitverteilten Umgebungen zum Einsatz kom-
men, gehört die Skalierbarkeit mit zu den wichtigsten Charakteristiken. Die Skalierbarkeit
beschreibt, wie sich der Aufwand eines Algorithmus mit der Größe des Netzes ändert.
Gerade in CAN-basierten P2P-Netzen, deren große Stärke ein sehr gute Skalierbarkeit ist,
werden hohe Ansprüche an die Algortihmen gesetzt.

Abbildung 7.1 zeigt das Verhalten des P2P-Eddies mit den Standardeinstellungen in
den drei Netzgrößen von 1.000, 5.000 und 10.000 Peers. Gemessen wurde alle drei Kenn-
größen Zeit, Anzahl der Hops und Anzahl der Nachrichten.

Anzahl der Nachrichten. Bei allen drei Netzgrößen ist die Anzahl der erzeugten
Nachrichten nahezu identisch. Abhängig ist die Anzahl dabei vor allem von der Verteilung
der Daten. Wie man Tabelle 7.1 entnehmen kann, sind die Relationen in allen drei Netzen
ähnlich stark verteilt. Damit unterscheidet sich die Anzahl der initialen Nachrichtenpakete
und die Verarbeitung von diesen nur gering. Aus diesem Grund werden in etwa die gleiche
Anzahl von Nachrichten benötigt.

Anzahl der Hops. Die Summe aller Nachrichtenübertragungen muss in größeren Net-
zen zwangsläufig ansteigen. Besonders nachteilig wirkt sich der Broadcast des Containers
mit den Todo-Listen aus. Aber auch die längeren Wege für das Erreichen von Ziel-Peers
einer Neuverteilung besitzen einen großen Einfluss. Je mehr Ergebniszupel eine Anfrage
erzeugt, umso stärker bestimmt auch das Zurückschicken der Ergebnisse die Anzahl der
Hops.
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1.000 5.000 10.000

Zeit

AnzahlderHops

Anzahlder
Nachrichten

Abbildung 7.1: Skalierbarket des P2P-Eddies

Da die Anzahl der Hops ein gutes Maß für die Auslastung des Netzes darstellt, steigt
die absolute Auslastung bei erster Betrachtung deutlich an. Das Verhältnis von Anzahl
der Hops zur Anzahl der Peers sinkt aber mit der Größe des Netzes (Abbildung 7.2). Die
Auslastung wächst somit nicht linear.

1.000 5.000 10.000

#Hops /#Peers

Abbildung 7.2: Entwicklung der Auslastun im Vergleich zur Netzgröße

Zeit. Aus Sicht eines Nutzers oder einer Anwendung ändert sich die Zeit für die Ver-
arbeitung einer Anfrage mit steigender Anzahl der Peers nur gering. Grund hierfür ist
zweifelsohne die starke Verteilung der Daten und die hohe Parallelität der Verarbeitung.
Der Anstieg der Zeigt liegt in erster Linie an der Zunahme der benötigten Hops, begründet
durch die längeren Wege durch das Netz.

7.2.2 Vergleich der Strategien für das Operator-Routing

Die Auswahl der Operatorreihenfolge für Tupel ist der Ansatz die für Optimierung in
sämtlichen Eddy-Varianten. Der große Unterschied zwischen dem P2P-Eddy und den ur-
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sprünglichen Umsetzungen, liegt in der Möglichkeit verteilter Operatoren. Diese Vertei-
lung ist es auch, die die Ergebnisse für die Untersuchung der verschiedenen Strategien für
das Operator-Routing prägt.

Abbildung 7.3 zeigt die Ergebnisse für die vier umgesetzten Strategien. Bis auf die
Routing-Stratgie behielten die Parameter des Eddy-Operators ihre Standardwerte. Durch-
geführt wurden die Tests in einem Netz mit 1000 Peers.

Zufällige
Ausw ahl

Höchste
Priorität

Länge der
W arteschlange

erlernte
Selektivität
(Ticket-

M echanism us)

Zeit

AnzahlderHops

AnzahlderNachrichten

Abbildung 7.3: Vergleich der Strategien für das Operator-Routing

Es fällt auf, dass die Strategien, mit Ausnahme der zufälligen Auswahl, quasi iden-
tische Werte für alle drei untersuchten Kenngrößen besitzen. Dies ist auch nicht weiter
überraschend, wenn man daran denkt, dass die Operatorpriorität immer dann als Krite-
rium herangezogen wird, wenn für die Laufzeitstatistiken Warteschlangenlänge und er-
lernte Selektivität (Ticket-Mechanismus) keine eindeutige Entscheidung getroffen wer-
den kann. Und durch die starke Verteilung der Daten, waren selten alle Operatoren einer
Todo-Liste dem jeweiligen bekannt. Es wurde also äußerst oft auf die „Auswahl nach
Priorität“ zurückgegriffen.

Wie zu erwarten, fällt die zufällig Auswahl des nächsten Operators ungünstig aus, da
besonders ungünstige Operatorreihenfolgen nicht vermieden werden können. Die Nach-
teile für die starke Verteilung und hohe Parallelität für die Laufzeitstatistiken ist hier al-
lerdings von Vorteil. Wie man dem Diagramm entnehmen kann, ist der Anstieg der Zeit
im Vergleich zur Anzahl der Hops und Nachrichten eher gering.

7.2.3 Vergleich der Strategien für das Peer-Routing

Ziel des Peer-Routings ist vor allem eine möglichst gute Verteilung der Last. Wirklich
gute Aussagen wären also nur möglich, wenn der CAN-Prototyp auch Last von Peers
und somit des gesamten Netzes simulieren könnte. Im aktuellen Stand war dies nicht
der Fall. Wie bereits erwähnt, ist das Peer-Routing nicht unabhängig von der Auswahl
des nächsten Operators. Richtige Unterschiede sind dadurch mit Anfragen, die vor al-
lem Join-Operatoren enthalten, nicht zu erwarten. Für eine ersten Vergleich der Strategien
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wurde also nur auf die Anfrage mit den 10 Selektionen zurückgegriffen. Um untypische
Schwankungen etwas abzufangen, wurde für jede Strategie die Anfrage dreimal ausge-
führt. Um die Routing-Strategien für eine echte Weiterleitung auch wirklich zum Einsatz
kommen zu lassen, wurde der Schwellwert für die maximale Auslastung eines Peers stark
verringert. Abbildung 7.4 zeigt das Ergebnis des Tests.

G leicherPeer Zufällige
Ausw ahl

Zyklische
Ausw ahl

Suche nach
schnellster
Verbindung

Ausw ahlnach
Auslastung der

Peers

Zeit AnzahlderHops AnzahlderNachrichten

Abbildung 7.4: Vergleich der Strategien für das Peer-Routing

Wie oben angedeutet, bewirkt das Fehlen einer Lastsimulation eine eingeschränkte
Aussagekraft des Tests. Die fünf implementierten Strategien liefern recht ähnliche Werte.
Alleine die Auswahl „Gleicher Peer“ und „Auswahl nach Auslastung der Nachbarn“ zei-
gen im gewissen Umfang Abweichungen. Das gute Abschneiden für die Zeit von „Glei-
cher Peer“ liegt an der höheren Wichtung der Hops gegenüber der Auslastung der Peers.
Da sämtliche Nachrichtenpakete auf dem gleichen Peer ausgeführt werden konnten, wur-
den auch nur drei Nachrichten benötigt, die Broadcast-Nachricht und zwei für das Zu-
rückschicken des Ergebnisses. Die dennoch recht hohe Anhzahl von Hops macht klar,
wie aufwendig allein die Verteilung des Todo-Listen-Containers ist.

Die eher schlechten Werte für die Strategie „Auswahl nach Auslastung der Nachbarn“
resultiert daher, dass die eigentliche Verarbeitung der Nachrichtenpakete einen geringen
Kommunikationsaufwand besitzt. Es stehen also kaum Informationen über die Nachbarn
zur Verfügung. Da der zugehörige Algorithmus so arbeitet, dass er den ersten Nachbarn
mit minimaler (abgeschätzter) Auslastung liefert, wird die Last nicht fair verteilt. Da für
die wenigsten Nachbarn von Peers Aussagen über deren Auslastung getroffen werden
kann, wird sehr oft der gleiche Nachbar zum Ziel-Peer beim Peer-Routing. Die möglichst
faire Verteilung der Last und damit auch die Parallelität der Verarbeitung einer Anfrage
wird damit untergraben.

Relativ gut konnte die Güte der Verbindungen und damit die Vorzüge der Strategie
„Suche nach der schnellsten Verbindung“ getestet werden. Die nötigen Erweiterungen
konnten unabhängig von der eigentlichen CAN-Umgebung vorgenommen werden. Wie
schon beschrieben, wird die Verbindungsgeschwindigkeit zwischen zwei Peers anhand
der Übertragungsdauer ermittelt. Wird eine Nachrichtenpaket nun an einen Nachbarn ge-
schickt, wird die aktuelle Übertragungsdauer mit der durchschnittlichen Dauer verglichen.
Gemäß dem Verhältnis wird die Kommunikation zusätzlich gewichtet. Für klare Ergeb-
nisse wurde der Test auf Auslastung der Peers abgeschaltet und die zusätzliche Wichtung
besonders hochgesetzt. Das Resultat zeigt Abbildung 7.5.
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Abbildung 7.5: Test auf „Suche nach der schnellsten Verbinding“

Wie man sehr gut erkennen kann, macht es durchaus Sinn, auf die Parameter des
physikalsichen P2P-Netzes einzugehen. Je weitverteilter und ausgelasteter das Netz, umso
stärker können die Parameter schwanken und umso brauchbarer können solche Strategien
sein.

7.2.4 Suche nach dem „nächsten“ Join

Als Hilfsstrategie für das Peer-Routing soll der Nutzen der Methode
findNearestJoin gesondert untersucht werden. Ziel dieser Methode war die
Minimierung der Hops durch die gezielte Auswahl des Joins, bei dem die durchschnittli-
che Entfernung zu den Ziel-Peers für die Neuverteilung am geringsten ist.

Bis auf die Verwendung der Methode findNearestJoinwurden die Standardwer-
te für den Eddy-Operator verwendet. Abbildung 7.6 zeigt das Ergbnis.
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Abbildung 7.6: Test auf Sinn von findNearestJoin

Das Diagramm zeigt klar, dass sich die Ergebnisse nur geringfügig unterschieden. Die
Anzahl der Hops ist sogar leicht angestiegen. Erklärt kann dieses Verhalten erneut durch
die starke Verteilung der Daten. Je verteilter die Daten, umso weniger unterscheiden sich
im Mittel die Entfernungen zu den Ziel-Peers.
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7.2.5 Zusatzalgorithmen für die Ausführung von Join-Operatoren

Die Algorithmen sind die Vorsortierung der Tupel für das Re-Hashing und das Zusam-
menfassen gleichartiger Ergbnistupel eines Joins. Hauptziel waren dabei die Verringe-
rung der Nachrichten- und damit auch der Hop-Anzahl. Die Auswirkungen sind dabei
umso größer, je mehr Tupel sich in den Eingangsnachrichtenpaketen befinden. Falls im
ungünstigen Fall die Pakete nur ein Tupel enthalten, sind die Vorteile der Algorithmen
hinfällig.

Abbildung 7.8 vergleicht die Verarbeitung des Anfragemixes mit und ohne dem
Packen von Tupeln. Alle anderen Parameter des Eddy-Operators behalten die Standard-
werte. Die zwei „teuersten“ Anfragen mussten allerdings herausgenommen werden. Die
Anzahl der Nachrichtenpakte war bei diesen so groß, dass der Simulator für die Verarbei-
tung zu viele Threads benötigt hat.

m itZusatzalgorithm en ohne
Zusatzalgorithm en
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Abbildung 7.7: Test auf Sinn der Zusatzalgorithmen für den Join-Operator

Obwohl die Daten weit im Netz verteilt liegen und die initialen Nachrichtenpakete im
Mittel nur wenige Tupel enthalten, ist der Vorteil, der sich durch die Zusatzalgorithmen
ergibt, offensichtlich. Alle drei untersuchten Kenngrößen steigen beim Verzicht auf die
Algorithmen merklich an.

7.2.6 Einfluss von globalen Wissen

Simuliert wurde das globale Wissen durch eine Klasse mit statischen Attributen und Me-
thoden. Somit konnte jeder Peer auf diese Daten zugreifen. Damit sollte untersucht wer-
den, welche Auswirkungen die verteilten Laufzeitstatistiken haben.

In beiden Testläufen arbeitete der Eddy-Operator mit den Standardwerten für seine Pa-
rameter. Lediglich im zweiten Lauf wurde das globale Wissen hinzugeschaltet. Graphisch
präsentiert wird das Ergebnis in Abbildung 7.8.

Wie man sieht, ist das Ergebnis bei der Verwendung von globalem Wissen merklich
schlechter, besonders bei Anzahl der Hops und Anzahl der Nachrichten. Die Zeit bleibt
durch die hohe Parallelität weitgehend unberührt. Der Grund für dieses Resultat liegt im
Ticket-Mechanismus begründet. Durch das globale Wissen sind kurz nach dem Start der
Anfrage alle Operatoren bekannt, so dass ab diesem Zeitpunkt immer eine eindeutige Ent-
scheidung aufgrund der Tickets getroffen werden kann. Dabei kann es durchaus passieren,
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Abbildung 7.8: Test auf Einfluss von globalen Wissen

dass ein Join-Operator eine geringere Selektivität besitzt als eine Selektion. Dadurch muss
für mehr Tupel der Join durchgeführt werden, was einen Anstieg der Hop- und Nachrich-
tenanzahl begünstigt. Offensichtlich ist der Ticket-Mechanismus nicht völlig ausgereift.
So kann z.B. für Joins die Selektivität nur abgeschätzt werden, was an der Symmetric Hash
Join-Implementierung liegt. Desweiteren sollten die erlernten Selektivitäten der Operato-
ren unterschiedlich gewichtet werden, um die Komplexität der Algorithmen für die Plan-
operatoren miteinzubeziehen.

7.3 Test auf Auslastung

Bei diesem Experiment wurde untersucht, ob und wie sinnvoll es ist, ein Nachrichtenpaket
unverarbeitet weiterzuschicken, falls ein Peer überlastet ist. Ein Anstieg bei der Anzahl
von Hops ergibt sich selbstverständlich automatisch. Da für die Berechnung der Zeit auch
die Last der Peers miteinfließt, sollte sich die Vermeidung stark ausgelasteter Peers positiv
auf die Zeit auswirken.

Natürlich ist auch der Aufwand (lokaler Aufwand; nicht die Übertragungskosten) für
das Weiterleiten von Paketen nicht unabhängig von der Auslastung eines Peers. Allerdings
ist die Verarbeitung von Paketen im Mittel deutlich teurer als die pure Weiterleitung. In-
nerhalb diesen Tests wurde ein Verhältnis von 20:1 angenommen.

Die Auslastung der Peers wurde durch zufällige Werte aus einem Intervall I = [0..n]
simuliert. Dieses Vorgehen ist für diesen Test völlig ausreichend und spiegelt zusätzlich
die nicht vorhersagbare Dynamik in solchen Systemen wider. Eine wird als ausgelastet
angesehen, wenn für seine aktuelle Last x ∈ I gilt: x > 0.9 ∗ n. Sobald ein Peer ein
Nachrichtenpaket verarbeitet, wurde der Zeitzähler des Paketes um x erhöht, bei einer
direkten Weiterleitung um 0.05 ∗ n. Der Hop-Zähhler im Nachrichtenpaket sorgt dafür,
dass ein Paket bei hoher Auslastung vieler Peers zu lange unverarbeitet verschickt wird
(siehe Abschnitt 5.3.1).

Als Vergleichskonfiguration mit den Standardwerten für den Eddy-Operator, wurde
die Strategie „Gleicher Peer “ für das Peer-Routing verwendet. Siehe dazu auch den Ent-
scheidungsbaum aus Abbildung 4.7. Um aussagekräftige Ergebnisse zu erhalten, wurden
Anfragen ohne Joins und mit vielen Selektionen pro Basisrelation verwendet. Diese An-
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fragen erlauben eine häufige freie Wahl von Ziel-Peers für das Peer-Routing. Das Ergebnis
des Tests zeigt Abbilung 7.9.

ohne Weiterleitung mit Weiterleitung

Zeit

Anzahl der Hops

Anzahl der Nachrichten

Abbildung 7.9: Test auf Auslastung

Die Anzahl der Hops geht ohne ein zusätzliches Verschicken von Tupeln erwartungs-
gemäß nach unten. Genaugenommen erzeugt dieses Vorgehen das Minimum an benötig-
ten Hops für die Verarbeitung einer Anfrage.

Da alle Selektionen direkt auf den Peers ausgeführt werden, auf denen Tupel der ent-
sprechenden Basisrelationen liegen, beschränken sich die benötigten Nachrichten auf die
Broadcast-Nachricht und die Nachrichten für die Ergebnistupel. Erst durch die Weiterlei-
tung von Nachrichten aufgrund überlasteter Peers steigt die Nachrichtenanzahl an.

Vorteilhaft wird der Test auf Auslastung beim Parameter Zeit. Durch die Vermeidung
von einer Verarbeitung von Nachrichtenpaketen auf stark ausgelasteten Peers, wird der
Zeitzähler der Pakete nie um maximale Werte erhöht. Für einen Nutzer oder eine An-
wendung ist die Weiterleitung von Nachrichtenpaketen weg von überlasteten Peers somit
vorteilhaft.

Der Unterschied zwischen beiden Vorgehen ist in erster Linie abhängig von der Anfra-
ge, da Operator- und Peer-Routing nicht orthogonal zueinander sind. Enthält eine Anfrage
beispielsweise nur Joins, ist eine freie Wahl der Ziel-Peers und damit eine zusätzliche Ver-
teilung der Last nicht möglich.

Ob ein Test auf Auslastung sinnvoll ist, wird auch durch das Verhältnis zwischen dem
Aufwand für das Verschicken und der Verarbeitung von Nachrichtenpaketen bestimmt.
Sind Hops sehr „teuer“, kann die Zeitersparnis aus der geringer Auslastung der Peers
durchaus von den Kommunikationskosten verdrängt werden. Andererseits kann durch den
Parameter maxHops des Eddy-Operators (siehe Abschnitt 5.6) die maximale Anzahl zu-
sätzlicher Übertragungen nach oben begrenzt werden. Außerdem werden Pakete bei freier
Peer-Wahl immer nur zu direkten Nachbarn geschickt, was somit immer genau einem Hop
entspricht. Darum relativiert sich vor allem in großen Netzen der extra Kommunikations-
aufwand, erst recht, wenn die Anfrage auch Joins enthält.
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7.4 Vergleich mit einem zentralisierten Verfahren

Obwohl mit dem P2P-Eddy gerade die Gefahr von Flaschenhalseffekten aufgrund dedi-
zierter Peers, wurde der P2P-Eddy nachträglich um einen Modus erweitert, der in etwa
einen zentralisierten Eddy simuliert. Dazu wurden folgende Erweiterungen umgesetzt:

• alle initial erzeugten Nachrichtenpakete werden zum Peer geschickt, auf dem die
Anfrage gestartet wurde

• alle Operatoren werden auf diesem Peer ausgeführt; somit ist dieser Peer auch das
Ziel sämtlicher Neuverteilungen

• das globale Wissen wird verwendet

Bei dieser einfachen Umsetzung werden also alle Tupel auf den Initiator-Peer geholt
und von diesem verarbeitet. Verglichen wurde die zentralisierte Variante mit den Stan-
dardwerten für den Eddy-Operator des P2P-Eddies. Abbildung 7.10 zeigt das Ergebnis.

P2P-Eddy Zentralisierter Eddy
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Anzahl der Hops
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Abbildung 7.10: Vergleich des P2P-Eddies mit einer zentralisierten Verarbeitung

Auffallend ist der deutliche Anstieg der Zeit. Bedingt wird dies durch den Verlust der
Parallelität bei der Verarbeitung der Tupel.

Auch die Anzahl der Hops steigt bei der zentralisierten Variante im Mittel an, da
zunächst immer alle Tupel der betroffenen Basisrelationen zum Initiator-Peer werden.
Selektionen auf den Tupeln können vorher nicht ausgenutzt werden. Erst wenn, bedingt
durch die Anfrage, vollständige Relationen verbunden werden müssen, sinkt die Anzahl
der benötigten Hops im Vergleich zum P2P-Eddy. Sobald sich alle Tupel einmal auf dem
Start-Peer befinden, bedarf es keiner weiteren Kommunikation.

Die realisierte Umsetzung eines zentralisierten Eddies ist allerdings nicht optimal.
Sinnvoller wäre es z.B. die Abarbeitung der Planoperatoren auf andere Knoten zu dele-
gieren und lediglich die Aufgabe des Eddy-Operators vom Initiator-Peer durchführen zu
lassen. Damit sinkt zwar die Auslastung dieses Peers aber gleichzeitig steigt wieder der
Kommunikationsaufwand. Ausserdem müssten die Fragen beantwortet werden, welcher
Peer welchen Planoperator ausführt.



Kapitel 8

Zusammenfassung und Ausblick

Mit dem P2P-Eddy wurden die Ideen der urprünglichen Eddy-Umsetzungen auf die Cha-
rakteristika von P2P-Systeme angepasst. Kern ist auch hier die dynamsiche Auswahl der
Operatorreihenfolge für die Tupel. Die grundlegende Neuerung ist die Unterstützung ver-
teilter Operatoren, erreicht durch die Verbindung der Tupel mit der zugehörigen Ver-
arbeitungsvorschrift. Dieses Konzept ist natürlich nicht auf den Einsatz in P2P-Netzen
beschränkt, sondern kann ohne großen Aufwand auch für andere verteilte Umgebungen
umgesetzt werden.

Die dadurch gewonnene Flexibilität für die Auswahl von Rechnerknoten bringt dabei
einige Vorteile mit sich. So existieren z.B. keine dedizierten Rechnerknoten, deren Aus-
fall (durch Überlastung, Angriff,...) automatisch einen vollständigen Abbruch der Anfrage
zur Folge hätte. Weiterhin kann eine wesentlich bessere Lastverteilung erreicht werden.
Vor allem wird aber so ein Maximum an Parallelität ermöglicht, was sowohl der Skalier-
barkeit als auch der Robustheit des P2P-Eddies zu Gute kommt, den Hauptkriterien für
den Einsatz in P2P-Netzen. Die teilweise freie Auswahl von Peers, erlaubt dem P2P-Eddy
eine noch „agressivere“ Adaption an die Systemumgebung als die ersten Eddy-Varianten.

Im Mittelpunkt der Adaptivität stehen die Strategien, welche die Operatorreihenfolge
und die Peer-Auswahl festlegen. Für beiden Fragestellungen wurden verschiedene Strate-
gien umgesetzt, die mit der Steigerung der Effizienz ein gemeinsames Ziel verfolgen, aber
verschiedene Wege gehen. Sie unterscheiden sich dabei in Verwendung der rückgekoppel-
ten Systemparameter und ggf. der Bestimmung bzw. Pflege zugehöriger Statistiken.

Die Verteilung von Operatoren und der Verzicht auf eine zentrale Koordination haben
auch ihre Nachteile. Ganz allgemein wird die hohe Flexibilität und Dynamik mit einem
nicht unerheblichen Mehraufwand erkauft. Dieser setzt sich in erster Linie aus Aktuali-
sierung benötigter Parameter und aus den Kosten für die Entscheidungsfindungen zusam-
men.

Mit der Verteilung von Operatoren werden auch die zugehörigen Laufzeitstatistiken
verteilt. Je verteilter ein Operator, umso verteilter sind auch dessen Statistiken und
umso geringer ist somit die Aussagekraft der Kenngrößen für die lokalen Routing-
Entscheidungen. Dies betrifft vor allem das Operator-Routing. Dadurch, dass auch
Routing-Strategien, die auch ohne die lokalen Lauftzeitstatistiken gute Ergebnisse
erzielen, existieren, relativiert sich dieses Problem.

Die Möglichkeiten des P2P-Eddies wurden noch lange nicht ausgeschöpft. So feh-
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len für einen vollständigen Anfrageprozessor noch die nötigen Planoperatoren. Dazu
zählen Operatoren wie Aggregation, Gruppierung oder Sortierung. Auch die ausschließli-
che Verwendung von Equi-Joins schränkt den Leistungsumfang der Anfrageverarbeitung
ein. Hinsichtlich der Flexibilität und Effizienz sind auch verschiedene Implementierun-
gen vor allem für komplexe oder blockierende Operatoren denkbar (Stichwort: adaptive
dynamische Operatoren).

Das größte Potential für eine weitere Optimierung steckt zweifellos in den Routing-
Strategien. Durch die verteilten Operatoren sind neue Strategien für das Operator-Routing
interessant, die auf verteilte Laufzeitstatistiken verzichten. Denkbar wäre beispielsweise
eine feste Priorität oder Selektiviät für jeden einzelnen Operator im Anfragebaum. Wel-
che zusätzlichen Erweiterung (Stichwort: verteilter Datenbankkatalog) dafür nötig wären,
steht auf einem anderen Blatt. Wie die Evaluierung gezeigt hat, sind aber auch die beste-
henden Routing-Strategien noch nicht optimal.

Unzureichend evaluiert wurde das Peer-Routing mit dem Ziel einer möglichst
effizienten Lastverteilung. Für reprodizierbare und aussagekräftige Ergebnisse müsste
der CAN-Prototyp sinnvollerweise erweitert werden, um auch Last im Netz bzw. auf die
Peers zu simulieren, vorzugsweise unabhängig von der Anfrageverarbeitung.

Alles in allem wurde mit dem P2P-Eddy ein wichtiger Schritt in Richtung Anfra-
geverarbeitung in massiv verteilten Umgebungen gemacht. Obwohl die maximale
Effizienz sicher noch nicht erreicht wurde, zeigen die hohe Parallelität, Dynamik
und Flexibilität, dass der P2P-Eddy durchaus auf dem richtigen Weg ist. Bezüglich
der Aggressivität der Adaptivität, hat der P2P-Eddy die Meßlatte für adaptive Anfra-
geverarbeitungen noch einmal höher gelegt. Und das Potential ist noch lange nicht
ausgeschöpft.
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